prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import zmq import pyarrow from gym import spaces import deepdrive_api.methods as m import deepdrive_api.constants as c from deepdrive_api import logs log = logs.get_log(__name__) def deserialize_space(resp): if resp['type'] == "<class 'gym.spaces.box.Box'>": ret = spaces.Box(resp['low'], resp['high'], dtype=resp['dtype']) else: raise RuntimeError('Unsupported action space type') return ret class Client(object): """ A Client object acts as a remote proxy to the deepdrive gym environment. Methods that you would call on the env, like step() are also called on this object, with communication over the network - rather than over shared memory (for observations) and network (for transactions like reset) as is the case with the locally run sim/gym_env.py. This allows the agent and environment to run on separate machines, but with the same API as a local agent, namely the gym API. The local gym environment is then run by api/server.py which proxies RPC's from this client to the local environment. All network communication happens over ZMQ to take advantage of their highly optimized cross-language / cross-OS sockets. NOTE: This will obviously run more slowly than a local agent which communicates sensor data over shared memory. """ def __init__(self, **kwargs): """ :param kwargs['client_render'] (bool): Whether to render on this side of the client server connection. Passing kwargs['render'] = True will cause the server to render an MJPG stream at http://localhost:5000 """ self.socket = None self.last_obz = None self.create_socket() self.should_render = kwargs.get('client_render', False) self.is_open = True kwargs['cameras'] = kwargs.get('cameras', [c.DEFAULT_CAM]) log.info('Waiting for sim to start on server...') # TODO: Fix connecting to an open sim self._send(m.START, kwargs=kwargs) self.is_open = True log.info('===========> Deepdrive sim started') def _send(self, method, args=None, kwargs=None): if method != m.START and not self.is_open: log.warning('Not sending, env is closed') return None args = args or [] kwargs = kwargs or {} try: msg = pyarrow.serialize([method, args, kwargs]).to_buffer() self.socket.send(msg) return pyarrow.deserialize(self.socket.recv()) except zmq.error.Again: log.info('Waiting for Deepdrive API server...') self.create_socket() return None def create_socket(self): if self.socket: self.socket.close() context = zmq.Context() socket = context.socket(zmq.PAIR) # Creating a new socket on timeout is not working when other ZMQ # connections are present in the process. # socket.RCVTIMEO = c.API_TIMEOUT_MS # socket.SNDTIMEO = c.API_TIMEOUT_MS connection_str = 'tcp://%s:%s' % (c.SIM_HOST, c.API_PORT) log.info('Deepdrive API client connecting to %s' % connection_str) socket.connect(connection_str) self.socket = socket return socket def step(self, action): if hasattr(action, 'as_gym'): # Legacy support for original agents written within deepdrive repo action = action.as_gym() ret = self._send(m.STEP, args=[action]) obz, reward, done, info = ret if info.get('closed', False): self.handle_closed() if not obz: obz = None self.last_obz = obz if self.should_render: self.render() return obz, reward, done, info def reset(self): if self.is_open: return self._send(m.RESET) else: log.warning('Env closed, not resetting') return None def render(self): """ We pass the obz through an instance variable to comply with the gym api where render() takes 0 arguments """ if self.last_obz is not None: self.renderer.render(self.last_obz) def change_cameras(self, cameras): return self._send(m.CHANGE_CAMERAS, args=[cameras]) def close(self): self._send(m.CLOSE) self.handle_closed() def handle_closed(self): self.is_open = False try: self.socket.close() except Exception as e: log.debug('Caught exception closing socket') @property def action_space(self): resp = self._send(m.ACTION_SPACE) ret = deserialize_space(resp) return ret @property def observation_space(self): resp = self._send(m.OBSERVATION_SPACE) ret = deserialize_space(resp) return ret @property def metadata(self): return self._send(m.METADATA) @property def reward_range(self): return self._send(m.REWARD_RANGE) def get_action(steering=0, throttle=0, brake=0, handbrake=0, has_control=True): ret = [np.array([steering]), np.array([throttle]), np.array([brake]),
np.array([handbrake])
numpy.array
# -*- coding: utf-8 -*- """ Definition of a hierarchy of classes for kernel functions to be used in convolution, e.g., for data smoothing (low pass filtering) or firing rate estimation. Examples of usage: >>> kernel1 = kernels.GaussianKernel(sigma=100*ms) >>> kernel2 = kernels.ExponentialKernel(sigma=8*mm, invert=True) :copyright: Copyright 2016 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ import quantities as pq import numpy as np import scipy.special def inherit_docstring(fromfunc, sep=""): """ Decorator: Copy the docstring of `fromfunc` based on: http://stackoverflow.com/questions/13741998/ is-there-a-way-to-let-classes-inherit-the-documentation-of-their-superclass-with """ def _decorator(func): parent_doc = fromfunc.__doc__ if func.__doc__ is None: func.__doc__ = parent_doc else: func.__doc__ = sep.join([parent_doc, func.__doc__]) return func return _decorator class Kernel(object): """ This is the base class for commonly used kernels. General definition of kernel: A function :math:`K(x, y)` is called a kernel function if :math:`\\int K(x, y) g(x) g(y)\\ \\textrm{d}x\\ \\textrm{d}y \\ \\geq 0\\ \\ \\ \\forall\\ g \\in L_2` Currently implemented kernels are: - rectangular - triangular - epanechnikovlike - gaussian - laplacian - exponential (asymmetric) - alpha function (asymmetric) In neuroscience a popular application of kernels is in performing smoothing operations via convolution. In this case, the kernel has the properties of a probability density, i.e., it is positive and normalized to one. Popular choices are the rectangular or Gaussian kernels. Exponential and alpha kernels may also be used to represent the postynaptic current / potentials in a linear (current-based) model. Parameters ---------- sigma : Quantity scalar Standard deviation of the kernel. invert: bool, optional If true, asymmetric kernels (e.g., exponential or alpha kernels) are inverted along the time axis. Default: False """ def __init__(self, sigma, invert=False): if not (isinstance(sigma, pq.Quantity)): raise TypeError("sigma must be a quantity!") if sigma.magnitude < 0: raise ValueError("sigma cannot be negative!") if not isinstance(invert, bool): raise ValueError("invert must be bool!") self.sigma = sigma self.invert = invert def __call__(self, t): """ Evaluates the kernel at all points in the array `t`. Parameter --------- t : Quantity 1D Interval on which the kernel is evaluated, not necessarily a time interval. Returns ------- Quantity 1D The result of the kernel evaluations. """ if not (isinstance(t, pq.Quantity)): raise TypeError("The argument of the kernel callable must be " "of type quantity!") if t.dimensionality.simplified != self.sigma.dimensionality.simplified: raise TypeError("The dimensionality of sigma and the input array " "to the callable kernel object must be the same. " "Otherwise a normalization to 1 of the kernel " "cannot be performed.") self._sigma_scaled = self.sigma.rescale(t.units) # A hidden variable _sigma_scaled is introduced here in order to avoid # accumulation of floating point errors of sigma upon multiple # usages of the __call__ - function for the same Kernel instance. return self._evaluate(t) def _evaluate(self, t): """ Evaluates the kernel. Parameter --------- t : Quantity 1D Interval on which the kernel is evaluated, not necessarily a time interval. Returns ------- Quantity 1D The result of the kernel evaluation. """ raise NotImplementedError("The Kernel class should not be used directly, " "instead the subclasses for the single kernels.") def boundary_enclosing_area_fraction(self, fraction): """ Calculates the boundary :math:`b` so that the integral from :math:`-b` to :math:`b` encloses a certain fraction of the integral over the complete kernel. By definition the returned value of the method boundary_enclosing_area_fraction is hence non-negative, even if the whole probability mass of the kernel is concentrated over negative support for inverted kernels. Parameter --------- fraction : float Fraction of the whole area which has to be enclosed. Returns ------- Quantity scalar Boundary of the kernel containing area `fraction` under the kernel density. """ self._check_fraction(fraction) sigma_division = 500 # arbitrary choice interval = self.sigma / sigma_division self._sigma_scaled = self.sigma area = 0 counter = 0 while area < fraction: area += (self._evaluate((counter + 1) * interval) + self._evaluate(counter * interval)) * interval / 2 area += (self._evaluate(-1 * (counter + 1) * interval) + self._evaluate(-1 * counter * interval)) * interval / 2 counter += 1 if(counter > 250000): raise ValueError("fraction was chosen too close to one such " "that in combination with integral " "approximation errors the calculation of a " "boundary was not possible.") return counter * interval def _check_fraction(self, fraction): """ Checks the input variable of the method boundary_enclosing_area_fraction for validity of type and value. Parameter --------- fraction : float or int Fraction of the area under the kernel function. """ if not isinstance(fraction, (float, int)): raise TypeError("`fraction` must be float or integer!") if not 0 <= fraction < 1: raise ValueError("`fraction` must be in the interval [0, 1)!") def median_index(self, t): """ Estimates the index of the Median of the kernel. This parameter is not mandatory for symmetrical kernels but it is required when asymmetrical kernels have to be aligned at their median. Parameter --------- t : Quantity 1D Interval on which the kernel is evaluated, Returns ------- int Index of the estimated value of the kernel median. Remarks ------- The formula in this method using retrieval of the sampling interval from t only works for t with equidistant intervals! The formula calculates the Median slightly wrong by the potentially ignored probability in the distribution corresponding to lower values than the minimum in the array t. """ return np.nonzero(self(t).cumsum() * (t[len(t) - 1] - t[0]) / (len(t) - 1) >= 0.5)[0].min() def is_symmetric(self): """ In the case of symmetric kernels, this method is overwritten in the class SymmetricKernel, where it returns 'True', hence leaving the here returned value 'False' for the asymmetric kernels. """ return False class SymmetricKernel(Kernel): """ Base class for symmetric kernels. Derived from: """ __doc__ += Kernel.__doc__ def is_symmetric(self): return True class RectangularKernel(SymmetricKernel): """ Class for rectangular kernels .. math:: K(t) = \\left\\{\\begin{array}{ll} \\frac{1}{2 \\tau}, & |t| < \\tau \\\\ 0, & |t| \\geq \\tau \\end{array} \\right. with :math:`\\tau = \\sqrt{3} \\sigma` corresponding to the half width of the kernel. Besides the standard deviation `sigma`, for consistency of interfaces the parameter `invert` needed for asymmetric kernels also exists without having any effect in the case of symmetric kernels. Derived from: """ __doc__ += SymmetricKernel.__doc__ @property def min_cutoff(self): min_cutoff = np.sqrt(3.0) return min_cutoff @inherit_docstring(Kernel._evaluate) def _evaluate(self, t): return (0.5 / (np.sqrt(3.0) * self._sigma_scaled)) * \ (np.absolute(t) < np.sqrt(3.0) * self._sigma_scaled) @inherit_docstring(Kernel.boundary_enclosing_area_fraction) def boundary_enclosing_area_fraction(self, fraction): self._check_fraction(fraction) return np.sqrt(3.0) * self.sigma * fraction class TriangularKernel(SymmetricKernel): """ Class for triangular kernels .. math:: K(t) = \\left\\{ \\begin{array}{ll} \\frac{1}{\\tau} (1 - \\frac{|t|}{\\tau}), & |t| < \\tau \\\\ 0, & |t| \\geq \\tau \\end{array} \\right. with :math:`\\tau = \\sqrt{6} \\sigma` corresponding to the half width of the kernel. Besides the standard deviation `sigma`, for consistency of interfaces the parameter `invert` needed for asymmetric kernels also exists without having any effect in the case of symmetric kernels. Derived from: """ __doc__ += SymmetricKernel.__doc__ @property def min_cutoff(self): min_cutoff = np.sqrt(6.0) return min_cutoff @inherit_docstring(Kernel._evaluate) def _evaluate(self, t): return (1.0 / (np.sqrt(6.0) * self._sigma_scaled)) * np.maximum( 0.0, (1.0 - (np.absolute(t) / (np.sqrt(6.0) * self._sigma_scaled)).magnitude)) @inherit_docstring(Kernel.boundary_enclosing_area_fraction) def boundary_enclosing_area_fraction(self, fraction): self._check_fraction(fraction) return np.sqrt(6.0) * self.sigma * (1 - np.sqrt(1 - fraction)) class EpanechnikovLikeKernel(SymmetricKernel): """ Class for epanechnikov-like kernels .. math:: K(t) = \\left\\{\\begin{array}{ll} (3 /(4 d)) (1 - (t / d)^2), & |t| < d \\\\ 0, & |t| \\geq d \\end{array} \\right. with :math:`d = \\sqrt{5} \\sigma` being the half width of the kernel. The Epanechnikov kernel under full consideration of its axioms has a half width of :math:`\\sqrt{5}`. Ignoring one axiom also the respective kernel with half width = 1 can be called Epanechnikov kernel. ( https://de.wikipedia.org/wiki/Epanechnikov-Kern ) However, arbitrary width of this type of kernel is here preferred to be called 'Epanechnikov-like' kernel. Besides the standard deviation `sigma`, for consistency of interfaces the parameter `invert` needed for asymmetric kernels also exists without having any effect in the case of symmetric kernels. Derived from: """ __doc__ += SymmetricKernel.__doc__ @property def min_cutoff(self): min_cutoff = np.sqrt(5.0) return min_cutoff @inherit_docstring(Kernel._evaluate) def _evaluate(self, t): return (3.0 / (4.0 * np.sqrt(5.0) * self._sigma_scaled)) * np.maximum( 0.0, 1 - (t / (np.sqrt(5.0) * self._sigma_scaled)).magnitude ** 2) @inherit_docstring(Kernel.boundary_enclosing_area_fraction) def boundary_enclosing_area_fraction(self, fraction): """ For Epanechnikov-like kernels, integration of its density within the boundaries 0 and :math:`b`, and then solving for :math:`b` leads to the problem of finding the roots of a polynomial of third order. The implemented formulas are based on the solution of this problem given in https://en.wikipedia.org/wiki/Cubic_function, where the following 3 solutions are given: - :math:`u_1 = 1`: Solution on negative side - :math:`u_2 = \\frac{-1 + i\\sqrt{3}}{2}`: Solution for larger values than zero crossing of the density - :math:`u_3 = \\frac{-1 - i\\sqrt{3}}{2}`: Solution for smaller values than zero crossing of the density The solution :math:`u_3` is the relevant one for the problem at hand, since it involves only positive area contributions. """ self._check_fraction(fraction) # Python's complex-operator cannot handle quantities, hence the # following construction on quantities is necessary: Delta_0 = complex(1.0 / (5.0 * self.sigma.magnitude**2), 0) / \ self.sigma.units**2 Delta_1 = complex(2.0 * np.sqrt(5.0) * fraction / (25.0 * self.sigma.magnitude**3), 0) / \ self.sigma.units**3 C = ((Delta_1 + (Delta_1**2.0 - 4.0 * Delta_0**3.0)**(1.0 / 2.0)) / 2.0)**(1.0 / 3.0) u_3 = complex(-1.0 / 2.0, -np.sqrt(3.0) / 2.0) b = -5.0 * self.sigma**2 * (u_3 * C + Delta_0 / (u_3 * C)) return b.real class GaussianKernel(SymmetricKernel): """ Class for gaussian kernels .. math:: K(t) = (\\frac{1}{\\sigma \\sqrt{2 \\pi}}) \\exp(-\\frac{t^2}{2 \\sigma^2}) with :math:`\\sigma` being the standard deviation. Besides the standard deviation `sigma`, for consistency of interfaces the parameter `invert` needed for asymmetric kernels also exists without having any effect in the case of symmetric kernels. Derived from: """ __doc__ += SymmetricKernel.__doc__ @property def min_cutoff(self): min_cutoff = 3.0 return min_cutoff @inherit_docstring(Kernel._evaluate) def _evaluate(self, t): return (1.0 / (np.sqrt(2.0 * np.pi) * self._sigma_scaled)) * np.exp( -0.5 * (t / self._sigma_scaled).magnitude ** 2) @inherit_docstring(Kernel.boundary_enclosing_area_fraction) def boundary_enclosing_area_fraction(self, fraction): self._check_fraction(fraction) return self.sigma * np.sqrt(2.0) * scipy.special.erfinv(fraction) class LaplacianKernel(SymmetricKernel): """ Class for laplacian kernels .. math:: K(t) = \\frac{1}{2 \\tau} \\exp(-|\\frac{t}{\\tau}|) with :math:`\\tau = \\sigma / \\sqrt{2}`. Besides the standard deviation `sigma`, for consistency of interfaces the parameter `invert` needed for asymmetric kernels also exists without having any effect in the case of symmetric kernels. Derived from: """ __doc__ += SymmetricKernel.__doc__ @property def min_cutoff(self): min_cutoff = 3.0 return min_cutoff @inherit_docstring(Kernel._evaluate) def _evaluate(self, t): return (1 / (np.sqrt(2.0) * self._sigma_scaled)) * np.exp( -(np.absolute(t) * np.sqrt(2.0) / self._sigma_scaled).magnitude) @inherit_docstring(Kernel.boundary_enclosing_area_fraction) def boundary_enclosing_area_fraction(self, fraction): self._check_fraction(fraction) return -self.sigma * np.log(1.0 - fraction) / np.sqrt(2.0) # Potential further symmetric kernels from Wiki Kernels (statistics): # Quartic (biweight), Triweight, Tricube, Cosine, Logistics, Silverman class ExponentialKernel(Kernel): """ Class for exponential kernels .. math:: K(t) = \\left\\{\\begin{array}{ll} (1 / \\tau) \\exp{(-t / \\tau)}, & t > 0 \\\\ 0, & t \\leq 0 \\end{array} \\right. with :math:`\\tau = \\sigma`. Derived from: """ __doc__ += Kernel.__doc__ @property def min_cutoff(self): min_cutoff = 3.0 return min_cutoff @inherit_docstring(Kernel._evaluate) def _evaluate(self, t): if not self.invert: kernel = (t >= 0) * (1. / self._sigma_scaled.magnitude) *\ np.exp((-t / self._sigma_scaled).magnitude) / t.units elif self.invert: kernel = (t <= 0) * (1. / self._sigma_scaled.magnitude) *\ np.exp((t / self._sigma_scaled).magnitude) / t.units return kernel @inherit_docstring(Kernel.boundary_enclosing_area_fraction) def boundary_enclosing_area_fraction(self, fraction): self._check_fraction(fraction) return -self.sigma * np.log(1.0 - fraction) class AlphaKernel(Kernel): """ Class for alpha kernels .. math:: K(t) = \\left\\{\\begin{array}{ll} (1 / \\tau^2) \\ t\\ \\exp{(-t / \\tau)}, & t > 0 \\\\ 0, & t \\leq 0 \\end{array} \\right. with :math:`\\tau = \\sigma / \\sqrt{2}`. For the alpha kernel an analytical expression for the boundary of the integral as a function of the area under the alpha kernel function cannot be given. Hence in this case the value of the boundary is determined by kernel-approximating numerical integration, inherited from the Kernel class. Derived from: """ __doc__ += Kernel.__doc__ @property def min_cutoff(self): min_cutoff = 3.0 return min_cutoff @inherit_docstring(Kernel._evaluate) def _evaluate(self, t): if not self.invert: kernel = (t >= 0) * 2. * (t / self._sigma_scaled**2).magnitude *\ np.exp(( -t *
np.sqrt(2.)
numpy.sqrt
import numpy as np import pytest from pytest import approx from numpy.testing import assert_array_equal from numpy.testing import assert_allclose from sklearn.preprocessing import OneHotEncoder from sklearn.ensemble._hist_gradient_boosting.grower import TreeGrower from sklearn.ensemble._hist_gradient_boosting.binning import _BinMapper from sklearn.ensemble._hist_gradient_boosting.common import X_BINNED_DTYPE from sklearn.ensemble._hist_gradient_boosting.common import X_DTYPE from sklearn.ensemble._hist_gradient_boosting.common import Y_DTYPE from sklearn.ensemble._hist_gradient_boosting.common import G_H_DTYPE from sklearn.ensemble._hist_gradient_boosting.common import X_BITSET_INNER_DTYPE def _make_training_data(n_bins=256, constant_hessian=True): rng = np.random.RandomState(42) n_samples = 10000 # Generate some test data directly binned so as to test the grower code # independently of the binning logic. X_binned = rng.randint(0, n_bins - 1, size=(n_samples, 2), dtype=X_BINNED_DTYPE) X_binned = np.asfortranarray(X_binned) def true_decision_function(input_features): """Ground truth decision function This is a very simple yet asymmetric decision tree. Therefore the grower code should have no trouble recovering the decision function from 10000 training samples. """ if input_features[0] <= n_bins // 2: return -1 else: return -1 if input_features[1] <= n_bins // 3 else 1 target = np.array([true_decision_function(x) for x in X_binned], dtype=Y_DTYPE) # Assume a square loss applied to an initial model that always predicts 0 # (hardcoded for this test): all_gradients = target.astype(G_H_DTYPE) shape_hessians = 1 if constant_hessian else all_gradients.shape all_hessians = np.ones(shape=shape_hessians, dtype=G_H_DTYPE) return X_binned, all_gradients, all_hessians def _check_children_consistency(parent, left, right): # Make sure the samples are correctly dispatched from a parent to its # children assert parent.left_child is left assert parent.right_child is right # each sample from the parent is propagated to one of the two children assert len(left.sample_indices) + len(right.sample_indices) == len( parent.sample_indices ) assert set(left.sample_indices).union(set(right.sample_indices)) == set( parent.sample_indices ) # samples are sent either to the left or the right node, never to both assert set(left.sample_indices).intersection(set(right.sample_indices)) == set() @pytest.mark.parametrize( "n_bins, constant_hessian, stopping_param, shrinkage", [ (11, True, "min_gain_to_split", 0.5), (11, False, "min_gain_to_split", 1.0), (11, True, "max_leaf_nodes", 1.0), (11, False, "max_leaf_nodes", 0.1), (42, True, "max_leaf_nodes", 0.01), (42, False, "max_leaf_nodes", 1.0), (256, True, "min_gain_to_split", 1.0), (256, True, "max_leaf_nodes", 0.1), ], ) def test_grow_tree(n_bins, constant_hessian, stopping_param, shrinkage): X_binned, all_gradients, all_hessians = _make_training_data( n_bins=n_bins, constant_hessian=constant_hessian ) n_samples = X_binned.shape[0] if stopping_param == "max_leaf_nodes": stopping_param = {"max_leaf_nodes": 3} else: stopping_param = {"min_gain_to_split": 0.01} grower = TreeGrower( X_binned, all_gradients, all_hessians, n_bins=n_bins, shrinkage=shrinkage, min_samples_leaf=1, **stopping_param, ) # The root node is not yet splitted, but the best possible split has # already been evaluated: assert grower.root.left_child is None assert grower.root.right_child is None root_split = grower.root.split_info assert root_split.feature_idx == 0 assert root_split.bin_idx == n_bins // 2 assert len(grower.splittable_nodes) == 1 # Calling split next applies the next split and computes the best split # for each of the two newly introduced children nodes. left_node, right_node = grower.split_next() # All training samples have ben splitted in the two nodes, approximately # 50%/50% _check_children_consistency(grower.root, left_node, right_node) assert len(left_node.sample_indices) > 0.4 * n_samples assert len(left_node.sample_indices) < 0.6 * n_samples if grower.min_gain_to_split > 0: # The left node is too pure: there is no gain to split it further. assert left_node.split_info.gain < grower.min_gain_to_split assert left_node in grower.finalized_leaves # The right node can still be splitted further, this time on feature #1 split_info = right_node.split_info assert split_info.gain > 1.0 assert split_info.feature_idx == 1 assert split_info.bin_idx == n_bins // 3 assert right_node.left_child is None assert right_node.right_child is None # The right split has not been applied yet. Let's do it now: assert len(grower.splittable_nodes) == 1 right_left_node, right_right_node = grower.split_next() _check_children_consistency(right_node, right_left_node, right_right_node) assert len(right_left_node.sample_indices) > 0.1 * n_samples assert len(right_left_node.sample_indices) < 0.2 * n_samples assert len(right_right_node.sample_indices) > 0.2 * n_samples assert len(right_right_node.sample_indices) < 0.4 * n_samples # All the leafs are pure, it is not possible to split any further: assert not grower.splittable_nodes grower._apply_shrinkage() # Check the values of the leaves: assert grower.root.left_child.value == approx(shrinkage) assert grower.root.right_child.left_child.value == approx(shrinkage) assert grower.root.right_child.right_child.value == approx(-shrinkage, rel=1e-3) def test_predictor_from_grower(): # Build a tree on the toy 3-leaf dataset to extract the predictor. n_bins = 256 X_binned, all_gradients, all_hessians = _make_training_data(n_bins=n_bins) grower = TreeGrower( X_binned, all_gradients, all_hessians, n_bins=n_bins, shrinkage=1.0, max_leaf_nodes=3, min_samples_leaf=5, ) grower.grow() assert grower.n_nodes == 5 # (2 decision nodes + 3 leaves) # Check that the node structure can be converted into a predictor # object to perform predictions at scale # We pass undefined binning_thresholds because we won't use predict anyway predictor = grower.make_predictor( binning_thresholds=np.zeros((X_binned.shape[1], n_bins)) ) assert predictor.nodes.shape[0] == 5 assert predictor.nodes["is_leaf"].sum() == 3 # Probe some predictions for each leaf of the tree # each group of 3 samples corresponds to a condition in _make_training_data input_data = np.array( [ [0, 0], [42, 99], [128, 254], [129, 0], [129, 85], [254, 85], [129, 86], [129, 254], [242, 100], ], dtype=np.uint8, ) missing_values_bin_idx = n_bins - 1 predictions = predictor.predict_binned(input_data, missing_values_bin_idx) expected_targets = [1, 1, 1, 1, 1, 1, -1, -1, -1] assert np.allclose(predictions, expected_targets) # Check that training set can be recovered exactly: predictions = predictor.predict_binned(X_binned, missing_values_bin_idx) assert np.allclose(predictions, -all_gradients) @pytest.mark.parametrize( "n_samples, min_samples_leaf, n_bins, constant_hessian, noise", [ (11, 10, 7, True, 0), (13, 10, 42, False, 0), (56, 10, 255, True, 0.1), (101, 3, 7, True, 0), (200, 42, 42, False, 0), (300, 55, 255, True, 0.1), (300, 301, 255, True, 0.1), ], ) def test_min_samples_leaf(n_samples, min_samples_leaf, n_bins, constant_hessian, noise): rng = np.random.RandomState(seed=0) # data = linear target, 3 features, 1 irrelevant. X = rng.normal(size=(n_samples, 3)) y = X[:, 0] - X[:, 1] if noise: y_scale = y.std() y += rng.normal(scale=noise, size=n_samples) * y_scale mapper = _BinMapper(n_bins=n_bins) X = mapper.fit_transform(X) all_gradients = y.astype(G_H_DTYPE) shape_hessian = 1 if constant_hessian else all_gradients.shape all_hessians = np.ones(shape=shape_hessian, dtype=G_H_DTYPE) grower = TreeGrower( X, all_gradients, all_hessians, n_bins=n_bins, shrinkage=1.0, min_samples_leaf=min_samples_leaf, max_leaf_nodes=n_samples, ) grower.grow() predictor = grower.make_predictor(binning_thresholds=mapper.bin_thresholds_) if n_samples >= min_samples_leaf: for node in predictor.nodes: if node["is_leaf"]: assert node["count"] >= min_samples_leaf else: assert predictor.nodes.shape[0] == 1 assert predictor.nodes[0]["is_leaf"] assert predictor.nodes[0]["count"] == n_samples @pytest.mark.parametrize("n_samples, min_samples_leaf", [(99, 50), (100, 50)]) def test_min_samples_leaf_root(n_samples, min_samples_leaf): # Make sure root node isn't split if n_samples is not at least twice # min_samples_leaf rng = np.random.RandomState(seed=0) n_bins = 256 # data = linear target, 3 features, 1 irrelevant. X = rng.normal(size=(n_samples, 3)) y = X[:, 0] - X[:, 1] mapper = _BinMapper(n_bins=n_bins) X = mapper.fit_transform(X) all_gradients = y.astype(G_H_DTYPE) all_hessians = np.ones(shape=1, dtype=G_H_DTYPE) grower = TreeGrower( X, all_gradients, all_hessians, n_bins=n_bins, shrinkage=1.0, min_samples_leaf=min_samples_leaf, max_leaf_nodes=n_samples, ) grower.grow() if n_samples >= min_samples_leaf * 2: assert len(grower.finalized_leaves) >= 2 else: assert len(grower.finalized_leaves) == 1 def assert_is_stump(grower): # To assert that stumps are created when max_depth=1 for leaf in (grower.root.left_child, grower.root.right_child): assert leaf.left_child is None assert leaf.right_child is None @pytest.mark.parametrize("max_depth", [1, 2, 3]) def test_max_depth(max_depth): # Make sure max_depth parameter works as expected rng = np.random.RandomState(seed=0) n_bins = 256 n_samples = 1000 # data = linear target, 3 features, 1 irrelevant. X = rng.normal(size=(n_samples, 3)) y = X[:, 0] - X[:, 1] mapper = _BinMapper(n_bins=n_bins) X = mapper.fit_transform(X) all_gradients = y.astype(G_H_DTYPE) all_hessians = np.ones(shape=1, dtype=G_H_DTYPE) grower = TreeGrower(X, all_gradients, all_hessians, max_depth=max_depth) grower.grow() depth = max(leaf.depth for leaf in grower.finalized_leaves) assert depth == max_depth if max_depth == 1: assert_is_stump(grower) def test_input_validation(): X_binned, all_gradients, all_hessians = _make_training_data() X_binned_float = X_binned.astype(np.float32) with pytest.raises(NotImplementedError, match="X_binned must be of type uint8"): TreeGrower(X_binned_float, all_gradients, all_hessians) X_binned_C_array = np.ascontiguousarray(X_binned) with pytest.raises( ValueError, match="X_binned should be passed as Fortran contiguous array" ): TreeGrower(X_binned_C_array, all_gradients, all_hessians) def test_init_parameters_validation(): X_binned, all_gradients, all_hessians = _make_training_data() with pytest.raises(ValueError, match="min_gain_to_split=-1 must be positive"): TreeGrower(X_binned, all_gradients, all_hessians, min_gain_to_split=-1) with pytest.raises(ValueError, match="min_hessian_to_split=-1 must be positive"): TreeGrower(X_binned, all_gradients, all_hessians, min_hessian_to_split=-1) def test_missing_value_predict_only(): # Make sure that missing values are supported at predict time even if they # were not encountered in the training data: the missing values are # assigned to whichever child has the most samples. rng = np.random.RandomState(0) n_samples = 100 X_binned = rng.randint(0, 256, size=(n_samples, 1), dtype=np.uint8) X_binned = np.asfortranarray(X_binned) gradients = rng.normal(size=n_samples).astype(G_H_DTYPE) hessians = np.ones(shape=1, dtype=G_H_DTYPE) grower = TreeGrower( X_binned, gradients, hessians, min_samples_leaf=5, has_missing_values=False ) grower.grow() # We pass undefined binning_thresholds because we won't use predict anyway predictor = grower.make_predictor( binning_thresholds=np.zeros((X_binned.shape[1], X_binned.max() + 1)) ) # go from root to a leaf, always following node with the most samples. # That's the path nans are supposed to take node = predictor.nodes[0] while not node["is_leaf"]: left = predictor.nodes[node["left"]] right = predictor.nodes[node["right"]] node = left if left["count"] > right["count"] else right prediction_main_path = node["value"] # now build X_test with only nans, and make sure all predictions are equal # to prediction_main_path all_nans = np.full(shape=(n_samples, 1), fill_value=np.nan) known_cat_bitsets = np.zeros((0, 8), dtype=X_BITSET_INNER_DTYPE) f_idx_map = np.zeros(0, dtype=np.uint32) y_pred = predictor.predict(all_nans, known_cat_bitsets, f_idx_map) assert np.all(y_pred == prediction_main_path) def test_split_on_nan_with_infinite_values(): # Make sure the split on nan situations are respected even when there are # samples with +inf values (we set the threshold to +inf when we have a # split on nan so this test makes sure this does not introduce edge-case # bugs). We need to use the private API so that we can also test # predict_binned(). X = np.array([0, 1, np.inf, np.nan, np.nan]).reshape(-1, 1) # the gradient values will force a split on nan situation gradients = np.array([0, 0, 0, 100, 100], dtype=G_H_DTYPE) hessians = np.ones(shape=1, dtype=G_H_DTYPE) bin_mapper = _BinMapper() X_binned = bin_mapper.fit_transform(X) n_bins_non_missing = 3 has_missing_values = True grower = TreeGrower( X_binned, gradients, hessians, n_bins_non_missing=n_bins_non_missing, has_missing_values=has_missing_values, min_samples_leaf=1, ) grower.grow() predictor = grower.make_predictor(binning_thresholds=bin_mapper.bin_thresholds_) # sanity check: this was a split on nan assert predictor.nodes[0]["num_threshold"] == np.inf assert predictor.nodes[0]["bin_threshold"] == n_bins_non_missing - 1 known_cat_bitsets, f_idx_map = bin_mapper.make_known_categories_bitsets() # Make sure in particular that the +inf sample is mapped to the left child # Note that lightgbm "fails" here and will assign the inf sample to the # right child, even though it's a "split on nan" situation. predictions = predictor.predict(X, known_cat_bitsets, f_idx_map) predictions_binned = predictor.predict_binned( X_binned, missing_values_bin_idx=bin_mapper.missing_values_bin_idx_ ) np.testing.assert_allclose(predictions, -gradients) np.testing.assert_allclose(predictions_binned, -gradients) def test_grow_tree_categories(): # Check that the grower produces the right predictor tree when a split is # categorical X_binned = np.array([[0, 1] * 11 + [1]], dtype=X_BINNED_DTYPE).T X_binned = np.asfortranarray(X_binned) all_gradients = np.array([10, 1] * 11 + [1], dtype=G_H_DTYPE) all_hessians =
np.ones(1, dtype=G_H_DTYPE)
numpy.ones
# -*- coding: utf-8 -*- """ Created on Tue Jan 31 14:33:56 2017 @author: <NAME> """ import numpy as np from copy import deepcopy from scipy.spatial.distance import pdist,squareform from ..QuantumChem.interaction import charge_charge from ..General.Potential import potential_charge, potential_dipole from ..QuantumChem.calc import GuessBonds debug=False #============================================================================== # Definition of class for polarizable environment #============================================================================== class PolarAtom: ''' Class managing dielectric properties of individual atoms Parameters ---------- pol : real Polarizability in direction of the chemical bond amp : real Diference polarization between main directions. Should be smaller then pol per : integer Periodicity of the system (for Fluorographene it should be 3 or 6) phase : real Angle of the bond from the x-axis polz : real Polarizability in direction perpendicular to the fluorographene plane ''' def __init__(self,polxy,amp,per,polz,phase=0.0): if abs(polxy)>abs(amp): self.polxy = abs(polxy) self.amp = amp else: self.polxy = abs(amp) self.amp = polxy self.per = per self.phase = phase self.polz = abs(polz) def _polarizability4angle(self,angle): phi = angle - self.phase n = self.per polar = self.polxy+self.amp*(np.cos(n*phi)-1)/2 return np.array([polar,polar,self.polz],dtype='f8') def get_polarizability4elf(self,E): Phi=np.arctan2(E[1],E[0]) # calculate polarizability for the angle polar = self._polarizability4angle(Phi) return polar def get_induced_dipole(self,E): polar = self.get_polarizability4elf(E) dipole = polar*E return dipole class Dielectric: ''' Class managing dielectric properties of the material Parameters ---------- coor : numpy.array of real (dimension Nx3) where N is number of atoms origin of density grid pol_type : list of strings POlarization atomic types. So far supported types are: ``CF`` for the fluorographene carbon, ``FC`` for the fluorographne fluorine and ``C`` for the defect carbon. charge : numpy.array or list of real (dimension N) charges on individual atoms (initial charges) dipole : numpy.array of real (dimension Nx3) dipole on individual atoms (initial dipole) polar_param : dictionary Polarization parameters for every polarization atom type. ''' def __init__(self,coor,pol_type,charge,dipole,polar_param): self.coor=
np.copy(coor)
numpy.copy
import os,tables,numpy as np,matplotlib.pyplot as plt,pandas as pd,h5py,json from scipy.io import loadmat from collections import Counter from dataholder import Data class DataMerge(): def __init__(self,split = 0,path=''): self.split = split self.x_train = self.y_train = self.y_domain = self.train_parts = None self.x_val = self.y_val = self.y_valdom = self.val_parts = None self.val_wav_name = None self.seg = ('4_segments' in path) def merge(self,data,train_test): if(train_test): if(self.x_val is None):self.x_val = data.trainX elif(data.seg):self.x_val = {k:np.concatenate((self.x_val[k],data.trainX[k]),axis = -1) for k in data.segments} else:self.x_val = np.concatenate((self.x_val,data.trainX),axis = -1) if(self.y_val is None):self.y_val = data.trainY else:self.y_val = np.concatenate((self.y_val,data.trainY),axis = 0) if(self.y_valdom is None):self.y_valdom = data.domainY else:self.y_valdom = self.y_valdom+data.domainY if(self.val_parts is None): if(data.train_parts is not None):self.val_parts = data.train_parts else: if(data.train_parts is not None): self.val_parts = np.concatenate((self.val_parts,data.train_parts),axis = 0) else: print("Data train parts unavailable") if(self.val_wav_name is None): self.val_wav_name = data.wav_name else: self.val_wav_name = self.val_wav_name+data.wav_name if(self.split>0): if(self.x_train is None):self.x_train = data.valX elif(data.seg):self.x_train = {k:np.concatenate((self.x_train[k],data.valX[k]),axis = 1) for k in data.segments} else:self.x_train = np.concatenate((self.x_train,data.valX),axis = 1) if(self.y_train is None):self.y_train = data.valY else:self.y_train = np.concatenate((self.y_train,data.valY),axis = 0) if(self.y_domain is None):self.y_domain = data.valdomY else:self.y_domain = self.y_domain+data.valdomY if(self.train_parts is None):self.train_parts = data.val_parts; else: if(data.val_parts is not None): self.train_parts = np.concatenate((self.train_parts,data.val_parts),axis = 0) else: print("Data train parts unavailable") else: if(self.x_train is None):self.x_train = data.trainX; elif(self.seg):self.x_train = {k:np.concatenate((self.x_train[k],data.trainX[k]),axis = 1) for k in self.segments} else:self.x_train = np.concatenate((self.x_train,data.trainX),axis = 1) if(self.y_train is None):self.y_train = data.trainY; else:self.y_train = np.concatenate((self.y_train,data.trainY),axis = 0) if(self.y_domain is None):self.y_domain = data.domainY; else:self.y_domain = self.y_domain+data.domainY if(self.train_parts is None): self.train_parts = data.train_parts; else: if(data.train_parts is not None): self.train_parts = np.concatenate((self.train_parts,data.train_parts),axis = 0) else: print("Data train parts nai Train mergee ") def showDistribution(self, dom = None): if((dom == "k") | (dom == "l") | (dom == "m") | (dom == "n")): self.train_normal = Counter(self.y_train[:, 0])[0] self.train_abnormal = Counter(self.y_train[:, 0])[1] self.val_normal = Counter(self.y_val[:, 0])[0] self.val_abnormal = Counter(self.y_val[:, 0])[1] else: self.train_normal = Counter(self.y_train)[0] self.train_abnormal = Counter(self.y_train)[1] self.val_normal = Counter(self.y_val)[0] self.val_abnormal = Counter(self.y_val)[1] self.train_total = self.train_normal+self.train_abnormal self.val_total = self.val_normal+self.val_abnormal print("Train normal - ", self.train_normal,"-",self.train_abnormal," Abnormal") print(" ", int(100*self.train_normal/self.train_total) , " - ", int(100*self.train_abnormal/self.train_total), "%") print("Test normal - ", self.val_normal,"-",self.val_abnormal," Abnormal") print(" ",int(100*self.val_normal/self.val_total) , " - ", int(100*self.val_abnormal/self.val_total), "%") def getData(fold_dir, train_folds, test_folds, split = 0, shuffle = None): try: with open('../data/domain_filename.json', 'r') as fp: foldname = json.load(fp) except: raise FileNotFoundError("The json file in Data folder of the repository, that maps domain character to filename is not here") allData = DataMerge(split,fold_dir) for c in test_folds: allData.merge(Data(fold_dir,foldname[c],c,severe = False,split=split,shuffle=shuffle),True) for c in train_folds: allData.merge(Data(fold_dir,foldname[c],c,shuffle=shuffle),False) allData.showDistribution(test_folds) return allData.x_train, allData.y_train, allData.y_domain, allData.train_parts,allData.x_val,allData.y_val,allData.y_valdom,allData.val_parts,allData.val_wav_name def reshape_folds(x, y): x_train = [] for x1 in x: if(isinstance(x1,dict)): xD = {} for k in x1.keys(): xd = np.transpose(x1[k][:, :]) xd = np.reshape(xd, [xd.shape[0], xd.shape[1], 1]) xD[k] = xd x_train.append(xD) else: x1 =
np.transpose(x1[:, :])
numpy.transpose
from torch.nn import Parameter from torch.nn import functional as F import torch import numpy as np from neuralpredictors.layers.readouts import FullGaussian2d, MultiReadout from neuralpredictors.utils import get_module_output class ZIGReadout(FullGaussian2d): def __init__(self, in_shape, outdims, bias, inferred_params_n=1, **kwargs): self.inferred_params_n = inferred_params_n super().__init__(in_shape, outdims, bias, **kwargs) if bias: bias = Parameter(torch.Tensor(inferred_params_n, outdims)) self.register_parameter("bias", bias) else: self.register_parameter("bias", None) def initialize_features(self, match_ids=None, shared_features=None): """ The internal attribute `_original_features` in this function denotes whether this instance of the FullGuassian2d learns the original features (True) or if it uses a copy of the features from another instance of FullGaussian2d via the `shared_features` (False). If it uses a copy, the feature_l1 regularizer for this copy will return 0 """ c, w, h = self.in_shape self._original_features = True if match_ids is not None: assert self.outdims == len(match_ids) n_match_ids = len(np.unique(match_ids)) if shared_features is not None: assert shared_features.shape == ( self.inferred_params_n, 1, c, 1, n_match_ids, ), f"shared features need to have shape ({self.inferred_params_n}, 1, {c}, 1, {n_match_ids})" self._features = shared_features self._original_features = False else: self._features = Parameter( torch.Tensor(self.inferred_params_n, 1, c, 1, n_match_ids) ) # feature weights for each channel of the core self.scales = Parameter( torch.Tensor(self.inferred_params_n, 1, 1, 1, self.outdims) ) # feature weights for each channel of the core _, sharing_idx = np.unique(match_ids, return_inverse=True) self.register_buffer("feature_sharing_index", torch.from_numpy(sharing_idx)) self._shared_features = True else: self._features = Parameter( torch.Tensor(self.inferred_params_n, 1, c, 1, self.outdims) ) # feature weights for each channel of the core self._shared_features = False def forward(self, x, sample=None, shift=None, out_idx=None): """ Propagates the input forwards through the readout Args: x: input data sample (bool/None): sample determines whether we draw a sample from Gaussian distribution, N(mu,sigma), defined per neuron or use the mean, mu, of the Gaussian distribution without sampling. if sample is None (default), samples from the N(mu,sigma) during training phase and fixes to the mean, mu, during evaluation phase. if sample is True/False, overrides the model_state (i.e training or eval) and does as instructed shift (bool): shifts the location of the grid (from eye-tracking data) out_idx (bool): index of neurons to be predicted Returns: y: neuronal activity """ N, c, w, h = x.size() c_in, w_in, h_in = self.in_shape if (c_in, w_in, h_in) != (c, w, h): raise ValueError( "the specified feature map dimension is not the readout's expected input dimension" ) feat = self.features.view(self.inferred_params_n, 1, c, self.outdims) bias = self.bias outdims = self.outdims if self.batch_sample: # sample the grid_locations separately per image per batch grid = self.sample_grid( batch_size=N, sample=sample ) # sample determines sampling from Gaussian else: # use one sampled grid_locations for all images in the batch grid = self.sample_grid(batch_size=1, sample=sample).expand( N, outdims, 1, 2 ) if out_idx is not None: if isinstance(out_idx, np.ndarray): if out_idx.dtype == bool: out_idx =
np.where(out_idx)
numpy.where
#!/usr/bin/env python3 """ New colormap classes and colormap normalization classes. """ # NOTE: Avoid colormap/color name conflicts by checking # set(plot.colors._cmap_database) & set(plot.colors.mcolors._colors_full_map) # whenever new default colormaps are added. Currently result is # {'gray', 'marine', 'ocean', 'pink'} which correspond to MATLAB and GNUplot maps. import json import os import re from numbers import Integral, Number from xml.etree import ElementTree import matplotlib.cm as mcm import matplotlib.colors as mcolors import numpy as np import numpy.ma as ma from matplotlib import rcParams from .internals import ic # noqa: F401 from .internals import _not_none, docstring, warnings from .utils import to_rgb, to_rgba, to_xyz, to_xyza if hasattr(mcm, '_cmap_registry'): _cmap_database_attr = '_cmap_registry' else: _cmap_database_attr = 'cmap_d' _cmap_database = getattr(mcm, _cmap_database_attr) __all__ = [ 'make_mapping_array', 'ListedColormap', 'LinearSegmentedColormap', 'PerceptuallyUniformColormap', 'DiscreteNorm', 'DivergingNorm', 'LinearSegmentedNorm', 'ColorDatabase', 'ColormapDatabase', 'BinNorm', 'MidpointNorm', 'ColorDict', 'CmapDict', # deprecated ] HEX_PATTERN = r'#(?:[0-9a-fA-F]{3,4}){2}' # 6-8 digit hex CMAPS_DIVERGING = tuple( (key1.lower(), key2.lower()) for key1, key2 in ( ('PiYG', 'GYPi'), ('PRGn', 'GnRP'), ('BrBG', 'GBBr'), ('PuOr', 'OrPu'), ('RdGy', 'GyRd'), ('RdBu', 'BuRd'), ('RdYlBu', 'BuYlRd'), ('RdYlGn', 'GnYlRd'), ('BR', 'RB'), ('CoolWarm', 'WarmCool'), ('ColdHot', 'HotCold'), ('NegPos', 'PosNeg'), ('DryWet', 'WetDry') ) ) docstring.snippets['cmap.init'] = """ name : str The colormap name. segmentdata : dict-like Mapping containing the keys ``'hue'``, ``'saturation'``, and ``'luminance'``. The key values can be callable functions that return channel values given a colormap index, or 3-column arrays indicating the coordinates and channel transitions. See `~matplotlib.colors.LinearSegmentedColormap` for a more detailed explanation. N : int, optional Number of points in the colormap lookup table. Default is :rc:`image.lut`. alpha : float, optional The opacity for the entire colormap. Overrides the input segment data. cyclic : bool, optional Whether the colormap is cyclic. If ``True``, this changes how the leftmost and rightmost color levels are selected, and `extend` can only be ``'neither'`` (a warning will be issued otherwise). """ docstring.snippets['cmap.gamma'] = """ gamma : float, optional Sets `gamma1` and `gamma2` to this identical value. gamma1 : float, optional If >1, makes low saturation colors more prominent. If <1, makes high saturation colors more prominent. Similar to the `HCLWizard <http://hclwizard.org:64230/hclwizard/>`_ option. See `make_mapping_array` for details. gamma2 : float, optional If >1, makes high luminance colors more prominent. If <1, makes low luminance colors more prominent. Similar to the `HCLWizard <http://hclwizard.org:64230/hclwizard/>`_ option. See `make_mapping_array` for details. """ def _get_channel(color, channel, space='hcl'): """ Get the hue, saturation, or luminance channel value from the input color. The color name `color` can optionally be a string with the format ``'color+x'`` or ``'color-x'``, where `x` specifies the offset from the channel value. Parameters ---------- color : color-spec The color. Sanitized with `to_rgba`. channel : {'hue', 'chroma', 'saturation', 'luminance'} The HCL channel to be retrieved. space : {'hcl', 'hpl', 'hsl', 'hsv', 'rgb'}, optional The colorspace for the corresponding channel value. Returns ------- value : float The channel value. """ # Interpret channel if callable(color) or isinstance(color, Number): return color if channel == 'hue': channel = 0 elif channel in ('chroma', 'saturation'): channel = 1 elif channel == 'luminance': channel = 2 else: raise ValueError(f'Unknown channel {channel!r}.') # Interpret string or RGB tuple offset = 0 if isinstance(color, str): match = re.search('([-+][0-9.]+)$', color) if match: offset = float(match.group(0)) color = color[:match.start()] return offset + to_xyz(color, space)[channel] def _clip_colors(colors, clip=True, gray=0.2, warn=False): """ Clip impossible colors rendered in an HSL-to-RGB colorspace conversion. Used by `PerceptuallyUniformColormap`. If `mask` is ``True``, impossible colors are masked out. Parameters ---------- colors : list of length-3 tuples The RGB colors. clip : bool, optional If `clip` is ``True`` (the default), RGB channel values >1 are clipped to 1. Otherwise, the color is masked out as gray. gray : float, optional The identical RGB channel values (gray color) to be used if `mask` is ``True``. warn : bool, optional Whether to issue warning when colors are clipped. """ colors = np.array(colors) over = colors > 1 under = colors < 0 if clip: colors[under] = 0 colors[over] = 1 else: colors[under | over] = gray if warn: msg = 'Clipped' if clip else 'Invalid' for i, name in enumerate('rgb'): if under[:, i].any(): warnings._warn_proplot(f'{msg} {name!r} channel ( < 0).') if over[:, i].any(): warnings._warn_proplot(f'{msg} {name!r} channel ( > 1).') return colors def _make_segmentdata_array(values, coords=None, ratios=None): """ Return a segmentdata array or callable given the input colors and coordinates. Parameters ---------- values : list of float The channel values. coords : list of float, optional The segment coordinates. ratios : list of float, optional The relative length of each segment transition. """ # Allow callables if callable(values): return values values = np.atleast_1d(values) if len(values) == 1: value = values[0] return [(0, value, value), (1, value, value)] # Get coordinates if not np.iterable(values): raise TypeError('Colors must be iterable, got {values!r}.') if coords is not None: coords = np.atleast_1d(coords) if ratios is not None: warnings._warn_proplot( f'Segment coordinates were provided, ignoring ' f'ratios={ratios!r}.' ) if len(coords) != len(values) or coords[0] != 0 or coords[-1] != 1: raise ValueError( f'Coordinates must range from 0 to 1, got {coords!r}.' ) elif ratios is not None: coords = np.atleast_1d(ratios) if len(coords) != len(values) - 1: raise ValueError( f'Need {len(values)-1} ratios for {len(values)} colors, ' f'but got {len(ratios)} ratios.' ) coords = np.concatenate(([0], np.cumsum(coords))) coords = coords / np.max(coords) # normalize to 0-1 else: coords = np.linspace(0, 1, len(values)) # Build segmentdata array array = [] for c, value in zip(coords, values): array.append((c, value, value)) return array def make_mapping_array(N, data, gamma=1.0, inverse=False): r""" Similar to `~matplotlib.colors.makeMappingArray` but permits *circular* hue gradations along 0-360, disables clipping of out-of-bounds channel values, and uses fancier "gamma" scaling. Parameters ---------- N : int Number of points in the colormap lookup table. data : 2D array-like List of :math:`(x, y_0, y_1)` tuples specifying the channel jump (from :math:`y_0` to :math:`y_1`) and the :math:`x` coordinate of that transition (ranges between 0 and 1). See `~matplotlib.colors.LinearSegmentedColormap` for details. gamma : float or list of float, optional To obtain channel values between coordinates :math:`x_i` and :math:`x_{i+1}` in rows :math:`i` and :math:`i+1` of `data`, we use the formula: .. math:: y = y_{1,i} + w_i^{\gamma_i}*(y_{0,i+1} - y_{1,i}) where :math:`\gamma_i` corresponds to `gamma` and the weight :math:`w_i` ranges from 0 to 1 between rows ``i`` and ``i+1``. If `gamma` is float, it applies to every transition. Otherwise, its length must equal ``data.shape[0]-1``. This is like the `gamma` used with matplotlib's `~matplotlib.colors.makeMappingArray`, except it controls the weighting for transitions *between* each segment data coordinate rather than the coordinates themselves. This makes more sense for `PerceptuallyUniformColormap`\ s because they usually consist of just one linear transition for *sequential* colormaps and two linear transitions for *diverging* colormaps -- and in the latter case, it is often desirable to modify both "halves" of the colormap in the same way. inverse : bool, optional If ``True``, :math:`w_i^{\gamma_i}` is replaced with :math:`1 - (1 - w_i)^{\gamma_i}` -- that is, when `gamma` is greater than 1, this weights colors toward *higher* channel values instead of lower channel values. This is implemented in case we want to apply *equal* "gamma scaling" to different HSL channels in different directions. Usually, this is done to weight low data values with higher luminance *and* lower saturation, thereby emphasizing "extreme" data values with stronger colors. """ # Allow for *callable* instead of linearly interpolating between segments gammas = np.atleast_1d(gamma) if (gammas < 0.01).any() or (gammas > 10).any(): raise ValueError('Gamma can only be in range [0.01,10].') if callable(data): if len(gammas) > 1: raise ValueError( 'Only one gamma allowed for functional segmentdata.') x = np.linspace(0, 1, N)**gamma lut = np.array(data(x), dtype=float) return lut # Get array data = np.array(data) shape = data.shape if len(shape) != 2 or shape[1] != 3: raise ValueError('Data must be nx3 format.') if len(gammas) != 1 and len(gammas) != shape[0] - 1: raise ValueError( f'Need {shape[0]-1} gammas for {shape[0]}-level mapping array, ' f'but got {len(gamma)}.' ) if len(gammas) == 1: gammas = np.repeat(gammas, shape[:1]) # Get indices x = data[:, 0] y0 = data[:, 1] y1 = data[:, 2] if x[0] != 0.0 or x[-1] != 1.0: raise ValueError( 'Data mapping points must start with x=0 and end with x=1.' ) if (np.diff(x) < 0).any(): raise ValueError( 'Data mapping points must have x in increasing order.' ) x = x * (N - 1) # Get distances from the segmentdata entry to the *left* for each requested # level, excluding ends at (0,1), which must exactly match segmentdata ends xq = (N - 1) * np.linspace(0, 1, N) # where xq[i] must be inserted so it is larger than x[ind[i]-1] but # smaller than x[ind[i]] ind = np.searchsorted(x, xq)[1:-1] distance = (xq[1:-1] - x[ind - 1]) / (x[ind] - x[ind - 1]) # Scale distances in each segment by input gamma # The ui are starting-points, the ci are counts from that point # over which segment applies (i.e. where to apply the gamma), the relevant # 'segment' is to the *left* of index returned by searchsorted _, uind, cind = np.unique(ind, return_index=True, return_counts=True) for ui, ci in zip(uind, cind): # length should be N-1 # the relevant segment is to *left* of this number gamma = gammas[ind[ui] - 1] if gamma == 1: continue ireverse = False if ci > 1: # i.e. more than 1 color in this 'segment' # by default want to weight toward a *lower* channel value ireverse = ((y0[ind[ui]] - y1[ind[ui] - 1]) < 0) if inverse: ireverse = not ireverse if ireverse: distance[ui:ui + ci] = 1 - (1 - distance[ui:ui + ci])**gamma else: distance[ui:ui + ci] **= gamma # Perform successive linear interpolations all rolled up into one equation lut = np.zeros((N,), float) lut[1:-1] = distance * (y0[ind] - y1[ind - 1]) + y1[ind - 1] lut[0] = y1[0] lut[-1] = y0[-1] return lut class _Colormap(object): """ Mixin class used to add some helper methods. """ def _get_data(self, ext, alpha=True): """ Return a string containing the colormap colors for saving. Parameters ---------- ext : {'hex', 'txt', 'rgb'} The filename extension. alpha : bool, optional Whether to include an opacity column. """ # Get lookup table colors and filter out bad ones if not self._isinit: self._init() colors = self._lut[:-3, :] # Get data string if ext == 'hex': data = ', '.join(mcolors.to_hex(color) for color in colors) elif ext in ('txt', 'rgb'): rgb = mcolors.to_rgba if alpha else mcolors.to_rgb data = [rgb(color) for color in colors] data = '\n'.join( ' '.join(f'{num:0.6f}' for num in line) for line in data ) else: raise ValueError( f'Invalid extension {ext!r}. Options are: ' "'hex', 'txt', 'rgb', 'rgba'." ) return data def _parse_path(self, path, dirname='.', ext=''): """ Parse the user input path. Parameters ---------- dirname : str, optional The default directory. ext : str, optional The default extension. """ path = os.path.expanduser(path or '') dirname = os.path.expanduser(dirname or '') if not path or os.path.isdir(path): path = os.path.join(path or dirname, self.name) # default name dirname, basename = os.path.split(path) # default to current directory path = os.path.join(dirname or '.', basename) if not os.path.splitext(path)[-1]: path = path + '.' + ext # default file extension return path @classmethod def _from_file(cls, filename, warn_on_failure=False): """ Read generalized colormap and color cycle files. """ filename = os.path.expanduser(filename) name, ext = os.path.splitext(os.path.basename(filename)) listed = issubclass(cls, mcolors.ListedColormap) reversed = name[-2:] == '_r' # Warn if loading failed during `register_cmaps` or `register_cycles` # but raise error if user tries to load a file. def _warn_or_raise(msg, error=RuntimeError): if warn_on_failure: warnings._warn_proplot(msg) else: raise error(msg) if not os.path.exists(filename): return _warn_or_raise(f'File {filename!r} not found.', FileNotFoundError) # Directly read segmentdata json file # NOTE: This is special case! Immediately return name and cmap ext = ext[1:] if ext == 'json': if listed: raise TypeError( f'Cannot load listed colormaps from json files ({filename!r}).' ) try: with open(filename, 'r') as fh: data = json.load(fh) except json.JSONDecodeError: return _warn_or_raise( f'Failed to load {filename!r}.', json.JSONDecodeError ) kw = {} for key in ('cyclic', 'gamma', 'gamma1', 'gamma2', 'space'): if key in data: kw[key] = data.pop(key, None) if 'red' in data: cmap = LinearSegmentedColormap(name, data) else: cmap = PerceptuallyUniformColormap(name, data, **kw) if reversed: cmap = cmap.reversed(name[:-2]) return cmap # Read .rgb and .rgba files if ext in ('txt', 'rgb'): # Load # NOTE: This appears to be biggest import time bottleneck! Increases # time from 0.05s to 0.2s, with numpy loadtxt or with this regex thing. delim = re.compile(r'[,\s]+') data = [ delim.split(line.strip()) for line in open(filename) if line.strip() and line.strip()[0] != '#' ] try: data = [[float(num) for num in line] for line in data] except ValueError: return _warn_or_raise( f'Failed to load {filename!r}. Expected a table of comma ' 'or space-separated values.' ) # Build x-coordinates and standardize shape data = np.array(data) if data.shape[1] not in (3, 4): return _warn_or_raise( f'Failed to load {filename!r}. Got {data.shape[1]} columns, ' f'but expected 3 or 4.' ) if ext[0] != 'x': # i.e. no x-coordinates specified explicitly x = np.linspace(0, 1, data.shape[0]) else: x, data = data[:, 0], data[:, 1:] # Load XML files created with scivizcolor # Adapted from script found here: # https://sciviscolor.org/matlab-matplotlib-pv44/ elif ext == 'xml': try: doc = ElementTree.parse(filename) except ElementTree.ParseError: return _warn_or_raise( f'Failed to load {filename!r}. Parsing error.', ElementTree.ParseError ) x, data = [], [] for s in doc.getroot().findall('.//Point'): # Verify keys if any(key not in s.attrib for key in 'xrgb'): return _warn_or_raise( f'Failed to load {filename!r}. Missing an x, r, g, or b ' 'specification inside one or more <Point> tags.' ) # Get data color = [] for key in 'rgbao': # o for opacity if key not in s.attrib: continue color.append(float(s.attrib[key])) x.append(float(s.attrib['x'])) data.append(color) # Convert to array if not all( len(data[0]) == len(color) and len(color) in (3, 4) for color in data ): return _warn_or_raise( f'Failed to load {filename!r}. Unexpected number of channels ' 'or mixed channels across <Point> tags.' ) # Read hex strings elif ext == 'hex': # Read arbitrary format string = open(filename).read() # into single string data = re.findall(HEX_PATTERN, string) if len(data) < 2: return _warn_or_raise( f'Failed to load {filename!r}. Hex strings not found.' ) # Convert to array x = np.linspace(0, 1, len(data)) data = [to_rgb(color) for color in data] # Invalid extension else: return _warn_or_raise( f'Colormap or cycle file {filename!r} has unknown extension.' ) # Standardize and reverse if necessary to cmap # TODO: Document the fact that filenames ending in _r return a reversed # version of the colormap stored in that file. x, data = np.array(x), np.array(data) x = (x - x.min()) / (x.max() - x.min()) # ensure they span 0-1 if np.any(data > 2): # from 0-255 to 0-1 data = data / 255 if reversed: name = name[:-2] data = data[::-1, :] x = 1 - x[::-1] if listed: return ListedColormap(data, name) else: data = [(x, color) for x, color in zip(x, data)] return LinearSegmentedColormap.from_list(name, data) class LinearSegmentedColormap(mcolors.LinearSegmentedColormap, _Colormap): r""" New base class for all `~matplotlib.colors.LinearSegmentedColormap`\ s. """ def __str__(self): return type(self).__name__ + f'(name={self.name!r})' def __repr__(self): string = f" 'name': {self.name!r},\n" if hasattr(self, '_space'): string += f" 'space': {self._space!r},\n" if hasattr(self, '_cyclic'): string += f" 'cyclic': {self._cyclic!r},\n" for key, data in self._segmentdata.items(): if callable(data): string += f' {key!r}: <function>,\n' else: string += ( f' {key!r}: [{data[0][2]:.3f}, ..., {data[-1][1]:.3f}],\n' ) return type(self).__name__ + '({\n' + string + '})' @docstring.add_snippets def __init__( self, name, segmentdata, N=None, gamma=1, cyclic=False, alpha=None, ): """ Parameters ---------- %(cmap.init)s gamma : float, optional Gamma scaling used for the *x* coordinates. """ N = _not_none(N, rcParams['image.lut']) super().__init__(name, segmentdata, N=N, gamma=gamma) self._cyclic = cyclic if alpha is not None: self.set_alpha(alpha) def append(self, *args, ratios=None, name=None, N=None, **kwargs): """ Return the concatenation of this colormap with the input colormaps. Parameters ---------- *args Instances of `LinearSegmentedColormap`. ratios : list of float, optional Relative extent of each component colormap in the merged colormap. Length must equal ``len(args) + 1``. For example, ``cmap1.append(cmap2, ratios=(2, 1))`` generates a colormap with the left two-thrids containing colors from ``cmap1`` and the right one-third containing colors from ``cmap2``. name : str, optional The colormap name. Default is ``'_'.join(cmap.name for cmap in args)``. N : int, optional The number of points in the colormap lookup table. Default is :rc:`image.lut` times ``len(args)``. Other parameters ---------------- **kwargs Passed to `LinearSegmentedColormap.copy` or `PerceptuallyUniformColormap.copy`. Returns ------- `LinearSegmentedColormap` The colormap. """ # Parse input args if not args: return self if not all( isinstance(cmap, mcolors.LinearSegmentedColormap) for cmap in args ): raise TypeError( f'Input arguments {args!r} must be instances of ' 'LinearSegmentedColormap.' ) # PerceptuallyUniformColormap --> LinearSegmentedColormap conversions cmaps = [self, *args] spaces = {getattr(cmap, '_space', None) for cmap in cmaps} to_linear_segmented = len(spaces) > 1 # mixed colorspaces *or* mixed types if to_linear_segmented: for i, cmap in enumerate(cmaps): if isinstance(cmap, PerceptuallyUniformColormap): cmaps[i] = cmap.to_linear_segmented() # Combine the segmentdata, and use the y1/y2 slots at merge points so # we never interpolate between end colors of different colormaps segmentdata = {} if name is None: name = '_'.join(cmap.name for cmap in cmaps) if not np.iterable(ratios): ratios = [1] * len(cmaps) ratios = np.asarray(ratios) / np.sum(ratios) x0 = np.append(0, np.cumsum(ratios)) # coordinates for edges xw = x0[1:] - x0[:-1] # widths between edges for key in cmaps[0]._segmentdata.keys(): # not self._segmentdata # Callable segments # WARNING: If just reference a global 'funcs' list from inside the # 'data' function it can get overwritten in this loop. Must # embed 'funcs' into the definition using a keyword argument. callable_ = [callable(cmap._segmentdata[key]) for cmap in cmaps] if all(callable_): # expand range from x-to-w to 0-1 funcs = [cmap._segmentdata[key] for cmap in cmaps] def xyy(ix, funcs=funcs): ix = np.atleast_1d(ix) kx = np.empty(ix.shape) for j, jx in enumerate(ix.flat): idx = max(np.searchsorted(x0, jx) - 1, 0) kx.flat[j] = funcs[idx]((jx - x0[idx]) / xw[idx]) return kx # Concatenate segment arrays and make the transition at the # seam instant so we *never interpolate* between end colors # of different maps. elif not any(callable_): datas = [] for x, w, cmap in zip(x0[:-1], xw, cmaps): xyy =
np.array(cmap._segmentdata[key])
numpy.array
""" Functions for coordinate transformations. Contains trasformations from/to the following coordinate systems: GSE, GSM, SM, GEI, GEO, MAG, J2000 Times are in Unix seconds for consistency. Notes ----- These functions are in cotrans_lib.pro of IDL SPEDAS. For a comparison to IDL, see: http://spedas.org/wiki/index.php?title=Cotrans """ import numpy as np from datetime import datetime from pyspedas.utilities.igrf import set_igrf_params from pyspedas.utilities.j2000 import set_j2000_params def get_time_parts(time_in): """ Split time into year, doy, hours, minutes, seconds.fsec. Parameters ---------- time_in: list of float Time array. Returns ------- iyear: array of int Year. idoy: array of int Day of year. ih: array of int Hours. im: array of int Minutes. isec: array of float Seconds and milliseconds. """ tnp = np.vectorize(datetime.utcfromtimestamp)(time_in[:]) iyear = np.array([tt.year for tt in tnp]) idoy = np.array([tt.timetuple().tm_yday for tt in tnp]) ih = np.array([tt.hour for tt in tnp]) im = np.array([tt.minute for tt in tnp]) isec = np.array([tt.second + tt.microsecond/1000000.0 for tt in tnp]) return iyear, idoy, ih, im, isec def csundir_vect(time_in): """ Calculate the direction of the sun. Parameters ---------- time_in: list of float Time array. Returns ------- gst: list of float Greenwich mean sideral time (radians). slong: list of float Longitude along ecliptic (radians). sra: list of float Right ascension (radians). sdec: list of float Declination of the sun (radians). obliq: list of float Inclination of Earth's axis (radians). """ iyear, idoy, ih, im, isec = get_time_parts(time_in) # Julian day and greenwich mean sideral time pisd = np.pi / 180.0 fday = (ih * 3600.0 + im * 60.0 + isec)/86400.0 jj = 365 * (iyear-1900) + np.fix((iyear-1901)/4) + idoy dj = jj - 0.5 + fday gst = np.mod(279.690983 + 0.9856473354 * dj + 360.0 * fday + 180.0, 360.0) * pisd # longitude along ecliptic vl = np.mod(279.696678 + 0.9856473354 * dj, 360.0) t = dj / 36525.0 g = np.mod(358.475845 + 0.985600267 * dj, 360.0) * pisd slong = (vl + (1.91946 - 0.004789 * t) * np.sin(g) + 0.020094 * np.sin(2.0 * g)) * pisd # inclination of Earth's axis obliq = (23.45229 - 0.0130125 * t) * pisd sob = np.sin(obliq) cob = np.cos(obliq) # Aberration due to Earth's motion around the sun (about 0.0056 deg) pre = (0.005686 - 0.025e-4 * t) * pisd # declination of the sun slp = slong - pre sind = sob * np.sin(slp) cosd = np.sqrt(1.0 - sind**2) sc = sind / cosd sdec = np.arctan(sc) # right ascension of the sun sra = np.pi - np.arctan2((cob/sob) * sc, -np.cos(slp)/cosd) return gst, slong, sra, sdec, obliq def cdipdir(time_in=None, iyear=None, idoy=None): """ Compute dipole direction in GEO coordinates. Parameters ---------- time_in: float iyear: int idoy: int Returns ------- list of float Notes ----- Compute geodipole axis direction from International Geomagnetic Reference Field (IGRF-13) model for time interval 1970 to 2020. For time out of interval, computation is made for nearest boundary. Same as SPEDAS cdipdir. """ if (time_in is None) and (iyear is None) and (idoy is None): print("Error: No time was provided.") return if (iyear is None) or (idoy is None): iyear, idoy, ih, im, isec = get_time_parts(time_in) # IGRF-13 parameters, 1965-2020. minyear, maxyear, ga, ha, dg, dh = set_igrf_params() y = iyear - (iyear % 5) if y < minyear: y = minyear elif y > maxyear: y = maxyear year0 = y year1 = y + 5 g0 = ga[year0] h0 = ha[year0] maxind = max(ga.keys()) g = g0 h = h0 # Interpolate for dates. f2 = (iyear + (idoy-1)/365.25 - year0)/5. f1 = 1.0 - f2 f3 = iyear + (idoy-1)/365.25 - maxind nloop = len(g0) if year1 <= maxind: # years 1970-2020 g1 = ga[year1] h1 = ha[year1] for i in range(nloop): g[i] = g0[i]*f1 + g1[i]*f2 h[i] = h0[i]*f1 + h1[i]*f2 else: # years 2020-2025 for i in range(nloop): g[i] = g0[i] + dg[i]*f3 h[i] = h0[i] + dh[i]*f3 s = 1.0 for i in range(2, 15): mn = int(i*(i-1.0)/2.0 + 1.0) s = int(s*(2.0*i-3.0)/(i-1.0)) g[mn] *= s h[mn] *= s g[mn-1] *= s h[mn-1] *= s p = s for j in range(2, i): aa = 1.0 if j == 2: aa = 2.0 p = p * np.sqrt(aa*(i-j+1)/(i+j-2)) mnn = int(mn + j - 1) g[mnn] *= p h[mnn] *= p g[mnn-1] *= p h[mnn-1] *= p g10 = -g[1] g11 = g[2] h11 = h[2] sq = g11**2 + h11**2 sqq = np.sqrt(sq) sqr = np.sqrt(g10**2 + sq) s10 = -h11/sqq c10 = -g11/sqq st0 = sqq/sqr ct0 = g10/sqr stc1 = st0*c10 sts1 = st0*s10 d1 = stc1 d2 = sts1 d3 = ct0 return d1, d2, d3 def cdipdir_vect(time_in=None, iyear=None, idoy=None): """ Compute dipole direction in GEO coordinates. Similar to cdipdir but for arrays. Parameters ---------- time_in: list of floats iyear: list of int idoy: list of int Returns ------- list of float Notes ----- Same as SPEDAS cdipdir_vec. """ if ((time_in is None or not isinstance(time_in, list)) and (iyear is None or not isinstance(iyear, list)) and (idoy is None or not isinstance(idoy, list))): return cdipdir(time_in, iyear, idoy) if (iyear is None) or (idoy is None): iyear, idoy, ih, im, isec = get_time_parts(time_in) d1 = [] d2 = [] d3 = [] cdipdir_cache = {} for i in range(len(idoy)): # check the cache before re-calculating the dipole direction if cdipdir_cache.get(iyear[i] + idoy[i]) != None: d1.append(cdipdir_cache.get(iyear[i] + idoy[i])[0]) d2.append(cdipdir_cache.get(iyear[i] + idoy[i])[1]) d3.append(cdipdir_cache.get(iyear[i] + idoy[i])[2]) continue _d1, _d2, _d3 = cdipdir(None, iyear[i], idoy[i]) d1.append(_d1) d2.append(_d2) d3.append(_d3) cdipdir_cache[iyear[i] + idoy[i]] = [_d1, _d2, _d3] return np.array(d1), np.array(d2), np.array(d3) def tgeigse_vect(time_in, data_in): """ GEI to GSE transformation. Parameters ---------- time_in: list of float Time array. data_in: list of float xgei, ygei, zgei cartesian GEI coordinates. Returns ------- xgse: list of float Cartesian GSE coordinates. ygse: list of float Cartesian GSE coordinates. zgse: list of float Cartesian GSE coordinates. """ xgse, ygse, zgse = 0, 0, 0 d = np.array(data_in) xgei, ygei, zgei = d[:, 0], d[:, 1], d[:, 2] gst, slong, sra, sdec, obliq = csundir_vect(time_in) gs1 = np.cos(sra) * np.cos(sdec) gs2 = np.sin(sra) * np.cos(sdec) gs3 = np.sin(sdec) ge1 = 0.0 ge2 = -np.sin(obliq) ge3 = np.cos(obliq) gegs1 = ge2 * gs3 - ge3 * gs2 gegs2 = ge3 * gs1 - ge1 * gs3 gegs3 = ge1 * gs2 - ge2 * gs1 xgse = gs1 * xgei + gs2 * ygei + gs3 * zgei ygse = gegs1 * xgei + gegs2 * ygei + gegs3 * zgei zgse = ge1 * xgei + ge2 * ygei + ge3 * zgei return xgse, ygse, zgse def subgei2gse(time_in, data_in): """ Transform data from GEI to GSE. Parameters ---------- time_in: list of float Time array. data_in: list of float Coordinates in GEI. Returns ------- Array of float Coordinates in GSE. """ xgse, ygse, zgse = tgeigse_vect(time_in, data_in) print("Running transformation: subgei2gse") return np.column_stack([xgse, ygse, zgse]) def tgsegei_vect(time_in, data_in): """ GSE to GEI transformation. Parameters ---------- time_in: list of float Time array. data_in: list of float xgei, ygei, zgei cartesian GEI coordinates. Returns ------- xgei: list of float Cartesian GEI coordinates. ygei: list of float Cartesian GEI coordinates. zgei: list of float Cartesian GEI coordinates. """ xgei, ygei, zgei = 0, 0, 0 d = np.array(data_in) xgse, ygse, zgse = d[:, 0], d[:, 1], d[:, 2] gst, slong, sra, sdec, obliq = csundir_vect(time_in) gs1 = np.cos(sra) * np.cos(sdec) gs2 = np.sin(sra) * np.cos(sdec) gs3 = np.sin(sdec) ge1 = 0.0 ge2 = -np.sin(obliq) ge3 = np.cos(obliq) gegs1 = ge2 * gs3 - ge3 * gs2 gegs2 = ge3 * gs1 - ge1 * gs3 gegs3 = ge1 * gs2 - ge2 * gs1 xgei = gs1 * xgse + gegs1 * ygse + ge1 * zgse ygei = gs2 * xgse + gegs2 * ygse + ge2 * zgse zgei = gs3 * xgse + gegs3 * ygse + ge3 * zgse return xgei, ygei, zgei def subgse2gei(time_in, data_in): """ Transform data from GSE to GEI. Parameters ---------- time_in: list of float Time array. data_in: list of float Coordinates in GSE. Returns ------- Array of float Coordinates in GEI. """ xgei, ygei, zgei = tgsegei_vect(time_in, data_in) print("Running transformation: subgse2gei") return np.column_stack([xgei, ygei, zgei]) def tgsegsm_vect(time_in, data_in): """ Transform data from GSE to GSM. Parameters ---------- time_in: list of float Time array. data_in: list of float xgse, ygse, zgse cartesian GSE coordinates. Returns ------- xgsm: list of float Cartesian GSM coordinates. ygsm: list of float Cartesian GSM coordinates. zgsm: list of float Cartesian GSM coordinates. """ xgsm, ygsm, zgsm = 0, 0, 0 d = np.array(data_in) xgse, ygse, zgse = d[:, 0], d[:, 1], d[:, 2] gd1, gd2, gd3 = cdipdir_vect(time_in) gst, slong, sra, sdec, obliq = csundir_vect(time_in) gs1 = np.cos(sra) * np.cos(sdec) gs2 = np.sin(sra) * np.cos(sdec) gs3 = np.sin(sdec) sgst = np.sin(gst) cgst = np.cos(gst) ge1 = 0.0 ge2 = -np.sin(obliq) ge3 = np.cos(obliq) gm1 = gd1 * cgst - gd2 * sgst gm2 = gd1 * sgst + gd2 * cgst gm3 = gd3 gmgs1 = gm2 * gs3 - gm3 * gs2 gmgs2 = gm3 * gs1 - gm1 * gs3 gmgs3 = gm1 * gs2 - gm2 * gs1 rgmgs = np.sqrt(gmgs1**2 + gmgs2**2 + gmgs3**2) cdze = (ge1 * gm1 + ge2 * gm2 + ge3 * gm3)/rgmgs sdze = (ge1 * gmgs1 + ge2 * gmgs2 + ge3 * gmgs3)/rgmgs xgsm = xgse ygsm = cdze * ygse + sdze * zgse zgsm = -sdze * ygse + cdze * zgse return xgsm, ygsm, zgsm def subgse2gsm(time_in, data_in): """ Transform data from GSE to GSM. Parameters ---------- time_in: list of float Time array. data_in: list of float Coordinates in GSE. Returns ------- Array of float Coordinates in GSM. """ xgsm, ygsm, zgsm = tgsegsm_vect(time_in, data_in) print("Running transformation: subgse2gsm") return np.column_stack([xgsm, ygsm, zgsm]) def tgsmgse_vect(time_in, data_in): """ Transform data from GSM to GSE. Parameters ---------- time_in: list of float Time array. data_in: list of float xgsm, ygsm, zgsm GSM coordinates. Returns ------- xgse: list of float Cartesian GSE coordinates. ygse: list of float Cartesian GSE coordinates. zgse: list of float Cartesian GSE coordinates. """ xgse, ygse, zgse = 0, 0, 0 d = np.array(data_in) xgsm, ygsm, zgsm = d[:, 0], d[:, 1], d[:, 2] gd1, gd2, gd3 = cdipdir_vect(time_in) gst, slong, sra, sdec, obliq = csundir_vect(time_in) gs1 = np.cos(sra) * np.cos(sdec) gs2 = np.sin(sra) * np.cos(sdec) gs3 = np.sin(sdec) sgst = np.sin(gst) cgst = np.cos(gst) ge1 = 0.0 ge2 = -np.sin(obliq) ge3 = np.cos(obliq) # Dipole direction in GEI system gm1 = gd1 * cgst - gd2 * sgst gm2 = gd1 * sgst + gd2 * cgst gm3 = gd3 gmgs1 = gm2 * gs3 - gm3 * gs2 gmgs2 = gm3 * gs1 - gm1 * gs3 gmgs3 = gm1 * gs2 - gm2 * gs1 rgmgs = np.sqrt(gmgs1**2 + gmgs2**2 + gmgs3**2) cdze = (ge1 * gm1 + ge2 * gm2 + ge3 * gm3)/rgmgs sdze = (ge1 * gmgs1 + ge2 * gmgs2 + ge3 * gmgs3)/rgmgs xgse = xgsm ygse = cdze * ygsm - sdze * zgsm zgse = sdze * ygsm + cdze * zgsm return xgse, ygse, zgse def subgsm2gse(time_in, data_in): """ Transform data from GSM to GSE. Parameters ---------- time_in: list of float Time array. data_in: list of float Coordinates in GSE. Returns ------- Array of float Coordinates in GSE. """ xgse, ygse, zgse = tgsmgse_vect(time_in, data_in) print("Running transformation: subgsm2gse") return np.column_stack([xgse, ygse, zgse]) def tgsmsm_vect(time_in, data_in): """ Transform data from GSM to SM. Parameters ---------- time_in: list of float Time array. data_in: list of float xgsm, ygsm, zgsm GSM coordinates. Returns ------- xsm: list of float Cartesian SM coordinates. ysm: list of float Cartesian SM coordinates. zsm: list of float Cartesian SM coordinates. """ xsm, ysm, zsm = 0, 0, 0 d = np.array(data_in) xgsm, ygsm, zgsm = d[:, 0], d[:, 1], d[:, 2] gd1, gd2, gd3 = cdipdir_vect(time_in) gst, slong, sra, sdec, obliq = csundir_vect(time_in) gs1 = np.cos(sra) * np.cos(sdec) gs2 = np.sin(sra) * np.cos(sdec) gs3 =
np.sin(sdec)
numpy.sin
import numpy as np from SimPEG.NSEM.Utils import plotDataTypes as pDt import matplotlib.pyplot as plt # Define the area of interest bw, be = 557100, 557580 bs, bn = 7133340, 7133960 bb, bt = 0,480 #Visualisation of convergences curves def convergeCurves(resList,ax1,ax2,color1,color2,fontsize): its = np.array([res['iter'] for res in resList]).T ind = np.argsort(its) phid = np.array([res['phi_d'] for res in resList]).T try: phim = np.array([res['phi_m'] for res in resList]).T except: phim = np.array([res['phi_ms'] for res in resList]).T + np.array([res['phi_mx'] for res in resList]).T + np.array([res['phi_my'] for res in resList]).T +
np.array([res['phi_mz'] for res in resList])
numpy.array
""" csalt_models.py Usage: - import modules Outputs: - various """ import os, sys, time import numpy as np from vis_sample import vis_sample from scipy.ndimage import convolve1d from scipy.interpolate import interp1d import scipy.constants as sc import matplotlib.pyplot as plt from vis_sample.classes import * from parametric_disk import * from astropy.io import fits, ascii _pc = 3.09e18 def cube_to_fits(sky_image, fitsout, RA=0., DEC=0.): # revert to proper formatting cube = np.fliplr(np.rollaxis(sky_image.data, -1)) # extract coordinate information im_nfreq, im_ny, im_nx = cube.shape pixsize_x = np.abs(np.diff(sky_image.ra)[0]) pixsize_y = np.abs(np.diff(sky_image.dec)[0]) CRVAL3, CDELT3 = sky_image.freqs[0], np.diff(sky_image.freqs)[0] # generate the primary HDU hdu = fits.PrimaryHDU(
np.float32(cube)
numpy.float32
import numpy as np def norm2(x, axis=0, length=1.0): if axis == 1: # batch normalization return length * np.reshape(1 / np.linalg.norm(x, axis=axis), (x.shape[0], 1)) * x else: return length * x / np.linalg.norm(x) def norm_matrix(x, P): return np.sqrt(x @ P @ x) def get_eigen_vec(A, option='max', return_eigen_value=False): q = np.linalg.eigh(A) if option == 'max': i = q[0].argmax() elif option == 'min': i = q[0].argmin() elif option == 'max2': i = [q[0].argsort()[-1], q[0].argsort()[-2]] else: return None if return_eigen_value: return q[0][i], q[1][i] else: return q[1][i] class User: def __init__(self, K, rho, alpha, determ_pro): self.K = K self.rho0 = rho self.alpha = alpha self.determ_pro = determ_pro self.num_acceptance_total = 0.0 self.empirical_mean_per_arm = np.zeros(self.K) self.num_acceptance_per_arm =
np.zeros(self.K)
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 9 19:25:00 2018 Modified on 11/27/2018 to Clean up comments Modified on 12/01/2018 to resolve Save/Import Issue #1 Modified 0n 12/04/2018 to resolve Import Load Error - Issue #11 Modified on 02/25/2019 for version 0.1.0 Modified on 3/4/2019 for Issue #18 modified 1/8/2021 to clean up code as part of upgrade for pvlib 0.8 Modified 01/20/2021 to fix issue with inverter & chgcontrlr functions @author: <NAME> ------------------------------------------------------------------------------- Name: SPVSim.py Purpose: Implement the GUI Features & logic required to implement the SPVSim Application. Copyright: (c) <NAME> 2018 License: GNU General Public License, version 3 (GPL-3.0) This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ------------------------------------------------------------------------------- """ from tkinter import Tk, GROOVE from tkinter import ttk from tkinter.filedialog import askopenfilename, asksaveasfilename from datetime import datetime import os.path import pickle import numpy as np import pandas as pd from pandas.plotting import register_matplotlib_converters from PVSite import PVSite from PVBattery import PVBattery from PVBatBank import PVBatBank from PVPanel import PVPanel from PVArray import PVArray from PVInverter import PVInverter from PVChgControl import PVChgControl from SiteLoad import SiteLoad import guiFrames as tbf from PVUtilities import (read_resource, hourly_load, create_time_indices, build_monthly_performance, build_overview_report, computOutputResults) from SPVSwbrd import spvSwitchboard # from NasaData import * # from Parameters import panel_types # import dateutil.parser class SPVSIM: def __init__(self): register_matplotlib_converters() self.debug = False self.perf_rept = False self.errflg = False self.wdir = os.getcwd() self.mdldir = os.path.join(self.wdir, 'Models') self.rscdir = os.path.join(self.wdir, 'Resources') self.rptdir = os.path.join(self.wdir, 'Reports') self.countries = read_resource('Countries.csv', self.rscdir) self.modules = read_resource('CEC Modules.csv', self.rscdir) self.inverters = read_resource('CEC Inverters.csv', self.rscdir) self.sdw = None # System Description Window self.rdw = None # Results Display Window self.stw = None # Status Reporting Window self.array_list = list() self.filename = None # Complete path to Current File self.site = PVSite(self) self.bat = PVBattery(self) self.pnl = PVPanel(self) self.ary = self.create_solar_array(self) self.array_list.append(self.ary) self.sec_ary = self.create_solar_array(self) self.array_list.append(self.sec_ary) self.bnk = PVBatBank(self) self.bnk.uses(self.bat) self.inv = PVInverter(self) self.load = SiteLoad(self) self.chgc = PVChgControl(self) self.array_out = None # The Solar Array Output by hour self.times = None self.array_out = None self.power_flow = None self.outrec = None self.outfile = None self.bringUpDisplay() def bringUpDisplay(self): """ Create the Display GUI """ self.root = Tk() self.root.title("SolarPV System Simulator") self.root.protocol('WM_DELETE_WINDOW', self.on_app_delete) self.buildMasterDisplay() self.root.mainloop() def define_menuBar(self): """ Format the Menu bar at top of display """ self.menuoptions = {'File': [('Save', self.save_file), ('Save as', self.save_file), ('Load File', self.import_file), ('Exit', self.on_app_delete)], 'Display': [('Daily Load', self.show_load_profile), {'Array Performance': [ ('Overview', self.show_array_performance), ('Best Day', self.show_array_best_day), ('Worst Day', self.show_array_worst_day)]}, {'Power Delivery': [ ('Performance', self.show_pwr_performance), ('Best Day', self.show_pwr_best_day ), ('Worst Day', self.show_pwr_worst_day )]}, {'Battery Performance': [ ('Overview', self.bnk.show_bank_overview), ('Bank Drain', self.bnk.show_bank_drain), ('Bank SOC', self.bnk.show_bank_soc)]} ], 'Report': [('System Description', self.create_overview_report), ('Site Load', self.print_load)]} def buildMasterDisplay(self): """ Build the Display Window """ self.define_menuBar() tbf.build_menubar(self.root, self.menuoptions) self.sdw = ttk.LabelFrame(self.root, text="System Description", borderwidth= 5, width= 500, height= 500, padding= 15, relief= GROOVE) self.sdw.grid(row= 1, column= 1) self.rdw = ttk.Labelframe(self.root, text='Results', borderwidth= 5, width= 500, height= 500, padding= 15, relief= GROOVE) self.rdw.grid(row=1, column=3) self.stw = tbf.status_window(self.root, 'Status Reporting', [2, 1], 3 ) self.buildSwitchboard() def buildSwitchboard(self): """ Method to Build Switchboard Display & Switching Logic """ self.swb = spvSwitchboard(self, location= [0,0], parent= self.sdw, menuTitle= 'Project Details') def on_app_delete(self): """ User has selected Window Abort """ if tbf.ask_question('Window Abort', 'Save Existing File?'): self.save_file() if tbf.ask_question('Exit Application', 'Exit?'): self.root.destroy() def write_file(self, fn): """ Write DataDict to specified file """ dd = {'fn': self.filename, 'atoms': self.site.atmospherics, 'site': self.site.args, 'bat': self.bat.args, 'pnl': self.pnl.args, 'ary': self.ary.args, 'ary_2':self.sec_ary.args, 'bnk': self.bnk.args, 'inv': self.inv.args, 'load': self.load.export_frame(), 'chgr': self.chgc.args } fo = open(fn, 'wb') pickle.dump(dd, fo) fo.close() def read_file(self, fn): """ Read specified file into DataDict """ fo = open(fn, 'rb') dd = pickle.load(fo) fo.close() self.filename = dd.pop('fn', None) self.site.atmospherics = dd.pop('atoms', None) load_in = dd.pop('load', None) if load_in is not None: self.load.purge_frame() if type(load_in) is dict: self.load.import_frame(load_in) # This test is for backwards compatability else: ldi = load_in.df.to_dict('Index') self.load.import_frame(ldi) if self.load.master is None: self.load.master = self self.site.write_parameters(dd.pop('site', None)) self.bat.write_parameters(dd.pop('bat', None)) self.pnl.write_parameters(dd.pop('pnl', None)) self.ary.write_parameters(dd.pop('ary', None)) self.sec_ary.write_parameters(dd.pop('ary_2', None)) self.bnk.write_parameters(dd.pop('bnk', None)) self.inv.write_parameters(dd.pop('inv', None)) self.chgc.write_parameters(dd.pop('chgr', None)) def import_file(self): """ Import Project Data File """ fn = None while fn is None: fn = askopenfilename(parent= self.root, title= 'Load Project', defaultextension= '.spv', initialdir= self.mdldir) if fn != '' and type(fn) is not tuple: # print (fn) self.filename = fn self.read_file(fn) def save_file(self): """ Method to Create New Project File """ fn = None while fn is None: fn = asksaveasfilename(parent= self.root, title= 'New File', defaultextension= '.spv', initialfile = self.filename, initialdir= self.mdldir) if fn != ''and type(fn) is not tuple: self.write_file(fn) self.filename = fn def create_solar_array(self, src): sa = PVArray(src) sa.uses(self.pnl) return sa #TODO Should combine_arrays move to PVUtilities def combine_arrays(self): """ Combine primary & secondary array outputs to from a unified output using individual array outputs to include the following: Array Voltage (AV) = mim voltage for all arrays Array Current (AI) = sum (ac(i)*AV/av(i)) Array Power (AP) = AV * AC """ if len(self.array_list)> 0: frst_array = self.array_list[0].define_array_performance(self.times.index, self.site, self.inv, self.stw) rslt = pd.DataFrame({'ArrayVolts':frst_array['v_mp'], 'ArrayCurrent':frst_array['i_mp'], 'ArrayPower':frst_array['p_mp']}, index = self.times.index) for ar in range(1, len(self.array_list)): sarf = self.array_list[ar].is_defined() if sarf: sec_array = self.array_list[ar].define_array_performance(self.times.index, self.site, self.inv, self.stw) for rw in range(len(rslt)): if rslt['ArrayPower'].iloc[rw] > 0 and sec_array['p_mp'].iloc[rw] >0: v_out = min(rslt['ArrayVolts'].iloc[rw], sec_array['v_mp'].iloc[rw]) i_out = (rslt['ArrayCurrent'].iloc[rw] * (v_out/rslt['ArrayVolts'].iloc[rw]) + sec_array['i_mp'].iloc[rw] * (v_out/sec_array['v_mp'].iloc[rw])) rslt['ArrayVolts'].iloc[rw] = v_out rslt['ArrayCurrent'].iloc[rw] = i_out rslt['ArrayPower'].iloc[rw] = v_out * i_out elif sec_array['p_mp'].iloc[rw] > 0: rslt['ArrayVolts'].iloc[rw] = sec_array['v_mp'].iloc[rw] rslt['ArrayCurrent'].iloc[rw] = sec_array['i_mp'].iloc[rw] rslt['ArrayPower'].iloc[rw] = sec_array['p_mp'].iloc[rw] rslt = rslt.assign(Month= self.times['Month'], DayofMonth= self.times['DayofMonth'], DayofYear= self.times['DayofYear']) rslt = rslt.join(hourly_load(self.times.index, self.load.get_load_profile())) return rslt return None #TODO Should compute_powerFlows move to PVUtilities def compute_powerFlows(self): """ Computes the distribution of Array power to loads and a battery bank if it exists. Returns a DataFrame containing performance data """ self.array_out = self.combine_arrays() PO = np.zeros(len(self.array_out)) # amount of total load satisfied PS = np.zeros(len(self.array_out)) # fraction of load satisfied Power_out/TotLoad DE = np.zeros(len(self.array_out)) # amount of Array Power used to provide load BS = np.zeros(len(self.array_out)) # battery soc BD = np.zeros(len(self.array_out)) # power drawn from battery BP = np.zeros(len(self.array_out)) # remaining amount of usable Battery Power SL = np.zeros(len(self.array_out)) # load imposed by system chgCntlr * inverter EM = np.empty(len(self.array_out), dtype=object) # recorded error messages hdr = ' Indx \t ArP \t ArI \t ArV \t dcLd \t acLd \t ttLd ' hdr += '\t PO \t PS \t DE \t SL \t BP \t BD \t BS \t EM\n' outln = '{0:06}\t{1:6.2f}\t{2:6.2f}\t{3:6.2f}\t{4:6.2f}\t' outln += '{5:6.2f}\t{6:6.2f}\t{7:6.2f}\t{8:6.2f}\t{9:6.2f}\t' outln += '{10:6.2f}\t{11:6.2f}\t{12:6.2f}\t{13:6.2f}\t{14}\n' bflg = self.bnk.is_defined() self.out_rec = hdr for tindx in range(len(self.array_out)): wkDict = dict() ArP = self.array_out['ArrayPower'].iloc[tindx] ArV = self.array_out['ArrayVolts'].iloc[tindx] ArI = self.array_out['ArrayCurrent'].iloc[tindx] # Correct for possible power backflow into array if ArP <= 0 or ArV <= 0 or ArI <= 0: ArP = 0.0 ArV = 0.0 ArI = 0.0 dcLd = self.array_out['DC_Load'].iloc[tindx] acLd = self.array_out['AC_Load'].iloc[tindx] sysAttribs = {'Inv': self.inv, 'Chg': self.chgc, 'Bnk': self.bnk} computOutputResults(sysAttribs, ArP, ArV, ArI, acLd, dcLd, wkDict) # update arrays for tindx PO[tindx] = wkDict.pop('PO', 0.0) PS[tindx] = wkDict.pop('PS', 0.0) DE[tindx] = wkDict.pop('DE', 0.0) SL[tindx] = wkDict.pop('SL', 0.0) if bflg: BS[tindx] = wkDict.pop('BS', self.bnk.get_soc())*100 BD[tindx] = wkDict.pop('BD', 0.0) BP[tindx] = wkDict.pop('BP', self.bnk.current_power()) msg = '' errfrm = None if 'Error' in wkDict.keys(): days: int = 1 + tindx//24 errfrm = wkDict['Error'] msg = 'After {0} days '.format(days) EM[tindx] = msg + errfrm[0].replace('\n', ' ') else: EM[tindx]= "" self.out_rec += outln.format(tindx, ArP, ArV, ArI, dcLd, acLd, dcLd+acLd, PO[tindx], PS[tindx], DE[tindx], SL[tindx], BP[tindx], BD[tindx], BS[tindx], EM[tindx]) if self.debug and errfrm != None: if self.errflg == False and errfrm[1] != 'Fatal': self.errflg = True self.stw.show_message(msg + errfrm[0], errfrm[1]) if errfrm[1] == 'Fatal': msg = 'After {0} days '.format(days) self.errflg = True self.stw.show_message(msg + errfrm[0], errfrm[1]) break # Create the DataFrame rslt = pd.DataFrame({'PowerOut': PO, 'ArrayPower': self.array_out['ArrayPower'], 'Service': PS, 'DelvrEff': DE, 'BatSoc': BS, 'BatDrain': BD, 'BatPwr': BP }, index = self.times.index) rslt = rslt.assign(Month= self.times['Month'], DayofMonth= self.times['DayofMonth'], DayofYear= self.times['DayofYear']) rslt = rslt.join(hourly_load(self.times.index, self.load.get_load_profile())) return rslt def execute_simulation(self): """ Perform System Analysis """ if self.rdw.children is not None: kys = list(self.rdw.children.keys()) while len(kys) > 0: self.rdw.children[kys.pop()].destroy() if self.perform_base_error_check(): self.errflg = False rt = datetime.now() ft = 'run_{0}_{1:02}_{2}_{3:02}{4:02}{5:02}.txt' self.outfile = ft.format(rt.year, rt.month, rt.day, rt.hour, rt.minute, rt.second) self.outrec = None bnkflg = self.bnk.is_defined() if self.stw is not None: self.stw.show_message('Starting System Analysis') self.loc = self.site.get_location() self.times = create_time_indices(self.site.read_attrb('tz')) self.site.get_atmospherics(self.times.index, self.stw) if bnkflg: self.bnk.initialize_bank() self.array_out = self.combine_arrays() self.mnthly_array_perfm = build_monthly_performance(self.array_out, 'ArrayPower') dl = np.array([self.load.get_daily_load()]*12) dlf = pd.DataFrame({'Daily Load':dl}, index=self.mnthly_array_perfm[0].index.values) self.mnthly_array_perfm[0] = self.mnthly_array_perfm[0].join(dlf) if self.stw is not None and self.errflg == False: self.stw.show_message('Panel Analysis Completed') if self.stw is not None: self.stw.show_message('Starting Power Analysis') self.power_flow = self.compute_powerFlows() self.mnthly_pwr_perfm = build_monthly_performance(self.power_flow, 'PowerOut') self.mnthly_pwr_perfm[0] = self.mnthly_pwr_perfm[0].join(dlf) if self.stw is not None and self.errflg == False: self.stw.show_message('Power Analysis Completed') if self.stw is not None: if self.errflg == False: srvchrs = self.power_flow['Service'].sum() dmndhrs = self.load.get_demand_hours()*365 if dmndhrs > 0: k = srvchrs/dmndhrs ms = 'System Design provides Power to Load {0:.2f}% of the time'.format(k*100) if k < 100: ms += '\n\tDesign delivers required load {0:.2f} hours out of {1} demand hours per year'.format(k*dmndhrs, dmndhrs) if self.bnk.check_definition(): ms += '\n\tAnnual Battery Charging Cycles = {0:.2f} out of {1} specified lifetime cycles'.format(self.bnk.tot_cycles, self.bnk.max_dischg_cycles) self.stw.show_message(ms) else: self.stw.show_message('Analysis complete') if self.debug: self.debug_next() def debug_next(self): """ Handy function for debugging """ # print(self.times) # calndr = create_calendar_indices(self.site.read_attrb('tz')) # print(calndr.head()) # print(calndr.index) if self.perf_rept: fo = open(self.outfile, 'w') fo.write(self.out_rec) fo.close() def perform_base_error_check(self): """ method to conduct basic error checks returns True if and only if no errors are found """ # Tests for Site Definition """ bflg = False invflg = False if not self.site.check_definition(): return False #Tests for panel & Array definition if not self.ary.check_definition(): return False # Tests for proper inverter definition """ if sum(self.load.get_load_profile()['AC']) > 0: if not self.inv.check_definition(): return False else: invflg = True if self.bnk.check_definition(): bflg = True """Tests for Charge Controller definition (only read if an inverter or battery is defined) """ if bflg and not invflg and not self.chgc.check_definition(): return False return True #TODO in Print Load improve formatting control for better tabular results def print_load(self): """ Method to build a print the load profile """ s = str(self.load) rpt_ttl = 'Load Report' self.output_report(rpt_ttl, s) def create_overview_report(self): """ Create a formated overview of Project Design data """ s = build_overview_report(self) rpt_ttl = 'Overview Report' self.output_report(rpt_ttl, s) def output_report(self, rpt_ttl, s): """ Method to ask wheteher to print or create an output file for contents of s """ if tbf.ask_question(rpt_ttl, 'Save Report to File?'): fn = None while fn is None: fn = asksaveasfilename(parent= self.root, title= 'Report Save', defaultextension= '.txt', initialfile = '', initialdir= self.rptdir) if fn != '': self.filename = fn fo = open(fn, 'w') fo.write(s) fo.close() else: print(s) def show_load_profile(self): """ Method to build & display the load profile graphic """ self.load.show_load_profile(self.rdw) #TODO can all of these show methods be combined and controlled by variables? def show_pwr_performance(self): """ Create graphic of Annual Power Delivery vice Load """ if self.array_out is not None: mpi = self.mnthly_pwr_perfm[0] xaxis = np.arange(1,13) pltslist = [{'label':'Avg Power', 'data':mpi.loc[:,'Avg PowerOut'], 'type': 'Bar', 'color': 'b', 'width': 0.2, 'xaxis': xaxis}, {'label':'Best Power', 'data':mpi.loc[:,'Best PowerOut'], 'type': 'Bar', 'color': 'g', 'width': 0.2, 'xaxis':np.arange(1,13) - 0.2}, {'label':'Worst Power', 'data':mpi.loc[:,'Worst PowerOut'], 'type': 'Bar', 'color': 'y', 'width': 0.3, 'offset': 0.3, 'xaxis':np.arange(1,13) + 0.2}, {'label':'Daily Load', 'data':mpi.loc[:,'Daily Load'], 'type': 'Line', 'color': 'r', 'xaxis': xaxis, 'width': 4.0, 'linestyle': 'solid' } ] tbf.plot_graphic(self.rdw, 'Month of Year', 'Watts Relative to Load', np.arange(1,13), pltslist, 'Power Output Performance', (6,4)) def show_pwr_best_day(self): """ Create graphic of Solar Array Best Day Performance """ if self.array_out is not None: best_day_perform = self.power_flow.loc[self.power_flow['DayofYear'] == self.mnthly_pwr_perfm[1]] xlabels = np.arange(24) pltslist = [{'label': 'Power Output', 'data': best_day_perform['PowerOut'], 'type': 'Line', 'xaxis': xlabels, 'width': 2.0, 'color': 'b'}, {'label': 'Hourly Load', 'data': best_day_perform['Total_Load'], 'type': 'Line', 'xaxis': xlabels , 'width': 2.0, 'color': 'r'}] tbf.plot_graphic(self.rdw, 'Time of Day', 'Watts', xlabels, pltslist, 'Best Day Power Output', (6,4)) def show_pwr_worst_day(self): """ Create graphic of Solar Array Best Day Performance """ if self.array_out is not None: worst_day_perform = self.power_flow.loc[self.power_flow['DayofYear'] == self.mnthly_pwr_perfm[2]] xlabels = np.arange(24) pltslist = [{'label': 'Power Output', 'data': worst_day_perform['PowerOut'], 'type': 'Line', 'xaxis': xlabels, 'width': 2.0, 'color': 'b'}, {'label': 'Hourly Load', 'data': worst_day_perform['Total_Load'], 'type': 'Line', 'xaxis': xlabels , 'width': 2.0, 'color': 'r'}] tbf.plot_graphic(self.rdw, 'Time of Day', 'Watts', xlabels, pltslist, 'Worst Day Power Output', (6,4)) def show_array_performance(self): """ Create graphic of Annual Solar Array Performance """ if self.array_out is not None: mpi = self.mnthly_array_perfm[0] xaxis = np.arange(1,13) pltslist = [{'label':'Avg Power', 'data':mpi.loc[:,'Avg ArrayPower'], 'type': 'Bar', 'color': 'b', 'width': 0.2, 'xaxis': xaxis}, {'label':'Best Power', 'data':mpi.loc[:,'Best ArrayPower'], 'type': 'Bar', 'color': 'g', 'width': 0.2, 'xaxis':np.arange(1,13) - 0.2}, {'label':'Worst Power', 'data':mpi.loc[:,'Worst ArrayPower'], 'type': 'Bar', 'color': 'y', 'width': 0.3, 'offset': 0.3, 'xaxis':np.arange(1,13) + 0.2}, {'label':'Daily Load', 'data':mpi.loc[:,'Daily Load'], 'type': 'Line', 'color': 'r', 'xaxis': xaxis, 'width': 4.0, 'linestyle': 'solid' } ] tbf.plot_graphic(self.rdw, 'Month of Year', 'Watts', np.arange(1,13), pltslist, 'Annual Array Performance', (6,4)) def show_array_best_day(self): """ Create graphic of Solar Array Best Day Performance """ if self.array_out is not None: best_day_perform = self.array_out.loc[self.array_out['DayofYear'] == self.mnthly_array_perfm[1]] xlabels =
np.arange(24)
numpy.arange
import sys sys.path.append('util') import numpy as np import myparser as myparser import simulation as simulation import data as data import parallel as par import time import monitorTiming as monitorTiming import postProc as postProc from plotsUtil import * from myProgressBar import printProgressBar def autocorr(x): nTime = min(int(x.shape[0]/2),250) nDim = x.shape[1] nReal = x.shape[2] meanx = np.mean(x,axis=(0,2),keepdims=True) x = x-meanx corr = np.zeros(nTime) printProgressBar(0, nTime-1, prefix = 'Autocorrelation ' + str(0) + ' / ' +str(nTime-1),suffix = 'Complete', length = 50) for itime in range(nTime): xroll = np.roll(x,-itime,axis=0) corr[itime] = np.mean(x*xroll) printProgressBar(itime, nTime-1, prefix = 'Autocorrelation ' + str(itime) + ' / ' +str(nTime-1),suffix = 'Complete', length = 50) corr=corr/corr[0] for itime in range(nTime): if corr[itime]<0.1: break return corr, itime # ~~~~ Init # Parse input inpt = myparser.parseInputFile() # Initialize MPI # Not for now # Initialize random seed np.random.seed(seed=42+par.irank) # Initialize Simulation details Sim = data.simSetUp(inpt) # ~~~~ Main # Run Simulation Result = simulation.simRun(Sim) # ~~~~ Monitor # Timing monitorTiming.printTiming(Result) # ~~~~ Post process # Plot, build CDF postProc.postProc(Result,Sim) par.finalize() # SAVE DATA if Sim['Simulation name'] == 'KS': indexLim =
np.argwhere(Result['tt']>50)
numpy.argwhere
# -*- coding: utf-8 -*- # vim: set fileencoding=utf-8 : # vim: set foldmethod=marker commentstring=\ \ #\ %s : # # Author: <NAME> # Created: 2018-09-08 # # Copyright (C) 2018 <NAME> # import io import os import glob import dash import json import base64 import shutil import zipfile import datetime import PIL.Image import dash_table import numpy as np import pandas as pd import urllib.parse import scipy.signal import my_threshold import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State import plotly.graph_objs as go GROUP_COLORS = ['#ff0000', '#ff7f00', '#e6b422', '#38b48b', '#008000', '#89c3eb', '#84a2d4', '#3e62ad', '#0000ff', '#7f00ff', '#56256e', '#000000'] ALPHABETS = [chr(i) for i in range(65, 65 + 26)] DATA_ROOT = './data_root_for_demo' THETA = 50 THRESH_FUNC = my_threshold.minmax app = dash.Dash('Sapphire') app.css.append_css( {'external_url': 'https://codepen.io/chriddyp/pen/bWLwgP.css'}) # ================================ # Definition of the viewer page # ================================ app.layout = html.Div([ html.Header([ html.H1( 'Sapphire', style={'display': 'inline-block', 'margin': '10px'}, ), html.Div( os.path.basename(os.path.dirname(DATA_ROOT)), style={'display': 'inline-block', 'margin': '10px'}, ), ]), dcc.Tabs(id='tabs', value='tab-1', children=[ dcc.Tab(id='tab-1', label='Main', value='tab-1', children=[ html.Div([ 'Dataset:', html.Br(), html.Div([ dcc.Dropdown( id='env-dropdown', placeholder='Select a dataset...', clearable=False, ), ], style={ 'display': 'inline-block', 'width': '400px', 'vertical-align': 'middle', # 'white-space': 'nowrap', }, ), ], style={ 'display': 'table', 'table-layout': 'auto', 'border-collapse': 'separate', 'border-spacing': '5px 5px', }), html.Div([ html.Div([ dcc.RadioItems( id='detect-target', options=[ { 'label': 'Pupariation', 'value': 'pupariation', 'disabled': True, }, { 'label': 'Eclosion', 'value': 'eclosion', 'disabled': True, }, { 'label': 'Pupariation & eclosion', 'value': 'pupa-and-eclo', 'disabled': True, }, { 'label': 'Death', 'value': 'death', 'disabled': True, }, ], ), 'Detection Method:', html.Br(), dcc.RadioItems( id='detection-method', options=[ { 'label': 'Maximum', 'value': 'max', 'disabled': False, }, { 'label': 'Relative maxima', 'value': 'relmax', 'disabled': False, }, { 'label': 'Thresholding', 'value': 'thresholding', 'disabled': False, }, ], value='max', ), 'Inference Data:', html.Br(), html.Div([ dcc.Dropdown( id='larva-dropdown', placeholder='Select a larva data...', clearable=False, ), dcc.Dropdown( id='adult-dropdown', placeholder='Select a adult data...', clearable=False, ), ], style={ 'display': 'inline-block', 'width': '200px', 'vertical-align': 'middle', }, ), html.Br(), 'Well Index:', html.Br(), html.Div([ dcc.Input( id='well-selector', type='number', value=0, min=0, size='5', ), ], style={ 'display': 'inline-block', }, ), html.Br(), html.Div([ dcc.Slider( id='well-slider', value=0, min=0, step=1, ), ], style={ 'display': 'inline-block', 'width': '200px', }, ), html.Br(), 'Frame:', html.Br(), html.Div([ dcc.Input( id='time-selector', type='number', value=0, min=0, size='5', ), ], style={ 'display': 'inline-block', }, ), html.Br(), html.Div([ dcc.Slider( id='time-slider', value=0, min=0, step=1, ), ], style={ 'display': 'inline-block', 'width': '200px', }, ), html.Br(), ], style={ 'display': 'table-cell', 'vertical-align': 'top', }), html.Div([ html.Div(id='org-image'), html.Div(id='label-and-prob'), dcc.Checklist( id='blacklist-check', options=[{ 'label': 'Black List', 'value': 'checked', 'disabled': False, }], values=[], ), html.Div(id='blacklist-link'), ], style={ 'display': 'table-cell', 'vertical-align': 'top', }), html.Div([ html.Div('Original Image at "t"'), dcc.Graph( id='current-well', config={'displayModeBar': False}, ), ], style={ 'display': 'table-cell', 'vertical-align': 'top', }), html.Div([ 'Data root:', html.Div(DATA_ROOT, id='data-root'), ], style={ 'display': 'none', 'vertical-align': 'top', }, ), html.Div([ html.Div(id='larva-signal-div', children=[ html.Div([ html.Div([ html.Div([ dcc.Slider( id='larva-thresh', value=1, min=0, max=2, step=.1, updatemode='mouseup', vertical=True, ), ], style={ 'height': '170px', 'width': '10px', 'margin': '0px 25px 10px', }), dcc.Input( id='larva-thresh-selector', type='number', value=2, min=0, max=2, step=0.1, style={ 'width': '70px', }, ), ], style={ 'display': 'table-cell', 'vertical-align': 'top', }), dcc.Graph( id='larva-signal', figure={'data': []}, style={ 'display': 'table-cell', 'vertical-align': 'top', 'height': '240px', 'width': '550px', }, ), html.Div([ html.Div('Signal Type:', style={'margin-left': '10px'}, ), html.Div([ dcc.Dropdown( id='larva-signal-type', placeholder='Select a signal...', clearable=False, ), ], style={ 'margin-left': '10px', }, ), dcc.Checklist( id='larva-smoothing-check', options=[{ 'label': 'Smoothing', 'value': 'checked', }], values=[], style={ 'margin-left': '10px', }, ), html.Div([ 'Size:', dcc.Input( id='larva-window-size', type='number', value=10, min=0, size='5', style={ 'width': '70px', 'margin-left': '25px', }, ), ], style={'margin': '0px 0px 0px 20px'}), html.Div([ 'Sigma:', dcc.Input( id='larva-window-sigma', type='number', value=5, min=0, size='5', step=0.1, style={ 'width': '70px', 'margin-left': '10px', }, ), ], style={'margin': '0px 0px 0px 20px'}), dcc.Checklist( id='larva-weight-check', options=[{ 'label': 'Weight', 'value': 'checked', }], values=[], style={ 'margin-left': '10px', }, ), dcc.RadioItems( id='larva-weight-style', options=[ { 'label': 'Step', 'value': 'step', 'disabled': True, }, { 'label': 'Ramp', 'value': 'ramp', 'disabled': True, }, ], value='step', labelStyle={'display': 'inline-block'}, style={'margin': '0px 0px 0px 20px'}, ), ], style={ 'display': 'table-cell', 'vertical-align': 'middle', }), ], style={ 'display': 'table', 'table-layout': 'auto', }), ], style={'width': '810px', 'margin-top': '10px'}), html.Div(id='adult-signal-div', children=[ html.Div([ html.Div([ html.Div([ dcc.Slider( id='adult-thresh', value=1, min=0, max=2, step=.1, updatemode='mouseup', vertical=True, ), ], style={ 'height': '170px', 'width': '10px', 'margin': '0px 25px 10px', }), dcc.Input( id='adult-thresh-selector', type='number', value=2, min=0, max=2, step=0.1, style={ 'width': '70px', }, ), ], style={ 'display': 'table-cell', 'vertical-align': 'top', }), dcc.Graph( id='adult-signal', figure={'data': []}, style={ 'display': 'table-cell', 'vertical-align': 'top', 'height': '240px', 'width': '550px', }, ), html.Div([ html.Div('Signal Type:', style={'margin-left': '10px'}, ), html.Div([ dcc.Dropdown( id='adult-signal-type', placeholder='Select a signal...', clearable=False, ), ], style={ 'margin-left': '10px', }, ), dcc.Checklist( id='adult-smoothing-check', options=[{ 'label': 'Smoothing', 'value': 'checked', }], values=[], style={ 'margin-left': '10px', }, ), html.Div([ 'Size:', dcc.Input( id='adult-window-size', type='number', value=10, min=0, size='5', style={ 'width': '70px', 'margin-left': '25px', }, ), ], style={'margin': '0px 0px 0px 20px'}), html.Div([ 'Sigma:', dcc.Input( id='adult-window-sigma', type='number', value=5, min=0, size='5', step=0.1, style={ 'width': '70px', 'margin-left': '10px', }, ), ], style={'margin': '0px 0px 0px 20px'}), dcc.Checklist( id='adult-weight-check', options=[{ 'label': 'Weight', 'value': 'checked', }], values=[], style={ 'display': 'inline-block', 'margin': '0px 10px', }, ), dcc.RadioItems( id='adult-weight-style', options=[ { 'label': 'Step', 'value': 'step', 'disabled': True, }, { 'label': 'Ramp', 'value': 'ramp', 'disabled': True, }, ], value='step', labelStyle={'display': 'inline-block'}, style={'margin': '0px 0px 0px 20px'}, ), ], style={ 'display': 'table-cell', 'vertical-align': 'middle', }), ], style={ 'display': 'table', 'table-layout': 'auto', }), ], style={'width': '810px', 'margin-top': '10px'}), html.Div([ dcc.Input( id='midpoint-selector', type='number', min=0, style={ 'width': '70px', 'display': 'inline-block', 'vertical-align': 'middle', 'margin': '0px 10px 0px 120px', }, ), html.Div([ dcc.Slider( id='midpoint-slider', min=0, step=1, ), ], style={ 'width': '450px', 'display': 'inline-block', }), ]), ], style={ 'display': 'table-cell', 'vertical-align': 'middle', }), ], style={ 'display': 'table', 'table-layout': 'auto', 'border-collapse': 'separate', 'border-spacing': '5px 0px', }), html.Div([ dcc.Graph( id='larva-summary', style={ 'display': 'inline-block', 'height': '300px', 'width': '20%', }, ), dcc.Graph( id='larva-hist', style={ 'display': 'inline-block', 'height': '300px', 'width': '20%', }, ), dcc.Graph( id='larva-boxplot', style={ 'display': 'inline-block', 'height': '300px', 'width': '20%', }, ), ]), html.Br(), html.Div([ dcc.Graph( id='adult-summary', style={ 'display': 'inline-block', 'height': '300px', 'width': '20%', }, ), dcc.Graph( id='adult-hist', style={ 'display': 'inline-block', 'height': '300px', 'width': '20%', }, ), dcc.Graph( id='adult-boxplot', style={ 'display': 'inline-block', 'height': '300px', 'width': '20%', }, ), dcc.Graph( id='pupa-vs-eclo', style={ 'display': 'inline-block', 'height': '300px', 'width': '20%', }, ), dcc.Graph( id='survival-curve', style={ 'display': 'inline-block', 'height': '300px', 'width': '20%', }, ), ]), html.Div(id='dummy-div'), ]), dcc.Tab(id='tab-2', label='Data table', value='tab-2', children=[ html.Div(id='data-tables', children=[]), ], style={'width': '100%'}), dcc.Tab(id='tab-3', label='Mask maker', value='tab-3', children=[ html.Div([ html.Div([ html.Div([ '# of rows', html.Br(), dcc.Input(id='n-rows', placeholder='# of rows', debounce=True, type='number', value=8, max=100, min=0, size='5'), ], style={'display': 'inline-block', 'width': '110px'}), html.Div([ '# of columns', html.Br(), dcc.Input(id='n-clms', placeholder='# of columns', debounce=True, type='number', value=12, max=100, min=0, size='5'), ], style={'display': 'inline-block', 'width': '110px'}), html.Div([ '# of plates', html.Br(), dcc.Input(id='n-plates', placeholder='# of plates', debounce=True, type='number', value=1, max=10, min=0, size='5'), ], style={'display': 'inline-block', 'width': '110px'}), html.Div([ 'gap between rows', html.Br(), dcc.Input(id='row-gap', placeholder='gap between rows', debounce=True, type='number', value=1, max=10, min=0, size='5', step=0.1), ], style={'display': 'inline-block', 'width': '110px'}), html.Div([ 'gap between columns', html.Br(), dcc.Input(id='clm-gap', placeholder='gap between columns', debounce=True, type='number', value=1, max=10, min=0, size='5', step=0.1), ], style={'display': 'inline-block', 'width': '110px'}), html.Div([ 'gap between plates', html.Br(), dcc.Input(id='plate-gap', placeholder='gap between plates', debounce=True, type='number', value=71, max=800, min=0, size='5'), ], style={'display': 'inline-block', 'width': '110px'}), html.Div([ 'x-coord of the lower left corner', html.Br(), dcc.Input(id='x', placeholder='x-coord of the lower left corner', debounce=True, type='number', value=0, max=1500, min=0, size='5'), ], style={'display': 'inline-block', 'width': '110px'}), html.Div([ 'y-coord of the lower left corner', html.Br(), dcc.Input(id='y', placeholder='y-coord of the lower left corner', debounce=True, type='number', value=0, max=1500, min=0, size='5'), ], style={'display': 'inline-block', 'width': '110px'}), html.Div([ 'width of a well', html.Br(), dcc.Input(id='well_w', placeholder='width of a well', debounce=True, type='number', value=0, max=1500, min=0, size='5'), ], style={'display': 'inline-block', 'width': '110px'}), html.Div([ 'height of a well', html.Br(), dcc.Input(id='well_h', placeholder='height of a well', debounce=True, type='number', value=0, max=1500, min=0, size='5'), ], style={'display': 'inline-block', 'width': '110px'}), html.Div([ 'rotation correction (degree)', html.Br(), dcc.Input(id='angle', placeholder='rotation correction (degree)', debounce=True, type='number', value=0, max=90, min=0, size='5', step=0.1), ], style={'display': 'inline-block', 'width': '110px'}), html.Div([ dcc.ConfirmDialogProvider( id='mask-save-confirm-dialog', children=html.Button('Save', id='mask-save-button'), message='Are you sure you want to overwrite the mask file?', ), dcc.ConfirmDialog(id='mask-save-notification-dialog', message=''), ], style={'display': 'inline-block'}), ]), html.Div([ dcc.Loading([ dcc.Graph( id='org-img', figure={ 'data': [], 'layout':{}, }, style={ 'display': 'inline-block', 'width': '33%', }, ), dcc.Graph( id='masked-img', figure={ 'data': [], 'layout':{}, }, style={ 'display': 'inline-block', 'width': '33%', }, ), dcc.Graph( id='mask-img', figure={ 'data': [], 'layout':{}, }, style={ 'display': 'inline-block', 'width': '33%', }, ), ]), ]), ]), ], style={'width': '100%'}), ], style={'width': '100%'}), dcc.Store(id='hidden-timestamp'), dcc.Store(id='hidden-midpoint'), dcc.Store(id='hidden-blacklist'), html.Div('{"changed": "nobody"}', id='changed-well', style={'display': 'none'}), html.Div(id='well-buff', style={'display': 'none'}, children=json.dumps( { 'nobody': 0, 'current-well': 0, 'larva-summary': 0, 'adult-summary': 0, 'pupa-vs-eclo': 0, 'larva-boxplot': 0, 'adult-boxplot': 0, } ) ), html.Div('{"changed": "nobody"}', id='changed-time', style={'display': 'none'}), html.Div(id='time-buff', style={'display': 'none'}, children=json.dumps( { 'nobody': 0, 'larva-signal': 0, 'adult-signal': 0, } ) ), ], style={'width': '1400px',},) # ========================================= # Smoothing signals with gaussian window # ========================================= def my_filter(signals, size=10, sigma=5): window = scipy.signal.gaussian(size, sigma) signals = np.array( [np.convolve(signal, window, mode='same') for signal in signals]) return signals # ================================================= # Initialize env-dropdown when opening the page. # ================================================= @app.callback( Output('env-dropdown', 'options'), [Input('data-root', 'children')]) def callback(data_root): imaging_envs = [os.path.basename(i) for i in sorted(glob.glob(os.path.join(data_root, '*')))] return [{'label': i, 'value': i} for i in imaging_envs] # ================================================================= # Initialize detect-target. # ================================================================= @app.callback( Output('detect-target', 'value'), [Input('env-dropdown', 'value')], [State('data-root', 'children')]) def callback(env, data_root): # Guard if env is None: return if not os.path.exists(os.path.join(data_root, env, 'config.json')): return with open(os.path.join(data_root, env, 'config.json')) as f: config = json.load(f) if config['detect'] == 'pupariation': return 'pupariation' elif config['detect'] == 'eclosion': return 'eclosion' elif config['detect'] == 'pupa&eclo': return 'pupa-and-eclo' elif config['detect'] == 'death': return 'death' else: return # ====================================================== # Initialize larva-dropdown. # ====================================================== @app.callback( Output('larva-dropdown', 'disabled'), [Input('detect-target', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(detect, data_root, env): if env is None: return if detect == 'pupariation': return False elif detect == 'eclosion': return True elif detect == 'pupa-and-eclo': return False elif detect == 'death': return True @app.callback( Output('larva-dropdown', 'options'), [Input('detect-target', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(detect, data_root, env): if env is None: return [] if detect == 'eclosion' or detect == 'death': return [] results = [os.path.basename(i) for i in sorted(glob.glob(os.path.join( data_root, glob.escape(env), 'inference', 'larva', '*'))) if os.path.isdir(i)] return [{'label': i, 'value': i} for i in results] @app.callback( Output('larva-dropdown', 'value'), [Input('larva-dropdown', 'options')], [State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(_, data_root, env): return None # ====================================================== # Initialize adult-dropdown. # ====================================================== @app.callback( Output('adult-dropdown', 'disabled'), [Input('detect-target', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(detect, data_root, env): if env is None: return if detect == 'pupariation': return True elif detect == 'eclosion': return False elif detect == 'pupa-and-eclo': return False elif detect == 'death': return False @app.callback( Output('adult-dropdown', 'options'), [Input('detect-target', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(detect, data_root, env): if env is None: return [] if detect == 'pupariation': return [] results = [os.path.basename(i) for i in sorted(glob.glob(os.path.join( data_root, glob.escape(env), 'inference', 'adult', '*'))) if os.path.isdir(i)] return [{'label': i, 'value': i} for i in results] @app.callback( Output('adult-dropdown', 'value'), [Input('adult-dropdown', 'options')], [State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(_, data_root, env): return None # ===================================================== # Callbacks for selecting a well # ===================================================== @app.callback( Output('well-selector', 'max'), [Input('env-dropdown', 'value')], [State('data-root', 'children')]) def callback(env, data_root): if env is None or data_root is None: return with open(os.path.join(data_root, env, 'mask_params.json')) as f: params = json.load(f) return params['n-rows'] * params['n-plates'] * params['n-clms'] - 1 @app.callback( Output('well-selector', 'value'), [Input('well-slider', 'value')]) def callback(well_idx): return well_idx @app.callback( Output('well-slider', 'max'), [Input('env-dropdown', 'value')], [State('data-root', 'children')]) def callback(env, data_root): if env is None or data_root is None: return with open(os.path.join(data_root, env, 'mask_params.json')) as f: params = json.load(f) return params['n-rows'] * params['n-plates'] * params['n-clms'] - 1 @app.callback( Output('well-slider', 'value'), [Input('well-buff', 'children')], [State('changed-well', 'children')]) def callback(buff, changed_data): buff = json.loads(buff) changed_data = json.loads(changed_data)['changed'] return buff[changed_data] # ===================================================== # Callbacks to buffer a ID of a clicked well # ===================================================== @app.callback( Output('changed-well', 'children'), [Input('current-well', 'clickData'), Input('larva-summary', 'clickData'), Input('adult-summary', 'clickData'), Input('pupa-vs-eclo', 'clickData'), Input('larva-boxplot', 'clickData'), Input('adult-boxplot', 'clickData')], [State('well-buff', 'children')]) def callback(current_well, larva_summary, adult_summary, pupa_vs_eclo, larva_boxplot, adult_boxplot, buff): # Guard if current_well is None and \ larva_summary is None and \ adult_summary is None and \ pupa_vs_eclo is None and \ larva_boxplot is None and \ adult_boxplot is None: return '{"changed": "nobody"}' if current_well is None: current_well = 0 else: current_well = int(current_well['points'][0]['text']) if larva_summary is None: larva_summary = 0 else: larva_summary = int(larva_summary['points'][0]['text']) if adult_summary is None: adult_summary = 0 else: adult_summary = int(adult_summary['points'][0]['text']) if pupa_vs_eclo is None: pupa_vs_eclo = 0 else: pupa_vs_eclo = int(pupa_vs_eclo['points'][0]['text']) if larva_boxplot is None: larva_boxplot = 0 else: larva_boxplot = int(larva_boxplot['points'][0]['text']) if adult_boxplot is None: adult_boxplot = 0 else: adult_boxplot = int(adult_boxplot['points'][0]['text']) buff = json.loads(buff) if current_well != buff['current-well']: return '{"changed": "current-well"}' if larva_summary != buff['larva-summary']: return '{"changed": "larva-summary"}' if adult_summary != buff['adult-summary']: return '{"changed": "adult-summary"}' if pupa_vs_eclo != buff['pupa-vs-eclo']: return '{"changed": "pupa-vs-eclo"}' if larva_boxplot != buff['larva-boxplot']: return '{"changed": "larva-boxplot"}' if adult_boxplot != buff['adult-boxplot']: return '{"changed": "adult-boxplot"}' return '{"changed": "nobody"}' @app.callback( Output('well-buff', 'children'), [Input('changed-well', 'children')], [State('current-well', 'clickData'), State('larva-summary', 'clickData'), State('adult-summary', 'clickData'), State('pupa-vs-eclo', 'clickData'), State('larva-boxplot', 'clickData'), State('adult-boxplot', 'clickData'), State('well-buff', 'children')]) def callback(changed_data, current_well, larva_summary, adult_summary, pupa_vs_eclo, larva_boxplot, adult_boxplot, buff): buff = json.loads(buff) changed_data = json.loads(changed_data)['changed'] print('Previous Value') print(buff) if changed_data == 'nobody': pass elif changed_data == 'current-well': buff['current-well'] = int(current_well['points'][0]['text']) elif changed_data == 'larva-summary': buff['larva-summary'] = int(larva_summary['points'][0]['text']) elif changed_data == 'adult-summary': buff['adult-summary'] = int(adult_summary['points'][0]['text']) elif changed_data == 'pupa-vs-eclo': buff['pupa-vs-eclo'] = int(pupa_vs_eclo['points'][0]['text']) elif changed_data == 'larva-boxplot': buff['larva-boxplot'] = int(larva_boxplot['points'][0]['text']) elif changed_data == 'adult-boxplot': buff['adult-boxplot'] = int(adult_boxplot['points'][0]['text']) else: # Never evaluated pass print('Current Value') print(buff) return json.dumps(buff) # ===================================================== # Callbacks for selecting time step (frame) # ===================================================== @app.callback( Output('time-selector', 'max'), [Input('env-dropdown', 'value')], [State('data-root', 'children')]) def callback(env, data_root): if env is None: return return len(glob.glob(os.path.join( data_root, glob.escape(env), 'original', '*.jpg'))) - 2 @app.callback( Output('time-selector', 'value'), [Input('time-slider', 'value')]) def callback(timestep): return timestep @app.callback( Output('time-slider', 'max'), [Input('env-dropdown', 'value')], [State('data-root', 'children')]) def callback(env, data_root): if env is None: return 100 return len(glob.glob(os.path.join( data_root, glob.escape(env), 'original', '*.jpg'))) - 2 @app.callback( Output('time-slider', 'value'), [Input('env-dropdown', 'value'), Input('time-buff', 'children')], [State('changed-time', 'children')]) def callback(_, buff, changed_data): buff = json.loads(buff) changed_data = json.loads(changed_data)['changed'] return buff[changed_data] # ===================================================== # Callbacks to buffer a clicked frame number # ===================================================== @app.callback( Output('changed-time', 'children'), [Input('larva-signal', 'clickData'), Input('adult-signal', 'clickData')], [State('time-buff', 'children')]) def callback(larva_signal, adult_signal, buff): # Guard if larva_signal is None and adult_signal is None: return '{"changed": "nobody"}' if larva_signal is None: larva_signal = 0 else: larva_signal = larva_signal['points'][0]['x'] if adult_signal is None: adult_signal = 0 else: adult_signal = adult_signal['points'][0]['x'] buff = json.loads(buff) if larva_signal != buff['larva-signal']: return '{"changed": "larva-signal"}' if adult_signal != buff['adult-signal']: return '{"changed": "adult-signal"}' return '{"changed": "nobody"}' @app.callback( Output('time-buff', 'children'), [Input('changed-time', 'children')], [State('larva-signal', 'clickData'), State('adult-signal', 'clickData'), State('time-buff', 'children')]) def callback(changed_data, larva_signal, adult_signal, buff): buff = json.loads(buff) changed_data = json.loads(changed_data)['changed'] print('Previous Value') print(buff) if changed_data == 'nobody': return json.dumps(buff) if changed_data == 'larva-signal': buff['larva-signal'] = larva_signal['points'][0]['x'] print('Current Value') print(buff) return json.dumps(buff) if changed_data == 'adult-signal': buff['adult-signal'] = adult_signal['points'][0]['x'] print('Current Value') print(buff) return json.dumps(buff) # ===================================================== # Select signal type # ===================================================== @app.callback( Output('larva-signal-type', 'options'), [Input('larva-dropdown', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(larva, data_root, dataset_name): # Guard if larva is None or dataset_name is None: return [] signal_files = sorted(glob.glob(os.path.join( data_root, glob.escape(dataset_name), 'inference', 'larva', larva, '*signals.npy'))) signal_files = [os.path.basename(file_path) for file_path in signal_files] return [{'label': i, 'value': i} for i in signal_files] @app.callback( Output('adult-signal-type', 'options'), [Input('adult-dropdown', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(adult, data_root, dataset_name): # Guard if adult is None or dataset_name is None: return [] signal_files = sorted(glob.glob(os.path.join( data_root, glob.escape(dataset_name), 'inference', 'adult', adult, '*signals.npy'))) signal_files = [os.path.basename(file_path) for file_path in signal_files] return [{'label': i, 'value': i} for i in signal_files] @app.callback( Output('larva-signal-type', 'value'), [Input('larva-signal-type', 'options')], [State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(options, data_root, dataset_name): # Guard if options == [] or dataset_name is None: return None return options[0]['value'] @app.callback( Output('adult-signal-type', 'value'), [Input('adult-signal-type', 'options')], [State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(options, data_root, dataset_name): # Guard if options == [] or dataset_name is None: return None return options[0]['value'] # ===================================================== # Toggle valid/invalid of window size # ===================================================== @app.callback( Output('larva-window-size', 'disabled'), [Input('larva-smoothing-check', 'values')]) def callback(checks): if len(checks) == 0: return True else: return False @app.callback( Output('adult-window-size', 'disabled'), [Input('adult-smoothing-check', 'values')]) def callback(checks): if len(checks) == 0: return True else: return False # ====================================================== # Toggle valid/invalid of window sigma # ====================================================== @app.callback( Output('larva-window-sigma', 'disabled'), [Input('larva-smoothing-check', 'values')]) def callback(checks): if len(checks) == 0: return True else: return False @app.callback( Output('adult-window-sigma', 'disabled'), [Input('adult-smoothing-check', 'values')]) def callback(checks): if len(checks) == 0: return True else: return False # ========================================================= # Toggle valid/invalid of the weight style radio buttons # ========================================================= @app.callback( Output('larva-weight-style', 'options'), [Input('larva-weight-check', 'values')]) def callback(checks): if len(checks) == 0: return [ {'label': 'Step', 'value': 'step', 'disabled': True}, {'label': 'Ramp', 'value': 'ramp', 'disabled': True}, ] else: return [ {'label': 'Step', 'value': 'step', 'disabled': False}, {'label': 'Ramp', 'value': 'ramp', 'disabled': False}, ] @app.callback( Output('adult-weight-style', 'options'), [Input('adult-weight-check', 'values')]) def callback(checks): if len(checks) == 0: return [ {'label': 'Step', 'value': 'step', 'disabled': True}, {'label': 'Ramp', 'value': 'ramp', 'disabled': True}, ] else: return [ {'label': 'Step', 'value': 'step', 'disabled': False}, {'label': 'Ramp', 'value': 'ramp', 'disabled': False}, ] # ====================================== # Callbacks for blacklist # ====================================== @app.callback( Output('blacklist-check', 'values'), [Input('well-selector', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value'), State('hidden-blacklist', 'data')]) def callback(well_idx, data_root, env, blacklist): if well_idx is None or env is None or blacklist is None: raise dash.exceptions.PreventUpdate if blacklist['value'][well_idx]: return ['checked'] else: return [] def get_trigger_input(callback_context): if callback_context.triggered: return callback_context.triggered[0]['prop_id'].split('.')[0] else: return 'No inputs' @app.callback( Output('hidden-blacklist', 'data'), [Input('env-dropdown', 'value'), Input('blacklist-check', 'values')], [State('hidden-blacklist', 'data'), State('well-selector', 'value'), State('data-root', 'children')]) def callback(dataset_name, check, blacklist, well_idx, data_root): # Guard if well_idx is None or dataset_name is None: raise dash.exceptions.PreventUpdate trigger_input = get_trigger_input(dash.callback_context) # If triggered by the env-dropdown, initialize the blacklist buffer if trigger_input == 'env-dropdown': blacklist, exist = load_blacklist(data_root, dataset_name) return {'value': list(blacklist)} # If triggered by the checkbox, put the T/F value in the blacklist buffer elif trigger_input == 'blacklist-check': if check: blacklist['value'][well_idx] = True else: blacklist['value'][well_idx] = False return blacklist else: raise Exception @app.callback( Output('blacklist-link', 'children'), [Input('hidden-blacklist', 'data')], [State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(blacklist, data_root, dataset_name): # Guard if blacklist is None: return 'Now loading...' # Load a mask params with open(os.path.join(data_root, dataset_name, 'mask_params.json')) as f: params = json.load(f) n_wells = params['n-rows'] * params['n-plates'] * params['n-clms'] blacklist_table = np.array(blacklist['value'], dtype=int).reshape( params['n-rows'] * params['n-plates'], params['n-clms']) df = pd.DataFrame(blacklist_table) return [ html.A( 'Download the Blacklist', download='Blacklist({}).csv'.format(dataset_name[0:20]), href='data:text/csv;charset=utf-8,' + df.to_csv( index=False, header=False), target='_blank', ), ] # ======================== # Update the org-image. # ======================== @app.callback( Output('org-image', 'children'), [Input('time-selector', 'value'), Input('well-selector', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(time, well_idx, data_root, env): # Exception handling if env is None: return # Load the mask mask = np.load(os.path.join(data_root, env, 'mask.npy')) # Load an original image orgimg_paths = sorted(glob.glob( os.path.join(data_root, glob.escape(env), 'original', '*.jpg'))) orgimg1 = np.array( PIL.Image.open(orgimg_paths[time]).convert('L'), dtype=np.uint8) orgimg2 = np.array( PIL.Image.open(orgimg_paths[time+1]).convert('L'), dtype=np.uint8) # Cut out an well image from the original image r, c = np.where(mask == well_idx) orgimg1 = orgimg1[r.min():r.max(), c.min():c.max()] orgimg2 = orgimg2[r.min():r.max(), c.min():c.max()] orgimg1 = PIL.Image.fromarray(orgimg1) orgimg2 = PIL.Image.fromarray(orgimg2) # Buffer the well image as byte stream buf1 = io.BytesIO() buf2 = io.BytesIO() orgimg1.save(buf1, format='JPEG') orgimg2.save(buf2, format='JPEG') return [ html.Div('Image at "t"', style={'display': 'inline-block', 'margin-right': '25px'}), html.Div('"t+1"', style={'display': 'inline-block'}), html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode(buf1.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode(buf2.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), ] # ============================= # Update the label-and-prob. # ============================= @app.callback( Output('label-and-prob', 'children'), [Input('time-selector', 'value'), Input('well-selector', 'value'), Input('larva-dropdown', 'value'), Input('adult-dropdown', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value'), State('detect-target', 'value')]) def callback(time, well_idx, larva, adult, data_root, env, detect): # Guard if env is None: return if detect == 'pupariation': # Guard if larva is None: return # Load a npz file storing prob images # and get a prob image larva_probs = np.load(os.path.join( data_root, env, 'inference', 'larva', larva, 'probs', '{:03d}.npz'.format(well_idx)))['arr_0'].astype(np.int32) larva_prob_img1 = PIL.Image.fromarray( larva_probs[time] / 100 * 255).convert('L') larva_prob_img2 = PIL.Image.fromarray( larva_probs[time+1] / 100 * 255).convert('L') larva_label_img1 = PIL.Image.fromarray( ((larva_probs[time] > THETA) * 255).astype(np.uint8) ).convert('L') larva_label_img2 = PIL.Image.fromarray( ((larva_probs[time+1] > THETA) * 255).astype(np.uint8) ).convert('L') # Buffer the well image as byte stream larva_prob_buf1 = io.BytesIO() larva_prob_buf2 = io.BytesIO() larva_label_buf1 = io.BytesIO() larva_label_buf2 = io.BytesIO() larva_prob_img1.save(larva_prob_buf1, format='JPEG') larva_prob_img2.save(larva_prob_buf2, format='JPEG') larva_label_img1.save(larva_label_buf1, format='JPEG') larva_label_img2.save(larva_label_buf2, format='JPEG') data = [ html.Div('Larva'), html.Div([ html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( larva_label_buf1.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( larva_label_buf2.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), ]), html.Div([ html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( larva_prob_buf1.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( larva_prob_buf2.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), ]), ] elif detect == 'pupa-and-eclo': data = [] if larva is None: pass else: # Load a npz file storing prob images # and get a prob image larva_probs = np.load(os.path.join( data_root, env, 'inference', 'larva', larva, 'probs', '{:03d}.npz'.format(well_idx)))['arr_0'].astype(np.int32) larva_prob_img1 = PIL.Image.fromarray( larva_probs[time] / 100 * 255).convert('L') larva_prob_img2 = PIL.Image.fromarray( larva_probs[time+1] / 100 * 255).convert('L') larva_label_img1 = PIL.Image.fromarray( ((larva_probs[time] > THETA) * 255).astype(np.uint8) ).convert('L') larva_label_img2 = PIL.Image.fromarray( ((larva_probs[time+1] > THETA) * 255).astype(np.uint8) ).convert('L') # Buffer the well image as byte stream larva_prob_buf1 = io.BytesIO() larva_prob_buf2 = io.BytesIO() larva_label_buf1 = io.BytesIO() larva_label_buf2 = io.BytesIO() larva_prob_img1.save(larva_prob_buf1, format='JPEG') larva_prob_img2.save(larva_prob_buf2, format='JPEG') larva_label_img1.save(larva_label_buf1, format='JPEG') larva_label_img2.save(larva_label_buf2, format='JPEG') data = data + [ html.Div('Larva'), html.Div([ html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( larva_label_buf1.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( larva_label_buf2.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), ]), html.Div([ html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( larva_prob_buf1.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( larva_prob_buf2.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), ]), ] if adult is None: pass else: adult_probs = np.load(os.path.join( data_root, env, 'inference', 'adult', adult, 'probs', '{:03d}.npz'.format(well_idx)))['arr_0'].astype(np.int32) adult_prob_img1 = PIL.Image.fromarray( adult_probs[time] / 100 * 255).convert('L') adult_prob_img2 = PIL.Image.fromarray( adult_probs[time+1] / 100 * 255).convert('L') adult_label_img1 = PIL.Image.fromarray( ((adult_probs[time] > THETA) * 255).astype(np.uint8) ).convert('L') adult_label_img2 = PIL.Image.fromarray( ((adult_probs[time+1] > THETA) * 255).astype(np.uint8) ).convert('L') adult_prob_buf1 = io.BytesIO() adult_prob_buf2 = io.BytesIO() adult_label_buf1 = io.BytesIO() adult_label_buf2 = io.BytesIO() adult_prob_img1.save(adult_prob_buf1, format='JPEG') adult_prob_img2.save(adult_prob_buf2, format='JPEG') adult_label_img1.save(adult_label_buf1, format='JPEG') adult_label_img2.save(adult_label_buf2, format='JPEG') data = data + [ html.Div('Adult'), html.Div([ html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( adult_label_buf1.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( adult_label_buf2.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), ]), html.Div([ html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( adult_prob_buf1.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( adult_prob_buf2.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), ]), ] elif detect in ('eclosion', 'death'): # Guard if adult is None: return # Load a npz file storing prob images # and get a prob image adult_probs = np.load(os.path.join( data_root, env, 'inference', 'adult', adult, 'probs', '{:03d}.npz'.format(well_idx)))['arr_0'].astype(np.int32) adult_prob_img1 = PIL.Image.fromarray( adult_probs[time] / 100 * 255).convert('L') adult_prob_img2 = PIL.Image.fromarray( adult_probs[time+1] / 100 * 255).convert('L') adult_label_img1 = PIL.Image.fromarray( ((adult_probs[time] > THETA) * 255).astype(np.uint8) ).convert('L') adult_label_img2 = PIL.Image.fromarray( ((adult_probs[time+1] > THETA) * 255).astype(np.uint8) ).convert('L') # Buffer the well image as byte stream adult_prob_buf1 = io.BytesIO() adult_prob_buf2 = io.BytesIO() adult_label_buf1 = io.BytesIO() adult_label_buf2 = io.BytesIO() adult_prob_img1.save(adult_prob_buf1, format='JPEG') adult_prob_img2.save(adult_prob_buf2, format='JPEG') adult_label_img1.save(adult_label_buf1, format='JPEG') adult_label_img2.save(adult_label_buf2, format='JPEG') data = [ html.Div('Adult'), html.Div([ html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( adult_label_buf1.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( adult_label_buf2.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), ]), html.Div([ html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( adult_prob_buf1.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), html.Img( src='data:image/jpeg;base64,{}'.format( base64.b64encode( adult_prob_buf2.getvalue()).decode('utf-8')), style={ 'background': '#555555', 'height': '65px', 'width': '65px', 'padding': '5px', 'display': 'inline-block', }, ), ]), ] return data # =========================== # Update the current-well. # =========================== @app.callback( Output('current-well', 'figure'), [Input('time-selector', 'value'), Input('well-selector', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(time, well_idx, data_root, env): # Guard if env is None: return {'data': []} # Load a mask params with open(os.path.join(data_root, env, 'mask_params.json')) as f: params = json.load(f) n_wells = params['n-rows'] * params['n-plates'] * params['n-clms'] xs, ys = well_coordinates(params) # Load an original image orgimg_paths = sorted(glob.glob( os.path.join(data_root, glob.escape(env), 'original', '*.jpg'))) org_img = PIL.Image.open(orgimg_paths[time]).convert('L') # Buffer the well image as byte stream buf = io.BytesIO() org_img.save(buf, format='JPEG') data_uri = 'data:image/jpeg;base64,{}'.format( base64.b64encode(buf.getvalue()).decode('utf-8')) height, width = np.array(org_img).shape # A coordinate of selected well selected_x = xs[well_idx:well_idx+1] selected_y = ys[well_idx:well_idx+1] # Bounding boxes of groups if os.path.exists(os.path.join(data_root, env, 'grouping.csv')): mask = np.load(os.path.join(data_root, env, 'mask.npy')) mask = np.flipud(mask) groups = np.loadtxt( os.path.join(data_root, env, 'grouping.csv'), dtype=np.int32, delimiter=',').flatten() for well_idx, group_id in enumerate(groups): mask[mask==well_idx] = group_id bounding_boxes = [ { 'x': [ np.where(mask == group_id)[1].min(), np.where(mask == group_id)[1].max(), np.where(mask == group_id)[1].max(), np.where(mask == group_id)[1].min(), np.where(mask == group_id)[1].min(), ], 'y': [ np.where(mask == group_id)[0].min(), np.where(mask == group_id)[0].min(), np.where(mask == group_id)[0].max(), np.where(mask == group_id)[0].max(), np.where(mask == group_id)[0].min(), ], 'name': 'Group{}'.format(group_id), 'mode': 'lines', 'line': {'width': 3, 'color': GROUP_COLORS[group_id - 1]}, } for group_id in np.unique(groups) ] well_points = [ { 'x': xs[groups == group_id], 'y': ys[groups == group_id], 'text': np.where(groups == group_id)[0].astype(str), 'mode': 'markers', 'marker': { 'size': 4, 'color': GROUP_COLORS[group_id - 1], 'opacity': 0.0, }, 'name': 'Group{}'.format(group_id), } for group_id in np.unique(groups) ] else: bounding_boxes = [] well_points = [ { 'x': xs, 'y': ys, 'text': [str(i) for i in range(n_wells)], 'mode': 'markers', 'marker': { 'size': 4, 'color': '#ffffff', 'opacity': 0.0, }, 'name': '', }, ] return { 'data': bounding_boxes + well_points + [ { 'x': selected_x, 'y': selected_y, 'text': str(well_idx), 'mode': 'markers', 'marker': {'size': 10, 'color': '#ff0000', 'opacity': 0.5}, 'name': 'Selected well', }, ], 'layout': { 'width': 200, 'height': 400, 'margin': go.layout.Margin(l=0, b=0, t=0, r=0), 'xaxis': { 'range': (0, width), 'scaleanchor': 'y', 'scaleratio': 1, 'showgrid': False, }, 'yaxis': { 'range': (0, height), 'showgrid': False, }, 'images': [{ 'xref': 'x', 'yref': 'y', 'x': 0, 'y': 0, 'yanchor': 'bottom', 'sizing': 'stretch', 'sizex': width, 'sizey': height, 'layer': 'below', 'source': data_uri, }], 'dragmode': 'zoom', 'hovermode': 'closest', 'showlegend': False, } } def well_coordinates(params): n_rows = params['n-rows'] n_clms = params['n-clms'] n_plates = params['n-plates'] row_gap = params['row-gap'] clm_gap = params['clm-gap'] plate_gap = params['plate-gap'] x = params['x'] y = params['y'] well_w = params['well-w'] well_h = params['well-h'] angle = np.deg2rad(params['angle']) well_idxs = np.flipud( np.arange(n_rows * n_clms * n_plates, dtype=int).reshape( n_rows*n_plates, n_clms)).reshape(n_rows * n_clms * n_plates) xs = [] ys = [] count = 0 for n in range(n_plates): for idx_r in range(n_rows): for idx_c in range(n_clms): c1 = x + round(idx_c*(well_w + clm_gap)) r1 = y + round(idx_r*(well_h + row_gap)) \ + n*(n_rows*well_h + plate_gap) \ + round(row_gap*(n - 1)) c1, r1 = np.dot( np.array( [[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]), np.array([c1-x, r1-y])) + np.array([x, y]) c1, r1 = np.round([c1, r1]).astype(int) xs.append(c1 + well_w / 2) ys.append(r1 + well_h / 2) count += 1 return np.array(xs)[well_idxs], np.array(ys)[well_idxs] # ====================================================== # Callbacks for threshold # ====================================================== @app.callback( Output('larva-thresh-selector', 'value'), [Input('larva-thresh', 'value')]) def callback(threshold): return threshold @app.callback( Output('adult-thresh-selector', 'value'), [Input('adult-thresh', 'value')]) def callback(threshold): return threshold # ====================================================== # Callbacks for midpoint # ====================================================== @app.callback( Output('midpoint-slider', 'max'), [Input('env-dropdown', 'value')], [State('data-root', 'children')]) def callback(env, data_root): if env is None: return 100 return len(glob.glob(os.path.join( data_root, glob.escape(env), 'original', '*.jpg'))) - 2 @app.callback( Output('midpoint-slider', 'value'), [Input('well-selector', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value'), State('hidden-midpoint', 'data')]) def callback(well_idx, data_root, dataset_name, midpoints): if well_idx is None or dataset_name is None or midpoints is None: return 50 return midpoints['midpoint'][well_idx] @app.callback( Output('midpoint-selector', 'max'), [Input('env-dropdown', 'value')], [State('data-root', 'children')]) def callback(env, data_root): if env is None: return 100 return len(glob.glob(os.path.join( data_root, glob.escape(env), 'original', '*.jpg'))) - 2 @app.callback( Output('midpoint-selector', 'value'), [Input('midpoint-slider', 'value')]) def callback(midpoint): return midpoint @app.callback( Output('hidden-midpoint', 'data'), [Input('midpoint-selector', 'value')], [State('hidden-midpoint', 'data'), State('well-selector', 'value'), State('data-root', 'children'), State('env-dropdown', 'value')]) def callback(midpoint, midpoints, well_idx, data_root, dataset_name): # Guard if well_idx is None or dataset_name is None: return # Load a mask params with open(os.path.join(data_root, dataset_name, 'mask_params.json')) as f: params = json.load(f) n_wells = params['n-rows'] * params['n-plates'] * params['n-clms'] # Initialize the buffer if midpoints is None or len(midpoints['midpoint']) != n_wells: midpoints = {'midpoint': [50] * n_wells} return midpoints if os.path.exists(os.path.join(data_root, dataset_name, 'grouping.csv')): group_ids = np.loadtxt( os.path.join(data_root, dataset_name, 'grouping.csv'), dtype=np.int32, delimiter=',').flatten() midpoints['midpoint'] = np.array(midpoints['midpoint']) group_id = group_ids[well_idx] midpoints['midpoint'][group_ids == group_id] = midpoint return midpoints else: return {'midpoint': [midpoint] * n_wells} # ========================================= # Update the figure in the larva-signal # ========================================= @app.callback( Output('larva-signal', 'figure'), [Input('well-selector', 'value'), Input('larva-thresh-selector', 'value'), Input('time-selector', 'value'), Input('hidden-midpoint', 'data'), Input('larva-weight-check', 'values'), Input('larva-weight-style', 'value'), Input('larva-smoothing-check', 'values'), Input('larva-window-size', 'value'), Input('larva-window-sigma', 'value'), Input('larva-signal-type', 'value'), Input('detection-method', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value'), State('detect-target', 'value'), State('larva-dropdown', 'value'), State('hidden-timestamp', 'data')]) def callback(well_idx, coef, time, midpoints, weight, style, checks, size, sigma, signal_name, method, data_root, env, detect, larva, timestamps): # Guard if env is None: return {'data': []} if larva is None: return {'data': []} larva_data = [] manual_data = [] common_data = [] # Load the data larva_diffs = np.load(os.path.join( data_root, env, 'inference', 'larva', larva, signal_name)).T larva_diffs = seasoning( larva_diffs, 'larva', detect, size, sigma, smooth=len(checks) != 0, weight=len(weight) != 0, pupar_times=None, midpoints=midpoints, weight_style=style) thresholds = THRESH_FUNC(larva_diffs, coef=coef) auto_evals = detect_event(larva_diffs, thresholds, 'larva', detect, method) if os.path.exists( os.path.join(data_root, env, 'original', 'pupariation.csv')): manual_evals = np.loadtxt( os.path.join( data_root, env, 'original', 'pupariation.csv'), dtype=np.int32, delimiter=',').flatten() manual_data = [ { # Manual evaluation time (vertical line) 'x': [manual_evals[well_idx], manual_evals[well_idx]], 'y': [0, larva_diffs.max()], 'mode': 'lines', 'name': 'Manual', 'line': {'width': 2, 'color': '#ffa500'}, }, ] larva_data = [ { # Signal 'x': list(range(len(larva_diffs[0, :]))), 'y': list(larva_diffs[well_idx]), 'mode': 'lines', 'marker': {'color': '#4169e1'}, 'name': 'Signal', 'opacity':1.0, 'line': {'width': 2, 'color': '#4169e1'}, }, { # Threshold (horizontal line) 'x': [0, len(larva_diffs[0, :])], 'y': [thresholds[well_idx, 0], thresholds[well_idx, 0]], 'mode': 'lines', 'name': 'Threshold', 'line': {'width': 2, 'color': '#4169e1'}, }, { # Auto evaluation time (vertical line) 'x': [auto_evals[well_idx], auto_evals[well_idx]], 'y': [0, larva_diffs.max()], 'name': 'Auto', 'mode':'lines', 'line': {'width': 2, 'color': '#4169e1', 'dash': 'dot'}, }, ] common_data = [ { # Selected data point 'x': [time], 'y': [larva_diffs[well_idx, time]], 'mode': 'markers', 'marker': {'size': 10, 'color': '#ff0000'}, 'name': '', }, ] return { 'data': larva_data + manual_data + common_data, 'layout': { 'annotations': [ { 'x': 0.01 * len(larva_diffs.T), 'y': 1.0 * larva_diffs.max(), 'text': 'Threshold: {:.1f}, Max: {:.1f}, Min: {:.1f}' \ .format(thresholds[well_idx, 0], larva_diffs[well_idx].max(), larva_diffs[well_idx].min()), 'showarrow': False, 'xanchor': 'left', 'yanchor': 'top', }, ], 'font': {'size': 15}, 'xaxis': { 'title': 'Frame', 'tickfont': {'size': 15}, }, 'yaxis': { 'title': 'Activity', 'tickfont': {'size': 15}, 'overlaying': 'y', 'range': [-0.1*larva_diffs.max(), larva_diffs.max()], }, 'showlegend': False, 'hovermode': 'closest', 'margin': go.layout.Margin(l=70, r=0, b=50, t=10, pad=0), 'shapes': day_and_night(timestamps), }, } @app.callback( Output('larva-signal-div', 'style'), [Input('detect-target', 'value')]) def callback(detect): if detect == 'pupariation': return { 'width': '810px', 'margin-top': '10px', } elif detect == 'eclosion': return {'display': 'none'} elif detect == 'pupa-and-eclo': return { 'width': '810px', 'margin-top': '10px', } elif detect == 'death': return {'display': 'none'} else: return {} # ========================================= # Update the figure in the adult-signal. # ========================================= @app.callback( Output('adult-signal', 'figure'), [Input('larva-thresh-selector', 'value'), Input('adult-thresh-selector', 'value'), Input('time-selector', 'value'), Input('hidden-midpoint', 'data'), Input('larva-weight-check', 'values'), Input('larva-weight-style', 'value'), Input('larva-smoothing-check', 'values'), Input('larva-window-size', 'value'), Input('larva-window-sigma', 'value'), Input('adult-weight-check', 'values'), Input('adult-weight-style', 'value'), Input('adult-smoothing-check', 'values'), Input('adult-window-size', 'value'), Input('adult-window-sigma', 'value'), Input('adult-signal-type', 'value'), Input('detection-method', 'value')], [State('well-selector', 'value'), State('data-root', 'children'), State('env-dropdown', 'value'), State('detect-target', 'value'), State('larva-dropdown', 'value'), State('adult-dropdown', 'value'), State('hidden-timestamp', 'data'), State('larva-signal-type', 'value')]) def callback(larva_coef, adult_coef, time, midpoints, larva_weighting, larva_w_style, larva_smoothing, larva_w_size, larva_w_sigma, adult_weighting, adult_w_style, adult_smoothing, adult_w_size, adult_w_sigma, adult_signal_name, method, well_idx, data_root, env, detect, larva, adult, timestamps, larva_signal_name): # Guard if env is None: return {'data': []} if adult is None: return {'data': []} adult_data = [] manual_data = [] common_data = [] # ---------------------------------------------------------- # Detect pupariation timing for detecting eclosion timing # ---------------------------------------------------------- if larva is None: pupar_times = None else: # Load the data larva_diffs = np.load(os.path.join(data_root, env, 'inference', 'larva', larva, larva_signal_name)).T larva_diffs = seasoning( larva_diffs, 'larva', detect, larva_w_size, larva_w_sigma, smooth=len(larva_smoothing) != 0, weight=len(larva_weighting) != 0, pupar_times=None, midpoints=midpoints, weight_style=larva_w_style) larva_thresh = THRESH_FUNC(larva_diffs, coef=larva_coef) pupar_times = detect_event(larva_diffs, larva_thresh, 'larva', detect, method) # ---------------------------------------- # Detection of eclosion or death timing # ---------------------------------------- # Load the data adult_diffs = np.load(os.path.join( data_root, env, 'inference', 'adult', adult, adult_signal_name)).T adult_diffs = seasoning( adult_diffs, 'adult', detect, adult_w_size, adult_w_sigma, smooth=len(adult_smoothing) != 0, weight=len(adult_weighting) != 0, pupar_times=pupar_times, midpoints=midpoints, weight_style=adult_w_style) adult_thresh = THRESH_FUNC(adult_diffs, coef=adult_coef) auto_evals = detect_event(adult_diffs, adult_thresh, 'adult', detect, method) # Load a manual evaluation of event timing if detect in ('eclosion', 'pupa-and-eclo') and os.path.exists( os.path.join(data_root, env, 'original', 'eclosion.csv')): manual_evals = np.loadtxt( os.path.join(data_root, env, 'original', 'eclosion.csv'), dtype=np.int32, delimiter=',').flatten() manual_data = [ { # Manual evaluation time (vertical line) 'x': [manual_evals[well_idx], manual_evals[well_idx]], 'y': [0, adult_diffs.max()], 'mode': 'lines', 'name': 'Manual', 'line': {'width': 2, 'color': '#ffa500'}, }, ] elif detect == 'death' and os.path.exists( os.path.join(data_root, env, 'original', 'death.csv')): manual_evals = np.loadtxt( os.path.join(data_root, env, 'original', 'death.csv'), dtype=np.int32, delimiter=',').flatten() manual_data = [ { # Manual evaluation time (vertical line) 'x': [manual_evals[well_idx], manual_evals[well_idx]], 'y': [0, adult_diffs.max()], 'mode': 'lines', 'name': 'Manual', 'line': {'width': 2, 'color': '#ffa500'}, }, ] adult_data = [ { # Signal 'x': list(range(len(adult_diffs[0, :]))), 'y': list(adult_diffs[well_idx]), 'mode': 'lines', 'marker': {'color': '#4169e1'}, 'name': 'Signal', 'opacity':1.0, 'line': {'width': 2, 'color': '#4169e1'}, }, { # Threshold (horizontal line) 'x': [0, len(adult_diffs[0, :])], 'y': [adult_thresh[well_idx, 0], adult_thresh[well_idx, 0]], 'mode': 'lines', 'name': 'Threshold', 'line': {'width': 2, 'color': '#4169e1'}, }, { # Auto evaluation time (vertical line) 'x': [auto_evals[well_idx], auto_evals[well_idx]], 'y': [0, adult_diffs.max()], 'name': 'Auto', 'mode':'lines', 'line': {'width': 2, 'color': '#4169e1', 'dash': 'dot'}, }, ] common_data = [ { # Selected data point 'x': [time], 'y': [adult_diffs[well_idx, time]], 'mode': 'markers', 'marker': {'size': 10, 'color': '#ff0000'}, 'name': '', }, ] return { 'data': adult_data + manual_data + common_data, 'layout': { 'annotations': [ { 'x': 0.01 * len(adult_diffs.T), 'y': 1.0 * adult_diffs.max(), 'text': 'Threshold: {:.1f}, Max: {:.1f}, Min: {:.1f}' \ .format(adult_thresh[well_idx, 0], adult_diffs[well_idx].max(), adult_diffs[well_idx].min()), 'showarrow': False, 'xanchor': 'left', 'yanchor': 'top', }, ], 'font': {'size': 15}, 'xaxis': { 'title': 'Frame', 'tickfont': {'size': 15}, }, 'yaxis': { 'title': 'Activity', 'tickfont': {'size': 15}, 'side': 'left', 'range': [-0.1*adult_diffs.max(), adult_diffs.max()], }, 'showlegend': False, 'hovermode': 'closest', 'margin': go.layout.Margin(l=70, r=0, b=50, t=10, pad=0), 'shapes': day_and_night(timestamps), }, } @app.callback( Output('adult-signal-div', 'style'), [Input('detect-target', 'value')]) def callback(detect): if detect == 'pupariation': return {'display': 'none'} elif detect == 'eclosion': return { 'width': '810px', 'margin-top': '10px', } elif detect == 'pupa-and-eclo': return { 'width': '810px', 'margin-top': '10px', } elif detect == 'death': return { 'width': '810px', 'margin-top': '10px', } else: return {} # ========================================= # Update the figure in the larva-summary # ========================================= @app.callback( Output('larva-summary', 'figure'), [Input('larva-thresh-selector', 'value'), Input('well-selector', 'value'), Input('hidden-midpoint', 'data'), Input('larva-weight-check', 'values'), Input('larva-weight-style', 'value'), Input('larva-smoothing-check', 'values'), Input('larva-window-size', 'value'), Input('larva-window-sigma', 'value'), Input('larva-signal-type', 'value'), Input('hidden-blacklist', 'data'), Input('detection-method', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value'), State('detect-target', 'value'), State('larva-dropdown', 'value')]) def callback(coef, well_idx, midpoints, weight, style, checks, size, sigma, signal_name, blacklist, method, data_root, env, detect, larva): # Guard if env is None: return {'data': []} if larva is None: return {'data': []} if not os.path.exists(os.path.join( data_root, env, 'inference', 'larva', larva, signal_name)): return {'data': []} if not os.path.exists(os.path.join( data_root, env, 'original', 'pupariation.csv')): return {'data': []} # Load a manual evaluation of event timing if not os.path.exists(os.path.join( data_root, env, 'original', 'pupariation.csv')): #return {'data': []} non_manualdata = {'layout': { 'annotations': [ { 'x': 5.0, 'y': 2.0, 'text': 'Not Available', 'showarrow': False, 'xanchor': 'right', },]}} return non_manualdata manual_evals = np.loadtxt( os.path.join(data_root, env, 'original', 'pupariation.csv'), dtype=np.int32, delimiter=',').flatten() # Target wells will be evaluated exceptions = np.logical_or(blacklist['value'], manual_evals == 0) targets = np.logical_not(exceptions) # Load a group table group_tables = load_grouping_csv(data_root, env) # Load a manual data manual_evals = np.loadtxt( os.path.join(data_root, env, 'original', 'pupariation.csv'), dtype=np.int32, delimiter=',').flatten() # Load the data larva_diffs = np.load(os.path.join( data_root, env, 'inference', 'larva', larva, signal_name)).T larva_diffs = seasoning( larva_diffs, 'larva', detect, size, sigma, smooth=len(checks) != 0, weight=len(weight) != 0, pupar_times=None, midpoints=midpoints, weight_style=style) thresholds = THRESH_FUNC(larva_diffs, coef=coef) auto_evals = detect_event(larva_diffs, thresholds, 'larva', detect, method) # Calculate how many frames auto-evaluation is far from manual's one errors = auto_evals[targets] - manual_evals[targets] # Calculate the root mean square rms = np.sqrt((errors**2).sum() / len(errors)) # Create data points if group_tables == []: data_list = [ { 'x': list(auto_evals[exceptions]), 'y': list(manual_evals[exceptions]), 'text': [str(i) for i in np.where(exceptions)[0]], 'mode': 'markers', 'marker': {'size': 4, 'color': '#000000'}, 'name': 'Exceptions', }, { 'x': list(auto_evals[targets]), 'y': list(manual_evals[targets]), 'text': [str(i) for i in np.where(targets)[0]], 'mode': 'markers', 'marker': {'size': 4, 'color': '#1f77b4'}, }, ] else: data_list = [] for group_idx, group_table in enumerate(group_tables): data_list.append( { 'x': list( auto_evals[np.logical_and(targets, group_table)]), 'y': list( manual_evals[np.logical_and(targets, group_table)]), 'text': [str(i) for i in np.where( np.logical_and(targets, group_table))[0]], 'mode': 'markers', 'marker': {'size': 4, 'color': GROUP_COLORS[group_idx]}, 'name': 'Group{}'.format(group_idx + 1), }) data_list.append( { 'x': list( auto_evals[np.logical_and(exceptions, group_table)]), 'y': list( manual_evals[np.logical_and(exceptions, group_table)]), 'text': [str(i) for i in np.where( np.logical_and(exceptions, group_table))[0]], 'mode': 'markers', 'marker': {'size': 4, 'color': '#000000'}, 'name': 'Group{}<br>Exceptions'.format(group_idx + 1), }) return { 'data': [ { 'x': [ round(0.05 * len(larva_diffs[0, :])), len(larva_diffs[0, :]) ], 'y': [ 0, len(larva_diffs[0, :]) - \ round(0.05 * len(larva_diffs[0, :])) ], 'mode': 'lines', 'fill': None, 'line': {'width': .1, 'color': '#43d86b'}, 'name': 'Lower bound', }, { 'x': [ -round(0.05 * len(larva_diffs[0, :])), len(larva_diffs[0, :]) ], 'y': [ 0, len(larva_diffs[0, :]) + \ round(0.05 * len(larva_diffs[0, :])) ], 'mode': 'lines', 'fill': 'tonexty', 'line': {'width': .1, 'color': '#c0c0c0'}, 'name': 'Upper bound', }, { 'x': [0, len(larva_diffs[0, :])], 'y': [0, len(larva_diffs[0, :])], 'mode': 'lines', 'line': {'width': .5, 'color': '#000000'}, 'name': 'Auto = Manual', }, ] + data_list + [ { 'x': [auto_evals[well_idx]], 'y': [manual_evals[well_idx]], 'text': str(well_idx), 'mode': 'markers', 'marker': {'size': 10, 'color': '#ff0000'}, 'name': 'Selected well', }, ], 'layout': { 'annotations': [ { 'x': 0.01 * len(larva_diffs.T), 'y': 1.0 * len(larva_diffs.T), 'text': 'RMS: {:.1f}'.format(rms), 'showarrow': False, 'xanchor': 'left', }, ], 'font': {'size': 15}, 'xaxis': { 'title': 'Auto', 'tickfont': {'size': 15}, }, 'yaxis': { 'title': 'Manual', 'tickfont': {'size': 15}, }, 'showlegend': False, 'hovermode': 'closest', 'margin': go.layout.Margin(l=50, r=0, b=40, t=70, pad=0), }, } @app.callback( Output('larva-summary', 'style'), [Input('detect-target', 'value')]) def callback(detect): if detect == 'pupariation': return { 'display': 'inline-block', 'height': '300px', 'width': '20%', } elif detect == 'eclosion': return {'display': 'none'} elif detect == 'pupa-and-eclo': return { 'display': 'inline-block', 'height': '300px', 'width': '20%', } elif detect == 'death': return {'display': 'none'} else: return {} # ========================================== # Update the figure in the adult-summary. # ========================================== @app.callback( Output('adult-summary', 'figure'), [Input('larva-thresh-selector', 'value'), Input('adult-thresh-selector', 'value'), Input('well-selector', 'value'), Input('hidden-midpoint', 'data'), Input('larva-weight-check', 'values'), Input('larva-weight-style', 'value'), Input('larva-smoothing-check', 'values'), Input('larva-window-size', 'value'), Input('larva-window-sigma', 'value'), Input('adult-weight-check', 'values'), Input('adult-weight-style', 'value'), Input('adult-smoothing-check', 'values'), Input('adult-window-size', 'value'), Input('adult-window-sigma', 'value'), Input('adult-signal-type', 'value'), Input('hidden-blacklist', 'data'), Input('detection-method', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value'), State('detect-target', 'value'), State('larva-dropdown', 'value'), State('adult-dropdown', 'value'), State('larva-signal-type', 'value')]) def callback(larva_coef, adult_coef, well_idx, midpoints, larva_weighting, larva_w_style, larva_smoothing, larva_w_size, larva_w_sigma, adult_weighting, adult_w_style, adult_smoothing, adult_w_size, adult_w_sigma, adult_signal_name, blacklist, method, data_root, env, detect, larva, adult, larva_signal_name): # Guard if env is None: return {'data': []} if adult is None: return {'data': []} if not os.path.exists(os.path.join( data_root, env, 'inference', 'adult', adult, adult_signal_name)): return {'data': []} if not os.path.exists(os.path.join( data_root, env, 'original', 'eclosion.csv')) \ and detect == 'pupa-and-eclo': return {'data': []} # Load a manual evaluation of event timing if detect in ('eclosion', 'pupa-and-eclo'): if not os.path.exists(os.path.join( data_root, env, 'original', 'eclosion.csv')): non_manualdata = { 'layout': { 'annotations': [ { 'x': 5.0, 'y': 2.0, 'text': 'Not Available', 'showarrow': False, 'xanchor': 'right', }, ] } } return non_manualdata else: manual_evals = np.loadtxt( os.path.join(data_root, env, 'original', 'eclosion.csv'), dtype=np.int32, delimiter=',').flatten() elif detect == 'death': if not os.path.exists(os.path.join( data_root, env, 'original', 'death.csv')): non_manualdata = { 'layout': { 'annotations': [ { 'x': 5.0, 'y': 2.0, 'text': 'Not Available', 'showarrow': False, 'xanchor': 'right', }, ] } } return non_manualdata else: manual_evals = np.loadtxt( os.path.join(data_root, env, 'original', 'death.csv'), dtype=np.int32, delimiter=',').flatten() # Target wells will be evaluated exceptions = np.logical_or(blacklist['value'], manual_evals == 0) targets = np.logical_not(exceptions) # Load a group table group_tables = load_grouping_csv(data_root, env) # ---------------------------------------------------------- # Detect pupariation timing for detecting eclosion timing # ---------------------------------------------------------- if larva is None: pupar_times = None else: # Load the data larva_diffs = np.load(os.path.join(data_root, env, 'inference', 'larva', larva, larva_signal_name)).T larva_diffs = seasoning( larva_diffs, 'larva', detect, larva_w_size, larva_w_sigma, smooth=len(larva_smoothing) != 0, weight=len(larva_weighting) != 0, pupar_times=None, midpoints=midpoints, weight_style=larva_w_style) larva_thresh = THRESH_FUNC(larva_diffs, coef=larva_coef) pupar_times = detect_event(larva_diffs, larva_thresh, 'larva', detect, method) # ---------------------------------------- # Detection of eclosion or death timing # ---------------------------------------- # Load the data adult_diffs = np.load(os.path.join( data_root, env, 'inference', 'adult', adult, adult_signal_name)).T adult_diffs = seasoning( adult_diffs, 'adult', detect, adult_w_size, adult_w_sigma, smooth=len(adult_smoothing) != 0, weight=len(adult_weighting) != 0, pupar_times=pupar_times, midpoints=midpoints, weight_style=adult_w_style) adult_thresh = THRESH_FUNC(adult_diffs, coef=adult_coef) auto_evals = detect_event(adult_diffs, adult_thresh, 'adult', detect, method) # Calculate how many frames auto-evaluation is far from manual's one errors = auto_evals[targets] - manual_evals[targets] # Calculate the root mean square rms = np.sqrt((errors**2).sum() / len(errors)) # Create data points if group_tables == []: data_list = [ { 'x': list(auto_evals[exceptions]), 'y': list(manual_evals[exceptions]), 'text': [str(i) for i in np.where(exceptions)[0]], 'mode': 'markers', 'marker': {'size': 4, 'color': '#000000'}, 'name': 'Exception', }, { 'x': list(auto_evals[targets]), 'y': list(manual_evals[targets]), 'text': [str(i) for i in np.where(targets)[0]], 'mode': 'markers', 'marker': {'size': 4, 'color': '#1f77b4'}, }, ] else: data_list = [] for group_idx, group_table in enumerate(group_tables): data_list.append( { 'x': list( auto_evals[np.logical_and(targets, group_table)]), 'y': list( manual_evals[np.logical_and(targets, group_table)]), 'text': [str(i) for i in np.where( np.logical_and(targets, group_table))[0]], 'mode': 'markers', 'marker': {'size': 4, 'color': GROUP_COLORS[group_idx]}, 'name': 'Group{}'.format(group_idx + 1), }) data_list.append( { 'x': list( auto_evals[np.logical_and(exceptions, group_table)]), 'y': list( manual_evals[np.logical_and(exceptions, group_table)]), 'text': [str(i) for i in np.where( np.logical_and(exceptions, group_table))[0]], 'mode': 'markers', 'marker': {'size': 4, 'color': '#000000'}, 'name': 'Group{}<br>Exceptions'.format(group_idx + 1), }) return { 'data': [ { 'x': [ round(0.05 * len(adult_diffs[0, :])), len(adult_diffs[0, :]) ], 'y': [ 0, len(adult_diffs[0, :]) - \ round(0.05 * len(adult_diffs[0, :])) ], 'mode': 'lines', 'fill': None, 'line': {'width': .1, 'color': '#43d86b'}, 'name': 'Lower bound', }, { 'x': [ -round(0.05 * len(adult_diffs[0, :])), len(adult_diffs[0, :]) ], 'y': [ 0, len(adult_diffs[0, :]) + \ round(0.05 * len(adult_diffs[0, :])) ], 'mode': 'lines', 'fill': 'tonexty', 'line': {'width': .1, 'color': '#c0c0c0'}, 'name': 'Upper bound', }, { 'x': [0, len(adult_diffs[0, :])], 'y': [0, len(adult_diffs[0, :])], 'mode': 'lines', 'line': {'width': .5, 'color': '#000000'}, 'name': 'Auto = Manual', }, ] + data_list + [ { 'x': [auto_evals[well_idx]], 'y': [manual_evals[well_idx]], 'text': str(well_idx), 'mode': 'markers', 'marker': {'size': 10, 'color': '#ff0000'}, 'name': 'Selected well', }, ], 'layout': { 'annotations': [ { 'x': 0.01 * len(adult_diffs.T), 'y': 1.0 * len(adult_diffs.T), 'text': 'RMS: {:.1f}'.format(rms), 'showarrow': False, 'xanchor': 'left', }, ], 'font': {'size': 15}, 'xaxis': { 'title': 'Auto', 'tickfont': {'size': 15}, }, 'yaxis': { 'title': 'Manual', 'tickfont': {'size': 15}, }, 'showlegend': False, 'hovermode': 'closest', 'margin': go.layout.Margin(l=50, r=0, b=40, t=70, pad=0), }, } @app.callback( Output('adult-summary', 'style'), [Input('detect-target', 'value')]) def callback(detect): if detect == 'pupariation': return {'display': 'none'} elif detect == 'eclosion': return { 'display': 'inline-block', 'height': '300px', 'width': '20%', } elif detect == 'pupa-and-eclo': return { 'display': 'inline-block', 'height': '300px', 'width': '20%', } elif detect == 'death': return { 'display': 'inline-block', 'height': '300px', 'width': '20%', } else: return {} # ======================================= # Update the figure in the larva-hist. # ======================================= @app.callback( Output('larva-hist', 'figure'), [Input('larva-thresh-selector', 'value'), Input('well-selector', 'value'), Input('hidden-midpoint', 'data'), Input('larva-weight-check', 'values'), Input('larva-weight-style', 'value'), Input('larva-smoothing-check', 'values'), Input('larva-window-size', 'value'), Input('larva-window-sigma', 'value'), Input('larva-signal-type', 'value'), Input('hidden-blacklist', 'data'), Input('detection-method', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value'), State('detect-target', 'value'), State('larva-dropdown', 'value')]) def callback(coef, well_idx, midpoints, weight, style, checks, size, sigma, signal_name, blacklist, method, data_root, env, detect, larva): # Guard if env is None: return {'data': []} if larva is None: return {'data': []} if not os.path.exists(os.path.join( data_root, env, 'inference', 'larva', larva, signal_name)): return {'data': []} if not os.path.exists(os.path.join( data_root, env, 'original', 'pupariation.csv')): return {'data': []} # Load a manual evaluation of event timing if not os.path.exists(os.path.join( data_root, env, 'original', 'pupariation.csv')): non_manualdata = {'layout': { 'annotations': [ { 'x': 5.0, 'y': 2.0, 'text': 'Not Available', 'showarrow': False, 'xanchor': 'right', },]}} return non_manualdata manual_evals = np.loadtxt( os.path.join(data_root, env, 'original', 'pupariation.csv'), dtype=np.int32, delimiter=',').flatten() # Target wells will be evaluated exceptions = np.logical_or(blacklist['value'], manual_evals == 0) targets = np.logical_not(exceptions) # Load the data larva_diffs = np.load(os.path.join( data_root, env, 'inference', 'larva', larva, signal_name)).T larva_diffs = seasoning( larva_diffs, 'larva', detect, size, sigma, smooth=len(checks) != 0, weight=len(weight) != 0, pupar_times=None, midpoints=midpoints, weight_style=style) thresholds = THRESH_FUNC(larva_diffs, coef=coef) auto_evals = detect_event(larva_diffs, thresholds, 'larva', detect, method) # Calculate how many frames auto-evaluation is far from manual's one errors = auto_evals - manual_evals errors = errors[targets] ns, bins = np.histogram(errors, 1000) # Calculate the number of inconsistent wells tmp = np.bincount(abs(errors)) n_consist_5percent = tmp[:round(0.05 * larva_diffs.shape[1])].sum() n_consist_1percent = tmp[:round(0.01 * larva_diffs.shape[1])].sum() n_consist_10frames = tmp[:11].sum() return { 'data': [ { 'x': [ -round(0.05 * larva_diffs.shape[1]), round(0.05 * larva_diffs.shape[1]) ], 'y': [ns.max(), ns.max()], 'mode': 'lines', 'fill': 'tozeroy', 'line': {'width': 0, 'color': '#c0c0c0'}, }, { 'x': list(bins[1:]), 'y': list(ns), 'mode': 'markers', 'type': 'bar', 'marker': {'size': 5, 'color': '#1f77b4'}, }, ], 'layout': { 'annotations': [ { 'x': 0.9 * larva_diffs.shape[1], 'y': 1.0 * ns.max(), 'text': '#frames: consistency', 'showarrow': False, 'xanchor': 'right', }, { 'x': 0.9 * larva_diffs.shape[1], 'y': 0.9 * ns.max(), 'text': '{} (5%): {:.1f}% ({}/{})'.format( round(0.05 * larva_diffs.shape[1]), 100 * n_consist_5percent / targets.sum(), n_consist_5percent, targets.sum()), 'showarrow': False, 'xanchor': 'right', }, { 'x': 0.9 * larva_diffs.shape[1], 'y': 0.8 * ns.max(), 'text': '{} (1%): {:.1f}% ({}/{})'.format( round(0.01 * larva_diffs.shape[1]), 100 * n_consist_1percent / targets.sum(), n_consist_1percent, targets.sum()), 'showarrow': False, 'xanchor': 'right', }, { 'x': 0.9 * larva_diffs.shape[1], 'y': 0.7 * ns.max(), 'text': '10: {:.1f}% ({}/{})'.format( 100 * n_consist_10frames / targets.sum(), n_consist_10frames, targets.sum()), 'showarrow': False, 'xanchor': 'right', }, ], 'font': {'size': 15}, 'xaxis': { 'title': 'Auto - manual', 'range': [-len(larva_diffs.T), len(larva_diffs.T)], 'tickfont': {'size': 15}, }, 'yaxis': { 'title': 'Count', 'tickfont': {'size': 15}, }, 'showlegend': False, 'hovermode': 'closest', 'margin': go.layout.Margin(l=50, r=0, b=50, t=70, pad=0), }, } @app.callback( Output('larva-hist', 'style'), [Input('detect-target', 'value')]) def callback(detect): if detect == 'pupariation': return { 'display': 'inline-block', 'height': '300px', 'width': '20%', } elif detect == 'eclosion': return {'display': 'none'} elif detect == 'pupa-and-eclo': return { 'display': 'inline-block', 'height': '300px', 'width': '20%', } elif detect == 'death': return {'display': 'none'} else: return {} # ======================================= # Update the figure in the adult-hist. # ======================================= @app.callback( Output('adult-hist', 'figure'), [Input('larva-thresh-selector', 'value'), Input('adult-thresh-selector', 'value'), Input('well-selector', 'value'), Input('hidden-midpoint', 'data'), Input('larva-weight-check', 'values'), Input('larva-weight-style', 'value'), Input('larva-smoothing-check', 'values'), Input('larva-window-size', 'value'), Input('larva-window-sigma', 'value'), Input('adult-weight-check', 'values'), Input('adult-weight-style', 'value'), Input('adult-smoothing-check', 'values'), Input('adult-window-size', 'value'), Input('adult-window-sigma', 'value'), Input('adult-signal-type', 'value'), Input('hidden-blacklist', 'data'), Input('detection-method', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value'), State('detect-target', 'value'), State('larva-dropdown', 'value'), State('adult-dropdown', 'value'), State('larva-signal-type', 'value')]) def callback(larva_coef, adult_coef, well_idx, midpoints, larva_weighting, larva_w_style, larva_smoothing, larva_w_size, larva_w_sigma, adult_weighting, adult_w_style, adult_smoothing, adult_w_size, adult_w_sigma, adult_signal_name, blacklist, method, data_root, env, detect, larva, adult, larva_signal_name): # Guard if env is None: return {'data': []} if adult is None: return {'data': []} if not os.path.exists(os.path.join( data_root, env, 'inference', 'adult', adult, adult_signal_name)): return {'data': []} # Load a manual evaluation of event timing if detect in ('eclosion', 'pupa-and-eclo'): if not os.path.exists(os.path.join( data_root, env, 'original', 'eclosion.csv')): non_manualdata = { 'layout': { 'annotations': [ { 'x': 5.0, 'y': 2.0, 'text': 'Not Available', 'showarrow': False, 'xanchor': 'right', }, ] } } return non_manualdata manual_evals = np.loadtxt( os.path.join(data_root, env, 'original', 'eclosion.csv'), dtype=np.int32, delimiter=',').flatten() elif detect == 'death': if not os.path.exists(os.path.join( data_root, env, 'original', 'death.csv')): non_manualdata = { 'layout': { 'annotations': [ { 'x': 5.0, 'y': 2.0, 'text': 'Not Available', 'showarrow': False, 'xanchor': 'right', }, ] } } return non_manualdata manual_evals = np.loadtxt( os.path.join(data_root, env, 'original', 'death.csv'), dtype=np.int32, delimiter=',').flatten() # Target wells will be evaluated exceptions = np.logical_or(blacklist['value'], manual_evals == 0) targets = np.logical_not(exceptions) # ---------------------------------------------------------- # Detect pupariation timing for detecting eclosion timing # ---------------------------------------------------------- if larva is None: pupar_times = None else: # Load the data larva_diffs = np.load(os.path.join(data_root, env, 'inference', 'larva', larva, larva_signal_name)).T larva_diffs = seasoning( larva_diffs, 'larva', detect, larva_w_size, larva_w_sigma, smooth=len(larva_smoothing) != 0, weight=len(larva_weighting) != 0, pupar_times=None, midpoints=midpoints, weight_style=larva_w_style) larva_thresh = THRESH_FUNC(larva_diffs, coef=larva_coef) pupar_times = detect_event(larva_diffs, larva_thresh, 'larva', detect, method) # ---------------------------------------- # Detection of eclosion or death timing # ---------------------------------------- # Load the data adult_diffs = np.load(os.path.join( data_root, env, 'inference', 'adult', adult, adult_signal_name)).T adult_diffs = seasoning( adult_diffs, 'adult', detect, adult_w_size, adult_w_sigma, smooth=len(adult_smoothing) != 0, weight=len(adult_weighting) != 0, pupar_times=pupar_times, midpoints=midpoints, weight_style=adult_w_style) adult_thresh = THRESH_FUNC(adult_diffs, coef=adult_coef) auto_evals = detect_event(adult_diffs, adult_thresh, 'adult', detect, method) # Calculate how many frames auto-evaluation is far from manual's one errors = auto_evals - manual_evals errors = errors[targets] ns, bins = np.histogram(errors, 1000) # Calculate the number of inconsistent wells tmp = np.bincount(abs(errors)) n_consist_5percent = tmp[:round(0.05 * adult_diffs.shape[1])].sum() n_consist_1percent = tmp[:round(0.01 * adult_diffs.shape[1])].sum() n_consist_10frames = tmp[:11].sum() return { 'data': [ { 'x': [ -round(0.05 * adult_diffs.shape[1]), round(0.05 * adult_diffs.shape[1]) ], 'y': [ns.max(), ns.max()], 'mode': 'lines', 'fill': 'tozeroy', 'line': {'width': 0, 'color': '#c0c0c0'}, }, { 'x': list(bins[1:]), 'y': list(ns), 'mode': 'markers', 'type': 'bar', 'marker': {'size': 5, 'color': '#1f77b4'}, }, ], 'layout': { 'annotations': [ { 'x': 0.9 * adult_diffs.shape[1], 'y': 1.0 * ns.max(), 'text': '#frames: consistency', 'showarrow': False, 'xanchor': 'right', }, { 'x': 0.9 * adult_diffs.shape[1], 'y': 0.9 * ns.max(), 'text': '{} (5%): {:.1f}% ({}/{})'.format( round(0.05 * adult_diffs.shape[1]), 100 * n_consist_5percent / targets.sum(), n_consist_5percent, targets.sum()), 'showarrow': False, 'xanchor': 'right', }, { 'x': 0.9 * adult_diffs.shape[1], 'y': 0.8 * ns.max(), 'text': '{} (1%): {:.1f}% ({}/{})'.format( round(0.01 * adult_diffs.shape[1]), 100 * n_consist_1percent / targets.sum(), n_consist_1percent, targets.sum()), 'showarrow': False, 'xanchor': 'right', }, { 'x': 0.9 * adult_diffs.shape[1], 'y': 0.7 * ns.max(), 'text': '10: {:.1f}% ({}/{})'.format( 100 * n_consist_10frames / targets.sum(), n_consist_10frames, targets.sum()), 'showarrow': False, 'xanchor': 'right', }, ], 'font': {'size': 15}, 'xaxis': { 'title': 'Auto - manual', 'range': [-len(adult_diffs.T), len(adult_diffs.T)], 'tickfont': {'size': 15}, }, 'yaxis': { 'title': 'Count', 'tickfont': {'size': 15}, }, 'showlegend': False, 'hovermode': 'closest', 'margin': go.layout.Margin(l=50, r=0, b=50, t=70, pad=0), }, } @app.callback( Output('adult-hist', 'style'), [Input('detect-target', 'value')]) def callback(detect): if detect == 'pupariation': return {'display': 'none'} elif detect in ('eclosion', 'pupa-and-eclo', 'death'): return { 'display': 'inline-block', 'height': '300px', 'width': '20%', } else: return {} # ============================================== # Update the figure in the pupa-vs-eclo plot. # ============================================== @app.callback( Output('pupa-vs-eclo', 'figure'), [Input('larva-thresh-selector', 'value'), Input('adult-thresh-selector', 'value'), Input('well-selector', 'value'), Input('hidden-midpoint', 'data'), Input('larva-weight-check', 'values'), Input('larva-weight-style', 'value'), Input('larva-smoothing-check', 'values'), Input('larva-window-size', 'value'), Input('larva-window-sigma', 'value'), Input('larva-signal-type', 'value'), Input('adult-weight-check', 'values'), Input('adult-weight-style', 'value'), Input('adult-smoothing-check', 'values'), Input('adult-window-size', 'value'), Input('adult-window-sigma', 'value'), Input('adult-signal-type', 'value'), Input('hidden-blacklist', 'data'), Input('detection-method', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value'), State('detect-target', 'value'), State('larva-dropdown', 'value'), State('adult-dropdown', 'value')]) def callback(larva_coef, adult_coef, well_idx, midpoints, larva_weighting, larva_w_style, larva_smoothing, larva_w_size, larva_w_sigma, larva_signal_name, adult_weighting, adult_w_style, adult_smoothing, adult_w_size, adult_w_sigma, adult_signal_name, blacklist, method, data_root, env, detect, larva, adult): # Guard if env is None: return {'data': []} if larva is None: return {'data': []} if adult is None: return {'data': []} if not os.path.exists(os.path.join( data_root, env, 'inference', 'larva', larva, larva_signal_name)): return {'data': []} if not os.path.exists(os.path.join( data_root, env, 'inference', 'adult', adult, adult_signal_name)): return {'data': []} if detect == 'death': return {'data': []} # Load a blacklist and whitelist blacklist = np.array(blacklist['value']) whitelist = np.logical_not(blacklist) # Evaluation of pupariation timings larva_diffs = np.load(os.path.join( data_root, env, 'inference', 'larva', larva, larva_signal_name)).T larva_diffs = seasoning( larva_diffs, 'larva', detect, larva_w_size, larva_w_sigma, smooth=len(larva_smoothing) != 0, weight=len(larva_weighting) != 0, pupar_times=None, midpoints=midpoints, weight_style=larva_w_style) larva_thresh = THRESH_FUNC(larva_diffs, coef=larva_coef) pupar_times = detect_event(larva_diffs, larva_thresh, 'larva', detect, method) # Evaluation of eclosion timings adult_diffs = np.load(os.path.join( data_root, env, 'inference', 'adult', adult, adult_signal_name)).T adult_diffs = seasoning( adult_diffs, 'adult', detect, adult_w_size, adult_w_sigma, smooth=len(adult_smoothing) != 0, weight=len(adult_weighting) != 0, pupar_times=pupar_times, midpoints=midpoints, weight_style=adult_w_style) adult_thresh = THRESH_FUNC(adult_diffs, coef=adult_coef) eclo_times = detect_event(adult_diffs, adult_thresh, 'adult', detect, method) return { 'data': [ { 'x': list(pupar_times[blacklist]), 'y': list(eclo_times[blacklist]), 'text': [str(i) for i in np.where(blacklist)[0]], 'mode': 'markers', 'marker': {'size': 4, 'color': '#000000'}, 'name': 'Well in Blacklist', }, { 'x': list(pupar_times[whitelist]), 'y': list(eclo_times[whitelist]), 'text': [str(i) for i in np.where(whitelist)[0]], 'mode': 'markers', 'marker': {'size': 4, 'color': '#1f77b4'}, 'name': 'Well in Whitelist', }, { 'x': [pupar_times[well_idx]], 'y': [eclo_times[well_idx]], 'text': str(well_idx), 'mode': 'markers', 'marker': {'size': 10, 'color': '#ff0000'}, 'name': 'Selected well', }, ], 'layout': { 'font': {'size': 15}, 'xaxis': { 'title': 'Pupariation', 'tickfont': {'size': 15}, 'range': [ -0.1 * len(larva_diffs.T), 1.1 * len(larva_diffs.T)], }, 'yaxis': { 'title': 'Eclosion', 'tickfont': {'size': 15}, 'range': [ -0.1 * len(adult_diffs.T), 1.1 * len(adult_diffs.T)], }, 'showlegend': False, 'hovermode': 'closest', 'margin': go.layout.Margin(l=50, r=0, b=50, t=70, pad=0), }, } @app.callback( Output('pupa-vs-eclo', 'style'), [Input('detect-target', 'value')]) def callback(detect): if detect in ('pupariation', 'eclosion', 'death'): return {'display': 'none'} elif detect == 'pupa-and-eclo': return { 'display': 'inline-block', 'height': '300px', 'width': '20%', } else: return {} # =========================================== # Update the figure in the survival-curve. # =========================================== @app.callback( Output('survival-curve', 'figure'), [Input('adult-thresh-selector', 'value'), Input('well-selector', 'value'), Input('hidden-midpoint', 'data'), Input('adult-weight-check', 'values'), Input('adult-weight-style', 'value'), Input('adult-smoothing-check', 'values'), Input('adult-window-size', 'value'), Input('adult-window-sigma', 'value'), Input('adult-signal-type', 'value'), Input('hidden-blacklist', 'data'), Input('detection-method', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value'), State('detect-target', 'value'), State('adult-dropdown', 'value')]) def callback(coef, well_idx, midpoints, weight, style, checks, size, sigma, signal_name, blacklist, method, data_root, env, detect, adult): # Guard if env is None: return {'data': []} if adult is None: return {'data': []} if not os.path.exists(os.path.join( data_root, env, 'inference', 'adult', adult, signal_name)): return {'data': []} if detect in ('pupariation', 'eclosion', 'pupa-and-eclo'): return {'data': []} # Load a blacklist and whitelist whitelist = np.logical_not(np.array(blacklist['value'])) # Load a group table group_tables = load_grouping_csv(data_root, env) # Load the data adult_diffs = np.load(os.path.join( data_root, env, 'inference', 'adult', adult, signal_name)).T adult_diffs = seasoning( adult_diffs, 'adult', detect, size, sigma, smooth=len(checks) != 0, weight=len(weight) != 0, pupar_times=None, midpoints=midpoints, weight_style=style) thresholds = THRESH_FUNC(adult_diffs, coef=coef) auto_evals = detect_event(adult_diffs, thresholds, 'adult', detect, method) if group_tables == []: # Compute survival ratio of all the animals survival_ratio = np.zeros_like(adult_diffs) for well_idx, event_time in enumerate(auto_evals): survival_ratio[well_idx, :event_time] = 1 survival_ratio = \ 100 * survival_ratio[whitelist].sum(axis=0) / \ len(survival_ratio[whitelist]) data_list = [ { 'x': list(range(len(survival_ratio))), 'y': list(survival_ratio), 'mode': 'lines', 'line': {'size': 2, 'color': '#ff4500'}, 'name': 'Group1' }] else: survival_ratios = [] for group_idx, group_table in enumerate(group_tables): survival_ratio = np.zeros_like(adult_diffs) for well_idx, (event_time, in_group) \ in enumerate(zip(auto_evals, group_table)): survival_ratio[well_idx, :event_time] = in_group survival_ratio = \ 100 * survival_ratio[whitelist].sum(axis=0) / \ group_table[whitelist].sum() survival_ratios.append(survival_ratio) data_list =[] for group_idx, (group_table, survival_ratio) \ in enumerate(zip(group_tables, survival_ratios)): data_list.append( { 'x': list(range(len(survival_ratio))), 'y': list(survival_ratio), 'mode': 'lines', 'marker': {'size': 2, 'color': GROUP_COLORS[group_idx]}, 'name': 'Group{}'.format(group_idx + 1), }) return { 'data': data_list + [ { 'x': [0, len(survival_ratio)], 'y': [100, 100], 'mode': 'lines', 'line': {'width': 1, 'color': '#000000'}, }, ], 'layout': { 'font': {'size': 15}, 'xaxis': { 'title': 'Frame', 'range': [0, 1.1 * len(survival_ratio)], 'tickfont': {'size': 15}, }, 'yaxis': { 'title': 'Survival Ratio [%]', 'tickfont': {'size': 15}, 'range': [0, 110], }, 'showlegend': False, 'hovermode': 'closest', 'margin': go.layout.Margin(l=50, r=0, b=50, t=70, pad=0), }, } @app.callback( Output('survival-curve', 'style'), [Input('detect-target', 'value')]) def callback(detect): if detect in ('pupariation', 'eclosion', 'pupa-and-eclo'): return {'display': 'none'} elif detect == 'death': return { 'display': 'inline-block', 'height': '300px', 'width': '20%', } else: return {} # =========================================== # Update the boxplot for larva # =========================================== @app.callback( Output('larva-boxplot', 'figure'), [Input('larva-thresh-selector', 'value'), Input('well-selector', 'value'), Input('hidden-midpoint', 'data'), Input('larva-weight-check', 'values'), Input('larva-weight-style', 'value'), Input('larva-smoothing-check', 'values'), Input('larva-window-size', 'value'), Input('larva-window-sigma', 'value'), Input('larva-signal-type', 'value'), Input('hidden-blacklist', 'data'), Input('detection-method', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value'), State('detect-target', 'value'), State('larva-dropdown', 'value')]) def callback(coef, well_idx, midpoints, weight, style, checks, size, sigma, signal_name, blacklist, method, data_root, env, detect, larva): # Guard if env is None: return {'data': []} if larva is None: return {'data': []} if not os.path.exists(os.path.join( data_root, env, 'inference', 'larva', larva, signal_name)): return {'data': []} if detect == 'death': return {'data': []} # Load a blacklist and whitelist whitelist = np.logical_not(np.array(blacklist['value'])) # Load a group table group_tables = load_grouping_csv(data_root, env) # Load the data larva_diffs = np.load(os.path.join( data_root, env, 'inference', 'larva', larva, signal_name)).T larva_diffs = seasoning( larva_diffs, 'larva', detect, size, sigma, smooth=len(checks) != 0, weight=len(weight) != 0, pupar_times=None, midpoints=midpoints, weight_style=style) # Compute thresholds thresholds = THRESH_FUNC(larva_diffs, coef=coef) auto_evals = detect_event(larva_diffs, thresholds, 'larva', detect, method) # Make data to be drawn if group_tables == []: data = [] data.append( go.Box( x=list(auto_evals[whitelist]), name='Group1', boxpoints='all', pointpos=1.8, marker={'size': 2}, line={'width': 2}, text=[str(i) for i in np.where(whitelist)[0]], boxmean='sd', ) ) else : data =[] for group_idx, group_table in enumerate(group_tables): data.append( go.Box( x=list(auto_evals[np.logical_and(whitelist, group_table)]), name='Group{}'.format(group_idx +1), boxpoints='all', pointpos=1.8, marker={'size': 2, 'color': GROUP_COLORS[group_idx]}, line={'width': 2, 'color': GROUP_COLORS[group_idx]}, text=[str(i) for i in np.where( np.logical_and(whitelist, group_table))[0]], boxmean='sd', ) ) return { 'data': data, 'layout': { 'font': {'size': 15}, 'xaxis': { 'title': 'Frame', 'tickfont': {'size': 15}, 'range': [0, 1.1 * len(larva_diffs.T)], }, 'yaxis': { 'tickfont': {'size': 15}, }, 'showlegend': False, 'hovermode': 'closest', 'margin': go.layout.Margin(l=70, r=0, b=50, t=70, pad=0), }, } @app.callback( Output('larva-boxplot', 'style'), [Input('detect-target', 'value')]) def callback(detect): if detect in ('pupariation', 'pupa-and-eclo'): return { 'display': 'inline-block', 'height': '300px', 'width': '20%', } elif detect in ('eclosion', 'death'): return {'display': 'none'} else: return {} # =========================================== # Update the boxplot for adult # =========================================== @app.callback( Output('adult-boxplot', 'figure'), [Input('larva-thresh-selector', 'value'), Input('adult-thresh-selector', 'value'), Input('well-selector', 'value'), Input('hidden-midpoint', 'data'), Input('larva-weight-check', 'values'), Input('larva-weight-style', 'value'), Input('larva-smoothing-check', 'values'), Input('larva-window-size', 'value'), Input('larva-window-sigma', 'value'), Input('larva-signal-type', 'value'), Input('adult-weight-check', 'values'), Input('adult-weight-style', 'value'), Input('adult-smoothing-check', 'values'), Input('adult-window-size', 'value'), Input('adult-window-sigma', 'value'), Input('adult-signal-type', 'value'), Input('hidden-blacklist', 'data'), Input('detection-method', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value'), State('detect-target', 'value'), State('larva-dropdown', 'value'), State('adult-dropdown', 'value')]) def callback(larva_coef, adult_coef, well_idx, midpoints, larva_weighting, larva_w_style, larva_smoothing, larva_w_size, larva_w_sigma, larva_signal_name, adult_weighting, adult_w_style, adult_smoothing, adult_w_size, adult_w_sigma, adult_signal_name, blacklist, method, data_root, env, detect, larva, adult): # Guard if env is None: return {'data': []} if adult is None: return {'data': []} if not os.path.exists(os.path.join( data_root, env, 'inference', 'adult', adult, adult_signal_name)): return {'data': []} if detect == 'pupariation': return {'data': []} # Load a blacklist and whitelist whitelist = np.logical_not(np.array(blacklist['value'])) # Load a group table group_tables = load_grouping_csv(data_root, env) # ---------------------------------------------------------- # Detect pupariation timing for detecting eclosion timing # ---------------------------------------------------------- if larva is None: pupar_times = None else: # Load the data larva_diffs = np.load(os.path.join(data_root, env, 'inference', 'larva', larva, larva_signal_name)).T larva_diffs = seasoning( larva_diffs, 'larva', detect, larva_w_size, larva_w_sigma, smooth=len(larva_smoothing) != 0, weight=len(larva_weighting) != 0, pupar_times=None, midpoints=midpoints, weight_style=larva_w_style) larva_thresh = THRESH_FUNC(larva_diffs, coef=larva_coef) pupar_times = detect_event(larva_diffs, larva_thresh, 'larva', detect, method) # ---------------------------------------- # Detection of eclosion or death timing # ---------------------------------------- # Load the data adult_diffs = np.load(os.path.join( data_root, env, 'inference', 'adult', adult, adult_signal_name)).T adult_diffs = seasoning( adult_diffs, 'adult', detect, adult_w_size, adult_w_sigma, smooth=len(adult_smoothing) != 0, weight=len(adult_weighting) != 0, pupar_times=pupar_times, midpoints=midpoints, weight_style=adult_w_style) adult_thresh = THRESH_FUNC(adult_diffs, coef=adult_coef) auto_evals = detect_event(adult_diffs, adult_thresh, 'adult', detect, method) # Make data to be drawn if group_tables == []: data = [] data.append( go.Box( x=list(auto_evals[whitelist]), name='Group1', boxpoints='all', pointpos=1.8, marker={'size': 2}, line={'width': 2}, text=[str(i) for i in np.where(whitelist)[0]], boxmean='sd', ) ) else : data =[] for group_idx, group_table in enumerate(group_tables): data.append( go.Box( x=list(auto_evals[np.logical_and(whitelist, group_table)]), name='Group{}'.format(group_idx +1), boxpoints='all', pointpos=1.8, marker={'size': 2, 'color': GROUP_COLORS[group_idx]}, line={'width': 2, 'color': GROUP_COLORS[group_idx]}, text=[str(i) for i in np.where( np.logical_and(whitelist, group_table))[0]], boxmean='sd', ) ) return { 'data': data, 'layout': { 'font': {'size': 15}, 'xaxis': { 'title': 'Frame', 'tickfont': {'size': 15}, 'range': [0, 1.1 * len(adult_diffs.T)], }, 'yaxis': { 'tickfont': {'size': 15}, }, 'showlegend': False, 'hovermode': 'closest', 'margin': go.layout.Margin(l=70, r=0, b=50, t=70, pad=0), }, } @app.callback( Output('adult-boxplot', 'style'), [Input('detect-target', 'value')]) def callback(detect): if detect == 'pupariation': return {'display': 'none'} elif detect in ('eclosion', 'pupa-and-eclo', 'death'): return { 'display': 'inline-block', 'height': '300px', 'width': '20%', } else: return {} # ======================================================================= # Store image file names and their timestamps as json in a hidden div. # ======================================================================= @app.callback( Output('hidden-timestamp', 'data'), [Input('env-dropdown', 'value')], [State('data-root', 'children')]) def callback(env, data_root): # Guard if env is None: return # Load an original image orgimg_paths = sorted(glob.glob(os.path.join( data_root, glob.escape(env), 'original', '*.jpg'))) return { 'Image name': [os.path.basename(path) for path in orgimg_paths], 'Create time': [get_create_time(path) for path in orgimg_paths], } def get_create_time(path): DateTimeDigitized = PIL.Image.open(path)._getexif()[36868] # '2016:02:05 17:20:53' -> '2016-02-05 17:20:53' DateTimeDigitized = DateTimeDigitized[:4] + '-' + DateTimeDigitized[5:] DateTimeDigitized = DateTimeDigitized[:7] + '-' + DateTimeDigitized[8:] return DateTimeDigitized # =================== # Make data tables # =================== @app.callback( Output('data-tables', 'children'), [Input('tabs', 'value')], [State('data-root', 'children'), State('env-dropdown', 'value'), State('detect-target', 'value'), State('larva-dropdown', 'value'), State('adult-dropdown', 'value'), State('larva-thresh-selector', 'value'), State('adult-thresh-selector', 'value'), State('hidden-midpoint', 'data'), State('larva-weight-check', 'values'), State('larva-weight-style', 'value'), State('larva-window-size', 'value'), State('larva-window-sigma', 'value'), State('larva-smoothing-check', 'values'), State('adult-weight-check', 'values'), State('adult-weight-style', 'value'), State('adult-window-size', 'value'), State('adult-window-sigma', 'value'), State('adult-smoothing-check', 'values'), State('larva-signal-type', 'value'), State('adult-signal-type', 'value'), State('detection-method', 'value'), State('hidden-timestamp', 'data')]) def callback(tab_name, data_root, env, detect, larva, adult, larva_coef, adult_coef, midpoints, larva_weighting, larva_w_style, larva_w_size, larva_w_sigma, larva_smoothing, adult_weighting, adult_w_style, adult_w_size, adult_w_sigma, adult_smoothing, larva_signal_name, adult_signal_name, method, timestamps): # Guard if data_root is None: raise dash.exceptions.PreventUpdate if env is None: return 'Please select a dataset.' if tab_name != 'tab-2': raise dash.exceptions.PreventUpdate with open(os.path.join(data_root, env, 'mask_params.json')) as f: params = json.load(f) larva_man_table = make_manual_table( data_root, env, 'larva', detect, params) larva_auto_table = make_auto_table( data_root, env, 'larva', larva, detect, larva_signal_name, params, larva_w_size, larva_w_sigma, larva_smoothing, larva_weighting, midpoints, larva_w_style, larva_coef, method) adult_man_table = make_manual_table( data_root, env, 'adult', detect, params) adult_auto_table = make_auto_table( data_root, env, 'adult', adult, detect, adult_signal_name, params, adult_w_size, adult_w_sigma, adult_smoothing, adult_weighting, midpoints, adult_w_style, adult_coef, method) timestamp_table = make_timestamp_table(env, timestamps) return [timestamp_table, larva_man_table, larva_auto_table, adult_man_table, adult_auto_table] def make_timestamp_table(env, timestamps): df = pd.DataFrame([timestamps['Image name'], timestamps['Create time']], index=['Image name', 'Create time']).T data = [{'Image name': image_name, 'Create time': create_time} for image_name, create_time in zip( timestamps['Image name'], timestamps['Create time'])] return html.Div(id='timestamp-table', children=[ html.H4('Timestamp'), dash_table.DataTable( columns=[ {'id': 'Image name', 'name': 'Image name'}, {'id': 'Create time', 'name': 'Create time'}], data=data, n_fixed_rows=1, style_table={'width': '100%'}, pagination_mode=False, ), html.A( 'Download', id='download-link', download='Timestamp({}).csv'.format(env[0:20]), href='data:text/csv;charset=utf-8,' + df.to_csv(index=False), target='_blank', ), ], style={ 'display': 'inline-block', 'vertical-align': 'top', 'margin': '10px', 'width': '200px', }, ) def make_auto_table(data_root, env, morph, target_dir, detect, signal_name, params, w_size, w_sigma, smoothing, weighting, midpoints, w_style, coef, method): if target_dir is None: return html.Div(style={'display': 'inline-block'}) signals = np.load(os.path.join( data_root, env, 'inference', morph, target_dir, signal_name)).T signals = seasoning( signals, morph, detect, w_size, w_sigma, smooth=len(smoothing) != 0, weight=len(weighting) != 0, pupar_times=None, midpoints=midpoints, weight_style=w_style) thresh = THRESH_FUNC(signals, coef=coef) auto_evals = detect_event(signals, thresh, morph, detect, method) auto_evals = auto_evals.reshape( params['n-rows']*params['n-plates'], params['n-clms']) if method == 'relmax': detection_method = 'Relative maxima' elif method == 'thresholding': detection_method = 'Thresholding' elif method == 'max': detection_method = 'Maximum' else: detection_method = 'Error' auto_to_csv = \ 'data:text/csv;charset=utf-8,' \ + 'Dataset,{}\n'.format(urllib.parse.quote(env)) \ + f'Morphology,{morph}\n' \ + 'Inference data,{}\n'.format(urllib.parse.quote(target_dir)) \ + 'Detection method,{}\n'.format(detection_method) \ + 'Threshold value,' \ + 'coef * (min + (max - min) / 2) for each individual\n' \ + 'Coefficient (coef),{}\n'.format(coef) \ + 'Smoothing window size,{}\n'.format(w_size) \ + 'Smoothing sigma,{}\nEvent timing\n'.format(w_sigma) \ + pd.DataFrame(auto_evals).to_csv( index=False, encoding='utf-8', header=False) return html.Div( id=f'{morph}-auto-table', children = [ html.H4(f'Event timings of {morph} (auto)'), dash_table.DataTable( columns=[{'name': f'{clm}', 'id': f'{clm}'} for clm in ALPHABETS[:params['n-clms']]], data=pd.DataFrame(auto_evals, columns=ALPHABETS[:params['n-clms']]).to_dict('rows'), style_data_conditional=get_cell_style(params, auto_evals), style_table={'width': '100%'} ), html.A( 'Download', download=f'auto_detection_{morph}.csv', href=auto_to_csv, target='_blank', ), ], style={ 'display': 'inline-block', 'vertical-align': 'top', 'margin': '10px', 'width': '550px', }, ) def make_manual_table(data_root, env, morph, detect, params): if morph == 'larva' and detect == 'pupariation': try: auto_evals = np.loadtxt(os.path.join(data_root, env, 'original', 'pupariation.csv'), dtype=np.int32, delimiter=',').flatten() except: return make_null_table(morph, 'manual') elif morph == 'larva' and detect == 'eclosion': return make_null_table(morph, 'manual') elif morph == 'larva' and detect == 'death': return make_null_table(morph, 'manual') elif morph == 'larva' and detect == 'pupa-and-eclo': try: auto_evals = np.loadtxt(os.path.join(data_root, env, 'original', 'pupariation.csv'), dtype=np.int32, delimiter=',').flatten() except: return make_null_table(morph, 'manual') elif morph == 'adult' and detect == 'pupariation': return make_null_table(morph, 'manual') elif morph == 'adult' and detect == 'eclosion': try: auto_evals = np.loadtxt( os.path.join(data_root, env, 'original', 'eclosion.csv'), dtype=np.int32, delimiter=',').flatten() except: return make_null_table(morph, 'manual') elif morph == 'adult' and detect == 'death': try: auto_evals = np.loadtxt( os.path.join(data_root, env, 'original', 'death.csv'), dtype=np.int32, delimiter=',').flatten() except: return make_null_table(morph, 'manual') elif morph == 'adult' and detect == 'pupa-and-eclo': try: auto_evals = np.loadtxt( os.path.join(data_root, env, 'original', 'eclosion.csv'), dtype=np.int32, delimiter=',').flatten() except: return make_null_table(morph, 'manual') else: raise Exception() auto_evals = auto_evals.reshape( params['n-rows']*params['n-plates'], params['n-clms']) auto_csv = \ 'data:text/csv;charset=utf-8,' \ + 'Dataset,{}\n'.format(urllib.parse.quote(env)) \ + f'Morphology,{morph}\n' \ + 'Event timing\n' \ + pd.DataFrame(auto_evals).to_csv( index=False, encoding='utf-8', header=False) return html.Div( id=f'{morph}-manual-table', children = [ html.H4(f'Event timings of {morph} (manual)'), dash_table.DataTable( columns=[{'name': f'{clm}', 'id': f'{clm}'} for clm in ALPHABETS[:params['n-clms']]], data=pd.DataFrame(auto_evals, columns=ALPHABETS[:params['n-clms']]).to_dict('rows'), style_data_conditional=get_cell_style(params, auto_evals), style_table={'width': '100%'}, ), html.A( 'Download', download=f'manual_dtection_{morph}.csv', href=auto_csv, target='_blank', ), ], style={ 'display': 'inline-block', 'vertical-align': 'top', 'margin': '10px', 'width': '550px', }, ) def make_null_table(morph, string): return html.Div(style={'display': 'inline-block'}) # ==================== # Utility functions # ==================== def get_cell_style(params, auto_evals): return [ { 'if': { 'column_id': f'{clm}', 'filter': f'{{{clm}}} < {int(t2)} && {{{clm}}} >= {int(t1)}', }, 'backgroundColor': '#44{:02X}44'.format(int(c), int(c)), 'color': 'black', } for clm in ALPHABETS[:params['n-clms']] for t1, t2, c in zip( np.linspace(0, auto_evals.max() + 1, 11)[:10], np.linspace(0, auto_evals.max() + 1, 11)[1:], np.linspace(50, 255, 10)) ] + [ { 'if': { 'column_id': f'{clm}', 'filter': f'{{{clm}}} = 0', }, 'backgroundColor': '#000000', 'color': 'white', } for clm in ALPHABETS[:params['n-clms']] ] def seasoning(signals, signal_type, detect, size, sigma, smooth, weight, pupar_times, midpoints=None, weight_style=None): # Smooth the signals if smooth: signals = my_filter(signals, size=size, sigma=sigma) else: pass # Apply weight to the signals if weight: # Detection of pupariation if detect == 'pupariation' and signal_type == 'larva': # Step or ramp weight if weight_style == 'step': for well_idx, midpoint in enumerate(midpoints['midpoint']): signals[well_idx, midpoint:] = 0 elif weight_style == 'ramp': # Ramp filter for well_idx, midpoint in enumerate(midpoints['midpoint']): signals[well_idx] = signals[well_idx] * \ (-1 / midpoint * np.arange(len(signals.T)) + 1) else: pass # Not defined elif detect == 'pupariation' and signal_type == 'adult': pass # Not defined elif detect == 'eclosion' and signal_type == 'larva': pass # Detection of eclosion elif detect == 'eclosion' and signal_type == 'adult': # Step or ramp weight if weight_style == 'step': for well_idx, midpoint in enumerate(midpoints['midpoint']): signals[well_idx, :midpoint] = 0 elif weight_style == 'ramp': # Ramp filter for well_idx, midpoint in enumerate(midpoints['midpoint']): signals[well_idx] = signals[well_idx] * ( 1 / (len(signals.T) - midpoint) * np.arange(len(signals.T)) - midpoint / (len(signals.T) - midpoint)) else: pass # Detection of pupariation elif detect == 'pupa-and-eclo' and signal_type == 'larva': # Step or ramp weight if weight_style == 'step': for well_idx, midpoint in enumerate(midpoints['midpoint']): signals[well_idx, midpoint:] = 0 elif weight_style == 'ramp': # Ramp filter for well_idx, midpoint in enumerate(midpoints['midpoint']): signals[well_idx] = signals[well_idx] * \ (-1 / midpoint * np.arange(len(signals.T)) + 1) else: pass # Detection of eclosion elif detect == 'pupa-and-eclo' and signal_type == 'adult': """ if pupar_times is not None: mask = -np.ones_like(signals, dtype=float) for i, event_timing in enumerate(pupar_times): ''' # Step filter mask[i, event_timing:] = 1 ''' # Ramp filter lin_weight = np.linspace( 0, 1, len(signals.T) - event_timing) mask[i, event_timing:] = lin_weight signals = signals * mask else: # Ramp filter signals = signals * \ (np.arange(len(signals.T)) / len(signals.T)) """ # Step or ramp weight if weight_style == 'step': for well_idx, midpoint in enumerate(midpoints['midpoint']): signals[well_idx, :midpoint] = 0 elif weight_style == 'ramp': # Ramp filter for well_idx, midpoint in enumerate(midpoints['midpoint']): signals[well_idx] = signals[well_idx] * ( 1 / (len(signals.T) - midpoint) * np.arange(len(signals.T)) - midpoint / (len(signals.T) - midpoint)) else: pass # Not defined elif detect == 'death' and signal_type == 'larva': pass # Detection of death elif detect == 'death' and signal_type == 'adult': # Step or ramp weight if weight_style == 'step': for well_idx, midpoint in enumerate(midpoints['midpoint']): signals[well_idx, midpoint:] = 0 elif weight_style == 'ramp': # Ramp filter for well_idx, midpoint in enumerate(midpoints['midpoint']): signals[well_idx] = signals[well_idx] * \ (-1 / midpoint * np.arange(len(signals.T)) + 1) else: pass else: pass return signals def max_amplitude(signals): amplitudes = [] for signal in signals: if signal.sum() == 0: amplitudes.append(0) else: amplitudes.append(signal.max() - signal[signal > 0].min()) return np.argmax(amplitudes), np.max(amplitudes) def calc_threshold(signal, coef=0.5): max = signal.max() min = signal.min() return min + coef * (max - min) def find_rising_up_and_falling_down(signal, thresh): # シグナルに閾値処理をして二値化する icebergs = (signal > thresh).astype(int) # 二値化されたシグナルから立ち上がりと立ち下がりのインデックスを探す diff = np.diff(icebergs) rising_up_idxs = np.where(diff == 1)[0] + 1 falling_down_idxs = np.where(diff == -1)[0] + 1 # 例外処理 # 始めから立ち上がっていた場合、0 を立ち上がりインデックスとして挿入する if icebergs[0] == 1: rising_up_idxs = np.concatenate([np.array([0]), rising_up_idxs]) # 最後が立ち上がりのまま終わっていた場合、 # シグナルの最終インデックスを立ち下がりインデックスとして挿入する if icebergs[-1] == 1: falling_down_idxs = np.concatenate([falling_down_idxs, np.array([len(icebergs) - 1])]) # 立ち上がりと立ち下がりの数は必ず同数になる assert len(rising_up_idxs) == len(falling_down_idxs) return rising_up_idxs, falling_down_idxs def relmax_by_thresh(signal, thresh): # 閾値を切ったシグナルに対して、立ち上がりと立ち下がりを探す rising_up_idxs, falling_down_idxs = find_rising_up_and_falling_down(signal, thresh) # 極大値の計算 relmax_args = scipy.signal.argrelmax(signal, order=3)[0] relmax_values = signal[relmax_args] candidate_args = [] for rising_up_idx, falling_down_idx in zip(rising_up_idxs, falling_down_idxs): args = [] values = [] for relmax_arg, relmax_value in zip(relmax_args, relmax_values): if relmax_arg in range(rising_up_idx, falling_down_idx): args.append(relmax_arg) values.append(relmax_value) assert len(args) == len(values) if len(args) == 0: if rising_up_idx == falling_down_idx: candidate_args.append(rising_up_idx) else: candidate_args.append(rising_up_idx + np.argmax(signal[rising_up_idx:falling_down_idx])) elif len(args) == 1: candidate_args.append(args[0]) elif len(args) >= 2: candidate_args.append(args[np.argmax(values)]) candidate_args =
np.array(candidate_args)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import pandas as pd import xarray as xr import re import datetime import os from pathlib import Path import hpl2netCDF_client as proc class hpl_files(object): name= [] time= [] # The class "constructor" - It's actually an initializer def __init__(self, name, time): self.name = name self.time = time @staticmethod def make_file_list(date_chosen, confDict, url): path = Path(url) / date_chosen.strftime('%Y') / date_chosen.strftime('%Y%m') / date_chosen.strftime('%Y%m%d') #confDict= config.gen_confDict() ## for halo if confDict['SYSTEM'] == 'halo': if (confDict['SCAN_TYPE'] == 'Stare') | (confDict['SCAN_TYPE'] == 'VAD') | (confDict['SCAN_TYPE'] == 'RHI'): scan_type= confDict['SCAN_TYPE'] else: scan_type= 'User' mylist= list(path.glob('**/' + scan_type + '*.hpl')) if confDict['SCAN_TYPE']=='Stare': file_time= [ datetime.datetime.strptime(x.stem, scan_type + "_" + confDict['SYSTEM_ID'] + "_%Y%m%d_%H") for x in mylist] # sort files according to time stamp file_list = [] for ii,idx in enumerate(np.argsort(file_time).astype(int)): file_list.append(mylist[idx]) file_time = [ datetime.datetime.strptime(x.stem , scan_type + "_" + confDict['SYSTEM_ID'] + "_%Y%m%d_%H") for x in file_list] elif (confDict['SCAN_TYPE']=='VAD') | (confDict['SCAN_TYPE']=='RHI'): file_time= [ datetime.datetime.strptime(x.stem, scan_type + "_" + confDict['SYSTEM_ID'] + "_%Y%m%d_%H%M%S") for x in mylist] # sort files according to time stamp file_list = [] for ii,idx in enumerate(np.argsort(file_time).astype(int)): file_list.append(mylist[idx]) file_time = [ datetime.datetime.strptime(x.stem , scan_type + "_" + confDict['SYSTEM_ID'] + "_%Y%m%d_%H%M%S") for x in file_list] else: file_time= [ datetime.datetime.strptime(x.stem , scan_type + x.name[4] + "_" + confDict['SYSTEM_ID'] + "_%Y%m%d_%H%M%S") for x in mylist] # sort files according to time stamp file_list = [] for ii,idx in enumerate(np.argsort(file_time).astype(int)): file_list.append(mylist[idx]) file_time = [ datetime.datetime.strptime(x.stem , scan_type + x.name[4] + "_" + confDict['SYSTEM_ID'] + "_%Y%m%d_%H%M%S") for x in file_list] return hpl_files(file_list, file_time) ## for windcube elif confDict['SYSTEM'] == 'windcube': if (confDict['SCAN_TYPE'] == 'Stare') | (confDict['SCAN_TYPE'] == 'VAD') | (confDict['SCAN_TYPE'] == 'RHI'): scan_type= 'fixed' else: print('unknown scantype!') if abs((date_chosen - datetime.datetime(date_chosen.year, date_chosen.month, date_chosen.day)).total_seconds()) > 0: mylist= list(path.glob('**/' + 'WCS*' + date_chosen.strftime('%Y-%m-%d_%H*') + scan_type + '*.nc')) else: mylist= list(path.glob('**/' + 'WCS*' + scan_type + '*.nc')) file_time = [ datetime.datetime.strptime( x.stem[0:29] , x.stem[0:9] + '_%Y-%m-%d_%H-%M-%S') for x in mylist ] file_list = [mylist[idx] for idx in np.argsort(file_time).astype(int)] file_time = [ datetime.datetime.strptime( x.stem[0:29] , x.stem[0:9] + '_%Y-%m-%d_%H-%M-%S') for x in file_list ] return hpl_files(file_list, file_time) # function used for calculation of range bounds @staticmethod def range_calc(rg_vec, confDict): '''Calculate range bounds, also accounting for overlapping gates. If your hpl-files contain overlapping gates please add the "OVERLAPPING_GATES" argument to the configuration file.''' if 'OVERLAPPING_GATES' in confDict: r = lambda x,idx: (x + idx) * float(confDict['RANGE_GATE_LENGTH'])/(1,float(confDict['NUMBER_OF_GATE_POINTS']))[int(confDict['OVERLAPPING_GATES'])] else: r = lambda x,idx: (x + idx) * float(confDict['RANGE_GATE_LENGTH']) return r(rg_vec, .5).astype('f4') @staticmethod def split_header(string): return [x.strip() for x in re.split('[:\=\-]', re.sub('[\n\t]','',string),1)] @staticmethod def split_data(string): return re.split('\s+', re.sub('\n','',string).strip()) #switch_str = {True: split_header(line), False: split_data(line)} @staticmethod def split_default(string): return string @staticmethod def switch(case,string): return { True: hpl_files.split_header(string), False: hpl_files.split_data(string)}.get(case, hpl_files.split_default) @staticmethod def reader_idx(hpl_list,confDict,chunks=False): print(hpl_list.time[0:10]) time_file = pd.to_datetime(hpl_list.time) time_vec= np.arange(pd.to_datetime(hpl_list.time[0].date()),(hpl_list.time[0]+datetime.timedelta(days = 1)) ,pd.to_timedelta(int(confDict['AVG_MIN']), unit = 'm')) if chunks == True: return [np.where((ii <= time_file)*(time_file < iip1)) for ii,iip1 in zip(time_vec[0:-1],time_vec[1::])] if chunks == False: return np.arange(0,len(hpl_list.time)) @staticmethod def combine_lvl1(hpl_list, confDict, date_chosen): if confDict['SYSTEM'] == 'halo': ds = xr.concat((hpl_files.read_hpl(iit,confDict) for iit in hpl_list.name) ,dim='time'#, combine='nested'#,compat='identical' ,data_vars='minimal' ,coords='minimal') elif confDict['SYSTEM'] == 'windcube': ds = xr.concat((hpl_files.read_wcsradial(iit,confDict) for iit in hpl_list.name) , dim='time'#, combine='nested'#,compat='identical' , data_vars='minimal' , compat='override' , coords='minimal') ds['nqv'].values = ((ds.dv.max() - ds.dv.min()).data/2).astype('f4') ds['nqf'].values = (2*ds.nqv.data/float(confDict['SYSTEM_WAVELENGTH'])).astype('f4') ds['resv'].values = (2*ds.nqv.data/float(confDict['FFT_POINTS'])).astype('f4') ## delete 'delv' variable, if all entries are NaN. if (ds.delv == -999.).all(): ds = ds.drop_vars(['delv']) # print('dropping "delv" / "spectral width", because all are NaN!') # if os.name == 'nt': # ds = ds._drop_vars(['delv']) #else: # ds = ds.drop_vars(['delv']) ##!!!NOTE!!!## # There was an issue under windows, possible due to a version problem, # so in case an Attribute error occurs change line 126 to following #ds = ds._drop_vars(['delv']) ## choose only timestamp within a daily range start_dt = (pd.to_datetime(date_chosen.date()) - pd.Timestamp("1970-01-01")) / pd.Timedelta('1s') end_dt = (pd.to_datetime(date_chosen + datetime.timedelta(days= +1)) - pd.Timestamp("1970-01-01")) / pd.Timedelta('1s') ds = ds.isel(time=np.where((ds.time >= start_dt) & (ds.time <= end_dt))[0]) ds.attrs['title']= confDict['NC_TITLE'] ds.attrs['institution']= confDict['NC_INSTITUTION'] ds.attrs['site_location']= confDict['NC_SITE_LOCATION'] ds.attrs['source']= confDict['NC_SOURCE'] ds.attrs['instrument_type']= confDict['NC_INSTRUMENT_TYPE'] ds.attrs['instrument_mode']= confDict['NC_INSTRUMENT_MODE'] if 'NC_INSTRUMENT_FIRMWARE_VERSION' in confDict: ds.attrs['instrument_firmware_version']= confDict['NC_INSTRUMENT_FIRMWARE_VERSION'] else: ds.attrs['instrument_firmware_version']= 'N/A' ds.attrs['instrument_contact']= confDict['NC_INSTRUMENT_CONTACT'] if 'NC_INSTRUMENT_ID' in confDict: ds.attrs['instrument_id']= confDict['NC_INSTRUMENT_ID'] else: ds.attrs['instrument_id']= 'N/A' # ds.attrs['Source']= "HALO Photonics Doppler lidar (system_id: " + confDict['SYSTEM_ID'] ds.attrs['conventions']= confDict['NC_CONVENTIONS'] ds.attrs['processing_date']= str(pd.to_datetime(datetime.datetime.now())) + ' UTC' # ds.attrs['Author']= confDict['NC_AUTHOR'] ds.attrs['instrument_contact']= confDict['NC_INSTRUMENT_CONTACT'] ds.attrs['data_policy']= confDict['NC_DATA_POLICY'] # attributes for operational use of netCDFs, see E-Profile wind profiler netCDF version 1.7 if 'NC_WIGOS_STATION_ID' in confDict: ds.attrs['wigos_station_id']= confDict['NC_WIGOS_STATION_ID'] else: ds.attrs['wigos_station_id']= 'N/A' if 'NC_WMO_ID' in confDict: ds.attrs['wmo_id']= confDict['NC_WMO_ID'] else: ds.attrs['wmo_id']= 'N/A' if 'NC_PI_ID' in confDict: ds.attrs['principal_investigator']= confDict['NC_PI_ID'] else: ds.attrs['principal_investigator']= 'N/A' if 'NC_INSTRUMENT_SERIAL_NUMBER' in confDict: ds.attrs['instrument_serial_number']= confDict['NC_INSTRUMENT_SERIAL_NUMBER'] else: ds.attrs['instrument_serial_number']= ' ' ds.attrs['history']= confDict['NC_HISTORY'] + ' version ' + confDict['VERSION'] + ' on ' + str(pd.to_datetime(datetime.datetime.now())) + ' UTC' ds.attrs['comments']= confDict['NC_COMMENTS'] ## add configuration as attribute used to create the file configuration = """""" for dd in confDict: configuration += dd + '=' + confDict[dd]+'\n' ds.attrs['File_Configuration']= configuration # adjust time variable to double (aka float64) ds.time.data.astype(np.float64) path= Path(confDict['NC_L1_PATH'] + '/' + date_chosen.strftime("%Y") + '/' + date_chosen.strftime("%Y%m")) path.mkdir(parents=True, exist_ok=True) path= path / Path(confDict['NC_L1_BASENAME'] + 'v' + confDict['VERSION'] + '_' + date_chosen.strftime("%Y%m%d")+ '.nc') if 'UTC_OFFSET' in confDict: time_offset = np.timedelta64(int(confDict['UTC_OFFSET']), 'h') time_delta = int(confDict['UTC_OFFSET']) else: time_offset = np.timedelta64(0, 'h') time_delta = 0 # compress variables comp = dict(zlib=True, complevel=9) encoding = {var: comp for var in
np.hstack([ds.data_vars,ds.coords])
numpy.hstack
# -*- coding: utf-8 -*- # ============================================================================= # Created By : <NAME> # Copyright : Copyright 2021, Institute of Chemical Engineering, Prof. Dr. <NAME>, Ulm University' # License : GNU LGPL # ============================================================================= """The module (rm = radiometric measurement) rm_evaluation contains the class RM_Evaluation, which helps evaluation radiometric measurements performed with a radiometric scanning device developed at the Institute of Chemical Engineering, University Ulm. By creating an instance of the class, it can lead you through the procedure. Run your python instance in the Folder "01Scripts" and put th measurement files th the folder "02Data". This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ # ============================================================================= # Imports # ============================================================================= import os import pprint import logging import time import pandas as pd from pathlib import Path import re import math from scipy import stats import matplotlib.pyplot as plt from matplotlib import cm import matplotlib as mpl from mpl_toolkits.axes_grid1 import make_axes_locatable from cycler import cycler import numpy as np import scipy from scipy.optimize import minimize from supplementary.colour_system import cs_hdtv as cs from lmfit.lineshapes import skewed_gaussian import sympy as sp logging.basicConfig(format="%(asctime)s: %(message)s", level=logging.INFO, datefmt="%H:%M:%S") class RM_Evaluation: """ The class RM_Evaluation can be used for further evaluation of measurements performed by the scanning device. By initializing an instance of the class the script will scan existing subfolders for exported RM-data. This Data must be stored in a specific Folder structure: (Normally created by the export function of the measurement script.) folder: 02Data | |-- folder: date + time + reactor name | | | |-- folder: z-position 1 | | |-- file: *.feather ....................... contains measured spectra in mW nm**-1 | | |-- file: *.log ........................... contains all set parameters for measurement | | |-- heatmap pictures and *.csv file ....... not used by this script | | | |-- folder: z-position 2 | | |-- ... | | | |-- ... | |-- ... ------------------- Attributes constructed from parameters by __init___: saveram (boolean, optional, default = False): If True, photon flux spectra are not loaded to use less RAM. wl_ntsr_borders (tuple of two integers, optional): For the calculation of the noise to signal ratio the spectrum gets separated in two regimes. By default the regime used for defining the noise are the spectrometer pixels 0-150. The signal regime are the pixels 150 to -1 (end of list). This default is defined by the method import_raw. Other borders should be defined here as tuple of integers if the automatic import routine is used. The tuple defines the pixel separating the two regimes (def: 150) and the end of the signal regime. predef (list of strings, optional): Defines a predefined answer to the import questions of the class when initialized. You give a list of eight the answers, it will be red from right to left (list.pop). When initializing an instance of the class and predef == False you will be asked if you want to choose a Directory to evaluate: Choose a Directory to evaluate? >?| Two answers are possible: • When answering with ’y’ , all export folders in the same directory which have the correct structure and content will be listed. The program then will ask for the number of the folder which should be imported. • If ’n’ is given as answer, all importable .feather files in all subdirectories are listed. The files can be picked individually by their number. After choosing the desired data, the program will ask whether it should import these files: import raw? >?| If the answer is ’n’ , you can start the import procedure manually with custom parameters by calling the function import_raw . Otherwise the program will also ask if colours should be processed: process colors? >?| and for a value of the ntsr_border : keep ntsr border of 0.550? Or type new >?| After that, all files will be red and processed. Note that this can afford some RAM. The answers to the import questions can be also given in advance by the predef parameter with the class initialization. In case you want to import the second folder ( answer2 = 2 ) in the directory ( answer1 = ’y’ ) and import( answer3 = ’y’ ) without processing the colours ( answer4 = ’n’ ), while keeping the ntsr_border unchanged ( answer5 = ’y’ ), the list [’y’, ’n’, ’y’, 2, ’y’])must be passed as parameter predef . The program reads this list from right to left. ------------------- Output Attributes: alldfs (numpy array, shape: (number of z positions, number of x-pixels, number of y-pixels, number of spectrometer pixels), dtype='float32'): Array containing the measured spectra in mW nm**-1. all_photon_dfs (numpy array, shape: (number of z positions, number of x-pixels, number of y-pixels, number of spectrometer pixels), dtype='float32'): Array containing the measured spectra in photons nm**-1 s**-1. allwaves (numpy array, shape: (number of z positions, number of spectrometer pixels), dtype='float32'): Array containing the respective wavelengths in nm for the spectrometer pixels. all_vars (numpy array, shape: (number of z positions), dtype='float32'): Array containing a dict with the respective measurement variables: Name': Name of the Scan 'z_pos': z-position 'Size': Size of the scan im pixels. int_time': Integration time. all_integrals (numpy array, shape: (number of z positions, number of x-pixels, number of y-pixels), dtype='float32'): Containing the received power per pixel in mW. all_photon_integrals (numpy array, shape: (number of z positions, number of x-pixels, number of y-pixels), dtype='float32'): Containing the received number of photons per pixel. all_rec_power (numpy array, shape: (number of z positions), dtype='float32'): Containing the received power per scan in mW. all_rec_photons (numpy array, shape: (number of z positions), dtype='float32'): Containing the received number of photons per scan. all_nev_abs (numpy array, shape: (number of z positions, number of x-pixels, number of y-pixels, number of spectrometer pixels), dtype='float32'): Array containing the measured spectra of not absorbable power in mW nm**-1. all_nev_abs_photons (numpy array, shape: (number of z positions, number of x-pixels, number of y-pixels, number of spectrometer pixels), dtype='float32'): Array containing the measured spectra of not absorbable photons. all_ratios (numpy array, shape: (number of z positions, number of x-pixels, number of y-pixels), dtype='float32'): Array containing the peak ratio for every measurement pixel. all_colors (numpy array, shape: (number of z positions, number of x-pixels, number of y-pixels, red values, green values, blue values), dtype='float32'): Array containing the RGB values. all_integrals_nev_abs (numpy array, shape: (number of z positions, number of x-pixels, number of y-pixels), dtype='float32'): Containing the not absorbable received power per pixel in mW. all_integrals_remaining (numpy array, shape: (number of z positions, number of x-pixels, number of y-pixels), dtype='float32'): Containing the not absorbed received power per pixel in mW. all_photon_integrals_remaining (numpy array, shape: (number of z positions, number of x-pixels, number of y-pixels), dtype='float32'): Containing the not absorbed received photons per pixel. """ def __init__(self, saveram=False, wl_ntsr_borders=False, predef=False): self.script_starting_time = time.time() self.saveram = saveram self.dir_path = os.path.dirname(os.path.realpath(__file__))+'\\..\\02Data' self.foundthefiles = [] self.thefiles = [] self.dirs = [] self.thedir = '' self.frames_red = False self.ntsr_border = 0.55 self.waveleghth_borders_fo_ntsr = wl_ntsr_borders self.cal_int_time = 0.03551 self.planck_constant = 6.626 * 10 ** (-34) self.speed_of_light = 2.998 * 10 ** 8 self.avogadro_number = 6.022 * 10 ** 23 self.alldfs = np.array([], dtype='float32') self.all_photon_dfs = np.array([], dtype='float32') self.allwaves = np.array([], dtype='float32') self.all_vars = np.array([]) self.all_integrals = np.array([], dtype='float32') self.all_photon_integrals = np.array([], dtype='float32') self.all_rec_power = np.array([], dtype='float32') self.all_rec_photons = np.array([], dtype='float32') self.all_nev_abs = np.array([], dtype='float32') self.all_nev_abs_photons = np.array([], dtype='float32') self.all_ratios = np.array([], dtype='float32') self.all_colors = np.array([]) self.df_for_int_exp = pd.DataFrame({}) self.color_cycle = cycler('color', ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'purple', 'pink', 'brown', 'orange', 'teal', 'coral', 'lightblue', 'lime', 'lavender', 'turquoise', 'darkgreen', 'tan', 'salmon', 'gold', 'orchid', 'crimson', 'darkblue']) self.color_cycle_list = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'purple', 'pink', 'brown', 'orange', 'teal', 'coral', 'lightblue', 'lime', 'lavender', 'turquoise', 'darkgreen', 'tan', 'salmon', 'gold', 'orchid', 'crimson', 'darkblue'] # Here we scan all folders for feather data and let the user choose which ones to import for self.root, dirs, files in os.walk(self.dir_path): for file in files: if file.endswith('.feather'): self.foundthefiles.append(str(self.root+'\\'+str(file))) if Path(self.root).parent in self.dirs: pass else: self.dirs.append(Path(self.root).parent) if len(self.foundthefiles) == 1: pass self.thefiles = self.foundthefiles else: print('Choose a Directory to evaluate?') if predef is not False: bool_dir = predef.pop() else: bool_dir = input() logging.info('%s' % bool_dir) if bool_dir == 'y': self.chose_dir = True print('I found these Folders:\n') counter = 1 for i in self.dirs: print(str(counter) + ': ' + i.parts[-1]) counter += 1 print('\nWhich one should be processed? Only choose one.') if predef is not False: self.user = predef.pop() else: self.user = int(input()) print('you chose the path: %s' % self.dirs[self.user-1]) self.thedir = self.dirs[self.user-1] for i in self.foundthefiles: if Path(i).parts[0:-2] == Path(self.dirs[self.user-1]).parts[:]: print('Adding %s' % Path(i).parts[-1]) self.thefiles.append(i) else: self.chose_dir = False print('I found these Files:\n') counter = 1 for i in self.foundthefiles: print(str(counter) + ': ' + i) counter += 1 print(str(counter) + ': all') print('\nWhich ones should be processed? Separate with blanks.') if predef is not False: self.user = predef.pop() else: self.user = input() self.user = self.user.split() for i in range(0, len(self.user)): self.user[i] = int(self.user[i]) if counter in self.user: self.thefiles = self.foundthefiles else: for i in self.user: self.thefiles.append(self.foundthefiles[i-1]) if predef is not False: import_raw = predef.pop() else: import_raw = input('import raw?') if import_raw == 'y': if predef is not False: process_colors = predef.pop() else: process_colors = input('process colors?') if process_colors == 'y': input_colors = True else: input_colors = False if predef is not False: input_ntsr = predef.pop() else: input_ntsr = input('keep ntsr border of %.3f? Or type new' % self.ntsr_border) try: self.ntsr_border = float(input_ntsr) except ValueError: logging.info('ntsr border not changed') self.import_raw(colors=input_colors) def normalize(self, arr): """Helper method to normalize an array.""" arr_min = np.min(arr) return (arr-arr_min)/(np.max(arr)-arr_min) def find_nearest(self, array, value): """Helper method, finds the index of a e.g. wavelength""" array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx def pos_to_num(self, pos): """Helper method, calculates a position on a heatmap in the respective pixel.""" return int(round(pos/0.39)) def cos_corr_point(self, array, center, distance): """ Returns an array containing cosine correction values for a point light source, e.g. LED ------------------ Parameters: array (2D numpy array): The array which should be corrected, here only the correct shape is necessary. Using the actual array is useful considering the ’auto’ option of the parameter center. center (tuple or 'auto': The center of the light source on the array. If center is ’auto’ , the position of the largest value in the array array is used. Otherwise, pass a tuple of coordinates in cm. distance (number): The distance between the measurement canvas and the light source in cm. """ if 'auto' in center: center = np.reshape(np.array(np.where(array == np.amax(array)))*0.39+(0.39/2), 2) self.olsh_positions = np.indices(array.shape)*0.39+(0.39/2) self.positions = np.zeros((array.shape[0], array.shape[1], 2)) self.positions[:, :, 0] = self.olsh_positions[0, :, :] self.positions[:, :, 1] = self.olsh_positions[1, :, :] # we need to give the positions array a different shape self.vectors = np.subtract(self.positions, center) # we calculate the vectors pointing from the lightsource to the pixel print('vectors shape: ' + str(self.vectors.shape)) self.norms = np.linalg.norm(self.vectors, axis=-1) print('norms shape: ' + str(self.norms.shape)) return 1/np.cos(np.arctan(self.norms/distance)) def cos_corr_stick(self, array, x_center=70, y_min=84, y_max=107, distance=4.5): """ Returns an array containing cosine correction values for a longish light source. See cos_corr_point. ------------------ Parameters: array (2D numpy array): The array which should be corrected, here only the correct shape is necessary. Using the actual array is useful considering the ’auto’ option of the parameter center. x_center (integer, default = 70): Pixel position of a longish light source in x direction. y_min (integer, default = 84): Lower pixel position of a longish light source in y direction. y_max (integer, default = 107): Upper pixel position of a longish light source in y direction. distance (number): The distance between the measurement canvas and the light source in cm. """ x_center = x_center*0.39+(0.39/2) y_min = y_min*0.39+(0.39/2) y_max = y_max*0.39+(0.39/2) olsh_positions = np.indices(array.shape)*0.39+(0.39/2) positions = np.zeros((array.shape[0], array.shape[1], 2)) positions[:, :, 0] = olsh_positions[0, :, :] positions[:, :, 1] = olsh_positions[1, :, :] y_max_helper = np.zeros(positions.shape) y_max_helper[..., 0] = y_max_helper[..., 1] = np.where(positions[:, :, 0] >= y_max, 1, 0) y_min_helper = np.zeros(positions.shape) y_min_helper[..., 0] = y_min_helper[..., 1] = np.where(positions[:, :, 0] <= y_min, 1, 0) y_mid_helper = np.zeros(positions.shape) y_mid_helper[..., 0] = y_mid_helper[..., 1] = np.where((positions[:, :, 0] > y_min) & (positions[:, :, 0] < y_max), 1, 0) print(y_mid_helper) vectors_y_max = np.subtract(positions, [y_max, x_center])*y_max_helper vectors_y_min = np.subtract(positions, [y_min, x_center])*y_min_helper mid_positions = np.ones(positions.shape) mid_positions[:, :, 0] = mid_positions[:, :, 0]*y_max mid_positions[:, :, 1] = positions[:, :, 1] vectors_y_mid = np.subtract(mid_positions, [y_max, x_center])*y_mid_helper vectors = np.where(vectors_y_max == 0, vectors_y_min, vectors_y_max) vectors = np.where(vectors == 0, vectors_y_mid, vectors) print('vectors shape: ' + str(vectors.shape)) norms = np.linalg.norm(vectors, axis=-1) print('norms shape: ' + str(norms.shape)) return 1/np.cos(np.arctan(norms/distance)) def vars_from_log(self, file): """ Helper method to extract variables from the logfile. """ import re filepath = file search_int_time = 'int_time' matched_int_time = '' search_Name = 'Name:' matched_name = '' search_Size = 'Size:' matched_size = '' search_Z = 'z_pos:' matched_z = '' with open(filepath, 'r') as file: for line in file: if search_int_time in line: matched_int_time = float(re.sub("\D+[_]\D+", "", line.rstrip())) with open(filepath, 'r') as file: for line in file: if search_Name in line: matched_name = re.sub("\D+[: ]", "", line.rstrip()) with open(filepath, 'r') as file: for line in file: if search_Size in line: matched_size = int(re.sub("\D", "", line.rstrip())) with open(filepath, 'r') as file: for line in file: if search_Z in line: matched_z = float(re.sub("\D+[_]\D+", "", line.rstrip())) out = {'int_time': matched_int_time, 'Name': matched_name, 'Size': matched_size, 'z_pos': matched_z} pprint.pprint(out) return out def noisetosignal(self, a, borders, axis=-1): """ Helper method for the import_raw method, calculates the noise to signal ratio for an array. ------------ Parameters: a (array, shape: (no. of. scans, no. of x-pixels, no. of y-pixels, spec- pixels): The array. borders (tuple, shape:(2)): The borders for ntds calculation, see docstring of this class. axis (integer, default = -1): Axis parameter for the numpy std method, no need to change. """ c = np.std(a[:, :, :, :borders[0]], axis=axis) d = np.std(a[:, :, :, borders[0]:borders[1]], axis=axis) return np.where(d == 0, 1, c/d) def show_histogram(self, values): """ Shows a histogram of the given array. """ n, bins, patches = plt.hist(values.reshape(-1), 50, density=1) bin_centers = 0.5 * (bins[:-1] + bins[1:]) for c, p in zip(self.normalize(bin_centers), patches): plt.setp(p, 'facecolor', cm.viridis(c)) plt.show() def normalize(self, arr): """ Helper method for show_histogram. """ arr_min = np.min(arr) return (arr-arr_min)/(np.max(arr)-arr_min) def SI_plot(self, comment=''): """ Plots and saves a figure of supporting information, subdivided in 4 parts. Subfigures 1,2 and 3 display histograms of the NTSR, peak ratios and P of all scans. The latter subfigure displays the received power per scan over the z-position and the integration time over the z-position. The received power over the z-position is fitted with a linear regression and the function is given. """ fig, axes = plt.subplots(ncols=2, nrows=2, figsize=(8, 6), sharex=False, sharey=False) """overall Title""" fig.suptitle(self.all_vars[0]['Name']+' SI plot '+comment) """Making the Histogram of all ntsr""" target = (0, 0) axes[target].set_prop_cycle(self.color_cycle) axes[target].tick_params(labelsize=7) axes[target].set_title('histogram of signal to noise ratios', fontsize=9) axes[target].set_xlabel("signal to noise / 1", fontsize=9, labelpad=0.1) axes[target].set_ylabel("frequency", fontsize=9, labelpad=0.1) if self.separate_borders_mode is True: axes_twin_ntsr = axes[target].twinx() axes_twin_ntsr.set_prop_cycle(self.color_cycle) for i in range(0, len(self.thefiles)): n, bins, patches = axes[target].hist(self.all_ntsr[i].reshape(-1), 50, density=1, histtype='step', label=str(self.all_vars[i]['z_pos'])+'$\\,$cm') if self.separate_borders_mode is True: axes_twin_ntsr.plot([self.separate_ntsr[i, 0, 0], self.separate_ntsr[i, 0, 0]], [0, n.max()/2], '-.', label='%.3f' % self.separate_ntsr[i, 0, 0], alpha=0.5) axes_twin_ntsr.set_yticks([]) if self.separate_borders_mode is False: axes[target].plot([self.ntsr_border, self.ntsr_border], [0, n.max()], 'k-.' # , label='border' ) xmin, xmax = axes[target].get_xlim() ymin, ymax = axes[target].get_ylim() t_xpos = xmax+0.01*(xmax-xmin) t_ypos = ymin+0.01*(ymax-ymin) axes[target].text(t_xpos, t_ypos, 'ntsr_border = %.3f' % self.ntsr_border, rotation='vertical', fontsize=6) if self.separate_borders_mode is True: axes_twin_ntsr.legend(fontsize=4.5, ncol=2, labelspacing=0.01, loc='center left', title='ntsr borders', title_fontsize=4.5, columnspacing=1) """Making the Histogram of all ratios""" target = (0, 1) axes[target].tick_params(labelsize=7) axes[target].set_prop_cycle(self.color_cycle) axes[target].set_title('histogram of peak ratios', fontsize=9) axes[target].set_xlabel("peak ratio/ 1", fontsize=9, labelpad=0.1) axes[target].set_ylabel("frequency", fontsize=9, labelpad=0.1) for i in range(0, len(self.thefiles)): n, bins, patches = axes[target].hist(self.all_ratios[i].reshape(-1), 50, density=1, histtype='step', label=str(self.all_vars[i]['z_pos'])+'$\\,$cm', log=True) axes[target].legend(fontsize=4.5, ncol=2, labelspacing=0.01, loc='upper right', columnspacing=1) """plotting power over distance""" target = (1, 0) axes[target].tick_params(labelsize=7) axes[target].set_prop_cycle(self.color_cycle) axes[target].set_title('received power and\nintegration time over z', fontsize=9) axes[target].set_xlabel("z / cm", fontsize=9, labelpad=0.1) axes[target].set_ylabel("P / W", fontsize=9, labelpad=0.1) axes_twin = axes[target].twinx() axes_twin.tick_params(labelsize=7) axes_twin.set_ylabel("integration time / ms", fontsize=9, labelpad=0.1) x = np.zeros(len(self.thefiles)) int_times = np.zeros(len(self.thefiles)) # marker: https://matplotlib.org/3.1.0/gallery/lines_bars_and_markers/marker_reference.html marker_style = dict(linestyle=':', color='0.8', markersize=7, mfc="C0", mec="C0") marker_style2 = dict(linestyle=':', color='0.8', markersize=7, mfc="C1", mec="C1") for i in range(0, len(self.thefiles)): x[i] = self.all_vars[i]['z_pos'] int_times[i] = self.all_vars[i]['int_time']*1000 rec = axes[target].plot(x, self.all_rec_power*1E-6, label='received power', marker='.', **marker_style) abs = axes[target].plot(x, self.all_nev_abs*1E-6, label='never absorbed power', marker=7, **marker_style) int = axes_twin.plot(x, int_times, label='integration time', marker='2', **marker_style2) # legend: https://stackoverflow.com/questions/5484922/secondary-axis-with-twinx-how-to-add-to-legend all = rec+abs+int labs = [l.get_label() for l in all] """fitting the slope of data""" coef_z = np.polyfit(x, self.all_rec_power*1E-6, 1) coef_z_na = np.polyfit(x, self.all_nev_abs*1E-6, 1) coef_int = np.polyfit(int_times, self.all_rec_power*1E-6, 1) coef_int_na = np.polyfit(int_times, self.all_nev_abs*1E-6, 1) poly1d_fn_z = np.poly1d(coef_z) poly1d_fn_z_na = np.poly1d(coef_z_na) poly1d_fn_int = np.poly1d(coef_int) poly1d_fn_int_na = np.poly1d(coef_int_na) # poly1d_fn is now a function which takes in x and returns an estimate for y power_at_cal_time = poly1d_fn_int(self.cal_int_time) power_at_cal_time_na = poly1d_fn_int_na(self.cal_int_time) axes[target].plot(x, poly1d_fn_z(x), '--k') axes[target].plot(x, poly1d_fn_z_na(x), '--k') xmin, xmax = axes[target].get_xlim() ymin, ymax = axes[target].get_ylim() t_xpos = xmin+0.5*(xmax-xmin) # the relative position on the xaxis t_ypos = ymin+0.8*(ymax-ymin) # the relative position on the yaxis axes[target].text(t_xpos, t_ypos, '$m_{rec}$ = %.2f$\\cdot 10^{-3}\\,$Wcm$^{-1}$\nor %.2f$\\cdot 10^{-3}\\,$Wms$^{-1}$' '\n$P_{@caltime} = %.3f$' % (poly1d_fn_z[1]*1E3, poly1d_fn_int[1]*1E3, power_at_cal_time), fontsize=4.5) t_xpos = xmin+0.5*(xmax-xmin) # the relative position on the xaxis t_ypos = ymin+0.3*(ymax-ymin) # the relative position on the yaxis axes[target].text(t_xpos, t_ypos, '$m_{nev abs}$ = %.2f$\\cdot 10^{-3}\\,$Wcm$^{-1}$\nor %.2f$\\cdot 10^{-3}\\,$Wms$^{-1}$' '\n$P_{@caltime} = %.3f$' % (poly1d_fn_z_na[1]*1E3, poly1d_fn_int_na[1]*1E3, power_at_cal_time_na), fontsize=4.5) axes[target].legend(all, labs, fontsize=4.5, ncol=1, labelspacing=1, loc='best', bbox_to_anchor=(0.05, 0.25, 0.5, 0.5), columnspacing=1) """Making the Histogram of all integrals""" target = (1, 1) axes[target].tick_params(labelsize=7) axes[target].set_prop_cycle(self.color_cycle) axes[target].set_title('histogram of receives power\nper pixel', fontsize=9) axes[target].set_xlabel("P / \u03BCW ", fontsize=9, labelpad=0.1) axes[target].set_ylabel("frequency", fontsize=9, labelpad=0.1) for i in range(0, len(self.thefiles)): n, bins, patches = axes[target].hist(self.all_integrals[i].reshape(-1), 50, density=1, histtype='step', label=str(self.all_vars[i]['z_pos'])+'$\\,$cm', log=True) axes[target].legend(fontsize=4.5, ncol=2, labelspacing=0.01, loc='upper right', columnspacing=1) fig.subplots_adjust( # left=0.0, # the left side of the subplots of the figure # right=0.9, # the right side of the subplots of the figure bottom=0.1, # the bottom of the subplots of the figure top=0.9, # the top of the subplots of the figure wspace=0.35, # the amount of width reserved for space between subplots, # expressed as a fraction of the average axis width hspace=0.4) if self.thedir == '': self.thedir = Path(self.dir_path) fig.savefig(self.thedir/Path(self.all_vars[0]['Name'] + 'SI_plot' + comment + '.png'), dpi=300, bbox_inches='tight' ) def read_frames(self): """ Helper method for import_raw. """ for counter, thefile in np.ndenumerate(self.thefiles): self.vars = self.vars_from_log(thefile.replace('feather', 'log')) if counter[0] == 0: self.all_vars = np.array([self.vars]*(len(self.thefiles))) self.all_vars[counter] = self.vars self.all_z = np.zeros(len(self.all_vars)) for num, i in np.ndenumerate(self.all_vars): self.all_z[num] = self.all_vars[num]['z_pos'] self.all_vars = np.take_along_axis(self.all_vars, np.argsort(self.all_z), axis=0) self.thefiles = np.take_along_axis(np.array(self.thefiles), np.argsort(self.all_z), axis=0) for counter, thefile in np.ndenumerate(self.thefiles): print(thefile) logging.info('started read') imported_df = pd.read_feather(thefile) logging.info('ended read') if counter[0] == 0: self.all_integrals = np.zeros((len(self.thefiles), self.vars['Size'], self.vars['Size']), dtype='float32') # now already a 3d array, so the reshaped array sould be written to it self.all_ratios = np.zeros((len(self.thefiles), self.vars['Size'], self.vars['Size']), dtype='float32') # now already a 3d array, so the reshaped array sould be written to it self.all_ntsr = np.zeros((len(self.thefiles), self.vars['Size'], self.vars['Size']), dtype='float32') # now already a 3d array, so the reshaped array sould be written to it self.all_ntsr_helper = np.zeros((len(self.thefiles), self.vars['Size'], self.vars['Size']), dtype='float32') # now already a 3d array, so the reshaped array sould be written to it self.all_colors = np.zeros((len(self.thefiles), self.vars['Size'], self.vars['Size'], 3), dtype='float32') # now already a 3d array, so the reshaped array sould be written to it self.alldfs = np.zeros((len(self.thefiles), self.vars['Size'], self.vars['Size'], len(imported_df['wavelength'])), dtype='float32') # now already a 3d array, so the reshaped array sould be written to it self.all_photon_dfs = np.zeros((len(self.thefiles), self.vars['Size'], self.vars['Size'], len(imported_df['wavelength'])), dtype='float32') # now already a 3d array, so the reshaped array sould be written to it self.allwaves = np.zeros((len(self.thefiles), len(imported_df['wavelength'])), dtype='float32') try: new_trans = np.loadtxt(Path(".\supplementary\TransferCurves\Transfercurve.csv"), delimiter=';')*(self.cal_int_time / self.all_vars[counter]['int_time']) except: raise Exception("Can\'t find the transfer curve") if np.array_equal(new_trans, imported_df['transfer_curve']) is True: new_data_df = imported_df.iloc[:, 3:] else: new_data_df = imported_df.iloc[:, 3:].multiply(new_trans/imported_df['transfer_curve'], axis=0) self.alldfs[counter] = np.reshape(np.transpose(new_data_df.values), (self.all_vars[counter]['Size'], self.all_vars[counter]['Size'], len(imported_df['wavelength']))) self.alldfs[counter][1::2] = np.flip(self.alldfs[counter][1::2], 1) self.allwaves[counter] = imported_df['wavelength'] del imported_df del new_data_df self.alldfs = np.where(np.isnan(self.alldfs), 0.0, self.alldfs) self.frames_red = True def import_raw(self, ntsr_border=None, colors=False, waveleghth_borders_fo_ntsr=(150, -1), ntsr_helper_border=0, separate_borders_mode=False, analysis=False): """ Starts the import procedure, normally automatically started within the class initialization. ------------------ Parameters: ntsr_border (number, optional): Pixels with a NTSR (stds) smaller than this border will be set to 0 or black. If not set the value from class initialization is used. colors (boolean, optional, default is False): If True colours will be processed. waveleghth_borders_fo_ntsr (tuple of 2 integers, default is (150, -1): See parameter docstring for wl_ntsr_borders of this class. separate_borders_mode (boolean, optional, default is False): If True for every slice a new wavelength NTSR border is found. Namely the biggest stds which belongs to an integral value smaller than stds_helper_border. ntsr_helper_border (number, optional, default is 0): Needed for separate_borders_mode. analysis (boolean, optinal, default is False): If True, a log file is written showing the total received power over the z-positions. """ if ntsr_border is None: ntsr_border = self.ntsr_border self.ntsr_border = ntsr_border self.separate_borders_mode = separate_borders_mode self.ntsr_helper_border = ntsr_helper_border if self.frames_red is False: self.read_frames() if self.waveleghth_borders_fo_ntsr is False: self.waveleghth_borders_fo_ntsr = waveleghth_borders_fo_ntsr logging.info('start ntsr') self.all_ntsr = self.noisetosignal(self.alldfs, borders=self.waveleghth_borders_fo_ntsr, axis=-1) logging.info('end ntsr') logging.info('start photons') """making the photons in nanomol per second and nm""" print('ntsr_border = %.3f'%ntsr_border) self.conv_to_photons_array = self.allwaves[0]*1e-9*1e6/self.planck_constant/self.speed_of_light/self.avogadro_number self.all_photon_dfs = self.alldfs*self.conv_to_photons_array logging.info('end photons') logging.info('start integrating') self.all_integrals = np.trapz(self.alldfs, self.allwaves[0], axis=-1) * 0.1521 logging.info('power done') self.all_photon_integrals = np.trapz(self.all_photon_dfs, self.allwaves[0], axis=-1) * 0.1521 logging.info('photons done') if self.saveram is True: del self.all_photon_dfs self.all_ntsr_helper = np.where(self.all_integrals < ntsr_helper_border, self.all_ntsr, 0) """separate borders mode means, that for every slice a new ntsr border is found. Namely the biggest ntsr which belongs to a integral value smaller than ntsr_helper_border""" if separate_borders_mode is True: """sparate_ntsr is an array with the length of the numper of slices. Containing the biggest ntsr which belongs to an integral value smaller than ntsr_helper_border""" self.ntsr_border = 'separate' self.separate_ntsr = np.max(self.all_ntsr_helper, (1, 2)) logging.info('separate ntsr borders mode, found this:' + str(self.separate_ntsr)) self.separate_ntsr = np.ones(self.all_ntsr.shape)*np.reshape(self.separate_ntsr, (len(self.thefiles), 1, 1)) self.all_integrals = np.where(self.all_ntsr < self.separate_ntsr, self.all_integrals, 0) self.all_photon_integrals = np.where(self.all_ntsr < self.separate_ntsr, self.all_photon_integrals, 0) if separate_borders_mode is False: self.all_integrals = np.where(self.all_ntsr < ntsr_border, self.all_integrals, 0) self.all_photon_integrals = np.where(self.all_ntsr < ntsr_border, self.all_photon_integrals, 0) if self.saveram is False: self.alldfs_nev_abs = self.alldfs/(10**(7*skewed_gaussian(self.allwaves[0], 16386626.6, 567.358141, 37193531.6, -2830490.97))) self.all_photon_dfs_nev_abs = self.alldfs_nev_abs*self.conv_to_photons_array self.all_photon_integrals_nev_abs = np.trapz(self.all_photon_dfs_nev_abs, self.allwaves[0], axis=-1) * 0.1521 if separate_borders_mode is False: self.all_photon_integrals_nev_abs = np.where(self.all_ntsr < ntsr_border, self.all_photon_integrals_nev_abs, 0) if separate_borders_mode is True: self.all_photon_integrals_nev_abs = np.where(self.all_ntsr < self.separate_ntsr, self.all_photon_integrals_nev_abs, 0) self.all_integrals_nev_abs = np.trapz(self.alldfs_nev_abs, self.allwaves[0], axis=-1) * 0.1521 if separate_borders_mode is False: self.all_integrals_nev_abs = np.where(self.all_ntsr < ntsr_border, self.all_integrals_nev_abs, 0) if separate_borders_mode is True: self.all_integrals_nev_abs = np.where(self.all_ntsr < self.separate_ntsr, self.all_integrals_nev_abs, 0) self.all_integrals_remaining = self.all_integrals-self.all_integrals_nev_abs self.all_photon_integrals_remaining = self.all_photon_integrals-self.all_photon_integrals_nev_abs logging.info('end integrating') logging.info('start making ratios') if separate_borders_mode is True: self.all_ratios = self.make_peak_difference(self.alldfs, ntsr_border=self.separate_ntsr, ntsr=self.all_ntsr) if separate_borders_mode is False: self.all_ratios = self.make_peak_difference(self.alldfs, ntsr_border=ntsr_border, ntsr=self.all_ntsr) logging.info('end making ratios') if colors is True: logging.info('start making colors') lam = np.arange(380., 781., 5) # lambda table for spec_to_xyz for index, i in np.ndenumerate(np.zeros((len(self.thefiles), self.all_vars[0]['Size'], self.all_vars[0]['Size']))): self.all_colors[index] = cs.spec_to_rgb(np.interp(lam, self.allwaves[0], self.alldfs[index])) if separate_borders_mode is True: self.all_colors = self.all_colors * np.reshape(np.where(self.all_ntsr<self.separate_ntsr, 1, 0),(len(self.thefiles), self.all_vars[0]['Size'], self.all_vars[0]['Size'],1)) if separate_borders_mode is False: self.all_colors = self.all_colors * np.reshape(np.where(self.all_ntsr<ntsr_border, 1, 0),(len(self.thefiles), self.all_vars[0]['Size'], self.all_vars[0]['Size'],1)) logging.info('end making colors') if self.chose_dir is True: logging.info('chose_dir is True') filename = str(self.thedir/Path(time.strftime("%y%m%d_%H%M%S")+'_'+self.vars['Name'] +'_analysis.log')) outtxt = 'Pos / cm; Received Power / W; Not Absorbable Power / W\n' self.all_rec_power = np.zeros(len(self.thefiles)) self.all_rec_photons = np.zeros(len(self.thefiles)) self.all_nev_abs = np.zeros(len(self.thefiles)) rec_sum = 0 nev_abs_sum = 0 for i in range(0, len(self.thefiles)): logging.info('writing %.3f to %i'%(np.sum(self.all_integrals[i]),i)) self.all_rec_power[i] = np.sum(self.all_integrals[i]) self.all_rec_photons[i] = np.sum(self.all_photon_integrals[i]) if self.saveram is False: self.all_nev_abs[i] = np.sum(self.all_integrals_nev_abs[i]) outtxt += (str(self.all_vars[i]['z_pos'])+ '; ' + str(np.round(self.all_rec_power[i]*1E-6, 3)) + '; ' + str(np.round(self.all_nev_abs[i]*1E-6, 3))+'\n') outtxt += ('mean; '+str(np.round(np.sum(self.all_rec_power)/len(self.thefiles)*1E-6, 3))+ '; ' +str(np.round(np.sum(self.all_nev_abs)/len(self.thefiles)*1E-6, 3))) if analysis is True: with open(filename, 'w') as f: f.write(outtxt) def mak_peak_difference_from_cache(self, dataframe, peak1, peak2, ntsr_border=False, total_width=2): """ Can be used if you want to calculate a new peak difference after import. ------------------- Parameters: dataframe (array of scans): The array containing the scans, eg. alldfs. peak1 (integer): Index of the first peak. peak2 (integer): Index of the second peak. ntsr_border (number, default is ntsr_border of class): The border to determine no signal. total_width( number, default = 2): Half width of peak heigt determination. """ if ntsr_border is False: ntsr_border = self.ntsr_border self.all_ratios = self.make_peak_difference(dataframe, self.all_ntsr, ntsr_border, total_width, [peak1, peak2]) def make_peak_difference(self, dataframe, ntsr, ntsr_border, width=2, peakindices=[274, 526]): """Helper method fpr import_raw, return an array of the ratio of the two peaks, 0 when no signal""" ratio = (np.mean(dataframe[:, :, :, peakindices[0]-width:peakindices[0]+width], axis=-1)/np.mean(dataframe[:, :, :, peakindices[1]-width:peakindices[1]+width], axis=-1))*np.where(ntsr < ntsr_border, 1, 0) ratio = np.clip(ratio, -10, 10) real_clips = np.array([-2, 8]) ratio = np.clip(ratio, real_clips[0], real_clips[1]) return ratio def plot(self, mode='integrals', data=False, comment = '', cbar_title='', bar_to_max=False): """ Plots and saves heatmaps of all loaded scans. ------------------- Parameters: mode (string, default is 'integrals'): Defines the plotted data and display mode (matplotlib), combinations of data and method are automatically recognized. Possible data is: ’integrals’ Heatmap of the received power per pixel. Can be combined with ’nev_abs’ and ’remaining’. ’ratios’ Heatmap of the peak ratios per pixel. ’custom’ Heatmap of a custom 2D array, given by the parameter data. ’photons’ Heatmap of the received photons per pixel. Can be combined with ’nev_abs’ and ’remaining’. ’color’ Image in heatmap style, showing the calculated color of the pixels. !!! Can’t be combined with other output options!!!! ’integrals’ and ’photons’Can be combined with: ’nev_abs’ Not absorbable photons or power. ’remaining’. Not absorbed photons or power. Except ’color’ all other options also can be combined with: ’contour_clabel’ Contour heatmap with labels. See Matplotlib documetatation. ’contourf’ Contourf heatmap. See Matplotlib documetatation. ’contour’ Contour heatmap. See Matplotlib documetatation. data (array, default is False): Numpy array for mode == 'custom'. comment (string, default = ''): Additional string to be displayed in the figure. cbar_title (string, default = ''): Title of the colorbar for mode == 'custom'. bar_to_max (boolean, default is False): If True, all colorbars are scaled to the absolute maximum of the figure set. """ boundsstring = '' """Here we set the size of the figure, when smaller than 6 we make two cols. when bogger, we make 3""" if len(self.thefiles) <= 6: cols = 2 else: cols = 3 fig, axes = plt.subplots(ncols=cols, nrows=math.ceil(len(self.thefiles)/cols), figsize=(cols*3.4, math.ceil(len(self.thefiles)/cols)*3), sharex=False, sharey=False) if cols < len(self.thefiles): tar = [0,0] else: tar = [0] rest = 0 """The title of the whole figure gets the name of the Mesurement series""" if self.separate_borders_mode is True: fig.suptitle(self.all_vars[0]['Name']+ ' mode: '+mode+ 'separate_ntsr_int_border: %.3f' % self.ntsr_helper_border +comment, fontsize=9) else: fig.suptitle(self.all_vars[0]['Name']+' mode: '+mode+ 'ntsr_border: %.3f' % self.ntsr_border +comment, fontsize=9) for i in range(0, len(self.thefiles)): # print('tar ist '+ str(tar)) x, y = np.meshgrid(np.arange(0, (self.all_vars[i]['Size']+1) * 0.39, 0.39), np.arange(0, (self.all_vars[i]['Size']+1) * 0.39, 0.39)) # z = np.reshape(np.array(all_integrals[i]), (all_vars[i]['Size'], all_vars[i]['Size'])) if 'integrals' in mode: if 'nev_abs' in mode: z = self.all_integrals_nev_abs[i] bounds = [self.all_integrals_nev_abs.min(), self.all_integrals_nev_abs.max()] axes[tuple(tar)].set_title('z pos: '+str(self.all_vars[i]['z_pos'])+' cm'+'\nnever absorbed power: ' + str(np.round(np.sum(z)*1E-6, 3)) + ' W', fontsize=8, style='italic') # print('z pos: '+str(self.all_vars[i]['z_pos'])+'\nnever absorbed power: ' + str(np.round(np.sum(z)*1E-6, 3)) + ' W') elif 'remaining' in mode: z = self.all_integrals_remaining[i] bounds = [self.all_integrals_remaining.min(), self.all_integrals_remaining.max()] axes[tuple(tar)].set_title('z pos: '+str(self.all_vars[i]['z_pos'])+' cm'+'\nremaining power: ' + str(np.round(np.sum(z)*1E-6, 3)) + ' W', fontsize=8, style='italic') # print('z pos: '+str(self.all_vars[i]['z_pos'])+'\nremaining power: ' + str(np.round(np.sum(z)*1E-6, 3)) + ' W') else: z = self.all_integrals[i] bounds = [self.all_integrals.min(), self.all_integrals.max()] axes[tuple(tar)].set_title('z pos: '+str(self.all_vars[i]['z_pos'])+' cm'+'\nreceived power: ' + str(np.round(np.sum(self.all_integrals[i])*1E-6, 3)) + ' W', fontsize=8, style='italic') # print('z pos: '+str(self.all_vars[i]['z_pos'])+'\nreceived power: ' + str(np.round(np.sum(self.all_integrals[i])*1E-6, 3)) + ' W') elif 'ratios' in mode: z = self.all_ratios[i] bounds = [self.all_ratios.min(), self.all_ratios.max()] axes[tuple(tar)].set_title('z pos: '+str(self.all_vars[i]['z_pos'])+' cm', fontsize=8, style='italic') elif 'custom' in mode: z = data[i] bounds = [data.min(), data.max()] axes[tuple(tar)].set_title('z pos: '+str(self.all_vars[i]['z_pos'])+' cm', fontsize=8, style='italic') elif 'photons' in mode: if 'nev_abs' in mode: z = self.all_photon_integrals_nev_abs[i] bounds = [self.all_photon_integrals_nev_abs.min(), self.all_photon_integrals_nev_abs.max()] axes[tuple(tar)].set_title('z pos: '+str(self.all_vars[i]['z_pos'])+' cm'+'\nnever absorbed photons: ' + str(np.round(np.sum(z)*1e-6, 3)) + ' \u03BCmol s$^{-1}$', fontsize=8, style='italic') elif 'remaining' in mode: z = self.all_photon_integrals_remaining[i] bounds = [self.all_photon_integrals_remaining.min(), self.all_photon_integrals_remaining.max()] axes[tuple(tar)].set_title('z pos: '+str(self.all_vars[i]['z_pos'])+' cm'+'\nremaining photons: ' + str(np.round(np.sum(z)*1e-6, 3)) + ' \u03BCmol s$^{-1}$', fontsize=8, style='italic') else: z = self.all_photon_integrals[i] bounds = [self.all_photon_integrals.min(), self.all_photon_integrals.max()] axes[tuple(tar)].set_title('z pos: '+str(self.all_vars[i]['z_pos'])+' cm'+'\nreceived photons: ' + str(np.round(np.sum(z)*1e-6, 3)) + ' \u03BCmol s$^{-1}$', fontsize=8, style='italic') if 'color' not in mode: if bar_to_max is False: bounds = [z.min(), z.max()] boundsstring = '' else: boundsstring = '_boundstomax_' if 'contour_clabel' in mode: if i == 0: logging.info('contour_clabel mode detected') # https://jakevdp.github.io/PythonDataScienceHandbook/04.04-density-and-contour-plots.html x_c, y_c = np.meshgrid(np.arange(0, (self.all_vars[i]['Size']) * 0.39, 0.39), np.arange(0, (self.all_vars[i]['Size']) * 0.39, 0.39)) contour = axes[tuple(tar)].contour(x_c, y_c, z, 5, colors='black') plt.clabel(contour, inline=True, fontsize=4, fmt='%i') pcm = axes[tuple(tar)].pcolormesh(x, y, z, antialiased=False, shading='flat' # , ec='face', alpha=0.5 ) elif 'contourf' in mode: if i == 0: logging.info('contourf mode detected') # https://jakevdp.github.io/PythonDataScienceHandbook/04.04-density-and-contour-plots.html x_c, y_c = np.meshgrid(np.arange(0, (self.all_vars[i]['Size']) * 0.39, 0.39), np.arange(0, (self.all_vars[i]['Size']) * 0.39, 0.39)) pcm = axes[tuple(tar)].contourf(x_c, y_c, z, 20, cmap='viridis') elif 'contour' in mode: if i == 0: logging.info('contour mode detected') # https://jakevdp.github.io/PythonDataScienceHandbook/04.04-density-and-contour-plots.html x_c, y_c = np.meshgrid(np.arange(0, (self.all_vars[i]['Size']) * 0.39, 0.39), np.arange(0, (self.all_vars[i]['Size']) * 0.39, 0.39)) pcm = axes[tuple(tar)].contour(x_c, y_c, z, 20, cmap='viridis') else: x_c, y_c = np.meshgrid(np.arange(0, (self.all_vars[i]['Size']) * 0.39 + 0.39, 0.39), np.arange(0, (self.all_vars[i]['Size']) * 0.39 + 0.39, 0.39)) pcm = axes[tuple(tar)].pcolormesh(x_c, y_c, z, antialiased=False, shading='flat',vmin=bounds[0], vmax=bounds[1]) if 'color' in mode: axes[tuple(tar)].set_title('z pos: '+str(self.all_vars[i]['z_pos'])+' cm', fontsize=8, style='italic') z = self.all_colors[i] pcm = axes[tuple(tar)].imshow(z, origin='lower',extent=[x.min(), x.max(), y.min(), y.max()]) yticks = np.linspace(0., 0.39 * (self.all_vars[i]['Size']), 7) yticks[1:-1] = np.round(np.linspace(0., 0.39 * (self.all_vars[i]['Size']), 7)[1:-1]) xticks = np.linspace(0, 0.39 * (self.all_vars[i]['Size']), 7) xticks[1:-1] = np.round(np.linspace(0, 0.39 * (self.all_vars[i]['Size']), 7)[1:-1]) axes[tuple(tar)].set_yticks(yticks) axes[tuple(tar)].set_yticks(xticks) divider = make_axes_locatable(axes[tuple(tar)]) if 'color' not in mode: cax = divider.append_axes('right', size='5%', pad=0.05) cbar = fig.colorbar(pcm, cax=cax) cbar.ax.tick_params(labelsize=7, pad=0.1) if 'integrals' in mode: cbar.ax.set_ylabel("P / \u03BCW", fontsize=8, labelpad=0.2) elif 'ratios' in mode: cbar.ax.set_ylabel("peak ratio / 1", fontsize=8, labelpad=0.2) elif 'custom' in mode: cbar.ax.set_ylabel(cbar_title, fontsize=8, labelpad=0.2) elif 'photons' in mode: cbar.ax.set_ylabel('$q_\mathrm{n,p}$ / nmol s$^{-1}$', fontsize=8, labelpad=0.2) axes[tuple(tar)].tick_params(axis='x', labelsize=7, pad=2) axes[tuple(tar)].tick_params(axis='x', labelsize=7, pad=2) axes[tuple(tar)].tick_params(axis='y',labelsize=7, pad=0.1) axes[tuple(tar)].set_xlabel("x / cm", fontsize=8, labelpad=0.1) axes[tuple(tar)].set_ylabel("y / cm", fontsize=8, labelpad=0.1) axes[tuple(tar)].set_aspect('equal', adjustable='box') if self.separate_borders_mode is True: axes[tuple(tar)].text(0.1, y.max()+0.2, 'ntsr border: %.3f'%self.separate_ntsr[i, 0, 0], fontsize=4.5) if cols < len(self.thefiles): if tar[1] < cols-1: tar[1] += 1 elif tar[1] == cols-1: tar[1] = 0 tar[0] +=1 if i == len(self.thefiles)-1: if len(self.thefiles) % cols == 0: rest = 0 else: rest = (len(self.thefiles)//cols+1)*cols-len(self.thefiles) if rest != 0: axes[tuple(tar)].remove() rest -= 1 while rest != 0: if tar[1] < cols-1: tar[1] += 1 elif tar[1] == cols-1: tar[1] = 0 tar[0] += 1 axes[tuple(tar)].remove() rest -= 1 else: tar[0] += 1 if len(self.thefiles) < cols and i == len(self.thefiles)-1: axes[tuple(tar)].remove() fig.subplots_adjust( left=0.125, # the left side of the subplots of the figure # right = 0.9, # the right side of the subplots of the figure #bottom = 0.1, # the bottom of the subplots of the figure top=0.95, # the top of the subplots of the figure wspace=0.4, # the amount of width reserved for space between subplots, # expressed as a fraction of the average axis width hspace=0.1) if self.thedir == '': self.thedir = Path(self.dir_path) fig.savefig(self.thedir/Path(self.all_vars[0]['Name'] +'Colormaps_%s'%mode+ comment+ boundsstring + str(len(self.thefiles)) + '.png') , dpi=300 , bbox_inches='tight' ) plt.show() def plot_single(self, mode='integrals', data=False, info=False, comment = '', cbar_title='', bar_to_max=False): """ Plots and saves one specific heatmap. ------------------- Parameters: mode (string, default = 'integrals'): See docstring of method plot. data (2D numpy array): The array which should be plotted, should match paramaeter mode. comment (string, default = ''): Additional string to be displayed in the figure. info (dictionary): The dictionary containing the corresponding information to the given array. E.g. a subarray of all_vars. cbar_title (string, default = ''): Title of the colorbar for mode == 'custom'. bar_to_max (boolean, default is False): If True, all colorbars are scaled to the absolute maximum of the figure set. """ fig, axes = plt.subplots(figsize=(3.4, 3)) """The title of the whole figure becomes the name of the Mesurement series""" fig.suptitle(self.all_vars[0]['Name']+' mode: '+mode + 'ntsr_border: '+str(self.ntsr_border)+comment, fontsize=9) x, y = np.meshgrid(np.arange(0, (info['Size']+1) * 0.39, 0.39), np.arange(0, (info['Size']+1) * 0.39, 0.39)) if mode == 'integrals': z = data axes.set_title('z pos: '+str(info['z_pos'])+' cm'+'\nreceived power: ' + str(np.round(np.sum(z)*1E-6, 3)) + ' W', fontsize=8, style='italic') elif mode == 'ratios': z = data axes.set_title('z pos: '+str(info['z_pos'])+' cm', fontsize=8, style='italic') elif mode == 'custom': z = data axes.set_title('z pos: '+str(info['z_pos'])+' cm', fontsize=8, style='italic') if mode != 'color': pcm = axes.pcolormesh(x, y, z, antialiased=False, shading='flat') if mode == 'color': z = data pcm = axes.imshow(z, origin='lower',extent=[x.min(), x.max(), y.min(), y.max()]) yticks = np.linspace(0., 0.39 * (info['Size']), 7) yticks[1:-1] = np.round(np.linspace(0., 0.39 * (info['Size']), 7)[1:-1]) xticks = np.linspace(0, 0.39 * (info['Size']), 7) xticks[1:-1] = np.round(np.linspace(0, 0.39 * (info['Size']), 7)[1:-1]) axes.set_yticks(yticks) axes.set_yticks(xticks) divider = make_axes_locatable(axes) if mode != 'color': bounds = [z.min(), z.max()] cax = divider.append_axes('right', size='5%', pad=0.05) if bar_to_max is True: barticks = np.arange(bounds[0], bounds[1], round((bounds[1]-bounds[0])/6)) cbar = fig.colorbar(pcm, cax=cax, boundaries=bounds, ticks=barticks) else: cbar = fig.colorbar(pcm, cax=cax) cbar.ax.tick_params(labelsize=7, pad=0.1) if mode == 'integrals': cbar.ax.set_ylabel("P / \u03BCW", fontsize=8, labelpad=0.2) elif mode == 'ratios': cbar.ax.set_ylabel("peak ratio / 1", fontsize=8, labelpad=0.2) elif mode == 'custom': cbar.ax.set_ylabel(cbar_title, fontsize=8, labelpad=0.2) axes.tick_params(axis='x', labelsize=7, pad=2) axes.tick_params(axis='y',labelsize=7, pad=0.1) axes.set_xlabel("x / cm", fontsize=8, labelpad=0.1) axes.set_ylabel("y / cm", fontsize=8, labelpad=0.1) axes.set_aspect('equal', adjustable='box') if self.thedir == '': self.thedir = Path(self.dir_path) fig.savefig(self.thedir/Path(info['Name'] +'Colormap_single_%sat%05.02f'%(mode,info['z_pos'])+ comment + str(len(self.thefiles)) + '.png') , dpi=300 , bbox_inches='tight' ) plt.show() def to_minimize(self, value, percent, array): """The function to be minimized by the cutoff at percent function""" return abs(np.sum(np.where(array>=value, array, 0)) - np.sum(array)*percent/100) def cutoff_at_percent(self, percent, array): """ Returns an array where the outer pixels are set to 0 to achieve a integral percentage value of each array measurement. Minimze results are stored in self.cutoff_results. ------------- Parameters: percent (number): The percentage of the array to keep. array (array): The array to be treated. """ self.cutoff_results = np.array([scipy.optimize.OptimizeResult]*len(array)) cutoff_array = np.zeros(array.shape) for i in range(0, len(array)): self.cutoff_results[i] = minimize(self.to_minimize, np.max(array[i])*0.1, tol=1, args=(percent, array[i]), method= 'Powell') cutoff_array[i] = np.where(array[i] >= self.cutoff_results[i]['x'], array[i], 0) return cutoff_array def determine_angle(self, array, center = 'auto', comment=''): """ Determines the emission angle depending on the input array. returns a plot and the calculated arrays. Also calculates the theretical orgin of the lightsource. --------------- Parameters: array (array): The array to be treated. center (tuple of two integers or 'auto', default is 'auto'): The center of the light source on the array. If center is ’auto’ , the position of the largest value in the array is used. Otherwise, pass a tuple of coordinates in pixels. --------------- Returns: angles (1D numpy array of 4 numbers): The opening angles in x and y direction. """ if 'auto' in center: center = np.reshape(np.array(np.where(array[-1] == np.amax(array[-1]))), (2)) logging.info('center found at ' + str(center)+ 'resp.'+ str(center*0.39)) x1 = np.zeros(len(array)) x2 = np.zeros(len(array)) y1 = np.zeros(len(array)) y2 = np.zeros(len(array)) try: self.all_z[0] = self.all_z[0] except: self.all_z = np.zeros(len(self.all_vars)) for num, i in np.ndenumerate(self.all_vars): self.all_z[num] = self.all_vars[num]['z_pos'] for i in range(0, len(array)): y1[i] = np.min(np.where(array[i, center[0], :] != 0)) y2[i] = self.all_vars[-1]['Size']-np.min(np.where(np.flip(array[i, center[0], :]) != 0)) x1[i] = np.min(np.where(array[i, :, center[1]] != 0)) x2[i] = self.all_vars[-1]['Size']-np.min(np.where(np.flip(array[i, :, center[1]]) != 0)) self.y1_model =
np.polyfit(self.all_z, y1, 1)
numpy.polyfit
""" ========================== Author: <NAME> Year: 2019 ========================== This module contains a competition class to handle a competition between two bots. """ import numpy as np from botbowl.core.table import CasualtyType from botbowl.core import Game, InvalidActionError from botbowl.core import load_arena, load_rule_set class TeamResult: def __init__(self, game, name, team, winner, crashed): self.name = name self.win = winner is not None and winner.name == name self.draw = winner is None self.loss = not (self.win or self.draw) self.tds = team.state.score self.cas = len(game.get_casualties(team)) self.cas_inflicted = len(game.get_casualties(game.get_opp_team(team))) self.killed = len([player for player in game.get_casualties(team) if CasualtyType.DEAD in player.state.injuries_gained]) self.kills_inflicted = len([player for player in game.get_casualties(game.get_opp_team(team)) if CasualtyType.DEAD in player.state.injuries_gained]) # Count inflicted casualties and kills from reports self.crashed_win = crashed and self.win self.crashed_loss = crashed and not self.win and not self.draw def print(self): print("-- {}".format(self.name)) print("Result: {}".format("Win" if self.win else ("Draw" if self.draw else "Loss"))) if self.crashed_win or self.crashed_loss: print("Game crashed") print("TDs: {}".format(self.tds)) print("Cas: {}".format(self.cas)) print("Cas inflicted: {}".format(self.cas_inflicted)) print("Killed: {}".format(self.killed)) print("Kills: {}".format(self.kills_inflicted)) class GameResult: def __init__(self, game, crashed=False): self.home_agent_name = game.home_agent.name self.away_agent_name = game.away_agent.name self.crashed = crashed if crashed: self.winner = None else: self.winner = game.get_winner() self.home_result = TeamResult(game, game.home_agent.name, game.state.home_team, self.winner, self.crashed) self.away_result = TeamResult(game, game.away_agent.name, game.state.away_team, self.winner, self.crashed) self.draw = self.winner is None self.tds = self.home_result.tds + self.away_result.tds self.cas_inflicted = self.home_result.cas_inflicted + self.away_result.cas_inflicted self.kills = self.home_result.kills_inflicted + self.away_result.kills_inflicted def print(self): print("############ GAME RESULTS ###########") print("Final score:") print("- {} {} - {} {}".format(self.away_agent_name, self.away_result.tds, self.home_result.tds, self.home_agent_name)) print("Casualties inflicted:") print("- {} {} - {} {}".format(self.away_agent_name, self.away_result.cas_inflicted, self.home_result.cas_inflicted, self.home_agent_name)) print("Kills inflicted:") print("- {} {} - {} {}".format(self.away_agent_name, self.away_result.kills_inflicted, self.home_result.kills_inflicted, self.home_agent_name)) print("Result:") if self.winner is not None: print(f"- Winner: {self.winner.name}") elif self.crashed: print("- Game crashed - no winner") else: print("- Draw") print("#####################################") class CompetitionResults: def __init__(self, competitor_a_name, competitor_b_name, game_results): self.game_results = game_results self.competitor_a_name = competitor_a_name self.competitor_b_name = competitor_b_name self.wins = { competitor_a_name: np.sum([1 if result.winner is not None and result.winner.name.lower() == competitor_a_name.lower() else 0 for result in game_results]), competitor_b_name: np.sum([1 if result.winner is not None and result.winner.name.lower() == competitor_b_name.lower() else 0 for result in game_results]) } self.decided = self.wins[competitor_a_name] + self.wins[competitor_b_name] self.undecided = len(game_results) - self.decided self.crashes = len([result for result in game_results if result.crashed]) self.a_crashes = len([result for result in game_results if result.crashed and result.winner is not None and result.winner.name.lower() != self.competitor_a_name.lower()]) self.b_crashes = len([result for result in game_results if result.crashed and result.winner is not None and result.winner.name.lower() != self.competitor_b_name.lower()]) self.tds = { competitor_a_name: [result.home_result.tds if result.home_agent_name.lower() == competitor_a_name.lower() else result.away_result.tds for result in game_results], competitor_b_name: [result.home_result.tds if result.home_agent_name.lower() == competitor_b_name.lower() else result.away_result.tds for result in game_results] } self.cas_inflicted = { competitor_a_name: [result.home_result.cas_inflicted if result.home_agent_name.lower() == competitor_a_name.lower() else result.away_result.cas_inflicted for result in game_results], competitor_b_name: [result.home_result.cas_inflicted if result.home_agent_name.lower() == competitor_b_name.lower() else result.away_result.cas_inflicted for result in game_results] } self.kills_inflicted = { competitor_a_name: [result.home_result.kills_inflicted if result.home_agent_name.lower() == competitor_a_name.lower() else result.away_result.kills_inflicted for result in game_results], competitor_b_name: [result.home_result.kills_inflicted if result.home_agent_name.lower() == competitor_b_name.lower() else result.away_result.kills_inflicted for result in game_results] } def print(self): print("%%%%%%%%% COMPETITION RESULTS %%%%%%%%%") if len(self.game_results) == 0: print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") return print("Wins:") print("- {}: {}".format(self.competitor_a_name, self.wins[self.competitor_a_name])) print("- {}: {}".format(self.competitor_b_name, self.wins[self.competitor_b_name])) print(f"Draws: {self.undecided}") print(f"Crashes: {self.crashes}") if self.crashes > 0: print(f"- {self.competitor_a_name}: {self.a_crashes}") print(f"- {self.competitor_b_name}: {self.b_crashes}") print("TDs:") print("- {}: {} (avg. {})".format(self.competitor_a_name, np.sum(self.tds[self.competitor_a_name]), np.mean(self.tds[self.competitor_a_name]))) print("- {}: {} (avg. {})".format(self.competitor_b_name,
np.sum(self.tds[self.competitor_b_name])
numpy.sum
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np import pytest import openvino.opset8 as ov from openvino.impl import Shape, Type from tests.runtime import get_runtime from tests.test_ngraph.util import run_op_node @pytest.mark.parametrize( "ng_api_fn, numpy_fn, range_start, range_end", [ (ov.absolute, np.abs, -1, 1), (ov.abs, np.abs, -1, 1), (ov.acos, np.arccos, -1, 1), (ov.acosh, np.arccosh, 1, 2), (ov.asin, np.arcsin, -1, 1), (ov.asinh, np.arcsinh, -1, 1), (ov.atan, np.arctan, -100.0, 100.0), (ov.atanh, np.arctanh, 0.0, 1.0), (ov.ceiling, np.ceil, -100.0, 100.0), (ov.ceil, np.ceil, -100.0, 100.0), (ov.cos, np.cos, -100.0, 100.0), (ov.cosh, np.cosh, -100.0, 100.0), (ov.exp, np.exp, -100.0, 100.0), (ov.floor, np.floor, -100.0, 100.0), (ov.log, np.log, 0, 100.0), (ov.relu, lambda x: np.maximum(0, x), -100.0, 100.0), (ov.sign, np.sign, -100.0, 100.0), (ov.sin, np.sin, -100.0, 100.0), (ov.sinh, np.sinh, -100.0, 100.0), (ov.sqrt, np.sqrt, 0.0, 100.0), (ov.tan, np.tan, -1.0, 1.0), (ov.tanh, np.tanh, -100.0, 100.0), ], ) def test_unary_op_array(ng_api_fn, numpy_fn, range_start, range_end): np.random.seed(133391) input_data = (range_start + np.random.rand(2, 3, 4) * (range_end - range_start)).astype(np.float32) expected = numpy_fn(input_data) result = run_op_node([input_data], ng_api_fn) assert np.allclose(result, expected, rtol=0.001) @pytest.mark.parametrize( "ng_api_fn, numpy_fn, input_data", [ pytest.param(ov.absolute, np.abs, np.float32(-3)), pytest.param(ov.abs, np.abs, np.float32(-3)), pytest.param(ov.acos, np.arccos, np.float32(-0.5)), pytest.param(ov.asin, np.arcsin, np.float32(-0.5)), pytest.param(ov.atan, np.arctan, np.float32(-0.5)), pytest.param(ov.ceiling, np.ceil, np.float32(1.5)), pytest.param(ov.ceil, np.ceil, np.float32(1.5)), pytest.param(ov.cos, np.cos, np.float32(np.pi / 4.0)), pytest.param(ov.cosh, np.cosh, np.float32(np.pi / 4.0)), pytest.param(ov.exp, np.exp, np.float32(1.5)), pytest.param(ov.floor, np.floor, np.float32(1.5)), pytest.param(ov.log, np.log, np.float32(1.5)), pytest.param(ov.relu, lambda x: np.maximum(0, x), np.float32(-0.125)), pytest.param(ov.sign, np.sign, np.float32(0.0)), pytest.param(ov.sin, np.sin,
np.float32(np.pi / 4.0)
numpy.float32
"""Code for sampling the household and age structure of a population of n agents. """ import numpy as np import csv from pkg_resources import resource_filename def get_age_distribution(country): age_distribution=[] with open(resource_filename(__package__, 'ages/World_Age_2019.csv')) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: if row[0]==country: for i in range(101): age_distribution.append(float(row[i+1])) break return
np.array(age_distribution)
numpy.array
""" Code to draw plot for the documentation. This plots an example of non-convergence in asymmetric replicator dynamics. The code should match the reference code in the documentation. """ import matplotlib.pyplot as plt import numpy as np import nashpy as nash A = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]]) B = A.transpose() game = nash.Game(A, B) x0 = np.array([0.3, 0.35, 0.35]) y0 =
np.array([0.3, 0.35, 0.35])
numpy.array
""" File: test_beams.py Author: <NAME> Email: <EMAIL> Github: https://github.com/<NAME> Description: """ if __name__ == '__main__': import numpy as np import matplotlib.pyplot as plt from skimage.restoration import unwrap_phase from skimage.exposure import rescale_intensity from mpl_toolkits.axes_grid1 import ImageGrid from common.constants import j from beams.GaussianLaguerreBeams import GaussLaguerreModeSet as GLM from utils.filters import circ_mask plt.style.use('mint') wavelength = 624 * 1e-9 k = 2 * np.pi / wavelength w0 = 20 * 1e-6 N = 70 L = 100 * 1e-6 x0 =
np.linspace(-L/2, L/2, N)
numpy.linspace
# --- VERSION 0.1.3 updated 20211101 by NTA --- import pandas as pd import numpy as np import os from pathlib import Path import matplotlib.pyplot as plt import seaborn as sns import time # ---- INITIALIZE VARIABLES ---- lil_del_dict_eth3 = [] lil_del_dict_eth3_UID = [] rmv_msg = [] rmv_meta_list = [] output_sep = '--------------' # ---- VARIABLES for read_Nu_data function (faster to define constants outside of functions to avoid looping)---- # Get indices reference and sample side measurements # ref_b1_idx = np.linspace(0, 40, 21, dtype = int) # ref_b2_idx = np.linspace(41, 81, 21, dtype = int) # ref_b3_idx = np.linspace(82, 122, 21, dtype = int) # ref_idx = np.concatenate([ref_b1_idx, ref_b2_idx, ref_b3_idx]) # ---- ASSIGN PLOT DEFAULTS ---- sns.set_palette("colorblind") pal = sns.color_palette() medium_font = 10 plt.rc('axes', labelsize=medium_font, labelweight = 'bold') plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' # ---- READ IN PARAMETERS ('params.xlsx') ---- xls = pd.ExcelFile(Path.cwd().parents[0] / 'params.xlsx') df_anc = pd.read_excel(xls, 'Anchors', index_col = 'Anchor') df_const = pd.read_excel(xls, 'Constants', index_col = 'Name') df_threshold = pd.read_excel(xls, 'Thresholds', index_col = 'Type') df_rnm = pd.read_excel(xls, 'Rename_by_UID') long_term_d47_SD = df_threshold['Value'].loc['long_term_SD'] num_SD = df_threshold['Value'].loc['num_SD'] SD_thresh = long_term_d47_SD*num_SD # pulled from parameters file bad_count_thresh = df_threshold['Value'].loc['bad_count_thresh'] transducer_pressure_thresh = df_threshold['Value'].loc['transducer_pressure_thresh'] balance_high = df_threshold['Value'].loc['balance_high'] balance_low = df_threshold['Value'].loc['balance_low'] calc_a18O = df_const['Value'].loc['calc_a18O'] arag_a18O = df_const['Value'].loc['arag_a18O'] dolo_a18O = df_const['Value'].loc['dolo_a18O'] Nominal_D47 = df_anc.to_dict()['D47'] # Sets anchor values for D47crunch as dictionary {Anchor: value} # ---- DEFINE FUNCTIONS USED TO CALCULATE D47/T/D18Ow ---- def calc_bern_temp(D47_value): ''' Calculates D47 temp using calibration from Bernasconi et al. (2018) 25C ''' return (((0.0449 * 1000000) / (D47_value - 0.167))**0.5) - 273.15 def calc_MIT_temp(D47_value): ''' Calculates D47 temp using preliminary calibration from Anderson et al. (2020) 90C''' if D47_value > 0.153: #(prevents complex returns) return (((0.039 * 1000000) / (D47_value - 0.153))**0.5) - 273.15 else: return np.nan def calc_Petersen_temp(D47_value): '''Calculates D47 temperature (C) using calibration from Petersen et al. (2019) 90C''' return (((0.0383 * 1000000) / (D47_value - 0.170))**0.5) - 273.15 def make_water_KON97(D47_T): '''Calculates fluid d18O based on D47 temperature from Kim and O'Neil (1997)''' thousandlna_KON97 = 18.03 * (1e3 * (1/(D47_T + 273.15))) - 32.42 a_KON97 = np.exp((thousandlna_KON97/1000)) eps_KON97 = (a_KON97-1) * 1e3 return eps_KON97 def make_water_A21(D47_T): '''Calculates fluid d18O based on D47 temperature from Anderson et al. (2021)''' thousandlna_A21 = 17.5 * (1e3 * (1/(D47_T + 273.15))) - 29.1 a_A21 = np.exp((thousandlna_A21/1000)) eps_A21 = (a_A21-1) * 1e3 return eps_A21 def thousandlna(mineral): '''Calculates 18O acid fractination factor to convert CO2 d18O to mineral d18O''' if mineral == 'calcite' or mineral == 'Calcite': #a = 1.00871 # Kim (2007) a = calc_a18O elif mineral == 'dolomite' or mineral == 'Dolomite': #a = 1.009926 #Rosenbaum and Sheppard (1986) from Easotope a = dolo_a18O elif mineral == 'aragonite' or mineral == 'Aragonite': #a = 1.0090901 # Kim (2007) a = arag_a18O else: a = calc_a18O return 1000*np.log(a) # ---- Define helper functions ---- # import fnmatch # def find_file(pattern, path): # DOESNT WORK YET -- MIGHT BE MORE EFFICIENT # result = [] # for files in os.walk(path): # print(files) # if isinstance(files, str): # print(files) # if fnmatch.fnmatch(files, pattern): # print('found') # result.append(os.path.join(root, files)) # return result # ---- READ AND CORRECT DATA ---- def read_Nu_data(data_file, file_number, current_sample, folder_name, run_type): ''' PURPOSE: Read in raw voltages from Nu data file (e.g., Data_13553 ETH-1.txt), zero correct, calculate R values, and calculate little deltas INPUTS: Path to Nu data file (.txt); analysis UID (e.g., 10460); sample name (e.g., ETH-1); and run type ('standard' or 'clumped') OUTPUT: List of mean d45 to d49 (i.e. little delta) values as Pandas dataframe ''' bad_count = 0 # Keeps track of bad cycles (cycles > 5 SD from sample mean) bad_rep_count = 0 # Keeps track of bad replicates # -- Read in file -- # Deals with different .txt file formats starting at UID 1899, 9628 (Nu software updates) if file_number > 9628: n_skip = 31 elif file_number < 1899: n_skip = 29 else: n_skip = 30 try: df = pd.read_fwf(data_file, skiprows = n_skip, header = None) # Read in file, skip n_skip rows, no header except NameError: print('Data file not found for UID', file_number) # -- Clean up data -- df = df.drop(columns = [0]) # removes first column (full of zeros) df = df.dropna(how = 'any') df = df.astype('float64') # make sure data is read as floats df = df[(df.T != 0).any()] # remove all zeroes; https://stackoverflow.com/questions/22649693/drop-rows-with-all-zeros-in-pandas-data-frame df = df.reset_index(drop = 'True') # -- Read in blank i.e. zero measurement -- df_zero = df.head(6).astype('float64') # first 6 rows are the "Blank" i.e. zero measurement; used to zero-correct entire replicate df_zero_mean = (df_zero.apply(np.mean, axis = 1)).round(21) # calculates mean of zero for each mass df_mean = df.mean(axis = 1) # calculates the mean of each row (i.e., averages each individual measurement to calculate a cycle mean) # Every 6th entry is a particular mass, starting with mass 49. Starts at 6 to avoid zero measurements. mass_49_index = np.arange(6, len(df), 6) mass_48_index = np.arange(7, len(df), 6) mass_47_index = np.arange(8, len(df), 6) mass_46_index = np.arange(9, len(df), 6) mass_45_index = np.arange(10, len(df), 6) mass_44_index = np.arange(11, len(df), 6) # -- Calculate R values -- # subtract mass_44 zero measurement from each mass_44 meas m44 = df_mean[mass_44_index] - df_zero_mean[5] m44 = m44.dropna() m44 = m44.reset_index(drop = True) # For all masses, subtract zero measurement from actual measurement, and then calc 4X/49 ratio. m49 = df_mean[mass_49_index] - df_zero_mean[0] m49 = m49.dropna() m49 = m49.reset_index(drop = True) m49_44 = m49/m44 # calculate raw 49/44 ratio m48 = df_mean[mass_48_index] - df_zero_mean[1] m48 = m48.dropna() m48 = m48.reset_index(drop = True) m48_44 = m48/m44 m47 = df_mean[mass_47_index] - df_zero_mean[2] m47 = m47.dropna() m47 = m47.reset_index(drop = True) m47_44 = m47/m44 m46 = df_mean[mass_46_index] - df_zero_mean[3] m46 = m46.dropna() m46 = m46.reset_index(drop = True) m46_44 = m46/m44 m45 = df_mean[mass_45_index] - df_zero_mean[4] m45 = m45.dropna() m45 = m45.reset_index(drop = True) m45_44 = m45/m44 # Create a zero-corrected dataframe of R values df_zero_corr = pd.DataFrame({'m44':m44, 'm45_44':m45_44,'m46_44':m46_44, 'm47_44':m47_44, 'm48_44':m48_44, 'm49_44':m49_44}) # Calculate little deltas (d4X) by correcting each sample side measurement to bracketing ref side measurements lil_del = [] # if clumped run, index locations of all sample side cycles are defined at top of script so they are not redefined with every analysis sam_b1_idx = np.linspace(1, 39, 20, dtype = int) sam_b2_idx = np.linspace(42, 80, 20, dtype = int) sam_b3_idx = np.linspace(83, 121, 20, dtype = int) sam_idx = np.concatenate([sam_b1_idx, sam_b2_idx, sam_b3_idx]) # if standard run, index locations of sample side cycles are different if run_type == 'standard': sam_idx = np.linspace(1, 11, 6, dtype = int) # compare sample measurement to bracketing ref gas measurement for i in df_zero_corr.columns: for j in sam_idx: # 'sam_idx' defined near top of script # df_zero_corr[i][j] is the sample side # df_zero_corr[i][j-1] is the previous ref side # df_zero_corr[i][j+1] is the following ref side lil_del.append(((((df_zero_corr[i][j]/df_zero_corr[i][j-1]) + (df_zero_corr[i][j]/df_zero_corr[i][j+1]))/2.)-1)*1000) # Define each little delta value by index position if run_type == 'clumped': d45 = lil_del[60:120] d46 = lil_del[120:180] d47 = lil_del[180:240] d48 = lil_del[240:300] d49 = lil_del[300:360] elif run_type == 'standard': d45 = lil_del[6:12] d46 = lil_del[12:18] d47 = lil_del[18:24] d48 = lil_del[24:30] d49 = lil_del[30:36] lil_del_dict = {'d45':d45, 'd46':d46,'d47':d47, 'd48':d48, 'd49':d49} df_lil_del = pd.DataFrame(lil_del_dict) # export to dataframe -- makes it easier for next function to handle if 'ETH' in current_sample and '3' in current_sample: # this bit is to provide raw data for joyplots/etc. lil_del_dict_eth3.extend(d47) # for i in range(len(lil_del_dict_eth3)): lil_del_dict_eth3_UID.append(file_number) batch_data_list = [file_number, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan] # Calculate median of all cycles. median_47 = df_lil_del['d47'].median() d47_pre_SE = df_lil_del['d47'].sem() # -- FIND BAD CYCLES -- # Removes any cycles that have d47 values > 5 SD away from sample median. If more than 'bad_count_thresh' cycles violate this criteria, entire replicate is removed. if run_type == 'clumped': for i in range(len(df_lil_del['d47'])): # If d47 is outside threshold, remove little deltas of ALL masses for that cycle (implemented 20210819) if (df_lil_del['d47'].iloc[i]) > ((median_47) + (SD_thresh)) or ((df_lil_del['d47'].iloc[i]) < ((median_47) - (SD_thresh))): df_lil_del['d45'].iloc[i] = np.nan # 'Disables' cycle; sets value to nan df_lil_del['d46'].iloc[i] = np.nan df_lil_del['d47'].iloc[i] = np.nan df_lil_del['d48'].iloc[i] = np.nan df_lil_del['d49'].iloc[i] = np.nan bad_count += 1 session = str(folder_name[:8]) # creates name of session; first 8 characters of folder name are date of run start per our naming convention (e.g., 20211008 clumped apatite NTA = 20211008) d47_post_SE = df_lil_del['d47'].sem() rmv_analyses = [] # analysis to be removed this_path = Path.cwd() / 'raw_data' / folder_name # -- Find bad replicates -- # This goes through batch summary data and checks values against thresholds from params.xlsx for i in os.listdir(this_path): if 'Batch Results.csv' in i and 'fail' not in os.listdir(this_path): # checks for and reads results summary file summ_file = Path.cwd() / 'raw_data' / folder_name / i # i = e.g., 20210505 clumped dolomite apatite calibration 5 NTA Batch Results.csv df_results_summ = pd.read_csv(summ_file, encoding = 'latin1', skiprows = 3, header = [0,1]) df_results_summ.columns = df_results_summ.columns.map('_'.join).str.strip() # fixes weird headers of Nu Summary files #Get the index location of the row that corresponds to the given file number (i.e. replicate) curr_row = df_results_summ.loc[df_results_summ['Data_File'].str.contains(str(file_number))].index batch_data_list = [file_number, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, d47_pre_SE, d47_post_SE, bad_count] if len(curr_row) == 1 and run_type == 'clumped': # curr_row is Int64Index, which acts like a list. If prev line finds either 0 or 2 matching lines, it will skip this section. transduc_press = float(df_results_summ['Transducer_Pressure'][curr_row]) samp_weight = float(df_results_summ['Sample_Weight'][curr_row]) NuCarb_temp = float(df_results_summ['Ave_Temperature'][curr_row]) pumpover = float(df_results_summ['MaxPumpOverPressure_'][curr_row]) init_beam = float(df_results_summ['Initial_Sam Beam'][curr_row]) balance = float(df_results_summ['Balance_%'][curr_row]) vial_loc = float(df_results_summ['Vial_Location'][curr_row]) d13C_SE = float(df_results_summ['Std_Err.5'][curr_row]) d18O_SE = float(df_results_summ['Std_Err.6'][curr_row]) D47_SE = float(df_results_summ['Std_Err.7'][curr_row]) batch_data_list = [file_number, transduc_press, samp_weight, NuCarb_temp, pumpover, init_beam, balance, vial_loc, d13C_SE, d18O_SE, D47_SE, d47_pre_SE, d47_post_SE, bad_count] # Remove any replicates that fail thresholds, compile a message that will be written to the terminal if transduc_press < transducer_pressure_thresh: rmv_analyses.append(file_number) rmv_msg.append((str(rmv_analyses[0]) + ' failed transducer pressure requirements (transducer_pressure = ' + str(round(transduc_press,1)) + ')' )) if balance > balance_high or balance < balance_low: rmv_analyses.append(file_number) rmv_msg.append((str(rmv_analyses[0]) + ' failed balance requirements (balance = ' + str(round(balance,1)) + ')')) if bad_count > bad_count_thresh: rmv_analyses.append(file_number) rmv_msg.append((str(rmv_analyses[0]) + ' failed cycle-level reproducibility requirements (bad cycles = ' + str(bad_count) + ')')) break # Found a matching file? There only should be one, so stop here. else: # Couldn't find matching UID, or got confused. No batch summary data included. batch_data_list = [file_number, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, d47_pre_SE, d47_post_SE, bad_count] # If replicate doesn't fail any thresholds, calculate the mean lil delta and return as a list if bad_count < bad_count_thresh and file_number not in rmv_analyses: d45_avg = format(df_lil_del['d45'].mean(), 'f') d46_avg = format(df_lil_del['d46'].mean(), 'f') d47_avg = format(df_lil_del['d47'].mean(), 'f') d48_avg = format(df_lil_del['d48'].mean(), 'f') d49_avg = format(df_lil_del['d49'].mean(), 'f') data_list = [file_number, session, current_sample, d45_avg, d46_avg, d47_avg, d48_avg, d49_avg] return data_list, batch_data_list # If replicate fails any threshold, return list with nans for little deltas and add in metadata else: data_list = [file_number, session, current_sample, np.nan, np.nan, np.nan, np.nan, np.nan] batch_data_list.append(current_sample) rmv_meta_list.append(batch_data_list) return None, None def fix_names(df): ''' PURPOSE: Changes names of standards and samples to uniform entries based on conversion spreadsheet INPUT: Pandas Dataframe of little deltas, names_to_change tab in params.csv OUTPUT: Fully corrected, accurately named little deltas (raw_deltas.csv)''' df['Sample'] = df['Sample'].str.strip() # strip whitespace df_new = pd.read_excel(xls, 'Names_to_change') # rename based on name (names_to_change; i.e. EHT-1 --> ETH-1) for i in range(len(df_new)): df['Sample']=df['Sample'].str.replace(df_new['old_name'][i], df_new['new_name'][i]) # rename samples based on UID (Rename_by_UID; i.e. whatever the name of 10155 is, change to 'ETH-1') if len(df_rnm) > 0: # check if there's anything to rename for i in range(len(df_rnm)): rnm_loc =
np.where(df['UID'] == df_rnm['UID'][i])
numpy.where
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """image""" import numbers import numpy as np import mindspore.common.dtype as mstype from mindspore.common.tensor import Tensor from mindspore.ops import operations as P from mindspore.ops import functional as F from mindspore.ops.primitive import constexpr from mindspore._checkparam import Rel, Validator as validator from .conv import Conv2d from .container import CellList from .pooling import AvgPool2d from .activation import ReLU from ..cell import Cell __all__ = ['ImageGradients', 'SSIM', 'MSSSIM', 'PSNR', 'CentralCrop'] class ImageGradients(Cell): r""" Returns two tensors, the first is along the height dimension and the second is along the width dimension. Assume an image shape is :math:`h*w`. The gradients along the height and the width are :math:`dy` and :math:`dx`, respectively. .. math:: dy[i] = \begin{cases} image[i+1, :]-image[i, :], &if\ 0<=i<h-1 \cr 0, &if\ i==h-1\end{cases} dx[i] = \begin{cases} image[:, i+1]-image[:, i], &if\ 0<=i<w-1 \cr 0, &if\ i==w-1\end{cases} Inputs: - **images** (Tensor) - The input image data, with format 'NCHW'. Outputs: - **dy** (Tensor) - vertical image gradients, the same type and shape as input. - **dx** (Tensor) - horizontal image gradients, the same type and shape as input. Examples: >>> net = nn.ImageGradients() >>> image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mstype.int32) >>> net(image) [[[[2,2] [0,0]]]] [[[[1,0] [1,0]]]] """ def __init__(self): super(ImageGradients, self).__init__() def construct(self, images): check = _check_input_4d(F.shape(images), "images", self.cls_name) images = F.depend(images, check) batch_size, depth, height, width = P.Shape()(images) if height == 1: dy = P.Fill()(P.DType()(images), (batch_size, depth, 1, width), 0) else: dy = images[:, :, 1:, :] - images[:, :, :height - 1, :] dy_last = P.Fill()(P.DType()(images), (batch_size, depth, 1, width), 0) dy = P.Concat(2)((dy, dy_last)) if width == 1: dx = P.Fill()(P.DType()(images), (batch_size, depth, height, 1), 0) else: dx = images[:, :, :, 1:] - images[:, :, :, :width - 1] dx_last = P.Fill()(P.DType()(images), (batch_size, depth, height, 1), 0) dx = P.Concat(3)((dx, dx_last)) return dy, dx def _convert_img_dtype_to_float32(img, max_val): """convert img dtype to float32""" # Ususally max_val is 1.0 or 255, we will do the scaling if max_val > 1. # We will scale img pixel value if max_val > 1. and just cast otherwise. ret = F.cast(img, mstype.float32) max_val = F.scalar_cast(max_val, mstype.float32) if max_val > 1.: scale = 1. / max_val ret = ret * scale return ret @constexpr def _get_dtype_max(dtype): """get max of the dtype""" np_type = mstype.dtype_to_nptype(dtype) if issubclass(np_type, numbers.Integral): dtype_max = np.float64(np.iinfo(np_type).max) else: dtype_max = 1.0 return dtype_max @constexpr def _check_input_4d(input_shape, param_name, func_name): if len(input_shape) != 4: raise ValueError(f"{func_name} {param_name} should be 4d, but got shape {input_shape}") return True @constexpr def _check_input_filter_size(input_shape, param_name, filter_size, func_name): _check_input_4d(input_shape, param_name, func_name) validator.check(param_name + " shape[2]", input_shape[2], "filter_size", filter_size, Rel.GE, func_name) validator.check(param_name + " shape[3]", input_shape[3], "filter_size", filter_size, Rel.GE, func_name) @constexpr def _check_input_dtype(input_dtype, param_name, allow_dtypes, cls_name): validator.check_type_name(param_name, input_dtype, allow_dtypes, cls_name) def _conv2d(in_channels, out_channels, kernel_size, weight, stride=1, padding=0): return Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, weight_init=weight, padding=padding, pad_mode="valid") def _create_window(size, sigma): x_data, y_data = np.mgrid[-size // 2 + 1:size // 2 + 1, -size // 2 + 1:size // 2 + 1] x_data = np.expand_dims(x_data, axis=-1).astype(np.float32) x_data = np.expand_dims(x_data, axis=-1) ** 2 y_data = np.expand_dims(y_data, axis=-1).astype(np.float32) y_data =
np.expand_dims(y_data, axis=-1)
numpy.expand_dims
from __future__ import division import os import numpy as np import cv2 from libs import utils from torch.utils.data import Dataset import json from PIL import Image class DAVIS2017(Dataset): """DAVIS 2017 dataset constructed using the PyTorch built-in functionalities""" def __init__(self, split='val', root='', num_frames=None, custom_frames=None, transform=None, retname=False, seq_name=None, obj_id=None, gt_only_first_frame=False, no_gt=False, batch_gt=False, rgb=False, effective_batch=None, prev_round_masks = None,#f,h,w ): """Loads image to label pairs for tool pose estimation split: Split or list of splits of the dataset root: dataset directory with subfolders "JPEGImages" and "Annotations" num_frames: Select number of frames of the sequence (None for all frames) custom_frames: List or Tuple with the number of the frames to include transform: Data transformations retname: Retrieve meta data in the sample key 'meta' seq_name: Use a specific sequence obj_id: Use a specific object of a sequence (If None and sequence is specified, the batch_gt is True) gt_only_first_frame: Provide the GT only in the first frame no_gt: No GT is provided batch_gt: For every frame sequence batch all the different objects gt rgb: Use RGB channel order in the image """ if isinstance(split, str): self.split = [split] else: split.sort() self.split = split self.db_root_dir = root self.transform = transform self.seq_name = seq_name self.obj_id = obj_id self.num_frames = num_frames self.custom_frames = custom_frames self.retname = retname self.rgb = rgb if seq_name is not None and obj_id is None: batch_gt = True self.batch_gt = batch_gt self.all_seqs_list = [] self.seqs = [] for splt in self.split: with open(os.path.join(self.db_root_dir, 'ImageSets', '2017', splt + '.txt')) as f: seqs_tmp = f.readlines() seqs_tmp = list(map(lambda elem: elem.strip(), seqs_tmp)) self.seqs.extend(seqs_tmp) self.seq_list_file = os.path.join(self.db_root_dir, 'ImageSets', '2017', '_'.join(self.split) + '_instances.txt') # Precompute the dictionary with the objects per sequence if not self._check_preprocess(): self._preprocess() if self.seq_name is None: img_list = [] labels = [] prevmask_list= [] for seq in self.seqs: images = np.sort(os.listdir(os.path.join(self.db_root_dir, 'JPEGImages/480p/', seq.strip()))) images_path = list(map(lambda x: os.path.join('JPEGImages/480p/', seq.strip(), x), images)) lab = np.sort(os.listdir(os.path.join(self.db_root_dir, 'Annotations/480p/', seq.strip()))) lab_path = list(map(lambda x: os.path.join('Annotations/480p/', seq.strip(), x), lab)) if num_frames is not None: seq_len = len(images_path) num_frames = min(num_frames, seq_len) frame_vector = np.arange(num_frames) frames_ids = list(np.round(frame_vector*seq_len/float(num_frames)).astype(np.int)) frames_ids[-1] = min(frames_ids[-1], seq_len) images_path = [images_path[x] for x in frames_ids] if no_gt: lab_path = [None] * len(images_path) else: lab_path = [lab_path[x] for x in frames_ids] elif isinstance(custom_frames, tuple) or isinstance(custom_frames, list): assert min(custom_frames) >= 0 and max(custom_frames) <= len(images_path) images_path = [images_path[x] for x in custom_frames] prevmask_list = [prev_round_masks[x] for x in custom_frames] if no_gt: lab_path = [None] * len(images_path) else: lab_path = [lab_path[x] for x in custom_frames] if gt_only_first_frame: lab_path = [lab_path[0]] lab_path.extend([None] * (len(images_path) - 1)) elif no_gt: lab_path = [None] * len(images_path) if self.batch_gt: obj = self.seq_dict[seq] if -1 in obj: obj.remove(-1) for ii in range(len(img_list), len(images_path)+len(img_list)): self.all_seqs_list.append([obj, ii]) else: for obj in self.seq_dict[seq]: if obj != -1: for ii in range(len(img_list), len(images_path)+len(img_list)): self.all_seqs_list.append([obj, ii]) img_list.extend(images_path) labels.extend(lab_path) else: # Initialize the per sequence images for online training assert self.seq_name in self.seq_dict.keys(), '{} not in {} set.'.format(self.seq_name, '_'.join(self.split)) names_img = np.sort(os.listdir(os.path.join(self.db_root_dir, 'JPEGImages/480p/', str(seq_name)))) img_list = list(map(lambda x: os.path.join('JPEGImages/480p/', str(seq_name), x), names_img)) name_label = np.sort(os.listdir(os.path.join(self.db_root_dir, 'Annotations/480p/', str(seq_name)))) labels = list(map(lambda x: os.path.join('Annotations/480p/', str(seq_name), x), name_label)) prevmask_list = [] if num_frames is not None: seq_len = len(img_list) num_frames = min(num_frames, seq_len) frame_vector = np.arange(num_frames) frames_ids = list(np.round(frame_vector * seq_len / float(num_frames)).astype(np.int)) frames_ids[-1] = min(frames_ids[-1], seq_len) img_list = [img_list[x] for x in frames_ids] if no_gt: labels = [None] * len(img_list) else: labels = [labels[x] for x in frames_ids] elif isinstance(custom_frames, tuple) or isinstance(custom_frames, list): assert min(custom_frames) >= 0 and max(custom_frames) <= len(img_list) img_list = [img_list[x] for x in custom_frames] prevmask_list = [prev_round_masks[x] for x in custom_frames] if no_gt: labels = [None] * len(img_list) else: labels = [labels[x] for x in custom_frames] if gt_only_first_frame: labels = [labels[0]] labels.extend([None]*(len(img_list)-1)) elif no_gt: labels = [None] * len(img_list) if obj_id is not None: assert obj_id in self.seq_dict[self.seq_name], \ "{} doesn't have this object id {}.".format(self.seq_name, str(obj_id)) if self.batch_gt: self.obj_id = self.seq_dict[self.seq_name] if -1 in self.obj_id: self.obj_id.remove(-1) self.obj_id = [0]+self.obj_id assert (len(labels) == len(img_list)) if effective_batch: self.img_list = img_list * effective_batch self.labels = labels * effective_batch else: self.img_list = img_list self.labels = labels self.prevmasks_list = prevmask_list # print('Done initializing DAVIS2017 '+'_'.join(self.split)+' Dataset') # print('Number of images: {}'.format(len(self.img_list))) # if self.seq_name is None: # print('Number of elements {}'.format(len(self.all_seqs_list))) def _check_preprocess(self): _seq_list_file = self.seq_list_file if not os.path.isfile(_seq_list_file): return False else: self.seq_dict = json.load(open(self.seq_list_file, 'r')) return True def _preprocess(self): self.seq_dict = {} for seq in self.seqs: # Read object masks and get number of objects name_label = np.sort(os.listdir(os.path.join(self.db_root_dir, 'Annotations/480p/', seq))) label_path = os.path.join(self.db_root_dir, 'Annotations/480p/', seq, name_label[0]) _mask = np.array(Image.open(label_path)) _mask_ids = np.unique(_mask) n_obj = _mask_ids[-1] self.seq_dict[seq] = list(range(1, n_obj+1)) with open(self.seq_list_file, 'w') as outfile: outfile.write('{{\n\t"{:s}": {:s}'.format(self.seqs[0], json.dumps(self.seq_dict[self.seqs[0]]))) for ii in range(1, len(self.seqs)): outfile.write(',\n\t"{:s}": {:s}'.format(self.seqs[ii], json.dumps(self.seq_dict[self.seqs[ii]]))) outfile.write('\n}\n') print('Preprocessing finished') def __len__(self): if self.seq_name is None: return len(self.all_seqs_list) else: return len(self.img_list) def __getitem__(self, idx): # print(idx) img, gt, prev_round_mask = self.make_img_gt_mask_pair(idx) pad_img, pad_info = utils.apply_pad(img) pad_gt= utils.apply_pad(gt, padinfo = pad_info)#h,w,n sample = {'image': pad_img, 'gt': pad_gt} if self.retname: if self.seq_name is None: obj_id = self.all_seqs_list[idx][0] img_path = self.img_list[self.all_seqs_list[idx][1]] else: obj_id = self.obj_id img_path = self.img_list[idx] seq_name = img_path.split('/')[-2] frame_id = img_path.split('/')[-1].split('.')[-2] sample['meta'] = {'seq_name': seq_name, 'frame_id': frame_id, 'obj_id': obj_id, 'im_size': (img.shape[0], img.shape[1]), 'pad_size': (pad_img.shape[0], pad_img.shape[1]), 'pad_info': pad_info} if self.transform is not None: sample = self.transform(sample) return sample def make_img_gt_mask_pair(self, idx): """ Make the image-ground-truth pair """ prev_round_mask_tmp = self.prevmasks_list[idx] if self.seq_name is None: obj_id = self.all_seqs_list[idx][0] img_path = self.img_list[self.all_seqs_list[idx][1]] label_path = self.labels[self.all_seqs_list[idx][1]] else: obj_id = self.obj_id img_path = self.img_list[idx] label_path = self.labels[idx] seq_name = img_path.split('/')[-2] n_obj = 1 if isinstance(obj_id, int) else len(obj_id) img = cv2.imread(os.path.join(self.db_root_dir, img_path)) img = np.array(img, dtype=np.float32) if self.rgb: img = img[:, :, [2, 1, 0]] if label_path is not None: label = Image.open(os.path.join(self.db_root_dir, label_path)) else: if self.batch_gt: gt = np.zeros(
np.append(img.shape[:-1], n_obj)
numpy.append
import pytest import numpy as np from numpy.testing import assert_allclose import emg3d from emg3d import maps from . import alternatives # Import soft dependencies. try: import discretize except ImportError: discretize = None # MAPS class TestMaps: mesh = emg3d.TensorMesh([[1, 1], [1, 1], [1]], (0, 0, 0)) values = np.array([0.01, 10, 3, 4]) def test_new(self): class MapNew(maps.BaseMap): def __init__(self): super().__init__(description='my new map') testmap = MapNew() assert "MapNew: my new map" in testmap.__repr__() with pytest.raises(NotImplementedError, match='Forward map not imple'): testmap.forward(1) with pytest.raises(NotImplementedError, match='Backward map not impl'): testmap.backward(1) with pytest.raises(NotImplementedError, match='Derivative chain not '): testmap.derivative_chain(1, 1) def test_conductivity(self): model = emg3d.Model(self.mesh, self.values, mapping='Conductivity') # Forward forward = model.map.forward(self.values) assert_allclose(forward, self.values) # Backward backward = model.map.backward(forward) assert_allclose(backward, self.values) # Derivative gradient = 2*np.ones(model.property_x.shape) derivative = gradient.copy() model.map.derivative_chain(gradient, model.property_x) assert_allclose(derivative, derivative) def test_lgconductivity(self): model = emg3d.Model(self.mesh, np.log10(self.values), mapping='LgConductivity') # Forward forward = model.map.forward(self.values) assert_allclose(forward, np.log10(self.values)) # Backward backward = model.map.backward(forward) assert_allclose(backward, self.values) # Derivative gradient = 2*np.ones(model.property_x.shape) derivative = gradient.copy() model.map.derivative_chain(gradient, model.property_x) assert_allclose(gradient, derivative*10**model.property_x*np.log(10)) def test_lnconductivity(self): model = emg3d.Model(self.mesh, np.log(self.values), mapping='LnConductivity') # Forward forward = model.map.forward(self.values) assert_allclose(forward, np.log(self.values)) # Backward backward = model.map.backward(forward) assert_allclose(backward, self.values) # Derivative gradient = 2*np.ones(model.property_x.shape) derivative = gradient.copy() model.map.derivative_chain(gradient, model.property_x) assert_allclose(gradient, derivative*np.exp(model.property_x)) def test_resistivity(self): model = emg3d.Model(self.mesh, 1/self.values, mapping='Resistivity') # Forward forward = model.map.forward(self.values) assert_allclose(forward, 1/self.values) # Backward backward = model.map.backward(forward) assert_allclose(backward, self.values) # Derivative gradient = 2*np.ones(model.property_x.shape) derivative = gradient.copy() model.map.derivative_chain(gradient, model.property_x) assert_allclose(gradient, -derivative*(1/model.property_x)**2) def test_lgresistivity(self): model = emg3d.Model(self.mesh, np.log10(1/self.values), mapping='LgResistivity') # Forward forward = model.map.forward(self.values) assert_allclose(forward, np.log10(1/self.values)) # Backward backward = model.map.backward(forward) assert_allclose(backward, self.values) # Derivative gradient = 2*np.ones(model.property_x.shape) derivative = gradient.copy() model.map.derivative_chain(gradient, model.property_x) assert_allclose(gradient, -derivative*10**-model.property_x*np.log(10)) def test_lnresistivity(self): model = emg3d.Model(self.mesh, np.log(self.values), mapping='LnResistivity') # Forward forward = model.map.forward(self.values) assert_allclose(forward, np.log(1/self.values)) # Backward backward = model.map.backward(forward) assert_allclose(backward, self.values) # Derivative gradient = 2*np.ones(model.property_x.shape) derivative = gradient.copy() model.map.derivative_chain(gradient, model.property_x) assert_allclose(gradient, -derivative*np.exp(-model.property_x)) # INTERPOLATIONS class TestInterpolate: # emg3d.interpolate is only a dispatcher function, calling other # interpolation routines; there are lots of small dummy tests here, but in # the end it is not up to emg3d.interpolate to check the accuracy of the # actual interpolation; the only relevance is to check if it calls the # right function. def test_linear(self): igrid = emg3d.TensorMesh( [np.array([1, 1]), np.array([1, 1, 1]), np.array([1, 1, 1])], [0, -1, -1]) ogrid = emg3d.TensorMesh( [np.array([1]), np.array([1]), np.array([1])], [0.5, 0, 0]) values = np.r_[9*[1.0, ], 9*[2.0, ]].reshape(igrid.shape_cells) # Simple, linear example. out = maps.interpolate( grid=igrid, values=values, xi=ogrid, method='linear') assert_allclose(out[0, 0, 0], 1.5) # Provide ogrid.gridCC. ogrid._gridCC = np.array([[0.5, 0.5, 0.5]]) out2 = maps.interpolate(igrid, values, ogrid, 'linear') assert_allclose(out2[0, 0, 0], 1.5) def test_linear_cubic(self): # Check 'linear' and 'cubic' yield almost the same result for a well # determined, very smoothly changing example. # Fine grid. fgrid = emg3d.TensorMesh( [np.ones(2**6)*10, np.ones(2**5)*100, np.ones(2**4)*1000], origin=np.array([-320., -1600, -8000])) # Smoothly changing model for fine grid. cmodel = np.arange(1, fgrid.n_cells+1).reshape( fgrid.shape_cells, order='F') # Coarser grid. cgrid = emg3d.TensorMesh( [np.ones(2**5)*15, np.ones(2**4)*150, np.ones(2**3)*1500], origin=np.array([-240., -1200, -6000])) # Interpolate linearly and cubic spline. lin_model = maps.interpolate(fgrid, cmodel, cgrid, 'linear') cub_model = maps.interpolate(fgrid, cmodel, cgrid, 'cubic') # Compare assert np.max(np.abs((lin_model-cub_model)/lin_model*100)) < 1.0 def test_nearest(self): # Assert it is 'nearest' or extrapolate if points are outside. tgrid = emg3d.TensorMesh( [np.array([1, 1, 1, 1]), np.array([1, 1, 1, 1]), np.array([1, 1, 1, 1])], origin=np.array([0., 0, 0])) tmodel = np.ones(tgrid.n_cells).reshape(tgrid.shape_cells, order='F') tmodel[:, 0, :] = 2 t2grid = emg3d.TensorMesh( [np.array([1]), np.array([1]), np.array([1])], origin=np.array([2, -1, 2])) # Nearest with cubic. out = maps.interpolate(tgrid, tmodel, t2grid, 'cubic') assert_allclose(out, 2.) # Same, but with log. vlog = maps.interpolate(tgrid, tmodel, t2grid, 'cubic', log=True) vlin = maps.interpolate(tgrid, np.log10(tmodel), t2grid, 'cubic') assert_allclose(vlog, 10**vlin) # Extrapolate with linear. out = maps.interpolate(tgrid, tmodel, t2grid, 'linear') assert_allclose(out, 3.) # Same, but with log. vlog = maps.interpolate(tgrid, tmodel, t2grid, 'linear', log=True) vlin = maps.interpolate(tgrid, np.log10(tmodel), t2grid, 'linear') assert_allclose(vlog, 10**vlin) # Assert it is 0 if points are outside. out = maps.interpolate(tgrid, tmodel, t2grid, 'cubic', False) assert_allclose(out, 0.) out = maps.interpolate(tgrid, tmodel, t2grid, 'linear', False) assert_allclose(out, 0.) def test_volume(self): # == X == Simple 1D model grid_in = emg3d.TensorMesh( [np.ones(5)*10, np.array([1, ]), np.array([1, ])], origin=np.array([0, 0, 0])) grid_out = emg3d.TensorMesh( [[10, 25, 10, 5, 2], [1, ], [1, ]], origin=(-5, 0, 0)) values_in = np.array([1., 5., 3, 7, 2])[:, None, None] values_out = maps.interpolate(grid_in, values_in, grid_out, 'volume') # Result 2nd cell: (5*1+10*5+10*3)/25=3.4 assert_allclose(values_out[:, 0, 0], np.array([1, 3.4, 7, 2, 2])) # Check log: vlogparam = maps.interpolate( grid_in, values_in, grid_out, 'volume', log=True) vlinloginp = maps.interpolate( grid_in, np.log10(values_in), grid_out, 'volume') assert_allclose(vlogparam, 10**vlinloginp) # == Y == Reverse it grid_out = emg3d.TensorMesh( [np.array([1, ]), np.ones(5)*10, np.array([1, ])], origin=np.array([0, 0, 0])) grid_in = emg3d.TensorMesh( [[1, ], [10, 25, 10, 5, 2], [1, ]], origin=[0, -5, 0]) values_in = np.array([1, 3.4, 7, 2, 2])[None, :, None] values_out = maps.interpolate(grid_in, values_in, grid_out, 'volume') # Result 1st cell: (5*1+5*3.4)/10=2.2 assert_allclose(values_out[0, :, 0], np.array([2.2, 3.4, 3.4, 7, 2])) # == Z == Another 1D test grid_in = emg3d.TensorMesh( [np.array([1, ]), np.array([1, ]), np.ones(9)*10], origin=np.array([0, 0, 0])) grid_out = emg3d.TensorMesh( [np.array([1, ]), np.array([1, ]), np.array([20, 41, 9, 30])], origin=np.array([0, 0, 0])) values_in = np.arange(1., 10)[None, None, :] values_out = maps.interpolate(grid_in, values_in, grid_out, 'volume') assert_allclose(values_out[0, 0, :], np.array([1.5, 187/41, 7, 260/30])) # == 3D == grid_in = emg3d.TensorMesh( [[1, 1, 1], [10, 10, 10, 10, 10], [10, 2, 10]], origin=(0, 0, 0)) grid_out = emg3d.TensorMesh( [[1, 2, ], [10, 25, 10, 5, 2], [4, 4, 4]], origin=[0, -5, 6]) create = np.array([[1, 2., 1]]) create = np.array([create, 2*create, create]) values_in = create*np.array([1., 5., 3, 7, 2])[None, :, None] values_out = maps.interpolate(grid_in, values_in, grid_out, 'volume') check = np.array([[1, 1.5, 1], [1.5, 2.25, 1.5]])[:, None, :] check = check*np.array([1, 3.4, 7, 2, 2])[None, :, None] assert_allclose(values_out, check) # == If the extent is the same, volume*values must remain constant. == grid_in = emg3d.TensorMesh( [np.array([1, 1, 1]), np.array([10, 10, 10, 10, 10]), np.array([10, 2, 10])], origin=np.array([0, 0, 0])) grid_out = emg3d.TensorMesh( [np.array([1, 2, ]), np.array([5, 25, 10, 5, 5]), np.array([9, 4, 9])], origin=np.array([0, 0, 0])) create = np.array([[1, 2., 1]]) create = np.array([create, 2*create, create]) values_in = create*np.array([1., 5., 3, 7, 2])[None, :, None] vol_in = np.outer(np.outer( grid_in.h[0], grid_in.h[1]).ravel('F'), grid_in.h[2]) vol_in = vol_in.ravel('F').reshape(grid_in.shape_cells, order='F') values_out = maps.interpolate(grid_in, values_in, grid_out, 'volume') vol_out = np.outer(np.outer(grid_out.h[0], grid_out.h[1]).ravel('F'), grid_out.h[2]) vol_out = vol_out.ravel('F').reshape(grid_out.shape_cells, order='F') assert_allclose(np.sum(values_out*vol_out), np.sum(values_in*vol_in)) def test_all_run(self): hx = [1, 1, 1, 2, 4, 8] grid = emg3d.TensorMesh([hx, hx, hx], (0, 0, 0)) grid2 = emg3d.TensorMesh([[2, 4, 5], [1, 1], [4, 5]], (0, 1, 0)) field = emg3d.Field(grid) field.fx = np.arange(1, field.fx.size+1).reshape( field.fx.shape, order='F') model = emg3d.Model(grid, 1, 2, 3) model.property_x[1, :, :] = 2 model.property_x[2, :, :] = 3 model.property_x[3, :, :] = 4 model.property_x[4, :, :] = np.arange(1, 37).reshape((6, 6), order='F') model.property_x[5, :, :] = 200 xi = (1, [8, 7, 6, 8, 9], [1]) # == NEAREST == # property - grid _ = maps.interpolate(grid, model.property_x, grid2, method='nearest') # field - grid _ = maps.interpolate(grid, field.fx, grid2, method='nearest') # property - points _ = maps.interpolate(grid, model.property_x, xi, method='nearest') # field - points _ = maps.interpolate(grid, field.fx, xi, method='nearest') # == LINEAR == # property - grid _ = maps.interpolate(grid, model.property_x, grid2, method='linear') # field - grid _ = maps.interpolate(grid, field.fx, grid2, method='linear') # property - points _ = maps.interpolate(grid, model.property_x, xi, method='linear') # field - points _ = maps.interpolate(grid, field.fx, xi, method='linear') # == CUBIC == # property - grid _ = maps.interpolate(grid, model.property_x, grid2, method='cubic') # field - grid _ = maps.interpolate(grid, field.fx, grid2, method='cubic') # property - points _ = maps.interpolate(grid, model.property_x, xi, method='cubic') # field - points _ = maps.interpolate(grid, field.fx, xi, method='cubic') # == VOLUME == # property - grid _ = maps.interpolate(grid, model.property_x, grid2, method='volume') # field - grid with pytest.raises(ValueError, match="for cell-centered properties"): maps.interpolate(grid, field.fx, grid2, method='volume') # property - points with pytest.raises(ValueError, match="only implemented for TensorM"): maps.interpolate(grid, model.property_x, xi, method='volume') # field - points with pytest.raises(ValueError, match="only implemented for TensorM"): maps.interpolate(grid, field.fx, xi, method='volume') def test_2d_arrays(self): hx = [1, 1, 1, 2, 4, 8] grid = emg3d.TensorMesh([hx, hx, hx], (0, 0, 0)) field = emg3d.Field(grid) field.fx = np.arange(1, field.fx.size+1).reshape( field.fx.shape, order='F') model = emg3d.Model(grid, 1, 2, 3) model.property_x[1, :, :] = 2 model.property_x[2, :, :] = 3 model.property_x[3, :, :] = 4 model.property_x[4, :, :] = np.arange(1, 37).reshape((6, 6), order='F') model.property_x[5, :, :] = 200 xi = (np.ones((3, 2)), 5, np.ones((3, 2))) # == NEAREST == # property - points _ = maps.interpolate(grid, model.property_x, xi, method='nearest') # field - points _ = maps.interpolate(grid, field.fx, xi, method='nearest') # == LINEAR == # property - points _ = maps.interpolate(grid, model.property_x, xi, method='linear') # field - points _ = maps.interpolate(grid, field.fx, xi, method='linear') # == CUBIC == # property - points _ = maps.interpolate(grid, model.property_x, xi, method='cubic') # field - points _ = maps.interpolate(grid, field.fx, xi, method='cubic') def test_points_from_grids(): hx = [1, 1, 1, 2, 4, 8] grid = emg3d.TensorMesh([hx, hx, hx], (0, 0, 0)) grid2 = emg3d.TensorMesh([[2, 4, 5], [1, 1], [4, 5]], (0, 1, 0)) xi_tuple = (1, [8, 7, 6, 8, 9], [1]) xi_array = np.arange(18).reshape(-1, 3) v_prop = np.ones(grid.shape_cells) v_field_e = np.ones(grid.shape_edges_x) v_field_f = np.ones(grid.shape_faces_x) # linear - values = prop - xi = grid out = maps._points_from_grids(grid, v_prop, grid2, 'linear') assert isinstance(out[1], np.ndarray) assert_allclose(out[0][0], [0.5, 1.5, 2.5, 4., 7., 13.]) assert_allclose(out[1][0, :], [1., 1.5, 2]) assert out[2] == (3, 2, 2) # nearest - values = field - xi = grid out = maps._points_from_grids(grid, v_field_e, grid2, 'nearest') assert isinstance(out[1], np.ndarray) assert_allclose(out[0][1], [0., 1., 2., 3., 5., 9., 17.]) assert_allclose(out[1][1, :], [4., 1., 0.]) assert out[2] == (3, 3, 3) # nearest - values = field - xi = grid out = maps._points_from_grids(grid, v_field_f, grid2, 'nearest') assert isinstance(out[1], np.ndarray) assert_allclose(out[0][1], [0.5, 1.5, 2.5, 4., 7., 13.]) assert_allclose(out[1][1, :], [2., 1.5, 2.]) assert out[2] == (4, 2, 2) # cubic - values = prop - xi = tuple out = maps._points_from_grids(grid, v_prop, xi_tuple, 'cubic') assert isinstance(out[1], np.ndarray) assert_allclose(out[0][2], [0.5, 1.5, 2.5, 4., 7., 13.]) assert_allclose(out[1][2, :], [1., 6., 1.]) assert out[2] == (5, ) # linear - values = field - xi = tuple out = maps._points_from_grids(grid, v_field_e, xi_tuple, 'linear') assert isinstance(out[1], np.ndarray) assert_allclose(out[0][0], [0.5, 1.5, 2.5, 4., 7., 13.]) assert_allclose(out[1][-1, :], [1., 9., 1.]) assert out[2] == (5, ) # nearest - values = prop - xi = ndarray out = maps._points_from_grids(grid, v_prop, xi_array, 'nearest') assert isinstance(out[1], np.ndarray) assert_allclose(out[0][0], [0.5, 1.5, 2.5, 4., 7., 13.]) assert_allclose(out[1], xi_array) assert out[2] == (6, ) # cubic - values = field - xi = ndarray out = maps._points_from_grids(grid, v_field_e, xi_array, 'cubic') assert isinstance(out[1], np.ndarray) assert_allclose(out[0][0], [0.5, 1.5, 2.5, 4., 7., 13.]) assert_allclose(out[1], xi_array) assert out[2] == (6, ) # cubic - values = 1Darr - xi = grid - FAILS with pytest.raises(ValueError, match='must be a 3D ndarray'): maps._points_from_grids(grid, v_field_e.ravel(), grid2, 'cubic') # volume - values = prop - xi = grid out = maps._points_from_grids(grid, v_prop, grid2, 'volume') assert isinstance(out[1], tuple) assert_allclose(out[0][0], [0., 1, 2, 3, 5, 9, 17]) assert_allclose(out[1][0], [0., 2, 6, 11]) assert out[2] == (3, 2, 2) # volume - values = field - xi = grid - FAILS with pytest.raises(ValueError, match='only implemented for cell-centered'): maps._points_from_grids(grid, v_field_e, grid2, 'volume') # volume - values = prop - xi = tuple - FAILS with pytest.raises(ValueError, match='only implemented for TensorMesh'): maps._points_from_grids(grid, v_prop, xi_tuple, 'volume') # tuple can contain any dimension; it will work (undocumented). shape = (3, 2, 4, 5) coords = np.arange(np.prod(shape)).reshape(shape, order='F') xi_tuple2 = (1, coords, 10) out = maps._points_from_grids(grid, v_field_e, xi_tuple2, 'nearest') assert isinstance(out[1], np.ndarray) assert_allclose(out[0][0], [0.5, 1.5, 2.5, 4., 7., 13.]) assert_allclose(out[1][-1, :], [1., 119, 10]) assert out[2] == shape def test_interp_spline_3d(): x = np.array([1., 2, 4, 5]) pts = (x, x, x) p1 = np.array([[3, 1, 3], [3, 3, 3], [3, 4, 3]]) v1 = np.ones((4, 4, 4), order='F') v1[1, :, :] = 4.0 v1[2, :, :] = 16.0 v1[3, :, :] = 25.0 out = maps.interp_spline_3d(points=pts, values=v1, xi=p1, order=0) assert_allclose(out, 16) out = maps.interp_spline_3d(points=pts, values=v1, xi=p1, order=1) assert_allclose(out, 10) out = maps.interp_spline_3d(points=pts, values=v1, xi=p1, order=2) assert_allclose(out, 9.4) out = maps.interp_spline_3d(points=pts, values=v1, xi=p1) assert_allclose(out, 9.25) out = maps.interp_spline_3d(points=pts, values=v1, xi=p1, order=4) assert_allclose(out, 9.117647) out = maps.interp_spline_3d(points=pts, values=v1, xi=p1, order=5) assert_allclose(out, 9.0625) p2 = np.array([[1, 3, 3], [3, 3, 3], [4, 3, 3]]) v2 = np.rollaxis(v1, 1) out = maps.interp_spline_3d(points=pts, values=v2, xi=p2) assert_allclose(out, 9.25) p3 = np.array([[3, 3, 1], [3, 3, 3], [3, 3, 4]]) v3 = np.rollaxis(v2, 1) v3 = v3 + 1j*v3 out = maps.interp_spline_3d(points=pts, values=v3, xi=p3) assert_allclose(out, 9.25 + 9.25j) p1 = np.array([[3, 100, 3]]) v1 = np.ones((4, 4, 4), order='F') v1[1, :, :] = 4.0 v1[2, :, :] = 16.0 v1[3, :, :] = 25.0 out = maps.interp_spline_3d(points=pts, values=v1, xi=p1, cval=999) assert_allclose(out, 999) @pytest.mark.parametrize("njit", [True, False]) def test_interp_volume_average(njit): if njit: interp_volume_average = maps.interp_volume_average else: interp_volume_average = maps.interp_volume_average.py_func # Comparison to alt_version. grid_in = emg3d.TensorMesh( [np.ones(30), np.ones(20)*5, np.ones(10)*10], origin=np.array([0, 0, 0])) grid_out = emg3d.TensorMesh( [np.arange(7)+1, np.arange(13)+1, np.arange(13)+1], origin=np.array([0.5, 3.33, 5])) values = np.arange(grid_in.n_cells, dtype=np.float64).reshape( grid_in.shape_cells, order='F') points = (grid_in.nodes_x, grid_in.nodes_y, grid_in.nodes_z) new_points = (grid_out.nodes_x, grid_out.nodes_y, grid_out.nodes_z) # Compute volume. vol = np.outer(np.outer( grid_out.h[0], grid_out.h[1]).ravel('F'), grid_out.h[2]) vol = vol.ravel('F').reshape(grid_out.shape_cells, order='F') # New solution. new_values = np.zeros(grid_out.shape_cells, dtype=values.dtype) interp_volume_average(*points, values, *new_points, new_values, vol) # Old solution. new_values_alt = np.zeros(grid_out.shape_cells, dtype=values.dtype) alternatives.alt_volume_average( *points, values, *new_points, new_values_alt) assert_allclose(new_values, new_values_alt) @pytest.mark.parametrize("njit", [True, False]) def test_volume_average_weights(njit): if njit: volume_avg_weights = maps._volume_average_weights else: volume_avg_weights = maps._volume_average_weights.py_func grid_in = emg3d.TensorMesh( [np.ones(11), np.ones(10)*2, np.ones(3)*10], origin=np.array([0, 0, 0])) grid_out = emg3d.TensorMesh( [np.arange(4)+1, np.arange(5)+1, np.arange(6)+1], origin=np.array([0.5, 3.33, 5])) wx, ix_in, ix_out = volume_avg_weights(grid_in.nodes_x, grid_out.nodes_x) assert_allclose(wx, [0.5, 0.5, 0.5, 1, 0.5, 0.5, 1, 1, 0.5, 0.5, 1, 1, 1, 0.5]) assert_allclose(ix_in, [0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 10]) assert_allclose(ix_out, [0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3]) wy, iy_in, iy_out = volume_avg_weights(grid_in.nodes_y, grid_out.nodes_y) assert_allclose(wy, [0.67, 0.33, 1.67, 0.33, 1.67, 1.33, 0.67, 2., 1.33, 0.67, 2, 2, 0.33]) assert_allclose(iy_in, [1, 2, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 9]) assert_allclose(iy_out, [0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4]) wz, iz_in, iz_out = volume_avg_weights(grid_in.nodes_z, grid_out.nodes_z) assert_allclose(wz, [1, 2, 2, 1, 4, 5, 6]) assert_allclose(iz_in, [0, 0, 0, 1, 1, 1, 2]) assert_allclose(iz_out, [0, 1, 2, 2, 3, 4, 5]) w, inp, out = volume_avg_weights(x_i=np.array([0., 5, 7, 10]), x_o=np.array([-1., 1, 4, 6, 7, 11])) assert_allclose(w, [1, 1, 3, 1, 1, 1, 3, 1]) assert_allclose(inp, [0, 0, 0, 0, 1, 1, 2, 2]) assert_allclose(out, [0, 0, 1, 2, 2, 3, 4, 4]) @pytest.mark.parametrize("njit", [True, False]) def test_interp_edges_to_vol_averages(njit): if njit: edges_to_vol_averages = maps.interp_edges_to_vol_averages else: edges_to_vol_averages = maps.interp_edges_to_vol_averages.py_func # To test it, we create a mesh 2x2x2 cells, # where all hx/hy/hz have distinct lengths. x0, x1 = 2, 3 y0, y1 = 4, 5 z0, z1 = 6, 7 grid = emg3d.TensorMesh([[x0, x1], [y0, y1], [z0, z1]], [0, 0, 0]) field = emg3d.Field(grid) # Only three edges have a value, one in each direction. fx = 1.23+9.87j fy = 2.68-5.48j fz = 1.57+7.63j field.fx[0, 1, 1] = fx field.fy[1, 1, 1] = fy field.fz[1, 1, 0] = fz # Initiate gradient. grad_x = np.zeros(grid.shape_cells, order='F', dtype=complex) grad_y = np.zeros(grid.shape_cells, order='F', dtype=complex) grad_z = np.zeros(grid.shape_cells, order='F', dtype=complex) cell_volumes = grid.cell_volumes.reshape(grid.shape_cells, order='F') # Call function. edges_to_vol_averages(ex=field.fx, ey=field.fy, ez=field.fz, volumes=cell_volumes, ox=grad_x, oy=grad_y, oz=grad_z) grad = grad_x + grad_y + grad_z # Check all eight cells explicitly by # - computing the volume of the cell; # - multiplying with the present fields in that cell. assert_allclose(x0*y0*z0*(fx+fz)/4, grad[0, 0, 0]) assert_allclose(x1*y0*z0*fz/4, grad[1, 0, 0]) assert_allclose(x0*y1*z0*(fx+fy+fz)/4, grad[0, 1, 0]) assert_allclose(x1*y1*z0*(fy+fz)/4, grad[1, 1, 0]) assert_allclose(x0*y0*z1*fx/4, grad[0, 0, 1]) assert_allclose(0j, grad[1, 0, 1])
assert_allclose(x0*y1*z1*(fx+fy)/4, grad[0, 1, 1])
numpy.testing.assert_allclose
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Apr 15 10:13:13 2018 @author: thieunv Link : http://sci-hub.tw/10.1109/iccat.2013.6521977 https://en.wikipedia.org/wiki/Laguerre_polynomials """ import numpy as np def itself(x): return x def elu(x, alpha=1): return np.where(x < 0, alpha * (np.exp(x) - 1), x) def relu(x): return np.maximum(0, x) def tanh(x): return np.tanh(x) def sigmoid(x): return 1.0 / (1.0 + np.exp(-x)) def derivative_self(x): return 1 def derivative_elu(x, alpha=1): return np.where(x < 0, x + alpha, 1) def derivative_relu(x): return np.where(x < 0, 0, 1) def derivative_tanh(x): return 1 - np.power(x, 2) def derivative_sigmoid(x): return np.multiply(x, 1-x) def expand_chebyshev(x): x1 = x x2 = 2 * np.power(x, 2) - 1 x3 = 4 * np.power(x, 3) - 3 * x x4 = 8 *
np.power(x, 4)
numpy.power
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import numpy as np import re from .linalg import dot, matmul, transpose from .manipulation import squeeze, unsqueeze, reshape from .math import multiply from .math import sum as paddle_sum from ..fluid.framework import _in_legacy_dygraph from paddle import _C_ops from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype from ..fluid.layer_helper import LayerHelper from ..fluid.framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph import collections import string import opt_einsum from paddle.common_ops_import import dygraph_only __all__ = [] def parse_op_labels(labelstr, operand): ''' Parse labels for an input operand. Parameters ---------- labelstr: the input label string operand: the input operand Returns ------- the input operand's full label string in which all anonymous dimensions are labeled in dots. ''' # Sanity checks for c in labelstr.replace('.', ''): assert c.isalpha(), ( f"Invalid equation: {c} is not a valid label, which should be letters." ) assert labelstr.replace('...', '', 1).find('.') == -1, ( f"Invalid equation: `.` is found outside of an ellipsis.") # Check shape. Note, in Paddle a tensor rank is always nonzero ndims = len(operand.shape) assert ndims > 0 full_labelstr = labelstr.replace('...', '.' * (ndims - len(labelstr) + 3)) assert len(full_labelstr) == ndims, ( f"Invalid equation: the label string '{labelstr}' misses dimensions.") return full_labelstr def parse_labels(labelstr, operands): ''' Parse label strings for all input operands. Parameters ---------- labelstr: The equation's label string operands: The input operands Returns ------- list of full label strings for all input operands ''' nop_labels = labelstr.split(',') assert len(nop_labels) == len(operands), ( f"Invalid equation: the number of operands is {len(operands)}, " f"but found {len(nop_labels)} segments in the label equation.") return list(map(parse_op_labels, nop_labels, operands)) def validate_rhs(rhs, input_labels, n_bcast_dims): ''' Check whether the equation's right hand side is valid ''' # Sanity check. if n_bcast_dims > 0: assert '...' in rhs, ( f"Invalid equation: missing ellipsis in output labels.") rhs = rhs.replace('...', '') rhs_set = set(rhs) # Hidden assumption: availble labels don't include '.' assert '.' not in input_labels # Verify that output labels all come from the set of input labels non_input_labels = rhs_set.difference(input_labels) assert not non_input_labels, ( f"Invalid equation: " f"output label {sorted(non_input_labels)} not used by any input.") # Verify that output labels are not duplicate assert len(rhs) == len(rhs_set), ( f"Invalid equation: duplicate output labels are found.") def build_view(in_labels, out_labels): ''' Build an inverse map of dimension indices. Three conditions must hold for the result to be meaningful. First, no duplicate letter labels in each label string. Second, the number of dots in dimout_labels >= that in in_labels. Third, dots are contiguous in each label string. Parameters ---------- in_labels: The dimension labels to map to out_labels: The dimension labels to map from Returns ------- The inverse map from out_labels to in_labels. The length of the inverse map equals that of out_labels. -1 is filled if there's no matching intput dimension for a specific label. Examples -------- in_labels = 'ij..', out_labels = '..ji' inv_map = [2, 3, 1, 0] in_labels = 'ij..', out_labels = '..kji' inv_map = [2, 3, -1, 1, 0] ''' inv_map = [-1] * len(out_labels) # First build the broadcast dimension mapping # Find the broadcast index range in out_labels r = re.search(r'\.+', out_labels) if r: start, end = r.start(), r.end() s = re.search(r'\.+', in_labels) # fill the broadcast dimension indices from right to left. if s: for ax, dim in zip( range(start, end)[::-1], range(s.start(), s.end())[::-1]): inv_map[ax] = dim # Now work on non-broadcast dimensions if r: it = itertools.chain(range(start), range(end, len(out_labels))) else: it = iter(range(len(out_labels))) for i in it: inv_map[i] = in_labels.find(out_labels[i]) return inv_map def build_global_view(nop_labels, rhs, n_bcast_dims): ''' Build the global view, which is a layout of all dimension labels plus an index table that maps from the layout to the dimensions in each operand. In the global view, the dimensions are arranged such that output ones are put on the left and contraction ones are put on the right. Parameters ---------- nop_labels: The input full label strings of all input operands rhs: The equation right hand side n_bcast_dims: The maxium number of broadcast dimensions Returns ------- A tuple of g_labels, g_view, g_nout, g_count g_labels: the layout of all labels in a string g_view: the index table g_nout: the number of output dimensions g_count: the counter array for dimension contractions ''' # Put all labels in alphabetical order concat = sorted(''.join(nop_labels).replace('.', '')) labels, count = [], [] for a, b in zip(['.'] + concat, concat): if a != b: labels.append(b) count.append(1) else: count[-1] += 1 if rhs != None: validate_rhs(rhs, labels, n_bcast_dims) g_labels_out = rhs.replace('...', '.' * n_bcast_dims) else: g_labels_out = '.' * n_bcast_dims + ''.join( l for l, c in zip(labels, count) if c == 1) for i in range(len(count))[::-1]: if labels[i] in g_labels_out: labels.pop(i) count.pop(i) g_labels_sum = ''.join(labels) g_labels = g_labels_out + g_labels_sum g_view = list(map(lambda i: build_view(i, g_labels), nop_labels)) g_nout = len(g_labels_out) g_count = count return g_labels, g_view, g_nout, g_count def build_global_shape(g_view, g_labels, op_shapes): ''' The global shape is the shape of all dimensions rearranged and broadcasting to the global view. It's a reference data structure for einsum planning. Parameters ---------- g_view: the global view op_shapes: the shapes of the all operands Returns ------- g_shape: the global shape vector g_masks: list of shape masks for each operand. A dimension's shape mask is a boolean indicating whether its size > 1, in other words, it's not squeezable ''' view_shapes = [] g_masks = [] for view, op_shape in zip(g_view, op_shapes): view_shapes.append([op_shape[dim] if dim > -1 else 1 for dim in view]) g_shape = [set(sizes_per_ax) - {1} for sizes_per_ax in zip(*view_shapes)] non_bcastable = [ax for ax, sizes in enumerate(g_shape) if len(sizes) > 1] assert not non_bcastable, ( f"Invalid operands: label {g_labels[non_bcastable[0]]} " f"corresponds to non-broadcastable dimensions.") g_shape = [sizes.pop() if len(sizes) > 0 else 1 for sizes in g_shape] g_masks = [[s > 1 or s == -1 for s in view_shape] for view_shape in view_shapes] return g_shape, g_masks def has_duplicated_labels(labels): ''' Returns True if there is any duplicate label. ''' labels = labels.replace('.', '') return len(labels) > len(set(labels)) def diagonalize(labels, operand): ''' Merges dimensions with duplicate labels. For those dimensions with duplicate labels, merge them into one dimension which represents the diagonal elements. This requires the dimensions with duplicate labels are equal sized. Examples -------- 'ijj...i' would be merged into 'ij...' ''' assert not has_duplicated_labels(labels), ( f'Duplicate labels are not supported.') return labels, operand def plan_reduce(plan, op, reduce_dims, keepdim): ''' Add reduce to the plan ''' varname = f'op{op}' f = lambda var, dims: paddle_sum(var, dims, keepdim=keepdim) step = f, [varname], varname, reduce_dims plan.add_step(step) def plan_scalar_prod(plan, op1, op2): varnames = [f'op{op1}', f'op{op2}'] f = lambda var1, var2: paddle_sum(var1) * var2 # f = lambda var1, var2: var1 * var2 step = f, varnames, varnames[1] plan.add_step(step) def plan_matmul(plan, g_view, op1, op2, g_supports, g_shape, I, J1, J2, K): ''' plan matmul ''' # Transpose and re-shape op1 and op2 in I, J1, K and I, J2, K # Then apply matmul(x, y, transpose_x=False, tranpose_y=True) var1, var2 = f'op{op1}', f'op{op2}' op1_view, op2_view = [g_view[op] for op in (op1, op2)] I1 = [idx for idx in I if op1_view[idx] >= 0] I2 = [idx for idx in I if op2_view[idx] >= 0] op1_view =
np.array(op1_view)
numpy.array
# Copyright 2021 Garena Online Private Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for classic control environments.""" from typing import Any, Tuple import gym import numpy as np from absl.testing import absltest from envpool.classic_control import ( AcrobotEnvSpec, AcrobotGymEnvPool, CartPoleEnvSpec, CartPoleGymEnvPool, MountainCarContinuousEnvSpec, MountainCarContinuousGymEnvPool, MountainCarEnvSpec, MountainCarGymEnvPool, PendulumEnvSpec, PendulumGymEnvPool, ) class _ClassicControlEnvPoolTest(absltest.TestCase): def run_space_check(self, spec_cls: Any) -> None: """Check if envpool.observation_space == gym.make().observation_space.""" # TODO(jiayi): wait for #27 def run_deterministic_check( self, spec_cls: Any, envpool_cls: Any, obs_range: Tuple[np.ndarray, np.ndarray], **kwargs: Any, ) -> None: num_envs = 4 env0 = envpool_cls( spec_cls(spec_cls.gen_config(num_envs=num_envs, seed=0, **kwargs)) ) env1 = envpool_cls( spec_cls(spec_cls.gen_config(num_envs=num_envs, seed=0, **kwargs)) ) env2 = envpool_cls( spec_cls(spec_cls.gen_config(num_envs=num_envs, seed=1, **kwargs)) ) act_space = env0.action_space eps = np.finfo(np.float32).eps obs_min, obs_max = obs_range[0] - eps, obs_range[1] + eps for _ in range(5000): action = np.array([act_space.sample() for _ in range(num_envs)]) obs0 = env0.step(action)[0] obs1 = env1.step(action)[0] obs2 = env2.step(action)[0] np.testing.assert_allclose(obs0, obs1) self.assertFalse(np.allclose(obs0, obs2)) self.assertTrue(np.all(obs_min <= obs0), obs0) self.assertTrue(np.all(obs_min <= obs2), obs2) self.assertTrue(np.all(obs0 <= obs_max), obs0) self.assertTrue(np.all(obs2 <= obs_max), obs2) def run_align_check(self, env0: gym.Env, env1: Any, reset_fn: Any) -> None: for _ in range(10): reset_fn(env0, env1) d0 = False while not d0: a = env0.action_space.sample() o0, r0, d0, _ = env0.step(a) o1, r1, d1, _ = env1.step(np.array([a]), np.array([0])) np.testing.assert_allclose(o0, o1[0], atol=1e-6) np.testing.assert_allclose(r0, r1[0]) np.testing.assert_allclose(d0, d1[0]) def test_cartpole(self) -> None: fmax = np.finfo(np.float32).max obs_max =
np.array([4.8, fmax, np.pi / 7.5, fmax])
numpy.array
from collections import defaultdict, Counter from itertools import product, permutations from glob import glob import json import os from pathlib import Path import pickle import sqlite3 import sys import time import matplotlib as mpl from matplotlib import colors from matplotlib import pyplot as plt from matplotlib.gridspec import GridSpec from matplotlib.lines import Line2D import matplotlib.patches as mpatches from multiprocessing import Pool import numpy as np import pandas as pd from palettable.colorbrewer.qualitative import Paired_12 from palettable.colorbrewer.diverging import PuOr_5, RdYlGn_6, PuOr_10, RdBu_10 from palettable.scientific.diverging import Cork_10 from scipy.stats import linregress, pearsonr import seaborn as sns import svgutils.compose as sc from asym_io import PATH_BASE, PATH_ASYM import asym_utils as utils PATH_FIG = PATH_ASYM.joinpath("Figures") PATH_FIG_DATA = PATH_FIG.joinpath("Data") #################################################################### ### FIG 1 def fig1(pdb): fig = plt.figure(figsize=(11, 10)) gs = GridSpec(5,48, wspace=1.0, hspace=0.0, height_ratios=[1,0.3,1,0.8,1.8]) ax = [fig.add_subplot(gs[i*2,:14]) for i in [0,1]] + \ [fig.add_subplot(gs[i*2,17:31]) for i in [0,1]] + \ [fig.add_subplot(gs[i*2,34:]) for i in [0,1]] + \ [fig.add_subplot(gs[3:,i:i+j]) for i,j in zip([3,27],[15,15])] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[10] col = [c_helix, c_sheet, "#CB7CE6", "#79C726"] ttls = ['Full sample', 'Eukaryotes', 'Prokaryotes'] lbls = ['Helix', 'Sheet', 'Coil', 'Disorder'] cat = 'HS.D' ss_stats = [pickle.load(open(PATH_FIG_DATA.joinpath(f"pdb_ss_dist_boot{s}.pickle"), 'rb')) for s in ['', '_euk', '_prok']] X = np.arange(50) for i, data in enumerate(ss_stats): for j, s in enumerate(cat): ax[i*2].plot(X, data[0][s]['mean']/2, '-', c=col[j], label=f"{s} N") ax[i*2].fill_between(X, data[0][s]['hi']/2, data[0][s]['lo']/2, color="grey", label=f"{s} N", alpha=0.5) ax[i*2].plot(X, data[1][s]['mean']/2, '--', c=col[j], label=f"{s} N") ax[i*2].fill_between(X, data[1][s]['hi']/2, data[1][s]['lo']/2, color="grey", label=f"{s} N", alpha=0.2) print(i, s, round(np.mean(data[2][s]['mean']), 2), round(np.mean(data[2][s]['mean'][:20]), 2), round(np.mean(data[2][s]['mean'][20:40]), 2)) ax[i*2+1].plot(X, np.log2(data[2][s]['mean']), '-', c=col[j], label=lbls[j]) ax[i*2+1].fill_between(X, np.log2(data[2][s]['hi']), np.log2(data[2][s]['lo']), color="grey", label=f"{s} N", alpha=0.2) # Y = [[y*100-100 if y >= 1 else -((1/y)*100-100) for y in data[2][s][p]] for p in ['mean', 'lo', 'hi']] # ax[i*2+1].plot(X, Y[0], '-', c=col[j], label=lbls[j]) # ax[i*2+1].fill_between(X, Y[1], Y[2], color="grey", label=f"{s} N", alpha=0.2) for i in range(3): ax[i*2].set_title(ttls[i]) ax[i*2].set_ylim(0, 0.6) # ax[i*2+1].set_ylim(-100, 130) ax[i*2+1].set_ylim(-1, 1.3) ax[i*2+1].plot([0]*50, '-', c='k') # ax[i*2+1].set_yticks(np.arange(-1,1.5,0.5)) # ax[0].plot(X, (X+1)**-0.78, '-k') # ax[2].plot(X, (X+1)**-0.5, '-k') # ax[2].plot(X, (X+1)**-0.6, '-k') # ax[4].plot(X, (X+1)**-1.0, '-k') ax[1].set_ylabel('Structural asymmetry\n$\\log_2 (N / C)$') handles = [Line2D([0], [0], ls=ls, c=c, label=l) for ls, c, l in zip(['-', '--'], ['k']*2, ['N', 'C'])] + \ [Line2D([0], [0], ls='-', c=c, label=l) for l, c in zip(lbls, col)] ax[4].legend(handles=handles, bbox_to_anchor=(0.20, 1.43), frameon=False, ncol=6, columnspacing=1.5, handlelength=2.0) ax[0].set_ylabel('Secondary structure\nprobability') for i in range(6): ax[i].set_xticks(range(0, 60, 10)) ax[i].set_xlabel('Sequence distance from ends') fig1b(pdb, ax=ax[6:], fig=fig) fs = 14 for i, b in zip([0,1,6,7], list('ABCDEFGHI')): ax[i].text( -0.20, 1.10, b, transform=ax[i].transAxes, fontsize=fs) for a in ax: a.tick_params(axis='both', which='major', direction='in') fig.savefig(PATH_FIG.joinpath("fig1.pdf"), bbox_inches='tight') def ss_by_seq(pdb, cat='SH.D'): countN, countC = utils.pdb_end_stats_disorder_N_C(pdb, N=50, s1='SEQ_PDB2', s2='SS_PDB2') base = np.zeros(len(countN['S']), dtype=float) Yt = np.array([[sum(p.values()) for p in countN[s]] for s in cat]).sum(axis=0) X = np.arange(base.size) out_dict = {} for i, s in enumerate(cat): YN = np.array([sum(p.values()) for p in countN[s]]) YC = np.array([sum(p.values()) for p in countC[s]]) out_dict[s] = {'N':YN/Yt, 'C':YC/Yt, 'asym':YN/YC} return out_dict def fig1b(df, X='AA_PDB', Y='CO', w=.1, ax='', fig=''): if isinstance(ax, str): fig, ax = plt.subplots(1,3, figsize=(15,4)) fig.subplots_adjust(wspace=0.5) q = np.arange(w,1+w,w) quant1 = [df[X].min()] + list(df[X].quantile(q).values) quant2 = [df[Y].min()] + list(df[Y].quantile(q).values) lbls = ['Helix', 'Sheet'] cb_lbl = [r"$asym_{\alpha}$", r"$asym_{\beta}$"] vmax = 0.03 vmin = -vmax count = [] for i, Z in enumerate(['H_ASYM', 'S_ASYM']): mean = [] for l1, h1 in zip(quant1[:-1], quant1[1:]): for l2, h2 in zip(quant2[:-1], quant2[1:]): samp = df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2), Z] mean.append(samp.mean()) # left = len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)&(df[Z]<0)]) # right = len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)&(df[Z]>0)]) # tot = max(len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)]), 1) # mean.append((right - left)/tot) if not i: count.append(len(samp)) # print(len(samp)) mean = np.array(mean).reshape(q.size, q.size) count = np.array(count).reshape(q.size, q.size) mean[count<20] = 0 cmap = sns.diverging_palette(230, 22, s=100, l=47, as_cmap=True) norm = colors.BoundaryNorm([vmin, vmax], cmap.N) bounds = np.linspace(vmin, vmax, 3) im = ax[i].imshow(mean.T, cmap=cmap, vmin=vmin, vmax=vmax) cbar = fig.colorbar(im, cmap=cmap, ticks=bounds, ax=ax[i], fraction=0.046, pad=0.04) cbar.set_label(cb_lbl[i], labelpad=-5) ax[i].set_title(lbls[i]) ax[i].set_xticks(
np.arange(q.size+1)
numpy.arange
import cv2 import numpy as np from copy import copy from ...util import get_logger from ..object_detection.object_detector import Detector from ..object_detection.body_detector import BodyDetector from ..instance_segmentation.instance_segmentor import InstanceSegmentor logger = get_logger(__name__) class HumanPoseDetector(Detector): """ https://github.com/opencv/opencv/blob/master/samples/dnn/openpose.py """ def __init__(self, device=None, model_fp=None, model_dir=None, cpu_extension=None, path_config=None): self.task = 'estimate_humanpose' super().__init__(self.task, device, model_fp, model_dir, cpu_extension, path_config) self.thr_point = 0.1 self.detector_body = BodyDetector() self.segmentor = InstanceSegmentor() self.BODY_PARTS = {"Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4, "LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9, "RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14, "LEye": 15, "REar": 16, "LEar": 17} self.POSE_PAIRS = [["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"], ["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"], ["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"], ["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"], ["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"]] self.POSE_PARTS_FLATTEN = ['Nose_x', 'Nose_y', 'Neck_x', 'Neck_y', 'RShoulder_x', 'RShoulder_y', 'RElbow_x', 'RElbow_y', 'RWrist_x', 'RWrist_y', 'LShoulder_x', 'LShoulder_y', 'LElbow_x', 'LElbow_y', 'LWrist_x', 'LWrist_y', 'RHip_x', 'RHip_y', 'RKnee_x', 'RKnee_y', 'RAnkle_x', 'RAnkle_y', 'LHip_x', 'LHip_y', 'LKnee_x', 'LKnee_y', 'LAnkle_x', 'LAnkle_y', 'REye_x', 'REye_y', 'LEye_x', 'LEye_y', 'REar_x', 'REar_y', 'LEar_x', 'LEar_y'] def _get_heatmaps(self, frame): result = self.get_result(frame) # pairwise_relations = result['Mconv7_stage2_L1'] heatmaps = result['Mconv7_stage2_L2'] return heatmaps def get_points(self, frame): """get one person's pose points. Args: frame (np.ndarray): image include only one person. other part should be masked. Returns (np.ndarray): human jointt points """ assert isinstance(frame, np.ndarray) heatmaps = self._get_heatmaps(frame) points = np.zeros((len(self.BODY_PARTS), 2)) for num_parts in range(len(self.BODY_PARTS)): # Slice heatmap of corresponging body's part. heatMap = heatmaps[0, num_parts, :, :] _, conf, _, point = cv2.minMaxLoc(heatMap) frame_width = frame.shape[1] frame_height = frame.shape[0] x, y = np.nan, np.nan # Add a point if it's confidence is higher than threshold. if conf > self.thr_point: x = int((frame_width * point[0]) / heatmaps.shape[3]) y = int((frame_height * point[1]) / heatmaps.shape[2]) points[num_parts] = x, y assert isinstance(points, np.ndarray) return points def mask_compute(self, bbox_frame): results_mask = self.segmentor.compute(bbox_frame, pred_flag=True, max_mask_num=1) if len(results_mask['masks']) > 0: mask = results_mask['masks'][0] mask_canvas = np.zeros((3, mask.shape[0], mask.shape[1])) for num in range(len(mask_canvas)): mask_canvas[num] = mask mask_canvas = mask_canvas.transpose(1, 2, 0) bbox_frame = (bbox_frame * mask_canvas).astype(int) else: logger.info('no mask') return bbox_frame def draw_pose(self, init_frame, points): """draw pose points and line to frame Args: init_frame: frame to draw points: joints position values for all person Returns: """ frame = init_frame.copy() for pair in self.POSE_PAIRS: partFrom = pair[0] partTo = pair[1] assert (partFrom in self.BODY_PARTS) assert (partTo in self.BODY_PARTS) idFrom = self.BODY_PARTS[partFrom] idTo = self.BODY_PARTS[partTo] if not (np.isnan(points[idFrom][0]) or np.isnan(points[idTo][1])): points_from = tuple(points[idFrom].astype('int64')) points_to = tuple(points[idTo].astype('int64')) cv2.line(frame, points_from, points_to, (0, 255, 0), 3) cv2.ellipse(frame, points_from, (3, 3), 0, 0, 360, (0, 0, 255), cv2.FILLED) cv2.ellipse(frame, points_to, (3, 3), 0, 0, 360, (0, 0, 255), cv2.FILLED) return frame def _filter_points(self, points, xmin, ymin, xmax, ymax): x = points.T[0] y = points.T[1] x = np.where(x < xmin, np.nan, x) x = np.where(x > xmax, np.nan, x) y = np.where(y < ymin, np.nan, y) y = np.where(y > ymax, np.nan, y) filtered_points = np.asarray([x, y]).T filtered_points[(np.isnan(filtered_points.prod(axis=1)))] = np.nan return filtered_points def _normalize_points(self, points, xmin, ymin, xmax, ymax): x = points.T[0] y = points.T[1] values_x = (x - xmin) / (xmax - xmin) values_y = (y - ymin) / (ymax - ymin) norm_points = np.asarray([values_x, values_y]).T return norm_points def generate_canvas(self, xmin, ymin, xmax, ymax, ratio_frame=16/9): height_bbox = ymax - ymin width_bbox = xmax - xmin ratio_bbox = width_bbox / height_bbox if ratio_bbox < ratio_frame: width_canvas = int(height_bbox * ratio_frame) canvas_org = np.zeros((height_bbox, width_canvas, 3), np.uint8) elif ratio_bbox > ratio_frame: height_canvas = int(width_bbox / ratio_frame) canvas_org = np.zeros((height_canvas, width_bbox, 3), np.uint8) elif ratio_bbox == ratio_frame: canvas_org =
np.zeros((height_bbox, width_bbox, 3), np.uint8)
numpy.zeros
import numpy as np import tensorflow as tf from ampligraph.latent_features import INITIALIZER_REGISTRY def test_random_normal(): """Random normal initializer test """ tf.reset_default_graph() tf.random.set_random_seed(0) rnormal_class = INITIALIZER_REGISTRY['normal'] rnormal_obj = rnormal_class({"mean":0.5, "std":0.1}) tf_init = rnormal_obj.get_entity_initializer(init_type='tf') var1 = tf.get_variable(shape=(1000, 100), initializer=tf_init, name="var1") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) tf_var = sess.run(var1) np_var = rnormal_obj.get_entity_initializer(1000, 100, init_type='np') # print(np.mean(np_var), np.std(np_var)) # print(np.mean(tf_var), np.std(tf_var)) assert(np.round(np.mean(np_var),1)==np.round(np.mean(tf_var),1)) assert(np.round(np.std(np_var),1)==np.round(np.std(tf_var),1)) def test_xavier_normal(): """Xavier normal initializer test """ tf.reset_default_graph() tf.random.set_random_seed(0) xnormal_class = INITIALIZER_REGISTRY['xavier'] xnormal_obj = xnormal_class({"uniform":False}) tf_init = xnormal_obj.get_entity_initializer(init_type='tf') var1 = tf.get_variable(shape=(2000, 100), initializer=tf_init, name="var1") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) tf_var = sess.run(var1) np_var = xnormal_obj.get_entity_initializer(2000, 100, init_type='np') # print(np.mean(np_var), np.std(np_var)) # print(np.mean(tf_var), np.std(tf_var)) assert(np.round(np.mean(np_var),2)==np.round(np.mean(tf_var),2)) assert(np.round(np.std(np_var),2)==np.round(np.std(tf_var),2)) def test_xavier_uniform(): """Xavier uniform initializer test """ tf.reset_default_graph() tf.random.set_random_seed(0) xuniform_class = INITIALIZER_REGISTRY['xavier'] xuniform_obj = xuniform_class({"uniform":True}) tf_init = xuniform_obj.get_entity_initializer(init_type='tf') var1 = tf.get_variable(shape=(200, 1000), initializer=tf_init, name="var1") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) tf_var = sess.run(var1) np_var = xuniform_obj.get_entity_initializer(200, 1000, init_type='np') # print(np.min(np_var), np.max(np_var)) # print(np.min(tf_var), np.max(tf_var)) assert(np.round(np.min(np_var),2)==np.round(np.min(tf_var),2)) assert(np.round(np.max(np_var),2)==np.round(np.max(tf_var),2)) def test_random_uniform(): """Random uniform initializer test """ tf.reset_default_graph() tf.random.set_random_seed(0) runiform_class = INITIALIZER_REGISTRY['uniform'] runiform_obj = runiform_class({"low":0.1, "high":0.4}) tf_init = runiform_obj.get_entity_initializer(init_type='tf') var1 = tf.get_variable(shape=(1000, 100), initializer=tf_init, name="var1") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) tf_var = sess.run(var1) np_var = runiform_obj.get_entity_initializer(1000, 100, init_type='np') # print(np.min(np_var), np.max(np_var)) # print(np.min(tf_var), np.max(tf_var)) assert(np.round(np.min(np_var),2)==np.round(np.min(tf_var),2)) assert(np.round(np.max(np_var),2)==np.round(np.max(tf_var),2)) def test_constant(): """Constant initializer test """ tf.reset_default_graph() tf.random.set_random_seed(117) runiform_class = INITIALIZER_REGISTRY['constant'] ent_init = np.random.normal(1, 1, size=(300, 30)) rel_init = np.random.normal(2, 2, size=(10, 30)) runiform_obj = runiform_class({"entity":ent_init, "relation":rel_init}) var1 = tf.get_variable(shape=(300, 30), initializer=runiform_obj.get_entity_initializer(300, 30, init_type='tf'), name="ent_var") var2 = tf.get_variable(shape=(10, 30), initializer=runiform_obj.get_relation_initializer(10, 30, init_type='tf'), name="rel_var") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) tf_var1, tf_var2 = sess.run([var1, var2]) np_var1 = runiform_obj.get_entity_initializer(300, 30, init_type='np') np_var2 = runiform_obj.get_relation_initializer(10, 30, init_type='np') assert(np.round(
np.mean(tf_var1)
numpy.mean
import numpy as np from itertools import cycle, islice from scipy.stats.kde import gaussian_kde from sklearn.decomposition import PCA import statsmodels.api as sm import matplotlib.pyplot as mplot import matplotlib.cm as cm from mpl_toolkits.mplot3d import Axes3D def plot_clusters(clone, data, path, headers=None): color_list = np.array(['yellowgreen', 'orange', 'crimson', 'mediumpurple', 'deepskyblue', 'Aquamarine', 'DarkGoldenRod', 'Khaki', 'SteelBlue', 'Olive', 'Violet', 'DarkSeaGreen', 'RosyBrown', 'LightPink', 'DodgerBlue', 'lightcoral', 'chocolate', 'burlywood', 'cyan', 'olivedrab', 'palegreen', 'turquoise', 'gold', 'teal', 'hotpink', 'moccasin', 'lawngreen', 'sandybrown', 'blueviolet', 'powderblue', 'plum', 'springgreen', 'mediumaquamarine', 'rebeccapurple', 'peru', 'lightsalmon', 'khaki', 'sienna', 'lightseagreen', 'lightcyan']) colors = np.array(list(islice(cycle(color_list),len(clone.centers)))) if headers is None: headers = ["C%i"%x for x in range(data.shape[1])] if data.shape[1] == 1: plot_1d_clusters(clone, data, path, headers, colors) elif data.shape[1] == 2: plot_2d_clusters(clone, data, path, headers, colors) else: plot_nd_clusters(clone, data, path, headers, colors) mplot.show() def plot_1d_clusters(clone, data, path, headers, colors): centers = np.array(clone.centers) labels = np.array(clone.labels_) labels_all = np.array(clone.labels_all) core = clone.core_card rho = clone.rho # Mask for plotting assigned_mask = np.where(labels != -1) outliers_mask = np.where(labels == -1) # KDE kde = sm.nonparametric.KDEUnivariate(data.astype(np.float)) kde.fit() # Sort some values for better visualization after arcore = np.argsort(core) s_cores = core[arcore] s_x = data[arcore] # Plot core mplot.figure(figsize=(4, 2)) mplot.scatter(s_x, [0] * len(data), marker='|', linewidth=0.1, s=150, c=s_cores, cmap=cm.nipy_spectral) mplot.yticks([]) mplot.xlabel(headers[0], fontsize=15) cbar = mplot.colorbar() mplot.tick_params(axis='x', which='major', length=8, width=2, labelsize=15) cbar.ax.tick_params(axis='x', which='major', length=8, width=2, labelsize=15) cbar.ax.set_xlabel("#core", fontsize=15) mplot.tight_layout() mplot.savefig(path + "/cores.png", dpi=300) # Plot clusters mplot.figure(figsize=(4, 4)) mplot.scatter(data[assigned_mask, 0], [0] * len(data[assigned_mask]), marker='|', color=colors[labels[assigned_mask]]) mplot.scatter(data[outliers_mask, 0], [0] * len(data[outliers_mask]), marker='x', s=10, color='black') mplot.scatter(data[centers, 0], [0] * len(data[centers]), marker='*', s=100, color='black') mplot.plot(kde.support, kde.density, c="grey", marker="None", linestyle="--") mplot.xlabel(headers[0]) mplot.ylabel("KDE") mplot.tight_layout() mplot.savefig(path + "/clusters.png", dpi=300) def plot_2d_clusters(clone, data, path, headers, colors): centers = np.array(clone.centers) labels = np.array(clone.labels_) core_card = clone.core_card rho = clone.rho # Core cardinality mapped to each point size = (3.5,4) cluster_fig = mplot.figure(figsize=size) arcore = np.argsort(core_card) s_cores = core_card[arcore] s_data = data[arcore] mplot.scatter(s_data[:, 0], s_data[:, 1], marker='o', c=s_cores, cmap=cm.nipy_spectral) mplot.xlabel("#core", labelpad=20, fontsize=15) cbar = mplot.colorbar(orientation='horizontal') cbar.ax.tick_params(axis='x', which='major', length=8, width=2, labelsize=15) cbar.ax.tick_params(axis='y', which='major', length=8, width=2, labelsize=15) mplot.scatter(data[centers, 0], data[centers, 1], marker='*', s=150, c='black', cmap=cm.nipy_spectral) mplot.xticks([]) mplot.yticks([]) mplot.tight_layout() mplot.savefig(path + "/cores.png") # Cluster plot by labels size = (4,4) cluster_fig = mplot.figure(figsize=size) ax_clus = cluster_fig.add_subplot(111) assigned_mask = np.where(labels != -1) outliers_mask =
np.where(labels == -1)
numpy.where
''' Here we consider a controller trained for the reacher environment in OpenAI Gym. The controller was taken from the baselines. The controller is based on deepq. ''' import gym import numpy as np from baselines.ddpg.ddpg import DDPG from baselines.ddpg.noise import * from baselines.ddpg.models import Actor, Critic from baselines.ddpg.memory import Memory from baselines.common import set_global_seeds import baselines.common.tf_util as U from mpi4py import MPI from collections import deque def train_return(env, param_noise, actor, critic, memory,nb_epochs=250, nb_epoch_cycles=20, reward_scale=1., render=False,normalize_returns=False, normalize_observations=True, critic_l2_reg=1e-2, actor_lr=1e-4, critic_lr=1e-3, action_noise=None, popart=False, gamma=0.99, clip_norm=None,nb_train_steps=50, nb_rollout_steps=2048, batch_size=64,tau=0.01, param_noise_adaption_interval=50): rank = MPI.COMM_WORLD.Get_rank() assert (np.abs(env.action_space.low) == env.action_space.high).all() # we assume symmetric actions. max_action = env.action_space.high agent = DDPG(actor, critic, memory, env.observation_space.shape, env.action_space.shape, gamma=gamma, tau=tau, normalize_returns=normalize_returns, normalize_observations=normalize_observations, batch_size=batch_size, action_noise=action_noise, param_noise=param_noise, critic_l2_reg=critic_l2_reg, actor_lr=actor_lr, critic_lr=critic_lr, enable_popart=popart, clip_norm=clip_norm, reward_scale=reward_scale) # Set up logging stuff only for a single worker. episode_rewards_history = deque(maxlen=100) #with U.single_threaded_session() as sess: # Prepare everything. agent.initialize(sess) sess.graph.finalize() agent.reset() obs = env.reset() episode_reward = 0. episode_step = 0 episodes = 0 t = 0 epoch_episode_rewards = [] epoch_episode_steps = [] epoch_actions = [] epoch_qs = [] epoch_episodes = 0 for epoch in range(nb_epochs): print('epoch number:', epoch) for cycle in range(nb_epoch_cycles): # Perform rollouts. for t_rollout in range(nb_rollout_steps): # Predict next action. action, q = agent.pi(obs, apply_noise=True, compute_Q=True) assert action.shape == env.action_space.shape # Execute next action. if rank == 0 and render: env.render() assert max_action.shape == action.shape new_obs, r, done, info = env.step( max_action * action) # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1]) t += 1 if rank == 0 and render: env.render() episode_reward += r episode_step += 1 # Book-keeping. epoch_actions.append(action) epoch_qs.append(q) agent.store_transition(obs, action, r, new_obs, done) obs = new_obs if done: # Episode done. epoch_episode_rewards.append(episode_reward) episode_rewards_history.append(episode_reward) epoch_episode_steps.append(episode_step) episode_reward = 0. episode_step = 0 epoch_episodes += 1 episodes += 1 agent.reset() obs = env.reset() # Train. epoch_actor_losses = [] epoch_critic_losses = [] epoch_adaptive_distances = [] for t_train in range(nb_train_steps): # Adapt param noise, if necessary. if memory.nb_entries >= batch_size and t % param_noise_adaption_interval == 0: distance = agent.adapt_param_noise() epoch_adaptive_distances.append(distance) cl, al = agent.train() epoch_critic_losses.append(cl) epoch_actor_losses.append(al) agent.update_target_net() return agent seed = 2146337346 set_global_seeds(seed) env = gym.make("Reacher-v1") env.seed(seed) sess = U.make_session(num_cpu=1).__enter__() nb_actions = env.action_space.shape[-1] layer_norm=True param_noise = AdaptiveParamNoiseSpec(initial_stddev=float(0.2), desired_action_stddev=float(0.2)) memory = Memory(limit=int(1e6), action_shape=env.action_space.shape, observation_shape=env.observation_space.shape) critic = Critic(layer_norm=layer_norm) actor = Actor(nb_actions, layer_norm=layer_norm) agent = train_return(env=env,actor=actor, critic=critic, memory=memory, param_noise=param_noise) max_action = env.action_space.high def compute_traj(max_steps,early=False,done_early=False,**kwargs): env.reset() # This sets the init_qpos if 'init_state' in kwargs: env.env.init_qpos = kwargs['init_state'] # This sets the goal if 'goal' in kwargs: env.env.goal = kwargs['goal'] # This is the init_qvel if 'init_velocity' in kwargs: env.env.init_qvel = kwargs['init_velocity'] # State perturbation if 'state_per' in kwargs: state_per = kwargs['state_per'] # Velocity perturbation if 'vel_per' in kwargs: vel_per = kwargs['vel_per'] qpos = state_per+env.env.init_qpos qvel = vel_per+env.env.init_qvel qpos[-2:] = env.env.goal qvel[-2:] = 0. env.env.set_state(qpos,qvel) ob = env.env._get_obs() traj = [ob] reward = 0 iters = 0 closest = np.inf total_theta1 = 0. total_theta2 = 0. pt1 = np.arccos(ob[0]) if ob[2] > 0 else np.pi + np.arccos(ob[0]) pt2 = np.arccos(ob[1]) if ob[3] > 0 else np.pi +np.arccos(ob[1]) for _ in range(max_steps): action, _ = agent.pi(ob, apply_noise=False, compute_Q=True) ob, r, done, additional_data = env.step(max_action * action) if early and np.linalg.norm(env.env.get_body_com("fingertip")\ -env.env.get_body_com("target")) < 0.1: break nt1 = np.arccos(ob[0]) if ob[2] > 0 else np.pi + np.arccos(ob[0]) nt2 = np.arccos(ob[1]) if ob[3] > 0 else np.pi + np.arccos(ob[1]) total_theta1 += nt1 - pt1 total_theta2 += nt2 - pt2 pt1 = nt1 pt2 = nt2 if -additional_data['reward_dist']< closest: closest = -additional_data['reward_dist'] if done_early and done: break reward += r traj.append(ob) iters+=1. additional_data = {} additional_data['reward']=reward additional_data['iters'] = iters additional_data['closest'] = closest additional_data['tot_theta1'] = np.abs(total_theta1/(2*np.pi)) additional_data['tot_theta2'] = np.abs(total_theta2/(2*np.pi)) return traj, additional_data # ------------------------------------------------------------------------------ from active_testing import pred_node, max_node, min_node, test_module from active_testing.utils import sample_from rand_nums = [3547645943, 3250606528, 2906727341, 772456798, 2103980956, 2264249721, 1171067901, 3643734338, 854527104, 260127400, 578423204, 3152488971, 261317259, 2798623267, 3165387405] bounds = [(-0.2, 0.2)] * 2 # Bounds on the goal bounds.append((-0.1, 0.1)) # Bounds on the state perturbations bounds.append((-0.1, 0.1)) # Bounds on the state perturbations bounds.append((-0.005, 0.005)) # Bounds on the velocity perturbations bounds.append((-0.005, 0.005)) # Bounds on the velocity perturbations def sut(max_steps,x0,early=False, done_early=False): goal = np.array(x0[0:2]) state_per = np.zeros(4) state_per[0:2] += x0[2:4] vel_per = np.zeros(4) vel_per[0:2] += x0[4:6] return compute_traj(max_steps,early, done_early,goal=goal, state_per=state_per, vel_per=vel_per) # Requirement 1: Find the initial state, goal state that minimizes the reward # We need only one node for the reward. The reward is a smooth function # given that the closed loop system is deterministic smooth_details_r1 = [] random_details_r1 = [] # This set assumes random sampling and checking for r in rand_nums: np.random.seed(r) node0 = pred_node(f=lambda traj: traj[1]['reward']) TM = test_module(bounds=bounds, sut=lambda x0: sut(2048,x0, done_early=True), f_tree = node0, with_random = True, init_sample = 70, optimize_restarts=5, exp_weight=10, seed=r) TM.initialize() TM.run_BO(30) TM.k = 5 TM.run_BO(50) TM.k=2 TM.run_BO(50) smooth_details_r1.append([np.sum(TM.f_acqu.GP.Y < -10.), TM.smooth_min_x,TM.smooth_min_val]) random_details_r1.append([np.sum(np.array(TM.random_Y) < -10.), TM.rand_min_x, TM.rand_min_val]) print(r, smooth_details_r1[-1], random_details_r1[-1]) # Requirement 2: Find the initial state, goal state that maximizes the time # taken to reach near the goal. # We need only one node for the time. The time taken is a smooth function # given that the closed loop system is deterministic. smooth_details_r2 = [] random_details_r2 = [] # This set assumes random sampling and checking for r in rand_nums: np.random.seed(r) node0 = pred_node(f=lambda traj: -traj[1]['iters']) TM = test_module(bounds=bounds, sut=lambda x0: sut(2048,x0, early=True), f_tree = node0, with_random = True, init_sample = 70, optimize_restarts=3, exp_weight=10,normalizer=True) TM.initialize() TM.run_BO(30) TM.k = 5 TM.run_BO(50) TM.k = 2 TM.run_BO(50) smooth_details_r2.append([np.sum(TM.f_acqu.GP.Y < -50), TM.smooth_min_x,TM.smooth_min_val]) random_details_r2.append([np.sum(np.array(TM.random_Y) < -50), TM.rand_min_x, TM.rand_min_val]) print(r, smooth_details_r2[-1], random_details_r2[-1]) # Requirement 3: Find the initial state, goal state that maximizes the minimum # distance the reacher gets to a goal or minimize the number of rotations. smooth_details_r3 = [] random_details_r3 = [] ns_details_r3 = [] def compare_s_ns(TM, TM_ns, K, num_sample, r, k): # This is the same routine as implemented in sample_opt. # Here, I re-implement it as I am comparing the different methods, and # hence the sampled X needs to remain the same. np.random.seed(r) for l in range(K): print("Iteration:", l) X = sample_from(num_sample, bounds) smooth_vals = TM.f_acqu.evaluate(X, k=k) m_ns, v_ns = TM_ns.ns_GP.predict(X) ns_vals = m_ns - k*np.sqrt(v_ns) k_smooth = smooth_vals.argmin() k_ns = ns_vals.argmin() print(TM.f_acqu.eval_robustness(TM.system_under_test(X[k_smooth])), \ TM.f_acqu.eval_robustness(TM.system_under_test(X[k_ns]))) TM.f_acqu.update_GPs(np.vstack((TM.f_acqu.children[0].GP.X, \
np.atleast_2d(X[k_smooth])
numpy.atleast_2d
# Configure paths import os, sys, subprocess sys.path.append('../scripts') sys.path.append('../shape_recognition') sys.path.append('../shape_recognition/libraries/general') sys.path.append('../shape_recognition/libraries/iLimb') sys.path.append('../shape_recognition/libraries/UR10') sys.path.append('../shape_recognition/libraries/neuromorphic') # Import libraries # PyQt from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.uic import loadUiType # Standard import numpy as np import tensorflow as tf import pyqtgraph as pg # from threading import Thread from collections import deque import serial # Switch to using white background and black foreground pg.setConfigOption('background', 'w') pg.setConfigOption('foreground', 'k') # Custom from iLimb import * from UR10 import * from threadhandler import ThreadHandler from serialhandler import list_serial_ports from pcd_io import save_point_cloud from ur10_simulation import ur10_simulator from iLimb_trajectory import get_coords from visualize import render3D from detect import detect_shape from vcnn import vCNN from dataprocessing import MovingAverage # Load UI file Ui_MainWindow, QMainWindow = loadUiType('formMain_gui.ui') # Constants MAPPING = {'index':0, 'thumb':1} THRESHOLD = {'index':0.01, 'thumb':0.01} # iLimb dimensions (mm) IDX_TO_BASE = 185 + 40 THB_TO_BASE = 105 + 30 IDX_0 = 50 IDX_1 = 30 THB = 65 """ Abstract class for storing state variables """ class STATE: ROTATION_ANGLE = 30 ROTATION_POS = 0 # 0,1,2,3 ROTATION_DIR = -1 # -1/1 NUM_POINTS = 0 CONTACT_POINTS = [] CONTROL_POS = [0 for _ in range(5)] FINGER_POS = {'index':[], 'thumb':[]} XYZR = [] UNIT_VECTOR = [] STOP = False HEIGHT = 0 ESTIMATED_HEIGHT = 200 STARTED = False class port: def __init__(self, widget): self.view = widget def write(self, *args): self.view.append(*args) def flush(self, *args): pass """ Main class for controlling the GUI """ class FormMain(QMainWindow, Ui_MainWindow): def __init__(self, parent=None): # Constructor super(FormMain, self).__init__() self.setupUi(self) # Handlers self.ur10 = None self.iLimb = None # Set available ports self.port_ur10.setText("10.1.1.6") self.port_iLimb.addItems(list_serial_ports()) self.port_tactile.addItems(list_serial_ports()) # For tactile values self.ser = None self.dataQueue = deque([], maxlen=1000) self.receiveThread = ThreadHandler(_worker=self.receive) self.MIN = np.array([0,0]) self.MAX = np.array([4096, 4096]) self.mvaFilt = [MovingAverage(_windowSize = 1000), MovingAverage(_windowSize=1000)] # Connect buttons to callback functions self.initialize.clicked.connect(self.init_handlers) self.configure.clicked.connect(self.configure_handlers) self.init_main.clicked.connect(self.start_main) self.stop_main.clicked.connect(self.break_main) self.toHome.clicked.connect(self.move_to_home) self.toBase.clicked.connect(lambda: self.move_to_base(t=5)) self.moveUp.clicked.connect(lambda: self.move_vertical(_dir=1)) self.moveDown.clicked.connect(lambda: self.move_vertical(_dir=-1)) self.cw.clicked.connect(self.rotate_hand_CW) self.ccw.clicked.connect(self.rotate_hand_CCW) self.toPose.clicked.connect(self.move_iLimb_to_pose) self.pinch.clicked.connect(lambda: self.close_hand()) self.moveAway.clicked.connect(lambda: self.move_away()) self.startSensors.clicked.connect(lambda: [ self.sensors_timer.start(0), self.receiveThread.start() ]) self.stopSensors.clicked.connect(lambda: [ self.sensors_timer.stop(), self.receiveThread.pause()]) self.calibrate.clicked.connect(self.calibrate_sensors) self.visualize.clicked.connect(lambda: [self.save_points(), render3D('run.pcd', stage=1)]) self.convexHull.clicked.connect(lambda: [self.save_points(), render3D('run.pcd', stage=2)]) self.detectShape.clicked.connect(self.recognize_shape) self.clear.clicked.connect(self.reset_stored_values) # Initialize PoV graphs views = [self.view0, self.view1, self.view2, self.view3, self.view4, self.view5] self.povBoxes = [] self.povPlots = [] for view in views: view.ci.layout.setContentsMargins(0,0,0,0) view.ci.layout.setSpacing(0) self.povBoxes.append(view.addPlot()) self.povPlots.append(pg.ScatterPlotItem()) self.povBoxes[-1].addItem(self.povPlots[-1]) # Initialize tactile sensor graphs self.timestep = [0] self.sensorData = [[], []] self.sensorBoxes = [] self.sensorPlots = [] for view in [self.sensor_index, self.sensor_thumb]: view.ci.layout.setContentsMargins(0,0,0,0) view.ci.layout.setSpacing(0) self.sensorBoxes.append(view.addPlot()) self.sensorPlots.append(pg.PlotCurveItem(pen=pg.mkPen('b',width=1))) self.sensorBoxes[-1].addItem(self.sensorPlots[-1]) self.sensorBoxes[-1].setXRange(min=0, max=20, padding=0.1) # self.sensorBoxes[-1].setYRange(min=0, max=1, padding=0.1) self.pov_timer = QtCore.QTimer() self.pov_timer.timeout.connect(self.update_pov) self.sensors_timer = QtCore.QTimer() self.sensors_timer.timeout.connect(self.update_sensor_readings) self.main_thread = Thread(target=self._palpation_routine) self.main_thread.daemon = True # Redirect console output to textBrowser sys.stdout = port(self.textBrowser) # Create TensorFlow session and load pretrained model self.load_session() """ Function to initialize handler objects """ def init_handlers(self): # Create handlers print('Initializing handlers ...') self.ur10 = UR10Controller(self.port_ur10.text()) print('UR10 done.') self.iLimb = iLimbController(self.port_iLimb.currentText()) self.iLimb.connect() print('iLimb done.') self.ser = serial.Serial(self.port_tactile.currentText(),117964800) self.ser.flushInput() self.ser.flushOutput() print('TactileBoard done') """ Functions to set all handlers to default configuration """ def move_to_home(self): print('Setting UR10 to default position ...') UR10pose = URPoseManager() UR10pose.load('shape_recog_home.urpose') UR10pose.moveUR(self.ur10,'home_j',5) time.sleep(5.2) def move_iLimb_to_pose(self): print('Setting iLimb to default pose ...') self.iLimb.setPose('openHand') time.sleep(3) self.iLimb.control(['thumbRotator'], ['position'], [700]) time.sleep(3) def calibrate_sensors(self): self.receiveThread.start() print('Calibrating tactile sensors ...') # Clear data queue self.dataQueue.clear() # Wait till queue has sufficient readings while len(self.dataQueue) < 500: pass # Calculate lower and upper bounds samples = np.asarray(copy(self.dataQueue)) self.MIN = np.mean(samples, axis=0) self.MAX = self.MIN + 500 self.dataQueue.clear() # Set Y-range for box in self.sensorBoxes: box.setYRange(min=0, max=1, padding=0.1) print("Done") def configure_handlers(self): self.move_to_home() self.move_iLimb_to_pose() self.calibrate_sensors() print('Done.') """ Function to create and load pretrained model """ def load_session(self): self.model = vCNN() self.session = tf.Session(graph=self.model.graph) with self.session.as_default(): with self.session.graph.as_default(): saver = tf.train.Saver(max_to_keep=3) saver.restore(self.session, tf.train.latest_checkpoint('../shape_recognition/save')) """ Function to clear all collected values """ def reset_stored_values(self): STATE.NUM_POINTS = 0 STATE.CONTACT_POINTS = [] STATE.CONTROL_POS = [0 for _ in range(5)] STATE.FINGER_POS = {'index':[], 'thumb':[]} STATE.XYZR = [] STATE.UNIT_VECTOR = [] """ Function to close fingers until all fingers touch surface """ def close_hand(self, fingers=['index', 'thumb']): touched = [False] * len(fingers) touched_once = False fingerArray = [[x, MAPPING[x], THRESHOLD[x]] for x in fingers] while not all(touched): time.sleep(0.005) q = self.get_sensor_data() for _ in range(len(q)): tactileSample = q.popleft() touched = self.iLimb.doFeedbackPinchTouch(tactileSample, fingerArray, 1) # update control_pos for fingers that have touched a surface for i in range(len(fingerArray)): if touched[i]: touched_once = True STATE.CONTROL_POS[fingerArray[i][1]] = self.iLimb.controlPos #---------------------------------------------------------- # Collect information STATE.FINGER_POS[fingerArray[i][0]].append(self.iLimb.controlPos) #---------------------------------------------------------- # Self-touching condition # Can be modified later if self.iLimb.controlPos > 200 and not touched_once: return False elif self.iLimb.controlPos > 200 and touched_once: for i in range(len(fingerArray)): if not touched[i]: #---------------------------------------------------------- # Collect information STATE.FINGER_POS[fingerArray[i][0]].append(-1) #---------------------------------------------------------- return True if all(touched): return True else: # update fingerArray fingerArray = [fingerArray[i] for i in range(len(touched)) if not touched[i]] """ Function to calculate coordinates of points of contact """ def compute_coordinates(self): self.ur10.read_joints_and_xyzR() xyzR = copy(self.ur10.xyzR) joints = copy(self.ur10.joints) sim = ur10_simulator() sim.set_joints(joints) _ = sim.joints2pose() _, rm = sim.get_Translation_and_Rotation_Matrix() # Calculate the direction in which the end effector is pointing # aVlue corresponding to z-direction is ignored direction = rm[:2,2] # x and y direction vector only direction /= np.linalg.norm(direction) # Calculate unit vector direction dir_ang = np.arctan(abs(direction[1]/direction[0])) if direction[0] < 0: if direction[1] < 0: dir_ang += np.pi else: dir_ang = np.pi - dir_ang else: if direction[1] < 0: dir_ang = 2*np.pi - dir_ang # Find point of contact for index finger idx_control = STATE.CONTROL_POS[MAPPING['index']] if idx_control > 0: theta = 30 + 60/500 * idx_control if idx_control < 210: # Normal circular motion rel_theta = 30 else: rel_theta = 30 + 60/290 * (idx_control - 210) # rel_theta = 30 + 60/500 * idx_control axis = IDX_0 * np.cos(np.deg2rad(theta)) + IDX_1 * np.cos(np.deg2rad(theta+rel_theta)) perp = IDX_0 * np.sin(np.deg2rad(theta)) + IDX_1 * np.sin(np.deg2rad(theta+rel_theta)) axis += IDX_TO_BASE pt_1 = [axis * np.cos(dir_ang) - perp * np.sin(dir_ang) + xyzR[0], axis * np.sin(dir_ang) + perp * np.cos(dir_ang) + xyzR[1], xyzR[2]] STATE.NUM_POINTS += 1 STATE.CONTACT_POINTS.append(pt_1) # Find point of contact for thumb thb_control = STATE.CONTROL_POS[MAPPING['thumb']] if thb_control > 0: theta = 90 * (1 - thb_control/500) axis = THB * np.cos(np.deg2rad(theta)) + THB_TO_BASE perp = THB * np.sin(np.deg2rad(theta)) pt_2 = [axis * np.cos(dir_ang) - perp * np.sin(dir_ang) + xyzR[0], axis * np.sin(dir_ang) + perp * np.cos(dir_ang) + xyzR[1], xyzR[2]] STATE.NUM_POINTS += 1 STATE.CONTACT_POINTS.append(pt_2) #-------------------------------------------------- # Collect information STATE.XYZR.append(xyzR) STATE.UNIT_VECTOR.append(direction) #-------------------------------------------------- """ Functions to rotate hand for next reading """ def rotate_hand_CCW(self): self.ur10.read_joints() joints = copy(self.ur10.joints) if STATE.ROTATION_POS < 180//STATE.ROTATION_ANGLE - 1: STATE.ROTATION_POS += 1 joints[4] += STATE.ROTATION_ANGLE * -1 xyzR = self.ur10.move_joints_with_grasp_constraints(joints, dist_pivot=220, grasp_pivot=60, constant_axis='z') self.ur10.movej(xyzR, 3) time.sleep(3.2) def rotate_hand_CW(self): self.ur10.read_joints() joints = copy(self.ur10.joints) if STATE.ROTATION_POS > 0: STATE.ROTATION_POS -= 1 joints[4] += STATE.ROTATION_ANGLE * 1 xyzR = self.ur10.move_joints_with_grasp_constraints(joints, dist_pivot=220, grasp_pivot=60, constant_axis='z') self.ur10.movej(xyzR, 3) time.sleep(3.2) def rotate_hand(self): # Boundary checks if STATE.ROTATION_POS == 0 and STATE.ROTATION_DIR == -1: STATE.ROTATION_DIR = 1 if STATE.ROTATION_POS == 180//STATE.ROTATION_ANGLE - 1 and STATE.ROTATION_DIR == 1: STATE.ROTATION_DIR = -1 # Rotate the hand according to direction if STATE.ROTATION_DIR == 1: self.rotate_hand_CCW() else: self.rotate_hand_CW() """ Function to move hand in vertical direction """ def move_vertical(self, _dir=1): # move one step up while palpating self.ur10.read_joints_and_xyzR() x, y, z, rx, ry, rz = copy(self.ur10.xyzR) new_joint_pos = np.array([x, y, z+10*_dir, rx, ry, rz]) self.ur10.movej(new_joint_pos, 0.5) time.sleep(0.7) STATE.HEIGHT += 10*_dir """ Function to move hand away from the object """ def move_away(self, fingers=['thumb', 'index']): self.iLimb.control(fingers, ['position']*len(fingers), [0]*len(fingers)) time.sleep(1) """ Function to move UR10 to base """ def move_to_base(self, t=1): self.ur10.read_joints_and_xyzR() x, y, z, rx, ry, rz = copy(self.ur10.xyzR) new_joint_pos =
np.array([x, y, -200, rx, ry, rz])
numpy.array
# Copyright 2021-2022 The DADApy Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """This module contains some essential plotting functions.""" import matplotlib.pyplot as plt import numpy as np import scipy as sp from matplotlib import cm from matplotlib.collections import LineCollection from scipy import cluster from sklearn import manifold def plot_ID_line_fit_estimation(Data, decimation=0.9, fraction_used=0.9): """Plot the 2NN scatter plot and line fit.""" mus = Data.distances[:, 2] / Data.distances[:, 1] idx = np.arange(mus.shape[0]) idx = np.random.choice( idx, size=(int(np.around(Data.N * decimation))), replace=False ) mus = mus[idx] mus = np.sort(np.sort(mus)) Nele_eff = int(np.around(fraction_used * Data.N, decimals=0)) x = np.log(mus) y = -np.log(1.0 - np.arange(0, mus.shape[0]) / mus.shape[0]) x_, y_ = np.atleast_2d(x[:Nele_eff]).T, y[:Nele_eff] slope, residuals, rank, s = np.linalg.lstsq( x_, y_, rcond=None ) # x[:Nele_eff, None]? plt.plot(x, y, "o") plt.plot(x[:Nele_eff], y[:Nele_eff], "o") plt.plot(x, x * slope, "-") print( "slope is {:f}, average residual is {:f}".format( slope[0], residuals[0] / Nele_eff ) ) plt.xlabel("log(mu)") plt.ylabel("-log(1-F(mu))") plt.show() # plt.savefig('ID_line_fit_plot.png') def plot_SLAn(Data, linkage="single"): """Plot a basic visualisation of the density peaks.""" assert Data.cluster_assignment is not None nd = int((Data.N_clusters * Data.N_clusters - Data.N_clusters) / 2) Dis = np.empty(nd, dtype=float) nl = 0 Fmax = max(Data.log_den) Rho_bord_m = np.copy(Data.log_den_bord) for i in range(Data.N_clusters - 1): for j in range(i + 1, Data.N_clusters): Dis[nl] = Fmax - Rho_bord_m[i][j] nl = nl + 1 if linkage == "single": DD = sp.cluster.hierarchy.single(Dis) elif linkage == "complete": DD = sp.cluster.hierarchy.complete(Dis) elif linkage == "average": DD = sp.cluster.hierarchy.average(Dis) elif linkage == "weighted": DD = sp.cluster.hierarchy.weighted(Dis) else: print("ERROR: select a valid linkage criterion") fig, ax = plt.subplots(nrows=1, ncols=1) # create figure & 1 axis dn = sp.cluster.hierarchy.dendrogram(DD) # fig.savefig('dendrogramm.png') # save the figure to file plt.show() def plot_MDS(Data, cmap="viridis", savefig=""): """Plot a multi-dimensional scaling visualisation of the density peaks.""" Fmax = max(Data.log_den) Rho_bord_m = np.copy(Data.log_den_bord) d_dis = np.zeros((Data.N_clusters, Data.N_clusters), dtype=float) model = manifold.MDS(n_components=2, n_jobs=None, dissimilarity="precomputed") for i in range(Data.N_clusters): for j in range(Data.N_clusters): d_dis[i][j] = Fmax - Rho_bord_m[i][j] for i in range(Data.N_clusters): d_dis[i][i] = 0.0 out = model.fit_transform(d_dis) fig, ax = plt.subplots(nrows=1, ncols=1) s = [] col = [] for i in range(Data.N_clusters): s.append(20.0 * np.sqrt(len(Data.cluster_indices[i]))) col.append(i) plt.scatter(out[:, 0], out[:, 1], s=s, c=col, cmap=cmap) left, right = plt.xlim() xr = right - left plt.xlim((left - xr * 0.05, right + xr * 0.05)) bottom, up = plt.ylim() yr = up - bottom plt.ylim((bottom - yr * 0.05, up + yr * 0.05)) plt.xticks([]) plt.yticks([]) cmal = cm.get_cmap(cmap, Data.N_clusters) colors = cmal(np.arange(0, cmal.N)) for i in range(Data.N_clusters): cc = "k" r = colors[i][0] g = colors[i][1] b = colors[i][2] luma = (0.2126 * r + 0.7152 * g + 0.0722 * b) * 255 if luma < 156: cc = "w" plt.annotate( i, (out[i, 0], out[i, 1]), horizontalalignment="center", verticalalignment="center", c=cc, weight="bold", ) # for i in range(Data.N_clusters): # ax.annotate(i, (out[i, 0], out[i, 1])) # Add edges rr = np.amax(Rho_bord_m) if rr > 0.0: Rho_bord_m = Rho_bord_m / rr * 100.0 start_idx, end_idx = np.where(out) segments = [ [out[i, :], out[j, :]] for i in range(len(out)) for j in range(len(out)) ] values = np.abs(Rho_bord_m) lc = LineCollection(segments, zorder=0, norm=plt.Normalize(0, values.max())) lc.set_array(Rho_bord_m.flatten()) lc.set_edgecolor(np.full(len(segments), "black")) lc.set_facecolor(np.full(len(segments), "black")) lc.set_linewidths(0.02 * Rho_bord_m.flatten()) ax.add_collection(lc) if savefig != "": plt.savefig(savefig) plt.show() def plot_matrix(Data, savefig=""): """Plot a matrix of density peaks and density saddle points intensity.""" Rho_bord_m = np.copy(Data.log_den_bord) topography = np.copy(Rho_bord_m) for j in range(Data.N_clusters): topography[j, j] = Data.log_den[Data.cluster_centers[j]] fig, ax = plt.subplots(nrows=1, ncols=1) plt.imshow(topography, cmap="gray_r", interpolation=None) plt.xticks(np.arange(0, Data.N_clusters, step=1)) plt.yticks(np.arange(0, Data.N_clusters, step=1)) if savefig != "": plt.savefig(savefig) plt.show() def plot_DecGraph(Data, savefig=""): """Plot the decision graph for the Density Peak clustering method.""" plt.xlabel(r"$\rho$") plt.ylabel(r"$\delta$") plt.scatter(Data.log_den, Data.delta) if savefig != "": plt.savefig(savefig) plt.show() def get_dendrogram(Data, cmap="viridis", savefig="", logscale=True): """Generate a visualisation of the topography computed with ADP. This visualisation fundamentally corresponds to a hierarchy of the clusters build with Single Linkage taking as similarity measure the density at the border between clusters. At difference from classical dendrograms, where all the branches have the same height, in this case the height of the branches is proportional to the density of the cluster centre. To convey more information, the distance in the x-axis between clusters is proportional to the population (or its logarithm). TODO: Alex, is this sentence true? Args: Data: A dadapy data object for which ADP has been already run. cmap: (optional) The color map for representing the different clusters, the default is "viridis". savefig: (str, optional) A string with the name of the file in which the dendrogram will be saved. The default is empty, so no file is generated. logscale: (bool, optional) Makes the distances in the x-axis between clusters proportional to the logarithm of the population of the clusters instead of proportional to the population itself. In very unbalanced clusterings, it makes the dendrogram more human readable. The default is True. Returns: """ # Prepare some auxiliary lists e1 = [] e2 = [] d12 = [] L = [] Li1 = [] Li2 = [] Ldis = [] Fmax = max(Data.log_den) Rho_bord_m = np.copy(Data.log_den_bord) # Obtain populations of the clusters for fine tunning the x-axis pop = np.zeros((Data.N_clusters), dtype=int) for i in range(Data.N_clusters): pop[i] = len(Data.cluster_indices[i]) if logscale: pop[i] =
np.log(pop[i])
numpy.log
''' Agents: stop/random/shortest/seq2seq ''' import json import os import sys import numpy as np import random import time import pickle import torch import torch.nn as nn import torch.distributions as D from torch.autograd import Variable from torch import optim import torch.nn.functional as F import copy from env import debug_beam from utils import padding_idx, to_contiguous, clip_gradient from agent_utils import basic_actions, sort_batch, teacher_action, discount_rewards, backchain_inference_states, path_element_from_observation, InferenceState, WorldState, least_common_viewpoint_path from collections import Counter, defaultdict import pdb device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') testing_settingA=False # region Simple Agents class BaseAgent(object): ''' Base class for an R2R agent to generate and save trajectories. ''' def __init__(self, env, results_path, seed=1): self.env = env self.results_path = results_path if seed != 'resume': random.seed(seed) self.results = {} self.losses = [] # For learning agents self.testing_settingA = False def write_results(self, dump_file=False): if '_' in list(self.results.keys())[0]: #if testing_settingA: if self.testing_settingA: # choose one from three according to prob for id in self.results: bestp, best = self.results[id][1], self.results[id] for ii in range(4): temp_id = "%s_%d" % (id[:-2], ii) if temp_id in self.results and self.results[temp_id][1] > bestp: bestp = self.results[temp_id][1] best = self.results[temp_id] self.results[id] = best output = [{'instr_id': k, 'trajectory': v[0]} for k, v in self.results.items()] else: output = [{'instr_id': k, 'trajectory': v} for k, v in self.results.items()] else: output = [{'instr_id':'%s_%d' % (k, i), 'trajectory': v} for k,v in self.results.items() for i in range(self.env.traj_n_sents[k])] if dump_file: with open(self.results_path, 'w') as f: json.dump(output, f) return output def rollout(self, beam_size=1): ''' Return a list of dicts containing instr_id:'xx', path:[(viewpointId, heading_rad, elevation_rad)] ''' raise NotImplementedError @staticmethod def get_agent(name): return globals()[name+"Agent"] def test(self, beam_size=1, successors=1, speaker=(None,None,None,None)): self.env.reset_epoch() self.losses = [] self.results = {} # We rely on env showing the entire batch before repeating anything #print 'Testing %s' % self.__class__.__name__ speaker, speaker_weights, speaker_merge, evaluator = speaker looped = False batch_i, index_count = 0, [Counter() for _ in range(len(speaker_weights))] if speaker else []# for beam search while True: trajs = self.rollout(beam_size, successors) if beam_size > 1 or debug_beam: trajs, completed, traversed_list = trajs for ti, traj in enumerate(trajs): if (beam_size == 1 and debug_beam) or (beam_size>1 and speaker is None): traj = traj[0] elif beam_size>1 and (speaker is not None):#use speaker traj = speaker_rank(speaker, speaker_weights, speaker_merge, traj, completed[ti], traversed_list[ti] if traversed_list else None, index_count) else: assert (beam_size == 1 and not debug_beam) if traj['instr_id'] in self.results: looped = True else: #if testing_settingA: if self.testing_settingA: self.results[traj['instr_id']] = (traj['path'], traj['prob']) # choose one from three according to prob else: self.results[traj['instr_id']] = traj['path'] if looped: break if beam_size>1: print('batch',batch_i) batch_i+=1 # if use speaker, find best weight if beam_size>1 and (speaker is not None): # speaker's multiple choices best_sr, best_speaker_weight_i = -1, -1 for spi, speaker_weight in enumerate(speaker_weights): if '_' in list(self.results.keys())[0]: output = [{'instr_id': k, 'trajectory': v[spi]} for k, v in self.results.items()] else: output = [{'instr_id': '%s_%d' % (k, i), 'trajectory': v[spi]} for k, v in self.results.items() for i in range(self.env.traj_n_sents[k])] score_summary, _ = evaluator.score_output(output) data_log = defaultdict(list) for metric, val in score_summary.items(): data_log['%s %s' % (''.join(evaluator.splits), metric)].append(val) print(index_count[spi]) print(speaker_weights[spi], '\n'.join([str((k, round(v[0], 4))) for k, v in sorted(data_log.items())])) sr = score_summary['success_rate'] if sr>best_sr: best_sr, best_speaker_weight_i = sr, spi print('best sr:',best_sr,' speaker weight:',speaker_weights[best_speaker_weight_i]) print('best sr counter', index_count[best_speaker_weight_i]) self.results = {k: v[best_speaker_weight_i] for k, v in self.results.items()} def speaker_rank(speaker, speaker_weights, speaker_merge, beam_candidates, this_completed, traversed_lists, index_count): # todo: this_completed is not sorted!! so not corresponding to beam_candidates cand_obs, cand_actions, multi = [], [], isinstance(beam_candidates[0]['instr_encoding'], list) cand_instr = [[] for _ in beam_candidates[0]['instr_encoding']] if multi else [] # else should be np.narray for candidate in beam_candidates: cand_obs.append(candidate['observations']) cand_actions.append(candidate['actions']) if multi: for si, encoding in enumerate(candidate['instr_encoding']): cand_instr[si].append(np.trim_zeros(encoding)[:-1]) else: cand_instr.append(np.trim_zeros(candidate['instr_encoding'])[:-1]) if multi: speaker_scored_candidates = [[] for _ in (beam_candidates)] for si, sub_cand_instr in enumerate(cand_instr): speaker_scored_candidates_si, _ = \ speaker._score_obs_actions_and_instructions( cand_obs, cand_actions, sub_cand_instr, feedback='teacher') for sc_i, sc in enumerate(speaker_scored_candidates_si): speaker_scored_candidates[sc_i].append(sc) else: speaker_scored_candidates, _ = \ speaker._score_obs_actions_and_instructions( cand_obs, cand_actions, cand_instr, feedback='teacher') assert len(speaker_scored_candidates) == len(beam_candidates) follower_scores = [] speaker_scores = [] score_merge = {'mean':np.mean,'max':np.max,'min':np.min}[speaker_merge] for i, candidate in enumerate(beam_candidates): # different to speaker follower, our beam_candidates is not nested, we already got a subset from the outside of this function, so we do not need flatten it before enumerate speaker_scored_candidate = speaker_scored_candidates[i] if multi: assert candidate['instr_id'] == speaker_scored_candidate[0]['instr_id'] candidate['speaker_score'] = score_merge([s['score'] for s in speaker_scored_candidate]) else: assert candidate['instr_id'] == speaker_scored_candidate['instr_id'] candidate['speaker_score'] = speaker_scored_candidate['score'] candidate['follower_score'] = candidate['score'] del candidate['observations'] if traversed_lists:# physical_traversal: last_traversed = traversed_lists[-1] candidate_inf_state = \ this_completed[i] path_from_last_to_next = least_common_viewpoint_path( last_traversed, candidate_inf_state) assert path_from_last_to_next[0].world_state.viewpointId \ == last_traversed.world_state.viewpointId assert path_from_last_to_next[-1].world_state.viewpointId \ == candidate_inf_state.world_state.viewpointId inf_traj = (traversed_lists + path_from_last_to_next[1:]) physical_trajectory = [ path_element_from_observation(inf_state.observation) for inf_state in inf_traj] # make sure the viewpointIds match assert (physical_trajectory[-1][0] == candidate['path'][-1][0]) candidate['path'] = physical_trajectory follower_scores.append(candidate['follower_score']) speaker_scores.append(candidate['speaker_score']) speaker_std = np.std(speaker_scores) follower_std = np.std(follower_scores) instr_id = beam_candidates[0]['instr_id'] result_path = [] for spi, speaker_weight in enumerate(speaker_weights): speaker_scaled_weight = float(speaker_weight) / speaker_std follower_scaled_weight = (1 - float(speaker_weight)) / follower_std best_ix, best_cand = max( enumerate(beam_candidates), key=lambda tp: ( tp[1]['speaker_score'] * speaker_scaled_weight + tp[1]['follower_score'] * follower_scaled_weight)) result_path.append(best_cand['path']) index_count[spi][best_ix] += 1 return {'instr_id': instr_id, 'path': result_path} class StopAgent(BaseAgent): ''' An agent that doesn't move! ''' def rollout(self, beam_size=1): world_states = self.env.reset() obs = np.array(self.env._get_obs(world_states)) traj = [{ 'instr_id': ob['instr_id'], 'path': [(ob['viewpoint'], ob['heading'], ob['elevation'])] } for ob in obs] return traj class RandomAgent(BaseAgent): ''' An agent that picks a random direction then tries to go straight for five viewpoint steps and then stops. ''' def __init__(self, env, results_path): super(RandomAgent, self).__init__(env, results_path) random.seed(1) def rollout(self, beam_size=1): world_states = self.env.reset() obs = self.env._get_obs(world_states) traj = [{ 'instr_id': ob['instr_id'], 'path': [(ob['viewpoint'], ob['heading'], ob['elevation'])] } for ob in obs] self.steps = random.sample(list(range(-11,1)), len(obs)) ended = [False] * len(obs) for t in range(30): actions = [] for i,ob in enumerate(obs): if self.steps[i] >= 5: actions.append((0, 0, 0)) # do nothing, i.e. end ended[i] = True elif self.steps[i] < 0: actions.append((0, 1, 0)) # turn right (direction choosing) self.steps[i] += 1 elif len(ob['navigableLocations']) > 1: actions.append((1, 0, 0)) # go forward self.steps[i] += 1 else: actions.append((0, 1, 0)) # turn right until we can go forward obs = self.env._get_obs(self.env.step(actions)) for i,ob in enumerate(obs): if not ended[i]: traj[i]['path'].append((ob['viewpoint'], ob['heading'], ob['elevation'])) return traj class ShortestAgent(BaseAgent): ''' An agent that always takes the shortest path to goal. ''' def rollout(self, beam_size=1): world_states = self.env.reset() obs = np.array(self.env._get_obs(world_states)) traj = [{ 'instr_id': ob['instr_id'], 'path': [(ob['viewpoint'], ob['heading'], ob['elevation'])] } for ob in obs] ended = np.array([False] * len(obs)) while True: actions = [ob['teacher'] for ob in obs] obs = self.env._get_obs(self.env.step(actions)) for i,a in enumerate(actions): if a == (0, 0, 0): ended[i] = True for i,ob in enumerate(obs): if not ended[i]: traj[i]['path'].append((ob['viewpoint'], ob['heading'], ob['elevation'])) if ended.all(): break return traj class ShortestCollectAgent(BaseAgent): ''' An agent that always takes the shortest path to goal. ''' def __init__(self, env, results_path, max_episode_len, name=""): super(ShortestCollectAgent, self).__init__(env, results_path) self.episode_len = max_episode_len self.name = name def collect(self): idx = 0 total_traj = len(self.env.data) data = list() while len(data) < total_traj: traj = self.rollout() data.extend(traj) print("you collected %d shortest paths" % (len(data))) file_name = "/shortest_{}.json".format(self.name) with open(self.results_path + file_name, 'w+') as f: json.dump(data, f) def rollout(self, beam_size=1): world_states = self.env.reset(False) obs = np.array(self.env._get_obs(world_states)) traj = [{ 'instr_id': ob['instr_id'], 'path': [(ob['scan'], ob['viewpoint'], ob['viewIndex'],ob['heading'], ob['elevation'])], 'teacher_actions':[], 'teacher_action_emd':[], 'instr_encoding':ob['instr_encoding'].tolist() } for ob in obs] ended = np.array([False] * len(obs)) #while True: for t in range(self.episode_len): actions = [ob['teacher'] for ob in obs] for i,a in enumerate(actions): if not ended[i]: traj[i]['teacher_actions'].append(a) if a == 0: traj[i]['teacher_action_emd'].append((-1,90,90)) else: traj[i]['teacher_action_emd'].append((obs[i]['adj_loc_list'][a]['absViewIndex'], obs[i]['adj_loc_list'][a]['rel_heading'],obs[i]['adj_loc_list'][a]['rel_elevation'])) obs = self.env._get_obs(self.env.step(actions, obs)) for i,a in enumerate(actions): if a == (0, 0, 0) or a == 0: ended[i] = True for i,ob in enumerate(obs): if not ended[i]: traj[i]['path'].append((ob['scan'], ob['viewpoint'], ob['viewIndex'],ob['heading'], ob['elevation'])) if ended.all(): break return traj # endregion class Seq2SeqAgent(BaseAgent): ''' An agent based on an LSTM seq2seq model with attention. ''' model_actions, env_actions = basic_actions() feedback_options = ['teacher', 'argmax', 'sample'] def __init__(self, env, results_path, encoder, decoder, seed, aux_ratio, decoder_init, params=None, monotonic=False, episode_len=20, state_factored=False, accu_n_iters = 0): # , subgoal super(Seq2SeqAgent, self).__init__(env, results_path, seed=seed) self.encoder, self.decoder = encoder, decoder # encoder2 is only for self_critic self.encoder2, self.decoder2 = None, None self.monotonic = monotonic if self.monotonic: self.copy_seq2seq() self.episode_len = episode_len self.losses = [] self.losses_ctrl_f = [] # For learning auxiliary tasks self.aux_ratio = aux_ratio self.decoder_init = decoder_init self.clip_gradient = params['clip_gradient'] self.clip_gradient_norm = params['clip_gradient_norm'] self.reward_func = params['reward_func'] self.schedule_ratio = params['schedule_ratio'] self.temp_alpha = params['temp_alpha'] self.testing_settingA = params['test_A'] if self.decoder.action_space == 6: self.ignore_index = self.model_actions.index('<ignore>') else: self.ignore_index = -1 self.criterion = nn.CrossEntropyLoss(ignore_index=self.ignore_index) if self.decoder.ctrl_feature: assert self.decoder.action_space == -1 # currently only implement this self.criterion_ctrl_f = nn.MSELoss() # todo: MSE or ? self.state_factored = state_factored self.accu_n_iters = accu_n_iters @staticmethod def n_inputs(): return len(Seq2SeqAgent.model_actions) @staticmethod def n_outputs(): return len(Seq2SeqAgent.model_actions)-2 # Model doesn't output start or ignore def _sort_batch(self, obs): sorted_tensor, mask, seq_lengths, perm_idx = sort_batch(obs) if isinstance(sorted_tensor, list): sorted_tensors, masks, seqs_lengths = [], [], [] for i in range(len(sorted_tensor)): sorted_tensors.append(Variable(sorted_tensor[i], requires_grad=False).long().to(device)) masks.append(mask[i].byte().to(device)) seqs_lengths.append(seq_lengths[i]) return sorted_tensors, masks, seqs_lengths, perm_idx return Variable(sorted_tensor, requires_grad=False).long().to(device), \ mask.byte().to(device), \ list(seq_lengths), list(perm_idx) def _feature_variable(self, obs): ''' Extract precomputed features into variable. ''' #feature_size = obs[0]['feature'].shape[0] #features = np.empty((len(obs),feature_size), dtype=np.float32) if isinstance(obs[0]['feature'],tuple): # todo? features_pano = np.repeat(np.expand_dims(np.zeros_like(obs[0]['feature'][0], dtype=np.float32), 0), len(obs), axis=0) # jolin features = np.repeat(np.expand_dims(np.zeros_like(obs[0]['feature'][1], dtype=np.float32), 0), len(obs), axis=0) # jolin for i,ob in enumerate(obs): features_pano[i] = ob['feature'][0] features[i] = ob['feature'][1] return (Variable(torch.from_numpy(features_pano), requires_grad=False).to(device), Variable(torch.from_numpy(features), requires_grad=False).to(device)) else: features = np.repeat(np.expand_dims(np.zeros_like(obs[0]['feature'], dtype=np.float32),0),len(obs),axis=0) # jolin for i,ob in enumerate(obs): features[i] = ob['feature'] return Variable(torch.from_numpy(features), requires_grad=False).to(device) def get_next(self, feedback, target, logit): if feedback == 'teacher': a_t = target # teacher forcing elif feedback == 'argmax': _, a_t = logit.max(1) # student forcing - argmax a_t = a_t.detach() elif feedback == 'sample': probs = F.softmax(logit, dim=1) m = D.Categorical(probs) a_t = m.sample() # sampling an action from model else: sys.exit('Invalid feedback option') return a_t def _action_variable(self, obs): # get the maximum number of actions of all sample in this batch max_num_a = -1 for i, ob in enumerate(obs): max_num_a = max(max_num_a, len(ob['adj_loc_list'])) is_valid = np.zeros((len(obs), max_num_a), np.float32) action_embedding_dim = obs[0]['action_embedding'].shape[-1] action_embeddings = np.zeros((len(obs), max_num_a, action_embedding_dim), dtype=np.float32) for i, ob in enumerate(obs): adj_loc_list = ob['adj_loc_list'] num_a = len(adj_loc_list) is_valid[i, 0:num_a] = 1. action_embeddings[i, :num_a, :] = ob['action_embedding'] #bug: todo #for n_a, adj_dict in enumerate(adj_loc_list): # action_embeddings[i, :num_a, :] = ob['action_embedding'] return (Variable(torch.from_numpy(action_embeddings), requires_grad=False).to(device), Variable(torch.from_numpy(is_valid), requires_grad=False).to(device), is_valid) def _teacher_action_variable(self, obs): # get the maximum number of actions of all sample in this batch action_embedding_dim = obs[0]['action_embedding'].shape[-1] action_embeddings = np.zeros((len(obs), action_embedding_dim), dtype=np.float32) for i, ob in enumerate(obs): adj_loc_list = ob['adj_loc_list'] action_embeddings[i, :] = ob['action_embedding'][ob['teacher']] #bug: todo #for n_a, adj_dict in enumerate(adj_loc_list): # action_embeddings[i, :num_a, :] = ob['action_embedding'] return Variable(torch.from_numpy(action_embeddings), requires_grad=False).to(device) def _teacher_action(self, obs, ended): a = teacher_action(self.model_actions, self.decoder.action_space, obs, ended, self.ignore_index) return Variable(a, requires_grad=False).to(device) def _teacher_feature(self, obs, ended):#, max_num_a): ''' Extract teacher look ahead auxiliary features into variable. ''' # todo: 6 action space ctrl_features_dim = -1 for i, ob in enumerate(obs): # todo: whether include <stop> ? # max_num_a = max(max_num_a, len(ob['ctrl_features'])) if ctrl_features_dim<0 and len(ob['ctrl_features']): ctrl_features_dim = ob['ctrl_features'].shape[-1] #[0].shape[-1] break #is_valid no need to create. already created ctrl_features_tensor = np.zeros((len(obs), ctrl_features_dim), dtype=np.float32) for i, ob in enumerate(obs): if not ended[i]: ctrl_features_tensor[i, :] = ob['ctrl_features'] return Variable(torch.from_numpy(ctrl_features_tensor), requires_grad=False).to(device) def rollout(self, beam_size=1, successors=1): if beam_size ==1 and not debug_beam: if self.encoder.__class__.__name__ in ['BertImgEncoder','MultiVilBertEncoder','BertAddEncoder','MultiVilAddEncoder','MultiAddLoadEncoder', 'HugAddEncoder','MultiHugAddEncoder']: return self.bert_rollout_with_loss() elif self.encoder.__class__.__name__ in ['BertLangEncoder']: return self.langbert_rollout_with_loss() else: return self.rollout_with_loss() # beam with torch.no_grad(): if self.state_factored: beams = self.state_factored_search(beam_size, successors, first_n_ws_key=4) else: beams = self.beam_search(beam_size) return beams def state_factored_search(self, completion_size, successor_size, first_n_ws_key=4): assert self.decoder.panoramic world_states = self.env.reset(sort=True) initial_obs = (self.env._get_obs(world_states)) batch_size = len(world_states) # Reorder the language input for the encoder seq, seq_mask, seq_lengths, perm_idx = self._sort_batch([o for ob in initial_obs for o in ob]) world_states = [[world_state for f, world_state in states] for states in world_states] ctx, h_t, c_t, seq_mask = self.encoder(seq, seq_mask, seq_lengths) if not self.decoder_init: h_t, c_t = torch.zeros_like(h_t), torch.zeros_like(c_t) completed = [] completed_holding = [] for _ in range(batch_size): completed.append({}) completed_holding.append({}) state_cache = [ {ws[0][0:first_n_ws_key]: (InferenceState(prev_inference_state=None, world_state=ws[0], observation=o[0], flat_index=None, last_action=-1, last_action_embedding=self.decoder.u_begin, action_count=0, score=0.0, h_t=h_t[i], c_t=c_t[i], last_alpha=None), True)} for i, (ws, o) in enumerate(zip(world_states, initial_obs)) ] beams = [[inf_state for world_state, (inf_state, expanded) in sorted(instance_cache.items())] for instance_cache in state_cache] # sorting is a noop here since each instance_cache should only contain one last_expanded_list = [] traversed_lists = [] for beam in beams: assert len(beam)==1 first_state = beam[0] last_expanded_list.append(first_state) traversed_lists.append([first_state]) def update_traversed_lists(new_visited_inf_states): assert len(new_visited_inf_states) == len(last_expanded_list) assert len(new_visited_inf_states) == len(traversed_lists) for instance_index, instance_states in enumerate(new_visited_inf_states): last_expanded = last_expanded_list[instance_index] # todo: if this passes, shouldn't need traversed_lists assert last_expanded.world_state.viewpointId == traversed_lists[instance_index][-1].world_state.viewpointId for inf_state in instance_states: path_from_last_to_next = least_common_viewpoint_path(last_expanded, inf_state) # path_from_last should include last_expanded's world state as the first element, so check and drop that assert path_from_last_to_next[0].world_state.viewpointId == last_expanded.world_state.viewpointId assert path_from_last_to_next[-1].world_state.viewpointId == inf_state.world_state.viewpointId traversed_lists[instance_index].extend(path_from_last_to_next[1:]) last_expanded = inf_state last_expanded_list[instance_index] = last_expanded # Do a sequence rollout and calculate the loss while any(len(comp) < completion_size for comp in completed): beam_indices = [] u_t_list = [] h_t_list = [] c_t_list = [] flat_obs = [] for beam_index, beam in enumerate(beams): for inf_state in beam: beam_indices.append(beam_index) u_t_list.append(inf_state.last_action_embedding) h_t_list.append(inf_state.h_t.unsqueeze(0)) c_t_list.append(inf_state.c_t.unsqueeze(0)) flat_obs.append(inf_state.observation) u_t_prev = torch.stack(u_t_list, dim=0) assert len(u_t_prev.shape) == 2 # Image features from obs # if self.decoder.panoramic: f_t_all, f_t = self._feature_variable(flat_obs) # Action feature from obs # if self.decoder.action_space == 6: # u_t_features, is_valid = np.zeros((batch_size, 1)), None # else: u_t_features, is_valid, is_valid_numpy = self._action_variable(flat_obs) h_t = torch.cat(h_t_list, dim=0) c_t = torch.cat(c_t_list, dim=0) h_t, c_t, alpha, logit, pred_f = self.decoder(None, u_t_prev, u_t_features, f_t, f_t_all, h_t, c_t, [ctx_si[beam_indices] for ctx_si in ctx] if isinstance(ctx, list) else ctx[beam_indices], [seq_mask_si[beam_indices] for seq_mask_si in seq_mask] if isinstance(ctx, list) else seq_mask[beam_indices]) # Mask outputs of invalid actions logit[is_valid == 0] = -float('inf') # # Mask outputs where agent can't move forward # no_forward_mask = [len(ob['navigableLocations']) <= 1 for ob in flat_obs] masked_logit = logit log_probs = F.log_softmax(logit, dim=1).data # force ending if we've reached the max time steps # if t == self.episode_len - 1: # action_scores = log_probs[:,self.end_index].unsqueeze(-1) # action_indices = torch.from_numpy(np.full((log_probs.size()[0], 1), self.end_index)) # else: #_, action_indices = masked_logit.data.topk(min(successor_size, logit.size()[1]), dim=1) _, action_indices = masked_logit.data.topk(logit.size()[1], dim=1) # todo: fix this action_scores = log_probs.gather(1, action_indices) assert action_scores.size() == action_indices.size() start_index = 0 assert len(beams) == len(world_states) all_successors = [] for beam_index, (beam, beam_world_states) in enumerate(zip(beams, world_states)): successors = [] end_index = start_index + len(beam) assert len(beam_world_states) == len(beam) if beam: for inf_index, (inf_state, world_state, action_score_row) in \ enumerate(zip(beam, beam_world_states, log_probs[start_index:end_index])): flat_index = start_index + inf_index for action_index, action_score in enumerate(action_score_row): if is_valid_numpy[flat_index, action_index] == 0: continue successors.append( InferenceState(prev_inference_state=inf_state, world_state=world_state, observation=flat_obs[flat_index], flat_index=None, last_action=action_index, last_action_embedding=u_t_features[flat_index, action_index].detach(), action_count=inf_state.action_count + 1, score=float(inf_state.score + action_score), h_t=h_t[flat_index], c_t=c_t[flat_index], last_alpha=[alpha_si[flat_index].data for alpha_si in alpha] if isinstance(alpha, list) else alpha[flat_index].data) ) start_index = end_index successors = sorted(successors, key=lambda t: t.score, reverse=True) all_successors.append(successors) successor_world_states = [ [inf_state.world_state for inf_state in successors] for successors in all_successors ] successor_env_actions = [ [inf_state.last_action for inf_state in successors] for successors in all_successors ] successor_last_obs = [ [inf_state.observation for inf_state in successors] for successors in all_successors ] successor_world_states = self.env.step(successor_env_actions, successor_last_obs, successor_world_states) successor_world_states = [[world_state for f, world_state in states] for states in successor_world_states] acc = [] for ttt in zip(all_successors, successor_world_states): mapped = [inf._replace(world_state=ws) for inf, ws in zip(*ttt)] acc.append(mapped) all_successors = acc assert len(all_successors) == len(state_cache) new_beams = [] for beam_index, (successors, instance_cache) in enumerate(zip(all_successors, state_cache)): # early stop if we've already built a sizable completion list instance_completed = completed[beam_index] instance_completed_holding = completed_holding[beam_index] if len(instance_completed) >= completion_size: new_beams.append([]) continue for successor in successors: ws_keys = successor.world_state[0:first_n_ws_key] if successor.last_action == 0 or successor.action_count == self.episode_len: if ws_keys not in instance_completed_holding or instance_completed_holding[ws_keys][ 0].score < successor.score: instance_completed_holding[ws_keys] = (successor, False) else: if ws_keys not in instance_cache or instance_cache[ws_keys][0].score < successor.score: instance_cache[ws_keys] = (successor, False) # third value: did this come from completed_holding? uncompleted_to_consider = ((ws_keys, inf_state, False) for (ws_keys, (inf_state, expanded)) in instance_cache.items() if not expanded) completed_to_consider = ((ws_keys, inf_state, True) for (ws_keys, (inf_state, expanded)) in instance_completed_holding.items() if not expanded) import itertools import heapq to_consider = itertools.chain(uncompleted_to_consider, completed_to_consider) ws_keys_and_inf_states = heapq.nlargest(successor_size, to_consider, key=lambda pair: pair[1].score) new_beam = [] for ws_keys, inf_state, is_completed in ws_keys_and_inf_states: if is_completed: assert instance_completed_holding[ws_keys] == (inf_state, False) instance_completed_holding[ws_keys] = (inf_state, True) if ws_keys not in instance_completed or instance_completed[ws_keys].score < inf_state.score: instance_completed[ws_keys] = inf_state else: instance_cache[ws_keys] = (inf_state, True) new_beam.append(inf_state) if len(instance_completed) >= completion_size: new_beams.append([]) else: new_beams.append(new_beam) beams = new_beams # Early exit if all ended if not any(beam for beam in beams): break world_states = [ [inf_state.world_state for inf_state in beam] for beam in beams ] successor_obs = np.array(self.env._get_obs(self.env.world_states2feature_states(world_states))) acc = [] for tttt in zip(beams, successor_obs): mapped = [inf._replace(observation=o) for inf, o in zip(*tttt)] acc.append(mapped) beams = acc update_traversed_lists(beams) completed_list = [] for this_completed in completed: completed_list.append(sorted(this_completed.values(), key=lambda t: t.score, reverse=True)[:completion_size]) completed_ws = [ [inf_state.world_state for inf_state in comp_l] for comp_l in completed_list ] completed_obs = np.array(self.env._get_obs(self.env.world_states2feature_states(completed_ws))) accu = [] for ttttt in zip(completed_list, completed_obs): mapped = [inf._replace(observation=o) for inf, o in zip(*ttttt)] accu.append(mapped) completed_list = accu update_traversed_lists(completed_list) trajs = [] for this_completed in completed_list: assert this_completed this_trajs = [] for inf_state in this_completed: path_states, path_observations, path_actions, path_scores, path_attentions = backchain_inference_states(inf_state) # this will have messed-up headings for (at least some) starting locations because of # discretization, so read from the observations instead ## path = [(obs.viewpointId, state.heading, state.elevation) ## for state in path_states] trajectory = [path_element_from_observation(ob) for ob in path_observations] this_trajs.append({ 'instr_id': path_observations[0]['instr_id'], 'instr_encoding': path_observations[0]['instr_encoding'], 'path': trajectory, 'observations': path_observations, 'actions': path_actions, 'score': inf_state.score, 'scores': path_scores, 'attentions': path_attentions }) trajs.append(this_trajs) return trajs, completed_list, traversed_lists def beam_search(self, beam_size): assert self.decoder.panoramic # assert self.env.beam_size >= beam_size world_states = self.env.reset(True) # [(feature, state)] obs = np.array(self.env._get_obs(world_states)) batch_size = len(world_states) # Reorder the language input for the encoder seq, seq_mask, seq_lengths, perm_idx = self._sort_batch([o for ob in obs for o in ob]) world_states = [[world_state for f, world_state in states] for states in world_states] ctx, h_t, c_t, seq_mask = self.encoder(seq, seq_mask, seq_lengths) if not self.decoder_init: h_t, c_t = torch.zeros_like(h_t), torch.zeros_like(c_t) completed = [] for _ in range(batch_size): completed.append([]) beams = [[InferenceState(prev_inference_state=None, world_state=ws[0], observation=o[0], flat_index=i, last_action=-1, last_action_embedding=self.decoder.u_begin, action_count=0, score=0.0, h_t=None, c_t=None, last_alpha=None)] for i, (ws, o) in enumerate(zip(world_states, obs))] # # batch_size x beam_size for t in range(self.episode_len): flat_indices = [] beam_indices = [] u_t_list = [] for beam_index, beam in enumerate(beams): for inf_state in beam: beam_indices.append(beam_index) flat_indices.append(inf_state.flat_index) u_t_list.append(inf_state.last_action_embedding) u_t_prev = torch.stack(u_t_list, dim=0) flat_obs = [ob for obs_beam in obs for ob in obs_beam] # Image features from obs # if self.decoder.panoramic: f_t_all, f_t = self._feature_variable(flat_obs) # Action feature from obs # if self.decoder.action_space == 6: # u_t_features, is_valid = np.zeros((batch_size, 1)), None # else: u_t_features, is_valid, is_valid_numpy = self._action_variable(flat_obs) h_t, c_t, alpha, logit, pred_f = self.decoder(None, u_t_prev, u_t_features, f_t, f_t_all, h_t[flat_indices], c_t[flat_indices], [ctx_si[beam_indices] for ctx_si in ctx] if isinstance(ctx, list) else ctx[beam_indices], [seq_mask_si[beam_indices] for seq_mask_si in seq_mask] if isinstance(ctx, list) else seq_mask[beam_indices]) # Mask outputs where agent can't move forward logit[is_valid == 0] = -float('inf') masked_logit = logit # for debug log_probs = F.log_softmax(logit, dim=1).data _, action_indices = masked_logit.data.topk(min(beam_size, logit.size()[1]), dim=1) action_scores = log_probs.gather(1, action_indices) assert action_scores.size() == action_indices.size() start_index = 0 new_beams = [] assert len(beams) == len(world_states) all_successors = [] for beam_index, (beam, beam_world_states, beam_obs) in enumerate(zip(beams, world_states, obs)): successors = [] end_index = start_index + len(beam) assert len(beam_obs) == len(beam) and len(beam_world_states) == len(beam) if beam: for inf_index, (inf_state, world_state, ob, action_score_row, action_index_row) in \ enumerate(zip(beam, beam_world_states, beam_obs, action_scores[start_index:end_index], action_indices[start_index:end_index])): flat_index = start_index + inf_index for action_score, action_index in zip(action_score_row, action_index_row): if is_valid_numpy[flat_index, action_index] == 0: continue successors.append( InferenceState(prev_inference_state=inf_state, world_state=world_state, # will be updated later after successors are pruned observation=ob, # will be updated later after successors are pruned flat_index=flat_index, last_action=action_index, last_action_embedding=u_t_features[flat_index, action_index].detach(), action_count=inf_state.action_count + 1, score=float(inf_state.score + action_score), h_t=None, c_t=None, last_alpha=[alpha_si[flat_index].data for alpha_si in alpha] if isinstance(alpha, list) else alpha[flat_index].data) ) start_index = end_index successors = sorted(successors, key=lambda t: t.score, reverse=True)[:beam_size] all_successors.append(successors) successor_world_states = [ [inf_state.world_state for inf_state in successors] for successors in all_successors ] successor_env_actions = [ [inf_state.last_action for inf_state in successors] for successors in all_successors ] successor_last_obs = [ [inf_state.observation for inf_state in successors] for successors in all_successors ] successor_world_states=self.env.step(successor_env_actions, successor_last_obs, successor_world_states) successor_obs = np.array(self.env._get_obs(successor_world_states)) successor_world_states = [[world_state for f, world_state in states] for states in successor_world_states] acc = [] for ttt in zip(all_successors, successor_world_states, successor_obs): mapped = [inf._replace(world_state=ws, observation=o) for inf, ws, o in zip(*ttt)] acc.append(mapped) all_successors=acc for beam_index, successors in enumerate(all_successors): new_beam = [] for successor in successors: if successor.last_action == 0 or t == self.episode_len - 1: completed[beam_index].append(successor) else: new_beam.append(successor) if len(completed[beam_index]) >= beam_size: new_beam = [] new_beams.append(new_beam) beams = new_beams world_states = [ [inf_state.world_state for inf_state in beam] for beam in beams ] obs = [ [inf_state.observation for inf_state in beam] for beam in beams ] # Early exit if all ended if not any(beam for beam in beams): break trajs = [] for this_completed in completed: assert this_completed this_trajs = [] for inf_state in sorted(this_completed, key=lambda t: t.score, reverse=True)[:beam_size]: path_states, path_observations, path_actions, path_scores, path_attentions = backchain_inference_states(inf_state) # this will have messed-up headings for (at least some) starting locations because of # discretization, so read from the observations instead ## path = [(obs.viewpointId, state.heading, state.elevation) ## for state in path_states] trajectory = [path_element_from_observation(ob) for ob in path_observations] this_trajs.append({ 'instr_id': path_observations[0]['instr_id'], 'instr_encoding': path_observations[0]['instr_encoding'], 'path': trajectory, 'observations': path_observations, 'actions': path_actions, 'score': inf_state.score, 'scores': path_scores, 'attentions': path_attentions }) trajs.append(this_trajs) traversed_lists = None # todo return trajs, completed, traversed_lists def rollout_with_loss(self): world_states = self.env.reset(False) obs = np.array(self.env._get_obs(world_states)) batch_size = len(obs) # Reorder the language input for the encoder seq, seq_mask, seq_lengths, perm_idx = self._sort_batch(obs) perm_obs = obs[perm_idx] # when there are multiple sentences, perm_idx will simply be range(batch_size). # but perm_idx for each batch of i-th(i=1 or 2 or 3) will be inside seq_length. # this means: # seq_lengths=[(seq_lengths,perm_idx),(seq_lengths,perm_idx),(seq_lengths,perm_idx)] # Record starting point traj = [{'instr_id': ob['instr_id'], 'path': [(ob['viewpoint'], ob['heading'], ob['elevation'])]} for ob in perm_obs] # Forward through encoder, giving initial hidden state and memory cell for decoder ctx, h_t, c_t, seq_mask = self.encoder(seq, seq_mask, seq_lengths) if not self.decoder_init: #h_t, c_t = torch.zeros_like(h_t), torch.zeros_like(c_t) c_t = torch.zeros_like(c_t) # debug # Initial action a_t_prev, u_t_prev = None, None # different action space if self.decoder.action_space == -1: u_t_prev = self.decoder.u_begin.expand(batch_size, -1) else: a_t_prev = Variable(torch.ones(batch_size).long() * self.model_actions.index('<start>'), requires_grad=False).to(device) ended = np.array([False] * batch_size) # Indices match permuation of the model, not env # Do a sequence rollout and calculate the loss self.loss = 0 self.loss_ctrl_f = 0 env_action = [None] * batch_size # for plot #all_alpha = [] action_scores = np.zeros((batch_size,)) for t in range(self.episode_len): f_t = self._feature_variable(perm_obs) # Image features from obs if self.decoder.panoramic: f_t_all, f_t = f_t else: f_t_all = np.zeros((batch_size, 1)) # Action feature from obs if self.decoder.action_space == 6: u_t_features, is_valid = np.zeros((batch_size, 1)), None else: u_t_features, is_valid, _ = self._action_variable(perm_obs) # Supervised training target = self._teacher_action(perm_obs, ended) h_t, c_t, alpha, logit, pred_f = self.decoder(a_t_prev, u_t_prev, u_t_features, f_t, f_t_all, h_t, c_t, ctx, seq_mask) # all_alpha.append(alpha) # Mask outputs where agent can't move forward if self.decoder.action_space == 6: for i,ob in enumerate(perm_obs): if len(ob['navigableLocations']) <= 1: logit[i, self.model_actions.index('forward')] = -float('inf') else: logit[is_valid == 0] = -float('inf') # if self.decoder.ctrl_feature: # pred_f[is_valid == 0] = 0 if self.temp_alpha != 0: # add temperature logit = logit/self.temp_alpha self.loss += self.criterion(logit, target) # Auxiliary training if self.decoder.ctrl_feature: target_f = self._teacher_feature(perm_obs, ended)#, is_valid.shape[-1]) self.loss_ctrl_f += self.aux_ratio * self.criterion_ctrl_f(pred_f, target_f) # todo: add auxiliary tasks to sc-rl training? # Determine next model inputs # scheduled sampling if self.schedule_ratio >= 0 and self.schedule_ratio <= 1: sample_feedback = random.choices(['sample', 'teacher'], [self.schedule_ratio, 1 - self.schedule_ratio], k=1)[0] # schedule sampling if self.feedback != 'argmax': # ignore test case self.feedback = sample_feedback a_t = self.get_next(self.feedback, target, logit) # setting A if self.testing_settingA: log_probs = F.log_softmax(logit, dim=1).data action_score = log_probs[torch.arange(batch_size), a_t].cpu().data.numpy() # log_probs = F.log_softmax(logit, dim=1).data # action_score = log_probs[torch.arange(batch_size), a_t].cpu().data.numpy() a_t_prev = a_t if self.decoder.action_space != 6: # update the previous action u_t_prev = u_t_features[np.arange(batch_size), a_t, :].detach() # Updated 'ended' list and make environment action for i,idx in enumerate(perm_idx): action_idx = a_t[i].item() if self.decoder.action_space == 6: if action_idx == self.model_actions.index('<end>'): ended[i] = True env_action[idx] = self.env_actions[action_idx] else: if action_idx == 0: ended[i] = True env_action[idx] = action_idx # state transitions new_states = self.env.step(env_action, obs) obs = np.array(self.env._get_obs(new_states)) #obs = np.array(self.env._get_obs(self.env.step(env_action, obs))) # , sub_stages perm_obs = obs[perm_idx] # Save trajectory output for i,ob in enumerate(perm_obs): if not ended[i]: traj[i]['path'].append((ob['viewpoint'], ob['heading'], ob['elevation'])) for i,idx in enumerate(perm_idx): action_idx = a_t[i].item() if self.testing_settingA: if not ended[i]: action_scores[idx] = action_scores[idx] + action_score[i] if self.decoder.action_space == 6: if action_idx == self.model_actions.index('<end>'): ended[i] = True else: if action_idx == 0: ended[i] = True # Early exit if all ended if ended.all(): break # episode_len is just a constant so it doesn't matter self.losses.append(self.loss.item()) # / self.episode_len) if self.decoder.ctrl_feature: self.losses_ctrl_f.append(self.loss_ctrl_f.item()) # / self.episode_len) # with open('preprocess/alpha.pkl', 'wb') as alpha_f: # TODO: remove for release!!!! # pickle.dump(all_alpha, alpha_f) # chooes one from three according to prob # for t,p in zip(traj, action_scores): # t['prob'] = p # chooes one from three according to prob if self.testing_settingA: for t, p in zip(traj, action_scores): t['prob'] = p return traj def img_shrink(self, feat_all): feat_dim = feat_all.shape[-1] f_t, act_t = feat_all[:,:, :feat_dim-128], feat_all[:,:,-128:] shrink = torch.cat([f_t, act_t, act_t], -1)[:,:,::3] return shrink def bert_rollout_with_loss(self): world_states = self.env.reset(False) obs = np.array(self.env._get_obs(world_states)) batch_size = len(obs) # Reorder the language input for the encoder seq, seq_mask, seq_lengths, perm_idx = self._sort_batch(obs) perm_obs = obs[perm_idx] # when there are multiple sentences, perm_idx will simply be range(batch_size). # but perm_idx for each batch of i-th(i=1 or 2 or 3) will be inside seq_length. # this means: # seq_lengths=[(seq_lengths,perm_idx),(seq_lengths,perm_idx),(seq_lengths,perm_idx)] # Record starting point traj = [{'instr_id': ob['instr_id'], 'path': [(ob['viewpoint'], ob['heading'], ob['elevation'])]} for ob in perm_obs] ## Forward through encoder, giving initial hidden state and memory cell for decoder #f_t = self._feature_variable(perm_obs) #if self.decoder.panoramic: f_t_all, f_t = f_t #else: f_t_all = np.zeros((batch_size, 1)) #ctx, h_t, c_t, seq_mask = self.encoder(seq, seq_mask, seq_lengths,f_t_all=f_t_all) ###ctx, en_ht, en_ct, vl_mask = self.encoder(seq, seq_mask, seq_lengths,f_t_all=f_t_all) #if not self.decoder_init: # h_t, c_t = torch.zeros_like(h_t), torch.zeros_like(c_t) # #c_t = torch.zeros_like(c_t) # debug # Initial action a_t_prev, u_t_prev = None, None # different action space if self.decoder.action_space == -1: u_t_prev = self.decoder.u_begin.expand(batch_size, -1) else: a_t_prev = Variable(torch.ones(batch_size).long() * self.model_actions.index('<start>'), requires_grad=False).to(device) ended = np.array([False] * batch_size) # Indices match permuation of the model, not env # Do a sequence rollout and calculate the loss self.loss = 0 self.loss_ctrl_f = 0 env_action = [None] * batch_size # for plot #all_alpha = [] action_scores = np.zeros((batch_size,)) for t in range(self.episode_len): f_t = self._feature_variable(perm_obs) # Image features from obs if self.decoder.panoramic: f_t_all, f_t = f_t else: f_t_all = np.zeros((batch_size, 1)) # Action feature from obs if self.decoder.action_space == 6: u_t_features, is_valid = np.zeros((batch_size, 1)), None else: u_t_features, is_valid, _ = self._action_variable(perm_obs) # Supervised training target = self._teacher_action(perm_obs, ended) if self.encoder.__class__.__name__ in ['MultiVilAddEncoder','MultiAddLoadEncoder','MultiHugAddEncoder']: ctx, en_ht, en_ct, vl_mask = self.encoder(seq, seq_mask, seq_lengths, f_t_all=f_t_all) else: ctx, en_ht, en_ct, vl_mask = self.encoder(seq, seq_mask, torch.tensor(seq_lengths), f_t_all=f_t_all) if t == 0: # use encoder's ht and ct as init de_ht, de_ct, alpha, logit, pred_f = self.decoder(a_t_prev, u_t_prev, u_t_features, f_t, f_t_all, en_ht, en_ct, ctx, vl_mask) else: # otherwise unroll as lstm de_ht, de_ct, alpha, logit, pred_f = self.decoder(a_t_prev, u_t_prev, u_t_features, f_t, f_t_all, de_ht, de_ct, ctx, vl_mask) # all_alpha.append(alpha) # Mask outputs where agent can't move forward if self.decoder.action_space == 6: for i,ob in enumerate(perm_obs): if len(ob['navigableLocations']) <= 1: logit[i, self.model_actions.index('forward')] = -float('inf') else: logit[is_valid == 0] = -float('inf') # if self.decoder.ctrl_feature: # pred_f[is_valid == 0] = 0 if self.temp_alpha != 0: # add temperature logit = logit/self.temp_alpha self.loss += self.criterion(logit, target) # Auxiliary training if self.decoder.ctrl_feature: target_f = self._teacher_feature(perm_obs, ended)#, is_valid.shape[-1]) self.loss_ctrl_f += self.aux_ratio * self.criterion_ctrl_f(pred_f, target_f) # todo: add auxiliary tasks to sc-rl training? # Determine next model inputs # scheduled sampling if self.schedule_ratio >= 0 and self.schedule_ratio <= 1: sample_feedback = random.choices(['sample', 'teacher'], [self.schedule_ratio, 1 - self.schedule_ratio], k=1)[0] # schedule sampling if self.feedback != 'argmax': # ignore test case self.feedback = sample_feedback a_t = self.get_next(self.feedback, target, logit) # setting A if self.testing_settingA: log_probs = F.log_softmax(logit, dim=1).data action_score = log_probs[torch.arange(batch_size), a_t].cpu().data.numpy() # log_probs = F.log_softmax(logit, dim=1).data # action_score = log_probs[torch.arange(batch_size), a_t].cpu().data.numpy() a_t_prev = a_t if self.decoder.action_space != 6: # update the previous action u_t_prev = u_t_features[np.arange(batch_size), a_t, :].detach() # Updated 'ended' list and make environment action for i,idx in enumerate(perm_idx): action_idx = a_t[i].item() if self.decoder.action_space == 6: if action_idx == self.model_actions.index('<end>'): # # sub_stages[idx] = max(sub_stages[idx]-1, 0) # # ended[i] = (sub_stages[idx]==0) ended[i] = True env_action[idx] = self.env_actions[action_idx] else: if action_idx == 0: # # sub_stages[idx] = max(sub_stages[idx] - 1, 0) # # ended[i] = (sub_stages[idx] == 0) ended[i] = True env_action[idx] = action_idx # state transitions new_states = self.env.step(env_action, obs) obs = np.array(self.env._get_obs(new_states)) #obs = np.array(self.env._get_obs(self.env.step(env_action, obs))) # , sub_stages perm_obs = obs[perm_idx] # Save trajectory output for i,ob in enumerate(perm_obs): if not ended[i]: traj[i]['path'].append((ob['viewpoint'], ob['heading'], ob['elevation'])) for i,idx in enumerate(perm_idx): action_idx = a_t[i].item() if self.testing_settingA: if not ended[i]: action_scores[idx] = action_scores[idx] + action_score[i] if self.decoder.action_space == 6: if action_idx == self.model_actions.index('<end>'): ended[i] = True else: if action_idx == 0: ended[i] = True # for i,idx in enumerate(perm_idx): # action_idx = a_t[i].item() # # if not ended[i]: # # action_scores[idx] = action_scores[idx] + action_score[i] # if self.decoder.action_space == 6: # if action_idx == self.model_actions.index('<end>'): # ended[i] = True # else: # if action_idx == 0: # ended[i] = True # Early exit if all ended if ended.all(): break # episode_len is just a constant so it doesn't matter self.losses.append(self.loss.item()) # / self.episode_len) if self.decoder.ctrl_feature: self.losses_ctrl_f.append(self.loss_ctrl_f.item()) # / self.episode_len) # with open('preprocess/alpha.pkl', 'wb') as alpha_f: # TODO: remove for release!!!! # pickle.dump(all_alpha, alpha_f) # chooes one from three according to prob # for t,p in zip(traj, action_scores): # t['prob'] = p # chooes one from three according to prob if self.testing_settingA: for t, p in zip(traj, action_scores): t['prob'] = p return traj def langbert_rollout_with_loss(self): world_states = self.env.reset(False) obs = np.array(self.env._get_obs(world_states)) batch_size = len(obs) # Reorder the language input for the encoder seq, seq_mask, seq_lengths, perm_idx = self._sort_batch(obs) perm_obs = obs[perm_idx] # when there are multiple sentences, perm_idx will simply be range(batch_size). # but perm_idx for each batch of i-th(i=1 or 2 or 3) will be inside seq_length. # this means: # seq_lengths=[(seq_lengths,perm_idx),(seq_lengths,perm_idx),(seq_lengths,perm_idx)] # Record starting point traj = [{'instr_id': ob['instr_id'], 'path': [(ob['viewpoint'], ob['heading'], ob['elevation'])]} for ob in perm_obs] ## Forward through encoder, giving initial hidden state and memory cell for decoder #f_t = self._feature_variable(perm_obs) #if self.decoder.panoramic: f_t_all, f_t = f_t #else: f_t_all = np.zeros((batch_size, 1)) #ctx, h_t, c_t, seq_mask = self.encoder(seq, seq_mask, seq_lengths,f_t_all=f_t_all) ctx, en_ht, en_ct, vl_mask = self.encoder(seq, seq_mask, seq_lengths,f_t_all=None) #if not self.decoder_init: # h_t, c_t = torch.zeros_like(h_t), torch.zeros_like(c_t) # #c_t = torch.zeros_like(c_t) # debug # Initial action a_t_prev, u_t_prev = None, None # different action space if self.decoder.action_space == -1: u_t_prev = self.decoder.u_begin.expand(batch_size, -1) else: a_t_prev = Variable(torch.ones(batch_size).long() * self.model_actions.index('<start>'), requires_grad=False).to(device) ended = np.array([False] * batch_size) # Indices match permuation of the model, not env # Do a sequence rollout and calculate the loss self.loss = 0 self.loss_ctrl_f = 0 env_action = [None] * batch_size # for plot #all_alpha = [] action_scores = np.zeros((batch_size,)) for t in range(self.episode_len): f_t = self._feature_variable(perm_obs) # Image features from obs if self.decoder.panoramic: f_t_all, f_t = f_t else: f_t_all = np.zeros((batch_size, 1)) # Action feature from obs if self.decoder.action_space == 6: u_t_features, is_valid = np.zeros((batch_size, 1)), None else: u_t_features, is_valid, _ = self._action_variable(perm_obs) # Supervised training target = self._teacher_action(perm_obs, ended) #ctx, en_ht, en_ct, vl_mask = self.encoder(seq, seq_mask, torch.tensor(seq_lengths), f_t_all=f_t_all) if t == 0: # use encoder's ht and ct as init de_ht, de_ct, alpha, logit, pred_f = self.decoder(a_t_prev, u_t_prev, u_t_features, f_t, f_t_all, en_ht, en_ct, ctx, vl_mask) else: # otherwise unroll as lstm de_ht, de_ct, alpha, logit, pred_f = self.decoder(a_t_prev, u_t_prev, u_t_features, f_t, f_t_all, de_ht, de_ct, ctx, vl_mask) # all_alpha.append(alpha) # Mask outputs where agent can't move forward if self.decoder.action_space == 6: for i,ob in enumerate(perm_obs): if len(ob['navigableLocations']) <= 1: logit[i, self.model_actions.index('forward')] = -float('inf') else: logit[is_valid == 0] = -float('inf') # if self.decoder.ctrl_feature: # pred_f[is_valid == 0] = 0 if self.temp_alpha != 0: # add temperature logit = logit/self.temp_alpha self.loss += self.criterion(logit, target) # Auxiliary training if self.decoder.ctrl_feature: target_f = self._teacher_feature(perm_obs, ended)#, is_valid.shape[-1]) self.loss_ctrl_f += self.aux_ratio * self.criterion_ctrl_f(pred_f, target_f) # todo: add auxiliary tasks to sc-rl training? # Determine next model inputs # scheduled sampling if self.schedule_ratio >= 0 and self.schedule_ratio <= 1: sample_feedback = random.choices(['sample', 'teacher'], [self.schedule_ratio, 1 - self.schedule_ratio], k=1)[0] # schedule sampling if self.feedback != 'argmax': # ignore test case self.feedback = sample_feedback a_t = self.get_next(self.feedback, target, logit) # setting A if self.testing_settingA: log_probs = F.log_softmax(logit, dim=1).data action_score = log_probs[torch.arange(batch_size), a_t].cpu().data.numpy() # log_probs = F.log_softmax(logit, dim=1).data # action_score = log_probs[torch.arange(batch_size), a_t].cpu().data.numpy() a_t_prev = a_t if self.decoder.action_space != 6: # update the previous action u_t_prev = u_t_features[np.arange(batch_size), a_t, :].detach() # Updated 'ended' list and make environment action for i,idx in enumerate(perm_idx): action_idx = a_t[i].item() if self.decoder.action_space == 6: if action_idx == self.model_actions.index('<end>'): # # sub_stages[idx] = max(sub_stages[idx]-1, 0) # # ended[i] = (sub_stages[idx]==0) ended[i] = True env_action[idx] = self.env_actions[action_idx] else: if action_idx == 0: # # sub_stages[idx] = max(sub_stages[idx] - 1, 0) # # ended[i] = (sub_stages[idx] == 0) ended[i] = True env_action[idx] = action_idx # state transitions new_states = self.env.step(env_action, obs) obs = np.array(self.env._get_obs(new_states)) #obs = np.array(self.env._get_obs(self.env.step(env_action, obs))) # , sub_stages perm_obs = obs[perm_idx] # Save trajectory output for i,ob in enumerate(perm_obs): if not ended[i]: traj[i]['path'].append((ob['viewpoint'], ob['heading'], ob['elevation'])) for i,idx in enumerate(perm_idx): action_idx = a_t[i].item() if self.testing_settingA: if not ended[i]: action_scores[idx] = action_scores[idx] + action_score[i] if self.decoder.action_space == 6: if action_idx == self.model_actions.index('<end>'): ended[i] = True else: if action_idx == 0: ended[i] = True # for i,idx in enumerate(perm_idx): # action_idx = a_t[i].item() # # if not ended[i]: # # action_scores[idx] = action_scores[idx] + action_score[i] # if self.decoder.action_space == 6: # if action_idx == self.model_actions.index('<end>'): # ended[i] = True # else: # if action_idx == 0: # ended[i] = True # Early exit if all ended if ended.all(): break # episode_len is just a constant so it doesn't matter self.losses.append(self.loss.item()) # / self.episode_len) if self.decoder.ctrl_feature: self.losses_ctrl_f.append(self.loss_ctrl_f.item()) # / self.episode_len) # with open('preprocess/alpha.pkl', 'wb') as alpha_f: # TODO: remove for release!!!! # pickle.dump(all_alpha, alpha_f) # chooes one from three according to prob # for t,p in zip(traj, action_scores): # t['prob'] = p # chooes one from three according to prob if self.testing_settingA: for t, p in zip(traj, action_scores): t['prob'] = p return traj def test(self, use_dropout=False, feedback='argmax', allow_cheat=False, beam_size=1, successors=1, speaker=(None,None,None,None)): ''' Evaluate once on each instruction in the current environment ''' if not allow_cheat: # permitted for purpose of calculating validation loss only assert feedback in ['argmax', 'sample'] # no cheating by using teacher at test time! self.feedback = feedback if use_dropout: self.encoder.train() self.decoder.train() else: self.encoder.eval() self.decoder.eval() super(Seq2SeqAgent, self).test(beam_size, successors, speaker) def train(self, encoder_optimizer, decoder_optimizer, n_iters, aux_n_iter, feedback='teacher'): ''' Train for a given number of iterations ''' assert feedback in self.feedback_options self.feedback = feedback self.encoder.train() self.decoder.train() self.losses = [] self.losses_ctrl_f = [] epo_inc = 0 encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() for iter in range(1, n_iters + 1): if self.accu_n_iters == 0: encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() self.rollout() if (not self.decoder.ctrl_feature) or (iter % aux_n_iter): self.loss.backward() else: self.loss_ctrl_f.backward() if self.clip_gradient != 0: # clip gradient clip_gradient(encoder_optimizer, self.clip_gradient) clip_gradient(decoder_optimizer, self.clip_gradient) if self.clip_gradient_norm > 0: # clip gradient norm torch.nn.utils.clip_grad_norm_(self.encoder.parameters(), self.clip_gradient_norm) torch.nn.utils.clip_grad_norm_(self.decoder.parameters(), self.clip_gradient_norm) encoder_optimizer.step() decoder_optimizer.step() epo_inc += self.env.epo_inc else: self.rollout() if (not self.decoder.ctrl_feature) or (iter % aux_n_iter): self.loss /= self.accu_n_iters self.loss.backward() else: self.loss_ctrl_f.backward() if iter % self.accu_n_iters == 0: if self.clip_gradient != 0: # clip gradient clip_gradient(encoder_optimizer, self.clip_gradient) clip_gradient(decoder_optimizer, self.clip_gradient) if self.clip_gradient_norm > 0: # clip gradient norm torch.nn.utils.clip_grad_norm_(self.encoder.parameters(), self.clip_gradient_norm) torch.nn.utils.clip_grad_norm_(self.decoder.parameters(), self.clip_gradient_norm) encoder_optimizer.step() decoder_optimizer.step() encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() epo_inc += self.env.epo_inc return epo_inc """ def train(self, encoder_optimizer, decoder_optimizer, n_iters, aux_n_iter, feedback='teacher'): ''' Train for a given number of iterations ''' assert feedback in self.feedback_options self.feedback = feedback self.encoder.train() self.decoder.train() self.losses = [] self.losses_ctrl_f = [] epo_inc = 0 for iter in range(1, n_iters + 1): encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() self.rollout() if (not self.decoder.ctrl_feature) or (iter % aux_n_iter): self.loss.backward() else: self.loss_ctrl_f.backward() if self.clip_gradient != 0: # clip gradient clip_gradient(encoder_optimizer, self.clip_gradient) clip_gradient(decoder_optimizer, self.clip_gradient) if self.clip_gradient_norm > 0: # clip gradient norm torch.nn.utils.clip_grad_norm_(self.encoder.parameters(), self.clip_gradient_norm) torch.nn.utils.clip_grad_norm_(self.decoder.parameters(), self.clip_gradient_norm) encoder_optimizer.step() decoder_optimizer.step() epo_inc += self.env.epo_inc return epo_inc """ def rollout_notrain(self, n_iters): # jolin epo_inc = 0 for iter in range(1, n_iters + 1): self.env._next_minibatch(False) epo_inc += self.env.epo_inc return epo_inc def rl_rollout(self, obs, perm_obs, seq, seq_mask, seq_lengths, perm_idx, feedback, encoder, decoder): batch_size = len(perm_obs) # Record starting point traj = [{'instr_id': ob['instr_id'], 'path': [(ob['viewpoint'], ob['heading'], ob['elevation'])] } for ob in perm_obs] # Forward through encoder, giving initial hidden state and memory cell for decoder ctx, h_t, c_t, seq_mask = encoder(seq, seq_mask, seq_lengths) if not self.decoder_init: h_t, c_t = torch.zeros_like(h_t), torch.zeros_like(c_t) # Initial action a_t_prev, u_t_prev = None, None # different action space if decoder.action_space==-1: u_t_prev = decoder.u_begin.expand(batch_size, -1) else: a_t_prev = Variable(torch.ones(batch_size).long() * self.model_actions.index('<start>'), requires_grad=False).to(device) ended=np.array([False] * batch_size) # Do a sequence rollout not don't calculate the loss for policy gradient # self.loss = 0 env_action = [None] * batch_size # Initialize seq log probs for policy gradient if feedback == 'sample1': seqLogprobs = h_t.new_zeros(batch_size, self.episode_len) mask = np.ones((batch_size, self.episode_len)) elif feedback == 'argmax1': seqLogprobs, mask = None, None else: raise NotImplementedError('other feedback not supported.') # only for supervised auxiliary tasks #assert (not self.decoder.ctrl_feature) # not implemented for t in range(self.episode_len): f_t = self._feature_variable(perm_obs) # Image features from obs if decoder.panoramic: f_t_all, f_t = f_t else: f_t_all = np.zeros((batch_size, 1)) # Action feature from obs if decoder.action_space == 6: u_t_features, is_valid = np.zeros((batch_size, 1)), None else: u_t_features, is_valid, _ = self._action_variable(perm_obs) # Decoding actions h_t, c_t, alpha, logit, pred_f = decoder(a_t_prev, u_t_prev, u_t_features, f_t, f_t_all, h_t, c_t, ctx, seq_mask) # Mask outputs where agent can't move forward if decoder.action_space == 6: for i,ob in enumerate(perm_obs): if len(ob['navigableLocations']) <= 1: logit[i, self.model_actions.index('forward')] = -float('inf') else: logit[is_valid == 0] = -float('inf') # Supervised training # target = self._teacher_action(perm_obs, ended) # self.loss += self.criterion(logit, target) # Determine next model inputs if feedback == 'argmax1': _, a_t = logit.max(1) elif feedback == 'sample1': logprobs = F.log_softmax(logit, dim=1) probs = torch.exp(logprobs.data) m = D.Categorical(probs) a_t = m.sample() # sampling an action from model sampleLogprobs = logprobs.gather(1, a_t.unsqueeze(1)) else: sys.exit('invalid feedback method %s'%feedback) # if self.decoder.panoramic: # a_t_feature = all_a_t_features[np.arange(batch_size), a_t, :].detach() # Updated 'ended' list and make environment action for i,idx in enumerate(perm_idx): action_idx = a_t[i].item() if decoder.action_space == 6: if ended[i] and mask is not None: mask[i, t] = 0 elif action_idx == self.model_actions.index('<end>'): ended[i] = True env_action[idx] = self.env_actions[action_idx] else: if ended[i] and mask is not None: mask[i, t] = 0 elif action_idx == 0: ended[i] = True env_action[idx] = action_idx obs = np.array(self.env._get_obs(self.env.step(env_action, obs))) perm_obs = obs[perm_idx] # Save trajectory output for i,ob in enumerate(perm_obs): if not ended[i]: traj[i]['path'].append((ob['viewpoint'], ob['heading'], ob['elevation'])) if seqLogprobs is not None: # feedback == 'sample1' seqLogprobs[:, t] = sampleLogprobs.view(-1) # Early exit if all ended if ended.all(): break path_res = {} for t in traj: path_res[t['instr_id']] = t['path'] return traj, mask, seqLogprobs, path_res def rl_train(self, train_Eval, encoder_optimizer, decoder_optimizer, n_iters, sc_reward_scale, sc_discouted_immediate_r_scale, sc_length_scale): ''' jolin: self-critical finetuning''' self.losses = [] epo_inc = 0 self.encoder.train() self.decoder.train() for iter in range(1, n_iters + 1): # n_iters=interval encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() # copy from self.rollout(): # one minibatch (100 instructions) world_states = self.env.reset(False) obs = np.array(self.env._get_obs(world_states)) epo_inc += self.env.epo_inc # Reorder the language input for the encoder seq, seq_mask, seq_lengths, perm_idx = self._sort_batch(obs) perm_obs = obs[perm_idx] gen_traj, mask, seqLogprobs, gen_results = self.rl_rollout(obs, perm_obs, seq, seq_mask, seq_lengths, perm_idx, 'sample1', self.encoder, self.decoder) # jolin: get greedy decoding baseline # Just like self.test(use_dropout=False, feedback='argmax'). # But we should not do env.reset_epoch(), because we do not # test the whole split. So DON'T reuse test()! world_states = self.env.reset_batch() obs = np.array(self.env._get_obs(world_states))# for later 'sample' feedback batch perm_obs = obs[perm_idx] if self.monotonic: encoder2, decoder2 = self.encoder2, self.decoder2 else: self.encoder.eval() self.decoder.eval() encoder2, decoder2 = self.encoder, self.decoder with torch.no_grad(): greedy_traj, _, _, greedy_res = self.rl_rollout(obs, perm_obs, seq, seq_mask, seq_lengths, perm_idx, 'argmax1', encoder2, decoder2) if not self.monotonic: self.encoder.train() self.decoder.train() # jolin: get self-critical reward reward = self.get_self_critical_reward(gen_traj, train_Eval, gen_results, greedy_res, sc_reward_scale, sc_discouted_immediate_r_scale, sc_length_scale) # jolin: RewardCriterion self.loss = self.PG_reward_criterion(seqLogprobs, reward, mask) self.losses.append(self.loss.item()) self.loss.backward() #clip_gradient(encoder_optimizer) #clip_gradient(decoder_optimizer) if self.clip_gradient != 0: # clip gradient clip_gradient(encoder_optimizer, self.clip_gradient) clip_gradient(decoder_optimizer, self.clip_gradient) if self.clip_gradient_norm > 0: # clip gradient norm torch.nn.utils.clip_grad_norm_(self.encoder.parameters(), self.clip_gradient_norm) torch.nn.utils.clip_grad_norm_(self.decoder.parameters(), self.clip_gradient_norm) encoder_optimizer.step() decoder_optimizer.step() return epo_inc def PG_reward_criterion(self, seqLogprobs, reward, mask): # jolin: RewardCriterion input = to_contiguous(seqLogprobs).view(-1) reward = to_contiguous(torch.from_numpy(reward).float().to(device)).view(-1) #mask = to_contiguous(torch.cat([mask.new(mask.size(0), 1).fill_(1), mask[:, :-1]], 1)).view(-1) mask = to_contiguous(torch.from_numpy(mask).float().to(device)).view(-1) output = - input * reward * mask loss = torch.sum(output) / torch.sum(mask) return loss def get_self_critical_reward(self, traj, Eval, gen_results, greedy_res, sc_reward_scale, sc_discouted_immediate_r_scale, sc_length_scale): # get self-critical reward instr_id_order = [t['instr_id'] for t in traj] gen_scores = Eval.score_batch(gen_results, instr_id_order) greedy_scores = Eval.score_batch(greedy_res, instr_id_order) # normal score gen_hits = (np.array(gen_scores['nav_errors']) <= 3.0).astype(float) greedy_hits = (np.array(greedy_scores['nav_errors']) <= 3.0).astype(float) gen_lengths = (np.array(gen_scores['trajectory_lengths'])).astype(float) # sr_sc hits = gen_hits - greedy_hits #reward = np.repeat(hits[:, np.newaxis], self.episode_len, 1)*sc_reward_scale # spl gen_spls = (np.array(gen_scores['spl'])).astype(float) greedy_spls = (np.array(greedy_scores['spl'])).astype(float) ave_steps = (np.array(gen_scores['trajectory_steps'])).sum()/float(len(instr_id_order)) steps = (np.array(gen_scores['trajectory_steps']) - self.episode_len).sum() if self.reward_func == 'sr_sc': reward = np.repeat(hits[:, np.newaxis], self.episode_len, 1)*sc_reward_scale elif self.reward_func == 'spl': reward = np.repeat(gen_spls[:, np.newaxis], self.episode_len, 1) * sc_reward_scale elif self.reward_func == 'spl_sc': # spl_sc spl_sc = gen_spls - greedy_spls reward = np.repeat(spl_sc[:, np.newaxis], self.episode_len, 1) * sc_reward_scale elif self.reward_func == 'spl_last': # does not work tj_steps = [s - 1 for s in gen_scores['trajectory_steps']] # tj_steps reward = np.zeros((gen_spls.shape[0], self.episode_len), dtype=float) reward[range(gen_spls.shape[0]), tj_steps] = gen_scores['spl'] elif self.reward_func == 'spl_last_sc': tj_steps = [s - 1 for s in gen_scores['trajectory_steps']] # tj_steps reward = np.zeros((gen_spls.shape[0], self.episode_len), dtype=float) reward[range(gen_spls.shape[0]), tj_steps] = [x - y for x, y in zip(gen_scores['spl'], greedy_scores['spl'])] elif self.reward_func == 'spl_psc': # test tj_steps = [s - 1 for s in gen_scores['trajectory_steps']] # tj_steps reward = np.full((gen_spls.shape[0], self.episode_len), -sc_length_scale, dtype=float) # penalty reward[range(gen_spls.shape[0]), tj_steps] = gen_scores['spl'] # discounted immediate reward if sc_discouted_immediate_r_scale>0: discounted_r = discount_rewards(gen_scores['immediate_rewards'], self.episode_len) * sc_discouted_immediate_r_scale reward = reward + discounted_r # panelty for length if sc_length_scale: length_panelty = np.repeat(gen_lengths[:, np.newaxis], self.episode_len, 1)*sc_length_scale reward = reward - length_panelty return reward def save(self, encoder_path, decoder_path): ''' Snapshot models ''' write_num = 0 while (write_num < 10): try: torch.save(self.encoder.state_dict(), encoder_path) torch.save(self.decoder.state_dict(), decoder_path) if torch.cuda.is_available(): torch.save(torch.cuda.random.get_rng_state(), decoder_path + '.rng.gpu') torch.save(torch.random.get_rng_state(), decoder_path + '.rng') with open(decoder_path + '.rng2', 'wb') as f: pickle.dump(random.getstate(), f) break except: write_num += 1 def delete(self, encoder_path, decoder_path): ''' Delete models ''' os.remove(encoder_path) os.remove(decoder_path) os.remove(decoder_path+'.rng.gpu') os.remove(decoder_path+'.rng') os.remove(decoder_path+'.rng2') def load(self, encoder_path, decoder_path): ''' Loads parameters (but not training state) ''' self.encoder.load_state_dict(torch.load(encoder_path, 'cuda:0' if torch.cuda.is_available() else 'cpu')) self.decoder.load_state_dict(torch.load(decoder_path, 'cuda:0' if torch.cuda.is_available() else 'cpu'), strict=False) self.encoder.to(device) self.decoder.to(device) if self.monotonic: self.copy_seq2seq() try: with open(decoder_path+'.rng2','rb') as f: random.setstate(pickle.load(f)) torch.random.set_rng_state(torch.load(decoder_path + '.rng')) torch.cuda.random.set_rng_state(torch.load(decoder_path + '.rng.gpu')) except FileNotFoundError: print('Warning: failed to find random seed file') def copy_seq2seq(self): self.encoder2=copy.deepcopy(self.encoder) self.decoder2=copy.deepcopy(self.decoder) self.encoder2.eval() self.decoder2.eval() for param in self.encoder2.parameters(): param.requires_grad = False for param in self.decoder2.parameters(): param.requires_grad = False class PretrainVLAgent(BaseAgent): ''' An agent based on an LSTM seq2seq model with attention. ''' model_actions, env_actions = basic_actions() feedback_options = ['teacher', 'argmax', 'sample'] def __init__(self, env, results_path, encoder, decoder, seed, aux_ratio, decoder_init, params=None, monotonic=False, episode_len=20, state_factored=False): # , subgoal super(Seq2SeqAgent, self).__init__(env, results_path, seed=seed) self.encoder, self.decoder = encoder, decoder # encoder2 is only for self_critic self.encoder2, self.decoder2 = None, None self.monotonic = monotonic if self.monotonic: self.copy_seq2seq() self.episode_len = episode_len self.losses = [] self.losses_ctrl_f = [] # For learning auxiliary tasks self.aux_ratio = aux_ratio self.decoder_init = decoder_init self.clip_gradient = params['clip_gradient'] self.clip_gradient_norm = params['clip_gradient_norm'] self.reward_func = params['reward_func'] self.schedule_ratio = params['schedule_ratio'] self.temp_alpha = params['temp_alpha'] self.testing_settingA = params['test_A'] if self.decoder.action_space == 6: self.ignore_index = self.model_actions.index('<ignore>') else: self.ignore_index = -1 self.criterion = nn.CrossEntropyLoss(ignore_index=self.ignore_index) if self.decoder.ctrl_feature: assert self.decoder.action_space == -1 # currently only implement this self.criterion_ctrl_f = nn.MSELoss() # todo: MSE or ? self.state_factored = state_factored @staticmethod def n_inputs(): return len(Seq2SeqAgent.model_actions) @staticmethod def n_outputs(): return len(Seq2SeqAgent.model_actions)-2 # Model doesn't output start or ignore def _sort_batch(self, obs): sorted_tensor, mask, seq_lengths, perm_idx = sort_batch(obs) if isinstance(sorted_tensor, list): sorted_tensors, masks, seqs_lengths = [], [], [] for i in range(len(sorted_tensor)): sorted_tensors.append(Variable(sorted_tensor[i], requires_grad=False).long().to(device)) masks.append(mask[i].byte().to(device)) seqs_lengths.append(seq_lengths[i]) return sorted_tensors, masks, seqs_lengths, perm_idx return Variable(sorted_tensor, requires_grad=False).long().to(device), \ mask.byte().to(device), \ list(seq_lengths), list(perm_idx) def _feature_variable(self, obs): ''' Extract precomputed features into variable. ''' #feature_size = obs[0]['feature'].shape[0] #features = np.empty((len(obs),feature_size), dtype=np.float32) if isinstance(obs[0]['feature'],tuple): # todo? features_pano = np.repeat(np.expand_dims(np.zeros_like(obs[0]['feature'][0], dtype=np.float32), 0), len(obs), axis=0) # jolin features = np.repeat(np.expand_dims(np.zeros_like(obs[0]['feature'][1], dtype=np.float32), 0), len(obs), axis=0) # jolin for i,ob in enumerate(obs): features_pano[i] = ob['feature'][0] features[i] = ob['feature'][1] return (Variable(torch.from_numpy(features_pano), requires_grad=False).to(device), Variable(torch.from_numpy(features), requires_grad=False).to(device)) else: features = np.repeat(np.expand_dims(np.zeros_like(obs[0]['feature'], dtype=np.float32),0),len(obs),axis=0) # jolin for i,ob in enumerate(obs): features[i] = ob['feature'] return Variable(torch.from_numpy(features), requires_grad=False).to(device) def get_next(self, feedback, target, logit): if feedback == 'teacher': a_t = target # teacher forcing elif feedback == 'argmax': _, a_t = logit.max(1) # student forcing - argmax a_t = a_t.detach() elif feedback == 'sample': probs = F.softmax(logit, dim=1) m = D.Categorical(probs) a_t = m.sample() # sampling an action from model else: sys.exit('Invalid feedback option') return a_t def _action_variable(self, obs): # get the maximum number of actions of all sample in this batch max_num_a = -1 for i, ob in enumerate(obs): max_num_a = max(max_num_a, len(ob['adj_loc_list'])) is_valid = np.zeros((len(obs), max_num_a), np.float32) action_embedding_dim = obs[0]['action_embedding'].shape[-1] action_embeddings = np.zeros((len(obs), max_num_a, action_embedding_dim), dtype=np.float32) for i, ob in enumerate(obs): adj_loc_list = ob['adj_loc_list'] num_a = len(adj_loc_list) is_valid[i, 0:num_a] = 1. action_embeddings[i, :num_a, :] = ob['action_embedding'] #bug: todo #for n_a, adj_dict in enumerate(adj_loc_list): # action_embeddings[i, :num_a, :] = ob['action_embedding'] return (Variable(torch.from_numpy(action_embeddings), requires_grad=False).to(device), Variable(torch.from_numpy(is_valid), requires_grad=False).to(device), is_valid) def _teacher_action_variable(self, obs): # get the maximum number of actions of all sample in this batch action_embedding_dim = obs[0]['action_embedding'].shape[-1] action_embeddings = np.zeros((len(obs), action_embedding_dim), dtype=np.float32) for i, ob in enumerate(obs): adj_loc_list = ob['adj_loc_list'] action_embeddings[i, :] = ob['action_embedding'][ob['teacher']] #bug: todo #for n_a, adj_dict in enumerate(adj_loc_list): # action_embeddings[i, :num_a, :] = ob['action_embedding'] return Variable(torch.from_numpy(action_embeddings), requires_grad=False).to(device) def _teacher_action(self, obs, ended): a = teacher_action(self.model_actions, self.decoder.action_space, obs, ended, self.ignore_index) return Variable(a, requires_grad=False).to(device) def _teacher_feature(self, obs, ended):#, max_num_a): ''' Extract teacher look ahead auxiliary features into variable. ''' # todo: 6 action space ctrl_features_dim = -1 for i, ob in enumerate(obs): # todo: whether include <stop> ? # max_num_a = max(max_num_a, len(ob['ctrl_features'])) if ctrl_features_dim<0 and len(ob['ctrl_features']): ctrl_features_dim = ob['ctrl_features'].shape[-1] #[0].shape[-1] break #is_valid no need to create. already created ctrl_features_tensor = np.zeros((len(obs), ctrl_features_dim), dtype=np.float32) for i, ob in enumerate(obs): if not ended[i]: ctrl_features_tensor[i, :] = ob['ctrl_features'] return Variable(torch.from_numpy(ctrl_features_tensor), requires_grad=False).to(device) def rollout(self, beam_size=1, successors=1): if beam_size ==1 and not debug_beam: if self.encoder.__class__.__name__ == 'BertImgEncoder': return self.pretrain_rollout_with_loss() else: return self.rollout_with_loss() # beam with torch.no_grad(): if self.state_factored: beams = self.state_factored_search(beam_size, successors, first_n_ws_key=4) else: beams = self.beam_search(beam_size) return beams def state_factored_search(self, completion_size, successor_size, first_n_ws_key=4): assert self.decoder.panoramic world_states = self.env.reset(sort=True) initial_obs = (self.env._get_obs(world_states)) batch_size = len(world_states) # Reorder the language input for the encoder seq, seq_mask, seq_lengths, perm_idx = self._sort_batch([o for ob in initial_obs for o in ob]) world_states = [[world_state for f, world_state in states] for states in world_states] ctx, h_t, c_t, seq_mask = self.encoder(seq, seq_mask, seq_lengths) if not self.decoder_init: h_t, c_t = torch.zeros_like(h_t), torch.zeros_like(c_t) completed = [] completed_holding = [] for _ in range(batch_size): completed.append({}) completed_holding.append({}) state_cache = [ {ws[0][0:first_n_ws_key]: (InferenceState(prev_inference_state=None, world_state=ws[0], observation=o[0], flat_index=None, last_action=-1, last_action_embedding=self.decoder.u_begin, action_count=0, score=0.0, h_t=h_t[i], c_t=c_t[i], last_alpha=None), True)} for i, (ws, o) in enumerate(zip(world_states, initial_obs)) ] beams = [[inf_state for world_state, (inf_state, expanded) in sorted(instance_cache.items())] for instance_cache in state_cache] # sorting is a noop here since each instance_cache should only contain one last_expanded_list = [] traversed_lists = [] for beam in beams: assert len(beam)==1 first_state = beam[0] last_expanded_list.append(first_state) traversed_lists.append([first_state]) def update_traversed_lists(new_visited_inf_states): assert len(new_visited_inf_states) == len(last_expanded_list) assert len(new_visited_inf_states) == len(traversed_lists) for instance_index, instance_states in enumerate(new_visited_inf_states): last_expanded = last_expanded_list[instance_index] # todo: if this passes, shouldn't need traversed_lists assert last_expanded.world_state.viewpointId == traversed_lists[instance_index][-1].world_state.viewpointId for inf_state in instance_states: path_from_last_to_next = least_common_viewpoint_path(last_expanded, inf_state) # path_from_last should include last_expanded's world state as the first element, so check and drop that assert path_from_last_to_next[0].world_state.viewpointId == last_expanded.world_state.viewpointId assert path_from_last_to_next[-1].world_state.viewpointId == inf_state.world_state.viewpointId traversed_lists[instance_index].extend(path_from_last_to_next[1:]) last_expanded = inf_state last_expanded_list[instance_index] = last_expanded # Do a sequence rollout and calculate the loss while any(len(comp) < completion_size for comp in completed): beam_indices = [] u_t_list = [] h_t_list = [] c_t_list = [] flat_obs = [] for beam_index, beam in enumerate(beams): for inf_state in beam: beam_indices.append(beam_index) u_t_list.append(inf_state.last_action_embedding) h_t_list.append(inf_state.h_t.unsqueeze(0)) c_t_list.append(inf_state.c_t.unsqueeze(0)) flat_obs.append(inf_state.observation) u_t_prev = torch.stack(u_t_list, dim=0) assert len(u_t_prev.shape) == 2 # Image features from obs # if self.decoder.panoramic: f_t_all, f_t = self._feature_variable(flat_obs) # Action feature from obs # if self.decoder.action_space == 6: # u_t_features, is_valid = np.zeros((batch_size, 1)), None # else: u_t_features, is_valid, is_valid_numpy = self._action_variable(flat_obs) h_t = torch.cat(h_t_list, dim=0) c_t = torch.cat(c_t_list, dim=0) h_t, c_t, alpha, logit, pred_f = self.decoder(None, u_t_prev, u_t_features, f_t, f_t_all, h_t, c_t, [ctx_si[beam_indices] for ctx_si in ctx] if isinstance(ctx, list) else ctx[beam_indices], [seq_mask_si[beam_indices] for seq_mask_si in seq_mask] if isinstance(ctx, list) else seq_mask[beam_indices]) # Mask outputs of invalid actions logit[is_valid == 0] = -float('inf') # # Mask outputs where agent can't move forward # no_forward_mask = [len(ob['navigableLocations']) <= 1 for ob in flat_obs] masked_logit = logit log_probs = F.log_softmax(logit, dim=1).data # force ending if we've reached the max time steps # if t == self.episode_len - 1: # action_scores = log_probs[:,self.end_index].unsqueeze(-1) # action_indices = torch.from_numpy(np.full((log_probs.size()[0], 1), self.end_index)) # else: #_, action_indices = masked_logit.data.topk(min(successor_size, logit.size()[1]), dim=1) _, action_indices = masked_logit.data.topk(logit.size()[1], dim=1) # todo: fix this action_scores = log_probs.gather(1, action_indices) assert action_scores.size() == action_indices.size() start_index = 0 assert len(beams) == len(world_states) all_successors = [] for beam_index, (beam, beam_world_states) in enumerate(zip(beams, world_states)): successors = [] end_index = start_index + len(beam) assert len(beam_world_states) == len(beam) if beam: for inf_index, (inf_state, world_state, action_score_row) in \ enumerate(zip(beam, beam_world_states, log_probs[start_index:end_index])): flat_index = start_index + inf_index for action_index, action_score in enumerate(action_score_row): if is_valid_numpy[flat_index, action_index] == 0: continue successors.append( InferenceState(prev_inference_state=inf_state, world_state=world_state, observation=flat_obs[flat_index], flat_index=None, last_action=action_index, last_action_embedding=u_t_features[flat_index, action_index].detach(), action_count=inf_state.action_count + 1, score=float(inf_state.score + action_score), h_t=h_t[flat_index], c_t=c_t[flat_index], last_alpha=[alpha_si[flat_index].data for alpha_si in alpha] if isinstance(alpha, list) else alpha[flat_index].data) ) start_index = end_index successors = sorted(successors, key=lambda t: t.score, reverse=True) all_successors.append(successors) successor_world_states = [ [inf_state.world_state for inf_state in successors] for successors in all_successors ] successor_env_actions = [ [inf_state.last_action for inf_state in successors] for successors in all_successors ] successor_last_obs = [ [inf_state.observation for inf_state in successors] for successors in all_successors ] successor_world_states = self.env.step(successor_env_actions, successor_last_obs, successor_world_states) successor_world_states = [[world_state for f, world_state in states] for states in successor_world_states] acc = [] for ttt in zip(all_successors, successor_world_states): mapped = [inf._replace(world_state=ws) for inf, ws in zip(*ttt)] acc.append(mapped) all_successors = acc assert len(all_successors) == len(state_cache) new_beams = [] for beam_index, (successors, instance_cache) in enumerate(zip(all_successors, state_cache)): # early stop if we've already built a sizable completion list instance_completed = completed[beam_index] instance_completed_holding = completed_holding[beam_index] if len(instance_completed) >= completion_size: new_beams.append([]) continue for successor in successors: ws_keys = successor.world_state[0:first_n_ws_key] if successor.last_action == 0 or successor.action_count == self.episode_len: if ws_keys not in instance_completed_holding or instance_completed_holding[ws_keys][ 0].score < successor.score: instance_completed_holding[ws_keys] = (successor, False) else: if ws_keys not in instance_cache or instance_cache[ws_keys][0].score < successor.score: instance_cache[ws_keys] = (successor, False) # third value: did this come from completed_holding? uncompleted_to_consider = ((ws_keys, inf_state, False) for (ws_keys, (inf_state, expanded)) in instance_cache.items() if not expanded) completed_to_consider = ((ws_keys, inf_state, True) for (ws_keys, (inf_state, expanded)) in instance_completed_holding.items() if not expanded) import itertools import heapq to_consider = itertools.chain(uncompleted_to_consider, completed_to_consider) ws_keys_and_inf_states = heapq.nlargest(successor_size, to_consider, key=lambda pair: pair[1].score) new_beam = [] for ws_keys, inf_state, is_completed in ws_keys_and_inf_states: if is_completed: assert instance_completed_holding[ws_keys] == (inf_state, False) instance_completed_holding[ws_keys] = (inf_state, True) if ws_keys not in instance_completed or instance_completed[ws_keys].score < inf_state.score: instance_completed[ws_keys] = inf_state else: instance_cache[ws_keys] = (inf_state, True) new_beam.append(inf_state) if len(instance_completed) >= completion_size: new_beams.append([]) else: new_beams.append(new_beam) beams = new_beams # Early exit if all ended if not any(beam for beam in beams): break world_states = [ [inf_state.world_state for inf_state in beam] for beam in beams ] successor_obs = np.array(self.env._get_obs(self.env.world_states2feature_states(world_states))) acc = [] for tttt in zip(beams, successor_obs): mapped = [inf._replace(observation=o) for inf, o in zip(*tttt)] acc.append(mapped) beams = acc update_traversed_lists(beams) completed_list = [] for this_completed in completed: completed_list.append(sorted(this_completed.values(), key=lambda t: t.score, reverse=True)[:completion_size]) completed_ws = [ [inf_state.world_state for inf_state in comp_l] for comp_l in completed_list ] completed_obs = np.array(self.env._get_obs(self.env.world_states2feature_states(completed_ws))) accu = [] for ttttt in zip(completed_list, completed_obs): mapped = [inf._replace(observation=o) for inf, o in zip(*ttttt)] accu.append(mapped) completed_list = accu update_traversed_lists(completed_list) trajs = [] for this_completed in completed_list: assert this_completed this_trajs = [] for inf_state in this_completed: path_states, path_observations, path_actions, path_scores, path_attentions = backchain_inference_states(inf_state) # this will have messed-up headings for (at least some) starting locations because of # discretization, so read from the observations instead ## path = [(obs.viewpointId, state.heading, state.elevation) ## for state in path_states] trajectory = [path_element_from_observation(ob) for ob in path_observations] this_trajs.append({ 'instr_id': path_observations[0]['instr_id'], 'instr_encoding': path_observations[0]['instr_encoding'], 'path': trajectory, 'observations': path_observations, 'actions': path_actions, 'score': inf_state.score, 'scores': path_scores, 'attentions': path_attentions }) trajs.append(this_trajs) return trajs, completed_list, traversed_lists def beam_search(self, beam_size): assert self.decoder.panoramic # assert self.env.beam_size >= beam_size world_states = self.env.reset(True) # [(feature, state)] obs = np.array(self.env._get_obs(world_states)) batch_size = len(world_states) # Reorder the language input for the encoder seq, seq_mask, seq_lengths, perm_idx = self._sort_batch([o for ob in obs for o in ob]) world_states = [[world_state for f, world_state in states] for states in world_states] ctx, h_t, c_t, seq_mask = self.encoder(seq, seq_mask, seq_lengths) if not self.decoder_init: h_t, c_t = torch.zeros_like(h_t), torch.zeros_like(c_t) completed = [] for _ in range(batch_size): completed.append([]) beams = [[InferenceState(prev_inference_state=None, world_state=ws[0], observation=o[0], flat_index=i, last_action=-1, last_action_embedding=self.decoder.u_begin, action_count=0, score=0.0, h_t=None, c_t=None, last_alpha=None)] for i, (ws, o) in enumerate(zip(world_states, obs))] # # batch_size x beam_size for t in range(self.episode_len): flat_indices = [] beam_indices = [] u_t_list = [] for beam_index, beam in enumerate(beams): for inf_state in beam: beam_indices.append(beam_index) flat_indices.append(inf_state.flat_index) u_t_list.append(inf_state.last_action_embedding) u_t_prev = torch.stack(u_t_list, dim=0) flat_obs = [ob for obs_beam in obs for ob in obs_beam] # Image features from obs # if self.decoder.panoramic: f_t_all, f_t = self._feature_variable(flat_obs) # Action feature from obs # if self.decoder.action_space == 6: # u_t_features, is_valid = np.zeros((batch_size, 1)), None # else: u_t_features, is_valid, is_valid_numpy = self._action_variable(flat_obs) h_t, c_t, alpha, logit, pred_f = self.decoder(None, u_t_prev, u_t_features, f_t, f_t_all, h_t[flat_indices], c_t[flat_indices], [ctx_si[beam_indices] for ctx_si in ctx] if isinstance(ctx, list) else ctx[beam_indices], [seq_mask_si[beam_indices] for seq_mask_si in seq_mask] if isinstance(ctx, list) else seq_mask[beam_indices]) # Mask outputs where agent can't move forward logit[is_valid == 0] = -float('inf') masked_logit = logit # for debug log_probs = F.log_softmax(logit, dim=1).data _, action_indices = masked_logit.data.topk(min(beam_size, logit.size()[1]), dim=1) action_scores = log_probs.gather(1, action_indices) assert action_scores.size() == action_indices.size() start_index = 0 new_beams = [] assert len(beams) == len(world_states) all_successors = [] for beam_index, (beam, beam_world_states, beam_obs) in enumerate(zip(beams, world_states, obs)): successors = [] end_index = start_index + len(beam) assert len(beam_obs) == len(beam) and len(beam_world_states) == len(beam) if beam: for inf_index, (inf_state, world_state, ob, action_score_row, action_index_row) in \ enumerate(zip(beam, beam_world_states, beam_obs, action_scores[start_index:end_index], action_indices[start_index:end_index])): flat_index = start_index + inf_index for action_score, action_index in zip(action_score_row, action_index_row): if is_valid_numpy[flat_index, action_index] == 0: continue successors.append( InferenceState(prev_inference_state=inf_state, world_state=world_state, # will be updated later after successors are pruned observation=ob, # will be updated later after successors are pruned flat_index=flat_index, last_action=action_index, last_action_embedding=u_t_features[flat_index, action_index].detach(), action_count=inf_state.action_count + 1, score=float(inf_state.score + action_score), h_t=None, c_t=None, last_alpha=[alpha_si[flat_index].data for alpha_si in alpha] if isinstance(alpha, list) else alpha[flat_index].data) ) start_index = end_index successors = sorted(successors, key=lambda t: t.score, reverse=True)[:beam_size] all_successors.append(successors) successor_world_states = [ [inf_state.world_state for inf_state in successors] for successors in all_successors ] successor_env_actions = [ [inf_state.last_action for inf_state in successors] for successors in all_successors ] successor_last_obs = [ [inf_state.observation for inf_state in successors] for successors in all_successors ] successor_world_states=self.env.step(successor_env_actions, successor_last_obs, successor_world_states) successor_obs = np.array(self.env._get_obs(successor_world_states)) successor_world_states = [[world_state for f, world_state in states] for states in successor_world_states] acc = [] for ttt in zip(all_successors, successor_world_states, successor_obs): mapped = [inf._replace(world_state=ws, observation=o) for inf, ws, o in zip(*ttt)] acc.append(mapped) all_successors=acc for beam_index, successors in enumerate(all_successors): new_beam = [] for successor in successors: if successor.last_action == 0 or t == self.episode_len - 1: completed[beam_index].append(successor) else: new_beam.append(successor) if len(completed[beam_index]) >= beam_size: new_beam = [] new_beams.append(new_beam) beams = new_beams world_states = [ [inf_state.world_state for inf_state in beam] for beam in beams ] obs = [ [inf_state.observation for inf_state in beam] for beam in beams ] # Early exit if all ended if not any(beam for beam in beams): break trajs = [] for this_completed in completed: assert this_completed this_trajs = [] for inf_state in sorted(this_completed, key=lambda t: t.score, reverse=True)[:beam_size]: path_states, path_observations, path_actions, path_scores, path_attentions = backchain_inference_states(inf_state) # this will have messed-up headings for (at least some) starting locations because of # discretization, so read from the observations instead ## path = [(obs.viewpointId, state.heading, state.elevation) ## for state in path_states] trajectory = [path_element_from_observation(ob) for ob in path_observations] this_trajs.append({ 'instr_id': path_observations[0]['instr_id'], 'instr_encoding': path_observations[0]['instr_encoding'], 'path': trajectory, 'observations': path_observations, 'actions': path_actions, 'score': inf_state.score, 'scores': path_scores, 'attentions': path_attentions }) trajs.append(this_trajs) traversed_lists = None # todo return trajs, completed, traversed_lists def rollout_with_loss(self): world_states = self.env.reset(False) obs = np.array(self.env._get_obs(world_states)) batch_size = len(obs) # Reorder the language input for the encoder seq, seq_mask, seq_lengths, perm_idx = self._sort_batch(obs) perm_obs = obs[perm_idx] # when there are multiple sentences, perm_idx will simply be range(batch_size). # but perm_idx for each batch of i-th(i=1 or 2 or 3) will be inside seq_length. # this means: # seq_lengths=[(seq_lengths,perm_idx),(seq_lengths,perm_idx),(seq_lengths,perm_idx)] # Record starting point traj = [{'instr_id': ob['instr_id'], 'path': [(ob['viewpoint'], ob['heading'], ob['elevation'])]} for ob in perm_obs] # Forward through encoder, giving initial hidden state and memory cell for decoder ctx, h_t, c_t, seq_mask = self.encoder(seq, seq_mask, seq_lengths) if not self.decoder_init: #h_t, c_t = torch.zeros_like(h_t), torch.zeros_like(c_t) c_t = torch.zeros_like(c_t) # debug # Initial action a_t_prev, u_t_prev = None, None # different action space if self.decoder.action_space == -1: u_t_prev = self.decoder.u_begin.expand(batch_size, -1) else: a_t_prev = Variable(torch.ones(batch_size).long() * self.model_actions.index('<start>'), requires_grad=False).to(device) ended = np.array([False] * batch_size) # Indices match permuation of the model, not env # Do a sequence rollout and calculate the loss self.loss = 0 self.loss_ctrl_f = 0 env_action = [None] * batch_size # for plot #all_alpha = [] action_scores = np.zeros((batch_size,)) for t in range(self.episode_len): f_t = self._feature_variable(perm_obs) # Image features from obs if self.decoder.panoramic: f_t_all, f_t = f_t else: f_t_all = np.zeros((batch_size, 1)) # Action feature from obs if self.decoder.action_space == 6: u_t_features, is_valid = np.zeros((batch_size, 1)), None else: u_t_features, is_valid, _ = self._action_variable(perm_obs) # Supervised training target = self._teacher_action(perm_obs, ended) h_t, c_t, alpha, logit, pred_f = self.decoder(a_t_prev, u_t_prev, u_t_features, f_t, f_t_all, h_t, c_t, ctx, seq_mask) # all_alpha.append(alpha) # Mask outputs where agent can't move forward if self.decoder.action_space == 6: for i,ob in enumerate(perm_obs): if len(ob['navigableLocations']) <= 1: logit[i, self.model_actions.index('forward')] = -float('inf') else: logit[is_valid == 0] = -float('inf') # if self.decoder.ctrl_feature: # pred_f[is_valid == 0] = 0 if self.temp_alpha != 0: # add temperature logit = logit/self.temp_alpha self.loss += self.criterion(logit, target) # Auxiliary training if self.decoder.ctrl_feature: target_f = self._teacher_feature(perm_obs, ended)#, is_valid.shape[-1]) self.loss_ctrl_f += self.aux_ratio * self.criterion_ctrl_f(pred_f, target_f) # todo: add auxiliary tasks to sc-rl training? # Determine next model inputs # scheduled sampling if self.schedule_ratio >= 0 and self.schedule_ratio <= 1: sample_feedback = random.choices(['sample', 'teacher'], [self.schedule_ratio, 1 - self.schedule_ratio], k=1)[0] # schedule sampling if self.feedback != 'argmax': # ignore test case self.feedback = sample_feedback a_t = self.get_next(self.feedback, target, logit) # setting A if self.testing_settingA: log_probs = F.log_softmax(logit, dim=1).data action_score = log_probs[torch.arange(batch_size), a_t].cpu().data.numpy() # log_probs = F.log_softmax(logit, dim=1).data # action_score = log_probs[torch.arange(batch_size), a_t].cpu().data.numpy() a_t_prev = a_t if self.decoder.action_space != 6: # update the previous action u_t_prev = u_t_features[np.arange(batch_size), a_t, :].detach() # Updated 'ended' list and make environment action for i,idx in enumerate(perm_idx): action_idx = a_t[i].item() if self.decoder.action_space == 6: if action_idx == self.model_actions.index('<end>'): # # sub_stages[idx] = max(sub_stages[idx]-1, 0) # # ended[i] = (sub_stages[idx]==0) ended[i] = True env_action[idx] = self.env_actions[action_idx] else: if action_idx == 0: # # sub_stages[idx] = max(sub_stages[idx] - 1, 0) # # ended[i] = (sub_stages[idx] == 0) ended[i] = True env_action[idx] = action_idx # state transitions new_states = self.env.step(env_action, obs) obs = np.array(self.env._get_obs(new_states)) #obs = np.array(self.env._get_obs(self.env.step(env_action, obs))) # , sub_stages perm_obs = obs[perm_idx] # Save trajectory output for i,ob in enumerate(perm_obs): if not ended[i]: traj[i]['path'].append((ob['viewpoint'], ob['heading'], ob['elevation'])) for i,idx in enumerate(perm_idx): action_idx = a_t[i].item() if self.testing_settingA: if not ended[i]: action_scores[idx] = action_scores[idx] + action_score[i] if self.decoder.action_space == 6: if action_idx == self.model_actions.index('<end>'): ended[i] = True else: if action_idx == 0: ended[i] = True # for i,idx in enumerate(perm_idx): # action_idx = a_t[i].item() # # if not ended[i]: # # action_scores[idx] = action_scores[idx] + action_score[i] # if self.decoder.action_space == 6: # if action_idx == self.model_actions.index('<end>'): # ended[i] = True # else: # if action_idx == 0: # ended[i] = True # Early exit if all ended if ended.all(): break # episode_len is just a constant so it doesn't matter self.losses.append(self.loss.item()) # / self.episode_len) if self.decoder.ctrl_feature: self.losses_ctrl_f.append(self.loss_ctrl_f.item()) # / self.episode_len) # with open('preprocess/alpha.pkl', 'wb') as alpha_f: # TODO: remove for release!!!! # pickle.dump(all_alpha, alpha_f) # chooes one from three according to prob # for t,p in zip(traj, action_scores): # t['prob'] = p # chooes one from three according to prob if self.testing_settingA: for t, p in zip(traj, action_scores): t['prob'] = p return traj def pretrain_rollout_with_loss(self): world_states = self.env.reset(False) obs = np.array(self.env._get_obs(world_states)) batch_size = len(obs) # Reorder the language input for the encoder seq, seq_mask, seq_lengths, perm_idx = self._sort_batch(obs) perm_obs = obs[perm_idx] # when there are multiple sentences, perm_idx will simply be range(batch_size). # but perm_idx for each batch of i-th(i=1 or 2 or 3) will be inside seq_length. # this means: # seq_lengths=[(seq_lengths,perm_idx),(seq_lengths,perm_idx),(seq_lengths,perm_idx)] # Record starting point traj = [{'instr_id': ob['instr_id'], 'path': [(ob['viewpoint'], ob['heading'], ob['elevation'])]} for ob in perm_obs] ## Forward through encoder, giving initial hidden state and memory cell for decoder #f_t = self._feature_variable(perm_obs) #if self.decoder.panoramic: f_t_all, f_t = f_t #else: f_t_all = np.zeros((batch_size, 1)) #ctx, h_t, c_t, seq_mask = self.encoder(seq, seq_mask, seq_lengths,f_t_all=f_t_all) ###ctx, en_ht, en_ct, vl_mask = self.encoder(seq, seq_mask, seq_lengths,f_t_all=f_t_all) #if not self.decoder_init: # h_t, c_t = torch.zeros_like(h_t), torch.zeros_like(c_t) # #c_t = torch.zeros_like(c_t) # debug # Initial action a_t_prev, u_t_prev = None, None # different action space if self.decoder.action_space == -1: u_t_prev = self.decoder.u_begin.expand(batch_size, -1) else: a_t_prev = Variable(torch.ones(batch_size).long() * self.model_actions.index('<start>'), requires_grad=False).to(device) ended = np.array([False] * batch_size) # Indices match permuation of the model, not env # Do a sequence rollout and calculate the loss self.loss = 0 self.loss_ctrl_f = 0 env_action = [None] * batch_size # for plot #all_alpha = [] action_scores = np.zeros((batch_size,)) for t in range(self.episode_len): f_t = self._feature_variable(perm_obs) # Image features from obs if self.decoder.panoramic: f_t_all, f_t = f_t else: f_t_all = np.zeros((batch_size, 1)) # Action feature from obs if self.decoder.action_space == 6: u_t_features, is_valid = np.zeros((batch_size, 1)), None else: u_t_features, is_valid, _ = self._action_variable(perm_obs) # Supervised training target = self._teacher_action(perm_obs, ended) ctx, en_ht, en_ct, vl_mask = self.encoder(seq, seq_mask, seq_lengths, f_t_all=f_t_all) if t == 0: # use encoder's ht and ct as init de_ht, de_ct, alpha, logit, pred_f = self.decoder(a_t_prev, u_t_prev, u_t_features, f_t, f_t_all, en_ht, en_ct, ctx, vl_mask) else: # otherwise unroll as lstm de_ht, de_ct, alpha, logit, pred_f = self.decoder(a_t_prev, u_t_prev, u_t_features, f_t, f_t_all, de_ht, de_ct, ctx, vl_mask) # all_alpha.append(alpha) # Mask outputs where agent can't move forward if self.decoder.action_space == 6: for i,ob in enumerate(perm_obs): if len(ob['navigableLocations']) <= 1: logit[i, self.model_actions.index('forward')] = -float('inf') else: logit[is_valid == 0] = -float('inf') # if self.decoder.ctrl_feature: # pred_f[is_valid == 0] = 0 if self.temp_alpha != 0: # add temperature logit = logit/self.temp_alpha self.loss += self.criterion(logit, target) # Auxiliary training if self.decoder.ctrl_feature: target_f = self._teacher_feature(perm_obs, ended)#, is_valid.shape[-1]) self.loss_ctrl_f += self.aux_ratio * self.criterion_ctrl_f(pred_f, target_f) # todo: add auxiliary tasks to sc-rl training? # Determine next model inputs # scheduled sampling if self.schedule_ratio >= 0 and self.schedule_ratio <= 1: sample_feedback = random.choices(['sample', 'teacher'], [self.schedule_ratio, 1 - self.schedule_ratio], k=1)[0] # schedule sampling if self.feedback != 'argmax': # ignore test case self.feedback = sample_feedback a_t = self.get_next(self.feedback, target, logit) # setting A if self.testing_settingA: log_probs = F.log_softmax(logit, dim=1).data action_score = log_probs[torch.arange(batch_size), a_t].cpu().data.numpy() # log_probs = F.log_softmax(logit, dim=1).data # action_score = log_probs[torch.arange(batch_size), a_t].cpu().data.numpy() a_t_prev = a_t if self.decoder.action_space != 6: # update the previous action u_t_prev = u_t_features[np.arange(batch_size), a_t, :].detach() # Updated 'ended' list and make environment action for i,idx in enumerate(perm_idx): action_idx = a_t[i].item() if self.decoder.action_space == 6: if action_idx == self.model_actions.index('<end>'): # # sub_stages[idx] = max(sub_stages[idx]-1, 0) # # ended[i] = (sub_stages[idx]==0) ended[i] = True env_action[idx] = self.env_actions[action_idx] else: if action_idx == 0: # # sub_stages[idx] = max(sub_stages[idx] - 1, 0) # # ended[i] = (sub_stages[idx] == 0) ended[i] = True env_action[idx] = action_idx # state transitions new_states = self.env.step(env_action, obs) obs = np.array(self.env._get_obs(new_states)) #obs = np.array(self.env._get_obs(self.env.step(env_action, obs))) # , sub_stages perm_obs = obs[perm_idx] # Save trajectory output for i,ob in enumerate(perm_obs): if not ended[i]: traj[i]['path'].append((ob['viewpoint'], ob['heading'], ob['elevation'])) for i,idx in enumerate(perm_idx): action_idx = a_t[i].item() if self.testing_settingA: if not ended[i]: action_scores[idx] = action_scores[idx] + action_score[i] if self.decoder.action_space == 6: if action_idx == self.model_actions.index('<end>'): ended[i] = True else: if action_idx == 0: ended[i] = True # for i,idx in enumerate(perm_idx): # action_idx = a_t[i].item() # # if not ended[i]: # # action_scores[idx] = action_scores[idx] + action_score[i] # if self.decoder.action_space == 6: # if action_idx == self.model_actions.index('<end>'): # ended[i] = True # else: # if action_idx == 0: # ended[i] = True # Early exit if all ended if ended.all(): break # episode_len is just a constant so it doesn't matter self.losses.append(self.loss.item()) # / self.episode_len) if self.decoder.ctrl_feature: self.losses_ctrl_f.append(self.loss_ctrl_f.item()) # / self.episode_len) # with open('preprocess/alpha.pkl', 'wb') as alpha_f: # TODO: remove for release!!!! # pickle.dump(all_alpha, alpha_f) # chooes one from three according to prob # for t,p in zip(traj, action_scores): # t['prob'] = p # chooes one from three according to prob if self.testing_settingA: for t, p in zip(traj, action_scores): t['prob'] = p return traj def test(self, use_dropout=False, feedback='argmax', allow_cheat=False, beam_size=1, successors=1, speaker=(None,None,None,None)): ''' Evaluate once on each instruction in the current environment ''' if not allow_cheat: # permitted for purpose of calculating validation loss only assert feedback in ['argmax', 'sample'] # no cheating by using teacher at test time! self.feedback = feedback if use_dropout: self.encoder.train() self.decoder.train() else: self.encoder.eval() self.decoder.eval() super(Seq2SeqAgent, self).test(beam_size, successors, speaker) def train(self, encoder_optimizer, decoder_optimizer, n_iters, aux_n_iter, feedback='teacher'): ''' Train for a given number of iterations ''' assert feedback in self.feedback_options self.feedback = feedback self.encoder.train() self.decoder.train() self.losses = [] self.losses_ctrl_f = [] epo_inc = 0 for iter in range(1, n_iters + 1): encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() self.rollout() if (not self.decoder.ctrl_feature) or (iter % aux_n_iter): self.loss.backward() else: self.loss_ctrl_f.backward() if self.clip_gradient != 0: # clip gradient clip_gradient(encoder_optimizer, self.clip_gradient) clip_gradient(decoder_optimizer, self.clip_gradient) if self.clip_gradient_norm > 0: # clip gradient norm torch.nn.utils.clip_grad_norm_(self.encoder.parameters(), self.clip_gradient_norm) torch.nn.utils.clip_grad_norm_(self.decoder.parameters(), self.clip_gradient_norm) encoder_optimizer.step() decoder_optimizer.step() epo_inc += self.env.epo_inc return epo_inc def rollout_notrain(self, n_iters): # jolin epo_inc = 0 for iter in range(1, n_iters + 1): self.env._next_minibatch(False) epo_inc += self.env.epo_inc return epo_inc def rl_rollout(self, obs, perm_obs, seq, seq_mask, seq_lengths, perm_idx, feedback, encoder, decoder): batch_size = len(perm_obs) # Record starting point traj = [{'instr_id': ob['instr_id'], 'path': [(ob['viewpoint'], ob['heading'], ob['elevation'])] } for ob in perm_obs] # Forward through encoder, giving initial hidden state and memory cell for decoder ctx, h_t, c_t, seq_mask = encoder(seq, seq_mask, seq_lengths) if not self.decoder_init: h_t, c_t = torch.zeros_like(h_t), torch.zeros_like(c_t) # Initial action a_t_prev, u_t_prev = None, None # different action space if decoder.action_space==-1: u_t_prev = decoder.u_begin.expand(batch_size, -1) else: a_t_prev = Variable(torch.ones(batch_size).long() * self.model_actions.index('<start>'), requires_grad=False).to(device) ended=np.array([False] * batch_size) # Do a sequence rollout not don't calculate the loss for policy gradient # self.loss = 0 env_action = [None] * batch_size # Initialize seq log probs for policy gradient if feedback == 'sample1': seqLogprobs = h_t.new_zeros(batch_size, self.episode_len) mask = np.ones((batch_size, self.episode_len)) elif feedback == 'argmax1': seqLogprobs, mask = None, None else: raise NotImplementedError('other feedback not supported.') # only for supervised auxiliary tasks #assert (not self.decoder.ctrl_feature) # not implemented for t in range(self.episode_len): f_t = self._feature_variable(perm_obs) # Image features from obs if decoder.panoramic: f_t_all, f_t = f_t else: f_t_all = np.zeros((batch_size, 1)) # Action feature from obs if decoder.action_space == 6: u_t_features, is_valid = np.zeros((batch_size, 1)), None else: u_t_features, is_valid, _ = self._action_variable(perm_obs) # Decoding actions h_t, c_t, alpha, logit, pred_f = decoder(a_t_prev, u_t_prev, u_t_features, f_t, f_t_all, h_t, c_t, ctx, seq_mask) # Mask outputs where agent can't move forward if decoder.action_space == 6: for i,ob in enumerate(perm_obs): if len(ob['navigableLocations']) <= 1: logit[i, self.model_actions.index('forward')] = -float('inf') else: logit[is_valid == 0] = -float('inf') # Supervised training # target = self._teacher_action(perm_obs, ended) # self.loss += self.criterion(logit, target) # Determine next model inputs if feedback == 'argmax1': _, a_t = logit.max(1) elif feedback == 'sample1': logprobs = F.log_softmax(logit, dim=1) probs = torch.exp(logprobs.data) m = D.Categorical(probs) a_t = m.sample() # sampling an action from model sampleLogprobs = logprobs.gather(1, a_t.unsqueeze(1)) else: sys.exit('invalid feedback method %s'%feedback) # if self.decoder.panoramic: # a_t_feature = all_a_t_features[np.arange(batch_size), a_t, :].detach() # Updated 'ended' list and make environment action for i,idx in enumerate(perm_idx): action_idx = a_t[i].item() if decoder.action_space == 6: if ended[i] and mask is not None: mask[i, t] = 0 elif action_idx == self.model_actions.index('<end>'): ended[i] = True env_action[idx] = self.env_actions[action_idx] else: if ended[i] and mask is not None: mask[i, t] = 0 elif action_idx == 0: ended[i] = True env_action[idx] = action_idx obs = np.array(self.env._get_obs(self.env.step(env_action, obs))) perm_obs = obs[perm_idx] # Save trajectory output for i,ob in enumerate(perm_obs): if not ended[i]: traj[i]['path'].append((ob['viewpoint'], ob['heading'], ob['elevation'])) if seqLogprobs is not None: # feedback == 'sample1' seqLogprobs[:, t] = sampleLogprobs.view(-1) # Early exit if all ended if ended.all(): break path_res = {} for t in traj: path_res[t['instr_id']] = t['path'] return traj, mask, seqLogprobs, path_res def rl_train(self, train_Eval, encoder_optimizer, decoder_optimizer, n_iters, sc_reward_scale, sc_discouted_immediate_r_scale, sc_length_scale): ''' jolin: self-critical finetuning''' self.losses = [] epo_inc = 0 self.encoder.train() self.decoder.train() for iter in range(1, n_iters + 1): # n_iters=interval encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() # copy from self.rollout(): # one minibatch (100 instructions) world_states = self.env.reset(False) obs = np.array(self.env._get_obs(world_states)) epo_inc += self.env.epo_inc # Reorder the language input for the encoder seq, seq_mask, seq_lengths, perm_idx = self._sort_batch(obs) perm_obs = obs[perm_idx] gen_traj, mask, seqLogprobs, gen_results = self.rl_rollout(obs, perm_obs, seq, seq_mask, seq_lengths, perm_idx, 'sample1', self.encoder, self.decoder) # jolin: get greedy decoding baseline # Just like self.test(use_dropout=False, feedback='argmax'). # But we should not do env.reset_epoch(), because we do not # test the whole split. So DON'T reuse test()! world_states = self.env.reset_batch() obs = np.array(self.env._get_obs(world_states))# for later 'sample' feedback batch perm_obs = obs[perm_idx] if self.monotonic: encoder2, decoder2 = self.encoder2, self.decoder2 else: self.encoder.eval() self.decoder.eval() encoder2, decoder2 = self.encoder, self.decoder with torch.no_grad(): greedy_traj, _, _, greedy_res = self.rl_rollout(obs, perm_obs, seq, seq_mask, seq_lengths, perm_idx, 'argmax1', encoder2, decoder2) if not self.monotonic: self.encoder.train() self.decoder.train() # jolin: get self-critical reward reward = self.get_self_critical_reward(gen_traj, train_Eval, gen_results, greedy_res, sc_reward_scale, sc_discouted_immediate_r_scale, sc_length_scale) # jolin: RewardCriterion self.loss = self.PG_reward_criterion(seqLogprobs, reward, mask) self.losses.append(self.loss.item()) self.loss.backward() #clip_gradient(encoder_optimizer) #clip_gradient(decoder_optimizer) if self.clip_gradient != 0: # clip gradient clip_gradient(encoder_optimizer, self.clip_gradient) clip_gradient(decoder_optimizer, self.clip_gradient) if self.clip_gradient_norm > 0: # clip gradient norm torch.nn.utils.clip_grad_norm_(self.encoder.parameters(), self.clip_gradient_norm) torch.nn.utils.clip_grad_norm_(self.decoder.parameters(), self.clip_gradient_norm) encoder_optimizer.step() decoder_optimizer.step() return epo_inc def PG_reward_criterion(self, seqLogprobs, reward, mask): # jolin: RewardCriterion input = to_contiguous(seqLogprobs).view(-1) reward = to_contiguous(torch.from_numpy(reward).float().to(device)).view(-1) #mask = to_contiguous(torch.cat([mask.new(mask.size(0), 1).fill_(1), mask[:, :-1]], 1)).view(-1) mask = to_contiguous(torch.from_numpy(mask).float().to(device)).view(-1) output = - input * reward * mask loss = torch.sum(output) / torch.sum(mask) return loss def get_self_critical_reward(self, traj, Eval, gen_results, greedy_res, sc_reward_scale, sc_discouted_immediate_r_scale, sc_length_scale): # get self-critical reward instr_id_order = [t['instr_id'] for t in traj] gen_scores = Eval.score_batch(gen_results, instr_id_order) greedy_scores = Eval.score_batch(greedy_res, instr_id_order) # normal score gen_hits = (
np.array(gen_scores['nav_errors'])
numpy.array
import numpy as np from scipy.ndimage import interpolation # нахождеение центра масс изображения def moments(image): # создание сетки c0, c1 = np.mgrid[:image.shape[0], :image.shape[1]] # сумма пикселей total_image = np.sum(image) # mu_x - момент по x m0 =
np.sum(c0 * image)
numpy.sum
#!/usr/bin/env python2 # -*- coding: UTF-8 -*- # File: conv.py # Author: <NAME> <<EMAIL>> import scipy.io as sio import theano import numpy as np from theano.tensor.nnet import conv import theano.printing as PP import theano.tensor as T from common import Layer float_x = theano.config.floatX class InputLayer(Layer): """ A input and preprocesing layer""" NAME = 'input' def __init__(self, rng, input_train, input_test,input_label, image_shape, label_shape, deal_label, angle, #below here, not tested: translation, zoom, magnitude, pflip, invert_image, sigma, nearest): """ deal_label: for patch predicting, need to process label """ if invert_image: if input_train is not None: input_train = 1-input_train if input_test is not None: input_test = 1-input_test super(InputLayer, self).__init__(rng, input_train, input_test) self.input_train = self.input_train.reshape(image_shape) self.input_test = self.input_test.reshape(image_shape) self.label_shape = label_shape self.image_shape = image_shape self.deal_label = deal_label self.input_label = input_label.reshape(label_shape) self.angle = angle self.translation = translation self.zoom = zoom self.magnitude = magnitude self.sigma = sigma self.plip=plip self.invert = invert_image self.nearest = nearest assert zoom > 0 self.need_proc = (not (magnitude or translation or pflip or angle) and zoom == 1) # do the preprocessing def do_preproc(input,label): if not self.need_proc: return input,label if self.deal_label: assert len(label_shape)==3 else: outlabel=label srs=self.rng w = self.image_shape[-1] h = self.image_shape[-2] target = T.as_tensor_variable(np.indices((self.image_shape[-2], self.image_shape[-1]))) if self.deal_label: tarlab = T.as_tensor_variable(np.indices((self.label_shape[-2], label_shape[-1]))) lw = self.label_shape[-1] lh = self.label_shape[-2] # Translate if self.translation: transln = self.translation * srs.uniform((2, 1, 1), -1) target += transln if self.deal_label: tarlab += transln # Apply elastic transform if self.magnitude: # Build a gaussian filter var = self.sigma ** 2 filt = np.array([[np.exp(-.5 * (i * i + j * j) / var) for i in range(-self.sigma, self.sigma + 1)] for j in range(-self.sigma, self.sigma + 1)], dtype=float_x) filt /= 2 * np.pi * var # Elastic elast = self.magnitude * srs.normal((2, h, w)) elast = sigconv.conv2d(elast, filt, (2, h, w), filt.shape, 'full') elast = elast[:, self.sigma:h + self.sigma, self.sigma:w + self.sigma] target += elast if deal_label: raise NotImplementedError() # Center at 'about' half way if self.zoom-1 or self.angle: origin = srs.uniform((2, 1, 1), .25, .75) * \ np.array((h, w)).reshape((2, 1, 1)) if self.deal_label: lorigin = srs.uniform((2, 1, 1), .25, .75) * \
np.array((lh, lw))
numpy.array
# Copyright (C) <NAME> 2021. # Distributed under the MIT License (see the accompanying README.md and LICENSE files). import argparse import numpy as np import pickle import time import json import utils.dataset as dataset import utils.pretrained_models as prtr import utils.clicks as clk import utils.dcg_ips as ips import utils.ranking as rnk import utils.evaluate as evl parser = argparse.ArgumentParser() parser.add_argument("input_file", type=str, help="Path to click input.") parser.add_argument("output_path", type=str, help="Path to output model.") parser.add_argument("--loss", type=str, help="Loss to optimize.", default='dcg2') parser.add_argument("--dataset_info_path", type=str, default="datasets_info.txt", help="Path to dataset info file.") args = parser.parse_args() print('Reading clicks from: %s' % args.input_file) with open(args.input_file, 'rb') as f: innp = pickle.load(f) train_clicks = innp['train'] validation_clicks = innp['validation'] train_doc_clicks = {'clicks_per_doc': train_clicks['train_clicks_per_doc']} select_doc_clicks = {'clicks_per_doc': train_clicks['select_clicks_per_doc']} validation_doc_clicks = {'clicks_per_doc': validation_clicks['train_clicks_per_doc']} bandit_lambdas = train_clicks['lambdas'] click_model = train_clicks['click_model'] eta = train_clicks['eta'] dataset_name = train_clicks['dataset_name'] fold_id = train_clicks['dataset_fold'] binarize_labels = 'binarized' in click_model num_proc = 0 data = dataset.get_dataset_from_json_info( dataset_name, args.dataset_info_path, shared_resource = False, ) data = data.get_data_folds()[fold_id] start = time.time() data.read_data() print('Time past for reading data: %d seconds' % (time.time() - start)) def process_loaded_clicks(loaded_clicks, data_split): train_weights = compute_weights( data_split, loaded_clicks['train_query_freq'], loaded_clicks['train_clicks_per_doc'], loaded_clicks['train_observance_prop'], ) select_weights = compute_weights( data_split, loaded_clicks['select_query_freq'], loaded_clicks['select_clicks_per_doc'], loaded_clicks['select_observance_prop'], ) train_mask = np.equal(loaded_clicks['train_observance_prop'], 0).astype(np.float64) select_mask = np.equal(loaded_clicks['select_observance_prop'], 0).astype(np.float64) return (train_weights, 1./(loaded_clicks['train_observance_prop'] + train_mask), select_weights, 1./(loaded_clicks['select_observance_prop'] + select_mask)) def compute_weights(data_split, query_freq, clicks_per_doc, observe_prop): doc_weights = np.zeros(data_split.num_docs()) for qid in np.arange(data_split.num_queries()): q_freq = query_freq[qid] if q_freq <= 0: continue s_i, e_i = data_split.query_range(qid) q_click = clicks_per_doc[s_i:e_i] q_obs_prop = observe_prop[s_i:e_i] if np.sum(q_click) <= 0: continue click_prob = q_click.astype(np.float64)/np.amax(q_click) unnorm_weights = click_prob/q_obs_prop if np.sum(unnorm_weights) == 0: norm_weights = unnorm_weights else: norm_weights = unnorm_weights/np.sum(unnorm_weights) norm_weights *= float(q_freq)/
np.sum(query_freq)
numpy.sum
import streamlit as st, numpy as np, os, cv2, pydicom import matplotlib.pyplot as plt import skimage.segmentation as seg from PIL import Image st.set_page_config( page_title="Brain Segmentation", page_icon="https://www.pngfind.com/pngs/m/327-3271821_brain-png-image-brain-side-view-vector-transparent.png", initial_sidebar_state="expanded", ) st.write(""" # Brain Segmentation Berikut ini algoritma yang digunakan untuk Segmentasi Otak """) IMAGE_PATHS = os.listdir("dicom") option = st.sidebar.selectbox('Pilih File Dicom?',IMAGE_PATHS) st.sidebar.write('You selected:', option) st.sidebar.subheader('Parameter Threshold') foreground = st.sidebar.slider('Berapa Foreground?', 0, 128, 255) nilai_threshold = st.sidebar.slider('Berapa Threshold?', 141, 161, 155) iterasi = st.sidebar.slider('Berapa Iterasi?', 0, 10, 4) ukuran = st.sidebar.slider('Berapa ukuran?', 0, 10, 4) start_ukuran, end_ukuran = st.sidebar.select_slider( 'Select Range?', options=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], value=(1, ukuran-1)) st.sidebar.subheader('Parameter Cluster') nilai_iterasi = st.sidebar.slider('Berapa Iterasi cluster?', 6, 100, 50) nilai_cluster = st.sidebar.slider('Berapa Cluster?', 3, 10, 4) nilai_repetition = st.sidebar.slider('Berapa Repetition?', 9, 98, 10) def bukadata(file): # get the data d = pydicom.read_file('dicom/'+file) file = np.array(d.pixel_array) img = file img_2d = img.astype(float) img_2d_scaled = (np.maximum(img_2d,0) / img_2d.max()) * foreground img_2d_scaled = np.uint8(img_2d_scaled) hasil = img_2d_scaled st.image(hasil, caption='Gambar Origin', use_column_width=True) return hasil def otsuthreshold(image): #OTSU THRESHOLDING _,binarized = cv2.threshold(image, 0, foreground, cv2.THRESH_BINARY + cv2.THRESH_OTSU) foreground_value = foreground mask = np.uint8(binarized == foreground_value) labels, stats = cv2.connectedComponentsWithStats(mask, ukuran)[start_ukuran:end_ukuran] largest_label = 1 + np.argmax(stats[1:, cv2.CC_STAT_AREA]) binarized = np.zeros_like(binarized) binarized[labels == largest_label] = foreground_value st.image(binarized, caption='Otsu Image', use_column_width=True) return binarized def gaussianthreshold(image): gaussian = cv2.adaptiveThreshold(image, foreground, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,nilai_threshold, 1) # masking(gaussian) foreground_value = foreground mask = np.uint8(gaussian == foreground_value) labels, stats = cv2.connectedComponentsWithStats(mask, ukuran)[start_ukuran:end_ukuran] largest_label = 1 + np.argmax(stats[1:, cv2.CC_STAT_AREA]) gaussian = np.zeros_like(gaussian) gaussian[labels == largest_label] = foreground_value st.image(gaussian, caption='Gaussian Image', use_column_width=True) return gaussian def erosion(image): # erosion from otsu kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(end_ukuran,end_ukuran)) erosion = cv2.erode(image,kernel,iterations = iterasi) foreground_value = foreground mask = np.uint8(erosion == foreground_value) labels, stats = cv2.connectedComponentsWithStats(mask, ukuran)[start_ukuran:end_ukuran] largest_label = 1 + np.argmax(stats[start_ukuran:, cv2.CC_STAT_AREA]) erosion = np.zeros_like(erosion) erosion[labels == largest_label] = foreground_value st.image(erosion, caption='Erosion Image', use_column_width=True) return erosion def opening(image): kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(end_ukuran,end_ukuran)) opening = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel, iterations= iterasi) foreground_value = foreground mask = np.uint8(opening == foreground_value) labels, stats = cv2.connectedComponentsWithStats(mask, ukuran)[start_ukuran:end_ukuran] largest_label = 1 + np.argmax(stats[start_ukuran:, cv2.CC_STAT_AREA]) opening = np.zeros_like(opening) opening[labels == largest_label] = foreground_value st.image(opening, caption='Opening Image', use_column_width=True) return opening def closing(image): kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(end_ukuran,end_ukuran)) closing = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel, iterations= iterasi) foreground_value = foreground mask_closing = np.uint8(closing >= foreground_value) labels, stats = cv2.connectedComponentsWithStats(mask_closing, ukuran)[start_ukuran:end_ukuran] largest_label = 1 +
np.argmax(stats[start_ukuran:, cv2.CC_STAT_AREA])
numpy.argmax
# Author: <NAME> # <NAME> # License: BSD 3 clause import argparse import sys from pathlib import Path import os import numpy as np import matplotlib.pylab as plt from matplotlib import patches as patches from sklearn.metrics.pairwise import euclidean_distances try: import joblib except ImportError: from sklearn.externals import joblib import ot from smoothot.dual_solvers import solve_semi_dual, get_plan_from_semi_dual from smoothot.dual_solvers import NegEntropy, SquaredL2 import dataset # make needed directories if they do not already exist root_dir = os.path.dirname(os.path.abspath(__file__)) Path(os.path.join(root_dir, 'images')).mkdir(exist_ok=True) Path(os.path.join(root_dir, 'res')).mkdir(exist_ok=True) parser = argparse.ArgumentParser() parser.add_argument('--n_colors', type=int, default=256, help='number of color clusters') parser.add_argument('--method', type=str, default='l2_sd', help='OT method') parser.add_argument('--gamma', type=float, default=1.0, help='regularization parameter') parser.add_argument('--max_iter', type=int, default=1000) parser.add_argument('--img1', type=str, default='comunion') parser.add_argument('--img2', type=str, default='autumn') args = parser.parse_args() def map_img(T, img1, img2, weights1): """Transfer colors from img2 to img1""" return np.dot(T / weights1[:, np.newaxis], img2) n_colors = args.n_colors method = args.method gamma = args.gamma max_iter = args.max_iter img1 = args.img1 img2 = args.img2 pair = img1+'-'+img2 print("images:", img1, '|', img2) print("n_colors:", n_colors) print("gamma:", gamma) print("max_iter:", max_iter) print() hist1, hist2, C, centers1, centers2, labels1, labels2, shape1, shape2 = \ dataset.load_color_transfer(img1=img1, img2=img2, n_colors=n_colors, transpose=False) m = len(hist1) n = len(hist2) # Obtain transportation plan. if method == "l2_sd": regul = SquaredL2(gamma=gamma) alpha = solve_semi_dual(hist1, hist2, C, regul, max_iter=max_iter, tol=1e-6) T = get_plan_from_semi_dual(alpha, hist2, C, regul) name = "Squared 2-norm" elif method == "ent_sd": regul = NegEntropy(gamma=gamma) alpha = solve_semi_dual(hist1, hist2, C, regul, max_iter=max_iter, tol=1e-6) T = get_plan_from_semi_dual(alpha, hist2, C, regul) name = "Entropy" elif method == "lp": T = ot.emd(hist1, hist2, C) name = "Unregularized" else: raise ValueError("Invalid method") sparsity = np.sum(T > 1e-10) / T.size print("Sparsity:", sparsity) T1 = np.sum(T, axis=1) Tt1 = np.sum(T, axis=0) err_a = hist1 - np.sum(T, axis=1) err_b = hist2 - np.sum(T, axis=0) print("Marginal a", np.dot(err_a, err_a)) print("Marginal b", np.dot(err_b, err_b)) #print(np.sum(T * C) + 0.5 / gamma * np.dot(err_a, err_a) + 0.5 / gamma * np.dot(err_b, err_b)) print('Objective value:', np.sum(T * C)) T_ = ot.emd(hist1, hist2, C) print('Unregularized objective value:', np.sum(T_ * C)) img1 = centers1[labels1] img2 = centers2[labels2] centers1_mapped = map_img(T, centers1, centers2, T1) img1_mapped = centers1_mapped[labels1] centers2_mapped = map_img(T.T, centers2, centers1, Tt1) img2_mapped = centers2_mapped[labels2] fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(221) ax.imshow(img1.reshape(shape1)) ax.axis("off") ax = fig.add_subplot(222) ax.imshow(img2.reshape(shape2)) ax.axis("off") ax = fig.add_subplot(223) ax.imshow(img1_mapped.reshape(shape1)) ax.axis("off") ax = fig.add_subplot(224) ax.imshow(img2_mapped.reshape(shape2)) ax.axis("off") plt.tight_layout() # plot original and transformed images out = "%s/images/%s_%d_%s_%0.3e.jpg" % (root_dir, method, n_colors, pair, gamma) plt.savefig(out) print() print('Saved image to:', out) out = "%s/res/img_%s_%d_%s_%0.3e.pkl" % (root_dir, method, n_colors, pair, gamma) tup = (img1_mapped.reshape(shape1), img2_mapped.reshape(shape2), sparsity) joblib.dump(tup, out) print('Saved pickle to:', out) plt.show() if n_colors <= 32: # plot transport plan and color histogram def draw_blocks(ax, T): # find contiguous chunks between coefficients for k, attn_row in enumerate(T): brk = np.diff(attn_row) brk = np.where(brk != 0)[0] brk = np.append(0, brk + 1) brk = np.append(brk, T.shape[0]) right_border = True for s, t in zip(brk[:-1], brk[1:]): if attn_row[s:t].sum() == 0: right_border = False continue lines = [(s, k), (t, k), (t, k + 1), (s, k + 1)] lines =
np.array(lines, dtype=np.float)
numpy.array
import pytest import tensorflow as tf import tensorflow_probability as tfp from tensorflow_probability import distributions as tfd from careless.models.merging.surrogate_posteriors import RiceWoolfson from careless.models.priors.empirical import * import numpy as np from careless.utils.device import disable_gpu status = disable_gpu() assert status observed = np.random.choice([True, False], 100) observed[0] = True #just in case observed[1] = False #just in case Fobs,SigFobs = np.random.random((2, 100)).astype(np.float32) Fobs[~observed] = 1. SigFobs[~observed] = 1. def ReferencePrior_test(p, ref, mc_samples): #This part checks indexing and gradient numerics q = tfd.TruncatedNormal( #<-- use this dist because RW has positive support tf.Variable(Fobs), tfp.util.TransformedVariable( SigFobs, tfp.bijectors.Softplus(), ), low=1e-5, high=1e10, ) with tf.GradientTape() as tape: z = q.sample(mc_samples) log_probs = p.log_prob(z) grads = tape.gradient(log_probs, q.trainable_variables) assert np.all(np.isfinite(log_probs)) for grad in grads: assert np.all(np.isfinite(grad)) assert np.all(log_probs.numpy()[...,~observed] == 0.) #This tests that the observed values follow the correct distribution z = ref.sample(mc_samples) expected = ref.log_prob(z).numpy()[...,observed] result = p.log_prob(z).numpy()[...,observed] assert
np.allclose(expected, result, atol=1e-5)
numpy.allclose
# Copyright 2019 Google LLC # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for methods in utils.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import pytest from tensorflow.keras.layers import * from tensorflow.keras.models import * from qkeras import * from qkeras.utils import get_model_sparsity from qkeras.utils import model_quantize def create_quantized_network(): """Creates a simple quantized conv net model.""" # Create a simple model xi = Input((28, 28, 1)) x = Conv2D(32, (3, 3))(xi) x = Activation("relu")(x) x = Conv2D(32, (3, 3), activation="relu")(x) x = Activation("softmax")(x) model = Model(inputs=xi, outputs=x) # Quantize the model quantizer_config = { "QConv2D": { "kernel_quantizer": "quantized_bits(4)", "bias_quantizer": "quantized_bits(4)" }, "QActivation": { "relu": "ternary" } } activation_bits = 4 qmodel = model_quantize(model, quantizer_config, activation_bits) return qmodel def create_quantized_po2_network(): """Creates a simple quantized conv net model with po2 quantizers.""" xi = Input((28, 28, 1)) x = QConv2D(32, (3, 3), kernel_quantizer=quantized_po2(4))(xi) x = QActivation(quantized_bits(8))(x) x = QConv2D(32, (3, 3), kernel_quantizer=quantized_po2(4))(x) x = QActivation(quantized_bits(8))(x) qmodel = Model(xi, x, name='simple_po2_qmodel') return qmodel def set_network_sparsity(model, sparsity): """Set the sparsity of the given model using random weights.""" for layer in model.layers: new_weights = [] for w in layer.get_weights(): # Create weights with desired sparsity sparse_weights = np.random.rand(w.size)+0.1 sparse_weights[:int(w.size*sparsity)] = 0 np.random.shuffle(sparse_weights) new_weights.append(sparse_weights.reshape(w.shape)) layer.set_weights(new_weights) return model def test_get_model_sparsity(): """Tests if the method get_model_sparsity in utils.py works correctly.""" qmodel = create_quantized_network() # Generate sparsity levels to test sparsity_levels = np.concatenate((np.random.rand(10), [1.0, 0.0])).round(2) # Test various sparsity levels for true_sparsity in sparsity_levels: qmodel = set_network_sparsity(qmodel, true_sparsity) calc_sparsity = get_model_sparsity(qmodel) assert np.abs(calc_sparsity - true_sparsity) < 0.01 def test_get_po2_model_sparsity(): """Tests get_model_sparsity on a po2-quantized model. Models quantized with po2 quantizers should have a sparsity near 0 because if the exponent is set to 0, the value of the weight will equal 2^0 == 1 != 0 """ qmodel = create_quantized_po2_network() # Generate sparsity levels to test sparsity_levels = np.concatenate((np.random.rand(10), [1.0, 0.0])).round(2) # Test various sparsity levels for set_sparsity in sparsity_levels: qmodel = set_network_sparsity(qmodel, set_sparsity) calc_sparsity = get_model_sparsity(qmodel) assert
np.abs(calc_sparsity - 0)
numpy.abs
import os, sys, math, time import pandas as pd, numpy as np data_filepath = sys.argv[1]#"C:/Phoenix/School/Harvard/Research/Beiwe/Studies/John_Schizophrenia/Data/2017.01.09" results_filepath = sys.argv[2]#"C:/Phoenix/School/Harvard/Research/Beiwe/Studies/John_Schizophrenia/Output/Preprocessed_Data/Individual/4noygnj9/accelerometer_bursts.txt" patient_name = sys.argv[3]#"4noygnj9" stream = sys.argv[4] #"accelerometer" milliseconds = int(sys.argv[5]) # 30000 def find_changes(G, patient, timestamps, UTCs, change_val): change = np.where(
np.diff(timestamps)
numpy.diff
"""Central data base keeping track of positions, velocities, relative positions, and distances of all simulated fishes """ import math import random import numpy as np from scipy.spatial.distance import cdist import sys U_LED_DX = 86 # [mm] leds x-distance on BlueBot U_LED_DZ = 86 # [mm] leds z-distance on BlueBot class Environment(): """Simulated fish environment Fish get their visible neighbors and corresponding relative positions and distances from here. Fish also update their own positions after moving in here. Environmental tracking data is used for simulation analysis. """ def __init__(self, pos, vel, fish_specs, arena): # Arguments self.pos = pos # x, y, z, phi; [no_robots X 4] self.vel = vel # pos_dot self.v_range = fish_specs[0] # visual range, [mm] self.w_blindspot = fish_specs[1] # width of blindspot, [mm] self.r_sphere = fish_specs[2] # radius of blocking sphere for occlusion, [mm] self.n_magnitude = fish_specs[3] # visual noise magnitude, [% of distance] self.arena_size = arena # x, y, z # Parameters self.no_robots = self.pos.shape[0] self.no_states = self.pos.shape[1] # Initialize robot states self.init_states() # Initialize tracking self.init_tracking() # Initialize LEDs #self.leds_pos = [np.zeros((3,3))]*self.no_robots # empty init, filled with update_leds() below #for robot in range(self.no_robots): # self.update_leds(robot) def log_to_file(self, filename): """Logs tracking data to file """ #np.savetxt('./logfiles/{}_data.txt'.format(filename), self.tracking, fmt='%.2f', delimiter=',') np.savetxt('./logfiles/{}.txt'.format(filename), self.tracking, fmt='%.2f', delimiter=',') def init_tracking(self): """Initializes tracking """ pos = np.reshape(self.pos, (1,self.no_robots*self.no_states)) vel = np.reshape(self.vel, (1,self.no_robots*self.no_states)) self.tracking = np.concatenate((pos,vel), axis=1) self.updates = 0 def update_tracking(self): """Updates tracking after every fish took a turn """ pos = np.reshape(self.pos, (1,self.no_robots*self.no_states)) vel = np.reshape(self.vel, (1,self.no_robots*self.no_states)) current_state = np.concatenate((pos,vel), axis=1) self.tracking = np.concatenate((self.tracking,current_state), axis=0) def update_leds(self, source_index): """ Updates the position of the three leds based on self.pos, which is the position of led1 """ pos = self.pos[source_index,:3] phi = self.pos[source_index,3] x1 = pos[0] x2 = x1 x3 = x1 + math.cos(phi)*U_LED_DX y1 = pos[1] y2 = y1 y3 = y1 + math.sin(phi)*U_LED_DX z1 = pos[2] z2 = z1 + U_LED_DZ z3 = z1 self.leds_pos[source_index] = np.array([[x1, x2, x3],[y1, y2, y3],[z1, z2, z3]]) def init_states(self): """Initializes fish positions and velocities """ # Restrict initial positions to arena size self.pos[:,0] = np.clip(self.pos[:,0], 0, self.arena_size[0]) self.pos[:,1] = np.clip(self.pos[:,1], 0, self.arena_size[1]) self.pos[:,2] = np.clip(self.pos[:,2], 0, self.arena_size[2]) # Initial relative positions a_ = np.reshape(self.pos, (1, self.no_robots*self.no_states)) a = np.tile(a_, (self.no_robots,1)) b = np.tile(self.pos, (1,self.no_robots)) self.rel_pos = a - b # [4*no_robots X no_robots] # Initial distances self.dist = cdist(self.pos[:,:3], self.pos[:,:3], 'euclidean') # without phi; [no_robots X no_robots] def update_states(self, source_id, pos, vel): # add noise """Updates a fish state and affected realtive positions and distances """ # Position and velocity self.pos[source_id,0] = np.clip(pos[0], 0, self.arena_size[0]) self.pos[source_id,1] = np.clip(pos[1], 0, self.arena_size[1]) self.pos[source_id,2] = np.clip(pos[2], 0, self.arena_size[2]) self.pos[source_id,3] = pos[3] self.vel[source_id,:] = vel # Relative positions pos_others = np.reshape(self.pos, (1,self.no_robots*self.no_states)) pos_self = np.tile(self.pos[source_id,:], (1,self.no_robots)) rel_pos = pos_others - pos_self self.rel_pos[source_id,:] = rel_pos # row rel_pos_ = np.reshape(rel_pos, (self.no_robots, self.no_states)) self.rel_pos[:,source_id*self.no_states:source_id*self.no_states+self.no_states] = -rel_pos_ # columns # Relative distances dist = np.linalg.norm(rel_pos_[:,:3], axis=1) # without phi self.dist[source_id,:] = dist self.dist[:,source_id] = dist.T # Update LEDs #self.update_leds(source_id) # Update tracking self.updates += 1 if self.updates >= self.no_robots: self.updates = 0 self.update_tracking() def get_robots(self, source_id, visual_noise=False): """Provides visible neighbors and relative positions and distances to a fish """ robots = set(range(self.no_robots)) # all robots robots.discard(source_id) # discard self rel_pos = np.reshape(self.rel_pos[source_id], (self.no_robots, self.no_states)) return (robots, rel_pos, self.dist[source_id]) # perfect vision here ''' self.visual_range(source_id, robots) self.blind_spot(source_id, robots, rel_pos) self.occlusions(source_id, robots, rel_pos) leds = self.calc_relative_leds(source_id, robots) if self.n_magnitude: # no overwrites of self.rel_pos and self.dist n_rel_pos, n_dist = self.visual_noise(source_id, rel_pos) return (robots, n_rel_pos, n_dist, leds) return (robots, rel_pos, self.dist[source_id], leds) ''' def visual_range(self, source_id, robots): """Deletes fishes outside of visible range """ conn_drop = 0.005 candidates = robots.copy() for robot in candidates: d_robot = self.dist[source_id][robot] x = conn_drop * (d_robot - self.v_range) if x < -5: sigmoid = 1 elif x > 5: sigmoid = 0 else: sigmoid = 1 / (1 + math.exp(x)) prob = random.random() if sigmoid < prob: robots.remove(robot) def blind_spot(self, source_id, robots, rel_pos): """Omits fishes within the blind spot behind own body """ r_blockage = self.w_blindspot/2 phi = self.pos[source_id,3] phi_xy = [math.cos(phi), math.sin(phi)] mag_phi = np.linalg.norm(phi_xy) candidates = robots.copy() for robot in candidates: dot = np.dot(phi_xy, rel_pos[robot,:2]) if dot < 0: d_robot = np.linalg.norm(rel_pos[robot,:2]) angle = abs(math.acos(dot / (mag_phi * d_robot))) - math.pi / 2 # cos(a-b) = ca*cb+sa*sb = sa if math.cos(angle) * d_robot < r_blockage: robots.remove(robot) def occlusions(self, source_id, robots, rel_pos): """Omits invisible fishes occluded by others """ rel_dist = self.dist[source_id] id_by_dist = np.argsort(rel_dist) n_valid = [] for robot in id_by_dist[1:]: if not robot in robots: continue occluded = False d_robot = rel_dist[robot] if d_robot == 0: # "collision" continue coord_robot = rel_pos[robot,:3] for verified in n_valid: d_verified = rel_dist[verified] coord_verified = rel_pos[verified,:3] theta_min = math.atan(self.r_sphere / d_verified) theta = abs(math.acos(np.dot(coord_robot, coord_verified) / (d_robot * d_verified))) if theta < theta_min: occluded = True robots.remove(robot) if not robots: return break if not occluded: n_valid.append(robot) def visual_noise(self, source_id, rel_pos): """Adds visual noise """ magnitudes = self.n_magnitude * np.array([self.dist[source_id]]).T noise = magnitudes * (np.random.rand(self.no_robots, self.no_states) - 0.5) # zero-mean uniform noise n_rel_pos = rel_pos + noise n_dist = np.linalg.norm(n_rel_pos[:,:3], axis=1) # new dist without phi return (n_rel_pos, n_dist) def see_circlers(self, source_id, robots, rel_pos, sensing_angle): '''For circle formation ''' phi = self.pos[source_id,3] phi_xy = [math.cos(phi), math.sin(phi)] mag_phi = np.linalg.norm(phi_xy) candidates = robots.copy() for robot in candidates: dot = np.dot(phi_xy, rel_pos[robot,:2]) if dot > 0: d_robot = np.linalg.norm(rel_pos[robot,:2]) angle = abs(math.acos(dot / (mag_phi * d_robot))) if (angle*180/math.pi) < (sensing_angle/2): return True return False def rot_global_to_robot(self, phi): """Rotate global coordinates to robot coordinates. Used before simulation of dynamics. """ return np.array([[math.cos(phi), math.sin(phi), 0], [-math.sin(phi), math.cos(phi), 0], [0, 0, 1]]) def rot_robot_to_global(self, phi): """Rotate robot coordinates to global coordinates. Used after simulation of dynamics. """ return np.array([[math.cos(phi), -math.sin(phi), 0], [math.sin(phi), math.cos(phi), 0], [0, 0, 1]]) def calc_reflections(self, leds_list): """Calculates the position of the reflected leds """ refl_list = [] for led in leds_list: if led[2] > 10: # at least 10 mm below surface to have a reflection refl = led +
np.array([0,0, -2*led[2]])
numpy.array
import random as random1 # importing as random created name conflict import numpy as np import pycxsimulator from pylab import * import math from matplotlib import colors import matplotlib.pyplot as plt import nn_toolbox # Another script class RabbitClass: """ Rabbit class to represent each rabbit """ def __init__(self, grid_size, speed=int(round(8 + np.random.randn() * 2, 0)), mass=int(round(4 + np.random.randn() * 2, 0)), list_of_experiences= [], list_of_experienced_consequences= [], health=500): """ Description Initialise Rabbit class instance Arguments: grid_size - integer, size of grid in simulation speed - integer, speed of rabbits mass - integer, mass of rabbits list_of_experiences - list list_of_experienced_consequences, list health - float, health of rabbit at birth Returns: none """ self.speed = int(round(speed, 0)) if self.speed < 1: # Lower limit for speed is 1 self.speed = 1 self.health = health self.mass = int(round(mass, 0)) if self.mass < 1: # Lower limit for mass is 1 self.mass = 1 if self.mass > 10: # Lower limit for mass is 1 self.mass = 10 self.digestion_efficiency = 0.5 / (1 + np.exp(-2 * self.mass + 7)) + 0.5 # Sigmoid like function self.health = health self.layer_dims = [6, 4, 1] # 11 inputs, 2 hidden nodes in 1st and only hidden layer, 1 output node self.list_of_experiences = list_of_experiences self.list_of_experienced_consequences = list_of_experienced_consequences self.weights = nn_toolbox.initialize_parameters_deep(self.layer_dims) if self.list_of_experiences != []: # If born with memories, learn from them at initiation RabbitClass.learn(self) self.position = [random1.randint(0, grid_size-1), random1.randint(0, grid_size-1)] # Random position self.grid_size = grid_size self.iq = 50 # Default IQ self.genotype = [] # Default genotype def get_speed(self): """ Return rabbit speed """ return self.speed def get_mass(self): """ Return rabbit mass """ return self.mass def set_speed(self, speed): """ Set rabbit speed """ self.speed = speed def get_position(self): """ Return rabbit position """ return self.position[0], self.position[1] def get_health(self): """ Return rabbit health """ return self.health def get_genotype(self): """ Return rabbit genotype """ return self.genotype def get_iq(self): """ Return rabbit IQ """ return self.iq def update_genotype(self): """ Update rabbit IQ """ self.genotype = [self.speed, self.mass, [self.list_of_experiences, self.list_of_experienced_consequences]] def update_iq(self, all_flower_information): """ Description Benchmark rabbit intelligence and save it as rabbit IQ Arguments: all_flower_information - dict, information on flowers Returns: accuracy - float, 0..100, rabbit intelligence """ # Construct training examples for flower in all_flower_information.values(): # Loop for flower for flower_size in range(1, 5+1): # Loop for flower size flower_with_size = flower.copy() flower_with_size['nutrition value'] = flower['nutrition value'][flower_size - 1] flower_with_size['flower size'] = flower_size x = RabbitClass.encode_input(self, flower_with_size) if flower_with_size['nutrition value'] > 0: y = 1 else: y = 0 # Add experience self.list_of_experiences.append(list(x[0])) self.list_of_experienced_consequences.append(y) # Format experiences and experienced consequence to numpy array X = np.array(self.list_of_experiences) Y = np.array(self.list_of_experienced_consequences) X = X.T Y = Y.reshape((X.shape[1], 1)) Y = np.squeeze(Y.T) Y_p = nn_toolbox.predict(X, self.weights) # Calculate accuracy of prediction m = len(Y) P = np.sum(Y) N = m - P Tp = np.dot(Y_p.T, Y) Fp =
np.sum(Y_p)
numpy.sum
""" concavity_automator comports multiple scripts automating concavity constraining method for landscape """ import lsdtopytools as lsd import numpy as np import numba as nb import pandas as pd from matplotlib import pyplot as plt import sys import matplotlib from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection import math from lsdtopytools.numba_tools import travelling_salesman_algortihm, remove_outliers_in_drainage_divide import random import matplotlib.gridspec as gridspec from multiprocessing import Pool, current_process from scipy import spatial,stats import numba as nb import copy from pathlib import Path import pylab as pl from scipy.signal import savgol_filter from scipy.interpolate import interp1d def norm_by_row(A): """ Subfunction used to vectorised normalisation of disorder by max of row using apply_along_axis function B.G """ return A/A.max() def norm_by_row_by_range(A): """ Subfunction used to vectorised normalisation of disorder by range of concavity using apply_along_axis function B.G """ return (A - A.min())/(A.max() - A.min()) def numfmt(x, pos): """ Plotting subfunction to automate tick formatting from metres to kilometres B.G """ s = '{:d}'.format(int(round(x / 1000.0))) return s def get_best_bit_and_err_from_Dstar(thetas, medD, fstD, thdD): """ Takes ouput from concavity calculation to calculate the best-fit theta and its error """ # Calculating the index of minimum medium disorder to get the best-fit index_of_BF = np.argmin(medD) # Getting the Dstar value of the best-fit dstar_val = medD[index_of_BF] # Getting the acutal best-fit BF = thetas[index_of_BF] # Preformatting 2 arrays for calculating the error: I am just interested by the first half for the first error and the second for the second A = np.copy(fstD) A[index_of_BF+1:] = 9999 B = np.copy(fstD) B[:index_of_BF] = 9999 # calculating the error by extracting the closest theta with a Dstar close to the median best fit ones err = ( thetas[np.abs(A - dstar_val).argmin()] , thetas[np.abs(B - dstar_val).argmin()] ) # REturning a tuple with [0] being the best fit and [1] another tuple f error return BF,err def process_basin(ls, **kwargs): """ Main function processing the concavity. It looks a bit convoluted but it is required for clean multiprocessing. Takes at least one argument: ls, which is a list of arguments ls[0] -> the number of the basin (heavily used by automatic multiprocessing) ls[1] -> the X coordinate of the basin outlet ls[2] -> the Y coordinate of the basin outlet ls[3] -> area_threshold used for the analysis ls[4] -> prefix befor the number of the basin to read the file input Also takes option kwargs argument: ignore_numbering: jsut use the prefix as name for the DEM extension: if your extension is not .tif, you can give it here WITHOUT THE DOT overwrite_dem_name: used if you want to use thefunction from outside the automations: you need to provide the dem name WITH THE EXTENSION """ number = ls[0] X = ls[1] Y = ls[2] area_threshold = ls[3] prefix = ls[4] print("Processing basin ", number, " with proc ", current_process()) if("ignore_numbering" not in kwargs): kwargs["ignore_numbering"] = False if("extension" not in kwargs): kwargs["extension"] = "tif" if("n_tribs_by_combo" not in kwargs): kwargs["n_tribs_by_combo"] = 4 if(kwargs["ignore_numbering"] == True): name = prefix else: name = prefix + "%s"%(number) if(kwargs["precipitation_raster"] == ""): precipitation = False else: precipitation = True # I spent a significant amount of time preprocessing it, see SM n_rivers = 0 dem_name ="%s.%s"%(name,kwargs["extension"]) if("overwrite_dem_name" in kwargs): dem_name = kwargs["overwrite_dem_name"] MD = lsd.LSDDEM(file_name = dem_name, already_preprocessed = True) # Extracting basins if(precipitation): MD.CommonFlowRoutines( ingest_precipitation_raster = kwargs["precipitation_raster"], precipitation_raster_multiplier = 1, discharge = True) else: MD.CommonFlowRoutines() MD.ExtractRiverNetwork( method = "area_threshold", area_threshold_min = area_threshold) print("River extracted") MD.DefineCatchment( method="from_XY", X_coords = [X], Y_coords = [Y], coord_search_radius_nodes = 10 )#, X_coords = [X_coordinates_outlets[7]], Y_coords = [Y_coordinates_outlets[7]]) print("CAtchment defined") MD.GenerateChi(theta = 0.4, A_0 = 1) print("River_network_generated") n_rivers = MD.df_base_river.source_key.unique().shape[0] print("You have", n_rivers, "rivers and",MD.df_base_river.shape[0],"river pixels") MD.df_base_river.to_feather("%s_rivers.feather"%(name)) print("Starting the movern calculation") MD.cppdem.calculate_movern_disorder(0.05, 0.025, 38, 1, area_threshold, kwargs["n_tribs_by_combo"]) print("DONE with movern, let's format the output") OVR_dis = MD.cppdem.get_disorder_dict()[0] OVR_tested = MD.cppdem.get_disorder_vec_of_tested_movern() pd.DataFrame({"overall_disorder":OVR_dis, "tested_movern":OVR_tested }).to_feather("%s_overall_test.feather"%(name)) normalizer = MD.cppdem.get_n_pixels_by_combinations()[0] np.save("%s_disorder_normaliser.npy"%(name), normalizer) all_disorder = MD.cppdem.get_best_fits_movern_per_BK() np.save("%s_concavity_tot.npy"%(name), all_disorder[0]) print("Getting results") results = np.array(MD.cppdem.get_all_disorder_values()[0]) np.save("%s_disorder_tot.npy"%(name), results) XY = MD.cppdem.query_xy_for_each_basin()["0"] tdf = pd.DataFrame(XY) tdf.to_feather("%s_XY.feather"%(name)) return 0 def theta_quick_constrain_single_basin(MD,X_coordinate_outlet = 0, Y_coordinate_outlet = 0, area_threshold = 1500): """ Main function processing the concavity. It looks a bit convoluted but it is required for clean multiprocessing. Takes at least one argument: ls, which is a list of arguments ls[0] -> the number of the basin (heavily used by automatic multiprocessing) ls[1] -> the X coordinate of the basin outlet ls[2] -> the Y coordinate of the basin outlet ls[3] -> area_threshold used for the analysis ls[4] -> prefix befor the number of the basin to read the file input Also takes option kwargs argument: ignore_numbering: jsut use the prefix as name for the DEM extension: if your extension is not .tif, you can give it here WITHOUT THE DOT overwrite_dem_name: used if you want to use thefunction from outside the automations: you need to provide the dem name WITH THE EXTENSION """ # number = ls[0] # X = ls[1] # Y = ls[2] # area_threshold = ls[3] # prefix = ls[4] # print("Processing basin ", number, " with proc ", current_process()) # if("ignore_numbering" not in kwargs): # kwargs["ignore_numbering"] = False # if("extension" not in kwargs): # kwargs["extension"] = "tif" # if("n_tribs_by_combo" not in kwargs): # kwargs["n_tribs_by_combo"] = 4 # if(kwargs["ignore_numbering"] == True): # name = prefix # else: # name = prefix + "%s"%(number) # if(kwargs["precipitation_raster"] == ""): # precipitation = False # else: # precipitation = True # I spent a significant amount of time preprocessing it, see SM n_rivers = 0 # dem_name ="%s.%s"%(name,kwargs["extension"]) # if("overwrite_dem_name" in kwargs): # dem_name = kwargs["overwrite_dem_name"] # MD = lsd.LSDDEM(file_name = dem_name, already_preprocessed = True) # # Extracting basins # if(precipitation): # MD.CommonFlowRoutines( ingest_precipitation_raster = kwargs["precipitation_raster"], precipitation_raster_multiplier = 1, discharge = True) # else: # MD.CommonFlowRoutines() # print("Experimental function (Gailleton et al., submitted), if it crashes restart from a clean LSDDEM object with only the flow routines processed.") MD.ExtractRiverNetwork( method = "area_threshold", area_threshold_min = area_threshold) # print("River pre-extracted") MD.DefineCatchment( method="from_XY", X_coords = X_coordinate_outlet, Y_coords = Y_coordinate_outlet, coord_search_radius_nodes = 10 )#, X_coords = [X_coordinates_outlets[7]], Y_coords = [Y_coordinates_outlets[7]]) # print("CAtchment defined") MD.GenerateChi(theta = 0.4, A_0 = 1) # print("River_network_generated") n_rivers = MD.df_base_river.source_key.unique().shape[0] print("DEBUG::You have", n_rivers, "rivers and",MD.df_base_river.shape[0],"river pixels \n") # MD.df_base_river.to_feather("%s_rivers.feather"%(name)) # print("Starting the movern calculation") MD.cppdem.calculate_movern_disorder(0.05, 0.025, 38, 1, area_threshold, 4) # print("DONE with movern, let's format the output") OVR_dis = MD.cppdem.get_disorder_dict()[0] OVR_tested = MD.cppdem.get_disorder_vec_of_tested_movern() # pd.DataFrame({"overall_disorder":OVR_dis, "tested_movern":OVR_tested }).to_feather("%s_overall_test.feather"%(name)) normalizer = MD.cppdem.get_n_pixels_by_combinations()[0] # np.save("%s_disorder_normaliser.npy"%(name), normalizer) all_disorder = MD.cppdem.get_best_fits_movern_per_BK() # np.save("%s_concavity_tot.npy"%(name), all_disorder[0]) # print("Getting results") results = np.array(MD.cppdem.get_all_disorder_values()[0]) # np.save("%s_disorder_tot.npy"%(name), results) # XY = MD.cppdem.query_xy_for_each_basin()["0"] # tdf = pd.DataFrame(XY) # tdf.to_feather("%s_XY.feather"%(name)) # print("\n\n") try: from IPython.display import display, Markdown, Latex todusplay = r""" **Thanks for constraning** $\theta$ with the disorder algorithm from _Mudd et al., 2018_ and _Gailleton et al, submitted_. Keep in mind that it is not straightforward and that the "best fit" we suggest is most of the time the "least worst" value maximising the collinearity in $\chi$ space. Especially in large, complex basin, several $\theta$ actually fit different areas and the best fit is just a try to make everyone happy where it is not necessarily possible. $\theta$ constraining results: median $\theta$ | $1^{st}$ Q | $3^{rd}$ Q --- | --- | --- %s | %s | %s """%(round(np.nanmedian(all_disorder[0]),3), round(np.nanpercentile(all_disorder[0],25),3), round(np.nanpercentile(all_disorder[0],75),3)) display(Markdown(todusplay)) except: pass return all_disorder def get_median_first_quartile_Dstar(ls): """ Function which post-process results from one analysis to return the median and first quartile curve of all best-fits param: ls: full prefix (= including basin number if needed) B.G """ print("Normalising D* for ", ls) name_to_load = ls # loading the file containng ALL the data all_data = np.load(name_to_load + "_disorder_tot.npy") if(all_data.shape[0]>1): # normalise by max each row all_data = np.apply_along_axis(norm_by_row,1,all_data) # Median by column ALLDmed = np.apply_along_axis(np.median,0,all_data) # Percentile by column ALLDfstQ = np.apply_along_axis(lambda z: np.percentile(z,25),0,all_data) else: return name_to_load return ALLDmed, ALLDfstQ, ls def get_median_first_quartile_Dstar_r(ls): """ Function which post-process results from one analysis to return the median and first quartile curve of all best-fits param: ls: full prefix (= including basin number if needed) B.G """ print("Normalising D*_r for ", ls) name_to_load = ls # loading the file containng ALL the data all_data = np.load(name_to_load + "_disorder_tot.npy") if(all_data.shape[0]>1): # normalise by max each row all_data = np.apply_along_axis(norm_by_row_by_range,1,all_data) # Median by column ALLDmed = np.apply_along_axis(np.median,0,all_data) # Percentile by column ALLDfstQ = np.apply_along_axis(lambda z: np.percentile(z,25),0,all_data) else: return name_to_load return ALLDmed, ALLDfstQ, ls def plot_single_theta(ls, **kwargs): """ For a multiple analysis on the same DEM this plot the global with each basins colored by D^* Need post-processing function to pre-analyse the ouputs. The layout of this function might seems a bit convoluted, but that's making multiprocessing easy, as they take time to plot param """ this_theta = ls[0] prefix = ls[1] # Loading the small summary df df = pd.read_csv(prefix +"summary_results.csv") # Loading the HillShade HS = lsd.raster_loader.load_raster(prefix + "HS.tif") # Formatting ticks import matplotlib.ticker as tkr # has classes for tick-locating and -formatting yfmt = tkr.FuncFormatter(numfmt) xfmt = tkr.FuncFormatter(numfmt) print("plotting D* for theta", this_theta) # Getting the Figure and the ticks right fig,ax = plt.subplots() ax.yaxis.set_major_formatter(yfmt) ax.xaxis.set_major_formatter(xfmt) # Normalising the Hillshade and taking care of the no data HS["array"] = HS["array"]/HS["array"].max() HS["array"][HS["array"]<0] = np.nan # Plotting the hillshade ax.imshow(HS["array"], extent = HS["extent"], cmap = "gray", vmin= 0.2, vmax = 0.8) # Building the array of concavity A = np.zeros(HS["array"].shape) A[:,:] = np.nan # For each raster, I am reading rows and col corresponding to the main raster and potting it with the requested value for name in df["raster_name"]: row = np.load(name + "_row.npy") col = np.load(name + "_col.npy") val = df["D*_%s"%this_theta][df["raster_name"] == name].values[0] # A wee convoluted but it work and it is fast so... A[row,col] = val # PLOTTING THE D* ax.imshow(A, extent = HS["extent"], cmap= "gnuplot2", zorder = 2, alpha = 0.75, vmin = 0.1, vmax = 0.9) # You may want to change the extents of the plot if("xlim" in kwargs): ax.set_xlim(kwargs["xlim"]) if("ylim" in kwargs): ax.set_ylim(kwargs["ylim"]) ax.set_xlabel("Easting (km)") ax.set_ylabel("Northing (km)") # Saving the figure plt.tight_layout()# plt.savefig(prefix + "MAP_disorder_%s.png"%(this_theta), dpi = 500) plt.close(fig) print("plotting D*_r for theta", this_theta) # Getting the Figure and the ticks right fig,ax = plt.subplots() ax.yaxis.set_major_formatter(yfmt) ax.xaxis.set_major_formatter(xfmt) # Plotting the hillshade ax.imshow(HS["array"], extent = HS["extent"], cmap = "gray", vmin= 0.2, vmax = 0.8) # Building the array of concavity A = np.zeros(HS["array"].shape) A[:,:] = np.nan # For each raster, I am reading rows and col corresponding to the main raster and potting it with the requested value for name in df["raster_name"]: row = np.load(name + "_row.npy") col = np.load(name + "_col.npy") val = df["D*_r_%s"%this_theta][df["raster_name"] == name].values[0] # A wee convoluted but it work and it is fast so... A[row,col] = val # PLOTTING THE D* ax.imshow(A, extent = HS["extent"], cmap= "gnuplot2", zorder = 2, alpha = 0.75, vmin = 0.1, vmax = 0.9) # You may want to change the extents of the plot if("xlim" in kwargs): ax.set_xlim(kwargs["xlim"]) if("ylim" in kwargs): ax.set_ylim(kwargs["ylim"]) ax.set_xlabel("Easting (km)") ax.set_ylabel("Northing (km)") # Saving the figure plt.tight_layout()# plt.savefig(prefix + "MAP_disorder_by_range_%s.png"%(this_theta), dpi = 500) plt.close(fig) def plot_min_D_star_map(ls, **kwargs): """ For a multiple analysis on the same DEM this plot the global with each basins colored by D^* Need post-processing function to pre-analyse the ouputs. The layout of this function might seems a bit convoluted, but that's making multiprocessing easy, as they take time to plot param """ this_theta = ls[0] prefix = ls[1] # Loading the small summary df df = pd.read_csv(prefix +"summary_results.csv") # Loading the HillShade HS = lsd.raster_loader.load_raster(prefix + "HS.tif") # Formatting ticks import matplotlib.ticker as tkr # has classes for tick-locating and -formatting yfmt = tkr.FuncFormatter(numfmt) xfmt = tkr.FuncFormatter(numfmt) print("plotting D* for theta", this_theta) # Getting the Figure and the ticks right fig,ax = plt.subplots() ax.yaxis.set_major_formatter(yfmt) ax.xaxis.set_major_formatter(xfmt) # Normalising the Hillshade and taking care of the no data HS["array"] = HS["array"]/HS["array"].max() HS["array"][HS["array"]<0] = np.nan # Plotting the hillshade ax.imshow(HS["array"], extent = HS["extent"], cmap = "gray", vmin= 0.2, vmax = 0.8) # Building the array of concavity A = np.zeros(HS["array"].shape) A[:,:] = np.nan df_theta = pd.read_csv(prefix + "all_raster_names.csv") thetas = np.round(pd.read_feather(df["raster_name"].iloc[0] + "_overall_test.feather")["tested_movern"].values,decimals = 3) # For each raster, I am reading rows and col corresponding to the main raster and potting it with the requested value for name in df["raster_name"]: row = np.load(name + "_row.npy") col = np.load(name + "_col.npy") val = 1e12 for tval in thetas: valtest = df["D*_%s"%tval][df["raster_name"] == name].values[0] # A wee convoluted but it work and it is fast so... if(valtest<val): val=valtest A[row,col] = val # PLOTTING THE D* ax.imshow(A, extent = HS["extent"], cmap= "gnuplot2", zorder = 2, alpha = 0.75, vmin = 0.1, vmax = 0.9) # You may want to change the extents of the plot if("xlim" in kwargs): ax.set_xlim(kwargs["xlim"]) if("ylim" in kwargs): ax.set_ylim(kwargs["ylim"]) ax.set_xlabel("Easting (km)") ax.set_ylabel("Northing (km)") # Saving the figure plt.tight_layout()# plt.savefig(prefix + "MAP_minimum_disorder_across_theta_%s.png"%(this_theta), dpi = 500) plt.close(fig) def post_process_analysis_for_Dstar(prefix, n_proc = 1, base_raster_full_name = "SEC_PP.tif"): # Loading the list of raster df = pd.read_csv(prefix + "all_raster_names.csv") # Preparing the multiprocessing d_of_med = {} d_of_fst = {} d_of_med_r = {} d_of_fst_r = {} params = df["raster_name"].tolist() ras_to_ignore = {} ras_to_ignore_list = [] for i in params: ras_to_ignore[i] = False # running the multiprocessing with Pool(n_proc) as p: fprocesses = [] for i in params: fprocesses.append(p.apply_async(get_median_first_quartile_Dstar, args = (i,))) for gut in fprocesses: gut.wait() # getting the results in the right dictionaries for gut in fprocesses: # print(gut.get()) if(isinstance(gut.get(),tuple)): d_of_med[gut.get()[2]] = gut.get()[0] d_of_fst[gut.get()[2]] = gut.get()[1] else: # print("IGNORING",gut.get() ) ras_to_ignore[gut.get()] = True ras_to_ignore_list.append(gut.get()) # running the multiprocessing with Pool(n_proc) as p: fprocesses = [] for i in params: fprocesses.append(p.apply_async(get_median_first_quartile_Dstar_r, args = (i,))) for gut in fprocesses: gut.wait() # getting the results in the right dictionaries for gut in fprocesses: # print(gut.get()) if(isinstance(gut.get(),tuple)): d_of_med_r[gut.get()[2]] = gut.get()[0] d_of_fst_r[gut.get()[2]] = gut.get()[1] else: # print("IGNORING",gut.get() ) ras_to_ignore[gut.get()] = True ras_to_ignore_list.append(gut.get()) # Getting the list of thetas tested thetas = np.round(pd.read_feather(params[0] + "_overall_test.feather")["tested_movern"].values,decimals = 3) df["best_fit"] = pd.Series(np.zeros(df.shape[0]), index = df.index) df["err_neg"] = pd.Series(np.zeros(df.shape[0]), index = df.index) df["err_pos"] = pd.Series(np.zeros(df.shape[0]), index = df.index) df["best_fit_norm_by_range"] = pd.Series(np.zeros(df.shape[0]), index = df.index) df["err_neg_norm_by_range"] = pd.Series(np.zeros(df.shape[0]), index = df.index) df["err_pos_norm_by_range"] = pd.Series(np.zeros(df.shape[0]), index = df.index) # Preparing my dataframe to ingest for t in thetas: df["D*_%s"%t] = pd.Series(np.zeros(df.shape[0]), index = df.index) df["D*_r_%s"%t] = pd.Series(np.zeros(df.shape[0]), index = df.index) # Ingesting hte results for i in range(df.shape[0]): if(ras_to_ignore[df["raster_name"].iloc[i]]): continue BF,err = get_best_bit_and_err_from_Dstar(thetas, d_of_med[df["raster_name"].iloc[i]], d_of_fst[df["raster_name"].iloc[i]], 10) BF_r,err_r = get_best_bit_and_err_from_Dstar(thetas, d_of_med_r[df["raster_name"].iloc[i]], d_of_fst_r[df["raster_name"].iloc[i]], 10) df["best_fit"].iloc[i] = BF df["err_neg"].iloc[i] = err[0] df["err_pos"].iloc[i] = err[1] df["best_fit_norm_by_range"].iloc[i] = BF_r df["err_neg_norm_by_range"].iloc[i] = err_r[0] df["err_pos_norm_by_range"].iloc[i] = err_r[1] for t in range(thetas.shape[0]): df["D*_%s"%thetas[t]].iloc[i] = d_of_med[df["raster_name"].iloc[i]][t] df["D*_r_%s"%thetas[t]].iloc[i] = d_of_med_r[df["raster_name"].iloc[i]][t] # Getting the hillshade mydem = lsd.LSDDEM(file_name = base_raster_full_name,already_preprocessed = True) HS = mydem.get_hillshade(altitude = 45, angle = 315, z_exageration = 1) mydem.save_array_to_raster_extent( HS, name = prefix + "HS", save_directory = "./") # will add X-Y to the sumarry dataframe df["X_median"] = pd.Series(np.zeros(df.shape[0]), index = df.index) df["X_firstQ"] = pd.Series(np.zeros(df.shape[0]), index = df.index) df["X_thirdtQ"] = pd.Series(np.zeros(df.shape[0]), index = df.index) df["Y_median"] = pd.Series(np.zeros(df.shape[0]), index = df.index) df["Y_firstQ"] = pd.Series(np.zeros(df.shape[0]), index = df.index) df["Y_thirdtQ"] = pd.Series(np.zeros(df.shape[0]), index = df.index) # I do not mutiprocess here: it would require load the mother raster for each process and would eat a lot of memory for i in params: if(ras_to_ignore[i]): continue XY = pd.read_feather(i + "_XY.feather") row,col = mydem.cppdem.query_rowcol_from_xy(XY["X"].values, XY["Y"].values) np.save(i + "_row.npy", row) np.save(i + "_col.npy", col) df["X_median"][df["raster_name"] == i] = XY["X"].median() df["X_firstQ"][df["raster_name"] == i] = XY["X"].quantile(0.25) df["X_thirdtQ"][df["raster_name"] == i] = XY["X"].quantile(0.75) df["Y_median"][df["raster_name"] == i] = XY["Y"].median() df["Y_firstQ"][df["raster_name"] == i] = XY["Y"].quantile(0.25) df["Y_thirdtQ"][df["raster_name"] == i] = XY["Y"].quantile(0.75) #Removing the unwanted df = df[~df["raster_name"].isin(ras_to_ignore_list)] # Saving the DataFrame df.to_csv(prefix +"summary_results.csv", index = False) print("Done with the post processing") def plot_main_figures(prefix, **kwargs): # Loading the list of raster dfrast = pd.read_csv(prefix + "all_raster_names.csv") df = pd.read_csv(prefix +"summary_results.csv") # Creating the folder Path("./%s_figures"%(prefix)).mkdir(parents=True, exist_ok=True) print("Printing your histograms first") fig, ax = plt.subplots() ax.grid(ls = "--") ax.hist(df["best_fit"], bins = 19, histtype = "stepfilled", edgecolor = "k", facecolor = "orange", lw = 2) ax.set_xlabel(r"$\theta$") plt.tight_layout() plt.savefig("./%s_figures/%shistogram_all_fits.png"%(prefix, prefix), dpi = 500) plt.close(fig) print("Building the IQ CDF") IQR,bin_edge = np.histogram(df["err_pos"].values - df["err_neg"].values) fig, ax = plt.subplots() CSIQR = np.cumsum(IQR) CSIQR = CSIQR/np.nanmax(CSIQR)*100 bin_edge = bin_edge[1:] - np.diff(bin_edge) ax.plot(bin_edge, CSIQR, lw = 2, color = "k", alpha = 1) # ax.axhspan(np.percentile(CSIQR,25),np.percentile(CSIQR,75), lw = 0, color = "r", alpha = 0.2) ax.fill_between(bin_edge,0,CSIQR, lw = 0, color = "k", alpha = 0.1) ax.set_xlabel(r"IQR $\theta$ best-fit") ax.set_ylabel(r"%") ax.grid(ls = "--", lw = 1) plt.savefig("./%s_figures/%sCDF_IQR.png"%(prefix, prefix), dpi = 500) plt.close(fig) print("plotting the map of best-fit") # Loading the small summary df df = pd.read_csv(prefix +"summary_results.csv") # Loading the HillShade HS = lsd.raster_loader.load_raster(prefix + "HS.tif") # Formatting ticks import matplotlib.ticker as tkr # has classes for tick-locating and -formatting yfmt = tkr.FuncFormatter(numfmt) xfmt = tkr.FuncFormatter(numfmt) print("plotting best-fit") # Getting the Figure and the ticks right fig,ax = plt.subplots() ax.yaxis.set_major_formatter(yfmt) ax.xaxis.set_major_formatter(xfmt) # Normalising the Hillshade and taking care of the no data HS["array"] = HS["array"]/HS["array"].max() HS["array"][HS["array"]<0] = np.nan # Plotting the hillshade ax.imshow(HS["array"], extent = HS["extent"], cmap = "gray", vmin= 0.2, vmax = 0.8) # Building the array of concavity A = np.zeros(HS["array"].shape) A[:,:] = np.nan # For each raster, I am reading rows and col corresponding to the main raster and potting it with the requested value for name in df["raster_name"]: row = np.load(name + "_row.npy") col = np.load(name + "_col.npy") val = df["best_fit"][df["raster_name"] == name].values[0] # A wee convoluted but it work and it is fast so... A[row,col] = val # PLOTTING THE D* ax.imshow(A, extent = HS["extent"], cmap= "RdYlBu_r", zorder = 2, alpha = 0.75, vmin = 0.1, vmax = 0.9) # You may want to change the extents of the plot if("xlim" in kwargs): ax.set_xlim(kwargs["xlim"]) if("ylim" in kwargs): ax.set_ylim(kwargs["ylim"]) ax.set_xlabel("Easting (km)") ax.set_ylabel("Northing (km)") # Saving the figure plt.tight_layout()# plt.savefig("./%s_figures/"%(prefix) +prefix + "MAP_best_fit.png", dpi = 500) plt.close(fig) a = np.array([[0,1]]) pl.figure(figsize=(9, 1.5)) img = pl.imshow(a, cmap="RdYlBu_r") pl.gca().set_visible(False) cax = pl.axes([0.1, 0.2, 0.8, 0.6]) pl.colorbar(orientation="horizontal", cax=cax) pl.title(r"$\theta$ best-fit") pl.savefig("./%s_figures/"%(prefix) +"colorbar_mapbest_fit.png") pl.close(fig) # Formatting ticks import matplotlib.ticker as tkr # has classes for tick-locating and -formatting yfmt = tkr.FuncFormatter(numfmt) xfmt = tkr.FuncFormatter(numfmt) print("plotting min theta") # Getting the Figure and the ticks right fig,ax = plt.subplots() ax.yaxis.set_major_formatter(yfmt) ax.xaxis.set_major_formatter(xfmt) # Plotting the hillshade ax.imshow(HS["array"], extent = HS["extent"], cmap = "gray", vmin= 0.2, vmax = 0.8) # Building the array of concavity # Building the array of concavity A = np.zeros(HS["array"].shape) A[:,:] = np.nan df_theta = pd.read_csv(prefix + "all_raster_names.csv") thetas = np.round(pd.read_feather(df["raster_name"].iloc[0] + "_overall_test.feather")["tested_movern"].values,decimals = 3) # For each raster, I am reading rows and col corresponding to the main raster and potting it with the requested value for name in df["raster_name"]: row = np.load(name + "_row.npy") col = np.load(name + "_col.npy") val = 1e12 for tval in thetas: valtest = df["D*_%s"%tval][df["raster_name"] == name].values[0] # A wee convoluted but it work and it is fast so... if(valtest<val): val=valtest A[row,col] = val # PLOTTING THE D* ax.imshow(A, extent = HS["extent"], cmap= "gnuplot2", zorder = 2, alpha = 0.75, vmin = 0.05, vmax = 0.65) # You may want to change the extents of the plot if("xlim" in kwargs): ax.set_xlim(kwargs["xlim"]) if("ylim" in kwargs): ax.set_ylim(kwargs["ylim"]) ax.set_xlabel("Easting (km)") ax.set_ylabel("Northing (km)") # Saving the figure plt.tight_layout()# plt.savefig("./%s_figures/"%(prefix) +prefix + "min_Dstar_for_each_basins.png", dpi = 500) plt.close(fig) a = np.array([[0,1]]) pl.figure(figsize=(9, 1.5)) img = pl.imshow(a, cmap="gnuplot2", vmin = 0.05, vmax = 0.65) pl.gca().set_visible(False) cax = pl.axes([0.1, 0.2, 0.8, 0.6]) pl.colorbar(orientation="horizontal", cax=cax, label = r"Min. $D^{*}$") pl.title(r"Min. $D^{*}$") pl.savefig("./%s_figures/"%(prefix) +"colorbar_map_minDstar.png") pl.close(fig) # Formatting ticks import matplotlib.ticker as tkr # has classes for tick-locating and -formatting yfmt = tkr.FuncFormatter(numfmt) xfmt = tkr.FuncFormatter(numfmt) print("plotting best-fit theta range yo") min_theta = 99999 min_Dsum = 1e36 for this_theta in thetas: this_sum = np.sum(df["D*_r_%s"%this_theta].values) if(this_sum < min_Dsum): min_theta = this_theta min_Dsum = this_sum this_theta = min_theta print("Which is ", this_theta) # Getting the Figure and the ticks right fig,ax = plt.subplots() ax.yaxis.set_major_formatter(yfmt) ax.xaxis.set_major_formatter(xfmt) # Plotting the hillshade ax.imshow(HS["array"], extent = HS["extent"], cmap = "gray", vmin= 0.2, vmax = 0.8) # Building the array of concavity A = np.zeros(HS["array"].shape) A[:,:] = np.nan # For each raster, I am reading rows and col corresponding to the main raster and potting it with the requested value for name in df["raster_name"]: row = np.load(name + "_row.npy") col = np.load(name + "_col.npy") val = df["D*_r_%s"%this_theta][df["raster_name"] == name].values[0] # A wee convoluted but it work and it is fast so... A[row,col] = val A[row,col] = val # PLOTTING THE D* ax.imshow(A, extent = HS["extent"], cmap= "gnuplot2", zorder = 2, alpha = 0.75, vmin = 0.05, vmax = 0.65) # You may want to change the extents of the plot if("xlim" in kwargs): ax.set_xlim(kwargs["xlim"]) if("ylim" in kwargs): ax.set_ylim(kwargs["ylim"]) ax.set_xlabel("Easting (km)") ax.set_ylabel("Northing (km)") # Saving the figure plt.tight_layout()# plt.savefig("./%s_figures/"%(prefix) +prefix + "MAP_D_star_range_theta_%s.png" % this_theta, dpi = 500) plt.close(fig) a = np.array([[0,1]]) pl.figure(figsize=(9, 1.5)) img = pl.imshow(a, cmap="gnuplot2", vmin = 0.05, vmax = 0.65) pl.gca().set_visible(False) cax = pl.axes([0.1, 0.2, 0.8, 0.6]) pl.colorbar(orientation="horizontal", cax=cax, label = r"$D^{*}_{r}$") pl.title(r"$D^{*}_{r}$") pl.savefig("./%s_figures/"%(prefix) +"colorbar_map_Dstar_range.png") pl.close(fig) def plot_Dstar_maps_for_all_concavities(prefix, n_proc = 1): # Loading the list of raster df = pd.read_csv(prefix + "all_raster_names.csv") params = df["raster_name"].tolist() thetas = np.round(pd.read_feather(params[0] + "_overall_test.feather")["tested_movern"].values,decimals = 3) # running the multiprocessing params = [] for t in thetas: params.append((t,prefix)) # plot_single_theta(params[0]) with Pool(n_proc) as p: fprocesses = [] for i in params: fprocesses.append(p.apply_async(plot_single_theta, args = (i,))) for gut in fprocesses: gut.wait() plot_min_D_star_map(params[0]) def plot_basin(ls, **kwargs): number = ls[0] X = ls[1] Y = ls[2] area_threshold = ls[3] prefix = ls[4] nbins = None if("nbins" in kwargs): nbins = kwargs["nbins"] print("Plotting basin ", number, " with proc ", current_process()) if("ignore_numbering" not in kwargs): kwargs["ignore_numbering"] = False if(kwargs["ignore_numbering"]): name = prefix else: name = prefix + "%s"%(number) # Alright, loading the previous datasets df_rivers = pd.read_feather("%s_rivers.feather"%(name)) df_overall = pd.read_feather("%s_overall_test.feather"%(name)) all_concavity_best_fits = np.load("%s_concavity_tot.npy"%(name)) all_disorders = np.load("%s_disorder_tot.npy"%(name)) XY = pd.read_feather("%s_XY.feather"%(name)) thetas = df_overall["tested_movern"].values if nbins is None: nbins = (thetas.shape[0], 50) res_dict = {} # Plotting the different figures for the basin # First, normalising the disorder AllDval = np.apply_along_axis(norm_by_row,1,all_disorders) AllDthet = np.tile(thetas,(all_disorders.shape[0],1)) ALLDmed = np.apply_along_axis(np.median,0,AllDval) ALLDfstQ = np.apply_along_axis(lambda z: np.percentile(z,25),0,AllDval) ALLDthdQ = np.apply_along_axis(lambda z: np.percentile(z,75),0,AllDval) AllDval = AllDval.ravel() AllDthet = AllDthet.ravel() # Then, plotting it: ###### First plotting the fig,ax = plt.subplots() H,x,y = np.histogram2d(AllDthet,AllDval, bins = nbins, density = True) ax.hist2d(AllDthet,AllDval, bins = nbins, density = True, cmap = "magma", vmin = np.percentile(H,10), vmax = np.percentile(H,90)) ax.plot(thetas,ALLDmed, lw = 1, ls = "-.", color = "#00F3FF") ax.plot(thetas,ALLDfstQ, lw = 1, ls = "--", color = "#00F3FF") ax.plot(thetas,ALLDthdQ, lw = 1, ls = "--", color = "#00F3FF") # Finding the suggested best-fit minimum_theta , flub = get_best_bit_and_err_from_Dstar(thetas, ALLDmed, ALLDfstQ, ALLDthdQ) err_neg,err_pos = flub res_dict["BF_normalised_disorder"] = minimum_theta res_dict["err_normalised_disorder"] = [err_neg,err_pos] print("Detected best-fit minimising normalised disorder is", minimum_theta, "tolerance between:", err_neg, "--",err_pos) ax.scatter(minimum_theta, np.min(ALLDmed), facecolor = "orange", edgecolor = "grey", s = 30, zorder = 3) ax.plot([err_neg,err_pos], [np.min(ALLDmed),np.min(ALLDmed)], color = "orange", lw = 2, zorder = 2) ax.set_xlabel(r"$\theta$") ax.set_ylabel(r"$D^{*}$") ax.set_xticks(np.arange(0.05,1,0.05)) ax.set_yticks(np.arange(0.05,1,0.05)) ax.grid(alpha = 0.3) ax.tick_params(labelsize = 8,) if("return_mode" not in kwargs): kwargs["return_mode"] = "save" if(kwargs["return_mode"].lower() == "save"): plt.savefig(name + "_D_star.png", dpi = 500) plt.close(fig) # Plotting the different figures for the basin # First, normalising the disorder by range AllDval = np.apply_along_axis(norm_by_row_by_range,1,all_disorders) AllDthet = np.tile(thetas,(all_disorders.shape[0],1)) ALLDmed = np.apply_along_axis(np.median,0,AllDval) ALLDfstQ = np.apply_along_axis(lambda z: np.percentile(z,25),0,AllDval) ALLDthdQ = np.apply_along_axis(lambda z: np.percentile(z,75),0,AllDval) AllDval = AllDval.ravel() AllDthet = AllDthet.ravel() # Then, plotting it: ###### First plotting the fig,ax = plt.subplots() H,x,y = np.histogram2d(AllDthet,AllDval, bins = nbins, density = True) ax.hist2d(AllDthet,AllDval, bins = nbins, density = True, cmap = "magma", vmin = np.percentile(H,10), vmax = np.percentile(H,90)) ax.plot(thetas,ALLDmed, lw = 1, ls = "-.", color = "#00F3FF") ax.plot(thetas,ALLDfstQ, lw = 1, ls = "--", color = "#00F3FF") ax.plot(thetas,ALLDthdQ, lw = 1, ls = "--", color = "#00F3FF") minimum_theta , flub = get_best_bit_and_err_from_Dstar(thetas, ALLDmed, ALLDfstQ, ALLDthdQ) err_neg,err_pos = flub # Finding the suggested best-fit res_dict["BF_normalised_disorder_range"] = minimum_theta res_dict["err_normalised_disorder_range"] = [err_neg,err_pos] print("Detected best-fit minimising normalised disorder is", minimum_theta, "tolerance between:", err_neg, "--",err_pos) ax.scatter(minimum_theta, np.min(ALLDmed), facecolor = "orange", edgecolor = "grey", s = 30, zorder = 3) ax.plot([err_neg,err_pos], [np.min(ALLDmed),np.min(ALLDmed)], color = "orange", lw = 2, zorder = 2) ax.set_xlabel(r"$\theta$") ax.set_ylabel(r"$D^{*}$") ax.set_xticks(np.arange(0.05,1,0.05)) ax.set_yticks(np.arange(0.05,1,0.05)) ax.grid(alpha = 0.3) ax.tick_params(labelsize = 8,) if("return_mode" not in kwargs): kwargs["return_mode"] = "save" if(kwargs["return_mode"].lower() == "save"): plt.savefig(name + "_D_star_norm_by_range.png", dpi = 500) plt.close(fig) #### Now plotting the rest df_overall = pd.read_feather("%s_overall_test.feather"%(name)) res_dict["overall_best_fit"] = df_overall["tested_movern"][np.argmin(df_overall["overall_disorder"].values)] res_dict["median_all_lowest_values"] = np.median(all_concavity_best_fits) res_dict["IQ_all_lowest_values"] = [np.percentile(all_concavity_best_fits,25),np.percentile(all_concavity_best_fits,75)] u,c = np.unique(all_concavity_best_fits,return_counts = True) res_dict["max_combinations"] = u[np.argmax(c)] fig,ax = plt.subplots() # ax.hist(all_concavity_best_fits,bins = bins[0], edgecolor = "k", facecolor = "orange", zorder = 1, alpha = 0.3) ax.plot([0,0],res_dict["IQ_all_lowest_values"], color = "purple", lw = 2,zorder = 1) ax.scatter(0,res_dict["median_all_lowest_values"],edgecolor = "k", facecolor = "purple", s = 50, label = "Stats all values", zorder = 2) ax.scatter(1,res_dict["overall_best_fit"],edgecolor = "k", facecolor = "green", s = 50, label = "All values", zorder = 2) ax.scatter(2,res_dict["max_combinations"],edgecolor = "k", facecolor = "black", s = 50, label = "Max N tribs.", zorder = 2) ax.plot([3,3],res_dict["err_normalised_disorder"], color = "orange", lw = 2,zorder = 1) ax.scatter(3,res_dict["BF_normalised_disorder"],edgecolor = "k", facecolor = "orange", s = 50, label = r"$D^{*}$ norm. max.s", zorder = 2) ax.plot([4,4],res_dict["err_normalised_disorder_range"], color = "red", lw = 2,zorder = 1) ax.scatter(4,res_dict["BF_normalised_disorder_range"],edgecolor = "k", facecolor = "red", s = 50, label = r"$D^{*}$ norm. ranges", zorder = 2) ax.violinplot(all_concavity_best_fits,[5], showmeans = False, showextrema =False,points = 100, bw_method= "silverman") # ax.legend() ax.set_xticks([0,1,2,3,4,5]) ax.set_xticklabels(["Stats all values","All data best fit","Max N tribs.",r"$D^{*}$ norm. max.", r"$D^{*}$ norm. ranges", "data"]) ax.set_yticks(np.round(np.arange(0.05,1,0.05), decimals = 2)) ax.set_facecolor("grey") ax.grid(alpha = 0.5) ax.tick_params(axis = "x",labelrotation =45) ax.tick_params(axis = "both",labelsize = 8) # ax.hist(min_theta,bins = 38, edgecolor = "green", facecolor = "none", alpha = 0.6) ax.set_ylabel(r"$\theta$") plt.tight_layout() plt.savefig(name +"_all_best_fits_from_disorder_methods.png", dpi = 500) plt.close(fig) # elif(kwargs["return_mode"].lower() == "return"): # return fig,ax # elif(kwargs["return_mode"].lower() == "nothing"): # return 0 def get_all_concavity_in_range_of_DA_from_baselevel(dem_name, dem_path = "./",already_preprocessed = False , X_outlet = 0, Y_outlet = 0, min_DA = 1e7, max_DA = 2e8, area_threshold = 2000,area_threshold_main_basin = 25000 , n_proc = 4, prefix = "", n_tribs_by_combo = 4): print("First, elt me extract all the basins") # First, I need to extract the basin into separated rasters X = X_outlet Y = Y_outlet # Loading the dem mydem = lsd.LSDDEM(file_name = dem_name, path = dem_path, already_preprocessed = already_preprocessed) # Preprocessing if(already_preprocessed == False): mydem.PreProcessing() # Getting DA and otehr stuffs mydem.CommonFlowRoutines() A = mydem.cppdem.get_DA_raster() mydem.save_array_to_raster_extent( A, name = prefix + "drainage_area") # This define the river network, it is required to actually calculate other metrics mydem.ExtractRiverNetwork( method = "area_threshold", area_threshold_min = 800) print("DEBUG::RIVEREXTRACTED") # Extracting all the basins coord_bas = mydem.cppdem.calculate_outlets_min_max_draining_to_baselevel(X, Y, min_DA, max_DA,500) print("DEBUG::BASINEXTRACTED") print(coord_bas) # Getting the rasters rasts = mydem.cppdem.get_individual_basin_raster() coord_bas["ID"] = list(range(len(rasts[0]))) for i in range(len(rasts[0])): lsd.raster_loader.save_raster(rasts[0][i],rasts[1][i]["x_min"],rasts[1][i]["x_max"],rasts[1][i]["y_max"],rasts[1][i]["y_min"],rasts[1][i]["res"],mydem.crs, prefix + "%s.tif"%(i), fmt = 'GTIFF') df = pd.DataFrame(coord_bas) df.to_csv(prefix + "basin_outlets.csv", index = False) # Freeing memory del mydem del rasts print("Done with basin extraction, I am now multiprocessing the concavity analysis, this can take a while if you have a high number of river!") th = np.full(df["ID"].shape[0],area_threshold) tprefix = np.full(df["ID"].shape[0],prefix) N = list(zip(df["ID"].values,df["X"].values,df["Y"].values, th, tprefix)) # for single analysis these_kwarges = [] for i in N: these_kwarges.append({"n_tribs_by_combo":n_tribs_by_combo}) # print(N) p = Pool(n_proc) # results = p.map_async(process_basin, N) # results.wait() # p.close() # p.join() with Pool(n_proc) as p: fprocesses = [] for i in range(len(N)): fprocesses.append(p.apply_async(process_basin, args = (N[i],),kwds = these_kwarges[i])) for gut in fprocesses: gut.wait() # A = p.get() print("Done with all the sub basins, now I will process the main basin") def process_multiple_basins(dem_name, dem_path = "./",already_preprocessed = False , prefix = "", X_outlets = [0], Y_outlets = [0], n_proc = 1, area_threshold = [5000], area_thershold_basin_extraction = 500, n_tribs_by_combo = 5,use_precipitation_raster = False, name_precipitation_raster = "prec.tif"): # IDs = np.array(IDs) X_outlets = np.array(X_outlets) Y_outlets = np.array(Y_outlets) area_threshold = np.array(area_threshold) mydem = lsd.LSDDEM(file_name = dem_name, path = dem_path, already_preprocessed = already_preprocessed) # Preprocessing if(already_preprocessed == False): mydem.PreProcessing() # Getting DA and otehr stuffs mydem.CommonFlowRoutines() A = mydem.cppdem.get_DA_raster() mydem.save_array_to_raster_extent( A, name = prefix + "drainage_area") # This define the river network, it is required to actually calculate other metrics mydem.ExtractRiverNetwork( method = "area_threshold", area_threshold_min = area_thershold_basin_extraction) mydem.DefineCatchment( method="from_XY", X_coords = X_outlets, Y_coords = Y_outlets, coord_search_radius_nodes = 0) # Getting the rasters rasts = mydem.cppdem.get_individual_basin_raster() # IDs = np.array(IDs) IDs = np.array(range(len(rasts[0]))) out_names = {"raster_name": []} for i in range(len(rasts[0])): lsd.raster_loader.save_raster(rasts[0][i],rasts[1][i]["x_min"],rasts[1][i]["x_max"],rasts[1][i]["y_max"],rasts[1][i]["y_min"],rasts[1][i]["res"],mydem.crs, prefix + "%s.tif"%(i), fmt = 'GTIFF') out_names["raster_name"].append(prefix + "%s"%(i)) pd.DataFrame(out_names).to_csv(prefix + "all_raster_names.csv", index = False) del mydem del rasts th = np.full(IDs.shape[0],area_threshold) tprefix = np.full(IDs.shape[0],prefix) N = list(zip(IDs,X_outlets,Y_outlets, th, tprefix)) # for single analysis these_kwarges = [] for i in N: dico ={} dico["n_tribs_by_combo"] = n_tribs_by_combo if(use_precipitation_raster): dico["precipitation_raster"]=dem_path+name_precipitation_raster else: dico["precipitation_raster"]="" these_kwarges.append(dico) # print(N) p = Pool(n_proc) # results = p.map_async(process_basin, N) # results.wait() # p.close() # p.join() for i in range(len(N)): process_basin(N[i],**these_kwarges[i]) # with Pool(n_proc) as p: # fprocesses = [] # for i in range(len(N)): # fprocesses.append(p.apply_async(process_basin, args = (N[i],),kwds = these_kwarges[i])) # for gut in fprocesses: # gut.wait() def plot_one_thetha(ls): import matplotlib.ticker as tkr # has classes for tick-locating and -formatting yfmt = tkr.FuncFormatter(numfmt) xfmt = tkr.FuncFormatter(numfmt) that_theta = ls[0] print("plotting D* for theta", that_theta) fig,ax = plt.subplots() ax.yaxis.set_major_formatter(yfmt) ax.xaxis.set_major_formatter(xfmt) ax.imshow(ls[1],extent = ls[2], vmin = 0, vmax = 1, cmap = "gray", zorder = 1) cb = ax.imshow(ls[3],extent = ls[2], vmin = 0.1, vmax = 0.9, cmap = "magma_r", zorder = 2, alpha = 0.8) plt.colorbar(cb, orientation = "horizontal", label = r"$D^{*}$ for $\theta=%s$"%(round(that_theta,3))) ax.set_xlabel("Easting (km)") ax.set_xlabel("Northing (km)") plt.savefig(ls[4], dpi = 500) plt.close(fig) print("Done plotting D* for theta", that_theta) def plot_multiple_basins(dem_name, dem_path = "./",already_preprocessed = False , prefix = "", X_outlets = [0], Y_outlets = [0], n_proc = 1, area_threshold = [5000], area_thershold_basin_extraction = 500, plot_Dstar = False): """ This function plot the data for a list of basins """ # reloading the df needed ro process the output df = pd.read_csv(prefix + "summary_results.csv") # Outputs stored in lists df_rivers = [] df_overall = [] all_concavity_best_fits = [] all_disorders = [] XY = [] thetas = [] for i in range(df["raster_name"].shape[0]): name = df["raster_name"].iloc[i] # Alright, loading the previous datasets df_rivers.append(pd.read_feather("%s_rivers.feather"%(name))) df_overall.append(pd.read_feather("%s_overall_test.feather"%(name))) all_concavity_best_fits.append(np.load("%s_concavity_tot.npy"%(name))) all_disorders.append(np.load("%s_disorder_tot.npy"%(name))) XY.append(pd.read_feather("%s_XY.feather"%(name))) thetas = (df_overall[-1]["tested_movern"].values) size_of_stuff = len(df_rivers) # First, a condensed of all informations easting = [] northing = [] easting_err = [] northing_err = [] best_fits_Dstar = [] err_Dstar = [] min_Dstar = [] for i in range(size_of_stuff): AllDval = np.apply_along_axis(norm_by_row,1,all_disorders[i]) AllDthet = np.tile(thetas,(all_disorders[i].shape[0],1)) ALLDmed = np.apply_along_axis(np.median,0,AllDval) ALLDfstQ = np.apply_along_axis(lambda z: np.percentile(z,25),0,AllDval) ALLDthdQ = np.apply_along_axis(lambda z: np.percentile(z,75),0,AllDval) AllDval = AllDval.ravel() AllDthet = AllDthet.ravel() # Finding the suggested best-fit minimum_theta , flub = get_best_bit_and_err_from_Dstar(thetas, ALLDmed, ALLDfstQ, ALLDthdQ) err_neg,err_pos = flub easting.append(np.median(XY[i]["X"])) northing.append(np.median(XY[i]["Y"])) easting_err.append([np.percentile(XY[i]["X"],25),np.percentile(XY[i]["X"],75)]) northing_err.append([np.percentile(XY[i]["Y"],25),np.percentile(XY[i]["Y"],75)]) best_fits_Dstar.append(minimum_theta) min_Dstar.append(np.min(ALLDmed)) err_Dstar.append([err_neg,err_pos]) easting = np.array(easting) northing = np.array(northing) easting_err = np.array(easting_err) northing_err = np.array(northing_err) best_fits_Dstar = np.array(best_fits_Dstar) err_Dstar = np.array(err_Dstar) min_Dstar = np.array(min_Dstar) fig,ax = plt.subplots() ax.scatter(easting, best_fits_Dstar, edgecolor = "k", facecolor = "orange", s = 50, zorder = 5) for i in range(size_of_stuff): ax.plot([easting[i], easting[i]], err_Dstar[i], color = "orange", lw = 2, zorder = 1, alpha = 0.7) ax.plot(easting_err[i], [best_fits_Dstar[i],best_fits_Dstar[i]], color = "orange", lw = 2, zorder = 1, alpha = 0.7) xticks = np.arange(easting.min(), easting.max()+1, (easting.max() - easting.min())/5) ax.set_xticks(xticks) xticks = xticks / 1000 ax.set_xticklabels(np.round(xticks).astype(str)) ax.set_xlabel(r"Easting (km)") ax.set_ylabel(r"$\theta$") ax.set_facecolor("grey") ax.grid(zorder = 1, ls = "--", alpha = 0.7) plt.savefig(prefix + "_best_fit_by_easting", dpi=500) plt.close() fig,ax = plt.subplots() ax.scatter(northing, best_fits_Dstar, edgecolor = "k", facecolor = "orange", s = 50, zorder = 5) for i in range(size_of_stuff): ax.plot([northing[i], northing[i]], err_Dstar[i], color = "orange", lw = 2, zorder = 1, alpha = 0.7) ax.plot(northing_err[i], [best_fits_Dstar[i],best_fits_Dstar[i]], color = "orange", lw = 2, zorder = 1, alpha = 0.7) xticks = np.arange(northing.min(), northing.max()+1, (northing.max() - northing.min())/5) ax.set_xticks(xticks) xticks = xticks / 1000 ax.set_xticklabels(
np.round(xticks)
numpy.round
import numpy as np from numpy.ctypeslib import as_array from numpy.testing import assert_array_equal from meshkernel import ( Contacts, GeometryList, Mesh1d, Mesh2d, MeshRefinementParameters, OrthogonalizationParameters, ) from meshkernel.c_structures import ( CContacts, CGeometryList, CMesh1d, CMesh2d, CMeshRefinementParameters, COrthogonalizationParameters, ) def test_cmesh2d_from_mesh2d(): """Tests `from_mesh2d` of the `CMesh2D` class with a simple mesh.""" # 2---3 # | | # 0---1 node_x = np.array([0.0, 1.0, 1.0, 0.0], dtype=np.double) node_y =
np.array([0.0, 0.0, 1.0, 1.0], dtype=np.double)
numpy.array
import json import os import sys from collections import OrderedDict from contextlib import contextmanager from dataclasses import dataclass from enum import Enum from pathlib import Path from typing import Generator, NamedTuple, Union, cast import gym import gym.spaces as spaces import gym.utils import gym.utils.seeding import numpy as np import PIL.Image import pybullet as p import torch from pybullet_utils import bullet_client from torch.nn.utils.rnn import pad_sequence from transformers import GPT2Tokenizer from torchbeast.lazy_frames import LazyFrames CAMERA_DISTANCE = 3 CAMERA_PITCH = -45 CAMERA_YAW = 225 class ObservationSpace(NamedTuple): mission: spaces.MultiDiscrete image: spaces.Box class Observation(NamedTuple): mission: np.ndarray image: Union[np.ndarray, LazyFrames] class Action(NamedTuple): turn: float = 0 forward: float = 0 done: bool = False take_picture: bool = False class Actions(Enum): LEFT = Action(3, 0) RIGHT = Action(-3, 0) FORWARD = Action(0, 0.18) BACKWARD = Action(0, -0.18) DONE = Action(done=True) PICTURE = Action(take_picture=True) NO_OP = Action() ACTIONS = [*Actions] class URDF(NamedTuple): name: str path: Path z: float @contextmanager def suppress_stdout(): """from https://stackoverflow.com/a/17954769/4176597""" fd = sys.stdout.fileno() def _redirect_stdout(to): sys.stdout.close() # + implicit flush() os.dup2(to.fileno(), fd) # fd writes to 'to' file sys.stdout = os.fdopen(fd, "w") # Python writes to fd with os.fdopen(os.dup(fd), "w") as old_stdout: with open(os.devnull, "w") as file: _redirect_stdout(to=file) try: yield # allow code to be run with the redirected stdout finally: _redirect_stdout(to=old_stdout) # restore stdout. # buffering and flags such as # CLOEXEC may be different @dataclass class PointMassEnv(gym.Env): metadata = {"render.modes": ["human", "rgb_array"], "video.frames_per_second": 60} cameraYaw: float = 35 env_bounds: float = 5 image_height: float = 72 image_width: float = 96 is_render: bool = False max_episode_steps: int = 200 model_name: str = "gpt2" reindex_tokens: bool = False def __post_init__( self, ): tokenizer = GPT2Tokenizer.from_pretrained(self.model_name) self.action_space = spaces.Discrete(5) with Path("model_ids.json").open() as f: self.model_ids = set(json.load(f)) def urdfs(): for subdir in Path("dataset").iterdir(): urdf = Path(subdir, "mobility.urdf") assert urdf.exists() with Path(subdir, "meta.json").open() as f: meta = json.load(f) with Path(subdir, "bounding_box.json").open() as f: box = json.load(f) _, _, z_min = box["min"] model_id = meta["model_id"] if model_id in self.model_ids: yield URDF(name=meta["model_cat"], path=urdf, z=-z_min) self.urdfs = list(urdfs()) names, paths, zs = zip(*urdfs()) def tokens() -> Generator[torch.Tensor, None, None]: for k in names: encoded = tokenizer.encode(k, return_tensors="pt") tensor = cast(torch.Tensor, encoded) yield tensor.squeeze(0) padded = pad_sequence( list(tokens()), padding_value=tokenizer.eos_token_id, ).T.numpy() if self.reindex_tokens: _, indices = np.unique(padded, return_inverse=True) padded = indices.reshape(padded.shape) self.tokens = OrderedDict(zip(names, padded)) image_space = spaces.Box( low=0, high=255, shape=[self.image_height, self.image_width, 3], ) max_padded = padded.max() nvec = np.ones_like(padded[0]) * (max_padded + 1) mission_space = spaces.MultiDiscrete(nvec) self.observation_space = spaces.Tuple( ObservationSpace( mission=mission_space, image=image_space, ) ) self._seed() self.iterator = None self.relativeChildPosition = [0, 0, 0] self.relativeChildOrientation = [0, 0, 0, 1] if self.is_render: with suppress_stdout(): self._p = bullet_client.BulletClient(connection_mode=p.GUI) self._p.configureDebugVisualizer(self._p.COV_ENABLE_SHADOWS, 0) else: with suppress_stdout(): self._p = bullet_client.BulletClient(connection_mode=p.DIRECT) sphereRadius = 0.2 mass = 1 visualShapeId = 2 colSphereId = self._p.createCollisionShape( self._p.GEOM_SPHERE, radius=sphereRadius ) self.mass = self._p.createMultiBody( mass, colSphereId, visualShapeId, [0, 0, 0.4] ) self.mass_cid = self._p.createConstraint( self.mass, -1, -1, -1, self._p.JOINT_FIXED, [0, 0, 0], [0, 0, 0], self.relativeChildPosition, self.relativeChildOrientation, ) def get_observation(self) -> Observation: pos, _ = self._p.getBasePositionAndOrientation(self.mass) (_, _, rgbaPixels, _, _,) = self._p.getCameraImage( self.image_width, self.image_height, viewMatrix=self._p.computeViewMatrixFromYawPitchRoll( cameraTargetPosition=pos, distance=CAMERA_DISTANCE, yaw=self.cameraYaw, pitch=CAMERA_PITCH, roll=0, upAxisIndex=2, ), shadow=0, flags=self._p.ER_NO_SEGMENTATION_MASK, renderer=self._p.ER_BULLET_HARDWARE_OPENGL, ) rgbaPixels = rgbaPixels[..., :-1].astype(np.float32) obs = Observation( image=rgbaPixels, mission=self.tokens[self.mission], ) assert self.observation_space.contains(obs) return obs def generator(self): missions = [] goals = [] urdfs = [ self.urdfs[i] for i in self.np_random.choice(len(self.urdfs), size=2, replace=False) ] for base_position, urdf in zip( [ [self.env_bounds / 3, self.env_bounds / 3, 0], [-self.env_bounds / 3, -self.env_bounds / 3, 0], ], urdfs, ): missions.append(urdf.name) base_position[-1] = urdf.z try: with suppress_stdout(): goal = self._p.loadURDF( str(urdf.path), basePosition=base_position, useFixedBase=True ) except self._p.error: print(self._p.error) raise RuntimeError(f"Error while loading {urdf.path}") goals.append(goal) collisionFilterGroup = 0 collisionFilterMask = 0 self._p.setCollisionFilterGroupMask( goal, -1, collisionFilterGroup, collisionFilterMask ) self._p.createConstraint( goal, -1, -1, -1, self._p.JOINT_FIXED, [1, 1, 1.4], [0, 0, 0], self.relativeChildPosition, self.relativeChildOrientation, ) choice = self.np_random.choice(2) self.goal = goals[choice] self.mission = missions[choice] i = dict(mission=self.mission, goals=goals) self._p.configureDebugVisualizer(self._p.COV_ENABLE_GUI, False) self._p.setGravity(0, 0, -10) halfExtents = [1.5 * self.env_bounds, 1.5 * self.env_bounds, 0.1] floor_collision = self._p.createCollisionShape( self._p.GEOM_BOX, halfExtents=halfExtents ) floor_visual = self._p.createVisualShape( self._p.GEOM_BOX, halfExtents=halfExtents, rgbaColor=[1, 1, 1, 0.5] ) self._p.createMultiBody(0, floor_collision, floor_visual, [0, 0, -0.2]) self._p.resetBasePositionAndOrientation(self.mass, [0, 0, 0.6], [0, 0, 0, 1]) action = yield self.get_observation() for global_step in range(self.max_episode_steps): a = ACTIONS[action].value self.cameraYaw += a.turn x, y, _, _ = self._p.getQuaternionFromEuler( [np.pi, 0,
np.deg2rad(2 * self.cameraYaw)
numpy.deg2rad
import unittest import numpy.testing as npt from .testing import gradient_checking from . import _nn_activations import warnings import numpy as np class NNActivationsTestCase(unittest.TestCase): #### # Activations #### def testReluActivation_Forward(self): activation = _nn_activations.activation("relu") Z = np.array([[1., -2.], [0., 0.25]]) A = activation.forward(Z) expected_A = np.array([[1., 0.], [0., 0.25]]) npt.assert_almost_equal(A, expected_A) def testReluActivation_GradientCheck(self): self._testActivation_GradientCheck("relu") def testSigmoidActivation_GradientCheck(self): self._testActivation_GradientCheck("sigmoid") def testTanhActivation_GradientCheck(self): self._testActivation_GradientCheck("tanh") def testActivationError_UnknownFunction(self): with self.assertRaises(ValueError): _nn_activations.activation("dne") def _testActivation_GradientCheck(self, fn): self._activation = _nn_activations.activation(fn) Z = self._createZ(3) diff, _, _ = gradient_checking.check( self._activationCost, self._activationGradients, Z) self.assertLess(diff, 1e-7) def _createZ(self, num_cols): np.random.seed(195262) Z_shape = (3, num_cols) Z = np.random.normal(0, 1, Z_shape) return Z def _activationCost(self, Z): activation = self._activation A = activation.forward(Z) cost = np.sum(A) return cost def _activationGradients(self, Z): activation = self._activation A = activation.forward(Z) dA = np.ones(A.shape) dZ = activation.backward(dA) return (dZ,) #### # Outputs #### def testBinaryOutput_Properties(self): output = _nn_activations.binary_output() self.assertFalse(output.is_multiclass) self.assertEqual(output.C, 2) def testBinaryOutput_Predict(self): output = _nn_activations.binary_output() Z = np.log(np.array([[3.], [1.], [0.25]])) expected_pred = np.array([1, 0, 0]) expected_prob = np.array([0.75, 0.5, 0.2]) self._testOutput_Predict(output, Z, expected_pred, expected_prob) def testBinaryOutput_GradientCheck(self): output = _nn_activations.binary_output() output.Y = np.array([[0.], [1.], [0.]]) self._testOutput_GradientCheck(output) def testMulticlassOutput_Properties(self): output = _nn_activations.multiclass_output(3) self.assertTrue(output.is_multiclass) self.assertEqual(output.C, 3) def testMulticlassOutput_Predict(self): output = _nn_activations.multiclass_output(3) Z = np.log(np.array([[1., 2., 1.], [5., 3., 2.], [1., 1., 3.]])) expected_pred = np.array([1, 0, 2]) expected_prob = np.array( [[0.25, 0.50, 0.25], [0.5, 0.3, 0.2], [0.2, 0.2, 0.6]]) self._testOutput_Predict(output, Z, expected_pred, expected_prob) def testMulticlassOutput_GradientCheck(self): output = _nn_activations.multiclass_output(3) output.Y = np.array([[0., 1., 0.], [1., 0., 0.], [0., 0., 1.]]) self._testOutput_GradientCheck(output) def testOutput_CostClipping(self): output = _nn_activations.binary_output() output.Y = np.array([[1.]]) Z = np.array([[-1000]]) with warnings.catch_warnings(): warnings.simplefilter("ignore") output.forward(Z) self.assertTrue(np.isfinite(output.cost)) def testMulticlasOutputError_IllegalC(self): with self.assertRaises(ValueError): _nn_activations.multiclass_output(2) def testOutputError_YNotSet(self): output = _nn_activations.binary_output() with self.assertRaises(RuntimeError): output.Y Z = np.zeros((3, 1)) output.forward(Z) with self.assertRaises(RuntimeError): output.cost with self.assertRaises(RuntimeError): output.backward(None) def _testOutput_Predict(self, output, Z, expected_pred, expected_prob): output.forward(Z) pred = output.pred prob = output.prob self.assertEqual(pred.shape, expected_pred.shape) npt.assert_almost_equal(pred, expected_pred) self.assertEqual(prob.shape, expected_prob.shape) npt.assert_almost_equal(prob, expected_prob) def _testOutput_GradientCheck(self, output): num_cols = output.C if output.is_multiclass else 1 Z = self._createZ(num_cols) self._output = output diff, _, _ = gradient_checking.check( self._outputCost, self._outputGradients, Z) self.assertLess(diff, 1e-7) def _outputCost(self, Z): output = self._output output.forward(Z) return output.cost def _outputGradients(self, Z): output = self._output output.forward(Z) dZ = output.backward(None) return (dZ,) #### # Activation functions #### def testSigmoid(self): log_odds = np.log(np.array([[3., 4.], [1., 0.25]])) A = _nn_activations._sigmoid(log_odds) expected_prob = np.array([[0.75, 0.80], [0.50, 0.20]]) npt.assert_almost_equal(A, expected_prob) def testSoftmax(self): log_odds = np.log(np.array([[1., 3., 1.], [2., 5., 3.]])) A = _nn_activations._softmax(log_odds) expected_prob = np.array([[0.2, 0.6, 0.2], [0.2, 0.5, 0.3]])
npt.assert_almost_equal(A, expected_prob)
numpy.testing.assert_almost_equal
import pandas as pd import numpy as np import wget from zipfile import ZipFile from DeepPurpose.utils import * import json import os ''' Acknowledgement: The BindingDB dataset is hosted in https://www.bindingdb.org/bind/index.jsp. The Davis Dataset can be found in http://staff.cs.utu.fi/~aatapa/data/DrugTarget/. The KIBA dataset can be found in https://jcheminf.biomedcentral.com/articles/10.1186/s13321-017-0209-z. The Drug Target Common Dataset can be found in https://drugtargetcommons.fimm.fi/. The COVID-19 Dataset including SARS-CoV, Broad Repurposing Hub can be found in https://www.aicures.mit.edu/data; and https://pubchem.ncbi.nlm.nih.gov/bioassay/1706. We use some existing files from https://github.com/yangkevin2/coronavirus_data We use the SMILES, protein sequence from DeepDTA github repo: https://github.com/hkmztrk/DeepDTA/tree/master/data. ''' def read_file_training_dataset_bioassay(path): # a line in the file is SMILES score, the first line is the target sequence try: file = open(path, "r") except: print('Path Not Found, please double check!') target = file.readline() if target[-1:] == '\n': target = target[:-1] X_drug = [] y = [] for aline in file: values = aline.split() X_drug.append(values[0]) y.append(float(values[1])) file.close() return
np.array(X_drug)
numpy.array
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ subregions_portrait_diagram.py Use OCW to download, normalize, evaluate and plot (portrait diagram) three local datasets against a reference dataset. In this example: 1. Download three netCDF files from a local site. AFRICA_KNMI-RACMO2.2b_CTL_ERAINT_MM_50km_1989-2008_pr.nc AFRICA_ICTP-REGCM3_CTL_ERAINT_MM_50km-rg_1989-2008_pr.nc AFRICA_UCT-PRECIS_CTL_ERAINT_MM_50km_1989-2008_pr.nc 2. Load the local files into OCW dataset objects. 3. Interface with the Regional Climate Model Evaluation Database (https://rcmes.jpl.nasa.gov/) to load the CRU3.1 Daily Precipitation dataset (https://rcmes.jpl.nasa.gov/content/cru31). 4. Process each dataset to the same same shape. a.) Restrict the datasets re: geographic and time boundaries. b.) Convert the dataset water flux to common units. c.) Normalize the dataset date / times to monthly. d.) Spatially regrid each dataset. 5. Calculate the mean annual value for each dataset. 6. Separate each dataset into 13 subregions. 7. Extract the metrics used for the evaluation and evaluate against a reference dataset. 8. Create a portrait diagram of the results of the evaluation. OCW modules demonstrated: 1. datasource/local 2. datasource/rcmed 3. dataset 4. dataset_processor 5. metrics 6. evaluation 7. plotter 8. utils """ from __future__ import print_function import datetime import ssl import sys from os import path import numpy as np import ocw.data_source.local as local import ocw.data_source.rcmed as rcmed import ocw.dataset_processor as dsp import ocw.evaluation as evaluation import ocw.metrics as metrics import ocw.plotter as plotter import ocw.utils as utils from ocw.dataset import Bounds if sys.version_info[0] >= 3: from urllib.request import urlretrieve else: # Not Python 3 - today, it is most likely to be Python 2 # But note that this might need an update when Python 4 # might be around one day from urllib import urlretrieve if hasattr(ssl, '_create_unverified_context'): ssl._create_default_https_context = ssl._create_unverified_context # File URL leader FILE_LEADER = 'http://zipper.jpl.nasa.gov/dist/' # Three Local Model Files FILE_1 = 'AFRICA_KNMI-RACMO2.2b_CTL_ERAINT_MM_50km_1989-2008_pr.nc' FILE_2 = 'AFRICA_ICTP-REGCM3_CTL_ERAINT_MM_50km-rg_1989-2008_pr.nc' FILE_3 = 'AFRICA_UCT-PRECIS_CTL_ERAINT_MM_50km_1989-2008_pr.nc' # Filename for the output image/plot (without file extension) OUTPUT_PLOT = 'portrait_diagram' # Spatial and temporal configurations LAT_MIN = -45.0 LAT_MAX = 42.24 LON_MIN = -24.0 LON_MAX = 60.0 START = datetime.datetime(2000, 1, 1) END = datetime.datetime(2007, 12, 31) EVAL_BOUNDS = Bounds(lat_min=LAT_MIN, lat_max=LAT_MAX, lon_min=LON_MIN, lon_max=LON_MAX, start=START, end=END) # variable that we are analyzing varName = 'pr' # regridding parameters gridLonStep = 0.5 gridLatStep = 0.5 # some vars for this evaluation target_datasets_ensemble = [] target_datasets = [] allNames = [] # Download necessary NetCDF file if not present if not path.exists(FILE_1): urlretrieve(FILE_LEADER + FILE_1, FILE_1) if not path.exists(FILE_2): urlretrieve(FILE_LEADER + FILE_2, FILE_2) if not path.exists(FILE_3): urlretrieve(FILE_LEADER + FILE_3, FILE_3) # Step 1: Load Local NetCDF File into OCW Dataset Objects and store in list target_datasets.append(local.load_file(FILE_1, varName, name='KNMI')) target_datasets.append(local.load_file(FILE_2, varName, name='REGCM')) target_datasets.append(local.load_file(FILE_3, varName, name='UCT')) # Step 2: Fetch an OCW Dataset Object from the data_source.rcmed module print('Working with the rcmed interface to get CRU3.1 Monthly Mean Precipitation') # the dataset_id and the parameter id were determined from # https://rcmes.jpl.nasa.gov/content/data-rcmes-database CRU31 = rcmed.parameter_dataset( 10, 37, LAT_MIN, LAT_MAX, LON_MIN, LON_MAX, START, END) # Step 3: Processing Datasets so they are the same shape print('Processing datasets ...') CRU31 = dsp.normalize_dataset_datetimes(CRU31, 'monthly') print('... on units') CRU31 = dsp.water_flux_unit_conversion(CRU31) for member, each_target_dataset in enumerate(target_datasets): target_datasets[member] = dsp.subset(target_datasets[member], EVAL_BOUNDS) target_datasets[member] = \ dsp.water_flux_unit_conversion(target_datasets[member]) target_datasets[member] = dsp.normalize_dataset_datetimes( target_datasets[member], 'monthly') print('... spatial regridding') new_lats = np.arange(LAT_MIN, LAT_MAX, gridLatStep) new_lons = np.arange(LON_MIN, LON_MAX, gridLonStep) CRU31 = dsp.spatial_regrid(CRU31, new_lats, new_lons) for member, each_target_dataset in enumerate(target_datasets): target_datasets[member] = dsp.spatial_regrid( target_datasets[member], new_lats, new_lons) # find the total annual mean. Note the function exists in util.py as def # calc_climatology_year(dataset): _, CRU31.values = utils.calc_climatology_year(CRU31) for member, each_target_dataset in enumerate(target_datasets): _, target_datasets[member].values = \ utils.calc_climatology_year(target_datasets[member]) # make the model ensemble target_datasets_ensemble = dsp.ensemble(target_datasets) target_datasets_ensemble.name = 'ENS' # append to the target_datasets for final analysis target_datasets.append(target_datasets_ensemble) for target in target_datasets: allNames.append(target.name) list_of_regions = [ Bounds(lat_min=-10.0, lat_max=0.0, lon_min=29.0, lon_max=36.5), Bounds(lat_min=0.0, lat_max=10.0, lon_min=29.0, lon_max=37.5), Bounds(lat_min=10.0, lat_max=20.0, lon_min=25.0, lon_max=32.5), Bounds(lat_min=20.0, lat_max=33.0, lon_min=25.0, lon_max=32.5), Bounds(lat_min=-19.3, lat_max=-10.2, lon_min=12.0, lon_max=20.0), Bounds(lat_min=15.0, lat_max=30.0, lon_min=15.0, lon_max=25.0), Bounds(lat_min=-10.0, lat_max=10.0, lon_min=7.3, lon_max=15.0), Bounds(lat_min=-10.9, lat_max=10.0, lon_min=5.0, lon_max=7.3), Bounds(lat_min=33.9, lat_max=40.0, lon_min=6.9, lon_max=15.0), Bounds(lat_min=10.0, lat_max=25.0, lon_min=0.0, lon_max=10.0), Bounds(lat_min=10.0, lat_max=25.0, lon_min=-10.0, lon_max=0.0), Bounds(lat_min=30.0, lat_max=40.0, lon_min=-15.0, lon_max=0.0), Bounds(lat_min=33.0, lat_max=40.0, lon_min=25.0, lon_max=35.00)] region_list = ['R' + str(i + 1) for i in range(13)] # metrics pattern_correlation = metrics.PatternCorrelation() # create the Evaluation object RCMs_to_CRU_evaluation = evaluation.Evaluation(CRU31, # Reference dataset for the evaluation # 1 or more target datasets for # the evaluation target_datasets, # 1 or more metrics to use in # the evaluation [pattern_correlation], # list of subregion Bounds # Objects list_of_regions) RCMs_to_CRU_evaluation.run() new_patcor = np.squeeze(
np.array(RCMs_to_CRU_evaluation.results)
numpy.array
import os import json import numpy as np from PIL import Image #By default, assigned to the data augmentation directories TRAIN_IMAGE_DIR = "Data/images_train_data_augmentation/" VALIDATION_IMAGE_DIR = "Data/images_validation_data_augmentation/" TEST_IMAGE_DIR = "Data/images_test/" DESCR_DIR = "Data/descriptions/" IMAGE_SIZE = 224 #Change the directories if data augmentation is not used def set_directories(data_augmentation = False): if(not(data_augmentation)): global TRAIN_IMAGE_DIR TRAIN_IMAGE_DIR = "Data/images_train/" global VALIDATION_IMAGE_DIR VALIDATION_IMAGE_DIR = "Data/images_validation/" #Selects and returns the appropriate directory def get_directory(image_or_description = "image", is_training = False, is_validation = False): if(image_or_description == "image"): if(is_training): return TRAIN_IMAGE_DIR elif(is_validation): return VALIDATION_IMAGE_DIR else: return TEST_IMAGE_DIR else: if(is_training): file_name = "descriptions_train.json" elif(is_validation): file_name = "descriptions_validation.json" else: file_name = "descriptions_test.json" return DESCR_DIR, file_name #Returns the selected image's pixels in the shape (batch, width, height, channels) def get_image_pixels(image_number, is_training = False, is_validation = False): #Gets the directory and image_name directory = get_directory(is_training = is_training, is_validation = is_validation) image_name = str(image_number) + ".jpg" #Opens the image and resizes it image = Image.open(directory + image_name) image = image.resize((IMAGE_SIZE, IMAGE_SIZE), Image.BICUBIC) #Converts the image to numpy array with shape (batch, width, height, channels) #Makes sure all the values are between 0 and 1 image_pixels = np.array(image, dtype = "float32") image_pixels /= 255. image_pixels =
np.expand_dims(image_pixels, 0)
numpy.expand_dims
import numpy as np # TODO add separate class for this functionality def get_euler_angles_from_rot(R): """Compute Euler angles from rotation matrix. yaw, pitch, roll: 3, 2, 1 rot sequence Note frame relationship: e^b = e^v R^{vb} """ psi = np.arctan2(R[1, 0], R[0, 0]) # yaw angle theta = np.arcsin(-R[2, 0]) # pitch angle phi = np.arctan2(R[2, 1], R[2, 2]) # roll angle return (psi, theta, phi) def skew(a): """Returns skew symmetric matrix, given a 3-vector""" #a = np.flatten(a) # convert to 3-array a = a.flatten() return np.array([ [ 0, -a[2], a[1]], [ a[2], 0, -a[0]], [-a[1], a[0], 0] ]) def quat_prod(p, q): p0 = p[0]; p = p[1:4] P = np.zeros((4,4)) P[0, 0] = p0; P[0, 1:] = -p.T P[1:, 0] = p.flatten() P[1:, 1:] = -skew(p) + p0*np.eye(3) return P @ q def Euler2Quaternion(y, p, r): psi2 = y/2 theta2 = p/2 phi2 = r/2 return np.array([ [np.sin(phi2)*np.sin(psi2)*np.sin(theta2) + np.cos(phi2)*np.cos(psi2)*np.cos(theta2)], [np.sin(phi2)*np.cos(psi2)*np.cos(theta2) - np.sin(psi2)*np.sin(theta2)*np.cos(phi2)], [np.sin(phi2)*np.sin(psi2)*np.cos(theta2) + np.sin(theta2)*np.cos(phi2)*
np.cos(psi2)
numpy.cos
import sys import Bio import statsmodels import math import numpy as np import pandas as pd from statsmodels.compat.python import range from statsmodels.compat.collections import OrderedDict from Bio import SeqIO from Bio.Seq import Seq from Bio.SeqUtils.ProtParam import ProteinAnalysis from collections import defaultdict from itertools import islice, chain, product, combinations_with_replacement from time import process_time ########## main function ############################################################################## if __name__ == "__main__": fasta_file = sys.argv[1] nullomers_file = sys.argv[2] threshold = float(sys.argv[3]) level = sys.argv[4] correction_method = sys.argv[5] print_log = sys.argv[6] else: print("\n**An error occured**\n") raise SystemExit() if (correction_method != "FDR") and (correction_method != "TARONE") and (correction_method != "BONF"): print("\n**Please choose one of the following attributes for statistical correction method: BONF or TARONE or FDR**\n") raise SystemExit() if (print_log != "TRUE") and (print_log != "FALSE"): print("\n**The 'print_log' parameter should be either TRUE or FALSE**\n") raise SystemExit() if (level == "DNA"): alphabet = "TCGA" elif (level == "PROT"): alphabet = "ACDEFGHIKLMNPQRSTVWY" else: print("\n**Please declare the type of sequences. Accepted attributes are DNA or PROT**\n") raise SystemExit() ################################################################################################################# ######### secondary functions ################################################################################### def return_indices(array, value): return np.where(array==value) def nth_order_probs(sequences, n): num = defaultdict(int) for seq in sequences: for i in range(len(seq) - n): j = i + n + 1 key = seq[i:j] num[key] += 1 denom = defaultdict(int) for key, value in (num.items()): denom[key[0:n]] += value return {key: value/denom[key[0:n]] for key, value in num.items()} def _ecdf(x): nobs = len(x) return np.arange(1,nobs+1)/float(nobs) def fdrcorrection(pvals, thresh, is_sorted=False): ###FDR correction -- more info at: http://www.statsmodels.org/devel/_modules/statsmodels/stats/multitest.html#multipletests pvals = np.asarray(pvals) if not is_sorted: pvals_sortind = np.argsort(pvals) pvals_sorted = np.take(pvals, pvals_sortind) else: pvals_sorted = pvals # alias ecdffactor = _ecdf(pvals_sorted) reject = pvals_sorted <= ecdffactor*thresh if reject.any(): rejectmax = max(
np.nonzero(reject)
numpy.nonzero
# -*- coding: utf-8 -*- # Copyright 2020 PyePAL authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Use PAL with the neural tangent library. This allows to perform 1. Exact Bayesian inference (NNGP) 2. Inference using gradient descent with MSE loss (NTK) Note that the neural tangent code usually assumes mean-zero Gaussians Reducing predict_fn_kwargs['diag_reg'] typically improves the interpolation quality """ from typing import Sequence, Tuple import numpy as np from sklearn.preprocessing import StandardScaler from ..models.nt import NTModel from .pal_base import PALBase from .validate_inputs import validate_nt_models __all__ = ["PALNT", "NTModel"] # We move those functions out of the class so that we can parallelize them def _set_one_infinite_width_model( # pylint:disable=too-many-arguments i: int, models: Sequence[NTModel], design_space: np.ndarray, objectives: np.ndarray, sampled: np.ndarray, predict_fn_kwargs: dict = None, ) -> Tuple[callable, StandardScaler]: from jax.config import config # pylint:disable=import-outside-toplevel config.update("jax_enable_x64", True) import neural_tangents as nt # pylint:disable=import-outside-toplevel if predict_fn_kwargs is None: predict_fn_kwargs = {"diag_reg": 1e-3} model = models[i] kernel_fn = model.kernel_fn scaler = StandardScaler() y = scaler.fit_transform( # pylint:disable=invalid-name objectives[sampled[:, i], i].reshape(-1, 1) ) predict_fn = nt.predict.gradient_descent_mse_ensemble( kernel_fn, design_space[sampled[:, i]], y, **predict_fn_kwargs, ) return predict_fn, scaler def _predict_one_infinite_width_model( i: int, models: Sequence[NTModel], design_space: np.ndarray, kernel: str ): predict_fn = models[i].predict_fn mean, covariance = predict_fn( # type: ignore x_test=design_space, get=kernel, compute_cov=True, ) return mean.flatten(), np.sqrt(
np.diag(covariance)
numpy.diag
import numpy as np from sklearn.ensemble import BaggingClassifier from sklearn.utils import indices_to_mask def bootstrap_prediction(X, y, score_func, base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, n_jobs=None, random_state=None): """Bootstrap the scores from an `sklearn` estimator. Args: X (array-like, dtype=float64, , size=[n_samples, n_features]): Feature matrix. y (array, dtype=float64, size=[n_samples]): Target vector. score_func (callable): Score function (or loss function) with signature score_func(y, y_pred, **kwargs). base_estimator (object or None, optional): Defaults to None. The base estimator to fit on random subsets of the dataset. If None, then the base estimator is a decision tree. n_estimators (int, optional): Defaults to 10. The number of base estimators in the ensemble. max_samples (int or float, optional): Defaults to 1.0. The number of samples to draw from X to train each base estimator. If int, then draw max_samples samples. If float, then draw max_samples * X.shape[0] samples. max_features (int or float, optional): Defaults to 1.0. The number of features to draw from X to train each base estimator. If int, then draw max_features features. If float, then draw max_features * X.shape[1] features. bootstrap (bool, optional): Defaults to True. Whether samples are drawn with replacement. bootstrap_features (bool, optional): Defaults to False. Whether features are drawn with replacement. n_jobs (int or None, optional): Defaults to None. The number of jobs to run in parallel for both fit and predict. None means 1 unless in a joblib.parallel_backend context. random_state (int, RandomState instance or None, optional): Defaults to None. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. Returns: numpy.ndarray: Distribution of score function statistic. """ bag = BaggingClassifier( base_estimator=base_estimator, n_estimators=n_estimators, max_samples=max_samples, max_features=max_features, bootstrap=bootstrap, bootstrap_features=bootstrap_features, n_jobs=n_jobs, random_state=random_state) bag.fit(X, y) stats = [] for estimator, samples in zip(bag.estimators_, bag.estimators_samples_): # Create mask for OOB samples mask = ~indices_to_mask(samples, len(y)) # Compute predictions on out-of-bag samples y_pred = estimator.predict(X[mask]) # Compute statistic stat = score_func(y[mask], y_pred) stats.append(stat) stats = np.array(stats) return stats def percentile_conf_int(data, alpha=0.05): """Compute the percentile confidence interval from some data. Args: data (numpy.ndarray): Data. alpha (float, optional): Defaults to 0.05. Significance level. (0 < alpha < 1). Returns: np.ndarray: Lower and upper percentile confidence interval. """ lower = 100 * alpha / 2 upper = 100 * (1. - alpha / 2) conf_int =
np.percentile(data, [lower, upper])
numpy.percentile
import numpy as np import warnings # from https://github.com/tinghuiz/SfMLearner def dump_xyz(source_to_target_transformations): xyzs = [] cam_to_world =
np.eye(4)
numpy.eye
import numpy as np import gym import gym.spaces import tensorflow as tf env = gym.make('NChain-v0') N= 5 # No of physical states Q=6 #no of memory states A =2 #no_of_actions intial_state=1 gamma= .995 def dirichlet_sample(alphas): r = np.random.standard_gamma(alphas) r /= r.sum(-1).reshape(-1, 1) return r if __name__ == "__main__": alphas1 = np.array([[200,0,800,0,0],[200,0,800,0,0],[200,0,0,800,0],[200,0,0,0,800],[200,0,0,0,800]]) alphas2= np.array([[800,200,0,0,0],[800,0,200,0,0],[800,0,0,200,0],[800,0,0,0,200],[800,0,0,0,200]]) transition_probablity1 = dirichlet_sample(alphas1) transition_probablity2 = dirichlet_sample(alphas2) #print("dirichlet_sample1:",transition_probablity1) #print() #print("dirichlet_sample2:",transition_probablity2) #print() transitionMatrix=
np.dstack((transition_probablity2,transition_probablity1))
numpy.dstack
# Quantile utilities for processing MERRA/AIRS data import numpy import numpy.ma as ma import calculate_VPD import netCDF4 from netCDF4 import Dataset from numpy import random, linalg import datetime import pandas import os, sys from scipy import stats import h5py def quantile_cloud_locmask(airsdr, mtdr, indr, dtdr, yrlst, mnst, mnfn, hrchc, rgchc, msk): # Construct cloud variable quantiles and z-scores, with a possibly irregular location mask # Read probs and pressure levels rnm = '%s/AIRS_Levels_Quantiles.nc' % (airsdr) f = Dataset(rnm,'r') plev = f['level'][:] prbs = f['probability'][:] alts = f['altitude'][:] f.close() nyr = len(yrlst) nprb = prbs.shape[0] # Mask, lat, lon fnm = '%s/interpolated_merra2_for_SARTA_two_slab_%d_JJA_South_Southeast_US_%02dUTC_no_vertical_variation_for_missing.nc' % (mtdr,yrlst[0],hrchc) f = Dataset(fnm,'r') mask = f[msk][:,:] latmet = f['plat'][:] lonmet = f['plon'][:] f.close() mask[mask <= 0] = 0 lnsq = numpy.arange(lonmet.shape[0]) ltsq = numpy.arange(latmet.shape[0]) # Subset a bit lnsm = numpy.sum(mask,axis=0) print(lnsq.shape) print(lnsm.shape) print(lnsm) ltsm = numpy.sum(mask,axis=1) print(ltsq.shape) print(ltsm.shape) print(ltsm) lnmn = numpy.amin(lnsq[lnsm > 0]) lnmx = numpy.amax(lnsq[lnsm > 0]) + 1 ltmn = numpy.amin(ltsq[ltsm > 0]) ltmx = numpy.amax(ltsq[ltsm > 0]) + 1 stridx = 'Lon Range: %d, %d\nLat Range: %d, %d \n' % (lnmn,lnmx,ltmn,ltmx) print(stridx) #latflt = latin.flatten() #lonflt = lonin.flatten() #mskflt = mask.flatten() #lcsq = numpy.arange(mskflt.shape[0]) #lcsb = lcsq[mskflt > 0] nx = lnmx - lnmn ny = ltmx - ltmn lnrp = numpy.tile(lonmet[lnmn:lnmx],ny) ltrp = numpy.repeat(latmet[ltmn:ltmx],nx) mskblk = mask[ltmn:ltmx,lnmn:lnmx] mskflt = mskblk.flatten() tsmp = 0 for k in range(nyr): dyinit = datetime.date(yrlst[k],6,1) dyst = datetime.date(yrlst[k],mnst,1) ttst = dyst.timetuple() jst = ttst.tm_yday if mnfn < 12: dyfn = datetime.date(yrlst[k],mnfn+1,1) ttfn = dyfn.timetuple() jfn = ttfn.tm_yday else: dyfn = datetime.date(yrlst[k]+1,1,1) dy31 = datetime.date(yrlst[k],12,31) tt31 = dy31.timetuple() jfn = tt31.tm_yday + 1 dystidx = abs((dyst-dyinit).days) dyfnidx = abs((dyfn-dyinit).days) jdsq = numpy.arange(jst,jfn) print(jdsq) tmhld = numpy.repeat(jdsq,nx*ny) print(tmhld.shape) print(numpy.amin(tmhld)) print(numpy.amax(tmhld)) stridx = 'Day Range: %d, %d\n' % (dystidx,dyfnidx) print(stridx) fnm = '%s/interpolated_merra2_for_SARTA_two_slab_%d_JJA_South_Southeast_US_%02dUTC_no_vertical_variation_for_missing_IncludesCloudParams.h5' % (indr,yrlst[k],hrchc) f = h5py.File(fnm,'r') ctyp1 = f['/ctype'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] ctyp2 = f['/ctype2'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cprt1 = f['/cprtop'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cprt2 = f['/cprtop2'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cprb1 = f['/cprbot'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cprb2 = f['/cprbot2'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cfrc1 = f['/cfrac'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cfrc2 = f['/cfrac2'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cfrc12 = f['/cfrac12'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cngwt1 = f['/cngwat'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cngwt2 = f['/cngwat2'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cttp1 = f['/cstemp'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cttp2 = f['/cstemp2'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] f.close() mtnm = '%s/interpolated_merra2_for_SARTA_two_slab_%d_JJA_South_Southeast_US_%02dUTC_no_vertical_variation_for_missing.nc' % (mtdr,yrlst[k],hrchc) f = Dataset(mtnm,'r') psfc = f.variables['spres'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] f.close() nt = ctyp1.shape[0] mskall = numpy.tile(mskflt,nt) msksq = numpy.arange(mskall.shape[0]) msksb = msksq[mskall > 0] mskstr = 'Total Obs: %d, Within Mask: %d \n' % (msksq.shape[0],msksb.shape[0]) print(mskstr) lthld = numpy.tile(ltrp,nt) lnhld = numpy.tile(lnrp,nt) ctyp1 = ctyp1.flatten() ctyp2 = ctyp2.flatten() cfrc1 = cfrc1.flatten() cfrc2 = cfrc2.flatten() cfrc12 = cfrc12.flatten() cngwt1 = cngwt1.flatten() cngwt2 = cngwt2.flatten() cttp1 = cttp1.flatten() cttp2 = cttp2.flatten() psfc = psfc.flatten() # Number of slabs nslbtmp = numpy.zeros((ctyp1.shape[0],),dtype=numpy.int16) nslbtmp[(ctyp1 > 100) & (ctyp2 > 100)] = 2 nslbtmp[(ctyp1 > 100) & (ctyp2 < 100)] = 1 if tsmp == 0: nslabout = numpy.zeros((msksb.shape[0],),dtype=numpy.int16) nslabout[:] = nslbtmp[msksb] else: nslabout = numpy.append(nslabout,nslbtmp[msksb]) flsq = numpy.arange(ctyp1.shape[0]) # For two slabs, slab 1 must have highest cloud bottom pressure cprt1 = cprt1.flatten() cprt2 = cprt2.flatten() cprb1 = cprb1.flatten() cprb2 = cprb2.flatten() slabswap = numpy.zeros((ctyp1.shape[0],),dtype=numpy.int16) swpsq = flsq[(nslbtmp == 2) & (cprb1 < cprb2)] slabswap[swpsq] = 1 print(numpy.mean(slabswap)) # Cloud Pressure variables pbttmp1 = numpy.zeros((ctyp1.shape[0],)) - 9999.0 pbttmp1[nslbtmp >= 1] = cprb1[nslbtmp >= 1] pbttmp1[swpsq] = cprb2[swpsq] ptptmp1 = numpy.zeros((ctyp1.shape[0],)) - 9999.0 ptptmp1[nslbtmp >= 1] = cprt1[nslbtmp >= 1] ptptmp1[swpsq] = cprt2[swpsq] pbttmp2 = numpy.zeros((ctyp1.shape[0],)) - 9999.0 pbttmp2[nslbtmp == 2] = cprb2[nslbtmp == 2] pbttmp2[swpsq] = cprb1[swpsq] ptptmp2 = numpy.zeros((ctyp1.shape[0],)) - 9999.0 ptptmp2[nslbtmp == 2] = cprt2[nslbtmp == 2] ptptmp2[swpsq] = cprt1[swpsq] # DP Cloud transformation dptmp1 = numpy.zeros((ctyp1.shape[0],)) - 9999.0 dptmp1[nslbtmp >= 1] = pbttmp1[nslbtmp >= 1] - ptptmp1[nslbtmp >= 1] dpslbtmp = numpy.zeros((ctyp1.shape[0],)) - 9999.0 dpslbtmp[nslbtmp == 2] = ptptmp1[nslbtmp == 2] - pbttmp2[nslbtmp == 2] dptmp2 = numpy.zeros((ctyp1.shape[0],)) - 9999.0 dptmp2[nslbtmp == 2] = pbttmp2[nslbtmp == 2] - ptptmp2[nslbtmp == 2] # Adjust negative DPSlab values dpnsq = flsq[(nslbtmp == 2) & (dpslbtmp < 0.0) & (dpslbtmp > -1000.0)] dpadj = numpy.zeros((ctyp1.shape[0],)) dpadj[dpnsq] = numpy.absolute(dpslbtmp[dpnsq]) dpslbtmp[dpnsq] = 1.0 dptmp1[dpnsq] = dptmp1[dpnsq] / 2.0 dptmp2[dpnsq] = dptmp2[dpnsq] / 2.0 # Sigma / Logit Adjustments zpbtmp = numpy.zeros((psfc.shape[0],)) - 9999.0 zdp1tmp = numpy.zeros((psfc.shape[0],)) - 9999.0 zdslbtmp = numpy.zeros((psfc.shape[0],)) - 9999.0 zdp2tmp = numpy.zeros((psfc.shape[0],)) - 9999.0 ncldct = 0 for t in range(psfc.shape[0]): if ( (pbttmp1[t] >= 0.0) and (dpslbtmp[t] >= 0.0) ): prptmp = numpy.array( [ (psfc[t] - pbttmp1[t]) / psfc[t], \ dptmp1[t] / psfc[t], dpslbtmp[t] / psfc[t], \ dptmp2[t] / psfc[t], 0.0 ] ) if (prptmp[0] < 0.0): # Adjustment needed prpadj = prptmp[0] prptmp[0] = 0.01 prptmp[1] = prptmp[1] + prpadj*prptmp[1] prptmp[2] = prptmp[2] + prpadj*prptmp[2] prptmp[3] = prptmp[3] + prpadj*prptmp[3] ncldct = ncldct + 1 elif (prptmp[0] == 0.0): # Adjustment needed prpadj = -0.01 prptmp[0] = 0.01 prptmp[1] = prptmp[1] + prpadj*prptmp[1] prptmp[2] = prptmp[2] + prpadj*prptmp[2] prptmp[3] = prptmp[3] + prpadj*prptmp[3] ncldct = ncldct + 1 prptmp[4] = 1.0 - prptmp[0] - prptmp[1] - prptmp[2] - prptmp[3] ztmp = calculate_VPD.lgtzs(prptmp) zpbtmp[t] = ztmp[0] zdp1tmp[t] = ztmp[1] zdslbtmp[t] = ztmp[2] zdp2tmp[t] = ztmp[3] elif ( pbttmp1[t] >= 0.0 ): prptmp = numpy.array( [ (psfc[t] - pbttmp1[t]) / psfc[t], \ dptmp1[t] / psfc[t], 0.0 ] ) if (prptmp[0] < 0.0): # Adjustment needed prpadj = prptmp[0] prptmp[0] = 0.01 prptmp[1] = prptmp[1] + prpadj*prptmp[1] ncldct = ncldct + 1 elif (prptmp[0] == 0.0): # Adjustment needed prpadj = -0.01 prptmp[0] = 0.01 prptmp[1] = prptmp[1] + prpadj*prptmp[1] ncldct = ncldct + 1 prptmp[2] = 1.0 - prptmp[0] - prptmp[1] ztmp = calculate_VPD.lgtzs(prptmp) zpbtmp[t] = ztmp[0] zdp1tmp[t] = ztmp[1] zdslbtmp[t] = -9999.0 zdp2tmp[t] = -9999.0 else: zpbtmp[t] = -9999.0 zdp1tmp[t] = -9999.0 zdslbtmp[t] = -9999.0 zdp2tmp[t] = -9999.0 str1 = 'Cloud Bot Pres Below Sfc: %d ' % (ncldct) print(str1) if tsmp == 0: psfcout = numpy.zeros((msksb.shape[0],)) - 9999.0 psfcout[:] = psfc[msksb] prsbot1out = numpy.zeros((msksb.shape[0],)) - 9999.0 prsbot1out[:] = zpbtmp[msksb] dpcld1out = numpy.zeros((msksb.shape[0],)) - 9999.0 dpcld1out[:] = zdp1tmp[msksb] dpslbout = numpy.zeros((msksb.shape[0],)) - 9999.0 dpslbout[:] = zdslbtmp[msksb] dpcld2out = numpy.zeros((msksb.shape[0],)) - 9999.0 dpcld2out[:] = zdp2tmp[msksb] else: psfcout = numpy.append(psfcout,psfc[msksb]) prsbot1out = numpy.append(prsbot1out,zpbtmp[msksb]) dpcld1out = numpy.append(dpcld1out,zdp1tmp[msksb]) dpslbout = numpy.append(dpslbout,zdslbtmp[msksb]) dpcld2out = numpy.append(dpcld2out,zdp2tmp[msksb]) # Slab Types: 101.0 = Liquid, 201.0 = Ice, None else # Output: 0 = Liquid, 1 = Ice typtmp1 = numpy.zeros((ctyp1.shape[0],),dtype=numpy.int16) - 99 typtmp1[nslbtmp >= 1] = (ctyp1[nslbtmp >= 1] - 1.0) / 100.0 - 1.0 typtmp1[swpsq] = (ctyp2[swpsq] - 1.0) / 100.0 - 1.0 typtmp2 = numpy.zeros((ctyp1.shape[0],),dtype=numpy.int16) - 99 typtmp2[nslbtmp == 2] = (ctyp2[nslbtmp == 2] - 1.0) / 100.0 - 1.0 typtmp2[swpsq] = (ctyp1[swpsq] - 1.0) / 100.0 - 1.0 if tsmp == 0: slbtyp1out = numpy.zeros((msksb.shape[0],),dtype=numpy.int16) slbtyp1out[:] = typtmp1[msksb] slbtyp2out = numpy.zeros((msksb.shape[0],),dtype=numpy.int16) slbtyp2out[:] = typtmp2[msksb] else: slbtyp1out = numpy.append(slbtyp1out,typtmp1[msksb]) slbtyp2out = numpy.append(slbtyp2out,typtmp2[msksb]) # Cloud Fraction Logit, still account for swapping z1tmp = numpy.zeros((cfrc1.shape[0],)) - 9999.0 z2tmp = numpy.zeros((cfrc1.shape[0],)) - 9999.0 z12tmp = numpy.zeros((cfrc1.shape[0],)) - 9999.0 for t in range(z1tmp.shape[0]): if ( (cfrc1[t] > 0.0) and (cfrc2[t] > 0.0) and (cfrc12[t] > 0.0) ): # Must adjust amounts if (slabswap[t] == 0): prptmp = numpy.array( [cfrc1[t]-cfrc12[t], cfrc2[t]-cfrc12[t], cfrc12[t], 0.0] ) else: prptmp = numpy.array( [cfrc2[t]-cfrc12[t], cfrc1[t]-cfrc12[t], cfrc12[t], 0.0] ) prptmp[3] = 1.0 - prptmp[0] - prptmp[1] - prptmp[2] ztmp = calculate_VPD.lgtzs(prptmp) z1tmp[t] = ztmp[0] z2tmp[t] = ztmp[1] z12tmp[t] = ztmp[2] elif ( (cfrc1[t] > 0.0) and (cfrc2[t] > 0.0) ): if (slabswap[t] == 0): prptmp = numpy.array( [cfrc1[t], cfrc2[t], 0.0] ) else: prptmp = numpy.array( [cfrc2[t], cfrc1[t], 0.0] ) prptmp[2] = 1.0 - prptmp[0] - prptmp[1] ztmp = calculate_VPD.lgtzs(prptmp) z1tmp[t] = ztmp[0] z2tmp[t] = ztmp[1] z12tmp[t] = -9999.0 elif ( cfrc1[t] > 0.0 ): prptmp = numpy.array( [cfrc1[t], 1.0 - cfrc1[t] ] ) ztmp = calculate_VPD.lgtzs(prptmp) z1tmp[t] = ztmp[0] z2tmp[t] = -9999.0 z12tmp[t] = -9999.0 else: z1tmp[t] = -9999.0 z2tmp[t] = -9999.0 z12tmp[t] = -9999.0 if tsmp == 0: cfclgt1out = numpy.zeros((msksb.shape[0],)) - 9999.0 cfclgt1out[:] = z1tmp[msksb] cfclgt2out = numpy.zeros((msksb.shape[0],)) - 9999.0 cfclgt2out[:] = z2tmp[msksb] cfclgt12out = numpy.zeros((msksb.shape[0],)) - 9999.0 cfclgt12out[:] = z12tmp[msksb] else: cfclgt1out = numpy.append(cfclgt1out,z1tmp[msksb]) cfclgt2out = numpy.append(cfclgt2out,z2tmp[msksb]) cfclgt12out = numpy.append(cfclgt12out,z12tmp[msksb]) # Cloud Non-Gas Water ngwttmp1 = numpy.zeros(cngwt1.shape[0]) - 9999.0 ngwttmp1[nslbtmp >= 1] = cngwt1[nslbtmp >= 1] ngwttmp1[swpsq] = cngwt2[swpsq] ngwttmp2 = numpy.zeros(cngwt1.shape[0]) - 9999.0 ngwttmp2[nslbtmp == 2] = cngwt2[nslbtmp == 2] ngwttmp2[swpsq] = cngwt1[swpsq] if tsmp == 0: ngwt1out = numpy.zeros((msksb.shape[0],)) - 9999.0 ngwt1out[:] = ngwttmp1[msksb] ngwt2out = numpy.zeros((msksb.shape[0],)) - 9999.0 ngwt2out[:] = ngwttmp2[msksb] else: ngwt1out = numpy.append(ngwt1out,ngwttmp1[msksb]) ngwt2out = numpy.append(ngwt2out,ngwttmp2[msksb]) # Cloud Top Temperature cttptmp1 = numpy.zeros(cttp1.shape[0]) - 9999.0 cttptmp1[nslbtmp >= 1] = cttp1[nslbtmp >= 1] cttptmp1[swpsq] = cttp2[swpsq] cttptmp2 = numpy.zeros(cttp1.shape[0]) - 9999.0 cttptmp2[nslbtmp == 2] = cttp2[nslbtmp == 2] cttptmp2[swpsq] = cttp1[swpsq] if tsmp == 0: cttp1out = numpy.zeros((msksb.shape[0],)) - 9999.0 cttp1out[:] = cttptmp1[msksb] cttp2out = numpy.zeros((msksb.shape[0],)) - 9999.0 cttp2out[:] = cttptmp2[msksb] else: cttp1out = numpy.append(cttp1out,cttptmp1[msksb]) cttp2out = numpy.append(cttp2out,cttptmp2[msksb]) # Loc/Time if tsmp == 0: latout = numpy.zeros((msksb.shape[0],)) - 9999.0 latout[:] = lthld[msksb] lonout = numpy.zeros((msksb.shape[0],)) - 9999.0 lonout[:] = lnhld[msksb] yrout = numpy.zeros((msksb.shape[0],),dtype=numpy.int16) yrout[:] = yrlst[k] jdyout = numpy.zeros((msksb.shape[0],),dtype=numpy.int16) jdyout[:] = tmhld[msksb] else: latout = numpy.append(latout,lthld[msksb]) lonout = numpy.append(lonout,lnhld[msksb]) yrtmp = numpy.zeros((msksb.shape[0],),dtype=numpy.int16) yrtmp[:] = yrlst[k] yrout = numpy.append(yrout,yrtmp) jdyout = numpy.append(jdyout,tmhld[msksb]) tsmp = tsmp + msksb.shape[0] # Process quantiles nslbqs = calculate_VPD.quantile_msgdat_discrete(nslabout,prbs) str1 = '%.2f Number Slab Quantile: %d' % (prbs[53],nslbqs[53]) print(str1) print(nslbqs) psfcqs = calculate_VPD.quantile_msgdat(psfcout,prbs) str1 = '%.2f Surface Pressure Quantile: %.3f' % (prbs[53],psfcqs[53]) print(str1) prsbt1qs = calculate_VPD.quantile_msgdat(prsbot1out,prbs) str1 = '%.2f CldBot1 Pressure Quantile: %.3f' % (prbs[53],prsbt1qs[53]) print(str1) dpcld1qs = calculate_VPD.quantile_msgdat(dpcld1out,prbs) str1 = '%.2f DPCloud1 Quantile: %.3f' % (prbs[53],dpcld1qs[53]) print(str1) dpslbqs = calculate_VPD.quantile_msgdat(dpslbout,prbs) str1 = '%.2f DPSlab Quantile: %.3f' % (prbs[53],dpslbqs[53]) print(str1) dpcld2qs = calculate_VPD.quantile_msgdat(dpcld2out,prbs) str1 = '%.2f DPCloud2 Quantile: %.3f' % (prbs[53],dpcld2qs[53]) print(str1) slb1qs = calculate_VPD.quantile_msgdat_discrete(slbtyp1out,prbs) str1 = '%.2f Type1 Quantile: %d' % (prbs[53],slb1qs[53]) print(str1) slb2qs = calculate_VPD.quantile_msgdat_discrete(slbtyp2out,prbs) str1 = '%.2f Type2 Quantile: %d' % (prbs[53],slb2qs[53]) print(str1) lgt1qs = calculate_VPD.quantile_msgdat(cfclgt1out,prbs) str1 = '%.2f Logit 1 Quantile: %.3f' % (prbs[53],lgt1qs[53]) print(str1) lgt2qs = calculate_VPD.quantile_msgdat(cfclgt2out,prbs) str1 = '%.2f Logit 2 Quantile: %.3f' % (prbs[53],lgt2qs[53]) print(str1) lgt12qs = calculate_VPD.quantile_msgdat(cfclgt12out,prbs) str1 = '%.2f Logit 1/2 Quantile: %.3f' % (prbs[53],lgt12qs[53]) print(str1) ngwt1qs = calculate_VPD.quantile_msgdat(ngwt1out,prbs) str1 = '%.2f NGWater1 Quantile: %.3f' % (prbs[53],ngwt1qs[53]) print(str1) ngwt2qs = calculate_VPD.quantile_msgdat(ngwt2out,prbs) str1 = '%.2f NGWater2 Quantile: %.3f' % (prbs[53],ngwt2qs[53]) print(str1) cttp1qs = calculate_VPD.quantile_msgdat(cttp1out,prbs) str1 = '%.2f CTTemp1 Quantile: %.3f' % (prbs[53],cttp1qs[53]) print(str1) cttp2qs = calculate_VPD.quantile_msgdat(cttp2out,prbs) str1 = '%.2f CTTemp2 Quantile: %.3f' % (prbs[53],cttp2qs[53]) print(str1) # Should be no missing for number of slabs print('Slab summary') print(numpy.amin(nslabout)) print(numpy.amax(nslabout)) print(tsmp) # Output Quantiles mstr = dyst.strftime('%b') qfnm = '%s/%s_US_JJA_%02dUTC_%04d_Cloud_Quantile.nc' % (dtdr,rgchc,hrchc,yrlst[k]) qout = Dataset(qfnm,'w') dimp = qout.createDimension('probability',nprb) varprb = qout.createVariable('probability','f4',['probability'], fill_value = -9999) varprb[:] = prbs varprb.long_name = 'Probability break points' varprb.units = 'none' varprb.missing_value = -9999 varnslb = qout.createVariable('NumberSlab_quantile','i2',['probability'], fill_value = -99) varnslb[:] = nslbqs varnslb.long_name = 'Number of cloud slabs quantiles' varnslb.units = 'Count' varnslb.missing_value = -99 varcbprs = qout.createVariable('CloudBot1Logit_quantile','f4',['probability'], fill_value = -9999) varcbprs[:] = prsbt1qs varcbprs.long_name = 'Slab 1 cloud bottom pressure logit quantiles' varcbprs.units = 'hPa' varcbprs.missing_value = -9999 vardpc1 = qout.createVariable('DPCloud1Logit_quantile','f4',['probability'], fill_value = -9999) vardpc1[:] = dpcld1qs vardpc1.long_name = 'Slab 1 cloud pressure depth logit quantiles' vardpc1.units = 'hPa' vardpc1.missing_value = -9999 vardpslb = qout.createVariable('DPSlabLogit_quantile','f4',['probability'], fill_value = -9999) vardpslb[:] = dpslbqs vardpslb.long_name = 'Two-slab vertical separation logit quantiles' vardpslb.units = 'hPa' vardpslb.missing_value = -9999 vardpc2 = qout.createVariable('DPCloud2Logit_quantile','f4',['probability'], fill_value = -9999) vardpc2[:] = dpcld2qs vardpc2.long_name = 'Slab 2 cloud pressure depth logit quantiles' vardpc2.units = 'hPa' vardpc2.missing_value = -9999 vartyp1 = qout.createVariable('CType1_quantile','i2',['probability'], fill_value = -99) vartyp1[:] = slb1qs vartyp1.long_name = 'Slab 1 cloud type quantiles' vartyp1.units = 'None' vartyp1.missing_value = -99 vartyp1.comment = 'Cloud slab type: 0=Liquid, 1=Ice' vartyp2 = qout.createVariable('CType2_quantile','i2',['probability'], fill_value = -99) vartyp2[:] = slb2qs vartyp2.long_name = 'Slab 2 cloud type quantiles' vartyp2.units = 'None' vartyp2.missing_value = -99 vartyp2.comment = 'Cloud slab type: 0=Liquid, 1=Ice' varlgt1 = qout.createVariable('CFrcLogit1_quantile','f4',['probability'], fill_value = -9999) varlgt1[:] = lgt1qs varlgt1.long_name = 'Slab 1 cloud fraction (cfrac1x) logit quantiles' varlgt1.units = 'None' varlgt1.missing_value = -9999 varlgt2 = qout.createVariable('CFrcLogit2_quantile','f4',['probability'], fill_value = -9999) varlgt2[:] = lgt2qs varlgt2.long_name = 'Slab 2 cloud fraction (cfrac2x) logit quantiles' varlgt2.units = 'None' varlgt2.missing_value = -9999 varlgt12 = qout.createVariable('CFrcLogit12_quantile','f4',['probability'], fill_value = -9999) varlgt12[:] = lgt12qs varlgt12.long_name = 'Slab 1/2 overlap fraction (cfrac12) logit quantiles' varlgt12.units = 'None' varlgt12.missing_value = -9999 varngwt1 = qout.createVariable('NGWater1_quantile','f4',['probability'], fill_value = -9999) varngwt1[:] = ngwt1qs varngwt1.long_name = 'Slab 1 cloud non-gas water quantiles' varngwt1.units = 'g m^-2' varngwt1.missing_value = -9999 varngwt2 = qout.createVariable('NGWater2_quantile','f4',['probability'], fill_value = -9999) varngwt2[:] = ngwt2qs varngwt2.long_name = 'Slab 2 cloud non-gas water quantiles' varngwt2.units = 'g m^-2' varngwt2.missing_value = -9999 varcttp1 = qout.createVariable('CTTemp1_quantile','f4',['probability'], fill_value = -9999) varcttp1[:] = cttp1qs varcttp1.long_name = 'Slab 1 cloud top temperature' varcttp1.units = 'K' varcttp1.missing_value = -9999 varcttp2 = qout.createVariable('CTTemp2_quantile','f4',['probability'], fill_value = -9999) varcttp2[:] = cttp2qs varcttp2.long_name = 'Slab 2 cloud top temperature' varcttp2.units = 'K' varcttp2.missing_value = -9999 qout.close() # Set up transformations znslb = calculate_VPD.std_norm_quantile_from_obs(nslabout, nslbqs, prbs, msgval=-99) zpsfc = calculate_VPD.std_norm_quantile_from_obs(psfcout, psfcqs, prbs, msgval=-9999.) zprsbt1 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(prsbot1out, prsbt1qs, prbs, msgval=-9999.) zdpcld1 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(dpcld1out, dpcld1qs, prbs, msgval=-9999.) zdpslb = calculate_VPD.std_norm_quantile_from_obs_fill_msg(dpslbout, dpslbqs, prbs, msgval=-9999.) zdpcld2 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(dpcld2out, dpcld2qs, prbs, msgval=-9999.) zctyp1 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(slbtyp1out, slb1qs, prbs, msgval=-99) zctyp2 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(slbtyp2out, slb2qs, prbs, msgval=-99) zlgt1 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(cfclgt1out, lgt1qs, prbs, msgval=-9999.) zlgt2 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(cfclgt2out, lgt2qs, prbs, msgval=-9999.) zlgt12 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(cfclgt12out, lgt12qs, prbs, msgval=-9999.) zngwt1 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(ngwt1out, ngwt1qs, prbs, msgval=-9999.) zngwt2 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(ngwt2out, ngwt2qs, prbs, msgval=-9999.) zcttp1 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(cttp1out, cttp1qs, prbs, msgval=-9999.) zcttp2 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(cttp2out, cttp2qs, prbs, msgval=-9999.) # Output transformed quantile samples zfnm = '%s/%s_US_JJA_%02dUTC_%04d_Cloud_StdGausTrans.nc' % (dtdr,rgchc,hrchc,yrlst[k]) zout = Dataset(zfnm,'w') dimsmp = zout.createDimension('sample',tsmp) varlon = zout.createVariable('Longitude','f4',['sample']) varlon[:] = lonout varlon.long_name = 'Longitude' varlon.units = 'degrees_east' varlat = zout.createVariable('Latitude','f4',['sample']) varlat[:] = latout varlat.long_name = 'Latitude' varlat.units = 'degrees_north' varjdy = zout.createVariable('JulianDay','i2',['sample']) varjdy[:] = jdyout varjdy.long_name = 'JulianDay' varjdy.units = 'day' varyr = zout.createVariable('Year','i2',['sample']) varyr[:] = yrout varyr.long_name = 'Year' varyr.units = 'year' varnslb = zout.createVariable('NumberSlab_StdGaus','f4',['sample'], fill_value = -9999) varnslb[:] = znslb varnslb.long_name = 'Quantile transformed number of cloud slabs' varnslb.units = 'None' varnslb.missing_value = -9999. varcbprs = zout.createVariable('CloudBot1Logit_StdGaus','f4',['sample'], fill_value = -9999) varcbprs[:] = zprsbt1 varcbprs.long_name = 'Quantile transformed slab 1 cloud bottom pressure logit' varcbprs.units = 'None' varcbprs.missing_value = -9999. vardpc1 = zout.createVariable('DPCloud1Logit_StdGaus','f4',['sample'], fill_value = -9999) vardpc1[:] = zdpcld1 vardpc1.long_name = 'Quantile transformed slab 1 cloud pressure depth logit' vardpc1.units = 'None' vardpc1.missing_value = -9999. vardpslb = zout.createVariable('DPSlabLogit_StdGaus','f4',['sample'], fill_value = -9999) vardpslb[:] = zdpslb vardpslb.long_name = 'Quantile transformed two-slab vertical separation logit' vardpslb.units = 'None' vardpslb.missing_value = -9999. vardpc2 = zout.createVariable('DPCloud2Logit_StdGaus','f4',['sample'], fill_value = -9999) vardpc2[:] = zdpcld2 vardpc2.long_name = 'Quantile transformed slab 2 cloud pressure depth logit' vardpc2.units = 'None' vardpc2.missing_value = -9999. vartyp1 = zout.createVariable('CType1_StdGaus','f4',['sample'], fill_value = -9999) vartyp1[:] = zctyp1 vartyp1.long_name = 'Quantile transformed slab 1 cloud type logit' vartyp1.units = 'None' vartyp1.missing_value = -9999. vartyp2 = zout.createVariable('CType2_StdGaus','f4',['sample'], fill_value = -9999) vartyp2[:] = zctyp2 vartyp2.long_name = 'Quantile transformed slab 2 cloud type' vartyp2.units = 'None' vartyp2.missing_value = -9999. varlgt1 = zout.createVariable('CFrcLogit1_StdGaus','f4',['sample'], fill_value = -9999) varlgt1[:] = zlgt1 varlgt1.long_name = 'Quantile transformed slab 1 cloud fraction logit' varlgt1.units = 'None' varlgt1.missing_value = -9999. varlgt2 = zout.createVariable('CFrcLogit2_StdGaus','f4',['sample'], fill_value = -9999) varlgt2[:] = zlgt2 varlgt2.long_name = 'Quantile transformed slab 2 cloud fraction logit' varlgt2.units = 'None' varlgt2.missing_value = -9999. varlgt12 = zout.createVariable('CFrcLogit12_StdGaus','f4',['sample'], fill_value = -9999) varlgt12[:] = zlgt12 varlgt12.long_name = 'Quantile transformed slab 1/2 overlap fraction logit' varlgt12.units = 'None' varlgt12.missing_value = -9999. varngwt1 = zout.createVariable('NGWater1_StdGaus','f4',['sample'], fill_value = -9999) varngwt1[:] = zngwt1 varngwt1.long_name = 'Quantile transformed slab 1 non-gas water' varngwt1.units = 'None' varngwt1.missing_value = -9999. varngwt2 = zout.createVariable('NGWater2_StdGaus','f4',['sample'], fill_value = -9999) varngwt2[:] = zngwt2 varngwt2.long_name = 'Quantile transformed slab 2 non-gas water' varngwt2.units = 'None' varngwt2.missing_value = -9999. varcttp1 = zout.createVariable('CTTemp1_StdGaus','f4',['sample'], fill_value = -9999) varcttp1[:] = zcttp1 varcttp1.long_name = 'Quantile transformed slab 1 cloud top temperature' varcttp1.units = 'None' varcttp1.missing_value = -9999. varcttp2 = zout.createVariable('CTTemp2_StdGaus','f4',['sample'], fill_value = -9999) varcttp2[:] = zcttp2 varcttp2.long_name = 'Quantile transformed slab 2 cloud top temperature' varcttp2.units = 'None' varcttp2.missing_value = -9999. zout.close() return # Temp/RH Quantiles def quantile_profile_locmask(airsdr, mtdr, indr, dtdr, yrlst, mnst, mnfn, hrchc, rgchc, msk): # Construct profile/sfc variable quantiles and z-scores, with a possibly irregular location mask # Read probs and pressure levels rnm = '%s/AIRS_Levels_Quantiles.nc' % (airsdr) f = Dataset(rnm,'r') plev = f['level'][:] prbs = f['probability'][:] alts = f['altitude'][:] f.close() nyr = len(yrlst) nprb = prbs.shape[0] nzout = 101 tmpqout = numpy.zeros((nzout,nprb)) - 9999. rhqout = numpy.zeros((nzout,nprb)) - 9999. sftmpqs = numpy.zeros((nprb,)) - 9999. sfaltqs = numpy.zeros((nprb,)) - 9999. psfcqs = numpy.zeros((nprb,)) - 9999. altmed = numpy.zeros((nzout,)) - 9999. # Mask, lat, lon fnm = '%s/interpolated_merra2_for_SARTA_two_slab_%d_JJA_South_Southeast_US_%02dUTC_no_vertical_variation_for_missing.nc' % (mtdr,yrlst[0],hrchc) f = Dataset(fnm,'r') mask = f[msk][:,:] latmet = f['plat'][:] lonmet = f['plon'][:] f.close() mask[mask <= 0] = 0 lnsq = numpy.arange(lonmet.shape[0]) ltsq = numpy.arange(latmet.shape[0]) # Subset a bit lnsm = numpy.sum(mask,axis=0) print(lnsq.shape) print(lnsm.shape) print(lnsm) ltsm = numpy.sum(mask,axis=1) print(ltsq.shape) print(ltsm.shape) print(ltsm) lnmn = numpy.amin(lnsq[lnsm > 0]) lnmx = numpy.amax(lnsq[lnsm > 0]) + 1 ltmn = numpy.amin(ltsq[ltsm > 0]) ltmx = numpy.amax(ltsq[ltsm > 0]) + 1 stridx = 'Lon Range: %d, %d\nLat Range: %d, %d \n' % (lnmn,lnmx,ltmn,ltmx) print(stridx) nx = lnmx - lnmn ny = ltmx - ltmn lnrp = numpy.tile(lonmet[lnmn:lnmx],ny) ltrp = numpy.repeat(latmet[ltmn:ltmx],nx) mskblk = mask[ltmn:ltmx,lnmn:lnmx] mskflt = mskblk.flatten() tsmp = 0 for k in range(nyr): dyinit = datetime.date(yrlst[k],6,1) dyst = datetime.date(yrlst[k],mnst,1) ttst = dyst.timetuple() jst = ttst.tm_yday if mnfn < 12: dyfn = datetime.date(yrlst[k],mnfn+1,1) ttfn = dyfn.timetuple() jfn = ttfn.tm_yday else: dyfn = datetime.date(yrlst[k]+1,1,1) dy31 = datetime.date(yrlst[k],12,31) tt31 = dy31.timetuple() jfn = tt31.tm_yday + 1 dystidx = abs((dyst-dyinit).days) dyfnidx = abs((dyfn-dyinit).days) jdsq = numpy.arange(jst,jfn) tmhld = numpy.repeat(jdsq,nx*ny) stridx = 'Day Range: %d, %d\n' % (dystidx,dyfnidx) print(stridx) mtnm = '%s/interpolated_merra2_for_SARTA_two_slab_%d_JJA_South_Southeast_US_%02dUTC_no_vertical_variation_for_missing.nc' % (mtdr,yrlst[k],hrchc) f = h5py.File(mtnm,'r') stparr = f['/stemp'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] psfarr = f['/spres'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] salarr = f['/salti'][ltmn:ltmx,lnmn:lnmx] f.close() nt = psfarr.shape[0] msksq1 = numpy.arange(mskflt.shape[0]) msksb1 = msksq1[mskflt > 0] mskall = numpy.tile(mskflt,nt) msksq = numpy.arange(mskall.shape[0]) msksb = msksq[mskall > 0] mskstr = 'Total Obs: %d, Within Mask: %d \n' % (msksq.shape[0],msksb.shape[0]) print(mskstr) lthld = numpy.tile(ltrp,nt) lnhld = numpy.tile(lnrp,nt) stparr = stparr.flatten() psfarr = psfarr.flatten() salarr = salarr.flatten() if tsmp == 0: sftmpout = numpy.zeros((msksb.shape[0],)) - 9999.0 sftmpout[:] = stparr[msksb] psfcout = numpy.zeros((msksb.shape[0],)) - 9999.0 psfcout[:] = psfarr[msksb] sfaltout = numpy.zeros((msksb.shape[0],)) - 9999.0 sfaltout[:] = numpy.tile(salarr[msksb1],nt) else: sftmpout = numpy.append(sftmpout,stparr[msksb]) psfcout = numpy.append(psfcout,psfarr[msksb]) sfaltout = numpy.append(sfaltout,numpy.tile(salarr[msksb1],nt)) # Loc/Time if tsmp == 0: latout = numpy.zeros((msksb.shape[0],)) - 9999.0 latout[:] = lthld[msksb] lonout = numpy.zeros((msksb.shape[0],)) - 9999.0 lonout[:] = lnhld[msksb] yrout = numpy.zeros((msksb.shape[0],),dtype=numpy.int16) yrout[:] = yrlst[k] jdyout = numpy.zeros((msksb.shape[0],),dtype=numpy.int16) jdyout[:] = tmhld[msksb] else: latout = numpy.append(latout,lthld[msksb]) lonout = numpy.append(lonout,lnhld[msksb]) yrtmp = numpy.zeros((msksb.shape[0],),dtype=numpy.int16) yrtmp[:] = yrlst[k] yrout = numpy.append(yrout,yrtmp) jdyout = numpy.append(jdyout,tmhld[msksb]) tsmp = tsmp + msksb.shape[0] # Vertical profiles tmpmerout = numpy.zeros((tsmp,nzout)) - 9999. h2omerout = numpy.zeros((tsmp,nzout)) - 9999. altout = numpy.zeros((tsmp,nzout)) - 9999. sidx = 0 for k in range(nyr): dyinit = datetime.date(yrlst[k],6,1) dyst = datetime.date(yrlst[k],mnst,1) ttst = dyst.timetuple() jst = ttst.tm_yday if mnfn < 12: dyfn = datetime.date(yrlst[k],mnfn+1,1) ttfn = dyfn.timetuple() jfn = ttfn.tm_yday else: dyfn = datetime.date(yrlst[k]+1,1,1) dy31 = datetime.date(yrlst[k],12,31) tt31 = dy31.timetuple() jfn = tt31.tm_yday + 1 dystidx = abs((dyst-dyinit).days) dyfnidx = abs((dyfn-dyinit).days) jdsq = numpy.arange(jst,jfn) tmhld = numpy.repeat(jdsq,nx*ny) stridx = 'Day Range: %d, %d\n' % (dystidx,dyfnidx) print(stridx) mtnm = '%s/interpolated_merra2_for_SARTA_two_slab_%d_JJA_South_Southeast_US_%02dUTC_no_vertical_variation_for_missing.nc' % (mtdr,yrlst[k],hrchc) f = h5py.File(mtnm,'r') tmparr = f['/ptemp'][dystidx:dyfnidx,:,ltmn:ltmx,lnmn:lnmx] h2oarr = f['/rh'][dystidx:dyfnidx,:,ltmn:ltmx,lnmn:lnmx] altarr = f['/palts'][dystidx:dyfnidx,:,ltmn:ltmx,lnmn:lnmx] f.close() nt = tmparr.shape[0] mskall = numpy.tile(mskflt,nt) msksq = numpy.arange(mskall.shape[0]) msksb = msksq[mskall > 0] lthld = numpy.tile(ltrp,nt) lnhld = numpy.tile(lnrp,nt) fidx = sidx + msksb.shape[0] for j in range(nzout): tmpvec = tmparr[:,j,:,:].flatten() tmpvec[tmpvec > 1e30] = -9999. tmpmerout[sidx:fidx,j] = tmpvec[msksb] altvec = altarr[:,j,:,:].flatten() altout[sidx:fidx,j] = altvec[msksb] h2ovec = h2oarr[:,j,:,:].flatten() h2ovec[h2ovec > 1e30] = -9999. h2omerout[sidx:fidx,j] = h2ovec[msksb] sidx = sidx + msksb.shape[0] # Quantiles ztmpout = numpy.zeros((tsmp,nzout)) - 9999. zrhout = numpy.zeros((tsmp,nzout)) - 9999. zsftmpout = numpy.zeros((tsmp,)) - 9999. zsfaltout = numpy.zeros((tsmp,)) - 9999. zpsfcout = numpy.zeros((tsmp,)) - 9999. for j in range(nzout): tmptmp = calculate_VPD.quantile_msgdat(tmpmerout[:,j],prbs) tmpqout[j,:] = tmptmp[:] str1 = 'Plev %.2f, %.2f Temp Quantile: %.3f' % (plev[j],prbs[103],tmptmp[103]) print(str1) # Transform ztmp = calculate_VPD.std_norm_quantile_from_obs(tmpmerout[:,j], tmptmp, prbs, msgval=-9999.) ztmpout[:,j] = ztmp[:] alttmp = calculate_VPD.quantile_msgdat(altout[:,j],prbs) altmed[j] = alttmp[103] str1 = 'Plev %.2f, %.2f Alt Quantile: %.3f' % (plev[j],prbs[103],alttmp[103]) print(str1) # Adjust RH over 100 rhadj = h2omerout[:,j] rhadj[rhadj > 1.0] = 1.0 rhqtmp = calculate_VPD.quantile_msgdat(rhadj,prbs) rhqout[j,:] = rhqtmp[:] str1 = 'Plev %.2f, %.2f RH Quantile: %.4f' % (plev[j],prbs[103],rhqtmp[103]) print(str1) zrh = calculate_VPD.std_norm_quantile_from_obs(rhadj, rhqtmp, prbs, msgval=-9999.) zrhout[:,j] = zrh[:] psfcqs = calculate_VPD.quantile_msgdat(psfcout,prbs) str1 = '%.2f PSfc Quantile: %.2f' % (prbs[103],psfcqs[103]) print(str1) zpsfcout = calculate_VPD.std_norm_quantile_from_obs(psfcout, psfcqs, prbs, msgval=-9999.) sftpqs = calculate_VPD.quantile_msgdat(sftmpout,prbs) str1 = '%.2f SfcTmp Quantile: %.2f' % (prbs[103],sftpqs[103]) print(str1) zsftmpout = calculate_VPD.std_norm_quantile_from_obs(sftmpout, sftpqs, prbs, msgval=-9999.) sfalqs = calculate_VPD.quantile_msgdat(sfaltout,prbs) str1 = '%.2f SfcAlt Quantile: %.2f' % (prbs[103],sfalqs[103]) print(str1) zsfaltout = calculate_VPD.std_norm_quantile_from_obs(sfaltout, sfalqs, prbs, msgval=-9999.) # Output Quantiles mstr = dyst.strftime('%b') qfnm = '%s/%s_US_JJA_%02dUTC_%04d_TempRHSfc_Quantile.nc' % (dtdr,rgchc,hrchc,yrlst[k]) qout = Dataset(qfnm,'w') dimz = qout.createDimension('level',nzout) dimp = qout.createDimension('probability',nprb) varlvl = qout.createVariable('level','f4',['level'], fill_value = -9999) varlvl[:] = plev varlvl.long_name = 'AIRS/SARTA pressure levels' varlvl.units = 'hPa' varlvl.missing_value = -9999 varprb = qout.createVariable('probability','f4',['probability'], fill_value = -9999) varprb[:] = prbs varprb.long_name = 'Probability break points' varprb.units = 'none' varprb.missing_value = -9999 # Altitude grid varalt = qout.createVariable('Altitude_median', 'f4', ['level'], fill_value = -9999) varalt[:] = altmed varalt.long_name = 'Altitude median value' varalt.units = 'm' varalt.missing_value = -9999 vartmp = qout.createVariable('Temperature_quantile', 'f4', ['level','probability'], fill_value = -9999) vartmp[:] = tmpqout vartmp.long_name = 'Temperature quantiles' vartmp.units = 'K' vartmp.missing_value = -9999. varrh = qout.createVariable('RH_quantile', 'f4', ['level','probability'], fill_value = -9999) varrh[:] = rhqout varrh.long_name = 'Relative humidity quantiles' varrh.units = 'Unitless' varrh.missing_value = -9999. varstmp = qout.createVariable('SfcTemp_quantile', 'f4', ['probability'], fill_value = -9999) varstmp[:] = sftpqs varstmp.long_name = 'Surface temperature quantiles' varstmp.units = 'K' varstmp.missing_value = -9999. varpsfc = qout.createVariable('SfcPres_quantile', 'f4', ['probability'], fill_value = -9999) varpsfc[:] = psfcqs varpsfc.long_name = 'Surface pressure quantiles' varpsfc.units = 'hPa' varpsfc.missing_value = -9999. varsalt = qout.createVariable('SfcAlt_quantile', 'f4', ['probability'], fill_value = -9999) varsalt[:] = sfalqs varsalt.long_name = 'Surface altitude quantiles' varsalt.units = 'm' varsalt.missing_value = -9999. qout.close() # Output transformed quantile samples zfnm = '%s/%s_US_JJA_%02dUTC_%04d_TempRHSfc_StdGausTrans.nc' % (dtdr,rgchc,hrchc,yrlst[k]) zout = Dataset(zfnm,'w') dimz = zout.createDimension('level',nzout) dimsmp = zout.createDimension('sample',tsmp) varlvl = zout.createVariable('level','f4',['level'], fill_value = -9999) varlvl[:] = plev varlvl.long_name = 'AIRS/SARTA pressure levels' varlvl.units = 'hPa' varlvl.missing_value = -9999 varlon = zout.createVariable('Longitude','f4',['sample']) varlon[:] = lonout varlon.long_name = 'Longitude' varlon.units = 'degrees_east' varlat = zout.createVariable('Latitude','f4',['sample']) varlat[:] = latout varlat.long_name = 'Latitude' varlat.units = 'degrees_north' varjdy = zout.createVariable('JulianDay','i2',['sample']) varjdy[:] = jdyout varjdy.long_name = 'JulianDay' varjdy.units = 'day' varyr = zout.createVariable('Year','i2',['sample']) varyr[:] = yrout varyr.long_name = 'Year' varyr.units = 'year' varsrt3 = zout.createVariable('Temperature_StdGaus', 'f4', ['sample','level'], fill_value = -9999) varsrt3[:] = ztmpout varsrt3.long_name = 'Quantile transformed temperature' varsrt3.units = 'None' varsrt3.missing_value = -9999. varsrt4 = zout.createVariable('RH_StdGaus', 'f4', ['sample','level'], fill_value = -9999) varsrt4[:] = zrhout varsrt4.long_name = 'Quantile transformed relative humidity' varsrt4.units = 'None' varsrt4.missing_value = -9999. varsrts1 = zout.createVariable('SfcTemp_StdGaus', 'f4', ['sample'], fill_value = -9999) varsrts1[:] = zsftmpout varsrts1.long_name = 'Quantile transformed surface temperature' varsrts1.units = 'None' varsrts1.missing_value = -9999. varsrts2 = zout.createVariable('SfcPres_StdGaus', 'f4', ['sample'], fill_value = -9999) varsrts2[:] = zpsfcout varsrts2.long_name = 'Quantile transformed surface pressure' varsrts2.units = 'None' varsrts2.missing_value = -9999. varsrts3 = zout.createVariable('SfcAlt_StdGaus', 'f4', ['sample'], fill_value = -9999) varsrts3[:] = zsfaltout varsrts3.long_name = 'Quantile transformed surface pressure' varsrts3.units = 'None' varsrts3.missing_value = -9999. zout.close() return def expt_near_sfc_summary(inpdr, outdr, expfl, qclrfl, outfnm): # Produce experiment near-surface summaries # inpdr: Name of input directory # outdr: Name of output directory # expfl: Name of file with experiment results # qclrfl: Input quantile file # outfnm: Ouptut file name nzairs = 100 nzsrt = 101 # Read simulation results f = h5py.File(expfl,'r') tmprtr = f['airs_ptemp'][:,:] h2ortr = f['airs_h2o'][:,:] tqflg = f['airs_ptemp_qc'][:,:] hqflg = f['airs_h2o_qc'][:,:] tmpsrt = f['ptemp'][:,1:nzsrt] h2osrt = f['gas_1'][:,1:nzsrt] psfc = f['spres'][:] lvs = f['level'][1:nzsrt] f.close() nszout = tmprtr.shape[0] tqflg = tqflg.astype(numpy.int16) hqflg = hqflg.astype(numpy.int16) # Altitude info qin = Dataset(qclrfl,'r') alts = qin['Altitude_median'][:] qin.close() alth2o = numpy.zeros((nszout,nzsrt)) alth2o[:,nzsrt-4] = alts[nzsrt-4] curdlt = 0.0 for j in range(nzsrt-5,-1,-1): #str1 = 'Level %d: %.4f' % (j,curdlt) #print(str1) if (alts[j] > alts[j+1]): curdlt = alts[j] - alts[j+1] alth2o[:,j] = alts[j] else: alth2o[:,j] = alts[j+1] + curdlt * 2.0 curdlt = curdlt * 2.0 alth2o[:,97] = 0.0 tsfcsrt = calculate_VPD.near_sfc_temp(tmpsrt, lvs, psfc, passqual = False, qual = None) print(tsfcsrt[0:10]) tsfcrtr, tqflgsfc = calculate_VPD.near_sfc_temp(tmprtr, lvs, psfc, passqual = True, qual = tqflg) print(tsfcrtr[0:10]) print(tqflgsfc[0:10]) qvsrt, rhsrt, vpdsrt = calculate_VPD.calculate_QV_and_VPD(h2osrt,tmpsrt,lvs,alth2o[:,1:nzsrt]) qvrtr, rhrtr, vpdrtr = calculate_VPD.calculate_QV_and_VPD(h2ortr,tmprtr,lvs,alth2o[:,1:nzsrt]) qsfsrt, rhsfsrt = calculate_VPD.near_sfc_qv_rh(qvsrt, tsfcsrt, lvs, psfc, passqual = False, qual = None) qsfrtr, rhsfrtr, qflgsfc = calculate_VPD.near_sfc_qv_rh(qvrtr, tsfcrtr, lvs, psfc, passqual = True, qual = hqflg) print(tqflgsfc.dtype) print(qflgsfc.dtype) # Output: Sfc Temp and qflg, SfC QV, RH and qflg fldbl = numpy.array([-9999.],dtype=numpy.float64) flflt = numpy.array([-9999.],dtype=numpy.float32) flshrt = numpy.array([-99],dtype=numpy.int16) #outfnm = '%s/MAGIC_%s_%s_%02dUTC_SR%02d_Sfc_UQ_Output.h5' % (outdr,rgchc,mnchc,hrchc,scnrw) f = h5py.File(outfnm,'w') dft1 = f.create_dataset('TSfcAir_True',data=tsfcsrt) dft1.attrs['missing_value'] = fldbl dft1.attrs['_FillValue'] = fldbl dft2 = f.create_dataset('TSfcAir_Retrieved',data=tsfcrtr) dft2.attrs['missing_value'] = fldbl dft2.attrs['_FillValue'] = fldbl dft3 = f.create_dataset('TSfcAir_QC',data=tqflgsfc) dfq1 = f.create_dataset('QVSfcAir_True',data=qsfsrt) dfq1.attrs['missing_value'] = fldbl dfq1.attrs['_FillValue'] = fldbl dfq2 = f.create_dataset('QVSfcAir_Retrieved',data=qsfrtr) dfq2.attrs['missing_value'] = fldbl dfq2.attrs['_FillValue'] = fldbl dfq3 = f.create_dataset('RHSfcAir_True',data=rhsfsrt) dfq3.attrs['missing_value'] = fldbl dfq3.attrs['_FillValue'] = fldbl dfq4 = f.create_dataset('RHSfcAir_Retrieved',data=rhsfrtr) dfq4.attrs['missing_value'] = fldbl dfq4.attrs['_FillValue'] = fldbl dfq5 = f.create_dataset('RHSfcAir_QC',data=qflgsfc) dfp1 = f.create_dataset('SfcPres',data=psfc) dfp1.attrs['missing_value'] = fldbl dfp1.attrs['_FillValue'] = fldbl f.close() return def quantile_cfrac_locmask_conus(rfdr, mtdr, csdr, airdr, dtdr, yrlst, mnst, mnfn, hrchc, rgchc, mskvr, mskvl): # Construct cloud variable quantiles and z-scores, with a possibly irregular location mask # rfdr: Directory for reference data (Levels/Quantiles) # mtdr: Directory for MERRA data # csdr: Directory for cloud slab data # airdr: Directory for AIRS cloud fraction # dtdr: Output directory # yrlst: List of years to process # mnst: Starting Month # mnfn: Ending Month # hrchc: Template Hour Choice # rgchc: Template Region Choice # mskvr: Name of region mask variable # mskvl: Value of region mask for Region Choice # Read probs and pressure levels rnm = '%s/AIRS_Levels_Quantiles.nc' % (rfdr) f = Dataset(rnm,'r') plev = f['level'][:] prbs = f['probability'][:] alts = f['altitude'][:] f.close() nyr = len(yrlst) nprb = prbs.shape[0] # RN generator sdchc = 542354 + yrlst[0] + hrchc random.seed(sdchc) # Mask, lat, lon fnm = '%s/interpolated_merra2_for_SARTA_two_slab_%d_JJA_CONUS_with_NCA_regions_%02dUTC_no_vertical_variation_for_missing.nc' % (mtdr,yrlst[0],hrchc) f = Dataset(fnm,'r') mask = f.variables[mskvr][:,:] latmet = f.variables['plat'][:] lonmet = f.variables['plon'][:] tminf = f.variables['time'][:] tmunit = f.variables['time'].units[:] f.close() mskind = numpy.zeros((mask.shape),dtype=mask.dtype) print(mskvl) mskind[mask == mskvl] = 1 lnsq = numpy.arange(lonmet.shape[0]) ltsq = numpy.arange(latmet.shape[0]) # Subset a bit lnsm = numpy.sum(mskind,axis=0) #print(lnsq.shape) #print(lnsm.shape) #print(lnsm) ltsm = numpy.sum(mskind,axis=1) #print(ltsq.shape) #print(ltsm.shape) #print(ltsm) lnmn = numpy.amin(lnsq[lnsm > 0]) lnmx = numpy.amax(lnsq[lnsm > 0]) + 1 ltmn = numpy.amin(ltsq[ltsm > 0]) ltmx = numpy.amax(ltsq[ltsm > 0]) + 1 stridx = 'Lon Range: %d, %d\nLat Range: %d, %d \n' % (lnmn,lnmx,ltmn,ltmx) print(stridx) nx = lnmx - lnmn ny = ltmx - ltmn lnrp = numpy.tile(lonmet[lnmn:lnmx],ny) ltrp = numpy.repeat(latmet[ltmn:ltmx],nx) mskblk = mskind[ltmn:ltmx,lnmn:lnmx] mskflt = mskblk.flatten() tsmp = 0 for k in range(nyr): fnm = '%s/interpolated_merra2_for_SARTA_two_slab_%d_JJA_CONUS_with_NCA_regions_%02dUTC_no_vertical_variation_for_missing.nc' % (mtdr,yrlst[k],hrchc) f = Dataset(fnm,'r') tminf = f.variables['time'][:] tmunit = f.variables['time'].units[:] f.close() tmunit = tmunit.replace("days since ","") dybs = datetime.datetime.strptime(tmunit,"%Y-%m-%d %H:%M:%S") print(dybs) dy0 = dybs + datetime.timedelta(days=tminf[0]) dyinit = datetime.date(dy0.year,dy0.month,dy0.day) print(dyinit) dyst = datetime.date(yrlst[k],mnst,1) ttst = dyst.timetuple() jst = ttst.tm_yday if mnfn < 12: dyfn = datetime.date(yrlst[k],mnfn+1,1) ttfn = dyfn.timetuple() jfn = ttfn.tm_yday else: dyfn = datetime.date(yrlst[k]+1,1,1) dy31 = datetime.date(yrlst[k],12,31) tt31 = dy31.timetuple() jfn = tt31.tm_yday + 1 dystidx = abs((dyst-dyinit).days) dyfnidx = abs((dyfn-dyinit).days) jdsq = numpy.arange(jst,jfn) print(jdsq) tmhld = numpy.repeat(jdsq,nx*ny) #print(tmhld.shape) #print(numpy.amin(tmhld)) #print(numpy.amax(tmhld)) stridx = 'Day Range: %d, %d\n' % (dystidx,dyfnidx) print(stridx) fnm = '%s/interpolated_merra2_for_SARTA_two_slab_%d_JJA_CONUS_with_NCA_regions_%02dUTC_no_vertical_variation_for_missing_IncludesCloudParams.h5' % (csdr,yrlst[k],hrchc) f = h5py.File(fnm,'r') tms = f['/time'][:,dystidx:dyfnidx] ctyp1 = f['/ctype'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] ctyp2 = f['/ctype2'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cprt1 = f['/cprtop'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cprt2 = f['/cprtop2'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cprb1 = f['/cprbot'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cprb2 = f['/cprbot2'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cfrc1 = f['/cfrac'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cfrc2 = f['/cfrac2'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cfrc12 = f['/cfrac12'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cngwt1 = f['/cngwat'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cngwt2 = f['/cngwat2'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cttp1 = f['/cstemp'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] cttp2 = f['/cstemp2'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] f.close() tmflt = tms.flatten() nt = tmflt.shape[0] lnhld = numpy.tile(lnrp,nt) lthld = numpy.tile(ltrp,nt) mtnm = '%s/interpolated_merra2_for_SARTA_two_slab_%d_JJA_CONUS_with_NCA_regions_%02dUTC_no_vertical_variation_for_missing.nc' % (mtdr,yrlst[k],hrchc) f = Dataset(mtnm,'r') psfc = f.variables['spres'][dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] f.close() nt = ctyp1.shape[0] mskall = numpy.tile(mskflt,nt) msksq = numpy.arange(mskall.shape[0]) msksb = msksq[mskall > 0] mskstr = 'Total Obs: %d, Within Mask: %d \n' % (msksq.shape[0],msksb.shape[0]) print(mskstr) # lthld = numpy.tile(ltrp,nt) # lnhld = numpy.tile(lnrp,nt) nslbtmp = numpy.zeros((ctyp1.shape),dtype=numpy.int16) nslbtmp[(ctyp1 > 100) & (ctyp2 > 100)] = 2 nslbtmp[(ctyp1 > 100) & (ctyp2 < 100)] = 1 # AIRS clouds anm = '%s/CONUS_AIRS_CldFrc_Match_JJA_%d_%02d_UTC.nc' % (airdr,yrlst[k],hrchc) f = Dataset(anm,'r') arsfrc1 = f.variables['AIRS_CldFrac_1'][:,dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] arsfrc2 = f.variables['AIRS_CldFrac_2'][:,dystidx:dyfnidx,ltmn:ltmx,lnmn:lnmx] f.close() # Sum frctot = arsfrc1 + arsfrc2 # Construct Clr/PC/Ovc indicator for AIRS total cloud frac totclr = numpy.zeros(frctot.shape,dtype=numpy.int16) totclr[frctot == 0.0] = -1 totclr[frctot == 1.0] = 1 totclr = ma.masked_array(totclr, mask = frctot.mask) frc0 = frctot[0,:,:,:] frc0 = frc0.flatten() frcsq = numpy.arange(tmhld.shape[0]) # Subset by AIRS matchup and location masks frcsb = frcsq[(numpy.logical_not(frc0.mask)) & (mskall > 0)] nairs = frcsb.shape[0] print(tmhld.shape) print(frcsb.shape) ctyp1 = ctyp1.flatten() ctyp2 = ctyp2.flatten() nslbtmp = nslbtmp.flatten() cngwt1 = cngwt1.flatten() cngwt2 = cngwt2.flatten() cttp1 = cttp1.flatten() cttp2 = cttp2.flatten() psfc = psfc.flatten() # Number of slabs if tsmp == 0: nslabout = numpy.zeros((nairs,),dtype=numpy.int16) nslabout[:] = nslbtmp[frcsb] else: nslabout = numpy.append(nslabout,nslbtmp[frcsb]) # For two slabs, slab 1 must have highest cloud bottom pressure cprt1 = cprt1.flatten() cprt2 = cprt2.flatten() cprb1 = cprb1.flatten() cprb2 = cprb2.flatten() slabswap = numpy.zeros((ctyp1.shape[0],),dtype=numpy.int16) swpsq = frcsq[(nslbtmp == 2) & (cprb1 < cprb2)] slabswap[swpsq] = 1 # Cloud Pressure variables pbttmp1 = numpy.zeros((ctyp1.shape[0],)) - 9999.0 pbttmp1[nslbtmp >= 1] = cprb1[nslbtmp >= 1] pbttmp1[swpsq] = cprb2[swpsq] ptptmp1 = numpy.zeros((ctyp1.shape[0],)) - 9999.0 ptptmp1[nslbtmp >= 1] = cprt1[nslbtmp >= 1] ptptmp1[swpsq] = cprt2[swpsq] pbttmp2 = numpy.zeros((ctyp1.shape[0],)) - 9999.0 pbttmp2[nslbtmp == 2] = cprb2[nslbtmp == 2] pbttmp2[swpsq] = cprb1[swpsq] ptptmp2 = numpy.zeros((ctyp1.shape[0],)) - 9999.0 ptptmp2[nslbtmp == 2] = cprt2[nslbtmp == 2] ptptmp2[swpsq] = cprt1[swpsq] # DP Cloud transformation dptmp1 = numpy.zeros((ctyp1.shape[0],)) - 9999.0 dptmp1[nslbtmp >= 1] = pbttmp1[nslbtmp >= 1] - ptptmp1[nslbtmp >= 1] dpslbtmp = numpy.zeros((ctyp1.shape[0],)) - 9999.0 dpslbtmp[nslbtmp == 2] = ptptmp1[nslbtmp == 2] - pbttmp2[nslbtmp == 2] dptmp2 = numpy.zeros((ctyp1.shape[0],)) - 9999.0 dptmp2[nslbtmp == 2] = pbttmp2[nslbtmp == 2] - ptptmp2[nslbtmp == 2] # Adjust negative DPSlab values dpnsq = frcsq[(nslbtmp == 2) & (dpslbtmp < 0.0) & (dpslbtmp > -1000.0)] dpadj = numpy.zeros((ctyp1.shape[0],)) dpadj[dpnsq] = numpy.absolute(dpslbtmp[dpnsq]) dpslbtmp[dpnsq] = 1.0 dptmp1[dpnsq] = dptmp1[dpnsq] / 2.0 dptmp2[dpnsq] = dptmp2[dpnsq] / 2.0 # Sigma / Logit Adjustments zpbtmp = numpy.zeros((psfc.shape[0],)) - 9999.0 zdp1tmp = numpy.zeros((psfc.shape[0],)) - 9999.0 zdslbtmp = numpy.zeros((psfc.shape[0],)) - 9999.0 zdp2tmp = numpy.zeros((psfc.shape[0],)) - 9999.0 ncldct = 0 for t in range(psfc.shape[0]): if ( (pbttmp1[t] >= 0.0) and (dpslbtmp[t] >= 0.0) ): prptmp = numpy.array( [ (psfc[t] - pbttmp1[t]) / psfc[t], \ dptmp1[t] / psfc[t], dpslbtmp[t] / psfc[t], \ dptmp2[t] / psfc[t], 0.0 ] ) if (prptmp[0] < 0.0): # Adjustment needed prpadj = prptmp[0] prptmp[0] = 0.01 prptmp[1] = prptmp[1] + prpadj*prptmp[1] prptmp[2] = prptmp[2] + prpadj*prptmp[2] prptmp[3] = prptmp[3] + prpadj*prptmp[3] ncldct = ncldct + 1 elif (prptmp[0] == 0.0): # Adjustment needed prpadj = -0.01 prptmp[0] = 0.01 prptmp[1] = prptmp[1] + prpadj*prptmp[1] prptmp[2] = prptmp[2] + prpadj*prptmp[2] prptmp[3] = prptmp[3] + prpadj*prptmp[3] ncldct = ncldct + 1 prptmp[4] = 1.0 - prptmp[0] - prptmp[1] - prptmp[2] - prptmp[3] ztmp = calculate_VPD.lgtzs(prptmp) zpbtmp[t] = ztmp[0] zdp1tmp[t] = ztmp[1] zdslbtmp[t] = ztmp[2] zdp2tmp[t] = ztmp[3] elif ( pbttmp1[t] >= 0.0 ): prptmp = numpy.array( [ (psfc[t] - pbttmp1[t]) / psfc[t], \ dptmp1[t] / psfc[t], 0.0 ] ) if (prptmp[0] < 0.0): # Adjustment needed prpadj = prptmp[0] prptmp[0] = 0.01 prptmp[1] = prptmp[1] + prpadj*prptmp[1] ncldct = ncldct + 1 elif (prptmp[0] == 0.0): # Adjustment needed prpadj = -0.01 prptmp[0] = 0.01 prptmp[1] = prptmp[1] + prpadj*prptmp[1] ncldct = ncldct + 1 prptmp[2] = 1.0 - prptmp[0] - prptmp[1] ztmp = calculate_VPD.lgtzs(prptmp) zpbtmp[t] = ztmp[0] zdp1tmp[t] = ztmp[1] zdslbtmp[t] = -9999.0 zdp2tmp[t] = -9999.0 else: zpbtmp[t] = -9999.0 zdp1tmp[t] = -9999.0 zdslbtmp[t] = -9999.0 zdp2tmp[t] = -9999.0 str1 = 'Cloud Bot Pres Below Sfc: %d ' % (ncldct) print(str1) if tsmp == 0: psfcout = numpy.zeros((frcsb.shape[0],)) - 9999.0 psfcout[:] = psfc[frcsb] prsbot1out = numpy.zeros((frcsb.shape[0],)) - 9999.0 prsbot1out[:] = zpbtmp[frcsb] dpcld1out = numpy.zeros((frcsb.shape[0],)) - 9999.0 dpcld1out[:] = zdp1tmp[frcsb] dpslbout = numpy.zeros((frcsb.shape[0],)) - 9999.0 dpslbout[:] = zdslbtmp[frcsb] dpcld2out = numpy.zeros((frcsb.shape[0],)) - 9999.0 dpcld2out[:] = zdp2tmp[frcsb] else: psfcout = numpy.append(psfcout,psfc[frcsb]) prsbot1out = numpy.append(prsbot1out,zpbtmp[frcsb]) dpcld1out = numpy.append(dpcld1out,zdp1tmp[frcsb]) dpslbout = numpy.append(dpslbout,zdslbtmp[frcsb]) dpcld2out = numpy.append(dpcld2out,zdp2tmp[frcsb]) # Slab Types: 101.0 = Liquid, 201.0 = Ice, None else # Output: 0 = Liquid, 1 = Ice typtmp1 = numpy.zeros((ctyp1.shape[0],),dtype=numpy.int16) - 99 typtmp1[nslbtmp >= 1] = (ctyp1[nslbtmp >= 1] - 1.0) / 100.0 - 1.0 typtmp1[swpsq] = (ctyp2[swpsq] - 1.0) / 100.0 - 1.0 typtmp2 = numpy.zeros((ctyp1.shape[0],),dtype=numpy.int16) - 99 typtmp2[nslbtmp == 2] = (ctyp2[nslbtmp == 2] - 1.0) / 100.0 - 1.0 typtmp2[swpsq] = (ctyp1[swpsq] - 1.0) / 100.0 - 1.0 if tsmp == 0: slbtyp1out = numpy.zeros((frcsb.shape[0],),dtype=numpy.int16) slbtyp1out[:] = typtmp1[frcsb] slbtyp2out = numpy.zeros((frcsb.shape[0],),dtype=numpy.int16) slbtyp2out[:] = typtmp2[frcsb] else: slbtyp1out = numpy.append(slbtyp1out,typtmp1[frcsb]) slbtyp2out = numpy.append(slbtyp2out,typtmp2[frcsb]) # Cloud Cover Indicators totclrtmp = numpy.zeros((frcsb.shape[0],3,3),dtype=numpy.int16) cctr = 0 for frw in range(3): for fcl in range(3): clrvec = totclr[cctr,:,:,:].flatten() totclrtmp[:,frw,fcl] = clrvec[frcsb] cctr = cctr + 1 if tsmp == 0: totclrout = numpy.zeros(totclrtmp.shape,dtype=numpy.int16) totclrout[:,:,:] = totclrtmp else: totclrout = numpy.append(totclrout,totclrtmp,axis=0) # Cloud Fraction Logit, still account for swapping z1tmp = numpy.zeros((frcsb.shape[0],3,3)) - 9999.0 z2tmp = numpy.zeros((frcsb.shape[0],3,3)) - 9999.0 z12tmp = numpy.zeros((frcsb.shape[0],3,3)) - 9999.0 # Cloud Fraction cctr = 0 for frw in range(3): for fcl in range(3): frcvect = frctot[cctr,:,:,:].flatten() frcvec1 = arsfrc1[cctr,:,:,:].flatten() frcvec2 = arsfrc2[cctr,:,:,:].flatten() # Quick fix for totals over 1.0 fvsq = numpy.arange(frcvect.shape[0]) fvsq2 = fvsq[frcvect > 1.0] frcvect[fvsq2] = frcvect[fvsq2] / 1.0 frcvec1[fvsq2] = frcvec1[fvsq2] / 1.0 frcvec2[fvsq2] = frcvec2[fvsq2] / 1.0 for t in range(nairs): crslb = nslbtmp[frcsb[t]] crclr = totclrtmp[t,frw,fcl] if ( (crslb == 0) or (crclr == -1) ): z1tmp[t,frw,fcl] = -9999.0 z2tmp[t,frw,fcl] = -9999.0 z12tmp[t,frw,fcl] = -9999.0 elif ( (crslb == 1) and (crclr == 1) ): z1tmp[t,frw,fcl] = -9999.0 z2tmp[t,frw,fcl] = -9999.0 z12tmp[t,frw,fcl] = -9999.0 elif ( (crslb == 1) and (crclr == 0) ): prptmp = numpy.array( [frcvect[frcsb[t]], 1.0 - frcvect[frcsb[t]] ] ) ztmp = calculate_VPD.lgtzs(prptmp) z1tmp[t,frw,fcl] = ztmp[0] z2tmp[t,frw,fcl] = -9999.0 z12tmp[t,frw,fcl] = -9999.0 # For 2 slabs, recall AIRS cloud layers go upper/lower, ours is opposite # Also apply random overlap adjust AIRS zero values elif ( (crslb == 2) and (crclr == 0) ): frcs = numpy.array([frcvec2[frcsb[t]],frcvec1[frcsb[t]]]) if (numpy.sum(frcs) < 0.01): frcs[0] = 0.005 frcs[1] = 0.005 elif frcs[0] < 0.005: frcs[0] = 0.005 frcs[1] = frcs[1] - 0.005 elif frcs[1] < 0.005: frcs[1] = 0.005 frcs[0] = frcs[0] - 0.005 mnfrc = numpy.amin(frcs) c12tmp = random.uniform(0.0,mnfrc,size=1) prptmp = numpy.array( [frcs[0] - c12tmp[0]*frcs[1], \ frcs[1] - c12tmp[0]*frcs[0], c12tmp[0], 0.0]) prptmp[3] = 1.0 - prptmp[0] - prptmp[1] - prptmp[2] ztmp = calculate_VPD.lgtzs(prptmp) z1tmp[t,frw,fcl] = ztmp[0] z2tmp[t,frw,fcl] = ztmp[1] z12tmp[t,frw,fcl] = ztmp[2] elif ( (crslb == 2) and (crclr == 1) ): frcs = numpy.array([frcvec2[frcsb[t]],frcvec1[frcsb[t]]]) if frcs[0] < 0.005: frcs[0] = 0.005 frcs[1] = frcs[1] - 0.005 elif frcs[1] < 0.005: frcs[1] = 0.005 frcs[0] = frcs[0] - 0.005 mnfrc = numpy.amin(frcs) c12tmp = random.uniform(0.0,mnfrc,size=1) prptmp = numpy.array( [0.999 * (frcs[0] - c12tmp[0]*frcs[1]), \ 0.999 * (frcs[1] - c12tmp[0]*frcs[0]), 0.999 * c12tmp[0], 0.001]) prptmp[3] = 1.0 - prptmp[0] - prptmp[1] - prptmp[2] ztmp = calculate_VPD.lgtzs(prptmp) z1tmp[t,frw,fcl] = ztmp[0] z2tmp[t,frw,fcl] = ztmp[1] z12tmp[t,frw,fcl] = ztmp[2] cctr = cctr + 1 if tsmp == 0: cfclgt1out = numpy.zeros(z1tmp.shape) cfclgt1out[:,:,:] = z1tmp cfclgt2out = numpy.zeros(z2tmp.shape) cfclgt2out[:,:,:] = z2tmp cfclgt12out = numpy.zeros(z12tmp.shape) cfclgt12out[:,:,:] = z12tmp else: cfclgt1out = numpy.append(cfclgt1out,z1tmp,axis=0) cfclgt2out = numpy.append(cfclgt2out,z2tmp,axis=0) cfclgt12out = numpy.append(cfclgt12out,z12tmp,axis=0) # Cloud Non-Gas Water ngwttmp1 = numpy.zeros(cngwt1.shape[0]) - 9999.0 ngwttmp1[nslbtmp >= 1] = cngwt1[nslbtmp >= 1] ngwttmp1[swpsq] = cngwt2[swpsq] ngwttmp2 = numpy.zeros(cngwt1.shape[0]) - 9999.0 ngwttmp2[nslbtmp == 2] = cngwt2[nslbtmp == 2] ngwttmp2[swpsq] = cngwt1[swpsq] if tsmp == 0: ngwt1out = numpy.zeros((frcsb.shape[0],)) - 9999.0 ngwt1out[:] = ngwttmp1[frcsb] ngwt2out = numpy.zeros((frcsb.shape[0],)) - 9999.0 ngwt2out[:] = ngwttmp2[frcsb] else: ngwt1out = numpy.append(ngwt1out,ngwttmp1[frcsb]) ngwt2out = numpy.append(ngwt2out,ngwttmp2[frcsb]) # Cloud Top Temperature cttptmp1 = numpy.zeros(cttp1.shape[0]) - 9999.0 cttptmp1[nslbtmp >= 1] = cttp1[nslbtmp >= 1] cttptmp1[swpsq] = cttp2[swpsq] cttptmp2 = numpy.zeros(cttp1.shape[0]) - 9999.0 cttptmp2[nslbtmp == 2] = cttp2[nslbtmp == 2] cttptmp2[swpsq] = cttp1[swpsq] if tsmp == 0: cttp1out = numpy.zeros((frcsb.shape[0],)) - 9999.0 cttp1out[:] = cttptmp1[frcsb] cttp2out = numpy.zeros((frcsb.shape[0],)) - 9999.0 cttp2out[:] = cttptmp2[frcsb] else: cttp1out = numpy.append(cttp1out,cttptmp1[frcsb]) cttp2out = numpy.append(cttp2out,cttptmp2[frcsb]) # Loc/Time if tsmp == 0: latout = numpy.zeros((frcsb.shape[0],)) - 9999.0 latout[:] = lthld[frcsb] lonout = numpy.zeros((frcsb.shape[0],)) - 9999.0 lonout[:] = lnhld[frcsb] yrout = numpy.zeros((frcsb.shape[0],),dtype=numpy.int16) yrout[:] = yrlst[k] jdyout = numpy.zeros((frcsb.shape[0],),dtype=numpy.int16) jdyout[:] = tmhld[frcsb] else: latout = numpy.append(latout,lthld[frcsb]) lonout = numpy.append(lonout,lnhld[frcsb]) yrtmp = numpy.zeros((frcsb.shape[0],),dtype=numpy.int16) yrtmp[:] = yrlst[k] yrout = numpy.append(yrout,yrtmp) jdyout = numpy.append(jdyout,tmhld[frcsb]) tsmp = tsmp + nairs # Process quantiles nslbqs = calculate_VPD.quantile_msgdat_discrete(nslabout,prbs) str1 = '%.2f Number Slab Quantile: %d' % (prbs[103],nslbqs[103]) print(str1) print(nslbqs) # psfcqs = calculate_VPD.quantile_msgdat(psfcout,prbs) # str1 = '%.2f Surface Pressure Quantile: %.3f' % (prbs[53],psfcqs[53]) # print(str1) prsbt1qs = calculate_VPD.quantile_msgdat(prsbot1out,prbs) str1 = '%.2f CldBot1 Pressure Quantile: %.3f' % (prbs[103],prsbt1qs[103]) print(str1) dpcld1qs = calculate_VPD.quantile_msgdat(dpcld1out,prbs) str1 = '%.2f DPCloud1 Quantile: %.3f' % (prbs[103],dpcld1qs[103]) print(str1) dpslbqs = calculate_VPD.quantile_msgdat(dpslbout,prbs) str1 = '%.2f DPSlab Quantile: %.3f' % (prbs[103],dpslbqs[103]) print(str1) dpcld2qs = calculate_VPD.quantile_msgdat(dpcld2out,prbs) str1 = '%.2f DPCloud2 Quantile: %.3f' % (prbs[103],dpcld2qs[103]) print(str1) slb1qs = calculate_VPD.quantile_msgdat_discrete(slbtyp1out,prbs) str1 = '%.2f Type1 Quantile: %d' % (prbs[103],slb1qs[103]) print(str1) slb2qs = calculate_VPD.quantile_msgdat_discrete(slbtyp2out,prbs) str1 = '%.2f Type2 Quantile: %d' % (prbs[103],slb2qs[103]) print(str1) # Indicators totclrqout = numpy.zeros((3,3,nprb)) - 99 lgt1qs = numpy.zeros((3,3,nprb)) - 9999.0 lgt2qs = numpy.zeros((3,3,nprb)) - 9999.0 lgt12qs = numpy.zeros((3,3,nprb)) - 9999.0 for frw in range(3): for fcl in range(3): tmpclr = calculate_VPD.quantile_msgdat_discrete(totclrout[:,frw,fcl],prbs) totclrqout[frw,fcl,:] = tmpclr[:] str1 = 'Clr/Ovc Indicator %d, %d %.2f Quantile: %d' % (frw,fcl,prbs[103],tmpclr[103]) print(str1) tmplgtq = calculate_VPD.quantile_msgdat(cfclgt1out[:,frw,fcl],prbs) lgt1qs[frw,fcl,:] = tmplgtq[:] tmplgtq = calculate_VPD.quantile_msgdat(cfclgt2out[:,frw,fcl],prbs) lgt2qs[frw,fcl,:] = tmplgtq[:] tmplgtq = calculate_VPD.quantile_msgdat(cfclgt12out[:,frw,fcl],prbs) lgt12qs[frw,fcl,:] = tmplgtq[:] str1 = 'CFrac Logit %d, %d %.2f Quantile: %.3f, %.3f, %.3f' % (frw,fcl,prbs[103], \ lgt1qs[frw,fcl,103],lgt2qs[frw,fcl,103],lgt12qs[frw,fcl,103]) print(str1) ngwt1qs = calculate_VPD.quantile_msgdat(ngwt1out,prbs) str1 = '%.2f NGWater1 Quantile: %.3f' % (prbs[103],ngwt1qs[103]) print(str1) ngwt2qs = calculate_VPD.quantile_msgdat(ngwt2out,prbs) str1 = '%.2f NGWater2 Quantile: %.3f' % (prbs[103],ngwt2qs[103]) print(str1) cttp1qs = calculate_VPD.quantile_msgdat(cttp1out,prbs) str1 = '%.2f CTTemp1 Quantile: %.3f' % (prbs[103],cttp1qs[103]) print(str1) cttp2qs = calculate_VPD.quantile_msgdat(cttp2out,prbs) str1 = '%.2f CTTemp2 Quantile: %.3f' % (prbs[103],cttp2qs[103]) print(str1) # Output Quantiles qfnm = '%s/CONUS_AIRS_JJA_%04d_%02dUTC_%s_Cloud_Quantile.nc' % (dtdr,yrlst[k],hrchc,rgchc) qout = Dataset(qfnm,'w') dimp = qout.createDimension('probability',nprb) dimfov1 = qout.createDimension('fovrow',3) dimfov2 = qout.createDimension('fovcol',3) varprb = qout.createVariable('probability','f4',['probability'], fill_value = -9999) varprb[:] = prbs varprb.long_name = 'Probability break points' varprb.units = 'none' varprb.missing_value = -9999 varnslb = qout.createVariable('NumberSlab_quantile','i2',['probability'], fill_value = -99) varnslb[:] = nslbqs varnslb.long_name = 'Number of cloud slabs quantiles' varnslb.units = 'Count' varnslb.missing_value = -99 varcbprs = qout.createVariable('CloudBot1Logit_quantile','f4',['probability'], fill_value = -9999) varcbprs[:] = prsbt1qs varcbprs.long_name = 'Slab 1 cloud bottom pressure logit quantiles' varcbprs.units = 'hPa' varcbprs.missing_value = -9999 vardpc1 = qout.createVariable('DPCloud1Logit_quantile','f4',['probability'], fill_value = -9999) vardpc1[:] = dpcld1qs vardpc1.long_name = 'Slab 1 cloud pressure depth logit quantiles' vardpc1.units = 'hPa' vardpc1.missing_value = -9999 vardpslb = qout.createVariable('DPSlabLogit_quantile','f4',['probability'], fill_value = -9999) vardpslb[:] = dpslbqs vardpslb.long_name = 'Two-slab vertical separation logit quantiles' vardpslb.units = 'hPa' vardpslb.missing_value = -9999 vardpc2 = qout.createVariable('DPCloud2Logit_quantile','f4',['probability'], fill_value = -9999) vardpc2[:] = dpcld2qs vardpc2.long_name = 'Slab 2 cloud pressure depth logit quantiles' vardpc2.units = 'hPa' vardpc2.missing_value = -9999 vartyp1 = qout.createVariable('CType1_quantile','i2',['probability'], fill_value = -99) vartyp1[:] = slb1qs vartyp1.long_name = 'Slab 1 cloud type quantiles' vartyp1.units = 'None' vartyp1.missing_value = -99 vartyp1.comment = 'Cloud slab type: 0=Liquid, 1=Ice' vartyp2 = qout.createVariable('CType2_quantile','i2',['probability'], fill_value = -99) vartyp2[:] = slb2qs vartyp2.long_name = 'Slab 2 cloud type quantiles' vartyp2.units = 'None' vartyp2.missing_value = -99 vartyp2.comment = 'Cloud slab type: 0=Liquid, 1=Ice' varcvr = qout.createVariable('CCoverInd_quantile','i2',['fovrow','fovcol','probability'], fill_value = 99) varcvr[:] = totclrqout varcvr.long_name = 'Cloud cover indicator quantiles' varcvr.units = 'None' varcvr.missing_value = -99 varcvr.comment = 'Cloud cover indicators: -1=Clear, 0=Partly cloudy, 1=Overcast' varlgt1 = qout.createVariable('CFrcLogit1_quantile','f4',['fovrow','fovcol','probability'], fill_value = -9999) varlgt1[:] = lgt1qs varlgt1.long_name = 'Slab 1 cloud fraction (cfrac1x) logit quantiles' varlgt1.units = 'None' varlgt1.missing_value = -9999 varlgt2 = qout.createVariable('CFrcLogit2_quantile','f4',['fovrow','fovcol','probability'], fill_value = -9999) varlgt2[:] = lgt2qs varlgt2.long_name = 'Slab 2 cloud fraction (cfrac2x) logit quantiles' varlgt2.units = 'None' varlgt2.missing_value = -9999 varlgt12 = qout.createVariable('CFrcLogit12_quantile','f4',['fovrow','fovcol','probability'], fill_value = -9999) varlgt12[:] = lgt12qs varlgt12.long_name = 'Slab 1/2 overlap fraction (cfrac12) logit quantiles' varlgt12.units = 'None' varlgt12.missing_value = -9999 varngwt1 = qout.createVariable('NGWater1_quantile','f4',['probability'], fill_value = -9999) varngwt1[:] = ngwt1qs varngwt1.long_name = 'Slab 1 cloud non-gas water quantiles' varngwt1.units = 'g m^-2' varngwt1.missing_value = -9999 varngwt2 = qout.createVariable('NGWater2_quantile','f4',['probability'], fill_value = -9999) varngwt2[:] = ngwt2qs varngwt2.long_name = 'Slab 2 cloud non-gas water quantiles' varngwt2.units = 'g m^-2' varngwt2.missing_value = -9999 varcttp1 = qout.createVariable('CTTemp1_quantile','f4',['probability'], fill_value = -9999) varcttp1[:] = cttp1qs varcttp1.long_name = 'Slab 1 cloud top temperature' varcttp1.units = 'K' varcttp1.missing_value = -9999 varcttp2 = qout.createVariable('CTTemp2_quantile','f4',['probability'], fill_value = -9999) varcttp2[:] = cttp2qs varcttp2.long_name = 'Slab 2 cloud top temperature' varcttp2.units = 'K' varcttp2.missing_value = -9999 qout.close() # Set up transformations zccvout = numpy.zeros((tsmp,3,3,)) - 9999. zlgt1 = numpy.zeros((tsmp,3,3)) - 9999. zlgt2 = numpy.zeros((tsmp,3,3)) - 9999. zlgt12 = numpy.zeros((tsmp,3,3)) - 9999. znslb = calculate_VPD.std_norm_quantile_from_obs(nslabout, nslbqs, prbs, msgval=-99) zprsbt1 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(prsbot1out, prsbt1qs, prbs, msgval=-9999.) zdpcld1 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(dpcld1out, dpcld1qs, prbs, msgval=-9999.) zdpslb = calculate_VPD.std_norm_quantile_from_obs_fill_msg(dpslbout, dpslbqs, prbs, msgval=-9999.) zdpcld2 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(dpcld2out, dpcld2qs, prbs, msgval=-9999.) zctyp1 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(slbtyp1out, slb1qs, prbs, msgval=-99) zctyp2 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(slbtyp2out, slb2qs, prbs, msgval=-99) for frw in range(3): for fcl in range(3): ztmp = calculate_VPD.std_norm_quantile_from_obs_fill_msg(totclrout[:,frw,fcl], totclrqout[frw,fcl,:], \ prbs, msgval=-99) zccvout[:,frw,fcl] = ztmp[:] ztmp = calculate_VPD.std_norm_quantile_from_obs_fill_msg(cfclgt1out[:,frw,fcl], lgt1qs[frw,fcl,:], \ prbs, msgval=-9999.) zlgt1[:,frw,fcl] = ztmp[:] ztmp = calculate_VPD.std_norm_quantile_from_obs_fill_msg(cfclgt2out[:,frw,fcl], lgt2qs[frw,fcl,:], \ prbs, msgval=-9999.) zlgt2[:,frw,fcl] = ztmp[:] ztmp = calculate_VPD.std_norm_quantile_from_obs_fill_msg(cfclgt12out[:,frw,fcl], lgt12qs[frw,fcl,:], \ prbs, msgval=-9999.) zlgt12[:,frw,fcl] = ztmp[:] zngwt1 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(ngwt1out, ngwt1qs, prbs, msgval=-9999.) zngwt2 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(ngwt2out, ngwt2qs, prbs, msgval=-9999.) zcttp1 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(cttp1out, cttp1qs, prbs, msgval=-9999.) zcttp2 = calculate_VPD.std_norm_quantile_from_obs_fill_msg(cttp2out, cttp2qs, prbs, msgval=-9999.) # Output transformed quantile samples zfnm = '%s/CONUS_AIRS_JJA_%04d_%02dUTC_%s_Cloud_StdGausTrans.nc' % (dtdr,yrlst[k],hrchc,rgchc) zout = Dataset(zfnm,'w') dimsmp = zout.createDimension('sample',tsmp) dimfov1 = zout.createDimension('fovrow',3) dimfov2 = zout.createDimension('fovcol',3) varlon = zout.createVariable('Longitude','f4',['sample']) varlon[:] = lonout varlon.long_name = 'Longitude' varlon.units = 'degrees_east' varlat = zout.createVariable('Latitude','f4',['sample']) varlat[:] = latout varlat.long_name = 'Latitude' varlat.units = 'degrees_north' varjdy = zout.createVariable('JulianDay','i2',['sample']) varjdy[:] = jdyout varjdy.long_name = 'JulianDay' varjdy.units = 'day' varyr = zout.createVariable('Year','i2',['sample']) varyr[:] = yrout varyr.long_name = 'Year' varyr.units = 'year' varnslb = zout.createVariable('NumberSlab_StdGaus','f4',['sample'], fill_value = -9999) varnslb[:] = znslb varnslb.long_name = 'Quantile transformed number of cloud slabs' varnslb.units = 'None' varnslb.missing_value = -9999. varcbprs = zout.createVariable('CloudBot1Logit_StdGaus','f4',['sample'], fill_value = -9999) varcbprs[:] = zprsbt1 varcbprs.long_name = 'Quantile transformed slab 1 cloud bottom pressure logit' varcbprs.units = 'None' varcbprs.missing_value = -9999. vardpc1 = zout.createVariable('DPCloud1Logit_StdGaus','f4',['sample'], fill_value = -9999) vardpc1[:] = zdpcld1 vardpc1.long_name = 'Quantile transformed slab 1 cloud pressure depth logit' vardpc1.units = 'None' vardpc1.missing_value = -9999. vardpslb = zout.createVariable('DPSlabLogit_StdGaus','f4',['sample'], fill_value = -9999) vardpslb[:] = zdpslb vardpslb.long_name = 'Quantile transformed two-slab vertical separation logit' vardpslb.units = 'None' vardpslb.missing_value = -9999. vardpc2 = zout.createVariable('DPCloud2Logit_StdGaus','f4',['sample'], fill_value = -9999) vardpc2[:] = zdpcld2 vardpc2.long_name = 'Quantile transformed slab 2 cloud pressure depth logit' vardpc2.units = 'None' vardpc2.missing_value = -9999. vartyp1 = zout.createVariable('CType1_StdGaus','f4',['sample'], fill_value = -9999) vartyp1[:] = zctyp1 vartyp1.long_name = 'Quantile transformed slab 1 cloud type logit' vartyp1.units = 'None' vartyp1.missing_value = -9999. vartyp2 = zout.createVariable('CType2_StdGaus','f4',['sample'], fill_value = -9999) vartyp2[:] = zctyp2 vartyp2.long_name = 'Quantile transformed slab 2 cloud type' vartyp2.units = 'None' vartyp2.missing_value = -9999. varcov = zout.createVariable('CCoverInd_StdGaus','f4',['sample','fovrow','fovcol'], fill_value= -9999) varcov[:] = zccvout varcov.long_name = 'Quantile transformed cloud cover indicator' varcov.units = 'None' varcov.missing_value = -9999. varlgt1 = zout.createVariable('CFrcLogit1_StdGaus','f4',['sample','fovrow','fovcol'], fill_value = -9999) varlgt1[:] = zlgt1 varlgt1.long_name = 'Quantile transformed slab 1 cloud fraction logit' varlgt1.units = 'None' varlgt1.missing_value = -9999. varlgt2 = zout.createVariable('CFrcLogit2_StdGaus','f4',['sample','fovrow','fovcol'], fill_value = -9999) varlgt2[:] = zlgt2 varlgt2.long_name = 'Quantile transformed slab 2 cloud fraction logit' varlgt2.units = 'None' varlgt2.missing_value = -9999. varlgt12 = zout.createVariable('CFrcLogit12_StdGaus','f4',['sample','fovrow','fovcol'], fill_value = -9999) varlgt12[:] = zlgt12 varlgt12.long_name = 'Quantile transformed slab 1/2 overlap fraction logit' varlgt12.units = 'None' varlgt12.missing_value = -9999. varngwt1 = zout.createVariable('NGWater1_StdGaus','f4',['sample'], fill_value = -9999) varngwt1[:] = zngwt1 varngwt1.long_name = 'Quantile transformed slab 1 non-gas water' varngwt1.units = 'None' varngwt1.missing_value = -9999. varngwt2 = zout.createVariable('NGWater2_StdGaus','f4',['sample'], fill_value = -9999) varngwt2[:] = zngwt2 varngwt2.long_name = 'Quantile transformed slab 2 non-gas water' varngwt2.units = 'None' varngwt2.missing_value = -9999. varcttp1 = zout.createVariable('CTTemp1_StdGaus','f4',['sample'], fill_value = -9999) varcttp1[:] = zcttp1 varcttp1.long_name = 'Quantile transformed slab 1 cloud top temperature' varcttp1.units = 'None' varcttp1.missing_value = -9999. varcttp2 = zout.createVariable('CTTemp2_StdGaus','f4',['sample'], fill_value = -9999) varcttp2[:] = zcttp2 varcttp2.long_name = 'Quantile transformed slab 2 cloud top temperature' varcttp2.units = 'None' varcttp2.missing_value = -9999. zout.close() return def quantile_profile_locmask_conus(rfdr, mtdr, csdr, airdr, dtdr, yrlst, mnst, mnfn, hrchc, rgchc, mskvr, mskvl): # Construct profile/sfc variable quantiles and z-scores, with a possibly irregular location mask # rfdr: Directory for reference data (Levels/Quantiles) # mtdr: Directory for MERRA data # csdr: Directory for cloud slab data # airdr: Directory for AIRS cloud fraction # dtdr: Output directory # yrlst: List of years to process # mnst: Starting Month # mnfn: Ending Month # hrchc: Template Hour Choice # rgchc: Template Region Choice # mskvr: Name of region mask variable # mskvl: Value of region mask for Region Choice # Read probs and pressure levels rnm = '%s/AIRS_Levels_Quantiles.nc' % (rfdr) f = Dataset(rnm,'r') plev = f['level'][:] prbs = f['probability'][:] alts = f['altitude'][:] f.close() nyr = len(yrlst) nprb = prbs.shape[0] nzout = 101 tmpqout = numpy.zeros((nzout,nprb)) - 9999. rhqout = numpy.zeros((nzout,nprb)) - 9999. sftmpqs = numpy.zeros((nprb,)) - 9999. sfaltqs = numpy.zeros((nprb,)) - 9999. psfcqs = numpy.zeros((nprb,)) - 9999. altmed = numpy.zeros((nzout,)) - 9999. # Mask, lat, lon fnm = '%s/interpolated_merra2_for_SARTA_two_slab_%d_JJA_CONUS_with_NCA_regions_%02dUTC_no_vertical_variation_for_missing.nc' % (mtdr,yrlst[0],hrchc) f = Dataset(fnm,'r') mask = f.variables[mskvr][:,:] latmet = f.variables['plat'][:] lonmet = f.variables['plon'][:] tminf = f.variables['time'][:] tmunit = f.variables['time'].units[:] f.close() mskind = numpy.zeros((mask.shape),dtype=mask.dtype) print(mskvl) mskind[mask == mskvl] = 1 lnsq = numpy.arange(lonmet.shape[0]) ltsq = numpy.arange(latmet.shape[0]) # Subset a bit lnsm = numpy.sum(mskind,axis=0) #print(lnsq.shape) #print(lnsm.shape) #print(lnsm) ltsm = numpy.sum(mskind,axis=1) #print(ltsq.shape) #print(ltsm.shape) #print(ltsm) lnmn = numpy.amin(lnsq[lnsm > 0]) lnmx = numpy.amax(lnsq[lnsm > 0]) + 1 ltmn = numpy.amin(ltsq[ltsm > 0]) ltmx = numpy.amax(ltsq[ltsm > 0]) + 1 stridx = 'Lon Range: %d, %d\nLat Range: %d, %d \n' % (lnmn,lnmx,ltmn,ltmx) print(stridx) nx = lnmx - lnmn ny = ltmx - ltmn lnrp =
numpy.tile(lonmet[lnmn:lnmx],ny)
numpy.tile
#!/bin/env python """ Cascade decomposition ===================== This example script shows how to compute and plot the cascade decompositon of a single radar precipitation field in pysteps. """ from matplotlib import cm, pyplot as plt import numpy as np import os from pprint import pprint from pysteps.cascade.bandpass_filters import filter_gaussian from pysteps import io, rcparams from pysteps.cascade.decomposition import decomposition_fft from pysteps.utils import conversion, transformation from pysteps.visualization import plot_precip_field ############################################################################### # Read precipitation field # ------------------------ # # First thing, the radar composite is imported and transformed in units # of dB. # Import the example radar composite root_path = rcparams.data_sources["fmi"]["root_path"] filename = os.path.join( root_path, "20160928", "201609281600_fmi.radar.composite.lowest_FIN_SUOMI1.pgm.gz" ) R, _, metadata = io.import_fmi_pgm(filename, gzipped=True) # Convert to rain rate R, metadata = conversion.to_rainrate(R, metadata) # Nicely print the metadata pprint(metadata) # Plot the rainfall field plot_precip_field(R, geodata=metadata) plt.show() # Log-transform the data R, metadata = transformation.dB_transform(R, metadata, threshold=0.1, zerovalue=-15.0) ############################################################################### # 2D Fourier spectrum # -------------------- # # Compute and plot the 2D Fourier power spectrum of the precipitaton field. # Set Nans as the fill value R[~np.isfinite(R)] = metadata["zerovalue"] # Compute the Fourier transform of the input field F = abs(np.fft.fftshift(
np.fft.fft2(R)
numpy.fft.fft2
""" Test Tabular Surrogate Explainer Builder ======================================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn import datasets import numpy as np import tabular_surrogate_builder RANDOM_SEED = 42 iris = datasets.load_iris() x_name, y_name = 'petal length (cm)', 'petal width (cm)' x_ind = iris.feature_names.index(x_name) y_ind = iris.feature_names.index(y_name) X = iris.data[:, [x_ind, y_ind]] # We only take the first two features Y = iris.target tree_clf = DecisionTreeClassifier( max_depth=5, min_samples_leaf=15, random_state=RANDOM_SEED) tree_clf.fit(X, Y) logreg_clf = LogisticRegression(random_state=RANDOM_SEED) logreg_clf.fit(X, Y) def test_tabular_blimey(): """Tests bLIMEy explanations.""" x_min, x_max = X[:, 0].min(), X[:, 0].max() y_min, y_max = X[:, 1].min(), X[:, 1].max() class_map = {cls: i for i, cls in enumerate(iris.target_names)} instances = { 'setosa': np.array([1.5, 0.25]), 'versicolor': np.array([4.5, 1.25]), 'virginica': np.array([5.5, 2.25]) } models = { 'tree-intercept': (tree_clf.predict, True), 'tree-no-intercept': (tree_clf.predict, False), 'logreg-intercept': (logreg_clf.predict, True), 'logreg-no-intercept': (logreg_clf.predict, False) } samples = [ [0, 3, 6, 9, 12, 15, 18, 21, 24], [12, 6, 24, 0, 15, 9, 3, 21, 18] ] x_bins, y_bins = [1, 2.5, 3.3, 6], [.5, 1.5, 2] discs = [] for i, ix in enumerate(x_bins): for iix in x_bins[i + 1:]: # X-axis for j, jy in enumerate(y_bins): # Y-axis for jjy in y_bins[j + 1:]: discs.append({ 0: [ix, iix], 1: [jy, jjy] }) for inst_i, inst in instances.items(): for samples_no_i, samples_no in enumerate(samples): for cls, cls_i in class_map.items(): for disc_i, disc in enumerate(discs): for model_i, (pred_fn, intercept) in models.items(): disc_x = [x_min] + disc[0] + [x_max] disc_y = [y_min] + disc[1] + [y_max] data = tabular_surrogate_builder._generate_data( samples_no, disc_x, disc_y, RANDOM_SEED) exp = tabular_surrogate_builder.build_tabular_blimey( inst, cls_i, data, pred_fn, disc, intercept, RANDOM_SEED) key = '{}&{}&{}&{}&{}'.format( inst_i, samples_no_i, cls, disc_i, model_i) assert np.allclose( exp, EXP[key], atol=.001, equal_nan=True ) EXP = { 'setosa&0&setosa&0&tree-intercept': np.array([1.5739331306990878, 0.10256534954407359]), 'setosa&0&setosa&0&tree-no-intercept': np.array([1.1973684210526314, -0.36430921052631576]), 'setosa&0&setosa&0&logreg-intercept': np.array([1.5013252279635236, 0.16661398176291822]), 'setosa&0&setosa&0&logreg-no-intercept': np.array([1.144736842105263, -0.2754934210526315]), 'setosa&0&setosa&1&tree-intercept': np.array([1.5739331306990878, 0.10256534954407359]), 'setosa&0&setosa&1&tree-no-intercept': np.array([1.1973684210526314, -0.36430921052631576]), 'setosa&0&setosa&1&logreg-intercept': np.array([1.5013252279635236, 0.16661398176291822]), 'setosa&0&setosa&1&logreg-no-intercept': np.array([1.144736842105263, -0.2754934210526315]), 'setosa&0&setosa&2&tree-intercept': np.array([1.5739331306990878, 0.10256534954407359]), 'setosa&0&setosa&2&tree-no-intercept': np.array([1.1973684210526314, -0.36430921052631576]), 'setosa&0&setosa&2&logreg-intercept': np.array([1.5739331306990878, 0.10256534954407359]), 'setosa&0&setosa&2&logreg-no-intercept': np.array([1.1973684210526314, -0.36430921052631576]), 'setosa&0&setosa&3&tree-intercept': np.array([1.3185896656534941, 0.11883282674772026]), 'setosa&0&setosa&3&tree-no-intercept': np.array([0.9342105263157893, -0.35773026315789463]), 'setosa&0&setosa&3&logreg-intercept': np.array([1.4272097264437666, 0.1328632218844987]), 'setosa&0&setosa&3&logreg-no-intercept': np.array([1.0394736842105263, -0.3478618421052631]), 'setosa&0&setosa&4&tree-intercept': np.array([1.3185896656534941, 0.11883282674772026]), 'setosa&0&setosa&4&tree-no-intercept': np.array([0.9342105263157893, -0.35773026315789463]), 'setosa&0&setosa&4&logreg-intercept': np.array([1.4272097264437666, 0.1328632218844987]), 'setosa&0&setosa&4&logreg-no-intercept': np.array([1.0394736842105263, -0.3478618421052631]), 'setosa&0&setosa&5&tree-intercept': np.array([1.3185896656534941, 0.11883282674772026]), 'setosa&0&setosa&5&tree-no-intercept': np.array([0.9342105263157893, -0.35773026315789463]), 'setosa&0&setosa&5&logreg-intercept': np.array([1.3891063829787214, 0.17719148936170231]), 'setosa&0&setosa&5&logreg-no-intercept': np.array([0.9868421052631579, -0.32154605263157887]), 'setosa&0&setosa&6&tree-intercept': np.array([0.699282674772036, 0.13733738601823722]), 'setosa&0&setosa&6&tree-no-intercept': np.array([0.3026315789473684, -0.3544407894736842]), 'setosa&0&setosa&6&logreg-intercept': np.array([0.8812644376899683, 0.13621884498480247]), 'setosa&0&setosa&6&logreg-no-intercept': np.array([0.4868421052631579, -0.3527960526315789]), 'setosa&0&setosa&7&tree-intercept': np.array([0.699282674772036, 0.13733738601823722]), 'setosa&0&setosa&7&tree-no-intercept': np.array([0.3026315789473684, -0.3544407894736842]), 'setosa&0&setosa&7&logreg-intercept': np.array([0.8812644376899683, 0.13621884498480247]), 'setosa&0&setosa&7&logreg-no-intercept': np.array([0.4868421052631579, -0.3527960526315789]), 'setosa&0&setosa&8&tree-intercept': np.array([0.699282674772036, 0.13733738601823722]), 'setosa&0&setosa&8&tree-no-intercept': np.array([0.3026315789473684, -0.3544407894736842]), 'setosa&0&setosa&8&logreg-intercept': np.array([0.8812644376899683, 0.13621884498480247]), 'setosa&0&setosa&8&logreg-no-intercept': np.array([0.4868421052631579, -0.3527960526315789]), 'setosa&0&setosa&9&tree-intercept': np.array([1.905052264808362, 0.007839721254356067]), 'setosa&0&setosa&9&tree-no-intercept': np.array([1.5081743869209807, -0.8460490463215258]), 'setosa&0&setosa&9&logreg-intercept': np.array([1.6393728222996513, 0.07259001161440241]), 'setosa&0&setosa&9&logreg-no-intercept': np.array([1.3365122615803813, -0.5790190735694822]), 'setosa&0&setosa&10&tree-intercept': np.array([1.905052264808362, 0.007839721254356067]), 'setosa&0&setosa&10&tree-no-intercept': np.array([1.5081743869209807, -0.8460490463215258]), 'setosa&0&setosa&10&logreg-intercept': np.array([1.6585365853658536, 0.11382113821138252]), 'setosa&0&setosa&10&logreg-no-intercept': np.array([1.3365122615803813, -0.5790190735694822]), 'setosa&0&setosa&11&tree-intercept': np.array([1.905052264808362, 0.007839721254356067]), 'setosa&0&setosa&11&tree-no-intercept': np.array([1.5081743869209807, -0.8460490463215258]), 'setosa&0&setosa&11&logreg-intercept': np.array([1.7238675958188177, 0.1634727061556331]), 'setosa&0&setosa&11&logreg-no-intercept': np.array([1.3610354223433239, -0.6171662125340599]), 'setosa&0&setosa&12&tree-intercept': np.array([1.905052264808362, 0.007839721254356067]), 'setosa&0&setosa&12&tree-no-intercept': np.array([1.5081743869209807, -0.8460490463215258]), 'setosa&0&setosa&12&logreg-intercept': np.array([1.8780487804878052, 0.04065040650406589]), 'setosa&0&setosa&12&logreg-no-intercept': np.array([1.483651226158038, -0.8079019073569482]), 'setosa&0&setosa&13&tree-intercept': np.array([1.905052264808362, 0.007839721254356067]), 'setosa&0&setosa&13&tree-no-intercept': np.array([1.5081743869209807, -0.8460490463215258]), 'setosa&0&setosa&13&logreg-intercept': np.array([1.8780487804878052, 0.04065040650406589]), 'setosa&0&setosa&13&logreg-no-intercept': np.array([1.483651226158038, -0.8079019073569482]), 'setosa&0&setosa&14&tree-intercept': np.array([1.905052264808362, 0.007839721254356067]), 'setosa&0&setosa&14&tree-no-intercept': np.array([1.5081743869209807, -0.8460490463215258]), 'setosa&0&setosa&14&logreg-intercept': np.array([1.905052264808362, 0.007839721254356067]), 'setosa&0&setosa&14&logreg-no-intercept': np.array([1.5081743869209807, -0.8460490463215258]), 'setosa&0&setosa&15&tree-intercept': np.array([1.54965156794425, 0.03106852497096429]), 'setosa&0&setosa&15&tree-no-intercept': np.array([1.145776566757493, -0.8378746594005451]), 'setosa&0&setosa&15&logreg-intercept': np.array([1.6933797909407649, 0.006968641114983181]), 'setosa&0&setosa&15&logreg-no-intercept': np.array([1.2956403269754766, -0.8487738419618529]), 'setosa&0&setosa&16&tree-intercept': np.array([1.54965156794425, 0.03106852497096429]), 'setosa&0&setosa&16&tree-no-intercept': np.array([1.145776566757493, -0.8378746594005451]), 'setosa&0&setosa&16&logreg-intercept': np.array([1.6933797909407649, 0.006968641114983181]), 'setosa&0&setosa&16&logreg-no-intercept': np.array([1.2956403269754766, -0.8487738419618529]), 'setosa&0&setosa&17&tree-intercept': np.array([1.54965156794425, 0.03106852497096429]), 'setosa&0&setosa&17&tree-no-intercept': np.array([1.145776566757493, -0.8378746594005451]), 'setosa&0&setosa&17&logreg-intercept': np.array([1.61759581881533, 0.05603948896631865]), 'setosa&0&setosa&17&logreg-no-intercept': np.array([1.2084468664850134, -0.8242506811989099]), 'setosa&0&versicolor&0&tree-intercept': np.array([-1.4066382978723382, 0.10485106382978716]), 'setosa&0&versicolor&0&tree-no-intercept': np.array([-1.1973684210526314, 0.36430921052631576]), 'setosa&0&versicolor&0&logreg-intercept': np.array([-1.2977264437689953, 0.008778115501519752]), 'setosa&0&versicolor&0&logreg-no-intercept': np.array([-1.118421052631579, 0.23108552631578946]), 'setosa&0&versicolor&1&tree-intercept': np.array([-1.3062613981762905, 0.22930091185410326]), 'setosa&0&versicolor&1&tree-no-intercept': np.array([-1.1973684210526314, 0.36430921052631576]), 'setosa&0&versicolor&1&logreg-intercept': np.array([-1.2642674772036455, 0.0502613981762915]), 'setosa&0&versicolor&1&logreg-no-intercept': np.array([-1.118421052631579, 0.23108552631578946]), 'setosa&0&versicolor&2&tree-intercept': np.array([-1.105507598784193, 0.47820060790273566]), 'setosa&0&versicolor&2&tree-no-intercept': np.array([-1.1973684210526314, 0.36430921052631576]), 'setosa&0&versicolor&2&logreg-intercept': np.array([-1.2699574468085086, 0.19727659574468057]), 'setosa&0&versicolor&2&logreg-no-intercept': np.array([-1.1710526315789473, 0.3199013157894736]), 'setosa&0&versicolor&3&tree-intercept': np.array([-1.189398176291792, 0.13291185410334339]), 'setosa&0&versicolor&3&tree-no-intercept': np.array([-0.9868421052631579, 0.38404605263157887]), 'setosa&0&versicolor&3&logreg-intercept': np.array([-1.223610942249238, 0.04252887537993902]), 'setosa&0&versicolor&3&logreg-no-intercept': np.array([-1.013157894736842, 0.303453947368421]), 'setosa&0&versicolor&4&tree-intercept': np.array([-1.0890212765957425, 0.25736170212765935]), 'setosa&0&versicolor&4&tree-no-intercept': np.array([-0.9868421052631579, 0.38404605263157887]), 'setosa&0&versicolor&4&logreg-intercept': np.array([-1.15669300911854, 0.12549544072948324]), 'setosa&0&versicolor&4&logreg-no-intercept': np.array([-1.013157894736842, 0.303453947368421]), 'setosa&0&versicolor&5&tree-intercept': np.array([-0.9263708206686919, 0.5505896656534954]), 'setosa&0&versicolor&5&tree-no-intercept': np.array([-1.0394736842105263, 0.4103618421052631]), 'setosa&0&versicolor&5&logreg-intercept': np.array([-0.9484498480243149, 0.2150759878419453]), 'setosa&0&versicolor&5&logreg-no-intercept': np.array([-0.9342105263157895, 0.2327302631578947]), 'setosa&0&versicolor&6&tree-intercept': np.array([-0.6081945288753788, 0.15873556231003033]), 'setosa&0&versicolor&6&tree-no-intercept': np.array([-0.4078947368421052, 0.40707236842105254]), 'setosa&0&versicolor&6&logreg-intercept': np.array([0.037398176291793324, 0.5550881458966567]), 'setosa&0&versicolor&6&logreg-no-intercept': np.array([-0.3552631578947368, 0.06825657894736842]), 'setosa&0&versicolor&7&tree-intercept': np.array([-0.5459209726443761, 0.32751367781155016]), 'setosa&0&versicolor&7&tree-no-intercept': np.array([-0.4605263157894736, 0.4333881578947368]), 'setosa&0&versicolor&7&logreg-intercept': np.array([0.037398176291793324, 0.5550881458966567]), 'setosa&0&versicolor&7&logreg-no-intercept': np.array([-0.3552631578947368, 0.06825657894736842]), 'setosa&0&versicolor&8&tree-intercept': np.array([-0.4594772036474156, 0.7093981762917936]), 'setosa&0&versicolor&8&tree-no-intercept': np.array([-0.618421052631579, 0.5123355263157895]), 'setosa&0&versicolor&8&logreg-intercept': np.array([0.4359878419452881, 0.15392097264437712]), 'setosa&0&versicolor&8&logreg-no-intercept': np.array([-0.0921052631578948, -0.5008223684210525]), 'setosa&0&versicolor&9&tree-intercept': np.array([-1.7709059233449487, 0.28077816492450636]), 'setosa&0&versicolor&9&tree-no-intercept': np.array([-1.5081743869209807, 0.8460490463215258]), 'setosa&0&versicolor&9&logreg-intercept': np.array([-1.5165505226480849, 0.10075493612078955]), 'setosa&0&versicolor&9&logreg-no-intercept': np.array([-1.3119891008174385, 0.5408719346049046]), 'setosa&0&versicolor&10&tree-intercept': np.array([-1.6559233449477355, 0.5281649245063876]), 'setosa&0&versicolor&10&tree-no-intercept': np.array([-1.5081743869209807, 0.8460490463215258]), 'setosa&0&versicolor&10&logreg-intercept': np.array([-1.4973867595818822, 0.1419860627177698]), 'setosa&0&versicolor&10&logreg-no-intercept': np.array([-1.3119891008174385, 0.5408719346049046]), 'setosa&0&versicolor&11&tree-intercept': np.array([-1.4642857142857129, 0.9404761904761902]), 'setosa&0&versicolor&11&tree-no-intercept': np.array([-1.5081743869209807, 0.8460490463215258]), 'setosa&0&versicolor&11&logreg-intercept': np.array([-1.4590592334494785, 0.22444831591173042]), 'setosa&0&versicolor&11&logreg-no-intercept': np.array([-1.3119891008174385, 0.5408719346049046]), 'setosa&0&versicolor&12&tree-intercept': np.array([-1.7709059233449487, 0.28077816492450636]), 'setosa&0&versicolor&12&tree-no-intercept': np.array([-1.5081743869209807, 0.8460490463215258]), 'setosa&0&versicolor&12&logreg-intercept': np.array([-1.2674216027874567, 0.636759581881533]), 'setosa&0&versicolor&12&logreg-no-intercept': np.array([-1.3119891008174385, 0.5408719346049046]), 'setosa&0&versicolor&13&tree-intercept': np.array([-1.6559233449477355, 0.5281649245063876]), 'setosa&0&versicolor&13&tree-no-intercept': np.array([-1.5081743869209807, 0.8460490463215258]), 'setosa&0&versicolor&13&logreg-intercept': np.array([-1.2674216027874567, 0.636759581881533]), 'setosa&0&versicolor&13&logreg-no-intercept': np.array([-1.3119891008174385, 0.5408719346049046]), 'setosa&0&versicolor&14&tree-intercept': np.array([-1.4642857142857129, 0.9404761904761902]), 'setosa&0&versicolor&14&tree-no-intercept': np.array([-1.5081743869209807, 0.8460490463215258]), 'setosa&0&versicolor&14&logreg-intercept': np.array([-0.8780487804878059, 0.2926829268292682]), 'setosa&0&versicolor&14&logreg-no-intercept': np.array([-0.9931880108991824, 0.04495912806539504]), 'setosa&0&versicolor&15&tree-intercept': np.array([-1.4155052264808363, 0.2575493612078976]), 'setosa&0&versicolor&15&tree-no-intercept': np.array([-1.145776566757493, 0.8378746594005451]), 'setosa&0&versicolor&15&logreg-intercept': np.array([-1.0635888501742157, 0.7116724738675959]), 'setosa&0&versicolor&15&logreg-no-intercept': np.array([-1.1239782016348774, 0.5817438692098093]), 'setosa&0&versicolor&16&tree-intercept': np.array([-1.300522648083622, 0.5049361207897793]), 'setosa&0&versicolor&16&tree-no-intercept': np.array([-1.145776566757493, 0.8378746594005451]), 'setosa&0&versicolor&16&logreg-intercept': np.array([-1.0444250871080138, 0.7529036004645763]), 'setosa&0&versicolor&16&logreg-no-intercept': np.array([-1.1239782016348774, 0.5817438692098093]), 'setosa&0&versicolor&17&tree-intercept': np.array([-1.184668989547039, 0.9663182346109179]), 'setosa&0&versicolor&17&tree-no-intercept': np.array([-1.2329700272479562, 0.8623978201634876]), 'setosa&0&versicolor&17&logreg-intercept': np.array([-0.5331010452961679, 0.36817653890824636]), 'setosa&0&versicolor&17&logreg-no-intercept': np.array([-0.6934604904632151, 0.02316076294277924]), 'setosa&0&virginica&0&tree-intercept': np.array([-0.16729483282674798, -0.20741641337386058]), 'setosa&0&virginica&0&tree-no-intercept': np.array([-0.5657894736842106, -0.7014802631578947]), 'setosa&0&virginica&0&logreg-intercept': np.array([-0.20359878419452845, -0.1753920972644377]), 'setosa&0&virginica&0&logreg-no-intercept': np.array([-0.5921052631578947, -0.6570723684210525]), 'setosa&0&virginica&1&tree-intercept': np.array([-0.26767173252279597, -0.3318662613981765]), 'setosa&0&virginica&1&tree-no-intercept': np.array([-0.5657894736842106, -0.7014802631578947]), 'setosa&0&virginica&1&logreg-intercept': np.array([-0.23705775075987823, -0.2168753799392096]), 'setosa&0&virginica&1&logreg-no-intercept': np.array([-0.5921052631578947, -0.6570723684210525]), 'setosa&0&virginica&2&tree-intercept': np.array([-0.4684255319148932, -0.5807659574468084]), 'setosa&0&virginica&2&tree-no-intercept': np.array([-0.5657894736842106, -0.7014802631578947]), 'setosa&0&virginica&2&logreg-intercept': np.array([-0.30397568389057705, -0.2998419452887544]), 'setosa&0&virginica&2&logreg-no-intercept': np.array([-0.5921052631578947, -0.6570723684210525]), 'setosa&0&virginica&3&tree-intercept': np.array([-0.12919148936170174, -0.2517446808510638]), 'setosa&0&virginica&3&tree-no-intercept': np.array([-0.5131578947368421, -0.7277960526315789]), 'setosa&0&virginica&3&logreg-intercept': np.array([-0.20359878419452845, -0.1753920972644377]), 'setosa&0&virginica&3&logreg-no-intercept': np.array([-0.5921052631578947, -0.6570723684210525]), 'setosa&0&virginica&4&tree-intercept': np.array([-0.2295683890577505, -0.37619452887538046]), 'setosa&0&virginica&4&tree-no-intercept': np.array([-0.5131578947368421, -0.7277960526315789]), 'setosa&0&virginica&4&logreg-intercept': np.array([-0.27051671732522753, -0.2583586626139816]), 'setosa&0&virginica&4&logreg-no-intercept': np.array([-0.5921052631578947, -0.6570723684210525]), 'setosa&0&virginica&5&tree-intercept': np.array([-0.39221884498480175, -0.6694224924012161]), 'setosa&0&virginica&5&tree-no-intercept': np.array([-0.4605263157894739, -0.7541118421052629]), 'setosa&0&virginica&5&logreg-intercept': np.array([-0.4406565349544069, -0.3922674772036473]), 'setosa&0&virginica&5&logreg-no-intercept': np.array([-0.618421052631579, -0.6126644736842104]), 'setosa&0&virginica&6&tree-intercept': np.array([-0.09108814589665652, -0.296072948328267]), 'setosa&0&virginica&6&tree-no-intercept': np.array([-0.4605263157894739, -0.7541118421052629]), 'setosa&0&virginica&6&logreg-intercept': np.array([-0.9186626139817617, -0.6913069908814593]), 'setosa&0&virginica&6&logreg-no-intercept': np.array([-0.6973684210526315, -0.4169407894736842]), 'setosa&0&virginica&7&tree-intercept': np.array([-0.15336170212765957, -0.46485106382978736]), 'setosa&0&virginica&7&tree-no-intercept': np.array([-0.4078947368421052, -0.7804276315789473]), 'setosa&0&virginica&7&logreg-intercept': np.array([-0.9186626139817617, -0.6913069908814593]), 'setosa&0&virginica&7&logreg-no-intercept': np.array([-0.6973684210526315, -0.4169407894736842]), 'setosa&0&virginica&8&tree-intercept': np.array([-0.23980547112461933, -0.8467355623100313]), 'setosa&0&virginica&8&tree-no-intercept': np.array([-0.2500000000000001, -0.8593749999999999]), 'setosa&0&virginica&8&logreg-intercept': np.array([-1.3172522796352566, -0.29013981762917995]), 'setosa&0&virginica&8&logreg-no-intercept': np.array([-0.9605263157894737, 0.15213815789473678]), 'setosa&0&virginica&9&tree-intercept': np.array([-0.13414634146341475, -0.28861788617886147]), 'setosa&0&virginica&9&tree-no-intercept': np.array([-0.40463215258855567, -0.8705722070844688]), 'setosa&0&virginica&9&logreg-intercept': np.array([-0.12282229965156827, -0.17334494773519163]), 'setosa&0&virginica&9&logreg-no-intercept': np.array([-0.42915531335149854, -0.832425068119891]), 'setosa&0&virginica&10&tree-intercept': np.array([-0.24912891986062732, -0.5360046457607435]), 'setosa&0&virginica&10&tree-no-intercept': np.array([-0.40463215258855567, -0.8705722070844688]), 'setosa&0&virginica&10&logreg-intercept': np.array([-0.1611498257839721, -0.25580720092915205]), 'setosa&0&virginica&10&logreg-no-intercept': np.array([-0.42915531335149854, -0.832425068119891]), 'setosa&0&virginica&11&tree-intercept': np.array([-0.4407665505226477, -0.9483159117305445]), 'setosa&0&virginica&11&tree-no-intercept': np.array([-0.40463215258855567, -0.8705722070844688]), 'setosa&0&virginica&11&logreg-intercept': np.array([-0.2648083623693382, -0.3879210220673635]), 'setosa&0&virginica&11&logreg-no-intercept': np.array([-0.45367847411444123, -0.7942779291553135]), 'setosa&0&virginica&12&tree-intercept': np.array([-0.13414634146341475, -0.28861788617886147]), 'setosa&0&virginica&12&tree-no-intercept': np.array([-0.40463215258855567, -0.8705722070844688]), 'setosa&0&virginica&12&logreg-intercept': np.array([-0.6106271777003482, -0.6774099883855986]), 'setosa&0&virginica&12&logreg-no-intercept': np.array([-0.5762942779291551, -0.6035422343324252]), 'setosa&0&virginica&13&tree-intercept': np.array([-0.24912891986062732, -0.5360046457607435]), 'setosa&0&virginica&13&tree-no-intercept': np.array([-0.40463215258855567, -0.8705722070844688]), 'setosa&0&virginica&13&logreg-intercept': np.array([-0.6106271777003482, -0.6774099883855986]), 'setosa&0&virginica&13&logreg-no-intercept': np.array([-0.5762942779291551, -0.6035422343324252]), 'setosa&0&virginica&14&tree-intercept': np.array([-0.4407665505226477, -0.9483159117305445]), 'setosa&0&virginica&14&tree-no-intercept': np.array([-0.40463215258855567, -0.8705722070844688]), 'setosa&0&virginica&14&logreg-intercept': np.array([-1.0270034843205562, -0.30052264808362433]), 'setosa&0&virginica&14&logreg-no-intercept': np.array([-0.9196185286103541, -0.06948228882833794]), 'setosa&0&virginica&15&tree-intercept': np.array([-0.13414634146341475, -0.28861788617886147]), 'setosa&0&virginica&15&tree-no-intercept': np.array([-0.40463215258855567, -0.8705722070844688]), 'setosa&0&virginica&15&logreg-intercept': np.array([-0.6297909407665501, -0.7186411149825784]), 'setosa&0&virginica&15&logreg-no-intercept': np.array([-0.5762942779291551, -0.6035422343324252]), 'setosa&0&virginica&16&tree-intercept': np.array([-0.24912891986062732, -0.5360046457607435]), 'setosa&0&virginica&16&tree-no-intercept': np.array([-0.40463215258855567, -0.8705722070844688]), 'setosa&0&virginica&16&logreg-intercept': np.array([-0.6489547038327523, -0.7598722415795597]), 'setosa&0&virginica&16&logreg-no-intercept': np.array([-0.5762942779291551, -0.6035422343324252]), 'setosa&0&virginica&17&tree-intercept': np.array([-0.36498257839721343, -0.9973867595818819]), 'setosa&0&virginica&17&tree-no-intercept': np.array([-0.3174386920980926, -0.8950953678474115]), 'setosa&0&virginica&17&logreg-intercept': np.array([-1.0844947735191648, -0.4242160278745647]), 'setosa&0&virginica&17&logreg-no-intercept': np.array([-0.9196185286103541, -0.06948228882833794]), 'setosa&1&setosa&0&tree-intercept': np.array([1.7608531994981194, -0.04592220828105419]), 'setosa&1&setosa&0&tree-no-intercept': np.array([1.1988571428571433, -0.5017142857142859]), 'setosa&1&setosa&0&logreg-intercept': np.array([1.7214554579673789, 0.004015056461731351]), 'setosa&1&setosa&0&logreg-no-intercept': np.array([1.1725714285714288, -0.44114285714285734]), 'setosa&1&setosa&1&tree-intercept': np.array([1.7608531994981194, -0.04592220828105419]), 'setosa&1&setosa&1&tree-no-intercept': np.array([1.1988571428571433, -0.5017142857142859]), 'setosa&1&setosa&1&logreg-intercept': np.array([1.7214554579673789, 0.004015056461731351]), 'setosa&1&setosa&1&logreg-no-intercept': np.array([1.1725714285714288, -0.44114285714285734]), 'setosa&1&setosa&2&tree-intercept': np.array([1.7608531994981194, -0.04592220828105419]), 'setosa&1&setosa&2&tree-no-intercept': np.array([1.1988571428571433, -0.5017142857142859]), 'setosa&1&setosa&2&logreg-intercept': np.array([1.7608531994981194, -0.04592220828105419]), 'setosa&1&setosa&2&logreg-no-intercept': np.array([1.1988571428571433, -0.5017142857142859]), 'setosa&1&setosa&3&tree-intercept': np.array([1.5081555834378932, -0.11543287327478088]), 'setosa&1&setosa&3&tree-no-intercept': np.array([0.9600000000000003, -0.5600000000000002]), 'setosa&1&setosa&3&logreg-intercept': np.array([1.614303638644919, -0.06398996235884592]), 'setosa&1&setosa&3&logreg-no-intercept': np.array([1.054857142857143, -0.5177142857142859]), 'setosa&1&setosa&4&tree-intercept': np.array([1.5081555834378932, -0.11543287327478088]), 'setosa&1&setosa&4&tree-no-intercept': np.array([0.9600000000000003, -0.5600000000000002]), 'setosa&1&setosa&4&logreg-intercept': np.array([1.614303638644919, -0.06398996235884592]), 'setosa&1&setosa&4&logreg-no-intercept': np.array([1.054857142857143, -0.5177142857142859]), 'setosa&1&setosa&5&tree-intercept': np.array([1.5081555834378932, -0.11543287327478088]), 'setosa&1&setosa&5&tree-no-intercept': np.array([0.9600000000000003, -0.5600000000000002]), 'setosa&1&setosa&5&logreg-intercept': np.array([1.573902132998746, -0.03061480552070302]), 'setosa&1&setosa&5&logreg-no-intercept': np.array([1.005714285714286, -0.49142857142857155]), 'setosa&1&setosa&6&tree-intercept': np.array([0.7754077791718955, -0.2057716436637395]), 'setosa&1&setosa&6&tree-no-intercept': np.array([0.24000000000000005, -0.64]), 'setosa&1&setosa&6&logreg-intercept': np.array([0.9548306148055205, -0.14529485570890852]), 'setosa&1&setosa&6&logreg-no-intercept': np.array([0.406857142857143, -0.5897142857142859]), 'setosa&1&setosa&7&tree-intercept': np.array([0.7754077791718955, -0.2057716436637395]), 'setosa&1&setosa&7&tree-no-intercept': np.array([0.24000000000000005, -0.64]), 'setosa&1&setosa&7&logreg-intercept': np.array([0.9548306148055205, -0.14529485570890852]), 'setosa&1&setosa&7&logreg-no-intercept': np.array([0.406857142857143, -0.5897142857142859]), 'setosa&1&setosa&8&tree-intercept': np.array([0.7754077791718955, -0.2057716436637395]), 'setosa&1&setosa&8&tree-no-intercept': np.array([0.24000000000000005, -0.64]), 'setosa&1&setosa&8&logreg-intercept': np.array([0.9548306148055205, -0.14529485570890852]), 'setosa&1&setosa&8&logreg-no-intercept': np.array([0.406857142857143, -0.5897142857142859]), 'setosa&1&setosa&9&tree-intercept': np.array([1.8531099380307665, -0.015607069084231005]), 'setosa&1&setosa&9&tree-no-intercept': np.array([1.1089837997054492, -0.9145802650957291]), 'setosa&1&setosa&9&logreg-intercept': np.array([1.6711804758626017, 0.16922959222706882]), 'setosa&1&setosa&9&logreg-no-intercept': np.array([1.0471281296023565, -0.5846833578792343]), 'setosa&1&setosa&10&tree-intercept': np.array([1.8531099380307665, -0.015607069084231005]), 'setosa&1&setosa&10&tree-no-intercept': np.array([1.1089837997054492, -0.9145802650957291]), 'setosa&1&setosa&10&logreg-intercept': np.array([1.6976512891133129, 0.2012087828016237]), 'setosa&1&setosa&10&logreg-no-intercept': np.array([1.0471281296023565, -0.5846833578792343]), 'setosa&1&setosa&11&tree-intercept': np.array([1.8531099380307665, -0.015607069084231005]), 'setosa&1&setosa&11&tree-no-intercept': np.array([1.1089837997054492, -0.9145802650957291]), 'setosa&1&setosa&11&logreg-intercept': np.array([1.7614566597812, 0.2204881034350868]), 'setosa&1&setosa&11&logreg-no-intercept': np.array([1.0559646539027983, -0.6318114874815908]), 'setosa&1&setosa&12&tree-intercept': np.array([1.8531099380307665, -0.015607069084231005]), 'setosa&1&setosa&12&tree-no-intercept': np.array([1.1089837997054492, -0.9145802650957291]), 'setosa&1&setosa&12&logreg-intercept': np.array([1.8422461938642845, 0.02907199143141387]), 'setosa&1&setosa&12&logreg-no-intercept': np.array([1.1001472754050075, -0.8674521354933727]), 'setosa&1&setosa&13&tree-intercept': np.array([1.8531099380307665, -0.015607069084231005]), 'setosa&1&setosa&13&tree-no-intercept': np.array([1.1089837997054492, -0.9145802650957291]), 'setosa&1&setosa&13&logreg-intercept': np.array([1.8422461938642845, 0.02907199143141387]), 'setosa&1&setosa&13&logreg-no-intercept': np.array([1.1001472754050075, -0.8674521354933727]), 'setosa&1&setosa&14&tree-intercept': np.array([1.8531099380307665, -0.015607069084231005]), 'setosa&1&setosa&14&tree-no-intercept': np.array([1.1089837997054492, -0.9145802650957291]), 'setosa&1&setosa&14&logreg-intercept': np.array([1.8531099380307665, -0.015607069084231005]), 'setosa&1&setosa&14&logreg-no-intercept': np.array([1.1089837997054492, -0.9145802650957291]), 'setosa&1&setosa&15&tree-intercept': np.array([1.476245122790915, -0.04314895570346513]), 'setosa&1&setosa&15&tree-no-intercept': np.array([0.7378497790868925, -0.9351988217967601]), 'setosa&1&setosa&15&logreg-intercept': np.array([1.6122714405936887, 0.017137173896413307]), 'setosa&1&setosa&15&logreg-no-intercept': np.array([0.8556701030927836, -0.8969072164948455]), 'setosa&1&setosa&16&tree-intercept': np.array([1.476245122790915, -0.04314895570346513]), 'setosa&1&setosa&16&tree-no-intercept': np.array([0.7378497790868925, -0.9351988217967601]), 'setosa&1&setosa&16&logreg-intercept': np.array([1.6122714405936887, 0.017137173896413307]), 'setosa&1&setosa&16&logreg-no-intercept': np.array([0.8556701030927836, -0.8969072164948455]), 'setosa&1&setosa&17&tree-intercept': np.array([1.476245122790915, -0.04314895570346513]), 'setosa&1&setosa&17&tree-no-intercept': np.array([0.7378497790868925, -0.9351988217967601]), 'setosa&1&setosa&17&logreg-intercept': np.array([1.6122714405936887, 0.017137173896413307]), 'setosa&1&setosa&17&logreg-no-intercept': np.array([0.8556701030927836, -0.8969072164948455]), 'setosa&1&versicolor&0&tree-intercept': np.array([-1.1872020075282315, 0.5111668757841914]), 'setosa&1&versicolor&0&tree-no-intercept': np.array([-1.1988571428571433, 0.5017142857142859]), 'setosa&1&versicolor&0&logreg-intercept': np.array([-1.2996235884567129, 0.25621079046424133]), 'setosa&1&versicolor&0&logreg-no-intercept': np.array([-1.1462857142857146, 0.3805714285714287]), 'setosa&1&versicolor&1&tree-intercept': np.array([-0.9322459222082816, 0.7179422835633638]), 'setosa&1&versicolor&1&tree-no-intercept': np.array([-1.1988571428571433, 0.5017142857142859]), 'setosa&1&versicolor&1&logreg-intercept': np.array([-1.2358845671267256, 0.30790464240903437]), 'setosa&1&versicolor&1&logreg-no-intercept': np.array([-1.1462857142857146, 0.3805714285714287]), 'setosa&1&versicolor&2&tree-intercept': np.array([-0.8047678795483063, 0.8213299874529498]), 'setosa&1&versicolor&2&tree-no-intercept': np.array([-1.1988571428571433, 0.5017142857142859]), 'setosa&1&versicolor&2&logreg-intercept': np.array([-1.2752823086574652, 0.35784190715181996]), 'setosa&1&versicolor&2&logreg-no-intercept': np.array([-1.1725714285714288, 0.44114285714285734]), 'setosa&1&versicolor&3&tree-intercept': np.array([-0.9749058971141784, 0.6140526976160612]), 'setosa&1&versicolor&3&tree-no-intercept': np.array([-1.0091428571428573, 0.5862857142857144]), 'setosa&1&versicolor&3&logreg-intercept': np.array([-1.16060225846926, 0.35006273525721504]), 'setosa&1&versicolor&3&logreg-no-intercept': np.array([-1.0285714285714287, 0.4571428571428573]), 'setosa&1&versicolor&4&tree-intercept': np.array([-0.7199498117942287, 0.8208281053952332]), 'setosa&1&versicolor&4&tree-no-intercept': np.array([-1.0091428571428573, 0.5862857142857144]), 'setosa&1&versicolor&4&logreg-intercept': np.array([-0.9693851944792976, 0.5051442910915944]), 'setosa&1&versicolor&4&logreg-no-intercept': np.array([-1.0285714285714287, 0.4571428571428573]), 'setosa&1&versicolor&5&tree-intercept': np.array([-0.6328732747804271, 0.9575909661229628]), 'setosa&1&versicolor&5&tree-no-intercept': np.array([-1.0582857142857145, 0.6125714285714288]), 'setosa&1&versicolor&5&logreg-intercept': np.array([-0.8577164366373908, 0.44767879548306233]), 'setosa&1&versicolor&5&logreg-no-intercept': np.array([-0.9531428571428574, 0.3702857142857144]), 'setosa&1&versicolor&6&tree-intercept': np.array([-0.3229611041405272, 0.7711417816813058]), 'setosa&1&versicolor&6&tree-no-intercept': np.array([-0.3874285714285715, 0.7188571428571429]), 'setosa&1&versicolor&6&logreg-intercept': np.array([0.2928481806775409, 0.7319949811794241]), 'setosa&1&versicolor&6&logreg-no-intercept': np.array([-0.2982857142857143, 0.2525714285714286]), 'setosa&1&versicolor&7&tree-intercept': np.array([-0.10840652446675068, 1.0112923462986212]), 'setosa&1&versicolor&7&tree-no-intercept': np.array([-0.43657142857142867, 0.7451428571428572]), 'setosa&1&versicolor&7&logreg-intercept': np.array([0.2928481806775409, 0.7319949811794241]), 'setosa&1&versicolor&7&logreg-no-intercept': np.array([-0.2982857142857143, 0.2525714285714286]), 'setosa&1&versicolor&8&tree-intercept': np.array([-0.14253450439146828, 1.2481806775407795]), 'setosa&1&versicolor&8&tree-no-intercept': np.array([-0.6331428571428572, 0.8502857142857143]), 'setosa&1&versicolor&8&logreg-intercept': np.array([0.5741530740276033, 0.2735257214554584]), 'setosa&1&versicolor&8&logreg-no-intercept': np.array([-0.13371428571428576, -0.30057142857142854]), 'setosa&1&versicolor&9&tree-intercept': np.array([-1.2442812332644855, 0.7511284522989824]), 'setosa&1&versicolor&9&tree-no-intercept': np.array([-1.1089837997054492, 0.9145802650957291]), 'setosa&1&versicolor&9&logreg-intercept': np.array([-1.316196159436929, 0.20182082472649332]), 'setosa&1&versicolor&9&logreg-no-intercept': np.array([-1.0382916053019147, 0.5375552282768779]), 'setosa&1&versicolor&10&tree-intercept': np.array([-0.9531022875066961, 1.1028995486190813]), 'setosa&1&versicolor&10&tree-no-intercept': np.array([-1.1089837997054492, 0.9145802650957291]), 'setosa&1&versicolor&10&logreg-intercept': np.array([-1.1838420931833873, 0.3617167775992656]), 'setosa&1&versicolor&10&logreg-no-intercept': np.array([-1.0382916053019147, 0.5375552282768779]), 'setosa&1&versicolor&11&tree-intercept': np.array([-0.6883941549996199, 1.4226914543646265]), 'setosa&1&versicolor&11&tree-no-intercept': np.array([-1.1089837997054492, 0.9145802650957291]), 'setosa&1&versicolor&11&logreg-intercept': np.array([-1.2103129064340965, 0.3297375870247106]), 'setosa&1&versicolor&11&logreg-no-intercept': np.array([-1.0382916053019147, 0.5375552282768779]), 'setosa&1&versicolor&12&tree-intercept': np.array([-1.2442812332644855, 0.7511284522989824]), 'setosa&1&versicolor&12&tree-no-intercept': np.array([-1.1089837997054492, 0.9145802650957291]), 'setosa&1&versicolor&12&logreg-intercept': np.array([-0.8505852650906629, 0.8221253155841185]), 'setosa&1&versicolor&12&logreg-no-intercept': np.array([-1.0471281296023565, 0.5846833578792343]), 'setosa&1&versicolor&13&tree-intercept': np.array([-0.9531022875066961, 1.1028995486190813]), 'setosa&1&versicolor&13&tree-no-intercept': np.array([-1.1089837997054492, 0.9145802650957291]), 'setosa&1&versicolor&13&logreg-intercept': np.array([-0.8505852650906629, 0.8221253155841185]), 'setosa&1&versicolor&13&logreg-no-intercept': np.array([-1.0471281296023565, 0.5846833578792343]), 'setosa&1&versicolor&14&tree-intercept': np.array([-0.6883941549996199, 1.4226914543646265]), 'setosa&1&versicolor&14&tree-no-intercept': np.array([-1.1089837997054492, 0.9145802650957291]), 'setosa&1&versicolor&14&logreg-intercept': np.array([-0.6998699410909677, 0.4839721520924183]), 'setosa&1&versicolor&14&logreg-no-intercept': np.array([-0.96759941089838, 0.16053019145802655]), 'setosa&1&versicolor&15&tree-intercept': np.array([-1.1082549154617132, 0.8114145818988611]), 'setosa&1&versicolor&15&tree-no-intercept': np.array([-0.9911634756995582, 0.9528718703976438]), 'setosa&1&versicolor&15&logreg-intercept': np.array([-0.5941396985693541, 0.8660393236936744]), 'setosa&1&versicolor&15&logreg-no-intercept': np.array([-0.8026509572901326, 0.6141384388807071]), 'setosa&1&versicolor&16&tree-intercept': np.array([-0.8170759697039257, 1.16318567821896]), 'setosa&1&versicolor&16&tree-no-intercept': np.array([-0.9911634756995582, 0.9528718703976438]), 'setosa&1&versicolor&16&logreg-intercept': np.array([-0.5676688853186463, 0.8980185142682289]), 'setosa&1&versicolor&16&logreg-no-intercept': np.array([-0.8026509572901326, 0.6141384388807071]), 'setosa&1&versicolor&17&tree-intercept': np.array([-0.5523678371968499, 1.4829775839645034]), 'setosa&1&versicolor&17&tree-no-intercept': np.array([-0.9911634756995582, 0.9528718703976438]), 'setosa&1&versicolor&17&logreg-intercept': np.array([-0.3796190039017688, 0.547165480835438]), 'setosa&1&versicolor&17&logreg-no-intercept': np.array([-0.7142857142857143, 0.14285714285714288]), 'setosa&1&virginica&0&tree-intercept': np.array([-0.5736511919698881, -0.4652446675031376]), 'setosa&1&virginica&0&tree-no-intercept': np.array([-0.7257142857142859, -0.5885714285714285]), 'setosa&1&virginica&0&logreg-intercept': np.array([-0.42183186951066537, -0.2602258469259727]), 'setosa&1&virginica&0&logreg-no-intercept': np.array([-0.7520000000000002, -0.5279999999999999]), 'setosa&1&virginica&1&tree-intercept': np.array([-0.8286072772898374, -0.6720200752823098]), 'setosa&1&virginica&1&tree-no-intercept': np.array([-0.7257142857142859, -0.5885714285714285]), 'setosa&1&virginica&1&logreg-intercept': np.array([-0.48557089084065264, -0.3119196988707659]), 'setosa&1&virginica&1&logreg-no-intercept': np.array([-0.7520000000000002, -0.5279999999999999]), 'setosa&1&virginica&2&tree-intercept': np.array([-0.9560853199498119, -0.775407779171896]), 'setosa&1&virginica&2&tree-no-intercept': np.array([-0.7257142857142859, -0.5885714285714285]), 'setosa&1&virginica&2&logreg-intercept': np.array([-0.48557089084065264, -0.3119196988707659]), 'setosa&1&virginica&2&logreg-no-intercept': np.array([-0.7520000000000002, -0.5279999999999999]), 'setosa&1&virginica&3&tree-intercept': np.array([-0.5332496863237133, -0.4986198243412803]), 'setosa&1&virginica&3&tree-no-intercept': np.array([-0.6765714285714287, -0.6148571428571429]), 'setosa&1&virginica&3&logreg-intercept': np.array([-0.45370138017565914, -0.2860727728983692]), 'setosa&1&virginica&3&logreg-no-intercept': np.array([-0.7520000000000002, -0.5279999999999999]), 'setosa&1&virginica&4&tree-intercept': np.array([-0.7882057716436645, -0.7053952321204522]), 'setosa&1&virginica&4&tree-no-intercept': np.array([-0.6765714285714287, -0.6148571428571429]), 'setosa&1&virginica&4&logreg-intercept': np.array([-0.6449184441656205, -0.44115432873274896]), 'setosa&1&virginica&4&logreg-no-intercept': np.array([-0.7520000000000002, -0.5279999999999999]), 'setosa&1&virginica&5&tree-intercept': np.array([-0.8752823086574644, -0.8421580928481814]), 'setosa&1&virginica&5&tree-no-intercept': np.array([-0.6274285714285718, -0.641142857142857]), 'setosa&1&virginica&5&logreg-intercept': np.array([-0.7161856963613555, -0.41706398996235955]), 'setosa&1&virginica&5&logreg-no-intercept': np.array([-0.7782857142857146, -0.46742857142857136]), 'setosa&1&virginica&6&tree-intercept': np.array([-0.45244667503136793, -0.5653701380175667]), 'setosa&1&virginica&6&tree-no-intercept': np.array([-0.5782857142857144, -0.6674285714285714]), 'setosa&1&virginica&6&logreg-intercept': np.array([-1.2476787954830602, -0.5867001254705156]), 'setosa&1&virginica&6&logreg-no-intercept': np.array([-0.8342857142857144, -0.25142857142857133]), 'setosa&1&virginica&7&tree-intercept': np.array([-0.6670012547051445, -0.8055207026348825]), 'setosa&1&virginica&7&tree-no-intercept': np.array([-0.5291428571428572, -0.6937142857142856]), 'setosa&1&virginica&7&logreg-intercept': np.array([-1.2476787954830602, -0.5867001254705156]), 'setosa&1&virginica&7&logreg-no-intercept': np.array([-0.8342857142857144, -0.25142857142857133]), 'setosa&1&virginica&8&tree-intercept': np.array([-0.6328732747804267, -1.0424090338770402]), 'setosa&1&virginica&8&tree-no-intercept': np.array([-0.3325714285714286, -0.7988571428571429]), 'setosa&1&virginica&8&logreg-intercept': np.array([-1.5289836888331256, -0.12823086574654946]), 'setosa&1&virginica&8&logreg-no-intercept': np.array([-0.9988571428571431, 0.3017142857142859]), 'setosa&1&virginica&9&tree-intercept': np.array([-0.6088287047662795, -0.7355213832147518]), 'setosa&1&virginica&9&tree-no-intercept': np.array([-0.7643593519882179, -0.923416789396171]), 'setosa&1&virginica&9&logreg-intercept': np.array([-0.3549843164256765, -0.37105041695356206]), 'setosa&1&virginica&9&logreg-no-intercept': np.array([-0.7731958762886597, -0.8762886597938145]), 'setosa&1&virginica&10&tree-intercept': np.array([-0.9000076505240656, -1.0872924795348506]), 'setosa&1&virginica&10&tree-no-intercept': np.array([-0.7643593519882179, -0.923416789396171]), 'setosa&1&virginica&10&logreg-intercept': np.array([-0.5138091959299242, -0.5629255604008893]), 'setosa&1&virginica&10&logreg-no-intercept': np.array([-0.7731958762886597, -0.8762886597938145]), 'setosa&1&virginica&11&tree-intercept': np.array([-1.1647157830311445, -1.4070843852803956]), 'setosa&1&virginica&11&tree-no-intercept': np.array([-0.7643593519882179, -0.923416789396171]), 'setosa&1&virginica&11&logreg-intercept': np.array([-0.5511437533471077, -0.5502256904597981]), 'setosa&1&virginica&11&logreg-no-intercept': np.array([-0.7820324005891016, -0.8291605301914582]), 'setosa&1&virginica&12&tree-intercept': np.array([-0.6088287047662795, -0.7355213832147518]), 'setosa&1&virginica&12&tree-no-intercept': np.array([-0.7643593519882179, -0.923416789396171]), 'setosa&1&virginica&12&logreg-intercept': np.array([-0.9916609287736264, -0.8511973070155333]), 'setosa&1&virginica&12&logreg-no-intercept': np.array([-0.8173784977908689, -0.6406480117820326]), 'setosa&1&virginica&13&tree-intercept': np.array([-0.9000076505240656, -1.0872924795348506]), 'setosa&1&virginica&13&tree-no-intercept': np.array([-0.7643593519882179, -0.923416789396171]), 'setosa&1&virginica&13&logreg-intercept': np.array([-0.9916609287736264, -0.8511973070155333]), 'setosa&1&virginica&13&logreg-no-intercept': np.array([-0.8173784977908689, -0.6406480117820326]), 'setosa&1&virginica&14&tree-intercept': np.array([-1.1647157830311445, -1.4070843852803956]), 'setosa&1&virginica&14&tree-no-intercept': np.array([-0.7643593519882179, -0.923416789396171]), 'setosa&1&virginica&14&logreg-intercept': np.array([-1.1532399969397957, -0.46836508300818763]), 'setosa&1&virginica&14&logreg-no-intercept': np.array([-0.9057437407952872, -0.16936671575846834]), 'setosa&1&virginica&15&tree-intercept': np.array([-0.3679902073292049, -0.7682656261953961]), 'setosa&1&virginica&15&tree-no-intercept': np.array([-0.5110456553755522, -0.9410898379970547]), 'setosa&1&virginica&15&logreg-intercept': np.array([-1.0181317420243343, -0.8831764975900871]), 'setosa&1&virginica&15&logreg-no-intercept': np.array([-0.8173784977908689, -0.6406480117820326]), 'setosa&1&virginica&16&tree-intercept': np.array([-0.6591691530869906, -1.1200367225154955]), 'setosa&1&virginica&16&tree-no-intercept': np.array([-0.5110456553755522, -0.9410898379970547]), 'setosa&1&virginica&16&logreg-intercept': np.array([-1.044602555275042, -0.9151556881646411]), 'setosa&1&virginica&16&logreg-no-intercept': np.array([-0.8173784977908689, -0.6406480117820326]), 'setosa&1&virginica&17&tree-intercept': np.array([-0.9238772855940695, -1.4398286282610386]), 'setosa&1&virginica&17&tree-no-intercept': np.array([-0.5110456553755522, -0.9410898379970547]), 'setosa&1&virginica&17&logreg-intercept': np.array([-1.2326524366919196, -0.5643026547318511]), 'setosa&1&virginica&17&logreg-no-intercept': np.array([-0.9057437407952872, -0.16936671575846834]), 'versicolor&0&setosa&0&tree-intercept': np.array([-1.9266055045871562, 5.783107597965657e-16]), 'versicolor&0&setosa&0&tree-no-intercept': np.array([-1.1882193635748137, 0.6438727149627623]), 'versicolor&0&setosa&0&logreg-intercept': np.array([-1.8409785932721714, -0.05333333333333287]), 'versicolor&0&setosa&0&logreg-no-intercept': np.array([-1.08801624915369, 0.6032498307379824]), 'versicolor&0&setosa&1&tree-intercept': np.array([-1.9266055045871562, 5.783107597965657e-16]), 'versicolor&0&setosa&1&tree-no-intercept': np.array([-1.1882193635748137, 0.6438727149627623]), 'versicolor&0&setosa&1&logreg-intercept': np.array([-1.8409785932721714, -0.05333333333333287]), 'versicolor&0&setosa&1&logreg-no-intercept': np.array([-1.08801624915369, 0.6032498307379824]), 'versicolor&0&setosa&2&tree-intercept': np.array([-1.9261016949152545, 0.0061016949152551386]), 'versicolor&0&setosa&2&tree-no-intercept': np.array([-1.3682432432432434, 0.7474662162162162]), 'versicolor&0&setosa&2&logreg-intercept': np.array([-1.9261016949152545, 0.0061016949152551386]), 'versicolor&0&setosa&2&logreg-no-intercept': np.array([-1.3682432432432434, 0.7474662162162162]), 'versicolor&0&setosa&3&tree-intercept': np.array([-1.7125382262996922, 0.02666666666666699]), 'versicolor&0&setosa&3&tree-no-intercept': np.array([-1.147596479350034, 0.5192958700067705]), 'versicolor&0&setosa&3&logreg-intercept': np.array([-1.8042813455657487, 0.026666666666667067]), 'versicolor&0&setosa&3&logreg-no-intercept': np.array([-1.1679079214624237, 0.5815842924847664]), 'versicolor&0&setosa&4&tree-intercept': np.array([-1.7125382262996922, 0.02666666666666699]), 'versicolor&0&setosa&4&tree-no-intercept': np.array([-1.147596479350034, 0.5192958700067705]), 'versicolor&0&setosa&4&logreg-intercept': np.array([-1.8042813455657487, 0.026666666666667067]), 'versicolor&0&setosa&4&logreg-no-intercept': np.array([-1.1679079214624237, 0.5815842924847664]), 'versicolor&0&setosa&5&tree-intercept': np.array([-1.710056497175139, 0.030056497175141528]), 'versicolor&0&setosa&5&tree-no-intercept': np.array([-1.287162162162162, 0.5920608108108109]), 'versicolor&0&setosa&5&logreg-intercept': np.array([-1.7665536723163846, 0.08655367231638454]), 'versicolor&0&setosa&5&logreg-no-intercept': np.array([-1.3277027027027026, 0.6697635135135135]), 'versicolor&0&setosa&6&tree-intercept': np.array([0.7047099771051965, -0.009396133028069199]), 'versicolor&0&setosa&6&tree-no-intercept': np.array([0.2180406212664277, -0.3763440860215054]), 'versicolor&0&setosa&6&logreg-intercept': np.array([0.8863597263210817, 0.014848536982385543]), 'versicolor&0&setosa&6&logreg-no-intercept': np.array([0.3960573476702509, -0.35483870967741943]), 'versicolor&0&setosa&7&tree-intercept': np.array([0.7047099771051965, -0.009396133028069199]), 'versicolor&0&setosa&7&tree-no-intercept': np.array([0.2180406212664277, -0.3763440860215054]), 'versicolor&0&setosa&7&logreg-intercept': np.array([0.8863597263210817, 0.014848536982385543]), 'versicolor&0&setosa&7&logreg-no-intercept': np.array([0.3960573476702509, -0.35483870967741943]), 'versicolor&0&setosa&8&tree-intercept': np.array([0.699282674772036, 0.13733738601823722]), 'versicolor&0&setosa&8&tree-no-intercept': np.array([0.3026315789473684, -0.3544407894736842]), 'versicolor&0&setosa&8&logreg-intercept': np.array([0.8812644376899683, 0.13621884498480247]), 'versicolor&0&setosa&8&logreg-no-intercept': np.array([0.4868421052631579, -0.3527960526315789]), 'versicolor&0&setosa&9&tree-intercept': np.array([-0.8256880733944945, 7.845915558428959e-17]), 'versicolor&0&setosa&9&tree-no-intercept': np.array([-0.9444820582261341, -0.10358835477318894]), 'versicolor&0&setosa&9&logreg-intercept': np.array([-1.1620795107033637, 0.02666666666666693]), 'versicolor&0&setosa&9&logreg-no-intercept': np.array([-1.025727826675694, 0.14556533513879485]), 'versicolor&0&setosa&10&tree-intercept': np.array([-0.8256880733944945, 7.845915558428959e-17]), 'versicolor&0&setosa&10&tree-no-intercept': np.array([-0.9444820582261341, -0.10358835477318894]), 'versicolor&0&setosa&10&logreg-intercept': np.array([-1.1314984709480123, -0.026666666666666502]), 'versicolor&0&setosa&10&logreg-no-intercept': np.array([-1.005416384563304, 0.0832769126607989]), 'versicolor&0&setosa&11&tree-intercept': np.array([-0.8176271186440669, 0.09762711864406831]), 'versicolor&0&setosa&11&tree-no-intercept': np.array([-0.9425675675675675, -0.06841216216216213]), 'versicolor&0&setosa&11&logreg-intercept': np.array([-1.0214689265536716, 0.22146892655367253]), 'versicolor&0&setosa&11&logreg-no-intercept': np.array([-1.0641891891891893, 0.16469594594594594]), 'versicolor&0&setosa&12&tree-intercept': np.array([-0.7200000000000022, -1.280753281207582e-16]), 'versicolor&0&setosa&12&tree-no-intercept': np.array([-0.9110204081632652, -0.19102040816326532]), 'versicolor&0&setosa&12&logreg-intercept': np.array([-0.6666666666666671, -0.026666666666666783]), 'versicolor&0&setosa&12&logreg-no-intercept': np.array([-0.8506122448979593, -0.2106122448979592]), 'versicolor&0&setosa&13&tree-intercept': np.array([-0.7200000000000022, -1.280753281207582e-16]), 'versicolor&0&setosa&13&tree-no-intercept': np.array([-0.9110204081632652, -0.19102040816326532]), 'versicolor&0&setosa&13&logreg-intercept': np.array([-0.6666666666666671, -0.026666666666666783]), 'versicolor&0&setosa&13&logreg-no-intercept': np.array([-0.8506122448979593, -0.2106122448979592]), 'versicolor&0&setosa&14&tree-intercept': np.array([-0.7200000000000022, 0.16513761467889929]), 'versicolor&0&setosa&14&tree-no-intercept': np.array([-0.9014011416709913, -0.12610275038920604]), 'versicolor&0&setosa&14&logreg-intercept': np.array([-0.7200000000000022, 0.16513761467889929]), 'versicolor&0&setosa&14&logreg-no-intercept': np.array([-0.9014011416709913, -0.12610275038920604]), 'versicolor&0&setosa&15&tree-intercept': np.array([-0.5866666666666676, -0.026666666666666575]), 'versicolor&0&setosa&15&tree-no-intercept': np.array([-0.8718367346938776, -0.3118367346938776]), 'versicolor&0&setosa&15&logreg-intercept': np.array([-0.6400000000000003, -1.848990096833507e-16]), 'versicolor&0&setosa&15&logreg-no-intercept': np.array([-0.8914285714285715, -0.2514285714285715]), 'versicolor&0&setosa&16&tree-intercept': np.array([-0.5866666666666676, -0.026666666666666575]), 'versicolor&0&setosa&16&tree-no-intercept': np.array([-0.8718367346938776, -0.3118367346938776]), 'versicolor&0&setosa&16&logreg-intercept': np.array([-0.6400000000000003, -1.848990096833507e-16]), 'versicolor&0&setosa&16&logreg-no-intercept': np.array([-0.8914285714285715, -0.2514285714285715]), 'versicolor&0&setosa&17&tree-intercept': np.array([-0.5866666666666676, 0.1590214067278286]), 'versicolor&0&setosa&17&tree-no-intercept': np.array([-0.8360145303580695, -0.24130773222625848]), 'versicolor&0&setosa&17&logreg-intercept': np.array([-0.6133333333333348, 0.1896024464831804]), 'versicolor&0&setosa&17&logreg-no-intercept': np.array([-0.8578100674623768, -0.2029060716139077]), 'versicolor&0&versicolor&0&tree-intercept': np.array([1.712538226299694, 0.13333333333333336]), 'versicolor&0&versicolor&0&tree-no-intercept': np.array([0.9377115775220041, -0.5423155044008124]), 'versicolor&0&versicolor&0&logreg-intercept': np.array([1.5840978593272164, 0.0533333333333329]), 'versicolor&0&versicolor&0&logreg-no-intercept': np.array([0.8280297901150983, -0.6059580230196344]), 'versicolor&0&versicolor&1&tree-intercept': np.array([1.5840978593272161, 0.05333333333333288]), 'versicolor&0&versicolor&1&tree-no-intercept': np.array([0.8280297901150983, -0.6059580230196344]), 'versicolor&0&versicolor&1&logreg-intercept': np.array([1.5412844036697262, -4.102460810749454e-16]), 'versicolor&0&versicolor&1&logreg-no-intercept': np.array([0.7982396750169264, -0.6479350033852405]), 'versicolor&0&versicolor&2&tree-intercept': np.array([1.3724293785310735, 0.5475706214689265]), 'versicolor&0&versicolor&2&tree-no-intercept': np.array([0.6114864864864865, -0.4636824324324324]), 'versicolor&0&versicolor&2&logreg-intercept': np.array([1.5640677966101708, 0.27593220338983027]), 'versicolor&0&versicolor&2&logreg-no-intercept': np.array([0.9020270270270271, -0.6038851351351351]), 'versicolor&0&versicolor&3&tree-intercept': np.array([1.5290519877675843, 0.13333333333333325]), 'versicolor&0&versicolor&3&tree-no-intercept': np.array([0.8970886932972242, -0.41773865944482064]), 'versicolor&0&versicolor&3&logreg-intercept': np.array([1.5474006116207948, -0.026666666666667234]), 'versicolor&0&versicolor&3&logreg-no-intercept': np.array([0.9079214624238322, -0.5842924847664185]), 'versicolor&0&versicolor&4&tree-intercept': np.array([1.4006116207951067, 0.053333333333332955]), 'versicolor&0&versicolor&4&tree-no-intercept': np.array([0.7874069058903183, -0.48138117806364256]), 'versicolor&0&versicolor&4&logreg-intercept': np.array([1.4617737003058104, -0.133333333333334]), 'versicolor&0&versicolor&4&logreg-no-intercept': np.array([0.8483412322274881, -0.6682464454976303]), 'versicolor&0&versicolor&5&tree-intercept': np.array([1.225084745762712, 0.6149152542372882]), 'versicolor&0&versicolor&5&tree-no-intercept': np.array([0.5304054054054054, -0.30827702702702703]), 'versicolor&0&versicolor&5&logreg-intercept': np.array([1.2402259887005642, 0.27977401129943485]), 'versicolor&0&versicolor&5&logreg-no-intercept': np.array([0.6655405405405407, -0.4839527027027027]), 'versicolor&0&versicolor&6&tree-intercept': np.array([-0.6043698635575601, 0.1947249315141009]), 'versicolor&0&versicolor&6&tree-no-intercept': np.array([-0.3064516129032258, 0.4193548387096775]), 'versicolor&0&versicolor&6&logreg-intercept': np.array([0.06429072429628248, -0.4541905429906176]), 'versicolor&0&versicolor&6&logreg-no-intercept': np.array([-0.11768219832735957, -0.5913978494623657]), 'versicolor&0&versicolor&7&tree-intercept': np.array([-0.5339650357979427, 0.06045286714397276]), 'versicolor&0&versicolor&7&tree-no-intercept': np.array([-0.2861409796893668, 0.24731182795698925]), 'versicolor&0&versicolor&7&logreg-intercept': np.array([0.06429072429628248, -0.4541905429906176]), 'versicolor&0&versicolor&7&logreg-no-intercept': np.array([-0.11768219832735957, -0.5913978494623657]), 'versicolor&0&versicolor&8&tree-intercept': np.array([-0.4594772036474156, 0.7093981762917936]), 'versicolor&0&versicolor&8&tree-no-intercept': np.array([-0.618421052631579, 0.5123355263157895]), 'versicolor&0&versicolor&8&logreg-intercept': np.array([0.4359878419452881, 0.15392097264437712]), 'versicolor&0&versicolor&8&logreg-no-intercept': np.array([-0.0921052631578948, -0.5008223684210525]), 'versicolor&0&versicolor&9&tree-intercept': np.array([0.6727828746177367, 0.1866666666666667]), 'versicolor&0&versicolor&9&tree-no-intercept': np.array([0.6939742721733244, 0.20514556533513884]), 'versicolor&0&versicolor&9&logreg-intercept': np.array([0.9051987767584099, -0.026666666666666818]), 'versicolor&0&versicolor&9&logreg-no-intercept': np.array([0.7657413676371023, -0.14827352742044686]), 'versicolor&0&versicolor&10&tree-intercept': np.array([0.6360856269113152, 0.026666666666666283]), 'versicolor&0&versicolor&10&tree-no-intercept': np.array([0.6249153689911983, 0.01692620176032502]), 'versicolor&0&versicolor&10&logreg-intercept': np.array([0.788990825688073, -0.08000000000000025]), 'versicolor&0&versicolor&10&logreg-no-intercept': np.array([0.6858496953283683, -0.16993906567366282]), 'versicolor&0&versicolor&11&tree-intercept': np.array([0.573107344632768, 0.8668926553672316]), 'versicolor&0&versicolor&11&tree-no-intercept': np.array([0.18581081081081083, 0.35219594594594594]), 'versicolor&0&versicolor&11&logreg-intercept': np.array([0.49514124293785294, 0.14485875706214688]), 'versicolor&0&versicolor&11&logreg-no-intercept': np.array([0.40202702702702703, 0.021114864864864837]), 'versicolor&0&versicolor&12&tree-intercept': np.array([0.7466666666666678, 0.1866666666666669]), 'versicolor&0&versicolor&12&tree-no-intercept': np.array([0.7902040816326531, 0.23020408163265307]), 'versicolor&0&versicolor&12&logreg-intercept': np.array([1.360000000000002, -0.40000000000000047]), 'versicolor&0&versicolor&12&logreg-no-intercept': np.array([1.0840816326530613, -0.6759183673469389]), 'versicolor&0&versicolor&13&tree-intercept': np.array([0.6666666666666685, 0.026666666666666446]), 'versicolor&0&versicolor&13&tree-no-intercept': np.array([0.6873469387755102, 0.04734693877551018]), 'versicolor&0&versicolor&13&logreg-intercept': np.array([1.360000000000002, -0.40000000000000047]), 'versicolor&0&versicolor&13&logreg-no-intercept': np.array([1.0840816326530613, -0.6759183673469389]), 'versicolor&0&versicolor&14&tree-intercept': np.array([0.6133333333333342, 0.8195718654434251]), 'versicolor&0&versicolor&14&tree-no-intercept': np.array([0.3035806953814219, 0.32226258432797095]), 'versicolor&0&versicolor&14&logreg-intercept': np.array([1.6000000000000019, 0.22018348623853212]), 'versicolor&0&versicolor&14&logreg-no-intercept': np.array([1.0934094447327454, -0.5931499740529322]), 'versicolor&0&versicolor&15&tree-intercept': np.array([0.6133333333333342, 0.21333333333333307]), 'versicolor&0&versicolor&15&tree-no-intercept': np.array([0.7510204081632653, 0.35102040816326535]), 'versicolor&0&versicolor&15&logreg-intercept': np.array([1.2800000000000025, -0.40000000000000036]), 'versicolor&0&versicolor&15&logreg-no-intercept': np.array([1.0644897959183675, -0.6155102040816327]), 'versicolor&0&versicolor&16&tree-intercept': np.array([0.5333333333333344, 0.053333333333333434]), 'versicolor&0&versicolor&16&tree-no-intercept': np.array([0.6481632653061226, 0.16816326530612244]), 'versicolor&0&versicolor&16&logreg-intercept': np.array([1.2266666666666681, -0.4533333333333338]), 'versicolor&0&versicolor&16&logreg-no-intercept': np.array([1.0236734693877552, -0.656326530612245]), 'versicolor&0&versicolor&17&tree-intercept': np.array([0.5066666666666672, 0.8685015290519882]), 'versicolor&0&versicolor&17&tree-no-intercept': np.array([0.23819408406850026, 0.43746756616502336]), 'versicolor&0&versicolor&17&logreg-intercept': np.array([1.3333333333333346, 0.324159021406728]), 'versicolor&0&versicolor&17&logreg-no-intercept': np.array([0.8505448884276077, -0.4509600415153089]), 'versicolor&0&virginica&0&tree-intercept': np.array([0.21406727828746208, -0.13333333333333322]), 'versicolor&0&virginica&0&tree-no-intercept': np.array([-0.5111712931618145, -0.7657413676371024]), 'versicolor&0&virginica&0&logreg-intercept': np.array([0.2568807339449539, -8.946858431370215e-17]), 'versicolor&0&virginica&0&logreg-no-intercept': np.array([-0.5016926201760326, -0.6614759647935005]), 'versicolor&0&virginica&1&tree-intercept': np.array([0.3425076452599386, -0.05333333333333347]), 'versicolor&0&virginica&1&tree-no-intercept': np.array([-0.40148950575490855, -0.7020988490182805]), 'versicolor&0&virginica&1&logreg-intercept': np.array([0.2996941896024467, 0.05333333333333336]), 'versicolor&0&virginica&1&logreg-no-intercept': np.array([-0.47190250507786047, -0.6194989844278944]), 'versicolor&0&virginica&2&tree-intercept': np.array([0.553672316384182, -0.5536723163841808]), 'versicolor&0&virginica&2&tree-no-intercept': np.array([0.179054054054054, -1.0515202702702702]), 'versicolor&0&virginica&2&logreg-intercept': np.array([0.3620338983050849, -0.28203389830508535]), 'versicolor&0&virginica&2&logreg-no-intercept': np.array([-0.11148648648648658, -0.9113175675675674]), 'versicolor&0&virginica&3&tree-intercept': np.array([0.18348623853210996, -0.15999999999999964]), 'versicolor&0&virginica&3&tree-no-intercept': np.array([-0.5111712931618145, -0.7657413676371024]), 'versicolor&0&virginica&3&logreg-intercept': np.array([0.2568807339449539, -8.946858431370215e-17]), 'versicolor&0&virginica&3&logreg-no-intercept': np.array([-0.5016926201760326, -0.6614759647935005]), 'versicolor&0&virginica&4&tree-intercept': np.array([0.31192660550458734, -0.08000000000000036]), 'versicolor&0&virginica&4&tree-no-intercept': np.array([-0.40148950575490855, -0.7020988490182805]), 'versicolor&0&virginica&4&logreg-intercept': np.array([0.3425076452599389, 0.10666666666666669]), 'versicolor&0&virginica&4&logreg-no-intercept': np.array([-0.4421123899796886, -0.5775220040622885]), 'versicolor&0&virginica&5&tree-intercept': np.array([0.48497175141242926, -0.6449717514124298]), 'versicolor&0&virginica&5&tree-no-intercept': np.array([0.179054054054054, -1.0515202702702702]), 'versicolor&0&virginica&5&logreg-intercept': np.array([0.5263276836158192, -0.3663276836158193]), 'versicolor&0&virginica&5&logreg-no-intercept': np.array([0.08445945945945933, -0.9535472972972971]), 'versicolor&0&virginica&6&tree-intercept': np.array([-0.10034011354763567, -0.18532879848603112]), 'versicolor&0&virginica&6&tree-no-intercept': np.array([-0.6959378733572282, -0.6344086021505377]), 'versicolor&0&virginica&6&logreg-intercept': np.array([-0.9506504506173643, 0.4393420060082324]), 'versicolor&0&virginica&6&logreg-no-intercept': np.array([-1.0627240143369177, 0.35483870967741943]), 'versicolor&0&virginica&7&tree-intercept': np.array([-0.17074494130725346, -0.05105673411590355]), 'versicolor&0&virginica&7&tree-no-intercept': np.array([-0.7162485065710872, -0.4623655913978496]), 'versicolor&0&virginica&7&logreg-intercept': np.array([-0.9506504506173643, 0.4393420060082324]), 'versicolor&0&virginica&7&logreg-no-intercept': np.array([-1.0627240143369177, 0.35483870967741943]), 'versicolor&0&virginica&8&tree-intercept': np.array([-0.23980547112461933, -0.8467355623100313]), 'versicolor&0&virginica&8&tree-no-intercept': np.array([-0.2500000000000001, -0.8593749999999999]), 'versicolor&0&virginica&8&logreg-intercept': np.array([-1.3172522796352566, -0.29013981762917995]), 'versicolor&0&virginica&8&logreg-no-intercept': np.array([-0.9605263157894737, 0.15213815789473678]), 'versicolor&0&virginica&9&tree-intercept': np.array([0.1529051987767585, -0.1866666666666663]), 'versicolor&0&virginica&9&tree-no-intercept': np.array([-0.5111712931618145, -0.7657413676371024]), 'versicolor&0&virginica&9&logreg-intercept': np.array([0.2568807339449539, -8.946858431370215e-17]), 'versicolor&0&virginica&9&logreg-no-intercept': np.array([-0.5016926201760326, -0.6614759647935005]), 'versicolor&0&virginica&10&tree-intercept': np.array([0.18960244648318034, -0.02666666666666668]), 'versicolor&0&virginica&10&tree-no-intercept': np.array([-0.4421123899796886, -0.5775220040622885]), 'versicolor&0&virginica&10&logreg-intercept': np.array([0.3425076452599389, 0.10666666666666669]), 'versicolor&0&virginica&10&logreg-no-intercept': np.array([-0.4421123899796886, -0.5775220040622885]), 'versicolor&0&virginica&11&tree-intercept': np.array([0.2445197740113, -0.9645197740112978]), 'versicolor&0&virginica&11&tree-no-intercept': np.array([0.179054054054054, -1.0515202702702702]), 'versicolor&0&virginica&11&logreg-intercept': np.array([0.5263276836158192, -0.3663276836158193]), 'versicolor&0&virginica&11&logreg-no-intercept': np.array([0.08445945945945933, -0.9535472972972971]), 'versicolor&0&virginica&12&tree-intercept': np.array([-0.026666666666666748, -0.18666666666666626]), 'versicolor&0&virginica&12&tree-no-intercept': np.array([-0.6138775510204082, -0.7738775510204082]), 'versicolor&0&virginica&12&logreg-intercept': np.array([-0.6933333333333341, 0.42666666666666747]), 'versicolor&0&virginica&12&logreg-no-intercept': np.array([-0.9681632653061225, 0.1518367346938776]), 'versicolor&0&virginica&13&tree-intercept': np.array([0.053333333333333365, -0.026666666666666634]), 'versicolor&0&virginica&13&tree-no-intercept': np.array([-0.5110204081632653, -0.5910204081632653]), 'versicolor&0&virginica&13&logreg-intercept': np.array([-0.6933333333333341, 0.42666666666666747]), 'versicolor&0&virginica&13&logreg-no-intercept': np.array([-0.9681632653061225, 0.1518367346938776]), 'versicolor&0&virginica&14&tree-intercept': np.array([0.10666666666666684, -0.9847094801223223]), 'versicolor&0&virginica&14&tree-no-intercept': np.array([0.08873897249610807, -1.0134924753502856]), 'versicolor&0&virginica&14&logreg-intercept': np.array([-0.8800000000000017, -0.38532110091743144]), 'versicolor&0&virginica&14&logreg-no-intercept': np.array([-0.7010897768552155, -0.09807991696938245]), 'versicolor&0&virginica&15&tree-intercept': np.array([-0.026666666666666748, -0.18666666666666626]), 'versicolor&0&virginica&15&tree-no-intercept': np.array([-0.6138775510204082, -0.7738775510204082]), 'versicolor&0&virginica&15&logreg-intercept': np.array([-0.6400000000000012, 0.40000000000000047]), 'versicolor&0&virginica&15&logreg-no-intercept': np.array([-0.9077551020408163, 0.1322448979591837]), 'versicolor&0&virginica&16&tree-intercept': np.array([0.053333333333333365, -0.026666666666666634]), 'versicolor&0&virginica&16&tree-no-intercept': np.array([-0.5110204081632653, -0.5910204081632653]), 'versicolor&0&virginica&16&logreg-intercept': np.array([-0.5866666666666672, 0.45333333333333425]), 'versicolor&0&virginica&16&logreg-no-intercept': np.array([-0.8669387755102042, 0.17306122448979594]), 'versicolor&0&virginica&17&tree-intercept': np.array([0.0800000000000002, -1.0275229357798168]), 'versicolor&0&virginica&17&tree-no-intercept': np.array([0.08873897249610807, -1.0134924753502856]), 'versicolor&0&virginica&17&logreg-intercept': np.array([-0.7200000000000009, -0.5137614678899083]), 'versicolor&0&virginica&17&logreg-no-intercept': np.array([-0.5018162947586923, -0.1634665282823041]), 'versicolor&1&setosa&0&tree-intercept': np.array([-1.9276406561398112, 0.008585006898666207]), 'versicolor&1&setosa&0&tree-no-intercept': np.array([-1.0902378999179656, 0.6324856439704676]), 'versicolor&1&setosa&0&logreg-intercept': np.array([-1.8913587817466402, -0.009709233992539434]), 'versicolor&1&setosa&0&logreg-no-intercept': np.array([-1.0492206726825268, 0.6177194421657095]), 'versicolor&1&setosa&1&tree-intercept': np.array([-1.9276406561398112, 0.008585006898666207]), 'versicolor&1&setosa&1&tree-no-intercept': np.array([-1.0902378999179656, 0.6324856439704676]), 'versicolor&1&setosa&1&logreg-intercept': np.array([-1.8913587817466402, -0.009709233992539434]), 'versicolor&1&setosa&1&logreg-no-intercept': np.array([-1.0492206726825268, 0.6177194421657095]), 'versicolor&1&setosa&2&tree-intercept': np.array([-1.9280332846058676, 0.004947711683347047]), 'versicolor&1&setosa&2&tree-no-intercept': np.array([-1.2034518828451883, 0.6433054393305441]), 'versicolor&1&setosa&2&logreg-intercept': np.array([-1.9280332846058676, 0.004947711683347047]), 'versicolor&1&setosa&2&logreg-no-intercept': np.array([-1.2034518828451883, 0.6433054393305441]), 'versicolor&1&setosa&3&tree-intercept': np.array([-1.6922683836680463, -0.008687209361745997]), 'versicolor&1&setosa&3&tree-no-intercept': np.array([-1.0607054963084497, 0.4618539786710419]), 'versicolor&1&setosa&3&logreg-intercept': np.array([-1.7919157851704224, 0.01338852266339612]), 'versicolor&1&setosa&3&logreg-no-intercept': np.array([-1.0754716981132078, 0.5471698113207547]), 'versicolor&1&setosa&4&tree-intercept': np.array([-1.6922683836680463, -0.008687209361745997]), 'versicolor&1&setosa&4&tree-no-intercept': np.array([-1.0607054963084497, 0.4618539786710419]), 'versicolor&1&setosa&4&logreg-intercept': np.array([-1.7919157851704224, 0.01338852266339612]), 'versicolor&1&setosa&4&logreg-no-intercept': np.array([-1.0754716981132078, 0.5471698113207547]), 'versicolor&1&setosa&5&tree-intercept': np.array([-1.6964653847595488, -0.07496532853555218]), 'versicolor&1&setosa&5&tree-no-intercept': np.array([-1.1281380753138077, 0.4257322175732219]), 'versicolor&1&setosa&5&logreg-intercept': np.array([-1.7583867461299152, 0.012444244536901855]), 'versicolor&1&setosa&5&logreg-no-intercept': np.array([-1.1657949790794981, 0.5345188284518829]), 'versicolor&1&setosa&6&tree-intercept': np.array([0.792951541850221, -0.3083700440528633]), 'versicolor&1&setosa&6&tree-no-intercept': np.array([0.14545454545454553, -0.6472727272727274]), 'versicolor&1&setosa&6&logreg-intercept': np.array([0.9710903083700437, -0.2491740088105726]), 'versicolor&1&setosa&6&logreg-no-intercept': np.array([0.31818181818181823, -0.590909090909091]), 'versicolor&1&setosa&7&tree-intercept': np.array([0.792951541850221, -0.3083700440528633]), 'versicolor&1&setosa&7&tree-no-intercept': np.array([0.14545454545454553, -0.6472727272727274]), 'versicolor&1&setosa&7&logreg-intercept': np.array([0.9710903083700437, -0.2491740088105726]), 'versicolor&1&setosa&7&logreg-no-intercept': np.array([0.31818181818181823, -0.590909090909091]), 'versicolor&1&setosa&8&tree-intercept': np.array([0.7754077791718955, -0.2057716436637395]), 'versicolor&1&setosa&8&tree-no-intercept': np.array([0.24000000000000005, -0.64]), 'versicolor&1&setosa&8&logreg-intercept': np.array([0.9548306148055205, -0.14529485570890852]), 'versicolor&1&setosa&8&logreg-no-intercept': np.array([0.406857142857143, -0.5897142857142859]), 'versicolor&1&setosa&9&tree-intercept': np.array([-0.5411620420052133, -0.4031887168480761]), 'versicolor&1&setosa&9&tree-no-intercept': np.array([-0.8687448728465956, -0.6472518457752255]), 'versicolor&1&setosa&9&logreg-intercept': np.array([-0.9036741785477033, -0.28800654095763695]), 'versicolor&1&setosa&9&logreg-no-intercept': np.array([-0.9278096800656276, -0.305988515176374]), 'versicolor&1&setosa&10&tree-intercept': np.array([-0.5411620420052133, -0.4031887168480761]), 'versicolor&1&setosa&10&tree-no-intercept': np.array([-0.8687448728465956, -0.6472518457752255]), 'versicolor&1&setosa&10&logreg-intercept': np.array([-0.8761817159793557, -0.36384076856252284]), 'versicolor&1&setosa&10&logreg-no-intercept': np.array([-0.9130434782608696, -0.39130434782608686]), 'versicolor&1&setosa&11&tree-intercept': np.array([-0.5237827504779049, -0.24851006409535661]), 'versicolor&1&setosa&11&tree-no-intercept': np.array([-0.8080543933054394, -0.49895397489539745]), 'versicolor&1&setosa&11&logreg-intercept': np.array([-0.7454552269575321, -0.017916713519996647]), 'versicolor&1&setosa&11&logreg-no-intercept': np.array([-0.9210251046025106, -0.17259414225941416]), 'versicolor&1&setosa&12&tree-intercept': np.array([-0.38930264048747576, -0.22681110358835407]), 'versicolor&1&setosa&12&tree-no-intercept': np.array([-0.8117647058823529, -0.47294117647058825]), 'versicolor&1&setosa&12&logreg-intercept': np.array([-0.33536447754457255, -0.26495147822162013]), 'versicolor&1&setosa&12&logreg-no-intercept': np.array([-0.7529411764705882, -0.5082352941176471]), 'versicolor&1&setosa&13&tree-intercept': np.array([-0.38930264048747576, -0.22681110358835407]), 'versicolor&1&setosa&13&tree-no-intercept': np.array([-0.8117647058823529, -0.47294117647058825]), 'versicolor&1&setosa&13&logreg-intercept': np.array([-0.33536447754457255, -0.26495147822162013]), 'versicolor&1&setosa&13&logreg-no-intercept': np.array([-0.7529411764705882, -0.5082352941176471]), 'versicolor&1&setosa&14&tree-intercept': np.array([-0.41295938104448854, -0.1402321083172151]), 'versicolor&1&setosa&14&tree-no-intercept': np.array([-0.7457386363636362, -0.47301136363636365]), 'versicolor&1&setosa&14&logreg-intercept': np.array([-0.41295938104448854, -0.1402321083172151]), 'versicolor&1&setosa&14&logreg-no-intercept': np.array([-0.7457386363636362, -0.47301136363636365]), 'versicolor&1&setosa&15&tree-intercept': np.array([-0.31144211238997993, -0.1814488828706828]), 'versicolor&1&setosa&15&tree-no-intercept': np.array([-0.8117647058823529, -0.47294117647058825]), 'versicolor&1&setosa&15&logreg-intercept': np.array([-0.3373956217558123, -0.19656962310990667]), 'versicolor&1&setosa&15&logreg-no-intercept': np.array([-0.8117647058823529, -0.47294117647058825]), 'versicolor&1&setosa&16&tree-intercept': np.array([-0.31144211238997993, -0.1814488828706828]), 'versicolor&1&setosa&16&tree-no-intercept': np.array([-0.8117647058823529, -0.47294117647058825]), 'versicolor&1&setosa&16&logreg-intercept': np.array([-0.3373956217558123, -0.19656962310990667]), 'versicolor&1&setosa&16&logreg-no-intercept': np.array([-0.8117647058823529, -0.47294117647058825]), 'versicolor&1&setosa&17&tree-intercept': np.array([-0.3249516441005804, -0.14313346228239884]), 'versicolor&1&setosa&17&tree-no-intercept': np.array([-0.7159090909090909, -0.5340909090909092]), 'versicolor&1&setosa&17&logreg-intercept': np.array([-0.36331399097356637, -0.0905867182462926]), 'versicolor&1&setosa&17&logreg-no-intercept': np.array([-0.7457386363636362, -0.47301136363636365]), 'versicolor&1&versicolor&0&tree-intercept': np.array([1.2745669170627014, 0.32071132914303224]), 'versicolor&1&versicolor&0&tree-no-intercept': np.array([0.3519278096800657, -0.36669401148482367]), 'versicolor&1&versicolor&0&logreg-intercept': np.array([1.4025244008380604, 0.04210741478869665]), 'versicolor&1&versicolor&0&logreg-no-intercept': np.array([0.5455291222313372, -0.5963904840032814]), 'versicolor&1&versicolor&1&tree-intercept': np.array([0.9671419081199849, 0.2616383054831618]), 'versicolor&1&versicolor&1&tree-no-intercept': np.array([0.05332239540607054, -0.41919606234618534]), 'versicolor&1&versicolor&1&logreg-intercept': np.array([1.3213756451530474, -0.024017578823649452]), 'versicolor&1&versicolor&1&logreg-no-intercept': np.array([0.47826086956521746, -0.6521739130434783]), 'versicolor&1&versicolor&2&tree-intercept': np.array([0.8462835938378496, 0.7956819970763532]), 'versicolor&1&versicolor&2&tree-no-intercept': np.array([-0.14592050209205024, -0.07845188284518828]), 'versicolor&1&versicolor&2&logreg-intercept': np.array([1.3822107275385127, 0.3200269875182732]), 'versicolor&1&versicolor&2&logreg-no-intercept': np.array([0.5475941422594143, -0.41527196652719667]), 'versicolor&1&versicolor&3&tree-intercept': np.array([1.0752721140579484, 0.3648627931933156]), 'versicolor&1&versicolor&3&tree-no-intercept': np.array([0.3223954060705497, -0.19606234618539786]), 'versicolor&1&versicolor&3&logreg-intercept': np.array([1.2667995298686694, 0.03730389902396669]), 'versicolor&1&versicolor&3&logreg-no-intercept': np.array([0.5307629204265792, -0.5110746513535686]), 'versicolor&1&versicolor&4&tree-intercept': np.array([0.7678471051152332, 0.30578976953344555]), 'versicolor&1&versicolor&4&tree-no-intercept': np.array([0.023789991796554544, -0.2485643970467596]), 'versicolor&1&versicolor&4&logreg-intercept': np.array([1.0405232766109662, 0.04435586897644245]), 'versicolor&1&versicolor&4&logreg-no-intercept': np.array([0.29942575881870387, -0.5077932731747333]), 'versicolor&1&versicolor&5&tree-intercept': np.array([0.6865324787285877, 0.9388657745792586]), 'versicolor&1&versicolor&5&tree-no-intercept': np.array([-0.221234309623431, 0.1391213389121339]), 'versicolor&1&versicolor&5&logreg-intercept': np.array([0.9552082162000072, 0.42400389819708445]), 'versicolor&1&versicolor&5&logreg-no-intercept': np.array([0.21391213389121339, -0.2290794979079498]), 'versicolor&1&versicolor&6&tree-intercept': np.array([-0.33287444933920707, 0.7023678414096908]), 'versicolor&1&versicolor&6&tree-no-intercept': np.array([-0.28181818181818186, 0.7290909090909092]), 'versicolor&1&versicolor&6&logreg-intercept': np.array([0.36508810572687256, 0.003854625550660802]), 'versicolor&1&versicolor&6&logreg-no-intercept': np.array([-0.1181818181818182, -0.24909090909090909]), 'versicolor&1&versicolor&7&tree-intercept': np.array([-0.07640418502202659, 0.5557544052863433]), 'versicolor&1&versicolor&7&tree-no-intercept': np.array([-0.2454545454545455, 0.4672727272727273]), 'versicolor&1&versicolor&7&logreg-intercept': np.array([0.36508810572687256, 0.003854625550660802]), 'versicolor&1&versicolor&7&logreg-no-intercept': np.array([-0.1181818181818182, -0.24909090909090909]), 'versicolor&1&versicolor&8&tree-intercept': np.array([-0.14253450439146828, 1.2481806775407795]), 'versicolor&1&versicolor&8&tree-no-intercept': np.array([-0.6331428571428572, 0.8502857142857143]), 'versicolor&1&versicolor&8&logreg-intercept': np.array([0.5741530740276033, 0.2735257214554584]), 'versicolor&1&versicolor&8&logreg-no-intercept': np.array([-0.13371428571428576, -0.30057142857142854]), 'versicolor&1&versicolor&9&tree-intercept': np.array([0.0684756502631714, 0.8668812918391341]), 'versicolor&1&versicolor&9&tree-no-intercept': np.array([0.1304347826086957, 0.9130434782608694]), 'versicolor&1&versicolor&9&logreg-intercept': np.array([0.37855792324595006, 0.3386989626449994]), 'versicolor&1&versicolor&9&logreg-no-intercept': np.array([0.38310090237899924, 0.34208367514356025]), 'versicolor&1&versicolor&10&tree-intercept': np.array([-0.1478869640758337, 0.6830190607593644]), 'versicolor&1&versicolor&10&tree-no-intercept': np.array([-0.13863822805578344, 0.689909762100082]), 'versicolor&1&versicolor&10&logreg-intercept': np.array([0.12478920741989878, 0.42158516020236075]), 'versicolor&1&versicolor&10&logreg-no-intercept': np.array([0.13699753896636588, 0.4306808859721083]), 'versicolor&1&versicolor&11&tree-intercept': np.array([-0.0552494471307019, 1.4920349338431007]), 'versicolor&1&versicolor&11&tree-no-intercept': np.array([-0.5413179916317992, 1.0638075313807531]), 'versicolor&1&versicolor&11&logreg-intercept': np.array([-0.05772330297237527, 0.4543648562539831]), 'versicolor&1&versicolor&11&logreg-no-intercept': np.array([-0.03085774058577407, 0.4780334728033473]), 'versicolor&1&versicolor&12&tree-intercept': np.array([0.5867749943579327, 0.6896863010607092]), 'versicolor&1&versicolor&12&tree-no-intercept': np.array([0.5176470588235295, 0.6494117647058824]), 'versicolor&1&versicolor&12&logreg-intercept': np.array([1.4468517264725833, -0.04400812457684755]), 'versicolor&1&versicolor&12&logreg-no-intercept': np.array([0.9529411764705884, -0.331764705882353]), 'versicolor&1&versicolor&13&tree-intercept': np.array([0.7246671180320474, 0.4917625818099747]), 'versicolor&1&versicolor&13&tree-no-intercept': np.array([0.48235294117647065, 0.35058823529411764]), 'versicolor&1&versicolor&13&logreg-intercept': np.array([1.4468517264725833, -0.04400812457684755]), 'versicolor&1&versicolor&13&logreg-no-intercept': np.array([0.9529411764705884, -0.331764705882353]), 'versicolor&1&versicolor&14&tree-intercept': np.array([0.42198581560283754, 1.42198581560284]), 'versicolor&1&versicolor&14&tree-no-intercept': np.array([-0.10937500000000007, 0.8906250000000001]), 'versicolor&1&versicolor&14&logreg-intercept': np.array([1.5583494519664765, 0.2856221792392003]), 'versicolor&1&versicolor&14&logreg-no-intercept': np.array([0.9176136363636364, -0.35511363636363635]), 'versicolor&1&versicolor&15&tree-intercept': np.array([0.5608214849921023, 0.6745655608214859]), 'versicolor&1&versicolor&15&tree-no-intercept': np.array([0.5176470588235295, 0.6494117647058824]), 'versicolor&1&versicolor&15&logreg-intercept': np.array([1.394944707740918, -0.07424960505529424]), 'versicolor&1&versicolor&15&logreg-no-intercept': np.array([0.9529411764705884, -0.331764705882353]), 'versicolor&1&versicolor&16&tree-intercept': np.array([0.6987136086662175, 0.476641841570749]), 'versicolor&1&versicolor&16&tree-no-intercept': np.array([0.48235294117647065, 0.35058823529411764]), 'versicolor&1&versicolor&16&logreg-intercept': np.array([1.3640261791920592, -0.1444369216881082]), 'versicolor&1&versicolor&16&logreg-no-intercept': np.array([0.9294117647058823, -0.3976470588235294]), 'versicolor&1&versicolor&17&tree-intercept': np.array([0.383623468729851, 1.4745325596389454]), 'versicolor&1&versicolor&17&tree-no-intercept': np.array([-0.13920454545454547, 0.9517045454545455]), 'versicolor&1&versicolor&17&logreg-intercept': np.array([1.3510638297872353, 0.35106382978723477]), 'versicolor&1&versicolor&17&logreg-no-intercept': np.array([0.734375, -0.26562499999999994]), 'versicolor&1&virginica&0&tree-intercept': np.array([0.6530737390771106, -0.3292963360416981]), 'versicolor&1&virginica&0&tree-no-intercept': np.array([-0.1304347826086957, -0.9130434782608694]), 'versicolor&1&virginica&0&logreg-intercept': np.array([0.48883438090857895, -0.03239818079615714]), 'versicolor&1&virginica&0&logreg-no-intercept': np.array([-0.3650533223954061, -0.6685808039376537]), 'versicolor&1&virginica&1&tree-intercept': np.array([0.9604987480198254, -0.27022331238182823]), 'versicolor&1&virginica&1&tree-no-intercept': np.array([0.16817063166529944, -0.8605414273995078]), 'versicolor&1&virginica&1&logreg-intercept': np.array([0.5699831365935911, 0.03372681281618891]), 'versicolor&1&virginica&1&logreg-no-intercept': np.array([-0.2977850697292863, -0.6127973748974569]), 'versicolor&1&virginica&2&tree-intercept': np.array([1.0817496907680186, -0.8006297087597005]), 'versicolor&1&virginica&2&tree-no-intercept': np.array([0.5978033472803348, -1.2269874476987448]), 'versicolor&1&virginica&2&logreg-intercept': np.array([0.5458225570673556, -0.3249746992016201]), 'versicolor&1&virginica&2&logreg-no-intercept': np.array([-0.09571129707112974, -0.8901673640167364]), 'versicolor&1&virginica&3&tree-intercept': np.array([0.6169962696100971, -0.35617558383157105]), 'versicolor&1&virginica&3&tree-no-intercept': np.array([-0.1304347826086957, -0.9130434782608694]), 'versicolor&1&virginica&3&logreg-intercept': np.array([0.5251162553017522, -0.05069242168736262]), 'versicolor&1&virginica&3&logreg-no-intercept': np.array([-0.3240360951599673, -0.6833470057424116]), 'versicolor&1&virginica&4&tree-intercept': np.array([0.924421278552812, -0.2971025601717011]), 'versicolor&1&virginica&4&tree-no-intercept': np.array([0.16817063166529944, -0.8605414273995078]), 'versicolor&1&virginica&4&logreg-intercept': np.array([0.7513925085594562, -0.057744391639838154]), 'versicolor&1&virginica&4&logreg-no-intercept': np.array([-0.09269893355209187, -0.6866283839212469]), 'versicolor&1&virginica&5&tree-intercept': np.array([1.0099329060309608, -0.8639004460437059]), 'versicolor&1&virginica&5&tree-no-intercept': np.array([0.5978033472803348, -1.2269874476987448]), 'versicolor&1&virginica&5&logreg-intercept': np.array([0.8031785299299063, -0.4364481427339867]), 'versicolor&1&virginica&5&logreg-no-intercept': np.array([0.20031380753138087, -0.9675732217573223]), 'versicolor&1&virginica&6&tree-intercept': np.array([-0.4600770925110137, -0.39399779735682705]), 'versicolor&1&virginica&6&tree-no-intercept': np.array([-0.7181818181818183, -0.5290909090909091]), 'versicolor&1&virginica&6&logreg-intercept': np.array([-1.3361784140969153, 0.24531938325991165]), 'versicolor&1&virginica&6&logreg-no-intercept': np.array([-1.0545454545454547, 0.39272727272727276]), 'versicolor&1&virginica&7&tree-intercept': np.array([-0.7165473568281941, -0.2473843612334808]), 'versicolor&1&virginica&7&tree-no-intercept': np.array([-0.7545454545454546, -0.26727272727272733]), 'versicolor&1&virginica&7&logreg-intercept': np.array([-1.3361784140969153, 0.24531938325991165]), 'versicolor&1&virginica&7&logreg-no-intercept': np.array([-1.0545454545454547, 0.39272727272727276]), 'versicolor&1&virginica&8&tree-intercept': np.array([-0.6328732747804267, -1.0424090338770402]), 'versicolor&1&virginica&8&tree-no-intercept': np.array([-0.3325714285714286, -0.7988571428571429]), 'versicolor&1&virginica&8&logreg-intercept': np.array([-1.5289836888331256, -0.12823086574654946]), 'versicolor&1&virginica&8&logreg-no-intercept': np.array([-0.9988571428571431, 0.3017142857142859]), 'versicolor&1&virginica&9&tree-intercept': np.array([0.4726863917420401, -0.46369257499105654]), 'versicolor&1&virginica&9&tree-no-intercept': np.array([-0.1304347826086957, -0.9130434782608694]), 'versicolor&1&virginica&9&logreg-intercept': np.array([0.5251162553017522, -0.05069242168736262]), 'versicolor&1&virginica&9&logreg-no-intercept': np.array([-0.3240360951599673, -0.6833470057424116]), 'versicolor&1&virginica&10&tree-intercept': np.array([0.6890490060810458, -0.2798303439112883]), 'versicolor&1&virginica&10&tree-no-intercept': np.array([0.13863822805578344, -0.689909762100082]), 'versicolor&1&virginica&10&logreg-intercept': np.array([0.7513925085594562, -0.057744391639838154]), 'versicolor&1&virginica&10&logreg-no-intercept': np.array([-0.09269893355209187, -0.6866283839212469]), 'versicolor&1&virginica&11&tree-intercept': np.array([0.579032197608606, -1.2435248697477443]), 'versicolor&1&virginica&11&tree-no-intercept': np.array([0.5978033472803348, -1.2269874476987448]), 'versicolor&1&virginica&11&logreg-intercept': np.array([0.8031785299299063, -0.4364481427339867]), 'versicolor&1&virginica&11&logreg-no-intercept': np.array([0.20031380753138087, -0.9675732217573223]), 'versicolor&1&virginica&12&tree-intercept': np.array([-0.19747235387045856, -0.4628751974723528]), 'versicolor&1&virginica&12&tree-no-intercept': np.array([-0.5176470588235295, -0.6494117647058824]), 'versicolor&1&virginica&12&logreg-intercept': np.array([-1.1114872489280097, 0.3089596027984669]), 'versicolor&1&virginica&12&logreg-no-intercept': np.array([-1.011764705882353, 0.3670588235294118]), 'versicolor&1&virginica&13&tree-intercept': np.array([-0.3353644775445726, -0.2649514782216201]), 'versicolor&1&virginica&13&tree-no-intercept': np.array([-0.48235294117647065, -0.35058823529411764]), 'versicolor&1&virginica&13&logreg-intercept': np.array([-1.1114872489280097, 0.3089596027984669]), 'versicolor&1&virginica&13&logreg-no-intercept': np.array([-1.011764705882353, 0.3670588235294118]), 'versicolor&1&virginica&14&tree-intercept': np.array([-0.00902643455834887, -1.281753707285625]), 'versicolor&1&virginica&14&tree-no-intercept': np.array([0.19886363636363633, -1.0738636363636362]), 'versicolor&1&virginica&14&logreg-intercept': np.array([-1.145390070921987, -0.145390070921986]), 'versicolor&1&virginica&14&logreg-no-intercept': np.array([-0.828125, 0.17187499999999997]), 'versicolor&1&virginica&15&tree-intercept': np.array([-0.24937937260212142, -0.493116677950801]), 'versicolor&1&virginica&15&tree-no-intercept': np.array([-0.5176470588235295, -0.6494117647058824]), 'versicolor&1&virginica&15&logreg-intercept': np.array([-1.0575490859851067, 0.27081922816520076]), 'versicolor&1&virginica&15&logreg-no-intercept': np.array([-0.9529411764705884, 0.331764705882353]), 'versicolor&1&virginica&16&tree-intercept': np.array([-0.3872714962762358, -0.295192958700068]), 'versicolor&1&virginica&16&tree-no-intercept': np.array([-0.48235294117647065, -0.35058823529411764]), 'versicolor&1&virginica&16&logreg-intercept': np.array([-1.0266305574362464, 0.341006544798015]), 'versicolor&1&virginica&16&logreg-no-intercept': np.array([-0.9294117647058823, 0.3976470588235294]), 'versicolor&1&virginica&17&tree-intercept': np.array([-0.0586718246292713, -1.3313990973565462]), 'versicolor&1&virginica&17&tree-no-intercept': np.array([0.19886363636363633, -1.0738636363636362]), 'versicolor&1&virginica&17&logreg-intercept': np.array([-0.9877498388136704, -0.2604771115409417]), 'versicolor&1&virginica&17&logreg-no-intercept': np.array([-0.6448863636363635, 0.08238636363636362]), 'virginica&0&setosa&0&tree-intercept': np.array([-1.9251012145748991, -0.018218623481781476]), 'virginica&0&setosa&0&tree-no-intercept': np.array([-1.0188679245283019, 0.3113207547169811]), 'virginica&0&setosa&0&logreg-intercept': np.array([-1.8346828609986505, -0.07624831309041748]), 'virginica&0&setosa&0&logreg-no-intercept': np.array([-0.9245283018867925, 0.2547169811320754]), 'virginica&0&setosa&1&tree-intercept': np.array([-1.9251012145748991, -0.018218623481781476]), 'virginica&0&setosa&1&tree-no-intercept': np.array([-1.0188679245283019, 0.3113207547169811]), 'virginica&0&setosa&1&logreg-intercept': np.array([-1.8346828609986505, -0.07624831309041748]), 'virginica&0&setosa&1&logreg-no-intercept': np.array([-0.9245283018867925, 0.2547169811320754]), 'virginica&0&setosa&2&tree-intercept': np.array([-1.9251012145748991, -0.018218623481781476]), 'virginica&0&setosa&2&tree-no-intercept': np.array([-1.0188679245283019, 0.3113207547169811]), 'virginica&0&setosa&2&logreg-intercept': np.array([-1.9251012145748991, -0.018218623481781476]), 'virginica&0&setosa&2&logreg-no-intercept': np.array([-1.0188679245283019, 0.3113207547169811]), 'virginica&0&setosa&3&tree-intercept': np.array([-1.699055330634276, -0.16329284750337328]), 'virginica&0&setosa&3&tree-no-intercept': np.array([-0.9905660377358491, 0.09433962264150945]), 'virginica&0&setosa&3&logreg-intercept': np.array([-1.7881241565452086, -0.1956815114709829]), 'virginica&0&setosa&3&logreg-no-intercept': np.array([-0.9905660377358491, 0.09433962264150945]), 'virginica&0&setosa&4&tree-intercept': np.array([-1.699055330634276, -0.16329284750337328]), 'virginica&0&setosa&4&tree-no-intercept': np.array([-0.9905660377358491, 0.09433962264150945]), 'virginica&0&setosa&4&logreg-intercept': np.array([-1.7881241565452086, -0.1956815114709829]), 'virginica&0&setosa&4&logreg-no-intercept': np.array([-0.9905660377358491, 0.09433962264150945]), 'virginica&0&setosa&5&tree-intercept': np.array([-1.699055330634276, -0.16329284750337328]), 'virginica&0&setosa&5&tree-no-intercept': np.array([-0.9905660377358491, 0.09433962264150945]), 'virginica&0&setosa&5&logreg-intercept': np.array([-1.7584345479082326, -0.1848852901484467]), 'virginica&0&setosa&5&logreg-no-intercept': np.array([-0.9905660377358491, 0.09433962264150945]), 'virginica&0&setosa&6&tree-intercept': np.array([0.6852879694370354, -0.38153247314928257]), 'virginica&0&setosa&6&tree-no-intercept': np.array([0.1337099811676083, -0.7401129943502825]), 'virginica&0&setosa&6&logreg-intercept': np.array([0.8640524760325801, -0.44424421538239667]), 'virginica&0&setosa&6&logreg-no-intercept': np.array([0.3220338983050848, -0.7966101694915255]), 'virginica&0&setosa&7&tree-intercept': np.array([0.6852879694370354, -0.38153247314928257]), 'virginica&0&setosa&7&tree-no-intercept': np.array([0.1337099811676083, -0.7401129943502825]), 'virginica&0&setosa&7&logreg-intercept': np.array([0.8640524760325801, -0.44424421538239667]), 'virginica&0&setosa&7&logreg-no-intercept': np.array([0.3220338983050848, -0.7966101694915255]), 'virginica&0&setosa&8&tree-intercept': np.array([0.6852879694370354, -0.38153247314928257]), 'virginica&0&setosa&8&tree-no-intercept': np.array([0.1337099811676083, -0.7401129943502825]), 'virginica&0&setosa&8&logreg-intercept': np.array([0.8640524760325801, -0.44424421538239667]), 'virginica&0&setosa&8&logreg-no-intercept': np.array([0.3220338983050848, -0.7966101694915255]), 'virginica&0&setosa&9&tree-intercept': np.array([-0.8016194331983796, -0.29149797570850244]), 'virginica&0&setosa&9&tree-no-intercept': np.array([-0.9339622641509434, -0.3396226415094339]), 'virginica&0&setosa&9&logreg-intercept': np.array([-1.1282051282051282, -0.4102564102564085]), 'virginica&0&setosa&9&logreg-no-intercept': np.array([-0.9339622641509434, -0.3396226415094339]), 'virginica&0&setosa&10&tree-intercept': np.array([-0.8016194331983796, -0.29149797570850244]), 'virginica&0&setosa&10&tree-no-intercept': np.array([-0.9339622641509434, -0.3396226415094339]), 'virginica&0&setosa&10&logreg-intercept': np.array([-1.0985155195681513, -0.3994601889338714]), 'virginica&0&setosa&10&logreg-no-intercept': np.array([-0.9339622641509434, -0.3396226415094339]), 'virginica&0&setosa&11&tree-intercept': np.array([-0.8016194331983796, -0.29149797570850244]), 'virginica&0&setosa&11&tree-no-intercept': np.array([-0.9339622641509434, -0.3396226415094339]), 'virginica&0&setosa&11&logreg-intercept': np.array([-1.0094466936572193, -0.3670715249662607]), 'virginica&0&setosa&11&logreg-no-intercept': np.array([-0.9339622641509434, -0.3396226415094339]), 'virginica&0&setosa&12&tree-intercept': np.array([-0.7200000000000022, -0.48648648648648657]), 'virginica&0&setosa&12&tree-no-intercept': np.array([-0.9224376731301939, -0.6232686980609419]), 'virginica&0&setosa&12&logreg-intercept': np.array([-0.6666666666666671, -0.5045045045045023]), 'virginica&0&setosa&12&logreg-no-intercept': np.array([-0.8670360110803325, -0.6398891966759003]), 'virginica&0&setosa&13&tree-intercept': np.array([-0.7200000000000022, -0.48648648648648657]), 'virginica&0&setosa&13&tree-no-intercept': np.array([-0.9224376731301939, -0.6232686980609419]), 'virginica&0&setosa&13&logreg-intercept': np.array([-0.6666666666666671, -0.5045045045045023]), 'virginica&0&setosa&13&logreg-no-intercept': np.array([-0.8670360110803325, -0.6398891966759003]), 'virginica&0&setosa&14&tree-intercept': np.array([-0.7200000000000022, -0.48648648648648657]), 'virginica&0&setosa&14&tree-no-intercept': np.array([-0.9224376731301939, -0.6232686980609419]), 'virginica&0&setosa&14&logreg-intercept': np.array([-0.7200000000000022, -0.48648648648648657]), 'virginica&0&setosa&14&logreg-no-intercept': np.array([-0.9224376731301939, -0.6232686980609419]), 'virginica&0&setosa&15&tree-intercept': np.array([-0.5866666666666676, -0.3963963963963961]), 'virginica&0&setosa&15&tree-no-intercept': np.array([-0.9224376731301939, -0.6232686980609419]), 'virginica&0&setosa&15&logreg-intercept': np.array([-0.6400000000000003, -0.4324324324324308]), 'virginica&0&setosa&15&logreg-no-intercept': np.array([-0.9224376731301939, -0.6232686980609419]), 'virginica&0&setosa&16&tree-intercept': np.array([-0.5866666666666676, -0.3963963963963961]), 'virginica&0&setosa&16&tree-no-intercept': np.array([-0.9224376731301939, -0.6232686980609419]), 'virginica&0&setosa&16&logreg-intercept': np.array([-0.6400000000000003, -0.4324324324324308]), 'virginica&0&setosa&16&logreg-no-intercept': np.array([-0.9224376731301939, -0.6232686980609419]), 'virginica&0&setosa&17&tree-intercept': np.array([-0.5866666666666676, -0.3963963963963961]), 'virginica&0&setosa&17&tree-no-intercept': np.array([-0.9224376731301939, -0.6232686980609419]), 'virginica&0&setosa&17&logreg-intercept': np.array([-0.6133333333333348, -0.4144144144144144]), 'virginica&0&setosa&17&logreg-no-intercept': np.array([-0.9224376731301939, -0.6232686980609419]), 'virginica&0&versicolor&0&tree-intercept': np.array([1.7901484480431848, -0.939946018893386]), 'virginica&0&versicolor&0&tree-no-intercept': np.array([0.9245283018867925, -1.2547169811320753]), 'virginica&0&versicolor&0&logreg-intercept': np.array([1.6180836707152488, -0.41160593792172706]), 'virginica&0&versicolor&0&logreg-no-intercept': np.array([0.7264150943396226, -0.7358490566037734]), 'virginica&0&versicolor&1&tree-intercept': np.array([1.6727395411605928, -1.073549257759782]), 'virginica&0&versicolor&1&tree-no-intercept': np.array([0.8113207547169812, -1.3867924528301885]), 'virginica&0&versicolor&1&logreg-intercept': np.array([1.5728744939271269, -0.38259109311740913]), 'virginica&0&versicolor&1&logreg-no-intercept': np.array([0.679245283018868, -0.7075471698113207]), 'virginica&0&versicolor&2&tree-intercept': np.array([1.401484480431849, -0.8994601889338717]), 'virginica&0&versicolor&2&tree-no-intercept': np.array([0.5283018867924528, -1.2169811320754715]), 'virginica&0&versicolor&2&logreg-intercept': np.array([1.5728744939271269, -0.38259109311740913]), 'virginica&0&versicolor&2&logreg-no-intercept': np.array([0.679245283018868, -0.7075471698113207]), 'virginica&0&versicolor&3&tree-intercept': np.array([1.6120107962213228, -1.0047233468286092]), 'virginica&0&versicolor&3&tree-no-intercept': np.array([0.9245283018867925, -1.2547169811320753]), 'virginica&0&versicolor&3&logreg-intercept': np.array([1.571524966261808, -0.2921727395411606]), 'virginica&0&versicolor&3&logreg-no-intercept': np.array([0.7924528301886793, -0.5754716981132075]), 'virginica&0&versicolor&4&tree-intercept': np.array([1.4946018893387312, -1.138326585695005]), 'virginica&0&versicolor&4&tree-no-intercept': np.array([0.8113207547169812, -1.3867924528301885]), 'virginica&0&versicolor&4&logreg-intercept': np.array([1.48110661268556, -0.23414304993252388]), 'virginica&0&versicolor&4&logreg-no-intercept': np.array([0.6981132075471699, -0.5188679245283018]), 'virginica&0&versicolor&5&tree-intercept': np.array([1.253036437246964, -0.9534412955465583]), 'virginica&0&versicolor&5&tree-no-intercept': np.array([0.5283018867924528, -1.2169811320754715]), 'virginica&0&versicolor&5&logreg-intercept': np.array([1.2253711201079616, -0.09986504723346863]), 'virginica&0&versicolor&5&logreg-no-intercept': np.array([0.46226415094339623, -0.3773584905660377]), 'virginica&0&versicolor&6&tree-intercept': np.array([-0.65270669646075, -1.000864989548041]), 'virginica&0&versicolor&6&tree-no-intercept': np.array([-0.12994350282485873, -0.6610169491525425]), 'virginica&0&versicolor&6&logreg-intercept': np.array([0.03820370503856402, -0.408563396525625]), 'virginica&0&versicolor&6&logreg-no-intercept': np.array([-0.2806026365348399, -0.615819209039548]), 'virginica&0&versicolor&7&tree-intercept': np.array([-0.5907157788510049, -1.1355150291933958]), 'virginica&0&versicolor&7&tree-no-intercept': np.array([-0.15630885122410548, -0.8531073446327684]), 'virginica&0&versicolor&7&logreg-intercept': np.array([0.03820370503856402, -0.408563396525625]), 'virginica&0&versicolor&7&logreg-no-intercept': np.array([-0.2806026365348399, -0.615819209039548]), 'virginica&0&versicolor&8&tree-intercept': np.array([-0.4804296114755274, -0.9564621927485036]), 'virginica&0&versicolor&8&tree-no-intercept': np.array([-0.2693032015065913, -0.8192090395480226]), 'virginica&0&versicolor&8&logreg-intercept': np.array([0.4380451236214222, -0.07705615223816006]), 'virginica&0&versicolor&8&logreg-no-intercept': np.array([-0.3559322033898305, -0.5932203389830509]), 'virginica&0&versicolor&9&tree-intercept': np.array([0.7624831309041832, -1.0863697705802955]), 'virginica&0&versicolor&9&tree-no-intercept': np.array([0.8962264150943396, -1.0377358490566035]), 'virginica&0&versicolor&9&logreg-intercept': np.array([0.9116059379217275, -0.07759784075573567]), 'virginica&0&versicolor&9&logreg-no-intercept': np.array([0.7358490566037736, -0.14150943396226418]), 'virginica&0&versicolor&10&tree-intercept': np.array([0.7523616734143053, -1.4082321187584337]), 'virginica&0&versicolor&10&tree-no-intercept': np.array([0.8113207547169812, -1.3867924528301885]), 'virginica&0&versicolor&10&logreg-intercept': np.array([0.7914979757085017, -0.03036437246963573]), 'virginica&0&versicolor&10&logreg-no-intercept': np.array([0.6415094339622641, -0.08490566037735847]), 'virginica&0&versicolor&11&tree-intercept': np.array([0.5998650472334681, -1.1909581646423728]), 'virginica&0&versicolor&11&tree-no-intercept': np.array([0.5283018867924528, -1.2169811320754715]), 'virginica&0&versicolor&11&logreg-intercept': np.array([0.47638326585694996, 0.0823211875843454]), 'virginica&0&versicolor&11&logreg-no-intercept': np.array([0.4056603773584906, 0.05660377358490561]), 'virginica&0&versicolor&12&tree-intercept': np.array([0.7466666666666678, -0.9009009009008994]), 'virginica&0&versicolor&12&tree-no-intercept': np.array([0.9279778393351802, -0.7783933518005541]), 'virginica&0&versicolor&12&logreg-intercept': np.array([1.360000000000002, -0.4864864864864854]), 'virginica&0&versicolor&12&logreg-no-intercept': np.array([0.9279778393351802, -0.7783933518005541]), 'virginica&0&versicolor&13&tree-intercept': np.array([0.6666666666666685, -1.225225225225224]), 'virginica&0&versicolor&13&tree-no-intercept': np.array([0.7950138504155125, -1.1385041551246537]), 'virginica&0&versicolor&13&logreg-intercept': np.array([1.360000000000002, -0.4864864864864854]), 'virginica&0&versicolor&13&logreg-no-intercept': np.array([0.9279778393351802, -0.7783933518005541]), 'virginica&0&versicolor&14&tree-intercept': np.array([0.6133333333333342, -1.0450450450450428]), 'virginica&0&versicolor&14&tree-no-intercept': np.array([0.5734072022160666, -1.0720221606648201]), 'virginica&0&versicolor&14&logreg-intercept': np.array([1.6000000000000019, -0.21621621621621567]), 'virginica&0&versicolor&14&logreg-no-intercept': np.array([0.817174515235457, -0.7451523545706371]), 'virginica&0&versicolor&15&tree-intercept': np.array([0.6133333333333342, -0.9909909909909898]), 'virginica&0&versicolor&15&tree-no-intercept': np.array([0.9279778393351802, -0.7783933518005541]), 'virginica&0&versicolor&15&logreg-intercept': np.array([1.2800000000000025, -0.7567567567567552]), 'virginica&0&versicolor&15&logreg-no-intercept': np.array([0.9445983379501386, -0.9833795013850416]), 'virginica&0&versicolor&16&tree-intercept': np.array([0.5333333333333344, -1.3153153153153148]), 'virginica&0&versicolor&16&tree-no-intercept': np.array([0.7950138504155125, -1.1385041551246537]), 'virginica&0&versicolor&16&logreg-intercept': np.array([1.2266666666666681, -0.7387387387387381]), 'virginica&0&versicolor&16&logreg-no-intercept': np.array([0.8891966759002771, -0.9667590027700831]), 'virginica&0&versicolor&17&tree-intercept': np.array([0.5066666666666672, -1.1171171171171137]), 'virginica&0&versicolor&17&tree-no-intercept': np.array([0.5734072022160666, -1.0720221606648201]), 'virginica&0&versicolor&17&logreg-intercept': np.array([1.3333333333333346, -0.45045045045044946]), 'virginica&0&versicolor&17&logreg-no-intercept': np.array([0.667590027700831, -0.9002770083102495]), 'virginica&0&virginica&0&tree-intercept': np.array([0.13495276653171426, 0.9581646423751661]), 'virginica&0&virginica&0&tree-no-intercept': np.array([-0.839622641509434, 0.6037735849056604]), 'virginica&0&virginica&0&logreg-intercept': np.array([0.2165991902834008, 0.487854251012143]), 'virginica&0&virginica&0&logreg-no-intercept': np.array([-0.7358490566037736, 0.14150943396226418]), 'virginica&0&virginica&1&tree-intercept': np.array([0.2523616734143047, 1.091767881241564]), 'virginica&0&virginica&1&tree-no-intercept': np.array([-0.7264150943396226, 0.7358490566037734]), 'virginica&0&virginica&1&logreg-intercept': np.array([0.2618083670715251, 0.45883940620782776]), 'virginica&0&virginica&1&logreg-no-intercept': np.array([-0.6886792452830189, 0.11320754716981131]), 'virginica&0&virginica&2&tree-intercept': np.array([0.5236167341430509, 0.9176788124156552]), 'virginica&0&virginica&2&tree-no-intercept': np.array([-0.44339622641509435, 0.5660377358490565]), 'virginica&0&virginica&2&logreg-intercept': np.array([0.3522267206477735, 0.40080971659918874]), 'virginica&0&virginica&2&logreg-no-intercept': np.array([-0.5943396226415094, 0.056603773584905655]), 'virginica&0&virginica&3&tree-intercept': np.array([0.0870445344129551, 1.1680161943319844]), 'virginica&0&virginica&3&tree-no-intercept': np.array([-0.8679245283018869, 0.820754716981132]), 'virginica&0&virginica&3&logreg-intercept': np.array([0.2165991902834008, 0.487854251012143]), 'virginica&0&virginica&3&logreg-no-intercept': np.array([-0.7358490566037736, 0.14150943396226418]), 'virginica&0&virginica&4&tree-intercept': np.array([0.2044534412955465, 1.3016194331983821]), 'virginica&0&virginica&4&tree-no-intercept': np.array([-0.7547169811320754, 0.9528301886792452]), 'virginica&0&virginica&4&logreg-intercept': np.array([0.3070175438596492, 0.42982456140350833]), 'virginica&0&virginica&4&logreg-no-intercept': np.array([-0.6415094339622641, 0.08490566037735847]), 'virginica&0&virginica&5&tree-intercept': np.array([0.4460188933873141, 1.1167341430499316]), 'virginica&0&virginica&5&tree-no-intercept': np.array([-0.4716981132075471, 0.7830188679245281]), 'virginica&0&virginica&5&logreg-intercept': np.array([0.5330634278002698, 0.2847503373819156]), 'virginica&0&virginica&5&logreg-no-intercept': np.array([-0.4056603773584906, -0.05660377358490561]), 'virginica&0&virginica&6&tree-intercept': np.array([-0.03258127297628498, 1.3823974626973203]), 'virginica&0&virginica&6&tree-no-intercept': np.array([-0.9510357815442562, 0.7853107344632769]), 'virginica&0&virginica&6&logreg-intercept': np.array([-0.9022561810711441, 0.852807611908022]), 'virginica&0&virginica&6&logreg-no-intercept': np.array([-0.9887005649717514, 0.7966101694915255]), 'virginica&0&virginica&7&tree-intercept': np.array([-0.09457219058603027, 1.5170475023426795]), 'virginica&0&virginica&7&tree-no-intercept': np.array([-0.9246704331450093, 0.9774011299435027]), 'virginica&0&virginica&7&logreg-intercept': np.array([-0.9022561810711441, 0.852807611908022]), 'virginica&0&virginica&7&logreg-no-intercept': np.array([-0.9887005649717514, 0.7966101694915255]), 'virginica&0&virginica&8&tree-intercept': np.array([-0.20485835796150728, 1.3379946658977826]), 'virginica&0&virginica&8&tree-no-intercept': np.array([-0.8116760828625236, 0.9435028248587572]), 'virginica&0&virginica&8&logreg-intercept': np.array([-1.3020975996540025, 0.5213003676205564]), 'virginica&0&virginica&8&logreg-no-intercept': np.array([-0.9133709981167608, 0.7740112994350282]), 'virginica&0&virginica&9&tree-intercept': np.array([0.039136302294197386, 1.377867746288793]), 'virginica&0&virginica&9&tree-no-intercept': np.array([-0.8962264150943396, 1.0377358490566035]), 'virginica&0&virginica&9&logreg-intercept': np.array([0.2165991902834008, 0.487854251012143]), 'virginica&0&virginica&9&logreg-no-intercept': np.array([-0.7358490566037736, 0.14150943396226418]), 'virginica&0&virginica&10&tree-intercept': np.array([0.04925775978407555, 1.6997300944669331]), 'virginica&0&virginica&10&tree-no-intercept': np.array([-0.8113207547169812, 1.3867924528301885]), 'virginica&0&virginica&10&logreg-intercept': np.array([0.3070175438596492, 0.42982456140350833]), 'virginica&0&virginica&10&logreg-no-intercept': np.array([-0.6415094339622641, 0.08490566037735847]), 'virginica&0&virginica&11&tree-intercept': np.array([0.20175438596491266, 1.4824561403508731]), 'virginica&0&virginica&11&tree-no-intercept': np.array([-0.5283018867924528, 1.2169811320754715]), 'virginica&0&virginica&11&logreg-intercept': np.array([0.5330634278002698, 0.2847503373819156]), 'virginica&0&virginica&11&logreg-no-intercept': np.array([-0.4056603773584906, -0.05660377358490561]), 'virginica&0&virginica&12&tree-intercept': np.array([-0.026666666666666738, 1.3873873873873812]), 'virginica&0&virginica&12&tree-no-intercept': np.array([-0.9279778393351802, 0.7783933518005541]), 'virginica&0&virginica&12&logreg-intercept': np.array([-0.6933333333333341, 0.9909909909909898]), 'virginica&0&virginica&12&logreg-no-intercept': np.array([-0.9833795013850415, 0.7950138504155126]), 'virginica&0&virginica&13&tree-intercept': np.array([0.05333333333333337, 1.7117117117117082]), 'virginica&0&virginica&13&tree-no-intercept': np.array([-0.7950138504155125, 1.1385041551246537]), 'virginica&0&virginica&13&logreg-intercept': np.array([-0.6933333333333341, 0.9909909909909898]), 'virginica&0&virginica&13&logreg-no-intercept': np.array([-0.9833795013850415, 0.7950138504155126]), 'virginica&0&virginica&14&tree-intercept': np.array([0.10666666666666685, 1.5315315315315274]), 'virginica&0&virginica&14&tree-no-intercept': np.array([-0.5734072022160666, 1.0720221606648201]), 'virginica&0&virginica&14&logreg-intercept': np.array([-0.8800000000000017, 0.702702702702702]), 'virginica&0&virginica&14&logreg-no-intercept': np.array([-0.817174515235457, 0.7451523545706371]), 'virginica&0&virginica&15&tree-intercept': np.array([-0.026666666666666738, 1.3873873873873812]), 'virginica&0&virginica&15&tree-no-intercept': np.array([-0.9279778393351802, 0.7783933518005541]), 'virginica&0&virginica&15&logreg-intercept': np.array([-0.6400000000000012, 1.1891891891891901]), 'virginica&0&virginica&15&logreg-no-intercept': np.array([-0.9445983379501386, 0.9833795013850416]), 'virginica&0&virginica&16&tree-intercept': np.array([0.05333333333333337, 1.7117117117117082]), 'virginica&0&virginica&16&tree-no-intercept': np.array([-0.7950138504155125, 1.1385041551246537]), 'virginica&0&virginica&16&logreg-intercept': np.array([-0.5866666666666672, 1.1711711711711674]), 'virginica&0&virginica&16&logreg-no-intercept': np.array([-0.8891966759002771, 0.9667590027700831]), 'virginica&0&virginica&17&tree-intercept': np.array([0.08000000000000022, 1.5135135135135112]), 'virginica&0&virginica&17&tree-no-intercept': np.array([-0.5734072022160666, 1.0720221606648201]), 'virginica&0&virginica&17&logreg-intercept': np.array([-0.7200000000000009, 0.8648648648648636]), 'virginica&0&virginica&17&logreg-no-intercept': np.array([-0.667590027700831, 0.9002770083102495]), 'virginica&1&setosa&0&tree-intercept': np.array([-1.926647564469912, -0.011461318051577027]), 'virginica&1&setosa&0&tree-no-intercept': np.array([-1.2343373493975904, 0.5493975903614458]), 'virginica&1&setosa&0&logreg-intercept': np.array([-1.8834765998089784, -0.04737344794651441]), 'virginica&1&setosa&0&logreg-no-intercept': np.array([-1.1825301204819278, 0.5204819277108433]), 'virginica&1&setosa&1&tree-intercept': np.array([-1.926647564469912, -0.011461318051577027]), 'virginica&1&setosa&1&tree-no-intercept': np.array([-1.2343373493975904, 0.5493975903614458]), 'virginica&1&setosa&1&logreg-intercept': np.array([-1.8834765998089784, -0.04737344794651441]), 'virginica&1&setosa&1&logreg-no-intercept': np.array([-1.1825301204819278, 0.5204819277108433]), 'virginica&1&setosa&2&tree-intercept': np.array([-1.926647564469912, -0.011461318051577027]), 'virginica&1&setosa&2&tree-no-intercept': np.array([-1.2343373493975904, 0.5493975903614458]), 'virginica&1&setosa&2&logreg-intercept': np.array([-1.926647564469912, -0.011461318051577027]), 'virginica&1&setosa&2&logreg-no-intercept': np.array([-1.2343373493975904, 0.5493975903614458]), 'virginica&1&setosa&3&tree-intercept': np.array([-1.7039159503342882, 0.08290353390639874]), 'virginica&1&setosa&3&tree-no-intercept': np.array([-1.205421686746988, 0.48674698795180715]), 'virginica&1&setosa&3&logreg-intercept': np.array([-1.7944603629417377, 0.00955109837631287]), 'virginica&1&setosa&3&logreg-no-intercept': np.array([-1.205421686746988, 0.48674698795180715]), 'virginica&1&setosa&4&tree-intercept': np.array([-1.7039159503342882, 0.08290353390639874]), 'virginica&1&setosa&4&tree-no-intercept': np.array([-1.205421686746988, 0.48674698795180715]), 'virginica&1&setosa&4&logreg-intercept': np.array([-1.7944603629417377, 0.00955109837631287]), 'virginica&1&setosa&4&logreg-no-intercept': np.array([-1.205421686746988, 0.48674698795180715]), 'virginica&1&setosa&5&tree-intercept': np.array([-1.7039159503342882, 0.08290353390639874]), 'virginica&1&setosa&5&tree-no-intercept': np.array([-1.205421686746988, 0.48674698795180715]), 'virginica&1&setosa&5&logreg-intercept': np.array([-1.7642788920725883, 0.03400191021967489]), 'virginica&1&setosa&5&logreg-no-intercept': np.array([-1.205421686746988, 0.48674698795180715]), 'virginica&1&setosa&6&tree-intercept': np.array([0.8549874266554914, 0.44949706621961516]), 'virginica&1&setosa&6&tree-no-intercept': np.array([0.03936629860777728, -0.29188670187229965]), 'virginica&1&setosa&6&logreg-intercept': np.array([1.0163453478625313, 0.3413139145012578]), 'virginica&1&setosa&6&logreg-no-intercept': np.array([0.24579932789246284, -0.35909745559289497]), 'virginica&1&setosa&7&tree-intercept': np.array([0.8549874266554914, 0.44949706621961516]), 'virginica&1&setosa&7&tree-no-intercept': np.array([0.03936629860777728, -0.29188670187229965]), 'virginica&1&setosa&7&logreg-intercept': np.array([1.0163453478625313, 0.3413139145012578]), 'virginica&1&setosa&7&logreg-no-intercept': np.array([0.24579932789246284, -0.35909745559289497]), 'virginica&1&setosa&8&tree-intercept': np.array([0.8549874266554914, 0.44949706621961516]), 'virginica&1&setosa&8&tree-no-intercept': np.array([0.03936629860777728, -0.29188670187229965]), 'virginica&1&setosa&8&logreg-intercept': np.array([1.0163453478625313, 0.3413139145012578]), 'virginica&1&setosa&8&logreg-no-intercept': np.array([0.24579932789246284, -0.35909745559289497]), 'virginica&1&setosa&9&tree-intercept': np.array([-0.5902578796561612, 0.5547277936962749]), 'virginica&1&setosa&9&tree-no-intercept': np.array([-1.060843373493976, 0.17349397590361448]), 'virginica&1&setosa&9&logreg-intercept': np.array([-0.9222540592168101, 0.285768863419293]), 'virginica&1&setosa&9&logreg-no-intercept': np.array([-1.060843373493976, 0.17349397590361448]), 'virginica&1&setosa&10&tree-intercept': np.array([-0.5902578796561612, 0.5547277936962749]), 'virginica&1&setosa&10&tree-no-intercept': np.array([-1.060843373493976, 0.17349397590361448]), 'virginica&1&setosa&10&logreg-intercept': np.array([-0.8920725883476605, 0.3102196752626554]), 'virginica&1&setosa&10&logreg-no-intercept': np.array([-1.060843373493976, 0.17349397590361448]), 'virginica&1&setosa&11&tree-intercept': np.array([-0.5902578796561612, 0.5547277936962749]), 'virginica&1&setosa&11&tree-no-intercept': np.array([-1.060843373493976, 0.17349397590361448]), 'virginica&1&setosa&11&logreg-intercept': np.array([-0.80152817574021, 0.3835721107927413]), 'virginica&1&setosa&11&logreg-no-intercept': np.array([-1.060843373493976, 0.17349397590361448]), 'virginica&1&setosa&12&tree-intercept': np.array([-0.3039161610590191, 0.3447324875896295]), 'virginica&1&setosa&12&tree-no-intercept': np.array([-0.9365692222835079, -0.2879205736348593]), 'virginica&1&setosa&12&logreg-intercept': np.array([-0.26328369185512007, 0.33131090273947433]), 'virginica&1&setosa&12&logreg-no-intercept': np.array([-0.889134031991175, -0.29453943739658023]), 'virginica&1&setosa&13&tree-intercept': np.array([-0.3039161610590191, 0.3447324875896295]), 'virginica&1&setosa&13&tree-no-intercept': np.array([-0.9365692222835079, -0.2879205736348593]), 'virginica&1&setosa&13&logreg-intercept': np.array([-0.26328369185512007, 0.33131090273947433]), 'virginica&1&setosa&13&logreg-no-intercept': np.array([-0.889134031991175, -0.29453943739658023]), 'virginica&1&setosa&14&tree-intercept': np.array([-0.3039161610590191, 0.3447324875896295]), 'virginica&1&setosa&14&tree-no-intercept': np.array([-0.9365692222835079, -0.2879205736348593]), 'virginica&1&setosa&14&logreg-intercept': np.array([-0.3039161610590191, 0.3447324875896295]), 'virginica&1&setosa&14&logreg-no-intercept': np.array([-0.9365692222835079, -0.2879205736348593]), 'virginica&1&setosa&15&tree-intercept': np.array([-0.22945394373965736, 0.31108659680088324]), 'virginica&1&setosa&15&tree-no-intercept': np.array([-0.9233314947600662, -0.3827909542195256]), 'virginica&1&setosa&15&logreg-intercept': np.array([-0.27707299135870644, 0.26346754918183396]), 'virginica&1&setosa&15&logreg-no-intercept': np.array([-0.9233314947600662, -0.3827909542195256]), 'virginica&1&setosa&16&tree-intercept': np.array([-0.22945394373965736, 0.31108659680088324]), 'virginica&1&setosa&16&tree-no-intercept': np.array([-0.9233314947600662, -0.3827909542195256]), 'virginica&1&setosa&16&logreg-intercept': np.array([-0.27707299135870644, 0.26346754918183396]), 'virginica&1&setosa&16&logreg-no-intercept': np.array([-0.9233314947600662, -0.3827909542195256]), 'virginica&1&setosa&17&tree-intercept': np.array([-0.22945394373965736, 0.31108659680088324]), 'virginica&1&setosa&17&tree-no-intercept': np.array([-0.9233314947600662, -0.3827909542195256]), 'virginica&1&setosa&17&logreg-intercept': np.array([-0.27707299135870644, 0.26346754918183396]), 'virginica&1&setosa&17&logreg-no-intercept': np.array([-0.9233314947600662, -0.3827909542195256]), 'virginica&1&versicolor&0&tree-intercept': np.array([1.3558739255014327, -0.7243553008595989]), 'virginica&1&versicolor&0&tree-no-intercept': np.array([0.8222891566265061, -1.1566265060240963]), 'virginica&1&versicolor&0&logreg-intercept': np.array([1.4368672397325692, -0.25367717287488045]), 'virginica&1&versicolor&0&logreg-no-intercept': np.array([0.7981927710843375, -0.7710843373493975]), 'virginica&1&versicolor&1&tree-intercept': np.array([1.0792741165233992, -0.8978032473734482]), 'virginica&1&versicolor&1&tree-no-intercept': np.array([0.5813253012048193, -1.3012048192771084]), 'virginica&1&versicolor&1&logreg-intercept': np.array([1.3619866284622721, -0.25864374403056306]), 'virginica&1&versicolor&1&logreg-no-intercept': np.array([0.7234939759036145, -0.7759036144578312]), 'virginica&1&versicolor&2&tree-intercept': np.array([0.9065902578796557, -0.7541547277936966]), 'virginica&1&versicolor&2&tree-no-intercept': np.array([0.3740963855421687, -1.1855421686746987]), 'virginica&1&versicolor&2&logreg-intercept': np.array([1.4051575931232085, -0.29455587392550103]), 'virginica&1&versicolor&2&logreg-no-intercept': np.array([0.7753012048192772, -0.8048192771084337]), 'virginica&1&versicolor&3&tree-intercept': np.array([1.1747851002865326, -0.8710601719197715]), 'virginica&1&versicolor&3&tree-no-intercept': np.array([0.8222891566265061, -1.1566265060240963]), 'virginica&1&versicolor&3&logreg-intercept': np.array([1.3161413562559687, -0.35148042024832815]), 'virginica&1&versicolor&3&logreg-no-intercept': np.array([0.7981927710843375, -0.7710843373493975]), 'virginica&1&versicolor&4&tree-intercept': np.array([0.8981852913085002, -1.0445081184336202]), 'virginica&1&versicolor&4&tree-no-intercept': np.array([0.5813253012048193, -1.3012048192771084]), 'virginica&1&versicolor&4&logreg-intercept': np.array([1.1144221585482328, -0.5199617956064946]), 'virginica&1&versicolor&4&logreg-no-intercept': np.array([0.6319277108433735, -0.9108433734939758]), 'virginica&1&versicolor&5&tree-intercept': np.array([0.7556829035339061, -0.8764087870105066]), 'virginica&1&versicolor&5&tree-no-intercept': np.array([0.3740963855421687, -1.1855421686746987]), 'virginica&1&versicolor&5&logreg-intercept': np.array([0.9978987583572108, -0.47258834765998076]), 'virginica&1&versicolor&5&logreg-no-intercept': np.array([0.5283132530120482, -0.853012048192771]), 'virginica&1&versicolor&6&tree-intercept': np.array([-0.5444258172673938, -1.339532690695726]), 'virginica&1&versicolor&6&tree-no-intercept': np.array([0.11905904944791174, -0.7364378300528086]), 'virginica&1&versicolor&6&logreg-intercept': np.array([0.19488683989941338, -0.76702640402347]), 'virginica&1&versicolor&6&logreg-no-intercept': np.array([0.04896783485357669, -0.8996639462313973]), 'virginica&1&versicolor&7&tree-intercept': np.array([-0.3369656328583412, -1.478625314333614]), 'virginica&1&versicolor&7&tree-no-intercept': np.array([0.15842534805568897, -1.0283245319251082]), 'virginica&1&versicolor&7&logreg-intercept': np.array([0.19488683989941338, -0.76702640402347]), 'virginica&1&versicolor&7&logreg-no-intercept': np.array([0.04896783485357669, -0.8996639462313973]), 'virginica&1&versicolor&8&tree-intercept': np.array([-0.29337803855825706, -1.2351215423302608]), 'virginica&1&versicolor&8&tree-no-intercept': np.array([-0.00672107537205949, -0.974555928948632]), 'virginica&1&versicolor&8&logreg-intercept': np.array([0.518860016764459, -0.37059932942162654]), 'virginica&1&versicolor&8&logreg-no-intercept': np.array([-0.0336053768602976, -0.872779644743159]), 'virginica&1&versicolor&9&tree-intercept': np.array([0.2276981852913078, -1.552244508118433]), 'virginica&1&versicolor&9&tree-no-intercept': np.array([0.7933734939759037, -1.0939759036144578]), 'virginica&1&versicolor&9&logreg-intercept': np.array([0.4439350525310407, -0.6276981852913086]), 'virginica&1&versicolor&9&logreg-no-intercept': np.array([0.6536144578313254, -0.4578313253012048]), 'virginica&1&versicolor&10&tree-intercept': np.array([0.0531041069723017, -1.7291308500477556]), 'virginica&1&versicolor&10&tree-no-intercept': np.array([0.5813253012048193, -1.3012048192771084]), 'virginica&1&versicolor&10&logreg-intercept': np.array([0.2120343839541545, -0.8206303724928373]), 'virginica&1&versicolor&10&logreg-no-intercept': np.array([0.48734939759036144, -0.597590361445783]), 'virginica&1&versicolor&11&tree-intercept': np.array([0.061509073543457256, -1.4387774594078315]), 'virginica&1&versicolor&11&tree-no-intercept': np.array([0.3740963855421687, -1.1855421686746987]), 'virginica&1&versicolor&11&logreg-intercept': np.array([0.035148042024832724, -0.8221585482330472]), 'virginica&1&versicolor&11&logreg-no-intercept': np.array([0.3837349397590361, -0.5397590361445782]), 'virginica&1&versicolor&12&tree-intercept': np.array([0.17135502849788356, -1.450266593123736]), 'virginica&1&versicolor&12&tree-no-intercept': np.array([0.8516271373414229, -0.7699944842801983]), 'virginica&1&versicolor&12&logreg-intercept': np.array([1.1500275785990097, -0.7418643132928826]), 'virginica&1&versicolor&12&logreg-no-intercept': np.array([0.966354109211252, -0.9255377826806398]), 'virginica&1&versicolor&13&tree-intercept': np.array([0.19102776245633107, -1.6468100753815054]), 'virginica&1&versicolor&13&tree-no-intercept': np.array([0.7556536127964699, -1.0821842250413676]), 'virginica&1&versicolor&13&logreg-intercept': np.array([1.1500275785990097, -0.7418643132928826]), 'virginica&1&versicolor&13&logreg-no-intercept': np.array([0.966354109211252, -0.9255377826806398]), 'virginica&1&versicolor&14&tree-intercept': np.array([0.13770913770913668, -1.3758043758043756]), 'virginica&1&versicolor&14&tree-no-intercept': np.array([0.471042471042471, -1.0424710424710422]), 'virginica&1&versicolor&14&logreg-intercept': np.array([1.4973340687626444, -0.28644971502113953]), 'virginica&1&versicolor&14&logreg-no-intercept': np.array([0.8714837286265857, -0.9123000551571979]), 'virginica&1&versicolor&15&tree-intercept': np.array([0.12373598087883601, -1.4978856407427865]), 'virginica&1&versicolor&15&tree-no-intercept': np.array([0.8516271373414229, -0.7699944842801983]), 'virginica&1&versicolor&15&logreg-intercept': np.array([1.0889869461298038, -0.7488508917080328]), 'virginica&1&versicolor&15&logreg-no-intercept':
np.array([0.9597352454495311, -0.8781025923883066])
numpy.array
# -*- coding: utf-8 -*- ''' example usage: %matplotlib inline import matplotlib.pyplot as plt from pymr.heart import ahaseg heart_mask = (LVbmask, LVwmask, RVbmask) label_mask = ahaseg.get_seg(heart_mask, nseg=4) plt.imshow(label_mask) ''' import numpy as np from scipy import ndimage import matplotlib.pyplot as plt def get_heartmask(heart_mask): if isinstance(heart_mask, tuple): #backward compatibility LVbmask, LVwmask, RVbmask = heart_mask else: LVbmask = (heart_mask==1) LVwmask = (heart_mask==2) RVbmask = (heart_mask==3) return LVbmask, LVwmask, RVbmask def degree_calcu(UP, DN, seg_num): anglelist = np.zeros(seg_num) if seg_num == 4: anglelist[0] = DN - 180. anglelist[1] = UP anglelist[2] = DN anglelist[3] = UP + 180. if seg_num == 6: anglelist[0] = DN - 180. anglelist[1] = UP anglelist[2] = (UP + DN)/2. anglelist[3] = DN anglelist[4] = UP + 180. anglelist[5] = anglelist[2] + 180. anglelist = (anglelist + 360) % 360 return anglelist.astype(int) def degree_calcu_new(mid, seg_num): anglelist = np.zeros(seg_num) if seg_num == 4: anglelist[0] = mid - 45 - 90 anglelist[1] = mid - 45 anglelist[2] = mid + 45 anglelist[3] = mid + 45 + 90 if seg_num == 6: anglelist[0] = mid - 120 anglelist[1] = mid - 60 anglelist[2] = mid anglelist[3] = mid + 60 anglelist[4] = mid + 120 anglelist[5] = mid + 180 anglelist = (anglelist + 360) % 360 return anglelist.astype(int) def circular_sector(r_range, theta_range, LV_center): cx, cy = LV_center theta = theta_range/180*np.pi z = r_range.reshape(-1, 1).dot(np.exp(1.0j*theta).reshape(1, -1)) xall = -np.imag(z) + cx yall = np.real(z) + cy return xall, yall def get_theta(sweep360): from scipy.optimize import curve_fit from scipy.signal import medfilt y = sweep360.copy() def gauss(x, *p): A, mu, sigma = p return A*np.exp(-(x-mu)**2/(2.*sigma**2)) def fit(x, y): #print(y) p0 = [np.max(y), np.argmax(y)+x[0], 1.] try: coeff, var_matrix = curve_fit(gauss, x, y, p0=p0) A, mu, sigma = coeff except: mu = 0 sigma = 0 return mu, sigma y = medfilt(y) y2 = np.hstack([y, y, y]) #y2 = medfilt(y2) maxv = y2.argsort()[::-1][:10] maxv = maxv[np.argmin(np.abs(maxv-360*3//2))] #print('maxv:%d' % maxv, y2.argsort()[::-1][:10]) y2[:(maxv-90)] = 0 y2[(maxv+90):] = 0 #print(y2[(maxv-90):maxv]) x = np.arange(y2.size) mu, sigma = fit(x[(maxv-150):maxv], y2[(maxv-150):maxv]) uprank1 = mu - sigma*2.5 mu, sigma = fit(x[maxv:(maxv+150)], y2[maxv:(maxv+150)]) downrank1 = mu + sigma*2.5 uprank2 = np.nonzero(y2 >= min(
np.max(y2)
numpy.max
import numpy as np from gym import utils from gym.envs.dart import dart_env from .simple_water_world import BaseFluidSimulator from .simple_water_world import BaseFluidEnhancedAllDirSimulator from keras.models import load_model class DartCubePathFindingDataCollectEnv(dart_env.DartEnv, utils.EzPickle): def __init__(self): control_bounds =
np.array([[1.0] * 2, [-1.0] * 2])
numpy.array
import numpy as np import torch as torch class ConvexConjugateFunction: def __call__(self, *args, **kwargs): pass def grad(self, x): pass def convex_conjugate(self, x): pass def grad_convex_conjugate(self, x): pass class QuadraticFunction(ConvexConjugateFunction): def __init__(self, A, cuda=False, domain=(-1., +1.)): self.domain = domain self.convex_domain = domain self.n = A.shape[1] self.A = A self.invA = np.linalg.inv(A) self.A_torch = torch.from_numpy(self.A).float().view(-1, self.n, self.n) self.invA_torch = torch.from_numpy(self.invA).float() self.device = None self.cuda() if cuda else self.cpu() def __call__(self, x): if isinstance(x, np.ndarray): x = x.reshape((-1, self.n, 1)) quad = np.matmul(x.transpose(0, 2, 1), np.matmul(self.A.reshape((1, self.n, self.n)), x)).reshape(x.shape[0], 1, 1) elif isinstance(x, torch.Tensor): # shape = x.shape x = x.view(-1, self.n, 1) quad = torch.matmul(torch.matmul(x.transpose(dim0=1, dim1=2), self.A_torch), x).view(x.shape[0], 1, 1) else: raise ValueError("x must be either an numpy.ndarray or torch.Tensor, but is type {0}.".format(type(x))) return quad def grad(self, x): if isinstance(x, np.ndarray): shape = x.shape x = x.reshape((-1, self.n, 1)) Ax = np.matmul(self.A.reshape((1, self.n, self.n)), x).reshape(shape) elif isinstance(x, torch.Tensor): x = x.view(-1, self.n, 1) Ax = torch.matmul(x.transpose(dim0=1, dim1=2), self.A_torch).squeeze() else: raise ValueError("x must be either an numpy.ndarray or torch.Tensor, but is type {0}.".format(type(x))) return 2. * Ax def convex_conjugate(self, x): if isinstance(x, np.ndarray): shape = x.shape x = x.reshape((-1, self.n, 1)) xTinvAx = np.matmul(x.transpose(0, 2, 1), np.matmul(self.invA.reshape((1, self.n, self.n)), x)).reshape(shape) elif isinstance(x, torch.Tensor): shape = x.shape x = x.view(-1, self.n, 1) xTinvAx = torch.matmul(torch.matmul(x.transpose(dim0=1, dim1=2), self.invA_torch), x).view(*shape) else: raise ValueError("x must be either an numpy.ndarray or torch.Tensor, but is type {0}.".format(type(x))) return 1./4. * xTinvAx def grad_convex_conjugate(self, x): if isinstance(x, np.ndarray): x = x.reshape((-1, self.n, 1)) invAx = np.matmul(self.invA.reshape((1, self.n, self.n)), x) elif isinstance(x, torch.Tensor): shape = x.shape x = x.view(-1, self.n, 1) invAx = torch.matmul(x.transpose(dim0=1, dim1=2), self.invA_torch).view(*shape) else: raise ValueError("x must be either an numpy.ndarray or torch.Tensor, but is type {0}.".format(type(x))) return 1./2. * invAx def cuda(self, device=None): self.A_torch = self.A_torch.cuda() self.invA_torch = self.invA_torch.cuda() self.device = self.A_torch.device return self def cpu(self): self.A_torch = self.A_torch.cpu() self.invA_torch = self.invA_torch.cpu() self.device = self.A_torch.device return self class HyperbolicTangent(ConvexConjugateFunction): def __init__(self, alpha=+1., beta=+1.0, cuda=False): self.n = 1 self.a = alpha self.b = beta self.domain = (-np.abs(alpha), +np.abs(alpha)) self.convex_domain = (-10.0, +10.0) assert self.a >= self.domain[0] and self.a <= self.domain[1] # Compute Offset: self.off = 0.0 self.off = -self(np.zeros(1)) def __call__(self, x): if isinstance(x, np.ndarray): assert np.all((self.a - np.abs(x)) >= 0.0) g = np.ones(x.size) * self.b * self.a * np.log(2. * self.a) + self.off mask = self.a - np.abs(x) > 0 g[mask] = 0.5 * self.b * ((self.a - x[mask]) * np.log(self.a - x[mask]) + (self.a + x[mask]) * np.log(self.a + x[mask])) + self.off elif isinstance(x, torch.Tensor): x = x.view(-1, self.n, 1) g = 0.5 * self.b * (np.matmul((self.a - x).transpose(dim0=1, dim1=2), np.log(self.a - x)) + np.matmul((self.a + x).transpose(dim0=1, dim1=2), np.log(self.a + x))) + self.off else: raise ValueError("x must be either an numpy.ndarray or torch.Tensor, but is type {0}.".format(type(x))) return g.squeeze() def grad(self, x): if isinstance(x, np.ndarray): g_grad = self.b * np.arctanh(x/self.a) elif isinstance(x, torch.Tensor): g_grad = self.b * 0.5 * torch.log((1+x/self.a)/(1-x/self.a)) else: raise ValueError("x must be either an numpy.ndarray or torch.Tensor, but is type {0}.".format(type(x))) return g_grad def convex_conjugate(self, x): if isinstance(x, np.ndarray): # Naive implementation: g_star = self.a * self.b * np.log(np.cosh(x / self.b)) # Numerically stable implementation to prevent overflows of exp(|x|): g_star = self.a * self.b * (np.log(0.5) + np.abs(x / self.b) + np.log(np.exp(-2. * np.abs(x / self.b)) + 1.0)) elif isinstance(x, torch.Tensor): # Naive implementation: # g_star = self.a * self.b * torch.log(torch.cosh(x / self.b)) # Numerically stable implementation to prevent overflows of exp(|x|): g_star = self.a * self.b * (torch.log(torch.tensor(0.5)) + torch.abs(x/self.b) + torch.log(torch.exp(-2. * torch.abs(x / self.b)) + 1.0)) else: raise ValueError("x must be either an numpy.ndarray or torch.Tensor, but is type {0}.".format(type(x))) return g_star def grad_convex_conjugate(self, x): if isinstance(x, np.ndarray): g_star_grad = self.a *
np.tanh(x / self.b)
numpy.tanh
# Copyright (C) 2018, <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/> """Dynamics model.""" import six import abc import theano import numpy as np import theano.tensor as T from scipy.optimize import approx_fprime from .autodiff import (as_function, batch_jacobian, hessian_vector, jacobian_vector) @six.add_metaclass(abc.ABCMeta) class Dynamics(): """Dynamics Model.""" @property @abc.abstractmethod def state_size(self): """State size.""" raise NotImplementedError @property @abc.abstractmethod def action_size(self): """Action size.""" raise NotImplementedError @property @abc.abstractmethod def has_hessians(self): """Whether the second order derivatives are available.""" raise NotImplementedError @abc.abstractmethod def f(self, x, u, i): """Dynamics model. Args: x: Current state [state_size]. u: Current control [action_size]. i: Current time step. Returns: Next state [state_size]. """ raise NotImplementedError @abc.abstractmethod def f_x(self, x, u, i): """Partial derivative of dynamics model with respect to x. Args: x: Current state [state_size]. u: Current control [action_size]. i: Current time step. Returns: df/dx [state_size, state_size]. """ raise NotImplementedError @abc.abstractmethod def f_u(self, x, u, i): """Partial derivative of dynamics model with respect to u. Args: x: Current state [state_size]. u: Current control [action_size]. i: Current time step. Returns: df/du [state_size, action_size]. """ raise NotImplementedError @abc.abstractmethod def f_xx(self, x, u, i): """Second partial derivative of dynamics model with respect to x. Note: This is not necessary to implement if you're planning on skipping Hessian evaluation as the iLQR implementation does by default. Args: x: Current state [state_size]. u: Current control [action_size]. i: Current time step. Returns: d^2f/dx^2 [state_size, state_size, state_size]. """ raise NotImplementedError @abc.abstractmethod def f_ux(self, x, u, i): """Second partial derivative of dynamics model with respect to u and x. Note: This is not necessary to implement if you're planning on skipping Hessian evaluation as the iLQR implementation does by default. Args: x: Current state [state_size]. u: Current control [action_size]. i: Current time step. Returns: d^2f/dudx [state_size, action_size, state_size]. """ raise NotImplementedError @abc.abstractmethod def f_uu(self, x, u, i): """Second partial derivative of dynamics model with respect to u. Note: This is not necessary to implement if you're planning on skipping Hessian evaluation as the iLQR implementation does by default. Args: x: Current state [state_size]. u: Current control [action_size]. i: Current time step. Returns: d^2f/du^2 [state_size, action_size, action_size]. """ raise NotImplementedError class AutoDiffDynamics(Dynamics): """Auto-differentiated Dynamics Model.""" def __init__(self, f, x_inputs, u_inputs, i=None, hessians=False, **kwargs): """Constructs an AutoDiffDynamics model. Args: f: Vector Theano tensor expression. x_inputs: Theano state input variables. u_inputs: Theano action input variables. i: Theano tensor time step variable. hessians: Evaluate the dynamic model's second order derivatives. Default: only use first order derivatives. (i.e. iLQR instead of DDP). **kwargs: Additional keyword-arguments to pass to `theano.function()`. """ self._tensor = f self._i = T.dscalar("i") if i is None else i non_t_inputs = np.hstack([x_inputs, u_inputs]).tolist() inputs = np.hstack([x_inputs, u_inputs, self._i]).tolist() self._x_inputs = x_inputs self._u_inputs = u_inputs self._inputs = inputs self._non_t_inputs = non_t_inputs x_dim = len(x_inputs) u_dim = len(u_inputs) self._state_size = x_dim self._action_size = u_dim self._J = jacobian_vector(f, non_t_inputs, x_dim) self._f = as_function(f, inputs, name="f", **kwargs) self._f_x = as_function( self._J[:, :x_dim], inputs, name="f_x", **kwargs) self._f_u = as_function( self._J[:, x_dim:], inputs, name="f_u", **kwargs) self._has_hessians = hessians if hessians: self._Q = hessian_vector(f, non_t_inputs, x_dim) self._f_xx = as_function( self._Q[:, :x_dim, :x_dim], inputs, name="f_xx", **kwargs) self._f_ux = as_function( self._Q[:, x_dim:, :x_dim], inputs, name="f_ux", **kwargs) self._f_uu = as_function( self._Q[:, x_dim:, x_dim:], inputs, name="f_uu", **kwargs) super(AutoDiffDynamics, self).__init__() @property def state_size(self): """State size.""" return self._state_size @property def action_size(self): """Action size.""" return self._action_size @property def has_hessians(self): """Whether the second order derivatives are available.""" return self._has_hessians @property def tensor(self): """The dynamics model variable.""" return self._tensor @property def x(self): """The state variables.""" return self._x_inputs @property def u(self): """The control variables.""" return self._u_inputs @property def i(self): """The time step variable.""" return self._i def f(self, x, u, i): """Dynamics model. Args: x: Current state [state_size]. u: Current control [action_size]. i: Current time step. Returns: Next state [state_size]. """ z =
np.hstack([x, u, i])
numpy.hstack
#coding:utf-8 将异常部分变为条件 import time import os import heapq import copy import json import sys from math import pi, pow, sqrt, log, log10 import numpy as np import tensorly as tl from tensorly.tenalg import khatri_rao from tensorly.random import random_kruskal from scipy.special import digamma, gamma from scipy.stats import zscore from imageio import imread, imsave import scipy.signal from numpy.linalg import norm, svd, inv, det import matplotlib matplotlib.use('Agg') from utils.utils import * def update(Y, O, params, N, maxRank, maxiters, tol=1e-5, verbose=0): Z0 = params['Z'] ZSigma0 = params['ZSigma'] coefficient = params['coefficient'] EZZT = params['EZZT'] EZZT_t_pre = params['EZZT_t_pre'] Z_pre = params['Z_pre'] O_pre = params['O_pre'] a_tau0 = params['a_tau0'] b_tau0 = params['b_tau0'] tau = params['tau'] L_pre = params['L_pre'] # Model learning R = maxRank nObs = np.sum(O) LB = [] dimY = Y.shape C = np.expand_dims(Y, 2) Z = [] ZSigma = [] for n in range(N - 1): Z.append(np.random.randn(dimY[n], R)) # E[A ^ (n)] ZSigma.append(np.zeros([R, R, dimY[n]])) # covariance of A ^ (n) for i in range(dimY[n]): ZSigma[n][:, :, i] = np.eye(R) #if init == 'rand': Z0_t = np.random.randn(1, R) Z_t = np.random.randn(1, R) # elif init == 'ml': # Z0_t = np.expand_dims(z_tmp[t, :], axis=0) # Z_t = np.expand_dims(z_tmp[t, :], axis=0) ZSigma0_t = np.expand_dims(np.eye(R), 2) ZSigma_t = np.eye(R) EZZT_t = np.reshape(ZSigma0_t, [R * R, 1], 'F').T sigma_E0 = np.ones([dimY[0], dimY[1], 1]) E0 = np.zeros([dimY[0], dimY[1], 1]) E = np.zeros_like(E0) sigma_E = np.ones_like(sigma_E0) a_tauN = 1e-6 b_tauN = 1e-6 for it in range(maxiters): for n in range(N-1): ENZZT = np.reshape(np.dot(khatri_rao([EZZT[0], EZZT[1], EZZT_t], skip_matrix=n, reverse=bool).T, unfold(O, n).T), [R, R, dimY[n]], 'F') ENZZT_prev = [] for i in range(len(coefficient)): tmp = np.reshape(np.dot(khatri_rao([EZZT[0], EZZT[1], EZZT_t_pre[i]], skip_matrix=n, reverse=bool).T, unfold(O, n).T), [R, R, dimY[n]], 'F') ENZZT_prev.append(tmp) FslashY = np.dot(khatri_rao([Z[0], Z[1], Z_t], skip_matrix=n, reverse=bool).T, unfold((C - E) * O, n).T) for i in range(len(coefficient)): FslashY += coefficient[i] * np.dot(khatri_rao([Z[0], Z[1], Z_pre[i]], skip_matrix=n, reverse=bool).T, unfold(L_pre[i] * O_pre[i], n).T) for i in range(dimY[n]): ENZZT_sum = ENZZT[:, :, i] for j in range(len(coefficient)): ENZZT_sum += coefficient[j] * ENZZT_prev[j][:, :, i] ZSigma[n][:, :, i] = inv(tau * ENZZT_sum + inv(ZSigma0[n][:, :, i])) Z[n][i, :] = np.squeeze( (np.dot(ZSigma[n][:, :, i], (inv(ZSigma0[n][:, :, i]).dot(np.expand_dims(Z0[n][i, :], 1)) + tau * np.expand_dims(FslashY[:, i], 1)))).T) EZZT[n] = (np.reshape(ZSigma[n], [R * R, dimY[n]], 'F') + khatri_rao([Z[n].T, Z[n].T])).T ENZZT = np.reshape(np.dot(khatri_rao([EZZT[0], EZZT[1], EZZT_t], skip_matrix=2, reverse=bool).T, unfold(O, 2).T), [R, R, 1], 'F') # compute E(Z_{\n}) FslashY = np.dot(khatri_rao([Z[0], Z[1], Z_t], skip_matrix=2, reverse=bool).T, unfold((C-E) * O, 2).T) ZSigma_t = inv(tau * ENZZT[:, :, 0] + inv(ZSigma0_t[:, :, 0])) Z_t = (np.dot(ZSigma_t, (inv(ZSigma0_t[:, :, 0]).dot(np.reshape(Z0_t, [R, 1])) + tau*
np.expand_dims(FslashY[:, 0], 1)
numpy.expand_dims
import torch import torch.nn as nn from torch.distributions import MultivariateNormal import numpy as np import matplotlib.pyplot as plt import lqr_control as control # temp fix for OpenMP issue import os os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") device = torch.device("cpu") def simulate(A, B, policy, x0, T): """ simulate trajectory based on policy learned by agent """ x_data = [] u_data = [] x = x0 u = policy(torch.FloatTensor(x.reshape(1, -1)).to(device)).detach() for t in range(T): u_data.append(u.item()) x_data.append(x.item()) u = policy(torch.FloatTensor(x.reshape(1, -1)).to(device)).detach() x = A @ x + B @ u.numpy() return x_data, u_data def compare_paths(x_sim, x_star, ylabel): fig, ax = plt.subplots() colors = ['#2D328F', '#F15C19'] # blue, orange t = np.arange(0, x_star.shape[0]) ax.plot(t, x_star, color=colors[1], label='True') ax.plot(t, x_sim, color=colors[0], label='Agent') ax.set_xlabel('Time', fontsize=18) ax.set_ylabel(ylabel, fontsize=18) plt.legend(fontsize=18) plt.grid(True) plt.show() return def compare_P(actor, K, low=-10, high=10, actor_label='Approx. Policy'): fig, ax = plt.subplots() colors = ['#2D328F', '#F15C19'] # blue, orange label_fontsize = 18 states = torch.linspace(low, high).detach().reshape(100, 1) actions = actor(states).squeeze().detach().numpy() optimal = -K * states.numpy() ax.plot(states.numpy(), optimal, color=colors[1], label='Optimal Policy') ax.plot(states.numpy(), actions, color=colors[0], label=actor_label) ax.set_xlabel('x (state)', fontsize=label_fontsize) ax.set_ylabel('u (action)', fontsize=label_fontsize) plt.legend() plt.grid(True) plt.show() return # "custom" activation functions for pytorch - compatible with autograd class PLU(nn.Module): def __init__(self): super(PLU, self).__init__() self.w1 = torch.nn.Parameter(torch.ones(1)) self.w2 = torch.nn.Parameter(torch.ones(1)) def forward(self, x): return self.w1 * torch.max(x, torch.zeros_like(x)) + self.w2 * torch.min(x, torch.zeros_like(x)) class Spike(nn.Module): def __init__(self, center=1, width=1): super(Spike, self).__init__() self.c = center self.w = width self.alpha = torch.nn.Parameter(torch.ones(1)) self.beta = torch.nn.Parameter(torch.ones(1)) # self.alpha = torch.nn.Parameter(torch.normal(0,1,size=(1,))) # self.beta = torch.nn.Parameter(torch.normal(0,1,size=(1,))) def forward(self, x): return self.alpha * x + self.beta * ( torch.min(torch.max((x - (self.c - self.w)), torch.zeros_like(x)),torch.max((-x + (self.c + self.w)), torch.zeros_like(x))) - 2*torch.min(torch.max((x - (self.c - self.w+1)), torch.zeros_like(x)),torch.max((-x + (self.c + self.w+1)), torch.zeros_like(x))) ) class Memory: def __init__(self): self.actions = [] self.states = [] self.logprobs = [] self.costs = [] self.is_terminals = [] def clear_memory(self): del self.actions[:] del self.states[:] del self.logprobs[:] del self.costs[:] del self.is_terminals[:] class PRELU(nn.Module): def __init__(self, state_dim, action_dim, n_latent_var, sigma): super(PRELU, self).__init__() self.agent = nn.Sequential( PLU(), nn.Linear(state_dim, action_dim, bias=True) ) self.state_dim = state_dim self.action_dim = action_dim self.sigma = sigma def forward(self): raise NotImplementedError def act(self, state, memory): action_mean = self.agent(state) action_var = torch.full((action_dim,), self.sigma) action_var = action_var.expand_as(action_mean) cov_mat = torch.diag_embed(action_var).to(device) dist = MultivariateNormal(action_mean, cov_mat) action = dist.sample() action_logprob = dist.log_prob(action) if memory is not None: memory.states.append(state) memory.actions.append(action) memory.logprobs.append(action_logprob) return action.detach() def evaluate(self, states, actions): action_means = self.agent(states) action_var = torch.full((action_dim,), self.sigma) action_var = action_var.expand_as(action_means) cov_mat = torch.diag_embed(action_var).to(device) dist = MultivariateNormal(action_means, cov_mat) action_logprobs = dist.log_prob(actions) dist_entropy = dist.entropy() return action_logprobs, dist_entropy class CHAOS(nn.Module): def __init__(self, state_dim, action_dim, n_latent_var, sigma): super(CHAOS, self).__init__() self.agent = nn.Sequential( # nn.Linear(state_dim, action_dim, bias=False), Spike(), # nn.Linear(n_latent_var, action_dim, bias=False) ) self.state_dim = state_dim self.action_dim = action_dim self.sigma = sigma def forward(self): raise NotImplementedError def act(self, state, memory): action_mean = self.agent(state) action_var = torch.full((action_dim,), self.sigma) action_var = action_var.expand_as(action_mean) cov_mat = torch.diag_embed(action_var).to(device) dist = MultivariateNormal(action_mean, cov_mat) action = dist.sample() action_logprob = dist.log_prob(action) if memory is not None: memory.states.append(state) memory.actions.append(action) memory.logprobs.append(action_logprob) return action.detach() def evaluate(self, states, actions): action_means = self.agent(states) action_var = torch.full((action_dim,), self.sigma) action_var = action_var.expand_as(action_means) cov_mat = torch.diag_embed(action_var).to(device) dist = MultivariateNormal(action_means, cov_mat) action_logprobs = dist.log_prob(actions) dist_entropy = dist.entropy() return action_logprobs, dist_entropy class PG: def __init__(self, state_dim, action_dim, n_latent_var, sigma, lr, betas, gamma, K_epochs): self.betas = betas self.gamma = gamma self.K_epochs = K_epochs self.sigma = sigma # self.policy = PRELU(state_dim, action_dim, n_latent_var, sigma).to(device) self.policy = CHAOS(state_dim, action_dim, n_latent_var, sigma).to(device) self.optimizer = torch.optim.Adam(self.policy.agent.parameters(), lr=lr, betas=betas) def select_action(self, state, memory): state = torch.FloatTensor(state.reshape(1, -1)).to(device) return self.policy.act(state, memory).cpu().data.numpy().flatten() def update(self, memory): # Monte Carlo estimate of state costs: costs = [] discounted_cost = 0 for cost, is_terminal in zip(reversed(memory.costs), reversed(memory.is_terminals)): if is_terminal: discounted_cost = 0 discounted_cost = cost + (self.gamma * discounted_cost) costs.insert(0, discounted_cost) # Normalizing the costs: costs = torch.tensor(costs).to(device) # costs = (costs - costs.mean()) / (costs.std() + 1e-8) # convert list to tensor old_states = torch.stack(memory.states).to(device).detach() old_actions = torch.stack(memory.actions).to(device).detach() # Optimize policy for K epochs: for _ in range(self.K_epochs): # Evaluating old actions and values : logprobs, dist_entropy = self.policy.evaluate(old_states, old_actions) # Finding Loss: actor_loss = costs * logprobs loss = actor_loss - 0.01 * dist_entropy # take gradient step self.optimizer.zero_grad() loss.mean().backward() self.optimizer.step() ############## Hyperparameters ############## A = np.array(1).reshape(1, 1) B = np.array(1).reshape(1, 1) Q =
np.array(1)
numpy.array
import os import numpy as np import pandas as pd from ctypes import CDLL, cast, c_int, c_float, POINTER, ARRAY LIBRARY_NAME = "libChanlunX" LIBRARY_PATH = os.path.split(__file__)[0] class ChanLibrary(object): """缠论DLL抽象类 此处使用NumPy的Ctypes接口来加载缠论DLL 并且封装了Windows和Linux加载不同DLL文件的差异 """ def __init__(self, bi_style=1, bi_frac_range=2, duan_style=0, debug=False): self._bi_style = bi_style self._bi_frac_range = bi_frac_range self._duan_style = duan_style self._debug = debug @classmethod def _get_library(cls): """全局唯一的DLL对象 """ lib = getattr(cls, "_lib", None) if lib is None: lib = cls._load_library() cls._lib = lib return lib @classmethod def _load_library(cls): ## 使用NumPy的Ctypes便捷接口加载DLL lib = np.ctypeslib.load_library(LIBRARY_NAME, LIBRARY_PATH) ## 定义多个函数接口 lib.ChanK.argtypes = [ np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), c_int, ] lib.ChanBi.argtypes = [ np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), c_int, c_int, c_int, ] lib.ChanDuan.argtypes = [ np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), c_int, c_int, ] lib.ChanZhongShu.argtypes = [ np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), c_int, ] lib.ChanZhongShu2.argtypes = [ np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer( dtype=np.float32, ndim=1, flags="C_CONTIGUOUS"), c_int, ] return lib @classmethod def _free_library(cls): lib = getattr(cls, "_lib", None) if lib: try: import win32api win32api.FreeLibrary(lib._handle) except: pass # 下面的函数都是对DLL的进一步封装 # 封装的原因是因为,这个DLL的函数是C风格的,接收的参数都是指向一个数组的指针 # 因此这里做一下类型转换和内存空间分配 def chanK(self, high_list, low_list): """导入K线""" if self._debug: print(f'导入K线') count = len(high_list) arr_direction = np.zeros(count).astype(np.float32) arr_include = np.zeros(count).astype(np.float32) arr_high = np.zeros(count).astype(np.float32) arr_low = np.zeros(count).astype(np.float32) lib = self._get_library() lib.ChanK(arr_direction, arr_include, arr_high, arr_low, high_list, low_list, count) if self._debug: print(f'导入K线完成') return arr_direction, arr_include, arr_high, arr_low def chanBi(self, high_list, low_list): """计算笔""" if self._debug: print(f'计算分笔') count = len(high_list) arr_bi = np.zeros(count).astype(np.float32) lib = self._get_library() lib.ChanBi(arr_bi, high_list, low_list, count, self._bi_style, self._bi_frac_range) if self._debug: print(f'计算分笔完成') return arr_bi def chanDuan(self, bi, high_list, low_list): """计算段""" if self._debug: print(f'计算线段开始') count = len(high_list) arr_duan = np.zeros(count).astype(np.float32) lib = self._get_library() lib.ChanDuan(arr_duan, bi, high_list, low_list, count, self._duan_style) if self._debug: print(f'计算线段完成') return arr_duan def chanZhongShu(self, duan, high_list, low_list): """计算中枢""" if self._debug: print(f'计算中枢开始') count = len(high_list) arr_direction = np.zeros(count).astype(np.float32) arr_range = np.zeros(count).astype(np.float32) arr_high =
np.zeros(count)
numpy.zeros
import random from collections import deque, namedtuple import numpy as np import torch ## Default Values DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') BUFFER_SIZE = int(1e5) BATCH_SIZE = 64 MIN_NUM_BATCHES = 5 class ReplayMemoryBuffer: def __init__(self, buffer_size: int = BUFFER_SIZE, batch_size: int = BATCH_SIZE, device: str = DEVICE, seed: int = 0): self.device = device self.memory_buffer = deque(maxlen=buffer_size) self.batch_size = batch_size self.experience = namedtuple('Experience', field_names=['state', 'action', 'reward', 'next_state', 'done']) self.seed = random.seed(seed) def __len__(self): return len(self.memory_buffer) def add(self, state, action, reward, next_state, done): """Add a new experience to memory.""" experience_sample = self.experience(state, action, reward, next_state, done) self.memory_buffer.append(experience_sample) def sample(self, batch_size: int = None, device: str = None): if not batch_size: batch_size = self.batch_size if not device: device = self.device experiences = random.sample(self.memory_buffer, k=batch_size) states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device) actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device) rewards = torch.from_numpy(
np.vstack([e.reward for e in experiences if e is not None])
numpy.vstack
import numpy as np import pandas as pd import matplotlib matplotlib.use('Agg') # for saving figures import matplotlib.pyplot as plt benign_traffic = pd.read_csv('benign_traffic.csv.zip') gafgyt_traffic = pd.read_csv('gafgyt_traffic.csv.zip', nrows=2000) print("Benign traffic:") print(benign_traffic.head()) print("Gafgyt traffic:") print(gafgyt_traffic.head()) # Compute distances from every benign data point to every other from sklearn.metrics.pairwise import cosine_distances benign_dists = cosine_distances(benign_traffic) print("Benign self-distances:") print(benign_dists) print(np.shape(benign_dists)) print("Min, max:", np.min(benign_dists),
np.max(benign_dists)
numpy.max
import numpy as np import math from .distribution import Distribution from .helpers import create_distance_kernel from .gamma_evaluation_c import gamma_evaluation_c def difference_between(dist1, dist2, kind="relative"): """Compute the difference between two distributions. Calculate either the absolute or relative difference between the values in the two distributions. Both distributions must have matching grid sizes and positions. Parameters ---------- distribution1 : Distribution The first distribution to calculate the difference between. distribution2 : Distribution The second distribution to calculate the difference between. kind : str The type of comparison to be made. Either "relative" or "absolute". Returns ------- Distribution A new distribution with data values corresponding to the difference between the two input distributions. """ if kind == "absolute": new_data = dist2.data - dist1.data elif kind == "relative": new_data =
np.copy(dist2.data)
numpy.copy
# Functions needed to run Excalibur # Data munging in separate file from os.path import basename import numpy as np from astropy.time import Time from scipy import interpolate, optimize from tqdm.auto import trange import warnings warnings.simplefilter('ignore', np.RankWarning) ########################################################### # PCA Patching ########################################################### def pcaPatch(x_values, mask, K=2, num_iters=50): """ Iterative PCA patching, where bad values are replaced with denoised values. Parameters ---------- x_values : 2D array List of values we want to denoise mask : 2D array Mask for x_values that is true for values that we would like to denoise K : int, optional (default: 2) Number of principal components used for denoising num_iters : int, optional (default: 50) Number of iterations to run iterative PCA patching Returns ------- x_values : 2D ndarray x_values with bad values replaced by denoised values mean_x_values : 2D ndarray Mean of x_values over all exposures. Used as fiducial model of line positions PCA is done over deviations from this fiducial model denoised_xs : 2D ndarray Denoised x values from PCA reconstruction uu, ss, vv : ndarrays Arrays from single value decomposition. Used to reconstruct principal components and their corresponding coefficients """ K = int(K) for i in range(num_iters): # There should be no more NaN values in x_values assert np.sum(np.isnan(x_values)) == 0 # Redefine mean mean_x_values = np.mean(x_values,axis=0) # Run PCA uu,ss,vv = np.linalg.svd(x_values-mean_x_values, full_matrices=False) # Repatch bad data with K PCA reconstruction denoised_xs = mean_x_values + np.dot((uu*ss)[:,:K],vv[:K]) x_values[mask] = denoised_xs[mask] return x_values, mean_x_values, denoised_xs, uu, ss, vv def patchAndDenoise(x_values, orders, waves, x_errors=None, times=None, file_list=None, K=2, num_iters=50, running_window=9, line_cutoff=0.5, file_cutoff=0.5, outlier_cut=0, verbose=False): """ - Vet for bad lines/exposures - Initial patch of bad data with running mean - Iterative patch with PCA for specified number of iterations - Optional second round of interative PCA patching to catch outliers Parameters ---------- x_values, x_errors : 2D ndarray Array of line positions for all lines for each exposure and errors orders : 1D ndarray Array of orders for each line waves : 1D ndarray Array of wavelengths for each line times : 1D ndarray, optional Time stamps for each exposure Just written into the returned patch dictionary (not explicitely used for this code, but helps with evalWaveSol) K : int, optional (default: 2) Number of principal components used for denoising num_iters : int, optional (default: 50) Number of iterations to run iterative PCA patching running_window ; int, optional (default: 9) Window size of running mean used to initialize pixel values for lines missing measured pixel values line_cutoff, file_cutoff : float [0,1], optional (default: 0.5) Cutoff for bad lines or files, respectively. i.e. defaults cut lines that show up in less than 50% of exposure and files that contain less than 50% of all lines outlier_cut : float, optional (default: 0) Sigma cut used to identify outliers following first round of iterative PCA. Note: 0 means this process isn't done. Returns ------- patch : dict Dictionary containing all the useful information from this process (among, very many uselss information!) Needed for evalWaveSol function """ # Arrays that aren't needed, but are helpful to have in returned dictionary if times is None: times = np.zeros_like(file_list) if x_errors is None: x_errors = np.zeros_like(x_errors) if file_list is None: file_list = np.zeros_like(times) ### Vetting # Find where there is no line information x_values[np.nan_to_num(x_values) < 1] = np.nan # Mask out of order lines out_of_order =
np.zeros_like(x_values,dtype=bool)
numpy.zeros_like
# Copyright 2021 [name of copyright owner] # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2, h5py import os, glob, random import numpy as np from torch.utils.data import Dataset from torchvision import transforms import torch import gc SEED = 32 np.random.seed(SEED) random.seed(SEED) torch.manual_seed(SEED) os.environ['PYTHONHASHSEED']=str(SEED) class NRDataset(Dataset): def __init__(self, data_path, grayScale = True, batch_size = 8, chunk_size = 10, passes=10, max_dim = 720, geo = False): self.cnt = 0 self.chunk_cnt = 0 self.done = 0 self.batch_size = batch_size self.chunk_size = chunk_size self.passes = passes self.chunk_data = None self.grayScale = grayScale self.max_dim = max_dim self.data = h5py.File(data_path, "r") self.geo = True if 'geopatch' in self.data.keys() and geo else False self.names = list(self.data['imgs'].keys()) self.names = list(set(['{:s}__{:s}'.format(*n.split('__')[:2]) for n in self.names])) random.shuffle(self.names) self.regularize_names() round_sz = len(self.names) // (batch_size * chunk_size) self.names = self.names[:round_sz * batch_size * chunk_size] # trim dataset size to a multiple of batch&chunk self.toTensor = transforms.ToTensor() self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.load_chunk() def __len__(self): return len(self.names) // (self.chunk_size * self.batch_size) def load_chunk(self): print('loading chunk [{:d}]...'.format(self.chunk_cnt), end='', flush=True) self.chunk_data = [] ; gc.collect() N = len(self.names) // self.chunk_size for i in range(0, N , self.batch_size): batch = [] for b in range(self.batch_size): #Read the data from disk idx = N * self.chunk_cnt + i + b key = self.names[idx] X =self.data['imgs/'+key+'__1'][...] Y =self.data['imgs/'+key+'__2'][...] x_kps = self.data['kps/'+key+'__1'][...] y_kps = self.data['kps/'+key+'__2'][...] if self.geo: #grab GeoPatches x_geo = self.data['geopatch/'+key+'__1'][...] y_geo = self.data['geopatch/'+key+'__2'][...] #permute axis to (N,1,H,W) x_geo = np.transpose(x_geo, (2,0,1))[:,np.newaxis,:,:].astype(np.float32)/255. y_geo = np.transpose(y_geo, (2,0,1))[:,np.newaxis,:,:].astype(np.float32)/255. # Resize image and keypoint attributes if the image is too large r_x = max(X.shape[:2])/self.max_dim r_y = max(Y.shape[:2])/self.max_dim if r_x > 1.0: X = cv2.resize(X, None, fx = 1/r_x, fy = 1/r_x) x_kps[:,:2]/= r_x ; x_kps[:,3]/= r_x if r_y > 1.0: Y = cv2.resize(Y, None, fx = 1/r_y, fy = 1/r_y) y_kps[:,:2]/= r_y ; x_kps[:,3]/= r_y X = self.toTensor(X) ; Y = self.toTensor(Y) if self.grayScale: X = torch.mean(X,0,True) ; Y = torch.mean(Y,0,True) batch.append((X, x_kps, Y, y_kps) if not self.geo else (X, x_kps,x_geo, Y, y_kps, y_geo)) self.chunk_data.append(batch) self.chunk_cnt+=1 self.done=0 if self.chunk_cnt == self.chunk_size: self.chunk_cnt = 0 print('done.') def get_raw_batch(self, idx): batch = list(zip(*self.chunk_data[idx])) return batch def regularize_names(self): dk = {} new_names = [] from collections import deque for n in self.names: key = n.split('__')[0] if key in dk: dk[key].append(n) else: dk[key] = deque([n]) #for v in dk.values(): # print(len(v)) done = False while not done: cnt=0 for k,v in dk.items(): if len(dk[k])==0: cnt+=1 else: new_names.append(dk[k].pop()) if cnt==len(dk): done = True self.names = new_names def __getitem__(self, idx): if self.done == self.passes: self.load_chunk() batch = list(zip(*self.chunk_data[idx])) batch = self.prepare_batch(batch) return batch def __iter__(self): self.cnt = 0 return self def __next__(self): if self.cnt == self.__len__(): self.done+=1 self.cnt=0 raise StopIteration else: self.cnt+=1 return self.__getitem__(self.cnt-1) def prepare_batch(self, batch, max_kps = 128): dev = self.device if not self.geo: X, x_kps, Y, y_kps = batch else: X, x_kps, x_geo, Y, y_kps, y_geo = batch sampled_x_kps, sampled_y_kps = [], [] sampled_x_geo, sampled_y_geo = [], [] for b in range(len(x_kps)): rnd_idx = np.arange(len(x_kps[b])) np.random.shuffle(rnd_idx) rnd_idx = rnd_idx[:max_kps] sampled_x_kps.append(x_kps[b][rnd_idx]) sampled_y_kps.append(y_kps[b][rnd_idx]) if self.geo: sampled_x_geo.append(x_geo[b][rnd_idx]) sampled_y_geo.append(y_geo[b][rnd_idx]) x_kps = sampled_x_kps y_kps = sampled_y_kps if self.geo: x_geo = sampled_x_geo y_geo = sampled_y_geo nkps_x, nkps_y = [], [] nori_x, nori_y, nscale_x, nscale_y = [], [], [], [] ngeo_x, ngeo_y = [], [] idx_keys = [] Hs_x, Ws_x = [], [] Hs_y, Ws_y = [], [] X_dict, Y_dict = {}, {} for b in range(len(x_kps)): #for each image in the batch, prepare keypoints H, W = X[b].shape[-2:] imgSize = np.array([W-1,H-1], dtype = np.float32) nkp_x = x_kps[b][:,:2] / imgSize * 2 - 1 Hs_x += [H] * len(x_kps[b]) Ws_x += [W] * len(x_kps[b]) H, W = Y[b].shape[-2:] imgSize =
np.array([W-1,H-1], dtype = np.float32)
numpy.array
import json import random from os import path as osp import pandas import h5py import numpy as np import quaternion from scipy.ndimage import gaussian_filter1d from scipy.spatial.transform import Rotation, Slerp from scipy.interpolate import interp1d from torch.utils.data import Dataset from data_utils import CompiledSequence, select_orientation_source, load_cached_sequences import logging logging.getLogger().setLevel(logging.INFO) class GlobSpeedSequence(CompiledSequence): """ Dataset :- RoNIN (can be downloaded from http://ronin.cs.sfu.ca/) Features :- raw angular rate and acceleration (includes gravity). """ feature_dim = 6 # target_dim = 2 target_dim = 3 aux_dim = 8 def __init__(self, data_path=None, **kwargs): super().__init__(**kwargs) self.ts, self.features, self.targets, self.orientations, self.gt_pos = None, None, None, None, None self.info = {} self.grv_only = kwargs.get('grv_only', False) self.max_ori_error = kwargs.get('max_ori_error', 20.0) self.w = kwargs.get('interval', 1) if data_path is not None: self.load(data_path) def load(self, data_path): if data_path[-1] == '/': data_path = data_path[:-1] with open(osp.join(data_path, 'info.json')) as f: self.info = json.load(f) self.info['path'] = osp.split(data_path)[-1] self.info['ori_source'], ori, self.info['source_ori_error'] = select_orientation_source( data_path, self.max_ori_error, self.grv_only) with h5py.File(osp.join(data_path, 'data.hdf5')) as f: gyro_uncalib = f['synced/gyro_uncalib'] acce_uncalib = f['synced/acce'] gyro = gyro_uncalib - np.array(self.info['imu_init_gyro_bias']) acce = np.array(self.info['imu_acce_scale']) * (acce_uncalib - np.array(self.info['imu_acce_bias'])) ts = np.copy(f['synced/time']) tango_pos = np.copy(f['pose/tango_pos']) init_tango_ori = quaternion.quaternion(*f['pose/tango_ori'][0]) # Compute the IMU orientation in the Tango coordinate frame. ori_q = quaternion.from_float_array(ori) rot_imu_to_tango = quaternion.quaternion(*self.info['start_calibration']) init_rotor = init_tango_ori * rot_imu_to_tango * ori_q[0].conj() ori_q = init_rotor * ori_q dt = (ts[self.w:] - ts[:-self.w])[:, None] glob_v = (tango_pos[self.w:] - tango_pos[:-self.w]) / dt gyro_q = quaternion.from_float_array(np.concatenate([np.zeros([gyro.shape[0], 1]), gyro], axis=1)) # quaternion is of w, x, y, z format acce_q = quaternion.from_float_array(np.concatenate([np.zeros([acce.shape[0], 1]), acce], axis=1)) glob_gyro = quaternion.as_float_array(ori_q * gyro_q * ori_q.conj())[:, 1:] glob_acce = quaternion.as_float_array(ori_q * acce_q * ori_q.conj())[:, 1:] start_frame = self.info.get('start_frame', 0) self.ts = ts[start_frame:] self.features = np.concatenate([glob_gyro, glob_acce], axis=1)[start_frame:] # self.targets = glob_v[start_frame:, :2] self.targets = glob_v[start_frame:, :3] self.orientations = quaternion.as_float_array(ori_q)[start_frame:] self.gt_pos = tango_pos[start_frame:] pass def get_feature(self): return self.features def get_target(self): return self.targets def get_aux(self): return np.concatenate([self.ts[:, None], self.orientations, self.gt_pos], axis=1) def get_meta(self): return '{}: device: {}, ori_error ({}): {:.3f}'.format( self.info['path'], self.info['device'], self.info['ori_source'], self.info['source_ori_error']) class SenseINSSequence(CompiledSequence): """ Dataset :- RoNIN (can be downloaded from http://ronin.cs.sfu.ca/) Features :- raw angular rate and acceleration (includes gravity). """ feature_dim = 6 # target_dim = 2 target_dim = 3 aux_dim = 8 def __init__(self, data_path=None, **kwargs): super().__init__(**kwargs) self.ts, self.features, self.targets, self.orientations, self.gt_pos = None, None, None, None, None self.info = {} args = kwargs['args'] self.imu_freq = args.imu_freq self.sum_dur = 0 self.interval = args.window_size self.w = kwargs.get('interval', 1) if data_path is not None: self.load(data_path) def load(self, data_path): if data_path[-1] == '/': data_path = data_path[:-1] # info_file = osp.join(data_path, 'SenseINS.json') # if osp.exists(info_file): # with open(info_file) as f: # self.info = json.load(f) # else: # logging.info(f"data_glob_speed.py: info_file does not exist. {info_file}") data_file = osp.join(data_path, 'SenseINS.csv') if osp.exists(data_file): imu_all = pandas.read_csv(data_file) else: logging.info(f"data_glob_speed.py: data_file does not exist. {data_file}") return self.info['path'] = osp.split(data_path)[-1] # ---ts--- if 'times' in imu_all: tmp_ts = np.copy(imu_all[['times']].values) else: tmp_ts = np.copy(imu_all[['time']].values) tmp_ts = np.squeeze(tmp_ts) start_ts = tmp_ts[1] end_ts = tmp_ts[1] + int((tmp_ts[-4] - tmp_ts[1]) * self.imu_freq) / self.imu_freq # if use tmp_ts[-2], it may # out of bounds when using interpolation ts_interval = 1.0 / self.imu_freq ts = np.arange(start_ts, end_ts, ts_interval) self.sum_dur = end_ts - start_ts self.info['time_duration'] = self.sum_dur # ---vio_q and vio_p--- tmp_vio_q = np.copy(imu_all[['gt_q_w', 'gt_q_x', 'gt_q_y', 'gt_q_z']].values) # gt orientation get_gt = True # this is to check whether gt exists, if not, use VIO as gt if tmp_vio_q[0][0] == 1.0 and tmp_vio_q[100][0] == 1.0 or tmp_vio_q[0][0] == tmp_vio_q[-1][0]: tmp_vio_q = np.copy(imu_all[['vio_q_w', 'vio_q_x', 'vio_q_y', 'vio_q_z']].values) tmp_vio_p = np.copy(imu_all[['vio_p_x', 'vio_p_y', 'vio_p_z']].values) get_gt = False else: tmp_vio_p = np.copy(imu_all[['gt_p_x', 'gt_p_y', 'gt_p_z']].values) # ---acce and gyro--- tmp_gyro =
np.copy(imu_all[['gyro_x', 'gyro_y', 'gyro_z']].values)
numpy.copy
""" @package ion_functions.test.adcp_functions @file ion_functions/test/test_adcp_functions.py @author <NAME>, <NAME>, <NAME> @brief Unit tests for adcp_functions module """ from nose.plugins.attrib import attr from ion_functions.test.base_test import BaseUnitTestCase import numpy as np from ion_functions.data import adcp_functions as af from ion_functions.data.adcp_functions import ADCP_FILLVALUE from ion_functions.data.generic_functions import SYSTEM_FILLVALUE @attr('UNIT', group='func') class TestADCPFunctionsUnit(BaseUnitTestCase): def setUp(self): """ Implemented by: 2014-02-06: <NAME>. Initial Code. 2015-06-12: <NAME>. Changed raw beam data to type int. This change did not affect any previously written unit tests. """ # set test inputs -- values from DPS self.b1 = np.array([[-0.0300, -0.2950, -0.5140, -0.2340, -0.1880, 0.2030, -0.3250, 0.3050, -0.2040, -0.2940]]) * 1000 self.b2 = np.array([[0.1800, -0.1320, 0.2130, 0.3090, 0.2910, 0.0490, 0.1880, 0.3730, -0.0020, 0.1720]]) * 1000 self.b3 = np.array([[-0.3980, -0.4360, -0.1310, -0.4730, -0.4430, 0.1880, -0.1680, 0.2910, -0.1790, 0.0080]]) * 1000 self.b4 = np.array([[-0.2160, -0.6050, -0.0920, -0.0580, 0.4840, -0.0050, 0.3380, 0.1750, -0.0800, -0.5490]]) * 1000 # the data type of the raw beam velocities is int; # set b1-b4 to int so that fill replacement can be tested. self.b1 = self.b1.astype(int) self.b2 = self.b2.astype(int) self.b3 = self.b3.astype(int) self.b4 = self.b4.astype(int) # self.echo = np.array([[0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250]]) self.sfactor = 0.45 # units of compass data are in centidegrees. self.heading = 9841 self.pitch = 69 self.roll = -254 self.orient = 1 self.lat = 50.0000 self.lon = -145.0000 self.depth = 0.0 self.ntp = 3545769600.0 # May 12, 2012 # set expected results -- velocity profiles in earth coordinates # (values in DPS) self.uu = np.array([[0.2175, -0.2814, -0.1002, 0.4831, 1.2380, -0.2455, 0.6218, -0.1807, 0.0992, -0.9063]]) self.vv = np.array([[-0.3367, -0.1815, -1.0522, -0.8676, -0.8919, 0.2585, -0.8497, -0.0873, -0.3073, -0.5461]]) self.ww = np.array([[0.1401, 0.3977, 0.1870, 0.1637, 0.0091, -0.1290, 0.0334, -0.3017, 0.1384, 0.1966]]) # set expected results -- magnetic variation correction applied # (computed in Matlab using above values and mag_var.m) self.uu_cor = np.array([[0.1099, -0.3221, -0.4025, 0.2092, 0.9243, -0.1595, 0.3471, -0.1983, 0.0053, -1.0261]]) self.vv_cor = np.array([[-0.3855, -0.0916, -0.9773, -0.9707, -1.2140, 0.3188, -0.9940, -0.0308, -0.3229, -0.2582]]) # set the expected results -- error velocity self.ee = np.array([[0.789762, 0.634704, -0.080630, 0.626434, 0.064090, 0.071326, -0.317352, 0.219148, 0.054787, 0.433129]]) # set the expected results -- echo intensity conversion from counts to dB self.dB = np.array([[0.00, 11.25, 22.50, 33.75, 45.00, 56.25, 67.50, 78.75, 90.00, 101.25, 112.50]]) def test_adcp_beam(self): """ Directly tests DPA functions adcp_beam_eastward, adcp_beam_northward, adcp_beam_vertical, and adcp_beam_error. Tests adcp_beam2ins, adcp_ins2earth and magnetic_correction functions for ADCPs that output data in beam coordinates. All three functions must return the correct output for final tests cases to work. Values based on those defined in DPS: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00750_Data_Product_SPEC_VELPROF_OOI.pdf) Implemented by: 2013-04-10: <NAME>. Initial code. 2014-02-06: <NAME>. Added tests to confirm arrays of arrays can be processed (in other words, vectorized the code). 2015-06-23: <NAME>. Revised documentation. Added unit test for the function adcp_beam_error. Notes: The original suite of tests within this function did not provide a test for adcp_beam_error. However, adcp_beam_error and vadcp_beam_error are identical functions, and vadcp_beam_error is implicitly tested in the test_vadcp_beam function when the 4th output argument of adcp_beam2inst is tested. Therefore values to directly test adcp_beam_error were then derived from the function itself and included as part of the unit test within this code (test_adcp_beam). """ # single record case got_uu_cor = af.adcp_beam_eastward(self.b1, self.b2, self.b3, self.b4, self.heading, self.pitch, self.roll, self.orient, self.lat, self.lon, self.depth, self.ntp) got_vv_cor = af.adcp_beam_northward(self.b1, self.b2, self.b3, self.b4, self.heading, self.pitch, self.roll, self.orient, self.lat, self.lon, self.depth, self.ntp) got_ww = af.adcp_beam_vertical(self.b1, self.b2, self.b3, self.b4, self.heading, self.pitch, self.roll, self.orient) got_ee = af.adcp_beam_error(self.b1, self.b2, self.b3, self.b4) # test results np.testing.assert_array_almost_equal(got_uu_cor, self.uu_cor, 4) np.testing.assert_array_almost_equal(got_vv_cor, self.vv_cor, 4) np.testing.assert_array_almost_equal(got_ww, self.ww, 4) np.testing.assert_array_almost_equal(got_ee, self.ee, 4) # reset the test inputs for multiple records b1 = np.tile(self.b1, (24, 1)) b2 = np.tile(self.b2, (24, 1)) b3 = np.tile(self.b3, (24, 1)) b4 = np.tile(self.b4, (24, 1)) heading = np.ones(24, dtype=np.int) * self.heading pitch = np.ones(24, dtype=np.int) * self.pitch roll = np.ones(24, dtype=np.int) * self.roll orient = np.ones(24, dtype=np.int) * self.orient lat = np.ones(24) * self.lat lon = np.ones(24) * self.lon depth = np.ones(24) * self.depth ntp = np.ones(24) * self.ntp # reset outputs for multiple records uu_cor = np.tile(self.uu_cor, (24, 1)) vv_cor = np.tile(self.vv_cor, (24, 1)) ww = np.tile(self.ww, (24, 1)) ee = np.tile(self.ee, (24, 1)) # multiple record case got_uu_cor = af.adcp_beam_eastward(b1, b2, b3, b4, heading, pitch, roll, orient, lat, lon, depth, ntp) got_vv_cor = af.adcp_beam_northward(b1, b2, b3, b4, heading, pitch, roll, orient, lat, lon, depth, ntp) got_ww = af.adcp_beam_vertical(b1, b2, b3, b4, heading, pitch, roll, orient) got_ee = af.adcp_beam_error(b1, b2, b3, b4) # test results np.testing.assert_array_almost_equal(got_uu_cor, uu_cor, 4) np.testing.assert_array_almost_equal(got_vv_cor, vv_cor, 4) np.testing.assert_array_almost_equal(got_ww, ww, 4) np.testing.assert_array_almost_equal(got_ee, ee, 4) def test_adcp_beam_with_fill(self): """ Directly tests DPA functions adcp_beam_eastward, adcp_beam_northward, adcp_beam_vertical, and adcp_beam_error when system fill values and ADCP fill values (bad value sentinels) are present in the data stream. Non-fill values are based on those used in test_adcp_beam in this module. Implemented by: 2013-06-24: <NAME>. Initial code. Notes: """ # for convenience sfill = SYSTEM_FILLVALUE afill = ADCP_FILLVALUE ### set input data # units of compass data are in centidegrees. heading = np.array([9841]) pitch = np.array([69]) roll = np.array([-254]) missingroll = np.array([sfill]) orient = np.array([1]) lat = np.array([50.0000]) lon = np.array([-145.0000]) depth = np.array([0.0]) ntp = np.array([3545769600.0]) # May 12, 2012 ### # for positional clarity, input beam and expected velocities will be explicitly # enumerated for each single time record test case. ### ### single time record case; missing roll data ## the ADCP does not use its bad flag sentinel for compass data, only beam data. ## however, it is possible that CI could supply the system fillvalue for missing compass data. # input data # beam velocity units are mm/s b1_x1 = np.array([[-30, -295, -514, -234, -188, 203, -325, 305, -204, -294]]) b2_x1 = np.array([[180, -132, 213, 309, 291, 49, 188, 373, -2, 172]]) b3_x1 = np.array([[-398, -436, -131, -473, -443, 188, -168, 291, -179, 8]]) b4_x1 = np.array([[-216, -605, -92, -58, 484, -5, 338, 175, -80, -549]]) # expected results if all good beam and compass data # these will be used later in the multiple time record test uu_x0 = np.array([[0.1099, -0.3221, -0.4025, 0.2092, 0.9243, -0.1595, 0.3471, -0.1983, 0.0053, -1.0261]]) vv_x0 = np.array([[-0.3855, -0.0916, -0.9773, -0.9707, -1.2140, 0.3188, -0.9940, -0.0308, -0.3229, -0.2582]]) ww_x0 = np.array([[0.1401, 0.3977, 0.1870, 0.1637, 0.0091, -0.1290, 0.0334, -0.3017, 0.1384, 0.1966]]) ee_x0 = np.array([[0.789762, 0.634704, -0.080630, 0.626434, 0.064090, 0.071326, -0.317352, 0.219148, 0.054787, 0.433129]]) # expected results for all good beam data, missing roll data; # nans for all results except for the error velocity, which does not depend on the compass uu_x1 = uu_x0 * np.nan vv_x1 = vv_x0 * np.nan ww_x1 = ww_x0 * np.nan ee_x1 = np.copy(ee_x0) uu_calc = af.adcp_beam_eastward(b1_x1, b2_x1, b3_x1, b4_x1, heading, pitch, missingroll, orient, lat, lon, depth, ntp) vv_calc = af.adcp_beam_northward(b1_x1, b2_x1, b3_x1, b4_x1, heading, pitch, missingroll, orient, lat, lon, depth, ntp) ww_calc = af.adcp_beam_vertical(b1_x1, b2_x1, b3_x1, b4_x1, heading, pitch, missingroll, orient) ee_calc = af.adcp_beam_error(b1_x1, b2_x1, b3_x1, b4_x1) # test results np.testing.assert_array_almost_equal(uu_calc, uu_x1, 4) np.testing.assert_array_almost_equal(vv_calc, vv_x1, 4) np.testing.assert_array_almost_equal(ww_calc, ww_x1, 4) np.testing.assert_array_almost_equal(ee_calc, ee_x1, 4) ### single time record case; missing and bad-flagged beam data, good compass data # input data b1_x2 = np.array([[sfill, -295, -514, -234, -188, 203, -325, afill, -204, -294]]) b2_x2 = np.array([[sfill, -132, 213, 309, 291, 49, 188, afill, -2, sfill]]) b3_x2 = np.array([[sfill, -436, -131, -473, -443, 188, -168, afill, -179, 8]]) b4_x2 = np.array([[sfill, -605, -92, -58, afill, -5, 338, afill, -80, -549]]) # expected uu_x2 = np.array([[np.nan, -0.3221, -0.4025, 0.2092, np.nan, -0.1595, 0.3471, np.nan, 0.0053, np.nan]]) vv_x2 = np.array([[np.nan, -0.0916, -0.9773, -0.9707, np.nan, 0.3188, -0.9940, np.nan, -0.3229, np.nan]]) ww_x2 = np.array([[np.nan, 0.3977, 0.1870, 0.1637, np.nan, -0.1290, 0.0334, np.nan, 0.1384, np.nan]]) ee_x2 = np.array([[np.nan, 0.634704, -0.080630, 0.626434, np.nan, 0.071326, -0.317352, np.nan, 0.054787, np.nan]]) # calculated uu_calc = af.adcp_beam_eastward(b1_x2, b2_x2, b3_x2, b4_x2, heading, pitch, roll, orient, lat, lon, depth, ntp) vv_calc = af.adcp_beam_northward(b1_x2, b2_x2, b3_x2, b4_x2, heading, pitch, roll, orient, lat, lon, depth, ntp) ww_calc = af.adcp_beam_vertical(b1_x2, b2_x2, b3_x2, b4_x2, heading, pitch, roll, orient) ee_calc = af.adcp_beam_error(b1_x2, b2_x2, b3_x2, b4_x2) # test results np.testing.assert_array_almost_equal(uu_calc, uu_x2, 4) np.testing.assert_array_almost_equal(vv_calc, vv_x2, 4) np.testing.assert_array_almost_equal(ww_calc, ww_x2, 4) np.testing.assert_array_almost_equal(ee_calc, ee_x2, 4) ### multiple (5) record case ## reset the test inputs for 5 time records # 1st time record is the bad/missing beam data case above # 2nd time record is a missing heading data case # 3rd time record is all good data # 4th time record is bad/missing beam and missing pitch data. # 5th time record is missing orientation data b1 = np.vstack((b1_x2, b1_x1, b1_x1, b1_x2, b1_x1)) b2 = np.vstack((b2_x2, b2_x1, b2_x1, b2_x2, b2_x1)) b3 = np.vstack((b3_x2, b3_x1, b3_x1, b3_x2, b3_x1)) b4 = np.vstack((b4_x2, b4_x1, b4_x1, b4_x2, b4_x1)) heading = np.hstack((heading, sfill, heading, heading, heading)) pitch = np.hstack((pitch, pitch, pitch, sfill, pitch)) roll = np.tile(roll, 5) orient = np.hstack((orient, orient, orient, orient, sfill)) lat = np.tile(lat, 5) lon = np.tile(lon, 5) depth = np.tile(depth, 5) ntp = np.tile(ntp, 5) # set expected outputs for these 5 records # notes: # (1) heading is not used in the calculation of vertical velocity, # therefore the second entry to ww_xpctd is good data out (ww_x0), # not nans as resulted from the missingroll test. # (2) pitch is not used in the calculation of error velocity, so that # in the mixed case (time record 4) the error velocity should be # the same as that for the pure bad/missing beam case (ee_x2, 1st # and 4th entries in ee_xpctd). # (3) the orientation argument affects the roll calculation, so that # when its value is missing (5th time record) the expected result # would be the same as if the roll value were missing. therefore # the 5th column entries are all x1 results. uu_xpctd = np.vstack((uu_x2, uu_x1, uu_x0, uu_x1, uu_x1)) vv_xpctd = np.vstack((vv_x2, vv_x1, vv_x0, vv_x1, vv_x1)) ww_xpctd = np.vstack((ww_x2, ww_x0, ww_x0, ww_x1, ww_x1)) ee_xpctd = np.vstack((ee_x2, ee_x1, ee_x0, ee_x2, ee_x1)) # calculated uu_calc = af.adcp_beam_eastward(b1, b2, b3, b4, heading, pitch, roll, orient, lat, lon, depth, ntp) vv_calc = af.adcp_beam_northward(b1, b2, b3, b4, heading, pitch, roll, orient, lat, lon, depth, ntp) ww_calc = af.adcp_beam_vertical(b1, b2, b3, b4, heading, pitch, roll, orient) ee_calc = af.adcp_beam_error(b1, b2, b3, b4) # test results np.testing.assert_array_almost_equal(uu_calc, uu_xpctd, 4) np.testing.assert_array_almost_equal(vv_calc, vv_xpctd, 4) np.testing.assert_array_almost_equal(ww_calc, ww_xpctd, 4) np.testing.assert_array_almost_equal(ee_calc, ee_xpctd, 4) def test_adcp_earth(self): """ Tests magnetic_correction function for ADCPs set to output data in the Earth Coordinate system. Values were not defined in DPS, were recreated using test values above: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00750_Data_Product_SPEC_VELPROF_OOI.pdf) Implemented by: 2014-02-06: <NAME>. Initial code. 2015-06-10: <NAME>. Changed adcp_ins2earth to require the units of the compass data to be in centidegrees. """ # set the test data u, v, w, e = af.adcp_beam2ins(self.b1, self.b2, self.b3, self.b4) ### old adcp_ins2earth returned 3 variables (CEW) # adcp_ins2earth now requires compass data in units of centidegrees (RAD) uu, vv, ww = af.adcp_ins2earth(u, v, w, self.heading, self.pitch, self.roll, self.orient) # test the magnetic variation correction got_uu_cor = af.adcp_earth_eastward(uu, vv, self.depth, self.lat, self.lon, self.ntp) got_vv_cor = af.adcp_earth_northward(uu, vv, self.depth, self.lat, self.lon, self.ntp) np.testing.assert_array_almost_equal(got_uu_cor, self.uu_cor, 4) np.testing.assert_array_almost_equal(got_vv_cor, self.vv_cor, 4) # reset the test inputs for multiple records using the integer inputs. uu = np.tile(uu, (24, 1)) vv = np.tile(vv, (24, 1)) depth = np.ones(24) * self.depth lat = np.ones(24) * self.lat lon = np.ones(24) * self.lon ntp = np.ones(24) * self.ntp # reset expected results for multiple records uu_cor = np.tile(self.uu_cor, (24, 1)) vv_cor = np.tile(self.vv_cor, (24, 1)) # compute the results for multiple records got_uu_cor = af.adcp_earth_eastward(uu, vv, depth, lat, lon, ntp) got_vv_cor = af.adcp_earth_northward(uu, vv, depth, lat, lon, ntp) # test the magnetic variation correction np.testing.assert_array_almost_equal(got_uu_cor, uu_cor, 4) np.testing.assert_array_almost_equal(got_vv_cor, vv_cor, 4) def test_adcp_earth_int_input_velocity_data(self): """ Tests adcp_earth_eastward and adcp_earth_northward using int type raw velocity data, as will be supplied by CI. Also tests the almost trivial functions adcp_earth_vertical and adcp_earth_error (unit change). Input raw velocity values were derived from the float unit test in test_adcp_earth by rounding the uu and vv float output from adcp_ins2earth. These int inputs failed the assert_array_almost_equal unit tests (decimals=4) in test_adcp_earth because of round-off error but passed when the agreement precision was relaxed to decimals=3. This is taken as justification to more precisely calculate the expected values for unit tests in the current module from adcp_earth_eastward and adcp_earth_northward themselves (the very modules being tested), using as input the type int raw velocity data. Because these DPA functions were used to derive their own check data, the original (float type input velocity data) unit tests are retained in the test_adcp_earth function. The tests in this module will be used to derive unit tests checking the replacement of ADCP int bad value sentinels (-32768) with Nans; these tests require that the raw velocity data be of type int. Implemented by: 2014-06-16: <NAME>. Initial code. """ # set the input test data [mm/sec] uu = np.array([[218, -281, -100, 483, 1238, -245, 622, -181, 99, -906]]) vv = np.array([[-337, -182, -1052, -868, -892, 258, -850, -87, -307, -546]]) ww = np.array([[140, 398, 187, 164, 9, -129, 33, -302, 138, 197]]) ee = np.array([[790, 635, 81, 626, 64, 71, -317, 219, 55, 433]]) # expected values, calculated using adcp_earth_eastward and adcp_earth_northward uu_cor = np.array([[0.11031103, -0.32184604, -0.40227939, 0.20903718, 0.92426103, -0.15916447, 0.34724837, -0.19849871, 0.00522179, -1.02580274]]) vv_cor = np.array([[-0.38590734, -0.09219615, -0.97717720, -0.97109035, -1.21410442, 0.31820696, -0.99438552, -0.03046741, -0.32252555, -0.25822614]]) # expected values, calculated by changing units from mm/s to m/s ww_vel = ww / 1000.0 ee_vel = ee / 1000.0 # test the magnetic variation correction using type integer inputs for the velocities. got_uu_cor = af.adcp_earth_eastward(uu, vv, self.depth, self.lat, self.lon, self.ntp) got_vv_cor = af.adcp_earth_northward(uu, vv, self.depth, self.lat, self.lon, self.ntp) # and the unit change functions got_ww_vel = af.adcp_earth_vertical(ww) got_ee_vel = af.adcp_earth_error(ee) np.testing.assert_array_almost_equal(got_uu_cor, uu_cor, 4) np.testing.assert_array_almost_equal(got_vv_cor, vv_cor, 4) np.testing.assert_array_almost_equal(got_ww_vel, ww_vel, 4) np.testing.assert_array_almost_equal(got_ee_vel, ee_vel, 4) # reset the test inputs for multiple records using the integer inputs. uu = np.tile(uu, (24, 1)) vv = np.tile(vv, (24, 1)) ww = np.tile(ww, (24, 1)) ee = np.tile(ee, (24, 1)) depth = np.ones(24) * self.depth lat = np.ones(24) * self.lat lon = np.ones(24) * self.lon ntp = np.ones(24) * self.ntp # reset expected results for multiple records uu_cor = np.tile(uu_cor, (24, 1)) vv_cor = np.tile(vv_cor, (24, 1)) ww_vel = np.tile(ww_vel, (24, 1)) ee_vel = np.tile(ee_vel, (24, 1)) # compute the results for multiple records got_uu_cor = af.adcp_earth_eastward(uu, vv, depth, lat, lon, ntp) got_vv_cor = af.adcp_earth_northward(uu, vv, depth, lat, lon, ntp) got_ww_vel = af.adcp_earth_vertical(ww) got_ee_vel = af.adcp_earth_error(ee) # test the magnetic variation correction np.testing.assert_array_almost_equal(got_uu_cor, uu_cor, 4) np.testing.assert_array_almost_equal(got_vv_cor, vv_cor, 4) # and the unit change functions np.testing.assert_array_almost_equal(got_ww_vel, ww_vel, 4) np.testing.assert_array_almost_equal(got_ee_vel, ee_vel, 4) def test_adcp_earth_with_fill(self): """ Tests adcp_earth_eastward, adcp_earth_northward, adcp_earth_vertical and adcp_earth_error when system fill values and ADCP fill values (bad value sentinels) are present in the data stream. Non-fill test values come from the function test_adcp_earth_int_input_velocity_data in this module. Implemented by: 2014-06-25: <NAME>. Initial code. """ # for convenience sfill = SYSTEM_FILLVALUE afill = ADCP_FILLVALUE ### scalar time case # set the input test data lat = np.array([50.0000]) lon = np.array([-145.0000]) depth = np.array([0.0]) ntp = np.array([3545769600.0]) # May 12, 2012 # input velocities [mm/sec] uu_in0 = np.array([[218, sfill, -100, 483, afill, -245]]) vv_in0 = np.array([[sfill, -182, -1052, -868, -892, afill]]) ww_in0 = np.array([[sfill, 398, afill, 164, 9, -129]]) ee_in0 = np.array([[afill, 635, 81, 626, sfill, 71]]) # expected values [m/sec] uu_x0 = np.array([[np.nan, np.nan, -0.40227, 0.20903, np.nan, np.nan]]) vv_x0 = np.array([[np.nan, np.nan, -0.97717, -0.97109, np.nan, np.nan]]) ww_x0 = np.array([[np.nan, 0.398, np.nan, 0.164, 0.009, -0.129]]) ee_x0 = np.array([[np.nan, 0.635, 0.081, 0.626, np.nan, 0.071]]) # calculated uu_calc = af.adcp_earth_eastward(uu_in0, vv_in0, depth, lat, lon, ntp) vv_calc = af.adcp_earth_northward(uu_in0, vv_in0, depth, lat, lon, ntp) ww_calc = af.adcp_earth_vertical(ww_in0) ee_calc = af.adcp_earth_error(ee_in0) # test np.testing.assert_array_almost_equal(uu_calc, uu_x0, 4) np.testing.assert_array_almost_equal(vv_calc, vv_x0, 4) np.testing.assert_array_almost_equal(ww_calc, ww_x0, 4) np.testing.assert_array_almost_equal(ee_calc, ee_x0, 4) ### multiple time record case # set the input test data lat = np.tile(lat, 5) lon = np.tile(lon, 5) depth = np.tile(depth, 5) ntp = np.tile(ntp, 5) uu_in0 = np.tile(uu_in0, (5, 1)) vv_in0 = np.tile(vv_in0, (5, 1)) ww_in0 = np.tile(ww_in0, (5, 1)) ee_in0 = np.tile(ee_in0, (5, 1)) # expected uu_x0 = np.tile(uu_x0, (5, 1)) vv_x0 = np.tile(vv_x0, (5, 1)) ww_x0 = np.tile(ww_x0, (5, 1)) ee_x0 = np.tile(ee_x0, (5, 1)) # calculated uu_calc = af.adcp_earth_eastward(uu_in0, vv_in0, depth, lat, lon, ntp) vv_calc = af.adcp_earth_northward(uu_in0, vv_in0, depth, lat, lon, ntp) ww_calc = af.adcp_earth_vertical(ww_in0) ee_calc = af.adcp_earth_error(ee_in0) # test np.testing.assert_array_almost_equal(uu_calc, uu_x0, 4) np.testing.assert_array_almost_equal(vv_calc, vv_x0, 4) np.testing.assert_array_almost_equal(ww_calc, ww_x0, 4) np.testing.assert_array_almost_equal(ee_calc, ee_x0, 4) def test_adcp_backscatter(self): """ Tests echo intensity scaling function (adcp_backscatter) for ADCPs in order to convert from echo intensity in counts to dB. Values were not defined in DPS, were created using test values above: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00750_Data_Product_SPEC_VELPROF_OOI.pdf) Implemented by <NAME>, 2014-02-06 <NAME>, 2015-06-25. Added tests for fill values. """ # the single record case got = af.adcp_backscatter(self.echo, self.sfactor) np.testing.assert_array_almost_equal(got, self.dB, 4) # the multi-record case -- inputs raw = np.tile(self.echo, (24, 1)) sf = np.ones(24) * self.sfactor # the multi-record case -- outputs dB = np.tile(self.dB, (24, 1)) got = af.adcp_backscatter(raw, sf) np.testing.assert_array_almost_equal(got, dB, 4) ### test fill value replacement with nan # for convenience sfill = SYSTEM_FILLVALUE # the adcp bad sentinel fillvalue (requires 2 bytes) is not used for echo # intensity, which is stored in 1 byte. # the single time record case echo_with_fill, xpctd = np.copy(self.echo), np.copy(self.dB) echo_with_fill[0, 3], xpctd[0, 3] = sfill, np.nan echo_with_fill[0, 6], xpctd[0, 6] = sfill, np.nan echo_with_fill[0, 7], xpctd[0, 7] = sfill, np.nan got = af.adcp_backscatter(echo_with_fill, self.sfactor) np.testing.assert_array_almost_equal(got, xpctd, 4) # the multiple time record case echo_with_fill = np.vstack((echo_with_fill, self.echo, echo_with_fill)) xpctd = np.vstack((xpctd, self.dB, xpctd)) sfactor = np.tile(self.sfactor, (3, 1)) got = af.adcp_backscatter(echo_with_fill, sfactor) np.testing.assert_array_almost_equal(got, xpctd, 4) def test_vadcp_beam(self): """ Indirectly tests vadcp_beam_eastward, vadcp_beam_northward, vadcp_beam_vertical_est, and vadcp_beam_vertical_true functions (which call adcp_beam2ins and adcp_ins2earth) and vadcp_beam_error (which only calls adcp_beam2ins) for the specialized 5-beam ADCP. Application of the magnetic correction and conversion from mm/s to m/s is not applied. Values based on those defined in DPS: OOI (2012). Data Product Specification for Turbulent Velocity Profile and Echo Intensity. Document Control Number 1341-00760. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00760_Data_Product_SPEC_VELTURB_OOI.pdf) Implemented by: 2014-07-24: <NAME>. Initial code. 2015-06-10: <NAME>. adcp_ins2earth now requires the units of the compass data to be in centidegrees. """ # test inputs b1 = np.ones((10, 10)).astype(int) * -325 b2 = np.ones((10, 10)).astype(int) * 188 b3 = np.ones((10, 10)).astype(int) * 168 b4 = np.ones((10, 10)).astype(int) * -338 b5 = np.ones((10, 10)).astype(int) * -70 # units of centidegrees heading = np.array([30, 30, 30, 30, 30, 32, 32, 32, 32, 32]) * 100 pitch = np.array([0, 2, 3, 3, 1, 2, 2, 3, 3, 1]) * 100 roll = np.array([0, 4, 3, 4, 3, 3, 4, 3, 4, 3]) * 100 orient =
np.ones(10, dtype=np.int)
numpy.ones
import pickle import os import glob import random import pathlib import time import collections import itertools import numpy as np import ray from lux_ai import scraper, collector, evaluator, imitator, trainer_ac, trainer_pg, trainer_ac_mc, tools from lux_gym.envs.lux.action_vectors_new import empty_worker_action_vectors from run_configuration import CONF_Scrape, CONF_Collect, CONF_RL, CONF_Main, CONF_Imitate, CONF_Evaluate def scrape(): config = {**CONF_Main, **CONF_Scrape} if config["scrape_type"] == "single": scraper_agent = scraper.Agent(config) scraper_agent.scrape_all() elif config["scrape_type"] == "multi": parallel_calls = config["parallel_calls"] actions_shape = [item.shape for item in empty_worker_action_vectors] env_name = config["environment"] feature_maps_shape = tools.get_feature_maps_shape(config["environment"]) lux_version = config["lux_version"] team_name = config["team_name"] only_wins = config["only_wins"] is_for_rl = config["is_for_rl"] is_pg_rl = config["is_pg_rl"] files_pool = set(glob.glob("./data/jsons/*.json")) if is_for_rl: data_path = "./data/tfrecords/rl/storage/" else: data_path = "./data/tfrecords/imitator/train/" already_saved_files = glob.glob(data_path + "*.tfrec") saved_submissions = set() for file_name in already_saved_files: raw_name = pathlib.Path(file_name).stem saved_submissions.add(raw_name.split("_")[0]) file_names_saved = [] for i, file_name in enumerate(files_pool): raw_name = pathlib.Path(file_name).stem if raw_name in saved_submissions: print(f"File {file_name} for {team_name}; is already saved.") file_names_saved.append(file_name) files_pool -= set(file_names_saved) set_size = int(len(files_pool) / parallel_calls) sets = [] for _ in range(parallel_calls): new_set = set(random.sample(files_pool, set_size)) files_pool -= new_set sets.append(new_set) for i, file_names in enumerate(zip(*sets)): print(f"Iteration {i} starts") ray.init(num_cpus=parallel_calls, include_dashboard=False) scraper_object = ray.remote(scraper.scrape_file) futures = [scraper_object.remote(env_name, file_names[j], team_name, lux_version, only_wins, feature_maps_shape, actions_shape, i, is_for_rl, is_pg_rl) for j in range(len(file_names))] _ = ray.get(futures) ray.shutdown() else: raise ValueError return 0 def collect(input_data): config = {**CONF_Main, **CONF_Collect} if config["is_for_imitator"]: data_path = "data/tfrecords/imitator/storage_0/" elif config["is_for_rl"]: data_path = "data/tfrecords/rl/storage_0/" else: raise NotImplementedError # collector.collect(config, input_data, data_path, 9) ray.init(include_dashboard=False) collector_object = ray.remote(collector.collect) futures = [collector_object.remote(config, input_data, data_path, j, steps=10) for j in range(2)] _ = ray.get(futures) ray.shutdown() def evaluate(input_data): config = {**CONF_Main, **CONF_Evaluate} eval_agent = evaluator.Agent(config, input_data) eval_agent.evaluate() def imitate(input_data): config = {**CONF_Main, **CONF_Imitate, **CONF_Evaluate, **CONF_Collect} if config["self_imitation"]: prev_n = 2 for i in range(10): print(f"Self imitation, cycle {i}.") current_n = i % 3 # current and prev to use next_n = (i + 1) % 3 # next to collect data_path = f"data/tfrecords/imitator/storage_{next_n}/" fnames_train = glob.glob("data/tfrecords/imitator/train/*.tfrec") fnames_curr = glob.glob(f"data/tfrecords/imitator/storage_{current_n}/*.tfrec") fnames_prev = glob.glob(f"data/tfrecords/imitator/storage_{prev_n}/*.tfrec") self_exp_n = len(fnames_curr) + len(fnames_prev) fnames_train = random.choices(fnames_train, k=self_exp_n) filenames = fnames_train + fnames_prev + fnames_curr files = glob.glob("./data/weights/*.pickle") if len(files) > 0: with open(files[-1], 'rb') as datafile: input_data = pickle.load(datafile) raw_name = pathlib.Path(files[-1]).stem print(f"Training and collecting from {raw_name}.pickle weights.") # trainer_agent = imitator.Agent(config, input_data, filenames=filenames, current_cycle=i) # trainer_agent.self_imitate() ray.init(num_gpus=1, include_dashboard=False) # remote objects creation trainer_object = ray.remote(num_gpus=1)(imitator.Agent) eval_object = ray.remote(evaluator.Agent) collector_object = ray.remote(collector.collect) # initialization workers_info = tools.GlobalVarActor.remote() imitator_agent = trainer_object.remote(config, input_data, workers_info, filenames, i) eval_agent = eval_object.remote(config, input_data, workers_info) # remote call trainer_future = imitator_agent.self_imitate.remote() eval_future = eval_agent.evaluate.remote() col_futures = [collector_object.remote(config, input_data, data_path, j, global_var_actor_out=workers_info) for j in range(2)] # getting results from remote functions _ = ray.get(trainer_future) _ = ray.get(eval_future) _ = ray.get(col_futures) time.sleep(1) ray.shutdown() prev_n = current_n time.sleep(5) elif config["with_evaluation"]: ray.init(num_gpus=1, include_dashboard=False) # remote objects creation trainer_object = ray.remote(num_gpus=1)(imitator.Agent) eval_object = ray.remote(evaluator.Agent) # initialization workers_info = tools.GlobalVarActor.remote() trainer_agent = trainer_object.remote(config, input_data, workers_info) eval_agent = eval_object.remote(config, input_data, workers_info) # remote call trainer_future = trainer_agent.imitate.remote() eval_future = eval_agent.evaluate.remote() # getting results from remote functions _ = ray.get(trainer_future) _ = ray.get(eval_future) time.sleep(1) ray.shutdown() else: trainer_agent = imitator.Agent(config, input_data) trainer_agent.imitate() def rl_train(input_data): # , checkpoint): config = {**CONF_Main, **CONF_RL, **CONF_Evaluate, **CONF_Collect} # if checkpoint is not None: # path = str(Path(checkpoint).parent) # due to https://github.com/deepmind/reverb/issues/12 # checkpointer = reverb.checkpointers.DefaultCheckpointer(path=path) # else: # checkpointer = None # feature_maps_shape = tools.get_feature_maps_shape(config["environment"]) # buffer = storage.UniformBuffer(feature_maps_shape, # num_tables=1, min_size=config["batch_size"], max_size=config["buffer_size"], # n_points=config["n_points"], checkpointer=checkpointer) if config["rl_type"] == "single": trainer_ac.ac_agent_run(config, input_data) elif config["rl_type"] == "single_pg": trainer_pg.pg_agent_run(config, input_data) elif config["rl_type"] == "single_ac_mc": # data_list = glob.glob(f"data/tfrecords/rl/storage/*.tfrec") data_list = [glob.glob(f"data/tfrecords/rl/storage_{i}/*.tfrec") for i in [j for j in range(10)]] data_list = list(itertools.chain.from_iterable(data_list)) trainer_ac_mc.ac_mc_agent_run(config, input_data, filenames_in=data_list) elif config["rl_type"] == "with_evaluation": for i in range(10): print(f"RL learning, cycle {i}.") ray.init(num_gpus=1, include_dashboard=False) # remote objects creation trainer_object = ray.remote(num_gpus=1)(trainer_ac.ac_agent_run) eval_object = ray.remote(evaluator.Agent) # initialization workers_info = tools.GlobalVarActor.remote() eval_agent = eval_object.remote(config, input_data, workers_info) # remote call trainer_future = trainer_object.remote(config, input_data, i, workers_info) eval_future = eval_agent.evaluate.remote() # getting results from remote functions _ = ray.get(trainer_future) _ = ray.get(eval_future) time.sleep(1) ray.shutdown() time.sleep(5) elif config["rl_type"] == "continuous_pg": prev_n = 4 prev_prev_n = 3 prev_prev_prev_n = 2 for i in range(10): print(f"PG learning, cycle {i}.") current_n = i % 5 # current and prev to use next_n = (i + 1) % 5 # next to collect data_path = f"data/tfrecords/rl/storage_{next_n}/" # path to save in fnames_fixed = glob.glob("data/tfrecords/rl/storage/*.tfrec") fnames_curr = glob.glob(f"data/tfrecords/rl/storage_{current_n}/*.tfrec") fnames_prev = glob.glob(f"data/tfrecords/rl/storage_{prev_n}/*.tfrec") fnames_prev_prev = glob.glob(f"data/tfrecords/rl/storage_{prev_prev_n}/*.tfrec") fnames_prev_prev_prev = glob.glob(f"data/tfrecords/rl/storage_{prev_prev_prev_n}/*.tfrec") self_exp_n = len(fnames_curr) + len(fnames_prev) + len(fnames_prev_prev) + len(fnames_prev_prev_prev) fnames_fixed = random.choices(fnames_fixed, k=self_exp_n) filenames = fnames_fixed + fnames_prev + fnames_prev_prev + fnames_prev_prev_prev + fnames_curr files = glob.glob("./data/weights/*.pickle") if len(files) > 0: with open(files[-1], 'rb') as datafile: input_data = pickle.load(datafile) raw_name = pathlib.Path(files[-1]).stem print(f"Training and collecting from {raw_name}.pickle weights.") # trainer_pg.pg_agent_run(config, input_data, None, filenames, 0) ray.init(num_gpus=1, include_dashboard=False) # remote objects creation trainer_object = ray.remote(num_gpus=1)(trainer_pg.pg_agent_run) eval_object = ray.remote(evaluator.Agent) collector_object = ray.remote(collector.collect) # initialization workers_info = tools.GlobalVarActor.remote() eval_agent = eval_object.remote(config, input_data, workers_info) # remote call trainer_future = trainer_object.remote(config, input_data, workers_info, filenames, i) eval_future = eval_agent.evaluate.remote() col_futures = [collector_object.remote(config, input_data, data_path, j, global_var_actor_out=workers_info) for j in range(2)] # getting results from remote functions _ = ray.get(trainer_future) _ = ray.get(eval_future) _ = ray.get(col_futures) time.sleep(1) ray.shutdown() prev_prev_prev_n = prev_prev_n prev_prev_n = prev_n prev_n = current_n time.sleep(5) elif config["rl_type"] == "from_scratch_pg": amount_of_pieces = 20 previous_pieces = collections.deque([i + 2 for i in range(amount_of_pieces - 2)]) for i in range(100): print(f"PG learning, cycle {i}.") current_n = i % amount_of_pieces # current and prev to use next_n = (i + 1) % amount_of_pieces # next to collect data_path = f"data/tfrecords/rl/storage_{next_n}/" # path to save in fnames_curr = glob.glob(f"data/tfrecords/rl/storage_{current_n}/*.tfrec") fnames_prev_list = [glob.glob(f"data/tfrecords/rl/storage_{i}/*.tfrec") for i in previous_pieces] fnames_prev_list = list(itertools.chain.from_iterable(fnames_prev_list)) filenames = fnames_prev_list + fnames_curr files = glob.glob("./data/weights/*.pickle") if len(files) > 0: with open(files[-1], 'rb') as datafile: input_data = pickle.load(datafile) raw_name = pathlib.Path(files[-1]).stem print(f"Training and collecting from {raw_name}.pickle weights.") # trainer_pg.pg_agent_run(config, input_data, None, filenames, 0) ray.init(num_gpus=1, include_dashboard=False) # remote objects creation trainer_object = ray.remote(num_gpus=1)(trainer_pg.pg_agent_run) collector_object = ray.remote(collector.collect) # initialization workers_info = tools.GlobalVarActor.remote() # remote call trainer_future = trainer_object.remote(config, input_data, workers_info, filenames, i) col_futures = [ collector_object.remote(config, input_data, data_path, j, global_var_actor_out=workers_info) for j in range(2)] # getting results from remote functions _ = ray.get(trainer_future) _ = ray.get(col_futures) time.sleep(1) ray.shutdown() previous_pieces.rotate(-1) previous_pieces[-1] = current_n time.sleep(5) elif config["rl_type"] == "continuous_ac_mc": amount_of_pieces = 10 previous_pieces = collections.deque([i + 2 for i in range(amount_of_pieces - 2)]) for i in range(100): print(f"PG learning, cycle {i}.") current_n = i % amount_of_pieces # current and prev to use next_n = (i + 1) % amount_of_pieces # next to collect data_path = f"data/tfrecords/rl/storage_{next_n}/" # path to save in files_to_delete = glob.glob(data_path + "*") for f in files_to_delete: os.remove(f) fnames_fixed = glob.glob("data/tfrecords/rl/storage/*.tfrec") fnames_curr = glob.glob(f"data/tfrecords/rl/storage_{current_n}/*.tfrec") fnames_prev_list = [glob.glob(f"data/tfrecords/rl/storage_{i}/*.tfrec") for i in previous_pieces] fnames_prev_list = list(itertools.chain.from_iterable(fnames_prev_list)) self_exp_n = len(fnames_curr) + len(fnames_prev_list) n_fixed = min(int(self_exp_n / 2), len(fnames_fixed)) fnames_fixed = random.choices(fnames_fixed, k=n_fixed) filenames = fnames_fixed + fnames_prev_list + fnames_curr files = glob.glob("./data/weights/*.pickle") if len(files) > 0: raw_names = [int(pathlib.Path(file_name).stem) for file_name in files] np_names = np.array(raw_names) last_file_arg_number =
np.argmax(np_names)
numpy.argmax
import numpy as np from SimPEG import Utils def line(a, t, l): """ Linear interpolation between a and b 0 <= t <= 1 """ return a + t * l def weight(t, a1, l1, h1, a2, l2, h2): """ Edge basis functions """ x1 = line(a1, t, l1) x2 = line(a2, t, l2) w0 = (1. - x1 / h1) * (1. - x2 / h2) w1 = (x1 / h1) * (1. - x2 / h2) w2 = (1. - x1 / h1) * (x2 / h2) w3 = (x1 / h1) * (x2 / h2) return np.r_[w0, w1, w2, w3] # TODO: Extend this when current is defined on cell-face def getStraightLineCurrentIntegral(hx, hy, hz, ax, ay, az, bx, by, bz): """ Compute integral int(W . J dx^3) in brick of size hx x hy x hz where W denotes the 12 local bilinear edge basis functions and where J prescribes a unit line current between points (ax,ay,az) and (bx,by,bz). """ # length of line segment lx = bx - ax ly = by - ay lz = bz - az l = np.sqrt(lx**2+ly**2+lz**2) if l == 0: sx = np.zeros(4, 1) sy = np.zeros(4, 1) sz = np.zeros(4, 1) # integration using Simpson's rule wx0 = weight(0., ay, ly, hy, az, lz, hz) wx0_5 = weight(0.5, ay, ly, hy, az, lz, hz) wx1 = weight(1., ay, ly, hy, az, lz, hz) wy0 = weight(0., ax, lx, hx, az, lz, hz) wy0_5 = weight(0.5, ax, lx, hx, az, lz, hz) wy1 = weight(1., ax, lx, hx, az, lz, hz) wz0 = weight(0., ax, lx, hx, ay, ly, hy) wz0_5 = weight(0.5, ax, lx, hx, ay, ly, hy) wz1 = weight(1., ax, lx, hx, ay, ly, hy) sx = (wx0 + 4. * wx0_5 + wx1) * (lx / 6.) sy = (wy0 + 4. * wy0_5 + wy1) * (ly / 6.) sz = (wz0 + 4. * wz0_5 + wz1) * (lz / 6.) return sx, sy, sz def findlast(x): if x.sum() == 0: return -1 else: return np.arange(x.size)[x][-1] def getSourceTermLineCurrentPolygon(xorig, hx, hy, hz, px, py, pz): """ Given a tensor product mesh with origin at (x0,y0,z0) and cell sizes hx, hy, hz, compute the source vector for a unit current flowing along the polygon with vertices px, py, pz. The 3-D arrays sx, sy, sz contain the source terms for all x/y/z-edges of the tensor product mesh. Modified from matlab code: getSourceTermLineCurrentPolygon(x0,y0,z0,hx,hy,hz,px,py,pz) <NAME>, February 2014 """ import numpy as np # number of cells nx = len(hx) ny = len(hy) nz = len(hz) x0, y0, z0 = xorig[0], xorig[1], xorig[2] # nodal grid x = np.r_[x0, x0+np.cumsum(hx)] y = np.r_[y0, y0+
np.cumsum(hy)
numpy.cumsum
import numpy as np import pandas as pd def calc_score_slow(predictions, targets): max_submission = len(predictions.loc[predictions.index[0]]) scores = [] idcgs = {i: idcg(i) for i in range(1, max_submission+1)} for id in targets.index: target = targets.loc[id]['country'] preds = predictions.loc[id] dcg = 0 for k, pred in enumerate(preds['country']): if k > max_submission: raise Exception('The entry %s has more destinationes than required.' % id) rel = 1 if pred == target else 0 dcg += float((pow(2, rel) - 1)) / np.log2((k+1)+1) scores.append(dcg / idcgs[k]) return np.mean(scores) def calc_score_med(predictions, targets): """ Merging predictions and targets for faster processing. """ aggregated_data = pd.DataFrame(index=predictions.index) aggregated_data['predictions'] = predictions['country'] aggregated_data = aggregated_data.join(targets) aggregated_data = aggregated_data.rename(columns={'country':'targets'}) """ Applying transformations. """ # Matching the predictions with the target. groups = aggregated_data.groupby(aggregated_data.index) match = lambda row: 1 if row['predictions'] == row['targets'] else 0 group_match = lambda group: group.apply(match, axis=1) match_countries = groups.apply(group_match) match_countries.index = aggregated_data.index aggregated_data['match'] = match_countries # Computing the coefficients it implies. aggregated_data['rank'] = range(5) * len(targets.index) # Creates a repetition of 0, 1, 2, 3... calc_coef = lambda row: float((pow(2, row['match']) - 1)) /
np.log2((row['rank']+1)+1)
numpy.log2
""" Plot the kinetic reactions of biomass pyrolysis for the Ranzi 2014 kinetic scheme for biomass pyrolysis. Reference: <NAME>, 2014. Chemical Engineering Science, 110, pp 2-12. """ import numpy as np import pandas as pd # Parameters # ------------------------------------------------------------------------------ # T = 773 # temperature for rate constants, K # weight percent (%) cellulose, hemicellulose, lignin for beech wood # wtcell = 48 # wthemi = 28 # wtlig = 24 # dt = 0.001 # time step, delta t # tmax = 4 # max time, s # t = np.linspace(0, tmax, num=int(tmax/dt)) # time vector # nt = len(t) # total number of time steps # Functions for Ranzi 2014 Kinetic Scheme # ------------------------------------------------------------------------------ def ranzicell(wood, wt, T, dt, nt): """ Cellulose reactions CELL from Ranzi 2014 paper for biomass pyrolysis. Parameters ---------- wood = wood concentration, kg/m^3 wt = weight percent wood as cellulose, % T = temperature, K dt = time step, s nt = total number of time steps Returns ------- main = mass concentration of main group, (-) prod = mass concentration of product group, (-) """ # vector for initial wood concentration, kg/m^3 pw = np.ones(nt)*wood # vectors to store main product concentrations, kg/m^3 cell = pw*(wt/100) # initial cellulose conc. in wood g1 = np.zeros(nt) # G1 cella = np.zeros(nt) # CELLA lvg = np.zeros(nt) # LVG g4 = np.zeros(nt) # G4 R = 1.987 # universal gas constant, kcal/kmol*K # reaction rate constant for each reaction, 1/s # A = pre-factor (1/s) and E = activation energy (kcal/kmol) K1 = 4e7 * np.exp(-31000 / (R * T)) # CELL -> G1 K2 = 4e13 * np.exp(-45000 / (R * T)) # CELL -> CELLA K3 = 1.8 * T * np.exp(-10000 / (R * T)) # CELLA -> LVG K4 = 0.5e9 * np.exp(-29000 / (R * T)) # CELLA -> G4 # sum of moles in each group, mol sumg1 = 11 # sum of G1 sumg4 = 4.08 # sum of G4 # calculate concentrations for main groups, kg/m^3 for i in range(1, nt): r1 = K1 * cell[i-1] # CELL -> G1 r2 = K2 * cell[i-1] # CELL -> CELLA r3 = K3 * cella[i-1] # CELLA -> LVG r4 = K4 * cella[i-1] # CELLA -> G4 cell[i] = cell[i-1] - (r1+r2)*dt # CELL g1[i] = g1[i-1] + r1*dt # G1 cella[i] = cella[i-1] + r2*dt - (r3+r4)*dt # CELLA lvg[i] = lvg[i-1] + r3*dt # LVG g4[i] = g4[i-1] + r4*dt # G4 # store main groups in array main = np.array([cell, g1, cella, lvg, g4]) # total group concentration per total moles in that group, (kg/m^3) / mol fg1 = g1/sumg1 # fraction of G1 fg4 = g4/sumg4 # fraction of G4 # array to store product concentrations as a density, kg/m^3 prod = np.zeros([21, nt]) prod[0] = 0.16*fg4 # CO prod[1] = 0.21*fg4 # CO2 prod[2] = 0.4*fg4 # CH2O prod[3] = 0.02*fg4 # HCOOH prod[5] = 0.1*fg4 # CH4 prod[6] = 0.2*fg4 # Glyox prod[8] = 0.1*fg4 # C2H4O prod[9] = 0.8*fg4 # HAA prod[11] = 0.3*fg4 # C3H6O prod[14] = 0.25*fg4 # HMFU prod[15] = lvg # LVG prod[18] = 0.1*fg4 # H2 prod[19] = 5*fg1 + 0.83*fg4 # H2O prod[20] = 6*fg1 + 0.61*fg4 # Char # return arrays of main groups and products as mass fraction, (-) return main/wood, prod/wood def ranzihemi(wood, wt, T, dt, nt): """ Hemicellulose reactions HCE from Ranzi 2014 paper for biomass pyrolysis. Parameters ---------- wood = wood density, kg/m^3 wt = weight percent of hemicellulose, % T = temperature, K dt = time step, s nt = total number of time steps Returns ------- main/wood = mass fraction of main group, (-) prod/wood = mass fraction of product group, (-) """ # vector for initial wood concentration, kg/m^3 pw = np.ones(nt)*wood # vectors to store main product concentrations, kg/m^3 hce = pw*(wt/100) # initial hemicellulose conc. in wood g1 =
np.zeros(nt)
numpy.zeros
# -*- coding: utf-8 -*- from aiida_quantumespresso.calculations.cp import CpCalculation from aiida_quantumespresso.parsers.raw_parser_cp import ( QEOutputParsingError, parse_cp_traj_stanzas, parse_cp_raw_output) from aiida_quantumespresso.parsers.constants import (bohr_to_ang, timeau_to_sec, hartree_to_ev) from aiida.orm.data.parameter import ParameterData from aiida.orm.data.structure import StructureData from aiida.orm.data.folder import FolderData from aiida.parsers.parser import Parser from aiida.common.datastructures import calc_states from aiida.orm.data.array.trajectory import TrajectoryData import numpy class CpParser(Parser): """ This class is the implementation of the Parser class for Cp. """ def __init__(self, calc): """ Initialize the instance of CpParser :param calculation: calculation object. """ # check for valid input if not isinstance(calc, CpCalculation): raise QEOutputParsingError("Input calc must be a CpCalculation") super(CpParser, self).__init__(calc) def parse_with_retrieved(self, retrieved): """ Receives in input a dictionary of retrieved nodes. Does all the logic here. """ from aiida.common.exceptions import InvalidOperation import os, numpy from distutils.version import LooseVersion successful = True # get the input structure input_structure = self._calc.inp.structure # load the input dictionary # TODO: pass this input_dict to the parser. It might need it. input_dict = self._calc.inp.parameters.get_dict() # Check that the retrieved folder is there try: out_folder = retrieved[self._calc._get_linkname_retrieved()] except KeyError: self.logger.error("No retrieved folder found") return False, () # check what is inside the folder list_of_files = out_folder.get_folder_list() # at least the stdout should exist if not self._calc._OUTPUT_FILE_NAME in list_of_files: successful = False new_nodes_tuple = () self.logger.error("Standard output not found") return successful, new_nodes_tuple # if there is something more, I note it down, so to call the raw parser # with the right options # look for xml out_file = out_folder.get_abs_path(self._calc._OUTPUT_FILE_NAME) xml_file = None if self._calc._DATAFILE_XML_BASENAME in list_of_files: xml_file = out_folder.get_abs_path(self._calc._DATAFILE_XML_BASENAME) xml_counter_file = None if self._calc._FILE_XML_PRINT_COUNTER in list_of_files: xml_counter_file = out_folder.get_abs_path( self._calc._FILE_XML_PRINT_COUNTER) parsing_args = [out_file, xml_file, xml_counter_file] # call the raw parsing function out_dict, raw_successful = parse_cp_raw_output(*parsing_args) successful = True if raw_successful else False # parse the trajectory. Units in Angstrom, picoseconds and eV. # append everthing in the temporary dictionary raw_trajectory expected_configs = None raw_trajectory = {} evp_keys = ['electronic_kinetic_energy', 'cell_temperature', 'ionic_temperature', 'scf_total_energy', 'enthalpy', 'enthalpy_plus_kinetic', 'energy_constant_motion', 'volume', 'pressure'] pos_vel_keys = ['cells', 'positions', 'times', 'velocities'] # set a default null values # Now prepare the reordering, as filex in the xml are ordered reordering = self._generate_sites_ordering(out_dict['species'], out_dict['atoms']) # =============== POSITIONS trajectory ============================ try: with open(out_folder.get_abs_path( '{}.pos'.format(self._calc._PREFIX))) as posfile: pos_data = [l.split() for l in posfile] # POSITIONS stored in angstrom traj_data = parse_cp_traj_stanzas(num_elements=out_dict['number_of_atoms'], splitlines=pos_data, prepend_name='positions_traj', rescale=bohr_to_ang) # here initialize the dictionary. If the parsing of positions fails, though, I don't have anything # out of the CP dynamics. Therefore, the calculation status is set to FAILED. raw_trajectory['positions_ordered'] = self._get_reordered_array(traj_data['positions_traj_data'], reordering) raw_trajectory['times'] =
numpy.array(traj_data['positions_traj_times'])
numpy.array
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Imports from numpy import array, array_equal, allclose, zeros from nisqai.data._cdata import CData, LabeledCData, random_data, get_iris_setosa_data, get_mnist_data import unittest class DataTest(unittest.TestCase): """Unit tests for CData and LabeledCData.""" def test_basic_cdata(self): """Creates a CData object and makes sure the dimensions are correct.""" data =
array([[1, 0, 0], [0, 1, 0]])
numpy.array
import time from torch.utils import data import glob import datetime import pandas as pd import scipy.misc as m from bs4 import BeautifulSoup import numpy as np import torch from torch.nn import functional as F import pickle import os from skimage.io import imread from scipy.ndimage.filters import gaussian_filter import json import glob from torch.utils import data import glob import datetime import pandas as pd import scipy.misc as m from bs4 import BeautifulSoup import numpy as np import torch import imageio from scipy.io import loadmat # import utils_commons as ut import cv2 from skimage.segmentation import mark_boundaries from tqdm import tqdm from skimage.segmentation import slic from torchvision import transforms from PIL import Image # import visualize as vis import torchvision import torchvision.transforms.functional as FT import glob import h5py from scipy.misc import imsave import misc as ms def save_images_labels(path): img_folder = h5py.File(path + "CVPPP2017_training_images.h5", 'r')["A1"] gt_folder = h5py.File(path+"CVPPP2017_training_truth.h5", 'r')["A1"] img_names_train = list(img_folder.keys()) # for name in img_names: # image = np.array(img_folder[name]["rgb"])[:,:,:3] # points = np.array(img_folder[name]["centers"]) # img_path = path + "/images/{}.png".format(name) # points_path = path + "/labels/{}_points.png".format(name) # ms.imsave(img_path, image) # ms.imsave(points_path, points) # assert (ms.imread(img_path) == image).mean()==1 # assert (ms.imread(points_path) == points).mean()==1 # maskObjects_path = path + "/labels/{}_maskObjects.png".format(name) # maskObjects = np.array(gt_folder[name]["label"]) # ms.imsave(maskObjects_path, maskObjects) # assert (ms.imread(maskObjects_path) == maskObjects).mean()==1 print("| DONE TRAIN", len(img_names_train)) # Test img_folder = h5py.File(path+ "CVPPP2017_testing_images.h5", 'r')["A1"] img_names = list(img_folder.keys()) assert np.in1d(img_names_train, img_names).mean() == 0 for name in img_names: image = np.array(img_folder[name]["rgb"])[:,:,:3] img_path = path + "/images/{}.png".format(name) ms.imsave(img_path, image) assert (ms.imread(img_path) == image).mean()==1 print("| DONE TEST", len(img_names)) from datasets import base_dataset class Plants(base_dataset.BaseDataset): def __init__(self,root,split=None, transform_function=None): super().__init__() self.split = split self.path = "/mnt/datasets/public/issam/sbd/" self.proposals_path = self.path + "/ProposalsSharp/" img_folder = h5py.File(self.path + "CVPPP2017_training_images.h5", 'r')["A1"] self.img_names = list(img_folder.keys()) self.img_names.sort() self.annList_path = "/mnt/datasets/public/issam/sbd/annotations/val_gt_annList.json" # save_images_labels(self.path) self.transform_function = transform_function() # save_images_labels(self.path) if split == "train": self.img_indices = np.arange(28,len(self.img_names)) elif split == "val": self.img_indices = np.arange(28) elif split == "test": self.img_folder = h5py.File(self.path+ "CVPPP2017_testing_images.h5", 'r')["A1"] self.img_names = list(self.img_folder.keys()) self.img_indices = np.arange(len(self.img_names)) else: raise ValueError("split does not exist...") self.n_images = len(self.img_indices) self.n_classes = 2 self.categories = [{'supercategory': 'none', "id":1, "name":"plant"}] # base = "/mnt/projects/counting/Saves/main/" # self.lcfcn_path = base + "dataset:Plants_model:Res50FCN_metric:mRMSE_loss:water_loss_B_config:basic/" # import ipdb; ipdb.set_trace() # breakpoint 20711b9f // # self.pointDict = ms.load_pkl(self.lcfcn_path+"lcfcn_points/Pascal2012.pkl") def __len__(self): return self.n_images def __getitem__(self, index): name = self.img_names[self.img_indices[index]] image = ms.imread(self.path + "/images/{}.png".format(name)) h, w = image.shape[:2] if self.split in ["test"]: points =
np.zeros((h, w), "uint8")
numpy.zeros
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Extract from notebook for Serving Optimization """ from __future__ import print_function from googleapiclient import discovery from oauth2client.client import GoogleCredentials import numpy as np import tensorflow as tf from datetime import datetime import requests import sys import json BATCH_SIZE = 100 DISCOVERY_URL = 'https://storage.googleapis.com/cloud-ml/discovery/ml_v1_discovery.json' PROJECT = 'lramsey-goog-com-csa-ml' MODEL_NAME = 'mnist_classifier' credentials = GoogleCredentials.get_application_default() api = discovery.build( 'ml', 'v1', credentials=credentials, discoveryServiceUrl=DISCOVERY_URL ) def load_mnist_data(): mnist = tf.contrib.learn.datasets.load_dataset('mnist') train_data = mnist.train.images train_labels =
np.asarray(mnist.train.labels, dtype=np.int32)
numpy.asarray
import os import random import numpy as np import torch import math from scipy.spatial.transform import Rotation as sciR # from vgtk.pc.transform import * ''' Point cloud augmentation Only numpy function is included for now ''' def R_from_euler_np(angles): ''' angles: [(b, )3] ''' R_x = np.array([[1, 0, 0 ], [0, math.cos(angles[0]), -math.sin(angles[0]) ], [0, math.sin(angles[0]), math.cos(angles[0]) ] ]) R_y = np.array([[math.cos(angles[1]), 0, math.sin(angles[1]) ], [0, 1, 0 ], [-math.sin(angles[1]), 0, math.cos(angles[1]) ] ]) R_z = np.array([[math.cos(angles[2]), -math.sin(angles[2]), 0], [math.sin(angles[2]), math.cos(angles[2]), 0], [0, 0, 1] ]) return np.dot(R_z, np.dot( R_y, R_x )) def rotate_point_cloud_90(data, normal = None): """ Randomly rotate the point clouds to augument the dataset rotation is per shape based along up direction Input: Nx3 array, original point clouds Return: Nx3 array, rotated point clouds """ rotated_data = np.zeros(data.shape, dtype=np.float32) rotation_angle = np.random.randint(low=0, high=4) * (np.pi/2.0) cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [-sinval, 0, cosval]]) rotated_data = np.dot(data.reshape((-1, 3)), rotation_matrix) rotated_normal = np.dot(normal.reshape((-1, 3)), rotation_matrix) if normal is not None else None return rotated_data, rotated_normal, rotation_matrix def rotate_point_cloud(data, R = None, max_degree = None): """ Randomly rotate the point clouds to augument the dataset rotation is per shape based along up direction Input: Nx3 array, original point clouds R: 3x3 array, optional Rotation matrix used to rotate the input max_degree: float, optional maximum DEGREE to randomly generate rotation Return: Nx3 array, rotated point clouds """ # rotated_data = np.zeros(data.shape, dtype=np.float32) if R is not None: rotation_angle = R elif max_degree is not None: rotation_angle = np.random.randint(0, max_degree, 3) * np.pi / 180.0 else: rotation_angle = sciR.random().as_matrix() if R is None else R if isinstance(rotation_angle, list) or rotation_angle.ndim == 1: rotation_matrix = R_from_euler_np(rotation_angle) else: assert rotation_angle.shape[0] >= 3 and rotation_angle.shape[1] >= 3 rotation_matrix = rotation_angle[:3, :3] if data is None: return None, rotation_matrix rotated_data = np.dot(rotation_matrix, data.reshape((-1, 3)).T) return rotated_data.T, rotation_matrix def batch_rotate_point_cloud(data, R = None): """ Randomly rotate the point clouds to augument the dataset rotation is per shape based along up direction Input: BxNx3 array, original point clouds (torch tensor) R: numpy data Return: BxNx3 array, rotated point clouds """ rotation_angle = sciR.random().as_matrix() if R is None else R if isinstance(rotation_angle, list) or rotation_angle.ndim == 1: rotation_matrix = R_from_euler_np(rotation_angle) else: assert rotation_angle.shape[0] >= 3 and rotation_angle.shape[1] >= 3 rotation_matrix = rotation_angle[:3, :3] # since we are using pytorch... rotation_matrix = torch.from_numpy(rotation_matrix).to(data.device) rotation_matrix = rotation_matrix[None].repeat(data.shape[0],1,1) # Bx3x3, Bx3xN ->Bx3xN rotated_data = torch.matmul(rotation_matrix.double(), data.transpose(1,2).double()) return rotated_data.transpose(1,2).contiguous().float(), rotation_matrix.float() def rotate_point_cloud_with_normal(pc, surface_normal): """ Randomly rotate the point clouds to augument the dataset rotation is per shape based along up direction Input: Nx3 array, original point clouds Return: Nx3 array, rotated point clouds """ rotation_angle = np.random.uniform() * 2 * np.pi # rotation_angle = np.random.randint(low=0, high=12) * (2*np.pi / 12.0) cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [-sinval, 0, cosval]]) rotated_pc = np.dot(pc, rotation_matrix) rotated_surface_normal =
np.dot(surface_normal, rotation_matrix)
numpy.dot
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.utils.data as data import json import h5py import os import numpy as np import random import copy class HybridLoader: """ If db_path is a director, then use normal file loading The loading method depend on extention. """ def __init__(self, db_path, ext): self.db_path = db_path self.ext = ext if self.ext == '.npy': self.loader = lambda x: np.load(x,encoding='latin1') else: if "sg" or "graph" in db_path: self.loader = lambda x: np.load(x,allow_pickle=True,encoding='latin1')['feat'].tolist() # SG output, should be a dict else: self.loader = lambda x:
np.load(x,encoding='latin1')
numpy.load
#/usr/bin/env python # -*- coding: latin-1 -*- # # Copyright 2016-2019 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # $Author: frederic $ # $Date: 2016/07/12 13:50:29 $ # $Id: tide_funcs.py,v 1.4 2016/07/12 13:50:29 frederic Exp $ # from __future__ import print_function, division import numpy as np import sys import os import pandas as pd import json import copy # ---------------------------------------- Global constants ------------------------------------------- MAXLINES = 10000000 # ----------------------------------------- Conditional imports --------------------------------------- try: import nibabel as nib nibabelexists = True except ImportError: nibabelexists = False # ---------------------------------------- NIFTI file manipulation --------------------------- if nibabelexists: def readfromnifti(inputfile): r"""Open a nifti file and read in the various important parts Parameters ---------- inputfile : str The name of the nifti file. Returns ------- nim : nifti image structure nim_data : array-like nim_hdr : nifti header thedims : int array thesizes : float array """ if os.path.isfile(inputfile): inputfilename = inputfile elif os.path.isfile(inputfile + '.nii.gz'): inputfilename = inputfile + '.nii.gz' elif os.path.isfile(inputfile + '.nii'): inputfilename = inputfile + '.nii' else: print('nifti file', inputfile, 'does not exist') sys.exit() nim = nib.load(inputfilename) nim_data = nim.get_fdata() nim_hdr = nim.header.copy() thedims = nim_hdr['dim'].copy() thesizes = nim_hdr['pixdim'].copy() return nim, nim_data, nim_hdr, thedims, thesizes # dims are the array dimensions along each axis def parseniftidims(thedims): r"""Split the dims array into individual elements Parameters ---------- thedims : int array The nifti dims structure Returns ------- nx, ny, nz, nt : int Number of points along each dimension """ return thedims[1], thedims[2], thedims[3], thedims[4] # sizes are the mapping between voxels and physical coordinates def parseniftisizes(thesizes): r"""Split the size array into individual elements Parameters ---------- thesizes : float array The nifti voxel size structure Returns ------- dimx, dimy, dimz, dimt : float Scaling from voxel number to physical coordinates """ return thesizes[1], thesizes[2], thesizes[3], thesizes[4] def savetonifti(thearray, theheader, thename): r""" Save a data array out to a nifti file Parameters ---------- thearray : array-like The data array to save. theheader : nifti header A valid nifti header thepixdim : array The pixel dimensions. thename : str The name of the nifti file to save Returns ------- """ outputaffine = theheader.get_best_affine() qaffine, qcode = theheader.get_qform(coded=True) saffine, scode = theheader.get_sform(coded=True) if theheader['magic'] == 'n+2': output_nifti = nib.Nifti2Image(thearray, outputaffine, header=theheader) suffix = '.nii' else: output_nifti = nib.Nifti1Image(thearray, outputaffine, header=theheader) suffix = '.nii.gz' output_nifti.set_qform(qaffine, code=int(qcode)) output_nifti.set_sform(saffine, code=int(scode)) thedtype = thearray.dtype if thedtype == np.uint8: theheader.datatype = 2 elif thedtype == np.int16: theheader.datatype = 4 elif thedtype == np.int32: theheader.datatype = 8 elif thedtype == np.float32: theheader.datatype = 16 elif thedtype == np.complex64: theheader.datatype = 32 elif thedtype == np.float64: theheader.datatype = 64 elif thedtype == np.int8: theheader.datatype = 256 elif thedtype == np.uint16: theheader.datatype = 512 elif thedtype == np.uint32: theheader.datatype = 768 elif thedtype == np.int64: theheader.datatype = 1024 elif thedtype == np.uint64: theheader.datatype = 1280 elif thedtype == np.float128: theheader.datatype = 1536 elif thedtype == np.complex128: theheader.datatype = 1792 elif thedtype == np.complex256: theheader.datatype = 2048 else: print('type', thedtype, 'is not legal') sys.exit() output_nifti.to_filename(thename + suffix) output_nifti = None def checkifnifti(filename): r"""Check to see if a file name is a valid nifti name. Parameters ---------- filename : str The file name Returns ------- isnifti : bool True if name is a valid nifti file name. """ if filename.endswith(".nii") or filename.endswith(".nii.gz"): return True else: return False def niftisplitext(filename): r"""Split nifti filename into name base and extensionn. Parameters ---------- filename : str The file name Returns ------- name : str Base name of the nifti file. ext : str Extension of the nifti file. """ firstsplit = os.path.splitext(filename) secondsplit = os.path.splitext(firstsplit[0]) if secondsplit[1] is not None: return secondsplit[0], secondsplit[1] + firstsplit[1] else: return firstsplit[0], firstsplit[1] def niftisplit(inputfile, outputroot, axis=3): infile, infile_data, infile_hdr, infiledims, infilesizes = readfromnifti(inputfile) theheader = copy.deepcopy(infile_hdr) numpoints = infiledims[axis + 1] print(infiledims) theheader['dim'][axis + 1] = 1 for i in range(numpoints): if infiledims[0] == 5: if axis == 0: thisslice = infile_data[i:i + 1, :, :, :, :] elif axis == 1: thisslice = infile_data[:, i:i + 1, :, :, :] elif axis == 2: thisslice = infile_data[:, :, i:i + 1, :, :] elif axis == 3: thisslice = infile_data[:, :, :, i:i + 1, :] elif axis == 4: thisslice = infile_data[:, :, :, :, i:i + 1] else: print('illegal axis') sys.exit() elif infiledims[0] == 4: if axis == 0: thisslice = infile_data[i:i + 1, :, :, :] elif axis == 1: thisslice = infile_data[:, i:i + 1, :, :] elif axis == 2: thisslice = infile_data[:, :, i:i + 1, :] elif axis == 3: thisslice = infile_data[:, :, :, i:i + 1] else: print('illegal axis') sys.exit() savetonifti(thisslice, theheader, outputroot + str(i).zfill(4)) def niftimerge(inputlist, outputname, writetodisk=True, axis=3, returndata=False, debug=False): inputdata = [] for thefile in inputlist: if debug: print('reading', thefile) infile, infile_data, infile_hdr, infiledims, infilesizes = readfromnifti(thefile) if infiledims[0] == 3: inputdata.append(infile_data.reshape((infiledims[1], infiledims[2], infiledims[3], 1)) + 0.0) else: inputdata.append(infile_data + 0.0) theheader = copy.deepcopy(infile_hdr) theheader['dim'][axis + 1] = len(inputdata) output_data = np.concatenate(inputdata, axis=axis) if writetodisk: savetonifti(output_data, theheader, outputname) if returndata: return output_data, infile_hdr def niftiroi(inputfile, outputfile, startpt, numpoints): print(inputfile, outputfile, startpt, numpoints) infile, infile_data, infile_hdr, infiledims, infilesizes = readfromnifti(inputfile) theheader = copy.deepcopy(infile_hdr) theheader['dim'][4] = numpoints if infiledims[0] == 5: output_data = infile_data[:, :, :, startpt:startpt + numpoints, :] else: output_data = infile_data[:, :, :, startpt:startpt + numpoints] savetonifti(output_data, theheader, outputfile) def checkiftext(filename): r"""Check to see if the specified filename ends in '.txt' Parameters ---------- filename : str The file name Returns ------- istext : bool True if filename ends with '.txt' """ if filename.endswith(".txt"): return True else: return False def getniftiroot(filename): r"""Strip a nifti filename down to the root with no extensions Parameters ---------- filename : str The file name to strip Returns ------- strippedname : str The file name without any nifti extensions """ if filename.endswith(".nii"): return filename[:-4] elif filename.endswith(".nii.gz"): return filename[:-7] else: return filename def fmritimeinfo(niftifilename): r"""Retrieve the repetition time and number of timepoints from a nifti file Parameters ---------- niftifilename : str The name of the nifti file Returns ------- tr : float The repetition time, in seconds timepoints : int The number of points along the time axis """ nim = nib.load(niftifilename) hdr = nim.header.copy() thedims = hdr['dim'].copy() thesizes = hdr['pixdim'].copy() if hdr.get_xyzt_units()[1] == 'msec': tr = thesizes[4] / 1000.0 else: tr = thesizes[4] timepoints = thedims[4] return tr, timepoints def checkspacematch(hdr1, hdr2): r"""Check the headers of two nifti files to determine if the cover the same volume at the same resolution Parameters ---------- hdr1 : nifti header structure The header of the first file hdr2 : nifti header structure The header of the second file Returns ------- ismatched : bool True if the spatial dimensions and resolutions of the two files match. """ dimmatch = checkspaceresmatch(hdr1['pixdim'], hdr2['pixdim']) resmatch = checkspacedimmatch(hdr1['dim'], hdr2['dim']) return dimmatch and resmatch def checkspaceresmatch(sizes1, sizes2): r"""Check the spatial pixdims of two nifti files to determine if they have the same resolution Parameters ---------- sizes1 : float array The size array from the first nifti file sizes2 : float array The size array from the second nifti file Returns ------- ismatched : bool True if the spatial resolutions of the two files match. """ for i in range(1, 4): if sizes1[i] != sizes2[i]: print("File spatial resolutions do not match") print("sizeension ", i, ":", sizes1[i], "!=", sizes2[i]) return False else: return True def checkspacedimmatch(dims1, dims2): r"""Check the dimension arrays of two nifti files to determine if the cover the same number of voxels in each dimension Parameters ---------- dims1 : int array The dimension array from the first nifti file dims2 : int array The dimension array from the second nifti file Returns ------- ismatched : bool True if the spatial dimensions of the two files match. """ for i in range(1, 4): if dims1[i] != dims2[i]: print("File spatial voxels do not match") print("dimension ", i, ":", dims1[i], "!=", dims2[i]) return False else: return True def checktimematch(dims1, dims2, numskip1=0, numskip2=0): r"""Check the dimensions of two nifti files to determine if the cover the same number of timepoints Parameters ---------- dims1 : int array The dimension array from the first nifti file dims2 : int array The dimension array from the second nifti file numskip1 : int, optional Number of timepoints skipped at the beginning of file 1 numskip2 : int, optional Number of timepoints skipped at the beginning of file 2 Returns ------- ismatched : bool True if the time dimension of the two files match. """ if (dims1[4] - numskip1) != (dims2[4] - numskip2): print("File numbers of timepoints do not match") print("dimension ", 4, ":", dims1[4], "(skip ", numskip1, ") !=", dims2[4], " (skip ", numskip2, ")") return False else: return True # --------------------------- non-NIFTI file I/O functions ------------------------------------------ def checkifparfile(filename): r"""Checks to see if a file is an FSL style motion parameter file Parameters ---------- filename : str The name of the file in question. Returns ------- isparfile : bool True if filename ends in '.par', False otherwise. """ if filename.endswith(".par"): return True else: return False def readparfile(filename): r"""Checks to see if a file is an FSL style motion parameter file Parameters ---------- filename : str The name of the file in question. Returns ------- motiondict: dict All the timecourses in the file, keyed by name """ labels = ['X', 'Y', 'Z', 'RotX', 'RotY', 'RotZ'] motiontimeseries = readvecs(filename) motiondict = {} for j in range(0, 6): motiondict[labels[j]] = 1.0 * motiontimeseries[j, :] return motiondict def readmotion(filename, colspec=None): r"""Reads motion regressors from filename (from the columns specified in colspec, if given) Parameters ---------- filename : str The name of the file in question. colspec: str, optional The column numbers from the input file to use for the 6 motion regressors Returns ------- motiondict: dict All the timecourses in the file, keyed by name """ labels = ['X', 'Y', 'Z', 'RotX', 'RotY', 'RotZ'] motiontimeseries = readvecs(filename, colspec=colspec) if motiontimeseries.shape[0] != 6: print('readmotion: expect 6 motion regressors', motiontimeseries.shape[0], 'given') sys.exit() motiondict = {} for j in range(0, 6): motiondict[labels[j]] = 1.0 * motiontimeseries[j, :] return motiondict def calcmotregressors(motiondict, start=0, end=-1, position=True, deriv=True, derivdelayed=False): r"""Calculates various motion related timecourses from motion data dict, and returns an array Parameters ---------- motiondict: dict A dictionary of the 6 motion direction vectors Returns ------- motionregressors: array All the derivative timecourses to use in a numpy array """ labels = ['X', 'Y', 'Z', 'RotX', 'RotY', 'RotZ'] numpoints = len(motiondict[labels[0]]) if end == -1: end = numpoints - 1 if (0 <= start <= numpoints - 1) and (start < end + 1): numoutputpoints = end - start + 1 numoutputregressors = 0 if position: numoutputregressors += 6 if deriv: numoutputregressors += 6 if derivdelayed: numoutputregressors += 6 if numoutputregressors > 0: outputregressors = np.zeros((numoutputregressors, numoutputpoints), dtype=float) else: print('no output types selected - exiting') sys.exit() activecolumn = 0 if position: for thelabel in labels: outputregressors[activecolumn, :] = motiondict[thelabel][start:end + 1] activecolumn += 1 if deriv: for thelabel in labels: outputregressors[activecolumn, 1:] = np.diff(motiondict[thelabel][start:end + 1]) activecolumn += 1 if derivdelayed: for thelabel in labels: outputregressors[activecolumn, 2:] = np.diff(motiondict[thelabel][start:end + 1])[1:] activecolumn += 1 return outputregressors def sliceinfo(slicetimes, tr): # find out what timepoints we have, and their spacing sortedtimes = np.sort(slicetimes) diffs = sortedtimes[1:] - sortedtimes[0:-1] minstep = np.max(diffs) numsteps = int(np.round(tr / minstep, 0)) sliceoffsets =
np.around(slicetimes / minstep)
numpy.around
# Copyright 2019 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 import numpy as np from auspex.log import logger from numpy.fft import fft from scipy.linalg import svd, eig, inv, pinv """ Produces initial guess for damped exponential using SVD method described in: <NAME>. (1993). Enhanced resolution based on minimum variance estimation and exponential data modeling Signal Processing, 33(3), 333-355. doi:10.1016/0165-1684(93)90130-3 """ def hilbert(signal): """ Construct the Hilbert transform of the signal via the Fast Fourier Transform. This sets the negative frequency components to zero and multiplies positive frequencies by 2. This is neccessary since the fitted model refers only to positive frequency components e^(jwt) """ spectrum = np.fft.fft(signal) n = len(signal) midpoint = int(np.ceil(n/2)) kernel = np.zeros(n) kernel[0] = 1 if n%2 == 0: kernel[midpoint] = 1 kernel[1:midpoint] = 2 return np.fft.ifft(kernel * spectrum) def hankel(signal,M): # Create the Hankel matrix N = len(signal) L = N-M+1 H = np.zeros((L, M), dtype=np.complex128) for ct in range(M): H[:,ct] = signal[ct:ct+L] return H def cleandata(signal,M,K): """ Clean data iteratively using minimum variance (MV) estimation described in: <NAME>. (1993). Enhanced resolution based on minimum variance estimation and exponential data modeling Signal Processing, 33(3), 333-355. doi:10.1016/0165-1684(93)90130-3 """ L = len(signal)-M+1 H = hankel(signal,M) #Try and seperate the signal and noise subspace via the svd #Note: Numpy returns matrix = UxSxV, not matrix = UxSXV* U,S,V = svd(H, False) #Reconstruct the approximate Hankel matrix with the first K singular values #Here we can iterate and modify the singular values S_k = np.diag(S[:K]) #Estimate the variance from the rest of the singular values varEst = (1/((M-K)*L)) * np.sum(S[K:]**2) Sfilt = np.matmul(S_k**2 - L*varEst*np.eye(K), inv(S_k)) HK = np.matmul(np.matmul(U[:,:K], Sfilt), V[:K,:]) #Reconstruct the data from the averaged anti-diagonals cleanedData = np.zeros(len(signal), dtype=np.complex128) tmpMat = np.flip(HK,1) idx = -L+1 for ct in range(len(signal)-1,-1,-1): cleanedData[ct] = np.mean(np.diag(tmpMat,idx)) idx += 1 #Iterate until variance of noise is less than signal eigenvalues, which should be the case for high SNR data if L*varEst > min(np.diagonal(S_k))**2: logger.warning("Noise variance greater than signal amplitudes. Consider taking more averages. Iterating cleanup ...") cleanedData = cleandata(hilbert(cleanedData),M,K) return cleanedData def KT_estimation(data, times, order): """KT estimation of periodic signal components.""" K = order N = len(data) time_step = times[1]-times[0] #clean data with M = K+1 so that L>>M is guaranteed as per MV estimation cleanedData = cleandata(hilbert(data),order+1,order) #Create a cleaned Hankel matrix, here the matrix is constructed so that L~M cleanedAnalyticSig = hilbert(cleanedData) cleanedH = hankel(cleanedAnalyticSig,(N//2) - 1) #Compute Q with total least squares (TLS) #<NAME> (1996) Numerical Methods for Least Squares Problems #UK1*Q = UK2 U = svd(cleanedH, False)[0] UK = U[:,0:K] tmpMat = np.hstack((UK[:-1,:],UK[1:,:])) V = svd(tmpMat, False)[2].T.conj() n =
np.size(UK,1)
numpy.size
__version__ = '1.17.2' import numpy as np import matplotlib.pyplot as plt import dynaphopy.projection as projection import dynaphopy.parameters as parameters import dynaphopy.interface.phonopy_link as pho_interface import dynaphopy.interface.iofile as reading import dynaphopy.analysis.energy as energy import dynaphopy.analysis.fitting as fitting import dynaphopy.analysis.modes as modes import dynaphopy.analysis.coordinates as trajdist import dynaphopy.analysis.thermal_properties as thm from dynaphopy.power_spectrum import power_spectrum_functions from scipy import integrate class Quasiparticle: def __init__(self, dynamic, last_steps=None, vc=None): self._dynamic = dynamic self._vc = vc self._eigenvectors = None self._frequencies = None self._vq = None self._power_spectrum_phonon = None self._power_spectrum_wave_vector = None self._power_spectrum_direct = None self._power_spectrum_partials = None self._bands = None self._renormalized_bands = None self._renormalized_force_constants = None self._commensurate_points_data = None self._temperature = None self._force_constants_qha = None self._parameters = parameters.Parameters() self.crop_trajectory(last_steps) # print('Using {0} time steps for calculation'.format(len(self.dynamic.velocity))) # Crop trajectory def crop_trajectory(self, last_steps): if self._vc is None: self._dynamic.crop_trajectory(last_steps) print("Using {0} steps".format(len(self._dynamic.velocity))) else: if last_steps is not None: self._vc = self._vc[-last_steps:, :, :] print("Using {0} steps".format(len(self._vc))) # Memory clear methods def full_clear(self): self._eigenvectors = None self._frequencies = None self._vc = None self._vq = None self._power_spectrum_direct = None self._power_spectrum_wave_vector = None self._power_spectrum_phonon = None def power_spectra_clear(self): self._power_spectrum_phonon = None self._power_spectrum_wave_vector = None self._power_spectrum_direct = None self.force_constants_clear() def force_constants_clear(self): self._renormalized_force_constants = None self._commensurate_points_data = None self.bands_clear() def bands_clear(self): self._bands = None self._renormalized_bands = None # Properties @property def dynamic(self): return self._dynamic @property def parameters(self): return self._parameters def set_NAC(self, NAC): self._bands = None self.parameters.use_NAC = NAC def write_to_xfs_file(self, file_name): reading.write_xsf_file(file_name, self.dynamic.structure) def save_velocity_hdf5(self, file_name, save_trajectory=True): if save_trajectory: trajectory = self.dynamic.trajectory else: trajectory = None reading.save_data_hdf5(file_name, self.dynamic.get_time(), self.dynamic.get_supercell_matrix(), velocity=self.dynamic.velocity, trajectory=trajectory) print("Velocity saved in file " + file_name) def save_vc_hdf5(self, file_name): reading.save_data_hdf5(file_name, self.dynamic.get_time(), self.dynamic.get_supercell_matrix(), vc=self.get_vc(), reduced_q_vector=self.get_reduced_q_vector()) print("Projected velocity saved in file " + file_name) def set_number_of_mem_coefficients(self, coefficients): self.power_spectra_clear() self.parameters.number_of_coefficients_mem = coefficients def set_projection_onto_atom_type(self, atom_type): if atom_type in range(self.dynamic.structure.get_number_of_primitive_atoms()): self.parameters.project_on_atom = atom_type else: print('Atom type {} does not exist'.format(atom_type)) exit() def _set_frequency_range(self, frequency_range): if not np.array_equiv(np.array(frequency_range), np.array(self.parameters.frequency_range)): self.power_spectra_clear() self.parameters.frequency_range = frequency_range def set_spectra_resolution(self, resolution): limits = [self.get_frequency_range()[0], self.get_frequency_range()[-1]] self.parameters.spectrum_resolution = resolution self._set_frequency_range(np.arange(limits[0], limits[1] + resolution, resolution)) def set_frequency_limits(self, limits): resolution = self.parameters.spectrum_resolution self._set_frequency_range(np.arange(limits[0], limits[1] + resolution, resolution)) def get_frequency_range(self): return self.parameters.frequency_range # Wave vector related methods def set_reduced_q_vector(self, q_vector): if len(q_vector) == len(self.parameters.reduced_q_vector): if (np.array(q_vector) != self.parameters.reduced_q_vector).any(): self.full_clear() self.parameters.reduced_q_vector = np.array(q_vector) def get_reduced_q_vector(self): return self.parameters.reduced_q_vector def get_q_vector(self): return np.dot(self.parameters.reduced_q_vector, 2.0 * np.pi * np.linalg.inv(self.dynamic.structure.get_primitive_cell()).T) # Phonopy harmonic calculation related methods def get_eigenvectors(self): if self._eigenvectors is None: # print("Getting frequencies & eigenvectors from Phonopy") self._eigenvectors, self._frequencies = ( pho_interface.obtain_eigenvectors_and_frequencies(self.dynamic.structure, self.parameters.reduced_q_vector)) return self._eigenvectors def get_frequencies(self): if self._frequencies is None: # print("Getting frequencies & eigenvectors from Phonopy") self._eigenvectors, self._frequencies = ( pho_interface.obtain_eigenvectors_and_frequencies(self.dynamic.structure, self.parameters.reduced_q_vector)) return self._frequencies def set_band_ranges(self, band_ranges): self.bands_clear() self.parameters.band_ranges = band_ranges def get_band_ranges_and_labels(self): # return self.parameters.band_ranges if self.parameters.band_ranges is None: self.parameters.band_ranges = self.dynamic.structure.get_path_using_seek_path() return self.parameters.band_ranges def plot_phonon_dispersion_bands(self): bands = self.get_band_ranges_and_labels() band_ranges = bands['ranges'] if self._bands is None: self._bands = pho_interface.obtain_phonon_dispersion_bands(self.dynamic.structure, band_ranges, NAC=self.parameters.use_NAC) for i, freq in enumerate(self._bands[1]): plt.plot(self._bands[1][i], self._bands[2][i], color='r') # plt.axes().get_xaxis().set_visible(False) plt.axes().get_xaxis().set_ticks([]) plt.ylabel('Frequency [THz]') plt.xlabel('Wave vector') plt.xlim([0, self._bands[1][-1][-1]]) plt.axhline(y=0, color='k', ls='dashed') plt.suptitle('Phonon dispersion') if 'labels' in bands: plt.rcParams.update({'mathtext.default': 'regular'}) labels = bands['labels'] labels_e = [] x_labels = [] for i, freq in enumerate(self._bands[1]): if labels[i][0] == labels[i - 1][1]: labels_e.append('$' + labels[i][0].replace('GAMMA', '\Gamma') + '$') else: labels_e.append( '$' + labels[i - 1][1].replace('GAMMA', '\Gamma') + '/' + labels[i][0].replace('GAMMA', '\Gamma') + '$') x_labels.append(self._bands[1][i][0]) x_labels.append(self._bands[1][-1][-1]) labels_e.append('$' + labels[-1][1].replace('GAMMA', '\Gamma') + '$') labels_e[0] = '$' + labels[0][0].replace('GAMMA', '\Gamma') + '$' plt.xticks(x_labels, labels_e, rotation='horizontal') plt.show() def plot_renormalized_phonon_dispersion_bands(self, plot_linewidths=False, plot_harmonic=True): bands_full_data = self.get_renormalized_phonon_dispersion_bands(with_linewidths=plot_linewidths) plot_title = 'Renormalized phonon dispersion relations' for i, path in enumerate(bands_full_data): plt.plot(path['q_path_distances'], np.array(list(path['renormalized_frequencies'].values())).T, color='r', label='Renormalized') if plot_harmonic: plt.plot(path['q_path_distances'], np.array(list(path['harmonic_frequencies'].values())).T, color='b', label='Harmonic') if plot_linewidths: for freq, linewidth in zip(list(path['renormalized_frequencies'].values()), list(path['linewidth'].values())): plt.fill_between(path['q_path_distances'], freq + np.array(linewidth) / 2, freq - np.array(linewidth) / 2, color='r', alpha=0.2, interpolate=True, linewidth=0) plot_title = 'Renormalized phonon dispersion relations and linewidths' # plt.axes().get_xaxis().set_visible(False) plt.suptitle(plot_title) plt.axes().get_xaxis().set_ticks([]) plt.ylabel('Frequency [THz]') plt.xlabel('Wave vector') plt.xlim([0, bands_full_data[-1]['q_path_distances'][-1]]) plt.axhline(y=0, color='k', ls='dashed') if plot_harmonic: handles = plt.gca().get_legend_handles_labels()[0] plt.legend([handles[-1], handles[0]], ['Harmonic', 'Renormalized']) if 'labels' in bands_full_data[0]: plt.rcParams.update({'mathtext.default': 'regular'}) labels = [[bands_full_data[i]['labels']['inf'], bands_full_data[i]['labels']['sup']] for i in range(len(bands_full_data))] labels_e = [] x_labels = [] for i, freq in enumerate(bands_full_data): if labels[i][0] == labels[i - 1][1]: labels_e.append('$' + labels[i][0].replace('GAMMA', '\Gamma') + '$') else: labels_e.append( '$' + labels[i - 1][1].replace('GAMMA', '\Gamma') + '/' + labels[i][0].replace('GAMMA', '\Gamma') + '$') x_labels.append(bands_full_data[i]['q_path_distances'][0]) x_labels.append(bands_full_data[-1]['q_path_distances'][-1]) labels_e.append('$' + labels[-1][1].replace('GAMMA', '\Gamma') + '$') labels_e[0] = '$' + labels[0][0].replace('GAMMA', '\Gamma') + '$' plt.xticks(x_labels, labels_e, rotation='horizontal') plt.show() def plot_linewidths_and_shifts_bands(self): bands_full_data = self.get_renormalized_phonon_dispersion_bands(with_linewidths=True, band_connection=True, interconnect_bands=True) number_of_branches = len(bands_full_data[0]['linewidth']) # print('number_of branches', number_of_branches) for i, path in enumerate(bands_full_data): prop_cicle = plt.rcParams['axes.prop_cycle'] colors = prop_cicle.by_key()['color'] for j in range(number_of_branches): plt.figure(0) branch = path['linewidth']['branch_{}'.format(j)] plt.plot(path['q_path_distances'], branch, color=np.roll(colors, -j)[0], label='linewidth') plt.figure(1) branch = path['harmonic_frequencies']['branch_{}'.format(j)] plt.plot(path['q_path_distances'], branch, color=np.roll(colors, -j)[0], label='linewidth') plt.figure(2) branch = path['frequency_shifts']['branch_{}'.format(j)] plt.plot(path['q_path_distances'], branch, color=np.roll(colors, -j)[0], label='linewidth') plt.figure(3) branch = path['renormalized_frequencies']['branch_{}'.format(j)] plt.plot(path['q_path_distances'], branch, color=np.roll(colors, -j)[0], label='linewidth') plt.figure(0) plt.suptitle('Phonon linewidths') plt.figure(1) plt.suptitle('Harmonic phonon dispersion relations') plt.figure(2) plt.suptitle('Frequency shifts') plt.figure(3) plt.suptitle('Renormalized phonon dispersion relations') for ifig in [0, 1, 2, 3]: plt.figure(ifig) plt.axes().get_xaxis().set_ticks([]) plt.ylabel('Frequency [THz]') plt.xlabel('Wave vector') plt.xlim([0, bands_full_data[-1]['q_path_distances'][-1]]) plt.axhline(y=0, color='k', ls='dashed') if 'labels' in bands_full_data[0]: plt.rcParams.update({'mathtext.default': 'regular'}) labels = [[bands_full_data[i]['labels']['inf'], bands_full_data[i]['labels']['sup']] for i in range(len(bands_full_data))] labels_e = [] x_labels = [] for i, freq in enumerate(bands_full_data): if labels[i][0] == labels[i - 1][1]: labels_e.append('$' + labels[i][0].replace('GAMMA', '\Gamma') + '$') else: labels_e.append( '$' + labels[i - 1][1].replace('GAMMA', '\Gamma') + '/' + labels[i][0].replace('GAMMA', '\Gamma') + '$') x_labels.append(bands_full_data[i]['q_path_distances'][0]) x_labels.append(bands_full_data[-1]['q_path_distances'][-1]) labels_e.append('$' + labels[-1][1].replace('GAMMA', '\Gamma') + '$') labels_e[0] = '$' + labels[0][0].replace('GAMMA', '\Gamma') + '$' plt.xticks(x_labels, labels_e, rotation='horizontal') plt.show() def plot_frequencies_vs_linewidths(self): qpoints, multiplicity, frequencies, linewidths = self.get_mesh_frequencies_and_linewidths() plt.ylabel('Linewidth [THz]') plt.xlabel('Frequency [THz]') plt.axhline(y=0, color='k', ls='dashed') plt.title('Frequency vs linewidths (from mesh: {})'.format(self.parameters.mesh_phonopy)) plt.scatter(np.array(frequencies).flatten(), np.array(linewidths).flatten(), s=multiplicity) plt.show() def get_renormalized_phonon_dispersion_bands(self, with_linewidths=False, interconnect_bands=False, band_connection=False): def reconnect_eigenvectors(bands): order = range(bands[2][0].shape[1]) for i, ev_bands in enumerate(bands[3]): if i > 0: ref = bands[3][i-1][-1] metric = np.abs(np.dot(ref.conjugate().T, ev_bands[0])) order = np.argmax(metric, axis=1) bands[2][i] = bands[2][i].T[order].T bands[3][i] = bands[3][i].T[order].T def reconnect_frequencies(bands): order = range(bands[2][0].shape[1]) for i, f_bands in enumerate(bands[2]): if i > 0: order = [] ref = np.array(bands[2][i-1][-1]).copy() for j, test_val in enumerate(f_bands[0]): ov = np.argmin(np.abs(ref - test_val)) order.append(ov) ref[ov] = 1000 # print(order) bands[2][i] = bands[2][i].T[order].T bands[3][i] = bands[3][i].T[order].T def eigenvector_order(ev_bands, ev_renormalized): metric = np.zeros_like(np.abs(np.dot(ev_bands[0].conjugate().T, ev_renormalized[0]))) for ev_ref, ev in zip(ev_bands, ev_renormalized): metric += np.abs(np.dot(ev_ref.conjugate().T, ev)) order = np.argmax(metric, axis=1,) return order def set_order(bands, renormalized_bands): order_list = [] for ev_bands, ev_renormalized in zip(bands[3], renormalized_bands[3]): order = eigenvector_order(ev_bands, ev_renormalized) order_list.append(order) freq = np.array(renormalized_bands[2]).copy() for i, o in enumerate(order_list): renormalized_bands[2][i] = freq[i].T[o].T renormalized_force_constants = self.get_renormalized_force_constants() bands = self.get_band_ranges_and_labels() band_ranges = bands['ranges'] _bands = pho_interface.obtain_phonon_dispersion_bands(self.dynamic.structure, band_ranges, NAC=self.parameters.use_NAC, band_connection=band_connection, band_resolution=self.parameters.band_resolution) if interconnect_bands: # reconnect_frequencies(_bands) reconnect_eigenvectors(_bands) _renormalized_bands = pho_interface.obtain_phonon_dispersion_bands(self.dynamic.structure, band_ranges, force_constants=renormalized_force_constants, NAC=self.parameters.use_NAC, band_connection=band_connection, band_resolution=self.parameters.band_resolution) if band_connection: set_order(_bands, _renormalized_bands) data = self.get_commensurate_points_data() renormalized_frequencies = data['frequencies'] eigenvectors = data['eigenvectors'] linewidths = data['linewidths'] fc_supercell = data['fc_supercell'] sup_lim = pho_interface.get_renormalized_force_constants(renormalized_frequencies + linewidths / 2, eigenvectors, self.dynamic.structure, fc_supercell, symmetrize=self.parameters.symmetrize) inf_lim = pho_interface.get_renormalized_force_constants(renormalized_frequencies - linewidths / 2, eigenvectors, self.dynamic.structure, fc_supercell, symmetrize=self.parameters.symmetrize) if with_linewidths: renormalized_bands_s = pho_interface.obtain_phonon_dispersion_bands(self.dynamic.structure, band_ranges, force_constants=sup_lim, NAC=self.parameters.use_NAC, band_connection=band_connection, band_resolution=self.parameters.band_resolution) renormalized_bands_i = pho_interface.obtain_phonon_dispersion_bands(self.dynamic.structure, band_ranges, force_constants=inf_lim, NAC=self.parameters.use_NAC, band_connection=band_connection, band_resolution=self.parameters.band_resolution) if band_connection: set_order(_bands, renormalized_bands_s) set_order(_bands, renormalized_bands_i) bands_full_data = [] for i, q_path in enumerate(_bands[1]): band = {'q_path_distances': q_path.tolist(), 'q_bounds': {'inf': list(band_ranges[i][0]), 'sup': list(band_ranges[i][1])}, 'harmonic_frequencies': {'branch_{}'.format(key): value.tolist() for (key, value) in enumerate(_bands[2][i].T)}, 'renormalized_frequencies': {'branch_{}'.format(key): value.tolist() for (key, value) in enumerate(_renormalized_bands[2][i].T)}, 'frequency_shifts': {'branch_{}'.format(key): value.tolist() for (key, value) in enumerate(_renormalized_bands[2][i].T - _bands[2][i].T)}, } if with_linewidths: band.update({'linewidth_minus': {'branch_{}'.format(key): value.tolist() for (key, value) in enumerate(renormalized_bands_i[2][i].T)}, 'linewidth_plus': {'branch_{}'.format(key): value.tolist() for (key, value) in enumerate(renormalized_bands_s[2][i].T)}, 'linewidth': {'branch_{}'.format(key): value.tolist() for (key, value) in enumerate(renormalized_bands_s[2][i].T - renormalized_bands_i[2][i].T)}} ) if 'labels' in bands: labels = bands['labels'] band.update({'labels': {'inf': labels[i][0], 'sup': labels[i][1]}}) bands_full_data.append(band) return bands_full_data def get_mesh_frequencies_and_linewidths(self): data = self.get_commensurate_points_data() renormalized_frequencies = data['frequencies'] eigenvectors = data['eigenvectors'] linewidths = data['linewidths'] fc_supercell = data['fc_supercell'] linewidths_fc = pho_interface.get_renormalized_force_constants(linewidths, eigenvectors, self.dynamic.structure, fc_supercell, symmetrize=self.parameters.symmetrize) _, _, linewidths_mesh = pho_interface.obtain_phonopy_mesh_from_force_constants(self.dynamic.structure, force_constants=linewidths_fc, mesh=self.parameters.mesh_phonopy, NAC=None) frequencies_fc = pho_interface.get_renormalized_force_constants(renormalized_frequencies, eigenvectors, self.dynamic.structure, fc_supercell, symmetrize=self.parameters.symmetrize) qpoints, multiplicity, frequencies_mesh = pho_interface.obtain_phonopy_mesh_from_force_constants(self.dynamic.structure, force_constants=frequencies_fc, mesh=self.parameters.mesh_phonopy, NAC=None) return qpoints, multiplicity, frequencies_mesh, linewidths_mesh def write_renormalized_phonon_dispersion_bands(self, filename='bands_data.yaml'): bands_full_data = self.get_renormalized_phonon_dispersion_bands(with_linewidths=True, band_connection=True) reading.save_bands_data_to_file(bands_full_data, filename) def print_phonon_dispersion_bands(self): if self._bands is None: self._bands = pho_interface.obtain_phonon_dispersion_bands(self.dynamic.structure, self.get_band_ranges_and_labels(), NAC=self.parameters.use_NAC) np.set_printoptions(linewidth=200) for i, freq in enumerate(self._bands[1]): print(str(np.hstack([self._bands[1][i][None].T, self._bands[2][i]])).replace('[', '').replace(']', '')) def plot_eigenvectors(self): modes.plot_phonon_modes(self.dynamic.structure, self.get_eigenvectors(), self.get_q_vector(), vectors_scale=self.parameters.modes_vectors_scale) def plot_dos_phonopy(self, force_constants=None): phonopy_dos = pho_interface.obtain_phonopy_dos(self.dynamic.structure, mesh=self.parameters.mesh_phonopy, projected_on_atom=self.parameters.project_on_atom, NAC=self.parameters.use_NAC) plt.plot(phonopy_dos[0], phonopy_dos[1], 'b-', label='Harmonic') if force_constants is not None: phonopy_dos_r = pho_interface.obtain_phonopy_dos(self.dynamic.structure, mesh=self.parameters.mesh_phonopy, force_constants=force_constants, projected_on_atom=self.parameters.project_on_atom, NAC=self.parameters.use_NAC) plt.plot(phonopy_dos_r[0], phonopy_dos_r[1], 'g-', label='Renormalized') plt.title('Density of states (Normalized to unit cell)') plt.xlabel('Frequency [THz]') plt.ylabel('Density of states') plt.legend() plt.axhline(y=0, color='k', ls='dashed') plt.show() def check_commensurate(self, q_point, decimals=4): supercell = self.dynamic.get_supercell_matrix() commensurate = False primitive_matrix = self.dynamic.structure.get_primitive_matrix() transform = np.dot(q_point, np.linalg.inv(primitive_matrix)) transform = np.multiply(transform, supercell) transform = np.around(transform, decimals=decimals) if np.all(np.equal(np.mod(transform, 1), 0)): commensurate = True return commensurate # Projections related methods def get_vc(self): if self._vc is None: print("Projecting into wave vector") # Check if commensurate point if not self.check_commensurate(self.get_reduced_q_vector()): print("warning! This wave vector is not a commensurate q-point in MD supercell") if self.parameters.project_on_atom > -1: element = self.dynamic.structure.get_atomic_elements(unique=True)[self.parameters.project_on_atom] print('Project on atom {} : {}'.format(self.parameters.project_on_atom, element)) self._vc = projection.project_onto_wave_vector(self.dynamic, self.get_q_vector(), project_on_atom=self.parameters.project_on_atom) return self._vc def get_vq(self): if self._vq is None: print("Projecting into phonon mode") self._vq = projection.project_onto_phonon(self.get_vc(), self.get_eigenvectors()) return self._vq def plot_vq(self, modes=None): if not modes: modes = [0] plt.suptitle('Phonon mode projection') plt.xlabel('Time [ps]') plt.ylabel('$u^{1/2}\AA/ps$') time = np.linspace(0, self.get_vc().shape[0] * self.dynamic.get_time_step_average(), num=self.get_vc().shape[0]) for mode in modes: plt.plot(time, self.get_vq()[:, mode].real, label='mode: ' + str(mode)) plt.legend() plt.show() def plot_vc(self, atoms=None, coordinates=None): if not atoms: atoms = [0] if not coordinates: coordinates = [0] time = np.linspace(0, self.get_vc().shape[0] * self.dynamic.get_time_step_average(), num=self.get_vc().shape[0]) plt.suptitle('Wave vector projection') plt.xlabel('Time [ps]') plt.ylabel('$u^{1/2}\AA/ps$') for atom in atoms: for coordinate in coordinates: plt.plot(time, self.get_vc()[:, atom, coordinate].real, label='atom: ' + str(atom) + ' coordinate:' + str(coordinate)) plt.legend() plt.show() def save_vc(self, file_name, atom=0): print("Saving wave vector projection to file") np.savetxt(file_name, self.get_vc()[:, atom, :].real) def save_vq(self, file_name): print("Saving phonon projection to file") np.savetxt(file_name, self.get_vq().real) # Power spectra related methods def select_power_spectra_algorithm(self, algorithm): if algorithm in power_spectrum_functions.keys(): if algorithm != self.parameters.power_spectra_algorithm: self.power_spectra_clear() self.parameters.power_spectra_algorithm = algorithm print("Using {0} function".format(power_spectrum_functions[algorithm][1])) else: print("Power spectrum algorithm number not found!\nPlease select:") for i in power_spectrum_functions.keys(): print('{0} : {1}'.format(i, power_spectrum_functions[i][1])) exit() def select_fitting_function(self, function): from dynaphopy.analysis.fitting.fitting_functions import fitting_functions if function in fitting_functions.keys(): if function != self.parameters.fitting_function: self.force_constants_clear() self.parameters.fitting_function = function else: print("Fitting function number not found!\nPlease select:") for i in fitting_functions.keys(): print('{0} : {1}'.format(i, fitting_functions[i])) exit() def get_power_spectrum_phonon(self): if self._power_spectrum_phonon is None: print("Calculating phonon projection power spectra") if self.parameters.use_symmetry: initial_reduced_q_point = self.get_reduced_q_vector() power_spectrum_phonon = [] q_points_equivalent = pho_interface.get_equivalent_q_points_by_symmetry(self.get_reduced_q_vector(), self.dynamic.structure) # print(q_points_equivalent) for q_point in q_points_equivalent: self.set_reduced_q_vector(q_point) power_spectrum_phonon.append( (power_spectrum_functions[self.parameters.power_spectra_algorithm])[0](self.get_vq(), self.dynamic, self.parameters)) self.set_reduced_q_vector(initial_reduced_q_point) self._power_spectrum_phonon =
np.average(power_spectrum_phonon, axis=0)
numpy.average
#!/usr/bin/env python3 """ Discriminative Bayesian Filtering Lends Momentum to the Stochastic Newton Method for Minimizing Log-Convex Functions Exhibits and tests a discriminative filtering strategy for the stochastic (batch-based) Newton method that aims to minimize the mean of log-convex functions using sub-sampled gradients and Hessians Runs using the provided Dockerfile (https://www.docker.com): ``` docker build --no-cache -t hibiscus . docker run --rm -ti -v $(pwd):/home/felixity hibiscus ``` or in a virtual environment with Python3.10: ``` python3.10 -m venv turquoise source turquoise/bin/activate pip3 install -r requirements.txt python3.10 filtered_stochastic_newton.py ``` """ from __future__ import annotations import datetime import functools import inspect import logging import os import platform import re import subprocess import sys import time from typing import Callable import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.optimize import minimize as sp_minimize from numpy.linalg import * class DiscriminativeKalmanFilter: """ Implements the Discriminative Kalman Filter as described in <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>.'s "The discriminative Kalman filter for Bayesian filtering with nonlinear and nongaussian observation models." Neural Comput. 32(5), 969–1017 (2020). """ def __init__( self, stateModelA: np.mat, stateModelGamma: np.mat, stateModelS: np.mat, posteriorMean: np.mat = None, posteriorCovariance: np.mat = None, ) -> None: """ Specifies the state model p(hidden_t|hidden_{t-1}) = eta_{dState}(hidden_t; stateModelA*hidden_{t-1}, stateModelGamma) and measurement model p(hidden_t|observed_t) = eta_{dState}(hidden_t; ft, Qt) where ft, Qt must be supplied by the user at each time step for updates :param stateModelA: A from eq. (2.1b) :param stateModelGamma: Γ from eq. (2.1b) :param stateModelS: S from eq. (2.1a) :param posteriorMean: μ_t from eq. (2.6) :param posteriorCovariance: Σ_t from eq. (2.6) """ self.stateModelA = stateModelA self.stateModelGamma = stateModelGamma self.stateModelS = stateModelS self.dState = stateModelA.shape[0] if posteriorMean is not None: self.posteriorMean = posteriorMean else: self.posteriorMean = np.zeros((self.dState, 1)) if posteriorCovariance is not None: self.posteriorCovariance = posteriorCovariance else: self.posteriorCovariance = self.stateModelS def stateUpdate(self) -> None: """ Calculates the first 2 lines of eq. (2.7) in-place """ self.posteriorMean = self.stateModelA * self.posteriorMean self.posteriorCovariance = ( self.stateModelA * self.posteriorCovariance * self.stateModelA.T + self.stateModelGamma ) def measurementUpdate(self, ft: np.mat, Qt: np.mat) -> None: """ Given ft & Qt, calculates the last 2 lines of eq. (2.7) :param ft: f(x_t) from eq. (2.2) :param Qt: Q(x_t) from eq. (2.2) :return: """ if not np.all(eigvals(inv(Qt) - inv(self.stateModelS)) > 1e-6): Qt = inv(inv(Qt) + inv(self.stateModelS)) newPosteriorCovInv = ( inv(self.posteriorCovariance) + inv(Qt) - inv(self.stateModelS) ) self.posteriorMean = solve( newPosteriorCovInv, solve(self.posteriorCovariance, self.posteriorMean) + solve(Qt, ft), ) self.posteriorCovariance = inv(newPosteriorCovInv) def predict(self, ft: np.mat, Qt: np.mat) -> tuple[np.mat, np.mat]: """ Given ft & Qt, performs stateUpdate() and measurementUpdate(ft, Qt) :param ft: f(x_t) from eq. (2.2) :param Qt: Q(x_t) from eq. (2.2) :return: new posterior mean and covariance from applying eq. (2.7) """ self.stateUpdate() self.measurementUpdate(ft, Qt) return self.posteriorMean, self.posteriorCovariance def ArmijoStyleSearch( fn: Callable[[float], float], t0: np.mat, step_dir: np.mat, grad_fn_t0: np.mat, ) -> np.mat: """ Implements a backtracking line search inspired by Armijo, L.'s "Minimization of functions having Lipschitz continuous first partial derivatives." Pacific J. Math. 16(1), 1–3 (1966). :param fn: callable fn for which we seek a minimum :param t0: starting point :param step_dir: direction in which to seek a minimum of fn from t0 :param grad_fn_t0: gradient of fn at t0 :return: reasonable step length """ fn_x0 = fn(t0) for k in range(5): step_length = 2**-k if fn(t0 + step_length * step_dir) - fn_x0 <= float( 0.95 * step_length * step_dir * grad_fn_t0.T ): break return step_length def angular_distance(v1: np.array, v2: np.array) -> np.float: """ Returns the angle in radians between two equal-length vectors v1 and v2; if in 2 dimensions, returns a signed angle :param v1: first vector :param v2: second vector :return: angle between v1 and v2 (radians) """ v1_n = np.asarray(v1).ravel() / norm(v1) v2_n = np.asarray(v2).ravel() / norm(v2) if v1_n.size != 2: return np.arccos(np.dot(v1_n, v2_n)) else: # can assign a sign when vectors are 2-dimensional theta1 = np.arctan2(v1_n[1], v1_n[0]) theta2 = np.arctan2(v2_n[1], v2_n[0]) diff_rad = theta1 - theta2 return min( [diff_rad + 2 * j * np.pi for j in range(-1, 2)], key=lambda x: np.abs(x), ) def log_calls(func: Callable) -> Callable: """ Logs information about a function call including inputs and output :param func: function to call :return: wrapped function with i/o logging """ logger = logging.getLogger("filtered_stochastic_newton") @functools.wraps(func) def log_io(*args, **kwargs): func_args = inspect.signature(func).bind(*args, **kwargs).arguments y = func(*args, **kwargs) logger.debug( f"Function {func.__name__} called with " + "; ".join([str(i) + ":" + str(j) for i, j in func_args.items()]) + f" & returned: {y}" ) return y return log_io class LinearGaussianExample: """ Example as described in section 5 of the manuscript """ def __init__(self, n_total: int, d_theta: int): self.n_total = n_total self.theta = np.mat(np.random.normal(loc=1.0, size=(1, d_theta))) self.X = np.mat( np.random.multivariate_normal( mean=np.zeros(d_theta), cov=0.9 * np.eye(d_theta) + 0.1 * np.ones((d_theta, d_theta)), size=self.n_total, ) ) self.zeta = np.mat(np.random.normal(size=(self.n_total, 1))) self.Y = self.X * self.theta.T + self.zeta self.minimum = self.find_minimum() self.logger = logging.getLogger( os.path.basename(__file__).split(".")[0] ) self.logger.debug(f"{self.theta.tolist()=}") self.logger.debug(f"{self.X.tolist()=}") self.logger.debug(f"{self.zeta.tolist()=}") self.logger.debug(f"{self.Y.tolist()=}") self.logger.debug(f"{self.minimum.tolist()=}") def g_i(self, theta: np.mat, i: int) -> float: return 1 / 2 * float(self.Y[i] - theta * self.X[i].T) ** 2 def grad_i(self, theta: np.mat, i: int) -> np.mat: return theta * (self.X[i].T * self.X[i]) - self.X[i] * float(self.Y[i]) def grad2_i(self, theta: np.mat, i: int) -> float: return self.grad_i(theta, i) * self.grad_i(theta, i).T def hess_i(self, theta: np.mat, i: int) -> float: return self.X[i].T * self.X[i] def g_idx(self, theta: np.mat, idx: list) -> float: g = 0 if len(idx) == 0: return g for i in idx: g += self.g_i(theta, i) return g / len(idx) def grad_idx(self, theta: np.mat, idx: list) -> np.mat: grad = np.zeros_like(self.grad_i(self.theta, 0)) if len(idx) == 0: return grad for i in idx: grad += self.grad_i(theta, i) return grad / len(idx) def grad2_idx(self, theta: np.mat, idx: list) -> float: grad2 = np.zeros_like(self.grad2_i(self.theta, 0)) if len(idx) == 0: return float(grad2) for i in idx: grad2 += self.grad2_i(theta, i) return grad2 / len(idx) def hess_idx(self, theta: np.mat, idx: list) -> float: hess = np.zeros_like(self.hess_i(self.theta, 0)) if len(idx) == 0: return float(hess) for i in idx: hess += self.hess_i(theta, i) return hess / len(idx) def g(self, theta: np.mat) -> float: return self.g_idx(theta, list(range(self.n_total))) def grad(self, theta: np.mat) -> np.mat: return self.grad_idx(theta, list(range(self.n_total))) def grad2(self, theta: np.mat) -> float: return self.grad2_idx(theta, list(range(self.n_total))) def hess(self, theta: np.mat) -> float: return self.hess_idx(theta, list(range(self.n_total))) @log_calls def random_sample(self, n_sample: np.int) -> list: return list(np.random.choice(range(self.n_total), n_sample)) def find_minimum(self) -> np.mat: res = sp_minimize(self.g, self.theta, method="Nelder-Mead", tol=1e-6) return np.mat(res.x) def run_example( n_total: int, n_steps: int, n_sample: int, d_theta: int, n_starts: int, alpha: float, beta: float, ) -> pd.DataFrame: """ Runs a single comparison test :param n_total: n from the paper :param n_steps: number of optimization steps to perform :param n_sample: size of each sample (\abs{\mathcal S} from the paper) :param d_theta: dimension of theta :param n_starts: number of restarts for a given problem :param alpha: positive parameter for state evolution eq. (21) :param beta: positive parameter, <1, for state evolution eq. (21) :return: dataframe containing test results """ eg = LinearGaussianExample(n_total=n_total, d_theta=d_theta) theta0 = np.mat(np.random.normal(size=(1, d_theta))) for run_n in range(n_starts): # for recording the unfiltered estimate theta_nf = theta0.copy() theta_nf_list = [theta_nf.round(3).tolist()[0]] g_theta_nf_list = [eg.g(theta_nf)] step_direction_nf_list = [] step_direction_nf_at_theta_f_list = [] # for recording filtered estimate; # initialized at same point as unfiltered theta_f = theta0.copy() theta_f_list = [theta_f.round(3).tolist()[0]] g_theta_f_list = [eg.g(theta_f)] step_direction_f_list = [] # for recording angular comparisons true_step_at_theta_f_list = [] step_angle_nf_at_theta_f_list = [] step_angle_f_at_theta_f_list = [] # for recording Mt's at each step Mt_list = [(0.0 *
np.eye(d_theta)
numpy.eye
# -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) from future.builtins import * # NOQA import inspect import os import pickle import platform import unittest import warnings from copy import deepcopy import numpy as np from obspy import Stream, Trace, UTCDateTime, read, read_inventory from obspy.core.compatibility import mock from obspy.core.stream import _is_pickle, _read_pickle, _write_pickle from obspy.core.util.attribdict import AttribDict from obspy.core.util.base import NamedTemporaryFile from obspy.io.xseed import Parser class StreamTestCase(unittest.TestCase): """ Test suite for obspy.core.stream.Stream. """ def setUp(self): # set specific seed value such that random numbers are reproducible np.random.seed(815) header = {'network': 'BW', 'station': 'BGLD', 'starttime': UTCDateTime(2007, 12, 31, 23, 59, 59, 915000), 'npts': 412, 'sampling_rate': 200.0, 'channel': 'EHE'} trace1 = Trace(data=np.random.randint(0, 1000, 412).astype(np.float64), header=deepcopy(header)) header['starttime'] = UTCDateTime(2008, 1, 1, 0, 0, 4, 35000) header['npts'] = 824 trace2 = Trace(data=np.random.randint(0, 1000, 824).astype(np.float64), header=deepcopy(header)) header['starttime'] = UTCDateTime(2008, 1, 1, 0, 0, 10, 215000) trace3 = Trace(data=np.random.randint(0, 1000, 824).astype(np.float64), header=deepcopy(header)) header['starttime'] = UTCDateTime(2008, 1, 1, 0, 0, 18, 455000) header['npts'] = 50668 trace4 = Trace( data=np.random.randint(0, 1000, 50668).astype(np.float64), header=deepcopy(header)) self.mseed_stream = Stream(traces=[trace1, trace2, trace3, trace4]) header = {'network': '', 'station': 'RNON ', 'location': '', 'starttime': UTCDateTime(2004, 6, 9, 20, 5, 59, 849998), 'sampling_rate': 200.0, 'npts': 12000, 'channel': ' Z'} trace = Trace( data=np.random.randint(0, 1000, 12000).astype(np.float64), header=header) self.gse2_stream = Stream(traces=[trace]) self.data_path = os.path.join(os.path.dirname(os.path.abspath( inspect.getfile(inspect.currentframe()))), "data") @staticmethod def __remove_processing(st): """ Helper method removing the processing information from all traces within a Stream object. Useful for testing. """ for tr in st: if "processing" not in tr.stats: continue del tr.stats.processing def test_init(self): """ Tests the __init__ method of the Stream object. """ # empty st = Stream() self.assertEqual(len(st), 0) # single trace st = Stream(Trace()) self.assertEqual(len(st), 1) # array of traces st = Stream([Trace(), Trace()]) self.assertEqual(len(st), 2) def test_setitem(self): """ Tests the __setitem__ method of the Stream object. """ stream = self.mseed_stream stream[0] = stream[3] self.assertEqual(stream[0], stream[3]) st = deepcopy(stream) stream[0].data[0:10] = 999 self.assertNotEqual(st[0].data[0], 999) st[0] = stream[0] np.testing.assert_array_equal(stream[0].data[:10], np.ones(10, dtype=np.int_) * 999) def test_getitem(self): """ Tests the __getitem__ method of the Stream object. """ stream = read() self.assertEqual(stream[0], stream.traces[0]) self.assertEqual(stream[-1], stream.traces[-1]) self.assertEqual(stream[2], stream.traces[2]) # out of index should fail self.assertRaises(IndexError, stream.__getitem__, 3) self.assertRaises(IndexError, stream.__getitem__, -99) def test_add(self): """ Tests the adding of two stream objects. """ stream = self.mseed_stream self.assertEqual(4, len(stream)) # Add the same stream object to itself. stream = stream + stream self.assertEqual(8, len(stream)) # This will not create copies of Traces and thus the objects should # be identical (and the Traces attributes should be identical). for _i in range(4): self.assertEqual(stream[_i], stream[_i + 4]) self.assertEqual(stream[_i] == stream[_i + 4], True) self.assertEqual(stream[_i] != stream[_i + 4], False) self.assertEqual(stream[_i] is stream[_i + 4], True) self.assertEqual(stream[_i] is not stream[_i + 4], False) # Now add another stream to it. other_stream = self.gse2_stream self.assertEqual(1, len(other_stream)) new_stream = stream + other_stream self.assertEqual(9, len(new_stream)) # The traces of all streams are copied. for _i in range(8): self.assertEqual(new_stream[_i], stream[_i]) self.assertEqual(new_stream[_i] is stream[_i], True) # Also test for the newly added stream. self.assertEqual(new_stream[8], other_stream[0]) self.assertEqual(new_stream[8].stats, other_stream[0].stats) np.testing.assert_array_equal(new_stream[8].data, other_stream[0].data) # adding something else than stream or trace results into TypeError self.assertRaises(TypeError, stream.__add__, 1) self.assertRaises(TypeError, stream.__add__, 'test') def test_iadd(self): """ Tests the __iadd__ method of the Stream objects. """ stream = self.mseed_stream self.assertEqual(4, len(stream)) other_stream = self.gse2_stream self.assertEqual(1, len(other_stream)) # Add the other stream to the stream. stream += other_stream # This will leave the Traces of the new stream and create a deepcopy of # the other Stream's Traces self.assertEqual(5, len(stream)) self.assertEqual(other_stream[0], stream[-1]) self.assertEqual(other_stream[0].stats, stream[-1].stats) np.testing.assert_array_equal(other_stream[0].data, stream[-1].data) # adding something else than stream or trace results into TypeError self.assertRaises(TypeError, stream.__iadd__, 1) self.assertRaises(TypeError, stream.__iadd__, 'test') def test_mul(self): """ Tests the __mul__ method of the Stream objects. """ st = Stream(Trace()) self.assertEqual(len(st), 1) st = st * 4 self.assertEqual(len(st), 4) # multiplying by something else than an integer results into TypeError self.assertRaises(TypeError, st.__mul__, 1.2345) self.assertRaises(TypeError, st.__mul__, 'test') def test_add_trace_to_stream(self): """ Tests using a Trace on __add__ and __iadd__ methods of the Stream. """ st0 = read() st1 = st0[0:2] tr = st0[2] # __add__ self.assertEqual(st1.__add__(tr), st0) self.assertEqual(st1 + tr, st0) # __iadd__ st1 += tr self.assertEqual(st1, st0) def test_append(self): """ Tests the append method of the Stream object. """ stream = self.mseed_stream # Check current count of traces self.assertEqual(len(stream), 4) # Append first traces to the Stream object. stream.append(stream[0]) self.assertEqual(len(stream), 5) # This is supposed to make a deepcopy of the Trace and thus the two # Traces are not identical. self.assertEqual(stream[0], stream[-1]) # But the attributes and data values should be identical. self.assertEqual(stream[0].stats, stream[-1].stats) np.testing.assert_array_equal(stream[0].data, stream[-1].data) # Append the same again stream.append(stream[0]) self.assertEqual(len(stream), 6) # Now the two objects should be identical. self.assertEqual(stream[0], stream[-1]) # Using append with a list of Traces, or int, or ... should fail. self.assertRaises(TypeError, stream.append, stream[:]) self.assertRaises(TypeError, stream.append, 1) self.assertRaises(TypeError, stream.append, stream[0].data) def test_count_and_len(self): """ Tests the count and __len__ methods of the Stream object. """ # empty stream without traces stream = Stream() self.assertEqual(len(stream), 0) self.assertEqual(stream.count(), 0) # stream with traces stream = read() self.assertEqual(len(stream), 3) self.assertEqual(stream.count(), 3) def test_extend(self): """ Tests the extend method of the Stream object. """ stream = self.mseed_stream # Check current count of traces self.assertEqual(len(stream), 4) # Extend the Stream object with the first two traces. stream.extend(stream[0:2]) self.assertEqual(len(stream), 6) # This is NOT supposed to make a deepcopy of the Trace and thus the two # Traces compare equal and are identical. self.assertEqual(stream[0], stream[-2]) self.assertEqual(stream[1], stream[-1]) self.assertIs(stream[0], stream[-2]) self.assertIs(stream[1], stream[-1]) # Using extend with a single Traces, or a wrong list, or ... # should fail. self.assertRaises(TypeError, stream.extend, stream[0]) self.assertRaises(TypeError, stream.extend, 1) self.assertRaises(TypeError, stream.extend, [stream[0], 1]) def test_insert(self): """ Tests the insert Method of the Stream object. """ stream = self.mseed_stream self.assertEqual(4, len(stream)) # Insert the last Trace before the second trace. stream.insert(1, stream[-1]) self.assertEqual(len(stream), 5) # This is supposed to make a deepcopy of the Trace and thus the two # Traces are not identical. # self.assertNotEqual(stream[1], stream[-1]) self.assertEqual(stream[1], stream[-1]) # But the attributes and data values should be identical. self.assertEqual(stream[1].stats, stream[-1].stats) np.testing.assert_array_equal(stream[1].data, stream[-1].data) # Do the same again stream.insert(1, stream[-1]) self.assertEqual(len(stream), 6) # Now the two Traces should be identical self.assertEqual(stream[1], stream[-1]) # Do the same with a list of traces this time. # Insert the last two Trace before the second trace. stream.insert(1, stream[-2:]) self.assertEqual(len(stream), 8) # This is supposed to make a deepcopy of the Trace and thus the two # Traces are not identical. self.assertEqual(stream[1], stream[-2]) self.assertEqual(stream[2], stream[-1]) # But the attributes and data values should be identical. self.assertEqual(stream[1].stats, stream[-2].stats) np.testing.assert_array_equal(stream[1].data, stream[-2].data) self.assertEqual(stream[2].stats, stream[-1].stats) np.testing.assert_array_equal(stream[2].data, stream[-1].data) # Do the same again stream.insert(1, stream[-2:]) self.assertEqual(len(stream), 10) # Now the two Traces should be identical self.assertEqual(stream[1], stream[-2]) self.assertEqual(stream[2], stream[-1]) # Using insert without a single Traces or a list of Traces should fail. self.assertRaises(TypeError, stream.insert, 1, 1) self.assertRaises(TypeError, stream.insert, stream[0], stream[0]) self.assertRaises(TypeError, stream.insert, 1, [stream[0], 1]) def test_get_gaps(self): """ Tests the get_gaps method of the Stream objects. It is compared directly to the obspy.io.mseed method getGapsList which is assumed to be correct. """ stream = self.mseed_stream gap_list = stream.get_gaps() # Gaps list created with obspy.io.mseed mseed_gap_list = [ ('BW', 'BGLD', '', 'EHE', UTCDateTime(2008, 1, 1, 0, 0, 1, 970000), UTCDateTime(2008, 1, 1, 0, 0, 4, 35000), 2.0599999999999999, 412.0), ('BW', 'BGLD', '', 'EHE', UTCDateTime(2008, 1, 1, 0, 0, 8, 150000), UTCDateTime(2008, 1, 1, 0, 0, 10, 215000), 2.0599999999999999, 412.0), ('BW', 'BGLD', '', 'EHE', UTCDateTime(2008, 1, 1, 0, 0, 14, 330000), UTCDateTime(2008, 1, 1, 0, 0, 18, 455000), 4.120, 824.0)] # Assert the number of gaps. self.assertEqual(len(mseed_gap_list), len(gap_list)) for _i in range(len(mseed_gap_list)): # Compare the string values directly. for _j in range(6): self.assertEqual(gap_list[_i][_j], mseed_gap_list[_i][_j]) # The small differences are probably due to rounding errors. self.assertAlmostEqual(float(mseed_gap_list[_i][6]), float(gap_list[_i][6]), places=3) self.assertAlmostEqual(float(mseed_gap_list[_i][7]), float(gap_list[_i][7]), places=3) def test_get_gaps_multiplexed_streams(self): """ Tests the get_gaps method of the Stream objects. """ data = np.random.randint(0, 1000, 412) # different channels st = Stream() for channel in ['EHZ', 'EHN', 'EHE']: st.append(Trace(data=data, header={'channel': channel})) self.assertEqual(len(st.get_gaps()), 0) # different locations st = Stream() for location in ['', '00', '01']: st.append(Trace(data=data, header={'location': location})) self.assertEqual(len(st.get_gaps()), 0) # different stations st = Stream() for station in ['MANZ', 'ROTZ', 'BLAS']: st.append(Trace(data=data, header={'station': station})) self.assertEqual(len(st.get_gaps()), 0) # different networks st = Stream() for network in ['BW', 'GE', 'GR']: st.append(Trace(data=data, header={'network': network})) self.assertEqual(len(st.get_gaps()), 0) def test_pop(self): """ Test the pop method of the Stream object. """ stream = self.mseed_stream # Make a copy of the Traces. traces = deepcopy(stream[:]) # Remove and return the last Trace. temp_trace = stream.pop() self.assertEqual(3, len(stream)) # Assert attributes. The objects itself are not identical. self.assertEqual(temp_trace.stats, traces[-1].stats) np.testing.assert_array_equal(temp_trace.data, traces[-1].data) # Remove the last copied Trace. traces.pop() # Remove and return the second Trace. temp_trace = stream.pop(1) # Assert attributes. The objects itself are not identical. self.assertEqual(temp_trace.stats, traces[1].stats) np.testing.assert_array_equal(temp_trace.data, traces[1].data) # Remove the second copied Trace. traces.pop(1) # Compare all remaining Traces. self.assertEqual(2, len(stream)) self.assertEqual(2, len(traces)) for _i in range(len(traces)): self.assertEqual(traces[_i].stats, stream[_i].stats) np.testing.assert_array_equal(traces[_i].data, stream[_i].data) def test_slicing(self): """ Tests the __getslice__ method of the Stream object. """ stream = read() self.assertEqual(stream[0:], stream[0:]) self.assertEqual(stream[:2], stream[:2]) self.assertEqual(stream[:], stream[:]) self.assertEqual(len(stream), 3) new_stream = stream[1:3] self.assertTrue(isinstance(new_stream, Stream)) self.assertEqual(len(new_stream), 2) self.assertEqual(new_stream[0].stats, stream[1].stats) self.assertEqual(new_stream[1].stats, stream[2].stats) def test_slicing_with_steps(self): """ Tests the __getslice__ method of the Stream object with step. """ tr1 = Trace() tr2 = Trace() tr3 = Trace() tr4 = Trace() tr5 = Trace() st = Stream([tr1, tr2, tr3, tr4, tr5]) self.assertEqual(st[0:6].traces, [tr1, tr2, tr3, tr4, tr5]) self.assertEqual(st[0:6:1].traces, [tr1, tr2, tr3, tr4, tr5]) self.assertEqual(st[0:6:2].traces, [tr1, tr3, tr5]) self.assertEqual(st[1:6:2].traces, [tr2, tr4]) self.assertEqual(st[1:6:6].traces, [tr2]) def test_slice(self): """ Slice method should not loose attributes set on stream object itself. """ st = read() st.test = 1 st.muh = "Muh" st2 = st.slice(st[0].stats.starttime, st[0].stats.endtime) self.assertEqual(st2.test, 1) self.assertEqual(st2.muh, "Muh") def test_slice_nearest_sample(self): """ Tests that the nearest_sample argument is correctly passed to the trace function calls. """ # It defaults to True. st = read() with mock.patch("obspy.core.trace.Trace.slice") as patch: patch.return_value = st[0] st.slice(1, 2) self.assertEqual(patch.call_count, 3) for arg in patch.call_args_list: self.assertTrue(arg[1]["nearest_sample"]) # Force True. with mock.patch("obspy.core.trace.Trace.slice") as patch: patch.return_value = st[0] st.slice(1, 2, nearest_sample=True) self.assertEqual(patch.call_count, 3) for arg in patch.call_args_list: self.assertTrue(arg[1]["nearest_sample"]) # Set to False. with mock.patch("obspy.core.trace.Trace.slice") as patch: patch.return_value = st[0] st.slice(1, 2, nearest_sample=False) self.assertEqual(patch.call_count, 3) for arg in patch.call_args_list: self.assertFalse(arg[1]["nearest_sample"]) def test_cutout(self): """ Test cutout method of the Stream object. Compare against equivalent trimming operations. """ t1 = UTCDateTime("2009-06-24") t2 = UTCDateTime("2009-08-24T00:20:06.007Z") t3 = UTCDateTime("2009-08-24T00:20:16.008Z") t4 = UTCDateTime("2011-09-11") st = read() st_cut = read() # 1 st_cut.cutout(t4, t4 + 10) self.__remove_processing(st_cut) self.assertEqual(st, st_cut) # 2 st_cut.cutout(t1 - 10, t1) self.__remove_processing(st_cut) self.assertEqual(st, st_cut) # 3 st_cut.cutout(t1, t2) st.trim(starttime=t2, nearest_sample=True) self.__remove_processing(st_cut) self.__remove_processing(st) self.assertEqual(st, st_cut) # 4 st = read() st_cut = read() st_cut.cutout(t3, t4) st.trim(endtime=t3, nearest_sample=True) self.__remove_processing(st_cut) self.__remove_processing(st) self.assertEqual(st, st_cut) # 5 st = read() st.trim(endtime=t2, nearest_sample=True) tmp = read() tmp.trim(starttime=t3, nearest_sample=True) st += tmp st_cut = read() st_cut.cutout(t2, t3) self.__remove_processing(st_cut) self.__remove_processing(st) self.assertEqual(st, st_cut) def test_pop2(self): """ Test the pop method of the Stream object. """ trace = Trace(data=np.arange(0, 1000)) st = Stream([trace]) st = st + st + st + st self.assertEqual(len(st), 4) st.pop() self.assertEqual(len(st), 3) st[1].stats.station = 'MUH' st.pop(0) self.assertEqual(len(st), 2) self.assertEqual(st[0].stats.station, 'MUH') def test_remove(self): """ Tests the remove method of the Stream object. """ stream = self.mseed_stream # Make a copy of the Traces. stream2 = deepcopy(stream) # Use the remove method of the Stream object and of the list of Traces. stream.remove(stream[1]) del(stream2[1]) stream.remove(stream[-1]) del(stream2[-1]) # Compare remaining Streams. self.assertEqual(stream, stream2) def test_reverse(self): """ Tests the reverse method of the Stream object. """ stream = self.mseed_stream # Make a copy of the Traces. traces = deepcopy(stream[:]) # Use reversing of the Stream object and of the list. stream.reverse() traces.reverse() # Compare all Traces. self.assertEqual(4, len(stream)) self.assertEqual(4, len(traces)) for _i in range(len(traces)): self.assertEqual(traces[_i].stats, stream[_i].stats) np.testing.assert_array_equal(traces[_i].data, stream[_i].data) def test_select(self): """ Tests the select method of the Stream object. """ # Create a list of header dictionaries. headers = [ {'starttime': UTCDateTime(1990, 1, 1), 'network': 'AA', 'station': 'ZZZZ', 'channel': 'EHZ', 'sampling_rate': 200.0, 'npts': 100}, {'starttime': UTCDateTime(1990, 1, 1), 'network': 'BB', 'station': 'YYYY', 'channel': 'EHN', 'sampling_rate': 200.0, 'npts': 100}, {'starttime': UTCDateTime(2000, 1, 1), 'network': 'AA', 'station': 'ZZZZ', 'channel': 'BHZ', 'sampling_rate': 20.0, 'npts': 100}, {'starttime': UTCDateTime(1989, 1, 1), 'network': 'BB', 'station': 'XXXX', 'channel': 'BHN', 'sampling_rate': 20.0, 'npts': 100}, {'starttime': UTCDateTime(2010, 1, 1), 'network': 'AA', 'station': 'XXXX', 'channel': 'EHZ', 'sampling_rate': 200.0, 'npts': 100, 'location': '00'}] # Make stream object for test case traces = [] for header in headers: traces.append(Trace(data=np.random.randint(0, 1000, 100), header=header)) stream = Stream(traces=traces) # Test cases: stream2 = stream.select() self.assertEqual(stream, stream2) self.assertRaises(Exception, stream.select, channel="EHZ", component="N") stream2 = stream.select(channel='EHE') self.assertEqual(len(stream2), 0) stream2 = stream.select(channel='EHZ') self.assertEqual(len(stream2), 2) self.assertIn(stream[0], stream2) self.assertIn(stream[4], stream2) stream2 = stream.select(component='Z') self.assertEqual(len(stream2), 3) self.assertIn(stream[0], stream2) self.assertIn(stream[2], stream2) self.assertIn(stream[4], stream2) stream2 = stream.select(component='n') self.assertEqual(len(stream2), 2) self.assertIn(stream[1], stream2) self.assertIn(stream[3], stream2) stream2 = stream.select(channel='BHZ', npts=100, sampling_rate='20.0', network='AA', component='Z', station='ZZZZ') self.assertEqual(len(stream2), 1) self.assertIn(stream[2], stream2) stream2 = stream.select(channel='EHZ', station="XXXX") self.assertEqual(len(stream2), 1) self.assertIn(stream[4], stream2) stream2 = stream.select(network='AA') self.assertEqual(len(stream2), 3) self.assertIn(stream[0], stream2) self.assertIn(stream[2], stream2) self.assertIn(stream[4], stream2) stream2 = stream.select(sampling_rate=20.0) self.assertEqual(len(stream2), 2) self.assertIn(stream[2], stream2) self.assertIn(stream[3], stream2) # tests for wildcarded channel: stream2 = stream.select(channel='B*') self.assertEqual(len(stream2), 2) self.assertIn(stream[2], stream2) self.assertIn(stream[3], stream2) stream2 = stream.select(channel='EH*') self.assertEqual(len(stream2), 3) self.assertIn(stream[0], stream2) self.assertIn(stream[1], stream2) self.assertIn(stream[4], stream2) stream2 = stream.select(channel='*Z') self.assertEqual(len(stream2), 3) self.assertIn(stream[0], stream2) self.assertIn(stream[2], stream2) self.assertIn(stream[4], stream2) # tests for other wildcard operations: stream2 = stream.select(station='[XY]*') self.assertEqual(len(stream2), 3) self.assertIn(stream[1], stream2) self.assertIn(stream[3], stream2) self.assertIn(stream[4], stream2) stream2 = stream.select(station='[A-Y]*') self.assertEqual(len(stream2), 3) self.assertIn(stream[1], stream2) self.assertIn(stream[3], stream2) self.assertIn(stream[4], stream2) stream2 = stream.select(station='[A-Y]??*', network='A?') self.assertEqual(len(stream2), 1) self.assertIn(stream[4], stream2) # test case insensitivity stream2 = stream.select(channel='BhZ', npts=100, sampling_rate='20.0', network='aA', station='ZzZz',) self.assertEqual(len(stream2), 1) self.assertIn(stream[2], stream2) stream2 = stream.select(channel='e?z', network='aa', station='x?X*', location='00', component='z') self.assertEqual(len(stream2), 1) self.assertIn(stream[4], stream2) def test_select_on_single_letter_channels(self): st = read() st[0].stats.channel = "Z" st[1].stats.channel = "N" st[2].stats.channel = "E" self.assertEqual([tr.stats.channel for tr in st], ["Z", "N", "E"]) self.assertEqual(st.select(component="Z")[0], st[0]) self.assertEqual(st.select(component="N")[0], st[1]) self.assertEqual(st.select(component="E")[0], st[2]) self.assertEqual(len(st.select(component="Z")), 1) self.assertEqual(len(st.select(component="N")), 1) self.assertEqual(len(st.select(component="E")), 1) def test_sort(self): """ Tests the sort method of the Stream object. """ # Create new Stream stream = Stream() # Create a list of header dictionaries. The sampling rate serves as a # unique identifier for each Trace. headers = [ {'starttime': UTCDateTime(1990, 1, 1), 'network': 'AAA', 'station': 'ZZZ', 'channel': 'XXX', 'sampling_rate': 100.0}, {'starttime': UTCDateTime(1990, 1, 1), 'network': 'AAA', 'station': 'YYY', 'channel': 'CCC', 'sampling_rate': 200.0}, {'starttime': UTCDateTime(2000, 1, 1), 'network': 'AAA', 'station': 'EEE', 'channel': 'GGG', 'sampling_rate': 300.0}, {'starttime': UTCDateTime(1989, 1, 1), 'network': 'AAA', 'station': 'XXX', 'channel': 'GGG', 'sampling_rate': 400.0}, {'starttime': UTCDateTime(2010, 1, 1), 'network': 'AAA', 'station': 'XXX', 'channel': 'FFF', 'sampling_rate': 500.0}] # Create a Trace object of it and append it to the Stream object. for _i in headers: new_trace = Trace(header=_i) stream.append(new_trace) # Use normal sorting. stream.sort() self.assertEqual([i.stats.sampling_rate for i in stream.traces], [300.0, 500.0, 400.0, 200.0, 100.0]) # Sort after sampling_rate. stream.sort(keys=['sampling_rate']) self.assertEqual([i.stats.sampling_rate for i in stream.traces], [100.0, 200.0, 300.0, 400.0, 500.0]) # Sort after channel and sampling rate. stream.sort(keys=['channel', 'sampling_rate']) self.assertEqual([i.stats.sampling_rate for i in stream.traces], [200.0, 500.0, 300.0, 400.0, 100.0]) # Sort after npts and sampling_rate and endtime. stream.sort(keys=['npts', 'sampling_rate', 'endtime']) self.assertEqual([i.stats.sampling_rate for i in stream.traces], [100.0, 200.0, 300.0, 400.0, 500.0]) # The same with reverted sorting # Use normal sorting. stream.sort(reverse=True) self.assertEqual([i.stats.sampling_rate for i in stream.traces], [100.0, 200.0, 400.0, 500.0, 300.0]) # Sort after sampling_rate. stream.sort(keys=['sampling_rate'], reverse=True) self.assertEqual([i.stats.sampling_rate for i in stream.traces], [500.0, 400.0, 300.0, 200.0, 100.0]) # Sort after channel and sampling rate. stream.sort(keys=['channel', 'sampling_rate'], reverse=True) self.assertEqual([i.stats.sampling_rate for i in stream.traces], [100.0, 400.0, 300.0, 500.0, 200.0]) # Sort after npts and sampling_rate and endtime. stream.sort(keys=['npts', 'sampling_rate', 'endtime'], reverse=True) self.assertEqual([i.stats.sampling_rate for i in stream.traces], [500.0, 400.0, 300.0, 200.0, 100.0]) # Sorting without a list or a wrong item string should fail. self.assertRaises(TypeError, stream.sort, keys=1) self.assertRaises(TypeError, stream.sort, keys='sampling_rate') self.assertRaises(KeyError, stream.sort, keys=['npts', 'wrong_value']) def test_sorting_twice(self): """ Sorting twice should not change order. """ stream = Stream() headers = [ {'starttime': UTCDateTime(1990, 1, 1), 'endtime': UTCDateTime(1990, 1, 2), 'network': 'AAA', 'station': 'ZZZ', 'channel': 'XXX', 'npts': 10000, 'sampling_rate': 100.0}, {'starttime': UTCDateTime(1990, 1, 1), 'endtime': UTCDateTime(1990, 1, 3), 'network': 'AAA', 'station': 'YYY', 'channel': 'CCC', 'npts': 10000, 'sampling_rate': 200.0}, {'starttime': UTCDateTime(2000, 1, 1), 'endtime': UTCDateTime(2001, 1, 2), 'network': 'AAA', 'station': 'EEE', 'channel': 'GGG', 'npts': 1000, 'sampling_rate': 300.0}, {'starttime': UTCDateTime(1989, 1, 1), 'endtime': UTCDateTime(2010, 1, 2), 'network': 'AAA', 'station': 'XXX', 'channel': 'GGG', 'npts': 10000, 'sampling_rate': 400.0}, {'starttime': UTCDateTime(2010, 1, 1), 'endtime': UTCDateTime(2011, 1, 2), 'network': 'AAA', 'station': 'XXX', 'channel': 'FFF', 'npts': 1000, 'sampling_rate': 500.0}] # Create a Trace object of it and append it to the Stream object. for _i in headers: new_trace = Trace(header=_i) stream.append(new_trace) stream.sort() a = [i.stats.sampling_rate for i in stream.traces] stream.sort() b = [i.stats.sampling_rate for i in stream.traces] # should be equal self.assertEqual(a, b) def test_merge_with_different_calibration_factors(self): """ Test the merge method of the Stream object. """ # 1 - different calibration factors for the same channel should fail tr1 = Trace(data=np.zeros(5)) tr1.stats.calib = 1.0 tr2 = Trace(data=np.zeros(5)) tr2.stats.calib = 2.0 st = Stream([tr1, tr2]) # this also emits an UserWarning with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) self.assertRaises(Exception, st.merge) # 2 - different calibration factors for the different channels is ok tr1 = Trace(data=np.zeros(5)) tr1.stats.calib = 2.00 tr1.stats.channel = 'EHE' tr2 = Trace(data=np.zeros(5)) tr2.stats.calib = 5.0 tr2.stats.channel = 'EHZ' tr3 = Trace(data=np.zeros(5)) tr3.stats.calib = 2.00 tr3.stats.channel = 'EHE' tr4 = Trace(data=np.zeros(5)) tr4.stats.calib = 5.0 tr4.stats.channel = 'EHZ' st = Stream([tr1, tr2, tr3, tr4]) st.merge() def test_merge_with_different_sampling_rates(self): """ Test the merge method of the Stream object. """ # 1 - different sampling rates for the same channel should fail tr1 = Trace(data=np.zeros(5)) tr1.stats.sampling_rate = 200 tr2 = Trace(data=np.zeros(5)) tr2.stats.sampling_rate = 50 st = Stream([tr1, tr2]) # this also emits an UserWarning with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) self.assertRaises(Exception, st.merge) # 2 - different sampling rates for the different channels is ok tr1 = Trace(data=np.zeros(5)) tr1.stats.sampling_rate = 200 tr1.stats.channel = 'EHE' tr2 = Trace(data=np.zeros(5)) tr2.stats.sampling_rate = 50 tr2.stats.channel = 'EHZ' tr3 = Trace(data=np.zeros(5)) tr3.stats.sampling_rate = 200 tr3.stats.channel = 'EHE' tr4 = Trace(data=np.zeros(5)) tr4.stats.sampling_rate = 50 tr4.stats.channel = 'EHZ' st = Stream([tr1, tr2, tr3, tr4]) st.merge() def test_merge_with_different_data_types(self): """ Test the merge method of the Stream object. """ # 1 - different dtype for the same channel should fail tr1 = Trace(data=np.zeros(5, dtype=np.int32)) tr2 = Trace(data=np.zeros(5, dtype=np.float32)) st = Stream([tr1, tr2]) # this also emits an UserWarning with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) self.assertRaises(Exception, st.merge) # 2 - different sampling rates for the different channels is ok tr1 = Trace(data=np.zeros(5, dtype=np.int32)) tr1.stats.channel = 'EHE' tr2 = Trace(data=np.zeros(5, dtype=np.float32)) tr2.stats.channel = 'EHZ' tr3 = Trace(data=np.zeros(5, dtype=np.int32)) tr3.stats.channel = 'EHE' tr4 = Trace(data=np.zeros(5, dtype=np.float32)) tr4.stats.channel = 'EHZ' st = Stream([tr1, tr2, tr3, tr4]) st.merge() def test_merge_gaps(self): """ Test the merge method of the Stream object. """ stream = self.mseed_stream start = UTCDateTime("2007-12-31T23:59:59.915000") end = UTCDateTime("2008-01-01T00:04:31.790000") self.assertEqual(len(stream), 4) self.assertEqual(len(stream[0]), 412) self.assertEqual(len(stream[1]), 824) self.assertEqual(len(stream[2]), 824) self.assertEqual(len(stream[3]), 50668) self.assertEqual(stream[0].stats.starttime, start) self.assertEqual(stream[3].stats.endtime, end) for i in range(4): self.assertEqual(stream[i].stats.sampling_rate, 200) self.assertEqual(stream[i].get_id(), 'BW.BGLD..EHE') stream.verify() # merge it stream.merge() stream.verify() self.assertEqual(len(stream), 1) self.assertEqual(len(stream[0]), stream[0].data.size) self.assertEqual(stream[0].stats.starttime, start) self.assertEqual(stream[0].stats.endtime, end) self.assertEqual(stream[0].stats.sampling_rate, 200) self.assertEqual(stream[0].get_id(), 'BW.BGLD..EHE') def test_merge_gaps_2(self): """ Test the merge method of the Stream object on two traces with a gap in between. """ tr1 = Trace(data=np.ones(4, dtype=np.int32) * 1) tr2 = Trace(data=np.ones(3, dtype=np.int32) * 5) tr2.stats.starttime = tr1.stats.starttime + 9 stream = Stream([tr1, tr2]) # 1 - masked array # Trace 1: 1111 # Trace 2: 555 # 1 + 2 : 1111-----555 st = stream.copy() st.merge() self.assertEqual(len(st), 1) self.assertTrue(isinstance(st[0].data, np.ma.masked_array)) self.assertEqual(st[0].data.tolist(), [1, 1, 1, 1, None, None, None, None, None, 5, 5, 5]) # 2 - fill in zeros # Trace 1: 1111 # Trace 2: 555 # 1 + 2 : 111100000555 st = stream.copy() st.merge(fill_value=0) self.assertEqual(len(st), 1) self.assertTrue(isinstance(st[0].data, np.ndarray)) self.assertEqual(st[0].data.tolist(), [1, 1, 1, 1, 0, 0, 0, 0, 0, 5, 5, 5]) # 2b - fill in some other user-defined value # Trace 1: 1111 # Trace 2: 555 # 1 + 2 : 111199999555 st = stream.copy() st.merge(fill_value=9) self.assertEqual(len(st), 1) self.assertTrue(isinstance(st[0].data, np.ndarray)) self.assertEqual(st[0].data.tolist(), [1, 1, 1, 1, 9, 9, 9, 9, 9, 5, 5, 5]) # 3 - use last value of first trace # Trace 1: 1111 # Trace 2: 555 # 1 + 2 : 111111111555 st = stream.copy() st.merge(fill_value='latest') self.assertEqual(len(st), 1) self.assertTrue(isinstance(st[0].data, np.ndarray)) self.assertEqual(st[0].data.tolist(), [1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5]) # 4 - interpolate # Trace 1: 1111 # Trace 2: 555 # 1 + 2 : 111112334555 st = stream.copy() st.merge(fill_value='interpolate') self.assertEqual(len(st), 1) self.assertTrue(isinstance(st[0].data, np.ndarray)) self.assertEqual(st[0].data.tolist(), [1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 5, 5]) def test_split(self): """ Testing splitting of streams containing masked arrays. """ # 1 - create a Stream with gaps tr1 = Trace(data=np.ones(4, dtype=np.int32) * 1) tr2 = Trace(data=np.ones(3, dtype=np.int32) * 5) tr2.stats.starttime = tr1.stats.starttime + 9 st = Stream([tr1, tr2]) st.merge() self.assertTrue(isinstance(st[0].data, np.ma.masked_array)) # now we split again st2 = st.split() self.assertEqual(len(st2), 2) self.assertTrue(isinstance(st2[0].data, np.ndarray)) self.assertTrue(isinstance(st2[1].data, np.ndarray)) self.assertEqual(st2[0].data.tolist(), [1, 1, 1, 1]) self.assertEqual(st2[1].data.tolist(), [5, 5, 5]) # 2 - use default example st = self.mseed_stream st.merge() self.assertTrue(isinstance(st[0].data, np.ma.masked_array)) # now we split again st2 = st.split() self.assertEqual(len(st2), 4) self.assertEqual(len(st2[0]), 412) self.assertEqual(len(st2[1]), 824) self.assertEqual(len(st2[2]), 824) self.assertEqual(len(st2[3]), 50668) self.assertEqual(st2[0].stats.starttime, UTCDateTime("2007-12-31T23:59:59.915000")) self.assertEqual(st2[3].stats.endtime, UTCDateTime("2008-01-01T00:04:31.790000")) for i in range(4): self.assertEqual(st2[i].stats.sampling_rate, 200) self.assertEqual(st2[i].get_id(), 'BW.BGLD..EHE') def test_merge_overlaps_default_method(self): """ Test the merge method of the Stream object. """ # 1 - overlapping trace with differing data # Trace 1: 0000000 # Trace 2: 1111111 # 1 + 2 : 00000--11111 tr1 = Trace(data=np.zeros(7)) tr2 = Trace(data=np.ones(7)) tr2.stats.starttime = tr1.stats.starttime + 5 st = Stream([tr1, tr2]) st.merge() self.assertEqual(len(st), 1) self.assertTrue(isinstance(st[0].data, np.ma.masked_array)) self.assertEqual(st[0].data.tolist(), [0, 0, 0, 0, 0, None, None, 1, 1, 1, 1, 1]) # 2 - overlapping trace with same data # Trace 1: 0123456 # Trace 2: 56789 # 1 + 2 : 0123456789 tr1 = Trace(data=np.arange(7)) tr2 = Trace(data=np.arange(5, 10)) tr2.stats.starttime = tr1.stats.starttime + 5 st = Stream([tr1, tr2]) st.merge() self.assertEqual(len(st), 1) self.assertTrue(isinstance(st[0].data, np.ndarray)) np.testing.assert_array_equal(st[0].data, np.arange(10)) # # 3 - contained overlap with same data # Trace 1: 0123456789 # Trace 2: 56 # 1 + 2 : 0123456789 tr1 = Trace(data=np.arange(10)) tr2 = Trace(data=np.arange(5, 7)) tr2.stats.starttime = tr1.stats.starttime + 5 st = Stream([tr1, tr2]) st.merge() self.assertEqual(len(st), 1) self.assertTrue(isinstance(st[0].data, np.ndarray)) np.testing.assert_array_equal(st[0].data, np.arange(10)) # # 4 - contained overlap with differing data # Trace 1: 0000000000 # Trace 2: 11 # 1 + 2 : 00000--000 tr1 = Trace(data=np.zeros(10)) tr2 = Trace(data=np.ones(2)) tr2.stats.starttime = tr1.stats.starttime + 5 st = Stream([tr1, tr2]) st.merge() self.assertEqual(len(st), 1) self.assertTrue(isinstance(st[0].data, np.ma.masked_array)) self.assertEqual(st[0].data.tolist(), [0, 0, 0, 0, 0, None, None, 0, 0, 0]) def test_tab_completion_trace(self): """ Test tab completion of Trace object. """ tr = Trace() self.assertIn('sampling_rate', dir(tr.stats)) self.assertIn('npts', dir(tr.stats)) self.assertIn('station', dir(tr.stats)) self.assertIn('starttime', dir(tr.stats)) self.assertIn('endtime', dir(tr.stats)) self.assertIn('calib', dir(tr.stats)) self.assertIn('delta', dir(tr.stats)) def test_bugfix_merge_drop_trace_if_already_contained(self): """ Trace data already existing in another trace and ending on the same end time was not correctly merged until now. """ trace1 = Trace(data=np.empty(10)) trace2 = Trace(data=np.empty(2)) trace2.stats.starttime = trace1.stats.endtime - trace1.stats.delta st = Stream([trace1, trace2]) st.merge() def test_bugfix_merge_multiple_traces(self): """ Bugfix for merging multiple traces in a row. """ # create a stream with multiple traces overlapping trace1 = Trace(data=np.empty(10)) traces = [trace1] for _ in range(10): trace = Trace(data=np.empty(10)) trace.stats.starttime = \ traces[-1].stats.endtime - trace1.stats.delta traces.append(trace) st = Stream(traces) st.merge() def test_bugfix_merge_multiple_traces_2(self): """ Bugfix for merging multiple traces in a row. """ trace1 = Trace(data=np.empty(4190864)) trace1.stats.sampling_rate = 200 trace1.stats.starttime = UTCDateTime("2010-01-21T00:00:00.015000Z") trace2 = Trace(data=np.empty(603992)) trace2.stats.sampling_rate = 200 trace2.stats.starttime = UTCDateTime("2010-01-21T05:49:14.330000Z") trace3 = Trace(data=np.empty(222892)) trace3.stats.sampling_rate = 200 trace3.stats.starttime = UTCDateTime("2010-01-21T06:39:33.280000Z") st = Stream([trace1, trace2, trace3]) st.merge() def test_merge_with_small_sampling_rate(self): """ Bugfix for merging multiple traces with very small sampling rate. """ # create traces np.random.seed(815) trace1 = Trace(data=np.random.randn(1441)) trace1.stats.delta = 60.0 trace1.stats.starttime = UTCDateTime("2009-02-01T00:00:02.995000Z") trace2 = Trace(data=np.random.randn(1441)) trace2.stats.delta = 60.0 trace2.stats.starttime = UTCDateTime("2009-02-02T00:00:12.095000Z") trace3 = Trace(data=np.random.randn(1440)) trace3.stats.delta = 60.0 trace3.stats.starttime = UTCDateTime("2009-02-03T00:00:16.395000Z") trace4 = Trace(data=np.random.randn(1440)) trace4.stats.delta = 60.0 trace4.stats.starttime = UTCDateTime("2009-02-04T00:00:11.095000Z") # create stream st = Stream([trace1, trace2, trace3, trace4]) # merge st.merge() # compare results self.assertEqual(len(st), 1) self.assertEqual(st[0].stats.delta, 60.0) self.assertEqual(st[0].stats.starttime, trace1.stats.starttime) # end time of last trace endtime = trace1.stats.starttime + \ (4 * 1440 - 1) * trace1.stats.delta self.assertEqual(st[0].stats.endtime, endtime) def test_merge_overlaps_method_1(self): """ Test merging with method = 1. """ # Test merging three traces. trace1 = Trace(data=np.ones(10)) trace2 = Trace(data=10 * np.ones(11)) trace3 = Trace(data=2 * np.ones(20)) st = Stream([trace1, trace2, trace3]) st.merge(method=1) np.testing.assert_array_equal(st[0].data, 2 * np.ones(20)) # Any contained traces with different data will be discarded:: # # Trace 1: 111111111111 (contained trace) # Trace 2: 55 # 1 + 2 : 111111111111 trace1 = Trace(data=np.ones(12)) trace2 = Trace(data=5 * np.ones(2)) trace2.stats.starttime += 4 st = Stream([trace1, trace2]) st.merge(method=1) np.testing.assert_array_equal(st[0].data, np.ones(12)) # No interpolation (``interpolation_samples=0``):: # # Trace 1: 11111111 # Trace 2: 55555555 # 1 + 2 : 111155555555 trace1 = Trace(data=np.ones(8)) trace2 = Trace(data=5 * np.ones(8)) trace2.stats.starttime += 4 st = Stream([trace1, trace2]) st.merge(method=1) np.testing.assert_array_equal(st[0].data, np.array([1] * 4 + [5] * 8)) # Interpolate first two samples (``interpolation_samples=2``):: # # Trace 1: 00000000 # Trace 2: 66666666 # 1 + 2 : 000024666666 (interpolation_samples=2) trace1 = Trace(data=np.zeros(8, dtype=np.int32)) trace2 = Trace(data=6 * np.ones(8, dtype=np.int32)) trace2.stats.starttime += 4 st = Stream([trace1, trace2]) st.merge(method=1, interpolation_samples=2) np.testing.assert_array_equal(st[0].data, np.array([0] * 4 + [2] + [4] + [6] * 6)) # Interpolate all samples (``interpolation_samples=-1``):: # # Trace 1: 00000000 # Trace 2: 55555555 # 1 + 2 : 000012345555 trace1 = Trace(data=np.zeros(8, dtype=np.int32)) trace2 = Trace(data=5 * np.ones(8, dtype=np.int32)) trace2.stats.starttime += 4 st = Stream([trace1, trace2]) st.merge(method=1, interpolation_samples=(-1)) np.testing.assert_array_equal( st[0].data, np.array([0] * 4 + [1] + [2] + [3] + [4] + [5] * 4)) # Interpolate all samples (``interpolation_samples=5``):: # Given number of samples is bigger than the actual overlap - should # interpolate all samples # # Trace 1: 00000000 # Trace 2: 55555555 # 1 + 2 : 000012345555 trace1 = Trace(data=np.zeros(8, dtype=np.int32)) trace2 = Trace(data=5 * np.ones(8, dtype=np.int32)) trace2.stats.starttime += 4 st = Stream([trace1, trace2]) st.merge(method=1, interpolation_samples=5) np.testing.assert_array_equal( st[0].data, np.array([0] * 4 + [1] + [2] + [3] + [4] + [5] * 4)) def test_trim_removing_empty_traces(self): """ A stream containing several empty traces after trimming should throw away the empty traces. """ # create Stream. trace1 = Trace(data=np.zeros(10)) trace1.stats.delta = 1.0 trace2 = Trace(data=np.ones(10)) trace2.stats.delta = 1.0 trace2.stats.starttime = UTCDateTime(1000) trace3 = Trace(data=np.arange(10)) trace3.stats.delta = 1.0 trace3.stats.starttime = UTCDateTime(2000) stream = Stream([trace1, trace2, trace3]) stream.trim(UTCDateTime(900), UTCDateTime(1100)) # Check if only trace2 is still in the Stream object. self.assertEqual(len(stream), 1) np.testing.assert_array_equal(np.ones(10), stream[0].data) self.assertEqual(stream[0].stats.starttime, UTCDateTime(1000)) self.assertEqual(stream[0].stats.npts, 10) def test_trim_with_small_sampling_rate(self): """ Bugfix for cutting multiple traces with very small sampling rate. """ # create traces trace1 = Trace(data=np.empty(1441)) trace1.stats.delta = 60.0 trace1.stats.starttime = UTCDateTime("2009-02-01T00:00:02.995000Z") trace2 = Trace(data=np.empty(1441)) trace2.stats.delta = 60.0 trace2.stats.starttime = UTCDateTime("2009-02-02T00:00:12.095000Z") trace3 = Trace(data=np.empty(1440)) trace3.stats.delta = 60.0 trace3.stats.starttime = UTCDateTime("2009-02-03T00:00:16.395000Z") trace4 = Trace(data=np.empty(1440)) trace4.stats.delta = 60.0 trace4.stats.starttime = UTCDateTime("2009-02-04T00:00:11.095000Z") # create stream st = Stream([trace1, trace2, trace3, trace4]) # trim st.trim(trace1.stats.starttime, trace4.stats.endtime) # compare results self.assertEqual(len(st), 4) self.assertEqual(st[0].stats.delta, 60.0) self.assertEqual(st[0].stats.starttime, trace1.stats.starttime) self.assertEqual(st[3].stats.endtime, trace4.stats.endtime) def test_writing_masked_array(self): """ Writing a masked array should raise an exception. """ # np.ma.masked_array with masked values tr = Trace(data=np.ma.masked_all(10)) st = Stream([tr]) self.assertRaises(NotImplementedError, st.write, 'filename', 'MSEED') # np.ma.masked_array without masked values tr = Trace(data=np.ma.ones(10)) st = Stream([tr]) self.assertRaises(NotImplementedError, st.write, 'filename', 'MSEED') def test_pickle(self): """ Testing pickling of Stream objects.. """ tr = Trace(data=np.random.randn(1441)) st = Stream([tr]) st.verify() # protocol 0 (ASCII) temp = pickle.dumps(st, protocol=0) st2 = pickle.loads(temp) np.testing.assert_array_equal(st[0].data, st2[0].data) self.assertEqual(st[0].stats, st2[0].stats) # protocol 1 (old binary) temp = pickle.dumps(st, protocol=1) st2 = pickle.loads(temp) np.testing.assert_array_equal(st[0].data, st2[0].data) self.assertEqual(st[0].stats, st2[0].stats) # protocol 2 (new binary) temp = pickle.dumps(st, protocol=2) st2 = pickle.loads(temp) np.testing.assert_array_equal(st[0].data, st2[0].data) self.assertEqual(st[0].stats, st2[0].stats) def test_cpickle(self): """ Testing pickling of Stream objects.. """ tr = Trace(data=np.random.randn(1441)) st = Stream([tr]) st.verify() # protocol 0 (ASCII) temp = pickle.dumps(st, protocol=0) st2 = pickle.loads(temp) np.testing.assert_array_equal(st[0].data, st2[0].data) self.assertEqual(st[0].stats, st2[0].stats) # protocol 1 (old binary) temp = pickle.dumps(st, protocol=1) st2 = pickle.loads(temp) np.testing.assert_array_equal(st[0].data, st2[0].data) self.assertEqual(st[0].stats, st2[0].stats) # protocol 2 (new binary) temp = pickle.dumps(st, protocol=2) st2 = pickle.loads(temp) np.testing.assert_array_equal(st[0].data, st2[0].data) self.assertEqual(st[0].stats, st2[0].stats) def test_is_pickle(self): """ Testing _is_pickle function. """ # existing file st = read() with NamedTemporaryFile() as tf: st.write(tf.name, format='PICKLE') # check using file name self.assertTrue(_is_pickle(tf.name)) # check using file handler self.assertTrue(_is_pickle(tf)) # not existing files self.assertFalse(_is_pickle('/path/to/pickle.file')) self.assertFalse(_is_pickle(12345)) def test_read_write_pickle(self): """ Testing _read_pickle and _write_pickle functions. """ st = read() # write with NamedTemporaryFile() as tf: # write using file name _write_pickle(st, tf.name) self.assertTrue(_is_pickle(tf.name)) # write using file handler _write_pickle(st, tf) tf.seek(0) self.assertTrue(_is_pickle(tf)) # write using stream write method st.write(tf.name, format='PICKLE') # check and read directly st2 = _read_pickle(tf.name) self.assertEqual(len(st2), 3) np.testing.assert_array_equal(st2[0].data, st[0].data) # use read() with given format st2 = read(tf.name, format='PICKLE') self.assertEqual(len(st2), 3) np.testing.assert_array_equal(st2[0].data, st[0].data) # use read() and automatically detect format st2 = read(tf.name) self.assertEqual(len(st2), 3) np.testing.assert_array_equal(st2[0].data, st[0].data) def test_read_pickle(self): """ Testing _read_pickle function. Example pickles were written using obspy 1.0.3 on Py2 and Py3 respectively. """ for filename in ('example_py2.pickle', 'example_py3.pickle'): pickle_file = os.path.join(self.data_path, filename) st = read(pickle_file, format='PICKLE') self.assertEqual(len(st), 3) self.assertEqual(len(st[0]), 114) self.assertEqual(len(st[1]), 110) self.assertEqual(len(st[2]), 105) for tr, comp in zip(st, 'ZNE'): self.assertEqual(tr.stats.network, 'BW') self.assertEqual(tr.stats.station, 'RJOB') self.assertEqual(tr.stats.location, '') self.assertEqual(tr.stats.channel, 'EH' + comp) self.assertEqual(tr.stats.sampling_rate, 100.0) self.assertEqual(st[0].stats.starttime, UTCDateTime('2009-08-24T00:20:03.000000Z')) self.assertEqual(st[1].stats.starttime, UTCDateTime('2009-08-24T00:20:03.040000Z')) self.assertEqual(st[2].stats.starttime, UTCDateTime('2009-08-24T00:20:03.090000Z')) self.assertEqual(st[0].stats.endtime, UTCDateTime('2009-08-24T00:20:04.130000Z')) self.assertEqual(st[1].stats.endtime, UTCDateTime('2009-08-24T00:20:04.130000Z')) self.assertEqual(st[2].stats.endtime, UTCDateTime('2009-08-24T00:20:04.130000Z')) np.testing.assert_array_equal( st[0].data[:10], [0, 6, 75, 262, 549, 943, 1442, 1785, 2147, 3029]) np.testing.assert_array_equal( st[1].data[:10], [624, 1125, 1647, 2607, 3320, 4389, 5764, 7078, 8063, 9458]) np.testing.assert_array_equal( st[2].data[:10], [-9573, -11576, -14450, -16754, -20348, -23220, -28837, -30811, -36024, -40052]) np.testing.assert_array_equal( st[0].data[-10:], [-283742, -305558, -302737, -317144, -310056, -308462, -302752, -304243, -296202, -313968]) np.testing.assert_array_equal( st[1].data[-10:], [90493, 105062, 100721, 98631, 100355, 106287, 115356, 117989, 97907, 113225]) np.testing.assert_array_equal( st[2].data[-10:], [-144765, -149205, -123622, -139548, -137160, -154283, -103584, -138578, -128339, -125707]) def test_get_gaps_2(self): """ Test case for issue #73. """ tr1 = Trace(data=np.empty(720000)) tr1.stats.starttime = UTCDateTime("2010-02-09T00:19:19.850000Z") tr1.stats.sampling_rate = 200.0 tr1.verify() tr2 = Trace(data=np.empty(720000)) tr2.stats.starttime = UTCDateTime("2010-02-09T01:19:19.850000Z") tr2.stats.sampling_rate = 200.0 tr2.verify() tr3 = Trace(data=np.empty(720000)) tr3.stats.starttime = UTCDateTime("2010-02-09T02:19:19.850000Z") tr3.stats.sampling_rate = 200.0 tr3.verify() st = Stream([tr1, tr2, tr3]) st.verify() # same sampling rate should have no gaps gaps = st.get_gaps() self.assertEqual(len(gaps), 0) # different sampling rate should result in a gap tr3.stats.sampling_rate = 50.0 gaps = st.get_gaps() self.assertEqual(len(gaps), 1) # but different ids will be skipped (if only one trace) tr3.stats.station = 'MANZ' gaps = st.get_gaps() self.assertEqual(len(gaps), 0) # multiple traces with same id will be handled again tr2.stats.station = 'MANZ' gaps = st.get_gaps() self.assertEqual(len(gaps), 1) def test_get_gaps_whole_overlap(self): """ Test get_gaps method with a trace completely overlapping another trace. """ tr1 = Trace(data=np.empty(3600)) tr1.stats.starttime = UTCDateTime("2018-09-25T00:00:00.000000Z") tr1.stats.sampling_rate = 1. tr2 = Trace(data=np.empty(60)) tr2.stats.starttime = UTCDateTime("2018-09-25T00:01:00.000000Z") tr2.stats.sampling_rate = 1. st = Stream([tr1, tr2]) gaps = st.get_gaps() self.assertEqual(len(gaps), 1) gap = gaps[0] starttime = gap[4] self.assertEqual(starttime, UTCDateTime("2018-09-25T00:01:59.000000Z")) endtime = gap[5] self.assertEqual(endtime, tr2.stats.starttime) def test_comparisons(self): """ Tests all rich comparison operators (==, !=, <, <=, >, >=) The latter four are not implemented due to ambiguous meaning and bounce an error. """ # create test streams tr0 = Trace(np.arange(3)) tr1 = Trace(np.arange(3)) tr2 = Trace(np.arange(3), {'station': 'X'}) tr3 = Trace(np.arange(3), {'processing': ["filter:lowpass:{'freq': 10}"]}) tr4 = Trace(np.arange(5)) tr5 = Trace(np.arange(5), {'station': 'X'}) tr6 = Trace(np.arange(5), {'processing': ["filter:lowpass:{'freq': 10}"]}) tr7 = Trace(np.arange(5), {'processing': ["filter:lowpass:{'freq': 10}"]}) st0 = Stream([tr0]) st1 = Stream([tr1]) st2 = Stream([tr0, tr1]) st3 = Stream([tr2, tr3]) st4 = Stream([tr1, tr2, tr3]) st5 = Stream([tr4, tr5, tr6]) st6 = Stream([tr0, tr6]) st7 = Stream([tr1, tr7]) st8 = Stream([tr7, tr1]) st9 = Stream() st_a = Stream() # tests that should raise a NotImplementedError (i.e. <=, <, >=, >) self.assertRaises(NotImplementedError, st1.__lt__, st1) self.assertRaises(NotImplementedError, st1.__le__, st1) self.assertRaises(NotImplementedError, st1.__gt__, st1) self.assertRaises(NotImplementedError, st1.__ge__, st1) self.assertRaises(NotImplementedError, st1.__lt__, st2) self.assertRaises(NotImplementedError, st1.__le__, st2) self.assertRaises(NotImplementedError, st1.__gt__, st2) self.assertRaises(NotImplementedError, st1.__ge__, st2) # normal tests for st in [st1]: self.assertEqual(st0 == st, True) self.assertEqual(st0 != st, False) for st in [st2, st3, st4, st5, st6, st7, st8, st9, st_a]: self.assertEqual(st0 == st, False) self.assertEqual(st0 != st, True) for st in [st0]: self.assertEqual(st1 == st, True) self.assertEqual(st1 != st, False) for st in [st2, st3, st4, st5, st6, st7, st8, st9, st_a]: self.assertEqual(st1 == st, False) self.assertEqual(st1 != st, True) for st in [st0, st1, st3, st4, st5, st6, st7, st8, st9, st_a]: self.assertEqual(st2 == st, False) self.assertEqual(st2 != st, True) for st in [st0, st1, st2, st4, st5, st6, st7, st8, st9, st_a]: self.assertEqual(st3 == st, False) self.assertEqual(st3 != st, True) for st in [st0, st1, st2, st3, st5, st6, st7, st8, st9, st_a]: self.assertEqual(st4 == st, False) self.assertEqual(st4 != st, True) for st in [st0, st1, st2, st3, st4, st6, st7, st8, st9, st_a]: self.assertEqual(st5 == st, False) self.assertEqual(st5 != st, True) for st in [st7, st8]: self.assertEqual(st6 == st, True) self.assertEqual(st6 != st, False) for st in [st0, st1, st2, st3, st4, st5, st9, st_a]: self.assertEqual(st6 == st, False) self.assertEqual(st6 != st, True) for st in [st6, st8]: self.assertEqual(st7 == st, True) self.assertEqual(st7 != st, False) for st in [st0, st1, st2, st3, st4, st5, st9, st_a]: self.assertEqual(st7 == st, False) self.assertEqual(st7 != st, True) for st in [st6, st7]: self.assertEqual(st8 == st, True) self.assertEqual(st8 != st, False) for st in [st0, st1, st2, st3, st4, st5, st9, st_a]: self.assertEqual(st8 == st, False) self.assertEqual(st8 != st, True) for st in [st_a]: self.assertEqual(st9 == st, True) self.assertEqual(st9 != st, False) for st in [st0, st1, st2, st3, st4, st5, st6, st7, st8]: self.assertEqual(st9 == st, False) self.assertEqual(st9 != st, True) for st in [st9]: self.assertEqual(st_a == st, True) self.assertEqual(st_a != st, False) for st in [st0, st1, st2, st3, st4, st5, st6, st7, st8]: self.assertEqual(st_a == st, False) self.assertEqual(st_a != st, True) # some weird tests against non-Stream objects for object in [0, 1, 0.0, 1.0, "", "test", True, False, [], [tr0], set(), set(tr0), {}, {"test": "test"}, Trace(), None]: self.assertEqual(st0 == object, False) self.assertEqual(st0 != object, True) def test_trim_nearest_sample(self): """ Tests to trim at nearest sample """ head = {'sampling_rate': 1.0, 'starttime': UTCDateTime(0.0)} tr1 = Trace(data=np.random.randint(0, 1000, 120), header=head) tr2 = Trace(data=np.random.randint(0, 1000, 120), header=head) tr2.stats.starttime += 0.4 st = Stream(traces=[tr1, tr2]) # STARTTIME # check that trimming first selects the next best sample, and only # then selects the following ones # | S | | | # | | | | st.trim(UTCDateTime(0.6), endtime=None) self.assertEqual(st[0].stats.starttime.timestamp, 1.0) self.assertEqual(st[1].stats.starttime.timestamp, 1.4) # ENDTIME # check that trimming first selects the next best sample, and only # then selects the following ones # | | | E | # | | | | st.trim(starttime=None, endtime=UTCDateTime(2.6)) self.assertEqual(st[0].stats.endtime.timestamp, 3.0) self.assertEqual(st[1].stats.endtime.timestamp, 3.4) def test_trim_consistent_start_end_time_nearest_sample(self): """ Test case for #127. It ensures that the sample sizes stay consistent after trimming. That is that _ltrim and _rtrim round in the same direction. """ data = np.zeros(10) t = UTCDateTime(0) traces = [] for delta in (0, 0.25, 0.5, 0.75, 1): traces.append(Trace(data.copy())) traces[-1].stats.starttime = t + delta st = Stream(traces) st.trim(t + 3.5, t + 6.5) start = [4.0, 4.25, 4.5, 3.75, 4.0] end = [6.0, 6.25, 6.50, 5.75, 6.0] for i in range(len(st)): self.assertEqual(3, st[i].stats.npts) self.assertEqual(st[i].stats.starttime.timestamp, start[i]) self.assertEqual(st[i].stats.endtime.timestamp, end[i]) def test_trim_consistent_start_end_time_nearest_sample_padded(self): """ Test case for #127. It ensures that the sample sizes stay consistent after trimming. That is that _ltrim and _rtrim round in the same direction. Padded version. """ data = np.zeros(10) t = UTCDateTime(0) traces = [] for delta in (0, 0.25, 0.5, 0.75, 1): traces.append(Trace(data.copy())) traces[-1].stats.starttime = t + delta st = Stream(traces) st.trim(t - 3.5, t + 16.5, pad=True) start = [-4.0, -3.75, -3.5, -4.25, -4.0] end = [17.0, 17.25, 17.50, 16.75, 17.0] for i in range(len(st)): self.assertEqual(22, st[i].stats.npts) self.assertEqual(st[i].stats.starttime.timestamp, start[i]) self.assertEqual(st[i].stats.endtime.timestamp, end[i]) def test_trim_consistent_start_end_time(self): """ Test case for #127. It ensures that the sample start and end times stay consistent after trimming. """ data = np.zeros(10) t = UTCDateTime(0) traces = [] for delta in (0, 0.25, 0.5, 0.75, 1): traces.append(Trace(data.copy())) traces[-1].stats.starttime = t + delta st = Stream(traces) st.trim(t + 3.5, t + 6.5, nearest_sample=False) start = [4.00, 4.25, 3.50, 3.75, 4.00] end = [6.00, 6.25, 6.50, 5.75, 6.00] npts = [3, 3, 4, 3, 3] for i in range(len(st)): self.assertEqual(st[i].stats.npts, npts[i]) self.assertEqual(st[i].stats.starttime.timestamp, start[i]) self.assertEqual(st[i].stats.endtime.timestamp, end[i]) def test_trim_consistent_start_and_time_pad(self): """ Test case for #127. It ensures that the sample start and end times stay consistent after trimming. Padded version. """ data = np.zeros(10) t = UTCDateTime(0) traces = [] for delta in (0, 0.25, 0.5, 0.75, 1): traces.append(Trace(data.copy())) traces[-1].stats.starttime = t + delta st = Stream(traces) st.trim(t - 3.5, t + 16.5, nearest_sample=False, pad=True) start = [-3.00, -2.75, -3.50, -3.25, -3.00] end = [16.00, 16.25, 16.50, 15.75, 16.00] npts = [20, 20, 21, 20, 20] for i in range(len(st)): self.assertEqual(st[i].stats.npts, npts[i]) self.assertEqual(st[i].stats.starttime.timestamp, start[i]) self.assertEqual(st[i].stats.endtime.timestamp, end[i]) def test_str(self): """ Test case for issue #162 - print streams in a more consistent way. """ tr1 = Trace() tr1.stats.station = "1" tr2 = Trace() tr2.stats.station = "12345" st = Stream([tr1, tr2]) result = st.__str__() expected = "2 Trace(s) in Stream:\n" + \ ".1.. | 1970-01-01T00:00:00.000000Z - 1970-01-01" + \ "T00:00:00.000000Z | 1.0 Hz, 0 samples\n" + \ ".12345.. | 1970-01-01T00:00:00.000000Z - 1970-01-01" + \ "T00:00:00.000000Z | 1.0 Hz, 0 samples" self.assertEqual(result, expected) # streams containing more than 20 lines will be compressed st2 = Stream([tr1]) * 40 result = st2.__str__() self.assertIn('40 Trace(s) in Stream:', result) self.assertIn('other traces', result) def test_cleanup(self): """ Test case for merging traces in the stream with method=-1. This only should merge traces that are exactly the same or contained and exactly the same or directly adjacent. """ tr1 = self.mseed_stream[0] start = tr1.stats.starttime end = tr1.stats.endtime dt = end - start delta = tr1.stats.delta # test traces that should be merged: # contained traces with compatible data tr2 = tr1.slice(start, start + dt / 3) tr3 = tr1.copy() tr4 = tr1.slice(start + dt / 4, end - dt / 4) # adjacent traces tr5 = tr1.copy() tr5.stats.starttime = end + delta tr6 = tr1.copy() tr6.stats.starttime = start - dt - delta # create overlapping traces with compatible data tr_01 = tr1.copy() tr_01.trim(starttime=start + 2 * delta) tr_01.data = np.concatenate([tr_01.data, np.arange(5)]) tr_02 = tr1.copy() tr_02.trim(endtime=end - 2 * delta) tr_02.data = np.concatenate([np.arange(5), tr_02.data]) tr_02.stats.starttime -= 5 * delta for _i in [tr1, tr2, tr3, tr4, tr5, tr6, tr_01, tr_02]: if "processing" in _i.stats: del _i.stats.processing # test mergeable traces (contained ones) for tr_b in [tr2, tr3, tr4]: tr_a = tr1.copy() st = Stream([tr_a, tr_b]) st._cleanup() self.assertEqual(st, Stream([tr1])) self.assertEqual(type(st[0].data), np.ndarray) # test mergeable traces (adjacent ones) for tr_b in [tr5, tr6]: tr_a = tr1.copy() st = Stream([tr_a, tr_b]) st._cleanup() self.assertEqual(len(st), 1) self.assertEqual(type(st[0].data), np.ndarray) st_result = Stream([tr1, tr_b]) st_result.merge() self.assertEqual(st, st_result) # test mergeable traces (overlapping ones) for tr_b in [tr_01, tr_02]: tr_a = tr1.copy() st = Stream([tr_a, tr_b]) st._cleanup() self.assertEqual(len(st), 1) self.assertEqual(type(st[0].data), np.ndarray) st_result = Stream([tr1, tr_b]) st_result.merge() self.assertEqual(st, st_result) # test traces that should not be merged tr7 = tr1.copy() tr7.stats.sampling_rate *= 2 tr8 = tr1.copy() tr8.stats.station = "AA" tr9 = tr1.copy() tr9.stats.starttime = end + 10 * delta # test some weird gaps near to one sample: tr10 = tr1.copy() tr10.stats.starttime = end + 0.5 * delta tr11 = tr1.copy() tr11.stats.starttime = end + 0.1 * delta tr12 = tr1.copy() tr12.stats.starttime = end + 0.8 * delta tr13 = tr1.copy() tr13.stats.starttime = end + 1.2 * delta # test non-mergeable traces for tr_b in [tr7, tr8, tr9, tr10, tr11, tr12, tr13]: tr_a = tr1.copy() st = Stream([tr_a, tr_b]) # ignore UserWarnings with warnings.catch_warnings(record=True): warnings.simplefilter('ignore', UserWarning) st._cleanup() self.assertEqual(st, Stream([tr_a, tr_b])) def test_integrate_and_differentiate(self): """ Test integration and differentiation methods of stream """ st1 = read() st2 = read() st1.filter('lowpass', freq=1.0) st2.filter('lowpass', freq=1.0) st1.differentiate() st1.integrate() st2.integrate() st2.differentiate() np.testing.assert_array_almost_equal( st1[0].data[:-1], st2[0].data[:-1], decimal=5) def test_read(self): """ Testing read function. """ # 1 - default example # dtype tr = read(dtype=np.int64)[0] self.assertEqual(tr.data.dtype, np.int64) # dtype is string tr2 = read(dtype='i8')[0] self.assertEqual(tr2.data.dtype, np.int64) self.assertEqual(tr, tr2) # start/end time tr2 = read(starttime=tr.stats.starttime + 1, endtime=tr.stats.endtime - 2)[0] self.assertEqual(tr2.stats.starttime, tr.stats.starttime + 1) self.assertEqual(tr2.stats.endtime, tr.stats.endtime - 2) # headonly tr = read(headonly=True)[0] self.assertFalse(tr.data) # 2 - via http # now in separate test case "test_read_url_via_network" # 3 - some example within obspy # dtype tr = read('/path/to/slist_float.ascii', dtype=np.int32)[0] self.assertEqual(tr.data.dtype, np.int32) # start/end time tr2 = read('/path/to/slist_float.ascii', starttime=tr.stats.starttime + 0.025, endtime=tr.stats.endtime - 0.05)[0] self.assertEqual(tr2.stats.starttime, tr.stats.starttime + 0.025) self.assertEqual(tr2.stats.endtime, tr.stats.endtime - 0.05) # headonly tr = read('/path/to/slist_float.ascii', headonly=True)[0] self.assertFalse(tr.data) # not existing self.assertRaises(OSError, read, '/path/to/UNKNOWN') # 4 - file patterns path = os.path.dirname(__file__) ascii_path = os.path.join(path, "..", "..", "io", "ascii", "tests", "data") filename = os.path.join(ascii_path, 'slist.*') st = read(filename) self.assertEqual(len(st), 2) # exception if no file matches file pattern filename = path + os.sep + 'data' + os.sep + 'NOTEXISTING.*' self.assertRaises(Exception, read, filename) # argument headonly should not be used with start or end time or dtype with warnings.catch_warnings(record=True): # will usually warn only but here we force to raise an exception warnings.simplefilter('error', UserWarning) self.assertRaises(UserWarning, read, '/path/to/slist_float.ascii', headonly=True, starttime=0, endtime=1) def test_read_url_via_network(self): """ Testing read function with an URL fetching data via network connection """ # 2 - via http # dtype tr = read('https://examples.obspy.org/test.sac', dtype=np.int32)[0] self.assertEqual(tr.data.dtype, np.int32) # start/end time tr2 = read('https://examples.obspy.org/test.sac', starttime=tr.stats.starttime + 1, endtime=tr.stats.endtime - 2)[0] self.assertEqual(tr2.stats.starttime, tr.stats.starttime + 1) self.assertEqual(tr2.stats.endtime, tr.stats.endtime - 2) # headonly tr = read('https://examples.obspy.org/test.sac', headonly=True)[0] self.assertFalse(tr.data) def test_copy(self): """ Testing the copy method of the Stream object. """ st = read() st2 = st.copy() self.assertEqual(st, st2) self.assertEqual(st2, st) self.assertFalse(st is st2) self.assertFalse(st2 is st) self.assertEqual(st.traces[0], st2.traces[0]) self.assertFalse(st.traces[0] is st2.traces[0]) def test_merge_with_empty_trace(self): """ Merging a stream containing a empty trace with a differing sampling rate should not fail. """ # preparing a dataset tr = read()[0] st = tr / 3 # empty and change sampling rate of second trace st[1].stats.sampling_rate = 0 st[1].data = np.array([]) # merge st.merge(fill_value='interpolate') self.assertEqual(len(st), 1) def test_rotate(self): """ Testing the rotate method. """ st = read() st += st.copy() st[3:].normalize() st2 = st.copy() # rotate to RT and back with 6 traces st.rotate(method='NE->RT', back_azimuth=30) self.assertTrue((st[0].stats.channel[-1] + st[1].stats.channel[-1] + st[2].stats.channel[-1]) == 'ZRT') self.assertTrue((st[3].stats.channel[-1] + st[4].stats.channel[-1] + st[5].stats.channel[-1]) == 'ZRT') st.rotate(method='RT->NE', back_azimuth=30) self.assertTrue((st[0].stats.channel[-1] + st[1].stats.channel[-1] + st[2].stats.channel[-1]) == 'ZNE') self.assertTrue((st[3].stats.channel[-1] + st[4].stats.channel[-1] + st[5].stats.channel[-1]) == 'ZNE') self.assertTrue(np.allclose(st[0].data, st2[0].data)) self.assertTrue(np.allclose(st[1].data, st2[1].data)) self.assertTrue(np.allclose(st[2].data, st2[2].data)) self.assertTrue(np.allclose(st[3].data, st2[3].data)) self.assertTrue(np.allclose(st[4].data, st2[4].data)) self.assertTrue(np.allclose(st[5].data, st2[5].data)) # again, with angles given in stats and just 2 components st = st2.copy() st = st[1:3] + st[4:] st[0].stats.back_azimuth = 190 st[2].stats.back_azimuth = 200 st.rotate(method='NE->RT') st.rotate(method='RT->NE') self.assertTrue(np.allclose(st[0].data, st2[1].data)) self.assertTrue(
np.allclose(st[1].data, st2[2].data)
numpy.allclose
# -*- coding: utf-8 -*- """ Created on Thu Jan 23 12:21:27 2020. @author: pielsticker """ import warnings import numpy as np import os import pandas as pd import json import datetime import h5py from time import time import matplotlib.pyplot as plt from base_model.spectra import ( safe_arange_with_edges, MeasuredSpectrum, ) from base_model.figures import Figure from sim import Simulation # %% class Creator: """Class for simulating mixed XPS spectra.""" def __init__(self, params=None): """ Prepare simulation run. Loading the input spectra and creating the empty simulation matrix based on the number of input spectra. Parameters ---------- no_of_simulations : int The number of spectra that will be simulated. input_filenames : list List of strings that defines the seed files for the simulations. single : bool, optional If single, then only one of the input spectra will be used for creating a single spectrum. If not single, a linear combination of all spectra will be used. The default is True. variable_no_of_inputs : bool, optional If variable_no_of_inputs and if single, then the number of input spectra used in the linear combination will be randomly chosen from the interval (1, No. of input spectra). The default is True. Returns ------- None. """ default_param_filename = "default_params.json" default_param_filepath = os.path.join( os.path.dirname(os.path.abspath(__file__)), default_param_filename ) with open(default_param_filepath, "r") as param_file: self.params = json.load(param_file) self.params["init_param_filepath"] = default_param_filepath self.sim_ranges = self.params["sim_ranges"] timestamp = datetime.datetime.now().strftime("%Y%m%d") self.params["timestamp"] = timestamp # Replace the default params with the supplied params # if available. if params is not None: for key in params.keys(): if key != "sim_ranges": self.params[key] = params[key] else: for subkey in params["sim_ranges"].keys(): self.sim_ranges[subkey] = params["sim_ranges"][subkey] # Print parameter file name. print( "Parameters were taken from " f"{self.params['init_param_filepath']}." ) del self.params["init_param_filepath"] self.name = self.params["timestamp"] + "_" + self.params["name"] self.no_of_simulations = self.params["no_of_simulations"] self.labels = self.params["labels"] self.spectra = self.params["spectra"] # Warning if core and auger spectra of same species are # not scaled together. if not self.params["same_auger_core_percentage"]: warnings.warn( "Auger and core spectra of the same species are not scaled" " together. If you have Auger spectra, you may want to set" ' "same_auger_core_percentage" to True!' ) # Load input spectra from all reference sets. self.input_spectra = self.load_input_spectra( self.params["input_filenames"] ) # No. of parameter = 1 ref_set + no. of linear parameter + 6 # (one parameter each for resolution, shift_x, signal_to noise, # scatterer, distance, pressure) self.no_of_linear_params = len(self.spectra) no_of_params = 1 + self.no_of_linear_params + 6 self.simulation_matrix = np.zeros( (self.no_of_simulations, no_of_params) ) # Create the parameter matrix for the simulation. self.create_matrix( single=self.params["single"], variable_no_of_inputs=self.params["variable_no_of_inputs"], always_auger=self.params["always_auger"], always_core=self.params["always_core"], ) def load_input_spectra(self, filenames): """ Load input spectra. Load input spectra from all reference sets into DataFrame. Will store NaN value if no reference is available. Parameters ---------- filenames : dict Dictionary of list with filenames to load. Returns ------- pd.DataFrame A DataFrame containing instances of MeasuredSpectrum. Each row contains one set of reference spectra. """ input_spectra = pd.DataFrame(columns=self.spectra) input_datapath = os.path.join( *[ os.path.dirname(os.path.abspath(__file__)).partition( "simulation" )[0], "data", "references", ] ) input_spectra_list = [] for set_key, value_list in filenames.items(): ref_spectra_dict = {} for filename in value_list: filepath = os.path.join(input_datapath, filename) measured_spectrum = MeasuredSpectrum(filepath) if self.params["normalize_inputs"]: measured_spectrum.normalize() label = next(iter(measured_spectrum.label.keys())) ref_spectra_dict[label] = measured_spectrum input_spectra_list.append(ref_spectra_dict) return pd.concat( [input_spectra, pd.DataFrame(input_spectra_list)], join="outer" ) def create_matrix( self, single=False, variable_no_of_inputs=True, always_auger=False, always_core=True, ): """ Create matrix for multiple simulations. Creates the numpy array 'simulation_matrix' (instance variable) that is used to simulate the new spectra. simulation_matrix has the dimensions (n x p), where: n: no. of spectra that will be created p: number of parameters p = no. of input spectra + 3 (resolution,shift,noise) The parameters are chosen randomly. For the last three parameters, the random numbers are integers drawn from specific intervals that create reasonable spectra. Parameters ---------- single : bool, optional If single, only one input spectrum is taken. The default is False. variable_no_of_inputs : bool, optional If variable_no_of_inputs and if single, then the number of input spectra used in the linear combination will be randomly chosen from the interval (1, No. of input spectra). The default is True. always_auger : bool, optional If always_auger, there will always be at least one Auger spectrum in the output spectrum. The default is False. always_core : bool, optional If always_auger, there will always be at least one core level spectrum in the output spectrum. The default is True. Returns ------- None. """ for i in range(self.no_of_simulations): key = self.select_reference_set() # select a set of references self.simulation_matrix[i, 0] = int(key) self.simulation_matrix[ i, 1 : self.no_of_linear_params + 1 ] = self.select_scaling_params( key, single, variable_no_of_inputs, always_auger ) self.simulation_matrix[ i, self.no_of_linear_params + 1 : ] = self.select_sim_params(key) print( "Random parameters: " + str(i + 1) + "/" + str(self.no_of_simulations) ) def select_reference_set(self): """ Randomly select a number for calling one of the reference sets. Returns ------- int A number between 0 and the total number of input reference sets. """ return np.random.randint(0, self.input_spectra.shape[0]) def select_scaling_params( self, key, single=False, variable_no_of_inputs=True, always_auger=False, always_core=True, ): """ Randomly select parameters for linear combination. Select scaling parameters for a simulation from one set of reference spectra (given by key). Parameters ---------- key : int Integer number of the reference spectrum set to use. single : bool, optional If single, only one input spectrum is taken. The default is False. variable_no_of_inputs : bool, optional If variable_no_of_inputs and if single, then the number of input spectra used in the linear combination will be randomly chosen from the interval (1, No. of input spectra). The default is True. always_auger : bool, optional If always_auger, there will always be at least one Auger spectrum in the output spectrum. The default is False. always_core : bool, optional If always_auger, there will always be at least one core level spectrum in the output spectrum. The default is True. Returns ------- linear_params : list A list of parameters for the linear combination of r eference spectra. """ linear_params = [0.0] * self.no_of_linear_params # Get input spectra from one set of references. inputs = self.input_spectra.iloc[[key]] # Select indices where a spectrum is available for this key. indices = [ self.spectra.index(j) for j in inputs.columns[inputs.isnull().any() == False].tolist() ] indices_empty = [ self.spectra.index(j) for j in inputs.columns[inputs.isnull().any()].tolist() ] # This ensures that always just one Auger region is used. auger_spectra = [] core_spectra = [] for s in inputs.iloc[0]: if str(s) != "nan": if s.spectrum_type == "auger": auger_spectra.append(s) if s.spectrum_type == "core_level": core_spectra.append(s) auger_region = self._select_one_auger_region(auger_spectra) selected_auger_spectra = [ auger_spectrum for auger_spectrum in auger_spectra if (auger_region in list(auger_spectrum.label.keys())[0]) ] unselected_auger_spectra = [ auger_spectrum for auger_spectrum in auger_spectra if (auger_region not in list(auger_spectrum.label.keys())[0]) ] selected_auger_indices = [ inputs.columns.get_loc(list(s.label.keys())[0]) for s in selected_auger_spectra ] unselected_auger_indices = [ inputs.columns.get_loc(list(s.label.keys())[0]) for s in unselected_auger_spectra ] if single: # Set one parameter to 1 and others to 0. q = np.random.choice(indices) linear_params[q] = 1.0 else: if variable_no_of_inputs: # Randomly choose how many spectra shall be combined no_of_spectra = np.random.randint(1, len(indices) + 1) params = [0.0] * no_of_spectra while sum(params) == 0.0: params = [ np.random.uniform(0.1, 1.0) for j in range(no_of_spectra) ] params = self._normalize_float_list(params) # Don't allow parameters below 0.1. for p in params: if p <= 0.1: params[params.index(p)] = 0.0 params = self._normalize_float_list(params) # Add zeros if no_of_spectra < no_of_linear_params. for _ in range(len(indices) - no_of_spectra): params.append(0.0) else: # Linear parameters r = [np.random.uniform(0.1, 1.0) for j in range(len(indices))] params = self._normalize_float_list(r) while all(p >= 0.1 for p in params) is not False: # sample again if one of the parameters is smaller # than 0.1. r = [ np.random.uniform(0.1, 1.0) for j in range(len(indices)) ] params = self._normalize_float_list(r) # Randomly shuffle so that zeros are equally distributed. np.random.shuffle(params) # Add linear params at the positions where there # are reference spectra available param_iter = iter(params) for index in indices: linear_params[index] = next(param_iter) # Making sure that a single spectrum is not moved # to the undesired Auger region. test_indices = [ i for i in indices if i not in unselected_auger_indices ] while all( p == 0.0 for p in [linear_params[i] for i in test_indices] ): np.random.shuffle(params) param_iter = iter(params) for index in indices: linear_params[index] = next(param_iter) # Remove undesired auger spectra for index in unselected_auger_indices: linear_params[index] = 0.0 if self.params["same_auger_core_percentage"]: # Set percentage for core and auger spectra of the # same species to the same value. linear_params = self._scale_auger_core_together( linear_params, selected_auger_spectra, core_spectra ) linear_params = self._normalize_float_list(linear_params) # If no spectrum is available, set the corresponding # linear param to NaN. for index in indices_empty: linear_params[index] = float("NAN") if always_auger: # Always use at least one Auger spectrum # when available. if all( p == 0.0 for p in [linear_params[i] for i in selected_auger_indices] ): linear_params = self.select_scaling_params( key=key, single=single, variable_no_of_inputs=variable_no_of_inputs, always_auger=always_auger, always_core=always_core, ) if always_core: # Always use at least one core level spectrum # when available. core_level_indices = [ inputs.columns.get_loc(list(s.label.keys())[0]) for s in core_spectra ] if all( p == 0.0 for p in [linear_params[i] for i in core_level_indices] ): linear_params = self.select_scaling_params( key=key, single=single, variable_no_of_inputs=variable_no_of_inputs, always_auger=always_auger, always_core=always_core, ) return linear_params def select_sim_params(self, row): """ Select parameters for one row in the simulation matrix. Parameters ---------- row : int Row in the simulation matrix to fill. Returns ------- sim_params : list List of parameters for changing a spectrum using various processing steps. """ sim_params = [0.0] * 6 # FWHM sim_params[-6] = self._select_random_fwhm() # shift_x # Get step from first existing spectrum for spectrum in self.input_spectra.iloc[row]: try: step = spectrum.step break except AttributeError: continue sim_params[-5] = self._select_random_shift_x(step) # Signal-to-noise sim_params[-4] = self._select_random_noise() # Scattering # Scatterer sim_params[-3] = self._select_random_scatterer() # Pressurex sim_params[-2] = self._select_random_scatter_pressure() # Distance sim_params[-1] = self._select_random_scatter_distance() return sim_params def _select_random_fwhm(self): if self.params["broaden"] is not False: return np.random.randint( self.sim_ranges["FWHM"][0], self.sim_ranges["FWHM"][1] ) return 0 def _select_random_shift_x(self, step): if self.params["shift_x"] is not False: shift_range = np.arange( self.sim_ranges["shift_x"][0], self.sim_ranges["shift_x"][1], step, ) r = np.round(np.random.randint(0, len(shift_range)), decimals=2) if -step < shift_range[r] < step: shift_range[r] = 0 return shift_range[r] return 0 def _select_random_noise(self): if self.params["noise"] is not False: return ( np.random.randint( self.sim_ranges["noise"][0] * 1000, self.sim_ranges["noise"][1] * 1000, ) / 1000 ) return 0 def _select_random_scatterer(self): if self.params["scatter"] is not False: # Scatterer ID return np.random.randint( 0, len(self.sim_ranges["scatterers"].keys()) ) return None def _select_random_scatter_pressure(self): if self.params["scatter"] is not False: return ( np.random.randint( self.sim_ranges["pressure"][0] * 10, self.sim_ranges["pressure"][1] * 10, ) / 10 ) return 0 def _select_random_scatter_distance(self): if self.params["scatter"] is not False: return ( np.random.randint( self.sim_ranges["distance"][0] * 100, self.sim_ranges["distance"][1] * 100, ) / 100 ) return 0 def _select_one_auger_region(self, auger_spectra): """ Randomly select one region of Auger spectra. Checks for the available Auger spectra and randomly selects one emission line. Returns ------- str Name of the randomly selected Auger region. """ labels = [list(s.label.keys())[0] for s in auger_spectra] if not labels: return [] auger_regions = set([label.split(" ", 1)[0] for label in labels]) auger_regions = list(auger_regions) r = np.random.randint(0, len(auger_regions)) return auger_regions[r] def _scale_auger_core_together( self, linear_params, selected_auger_spectra, core_spectra ): """ Set core/auger percentage of the same species to same value. Parameters ---------- linear_params : list List of all linear parameters. selected_auger_spectra : list List of all selected Auger spectra. core_spectra : list List of all avialble core level spectra. Returns ------- linear_params : list New list of linear parameters where core and auger spectra of the same species have the same percentage. """ auger_labels = [ list(s.label.keys())[0] for s in selected_auger_spectra ] auger_phases = [label.split(" ", 1)[1] for label in auger_labels] core_labels = [list(s.label.keys())[0] for s in core_spectra] core_phases = [label.split(" ", 1)[1] for label in core_labels] overlapping_species = [ phase for phase in auger_phases if phase in core_phases ] for species in overlapping_species: label_auger = [ label for label in auger_labels if species in label ][0] label_core = [label for label in core_labels if species in label][ 0 ] i_auger = self.spectra.index(label_auger) i_core = self.spectra.index(label_core) max_value = np.max( [linear_params[i_auger], linear_params[i_core]] ) linear_params[i_auger] = max_value linear_params[i_core] = max_value return linear_params def _normalize_float_list(self, list_of_floats): """ Normalize a list of float by its sum. Parameters ---------- param_list : list List of floats. Returns ------- list Normalized list of floats (or original list if all entries are 0.) """ try: return [k / sum(list_of_floats) for k in list_of_floats] except ZeroDivisionError: return list_of_floats def run(self): """ Run the simulations. The artificial spectra are createad using the Simulation class and the simulation matrix. All data is then stored in a dataframe. Returns ------- None. """ dict_list = [] for i in range(self.no_of_simulations): ref_set_key = int(self.simulation_matrix[i, 0]) # Only select input spectra and scaling parameter # for the references that are avalable. sim_input_spectra = [ spectrum for spectrum in self.input_spectra.iloc[ref_set_key].tolist() if str(spectrum) != "nan" ] scaling_params = [ p for p in self.simulation_matrix[i][ 1 : self.no_of_linear_params + 1 ] if str(p) != "nan" ] self.sim = Simulation(sim_input_spectra) self.sim.combine_linear(scaling_params=scaling_params) fwhm = self.simulation_matrix[i][-6] shift_x = self.simulation_matrix[i][-5] signal_to_noise = self.simulation_matrix[i][-4] scatterer_id = self.simulation_matrix[i][-3] distance = self.simulation_matrix[i][-2] pressure = self.simulation_matrix[i][-1] try: # In order to assign a label, the scatterers are encoded # by numbers. scatterer_label = self.sim_ranges["scatterers"][ str(int(scatterer_id)) ] except ValueError: scatterer_label = None self.sim.change_spectrum( fwhm=fwhm, shift_x=shift_x, signal_to_noise=signal_to_noise, scatterer={ "label": scatterer_label, "distance": distance, "pressure": pressure, }, ) if self.params["normalize_outputs"]: self.sim.output_spectrum.normalize() d1 = {"reference_set": ref_set_key} d2 = self._dict_from_one_simulation(self.sim) d = {**d1, **d2} dict_list.append(d) print( "Simulation: " + str(i + 1) + "/" + str(self.no_of_simulations) ) print("Number of created spectra: " + str(self.no_of_simulations)) self.df = pd.DataFrame(dict_list) if self.params["ensure_same_length"]: self.df = self._extend_spectra_in_df(self.df) self._prepare_metadata_after_run() return self.df def _dict_from_one_simulation(self, sim): """ Create a dictionary with data from one simulation event. Parameters ---------- sim : Simulation The simulation for which the dictionary shall be created. Returns ------- d : dict Dictionaty containing all simulation data. """ spectrum = sim.output_spectrum # Add all percentages of one species together. new_label = {} out_phases = [] for key, value in spectrum.label.items(): phase = key.split(" ", 1)[1] if phase not in out_phases: new_label[phase] = value else: new_label[phase] += value out_phases.append(phase) spectrum.label = new_label y = np.reshape(spectrum.lineshape, (spectrum.lineshape.shape[0], -1)) d = { "label": spectrum.label, "shift_x": spectrum.shift_x, "noise": spectrum.signal_to_noise, "FWHM": spectrum.fwhm, "scatterer": spectrum.scatterer, "distance": spectrum.distance, "pressure": spectrum.pressure, "x": spectrum.x, "y": y, } for label_value in self.labels: if label_value not in d["label"].keys(): d["label"][label_value] = 0.0 return d def _extend_spectra_in_df(self, df): """ Extend all x and y columns in the dataframe to the same length. Parameters ---------- df : pd.DataFrame A dataframe with "x" and "y" columns containing 1D numpy arrays. Returns ------- df : pd.DataFrame The same dataframe as the input, with the arrays in the "x" and "y" columns all having the same shape. """ max_length = np.max([y.shape for y in self.df["y"].tolist()]) data_list = df[["x", "y"]].values.tolist() new_spectra = [] for (x, y) in data_list: x_new, y_new = self._extend_xy(x, y, max_length) new_data_dict = {"x": x_new, "y": y_new} new_spectra.append(new_data_dict) df.update(pd.DataFrame(new_spectra)) return df def _extend_xy(self, X0, Y0, new_length): """ Extend two 1D arrays to a new length. Parameters ---------- X0 : TYPE Regularly spaced 1D array. Y0 : TYPE 1D array of the same size as X0. new_length : int Length of new array. Returns ------- None. """ """ Returns ------- None. """ def start_stop_step_from_x(x): """ Calculcate start, stop, and step from a regular array. Parameters ---------- x : ndarrray A numpy array with regular spacing, i.e. the same step size between all points. Returns ------- start : int Minimal value of x. stop : int Maximal value of x. step : float Step size between points in x. """ start = np.min(x) stop = np.max(x) x1 = np.roll(x, -1) diff = np.abs(np.subtract(x, x1)) step = np.round(np.min(diff[diff != 0]), 3) return start, stop, step len_diff = new_length - X0.shape[0] if len_diff > 0.0: start0, stop0, step0 = start_stop_step_from_x(X0) start = start0 - int(len_diff / 2) * step0 stop = stop0 + int(len_diff / 2) * step0 X = np.flip(safe_arange_with_edges(start, stop, step0)) Y = np.zeros(shape=(X.shape[0], 1)) Y[: int(len_diff / 2)] = np.mean(Y0[:20]) Y[int(len_diff / 2) : -int(len_diff / 2)] = Y0 Y[-int(len_diff / 2) :] =
np.mean(Y0[-20])
numpy.mean
import re import os import string import ipdb import pickle import matplotlib matplotlib.use('Agg') from matplotlib import rcParams import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.model_selection import TimeSeriesSplit from sklearn.metrics import mean_squared_error from sklearn.metrics import accuracy_score from sklearn.preprocessing import normalize from sklearn.preprocessing import RobustScaler from sklearn import linear_model from wordcloud import WordCloud from nltk import pos_tag, word_tokenize import gensim.downloader as api MIN_DF = 10 MAX_DF = 100 WORD_CLOUD_NUMBER = 50 BOW = "bow" TFIDF = "tfidf" WORD2VEC = "word2vec" SKIPTHOUGHT = "skipThought" def select_by_pos_tag(sentence, tags): word_tokens = word_tokenize(sentence) tagged_word_token = pos_tag(word_tokens) selected_words = [word for word, tag in tagged_word_token if tag in tags] return ' '.join(selected_words) def clean_sentence(s): s = re.sub("\n", " ", s) s = re.sub("[" + string.punctuation + "]", " ", s) s = re.sub("\?", " ", s) s = re.sub("[0-9]+", " ", s) s = re.sub(" +", " ", s) return s.strip() def generate_bag_of_words(train, test, feature_args): vectorizer = CountVectorizer(min_df=MIN_DF, max_df=MAX_DF, **feature_args) train_bag_of_words = vectorizer.fit_transform(train['text'].apply(clean_sentence)).toarray() test_bag_of_words = vectorizer.transform(test['text'].apply(clean_sentence)).toarray() train_bag_of_words = normalize(train_bag_of_words) test_bag_of_words = normalize(test_bag_of_words) word_list = vectorizer.get_feature_names() train_text_df = pd.DataFrame(train_bag_of_words, index=train.index, columns=word_list) test_text_df = pd.DataFrame(test_bag_of_words, index=test.index, columns=word_list) bag_of_words_df = pd.concat([train_text_df, test_text_df], axis=0) return bag_of_words_df, vectorizer def generate_tfidf(train, test, feature_args): vectorizer = TfidfVectorizer(min_df=MIN_DF, max_df=MAX_DF, **feature_args) train_bag_of_words = vectorizer.fit_transform(train['text'].apply(clean_sentence)).toarray() test_bag_of_words = vectorizer.transform(test['text'].apply(clean_sentence)).toarray() word_list = vectorizer.get_feature_names() train_text_df = pd.DataFrame(train_bag_of_words, index=train.index, columns=word_list) test_text_df = pd.DataFrame(test_bag_of_words, index=test.index, columns=word_list) bag_of_words_df = pd.concat([train_text_df, test_text_df], axis=0) return bag_of_words_df, vectorizer def average_word2vec(sentence, model): sentence = clean_sentence(sentence) word2vecs = [] for word in sentence.split(" "): word = word.lower() if word in model: word2vecs.append(model[word]) return pd.Series(
np.average(word2vecs, axis=0)
numpy.average
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. '''Unit tests for the Dataset.py module''' import unittest from ocw.dataset import Dataset, Bounds import numpy as np import datetime as dt class TestDatasetAttributes(unittest.TestCase): def setUp(self): self.lat = np.array([10, 12, 14, 16, 18]) self.lon = np.array([100, 102, 104, 106, 108]) self.time = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)]) flat_array = np.array(range(300)) self.value = flat_array.reshape(12, 5, 5) self.variable = 'prec' self.test_dataset = Dataset(self.lat, self.lon, self.time, self.value, self.variable) def test_lats(self): self.assertItemsEqual(self.test_dataset.lats, self.lat) def test_lons(self): self.assertItemsEqual(self.test_dataset.lons, self.lon) def test_times(self): self.assertItemsEqual(self.test_dataset.times, self.time) def test_values(self): self.assertEqual(self.test_dataset.values.all(), self.value.all()) def test_variable(self): self.assertEqual(self.test_dataset.variable, self.variable) class TestInvalidDatasetInit(unittest.TestCase): def setUp(self): self.lat = np.array([10, 12, 14, 16, 18]) self.lon = np.array([100, 102, 104, 106, 108]) self.time = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)]) flat_array = np.array(range(300)) self.value = flat_array.reshape(12, 5, 5) self.values_in_wrong_order = flat_array.reshape(5, 5, 12) def test_bad_lat_shape(self): self.lat = np.array([[1, 2], [3, 4]]) with self.assertRaises(ValueError): Dataset(self.lat, self.lon, self.time, self.value, 'prec') def test_bad_lon_shape(self): self.lon = np.array([[1, 2], [3, 4]]) with self.assertRaises(ValueError): Dataset(self.lat, self.lon, self.time, self.value, 'prec') def test_bad_times_shape(self): self.time = np.array([[1, 2], [3, 4]]) with self.assertRaises(ValueError): Dataset(self.lat, self.lon, self.time, self.value, 'prec') def test_bad_values_shape(self): self.value = np.array([[1, 2], [2, 3], [3, 4], [4, 5]]) with self.assertRaises(ValueError): Dataset(self.lat, self.lon, self.time, self.value, 'prec') def test_values_shape_mismatch(self): # If we change lats to this the shape of value will not match # up with the length of the lats array. self.lat = self.lat[:-2] with self.assertRaises(ValueError): Dataset(self.lat, self.lon, self.time, self.value, 'prec') def test_values_given_in_wrong_order(self): with self.assertRaises(ValueError): Dataset(self.lat, self.lon, self.time, self.values_in_wrong_order) def test_lons_values_incorrectly_gridded(self): times = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)]) lats = np.arange(-30, 30) bad_lons = np.arange(360) flat_array = np.arange(len(times) * len(lats) * len(bad_lons)) values = flat_array.reshape(len(times), len(lats), len(bad_lons)) ds = Dataset(lats, bad_lons, times, values) np.testing.assert_array_equal(ds.lons, np.arange(-180, 180)) def test_reversed_lats(self): ds = Dataset(self.lat[::-1], self.lon, self.time, self.value) np.testing.assert_array_equal(ds.lats, self.lat) class TestDatasetFunctions(unittest.TestCase): def setUp(self): self.lat = np.array([10, 12, 14, 16, 18]) self.lon =
np.array([100, 102, 104, 106, 108])
numpy.array
import cv2 import numpy as np import time import os import matplotlib.pyplot as plt from easyocr import Reader from PIL import Image import datetime def detect_etiqueta(etiquetas): # display function to show image on Jupyter def display_img(img,cmap=None): fig = plt.figure(figsize = (12,12)) plt.axis(False) ax = fig.add_subplot(111) ax.imshow(img,cmap) # Load the COCO class labels in which our YOLO model was trained on labelsPath = os.path.join("obj.names") LABELS = open(labelsPath).read().strip().split("\n") # The COCO dataset contains 80 different classes #LABELS # derive the paths to the YOLO weights and model configuration weightsPath = os.path.join("yolov4-obj_final.weights") configPath = os.path.join("yolov4-obj.cfg") # Loading the neural network framework Darknet (YOLO was created based on this framework) net = cv2.dnn.readNetFromDarknet(configPath,weightsPath) #net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) # Create the function which predict the frame input def predict(image): # initialize a list of colors to represent each possible class label np.random.seed(42) COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8") (H, W) = image.shape[:2] # determine only the "ouput" layers name which we need from YOLO ln = net.getLayerNames() ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] # construct a blob from the input image and then perform a forward pass of the YOLO object detector, # giving us our bounding boxes and associated probabilities blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) layerOutputs = net.forward(ln) #global boxes boxes = [] confidences = [] classIDs = [] threshold = 0.50 # loop over each of the layer outputs for output in layerOutputs: # loop over each of the detections for detection in output: # extract the class ID and confidence (i.e., probability) of # the current object detection scores = detection[5:] classID = np.argmax(scores) confidence = scores[classID] # filter out weak predictions by ensuring the detected # probability is greater than the minimum probability # confidence type=float, default=0.5 if confidence > threshold: # scale the bounding box coordinates back relative to the # size of the image, keeping in mind that YOLO actually # returns the center (x, y)-coordinates of the bounding # box followed by the boxes' width and height box = detection[0:4] *
np.array([W, H, W, H])
numpy.array
""" Python implementation of the LiNGAM algorithms. The LiNGAM Project: https://sites.google.com/site/sshimizu06/lingam """ import itertools import warnings import numpy as np from sklearn.linear_model import LassoLarsIC, LinearRegression from sklearn.utils import check_array, resample from statsmodels.tsa.statespace.varmax import VARMAX from .base import _BaseLiNGAM from .bootstrap import BootstrapResult from .direct_lingam import DirectLiNGAM from .hsic import hsic_test_gamma from .utils import predict_adaptive_lasso, find_all_paths class VARMALiNGAM: """Implementation of VARMA-LiNGAM Algorithm [1]_ References ---------- .. [1] <NAME>, <NAME>, <NAME>. Analyzing relationships among ARMA processes based on non-Gaussianity of external influences. Neurocomputing, Volume 74: 2212-2221, 2011 """ def __init__( self, order=(1, 1), criterion="bic", prune=False, max_iter=100, ar_coefs=None, ma_coefs=None, lingam_model=None, random_state=None, ): """Construct a VARMALiNGAM model. Parameters ---------- order : turple, length = 2, optional (default=(1, 1)) Number of lags for AR and MA model. criterion : {'aic', 'bic', 'hqic', None}, optional (default='bic') Criterion to decide the best order in the all combinations of ``order``. Searching the best order is disabled if ``criterion`` is ``None``. prune : boolean, optional (default=False) Whether to prune the adjacency matrix or not. max_iter : int, optional (default=100) Maximm number of iterations to estimate VARMA model. ar_coefs : array-like, optional (default=None) Coefficients of AR of ARMA. Estimating ARMA model is skipped if specified ``ar_coefs`` and `ma_coefs`. Shape must be (``order[0]``, n_features, n_features). ma_coefs : array-like, optional (default=None) Coefficients of MA of ARMA. Estimating ARMA model is skipped if specified ``ar_coefs`` and `ma_coefs`. Shape must be (``order[1]``, n_features, n_features). lingam_model : lingam object inherits 'lingam._BaseLiNGAM', optional (default=None) LiNGAM model for causal discovery. If None, DirectLiNGAM algorithm is selected. random_state : int, optional (default=None) ``random_state`` is the seed used by the random number generator. """ self._order = order self._criterion = criterion self._prune = prune self._max_iter = max_iter self._ar_coefs = ( check_array(ar_coefs, allow_nd=True) if ar_coefs is not None else None ) self._ma_coefs = ( check_array(ma_coefs, allow_nd=True) if ma_coefs is not None else None ) self._lingam_model = lingam_model self._random_state = random_state def fit(self, X): """Fit the model to X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where ``n_samples`` is the number of samples and ``n_features`` is the number of features. returns ------- self : object Returns the instance itself. """ self._causal_order = None self._adjacency_matrices = None X = check_array(X) lingam_model = self._lingam_model if lingam_model is None: lingam_model = DirectLiNGAM() elif not isinstance(lingam_model, _BaseLiNGAM): raise ValueError("lingam_model must be a subclass of _BaseLiNGAM") phis = self._ar_coefs thetas = self._ma_coefs order = self._order if phis is None or thetas is None: phis, thetas, order, residuals = self._estimate_varma_coefs(X) else: p = phis.shape[0] q = thetas.shape[0] residuals = self._calc_residuals(X, phis, thetas, p, q) model = lingam_model model.fit(residuals) psis, omegas = self._calc_psi_and_omega( model.adjacency_matrix_, phis, thetas, order ) if self._prune: ee = np.dot( np.eye(model.adjacency_matrix_.shape[0]) - model.adjacency_matrix_, residuals.T, ).T psis, omegas = self._pruning(X, ee, order, model.causal_order_) self._ar_coefs = phis self._ma_coefs = thetas self._order = order self._residuals = residuals self._causal_order = model.causal_order_ self._adjacency_matrices = (psis, omegas) return self def bootstrap(self, X, n_sampling): """Evaluate the statistical reliability of DAG based on the bootstrapping. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where ``n_samples`` is the number of samples and ``n_features`` is the number of features. n_sampling : int Number of bootstrapping samples. Returns ------- result : TimeseriesBootstrapResult Returns the result of bootstrapping. """ X = check_array(X) n_samples = X.shape[0] n_features = X.shape[1] (p, q) = self._order criterion = self._criterion self._criterion = None self.fit(X) residuals = self._residuals ar_coefs = self._ar_coefs ma_coefs = self._ma_coefs total_effects = np.zeros([n_sampling, n_features, n_features * (1 + p)]) adjacency_matrices = [] for i in range(n_sampling): sampled_residuals = resample(residuals, n_samples=n_samples) resampled_X = np.zeros((n_samples, n_features)) for j in range(n_samples): if j < max(p, q): resampled_X[j, :] = sampled_residuals[j] continue ar = np.zeros((1, n_features)) for t, M in enumerate(ar_coefs): ar += np.dot(M, resampled_X[j - t - 1, :].T).T ma = np.zeros((1, n_features)) for t, M in enumerate(ma_coefs): ma += np.dot(M, sampled_residuals[j - t - 1, :].T).T resampled_X[j, :] = ar + sampled_residuals[j] + ma self.fit(resampled_X) psi = self._adjacency_matrices[0] omega = self._adjacency_matrices[1] am = np.concatenate([*psi, *omega], axis=1) adjacency_matrices.append(am) ee = np.dot(np.eye(psi[0].shape[0]) - psi[0], sampled_residuals.T).T # total effects for c, to in enumerate(reversed(self._causal_order)): # time t for from_ in self._causal_order[: n_features - (c + 1)]: total_effects[i, to, from_] = self.estimate_total_effect( resampled_X, ee, from_, to ) # time t-tau for lag in range(p): for from_ in range(n_features): total_effects[ i, to, from_ + n_features ] = self.estimate_total_effect( resampled_X, ee, from_, to, lag + 1 ) self._criterion = criterion return VARMABootstrapResult(adjacency_matrices, total_effects, self._order) def estimate_total_effect(self, X, E, from_index, to_index, from_lag=0): """Estimate total effect using causal model. Parameters ---------- X : array-like, shape (n_samples, n_features) Original data, where n_samples is the number of samples and n_features is the number of features. E : array-like, shape (n_samples, n_features) Original error data, where n_samples is the number of samples and n_features is the number of features. from_index : Index of source variable to estimate total effect. to_index : Index of destination variable to estimate total effect. Returns ------- total_effect : float Estimated total effect. """ X = check_array(X) n_features = X.shape[1] # Check from/to causal order if from_lag == 0: from_order = self._causal_order.index(from_index) to_order = self._causal_order.index(to_index) if from_order > to_order: warnings.warn( f"The estimated causal effect may be incorrect because " f"the causal order of the destination variable (to_index={to_index}) " f"is earlier than the source variable (from_index={from_index})." ) # X + lagged X X_joined = np.zeros( (X.shape[0], X.shape[1] * (1 + from_lag + self._order[0] + self._order[1])) ) for p in range(1 + self._order[0]): pos = n_features * p X_joined[:, pos : pos + n_features] = np.roll(X[:, 0:n_features], p, axis=0) for q in range(self._order[1]): pos = n_features * (1 + self._order[0]) + n_features * q X_joined[:, pos : pos + n_features] = np.roll( E[:, 0:n_features], q + 1, axis=0 ) # concat psi and omega psi = self._adjacency_matrices[0] omega = self._adjacency_matrices[1] am = np.concatenate([*psi, *omega], axis=1) # from_index + parents indices parents = np.where(np.abs(am[from_index]) > 0)[0] from_index = from_index if from_lag == 0 else from_index + n_features parents = parents if from_lag == 0 else parents + n_features predictors = [from_index] predictors.extend(parents) # Estimate total effect coefs = predict_adaptive_lasso(X_joined, predictors, to_index) return coefs[0] def get_error_independence_p_values(self): """Calculate the p-value matrix of independence between error variables. Returns ------- independence_p_values : array-like, shape (n_features, n_features) p-value matrix of independence between error variables. """ eps = self.residuals_ psi0 = self._adjacency_matrices[0][0] E = np.dot(np.eye(psi0.shape[0]) - psi0, eps.T).T n_samples = E.shape[0] n_features = E.shape[1] p_values = np.zeros([n_features, n_features]) for i, j in itertools.combinations(range(n_features), 2): _, p_value = hsic_test_gamma( np.reshape(E[:, i], [n_samples, 1]), np.reshape(E[:, j], [n_samples, 1]) ) p_values[i, j] = p_value p_values[j, i] = p_value return p_values def _estimate_varma_coefs(self, X): if self._criterion not in ["aic", "bic", "hqic"]: result = VARMAX(X, order=self._order, trend="c").fit(maxiter=self._max_iter) else: min_value = float("Inf") result = None orders = [ (p, q) for p in range(self._order[0] + 1) for q in range(self._order[1] + 1) ] orders.remove((0, 0)) for order in orders: fitted = VARMAX(X, order=order, trend="c").fit(maxiter=self._max_iter) value = getattr(fitted, self._criterion) if value < min_value: min_value = value result = fitted return ( result.coefficient_matrices_var, result.coefficient_matrices_vma, result.specification["order"], result.resid, ) def _calc_residuals(self, X, ar_coefs, ma_coefs, p, q): X = X.T n_features = X.shape[0] n_samples = X.shape[1] start_index = max(p, q) epsilon = np.zeros([n_features, n_samples]) for t in range(n_samples): if t < start_index: epsilon[:, t] = np.random.normal(size=(n_features)) continue ar = np.zeros([n_features, 1]) for i in range(p): ar += np.dot(ar_coefs[i], X[:, t - i - 1].reshape(-1, 1)) ma = np.zeros([n_features, 1]) for j in range(q): ma += np.dot(ma_coefs[j], epsilon[:, t - j - 1].reshape(-1, 1)) epsilon[:, t] = X[:, t] - (ar.flatten() + ma.flatten()) residuals = epsilon[:, start_index:].T return residuals def _calc_psi_and_omega(self, psi0, phis, thetas, order): psis = [psi0] for i in range(order[0]): psi = np.dot(np.eye(psi0.shape[0]) - psi0, phis[i]) psis.append(psi) omegas = [] for j in range(order[1]): omega = np.dot( np.eye(psi0.shape[0]) - psi0, thetas[j], np.linalg.inv(
np.eye(psi0.shape[0])
numpy.eye
import numpy as np import pandas as pd import random import math,time,sys from matplotlib import pyplot from datetime import datetime from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split import csv # from sklearn.neural_network import MLPClassifier # from sklearn.ensemble import RandomForestClassifier ################################################################################################################3 def sigmoid(gamma): #convert to probability if gamma < 0: return 1 - 1/(1 + math.exp(gamma)) else: return 1/(1 + math.exp(-gamma)) def Vfunction(gamma): val = 1 + gamma*gamma val = math.sqrt(val) val = gamma/val return abs(val) def fitness(particle): cols=np.flatnonzero(particle) val=1 if np.shape(cols)[0]==0: return val # clf = RandomForestClassifier(n_estimators=300) clf=KNeighborsClassifier(n_neighbors=5) # clf=MLPClassifier( alpha=0.01, max_iter=1000) #hidden_layer_sizes=(1000,500,100) #cross=4 #test_size=(1/cross) #X_train, X_test, y_train, y_test = train_test_split(trainX, trainy, stratify=trainy,test_size=test_size) train_data=trainX[:,cols] test_data=testX[:,cols] clf.fit(train_data,trainy) val=1-clf.score(test_data,testy) #print('particle: ',particle) #in case of multi objective [] set_cnt=sum(particle) set_cnt=set_cnt/np.shape(particle)[0] val=omega*val+(1-omega)*set_cnt return val def onecount(particle): cnt=0 for i in particle: if i==1.0: cnt+=1 return cnt def allfit(population): x=np.shape(population)[0] acc=np.zeros(x) for i in range(x): acc[i]=fitness(population[i]) #print(acc[i]) return acc def initialize(partCount,dim): population=np.zeros((partCount,dim)) minn = 1 maxx = math.floor(0.5*dim) if maxx<minn: maxx = minn + 1 for i in range(partCount): random.seed(i**3 + 10 + time.time() ) no = random.randint(minn,maxx) if no == 0: no = 1 random.seed(time.time()+ 100) pos = random.sample(range(0,dim-1),no) for j in pos: population[i][j]=1 #print(population[i]) return population def avg_concentration(eqPool,poolSize,dimension): # simple average # print(np.shape(eqPool[0])) (r,) = np.shape(eqPool[0]) avg = np.zeros(np.shape(eqPool[0])) for i in range(poolSize): x = np.array(eqPool[i]) avg = avg + x #print(avg) avg = avg/poolSize #print(avg) #not actual average; but voting # for i in range(dimension): # if avg[i]>=0.5: # avg[i] = 1 # else: # avg[i] = 0 return avg #weighted avg (using Correlation/MI) def signFunc(x): #signum function? or just sign ? if x<0: return -1 return 1 def neighbor(particle,population): percent = 30 percent /= 100 numFeatures = np.shape(population)[1] numChange = int(numFeatures*percent) pos = np.random.randint(0,numFeatures-1,numChange) particle[pos] = 1 - particle[pos] return particle def SA(population,accList): #dispPop() [partCount,numFeatures] = np.shape(population) T0 = numFeatures #print('T0: ',T0) i = 0 for partNo in range(partCount): i = i+1 #print('i: ',i) T=2*numFeatures curPar = population[partNo].copy() curAcc = accList[partNo].copy() #print('Par:',partNo, 'curAcc:',curAcc, 'curFeat:', onecount(curPar), 'fitness_check:', fitness(curPar)) bestPar = curPar.copy() bestAcc = curAcc.copy() while T>T0: #print('T: ',T) newPar = neighbor(curPar,population) newAcc = fitness(newPar)/1.0 if newAcc<bestAcc: curPar=newPar.copy() curAcc=newAcc.copy() bestPar=curPar.copy() bestAcc=curAcc.copy() elif newAcc==bestAcc: if onecount(newPar)<onecount(bestPar): curPar=newPar.copy() curAcc=newAcc bestPar=curPar.copy() bestAcc=curAcc else: prob=np.exp((bestAcc-curAcc)/T) if(random.random()<=prob): curPar=newPar.copy() curAcc=newAcc T=int(T*0.7) #print('one_count: ', onecount(curPar)) #print('bestAcc: ',bestAcc) #print('Par:',partNo, 'newAcc:',bestAcc, 'newFeat:', onecount(bestPar), 'fitness_check: ', fitness(bestPar)) population[partNo]=bestPar.copy() accList[partNo]=bestAcc.copy() return population def EO_SA(population,poolSize,max_iter,partCount,dimension): eqPool = np.zeros((poolSize+1,dimension)) # print(eqPool) eqfit = np.zeros(poolSize+1) # print(eqfit) for i in range(poolSize+1): eqfit[i] = 100 for curriter in range(max_iter): # print("iter no: ",curriter) # print(eqPool) popnew = np.zeros((partCount,dimension)) accList = allfit(population) # x_axis.append(curriter) # y_axis.aend(min(accList)) for i in range(partCount): for j in range(poolSize): if accList[i] <= eqfit[j]: eqfit[j] = accList[i].copy() eqPool[j] = population[i].copy() break # print("till best: ",eqfit[0],onecount(eqPool[0])) Cave = avg_concentration(eqPool,poolSize,dimension) eqPool[poolSize] = Cave.copy() t = (1 - (curriter/max_iter))**(a2*curriter/max_iter) for i in range(partCount): #randomly choose one candidate from the equillibrium pool random.seed(time.time() + 100 + 0.02*i) inx = random.randint(0,poolSize) Ceq = np.array(eqPool[inx]) lambdaVec = np.zeros(np.shape(Ceq)) rVec = np.zeros(np.shape(Ceq)) for j in range(dimension): random.seed(time.time() + 1.1) lambdaVec[j] = random.random() random.seed(time.time() + 10.01) rVec[j] = random.random() FVec = np.zeros(np.shape(Ceq)) for j in range(dimension): x = -1*lambdaVec[j]*t x = math.exp(x) - 1 x = a1 * signFunc(rVec[j] - 0.5) * x random.seed(time.time() + 200) r1 = random.random() random.seed(time.time() + 20) r2 = random.random() if r2 < GP: GCP = 0 else: GCP = 0.5 * r1 G0 = np.zeros(np.shape(Ceq)) G = np.zeros(np.shape(Ceq)) for j in range(dimension): G0[j] = GCP * (Ceq[j] - lambdaVec[j]*population[i][j]) G[j] = G0[j]*FVec[j] # print('popnew[',i,']: ') for j in range(dimension): temp = Ceq[j] + (population[i][j] - Ceq[j])*FVec[j] + G[j]*(1 - FVec[j])/lambdaVec[j] temp = Vfunction(temp) if temp>0.5: popnew[i][j] = 1 - population[i][j] else: popnew[i][j] = population[i][j] # print(popnew[i][j],end=',') # print() population = popnew.copy() popnew = SA(popnew,accList) population = popnew.copy() return eqPool,population ############################################################################################################ maxRun = 10 omega = 0.9 #weightage for no of features and accuracy partCountAll = [10] max_iterAll = [20] a2 = 1 a1 = 2 GP = 0.5 poolSize = 4 best_accuracy=np.zeros((1,4)) best_no_features=
np.zeros((1,4))
numpy.zeros
# -*- coding: utf-8 -*- """Comutations about two-body Orbits (v1.0.0) This module provide computations about two-body orbits, including: Define the orbit by position and velocity of an object Define the orbit by classical orbital elements of an object Compute position and velocity of an object at given time Provide seriese of points on orbital trajectory for visualization Solve Lambert's problem (From given two positions and flight time between them, lambert() computes initial and terminal velocity of the object) @author: <NAME>/whiskie14142 """ import numpy as np import math from scipy.optimize import newton from scipy.optimize import bisect class TwoBodyOrbit: """A class of a two-body orbit of a celestial object """ def timeFperi(self, ta): """Computes time from periapsis passage for given true anomaly Args: ta: True Anomaly in radians Returns: sec_from_peri sec_from_peri: Time from periapsis passage (float). Unit of time depends on gravitational parameter (mu) """ if not self._setOrb: raise(RuntimeError('Orbit has not been defined: in TwoBodyOrbit.timeFperi')) r = self.a * (1.0 - self.e ** 2) / (1.0 + self.e * np.cos(ta)) if self.e < 1.0: b_over_a = np.sqrt(1.0 - self.e ** 2) ecc_anm = np.arctan2(r * np.sin(ta) / b_over_a, self.a * self.e \ + r * np.cos(ta)) if ecc_anm < 0.0: ecc_anm += math.pi * 2.0 sec_from_peri = np.sqrt(self.a **3 / self.mu) * (ecc_anm - self.e \ * np.sin(ecc_anm)) elif self.e == 1.0: ecc_anm = np.sqrt(self.p) * np.tan(ta / 2.0) sec_from_peri = (self.p * ecc_anm + ecc_anm ** 3 / 3.0) / 2.0 / \ np.sqrt(self.mu) else: sy = (self.e + np.cos(ta)) / (1.0 + self.e * np.cos(ta)) lf = np.log(sy + np.sqrt(sy ** 2 - 1.0)) if (ta < 0.0) or (ta > math.pi): lf = lf * (-1.0) sec_from_peri = np.sqrt((-1.0) * self.a ** 3 / self.mu) * (self.e \ * np.sinh(lf) - lf) return sec_from_peri def posvel(self, ta): """Comuputs position and velocity for given true anomaly Args: ta: True Anomaly in radians Returns: rv, vv rv: Position (x,y,z) as numpy array vv: Velocity (xd,yd,zd) as numpy array Units are depend on gravitational parameter (mu) """ if not self._setOrb: raise(RuntimeError('Orbit has not been defined: in TwoBodyOrbit.posvel')) PV = self.evd QV = np.cross(self.hv, PV) / np.sqrt(np.dot(self.hv, self.hv)) r = self.p / (1.0 + self.e * np.cos(ta)) rv = r * np.cos(ta) * PV + r * np.sin(ta) * QV vv = np.sqrt(self.mu / self.p) * ((-1.0) * np.sin(ta) * PV + (self.e \ + np.cos(ta)) * QV) return rv, vv def __init__(self, bname, mname='Sun', mu=1.32712440041e20): """ Args: bname: Name of the object which orbit around the central body mname: Name of the central body mu : Gravitational parameter (mu) of the central body Default value is gravitational parameter of the Sun. mu should be: if Mc >> Mo mu = G*Mc else mu = G*(Mc + Mo) where: G: Newton's gravitational constant Mc: mass of the central body Mo: mass of the object """ self._setOrb = False self.bodyname = bname self.mothername = mname self.mu = mu def setOrbCart(self, t, pos, vel): """Define the orbit by epoch, position, and velocity of the object Args: t: Epoch pos: Position (x,y,z), array-like object vel: Velocity (xd,yd,zd), array-like object Units are depend on gravitational parameter (mu) Origin of coordinates are the central body Exceptions: ValueError: when angular momentum is zero, the method raises ValueError when e becomes 1.0, the method raises ValueError """ self.t0 = t self.pos = np.array(pos) self.vel = np.array(vel) self._setOrb = True # Computes Classical orbital elements r0 = np.array(self.pos) r0len = np.sqrt(np.dot(r0, r0)) rd0 = np.array(self.vel) rd0len2 = np.dot(rd0, rd0) h = np.cross(r0, rd0) hlen2 = np.dot(h, h) hlen = np.sqrt(hlen2) if hlen == 0.0: self._setOrb = False raise(ValueError('Inappropriate pos and vel in TwoBodyOrbit.setOrbCart')) # eccentricity vector; it can be zero ev = ((rd0len2 - self.mu/r0len) * r0 - np.dot(r0, rd0) * rd0) / self.mu evlen = np.sqrt(np.dot(ev, ev)) #evlen can be zero (circular orbit) K = np.array([0., 0., 1.]) n = np.cross(K, h) # direction of the ascending node nlen = np.sqrt(np.dot(n, n)) # nlen can be zero (orbital inclination is zero) if evlen == 0.0: if nlen == 0.0: ev_norm = np.array([1.0, 0.0, 0.0]) else: ev_norm = n / nlen else: ev_norm = ev / evlen he = np.cross(h, ev) he_norm = he / np.sqrt(np.dot(he, he)) if nlen == 0.0: self.lan = 0.0 self.parg = np.arctan2(ev[1], ev[0]) if self.parg < 0.0: self.parg += math.pi * 2.0 else: n_norm = n / nlen hn = np.cross(h, n) hn_norm = hn / np.sqrt(np.dot(hn, hn)) self.lan = np.arctan2(n[1], n[0]) # longitude of ascending node (radians) if self.lan < 0.0: self.lan += math.pi * 2.0 self.parg = np.arctan2(np.dot(ev, hn_norm), np.dot(ev, n_norm)) # periapsis argument (radians) if self.parg < 0.0: self.parg += math.pi * 2.0 self.hv = h # orbital mormentum vecctor self.p = hlen2 / self.mu # semi-latus rectum self.ev = ev # eccentricity vector self.evd = ev_norm # normalized eccentricity vector self.e = np.sqrt(np.dot(ev, ev)) # eccentricity if self.e == 1.0: self._setOrb = False raise(ValueError('Inappropriate pos and vel in TwoBodyOrbit.setOrbCart')) self.a = self.p / (1.0 - self.e ** 2) # semi-major axis self.i = np.arccos(h[2] / hlen) # inclination (radians) self.ta0 = np.arctan2(np.dot(he_norm, r0), np.dot(ev_norm, r0)) # true anomaly at epoch if self.ta0 < 0.0: self.ta0 += math.pi * 2.0 # time from recent periapsis, mean anomaly, periapsis passage time timef = self.timeFperi(self.ta0) self.ma = None self.pr = None self.mm = None if self.e < 1.0: self.pr = (2.0 * math.pi * np.sqrt(self.a ** 3 /self.mu)) # orbital period self.ma = timef / self.pr * math.pi * 2.0 # Mean anomaly (rad) self.mm = 2.0 * math.pi / self.pr # mean motion (rad/time) self.T = self.t0 - timef # periapsis passage time def setOrbKepl(self, epoch, a, e, i, LoAN, AoP, TA=None, T=None, MA=None): """Define the orbit by classical orbital elements Args: epoch: Epoch a: Semi-major axis e: Eccentricity (should not be 1.0) i: Inclination (degrees) LoAN: longitude of ascending node (degrees) If inclination is zero, this value defines reference longitude of AoP AoP: Argument of periapsis (degrees) For a circular orbit, this value indicates a imaginary periapsis. TA: True anomaly on epoch (degrees) For a circular orbit, the value defines angle from the imaginary periapsis defined by AoP T: Periapsis passage time for a circular orbit, the value defines passage time for the imaginary periapsis defined by AoP MA: Mean anomaly on epoch (degrees) For a hyperbolic trajectory, you cannot specify this argument For a circular orbit, the value defines anomaly from the imaginary periapsis defined by AoP TA, T, and MA are mutually exclusive arguments. You should specify one of them. If TA is specified, other arguments will be ignored. If T is specified, MA will be ignored. Exceptions: ValueError: If classical orbital element(s) are inconsistent, the method raises ValueError """ # changed keys Lomega = LoAN Somega = AoP TAoE = TA ma = MA self._setOrb = False if e < 0.0: raise ValueError('Invalid orbital element (e<0.0) in TwoBodyOrbit.setOrbKepl') if e == 1.0: raise ValueError('Invalid orbital element (e=1.0) in TwoBodyOrbit.setOrbKepl') if (e > 1.0 and a >= 0.0) or (e < 1.0 and a <= 0.0): raise ValueError('Invalid Orbital Element(s) (inconsistent e and a) in TwoBodyOrbit.setOrbKepl') if e > 1.0 and TAoE is None and T is None: raise ValueError('Missing Orbital Element (TA or T) in TwoBodyOrbit.setOrbKepl') if TAoE is None and T is None and ma is None: raise ValueError('Missing Orbital Elements (TA, T, or MA) in TwoBodyOrbit.setOrbKepl') taError = False if TAoE is not None and e > 1.0: mta = math.degrees(math.acos((-1.0) / e)) if TAoE >= mta and TAoE <= 180.0: taError = True elif TAoE >= 180.0 and TAoE <= (360.0 - mta): taError = True elif TAoE <= (-1.0) * mta: taError = True if taError: raise ValueError('Invalid Orbital Element (TA) in TwoBodyOrbit.setOrbKepl') self.t0 = epoch self.a = a self.e = e self.i = math.radians(i) self.lan = math.radians(Lomega) self.parg = math.radians(Somega) self.pr = None self.ma = None self.mm = None self._setOrb = True # semi-latus rectum self.p = a * (1.0 - e * e) # orbital period and mean motion if e < 1.0: self.pr = math.pi * 2.0 / math.sqrt(self.mu) * a ** 1.5 self.mm = math.pi * 2.0 / self.pr # R: rotation matrix R1n = np.array([math.cos(self.lan)*math.cos(self.parg) - math.sin(self.lan)*math.sin(self.parg)*math.cos(self.i), (-1.0)*math.cos(self.lan)*math.sin(self.parg) - math.sin(self.lan)*math.cos(self.parg)*math.cos(self.i), math.sin(self.lan)*math.sin(self.i)]) R2n = np.array([math.sin(self.lan)*math.cos(self.parg) + math.cos(self.lan)*math.sin(self.parg)*math.cos(self.i), (-1.0)*math.sin(self.lan)*math.sin(self.parg) + math.cos(self.lan)*math.cos(self.parg)*math.cos(self.i), (-1.0)*math.cos(self.lan)*math.sin(self.i)]) R3n = np.array([math.sin(self.parg)*math.sin(self.i), math.cos(self.parg)*math.sin(self.i), math.cos(self.i)]) R = np.array([R1n, R2n, R3n]) # eccentricity vector self.evd = (np.dot(R, np.array([[1.0], [0.0], [0.0]]))).T[0] self.ev = self.evd * self.e # angular momentum vector h = math.sqrt(self.p * self.mu) self.hv = (np.dot(R, np.array([[0.0], [0.0], [1.0]]))).T[0] * h nv = (np.dot(R, np.array([[0.0], [1.0], [0.0]]))).T[0] # ta0, T, ma if TAoE is not None: # true anomaly at epoch self.ta0 = math.radians(TAoE) # periapsis passage time self.T = self.t0 - self.timeFperi(self.ta0) # mean anomaly at epoch if self.e < 1.0: self.ma = (self.t0 - self.T) / self.pr * math.pi * 2.0 else: self.ma = None elif T is not None: # periapsis passage time self.T = T # position and velocity on periapsis self.pos, self.vel = self.posvel(0.0) # position and velocity at epoch self.t0 = self.T # temporary setting pos, vel = self.posvelatt(epoch) # true anomaly at epoch ev_norm = self.evd nv_norm = nv / np.sqrt(np.dot(nv, nv)) pos_norm = pos / np.sqrt(np.dot(pos, pos)) # true anomaly at epoch self.ta0 = np.arctan2(np.dot(pos_norm, nv_norm), np.dot(pos_norm, ev_norm)) # mean anomaly at epoch if self.e < 1.0: self.ma = (epoch - self.T) / self.pr * math.pi * 2.0 if self.ma < 0.0: self.ma += math.pi * 2.0 else: self.ma = None else: # mean anomaly at epoch self.ma = math.radians(ma) # periapsis passage time self.T = epoch - self.pr * self.ma / (math.pi * 2.0) # position and velocity on periapsis self.pos, self.vel = self.posvel(0.0) # position and velocity at epoch self.t0 = self.T # temporary setting pos, vel = self.posvelatt(epoch) # true anomaly at epoch ev_norm = self.ev / np.sqrt(np.dot(self.ev, self.ev)) nv_norm = nv / np.sqrt(np.dot(nv, nv)) pos_norm = pos / np.sqrt(np.dot(pos, pos)) # true anomaly at epoch self.ta0 = np.arctan2(np.dot(pos_norm, nv_norm), np.dot(pos_norm, ev_norm)) # epoch self.t0 = epoch # position and velocity at epoch if e != 0.0: self.pos, self.vel = self.posvel(self.ta0) else: r = np.array([[math.cos(self.ta0)], [math.sin(self.ta0)], [0.0]]) * self.a self.pos = (np.dot(R, r).T)[0] v = np.array([[(-1.0)*math.sin(self.ta0)], [math.cos(self.ta0)], [0.0]]) * math.sqrt(self.mu / self.a) self.vel = (np.dot(R, v).T)[0] def points(self, ndata): """Returns points on orbital trajectory for visualization Args: ndata: Number of points Returns: xs, ys, zs, times xs: Array of x-coordinates (Numpy array) ys: Array of y-coordinates (Numpy array) zs: Array of z-coordinates (Numpy array) times: Array of times (Numpy array) Origin of coordinates are position of the central body """ if not self._setOrb: raise(RuntimeError('Orbit has not been defined: TwoBodyOrbit.points')) times = np.zeros(ndata) xs = np.zeros(ndata) ys = np.zeros(ndata) zs = np.zeros(ndata) tas = np.zeros(ndata) if self.e < 1.0: tas =np.linspace(0.0, math.pi * 2.0, ndata) else: stop = math.pi - np.arccos(1.0 / self.e) start = (-1.) * stop delta = (stop - start) / (ndata + 1) tas = np.linspace(start + delta, stop - delta, ndata) for j in range(ndata): ta =tas[j] times[j] = self.timeFperi(ta) + self.T xyz, xdydzd =self.posvel(ta) xs[j] = xyz[0] ys[j] = xyz[1] zs[j] = xyz[2] return xs, ys, zs, times def posvelatt(self, t): """Returns position and velocity of the object at given t Args: t: Time Returns: newpos, newvel newpos: Position of the object at t (x,y,z) (Numpy array) newvel: Velocity of the object at t (xd,yd,zd) (Numpy array) Exception: RuntimeError: If it failed to the computation, raises RuntimeError Origin of coordinates are position of the central body """ def _Cz(z): if z < 0: return (1.0 - np.cosh(np.sqrt((-1)*z))) / z else: return (1.0 - np.cos(np.sqrt(z))) / z def _Sz(z): if z < 0: sqz = np.sqrt((-1)*z) return (np.sinh(sqz) - sqz) / sqz ** 3 else: sqz = np.sqrt(z) return (sqz - np.sin(sqz)) / sqz ** 3 def _func(xn, targett): z = xn * xn / self.a sr = np.sqrt(np.dot(self.pos, self.pos)) tn = (np.dot(self.pos, self.vel) / np.sqrt(self.mu) * xn * xn \ * _Cz(z) + (1.0 - sr / self.a) * xn ** 3 * _Sz(z) + sr * xn) \ / np.sqrt(self.mu) - targett return tn def _fprime(x, targett): z = x * x / self.a sqmu = np.sqrt(self.mu) sr = np.sqrt(np.dot(self.pos, self.pos)) dtdx = (x * x * _Cz(z) + np.dot(self.pos, self.vel) / sqmu * x \ * (1.0 - z * _Sz(z)) + sr * (1.0 - z * _Cz(z))) / sqmu return dtdx if not self._setOrb: raise(RuntimeError('Orbit has not been defined: TwoBodyOrbit.posvelatt')) delta_t = (t - self.t0) if delta_t == 0.0: return self.pos + 0.0, self.vel + 0.0 # you should not return self.pos. it can cause trouble! x0 = np.sqrt(self.mu) * delta_t / self.a try: # compute with scipy.optimize.newton xn = newton(_func, x0, args=(delta_t,), fprime=_fprime) except RuntimeError: # Configure boundaries for scipy.optimize.bisect # b1: Lower boundary # b2: Upper boundary f0 = _func(x0, delta_t) if f0 < 0.0: b1 = x0 found = False for i in range(50): x1 = x0 + 10 ** (i + 1) test = _func(x1, delta_t) if test > 0.0: found = True b2 = x1 break if not found: raise(RuntimeError('Could not compute position and ' + 'velocity: TwoBodyOrbit.posvelatt')) else: b2 = x0 found = False for i in range(50): x1 = x0 - 10 ** (i + 1) test = _func(x1, delta_t) if test < 0.0: found = True b1 = x1 break if not found: raise(RuntimeError('Could not compute position and ' + 'velocity: TwoBodyOrbit.posvelatt')) # compute with scipy.optimize.bisect xn = bisect(_func, b1, b2, args=(delta_t,), maxiter=200) z = xn * xn / self.a sr = np.sqrt(np.dot(self.pos, self.pos)) sqmu = np.sqrt(self.mu) val_f = 1.0 - xn * xn / sr * _Cz(z) val_g = delta_t - xn ** 3 / sqmu * _Sz(z) newpos = self.pos * val_f + self.vel * val_g newr = np.sqrt(np.dot(newpos, newpos)) val_fd = sqmu / sr / newr * xn * (z * _Sz(z) - 1.0) val_gd = 1.0 - xn * xn / newr * _Cz(z) newvel = self.pos * val_fd + self.vel * val_gd return newpos, newvel def elmKepl(self): """Returns Classical orbital element Returns: kepl: Dictionary of orbital elements. Keys are as follows 'epoch': Epoch 'a': Semimajor axis 'e': Eccentricity 'i': Inclination in degrees 'LoAN': Longitude of ascending node in degrees If inclination is zero, LoAN yields reference longitude for AoP 'AoP': Argument of periapsis in degrees If inclination is zero, AoP yields angle from reference longitude (LoAN) For circular orbit, AoP yields imaginary periapsis 'TA': True anomaly at epoch in degrees For circular orbit, TAoE yields angle from imaginary periapsis (AoP) 'T': Periapsis passage time For circular orbit, T yields passage time of imaginary periapsis (AoP) 'MA': Mean anomaly at epoch in degrees (elliptic orbit only) For circular orbit, ma is the same to TAoE 'n': Mean motion in degrees (elliptic orbit only) 'P': Orbital period (elliptic orbit only) For a hyperbolic trajectory, values for keys 'MA', 'n', and 'P' are None for each """ if not self._setOrb: raise(RuntimeError('Orbit has not been defined: TwoBodyOrbit')) kepl = {'epoch':self.t0, \ 'a':self.a, \ 'e':self.e, \ 'i':math.degrees(self.i), \ 'LoAN':math.degrees(self.lan), \ 'AoP':math.degrees(self.parg), \ 'TA':math.degrees(self.ta0), \ 'T':self.T} if self.e < 1.0: kepl['MA'] = math.degrees(self.ma) kepl['n'] = math.degrees(self.mm) kepl['P'] = self.pr else: kepl['MA'] = None kepl['n'] = None kepl['P'] = None return kepl def lambert(ipos, tpos, targett, mu=1.32712440041e20, ccw=True): """A function to solve 'Lambert's Problem' From given initial position, terminal position, and flight time, compute initial velocity and terminal velocity. Args: ipos, tpos, targett, mu, ccw ipos: Initial position of the object (x,y,z) (array-like object) tpos: Terminal position of the object (x,y,z) (array-like object) targett: Flight time mu: Gravitational parameter of the central body (default value is for the Sun) ccw: Flag for orbital direction. If True, counter clockwise Returns: ivel, tvel ivel: Initial velocity of the object (xd,yd,zd) as Numpy array tvel: Terminal velocity of the object (xd,yd,zd) as Numpy array Exception: ValueError: When input data (ipos, tpos, targett) are inappropriate, the function raises ValueError Origin of coordinates are position of the central body """ def _Cz(z): if z < 0: return (1.0 - np.cosh(np.sqrt((-1)*z))) / z else: return (1.0 - np.cos(np.sqrt(z))) / z def _Sz(z): if z < 0: sqz = np.sqrt((-1)*z) return (np.sinh(sqz) - sqz) / sqz ** 3 else: sqz = np.sqrt(z) return (sqz - np.sin(sqz)) / sqz ** 3 def _func(z, targett, r1pr2, A, mu): val_y = r1pr2 - A * (1.0 - z * _Sz(z)) / np.sqrt(_Cz(z)) val_x = np.sqrt(val_y / _Cz(z)) t = (val_x ** 3 * _Sz(z) + A * np.sqrt(val_y)) / np.sqrt(mu) return t - targett sipos = np.array(ipos) stpos = np.array(tpos) tsec = targett * 1.0 r1 = np.sqrt(np.dot(sipos, sipos)) r2 = np.sqrt(np.dot(stpos, stpos)) r1cr2 = np.cross(sipos, stpos) r1dr2 =
np.dot(sipos, stpos)
numpy.dot
from numpy import array, ones, identity, zeros, full, exp from numpy.random import normal from numpy.ma.testutils import assert_array_equal, assert_array_almost_equal from sstspack.Utilities import block_diag, identity_fn, jacobian, hessian, identity_fn def test_block_diag(): """""" expected = identity(4) assert_array_equal(block_diag([identity(2), identity(2)]), expected) def test_jacobian(): """""" def test_func(x): return
full((1, 1), x[0] ** 2 + 3 * x[1])
numpy.full
from openpathsampling.tests.test_helpers import (data_filename) import openpathsampling as paths import openpathsampling.engines.toy as toys from openpathsampling.pathsimulators.sshooting_simulator import SShootingSimulation import numpy as np import os class TestSShootingSimulation(object): def setup(self): # PES is one-dimensional zero function (y(x) = 0) pes = toys.LinearSlope(m=[0.0], c=[0.0]) topology = toys.Topology(n_spatial=1, masses=[1.0], pes=pes) integrator = toys.LeapfrogVerletIntegrator(0.02) options = { 'integ' : integrator, 'n_frames_max' : 1000, 'n_steps_per_frame' : 1 } self.engine = toys.Engine(options=options, topology=topology) # test uses snapshots with different velocities self.initial_snapshots = [toys.Snapshot( coordinates=
np.array([[0.0]])
numpy.array