prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ COCO evaluator that works in distributed mode. Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py The difference is that there is less copy-pasting from pycocotools in the end of the file, as python3 can suppress prints with contextlib """ import os import contextlib import copy import numpy as np import torch from matplotlib import pyplot as plt import cv2 as cv from pycocotools.cocoeval import COCOeval from pycocotools.coco import COCO import pycocotools.mask as mask_util from util.misc import all_gather class CocoEvaluator(object): def __init__(self, coco_gt, iou_types, score_threshold=0.5): assert isinstance(iou_types, (list, tuple)) coco_gt = copy.deepcopy(coco_gt) self.coco_gt = coco_gt self.iou_types = iou_types self.coco_eval = {} self.coco_eval_state = {} ## 存储eval state的相关信息 for iou_type in iou_types: self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type) self.coco_eval_state[iou_type] = COCOeval(coco_gt, iouType=iou_type) self.img_ids = [] self.eval_imgs = {k: [] for k in iou_types} self.eval_imgs_state = {h: [] for h in iou_types} ## 存储eval state的相关信息 self.score_threshold = score_threshold ## 可视化预测结果的置信度阈值 self.save_file = True ## update将coco_dt存入coco_eval中,然后进行coco_eval.accumulate()和coco_eval.summarize()就可以得到评估结果了 def update(self, predictions): img_ids = list(np.unique(list(predictions.keys()))) self.img_ids.extend(img_ids) for iou_type in self.iou_types: results = self.prepare(predictions, iou_type) ## 得到COCO形式的results<dict> # self.show_result(results, simple_type=True) # show the image results of class prediction and state prediction # suppress pycocotools prints with open(os.devnull, 'w') as devnull: with contextlib.redirect_stdout(devnull): coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO() coco_eval = self.coco_eval[iou_type] coco_eval_state = self.coco_eval_state[iou_type] coco_eval.cocoDt = coco_dt coco_eval_state.cocoDt = coco_dt coco_eval.params.imgIds = list(img_ids) coco_eval_state.params.imgIds = list(img_ids) img_ids, eval_imgs = evaluate(coco_eval) img_ids_state, eval_imgs_state = evaluatestate(coco_eval_state) # 评估入侵状态标签 self.eval_imgs[iou_type].append(eval_imgs) self.eval_imgs_state[iou_type].append(eval_imgs_state) pass # 显示预测结果 def show_result(self, results, simple_type=False): """ 可视化预测结果,包括class prediction和state prediction :params results: 预测结果 """ res_list = list() for res in results: if res['score'] > self.score_threshold: res_list.append(res) results = res_list # load prediction annotations coco = self.coco_gt cocoRes = coco.loadRes(results) catIds = cocoRes.getCatIds(catNms='pedestrian') imgIds = cocoRes.getImgIds(catIds=catIds) img_info = cocoRes.loadImgs(imgIds[np.random.randint(0, len(imgIds))]) annIds = cocoRes.getAnnIds(imgIds=img_info[0]['id']) anns = cocoRes.loadAnns(annIds) # load ground truth annotation annIds_gt = coco.getAnnIds(imgIds=img_info[0]['id']) anns_gt = coco.loadAnns(annIds_gt) # load image root_path = '/data/szy4017/data/intruscapes/images/val' file_name = img_info[0]['file_name'] imgPath = os.path.join(root_path, file_name) print(imgPath) img = cv.imread(imgPath) cv.imwrite('img.png', img) img_rgb = bgr2rgb(img) # plt plt.title('Class Prediction') plt.imshow(img_rgb) cocoRes.showBBox(anns) plt.savefig('./misc/cls_pred_{}.png'.format(img_info[0]['id'])) plt.show() plt.title('State Prediction') plt.imshow(img_rgb) cocoRes.showIntrusion(anns, simple_type=simple_type) plt.savefig('./misc/sta_pred_{}.png'.format(img_info[0]['id'])) plt.show() plt.title('Class Ground Truth') plt.imshow(img_rgb) coco.showBBox(anns_gt) plt.savefig('./misc/cls_gt_{}.png'.format(img_info[0]['id'])) plt.show() plt.title('State Ground Truth') plt.imshow(img_rgb) coco.showIntrusion(anns_gt, simple_type=simple_type) plt.savefig('./misc/sta_gt_{}.png'.format(img_info[0]['id'])) plt.show() pass # 将所有self.eval_imgs的数据进行同步 def synchronize_between_processes(self): for iou_type in self.iou_types: self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2) create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type]) # 将所有self.eval_imgs_state的数据进行同步 # 基于synchronize_between_processes修改得到 def synchronize_between_processes_state(self): for iou_type in self.iou_types: self.eval_imgs_state[iou_type] = np.concatenate(self.eval_imgs_state[iou_type], 2) create_common_coco_eval(self.coco_eval_state[iou_type], self.img_ids, self.eval_imgs_state[iou_type]) # 将coco_eval的值进行累计 def accumulate(self): for coco_eval in self.coco_eval.values(): coco_eval.accumulate() # 将coco_eval_state的值进行累计 # 基于accumulate修改得到 def accumulate_state(self): for coco_eval in self.coco_eval_state.values(): coco_eval.accumulate_state() # 总结eval结果,并输出最终结果 def summarize(self): for iou_type, coco_eval in self.coco_eval.items(): print("IoU metric: {}".format(iou_type)) coco_eval.summarize() # 总结eval结果,并输出最终结果 # 基于summarize修改得到 def summarize_state(self): for iou_type, coco_eval in self.coco_eval_state.items(): print("State IoU metric: {}".format(iou_type)) coco_eval.summarize() def prepare(self, predictions, iou_type): if iou_type == "bbox": return self.prepare_for_coco_detection(predictions) elif iou_type == "segm": return self.prepare_for_coco_segmentation(predictions) elif iou_type == "keypoints": return self.prepare_for_coco_keypoint(predictions) else: raise ValueError("Unknown iou type {}".format(iou_type)) # 将预测模型的预测结果转换成COCO形式 def prepare_for_coco_detection(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() # 增加s_scores和s_labels,表示入侵状态预测的状态类别标签和置信度 s_scores = prediction["s_scores"].tolist() s_labels = prediction["s_labels"].tolist() # 生成COCO形式的字典,增加state和state_score字段 coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "bbox": box, "score": scores[k], "state": s_labels[k], "state_score": s_scores[k] } for k, box in enumerate(boxes) ] ) return coco_results def prepare_for_coco_segmentation(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue scores = prediction["scores"] labels = prediction["labels"] masks = prediction["masks"] masks = masks > 0.5 scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() rles = [ mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0] for mask in masks ] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "segmentation": rle, "score": scores[k], } for k, rle in enumerate(rles) ] ) return coco_results def prepare_for_coco_keypoint(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() keypoints = prediction["keypoints"] keypoints = keypoints.flatten(start_dim=1).tolist() coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], 'keypoints': keypoint, "score": scores[k], } for k, keypoint in enumerate(keypoints) ] ) return coco_results # 用于图像的色彩通道转换 def bgr2rgb(img): # 用cv自带的分割和合并函数 B, G, R = cv.split(img) return cv.merge([R, G, B]) def convert_to_xywh(boxes): xmin, ymin, xmax, ymax = boxes.unbind(1) return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1) def merge(img_ids, eval_imgs): all_img_ids = all_gather(img_ids) all_eval_imgs = all_gather(eval_imgs) merged_img_ids = [] for p in all_img_ids: merged_img_ids.extend(p) merged_eval_imgs = [] for p in all_eval_imgs: merged_eval_imgs.append(p) merged_img_ids =
np.array(merged_img_ids)
numpy.array
# Version 3.1; <NAME>; Polar Geospatial Center, University of Minnesota; 2019 from __future__ import division import copy import math import operator import os import sys import traceback from collections import deque from itertools import product from PIL import Image from warnings import warn import cv2 import numpy as np import osgeo from osgeo import gdal_array, gdalconst from osgeo import gdal, ogr, osr import scipy import shapely.geometry import shapely.ops from scipy import ndimage as sp_ndimage from skimage.draw import polygon_perimeter from skimage import morphology as sk_morphology from skimage.filters.rank import entropy from skimage.util import unique_rows gdal.UseExceptions() if sys.version_info[0] < 3: from DecimatePoly import DecimatePoly else: from lib.DecimatePoly import DecimatePoly _script_dir = os.path.dirname(os.path.realpath(__file__)) if sys.version_info[0] < 3: _ext_fid = open(os.path.join(_script_dir, 'outline.c'), 'r') _outline = _ext_fid.read() _ext_fid.close() _ext_fid = open(os.path.join(_script_dir, 'outline_every1.c'), 'r') _outline_every1 = _ext_fid.read() _ext_fid.close() else: _ext_fid = open(os.path.join(_script_dir, 'outline.c'), 'r', encoding='utf-8') _outline = _ext_fid.read() _ext_fid.close() _ext_fid = open(os.path.join(_script_dir, 'outline_every1.c'), 'r', encoding='utf-8') _outline_every1 = _ext_fid.read() _ext_fid.close() gdal.UseExceptions() class RasterIOError(Exception): def __init__(self, msg=""): super(Exception, self).__init__(msg) class UnsupportedDataTypeError(Exception): def __init__(self, msg=""): super(Exception, self).__init__(msg) class InvalidArgumentError(Exception): def __init__(self, msg=""): super(Exception, self).__init__(msg) class UnsupportedMethodError(Exception): def __init__(self, msg=""): super(Exception, self).__init__(msg) ############# # Raster IO # ############# # Legacy; Retained for quick instruction of useful GDAL raster information extraction methods. def oneBandImageToArrayZXY_projRef(rasterFile): """ Opens a single-band raster image as a NumPy 2D array [Z] and returns it along with [X, Y] coordinate ranges of pixels in the raster grid as NumPy 1D arrays and the projection definition string for the raster dataset in OpenGIS WKT format. """ if not os.path.isfile(rasterFile): raise RasterIOError("No such rasterFile: '{}'".format(rasterFile)) ds = gdal.Open(rasterFile, gdal.GA_ReadOnly) proj_ref = ds.GetProjectionRef() gt = ds.GetGeoTransform() xmin, ymax = gt[0], gt[3] dx, dy = gt[1], gt[5] X = xmin + np.arange(ds.RasterXSize) * dx Y = ymax + np.arange(ds.RasterYSize) * dy Z = ds.GetRasterBand(1).ReadAsArray() return Z, X, Y, proj_ref def openRaster(file_or_ds, target_srs=None, reproject_resample_method='nearest'): """ Open a raster image as a GDAL dataset object. Parameters ---------- file_or_ds : str (file path) or osgeo.gdal.Dataset File path of the raster image to open as a GDAL dataset object, or the GDAL dataset itself. Returns ------- ds : osgeo.gdal.Dataset The raster image as a GDAL dataset. Notes ----- If `rasterFile_or_ds` is a GDAL dataset, it is returned without modification. """ ds = None if type(file_or_ds) == gdal.Dataset: ds = file_or_ds elif isinstance(file_or_ds, str): if not os.path.isfile(file_or_ds): raise RasterIOError("No such rasterFile: '{}'".format(file_or_ds)) try: ds = gdal.Open(file_or_ds, gdal.GA_ReadOnly) except RuntimeError: print("RuntimeError when opening file/dataset: {}".format(file_or_ds)) raise else: raise InvalidArgumentError("Invalid input type for `file_or_ds`: {}".format( type(file_or_ds))) if target_srs is not None: ds = reprojectGDALDataset(ds, target_srs, reproject_resample_method) return ds def reprojectGDALDataset(ds_in, target_srs, interp_str): input_srs_type = type(target_srs) if input_srs_type is osgeo.osr.SpatialReference: if not target_srs.IsProjected(): raise RasterIOError("`target_srs` is a osgeo.osr.SpatialReference object but is not projected") elif input_srs_type is osgeo.gdal.Dataset or input_srs_type is str and os.path.isfile(target_srs): target_srs = extractRasterData(target_srs, 'spat_ref') else: target_srs_in = target_srs target_srs_out = osr.SpatialReference() if input_srs_type is int: target_srs_out.ImportFromEPSG(target_srs_in) elif input_srs_type is str: if input_srs_type.upper().startswith('EPSG:'): target_srs_out.ImportFromEPSG(int(target_srs_in.upper().lstrip('EPSG:'))) elif '+proj' in target_srs_in: target_srs_out.ImportFromProj4(target_srs_in) else: target_srs_out.ImportFromWkt(target_srs_in) else: raise RasterIOError("`target_srs` type is unsupported: {}".format(input_srs_type)) target_srs = target_srs_out interp_gdal = interp_str2gdal(interp_str) source_srs, dx, dy = extractRasterData(ds_in, 'spat_ref', 'dx', 'dy') if source_srs.IsSame(target_srs) == 1: return ds_in temp_inmemory_file_path = '/vsimem/reproj.tif' gdal.Warp( temp_inmemory_file_path, ds_in, dstSRS=target_srs, resampleAlg=interp_gdal, xRes=dx, yRes=dy, targetAlignedPixels=True, format="GTiff" ) ds_out = gdal.Open(temp_inmemory_file_path, gdal.GA_ReadOnly) gdal.Unlink(temp_inmemory_file_path) return ds_out def gdalReadAsArraySetsmSceneBand(raster_band, make_nodata_nan=False): scale = raster_band.GetScale() offset = raster_band.GetOffset() if scale is None: scale = 1.0 if offset is None: offset = 0.0 if scale == 1.0 and offset == 0.0: array_data = raster_band.ReadAsArray() if make_nodata_nan: nodata_val = raster_band.GetNoDataValue() if nodata_val is not None: array_data[array_data == nodata_val] = np.nan else: if raster_band.DataType != gdalconst.GDT_Int32: raise RasterIOError( "Expected GDAL raster band with scale!=1.0 or offset!=0.0 to be of Int32 data type" " (scaled int LERC_ZSTD-compressed 50cm DEM), but data type is {}".format( gdal.GetDataTypeName(raster_band.DataType) ) ) if scale == 0.0: raise RasterIOError( "GDAL raster band has invalid parameters: scale={}, offset={}".format(scale, offset) ) nodata_val = raster_band.GetNoDataValue() array_data = raster_band.ReadAsArray(buf_type=gdalconst.GDT_Float32) adjust_where = (array_data != nodata_val) if nodata_val is not None else True if scale != 1.0: np.multiply(array_data, scale, out=array_data, where=adjust_where) if offset != 0.0: np.add(array_data, offset, out=array_data, where=adjust_where) if make_nodata_nan: array_nodata = np.logical_not(adjust_where, out=adjust_where) array_data[array_nodata] = np.nan del adjust_where if array_data is None: raise RasterIOError("`raster_band.ReadAsArray()` returned None") return array_data def getCornerCoords(gt, shape): """ Retrieve the georeferenced corner coordinates of a raster image. The corner coordinates of the raster are calculated from the rasters's geometric transformation specifications and the dimensions of the raster. Parameters ---------- gt : numeric tuple `(top_left_x, dx_x, dx_y, top_left_y, dy_x, dy_y)` The affine geometric transformation ("geotransform" or "geo_trans") describing the relationship between pixel coordinates and georeferenced coordinates. Pixel coordinates start at `(0, 0)` [row, col] for the top left pixel in the raster image, increasing down rows and right across columns. Georeferenced coordinates `(x_geo, y_geo)` are calculated for pixels in the image by the pixel coordinates `(pix_row, pix_col)` as follows: `x_geo = top_left_x + pix_row*dx_x + pix_col*dx_y` `y_geo = top_left_y + pix_row*dy_x + pix_col*dy_y` shape : tuple of positive int, 2 elements Dimensions of the raster image in (num_rows, num_cols) format. Returns ------- corner_coords : ndarray (5, 2) Georeferenced corner coordinates of the raster image, in (x, y) coordinate pairs, starting and ending at the top left corner, clockwise. """ top_left_x = np.full((5, 1), gt[0]) top_left_y = np.full((5, 1), gt[3]) top_left_mat = np.concatenate((top_left_x, top_left_y), axis=1) ysize, xsize = shape raster_XY_size_mat = np.array([ [0, 0], [xsize, 0], [xsize, ysize], [0, ysize], [0, 0] ]) gt_mat = np.array([ [gt[1], gt[4]], [gt[2], gt[5]] ]) return top_left_mat + np.dot(raster_XY_size_mat, gt_mat) def coordsToWkt(point_coords): """ Retrieve a WKT polygon representation of an ordered list of point coordinates. Parameters ---------- point_coords : 2D sequence of floats/ints like ndarray of shape (npoints, ndim) Ordered list of points, each represented by a list of coordinates that define its position in space. Returns ------- wkt : str WKT polygon representation of `point_coords`. """ return 'POLYGON (({}))'.format( ','.join([" ".join([str(c) for c in xy]) for xy in point_coords]) ) def wktToCoords(wkt): """ Create an array of point coordinates from a WKT polygon string. Parameters ---------- wkt : str WKT polygon representation of points with coordinate data to be extracted. Returns ------- point_coords : ndarray of shape (npoints, ndim) Ordered list of point coordinates extracted from `wkt`. """ coords_list = eval( wkt.replace('POLYGON ','').replace('(','[').replace(')',']').replace(',','],[').replace(' ',',') ) return np.array(coords_list) def extractRasterData(rasterFile_or_ds, *params): """ Extract information from a single-band raster image file. Parameters ---------- rasterFile_or_ds : str (file path) or osgeo.gdal.Dataset File path of the raster image to open as a GDAL dataset object, or the GDAL dataset itself. params : str Names of parameters to be extracted from the raster dataset. 'array'/'z' ------ matrix of image pixel values as ndarray (2D) 'shape'----------- pixel shape of image as tuple (nrows, ncols) 'x' -------------- georeferenced grid coordinates corresponding to each column of pixels in image as ndarray (1D) 'y' -------------- georeferenced grid coordinates corresponding to each row of pixels in image as ndarray (1D) 'dx' ------------- x length of each pixel in georeferenced pixel-grid coordinates, corresponding to x[1] - x[0] from 'x' param (dx may be negative) 'dy' ------------- y length of each pixel in georeferenced pixel-grid coordinates, corresponding to y[1] - y[0] from 'y' param (dy may be negative) 'res' ------------ (absolute) resolution of square pixels in image (NaN if pixels are not square) 'geo_trans' ------ affine geometric transformation (see documentation for `getCornerCoords`) 'corner_coords' -- georeferenced corner coordinates of image extent (see documentation for `getCornerCoords`) 'proj_ref' ------- projection definition string in OpenGIS WKT format (None if projection definition is not available) 'spat_ref' ------- spatial reference as osgeo.osr.SpatialReference object (None if spatial reference is not available) 'geom' ----------- polygon geometry of image extent as osgeo.ogr.Geometry object 'geom_sr' -------- polygon geometry of image extent as osgeo.ogr.Geometry object with spatial reference assigned (if available) 'nodata_val' ----- pixel value that should be interpreted as "No Data" 'dtype_val' ------ GDAL type code for numeric data type of pixel values (integer) 'dtype_str' ------ GDAL type name for numeric data type of pixel values (string) Returns ------- value_list : list List of parameter data with length equal to the number of parameter name arguments given in the function call. The order of returned parameter data corresponds directly to the order of the parameter name arguments. If only one parameter name argument is provided, the single datum is returned itself, not in a list. Examples -------- >>> f = 'my_raster.tif' >>> image_data, resolution = extractRasterData(f, 'array', 'res') >>> resolution 2 >>> extractRasterData(f, 'dy') -2 """ ds = openRaster(rasterFile_or_ds) pset = set(params) invalid_pnames = pset.difference({'ds', 'shape', 'z', 'array', 'x', 'y', 'dx', 'dy', 'res', 'geo_trans', 'corner_coords', 'proj_ref', 'spat_ref', 'geom', 'geom_sr', 'nodata_val', 'dtype_val', 'dtype_str'}) if invalid_pnames: raise InvalidArgumentError("Invalid parameter(s) for extraction: {}".format(invalid_pnames)) if pset.intersection({'z', 'array', 'nodata_val', 'dtype_val', 'dtype_str'}): band = ds.GetRasterBand(1) if pset.intersection({'z', 'array'}): try: array_data = gdalReadAsArraySetsmSceneBand(band) except RasterIOError as e: traceback.print_exc() print("Error reading raster: {}".format(rasterFile_or_ds)) raise if pset.intersection({'shape', 'x', 'y', 'corner_coords', 'geom', 'geom_sr'}): shape = (ds.RasterYSize, ds.RasterXSize) if 'array_data' not in vars() else array_data.shape if pset.intersection({'x', 'y', 'dx', 'dy', 'res', 'geo_trans', 'corner_coords', 'geom', 'geom_sr'}): geo_trans = ds.GetGeoTransform() if pset.intersection({'proj_ref', 'spat_ref', 'geom_sr'}): proj_ref = ds.GetProjectionRef() if pset.intersection({'corner_coords', 'geom', 'geom_sr'}): corner_coords = getCornerCoords(geo_trans, shape) if pset.intersection({'spat_ref', 'geom_sr'}): spat_ref = osr.SpatialReference(proj_ref) if proj_ref is not None else None if pset.intersection({'geom', 'geom_sr'}): geom = ogr.Geometry(wkt=coordsToWkt(corner_coords)) if pset.intersection({'nodata_val'}): nodata_val = band.GetNoDataValue() if pset.intersection({'dtype_val', 'dtype_str'}): dtype_val = band.DataType if pset.intersection({'dtype_str'}): dtype_str = gdal.GetDataTypeName(dtype_val) value_list = [] for pname in params: pname = pname.lower() value = None if pname == 'ds': value = ds elif pname == 'shape': value = shape elif pname in ('z', 'array'): value = array_data elif pname == 'x': value = geo_trans[0] + np.arange(shape[1]) * geo_trans[1] elif pname == 'y': value = geo_trans[3] + np.arange(shape[0]) * geo_trans[5] elif pname == 'dx': value = abs(geo_trans[1]) elif pname == 'dy': value = abs(geo_trans[5]) elif pname == 'res': value = abs(geo_trans[1]) if abs(geo_trans[1]) == abs(geo_trans[5]) else np.nan elif pname == 'geo_trans': value = geo_trans elif pname == 'corner_coords': value = corner_coords elif pname == 'proj_ref': value = proj_ref elif pname == 'spat_ref': value = spat_ref elif pname == 'geom': value = geom elif pname == 'geom_sr': value = geom.Clone() if 'geom' in params else geom if spat_ref is not None: value.AssignSpatialReference(spat_ref) else: warn("Spatial reference could not be extracted from raster dataset, " "so extracted geometry has not been assigned a spatial reference.") elif pname == 'nodata_val': value = nodata_val elif pname == 'dtype_val': value = dtype_val elif pname == 'dtype_str': value = dtype_str value_list.append(value) if len(value_list) == 1: value_list = value_list[0] return value_list # Legacy; Retained for a visual aid of equivalences between NumPy and GDAL data types. # Use gdal_array.NumericTypeCodeToGDALTypeCode to convert from NumPy to GDAL data type. def dtype_np2gdal_old(dtype_in, form_out='gdal', force_conversion=False): """ Converts between input NumPy data type (dtype_in may be either NumPy 'dtype' object or already a string) and output GDAL data type. If form_out='numpy', the corresponding NumPy 'dtype' object will be returned instead, allowing for quick lookup by string name. If the third element of a dtype_dict conversion tuple is zero, that conversion of NumPy to GDAL data type is not recommended. However, the conversion may be forced with the argument force_conversion=True. """ dtype_dict = { # ---GDAL LIMITATIONS--- 'bool' : (np.bool, gdal.GDT_Byte, 0), # GDAL no bool/logical/1-bit 'int8' : (np.int8, gdal.GDT_Byte, 1), # GDAL byte is unsigned 'int16' : (np.int16, gdal.GDT_Int16, 1), 'int32' : (np.int32, gdal.GDT_Int32, 1), 'intc' : (np.intc, gdal.GDT_Int32, 1), # np.intc ~= np.int32 'int64' : (np.int64, gdal.GDT_Int32, 0), # GDAL no int64 'intp' : (np.intp, gdal.GDT_Int32, 0), # intp ~= np.int64 'uint8' : (np.uint8, gdal.GDT_Byte, 1), 'uint16' : (np.uint16, gdal.GDT_UInt16, 1), 'uint32' : (np.uint32, gdal.GDT_UInt32, 1), 'uint64' : (np.uint64, gdal.GDT_UInt32, 0), # GDAL no uint64 'float16' : (np.float16, gdal.GDT_Float32, 1), # GDAL no float16 'float32' : (np.float32, gdal.GDT_Float32, 1), 'float64' : (np.float64, gdal.GDT_Float64, 1), 'complex64' : (np.complex64, gdal.GDT_CFloat32, 1), 'complex128': (np.complex128, gdal.GDT_CFloat64, 1), } errmsg_unsupported_dtype = "Conversion of NumPy data type '{}' to GDAL is not supported".format(dtype_in) try: dtype_tup = dtype_dict[str(dtype_in).lower()] except KeyError: raise UnsupportedDataTypeError("No such NumPy data type in lookup table: '{}'".format(dtype_in)) if form_out.lower() == 'gdal': if dtype_tup[2] == 0: if force_conversion: print(errmsg_unsupported_dtype) else: raise UnsupportedDataTypeError(errmsg_unsupported_dtype) dtype_out = dtype_tup[1] elif form_out.lower() == 'numpy': dtype_out = dtype_tup[0] else: raise UnsupportedDataTypeError("The following output data type format is not supported: '{}'".format(form_out)) return dtype_out def dtype_np2gdal(dtype_np): # TODO: Write docstring. if dtype_np == np.bool: promote_dtype = np.uint8 elif dtype_np == np.int8: promote_dtype = np.int16 elif dtype_np == np.float16: promote_dtype = np.float32 else: promote_dtype = None if promote_dtype is not None: warn("NumPy array data type ({}) does not have equivalent GDAL data type and is not " "supported, but can be safely promoted to {}".format(dtype_np, promote_dtype(1).dtype)) dtype_np = promote_dtype dtype_gdal = gdal_array.NumericTypeCodeToGDALTypeCode(dtype_np) if dtype_gdal is None: raise InvalidArgumentError("NumPy array data type ({}) does not have equivalent " "GDAL data type and is not supported".format(dtype_np)) return dtype_gdal, promote_dtype def interp_str2gdal(interp_str): # TODO: Write docstring. interp_choices = ('nearest', 'linear', 'cubic', 'spline', 'lanczos', 'average', 'mode') interp_dict = { 'nearest' : gdal.GRA_NearestNeighbour, 'linear' : gdal.GRA_Bilinear, 'bilinear' : gdal.GRA_Bilinear, 'cubic' : gdal.GRA_Cubic, 'bicubic' : gdal.GRA_Cubic, 'spline' : gdal.GRA_CubicSpline, 'lanczos' : gdal.GRA_Lanczos, 'average' : gdal.GRA_Average, 'mode' : gdal.GRA_Mode, } if interp_str not in interp_dict: raise UnsupportedMethodError("`interp` must be one of {}, but was '{}'".format(interp_choices, interp_str)) return interp_dict[interp_str] def saveArrayAsTiff(array, dest, X=None, Y=None, proj_ref=None, geotrans_rot_tup=(0, 0), nodata_val='like_raster', dtype_out=None, nbits=None, co_args='compress', like_raster=None): """ Save a NumPy 2D array as a single-band raster image in GeoTiff format. Parameters ---------- array : ndarray, 2D Array containing the values of pixels to be saved in the image, one value per pixel. dest : str (file path) File path where the raster image will be saved. If a file already exists at this path, it will be overwritten. X : None or (ndarray, 1D) Grid coordinates corresponding to all columns in the raster image, from left to right, such that `X[j]` specifies the x-coordinate for all pixels in `array[:, j]`. If None, `like_raster` must be provided. Y : None or (ndarray, 1D) Grid coordinates corresponding to all rows in the raster image, from top to bottom, such that `Y[i]` specifies the y-coordinate for all pixels in `array[i, :]` If None, `like_raster` must be provided. proj_ref : None, str (WKT or Proj4), or osr.SpatialReference Projection reference of the raster image to be saved, specified as either a WKT/Proj4 string or an osr.SpatialReference object. If None, `like_raster` must be provided. geotrans_rot_tup : None or tuple (2 floats) The third and fifth elements of the geometric transformation tuple that specify rotation from north-up of the raster image to be saved. If a north-up output is desired, let both elements be zero. See documentation for `getCornerCoords` for more information on the geometric transformation tuple. If None, `like_raster` must be provided. nodata_val : 'like_raster', None, or int/float Non-NaN value in `array` that will be classified as "no data" in the output raster image. If 'like_raster', allow this value to be set equal to the nodata value of `like_raster`. dtype_out : data type as str (e.g. 'uint16'), NumPy data type (e.g. np.uint16), or numpy.dtype object (e.g. from arr.dtype) Numeric type of values in the output raster image. If 'n-bit', write output raster image in an unsigned integer GDAL data type with ['NBITS=n'] option in driver, where n is set to `nbits` if `nbits` is not None. If `nbits` is None, n is calculated to be only as large as necessary to capture the maximum value of `array`, and the output array data type is unsigned integer of minimal bitdepth. nbits : None or 1 <= int <= 32 Only applies when `dtype_out='nbits'`. co_args : None, 'compress', or list of '[ARG_NAME]=[ARG_VALUE]' strings Creation Option arguments to pass to the `Create` method of the GDAL Geotiff driver that instantiates the output raster dataset. If 'compress', the following default arguments are used: 'BIGTIFF=IF_SAFER' 'COMPRESS=LZW' 'TILED=YES' The 'NBITS=X' argument may not be used -- that is set by the `nbits` argument for this function. A list of Creation Option arguments may be found here: [1]. like_raster : None, str (file path), or osgeo.gdal.Dataset File path or GDAL dataset for a raster image of identical dimensions, geographic location/extent, spatial reference, and nodata value as the raster image that will be saved. If provided, `X`, `Y`, `proj_ref`, and `geotrans_rot_tup` should not be provided, as these metrics will be taken from the like raster. Returns ------- None Notes ----- The OSGeo `gdal_translate` program [1] must be callable by name from the current working directory at the time this function is called. References ---------- .. [1] https://www.gdal.org/frmt_gtiff.html """ spat_ref = None projstr_wkt = None projstr_proj4 = None if proj_ref is None: pass elif type(proj_ref) == osr.SpatialReference: spat_ref = proj_ref elif isinstance(proj_ref, str): spat_ref = osr.SpatialReference() if proj_ref.lstrip().startswith('PROJCS'): projstr_wkt = proj_ref spat_ref.ImportFromWkt(projstr_wkt) elif proj_ref.lstrip().startswith('+proj='): projstr_proj4 = proj_ref spat_ref.ImportFromProj4(projstr_proj4) else: raise InvalidArgumentError("`proj_ref` of string type has unknown format: '{}'".format(proj_ref)) else: raise InvalidArgumentError("`proj_ref` must be a string or osr.SpatialReference object, " "but was of type {}".format(type(proj_ref))) dtype_is_nbits = (dtype_out is not None and type(dtype_out) is str and dtype_out == 'nbits') if co_args is not None and co_args != 'compress': if type(co_args) != list: raise InvalidArgumentError("`co_args` must be a list of strings, but was {}".format(co_args)) if dtype_is_nbits: for arg in co_args: if arg.startswith('NBITS='): raise InvalidArgumentError("`co_args` cannot include 'NBITS=X' argument. " "Please use this function's `nbits` argument.") shape = array.shape dtype_gdal = None if like_raster is not None: ds_like = openRaster(like_raster) if shape[0] != ds_like.RasterYSize or shape[1] != ds_like.RasterXSize: raise InvalidArgumentError("Shape of `like_rasterFile` '{}' ({}, {}) does not match " "the shape of `array` {}".format( like_raster, ds_like.RasterYSize, ds_like.RasterXSize, shape) ) geo_trans = extractRasterData(ds_like, 'geo_trans') if proj_ref is None: spat_ref = extractRasterData(ds_like, 'spat_ref') if nodata_val == 'like_raster': nodata_val = extractRasterData(ds_like, 'nodata_val') if dtype_out is None: dtype_gdal = extractRasterData(ds_like, 'dtype_val') else: if shape[0] != Y.size or shape[1] != X.size: raise InvalidArgumentError("Lengths of [`Y`, `X`] grid coordinates ({}, {}) do not match " "the shape of `array` ({})".format(Y.size, X.size, shape)) geo_trans = (X[0], X[1]-X[0], geotrans_rot_tup[0], Y[0], geotrans_rot_tup[1], Y[1]-Y[0]) if nodata_val == 'like_raster': nodata_val = None if dtype_out is not None: if dtype_is_nbits: if nbits is None: nbits = int(math.floor(math.log(float(max(1, np.max(array))), 2)) + 1) elif type(nbits) != int or nbits < 1: raise InvalidArgumentError("`nbits` must be an integer in the range [1,32]") if nbits <= 8: dtype_gdal = gdal.GDT_Byte elif nbits <= 16: dtype_gdal = gdal.GDT_UInt16 elif nbits <= 32: dtype_gdal = gdal.GDT_UInt32 else: raise InvalidArgumentError("Output array requires {} bits of precision, " "but GDAL supports a maximum of 32 bits") else: if type(dtype_out) is str: dtype_out = eval('np.{}'.format(dtype_out.lower())) dtype_gdal = gdal_array.NumericTypeCodeToGDALTypeCode(dtype_out) if dtype_gdal is None: raise InvalidArgumentError("Output array data type ({}) does not have equivalent " "GDAL data type and is not supported".format(dtype_out)) dtype_in = array.dtype dtype_in_gdal, promote_dtype = dtype_np2gdal(dtype_in) if promote_dtype is not None: array = array.astype(promote_dtype) dtype_in = promote_dtype(1).dtype if dtype_out is not None: if dtype_is_nbits: if not np.issubdtype(dtype_in, np.unsignedinteger): warn("Input array data type ({}) is not unsigned and may be incorrectly saved " "with n-bit precision".format(dtype_in)) elif dtype_in != dtype_out: warn("Input array NumPy data type ({}) differs from output " "NumPy data type ({})".format(dtype_in, dtype_out(1).dtype)) elif dtype_gdal is not None and dtype_gdal != dtype_in_gdal: warn("Input array GDAL data type ({}) differs from output " "GDAL data type ({})".format(gdal.GetDataTypeName(dtype_in_gdal), gdal.GetDataTypeName(dtype_gdal))) if dtype_gdal is None: dtype_gdal = dtype_in_gdal sys.stdout.write("Saving Geotiff {} ...".format(dest)) sys.stdout.flush() # Create the output raster dataset in memory. if co_args is None: co_args = [] if co_args == 'compress': co_args = [] co_args.extend(['BIGTIFF=IF_SAFER']) # Will create BigTIFF # if the resulting file *might* exceed 4GB. co_args.extend(['COMPRESS=LZW']) # Do LZW compression on output image. co_args.extend(['TILED=YES']) # Force creation of tiled TIFF files. if dtype_is_nbits: co_args.extend(['NBITS={}'.format(nbits)]) if spat_ref is not None: if projstr_wkt is None: projstr_wkt = spat_ref.ExportToWkt() if projstr_proj4 is None: projstr_proj4 = spat_ref.ExportToProj4() sys.stdout.write(" GDAL data type: {}, NoData value: {}, Creation Options: {}, Projection (Proj4): {} ...".format( gdal.GetDataTypeName(dtype_gdal), nodata_val, ' '.join(co_args) if co_args else None, projstr_proj4.strip()) ) sys.stdout.flush() sys.stdout.write(" creating file ...") sys.stdout.flush() driver = gdal.GetDriverByName('GTiff') ds_out = driver.Create(dest, shape[1], shape[0], 1, dtype_gdal, co_args) ds_out.SetGeoTransform(geo_trans) if projstr_wkt is not None: ds_out.SetProjection(projstr_wkt) band = ds_out.GetRasterBand(1) if nodata_val is not None: band.SetNoDataValue(nodata_val) sys.stdout.write(" writing array values ...") sys.stdout.flush() band.WriteArray(array) # Write the output raster dataset to disk. sys.stdout.write(" finishing file ...") sys.stdout.flush() ds_out = None # Dereference dataset to initiate write to disk of intermediate image. sys.stdout.write(" done!\n") sys.stdout.flush() ####################### # Array Manipulations # ####################### def getWindow(array, i, j, window_shape=(3, 3), output='array', bounds_check=True): # TODO: Write docstring. output_choices = ('array', 'indices') if output not in output_choices: raise InvalidArgumentError("`output` must be one of {}, " "but was {}".format(output_choices, output)) win_nrows, win_ncols = window_shape if bounds_check: if win_nrows < 1 or win_ncols < 1: raise InvalidArgumentError("`window_shape` must be a tuple of two positive ints") arr_nrows, arr_ncols = array.shape i_backup = i j_backup = j if i < 0: i = arr_nrows + i if j < 0: j = arr_ncols + j if i >= arr_nrows: raise InvalidArgumentError("Index `i`={} is outside `array` bounds".format(i_backup)) if j >= arr_ncols: raise InvalidArgumentError("Index `j`={} is outside `array` bounds".format(j_backup)) win_halfrowsz = (win_nrows-1) / 2 win_halfcolsz = (win_ncols-1) / 2 win_r0 = int(i - np.ceil(win_halfrowsz)) win_r1 = int(i + np.floor(win_halfrowsz) + 1) win_c0 = int(j - np.ceil(win_halfcolsz)) win_c1 = int(j + np.floor(win_halfcolsz) + 1) if not bounds_check: if win_r1 == 0: win_r1 = None if win_c1 == 0: win_c1 = None return ( array[win_r0:win_r1, win_c0:win_c1] if output == 'array' else (win_r0, win_r1, win_c0, win_c1)) if win_r0 < 0 or win_r1 > arr_nrows or win_c0 < 0 or win_c1 > arr_ncols: raise InvalidArgumentError("Window falls outside `array` bounds") return ( array[win_r0:win_r1, win_c0:win_c1] if output == 'array' else (win_r0, win_r1, win_c0, win_c1)) def rotate_arrays_if_kernel_has_even_sidelength(array, kernel): """ Return 180-degree rotated views into the provided arrays if `kernel` has an even side length. Parameters ---------- array : ndarray, 2D Primary array associated with `kernel`. kernel : ndarray, 2D Kernel array. Returns ------- array_out, kernel_out, rotation_flag : tuple Tuple containing views into `array` and `kernel`, and a flag that is True if the views of these two arrays have been rotated by 180 degrees. See Also -------- fix_array_if_rotation_was_applied Notes ----- The sole purpose of this function is to assist other functions in this array utility suite in their attempts to mimic the behavior of corresponding MATLAB functions at the pixel level when dealing with a kernel/structure that has an even side length. """ for s in kernel.shape: if s % 2 == 0: return np.rot90(array, 2), np.rot90(kernel, 2), True return array, kernel, False def fix_array_if_rotation_was_applied(array, rotation_flag): """ Return 180-degree rotated view into the provided array if `rotation_flag` is True. Parameters ---------- array : ndarray, 2D Array that may or may not need undoing of rotation. rotation_flag : bool True if `array` rotation should be undone. False if `array` does not need undoing of rotation. Returns ------- array_out : ndarray, 2D View into `array` that may or may not have had rotation undone. See Also -------- rotate_arrays_if_kernel_has_even_sidelength Notes ----- The sole purpose of this function is to assist other functions in this array utility suite in their attempts to mimic the behavior of corresponding MATLAB functions at the pixel level when dealing with a kernel/structure that has an even side length. """ return np.rot90(array, 2) if rotation_flag else array def rot90_pixcoords(coords, shape_in, k=1): """ Rotate 2D (row, col) pixel coordinates taken from an array of a defined nrows x ncols shape by 90 degrees. Rotation direction is counterclockwise. Parameters ---------- coords : 2D ndarray or list/tuple of two 1D ndarrays 2D (row, col) pixel coordinates. May be in the format of the output of np.where (2D ndarray, shape like (npoints, 2)) [1] or np.argwhere (tuple of two 1D ndarrays, each of size npoints) [2]. shape_in : tuple of positive int Shape of array that pixel coordinates came from before the desired rotation has been applied, like (nrows, ncols) output of `array.shape`. k : int Number of times the coordinates are rotated by 90 degrees. Returns ------- coords_out : same format, type, shape as `coords` 2D (row, col) pixel coordinates rotated from the corresponding coordinates in `coords`. See Also -------- numpy.rot90 [3] flip_pixcoords Notes ----- Say `coords` index into array 'a' to return values of a set of pixels 'a_vals' as follows: `a_vals = a[coords]` Rotate both `a` and `coords` 90 degrees the same number of times `k` to get array 'b' and pixel coords 'coords_b' that index into 'b' to return 'b_vals'. `b = numpy.rot90(a, k)` `coords_b = rot90_pixcoords(coords, a.shape, k)` `b_vals = b[coords_b]` The values in 'a_vals' and 'b_vals' are identical. References ---------- .. [1] https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html .. [2] https://docs.scipy.org/doc/numpy/reference/generated/numpy.argwhere.html .. [3] https://docs.scipy.org/doc/numpy/reference/generated/numpy.rot90.html """ if type(coords) == np.ndarray: row_in, col_in = coords.T else: row_in, col_in = coords k = k % 4 if k == 0: row_out = row_in col_out = col_in elif k == 1: row_out = (shape_in[1]-1) - col_in col_out = row_in elif k == 2: row_out = (shape_in[0]-1) - row_in col_out = (shape_in[1]-1) - col_in elif k == 3: row_out = col_in col_out = (shape_in[0]-1) - row_in if type(coords) == np.ndarray: result = np.array([row_out, col_out]).T else: result = (row_out, col_out) return result def flip_pixcoords(coords, shape_in, axis=0): """ Flip 2D (row, col) pixel coordinates taken from an array of a defined nrows x ncols shape across an axis. Parameters ---------- coords : 2D ndarray or list/tuple of two 1D ndarrays 2D (row, col) pixel coordinates. May be in the format of the output of np.where (2D ndarray, shape like (npoints, 2)) [1] or np.argwhere (tuple of two 1D ndarrays, each of size npoints) [2]. shape_in : tuple of positive int Shape of array that pixel coordinates came from, like (nrows, ncols) output of `array.shape`. axis : 0 or 1 If 0, flip coordinates vertically. If 1, flip coordinates horizontally. See Also -------- numpy.rot90 [3] rot90_pixcoords Returns ------- coords_out : same format, type, shape as `coords` 2D (row, col) pixel coordinates flipped from the corresponding coordinates in `coords`. Notes ----- Say `coords` index into array 'a' to return values of a set of pixels 'a_vals' as follows: `a_vals = a[coords]` Flip both `a` and `coords` over the same axis with number `axis` to get array 'b' and pixel coords 'coords_b' that index into 'b' to return 'b_vals'. `b = numpy.flip(a, axis)` `coords_b = flip_pixcoords(coords, a.shape, axis)` `b_vals = b[coords_b]` The values in 'a_vals' and 'b_vals' are identical. References ---------- .. [1] https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html .. [2] https://docs.scipy.org/doc/numpy/reference/generated/numpy.argwhere.html .. [3] https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html """ if type(coords) == np.ndarray: row_in, col_in = coords.T else: row_in, col_in = coords if axis == 0: row_out = (shape_in[0]-1) - row_in col_out = col_in elif axis == 1: row_out = row_in col_out = (shape_in[1]-1) - col_in else: raise InvalidArgumentError("`axis` must be 0 or 1") if type(coords) == np.ndarray: result = np.array([row_out, col_out]).T else: result = (row_out, col_out) return result def array_round_proper(array, in_place=False): """ Round data in a floating point array to the nearest integer, rounding up for positive X.5 and down for negative X.5. Parameters ---------- array : ndarray of floating dtype Floating point array to round. in_place : bool If True, round array in place. If False, copy array before rounding. Returns ------- array_round : ndarray of floating dtype The rounded array. """ if not in_place: array = np.copy(array) array_gt_zero = array > 0 np.add(array, 0.5, out=array, where=array_gt_zero) np.floor(array, out=array, where=array_gt_zero) del array_gt_zero array_lt_zero = array < 0 np.subtract(array, 0.5, out=array, where=array_lt_zero) np.ceil(array, out=array, where=array_lt_zero) del array_lt_zero return array def astype_round_and_crop(array, dtype_out, allow_modify_array=False): """ Cast a floating point array to an integer data type, first rounding data values and cropping all values to the minimum and maximum representable values for the output data type. Parameters ---------- array : ndarray Array containing data to be cast. dtype_out : numpy data type (e.g. numpy.int32) or numpy.dtype The data type `array` is to be cast to. allow_modify_array : bool If True, values in input `array` may be modified. Returns ------- array_out : ndarray of type `dtype_out` The new array that has been cast from `array`. Notes ----- This function is meant to replicate MATLAB array type casting. """ # The trivial case if dtype_out == np.bool: return array.astype(dtype_out) array_dtype_np = array.dtype.type dtype_out_np = dtype_out if type(dtype_out) != np.dtype else dtype_out.type if np.issubdtype(array_dtype_np, np.floating) and np.issubdtype(dtype_out_np, np.integer): # TODO: Consider replacing the following potentially costly call with # -t np.around(array) if round-half-to-nearest-whole-even is acceptable. array = array_round_proper(array, allow_modify_array) return astype_cropped(array, dtype_out_np, allow_modify_array) def astype_cropped(array, dtype_out, allow_modify_array=False): """ Cast an array to a new data type, first cropping all values to the minimum and maximum representable values for the output data type. Parameters ---------- array : ndarray Array containing data to be cast. dtype_out : numpy data type (e.g. numpy.int32) or numpy.dtype The data type `array` is to be cast to. allow_modify_array : bool If True, values in input `array` may be modified. Returns ------- array_cropped : ndarray of type `dtype_out` The new array that has been cast from `array`. Notes ----- The purpose of this function is to prevent underflow and underflow during casting, something numpy.ndarray.astype does not do. [1] References ---------- .. [1] https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html """ # The trivial case if dtype_out == np.bool: return array.astype(dtype_out) dtype_out_np = dtype_out if type(dtype_out) != np.dtype else dtype_out.type dtype_info_fn = np.finfo if np.issubdtype(dtype_out_np, np.floating) else np.iinfo dtype_out_min = dtype_info_fn(dtype_out_np).min dtype_out_max = dtype_info_fn(dtype_out_np).max array_cropped = array if allow_modify_array else None try: array_cropped = np.clip(array, dtype_out_min, dtype_out_max, out=array_cropped) except OverflowError: dtype_out_min_float = float(dtype_out_min) dtype_out_max_float = float(dtype_out_max) warn("Integers for {} clip range [{}, {}] are too large for underlying C code of numpy.clip(). " "Casting clip range to float: [{}, {}]".format(dtype_out_np(1).dtype, dtype_out_min, dtype_out_max, dtype_out_min_float, dtype_out_max_float)) array_cropped = np.clip(array, dtype_out_min_float, dtype_out_max_float, out=array_cropped) return array_cropped.astype(dtype_out) def getDataArray(array, label=0, label_type='nodata'): """ Classify values in an array as "data" or non-"data". Parameters ---------- array : ndarray Array to be classified. label : bool/int/float Value of nodes in `array` that are classified as "data" (if label_type='data') or non-"data" (if label_type='nodata'). label_type : str; 'data' or 'nodata' Whether `label` is a classification for "data" or non-"data" nodes. Returns ------- data_array : ndarray of bool, same shape as `array` Binary mask of `array` where "data" nodes are one and non-"data" nodes are zero. """ label_type_choices = ('data', 'nodata') if label_type not in label_type_choices: raise InvalidArgumentError("`label_type` must be one of {}, " "but was {}".format(label_type_choices, label_type)) if (array.dtype == np.bool and ((label_type == 'nodata' and label == 0) or (label_type == 'data' and label == 1))): data_array = array elif np.isnan(label): data_array = np.isnan(array) if label_type == 'data' else ~np.isnan(array) else: data_array = (array == label) if label_type == 'data' else (array != label) return data_array ###################### # Array Calculations # ###################### def interp2_fill_oob(X, Y, Zi, Xi, Yi, fillval=np.nan, coord_grace=True): # Rows and columns of Zi outside the domain of Z are made NaN. # Assume X and Y coordinates are monotonically increasing/decreasing # so hopefully we only need to work a short way inwards from the edges. Xi_size = Xi.size Yi_size = Yi.size Xmin = min(X[0], X[-1]) Ymax = max(Y[0], Y[-1]) x_lfttest_val = X[0] x_rgttest_val = X[-1] y_toptest_val = Y[0] y_bottest_val = Y[-1] if x_lfttest_val == Xmin: # X-coords increase from left to right. x_lfttest_op = operator.lt x_rgttest_op = operator.gt else: # X-coords decrease from left to right. x_lfttest_op = operator.gt x_rgttest_op = operator.lt if y_toptest_val == Ymax: # Y-coords decrease from top to bottom. y_toptest_op = operator.gt y_bottest_op = operator.lt else: # Y-coords increase from top to bottom. y_toptest_op = operator.lt y_bottest_op = operator.gt if coord_grace: x_grace = (X[1] - X[0]) / 64 y_grace = (Y[1] - Y[0]) / 16 x_lfttest_val -= x_grace x_rgttest_val += x_grace y_toptest_val -= y_grace y_bottest_val += y_grace x_lfttest_op = operator.le if x_lfttest_op(0, 1) else operator.ge x_rgttest_op = operator.le if x_rgttest_op(0, 1) else operator.ge y_toptest_op = operator.le if y_toptest_op(0, 1) else operator.ge y_bottest_op = operator.le if y_bottest_op(0, 1) else operator.ge i = 0 while x_lfttest_op(Xi[i], x_lfttest_val) and i < Xi_size: Zi[:, i] = fillval i += 1 i = -1 while x_rgttest_op(Xi[i], x_rgttest_val) and i >= -Xi_size: Zi[:, i] = fillval i -= 1 j = 0 while y_toptest_op(Yi[j], y_toptest_val) and j < Yi_size: Zi[j, :] = fillval j += 1 j = -1 while y_bottest_op(Yi[j], y_bottest_val) and j >= -Yi_size: Zi[j, :] = fillval j -= 1 return Zi # def interp2_cv2(X, Y, Z, Xi, Yi, interp_str, extrapolate=False, oob_val=np.nan): # xx = np.repeat(np.reshape((Xi-X[0]/2, (1, X.size)), Y.size, axis=0) # yy = np.repeat(np.reshape((Yi-Y[0])/-2, (Y.size, 1)), X.size, axis=1) # cv2.remap(Z, xx.astype(np.float32), yy.astype(np.float32), cv2.INTER_LINEAR) # pass def interp2_gdal(X, Y, Z, Xi, Yi, interp_str, extrapolate=False, oob_val=np.nan): """ Resample array data from one set of x-y grid coordinates to another. Parameters ---------- X : ndarray, 1D Grid coordinates corresponding to all columns in the raster image, from left to right, such that `X[j]` specifies the x-coordinate for all pixels in `Z[:, j]`. Y : ndarray, 1D Grid coordinates corresponding to all rows in the raster image, from top to bottom, such that `Y[i]` specifies the y-coordinate for all pixels in `Z[i, :]`. Z : ndarray, 2D Array containing values to be resampled. Xi : ndarray, 1D New grid x-coordinates, like `X` array. Yi : ndarray, 1D New grid y-coordinates, like `Y` array. interp_str : str Interpolation/resampling method, must be one of the following: 'nearest', 'linear', 'cubic', 'spline', 'lanczos', 'average', 'mode' extrapolate : bool Whether or not to interpolate values for pixels with new grid coords `Xi` and `Yi` that fall outside the range of old grid coords `X` and `Y`. If True, allow the interpolation method to set the values of these pixels. If False, set the values of these pixels to `oob_val`. oob_val : int/float (Option only applies when `extrapolate=True`.) Value to fill any regions of the output array where new grid coords `Xi` and `Yi` fall outside the range of old grid coords `X` and `Y`. Returns ------- Zi : ndarray, 2D, same shape and type as `Z` The resampled array. """ dtype_gdal, promote_dtype = dtype_np2gdal(Z.dtype) if promote_dtype is not None: Z = Z.astype(promote_dtype) interp_gdal = interp_str2gdal(interp_str) mem_drv = gdal.GetDriverByName('MEM') ds_in = mem_drv.Create('', X.size, Y.size, 1, dtype_gdal) ds_in.SetGeoTransform((X[0], X[1]-X[0], 0, Y[0], 0, Y[1]-Y[0])) ds_in.GetRasterBand(1).WriteArray(Z) ds_out = mem_drv.Create('', Xi.size, Yi.size, 1, dtype_gdal) ds_out.SetGeoTransform((Xi[0], Xi[1]-Xi[0], 0, Yi[0], 0, Yi[1]-Yi[0])) gdal.ReprojectImage(ds_in, ds_out, '', '', interp_gdal) Zi = ds_out.GetRasterBand(1).ReadAsArray() if not extrapolate: interp2_fill_oob(X, Y, Zi, Xi, Yi, oob_val) return Zi def interp2_scipy(X, Y, Z, Xi, Yi, interp, extrapolate=False, oob_val=np.nan, griddata=False, SBS=False, RGI=False, RGI_extrap=True, RGI_fillVal=None, CLT=False, CLT_fillVal=np.nan, RBS=False): # TODO: Rewrite docstring in new standard. """ Aims to provide similar functionality to interp2_gdal using SciPy's interpolation library. However, initial tests show that interp2_gdal both runs more quickly and produces output more similar to MATLAB's interp2 function for every method required by Ian's mosaicking script. griddata, SBS, and CLT interpolation methods are not meant to be used for the resampling of a large grid as is done here. """ order_dict = { 'nearest' : 0, 'linear' : 1, 'bilinear' : 1, 'quadratic': 2, 'cubic' : 3, 'bicubic' : 3, 'quartic' : 4, 'quintic' : 5, } order = order_dict[interp] method_set = True in (griddata, SBS, RGI, CLT, RBS) if griddata: # Supports nearest, linear, and cubic interpolation methods. # Has errored out with "QH7074 qhull warning: more than 16777215 ridges. # ID field overflows and two ridges may have the same identifier." # when used on large arrays. Fails to draw a convex hull of input points. # Needs more testing, but seems to handle NaN input. Output for linear and # cubic methods shows NaN borders when interpolating out of input domain. xx, yy = np.meshgrid(X, Y) xxi, yyi = np.meshgrid(Xi, Yi) Zi = scipy.interpolate.griddata((xx.flatten(), yy.flatten()), Z.flatten(), (xxi.flatten(), yyi.flatten()), interp) Zi.resize((Yi.size, Xi.size)) elif SBS: # Supports all 5 orders of spline interpolation. # Can't handle NaN input; results in all NaN output. xx, yy = np.meshgrid(X, Y) xxi, yyi = np.meshgrid(Xi, Yi) fn = scipy.interpolate.SmoothBivariateSpline(xx.flatten(), yy.flatten(), Z.flatten(), kx=order, ky=order) Zi = fn.ev(xxi, yyi) Zi.resize((Yi.size, Xi.size)) elif RGI or (not method_set and (order == 0 or (order == 1 and np.any(np.isnan(Z))))): # Supports nearest and linear interpolation methods. xxi, yyi = np.meshgrid(Xi, Yi[::-1]) pi = np.column_stack((yyi.flatten(), xxi.flatten())) fn = scipy.interpolate.RegularGridInterpolator((Y[::-1], X), Z, method=interp, bounds_error=(not RGI_extrap), fill_value=RGI_fillVal) Zi = fn(pi, method=interp) Zi.resize((Yi.size, Xi.size)) elif CLT or (not method_set and (order == 3 and np.any(np.isnan(Z)))): # Performs cubic interpolation of data, # but includes logic to first perform a nearest resampling of input NaNs. # Produces the same error as scipy.interpolate.griddata when used on large arrays. if np.any(np.isnan(Z)): Zi = interp2_scipy(X, Y, Z, Xi, Yi, 'nearest') Zi_data = np.where(~np.isnan(Zi)) Z_data = np.where(~np.isnan(Z)) p = np.column_stack((Z_data[0], Z_data[1])) pi = np.column_stack((Zi_data[0], Zi_data[1])) fn = scipy.interpolate.CloughTocher2DInterpolator(p, Z[Z_data], fill_value=CLT_fillVal) Zi[Zi_data] = fn(pi) else: xx, yy = np.meshgrid(X, Y) xxi, yyi = np.meshgrid(Xi, Yi) p = np.column_stack((xx.flatten(), yy.flatten())) pi = np.column_stack((xxi.flatten(), yyi.flatten())) fn = scipy.interpolate.CloughTocher2DInterpolator(p, Z.flatten(), fill_value=CLT_fillVal) Zi = fn(pi) Zi.resize((Yi.size, Xi.size)) elif RBS or (not method_set and (order in (2, 4))): # Supports all 5 orders of spline interpolation. # Can't handle NaN input; results in all NaN output. fn = scipy.interpolate.RectBivariateSpline(Y[::-1], X, Z, kx=order, ky=order) Zi = fn(Yi[::-1], Xi, grid=True) else: # Supports linear, cubic, and quintic interpolation methods. # Can't handle NaN input; results in all NaN output. # Default interpolator for its presumed efficiency. fn = scipy.interpolate.interp2d(X, Y[::-1], Z, kind=interp) Zi = fn(Xi, Yi) if not extrapolate: interp2_fill_oob(X, Y, Zi, Xi, Yi, oob_val) return Zi def imresize(array, size, interp='bicubic', dtype_out='input', method='cv2', float_resize=True, round_proper=True, one_dim_axis=1): """ Resize an array. Parameters ---------- array : ndarray, 2D The array to resize. size : shape tuple (2D) or scalar value If shape tuple, returns an array of this size. If scalar value, returns an array of shape that is `size` times the shape of `array`. interp : str; 'nearest', 'area', 'bilinear', 'bicubic', or 'lanczos' Interpolation method to use during resizing. dtype_out : str; 'input' or 'float' If 'input', data type of the returned array is the same as `array`. If 'float' and `array` data type is of floating type, data type of the returned array is the same. If 'float' and `array` data type is of integer type, data type of the returned array is float32. method : str; 'cv2', 'pil', 'gdal', or 'scipy' Specifies which method used to perform resizing. 'cv2' ------ cv2.resize [1] 'pil' ------ PIL.Image.resize [2] 'scipy' ---- scipy.misc.imresize (WILL BE RETIRED SOON) [3] 'gdal' ----- interp2_gdal (local, utilizes gdal.ReprojectImage [4]) float_resize : bool If True, convert integer arrays to float32 before resizing. round_proper : bool If the resized array is converted from floating to an integer data type (such as when `float_resize=True` and `dtype_out='input'`)... - If True, round X.5 values up to (X + 1). - If False, round X.5 values to nearest even integer to X. one_dim_axis : int, 0 or 1 Which directional layout to give to a one-dimensional `array` before resizing. If 0, array runs vertically downwards across rows. If 1, array runs horizontally rightwards across columns. Returns ------- array_r : ndarray, 2D, same type as `array` The resized array. See Also -------- imresize_pil imresize_old Notes ----- This function is meant to replicate MATLAB's `imresize` function [5]. References ---------- .. [1] https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#void resize(InputArray src, OutputArray dst, Size dsize, double fx, double fy, int interpolation) .. [2] http://pillow.readthedocs.io/en/3.1.x/reference/Image.html .. [3] https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.imresize.html .. [4] http://gdal.org/java/org/gdal/gdal/gdal.html#ReprojectImage-org.gdal.gdal.Dataset-org.gdal.gdal.Dataset-java.lang.String-java.lang.String-int-double-double-org.gdal.gdal.ProgressCallback-java.util.Vector- https://svn.osgeo.org/gdal/trunk/autotest/alg/reproject.py .. [5] https://www.mathworks.com/help/images/ref/imresize.html """ array_backup = array dtype_in = array.dtype method_choices = ('cv2', 'pil', 'scipy', 'gdal') if method not in method_choices: raise InvalidArgumentError("`method` must be one of {}, but was '{}'".format(method_choices, method)) dtype_out_choices = ('input', 'float') if dtype_out not in dtype_out_choices: raise InvalidArgumentError("`dtype_out` must be one of {}, but was '{}'".format(dtype_out_choices, dtype_out)) # Handle interpolation method lookups. interp_dict = None if method == 'cv2': interp_dict = { 'nearest' : cv2.INTER_NEAREST, 'area' : cv2.INTER_AREA, 'bilinear' : cv2.INTER_LINEAR, 'bicubic' : cv2.INTER_CUBIC, 'lanczos' : cv2.INTER_LANCZOS4, } elif method == 'pil': interp_dict = { 'nearest' : Image.NEAREST, 'box' : Image.BOX, 'linear' : Image.BILINEAR, 'bilinear' : Image.BILINEAR, 'hamming' : Image.HAMMING, 'cubic' : Image.BICUBIC, 'bicubic' : Image.BICUBIC, 'lanczos' : Image.LANCZOS, } if interp_dict is not None: if interp not in interp_dict.keys(): raise UnsupportedMethodError("`interp` must be one of {}, but was '{}'".format(interp_dict.keys(), interp)) interp_code = interp_dict[interp] # Handle 1D array input. one_dim_flag = False if array.ndim == 1: one_dim_flag = True if one_dim_axis == 0: array_shape_1d = (array.size, 1) elif one_dim_axis == 1: array_shape_1d = (1, array.size) else: raise InvalidArgumentError("`one_dim_axis` must be either 0 or 1") array = np.reshape(array, array_shape_1d) # If a resize factor is provided for size, round up the x, y pixel # sizes for the output array to match MATLAB's imresize function. new_shape = size if type(size) == tuple else tuple(np.ceil(np.dot(size, array.shape)).astype(int)) if one_dim_flag and type(size) != tuple: new_shape = (new_shape[0], 1) if one_dim_axis == 0 else (1, new_shape[1]) # The trivial case if new_shape == array.shape: return array_backup.copy() # Handle input data type and conversions. promote_dtype = None promote_is_demote = False if float_resize: if np.issubdtype(dtype_in, np.floating): pass else: array = array.astype(np.float32) elif method == 'cv2': if dtype_in == np.bool: promote_dtype = np.uint8 elif dtype_in == np.int8: promote_dtype = np.int16 elif dtype_in == np.float16: promote_dtype = np.float32 elif dtype_in in (np.int32, np.uint32, np.int64, np.uint64): raise InvalidArgumentError("`array` data type cannot be of 32/64-bit int/uint " "when method='{}', but was {}; consider setting " "`float_resize=True`".format(method, dtype_in)) elif method == 'pil': if dtype_in == np.uint16: promote_dtype = np.int32 elif dtype_in in (np.uint32, np.int64, np.uint64): if np.any(array > np.iinfo(np.int32).max) or np.any(array < np.iinfo(np.int32).min): raise InvalidArgumentError("`array` data type ({}) is not supported by method='{}', " "but values cannot fit in int32; consider setting " "`float_resize=True`") promote_dtype = np.int32 promote_is_demote = True elif dtype_in == np.float16: promote_dtype = np.float32 if promote_dtype is not None: warn("`array` data type ({}) is not supported by '{}' resizing method, " "but can safely be {}{} to {} for processing".format(dtype_in, method, 'promoted'*(not promote_is_demote), 'demoted'*promote_is_demote, promote_dtype(1).dtype)) array = array.astype(promote_dtype) # Resize array. if method == 'cv2': array_r = cv2.resize(array, tuple(list(new_shape)[::-1]), interpolation=interp_code) elif method == 'pil': image = (Image.frombytes(mode='1', size=array.shape[::-1], data=np.packbits(array, axis=1)) if array.dtype == np.bool else Image.fromarray(array)) image = image.resize(tuple(list(new_shape)[::-1]), interp_code) # Set "default" data type for reading data into NumPy array. if image.mode == '1': dtype_out_pil = np.bool image = image.convert('L') elif image.mode == 'L': dtype_out_pil = np.uint8 elif image.mode == 'I': dtype_out_pil = np.int32 elif image.mode == 'F': dtype_out_pil = np.float32 # Convert Pillow Image to NumPy array. array_r = np.fromstring(image.tobytes(), dtype=dtype_out_pil) array_r = array_r.reshape((image.size[1], image.size[0])) elif method == 'gdal': # Set up grid coordinate arrays, then run interp2_gdal. X = np.arange(array.shape[1]) + 1 Y = np.arange(array.shape[0]) + 1 Xi = np.linspace(X[0], X[-1] + (X[1]-X[0]), num=(new_shape[1] + 1))[0:-1] Yi = np.linspace(Y[0], Y[-1] + (Y[1]-Y[0]), num=(new_shape[0] + 1))[0:-1] array_r = interp2_gdal(X, Y, array, Xi, Yi, interp, extrapolate=False) elif method == 'scipy': PILmode = 'L' if array.dtype in (np.bool, np.uint8) else 'F' if PILmode == 'L' and array.dtype != np.uint8: array = array.astype(np.uint8) array_r = scipy.misc.imresize(array, new_shape, interp, PILmode) # Handle output data type and conversions. if dtype_out == 'input' and array_r.dtype != dtype_in: if round_proper: array_r = astype_round_and_crop(array_r, dtype_in, allow_modify_array=True) else: array_r = astype_cropped(array_r, dtype_in, allow_modify_array=True) elif dtype_out == 'float' and not np.issubdtype(array_r.dtype, np.floating): array_r = array_r.astype(np.float32) if one_dim_flag: result_size_1d = new_shape[0] if one_dim_axis == 0 else new_shape[1] array_r = np.reshape(array_r, result_size_1d) return array_r def imresize_pil(array, size, interp='bicubic', dtype_out='input', float_resize=True, round_proper=True, one_dim_axis=1): """ Resize an array. Parameters ---------- array : ndarray, 2D The array to resize. size : shape tuple (2D) or scalar value If shape tuple, returns an array of this size. If scalar value, returns an array of shape that is `size` times the shape of `array`. interp : str; 'nearest', 'box', 'bilinear', 'hamming', 'bicubic', or 'lanczos' Interpolation method to use during resizing. dtype_out : str; 'default' or 'input' If 'default' and `float_resize=True`, the returned array data type will be float32. If 'default' and `float_resize=False`, the returned array data type will be... - bool if `array` is bool - uint8 if `array` is uint8 - int32 if `array` is integer other than uint8 - float32 if `array` is floating If 'input', the returned array data type will be the same as `array` data type. float_resize : bool If True, convert the Pillow image of `array` to PIL mode 'F' before resizing. If False, allow the Pillow image to stay in its default PIL mode for resizing. The rounding scheme of resized integer images with integer PIL modes (e.g. 'L' or 'I') is unclear when compared with the same integer images in the 'F' PIL mode. This option has no effect when `array` dtype is floating. round_proper : bool If the resized array is converted from floating to an integer data type (such as when `float_resize=True` and `dtype_out='input'`)... - If True, round X.5 values up to (X + 1). - If False, round X.5 values to nearest even integer to X. one_dim_axis : int, 0 or 1 Which directional layout to give to a one-dimensional `array` before resizing. If 0, array runs vertically downwards across rows. If 1, array runs horizontally rightwards across columns. Returns ------- array_r : ndarray, 2D, same type as `array` The resized array. See Also -------- imresize imresize_old Notes ----- This function is a wrapper for Pillow's `PIL.Image.resize` function [1] meant to replicate MATLAB's `imresize` function [2]. References ---------- .. [1] http://pillow.readthedocs.io/en/3.1.x/reference/Image.html .. [2] https://www.mathworks.com/help/images/ref/imresize.html """ array_backup = array array_dtype_in = array.dtype interp_choices = ('nearest', 'box', 'bilinear', 'hamming', 'bicubic', 'lanczos') interp_dict = { 'nearest' : Image.NEAREST, 'box' : Image.BOX, 'linear' : Image.BILINEAR, 'bilinear' : Image.BILINEAR, 'hamming' : Image.HAMMING, 'cubic' : Image.BICUBIC, 'bicubic' : Image.BICUBIC, 'lanczos' : Image.LANCZOS, } try: interp_pil = interp_dict[interp] except KeyError: raise UnsupportedMethodError("`interp` must be one of {}, but was '{}'".format(interp_choices, interp)) dtype_out_choices = ('default', 'input') if dtype_out not in dtype_out_choices: raise InvalidArgumentError("`dtype_out` must be one of {}, but was '{}'".format(dtype_out_choices, dtype_out)) # Handle 1D array input. one_dim_flag = False if array.ndim == 1: one_dim_flag = True if one_dim_axis == 0: array_shape_1d = (array.size, 1) elif one_dim_axis == 1: array_shape_1d = (1, array.size) else: raise InvalidArgumentError("`one_dim_axis` must be either 0 or 1") array = np.reshape(array, array_shape_1d) # If a resize factor is provided for size, round up the x, y pixel # sizes for the output array to match MATLAB's imresize function. new_shape = size if type(size) == tuple else tuple(np.ceil(np.dot(size, array.shape)).astype(int)) if one_dim_flag and type(size) != tuple: new_shape = (new_shape[0], 1) if one_dim_axis == 0 else (1, new_shape[1]) # The trivial case if new_shape == array.shape: return array_backup # Convert NumPy array to Pillow Image. image = None if array_dtype_in == np.bool: if float_resize: image = Image.fromarray(array, 'L') else: image = Image.frombytes(mode='1', size=array.shape[::-1], data=np.packbits(array, axis=1)) else: if array_dtype_in == np.float16: array = array.astype(np.float32) if not float_resize: if array_dtype_in == np.uint16: array = array.astype(np.int32) elif array_dtype_in == np.uint32: if np.any(array > np.iinfo(np.int32).max): raise InvalidArgumentError("`array` of uint32 cannot be converted to int32") array = array.astype(np.int32) image = Image.fromarray(array) if float_resize and image.mode != 'F': image = image.convert('F') # Resize array. image = image.resize(tuple(list(new_shape)[::-1]), interp_pil) # Set "default" data type for reading data into NumPy array. if image.mode == '1': dtype_out_np = np.bool image = image.convert("L") elif image.mode == 'L': dtype_out_np = np.uint8 elif image.mode == 'I': dtype_out_np = np.int32 elif image.mode == 'F': dtype_out_np = np.float32 # Convert Pillow Image to NumPy array. array_r = np.fromstring(image.tobytes(), dtype=dtype_out_np) array_r = array_r.reshape((image.size[1], image.size[0])) # Clean up resized array. if dtype_out == 'input' and array_r.dtype != array_dtype_in: if round_proper: array_r = astype_round_and_crop(array_r, array_dtype_in, allow_modify_array=True) else: array_r = astype_cropped(array_r, array_dtype_in, allow_modify_array=True) if one_dim_flag: result_size_1d = new_shape[0] if one_dim_axis == 0 else new_shape[1] array_r = np.reshape(array_r, result_size_1d) return array_r def imresize_old(array, size, interp='bicubic', dtype_out='input', method='pil', one_dim_axis=1): """ Resize an array. Parameters ---------- array : ndarray, 2D The array to resize. size : shape tuple (2D) or scalar value If shape tuple, returns an array of this size. If scalar value, returns an array of shape that is `size` times the shape of `array`. interp : str Interpolation method to use during resizing. See documentation for a particular `method`. dtype_out : str; 'input' or 'float' If 'input', data type of the returned array is the same as `array`. If 'float' and `array` data type is of floating type, data type of the returned array is the same. If 'float' and `array` data type is of integer type, data type of the returned array is float32. method : str; 'cv2', 'pil', 'gdal', or 'scipy' Specifies which method used to perform resizing. 'cv2' ------ cv2.resize [1] 'pil' ------ PIL.Image.resize [2] 'scipy' ---- scipy.misc.imresize (WILL BE RETIRED SOON) [3] 'gdal' ----- interp2_gdal (local, utilizes gdal.ReprojectImage [4]) one_dim_axis : int, 0 or 1 Which directional layout to give to a one-dimensional `array` before resizing. If 0, array runs vertically downwards across rows. If 1, array runs horizontally rightwards across columns. Returns ------- array_r : ndarray, 2D, same type as `array` The resized array. See Also -------- imresize imresize_pil Notes ----- This function is meant to replicate MATLAB's `imresize` function [5]. References ---------- .. [1] https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#void resize(InputArray src, OutputArray dst, Size dsize, double fx, double fy, int interpolation) .. [2] http://pillow.readthedocs.io/en/3.1.x/reference/Image.html .. [3] https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.imresize.html .. [4] http://gdal.org/java/org/gdal/gdal/gdal.html#ReprojectImage-org.gdal.gdal.Dataset-org.gdal.gdal.Dataset-java.lang.String-java.lang.String-int-double-double-org.gdal.gdal.ProgressCallback-java.util.Vector- https://svn.osgeo.org/gdal/trunk/autotest/alg/reproject.py .. [5] https://www.mathworks.com/help/images/ref/imresize.html """ array_backup = array method_choices = ('cv2', 'gdal', 'pil', 'scipy') dtype_out_choices = ('float', 'input') if method not in method_choices: raise UnsupportedMethodError("`method` must be one of {}, " "but was '{}'".format(method_choices, method)) if dtype_out not in dtype_out_choices: raise InvalidArgumentError("`dtype_out` must be one of {}, " "but was '{}'".format(dtype_out_choices, dtype_out)) # Handle 1D array input. one_dim_flag = False if array.ndim == 1: one_dim_flag = True if one_dim_axis == 0: array_shape_1d = (array.size, 1) elif one_dim_axis == 1: array_shape_1d = (1, array.size) else: raise InvalidArgumentError("`one_dim_axis` must be either 0 or 1") array = np.reshape(array, array_shape_1d) # If a resize factor is provided for size, round up the x, y pixel # sizes for the output array to match MATLAB's imresize function. new_shape = size if type(size) == tuple else tuple(np.ceil(np.dot(size, array.shape)).astype(int)) if one_dim_flag and type(size) != tuple: new_shape = (new_shape[0], 1) if one_dim_axis == 0 else (1, new_shape[1]) # The trivial case if new_shape == array.shape: return array_backup array_dtype_in = array.dtype dtype_out_np = None if dtype_out == 'float': dtype_out_np = array_dtype_in if np.issubdtype(array_dtype_in, np.floating) else np.float32 elif dtype_out == 'input': dtype_out_np = array_dtype_in if method == 'cv2': interp_dict = { 'nearest' : cv2.INTER_NEAREST, 'area' : cv2.INTER_AREA, 'bilinear' : cv2.INTER_LINEAR, 'bicubic' : cv2.INTER_CUBIC, 'lanczos' : cv2.INTER_LANCZOS4, } try: interp_cv2 = interp_dict[interp] except KeyError: raise InvalidArgumentError("For `method=cv2`, `interp` must be one of {}, " "but was '{}'".format(interp_dict.keys(), interp)) if array_dtype_in == np.bool: array = array.astype(np.uint8) array_r = cv2.resize(array, tuple(list(new_shape)[::-1]), interpolation=interp_cv2) elif method == 'gdal': # Set up grid coordinate arrays, then run interp2_gdal. X = np.arange(array.shape[1]) + 1 Y = np.arange(array.shape[0]) + 1 Xi = np.linspace(X[0], X[-1] + (X[1]-X[0]), num=(new_shape[1] + 1))[0:-1] Yi = np.linspace(Y[0], Y[-1] + (Y[1]-Y[0]), num=(new_shape[0] + 1))[0:-1] array_r = interp2_gdal(X, Y, array, Xi, Yi, interp, extrapolate=False) elif method == 'pil': return imresize_pil(array, new_shape, interp) elif method == 'scipy': PILmode = 'L' if array.dtype in (np.bool, np.uint8) else 'F' if PILmode == 'L' and array.dtype != np.uint8: array = array.astype(np.uint8) array_r = scipy.misc.imresize(array, new_shape, interp, PILmode) # Clean up resized array. if array_r.dtype != dtype_out_np: array_r = astype_round_and_crop(array_r, dtype_out_np, allow_modify_array=True) if one_dim_flag: result_size_1d = new_shape[0] if one_dim_axis == 0 else new_shape[1] array_r = np.reshape(array_r, result_size_1d) return array_r def conv2_slow(array, kernel, shape='full', default_double_out=True, zero_border=True, fix_float_zeros=True, nan_over_zero=True, allow_flipped_processing=True): """ Convolve two 2D arrays. Parameters ---------- array : ndarray, 2D Primary array to convolve. kernel : ndarray, 2D, smaller shape than `array` Secondary, smaller array to convolve with `array`. shape : str; 'full', 'same', or 'valid' See documentation for `scipy.signal.convolve` [1]. default_double_out : bool If True and `array` is not of floating data type, casts the result to float64 before returning. The sole purpose of this option is to allow this function to most closely replicate the corresponding MATLAB array method [2]. zero_border : bool When `kernel` hangs off the edges of `array` during convolution calculations... If True, pixels beyond the edges of `array` are extrapolated as zeros. If False, pixels beyond the edges of `array` are extrapolated as the value of the closest edge pixel. This option only applies when `shape='same'`, since a zero border is required when `shape='full'` and does not make sense when `shape='valid'`. fix_float_zeros : bool To correct for FLOP error in convolution where the result should be zero but isn't, immediately following convolution map array values between -1.0e-12 and +1.0e-11 to zero. nan_over_zero : bool If True, let NaN x 0 = NaN in convolution computation. If False, let NaN x 0 = 0 in convolution computation. allow_flipped_processing : bool If True and at least one of `kernel`'s side lengths is even, rotate both `array` `kernel` 180 degrees before performing convolution, then rotate the result array 180 degrees before returning. The sole purpose of this option is to allow this function to most closely replicate the corresponding MATLAB array method [2]. Returns ------- array_c : ndarray, 2D A 2D array containing the convolution of the input array and kernel. See Also -------- conv2 Notes ----- This function is meant to replicate MATLAB's conv2 function [2]. Scipy's convolution function cannot handle NaN input as it results in all NaN output. In comparison, MATLAB's conv2 function takes a sensible approach by letting NaN win out in all calculations involving pixels with NaN values in the input array. To replicate this, we set all NaN values to zero before performing convolution, then mask our result array with NaNs according to a binary dilation of ALL NaN locations in the input array, dilating using a structure of ones with same shape as the provided kernel. For large arrays, this function will use an FFT method for convolution that results in FLOP errors on the order of 10^-12. For this reason, a floating result array will have all resulting pixel values between -1.0e-12 and 10.0e-12 set to zero. References ---------- .. [1] https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html .. [2] https://www.mathworks.com/help/matlab/ref/conv2.html """ shape_choices = ('full', 'same', 'valid') if shape not in shape_choices: raise InvalidArgumentError("`shape` must be one of {}, but was '{}'".format(shape_choices, shape)) if default_double_out: dtype_out = None if np.issubdtype(array.dtype, np.floating): dtype_out = array.dtype if (np.issubdtype(kernel.dtype, np.floating) and int(str(kernel.dtype).replace('float', '')) > int(str(dtype_out).replace('float', ''))): warn("Since default_double_out=True, kernel with floating dtype ({}) at greater precision than " "array floating dtype ({}) is cast to array dtype".format(kernel.dtype, dtype_out)) kernel = kernel.astype(dtype_out) else: dtype_out = np.float64 if kernel.dtype == np.bool: warn("Boolean data type for kernel is not supported, casting to float32") kernel = kernel.astype(np.float32) rotation_flag = False if allow_flipped_processing: array, kernel, rotation_flag = rotate_arrays_if_kernel_has_even_sidelength(array, kernel) # Take a record of where all NaN values are located # before setting the values of those pixels to zero. fixnans_flag = False if np.issubdtype(array.dtype, np.floating): array_nans = np.isnan(array) if np.any(array_nans): fixnans_flag = True array[array_nans] = 0 else: del array_nans # Edge settings array_backup = array if (fixnans_flag and shape != 'same') or (shape == 'same' and not zero_border): if shape in ('full', 'same'): pady_top, padx_lft = (np.array(kernel.shape) - 1) / 2 pady_bot, padx_rht = np.array(kernel.shape) / 2 elif shape == 'valid': pady_top, padx_lft = np.array(kernel.shape) / 2 pady_bot, padx_rht = (np.array(kernel.shape) - 1) / 2 pady_top, padx_lft = int(pady_top), int(padx_lft) pady_bot, padx_rht = int(pady_bot), int(padx_rht) if shape == 'same': # and not zero_border array = np.pad(array, ((pady_top, pady_bot), (padx_lft, padx_rht)), 'edge') # Perform convolution. method = scipy.signal.choose_conv_method(array, kernel, shape) array_c = scipy.signal.convolve(array, kernel, shape, method) if method != 'direct' and fix_float_zeros and np.issubdtype(array_c.dtype, np.floating): # Fix FLOP error from FFT method where we assume zero was the desired result. array_c[(-1.0e-12 < array_c) & (array_c < 10.0e-12)] = 0 # Apply dilation of original NaN pixels to result. if fixnans_flag: array_nans_backup = array_nans if shape != 'same' or not zero_border: if shape == 'full': array_nans = np.pad(array_nans, ((pady_top, pady_bot), (padx_lft, padx_rht)), 'constant', constant_values=0) elif shape == 'same': # and not zero_border array_nans = np.pad(array_nans, ((pady_top, pady_bot), (padx_lft, padx_rht)), 'edge') dilate_structure = np.ones(kernel.shape, dtype=np.uint8) if not nan_over_zero: dilate_structure[kernel == 0] = 0 array_nans_dilate = imdilate(array_nans, dilate_structure) if shape == 'valid': pady_bot = -pady_bot if pady_bot > 0 else None padx_rht = -padx_rht if padx_rht > 0 else None array_nans_dilate = array_nans_dilate[pady_top:pady_bot, padx_lft:padx_rht] array_c[array_nans_dilate] = np.nan # Return the input array to its original state. array_backup[array_nans_backup] = np.nan # Clean up result array. if shape == 'same' and not zero_border: pady_bot = -pady_bot if pady_bot > 0 else None padx_rht = -padx_rht if padx_rht > 0 else None array_c = array_c[pady_top:pady_bot, padx_lft:padx_rht] # FIXME: Make returned data type function like conv2. if default_double_out and array_c.dtype != dtype_out: array_c = array_c.astype(dtype_out) return fix_array_if_rotation_was_applied(array_c, rotation_flag) def conv2(array, kernel, shape='full', conv_depth='default', zero_border=True, fix_float_zeros=True, nan_same=False, nan_over_zero=True, allow_flipped_processing=True): """ Convolve two 2D arrays. Parameters ---------- array : ndarray, 2D Primary array to convolve. kernel : ndarray, 2D, smaller shape than `array` Secondary, smaller array to convolve with `array`. shape : str; 'full', 'same', or 'valid' See documentation for MATLAB's `conv2` function [2]. conv_depth : str; 'default', 'input', 'int16', 'single'/'float32', or 'double'/'float64' Sets the data type depth of the convolution function filter2D, and correspondingly sets the data type of the returned array. 'default': If `array` is of floating data type, returns an array of that data type, otherwise returns an array of float64. 'input': Returns an array of the same data type as `array`. 'int16': Returns an array of int16. 'single'/'float32': Returns an array of float32. 'double'/'float64': Returns an array of float64. BEWARE: 'float32' option results in zero_border : bool When `kernel` hangs off the edges of `array` during convolution calculations... If True, pixels beyond the edges of `array` are extrapolated as zeros. If False, pixels beyond the edges of `array` are extrapolated as the value of the closest edge pixel. This option only applies when `shape='same'`, since a zero border is required when `shape='full'` and does not make sense when `shape='valid'`. fix_float_zeros : bool To correct for FLOP error in convolution where the result should be zero but isn't, immediately following convolution map array values between... - float32 (single): -1.0e-6 and +1.0e-6 to zero. - float54 (double): -1.0e-15 and +1.0e-15 to zero. nan_same : bool NaN values are treated as 0 in convolution computation, but NaN pixels are retained from input to output. nan_over_zero : bool If True, let NaN x 0 = NaN in convolution computation. If False, let NaN x 0 = 0 in convolution computation. allow_flipped_processing : bool If True and at least one of `kernel`'s side lengths is even, rotate both `array` `kernel` 180 degrees before performing convolution, then rotate the result array 180 degrees before returning. The sole purpose of this option is to allow this function to most closely replicate the corresponding MATLAB array method [2]. Returns ------- array_c : ndarray, 2D Array containing the convolution of input array and kernel. See Also -------- conv2_slow Notes ----- This function utilizes a fast OpenCV function `filter2D` [1] as a means to replicate MATLAB's `conv2` function [2]. References ---------- .. [1] https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html#filter2d .. [2] https://www.mathworks.com/help/matlab/ref/conv2.html """ shape_choices = ('full', 'same', 'valid') if shape not in shape_choices: raise InvalidArgumentError("`shape` must be one of {}, but was '{}'".format(shape_choices, shape)) conv_depth_choices = ('default', 'input', 'int16', 'single', 'float32', 'double', 'float64') if conv_depth not in conv_depth_choices: raise InvalidArgumentError("`conv_depth` must be one of {}, but was '{}'".format(conv_depth_choices, conv_depth)) cv2_array_dtypes = [np.uint8, np.int16, np.uint16, np.float32, np.float64] cv2_kernel_dtypes = [np.int8, np.uint8, np.int16, np.uint16, np.int32, np.int64, np.uint64, np.float32, np.float64] # Check array data type. array_error = False array_dtype_in = array.dtype if array_dtype_in not in cv2_array_dtypes: array_dtype_errmsg = ("Fast convolution method only allows array dtypes {}, " "but was {}".format([str(d(1).dtype) for d in cv2_array_dtypes], array.dtype)) # Only cast to a higher data type for safety. array_dtype_cast = None if array_dtype_in == np.bool: array_dtype_cast = np.uint8 elif array_dtype_in == np.int8: array_dtype_cast = np.int16 elif array_dtype_in == np.float16: array_dtype_cast = np.float32 if array_dtype_cast is None: array_error = True # Check kernel data type. kernel_error = False kernel_dtype_in = kernel.dtype if kernel_dtype_in not in cv2_kernel_dtypes: kernel_dtype_errmsg = ("Fast convolution method only allows kernel dtypes {} " "but was {}".format([str(d(1).dtype) for d in cv2_kernel_dtypes], kernel.dtype)) # Only cast to a higher data type for safety. kernel_dtype_cast = None if kernel_dtype_in == np.bool: kernel_dtype_cast = np.uint8 elif kernel_dtype_in == np.uint32: kernel_dtype_cast = np.uint64 elif kernel_dtype_in == np.float16: kernel_dtype_cast = np.float32 if kernel_dtype_cast is None: kernel_error = True # Fall back to old (slower) conv2 function # if array or kernel data type is unsupported. if array_error or kernel_error: dtype_errmsg = "{}{}{}".format(array_dtype_errmsg * array_error, "\n" * (array_error * kernel_error), kernel_dtype_errmsg * kernel_error) if conv_depth != 'default': raise UnsupportedDataTypeError(dtype_errmsg + "\nSince conv_depth ('{}') != 'default', " "cannot fall back to other method".format(conv_depth)) warn(dtype_errmsg + "\n-> Falling back to slower, less exact method") return conv2_slow(array, kernel, shape, True, nan_over_zero, allow_flipped_processing) # Promote array or kernel to higher data type if necessary # to continue with faster and more reliable convolution method. array_casted = False if 'array_dtype_cast' in vars(): if array_dtype_in != np.bool: warn(array_dtype_errmsg + "\n-> Casting array from {} to {} for processing".format( array_dtype_in, array_dtype_cast(1).dtype)) array = array.astype(array_dtype_cast) array_casted = True if 'kernel_dtype_cast' in vars(): if array_dtype_in != np.bool: warn(kernel_dtype_errmsg + "\n-> Casting kernel from {} to {} for processing".format( kernel_dtype_in, kernel_dtype_cast(1).dtype)) kernel = kernel.astype(kernel_dtype_cast) # Set convolution depth and output data type. ddepth = None dtype_out = None conv_dtype_error = False if conv_depth == 'default': if np.issubdtype(array_dtype_in, np.floating): ddepth = -1 dtype_out = array_dtype_in else: ddepth = cv2.CV_64F dtype_out = np.float64 elif conv_depth == 'input': ddepth = -1 dtype_out = array_dtype_in elif conv_depth == 'int16': ddepth = cv2.CV_16S dtype_out = np.int16 if array.dtype != np.uint8: conv_dtype_error = True conv_dtype_errmsg = "conv_depth can only be 'int16' if array dtype is uint8" elif conv_depth in ('single', 'float32'): ddepth = cv2.CV_32F dtype_out = np.float32 if array.dtype == np.float64: conv_dtype_error = True conv_dtype_errmsg = "conv_depth can only be 'single'/'float32' if array dtype is not float64" elif conv_depth in ('double', 'float64'): ddepth = cv2.CV_64F dtype_out = np.float64 if array.dtype == np.float32: conv_dtype_errmsg = "conv_depth can only be 'double'/'float64' if array dtype is not float32" warn(conv_dtype_errmsg + "\n-> Casting array from float32 to float64 for processing") array = array.astype(np.float64) array_casted = True if conv_dtype_error: raise UnsupportedDataTypeError(conv_dtype_errmsg) rotation_flag = False if allow_flipped_processing: array, kernel, rotation_flag = rotate_arrays_if_kernel_has_even_sidelength(array, kernel) # Take a record of where all NaN values are located # before setting the values of those pixels to zero. fixnans_flag = False if np.issubdtype(array.dtype, np.floating): array_nans = np.isnan(array) if np.any(array_nans): fixnans_flag = True if not array_casted: array_backup = array array[array_nans] = 0 else: del array_nans # Edge settings if shape != 'same' or not zero_border: # The following differences in where to split # an even side length for a kernel is purely # to mimic MATLAB's conv2 function. if shape == 'full' or (shape == 'same' and not zero_border): pady_top, padx_lft = (np.array(kernel.shape) - 1) / 2 pady_bot, padx_rht = np.array(kernel.shape) / 2 elif shape == 'valid': pady_top, padx_lft = np.array(kernel.shape) / 2 pady_bot, padx_rht = (np.array(kernel.shape) - 1) / 2 pady_top, padx_lft = int(pady_top), int(padx_lft) pady_bot, padx_rht = int(pady_bot), int(padx_rht) if shape == 'full': array = np.pad(array, ((pady_top, pady_bot), (padx_lft, padx_rht)), 'constant', constant_values=0) # Perform convolution. array_c = cv2.filter2D(array, ddepth, np.rot90(kernel, 2), borderType=(cv2.BORDER_CONSTANT if zero_border else cv2.BORDER_REPLICATE)) if fix_float_zeros and np.issubdtype(array_c.dtype, np.floating): # Fix FLOP error where we assume zero was the desired result. if array_c.dtype == np.float32: array_c[(-1.0e-6 < array_c) & (array_c < 1.0e-6)] = 0 elif array_c.dtype == np.float64: array_c[(-1.0e-15 < array_c) & (array_c < 1.0e-15)] = 0 if array_c.dtype != dtype_out: array_c = astype_round_and_crop(array_c, dtype_out, allow_modify_array=True) # Crop result if necessary. if shape == 'valid': if pady_bot >= 0: pady_bot = -pady_bot if pady_bot > 0 else None if padx_rht >= 0: padx_rht = -padx_rht if padx_rht > 0 else None array_c = array_c[pady_top:pady_bot, padx_lft:padx_rht] # Apply dilation of original NaN pixels to result. if fixnans_flag: array_nans_backup = array_nans if shape == 'full': array_nans = np.pad(array_nans, ((pady_top, pady_bot), (padx_lft, padx_rht)), 'constant', constant_values=0) elif shape == 'same' and not zero_border: array_nans = np.pad(array_nans, ((pady_top, pady_bot), (padx_lft, padx_rht)), 'edge') if nan_same: array_nans_dilate = array_nans else: dilate_structure = np.ones(kernel.shape, dtype=np.uint8) if not nan_over_zero: dilate_structure[kernel == 0] = 0 array_nans_dilate = imdilate(array_nans, dilate_structure) if shape == 'valid' or (shape == 'same' and not zero_border): if pady_bot >= 0: pady_bot = -pady_bot if pady_bot > 0 else None if padx_rht >= 0: padx_rht = -padx_rht if padx_rht > 0 else None array_nans_dilate = array_nans_dilate[pady_top:pady_bot, padx_lft:padx_rht] array_c[array_nans_dilate] = np.nan # Restore the input array to its original state. if not array_casted: array_backup[array_nans_backup] = np.nan return fix_array_if_rotation_was_applied(array_c, rotation_flag) def filt2(array, kernel, shape='same', conv_depth='default', zero_border=False, fix_float_zeros=True, nan_same=False, nan_over_zero=True, allow_flipped_processing=True): """ Apply the (convolution) filter kernel to an array in 2D. See documentation for `conv2`, but replace the word "convolve" with "filter". Notes ----- The mathematical convolution function (as implemented in conv2) rotates the kernel 180 degrees before sliding it over the array and performing the multiplications/additions. """ return conv2(array, np.rot90(kernel, 2), shape, conv_depth, zero_border, fix_float_zeros, nan_same, nan_over_zero, allow_flipped_processing) def moving_average(array, nhood, shape='same', conv_depth='default', zero_border=True, fix_float_zeros=True, nan_same=False, nan_over_zero=True, allow_flipped_processing=True): """ Calculate the moving average over an array. Parameters ---------- array : ndarray, 2D Array for which to calculate the moving average. nhood : positive int, tuple like `array.shape`, or (ndarray, 2D) If an integer / tuple, specifies the side length / shape of structure (of ones) to be used as structure for moving window. If ndarray, must be a binary array with True/1-valued elements specifying the structure for moving window. shape : See documentation for `conv2`. conv_depth : str; 'default', 'single', or 'double' Specifies the floating data type of the convolution kernel. See documentation for `conv2`. zero_border : bool See documentation for `conv2`. fix_float_zeros : bool See documentation for `conv2`. nan_same : bool See documentation for `conv2`. nan_over_zero : bool See documentation for `conv2`. allow_flipped_processing : bool See documentation for `conv2` function. See Also -------- conv2 conv2_slow Returns ------- moving_average : ndarray, 2D Array containing the moving average of the input array. """ conv_dtype_choices = ('default', 'single', 'double') structure = None if type(nhood) in (int, tuple): size = nhood elif type(nhood) == np.ndarray: structure = nhood else: raise InvalidArgumentError("`nhood` type may only be int, tuple, or ndarray, " "but was {} (nhood={})".format(type(nhood), nhood)) if conv_depth not in conv_dtype_choices: raise UnsupportedDataTypeError("float_dtype must be one of {}, " "but was {}".format(conv_dtype_choices, conv_depth)) if conv_depth == 'default': float_dtype = np.float32 if array.dtype == np.float32 else np.float64 else: float_dtype = np.float32 if conv_depth == 'single' else np.float64 if structure is not None: if not np.any(structure): # The trivial case, # must be handled to prevent divide by zero error. return np.zeros_like(array, float_dtype) if np.any(~np.logical_or(structure == 0, structure == 1)): raise InvalidArgumentError("`structure` may only contain zeros and ones") else: if type(size) == int: structure = np.ones((size, size), dtype=float_dtype) elif type(size) == tuple: structure = np.ones(size, dtype=float_dtype) conv_kernel = np.rot90(np.divide(structure, np.sum(structure), dtype=float_dtype), 2) return conv2(array, conv_kernel, shape, conv_depth, zero_border, fix_float_zeros, nan_same, nan_over_zero, allow_flipped_processing) def conv_binary_prevent_overflow(array, structure): """ Make sure structure array has great enough positive bitdepth to be convolved with binary primary array. Parameters ---------- array : ndarray of bool or int, 2D Primary integer array to convolve. Must be a binary array of only zero/False and one/True. structure : ndarray of bool or int, 2D Secondary, smaller integer array to convolve with `array`. Must be a binary array of only zero/False and one/True. Returns ------- structure : ndarray, possible uint cast of `structure` Either the same `structure` array or a cast or `structure` to a uint data type with more positive bitdepth than the input array. """ # Get upper bound on minimum positive bitdepth for convolution. conv_bitdepth_pos = math.log(np.prod(structure.shape)+1, 2) dtype_bitdepths_pos = (1, 7, 8, 15, 16, 31, 32, 63, 64) for b in dtype_bitdepths_pos: if conv_bitdepth_pos <= b: conv_bitdepth_pos = b break # Parse input array and structure data type for bitdepth. input_bitdepth_pos = 0 for arr in (array, structure): arr_dtype = arr.dtype if arr.dtype == np.bool: arr_posbits = 1 elif np.issubdtype(arr_dtype, np.int): arr_posbits = int(str(arr.dtype).replace('int', '')) - 1 elif np.issubdtype(arr_dtype, np.uint): arr_posbits = int(str(arr.dtype).replace('uint', '')) elif np.issubdtype(arr_dtype, np.floating): arr_posbits = np.inf else: arr_posbits = 0 input_bitdepth_pos = max(input_bitdepth_pos, arr_posbits) if input_bitdepth_pos == 0: # Handle unknown data type by casting structure to # maximum possible bitdepth. structure = structure.astype(np.uint64) else: # If maximum positive bitdepth from inputs is too low, # cast structure to minimum positive bitdepth for conovlution. if input_bitdepth_pos < conv_bitdepth_pos: if (conv_bitdepth_pos % 2) != 0: conv_bitdepth_pos += 1 structure = structure.astype(eval('np.uint{}'.format(conv_bitdepth_pos))) return structure def imerode_slow(array, nhood, iterations=1, mode='auto', cast_structure_for_speed=True, allow_flipped_processing=True): """ Erode an array with the provided binary structure. Parameters ---------- array : ndarray, 2D Array to erode. nhood : positive int, tuple like `array.shape`, or (ndarray, 2D) If an integer / tuple, specifies the side length / shape of structure (of ones) to be used as structure for erosion. If ndarray, must be a binary array with True/1-valued elements specifying the structure for erosion. iterations : positive int Number of times to perform the erosion. mode : str; 'auto', 'conv', 'skimage', 'scipy', or 'scipy_grey' Specifies which method will be used to perform erosion. 'auto' -------- use the fastest of ('conv', 'scipy') given array, structure sizes 'conv' -------- `conv2` 'skimage' ----- `skimage.morphology.binary_erosion` [1] 'scipy' ------- `scipy.ndimage.binary_erosion` [2] 'scipy_grey' -- `scipy.ndimage.grey_erosion` [3] cast_structure_for_speed : bool If True and `structure` is not float32 data type, cast it to float32. This produces the fastest results overall for all methods, and for 'conv' method this prevents a potential fallback call to `conv2_slow` if input structure has an unsupported data type for fast OpenCV method used in `conv2`. allow_flipped_processing : bool If True and at least one of `structure`'s side lengths is even, rotate both `array` `structure` 180 degrees before performing erosion, then rotate the result array 180 degrees before returning. The sole purpose of this option is to allow this function to most closely replicate the corresponding MATLAB array method [4]. Returns ------- array_e : ndarray, same shape and type as `array` Array containing the erosion of the input array by the structure. See Also -------- imdilate_slow Notes ----- This function is meant to replicate MATLAB's `imerode` function [4]. Strictly binary erosion will be performed if and only if `array.dtype` is `np.bool`, otherwise greyscale erosion will be performed. However, greyscale erosion on a binary array containing only values X and Y produces the same result as if the values [min(X, Y), max(X, Y)] were mapped to [0, 1] and cast to a boolean array, passed into this function, then mapped values in the result array back to their original values (for floating `array`, note `-inf < 0 < inf < NaN`). All modes will handle greyscale erosion when `array` is not boolean. For `array` of feasibly large sizes containing more than two values, 'scipy_grey' is the fastest method for performing greyscale erosion, but since the method may interpolate on the boundaries between regions of differing values (which the MATLAB function does not do), it is not an acceptable default method and is not considered when `mode=='auto'`. In preliminary testing, all three methods 'conv', 'scipy', and 'skimage' are able to reproduce the results of the MATLAB function for both binary and greyscale erosion (with the exception of some edge pixels when `structure` with a False/zero center element is used in grey erosion, which produces nonsensical values where proper erosion cannot be detected by these three methods as well as MATLAB's function -- only the 'scipy_grey' method handles this case properly). References ---------- .. [1] http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_erosion .. [2] https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.binary_erosion.html .. [3] https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.grey_erosion.html .. [4] https://www.mathworks.com/help/images/ref/imerode.html """ mode_choices = ('auto', 'conv', 'skimage', 'scipy', 'scipy_grey') structure = None if type(nhood) == int: structure = np.ones((nhood, nhood), dtype=np.float32) elif type(nhood) == tuple: structure = np.ones(nhood, dtype=np.float32) elif type(nhood) == np.ndarray: structure = nhood if structure.dtype != np.bool and np.any(~np.logical_or(structure == 0, structure == 1)): raise InvalidArgumentError("`nhood` structure contains values other than 0 and 1") if cast_structure_for_speed and structure.dtype != np.float32: structure = structure.astype(np.float32) else: raise InvalidArgumentError("`nhood` type may only be int, tuple, or ndarray, " "but was {} (nhood={})".format(type(nhood), nhood)) if mode not in mode_choices: raise UnsupportedMethodError("'mode' must be one of {}, but was '{}'".format(mode_choices, mode)) if mode == 'auto': # FIXME: Get new time coefficients for faster conv2 function now being used. # Make an estimate of the runtime for 'conv' and 'scipy' methods, # then choose the faster method. array_elements = np.prod(array.shape) struc_elements = np.prod(structure.shape) time_conv = 1.25e-07 * array_elements - 7.61e-02 time_scipy = ( (1.56e-10 * array_elements - 2.66e-04) * struc_elements + (1.34e-08 * array_elements - 1.42e-02) ) mode = 'conv' if time_conv < time_scipy else 'scipy' if mode == 'conv': if ( not np.issubdtype(array.dtype, np.floating) and not np.issubdtype(structure.dtype, np.floating) ): # Make sure one of the input integer arrays has great enough # positive bitdepth to prevent overflow during convolution. if array.dtype != np.bool and np.any(~np.logical_or(array == 0, array == 1)): structure = structure.astype(np.uint64) else: structure = conv_binary_prevent_overflow(array, structure) structure = np.rot90(structure, 2) rotation_flag = False if allow_flipped_processing: array, structure, rotation_flag = rotate_arrays_if_kernel_has_even_sidelength(array, structure) if mode == 'skimage': pady, padx = np.array(structure.shape) / 2 pady, padx = int(pady), int(padx) if array.dtype == np.bool: padval = 1 else: padval = np.inf if np.issubdtype(array.dtype, np.floating) else
np.iinfo(array.dtype)
numpy.iinfo
''' Created on 11.07.2014 @author: mkamp ''' import gc import numpy as np from concurrent.futures import ThreadPoolExecutor, as_completed RADON_CALC_METHOD = 1 #2 #method 1 is to add a line 1,0,...,0 to S and set b = 0,...,0,1 in order to force a non-trivial solution. method 2 is to set S=[:-1] and b = S[-1], i.e., forcing the last column of S to have weight one and the other columns to add up to that last one, canceling each other out to zero. EPS = 0.000001 MAX_REL_EPS = 0.0001 def getRadonPoint(S): alpha = [] if RADON_CALC_METHOD == 1: A = np.vstack((np.transpose(S),np.ones(S.shape[0]))) z = np.zeros(S.shape[0]) z[0] = 1.0 A = np.vstack((A,z)) b = np.zeros(S.shape[0]) b[-1] = 1.0 alpha = np.linalg.lstsq(A, b)[0] else: print( S) A = S[:-1] print( A) A = np.vstack((np.transpose(A),np.ones(A.shape[0]))) print( A) b = np.hstack((S[-1], np.ones(1))) print( b) alpha = np.linalg.solve(A, b) alpha_plus = np.zeros(len(alpha)) alpha_minus = np.zeros(len(alpha)) for i in range(len(alpha)): if alpha[i] > 0: alpha_plus[i] = alpha[i] if alpha[i] < 0: alpha_minus[i] = alpha[i] sumAlpha_plus = 1.*np.sum(alpha_plus) sumAlpha_minus = -1.*np.sum(alpha_minus) if not floatApproxEqual(sumAlpha_plus, sumAlpha_minus): print( "Error: sum(a+) != sum(a-): " + str(sumAlpha_plus) + " != " + str(sumAlpha_minus) + " for |S| = " + str(S.shape) + " and R = " + str(getRadonNumber(S))) alpha /= sumAlpha_plus r = np.zeros(S.shape[1]) r_minus = np.zeros(S.shape[1]) for i in range(len(alpha)): if alpha[i] > 0: r += alpha[i] * S[i] if alpha[i] < 0: r_minus += alpha[i] * S[i] rtest_plus = r * 1./np.linalg.norm(r) #normiert rtest_minus = r_minus * 1./
np.linalg.norm(r_minus)
numpy.linalg.norm
# coding: utf-8 import os import itertools from atomate.vasp.fireworks.core import StaticFW from fireworks import Workflow, Firework from atomate.vasp.powerups import ( add_additional_fields_to_taskdocs, add_wf_metadata, add_common_powerups, ) from atomate.vasp.workflows.base.core import get_wf from atomate.vasp.firetasks.run_calc import RunVaspCustodian from atomate.common.firetasks.glue_tasks import PassCalcLocs from atomate.vasp.firetasks.glue_tasks import CopyVaspOutputs from atomate.vasp.firetasks.parse_outputs import ( VaspToDb, HubbardHundLinRespToDb ) from atomate.vasp.firetasks.write_inputs import WriteVaspFromIOSet from atomate.utils.utils import get_logger logger = get_logger(__name__) from atomate.vasp.config import VASP_CMD, DB_FILE, ADD_WF_METADATA from uuid import uuid4 from pymatgen.io.vasp.sets import MPRelaxSet, MPStaticSet from pymatgen.io.vasp.inputs import Poscar, Incar from pymatgen.core import Lattice, Structure, Element import numpy as np __author__ = "<NAME>, <NAME>" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" __date__ = "February 2020" __hubbard_hund_linresp_wf_version__ = 0.0 module_dir = os.path.join(os.path.dirname(os.path.abspath(__file__))) def get_wf_hubbard_hund_linresp( structure, user_incar_settings=None, relax_nonmagnetic=True, spin_polarized=True, applied_potential_range=(-0.2, 0.2), num_evals=9, site_indices_perturb=None, species_perturb=None, find_nearest_sites=True, parallel_scheme=0, ediff_tight=None, c=None): """ Compute Hubbard U (and Hund J) on-site interaction values using GGA+U linear response method proposed by Cococcioni et. al. (DOI: 10.1103/PhysRevB.71.035105) and the spin-polarized response formalism developed by Linscott et. al. (DOI: 10.1103/PhysRevB.98.235157) This workflow relies on the constrained on-site potential functional implemented in VASP, with a helpful tutorial found here: https://www.vasp.at/wiki/index.php/Calculate_U_for_LSDA%2BU Args: structure: user_incar_settings: user INCAR settings relax_nonmagnetic: Restart magnetic SCF runs from non-magnetic calculation, using WAVECAR spin_polarized: Perform spin-dependent perturbations applied_potential_range: Bounds of applied potential num_evals: Number of perturbation evalutaions site_indices_perturb: (must specify if species_perturb=None) List of site indices within Structure indicating perturbation sites; species_perturb: (must specify if site_indices_perturb=None) List of names of species (string) of sites to perturb; First site of that species is selected in the structure find_nearest_sites: If set to true and species_perturb != None, the closest sites (by the Structure distance matrix) will be selected in the response analysis to account for inter-site screening effects parallel_scheme: 0 - (default) self-consistent (SCF) runs use WAVECAR from non-self consistent (NSCF) run at same applied potential; 1 - SCF runs use WAVECAR from ground-state (V=0) run. While reusing the WAVECAR from NSCF run in SCF run may be more efficient (parallel_scheme: 0), the user may also choose to remove the dependency between NSCF and SCF runs (parallel_scheme: 1) ediff_tight: Final energy convergence tolerance, if restarting from a previous run (if not specified, will default to pymatgen default EDIFF) c: Workflow config dict, in the same format as in presets/core.py and elsewhere in atomate Returns: Workflow """ if not structure.is_ordered: raise ValueError( "Please obtain an ordered approximation of the input structure." ) if not site_indices_perturb: site_indices_perturb = [] if species_perturb: if find_nearest_sites: site_indices_perturb = find_closest_sites(structure, species_perturb) else: for specie_u in species_perturb: found_specie = False for s in range(len(structure)): site = structure[s] if (Element(str(site.specie)) == Element(specie_u)) \ and (s not in site_indices_perturb): found_specie = True break if not found_specie: raise ValueError( "Could not find specie(s) in structure." ) site_indices_perturb.append(s) elif not site_indices_perturb: logger.warning( "Sites for computing U value are not specified. " "Computing U for first site in structure. " ) site_indices_perturb = list(tuple(site_indices_perturb)) num_perturb = len(site_indices_perturb) sites_perturb = [] for site_index_perturb in site_indices_perturb: site = structure[site_index_perturb] sites_perturb.append(site) structure.remove_sites(indices=site_indices_perturb) for site in sites_perturb: structure.insert(i=0, species=site.specie, coords=site.frac_coords, properties=site.properties) # using a uuid for book-keeping, # in a similar way to other workflows uuid = str(uuid4()) c_defaults = {"vasp_cmd": VASP_CMD, "db_file": DB_FILE} if c: c.update(c_defaults) else: c = c_defaults # Calculate groundstate # set user_incar_settings if not user_incar_settings: user_incar_settings = {} # setup VASP input sets uis_gs, uis_ldau, val_dict, vis_ldau = init_linresp_input_sets( user_incar_settings, structure, num_perturb) fws = [] index_fw_gs = [0] ediff_default = vis_ldau.incar['EDIFF'] if not ediff_tight: ediff_tight = 0.1 * ediff_default append_linresp_ground_state_fws ( fws, structure, num_perturb, index_fw_gs, uis_gs, relax_nonmagnetic, ediff_default, ediff_tight) # generate list of applied on-site potentials in linear response applied_potential_value_list = [] for counter_perturb in range(num_perturb): applied_potential_values = np.linspace( applied_potential_range[0], applied_potential_range[1], num_evals) applied_potential_values =
np.around(applied_potential_values, decimals=9)
numpy.around
import tensorflow as tf import numpy as np from scipy import signal from scipy.ndimage import gaussian_filter from PIL import Image, ImageDraw import random import glob, os import csv from multiprocessing import Pool import subprocess import time width = 512 height = 512 scale = 2 np.random.seed(os.getpid() + int(time.time())) random.seed(os.getpid() + int(time.time())) class BaseData: def __init__(self): self.load_idmap() def load_idmap(self): self.glyph_id = {} self.glyphs = {} self.glyph_type = {} self.glyph_id[''] = 0 self.glyphs[0] = '' with open(os.path.join('data','codepoints.csv'),'r') as f: reader = csv.reader(f) for row in reader: codehex = row[1] if len(codehex) > 7: code = eval('"' + ''.join(['\\u' + codehex[i*4:i*4+4] for i in range(len(codehex) // 4)]) + '"') else: code = chr(int(codehex, 16)) i = int.from_bytes(code.encode('utf-32le'), 'little') self.glyph_id[code] = i self.glyphs[i] = code with open(os.path.join('data','id_map.csv'),'r') as f: reader = csv.reader(f) for row in reader: code = bytes.fromhex(row[2]).decode() if code in self.glyph_id: k = self.glyph_id[code] else: i = int.from_bytes(code.encode('utf-32le'), 'little') self.glyph_id[code] = i self.glyphs[i] = code k = i self.glyph_type[k] = int(row[3]) self.id_count = len(self.glyph_id) def sub_load(args): exe = os.path.join('data','load_font','load_font.exe') if not os.path.exists(exe): exe = os.path.join('data','load_font','load_font') proc = subprocess.Popen([ exe, args[0], '128', ], stdin=subprocess.PIPE, stdout=subprocess.PIPE) ret = {} for c in args[1]: if len(c) == 1: charbuf = c.encode("utf-32-le") proc.stdin.write(charbuf[:4]) proc.stdin.flush() result = proc.stdout.read(32) code = result[:4] rows = int.from_bytes(result[4:8], 'little') width = int.from_bytes(result[8:12], 'little') boundingWidth = int.from_bytes(result[12:16], 'little', signed=True) boundingHeight = int.from_bytes(result[16:20], 'little', signed=True) horiBearingX = int.from_bytes(result[20:24], 'little', signed=True) horiBearingY = int.from_bytes(result[24:28], 'little', signed=True) horiAdvance = int.from_bytes(result[28:32], 'little', signed=True) if rows * width == 0: continue assert(charbuf == code) boundingWidth = boundingWidth / 64 boundingHeight = boundingHeight / 64 horiBearingX = horiBearingX / 64 horiBearingY = horiBearingY / 64 horiAdvance = horiAdvance / 64 buffer = proc.stdout.read(rows*width) img = np.frombuffer(buffer, dtype='ubyte').reshape(rows,width) value = { 'horizontal': { 'rows': rows, 'width': width, 'boundingWidth': boundingWidth, 'boundingHeight': boundingHeight, 'horiBearingX': horiBearingX, 'horiBearingY': horiBearingY, 'horiAdvance': horiAdvance, 'image': img, } } result = proc.stdout.read(28) rows = int.from_bytes(result[:4], 'little') width = int.from_bytes(result[4:8], 'little') boundingWidth = int.from_bytes(result[8:12], 'little', signed=True) boundingHeight = int.from_bytes(result[12:16], 'little', signed=True) vertBearingX = int.from_bytes(result[16:20], 'little', signed=True) vertBearingY = int.from_bytes(result[20:24], 'little', signed=True) vertAdvance = int.from_bytes(result[24:28], 'little', signed=True) boundingWidth = boundingWidth / 64 boundingHeight = boundingHeight / 64 vertBearingX = vertBearingX / 64 vertBearingY = vertBearingY / 64 vertAdvance = vertAdvance / 64 buffer = proc.stdout.read(rows*width) img = np.frombuffer(buffer, dtype='ubyte').reshape(rows,width) value['vertical'] = { 'rows': rows, 'width': width, 'boundingWidth': boundingWidth, 'boundingHeight': boundingHeight, 'vertBearingX': vertBearingX, 'vertBearingY': vertBearingY, 'vertAdvance': vertAdvance, 'image': img, } ret[(args[0],c)] = value else: pass proc.stdin.close() return ret def sub_load_image(path): dirnames = glob.glob(os.path.join(path, '*')) ret = {} for d in dirnames: c_code = os.path.basename(d) char = str(bytes.fromhex(c_code), 'utf-8') count = 0 for f in glob.glob(os.path.join(d, '*.png')): rawim = np.asarray(Image.open(f).convert('L')) ylines = np.any(rawim < 255, axis=1) content = np.where(ylines)[0] rows = content[-1] - content[0] + 1 horiBearingY = 128 - 16 - content[0] vertBearingY = content[0] - 16 y = content[0] xlines = np.any(rawim < 255, axis=0) content = np.where(xlines)[0] width = content[-1] - content[0] + 1 horiBearingX = content[0] - 16 vertBearingX = content[0] - 64 x = content[0] if rows == 0 or width == 0: continue img = 255 - rawim[y:y+rows,x:x+width] ret[('hand%06d'%count,char)] = { 'horizontal': { 'rows': rows, 'width': width, 'boundingWidth': width, 'boundingHeight': rows, 'horiBearingX': horiBearingX, 'horiBearingY': horiBearingY, 'horiAdvance': 96.0, 'image': img, }, 'vertical': { 'rows': rows, 'width': width, 'boundingWidth': width, 'boundingHeight': rows, 'vertBearingX': horiBearingX, 'vertBearingY': horiBearingY, 'vertAdvance': 96.0, 'image': img, } } count += 1 vert_imgs = glob.glob(os.path.join(d, 'vert', '*.png')) if 0 < len(vert_imgs) <= count: for i in range(count): f = vert_imgs[i % len(vert_imgs)] rawim = np.asarray(Image.open(f).convert('L')) ylines = np.any(rawim < 255, axis=1) content = np.where(ylines)[0] rows = content[-1] - content[0] + 1 horiBearingY = 128 - 16 - content[0] vertBearingY = content[0] - 16 y = content[0] xlines = np.any(rawim < 255, axis=0) content = np.where(xlines)[0] width = content[-1] - content[0] + 1 horiBearingX = content[0] - 16 vertBearingX = content[0] - 64 x = content[0] if rows == 0 or width == 0: continue img = 255 - rawim[y:y+rows,x:x+width] ret[('hand%06d'%i,char)]['vertical'] = { 'rows': rows, 'width': width, 'boundingWidth': width, 'boundingHeight': rows, 'vertBearingX': horiBearingX, 'vertBearingY': horiBearingY, 'vertAdvance': 96.0, 'image': img, } elif 0 < len(vert_imgs): vcount = 0 for f in vert_imgs: rawim = np.asarray(Image.open(f).convert('L')) ylines = np.any(rawim < 255, axis=1) content = np.where(ylines)[0] rows = content[-1] - content[0] + 1 horiBearingY = 128 - 16 - content[0] vertBearingY = content[0] - 16 y = content[0] xlines = np.any(rawim < 255, axis=0) content = np.where(xlines)[0] width = content[-1] - content[0] + 1 horiBearingX = content[0] - 16 vertBearingX = content[0] - 64 x = content[0] if rows == 0 or width == 0: continue img = 255 - rawim[y:y+rows,x:x+width] ret[('hand%06d'%vcount,char)] = { 'horizontal': ret[('hand%06d'%(vcount % count),char)]['horizontal'], 'vertical': { 'rows': rows, 'width': width, 'boundingWidth': width, 'boundingHeight': rows, 'vertBearingX': vertBearingY, 'vertBearingY': vertBearingX, 'vertAdvance': 96.0, 'image': img, } } vcount += 1 return ret def gaussian_kernel(kernlen=7, xstd=1., ystd=1.): gkern1dx = signal.gaussian(kernlen, std=xstd).reshape(kernlen, 1) gkern1dy = signal.gaussian(kernlen, std=ystd).reshape(kernlen, 1) gkern2d = np.outer(gkern1dy, gkern1dx) return gkern2d def apply_random_filter(images): p = np.random.uniform(0., 1.) if p < 0.25: sigma = np.random.uniform(0., 1.75) return gaussian_filter(images, sigma=sigma) if p < 0.5: sigma = np.random.uniform(0., 6.) gauss = gaussian_filter(images, sigma=sigma) gain = np.random.uniform(0., 5.) return (1 + gain) * images - gain * gauss return images def is_Font_match(font, target): if target.startswith('hand'): return font.startswith('hand') else: return font == target class FontData(BaseData): def __init__(self): super().__init__() self.img_cache = {} print('loading handwrite image') self.img_cache.update(sub_load_image(os.path.join('data','handwritten'))) print('loading enfont') enfont_files = sorted(glob.glob(os.path.join('data','enfont','*.ttf')) + glob.glob(os.path.join('data','enfont','*.otf'))) en_glyphs = [self.glyphs[key] for key in self.glyphs.keys() if self.glyph_type.get(key,-1) in [0,1,2,6]] items = [(f, en_glyphs) for f in enfont_files] total = len(enfont_files) with Pool() as pool: progress = tf.keras.utils.Progbar(total, unit_name='item') dicts = pool.imap_unordered(sub_load, items) for dictitem in dicts: self.img_cache.update(dictitem) progress.add(1) print('loading jpfont') jpfont_files = sorted(glob.glob(os.path.join('data','jpfont','*.ttf')) + glob.glob(os.path.join('data','jpfont','*.otf'))) items = [(f, list(self.glyphs.values())) for f in jpfont_files] total = len(jpfont_files) with Pool() as pool: progress = tf.keras.utils.Progbar(total, unit_name='item') dicts = pool.imap_unordered(sub_load, items) for dictitem in dicts: self.img_cache.update(dictitem) progress.add(1) type_count_max = max([self.glyph_type[k] for k in self.glyph_type]) + 1 for key in self.img_cache: i = self.glyph_id[key[1]] if i not in self.glyph_type: self.glyph_type[i] = type_count_max type_count_max = max([self.glyph_type[k] for k in self.glyph_type]) + 1 gtype_count = [0 for _ in range(type_count_max)] type_count = [0 for _ in range(type_count_max)] for key in self.img_cache: t = self.glyph_type[self.glyph_id[key[1]]] type_count[t] += 1 for k in self.glyph_type: gtype_count[self.glyph_type[k]] += 1 self.image_keys = list(self.img_cache.keys()) self.test_keys = self.get_test_keys() self.train_keys = self.get_train_keys() # 0 1 2 3 4 5 6 7 8 9 10 11 self.prob_map = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.1, 1.0] self.prob_map = [p/t for p,t in zip(self.prob_map, type_count)] self.random_probs_train = [self.prob_map[self.glyph_type[self.glyph_id[key[1]]]] for key in self.train_keys] self.random_probs_test = [self.prob_map[self.glyph_type[self.glyph_id[key[1]]]] for key in self.test_keys] # 0 1 2 3 4 5 6 7 8 9 10 11 self.prob_map_kanji = [0, 0, 0, 0, 0, 1.0, 0, 0, 1.0, 1.0, 0.5, 0] self.prob_map_kanji = [p/t for p,t in zip(self.prob_map_kanji, type_count)] self.kanji_probs_train = [self.prob_map_kanji[self.glyph_type[self.glyph_id[key[1]]]] for key in self.train_keys] self.kanji_probs_test = [self.prob_map_kanji[self.glyph_type[self.glyph_id[key[1]]]] for key in self.test_keys] # 0 1 2 3 4 5 6 7 8 9 10 11 self.prob_map_num = [1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] self.prob_map_num = [p/t for p,t in zip(self.prob_map_num, type_count)] self.num_probs_train = [self.prob_map_num[self.glyph_type[self.glyph_id[key[1]]]] for key in self.train_keys] self.num_probs_test = [self.prob_map_num[self.glyph_type[self.glyph_id[key[1]]]] for key in self.test_keys] # 0 1 2 3 4 5 6 7 8 9 10 11 self.prob_map_alpha = [0, 1.0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0] self.prob_map_alpha = [p/t for p,t in zip(self.prob_map_alpha, type_count)] self.alpha_probs_train = [self.prob_map_alpha[self.glyph_type[self.glyph_id[key[1]]]] for key in self.train_keys] self.alpha_probs_test = [self.prob_map_alpha[self.glyph_type[self.glyph_id[key[1]]]] for key in self.test_keys] # 0 1 2 3 4 5 6 7 8 9 10 11 self.prob_map_hira = [0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0] self.prob_map_hira = [p/t for p,t in zip(self.prob_map_hira, type_count)] self.hira_probs_train = [self.prob_map_hira[self.glyph_type[self.glyph_id[key[1]]]] for key in self.train_keys] self.hira_probs_test = [self.prob_map_hira[self.glyph_type[self.glyph_id[key[1]]]] for key in self.test_keys] self.train_keys_num = [x for x in self.train_keys if self.glyph_type[self.glyph_id[x[1]]] == 0] self.train_num_fonts = list(set([key[0] for key in self.train_keys_num])) self.test_keys_num = [x for x in self.test_keys if self.glyph_type[self.glyph_id[x[1]]] == 0] self.test_num_fonts = list(set([key[0] for key in self.test_keys_num])) self.train_keys_capital = [x for x in self.train_keys if self.glyph_type[self.glyph_id[x[1]]] == 1] self.train_capital_fonts = list(set([key[0] for key in self.train_keys_capital])) self.test_keys_capital = [x for x in self.test_keys if self.glyph_type[self.glyph_id[x[1]]] == 1] self.test_capital_fonts = list(set([key[0] for key in self.test_keys_capital])) self.train_keys_small = [x for x in self.train_keys if self.glyph_type[self.glyph_id[x[1]]] == 2] self.train_small_fonts = list(set([key[0] for key in self.train_keys_small])) self.test_keys_small = [x for x in self.test_keys if self.glyph_type[self.glyph_id[x[1]]] == 2] self.test_small_fonts = list(set([key[0] for key in self.test_keys_small])) self.train_keys_alpha = [x for x in self.train_keys if self.glyph_type[self.glyph_id[x[1]]] in [0,1,2,6]] self.train_alpha_fonts = list(set([key[0] for key in self.train_keys_alpha])) self.test_keys_alpha = [x for x in self.test_keys if self.glyph_type[self.glyph_id[x[1]]] in [0,1,2,6]] self.test_alpha_fonts = list(set([key[0] for key in self.test_keys_alpha])) self.train_keys_jp = [x for x in self.train_keys if self.glyph_type[self.glyph_id[x[1]]] in [3,4,5,7,8,9]] self.test_keys_jp = [x for x in self.test_keys if self.glyph_type[self.glyph_id[x[1]]] in [3,4,5,7,8,9]] self.train_jp_fonts = list(set([key[0] for key in self.train_keys_jp])) p_sum = sum([0 if '.' in f else 1 for f in self.train_jp_fonts]) self.train_jp_fonts_p = [1. if '.' in f else 1/p_sum for f in self.train_jp_fonts] self.test_jp_fonts = list(set([key[0] for key in self.test_keys_jp])) p_sum = sum([0 if '.' in f else 1 for f in self.test_jp_fonts]) self.test_jp_fonts_p = [1. if '.' in f else 1/p_sum for f in self.test_jp_fonts] self.train_keys_hira = [x for x in self.train_keys if self.glyph_type[self.glyph_id[x[1]]] in [3,4]] self.test_keys_hira = [x for x in self.test_keys if self.glyph_type[self.glyph_id[x[1]]] in [3,4]] self.train_hira_fonts = list(set([key[0] for key in self.train_keys_hira])) p_sum = sum([0 if '.' in f else 1 for f in self.train_hira_fonts]) self.train_hira_fonts_p = [1. if '.' in f else 1/p_sum for f in self.train_hira_fonts] self.test_hira_fonts = list(set([key[0] for key in self.test_keys_hira])) p_sum = sum([0 if '.' in f else 1 for f in self.test_hira_fonts]) self.test_hira_fonts_p = [1. if '.' in f else 1/p_sum for f in self.test_hira_fonts] self.train_keys_jpnum = [x for x in self.train_keys if (self.glyph_type[self.glyph_id[x[1]]] in [0,3,4,5,7]) and (x[0] in self.train_jp_fonts)] self.test_keys_jpnum = [x for x in self.test_keys if (self.glyph_type[self.glyph_id[x[1]]] in [0,3,4,5,7]) and (x[0] in self.test_jp_fonts)] self.train_jpnum_fonts = list(set([key[0] for key in self.train_keys_jpnum])) self.train_jpnum_fonts_p = [1. if '.' in f else 0. for f in self.train_jpnum_fonts] self.test_jpnum_fonts = list(set([key[0] for key in self.test_keys_jpnum])) self.test_jpnum_fonts_p = [1. if '.' in f else 0. for f in self.test_jpnum_fonts] self.prob_map_clustering = [ gtype_count[0] / type_count[0], gtype_count[1] / type_count[1], gtype_count[2] / type_count[2], gtype_count[3] / type_count[3], gtype_count[4] / type_count[4], gtype_count[5] / type_count[5], gtype_count[6] / type_count[6], 0., 0., 0., 0., 0. ] self.random_background = glob.glob(os.path.join('data','background','*')) self.max_std = 8.0 self.min_ker = 4 def get_test_keys(self): def fontname(fontpath): return os.path.splitext(os.path.basename(fontpath))[0] keys = self.image_keys test_keys = [k for k in keys if fontname(k[0]).startswith('Noto')] return test_keys def get_train_keys(self): def fontname(fontpath): return os.path.splitext(os.path.basename(fontpath))[0] keys = self.image_keys train_keys = [k for k in keys if not fontname(k[0]).startswith('Noto')] return train_keys def load_background_images(self): def remove_transparency(im, bg_colour=(255, 255, 255)): # Only process if image has transparency (http://stackoverflow.com/a/1963146) if im.mode in ('RGBA', 'LA') or (im.mode == 'P' and 'transparency' in im.info): # Need to convert to RGBA if LA format due to a bug in PIL (http://stackoverflow.com/a/1963146) alpha = im.convert('RGBA').getchannel('A') # Create a new background image of our matt color. # Must be RGBA because paste requires both images have the same format # (http://stackoverflow.com/a/8720632 and http://stackoverflow.com/a/9459208) bg = Image.new("RGBA", im.size, bg_colour + (255,)) bg.paste(im, mask=alpha) return bg else: return im im_file = random.choice(self.random_background) im = Image.open(im_file) im = remove_transparency(im).convert('RGB') scale_min = max(width / im.width, height / im.height) scale_max = max(scale_min + 0.5, 1.5) s = np.random.uniform(scale_min, scale_max) im = im.resize((int(im.width * s)+1, int(im.height * s)+1)) x1 = np.random.randint(0, im.width - width) y1 = np.random.randint(0, im.height - height) im_crop = im.crop((x1, y1, x1 + width, y1 + height)) img = np.asarray(im_crop).astype(np.float32) img = img / 128. - 1. if np.random.uniform() < 0.5: img = img[::-1,:,:] if np.random.uniform() < 0.5: img = img[:,::-1,:] brightness = np.random.uniform(-1.0, 1.0) brightness = np.array([brightness,brightness,brightness]) img += brightness[None,None,:] contrast = np.random.uniform(0.2, 1.8) contrast = np.array([contrast,contrast,contrast]) img = img * contrast[None,None,:] img = np.clip(img, -1.0, 1.0) return img def tateyokotext_images(self, keys, fonts, font_p): max_count = 256 angle_max = 15.0 min_pixel = 16 max_pixel = 100 text_size = random.randint(min_pixel, max_pixel) images = np.zeros([height, width], dtype=np.float32) keymap = np.zeros([height // scale, width // scale], dtype=np.float32) xsizes = np.zeros([height // scale, width // scale], dtype=np.float32) ysizes = np.zeros([height // scale, width // scale], dtype=np.float32) offsetx = np.zeros([height // scale, width // scale], dtype=np.float32) offsety = np.zeros([height // scale, width // scale], dtype=np.float32) lines = np.zeros([height // scale, width // scale], dtype=np.float32) lines = Image.fromarray(lines) draw = ImageDraw.Draw(lines) seps = np.zeros([height // scale, width // scale], dtype=np.float32) ids = np.zeros([height // scale, width // scale], dtype=np.int32) angle = angle_max * np.random.normal() / 180 * np.pi angle = np.clip(angle, -np.pi, np.pi) pad_x = np.random.normal() * width / 20 pad_y = np.random.normal() * height / 20 select_font = random.choices(fonts, k=1, weights=font_p)[0] probs = [1. if is_Font_match(key[0], select_font) else 0. for key in keys] selection = [key for key in random.choices(keys, k=max_count, weights=probs)] probs2 = [1. if is_Font_match(key[0], select_font) and self.glyph_type[self.glyph_id[key[1]]] == 0 else 0. for key in keys] selection2 = [key for key in random.choices(keys, k=max_count*2, weights=probs2)] base_line = width - text_size // 2 line_space = int(text_size * random.uniform(1.05, 2.0)) line_start = 0 line_end = 0 isnum = -1 i = 0 for key in selection: if isnum < 0 or isnum > 1: if np.random.uniform() < 0.1: isnum = 0 else: isnum = -1 if isnum < 0: item = self.img_cache[key]['vertical'] if item['width'] * item['rows'] == 0: continue w = item['width'] / 128 * text_size h = item['rows'] / 128 * text_size vertBearingX = item['vertBearingX'] / 128 * text_size vertBearingY = item['vertBearingY'] / 128 * text_size vertAdvance = item['vertAdvance'] / 128 * text_size horiBearingX = 0 else: item = self.img_cache[key]['vertical'] if item['width'] * item['rows'] == 0: continue key = selection2[i] item = self.img_cache[key]['horizontal'] if item['width'] * item['rows'] == 0: continue w = item['width'] / 128 * text_size h = item['rows'] / 128 * text_size horiBearingY = item['horiBearingY'] / 128 * text_size horiBearingX = item['horiBearingX'] / 128 * text_size vertBearingX = -text_size * 0.5 vertBearingY = 0 vertAdvance = text_size if line_end + vertAdvance >= height: draw.line(((base_line // scale, line_start // scale), (base_line // scale, line_end // scale)), fill=255, width=3) base_line -= line_space if base_line - text_size / 2 < 0: break line_start = 0 line_end = 0 if isnum >= 0: t = (line_end + vertBearingY + text_size * 0.75 - horiBearingY) / height else: t = (line_end + vertBearingY) / height if isnum > 0: l = (base_line + horiBearingX) / width else: l = (base_line + vertBearingX + horiBearingX) / width w = w / width h = h / height cx = l + w / 2 cy = t + h / 2 kernel_size = max(self.min_ker, int(max(w, h) / (2 * scale) * width)) std_x = min(self.max_std, max(self.min_ker, w / (2 * scale) * width) / 3) std_y = min(self.max_std, max(self.min_ker, h / (2 * scale) * height) / 3) center_kernel = gaussian_kernel(kernlen=kernel_size*2+1, xstd=std_x, ystd=std_y) center_xmin = int(cx / scale * width) - kernel_size center_xmax = int(cx / scale * width) + kernel_size + 1 center_ymin = int(cy / scale * height) - kernel_size center_ymax = int(cy / scale * height) + kernel_size + 1 padx1 = max(0, 0 - center_xmin) padx2 = max(0, center_xmax - width // scale) pady1 = max(0, 0 - center_ymin) pady2 = max(0, center_ymax - height // scale) center_xmin += padx1 center_xmax -= padx2 center_ymin += pady1 center_ymax -= pady2 ker = kernel_size * 2 + 1 if center_ymax - center_ymin > 1 and center_xmax - center_xmin > 1: keymap[center_ymin:center_ymax, center_xmin:center_xmax] = np.maximum(keymap[center_ymin:center_ymax, center_xmin:center_xmax], center_kernel[pady1:ker-pady2,padx1:ker-padx2]) size_xmin = np.clip(int((cx - w/2) * width / scale), 0, width // scale) size_xmax = np.clip(int((cx + w/2) * width / scale) + 1, 0, width // scale) size_ymin = np.clip(int((cy - h/2) * height / scale), 0, height // scale) size_ymax = np.clip(int((cy + h/2) * height / scale) + 1, 0, height // scale) size_mapx, size_mapy = np.meshgrid(np.arange(size_xmin, size_xmax) - cx * width / scale, np.arange(size_ymin, size_ymax) - cy * height / scale) size_map = size_mapx ** 2 / max(w/2 * width / scale, 1) ** 2 + size_mapy ** 2 / max(h/2 * height / scale, 1) ** 2 < 1 center_x = int(cx / scale * width) center_y = int(cy / scale * height) offset_x = (cx * width % scale) / width * np.cos(angle) offset_y = (cy * height % scale) / height * np.sin(angle + np.pi / 2) offset_x += pad_x % scale offset_y += pad_y % scale offset_x = offset_x / scale - (np.arange(size_xmin, size_xmax) - center_x) * np.cos(angle) offset_y = offset_y / scale - (np.arange(size_ymin, size_ymax) - center_y) * np.sin(angle + np.pi / 2) offset_x = offset_x[np.newaxis,...] - np.linspace(-(size_ymax-size_ymin) * np.sin(angle) / 2, (size_ymax-size_ymin) * np.sin(angle) / 2, size_ymax-size_ymin)[...,np.newaxis] offset_y = offset_y[...,np.newaxis] - np.linspace(-(size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, (size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, size_xmax-size_xmin)[np.newaxis,...] offsetx[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_x, offsetx[size_ymin:size_ymax, size_xmin:size_xmax]) offsety[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_y, offsety[size_ymin:size_ymax, size_xmin:size_xmax]) fixw = w * np.abs(np.cos(angle)) + h * np.abs(np.sin(angle)) fixh = h * np.abs(np.cos(angle)) + w * np.abs(np.sin(angle)) fixw = np.log10(fixw * 10) fixh = np.log10(fixh * 10) xsizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixw, xsizes[size_ymin:size_ymax, size_xmin:size_xmax]) ysizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixh, ysizes[size_ymin:size_ymax, size_xmin:size_xmax]) id_char = self.glyph_id[key[1]] ids[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, id_char, ids[size_ymin:size_ymax, size_xmin:size_xmax]) w = max(int(item['width'] / 128 * text_size), 1) h = max(int(item['rows'] / 128 * text_size), 1) if isnum > 0: l = int(np.clip(base_line + horiBearingX, 0, width - w)) else: l = int(np.clip(base_line + vertBearingX + horiBearingX, 0, width - w)) if isnum >= 0: t = int(np.clip(line_end + vertBearingY + text_size * 0.75 - horiBearingY, 0, height - h)) else: t = int(np.clip(line_end + vertBearingY, 0, height - h)) im = np.asarray(Image.fromarray(item['image']).resize((w,h))) images[t:t+h,l:l+w] = np.maximum( images[t:t+h,l:l+w], im) if isnum != 0: line_end += vertAdvance if isnum >= 0: isnum += 1 i += 1 im = Image.fromarray(images).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x, pad_y)) lines = lines.rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) keymapim1 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) keymapim2 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) keymapim = np.maximum(keymapim1, keymapim2) xsizeim = Image.fromarray(xsizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) ysizeim = Image.fromarray(ysizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) xoffsetim = Image.fromarray(offsetx).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) yoffsetim = Image.fromarray(offsety).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) sepim = Image.fromarray(seps).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) labels = np.stack([keymapim, xsizeim, ysizeim, xoffsetim, yoffsetim, np.asarray(lines) / 255., sepim], -1) idsim = Image.fromarray(ids).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) images = np.asarray(im) / 255. ids = np.asarray(idsim) images = apply_random_filter(images) return self.sub_constructimage(images, labels, ids, False) def yoko_images(self, keys, fonts, font_p): max_count = 256 angle_max = 15.0 min_pixel = 16 max_pixel = 100 text_size = random.randint(min_pixel, max_pixel) line_space = int(text_size * random.uniform(1.05, 2.0)) block_count = 2 line_break = int(random.uniform(0.3,0.7) * width) break_space = text_size * random.uniform(0.6, 1.5) images = np.zeros([height, width], dtype=np.float32) keymap = np.zeros([height // scale, width // scale], dtype=np.float32) xsizes = np.zeros([height // scale, width // scale], dtype=np.float32) ysizes = np.zeros([height // scale, width // scale], dtype=np.float32) offsetx = np.zeros([height // scale, width // scale], dtype=np.float32) offsety = np.zeros([height // scale, width // scale], dtype=np.float32) lines = np.zeros([height // scale, width // scale], dtype=np.float32) lines = Image.fromarray(lines) draw = ImageDraw.Draw(lines) seps = np.zeros([height // scale, width // scale], dtype=np.float32) ids = np.zeros([height // scale, width // scale], dtype=np.int32) angle = angle_max * np.random.normal() / 180 * np.pi angle = np.clip(angle, -np.pi, np.pi) pad_x = np.random.normal() * width / 20 pad_y = np.random.normal() * height / 20 select_font = random.choices(fonts, k=1, weights=font_p)[0] probs = [1. if is_Font_match(key[0], select_font) else 0. for key in keys] selection = [key for key in random.choices(keys, k=max_count, weights=probs)] base_line = line_space block_no = 0 line_start = int(max(0, 0 if block_count == 1 or block_no == 0 else line_break + break_space)) line_end = int(min(width, width if block_count == 1 or block_no == 1 else line_break - break_space)) temp_lineend = line_start linebuf = [] text_count = [0, 0] sep_end = 0 for key in selection: item = self.img_cache[key]['horizontal'] if item['width'] * item['rows'] == 0: continue w = item['width'] / 128 * text_size h = item['rows'] / 128 * text_size horiBearingX = item['horiBearingX'] / 128 * text_size horiBearingY = item['horiBearingY'] / 128 * text_size horiAdvance = item['horiAdvance'] / 128 * text_size if temp_lineend + horiAdvance < line_end: linebuf.append((key, item)) temp_lineend += horiAdvance else: remain = line_end - temp_lineend if block_no == 0: line_start += remain if len(linebuf) > 1: draw.line(((line_start // scale, base_line // scale), (line_end // scale, base_line // scale)), fill=255, width=3) text_count[block_no] += len(linebuf) for key, item in linebuf: w = item['width'] / 128 * text_size h = item['rows'] / 128 * text_size horiBearingX = item['horiBearingX'] / 128 * text_size horiBearingY = item['horiBearingY'] / 128 * text_size horiAdvance = item['horiAdvance'] / 128 * text_size l = (line_start + horiBearingX) / width t = (base_line - horiBearingY) / height w = w / width h = h / height cx = l + w / 2 cy = t + h / 2 kernel_size = max(self.min_ker, int(max(w, h) / (2 * scale) * width)) std_x = min(self.max_std, max(self.min_ker, w / (2 * scale) * width) / 3) std_y = min(self.max_std, max(self.min_ker, h / (2 * scale) * height) / 3) center_kernel = gaussian_kernel(kernlen=kernel_size*2+1, xstd=std_x, ystd=std_y) center_xmin = int(cx / scale * width) - kernel_size center_xmax = int(cx / scale * width) + kernel_size + 1 center_ymin = int(cy / scale * height) - kernel_size center_ymax = int(cy / scale * height) + kernel_size + 1 padx1 = max(0, 0 - center_xmin) padx2 = max(0, center_xmax - width // scale) pady1 = max(0, 0 - center_ymin) pady2 = max(0, center_ymax - height // scale) center_xmin += padx1 center_xmax -= padx2 center_ymin += pady1 center_ymax -= pady2 ker = kernel_size * 2 + 1 if center_ymax - center_ymin > 1 and center_xmax - center_xmin > 1: keymap[center_ymin:center_ymax, center_xmin:center_xmax] = np.maximum(keymap[center_ymin:center_ymax, center_xmin:center_xmax], center_kernel[pady1:ker-pady2,padx1:ker-padx2]) size_xmin = np.clip(int((cx - w/2) * width / scale), 0, width // scale) size_xmax = np.clip(int((cx + w/2) * width / scale) + 1, 0, width // scale) size_ymin = np.clip(int((cy - h/2) * height / scale), 0, height // scale) size_ymax = np.clip(int((cy + h/2) * height / scale) + 1, 0, height // scale) size_mapx, size_mapy = np.meshgrid(np.arange(size_xmin, size_xmax) - cx * width / scale, np.arange(size_ymin, size_ymax) - cy * height / scale) size_map = size_mapx ** 2 / max(w/2 * width / scale, 1) ** 2 + size_mapy ** 2 / max(h/2 * height / scale, 1) ** 2 < 1 center_x = int(cx / scale * width) center_y = int(cy / scale * height) offset_x = (cx * width % scale) / width * np.cos(angle) offset_y = (cy * height % scale) / height * np.sin(angle + np.pi / 2) offset_x += pad_x % scale offset_y += pad_y % scale offset_x = offset_x / scale - (np.arange(size_xmin, size_xmax) - center_x) * np.cos(angle) offset_y = offset_y / scale - (np.arange(size_ymin, size_ymax) - center_y) * np.sin(angle + np.pi / 2) offset_x = offset_x[np.newaxis,...] - np.linspace(-(size_ymax-size_ymin) * np.sin(angle) / 2, (size_ymax-size_ymin) * np.sin(angle) / 2, size_ymax-size_ymin)[...,np.newaxis] offset_y = offset_y[...,np.newaxis] - np.linspace(-(size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, (size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, size_xmax-size_xmin)[np.newaxis,...] offsetx[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_x, offsetx[size_ymin:size_ymax, size_xmin:size_xmax]) offsety[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_y, offsety[size_ymin:size_ymax, size_xmin:size_xmax]) fixw = w * np.abs(np.cos(angle)) + h * np.abs(np.sin(angle)) fixh = h * np.abs(np.cos(angle)) + w * np.abs(np.sin(angle)) fixw = np.log10(fixw * 10) fixh = np.log10(fixh * 10) xsizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixw, xsizes[size_ymin:size_ymax, size_xmin:size_xmax]) ysizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixh, ysizes[size_ymin:size_ymax, size_xmin:size_xmax]) id_char = self.glyph_id[key[1]] ids[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, id_char, ids[size_ymin:size_ymax, size_xmin:size_xmax]) w = max(int(item['width'] / 128 * text_size), 1) h = max(int(item['rows'] / 128 * text_size), 1) top = int(np.clip(base_line - horiBearingY, 0, height - h)) left = int(np.clip(line_start + horiBearingX, 0, width - w)) im = np.asarray(Image.fromarray(item['image']).resize((w,h))) images[top:top+h,left:left+w] = np.maximum( images[top:top+h,left:left+w], im) line_start += int(horiAdvance) base_line += line_space if base_line + text_size >= height: if block_no == 0: sep_end = base_line - line_space base_line = line_space block_no += 1 if block_no >= block_count: break line_start = int(max(0, 0 if block_count == 1 or block_no == 0 else line_break + break_space)) line_end = int(min(width, width if block_count == 1 or block_no == 1 else line_break - break_space)) temp_lineend = line_start linebuf = [] if all(t > 1 for t in text_count): l = max(1,line_break // scale) t = line_space // 2 // scale b = sep_end // scale seps[t:b, l-1:l+2] = 1 im = Image.fromarray(images).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x, pad_y)) lines = lines.rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) keymapim1 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) keymapim2 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) keymapim = np.maximum(keymapim1, keymapim2) xsizeim = Image.fromarray(xsizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) ysizeim = Image.fromarray(ysizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) xoffsetim = Image.fromarray(offsetx).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) yoffsetim = Image.fromarray(offsety).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) sepim = Image.fromarray(seps).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) labels = np.stack([keymapim, xsizeim, ysizeim, xoffsetim, yoffsetim, np.asarray(lines) / 255., sepim], -1) idsim = Image.fromarray(ids).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) images = np.asarray(im) / 255. ids = np.asarray(idsim) images = apply_random_filter(images) return self.sub_constructimage(images, labels, ids, False) def tate_images(self, keys, fonts, font_p): max_count = 256 angle_max = 15.0 min_pixel = 16 max_pixel = 100 text_size = random.randint(min_pixel, max_pixel) line_space = int(text_size * random.uniform(1.05, 2.0)) block_count = 2 line_break = int(random.uniform(0.3,0.7) * height) break_space = text_size * random.uniform(0.6, 1.0) images = np.zeros([height, width], dtype=np.float32) keymap = np.zeros([height // scale, width // scale], dtype=np.float32) xsizes = np.zeros([height // scale, width // scale], dtype=np.float32) ysizes = np.zeros([height // scale, width // scale], dtype=np.float32) offsetx = np.zeros([height // scale, width // scale], dtype=np.float32) offsety = np.zeros([height // scale, width // scale], dtype=np.float32) lines = np.zeros([height // scale, width // scale], dtype=np.float32) lines = Image.fromarray(lines) draw = ImageDraw.Draw(lines) seps = np.zeros([height // scale, width // scale], dtype=np.float32) ids = np.zeros([height // scale, width // scale], dtype=np.int32) angle = angle_max * np.random.normal() / 180 * np.pi angle = np.clip(angle, -np.pi, np.pi) pad_x = np.random.normal() * width / 20 pad_y = np.random.normal() * height / 20 select_font = random.choices(fonts, k=1, weights=font_p)[0] probs = [1. if is_Font_match(key[0], select_font) else 0. for key in keys] selection = [key for key in random.choices(keys, k=max_count, weights=probs)] base_line = width - line_space + text_size // 2 block_no = 0 line_start = int(max(0, 0 if block_count == 1 or block_no == 0 else line_break + break_space)) line_end = int(min(height, height if block_count == 1 or block_no == 1 else line_break - break_space)) temp_lineend = line_start linebuf = [] text_count = [0, 0] sep_end = 0 for key in selection: item = self.img_cache[key]['vertical'] if item['width'] * item['rows'] == 0: continue w = item['width'] / 128 * text_size h = item['rows'] / 128 * text_size vertBearingX = item['vertBearingX'] / 128 * text_size vertBearingY = item['vertBearingY'] / 128 * text_size vertAdvance = item['vertAdvance'] / 128 * text_size if temp_lineend + vertAdvance < line_end: linebuf.append((key,item)) temp_lineend += vertAdvance else: remain = line_end - temp_lineend if block_no == 0: line_start += remain if len(linebuf) > 1: draw.line(((base_line // scale, line_start // scale), (base_line // scale, line_end // scale)), fill=255, width=3) text_count[block_no] += len(linebuf) for key, item in linebuf: w = item['width'] / 128 * text_size h = item['rows'] / 128 * text_size vertBearingX = item['vertBearingX'] / 128 * text_size vertBearingY = item['vertBearingY'] / 128 * text_size vertAdvance = item['vertAdvance'] / 128 * text_size l = (base_line + vertBearingX) / width t = (line_start + vertBearingY) / height w = w / width h = h / height cx = l + w / 2 cy = t + h / 2 kernel_size = max(self.min_ker, int(max(w, h) / (2 * scale) * width)) std_x = min(self.max_std, max(self.min_ker, w / (2 * scale) * width) / 3) std_y = min(self.max_std, max(self.min_ker, h / (2 * scale) * height) / 3) center_kernel = gaussian_kernel(kernlen=kernel_size*2+1, xstd=std_x, ystd=std_y) center_xmin = int(cx / scale * width) - kernel_size center_xmax = int(cx / scale * width) + kernel_size + 1 center_ymin = int(cy / scale * height) - kernel_size center_ymax = int(cy / scale * height) + kernel_size + 1 padx1 = max(0, 0 - center_xmin) padx2 = max(0, center_xmax - width // scale) pady1 = max(0, 0 - center_ymin) pady2 = max(0, center_ymax - height // scale) center_xmin += padx1 center_xmax -= padx2 center_ymin += pady1 center_ymax -= pady2 ker = kernel_size * 2 + 1 if center_ymax - center_ymin > 1 and center_xmax - center_xmin > 1: keymap[center_ymin:center_ymax, center_xmin:center_xmax] = np.maximum(keymap[center_ymin:center_ymax, center_xmin:center_xmax], center_kernel[pady1:ker-pady2,padx1:ker-padx2]) size_xmin = np.clip(int((cx - w/2) * width / scale), 0, width // scale) size_xmax = np.clip(int((cx + w/2) * width / scale) + 1, 0, width // scale) size_ymin = np.clip(int((cy - h/2) * height / scale), 0, height // scale) size_ymax = np.clip(int((cy + h/2) * height / scale) + 1, 0, height // scale) size_mapx, size_mapy = np.meshgrid(np.arange(size_xmin, size_xmax) - cx * width / scale, np.arange(size_ymin, size_ymax) - cy * height / scale) size_map = size_mapx ** 2 / max(w/2 * width / scale, 1) ** 2 + size_mapy ** 2 / max(h/2 * height / scale, 1) ** 2 < 1 center_x = int(cx / scale * width) center_y = int(cy / scale * height) offset_x = (cx * width % scale) / width * np.cos(angle) offset_y = (cy * height % scale) / height * np.sin(angle + np.pi / 2) offset_x += pad_x % scale offset_y += pad_y % scale offset_x = offset_x / scale - (np.arange(size_xmin, size_xmax) - center_x) * np.cos(angle) offset_y = offset_y / scale - (np.arange(size_ymin, size_ymax) - center_y) * np.sin(angle + np.pi / 2) offset_x = offset_x[np.newaxis,...] - np.linspace(-(size_ymax-size_ymin) * np.sin(angle) / 2, (size_ymax-size_ymin) * np.sin(angle) / 2, size_ymax-size_ymin)[...,np.newaxis] offset_y = offset_y[...,np.newaxis] - np.linspace(-(size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, (size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, size_xmax-size_xmin)[np.newaxis,...] offsetx[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_x, offsetx[size_ymin:size_ymax, size_xmin:size_xmax]) offsety[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_y, offsety[size_ymin:size_ymax, size_xmin:size_xmax]) fixw = w * np.abs(np.cos(angle)) + h * np.abs(np.sin(angle)) fixh = h * np.abs(np.cos(angle)) + w * np.abs(np.sin(angle)) fixw = np.log10(fixw * 10) fixh = np.log10(fixh * 10) xsizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixw, xsizes[size_ymin:size_ymax, size_xmin:size_xmax]) ysizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixh, ysizes[size_ymin:size_ymax, size_xmin:size_xmax]) id_char = self.glyph_id[key[1]] ids[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, id_char, ids[size_ymin:size_ymax, size_xmin:size_xmax]) w = max(int(item['width'] / 128 * text_size), 1) h = max(int(item['rows'] / 128 * text_size), 1) l = int(np.clip(base_line + vertBearingX, 0, width - w)) t = int(np.clip(line_start + vertBearingY, 0, height - h)) im = np.asarray(Image.fromarray(item['image']).resize((w,h))) images[t:t+h,l:l+w] = np.maximum( images[t:t+h,l:l+w], im) line_start += int(vertAdvance) base_line -= line_space if base_line - text_size / 2 < 0: if block_no == 0: sep_end = base_line + line_space base_line = width - line_space + text_size // 2 block_no += 1 if block_no >= block_count: break line_start = int(max(0, 0 if block_count == 1 or block_no == 0 else line_break + break_space)) line_end = int(min(width, width if block_count == 1 or block_no == 1 else line_break - break_space)) temp_lineend = line_start linebuf = [] if all(t > 1 for t in text_count): l = max(1,line_break // scale) right = (width - line_space + text_size // 2) // scale left = sep_end // scale seps[l-1:l+2, left:right] = 1 im = Image.fromarray(images).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x, pad_y)) lines = lines.rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) keymapim1 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) keymapim2 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) keymapim = np.maximum(keymapim1, keymapim2) xsizeim = Image.fromarray(xsizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) ysizeim = Image.fromarray(ysizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) xoffsetim = Image.fromarray(offsetx).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) yoffsetim = Image.fromarray(offsety).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) sepim = Image.fromarray(seps).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) labels = np.stack([keymapim, xsizeim, ysizeim, xoffsetim, yoffsetim, np.asarray(lines) / 255., sepim], -1) idsim = Image.fromarray(ids).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) images = np.asarray(im) / 255. ids = np.asarray(idsim) images = apply_random_filter(images) return self.sub_constructimage(images, labels, ids, False) def tatefurigana_images(self, keys, fonts, font_p): max_count = 256 angle_max = 15.0 min_pixel = 12 max_pixel = 50 text_size = random.randint(min_pixel, max_pixel) text_size2 = text_size * 2 line_space = int(text_size2 * random.uniform(1.45, 1.7)) block_count = 2 line_break = int(random.uniform(0.3,0.7) * height) break_space = text_size2 * random.uniform(0.6, 1.0) images = np.zeros([height, width], dtype=np.float32) keymap = np.zeros([height // scale, width // scale], dtype=np.float32) xsizes = np.zeros([height // scale, width // scale], dtype=np.float32) ysizes = np.zeros([height // scale, width // scale], dtype=np.float32) offsetx = np.zeros([height // scale, width // scale], dtype=np.float32) offsety = np.zeros([height // scale, width // scale], dtype=np.float32) lines = np.zeros([height // scale, width // scale], dtype=np.float32) lines = Image.fromarray(lines) draw = ImageDraw.Draw(lines) seps = np.zeros([height // scale, width // scale], dtype=np.float32) ids = np.zeros([height // scale, width // scale], dtype=np.int32) angle = angle_max * np.random.normal() / 180 * np.pi angle = np.clip(angle, -np.pi, np.pi) pad_x = np.random.normal() * width / 20 pad_y = np.random.normal() * height / 20 select_font = random.choices(fonts, k=1, weights=font_p)[0] probs = [1. if is_Font_match(key[0], select_font) else 0. for key in keys] selection = [key for key in random.choices(keys, k=max_count, weights=probs)] probs2 = [1. if is_Font_match(key[0], select_font) and self.glyph_type[self.glyph_id[key[1]]] in [3,4] else 0. for key in keys] selection2 = iter([key for key in random.choices(keys, k=max_count*2, weights=probs2)]) base_line = width - line_space + text_size2 // 2 block_no = 0 line_start = int(max(0, 0 if block_count == 1 or block_no == 0 else line_break + break_space)) line_end = int(min(height, height if block_count == 1 or block_no == 1 else line_break - break_space)) temp_lineend = line_start linebuf = [] text_count = [0, 0] sep_end = 0 for key in selection: item = self.img_cache[key]['vertical'] if item['width'] * item['rows'] == 0: continue w = item['width'] / 128 * text_size2 h = item['rows'] / 128 * text_size2 vertBearingX = item['vertBearingX'] / 128 * text_size2 vertBearingY = item['vertBearingY'] / 128 * text_size2 vertAdvance = item['vertAdvance'] / 128 * text_size2 if temp_lineend + vertAdvance < line_end: linebuf.append((key,item)) temp_lineend += vertAdvance else: remain = line_end - temp_lineend if block_no == 0: line_start += remain if len(linebuf) > 1: draw.line(((base_line // scale, line_start // scale), (base_line // scale, line_end // scale)), fill=255, width=3) text_count[block_no] += len(linebuf) for key, item in linebuf: w = item['width'] / 128 * text_size2 h = item['rows'] / 128 * text_size2 vertBearingX = item['vertBearingX'] / 128 * text_size2 vertBearingY = item['vertBearingY'] / 128 * text_size2 vertAdvance = item['vertAdvance'] / 128 * text_size2 l = (base_line + vertBearingX) / width t = (line_start + vertBearingY) / height w = w / width h = h / height cx = l + w / 2 cy = t + h / 2 kernel_size = max(self.min_ker, int(max(w, h) / (2 * scale) * width)) std_x = min(self.max_std, max(self.min_ker, w / (2 * scale) * width) / 3) std_y = min(self.max_std, max(self.min_ker, h / (2 * scale) * height) / 3) center_kernel = gaussian_kernel(kernlen=kernel_size*2+1, xstd=std_x, ystd=std_y) center_xmin = int(cx / scale * width) - kernel_size center_xmax = int(cx / scale * width) + kernel_size + 1 center_ymin = int(cy / scale * height) - kernel_size center_ymax = int(cy / scale * height) + kernel_size + 1 padx1 = max(0, 0 - center_xmin) padx2 = max(0, center_xmax - width // scale) pady1 = max(0, 0 - center_ymin) pady2 = max(0, center_ymax - height // scale) center_xmin += padx1 center_xmax -= padx2 center_ymin += pady1 center_ymax -= pady2 ker = kernel_size * 2 + 1 if center_ymax - center_ymin > 1 and center_xmax - center_xmin > 1: keymap[center_ymin:center_ymax, center_xmin:center_xmax] = np.maximum(keymap[center_ymin:center_ymax, center_xmin:center_xmax], center_kernel[pady1:ker-pady2,padx1:ker-padx2]) size_xmin = np.clip(int((cx - w/2) * width / scale), 0, width // scale) size_xmax = np.clip(int((cx + w/2) * width / scale) + 1, 0, width // scale) size_ymin = np.clip(int((cy - h/2) * height / scale), 0, height // scale) size_ymax = np.clip(int((cy + h/2) * height / scale) + 1, 0, height // scale) size_mapx, size_mapy = np.meshgrid(np.arange(size_xmin, size_xmax) - cx * width / scale, np.arange(size_ymin, size_ymax) - cy * height / scale) size_map = size_mapx ** 2 / max(w/2 * width / scale, 1) ** 2 + size_mapy ** 2 / max(h/2 * height / scale, 1) ** 2 < 1 center_x = int(cx / scale * width) center_y = int(cy / scale * height) offset_x = (cx * width % scale) / width * np.cos(angle) offset_y = (cy * height % scale) / height * np.sin(angle + np.pi / 2) offset_x += pad_x % scale offset_y += pad_y % scale offset_x = offset_x / scale - (np.arange(size_xmin, size_xmax) - center_x) * np.cos(angle) offset_y = offset_y / scale - (np.arange(size_ymin, size_ymax) - center_y) * np.sin(angle + np.pi / 2) offset_x = offset_x[np.newaxis,...] - np.linspace(-(size_ymax-size_ymin) * np.sin(angle) / 2, (size_ymax-size_ymin) * np.sin(angle) / 2, size_ymax-size_ymin)[...,np.newaxis] offset_y = offset_y[...,np.newaxis] - np.linspace(-(size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, (size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, size_xmax-size_xmin)[np.newaxis,...] offsetx[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_x, offsetx[size_ymin:size_ymax, size_xmin:size_xmax]) offsety[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_y, offsety[size_ymin:size_ymax, size_xmin:size_xmax]) fixw = w * np.abs(np.cos(angle)) + h * np.abs(np.sin(angle)) fixh = h * np.abs(np.cos(angle)) + w * np.abs(np.sin(angle)) fixw = np.log10(fixw * 10) fixh = np.log10(fixh * 10) xsizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixw, xsizes[size_ymin:size_ymax, size_xmin:size_xmax]) ysizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixh, ysizes[size_ymin:size_ymax, size_xmin:size_xmax]) id_char = self.glyph_id[key[1]] ids[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, id_char, ids[size_ymin:size_ymax, size_xmin:size_xmax]) w = max(int(item['width'] / 128 * text_size2), 1) h = max(int(item['rows'] / 128 * text_size2), 1) l = int(np.clip(base_line + vertBearingX, 0, width - w)) t = int(np.clip(line_start + vertBearingY, 0, height - h)) im = np.asarray(Image.fromarray(item['image']).resize((w,h))) images[t:t+h,l:l+w] = np.maximum( images[t:t+h,l:l+w], im) line_start += int(vertAdvance) # ふりがな処理 base_line2 = base_line + text_size2 // 2 + text_size // 2 line_start2 = int(max(0, 0 if block_count == 1 or block_no == 0 else line_break + break_space)) if block_no == 0: line_start2 += remain line_end2 = line_start line_start2p = line_start2 while line_start2 < line_end2: key2 = next(selection2, None) if key2 is None: break item = self.img_cache[key2]['vertical'] if item['width'] * item['rows'] == 0: continue w = item['width'] / 128 * text_size h = item['rows'] / 128 * text_size vertBearingX = item['vertBearingX'] / 128 * text_size vertBearingY = item['vertBearingY'] / 128 * text_size vertAdvance = item['vertAdvance'] / 128 * text_size if np.random.uniform() < 0.2: # ここは空ける if line_start2 != line_start2p: draw.line(((base_line2 // scale, line_start2p // scale), (base_line2 // scale, line_start2 // scale)), fill=255, width=3) line_start2 += int(vertAdvance) line_start2p = line_start2 continue # ここはふりがな l = (base_line2 + vertBearingX) / width t = (line_start2 + vertBearingY) / height w = w / width h = h / height cx = l + w / 2 cy = t + h / 2 kernel_size = max(self.min_ker, int(max(w, h) / (2 * scale) * width)) std_x = min(self.max_std, max(self.min_ker, w / (2 * scale) * width) / 3) std_y = min(self.max_std, max(self.min_ker, h / (2 * scale) * height) / 3) center_kernel = gaussian_kernel(kernlen=kernel_size*2+1, xstd=std_x, ystd=std_y) center_xmin = int(cx / scale * width) - kernel_size center_xmax = int(cx / scale * width) + kernel_size + 1 center_ymin = int(cy / scale * height) - kernel_size center_ymax = int(cy / scale * height) + kernel_size + 1 padx1 = max(0, 0 - center_xmin) padx2 = max(0, center_xmax - width // scale) pady1 = max(0, 0 - center_ymin) pady2 = max(0, center_ymax - height // scale) center_xmin += padx1 center_xmax -= padx2 center_ymin += pady1 center_ymax -= pady2 ker = kernel_size * 2 + 1 if center_ymax - center_ymin > 1 and center_xmax - center_xmin > 1: keymap[center_ymin:center_ymax, center_xmin:center_xmax] = np.maximum(keymap[center_ymin:center_ymax, center_xmin:center_xmax], center_kernel[pady1:ker-pady2,padx1:ker-padx2]) size_xmin = np.clip(int((cx - w/2) * width / scale), 0, width // scale) size_xmax = np.clip(int((cx + w/2) * width / scale) + 1, 0, width // scale) size_ymin = np.clip(int((cy - h/2) * height / scale), 0, height // scale) size_ymax = np.clip(int((cy + h/2) * height / scale) + 1, 0, height // scale) size_mapx, size_mapy = np.meshgrid(np.arange(size_xmin, size_xmax) - cx * width / scale, np.arange(size_ymin, size_ymax) - cy * height / scale) size_map = size_mapx ** 2 / max(w/2 * width / scale, 1) ** 2 + size_mapy ** 2 / max(h/2 * height / scale, 1) ** 2 < 1 center_x = int(cx / scale * width) center_y = int(cy / scale * height) offset_x = (cx * width % scale) / width * np.cos(angle) offset_y = (cy * height % scale) / height * np.sin(angle + np.pi / 2) offset_x += pad_x % scale offset_y += pad_y % scale offset_x = offset_x / scale - (np.arange(size_xmin, size_xmax) - center_x) * np.cos(angle) offset_y = offset_y / scale - (np.arange(size_ymin, size_ymax) - center_y) * np.sin(angle + np.pi / 2) offset_x = offset_x[np.newaxis,...] - np.linspace(-(size_ymax-size_ymin) * np.sin(angle) / 2, (size_ymax-size_ymin) * np.sin(angle) / 2, size_ymax-size_ymin)[...,np.newaxis] offset_y = offset_y[...,np.newaxis] - np.linspace(-(size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, (size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, size_xmax-size_xmin)[np.newaxis,...] offsetx[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_x, offsetx[size_ymin:size_ymax, size_xmin:size_xmax]) offsety[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_y, offsety[size_ymin:size_ymax, size_xmin:size_xmax]) fixw = w * np.abs(np.cos(angle)) + h * np.abs(np.sin(angle)) fixh = h * np.abs(np.cos(angle)) + w * np.abs(np.sin(angle)) fixw = np.log10(fixw * 10) fixh = np.log10(fixh * 10) xsizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixw, xsizes[size_ymin:size_ymax, size_xmin:size_xmax]) ysizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixh, ysizes[size_ymin:size_ymax, size_xmin:size_xmax]) id_char = self.glyph_id[key[1]] ids[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, id_char, ids[size_ymin:size_ymax, size_xmin:size_xmax]) w = max(int(item['width'] / 128 * text_size), 1) h = max(int(item['rows'] / 128 * text_size), 1) l = int(np.clip(base_line2 + vertBearingX, 0, width - w)) t = int(np.clip(line_start2 + vertBearingY, 0, height - h)) im = np.asarray(Image.fromarray(item['image']).resize((w,h))) images[t:t+h,l:l+w] = np.maximum( images[t:t+h,l:l+w], im) line_start2 += int(vertAdvance) if line_start2 != line_start2p: draw.line(((base_line2 // scale, line_start2p // scale), (base_line2 // scale, line_start2 // scale)), fill=255, width=3) base_line -= line_space if base_line - text_size2 / 2 < 0: if block_no == 0: sep_end = base_line + line_space base_line = width - line_space + text_size2 // 2 block_no += 1 if block_no >= block_count: break line_start = int(max(0, 0 if block_count == 1 or block_no == 0 else line_break + break_space)) line_end = int(min(width, width if block_count == 1 or block_no == 1 else line_break - break_space)) temp_lineend = line_start linebuf = [] if all(t > 1 for t in text_count): l = max(1,line_break // scale) right = (width - line_space + text_size2 // 2) // scale left = sep_end // scale seps[l-1:l+2, left:right] = 1 im = Image.fromarray(images).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x, pad_y)) lines = lines.rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) keymapim1 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) keymapim2 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) keymapim = np.maximum(keymapim1, keymapim2) xsizeim = Image.fromarray(xsizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) ysizeim = Image.fromarray(ysizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) xoffsetim = Image.fromarray(offsetx).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) yoffsetim = Image.fromarray(offsety).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) sepim = Image.fromarray(seps).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) labels = np.stack([keymapim, xsizeim, ysizeim, xoffsetim, yoffsetim, np.asarray(lines) / 255., sepim], -1) idsim = Image.fromarray(ids).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) images = np.asarray(im) / 255. ids = np.asarray(idsim) images = apply_random_filter(images) return self.sub_constructimage(images, labels, ids, False) def yokofurigana_images(self, keys, fonts, font_p): max_count = 256 angle_max = 15.0 min_pixel = 12 max_pixel = 50 text_size = random.randint(min_pixel, max_pixel) text_size2 = text_size * 2 line_space = int(text_size2 * random.uniform(1.45, 1.7)) block_count = 2 line_break = int(random.uniform(0.3,0.7) * width) break_space = text_size2 * random.uniform(0.6, 1.5) images = np.zeros([height, width], dtype=np.float32) keymap = np.zeros([height // scale, width // scale], dtype=np.float32) xsizes = np.zeros([height // scale, width // scale], dtype=np.float32) ysizes = np.zeros([height // scale, width // scale], dtype=np.float32) offsetx = np.zeros([height // scale, width // scale], dtype=np.float32) offsety = np.zeros([height // scale, width // scale], dtype=np.float32) lines = np.zeros([height // scale, width // scale], dtype=np.float32) lines = Image.fromarray(lines) draw = ImageDraw.Draw(lines) seps = np.zeros([height // scale, width // scale], dtype=np.float32) ids = np.zeros([height // scale, width // scale], dtype=np.int32) angle = angle_max * np.random.normal() / 180 * np.pi angle = np.clip(angle, -np.pi, np.pi) pad_x = np.random.normal() * width / 20 pad_y = np.random.normal() * height / 20 select_font = random.choices(fonts, k=1, weights=font_p)[0] probs = [1. if is_Font_match(key[0], select_font) else 0. for key in keys] selection = [key for key in random.choices(keys, k=max_count, weights=probs)] probs2 = [1. if is_Font_match(key[0], select_font) and self.glyph_type[self.glyph_id[key[1]]] in [3,4] else 0. for key in keys] selection2 = iter([key for key in random.choices(keys, k=max_count*2, weights=probs2)]) base_line = line_space block_no = 0 line_start = int(max(0, 0 if block_count == 1 or block_no == 0 else line_break + break_space)) line_end = int(min(width, width if block_count == 1 or block_no == 1 else line_break - break_space)) temp_lineend = line_start linebuf = [] text_count = [0, 0] sep_end = 0 for key in selection: item = self.img_cache[key]['horizontal'] if item['width'] * item['rows'] == 0: continue w = item['width'] / 128 * text_size2 h = item['rows'] / 128 * text_size2 horiBearingX = item['horiBearingX'] / 128 * text_size2 horiBearingY = item['horiBearingY'] / 128 * text_size2 horiAdvance = item['horiAdvance'] / 128 * text_size2 if temp_lineend + horiAdvance < line_end: linebuf.append((key, item)) temp_lineend += horiAdvance else: remain = line_end - temp_lineend if block_no == 0: line_start += remain if len(linebuf) > 1: draw.line(((line_start // scale, base_line // scale), (line_end // scale, base_line // scale)), fill=255, width=3) text_count[block_no] += len(linebuf) for key, item in linebuf: w = item['width'] / 128 * text_size2 h = item['rows'] / 128 * text_size2 horiBearingX = item['horiBearingX'] / 128 * text_size2 horiBearingY = item['horiBearingY'] / 128 * text_size2 horiAdvance = item['horiAdvance'] / 128 * text_size2 l = (line_start + horiBearingX) / width t = (base_line - horiBearingY) / height w = w / width h = h / height cx = l + w / 2 cy = t + h / 2 kernel_size = max(self.min_ker, int(max(w, h) / (2 * scale) * width)) std_x = min(self.max_std, max(self.min_ker, w / (2 * scale) * width) / 3) std_y = min(self.max_std, max(self.min_ker, h / (2 * scale) * height) / 3) center_kernel = gaussian_kernel(kernlen=kernel_size*2+1, xstd=std_x, ystd=std_y) center_xmin = int(cx / scale * width) - kernel_size center_xmax = int(cx / scale * width) + kernel_size + 1 center_ymin = int(cy / scale * height) - kernel_size center_ymax = int(cy / scale * height) + kernel_size + 1 padx1 = max(0, 0 - center_xmin) padx2 = max(0, center_xmax - width // scale) pady1 = max(0, 0 - center_ymin) pady2 = max(0, center_ymax - height // scale) center_xmin += padx1 center_xmax -= padx2 center_ymin += pady1 center_ymax -= pady2 ker = kernel_size * 2 + 1 if center_ymax - center_ymin > 1 and center_xmax - center_xmin > 1: keymap[center_ymin:center_ymax, center_xmin:center_xmax] = np.maximum(keymap[center_ymin:center_ymax, center_xmin:center_xmax], center_kernel[pady1:ker-pady2,padx1:ker-padx2]) size_xmin = np.clip(int((cx - w/2) * width / scale), 0, width // scale) size_xmax = np.clip(int((cx + w/2) * width / scale) + 1, 0, width // scale) size_ymin = np.clip(int((cy - h/2) * height / scale), 0, height // scale) size_ymax = np.clip(int((cy + h/2) * height / scale) + 1, 0, height // scale) size_mapx, size_mapy = np.meshgrid(np.arange(size_xmin, size_xmax) - cx * width / scale, np.arange(size_ymin, size_ymax) - cy * height / scale) size_map = size_mapx ** 2 / max(w/2 * width / scale, 1) ** 2 + size_mapy ** 2 / max(h/2 * height / scale, 1) ** 2 < 1 center_x = int(cx / scale * width) center_y = int(cy / scale * height) offset_x = (cx * width % scale) / width * np.cos(angle) offset_y = (cy * height % scale) / height * np.sin(angle + np.pi / 2) offset_x += pad_x % scale offset_y += pad_y % scale offset_x = offset_x / scale - (np.arange(size_xmin, size_xmax) - center_x) * np.cos(angle) offset_y = offset_y / scale - (np.arange(size_ymin, size_ymax) - center_y) * np.sin(angle + np.pi / 2) offset_x = offset_x[np.newaxis,...] - np.linspace(-(size_ymax-size_ymin) * np.sin(angle) / 2, (size_ymax-size_ymin) * np.sin(angle) / 2, size_ymax-size_ymin)[...,np.newaxis] offset_y = offset_y[...,np.newaxis] - np.linspace(-(size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, (size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, size_xmax-size_xmin)[np.newaxis,...] offsetx[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_x, offsetx[size_ymin:size_ymax, size_xmin:size_xmax]) offsety[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_y, offsety[size_ymin:size_ymax, size_xmin:size_xmax]) fixw = w * np.abs(np.cos(angle)) + h * np.abs(np.sin(angle)) fixh = h * np.abs(np.cos(angle)) + w * np.abs(np.sin(angle)) fixw = np.log10(fixw * 10) fixh = np.log10(fixh * 10) xsizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixw, xsizes[size_ymin:size_ymax, size_xmin:size_xmax]) ysizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixh, ysizes[size_ymin:size_ymax, size_xmin:size_xmax]) id_char = self.glyph_id[key[1]] ids[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, id_char, ids[size_ymin:size_ymax, size_xmin:size_xmax]) w = max(int(item['width'] / 128 * text_size2), 1) h = max(int(item['rows'] / 128 * text_size2), 1) top = int(np.clip(base_line - horiBearingY, 0, height - h)) left = int(np.clip(line_start + horiBearingX, 0, width - w)) im = np.asarray(Image.fromarray(item['image']).resize((w,h))) images[top:top+h,left:left+w] = np.maximum( images[top:top+h,left:left+w], im) line_start += int(horiAdvance) # ふりがな処理 base_line2 = base_line - text_size2 line_start2 = int(max(0, 0 if block_count == 1 or block_no == 0 else line_break + break_space)) if block_no == 0: line_start2 += remain line_end2 = line_start line_start2p = line_start2 while line_start2 < line_end2: key2 = next(selection2, None) if key2 is None: break item = self.img_cache[key2]['horizontal'] if item['width'] * item['rows'] == 0: continue w = item['width'] / 128 * text_size h = item['rows'] / 128 * text_size horiBearingX = item['horiBearingX'] / 128 * text_size horiBearingY = item['horiBearingY'] / 128 * text_size horiAdvance = item['horiAdvance'] / 128 * text_size if np.random.uniform() < 0.2: # ここは空ける if line_start2 != line_start2p: draw.line(((line_start2p // scale, base_line // scale), (line_start // scale, base_line // scale)), fill=255, width=3) line_start2 += int(horiAdvance) line_start2p = line_start2 continue # ここはふりがな l = (line_start2 + horiBearingX) / width t = (base_line2 - horiBearingY) / height w = w / width h = h / height cx = l + w / 2 cy = t + h / 2 kernel_size = max(self.min_ker, int(max(w, h) / (2 * scale) * width)) std_x = min(self.max_std, max(self.min_ker, w / (2 * scale) * width) / 3) std_y = min(self.max_std, max(self.min_ker, h / (2 * scale) * height) / 3) center_kernel = gaussian_kernel(kernlen=kernel_size*2+1, xstd=std_x, ystd=std_y) center_xmin = int(cx / scale * width) - kernel_size center_xmax = int(cx / scale * width) + kernel_size + 1 center_ymin = int(cy / scale * height) - kernel_size center_ymax = int(cy / scale * height) + kernel_size + 1 padx1 = max(0, 0 - center_xmin) padx2 = max(0, center_xmax - width // scale) pady1 = max(0, 0 - center_ymin) pady2 = max(0, center_ymax - height // scale) center_xmin += padx1 center_xmax -= padx2 center_ymin += pady1 center_ymax -= pady2 ker = kernel_size * 2 + 1 if center_ymax - center_ymin > 1 and center_xmax - center_xmin > 1: keymap[center_ymin:center_ymax, center_xmin:center_xmax] = np.maximum(keymap[center_ymin:center_ymax, center_xmin:center_xmax], center_kernel[pady1:ker-pady2,padx1:ker-padx2]) size_xmin = np.clip(int((cx - w/2) * width / scale), 0, width // scale) size_xmax = np.clip(int((cx + w/2) * width / scale) + 1, 0, width // scale) size_ymin = np.clip(int((cy - h/2) * height / scale), 0, height // scale) size_ymax = np.clip(int((cy + h/2) * height / scale) + 1, 0, height // scale) size_mapx, size_mapy = np.meshgrid(np.arange(size_xmin, size_xmax) - cx * width / scale, np.arange(size_ymin, size_ymax) - cy * height / scale) size_map = size_mapx ** 2 / max(w/2 * width / scale, 1) ** 2 + size_mapy ** 2 / max(h/2 * height / scale, 1) ** 2 < 1 center_x = int(cx / scale * width) center_y = int(cy / scale * height) offset_x = (cx * width % scale) / width * np.cos(angle) offset_y = (cy * height % scale) / height * np.sin(angle + np.pi / 2) offset_x += pad_x % scale offset_y += pad_y % scale offset_x = offset_x / scale - (np.arange(size_xmin, size_xmax) - center_x) * np.cos(angle) offset_y = offset_y / scale - (np.arange(size_ymin, size_ymax) - center_y) * np.sin(angle + np.pi / 2) offset_x = offset_x[np.newaxis,...] - np.linspace(-(size_ymax-size_ymin) * np.sin(angle) / 2, (size_ymax-size_ymin) * np.sin(angle) / 2, size_ymax-size_ymin)[...,np.newaxis] offset_y = offset_y[...,np.newaxis] - np.linspace(-(size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, (size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, size_xmax-size_xmin)[np.newaxis,...] offsetx[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_x, offsetx[size_ymin:size_ymax, size_xmin:size_xmax]) offsety[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_y, offsety[size_ymin:size_ymax, size_xmin:size_xmax]) fixw = w * np.abs(np.cos(angle)) + h * np.abs(np.sin(angle)) fixh = h * np.abs(np.cos(angle)) + w * np.abs(np.sin(angle)) fixw = np.log10(fixw * 10) fixh = np.log10(fixh * 10) xsizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixw, xsizes[size_ymin:size_ymax, size_xmin:size_xmax]) ysizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixh, ysizes[size_ymin:size_ymax, size_xmin:size_xmax]) id_char = self.glyph_id[key[1]] ids[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, id_char, ids[size_ymin:size_ymax, size_xmin:size_xmax]) w = max(int(item['width'] / 128 * text_size), 1) h = max(int(item['rows'] / 128 * text_size), 1) top = int(np.clip(base_line2 - horiBearingY, 0, height - h)) left = int(np.clip(line_start2 + horiBearingX, 0, width - w)) im = np.asarray(Image.fromarray(item['image']).resize((w,h))) images[top:top+h,left:left+w] = np.maximum( images[top:top+h,left:left+w], im) line_start2 += int(horiAdvance) if line_start2 != line_start2p: draw.line(((line_start2p // scale, base_line // scale), (line_start // scale, base_line // scale)), fill=255, width=3) base_line += line_space if base_line + text_size2 >= height: if block_no == 0: sep_end = base_line - line_space base_line = line_space block_no += 1 if block_no >= block_count: break line_start = int(max(0, 0 if block_count == 1 or block_no == 0 else line_break + break_space)) line_end = int(min(width, width if block_count == 1 or block_no == 1 else line_break - break_space)) temp_lineend = line_start linebuf = [] if all(t > 1 for t in text_count): l = max(1,line_break // scale) t = line_space // 2 // scale b = sep_end // scale seps[t:b, l-1:l+2] = 1 im = Image.fromarray(images).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x, pad_y)) lines = lines.rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) keymapim1 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) keymapim2 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) keymapim = np.maximum(keymapim1, keymapim2) xsizeim = Image.fromarray(xsizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) ysizeim = Image.fromarray(ysizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) xoffsetim = Image.fromarray(offsetx).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) yoffsetim = Image.fromarray(offsety).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) sepim = Image.fromarray(seps).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) labels = np.stack([keymapim, xsizeim, ysizeim, xoffsetim, yoffsetim, np.asarray(lines) / 255., sepim], -1) idsim = Image.fromarray(ids).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) images = np.asarray(im) / 255. ids = np.asarray(idsim) images = apply_random_filter(images) return self.sub_constructimage(images, labels, ids, False) def null_images(self): images = np.zeros([height, width], dtype=np.float32) keymap = np.zeros([height // scale, width // scale], dtype=np.float32) xsizes = np.zeros([height // scale, width // scale], dtype=np.float32) ysizes = np.zeros([height // scale, width // scale], dtype=np.float32) offsetx = np.zeros([height // scale, width // scale], dtype=np.float32) offsety = np.zeros([height // scale, width // scale], dtype=np.float32) lines = np.zeros([height // scale, width // scale], dtype=np.float32) seps = np.zeros([height // scale, width // scale], dtype=np.float32) labels = np.stack([keymap, xsizes, ysizes, offsetx, offsety, lines, seps], -1) ids = np.zeros([height // scale, width // scale], dtype=np.int32) images = apply_random_filter(images) return self.sub_constructimage(images, labels, ids, len(self.random_background) > 0) def load_random_line(self): images = np.zeros([height, width], dtype=np.float32) keymap = np.zeros([height // scale, width // scale], dtype=np.float32) xsizes = np.zeros([height // scale, width // scale], dtype=np.float32) ysizes = np.zeros([height // scale, width // scale], dtype=np.float32) offsetx = np.zeros([height // scale, width // scale], dtype=np.float32) offsety = np.zeros([height // scale, width // scale], dtype=np.float32) lines = np.zeros([height // scale, width // scale], dtype=np.float32) seps = np.zeros([height // scale, width // scale], dtype=np.float32) seps = Image.fromarray(seps) draw1 = ImageDraw.Draw(seps) images = Image.fromarray(images) draw2 = ImageDraw.Draw(images) linew = int(np.clip(np.random.uniform() * 20, scale, 20)) x1 = np.random.normal() * width / 2 + width / 2 y1 = np.random.normal() * height / 2 + height / 2 x2 = np.random.normal() * width / 2 + width / 2 y2 = np.random.normal() * height / 2 + height / 2 draw1.line(((x1 // scale, y1 // scale), (x2 // scale, y2 // scale)), fill=255, width=linew//scale+1) draw2.line(((x1, y1), (x2, y2)), fill=255, width=linew) labels = np.stack([keymap, xsizes, ysizes, offsetx, offsety, lines, np.asarray(seps) / 255.], -1) ids = np.zeros([height // scale, width // scale], dtype=np.int32) images = np.asarray(images) / 255. images = apply_random_filter(images) return self.sub_constructimage(images, labels, ids, len(self.random_background) > 0) def load_images_random(self, keys, probs): max_count = 64 angle_max = 15.0 images = np.zeros([height, width], dtype=np.float32) keymap = np.zeros([height // scale, width // scale], dtype=np.float32) xsizes = np.zeros([height // scale, width // scale], dtype=np.float32) ysizes = np.zeros([height // scale, width // scale], dtype=np.float32) offsetx = np.zeros([height // scale, width // scale], dtype=np.float32) offsety = np.zeros([height // scale, width // scale], dtype=np.float32) lines = np.zeros([height // scale, width // scale], dtype=np.float32) seps = np.zeros([height // scale, width // scale], dtype=np.float32) ids = np.zeros([height // scale, width // scale], dtype=np.int32) angle = angle_max * np.random.normal() / 180 * np.pi angle = np.clip(angle, -np.pi, np.pi) pad_x = np.random.normal() * width / 20 pad_y = np.random.normal() * height / 20 selection = [key for key in random.choices(keys, k=np.random.randint(2,max_count), weights=probs)] i = 0 boxprev = np.zeros([0, 4]) if random.random() < 0.1: margin = 20 line_c = random.randint(0,3) lw = random.randint(2, 10) if line_c == 0: x = random.randrange(width // 2, width) y = random.randrange(0, height - lw) px = x // scale py = y // scale seps[py:py+lw//scale+1, :px] = 1 images[y:y+lw, :x] = 255 boxprev = np.concatenate([boxprev, [[0, (x + margin)/width, (y - margin)/height, (y+lw + margin)/height]]]) elif line_c == 1: x = random.randrange(0, width // 2) y = random.randrange(0, height - lw) px = x // scale py = y // scale seps[py:py+lw//scale+1, px:] = 1 images[y:y+lw, x:] = 255 boxprev = np.concatenate([boxprev, [[(x - margin)/width, 1, (y - margin)/height, (y+lw + margin)/height]]]) elif line_c == 2: y = random.randrange(height // 2, height) x = random.randrange(0, width - lw) px = x // scale py = y // scale seps[:py, px:px+lw//scale+1] = 1 images[:y, x:x+lw] = 255 boxprev = np.concatenate([boxprev, [[(x - margin)/width, (x+lw + margin)/width, 0, (y + margin)/height]]]) elif line_c == 3: y = random.randrange(0, height // 2) x = random.randrange(0, width - lw) px = x // scale py = y // scale seps[py:, px:px+lw//scale+1] = 1 images[y:, x:x+lw] = 255 boxprev = np.concatenate([boxprev, [[(x - margin)/width, (x+lw + margin)/width, (y - margin)/height, 1]]]) if random.random() < 0.5: min_pixel = 20 max_pixel = width else: min_pixel = 20 max_pixel = width // 3 for key in selection: item = self.img_cache[key]['horizontal'] if item['width'] * item['rows'] == 0: continue if random.random() < 0.5: tile_size = random.randint(min_pixel, max_pixel) else: tile_size = int(np.exp(random.uniform(np.log(min_pixel), np.log(max_pixel)))) w = item['width'] / 128 * tile_size h = item['rows'] / 128 * tile_size aspects = np.clip(np.random.normal() * 0.1 + 1.0, 0.75, 1.25) if random.random() < 0.5: aspects = 1.0 / aspects w *= aspects h /= aspects tile_left = random.randint(0, int(width - tile_size)) tile_top = random.randint(0, int(height - tile_size)) if tile_top + h >= height or tile_left + w >= width: continue left = tile_left / width top = tile_top / height w = w / width h = h / height cx = left + w/2 cy = top + h/2 if np.random.uniform() < 0.1: invert = True x1 = cx - w/2 * 1.25 x2 = cx + w/2 * 1.25 y1 = cy - h/2 * 1.25 y2 = cy + h/2 * 1.25 inter_xmin = np.maximum(boxprev[:,0], x1) inter_ymin = np.maximum(boxprev[:,2], y1) inter_xmax = np.minimum(boxprev[:,1], x2) inter_ymax = np.minimum(boxprev[:,3], y2) else: invert = False inter_xmin = np.maximum(boxprev[:,0], cx - w/2 * 1.1) inter_ymin = np.maximum(boxprev[:,2], cy - h/2 * 1.1) inter_xmax = np.minimum(boxprev[:,1], cx + w/2 * 1.1) inter_ymax = np.minimum(boxprev[:,3], cy + h/2 * 1.1) inter_w = np.maximum(inter_xmax - inter_xmin, 0.) inter_h = np.maximum(inter_ymax - inter_ymin, 0.) inter_vol = inter_w * inter_h if np.any(inter_vol > 0): continue kernel_size = max(self.min_ker, int(max(w, h) / (2 * scale) * width)) std_x = min(self.max_std, max(self.min_ker, w / (2 * scale) * width) / 3) std_y = min(self.max_std, max(self.min_ker, h / (2 * scale) * height) / 3) center_kernel = gaussian_kernel(kernlen=kernel_size*2+1, xstd=std_x, ystd=std_y) center_xmin = int(cx / scale * width) - kernel_size center_xmax = int(cx / scale * width) + kernel_size + 1 center_ymin = int(cy / scale * height) - kernel_size center_ymax = int(cy / scale * height) + kernel_size + 1 padx1 = max(0, 0 - center_xmin) padx2 = max(0, center_xmax - width // scale) pady1 = max(0, 0 - center_ymin) pady2 = max(0, center_ymax - height // scale) center_xmin += padx1 center_xmax -= padx2 center_ymin += pady1 center_ymax -= pady2 ker = kernel_size * 2 + 1 keymap[center_ymin:center_ymax, center_xmin:center_xmax] = np.maximum(keymap[center_ymin:center_ymax, center_xmin:center_xmax], center_kernel[pady1:ker-pady2,padx1:ker-padx2]) size_xmin = np.clip(int((cx - w/2) * width / scale), 0, width // scale) size_xmax = np.clip(int((cx + w/2) * width / scale) + 1, 0, width // scale) size_ymin = np.clip(int((cy - h/2) * height / scale), 0, height // scale) size_ymax = np.clip(int((cy + h/2) * height / scale) + 1, 0, height // scale) size_mapx, size_mapy = np.meshgrid(np.arange(size_xmin, size_xmax) - cx * width / scale, np.arange(size_ymin, size_ymax) - cy * height / scale) size_map = size_mapx ** 2 / max(w/2 * width / scale, 1) ** 2 + size_mapy ** 2 / max(h/2 * height / scale, 1) ** 2 < 1 center_x = int(cx / scale * width) center_y = int(cy / scale * height) offset_x = (cx * width % scale) / width * np.cos(angle) offset_y = (cy * height % scale) / height * np.sin(angle + np.pi / 2) offset_x += pad_x % scale offset_y += pad_y % scale offset_x = offset_x / scale - (np.arange(size_xmin, size_xmax) - center_x) * np.cos(angle) offset_y = offset_y / scale - (np.arange(size_ymin, size_ymax) - center_y) * np.sin(angle + np.pi / 2) offset_x = offset_x[np.newaxis,...] - np.linspace(-(size_ymax-size_ymin) * np.sin(angle) / 2, (size_ymax-size_ymin) * np.sin(angle) / 2, size_ymax-size_ymin)[...,np.newaxis] offset_y = offset_y[...,np.newaxis] - np.linspace(-(size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, (size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, size_xmax-size_xmin)[np.newaxis,...] offsetx[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_x, offsetx[size_ymin:size_ymax, size_xmin:size_xmax]) offsety[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_y, offsety[size_ymin:size_ymax, size_xmin:size_xmax]) fixw = w * np.abs(np.cos(angle)) + h * np.abs(np.sin(angle)) fixh = h * np.abs(np.cos(angle)) + w * np.abs(np.sin(angle)) fixw = np.log10(fixw * 10) fixh = np.log10(fixh * 10) xsizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixw, xsizes[size_ymin:size_ymax, size_xmin:size_xmax]) ysizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixh, ysizes[size_ymin:size_ymax, size_xmin:size_xmax]) id_char = self.glyph_id[key[1]] ids[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, id_char, ids[size_ymin:size_ymax, size_xmin:size_xmax]) if invert: boxprev = np.concatenate([boxprev, [[x1, x2, y1, y2]]]) else: boxprev = np.concatenate([boxprev, [[cx - w/2, cx + w/2, cy - h/2, cy + h/2]]]) w = max(int(item['width'] / 128 * tile_size * aspects), 1) h = max(int(item['rows'] / 128 * tile_size / aspects), 1) im = np.asarray(Image.fromarray(item['image']).resize((w,h))) images[tile_top:tile_top+h,tile_left:tile_left+w] = np.maximum( images[tile_top:tile_top+h,tile_left:tile_left+w], im) if invert: x1 = int(x1 * width) x2 = int(x2 * width) y1 = int(y1 * height) y2 = int(y2 * height) crop = images[y1:y2,x1:x2] images[y1:y2,x1:x2] = 255 - crop i += 1 im = Image.fromarray(images).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x, pad_y)) keymapim1 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) keymapim2 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) keymapim = np.maximum(keymapim1, keymapim2) xsizeim = Image.fromarray(xsizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) ysizeim = Image.fromarray(ysizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) xoffsetim = Image.fromarray(offsetx).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) yoffsetim = Image.fromarray(offsety).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) sepim = Image.fromarray(seps).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) labels = np.stack([keymapim, xsizeim, ysizeim, xoffsetim, yoffsetim, lines, sepim], -1) idsim = Image.fromarray(ids).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) images = np.asarray(im) / 255. ids = np.asarray(idsim) images = apply_random_filter(images) return self.sub_constructimage(images, labels, ids, len(self.random_background) > 0) def load_images_fill(self, keys, fonts): max_count = 64 angle_max = 15.0 min_pixel = 24 max_pixel = 200 if random.random() < 0.5: tile_size = random.randint(min_pixel, max_pixel) else: tile_size = int(np.exp(random.uniform(np.log(min_pixel), np.log(max_pixel)))) images = np.zeros([height, width], dtype=np.float32) keymap = np.zeros([height // scale, width // scale], dtype=np.float32) xsizes = np.zeros([height // scale, width // scale], dtype=np.float32) ysizes = np.zeros([height // scale, width // scale], dtype=np.float32) offsetx = np.zeros([height // scale, width // scale], dtype=np.float32) offsety = np.zeros([height // scale, width // scale], dtype=np.float32) lines = np.zeros([height // scale, width // scale], dtype=np.float32) lines = Image.fromarray(lines) draw = ImageDraw.Draw(lines) seps = np.zeros([height // scale, width // scale], dtype=np.float32) ids = np.zeros([height // scale, width // scale], dtype=np.int32) tile_left = 0 tile_base = 0 angle = angle_max * np.random.normal() / 180 * np.pi if np.random.rand() < 0.5: angle -= np.pi / 2 angle = np.clip(angle, -np.pi, np.pi) pad_x = np.random.normal() * width / 20 pad_y = np.random.normal() * height / 20 aspects = np.clip(np.random.normal() * 0.1 + 1.0, 0.75, 1.25) if random.random() < 0.5: aspects = 1.0 / aspects select_font = random.choice(fonts) probs = [1. if is_Font_match(key[0], select_font) else 0. for key in keys] selection = [key for key in random.choices(keys, k=np.random.randint(2,max_count), weights=probs)] boxprev = np.zeros([0, 4]) if random.random() < 0.1: margin = 20 line_c = random.randint(0,3) lw = random.randint(2, 10) if line_c == 0: x = random.randrange(width // 2, width) y = random.randrange(0, height - lw) px = x // scale py = y // scale seps[py:py+lw//scale+1, :px] = 1 images[y:y+lw, :x] = 255 boxprev = np.concatenate([boxprev, [[0, (x + margin)/width, (y - margin)/height, (y+lw + margin)/height]]]) elif line_c == 1: x = random.randrange(0, width // 2) y = random.randrange(0, height - lw) px = x // scale py = y // scale seps[py:py+lw//scale+1, px:] = 1 images[y:y+lw, x:] = 255 boxprev = np.concatenate([boxprev, [[(x - margin)/width, 1, (y - margin)/height, (y+lw + margin)/height]]]) elif line_c == 2: y = random.randrange(height // 2, height) x = random.randrange(0, width - lw) px = x // scale py = y // scale seps[:py, px:px+lw//scale+1] = 1 images[:y, x:x+lw] = 255 boxprev = np.concatenate([boxprev, [[(x - margin)/width, (x+lw + margin)/width, 0, (y + margin)/height]]]) elif line_c == 3: y = random.randrange(0, height // 2) x = random.randrange(0, width - lw) px = x // scale py = y // scale seps[py:, px:px+lw//scale+1] = 1 images[y:, x:x+lw] = 255 boxprev = np.concatenate([boxprev, [[(x - margin)/width, (x+lw + margin)/width, (y - margin)/height, 1]]]) cont_n = random.randint(1,21) cut_p = 10 ** (np.log10(0.5) / cont_n) i = 0 replace = True prev = 0 prev_center = None for key in selection: item = self.img_cache[key]['horizontal'] if item['width'] * item['rows'] == 0: continue w = item['width'] / 128 * tile_size h = item['rows'] / 128 * tile_size w *= aspects h /= aspects horiBearingX = item['horiBearingX'] / 128 * tile_size * aspects horiBearingY = item['horiBearingY'] / 128 * tile_size / aspects horiAdvance = item['horiAdvance'] / 128 * tile_size * aspects if replace: invert = np.random.uniform() < 0.1 l = max(0,-int(horiBearingX)) tile_left = random.randint(l, int(width - tile_size)) if int(width - tile_size) > l else l tile_base = random.randint(tile_size, int(height - tile_size)) if int(height - tile_size) > tile_size else tile_size if tile_base - horiBearingY < 0 or tile_base - horiBearingY + h >= height or tile_left + horiBearingX < 0 or tile_left + horiBearingX + w >= width: replace = True prev = 0 prev_center = None continue l = (tile_left + horiBearingX) / width t = (tile_base - horiBearingY) / height w = w / width h = h / height cx = l + w / 2 cy = t + h / 2 if invert: x1 = tile_left / width x2 = (tile_left + horiAdvance) / width y1 = cy - h/2 * 1.25 y2 = cy + h/2 * 1.25 if prev >= 0: inter_xmin = np.maximum(boxprev[:,0], x1) inter_ymin = np.maximum(boxprev[:,2], y1) inter_xmax = np.minimum(boxprev[:,1], x2) inter_ymax = np.minimum(boxprev[:,3], y2) else: # 連続してレンダリングする場合は、前の文字にめり込むことがあるので判定しない inter_xmin = np.maximum(boxprev[:prev,0], x1) inter_ymin = np.maximum(boxprev[:prev,2], y1) inter_xmax = np.minimum(boxprev[:prev,1], x2) inter_ymax = np.minimum(boxprev[:prev,3], y2) else: if prev >= 0: inter_xmin = np.maximum(boxprev[:,0], cx - w/2) inter_ymin = np.maximum(boxprev[:,2], cy - h/2) inter_xmax = np.minimum(boxprev[:,1], cx + w/2) inter_ymax = np.minimum(boxprev[:,3], cy + h/2) else: # 連続してレンダリングする場合は、前の文字にめり込むことがあるので判定しない inter_xmin = np.maximum(boxprev[:prev,0], cx - w/2) inter_ymin = np.maximum(boxprev[:prev,2], cy - h/2) inter_xmax = np.minimum(boxprev[:prev,1], cx + w/2) inter_ymax = np.minimum(boxprev[:prev,3], cy + h/2) inter_w = np.maximum(inter_xmax - inter_xmin, 0.) inter_h = np.maximum(inter_ymax - inter_ymin, 0.) inter_vol = inter_w * inter_h if np.any(inter_vol > 0): replace = True prev = 0 prev_center = None continue if prev < 0: draw.line((prev_center, (cx * width // scale, tile_base // scale)), fill=255, width=3) prev_center = (cx * width // scale, tile_base // scale) kernel_size = max(self.min_ker, int(max(w, h) / (2 * scale) * width)) std_x = min(self.max_std, max(self.min_ker, w / (2 * scale) * width) / 3) std_y = min(self.max_std, max(self.min_ker, h / (2 * scale) * height) / 3) center_kernel = gaussian_kernel(kernlen=kernel_size*2+1, xstd=std_x, ystd=std_y) center_xmin = int(cx / scale * width) - kernel_size center_xmax = int(cx / scale * width) + kernel_size + 1 center_ymin = int(cy / scale * height) - kernel_size center_ymax = int(cy / scale * height) + kernel_size + 1 padx1 = max(0, 0 - center_xmin) padx2 = max(0, center_xmax - width // scale) pady1 = max(0, 0 - center_ymin) pady2 = max(0, center_ymax - height // scale) center_xmin += padx1 center_xmax -= padx2 center_ymin += pady1 center_ymax -= pady2 ker = kernel_size * 2 + 1 keymap[center_ymin:center_ymax, center_xmin:center_xmax] = np.maximum(keymap[center_ymin:center_ymax, center_xmin:center_xmax], center_kernel[pady1:ker-pady2,padx1:ker-padx2]) size_xmin = np.clip(int((cx - w/2) * width / scale), 0, width // scale) size_xmax = np.clip(int((cx + w/2) * width / scale) + 1, 0, width // scale) size_ymin = np.clip(int((cy - h/2) * height / scale), 0, height // scale) size_ymax = np.clip(int((cy + h/2) * height / scale) + 1, 0, height // scale) size_mapx, size_mapy = np.meshgrid(np.arange(size_xmin, size_xmax) - cx * width / scale, np.arange(size_ymin, size_ymax) - cy * height / scale) size_map = size_mapx ** 2 / max(w/2 * width / scale, 1) ** 2 + size_mapy ** 2 / max(h/2 * height / scale, 1) ** 2 < 1 center_x = int(cx / scale * width) center_y = int(cy / scale * height) if angle < -np.pi / 4: offset_y = (cx * width % scale) / width * np.cos(-(angle + np.pi / 2)) offset_x = -(cy * height % scale) / height * np.sin(-(angle + np.pi / 2) + np.pi / 2) offset_x += pad_x % scale offset_y += pad_y % scale offset_x = offset_x / scale + (np.arange(size_ymin, size_ymax) - center_y) * np.sin(-(angle + np.pi / 2) + np.pi / 2) offset_y = offset_y / scale - (np.arange(size_xmin, size_xmax) - center_x) * np.cos(-(angle + np.pi / 2)) offset_y = offset_y[np.newaxis,...] + np.linspace(-(size_ymax-size_ymin) * np.sin(-(angle + np.pi / 2)) / 2, (size_ymax-size_ymin) * np.sin(-(angle + np.pi / 2)) / 2, size_ymax-size_ymin)[...,np.newaxis] offset_x = offset_x[...,np.newaxis] - np.linspace(-(size_xmax-size_xmin) * np.cos(-(angle + np.pi/ 2) + np.pi / 2) / 2, (size_xmax-size_xmin) * np.cos(-(angle + np.pi/ 2) + np.pi / 2) / 2, size_xmax-size_xmin)[np.newaxis,...] else: offset_x = (cx * width % scale) / width * np.sin(angle) offset_y = (cy * height % scale) / height * np.sin(angle + np.pi / 2) offset_x += pad_x % scale offset_y += pad_y % scale offset_x = offset_x / scale - (np.arange(size_xmin, size_xmax) - center_x) * np.cos(angle) offset_y = offset_y / scale - (np.arange(size_ymin, size_ymax) - center_y) * np.sin(angle + np.pi / 2) offset_x = offset_x[np.newaxis,...] - np.linspace(-(size_ymax-size_ymin) * np.sin(angle) / 2, (size_ymax-size_ymin) * np.sin(angle) / 2, size_ymax-size_ymin)[...,np.newaxis] offset_y = offset_y[...,np.newaxis] - np.linspace(-(size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, (size_xmax-size_xmin) * np.cos(angle + np.pi / 2) / 2, size_xmax-size_xmin)[np.newaxis,...] offsetx[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_x, offsetx[size_ymin:size_ymax, size_xmin:size_xmax]) offsety[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, offset_y, offsety[size_ymin:size_ymax, size_xmin:size_xmax]) fixw = w * np.abs(np.cos(angle)) + h * np.abs(np.sin(angle)) fixh = h * np.abs(np.cos(angle)) + w * np.abs(np.sin(angle)) fixw = np.log10(fixw * 10) fixh = np.log10(fixh * 10) xsizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixw, xsizes[size_ymin:size_ymax, size_xmin:size_xmax]) ysizes[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, fixh, ysizes[size_ymin:size_ymax, size_xmin:size_xmax]) id_char = self.glyph_id[key[1]] ids[size_ymin:size_ymax, size_xmin:size_xmax] = np.where(size_map, id_char, ids[size_ymin:size_ymax, size_xmin:size_xmax]) if invert: boxprev = np.concatenate([boxprev, [[x1, x2, y1, y2]]]) else: boxprev = np.concatenate([boxprev, [[cx - w/2, cx + w/2, cy - h/2, cy + h/2]]]) w = max(int(item['width'] / 128 * tile_size * aspects), 1) h = max(int(item['rows'] / 128 * tile_size / aspects), 1) tile_top = int(tile_base - horiBearingY) l = int(tile_left + horiBearingX) im = np.asarray(Image.fromarray(item['image']).resize((w,h))) if invert: im_inv = 255 - im x1 = int(x1 * width) x2 = int(x2 * width) y1 = int(y1 * height) y2 = int(y2 * height) images[y1:y2,x1:x2] = 255 images[tile_top:tile_top+h,l:l+w] = np.minimum( images[tile_top:tile_top+h,l:l+w], im_inv) else: images[tile_top:tile_top+h,l:l+w] = np.maximum( images[tile_top:tile_top+h,l:l+w], im) i += 1 if random.random() > cut_p: replace = True prev_center = None prev = 0 else: tile_left += int(horiAdvance) replace = False if tile_left >= width - tile_size: replace = True prev_center = None prev = 0 else: prev -= 1 im = Image.fromarray(images).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x, pad_y)) lines = lines.rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) keymapim1 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) keymapim2 = Image.fromarray(keymap).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) keymapim = np.maximum(keymapim1, keymapim2) xsizeim = Image.fromarray(xsizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) ysizeim = Image.fromarray(ysizes).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) xoffsetim = Image.fromarray(offsetx).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) yoffsetim = Image.fromarray(offsety).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) sepim = Image.fromarray(seps).rotate(angle / np.pi * 180, resample=Image.Resampling.BILINEAR, translate=(pad_x / scale, pad_y / scale)) labels = np.stack([keymapim, xsizeim, ysizeim, xoffsetim, yoffsetim, np.asarray(lines) / 255., sepim], -1) idsim = Image.fromarray(ids).rotate(angle / np.pi * 180, resample=Image.Resampling.NEAREST, translate=(pad_x / scale, pad_y / scale)) images = np.asarray(im) / 255. ids = np.asarray(idsim) images = apply_random_filter(images) return self.sub_constructimage(images, labels, ids, len(self.random_background) > 0) def load_images_randomline(self, keys, probs): max_count = 64 angle_max = 15.0 min_pixel = 20 max_pixel = 250 images = np.zeros([height, width], dtype=np.float32) keymap = np.zeros([height // scale, width // scale], dtype=np.float32) xsizes = np.zeros([height // scale, width // scale], dtype=np.float32) ysizes = np.zeros([height // scale, width // scale], dtype=np.float32) offsetx = np.zeros([height // scale, width // scale], dtype=np.float32) offsety = np.zeros([height // scale, width // scale], dtype=np.float32) lines = np.zeros([height // scale, width // scale], dtype=np.float32) lines = Image.fromarray(lines) draw = ImageDraw.Draw(lines) seps = np.zeros([height // scale, width // scale], dtype=np.float32) ids = np.zeros([height // scale, width // scale], dtype=np.int32) angle = angle_max * np.random.normal() / 180 * np.pi angle = np.clip(angle, -np.pi, np.pi) pad_x = np.random.normal() * width / 20 pad_y = np.random.normal() * height / 20 selection = [key for key in random.choices(keys, k=np.random.randint(2,max_count), weights=probs)] boxprev = np.zeros([0, 4]) if random.random() < 0.1: margin = 20 line_c = random.randint(0,3) lw = random.randint(2, 10) if line_c == 0: x = random.randrange(width // 2, width) y = random.randrange(0, height - lw) px = x // scale py = y // scale seps[py:py+lw//scale+1, :px] = 1 images[y:y+lw, :x] = 255 boxprev = np.concatenate([boxprev, [[0, (x + margin)/width, (y - margin)/height, (y+lw + margin)/height]]]) elif line_c == 1: x = random.randrange(0, width // 2) y = random.randrange(0, height - lw) px = x // scale py = y // scale seps[py:py+lw//scale+1, px:] = 1 images[y:y+lw, x:] = 255 boxprev = np.concatenate([boxprev, [[(x - margin)/width, 1, (y - margin)/height, (y+lw + margin)/height]]]) elif line_c == 2: y = random.randrange(height // 2, height) x = random.randrange(0, width - lw) px = x // scale py = y // scale seps[:py, px:px+lw//scale+1] = 1 images[:y, x:x+lw] = 255 boxprev = np.concatenate([boxprev, [[(x - margin)/width, (x+lw + margin)/width, 0, (y + margin)/height]]]) elif line_c == 3: y = random.randrange(0, height // 2) x = random.randrange(0, width - lw) px = x // scale py = y // scale seps[py:, px:px+lw//scale+1] = 1 images[y:, x:x+lw] = 255 boxprev = np.concatenate([boxprev, [[(x - margin)/width, (x+lw + margin)/width, (y - margin)/height, 1]]]) i = 0 replace = True prev = 0 prev_center = None for key in selection: if replace: invert = np.random.uniform() < 0.1 if self.glyph_type.get(self.glyph_id[key[1]],11) in [3,4,5,8,9,10,11]: direction = random.randint(0,1) * 2 else: p = random.random() if p < 0.4: direction = 0 elif p < 0.8: direction = 2 else: direction = 1 aspects = np.clip(np.random.normal() * 0.1 + 1.0, 0.75, 1.25) if random.random() < 0.5: aspects = 1.0 / aspects if direction < 2: item = self.img_cache[key]['horizontal'] else: item = self.img_cache[key]['vertical'] if item['width'] * item['rows'] == 0: continue if self.glyph_type.get(self.glyph_id[key[1]],11) in [3,4,5,8,9,10,11]: if direction == 1: continue if replace: if random.random() < 0.5: tile_size = random.randint(min_pixel, max_pixel) else: tile_size = int(np.exp(random.uniform(np.log(min_pixel), np.log(max_pixel)))) if direction < 2: w = item['width'] / 128 * tile_size h = item['rows'] / 128 * tile_size w *= aspects h /= aspects horiBearingX = item['horiBearingX'] / 128 * tile_size * aspects horiBearingY = item['horiBearingY'] / 128 * tile_size / aspects horiAdvance = item['horiAdvance'] / 128 * tile_size * aspects else: w = item['width'] / 128 * tile_size h = item['rows'] / 128 * tile_size w *= aspects h /= aspects vertBearingX = item['vertBearingX'] / 128 * tile_size * aspects vertBearingY = item['vertBearingY'] / 128 * tile_size / aspects vertAdvance = item['vertAdvance'] / 128 * tile_size / aspects if direction == 0: if replace: l = max(0,-int(horiBearingX)) tile_left = random.randint(l, int(width - tile_size)) if int(width - tile_size) > l else l tile_base = random.randint(tile_size, int(height - tile_size)) if int(height - tile_size) > tile_size else tile_size if tile_base - horiBearingY < 0 or tile_base - horiBearingY + h >= height or tile_left + horiBearingX < 0 or tile_left + horiBearingX + w >= width: replace = True prev_center = None prev = 0 continue l = (tile_left + horiBearingX) / width t = (tile_base - horiBearingY) / height w = w / width h = h / height cx = l + w / 2 cy = t + h / 2 if invert: x1 = tile_left / width x2 = (tile_left + horiAdvance) / width y1 = cy - h/2 * 1.25 y2 = cy + h/2 * 1.25 if prev >= 0: inter_xmin = np.maximum(boxprev[:,0], x1) inter_ymin = np.maximum(boxprev[:,2], y1) inter_xmax = np.minimum(boxprev[:,1], x2) inter_ymax = np.minimum(boxprev[:,3], y2) else: # 連続してレンダリングする場合は、前の文字にめり込むことがあるので判定しない inter_xmin = np.maximum(boxprev[:prev,0], x1) inter_ymin = np.maximum(boxprev[:prev,2], y1) inter_xmax = np.minimum(boxprev[:prev,1], x2) inter_ymax = np.minimum(boxprev[:prev,3], y2) else: if prev >= 0: inter_xmin = np.maximum(boxprev[:,0], cx - w/2 * 1.2) inter_ymin = np.maximum(boxprev[:,2], cy - h/2 * 1.2) inter_xmax = np.minimum(boxprev[:,1], cx + w/2 * 1.2) inter_ymax = np.minimum(boxprev[:,3], cy + h/2 * 1.2) else: # 連続してレンダリングする場合は、前の文字にめり込むことがあるので判定しない inter_xmin = np.maximum(boxprev[:prev,0], cx - w/2 * 1.2) inter_ymin = np.maximum(boxprev[:prev,2], cy - h/2 * 1.2) inter_xmax = np.minimum(boxprev[:prev,1], cx + w/2 * 1.2) inter_ymax = np.minimum(boxprev[:prev,3], cy + h/2 * 1.2) inter_w = np.maximum(inter_xmax - inter_xmin, 0.) inter_h = np.maximum(inter_ymax - inter_ymin, 0.) inter_vol = inter_w * inter_h if np.any(inter_vol > 0): replace = True prev_center = None prev = 0 continue if prev < 0: draw.line((prev_center, (cx * width // scale, tile_base // scale)), fill=255, width=3) prev_center = (cx * width // scale, tile_base // scale) kernel_size = max(self.min_ker, int(max(w, h) / (2 * scale) * width)) std_x = min(self.max_std, max(self.min_ker, w / (2 * scale) * width) / 3) std_y = min(self.max_std, max(self.min_ker, h / (2 * scale) * height) / 3) center_kernel = gaussian_kernel(kernlen=kernel_size*2+1, xstd=std_x, ystd=std_y) center_xmin = int(cx / scale * width) - kernel_size center_xmax = int(cx / scale * width) + kernel_size + 1 center_ymin = int(cy / scale * height) - kernel_size center_ymax = int(cy / scale * height) + kernel_size + 1 padx1 = max(0, 0 - center_xmin) padx2 = max(0, center_xmax - width // scale) pady1 = max(0, 0 - center_ymin) pady2 = max(0, center_ymax - height // scale) center_xmin += padx1 center_xmax -= padx2 center_ymin += pady1 center_ymax -= pady2 ker = kernel_size * 2 + 1 keymap[center_ymin:center_ymax, center_xmin:center_xmax] = np.maximum(keymap[center_ymin:center_ymax, center_xmin:center_xmax], center_kernel[pady1:ker-pady2,padx1:ker-padx2]) size_xmin = np.clip(int((cx - w/2) * width / scale), 0, width // scale) size_xmax = np.clip(int((cx + w/2) * width / scale) + 1, 0, width // scale) size_ymin = np.clip(int((cy - h/2) * height / scale), 0, height // scale) size_ymax = np.clip(int((cy + h/2) * height / scale) + 1, 0, height // scale) size_mapx, size_mapy = np.meshgrid(
np.arange(size_xmin, size_xmax)
numpy.arange
import copy, os import numpy as np import torch import torch.nn.functional as F from torchvision import datasets, transforms from options import args_parser from Update import LocalUpdate from Fed import * import random, time, pickle, math import pdb, math import scipy.io # parse args args = args_parser() args.device = 'cuda' if torch.cuda.is_available() else 'cpu' if args.arch == 'resnet18': from resnet import * elif args.arch == 'shufflenet': from shufflenetv2 import * def cifar_noniid(dataset, num_users): """ Sample non-I.I.D client data from cifar dataset """ lenRandom = 40000 num_items = int(lenRandom/num_users) dict_users, all_idxs = {}, [i for i in range(len(dataset))] for ii in range(num_users): dict_users[ii] = set(np.random.choice(all_idxs, num_items, replace=False)) all_idxs = list(set(all_idxs) - dict_users[ii]) labels = np.array(dataset.targets) labels = labels[all_idxs] # sort labels idxs = np.arange(len(labels)) idxs_labels =
np.vstack((idxs, labels))
numpy.vstack
# -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # License: BSD 3 clause """ Unitary tests for bigfish.stack.postprocess module. """ import pytest import numpy as np import bigfish.stack as stack from numpy.testing import assert_array_equal # TODO add test bigfish.stack.extract_cell # TODO add test bigfish.stack.extract_spots_from_frame # TODO add test bigfish.stack.center_mask_coord # TODO add test bigfish.stack.from_boundaries_to_surface # TODO add test bigfish.stack.from_surface_to_boundaries # TODO add test bigfish.stack.from_binary_to_coord # TODO add test bigfish.stack.complete_coord_boundaries # TODO add test bigfish.stack.from_coord_to_frame # TODO add test bigfish.stack.from_coord_to_surface @pytest.mark.parametrize("ndim", [2, 3]) @pytest.mark.parametrize("mask_dtype", [ np.uint8, np.uint16, np.int64, bool]) @pytest.mark.parametrize("spot_dtype", [ np.int64, np.float64]) def test_identify_objects_in_region(ndim, mask_dtype, spot_dtype): # simulate mask and coordinates mask = np.zeros((10, 10), dtype=mask_dtype) mask[1:4, 1:5] = np.ones((3, 4), dtype=mask_dtype) spots_in = [[2, 1, 1], [5, 2, 2], [2, 3, 1], [9, 3, 4]] spots_in = np.array(spots_in, dtype=spot_dtype) spots_out = [[1, 0, 0], [3, 7, 2], [2, 1, 8], [7, 8, 8]] spots_out = np.array(spots_out, dtype=spot_dtype) if ndim == 2: spots_in = spots_in[:, 1:] spots_out = spots_out[:, 1:] spots = np.concatenate((spots_in, spots_out)) # test spots_in_, spots_out_ = stack.identify_objects_in_region(mask, spots, ndim) assert_array_equal(spots_in_, spots_in) assert_array_equal(spots_out_, spots_out) assert spots_in_.dtype == spots_in.dtype assert spots_out_.dtype == spots_out.dtype @pytest.mark.parametrize("ndim", [2, 3]) @pytest.mark.parametrize("mask_dtype", [ np.uint8, np.uint16, np.int64, bool]) @pytest.mark.parametrize("spot_dtype", [ np.int64, np.float64]) def test_remove_transcription_site(ndim, mask_dtype, spot_dtype): # simulate mask and coordinates nuc_mask = np.zeros((10, 10), dtype=mask_dtype) nuc_mask[1:4, 1:5] =
np.ones((3, 4), dtype=mask_dtype)
numpy.ones
""" Common geometry classes. Author: <NAME> <<EMAIL>> """ import math import numpy as np class Ray(object): """Ray defined by an origin point and a direction.""" def __init__(self, origin, direction): """Create a ray from on origion and direction. Parameters: origin: vector3 giving the ray origin. direction: vector3 giving ray direction. """ self.origin = np.array(origin) self.direction = np.array(direction) def intersect(self, plane, epsilon=0.00001): """ Compute the intersection of a ray and a plane. Parameters: plane: Plane to intersect with. epsilon: tolerance of floating point comparisons. Return: vector3 giving position of the ray/plane intersection, or None if the ray does not intersect the plane. """ den = np.dot(self.direction, plane.normal) if math.fabs(den) < epsilon: return None result = (-plane.distance -
np.dot(plane.normal, self.origin)
numpy.dot
import numpy as np from femsolution import FEMSolution from helpers import * from bicycle_wheel import * from rigidbody import * EL_RIM = 1 EL_SPOKE = 2 N_RIM = 1 N_HUB = 2 N_REF = 3 class BicycleWheelFEM: """Finite-element solver for performing stress analysis bicycle wheels. Creates a finite-element model from a BicycleWheel object and solves the linear elasticity equations K*u = f subject to constraints and boundary conditions. """ def get_node_pos(self, node_id): 'Return the [X,Y,Z] position of a node as an NdArray.' return np.array([self.x_nodes[node_id], self.y_nodes[node_id], self.z_nodes[node_id]]) def get_rim_nodes(self): 'Return node IDs of all nodes on the rim.' return np.where(self.type_nodes == N_RIM)[0] def get_hub_nodes(self): 'Return node IDs of all nodes on the hub.' return np.where(self.type_nodes == N_HUB)[0] def get_rim_elements(self): 'Return element IDs of all rim elements.' return np.where(self.el_type == EL_RIM)[0] def get_spoke_elements(self): 'Return element IDs of all hub elements.' return np.where(self.el_type == EL_SPOKE)[0] def calc_spoke_stiff(self, el_id, s): 'Calculate stiffness matrix for a single spoke.' n2 = self.el_n2[el_id] nip_pt = pol2rect(s.rim_pt) # spoke nipple hub_pt = pol2rect(s.hub_pt) # hub eyelet rim_pt = self.get_node_pos(n2) # point on rim centroid # Beam coordinate system e1 = hub_pt - nip_pt # tangent vector l = np.sqrt(e1.dot(e1)) e1 = e1 / l e2 = np.cross(e1, np.array([0, 0, 1])) # normal vector e2 = e2 / np.sqrt(e2.dot(e2)) e3 = np.cross(e1, e2) # second normal vector # axial stiffness (normal) k_n = s.EA / l # tension stiffness (transverse). No negative tension-stiffness k_t = max(0.0, self.el_prestress[el_id] / l) # bending stiffness (transverse) # Generally, bending stiffness is negligible. It is only present for # numerical stability in the case of radial spokes (vanishing torsional # stiffness). k_b = 3 * s.EA * (s.diameter**2 / 16) / l**3 # Bar element stiffness matrix (FORCES ONLY) in beam coordinates k_spoke = np.matrix(np.zeros((12, 12))) k_spoke[0::6, 0::6] = k_n * np.matrix([[1, -1], [-1, 1]]) k_spoke[1::6, 1::6] = (k_t + k_b) * np.matrix([[1, -1], [-1, 1]]) k_spoke[2::6, 2::6] = (k_t + k_b) * np.matrix([[1, -1], [-1, 1]]) # rotation matrix to global coordinates Tg = np.matrix(np.zeros((3, 3))) Tg[:, 0] = e1.reshape((3, 1)) Tg[:, 1] = e2.reshape((3, 1)) Tg[:, 2] = e3.reshape((3, 1)) # Apply rotation matrix to each sub matrix for i in range(4): for j in range(4): k_spoke[3*i:3*(i+1), 3*j:3*(j+1)] = \ Tg * k_spoke[3*i:3*(i+1), 3*j:3*(j+1)] * Tg.T # Transformation matrices to account for spoke offset r = nip_pt - rim_pt Omega_r = skew_symm(r) # Right-multiply k_spoke by C to transform from u_nip -> u_rim for i in range(4): k_spoke[3*i:3*(i+1), 9::] = k_spoke[3*i:3*(i+1), 9::] - \ Omega_r * k_spoke[3*i:3*(i+1), 6:9] # Left-multiply k_spoke by B to transform from f_nip -> f_rim for i in range(4): k_spoke[9::, 3*i:3*(i+1)] = k_spoke[9::, 3*i:3*(i+1)] - \ Omega_r * k_spoke[6:9, 3*i:3*(i+1)] return k_spoke def calc_rim_stiff(self, el_id): 'Calculate stiffness matrix for a single rim element.' n1 = self.el_n1[el_id] n2 = self.el_n2[el_id] # For details, see <NAME>, <NAME>, # Computers and Structures, 4(21), pp. 663-669, 1985. node1_pos = self.get_node_pos(n1) node2_pos = self.get_node_pos(n2) ref = np.array([0, 0, 0]) # reference point at wheel center d = node2_pos - node1_pos # beam orientation vector r1 = node1_pos - ref # radial vector to node 1 R = np.sqrt(r1.dot(r1)) # radius of curvature # angle subtended by arc segment phi0 = 2*np.arcsin(np.sqrt(d.dot(d)) / (2*R)) # local coordinate system e1 = d / np.sqrt(d.dot(d)) # radial vector e3 = np.array([0, 0, -1]) # axial vector e2 = np.cross(e3, e1) # tangential vector # Material and section properties # Beam warping is neglected A = self.wheel.rim.area E = self.wheel.rim.young_mod G = self.wheel.rim.shear_mod I11 = self.wheel.rim.I11 I22 = self.wheel.rim.I22 I33 = self.wheel.rim.I33 K2 = 0 # shear flexibility constant (0 = Euler-Bernoulli beam) K3 = 0 # shear flexibility constant (0 = Euler-Bernoulli beam) # Constants N = phi0 + np.sin(2*phi0)/2 B = phi0 - np.sin(2*phi0)/2 C = 3*phi0 + np.sin(2*phi0)/2 - 4*np.sin(phi0) S = 0.75 - np.cos(phi0) + np.cos(2*phi0)/4 F = np.sin(phi0) - phi0 H = np.cos(phi0) - 1 V = 2*np.sin(phi0) - phi0 - np.sin(2*phi0)/2 D = np.cos(2*phi0)/2 - 0.5 # Initialize stiffness matrix k_r = np.matrix(np.zeros((12, 12))) # Flexibility matrix for node 1 DOFs a = np.matrix(np.zeros((6, 6))) a[0, 0] = R*N/(2*E*A) + K2*R*B/(2*G*A) + C*R**3/(2*E*I33) a[0, 1] = R*D/(2*E*A) - K2*R*D/(2*G*A) + S*R**3/(E*I33) a[1, 0] = a[0, 1] a[1, 1] = B*R/(2*E*A) + K2*R*N/(2*G*A) + B*R**3/(2*E*I33) a[0, 5] = F*R**2/(E*I33) a[5, 0] = F*R**2/(E*I33) a[1, 5] = H*R**2/(E*I33) a[5, 1] = a[1, 5] a[2, 2] = K3*R*phi0/(G*A) + C*R**3/(2*G*I11) + B*R**3/(2*E*I22) a[2, 3] = R**2/2*(B/(E*I22) - V/(G*I11)) a[3, 2] = a[2, 3] a[2, 4] = R**2/2*(2*S/(G*I11) - D/(E*I22)) a[4, 2] = a[2, 4] a[3, 3] = R/2*(N/(G*I11) + B/(E*I22)) a[3, 4] = D*R/2*(1/(G*I11) - 1/(E*I22)) a[4, 3] = a[3, 4] a[4, 4] = R/2*(B/(G*I11) + N/(E*I22)) a[5, 5] = R*phi0/(E*I33) # Flexibility matrix for node 2 DOFs b = a.copy() b[0, 1] = -a[0, 1] b[1, 0] = -a[1, 0] b[1, 5] = -a[1, 5] b[5, 1] = -a[5, 1] b[2, 4] = -a[2, 4] b[4, 2] = -a[4, 2] b[3, 4] = -a[3, 4] b[4, 3] = -a[4, 3] # Transformation matrix from node 1 -> node 2 al = np.cos(phi0) bt = np.sin(phi0) Tbar = np.matrix([[-al, bt, 0, 0, 0, 0], [-bt, -al, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0], [0, 0, R*(1-al), -al, bt, 0], [0, 0, -R*bt, -bt, -al, 0], [R*(1-al), R*bt, 0, 0, 0, -1]]) # Transformation matrix from node 1 -> beam coordinates Tb = np.matrix(np.zeros((6, 6))) Tb[:3:, :3:] = np.matrix([[np.cos(phi0/2), -np.sin(phi0/2), 0], [np.sin(phi0/2), np.cos(phi0/2), 0], [0, 0, 1]]) Tb[3::, 3::] = Tb[:3:, :3:] # Transformation matrix from beam coordinates to global coordinates Tg = np.matrix(np.zeros((6, 6))) Tg[:3:, :3:] = np.matrix(np.vstack((e1, e2, e3)).T) Tg[3::, 3::] = Tg[:3:, :3:] # Assemble submatrices k_r[:6:, :6:] = np.linalg.inv(a) # K_II k_r[6::, 6::] = np.linalg.inv(b) # K_JJ k_r[6::, :6:] = Tbar * k_r[:6:, :6:] # K_JI k_r[:6:, :6:] = Tg*Tb * k_r[:6:, :6:] * Tb.T*Tg.T k_r[6::, 6::] = Tg*Tb.T * k_r[6::, 6::] * Tb *Tg.T k_r[6::, :6:] = Tg*Tb.T * k_r[6::, :6:] * Tb.T*Tg.T k_r[:6:, 6::] = k_r[6::,:6:].T # K_IJ (symm.) return k_r def calc_global_stiff(self): 'Calculate global stiffness matrix by element scatter algorithm.' if self.verbose: print('# Calculating global stiffness matrix ---') print('# -- Nodes: {:d}'.format(self.n_nodes)) print('# -- DOFs : {:d}'.format(6*self.n_nodes)) print('# ---------------------------------------') print('') # Initialize empty stiffness matrix self.k_global = np.matrix(np.zeros((6*self.n_nodes, 6*self.n_nodes))) # Loop over all elements and scatter to global K matrix for el in range(len(self.el_type)): n1 = self.el_n1[el] n2 = self.el_n2[el] dofs = np.concatenate((6*n1 + np.arange(6), 6*n2 + np.arange(6))) if self.el_type[el] == EL_RIM: k_el = self.calc_rim_stiff(el) elif self.el_type[el] == EL_SPOKE: s = self.wheel.spokes[n1 - self.n_rim_nodes] k_el = self.calc_spoke_stiff(el, s) # Scatter to global matrix self.k_global[np.ix_(dofs, dofs)] = self.k_global[dofs][:, dofs] +\ k_el def calc_spoke_stress(self, el_id, u): 'Calculate tension in a spoke element.' n1 = self.el_n1[el_id] n2 = self.el_n2[el_id] s_num = self.el_s_num[el_id] s = self.wheel.spokes[s_num] # spoke object # spoke vector nip_pt = pol2rect(s.rim_pt) # spoke nipple hub_pt = pol2rect(s.hub_pt) # hub eyelet e1 = nip_pt - hub_pt e1 = e1 / np.sqrt(e1.dot(e1)) dofs = np.concatenate((6*n1 + np.arange(6), 6*n2 + np.arange(6))) k_el = self.calc_spoke_stiff(el_id, s) u_el = u[dofs] f_el = np.array(k_el.dot(u_el)).flatten() # Generalized stress tuple: # Tension return (e1.dot(f_el[6:9]), ) def calc_rim_stress(self, el_id, u): """Calculate internal forces in a rim element. Returns the internal forces at the first node of the rim element. The internal forces are defined at the nodes (not integration points) because the stiffness matrix is obtained by Castiliano's method. Returns: tuple: 0: axial force 1: transverse force (in-plane shear) 2: transverse force (out-of-plane shear) 3: twisting moment 4: bending moment (out-of-plane) 5: bending moment (in-plane) """ n1 = self.el_n1[el_id] n2 = self.el_n2[el_id] # Local coordinates system at node 1 n1_pos = self.get_node_pos(n1) n2_pos = self.get_node_pos(n2) e3_1 = np.cross(n1_pos, n2_pos) /\ np.sqrt(n1_pos.dot(n1_pos) * n2_pos.dot(n2_pos)) e1_1 = np.cross(n1_pos, e3_1) / np.sqrt(n1_pos.dot(n1_pos)) e2_1 = np.cross(e3_1, e1_1) # Nodal degrees of freedom dofs = np.concatenate((6*n1 + np.arange(6), 6*n2 + np.arange(6))) # Calculate nodal forces k_el = self.calc_rim_stiff(el_id) u_el = u[dofs] f_el = np.array(k_el.dot(u_el)).flatten() return (e1_1.dot(f_el[0:3]), e2_1.dot(f_el[0:3]), e3_1.dot(f_el[0:3]), e1_1.dot(f_el[3:6]), e2_1.dot(f_el[3:6]), e3_1.dot(f_el[3:6])) def add_rigid_body(self, rigid_body): 'Add a rigid body defined by the arg rigid_body.' # Check that nodes are not already assigned to rigid bodies for rig in self.rigid: in_rig = [i in rig.nodes for i in rigid_body.nodes] if any(in_rig): print('*** Nodes cannot belong to multiple rigid bodies') print('*** -- Node {:d}\n'.format(rigid_body.nodes[in_rig.index(True)])) return # Add new rigid body self.rigid.append(rigid_body) # Create a new node to reference the rigid body to self.n_nodes += 1 rigid_body.node_id = self.n_nodes - 1 self.x_nodes = np.append(self.x_nodes, rigid_body.pos[0]) self.y_nodes = np.append(self.y_nodes, rigid_body.pos[1]) self.z_nodes = np.append(self.z_nodes, rigid_body.pos[2]) self.type_nodes = np.append(self.type_nodes, N_REF) self.bc_const.extend(6*[False]) self.bc_force.extend(6*[False]) self.bc_u = np.append(self.bc_u, 6*[0]) self.bc_f = np.append(self.bc_f, 6*[0]) if self.verbose: print('# Adding new rigid body: {:s}'.format(rigid_body.name)) print('# -- Reference node {:d}\n'.format(rigid_body.node_id)) # Recalculate reduction matrices self.calc_reduction_matrices() def calc_reduction_matrices(self): """Calculate matrices which encode rigid body constraints. Convert stiffness equation into reduced stiffness equation: U = C * U_reduced F_reduced = B * F K_reduced = (B * K * C) """ if not self.rigid: # if there are no rigid bodies self.B = 1 self.C = 1 self.node_r_id = range(self.n_nodes) return # Re-calculate B and C matrices n_c = np.sum([r.n_nodes for r in self.rigid]) self.C = np.mat(np.zeros((6*self.n_nodes, 6*(self.n_nodes - n_c)))) self.B = np.mat(np.zeros((6*(self.n_nodes - n_c), 6*self.n_nodes))) self.node_r_id = [-1] * self.n_nodes for rig_id in range(len(self.rigid)): self.node_r_id[self.rigid[rig_id].node_id] = self.n_nodes - len(self.rigid) - n_c + rig_id n_r_n = 0 for n in range(self.n_nodes): in_rigid = [n in r.nodes for r in self.rigid] # list of logicals dof_n = 6*n + np.arange(6) # IDs of DOFs associated with this node if not any(in_rigid): # new re-numbered node ID self.node_r_id[n] = n_r_n dof_r_n = 6*n_r_n + np.arange(6) n_r_n += 1 self.C[dof_n, dof_r_n] = 1 # identity matrix self.B[dof_r_n, dof_n] = 1 else: rig_i = in_rigid.index(True) # Index of rigid body n_r_r = self.node_r_id[self.rigid[rig_i].node_id] # Reduced index of rigid body node dof_r_r = 6*n_r_r + np.arange(6) r_c = self.get_node_pos(n) - self.rigid[rig_i].pos R = skew_symm(r_c) self.C[dof_n, dof_r_r] = 1 self.C[np.ix_(dof_n[:3:], dof_r_r[3::])] = R self.B[dof_r_r, dof_n] = 1 self.B[np.ix_(dof_r_r[3::], dof_n[:3:])] = R self.soln_updated = False def remove_rigid_body(self, rigid_body): 'Remove a rigid body constraint.' # Confirm that the rigid body belongs to this model if rigid_body not in self.rigid: print('*** This rigid body does not exist in this model.') return # Remove from rigid bodies list self.rigid.remove(rigid_body) # Delete the reference node n = rigid_body.node_id self.n_nodes -= 1 self.x_nodes = np.delete(self.x_nodes, n) self.y_nodes = np.delete(self.y_nodes, n) self.z_nodes = np.delete(self.z_nodes, n) self.type_nodes = np.delete(self.type_nodes, n) self.bc_u = np.delete(self.bc_u, 6*n + np.arange(6)) self.bc_f = np.delete(self.bc_f, 6*n + np.arange(6)) for _ in range(6): self.bc_const.pop(n) self.bc_force.pop(n) # Shift the node id for any subsequent rigid bodies down for r in self.rigid: if r.node_id > n: r.node_id -= 1 # Unset reference node rigid_body.node_id = None # Recalculate reduction matrices self.calc_reduction_matrices() def add_constraint(self, node_id, dof, u=0): 'Add a displacement constraint (Dirichlet boundary condition).' # Allow array input for node_id and/or dof if not hasattr(node_id, '__iter__'): node_id = [node_id] if not hasattr(dof, '__iter__'): dof = [dof] for n in node_id: for d in dof: dof_r = 6*n + d if not self.bc_force[dof_r]: if not any([n in r.nodes for r in self.rigid]): self.bc_const[dof_r] = True self.bc_u[dof_r] = u self.soln_updated = False else: print('\n*** Node {:d}: Cannot assign a force to a node in a rigid body\n'.format(n)) else: print('\n*** Node {:d}, DOF {:d}: Cannot assign a constraint and force simultaneously\n',format(n,d)) def add_force(self, node_id, dof, f): 'Add a concentrated force or moment (Neumann boundary condition).' dof_r = 6*node_id + dof if not self.bc_const[dof_r]: if not any([node_id in r.nodes for r in self.rigid]): self.bc_force[dof_r] = True self.bc_f[dof_r] = f self.soln_updated = False else: print('\n*** Node {:d}: Cannot assign a force to a node in a rigid body\n'.format(node_id)) else: print('\n*** Node {:d}: Cannot assign a constraint and force simultaneously\n'.format(node_id)) def remove_bc(self, node_id, dof): 'Remove one or more boundary conditions.' if not hasattr(node_id, '__iter__'): node_id = [node_id] if not hasattr(dof, '__iter__'): dof = [dof] for n in node_id: for d in dof: dof_r = 6*n + d self.bc_const[dof_r] = False self.bc_force[dof_r] = False self.bc_u[dof_r] = 0 self.bc_f[dof_r] = 0 self.soln_updated = False def solve_iteration(self): 'Solve elasticity equations for nodal displacements.' # Form augmented, reduced stiffness matrix self.calc_global_stiff() if len(self.rigid) == 0: # No rigid bodies. Reduced node IDs are equal to node IDs self.node_r_id = np.arange(self.n_nodes, dtype=np.int16) k_red = self.B * self.k_global * self.C k_aug = k_red.copy() f_aug = np.zeros(k_aug.shape[0]) # Apply constraints to nodes for dof_c in [d for d in range(6*self.n_nodes) if self.bc_const[d]]: dof_r = 6*self.node_r_id[int(dof_c) / 6] + dof_c % 6 k_aug[dof_r] = 0 k_aug[dof_r, dof_r] = 1 f_aug[dof_r] = self.bc_u[dof_c] # Apply forces to nodes for dof_c in [d for d in range(6*self.n_nodes) if self.bc_force[d]]: dof_r = 6*self.node_r_id[int(dof_c) / 6] + dof_c % 6 f_aug[dof_r] = self.bc_f[dof_c] # Solve for reduced nodal displacements if self.verbose: print('# Solving for nodal displacements -------') print('# -- Reduced system of equations:') print('# Reduced DOFs: {:d}'.format(k_aug.shape[0])) print('# Rank = {:d} / ({:d})'.format(np.linalg.matrix_rank(k_aug), k_aug.shape[0])) try: u_red = np.linalg.solve(k_aug, f_aug) except np.linalg.LinAlgError as e: print('\n*** ERROR: {:s}. Did you properly constrain all DOFs?'.format(e.message)) # TODO: Give user meaningful info about missing constraints return False self.soln_updated = True # Create solution object soln = FEMSolution(self) # nodal displacements if self.rigid: u = np.array(self.C.dot(u_red)).flatten() else: u = u_red.flatten() soln.nodal_disp = np.zeros((self.n_nodes, 6)) for d in range(6): soln.nodal_disp[:, d] = u[d::6] # nodal reaction forces rxn_red = np.array(k_red.dot(u_red) - f_aug).flatten() dof_rxn_red = [6*self.node_r_id[i/6] + i % 6 for i in range(6*self.n_nodes) if self.bc_const[i]] dof_rxn = np.where(self.bc_const)[0] rxn = rxn_red[dof_rxn_red] soln.nodal_rxn = np.zeros((self.n_nodes, 6)) soln.nodal_rxn[dof_rxn / 6, dof_rxn % 6] = rxn # TODO Calculate element stresses soln.el_prestress = self.el_prestress for el in range(len(self.el_type)): if self.el_type[el] == EL_SPOKE: soln.el_stress.append(self.calc_spoke_stress(el, u)) else: soln.el_stress.append(self.calc_rim_stress(el, u)) if self.verbose: print('# ---------------------------------------') return soln def solve(self, pretension=None, verbose=True): """Solve elasticity equations including the effect of prestress. Since the spoke stiffness depends on spoke tension, the elasticity equations are technically non-linear. If the pretension keyword is used the solve method first initializes the spoke tensions and then solves the linear stiffness equation by calling the solve_iteration() method. The changes in spoke tension are calculated and used to update the spoke tensions. The solve_iteration() method is called again using the updated spoke tensions. This method only requires 2 iterations to converge because the axial stiffness is orthogonal to the tension stiffness. """ self.verbose = verbose if pretension is not None: # set initial pretension for e in self.get_spoke_elements(): self.el_prestress[e] = pretension # solve soln1 = self.solve_iteration() # update spoke tensions for e in self.get_spoke_elements(): self.el_prestress[e] = self.el_prestress[e] +\ soln1.el_stress[e][0] else: pretension = 0.0 # solve with updated element tensions soln_2 = self.solve_iteration() # reset spoke prestress to initial prestress for e in self.get_spoke_elements(): self.el_prestress[e] = pretension return soln_2 def __init__(self, wheel, verbose=False): self.verbose = verbose self.wheel = wheel # Create a rim node at each unique spoke attachment point theta_rim_nodes = set() for s in self.wheel.spokes: theta_rim_nodes.add(s.rim_pt[1]) theta_rim_nodes = sorted(list(theta_rim_nodes)) # Rim nodes self.x_nodes = wheel.rim.radius * np.sin(theta_rim_nodes) self.y_nodes = -wheel.rim.radius * np.cos(theta_rim_nodes) self.z_nodes = np.zeros(len(self.x_nodes)) self.type_nodes = N_RIM * np.ones(len(self.x_nodes)) self.n_rim_nodes = len(self.type_nodes) # Hub nodes for s in self.wheel.spokes: r_h = s.hub_pt[0] theta_h = s.hub_pt[1] z_h = s.hub_pt[2] self.x_nodes = np.append(self.x_nodes, r_h*np.sin(theta_h)) self.y_nodes = np.append(self.y_nodes, -r_h*np.cos(theta_h)) self.z_nodes = np.append(self.z_nodes, z_h) self.type_nodes =
np.append(self.type_nodes, N_HUB)
numpy.append
from matplotlib import pyplot as plt import numpy as np import math import random import matplotlib.ticker as plticker from PIL import Image from PIL import ImageColor from PIL import ImageOps import pickle import pandas with open('guitarShape.pkl','rb') as inFile: guitarShape = pickle.load(inFile) def getClosestColor(colors, r,g,b): """ Given a list of colors in tuple form (r,g,b) and three values for r, g, and b respectively This function returns the closest color in the list to the r,g, and b values I use this in this program to pass in the list of lego tile colors and then pass the raw rgb values of an image to get the closest lego color to that part of an image. This is very helpful when making a lego mosaic """ closestColor = 'ldsfjk' closestNum = 20000000 for color in colors: colorr = color[0] colorg = color[1] colorb = color[2] distance = ( (r - colorr)**2 +(g - colorg)**2 +(b - colorb)**2) **.5 #print(distance) if distance < closestNum: closestColor = color closestNum = distance return closestColor def plotGuitarShape(): """ Plots the Les Paul guitar shape with matplotlib """ with open('guitarShape.pkl','rb') as inFile: guitarShape = pickle.load(inFile) for index, row in enumerate(guitarShape): print(list(row).count(1)) if index == 10: print('=======================================') plt.imshow(guitarShape, cmap='binary') plt.show() def plotImageOnGuitar(imagePath): """ Takes imagePath as input Plots the Les Paul Guitar shape made out of legos Colors the guitar to a pixellated version of the imagePath image only using real lego colors """ colors = pandas.read_csv('legoColors.csv',header=None) colors = np.array(colors) colorList = [] colorNameList = [] for index, line in enumerate(colors): if line[3] == 'f': color = line[2] colorList.append(ImageColor.getcolor('#' + str(color),'RGB')) colorNameList.append(line[1]) filename = imagePath img = Image.open(filename) imgSmall = img.resize(guitarShape.shape,resample=Image.BILINEAR) imgSmall = imgSmall.rotate(90, Image.NEAREST, expand = 1) imgSmall = ImageOps.flip(imgSmall) imgSmall = np.array(imgSmall) # plt.imshow(imgSmall) # plt.show() for i in range(len(imgSmall)): for j in range(len(imgSmall[i])): currentColor = imgSmall[i][j] curR = currentColor[0] curG = currentColor[1] curB = currentColor[2] closestColor = getClosestColor(colorList,curR,curG,curB) imgSmall[i][j][0] = closestColor[0] imgSmall[i][j][1] = closestColor[1] imgSmall[i][j][2] = closestColor[2] try: imgSmall[i][j][3] = 255 except: pass # plt.imshow(imgSmall) # plt.show() imgSmall[guitarShape == 0] = 0 plt.imshow(imgSmall) plt.show() def getDataFromRows(rows): toReturn = [] for row in rows: toReturn.append(len(row)) return toReturn def getRowsFromData(data): toReturn = [] for dataVal in data: toReturn.append([1]*dataVal) return toReturn def getArrayFromRows(rows): numRows = len(rows) longestRow = max(getDataFromRows(rows)) array = list(np.zeros((numRows,longestRow))) for y in range(numRows): padding = int((longestRow-len(rows[y]))/2) #print(padding) for j in range(padding,padding+len(rows[y])): array[y][j] = 1 picture = [] for row in reversed(array): picture.append(row) return picture def getArrayFromData(data): rows = getRowsFromData(data) return getArrayFromRows(rows) def monteCarloBottomShape(): """ this function and the four functions above are from an earlier attempt I made randomly generating guitar shapes. I do not recoomentd using these """ numRows = 22 for iteration in range(25): successfulGuitar = False while not successfulGuitar: rows = [] longestRow = -1 initialWidth = 41 rows.append([1] * initialWidth) previousIncrease = 999 previousWidth = initialWidth minIncrease = -10 for i in range(numRows - 1): satisfied = False while not satisfied: tryWidth = random.randrange(25,43,2) increase = tryWidth - previousWidth if increase <= 0 and increase <= previousIncrease and increase >= minIncrease: rows.append([1] * tryWidth) previousIncrease = increase previousWidth = tryWidth satisfied = True if longestRow == 25: successfulGuitar = True print('iteration:',getDataFromRows(rows)) array = getArrayFromRows(rows) plt.subplot(iteration + 1) plt.title(str(iteration + 1)) plt.imshow(array) def sin(x): return np.sin(x) def arctan(x): return np.arctan(x) #The following 3 functions use equations found here http://www.mnealon.eosc.edu/The_Nealon_Equation.html def guitarCurve(x,A=-.06393446,B=-.7410887,C=1.180973,D=-1.24886,E=.3187446,F=-.8305975,G=2.352912,H=-.1870003,I=3.40192,J=-.01303915,K=1.349344,L=4.32767,M=5.228206,N=-.4099881,O=-.000250234,P=.0007021002,Q=0,R=18.26765,S=18.1965,BL=19.35): return (A *
np.sin(B*x + C)
numpy.sin
import unittest from yauber_algo.errors import * class RangeCloseTestCase(unittest.TestCase): def test_rangeclose(self): import yauber_algo.sanitychecks as sc from numpy import array, nan, inf import os import sys import pandas as pd import numpy as np from yauber_algo.algo import rangeclose import yauber_algo.algo as a # # Function settings # algo = 'rangeclose' func = rangeclose with sc.SanityChecker(algo) as s: # # Check regular algorithm logic # s.check_regular( array([0.8]), func, ( array([10]), # h array([ 0]), # l array([ 8]), # c 1 ), suffix='uptrend' ) s.check_regular( array([0.8]), func, ( array([10]), # h array([0]), # l array([8]), # c 0 ), suffix='period_zero', exception=YaUberAlgoArgumentError ) s.check_regular( array([0.4]), func, ( array([10]), # h array([0]), # l array([8]), # c -1 ), suffix='period_negative', exception=YaUberAlgoArgumentError ) s.check_regular( array([0.4]), func, ( array([10]), # h array([0]), # l array([11]), # c 1 ), suffix='close_gt_hi', exception=YaUberAlgoInternalError ) s.check_regular( array([0.4]), func, ( array([10]), # h array([0]), # l array([-1]), # c 1 ), suffix='close_lt_lo', exception=YaUberAlgoInternalError ) s.check_regular( array([0.2]), func, ( array([10]), # h array([0]), # l array([2]), # c 1 ), suffix='dn_trend' ) s.check_regular( array([0.5]), func, ( array([10]), # h array([0]), # l array([5]), # c 1 ), suffix='neutral_trend' ) s.check_regular( array([0.4]), func, ( array([0]), # h array([10]), # l array([2]), # c 1 ), suffix='sanity_h_less_l', exception=YaUberAlgoInternalError ) s.check_regular( array([0.5]), func, ( array([10]), # h array([0]), # l array([5]), # c 1 ), suffix='doji' ) s.check_regular( array([0.5]), func, ( array([10]), # h array([0]), # l array([5]), # c 1 ), suffix='doji_h_eq_l' ) s.check_regular( array([1.0]), func, ( array([10]), # h array([0]), # l array([10]), # c 1 ), suffix='ideal_trend_up' ) s.check_regular( array([0.0]), func, ( array([10]), # h array([0]), # l array([0]), # c 1 ), suffix='ideal_trend_dn' ) s.check_regular( array([0.5]), func, ( array([10]), # h array([10]), # l array([10]), # c 1 ), suffix='flat_candle' ) s.check_regular( array([nan]), func, ( array([nan]), # h array([10]), # l array([10]), # c 1 ), suffix='nan_h' ) s.check_regular( array([nan]), func, ( array([10]), # h array([nan]), # l array([10]), # c 1 ), suffix='nan_l' ) s.check_regular( array([nan]), func, ( array([10]), # h array([10]), # l array([nan]), # c 1 ), suffix='nan_c' ) s.check_regular( array([nan, 0.5]), func, ( array([6, 10]), # h array([0, 3]), # l array([0, 5]), # c 2 ), suffix='period2' ) s.check_regular( array([nan, 1.0]), func, ( array([10, 10]), # h array([0, 3]), # l array([0, 10]), # c 2 ), suffix='period2_alt' ) s.check_regular( array([nan, 1.0, (7-0.0)/(20-0)]), func, ( array([10, 10, 20]), # h array([0, 3, 0]), # l array([0, 10, 7]), # c 2 ), suffix='period2_alt_n3' ) s.check_regular( array([nan, nan, (7-0)/(20-0)]), func, ( array([10, 10, 20]), # h array([0, nan, 0]), # l array([0, 10, 7]), # c 2 ), suffix='period2_alt_n3_llv_nan' ) s.check_regular( array([nan, (5-0)/(10-0), (2-0) / (5-0)]), func, ( array([10, 5, 2]), # h array([0, 3, 0]), # l array([0, 5, 2]), # c 2 ), suffix='period2_alt_n3_hhv' ) s.check_regular( array([nan, nan, 0.7]), func, ( array([10, nan, 10]), # h array([0, 3, 0]), # l array([0, 10, 7]), # c 2 ), suffix='period2_alt_n3_hhv_with_nan' ) s.check_naninf( array([nan, 0.5]), func, ( array([nan, 10]), # h array([inf, 0]), # l array([nan, 5]), # c 2 ), suffix='period2_nan_ignored', ) s.check_series( pd.Series(array([nan, 0.5])), func, ( pd.Series(array([6, 10])), # h pd.Series(array([0, 3])), # l pd.Series(array([0, 5])), # c 2 ), suffix='series' ) s.check_dtype_float( array([0.8], dtype=np.float), func, ( array([10], dtype=np.float), # h array([0], dtype=np.float), # l array([8], dtype=np.float), # c 1 ), ) s.check_dtype_int( array([0.8], dtype=np.float), func, ( array([10], dtype=np.int32), # h
array([0], dtype=np.int32)
numpy.array
import numpy as np def gelman_rubin(data): """ Apply Gelman-Rubin convergence diagnostic to a bunch of chains. :param data: np.array of shape (Nchains, Nsamples, Npars) """ Nchains, Nsamples, Npars = data.shape B_on_n = data.mean(axis=1).var(axis=0) # variance of in-chain means W = data.var(axis=1).mean(axis=0) # mean of in-chain variances #print(B_on_n, ' B_on_n mean') #print(W, ' W variance ') # simple version, as in Obsidian sig2 = (Nsamples/(Nsamples-1))*W + B_on_n Vhat = sig2 + B_on_n/Nchains Rhat = Vhat/W # advanced version that accounts for ndof m, n = np.float(Nchains), np.float(Nsamples) si2 = data.var(axis=1) xi_bar = data.mean(axis=1) xi2_bar = data.mean(axis=1)**2 var_si2 = data.var(axis=1).var(axis=0) allmean = data.mean(axis=1).mean(axis=0) cov_term1 = np.array([np.cov(si2[:,i], xi2_bar[:,i])[0,1] for i in range(Npars)]) cov_term2 = np.array([-2*allmean[i]*(np.cov(si2[:,i], xi_bar[:,i])[0,1]) for i in range(Npars)]) var_Vhat = ( ((n-1)/n)**2 * 1.0/m * var_si2 + ((m+1)/m)**2 * 2.0/(m-1) * B_on_n**2 + 2.0*(m+1)*(n-1)/(m*n**2) * n/m * (cov_term1 + cov_term2)) df = 2*Vhat**2 / var_Vhat #print(df, ' df ') #print(var_Vhat, ' var_Vhat') #print "gelman_rubin(): var_Vhat = {}, df = {}".format(var_Vhat, df) Rhat *= df/(df-2) print(Rhat, ' Rhat') return Rhat def main(): # pos proposal = ['rw', 'adap-rw'] m = 0 problem = ['ptmcmc', 'surrogate-pt'] i = 0 for i in range(0,2) : for m in range(0,2): print(proposal[m], problem[i]) pos_run1 = np.loadtxt('data/'+proposal[m]+'/'+problem[i]+'/pos_1.txt') pos_run2 = np.loadtxt('data/'+proposal[m]+'/'+problem[i]+'/pos_2.txt') pos_run3 = np.loadtxt('data/'+proposal[m]+'/'+problem[i]+'/pos_3.txt') pos_run4 =
np.loadtxt('data/'+proposal[m]+'/'+problem[i]+'/pos_4.txt')
numpy.loadtxt
# -*- coding: utf-8 -*- """ Created on Tue Aug 27 09:50:53 2019 @author: craig """ #import sys #from IPython import get_ipython #get_ipython().magic('reset -sf') import sys from PyQt5.QtWidgets import QApplication, QMainWindow, QMenu, QVBoxLayout, QSizePolicy, QMessageBox, QWidget, QPushButton from PyQt5.QtCore import QTimer #****************************************************************** import matplotlib #import matplotlib.pyplot as plt import matplotlib.image as mpimg import matplotlib.pyplot as plt matplotlib.use("Qt5Agg") import matplotlib.gridspec as gridspec #****************************************************************** from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure #import matplotlib.pyplot as plt import numpy as np import pandas as pd from numpy import diff import math import xlrd from colorama import Fore, Style # ============================================================================= # # =========================================================================== # # #-------------------------------------------------------------------------- # # # Read Reference Data Spreadsheet # # # Read mapinv_reference_data_carbonates_calculatedMode_Rosetta data # # # which is the Rosetta Stone reference data per Clerke # # #-------------------------------------------------------------------------- # # =========================================================================== # ============================================================================= #Thomeer_core_data = pd.read_csv('mapinv_reference_data_carbonates_calculatedMode_Rosetta.csv') #read the file file = r'mapinv_reference_data_carbonates_calculatedMode_Rosetta.xlsx' Thomeer_core_data = pd.read_excel(file,index_col=False) # ------------------------------------------------------------------ # read in maininv_reference2 data which is just Rosetta Stone # this is reference data # DATA WILL BE LOADED # ------------------------------------------------------------------ Permeability = Thomeer_core_data['PERMEABILITY'] Porosity = Thomeer_core_data['POROSITY'] G1 = Thomeer_core_data['G1'] PD1 = Thomeer_core_data['PD1'] BV1 = Thomeer_core_data['BV1'] G2 = Thomeer_core_data['G2'] PD2 = Thomeer_core_data['PD2'] BV2 = Thomeer_core_data['BV2'] Rock_Index = Thomeer_core_data['ROCK_INDEX'] Perm_max = 4 Perm_min = -4 Por_max = .35 Por_min = 0 x4=np.array(Porosity) y4=np.array(Permeability) # ============================================================================= # # =========================================================================== # # #------------------------------------------------------------ # # # # # # End of reading in mapinv reference data # # #------------------------------------------------------------ # # =========================================================================== # ============================================================================= # ============================================================================= # # =========================================================================== # # #-------------------------------------------------------------------------- # ## # ## Graphical Input of User Porosity and Pereability # ## # # #-------------------------------------------------------------------------- # # =========================================================================== # ============================================================================= def tellme(s): print(s) plt.title(s, fontsize=16, color = 'blue') plt.draw() plt.clf() #clear plot of other things #tellme('You will define a triangle, click to begin') plt.figure(1,figsize=(6, 5)) #plt.ion() plt.semilogy(x4, y4 , 'b-*', linewidth=0, label='RSW Core Data' ) plt.xlim(0.0,.4) plt.ylim(0.0001, 10000) plt.grid(True) #plt.waitforbuttonpress() #Use pts array to store selected points pts = [] while len(pts) < 1: tellme('Select Poro-Perm point with mouse') pts = np.asarray(plt.ginput(1, timeout=3)) # if len(pts) < 3: # tellme('Too few points, starting over') # time.sleep(1) # Wait a second Por = pts.item(0) Perm = pts.item(1) print() print('Porosity =', Por, ' and Permeability =', Perm) print() plt.close('all') # ============================================================================= # # =========================================================================== # # #-------------------------------------------------------------------------- # ## # ## This is the beginnin of KNN # ## # # #-------------------------------------------------------------------------- # # =========================================================================== # ============================================================================= #normalized Porosity and Permeability inputs por = (Por-Por_min)/(Por_max - Por_min) perm= (math.log10(Perm) - Perm_min)/(Perm_max - Perm_min) # ============================================================================= # #---------------------------------------------------------------------------- # # # # ESTIMATE THOMEER PARAMETERS FOR BOTH PORE SYSTEMS # # # #---------------------------------------------------------------------------- # ============================================================================= dist_inv = [] dist_phi = [] dist_lperm = [] G1_weight = [] PD1_weight = [] BV1_weight = [] G2_weight = [] PD2_weight = [] BV2_weight = [] #Rock_Index_weight = [] dist_inv_total=0 G1_total = 0 PD1_total = 0 BV1_total = 0 G2_total = 0 PD2_total = 0 BV2_total = 0 inv_dist_array = [] #distance_knn_array = [rows,columns] distance_knn_array = [] #------------------------------------------------------------------ # Estimate all Thomeer Parameters for *_est values #------------------------------------------------------------------- Porosity_norm = [] Permeability_norm = [] #this is the mapinv_reference_data being used for i in range(0,len(Thomeer_core_data),1): Porosity_norm.append((Porosity[i] - Por_min) / (Por_max - Por_min)) Permeability_norm.append((math.log10(Permeability[i]) - Perm_min) / (Perm_max - Perm_min)) #Euclidian Distance dist_phi.append( abs(por - Porosity_norm[i] )) dist_lperm.append( abs(perm - Permeability_norm[i])) dist_inv.append( 1 / math.sqrt( dist_phi[i]**2 + dist_lperm[i]**2) ) #calculalte weights for each G1_weight.append(dist_inv[i] * G1[i]) PD1_weight.append(dist_inv[i] * PD1[i]) BV1_weight.append(dist_inv[i] * BV1[i]) G2_weight.append(dist_inv[i] * G2[i]) PD2_weight.append(dist_inv[i] * PD2[i]) BV2_weight.append(dist_inv[i] * BV2[i]) #Rock_Index_weight.append(dist_inv[i] * Rock_Index[i]) inv_dist_array.append(dist_inv[i]); # add items # ============================================================================= ### KNN Array # # =========================================================================== # # #-------------------------------------------------------------------------- distance_knn_array = [dist_inv, G1_weight, PD1_weight, BV1_weight, G2_weight, PD2_weight, BV2_weight,Rock_Index] # distance_knn_array = [Permeability, Porosity, G1, PD1, BV1, G2, PD2, BV2] # # #-------------------------------------------------------------------------- # # =========================================================================== # ============================================================================= xnorm=np.array(Porosity_norm) ynorm=np.array(Permeability_norm) # ============================================================================= # # =========================================================================== # # #-------------------------------------------------------------------------- # # # # # # Transpose and Sort new kNN array # # # # # #-------------------------------------------------------------------------- # # =========================================================================== # ============================================================================= #knn_array = np.transpose array knn_array = np.transpose(distance_knn_array) #print(knn_array) #Sort array from large to low by column 0 which is dist_inv #xknn=np.array(knn_array) #matsor x[x[:,column].argsort()[::-1]] and -1 us reverse order mat_sort = knn_array[knn_array[:,0].argsort()[::-1]] #firt column reverse sort (-1) #mat_sort = x[x[:,1].argsort()[::-1]] #mat_sort = x[x[:,2].argsort()[::-1] # ============================================================================= # # =========================================================================== # # #-------------------------------------------------------------------------- # # # # # # Calculate knn Thomeer Parameters # # # # # #-------------------------------------------------------------------------- # # =========================================================================== # ============================================================================= #------------------------------------------------------------------------------ # Number of nearest Neighbors #------------------------------------------------------------------------------ n_neighbors = 3 #------------------------------------------------------------------------------ dist_inv_total_knn = 0 G1_total_knn = 0 PD1_total_knn = 0 BV1_total_knn = 0 G2_total_knn = 0 PD2_total_knn = 0 BV2_total_knn = 0 #kNN Estimates for first 3 rows #dist_inv_total = mat_sort[0][0] + mat_sort[1][0] + mat_sort[2][0] for i in range(0,n_neighbors,1): dist_inv_total_knn = dist_inv_total_knn + mat_sort[i][0] G1_total_knn = G1_total_knn + mat_sort[i][1] PD1_total_knn = PD1_total_knn + mat_sort[i][2] BV1_total_knn = BV1_total_knn + mat_sort[i][3] G2_total_knn = G2_total_knn + mat_sort[i][4] PD2_total_knn = PD2_total_knn + mat_sort[i][5] BV2_total_knn = BV2_total_knn + mat_sort[i][6] #back to k values and calculate estimations now G1_est_knn = G1_total_knn / dist_inv_total_knn PD1_est_knn = PD1_total_knn / dist_inv_total_knn BV1_est_knn = (BV1_total_knn / dist_inv_total_knn) G2_est_knn = G2_total_knn / dist_inv_total_knn PD2_est_knn = PD2_total_knn / dist_inv_total_knn BV2_est_knn = (BV2_total_knn / dist_inv_total_knn) print() print(Fore.GREEN +'Estimated Thomeer Parameters from KNN =',n_neighbors,' on normlalized Poro-Perm data') print(Fore.GREEN + ' G1 =',G1_est_knn, ', Pd1 =',PD1_est_knn, ', BV1(%) =',BV1_est_knn) print(Fore.GREEN + ' G2 =',G2_est_knn, ', Pd2 =',PD2_est_knn, ', BV2(%) =',BV2_est_knn) #print(Style.RESET_ALL) #print('back to normal now') # ============================================================================= # # =========================================================================== # # #-------------------------------------------------------------------------- # # # # # # Find Closest distance Pc curve in poro-perm space # # #-------------------------------------------------------------------------- # # =========================================================================== # ============================================================================= a =
np.array(inv_dist_array)
numpy.array
# -*- coding: utf-8 -*- import copy import itertools import random import networkx as nx import numpy as np import bionev.OpenNE.graph as og import bionev.struc2vec.graph as sg def read_for_OpenNE(filename, weighted=False): graph = og.Graph() print("Loading training graph for learning embedding...") graph.read_edgelist(filename=filename, weighted=weighted) print("Graph Loaded...") return graph def read_for_struc2vec(filename): print("Loading training graph for learning embedding...") graph = sg.load_edgelist(filename, undirected=True) print("Graph Loaded...") return graph def read_for_gae(filename, weighted=False): print("Loading training graph for learning embedding...") edgelist = np.loadtxt(filename, dtype='float') if weighted: edgelist = [(int(edgelist[idx, 0]), int(edgelist[idx, 1])) for idx in range(edgelist.shape[0]) if edgelist[idx, 2] > 0] else: edgelist = [(int(edgelist[idx, 0]), int(edgelist[idx, 1])) for idx in range(edgelist.shape[0])] min_idx = min([x[0] for x in edgelist] + [x[1] for x in edgelist]) max_idx = max([x[0] for x in edgelist] + [x[1] for x in edgelist]) adj = nx.adjacency_matrix(nx.from_edgelist(edgelist), nodelist=list(range(min_idx, max_idx + 1))) print(adj) print("Graph Loaded...") print(adj.shape) return adj def read_for_SVD(filename, weighted=False): if weighted: graph = nx.read_weighted_edgelist(filename) else: graph = nx.read_edgelist(filename) return graph def read_graph(edgelist, weighted=False): if weighted: graph = nx.read_weighted_edgelist(edgelist) else: graph = nx.read_edgelist(edgelist) return graph def train_test_graph(training_edgelist, testing_edgelist, weighted=False): g_train = read_graph(training_edgelist, weighted=weighted) g_test = nx.read_edgelist(testing_edgelist) testing_pos_edges = g_test.edges node_num1, edge_num1 = len(g_train.nodes), len(g_train.edges) print('Training Graph: nodes:', node_num1, 'edges:', edge_num1) return g_train, testing_pos_edges, training_edgelist def split_train_test_graph(*, input_graph, testing_ratio=0.2, weighted=False): node_num1, edge_num1 = len(input_graph.nodes), len(input_graph.edges) print('Original Graph: nodes:', node_num1, 'edges:', edge_num1) testing_edges_num = int(len(input_graph.edges) * testing_ratio) testing_pos_edges = random.sample(input_graph.edges, testing_edges_num) g_train = copy.deepcopy(input_graph) for edge in testing_pos_edges: node_u, node_v = edge if g_train.degree(node_u) > 1 and g_train.degree(node_v) > 1: g_train.remove_edge(node_u, node_v) train_graph_filename = 'graph_train.edgelist' if weighted: nx.write_weighted_edgelist(g_train, train_graph_filename) else: nx.write_edgelist(g_train, train_graph_filename, data=False) node_num1, edge_num1 = len(g_train.nodes), len(g_train.edges) print('Training Graph: nodes:', node_num1, 'edges:', edge_num1) return input_graph, g_train, testing_pos_edges, train_graph_filename def generate_neg_edges(graph: nx.Graph, m: int): """Get m samples from the edges in the graph that don't exist.""" negative_edges = [ (source, target) for source, target in itertools.combinations(graph, 2) if not graph.has_edge(source, target) ] return random.sample(negative_edges, m) def load_embedding(embedding_file_name, node_list=None): with open(embedding_file_name) as f: node_num, _ = f.readline().split() embedding_look_up = {} if node_list: for line in f: vec = line.strip().split() node_id = vec[0] if node_id in node_list: emb = [float(x) for x in vec[1:]] embedding_look_up[node_id] = list(emb) assert len(node_list) == len(embedding_look_up) else: for line in f: vec = line.strip().split() node_id = vec[0] emb = [float(x) for x in vec[1:]] embedding_look_up[node_id] = list(emb) assert int(node_num) == len(embedding_look_up) f.close() return embedding_look_up def read_node_labels(filename): fin = open(filename, 'r') node_list = [] labels = [] while 1: l = fin.readline() if l == '': break vec = l.strip().split() node_list.append(vec[0]) labels.append(vec[1:]) fin.close() print('Nodes with labels: %s' % len(node_list)) return node_list, labels def split_train_test_classify(embedding_look_up, x, y, testing_ratio: float = 0.2): training_ratio = 1 - testing_ratio training_size = int(training_ratio * len(x)) shuffle_indices = np.random.permutation(np.arange(len(x))) x_train = [embedding_look_up[x[shuffle_indices[i]]] for i in range(training_size)] y_train = [y[shuffle_indices[i]] for i in range(training_size)] x_test = [embedding_look_up[x[shuffle_indices[i]]] for i in range(training_size, len(x))] y_test = [y[shuffle_indices[i]] for i in range(training_size, len(x))] x_train = np.array(x_train).ravel() y_train = np.array(y_train).ravel() x_test = np.array(x_test).ravel() y_test = np.array(y_test).ravel() return x_train, y_train, x_test, y_test def get_y_pred(y_test, y_pred_prob): y_pred = np.zeros(y_pred_prob.shape) sort_index = np.flip(np.argsort(y_pred_prob, axis=1), 1) for i in range(y_test.shape[0]): num = np.sum(y_test[i]) for j in range(num): y_pred[i][sort_index[i][j]] = 1 return y_pred def get_xy_sets(embeddings, graph_edges, neg_edges): x = [] y = [] for edge in graph_edges: node_u_emb =
np.array(embeddings[edge[0]])
numpy.array
import matplotlib.image as mpimg import numpy as np def get_batches_multi_dir(directories, batch_size): # get batches from multiple (a list of) directories i = 0 batch_ctr = 0 sw_angles = [] speed = [] throttle = [] brake_input = [] images = [] for directory in directories: print('opening data in ', directory) for l in open(directory + "/driving_log.csv", 'r'): data = l.split(",") if i == batch_size: i = 0 batch_ctr = batch_ctr + 1 print('----GEN_DBG: ') print('------batch_ctr: ', batch_ctr) yield batch_ctr, np.array(images), np.array(sw_angles), np.array(throttle), np.array(brake_input), np.array(speed) sw_angles = [] speed = [] throttle = [] brake_input = [] images = [] sw_angles.append(float(data[3])) throttle.append(float(data[4])) brake_input.append(float(data[5])) speed.append(float(data[6])) images.append([mpimg.imread(data[0]), mpimg.imread(data[1]), mpimg.imread(data[2])]) # print('----GEN_DBG: ') # print('------i: ', i) i = i + 1 yield batch_ctr, np.array(images), np.array(sw_angles), np.array(throttle), np.array(brake_input), np.array(speed) def get_batches(directory, batch_size): # get batches from a single directory i = 0 batch_ctr = 0 sw_angles = [] speed = [] throttle = [] brake_input = [] images = [] print('opening data in ', directory) for l in open(directory + "/driving_log.csv", 'r'): data = l.split(",") if i == batch_size: i = 0 batch_ctr = batch_ctr + 1 print('----GEN_DBG: ') print('------batch_ctr: ', batch_ctr) yield batch_ctr, np.array(images), np.array(sw_angles), np.array(throttle), np.array(brake_input), np.array(speed) sw_angles = [] speed = [] throttle = [] brake_input = [] images = [] sw_angles.append(float(data[3])) throttle.append(float(data[4])) brake_input.append(float(data[5])) speed.append(float(data[6])) images.append([mpimg.imread(data[0]), mpimg.imread(data[1]), mpimg.imread(data[2])]) # print('----GEN_DBG: ') # print('------i: ', i) i = i + 1 yield batch_ctr, np.array(images), np.array(sw_angles), np.array(throttle), np.array(brake_input), np.array(speed) def multi_dir_data_gen(dirs, batch_size, train_fraction, mode="TRAIN"): # same idea as get_batches_multi_dir, but augments the training data # and has the option to perform training/validation split, but without # total shuffling for disk access speed reasons train_mode = mode == "TRAIN" #else assume should return validation data valid_mode = mode == "VALIDATION" all_mode = mode == "ALL" if not(train_mode) and not(valid_mode) and not(all_mode): assert mode == "VALIDATION", "mode must be either TRAIN or VALIDATION or ALL" for batch_ctr, images, sw_angles, throttle, brake_input, speeds in get_batches_multi_dir(dirs, 128): data_len = len(sw_angles) num_for_train = int( float( data_len ) * train_fraction ) num_for_valid = data_len - num_for_train #data augmentation generates 6 times the number of images #perform data augmentation features_center = images[:,0,:,:] labels_center = sw_angles features_center_rev = np.flip(features_center, 2) labels_center_rev = sw_angles * -1.0 features_left = images[:,1,:,:] labels_left = sw_angles + 0.5 # was 1.0 features_left_rev =
np.flip(features_left, 2)
numpy.flip
import numpy as np import cv2 import pickle def order_points(pts): rect = np.zeros((4, 2), dtype = "float32") s = pts.sum(axis = 1) rect[0] = pts[
np.argmin(s)
numpy.argmin
# SPDX-FileCopyrightText: 2021 <NAME> <<EMAIL>> # # SPDX-License-Identifier: MIT import copy import dataclasses import math from dataclasses import dataclass, field import numpy as np EPS = np.finfo(float).eps @dataclass class PyVQFParams: tauAcc: float = 3.0 tauMag: float = 9.0 motionBiasEstEnabled: bool = True restBiasEstEnabled: bool = True magDistRejectionEnabled: bool = True biasSigmaInit: float = 0.5 biasForgettingTime: float = 100.0 biasClip: float = 2.0 biasSigmaMotion: float = 0.1 biasVerticalForgettingFactor: float = 0.0001 biasSigmaRest: float = 0.03 restMinT: float = 1.5 restFilterTau: float = 0.5 restThGyr: float = 2.0 restThAcc: float = 0.5 restThMag: float = 0.1 magCurrentTau: float = 0.05 magRefTau: float = 20.0 magNormTh: float = 0.1 magDipTh: float = 10.0 magNewTime: float = 20.0 magNewFirstTime: float = 5.0 magNewMinGyr: float = 20.0 magMinUndisturbedTime: float = 0.5 magMaxRejectionTime: float = 60.0 magRejectionFactor: float = 2.0 @dataclass class PyVQFState: gyrQuat: np.ndarray = field(default_factory=lambda: np.array([1, 0, 0, 0], float)) accQuat: np.ndarray = field(default_factory=lambda: np.array([1, 0, 0, 0], float)) delta: float = 0.0 restDetected: bool = False magDistDetected: bool = True lastAccLp: np.ndarray = field(default_factory=lambda: np.zeros(3, float)) accLpState: np.ndarray = field(default_factory=lambda: np.full((2, 3), np.nan, float)) kMagInit: float = 1.0 lastMagDisAngle: float = 0.0 lastMagCorrAngularRate: float = 0.0 bias: np.ndarray = field(default_factory=lambda: np.zeros(3, float)) biasP: np.ndarray = field(default_factory=lambda: np.full((3, 3), np.nan, float)) motionBiasEstRLpState: np.ndarray = field(default_factory=lambda: np.full((2, 9), np.nan, float)) motionBiasEstBiasLpState: np.ndarray = field(default_factory=lambda: np.full((2, 2), np.nan, float)) restLastSquaredDeviations: np.ndarray = field(default_factory=lambda: np.zeros(3, float)) restT: float = 0.0 restLastGyrLp: np.ndarray = field(default_factory=lambda: np.zeros(3, float)) restGyrLpState: np.ndarray = field(default_factory=lambda: np.full((2, 3), np.nan, float)) restLastAccLp: np.ndarray = field(default_factory=lambda: np.zeros(3, float)) restAccLpState: np.ndarray = field(default_factory=lambda: np.full((2, 3), np.nan, float)) restLastMagLp: np.ndarray = field(default_factory=lambda: np.zeros(3, float)) restMagLpState: np.ndarray = field(default_factory=lambda: np.full((2, 3), np.nan, float)) magRefNorm: float = 0.0 magRefDip: float = 0.0 magUndisturbedT: float = 0.0 magRejectT: float = -1.0 magCandidateNorm: float = -1.0 magCandidateDip: float = 0.0 magCandidateT: float = 0.0 magNormDip: np.ndarray = field(default_factory=lambda: np.zeros(2, float)) magNormDipLpState: np.ndarray = field(default_factory=lambda: np.full((2, 2), np.nan, float)) @dataclass class PyVQFCoefficients: gyrTs: float accTs: float magTs: float accLpB: np.ndarray = field(default_factory=lambda: np.full(3, np.nan, float)) accLpA: np.ndarray = field(default_factory=lambda: np.full(2, np.nan, float)) kMag: float = -1.0 biasP0: float = -1.0 biasV: float = -1.0 biasMotionW: float = -1.0 biasVerticalW: float = -1.0 biasRestW: float = -1.0 restGyrLpB: np.ndarray = field(default_factory=lambda: np.full(3, np.nan, float)) restGyrLpA: np.ndarray = field(default_factory=lambda: np.full(2, np.nan, float)) restAccLpB: np.ndarray = field(default_factory=lambda: np.full(3, np.nan, float)) restAccLpA: np.ndarray = field(default_factory=lambda: np.full(2, np.nan, float)) restMagLpB: np.ndarray = field(default_factory=lambda: np.full(3, np.nan, float)) restMagLpA: np.ndarray = field(default_factory=lambda: np.full(2, np.nan, float)) kMagRef: float = -1.0 magNormDipLpB: np.ndarray = field(default_factory=lambda: np.full(3, np.nan, float)) magNormDipLpA: np.ndarray = field(default_factory=lambda: np.full(2, np.nan, float)) class PyVQF: """A Versatile Quaternion-based Filter for IMU Orientation Estimation. This class implements the orientation estimation filter described in the following publication: <NAME>, <NAME>. "VQF: Highly Accurate IMU Orientation Estimation with Bias Estimation and Magnetic Disturbance Rejection." arXiv preprint, 2022. `arXiv:2203.17024 <https://arxiv.org/abs/2203.17024>`_. The filter can perform simultaneous 6D (magnetometer-free) and 9D (gyr+acc+mag) sensor fusion and can also be used without magnetometer data. It performs rest detection, gyroscope bias estimation during rest and motion, and magnetic disturbance detection and rejection. Different sampling rates for gyroscopes, accelerometers, and magnetometers are supported as well. While in most cases, the defaults will be reasonable, the algorithm can be influenced via a number of tuning parameters. To use this class for online (sample-by-sample) processing, 1. create a instance of the class and provide the sampling time and, optionally, parameters 2. for every sample, call one of the update functions to feed the algorithm with IMU data 3. access the estimation results with :meth:`getQuat6D`, :meth:`getQuat9D` and the other getter methods. If the full data is available in numpy arrays, you can use :meth:`updateBatch`. This class is a pure Python implementation of the algorithm that only depends on the Python standard library and `numpy <https://numpy.org/>`_. Note that the wrapper :class:`vqf.VQF` for the C++ implementation :cpp:class:`VQF` is much faster than this pure Python implementation. Depending on use case and programming language of choice, the following alternatives might be useful: +------------------------+---------------------------+--------------------------+---------------------------+ | | Full Version | Basic Version | Offline Version | | | | | | +========================+===========================+==========================+===========================+ | **C++** | :cpp:class:`VQF` | :cpp:class:`BasicVQF` | :cpp:func:`offlineVQF` | +------------------------+---------------------------+--------------------------+---------------------------+ | **Python/C++ (fast)** | :py:class:`vqf.VQF` | :py:class:`vqf.BasicVQF` | :py:meth:`vqf.offlineVQF` | +------------------------+---------------------------+--------------------------+---------------------------+ | **Pure Python (slow)** | **vqf.PyVQ (this class)** | -- | -- | +------------------------+---------------------------+--------------------------+---------------------------+ | **Pure Matlab (slow)** | :mat:class:`VQF.m <VQF>` | -- | -- | +------------------------+---------------------------+--------------------------+---------------------------+ In the most common case (using the default parameters and all data being sampled with the same frequency, create the class like this: .. code-block:: from vqf import PyVQF vqf = PyVQF(0.01) # 0.01 s sampling time, i.e. 100 Hz Example code to create an object with magnetic disturbance rejection disabled (use the `**-operator <https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists>`_ to pass parameters from a dict): .. code-block:: from vqf import PyVQF vqf = PyVQF(0.01, magDistRejectionEnabled=False) # 0.01 s sampling time, i.e. 100 Hz To use this class as a replacement for the basic version BasicVQF, pass the following parameters: .. code-block:: from vqf import PyVQF vqf = PyVQF(0.01, motionBiasEstEnabled=False, restBiasEstEnabled=False, magDistRejectionEnabled=False) See :cpp:struct:`VQFParams` for a detailed description of all parameters. """ def __init__(self, gyrTs, accTs=-1.0, magTs=-1.0, **params): """ :param gyrTs: sampling time of the gyroscope measurements in seconds :param accTs: sampling time of the accelerometer measurements in seconds (the value of `gyrTs` is used if set to -1) :param magTs: sampling time of the magnetometer measurements in seconds (the value of `gyrTs` is used if set to -1) :param (params): optional parameters to override the defaults (see :cpp:struct:`VQFParams` for a full list and detailed descriptions) """ accTs = accTs if accTs > 0 else gyrTs magTs = magTs if magTs > 0 else gyrTs self._params = PyVQFParams(**params) self._state = PyVQFState() self._coeffs = PyVQFCoefficients(gyrTs=gyrTs, accTs=accTs, magTs=magTs) self._setup() def updateGyr(self, gyr): """Performs gyroscope update step. It is only necessary to call this function directly if gyroscope, accelerometers and magnetometers have different sampling rates. Otherwise, simply use :meth:`update`. :param gyr: gyroscope measurement in rad/s -- numpy array with shape (3,) :return: None """ assert gyr.shape == (3,) # rest detection if self._params.restBiasEstEnabled or self._params.magDistRejectionEnabled: gyrLp = self.filterVec(gyr, self._params.restFilterTau, self._coeffs.gyrTs, self._coeffs.restGyrLpB, self._coeffs.restGyrLpA, self._state.restGyrLpState) deviation = gyr - gyrLp squaredDeviation = deviation.dot(deviation) biasClip = self._params.biasClip*np.pi/180.0 if squaredDeviation >= (self._params.restThGyr*np.pi/180.0)**2 or np.max(np.abs(gyrLp)) > biasClip: self._state.restT = 0.0 self._state.restDetected = False self._state.restLastGyrLp = gyrLp self._state.restLastSquaredDeviations[0] = squaredDeviation # remove estimated gyro bias gyrNoBias = gyr - self._state.bias # gyroscope prediction step gyrNorm = math.sqrt(gyrNoBias.dot(gyrNoBias)) angle = gyrNorm * self._coeffs.gyrTs if gyrNorm > EPS: c = np.cos(angle/2) s = np.sin(angle/2)/gyrNorm gyrStepQuat = np.array([c, s*gyrNoBias[0], s*gyrNoBias[1], s*gyrNoBias[2]], float) self._state.gyrQuat = self.quatMultiply(self._state.gyrQuat, gyrStepQuat) self.normalize(self._state.gyrQuat) def updateAcc(self, acc): """Performs accelerometer update step. It is only necessary to call this function directly if gyroscope, accelerometers and magnetometers have different sampling rates. Otherwise, simply use :meth:`update`. Should be called after :meth:`updateGyr` and before :meth:`updateMag`. :param acc: accelerometer measurement in m/s² -- numpy array with shape (3,) :return: None """ assert acc.shape == (3,) # ignore [0 0 0] samples if acc[0] == 0.0 and acc[1] == 0.0 and acc[2] == 0.0: return accTs = self._coeffs.accTs # rest detection if self._params.restBiasEstEnabled: accLp = self.filterVec(acc, self._params.restFilterTau, accTs, self._coeffs.restAccLpB, self._coeffs.restAccLpA, self._state.restAccLpState) deviation = acc - accLp squaredDeviation = deviation.dot(deviation) if squaredDeviation >= self._params.restThAcc**2: self._state.restT = 0.0 self._state.restDetected = False else: self._state.restT += accTs if self._state.restT >= self._params.restMinT: self._state.restDetected = True self._state.restLastAccLp = accLp self._state.restLastSquaredDeviations[1] = squaredDeviation # filter acc in inertial frame accEarth = self.quatRotate(self._state.gyrQuat, acc) self._state.lastAccLp = self.filterVec(accEarth, self._params.tauAcc, accTs, self._coeffs.accLpB, self._coeffs.accLpA, self._state.accLpState) # transform to 6D earth frame and normalize accEarth = self.quatRotate(self._state.accQuat, self._state.lastAccLp) # a = self._state.accQuat # b = self.state.lastAccLp # accEarth = self.quatRotate(a, b) self.normalize(accEarth) # inclination correction q_w = math.sqrt((accEarth[2]+1)/2) if q_w > 1e-6: accCorrQuat = np.array([q_w, 0.5*accEarth[1]/q_w, -0.5*accEarth[0]/q_w, 0], float) else: accCorrQuat = np.array([0, 1, 0, 0], float) self._state.accQuat = self.quatMultiply(accCorrQuat, self._state.accQuat) self.normalize(self._state.accQuat) # calculate correction angular rate to facilitate debugging self._state.lastAccCorrAngularRate = math.acos(accEarth[2])/self._coeffs.accTs # bias estimation if self._params.motionBiasEstEnabled or self._params.restBiasEstEnabled: biasClip = self._params.biasClip*np.pi/180.0 bias = self._state.bias # get rotation matrix corresponding to accGyrQuat accGyrQuat = self.getQuat6D() R = np.array([ 1 - 2*accGyrQuat[2]**2 - 2*accGyrQuat[3]**2, # r11 2*(accGyrQuat[2]*accGyrQuat[1] - accGyrQuat[0]*accGyrQuat[3]), # r12 2*(accGyrQuat[0]*accGyrQuat[2] + accGyrQuat[3]*accGyrQuat[1]), # r13 2*(accGyrQuat[0]*accGyrQuat[3] + accGyrQuat[2]*accGyrQuat[1]), # r21 1 - 2*accGyrQuat[1]**2 - 2*accGyrQuat[3]**2, # r22 2*(accGyrQuat[2]*accGyrQuat[3] - accGyrQuat[1]*accGyrQuat[0]), # r23 2*(accGyrQuat[3]*accGyrQuat[1] - accGyrQuat[0]*accGyrQuat[2]), # r31 2*(accGyrQuat[0]*accGyrQuat[1] + accGyrQuat[3]*accGyrQuat[2]), # r32 1 - 2*accGyrQuat[1]**2 - 2*accGyrQuat[2]**2, # r33 ], float) # calculate R*b_hat (only the x and y component, as z is not needed) biasLp = np.array([ R[0]*bias[0] + R[1]*bias[1] + R[2]*bias[2], R[3]*bias[0] + R[4]*bias[1] + R[5]*bias[2], ], float) # low-pass filter R and R*b_hat R = self.filterVec(R, self._params.tauAcc, accTs, self._coeffs.accLpB, self._coeffs.accLpA, self._state.motionBiasEstRLpState) biasLp = self.filterVec(biasLp, self._params.tauAcc, accTs, self._coeffs.accLpB, self._coeffs.accLpA, self._state.motionBiasEstBiasLpState) # set measurement error and covariance for the respective Kalman filter update if self._state.restDetected and self._params.restBiasEstEnabled: e = self._state.restLastGyrLp - bias R = np.eye(3) w = np.full(3, self._coeffs.biasRestW) elif self._params.motionBiasEstEnabled: e = np.array([ -accEarth[1]/accTs + biasLp[0] - R[0]*bias[0] - R[1]*bias[1] - R[2]*bias[2], accEarth[0]/accTs + biasLp[1] - R[3]*bias[0] - R[4]*bias[1] - R[5]*bias[2], - R[6]*bias[0] - R[7]*bias[1] - R[8]*bias[2], ], float) R.shape = (3, 3) w = np.array([self._coeffs.biasMotionW, self._coeffs.biasMotionW, self._coeffs.biasVerticalW], float) else: w = None e = None # Kalman filter update # step 1: P = P + V (also increase covariance if there is no measurement update!) if self._state.biasP[0, 0] < self._coeffs.biasP0: self._state.biasP[0, 0] += self._coeffs.biasV if self._state.biasP[1, 1] < self._coeffs.biasP0: self._state.biasP[1, 1] += self._coeffs.biasV if self._state.biasP[2, 2] < self._coeffs.biasP0: self._state.biasP[2, 2] += self._coeffs.biasV if w is not None: # clip disagreement to -2..2 °/s # (this also effectively limits the harm done by the first inclination correction step) e = np.clip(e, -biasClip, biasClip) # step 2: K = P R^T inv(W + R P R^T) K = self._state.biasP @ R.T @ np.linalg.inv(np.diag(w) + R @ self._state.biasP @ R.T) # step 3: bias = bias + K (y - R bias) = bias + K e bias += K @ e # step 4: P = P - K R P self._state.biasP -= K @ R @ self._state.biasP # clip bias estimate to -2..2 °/s bias[:] = np.clip(bias, -biasClip, biasClip) def updateMag(self, mag): """Performs magnetometer update step. It is only necessary to call this function directly if gyroscope, accelerometers and magnetometers have different sampling rates. Otherwise, simply use :meth:`update`. Should be called after :meth:`updateAcc`. :param mag: magnetometer measurement in arbitrary units -- numpy array with shape (3,) :return: None """ assert mag.shape == (3,) # ignore [0 0 0] samples if mag[0] == 0.0 and mag[1] == 0.0 and mag[2] == 0.0: return magTs = self._coeffs.magTs # rest detection if self._params.restBiasEstEnabled: magLp = self.filterVec(mag, self._params.restFilterTau, magTs, self._coeffs.restMagLpB, self._coeffs.restMagLpA, self._state.restMagLpState) deviation = mag - magLp squaredDeviation = deviation.dot(deviation) magNormSquared = magLp.dot(magLp) if squaredDeviation >= self._params.restThMag**2*magNormSquared: self._state.restT = 0.0 self._state.restDetected = False self._state.restLastMagLp = magLp self._state.restLastSquaredDeviations[2] = squaredDeviation # bring magnetometer measurement into 6D earth frame magEarth = self.quatRotate(self.getQuat6D(), mag) if self._params.magDistRejectionEnabled: magNormDip = self._state.magNormDip magNormDip[0] = math.sqrt(magEarth.dot(magEarth)) magNormDip[1] = -math.asin(magEarth[2]/magNormDip[0]) if self._params.magCurrentTau > 0: magNormDip[:] = self.filterVec(magNormDip, self._params.magCurrentTau, magTs, self._coeffs.magNormDipLpB, self._coeffs.magNormDipLpA, self._state.magNormDipLpState) # magnetic disturbance detection if abs(magNormDip[0] - self._state.magRefNorm) < self._params.magNormTh*self._state.magRefNorm and \ abs(magNormDip[1] - self._state.magRefDip) < self._params.magDipTh*np.pi/180.0: self._state.magUndisturbedT += magTs if self._state.magUndisturbedT >= self._params.magMinUndisturbedTime: self._state.magDistDetected = False self._state.magRefNorm += self._coeffs.kMagRef*(magNormDip[0] - self._state.magRefNorm) self._state.magRefDip += self._coeffs.kMagRef*(magNormDip[1] - self._state.magRefDip) else: self._state.magUndisturbedT = 0.0 self._state.magDistDetected = True # new magnetic field acceptance if abs(magNormDip[0] - self._state.magCandidateNorm) < self._params.magNormTh*self._state.magCandidateNorm \ and abs(magNormDip[1] - self._state.magCandidateDip) < self._params.magDipTh*np.pi/180.0: gyrNorm = math.sqrt(self._state.restLastGyrLp.dot(self._state.restLastGyrLp)) if gyrNorm >= self._params.magNewMinGyr*np.pi/180.0: self._state.magCandidateT += magTs self._state.magCandidateNorm += self._coeffs.kMagRef*(magNormDip[0] - self._state.magCandidateNorm) self._state.magCandidateDip += self._coeffs.kMagRef*(magNormDip[1] - self._state.magCandidateDip) if self._state.magDistDetected and (self._state.magCandidateT >= self._params.magNewTime or ( self._state.magRefNorm == 0.0 and self._state.magCandidateT >= self._params.magNewFirstTime)): self._state.magRefNorm = self._state.magCandidateNorm self._state.magRefDip = self._state.magCandidateDip self._state.magDistDetected = False self._state.magUndisturbedT = self._params.magMinUndisturbedTime else: self._state.magCandidateT = 0.0 self._state.magCandidateNorm = magNormDip[0] self._state.magCandidateDip = magNormDip[1] # calculate disagreement angle based on current magnetometer measurement self._state.lastMagDisAngle = math.atan2(magEarth[0], magEarth[1]) - self._state.delta # make sure the disagreement angle is in the range [-pi, pi] if self._state.lastMagDisAngle > np.pi: self._state.lastMagDisAngle -= 2*np.pi elif self._state.lastMagDisAngle < -np.pi: self._state.lastMagDisAngle += 2*np.pi k = self._coeffs.kMag if self._params.magDistRejectionEnabled: # magnetic disturbance rejection if self._state.magDistDetected: if self._state.magRejectT <= self._params.magMaxRejectionTime: self._state.magRejectT += magTs k = 0 else: k /= self._params.magRejectionFactor else: self._state.magRejectT = max(self._state.magRejectT - self._params.magRejectionFactor*magTs, 0.0) # ensure fast initial convergence if self._state.kMagInit != 0.0: # make sure that the gain k is at least 1/N, N=1,2,3,... in the first few samples if k < self._state.kMagInit: k = self._state.kMagInit # iterative expression to calculate 1/N self._state.kMagInit = self._state.kMagInit/(self._state.kMagInit+1) # disable if t > tauMag if self._state.kMagInit*self._params.tauMag < self._coeffs.magTs: self._state.kMagInit = 0.0 # first-order filter step self._state.delta += k*self._state.lastMagDisAngle # calculate correction angular rate to facilitate debugging self._state.lastMagCorrAngularRate = k*self._state.lastMagDisAngle/self._coeffs.magTs # make sure delta is in the range [-pi, pi] if self._state.delta > np.pi: self._state.delta -= 2*np.pi elif self._state.delta < -np.pi: self._state.delta += 2*np.pi def update(self, gyr, acc, mag=None): """Performs filter update step for one sample. :param gyr: gyr gyroscope measurement in rad/s -- numpy array with shape (3,) :param acc: acc accelerometer measurement in m/s² -- numpy array with shape (3,) :param mag: optional mag magnetometer measurement in arbitrary units -- numpy array with shape (3,) :return: None """ self.updateGyr(gyr) self.updateAcc(acc) if mag is not None: self.updateMag(mag) def updateBatch(self, gyr, acc, mag=None): """Performs batch update for multiple samples at once. In order to use this function, all input data must have the same sampling rate and be provided as a numpy array. The output is a dictionary containing - **quat6D** -- the 6D quaternion -- numpy array with shape (N, 4) - **bias** -- gyroscope bias estimate in rad/s -- numpy array with shape (N, 3) - **biasSigma** -- uncertainty of gyroscope bias estimate in rad/s -- numpy array with shape (N,) - **restDetected** -- rest detection state -- boolean numpy array with shape (N,) in all cases and if magnetometer data is provided additionally - **quat9D** -- the 9D quaternion -- numpy array with shape (N, 4) - **delta** -- heading difference angle between 6D and 9D quaternion in rad -- numpy array with shape (N,) - **magDistDetected** -- magnetic disturbance detection state -- boolean numpy array with shape (N,) :param gyr: gyroscope measurement in rad/s -- numpy array with shape (N,3) :param acc: accelerometer measurement in m/s² -- numpy array with shape (N,3) :param mag: optional magnetometer measurement in arbitrary units -- numpy array with shape (N,3) :return: dict with entries as described above """ N = gyr.shape[0] assert acc.shape == gyr.shape assert gyr.shape == (N, 3) out6D = np.empty((N, 4)) outBias = np.empty((N, 3)) outBiasSigma = np.empty((N,)) outRest = np.empty(N, dtype=bool) if mag is not None: assert mag.shape == gyr.shape out9D = np.empty((N, 4)) outDelta = np.empty((N,)) outMagDist = np.empty(N, dtype=bool) for i in range(N): self.update(gyr[i], acc[i], mag[i]) out6D[i] = self.getQuat6D() out9D[i] = self.getQuat9D() outDelta[i] = self._state.delta outBias[i], outBiasSigma[i] = self.getBiasEstimate() outRest[i] = self._state.restDetected outMagDist[i] = self._state.magDistDetected return dict(quat6D=out6D, quat9D=out9D, delta=outDelta, bias=outBias, biasSigma=outBiasSigma, restDetected=outRest, magDistDetected=outMagDist) else: for i in range(N): self.update(gyr[i], acc[i]) out6D[i] = self.getQuat6D() outBias[i], outBiasSigma[i] = self.getBiasEstimate() outRest[i] = self._state.restDetected return dict(quat6D=out6D, bias=outBias, biasSigma=outBiasSigma, restDetected=outRest) def getQuat3D(self): r"""Returns the angular velocity strapdown integration quaternion :math:`^{\mathcal{S}_i}_{\mathcal{I}_i}\mathbf{q}`. :return: quaternion as numpy array with shape (4,) """ return self._state.gyrQuat.copy() def getQuat6D(self): r"""Returns the 6D (magnetometer-free) orientation quaternion :math:`^{\mathcal{S}_i}_{\mathcal{E}_i}\mathbf{q}`. :return: quaternion as numpy array with shape (4,) """ return self.quatMultiply(self._state.accQuat, self._state.gyrQuat) def getQuat9D(self): r"""Returns the 9D (with magnetometers) orientation quaternion :math:`^{\mathcal{S}_i}_{\mathcal{E}}\mathbf{q}`. :return: quaternion as numpy array with shape (4,) """ return self.quatApplyDelta(self.quatMultiply(self._state.accQuat, self._state.gyrQuat), self._state.delta) def getDelta(self): r""" Returns the heading difference :math:`\delta` between :math:`\mathcal{E}_i` and :math:`\mathcal{E}`. :math:`^{\mathcal{E}_i}_{\mathcal{E}}\mathbf{q} = \begin{bmatrix}\cos\frac{\delta}{2} & 0 & 0 & \sin\frac{\delta}{2}\end{bmatrix}^T`. :return: delta angle in rad (:cpp:member:`VQFState::delta`) """ return self._state.delta def getBiasEstimate(self): """Returns the current gyroscope bias estimate and the uncertainty. The returned standard deviation sigma represents the estimation uncertainty in the worst direction and is based on an upper bound of the largest eigenvalue of the covariance matrix. :return: gyroscope bias estimate (rad/s) as (3,) numpy array and standard deviation sigma of the estimation uncertainty (rad/s) """ # use largest absolute row sum as upper bound estimate for largest eigenvalue (Gershgorin circle theorem) # and clip output to biasSigmaInit P = min(np.max(np.sum(np.abs(self._state.biasP), axis=1)), self._coeffs.biasP0) sigma = np.sqrt(P)*np.pi/100.0/180.0 return self._state.bias.copy(), sigma def setBiasEstimate(self, bias, sigma): """Sets the current gyroscope bias estimate and the uncertainty. If a value for the uncertainty sigma is given, the covariance matrix is set to a corresponding scaled identity matrix. :param bias: gyroscope bias estimate (rad/s) :param sigma: standard deviation of the estimation uncertainty (rad/s) - set to -1 (default) in order to not change the estimation covariance matrix """ assert bias.shape == (3,) self._state.bias[:] = bias if sigma > 0: self._state.biasP = (sigma*180.0*100.0/np.pi)**2 * np.eye(3) def getRestDetected(self): """Returns true if rest was detected.""" return self._state.restDetected def getMagDistDetected(self): """Returns true if a disturbed magnetic field was detected.""" return self._state.magDistDetected def getRelativeRestDeviations(self): """Returns the relative deviations used in rest detection. Looking at those values can be useful to understand how rest detection is working and which thresholds are suitable. The output array is filled with the last values for gyroscope, accelerometer, and magnetometer, relative to the threshold. In order for rest to be detected, all values must stay below 1. :return: relative rest deviations as (3,) numpy array """ magNormSquared = self._state.restLastMagLp.dot(self._state.restLastMagLp) return np.array([ np.sqrt(self._state.restLastSquaredDeviations[0]) / (self._params.restThGyr * np.pi / 180.0), np.sqrt(self._state.restLastSquaredDeviations[1]) / self._params.restThAcc, np.sqrt(self._state.restLastSquaredDeviations[2] / magNormSquared) / self._params.restThMag, ], float) def getMagRefNorm(self): """Returns the norm of the currently accepted magnetic field reference.""" return self._state.magRefNorm def getMagRefDip(self): """Returns the dip angle of the currently accepted magnetic field reference.""" return self._state.magRefDip def setMagRef(self, norm, dip): """Overwrites the current magnetic field reference. :param norm: norm of the magnetic field reference :param dip: dip angle of the magnetic field reference """ self._state.magRefNorm = norm self._state.magRefDip = dip def setTauAcc(self, tauAcc): r"""Sets the time constant for accelerometer low-pass filtering. For more details, see :cpp:member:`VQFParams::tauAcc`. :param tauAcc: time constant :math:`\tau_\mathrm{acc}` in seconds """ if self._params.tauAcc == tauAcc: return self._params.tauAcc = tauAcc newB, newA = self.filterCoeffs(self._params.tauAcc, self._coeffs.accTs) self.filterAdaptStateForCoeffChange(self._state.lastAccLp, self._coeffs.accLpB, self._coeffs.accLpA, newB, newA, self._state.accLpState) # For R and biasLP, the last value is not saved in the state. # Since b0 is small (at reasonable settings), the last output is close to state[0]. self.filterAdaptStateForCoeffChange(self._state.motionBiasEstRLpState[0].copy(), self._coeffs.accLpB, self._coeffs.accLpA, newB, newA, self._state.motionBiasEstRLpState) self.filterAdaptStateForCoeffChange(self._state.motionBiasEstBiasLpState[0].copy(), self._coeffs.accLpB, self._coeffs.accLpA, newB, newA, self._state.motionBiasEstBiasLpState) self._coeffs.accLpB = newB self._coeffs.accLpA = newA def setTauMag(self, tauMag): r"""Sets the time constant for the magnetometer update. For more details, see :cpp:member:`VQFParams::tauMag`. :param tauMag: time constant :math:`\tau_\mathrm{mag}` in seconds """ self._params.tauMag = tauMag self._coeffs.kMag = self.gainFromTau(self._params.tauMag, self._coeffs.magTs) def setMotionBiasEstEnabled(self, enabled): """Enables/disabled gyroscope bias estimation during motion.""" if self._params.motionBiasEstEnabled == enabled: return self._params.motionBiasEstEnabled = enabled self._state.motionBiasEstRLpState = np.full((2, 9), np.nan, float) self._state.motionBiasEstBiasLpState = np.full((2, 2), np.nan, float) def setRestBiasEstEnabled(self, enabled): """Enables/disables rest detection and bias estimation during rest.""" if self._params.restBiasEstEnabled == enabled: return self._params.restBiasEstEnabled = enabled self._state.restDetected = False self._state.restLastSquaredDeviations = np.zeros(3, float) self._state.restT = 0.0 self._state.restLastGyrLp = np.zeros(3, float) self._state.restGyrLpState = np.full((2, 3), np.nan, float) self._state.restLastAccLp = np.zeros(3, float) self._state.restAccLpState = np.full((2, 3), np.nan, float) self._state.restLastMagLp = np.zeros(3, float) self._state.restMagLpState = np.full((2, 3), np.nan, float) def setMagDistRejectionEnabled(self, enabled): """Enables/disables magnetic disturbance detection and rejection.""" if self._params.magDistRejectionEnabled == enabled: return self._params.magDistRejectionEnabled = enabled self._state.magDistDetected = True self._state.magRefNorm = 0.0 self._state.magRefDip = 0.0 self._state.magUndisturbedT = 0.0 self._state.magRejectT = self._params.magMaxRejectionTime self._state.magCandidateNorm = -1.0 self._state.magCandidateDip = 0.0 self._state.magCandidateT = 0.0 self._state.magNormDip = np.zeros(2, float) self._state.magNormDipLpState = np.full((2, 2), np.nan, float) def setRestDetectionThresholds(self, thGyr, thAcc, thMag): """Sets the current thresholds for rest detection. :param thGyr: new value for :cpp:member:`VQFParams::restThGyr` :param thAcc: new value for :cpp:member:`VQFParams::restThAcc` :param thMag: new value for :cpp:member:`VQFParams::restThMag` """ self._params.restThGyr = thGyr self._params.restThAcc = thAcc self._params.restThMag = thMag @property def params(self): """Read-only property to access the current parameters. :return: dict with entries corresponding to :cpp:struct:`VQFParams` """ return copy.deepcopy(self._params) @property def coeffs(self): """Read-only property to access the coefficients used by the algorithm. :return: dict with entries corresponding to :cpp:struct:`VQFCoefficients` """ return copy.deepcopy(self._coeffs) @property def state(self): """Property to access the current state. This property can be written to in order to set a completely arbitrary filter state, which is intended for debugging purposes. However, note that the returned dict is a copy of the state and changing elements of this dict will not influence the actual state. In order to modify the state, access the state, change some elements and then replace the whole state with the modified copy, e.g. .. code-block:: # does not work: v.state['delta'] = 0 state = vqf.state state['delta'] = 0 vqf.state = state :return: dict with entries corresponding to :cpp:struct:`VQFState` """ return dataclasses.asdict(self._state) @state.setter def state(self, state): assert state.keys() == {f.name for f in dataclasses.fields(PyVQFState)} for k in state: assert isinstance(state[k], type(getattr(self._state, k))) if isinstance(state[k], np.ndarray): assert state[k].dtype == getattr(self._state, k).dtype assert state[k].shape == getattr(self._state, k).shape self._state = PyVQFState(**copy.deepcopy(state)) def resetState(self): """Resets the state to the default values at initialization. Resetting the state is equivalent to creating a new instance of this class. """ self._state = PyVQFState() self._state.biasP = self._coeffs.biasP0*np.eye(3) self._state.magRejectT = self._params.magMaxRejectionTime @staticmethod def quatMultiply(q1, q2): r"""Performs quaternion multiplication (:math:`\mathbf{q}_\mathrm{out} = \mathbf{q}_1 \otimes \mathbf{q}_2`). :param q1: input quaternion 1 -- numpy array with shape (4,) :param q2: input quaternion 2 -- numpy array with shape (4,) :return: output quaternion -- numpy array with shape (4,) """ assert q1.shape == (4,) assert q2.shape == (4,) q10, q11, q12, q13 = q1.tolist() q20, q21, q22, q23 = q2.tolist() w = q10 * q20 - q11 * q21 - q12 * q22 - q13 * q23 x = q10 * q21 + q11 * q20 + q12 * q23 - q13 * q22 y = q10 * q22 - q11 * q23 + q12 * q20 + q13 * q21 z = q10 * q23 + q11 * q22 - q12 * q21 + q13 * q20 return np.array([w, x, y, z], float) @staticmethod def quatConj(q): r"""Calculates the quaternion conjugate (:math:`\mathbf{q}_\mathrm{out} = \mathbf{q}^*`). :param q: input quaternion -- numpy array with shape (4,) :return: output quaternion -- numpy array with shape (4,) """ assert q.shape == (4,) return np.array([q[0], -q[1], -q[2], -q[3]], float) @staticmethod def quatApplyDelta(q, delta): r""" Applies a heading rotation by the angle delta (in rad) to a quaternion. :math:`\mathbf{q}_\mathrm{out} = \begin{bmatrix}\cos\frac{\delta}{2} & 0 & 0 & \sin\frac{\delta}{2}\end{bmatrix} \otimes \mathbf{q}` :param q: input quaternion -- numpy array with shape (4,) :param delta: heading rotation angle in rad :return: output quaternion -- numpy array with shape (4,) """ assert q.shape == (4,) c = np.cos(delta/2) s =
np.sin(delta/2)
numpy.sin
import numpy as np import pandas as pd def Outputs(data): return np.round(1.-(1./(1.+np.exp(-data)))) def GeneticFunction(data): return ((np.minimum( ((((0.058823499828577 + data["Sex"]) - np.cos((data["Pclass"] / 2.0))) * 2.0)), ((0.885868))) * 2.0) + np.maximum( ((data["SibSp"] - 2.409090042114258)), ( -(np.minimum( (data["Sex"]), (np.sin(data["Parch"]))) * data["Pclass"]))) + (0.138462007045746 * ((np.minimum( (data["Sex"]), (((data["Parch"] / 2.0) / 2.0))) * data["Age"]) - data["Cabin"])) + np.minimum( ((np.sin((data["Parch"] * ((data["Fare"] - 0.720430016517639) * 2.0))) * 2.0)), ((data["SibSp"] / 2.0))) + np.maximum( (np.minimum( ( -np.cos(data["Embarked"])), (0.138462007045746))), (np.sin(((data["Cabin"] - data["Fare"]) * 2.0)))) + -np.minimum( ((((data["Age"] * data["Parch"]) * data["Embarked"]) + data["Parch"])), (np.sin(data["Pclass"]))) + np.minimum( (data["Sex"]), ((np.sin( -(data["Fare"] * np.cos((data["Fare"] * 1.630429983139038)))) / 2.0))) + np.minimum( ((0.230145)), (np.sin(np.minimum( (((67.0 / 2.0) * np.sin(data["Fare"]))), (0.31830988618379069))))) + np.sin((np.sin(data["Cabin"]) * (np.sin((12.6275)) * np.maximum( (data["Age"]), (data["Fare"]))))) + np.sin(((np.minimum( (data["Fare"]), ((data["Cabin"] * data["Embarked"]))) / 2.0) * -data["Fare"])) + np.minimum( (((2.675679922103882 * data["SibSp"]) * np.sin(((96) * np.sin(data["Cabin"]))))), (data["Parch"])) + np.sin(np.sin((np.maximum( (np.minimum( (data["Age"]), (data["Cabin"]))), ((data["Fare"] * 0.31830988618379069))) * data["Cabin"]))) + np.maximum( (np.sin(((12.4148) * (data["Age"] / 2.0)))), (np.sin((-3.0 * data["Cabin"])))) + (np.minimum( (np.sin((((np.sin(((data["Fare"] * 2.0) * 2.0)) * 2.0) * 2.0) * 2.0))), (data["SibSp"])) / 2.0) + ((data["Sex"] - data["SibSp"]) * (np.cos(((data["Embarked"] - 0.730768978595734) + data["Age"])) / 2.0)) + ((np.sin(data["Cabin"]) / 2.0) - (np.cos(np.minimum( (data["Age"]), (data["Embarked"]))) * np.sin(data["Embarked"]))) + np.minimum( (0.31830988618379069), ((data["Sex"] * (2.212120056152344 * (0.720430016517639 - np.sin((data["Age"] * 2.0))))))) + (np.minimum( (np.cos(data["Fare"])), (np.maximum( (np.sin(data["Age"])), (data["Parch"])))) * np.cos((data["Fare"] / 2.0))) + np.sin((data["Parch"] * np.minimum( ((data["Age"] - 1.5707963267948966)), ((np.cos((data["Pclass"] * 2.0)) / 2.0))))) + (data["Parch"] * (np.sin(((data["Fare"] * (0.623655974864960 * data["Age"])) * 2.0)) / 2.0)) + (0.31830988618379069 * np.cos(np.maximum( ((0.602940976619720 * data["Fare"])), ((np.sin(0.720430016517639) * data["Age"]))))) + (np.minimum( ((data["SibSp"] / 2.0)), (np.sin(((data["Pclass"] - data["Fare"]) * data["SibSp"])))) * data["SibSp"]) + np.tanh((data["Sex"] * np.sin((5.199999809265137 * np.sin((data["Cabin"] * np.cos(data["Fare"]))))))) + (np.minimum( (data["Parch"]), (data["Sex"])) * np.cos(np.maximum( ((np.cos(data["Parch"]) + data["Age"])), (3.1415926535897931)))) + (np.minimum( (np.tanh(((data["Cabin"] / 2.0) + data["Parch"]))), ((data["Sex"] + np.cos(data["Age"])))) / 2.0) + (np.sin((np.sin(data["Sex"]) * (np.sin((data["Age"] * data["Pclass"])) * data["Pclass"]))) / 2.0) + (data["Sex"] * (np.cos(((data["Sex"] + data["Fare"]) * ((8.48635) * (63)))) / 2.0)) + np.minimum( (data["Sex"]), ((np.cos((data["Age"] * np.tanh(np.sin(np.cos(data["Fare"]))))) / 2.0))) + (np.tanh(np.tanh( -np.cos((np.maximum( (np.cos(data["Fare"])), (0.094339601695538)) * data["Age"])))) / 2.0) + (np.tanh(np.cos((np.cos(data["Age"]) + (data["Age"] + np.minimum( (data["Fare"]), (data["Age"])))))) / 2.0) + (np.tanh(np.cos((data["Age"] * ((-2.0 + np.sin(data["SibSp"])) + data["Fare"])))) / 2.0) + (np.minimum( (((281) - data["Fare"])), (np.sin((np.maximum( ((176)), (data["Fare"])) * data["SibSp"])))) * 2.0) + np.sin(((np.maximum( (data["Embarked"]), (data["Age"])) * 2.0) * (((785) * 3.1415926535897931) * data["Age"]))) + np.minimum( (data["Sex"]), (np.sin( -(np.minimum( ((data["Cabin"] / 2.0)), (data["SibSp"])) * (data["Fare"] / 2.0))))) + np.sin(np.sin((data["Cabin"] * (data["Embarked"] + (np.tanh( -data["Age"]) + data["Fare"]))))) + (np.cos(np.cos(data["Fare"])) * (np.sin((data["Embarked"] - ((734) * data["Fare"]))) / 2.0)) + ((np.minimum( (data["SibSp"]), (np.cos(data["Fare"]))) * np.cos(data["SibSp"])) * np.sin((data["Age"] / 2.0))) + (np.sin((np.sin((data["SibSp"] * np.cos((data["Fare"] * 2.0)))) + (data["Cabin"] * 2.0))) / 2.0) + (((data["Sex"] * data["SibSp"]) * np.sin(np.sin( -(data["Fare"] * data["Cabin"])))) * 2.0) + (np.sin((data["SibSp"] * ((((5.428569793701172 + 67.0) * 2.0) / 2.0) * data["Age"]))) / 2.0) + (data["Pclass"] * (np.sin(((data["Embarked"] * data["Cabin"]) * (data["Age"] - (1.07241)))) / 2.0)) + (np.cos((((( -data["SibSp"] + data["Age"]) + data["Parch"]) * data["Embarked"]) / 2.0)) / 2.0) + (0.31830988618379069 * np.sin(((data["Age"] * ((data["Embarked"] * np.sin(data["Fare"])) * 2.0)) * 2.0))) + ((np.minimum( ((data["Age"] * 0.058823499828577)), (data["Sex"])) - 0.63661977236758138) * np.tanh(np.sin(data["Pclass"]))) + -np.minimum( ((np.cos(((727) * ((data["Fare"] + data["Parch"]) * 2.0))) / 2.0)), (data["Fare"])) + (np.minimum( (np.cos(data["Fare"])), (data["SibSp"])) * np.minimum( (np.sin(data["Parch"])), (np.cos((data["Embarked"] * 2.0))))) + (np.minimum( (((data["Fare"] / 2.0) - 2.675679922103882)), (0.138462007045746)) * np.sin((1.5707963267948966 * data["Age"]))) + np.minimum( ((0.0821533)), (((
np.sin(data["Fare"])
numpy.sin
import dgl import time import numpy as np from multiprocessing import Process from scipy import sparse as spsp import mxnet as mx import backend as F import unittest num_nodes = 100 num_edges = int(num_nodes * num_nodes * 0.1) def worker_func(worker_id): time.sleep(3) print("worker starts") np.random.seed(0) csr = (spsp.random(num_nodes, num_nodes, density=0.1, format='csr') != 0).astype(np.int64) g = dgl.contrib.graph_store.create_graph_from_store("test_graph5", "shared_mem") # Verify the graph structure loaded from the shared memory. src, dst = g.all_edges() coo = csr.tocoo() assert F.array_equal(dst, F.tensor(coo.row)) assert F.array_equal(src, F.tensor(coo.col)) assert F.array_equal(g.ndata['feat'][0], F.tensor(np.arange(10), dtype=np.float32)) assert F.array_equal(g.edata['feat'][0], F.tensor(np.arange(10), dtype=np.float32)) g.ndata['test4'] = mx.nd.zeros((g.number_of_nodes(), 10)) g.edata['test4'] = mx.nd.zeros((g.number_of_edges(), 10)) if worker_id == 0: time.sleep(3) g.ndata['test4'][0] = 1 g.edata['test4'][0] = 2 else: time.sleep(5) assert np.all(g.ndata['test4'][0].asnumpy() == 1) assert np.all(g.edata['test4'][0].asnumpy() == 2) g.destroy() def server_func(num_workers): print("server starts")
np.random.seed(0)
numpy.random.seed
from __future__ import division, absolute_import, print_function import sys import warnings from decimal import Decimal import numpy as np from numpy.testing import * class TestEinSum(TestCase): def test_einsum_errors(self): # Need enough arguments assert_raises(ValueError, np.einsum) assert_raises(ValueError, np.einsum, "") # subscripts must be a string assert_raises(TypeError, np.einsum, 0, 0) # out parameter must be an array assert_raises(TypeError, np.einsum, "", 0, out='test') # order parameter must be a valid order assert_raises(TypeError, np.einsum, "", 0, order='W') # casting parameter must be a valid casting assert_raises(ValueError, np.einsum, "", 0, casting='blah') # dtype parameter must be a valid dtype assert_raises(TypeError, np.einsum, "", 0, dtype='bad_data_type') # other keyword arguments are rejected assert_raises(TypeError, np.einsum, "", 0, bad_arg=0) # issue 4528 revealed a segfault with this call assert_raises(TypeError, np.einsum, *(None,)*63) # number of operands must match count in subscripts string assert_raises(ValueError, np.einsum, "", 0, 0) assert_raises(ValueError, np.einsum, ",", 0, [0], [0]) assert_raises(ValueError, np.einsum, ",", [0]) # can't have more subscripts than dimensions in the operand assert_raises(ValueError, np.einsum, "i", 0) assert_raises(ValueError, np.einsum, "ij", [0, 0]) assert_raises(ValueError, np.einsum, "...i", 0) assert_raises(ValueError, np.einsum, "i...j", [0, 0]) assert_raises(ValueError, np.einsum, "i...", 0) assert_raises(ValueError, np.einsum, "ij...", [0, 0]) # invalid ellipsis assert_raises(ValueError, np.einsum, "i..", [0, 0]) assert_raises(ValueError, np.einsum, ".i...", [0, 0]) assert_raises(ValueError, np.einsum, "j->..j", [0, 0]) assert_raises(ValueError, np.einsum, "j->.j...", [0, 0]) # invalid subscript character assert_raises(ValueError, np.einsum, "i%...", [0, 0]) assert_raises(ValueError, np.einsum, "...j$", [0, 0]) assert_raises(ValueError, np.einsum, "i->&", [0, 0]) # output subscripts must appear in input assert_raises(ValueError, np.einsum, "i->ij", [0, 0]) # output subscripts may only be specified once assert_raises(ValueError, np.einsum, "ij->jij", [[0, 0], [0, 0]]) # dimensions much match when being collapsed assert_raises(ValueError, np.einsum, "ii", np.arange(6).reshape(2, 3)) assert_raises(ValueError, np.einsum, "ii->i", np.arange(6).reshape(2, 3)) # broadcasting to new dimensions must be enabled explicitly assert_raises(ValueError, np.einsum, "i", np.arange(6).reshape(2, 3)) assert_raises(ValueError, np.einsum, "i->i", [[0, 1], [0, 1]], out=np.arange(4).reshape(2, 2)) def test_einsum_views(self): # pass-through a = np.arange(6) a.shape = (2, 3) b = np.einsum("...", a) assert_(b.base is a) b = np.einsum(a, [Ellipsis]) assert_(b.base is a) b = np.einsum("ij", a) assert_(b.base is a) assert_equal(b, a) b = np.einsum(a, [0, 1]) assert_(b.base is a) assert_equal(b, a) # transpose a = np.arange(6) a.shape = (2, 3) b = np.einsum("ji", a) assert_(b.base is a) assert_equal(b, a.T) b = np.einsum(a, [1, 0]) assert_(b.base is a) assert_equal(b, a.T) # diagonal a = np.arange(9) a.shape = (3, 3) b = np.einsum("ii->i", a) assert_(b.base is a) assert_equal(b, [a[i, i] for i in range(3)]) b = np.einsum(a, [0, 0], [0]) assert_(b.base is a) assert_equal(b, [a[i, i] for i in range(3)]) # diagonal with various ways of broadcasting an additional dimension a = np.arange(27) a.shape = (3, 3, 3) b = np.einsum("...ii->...i", a) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a]) b = np.einsum(a, [Ellipsis, 0, 0], [Ellipsis, 0]) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a]) b = np.einsum("ii...->...i", a) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(2, 0, 1)]) b = np.einsum(a, [0, 0, Ellipsis], [Ellipsis, 0]) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(2, 0, 1)]) b = np.einsum("...ii->i...", a) assert_(b.base is a) assert_equal(b, [a[:, i, i] for i in range(3)]) b = np.einsum(a, [Ellipsis, 0, 0], [0, Ellipsis]) assert_(b.base is a) assert_equal(b, [a[:, i, i] for i in range(3)]) b = np.einsum("jii->ij", a) assert_(b.base is a) assert_equal(b, [a[:, i, i] for i in range(3)]) b = np.einsum(a, [1, 0, 0], [0, 1]) assert_(b.base is a) assert_equal(b, [a[:, i, i] for i in range(3)]) b = np.einsum("ii...->i...", a) assert_(b.base is a) assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)]) b = np.einsum(a, [0, 0, Ellipsis], [0, Ellipsis]) assert_(b.base is a) assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)]) b = np.einsum("i...i->i...", a) assert_(b.base is a) assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)]) b = np.einsum(a, [0, Ellipsis, 0], [0, Ellipsis]) assert_(b.base is a) assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)]) b = np.einsum("i...i->...i", a) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(1, 0, 2)]) b = np.einsum(a, [0, Ellipsis, 0], [Ellipsis, 0]) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(1, 0, 2)]) # triple diagonal a = np.arange(27) a.shape = (3, 3, 3) b = np.einsum("iii->i", a) assert_(b.base is a) assert_equal(b, [a[i, i, i] for i in range(3)]) b = np.einsum(a, [0, 0, 0], [0]) assert_(b.base is a) assert_equal(b, [a[i, i, i] for i in range(3)]) # swap axes a = np.arange(24) a.shape = (2, 3, 4) b = np.einsum("ijk->jik", a) assert_(b.base is a) assert_equal(b, a.swapaxes(0, 1)) b = np.einsum(a, [0, 1, 2], [1, 0, 2]) assert_(b.base is a) assert_equal(b, a.swapaxes(0, 1)) def check_einsum_sums(self, dtype): # Check various sums. Does many sizes to exercise unrolled loops. # sum(a, axis=-1) for n in range(1, 17): a = np.arange(n, dtype=dtype) assert_equal(np.einsum("i->", a), np.sum(a, axis=-1).astype(dtype)) assert_equal(np.einsum(a, [0], []), np.sum(a, axis=-1).astype(dtype)) for n in range(1, 17): a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n) assert_equal(np.einsum("...i->...", a), np.sum(a, axis=-1).astype(dtype)) assert_equal(np.einsum(a, [Ellipsis, 0], [Ellipsis]), np.sum(a, axis=-1).astype(dtype)) # sum(a, axis=0) for n in range(1, 17): a = np.arange(2*n, dtype=dtype).reshape(2, n) assert_equal(np.einsum("i...->...", a), np.sum(a, axis=0).astype(dtype)) assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis]), np.sum(a, axis=0).astype(dtype)) for n in range(1, 17): a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n) assert_equal(np.einsum("i...->...", a), np.sum(a, axis=0).astype(dtype)) assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis]), np.sum(a, axis=0).astype(dtype)) # trace(a) for n in range(1, 17): a = np.arange(n*n, dtype=dtype).reshape(n, n) assert_equal(np.einsum("ii", a), np.trace(a).astype(dtype)) assert_equal(np.einsum(a, [0, 0]), np.trace(a).astype(dtype)) # multiply(a, b) assert_equal(np.einsum("..., ...", 3, 4), 12) # scalar case for n in range(1, 17): a = np.arange(3*n, dtype=dtype).reshape(3, n) b = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n) assert_equal(np.einsum("..., ...", a, b), np.multiply(a, b)) assert_equal(np.einsum(a, [Ellipsis], b, [Ellipsis]), np.multiply(a, b)) # inner(a,b) for n in range(1, 17): a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n) b = np.arange(n, dtype=dtype) assert_equal(np.einsum("...i, ...i", a, b), np.inner(a, b)) assert_equal(np.einsum(a, [Ellipsis, 0], b, [Ellipsis, 0]), np.inner(a, b)) for n in range(1, 11): a = np.arange(n*3*2, dtype=dtype).reshape(n, 3, 2) b = np.arange(n, dtype=dtype) assert_equal(np.einsum("i..., i...", a, b), np.inner(a.T, b.T).T) assert_equal(np.einsum(a, [0, Ellipsis], b, [0, Ellipsis]), np.inner(a.T, b.T).T) # outer(a,b) for n in range(1, 17): a = np.arange(3, dtype=dtype)+1 b = np.arange(n, dtype=dtype)+1 assert_equal(np.einsum("i,j", a, b), np.outer(a, b)) assert_equal(np.einsum(a, [0], b, [1]), np.outer(a, b)) # Suppress the complex warnings for the 'as f8' tests with warnings.catch_warnings(): warnings.simplefilter('ignore', np.ComplexWarning) # matvec(a,b) / a.dot(b) where a is matrix, b is vector for n in range(1, 17): a = np.arange(4*n, dtype=dtype).reshape(4, n) b = np.arange(n, dtype=dtype) assert_equal(np.einsum("ij, j", a, b), np.dot(a, b)) assert_equal(np.einsum(a, [0, 1], b, [1]), np.dot(a, b)) c = np.arange(4, dtype=dtype) np.einsum("ij,j", a, b, out=c, dtype='f8', casting='unsafe') assert_equal(c, np.dot(a.astype('f8'), b.astype('f8')).astype(dtype)) c[...] = 0 np.einsum(a, [0, 1], b, [1], out=c, dtype='f8', casting='unsafe') assert_equal(c, np.dot(a.astype('f8'), b.astype('f8')).astype(dtype)) for n in range(1, 17): a = np.arange(4*n, dtype=dtype).reshape(4, n) b = np.arange(n, dtype=dtype) assert_equal(np.einsum("ji,j", a.T, b.T), np.dot(b.T, a.T)) assert_equal(np.einsum(a.T, [1, 0], b.T, [1]), np.dot(b.T, a.T)) c = np.arange(4, dtype=dtype) np.einsum("ji,j", a.T, b.T, out=c, dtype='f8', casting='unsafe') assert_equal(c, np.dot(b.T.astype('f8'), a.T.astype('f8')).astype(dtype)) c[...] = 0 np.einsum(a.T, [1, 0], b.T, [1], out=c, dtype='f8', casting='unsafe') assert_equal(c, np.dot(b.T.astype('f8'), a.T.astype('f8')).astype(dtype)) # matmat(a,b) / a.dot(b) where a is matrix, b is matrix for n in range(1, 17): if n < 8 or dtype != 'f2': a = np.arange(4*n, dtype=dtype).reshape(4, n) b = np.arange(n*6, dtype=dtype).reshape(n, 6) assert_equal(np.einsum("ij,jk", a, b), np.dot(a, b)) assert_equal(np.einsum(a, [0, 1], b, [1, 2]), np.dot(a, b)) for n in range(1, 17): a = np.arange(4*n, dtype=dtype).reshape(4, n) b = np.arange(n*6, dtype=dtype).reshape(n, 6) c = np.arange(24, dtype=dtype).reshape(4, 6) np.einsum("ij,jk", a, b, out=c, dtype='f8', casting='unsafe') assert_equal(c, np.dot(a.astype('f8'), b.astype('f8')).astype(dtype)) c[...] = 0 np.einsum(a, [0, 1], b, [1, 2], out=c, dtype='f8', casting='unsafe') assert_equal(c, np.dot(a.astype('f8'), b.astype('f8')).astype(dtype)) # matrix triple product (note this is not currently an efficient # way to multiply 3 matrices) a = np.arange(12, dtype=dtype).reshape(3, 4) b = np.arange(20, dtype=dtype).reshape(4, 5) c = np.arange(30, dtype=dtype).reshape(5, 6) if dtype != 'f2': assert_equal(np.einsum("ij,jk,kl", a, b, c), a.dot(b).dot(c)) assert_equal(np.einsum(a, [0, 1], b, [1, 2], c, [2, 3]), a.dot(b).dot(c)) d = np.arange(18, dtype=dtype).reshape(3, 6) np.einsum("ij,jk,kl", a, b, c, out=d, dtype='f8', casting='unsafe') assert_equal(d, a.astype('f8').dot(b.astype('f8') ).dot(c.astype('f8')).astype(dtype)) d[...] = 0 np.einsum(a, [0, 1], b, [1, 2], c, [2, 3], out=d, dtype='f8', casting='unsafe') assert_equal(d, a.astype('f8').dot(b.astype('f8') ).dot(c.astype('f8')).astype(dtype)) # tensordot(a, b) if np.dtype(dtype) != np.dtype('f2'): a = np.arange(60, dtype=dtype).reshape(3, 4, 5) b = np.arange(24, dtype=dtype).reshape(4, 3, 2) assert_equal(np.einsum("ijk, jil -> kl", a, b), np.tensordot(a, b, axes=([1, 0], [0, 1]))) assert_equal(np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3]), np.tensordot(a, b, axes=([1, 0], [0, 1]))) c = np.arange(10, dtype=dtype).reshape(5, 2) np.einsum("ijk,jil->kl", a, b, out=c, dtype='f8', casting='unsafe') assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'), axes=([1, 0], [0, 1])).astype(dtype)) c[...] = 0 np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3], out=c, dtype='f8', casting='unsafe') assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'), axes=([1, 0], [0, 1])).astype(dtype)) # logical_and(logical_and(a!=0, b!=0), c!=0) a = np.array([1, 3, -2, 0, 12, 13, 0, 1], dtype=dtype) b = np.array([0, 3.5, 0., -2, 0, 1, 3, 12], dtype=dtype) c = np.array([True, True, False, True, True, False, True, True]) assert_equal(np.einsum("i,i,i->i", a, b, c, dtype='?', casting='unsafe'), np.logical_and(np.logical_and(a!=0, b!=0), c!=0)) assert_equal(np.einsum(a, [0], b, [0], c, [0], [0], dtype='?', casting='unsafe'), np.logical_and(np.logical_and(a!=0, b!=0), c!=0)) a = np.arange(9, dtype=dtype) assert_equal(np.einsum(",i->", 3, a), 3*np.sum(a)) assert_equal(np.einsum(3, [], a, [0], []), 3*np.sum(a)) assert_equal(np.einsum("i,->", a, 3), 3*np.sum(a)) assert_equal(np.einsum(a, [0], 3, [], []), 3*np.sum(a)) # Various stride0, contiguous, and SSE aligned variants for n in range(1, 25): a = np.arange(n, dtype=dtype) if np.dtype(dtype).itemsize > 1: assert_equal(np.einsum("...,...", a, a), np.multiply(a, a)) assert_equal(np.einsum("i,i", a, a), np.dot(a, a)) assert_equal(np.einsum("i,->i", a, 2), 2*a) assert_equal(np.einsum(",i->i", 2, a), 2*a) assert_equal(np.einsum("i,->", a, 2), 2*np.sum(a)) assert_equal(np.einsum(",i->", 2, a), 2*np.sum(a)) assert_equal(np.einsum("...,...", a[1:], a[:-1]), np.multiply(a[1:], a[:-1])) assert_equal(np.einsum("i,i", a[1:], a[:-1]), np.dot(a[1:], a[:-1])) assert_equal(np.einsum("i,->i", a[1:], 2), 2*a[1:]) assert_equal(np.einsum(",i->i", 2, a[1:]), 2*a[1:]) assert_equal(np.einsum("i,->", a[1:], 2), 2*
np.sum(a[1:])
numpy.sum
import cv2 from imageai.Detection.keras_retinanet.models.resnet import resnet50_retinanet from imageai.Detection.keras_retinanet.utils.image import read_image_bgr, read_image_array, read_image_stream, \ preprocess_image, resize_image from imageai.Detection.keras_retinanet.utils.visualization import draw_box, draw_caption from imageai.Detection.keras_retinanet.utils.colors import label_color import matplotlib.pyplot as plt import matplotlib.image as pltimage import numpy as np import tensorflow as tf import os from keras import backend as K from keras.layers import Input from PIL import Image import colorsys from imageai.Detection.YOLOv3.models import yolo_main, tiny_yolo_main from imageai.Detection.YOLOv3.utils import letterbox_image, yolo_eval def get_session(): config = tf.ConfigProto() config.gpu_options.allow_growth = True return tf.Session(config=config) class ObjectDetection: """ This is the object detection class for images in the ImageAI library. It provides support for RetinaNet , YOLOv3 and TinyYOLOv3 object detection networks . After instantiating this class, you can set it's properties and make object detections using it's pre-defined functions. The following functions are required to be called before object detection can be made * setModelPath() * At least of of the following and it must correspond to the model set in the setModelPath() [setModelTypeAsRetinaNet(), setModelTypeAsYOLOv3(), setModelTypeAsTinyYOLOv3()] * loadModel() [This must be called once only before performing object detection] Once the above functions have been called, you can call the detectObjectsFromImage() function of the object detection instance object at anytime to obtain observable objects in any image. """ def __init__(self): self.__modelType = "" self.modelPath = "" self.__modelPathAdded = False self.__modelLoaded = False self.__model_collection = [] # Instance variables for RetinaNet Model self.__input_image_min = 1333 self.__input_image_max = 800 self.numbers_to_names = {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair dryer', 79: 'toothbrush'} # Unique instance variables for YOLOv3 and TinyYOLOv3 model self.__yolo_iou = 0.45 self.__yolo_score = 0.1 self.__yolo_anchors = np.array( [[10., 13.], [16., 30.], [33., 23.], [30., 61.], [62., 45.], [59., 119.], [116., 90.], [156., 198.], [373., 326.]]) self.__yolo_model_image_size = (416, 416) self.__yolo_boxes, self.__yolo_scores, self.__yolo_classes = "", "", "" self.sess = K.get_session() # Unique instance variables for TinyYOLOv3. self.__tiny_yolo_anchors = np.array( [[10., 14.], [23., 27.], [37., 58.], [81., 82.], [135., 169.], [344., 319.]]) def setModelTypeAsRetinaNet(self): """ 'setModelTypeAsRetinaNet()' is used to set the model type to the RetinaNet model for the video object detection instance instance object . :return: """ self.__modelType = "retinanet" def setModelTypeAsYOLOv3(self): """ 'setModelTypeAsYOLOv3()' is used to set the model type to the YOLOv3 model for the video object detection instance instance object . :return: """ self.__modelType = "yolov3" def setModelTypeAsTinyYOLOv3(self): """ 'setModelTypeAsTinyYOLOv3()' is used to set the model type to the TinyYOLOv3 model for the video object detection instance instance object . :return: """ self.__modelType = "tinyyolov3" def setModelPath(self, model_path): """ 'setModelPath()' function is required and is used to set the file path to a RetinaNet object detection model trained on the COCO dataset. :param model_path: :return: """ if (self.__modelPathAdded == False): self.modelPath = model_path self.__modelPathAdded = True def loadModel(self, detection_speed="normal"): """ 'loadModel()' function is required and is used to load the model structure into the program from the file path defined in the setModelPath() function. This function receives an optional value which is "detection_speed". The value is used to reduce the time it takes to detect objects in an image, down to about a 10% of the normal time, with with just slight reduction in the number of objects detected. * prediction_speed (optional); Acceptable values are "normal", "fast", "faster", "fastest" and "flash" :param detection_speed: :return: """ if (self.__modelType == "retinanet"): if (detection_speed == "normal"): self.__input_image_min = 800 self.__input_image_max = 1333 elif (detection_speed == "fast"): self.__input_image_min = 400 self.__input_image_max = 700 elif (detection_speed == "faster"): self.__input_image_min = 300 self.__input_image_max = 500 elif (detection_speed == "fastest"): self.__input_image_min = 200 self.__input_image_max = 350 elif (detection_speed == "flash"): self.__input_image_min = 100 self.__input_image_max = 250 elif (self.__modelType == "yolov3"): if (detection_speed == "normal"): self.__yolo_model_image_size = (416, 416) elif (detection_speed == "fast"): self.__yolo_model_image_size = (320, 320) elif (detection_speed == "faster"): self.__yolo_model_image_size = (208, 208) elif (detection_speed == "fastest"): self.__yolo_model_image_size = (128, 128) elif (detection_speed == "flash"): self.__yolo_model_image_size = (96, 96) elif (self.__modelType == "tinyyolov3"): if (detection_speed == "normal"): self.__yolo_model_image_size = (832, 832) elif (detection_speed == "fast"): self.__yolo_model_image_size = (576, 576) elif (detection_speed == "faster"): self.__yolo_model_image_size = (416, 416) elif (detection_speed == "fastest"): self.__yolo_model_image_size = (320, 320) elif (detection_speed == "flash"): self.__yolo_model_image_size = (272, 272) if (self.__modelLoaded == False): if (self.__modelType == ""): raise ValueError("You must set a valid model type before loading the model.") elif (self.__modelType == "retinanet"): model = resnet50_retinanet(num_classes=80) model.load_weights(self.modelPath) self.__model_collection.append(model) self.__modelLoaded = True elif (self.__modelType == "yolov3"): model = yolo_main(Input(shape=(None, None, 3)), len(self.__yolo_anchors) // 3, len(self.numbers_to_names)) model.load_weights(self.modelPath) hsv_tuples = [(x / len(self.numbers_to_names), 1., 1.) for x in range(len(self.numbers_to_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) np.random.seed(10101) np.random.shuffle(self.colors) np.random.seed(None) self.__yolo_input_image_shape = K.placeholder(shape=(2,)) self.__yolo_boxes, self.__yolo_scores, self.__yolo_classes = yolo_eval(model.output, self.__yolo_anchors, len(self.numbers_to_names), self.__yolo_input_image_shape, score_threshold=self.__yolo_score, iou_threshold=self.__yolo_iou) self.__model_collection.append(model) self.__modelLoaded = True elif (self.__modelType == "tinyyolov3"): model = tiny_yolo_main(Input(shape=(None, None, 3)), len(self.__tiny_yolo_anchors) // 2, len(self.numbers_to_names)) model.load_weights(self.modelPath) hsv_tuples = [(x / len(self.numbers_to_names), 1., 1.) for x in range(len(self.numbers_to_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) np.random.seed(10101) np.random.shuffle(self.colors) np.random.seed(None) self.__yolo_input_image_shape = K.placeholder(shape=(2,)) self.__yolo_boxes, self.__yolo_scores, self.__yolo_classes = yolo_eval(model.output, self.__tiny_yolo_anchors, len(self.numbers_to_names), self.__yolo_input_image_shape, score_threshold=self.__yolo_score, iou_threshold=self.__yolo_iou) self.__model_collection.append(model) self.__modelLoaded = True def detectObjectsFromImage(self, input_image="", output_image_path="", input_type="file", output_type="file", extract_detected_objects=False, minimum_percentage_probability=50, display_percentage_probability=True, display_object_name=True, thread_safe=False): """ 'detectObjectsFromImage()' function is used to detect objects observable in the given image path: * input_image , which can be a filepath, image numpy array or image file stream * output_image_path (only if output_type = file) , file path to the output image that will contain the detection boxes and label, if output_type="file" * input_type (optional) , file path/numpy array/image file stream of the image. Acceptable values are "file", "array" and "stream" * output_type (optional) , file path/numpy array/image file stream of the image. Acceptable values are "file" and "array" * extract_detected_objects (optional) , option to save each object detected individually as an image and return an array of the objects' image path. * minimum_percentage_probability (optional, 50 by default) , option to set the minimum percentage probability for nominating a detected object for output. * display_percentage_probability (optional, True by default), option to show or hide the percentage probability of each object in the saved/returned detected image * display_display_object_name (optional, True by default), option to show or hide the name of each object in the saved/returned detected image * thread_safe (optional, False by default), enforce the loaded detection model works across all threads if set to true, made possible by forcing all Tensorflow inference to run on the default graph. The values returned by this function depends on the parameters parsed. The possible values returnable are stated as below - If extract_detected_objects = False or at its default value and output_type = 'file' or at its default value, you must parse in the 'output_image_path' as a string to the path you want the detected image to be saved. Then the function will return: 1. an array of dictionaries, with each dictionary corresponding to the objects detected in the image. Each dictionary contains the following property: * name (string) * percentage_probability (float) * box_points (list of x1,y1,x2 and y2 coordinates) - If extract_detected_objects = False or at its default value and output_type = 'array' , Then the function will return: 1. a numpy array of the detected image 2. an array of dictionaries, with each dictionary corresponding to the objects detected in the image. Each dictionary contains the following property: * name (string) * percentage_probability (float) * box_points (list of x1,y1,x2 and y2 coordinates) - If extract_detected_objects = True and output_type = 'file' or at its default value, you must parse in the 'output_image_path' as a string to the path you want the detected image to be saved. Then the function will return: 1. an array of dictionaries, with each dictionary corresponding to the objects detected in the image. Each dictionary contains the following property: * name (string) * percentage_probability (float) * box_points (list of x1,y1,x2 and y2 coordinates) 2. an array of string paths to the image of each object extracted from the image - If extract_detected_objects = True and output_type = 'array', the the function will return: 1. a numpy array of the detected image 2. an array of dictionaries, with each dictionary corresponding to the objects detected in the image. Each dictionary contains the following property: * name (string) * percentage_probability (float) * box_points (list of x1,y1,x2 and y2 coordinates) 3. an array of numpy arrays of each object detected in the image :param input_image: :param output_image_path: :param input_type: :param output_type: :param extract_detected_objects: :param minimum_percentage_probability: :param display_percentage_probability: :param display_object_name: :param thread_safe: :return image_frame: :return output_objects_array: :return detected_objects_image_array: """ if (self.__modelLoaded == False): raise ValueError("You must call the loadModel() function before making object detection.") elif (self.__modelLoaded == True): try: if (self.__modelType == "retinanet"): output_objects_array = [] detected_objects_image_array = [] if (input_type == "file"): image = read_image_bgr(input_image) elif (input_type == "array"): image = read_image_array(input_image) elif (input_type == "stream"): image = read_image_stream(input_image) detected_copy = image.copy() detected_copy = cv2.cvtColor(detected_copy, cv2.COLOR_BGR2RGB) detected_copy2 = image.copy() detected_copy2 = cv2.cvtColor(detected_copy2, cv2.COLOR_BGR2RGB) image = preprocess_image(image) image, scale = resize_image(image, min_side=self.__input_image_min, max_side=self.__input_image_max) model = self.__model_collection[0] if thread_safe == True: with self.sess.graph.as_default(): _, _, detections = model.predict_on_batch(np.expand_dims(image, axis=0)) else: _, _, detections = model.predict_on_batch(np.expand_dims(image, axis=0)) predicted_numbers = np.argmax(detections[0, :, 4:], axis=1) scores = detections[0, np.arange(detections.shape[1]), 4 + predicted_numbers] detections[0, :, :4] /= scale min_probability = minimum_percentage_probability / 100 counting = 0 for index, (label, score), in enumerate(zip(predicted_numbers, scores)): if score < min_probability: continue counting += 1 objects_dir = output_image_path + "-objects" if (extract_detected_objects == True and output_type == "file"): if (os.path.exists(objects_dir) == False): os.mkdir(objects_dir) color = label_color(label) detection_details = detections[0, index, :4].astype(int) draw_box(detected_copy, detection_details, color=color) if (display_object_name == True and display_percentage_probability == True): caption = "{} {:.3f}".format(self.numbers_to_names[label], (score * 100)) draw_caption(detected_copy, detection_details, caption) elif (display_object_name == True): caption = "{} ".format(self.numbers_to_names[label]) draw_caption(detected_copy, detection_details, caption) elif (display_percentage_probability == True): caption = " {:.3f}".format((score * 100)) draw_caption(detected_copy, detection_details, caption) each_object_details = {} each_object_details["name"] = self.numbers_to_names[label] each_object_details["percentage_probability"] = score * 100 each_object_details["box_points"] = detection_details.tolist() output_objects_array.append(each_object_details) if (extract_detected_objects == True): splitted_copy = detected_copy2.copy()[detection_details[1]:detection_details[3], detection_details[0]:detection_details[2]] if (output_type == "file"): splitted_image_path = os.path.join(objects_dir, self.numbers_to_names[label] + "-" + str( counting) + ".jpg") pltimage.imsave(splitted_image_path, splitted_copy) detected_objects_image_array.append(splitted_image_path) elif (output_type == "array"): detected_objects_image_array.append(splitted_copy) if (output_type == "file"): pltimage.imsave(output_image_path, detected_copy) if (extract_detected_objects == True): if (output_type == "file"): return output_objects_array, detected_objects_image_array elif (output_type == "array"): return detected_copy, output_objects_array, detected_objects_image_array else: if (output_type == "file"): return output_objects_array elif (output_type == "array"): return detected_copy, output_objects_array elif (self.__modelType == "yolov3" or self.__modelType == "tinyyolov3"): output_objects_array = [] detected_objects_image_array = [] if (input_type == "file"): image = Image.open(input_image) input_image = read_image_bgr(input_image) elif (input_type == "array"): image = Image.fromarray(np.uint8(input_image)) input_image = read_image_array(input_image) elif (input_type == "stream"): image = Image.open(input_image) input_image = read_image_stream(input_image) detected_copy = input_image detected_copy = cv2.cvtColor(detected_copy, cv2.COLOR_BGR2RGB) detected_copy2 = input_image detected_copy2 = cv2.cvtColor(detected_copy2, cv2.COLOR_BGR2RGB) new_image_size = (self.__yolo_model_image_size[0] - (self.__yolo_model_image_size[0] % 32), self.__yolo_model_image_size[1] - (self.__yolo_model_image_size[1] % 32)) boxed_image = letterbox_image(image, new_image_size) image_data = np.array(boxed_image, dtype="float32") image_data /= 255. image_data = np.expand_dims(image_data, 0) model = self.__model_collection[0] if thread_safe == True: with self.sess.graph.as_default(): out_boxes, out_scores, out_classes = self.sess.run( [self.__yolo_boxes, self.__yolo_scores, self.__yolo_classes], feed_dict={ model.input: image_data, self.__yolo_input_image_shape: [image.size[1], image.size[0]], K.learning_phase(): 0 }) else: out_boxes, out_scores, out_classes = self.sess.run( [self.__yolo_boxes, self.__yolo_scores, self.__yolo_classes], feed_dict={ model.input: image_data, self.__yolo_input_image_shape: [image.size[1], image.size[0]], K.learning_phase(): 0 }) min_probability = minimum_percentage_probability / 100 counting = 0 for a, b in reversed(list(enumerate(out_classes))): predicted_class = self.numbers_to_names[b] box = out_boxes[a] score = out_scores[a] if score < min_probability: continue counting += 1 objects_dir = output_image_path + "-objects" if (extract_detected_objects == True and output_type == "file"): if (os.path.exists(objects_dir) == False): os.mkdir(objects_dir) label = "{} {:.2f}".format(predicted_class, score) top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(image.size[0], np.floor(right + 0.5).astype('int32')) try: color = label_color(b) except: color = (255, 0, 0) detection_details = [left, top, right, bottom] draw_box(detected_copy, detection_details, color=color) if (display_object_name == True and display_percentage_probability == True): draw_caption(detected_copy, detection_details, label) elif (display_object_name == True): draw_caption(detected_copy, detection_details, predicted_class) elif (display_percentage_probability == True): draw_caption(detected_copy, detection_details, str(score * 100)) each_object_details = {} each_object_details["name"] = predicted_class each_object_details["percentage_probability"] = score * 100 each_object_details["box_points"] = detection_details output_objects_array.append(each_object_details) if (extract_detected_objects == True): splitted_copy = detected_copy2.copy()[detection_details[1]:detection_details[3], detection_details[0]:detection_details[2]] if (output_type == "file"): splitted_image_path = os.path.join(objects_dir, predicted_class + "-" + str( counting) + ".jpg") pltimage.imsave(splitted_image_path, splitted_copy) detected_objects_image_array.append(splitted_image_path) elif (output_type == "array"): detected_objects_image_array.append(splitted_copy) if (output_type == "file"): pltimage.imsave(output_image_path, detected_copy) if (extract_detected_objects == True): if (output_type == "file"): return output_objects_array, detected_objects_image_array elif (output_type == "array"): return detected_copy, output_objects_array, detected_objects_image_array else: if (output_type == "file"): return output_objects_array elif (output_type == "array"): return detected_copy, output_objects_array except: raise ValueError( "Ensure you specified correct input image, input type, output type and/or output image path ") def CustomObjects(self, person=False, bicycle=False, car=False, motorcycle=False, airplane=False, bus=False, train=False, truck=False, boat=False, traffic_light=False, fire_hydrant=False, stop_sign=False, parking_meter=False, bench=False, bird=False, cat=False, dog=False, horse=False, sheep=False, cow=False, elephant=False, bear=False, zebra=False, giraffe=False, backpack=False, umbrella=False, handbag=False, tie=False, suitcase=False, frisbee=False, skis=False, snowboard=False, sports_ball=False, kite=False, baseball_bat=False, baseball_glove=False, skateboard=False, surfboard=False, tennis_racket=False, bottle=False, wine_glass=False, cup=False, fork=False, knife=False, spoon=False, bowl=False, banana=False, apple=False, sandwich=False, orange=False, broccoli=False, carrot=False, hot_dog=False, pizza=False, donut=False, cake=False, chair=False, couch=False, potted_plant=False, bed=False, dining_table=False, toilet=False, tv=False, laptop=False, mouse=False, remote=False, keyboard=False, cell_phone=False, microwave=False, oven=False, toaster=False, sink=False, refrigerator=False, book=False, clock=False, vase=False, scissors=False, teddy_bear=False, hair_dryer=False, toothbrush=False): """ The 'CustomObjects()' function allows you to handpick the type of objects you want to detect from an image. The objects are pre-initiated in the function variables and predefined as 'False', which you can easily set to true for any number of objects available. This function returns a dictionary which must be parsed into the 'detectCustomObjectsFromImage()'. Detecting custom objects only happens when you call the function 'detectCustomObjectsFromImage()' * true_values_of_objects (array); Acceptable values are 'True' and False for all object values present :param boolean_values: :return: custom_objects_dict """ custom_objects_dict = {} input_values = [person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic_light, fire_hydrant, stop_sign, parking_meter, bench, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase, frisbee, skis, snowboard, sports_ball, kite, baseball_bat, baseball_glove, skateboard, surfboard, tennis_racket, bottle, wine_glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot, hot_dog, pizza, donut, cake, chair, couch, potted_plant, bed, dining_table, toilet, tv, laptop, mouse, remote, keyboard, cell_phone, microwave, oven, toaster, sink, refrigerator, book, clock, vase, scissors, teddy_bear, hair_dryer, toothbrush] actual_labels = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair dryer", "toothbrush"] for input_value, actual_label in zip(input_values, actual_labels): if (input_value == True): custom_objects_dict[actual_label] = "valid" else: custom_objects_dict[actual_label] = "invalid" return custom_objects_dict def detectCustomObjectsFromImage(self, custom_objects=None, input_image="", output_image_path="", input_type="file", output_type="file", extract_detected_objects=False, minimum_percentage_probability=50, display_percentage_probability=True, display_object_name=True, thread_safe=False): """ 'detectCustomObjectsFromImage()' function is used to detect predefined objects observable in the given image path: * custom_objects , an instance of the CustomObject class to filter which objects to detect * input_image , which can be file to path, image numpy array or image file stream * output_image_path , file path to the output image that will contain the detection boxes and label, if output_type="file" * input_type (optional) , file path/numpy array/image file stream of the image. Acceptable values are "file", "array" and "stream" * output_type (optional) , file path/numpy array/image file stream of the image. Acceptable values are "file" and "array" * extract_detected_objects (optional, False by default) , option to save each object detected individually as an image and return an array of the objects' image path. * minimum_percentage_probability (optional, 50 by default) , option to set the minimum percentage probability for nominating a detected object for output. * display_percentage_probability (optional, True by default), option to show or hide the percentage probability of each object in the saved/returned detected image * display_display_object_name (optional, True by default), option to show or hide the name of each object in the saved/returned detected image * thread_safe (optional, False by default), enforce the loaded detection model works across all threads if set to true, made possible by forcing all Tensorflow inference to run on the default graph. The values returned by this function depends on the parameters parsed. The possible values returnable are stated as below - If extract_detected_objects = False or at its default value and output_type = 'file' or at its default value, you must parse in the 'output_image_path' as a string to the path you want the detected image to be saved. Then the function will return: 1. an array of dictionaries, with each dictionary corresponding to the objects detected in the image. Each dictionary contains the following property: * name (string) * percentage_probability (float) * box_points (list of x1,y1,x2 and y2 coordinates) - If extract_detected_objects = False or at its default value and output_type = 'array' , Then the function will return: 1. a numpy array of the detected image 2. an array of dictionaries, with each dictionary corresponding to the objects detected in the image. Each dictionary contains the following property: * name (string) * percentage_probability (float) * box_points (list of x1,y1,x2 and y2 coordinates) - If extract_detected_objects = True and output_type = 'file' or at its default value, you must parse in the 'output_image_path' as a string to the path you want the detected image to be saved. Then the function will return: 1. an array of dictionaries, with each dictionary corresponding to the objects detected in the image. Each dictionary contains the following property: * name (string) * percentage_probability (float) * box_points (list of x1,y1,x2 and y2 coordinates) 2. an array of string paths to the image of each object extracted from the image - If extract_detected_objects = True and output_type = 'array', the the function will return: 1. a numpy array of the detected image 2. an array of dictionaries, with each dictionary corresponding to the objects detected in the image. Each dictionary contains the following property: * name (string) * percentage_probability (float) * box_points (list of x1,y1,x2 and y2 coordinates) 3. an array of numpy arrays of each object detected in the image :param input_image: :param output_image_path: :param input_type: :param output_type: :param extract_detected_objects: :param minimum_percentage_probability: :return output_objects_array: :param display_percentage_probability: :param display_object_name :return detected_copy: :return detected_detected_objects_image_array: """ if (self.__modelLoaded == False): raise ValueError("You must call the loadModel() function before making object detection.") elif (self.__modelLoaded == True): try: if (self.__modelType == "retinanet"): output_objects_array = [] detected_objects_image_array = [] if (input_type == "file"): image = read_image_bgr(input_image) elif (input_type == "array"): image = read_image_array(input_image) elif (input_type == "stream"): image = read_image_stream(input_image) detected_copy = image.copy() detected_copy = cv2.cvtColor(detected_copy, cv2.COLOR_BGR2RGB) detected_copy2 = image.copy() detected_copy2 = cv2.cvtColor(detected_copy2, cv2.COLOR_BGR2RGB) image = preprocess_image(image) image, scale = resize_image(image, min_side=self.__input_image_min, max_side=self.__input_image_max) model = self.__model_collection[0] if thread_safe == True: with self.sess.graph.as_default(): _, _, detections = model.predict_on_batch(np.expand_dims(image, axis=0)) else: _, _, detections = model.predict_on_batch(np.expand_dims(image, axis=0)) predicted_numbers = np.argmax(detections[0, :, 4:], axis=1) scores = detections[0, np.arange(detections.shape[1]), 4 + predicted_numbers] detections[0, :, :4] /= scale min_probability = minimum_percentage_probability / 100 counting = 0 for index, (label, score), in enumerate(zip(predicted_numbers, scores)): if score < min_probability: continue if (custom_objects != None): check_name = self.numbers_to_names[label] if (custom_objects[check_name] == "invalid"): continue counting += 1 objects_dir = output_image_path + "-objects" if (extract_detected_objects == True and output_type == "file"): if (os.path.exists(objects_dir) == False): os.mkdir(objects_dir) color = label_color(label) detection_details = detections[0, index, :4].astype(int) draw_box(detected_copy, detection_details, color=color) if (display_object_name == True and display_percentage_probability == True): caption = "{} {:.3f}".format(self.numbers_to_names[label], (score * 100)) draw_caption(detected_copy, detection_details, caption) elif (display_object_name == True): caption = "{} ".format(self.numbers_to_names[label]) draw_caption(detected_copy, detection_details, caption) elif (display_percentage_probability == True): caption = " {:.3f}".format((score * 100)) draw_caption(detected_copy, detection_details, caption) each_object_details = {} each_object_details["name"] = self.numbers_to_names[label] each_object_details["percentage_probability"] = score * 100 each_object_details["box_points"] = detection_details.tolist() output_objects_array.append(each_object_details) if (extract_detected_objects == True): splitted_copy = detected_copy2.copy()[detection_details[1]:detection_details[3], detection_details[0]:detection_details[2]] if (output_type == "file"): splitted_image_path = os.path.join(objects_dir, self.numbers_to_names[label] + "-" + str( counting) + ".jpg") pltimage.imsave(splitted_image_path, splitted_copy) detected_objects_image_array.append(splitted_image_path) elif (output_type == "array"): detected_objects_image_array.append(splitted_copy) if (output_type == "file"): pltimage.imsave(output_image_path, detected_copy) if (extract_detected_objects == True): if (output_type == "file"): return output_objects_array, detected_objects_image_array elif (output_type == "array"): return detected_copy, output_objects_array, detected_objects_image_array else: if (output_type == "file"): return output_objects_array elif (output_type == "array"): return detected_copy, output_objects_array elif (self.__modelType == "yolov3" or self.__modelType == "tinyyolov3"): output_objects_array = [] detected_objects_image_array = [] if (input_type == "file"): image = Image.open(input_image) input_image = read_image_bgr(input_image) elif (input_type == "array"): image = Image.fromarray(np.uint8(input_image)) input_image = read_image_array(input_image) elif (input_type == "stream"): image = Image.open(input_image) input_image = read_image_stream(input_image) detected_copy = input_image detected_copy = cv2.cvtColor(detected_copy, cv2.COLOR_BGR2RGB) detected_copy2 = input_image detected_copy2 = cv2.cvtColor(detected_copy2, cv2.COLOR_BGR2RGB) new_image_size = (self.__yolo_model_image_size[0] - (self.__yolo_model_image_size[0] % 32), self.__yolo_model_image_size[1] - (self.__yolo_model_image_size[1] % 32)) boxed_image = letterbox_image(image, new_image_size) image_data = np.array(boxed_image, dtype="float32") image_data /= 255. image_data =
np.expand_dims(image_data, 0)
numpy.expand_dims
# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # # Based on: # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- """blob helper functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from six.moves import cPickle as pickle import numpy as np import cv2 import math import numpy.random as npr import utils.segms as segm_utils import utils.boxes_3d as box_utils_3d from core.config import cfg def get_image_blob(im): """Convert an image into a network input. Arguments: im (ndarray): a gray scale image Returns: blob (ndarray): a data blob holding an image pyramid im_scale (float): image scale (target size) / (original size) im_info (ndarray) """ processed_im, im_scale = prep_im_for_blob(im, entry = None, phase = 'test') blob = im_list_to_blob(processed_im) slices, height, width = blob.shape[2], blob.shape[3], blob.shape[4] im_info = np.hstack((slices, height, width, im_scale))[np.newaxis, :] return blob, im_scale, im_info.astype(np.float32) def im_list_to_blob(ims): """Convert a list of images into a network input. Assumes images were prepared using prep_im_for_blob or equivalent Output is a 5D HCSHW tensor of the images concatenated along axis 0 with shape. """ if not isinstance(ims, list): ims = [ims] max_shape = get_max_shape([im.shape[:3] for im in ims]) # np array [max_s, max_h, max_w] num_images = len(ims) blob = np.zeros( (num_images, max_shape[0], max_shape[1], max_shape[2], 1), dtype=np.float32) for i in range(num_images): im = ims[i] blob[i, 0:im.shape[0], 0:im.shape[1], 0:im.shape[2], 0] = im # Move channels (axis 4) to axis 1 # Axis order will become: (batch elem, channel, slices, height, width) channel_swap = (0, 4, 1, 2, 3) blob = blob.transpose(channel_swap) return blob def get_max_shape(im_shapes): """Calculate max spatial size (s, h, w) for batching given a list of image shapes """ max_shape = np.array(im_shapes).max(axis=0) assert max_shape.size == 3 # Pad the image so they can be divisible by a stride if cfg.FPN.FPN_ON: stride = float(cfg.FPN.COARSEST_STRIDE) max_shape[0] = int(np.ceil(max_shape[0] / stride) * stride) max_shape[1] = int(np.ceil(max_shape[1] / stride) * stride) max_shape[2] = int(np.ceil(max_shape[2] / stride) * stride) return max_shape def crop_data_3d(im, entry): #random select the cropping start index and crop with half-overlap #select the cropped block containing most positive voxels because of the sparsity data_slices, data_height, data_width = map(int, im.shape[:]) boxes = entry['boxes'].copy() segms = entry['segms'].copy() ss = np.array(cfg.TRAIN.IN_SIZE, dtype=np.int16) x_min = math.floor(np.min(boxes[:, 0])) y_min = math.floor(np.min(boxes[:, 1])) z_min = math.floor(np.min(boxes[:, 2])) x_s_min = 0 x_s_max = min(x_min, data_width - ss[2]) y_s_min = 0 y_s_max = min(y_min, data_height - ss[1]) z_s_min = 0 z_s_max = min(z_min, data_slices - ss[0]) x_s = x_s_min if x_s_min == x_s_max else \ npr.choice(range(x_s_min, x_s_max + 1)) y_s = y_s_min if y_s_min == y_s_max else \ npr.choice(range(y_s_min, y_s_max + 1)) z_s = z_s_min if z_s_min == z_s_max else \ npr.choice(range(z_s_min, z_s_max + 1)) s_list = list(range(z_s, data_slices - ss[0], int(ss[0] / 2))) h_list = list(range(y_s, data_height - ss[1], int(ss[1] / 2))) w_list = list(range(x_s, data_width - ss[2], int(ss[2] / 2))) s_list.append(data_slices - ss[0]) h_list.append(data_height - ss[1]) w_list.append(data_width - ss[2]) max_pos_num = 0 posit = [] for z in s_list: for y in h_list: for x in w_list: boxes[:, 0::3] -= x boxes[:, 1::3] -= y boxes[:, 2::3] -= z np.clip(boxes[:, 0::3], 0, ss[2] - 1, out=boxes[:, 0::3]) np.clip(boxes[:, 1::3], 0, ss[1] - 1, out=boxes[:, 1::3]) np.clip(boxes[:, 2::3], 0, ss[0] - 1, out=boxes[:, 2::3]) invalid = (boxes[:, 0] == boxes[:, 3]) | (boxes[:, 1] == boxes[:, 4]) | (boxes[:, 2] == boxes[:, 5]) valid_inds = np.nonzero(~ invalid)[0] pos_box_volumes, _ = box_utils_3d.boxes_volume(boxes[valid_inds, :]) tmp_pos_num = np.sum(pos_box_volumes) if tmp_pos_num > max_pos_num: max_pos_num = tmp_pos_num posit = [x, y, z] boxes = entry['boxes'].copy() x, y, z = posit[:] im = im[z: z+ss[0], y: y+ss[1], x: x+ss[2]] boxes[:, 0::3] -= x boxes[:, 1::3] -= y boxes[:, 2::3] -= z segms[:, 0] -= x segms[:, 1] -= y segms[:, 2] -= z np.clip(boxes[:, 0::3], 0, ss[2] - 1, out=boxes[:, 0::3]) np.clip(boxes[:, 1::3], 0, ss[1] - 1, out=boxes[:, 1::3]) np.clip(boxes[:, 2::3], 0, ss[0] - 1, out=boxes[:, 2::3]) np.clip(segms[:, 0], 0, ss[2] - 1, out=segms[:, 0]) np.clip(segms[:, 1], 0, ss[1] - 1, out=segms[:, 1]) np.clip(segms[:, 2], 0, ss[0] - 1, out=segms[:, 2]) entry['boxes'] = boxes entry['segms'] = segms entry['slices'] = ss[0] entry['height'] = ss[1] entry['width'] = ss[2] return im def prep_im_for_blob(im, entry, phase): """Prepare an image for use as a network input blob. Specially: - Subtract per-channel pixel mean - Convert to float32 - Rescale to each of the specified target size (capped at max_size) - crop if need Returns a list of transformed images, one for each target size. Also returns the scale factors that were used to compute each returned image. """ im = im.astype(np.float32, copy=False) if cfg.PP_METHOD == 'norm1': mask = im > 0 mean_val = np.mean(im[mask]) std_val = np.std(im[mask]) im = (im - mean_val) / std_val elif cfg.PP_METHOD == 'norm2': im = im/65535. if phase == 'train' and cfg.TRAIN.NEED_CROP: im = crop_data_3d(im, entry) # Check bounding box boxes = entry['boxes'] invalid = (boxes[:, 0] == boxes[:, 3]) | (boxes[:, 1] == boxes[:, 4]) | (boxes[:, 2] == boxes[:, 5]) valid_inds = np.nonzero(~ invalid)[0] if len(valid_inds) < len(boxes): for key in ['boxes', 'segms', 'gt_classes', 'seg_volumes', 'gt_overlaps', 'is_crowd', 'gt_keypoints', 'max_classes', 'max_overlaps', 'bbox_targets']: if key in entry: entry[key] = entry[key][valid_inds] entry['box_to_gt_ind_map'] = np.array(list(range(len(valid_inds)))) im_scales = [1.0] ims = [im] return ims, im_scales def get_im_blob_sizes(im_shape, target_sizes, max_size): """Calculate im blob size for multiple target_sizes given original im shape """ im_size_min = np.min(im_shape) im_size_max = np.max(im_shape) im_sizes = [] for target_size in target_sizes: im_scale = get_target_scale(im_size_min, im_size_max, target_size, max_size) im_sizes.append(np.round(im_shape * im_scale)) return np.array(im_sizes) def get_target_scale(im_size_min, im_size_max, target_size, max_size): """Calculate target resize scale """ im_scale = float(target_size) / float(im_size_min) # Prevent the biggest axis from being more than max_size if np.round(im_scale * im_size_max) > max_size: im_scale = float(max_size) / float(im_size_max) return im_scale def zeros(shape, int32=False): """Return a blob of all zeros of the given shape with the correct float or int data type. """ return
np.zeros(shape, dtype=np.int32 if int32 else np.float32)
numpy.zeros
import cv2 import numpy as np import matplotlib.pyplot as plt import os def load_data(data_dir,group): losses = np.load(os.path.join(data_dir,'{}_losses.npy'.format(group))) #images = np.load(os.path.join(data_dir,'{}_inputs.npy'.format(group))) #recs = np.load(os.path.join(data_dir,'recs.npy')) names = np.load(os.path.join(data_dir,'{}_files.npy'.format(group))) #names = [os.path.basename(n)[:-4] for n in names] if 'abnormal' in group: labels = [1]*losses.shape[0] elif 'entering' in group: labels = [1]*losses.shape[0] else: labels = [0]*losses.shape[0] return losses, np.array(labels), np.array(names) def evaluate(cfg, dataset='test', groupings=['normal','abnormal'], threshold=0.0): experiment_dir = os.path.join("experiments/",cfg['experiment'],dataset) plt.figure(figsize=(8,6)) plt.ylabel('reconstruction error (MSE)', fontsize=12) file = open(os.path.join(experiment_dir,'extreems.txt'),"w") losses, labels, names = np.array([]), np.array([]), np.array([]) for group in groupings: loss, lab, name = load_data(experiment_dir,group) # find extreems indices = np.argsort(loss) file.write("{}\n".format(dataset)) #print(indices[-3:]) for l, n in zip(loss[indices[:3]],name[indices[:3]]): file.write("loss {}, file {}\n".format(l, n)) middle_idx = len(indices)//2 for l, n in zip(loss[indices[middle_idx-1:middle_idx+1]],name[indices[middle_idx-1:middle_idx+1]]): file.write("loss {}, file {}\n".format(l, n)) for l, n in zip(loss[indices[-3:]],name[indices[-3:]]): file.write("loss {}, file {}\n".format(l, n)) x = np.random.random_sample(loss.shape[0]) if 'abnormal' in group: plt.plot(x,loss,'.',color='r', label='Abnormal') elif 'entering' in group: plt.plot(x,loss,'.',color='y', label='Entering') #plt.plot(x,loss,'.',color='r') else: plt.plot(x,loss,'.',color='g', label='Normal') losses = np.concatenate((losses,loss), axis=0) labels =
np.concatenate((labels,lab), axis=0)
numpy.concatenate
""" Setup PBjam sessions and perform mode ID and peakbagging This module contains the input layer for setting up PBjam sessions for peakbagging solar-like oscillators. This is the easiest way to handle targets in PBjam. It's possible to manually initiate star class instances and do all the fitting that way, but it's simpler to just use the session class, which handles everything, including formatting of the inputs. A PBjam session is started by initializing the session class instance with a target ID, $\nu_{max}$, a large separation, effective temperature and Gaia bp_rp color. The class instance is the called to run through all the peakbagging steps automatically. See the Session class documentation for an example. Lists of the above can be provided for multiple targets, but it's often simpler to just provide PBjam with a dictionary or Pandas dataframe. See mytgts.csv for a template. Custom timeseries or periodograms can be provided as either file pathnames, `numpy' arrays, or lightkurve.LightCurve/lightkurve.periodogram objects. If nothing is provided PBjam will download the data automatically using `LightKurve'. Specific quarters, campgains or sectors can be requested with the relevant keyword (i.e., 'quarter' for KIC, etc.). If none of these are provided, PBjam will download all available data, using the long cadence versions by default. Once initialized, the session class contains a list of star class instances for each requested target, with associated spectra for each. The next step is to perform a mode ID on the spectra. At the moment PBjam only supports use of the asymptotic relation mode ID method. Additional methods can be added in future. Finally the peakbagging method takes the output from the modeID and performs a proper HMC peakbagging run to get the unparameterized mode frequencies. Plotting the results of each stage is also possible. Note ---- For automatic download the long cadence data set is used by default, so set the cadence to `short' for main-sequence targets. """ import lightkurve as lk from lightkurve.periodogram import Periodogram import numpy as np import astropy.units as units import pandas as pd import os, pickle, warnings from .star import star, _format_name from datetime import datetime from .jar import references def _organize_sess_dataframe(vardf): """ Takes input dataframe and tidies it up. Checks to see if required columns are present in the input dataframe, and adds optional columns if they don't exists, containing None values. Parameters ---------- vardf : Pandas.DataFrame Input dataframe """ keys = ['ID', 'numax', 'dnu', 'numax_err', 'dnu_err'] if not any(x not in keys for x in vardf.keys()): raise(KeyError, 'Some of the required keywords were missing.') N = len(vardf) singles = ['exptime', 'campaign', 'sector', 'month', 'quarter', 'mission'] doubles = ['teff', 'bp_rp'] for key in singles: if key not in vardf.keys(): vardf[key] = np.array([None]*N) for key in doubles: if key not in vardf.keys(): vardf[key] = np.array([None]*N) vardf[key+'_err'] = np.array([None]*N) if 'timeseries' not in vardf.keys(): _format_col(vardf, None, 'timeseries') if 'spectrum' not in vardf.keys(): _format_col(vardf, None, 'spectrum') def _organize_sess_input(**vardct): """ Takes input and organizes them in a dataframe. Checks to see if required inputs are present and inserts them into a dataframe. Any optional columns that are not included in the input are added as empty columns. Parameters ---------- vardct : objects Variable inputs to Session class to be arranged into a dataframe Returns ------- vardf : Pandas.DataFrame Dataframe containing the inputs from Session class call. """ vardf = pd.DataFrame({'ID': np.array(vardct['ID']).reshape((-1, 1)).flatten()}) N = len(vardf) singles = ['exptime', 'campaign', 'sector', 'month', 'quarter', 'mission'] doubles = ['numax', 'dnu', 'teff', 'bp_rp'] for key in singles: if not vardct[key]: vardf[key] = np.array([None]*N) else: vardf[key] = vardct[key] for key in doubles: if not vardct[key]: vardf[key] = np.array([None]*N) vardf[key+'_err'] = np.array([None]*N) else: vardf[key] = np.array(vardct[key]).reshape((-1, 2))[:, 0].flatten() vardf[key+'_err'] = np.array(vardct[key]).reshape((-1, 2))[:, 1].flatten() return vardf def _sort_lc(lc): """ Sort a lightcurve in Lightkurve object. Lightkurve lightcurves are not necessarily sorted in time, which causes an error in periodogram. Parameters ---------- lc : Lightkurve.LightCurve instance Lightkurve object to be modified Returns ------- lc : Lightkurve.LightCurve instance The sorted Lightkurve object """ sidx = np.argsort(lc.time) lc.time = lc.time[sidx] lc.flux = lc.flux[sidx] return lc def _query_lightkurve(ID, download_dir, use_cached, lkwargs): """ Get time series using LightKurve Performs a search for available fits files on MAST and then downloads them if nessary. The search results are cached with an expiration of 30 days. If a search result is found, the fits file cache is searched for a matching file list which is then used. Parameters ---------- ID : str ID string of the target download_dir : str Directory for fits file and search results caches. use_cached : bool, optional Whether or not to use the cached time series. Default is True. lkwargs : dict Dictionary to be passed to LightKurve Returns ------- lc : Lightkurve.LightCurve instance The concatenated time series for the target. """ ID = _format_name(ID) _set_mission(ID, lkwargs) ID = _getMASTidentifier(ID, lkwargs) search = _perform_search(ID, lkwargs, use_cached) fitsFiles = _check_lc_cache(search, lkwargs['mission']) lc = _load_fits(fitsFiles, lkwargs['mission']) lc = _clean_lc(lc) return lc def _arr_to_lk(x, y, name, typ): """ LightKurve object from input. Creates either a lightkurve.LightCurve or lightkurve.periodogram object from the input arrays. Parameters ---------- x : list-like First column of timeseries or periodogram (time/frequency). y : list-like Second column of timeseries or periodogram (flux/power). name : string Target ID typ : string Either timeseries or periodogram. Returns ------- lkobj : object Either lightkurve.LightCurve or lightkurve.periodogram object depending on typ. """ if typ == 'timeseries': return lk.LightCurve(time=x, flux=y, targetid=name) elif typ == 'spectrum': return Periodogram(x*units.microhertz, units.Quantity(y, None), targetid=name) else: raise KeyError("Don't modify anything but spectrum and timeseries cols") def _format_col(vardf, col, key): """ Add timeseries or spectrum column to dataframe based on input Based on the contents of col, will try to format col and add it as a column to vardf with column name key. col can be many things, so the decision is based mainly on the dimensionality of col. If dim = 0, it's assumed that col is either None, or a string, (for the latter it assumes there is then only one target). If dim = 1, it's assumed that col is a list-like object, consisting of either None or strings, these are passed along without modification. If dim = 2, col is assumed to be either a time series or power spectrum of shape (2,M), with time/frequency in 1st row and flux/power in the second. If dim = 3, it is assumed to be list of (2,M) arrays. In both of the latter cases col is converted to Lightkurve object(s). Parameters ---------- vardf : pandas.DataFrame instance Pandas Dataframe instance to which either a timeseries or spectrum column will be added. col : object Input from Session call, corresponding to key key : str Name of column to add to vardf """ N = np.shape(vardf['ID'])[0] col = np.array(col, dtype=object) # If dim = 0, it's either none or a string if col.ndim == 0: if not col: # If none, then multiply up to length of ID vardf[key] = np.array([None]*N) else: # If string, then single target vardf[key] = np.array(col).reshape((-1, 1)).flatten() # If dim = 1, it's either a list of nones, strings or lightkurve objects elif col.ndim == 1: vardf[key] = col # if dim = 2, it's an array or tuple, with time and flux elif col.ndim == 2: x =
np.array(col[0, :], dtype=float)
numpy.array
import numpy as np import MITgcmutils as mit #import matplotlib.pyplot as plt import os import gc from scipy.interpolate import griddata from scipy.interpolate import interp1d from multiprocessing import Pool #plt.ion() #-- directories -- dir_grd12 = '/glade/p/univ/ufsu0011/runs/gridMIT_update1/' dir_grd50 = '/glade/p/univ/ufsu0011/runs/chao50/gridMIT/' dir_in = '/glade/p/univ/ufsu0011/runs/orar/memb00' dir_out = '/glade/p/univ/ufsu0011/data_in/bound_cond_50' #-- some parameters -- nt = 73 #also need earlier and past year for interpolation, #for now it is coded in a 'normal year' fashion nproc = 36 #number of processors used for parallelization #-- time param for loading -- dt = 200 #1/12 model time step spy = 86400*365 dump = 5*86400 #5-d dumps d_iter = dump/dt nDump = spy/dump; #-- grid params -- # hz grid: defined in lat/lon for indexing, # but in [m] with co-localized origin for interpolation rSphere = 6370000.0 #- 1/12 - rC12 = mit.rdmds(dir_grd12 + 'RC') rF12 = mit.rdmds(dir_grd12 + 'RF') [nr12] = rC12[:, 0, 0].shape xx12 = mit.rdmds(dir_grd12 + 'XC') [ny12, nx12] = xx12.shape zzz12 = np.zeros([nr12+2]) zzz12[1:-1] = rC12[:, 0, 0] zzz12[-1] = rF12[-1, 0, 0] #- 1/50 - rC50 = mit.rdmds(dir_grd50 + 'RC') [nr50] = rC50[:, 0, 0].shape xx50 = mit.rdmds(dir_grd50 + 'XC') [ny50, nx50] = xx50.shape #-- variables and boundaries -- varN = ['t', 's', 'uE', 'vN'] nvar = len(varN) varOrder = [0, 1, 2, 3] #Ordering of variables in diagnostic used to make obcs bbdy = ['south', 'north', 'east', 'west'] nnbdy = len(bbdy) #----------------------------------------------------- # Define horizontal and vertical interpolation methods #----------------------------------------------------- def interp_obcs(tttt): #print("-- tt=%02i || Interpolate %s at bdy %s --" % (tttt, varN[ivar], bbdy[ibdy])) tmpvarin = var12[tttt, :, :, :].reshape([nr12, ny2*nx2]) #- hz interp - tmpvar = np.zeros([nr12+2, nxy50]) for kkk in range(nr12): tmpvar[kkk+1] = griddata(xy12, tmpvarin[kkk, :], (xx50, yy50), method=mmeth) tmpvar[0, :] = tmpvar[1, :] tmpvar[-1, :] = tmpvar[-2, :] #- vert interp - tmpvar2 = np.zeros([nr50, nxy50]) for ij in range(nxy50): # FOR TRACER ONLY # find last wet point and repeat it downward for constant interpolation if varN[ivar] == 't' or varN[ivar] == 's': tmpk = np.where( tmpvar[:, ij] == 0.0 )[0] if tmpk.size > 0: if (tmpk[0] > 0 and tmpk[0] < (nr12+1) ): tmpvar[tmpk[0]:, ij] = tmpvar[tmpk[0]-1, ij] # f = interp1d(zzz12, tmpvar[:, ij]) tmpvar2[:, ij] = f(rC50[:, 0, 0]) return tmpvar2 #------------------------------------------------------------------ # Make Boundary conditions from our previous 1/12 runs #------------------------------------------------------------------ iper = 2003 offset = int((iper-1958)*spy/dt) iters = np.arange(d_iter, (nDump+1)*d_iter, d_iter, dtype='int') + offset tmpdir = str('%s/%04i' % (dir_out, iper)) if not os.path.isdir(tmpdir): os.makedirs( tmpdir ) #-- Loop over variables and boundaries -- for ivar in range(nvar): if varN[ivar] == 'uE': flag_repz = False #to repeat grid points downward for vert. interp mmeth = 'cubic' #interpolation method # 1/50 x50deg = mit.rdmds(dir_grd50 + 'XG') y50deg = mit.rdmds(dir_grd50 + 'YC') hFac50 = mit.rdmds(dir_grd50 + 'hFacW') # 1/12 x12deg = mit.rdmds(dir_grd12 + 'XG') y12deg = mit.rdmds(dir_grd12 + 'YC') elif varN[ivar] == 'vN': flag_repz = False #to repeat grid points downward for vert. interp mmeth = 'cubic' #interpolation method # 1/50 x50deg = mit.rdmds(dir_grd50 + 'XC') y50deg = mit.rdmds(dir_grd50 + 'YG') hFac50 = mit.rdmds(dir_grd50 + 'hFacS') # 1/12 x12deg = mit.rdmds(dir_grd12 + 'XC') y12deg = mit.rdmds(dir_grd12 + 'YG') else: # tracers flag_repz = True #to repeat grid points downward for vert. interp mmeth = 'linear' #interpolation method # 1/50 x50deg = mit.rdmds(dir_grd50 + 'XC') y50deg = mit.rdmds(dir_grd50 + 'YC') hFac50 = mit.rdmds(dir_grd50 + 'hFacC') # 1/12 x12deg = mit.rdmds(dir_grd12 + 'XC') y12deg = mit.rdmds(dir_grd12 + 'YC') # define associated grid in [m] with co-localized origin tmpx50 = np.radians(x50deg - x50deg[0,0]) * rSphere * np.cos(np.radians(y50deg)) tmpy50 = np.radians(y50deg - y50deg[0,0]) * rSphere tmpx12 = np.radians(x12deg - x50deg[0,0]) * rSphere * np.cos(np.radians(y12deg)) tmpy12 = np.radians(y12deg - y50deg[0,0]) * rSphere # need to be consistent with ordering in bbdy [sbdy, nbdy, wbdy, ebdy] = [y50deg.min(), y50deg.max(), x50deg.min(), x50deg.max()] # for ibdy in range(nnbdy): print("== Deal with %s at bdy %s ==" % (varN[ivar], bbdy[ibdy]) ) # #-- boundary parameters -- deltaxy = 3 #+/- deltaxy grid points (on the 1/12 grid) around boundary if bbdy[ibdy] == 'south': #- 1/50 - if varN[ivar] == 'vN': #obcs are applied at inner grid points msk50 = hFac50[:, 1, :] xx50 = tmpx50[1, :] yy50 = tmpy50[1, :] else: msk50 = hFac50[:, 0, :] xx50 = tmpx50[0, :] yy50 = tmpy50[0, :] nxy50 = nx50 #- associated subdomain on the 1/12 grid - iiw = np.where(x12deg[0,:]>wbdy)[0][0] - deltaxy iie = np.where(x12deg[0,:]>ebdy)[0][0] + deltaxy jjs =
np.where(y12deg[:,0]>sbdy)
numpy.where
#!/usr/bin/python # Wflow is Free software, see below: # # Copyright (c) <NAME>/Deltares 2005-2014 # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ Run the wflow_sbm hydrological model.. usage :: wflow_sbm [-h][-v level][-F runinfofile][-L logfile][-C casename][-R runId] [-c configfile][-T last_step][-S first_step][-s seconds][-W][-E][-N][-U discharge] [-P parameter multiplication][-X][-f][-I][-i tbl_dir][-x subcatchId][-u updatecols] [-p inputparameter multiplication][-l loglevel] -X: save state at the end of the run over the initial conditions at the start -f: Force overwrite of existing results -T: Set end time of the run: yyyy-mm-dd hh:mm:ss -S: Set start time of the run: yyyy-mm-dd hh:mm:ss -s: Set the model timesteps in seconds -I: re-initialize the initial model conditions with default -i: Set input table directory (default is intbl) -x: Apply multipliers (-P/-p ) for subcatchment only (e.g. -x 1) -C: set the name of the case (directory) to run -R: set the name runId within the current case -L: set the logfile -E: Switch on reinfiltration of overland flow -c: name of wflow the configuration file (default: Casename/wflow_sbm.ini). -h: print usage information -W: If set, this flag indicates that an ldd is created for the water level for each timestep. If not the water is assumed to flow according to the DEM. Wflow will run a lot slower with this option. Most of the time (shallow soil, steep topography) you do not need this option. Also, if you need it you migth actually need another model. -U: The argument to this option should be a .tss file with measured discharge in [m^3/s] which the progam will use to update the internal state to match the measured flow. The number of columns in this file should match the number of gauges in the wflow_gauges.map file. -u: list of gauges/columns to use in update. Format: -u [1 , 4 ,13] The above example uses column 1, 4 and 13 -P: set parameter change string (e.g: -P "self.FC = self.FC * 1.6") for non-dynamic variables -p: set parameter change string (e.g: -P "self.Precipitation = self.Precipitation * 1.11") for dynamic variables -l: loglevel (most be one of DEBUG, WARNING, ERROR) """ import os.path import numpy as np import pcraster.framework from wflow.wf_DynamicFramework import * from wflow.wflow_adapt import * from wflow.wflow_funcs import * import pcraster as pcr import pdb import math from numba import jit wflow = "wflow_sbm: " updateCols = [] def usage(*args): sys.stdout = sys.stderr """Way""" for msg in args: print(msg) print(__doc__) sys.exit(0) def estimate_iterations_kin_wave(Q, Beta, alpha, timestepsecs, dx, mv): celerity = pcr.ifthen(Q > 0.0, 1.0 / (alpha * Beta * Q**(Beta-1))) courant = (timestepsecs / dx) * celerity np_courant = pcr.pcr2numpy(courant, mv) np_courant[np_courant==mv] = np.nan try: it_kin = int(np.ceil(1.25*(np.nanpercentile(np_courant,95)))) except: it_kin = 1 return it_kin @jit(nopython=True) def _sCurve(X, a=0.0, b=1.0, c=1.0): """ sCurve function: Input: - X input map - C determines the steepness or "stepwiseness" of the curve. The higher C the sharper the function. A negative C reverses the function. - b determines the amplitude of the curve - a determines the centre level (default = 0) Output: - result """ s = 1.0 / (b + np.exp(-c * (X - a))) return s @jit(nopython=True) def actEvap_unsat_SBM( RootingDepth, UStoreDepth, UStoreLayerThickness, sumLayer, RestPotEvap, sumActEvapUStore, c, L, thetaS, thetaR, ust=0, ): """ Actual evaporation function: - first try to get demand from the saturated zone, using the rootingdepth as a limiting factor - secondly try to get the remaining water from the unsaturated store - it uses an S-Curve the make sure roots het wet/dry gradually (basically) representing a root-depth distribution if ust is True, all ustore is deems to be avaiable fro the roots a Input: - RootingDepth, UStoreDepth, FirstZoneDepth, PotTrans, smoothpar Output: - ActEvap, FirstZoneDepth, UStoreDepth ActEvapUStore """ # AvailCap is fraction of unsat zone containing roots if ust >= 1: AvailCap = UStoreDepth * 0.99 else: if L > 0: AvailCap = min(1.0, max(0.0, (RootingDepth - sumLayer) / L)) else: AvailCap = 0.0 MaxExtr = AvailCap * UStoreDepth # Calculate the reduction of RestPotEvap due to differences in rooting density in the soil column # The used model is based on Vrugt et al. (2001) and uses as input parameters for z* and Pz the # values of Hoffman and van Genuchten (z* = 0.20 and Pz = 1.00) # Next step is to make use of the Feddes curve in order to decrease ActEvapUstore when soil moisture values # occur above or below ideal plant growing conditions (see also Feddes et al., 1978). h1-h4 values are # actually negative, but all values are made positive for simplicity. hb = 1 # cm (pF 1 for atmospheric pressure) h1 = 1 # cm h2 = 100 # cm (pF 2 for field capacity) h3 = 400 # cm (pF 3, critical pF value) h4 = 15849 # cm (pF 4.2, wilting point) # According to Brooks-Corey par_lambda = 2 / (c - 3) if L > 0.0: vwc = UStoreDepth / L else: vwc = 0.0 vwc = max(vwc, 0.0000001) head = hb / ( ((vwc) / (thetaS - thetaR)) ** (1 / par_lambda) ) # Note that in the original formula, thetaR is extracted from vwc, but thetaR is not part of the numerical vwc calculation head = max(head,hb) # Transform h to a reduction coefficient value according to Feddes et al. (1978). if(head <= h1): alpha = 0 elif(head >= h4): alpha = 0 elif((head < h2) & (head > h1)): alpha = (head - h1) / (h2 - h1) elif((head > h3) & (head < h4)): alpha = 1 - (head - h3) / (h4 - h3) else: alpha = 1 ActEvapUStore = (min(MaxExtr, RestPotEvap, UStoreDepth)) * alpha UStoreDepth = UStoreDepth - ActEvapUStore RestPotEvap = RestPotEvap - ActEvapUStore sumActEvapUStore = ActEvapUStore + sumActEvapUStore return UStoreDepth, sumActEvapUStore, RestPotEvap @jit(nopython=True) def infiltration(AvailableForInfiltration, PathFrac, cf_soil, TSoil,InfiltCapSoil,InfiltCapPath, UStoreCapacity, modelSnow, soilInfReduction): SoilInf = AvailableForInfiltration * (1 - PathFrac) PathInf = AvailableForInfiltration * PathFrac if modelSnow & soilInfReduction: bb = 1.0 / (1.0 - cf_soil) soilInfRedu = _sCurve(TSoil, a=0.0, b=bb, c=8.0) else: soilInfRedu = 1.0 MaxInfiltSoil = min(InfiltCapSoil * soilInfRedu, SoilInf) MaxInfiltPath = min(InfiltCapPath * soilInfRedu, PathInf) InfiltSoilPath = min(MaxInfiltPath + MaxInfiltSoil, max(0.0, UStoreCapacity)) return InfiltSoilPath @jit(nopython=True) def unsatzone_flow(UStoreLayerDepth, InfiltSoilPath, L, z, KsatVerFrac, c, KsatVer, f, thetaS, thetaR, SoilWaterCapacity, SWDold, shape_layer, TransferMethod): m = 0 UStoreLayerDepth[m] = UStoreLayerDepth[m] + InfiltSoilPath if L[m] > 0.0: #sbm option for vertical transfer (only for 1 layer) if (TransferMethod == 1 and shape_layer == 1): Sd = SoilWaterCapacity - SWDold if Sd <= 0.00001: st = 0.0 else: st = KsatVerFrac[m] * KsatVer * (min(UStoreLayerDepth[m],L[m]*(thetaS-thetaR))/Sd) else: st = KsatVerFrac[m] * KsatVer * np.exp(-f * z[m]) * min((UStoreLayerDepth[m]/(L[m] * (thetaS-thetaR)))**c[m],1.0) ast = min(st,UStoreLayerDepth[m]) UStoreLayerDepth[m] = UStoreLayerDepth[m] - ast else: ast = 0.0 for m in range(1,len(L)): UStoreLayerDepth[m] = UStoreLayerDepth[m] + ast if L[m] > 0.0: st = KsatVerFrac[m] * KsatVer * np.exp(-f* z[m]) * min((UStoreLayerDepth[m]/(L[m] * (thetaS-thetaR)))**c[m],1.0) ast = min(st,UStoreLayerDepth[m]) else: ast = 0.0 UStoreLayerDepth[m] = UStoreLayerDepth[m] - ast return ast, UStoreLayerDepth @jit(nopython=True) def sbm_cell(nodes, nodes_up, ldd, layer, static, dyn, modelSnow, soilInfReduction, timestepsecs, basetimestep, deltaT, nrpaddyirri, shape, TransferMethod, it_kinL=1, ust=0): shape_layer = layer['UStoreLayerThickness'].shape # flat new state ssf_new = np.zeros(dyn['ssf'].size, dtype=dyn['ssf'].dtype) qo_new = np.zeros(dyn['LandRunoff'].size, dtype=dyn['LandRunoff'].dtype) qo_new = np.concatenate((qo_new, np.array([0], dtype=dyn['LandRunoff'].dtype))) # append zero to end to deal with nodata (-1) in indices ssf_new = np.concatenate((ssf_new, np.array([0], dtype=dyn['ssf'].dtype))) ldd_ = np.concatenate((ldd, np.array([0], dtype=ldd.dtype))) slope_ = np.concatenate((static['slope'], np.array([0], dtype=static['slope'].dtype))) SWDold = np.zeros(dyn['ssf'].size, dtype=dyn['ssf'].dtype) sumUSold = np.zeros(dyn['ssf'].size, dtype=dyn['ssf'].dtype) for i in range(len(nodes)): for j in range(len(nodes[i])): idx = nodes[i][j] nbs = nodes_up[i][j] sumlayer = np.unique(layer['UStoreLayerThickness'][:,idx].cumsum()) sumlayer_0 = np.concatenate((np.array([0.0]), sumlayer)) SWDold[idx] = dyn['SatWaterDepth'][idx] sumUSold[idx] = layer['UStoreLayerDepth'][:,idx].sum() n = np.where(dyn['zi'][idx] > sumlayer_0)[0] if len(n) > 1: L = np.concatenate((layer['UStoreLayerThickness'][n[0:-1],idx], np.array([dyn['zi'][idx] - sumlayer_0[n[-1]]]))).astype(np.float64) else: L = np.array([dyn['zi'][idx]]).astype(np.float64) z = L.cumsum() dyn['ActEvapUStore'][idx] = 0.0 if static['River'][idx]: ind = np.where(ldd_[nbs] != ldd_[idx]) chanperc = np.zeros(ldd_[nbs].size) chanperc[ind] = slope_[nbs][ind]/(slope_[idx]+slope_[nbs][ind]) ssf_in = np.sum((1-chanperc)*ssf_new[nbs]) dyn['ssf_toriver'][idx] = np.sum((chanperc)*ssf_new[nbs])/(1000*1000*1000)/timestepsecs else: ssf_in = np.sum(ssf_new[nbs]) dyn['CellInFlow'][idx] = ssf_in UStoreCapacity = static['SoilWaterCapacity'][idx] - dyn['SatWaterDepth'][idx] - layer['UStoreLayerDepth'][n,idx].sum() InfiltSoilPath = infiltration(dyn['AvailableForInfiltration'][idx], static['PathFrac'][idx], static['cf_soil'][idx], dyn['TSoil'][idx],static['InfiltCapSoil'][idx],static['InfiltCapPath'][idx],UStoreCapacity, modelSnow, soilInfReduction) dyn['InfiltSoilPath'][idx] = InfiltSoilPath # unsat fluxes first ast, layer['UStoreLayerDepth'][:,idx] = unsatzone_flow(layer['UStoreLayerDepth'][:,idx], InfiltSoilPath, L, z, layer['KsatVerFrac'][:,idx], layer['c'][:,idx], static['KsatVer'][idx], static['f'][idx], static['thetaS'][idx], static['thetaR'][idx], static['SoilWaterCapacity'][idx], SWDold[idx], shape_layer[0], TransferMethod) dyn['Transfer'][idx] = ast # then evaporation from layers for k in range(len(L)): if k==0: SaturationDeficit = static['SoilWaterCapacity'][idx] - dyn['SatWaterDepth'][idx] if shape_layer[0] == 1: soilevapunsat = dyn['restEvap'][idx] * min(1.0, SaturationDeficit / static['SoilWaterCapacity'][idx]) else: if len(L) == 1: if dyn['zi'][idx] > 0: soilevapunsat = dyn['restEvap'][idx] * min(1.0, layer['UStoreLayerDepth'][k,idx]/dyn['zi'][idx]) else: soilevapunsat = 0.0 else: soilevapunsat = dyn['restEvap'][idx] * min(1.0, layer['UStoreLayerDepth'][k,idx]/(layer['UStoreLayerThickness'][k,idx]*(static['thetaS'][idx]-static['thetaR'][idx]))) soilevapunsat = min(soilevapunsat, layer['UStoreLayerDepth'][k,idx]) dyn['restEvap'][idx] = dyn['restEvap'][idx] - soilevapunsat layer['UStoreLayerDepth'][k,idx] = layer['UStoreLayerDepth'][k,idx] - soilevapunsat if shape_layer[0] == 1: soilevapsat = 0.0 else: if len(L) == 1: soilevapsat = dyn['restEvap'][idx] * min(1.0, (layer['UStoreLayerThickness'][k,idx] - dyn['zi'][idx])/ layer['UStoreLayerThickness'][k,idx]) soilevapsat = min(soilevapsat, (layer['UStoreLayerThickness'][k,idx] - dyn['zi'][idx]) * (static['thetaS'][idx] - static['thetaR'][idx])) else: soilevapsat = 0.0 dyn['soilevap'][idx] = soilevapunsat + soilevapsat dyn['SatWaterDepth'][idx] = dyn['SatWaterDepth'][idx] - soilevapsat # evaporation available for transpiration PotTrans = dyn['PotTransSoil'][idx] - dyn['soilevap'][idx] - dyn['ActEvapOpenWaterLand'][idx] # evaporation from saturated store wetroots = _sCurve(dyn['zi'][idx], a=static['ActRootingDepth'][idx], c=static['rootdistpar'][idx]) dyn['ActEvapSat'][idx] = min(PotTrans * wetroots, dyn['SatWaterDepth'][idx]) dyn['SatWaterDepth'][idx] = dyn['SatWaterDepth'][idx] - dyn['ActEvapSat'][idx] RestPotEvap = PotTrans - dyn['ActEvapSat'][idx] # actual evaporation from UStore layer['UStoreLayerDepth'][k,idx], dyn['ActEvapUStore'][idx], RestPotEvap = actEvap_unsat_SBM(static['ActRootingDepth'][idx], layer['UStoreLayerDepth'][k,idx], layer['UStoreLayerThickness'][k,idx], sumlayer[k], RestPotEvap, dyn['ActEvapUStore'][idx], layer['c'][k,idx], L[k], static['thetaS'][idx], static['thetaR'][idx], ust) else: # actual evaporation from UStore layer['UStoreLayerDepth'][k,idx], dyn['ActEvapUStore'][idx], RestPotEvap = actEvap_unsat_SBM(static['ActRootingDepth'][idx], layer['UStoreLayerDepth'][k,idx], layer['UStoreLayerThickness'][k,idx], sumlayer[k], RestPotEvap, dyn['ActEvapUStore'][idx], layer['c'][k,idx], L[k], static['thetaS'][idx], static['thetaR'][idx], ust) #check soil moisture balance per layer du = 0.0 for k in range(L.size-1,-1,-1): du = max(0,layer['UStoreLayerDepth'][k,idx] - L[k]*(static['thetaS'][idx]-static['thetaR'][idx])) layer['UStoreLayerDepth'][k,idx] = layer['UStoreLayerDepth'][k,idx] - du if k > 0: layer['UStoreLayerDepth'][k-1,idx] = layer['UStoreLayerDepth'][k-1,idx] + du Ksat = layer['KsatVerFrac'][len(L)-1,idx] * static['KsatVer'][idx] * np.exp(-static['f'][idx] * dyn['zi'][idx]) UStoreCapacity = static['SoilWaterCapacity'][idx] - dyn['SatWaterDepth'][idx] - layer['UStoreLayerDepth'][n,idx].sum() MaxCapFlux = max(0.0, min(Ksat, dyn['ActEvapUStore'][idx], UStoreCapacity, dyn['SatWaterDepth'][idx])) if dyn['zi'][idx] > static['ActRootingDepth'][idx]: CapFluxScale = static['CapScale'][idx] / (static['CapScale'][idx] + dyn['zi'][idx] - static['ActRootingDepth'][idx]) * timestepsecs / basetimestep else: CapFluxScale = 0.0 CapFlux = MaxCapFlux * CapFluxScale netCapflux = CapFlux actCapFlux = 0.0 for k in range(L.size-1,-1,-1): toadd = min(netCapflux, max(L[k]*(static['thetaS'][idx]-static['thetaR'][idx]) - layer['UStoreLayerDepth'][k,idx], 0.0)) layer['UStoreLayerDepth'][k,idx] = layer['UStoreLayerDepth'][k,idx] + toadd netCapflux = netCapflux - toadd actCapFlux = actCapFlux + toadd dyn['CapFlux'][idx] = actCapFlux DeepKsat = static['KsatVer'][idx] * np.exp(-static['f'][idx] * static['SoilThickness'][idx]) DeepTransfer = min(dyn['SatWaterDepth'][idx], DeepKsat) dyn['ActLeakage'][idx] = max(0.0, min(static['MaxLeakage'][idx], DeepTransfer)) r = (ast - actCapFlux - dyn['ActLeakage'][idx] - dyn['ActEvapSat'][idx] - soilevapsat) * static['DW'][idx]*1000 ssf_new[idx], dyn['zi'][idx], ExfiltSatWater = kinematic_wave_ssf(ssf_in, dyn['ssf'][idx], dyn['zi'][idx], r, static['KsatHorFrac'][idx], static['KsatVer'][idx], static['slope'][idx], static['neff'][idx], static['f'][idx], static['SoilThickness'][idx], deltaT, static['DL'][idx]*1000, static['DW'][idx]*1000, static['ssfmax'][idx]) dyn['zi'][idx] = min(dyn['zi'][idx], static['SoilThickness'][idx]) dyn['SatWaterDepth'][idx] = (static['SoilThickness'][idx] - dyn['zi'][idx]) * (static['thetaS'][idx] - static['thetaR'][idx]) n_new = np.where(dyn['zi'][idx] > sumlayer_0)[0] if len(n_new) > 1: L_new = np.concatenate((layer['UStoreLayerThickness'][n_new[0:-1],idx], np.array([dyn['zi'][idx] - sumlayer_0[n_new[-1]]]))).astype(np.float64) else: L_new = np.array([dyn['zi'][idx]]).astype(np.float64) ExfiltFromUstore = 0.0 for k in range(L.size-1,-1,-1): if (np.where(n_new == k))[0].size > 0: ExfiltFromUstore = max(0,layer['UStoreLayerDepth'][k,idx] - L_new[k]*(static['thetaS'][idx]-static['thetaR'][idx])) else: ExfiltFromUstore = layer['UStoreLayerDepth'][k,idx] layer['UStoreLayerDepth'][k,idx] = layer['UStoreLayerDepth'][k,idx] - ExfiltFromUstore if k > 0: layer['UStoreLayerDepth'][k-1,idx] = layer['UStoreLayerDepth'][k-1,idx] + ExfiltFromUstore dyn['ExfiltWater'][idx] = ExfiltSatWater + ExfiltFromUstore dyn['ExcessWater'][idx] = dyn['AvailableForInfiltration'][idx] - InfiltSoilPath + du dyn['ActInfilt'][idx] = InfiltSoilPath - du ponding_add = 0 if nrpaddyirri > 0: if static['h_p'][idx] > 0: ponding_add = min(dyn['ExfiltWater'][idx] + dyn['ExcessWater'][idx], static['h_p'][idx] - dyn['PondingDepth'][idx]) dyn['PondingDepth'][idx] = dyn['PondingDepth'][idx] + ponding_add dyn['InwaterO'][idx] = max(dyn['ExfiltWater'][idx] + dyn['ExcessWater'][idx] + dyn['RunoffLandCells'][idx] - dyn['ActEvapOpenWaterLand'][idx] - ponding_add, 0.0) * (static['xl'][idx] * static['yl'][idx]) * 0.001 / timestepsecs dyn['sumUStoreLayerDepth'][idx] = layer['UStoreLayerDepth'][:,idx].sum() # volumetric water contents per soil layer and root zone for k in range(layer['UStoreLayerThickness'][:,idx].size): if (np.where(n_new == k))[0].size > 0: if layer['UStoreLayerThickness'][k,idx] > 0: layer['vwc'][k,idx] = (layer['UStoreLayerDepth'][k,idx] + (layer['UStoreLayerThickness'][k,idx] - L_new[k]) * (static['thetaS'][idx] - static['thetaR'][idx])) / layer['UStoreLayerThickness'][k,idx] + static['thetaR'][idx] else: layer['vwc'][k,idx] = static['thetaS'][idx] layer['vwc_perc'][k,idx] = (layer['vwc'][k,idx]/static['thetaS'][idx]) * 100.0 rootStore_unsat = 0 for k in range(L_new.size): if L_new[k] > 0: rootStore_unsat = rootStore_unsat + (max(0.0, static['ActRootingDepth'][idx] - sumlayer_0[k])/L_new[k]) * layer['UStoreLayerDepth'][k,idx] dyn['RootStore_unsat'][idx] = rootStore_unsat acc_flow = np.zeros(dyn['LandRunoff'].size, dtype=dyn['LandRunoff'].dtype) acc_flow = np.concatenate((acc_flow, np.array([0], dtype=dyn['LandRunoff'].dtype))) qo_toriver_acc = np.copy(acc_flow) q = dyn['InwaterO'] / static['DL'] for v in range(0,it_kinL): qo_new = np.zeros(dyn['LandRunoff'].size, dtype=dyn['LandRunoff'].dtype) qo_new = np.concatenate((qo_new, np.array([0], dtype=dyn['LandRunoff'].dtype))) for i in range(len(nodes)): for j in range(len(nodes[i])): idx = nodes[i][j] nbs = nodes_up[i][j] if static['River'][idx]: ind = np.where(ldd_[nbs] != ldd_[idx]) chanperc = np.zeros(ldd_[nbs].size) chanperc[ind] = slope_[nbs][ind]/(slope_[idx]+slope_[nbs][ind]) if static['SW'][idx] > 0.0: qo_in = np.sum((1-chanperc)*qo_new[nbs]) qo_toriver_vol = np.sum(chanperc*qo_new[nbs]) * (timestepsecs/it_kinL) else: qo_in = 0.0 qo_toriver_vol = np.sum(qo_new[nbs]) * (timestepsecs/it_kinL) else: qo_in = np.sum(qo_new[nbs]) qo_toriver_vol = 0.0 qo_new[idx] = kinematic_wave(qo_in, dyn['LandRunoff'][idx], q[idx], dyn['AlphaL'][idx], static['Beta'][idx], timestepsecs/it_kinL, static['DL'][idx]) acc_flow[idx] = acc_flow[idx] + qo_new[idx] * (timestepsecs/it_kinL) dyn['Qo_in'][idx] = dyn['Qo_in'][idx] + qo_in * (timestepsecs/it_kinL) qo_toriver_acc[idx] = qo_toriver_acc[idx] + qo_toriver_vol if static['SW'][idx] > 0: WaterLevelL = (dyn['AlphaL'][idx] * np.power(qo_new[idx], static['Beta'][idx])) / static['SW'][idx] Pl = static['SW'][idx] + (2.0 * WaterLevelL) dyn['AlphaL'][idx] = static['AlpTermR'][idx] * np.power(Pl, static['AlpPow'][idx]) dyn['LandRunoff'][idx]= qo_new[idx] qo_new = acc_flow/timestepsecs dyn['qo_toriver'][:] = qo_toriver_acc[:-1]/timestepsecs dyn['Qo_in'][:] = dyn['Qo_in'][:] / timestepsecs dyn['SoilWatbal'][:] = (dyn['ActInfilt'][:] - ((dyn['SatWaterDepth'][:] + dyn['sumUStoreLayerDepth'][:]) - (sumUSold[:] + SWDold[:])) + (dyn['CellInFlow'][:]-ssf_new[:-1])/(static['DW'][:]*static['DL'][:]*1000*1000) - dyn['ExfiltWater'][:] - dyn['soilevap'][:] - dyn['ActEvapUStore'][:] - dyn['ActEvapSat'][:] - dyn['ActLeakage'][:]) return ssf_new[:-1], qo_new[:-1], dyn, layer def SnowPackHBV(Snow, SnowWater, Precipitation, Temperature, TTI, TT, TTM, Cfmax, WHC): """ HBV Type snowpack modelling using a Temperature degree factor. All correction factors (RFCF and SFCF) are set to 1. The refreezing efficiency factor is set to 0.05. :param Snow: :param SnowWater: :param Precipitation: :param Temperature: :param TTI: :param TT: :param TTM: :param Cfmax: :param WHC: :return: Snow,SnowMelt,Precipitation """ RFCF = 1.0 # correction factor for rainfall CFR = 0.05000 # refreeing efficiency constant in refreezing of freewater in snow SFCF = 1.0 # correction factor for snowfall RainFrac = pcr.ifthenelse( 1.0 * TTI == 0.0, pcr.ifthenelse(Temperature <= TT, pcr.scalar(0.0), pcr.scalar(1.0)), pcr.min((Temperature - (TT - TTI / 2)) / TTI, pcr.scalar(1.0)), ) RainFrac = pcr.max( RainFrac, pcr.scalar(0.0) ) # fraction of precipitation which falls as rain SnowFrac = 1 - RainFrac # fraction of precipitation which falls as snow Precipitation = ( SFCF * SnowFrac * Precipitation + RFCF * RainFrac * Precipitation ) # different correction for rainfall and snowfall SnowFall = SnowFrac * Precipitation # snowfall depth RainFall = RainFrac * Precipitation # rainfall depth PotSnowMelt = pcr.ifthenelse( Temperature > TTM, Cfmax * (Temperature - TTM), pcr.scalar(0.0) ) # Potential snow melt, based on temperature PotRefreezing = pcr.ifthenelse( Temperature < TTM, Cfmax * CFR * (TTM - Temperature), 0.0 ) # Potential refreezing, based on temperature Refreezing = pcr.ifthenelse( Temperature < TTM, pcr.min(PotRefreezing, SnowWater), 0.0 ) # actual refreezing # No landuse correction here SnowMelt = pcr.min(PotSnowMelt, Snow) # actual snow melt Snow = Snow + SnowFall + Refreezing - SnowMelt # dry snow content SnowWater = SnowWater - Refreezing # free water content in snow MaxSnowWater = Snow * WHC # Max water in the snow SnowWater = ( SnowWater + SnowMelt + RainFall ) # Add all water and potentially supersaturate the snowpack RainFall = pcr.max(SnowWater - MaxSnowWater, 0.0) # rain + surpluss snowwater SnowWater = SnowWater - RainFall return Snow, SnowWater, SnowMelt, RainFall, SnowFall class WflowModel(pcraster.framework.DynamicModel): """ .. versionchanged:: 0.91 - Calculation of GWScale moved to resume() to allow fitting. .. versionadded:: 0.91 - added S-curve for freezing soil infiltration reduction calculations .. todo:: - add slope based quick-runoff -> less percolation on hillslopes... """ def __init__(self, cloneMap, Dir, RunDir, configfile): pcraster.framework.DynamicModel.__init__(self) self.UStoreLayerDepth = [] self.caseName = os.path.abspath(Dir) self.clonemappath = os.path.join(os.path.abspath(Dir), "staticmaps", cloneMap) pcr.setclone(self.clonemappath) self.runId = RunDir self.Dir = os.path.abspath(Dir) self.configfile = configfile self.SaveDir = os.path.join(self.Dir, self.runId) def irrigationdemand(self, pottrans, acttrans, irareas): """ Determine irrigation water demand from the difference bewteen potential transpiration and actual transpiration. :param pottrans: potential transpiration (epot minus interception and soil/open water evaporation) :param acttrans: actual transpiration :param ir_areas: maps of irrigation areas :return: demand """ Et_diff = pcr.areaaverage(pottrans - acttrans, pcr.nominal(irareas)) # Now determine demand in m^3/s for each area sqmarea = pcr.areatotal(self.reallength * self.reallength, pcr.nominal(irareas)) m3sec = Et_diff * sqmarea / 1000.0 / self.timestepsecs return Et_diff, m3sec def updateRunOff(self): """ Updates the kinematic wave reservoir. Should be run after updates to Q """ self.WaterLevelR = (self.AlphaR * pow(self.RiverRunoff, self.Beta)) / self.Bw # wetted perimeter (m) Pr = self.Bw + (2 * self.WaterLevelR) # Alpha self.AlphaR = self.AlpTermR * pow(Pr, self.AlpPow) self.OldKinWaveVolumeR = self.KinWaveVolumeR self.KinWaveVolumeR = self.WaterLevelR * self.Bw * self.DCL self.dyn['AlphaR'] = pcr.pcr2numpy(self.AlphaR,self.mv).ravel() self.WaterLevelL = pcr.ifthenelse( self.SW > 0, (self.AlphaL * pow(self.LandRunoff, self.Beta)) / self.SW, 0.0) Pl = self.SW + (2 * self.WaterLevelL) # Alpha self.AlphaL = self.AlpTermL * pow(Pl, self.AlpPow) self.OldKinWaveVolumeL = self.KinWaveVolumeL self.KinWaveVolumeL = self.WaterLevelL * self.SW * self.DL self.dyn['AlphaL'] = pcr.pcr2numpy(self.AlphaL,self.mv).ravel() def stateVariables(self): """ returns a list of state variables that are essential to the model. This list is essential for the resume and suspend functions to work. This function is specific for each model and **must** be present. :var self.RiverRunoff: Surface runoff in the kin-wave resrvoir [m^3/s] :var self.LandRunoff: Surface runoff in the kin-wave resrvoir [m^3/s] :var self.SurfaceRunoffDyn: Surface runoff in the dyn-wave resrvoir [m^3/s] :var self.WaterLevelR: Water level in the river kin-wave reservoir [m] :var self.WaterLevelL: Water level in the land kin-wave reservoir [m] :var self.WaterLevelDyn: Water level in the dyn-wave resrvoir [m^] :var self.Snow: Snow pack [mm] :var self.SnowWater: Snow pack water [mm] :var self.TSoil: Top soil temperature [oC] :var self.UStoreDepth: Water in the Unsaturated Store [mm] :var self.SatWaterDepth: Water in the saturated store [mm] :var self.CanopyStorage: Amount of water on the Canopy [mm] :var self.ReservoirVolume: Volume of each reservoir [m^3] :var self.GlacierStore: Thickness of the Glacier in a gridcell [mm] """ states = [ "RiverRunoff", "WaterLevelR", "LandRunoff", "WaterLevelL", "SatWaterDepth", "Snow", "TSoil", "UStoreLayerDepth", "SnowWater", "CanopyStorage", "SubsurfaceFlow", ] if hasattr(self, "GlacierFrac"): states.append("GlacierStore") if hasattr(self, "ReserVoirSimpleLocs"): states.append("ReservoirVolume") if hasattr(self, "ReserVoirComplexLocs"): states.append("ReservoirWaterLevel") if hasattr(self, "nrpaddyirri"): if self.nrpaddyirri > 0: states.append("PondingDepth") return states def supplyCurrentTime(self): """ gets the current time in seconds after the start of the run """ return self.currentTimeStep() * self.timestepsecs def suspend(self): self.logger.info("Saving initial conditions...") self.wf_suspend(os.path.join(self.SaveDir, "outstate")) if self.OverWriteInit: self.logger.info("Saving initial conditions over start conditions...") self.wf_suspend(self.SaveDir + "/instate/") def parameters(self): """ Define all model parameters here that the framework should handle for the model See wf_updateparameters and the parameters section of the ini file If you use this make sure to all wf_updateparameters at the start of the dynamic section and at the start/end of the initial section """ modelparameters = [] # Static model parameters e.g. # modelparameters.append(self.ParamType(name="RunoffGeneratingGWPerc",stack="intbl/RunoffGeneratingGWPerc.tbl",type="static",default=0.1)) # 3: Input time series ################################################### self.P_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Precipitation", "/inmaps/P" ) # timeseries for rainfall self.PET_mapstack = self.Dir + configget( self.config, "inputmapstacks", "EvapoTranspiration", "/inmaps/PET" ) # timeseries for rainfall"/inmaps/PET" # potential evapotranspiration self.TEMP_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Temperature", "/inmaps/TEMP" ) # timeseries for rainfall "/inmaps/TEMP" # global radiation self.Inflow_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Inflow", "/inmaps/IF" ) # timeseries for rainfall "/inmaps/IF" # in/outflow locations (abstractions) # Meteo and other forcing modelparameters.append( self.ParamType( name="Precipitation", stack=self.P_mapstack, type="timeseries", default=0.0, verbose=True, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="PotenEvap", stack=self.PET_mapstack, type="timeseries", default=0.0, verbose=True, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="Temperature", stack=self.TEMP_mapstack, type="timeseries", default=10.0, verbose=True, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="Inflow", stack=self.Inflow_mapstack, type="timeseries", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="IrrigationAreas", stack="staticmaps/wflow_irrigationareas.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="IrrigationSurfaceIntakes", stack="staticmaps/wflow_irrisurfaceintake.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="IrrigationPaddyAreas", stack="staticmaps/wflow_irrigationpaddyareas.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="IrrigationSurfaceReturn", stack="staticmaps/wflow_irrisurfacereturns.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="h_max", stack="staticmaps/wflow_hmax.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="h_min", stack="staticmaps/wflow_hmin.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="h_p", stack="staticmaps/wflow_hp.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) return modelparameters def initial(self): """ Initial part of the model, executed only once. Reads all static data from disk *Soil* :var M.tbl: M parameter in the SBM model. Governs the decay of Ksat with depth [-] :var thetaR.tbl: Residual water content [mm/mm] :var thetaS.tbl: Saturated water content (porosity) [mm/mm] :var KsatVer.tbl: Saturated conductivity [mm/d] :var PathFrac.tbl: Fraction of compacted area per grid cell [-] :var InfiltCapSoil.tbl: Soil infiltration capacity [m/d] :var InfiltCapPath.tbl: Infiltration capacity of the compacted areas [mm/d] :var SoilMinThickness.tbl: Minimum wdepth of the soil [mm] :var SoilThickness.tbl: Maximum depth of the soil [m] :var RootingDepth.tbl: Depth of the roots [mm] :var MaxLeakage.tbl: Maximum leakage out of the soil profile [mm/d] :var CapScale.tbl: Scaling factor in the Capilary rise calculations (100) [mm/d] :var RunoffGeneratingGWPerc: Fraction of the soil depth that contributes to subcell runoff (0.1) [-] :var rootdistpar.tbl: Determine how roots are linked to water table. The number should be negative. A more negative number means that all roots are wet if the water table is above the lowest part of the roots. A less negative number smooths this. [mm] (default = -80000) *Canopy* :var CanopyGapFraction.tbl: Fraction of precipitation that does not hit the canopy directly [-] :var MaxCanopyStorage.tbl: Canopy interception storage capacity [mm] :var EoverR.tbl: Ratio of average wet canopy evaporation rate over rainfall rate [-] *Surface water* :var N.tbl: Manning's N parameter :var N_river.tbl: Manning's N parameter for cells marked as river *Snow and frozen soil modelling parameters* :var cf_soil.tbl: Soil infiltration reduction factor when soil is frozen [-] (< 1.0) :var TTI.tbl: critical temperature for snowmelt and refreezing (1.000) [oC] :var TT.tbl: defines interval in which precipitation falls as rainfall and snowfall (-1.41934) [oC] :var Cfmax.tbl: meltconstant in temperature-index ( 3.75653) [-] :var WHC.tbl: fraction of Snowvolume that can store water (0.1) [-] :var w_soil.tbl: Soil temperature smooth factor. Given for daily timesteps. (0.1125) [-] Wigmosta, <NAME>., <NAME>, <NAME>, and <NAME> (2009). """ global statistics global multpars global updateCols self.thestep = pcr.scalar(0) self.basetimestep = 86400 self.SSSF = False pcr.setglobaloption("unittrue") self.mv = -999 self.count = 0 self.logger.info("running for " + str(self.nrTimeSteps()) + " timesteps") # Set and get defaults from ConfigFile here ################################### self.Tslice = int(configget(self.config, "model", "Tslice", "1")) self.reinit = int(configget(self.config, "run", "reinit", "0")) self.OverWriteInit = int(configget(self.config, "model", "OverWriteInit", "0")) self.updating = int(configget(self.config, "model", "updating", "0")) self.updateFile = configget(self.config, "model", "updateFile", "no_set") self.TransferMethod = int( configget(self.config, "model", "transfermethod", "0") ) self.maxitsupply = int(configget(self.config, "model", "maxitsupply", "5")) self.UST = int(configget(self.config, "model", "Whole_UST_Avail", "0")) self.NRiverMethod = int(configget(self.config, "model", "nrivermethod", "1")) self.kinwaveIters = int(configget(self.config, "model", "kinwaveIters", "0")) if self.kinwaveIters == 1: self.logger.info( "Using sub timestep for kinematic wave (iterate)" ) if self.TransferMethod == 1: self.logger.info( "Applying the original topog_sbm vertical transfer formulation" ) self.sCatch = int(configget(self.config, "model", "sCatch", "0")) self.intbl = configget(self.config, "model", "intbl", "intbl") self.modelSnow = int(configget(self.config, "model", "ModelSnow", "1")) self.soilInfReduction = int(configget(self.config, "model", "soilInfRedu", "1")) sizeinmetres = int(configget(self.config, "layout", "sizeinmetres", "0")) alf = float(configget(self.config, "model", "Alpha", "60")) # TODO: make this into a list for all gauges or a map Qmax = float(configget(self.config, "model", "AnnualDischarge", "300")) self.UpdMaxDist = float(configget(self.config, "model", "UpdMaxDist", "100")) self.MaxUpdMult = float(configget(self.config, "model", "MaxUpdMult", "1.3")) self.MinUpdMult = float(configget(self.config, "model", "MinUpdMult", "0.7")) self.UpFrac = float(configget(self.config, "model", "UpFrac", "0.8")) # self.ExternalQbase=int(configget(self.config,'model','ExternalQbase','0')) self.waterdem = int(configget(self.config, "model", "waterdem", "0")) WIMaxScale = float(configget(self.config, "model", "WIMaxScale", "0.8")) self.MassWasting = int(configget(self.config, "model", "MassWasting", "0")) self.nrLayers = int(configget(self.config, "model", "nrLayers", "1")) # static maps to use (normally default) wflow_subcatch = configget( self.config, "model", "wflow_subcatch", "staticmaps/wflow_subcatch.map" ) wflow_dem = configget( self.config, "model", "wflow_dem", "staticmaps/wflow_dem.map" ) wflow_ldd = configget( self.config, "model", "wflow_ldd", "staticmaps/wflow_ldd.map" ) wflow_river = configget( self.config, "model", "wflow_river", "staticmaps/wflow_river.map" ) wflow_riverlength = configget( self.config, "model", "wflow_riverlength", "staticmaps/wflow_riverlength.map", ) wflow_riverlength_fact = configget( self.config, "model", "wflow_riverlength_fact", "staticmaps/wflow_riverlength_fact.map", ) wflow_landuse = configget( self.config, "model", "wflow_landuse", "staticmaps/wflow_landuse.map" ) wflow_soil = configget( self.config, "model", "wflow_soil", "staticmaps/wflow_soil.map" ) wflow_gauges = configget( self.config, "model", "wflow_gauges", "staticmaps/wflow_gauges.map" ) wflow_inflow = configget( self.config, "model", "wflow_inflow", "staticmaps/wflow_inflow.map" ) wflow_riverwidth = configget( self.config, "model", "wflow_riverwidth", "staticmaps/wflow_riverwidth.map" ) wflow_streamorder = configget( self.config, "model", "wflow_streamorder", "staticmaps/wflow_streamorder.map", ) # 2: Input base maps ######################################################## subcatch = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_subcatch), 0.0, fail=True) ) # Determines the area of calculations (all cells > 0) subcatch = pcr.ifthen(subcatch > 0, subcatch) self.Altitude = self.wf_readmap( os.path.join(self.Dir, wflow_dem), 0.0, fail=True ) # * pcr.scalar(pcr.defined(subcatch)) # DEM self.TopoLdd = pcr.ldd( self.wf_readmap(os.path.join(self.Dir, wflow_ldd), 0.0, fail=True) ) # Local self.TopoId = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_subcatch), 0.0, fail=True) ) # area map self.River = pcr.cover( pcr.boolean( self.wf_readmap(os.path.join(self.Dir, wflow_river), 0.0, fail=True) ), 0, ) self.RiverLength = pcr.cover( self.wf_readmap(os.path.join(self.Dir, wflow_riverlength), 0.0), 0.0 ) # Factor to multiply riverlength with (defaults to 1.0) self.RiverLengthFac = self.wf_readmap( os.path.join(self.Dir, wflow_riverlength_fact), 1.0 ) # read landuse and soilmap and make sure there are no missing points related to the # subcatchment map. Currently sets the lu and soil type type to 1 self.LandUse = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_landuse), 0.0, fail=True) ) self.LandUse = pcr.cover(self.LandUse, pcr.ordinal(subcatch > 0)) self.Soil = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_soil), 0.0, fail=True) ) self.Soil = pcr.cover(self.Soil, pcr.ordinal(subcatch > 0)) self.OutputLoc = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_gauges), 0.0, fail=True) ) # location of output gauge(s) self.InflowLoc = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_inflow), 0.0) ) # location abstractions/inflows. self.RiverWidth = self.wf_readmap(os.path.join(self.Dir, wflow_riverwidth), 0.0) # Experimental self.RunoffGenSigmaFunction = int( configget(self.config, "model", "RunoffGenSigmaFunction", "0") ) self.SubCatchFlowOnly = int( configget(self.config, "model", "SubCatchFlowOnly", "0") ) self.OutputId = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_subcatch), 0.0, fail=True) ) # location of subcatchment # Temperature correction poer cell to add self.TempCor = self.wf_readmap( self.Dir + "\\" + configget( self.config, "model", "TemperatureCorrectionMap", "staticmaps/wflow_tempcor.map", ), 0.0, ) self.ZeroMap = 0.0 * pcr.scalar(subcatch) # map with only zero's # Set static initial values here ######################################### self.pi = 3.1416 self.e = 2.7183 self.SScale = 100.0 self.Latitude = pcr.ycoordinate(pcr.boolean(self.Altitude)) self.Longitude = pcr.xcoordinate(pcr.boolean(self.Altitude)) # Read parameters NEW Method self.logger.info("Linking parameters to landuse, catchment and soil...") self.wf_updateparameters() self.RunoffGeneratingGWPerc = self.readtblDefault( self.Dir + "/" + self.intbl + "/RunoffGeneratingGWPerc.tbl", self.LandUse, subcatch, self.Soil, 0.1, ) if hasattr(self, "LAI"): # Sl must also be defined if not hasattr(self, "Sl"): logging.error( "Sl (specific leaf storage) not defined! Needed becausee LAI is defined." ) logging.error("Please add it to the modelparameters section. e.g.:") logging.error( "Sl=inmaps/clim/LCtoSpecificLeafStorage.tbl,tbl,0.5,1,inmaps/clim/LC.map" ) if not hasattr(self, "Kext"): logging.error( "Kext (canopy extinction coefficient) not defined! Needed becausee LAI is defined." ) logging.error("Please add it to the modelparameters section. e.g.:") logging.error( "Kext=inmaps/clim/LCtoExtinctionCoefficient.tbl,tbl,0.5,1,inmaps/clim/LC.map" ) if not hasattr(self, "Swood"): logging.error( "Swood wood (branches, trunks) canopy storage not defined! Needed becausee LAI is defined." ) logging.error("Please add it to the modelparameters section. e.g.:") logging.error( "Swood=inmaps/clim/LCtoBranchTrunkStorage.tbl,tbl,0.5,1,inmaps/clim/LC.map" ) self.Cmax = self.Sl * self.LAI + self.Swood self.CanopyGapFraction = pcr.exp(-self.Kext * self.LAI) self.np_CanopyGapFraction = pcr.pcr2numpy(self.CanopyGapFraction,self.mv) # TODO: Add MAXLAI and CWf lookup else: self.Cmax = self.readtblDefault( self.Dir + "/" + self.intbl + "/MaxCanopyStorage.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) self.CanopyGapFraction = self.readtblDefault( self.Dir + "/" + self.intbl + "/CanopyGapFraction.tbl", self.LandUse, subcatch, self.Soil, 0.1, ) self.EoverR = self.readtblDefault( self.Dir + "/" + self.intbl + "/EoverR.tbl", self.LandUse, subcatch, self.Soil, 0.1, ) if not hasattr(self, "DemandReturnFlowFraction"): self.DemandReturnFlowFraction = self.ZeroMap self.RootingDepth = self.readtblDefault( self.Dir + "/" + self.intbl + "/RootingDepth.tbl", self.LandUse, subcatch, self.Soil, 750.0, ) # rooting depth #: rootdistpar determien how roots are linked to water table. self.rootdistpar = self.readtblDefault( self.Dir + "/" + self.intbl + "/rootdistpar.tbl", self.LandUse, subcatch, self.Soil, -8000, ) # rrootdistpar # Soil parameters # infiltration capacity if the soil [mm/day] self.InfiltCapSoil = ( self.readtblDefault( self.Dir + "/" + self.intbl + "/InfiltCapSoil.tbl", self.LandUse, subcatch, self.Soil, 100.0, ) * self.timestepsecs / self.basetimestep ) self.CapScale = self.readtblDefault( self.Dir + "/" + self.intbl + "/CapScale.tbl", self.LandUse, subcatch, self.Soil, 100.0, ) # # infiltration capacity of the compacted self.InfiltCapPath = ( self.readtblDefault( self.Dir + "/" + self.intbl + "/InfiltCapPath.tbl", self.LandUse, subcatch, self.Soil, 10.0, ) * self.timestepsecs / self.basetimestep ) self.MaxLeakage = ( self.readtblDefault( self.Dir + "/" + self.intbl + "/MaxLeakage.tbl", self.LandUse, subcatch, self.Soil, 0.0, ) * self.timestepsecs / self.basetimestep ) self.MaxPercolation = ( self.readtblDefault( self.Dir + "/" + self.intbl + "/MaxPercolation.tbl", self.LandUse, subcatch, self.Soil, 0.0, ) * self.timestepsecs / self.basetimestep ) # areas (paths) in [mm/day] # Fraction area with compacted soil (Paths etc.) self.PathFrac = self.readtblDefault( self.Dir + "/" + self.intbl + "/PathFrac.tbl", self.LandUse, subcatch, self.Soil, 0.01, ) # thickness of the soil self.SoilThickness = self.readtblDefault( self.Dir + "/" + self.intbl + "/SoilThickness.tbl", self.LandUse, subcatch, self.Soil, 2000.0, ) self.thetaR = self.readtblDefault( self.Dir + "/" + self.intbl + "/thetaR.tbl", self.LandUse, subcatch, self.Soil, 0.01, ) self.thetaS = self.readtblDefault( self.Dir + "/" + self.intbl + "/thetaS.tbl", self.LandUse, subcatch, self.Soil, 0.6, ) # minimum thickness of soild self.SoilMinThickness = self.readtblDefault( self.Dir + "/" + self.intbl + "/SoilMinThickness.tbl", self.LandUse, subcatch, self.Soil, 500.0, ) # KsatVer = $2\inmaps\KsatVer.map self.KsatVer = ( self.readtblDefault( self.Dir + "/" + self.intbl + "/KsatVer.tbl", self.LandUse, subcatch, self.Soil, 3000.0, ) * self.timestepsecs / self.basetimestep ) self.MporeFrac = self.readtblDefault( self.Dir + "/" + self.intbl + "/MporeFrac.tbl", self.LandUse, subcatch, self.Soil, 0.0, ) self.KsatHorFrac = self.readtblDefault( self.Dir + "/" + self.intbl + "/KsatHorFrac.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) # Check if we have irrigation areas tt = pcr.pcr2numpy(self.IrrigationAreas, 0.0) self.nrirri = tt.max() # Check of we have paddy irrigation areas tt = pcr.pcr2numpy(self.IrrigationPaddyAreas, 0.0) self.nrpaddyirri = tt.max() self.Beta = pcr.scalar(0.6) # For sheetflow self.M = self.readtblDefault( self.Dir + "/" + self.intbl + "/M.tbl", self.LandUse, subcatch, self.Soil, 300.0, ) # Decay parameter in Topog_sbm self.N = self.readtblDefault( self.Dir + "/" + self.intbl + "/N.tbl", self.LandUse, subcatch, self.Soil, 0.072, ) # Manning overland flow if self.NRiverMethod == 1: self.NRiver = self.readtblDefault( self.Dir + "/" + self.intbl + "/N_River.tbl", self.LandUse, subcatch, self.Soil, 0.036, ) # Manning river if self.NRiverMethod == 2: self.NRiver = self.readtblFlexDefault( self.Dir + "/" + self.intbl + "/N_River.tbl", 0.036, wflow_streamorder ) self.WaterFrac = self.readtblDefault( self.Dir + "/" + self.intbl + "/WaterFrac.tbl", self.LandUse, subcatch, self.Soil, 0.0, ) # Fraction Open water self.et_RefToPot = self.readtblDefault( self.Dir + "/" + self.intbl + "/et_reftopot.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) # Fraction Open water if self.modelSnow: # HBV Snow parameters # critical temperature for snowmelt and refreezing: TTI= 1.000 self.TTI = self.readtblDefault( self.Dir + "/" + self.intbl + "/TTI.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) # TT = -1.41934 # defines interval in which precipitation falls as rainfall and snowfall self.TT = self.readtblDefault( self.Dir + "/" + self.intbl + "/TT.tbl", self.LandUse, subcatch, self.Soil, -1.41934, ) self.TTM = self.readtblDefault( self.Dir + "/" + self.intbl + "/TTM.tbl", self.LandUse, subcatch, self.Soil, -1.41934, ) # Cfmax = 3.75653 # meltconstant in temperature-index self.Cfmax = self.readtblDefault( self.Dir + "/" + self.intbl + "/Cfmax.tbl", self.LandUse, subcatch, self.Soil, 3.75653, ) # WHC= 0.10000 # fraction of Snowvolume that can store water self.WHC = self.readtblDefault( self.Dir + "/" + self.intbl + "/WHC.tbl", self.LandUse, subcatch, self.Soil, 0.1, ) # Wigmosta, <NAME>., <NAME>, <NAME>, and <NAME> (2009). self.w_soil = ( self.readtblDefault( self.Dir + "/" + self.intbl + "/w_soil.tbl", self.LandUse, subcatch, self.Soil, 0.9 * 3.0 / 24.0, ) * self.timestepsecs / self.basetimestep ) if self.soilInfReduction: self.cf_soil = pcr.min( 0.99, self.readtblDefault( self.Dir + "/" + self.intbl + "/cf_soil.tbl", self.LandUse, subcatch, self.Soil, 0.038, ), ) # Ksat reduction factor fro frozen soi # We are modelling gletchers # Determine real slope and cell length self.xl, self.yl, self.reallength = pcrut.detRealCellLength( self.ZeroMap, sizeinmetres ) self.Slope = pcr.slope(self.Altitude) # self.Slope=pcr.ifthen(pcr.boolean(self.TopoId),pcr.max(0.001,self.Slope*celllength()/self.reallength)) self.Slope = pcr.max(0.00001, self.Slope * pcr.celllength() / self.reallength) Terrain_angle = pcr.scalar(pcr.atan(self.Slope)) #self.N = pcr.ifthenelse(self.River, self.NRiver, self.N) if hasattr(self, "ReserVoirSimpleLocs") or hasattr( self, "ReserVoirComplexLocs" ): self.ReserVoirLocs = self.ZeroMap self.filter_P_PET = self.ZeroMap + 1.0 if hasattr(self, "ReserVoirSimpleLocs"): # Check if we have simple and or complex reservoirs self.ReserVoirSimpleLocs = pcr.nominal(self.ReserVoirSimpleLocs) self.ReservoirSimpleAreas = pcr.nominal(self.ReservoirSimpleAreas) tt_simple = pcr.pcr2numpy(self.ReserVoirSimpleLocs, 0.0) self.nrresSimple = tt_simple.max() self.ReserVoirLocs = self.ReserVoirLocs + pcr.cover( pcr.scalar(self.ReserVoirSimpleLocs) ) areamap = self.reallength * self.reallength res_area = pcr.areatotal(pcr.spatial(areamap), self.ReservoirSimpleAreas) resarea_pnt = pcr.ifthen(pcr.boolean(self.ReserVoirSimpleLocs), res_area) self.ResSimpleArea = pcr.ifthenelse( pcr.cover(self.ResSimpleArea, pcr.scalar(0.0)) > 0, self.ResSimpleArea, pcr.cover(resarea_pnt, pcr.scalar(0.0)), ) self.filter_P_PET = pcr.ifthenelse( pcr.boolean(pcr.cover(res_area, pcr.scalar(0.0))), res_area * 0.0, self.filter_P_PET, ) else: self.nrresSimple = 0 if hasattr(self, "ReserVoirComplexLocs"): self.ReservoirComplexAreas = pcr.nominal(self.ReservoirComplexAreas) self.ReserVoirComplexLocs = pcr.nominal(self.ReserVoirComplexLocs) tt_complex = pcr.pcr2numpy(self.ReserVoirComplexLocs, 0.0) self.nrresComplex = tt_complex.max() self.ReserVoirLocs = self.ReserVoirLocs + pcr.cover( pcr.scalar(self.ReserVoirComplexLocs) ) res_area = pcr.cover(pcr.scalar(self.ReservoirComplexAreas), 0.0) self.filter_P_PET = pcr.ifthenelse( res_area > 0, res_area * 0.0, self.filter_P_PET ) # read files self.sh = {} res_ids = pcr.ifthen(self.ResStorFunc == 2, self.ReserVoirComplexLocs) np_res_ids = pcr.pcr2numpy(res_ids, 0) np_res_ids_u = np.unique(np_res_ids[
np.nonzero(np_res_ids)
numpy.nonzero
import numpy as np import phi.math as math def spatial_rank(tensor_or_mac): """ Returns the number of spatial dimensions. Arrays are expected to be of the shape (batch size, spatial dimensions..., component size) The number of spatial dimensions is equal to the tensor rank minus two. :param tensor_or_mac: a tensor or StaggeredGrid instance :return: the number of spatial dimensions as an integer """ if isinstance(tensor_or_mac, StaggeredGrid): return tensor_or_mac.spatial_rank else: return len(tensor_or_mac.shape) - 2 def indices_tensor(tensor, dtype=np.float32): """ Returns an index tensor of the same spatial shape as the given tensor. Each index denotes the location within the tensor starting from zero. Indices are encoded as vectors in the index tensor. :param tensor: a tensor of shape (batch size, spatial dimensions..., component size) :param dtype: a numpy data type (default float32) :return: an index tensor of shape (1, spatial dimensions..., spatial rank) """ spatial_dimensions = list(tensor.shape[1:-1]) idx_zyx = np.meshgrid(*[range(dim) for dim in spatial_dimensions], indexing="ij") idx = np.stack(idx_zyx, axis=-1).reshape([1, ] + spatial_dimensions + [len(spatial_dimensions)]) return idx.astype(dtype) def normalize_to(target, source=1): """ Multiplies the target so that its total content matches the source. :param target: a tensor :param source: a tensor or number :return: normalized tensor of the same shape as target """ return target * (math.sum(source) / math.sum(target)) def l1_loss(tensor, batch_norm=True, reduce_batches=True): if isinstance(tensor, StaggeredGrid): tensor = tensor.staggered if reduce_batches: total_loss = math.sum(math.abs(tensor)) else: total_loss = math.sum(math.abs(tensor), axis=list(range(1, len(tensor.shape)))) if batch_norm and reduce_batches: batch_size = math.shape(tensor)[0] return total_loss / math.to_float(batch_size) else: return total_loss def l2_loss(tensor, batch_norm=True, reduce_batches=True): return l_n_loss(tensor, 2, batch_norm=batch_norm, reduce_batches=reduce_batches) def l_n_loss(tensor, n, batch_norm=True, reduce_batches=True): if isinstance(tensor, StaggeredGrid): tensor = tensor.staggered if reduce_batches: total_loss = math.sum(tensor ** n) / n else: total_loss = math.sum(tensor ** n, axis=list(range(1, len(tensor.shape)))) / n if batch_norm: batch_size = math.shape(tensor)[0] return total_loss / math.to_float(batch_size) else: return total_loss def at_centers(field): if isinstance(field, StaggeredGrid): return field.at_centers() else: return field # Divergence def divergence(vel, dx=1, difference="central"): """ Computes the spatial divergence of a vector field from finite differences. :param vel: tensor of shape (batch size, spatial dimensions..., spatial rank) or StaggeredGrid :param dx: distance between adjacent grid points (default 1) :param difference: type of difference, one of ('forward', 'central') (default 'forward') :return: tensor of shape (batch size, spatial dimensions..., 1) """ if isinstance(vel, StaggeredGrid): return vel.divergence() assert difference in ('central', 'forward') rank = spatial_rank(vel) if difference == "forward": return _forward_divergence_nd(vel) / dx ** rank else: return _central_divergence_nd(vel) / (2 * dx) ** rank def _forward_divergence_nd(field): rank = spatial_rank(field) dims = range(rank) components = [] for dimension in dims: vq = field[...,rank-dimension-1] upper_slices = [(slice(1, None) if i == dimension else slice(None)) for i in dims] lower_slices = [(slice(-1) if i == dimension else slice(None)) for i in dims] diff = vq[[slice(None)]+upper_slices] - vq[[slice(None)]+lower_slices] padded = math.pad(diff, [[0,0]] + [([0,1] if i==dimension else [0,0]) for i in dims]) components.append(padded) return math.expand_dims(math.add(components), -1) def _central_divergence_nd(tensor): rank = spatial_rank(tensor) dims = range(rank) components = [] tensor = math.pad(tensor, [[0, 0]] + [[1, 1]]*rank + [[0, 0]]) for dimension in dims: upper_slices = [(slice(2, None) if i == dimension else slice(1, -1)) for i in dims] lower_slices = [(slice(-2) if i == dimension else slice(1, -1)) for i in dims] diff = tensor[[slice(None)] + upper_slices + [rank - dimension - 1]] - \ tensor[[slice(None)] + lower_slices + [rank - dimension - 1]] components.append(diff) return math.expand_dims(math.add(components), -1) # Gradient def gradient(tensor, dx=1, difference="forward"): """ Calculates the gradient of a scalar field from finite differences. The gradient vectors are in reverse order, lowest dimension first. :param tensor: field with shape (batch_size, spatial_dimensions..., 1) :param dx: physical distance between grid points (default 1) :param difference: type of difference, one of ('forward', 'backward', 'central') (default 'forward') :return: tensor of shape (batch_size, spatial_dimensions..., spatial rank) """ if tensor.shape[-1] != 1: raise ValueError("Gradient requires a scalar field as input") dims = range(spatial_rank(tensor)) field = tensor[...,0] if 1 in field.shape[1:]: raise ValueError("All spatial dimensions must have size larger than 1, got {}".format(tensor.shape)) if difference.lower() == "central": return _central_diff_nd(tensor, dims) / (dx * 2) elif difference.lower() == "forward": return _forward_diff_nd(field, dims) / dx elif difference.lower() == "backward": return _backward_diff_nd(field, dims) / dx else: raise ValueError("Invalid difference type: {}. Can be CENTRAL or FORWARD".format(difference)) def _backward_diff_nd(field, dims): df_dq = [] for dimension in dims: upper_slices = [(slice(1, None) if i==dimension else slice(None)) for i in dims] lower_slices = [(slice(-1) if i==dimension else slice(None)) for i in dims] diff = field[[slice(None)]+upper_slices] - field[[slice(None)]+lower_slices] padded = math.pad(diff, [[0,0]]+[([1,0] if i == dimension else [0,0]) for i in dims]) df_dq.append(padded) return math.stack(df_dq[::-1], axis=-1) def _forward_diff_nd(field, dims): df_dq = [] for dimension in dims: upper_slices = [(slice(1, None) if i==dimension else slice(None)) for i in dims] lower_slices = [(slice(-1) if i==dimension else slice(None)) for i in dims] diff = field[[slice(None)]+upper_slices] - field[[slice(None)]+lower_slices] padded = math.pad(diff, [[0,0]]+[([0,1] if i == dimension else [0,0]) for i in dims]) df_dq.append(padded) return math.stack(df_dq[::-1], axis=-1) def _central_diff_nd(field, dims): field = math.pad(field, [[0,0]] + [[1,1]]*spatial_rank(field) + [[0, 0]], "symmetric") df_dq = [] for dimension in dims: upper_slices = [(slice(2, None) if i==dimension else slice(1,-1)) for i in dims] lower_slices = [(slice(-2) if i==dimension else slice(1,-1)) for i in dims] diff = field[[slice(None)] + upper_slices + [0]] - field[[slice(None)] + lower_slices + [0]] df_dq.append(diff) return math.stack(df_dq[::-1], axis=-1) # Laplace def laplace(tensor, weights=None, padding="symmetric"): if tensor.shape[-1] != 1: raise ValueError("Laplace operator requires a scalar field as input") rank = spatial_rank(tensor) if padding.lower() != "valid": tensor = math.pad(tensor, [[0,0]] + [[1,1]] * rank + [[0,0]], padding) if weights is not None: return _weighted_sliced_laplace_nd(tensor, weights) if rank == 2: return _conv_laplace_2d(tensor) elif rank == 3: return _conv_laplace_3d(tensor) else: return _sliced_laplace_nd(tensor) def _conv_laplace_2d(tensor): kernel = np.zeros((3, 3, 1, 1), np.float32) kernel[1,1,0,0] = -4 kernel[(0,1,1,2),(1,0,2,1),0,0] = 1 return math.conv(tensor, kernel, padding="VALID") def _conv_laplace_3d(tensor): kernel = np.zeros((3, 3, 3, 1, 1), np.float32) kernel[1,1,1,0,0] = -6 kernel[(0,1,1,1,1,2), (1,0,2,1,1,1), (1,1,1,0,2,1), 0,0] = 1 return math.conv(tensor, kernel, padding="VALID") def _sliced_laplace_nd(tensor): # Laplace code for n dimensions dims = range(spatial_rank(tensor)) components = [] for dimension in dims: center_slices = [(slice(1, -1) if i == dimension else slice(1,-1)) for i in dims] upper_slices = [(slice(2, None) if i == dimension else slice(1,-1)) for i in dims] lower_slices = [(slice(-2) if i == dimension else slice(1,-1)) for i in dims] diff = tensor[[slice(None)] + upper_slices + [slice(None)]] \ + tensor[[slice(None)] + lower_slices + [slice(None)]] \ - 2 * tensor[[slice(None)] + center_slices + [slice(None)]] components.append(diff) return math.add(components) def _weighted_sliced_laplace_nd(tensor, weights): if tensor.shape[-1] != 1: raise ValueError("Laplace operator requires a scalar field as input") dims = range(spatial_rank(tensor)) components = [] for dimension in dims: center_slices = [(slice(1, -1) if i == dimension else slice(1,-1)) for i in dims] upper_slices = [(slice(2, None) if i == dimension else slice(1,-1)) for i in dims] lower_slices = [(slice(-2) if i == dimension else slice(1,-1)) for i in dims] lower_weights = weights[[slice(None)] + lower_slices + [slice(None)]] * weights[[slice(None)] + center_slices + [slice(None)]] upper_weights = weights[[slice(None)] + upper_slices + [slice(None)]] * weights[[slice(None)] + center_slices + [slice(None)]] center_weights = - lower_weights - upper_weights lower_values = tensor[[slice(None)] + lower_slices + [slice(None)]] upper_values = tensor[[slice(None)] + upper_slices + [slice(None)]] center_values = tensor[[slice(None)] + center_slices + [slice(None)]] diff = upper_values * upper_weights + lower_values * lower_weights + center_values * center_weights components.append(diff) return math.add(components) # Downsample / Upsample def downsample2x(tensor, interpolation="LINEAR"): if interpolation.lower() != "linear": raise ValueError("Only linear interpolation supported") dims = range(spatial_rank(tensor)) tensor = math.pad(tensor, [[0,0]]+ [([0, 1] if (dim % 2) != 0 else [0,0]) for dim in tensor.shape[1:-1]] + [[0,0]], "SYMMETRIC") for dimension in dims: upper_slices = [(slice(1, None, 2) if i==dimension else slice(None)) for i in dims] lower_slices = [(slice(0, None, 2) if i==dimension else slice(None)) for i in dims] sum = tensor[[slice(None)]+upper_slices+[slice(None)]] + tensor[[slice(None)]+lower_slices+[slice(None)]] tensor = sum / 2 return tensor def upsample2x(tensor, interpolation="LINEAR"): if interpolation.lower() != "linear": raise ValueError("Only linear interpolation supported") dims = range(spatial_rank(tensor)) vlen = tensor.shape[-1] spatial_dims = tensor.shape[1:-1] tensor = math.pad(tensor, [[0, 0]] + [[1, 1]]*spatial_rank(tensor) + [[0, 0]], "SYMMETRIC") for dim in dims: left_slices_1 = [(slice(2, None) if i==dim else slice(None)) for i in dims] left_slices_2 = [(slice(1,-1) if i==dim else slice(None)) for i in dims] right_slices_1 = [(slice(1, -1) if i==dim else slice(None)) for i in dims] right_slices_2 = [(slice(-2) if i==dim else slice(None)) for i in dims] left = 0.75 * tensor[[slice(None)]+left_slices_2+[slice(None)]] + 0.25 * tensor[[slice(None)]+left_slices_1+[slice(None)]] right = 0.25 * tensor[[slice(None)]+right_slices_2+[slice(None)]] + 0.75 * tensor[[slice(None)]+right_slices_1+[slice(None)]] combined = math.stack([right, left], axis=2+dim) tensor = math.reshape(combined, [-1] + [spatial_dims[dim] * 2 if i == dim else tensor.shape[i+1] for i in dims] + [vlen]) return tensor def spatial_sum(tensor): if isinstance(tensor, StaggeredGrid): tensor = tensor.staggered summed = math.sum(tensor, axis=math.dimrange(tensor)) for i in math.dimrange(tensor): summed = math.expand_dims(summed, i) return summed class StaggeredGrid: """ MACGrids represent a staggered vector field in which each vector component is sampled at the face centers of centered hypercubes. Going in the direction of a vector component, the first entry samples the lower face of the first cube and the last entry the upper face of the last cube. Therefore staggered grids contain one more entry in each spatial dimension than a centered field. This results in oversampling in the other directions. There, highest element lies outside the grid. Attributes: shape (tuple Tensorshape): the shape of the staggered field staggered (tensor): array or tensor holding the staggered field """ def __init__(self, staggered): self.staggered = staggered def __repr__(self): return "StaggeredGrid(shape=%s)" % self.shape def at_centers(self): rank = self.spatial_rank dims = range(rank) df_dq = [] for d in dims: # z,y,x upper_slices = [(slice(1, None) if i == d else slice(-1)) for i in dims] lower_slices = [(slice(-1) if i == d else slice(-1)) for i in dims] sum = self.staggered[[slice(None)] + upper_slices + [rank - d - 1]] +\ self.staggered[[slice(None)] + lower_slices + [rank - d - 1]] df_dq.append(sum / rank) return math.stack(df_dq[::-1], axis=-1) def at_faces(self, face_dimension_xyz): dims = range(self.spatial_rank) face_dimension_zyx = len(dims) - face_dimension_xyz - 1 # 0=Z, 1=Y, 2=X, etc. components = [] for d in dims: # z,y,x if d == face_dimension_zyx: components.append(self.staggered[..., len(dims) - d - 1]) else: # Interpolate other components vq = self.staggered[..., len(dims) - d - 1] t = vq for d2 in dims: # z,y,x slices1 = [(slice(1, None) if i == d2 else slice(None)) for i in dims] slices2 = [(slice(-1) if i == d2 else slice(None)) for i in dims] t = t[[slice(None)] + slices1] + t[[slice(None)] + slices2] if d2 == d: t = math.pad(t, [[0, 0]] + [([0, 1] if i == d2 else [0, 0]) for i in dims]) / 2 else: t = math.pad(t, [[0, 0]] + [([1, 0] if i == d2 else [0, 0]) for i in dims]) / 2 components.append(t) return math.stack(components[::-1], axis=-1) def divergence(self): dims = range(self.spatial_rank) components = [] for dimension in dims: comp = self.spatial_rank - dimension - 1 upper_slices = [(slice(1, None) if i == dimension else slice(-1)) for i in dims] lower_slices = [(slice(-1) if i == dimension else slice(-1)) for i in dims] diff = self.staggered[[slice(None)] + upper_slices + [comp]] - \ self.staggered[[slice(None)] + lower_slices + [comp]] components.append(diff) return math.expand_dims(math.add(components), -1) def abs(self): return StaggeredGrid(math.abs(self.staggered)) def length_squared(self): centered = self.at_centers() scalar = math.sum(centered ** 2, axis=-1) return math.expand_dims(scalar, axis=-1) def soft_sqrt(self): return StaggeredGrid(math.sqrt(math.maximum(self.staggered, 1e-20))) def normalize(self): v_length = math.sqrt(math.add([self.staggered[..., i] ** 2 for i in range(self.shape[-1])])) global_mean = math.mean(v_length, axis=range(1, self.spatial_rank+1)) for i in range(self.spatial_rank+1): global_mean = math.expand_dims(global_mean, -1) return StaggeredGrid(self.staggered / global_mean) def total(self): v_length = math.sqrt(math.add([self.staggered[..., i] ** 2 for i in range(self.shape[-1])])) total = math.sum(v_length, axis=range(1, self.spatial_rank+1)) for i in range(self.spatial_rank+1): total = math.expand_dims(total, -1) return total def batch_div(self, tensor): return StaggeredGrid(self.staggered / tensor) def advect(self, field, interpolation="LINEAR", dt=1): """ Performs a semi-Lagrangian advection step, propagating the field through the velocity field. A backwards Euler step is performed and the smpling is performed according to the interpolation specified. :param field: scalar or vector field to propagate :param velocity: vector field specifying the velocity at each point in space. Shape (batch_size, grid_size, :param dt: :param interpolation: LINEAR, BSPLINE, IDW (default is LINEAR) :return: the advected field """ if isinstance(field, StaggeredGrid): return self.multi_advect([field], interpolation=interpolation, dt=dt)[0] else: return self._advect_centered_field(field, dt, interpolation) def _advect_centered_field(self, field, dt, interpolation): idx = indices_tensor(field) centered_velocity = self.at_centers()[..., ::-1] # assume right number of components sample_coords = idx - centered_velocity * dt result = math.resample(field, sample_coords, interpolation=interpolation, boundary="REPLICATE") return result def _advect_mac(self, field_mac, dt, interpolation): # resample in each dimension idx = indices_tensor(self.staggered) advected_component_fields = [] dims = range(len(self.staggered.shape) - 2) for d in dims: # z,y,x velocity_at_staggered_points = self.at_faces(len(dims) - d - 1)[..., ::-1] sample_coords = idx - velocity_at_staggered_points * dt d_comp = len(dims) - d - 1 advected = math.resample(field_mac[..., d_comp:d_comp + 1], sample_coords, interpolation=interpolation, boundary="REPLICATE") advected_component_fields.append(advected) all_advected = math.concat(advected_component_fields[::-1], axis=-1) return all_advected def multi_advect(self, fields, interpolation="LINEAR", dt=1): assert isinstance(fields, (list, tuple)), "first parameter must be either a tuple or list" inputs_lists = [] coords_lists = [] value_generators = [] for field in fields: if isinstance(field, StaggeredGrid): i, c, v = self._mac_block_advection(field.staggered, dt) else: i, c, v = self._centered_block_advection(field, dt) inputs_lists.append(i) coords_lists.append(c) value_generators.append(v) inputs = math.concat(sum(inputs_lists, []), 0) coords = math.concat(sum(coords_lists, []), 0) all_advected = math.resample(inputs, coords, interpolation=interpolation, boundary="REPLICATE") all_advected = math.reshape(all_advected, [self.spatial_rank, -1] + list(all_advected.shape[1:])) all_advected = math.unstack(all_advected) results = [] abs_i = 0 for i in range(len(inputs_lists)): n = len(inputs_lists[0]) assigned_advected = all_advected[abs_i:abs_i+n] results.append(value_generators[i](assigned_advected)) abs_i += n return results def _mac_block_advection(self, field_mac, dt): # resample in each dimension idx = indices_tensor(self.staggered) dims = range(len(self.staggered.shape) - 2) inputs_list = [] coords_list = [] for d in dims: # z,y,x velocity_at_staggered_points = self.at_faces(len(dims) - d - 1)[..., ::-1] sample_coords = idx - velocity_at_staggered_points * dt d_comp = len(dims) - d - 1 coords_list.append(sample_coords) inputs_list.append(field_mac[..., d_comp:d_comp + 1]) def post_advection(advected_list): return StaggeredGrid(math.concat(advected_list[::-1], axis=-1)) return inputs_list, coords_list, post_advection def _centered_block_advection(self, field, dt): idx = indices_tensor(field) centered_velocity = self.at_centers()[..., ::-1] # assume right number of components sample_coords = idx - centered_velocity * dt return [field], [sample_coords], lambda list: list[0] def curl(self): rank = spatial_rank(self.staggered) if rank == 3: return self._staggered_curl_3d() elif rank == 2: return self._staggered_curl_2d() else: raise ValueError("Curl requires a two or three-dimensional vector field") def pad(self, lower, upper=None, mode="symmetric"): upper = upper if upper is not None else lower padded = math.pad(self.staggered, [[0,0]] + [[lower,upper]]*self.spatial_rank + [[0,0]], mode) return StaggeredGrid(padded) def _staggered_curl_3d(self): """ Calculates the curl operator on a staggered three-dimensional field. The resulting vector field is a staggered grid. If the velocities of the vector potential were sampled at the lower faces of a cube, the resulting velocities are sampled at the centers of the upper edges. :param vector_potential: three-dimensional vector potential :return: three-dimensional staggered vector field """ kernel = np.zeros((2, 2, 2, 3, 3), np.float32) derivative = np.array([-1, 1]) # x-component: dz/dy - dy/dz kernel[0, :, 0, 2, 0] = derivative kernel[:, 0, 0, 1, 0] = -derivative # y-component: dx/dz - dz/dx kernel[:, 0, 0, 0, 1] = derivative kernel[0, 0, :, 2, 1] = -derivative # z-component: dy/dx - dx/dy kernel[0, 0, :, 1, 2] = derivative kernel[0, :, 0, 0, 2] = -derivative vector_potential = math.pad(self.staggered, [[0, 0], [0, 1], [0, 1], [0, 1], [0, 0]], "SYMMETRIC") vector_field = math.conv(vector_potential, kernel, padding="VALID") return StaggeredGrid(vector_field) def _staggered_curl_2d(self): kernel =
np.zeros((2, 2, 1, 2), np.float32)
numpy.zeros
import cv2 import os import math import random import numpy as np import numpy.random as npr import torch import torchvision.transforms as transforms from utils.bbox import rbox_2_quad def init_seeds(seed=0): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Remove randomness (may be slower on Tesla GPUs) # https://pytorch.org/docs/stable/notes/randomness.html if seed == 0: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def hyp_parse(hyp_path): hyp = {} keys = [] with open(hyp_path,'r') as f: for line in f: if line.startswith('#') or len(line.strip())==0 : continue v = line.strip().split(':') try: hyp[v[0]] = float(v[1].strip().split(' ')[0]) except: hyp[v[0]] = eval(v[1].strip().split(' ')[0]) keys.append(v[0]) f.close() return hyp def model_info(model, report='summary'): # Plots a line-by-line description of a PyTorch model n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients if report is 'full': print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace('module_list.', '') print('%5g %40s %9s %12g %20s %10.3g %10.3g' % (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) print('Model Summary: %g layers, %g parameters, %g gradients' % (len(list(model.parameters())), n_p, n_g)) def curriculum_factor(init, final, step=1, mode='suspend_cosine'): if mode == 'cosine': sequence = [(0.5 - 0.5 * math.cos(math.pi * i / final)) * (final - init) + init \ for i in range(init, final+step, step)] elif mode == 'suspend_cosine': suspend_ratio = 0.1 suspend_interval = (final - init)*suspend_ratio start = suspend_interval + init if suspend_interval > step else init sequence = [(0.5 - 0.5 * math.cos(math.pi * i / final)) * (final - init) + init \ if i>start else init for i in range(init, final+step, step)] # vis import matplotlib.pylab as plt import numpy as np plt.scatter(np.array([x for x in range(init, final+step, step)]),np.array(sequence)) plt.show() def plot_gt(img, bboxes, im_path, mode='xyxyxyxy'): if not os.path.exists('temp'): os.mkdir('temp') if mode == 'xywha': bboxes = rbox_2_quad(bboxes,mode=mode) if mode == 'xyxya': bboxes = rbox_2_quad(bboxes,mode=mode) for box in bboxes: img = cv2.polylines(cv2.UMat(img),[box.reshape(-1,2).astype(np.int32)],True,(0,0,255),2) cv2.imwrite(os.path.join('temp','augment_%s' % (os.path.split(im_path)[1])),img) print('Check augmentation results in `temp` folder!!!') if __name__ == '__main__': curriculum_factor(836, 6400, 32) def sort_corners(quads): sorted = np.zeros(quads.shape, dtype=np.float32) for i, corners in enumerate(quads): corners = corners.reshape(4, 2) centers = np.mean(corners, axis=0) corners = corners - centers cosine = corners[:, 0] / np.sqrt(corners[:, 0] ** 2 + corners[:, 1] ** 2) cosine = np.minimum(np.maximum(cosine, -1.0), 1.0) thetas = np.arccos(cosine) / np.pi * 180.0 indice =
np.where(corners[:, 1] > 0)
numpy.where
""" This is memory error safe version of lowess. Checks both, array from x!tandem and dta files 3rd ver Jan 8, 2010 """ from numpy import array, ceil, sort, transpose, clip, zeros, ones, median from numpy import sum as summa from numpy.linalg import solve from numpy.linalg.linalg import LinAlgError from copy import deepcopy import math def lowess(x, y, X2, f=2. / 3., itr=3): # X2 are x values to estimate Y2 on # Uncomment to show the first 101 values of x, y, and X2 ''' print('\n\n\n Debugging lowess') print('Values for x') for i in list(x)[:101]: print(i,end=',',flush=True) print('\n\nValues for y') for i in list(y)[:101]: print(i,end=',',flush=True) print('\n\nValues for X2') for i in list(X2)[:101]: print(i,end=',',flush=True) print ('\n') ''' x = array(x, 'float32') y = array(y, 'float32') X2 = array(X2, 'float32') n = len(x) # total number of points r = int(ceil(f * n)) # the number of NN h = [sort(abs(x - x[i]))[r] for i in range(n)] # the bandwith in x, given NN for each point # 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 # figure out the chunk size safe for handling in the RAM chunkSize_1 = n # whole thing attempt = 0 while True: if attempt >= 8: break try: test1 = [x[0:chunkSize_1]] - transpose([x]) # VLAD. Potential MemoryError test2 = [x[0:chunkSize_1]] - transpose([x]) # VLAD. Potential MemoryError test3 = [x[0:chunkSize_1]] - transpose([x]) # VLAD. Potential MemoryError test4 = [x[0:chunkSize_1]] - transpose([x]) # VLAD. Potential MemoryError test5 = [x[0:chunkSize_1]] - transpose([x]) # VLAD. Potential MemoryError test6 = [x[0:chunkSize_1]] - transpose([x]) # VLAD. Potential MemoryError test7 = [x[0:chunkSize_1]] - transpose([x]) # VLAD. Potential MemoryError test8 = [x[0:chunkSize_1]] - transpose([x]) # VLAD. Potential MemoryError break except MemoryError: chunkSize_1 = int(chunkSize_1 / 2) # split size into half attempt += 1 try: del test1, test2, test3, test4, test5, test6, test7, test8 except NameError: pass # chunk sizes, number, and left-overs numChunks_1 = math.floor(n / chunkSize_1) leftChunkSize_1 = n - numChunks_1 * chunkSize_1 # compute the indices chunkList_1 = [] # that list of tuples (start, end) how the big dataset is going to be split for i in range(numChunks_1): start = chunkSize_1 * i end = chunkSize_1 * (i + 1) chunkList_1.append((start, end)) if leftChunkSize_1 != 0: chunkList_1.append((end, n)) # 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 N2 = len(X2) H2 = [sort(abs(x - X2[i]))[r] for i in range(N2)] # the bandwith in x, given NN for each point # 222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222 # figure out the chunk size safe for handling in the RAM chunkSize = N2 # whole thing while True: try: test1 = [X2[0:chunkSize]] - transpose([x]) # VLAD. Potential MemoryError test2 = [X2[0:chunkSize]] - transpose([x]) # VLAD. Potential MemoryError test3 = [X2[0:chunkSize]] - transpose([x]) # VLAD. Potential MemoryError test4 = [X2[0:chunkSize]] - transpose([x]) # VLAD. Potential MemoryError test5 = [X2[0:chunkSize]] - transpose([x]) # VLAD. Potential MemoryError test6 = [X2[0:chunkSize]] - transpose([x]) # VLAD. Potential MemoryError test7 = [X2[0:chunkSize]] - transpose([x]) # VLAD. Potential MemoryError test8 = [X2[0:chunkSize]] - transpose([x]) # VLAD. Potential MemoryError break except (MemoryError, ValueError): chunkSize = chunkSize / 2 # split size into half try: del test1, test2, test3, test4, test5, test6, test7, test8 except NameError: pass # chunk sizes, number, and left-overs numChunks = math.floor(N2 / chunkSize) leftChunkSize = N2 - numChunks * chunkSize # compute the indices chunkList = [] # that list of tuples (start, end) how the big dataset is going to be split for i in range(numChunks): start = chunkSize * i end = chunkSize * (i + 1) chunkList.append((start, end)) if leftChunkSize != 0: chunkList.append((end, N2)) # 222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222 # ---- Main Iteration Loop-------------- yest = zeros(n, 'd') delta = ones(n, 'd') # weights characterizing how well y fits the trend Y2EST = zeros(N2, 'd') Y2RETURN = deepcopy(Y2EST) for iteration in range(itr): try: # 1111111111111111111111111111111111111111111111111111111111111 for chunk_1 in chunkList_1: d = [x[chunk_1[0]:chunk_1[1]]] - transpose([x]) dh = abs(d) / h[chunk_1[0]:chunk_1[1]] del d w = clip(dh, 0.0, 1.0) del dh w = (1 - w ** 3) ** 3 # estimate for each point for i in range(n)[chunk_1[0]:chunk_1[1]]: weights = delta * w[:, i - chunk_1[0]] b = array([summa(weights * y), summa(weights * y * x)]) A = array([[summa(weights), summa(weights * x)], [summa(weights * x), summa(weights * x * x)]]) beta = solve(A, b) # Ax=b yest[i] = beta[0] + beta[1] * x[i] del weights, b, A # 1111111111111111111111111111111111111111111111111111111111111 # 22222222222222222222222222222222222222222222222222222222222222 # go though chunks if can not lift the entire NxM array for chunk in chunkList: D2 = [X2[chunk[0]:chunk[1]]] - transpose([x]) DH2 = abs(D2) / H2[chunk[0]:chunk[1]] del D2 W2 = clip(DH2, 0.0, 1.0) del DH2 W2 = (1 - W2 ** 3) ** 3 # estimate for each point for i in range(N2)[chunk[0]:chunk[1]]: WEIGHTS2 = delta * W2[:, i - chunk[0]] b = array([summa(WEIGHTS2 * y), summa(WEIGHTS2 * y * x)]) A = array([[summa(WEIGHTS2), summa(WEIGHTS2 * x)], [
summa(WEIGHTS2 * x)
numpy.sum
""" Connections for reservoir neural networks """ import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import numpy as np from . import conn_utils # Based on https://github.com/nschaetti/EchoTorch/blob/master/echotorch/nn/ESNCell.py def create_gaussian_matrix(name, width, mean=0.0, std=1.0, sparsity=None, is_sparse=False): """ Creates a random square matrix with Gaussian distribution according to parameters for evodynamic.connection.WeightedConnection. Parameters ---------- name : str Name of the Tensor. width : int Width of the adjacency matrix. mean : float Mean for the Gaussian distribution. std : float Standard deviation for the Gaussian distribution. sparsity : float between 0 and 1 Percentage of zeros in the matrix. is_sparse : Boolean Determines whether the returning Tensor is sparse or not. Returns ------- out : Tensor Random adjacency matrix for TensorFlow. """ nodes = width size = (width, width) if is_sparse: indices = [] values = [] if sparsity is None: values = np.random.normal(loc=mean, scale=std, size=nodes*nodes) for i in range(nodes): for j in range(nodes): indices.append([i,j]) else: for i in range(nodes): for j in range(nodes): if sparsity < np.random.random(): indices.append([i,j]) values.append(np.random.normal(loc=mean, scale=std)) initial = tf.cast(tf.SparseTensor(indices=indices, values=values,\ dense_shape=[nodes, nodes]), tf.float64) else: if sparsity is None: conn_matrix =
np.random.normal(loc=mean, scale=std, size=size)
numpy.random.normal
import matplotlib import matplotlib.pyplot as plt from time import sleep from subprocess import Popen, PIPE, STDOUT from IPython.display import clear_output, display import urllib.parse from io import BytesIO from zipfile import ZipFile import urllib.request import datetime import os from subprocess import Popen, PIPE, STDOUT import pandas import numpy from IPython.display import display, HTML def readDataAndGenerateCSV(scenario): if scenario == 1 or scenario == 2: zNormalized = 1 if scenario == 3: zNormalized = 0 p = Popen(['java', '-jar', 'StockDataGenerateCSV-1.0-jar-with-dependencies.jar', 'properties_scenario' + str(scenario) + '.conf'], stdout=PIPE, stderr=STDOUT) for line in p.stdout: if line[2] == 115: print(str(line)[2:-3]) sleep(2) if line[2] == 101: clear_output(wait=True) print(str(line)[2:-3]) else: print(str(line)[2:-3]) if zNormalized == 1: stocks_file = open("stockTS.csvzNorm.csv") else: stocks_file = open("stockTS.csv") stocks_lines = stocks_file.readlines() stocks = {} for s in stocks_lines: stock_name = s.split(",")[0] stock_values_str = s.split("\n")[0].split(",")[3:264] stock_values = [] for st in stock_values_str: stock_values.append(float(st)) stocks[stock_name] = stock_values return stocks def discoverBundles(scenario): if scenario > 0: p = Popen(['java', '-jar', 'BundleDiscovery-1.0-jar-with-dependencies.jar', 'properties_scenario' + str(scenario) + '.conf'], stdout=PIPE, stderr=STDOUT) for line in p.stdout: if line[2] == 115: print(str(line)[2:-3]) sleep(2) if line[2] == 101: clear_output(wait=True) print(str(line)[2:-3]) else: print(str(line)[2:-3]) else: p = Popen(['java', '-jar', './GET_DB_DATA.jar'], stdout=PIPE, stderr=STDOUT) for line in p.stdout: if line[2] == 115: print(str(line)[2:-3]) sleep(2) if line[2] == 101: clear_output(wait=True) print(str(line)[2:-3]) else: print(str(line)[2:-3]) def plotAllData(stock_market, year, stocks): xlim_1 = 0 xlim_2 = 261 plt.rcParams['figure.figsize'] = [28, 14] plt.title('Stocks of ' + stock_market + '\'s Stock Market', fontsize=35) plt.ylabel('Close Value', fontsize=35) plt.xlabel('Working Day of Year ' + year, fontsize=35) plt.xticks(fontsize=25) plt.yticks(fontsize=25) axes = plt.gca() axes.set_xlim([xlim_1, xlim_2]) plt.grid(True) for k, v in stocks.items(): plt.plot(v) #return bundles_members, bundles_duration def plotAllBundles(stock_market, year, stocks): results_file = open("results.txt","r") results_lines = results_file.readlines() xlim_1 = 0 xlim_2 = 261 bundles_members = {} bundles_duration = {} for b in results_lines: bundle_name = b.split(";")[0] duration = b.split(";")[2] #members = b.split("\n")[0].split(":")[1].split(",") members = b.split(";")[1].split(",") bundles_members[bundle_name] = members bundles_duration[bundle_name] = duration for k, v in bundles_members.items(): duration = bundles_duration[k] x1 = int(duration.split("-")[0][1:]) x2 = int(duration.split("-")[1][:-2]) minimum = [] maximum = [] for i in list(range(x2-x1)): minimum.append(10000000000) maximum.append(-1) plt.rcParams['figure.figsize'] = [28, 14] plt.title('Discovered Bundles of Stocks (' + stock_market + '\'s Stock Market)', fontsize=35) plt.ylabel('Close Value', fontsize=35) plt.xlabel('Working Day of Year ' + year, fontsize=35) plt.xticks(fontsize=25) plt.yticks(fontsize=25) axes = plt.gca() axes.set_xlim([xlim_1, xlim_2]) for member in bundles_members[k]: ts = stocks[member] idx = 0 for t in list(range(x1, x2)): if ts[t] < minimum[idx]: minimum[idx] = ts[t] if ts[t] > maximum[idx]: maximum[idx] = ts[t] idx += 1 p = plt.plot(list(range(x1, x2)), maximum, linewidth=5.0) plt.plot(list(range(x1, x2)), minimum, color=p[0].get_color(), linewidth=5.0) plt.grid(True) plt.fill_between(list(range(x1, x2)), minimum, maximum, color=p[0].get_color(), alpha=0.15) def plotSelectedBundle(scenario, bundle_to_visualize, stock_market, year, stocks): results_file = open("results.txt","r") results_lines = results_file.readlines() xlim_1 = 0 xlim_2 = 261 bundles_members = {} bundles_duration = {} for b in results_lines: bundle_name = b.split(";")[0] duration = b.split(";")[2] #members = b.split("\n")[0].split(":")[1].split(",") members = b.split(";")[1].split(",") bundles_members[bundle_name] = members bundles_duration[bundle_name] = duration if bundle_to_visualize == -1: if scenario == 1 or scenario == 2: bundle_to_visualize = 'Bundle_0' if scenario == 3: bundle_to_visualize = 'Bundle_100' else: bundle_to_visualize = bundle_to_visualize duration = bundles_duration[bundle_to_visualize] x1 = int(duration.split("-")[0][1:]) x2 = int(duration.split("-")[1][:-2]) minimum = [] maximum = [] for i in list(range(x2-x1)): minimum.append(10000000000) maximum.append(-1) plt.rcParams['figure.figsize'] = [28, 14] plt.title('Discovered Bundles of ' + bundle_to_visualize + ' (' + stock_market + '\'s Stock Market)', fontsize=35) plt.ylabel('Close Value', fontsize=35) plt.xlabel('Working Day of Year ' + year, fontsize=35) plt.xticks(fontsize=25) plt.yticks(fontsize=25) axes = plt.gca() axes.set_xlim([xlim_1, xlim_2]) print('BUNDLE MEMBERS:') for member in bundles_members[bundle_to_visualize]: ts = stocks[member] idx = 0 for t in list(range(x1, x2)): if ts[t] < minimum[idx]: minimum[idx] = ts[t] if ts[t] > maximum[idx]: maximum[idx] = ts[t] idx += 1 plt.plot(ts) print(member) plt.axvline(x = x1) plt.axvline(x = x2) plt.plot(list(range(x1, x2)), maximum, color='#539ecd', linewidth=5.0) plt.plot(list(range(x1, x2)), minimum, color='#539ecd', linewidth=5.0) plt.grid(True) plt.fill_between(list(range(x1, x2)), minimum, maximum, color='#539ecd', alpha=0.25) def segmentData(year, interval, symbol, zNormalize): if os.path.exists("singleStockTS.csv"): os.remove("singleStockTS.csv") count1 = 1 count2 = 0 string_to_write = "" for i in range(1,12): month = str(i) if i < 10: month = "0" + month link = "http://5.175.24.176/Qualimaster/history/" + str(interval) + "/" + year + month + "_" + symbol + ".zip" link = urllib.parse.urlsplit(link) link = list(link) link[2] = urllib.parse.quote(link[2]) link = urllib.parse.urlunsplit(link) url = urllib.request.urlopen(link) with ZipFile(BytesIO(url.read())) as my_zip_file: for contained_file in my_zip_file.namelist(): for line in my_zip_file.open(contained_file).readlines(): line = line.decode("utf-8") date = line.split(",")[0] day_of_week = datetime.datetime.strptime(date, '%m/%d/%Y').strftime('%a') if day_of_week == "Mon" and prev_day_of_week == "Fri": if count2 == 45: with open('singleStockTS.csv', 'a') as the_file: the_file.write(string_to_write + "\n") count1 += 1 string_to_write = "Week_" + str(count1) + ",X,Y" count2 = 0 if count1>1 and count1<52: string_to_write += "," + str(float(line.split(",")[5])) count2 += 1 prev_day_of_week = day_of_week p = Popen(['java', '-jar', 'StockDataGenerateCSV-1.0-jar-with-dependencies.jar', str(zNormalize), 'singleStockTS.csv', str(45)], stdout=PIPE, stderr=STDOUT) for line in p.stdout: if line[2] == 115: print(str(line)[2:-3]) sleep(2) if line[2] == 101: clear_output(wait=True) print(str(line)[2:-3]) else: print(str(line)[2:-3]) if zNormalize == 1: stocks_file = open("singleStockTS.csvzNorm.csv") else: stocks_file = open("singleStockTS.csv") stocks_lines = stocks_file.readlines() stocks = {} for s in stocks_lines: stock_name = s.split(",")[0] stock_values_str = s.split("\n")[0].split(",")[3:264] stock_values = [] for st in stock_values_str: stock_values.append(float(st)) stocks[stock_name] = stock_values return stocks def plotAllData2(symbol, year, stocks): xlim_1 = 0 xlim_2 = 44 plt.rcParams['figure.figsize'] = [28, 14] plt.title(symbol, fontsize=35) plt.ylabel('Close Value', fontsize=35) plt.xlabel('Working Hour of Week for Year ' + year, fontsize=35) plt.xticks(fontsize=25) plt.yticks(fontsize=25) axes = plt.gca() axes.set_xlim([xlim_1, xlim_2]) plt.grid(True) for k, v in stocks.items(): plt.plot(v) def plotAllBundles2(symbol, year, stocks): results_file = open("results.txt","r") results_lines = results_file.readlines() xlim_1 = 0 xlim_2 = 44 bundles_members = {} bundles_duration = {} for b in results_lines: bundle_name = b.split(";")[0] duration = b.split(";")[2] #members = b.split("\n")[0].split(":")[1].split(",") members = b.split(";")[1].split(",") bundles_members[bundle_name] = members bundles_duration[bundle_name] = duration for k, v in bundles_members.items(): duration = bundles_duration[k] x1 = int(duration.split("-")[0][1:]) x2 = int(duration.split("-")[1][:-2]) minimum = [] maximum = [] for i in list(range(x2-x1)): minimum.append(10000000000) maximum.append(-1) plt.rcParams['figure.figsize'] = [28, 14] plt.title('Discovered Bundles of ' + symbol, fontsize=35) plt.ylabel('Close Value', fontsize=35) plt.xlabel('Working Hour of Week for Year ' + year, fontsize=35) plt.xticks(fontsize=25) plt.yticks(fontsize=25) axes = plt.gca() axes.set_xlim([xlim_1, xlim_2]) for member in bundles_members[k]: ts = stocks[member] idx = 0 for t in list(range(x1, x2)): if ts[t] < minimum[idx]: minimum[idx] = ts[t] if ts[t] > maximum[idx]: maximum[idx] = ts[t] idx += 1 p = plt.plot(list(range(x1, x2)), maximum, linewidth=5.0) plt.plot(list(range(x1, x2)), minimum, color=p[0].get_color(), linewidth=5.0) plt.grid(True) plt.fill_between(list(range(x1, x2)), minimum, maximum, color=p[0].get_color(), alpha=0.15) def plotSelectedBundle2(scenario, bundle_to_visualize, symbol, year, stocks): results_file = open("results.txt","r") results_lines = results_file.readlines() xlim_1 = 0 xlim_2 = 44 bundles_members = {} bundles_duration = {} for b in results_lines: bundle_name = b.split(";")[0] duration = b.split(";")[2] #members = b.split("\n")[0].split(":")[1].split(",") members = b.split(";")[1].split(",") bundles_members[bundle_name] = members bundles_duration[bundle_name] = duration duration = bundles_duration[bundle_to_visualize] x1 = int(duration.split("-")[0][1:]) x2 = int(duration.split("-")[1][:-2]) minimum = [] maximum = [] for i in list(range(x2-x1)): minimum.append(10000000000) maximum.append(-1) plt.rcParams['figure.figsize'] = [28, 14] plt.title('Discovered Bundles of ' + bundle_to_visualize, fontsize=35) plt.ylabel('Close Value', fontsize=35) plt.xlabel('Working Hour of Week for Year ' + year, fontsize=35) plt.xticks(fontsize=25) plt.yticks(fontsize=25) axes = plt.gca() axes.set_xlim([xlim_1, xlim_2]) print('BUNDLE MEMBERS:') for member in bundles_members[bundle_to_visualize]: ts = stocks[member] idx = 0 for t in list(range(x1, x2)): if ts[t] < minimum[idx]: minimum[idx] = ts[t] if ts[t] > maximum[idx]: maximum[idx] = ts[t] idx += 1 plt.plot(ts) print(member) plt.axvline(x = x1) plt.axvline(x = x2) plt.plot(list(range(x1, x2)), maximum, color='#539ecd', linewidth=5.0) plt.plot(list(range(x1, x2)), minimum, color='#539ecd', linewidth=5.0) plt.grid(True) plt.fill_between(list(range(x1, x2)), minimum, maximum, color='#539ecd', alpha=0.25) def getSimilarBundles(sort_by): pandas.set_option('display.max_colwidth', -1) p = Popen(['java', '-jar', 'simjoin-0.0.1-SNAPSHOT-jar-with-dependencies.jar', 'ssjoin_config.properties'], stdout=PIPE, stderr=STDOUT) f = open('ssjoin_out.txt', "r") lines_ssjoin = f.readlines() f.close() f = open('results.txt', "r") lines_bundles = f.readlines() f.close() first_time = True for line in lines_ssjoin: res_list = [] bundle1 = lines_bundles[int(line.split(",")[0])] bundle1_name = bundle1.split(";")[0] bundle1_members = bundle1.split(";")[1] bundle1_interval_start = int(bundle1.split(";")[2].split("-")[0][1:]) bundle1_interval_end = int(bundle1.split(";")[2].split("-")[1][:-2]) bundle2 = lines_bundles[int(line.split(",")[1])] bundle2_name = bundle2.split(";")[0] bundle2_members = bundle2.split(";")[1] bundle2_interval_start = int(bundle2.split(";")[2].split("-")[0][1:]) bundle2_interval_end = int(bundle2.split(";")[2].split("-")[1][:-2]) res_list.append(bundle1_name + " " + bundle2_name) similarity = float(line.split(",")[2].split("\n")[0][:-1]) res_list.append(similarity) x = range(bundle1_interval_start, bundle1_interval_end+1) x_len = bundle1_interval_end-bundle1_interval_start y = range(bundle2_interval_start, bundle2_interval_end+1) y_len = bundle2_interval_end-bundle2_interval_start xs = set(x) intersect_length = len(xs.intersection(y)) interval_similarity = 0 if x_len > y_len: interval_similarity = intersect_length/x_len else: interval_similarity = intersect_length/y_len res_list.append(interval_similarity) bundle1_set = set(''.join(bundle1_members).split(",")) bundle2_set = set(''.join(bundle2_members).split(",")) common = bundle1_set.intersection(bundle2_set) res_list.append(common) not_common = bundle1_set.symmetric_difference(bundle2_set) res_list.append(not_common) if first_time == True: newArray = numpy.array(res_list) first_time = False else: newArray =
numpy.vstack([newArray, res_list])
numpy.vstack
# -*- coding: utf-8 -*- """ALE plots.""" import math from collections import defaultdict from copy import deepcopy from operator import attrgetter import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import sklearn.base from joblib import parallel_backend from matplotlib.colors import SymLogNorm from matplotlib.lines import Line2D from matplotlib.patches import Polygon from wildfires.cache.proxy_backend import HashProxy from wildfires.qstat import get_ncpus from wildfires.utils import shorten_features from .. import variable from ..cache import add_cached_shape, cache, get_proxied_estimator, process_proxy from ..model import assign_n_jobs from ..plotting import get_float_format, get_sci_format, update_label_with_exp from ..utils import column_check, tqdm orig_clone = sklearn.base.clone @cache def cached_clone(estimator, safe=True): """Adapted from sklearn.base.clone.""" from wildfires.dask_cx1 import DaskRandomForestRegressor if not isinstance(estimator, DaskRandomForestRegressor): return orig_clone(estimator, safe=safe) estimator_params = estimator.get_params(deep=False) new_estimator = estimator.__class__(**deepcopy(estimator_params)) new_params = new_estimator.get_params(deep=False) for name in estimator_params: param1 = estimator_params[name] param2 = new_params[name] assert param1 is param2 return new_estimator def delegate_clone(estimator, safe=True): from wildfires.dask_cx1 import DaskRandomForestRegressor if isinstance(estimator, HashProxy) or isinstance( estimator, DaskRandomForestRegressor ): cached_est = cached_clone(estimator, safe=safe) # Update n_jobs since this will be determined by the original call to the # cached function. Do this lazily so it is only updated when needed. return process_proxy((cached_est,), (assign_n_jobs,))[0] return orig_clone(estimator, safe=safe) # Transparently cache estimator cloning. sklearn.base.clone = delegate_clone # Import after the line above in order for the `clone` caching to take effect within # the module. import alepython # isort:skip import alepython.ale # isort:skip # Transparently cache the ALE computations. alepython.ale.first_order_ale_quant = cache(alepython.ale.first_order_ale_quant) alepython.ale.second_order_ale_quant = cache( alepython.ale.second_order_ale_quant, ignore=["n_jobs"] ) alepython.ale._mc_replicas = cache(alepython.ale._mc_replicas, ignore=["verbose"]) # Make use of proxied access to `predict` implicitly. _orig_ale_plot = alepython.ale.ale_plot def proxied_ale_plot(**kwargs): kwargs["model"] = get_proxied_estimator(kwargs["model"]) # Cache the 'shape' attribute of `train_set`. kwargs["train_set"] = add_cached_shape(kwargs["train_set"]) return _orig_ale_plot(**kwargs) alepython.ale.ale_plot = proxied_ale_plot # Implicitly handle getting array data from Series. orig_asarray = np.asarray def lazy_series_asarray(*args, **kwargs): if len(args) == 1 and not kwargs and isinstance(args[0], HashProxy): # Handle the specific case of a single lazy input argument to avoid # loading it from disk for as long as possible. return process_proxy((args[0],), (orig_asarray,))[0] return orig_asarray(*args, **kwargs) np.asarray = lazy_series_asarray def save_ale_1d( model, X_train, column, train_response=None, monte_carlo=True, monte_carlo_rep=100, monte_carlo_ratio=1000, monte_carlo_hull=True, verbose=True, center=False, figure_saver=None, sub_dir="ale", fig=None, ax=None, ale_factor_exp=0, x_factor_exp=0, x_ndigits=2, x_rotation=0, x_skip=4, ): assert monte_carlo if fig is None and ax is None: fig = plt.figure(figsize=(7.5, 4.5)) elif fig is None: fig = ax.get_figure() if ax is None: ax = plt.axes() out = alepython.ale.ale_plot( model=model, train_set=X_train, features=column, bins=20, train_response=train_response, monte_carlo=monte_carlo, monte_carlo_rep=monte_carlo_rep, monte_carlo_ratio=monte_carlo_ratio, monte_carlo_hull=monte_carlo_hull, plot_quantiles=False, quantile_axis=True, rugplot_lim=0, scilim=0.6, return_data=True, return_mc_data=True, verbose=verbose, center=center, rng=np.random.default_rng(0), fig=plt.figure(), # Create dummy figure. ax=None, ) temp_fig, _, (quantiles, ale), mc_data = out plt.close(temp_fig) mc_hull_points = alepython.ale._compute_mc_hull_poly_points( mc_data, np.linspace( np.min([mc_quantiles[0] for mc_quantiles, mc_ale in mc_data]), np.max([mc_quantiles[-1] for mc_quantiles, mc_ale in mc_data]), 150, ), ) ax.add_patch( Polygon( mc_hull_points, facecolor="C0", alpha=0.7, label=str(column), zorder=2, ) ) min_x = np.min(mc_hull_points[:, 0]) max_x = np.max(mc_hull_points[:, 0]) min_y =
np.min(mc_hull_points[:, 1])
numpy.min
""" Sun discipline for CADRE: Sun Position ECI component. """ from __future__ import print_function, division, absolute_import import numpy as np from openmdao.api import ExplicitComponent class SunPositionECIComp(ExplicitComponent): """ Compute the position vector from Earth to Sun in Earth-centered inertial frame. """ # constants d2r = np.pi/180. def initialize(self): self.options.declare('num_nodes', types=(int, ), desc="Number of time points.") def setup(self): nn = self.options['num_nodes'] # Inputs self.add_input('LD', 5233.5, units='d', desc='Launch day.') self.add_input('t', np.zeros((nn, )), units='s', desc='Time vector from simulation.') # Outputs self.add_output('r_e2s_I', np.zeros((nn, 3)), units='km', desc='Position vector from Earth to Sun in Earth-centered ' 'inertial frame over time.') self.declare_partials('r_e2s_I', 'LD') rows =
np.arange(nn*3)
numpy.arange
import numpy as np import torch import random import logging import os import torch.multiprocessing as mp import torch.distributed as dist import subprocess import pickle import shutil from scipy import stats as s import numba as nb #from .evaluate_panoptic import class_inv_lut def SemKITTI2train_single(label): return label - 1 # uint8 trick: 0 - 1 = 255 def SemKITTI2train(label): if isinstance(label, list): return [SemKITTI2train_single(a) for a in label] else: return SemKITTI2train_single(label) def grp_range_torch(a,dev): idx = torch.cumsum(a,0) id_arr = torch.ones(idx[-1],dtype = torch.int64,device=dev) id_arr[0] = 0 id_arr[idx[:-1]] = -a[:-1]+1 return torch.cumsum(id_arr,0) # generate array like [0,1,2,3,4,5,0,1,2,3,4,5,6] where each 0-n gives id to points inside the same grid def parallel_FPS(np_cat_fea,K): return nb_greedy_FPS(np_cat_fea,K) # @nb.jit('b1[:](f4[:,:],i4)',nopython=True,cache=True) def nb_greedy_FPS(xyz,K): start_element = 0 sample_num = xyz.shape[0] sum_vec = np.zeros((sample_num,1),dtype = np.float32) xyz_sq = xyz**2 for j in range(sample_num): sum_vec[j,0] = np.sum(xyz_sq[j,:]) pairwise_distance = sum_vec + np.transpose(sum_vec) - 2*np.dot(xyz,
np.transpose(xyz)
numpy.transpose
""" IMPORTS """ import tensorflow as tf import numpy as np import ProjectionLayer as pj """ def euclidean_distance_loss(y_true, y_pred): return K.sqrt(K.sum(K.square(y_pred - y_true), axis=-1)) """ def identity_block(X, f, filters, step) : """ :param X: :param f: :param filters: :param step: :return: """ # Retrieve Filters F1, F2 = filters # Save the input value. We'll need this later to add back to the main path. X_shortcut = X # First component of main path X = tf.keras.layers.Conv2D(filters=F1, kernel_size=(1, 1), strides=(1, 1), padding='valid', name='Conv_'+str(step)+'_1a', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X) X = tf.keras.layers.BatchNormalization(axis=3, name='Batch_Conv'+str(step)+'_1a')(X) X = tf.keras.layers.Activation('relu', name='Relu_Conv_'+str(step)+'_1a')(X) # Second component of main path X = tf.keras.layers.Conv2D(filters=F1, kernel_size=(f, f), strides=(1, 1), padding='same', name='Conv_'+str(step)+'_2a', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X) X = tf.keras.layers.BatchNormalization(axis=3, name='Batch_Conv'+str(step)+'_2a')(X) X = tf.keras.layers.Activation('relu', name='Relu_Conv_'+str(step)+'_2a')(X) # Third component of main path X = tf.keras.layers.Conv2D(filters=F2, kernel_size=(1, 1), strides=(1, 1), padding='valid', name='Conv_'+str(step)+'_3a', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X) X = tf.keras.layers.BatchNormalization(axis=3, name='Batch_Conv'+str(step)+'_3a')(X) # Final step: Add shortcut value to main path, and pass it through a RELU activation X = tf.keras.layers.Add(name='Product_Conv_'+str(step)+'_3a')([X, X_shortcut]) X = tf.keras.layers.Activation('relu', name='Relu_Conv_'+str(step)+'_3a')(X) return X def convolutional_block(X, f, filters, step, s=2): """ :param X: :param f: :param filters: :param step: :param s: :return: """ # Retrieve Filters F1, F2 = filters # Save the input value X_shortcut = X ##### MAIN PATH ##### # First component of main path X = tf.keras.layers.Conv2D(filters=F1, kernel_size=(1, 1), strides=(s, s), padding='valid', name='Conv_'+str(step)+'_1a', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X) X = tf.keras.layers.BatchNormalization(axis=3, name='Batch_Conv'+str(step)+'_1a')(X) X = tf.keras.layers.Activation('relu', name='Relu_Conv_'+str(step)+'_1a')(X) # Second component of main path X = tf.keras.layers.Conv2D(filters=F1, kernel_size=(f, f), strides=(1, 1), padding='same', name='Conv_'+str(step)+'_2a', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X) X = tf.keras.layers.BatchNormalization(axis=3, name='Batch_Conv'+str(step)+'_2a')(X) X = tf.keras.layers.Activation('relu', name='Relu_Conv_'+str(step)+'_2a')(X) # Third component of main path X = tf.keras.layers.Conv2D(filters=F2, kernel_size=(1, 1), strides=(1, 1), padding='valid', name='Conv_'+str(step)+'_3a', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X) X = tf.keras.layers.BatchNormalization(axis=3, name='Batch_Conv'+str(step)+'_3a')(X) ##### SHORTCUT PATH #### X_shortcut = tf.keras.layers.Conv2D(F2, (1, 1), strides=(s, s), padding='valid', name='Conv_'+str(step)+'_1b', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X_shortcut) # Final step: Add shortcut value to main path, and pass it through a RELU activation X = tf.keras.layers.Add(name='Product_Conv_'+str(step)+'_3a')([X, X_shortcut]) X = tf.keras.layers.Activation('relu', name='Relu_Conv_'+str(step)+'_3a')(X) return X class RegNet34() : def __init__(self,input_shape=(256, 256, 3), heatmap_shape=(32,32)): """ :param input_shape: :param heatmap_shape: """ step=1 # Define the input as a tensor with shape input_shape X_input = tf.keras.layers.Input(input_shape) # Zero-Padding X = tf.keras.layers.ZeroPadding2D((3, 3))(X_input) # Stage 1 X = tf.keras.layers.Conv2D(64, (7, 7), strides=(2, 2), name='Conv_'+str(step)+'_1a', padding='valid', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X) X = tf.keras.layers.BatchNormalization(axis=3, name='Batch_Conv'+str(step)+'_1a')(X) X = tf.keras.layers.Activation('relu', name='Relu_Conv_'+str(step)+'_1a')(X) X = tf.keras.layers.MaxPooling2D((3, 3), strides=(2, 2), name='MaxPool_'+str(step)+'_1a')(X) # Stage 2 step+=1 X = convolutional_block(X, f=3,step=step, filters=[64, 256], s=1) step += 1 X = identity_block(X, 3, [64, 256],step=step) step += 1 X = identity_block(X, 3, [64, 256],step=step) # Stage 3 step += 1 X = convolutional_block(X, f=3, step=step,filters=[128, 512], s=2) step += 1 X = identity_block(X, 3, [128, 512],step=step) step += 1 X = identity_block(X, 3, [128, 512],step=step) # Stage 4 step += 1 X = convolutional_block(X, f=3, step=step,filters=[256, 1024], s=2) step += 1 X = identity_block(X, 3, [256, 1024],step=step) step += 1 X = identity_block(X, 3, [256, 1024],step=step) step += 1 X = identity_block(X, 3, [256, 1024],step=step) # Stage 5 step += 1 X = tf.keras.layers.Conv2D(512, (3, 3), strides=(2, 2), padding='same', name='Conv_'+str(step)+'_1a', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X) X = tf.keras.layers.BatchNormalization(axis=3, name='Batch_Conv'+str(step)+'_1a')(X) X = tf.keras.layers.Activation('relu', name='Relu_Conv_'+str(step)+'_1a')(X) # Stage 6 step += 1 X = tf.keras.layers.Conv2D(256, (3, 3), strides=(1, 1), padding='same', name='Conv_'+str(step)+'_1a', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X) X = tf.keras.layers.BatchNormalization(axis=3, name='Batch_Conv'+str(step)+'_1a')(X) X = tf.keras.layers.Activation('relu', name='Relu_Conv_'+str(step)+'_1a')(X) # Spliting X_2D = X # 2D Heatmaps Generation step += 1 X_2D = tf.keras.layers.Conv2D(64, (3, 3), strides=(1, 1), padding='same', name='Conv_'+str(step)+'_2D', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X_2D) X_2D = tf.keras.layers.Conv2DTranspose(21, (4, 4), strides=(2, 2), padding='same', name='DEConv_'+str(step)+'_2D_1a', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X_2D) X_2D = tf.keras.layers.Conv2DTranspose(21, (4, 4), strides=(2, 2), padding='same', name='DEConv_'+str(step)+'_2D_2a', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X_2D) # 3D prediction X_3D = tf.keras.layers.Flatten(name='Flatten_'+str(step)+'_1a')(X) X_3D = tf.keras.layers.Dense(200,name='Dense_'+str(step)+'_1a')(X_3D) X_3D = tf.keras.layers.Dense(63,name='Dense_'+str(step)+'_2a')(X_3D) X_3D = tf.keras.layers.Reshape((21, 1, 3),name='Reshape_'+str(step)+'_1a')(X_3D) temp = tf.keras.layers.Reshape((21, 3),name='Reshape_'+str(step)+'_2a')(X_3D) # Proj Layer projLayer = pj.ProjLayer(heatmap_shape, name='projlayer')(temp) heatmaps_pred3D = pj.RenderingLayer(heatmap_shape, coeff=1, name='renderinglayer')(projLayer) heatmaps_pred3D_reshape = pj.ReshapeChannelToLast(heatmap_shape, name='reshapelayer')(heatmaps_pred3D) # Rendering step += 1 X_rendered = tf.keras.layers.Conv2D(64, (3, 3), strides=(2, 2), padding='same', name='Conv_'+str(step)+'_rendering', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(heatmaps_pred3D_reshape) X_rendered = tf.keras.layers.BatchNormalization(axis=3, name='Batch_Conv'+str(step)+'_1a')(X_rendered) X_rendered = tf.keras.layers.Activation('relu', name='Relu_Conv_'+str(step)+'_1a')(X_rendered) step += 1 X_rendered = tf.keras.layers.Conv2D(128, (3, 3), strides=(2, 2), padding='same', name='Conv_'+str(step)+'_rendering', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X_rendered) X_rendered = tf.keras.layers.BatchNormalization(axis=3, name='Batch_Conv'+str(step)+'_1a')(X_rendered) X_rendered = tf.keras.layers.Activation('relu', name='Relu_Conv_'+str(step)+'_1a')(X_rendered) step += 1 X_concat = tf.keras.layers.concatenate([X, X_rendered],name='Concat_'+str(step)+'_1a') X_concat = tf.keras.layers.Conv2D(256, (3, 3), strides=(1, 1), padding='same', name='Conv_'+str(step)+'_rendering', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X_concat) X_concat = tf.keras.layers.BatchNormalization(axis=3, name='Batch_Conv'+str(step)+'_1a')(X_concat) X_concat = tf.keras.layers.Activation('relu', name='Relu_Conv_'+str(step)+'_1a')(X_concat) # Final Heatmap step += 1 X_heatmap = tf.keras.layers.Conv2D(64, (3, 3), strides=(1, 1), padding='same', name='Conv_'+str(step)+'_heatmap', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))(X_concat) X_heatmap = tf.keras.layers.Conv2DTranspose(21, (4, 4), strides=(2, 2), padding='same', name='DEConv_'+str(step)+'_heatmap_1a', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))( X_heatmap) X_heatmap = tf.keras.layers.Conv2DTranspose(21, (4, 4), strides=(2, 2), padding='same', name='DEConv_'+str(step)+'_heatmap_2a', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=0))( X_heatmap) # Final 3D Joints X_concat = tf.keras.layers.Flatten(name='Flatten_'+str(step)+'_1a')(X_concat) X_3Dj = tf.keras.layers.Dense(200,name='Dense_'+str(step)+'_1a')(X_concat) X_3Dj = tf.keras.layers.Dense(63,name='Dense_'+str(step)+'_2a')(X_3Dj) X_3Dj = tf.keras.layers.Reshape((21, 1, 3),name='Reshape_'+str(step)+'_1a')(X_3Dj) # Create model self.model = tf.keras.Model(inputs=X_input, outputs=[X_3D,X_3Dj,X_heatmap], name='RegNet34') def train_on_batch(self, epoch, generator) : """ :param epoch: :param generator: :return: """ for i in range(0, epoch): image, crop_param, joint_3d, joint_3d_rate, joint_2d = generator.generate_batch() joint_3d_rate = np.reshape(joint_3d_rate, (-1, 21, 1, 3)) result = self.model.train_on_batch(x=[image], y=[joint_3d_rate, joint_3d_rate, joint_2d]) self.test_on_batch(generator, i + 1) def test_on_batch(self, generator, epoch): """ :param generator: :param epoch: :return: """ min_loss = [10000.0, 10000., 100000., 100000., 100000., 100000., 100000.] sum_result = [0.0, 0., 0., 0., 0., 0., 0.] image, crop_param, joint_3d, joint_3d_rate, joint_2d = generator.generate_batch() joint_3d_rate = np.reshape(joint_3d_rate, (-1, 21, 1, 3)) result = self.model.test_on_batch(x=[image], y=[joint_3d_rate, joint_3d_rate, joint_2d]) result =
np.asarray(result)
numpy.asarray
#!/usr/bin/env python # Filename: watershed_segment """ introduction: segment a grey image authors: <NAME> email:<EMAIL> add time: 1 March, 2021 """ import os,sys from optparse import OptionParser deeplabforRS = os.path.expanduser('~/codes/PycharmProjects/DeeplabforRS') sys.path.insert(0, deeplabforRS) import vector_gpd import raster_io import basic_src.io_function as io_function import basic_src.map_projection as map_projection import basic_src.basic as basic import basic_src.timeTools as timeTools import vector_features import raster_statistic import cv2 import numpy as np import pandas as pd import geopandas as gpd import re import dem_common code_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..') sys.path.insert(0,code_dir) sys.path.insert(0,os.path.join(code_dir,'tools')) # for some modules in this folder from tools.grey_image_segment import segment_a_grey_image from tools.seg_polygonize_cal_attributes import polygonize_label_images def post_processing_subsidence(in_shp): polygons = vector_gpd.read_polygons_gpd(in_shp) # get shapeinfo # poly_shapeinfo_list = [] save_polyons = [] for poly in polygons: # get INarea, INperimete, WIDTH, HEIGHT, ratio_w_h, hole_count # shapeinfo = vector_gpd.calculate_polygon_shape_info(poly) # error: 'MultiPolygon' object has no attribute 'interiors' # poly_shapeinfo_list.append(shapeinfo) # if shapeinfo['INarea'] < 40: # remove the one with area smaller than 40 m^2 if poly.area < 90: # remove the one with area smaller than 40 m^2 continue save_polyons.append(poly) save_pd = pd.DataFrame({'Polygon': save_polyons}) wkt = map_projection.get_raster_or_vector_srs_info_wkt(in_shp) save_shp = io_function.get_name_by_adding_tail(in_shp,'post') vector_gpd.save_polygons_to_files(save_pd,'Polygon',wkt,save_shp) def segment_subsidence_on_dem_diff(dem_diff_tif, save_dir): out_pre = os.path.splitext(os.path.basename(dem_diff_tif))[0] # read images one_band_img, nodata = raster_io.read_raster_one_band_np(dem_diff_tif) # segmentation by threshold (may have too many noise) # mean = np.nanmean(one_band_img) # print("mean value is: %.4f"%mean) # one_band_img = one_band_img - mean # cannot use mean which may affect by some Outliers out_labels = np.zeros_like(one_band_img,dtype=np.uint8) out_labels[ one_band_img < -2 ] = 1 # end in a lot of noise, change to -2, -1 results in a lot of polygons # apply median filter out_labels = cv2.medianBlur(out_labels, 3) # with kernal=3 # save the label if os.path.isdir(save_dir) is False: io_function.mkdir(save_dir) label_path = os.path.join(save_dir, out_pre + '_label.tif') raster_io.save_numpy_array_to_rasterfile(out_labels, label_path, dem_diff_tif, nodata=0) # convert the label to shapefile out_shp = os.path.join(save_dir, out_pre + '.shp') command_string = 'gdal_polygonize.py -8 %s -b 1 -f "ESRI Shapefile" %s' % (label_path, out_shp) res = os.system(command_string) if res != 0: sys.exit(1) # post-processing post_processing_subsidence(out_shp) def get_mean_from_array(in_array, nodata,range=None): data_1d = in_array.flatten() data_1d = data_1d[ data_1d != nodata] data_1d = data_1d[~np.isnan(data_1d)] # remove nan value value = np.mean(data_1d) return value def get_dem_diff_8bit(dem_diff_path): # find 8bit one tif_8bit = io_function.get_name_by_adding_tail(dem_diff_path, '8bit') demD_8bit= os.path.join(dem_common.grid_dem_diffs_8bit_dir, os.path.basename(tif_8bit)) if os.path.isfile(demD_8bit) is False: basic.outputlogMessage('error, 8bit DEM diff not exists: %s '%demD_8bit) return None return demD_8bit def get_save_dir(dem_diff_path): grid_id = int(re.findall('grid\d+',os.path.basename(dem_diff_path))[0][4:]) save_dir = os.path.join(dem_common.grid_dem_diffs_segment_dir, 'segment_result_grid%d'%grid_id) return save_dir def merge_polygons_patchBYpatch(patch_DN_range_txt, in_polygons, polygon_DNs, process_num=1): patch_DN_range_list = [ int(item) for item in io_function.read_list_from_txt(patch_DN_range_txt)] # print(patch_DN_range_list) # divide polygons patch_polygons = {} range_count = len(patch_DN_range_list) - 1 for idx in range(range_count): patch_polygons[idx] = [] for poly, dn in zip(in_polygons, polygon_DNs): for idx in range(range_count): if dn > patch_DN_range_list[idx] and dn <= patch_DN_range_list[idx+1]: patch_polygons[idx].append(poly) # merge polygon patch by patch polygons_patch_merge = [] for idx in range(range_count): print(timeTools.get_now_time_str(), 'will merge %d polygons for %d th patch'%(len(patch_polygons[idx]),idx)) if len(patch_polygons[idx]) < 2: polygons_patch_merge.extend(patch_polygons[idx]) continue adjacent_matrix = vector_gpd.build_adjacent_map_of_polygons(patch_polygons[idx], process_num=process_num) if adjacent_matrix is False: polygons_patch_merge.extend(patch_polygons[idx]) continue merged_polygons = vector_features.merge_touched_polygons(patch_polygons[idx], adjacent_matrix) polygons_patch_merge.extend(merged_polygons) # merge polygon all print(timeTools.get_now_time_str(), 'will merge %d polygons for the entire raster' % (len(polygons_patch_merge))) adjacent_matrix = vector_gpd.build_adjacent_map_of_polygons(polygons_patch_merge, process_num=process_num) if adjacent_matrix is False: return polygons_patch_merge last_merged_polygons = vector_features.merge_touched_polygons(polygons_patch_merge, adjacent_matrix) return last_merged_polygons def merge_polygon_rasterize(ref_raster, in_polygons): # rasterize to raster save_raster = os.path.basename(io_function.get_name_by_adding_tail(ref_raster,'merge')) raster_io.burn_polygons_to_a_raster(ref_raster,in_polygons,1,save_raster) # set nodata if raster_io.set_nodata_to_raster_metadata(save_raster,0) is False: raise IOError('Set nodata failed for %s'%save_raster) # polygonize out_shp = vector_gpd.raster2shapefile(save_raster, connect8=True) if out_shp is None: raise IOError('polygonzied failed for %s' % save_raster) # read polygon merge_polygons = vector_gpd.read_polygons_gpd(out_shp,b_fix_invalid_polygon=False) print(timeTools.get_now_time_str(),'Get %d merged polygons'%len(merge_polygons)) return merge_polygons def filter_merge_polygons(in_shp,merged_shp,wkt, min_area,max_area,dem_diff_tif,dem_diff_thread_m,process_num): if os.path.isfile(merged_shp): basic.outputlogMessage('%s exists, skip'%merged_shp) return merged_shp # read polygons and label from segment algorithm, note: some polygons may have the same label # polygons, demD_mean_list = vector_gpd.read_polygons_attributes_list(in_shp,'demD_mean') polygons, attributes = vector_gpd.read_polygons_attributes_list(in_shp,['demD_mean','DN']) demD_mean_list = attributes[0] DN_list = attributes[1] print('Read %d polygons'%len(polygons)) if demD_mean_list is None: raise ValueError('demD_mean not in %s, need to remove it and then re-create'%in_shp) # replace nan values as 0 demD_mean_list =
np.nan_to_num(demD_mean_list)
numpy.nan_to_num
#!/usr/bin/env python # coding: utf-8 from sys import argv import pandas as pd import datetime import numba import numpy as np import copy from random import * from sympy.utilities.iterables import multiset_permutations from collections import defaultdict ORIGIN_COLS_TO_RENAME = { "Мерчендайзер (ФИО)": "merch", "Сеть": "chain", "Адрес ТТ": "address", "Время в ТТ": "time", "Рын. формат": "format", "Понедельник": "mon", "Вторник": "tue", "Среда": "wed", "Четверг": "thu", "Пятница": "fri", "Суббота": "sat", "Воскресенье": "sun", "Кол-во визитов в неделю": "amount", } PLAN_COLS_TO_RENAME = { "Код ТТ": "TT_code", "Активность": "activity", "Наименование клиента": "chain", "Адрес клиента": "address", "Количество посещений": "amount", "Закрепленный за клиентом ТП": "merch", "Продолжительность посещения": "duration", } # MATRIX_FILE = "input_matrix.csv" # ORIGIN_FILE = "input_origin.csv" # PLAN_FILE = "input_plan.csv" # report_1 = "aa.csv" # data_out = "bb.csv" MATRIX_FILE = argv[1] ORIGIN_FILE = argv[2] PLAN_FILE = argv[3] report_1 = argv[4] data_out = argv[5] # ENCODE = "UTF-8" ENCODE = "Windows-1251" def time_to_minutes(string): """ :param string: string in format hh:mm:ss. :return: integer equivalent in minutes. """ try: h, m, s = string.split(":") return int(h) * 60 + int(m) + int(s) / 60 except ValueError: # print(string) return -1 @numba.jit() def return_times(way): """ Function gets current way and return different time metrics. :param way: way, for what we want to calculate time metrics. :returns: :store_time: float - spend in stores; :way_time: float - time in the way; :total_time: float - timetotal time; :total_check: boolean - True, if the total time < 9 hours and 30 minutes, else False; :store_check: boolean - True, if the store time > 5 hours, else False. """ store_time = np.sum(durations[way]) way_time = 0 for start, end in zip(way[:-1], way[1:]): way_time += 1.0 * matrix[start, end] / 1000 total_time = store_time + way_time # print(total_time) total_check = total_time < 571 store_check = store_time > 299 return total_time, store_time, way_time, total_check, store_check def annealing(cur_order, iters=30, delta_t=0.001, t_max=100): """ Conduct simulated annealing optimisation method. :param cur_order: np.array - current order (one, that we want to optimize); :param iters: int - max iterations amount; :param delta_t: float - delta of temperature; :param t_max: - max temperature. :return: :best_order: np.array - optimized order. :best_cost: float - cost for this optimized order. """ t_max = max(t_max, 2) # for protection n = len(cur_order) cur_order = copy.deepcopy(cur_order) cur_cost, _, _, _, _ = return_times(cur_order) best_order = copy.deepcopy(cur_order) best_cost = cur_cost for _ in range(iters): for T in np.arange(t_max, 1, -1 * delta_t): i1 = randint(0, n - 1) i2 = randint(i1 + 1, n) cur_order[i1:i2] = np.flip(cur_order[i1:i2]) new_cost, _, _, _, _ = return_times(cur_order) dE = cur_cost - new_cost if dE > 0 and
np.exp(-dE / T)
numpy.exp
import enum import logging from collections import namedtuple from typing import Optional, Tuple, Sequence import numpy as np import scipy.stats from ...algorithms.correlmatrix import correlmatrix_cython from ...algorithms.schilling import cormap_pval, longest_run SchillingResult = namedtuple('SchillingResult', ('statistic', 'pvalue')) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class OutlierMethod(enum.Enum): ZScore = 'Z-score' ZScoreMod = 'Modified Z-score' IQR = 'Interquartile Range' class OutlierTest: score: np.ndarray method: OutlierMethod threshold: float outlierverdict: np.ndarray correlmatrix: np.ndarray fsns: Optional[np.ndarray] = None def __init__(self, method: OutlierMethod, threshold: float, curves: Optional[np.ndarray] = None, correlmatrix: Optional[np.ndarray] = None, fsns: Optional[Sequence[int]] = None): if curves is not None: self.correlmatrix = correlmatrix_cython(curves[:, 1, :], curves[:, 2, :]) elif correlmatrix is not None: self.correlmatrix = correlmatrix else: raise ValueError('Either `curves` or `correlmatrix` argument is needed.') self.score = np.diagonal(self.correlmatrix) self.method = method self.threshold = threshold self.outlierverdict = np.zeros(self.score.shape, np.bool) if fsns is not None: self.fsns = np.array(fsns) self.markOutliers() def acceptanceInterval(self) -> Tuple[float, float]: if self.method in [OutlierMethod.ZScore, OutlierMethod.ZScoreMod]: return -self.threshold, self.threshold elif self.method == OutlierMethod.IQR: q1, q3 = np.percentile(self.score, [25, 75]) iqr = q3 - q1 return q1 - iqr * self.threshold, q3 + iqr * self.threshold else: assert False def markOutliers(self) -> np.ndarray: if self.correlmatrix.shape[0] < 3: logger.warning('Cannot do outlier detection for less than 3 measurements.') return np.zeros(self.score.shape, dtype=np.bool) if self.method == OutlierMethod.ZScore: self.outlierverdict = (np.abs(self.score -
np.nanmean(self.score)
numpy.nanmean
# old from constants--------------------- import numpy as np import scipy.sparse as ss import scipy.stats as stat def invert_to_dense(sparse_mat): dense = sparse_mat.todense() u, s, vh = np.linalg.svd(dense) # raw_inv = np.linalg.inv(dense) pinv_dense = clean_pinv(dense) # back = clean_pinv(pinv_dense) # dense[dense < 1e-3] = 0 # pinv_norm = np.linalg.pinv(dense, rcond=1e-3, hermitian=True) return pinv_dense def clean_pinv(mat): error = 1e-6 copy_mat = mat.copy() u, s, vh = np.linalg.svd(copy_mat) # copy_mat[copy_mat < error] = 0.0 pinv_mat = np.linalg.pinv(copy_mat, rcond=error, hermitian=True) # pinv_mat[pinv_mat < error] = 0.0 return pinv_mat def to_sparse(dense_mat, error=1e-6): dense_mat[abs(dense_mat) < error] = 0.0 out = ss.csc_matrix(dense_mat) return out def gaussian_kernel_original(x_val, sd): diff = np.linalg.norm(x_val) inter = (-((diff) ** 2) / (2 * sd ** 2)) out = np.exp(inter) # Should be a float return out def gaussian_kernel_given_diffs(diffs, sd2): """ :param diffs: a 2d array with each row denoting vector (calculated diff) :param sd: sd not squared :return: A 1d array of calculated gaussians """ norm2_squared = np.sum((diffs ** 2), axis=1) inter = (-((norm2_squared)) / (2 * sd2)) out = np.exp(inter) # Should be a float return out def gaussian_kernel_naive(pixel_row, pixel_col, sd2): """ Gaussian for precomputing gaussian :param pixel_row: :param pixel_col: :param sd2: :return: """ diff = pixel_row ** 2 + pixel_col ** 2 inter = (-(diff) / (2 * sd2)) out = np.exp(inter) return out def gaussian_kernel_input2_sd2(input2, sd2): """ Takes an array of squared norm of diffs :param input2: an 1D array of squared norm of diffs :param sd2: :return: """ inter = (-(input2) / (2 * sd2)) out = np.e ** inter return out #----------------NEW STUFF-------------------------- # import constants_maker as constants import datetime import os import matplotlib.pyplot as plt def flatten_image(image): return image.flatten() def unflatten_image(image, ncols): return image.reshape((-1, ncols)) def faster_norm_squared(arr): return np.sum(arr * arr) def get_pixel_by_centers_matrix(all_pixels, all_centers, sd2): """ :param all_pixels: an array of all pixels ex. [[0,0],[0,1]... :param all_centers: an array of all centers ex. [[0,0],[0,1]... :return: (n_pixels, n_centers) array with evaluated gaussian values relative to each center """ n_pixels = np.shape(all_pixels)[0] n_centers = np.shape(all_centers)[0] pixels_pixels = np.repeat(all_pixels,n_centers,axis=0) centers_centers = np.tile(all_centers,(n_pixels,1)) diff_vector = pixels_pixels - centers_centers gaussian_out = gaussian_kernel_given_diffs(diff_vector, sd2) reshaped_gauss = gaussian_out.reshape((n_pixels,n_centers)) return reshaped_gauss def get_sparse_pixel_by_centers(all_pixels, all_centers, sd2, sparse_type=ss.csc_matrix, error=1e-6): out = get_pixel_by_centers_matrix(all_pixels=all_pixels, all_centers=all_centers, sd2=sd2) out[np.abs(out) < error] = 0.0 s_out = sparse_type(out) return s_out def get_pixel_by_centers_matrix_mul_only(all_pixels, all_centers, sd2): one_col2 = np.ones((2, 1)) n_pixels = np.shape(all_pixels)[0] n_centers = np.shape(all_centers)[0] p_norm_squared = (all_pixels ** 2) @ one_col2 c_norm_squared = (all_centers ** 2) @ one_col2 p_norm_squared_repeated = p_norm_squared @ np.ones((1, n_centers)) c_norm_squared_repeated = (c_norm_squared @
np.ones((1, n_pixels))
numpy.ones
import cv2, sys from matplotlib import pyplot as plt import numpy as np # 이미지 블러처리 외곽선 검출 # 참고 https://youbidan.tistory.com/19 # image = cv2.imread('Open/t02/2.jpg') # # image_gray = cv2.imread('Open/t02/2.jpg', cv2.IMREAD_GRAYSCALE) # blur = cv2.GaussianBlur(image_gray, ksize=(31,31), sigmaX=0) # ret, thresh1 = cv2.threshold(blur, 127, 255, cv2.THRESH_BINARY) # edged = cv2.Canny(blur, 10,80) # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5)) # closed = cv2.morphologyEx(edged, cv2.MORPH_CLOSE, kernel) # contours, _ = cv2.findContours(closed.copy(),cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # total = 0 # contours_image = cv2.drawContours(image, contours, -1, (0,255,0), 3) # # plt.imshow(blur) # # plt.show() def fit_rotated_ellipse(data): xs = data[:,0].reshape(-1,1) ys = data[:,1].reshape(-1,1) J = np.mat( np.hstack((xs*ys,ys**2,xs, ys, np.ones_like(xs,dtype=float))) ) Y = np.mat(-1*xs**2) P= (J.T * J).I * J.T * Y a = 1.0; b= P[0,0]; c= P[1,0]; d = P[2,0]; e= P[3,0]; f=P[4,0]; # To do implementation #a,b,c,d,e,f 를 통해 theta, 중심(cx,cy) , 장축(major), 단축(minor) 등을 뽑아 낼 수 있어요 theta = 0.5* np.arctan(b/(a-c)) cx = (2*c*d - b*e)/(b**2-4*a*c) cy = (2*a*e - b*d)/(b**2-4*a*c) cu = a*cx**2 + b*cx*cy + c*cy**2 -f w= np.sqrt(cu/(a*np.cos(theta)**2 + b* np.cos(theta)*np.sin(theta) + c*np.sin(theta)**2)) h= np.sqrt(cu/(a*
np.sin(theta)
numpy.sin
"""Numba-compiled functions. Provides an arsenal of Numba-compiled functions that are used by accessors and in many other parts of the backtesting pipeline, such as technical indicators. These only accept NumPy arrays and other Numba-compatible types. The module can be accessed directly via `vbt.nb`. ```python-repl >>> import numpy as np >>> import vectorbt as vbt >>> # vectorbt.generic.nb.rolling_mean_1d_nb >>> vbt.nb.rolling_mean_1d_nb(np.array([1, 2, 3, 4]), 2) array([nan, 1.5, 2.5, 3.5]) ``` !!! note vectorbt treats matrices as first-class citizens and expects input arrays to be 2-dim, unless function has suffix `_1d` or is meant to be input to another function. Data is processed along index (axis 0). Rolling functions with `minp=None` have `min_periods` set to the window size. All functions passed as argument should be Numba-compiled.""" import numpy as np from numba import njit, generated_jit from numba.np.numpy_support import as_dtype from numba.typed import Dict from numba.core.types import Omitted from vectorbt import _typing as tp from vectorbt.generic.enums import DrawdownStatus, drawdown_dt @njit(cache=True) def shuffle_1d_nb(a: tp.Array1d, seed: tp.Optional[int] = None) -> tp.Array1d: """Shuffle each column in `a`. Specify `seed` to make output deterministic.""" if seed is not None: np.random.seed(seed) return np.random.permutation(a) @njit(cache=True) def shuffle_nb(a: tp.Array2d, seed: tp.Optional[int] = None) -> tp.Array2d: """2-dim version of `shuffle_1d_nb`.""" if seed is not None: np.random.seed(seed) out = np.empty_like(a, dtype=a.dtype) for col in range(a.shape[1]): out[:, col] = np.random.permutation(a[:, col]) return out @generated_jit(nopython=True, cache=True) def set_by_mask_1d_nb(a: tp.Array1d, mask: tp.Array1d, value: tp.Scalar) -> tp.Array1d: """Set each element to a value by boolean mask.""" nb_enabled = not isinstance(a, np.ndarray) if nb_enabled: a_dtype = as_dtype(a.dtype) value_dtype = as_dtype(value) else: a_dtype = a.dtype value_dtype = np.array(value).dtype dtype = np.promote_types(a_dtype, value_dtype) def _set_by_mask_1d_nb(a, mask, value): out = a.astype(dtype) out[mask] = value return out if not nb_enabled: return _set_by_mask_1d_nb(a, mask, value) return _set_by_mask_1d_nb @generated_jit(nopython=True, cache=True) def set_by_mask_nb(a: tp.Array2d, mask: tp.Array2d, value: tp.Scalar) -> tp.Array2d: """2-dim version of `set_by_mask_1d_nb`.""" nb_enabled = not isinstance(a, np.ndarray) if nb_enabled: a_dtype = as_dtype(a.dtype) value_dtype = as_dtype(value) else: a_dtype = a.dtype value_dtype = np.array(value).dtype dtype = np.promote_types(a_dtype, value_dtype) def _set_by_mask_nb(a, mask, value): out = a.astype(dtype) for col in range(a.shape[1]): out[mask[:, col], col] = value return out if not nb_enabled: return _set_by_mask_nb(a, mask, value) return _set_by_mask_nb @generated_jit(nopython=True, cache=True) def set_by_mask_mult_1d_nb(a: tp.Array1d, mask: tp.Array1d, values: tp.Array1d) -> tp.Array1d: """Set each element in one array to the corresponding element in another by boolean mask. `values` should be of the same shape as in `a`.""" nb_enabled = not isinstance(a, np.ndarray) if nb_enabled: a_dtype = as_dtype(a.dtype) value_dtype = as_dtype(values.dtype) else: a_dtype = a.dtype value_dtype = values.dtype dtype = np.promote_types(a_dtype, value_dtype) def _set_by_mask_mult_1d_nb(a, mask, values): out = a.astype(dtype) out[mask] = values[mask] return out if not nb_enabled: return _set_by_mask_mult_1d_nb(a, mask, values) return _set_by_mask_mult_1d_nb @generated_jit(nopython=True, cache=True) def set_by_mask_mult_nb(a: tp.Array2d, mask: tp.Array2d, values: tp.Array2d) -> tp.Array2d: """2-dim version of `set_by_mask_mult_1d_nb`.""" nb_enabled = not isinstance(a, np.ndarray) if nb_enabled: a_dtype = as_dtype(a.dtype) value_dtype = as_dtype(values.dtype) else: a_dtype = a.dtype value_dtype = values.dtype dtype = np.promote_types(a_dtype, value_dtype) def _set_by_mask_mult_nb(a, mask, values): out = a.astype(dtype) for col in range(a.shape[1]): out[mask[:, col], col] = values[mask[:, col], col] return out if not nb_enabled: return _set_by_mask_mult_nb(a, mask, values) return _set_by_mask_mult_nb @njit(cache=True) def fillna_1d_nb(a: tp.Array1d, value: tp.Scalar) -> tp.Array1d: """Replace NaNs with value. Numba equivalent to `pd.Series(a).fillna(value)`.""" return set_by_mask_1d_nb(a, np.isnan(a), value) @njit(cache=True) def fillna_nb(a: tp.Array2d, value: tp.Scalar) -> tp.Array2d: """2-dim version of `fillna_1d_nb`.""" return set_by_mask_nb(a, np.isnan(a), value) @generated_jit(nopython=True, cache=True) def bshift_1d_nb(a: tp.Array1d, n: int = 1, fill_value: tp.Scalar = np.nan) -> tp.Array1d: """Shift backward by `n` positions. Numba equivalent to `pd.Series(a).shift(n)`. !!! warning Shift backward means looking ahead.""" nb_enabled = not isinstance(a, np.ndarray) if nb_enabled: a_dtype = as_dtype(a.dtype) if isinstance(fill_value, Omitted): fill_value_dtype = np.asarray(fill_value.value).dtype else: fill_value_dtype = as_dtype(fill_value) else: a_dtype = a.dtype fill_value_dtype = np.array(fill_value).dtype dtype = np.promote_types(a_dtype, fill_value_dtype) def _bshift_1d_nb(a, n, fill_value): out = np.empty_like(a, dtype=dtype) out[-n:] = fill_value out[:-n] = a[n:] return out if not nb_enabled: return _bshift_1d_nb(a, n, fill_value) return _bshift_1d_nb @generated_jit(nopython=True, cache=True) def bshift_nb(a: tp.Array2d, n: int = 1, fill_value: tp.Scalar = np.nan) -> tp.Array2d: """2-dim version of `bshift_1d_nb`.""" nb_enabled = not isinstance(a, np.ndarray) if nb_enabled: a_dtype = as_dtype(a.dtype) if isinstance(fill_value, Omitted): fill_value_dtype = np.asarray(fill_value.value).dtype else: fill_value_dtype = as_dtype(fill_value) else: a_dtype = a.dtype fill_value_dtype = np.array(fill_value).dtype dtype = np.promote_types(a_dtype, fill_value_dtype) def _bshift_nb(a, n, fill_value): out = np.empty_like(a, dtype=dtype) for col in range(a.shape[1]): out[:, col] = bshift_1d_nb(a[:, col], n=n, fill_value=fill_value) return out if not nb_enabled: return _bshift_nb(a, n, fill_value) return _bshift_nb @generated_jit(nopython=True, cache=True) def fshift_1d_nb(a: tp.Array1d, n: int = 1, fill_value: tp.Scalar = np.nan) -> tp.Array1d: """Shift forward by `n` positions. Numba equivalent to `pd.Series(a).shift(n)`.""" nb_enabled = not isinstance(a, np.ndarray) if nb_enabled: a_dtype = as_dtype(a.dtype) if isinstance(fill_value, Omitted): fill_value_dtype = np.asarray(fill_value.value).dtype else: fill_value_dtype = as_dtype(fill_value) else: a_dtype = a.dtype fill_value_dtype = np.array(fill_value).dtype dtype = np.promote_types(a_dtype, fill_value_dtype) def _fshift_1d_nb(a, n, fill_value): out = np.empty_like(a, dtype=dtype) out[:n] = fill_value out[n:] = a[:-n] return out if not nb_enabled: return _fshift_1d_nb(a, n, fill_value) return _fshift_1d_nb @generated_jit(nopython=True, cache=True) def fshift_nb(a: tp.Array2d, n: int = 1, fill_value: tp.Scalar = np.nan) -> tp.Array2d: """2-dim version of `fshift_1d_nb`.""" nb_enabled = not isinstance(a, np.ndarray) if nb_enabled: a_dtype = as_dtype(a.dtype) if isinstance(fill_value, Omitted): fill_value_dtype = np.asarray(fill_value.value).dtype else: fill_value_dtype = as_dtype(fill_value) else: a_dtype = a.dtype fill_value_dtype = np.array(fill_value).dtype dtype = np.promote_types(a_dtype, fill_value_dtype) def _fshift_nb(a, n, fill_value): out = np.empty_like(a, dtype=dtype) for col in range(a.shape[1]): out[:, col] = fshift_1d_nb(a[:, col], n=n, fill_value=fill_value) return out if not nb_enabled: return _fshift_nb(a, n, fill_value) return _fshift_nb @njit(cache=True) def diff_1d_nb(a: tp.Array1d, n: int = 1) -> tp.Array1d: """Return the 1-th discrete difference. Numba equivalent to `pd.Series(a).diff()`.""" out = np.empty_like(a, dtype=np.float_) out[:n] = np.nan out[n:] = a[n:] - a[:-n] return out @njit(cache=True) def diff_nb(a: tp.Array2d, n: int = 1) -> tp.Array2d: """2-dim version of `diff_1d_nb`.""" out = np.empty_like(a, dtype=np.float_) for col in range(a.shape[1]): out[:, col] = diff_1d_nb(a[:, col], n=n) return out @njit(cache=True) def pct_change_1d_nb(a: tp.Array1d, n: int = 1) -> tp.Array1d: """Return the percentage change. Numba equivalent to `pd.Series(a).pct_change()`.""" out = np.empty_like(a, dtype=np.float_) out[:n] = np.nan out[n:] = a[n:] / a[:-n] - 1 return out @njit(cache=True) def pct_change_nb(a: tp.Array2d, n: int = 1) -> tp.Array2d: """2-dim version of `pct_change_1d_nb`.""" out = np.empty_like(a, dtype=np.float_) for col in range(a.shape[1]): out[:, col] = pct_change_1d_nb(a[:, col], n=n) return out @njit(cache=True) def ffill_1d_nb(a: tp.Array1d) -> tp.Array1d: """Fill NaNs by propagating last valid observation forward. Numba equivalent to `pd.Series(a).fillna(method='ffill')`.""" out = np.empty_like(a, dtype=a.dtype) lastval = a[0] for i in range(a.shape[0]): if np.isnan(a[i]): out[i] = lastval else: lastval = out[i] = a[i] return out @njit(cache=True) def ffill_nb(a: tp.Array2d) -> tp.Array2d: """2-dim version of `ffill_1d_nb`.""" out = np.empty_like(a, dtype=a.dtype) for col in range(a.shape[1]): out[:, col] = ffill_1d_nb(a[:, col]) return out @generated_jit(nopython=True, cache=True) def nanprod_nb(a): """Numba-equivalent of `np.nanprod` along axis 0.""" nb_enabled = not isinstance(a, np.ndarray) if nb_enabled: a_dtype = as_dtype(a.dtype) else: a_dtype = a.dtype dtype = np.promote_types(a_dtype, int) def _nanprod_nb(a): out = np.empty(a.shape[1], dtype=dtype) for col in range(a.shape[1]): out[col] = np.nanprod(a[:, col]) return out if not nb_enabled: return _nanprod_nb(a) return _nanprod_nb @generated_jit(nopython=True, cache=True) def nancumsum_nb(a): """Numba-equivalent of `np.nancumsum` along axis 0.""" nb_enabled = not isinstance(a, np.ndarray) if nb_enabled: a_dtype = as_dtype(a.dtype) else: a_dtype = a.dtype dtype = np.promote_types(a_dtype, int) def _nancumsum_nb(a): out = np.empty(a.shape, dtype=dtype) for col in range(a.shape[1]): out[:, col] = np.nancumsum(a[:, col]) return out if not nb_enabled: return _nancumsum_nb(a) return _nancumsum_nb @generated_jit(nopython=True, cache=True) def nancumprod_nb(a): """Numba-equivalent of `np.nancumprod` along axis 0.""" nb_enabled = not isinstance(a, np.ndarray) if nb_enabled: a_dtype = as_dtype(a.dtype) else: a_dtype = a.dtype dtype = np.promote_types(a_dtype, int) def _nancumprod_nb(a): out = np.empty(a.shape, dtype=dtype) for col in range(a.shape[1]): out[:, col] = np.nancumprod(a[:, col]) return out if not nb_enabled: return _nancumprod_nb(a) return _nancumprod_nb @njit(cache=True) def nancnt_nb(a: tp.Array2d) -> tp.Array1d: """Compute count while ignoring NaNs.""" out = np.empty(a.shape[1], dtype=np.int_) for col in range(a.shape[1]): out[col] = np.sum(~np.isnan(a[:, col])) return out @generated_jit(nopython=True, cache=True) def nansum_nb(a): """Numba-equivalent of `np.nansum` along axis 0.""" nb_enabled = not isinstance(a, np.ndarray) if nb_enabled: a_dtype = as_dtype(a.dtype) else: a_dtype = a.dtype dtype = np.promote_types(a_dtype, int) def _nansum_nb(a): out = np.empty(a.shape[1], dtype=dtype) for col in range(a.shape[1]): out[col] = np.nansum(a[:, col]) return out if not nb_enabled: return _nansum_nb(a) return _nansum_nb @njit(cache=True) def nanmin_nb(a: tp.Array2d) -> tp.Array1d: """Numba-equivalent of `np.nanmin` along axis 0.""" out = np.empty(a.shape[1], dtype=a.dtype) for col in range(a.shape[1]): out[col] = np.nanmin(a[:, col]) return out @njit(cache=True) def nanmax_nb(a: tp.Array2d) -> tp.Array1d: """Numba-equivalent of `np.nanmax` along axis 0.""" out = np.empty(a.shape[1], dtype=a.dtype) for col in range(a.shape[1]): out[col] = np.nanmax(a[:, col]) return out @njit(cache=True) def nanmean_nb(a: tp.Array2d) -> tp.Array1d: """Numba-equivalent of `np.nanmean` along axis 0.""" out = np.empty(a.shape[1], dtype=np.float_) for col in range(a.shape[1]): out[col] = np.nanmean(a[:, col]) return out @njit(cache=True) def nanmedian_nb(a: tp.Array2d) -> tp.Array1d: """Numba-equivalent of `np.nanmedian` along axis 0.""" out = np.empty(a.shape[1], dtype=np.float_) for col in range(a.shape[1]): out[col] = np.nanmedian(a[:, col]) return out @njit(cache=True) def nanstd_1d_nb(a: tp.Array1d, ddof: int = 0) -> float: """Numba-equivalent of `np.nanstd`.""" cnt = a.shape[0] - np.count_nonzero(np.isnan(a)) rcount = max(cnt - ddof, 0) if rcount == 0: return np.nan return np.sqrt(np.nanvar(a) * cnt / rcount) @njit(cache=True) def nanstd_nb(a: tp.Array2d, ddof: int = 0) -> tp.Array1d: """2-dim version of `nanstd_1d_nb`.""" out = np.empty(a.shape[1], dtype=np.float_) for col in range(a.shape[1]): out[col] = nanstd_1d_nb(a[:, col], ddof=ddof) return out # ############# Rolling functions ############# # @njit(cache=True) def rolling_min_1d_nb(a: tp.Array1d, window: int, minp: tp.Optional[int] = None) -> tp.Array1d: """Return rolling min. Numba equivalent to `pd.Series(a).rolling(window, min_periods=minp).min()`.""" if minp is None: minp = window if minp > window: raise ValueError("minp must be <= window") out = np.empty_like(a, dtype=np.float_) for i in range(a.shape[0]): minv = a[i] cnt = 0 for j in range(max(i - window + 1, 0), i + 1): if np.isnan(a[j]): continue if np.isnan(minv) or a[j] < minv: minv = a[j] cnt += 1 if cnt < minp: out[i] = np.nan else: out[i] = minv return out @njit(cache=True) def rolling_min_nb(a: tp.Array2d, window: int, minp: tp.Optional[int] = None) -> tp.Array2d: """2-dim version of `rolling_min_1d_nb`.""" out = np.empty_like(a, dtype=np.float_) for col in range(a.shape[1]): out[:, col] = rolling_min_1d_nb(a[:, col], window, minp=minp) return out @njit(cache=True) def rolling_max_1d_nb(a: tp.Array1d, window: int, minp: tp.Optional[int] = None) -> tp.Array1d: """Return rolling max. Numba equivalent to `pd.Series(a).rolling(window, min_periods=minp).max()`.""" if minp is None: minp = window if minp > window: raise ValueError("minp must be <= window") out = np.empty_like(a, dtype=np.float_) for i in range(a.shape[0]): maxv = a[i] cnt = 0 for j in range(max(i - window + 1, 0), i + 1): if np.isnan(a[j]): continue if np.isnan(maxv) or a[j] > maxv: maxv = a[j] cnt += 1 if cnt < minp: out[i] = np.nan else: out[i] = maxv return out @njit(cache=True) def rolling_max_nb(a: tp.Array2d, window: int, minp: tp.Optional[int] = None) -> tp.Array2d: """2-dim version of `rolling_max_1d_nb`.""" out = np.empty_like(a, dtype=np.float_) for col in range(a.shape[1]): out[:, col] = rolling_max_1d_nb(a[:, col], window, minp=minp) return out @njit(cache=True) def rolling_mean_1d_nb(a: tp.Array1d, window: int, minp: tp.Optional[int] = None) -> tp.Array1d: """Return rolling mean. Numba equivalent to `pd.Series(a).rolling(window, min_periods=minp).mean()`.""" if minp is None: minp = window if minp > window: raise ValueError("minp must be <= window") out = np.empty_like(a, dtype=np.float_) cumsum_arr = np.zeros_like(a) cumsum = 0 nancnt_arr = np.zeros_like(a) nancnt = 0 for i in range(a.shape[0]): if np.isnan(a[i]): nancnt = nancnt + 1 else: cumsum = cumsum + a[i] nancnt_arr[i] = nancnt cumsum_arr[i] = cumsum if i < window: window_len = i + 1 - nancnt window_cumsum = cumsum else: window_len = window - (nancnt - nancnt_arr[i - window]) window_cumsum = cumsum - cumsum_arr[i - window] if window_len < minp: out[i] = np.nan else: out[i] = window_cumsum / window_len return out @njit(cache=True) def rolling_mean_nb(a: tp.Array2d, window: int, minp: tp.Optional[int] = None) -> tp.Array2d: """2-dim version of `rolling_mean_1d_nb`.""" out = np.empty_like(a, dtype=np.float_) for col in range(a.shape[1]): out[:, col] = rolling_mean_1d_nb(a[:, col], window, minp=minp) return out @njit(cache=True) def rolling_std_1d_nb(a: tp.Array1d, window: int, minp: tp.Optional[int] = None, ddof: int = 0) -> tp.Array1d: """Return rolling standard deviation. Numba equivalent to `pd.Series(a).rolling(window, min_periods=minp).std(ddof=ddof)`.""" if minp is None: minp = window if minp > window: raise ValueError("minp must be <= window") out = np.empty_like(a, dtype=np.float_) cumsum_arr = np.zeros_like(a) cumsum = 0 cumsum_sq_arr = np.zeros_like(a) cumsum_sq = 0 nancnt_arr = np.zeros_like(a) nancnt = 0 for i in range(a.shape[0]): if np.isnan(a[i]): nancnt = nancnt + 1 else: cumsum = cumsum + a[i] cumsum_sq = cumsum_sq + a[i] ** 2 nancnt_arr[i] = nancnt cumsum_arr[i] = cumsum cumsum_sq_arr[i] = cumsum_sq if i < window: window_len = i + 1 - nancnt window_cumsum = cumsum window_cumsum_sq = cumsum_sq else: window_len = window - (nancnt - nancnt_arr[i - window]) window_cumsum = cumsum - cumsum_arr[i - window] window_cumsum_sq = cumsum_sq - cumsum_sq_arr[i - window] if window_len < minp or window_len == ddof: out[i] = np.nan else: mean = window_cumsum / window_len out[i] = np.sqrt(np.abs(window_cumsum_sq - 2 * window_cumsum * mean + window_len * mean ** 2) / (window_len - ddof)) return out @njit(cache=True) def rolling_std_nb(a: tp.Array2d, window: int, minp: tp.Optional[int] = None, ddof: int = 0) -> tp.Array2d: """2-dim version of `rolling_std_1d_nb`.""" out = np.empty_like(a, dtype=np.float_) for col in range(a.shape[1]): out[:, col] = rolling_std_1d_nb(a[:, col], window, minp=minp, ddof=ddof) return out @njit(cache=True) def ewm_mean_1d_nb(a: tp.Array1d, span: int, minp: int = 0, adjust: bool = False) -> tp.Array1d: """Return exponential weighted average. Numba equivalent to `pd.Series(a).ewm(span=span, min_periods=minp, adjust=adjust).mean()`. Adaptation of `pd._libs.window.aggregations.window_aggregations.ewma` with default arguments.""" if minp is None: minp = span if minp > span: raise ValueError("minp must be <= span") N = len(a) out = np.empty(N, dtype=np.float_) if N == 0: return out com = (span - 1) / 2.0 alpha = 1. / (1. + com) old_wt_factor = 1. - alpha new_wt = 1. if adjust else alpha weighted_avg = a[0] is_observation = (weighted_avg == weighted_avg) nobs = int(is_observation) out[0] = weighted_avg if (nobs >= minp) else np.nan old_wt = 1. for i in range(1, N): cur = a[i] is_observation = (cur == cur) nobs += is_observation if weighted_avg == weighted_avg: old_wt *= old_wt_factor if is_observation: # avoid numerical errors on constant series if weighted_avg != cur: weighted_avg = ((old_wt * weighted_avg) + (new_wt * cur)) / (old_wt + new_wt) if adjust: old_wt += new_wt else: old_wt = 1. elif is_observation: weighted_avg = cur out[i] = weighted_avg if (nobs >= minp) else np.nan return out @njit(cache=True) def ewm_mean_nb(a: tp.Array2d, span: int, minp: int = 0, adjust: bool = False) -> tp.Array2d: """2-dim version of `ewm_mean_1d_nb`.""" out = np.empty_like(a, dtype=np.float_) for col in range(a.shape[1]): out[:, col] = ewm_mean_1d_nb(a[:, col], span, minp=minp, adjust=adjust) return out @njit(cache=True) def ewm_std_1d_nb(a: tp.Array1d, span: int, minp: int = 0, adjust: bool = False, ddof: int = 0) -> tp.Array1d: """Return exponential weighted standard deviation. Numba equivalent to `pd.Series(a).ewm(span=span, min_periods=minp).std(ddof=ddof)`. Adaptation of `pd._libs.window.aggregations.window_aggregations.ewmcov` with default arguments.""" if minp is None: minp = span if minp > span: raise ValueError("minp must be <= span") N = len(a) out = np.empty(N, dtype=np.float_) if N == 0: return out com = (span - 1) / 2.0 alpha = 1. / (1. + com) old_wt_factor = 1. - alpha new_wt = 1. if adjust else alpha mean_x = a[0] mean_y = a[0] is_observation = ((mean_x == mean_x) and (mean_y == mean_y)) nobs = int(is_observation) if not is_observation: mean_x = np.nan mean_y = np.nan out[0] = np.nan cov = 0. sum_wt = 1. sum_wt2 = 1. old_wt = 1. for i in range(1, N): cur_x = a[i] cur_y = a[i] is_observation = ((cur_x == cur_x) and (cur_y == cur_y)) nobs += is_observation if mean_x == mean_x: sum_wt *= old_wt_factor sum_wt2 *= (old_wt_factor * old_wt_factor) old_wt *= old_wt_factor if is_observation: old_mean_x = mean_x old_mean_y = mean_y # avoid numerical errors on constant series if mean_x != cur_x: mean_x = ((old_wt * old_mean_x) + (new_wt * cur_x)) / (old_wt + new_wt) # avoid numerical errors on constant series if mean_y != cur_y: mean_y = ((old_wt * old_mean_y) + (new_wt * cur_y)) / (old_wt + new_wt) cov = ((old_wt * (cov + ((old_mean_x - mean_x) * (old_mean_y - mean_y)))) + (new_wt * ((cur_x - mean_x) * (cur_y - mean_y)))) / (old_wt + new_wt) sum_wt += new_wt sum_wt2 += (new_wt * new_wt) old_wt += new_wt if not adjust: sum_wt /= old_wt sum_wt2 /= (old_wt * old_wt) old_wt = 1. elif is_observation: mean_x = cur_x mean_y = cur_y if nobs >= minp: numerator = sum_wt * sum_wt denominator = numerator - sum_wt2 if denominator > 0.: out[i] = ((numerator / denominator) * cov) else: out[i] = np.nan else: out[i] = np.nan return np.sqrt(out) @njit(cache=True) def ewm_std_nb(a: tp.Array2d, span: int, minp: int = 0, adjust: bool = False, ddof: int = 0) -> tp.Array2d: """2-dim version of `ewm_std_1d_nb`.""" out = np.empty_like(a, dtype=np.float_) for col in range(a.shape[1]): out[:, col] = ewm_std_1d_nb(a[:, col], span, minp=minp, adjust=adjust, ddof=ddof) return out # ############# Expanding functions ############# # @njit(cache=True) def expanding_min_1d_nb(a: tp.Array1d, minp: int = 1) -> tp.Array1d: """Return expanding min. Numba equivalent to `pd.Series(a).expanding(min_periods=minp).min()`.""" out = np.empty_like(a, dtype=np.float_) minv = a[0] cnt = 0 for i in range(a.shape[0]): if np.isnan(minv) or a[i] < minv: minv = a[i] if not np.isnan(a[i]): cnt += 1 if cnt < minp: out[i] = np.nan else: out[i] = minv return out @njit(cache=True) def expanding_min_nb(a: tp.Array2d, minp: int = 1) -> tp.Array2d: """2-dim version of `expanding_min_1d_nb`.""" out = np.empty_like(a, dtype=np.float_) for col in range(a.shape[1]): out[:, col] = expanding_min_1d_nb(a[:, col], minp=minp) return out @njit(cache=True) def expanding_max_1d_nb(a: tp.Array1d, minp: int = 1) -> tp.Array1d: """Return expanding max. Numba equivalent to `pd.Series(a).expanding(min_periods=minp).max()`.""" out = np.empty_like(a, dtype=np.float_) maxv = a[0] cnt = 0 for i in range(a.shape[0]): if np.isnan(maxv) or a[i] > maxv: maxv = a[i] if not np.isnan(a[i]): cnt += 1 if cnt < minp: out[i] = np.nan else: out[i] = maxv return out @njit(cache=True) def expanding_max_nb(a: tp.Array2d, minp: int = 1) -> tp.Array2d: """2-dim version of `expanding_max_1d_nb`.""" out =
np.empty_like(a, dtype=np.float_)
numpy.empty_like
import cv2 import numpy as np from googleapiclient.discovery import build from google.oauth2.credentials import Credentials from google.oauth2 import service_account # Google sheets link : https://docs.google.com/spreadsheets/d/1kLxCUNyn39Q1-B3KkvbxDz2Vc4NFZVxhb0AwKGzeZbI/edit#gid=0 # Retrieves colour from spreadsheet (edit SAMPLE_SPREADSHEET_ID based on spreadsheet URL) def getSpreadsheetColour(SERVICE_ACCOUNT_FILE = 'key.json', SCOPES = ['https://www.googleapis.com/auth/spreadsheets'], SAMPLE_SPREADSHEET_ID = '1kLxCUNyn39Q1-B3KkvbxDz2Vc4NFZVxhb0AwKGzeZbI') : creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES) service = build('sheets', 'v4', credentials=creds) sheet = service.spreadsheets() result = sheet.values().get(spreadsheetId=SAMPLE_SPREADSHEET_ID, range="sheet1!A1:J10").execute() values = result.get('values', []) return values[0][0] # Colour retrieved from cell A1 # Processes colour from string to numpy.ndarray format containing RGB limits (to be fed to cv2.inRange) def getColorCode(col1) : if col1 == 'red' : lower = np.uint8([[[0,115,145]]]) upper = np.uint8([[[9,255,255]]]) elif col1 == 'green' : lower = np.uint8([[[35,75,115]]]) upper =
np.uint8([[[55,255,255]]])
numpy.uint8
import cPickle import os import sys import scipy as sc import operator import numpy as np import pandas as pd from scipy import sparse import xgboost as xgb from sklearn import model_selection, preprocessing, ensemble from sklearn.metrics import log_loss from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from bs4 import BeautifulSoup from sklearn.metrics import mean_squared_error #reload(sys) #sys.setdefaultencoding('utf8') #r = re.compile(r"\s") from sklearn.preprocessing import LabelEncoder import re from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import TruncatedSVD import nltk from scipy.stats import boxcox from sklearn.decomposition import TruncatedSVD import datetime as dt from nltk.stem.porter import * import gc import math from collections import Counter nfold = 5 with open("../pickle03.pkl", "rb") as f: (train_df,test_df,train_y,features_to_use,features_to_use_ln,ntrain,test_df_listing_id) = cPickle.load( f) train_test = pd.concat((train_df, test_df), axis=0).reset_index(drop=True) ###############Model Build and Predict param = {} param['objective'] = 'multi:softprob' param['eta'] = 0.01 param['max_depth'] = 6 param['silent'] = 1 param['num_class'] = 3 param['eval_metric'] = "mlogloss" param['min_child_weight'] = 1 param['subsample'] = .75 param['colsample_bytree'] = .8 param['seed'] = 12345 ### Ftrs+Desc Ftrs+Ftr Count Vec features_to_use_ln=[ 'listing_id', ##LOG Price variant 'lg_price','per_bed_price','per_bath_price','per_bed_price_dev','per_bath_price_dev', u'building_id', u'display_address', u'manager_id', u'street_address','bed_bath','street', 'avenue', 'east', 'west', 'north','south', 'other_address', 'bathrooms_cat', 'bedroom_cat','lat_cat','lon_cat', #'lat_cat_rnd','lon_cat_rnd'#, 'per_bed_bath_price','bedPerBath','bedBathDiff','bedBathSum','bedsPerc','per_bed_price_rat','per_bath_price_rat','manager_id_interest_level_high0','building_id_interest_level_high0','manager_id_interest_level_medium0','building_id_interest_level_medium0' ] cv_scores = [] bow = CountVectorizer(stop_words='english', max_features=200, ngram_range=(1,1),min_df=2, max_df=.85) bow.fit(train_test["features_2"]) oob_valpred = np.zeros((train_df.shape[0],3)) oob_tstpred = np.zeros((test_df.shape[0],3)) i=0 kf = model_selection.KFold(n_splits=nfold, shuffle=True, random_state=12345) for dev_index, val_index in kf.split(range(train_y.shape[0])): dev_X, val_X = train_df.iloc[dev_index,:], train_df.iloc[val_index,:] dev_y, val_y = train_y[dev_index], train_y[val_index] #tr_sparse_2 = bow.transform(dev_X["features_2"]) #val_sparse_2 = bow.transform(val_X["features_2"]) #te_sparse_2 = bow.transform(test_df["features_2"]) #train_X2 = sparse.hstack([dev_X[features_to_use_ln],tr_sparse_2]).tocsr()#,tr_sparse_d #val_X2 = sparse.hstack([val_X[features_to_use_ln],val_sparse_2]).tocsr()#,val_sparse_d #test_X2 = sparse.hstack([test_df[features_to_use_ln], te_sparse_2]).tocsr() train_X2 = dev_X[features_to_use_ln].values val_X2 = val_X[features_to_use_ln].values test_X2 = test_df[features_to_use_ln].values print(train_X2.shape) num_rounds =10000 plst = list(param.items()) xgtrain = xgb.DMatrix(train_X2, label=dev_y) xgval = xgb.DMatrix(val_X2, label=val_y) xgtest = xgb.DMatrix(test_X2) watchlist = [ (xgtrain,'train'), (xgval, 'val') ] model = xgb.train(plst, xgtrain, num_rounds, watchlist, early_stopping_rounds=50) best_iteration = model.best_iteration+1 model = xgb.train(plst, xgtrain, best_iteration, watchlist, early_stopping_rounds=50) preds = model.predict(xgval) oob_valpred[val_index,...] = preds cv_scores.append(log_loss(val_y, preds)) print(cv_scores) print(np.mean(cv_scores)) print(np.std(cv_scores)) predtst = model.predict(xgtest) oob_tstpred += predtst oob_tstpred /= nfold out_df = pd.DataFrame(oob_tstpred) out_df.columns = ["high", "medium", "low"] out_df["listing_id"] = test_df_listing_id out_df.to_csv("../xgb_lblenc_lgprice_fewFTR.csv", index=False) with open("../xgb_lblenc_lgprice_fewFTR.pkl", "wb") as f: cPickle.dump((oob_tstpred,oob_valpred), f, -1) ### Ftrs+Desc Ftrs+Ftr Count Vec cv_scores = [] bow = CountVectorizer(stop_words='english', ngram_range=(1,1),min_df=2, max_df=.85) bow.fit(train_test["features_2"]) bow2 = TfidfVectorizer(stop_words='english', ngram_range=(1,3),min_df=3, max_df=.75,analyzer='word',token_pattern=r'\w{1,}',use_idf=1,smooth_idf=1,sublinear_tf=1)#max_features=100, bow2.fit(train_test["description"]) oob_valpred = np.zeros((train_df.shape[0],3)) oob_tstpred = np.zeros((test_df.shape[0],3)) i=0 kf = model_selection.KFold(n_splits=nfold, shuffle=True, random_state=12345) for dev_index, val_index in kf.split(range(train_y.shape[0])): dev_X, val_X = train_df.iloc[dev_index,:], train_df.iloc[val_index,:] dev_y, val_y = train_y[dev_index], train_y[val_index] tr_sparse_2 = bow.transform(dev_X["features_2"]) val_sparse_2 = bow.transform(val_X["features_2"]) te_sparse_2 = bow.transform(test_df["features_2"]) tr_sparse_3 = bow2.transform(dev_X["description"]) val_sparse_3 = bow2.transform(val_X["description"]) te_sparse_3 = bow2.transform(test_df["description"]) train_X2 = sparse.hstack([tr_sparse_2, tr_sparse_3]).tocsr()#,tr_sparse_d val_X2 = sparse.hstack([val_sparse_2, val_sparse_3]).tocsr()#,val_sparse_d test_X2 = sparse.hstack([te_sparse_2,te_sparse_3]).tocsr() # train_X2 = dev_X[features_to_use_ln] # val_X2 = val_X[features_to_use_ln] print(train_X2.shape) num_rounds =10000 plst = list(param.items()) xgtrain = xgb.DMatrix(train_X2, label=dev_y) xgval = xgb.DMatrix(val_X2, label=val_y) xgtest = xgb.DMatrix(test_X2) watchlist = [ (xgtrain,'train'), (xgval, 'val') ] model = xgb.train(plst, xgtrain, num_rounds, watchlist, early_stopping_rounds=50) best_iteration = model.best_iteration+1 model = xgb.train(plst, xgtrain, best_iteration, watchlist, early_stopping_rounds=50) preds = model.predict(xgval) oob_valpred[val_index,...] = preds cv_scores.append(log_loss(val_y, preds)) print(cv_scores) print(np.mean(cv_scores)) print(
np.std(cv_scores)
numpy.std
"""trt_yolo.py This script demonstrates how to do real-time object detection with TensorRT optimized YOLO engine. """ import os import time import argparse import cv2 import numpy as np import pycuda.autoinit # This is needed for initializing CUDA driver #import local classes and their functions from utils.yolo_classes import get_cls_dict from utils.camera import add_camera_args, Camera from utils.display import open_window, set_display, show_fps from utils.visualization import BBoxVisualization from utils.yolo_with_plugins import TrtYOLO import matplotlib.pyplot as plt from deep_sort.application_util import preprocessing from deep_sort.deep_sort import nn_matching from deep_sort.deep_sort.detection import Detection from deep_sort.deep_sort.tracker import Tracker from deep_sort.tools import generate_detections as gdet WINDOW_NAME = 'TrtYOLODemo' class_names = [c.strip() for c in open('./deep_sort/labels/coco.names').readlines()] np.random.seed(100) COLORS = np.random.randint(0, 255, size=(200, 3), dtype="uint8") def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time object detection with TensorRT optimized ' 'YOLO model on Jetson') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument( '-c', '--category_num', type=int, default=80, help='number of object categories [80]') parser.add_argument( '-m', '--model', type=str, required=True, help=('[yolov3-tiny|yolov3|yolov3-spp|yolov4-tiny|yolov4|' 'yolov4-csp|yolov4x-mish]-[{dimension}], where ' '{dimension} could be either a single number (e.g. ' '288, 416, 608) or 2 numbers, WxH (e.g. 416x256)')) parser.add_argument( '-l', '--letter_box', action='store_true', help='inference with letterboxed image [False]') args = parser.parse_args() return args def convert_tlbr_tlwh(bboxes): list_of_boxes = [] test_array = np.zeros(4) for box in bboxes: box_list = [] x, y, x2, y2 = box[0], box[1], box[2], box[3] w = x2 - x h = y2 - y box_list.append(x) box_list.append(y) box_list.append(w) box_list.append(h) if not np.array_equal(box, [0,0,0,0]): list_of_boxes.append(box_list) return list_of_boxes def loop_and_detect(cam, encoder, tracker, trt_yolo, conf_th, vis): """Continuously capture images from camera and do object detection. # Arguments cam: the camera instance (video source). trt_yolo: the TRT YOLO object detector instance. conf_th: confidence/score threshold for object detection. vis: for visualization. """ counter = [] #full_screen is set to false by default full_scrn = False #fps is set at 0 by default fps = 0.0 #create time variable for measuring the frames per second in real time tic = time.time() #while loop to perform inference while True: t1 = time.time() #determine if window is closed or not ???? #break the loop if window is closed if cv2.getWindowProperty(WINDOW_NAME, 0) < 0: break #create img object from a reading of the camera frame img = cam.read() #break loop if the camera frame is none if img is None: break #create bounding box coordinate, detection confidence, and class id from the detect function of the trt_yolo object. boxes, confs, clss = trt_yolo.detect(img, conf_th) classes = clss names = [] ##for i in range(len(classes)): # names.append(class_names[int(classes[i])]) xywh_boxes = convert_tlbr_tlwh(boxes) features = encoder(img, xywh_boxes) detections = [Detection(bbox, confs, d_clss, feature) for bbox, confs, d_clss, feature in zip(xywh_boxes, confs, clss, features)] # Run non-maxima suppression. boxs = np.array([d.tlwh for d in detections]) scores =
np.array([d.confidence for d in detections])
numpy.array
# usr/bin/env python3 # Run as PYTHONPATH=. python3 examples/atlas_hzz.py # In case you use CUDA, you may have to find the libnvvm.so on your system manually import os, time, glob, argparse, multiprocessing import numba import sys import numpy as np import uproot import hepaccelerate import hepaccelerate.kernels as kernels from hepaccelerate.utils import Results, Dataset, Histogram, choose_backend import hepaccelerate.backend_cpu as backend_cpu import matplotlib import infofile import json matplotlib.use("Agg") import matplotlib.pyplot as plt import copy from mpl_toolkits.axes_grid1.inset_locator import inset_axes from scipy.stats import wasserstein_distance from plot_utils import plot_hist_ratio ha = None lumi =10.0 # define our analysis function def analyze_data_function(data, parameters): ret = Results() ha = parameters["ha"] num_events = data["num_events"] lep = data["Lep"] lep.hepaccelerate_backend = ha lep.attrs_data["pt"] = lep.lep_pt lep.attrs_data["eta"] = lep.lep_eta lep.attrs_data["phi"] = lep.lep_phi lep.attrs_data["charge"] = lep.lep_charge lep.attrs_data["type"] = lep.lep_type lep_mass = np.zeros_like(lep["pt"],dtype=nplib.float32) lep_mass = np.where(lep["type"]==11,0.511,lep_mass) lep_mass = np.where(lep["type"]==13,105.65837,lep_mass) lep.attrs_data["mass"] = lep_mass mask_events = nplib.ones(lep.numevents(), dtype=nplib.bool) lep_ele = lep["type"] == 11 lep_muon = lep["type"] == 13 ele_Iso = np.logical_and(lep_ele,np.logical_and( lep.lep_ptcone30/lep.pt < 0.15 , lep.lep_etcone20/lep.pt < 0.20)) muon_Iso = np.logical_and(lep_muon ,np.logical_and( lep.lep_ptcone30/lep.pt < 0.15 ,lep.lep_etcone20/lep.pt < 0.30)) pass_iso = np.logical_or(ele_Iso, muon_Iso) lep.attrs_data["pass_iso"] = pass_iso num_lep_event = kernels.sum_in_offsets( backend, lep.offsets, lep.masks["all"], mask_events, lep.masks["all"], nplib.int8, ) mask_events_4lep = num_lep_event == 4 lep_attrs = [ "pt", "eta", "phi", "charge","type","mass", "pass_iso"]#, "ptcone30", "etcone20"] lep0 = lep.select_nth(0, mask_events_4lep, lep.masks["all"], attributes=lep_attrs) lep1 = lep.select_nth(1, mask_events_4lep, lep.masks["all"], attributes=lep_attrs) lep2 = lep.select_nth(2, mask_events_4lep, lep.masks["all"], attributes=lep_attrs) lep3 = lep.select_nth(3, mask_events_4lep, lep.masks["all"], attributes=lep_attrs) mask_event_sumchg_zero = (lep0["charge"]+lep1["charge"]+lep2["charge"]+lep3["charge"] == 0) sum_lep_type = lep0["type"]+lep1["type"]+lep2["type"]+lep3["type"] all_pass_iso = (lep0["pass_iso"] & lep1["pass_iso"] & lep2["pass_iso"] & lep3["pass_iso"]) mask_event_sum_lep_type = np.logical_or((sum_lep_type == 44),np.logical_or((sum_lep_type == 48),(sum_lep_type == 52) ) ) mask_events = mask_events & mask_event_sumchg_zero & mask_events_4lep & mask_event_sum_lep_type & all_pass_iso mask_lep1_passing_pt = lep1["pt"] > parameters["leading_lep_ptcut"] mask_lep2_passing_pt = lep2["pt"] > parameters["lep_ptcut"] mask_events = mask_events & mask_lep1_passing_pt & mask_lep2_passing_pt l0 = to_cartesian(lep0) l1 = to_cartesian(lep1) l2 = to_cartesian(lep2) l3 = to_cartesian(lep3) llll = {k: l0[k] + l1[k] + l2[k] + l3[k] for k in ["px", "py", "pz", "e"]} llll_sph = to_spherical(llll) llll_sph["mass"] = llll_sph["mass"]/1000. # Convert to GeV #import pdb;pdb.set_trace(); # compute a weighted histogram weights = nplib.ones(num_events, dtype=nplib.float32) ## Add xsec weights based on sample name if parameters["is_mc"]: weights = data['eventvars']['mcWeight']*data['eventvars']['scaleFactor_PILEUP']*data['eventvars']['scaleFactor_ELE']*data['eventvars']['scaleFactor_MUON']*data['eventvars']['scaleFactor_LepTRIGGER'] info = infofile.infos[parameters["sample"]] weights *= (lumi*1000*info["xsec"])/(info["sumw"]*info["red_eff"]) bins = nplib.linspace(110, 150, 11, dtype=nplib.float32) hist_m4lep= Histogram( *kernels.histogram_from_vector( backend, llll_sph["mass"][mask_events], weights[mask_events], bins, ) ) # save it to the output ret["hist_m4lep"] = hist_m4lep return ret def to_cartesian(arrs): pt = arrs["pt"] eta = arrs["eta"] phi = arrs["phi"] mass = arrs["mass"] px, py, pz, e = backend.spherical_to_cartesian(pt, eta, phi, mass) return {"px": px, "py": py, "pz": pz, "e": e} def rapidity(e, pz): return 0.5*
np.log((e + pz) / (e - pz))
numpy.log
""" A collection of tests for svdunfold """ import pytest import numpy as np import svdunfold import helpers def test_exception_for_rows_in_response_matrix(): """Test if exception is thrown when number of bins in b is not the same as the rows in the response matrix """ x_ini = np.histogram(np.zeros(10), bins=5) b = np.histogram(np.zeros(10), bins=5) A = np.zeros((4, 5)) cov = np.zeros((5, 5)) with pytest.raises(AssertionError, match=r".*Wrong dimensions.*"): svdunfold.SVDunfold(x_ini, b, A, cov) def test_exception_for_columns_in_response_matrix(): """Test if exception is thrown when number of bins in x_ini is not the same as the columns in the response matrix """ x_ini = np.histogram(np.zeros(10), bins=5) b = np.histogram(np.zeros(10), bins=5) A = np.zeros((5, 4)) cov = np.zeros((5, 5)) with pytest.raises(AssertionError, match=r".*Wrong dimensions.*"): svdunfold.SVDunfold(x_ini, b, A, cov) def test_exception_for_symmetric_covariance(): """Test if exception is thrown when the covariance matrix is not symmetric""" x_ini = np.histogram(np.zeros(10), bins=5) b = np.histogram(np.zeros(10), bins=5) A = np.zeros((5, 5)) cov = np.zeros((5, 5)) cov[0, 1] = 1 with pytest.raises(AssertionError, match=r".*is not symmetric.*"): svdunfold.SVDunfold(x_ini, b, A, cov) def test_contruct_c_matrix_3d(): """Test if 3d second derivative matrix is constructed correctly""" c_matrix = np.array([[-1, 1, 0], [1, -2, 1], [0, 1, -1]]) assert np.array_equal(c_matrix, helpers.calc_second_deriv_matrix(3, 0)) def test_contruct_c_matrix_7d(): """Test if 7d second derivative matrix is constructed correctly""" c_matrix = np.array([[-1, 1, 0, 0, 0, 0, 0], [1, -2, 1, 0, 0, 0, 0], [0, 1, -2, 1, 0, 0, 0], [0, 0, 1, -2, 1, 0, 0], [0, 0, 0, 1, -2, 1, 0], [0, 0, 0, 0, 1, -2, 1], [0, 0, 0, 0, 0, 1, -1]]) assert np.array_equal( c_matrix, helpers.calc_second_deriv_matrix(7, 0)) def test_contruct_c_matrix_7d_with_xi(): """Test if 7d second derivative matrix with x=0.1 is constructed correctly""" c_matrix = np.array([[-0.9, 1, 0, 0, 0, 0, 0], [1, -1.9, 1, 0, 0, 0, 0], [0, 1, -1.9, 1, 0, 0, 0], [0, 0, 1, -1.9, 1, 0, 0], [0, 0, 0, 1, -1.9, 1, 0], [0, 0, 0, 0, 1, -1.9, 1], [0, 0, 0, 0, 0, 1, -0.9]]) assert np.array_equal( c_matrix, helpers.calc_second_deriv_matrix(7, 0.1)) def test_svd_on_covariance_matrix(): """Test svd on covariance matrix""" x_ini = np.histogram(np.zeros(10), bins=5) b = np.histogram(np.zeros(10), bins=3) A = np.zeros((3, 5)) cov = np.array([[4, 0, 0], [0, 25, 0], [0, 0, 16]]) unfold = svdunfold.SVDunfold(x_ini, b, A, cov) Q_test = np.array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) r_test = np.array([5., 4., 2.]) QT_test = np.array([[0., 1., 0.], [0., 0., 1.], [1., 0., 0.]]) Q, r, QT = unfold._perform_svd_on_covariance() assert np.array_equal(Q, Q_test) assert np.array_equal(r, r_test) assert np.array_equal(QT, QT_test) def test_transformed_b_measured_dimension(): """Test if the dimensions of the transformed measured array are correct""" x_ini = np.histogram(np.zeros(10), bins=5) b = np.histogram(np.zeros(10), bins=4) A = np.zeros((4, 5)) cov = np.zeros((4, 4)) Q = np.zeros((4, 4)) r = np.ones(4) unfold = svdunfold.SVDunfold(x_ini, b, A, cov) b_tilde = unfold._transform_b_measured(Q, r) assert np.size(b_tilde) == 4 def test_transformed_measured_distribution(): """Test if the transformed measured distribution is correct""" x_ini = np.histogram(np.zeros(10), bins=3) b = np.histogram([6, 7, 8, 9, 10], bins=3) A = np.zeros((3, 3)) cov = cov = np.array([[4, 0, 0], [0, 25, 0], [0, 0, 16]]) Q = np.array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) r = np.array([5., 4., 2.]) unfold = svdunfold.SVDunfold(x_ini, b, A, cov) b_tilde = unfold._transform_b_measured(Q, r) assert np.array_equal(np.array([2. / 5., 2. / 4., 1. / 2.]), b_tilde) def test_transformed_response_correct_dimensions(): """Test if the dimensions of the transposed response matrix are correct""" x_ini = np.histogram(np.zeros(10), bins=3) b = np.histogram(np.zeros(10), bins=7) A = np.zeros((7, 3)) cov = np.eye(7) Q = np.zeros((7, 7)) r = np.ones(7) unfold = svdunfold.SVDunfold(x_ini, b, A, cov) A_tilde = unfold._transform_response_matrix(Q, r) assert A_tilde.shape == (7, 3) def test_transformed_response_correct_values(): """Test if the transformed response matrix is correct""" x_ini = np.histogram(np.zeros(10), bins=3) b = np.histogram(np.zeros(10), bins=3) A = np.histogram2d([1, 2, 3, 4, 5], [6, 7, 8, 9, 10], bins=3)[0] cov = np.array([[4, 0, 0], [0, 25, 0], [0, 0, 16]]) Q = np.array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) r =
np.array([5., 4., 2.])
numpy.array
# Program by <NAME> # www.github.com/agupta231 # Feb 2017 # # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import numpy import svgwrite from config import Config class Cut: def __init__(self, iteration, cut_type): self.iteration = iteration self.length = Config.initial_cube_size * Config.iteration_multiplier ** (iteration - 1) self.type = cut_type self.id = numpy.random.randint(0, 999999999) self.__generate_tabs() def generate_bounding_box(self, drawing, starting_pos, shape_id): dwg = drawing.g(id=shape_id, style="font-size: 0.5") dwg.add(drawing.rect( insert=tuple(starting_pos), size=(str(self.length), str(self.length)), stroke_width=Config.stroke_thickness, stroke=Config.cube_color, fill="none" )) dwg.add(drawing.text( str(shape_id), insert=tuple(starting_pos), )) return dwg def generate_cut(self, drawing, starting_pos): self.drawing = drawing if self.type == "a": return self.__gen_cut_a(starting_pos) elif self.type == "b": return self.__gen_cut_b(starting_pos) elif self.type == "c": return self.__gen_cut_c(starting_pos) elif self.type == "a90": return self.__gen_cut_a90(starting_pos) elif self.type == "b90": return self.__gen_cut_b90(starting_pos) elif self.type == "c90": return self.__gen_cut_c90(starting_pos) else: return None def __generate_tabs(self): if math.floor(self.length) >= 3: self.tab_count = math.floor(self.length) if self.tab_count % 2 != 1: self.tab_count -= 1 else: self.tab_count = 3 self.tab_count = int(self.tab_count) self.tab_width = self.length / self.tab_count def __gen_cut_a(self, starting_pos): shape = self.drawing.g(id=str(self.id)) # Top Edge last_pos = starting_pos + numpy.array([self.tab_width, Config.material_thickness]) for i in xrange(self.tab_count - 2): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([0, -Config.material_thickness]))) last_pos += numpy.array([0, -Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, Config.material_thickness]))) last_pos += numpy.array([0, Config.material_thickness]) else: shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) # Left Edge last_pos = starting_pos + numpy.array([Config.material_thickness, self.tab_width]) for i in xrange(self.tab_count - 2): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([-Config.material_thickness, 0]))) last_pos += numpy.array([-Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) else: shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) # Bottom Edge last_pos = starting_pos + numpy.array([self.tab_width, self.length - Config.material_thickness]) for i in xrange(self.tab_count - 2): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([0, Config.material_thickness]))) last_pos += numpy.array([0, Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, -Config.material_thickness]))) last_pos += numpy.array([0, -Config.material_thickness]) else: shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) # Right Edge last_pos = starting_pos + numpy.array([self.length - Config.material_thickness, self.tab_width]) for i in xrange(self.tab_count - 2): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([-Config.material_thickness, 0]))) last_pos += numpy.array([-Config.material_thickness, 0]) else: shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) # Top left corner last_pos = starting_pos + numpy.array([Config.material_thickness, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([0, -(self.tab_width - Config.material_thickness)]))) last_pos += numpy.array([0, -(self.tab_width - Config.material_thickness)]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width - Config.material_thickness, 0]))) # Top right corner last_pos = starting_pos + numpy.array([self.length - self.tab_width, Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width - Config.material_thickness, 0]))) last_pos += numpy.array([self.tab_width - Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width - Config.material_thickness]))) # Bottom left corner last_pos = starting_pos + numpy.array([self.tab_width, self.length - Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([-(self.tab_width - Config.material_thickness), 0]))) last_pos += numpy.array([-(self.tab_width - Config.material_thickness), 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, -(self.tab_width - Config.material_thickness)]))) # Bottom right corner last_pos = starting_pos + numpy.array([self.length - Config.material_thickness, self.length - self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width - Config.material_thickness]))) last_pos += numpy.array([0, self.tab_width - Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([-(self.tab_width - Config.material_thickness), 0]))) return shape def __gen_cut_b(self, starting_pos): shape = self.drawing.g(id=str(self.id)) # Top Edge last_pos = list(starting_pos) for i in xrange(self.tab_count): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) else: shape.add(self.__gen_line(last_pos, numpy.array([0, Config.material_thickness]))) last_pos += numpy.array([0, Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, -Config.material_thickness]))) last_pos += numpy.array([0, -Config.material_thickness]) # Left Edge last_pos = list(starting_pos) for i in xrange(self.tab_count): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) else: shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([-Config.material_thickness, 0]))) last_pos += numpy.array([-Config.material_thickness, 0]) # Bottom Edge last_pos = list(starting_pos) + numpy.array([0, self.length]) for i in xrange(self.tab_count): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) else: shape.add(self.__gen_line(last_pos, numpy.array([0, -Config.material_thickness]))) last_pos += numpy.array([0, -Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, Config.material_thickness]))) last_pos += numpy.array([0, Config.material_thickness]) # Right Edge last_pos = list(starting_pos) + numpy.array([self.length, 0]) for i in xrange(self.tab_count): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) else: shape.add(self.__gen_line(last_pos, numpy.array([-Config.material_thickness, 0]))) last_pos += numpy.array([-Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) return shape def __gen_cut_c(self, starting_pos): shape = self.drawing.g(id=str(self.id)) # Top Edge last_pos = list(starting_pos) + numpy.array([self.tab_width, 0]) for i in xrange(self.tab_count - 2): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([0, Config.material_thickness]))) last_pos += numpy.array([0, Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, -Config.material_thickness]))) last_pos += numpy.array([0, -Config.material_thickness]) else: shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) # Bottom Edge last_pos = list(starting_pos) + numpy.array([self.tab_width, self.length]) for i in xrange(self.tab_count - 2): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([0, -Config.material_thickness]))) last_pos += numpy.array([0, -Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, Config.material_thickness]))) last_pos += numpy.array([0, Config.material_thickness]) else: shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) # Left Edge last_pos = list(starting_pos) + numpy.array([Config.material_thickness, self.tab_width]) for i in xrange(self.tab_count - 2): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([-Config.material_thickness, 0]))) last_pos += numpy.array([-Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) else: shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) # Right Edge last_pos = list(starting_pos) + numpy.array([self.length - Config.material_thickness, self.tab_width]) for i in xrange(self.tab_count - 2): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([-Config.material_thickness, 0]))) last_pos += numpy.array([-Config.material_thickness, 0]) else: shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) # Top left corner last_pos = list(starting_pos) + numpy.array([Config.material_thickness, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([0, -self.tab_width]))) last_pos += numpy.array([0, -self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width - Config.material_thickness, 0]))) # Top right corner last_pos = list(starting_pos) + numpy.array([self.length - self.tab_width, 0]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width - Config.material_thickness, 0]))) last_pos += numpy.array([self.tab_width - Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) # Bottom left corner last_pos = list(starting_pos) + numpy.array([Config.material_thickness, self.length - self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width - Config.material_thickness, 0]))) # Bottom right corner last_pos = list(starting_pos) + numpy.array([self.length - Config.material_thickness, self.length - self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([-(self.tab_width - Config.material_thickness), 0]))) return shape def __gen_cut_a90(self, starting_pos): shape = self.drawing.g(id=str(self.id)) # Top Edge last_pos = starting_pos + numpy.array([self.tab_width, Config.material_thickness]) for i in xrange(self.tab_count - 2): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([0, -Config.material_thickness]))) last_pos += numpy.array([0, -Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, Config.material_thickness]))) last_pos += numpy.array([0, Config.material_thickness]) else: shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) # Left Edge last_pos = starting_pos + numpy.array([Config.material_thickness, self.tab_width]) for i in xrange(self.tab_count - 2): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([-Config.material_thickness, 0]))) last_pos += numpy.array([-Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) else: shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) # Bottom Edge last_pos = starting_pos + numpy.array([self.tab_width, self.length - Config.material_thickness]) for i in xrange(int(math.floor((self.tab_count - 2) / 2))): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([0, Config.material_thickness]))) last_pos += numpy.array([0, Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, -Config.material_thickness]))) last_pos += numpy.array([0, -Config.material_thickness]) else: shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) # Right Edge last_pos = starting_pos + numpy.array([self.length - Config.material_thickness, self.tab_width]) for i in xrange(int(math.floor((self.tab_count - 2) / 2))): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([-Config.material_thickness, 0]))) last_pos += numpy.array([-Config.material_thickness, 0]) else: shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) # Top left corner last_pos = starting_pos + numpy.array([Config.material_thickness, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([0, -(self.tab_width - Config.material_thickness)]))) last_pos += numpy.array([0, -(self.tab_width - Config.material_thickness)]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width - Config.material_thickness, 0]))) # Top right corner last_pos = starting_pos + numpy.array([self.length - self.tab_width, Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width - Config.material_thickness, 0]))) last_pos += numpy.array([self.tab_width - Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width - Config.material_thickness]))) # Bottom left corner last_pos = starting_pos + numpy.array([self.tab_width, self.length - Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([-(self.tab_width - Config.material_thickness), 0]))) last_pos += numpy.array([-(self.tab_width - Config.material_thickness), 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, -(self.tab_width - Config.material_thickness)]))) # Bottom right cutout last_pos = starting_pos + numpy.array([self.length - Config.material_thickness, (self.length - self.tab_width) / 2]) shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width / 2]))) last_pos += numpy.array([0, self.tab_width / 2]) shape.add(self.__gen_line(last_pos, numpy.array([-self.length / 2, 0]))) last_pos += numpy.array([-self.length / 2, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.length / 2]))) last_pos += numpy.array([0, self.length / 2]) shape.add(self.__gen_line(last_pos, numpy.array([-self.tab_width / 2, 0]))) last_pos += numpy.array([-self.tab_width / 2, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, -Config.material_thickness]))) return shape def __gen_cut_b90(self, starting_pos): shape = self.drawing.g(id=str(self.id)) # Top Edge last_pos = list(starting_pos) for i in xrange(self.tab_count): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) else: shape.add(self.__gen_line(last_pos, numpy.array([0, Config.material_thickness]))) last_pos += numpy.array([0, Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, -Config.material_thickness]))) last_pos += numpy.array([0, -Config.material_thickness]) # Left Edge last_pos = list(starting_pos) for i in xrange(int(math.floor(self.tab_count / 2))): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) else: shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([-Config.material_thickness, 0]))) last_pos += numpy.array([-Config.material_thickness, 0]) # Bottom Edge last_pos = list(starting_pos) + numpy.array([self.length, self.length]) for i in xrange(int(math.floor(self.tab_count / 2))): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([-self.tab_width, 0]))) last_pos += numpy.array([-self.tab_width, 0]) else: shape.add(self.__gen_line(last_pos, numpy.array([0, -Config.material_thickness]))) last_pos += numpy.array([0, -Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([-self.tab_width, 0]))) last_pos += numpy.array([-self.tab_width, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, Config.material_thickness]))) last_pos += numpy.array([0, Config.material_thickness]) # Right Edge last_pos = list(starting_pos) + numpy.array([self.length, 0]) for i in xrange(self.tab_count): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) else: shape.add(self.__gen_line(last_pos, numpy.array([-Config.material_thickness, 0]))) last_pos += numpy.array([-Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) # Bottom Left cutout last_pos = list(starting_pos) + numpy.array([0, (self.length - self.tab_width) / 2]) shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width / 2]))) last_pos += numpy.array([0, self.tab_width / 2]) shape.add(self.__gen_line(last_pos, numpy.array([self.length / 2 - Config.material_thickness, 0]))) last_pos += numpy.array([self.length / 2 - Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.length / 2 - Config.material_thickness]))) last_pos += numpy.array([0, self.length / 2 - Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width / 2, 0]))) last_pos += numpy.array([self.tab_width / 2, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, Config.material_thickness]))) return shape def __gen_cut_c90(self, starting_pos): shape = self.drawing.g(id=str(self.id)) # Top Edge last_pos = list(starting_pos) + numpy.array([self.tab_width, 0]) for i in xrange(int(math.floor((self.tab_count - 2) / 2))): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([0, Config.material_thickness]))) last_pos += numpy.array([0, Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, -Config.material_thickness]))) last_pos += numpy.array([0, -Config.material_thickness]) else: shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) # Bottom Edge last_pos = list(starting_pos) + numpy.array([self.tab_width, self.length]) for i in xrange(self.tab_count - 2): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([0, -Config.material_thickness]))) last_pos += numpy.array([0, -Config.material_thickness]) shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, Config.material_thickness]))) last_pos += numpy.array([0, Config.material_thickness]) else: shape.add(self.__gen_line(last_pos, numpy.array([self.tab_width, 0]))) last_pos += numpy.array([self.tab_width, 0]) # Left Edge last_pos = list(starting_pos) + numpy.array([Config.material_thickness, self.tab_width]) for i in xrange(self.tab_count - 2): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([-Config.material_thickness, 0]))) last_pos += numpy.array([-Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) else: shape.add(self.__gen_line(last_pos, numpy.array([0, self.tab_width]))) last_pos += numpy.array([0, self.tab_width]) # Right Edge last_pos = list(starting_pos) + numpy.array([self.length - Config.material_thickness, self.length - self.tab_width]) for i in xrange(int(math.floor((self.tab_count - 2) / 2))): if i % 2 == 0: shape.add(self.__gen_line(last_pos, numpy.array([Config.material_thickness, 0]))) last_pos += numpy.array([Config.material_thickness, 0]) shape.add(self.__gen_line(last_pos, numpy.array([0, -self.tab_width]))) last_pos += numpy.array([0, -self.tab_width]) shape.add(self.__gen_line(last_pos, numpy.array([-Config.material_thickness, 0]))) last_pos += numpy.array([-Config.material_thickness, 0]) else: shape.add(self.__gen_line(last_pos, numpy.array([0, -self.tab_width]))) last_pos += numpy.array([0, -self.tab_width]) # Top left corner last_pos = list(starting_pos) +
numpy.array([Config.material_thickness, self.tab_width])
numpy.array
"""This module contains functions that coordinate the calling of functions in the module ModelFunctions.py that calculate the variation of concentration with time according to tracer kinetic models. The function ModelSelector coordinates the execution of the appropriate function according to the model selected on the GUI. The function, CurveFit calls the Model function imported from the lmfit Python package to fit any of the models in ModelFunctions.py to actual concentration/time data. Initially curve fitting was done using scipy.optimize.curve_fit but lmfit was found to be more suitable. The code pertaining to the scipy implementation has been commented out. """ #from scipy.optimize import curve_fit from lmfit import Parameters, Model import numpy as np import logging import importlib #Although a dynamic import of ModelFunctions is done in the 2 functions in this module #an import has to be done here, so that Model Functions is included when a compiled #version of this program is created using Pyinstaller. import ModelFunctions logger = logging.getLogger(__name__) def ModelSelector(functionName: str, moduleName: str, inletType:str, times, AIFConcentration, parameterArray, constantsString, VIFConcentration=[]): """Function called in the GUI of the model fitting application to select & run the function corresponding to each model and return a list of calculated concentrations. Input Parameters ---------------- functionName - Name of the function corresponding to the model. inletType - String variable indicating if the model is single or dual compartment. The value 'single' indicates single compartment. The value 'dual' indicates dual compartment. time - NumPy Array of time values stored as floats. Created from a Python list. AIFConcentration - NumPy Array of concentration values stored as floats. Created from a Python list. These concentrations are the Arterial Input Function input to the model. parameterArray - list of model input parameter values. constantsString - String representation of a dictionary of constant name:value pairs used to convert concentrations predicted by the models to MR signal values. VIFConcentration - Optional NumPy Array of concentration values stored as floats. Created from a Python list. These concentrations are the Venous Input Function input to the model. Returns ------ Returns a list of MR signals calculated using the selected model at the times in the array time. """ logger.info("In ModelFunctionsHelper.ModelSelector. Called with model {} and parameters {}".format(functionName, parameterArray)) try: if inletType == 'single': timeInputConcs2DArray =
np.column_stack((times, AIFConcentration))
numpy.column_stack
import os import sys import pickle import numpy as np import PIL as pil import face_recognition # 内部数据结构: 键值对 => # { # "id_1": np.ndarray, # "id_2": np.ndarray, # "id_3": np.ndarray, # ... # "id_N": np.ndarray # } class FaceData(): # 构造函数:初始化 def __init__(self, path = './face_core/face.data', flag = None): # 存盘指示器(析构函数通过该值判断是否要重新保存数据) # 0 => 操作不改变数据(查询) # 1 => 操作改变了数据(增删) self.counter = 0 # 数据路径 self.face_data_path = os.path.join(sys.path[0], path) # 初始化(清空) if(flag == "init"): self.face_data = { } self.counter = 1 # 初始化(正常启动) else: try: # 人脸数据库(二进制存取) f = open(self.face_data_path, 'rb') self.face_data = pickle.load(f) f.close() except: raise "Error: open face.data failed or unknown format" # API 函数:通过存盘指示器判断是否要重新存盘(数据有无更动) # 注:不要使用 __del__ def dataSaver(self): if(self.counter == 1): f = open(self.face_data_path, 'wb') pickle.dump(self.face_data, f) f.close() else: print("in faces database: Nothing to do") # API 函数:人脸识别 # 参数:图片路径或图片二进制数据 # 返回:人脸数据库中目标UID与目标人脸框(前端显示) def recognizeFace(self, unknown_img_path = None, unknown_img_obj = None): unknown_image = None # 不同参数 => 不同处理方式 if(unknown_img_path != None and unknown_img_obj == None): # 拼接完整路径 p = os.path.join(sys.path[0], 'face_core/face_images/' + unknown_img_path) # 读取本地图片 unknown_image = face_recognition.load_image_file(p) elif(unknown_img_path == None and unknown_img_obj != None): unknown_image = pil.Image.open(unknown_img_obj) # 'RGB' (8-bit RGB, 3 channels) or 'L' (black and white) unknown_image = unknown_image.convert('RGB') unknown_image = np.array(unknown_image) else: raise "Error: face_class -> recognizeFace" # 返回数据格式 => 列表(List) unknown_encoding = face_recognition.face_encodings(unknown_image) # 限制条件:人脸识别限制(单一人脸) if(len(unknown_encoding) == 1): # 核查目标人脸是否在数据库中(注册用户 or 陌生人) face_uname = self.__checkFaceEncoding(unknown_encoding[0]) if(face_uname == None): # 返回 unknown UID return {'uid': 'unknown'} else: face_locations = face_recognition.face_locations(unknown_image) for (top, right, bottom, left) in face_locations: # 返回UID与人脸坐标 return { 'uid': face_uname, 'locations': { 'tops': top, 'right': right, 'bottom': bottom, 'left': left } } else: # 返回 noface return {'uid': 'noface'} # API 函数:查询人脸数据库中的注册信息 # 参数:UID # 返回: def showFace(self, uid = None): if(uid == None): print(self.face_data); else: print(self.face_data[uid]); # API 函数:添加人脸数据 def addFace(self, uid, img_path = None, img_obj = None): target_image = None # 不同参数 => 不同处理方式 if(img_path != None and img_obj == None): target_image = face_recognition.load_image_file(img_path) elif(img_path == None and img_obj != None): target_image = pil.Image.open(img_obj) # 'RGB' (8-bit RGB, 3 channels) or 'L' (black and white) target_image = target_image.convert('RGB') target_image =
np.array(target_image)
numpy.array
import numpy as np import fastwer import os f = open("./result/gt_result.txt", 'r') # f = open("./result/fastspeech_result.txt", 'r') # f = open("./result/gst_result.txt", 'r') a_err_list = [] d_err_list = [] f_err_list = [] h_err_list = [] n_err_list = [] sa_err_list = [] su_err_list = [] temp_err = [] cur_emo = None while True: line = f.readline() if not line: break items = line.split("|") text = items[1] # GT items = items[0].replace(".wav", "").split("_") emo = items[1] f_name = "{}_{}_{}".format(items[0], items[1], items[2]) # GST # items = items[0].replace(".wav", "").replace(".npy", "").split("_") # emo = items[2] # f_name = "{}_{}_{}".format(items[1], items[2], items[3]) # FS # items = items[0].replace(".wav", "").replace(".npy", "").split("_") # emo = items[3] # f_name = "{}_{}_{}".format(items[2], items[3], items[4]) # n = np.load("/hd0/hs_oh/emotion_korea/{}/{}.npz".format(emo, f_name), 'r') f_path = "/hd0/cb_im/emotion_kor/{}_3000_16000Hz/txt/{}.txt".format(emo, f_name) if not os.path.exists(f_path): print("NO FILE: {}".format(f_path)) continue n = open(f_path, 'r') # gt = str(n["text"]) gt = n.readline() gt = gt.replace(" ", "") gt = gt.replace(".", "") hypo = text.strip() hypo = hypo.replace(" ", "") hypo = hypo.replace(".", "") print(gt) print(hypo) cer = fastwer.score([hypo], [gt], char_level=True) if emo == "ang": a_err_list.append(cer) if emo == "dis": d_err_list.append(cer) if emo == "fea": f_err_list.append(cer) if emo == "neu": n_err_list.append(cer) if emo == "hap": h_err_list.append(cer) if emo == "sad": sa_err_list.append(cer) if emo == "sur": su_err_list.append(cer) n.close() # wer = fastwer.score([hypo], [gt]) # print(gt) # print(hypo) # print(cer) # err_list.append(cer) # print(wer) a_err = np.mean(a_err_list) print(len(a_err_list), "ang", a_err) d_err = np.mean(d_err_list) print(len(d_err_list), "dis", d_err) f_err = np.mean(f_err_list) print(len(f_err_list), "fea", f_err) n_err = np.mean(n_err_list) print(len(n_err_list), "neu", n_err) h_err = np.mean(h_err_list) print(len(h_err_list), "hap", h_err) sa_err = np.mean(sa_err_list) print(len(sa_err_list), "sad", sa_err) su_err =
np.mean(su_err_list)
numpy.mean
import os, torch import torchvision import numpy as np import scipy.io as sio from utils import * from torchvision import transforms from torch.utils.data import DataLoader, Dataset, WeightedRandomSampler def smallnorb(args, dataset_paths): transf = {'train': transforms.Compose([ transforms.ToPILImage(), transforms.RandomCrop((args.crop_dim, args.crop_dim)), transforms.ColorJitter(brightness=args.brightness/255., contrast=args.contrast), transforms.ToTensor(), Standardize()]), # transforms.Normalize((0.75239172, 0.75738262), (0.1758033 , 0.17200065))]), 'test': transforms.Compose([ transforms.ToPILImage(), transforms.CenterCrop((args.crop_dim, args.crop_dim)), transforms.ToTensor(), Standardize()])} # transforms.Normalize((0.75239172, 0.75738262), (0.1758033 , 0.17200065))])} config = {'train': True, 'test': False} datasets = {i: smallNORB(dataset_paths[i], transform=transf[i], shuffle=config[i]) for i in config.keys()} # return data, labels dicts for new train set and class-balanced valid set data, labels = random_split(data=datasets['train'].data, labels=datasets['train'].labels, n_classes=5, n_samples_per_class=np.unique( datasets['train'].labels, return_counts=True)[1] // 5) # % of train set per class # define transforms for train set (without valid data) transf['train_'] = transforms.Compose([ transforms.ToPILImage(), transforms.RandomCrop((args.crop_dim, args.crop_dim)), transforms.ColorJitter(brightness=args.brightness/255., contrast=args.contrast), transforms.ToTensor(), Standardize()]) # transforms.Normalize((0.75239172, 0.75738262), (0.1758033 , 0.17200065))]) # define transforms for class-balanced valid set transf['valid'] = transforms.Compose([ transforms.ToPILImage(), transforms.CenterCrop((args.crop_dim, args.crop_dim)), transforms.ToTensor(), Standardize()]) # transforms.Normalize((0.75239172, 0.75738262), (0.1758033 , 0.17200065))]) # save original full training set datasets['train_valid'] = datasets['train'] # make new training set without validation samples datasets['train'] = CustomDataset(data=data['train'], labels=labels['train'], transform=transf['train_']) # make class balanced validation set datasets['valid'] = CustomDataset(data=data['valid'], labels=labels['valid'], transform=transf['valid']) config = {'train': True, 'train_valid': True, 'valid': False, 'test': False} dataloaders = {i: DataLoader(datasets[i], shuffle=config[i], pin_memory=True, num_workers=8, batch_size=args.batch_size) for i in config.keys()} return dataloaders class smallNORB(Dataset): ''' In: data_path (string): path to the dataset split folder, i.e. train/valid/test transform (callable, optional): transform to be applied on a sample. Out: sample (dict): sample data and respective label''' def __init__(self, data_path, shuffle=True, transform=None): self.data_path = data_path self.shuffle = shuffle self.transform = transform self.data, self.labels = [], [] # get path for each class folder for class_label_idx, class_name in enumerate(os.listdir(data_path)): class_path = os.path.join(data_path, class_name) # get name of each file per class and respective class name/label index for _, file_name in enumerate(os.listdir(class_path)): img = np.load(os.path.join(data_path, class_name, file_name)) # Out ← [H, W, C] ← [C, H, W] if img.shape[0] < img.shape[1]: img = np.moveaxis(img, 0, -1) self.data.extend([img]) self.labels.append(class_label_idx) self.data = np.array(self.data, dtype=np.uint8) self.labels = np.array(self.labels) if self.shuffle: # shuffle the dataset idx = np.random.permutation(self.data.shape[0]) self.data = self.data[idx] self.labels = self.labels[idx] def __len__(self): return self.data.shape[0] def __getitem__(self, idx): if self.transform: image = self.transform(self.data[idx]) return image, self.labels[idx] # (X, Y) def mnist(args, dataset_paths): ''' Loads the MNIST dataset. Returns: train/valid/test set split dataloaders. ''' transf = {'train': transforms.Compose([ transforms.RandomCrop((args.crop_dim, args.crop_dim), padding=args.padding), transforms.ToTensor(), transforms.Normalize((0.13066047,), (0.30810780,)) ]), 'test': transforms.Compose([ transforms.Pad(np.maximum(0, (args.crop_dim-28) // 2)), transforms.ToTensor(), transforms.Normalize((0.13066047,), (0.30810780,)) ])} config = {'train': True, 'test': False} datasets = {i: torchvision.datasets.MNIST(root=dataset_paths[i], transform=transf[i], train=config[i], download=True) for i in config.keys()} # split train into train and class-balanced valid set data, labels = random_split(data=datasets['train'].data, labels=datasets['train'].targets, n_classes=10, n_samples_per_class=np.repeat(500, 10)) # 500 per class # define transforms for train set (without valid data) transf['train_'] = transforms.Compose([ transforms.ToPILImage(), transforms.RandomCrop((args.crop_dim, args.crop_dim), padding=args.padding), transforms.ToTensor(), transforms.Normalize((0.13066047,), (0.30810780,)) ]) # define transforms for class-balanced valid set transf['valid'] = transforms.Compose([ transforms.ToPILImage(), transforms.Pad(np.maximum(0, (args.crop_dim-28) // 2)), transforms.ToTensor(), transforms.Normalize((0.13066047,), (0.30810780,)) ]) # save original full training set datasets['train_valid'] = datasets['train'] # make new training set without validation samples datasets['train'] = CustomDataset(data=data['train'], labels=labels['train'], transform=transf['train_']) # make class balanced validation set datasets['valid'] = CustomDataset(data=data['valid'], labels=labels['valid'], transform=transf['valid']) config = {'train': True, 'train_valid': True, 'valid': False, 'test': False} dataloaders = {i: DataLoader(datasets[i], num_workers=8, pin_memory=True, batch_size=args.batch_size, shuffle=config[i]) for i in config.keys()} if args.test_affNIST: working_dir = os.path.join(os.path.split(os.getcwd())[0], 'data', 'affNIST') aff_transf = transforms.Compose([ transforms.ToPILImage(), transforms.ToTensor(), transforms.Normalize((0.13066047,), (0.30810780,))]) datasets['affNIST_test'] = affNIST(data_path=os.path.join(working_dir,'test'), transform=aff_transf) dataloaders['affNIST_test'] = DataLoader(datasets['affNIST_test'], pin_memory=True, num_workers=8, batch_size=args.batch_size, shuffle=False) return dataloaders def svhn(args, dataset_paths): ''' Loads the SVHN dataset. Returns: train/valid/test set split dataloaders. ''' transf = { 'train': transforms.Compose([ transforms.RandomCrop((args.crop_dim, args.crop_dim), padding=args.padding), transforms.ColorJitter(brightness=args.brightness, contrast=args.contrast), transforms.ToTensor(), # Standardize()]), transforms.Normalize((0.4376821, 0.4437697, 0.47280442), (0.19803012, 0.20101562, 0.19703614))]), # 'extra': transforms.Compose([ # transforms.RandomCrop((args.crop_dim, args.crop_dim), padding=args.padding), # transforms.ColorJitter(brightness=args.brightness, contrast=args.contrast), # transforms.ToTensor(), # # Standardize()]), # transforms.Normalize((0.4376821, 0.4437697, 0.47280442), # (0.19803012, 0.20101562, 0.19703614)), 'test': transforms.Compose([ transforms.ToTensor(), # Standardize()])} transforms.Normalize((0.4376821, 0.4437697, 0.47280442), (0.19803012, 0.20101562, 0.19703614))]) } # config = {'train': True, 'extra': True, 'test': False} config = {'train': True, 'test': False} datasets = {i: torchvision.datasets.SVHN(root=dataset_paths[i], transform=transf[i], split=i, download=True) for i in config.keys()} # weighted sampler weights for full(f) training set f_s_weights = sample_weights(datasets['train'].labels) # return data, labels dicts for new train set and class-balanced valid set data, labels = random_split(data=datasets['train'].data, labels=datasets['train'].labels, n_classes=10, n_samples_per_class=np.repeat(1000, 10).reshape(-1)) # define transforms for train set (without valid data) transf['train_'] = transforms.Compose([ transforms.ToPILImage(), transforms.RandomCrop((args.crop_dim, args.crop_dim), padding=args.padding), transforms.ColorJitter(brightness=args.brightness, contrast=args.contrast), transforms.ToTensor(), # Standardize()]) transforms.Normalize((0.4376821, 0.4437697, 0.47280442), (0.19803012, 0.20101562, 0.19703614))]) # define transforms for class-balanced valid set transf['valid'] = transforms.Compose([ transforms.ToPILImage(), transforms.ToTensor(), # Standardize()]) transforms.Normalize((0.4376821, 0.4437697, 0.47280442), (0.19803012, 0.20101562, 0.19703614))]) # save original full training set datasets['train_valid'] = datasets['train'] # make channels last and convert to np arrays data['train'] = np.moveaxis(np.array(data['train']), 1, -1) data['valid'] = np.moveaxis(np.array(data['valid']), 1, -1) # make new training set without validation samples datasets['train'] = CustomDataset(data=data['train'], labels=labels['train'], transform=transf['train_']) # make class balanced validation set datasets['valid'] = CustomDataset(data=data['valid'], labels=labels['valid'], transform=transf['valid']) # weighted sampler weights for new training set s_weights = sample_weights(datasets['train'].labels) config = { 'train': WeightedRandomSampler(s_weights, num_samples=len(s_weights), replacement=True), 'train_valid': WeightedRandomSampler(f_s_weights, num_samples=len(f_s_weights), replacement=True), 'valid': None, 'test': None} dataloaders = {i: DataLoader(datasets[i], sampler=config[i], num_workers=8, pin_memory=True, drop_last=True, batch_size=args.batch_size) for i in config.keys()} #NOTE: comment these to use the weighted sampler dataloaders above instead config = {'train': True, 'train_valid': True, 'valid': False, 'test': False} dataloaders = {i: DataLoader(datasets[i], num_workers=8, pin_memory=True, batch_size=args.batch_size, shuffle=config[i]) for i in config.keys()} return dataloaders class affNIST(Dataset): ''' In: data_path (string): path to the dataset split folder, i.e. train/valid/test transform (callable, optional): transform to be applied on a sample. Out: image, label: sample data and respective label''' def __init__(self, data_path, shuffle=True, transform=None): self.data_path = data_path self.shuffle = shuffle self.transform = transform self.split = self.data_path.split('/')[-1] if self.split == 'train': for i, file in enumerate(os.listdir(data_path)): # load dataset .mat file batch self.dataset = sio.loadmat(os.path.join(data_path, file)) # concatenate the 32 .mat files to make full dataset if i == 0: self.data = np.array(self.dataset['affNISTdata']['image'][0][0]) self.labels = np.array(self.dataset['affNISTdata']['label_int'][0][0]) else: self.data = np.concatenate((self.data, np.array(self.dataset['affNISTdata']['image'][0][0])), axis=1) self.labels = np.concatenate((self.labels,
np.array(self.dataset['affNISTdata']['label_int'][0][0])
numpy.array
''' Train and test bidirectional language models. ''' import os import time import json import re import tensorflow as tf import numpy as np import pickle # from tensorflow.python.ops.init_ops import glorot_uniform_initializer from .models import MultimodalModel from .data import Vocabulary, UnicodeCharsVocabulary, InvalidNumberOfCharacters, BidirectionalLMDataset tf.logging.set_verbosity(tf.logging.INFO) def print_variable_summary(): import pprint variables = sorted([[v.name, v.get_shape()] for v in tf.global_variables()]) pprint.pprint(variables) def average_gradients(tower_grads, batch_size, options): # calculate average gradient for each shared variable across all GPUs average_grads = [] for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) # We need to average the gradients across each GPU. g0, v0 = grad_and_vars[0] if g0 is None: # no gradient for this variable, skip it average_grads.append((g0, v0)) continue if isinstance(g0, tf.IndexedSlices): # If the gradient is type IndexedSlices then this is a sparse # gradient with attributes indices and values. # To average, need to concat them individually then create # a new IndexedSlices object. indices = [] values = [] for g, v in grad_and_vars: indices.append(g.indices) values.append(g.values) all_indices = tf.concat(indices, 0) avg_values = tf.concat(values, 0) / len(grad_and_vars) # deduplicate across indices av, ai = _deduplicate_indexed_slices(avg_values, all_indices) grad = tf.IndexedSlices(av, ai, dense_shape=g0.dense_shape) else: # a normal tensor can just do a simple average grads = [] for g, v in grad_and_vars: # Add 0 dimension to the gradients to represent the tower. expanded_g = tf.expand_dims(g, 0) # Append on a 'tower' dimension which we will average over grads.append(expanded_g) # Average over the 'tower' dimension. grad = tf.concat(grads, 0) grad = tf.reduce_mean(grad, 0) # the Variables are redundant because they are shared # across towers. So.. just return the first tower's pointer to # the Variable. v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) assert len(average_grads) == len(list(zip(*tower_grads))) return average_grads def summary_gradient_updates(grads, opt, lr): '''get summary ops for the magnitude of gradient updates''' # strategy: # make a dict of variable name -> [variable, grad, adagrad slot] vars_grads = {} for v in tf.trainable_variables(): vars_grads[v.name] = [v, None, None] for g, v in grads: vars_grads[v.name][1] = g vars_grads[v.name][2] = opt.get_slot(v, 'accumulator') # now make summaries ret = [] for vname, (v, g, a) in vars_grads.items(): if g is None: continue if isinstance(g, tf.IndexedSlices): # a sparse gradient - only take norm of params that are updated values = tf.gather(v, g.indices) updates = lr * g.values if a is not None: updates /= tf.sqrt(tf.gather(a, g.indices)) else: values = v updates = lr * g if a is not None: updates /= tf.sqrt(a) values_norm = tf.sqrt(tf.reduce_sum(v * v)) + 1.0e-7 updates_norm = tf.sqrt(tf.reduce_sum(updates * updates)) ret.append( tf.summary.scalar('UPDATE/' + vname.replace(":", "_"), updates_norm / values_norm)) return ret def _deduplicate_indexed_slices(values, indices): """Sums `values` associated with any non-unique `indices`. Args: values: A `Tensor` with rank >= 1. indices: A one-dimensional integer `Tensor`, indexing into the first dimension of `values` (as in an IndexedSlices object). Returns: A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a de-duplicated version of `indices` and `summed_values` contains the sum of `values` slices associated with each unique index. """ unique_indices, new_index_positions = tf.unique(indices) summed_values = tf.unsorted_segment_sum( values, new_index_positions, tf.shape(unique_indices)[0]) return (summed_values, unique_indices) def _get_feed_dict_from_X(X, start, end, model, char_inputs, bidirectional): feed_dict = {} if not char_inputs: token_ids = X['token_ids'][start:end] feed_dict[model.token_ids] = token_ids else: # character inputs char_ids = X['tokens_characters'][start:end] feed_dict[model.tokens_characters] = char_ids if bidirectional: if not char_inputs: feed_dict[model.token_ids_reverse] = \ X['token_ids_reverse'][start:end] else: feed_dict[model.tokens_characters_reverse] = \ X['tokens_characters_reverse'][start:end] if 'tokens_acoustic' in X : feed_dict[model.tokens_acoustic] = X['tokens_acoustic'][start:end] if bidirectional: feed_dict[model.tokens_acoustic_reverse] = X['tokens_acoustic_reverse'][start:end] # else : # feed_dict[model.tokens_acoustic] = np.zeros((256,1,MAX_ACOUSTIC_SIZE,74)) # if bidirectional: # feed_dict[model.tokens_acoustic_reverse] = np.zeros((256,1,MAX_ACOUSTIC_SIZE,74)) # now the targets with weights next_id_placeholders = [[model.next_token_id, '']] if bidirectional: next_id_placeholders.append([model.next_token_id_reverse, '_reverse']) for id_placeholder, suffix in next_id_placeholders: name = 'next_token_id' + suffix feed_dict[id_placeholder] = X[name][start:end] return feed_dict def train(options, data, n_gpus, tf_save_dir, tf_log_dir, restart_ckpt_file=None): if not os.path.exists(tf_save_dir): os.makedirs(tf_save_dir) # not restarting so save the options with open(os.path.join(tf_save_dir, 'options.json'), 'w') as fout: fout.write(json.dumps(options)) with tf.device('/cpu:0'): global_step = tf.get_variable( 'global_step', [], initializer=tf.constant_initializer(0), trainable=False) # set up the optimizer lr = options.get('learning_rate', options['learning_rate']) opt = tf.train.AdagradOptimizer(learning_rate=lr, initial_accumulator_value=1.0) # calculate the gradients on each GPU tower_grads = [] models = [] train_perplexity = tf.get_variable( 'train_perplexity', [], initializer=tf.constant_initializer(0.0), trainable=False) norm_summaries = [] for k in range(n_gpus): with tf.device('/gpu:%d' % k): with tf.variable_scope('lm', reuse=k > 0): # calculate the loss for one model replica and get # lstm states model = MultimodalModel(options, True, lm_training=isinstance(data, BidirectionalLMDataset)) loss = model.total_loss models.append(model) # get gradients grads = opt.compute_gradients( loss * options['unroll_steps'], aggregation_method=tf.AggregationMethod.EXPERIMENTAL_TREE, ) tower_grads.append(grads) # keep track of loss across all GPUs train_perplexity += loss print_variable_summary() # calculate the mean of each gradient across all GPUs grads = average_gradients(tower_grads, options['batch_size'], options) grads, norm_summary_ops = clip_grads(grads, options, True, global_step) norm_summaries.extend(norm_summary_ops) input_summaries = [tf.summary.scalar("acoustic_input/input", tf.reduce_mean(model.tokens_acoustic))] # input_summaries.append(tf.summary.scalar("acoustic_input/embedding_acoustic", tf.reduce_mean(model.embedding_acoustic))) # var1 = [var for var in tf.global_variables() if "lm/MME/CNN_ACO/W_cnn_0:0" in var.name][0] # input_summaries.append(tf.summary.scalar("acoustic_input/aco_cnn_weight", tf.reduce_mean(var1))) # print(var1.name) # var1 = [var for var in tf.global_variables() if "lm/CNN/W_cnn_0:0" in var.name][0] # print(var1.name) # input_summaries.append(tf.summary.scalar("acoustic_input/lex_cnn_weight", tf.reduce_mean(var1))) # log the training perplexity train_perplexity = tf.exp(train_perplexity / n_gpus) perplexity_summmary = tf.summary.scalar( 'train_perplexity', train_perplexity) # some histogram summaries. all models use the same parameters # so only need to summarize one histogram_summaries = [ tf.summary.histogram('token_embedding', models[0].embedding) ] # tensors of the output from the LSTM layer lstm_out = tf.get_collection('lstm_output_embeddings') histogram_summaries.append( tf.summary.histogram('lstm_embedding_0', lstm_out[0])) if options.get('bidirectional', False): # also have the backward embedding histogram_summaries.append( tf.summary.histogram('lstm_embedding_1', lstm_out[1])) # apply the gradients to create the training operation train_op = opt.apply_gradients(grads, global_step=global_step) # histograms of variables for v in tf.global_variables(): histogram_summaries.append(tf.summary.histogram(v.name.replace(":", "_"), v)) # get the gradient updates -- these aren't histograms, but we'll # only update them when histograms are computed histogram_summaries.extend( summary_gradient_updates(grads, opt, lr)) saver = tf.train.Saver(tf.global_variables(), max_to_keep=2) summary_op = tf.summary.merge( [perplexity_summmary] + norm_summaries + input_summaries ) hist_summary_op = tf.summary.merge(histogram_summaries) init = tf.initialize_all_variables() # do the training loop bidirectional = options.get('bidirectional', False) with tf.Session(config=tf.ConfigProto( allow_soft_placement=True)) as sess: sess.run(init) # load the checkpoint data if needed if restart_ckpt_file is not None: try : loader = tf.train.Saver() loader.restore(sess, restart_ckpt_file) print("Loaded from restart checkpoint") except : variables_to_restore = [v for v in tf.global_variables() if 'MME' not in v.name] loader = tf.train.Saver(variables_to_restore) loader.restore(sess, restart_ckpt_file) print("Loaded from restart checkpoint") summary_writer = tf.summary.FileWriter(tf_log_dir, sess.graph) # For each batch: # Get a batch of data from the generator. The generator will # yield batches of size batch_size * n_gpus that are sliced # and fed for each required placeholer. # # We also need to be careful with the LSTM states. We will # collect the final LSTM states after each batch, then feed # them back in as the initial state for the next batch batch_size = options['batch_size'] unroll_steps = options['unroll_steps'] n_train_tokens = options.get('n_train_tokens', 768648884) n_tokens_per_batch = batch_size * unroll_steps * n_gpus n_batches_per_epoch = int(n_train_tokens / n_tokens_per_batch) n_batches_total = options['n_epochs'] * n_batches_per_epoch print("Training for %s epochs and %s batches" % ( options['n_epochs'], n_batches_total)) # get the initial lstm states init_state_tensors = [] final_state_tensors = [] for model in models: init_state_tensors.extend(model.init_lstm_state) final_state_tensors.extend(model.final_lstm_state) char_inputs = 'char_cnn' in options if char_inputs: max_chars = options['char_cnn']['max_characters_per_token'] print("Using char inputs") if not char_inputs: feed_dict = { model.token_ids: np.zeros([batch_size, unroll_steps], dtype=np.int64) for model in models } else: feed_dict = { model.tokens_characters: np.zeros([batch_size, unroll_steps, max_chars], dtype=np.int32) for model in models } feed_dict.update({ model.tokens_acoustic: np.zeros([batch_size, unroll_steps, options['acou_cnn']['max_acoustic_size_per_token'], options['acou_cnn']['acoustics']['dim']]) for model in models }) if bidirectional: if not char_inputs: feed_dict.update({ model.token_ids_reverse: np.zeros([batch_size, unroll_steps], dtype=np.int64) for model in models }) else: feed_dict.update({ model.tokens_characters_reverse: np.zeros([batch_size, unroll_steps, max_chars], dtype=np.int32) for model in models }) feed_dict.update({ model.tokens_acoustic_reverse: np.zeros([batch_size, unroll_steps, options['acou_cnn']['max_acoustic_size_per_token'], options['acou_cnn']['acoustics']['dim']]) for model in models }) init_state_values, init_embed_acoustic = sess.run([init_state_tensors, model.embedding_acoustic], feed_dict=feed_dict) t1 = time.time() end_training = False for epoch_no in range(1,options['n_epochs']+1) : data_gen = data.iter_batches(batch_size * n_gpus, unroll_steps) for batch_no, batch in enumerate(data_gen, start=1): # slice the input in the batch for the feed_dict X = batch feed_dict = {} for s1, s2 in zip(init_state_tensors, init_state_values) : feed_dict.update({t: v for t, v in zip(s1, s2)}) for k in range(n_gpus): model = models[k] start = k * batch_size end = (k + 1) * batch_size feed_dict.update( _get_feed_dict_from_X(X, start, end, model, char_inputs, bidirectional) ) if 'tokens_acoustic' not in X: # Add dummy acoustic feed_dict.update({ model.tokens_acoustic: np.zeros([batch_size, unroll_steps, options['acou_cnn']['max_acoustic_size_per_token'], 74]), model.tokens_acoustic_reverse: np.zeros([batch_size, unroll_steps, options['acou_cnn']['max_acoustic_size_per_token'], 74]) }) # This runs the train_op, summaries and the "final_state_tensors" # which just returns the tensors, passing in the initial # state tensors, token ids and next token ids if batch_no % 500 != 0: ret = sess.run( [train_op, summary_op, train_perplexity] + final_state_tensors, feed_dict=feed_dict ) # first three entries of ret are: # train_op, summary_op, train_perplexity # last entries are the final states -- set them to # init_state_values # for next batch init_state_values = ret[3:] else: # also run the histogram summaries ret = sess.run( [train_op, summary_op, train_perplexity, hist_summary_op, model.embedding_acoustic_gated] + final_state_tensors, feed_dict=feed_dict ) init_state_values = ret[5:] if batch_no % 500 == 0: summary_writer.add_summary(ret[3], batch_no) if batch_no % 100 == 0: # write the summaries to tensorboard and display perplexity summary_writer.add_summary(ret[1], batch_no) print("Epoch %s Batch %s, train_perplexity=%s" % (epoch_no, batch_no, ret[2])) print("Total time: %s" % (time.time() - t1)) if (batch_no % 1250 == 0) or (batch_no == n_batches_total): # save the model print("Saving model") checkpoint_path = os.path.join(tf_save_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=global_step) # embed_acoustic = sess.run(model.embedding_acoustic, feed_dict=feed_dict) if batch_no == n_batches_total: # done training! end_training = True print("Saving model at end of epoch") checkpoint_path = os.path.join(tf_save_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=global_step) if end_training : print("End of training") break def clip_by_global_norm_summary(t_list, clip_norm, norm_name, variables): # wrapper around tf.clip_by_global_norm that also does summary ops of norms # compute norms # use global_norm with one element to handle IndexedSlices vs dense norms = [tf.global_norm([t]) for t in t_list] # summary ops before clipping summary_ops = [] for ns, v in zip(norms, variables): name = 'norm_pre_clip/' + v.name.replace(":", "_") summary_ops.append(tf.summary.scalar(name, ns)) # clip clipped_t_list, tf_norm = tf.clip_by_global_norm(t_list, clip_norm) # summary ops after clipping norms_post = [tf.global_norm([t]) for t in clipped_t_list] for ns, v in zip(norms_post, variables): name = 'norm_post_clip/' + v.name.replace(":", "_") summary_ops.append(tf.summary.scalar(name, ns)) summary_ops.append(tf.summary.scalar(norm_name, tf_norm)) return clipped_t_list, tf_norm, summary_ops def clip_grads(grads, options, do_summaries, global_step): # grads = [(grad1, var1), (grad2, var2), ...] def _clip_norms(grad_and_vars, val, name): # grad_and_vars is a list of (g, v) pairs grad_tensors = [g for g, v in grad_and_vars] vv = [v for g, v in grad_and_vars] scaled_val = val if do_summaries: clipped_tensors, g_norm, so = clip_by_global_norm_summary( grad_tensors, scaled_val, name, vv) else: so = [] clipped_tensors, g_norm = tf.clip_by_global_norm( grad_tensors, scaled_val) ret = [] for t, (g, v) in zip(clipped_tensors, grad_and_vars): ret.append((t, v)) return ret, so all_clip_norm_val = options['all_clip_norm_val'] ret, summary_ops = _clip_norms(grads, all_clip_norm_val, 'norm_grad') assert len(ret) == len(grads) return ret, summary_ops def test(options, ckpt_file, data, batch_size=256): ''' Get the test set perplexity! ''' bidirectional = options.get('bidirectional', False) char_inputs = 'char_cnn' in options if char_inputs: max_chars = options['char_cnn']['max_characters_per_token'] max_acou = options['acou_cnn']['max_acoustic_size_per_token'] acou_dim = options['acou_cnn']['acoustics']['dim'] unroll_steps = 1 config = tf.ConfigProto(allow_soft_placement=True) with tf.Session(config=config) as sess: with tf.device('/gpu:0'), tf.variable_scope('lm'): test_options = dict(options) # NOTE: the number of tokens we skip in the last incomplete # batch is bounded above batch_size * unroll_steps test_options['batch_size'] = batch_size test_options['unroll_steps'] = unroll_steps test_options['dropout'] = 0 # model = LanguageModel(test_options, False) model = MultimodalModel(test_options, False) # we use the "Saver" class to load the variables loader = tf.train.Saver() loader.restore(sess, ckpt_file) # model.total_loss is the op to compute the loss # perplexity is exp(loss) init_state_tensors = model.init_lstm_state final_state_tensors = model.final_lstm_state if not char_inputs: feed_dict = { model.token_ids: np.zeros([batch_size, unroll_steps], dtype=np.int64) } if bidirectional: feed_dict.update({ model.token_ids_reverse: np.zeros([batch_size, unroll_steps], dtype=np.int64) }) else: feed_dict = { model.tokens_acoustic: np.zeros([batch_size, unroll_steps, max_acou, acou_dim], dtype=np.float), model.tokens_characters: np.zeros([batch_size, unroll_steps, max_chars], dtype=np.int32) } if bidirectional: feed_dict.update({ model.tokens_characters_reverse: np.zeros([batch_size, unroll_steps, max_chars], dtype=np.int32) }) feed_dict.update({ model.tokens_acoustic: np.zeros([batch_size, unroll_steps, test_options['acou_cnn']['max_acoustic_size_per_token'], test_options['acou_cnn']['acoustics']['dim']]) }) if bidirectional : feed_dict.update({ model.tokens_acoustic_reverse: np.zeros([batch_size, unroll_steps, test_options['acou_cnn']['max_acoustic_size_per_token'], test_options['acou_cnn']['acoustics']['dim']]) }) init_state_values = sess.run( init_state_tensors, feed_dict=feed_dict) t1 = time.time() batch_losses = [] total_loss = 0.0 try : for batch_no, batch in enumerate( data.iter_batches(batch_size, unroll_steps), start=1): # slice the input in the batch for the feed_dict X = batch feed_dict = {} for s1, s2 in zip(init_state_tensors, init_state_values) : feed_dict.update({t: v for t, v in zip(s1, s2)}) feed_dict.update( _get_feed_dict_from_X(X, 0, X['token_ids'].shape[0], model, char_inputs, bidirectional) ) if 'tokens_acoustic' not in X: # Add dummy acoustic feed_dict.update({ model.tokens_acoustic: np.zeros([batch_size, unroll_steps, options['acou_cnn']['max_acoustic_size_per_token'], 74]), model.tokens_acoustic_reverse: np.zeros([batch_size, unroll_steps, options['acou_cnn']['max_acoustic_size_per_token'], 74]) }) ret = sess.run( [model.total_loss, final_state_tensors], feed_dict=feed_dict ) loss, init_state_values = ret batch_losses.append(loss) batch_perplexity = np.exp(loss) total_loss += loss avg_perplexity = np.exp(total_loss / batch_no) print("batch=%s, batch_perplexity=%s, avg_perplexity=%s, time=%s" % (batch_no, batch_perplexity, avg_perplexity, time.time() - t1)) except StopIteration : pass avg_loss = np.mean(batch_losses) print("FINSIHED! AVERAGE PERPLEXITY = %s" % np.exp(avg_loss)) return np.exp(avg_loss) def extract(options, ckpt_file, data, batch_size=256, unroll_steps=20, outfile='extracted_dataset.pkl'): ''' Extract embeddings from the model ''' bidirectional = options.get('bidirectional', False) char_inputs = 'char_cnn' in options if char_inputs: max_chars = options['char_cnn']['max_characters_per_token'] max_acou = options['acou_cnn']['max_acoustic_size_per_token'] acou_dim = options['acou_cnn']['acoustics']['dim'] config = tf.ConfigProto(allow_soft_placement=True) new_dataset = {} new_dataset['embeddings'] = {} new_dataset['labels'] = {} with tf.Session(config=config) as sess: with tf.device('/gpu:0'), tf.variable_scope('lm'): test_options = dict(options) # NOTE: the number of tokens we skip in the last incomplete # batch is bounded above batch_size * unroll_steps test_options['batch_size'] = batch_size test_options['unroll_steps'] = unroll_steps test_options['dropout'] = 0 # model = LanguageModel(test_options, False) model = MultimodalModel(test_options, False) # we use the "Saver" class to load the variables loader = tf.train.Saver() loader.restore(sess, ckpt_file) # model.total_loss is the op to compute the loss # perplexity is exp(loss) init_state_tensors = model.init_lstm_state final_state_tensors = model.final_lstm_state if not char_inputs: feed_dict = { model.token_ids: np.zeros([batch_size, unroll_steps], dtype=np.int64) } if bidirectional: feed_dict.update({ model.token_ids_reverse: np.zeros([batch_size, unroll_steps], dtype=np.int64) }) else: feed_dict = { model.tokens_acoustic: np.zeros([batch_size, unroll_steps, max_acou, acou_dim], dtype=np.float), model.tokens_characters: np.zeros([batch_size, unroll_steps, max_chars], dtype=np.int32) } if bidirectional: feed_dict.update({ model.tokens_characters_reverse: np.zeros([batch_size, unroll_steps, max_chars], dtype=np.int32) }) feed_dict.update({ model.tokens_acoustic: np.zeros([batch_size, unroll_steps, test_options['acou_cnn']['max_acoustic_size_per_token'], test_options['acou_cnn']['acoustics']['dim']]) }) if bidirectional : feed_dict.update({ model.tokens_acoustic_reverse: np.zeros([batch_size, unroll_steps, test_options['acou_cnn']['max_acoustic_size_per_token'], test_options['acou_cnn']['acoustics']['dim']]) }) init_state_values = sess.run( init_state_tensors, feed_dict=feed_dict) t1 = time.time() batch_losses = [] total_loss = 0.0 for batch_no, batch in enumerate( data.iter_sentences(batch_size, unroll_steps), start=1): # slice the input in the batch for the feed_dict X = batch feed_dict = {} for s1, s2 in zip(init_state_tensors, init_state_values) : feed_dict.update({t: v for t, v in zip(s1, s2)}) # feed_dict = {t: v for t, v in zip( # init_state_tensors, init_state_values)} feed_dict.update( _get_feed_dict_from_X(X, 0, X['token_ids'].shape[0], model, char_inputs, bidirectional) ) ret = sess.run( [final_state_tensors, model.elmo_outputs], feed_dict=feed_dict ) init_state_values, elmo_outputs = ret for i in range(batch_size): sentence_length = batch['lengths'][i] if sentence_length == 0: print(f"Skipping 0 length sentence for key {batch['keys'][i]}") continue key = batch['keys'][i] new_dataset['embeddings'][key] = [
np.average(elmo_outputs[j][i, 0:sentence_length], axis=0)
numpy.average
import os import sys ROOT_DIR = os.path.abspath("../") sys.path.append(ROOT_DIR) sys.path.append(os.path.join(ROOT_DIR,"Mask_RCNN")) import h5py import numpy as np from preprocessing.utils import make_colormap,find_start_count, save_instances from preprocessing.discard import class_and_size_discard from sort.sort import Sort, KalmanBoxTracker from scipy.spatial import distance from shutil import copyfile from sklearn.utils.linear_assignment_ import linear_assignment def find_nn(query, array): nn = 0 min_dist = float('inf') for i in range(array.shape[0]): dist = distance.euclidean(query, array[i, :]) if (dist < min_dist): nn = i min_dist = dist return nn def iou(bb_test,bb_gt): """ Computes IUO between two bboxes in the form [x1,y1,x2,y2] """ xx1 = np.maximum(bb_test[0], bb_gt[0]) yy1 = np.maximum(bb_test[1], bb_gt[1]) xx2 = np.minimum(bb_test[2], bb_gt[2]) yy2 = np.minimum(bb_test[3], bb_gt[3]) w = np.maximum(0., xx2 - xx1) h = np.maximum(0., yy2 - yy1) wh = w * h o = wh / ((bb_test[2]-bb_test[0])*(bb_test[3]-bb_test[1]) + (bb_gt[2]-bb_gt[0])*(bb_gt[3]-bb_gt[1]) - wh) return(o) def iou_track(data_file): f = h5py.File(data_file, "r+") start_count = find_start_count(list(f.keys())) first_frame = "frame{}".format(start_count) track_n = f[first_frame]['masks'].shape[2] index_array = np.arange(1,track_n+1) index_array = np.stack((index_array,index_array),axis =1) f.create_dataset("{}/IDs".format(first_frame), data=index_array) for i in range(start_count+1, f['frame_number'].value[0]): frame = "frame{}".format(i) previous_frame = "frame{}".format(i-1) previous_mask_n = f[previous_frame]['masks'].shape[2] current_mask_n = f[frame]['masks'].shape[2] index_array = np.zeros((current_mask_n,2)) ious = np.zeros((current_mask_n, previous_mask_n)) for mask_id in range(current_mask_n): current_box = f[frame]['rois'].value[mask_id,:] ious[mask_id,:] = np.array([iou(f[previous_frame]['rois'].value[previous_id,:], current_box) for previous_id in range(f[previous_frame]['rois'].shape[0])]) assignments = linear_assignment(-ious) assigned_ids = [] for assignment in assignments: assigned_ids.append(assignment[0]) if (ious[assignment[0], assignment[1]] > 0): index_array[assignment[0], :] = f[previous_frame]['IDs'].value[assignment[1], 0] else: track_n += 1 index_array[assignment[0], :] = track_n if (len(assignments) < ious.shape[0]): missing_ids = [i for i in range(current_mask_n) if i not in assigned_ids] for missing_id in missing_ids: track_n += 1 index_array[missing_id, :] = track_n f.create_dataset("{}/IDs".format(frame), data=index_array) f["tracks_n"][0] = track_n f.close() def track(data_file, reverse= False, verbose = 0): if(verbose==1): print("Opening File...") f = h5py.File(data_file, "r+") mot_tracker = Sort() tracks_n = f["tracks_n"].value[0] start_count = find_start_count(list(f.keys())) if(not reverse): frame_indices = range(start_count, f['frame_number'].value[0]) else: frame_indices = reversed(range(start_count, f['frame_number'].value[0])) if(verbose==1): print("Starting loop...") for i in frame_indices : frame = "frame{}".format(i) bbox_handle = f[frame]['rois'] detection = bbox_handle.value scores = f[frame]['scores'].value number_of_masks = scores.shape[0] detection_with_scores = np.hstack((detection, np.reshape(scores, (-1, 1)))) if(verbose== 1): print("detections with scores:") print(detection_with_scores) track_bbs_ids = mot_tracker.update(detection_with_scores) if(verbose== 1): print("tracked bbs:") print(track_bbs_ids) # Associate the track_BBs with the original bbs # for each of the track bbs # find the nearest neighbour in the original detections # associate the ID with the index of the original detection index_array = np.zeros(number_of_masks) if verbose==1 : print("number of masks {}".format(number_of_masks)) for track in track_bbs_ids: nn_index = find_nn(track[:-1], detection) index_array[nn_index] = track[-1] if(verbose==1): print("The index array is") print(index_array) max_idx = np.amax(index_array) if number_of_masks > 0 else 0 if(max_idx> tracks_n): tracks_n = max_idx ID_dataset_key = "{}/IDs".format(frame) if(ID_dataset_key in f): f[ID_dataset_key][:,1]= index_array else: f.create_dataset(ID_dataset_key,(index_array.shape[0],2)) f[ID_dataset_key][:, 0] = index_array f["tracks_n"][0] = tracks_n KalmanBoxTracker.count = 0 f.close() def recursive_update(f,change_from,change_to, col_idx, i, start_count): max_idx = f['frame_number'].value[0] + start_count -1 for j in range(i, f['frame_number'].value[0]): if(i > max_idx): break frame = "frame{}".format(j) IDs = f[frame]['IDs'].value if(np.any(IDs[:,col_idx]==change_from)): idx = np.where(IDs[:, col_idx] == change_from) f[frame]['IDs'][idx[0][0],col_idx]=change_to else: break def full_recursive_update(f,change_from,change_to, col_idx, i, start_count): max_idx = f['frame_number'].value[0] + start_count -1 if(i > max_idx): return frame = "frame{}".format(i) IDs = f[frame]['IDs'].value if(np.any(IDs[:,col_idx]==change_from)): idx = np.where(IDs[:, col_idx] == change_from) f[frame]['IDs'][idx[0][0],col_idx]=change_to recursive_update(f,change_from,change_to,col_idx,i+1,start_count) def consolidate_indices(data_file, target_file= None, verbose = 0): if(target_file==None): target_file=data_file else: if verbose==1 : print("Creating target file...") #assert not os.path.exists(target_file) copyfile(data_file, target_file) f = h5py.File(target_file, "r+") tracks_n = f["tracks_n"].value start_count = find_start_count(list(f.keys())) for i in range(start_count, f['frame_number'].value[0]-1) : frame1 = "frame{}".format(i) frame2 = "frame{}".format(i+1) IDs_1= f[frame1]['IDs'].value IDs_2 = f[frame2]['IDs'].value for pair_index,id_pair_1 in enumerate(IDs_1): if(np.any(id_pair_1 == 0)): id_pair_1[id_pair_1 == 0] = tracks_n+1 f[frame1]['IDs'][pair_index,:]= id_pair_1 tracks_n+=1 if(np.any(np.all(id_pair_1==IDs_2,axis=1))): continue elif(np.any(id_pair_1[0]==IDs_2[:,0])): #and not id_pair_1[0]==0 idx= np.where(IDs_2[:,0]==id_pair_1[0]) change_to = id_pair_1[1] change_from = IDs_2[idx[0][0],1] if(change_from==0): f[frame2]['IDs'][idx[0][0],1]=change_to else: recursive_update(f,change_from, change_to,1 ,i+1, start_count) elif (np.any(id_pair_1[1] == IDs_2[:, 1]) ): #and not id_pair_1[1] == 0 idx=
np.where(IDs_2[:, 1] == id_pair_1[1])
numpy.where
""" Module containing classes for storing detector data. ``SERPENT`` is capable of producing detectors, or tallies from MCNP, with a variety of bin structures. These include, but are not limited to, material regions, reaction types, energy bins, spatial meshes, and universe bins. The detectors contained in this module are tasked with storing such data and proving easy access to the data, as well as the underlying bins used to define the detector. Detector Types -------------- * :class:`~serpentTools.objects.detectors.Detector` * :class:`~serpentTools.objects.detectors.CartesianDetector` * :class:`~serpentTools.objects.detectors.HexagonalDetector` * :class:`~serpentTools.objects.detectors.CylindricalDetector` * :class:`~serpentTools.objects.detectors.SphericalDetector` """ from math import sqrt, pi from warnings import warn from numbers import Real from collections.abc import Mapping from numpy import ( unique, inf, hstack, arange, log, divide, asfortranarray, ndarray, asarray, ) from matplotlib.patches import RegularPolygon from matplotlib.collections import PatchCollection from matplotlib.pyplot import gca from serpentTools.messages import ( warning, SerpentToolsException, error, BAD_OBJ_SUBJ, debug, ) from serpentTools.objects.base import NamedObject from serpentTools.plot import plot, cartMeshPlot from serpentTools.utils import ( magicPlotDocDecorator, formatPlot, setAx_xlims, setAx_ylims, addColorbar, normalizerFactory, DETECTOR_PLOT_LABELS, compareDictOfArrays, ) from serpentTools.utils.compare import getLogOverlaps from serpentTools.io.hooks import matlabHook __all__ = ['Detector', 'CartesianDetector', 'HexagonalDetector', 'CylindricalDetector', 'SphericalDetector'] class Detector(NamedObject): """Class for storing detector data with multiple bins For detectors with spatial meshes, including rectilinear, hexagonal, cylindrical, or spherical meshes, refer to companion classes :class:`serpentTools.CartesianDetector`, :class:`serpentTools.HexagonalDetector`, :class:`serpentTools.CylindricalDetector`, or :class:`serpentTools.SphericalDetector` If simply the tally bins are available, it is recommended to use the :meth:`fromTallyBins` class method. This will reshape the data and separate the mean tally [second to last column] and relative errors [last column]. Parameters ---------- name : str Name of this detector bins : numpy.ndarray, optional Full 2D tally data from detector file, including tallies and errors in last two columns tallies : numpy.ndarray, optional Reshaped tally data such that each dimension corresponds to a unique bin, such as energy or spatial bin. errors : numpy.ndarray, optional Reshaped error data such that each dimension corresponds to a unique bin, such as energy or spatial bin. Note: this is a relative error as it would appear in the output file indexes : iterable of string, optional Iterable naming the bins that correspond to reshaped :attr:`tally` and :attr:`errors`. grids : dict, optional Supplemental grids that may be supplied to this detector, including energy points or spatial coordinates. Attributes ---------- name : str Name of this detector bins : numpy.ndarray or None Full 2D tally data from detector file, including tallies and errors in last two columns tallies : numpy.ndarray or float or None Reshaped tally data such that each dimension corresponds to a unique bin, such as energy or spatial bin. errors : numpy.ndarray or float or None Reshaped error data such that each dimension corresponds to a unique bin, such as energy or spatial bin. Note: this is a relative error as it would appear in the output file indexes : tuple or None Iterable naming the bins that correspond to reshaped :attr:`tally` and :attr:`errors`. The tuple ``(energy, ymesh, xmesh)`` indicates that :attr:`tallies` should have three dimensions corresponding to various energy, y-position, and x-position bins. Must be set after :attr:`tallies` or :attr:`errors` and agree with the shape of each grids : dict Dictionary containing grid information for binned quantities like energy or time. energy : numpy.ndarray or None Potential underlying energy grid in MeV. Will be ``(n_ene, 3)``, where ``n_ene`` is the number of values in the energy grid. Each row ``energy[j]`` will be the low point, high point, and mid point of the energy bin ``j``. Raises ------ ValueError If some spatial grid is found in ``indexes`` during creation. This class is ill-suited for these problems. Refer to the companion classes mentioned above. IndexError If the shapes of ``bins``, ``tallies``, and ``errors`` are inconsistent """ DET_COLS = ( 'value', 'time', 'energy', 'universe', 'cell', 'material', 'lattice', 'reaction', 'zmesh', 'ymesh', 'xmesh', 'tally', 'error') _CBAR_LABELS = { 'tallies': 'Tally data', 'errors': 'Relative Uncertainty', } def __init__(self, name, bins=None, tallies=None, errors=None, indexes=None, grids=None): NamedObject.__init__(self, name) self._bins = None self._tallies = None self._errors = None self.bins = bins self.tallies = tallies self.errors = errors self._indexes = None if indexes is not None: self.indexes = indexes self.grids = grids @property def bins(self): return self._bins @bins.setter def bins(self, value): if value is None: self._bins = None return # Coerce to numpy array, check shape # Ensure data is ordered columnwise, and # the array owns the underlying data bins = asfortranarray(value).copy() if len(bins.shape) != 2 or ( len(bins.shape) == 2 and bins.shape[1] not in {12, 13}): raise ValueError( "Data does not appear to be Serpent 2 detector data. Shape " "should be (N, 12) or (N, 13), is {}".format(bins.shape)) # Check that this is not a Serpent 1 detector if bins[0, -3] != 1: raise ValueError( "Data does not appear to be Serpent 2 detector data. Appears " "to have a scores column, indicated unsupported Serpent 1 " "data: {}.".format(bins[0])) self._bins = bins @property def tallies(self): return self._tallies @tallies.setter def tallies(self, tallies): if tallies is None: self._tallies = tallies return if not isinstance(tallies, (Real, ndarray)): raise TypeError("Tallies must be array or scalar, not {}".format( type(tallies))) if self._tallies is None: self._tallies = tallies return # Handle scalar / single values arrays # TODO Kind of clunky. Maybe a dedicated ScalarDetector? if isinstance(tallies, Real): if isinstance(self._tallies, Real): self._tallies = tallies else: raise TypeError("Tallies are current array, not scalar") else: if isinstance(self._tallies, Real): raise TypeError("Tallies are currently scalar, nor array") if tallies.shape != self._tallies.shape: raise IndexError( "Shape of tally data is not consistent. Should be {}, " "is {}".format(self._tallies.shape, tallies.shape)) self._tallies = tallies @property def errors(self): return self._errors @errors.setter def errors(self, errors): if errors is None: self._errors = errors return if not isinstance(errors, (Real, ndarray)): raise TypeError( "Tallies must be array or scalar, not {}".format(type(errors))) if self._errors is None: self._errors = errors return # Handle scalar / single values arrays # TODO Kind of clunky. Maybe a dedicated ScalarDetector? if isinstance(errors, Real): if isinstance(self._errors, Real): self._errors = errors else: raise TypeError("Tallies are current array, not scalar") else: if isinstance(self._errors, Real): raise TypeError("Tallies are currently scalar, nor array") if errors.shape != self._errors.shape: raise IndexError( "Shape of tally data is not consistent. Should be {}, " "is {}".format(self._errors.shape, errors.shape)) self._errors = errors @property def energy(self): return self.grids.get("E") @property def grids(self): return self._grids @grids.setter def grids(self, grids): if grids is None: self._grids = {} else: if not isinstance(grids, Mapping): raise TypeError( "Grids must be Mapping type, not {}".format(type(grids))) self._grids = grids @property def indexes(self): return self._indexes @indexes.setter def indexes(self, ix): if self._tallies is None: if self._errors is None: raise AttributeError("Tally and error attributes not set") nItems = len(self._errors.shape) else: nItems = len(self._tallies.shape) if len(ix) != nItems: raise ValueError( "Expected {} items for indexes, got {}".format( nItems, len(ix))) self._indexes = tuple(ix) @classmethod def fromTallyBins(cls, name, bins, grids=None): """Create a detector instance from 2D detector data Parameters ---------- name : str Name of this detector bins : numpy.ndarray 2D array taken from Serpent. Expected to have either 12 or 13 columns, where the latter indicates a time bin has been added. grids : dict, optional Dictionary of underlying energy, space, and/or time data. Returns ------- Detector Raises ------ ValueError If the tally data does not appear to be Serpent 2 tally data """ bins = asfortranarray(bins) if len(bins.shape) != 2: raise ValueError( "Array does not appear to be Serpent tally data. Shape is {}, " "should be 2D".format(bins.shape)) if bins.shape[1] not in (12, 13): raise ValueError( "Array does not appear to be Serpent tally data. Expected 12 " " or 13 columns, not {}".format(bins.shape[1])) if grids is None: grids = {} elif not isinstance(grids, Mapping): raise TypeError("Grid data is not dictionary-like") det = cls(name, bins=bins, grids=grids) tallies, errors, indexes = det.reshapedBins() det.tallies = tallies det.errors = errors det.indexes = indexes return det def reshapedBins(self): """Obtain multi-dimensional tally, error, and index data Returns ------- tallies : numpy.ndarray Potentially multi-dimensional array corresponding to tally data along each bin index errors : numpy.ndarray Potentially multi-dimensional array corresponding to tally relative error along each bin index indexes : list of str Ordering of named bin information, e.g. ``"xmesh"``, ``"energy"``, corresponding to axis in ``tallies`` and ``errors`` Examples -------- A detector is created with a single bin with two bins values. These could represent tallying two different reaction rates >>> import numpy >>> from serpentTools import Detector >>> bins = numpy.ones((2, 12)) >>> bins[1, 0] = 2 >>> bins[1, 4] = 2 >>> bins[:, -2:] = [ ... [5.0, 0.1], ... [10.0, 0.2]] >>> det = Detector("reshape", bins=bins) >>> tallies, errors, indexes = det.reshapedBins() >>> tallies array([5.0, 10.0]) >>> errors array([0.1, 0.2]) >>> indexes ["reaction", ] """ assert self.bins is not None, "No bin data present on {}".format(self) if self.bins.shape[0] == 1: return self.bins[0, -2], self.bins[0, -1], {} shape = [] indexes = [] # See if the time column has been inserted nameStart = 2 if self.bins.shape[1] == 12 else 1 for colIx, indexName in enumerate(self.DET_COLS[nameStart:-2], start=1): uniqueVals = unique(self.bins[:, colIx]) if len(uniqueVals) > 1: indexes.append(indexName) shape.append(len(uniqueVals)) tallies = self.bins[:, -2].reshape(shape) errors = self.bins[:, -1].reshape(shape) return tallies, errors, indexes def slice(self, fixed, data='tallies'): """ Return a view of the reshaped array where certain axes are fixed Parameters ---------- fixed: dict dictionary to aid in the restriction on the multidimensional array. Keys correspond to the various grids present in :attr:`indexes` while the values are used to data: {'tallies', 'errors'} Which data set to slice Returns ------- :class:`numpy.ndarray` View into the respective data where certain dimensions have been removed Raises ------ AttributeError If ``data`` is not supported """ if data not in {"tallies", "errors"}: raise AttributeError( 'Data argument {} not in allowed options' '\ntallies, errors') work = getattr(self, data) if work is None: raise AttributeError("{} not setup on {}".format(data, self)) if not fixed: return work return work[self._getSlices(fixed)] def _getSlices(self, fixed): """ Return a list of slice operators for each axis in reshaped data Parameters ---------- fixed: dict or None Dictionary where keys are strings pointing to dimensions in """ if fixed is None: return (slice(None), ) * len(self.indexes) keys = set(fixed) slices = tuple() for key in self.indexes: if key in keys: slices += fixed[key], keys.remove(key) else: slices += slice(None), if any(keys): warning( 'Could not find arguments in index that match the following' ' requested slice keys: {}'.format(', '.join(keys))) return slices def _getPlotGrid(self, qty): # Try with the first letter only grids = self.grids.get(qty[0].upper()) if grids is None: # The phi-grid has three letters! grids = self.grids.get(qty.upper()) if grids is not None: return
hstack((grids[:, 0], grids[-1, 1]))
numpy.hstack
from rendering import SimpleImageViewer import numpy as np from numpy.random import RandomState from skimage.transform import resize import time def neighbour_count(grid): count = np.zeros_like(grid).astype(np.uint8) count[1:] += grid[:-1] count[:-1] += grid[1:] count[:, 1:] += grid[:, :-1] count[:, :-1] += grid[:, 1:] # diagonal neighbours count[1:, 1:] += grid[:-1, :-1] count[1:, :-1] += grid[:-1, 1:] count[:-1, 1:] += grid[1:, :-1] count[:-1, :-1] += grid[1:, 1:] return count class CellularAutomata: def __init__(self, grid_size): self.grid_size = grid_size self.grid = np.zeros((grid_size, grid_size)).astype(np.bool) self.background = np.ones((grid_size, grid_size, 3), dtype=np.uint8)*255 ints = np.random.randint(0, 244, grid_size**2*3).astype(np.uint8) repeating = np.random.randint(0, 244, 30) repeats = int(grid_size/10*grid_size) repeating = np.tile(repeating, (1, repeats)).reshape(grid_size, grid_size, 3) self.colors = ints.reshape(grid_size, grid_size, 3) self.colors = repeating self.viewer = None def random_init(self, seed=None): if seed is None: seed = np.random.randint(int(1e6)) np_random = RandomState(seed) self.grid = np_random.choice([0,1], self.grid_size**2).reshape(self.grid_size, self.grid_size).astype(np.bool) def random_init_middle(self, side_offset, seed=None): if seed is None: seed = np.random.randint(int(1e6)) np_random =
RandomState(seed)
numpy.random.RandomState
import itertools import numpy as np import pandas as pd import random import sys import utils __author__ = "<NAME>" __version__ = "CS224u, Stanford, Spring 2021" class GloVe: def __init__(self, n=100, xmax=100, alpha=0.75, max_iter=100, eta=0.05, tol=1e-5, display_progress=True): """ Basic GloVe. This is mainly here as a reference implementation. We recommend using `torch_glove.py` instead. Parameters ---------- df : pd.DataFrame or np.array This must be a square matrix. n : int (default: 100) The dimensionality of the output vectors. xmax : int (default: 100) Words with frequency greater than this are given weight 1.0. Words with frequency under this are given weight (c/xmax)**alpha where c is their count in mat (see the paper, eq. (9)). alpha : float (default: 0.75) Exponent in the weighting function (see the paper, eq. (9)). max_iter : int (default: 100) Number of training epochs. eta : float (default: 0.05) Controls the rate of SGD weight updates. tol : float (default: 1e-4) Stopping criterion for the loss. display_progress : bool (default: True) Whether to print iteration number and current error to stdout. """ self.n = n self.xmax = xmax self.alpha = alpha self.max_iter = max_iter self.eta = eta self.tol = tol self.display_progress = display_progress def fit(self, df): """ Learn the GloVe matrix. Parameters ---------- df : pd.DataFrame or np.array, shape `(n_vocab, n_vocab)` This should be a matrix of (possibly scaled) co-occcurrence counts. Returns ------- pd.DataFrame or np.array, shape `(n_vocab, self.n)` The type will be the same as the user's `df`. If it's a `pd.DataFrame`, the index will be the same as `df.index`. """ X = self.convert_input_to_array(df) m = X.shape[0] # Parameters: W = utils.randmatrix(m, self.n) # Word weights. C = utils.randmatrix(m, self.n) # Context weights. B = utils.randmatrix(2, m) # Word and context biases. # Precomputable GloVe values: X_log = utils.log_of_array_ignoring_zeros(X) X_weights = (np.minimum(X, self.xmax) / self.xmax)**self.alpha # eq. (9) # Learning: indices = list(range(m)) for iteration in range(self.max_iter): epoch_error = 0.0 random.shuffle(indices) for i, j in itertools.product(indices, indices): if X[i, j] > 0.0: weight = X_weights[i,j] # Cost is J' based on eq. (8) in the paper: diff = W[i].dot(C[j]) + B[0, i] + B[1, j] - X_log[i, j] fdiff = diff * weight # Gradients: wgrad = fdiff * C[j] cgrad = fdiff * W[i] wbgrad = fdiff wcgrad = fdiff # Updates: W[i] -= self.eta * wgrad C[j] -= self.eta * cgrad B[0, i] -= self.eta * wbgrad B[1, j] -= self.eta * wcgrad # One-half squared error term: epoch_error += 0.5 * weight * (diff**2) epoch_error /= m if epoch_error <= self.tol: utils.progress_bar( "Converged on iteration {} with error {}".format( iteration, epoch_error, self.display_progress)) break utils.progress_bar( "Finished epoch {} of {}; error is {}".format( iteration, self.max_iter, epoch_error, self.display_progress)) # Return the sum of the word and context matrices, per the advice # in section 4.2: G = W + C self.embedding = self.convert_output(G, df) return self.embedding def score(self, X): """ The goal of GloVe is to learn vectors whose dot products are proportional to the log co-occurrence probability. This score method assesses that directly using the current `self.embedding`. Parameters ---------- X : pd.DataFrame or np.array, shape `(self.n_words, self.n_vocab)` The original count matrix. Returns ------- float The Pearson correlation. """ X = self.convert_input_to_array(X) G = self.convert_input_to_array(self.embedding) mask = X > 0 M = G.dot(G.T) X_log = utils.log_of_array_ignoring_zeros(X) row_log_prob = np.log(X.sum(axis=1)) row_log_prob = np.outer(row_log_prob,
np.ones(X.shape[1])
numpy.ones
from __future__ import absolute_import,division __filetype__ = "base" #External Modules import logging, os, shutil, sys, time, uuid import numpy as np from astropy import units as u from astropy import wcs from astropy.io import fits from astropy.table import Table, Column from copy import deepcopy from photutils import CircularAperture, aperture_photometry from photutils.psf.models import GriddedPSFModel from scipy.ndimage.interpolation import zoom, rotate if sys.version_info[0] >= 3: from io import StringIO else: from cStringIO import StringIO #Local Modules from ..utilities import StipsEnvironment from ..utilities import OffsetPosition from ..utilities import overlapadd2 from ..utilities import overlapaddparallel from ..utilities import read_table from ..utilities import ImageData from ..utilities import Percenter from ..utilities import StipsDataTable from ..utilities import SelectParameter from ..errors import GetCrProbs, GetCrTemplate, MakeCosmicRay stips_version = StipsEnvironment.__stips__version__ class AstroImage(object): """ The AstroImage class represents a generic astronomical image. The image has the following data associated with it: _file : string of file name (including path) containing mem-mapped numpy array. data : mem-mapped numpy double-precision 2D array of image data, in counts scale : array of 2 double-precision floating point values, forming X and Y scale in arcseconds/pixel wcs : astropy WCS object containing image WCS information. header : key/value array. Contains FITS header information and metadata history : array of strings holding the FITS HISTORY section """ def __init__(self, **kwargs): """ Astronomical image. The __init__ function creates an empty image with all other data values set to zero. """ default = self.INSTRUMENT_DEFAULT if 'parent' in kwargs: self.parent = kwargs['parent'] self.logger = self.parent.logger self.out_path = self.parent.out_path self.prefix = self.parent.prefix self.seed = self.parent.seed self.telescope = self.parent.TELESCOPE.lower() self.instrument = self.parent.PSF_INSTRUMENT self.filter = self.parent.filter self.oversample = self.parent.oversample self.shape = np.array(self.parent.DETECTOR_SIZE)*self.oversample self._scale = np.array(self.parent.SCALE)/self.oversample self.zeropoint = self.parent.zeropoint self.photflam = self.parent.photflam self.photplam = self.parent.PHOTPLAM[self.filter] background = self.parent.background self.psf_grid_size = self.parent.psf_grid_size self.psf_commands = self.parent.psf_commands small_subarray = self.parent.small_subarray self.cat_type = self.parent.cat_type self.set_celery = self.parent.set_celery self.get_celery = self.parent.get_celery self.convolve_size = self.parent.convolve_size self.memmap = self.parent.memmap else: self.parent = None if 'logger' in kwargs: self.logger = kwargs['logger'] else: self.logger = logging.getLogger('__stips__') log_level = SelectParameter("log_level") self.logger.setLevel(getattr(logging, log_level)) if not len(self.logger.handlers): stream_handler = logging.StreamHandler(sys.stderr) format = '%(asctime)s %(levelname)s: %(message)s' stream_handler.setFormatter(logging.Formatter(format)) self.logger.addHandler(stream_handler) self.out_path = SelectParameter('out_path', kwargs) self.oversample = SelectParameter('oversample', kwargs) shape = kwargs.get('shape', default['shape']) self.shape = np.array(shape) * self.oversample self._scale = kwargs.get('scale', np.array(default['scale'])) self.prefix = kwargs.get('prefix', '') self.cat_type = SelectParameter('cat_type', kwargs) self.set_celery = kwargs.get('set_celery', None) self.get_celery = kwargs.get('get_celery', None) self.seed = SelectParameter('seed', kwargs) small_subarray = kwargs.get('small_subarray', False) self.zeropoint = kwargs.get('zeropoint', default['zeropoint']) self.photflam = kwargs.get('photflam', default['photflam']) self.photplam = kwargs.get('photplam', default['photplam']) background = SelectParameter('background', kwargs) self.telescope = kwargs.get('telescope', default['telescope']) self.instrument = kwargs.get('instrument', default['instrument']) self.filter = kwargs.get('filter', default['filter']) self.psf_grid_size = SelectParameter('psf_grid_size', kwargs) self.psf_commands = kwargs.get('psf_commands', '') self.convolve_size = SelectParameter('convolve_size', kwargs) self.memmap = SelectParameter('memmap', kwargs) if self.get_celery is None: self.get_celery = lambda: "" if self.set_celery is None: self.set_celery = lambda x: None # documentation says # - 1 for FITS/Fortran # - 0 for numpy/C # although the ultimate output format is FITS, within an AstroImage data is stored # as a numpy array, so origin=0 is the way to go. self.wcs_origin = 0 #Set unique ID and figure out where the numpy memmap will be stored self.name = kwargs.get('detname', default['detector'][self.instrument]) self.detector = self.name if self.memmap: fname = self.prefix+"_"+uuid.uuid4().hex+"_"+self.name+".tmp" self.fname = os.path.join(self.out_path, fname) if self.psf_commands is None: self.psf_commands = '' psf = kwargs.get('psf', True) if psf: self.make_psf() data = kwargs.get('data', None) if data is not None: base_shape = np.array(data.shape) else: #restrict data size to PSF size if small_subarray: if not hasattr(self, 'psf'): msg = "{}: Unable to set image size to PSF size when image " msg += "has no valid PSF." raise ValueError(msg.format(self.name)) base_shape = self.psf_shape else: base_shape = self.shape self._init_dat(base_shape, self.psf_shape, data) #Get WCS values if present, or set up a default self.wcs = self._getWcs(**kwargs) self._prepRaDec() #Header self.header = kwargs.get('header', kwargs.get('imh', {})) self._prepHeader() if 'exptime' in self.header: self.exptime = self.header['exptime'] else: self.exptime = kwargs.get('exptime', 1.) self.updateHeader('exptime', self.exptime) #History self.history = kwargs.get('history', []) #Special values for Sersic profile generation self.profile_multiplier = kwargs.get('profile_multiplier', 100.) self.noise_floor = max(background, kwargs.get('noise_floor', 1.)) def __del__(self): if hasattr(self, 'fname') and os.path.exists(self.fname): os.remove(self.fname) def copy(self): other = AstroImage(out_path=self.out_path, detname=self.name, wcs=self.wcs, header=self.header, history=self.history, xsize=self.xsize, ysize=self.ysize, zeropoint=self.zeropoint, photflam=self.photflam, logger=self.logger) try: if os.path.exists(other.fname): os.remove(other.fname) shutil.copy(self.fname, other.fname) except Exception as e: if os.path.exists(other.fname): remove(other.fname) raise e return other @classmethod def initFromFits(cls, file, **kwargs): """ Takes the entire image from the FITS file (i.e. the FITS header overrides everything else). Looks for optional ext keyword to indicate which FITS extension to use. """ img = cls(**kwargs) if file != '': try: with fits.open(file) as inf: ext = kwargs.get('ext', 0) dat = inf[ext].data img._init_dat(base_shape=np.array(dat.shape), data=dat) my_wcs = wcs.WCS(inf[ext].header) for k,v in inf[ext].header.items(): if k != '' and k not in my_wcs.wcs.to_header(): img.header[k] = v img.wcs = img._normalizeWCS(my_wcs) img._prepRaDec() img._prepHeader() img.updateHeader("ASTROIMAGEVALID", True) img.addHistory("Created from FITS file {}".format(os.path.split(file)[1])) img._log("info","Created AstroImage {} from FITS file {}".format(img.name,os.path.split(file)[1])) except IOError as e: img.updateHeader("ASTROIMAGEVALID", False) img.addHistory("Attempted to create from invalid FITS file {}".format(os.path.split(file)[1])) img._log("warning","Attempted to create AstroImage {} from invalid FITS file {}".format(img.name,os.path.split(file)[1])) img._log("warning","Error is {}".format(e)) return img @classmethod def initDataFromFits(cls, file, **kwargs): """Takes *only* data from the FITS, and everything else from kwargs (or sets to default)""" img = cls(**kwargs) if file != '': try: with fits.open(file) as inf: ext = kwargs.get('ext', 0) dat = inf[ext].data img._init_dat(base_shape=np.array(dat.shape), data=dat) img.wcs = img._getWcs(**kwargs) img._prepRaDec() img._prepHeader() img.updateHeader("ASTROIMAGEVALID", True) img.addHistory("Data imported from FITS file {}".format(os.path.split(file)[1])) img._log("info","Created AstroImage {} and imported data from FITS file {}".format(img.name,os.path.split(file)[1])) except IOError as e: img.updateHeader("ASTROIMAGEVALID", False) img.addHistory("Attempted to create from invalid FITS file {}".format(os.path.split(file)[1])) img._log("warning","Attempted to create AstroImage {} from invalid FITS file {}".format(img.name,os.path.split(file)[1])) return img @classmethod def initFromArray(cls, array, **kwargs): """Convenience to initialize an image from a numpy array.""" img = cls(data=array, **kwargs) img._log("info", "Creating AstroImage {} from array".format(img.name)) return img @classmethod def initFromPoints(cls, xs, ys, rates, **kwargs): """Convenience to initialize a blank image and add a set of points to it""" img = cls(**kwargs) img._log("info", "Creating AstroImage {} from points".format(img.name)) if img.xsize < np.ceil(np.max(xs)) + 1: img.xsize = np.ceil(np.max(xs)) + 1 if img.ysize < np.ceil(np.max(ys)) + 1: img.ysize = np.ceil(np.max(ys)) + 1 img.addPoints(xs, ys, rates) return img @classmethod def initFromProfile(cls,posX,posY,flux,n,re,phi,axialRatio,**kwargs): """Convenience to initialize a blank image and add a sersic profile to it""" img = cls(**kwargs) img._log("info","Creating AstroImage {} from Sersic Profile".format(img.name)) img.addSersicProfile(posX, posY, flux, n, re, phi, axialRatio) return img @property def xsize(self): return self.shape[1] @xsize.setter def xsize(self, size, offset=0): """Change the horizontal size. The offset will be applied to the new image before adding""" self.crop(size, self.ysize, offset, 0) self.shape = np.array((self.ysize, size)) @property def ysize(self): return self.shape[0] @ysize.setter def ysize(self, size, offset=0): """Change the vertical size. The offset will be applied to the new image before adding""" self.crop(self.xsize, size, 0, offset) self.shape = np.array((size, self.xsize)) @property def xscale(self): return abs(self.scale[0])*3600. @property def yscale(self): return abs(self.scale[1])*3600. @property def scale(self): return self._scale @property def rascale(self): return abs(self.scale[self.ranum])*3600. @property def decscale(self): return abs(self.scale[self.decnum]) @property def distorted(self): return self.wcs.sip is not None @property def ra(self): if self.wcs.wcs.lngtyp == 'RA': return self.wcs.wcs.crval[self.wcs.wcs.lng] elif self.wcs.wcs.lattyp == 'RA': return self.wcs.wcs.crval[self.wcs.wcs.lat] else: raise ValueError("WCS has longitude {} and latitude {}. Can't get RA".format(self.wcs.wcs.lngtyp,self.wcs.wcs.lattyp)) @ra.setter def ra(self,ra): if self.wcs.wcs.lngtyp == 'RA': self.wcs.wcs.crval[self.wcs.wcs.lng] = ra%360. self.addHistory("Set RA to {}".format(ra)) elif self.wcs.wcs.lattyp == 'RA': self.wcs.wcs.crval[self.wcs.wcs.lat] = ra%360. self.addHistory("Set RA to {}".format(ra)) else: raise ValueError("WCS has longitude {} and latitude {}. Can't set RA".format(self.wcs.wcs.lngtyp,self.wcs.wcs.lattyp)) @property def dec(self): if self.wcs.wcs.lngtyp == 'DEC': return self.wcs.wcs.crval[self.wcs.wcs.lng] elif self.wcs.wcs.lattyp == 'DEC': return self.wcs.wcs.crval[self.wcs.wcs.lat] else: raise ValueError("WCS has longitude {} and latitude {}. Can't get DEC".format(self.wcs.wcs.lngtyp,self.wcs.wcs.lattyp)) @dec.setter def dec(self,dec): if self.wcs.wcs.lngtyp == 'DEC': self.wcs.wcs.crval[self.wcs.wcs.lng] = dec self.addHistory("Set DEC to {}".format(dec)) elif self.wcs.wcs.lattyp == 'DEC': self.wcs.wcs.crval[self.wcs.wcs.lat] = dec self.addHistory("Set DEC to {}".format(dec)) else: raise ValueError("WCS has longitude {} and latitude {}. Can't set DEC".format(self.wcs.wcs.lngtyp,self.wcs.wcs.lattyp)) @property def pa(self): """WCS is normalized, so PA from angle will work""" return self._getPA(self.wcs,self.scale,self.decnum) @pa.setter def pa(self,pa): cpa = np.cos(np.radians(pa%360.)) spa = np.sin(np.radians(pa%360.)) self.wcs.wcs.pc = np.array([[cpa, -spa], [spa, cpa]]) self.addHistory("Set PA to {}".format(pa)) @property def celery_state(self): if self.get_celery is not None: return self.get_celery() return "" @celery_state.setter def celery_state(self, state): if self.set_celery is not None: self.set_celery(state) @property def hdu(self): """Output AstroImage as a FITS Primary HDU""" with ImageData(self.fname, self.shape, mode='r+', memmap=self.memmap) as dat: hdu = fits.PrimaryHDU(dat, header=self.wcs.to_header(relax=True)) if 'CDELT1' not in hdu.header: hdu.header['CDELT1'] = self.scale[0]/3600. hdu.header['CDELT2'] = self.scale[0]/3600. # Apparently astropy refuses to add the identity matrix to a header if ('PC1_1' not in hdu.header) and ('CD1_1' not in hdu.header): hdu.header['PC1_1'] = 1. hdu.header['PC1_2'] = 0. hdu.header['PC2_1'] = 0. hdu.header['PC2_2'] = 1. if sys.version_info[0] >= 3: for k,v in self.header.items(): if k != "ASTROIMAGEVALID": hdu.header[k] = v else: for k,v in self.header.iteritems(): if k != "ASTROIMAGEVALID": hdu.header[k] = v for item in self.history: hdu.header.add_history(item) self._log("info","Created Primary HDU from AstroImage {}".format(self.name)) return hdu @property def imageHdu(self): """Output AstroImage as a FITS Extension HDU""" self._log("info","Creating Extension HDU from AstroImage {}".format(self.name)) with ImageData(self.fname, self.shape, mode='r+', memmap=self.memmap) as dat: hdu = fits.ImageHDU(dat, header=self.wcs.to_header(relax=True), name=self.name) if 'CDELT1' not in hdu.header: hdu.header['CDELT1'] = self.scale[0]/3600. hdu.header['CDELT2'] = self.scale[0]/3600. # Apparently astropy refuses to add the identity matrix to a header if ('PA1_1' not in hdu.header) and ('CD1_1' not in hdu.header): hdu.header['PA1_1'] = 1. hdu.header['PA1_2'] = 0. hdu.header['PA2_1'] = 0. hdu.header['PA2_2'] = 1. if sys.version_info[0] >= 3: for k,v in self.header.items(): hdu.header[k] = v else: for k,v in self.header.iteritems(): hdu.header[k] = v for item in self.history: hdu.header.add_history(item) self._log("info","Created Extension HDU from AstroImage {}".format(self.name)) return hdu @property def psf_constructor(self): import webbpsf #**WFIRST_REMNANT** if not hasattr(webbpsf, self.telescope.lower()) and self.telescope.lower() == 'roman': return getattr(getattr(webbpsf, 'wfirst'), self.instrument)() if hasattr(webbpsf, self.instrument): return getattr(webbpsf, self.instrument)() return getattr(getattr(webbpsf, self.telescope), self.instrument)() @property def psf_shape(self): if hasattr(self, 'psf'): sampled_shape = self.psf.data.shape return np.array([sampled_shape[1], sampled_shape[2]]) return (0, 0) def toFits(self, outFile): """Create a FITS file from the current state of the AstroImage data.""" self._log("info","Writing AstroImage {} to FITS".format(self.name)) hdulist = fits.HDUList([self.hdu]) hdulist.writeto(outFile, overwrite=True) def updateHeader(self,k,v): """ Updates a single keyword in the header dictionary, replacing the current value if there is one, otherwise adding a new value """ self.header[k] = v def addHistory(self,v): """Adds an entry to the header history list.""" self.history.append(v) def addTable(self, t, dist=False, *args, **kwargs): """ Add a catalogue table to the Image. The Table must have the following columns: RA: RA of source DEC: DEC of source FLUX: flux of source TYPE: type of source (point, sersic) N: sersic index Re: radius containing half of the light of the sersic profile Phi: angle of the major axis of the sersic profile Ratio: axial ratio of the Sersic profile ID: id of source in catalogue Notes: any notes of important The following will then be done: - the table will be shifted from RA,DEC to X,Y (and items outside the FOV will be omitted) - the table will be split into point sources and sersic profiles - the point sources will be added via addPoints - the Sersic Profiles will be iteratively added via addSersicProfile The converted table (with X,Y instead of ra,dec and non-visible points removed) will be returned. """ ras = t['ra'] decs = t['dec'] self._log("info", "Determining pixel co-ordinates") if dist and self.distorted: xs, ys = self.wcs.all_world2pix(t['ra'], t['dec'], self.wcs_origin, quiet=True, adaptive=True, detect_divergence=True) else: xs, ys = self.wcs.wcs_world2pix(t['ra'], t['dec'], self.wcs_origin) to_keep = np.where((xs >= 0) & (xs <= self.xsize) & (ys >= 0) & (ys <= self.ysize)) self._log("info", "Keeping {} items".format(len(xs[to_keep]))) ot = None base_state = self.getState() min_scale = min(self.xscale, self.yscale) if len(xs[to_keep]) > 0: xs = xs[to_keep] ys = ys[to_keep] xfs, yfs = self._remap(xs, ys) fluxes = t['flux'][to_keep] fluxes_observed = np.empty_like(fluxes) types = t['type'][to_keep] ns = t['n'][to_keep] res = t['re'][to_keep] phis = t['phi'][to_keep] ratios = t['ratio'][to_keep] ids = t['id'][to_keep] old_notes = t['notes'][to_keep] notes = np.empty_like(xs, dtype="S150") notes[:] = old_notes[:] vegamags = -2.512 * np.log10(fluxes) - self.zeropoint stmags = -2.5 * np.log10(fluxes * self.photflam) - 21.10 stars_idx = np.where(types == 'point') if len(xs[stars_idx]) > 0: self.updateState(base_state + "<br /><span class='indented'>Adding {} stars</span>".format(len(xs[stars_idx]))) self._log("info", "Writing {} stars".format(len(xs[stars_idx]))) self.addPoints(xs[stars_idx], ys[stars_idx], fluxes[stars_idx], *args, **kwargs) fluxes_observed[stars_idx] = fluxes[stars_idx] gals_idx = np.where(types == 'sersic') if len(xs[gals_idx]) > 0: self._log("info","Writing {} galaxies".format(len(xs[gals_idx]))) gxs = xs[gals_idx] gys = ys[gals_idx] gfluxes = fluxes[gals_idx] gtypes = types[gals_idx] gns = ns[gals_idx] gres = res[gals_idx] gphis = phis[gals_idx] gratios = ratios[gals_idx] gids = ids[gals_idx] counter = 1 total = len(gxs) gfluxes_observed = np.empty_like(gxs, dtype='float32') gnotes = np.empty_like(gxs, dtype='S150') self._log('info', 'Starting Sersic Profiles at {}'.format(time.ctime())) for (x, y, flux, n, re, phi, ratio, id) in zip(gxs, gys, gfluxes, gns, gres, gphis, gratios, gids): item_index = np.where(ids==id)[0][0] self._log("info", "Index is {}".format(item_index)) self.updateState(base_state + "<br /><span class='indented'>Adding galaxy {} of {}</span>".format(counter, len(xs[gals_idx]))) central_flux = self.addSersicProfile(x, y, flux, n, re, phi, ratio, *args, **kwargs) fluxes_observed[item_index] = central_flux notes[item_index] = "{}: surface brightness {:.3f} yielded flux {:.3f}".format(notes[item_index], flux, central_flux) self._log("info", "Finished Galaxy {} of {}".format(counter, total)) counter += 1 self._log('info', 'Finishing Sersic Profiles at {}'.format(time.ctime())) ot = Table() ot['x'] = Column(data=xfs, unit='pixel') ot['y'] = Column(data=yfs, unit='pixel') ot['type'] = Column(data=types) ot['vegamag'] = Column(data=vegamags) ot['stmag'] = Column(data=stmags) ot['countrate'] = Column(data=fluxes_observed, unit=(u.photon/u.second)) ot['id'] = Column(data=ids) ot['notes'] = Column(data=notes) return ot def addCatalogue(self, cat, dist=False, *args, **kwargs): """ Add a catalogue to the Image. The Catalogue must have the following columns: RA: RA of source DEC: DEC of source FLUX: flux of source TYPE: type of source (point, sersic) N: sersic index Re: radius containing half of the light of the sersic profile Phi: angle of the major axis of the sersic profile Ratio: axial ratio of the Sersic profile ID: id of source in catalogue Notes: any notes of important The following will then be done: - the catalogue will be shifted from RA,DEC to X,Y (and items outside the FOV will be omitted) - the catalogue will be split into point sources and sersic profiles - the point sources will be added via addPoints - the Sersic Profiles will be iteratively added via addSersicProfile """ (path, catname) = os.path.split(cat) (catbase, catext) = os.path.splitext(catname) self._log("info","Adding catalogue {} to AstroImage {}".format(catname, self.name)) obs_file_name = "{}_observed_{}.{}".format(catbase, self.name, self.cat_type) obsname = os.path.join(self.out_path, obs_file_name) self.addHistory("Adding items from catalogue {}".format(catname)) data = None in_data = StipsDataTable.dataTableFromFile(cat) out_data = StipsDataTable.dataTableFromFile(obsname) out_data.meta = {'name': 'Observed Catalogue', 'type': 'observed', 'detector': self.name, 'input_catalogue': catname} base_state = self.getState() counter = 0 current_chunk = in_data.read_chunk() while current_chunk is not None: table_length = len(current_chunk['id']) self.updateState(base_state + "<br /><span class='indented'>Adding sources {} to {}</span>".format(counter, counter+table_length)) out_chunk = self.addTable(current_chunk, dist, *args, **kwargs) if out_chunk is not None: out_data.write_chunk(out_chunk) counter += table_length current_chunk = in_data.read_chunk() self.updateState(base_state) self._log("info","Added catalogue {} to AstroImage {}".format(catname, self.name)) return obsname def addPoints(self, xs, ys, rates, *args, **kwargs): """Adds a set of point sources to the image given their co-ordinates and count rates.""" self.addHistory("Adding {} point sources".format(len(xs))) self._log("info","Adding {} point sources to AstroImage {}".format(len(xs),self.name)) # This acts essentially the same as rounding, but is substantially faster in # most cases. xs = np.floor(np.array(xs)+0.5).astype(int) ys = np.floor(np.array(ys)+0.5).astype(int) with ImageData(self.fname, self.shape, memmap=self.memmap) as dat: dat[ys, xs] += rates def addSersicProfile(self, posX, posY, flux, n, re, phi, axialRatio, *args, **kwargs): """ Adds a single sersic profile to the image given its co-ordinates, count rate, and source type. (posX,posY) are the co-ordinates of the centre of the profile (pixels). flux is the total number of counts to add to the AstroImage. n is the Sersic profile index. re is the radius enclosing half of the total light (pixels). phi is the angle of the major axis (degrees east of north). axialRatio is the ratio of major axis to minor axis. """ if flux == 0.: return 0. self.addHistory("Adding Sersic profile at ({},{}) with flux {}, index {}, Re {}, Phi {}, and axial ratio {}".format(posX,posY,flux,n,re,phi,axialRatio)) self._log("info","Adding Sersic: re={}, n={}, flux={}, phi={:.1f}, ratio={}".format(re, n, flux, phi, axialRatio)) # Determine necessary parameters for the Sersic model -- the input radius, surface # brightness and noise floor are all in *detector* pixels. pixel_radius = re * self.oversample pixel_brightness = flux / (self.oversample*self.oversample) noise_floor = self.noise_floor / (self.oversample*self.oversample) # Determine the pixel offset of the profile from the centre of the AstroImage # Centre of profile is (xc, yc) # Centre of image is (self.xsize//2, self.ysize//2) # Centre of profile on image is (posX, posY) # Let's say we have a 20X20 profile, centre is 10,10 # Let's say our image is 1024X1024, centre is 512,512 # Let's say posX=39, posY=27 # So we want to go from 512,512 to 39,27, so offset is -473,-485 # Offset is posX-image_centre, posY-image_centre offset_x, offset_y = np.floor(posX) - self.xsize//2, np.floor(posY) - self.ysize//2 fractional_x, fractional_y = posX - np.floor(posX), posY - np.floor(posY) from astropy.modeling.models import Sersic2D # Figure out an appropriate radius. Start at 5X pixel radius, and continue until the highest value on the outer edge is below the noise floor. max_outer_value = 2*noise_floor filled = False radius_multiplier = 2.5 full_frame = False model_size = int(np.ceil(pixel_radius*radius_multiplier)) while max_outer_value > noise_floor: radius_multiplier *= 2 model_size = int(np.ceil(pixel_radius*radius_multiplier)) if not self._filled(offset_x, offset_y, model_size, model_size): # self._log("info", "Creating a {}x{} array for the Sersic model at ({},{})".format(model_size, model_size, posX, posY)) x, y, = np.meshgrid(np.arange(model_size), np.arange(model_size)) # In order to get fractional flux per pixel correct, carry the non-integer portion of the model centre through. xc, yc = model_size//2 + fractional_x, model_size//2 + fractional_y mod = Sersic2D(amplitude=pixel_brightness, r_eff=pixel_radius, n=n, x_0=xc, y_0=yc, ellip=(1.-axialRatio), theta=(np.radians(phi) + 0.5*np.pi)) img = mod(x, y) max_outer_value = max(np.max(img[0,:]), np.max(img[-1,:]), np.max(img[:,0]), np.max(img[:,-1])) # self._log('info', "Max outer value is {}, noise floor is {}".format(max_outer_value, noise_floor)) else: full_frame = True # self._log("info", "Creating full-frame Sersic model at ({},{})".format(posX, posY)) x, y = np.meshgrid(np.arange(self.ysize), np.arange(self.xsize)) xc, yc = posX, posY mod = Sersic2D(amplitude=pixel_brightness, r_eff=pixel_radius, n=n, x_0=xc, y_0=yc, ellip=(1.-axialRatio), theta=(np.radians(phi) + 0.5*np.pi)) img = mod(x, y) max_outer_value = 0. img = np.where(img >= noise_floor, img, 0.) aperture = CircularAperture((xc, yc), pixel_radius) flux_table = aperture_photometry(img, aperture) central_flux = flux_table['aperture_sum'][0] self._log("info", "Sersic profile has final size {}x{}, maximum value {}, sum {}".format(model_size, model_size,
np.max(img)
numpy.max
from cmmab import * import argparse import pandas as pd import numpy as np import scipy.special import scipy.stats as sp import plotly.graph_objs as go def make_rgb_transparent(rgb, bg_rgb, alpha): '''Returns an RGB vector of values with given transparency level and background. This function is used for generating colors that are transparent with the background. It has a similar functionality compared to alpha option in other libraries. The only difference is that it returns the rgb values of the transparent color. Args: rgb: The list rgb values for the original color(s). bg_rgb: The list of rgb values for the background(s). alpha: A number between 0 and 1 indicating the transparency level. Returns: rgb values for the transparent (mixed) colors. ''' return [alpha * c1 + (1 - alpha) * c2 for (c1, c2) in zip(rgb, bg_rgb)] def draw_uniform(num_arms, dimension, norm=2): """Draws samples from unit ball specified by norm. This function draws arm parameters for any given dimension and the choice of norm being l-2 or l-infinity. Args: num_arms: Number of arms needed. dimension: Dimension of arms. norm: An l-2 or l-infinity norm to be used. Return: means: The vector of arm parameters drawn randomly from unit l-2 or l-infinity ball. """ if norm == 'inf': means = 2 * np.random.rand(dimension, num_arms) - 1 else: means = np.zeros((dimension, num_arms)) ct = 0 while ct < num_arms: h = 2 * np.random.rand(dimension)-1 if np.linalg.norm(h, norm) <= 1: means[:, ct] = h ct += 1 return means def run_montecarlo_contextual(nsim, T_vals, k_vals, d_vals, covariates, labels, true_labels, sigma, run_subs, normalize_mean_var, save_results): '''Implements monte carlo simulations for comparing regret of algorithms. This function generates monte carlo instances that are used for comparing the regret of the algorithms discussed in the paper and returns regret and number of pulls of arms. The function has the capability of simulating for several values of time horizon and number of arms. Please see the note on the shape of returns. Args: nsim: Number of simulations, i.e., monte carlo instances. T_vals: The list of values for time horizon. k_vals: The list of values for number of arms. d_vals: The list of values for dimensions. covariates: The matrix of covariates. labels: The vector of labels. true_labels: Whether to use true labels or use the contexts to generate a linear model for labels (outcomes). sigma: Standard deviation of noise (only when true_labels is 0). run_subs: Whether to run algorithms that include subsampling step. normalize_mean_var: Whether to adjust covariates by centralizing using mean and normalizing using standard deviation. save_results: A boolean indicating whether to save the regret and number of pulls of various algorithms as .npy files. Returns: all_regret: A list of final (total) regret of algorithms. Each entry of the list is a numpy array of size nsim * number of different settings (specified by the length of T_vals and k_vals). ''' configs = len(T_vals) all_regret_greedy =
np.zeros((nsim, configs))
numpy.zeros
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import copy def one_hot_encode_along_channel_axis(sequence, onehot_axis=1): to_return = np.zeros((len(sequence),4), dtype=np.int8) seq_to_one_hot_fill_in_array(zeros_array=to_return, sequence=sequence, one_hot_axis=onehot_axis) return to_return def seq_to_one_hot_fill_in_array(zeros_array, sequence, one_hot_axis): assert one_hot_axis==0 or one_hot_axis==1 if (one_hot_axis==0): assert zeros_array.shape[1] == len(sequence) elif (one_hot_axis==1): assert zeros_array.shape[0] == len(sequence) #will mutate zeros_array for (i,char) in enumerate(sequence): if (char=="A" or char=="a"): char_idx = 0 elif (char=="C" or char=="c"): char_idx = 1 elif (char=="G" or char=="g"): char_idx = 2 elif (char=="T" or char=="t"): char_idx = 3 elif (char=="N" or char=="n"): continue #leave that pos as all 0's else: raise RuntimeError("Unsupported character: "+str(char)) if (one_hot_axis==0): zeros_array[char_idx,i] = 1 elif (one_hot_axis==1): zeros_array[i,char_idx] = 1 def enum(**enums): class Enum(object): pass to_return = Enum for key, val in enums.items(): if hasattr(val, '__call__'): setattr(to_return, key, staticmethod(val)) else: setattr(to_return, key, val) to_return.vals = [x for x in enums.values()] to_return.the_dict = enums return to_return def seq_from_onehot(onehot_data): sequences = [] if len(onehot_data.shape) != 3: onehot_data = onehot_data[np.newaxis, :] for i in range(onehot_data.shape[0]): onehot_seq = onehot_data[i, :, :] sequence = '' if onehot_seq.shape[0] < onehot_seq.shape[1]: onehot_seq = np.swapaxes(onehot_seq, 0, 1) for j in range(onehot_seq.shape[0]): if(onehot_seq[j, 0]==1): sequence = sequence + "A" elif (onehot_seq[j, 1]==1): sequence = sequence + "C" elif (onehot_seq[j, 2]==1): sequence = sequence + "G" elif (onehot_seq[j, 3]==1): sequence = sequence + "T" sequences.append(sequence) return sequences def reverse_complement_seq(seq): table = str.maketrans("ACTG", "TGAC") return seq.translate(table)[::-1] def reverse_complement_onehot(onehot, window_size): dim = onehot.shape axis_nt = dim.index(4) axis_base = dim.index(window_size) onehot_rc = np.flip(onehot, axis=axis_nt) onehot_rc = np.flip(onehot_rc, axis=axis_base) return onehot_rc def shift_onehot(onehot_data, shift_amount, pad_value=0.0): """Shift a sequence left or right by shift_amount. Args: seq: a [batch_size, sequence_length, sequence_depth] sequence to shift shift_amount: the signed amount to shift (tf.int32 or int) pad_value: value to fill the padding (primitive or scalar tf.Tensor) """ flag_swap = False if len(onehot_data.shape) != 3: onehot_data = onehot_data[np.newaxis, :] if onehot_data.shape[2] > onehot_data.shape[1]: onehot_data = np.swapaxes(onehot_data,1,2) flag_swap = True input_shape = onehot_data.shape pad = pad_value * np.ones(onehot_data[:, 0:np.abs(shift_amount), :].shape) def _shift_right(_onehot_data): sliced_onehot_data = _onehot_data[:, :-shift_amount:, :] return np.concatenate((pad, sliced_onehot_data), axis=1) def _shift_left(_onehot_data): sliced_onehot_data = _onehot_data[:, -shift_amount:, :] return np.concatenate((sliced_onehot_data, pad), axis=1) if shift_amount > 0: output = _shift_right(onehot_data) else: output = _shift_left(onehot_data) output = np.reshape(output, input_shape) if flag_swap: output = np.swapaxes(output,1,2) return output def metric_pearson(obs, pred): correlations = [] for i in range(len(pred)): correlations.append(np.corrcoef(pred[i, :], obs[i, :])[0, 1]) return correlations def metric_mse(obs, pred): from sklearn.metrics import mean_squared_error mses = [] for i in range(len(pred)): mses.append(mean_squared_error(obs[i, :], pred[i, :])) return mses def metric_r2_score(obs, pred): r2 = [] for i in range(len(pred)): ssres = np.sum(np.square(obs[i, :] - pred[i, :])) sstot = np.sum(np.square(obs[i, :] - np.mean(obs[i, :]))) r2.append(1 - ssres / sstot) return r2 def compute_loss(obs, pred, combine_weighting): correlations = metric_pearson(obs, pred) mses = metric_mse(obs, pred) metric_loss = 1 - np.stack(correlations) + combine_weighting*np.stack(mses) return metric_loss def minmax_norm(var_in): max_val = np.amax(var_in) min_val = np.amin(var_in) subtracted = var_in - min_val var_out = subtracted / (max_val - min_val) return var_out def minmax_scale(pred, labels): subtracted = pred - np.min(pred, axis=-1) max_pred = np.max(subtracted, axis=-1) min_pred = np.min(subtracted, axis=-1) max_true = np.max(labels, axis=-1) min_true = np.min(labels, axis=-1) scaled = subtracted / (max_pred - min_pred) * (max_true - min_true) + min_true return scaled def rounding_generator(data, y, name, batch_size): import copy l = len(data) num_sample = batch_size - l % batch_size data_out = copy.deepcopy(data) data_out = np.concatenate((data_out, data_out[0:num_sample,:,:]), axis=0) y_out = copy.deepcopy(y) y_out = np.concatenate((y_out, y_out[0:num_sample,:]), axis=0) name_out = copy.deepcopy(name) name_out = np.concatenate((name_out, name_out[0:num_sample]), axis=0) return data_out, y_out, name_out # Matching the two datasets by concatenating the first samples from the same dataset def upsample_generator(data1, data2): l1 = len(data1) l2 = len(data2) #extending data 1 to the same size of data 2 sampleRelation = l2 // l1 #l1 must be bigger if l2 % l1 > 0: sampleRelation += 1 index_in = list(range(l1)) index_out = np.concatenate([index_in] * sampleRelation, axis=0) index_out = index_out[:l2] return index_out # Use genome relationship, assuming the order is the corresponding def interpolating_generator(data1, data2): from scipy.interpolate import interp1d index_in = np.linspace(0, len(data1), num=len(data1), endpoint=True) f = interp1d(index_in, index_in) index_new = np.linspace(0, len(data1), num=len(data2), endpoint=True) index_out = f(index_new) index_out = np.rint(index_out).astype(int) index_out[index_out>=len(data1)] = len(data1) - 1 return index_out def list_seq_to_fasta(index_seq, seq, motif_name, flag_unique, output_directory, single_filter_txt): if flag_unique: output_filename = motif_name + '_seq_unique' + single_filter_txt + '.fasta' index_seq = list(set(index_seq)) else: output_filename = motif_name + '_seq' + single_filter_txt + '.fasta' list_seq = np.asarray(seq)[index_seq] print(len(index_seq)) with open(output_directory + output_filename, 'w') as f: for i in range(len(index_seq)): f.write('>' + str(i) + '\n') f.write(list_seq[i] + '\n') def list_seqlet_to_fasta(index_seq, index_start, seq, motif_name, output_directory, single_filter_txt): output_filename = motif_name + '_seqlet' + single_filter_txt + '.fasta' list_seq = np.asarray(seq)[index_seq] print(len(index_seq)) with open(output_directory + output_filename, 'w') as f: for i in range(len(index_seq)): max(0, index_start[i]) seqlet = list_seq[i][max(0, index_start[i]):min(250, index_start[i]+19)] f.write('>' + str(i) + '\n') f.write(seqlet + '\n') def mut_seq(mut_dict, onehot_data, loc_txt): output_onehot_data = copy.deepcopy(onehot_data) for k in mut_dict.keys(): seq = mut_dict[k]['seq'] if loc_txt == 'mut': mut_start = mut_dict[k][loc_txt+'_start'] mut_end = mut_dict[k][loc_txt+'_end'] else: mut_start = mut_dict[k][loc_txt+'_start'][0] mut_end = mut_dict[k][loc_txt+'_end'][0] if output_onehot_data.shape[-1] > output_onehot_data.shape[-2]: output_onehot_data[seq, :, mut_start:mut_end+1] = 0 # Not activation else: output_onehot_data[seq, mut_start:mut_end+1, :] = 0 return output_onehot_data def mut_seq_perbase_pernucleotide(mut_dict, onehot_data, loc_txt): len_mutation = mut_dict[0]['mut_end'] - mut_dict[0]['mut_start'] #19 output_onehot_data = np.zeros((251, 4, len_mutation, 4)) for k in mut_dict.keys(): seq = mut_dict[k]['seq'] if loc_txt == 'mut': mut_start = mut_dict[k][loc_txt+'_start'] mut_end = mut_dict[k][loc_txt+'_end'] else: mut_start = mut_dict[k][loc_txt+'_start'][0] mut_end = mut_dict[k][loc_txt+'_end'][0] for i in range(mut_start, mut_end): for j in range(4): tmp = copy.deepcopy(onehot_data[seq, :, :]) # 19 by 4 if tmp.shape[-1] == 4: tmp[i, :] = 0 tmp[i, j] = 1 else: # what happens when both=4? tmp[:, i] = 0 tmp[j, i] = 1 output_onehot_data[:,:,i-mut_start,j] = tmp return output_onehot_data def mut_seq_perbase_opposite(mut_dict, onehot_data, loc_txt, flag_order): for k in mut_dict.keys(): seq = mut_dict[k]['seq'] if loc_txt == 'ocr': mut_start = mut_dict[k]['start'] mut_end = mut_dict[k]['end'] elif loc_txt == 'mut': mut_start = mut_dict[k][loc_txt+'_start'] mut_end = mut_dict[k][loc_txt+'_end'] elif loc_txt == 'resp': mut_start = mut_dict[k][loc_txt+'_start'][0] mut_end = mut_dict[k][loc_txt+'_end'][0] output_onehot_data = np.zeros((251, 4, mut_end - mut_start)) for i in range(mut_start, mut_end): tmp = copy.deepcopy(onehot_data[seq, :, :]) if tmp.shape[-1] == 4: if flag_order == 'ATGC': tmp = tmp[:, [0, 3, 2, 1]] tmp_original = np.copy(tmp[i, :]) if tmp_original[0] or tmp_original[3]: # AT->C; tmp[i, :] = 0 tmp[i, 1] = 1 elif tmp_original[1] or tmp_original[2]: # CG->A tmp[i, :] = 0 tmp[i, 0] = 1 else: # what happens when both=4? if flag_order == 'ATGC': tmp = tmp[[0, 3, 2, 1], :] tmp_original = np.copy(tmp[:, i]) if tmp_original[0] or tmp_original[3]: # AT->C; tmp[:, i] = 0 tmp[1, i] = 1 elif tmp_original[1] or tmp_original[2]: # CG->A tmp[:, i] = 0 tmp[0, i] = 1 output_onehot_data[:, :, i] = tmp return output_onehot_data def mut_seq_perbase_opposite_hyp(mut_dict, onehot_data, hyp_score, loc_txt, flag_order): for k in mut_dict.keys(): hyp_score_k = np.stack(hyp_score[str(k)]) seq = mut_dict[k]['seq'] if loc_txt == 'ocr': mut_start = mut_dict[k]['start'] mut_end = mut_dict[k]['end'] elif loc_txt == 'mut': mut_start = mut_dict[k][loc_txt+'_start'] mut_end = mut_dict[k][loc_txt+'_end'] elif loc_txt == 'resp': mut_start = mut_dict[k][loc_txt+'_start'][0] mut_end = mut_dict[k][loc_txt+'_end'][0] output_onehot_data = np.zeros((251, 4, mut_end - mut_start)) for i in range(mut_start, mut_end): tmp = copy.deepcopy(onehot_data[seq, :, :]) tmp_hyp = copy.deepcopy(hyp_score_k[seq, :, :]) if tmp.shape[-1] == 4: if flag_order == 'ATGC': tmp = tmp[:, [0, 3, 2, 1]] tmp[i, :] = 0 tmp[i, np.argmin(tmp_hyp[i, :])] = 1 else: # TODO: path for edge case, that when both direction dim=4 if flag_order == 'ATGC': tmp = tmp[[0, 3, 2, 1], :] tmp[:, i] = 0 tmp[np.argmin(tmp_hyp[i, :]), i] = 1 output_onehot_data[:, :, i] = tmp return output_onehot_data # Parse meme file into array def read_meme(file_path=None): with open(file_path) as fp: line = fp.readline() motifs=[] motif_names=[] while line: #determine length of next motif if line.split(" ")[0]=='MOTIF': #add motif number to separate array motif_names.append(line.split(" ")[1]) #get length of motif line2=fp.readline().split(" ") motif_length = int(float(line2[5])) #read in motif current_motif=np.zeros((19, 4)) # Edited pad shorter ones with 0 for i in range(motif_length): current_motif[i,:] = fp.readline().split("\t") motifs.append(current_motif) line = fp.readline() motifs = np.stack(motifs) motif_names = np.stack(motif_names) return motifs, motif_names def compute_ic(motifs, motif_names, bckgrnd=None, epsilon=None): import pandas as pd #set background frequencies of nucleotides if not bckgrnd: bckgrnd = [0.25, 0.25, 0.25, 0.25] if not epsilon: epsilon = 1e-11 #compute information content of each motif info_content = [] position_ic = [] for i in range(motifs.shape[0]): position_wise_ic = np.subtract(np.sum(np.multiply(motifs[i,:,:],np.log2(motifs[i,:,:] + epsilon)), axis=1),np.sum(np.multiply(bckgrnd,np.log2(bckgrnd)))) position_ic.append(position_wise_ic) ic = np.sum(position_wise_ic, axis=0) info_content.append(ic) info_content = np.stack(info_content) position_ic = np.stack(position_ic) #length of motif with high info content n_info =
np.sum(position_ic>0.2, axis=1)
numpy.sum
import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mi # import scipy.interpolate as si import matplotlib.tri as tri import copy from os import path from kivy.uix.floatlayout import FloatLayout from kivy.graphics import Ellipse, Color, Rectangle, Line, Point from kivy.metrics import dp, sp from kivy.uix.label import Label from kivy.clock import Clock from kivy.core.window import Window from mpl_texture import InteractiveWorldMapOverlayWidget, InteractivePlotWidget, InteractiveWorldMapWidget # from mpl_texture import InteractivePlotWidget, InteractiveWorldMapWidget import hashlib #from PIL import Image # Data dictionary: datadict has form {'u':u, 'v':v, 'V':V} # Station dictionary: statdict has form {<station code>:{'on':<True/False>,'name':<name>,'loc':(x,y,z)}} __mydebug__ = True ######### # To read in data to get the def read_data(v_file_name) : # Read in Themis-style data, which is simple and compact data = np.loadtxt(v_file_name,usecols=[5,6,7,8,9,10,3]) baselines =
np.loadtxt(v_file_name,usecols=[4],dtype=str)
numpy.loadtxt
# -*- coding: utf-8 -*- import numpy as np import scipy.special from bokeh.layouts import gridplot from bokeh.plotting import figure, show, output_file p1 = figure(title="Normal Distribution (μ=0, σ=0.5)",tools="save", background_fill_color="#E8DDCB") mu, sigma = 0, 0.5 measured = np.random.normal(mu, sigma, 1000) hist, edges = np.histogram(measured, density=True, bins=50) x = np.linspace(-2, 2, 1000) pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2)) cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2 p1.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:], fill_color="#036564", line_color="#033649") p1.line(x, pdf, line_color="#D95B43", line_width=8, alpha=0.7, legend="PDF") p1.line(x, cdf, line_color="white", line_width=2, alpha=0.7, legend="CDF") p1.legend.location = "center_right" p1.legend.background_fill_color = "darkgrey" p1.xaxis.axis_label = 'x' p1.yaxis.axis_label = 'Pr(x)' p2 = figure(title="Log Normal Distribution (μ=0, σ=0.5)", tools="save", background_fill_color="#E8DDCB") mu, sigma = 0, 0.5 measured = np.random.lognormal(mu, sigma, 1000) hist, edges = np.histogram(measured, density=True, bins=50) x = np.linspace(0.0001, 8.0, 1000) pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2)) cdf = (1+scipy.special.erf((
np.log(x)
numpy.log
import numpy as np import matplotlib.pyplot as plt from scipy.linalg import cholesky, svdvals from numba import jit def main(): width = 32 height = 32 length_scales = np.array([4, 16, 32]) z_in = np.random.normal(size=width * height) x =
np.arange(width)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Sat Dec 9 20:38:51 2017 @author: <NAME> """ import time import matplotlib.pyplot as plt import pandas as pd import numpy as np import rasterio import scipy.ndimage as ndi from skimage.util import apply_parallel #%% import neilpy #%% with rasterio.open('../sample_data/sample_dem.tif') as src: Z = src.read(1) Zt = src.affine #%% with rasterio.open('../neilpy_data/poland_30m.tif') as src: Z = src.read(1) Zt = src.transform #%% 42 mins then = time.time() G = get_geomorphon_from_openness(Z,Zt[0],10,1) now = time.time() print(now-then) #%% at 1000, 26 minutes # Calculate the geomorphons (a numeric code, 1-10) then = time.time() cellsize = Zt[0] lookup_pixels = 50 threshold_angle = 1 def gm_wrap(I): this_G = get_geomorphon_from_openness(I,cellsize,lookup_pixels,threshold_angle) return this_G G = apply_parallel(gm_wrap,Z.copy(),1000,lookup_pixels) now = time.time() print(now-then) #%% im = Image.fromarray(G,mode='L') im.putpalette(geomorphon_cmap()) plt.imshow(im) plt.show() im.save('../neilpy_data/poland_30m_geomorphons.png') #%% write_worldfile(Zt,'../neilpy_data/poland_30m_geomorphons.pgw') #%% SMRF TESTING fns = glob.glob(r'C:\Temp\Reference\*.txt') total_error = np.zeros(len(fns)) for i,fn in enumerate(fns): df = pd.read_csv(fn,header=None,names=['x','y','z','g'],delimiter='\t') x,y,z = df.x.values,df.y.values,df.z.values windows = np.arange(18) + 1 cellsize= 1 slope_threshold = .15 elevation_threshold = .5 elevation_scaler = 1.25 result = neilpy.smrf(x,y,z,windows,cellsize,slope_threshold,elevation_threshold,elevation_scaler) total_error[i] = 1 - np.sum(result[3] == df.g) / len(df) print(fn,':',total_error[i]) print('Mean total error',np.mean(total_error)) print('Median total error',np.median(total_error)) #%% plt.imshow(Zpro) #%% values = [f(p[0],p[1])[0][0] for p in zip(row,col)] #%% progressive_filter header, df = read_las('DK22_partial.las') Z,t = create_dem(df.x,df.y,df.z,resolution=5,bin_type='min'); Z = apply_parallel(inpaint_nans_by_springs,Z.copy(),100,10) #%% slope_threshold = .15 windows = np.arange(1,10,2) cellsize = 5 OC = progressive_filter(Z,np.arange(1,10),cellsize=5,slope_threshold=.2) plt.imshow(is_object_cell) #%% a = np.arange(3) # cols, x b = np.arange(3) + 1 # rows, y c = np.arange(9).reshape((3,3)) print(c) g = interpolate.RegularGridInterpolator((a,b),c) print(g((2,3))) #col/x "2" and row/y "3" #%% c,r = ~t * (df.x.values,df.y.values) f = interpolate.RectBivariateSpline(row_centers,col_centers,Zpro) values = [f(p[0],p[1])[0][0] for p in zip(r,c)] #%% #Z = np.arange(9).reshape((3,3)) def vipmask(Z,cellsize=1): heights = np.zeros(np.size(Z)) dlist = np.array([np.sqrt(2),1]) for direction in range(4): dist = dlist[direction % 2] h0 = ashift(Z,direction) - Z h1 = ashift(Z,direction+4) - Z heights += triangle_height(h0.ravel(),h1.ravel(),dist*cellsize) return heights.reshape(np.shape(Z)) #print(heights) with rasterio.open('../sample_data/sample_dem.tif') as src: Z = src.read(1) Zt = src.affine V = vipmask(Z) #%% third go #h0 = np.array([-1,0,0]) #h1 = np.array([1,1,1]) #x_dist = 1 ''' h0 is the height of the neighbor pixel in one direction, relative to the center h1 is the height of the pixel on the other size of the center pixel (same dir) xdist is the real distance between them (as some neighbors are diagnonal) ''' def triangle_height(h0,h1,x_dist=1): n = np.shape(h0) # The area of the triangle is half of the cross product h0 = np.column_stack((-x_dist*np.ones(n),h0)) h1 = np.column_stack(( x_dist*np.ones(n),h1)) cp = np.abs(np.cross(h0,h1)) # Find the base from the original coords base = np.sqrt( (2*x_dist)**2 + (h1[:,1]-h0[:,1])**2 ) # Triangle height is the cross product divided by the base return cp/base #%% second go y = np.array([[0,1,2],[2,2,3],[4,4,5]]) z_diff = np.diff(y) z_diff[:,0] = -z_diff[:,0] n = np.shape(z_diff)[0] xdist = 1 a = np.ones(np.shape(z_diff)) b = np.ones(np.shape(z_diff)) a[:,0] = -xdist b[:,0] = xdist a[:,1] = z_diff[:,0] b[:,1] = z_diff[:,1] cp = np.sqrt(np.abs(np.cross(a,b))) # Calculate base base = np.sqrt((2**xdist*np.ones(n))**2 + (z_diff[:,1])**2) # Calculate height h = cp/base print(h) #%% First go y = np.array([[0,1,2],[2,2,3],[4,4,5]]) # y = np.random.rand(100,3) xdist = 1 n = np.shape(y)[0] # Calculate cross-product a = np.hstack((-xdist*np.ones((n,1)),np.reshape(y[:,0]-y[:,1],(n,1)),np.zeros((n,1)))) b = np.hstack((xdist*np.ones((n,1)),np.reshape(y[:,2]-y[:,1],(n,1)),np.zeros((n,1)))) cp = np.abs(np.cross(a,b)) print(cp) #del a,b cp = np.sqrt(np.sum(cp**2,axis=1)) # Calculate base base = np.sqrt((2**xdist*np.ones(n))**2 + (y[:,2] - y[:,1])**2) # Calculate height h = cp/base print(h) #%% with rasterio.open('../sample_data/sample_dem.tif') as src: Z = src.read(1) Zt = src.affine plt.imshow(Z,cmap='terrain',vmin=-500,vmax=2000) plt.show() #%% G = get_geomorphon_from_openness(Z,cellsize=Zt[0],lookup_pixels=25,threshold_angle=1,enhance=False) #%% G2 = get_geomorphon_from_openness(Z,cellsize=Zt[0],lookup_pixels=6,threshold_angle=1,enhance=True) # repair peaks G[G==2] = G2[G==2] # repair ridges G[G==3] = G2[G==3] #%% # Apply a "standard" colormap and display the image im = Image.fromarray(G,mode='L') im.putpalette(geomorphon_cmap()) plt.imshow(im) plt.show() #%% with rasterio.open('../sample_data/sample_dem_geomorphons.tif') as src: G3 = src.read(1) np.sum(G==G3) / np.size(G3) #%% Develop for Swiss Shading # Uh, awesome one! with rasterio.open('../sample_data/sample_dem.tif') as src: Z = src.read(1) Zt = src.affine cellsize = Zt[0] """ color_table = np.zeros((2,2,3),dtype=np.uint8) color_table[0,0,:] = [110,120,117] # Top Left color_table[0,1,:] = [242,245,173] # Top Right color_table[1,0,:] = [128,148,138] # Bottom Left color_table[1,1,:] = [196,201,168] # Bottom Right # Top Left, Top Right, Bottom Left, Bottom Right R = ndi.zoom(np.array([[110,242],[128,196]]).astype(np.uint8),8) G = ndi.zoom(np.array([[120,245],[148,138]]).astype(np.uint8),8) B = ndi.zoom(np.array([[117,173],[138,168]]).astype(np.uint8),8) """ lut = plt.imread('swiss_shading_lookup_flipped.png')[:,:,:3] lut = (255*lut).astype(np.uint8) # Subtract Z_norm from 255 here to invert the colormap Z_norm = np.round(255 * (Z - np.min(Z)) / (np.max(Z) - np.min(Z))).astype(np.uint8) H = hillshade(Z,cellsize,return_uint8=True) RGB = np.zeros((np.shape(Z)[0],np.shape(Z)[1],3)) RGB[:,:,0] = lut[:,:,0][Z_norm.ravel(),H.ravel()].reshape(np.shape(Z)) RGB[:,:,1] = lut[:,:,1][Z_norm.ravel(),H.ravel()].reshape(np.shape(Z)) RGB[:,:,2] = lut[:,:,2][Z_norm.ravel(),H.ravel()].reshape(np.shape(Z)) plt.imshow(RGB) #%% Develop for Swiss Shading; got it! # Uh, awesome one! with rasterio.open('../sample_data/sample_dem.tif') as src: Z = src.read(1) Zt = src.affine cellsize = Zt[0] """ color_table = np.zeros((2,2,3),dtype=np.uint8) color_table[0,0,:] = [110,120,117] # Top Left color_table[0,1,:] = [242,245,173] # Top Right color_table[1,0,:] = [128,148,138] # Bottom Left color_table[1,1,:] = [196,201,168] # Bottom Right # Top Left, Top Right, Bottom Left, Bottom Right R = ndi.zoom(np.array([[110,242],[128,196]]).astype(np.uint8),8) G = ndi.zoom(np.array([[120,245],[148,138]]).astype(np.uint8),8) B = ndi.zoom(np.array([[117,173],[138,168]]).astype(np.uint8),8) """ lut = plt.imread('swiss_shading_lookup.png')[:,:,:3] lut = (255*lut).astype(np.uint8) # Subtract 255 here to invert the colormap! # Z_norm = np.round(255 * (Z - np.min(Z)) / (np.max(Z) - np.min(Z))).astype(np.uint8) H = hillshade(Z,cellsize,return_uint8=True) RGB = np.zeros((np.shape(Z)[0],
np.shape(Z)
numpy.shape
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ## Config dataset = "training_setA" path = "/github/pnet2019/" + dataset + "/" numpy_load = True nanfill = False mm = False std = False nan_to_neg = False # Script name struct for report script_name = 'get_healthytemp' ## Imports import numpy as np import os # Fix boundary nans (replicate head/tail vals) def nan_bounds(feats): nanidx = np.where(np.isnan(feats))[0] pointer_left = 0 pointer_right = len(feats) - 1 fix_left = pointer_left in nanidx fix_right = pointer_right in nanidx while fix_left: if pointer_left in nanidx: pointer_left += 1 # print("pointer_left:", pointer_left) else: val_left = feats[pointer_left] feats[:pointer_left] = val_left * np.ones((1, pointer_left), dtype=np.float) fix_left = False while fix_right: if pointer_right in nanidx: pointer_right -= 1 # print("pointer_right:", pointer_right) else: val_right = feats[pointer_right] feats[pointer_right + 1:] = val_right * np.ones((1, len(feats) - pointer_right - 1), dtype=np.float) fix_right = False # nan interpolation def nan_interpolate(feats): nanidx = np.where(np.isnan(feats))[0] nan_remain = len(nanidx) nanid = 0 while nan_remain > 0: nanpos = nanidx[nanid] nanval = feats[nanpos - 1] nan_remain -= 1 nandim = 1 initpos = nanpos # Check whether it extends while nanpos + 1 in nanidx: nanpos += 1 nanid += 1 nan_remain -= 1 nandim += 1 # Average sides if np.isfinite(feats[nanpos + 1]): nanval = 0.5 * (nanval + feats[nanpos + 1]) # Single value average if nandim == 1: nanval = 0.5 * (nanval + feats[nanpos + 1]) feats[initpos:initpos + nandim] = nanval * np.ones((1, nandim), dtype=np.double) nanpos += 1 nanid += 1 ## Get sepsis patients def get_sepsis_patients(sepsis_label, patient): patient_sep = np.zeros(len(sepsis_label), dtype=np.int) for i in range(n): i_pat = np.where(patient == i)[0] patient_sep[i_pat] = int(np.sum(sepsis_label[i_pat]) > 0) * np.ones(len(i_pat), dtype=np.int) patient_sep_idx = np.where(patient_sep != 0)[0] patient_healthy_idx = np.where(patient_sep == 0)[0] return patient_sep, patient_sep_idx, patient_healthy_idx ## Random seed np.random.seed(seed=0) ## Create the feature matrix features = [] patient = [] sepsis_label = [] dataloaded = False ## Read data if not numpy_load: ## Folder and files fnames = os.listdir(path) fnames.sort() if 'README.md' in fnames: fnames.remove('README.md') print('last file: ', fnames[-1]) n = len(fnames) print(n, ' files present') ## read data for i in range(n): input_file = os.path.join(path, fnames[i]) if i == 0: data, sep_lab, columns = ESNtools.read_challenge_data_label(input_file, return_header=True) else: data, sep_lab = ESNtools.read_challenge_data_label(input_file) features.append(data) sepsis_label.append(sep_lab) pat = i * np.ones((sep_lab.shape), dtype=np.int) patient.append(pat) feature_matrix = np.concatenate(features) del (features) sepsis_label = np.concatenate(sepsis_label) patient = np.concatenate(patient) dataloaded = True else: npyfilename = "/github/pnet2019/npy/" + dataset + "_patient.npy" patient = np.load(npyfilename) npyfilename = "/github/pnet2019/npy/" + dataset + "_Y.npy" sepsis_label = np.load(npyfilename) # ADD nanfill tag if nanfill: dataset = dataset + "_nanfill" if mm: npyfilename = "/github/pnet2019/npy/" + dataset + "_mm.npy" mm = False print(npyfilename, '(mm) to be loaded') else: npyfilename = "/github/pnet2019/npy/" + dataset + ".npy" print(npyfilename, '(not mm) to be loaded') n = len(np.unique(patient)) print(n, ' files present') dataloaded = True feature_matrix = np.load(npyfilename) ##Flatten patient patient = patient.flatten() ## Separate pointers feature_phys = feature_matrix[:, :-6] ## Physiology feature_demog = feature_matrix[:, -6:] ## Demographics ## Normalize mm(all) or std (sepsis, phys) vals, feature-based if mm: scaler = MinMaxScaler() for i in range(n): i_pat =
np.where(patient == i)
numpy.where
#!/usr/bin/env python3 import unittest from unittest import TestCase import numpy as np from dynn.data import batching, dictionary class TestNumpyBatches(TestCase): def setUp(self): self.input_dim = 3 self.output_dim = 2 self.num_labels = 50 self.batch_size = 5 self.data_size = 101 def _dummy_classification_iterator(self, shuffle=True): # Create dummy data data = np.random.uniform(size=(self.data_size, self.input_dim)) # Create targets labels = np.random.randint(self.num_labels, size=self.data_size) # Iterator return batching.NumpyBatches( data, labels, batch_size=self.batch_size, shuffle=shuffle ) def _dummy_regression_iterator(self): # Create dummy data data = np.random.uniform(size=(self.data_size, self.input_dim)) # Create targets labels = np.random.uniform(size=(self.data_size, self.output_dim)) # Iterator return batching.NumpyBatches( data, labels, batch_size=self.batch_size ) def test_classification(self): batched_dataset = self._dummy_classification_iterator() # Try iterating for x, y in batched_dataset: self.assertEqual(x.shape[0], (self.input_dim)) self.assertIn( x.shape[1], {self.batch_size, self.data_size % self.batch_size} ) self.assertEqual(len(y.shape), 1) self.assertEqual(x.shape[1], y.shape[0]) def test_regression(self): batched_dataset = self._dummy_regression_iterator() # Try iterating for x, y in batched_dataset: self.assertEqual(x.shape[0], self.input_dim) self.assertIn( x.shape[1], {self.batch_size, self.data_size % self.batch_size} ) self.assertEqual(y.shape[0], self.output_dim) self.assertEqual(x.shape[1], y.shape[1]) def test_shuffle(self): batched_dataset = self._dummy_classification_iterator(shuffle=True) # Record the labels for the first 2 epochs first_epoch_labels =
np.concatenate([y for _, y in batched_dataset])
numpy.concatenate
# -*- coding: utf-8 -*- from __future__ import division, absolute_import, unicode_literals import datetime as dt import warnings import numpy as np import pytest from numpy.testing import assert_allclose from apexpy import fortranapex as fa from apexpy import Apex, ApexHeightError, helpers ############################################################################## # NOTE: whenever function outputs are tested against hard-coded numbers, # # the test results (numbers) were obtained by running the code that is # # tested. Therefore these tests below only check that nothing changes when # # refactoring etc., and not if the results are actually correct # ############################################################################## ###============================================================================ ### Test initiating the Apex class ###============================================================================ def test_init_defaults(): Apex() def test_init_date_int(): apex_out = Apex(date=2015) assert apex_out.year == 2015 def test_init_date_float(): apex_out = Apex(date=2015.5) assert apex_out.year == 2015.5 def test_init_date(): date = dt.date(2015, 1, 1) apex_out = Apex(date=date) assert apex_out.year == helpers.toYearFraction(date) def test_init_datetime(): datetime = dt.datetime(2015, 6, 1, 18, 23, 45) apex_out = Apex(date=datetime) assert apex_out.year == helpers.toYearFraction(datetime) def test_init_datafile_IOError(): with pytest.raises(IOError): Apex(date=2015, datafile='foo/path/to/datafile.blah') ###============================================================================ ### Test the low-level interfaces to the fortran wrappers ###============================================================================ def test__geo2qd_scalar(): apex_out = Apex(date=2000, refh=300) for lat in [0, 30, 60, 89]: for lon in [-179, -90, 0, 90, 180]: assert_allclose(apex_out._geo2qd(lat, lon, 100), fa.apxg2q(lat, lon, 100, 0)[:2]) def test__geo2qd_array(): apex_out = Apex(date=2000, refh=300) lats, lons = apex_out._geo2qd([[0, 30], [60, 90]], 15, [[100, 200], [300, 400]]) lat1, lon1 = fa.apxg2q(0, 15, 100, 0)[:2] lat2, lon2 = fa.apxg2q(30, 15, 200, 0)[:2] lat3, lon3 = fa.apxg2q(60, 15, 300, 0)[:2] lat4, lon4 = fa.apxg2q(90, 15, 400, 0)[:2] assert_allclose(lats.astype(float), np.array([[lat1, lat2], [lat3, lat4]], dtype=float)) assert_allclose(lons.astype(float), np.array([[lon1, lon2], [lon3, lon4]], dtype=float)) def test__geo2qd_longitude(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out._geo2qd(60, 180, 100), fa.apxg2q(60, 180, 100, 0)[:2]) assert_allclose(apex_out._geo2qd(60, -180, 100), fa.apxg2q(60, -180, 100, 0)[:2]) assert_allclose(apex_out._geo2qd(60, -180, 100), apex_out._geo2qd(60, 180, 100)) for i in range(-5, 5): for lat in [0, 30, 60, 90]: assert_allclose(apex_out._geo2qd(lat, 15+i*360, 100), fa.apxg2q(lat, 15, 100, 0)[:2]) def test__geo2apex_scalar(): apex_out = Apex(date=2000, refh=300) for lat in [0, 30, 60, 89]: for lon in [-179, -90, 0, 90, 180]: assert_allclose(apex_out._geo2apex(lat, lon, 100), fa.apxg2all(lat, lon, 100, 300, 0)[2:4]) def test__geo2apex_array(): apex_out = Apex(date=2000, refh=300) lats, lons = apex_out._geo2apex([[0, 30], [60, 90]], 15, [[100, 200], [300, 400]]) lat1, lon1 = fa.apxg2all(0, 15, 100, 300, 0)[2:4] lat2, lon2 = fa.apxg2all(30, 15, 200, 300, 0)[2:4] lat3, lon3 = fa.apxg2all(60, 15, 300, 300, 0)[2:4] lat4, lon4 = fa.apxg2all(90, 15, 400, 300, 0)[2:4] assert_allclose(lats.astype(float), np.array([[lat1, lat2], [lat3, lat4]], dtype=float)) assert_allclose(lons.astype(float), np.array([[lon1, lon2], [lon3, lon4]], dtype=float)) def test__geo2apex_longitude(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out._geo2apex(60, 180, 100), fa.apxg2all(60, 180, 100, 300, 0)[2:4]) assert_allclose(apex_out._geo2apex(60, -180, 100), fa.apxg2all(60, -180, 100, 300, 0)[2:4]) assert_allclose(apex_out._geo2apex(60, -180, 100), apex_out._geo2apex(60, 180, 100)) for i in range(-5, 5): for lat in [0, 30, 60, 90]: assert_allclose(apex_out._geo2apex(lat, 15+i*360, 100), fa.apxg2all(lat, 15, 100, 300, 0)[2:4]) def test__geo2apexall_scalar(): apex_out = Apex(date=2000, refh=300) for lat in [0, 30, 60, 89]: for lon in [-179, -90, 0, 90, 180]: ret1 = apex_out._geo2apexall(lat, lon, 100) ret2 = fa.apxg2all(lat, lon, 100, 300, 1) for r1, r2 in zip(ret1, ret2): assert_allclose(r1, r2) def test__geo2apexall_array(): apex_out = Apex(date=2000, refh=300) ret = apex_out._geo2apexall([[0, 30], [60, 90]], 15, [[100, 200], [300, 400]]) ret1 = fa.apxg2all(0, 15, 100, 300, 1) ret2 = fa.apxg2all(30, 15, 200, 300, 1) ret3 = fa.apxg2all(60, 15, 300, 300, 1) ret4 = fa.apxg2all(90, 15, 400, 300, 1) for i in range(len(ret)): try: # ret[i] is array of floats assert_allclose(ret[i].astype(float), np.array([[ret1[i], ret2[i]], [ret3[i], ret4[i]]], dtype=float)) except: # ret[i] is array of arrays assert_allclose(ret[i][0, 0], ret1[i]) assert_allclose(ret[i][0, 1], ret2[i]) assert_allclose(ret[i][1, 0], ret3[i]) assert_allclose(ret[i][1, 1], ret4[i]) def test__qd2geo_scalar(): apex_out = Apex(date=2000, refh=300) for lat in [0, 30, 60, 89]: for lon in [-179, -90, 0, 90, 180]: for prec in [-1, 1e-2, 1e-10]: assert_allclose(apex_out._qd2geo(lat, lon, 100, prec), fa.apxq2g(lat, lon, 100, prec)) def test__qd2geo_array(): apex_out = Apex(date=2000, refh=300) lats, lons, errs = apex_out._qd2geo([[0, 30], [60, 90]], 15, [[100, 200], [300, 400]], 1e-2) lat1, lon1, err1 = fa.apxq2g(0, 15, 100, 1e-2) lat2, lon2, err2 = fa.apxq2g(30, 15, 200, 1e-2) lat3, lon3, err3 = fa.apxq2g(60, 15, 300, 1e-2) lat4, lon4, err4 = fa.apxq2g(90, 15, 400, 1e-2) assert_allclose(lats.astype(float), np.array([[lat1, lat2], [lat3, lat4]], dtype=float)) assert_allclose(lons.astype(float), np.array([[lon1, lon2], [lon3, lon4]], dtype=float)) assert_allclose(errs.astype(float), np.array([[err1, err2], [err3, err4]], dtype=float)) def test__qd2geo_longitude(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out._qd2geo(60, 180, 100, 1e-2), fa.apxq2g(60, 180, 100, 1e-2)) assert_allclose(apex_out._qd2geo(60, -180, 100, 1e-2), fa.apxq2g(60, -180, 100, 1e-2)) assert_allclose(apex_out._qd2geo(60, -180, 100, 1e-2), apex_out._qd2geo(60, 180, 100, 1e-2)) for i in range(-5, 5): for lat in [0, 30, 60, 90]: assert_allclose(apex_out._qd2geo(lat, 15+i*360, 100, 1e-2), fa.apxq2g(lat, 15, 100, 1e-2)) def test__basevec_scalar(): apex_out = Apex(date=2000, refh=300) for lat in [0, 30, 60, 89]: for lon in [-179, -90, 0, 90, 180]: assert_allclose(apex_out._basevec(lat, lon, 100), fa.apxg2q(lat, lon, 100, 1)[2:4]) def test__basevec_array(): apex_out = Apex(date=2000, refh=300) f1s, f2s = apex_out._basevec([[0, 30], [60, 90]], 15, [[100, 200], [300, 400]]) f11, f21 = fa.apxg2q(0, 15, 100, 1)[2:4] f12, f22 = fa.apxg2q(30, 15, 200, 1)[2:4] f13, f23 = fa.apxg2q(60, 15, 300, 1)[2:4] f14, f24 = fa.apxg2q(90, 15, 400, 1)[2:4] assert_allclose(f1s[0, 0], f11) assert_allclose(f1s[0, 1], f12) assert_allclose(f1s[1, 0], f13) assert_allclose(f1s[1, 1], f14) assert_allclose(f2s[0, 0], f21) assert_allclose(f2s[0, 1], f22) assert_allclose(f2s[1, 0], f23) assert_allclose(f2s[1, 1], f24) def test__basevec_longitude(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out._basevec(60, 180, 100), fa.apxg2q(60, 180, 100, 1)[2:4]) assert_allclose(apex_out._basevec(60, -180, 100), fa.apxg2q(60, -180, 100, 1)[2:4]) assert_allclose(apex_out._basevec(60, -180, 100), apex_out._basevec(60, 180, 100)) for i in range(-5, 5): for lat in [0, 30, 60, 90]: assert_allclose(apex_out._basevec(lat, 15+i*360, 100), fa.apxg2q(lat, 15, 100, 1)[2:4]) ###============================================================================ ### Test the convert() method ###============================================================================ def test_convert_geo2apex(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.convert(60, 15, 'geo', 'apex', height=100), apex_out.geo2apex(60, 15, 100)) def test_convert_geo2qd(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.convert(60, 15, 'geo', 'qd', height=100), apex_out.geo2qd(60, 15, 100)) def test_convert_geo2mlt_nodate(): apex_out = Apex(date=2000, refh=300) with pytest.raises(ValueError): apex_out.convert(60, 15, 'geo', 'mlt') def test_convert_geo2mlt(): datetime = dt.datetime(2000, 3, 9, 14, 25, 58) apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.convert(60, 15, 'geo', 'mlt', height=100, ssheight=2e5, datetime=datetime)[1], apex_out.mlon2mlt(apex_out.geo2apex(60, 15, 100)[1], datetime, ssheight=2e5)) def test_convert_apex2geo(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.convert(60, 15, 'apex', 'geo', height=100, precision=1e-2), apex_out.apex2geo(60, 15, 100, precision=1e-2)[:-1]) def test_convert_apex2qd(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.convert(60, 15, 'apex', 'qd', height=100), apex_out.apex2qd(60, 15, height=100)) def test_convert_apex2mlt(): datetime = dt.datetime(2000, 3, 9, 14, 25, 58) apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.convert(60, 15, 'apex', 'mlt', height=100, datetime=datetime, ssheight=2e5)[1], apex_out.mlon2mlt(15, datetime, ssheight=2e5)) def test_convert_qd2geo(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.convert(60, 15, 'qd', 'geo', height=100, precision=1e-2), apex_out.qd2geo(60, 15, 100, precision=1e-2)[:-1]) def test_convert_qd2apex(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.convert(60, 15, 'qd', 'apex', height=100), apex_out.qd2apex(60, 15, height=100)) def test_convert_qd2mlt(): datetime = dt.datetime(2000, 3, 9, 14, 25, 58) apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.convert(60, 15, 'qd', 'mlt', height=100, datetime=datetime, ssheight=2e5)[1], apex_out.mlon2mlt(15, datetime, ssheight=2e5)) def test_convert_mlt2geo(): datetime = dt.datetime(2000, 3, 9, 14, 25, 58) apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.convert(60, 15, 'mlt', 'geo', height=100, datetime=datetime, precision=1e-2, ssheight=2e5), apex_out.apex2geo(60, apex_out.mlt2mlon(15, datetime, ssheight=2e5), 100, precision=1e-2)[:-1]) def test_convert_mlt2apex(): datetime = dt.datetime(2000, 3, 9, 14, 25, 58) apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.convert(60, 15, 'mlt', 'apex', height=100, datetime=datetime, ssheight=2e5), (60, apex_out.mlt2mlon(15, datetime, ssheight=2e5))) def test_convert_mlt2qd(): datetime = dt.datetime(2000, 3, 9, 14, 25, 58) apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.convert(60, 15, 'mlt', 'qd', height=100, datetime=datetime, ssheight=2e5), apex_out.apex2qd(60, apex_out.mlt2mlon(15, datetime, ssheight=2e5), height=100)) def test_convert_invalid_lat(): apex_out = Apex(date=2000, refh=300) with pytest.raises(ValueError): apex_out.convert(91, 0, 'geo', 'geo') with pytest.raises(ValueError): apex_out.convert(-91, 0, 'geo', 'geo') apex_out.convert(90, 0, 'geo', 'geo') apex_out.convert(-90, 0, 'geo', 'geo') assert_allclose(apex_out.convert(90+1e-5, 0, 'geo', 'apex'), apex_out.convert(90, 0, 'geo', 'apex'), rtol=0, atol=1e-8) def test_convert_invalid_transformation(): apex_out = Apex(date=2000, refh=300) with pytest.raises(NotImplementedError): apex_out.convert(0, 0, 'foobar', 'geo') with pytest.raises(NotImplementedError): apex_out.convert(0, 0, 'geo', 'foobar') ###============================================================================ ### Test the geo2apex() method ###============================================================================ def test_geo2apex(): apex_out = Apex(date=2000, refh=300) lat, lon = apex_out.geo2apex(60, 15, 100) assert_allclose((lat, lon), apex_out._geo2apex(60, 15, 100)) assert type(lat) != np.ndarray assert type(lon) != np.ndarray def test_geo2apex_vectorization(): apex_out = Apex(date=2000, refh=300) assert apex_out.geo2apex([60, 60], 15, 100)[0].shape == (2,) assert apex_out.geo2apex(60, [15, 15], 100)[0].shape == (2,) assert apex_out.geo2apex(60, 15, [100, 100])[0].shape == (2,) def test_geo2apex_invalid_lat(): apex_out = Apex(date=2000, refh=300) with pytest.raises(ValueError): apex_out.geo2apex(91, 0, 0) with pytest.raises(ValueError): apex_out.geo2apex(-91, 0, 0) apex_out.geo2apex(90, 0, 0) apex_out.geo2apex(-90, 0, 0) assert_allclose(apex_out.geo2apex(90+1e-5, 0, 0), apex_out.geo2apex(90, 0, 0), rtol=0, atol=1e-8) def test_geo2apex_undefined_warning(): apex_out = Apex(date=2000, refh=10000) with warnings.catch_warnings(record=True) as w: ret = apex_out.geo2apex(0, 0, 0) assert ret[0] == -9999 assert issubclass(w[-1].category, UserWarning) assert 'set to -9999 where' in str(w[-1].message) ###============================================================================ ### Test the apex2geo() method ###============================================================================ def test_apex2geo(): apex_out = Apex(date=2000, refh=300) lat, lon, error = apex_out.apex2geo(60, 15, 100, precision=1e-2) assert_allclose((lat, lon, error), apex_out.qd2geo(*apex_out.apex2qd(60, 15, 100), height=100, precision=1e-2)) assert type(lat) != np.ndarray assert type(lon) != np.ndarray assert type(error) != np.ndarray def test_apex2geo_vectorization(): apex_out = Apex(date=2000, refh=300) assert apex_out.apex2geo([60, 60], 15, 100)[0].shape == (2,) assert apex_out.apex2geo(60, [15, 15], 100)[0].shape == (2,) assert apex_out.apex2geo(60, 15, [100, 100])[0].shape == (2,) def test_apex2geo_invalid_lat(): apex_out = Apex(date=2000, refh=300) with pytest.raises(ValueError): apex_out.apex2geo(91, 0, 0, 1e-2) with pytest.raises(ValueError): apex_out.apex2geo(-91, 0, 0, 1e-2) apex_out.apex2geo(90, 0, 0, 1e-2) apex_out.apex2geo(-90, 0, 0, 1e-2) assert_allclose(apex_out.apex2geo(90+1e-5, 0, 0, 1e-2), apex_out.apex2geo(90, 0, 0, 1e-2), rtol=0, atol=1e-8) ###============================================================================ ### Test the geo2qd() method ###============================================================================ def test_geo2qd(): apex_out = Apex(date=2000, refh=300) lat, lon = apex_out.geo2qd(60, 15, 100) assert_allclose((lat, lon), apex_out._geo2qd(60, 15, 100)) assert type(lat) != np.ndarray assert type(lon) != np.ndarray def test_geo2qd_vectorization(): apex_out = Apex(date=2000, refh=300) assert apex_out.geo2qd([60, 60], 15, 100)[0].shape == (2,) assert apex_out.geo2qd(60, [15, 15], 100)[0].shape == (2,) assert apex_out.geo2qd(60, 15, [100, 100])[0].shape == (2,) def test_geo2qd_invalid_lat(): apex_out = Apex(date=2000, refh=300) with pytest.raises(ValueError): apex_out.geo2qd(91, 0, 0) with pytest.raises(ValueError): apex_out.geo2qd(-91, 0, 0) apex_out.geo2qd(90, 0, 0) apex_out.geo2qd(-90, 0, 0) assert_allclose(apex_out.geo2qd(90+1e-5, 0, 0), apex_out.geo2qd(90, 0, 0), rtol=0, atol=1e-8) ###============================================================================ ### Test the qd2geo() method ###============================================================================ def test_qd2geo(): apex_out = Apex(date=2000, refh=300) lat, lon, error = apex_out.qd2geo(60, 15, 100, precision=1e-2) assert_allclose((lat, lon, error), apex_out._qd2geo(60, 15, 100, 1e-2)) assert type(lat) != np.ndarray assert type(lon) != np.ndarray assert type(error) != np.ndarray def test_qd2geo_vectorization(): apex_out = Apex(date=2000, refh=300) assert apex_out.qd2geo([60, 60], 15, 100)[0].shape == (2,) assert apex_out.qd2geo(60, [15, 15], 100)[0].shape == (2,) assert apex_out.qd2geo(60, 15, [100, 100])[0].shape == (2,) def test_qd2geo_invalid_lat(): apex_out = Apex(date=2000, refh=300) with pytest.raises(ValueError): apex_out.qd2geo(91, 0, 0, precision=1e-2) with pytest.raises(ValueError): apex_out.qd2geo(-91, 0, 0, precision=1e-2) apex_out.qd2geo(90, 0, 0, precision=1e-2) apex_out.qd2geo(-90, 0, 0, precision=1e-2) assert_allclose(apex_out.qd2geo(90+1e-5, 0, 0, 1e-2), apex_out.qd2geo(90, 0, 0, 1e-2), rtol=0, atol=1e-8) ###============================================================================ ### Test the apex2qd() method ###============================================================================ def test_apex2qd(): apex_out = Apex(date=2000, refh=300) lat, lon = apex_out.apex2qd(60, 15, 100) assert_allclose((lat, lon), [60.498401, 15]) assert type(lat) != np.ndarray assert type(lon) != np.ndarray def test_apex2qd_vectorization(): apex_out = Apex(date=2000, refh=300) assert apex_out.apex2qd([60, 60], 15, 100)[0].shape == (2,) assert apex_out.apex2qd(60, [15, 15], 100)[0].shape == (2,) assert apex_out.apex2qd(60, 15, [100, 100])[0].shape == (2,) def test_apex2qd_invalid_lat(): apex_out = Apex(date=2000, refh=300) with pytest.raises(ValueError): apex_out.apex2qd(91, 0, 0) with pytest.raises(ValueError): apex_out.apex2qd(-91, 0, 0) apex_out.apex2qd(90, 0, 0) apex_out.apex2qd(-90, 0, 0) assert_allclose(apex_out.apex2qd(90+1e-5, 0, 0), apex_out.apex2qd(90, 0, 0), rtol=0, atol=1e-8) def test_apex2qd_apexheight_close(): apex_out = Apex(date=2000, refh=300) apex_out.apex2qd(0, 15, 300+1e-6) def test_apex2qd_apexheight_over(): apex_out = Apex(date=2000, refh=300) with pytest.raises(ApexHeightError): apex_out.apex2qd(0, 15, 301) ###============================================================================ ### Test the qd2apex() method ###============================================================================ def test_qd2apex(): apex_out = Apex(date=2000, refh=300) lat, lon = apex_out.qd2apex(60, 15, 100) assert_allclose((lat, lon), [59.491381, 15]) assert type(lat) != np.ndarray assert type(lon) != np.ndarray def test_qd2apex_vectorization(): apex_out = Apex(date=2000, refh=300) assert apex_out.qd2apex([60, 60], 15, 100)[0].shape == (2,) assert apex_out.qd2apex(60, [15, 15], 100)[0].shape == (2,) assert apex_out.qd2apex(60, 15, [100, 100])[0].shape == (2,) def test_qd2apex_invalid_lat(): apex_out = Apex(date=2000, refh=300) with pytest.raises(ValueError): apex_out.qd2apex(91, 0, 0) with pytest.raises(ValueError): apex_out.qd2apex(-91, 0, 0) apex_out.qd2apex(90, 0, 0) apex_out.qd2apex(-90, 0, 0) assert_allclose(apex_out.qd2apex(90+1e-5, 0, 0), apex_out.qd2apex(90, 0, 0), rtol=0, atol=1e-8) def test_qd2apex_apexheight_close(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.qd2apex(0, 15, 300-1e-5), apex_out.qd2apex(0, 15, 300)) def test_qd2apex_apexheight_over(): apex_out = Apex(date=2000, refh=300) with pytest.raises(ApexHeightError): apex_out.qd2apex(0, 15, 299) ###============================================================================ ### Test mlon2mlt() ###============================================================================ def test_mlon2mlt_scalar(): apex_out = Apex(date=2000, refh=300) mlon = apex_out.mlon2mlt(0, dt.datetime(2000, 2, 3, 4, 5, 6)) assert_allclose(mlon, 23.019629923502603) assert type(mlon) != np.ndarray def test_mlon2mlt_ssheight(): apex_out = Apex(date=2000, refh=300) mlt = apex_out.mlon2mlt(0, dt.datetime(2000, 2, 3, 4, 5, 6), ssheight=50*2000) assert_allclose(mlt, 23.026712036132814) def test_mlon2mlt_1Darray(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.mlon2mlt([0, 180], dt.datetime(2000, 2, 3, 4, 5, 6)), [23.019261, 11.019261], rtol=1e-4) def test_mlon2mlt_2Darray(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.mlon2mlt([[0, 180], [0, 180]], dt.datetime(2000, 2, 3, 4, 5, 6)), [[23.019261, 11.019261], [23.019261, 11.019261]], rtol=1e-4) def test_mlon2mlt_diffdates(): apex_out = Apex(date=2000, refh=300) dtime1 = dt.datetime(2000, 2, 3, 4, 5, 6) dtime2 = dt.datetime(2000, 2, 3, 5, 5, 6) assert apex_out.mlon2mlt(0, dtime1) != apex_out.mlon2mlt(0, dtime2) def test_mlon2mlt_offset(): apex_out = Apex(date=2000, refh=300) date = dt.datetime(2000, 2, 3, 4, 5, 6) assert_allclose(apex_out.mlon2mlt(0, date), apex_out.mlon2mlt(-15, date) + 1) assert_allclose(apex_out.mlon2mlt(0, date), apex_out.mlon2mlt(-10*15, date) + 10) def test_mlon2mlt_range(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.mlon2mlt(range(0, 361, 30), dt.datetime(2000, 2, 3, 4, 5, 6)), [23.01963, 1.01963, 3.01963, 5.01963, 7.01963, 9.01963, 11.01963, 13.01963, 15.01963, 17.01963, 19.01963, 21.01963, 23.01963], rtol=1e-4) ###============================================================================ ### Test mlt2mlon() ###============================================================================ def test_mlt2mlon_scalar(): apex_out = Apex(date=2000, refh=300) mlt = apex_out.mlt2mlon(0, dt.datetime(2000, 2, 3, 4, 5, 6)) assert_allclose(mlt, 14.705551147460938) assert type(mlt) != np.ndarray def test_mlt2mlon_ssheight(): apex_out = Apex(date=2000, refh=300) mlt = apex_out.mlt2mlon(0, dt.datetime(2000, 2, 3, 4, 5, 6), ssheight=50*2000) assert_allclose(mlt, 14.599319458007812) def test_mlt2mlon_1Darray(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.mlt2mlon([0, 12], dt.datetime(2000, 2, 3, 4, 5, 6)), [14.705551, 194.705551], rtol=1e-4) def test_mlt2mlon_2Darray(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.mlt2mlon([[0, 12], [0, 12]], dt.datetime(2000, 2, 3, 4, 5, 6)), [[14.705551, 194.705551], [14.705551, 194.705551]], rtol=1e-4) def test_mlt2mlon_diffdates(): apex_out = Apex(date=2000, refh=300) dtime1 = dt.datetime(2000, 2, 3, 4, 5, 6) dtime2 = dt.datetime(2000, 2, 3, 5, 5, 6) assert apex_out.mlt2mlon(0, dtime1) != apex_out.mlt2mlon(0, dtime2) def test_mlt2mlon_offset(): apex_out = Apex(date=2000, refh=300) date = dt.datetime(2000, 2, 3, 4, 5, 6) assert_allclose(apex_out.mlt2mlon(0, date), apex_out.mlt2mlon(1, date) - 15) assert_allclose(apex_out.mlt2mlon(0, date), apex_out.mlt2mlon(10, date) - 150) def test_mlt2mlon_range(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.mlt2mlon(range(0, 25, 2), dt.datetime(2000, 2, 3, 4, 5, 6)), [14.705551, 44.705551, 74.705551, 104.705551, 134.705551, 164.705551, 194.705551, 224.705551, 254.705551, 284.705551, 314.705551, 344.705551, 14.705551], rtol=1e-4) ###============================================================================ ### Test mlt/mlon back and forth ###============================================================================ def test_mlon2mlt2mlon(): apex_out = Apex(date=2000, refh=300) date = dt.datetime(2000, 2, 3, 4, 5, 6) assert_allclose(apex_out.mlon2mlt(apex_out.mlt2mlon(0, date), date), 0) assert_allclose(apex_out.mlon2mlt(apex_out.mlt2mlon(6, date), date), 6) assert_allclose(apex_out.mlon2mlt(apex_out.mlt2mlon(12, date), date), 12) assert_allclose(apex_out.mlon2mlt(apex_out.mlt2mlon(18, date), date), 18) assert_allclose(apex_out.mlon2mlt(apex_out.mlt2mlon(24, date), date), 0) def test_mlt2mlon2mlt(): apex_out = Apex(date=2000, refh=300) date = dt.datetime(2000, 2, 3, 4, 5, 6) assert_allclose(apex_out.mlt2mlon(apex_out.mlon2mlt(0, date), date), 0) assert_allclose(apex_out.mlt2mlon(apex_out.mlon2mlt(90, date), date), 90) assert_allclose(apex_out.mlt2mlon(apex_out.mlon2mlt(180, date), date), 180) assert_allclose(apex_out.mlt2mlon(apex_out.mlon2mlt(270, date), date), 270) assert_allclose(apex_out.mlt2mlon(apex_out.mlon2mlt(360, date), date), 0) ###============================================================================ ### Test the map_to_height() method ###============================================================================ def test_map_to_height(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.map_to_height(60, 15, 100, 10000, conjugate=False, precision=1e-10), (31.841459274291992, 17.916629791259766, 0)) assert_allclose(apex_out.map_to_height(30, 170, 100, 500, conjugate=False, precision=1e-2), (25.727252960205078, 169.60546875, 0.00017655163537710905)) def test_map_to_height_same_height(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.map_to_height(60, 15, 100, 100, conjugate=False, precision=1e-10), (60, 15, 3.4150946248701075e-6), rtol=1e-5) def test_map_to_height_conjugate(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.map_to_height(60, 15, 100, 10000, conjugate=True, precision=1e-10), (-25.424892425537109, 27.310417175292969, 1.2074182222931995e-6)) assert_allclose(apex_out.map_to_height(30, 170, 100, 500, conjugate=True, precision=1e-2), (-13.76642894744873, 164.24259948730469, 0.00056820799363777041)) def test_map_to_height_vectorization(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.map_to_height([60, 60], 15, 100, 100), ([60]*2, [15]*2, [3.4150946248701075e-6]*2), rtol=1e-5) assert_allclose(apex_out.map_to_height(60, [15, 15], 100, 100), ([60]*2, [15]*2, [3.4150946248701075e-6]*2), rtol=1e-5) assert_allclose(apex_out.map_to_height(60, 15, [100, 100], 100), ([60]*2, [15]*2, [3.4150946248701075e-6]*2), rtol=1e-5) assert_allclose(apex_out.map_to_height(60, 15, 100, [100, 100]), ([60]*2, [15]*2, [3.4150946248701075e-6]*2), rtol=1e-5) def test_map_to_height_ApexHeightError(): apex_out = Apex(date=2000, refh=300) with pytest.raises(ApexHeightError): apex_out.map_to_height(0, 15, 100, 10000) ###============================================================================ ### Test the map_E_to_height() method ###============================================================================ def test_map_E_to_height(): apex_out = Apex(date=2000, refh=300) out_60_15_100_500 = [0.7115211, 2.3562392, 0.57259707] out_60_15_100_500_234 = [1.560284, 3.439154, 0.782339] out_60_15_100_1000 = [0.677964, 2.089811, 0.558601] out_60_15_200_500 = [0.723773, 2.427366, 0.590826] out_60_30_100_500 = [0.686265, 2.375296, 0.600594] out_70_15_100_500 = [0.727605, 2.180817, 0.291414] # scalar assert_allclose(apex_out.map_E_to_height(60, 15, 100, 500, [1, 2, 3]), out_60_15_100_500, rtol=1e-5) assert_allclose(apex_out.map_E_to_height(60, 15, 100, 500, [2, 3, 4]), out_60_15_100_500_234, rtol=1e-5) assert_allclose(apex_out.map_E_to_height(60, 15, 100, 1000, [1, 2, 3]), out_60_15_100_1000, rtol=1e-5) assert_allclose(apex_out.map_E_to_height(60, 15, 200, 500, [1, 2, 3]), out_60_15_200_500, rtol=1e-5) assert_allclose(apex_out.map_E_to_height(60, 30, 100, 500, [1, 2, 3]), out_60_30_100_500, rtol=1e-5) assert_allclose(apex_out.map_E_to_height(70, 15, 100, 500, [1, 2, 3]), out_70_15_100_500, rtol=1e-5) # vectorize lat assert_allclose(apex_out.map_E_to_height([60, 70], 15, 100, 500, np.array([[1, 2, 3]]*2).T), np.array([out_60_15_100_500, out_70_15_100_500]).T, rtol=1e-5) # vectorize lon assert_allclose(apex_out.map_E_to_height(60, [15, 30], 100, 500, np.array([[1, 2, 3]]*2).T), np.array([out_60_15_100_500, out_60_30_100_500]).T, rtol=1e-5) # vectorize height assert_allclose(apex_out.map_E_to_height(60, 15, [100, 200], 500, np.array([[1, 2, 3]]*2).T), np.array([out_60_15_100_500, out_60_15_200_500]).T, rtol=1e-5) # vectorize newheight assert_allclose(apex_out.map_E_to_height(60, 15, 100, [500, 1000], np.array([[1, 2, 3]]*2).T), np.array([out_60_15_100_500, out_60_15_100_1000]).T, rtol=1e-5) # vectorize E assert_allclose(apex_out.map_E_to_height(60, 15, 100, 500, np.array([[1, 2, 3], [2, 3, 4]]).T), np.array([out_60_15_100_500, out_60_15_100_500_234]).T, rtol=1e-5) ###============================================================================ ### Test the map_V_to_height() method ###============================================================================ def test_map_V_to_height(): apex_out = Apex(date=2000, refh=300) out_60_15_100_500 = [0.819719, 2.845114, 0.695437] out_60_15_100_500_234 = [1.830277, 4.14345, 0.947624] out_60_15_100_1000 = [0.924577, 3.149964, 0.851343] out_60_15_200_500 = [0.803882, 2.793206, 0.682839] out_60_30_100_500 = [0.761412, 2.878837, 0.736549] out_70_15_100_500 = [0.846819, 2.592572, 0.347919] # scalar assert_allclose(apex_out.map_V_to_height(60, 15, 100, 500, [1, 2, 3]), out_60_15_100_500, rtol=1e-5) assert_allclose(apex_out.map_V_to_height(60, 15, 100, 500, [2, 3, 4]), out_60_15_100_500_234, rtol=1e-5) assert_allclose(apex_out.map_V_to_height(60, 15, 100, 1000, [1, 2, 3]), out_60_15_100_1000, rtol=1e-5) assert_allclose(apex_out.map_V_to_height(60, 15, 200, 500, [1, 2, 3]), out_60_15_200_500, rtol=1e-5) assert_allclose(apex_out.map_V_to_height(60, 30, 100, 500, [1, 2, 3]), out_60_30_100_500, rtol=1e-5) assert_allclose(apex_out.map_V_to_height(70, 15, 100, 500, [1, 2, 3]), out_70_15_100_500, rtol=1e-5) # vectorize lat assert_allclose(apex_out.map_V_to_height([60, 70], 15, 100, 500, np.array([[1, 2, 3]]*2).T), np.array([out_60_15_100_500, out_70_15_100_500]).T, rtol=1e-5) # vectorize lon assert_allclose(apex_out.map_V_to_height(60, [15, 30], 100, 500, np.array([[1, 2, 3]]*2).T), np.array([out_60_15_100_500, out_60_30_100_500]).T, rtol=1e-5) # vectorize height assert_allclose(apex_out.map_V_to_height(60, 15, [100, 200], 500, np.array([[1, 2, 3]]*2).T), np.array([out_60_15_100_500, out_60_15_200_500]).T, rtol=1e-5) # vectorize newheight assert_allclose(apex_out.map_V_to_height(60, 15, 100, [500, 1000], np.array([[1, 2, 3]]*2).T), np.array([out_60_15_100_500, out_60_15_100_1000]).T, rtol=1e-5) # vectorize E assert_allclose(apex_out.map_V_to_height(60, 15, 100, 500, np.array([[1, 2, 3], [2, 3, 4]]).T), np.array([out_60_15_100_500, out_60_15_100_500_234]).T, rtol=1e-5) ###============================================================================ ### Test basevectors_qd() ###============================================================================ # test coords def test_basevectors_qd_scalar_geo(): apex_out = Apex(date=2000, refh=300) assert_allclose(apex_out.basevectors_qd(60, 15, 100, coords='geo'), apex_out._basevec(60, 15, 100)) def test_basevectors_qd_scalar_apex(): apex_out = Apex(date=2000, refh=300) glat, glon, _ = apex_out.apex2geo(60, 15, 100, precision=1e-2) assert_allclose(apex_out.basevectors_qd(60, 15, 100, coords='apex', precision=1e-2), apex_out._basevec(glat, glon, 100)) def test_basevectors_qd_scalar_qd(): apex_out = Apex(date=2000, refh=300) glat, glon, _ = apex_out.qd2geo(60, 15, 100, precision=1e-2) assert_allclose(apex_out.basevectors_qd(60, 15, 100, coords='qd', precision=1e-2), apex_out._basevec(glat, glon, 100)) # test shapes and vectorization of arguments def test_basevectors_qd_scalar_shape(): apex_out = Apex(date=2000, refh=300) ret = apex_out.basevectors_qd(60, 15, 100) for r in ret: assert r.shape == (2,) def test_basevectors_qd_vectorization(): apex_out = Apex(date=2000, refh=300) ret = apex_out.basevectors_qd([60, 60, 60, 60], 15, 100, coords='geo') for r in ret: assert r.shape == (2, 4) ret = apex_out.basevectors_qd(60, [15, 15, 15, 15], 100, coords='geo') for r in ret: assert r.shape == (2, 4) ret = apex_out.basevectors_qd(60, 15, [100, 100, 100, 100], coords='geo') for r in ret: assert r.shape == (2, 4) # test array return values def test_basevectors_qd_array(): apex_out = Apex(date=2000, refh=300) f1, f2 = apex_out.basevectors_qd([0, 30], 15, 100, coords='geo') f1_lat0, f2_lat0 = apex_out._basevec(0, 15, 100) f1_lat30, f2_lat30 = apex_out._basevec(30, 15, 100) assert_allclose(f1[:, 0], f1_lat0) assert_allclose(f2[:, 0], f2_lat0) assert_allclose(f1[:, 1], f1_lat30) assert_allclose(f2[:, 1], f2_lat30) ###============================================================================ ### Test basevectors_apex() ###============================================================================ # test against return from _geo2apexall for different coords def test_basevectors_apex_scalar_geo(): apex_out = Apex(date=2000, refh=300) (f1, f2, f3, g1, g2, g3, d1, d2, d3, e1, e2, e3) = apex_out.basevectors_apex(60, 15, 100, coords='geo') (_, _, _, _, f1_, f2_, _, d1_, d2_, d3_, _, e1_, e2_, e3_) = apex_out._geo2apexall(60, 15, 100) assert_allclose(f1, f1_) assert_allclose(f2, f2_) assert_allclose(d1, d1_) assert_allclose(d2, d2_) assert_allclose(d3, d3_) assert_allclose(e1, e1_) assert_allclose(e2, e2_) assert_allclose(e3, e3_) def test_basevectors_apex_scalar_apex(): apex_out = Apex(date=2000, refh=300) (f1, f2, f3, g1, g2, g3, d1, d2, d3, e1, e2, e3) = apex_out.basevectors_apex(60, 15, 100, coords='apex', precision=1e-2) glat, glon, _ = apex_out.apex2geo(60, 15, 100, precision=1e-2) (_, _, _, _, f1_, f2_, _, d1_, d2_, d3_, _, e1_, e2_, e3_) = apex_out._geo2apexall(glat, glon, 100) assert_allclose(f1, f1_) assert_allclose(f2, f2_) assert_allclose(d1, d1_) assert_allclose(d2, d2_) assert_allclose(d3, d3_) assert_allclose(e1, e1_) assert_allclose(e2, e2_) assert_allclose(e3, e3_) def test_basevectors_apex_scalar_qd(): apex_out = Apex(date=2000, refh=300) (f1, f2, f3, g1, g2, g3, d1, d2, d3, e1, e2, e3) = apex_out.basevectors_apex(60, 15, 100, coords='qd', precision=1e-2) glat, glon, _ = apex_out.qd2geo(60, 15, 100, precision=1e-2) (_, _, _, _, f1_, f2_, _, d1_, d2_, d3_, _, e1_, e2_, e3_) = apex_out._geo2apexall(glat, glon, 100) assert_allclose(f1, f1_) assert_allclose(f2, f2_) assert_allclose(d1, d1_) assert_allclose(d2, d2_) assert_allclose(d3, d3_) assert_allclose(e1, e1_) assert_allclose(e2, e2_) assert_allclose(e3, e3_) # test shapes and vectorization of arguments def test_basevectors_apex_scalar_shape(): apex_out = Apex(date=2000, refh=300) ret = apex_out.basevectors_apex(60, 15, 100, precision=1e-2) for r in ret[:2]: assert r.shape == (2,) for r in ret[2:]: assert r.shape == (3,) def test_basevectors_apex_vectorization(): apex_out = Apex(date=2000, refh=300) ret = apex_out.basevectors_apex([60, 60, 60, 60], 15, 100) for r in ret[:2]: assert r.shape == (2, 4) for r in ret[2:]: assert r.shape == (3, 4) ret = apex_out.basevectors_apex(60, [15, 15, 15, 15], 100) for r in ret[:2]: assert r.shape == (2, 4) for r in ret[2:]: assert r.shape == (3, 4) ret = apex_out.basevectors_apex(60, 15, [100, 100, 100, 100]) for r in ret[:2]: assert r.shape == (2, 4) for r in ret[2:]: assert r.shape == (3, 4) # test correct vectorization of height def test_basevectors_apex_vectorization_height(): apex_out = Apex(date=2000, refh=0) (f1, f2, f3, g1, g2, g3, d1, d2, d3, e1, e2, e3) = apex_out.basevectors_apex(60, 15, [200, 400], coords='geo') (_, _, _, _, f1_1, f2_1, _, d1_1, d2_1, d3_1, _, e1_1, e2_1, e3_1) = apex_out._geo2apexall(60, 15, 200) (_, _, _, _, f1_2, f2_2, _, d1_2, d2_2, d3_2, _, e1_2, e2_2, e3_2) = apex_out._geo2apexall(60, 15, 400) assert_allclose(f1[:, 0], f1_1) assert_allclose(f2[:, 0], f2_1) assert_allclose(d1[:, 0], d1_1) assert_allclose(d2[:, 0], d2_1) assert_allclose(d3[:, 0], d3_1) assert_allclose(e1[:, 0], e1_1) assert_allclose(e2[:, 0], e2_1) assert_allclose(e3[:, 0], e3_1) assert_allclose(f3[:, 0], np.array([-0.088671, -0.018272, 0.993576]), rtol=1e-4) assert_allclose(g1[:, 0], np.array([0.903098, 0.245273, 0.085107]), rtol=1e-4) assert_allclose(g2[:, 0], np.array([-0.103495, 1.072078, 0.01048]), rtol=1e-4) assert_allclose(g3[:, 0], np.array([0, 0, 1.006465]), rtol=1e-4) assert_allclose(f1[:, 1], f1_2) assert_allclose(f2[:, 1], f2_2)
assert_allclose(d1[:, 1], d1_2)
numpy.testing.assert_allclose
import numpy as np import cv2 import math import os import random from PIL import Image, ImageDraw import csv os.system("mkdir data1") length = [7,15] width = [1,3] color = [(255,0,0),(0,0,255)] itr = 0 for i in length: if(i==7): label1 = 0 else: label1 = 1 for j in width: if j == 1: label2 = 0 else: label2 = 1 for k in range(0,12): theta = k*15*(math.pi)/180 for c in color: if(c==(255,0,0)): label = 0 for r in range(1000): im1 = np.zeros((28,28,3),dtype='int') im = Image.fromarray(im1,'RGB') line1 = ImageDraw.Draw(im) y2 = i*(math.sin(theta)) x2 = i*(math.cos(theta)) xshift=random.randint(int((x2/2)-14),int(14-(x2/2))) yshift = random.randint(int((y2/2)-14),int(14-(y2/2))) #point1,point2 = (int(14- (x2/2) +xshift),int(14 + (y2/2) + yshift)),(int(14 + (x2/2) + xshift),int(14 - (y2/2) + yshift)) #point1, point2 = (x1, y1), (x2, y2) line1.line((int(14- (x2/2) +xshift),int(14 + (y2/2) + yshift),int(14 + (x2/2) + xshift),int(14 - (y2/2) + yshift)), fill = c, width=j) iname = str(itr)+".jpg" # itr+=1 iname = str(label1)+"_"+str(label2)+"_"+str(k)+"_"+str(label)+str(r+1)+".jpg" #writer.writerow([str(itr),str(iname)]) im.save("data1/"+iname) def makeVideo(outputVideoname): fourcc = cv2.VideoWriter_fourcc(*'mp4v') outputVideo = cv2.VideoWriter(outputVideoname,fourcc,2,(84,84)) for i in length: if(i==7): label1 = 0 else: label1 = 1 for j in width: if j == 1: label2 = 0 else: label2 = 1 for k in range(0,12): for c in color: if(c==(255,0,0)): label = 0 else: label = 1 for r in range(0,10): frame = Image.new('RGB',(84,84)) iname1 = str(label1)+"_"+str(label2)+"_"+str(k)+"_"+str(label)+""+str(r*9+1)+".jpg" iname2 = str(label1)+"_"+str(label2)+"_"+str(k)+"_"+str(label)+""+str(r*9+2)+".jpg" iname3 = str(label1)+"_"+str(label2)+"_"+str(k)+"_"+str(label)+""+str(r*9+3)+".jpg" iname4 = str(label1)+"_"+str(label2)+"_"+str(k)+"_"+str(label)+""+str(r*9+4)+".jpg" iname5 = str(label1)+"_"+str(label2)+"_"+str(k)+"_"+str(label)+""+str(r*9+5)+".jpg" iname6 = str(label1)+"_"+str(label2)+"_"+str(k)+"_"+str(label)+""+str(r*9+6)+".jpg" iname7 = str(label1)+"_"+str(label2)+"_"+str(k)+"_"+str(label)+""+str(r*9+7)+".jpg" iname8 = str(label1)+"_"+str(label2)+"_"+str(k)+"_"+str(label)+""+str(r*9+8)+".jpg" iname9 = str(label1)+"_"+str(label2)+"_"+str(k)+"_"+str(label)+""+str(r*9+9)+".jpg" frame.paste(Image.open("data1/"+iname1),(0,0,28,28)) frame.paste(Image.open("data1/"+iname2), (28,0,56,28)) frame.paste(Image.open("data1/"+iname3), (56,0,84,28)) frame.paste(Image.open("data1/"+iname4), (0,28,28,56)) frame.paste(Image.open("data1/"+iname5), (28,28,56,56)) frame.paste(Image.open("data1/"+iname6), (56,28,84,56)) frame.paste(Image.open("data1/"+iname7), (0,56,28,84)) frame.paste(Image.open("data1/"+iname8), (28,56,56,84)) frame.paste(Image.open("data1/"+iname9), (56,56,84,84)) frame = cv2.cvtColor(
np.asarray(frame,dtype=np.uint8)
numpy.asarray
import numpy as np from pathlib import Path from sklearn.model_selection import train_test_split import pickle from sklearn.preprocessing import MinMaxScaler, StandardScaler class ExercisePerformanceDataCreator: def __init__(self, config): self._config = config def get_feature_datasets(self): data_dir = self._config.dataset.path is_kinect = True labels = self._config.dataset.scores_path train_names, test_names = self._get_split_datasets(data_dir) # Get validation set names validation_split = 0.1 slice_indx = int(len(train_names) - len(train_names) * validation_split) validation_names = train_names[slice_indx:] train_names = train_names[:slice_indx] # Get data train_features = [] train_labels = [] test_features = [] test_labels = [] val_features = [] val_labels = [] for name in train_names: data, labels = self._get_data_instance(name, labels, data_dir, True, is_kinect) for i in range(data.shape[0]): train_features.append(data[i]) for i in range(labels.shape[0]): train_labels.append(labels[i]) train_features = np.array(train_features) train_labels = np.array(train_labels) for name in test_names: data, labels = self._get_data_instance(name, labels, data_dir, False, is_kinect) for i in range(data.shape[0]): test_features.append(data[i]) test_labels.append(labels) test_features = np.array(test_features) test_labels = np.array(test_labels) for name in validation_names: data, labels = self._get_data_instance(name, labels, data_dir, True, is_kinect) for i in range(data.shape[0]): val_features.append(data[i]) for i in range(labels.shape[0]): val_labels.append(labels[i]) val_features = np.array(val_features) val_labels =
np.array(val_labels)
numpy.array
import numpy as np from autode.log import logger from scipy.spatial import distance_matrix from autode.geom import get_rot_mat_kabsch, get_rot_mat_euler_from_terms class AtomType: @property def n_empty_sites(self): """Number of empty sites on this template""" return len(self._site_coords) def empty_site(self): """Iterator for the coordinate of the next free site""" return self._site_coords.pop(0) def empty_site_mr(self, point, other_coords): """Return the site on this atom that is furthest from all other coordinates using a simple 1/r potential where r is the distance from the site to the other coordinates Arguments: point (np.ndarray): Coordinate of this atom, shape = (3,) other_coords (np.ndarray): Other coordinates, shape = (N, 3) Returns: (np.ndarray): Coordinate of the site centered at the origin """ dists = np.array([np.linalg.norm(other_coords - (site + point), axis=1) for site in self._site_coords]) repulsion = np.sum(np.power(dists, -1), axis=1) return self._site_coords.pop(np.argmin(repulsion)) def reset_onto(self, points, coord): """ Reset the site coordinates given a set of points. Ignore any points located exactly at the origin and, once fitted, remove the sites that are coincident with the points Arguments: points (iterable(np.ndarray)): List (or iterable) of points that that the sites need to be reset onto coord (np.ndarray): Coordinate of this atom """ origin = np.zeros(3) points = np.array([(point - coord) / np.linalg.norm(point - coord) for point in points if not np.allclose(point, origin)]) # Take a copy of the template coordinates to rotate and delete site_coords = np.copy(self.template_site_coords) if len(site_coords) == len(points) or len(points) == 0: logger.info('No reset needed - sites were all occupied') return logger.info(f'Rotating {len(site_coords)} sites onto' f' {len(points)} points') # Rotate all the sites such that n sites are optimally orientated onto # the (fixed) points rot_mat = get_rot_mat_kabsch(p_matrix=site_coords[:len(points)], q_matrix=points) site_coords = np.dot(rot_mat, site_coords.T).T # For each point (row) calculate the minimum distance to a site on # this atom min_dists = np.min(distance_matrix(site_coords, points), axis=1) # Re-populate the empty sites, which are the sites that are not the # closest to the points self._site_coords = [coord for i, coord in enumerate(site_coords) if i not in np.argsort(min_dists)[:len(points)]] return None def rotate_empty_onto(self, point, coord): """Rotate the site coordinates such that an empty site is coincident with the vector from a coordinate to a point, and remove the site from the list of available sites""" return self.rotate_onto(point, coord, site=self.empty_site()) def rotate_randomly(self): """Rotate the sites randomly to prevent zero cross products""" point = np.copy(self._site_coords[0]) point += np.random.uniform(0.01, 0.02, size=3) self.rotate_onto(point=point, coord=np.zeros(3), site=self._site_coords[0]) return def rotate_onto(self, point, coord, site): """ Rotate this atom type so a site is coincident with a point if this atom is at a coord i.e.:: site / / --> point--------coord point--site--coord ----------------------------------------------------------------------- Arguments: point (np.ndarray): shape = (3,) coord (np.ndarray): shape = (3,) site (np.ndarray): shapte = (3,) """ vector = point - coord normal = np.cross(site, vector) normal /= np.linalg.norm(normal) # Sites are normal vectors, no no need for mod arg = np.dot(site, vector) / np.linalg.norm(vector) # cos(-θ/2) = √(arg + 1) / √2 a = np.sqrt(1.0 + arg) / np.sqrt(2) # sin(-θ/2) = √(1-arg) / √2 b, c, d = -normal * (np.sqrt(1.0 - arg) / np.sqrt(2)) # 3D rotation matrix from the Euler–Rodrigues formula rot_matrix = get_rot_mat_euler_from_terms(a=a, b=b, c=c, d=d) # Rotate all the sites (no need to translate as they're already # positioned around the origin) self._site_coords = [
np.matmul(rot_matrix, site)
numpy.matmul
import numpy as np import cv2 import transformations as trans from record import VideoRecorder, PictureRecorder def main(): """Texture mapping application. Mouse controls: - Use the left mouse button and drag to move mesh vertices. - Click an empty area to create a new vertex/point. - Right-click a vertex to remove it. Keyboard controls: - r: Reset the deformation. - t: Use the deformed mesh as the new base mesh. - o: Toggle drawing the mesh itself. - p: Save screenshot in the outputs folder. - s: Start/stop recording. Result is saved in the outputs folder. - q: Quit the application. """ image = cv2.imread('./inputs/po.jpg') gui = MeshGUI(2, 2, image) gui.loop() def dist(a, b): return np.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2) def triangle_properties(triangle): pos = np.min(triangle, axis=0) upper_right = np.max(triangle, axis=0) size = upper_right - pos return np.int32(pos), np.int32(size) class TriangleMesh: """2D triangle mesh. """ def __init__(self, width, height, cols, rows, offset=30): """Create a new grid-based triangle mesh. :param width: Mesh width. :param height: Mesh height. :param cols: Number of columns for the mesh grid. :param rows: Number of rows for the mesh grid. :param offset: Offset mesh from edges. """ self.width = width self.height = height self.base_grid = self._create_grid(cols, rows, offset) self.grid = self.base_grid.copy() self.triangles = None self.update_indexes = None self.update() self.observers = [] def add_observer(self, obj): """Observer will be notified on mesh updates. :param obj: Observable object (has an _update(indices) method). """ self.observers.append(obj) def _dirty(self, indices=None): # Notify all observers for ob in self.observers: ob.update(indices) def reset(self): """Reset mesh deformation. """ self.grid = self.base_grid.copy() self.update() self._dirty() def switch_base(self): """Use deformed mesh as the new base mesh. """ self.base_grid = self.grid.copy() self.update() self._dirty() def triangles_rounded(self): return self.triangles.astype(np.int32) def add_point(self, x, y): """Add the specified point to mesh and _update triangle definitions. Notify observers. :param x: :param y: """ self.base_grid.append((x, y)) self.grid.append((x, y)) self.update() self._dirty() def delete_point(self, i): """Remove point at index i. Notify observers. :param i: """ del self.grid[i] del self.base_grid[i] self.update() self._dirty() def get_point_idx(self, point): """Get index of point in mesh. :param point: :return: Index. """ return self.grid.index(tuple(point)) def update(self): """Update triangles and point indices. """ self._update_triangles() self._update_indices() def _update_triangles(self): subdiv = cv2.Subdiv2D((0, 0, self.width, self.height)) subdiv.insert(self.grid) tri = subdiv.getTriangleList() # 3 points per triangle, 2 coordinates per point self.triangles =
np.reshape(tri, (tri.shape[0], 3, 2))
numpy.reshape
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Sep 27 16:46:45 2020 @author: pfm """ from scipy.spatial.distance import cdist import numpy as np # Filename: kdtw_cdist.py # Python source code for the "Kernelized" Dynamic Time Warping similarity (as defined in the reference below). # Author: <NAME> # Version: V1.0 du 13/09/2014, # Licence: GPL # ****************************************************************** # This software and description is free delivered "AS IS" with no # guaranties for work at all. Its up to you testing it modify it as # you like, but no help could be expected from me due to lag of time # at the moment. I will answer short relevant questions and help as # my time allow it. I have tested it played with it and found no # problems in stability or malfunctions so far. # Have fun. # ***************************************************************** # Please cite as: # @article{marteau:hal-00486916, # AUTHOR = {Marteau, Pierre-Francois and <NAME>}, # TITLE = {{On Recursive Edit Distance Kernels with Application to Time Series Classification}}, # JOURNAL = {{IEEE Transactions on Neural Networks and Learning Systems}}, # PAGES = {1-14}, # YEAR = {2014}, # MONTH = Jun, # KEYWORDS = {Elastic distance, Time warp kernel, Time warp inner product, Definiteness, Time series classification, SVM}, # DOI = {10.1109/TNNLS.2014.2333876}, # URL = {http://hal.inria.fr/hal-00486916} # } # ''' # input A: first multivariate time series: array of array (nxd), n is the number of sample, d is the dimension of each sample # intput B: second multivariate time series: array of array (nxd), n is the number of sample, d is the dimension of each sample # input local_kernel: matrix of local kernel evaluations ''' def kdtw_lk(A, B, local_kernel): d=np.shape(A)[1] Z=[np.zeros(d)] A = np.concatenate((Z,A), axis=0) B = np.concatenate((Z,B), axis=0) [la,d] =
np.shape(A)
numpy.shape
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'appMainWindow.ui' # # Created by: PyQt5 UI code generator 5.13.2 # # WARNING! All changes made in this file will be lost! import sys import time from datetime import datetime from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import pyqtSlot from UI_appMainWindow import Ui_MainWindow import ShapeRecognitionV2 as sr import cv2 import numpy as np import os.path from imageio import imwrite import matplotlib.pyplot as plt from scipy.ndimage.interpolation import rotate import scipy.ndimage import scipy.interpolate as interp from PIL import Image as PILImage from math import sqrt import ntpath from scipy.ndimage.morphology import binary_opening import skimage.exposure as exposure #import libtiff import worker from PyQt5.QtCore import QThread import ctypes as ct from ALP4 import * class appMainWindow(QtWidgets.QMainWindow): def __init__(self): #libtiff.libtiff_ctypes.suppress_warnings() #libtiff.TIFFSetWarningHandler(_null_warning_handler) super(appMainWindow, self).__init__() self.ui = Ui_MainWindow() self.ui.setupUi(self) self.sceneCamera = QtWidgets.QGraphicsScene() self.sceneMask = QtWidgets.QGraphicsScene() self.show() self.fileNameCameraImage = "" self.ui.btn_CamImageImport.clicked.connect(self.onClick_CamImageImport) self.ui.btn_Calibrate.clicked.connect(self.onClick_Calibrate) self.ui.btn_SaveCalibration.clicked.connect(self.onClick_SaveCalibration) self.ui.cbox_LockCalibration.clicked.connect(self.onClick_LockCalibration) self.ui.btn_DMDMaskGen.clicked.connect(self.onClick_DMDMaskGen) self.ui.btn_DMDMaskSave.clicked.connect(self.onClick_DMDMaskSave) self.ui.btn_getThresholdValues.clicked.connect(self.onClick_GetThresholdValues) self.ui.btn_MaskToAdd.clicked.connect(self.onClick_MaskToAddImport) self.ui.btn_SendCalParameters.clicked.connect(self.onClick_SendCalParameters) self.ui.slider_thresholdValue.valueChanged.connect(self.valueChange_ThresholdValue) self.showImageInView("./TestImages/Vialux_DMD.png", self.ui.view_CameraImage) self.showImageInView("./TestImages/UoL_logo.jpeg", self.ui.view_DMDMaskImage) self.CalibrationValuesFile = './Calibration/CalibrationValues.txt' self.CalibrationImageFile = './Calibration/CalibrationImageFile.txt' self.maskCountCalibration = 1 self.maskCountThreshold = 1 self.maskCountSlit = 1 self.maskCountPinhole = 1 if os.path.isfile(self.CalibrationValuesFile) and os.path.isfile(self.CalibrationImageFile): self.calibrationValuesStorage = np.loadtxt(self.CalibrationValuesFile, dtype=float) self.ui.txt_DMDSizeX.setPlainText(str(self.calibrationValuesStorage[0])) self.ui.txt_DMDSizeY.setPlainText(str(self.calibrationValuesStorage[1])) if self.calibrationValuesStorage[2] == 1: self.ui.radioButton_CamDMD2ImageMask.setChecked(True) else: self.ui.radioButton_CamDMD1ImageMask.setChecked(True) self.ui.txt_CalPositionX.setPlainText(str(self.calibrationValuesStorage[3])) self.ui.txt_CalPositionY.setPlainText(str(self.calibrationValuesStorage[4])) self.ui.txt_CalRotation.setPlainText(str(self.calibrationValuesStorage[5])) self.ui.txt_CalWidth.setPlainText(str(self.calibrationValuesStorage[6])) self.ui.txt_CalHeight.setPlainText(str(self.calibrationValuesStorage[7])) self.ui.txt_CalibrationThreshold.setPlainText(str(self.calibrationValuesStorage[8])) imageFile = open(self.CalibrationImageFile,'r') self.fileNameCameraImage = imageFile.read() self.calibrationImageStorage = self.fileNameCameraImage imageFile.close() #if self.calibrationImageStorage try: self.onClick_Calibrate() except: error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('Calibration Image Not Found.') error_dialog.exec_() self.MaskGeneratedFlag = False self.DMDConnectFlag = False self.DMDConnectionLostFlag = False self.DMDDisplayFlag = False self.DMDReconnectCount = 0 self.DMDReconnectAttemptLimit = 10 self.ui.btn_ConnectDMD.clicked.connect(self.onClick_ConnectDMD) self.ui.btn_DisconnectDMD.clicked.connect(self.onClick_DisconnectDMD) self.ui.btn_HaltDMD.clicked.connect(self.onClick_HaltDMD) self.ui.btn_CamDMD1DMD.clicked.connect(self.onClick_CamDMD1DMD) self.ui.btn_CamDMD2DMD.clicked.connect(self.onClick_CamDMD2DMD) self.ui.btn_DisplayCurrentDMD.clicked.connect(self.onClick_DMDDisplayCurrentMask) self.ui.btn_DisplayFileDMD.clicked.connect(self.onClick_DMDDisplayFileMask) ###### Threading # Create worker and thread inside form - no parents! self.workerObj = worker.Worker() self.thread = QThread() # Connect Workers Signals to Form method slots to post data. self.workerObj.statusCheckDMDTimer.connect(self.statusCheckDMD) # Move the Worker object to the Thread object self.workerObj.moveToThread(self.thread) # Connect Worker Signals to the Thread slots self.workerObj.finished.connect(self.thread.quit) # Connect Thread started signal to Worker operational slot method self.thread.started.connect(self.workerObj.procCounter) # * - Thread finished signal will close the app if you want! #self.thread.finished.connect(app.exit) # Start the thread self.thread.start() ############# self.onClick_ConnectDMD() if self.DMDConnectFlag: self.onClick_CamDMD1DMD() return def statusCheckDMD(self): now = datetime.now() currentTime = now.strftime("%H:%M:%S") if self.DMDConnectionLostFlag: print('Trying to reconnect at: ', currentTime) print('Connection attempt: ', self.DMDReconnectCount) if self.DMDConnectFlag and not(self.DMDConnectionLostFlag): try: testVal = int(self.DMD.DevInquire(inquireType = ALP_USB_CONNECTION).value) if testVal != 0: self.ui.view_DMDConnectionStatus.setPixmap(QtGui.QPixmap("./TestImages/orange.png")) self.DMDConnectionLostFlag = True self.DMDReconnectCount = 0 print('Disconnected at: ', currentTime) else: print('Connected at: ', currentTime) except: self.ui.view_DMDConnectionStatus.setPixmap(QtGui.QPixmap("./TestImages/orange.png")) self.DMDConnectionLostFlag = True self.DMDReconnectCount = 0 print('Disconnected at: ', currentTime) if self.DMDConnectFlag and self.DMDConnectionLostFlag and self.DMDReconnectCount < self.DMDReconnectAttemptLimit: try: # self.DMD.Halt() # if self.DMDDisplayFlag == True: # self.DMD.FreeSeq() self.DMDConnectFlag = False self.DMD.Free() except: self.DMDReconnectCount = self.DMDReconnectCount + 1 if not(self.DMDConnectFlag) and self.DMDConnectionLostFlag and self.DMDReconnectCount < self.DMDReconnectAttemptLimit: try: self.DMD = ALP4(version = '4.3', libDir = 'C:/Program Files/ALP-4.3/ALP-4.3 API') self.DMD.Initialize() self.DMDConnectFlag = True self.DMDConnectionLostFlag = False self.DMDReconnectCount = 0 print('Reconnected at: ', currentTime) self.ui.view_DMDConnectionStatus.setPixmap(QtGui.QPixmap("./TestImages/green.png")) return except: self.DMDReconnectCount = self.DMDReconnectCount + 1 if self.DMDReconnectCount >= self.DMDReconnectAttemptLimit: self.DMDConnectFlag = False self.DMDDisplayFlag = False self.DMDConnectionLostFlag = False self.DMDReconnectCount = 0 print('Reconnect failed at: ', currentTime) self.ui.view_DMDConnectionStatus.setPixmap(QtGui.QPixmap("./TestImages/red.png")) error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('DMD connection lost!') error_dialog.exec_() return def showImageInView(self, image, view): if isinstance(image, str):# or type(image) is np.ndarray: imagePixMap = QtGui.QPixmap(image)#.scaled(300,300, aspectRatioMode=QtCore.Qt.KeepAspectRatio, transformMode=QtCore.Qt.SmoothTransformation) else: height, width, chanel = image.shape bytesPerChanel = 3 * width imagePixMap = QtGui.QImage(image, width, height, bytesPerChanel, QtGui.QImage.Format_RGB888)#.scaled(300,300, aspectRatioMode=QtCore.Qt.KeepAspectRatio, transformMode=QtCore.Qt.SmoothTransformation) view.setPixmap(QtGui.QPixmap(imagePixMap)) view.repaint() return def maskGenerationCalibration(self, CamDMD2Bool): xSize = int(float(self.ui.txt_DMDSizeX.toPlainText())) ySize = int(float(self.ui.txt_DMDSizeY.toPlainText())) maskCentreX = int(float(self.ui.txt_DMDCalibrationMaskPositionX.toPlainText())) maskCentreY = int(float(self.ui.txt_DMDCalibrationMaskPositionY.toPlainText())) maskHeight = int(float(self.ui.txt_DMDCalibrationMaskHeight.toPlainText())) maskWidth = int(float(self.ui.txt_DMDCalibrationMaskWidth.toPlainText())) maskRotation = float(self.ui.txt_DMDCalibrationMaskRotation.toPlainText()) centreCircleRadius = float(self.ui.txt_CentreCircleSize.toPlainText()) if CamDMD2Bool: localMask = np.zeros((maskHeight, maskWidth), dtype=np.uint8) else: localMask = np.ones((maskHeight, maskWidth), dtype=np.uint8) * 255 for x in range(maskWidth): for y in range(maskHeight): if sqrt(((x - (maskWidth/2)) ** 2) + ((y - (maskHeight/2)) ** 2)) < centreCircleRadius: if CamDMD2Bool: localMask[y, x] = 255 else: localMask[y, x] = 0 shiftX = -maskCentreX shiftY = -maskCentreY if CamDMD2Bool: localMask = rotate(localMask, angle = maskRotation, mode='constant', cval=255) rotHeight, rotWidth = localMask.shape padY = round((ySize - rotHeight) / 2) padX = round((xSize - rotWidth) / 2) localMask = np.pad(localMask, ((padY, padY), (padX, padX)), 'constant', constant_values = (255, 255)) if localMask.shape[0] < 1080 or localMask.shape[1] < 1920: localMask = np.pad(localMask, ((0, 1), (0, 1)), 'constant', constant_values = (255, 255)) localMask = localMask[0:int(float(self.ui.txt_DMDSizeY.toPlainText())),0:int(float(self.ui.txt_DMDSizeX.toPlainText()))] localMask = scipy.ndimage.shift(localMask, np.array([shiftY, shiftX]), cval=255) else: localMask = rotate(localMask, angle = maskRotation, mode='constant', cval=0) rotHeight, rotWidth = localMask.shape padY = int((ySize - rotHeight) / 2) padX = int((xSize - rotWidth) / 2) localMask = np.pad(localMask, ((padY, padY), (padX, padX)), 'constant', constant_values = (0, 0)) if localMask.shape[0] < 1080 or localMask.shape[1] < 1920: localMask = np.pad(localMask, ((0, 1), (0, 1)), 'constant', constant_values = (255, 255)) localMask = localMask[0:int(float(self.ui.txt_DMDSizeY.toPlainText())),0:int(float(self.ui.txt_DMDSizeX.toPlainText()))] localMask = scipy.ndimage.shift(localMask, np.array([shiftY, shiftX]), cval=0) self.MaskGeneratedFlag = True return localMask def maskGenerationThreshold(self, CamDMD2Bool): if not(self.ui.cbox_LockCalibration.isChecked()): error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('Lock above calibration before generating threshold masks.') error_dialog.exec_() return originalImage = plt.imread(self.fileNameCameraImage) pts = self.cntrPoints.reshape(4,2) rect = np.zeros((4,2), dtype='float32') s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] # tl rect[2] = pts[np.argmax(s)] # br diff = np.diff(pts, axis=1) rect[3] = pts[np.argmin(diff)] # tr rect[1] = pts[np.argmax(diff)] # bl (tl, tr, br, bl) = rect # width of new image widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) # height of new image heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) # Max of A&B is are final dimensions maxWidth = max(int(widthA), int(widthB)) maxHeight = max(int(heightA), int(heightB)) # Destination points which image will be mapped to dst = np.array([ [0, 0], [0, maxWidth - 1], [maxHeight - 1, maxWidth - 1], [maxHeight - 1, 0]], dtype = "float32") # Calculate perspective transform matrix M = cv2.getPerspectiveTransform(rect, dst) # Warp perspective based on calculated transform warpImage = cv2.warpPerspective(originalImage, M, (maxHeight, maxWidth)) # Scale warped section to actual size on DMD warpImageScaled = cv2.resize(warpImage, dsize=(self.calibration.width, self.calibration.height), interpolation=cv2.INTER_LANCZOS4) # Pad settings based on calibration mask parameters DMDHalfHeight = self.calibration.DMDSizeY / 2 DMDHalfWidth = self.calibration.DMDSizeX / 2 offsetX = self.calibration.positionX offsetY = self.calibration.positionY # Rotate and pad scaled section of DMD mask to full DMD mask if not(CamDMD2Bool): rotatedImage = rotate(warpImageScaled, angle=self.calibration.rotation, cval=0.0) maskHalfWidth = rotatedImage.shape[1] / 2 maskHalfHeight = rotatedImage.shape[0] / 2 padYTop = int(DMDHalfHeight - maskHalfHeight + offsetY) padYBottom = int(DMDHalfHeight - maskHalfHeight - offsetY) padXLeft = int(DMDHalfWidth - maskHalfWidth + offsetX) padXRight = int(DMDHalfWidth - maskHalfWidth - offsetX) print(maskHalfWidth) print(maskHalfHeight) print(padYTop) print(padYBottom) print(padXLeft) print(padXRight) localMask = np.pad(rotatedImage, ((padYTop, padYBottom), (padXLeft, padXRight)), 'constant', constant_values=0.0) localMask = cv2.threshold(localMask, int(float(self.ui.txt_currentThreshold.toPlainText())), 255, cv2.THRESH_BINARY) else: rotatedImage = rotate(warpImageScaled, angle=self.calibration.rotation, cval=255.0) maskHalfWidth = rotatedImage.shape[1] / 2 maskHalfHeight = rotatedImage.shape[0] / 2 padYTop = int(DMDHalfHeight - maskHalfHeight + offsetY) padYBottom = int(DMDHalfHeight - maskHalfHeight - offsetY) padXLeft = int(DMDHalfWidth - maskHalfWidth + offsetX) padXRight = int(DMDHalfWidth - maskHalfWidth - offsetX) print(maskHalfWidth) print(maskHalfHeight) print(padYTop) print(padYBottom) print(padXLeft) print(padXRight) localMask = np.pad(rotatedImage, ((padYTop, padYBottom), (padXLeft, padXRight)), 'constant', constant_values=255.0) localMask = cv2.threshold(localMask, int(float(self.ui.txt_currentThreshold.toPlainText())), 255, cv2.THRESH_BINARY_INV) localMask = localMask[1] # Flip mask as required if self.ui.cBox_FlipLR.isChecked(): localMask = np.fliplr(localMask) if self.ui.cBox_FlipUD.isChecked(): localMask = np.flipud(localMask) # Add to existing mask as required if not(self.ui.txt_MaskToAdd.toPlainText() == ''): try: localMaskToAdd = plt.imread(self.ui.txt_MaskToAdd.toPlainText()) localMaskToAdd = localMaskToAdd.astype(dtype = np.uint8) if localMask.shape == localMaskToAdd.shape: localMaskAdded = localMask + localMaskToAdd if not(CamDMD2Bool): localMaskTuple = cv2.threshold(localMaskAdded, 200, 255, cv2.THRESH_BINARY) else: localMaskTuple = cv2.threshold(localMaskAdded, 500, 255, cv2.THRESH_BINARY) localMask = localMaskTuple[1] else: error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('Mask to add is different size to new Threshold Mask.') error_dialog.exec_() return except: error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('File to add to new Threshold Mask not found.') error_dialog.exec_() return thresholdFilterSize = int(float(self.ui.txt_ThresholdFilterSize.toPlainText())) if thresholdFilterSize > 0: localMask = binary_opening(localMask, structure=np.ones((thresholdFilterSize, thresholdFilterSize))).astype(np.uint8) * 255 localMask = cv2.bitwise_not(binary_opening(cv2.bitwise_not(localMask), structure=np.ones((thresholdFilterSize, thresholdFilterSize))).astype(np.uint8) * 255) self.MaskGeneratedFlag = True return localMask def maskGenerationSlit(self, CamDMD2Bool): xSize = int(float(self.ui.txt_DMDSizeX.toPlainText())) ySize = int(float(self.ui.txt_DMDSizeY.toPlainText())) localMask = np.zeros((ySize, xSize), dtype=np.uint8) self.MaskGeneratedFlag = True error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('Feature under development. Blank mask returned.') error_dialog.exec_() return localMask def maskGenerationPinhole(self, CamDMD2Bool): xSize = int(float(self.ui.txt_DMDSizeX.toPlainText())) ySize = int(float(self.ui.txt_DMDSizeY.toPlainText())) # pinholeNum = int(float(self.ui.spinBox_NumberOfPinholes.Value())) # pinholeRadius = int(float(self.ui.txt_PinholeRadius.toPlainText())) # pinholePitch = int(float(self.ui.txt_PinholePitch.toPlainText())) # pinholeRotation = int(float(self.ui.txt_PinholeRotation.toPlainText())) # pinholeX = int(float(self.ui.txt_PinholeX.toPlainText())) # pinholeY = int(float(self.ui.txt_PinholeY.toPlainText())) # if CamDMD2Bool: # localMask = np.zeros((ySize, xSize), dtype=np.uint8) # else: # localMask = np.ones((ySize, xSize), dtype=np.uint8) * 255 # for x in range(xSize): # for y in range(ySize): # if sqrt(((x - (maskWidth/2)) ** 2) + ((y - (maskHeight/2)) ** 2)) < centreCircleRadius: # if CamDMD2Bool: # localMask[y, x] = 255 # else: # localMask[y, x] = 0 # shiftX = -maskCentreX # shiftY = -maskCentreY # if CamDMD2Bool: # localMask = rotate(localMask, angle = maskRotation, mode='constant', cval=255) # rotHeight, rotWidth = localMask.shape # padY = round((ySize - rotHeight) / 2) # padX = round((xSize - rotWidth) / 2) # localMask = np.pad(localMask, ((padY, padY), (padX, padX)), 'constant', constant_values = (255, 255)) # if localMask.shape[0] < 1080 or localMask.shape[1] < 1920: # localMask = np.pad(localMask, ((0, 1), (0, 1)), 'constant', constant_values = (255, 255)) # localMask = localMask[0:int(float(self.ui.txt_DMDSizeY.toPlainText())),0:int(float(self.ui.txt_DMDSizeX.toPlainText()))] # localMask = scipy.ndimage.shift(localMask, np.array([shiftY, shiftX]), cval=255) # else: # localMask = rotate(localMask, angle = maskRotation, mode='constant', cval=0) # rotHeight, rotWidth = localMask.shape # padY = int((ySize - rotHeight) / 2) # padX = int((xSize - rotWidth) / 2) # localMask = np.pad(localMask, ((padY, padY), (padX, padX)), 'constant', constant_values = (0, 0)) # if localMask.shape[0] < 1080 or localMask.shape[1] < 1920: # localMask = np.pad(localMask, ((0, 1), (0, 1)), 'constant', constant_values = (255, 255)) # localMask = localMask[0:int(float(self.ui.txt_DMDSizeY.toPlainText())),0:int(float(self.ui.txt_DMDSizeX.toPlainText()))] # localMask = scipy.ndimage.shift(localMask, np.array([shiftY, shiftX]), cval=0) localMask = np.zeros((ySize, xSize), dtype=np.uint8) self.MaskGeneratedFlag = True error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('Feature under development. Blank mask returned.') error_dialog.exec_() return localMask @pyqtSlot() def valueChange_ThresholdValue(self): self.ui.txt_currentThreshold.setPlainText(str(self.ui.slider_thresholdValue.value())) self.ui.txt_currentThreshold.repaint() return @pyqtSlot() def onClick_GetThresholdValues(self): localArray = plt.imread(self.fileNameCameraImage) minValue = np.amin(localArray) maxValue = np.amax(localArray) self.ui.label_highValueThreshold.setText(str(maxValue)) self.ui.label_lowValueThreshold.setText(str(minValue)) self.ui.slider_thresholdValue.setMinimum(minValue) self.ui.slider_thresholdValue.setMaximum(maxValue) self.ui.slider_thresholdValue.setValue(maxValue/2) self.ui.slider_thresholdValue.setSliderPosition(maxValue/2) self.ui.txt_currentThreshold.setPlainText(str(maxValue/2)) self.repaint() return @pyqtSlot() def onClick_SendCalParameters(self): if self.ui.cbox_LockCalibration.isChecked(): error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('Unlock above calibration before transferring values.') error_dialog.exec_() return self.ui.txt_CalPositionX.setPlainText(self.ui.txt_DMDCalibrationMaskPositionX.toPlainText()) self.ui.txt_CalPositionY.setPlainText(self.ui.txt_DMDCalibrationMaskPositionY.toPlainText()) self.ui.txt_CalRotation.setPlainText(self.ui.txt_DMDCalibrationMaskRotation.toPlainText()) self.ui.txt_CalWidth.setPlainText(self.ui.txt_DMDCalibrationMaskWidth.toPlainText()) self.ui.txt_CalHeight.setPlainText(self.ui.txt_DMDCalibrationMaskHeight.toPlainText()) self.repaint() return @pyqtSlot() def onClick_CamImageImport(self): options = QtWidgets.QFileDialog.Options() options |= QtWidgets.QFileDialog.DontUseNativeDialog self.fileNameCameraImage, _ = QtWidgets.QFileDialog.getOpenFileName(self,"QFileDialog.getOpenFileName()", "","All Files (*);;tiff (*.tiff);;tif (*.tif);;png (*.png)", options=options) if self.fileNameCameraImage: self.showImageInView(self.fileNameCameraImage, self.ui.view_CameraImage) return @pyqtSlot() def onClick_MaskToAddImport(self): options = QtWidgets.QFileDialog.Options() options |= QtWidgets.QFileDialog.DontUseNativeDialog self.fileNameMaskToAdd, _ = QtWidgets.QFileDialog.getOpenFileName(self,"QFileDialog.getOpenFileName()", "","All Files (*);;tiff (*.tiff);;tif (*.tif);;png (*.png)", options=options) if self.fileNameMaskToAdd: self.showImageInView(self.fileNameMaskToAdd, self.ui.view_DMDMaskImage) self.ui.txt_MaskToAdd.setPlainText(self.fileNameMaskToAdd) self.ui.txt_MaskToAdd.repaint() return @pyqtSlot() def onClick_Calibrate(self): if not self.fileNameCameraImage: error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('Calibration image must be loaded before calibration can be performed.') error_dialog.exec_() return if not(self.ui.txt_DMDSizeX.toPlainText().replace(".", "", 1).isdigit()) or not(self.ui.txt_DMDSizeY.toPlainText().replace(".", "", 1).isdigit()): error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('DMD calibration ratio and DMD X & Y size must be numeric.') error_dialog.exec_() return if self.ui.radioButton_CamDMD2ImageMask.isChecked(): checkState = 1 else: checkState = 0 calValues = np.array([ float(self.ui.txt_DMDSizeX.toPlainText()), float(self.ui.txt_DMDSizeY.toPlainText()), float(checkState), float(self.ui.txt_CalPositionX.toPlainText()), float(self.ui.txt_CalPositionY.toPlainText()), float(self.ui.txt_CalRotation.toPlainText()), float(self.ui.txt_CalWidth.toPlainText()), float(self.ui.txt_CalHeight.toPlainText()), float(self.ui.txt_CalibrationThreshold.toPlainText()) ]) try: self.calibration = sr.ShapeDetector(self.fileNameCameraImage, calValues) except ValueError: error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('Problem with Calibration Image File.') error_dialog.exec_() return try: self.cntrPoints = self.calibration.detectCalibration() height1D, width1D = self.calibration.sourceImage.shape rgbImage = np.zeros([height1D, width1D, 3] , dtype=np.uint8) rgbImage[:,:,0] = self.calibration.sourceImage rgbImage[:,:,1] = self.calibration.sourceImage rgbImage[:,:,2] = self.calibration.sourceImage cv2.drawContours(rgbImage, [self.cntrPoints], 0, (255, 0, 0), 5) self.showImageInView(rgbImage, self.ui.view_CameraImage) self.calibrationValuesStorage = np.array([ float(self.calibration.DMDSizeX), float(self.calibration.DMDSizeY), float(self.calibration.shapeColour), float(self.calibration.positionX), float(self.calibration.positionY), float(self.calibration.rotation), float(self.calibration.width), float(self.calibration.height), float(self.calibration.thresholdCalibrationValue) ], dtype=float) self.calibrationImageStorage = self.fileNameCameraImage except: error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('Problem with Calibration Threshold level set.') error_dialog.exec_() return return @pyqtSlot() def onClick_SaveCalibration(self): np.savetxt(self.CalibrationValuesFile, self.calibrationValuesStorage, fmt='%1.2f') imageFile = open(self.CalibrationImageFile, 'w+') imageFile.write(self.calibrationImageStorage) imageFile.close() return @pyqtSlot() def onClick_LockCalibration(self): if self.ui.cbox_LockCalibration.isChecked(): self.ui.txt_DMDSizeX.setEnabled(False) self.ui.txt_DMDSizeY.setEnabled(False) self.ui.txt_CalPositionX.setEnabled(False) self.ui.txt_CalPositionY.setEnabled(False) self.ui.radioButton_CamDMD2ImageMask.setEnabled(False) self.ui.radioButton_CamDMD1ImageMask.setEnabled(False) self.ui.txt_CalRotation.setEnabled(False) self.ui.txt_CalWidth.setEnabled(False) self.ui.txt_CalHeight.setEnabled(False) self.ui.btn_SaveCalibration.setEnabled(False) self.ui.btn_Calibrate.setEnabled(False) self.ui.txt_CalibrationThreshold.setEnabled(False) elif not(self.ui.cbox_LockCalibration.isChecked()): self.ui.txt_DMDSizeX.setEnabled(True) self.ui.txt_DMDSizeY.setEnabled(True) self.ui.txt_CalPositionX.setEnabled(True) self.ui.txt_CalPositionY.setEnabled(True) self.ui.radioButton_CamDMD2ImageMask.setEnabled(True) self.ui.radioButton_CamDMD1ImageMask.setEnabled(True) self.ui.txt_CalRotation.setEnabled(True) self.ui.txt_CalWidth.setEnabled(True) self.ui.txt_CalHeight.setEnabled(True) self.ui.btn_SaveCalibration.setEnabled(True) self.ui.btn_Calibrate.setEnabled(True) self.ui.txt_CalibrationThreshold.setEnabled(True) else: self.ui.txt_DMDSizeX.setEnabled(True) self.ui.txt_DMDSizeY.setEnabled(True) self.ui.txt_CalPositionX.setEnabled(True) self.ui.txt_CalPositionY.setEnabled(True) self.ui.radioButton_CamDMD2ImageMask.setEnabled(True) self.ui.radioButton_CamDMD1ImageMask.setEnabled(True) self.ui.txt_CalRotation.setEnabled(True) self.ui.txt_CalWidth.setEnabled(True) self.ui.txt_CalHeight.setEnabled(True) self.ui.btn_SaveCalibration.setEnabled(True) self.ui.btn_Calibrate.setEnabled(True) self.ui.txt_CalibrationThreshold.setEnabled(True) self.repaint() return @pyqtSlot() def onClick_DMDMaskGen(self): self.Mask = None self.MaskGeneratedFlag = False if self.ui.tab_MaskFunctionality.currentIndex() == 0: self.Mask = self.maskGenerationCalibration(self.ui.radioButton_CamDMD2DMDMask.isChecked()) elif self.ui.tab_MaskFunctionality.currentIndex() == 1: self.Mask = self.maskGenerationThreshold(self.ui.radioButton_CamDMD2DMDMask.isChecked()) elif self.ui.tab_MaskFunctionality.currentIndex() == 2: self.Mask = self.maskGenerationSlit(self.ui.radioButton_CamDMD2DMDMask.isChecked()) elif self.ui.tab_MaskFunctionality.currentIndex() == 3: self.Mask = self.maskGenerationPinhole(self.ui.radioButton_CamDMD2DMDMask.isChecked()) if not(self.MaskGeneratedFlag): return else: self.MaskChoice = self.ui.tab_MaskFunctionality.currentIndex() height1D, width1D = self.Mask.shape rgbImage = np.zeros([height1D, width1D, 3] , dtype=np.uint8) rgbImage[:,:,0] = self.Mask rgbImage[:,:,1] = self.Mask rgbImage[:,:,2] = self.Mask self.showImageInView(rgbImage, self.ui.view_DMDMaskImage) return @pyqtSlot() def onClick_DMDMaskSave(self): if not(self.MaskGeneratedFlag): error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('Mask must be generated before it can be saved.') error_dialog.exec_() return if self.MaskChoice == 0: DefaultSaveName = './Masks/Calibration/CalibrationMask-' + str(self.maskCountCalibration) + '_CCSize-' + self.ui.txt_CentreCircleSize.toPlainText() + '.bmp' self.maskCountCalibration = self.maskCountCalibration + 1 elif self.MaskChoice == 1: DefaultSaveName = './Masks/Threshold/ThresholdMask-' + str(self.maskCountThreshold) + '.bmp' self.maskCountThreshold = self.maskCountThreshold + 1 elif self.MaskChoice == 2: DefaultSaveName = './Masks/Slit/SlitMask-' + str(self.maskCountSlit) + '_NumSlits-' + str(self.ui.spinBox_NumberOfSlits.value()) + '_Width-' + self.ui.txt_SlitWidth.toPlainText() + '_Separation-' + self.ui.txt_SlitSeparation.toPlainText() + '_Rotation' + self.ui.txt_SlitRotation.toPlainText() + '.bmp' self.maskCountSlit = self.maskCountSlit + 1 elif self.MaskChoice == 3: DefaultSaveName = './Masks/Pinhole/PinholeMask-' + str(self.maskCountPinhole) + '_NumPinholes-' + str(self.ui.spinBox_NumberOfPinholes.value()) + '_Radius-' + self.ui.txt_PinholeRadius.toPlainText() + 'Pitch-' + self.ui.txt_PinholePitch.toPlainText() + '_Rotation' + self.ui.txt_PinholeRotation.toPlainText() + '.bmp' self.maskCountPinhole = self.maskCountPinhole + 1 else: imwrite('./Masks/Mask.bmp', self.Mask) saveMask = self.Mask.astype(np.uint8) options = QtWidgets.QFileDialog.Options() options |= QtWidgets.QFileDialog.DontUseNativeDialog fileName, _ = QtWidgets.QFileDialog.getSaveFileName(self,"QFileDialog.getSaveFileName()",DefaultSaveName,"All Files (*);;Bitmap (*.bmp)", options=options) imwrite(fileName, saveMask) return @pyqtSlot() def onClick_ConnectDMD(self): try: if self.DMDConnectFlag == False: self.DMD = ALP4(version = '4.3', libDir = 'C:/Program Files/ALP-4.3/ALP-4.3 API') self.DMD.Initialize() self.DMDConnectFlag = True except: error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('DMD not connected.') error_dialog.exec_() return if self.DMD.nSizeX != int(float(self.ui.txt_DMDSizeX.toPlainText())) or self.DMD.nSizeY != int(float(self.ui.txt_DMDSizeY.toPlainText())): error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage('Size of DMD connected (' + str(self.DMD.nSizeX) + 'x' + str(self.DMD.nSizeY) + ' is not the same as the calibration settings. Calibration required.') error_dialog.exec_() self.onClick_LockCalibration() self.ui.cbox_LockCalibration.setChecked(False) self.ui.view_DMDConnectionStatus.setPixmap(QtGui.QPixmap("./TestImages/green.png")) return @pyqtSlot() def onClick_DisconnectDMD(self): try: self.DMD.Halt() if self.DMDDisplayFlag == True: self.DMD.FreeSeq() self.DMD.Free() self.ui.view_DMDConnectionStatus.setPixmap(QtGui.QPixmap("./TestImages/red.png")) self.DMDConnectFlag = False self.DMDDisplayFlag = False return except: error_dialog = QtWidgets.QErrorMessage() error_dialog.showMessage("No DMD Connected.") error_dialog.exec_() return @pyqtSlot() def onClick_CamDMD1DMD(self): try: mask =
np.ones([self.DMD.nSizeY, self.DMD.nSizeX])
numpy.ones
#import matplotlib.pyplot as plt import numpy as np #import random import copy def plan(targets,obstacles): def Lroute(tar, obs, tend): s = [] t = 0 s.append(tar[0]) weight = 99 while (t < (len(tar) - 1)): l = len(s) - 1 Location = copy.copy(s[l]) '''judge the weight''' mov = np.array([0.0] * 4) Destination = tar[t + 1] RelativeP = Destination - Location '''tend weight''' if tend == 1: mov[0] += 1 mov[2] += -1 elif tend == 2: mov[0] += -1 mov[2] += 1 elif tend == 0: mov[0] += (Location[0] - 3) mov[2] -= (Location[0] - 3) '''target weight''' if RelativeP[0] > 0: mov[2] += weight mov[0] -= weight elif RelativeP[0] < 0: mov[0] += weight mov[2] -= weight if RelativeP[1] > 0: mov[1] += weight * 1.1 mov[3] -= weight * 1.1 elif RelativeP[1] < 0: mov[3] += weight * 1.1 mov[1] -= weight * 1.1 '''border weight''' if Location[0] == 1: mov[0] -= 10000 if Location[0] == 5: mov[2] -= 10000 if Location[1] == 1: mov[3] -= 10000 if Location[1] == 5: mov[1] -= 10000 '''obstacle weight''' if (obs == (Location + [1, 0])).all(1).any(): mov[2] -= 10000 if (obs == (Location + [-1, 0])).all(1).any(): mov[0] -= 10000 if (obs == (Location + [0, 1])).all(1).any(): mov[1] -= 10000 if (obs == (Location + [0, -1])).all(1).any(): mov[3] -= 10000 '''dont loop''' for i in range(l): if (s[l - 1 - i] == (Location + [1, 0])).all(): mov[2] -= 50 if (s[l - 1 - i] == (Location + [-1, 0])).all(): mov[0] -= 50 if (s[l - 1 - i] == (Location + [0, 1])).all(): mov[1] -= 50 if (s[l - 1 - i] == (Location + [0, -1])).all(): mov[3] -= 50 '''choose movement''' if max(mov) < -800: s.append(Location) movement = np.argmax(mov) if movement == 0: s.append(Location + [-1, 0]) if movement == 1: s.append(Location + [0, 1]) if movement == 2: s.append(Location + [1, 0]) if movement == 3: s.append(Location + [0, -1]) '''arrive at a target?''' if (Destination == s[l + 1]).all(): t += 1 return (s) def ana(targets, obstacles): '''targets allocation''' core = [np.mean(targets.T[0]), np.mean(targets.T[1])] targetsR1 = np.array([[-1]] * 4) targetsR2 = np.array([[-1]] * 4) targetsR3 = np.array([[-1]] * 4) targetsM1 = np.array([[0, 0]] * 4) targetsM2 = np.array([[0, 0]] * 4) targetsM3 = np.array([[0, 0]] * 4) step = np.array([[500] * 12] * 12) TMov = np.array([[0, 0]] * 2) for i in range(12): for j in range(12): if i != j: TMov[0] = targets[i] TMov[1] = targets[j] l = Lroute(TMov, obstacles, 0) step[i][j] = len(l) - 1 stepO = copy.copy(step) k1 = [] for i in range(12): k1.append((targets[i][0] - core[0]) - (targets[i][1] - core[1])) targetsR1[0] = k1.index(min(k1)) for i in range(12): step[k1.index(min(k1))][i] = 500 def thk(ss, targetsR, ss1, Tar): k = 1 while k < 4: stepd = np.array([[0]] * 12) stepl = np.array([[600]] * 12) stepw =
np.array([[0.0]] * 12)
numpy.array
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: <NAME> <<EMAIL>> # ''' Density fitting with Gaussian basis Ref: J. Chem. Phys. 147, 164119 (2017) ''' import time import copy from functools import reduce import numpy from pyscf import lib from pyscf.lib import logger from pyscf.pbc import tools from pyscf.pbc import gto from pyscf.pbc.df import ft_ao from pyscf.pbc.lib.kpts_helper import is_zero, gamma_point, member def density_fit(mf, auxbasis=None, mesh=None, with_df=None): '''Generte density-fitting SCF object Args: auxbasis : str or basis dict Same format to the input attribute mol.basis. If auxbasis is None, auxiliary basis based on AO basis (if possible) or even-tempered Gaussian basis will be used. mesh : tuple number of grids in each direction with_df : DF object ''' from pyscf.pbc.df import df if with_df is None: if hasattr(mf, 'kpts'): kpts = mf.kpts else: kpts = numpy.reshape(mf.kpt, (1,3)) with_df = df.DF(mf.cell, kpts) with_df.max_memory = mf.max_memory with_df.stdout = mf.stdout with_df.verbose = mf.verbose with_df.auxbasis = auxbasis if mesh is not None: with_df.mesh = mesh mf = copy.copy(mf) mf.with_df = with_df mf._eri = None return mf def get_j_kpts(mydf, dm_kpts, hermi=1, kpts=numpy.zeros((1,3)), kpts_band=None): log = logger.Logger(mydf.stdout, mydf.verbose) t1 = (time.clock(), time.time()) if mydf._cderi is None or not mydf.has_kpts(kpts_band): if mydf._cderi is not None: log.warn('DF integrals for band k-points were not found %s. ' 'DF integrals will be rebuilt to include band k-points.', mydf._cderi) mydf.build(kpts_band=kpts_band) t1 = log.timer_debug1('Init get_j_kpts', *t1) dm_kpts = lib.asarray(dm_kpts, order='C') dms = _format_dms(dm_kpts, kpts) nset, nkpts, nao = dms.shape[:3] naux = mydf.get_naoaux() nao_pair = nao * (nao+1) // 2 kpts_band, input_band = _format_kpts_band(kpts_band, kpts), kpts_band nband = len(kpts_band) j_real = gamma_point(kpts_band) and not numpy.iscomplexobj(dms) dmsR = dms.real.transpose(0,1,3,2).reshape(nset,nkpts,nao**2) dmsI = dms.imag.transpose(0,1,3,2).reshape(nset,nkpts,nao**2) rhoR = numpy.zeros((nset,naux)) rhoI = numpy.zeros((nset,naux)) max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0])) for k, kpt in enumerate(kpts): kptii = numpy.asarray((kpt,kpt)) p1 = 0 for LpqR, LpqI in mydf.sr_loop(kptii, max_memory, False): p0, p1 = p1, p1+LpqR.shape[0] #:Lpq = (LpqR + LpqI*1j).reshape(-1,nao,nao) #:rhoR[:,p0:p1] += numpy.einsum('Lpq,xqp->xL', Lpq, dms[:,k]).real #:rhoI[:,p0:p1] += numpy.einsum('Lpq,xqp->xL', Lpq, dms[:,k]).imag rhoR[:,p0:p1] += numpy.einsum('Lp,xp->xL', LpqR, dmsR[:,k]) rhoI[:,p0:p1] += numpy.einsum('Lp,xp->xL', LpqR, dmsI[:,k]) if LpqI is not None: rhoR[:,p0:p1] -= numpy.einsum('Lp,xp->xL', LpqI, dmsI[:,k]) rhoI[:,p0:p1] += numpy.einsum('Lp,xp->xL', LpqI, dmsR[:,k]) LpqR = LpqI = None t1 = log.timer_debug1('get_j pass 1', *t1) weight = 1./nkpts rhoR *= weight rhoI *= weight vjR = numpy.zeros((nset,nband,nao_pair)) vjI = numpy.zeros((nset,nband,nao_pair)) for k, kpt in enumerate(kpts_band): kptii = numpy.asarray((kpt,kpt)) p1 = 0 for LpqR, LpqI in mydf.sr_loop(kptii, max_memory, True): p0, p1 = p1, p1+LpqR.shape[0] #:Lpq = (LpqR + LpqI*1j)#.reshape(-1,nao,nao) #:vjR[:,k] += numpy.dot(rho[:,p0:p1], Lpq).real #:vjI[:,k] += numpy.dot(rho[:,p0:p1], Lpq).imag vjR[:,k] += numpy.dot(rhoR[:,p0:p1], LpqR) if not j_real: vjI[:,k] += numpy.dot(rhoI[:,p0:p1], LpqR) if LpqI is not None: vjR[:,k] -= numpy.dot(rhoI[:,p0:p1], LpqI) vjI[:,k] += numpy.dot(rhoR[:,p0:p1], LpqI) LpqR = LpqI = None t1 = log.timer_debug1('get_j pass 2', *t1) if j_real: vj_kpts = vjR else: vj_kpts = vjR + vjI*1j vj_kpts = lib.unpack_tril(vj_kpts.reshape(-1,nao_pair)) vj_kpts = vj_kpts.reshape(nset,nband,nao,nao) return _format_jks(vj_kpts, dm_kpts, input_band, kpts) def get_k_kpts(mydf, dm_kpts, hermi=1, kpts=numpy.zeros((1,3)), kpts_band=None, exxdiv=None): cell = mydf.cell log = logger.Logger(mydf.stdout, mydf.verbose) t1 = (time.clock(), time.time()) if mydf._cderi is None or not mydf.has_kpts(kpts_band): if mydf._cderi is not None: log.warn('DF integrals for band k-points were not found %s. ' 'DF integrals will be rebuilt to include band k-points.', mydf._cderi) mydf.build(kpts_band=kpts_band) t1 = log.timer_debug1('Init get_k_kpts', *t1) dm_kpts = lib.asarray(dm_kpts, order='C') dms = _format_dms(dm_kpts, kpts) nset, nkpts, nao = dms.shape[:3] kpts_band, input_band = _format_kpts_band(kpts_band, kpts), kpts_band nband = len(kpts_band) vkR = numpy.zeros((nset,nband,nao,nao)) vkI = numpy.zeros((nset,nband,nao,nao)) dmsR = numpy.asarray(dms.real, order='C') dmsI = numpy.asarray(dms.imag, order='C') # K_pq = ( p{k1} i{k2} | i{k2} q{k1} ) bufR = numpy.empty((mydf.blockdim*nao**2)) bufI = numpy.empty((mydf.blockdim*nao**2)) max_memory = max(2000, mydf.max_memory-lib.current_memory()[0]) def make_kpt(ki, kj, swap_2e): kpti = kpts[ki] kptj = kpts_band[kj] for LpqR, LpqI in mydf.sr_loop((kpti,kptj), max_memory, False): nrow = LpqR.shape[0] pLqR = numpy.ndarray((nao,nrow,nao), buffer=bufR) pLqI = numpy.ndarray((nao,nrow,nao), buffer=bufI) tmpR = numpy.ndarray((nao,nrow*nao), buffer=LpqR) tmpI = numpy.ndarray((nao,nrow*nao), buffer=LpqI) pLqR[:] = LpqR.reshape(-1,nao,nao).transpose(1,0,2) pLqI[:] = LpqI.reshape(-1,nao,nao).transpose(1,0,2) for i in range(nset): zdotNN(dmsR[i,ki], dmsI[i,ki], pLqR.reshape(nao,-1), pLqI.reshape(nao,-1), 1, tmpR, tmpI) zdotCN(pLqR.reshape(-1,nao).T, pLqI.reshape(-1,nao).T, tmpR.reshape(-1,nao), tmpI.reshape(-1,nao), 1, vkR[i,kj], vkI[i,kj], 1) if swap_2e: tmpR = tmpR.reshape(nao*nrow,nao) tmpI = tmpI.reshape(nao*nrow,nao) for i in range(nset): zdotNN(pLqR.reshape(-1,nao), pLqI.reshape(-1,nao), dmsR[i,kj], dmsI[i,kj], 1, tmpR, tmpI) zdotNC(tmpR.reshape(nao,-1), tmpI.reshape(nao,-1), pLqR.reshape(nao,-1).T, pLqI.reshape(nao,-1).T, 1, vkR[i,ki], vkI[i,ki], 1) if kpts_band is kpts: # normal k-points HF/DFT for ki in range(nkpts): for kj in range(ki): make_kpt(ki, kj, True) make_kpt(ki, ki, False) t1 = log.timer_debug1('get_k_kpts: make_kpt ki>=kj (%d,*)'%ki, *t1) else: for ki in range(nkpts): for kj in range(nband): make_kpt(ki, kj, False) t1 = log.timer_debug1('get_k_kpts: make_kpt (%d,*)'%ki, *t1) if (gamma_point(kpts) and gamma_point(kpts_band) and not numpy.iscomplexobj(dm_kpts)): vk_kpts = vkR else: vk_kpts = vkR + vkI * 1j vk_kpts *= 1./nkpts if exxdiv: assert(exxdiv.lower() == 'ewald') _ewald_exxdiv_for_G0(cell, kpts, dms, vk_kpts, kpts_band) return _format_jks(vk_kpts, dm_kpts, input_band, kpts) ################################################## # # Single k-point # ################################################## def get_jk(mydf, dm, hermi=1, kpt=numpy.zeros(3), kpts_band=None, with_j=True, with_k=True, exxdiv=None): '''JK for given k-point''' vj = vk = None if kpts_band is not None and abs(kpt-kpts_band).sum() > 1e-9: kpt = numpy.reshape(kpt, (1,3)) if with_k: vk = get_k_kpts(mydf, dm, hermi, kpt, kpts_band, exxdiv) if with_j: vj = get_j_kpts(mydf, dm, hermi, kpt, kpts_band) return vj, vk cell = mydf.cell log = logger.Logger(mydf.stdout, mydf.verbose) t1 = (time.clock(), time.time()) if mydf._cderi is None or not mydf.has_kpts(kpts_band): if mydf._cderi is not None: log.warn('DF integrals for band k-points were not found %s. ' 'DF integrals will be rebuilt to include band k-points.', mydf._cderi) mydf.build(kpts_band=kpts_band) t1 = log.timer_debug1('Init get_jk', *t1) dm = numpy.asarray(dm, order='C') dms = _format_dms(dm, [kpt]) nset, _, nao = dms.shape[:3] dms = dms.reshape(nset,nao,nao) j_real = gamma_point(kpt) k_real = gamma_point(kpt) and not numpy.iscomplexobj(dms) kptii = numpy.asarray((kpt,kpt)) dmsR = dms.real.reshape(nset,nao,nao) dmsI = dms.imag.reshape(nset,nao,nao) mem_now = lib.current_memory()[0] max_memory = max(2000, (mydf.max_memory - mem_now)) if with_j: vjR = numpy.zeros((nset,nao,nao)) vjI = numpy.zeros((nset,nao,nao)) if with_k: vkR = numpy.zeros((nset,nao,nao)) vkI = numpy.zeros((nset,nao,nao)) buf1R = numpy.empty((mydf.blockdim*nao**2)) buf2R = numpy.empty((mydf.blockdim*nao**2)) buf1I = numpy.zeros((mydf.blockdim*nao**2)) buf2I = numpy.empty((mydf.blockdim*nao**2)) max_memory *= .5 log.debug1('max_memory = %d MB (%d in use)', max_memory, mem_now) def contract_k(pLqR, pLqI): # K ~ 'iLj,lLk*,li->kj' + 'lLk*,iLj,li->kj' #:pLq = (LpqR + LpqI.reshape(-1,nao,nao)*1j).transpose(1,0,2) #:tmp = numpy.dot(dm, pLq.reshape(nao,-1)) #:vk += numpy.dot(pLq.reshape(-1,nao).conj().T, tmp.reshape(-1,nao)) nrow = pLqR.shape[1] tmpR = numpy.ndarray((nao,nrow*nao), buffer=buf2R) if k_real: for i in range(nset): lib.ddot(dmsR[i], pLqR.reshape(nao,-1), 1, tmpR) lib.ddot(pLqR.reshape(-1,nao).T, tmpR.reshape(-1,nao), 1, vkR[i], 1) else: tmpI = numpy.ndarray((nao,nrow*nao), buffer=buf2I) for i in range(nset): zdotNN(dmsR[i], dmsI[i], pLqR.reshape(nao,-1), pLqI.reshape(nao,-1), 1, tmpR, tmpI, 0) zdotCN(pLqR.reshape(-1,nao).T, pLqI.reshape(-1,nao).T, tmpR.reshape(-1,nao), tmpI.reshape(-1,nao), 1, vkR[i], vkI[i], 1) pLqI = None thread_k = None for LpqR, LpqI in mydf.sr_loop(kptii, max_memory, False): LpqR = LpqR.reshape(-1,nao,nao) t1 = log.timer_debug1(' load', *t1) if thread_k is not None: thread_k.join() if with_j: #:rho_coeff = numpy.einsum('Lpq,xqp->xL', Lpq, dms) #:vj += numpy.dot(rho_coeff, Lpq.reshape(-1,nao**2)) rhoR = numpy.einsum('Lpq,xpq->xL', LpqR, dmsR) if not j_real: LpqI = LpqI.reshape(-1,nao,nao) rhoR -= numpy.einsum('Lpq,xpq->xL', LpqI, dmsI) rhoI = numpy.einsum('Lpq,xpq->xL', LpqR, dmsI) rhoI += numpy.einsum('Lpq,xpq->xL', LpqI, dmsR) vjR += numpy.einsum('xL,Lpq->xpq', rhoR, LpqR) if not j_real: vjR -= numpy.einsum('xL,Lpq->xpq', rhoI, LpqI) vjI += numpy.einsum('xL,Lpq->xpq', rhoR, LpqI) vjI += numpy.einsum('xL,Lpq->xpq', rhoI, LpqR) t1 = log.timer_debug1(' with_j', *t1) if with_k: nrow = LpqR.shape[0] pLqR = numpy.ndarray((nao,nrow,nao), buffer=buf1R) pLqR[:] = LpqR.transpose(1,0,2) if not k_real: pLqI = numpy.ndarray((nao,nrow,nao), buffer=buf1I) if LpqI is not None: pLqI[:] = LpqI.reshape(-1,nao,nao).transpose(1,0,2) thread_k = lib.background_thread(contract_k, pLqR, pLqI) t1 = log.timer_debug1(' with_k', *t1) LpqR = LpqI = pLqR = pLqI = None if thread_k is not None: thread_k.join() thread_k = None if with_j: if j_real: vj = vjR else: vj = vjR + vjI * 1j vj = vj.reshape(dm.shape) if with_k: if k_real: vk = vkR else: vk = vkR + vkI * 1j if exxdiv: assert(exxdiv.lower() == 'ewald') _ewald_exxdiv_for_G0(cell, kpt, dms, vk) vk = vk.reshape(dm.shape) t1 = log.timer('sr jk', *t1) return vj, vk def _format_dms(dm_kpts, kpts): nkpts = len(kpts) nao = dm_kpts.shape[-1] dms = dm_kpts.reshape(-1,nkpts,nao,nao) return dms def _format_kpts_band(kpts_band, kpts): if kpts_band is None: kpts_band = kpts else: kpts_band = numpy.reshape(kpts_band, (-1,3)) return kpts_band def _format_jks(v_kpts, dm_kpts, kpts_band, kpts): if kpts_band is kpts or kpts_band is None: return v_kpts.reshape(dm_kpts.shape) else: if hasattr(kpts_band, 'ndim') and kpts_band.ndim == 1: v_kpts = v_kpts[:,0] if dm_kpts.ndim <= 3: # nset=1 return v_kpts[0] else: return v_kpts def zdotNN(aR, aI, bR, bI, alpha=1, cR=None, cI=None, beta=0): '''c = a*b''' cR = lib.ddot(aR, bR, alpha, cR, beta) cR = lib.ddot(aI, bI,-alpha, cR, 1 ) cI = lib.ddot(aR, bI, alpha, cI, beta) cI = lib.ddot(aI, bR, alpha, cI, 1 ) return cR, cI def zdotCN(aR, aI, bR, bI, alpha=1, cR=None, cI=None, beta=0): '''c = a.conj()*b''' cR = lib.ddot(aR, bR, alpha, cR, beta) cR = lib.ddot(aI, bI, alpha, cR, 1 ) cI = lib.ddot(aR, bI, alpha, cI, beta) cI = lib.ddot(aI, bR,-alpha, cI, 1 ) return cR, cI def zdotNC(aR, aI, bR, bI, alpha=1, cR=None, cI=None, beta=0): '''c = a*b.conj()''' cR = lib.ddot(aR, bR, alpha, cR, beta) cR = lib.ddot(aI, bI, alpha, cR, 1 ) cI = lib.ddot(aR, bI,-alpha, cI, beta) cI = lib.ddot(aI, bR, alpha, cI, 1 ) return cR, cI def _ewald_exxdiv_for_G0(cell, kpts, dms, vk, kpts_band=None): if (cell.dimension == 1 or (cell.dimension == 2 and cell.low_dim_ft_type is None)): return _ewald_exxdiv_1d2d(cell, kpts, dms, vk, kpts_band) else: return _ewald_exxdiv_3d(cell, kpts, dms, vk, kpts_band) def _ewald_exxdiv_3d(cell, kpts, dms, vk, kpts_band=None): s = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=kpts) madelung = tools.pbc.madelung(cell, kpts) if kpts is None: for i,dm in enumerate(dms): vk[i] += madelung * reduce(numpy.dot, (s, dm, s)) elif numpy.shape(kpts) == (3,): if kpts_band is None or is_zero(kpts_band-kpts): for i,dm in enumerate(dms): vk[i] += madelung * reduce(numpy.dot, (s, dm, s)) elif kpts_band is None or numpy.array_equal(kpts, kpts_band): for k in range(len(kpts)): for i,dm in enumerate(dms): vk[i,k] += madelung * reduce(numpy.dot, (s[k], dm[k], s[k])) else: for k, kpt in enumerate(kpts): for kp in member(kpt, kpts_band.reshape(-1,3)): for i,dm in enumerate(dms): vk[i,kp] += madelung * reduce(numpy.dot, (s[k], dm[k], s[k])) def _ewald_exxdiv_1d2d(cell, kpts, dms, vk, kpts_band=None): s = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=kpts) madelung = tools.pbc.madelung(cell, kpts) Gv, Gvbase, kws = cell.get_Gv_weights(cell.mesh) G0idx, SI_on_z = gto.cell._SI_for_uniform_model_charge(cell, Gv) coulG = 4*numpy.pi /
numpy.linalg.norm(Gv[G0idx], axis=1)
numpy.linalg.norm
import math import numpy as np import pygame import random import time ''' LEFT -> button_direction = 0 RIGHT -> button_direction = 1 DOWN -> button_direction = 2 UP -> button_direction = 3 ''' class SnakeGame: SPEED = 10 SIDE = 500 RED = (255, 100, 100) WHITE = (255, 255, 255) YELLOW = (255, 255, 0) BLACK = (0, 0, 0) CLOCK = pygame.time.Clock() OBSTACLES = 0 def __init__(self): self.reset_game() self.display = pygame.display.set_mode((self.SIDE, self.SIDE)) def reset_game(self): self.head = [250,250] self.body = [[250,250],[240,250],[230,250],[220,250]] self.apple_position = [random.randrange(1, 50) * 10, random.randrange(1, 50) * 10] self.obstacles = [[random.randrange(1, 50) * 10, random.randrange(1, 50) * 10] for _ in range(self.OBSTACLES)] if [250,250] in self.obstacles: self.obstacles.remove([250,250]) if [260,250] in self.obstacles: self.obstacles.remove([260,250]) self.score = 0 def __start_game(self): pygame.init() self.display.fill(self.BLACK) pygame.display.update() def __finish_game(self): self.display = pygame.display.set_mode((self.SIDE, self.SIDE)) self.display.fill(self.BLACK) pygame.display.update() self.__display_score(f'Your Score is: {self.score}') pygame.quit() def start_game(self): self.__start_game() self.__play_game(1) self.__finish_game() def __meet_apple(self): self.apple_position = [random.randrange(1, 50) * 10, random.randrange(1, 50) * 10] while self.apple_position in self.obstacles: self.apple_position = [random.randrange(1, 50) * 10, random.randrange(1, 50) * 10] self.score += 1 def __meet_boundaries(self, head): if self.SIDE > head[0] >= 0 and self.SIDE > head[1] >= 0: return 0 else: return 1 def __meet_self(self, head): if head in self.body[1:]: return 1 else: return 0 def __meet_obstacles(self, head): if head in self.obstacles: return 1 else: return 0 def meet_obstacle(self, current_direction_vec=None): if current_direction_vec is None: # return 1 if self.__meet_boundaries(self.head) or self.__meet_self(self.head) else 0 return 1 if self.__meet_boundaries(self.head) or self.__meet_self(self.head) or self.__meet_obstacles(self.head) else 0 else: next_step = self.head + current_direction_vec # return 1 if self.__meet_boundaries(next_step) or self.__meet_self(next_step.tolist()) else 0 return 1 if self.__meet_boundaries(next_step) or self.__meet_self(next_step.tolist()) or self.__meet_obstacles(self.head) else 0 def _generate_snake(self, button_direction): if button_direction == 1: self.head[0] += 10 elif button_direction == 0: self.head[0] -= 10 elif button_direction == 2: self.head[1] += 10 elif button_direction == 3: self.head[1] -= 10 else: pass if self.head == self.apple_position: self.__meet_apple() self.body.insert(0, list(self.head)) else: self.body.insert(0, list(self.head)) self.body.pop() def _display_snake(self): for position in self.body: pygame.draw.rect( self.display, self.WHITE, pygame.Rect(position[0], position[1], 10, 10) ) def _display_apple(self): # image = pygame.image.load('snake_deeplearning/apple.jpg') # self.display.blit(image, (self.apple_position[0], self.apple_position[1])) pygame.draw.rect( self.display, self.YELLOW, pygame.Rect(self.apple_position[0], self.apple_position[1], 10, 10) ) def _display_obstacles(self): for obs in self.obstacles: pygame.draw.rect( self.display, self.RED, pygame.Rect(obs[0], obs[1], 10, 10) ) def __display_score(self, display_text): largeText = pygame.font.Font('freesansbold.ttf', 35) TextSurf = largeText.render(display_text, True, self.WHITE) TextRect = TextSurf.get_rect() TextRect.center = (self.SIDE / 2, self.SIDE / 2) self.display.blit(TextSurf, TextRect) pygame.display.update() time.sleep(2) def __play_game(self, button_direction): crashed = False prev_button_direction = 1 button_direction = 1 while crashed is not True: for event in pygame.event.get(): if event.type == pygame.QUIT: crashed = True break if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT and prev_button_direction != 1: button_direction = 0 elif event.key == pygame.K_RIGHT and prev_button_direction != 0: button_direction = 1 elif event.key == pygame.K_UP and prev_button_direction != 2: button_direction = 3 elif event.key == pygame.K_DOWN and prev_button_direction != 3: button_direction = 2 else: button_direction = button_direction self.display.fill(self.BLACK) self._display_apple() self._display_obstacles() self._display_snake() self._generate_snake(button_direction) pygame.display.set_caption(f'Snake Game SCORE: {self.score}') pygame.display.update() prev_button_direction = button_direction if self.meet_obstacle() == 1: crashed = True break self.CLOCK.tick(SnakeGame.SPEED) class SnakeGameForTraining(SnakeGame): """ Function used by training_data_generator.py """ def blocked_directions(self): current_direction_vec = np.array(self.body[0]) - np.array(self.body[1]) left_direction_vec = np.array([current_direction_vec[1], -current_direction_vec[0]]) right_direction_vec = np.array([-current_direction_vec[1], current_direction_vec[0]]) is_front_blocked = self.meet_obstacle(current_direction_vec) is_left_blocked = self.meet_obstacle(left_direction_vec) is_right_blocked = self.meet_obstacle(right_direction_vec) return current_direction_vec, is_front_blocked, is_left_blocked, is_right_blocked def get_angle_with_apple(self): apple_direction_vec =
np.array(self.apple_position)
numpy.array
import numpy as np from .indep_sim import ( linear, spiral, exponential, cubic, joint_normal, step, quadratic, w_shaped, uncorrelated_bernoulli, logarithmic, fourth_root, sin_four_pi, sin_sixteen_pi, two_parabolas, circle, ellipse, diamond, multiplicative_noise, square, multimodal_independence, ) _SIMS = [ linear, spiral, exponential, cubic, joint_normal, step, quadratic, w_shaped, uncorrelated_bernoulli, logarithmic, fourth_root, sin_four_pi, sin_sixteen_pi, two_parabolas, circle, ellipse, diamond, multiplicative_noise, square, multimodal_independence, ] def _normalize(x, y): """Normalize input data matricies.""" x[:, 0] = x[:, 0] / np.max(np.abs(x[:, 0])) y[:, 0] = y[:, 0] / np.max(np.abs(y[:, 0])) return x, y def _2samp_rotate(sim, x, y, p, degree=90, pow_type="samp"): angle = np.radians(degree) data = np.hstack([x, y]) same_shape = [ "joint_normal", "logarithmic", "sin_four_pi", "sin_sixteen_pi", "two_parabolas", "square", "diamond", "circle", "ellipse", "multiplicative_noise", "multimodal_independence", ] if sim.__name__ in same_shape: rot_shape = 2 * p else: rot_shape = p + 1 rot_mat = np.identity(rot_shape) if pow_type == "dim": if sim.__name__ not in [ "exponential", "cubic", "spiral", "uncorrelated_bernoulli", "fourth_root", "circle", ]: for i in range(rot_shape): mat = np.random.normal(size=(rot_shape, 1)) mat = mat / np.sqrt(np.sum(mat ** 2)) if i == 0: rot = mat else: rot = np.hstack([rot, mat]) rot_mat, _ = np.linalg.qr(rot) if (p % 2) == 1: rot_mat[0] *= -1 else: rot_mat[np.ix_((0, -1), (0, -1))] = np.array( [[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]] ) elif pow_type == "samp": rot_mat[np.ix_((0, 1), (0, 1))] = np.array( [[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]] ) else: raise ValueError("pow_type not a valid flag ('dim', 'samp')") rot_data = (rot_mat @ data.T).T if sim.__name__ in same_shape: x_rot, y_rot = np.hsplit(rot_data, 2) else: x_rot, y_rot = np.hsplit(rot_data, [-p]) return x_rot, y_rot def rot_2samp(sim, n, p, noise=True, degree=90): r""" Rotates input simulations to produce a 2-sample simulation. Parameters ---------- sim : callable() The simulation (from the ``hyppo.sims`` module) that is to be rotated. n : int The number of samples desired by the simulation. p : int The number of dimensions desired by the simulation. noise : bool, (default: True) Whether or not to include noise in the simulation. degree : float, (default: 90) The number of degrees to rotate the input simulation by (in first dimension). Returns ------- samp1, samp2 : ndarray Rotated data matrices. `samp1` and `samp2` have shapes `(n, p+1)` and `(n, p+1)` or `(n, 2p)` and `(n, 2p)` depending on the independence simulation. Here, `n` is the number of samples and `p` is the number of dimensions. Examples -------- >>> from hyppo.sims import rot_2samp, linear >>> x, y = rot_2samp(linear, 100, 1) >>> print(x.shape, y.shape) (100, 2) (100, 2) """ if sim not in _SIMS: raise ValueError("Not valid simulation") if sim.__name__ == "multimodal_independence": x, y = sim(n, p) x_rot, y_rot = sim(n, p) else: if sim.__name__ == "multiplicative_noise": x, y = sim(n, p) else: x, y = sim(n, p, noise=noise) x_rot, y_rot = _2samp_rotate(sim, x, y, p, degree=degree, pow_type="samp") samp1 = np.hstack([x, y]) samp2 = np.hstack([x_rot, y_rot]) return samp1, samp2 def trans_2samp(sim, n, p, noise=True, degree=90, trans=0.3): r""" Translates and rotates input simulations to produce a 2-sample simulation. Parameters ---------- n : int The number of samples desired by the simulation. p : int The number of dimensions desired by the simulation. noise : bool, (default: False) Whether or not to include noise in the simulation. degree : float, (default: 90) The number of degrees to rotate the input simulation by (in first dimension). trans : float, (default: 0.3) The amount to translate the second simulation by (in first dimension). Returns ------- samp1, samp2 : ndarray Translated/rotated data matrices. `samp1` and `samp2` have shapes `(n, p+1)` and `(n, p+1)` or `(n, 2p)` and `(n, 2p)` depending on the independence simulation. Here, `n` is the number of samples and `p` is the number of dimensions. Examples -------- >>> from hyppo.sims import trans_2samp, linear >>> x, y = trans_2samp(linear, 100, 1) >>> print(x.shape, y.shape) (100, 2) (100, 2) """ if sim not in _SIMS: raise ValueError("Not valid simulation") if sim.__name__ == "multimodal_independence": x, y = sim(n, p) x_trans, y_trans = sim(n, p) else: if sim.__name__ == "multiplicative_noise": x, y = sim(n, p) else: x, y = sim(n, p, noise=noise) x, y = _normalize(x, y) x_trans, y_trans = _2samp_rotate(sim, x, y, p, degree=degree, pow_type="dim") x_trans[:, 0] += trans y_trans[:, 0] = y_trans[:, -1] samp1 = np.hstack([x, y]) samp2 = np.hstack([x_trans, y_trans]) return samp1, samp2 def gaussian_3samp(n, epsilon=1, weight=0, case=1): r""" Generates 3 sample of gaussians corresponding to 5 cases. Parameters ---------- n : int The number of samples desired by the simulation. epsilon : float, (default: 1) The amount to translate simulation by (amount depends on case). weight : float, (default: False) Number between 0 and 1 corresponding to weight of the second Gaussian (used in case 4 and 5 to produce a mixture of Gaussians) case : {1, 2, 3, 4, 5}, (default: 1) The case in which to evaluate statistical power for each test. Returns ------- sims : list of ndarray List of 3 2-dimensional multivariate Gaussian each corresponding to the desired case. Examples -------- >>> from hyppo.sims import gaussian_3samp >>> sims = gaussian_3samp(100) >>> print(sims[0].shape, sims[1].shape, sims[2].shape) (100, 2) (100, 2) (100, 2) """ old_case = case if old_case == 4: case = 2 elif old_case == 5: case = 3 sigma = np.identity(2) mu1 = [0] * 3 mu2 = [0] * 3 if case == 1: pass elif case == 2: mu2 = [0, 0, epsilon] elif case == 3: mu1 = [0, -epsilon / 2, epsilon / 2] mu2 = [ (np.sqrt(3) / 3) * epsilon, -(
np.sqrt(3)
numpy.sqrt
# !/usr/bin/env python3 import os, sys crt_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append(crt_dir) # print('sys.path:', sys.path) import argparse import numpy as np import soundfile as sf from pathlib import Path import onnxruntime as ort import SoundSourceLocalization.SpeechEnhancement.code.ns_featurelib as ns_featurelib class NSnet2Enhancer(object): """NSnet2 enhancer class.""" def __init__(self, modelfile, cfg=None): """Instantiate NSnet2 given a trained model path.""" self.cfg = { 'winlen' : 0.02, 'hopfrac' : 0.5, 'fs' : 16000, 'mingain' : -80, 'feattype': 'LogPow' } self.frameShift = float(self.cfg['winlen']) * float(self.cfg["hopfrac"]) self.fs = int(self.cfg['fs']) self.Nfft = int(float(self.cfg['winlen']) * self.fs) self.mingain = 10 ** (self.cfg['mingain'] / 20) """load onnx model""" self.ort = ort.InferenceSession(modelfile) self.dtype = np.float32 def enhance(self, x): """Obtain the estimated filter""" onnx_inputs = { self.ort.get_inputs()[0].name: x.astype(self.dtype) } out = self.ort.run(None, onnx_inputs)[0][0] return out def __call__(self, sigIn, inFs): """Enhance a single Audio signal.""" assert inFs == self.fs, "Inconsistent sampling rate!" inputSpec = ns_featurelib.calcSpec(sigIn, self.cfg) inputFeature = ns_featurelib.calcFeat(inputSpec, self.cfg) # shape: [batch x time x freq] inputFeature = np.expand_dims(np.transpose(inputFeature), axis=0) # Obtain network output out = self.enhance(inputFeature) # limit suppression gain Gain = np.transpose(out) Gain =
np.clip(Gain, a_min=self.mingain, a_max=1.0)
numpy.clip
""" Credits: Copyright (c) 2017-2019 <NAME>, <NAME>, <NAME>, <NAME> (Sinergise) Copyright (c) 2017-2019 <NAME>, <NAME>, <NAME>, <NAME>, <NAME> (Sinergise) Copyright (c) 2017-2019 <NAME>, <NAME>, <NAME>, <NAME> (Sinergise) This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ import unittest import logging import datetime import os import copy import numpy as np from eolearn.core import EOPatch, FeatureType, CRS, CopyTask, DeepCopyTask, AddFeature, RemoveFeature, RenameFeature,\ DuplicateFeature, InitializeFeature, MoveFeature, MergeFeatureTask, MapFeatureTask, ZipFeatureTask,\ ExtractBandsTask, CreateEOPatchTask logging.basicConfig(level=logging.DEBUG) class TestCoreTasks(unittest.TestCase): @classmethod def setUpClass(cls): cls.data_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../example_data', 'TestEOPatch') cls.patch = EOPatch() cls.patch.data['bands'] = np.arange(2*3*3*2).reshape(2, 3, 3, 2) cls.patch.mask_timeless['mask'] = np.arange(3*3*2).reshape(3, 3, 2) cls.patch.scalar['values'] = np.arange(10*5).reshape(10, 5) cls.patch.timestamp = [datetime.datetime(2017, 1, 1, 10, 4, 7), datetime.datetime(2017, 1, 4, 10, 14, 5), datetime.datetime(2017, 1, 11, 10, 3, 51), datetime.datetime(2017, 1, 14, 10, 13, 46), datetime.datetime(2017, 1, 24, 10, 14, 7), datetime.datetime(2017, 2, 10, 10, 1, 32), datetime.datetime(2017, 2, 20, 10, 6, 35), datetime.datetime(2017, 3, 2, 10, 0, 20), datetime.datetime(2017, 3, 12, 10, 7, 6), datetime.datetime(2017, 3, 15, 10, 12, 14)] cls.patch.bbox = (324.54, 546.45, 955.4, 63.43, 3857) cls.patch.meta_info['something'] = np.random.rand(10, 1) def test_copy(self): patch_copy = CopyTask().execute(self.patch) self.assertEqual(self.patch, patch_copy, 'Copied patch is different') patch_copy.data['new'] = np.arange(1).reshape(1, 1, 1, 1) self.assertFalse('new' in self.patch.data, 'Dictionary of features was not copied') patch_copy.data['bands'][0, 0, 0, 0] += 1 self.assertTrue(
np.array_equal(self.patch.data['bands'], patch_copy.data['bands'])
numpy.array_equal
# # This file is part of CasADi. # # CasADi -- A symbolic framework for dynamic optimization. # Copyright (C) 2010-2014 <NAME>, <NAME>, <NAME>, # K.U. Leuven. All rights reserved. # Copyright (C) 2011-2014 <NAME> # # CasADi is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 3 of the License, or (at your option) any later version. # # CasADi is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with CasADi; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # # -*- coding: utf-8 -*- """ @author: <NAME> and <NAME>, K.U. Leuven 2012 """ from casadi import * import numpy as np import matplotlib.pyplot as plt # ----------------------------------------------------------------------------- # Collocation setup # ----------------------------------------------------------------------------- nicp = 1 # Number of (intermediate) collocation points per control interval xref = 0.1 # chariot reference l = 1. #- -> crane, + -> pendulum m = 1. M = 1. g = 9.81 tf = 5.0 nk = 50 ndstate = 6 nastate = 1 ninput = 1 # Degree of interpolating polynomial deg = 4 # Radau collocation points cp = "radau" # Size of the finite elements h = tf/nk/nicp # Coefficients of the collocation equation C = np.zeros((deg+1,deg+1)) # Coefficients of the continuity equation D = np.zeros(deg+1) # Collocation point tau = SX.sym("tau") # All collocation time points tau_root = [0] + collocation_points(deg, cp) T = np.zeros((nk,deg+1)) for i in range(nk): for j in range(deg+1): T[i][j] = h*(i + tau_root[j]) # For all collocation points: eq 10.4 or 10.17 in Biegler's book # Construct Lagrange polynomials to get the polynomial basis at the collocation point for j in range(deg+1): L = 1 for j2 in range(deg+1): if j2 != j: L *= (tau-tau_root[j2])/(tau_root[j]-tau_root[j2]) # Evaluate the polynomial at the final time to get the coefficients of the continuity equation lfcn = Function('lfcn', [tau],[L]) D[j] = lfcn(1.0) # Evaluate the time derivative of the polynomial at all collocation points to get the coefficients of the continuity equation tfcn = Function('tfcn', [tau],[tangent(L,tau)]) for j2 in range(deg+1): C[j][j2] = tfcn(tau_root[j2]) # ----------------------------------------------------------------------------- # Model setup # ----------------------------------------------------------------------------- # Declare variables (use scalar graph) t = SX.sym("t") # time u = SX.sym("u") # control xd = SX.sym("xd",ndstate) # differential state xa = SX.sym("xa",nastate) # algebraic state xddot = SX.sym("xdot",ndstate) # differential state time derivative p = SX.sym("p",0,1) # parameters x = SX.sym("x") y = SX.sym("y") w = SX.sym("w") dx = SX.sym("dx") dy = SX.sym("dy") dw = SX.sym("dw") res = vertcat(xddot[0] - dx,\ xddot[1] - dy,\ xddot[2] - dw,\ m*xddot[3] + (x-w)*xa, \ m*xddot[4] + y*xa - g*m,\ M*xddot[5] + (w-x)*xa + u,\ (x-w)*(xddot[3] - xddot[5]) + y*xddot[4] + dy*dy + (dx-dw)*(dx-dw)) xd[0] = x xd[1] = y xd[2] = w xd[3] = dx xd[4] = dy xd[5] = dw # System dynamics (implicit formulation) ffcn = Function('ffcn', [t,xddot,xd,xa,u,p],[res]) # Objective function MayerTerm = Function('mayer', [t,xd,xa,u,p],[(x-xref)*(x-xref) + (w-xref)*(w-xref) + dx*dx + dy*dy]) LagrangeTerm = Function('lagrange', [t,xd,xa,u,p],[(x-xref)*(x-xref) + (w-xref)*(w-xref)]) # Control bounds u_min = np.array([-2]) u_max = np.array([ 2]) u_init = np.array((nk*nicp*(deg+1))*[[0.0]]) # needs to be specified for every time interval (even though it stays constant) # Differential state bounds #Path bounds xD_min = np.array([-inf, -inf, -inf, -inf, -inf, -inf]) xD_max = np.array([ inf, inf, inf, inf, inf, inf]) #Initial bounds xDi_min = np.array([ 0.0, l, 0.0, 0.0, 0.0, 0.0]) xDi_max = np.array([ 0.0, l, 0.0, 0.0, 0.0, 0.0]) #Final bounds xDf_min = np.array([-inf, -inf, -inf, -inf, -inf, -inf]) xDf_max = np.array([ inf, inf, inf, inf, inf, inf]) #Initial guess for differential states xD_init = np.array((nk*nicp*(deg+1))*[[ 0.0, l, 0.0, 0.0, 0.0, 0.0]]) # needs to be specified for every time interval # Algebraic state bounds and initial guess xA_min = np.array([-inf]) xA_max = np.array([ inf]) xAi_min = np.array([-inf]) xAi_max = np.array([ inf]) xAf_min = np.array([-inf]) xAf_max = np.array([ inf]) xA_init = np.array((nk*nicp*(deg+1))*[[sign(l)*9.81]]) # Parameter bounds and initial guess p_min = np.array([]) p_max = np.array([]) p_init =
np.array([])
numpy.array
import time import random import numpy as np from collections import deque import tensorflow.compat.v1 as tf tf.disable_v2_behavior() tf.compat.v1.disable_eager_execution() from matplotlib import pyplot as plt class DQNAgent: """ DQN agent """ def __init__(self, states, actions, max_memory, double_q): self.states = states self.actions = actions self.session = tf.Session() self.build_model() self.saver = tf.train.Saver(max_to_keep=10) self.session.run(tf.global_variables_initializer()) self.saver = tf.train.Saver() self.memory = deque(maxlen=max_memory) self.eps = 1 self.eps_decay = 0.99999975 self.eps_min = 0.1 self.gamma = 0.90 self.batch_size = 32 self.burnin = 100000 self.copy = 10000 self.step = 0 self.learn_each = 3 self.learn_step = 0 self.save_each = 500000 self.double_q = double_q def build_model(self): """ Model builder function """ self.input = tf.placeholder(dtype=tf.float32, shape=(None, ) + self.states, name='input') self.q_true = tf.placeholder(dtype=tf.float32, shape=[None], name='labels') self.a_true = tf.placeholder(dtype=tf.int32, shape=[None], name='actions') self.reward = tf.placeholder(dtype=tf.float32, shape=[], name='reward') self.input_float = tf.to_float(self.input) / 255. # Online network with tf.variable_scope('online'): self.conv_1 = tf.layers.conv2d(inputs=self.input_float, filters=32, kernel_size=8, strides=4, activation=tf.nn.relu) self.conv_2 = tf.layers.conv2d(inputs=self.conv_1, filters=64, kernel_size=4, strides=2, activation=tf.nn.relu) self.conv_3 = tf.layers.conv2d(inputs=self.conv_2, filters=64, kernel_size=3, strides=1, activation=tf.nn.relu) self.flatten = tf.layers.flatten(inputs=self.conv_3) self.dense = tf.layers.dense(inputs=self.flatten, units=512, activation=tf.nn.relu) self.output = tf.layers.dense(inputs=self.dense, units=self.actions, name='output') # Target network with tf.variable_scope('target'): self.conv_1_target = tf.layers.conv2d(inputs=self.input_float, filters=32, kernel_size=8, strides=4, activation=tf.nn.relu) self.conv_2_target = tf.layers.conv2d(inputs=self.conv_1_target, filters=64, kernel_size=4, strides=2, activation=tf.nn.relu) self.conv_3_target = tf.layers.conv2d(inputs=self.conv_2_target, filters=64, kernel_size=3, strides=1, activation=tf.nn.relu) self.flatten_target = tf.layers.flatten(inputs=self.conv_3_target) self.dense_target = tf.layers.dense(inputs=self.flatten_target, units=512, activation=tf.nn.relu) self.output_target = tf.stop_gradient(tf.layers.dense(inputs=self.dense_target, units=self.actions, name='output_target')) # Optimizer self.action = tf.argmax(input=self.output, axis=1) self.q_pred = tf.gather_nd(params=self.output, indices=tf.stack([tf.range(tf.shape(self.a_true)[0]), self.a_true], axis=1)) self.loss = tf.losses.huber_loss(labels=self.q_true, predictions=self.q_pred) self.train = tf.train.AdamOptimizer(learning_rate=0.00025).minimize(self.loss) # Summaries self.summaries = tf.summary.merge([ tf.summary.scalar('reward', self.reward), tf.summary.scalar('loss', self.loss), tf.summary.scalar('max_q', tf.reduce_max(self.output)) ]) self.writer = tf.summary.FileWriter(logdir='./logs', graph=self.session.graph) def copy_model(self): """ Copy weights to target network """ self.session.run([tf.assign(new, old) for (new, old) in zip(tf.trainable_variables('target'), tf.trainable_variables('online'))]) def save_model(self): """ Saves current model to disk """ self.saver.save(sess=self.session, save_path='./models/model', global_step=self.step) def add(self, experience): """ Add observation to experience """ self.memory.append(experience) def predict(self, model, state): """ Prediction """ if model == 'online': return self.session.run(fetches=self.output, feed_dict={self.input: np.array(state)}) if model == 'target': return self.session.run(fetches=self.output_target, feed_dict={self.input: np.array(state)}) def run(self, state): """ Perform action """ if
np.random.rand()
numpy.random.rand
import sys import time from datetime import datetime import numpy as np from simple_pid import PID # Components class ProcessVariable(object): def read(self, unit=None): return None class Thermistor(ProcessVariable): def __init__( self, reference_pin, thermistor_pin, bias_resistance=1962, A=1.125308852122e-03, B=2.34711863267e-04, C=8.5663516e-08 ): self.reference_pin = reference_pin self.thermistor_pin = thermistor_pin self.reading = None self.referenced_reading = None self.bias_resistance = bias_resistance self.A = A self.B = B self.C = C def calibrate_steinhart_hart(self, temperature_resistance_pairs, unit='C'): (temperatures, resistances) = zip(*temperature_resistance_pairs) T =
np.array(temperatures)
numpy.array
""" This is multiprocessed (parallelized) so (I think) it has to be run from command line inside the `if __name__ == '__main__':` block b/c python won't let subproccesses spawn subproccesses For multiprocessing it will look up the number of cores on your computer and use n-1 of them. this code has a single class, AK_predictor() it takes inputs: df_u_raw = dataframe with users data --> read in from raw data .csv df_r_raw = dataframe with ratings data --> read in from raw data .csv N = positive int, number of samples for montecarlo sim when computing distances over unknown ratings. default is N = 10000 It takes a couple minutes to initiate b/c it builds all needed similarirty matrices (recommend pickling it after instatiation) To train it use the self.param_grid_search(n_folds = 20, results_folder = results_folder) method. it'll grid search all possible inputs and write outputs to results_folder. - this also takes a minute or two. - this instantiates self.results, and self.optimal_params() (recommend pickling it after training) To fill in the missing values of the ratings data use self.fill_r, and pass it parameter values (ideally self.optimal_params) - This will instantiate the attribute self.df_r_filled (data frame of ratings + predicted ratings instead of nans) - it will write this to a csv in the passed results_folder. Basic useage, see the main block at bottom. --- more info on what it does: it makes df_r form df_r_raw (raw ratings data) by converting the comments to a float using sentiment analysis tools (average of RoBERTa and VADER) - sim_user_rankings: It make a matrix of similarities of the users based on the users rankings of aspects (df_u) see citation for Kendall Tau Correlation, bottom of doc block - sim_user_ratings: it makes a matrix of similarites of the users based on their ratings (df_r). it integrates over unknown (missing) ratings using a uniform prior distribution - sim_item_ratings: it makes a matrix of similarites of the items based on their ratings (df_r). it integrates over unknown (missing) ratings using a uniform prior distribution Similarities of users (items) from ratings are simply exp(-|| r(i,:,:) - r(j,: : )||_p ) - we have 8 distances for these similarities given by p in [0, 1, 2, np.inf] x naive_dist in [True, False] - naive_dist = True means ignores unknown ratings. e.g., if two users have the same ratings on only a few items, it gives them distance 0 - naive_dist = False uses a uniform prior on ratings {1, .., 5} for unknown ratings and computes the expected difference in ratings when computing similarities. Note that the first similarity on users from aspect ranks is Kendall Tau Correlation Fix a p and a naive_dist value (so a distance on rating vectors) From a similarity on users, we define an unseen rating (aspect k) from user u, item j as follows, r(u,j,k): sum_{v: r(v,j,k) exists} r(v,j,k) sim(u,v) / z_u , w/ z_u = sum_same set sim(u,v) Analogously for similarities on items. Now armed with these similaritis and abilities to predict rankings, we defines unknown ratings as r(u,i): = convex sum of three predictions for r(u,i): - user_similarity_by_rank -- weight is parameter a in [0,1] - user_similarity_by_ratings -- weight is parameter b in [a, 1] - item_similarity_by_ratings -- weight is 1-a-b the param_grid_search() method searches over all values of a, b, p, naive_dist and for each one it computes the 20-fold cross-validation average error (macro-averaged) the best tuple are our optimal parameters. Reference for the similarity by ranking the aspects: ^ Kendall Tau Reference: <NAME>, “A Computer Method for Calculating Kendall’s Tau with Ungrouped Data”, Journal of the American Statistical Association, Vol. 61, No. 314, Part 1, pp. 436-439, 1966. - RAB 2021-04-29 """ # imports import pandas as pd import ast, sys from .utils import * import numpy as np from numpy.linalg import norm from scipy.stats import kendalltau from itertools import product from collections import defaultdict from .sentiment import roBERTa_polarity, vader_polarity os.environ["TOKENIZERS_PARALLELISM"] = "false" ## this turns off annoying warnings that get printed 1000 times... from multiprocessing import Pool, cpu_count from timeit import default_timer as timer class AK_predictor: """ Inputs: df_u_raw = dataframe with users data df_r_raw = dataframe with ratings data N = positive int, number of samples for montecarlo sim when computing distances over unknown ratings. default is N = 10000 Attributes: - df_u_raw, df_r_raw = original inputs with column's added - df_u, df_r = augmented dataframes with the needed subset of colums for users (includes aspect rankings) and ratings (users x items x aspects + overall ratings) - _user_id_index = {u: i for i,u in enumerate(self.df_r.user_id.unique())} ## this is the map between {user_id: r's row index}--> same for similarity matricies that are indexed from 0 to num_users. - _tool_id_index = {v: j for j,v in enumerate(self.df_r.tool_id.unique())} ## this is the map between {tool_id: r's column index}--> same for similiarity matricies that are indexed from 0 to num_items. - df_r_filled = same as df_r but has all nan values filled in. this is blank until self.fill_r() is run. - num_users, num_tools = number of users, tools - r0 = numpy array with ratings, nan values for missing ratings. of shape num_users x num_tools x 8 ratings. r0[user, tool, 0] = overall ratings, r0[user, tool, 1:] = aspect ratings - nan_dists = dict giving probability distributions of distances between ratings a and b where at least one of a,b are unseen (nan values). It uses a uniform prior on unseen ratings in the {1, .., 5} - sim_u_rank = numpy array of shape (num_users x num_users), triangular, 1's on diag. gives the Kendall tau similiarity (0 to 1 scale) of users based on their aspect rankings in the user table df_u_raw0 - sim_u_ratings = dict of form { (p, bool): similarity matrix of users based on ratings with Lp distance, and naive_dist = bool} (p in [0, 1, 2, np.inf]) - sim_i_ratings = dict of form { (p, bool): similarity matrix of users based on ratings with Lp distance, and naive_dist = bool} (p in [0, 1, 2, np.inf]) - p_optimal = None until grid search is run to train it Methods: see each method's code block """ def __init__(self, df_u_raw, df_r_raw, N = 10000): print("Beginning initialization...") self.df_u_raw = df_u_raw self.df_r_raw = df_r_raw self.N = N self.optimal_params = {} ## not instantiated here--found when running self.param_grid_search self.results = {} ## not instantiated here--adds a key (n_folds), and values (results for all combinations of parameters) self.df_u, self.df_r = self._make_dfs_from_raw() self.num_users = len(self.df_r.user_id.unique()) self.num_tools = len(self.df_r.tool_id.unique()) ## making r, numpy array of shape (num_users, num_tools, num_aspects + 1 (overall)), self._user_id_index = {u: i for i,u in enumerate(self.df_r.user_id.unique())} ## this is the map between {user_id: r's row index}--> same for similarity matricies that are indexed from 0 to num_users. self._tool_id_index = {v: j for j,v in enumerate(self.df_r.tool_id.unique())} ## this is the map between {tool_id: r's column index}--> same for similiarity matricies that are indexed from 0 to num_items. self.r0 = self._make_r0() ## numpy array of ratings, r0[user, tool, 0] = overall rating self.df_r_filled = None ## place holder to be filled by running self.fill_df_r ## similarity and user conditional probabilities based on how they ranked the aspect questions: self.sim_u_rank = self._make_user_similarity_by_rank() self.nan_dists = self._make_nan_dist_probs() ## needed for distance computations ## for multiprocessing need to define the pool object: processes = cpu_count()-1 pool = Pool(processes=processes) ## making similarity matricies from ratings for differing p-norms, and naive/bayesian distance methods... args = [ (p, naive_dist) for p in [ 0, 1, 2, np.inf] for naive_dist in [ True, False] ] start = timer() print(f'\t\tInstantiating similarity matrix attributes from ratings. This is multiprocessed using {processes} cores. \n\t\t This step takes a minute or two ...') sim_u_results = pool.starmap( self.make_sim_u_ratings, args ) sim_i_results = pool.starmap( self.make_sim_i_ratings, args ) end = timer() print(f'\t\t Done, elapsed time: {end - start}') ## put the results into the desired attributes: self.sim_u_ratings = { args[i] : sim_u_results[i] for i in range(len(args))} self.sim_i_ratings = { args[i] : sim_i_results[i] for i in range(len(args))} print("\tDone initializing!") @staticmethod def sentiment_score(text_string, verbose = True): ## need to double check this works with real data--> are we inputting the right kind of text/preprocessing is ok, etc. """ Takes average of Vader and roBERTa_polarity (in [-1,1]), maps that to [0,5], then uses ceiling to map to {1,2,...,5} """ try: if np.isnan(text_string): return np.nan except: pass try: text_string = text_string.strip() if not text_string: return np.nan except: pass if not text_string: return np.nan x = roBERTa_polarity(text_string) y = vader_polarity(text_string) if verbose and (np.abs(x-y) > .5): print(f'assign score manually, roBERTa_polarity = {x} vader_polarity = {y}, text is: \n\t{text_string}') sentiment = (x + y)/2 ## In [-1,1] sentiment = np.ceil( 5 * (sentiment + 1)/2 ) ## into [0,1], into [0,5], into {1,2,..,5} if sentiment == 0: sentiment = 1 if sentiment == 6: sentiment = 5 return sentiment def _make_dfs_from_raw(self, verbose = False): """ adds cols to self.df_r_raw with numeric sentiment analysis of comments adds cols to sefl.df_u_raw with rankings converted from string(tuple) to jsut a tuple. returns corresponding dataframes with only cols needed. : df_r = ratings dataframe with aspect responses sorted, and free response converted to a float df_u = user dataframe with rankings converted to tuples (not strings) """ for col in ["aspect_rank", "tool_rank"]: ## convert strings of tuples into just tuples: self.df_u_raw[col] = self.df_u_raw.apply(lambda row: ast.literal_eval(row[col + "ing"]), axis = 1) ## make attribute df_u df_u = self.df_u_raw[['user_id', 'familiarity', 'occupation', 'experience', 'name', 'aspect_rank', 'tool_rank']] self.df_r_raw["aspect_id_6"] = self.df_r_raw.apply(lambda row: self.sentiment_score(row["Free Response"], verbose = verbose), axis = 1) ## add column w/ numeric sentiment score ## make attribute df_r print(self.df_r_raw.index) df_r = self.df_r_raw[["user_id", "tool_id", "Overall Score"] + [f'aspect_id_{k}' for k in range(7)]] ## keep only the cols we want in df_r return df_u, df_r def _make_r0(self): """ uses only self.num_users, .num_tools, and .df_r, dataframe with user_id, tool_id, and all questions answered on a 1-5 scale **Important that df_r has a row for each user x each tool (w/ nan rating values if that user didn't rank that tool)** Output: r = n,m,num_questions array of results. nan values in missing ratings. r[user, tool, 0] = overall ratings, r[user, tool, 1:] = aspect ratings """ m = self.num_users n = self.num_tools r = np.empty((m,n,8)) ## ratings matrix, with 0th rating the overall rating (Q3), and ratings 1-7 the aspect ratings r[:] = np.nan for index, row in self.df_r.iterrows(): i = self._user_id_index[row.user_id] ## converts from user_id to index j = self._tool_id_index[row.tool_id] ## converts from tool_id to index cols = list(self.df_r.columns) cols.remove("user_id") cols.remove("tool_id") for k, c in enumerate(cols): r[i,j,k] = row[c] return r def _make_user_similarity_by_rank(self): """ Only uses self.df_u = dataframe with user data. specifically it requires a column named "aspect_rank" Kendall Tao Correlation used. kt(x,y) gives values in [-1,1]. 1 if x=y and -1 if x = inverse(y). here we normalize it to be between 0 and 1 Output: sim_rank - array, mxm, symmetric, 1's on diagonals, gives similarity of users based on their rankings of the aspects """ m = self.num_users sim_rank = np.ones((m,m)) inverse_lookup = {i:u for u,i in self._user_id_index.items()} ## need to map the indices i = 0,.., num_users to the u = user_ids l = sorted(inverse_lookup.keys()) for ind, i in enumerate(l[:-1]): ## run thru i in l except the last element x = self.df_u[self.df_u.user_id == inverse_lookup[i]].iloc[0]["aspect_rank"] for j in l[ind+1:]: ## run thru j in l with j>i y = self.df_u[self.df_u.user_id == inverse_lookup[j]].iloc[0]["aspect_rank"] sim_rank[i,j] = (1 + kendalltau(x,y)[0] )/2 sim_rank[j,i] = sim_rank[i,j] return sim_rank @staticmethod def distance_naive(x_,y_, p = 2): """ Inputs: x_, y_ two numpy arrays of the same shape p = lp norm parameter (p = 0, count non-zero entries, p = 1,2 are usual lp nroms, p = np.inf for infinity norm) Computes ||x_-y_||_p / len(x_) (as though x_ and y_ are vectors) but ignores any components of these vectors that have a nan value. if all values are nan it returns 1. Output: float in [0,1] """ def _remove_nans(x,y): """ Input: x,y: arrays of same shapes Output: x1, y1: 1-d arrays with the corresponding entries of x,y that are both not nan. (ignore any component where x or y is nan, then flatten what's left into a vector and return) """ x = np.array(x) y = np.array(y) assert x.shape == y.shape return x[~np.isnan(x+y)], y[~np.isnan(x+y)] x = x_.copy().flatten() y = y_.copy().flatten() denom = len(x) (x1, y1) = _remove_nans(x,y) # if len(x1)>0: return norm(x1-y1, p ) / len(x1) if len(x1)>0: return norm(x1-y1, p ) / denom else: return 1 ## if no mutual ratings, return max distance. @staticmethod def _make_nan_dist_probs(): """ Returns dict of form {(a,b): { k: prob(|a-b| = k)} } where either a or b are nan """ nan_dists = { ("nan", "nan") : {0 : (5/25), 1: (8/25), 2: (6/25), 3: (4/25), 4: (2/25)}} for a in range(1,6): nan_dists[(a,"nan")] = defaultdict(float) nan_dists[("nan", a)] = nan_dists[(a,"nan")] # symmetric for i in range(1,6): nan_dists[(a,"nan")][np.abs(a-i)] += 1/5 return nan_dists def distance(self, x_, y_ , p = 2, N = None): """ Input: x_, y_: arrays of same shapes p = lp norm parameter (p = 0, count non-zero entries, p = 1,2 are usual lp nroms, p = np.inf for infinity norm) N = how many samples to use for the monte carlo simulation, if nothing passed, uses self.N Output: ||x-y||_p / len(x) (should be in the interval [0,4]), but we take the expected value over any unseen components (nan values) w/ uniform prior (x[i] \in {1,2,3,4,5} each w/ probability 1/5). This is intractable (e.g., if there are 20 missing values and each has 5 different values it can take, there are 5^20 vectors to compute distances on) We use a monte carlo simulation """ if not N: N = self.N x = x_.copy().flatten() y = y_.copy().flatten() I = np.where(np.isnan(x+y))[0] ## components where x[i] or y[i] is nan if len(I)==0: ## no nan values! return norm( x - y, p ) /len(x) # if not self.nan_dists: # self.nan_dists = _make_nan_dist_probs() w = (x-y).reshape(1, x.shape[0] ) ## column vector with x-y W = np.concatenate([w]*N, axis = 0) ## N rows, each are w. for i in I: # sample N values for w[i] if np.isnan(x[i]): a = "nan" else: a = x[i] if np.isnan(y[i]): b = "nan" else: b = y[i] vals, probs = list(zip(*self.nan_dists[ (a,b) ].items())) counts = np.random.multinomial(N, probs) samples = [] for j in range(len(vals)): samples += [vals[j]] * counts[j] np.random.shuffle(samples) W[:,i] = samples ## replaces nan values with the N random samples for w[i] in W return sum([norm( W[i,:], p)/N for i in range(N)])/len(x) def make_sim_u_ratings(self, p = 2, naive_dist = False, N = None, r = None): """ Input: r = np.array of shape num_users, num_tools, num_ratings (0'th rating index for overall ratings. 1: indices for aspects) usually r = self.r0 if r is not passed (r = None), then it uses self.r0 p = lp norm parameter (p = 0, count non-zero entries, p = 1,2 are usual lp nroms, p = np.inf for infinity norm) naive_dist = bool. True uses self.distance_naive(), False uses self.distance() N = positive int, if nothing passed, uses self.N only used if naive_dist = False, in which case it is the monte carlo simulation number. Note, this is all working in the matrix indices space, so indexes go from 0 to num_users. self._user_id_index maps from user_id to the indices in these matrices. Output: sim_u_ratings = np.array of shape num_users x num_users, giving the similarity (np.exp(-dist(u,v))) of users (positive definite, 1's on diag) """ # if not naive_dist and not nan_dists: nan_dists = _make_nan_dist_probs() if not r: r = self.r0 if not N: N = self.N m = self.num_users sim_u_ratings =
np.ones((m,m))
numpy.ones
""" Limited dependent variable and qualitative variables. Includes binary outcomes, count data, (ordered) ordinal data and limited dependent variables. General References -------------------- <NAME> and <NAME>. `Regression Analysis of Count Data`. Cambridge, 1998 <NAME>. `Limited-Dependent and Qualitative Variables in Econometrics`. Cambridge, 1983. <NAME>. `Econometric Analysis`. Prentice Hall, 5th. edition. 2003. """ __all__ = ["Poisson", "Logit", "Probit", "MNLogit", "NegativeBinomial", "GeneralizedPoisson", "NegativeBinomialP", "CountModel"] from statsmodels.compat.pandas import Appender import warnings import numpy as np from pandas import MultiIndex, get_dummies from scipy import special, stats from scipy.special import digamma, gammaln, loggamma, polygamma from scipy.stats import nbinom from statsmodels.base.data import handle_data # for mnlogit from statsmodels.base.l1_slsqp import fit_l1_slsqp import statsmodels.base.model as base import statsmodels.base.wrapper as wrap from statsmodels.distributions import genpoisson_p import statsmodels.regression.linear_model as lm from statsmodels.tools import data as data_tools, tools from statsmodels.tools.decorators import cache_readonly from statsmodels.tools.numdiff import approx_fprime_cs from statsmodels.tools.sm_exceptions import ( PerfectSeparationError, SpecificationWarning, ) try: import cvxopt # noqa:F401 have_cvxopt = True except ImportError: have_cvxopt = False # TODO: When we eventually get user-settable precision, we need to change # this FLOAT_EPS = np.finfo(float).eps # Limit for exponentials to avoid overflow EXP_UPPER_LIMIT = np.log(np.finfo(np.float64).max) - 1.0 # TODO: add options for the parameter covariance/variance # ie., OIM, EIM, and BHHH see Green 21.4 _discrete_models_docs = """ """ _discrete_results_docs = """ %(one_line_description)s Parameters ---------- model : A DiscreteModel instance params : array_like The parameters of a fitted model. hessian : array_like The hessian of the fitted model. scale : float A scale parameter for the covariance matrix. Attributes ---------- df_resid : float See model definition. df_model : float See model definition. llf : float Value of the loglikelihood %(extra_attr)s""" _l1_results_attr = """ nnz_params : int The number of nonzero parameters in the model. Train with trim_params == True or else numerical error will distort this. trimmed : bool array trimmed[i] == True if the ith parameter was trimmed from the model.""" _get_start_params_null_docs = """ Compute one-step moment estimator for null (constant-only) model This is a preliminary estimator used as start_params. Returns ------- params : ndarray parameter estimate based one one-step moment matching """ _check_rank_doc = """ check_rank : bool Check exog rank to determine model degrees of freedom. Default is True. Setting to False reduces model initialization time when exog.shape[1] is large. """ # helper for MNLogit (will be generally useful later) def _numpy_to_dummies(endog): if endog.ndim == 2 and endog.dtype.kind not in ["S", "O"]: endog_dummies = endog ynames = range(endog.shape[1]) else: dummies = get_dummies(endog, drop_first=False) ynames = {i: dummies.columns[i] for i in range(dummies.shape[1])} endog_dummies = np.asarray(dummies, dtype=float) return endog_dummies, ynames return endog_dummies, ynames def _pandas_to_dummies(endog): if endog.ndim == 2: if endog.shape[1] == 1: yname = endog.columns[0] endog_dummies = get_dummies(endog.iloc[:, 0]) else: # series yname = 'y' endog_dummies = endog else: yname = endog.name endog_dummies = get_dummies(endog) ynames = endog_dummies.columns.tolist() return endog_dummies, ynames, yname def _validate_l1_method(method): """ As of 0.10.0, the supported values for `method` in `fit_regularized` are "l1" and "l1_cvxopt_cp". If an invalid value is passed, raise with a helpful error message Parameters ---------- method : str Raises ------ ValueError """ if method not in ['l1', 'l1_cvxopt_cp']: raise ValueError('`method` = {method} is not supported, use either ' '"l1" or "l1_cvxopt_cp"'.format(method=method)) #### Private Model Classes #### class DiscreteModel(base.LikelihoodModel): """ Abstract class for discrete choice models. This class does not do anything itself but lays out the methods and call signature expected of child classes in addition to those of statsmodels.model.LikelihoodModel. """ def __init__(self, endog, exog, check_rank=True, **kwargs): self._check_rank = check_rank super().__init__(endog, exog, **kwargs) self.raise_on_perfect_prediction = True def initialize(self): """ Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model. """ if self._check_rank: # assumes constant rank = tools.matrix_rank(self.exog, method="qr") else: # If rank check is skipped, assume full rank = self.exog.shape[1] self.df_model = float(rank - 1) self.df_resid = float(self.exog.shape[0] - rank) def cdf(self, X): """ The cumulative distribution function of the model. """ raise NotImplementedError def pdf(self, X): """ The probability density (mass) function of the model. """ raise NotImplementedError def _check_perfect_pred(self, params, *args): endog = self.endog fittedvalues = self.cdf(np.dot(self.exog, params[:self.exog.shape[1]])) if (self.raise_on_perfect_prediction and np.allclose(fittedvalues - endog, 0)): msg = "Perfect separation detected, results not available" raise PerfectSeparationError(msg) @Appender(base.LikelihoodModel.fit.__doc__) def fit(self, start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs): """ Fit the model using maximum likelihood. The rest of the docstring is from statsmodels.base.model.LikelihoodModel.fit """ if callback is None: callback = self._check_perfect_pred else: pass # TODO: make a function factory to have multiple call-backs mlefit = super().fit(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) return mlefit # It is up to subclasses to wrap results def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=True, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, qc_verbose=False, **kwargs): """ Fit the model using a regularized maximum likelihood. The regularization method AND the solver used is determined by the argument method. Parameters ---------- start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. method : 'l1' or 'l1_cvxopt_cp' See notes for details. maxiter : {int, 'defined_by_method'} Maximum number of iterations to perform. If 'defined_by_method', then use method defaults (see notes). full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : bool Set to True to print convergence messages. fargs : tuple Extra arguments passed to the likelihood function, i.e., loglike(x,*args). callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. alpha : non-negative scalar or numpy array (same size as parameters) The weight multiplying the l1 penalty term. trim_mode : 'auto, 'size', or 'off' If not 'off', trim (set to zero) parameters that would have been zero if the solver reached the theoretical minimum. If 'auto', trim params using the Theory above. If 'size', trim params if they have very small absolute value. size_trim_tol : float or 'auto' (default = 'auto') Tolerance used when trim_mode == 'size'. auto_trim_tol : float Tolerance used when trim_mode == 'auto'. qc_tol : float Print warning and do not allow auto trim when (ii) (above) is violated by this much. qc_verbose : bool If true, print out a full QC report upon failure. **kwargs Additional keyword arguments used when fitting the model. Returns ------- Results A results instance. Notes ----- Using 'l1_cvxopt_cp' requires the cvxopt module. Extra parameters are not penalized if alpha is given as a scalar. An example is the shape parameter in NegativeBinomial `nb1` and `nb2`. Optional arguments for the solvers (available in Results.mle_settings):: 'l1' acc : float (default 1e-6) Requested accuracy as used by slsqp 'l1_cvxopt_cp' abstol : float absolute accuracy (default: 1e-7). reltol : float relative accuracy (default: 1e-6). feastol : float tolerance for feasibility conditions (default: 1e-7). refinement : int number of iterative refinement steps when solving KKT equations (default: 1). Optimization methodology With :math:`L` the negative log likelihood, we solve the convex but non-smooth problem .. math:: \\min_\\beta L(\\beta) + \\sum_k\\alpha_k |\\beta_k| via the transformation to the smooth, convex, constrained problem in twice as many variables (adding the "added variables" :math:`u_k`) .. math:: \\min_{\\beta,u} L(\\beta) + \\sum_k\\alpha_k u_k, subject to .. math:: -u_k \\leq \\beta_k \\leq u_k. With :math:`\\partial_k L` the derivative of :math:`L` in the :math:`k^{th}` parameter direction, theory dictates that, at the minimum, exactly one of two conditions holds: (i) :math:`|\\partial_k L| = \\alpha_k` and :math:`\\beta_k \\neq 0` (ii) :math:`|\\partial_k L| \\leq \\alpha_k` and :math:`\\beta_k = 0` """ _validate_l1_method(method) # Set attributes based on method cov_params_func = self.cov_params_func_l1 ### Bundle up extra kwargs for the dictionary kwargs. These are ### passed through super(...).fit() as kwargs and unpacked at ### appropriate times alpha = np.array(alpha) assert alpha.min() >= 0 try: kwargs['alpha'] = alpha except TypeError: kwargs = dict(alpha=alpha) kwargs['alpha_rescaled'] = kwargs['alpha'] / float(self.endog.shape[0]) kwargs['trim_mode'] = trim_mode kwargs['size_trim_tol'] = size_trim_tol kwargs['auto_trim_tol'] = auto_trim_tol kwargs['qc_tol'] = qc_tol kwargs['qc_verbose'] = qc_verbose ### Define default keyword arguments to be passed to super(...).fit() if maxiter == 'defined_by_method': if method == 'l1': maxiter = 1000 elif method == 'l1_cvxopt_cp': maxiter = 70 ## Parameters to pass to super(...).fit() # For the 'extra' parameters, pass all that are available, # even if we know (at this point) we will only use one. extra_fit_funcs = {'l1': fit_l1_slsqp} if have_cvxopt and method == 'l1_cvxopt_cp': from statsmodels.base.l1_cvxopt import fit_l1_cvxopt_cp extra_fit_funcs['l1_cvxopt_cp'] = fit_l1_cvxopt_cp elif method.lower() == 'l1_cvxopt_cp': raise ValueError("Cannot use l1_cvxopt_cp as cvxopt " "was not found (install it, or use method='l1' instead)") if callback is None: callback = self._check_perfect_pred else: pass # make a function factory to have multiple call-backs mlefit = super().fit(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, extra_fit_funcs=extra_fit_funcs, cov_params_func=cov_params_func, **kwargs) return mlefit # up to subclasses to wrap results def cov_params_func_l1(self, likelihood_model, xopt, retvals): """ Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. Returns a full cov_params matrix, with entries corresponding to zero'd values set to np.nan. """ H = likelihood_model.hessian(xopt) trimmed = retvals['trimmed'] nz_idx = np.nonzero(~trimmed)[0] nnz_params = (~trimmed).sum() if nnz_params > 0: H_restricted = H[nz_idx[:, None], nz_idx] # Covariance estimate for the nonzero params H_restricted_inv = np.linalg.inv(-H_restricted) else: H_restricted_inv = np.zeros(0) cov_params = np.nan * np.ones(H.shape) cov_params[nz_idx[:, None], nz_idx] = H_restricted_inv return cov_params def predict(self, params, exog=None, linear=False): """ Predict response variable of a model given exogenous variables. """ raise NotImplementedError def _derivative_exog(self, params, exog=None, dummy_idx=None, count_idx=None): """ This should implement the derivative of the non-linear function """ raise NotImplementedError def _derivative_exog_helper(self, margeff, params, exog, dummy_idx, count_idx, transform): """ Helper for _derivative_exog to wrap results appropriately """ from .discrete_margins import _get_count_effects, _get_dummy_effects if count_idx is not None: margeff = _get_count_effects(margeff, exog, count_idx, transform, self, params) if dummy_idx is not None: margeff = _get_dummy_effects(margeff, exog, dummy_idx, transform, self, params) return margeff class BinaryModel(DiscreteModel): _continuous_ok = False def __init__(self, endog, exog, check_rank=True, **kwargs): # unconditional check, requires no extra kwargs added by subclasses self._check_kwargs(kwargs) super().__init__(endog, exog, check_rank, **kwargs) if not issubclass(self.__class__, MultinomialModel): if not np.all((self.endog >= 0) & (self.endog <= 1)): raise ValueError("endog must be in the unit interval.") if (not self._continuous_ok and np.any(self.endog != np.round(self.endog))): raise ValueError("endog must be binary, either 0 or 1") def predict(self, params, exog=None, linear=False): """ Predict response variable of a model given exogenous variables. Parameters ---------- params : array_like Fitted parameters of the model. exog : array_like 1d or 2d array of exogenous values. If not supplied, the whole exog attribute of the model is used. linear : bool, optional If True, returns the linear predictor dot(exog,params). Else, returns the value of the cdf at the linear predictor. Returns ------- array Fitted values at exog. """ if exog is None: exog = self.exog if not linear: return self.cdf(np.dot(exog, params)) else: return np.dot(exog, params) @Appender(DiscreteModel.fit_regularized.__doc__) def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, **kwargs): _validate_l1_method(method) bnryfit = super().fit_regularized(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs) discretefit = L1BinaryResults(self, bnryfit) return L1BinaryResultsWrapper(discretefit) def _derivative_predict(self, params, exog=None, transform='dydx'): """ For computing marginal effects standard errors. This is used only in the case of discrete and count regressors to get the variance-covariance of the marginal effects. It returns [d F / d params] where F is the predict. Transform can be 'dydx' or 'eydx'. Checking is done in margeff computations for appropriate transform. """ if exog is None: exog = self.exog dF = self.pdf(np.dot(exog, params))[:,None] * exog if 'ey' in transform: dF /= self.predict(params, exog)[:,None] return dF def _derivative_exog(self, params, exog=None, transform='dydx', dummy_idx=None, count_idx=None): """ For computing marginal effects returns dF(XB) / dX where F(.) is the predicted probabilities transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. """ # Note: this form should be appropriate for # group 1 probit, logit, logistic, cloglog, heckprob, xtprobit if exog is None: exog = self.exog margeff = np.dot(self.pdf(np.dot(exog, params))[:, None], params[None, :]) if 'ex' in transform: margeff *= exog if 'ey' in transform: margeff /= self.predict(params, exog)[:, None] return self._derivative_exog_helper(margeff, params, exog, dummy_idx, count_idx, transform) class MultinomialModel(BinaryModel): def _handle_data(self, endog, exog, missing, hasconst, **kwargs): if data_tools._is_using_ndarray_type(endog, None): endog_dummies, ynames = _numpy_to_dummies(endog) yname = 'y' elif data_tools._is_using_pandas(endog, None): endog_dummies, ynames, yname = _pandas_to_dummies(endog) else: endog = np.asarray(endog) endog_dummies, ynames = _numpy_to_dummies(endog) yname = 'y' if not isinstance(ynames, dict): ynames = dict(zip(range(endog_dummies.shape[1]), ynames)) self._ynames_map = ynames data = handle_data(endog_dummies, exog, missing, hasconst, **kwargs) data.ynames = yname # overwrite this to single endog name data.orig_endog = endog self.wendog = data.endog # repeating from upstream... for key in kwargs: if key in ['design_info', 'formula']: # leave attached to data continue try: setattr(self, key, data.__dict__.pop(key)) except KeyError: pass return data def initialize(self): """ Preprocesses the data for MNLogit. """ super().initialize() # This is also a "whiten" method in other models (eg regression) self.endog = self.endog.argmax(1) # turn it into an array of col idx self.J = self.wendog.shape[1] self.K = self.exog.shape[1] self.df_model *= (self.J-1) # for each J - 1 equation. self.df_resid = self.exog.shape[0] - self.df_model - (self.J-1) def predict(self, params, exog=None, linear=False): """ Predict response variable of a model given exogenous variables. Parameters ---------- params : array_like 2d array of fitted parameters of the model. Should be in the order returned from the model. exog : array_like 1d or 2d array of exogenous values. If not supplied, the whole exog attribute of the model is used. If a 1d array is given it assumed to be 1 row of exogenous variables. If you only have one regressor and would like to do prediction, you must provide a 2d array with shape[1] == 1. linear : bool, optional If True, returns the linear predictor dot(exog,params). Else, returns the value of the cdf at the linear predictor. Notes ----- Column 0 is the base case, the rest conform to the rows of params shifted up one for the base case. """ if exog is None: # do here to accommodate user-given exog exog = self.exog if exog.ndim == 1: exog = exog[None] pred = super().predict(params, exog, linear) if linear: pred = np.column_stack((np.zeros(len(exog)), pred)) return pred @Appender(DiscreteModel.fit.__doc__) def fit(self, start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs): if start_params is None: start_params = np.zeros((self.K * (self.J-1))) else: start_params = np.asarray(start_params) callback = lambda x : None # placeholder until check_perfect_pred # skip calling super to handle results from LikelihoodModel mnfit = base.LikelihoodModel.fit(self, start_params = start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) mnfit.params = mnfit.params.reshape(self.K, -1, order='F') mnfit = MultinomialResults(self, mnfit) return MultinomialResultsWrapper(mnfit) @Appender(DiscreteModel.fit_regularized.__doc__) def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, **kwargs): if start_params is None: start_params = np.zeros((self.K * (self.J-1))) else: start_params = np.asarray(start_params) mnfit = DiscreteModel.fit_regularized( self, start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs) mnfit.params = mnfit.params.reshape(self.K, -1, order='F') mnfit = L1MultinomialResults(self, mnfit) return L1MultinomialResultsWrapper(mnfit) def _derivative_predict(self, params, exog=None, transform='dydx'): """ For computing marginal effects standard errors. This is used only in the case of discrete and count regressors to get the variance-covariance of the marginal effects. It returns [d F / d params] where F is the predicted probabilities for each choice. dFdparams is of shape nobs x (J*K) x (J-1)*K. The zero derivatives for the base category are not included. Transform can be 'dydx' or 'eydx'. Checking is done in margeff computations for appropriate transform. """ if exog is None: exog = self.exog if params.ndim == 1: # will get flatted from approx_fprime params = params.reshape(self.K, self.J-1, order='F') eXB = np.exp(np.dot(exog, params)) sum_eXB = (1 + eXB.sum(1))[:,None] J = int(self.J) K = int(self.K) repeat_eXB = np.repeat(eXB, J, axis=1) X = np.tile(exog, J-1) # this is the derivative wrt the base level F0 = -repeat_eXB * X / sum_eXB ** 2 # this is the derivative wrt the other levels when # dF_j / dParams_j (ie., own equation) #NOTE: this computes too much, any easy way to cut down? F1 = eXB.T[:,:,None]*X * (sum_eXB - repeat_eXB) / (sum_eXB**2) F1 = F1.transpose((1,0,2)) # put the nobs index first # other equation index other_idx = ~np.kron(np.eye(J-1), np.ones(K)).astype(bool) F1[:, other_idx] = (-eXB.T[:,:,None]*X*repeat_eXB / \ (sum_eXB**2)).transpose((1,0,2))[:, other_idx] dFdX = np.concatenate((F0[:, None,:], F1), axis=1) if 'ey' in transform: dFdX /= self.predict(params, exog)[:, :, None] return dFdX def _derivative_exog(self, params, exog=None, transform='dydx', dummy_idx=None, count_idx=None): """ For computing marginal effects returns dF(XB) / dX where F(.) is the predicted probabilities transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. For Multinomial models the marginal effects are P[j] * (params[j] - sum_k P[k]*params[k]) It is returned unshaped, so that each row contains each of the J equations. This makes it easier to take derivatives of this for standard errors. If you want average marginal effects you can do margeff.reshape(nobs, K, J, order='F).mean(0) and the marginal effects for choice J are in column J """ J = int(self.J) # number of alternative choices K = int(self.K) # number of variables # Note: this form should be appropriate for # group 1 probit, logit, logistic, cloglog, heckprob, xtprobit if exog is None: exog = self.exog if params.ndim == 1: # will get flatted from approx_fprime params = params.reshape(K, J-1, order='F') zeroparams = np.c_[np.zeros(K), params] # add base in cdf = self.cdf(np.dot(exog, params)) # TODO: meaningful interpretation for `iterm`? iterm = np.array([cdf[:, [i]] * zeroparams[:, i] for i in range(int(J))]).sum(0) margeff = np.array([cdf[:, [j]] * (zeroparams[:, j] - iterm) for j in range(J)]) # swap the axes to make sure margeff are in order nobs, K, J margeff = np.transpose(margeff, (1, 2, 0)) if 'ex' in transform: margeff *= exog if 'ey' in transform: margeff /= self.predict(params, exog)[:,None,:] margeff = self._derivative_exog_helper(margeff, params, exog, dummy_idx, count_idx, transform) return margeff.reshape(len(exog), -1, order='F') class CountModel(DiscreteModel): def __init__(self, endog, exog, offset=None, exposure=None, missing='none', check_rank=True, **kwargs): self._check_kwargs(kwargs) super().__init__(endog, exog, check_rank, missing=missing, offset=offset, exposure=exposure, **kwargs) if exposure is not None: self.exposure = np.asarray(self.exposure) self.exposure = np.log(self.exposure) if offset is not None: self.offset = np.asarray(self.offset) self._check_inputs(self.offset, self.exposure, self.endog) if offset is None: delattr(self, 'offset') if exposure is None: delattr(self, 'exposure') # promote dtype to float64 if needed dt = np.promote_types(self.endog.dtype, np.float64) self.endog = np.asarray(self.endog, dt) dt = np.promote_types(self.exog.dtype, np.float64) self.exog = np.asarray(self.exog, dt) def _check_inputs(self, offset, exposure, endog): if offset is not None and offset.shape[0] != endog.shape[0]: raise ValueError("offset is not the same length as endog") if exposure is not None and exposure.shape[0] != endog.shape[0]: raise ValueError("exposure is not the same length as endog") def _get_init_kwds(self): # this is a temporary fixup because exposure has been transformed # see #1609 kwds = super()._get_init_kwds() if 'exposure' in kwds and kwds['exposure'] is not None: kwds['exposure'] = np.exp(kwds['exposure']) return kwds def predict(self, params, exog=None, exposure=None, offset=None, linear=False): """ Predict response variable of a count model given exogenous variables Parameters ---------- params : array_like Model parameters exog : array_like, optional Design / exogenous data. Is exog is None, model exog is used. exposure : array_like, optional Log(exposure) is added to the linear prediction with coefficient equal to 1. If exposure is not provided and exog is None, uses the model's exposure if present. If not, uses 0 as the default value. offset : array_like, optional Offset is added to the linear prediction with coefficient equal to 1. If offset is not provided and exog is None, uses the model's offset if present. If not, uses 0 as the default value. linear : bool If True, returns the linear predicted values. If False, returns the exponential of the linear predicted value. Notes ----- If exposure is specified, then it will be logged by the method. The user does not need to log it first. """ # the following is copied from GLM predict (without family/link check) # Use fit offset if appropriate if offset is None and exog is None and hasattr(self, 'offset'): offset = self.offset elif offset is None: offset = 0. # Use fit exposure if appropriate if exposure is None and exog is None and hasattr(self, 'exposure'): # Already logged exposure = self.exposure elif exposure is None: exposure = 0. else: exposure = np.log(exposure) if exog is None: exog = self.exog fitted = np.dot(exog, params[:exog.shape[1]]) linpred = fitted + exposure + offset if not linear: return np.exp(linpred) # not cdf else: return linpred def _derivative_predict(self, params, exog=None, transform='dydx'): """ For computing marginal effects standard errors. This is used only in the case of discrete and count regressors to get the variance-covariance of the marginal effects. It returns [d F / d params] where F is the predict. Transform can be 'dydx' or 'eydx'. Checking is done in margeff computations for appropriate transform. """ if exog is None: exog = self.exog #NOTE: this handles offset and exposure dF = self.predict(params, exog)[:,None] * exog if 'ey' in transform: dF /= self.predict(params, exog)[:,None] return dF def _derivative_exog(self, params, exog=None, transform="dydx", dummy_idx=None, count_idx=None): """ For computing marginal effects. These are the marginal effects d F(XB) / dX For the Poisson model F(XB) is the predicted counts rather than the probabilities. transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. """ # group 3 poisson, nbreg, zip, zinb if exog is None: exog = self.exog k_extra = getattr(self, 'k_extra', 0) params_exog = params if k_extra == 0 else params[:-k_extra] margeff = self.predict(params, exog)[:,None] * params_exog[None,:] if 'ex' in transform: margeff *= exog if 'ey' in transform: margeff /= self.predict(params, exog)[:,None] return self._derivative_exog_helper(margeff, params, exog, dummy_idx, count_idx, transform) @Appender(DiscreteModel.fit.__doc__) def fit(self, start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs): cntfit = super().fit(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) discretefit = CountResults(self, cntfit) return CountResultsWrapper(discretefit) @Appender(DiscreteModel.fit_regularized.__doc__) def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, **kwargs): _validate_l1_method(method) cntfit = super().fit_regularized(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs) discretefit = L1CountResults(self, cntfit) return L1CountResultsWrapper(discretefit) # Public Model Classes class Poisson(CountModel): __doc__ = """ Poisson Model %(params)s %(extra_params)s Attributes ---------- endog : ndarray A reference to the endogenous response variable exog : ndarray A reference to the exogenous design. """ % {'params': base._model_params_doc, 'extra_params': """offset : array_like Offset is added to the linear prediction with coefficient equal to 1. exposure : array_like Log(exposure) is added to the linear prediction with coefficient equal to 1. """ + base._missing_param_doc + _check_rank_doc} @property def family(self): from statsmodels.genmod import families return families.Poisson() def cdf(self, X): """ Poisson model cumulative distribution function Parameters ---------- X : array_like `X` is the linear predictor of the model. See notes. Returns ------- The value of the Poisson CDF at each point. Notes ----- The CDF is defined as .. math:: \\exp\\left(-\\lambda\\right)\\sum_{i=0}^{y}\\frac{\\lambda^{i}}{i!} where :math:`\\lambda` assumes the loglinear model. I.e., .. math:: \\ln\\lambda_{i}=X\\beta The parameter `X` is :math:`X\\beta` in the above formula. """ y = self.endog return stats.poisson.cdf(y, np.exp(X)) def pdf(self, X): """ Poisson model probability mass function Parameters ---------- X : array_like `X` is the linear predictor of the model. See notes. Returns ------- pdf : ndarray The value of the Poisson probability mass function, PMF, for each point of X. Notes -------- The PMF is defined as .. math:: \\frac{e^{-\\lambda_{i}}\\lambda_{i}^{y_{i}}}{y_{i}!} where :math:`\\lambda` assumes the loglinear model. I.e., .. math:: \\ln\\lambda_{i}=x_{i}\\beta The parameter `X` is :math:`x_{i}\\beta` in the above formula. """ y = self.endog return np.exp(stats.poisson.logpmf(y, np.exp(X))) def loglike(self, params): """ Loglikelihood of Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes -------- .. math:: \\ln L=\\sum_{i=1}^{n}\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right] """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) XB = np.dot(self.exog, params) + offset + exposure endog = self.endog return np.sum( -np.exp(np.clip(XB, None, EXP_UPPER_LIMIT)) + endog * XB - gammaln(endog + 1) ) def loglikeobs(self, params): """ Loglikelihood for observations of Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : array_like The log likelihood for each observation of the model evaluated at `params`. See Notes Notes -------- .. math:: \\ln L_{i}=\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right] for observations :math:`i=1,...,n` """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) XB = np.dot(self.exog, params) + offset + exposure endog = self.endog #np.sum(stats.poisson.logpmf(endog, np.exp(XB))) return -np.exp(XB) + endog*XB - gammaln(endog+1) @Appender(_get_start_params_null_docs) def _get_start_params_null(self): offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) const = (self.endog / np.exp(offset + exposure)).mean() params = [np.log(const)] return params @Appender(DiscreteModel.fit.__doc__) def fit(self, start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs): if start_params is None and self.data.const_idx is not None: # k_params or k_exog not available? start_params = 0.001 * np.ones(self.exog.shape[1]) start_params[self.data.const_idx] = self._get_start_params_null()[0] kwds = {} if kwargs.get('cov_type') is not None: kwds['cov_type'] = kwargs.get('cov_type') kwds['cov_kwds'] = kwargs.get('cov_kwds', {}) cntfit = super(CountModel, self).fit(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) discretefit = PoissonResults(self, cntfit, **kwds) return PoissonResultsWrapper(discretefit) @Appender(DiscreteModel.fit_regularized.__doc__) def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, **kwargs): _validate_l1_method(method) cntfit = super(CountModel, self).fit_regularized( start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs) discretefit = L1PoissonResults(self, cntfit) return L1PoissonResultsWrapper(discretefit) def fit_constrained(self, constraints, start_params=None, **fit_kwds): """fit the model subject to linear equality constraints The constraints are of the form `R params = q` where R is the constraint_matrix and q is the vector of constraint_values. The estimation creates a new model with transformed design matrix, exog, and converts the results back to the original parameterization. Parameters ---------- constraints : formula expression or tuple If it is a tuple, then the constraint needs to be given by two arrays (constraint_matrix, constraint_value), i.e. (R, q). Otherwise, the constraints can be given as strings or list of strings. see t_test for details start_params : None or array_like starting values for the optimization. `start_params` needs to be given in the original parameter space and are internally transformed. **fit_kwds : keyword arguments fit_kwds are used in the optimization of the transformed model. Returns ------- results : Results instance """ #constraints = (R, q) # TODO: temporary trailing underscore to not overwrite the monkey # patched version # TODO: decide whether to move the imports from patsy import DesignInfo from statsmodels.base._constraints import (fit_constrained, LinearConstraints) # same pattern as in base.LikelihoodModel.t_test lc = DesignInfo(self.exog_names).linear_constraint(constraints) R, q = lc.coefs, lc.constants # TODO: add start_params option, need access to tranformation # fit_constrained needs to do the transformation params, cov, res_constr = fit_constrained(self, R, q, start_params=start_params, fit_kwds=fit_kwds) #create dummy results Instance, TODO: wire up properly res = self.fit(maxiter=0, method='nm', disp=0, warn_convergence=False) # we get a wrapper back res.mle_retvals['fcall'] = res_constr.mle_retvals.get('fcall', np.nan) res.mle_retvals['iterations'] = res_constr.mle_retvals.get( 'iterations', np.nan) res.mle_retvals['converged'] = res_constr.mle_retvals['converged'] res._results.params = params res._results.cov_params_default = cov cov_type = fit_kwds.get('cov_type', 'nonrobust') if cov_type != 'nonrobust': res._results.normalized_cov_params = cov # assume scale=1 else: res._results.normalized_cov_params = None k_constr = len(q) res._results.df_resid += k_constr res._results.df_model -= k_constr res._results.constraints = LinearConstraints.from_patsy(lc) res._results.k_constr = k_constr res._results.results_constrained = res_constr return res def score(self, params): """ Poisson model score (gradient) vector of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta}=\\sum_{i=1}^{n}\\left(y_{i}-\\lambda_{i}\\right)x_{i} where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + offset + exposure) return np.dot(self.endog - L, X) def score_obs(self, params): """ Poisson model Jacobian of the log-likelihood for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- score : array_like The score vector (nobs, k_vars) of the model evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\lambda_{i}\\right)x_{i} for observations :math:`i=1,...,n` where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + offset + exposure) return (self.endog - L)[:,None] * X def score_factor(self, params): """ Poisson model score_factor for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- score : array_like The score factor (nobs, ) of the model evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\lambda_{i}\\right) for observations :math:`i=1,...,n` where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + offset + exposure) return (self.endog - L) def hessian(self, params): """ Poisson model Hessian matrix of the loglikelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\sum_{i=1}^{n}\\lambda_{i}x_{i}x_{i}^{\\prime} where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + exposure + offset) return -np.dot(L*X.T, X) def hessian_factor(self, params): """ Poisson model Hessian factor Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (nobs,) The Hessian factor, second derivative of loglikelihood function with respect to the linear predictor evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\sum_{i=1}^{n}\\lambda_{i} where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + exposure + offset) return L class GeneralizedPoisson(CountModel): __doc__ = """ Generalized Poisson Model %(params)s %(extra_params)s Attributes ---------- endog : ndarray A reference to the endogenous response variable exog : ndarray A reference to the exogenous design. """ % {'params': base._model_params_doc, 'extra_params': """ p : scalar P denotes parameterizations for GP regression. p=1 for GP-1 and p=2 for GP-2. Default is p=1. offset : array_like Offset is added to the linear prediction with coefficient equal to 1. exposure : array_like Log(exposure) is added to the linear prediction with coefficient equal to 1.""" + base._missing_param_doc + _check_rank_doc} def __init__(self, endog, exog, p=1, offset=None, exposure=None, missing='none', check_rank=True, **kwargs): super().__init__(endog, exog, offset=offset, exposure=exposure, missing=missing, check_rank=check_rank, **kwargs) self.parameterization = p - 1 self.exog_names.append('alpha') self.k_extra = 1 self._transparams = False def _get_init_kwds(self): kwds = super()._get_init_kwds() kwds['p'] = self.parameterization + 1 return kwds def loglike(self, params): """ Loglikelihood of Generalized Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes -------- .. math:: \\ln L=\\sum_{i=1}^{n}\\left[\\mu_{i}+(y_{i}-1)*ln(\\mu_{i}+ \\alpha*\\mu_{i}^{p-1}*y_{i})-y_{i}*ln(1+\\alpha*\\mu_{i}^{p-1})- ln(y_{i}!)-\\frac{\\mu_{i}+\\alpha*\\mu_{i}^{p-1}*y_{i}}{1+\\alpha* \\mu_{i}^{p-1}}\\right] """ return np.sum(self.loglikeobs(params)) def loglikeobs(self, params): """ Loglikelihood for observations of Generalized Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. See Notes Notes -------- .. math:: \\ln L=\\sum_{i=1}^{n}\\left[\\mu_{i}+(y_{i}-1)*ln(\\mu_{i}+ \\alpha*\\mu_{i}^{p-1}*y_{i})-y_{i}*ln(1+\\alpha*\\mu_{i}^{p-1})- ln(y_{i}!)-\\frac{\\mu_{i}+\\alpha*\\mu_{i}^{p-1}*y_{i}}{1+\\alpha* \\mu_{i}^{p-1}}\\right] for observations :math:`i=1,...,n` """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization endog = self.endog mu = self.predict(params) mu_p = np.power(mu, p) a1 = 1 + alpha * mu_p a2 = mu + (a1 - 1) * endog return (np.log(mu) + (endog - 1) * np.log(a2) - endog * np.log(a1) - gammaln(endog + 1) - a2 / a1) @Appender(_get_start_params_null_docs) def _get_start_params_null(self): offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) const = (self.endog / np.exp(offset + exposure)).mean() params = [np.log(const)] mu = const * np.exp(offset + exposure) resid = self.endog - mu a = self._estimate_dispersion(mu, resid, df_resid=resid.shape[0] - 1) params.append(a) return np.array(params) def _estimate_dispersion(self, mu, resid, df_resid=None): q = self.parameterization if df_resid is None: df_resid = resid.shape[0] a = ((np.abs(resid) / np.sqrt(mu) - 1) * mu**(-q)).sum() / df_resid return a @Appender( """ use_transparams : bool This parameter enable internal transformation to impose non-negativity. True to enable. Default is False. use_transparams=True imposes the no underdispersion (alpha > 0) constraint. In case use_transparams=True and method="newton" or "ncg" transformation is ignored. """) @Appender(DiscreteModel.fit.__doc__) def fit(self, start_params=None, method='bfgs', maxiter=35, full_output=1, disp=1, callback=None, use_transparams=False, cov_type='nonrobust', cov_kwds=None, use_t=None, optim_kwds_prelim=None, **kwargs): if use_transparams and method not in ['newton', 'ncg']: self._transparams = True else: if use_transparams: warnings.warn('Parameter "use_transparams" is ignored', RuntimeWarning) self._transparams = False if start_params is None: offset = getattr(self, "offset", 0) + getattr(self, "exposure", 0) if np.size(offset) == 1 and offset == 0: offset = None kwds_prelim = {'disp': 0, 'skip_hessian': True, 'warn_convergence': False} if optim_kwds_prelim is not None: kwds_prelim.update(optim_kwds_prelim) mod_poi = Poisson(self.endog, self.exog, offset=offset) with warnings.catch_warnings(): warnings.simplefilter("always") res_poi = mod_poi.fit(**kwds_prelim) start_params = res_poi.params a = self._estimate_dispersion(res_poi.predict(), res_poi.resid, df_resid=res_poi.df_resid) start_params = np.append(start_params, max(-0.1, a)) if callback is None: # work around perfect separation callback #3895 callback = lambda *x: x mlefit = super().fit(start_params=start_params, maxiter=maxiter, method=method, disp=disp, full_output=full_output, callback=callback, **kwargs) if optim_kwds_prelim is not None: mlefit.mle_settings["optim_kwds_prelim"] = optim_kwds_prelim if use_transparams and method not in ["newton", "ncg"]: self._transparams = False mlefit._results.params[-1] = np.exp(mlefit._results.params[-1]) gpfit = GeneralizedPoissonResults(self, mlefit._results) result = GeneralizedPoissonResultsWrapper(gpfit) if cov_kwds is None: cov_kwds = {} result._get_robustcov_results(cov_type=cov_type, use_self=True, use_t=use_t, **cov_kwds) return result @Appender(DiscreteModel.fit_regularized.__doc__) def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, **kwargs): _validate_l1_method(method) if np.size(alpha) == 1 and alpha != 0: k_params = self.exog.shape[1] + self.k_extra alpha = alpha * np.ones(k_params) alpha[-1] = 0 alpha_p = alpha[:-1] if (self.k_extra and np.size(alpha) > 1) else alpha self._transparams = False if start_params is None: offset = getattr(self, "offset", 0) + getattr(self, "exposure", 0) if np.size(offset) == 1 and offset == 0: offset = None mod_poi = Poisson(self.endog, self.exog, offset=offset) with warnings.catch_warnings(): warnings.simplefilter("always") start_params = mod_poi.fit_regularized( start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=0, callback=callback, alpha=alpha_p, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs).params start_params = np.append(start_params, 0.1) cntfit = super(CountModel, self).fit_regularized( start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs) discretefit = L1GeneralizedPoissonResults(self, cntfit) return L1GeneralizedPoissonResultsWrapper(discretefit) def score_obs(self, params): if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] mu_p = np.power(mu, p) a1 = 1 + alpha * mu_p a2 = mu + alpha * mu_p * y a3 = alpha * p * mu ** (p - 1) a4 = a3 * y dmudb = mu * exog dalpha = (mu_p * (y * ((y - 1) / a2 - 2 / a1) + a2 / a1**2)) dparams = dmudb * (-a4 / a1 + a3 * a2 / (a1 ** 2) + (1 + a4) * ((y - 1) / a2 - 1 / a1) + 1 / mu) return np.concatenate((dparams, np.atleast_2d(dalpha)), axis=1) def score(self, params): score = np.sum(self.score_obs(params), axis=0) if self._transparams: score[-1] == score[-1] ** 2 return score else: return score def _score_p(self, params): """ Generalized Poisson model derivative of the log-likelihood by p-parameter Parameters ---------- params : array_like The parameters of the model Returns ------- dldp : float dldp is first derivative of the loglikelihood function, evaluated at `p-parameter`. """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] mu_p = np.power(mu, p) a1 = 1 + alpha * mu_p a2 = mu + alpha * mu_p * y dp = np.sum((np.log(mu) * ((a2 - mu) * ((y - 1) / a2 - 2 / a1) + (a1 - 1) * a2 / a1 ** 2))) return dp def hessian(self, params): """ Generalized Poisson model Hessian matrix of the loglikelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] mu_p = np.power(mu, p) a1 = 1 + alpha * mu_p a2 = mu + alpha * mu_p * y a3 = alpha * p * mu ** (p - 1) a4 = a3 * y a5 = p * mu ** (p - 1) dmudb = mu * exog # for dl/dparams dparams dim = exog.shape[1] hess_arr = np.empty((dim+1,dim+1)) for i in range(dim): for j in range(i + 1): hess_arr[i,j] = np.sum(mu * exog[:,i,None] * exog[:,j,None] * (mu * (a3 * a4 / a1**2 - 2 * a3**2 * a2 / a1**3 + 2 * a3 * (a4 + 1) / a1**2 - a4 * p / (mu * a1) + a3 * p * a2 / (mu * a1**2) + (y - 1) * a4 * (p - 1) / (a2 * mu) - (y - 1) * (1 + a4)**2 / a2**2 - a4 * (p - 1) / (a1 * mu)) + ((y - 1) * (1 + a4) / a2 - (1 + a4) / a1)), axis=0) tri_idx = np.triu_indices(dim, k=1) hess_arr[tri_idx] = hess_arr.T[tri_idx] # for dl/dparams dalpha dldpda = np.sum((2 * a4 * mu_p / a1**2 - 2 * a3 * mu_p * a2 / a1**3 - mu_p * y * (y - 1) * (1 + a4) / a2**2 + mu_p * (1 + a4) / a1**2 + a5 * y * (y - 1) / a2 - 2 * a5 * y / a1 + a5 * a2 / a1**2) * dmudb, axis=0) hess_arr[-1,:-1] = dldpda hess_arr[:-1,-1] = dldpda # for dl/dalpha dalpha dldada = mu_p**2 * (3 * y / a1**2 - (y / a2)**2. * (y - 1) - 2 * a2 / a1**3) hess_arr[-1,-1] = dldada.sum() return hess_arr def predict(self, params, exog=None, exposure=None, offset=None, which='mean'): """ Predict response variable of a count model given exogenous variables. Notes ----- If exposure is specified, then it will be logged by the method. The user does not need to log it first. """ if exog is None: exog = self.exog if exposure is None: exposure = getattr(self, 'exposure', 0) elif exposure != 0: exposure = np.log(exposure) if offset is None: offset = getattr(self, 'offset', 0) fitted = np.dot(exog, params[:exog.shape[1]]) linpred = fitted + exposure + offset if which == 'mean': return np.exp(linpred) elif which == 'linear': return linpred elif which =='prob': counts = np.atleast_2d(np.arange(0, np.max(self.endog)+1)) mu = self.predict(params, exog=exog, exposure=exposure, offset=offset)[:,None] return genpoisson_p.pmf(counts, mu, params[-1], self.parameterization + 1) else: raise ValueError('keyword \'which\' not recognized') class Logit(BinaryModel): __doc__ = """ Logit Model %(params)s %(extra_params)s Attributes ---------- endog : ndarray A reference to the endogenous response variable exog : ndarray A reference to the exogenous design. """ % {'params': base._model_params_doc, 'extra_params': base._missing_param_doc + _check_rank_doc} _continuous_ok = True def cdf(self, X): """ The logistic cumulative distribution function Parameters ---------- X : array_like `X` is the linear predictor of the logit model. See notes. Returns ------- 1/(1 + exp(-X)) Notes ----- In the logit model, .. math:: \\Lambda\\left(x^{\\prime}\\beta\\right)= \\text{Prob}\\left(Y=1|x\\right)= \\frac{e^{x^{\\prime}\\beta}}{1+e^{x^{\\prime}\\beta}} """ X = np.asarray(X) return 1/(1+np.exp(-X)) def pdf(self, X): """ The logistic probability density function Parameters ---------- X : array_like `X` is the linear predictor of the logit model. See notes. Returns ------- pdf : ndarray The value of the Logit probability mass function, PMF, for each point of X. ``np.exp(-x)/(1+np.exp(-X))**2`` Notes ----- In the logit model, .. math:: \\lambda\\left(x^{\\prime}\\beta\\right)=\\frac{e^{-x^{\\prime}\\beta}}{\\left(1+e^{-x^{\\prime}\\beta}\\right)^{2}} """ X = np.asarray(X) return np.exp(-X)/(1+np.exp(-X))**2 def loglike(self, params): """ Log-likelihood of logit model. Parameters ---------- params : array_like The parameters of the logit model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i}\\ln\\Lambda \\left(q_{i}x_{i}^{\\prime}\\beta\\right) Where :math:`q=2y-1`. This simplification comes from the fact that the logistic distribution is symmetric. """ q = 2*self.endog - 1 X = self.exog return np.sum(np.log(self.cdf(q*np.dot(X,params)))) def loglikeobs(self, params): """ Log-likelihood of logit model for each observation. Parameters ---------- params : array_like The parameters of the logit model. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L=\\sum_{i}\\ln\\Lambda \\left(q_{i}x_{i}^{\\prime}\\beta\\right) for observations :math:`i=1,...,n` where :math:`q=2y-1`. This simplification comes from the fact that the logistic distribution is symmetric. """ q = 2*self.endog - 1 X = self.exog return np.log(self.cdf(q*np.dot(X,params))) def score(self, params): """ Logit model score (gradient) vector of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta}=\\sum_{i=1}^{n}\\left(y_{i}-\\Lambda_{i}\\right)x_{i} """ y = self.endog X = self.exog L = self.cdf(np.dot(X,params)) return np.dot(y - L,X) def score_obs(self, params): """ Logit model Jacobian of the log-likelihood for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- jac : array_like The derivative of the loglikelihood for each observation evaluated at `params`. Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\Lambda_{i}\\right)x_{i} for observations :math:`i=1,...,n` """ y = self.endog X = self.exog L = self.cdf(np.dot(X, params)) return (y - L)[:,None] * X def hessian(self, params): """ Logit model Hessian matrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\sum_{i}\\Lambda_{i}\\left(1-\\Lambda_{i}\\right)x_{i}x_{i}^{\\prime} """ X = self.exog L = self.cdf(np.dot(X,params)) return -np.dot(L*(1-L)*X.T,X) @Appender(DiscreteModel.fit.__doc__) def fit(self, start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs): bnryfit = super().fit(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) discretefit = LogitResults(self, bnryfit) return BinaryResultsWrapper(discretefit) class Probit(BinaryModel): __doc__ = """ Probit Model %(params)s %(extra_params)s Attributes ---------- endog : ndarray A reference to the endogenous response variable exog : ndarray A reference to the exogenous design. """ % {'params': base._model_params_doc, 'extra_params': base._missing_param_doc + _check_rank_doc} def cdf(self, X): """ Probit (Normal) cumulative distribution function Parameters ---------- X : array_like The linear predictor of the model (XB). Returns ------- cdf : ndarray The cdf evaluated at `X`. Notes ----- This function is just an alias for scipy.stats.norm.cdf """ return stats.norm._cdf(X) def pdf(self, X): """ Probit (Normal) probability density function Parameters ---------- X : array_like The linear predictor of the model (XB). Returns ------- pdf : ndarray The value of the normal density function for each point of X. Notes ----- This function is just an alias for scipy.stats.norm.pdf """ X = np.asarray(X) return stats.norm._pdf(X) def loglike(self, params): """ Log-likelihood of probit model (i.e., the normal distribution). Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i}\\ln\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right) Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric. """ q = 2*self.endog - 1 X = self.exog return np.sum(np.log(np.clip(self.cdf(q*np.dot(X,params)), FLOAT_EPS, 1))) def loglikeobs(self, params): """ Log-likelihood of probit model for each observation Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : array_like The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L_{i}=\\ln\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right) for observations :math:`i=1,...,n` where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric. """ q = 2*self.endog - 1 X = self.exog return np.log(np.clip(self.cdf(q*np.dot(X,params)), FLOAT_EPS, 1)) def score(self, params): """ Probit model score (gradient) vector Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta}=\\sum_{i=1}^{n}\\left[\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}\\right]x_{i} Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric. """ y = self.endog X = self.exog XB = np.dot(X,params) q = 2*y - 1 # clip to get rid of invalid divide complaint L = q*self.pdf(q*XB)/np.clip(self.cdf(q*XB), FLOAT_EPS, 1 - FLOAT_EPS) return np.dot(L,X) def score_obs(self, params): """ Probit model Jacobian for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- jac : array_like The derivative of the loglikelihood for each observation evaluated at `params`. Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left[\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}\\right]x_{i} for observations :math:`i=1,...,n` Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric. """ y = self.endog X = self.exog XB = np.dot(X,params) q = 2*y - 1 # clip to get rid of invalid divide complaint L = q*self.pdf(q*XB)/np.clip(self.cdf(q*XB), FLOAT_EPS, 1 - FLOAT_EPS) return L[:,None] * X def hessian(self, params): """ Probit model Hessian matrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\lambda_{i}\\left(\\lambda_{i}+x_{i}^{\\prime}\\beta\\right)x_{i}x_{i}^{\\prime} where .. math:: \\lambda_{i}=\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)} and :math:`q=2y-1` """ X = self.exog XB = np.dot(X,params) q = 2*self.endog - 1 L = q*self.pdf(q*XB)/self.cdf(q*XB) return np.dot(-L*(L+XB)*X.T,X) @Appender(DiscreteModel.fit.__doc__) def fit(self, start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs): bnryfit = super().fit(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) discretefit = ProbitResults(self, bnryfit) return BinaryResultsWrapper(discretefit) class MNLogit(MultinomialModel): __doc__ = """ Multinomial Logit Model Parameters ---------- endog : array_like `endog` is an 1-d vector of the endogenous response. `endog` can contain strings, ints, or floats or may be a pandas Categorical Series. Note that if it contains strings, every distinct string will be a category. No stripping of whitespace is done. exog : array_like A nobs x k array where `nobs` is the number of observations and `k` is the number of regressors. An intercept is not included by default and should be added by the user. See `statsmodels.tools.add_constant`. %(extra_params)s Attributes ---------- endog : ndarray A reference to the endogenous response variable exog : ndarray A reference to the exogenous design. J : float The number of choices for the endogenous variable. Note that this is zero-indexed. K : float The actual number of parameters for the exogenous design. Includes the constant if the design has one. names : dict A dictionary mapping the column number in `wendog` to the variables in `endog`. wendog : ndarray An n x j array where j is the number of unique categories in `endog`. Each column of j is a dummy variable indicating the category of each observation. See `names` for a dictionary mapping each column to its category. Notes ----- See developer notes for further information on `MNLogit` internals. """ % {'extra_params': base._missing_param_doc + _check_rank_doc} def __init__(self, endog, exog, check_rank=True, **kwargs): super().__init__(endog, exog, check_rank=check_rank, **kwargs) # Override cov_names since multivariate model yname = self.endog_names ynames = self._ynames_map ynames = MultinomialResults._maybe_convert_ynames_int(ynames) # use range below to ensure sortedness ynames = [ynames[key] for key in range(int(self.J))] idx = MultiIndex.from_product((ynames[1:], self.data.xnames), names=(yname, None)) self.data.cov_names = idx def pdf(self, eXB): """ NotImplemented """ raise NotImplementedError def cdf(self, X): """ Multinomial logit cumulative distribution function. Parameters ---------- X : ndarray The linear predictor of the model XB. Returns ------- cdf : ndarray The cdf evaluated at `X`. Notes ----- In the multinomial logit model. .. math:: \\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)} """ eXB = np.column_stack((np.ones(len(X)),
np.exp(X)
numpy.exp
import sys sys.path.append("../") from Utils import Obj from sklearn.neighbors import NearestNeighbors from extension.arap.cuda.arap import Arap from extension.arap_closed.cuda.arap import ClosedArap as ArapSolveRhs from extension.grad_arap.cuda.arap import ArapGrad from extension.bending.cuda.arap import Bending import numpy as np import torch import header import os import time import trimesh def find_nearest(array, value): array = np.asarray(array) idx = np.mean(np.abs(array - np.expand_dims(value,0)),1).argmin() return idx hi_arap = Arap() hi_arap_solve_rhs = ArapSolveRhs() bending = Bending() from sklearn.neighbors import NearestNeighbors clf = NearestNeighbors(n_neighbors=1,p=1,n_jobs=15) ''' def norm_points(vertices,ref_verts): bmin = np.min(ref_verts,axis=0) bmax = np.max(ref_verts,axis=0) diagsq = np.sum(np.power(bmax-bmin,2)) ref_diag = np.sqrt(diagsq) bmin = np.min(vertices,axis=0) bmax = np.max(vertices,axis=0) diagsq = np.sum(np.power(bmax-bmin,2)) diag = np.sqrt(diagsq) s = np.eye(3) s *= (ref_diag/diag) vertices = np.dot(vertices,s) bmin = np.min(ref_verts,axis=0) bmax = np.max(ref_verts,axis=0) ref_bcenter = (bmin+bmax)/2.0 bmin = np.min(vertices,axis=0) bmax = np.max(vertices,axis=0) bcenter = (bmin+bmax)/2.0 #vertices = vertices + (ref_bcenter-bcenter) return vertices ''' def norm_points(vertices): bmin = np.min(vertices,axis=0) bmax =
np.max(vertices,axis=0)
numpy.max
# -*- coding: utf-8 -*- # Copyright (c) 2016-2021 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. from itertools import combinations import matplotlib.pyplot as plt import numpy as np import pandas as pd import networkx as nx import pandapower.topology as top def plot_voltage_profile(net, plot_transformers=True, ax=None, xlabel="Distance from Slack [km]", ylabel="Voltage [pu]", x0=0, trafocolor="r", bus_colors=None, line_loading_weight=False, voltage_column=None, bus_size=3, lines=None, **kwargs): if ax is None: plt.figure(facecolor="white", dpi=120) ax = plt.gca() if not net.converged: raise ValueError("no results in this pandapower network") if voltage_column is None: voltage_column = net.res_bus.vm_pu if lines is None: lines = net.line.index for eg in net.ext_grid[net.ext_grid.in_service == True].bus: d = top.calc_distance_to_bus(net, eg) for lix, line in net.line[(net.line.in_service == True) & net.line.index.isin(lines)].iterrows(): if line.from_bus not in d.index: continue if not ((net.switch.element == line.name) & ~net.switch.closed & ( net.switch.et == 'l')).any(): from_bus = line.from_bus to_bus = line.to_bus x = [x0 + d.at[from_bus], x0 + d.at[to_bus]] try: y = [voltage_column.at[from_bus], voltage_column.at[to_bus]] except: raise UserWarning if "linewidth" in kwargs or not line_loading_weight: ax.plot(x, y, **kwargs) else: ax.plot(x, y, linewidth=0.4 * np.sqrt(net.res_line.loading_percent.at[lix]), **kwargs) if bus_colors is not None: for bus, x, y in zip((from_bus, to_bus), x, y): if bus in bus_colors: ax.plot(x, y, 'or', color=bus_colors[bus], ms=bus_size) kwargs = {k: v for k, v in kwargs.items() if not k == "label"} # if plot_transformers: # if hasattr(plot_transformers, "__iter__"): # if is a list for example # transformers = net.trafo.loc[list(plot_transformers)] # else: # transformers = net.trafo[net.trafo.in_service == True] # for _, transformer in transformers.iterrows(): # if transformer.hv_bus not in d.index: # continue # ax.plot([x0 + d.loc[transformer.hv_bus], # x0 + d.loc[transformer.lv_bus]], # [voltage_column.loc[transformer.hv_bus], # voltage_column.loc[transformer.lv_bus]], color=trafocolor, # **{k: v for k, v in kwargs.items() if not k == "color"}) # trafo geodata if plot_transformers: for trafo_table in ['trafo', 'trafo3w']: if trafo_table not in net.keys(): continue transformers = net[trafo_table].query('in_service') for tid, tr in transformers.iterrows(): t_buses = [tr[b_col] for b_col in ('lv_bus', 'mv_bus', 'hv_bus') if b_col in tr.index] if any([b not in d.index.values or b not in net.res_bus.index.values for b in t_buses]): # logger.info('cannot add trafo %d to plot' % tid) continue for bi, bj in combinations(t_buses, 2): tr_coords = ([x0 + d.loc[bi], x0 + d.loc[bj]], [net.res_bus.at[bi, 'vm_pu'], net.res_bus.at[bj, 'vm_pu']]) ax.plot(*tr_coords, color=trafocolor, **{k: v for k, v in kwargs.items() if not k == "color"}) if xlabel: ax.set_xlabel(xlabel, fontweight="bold", color=(.4, .4, .4)) if ylabel: ax.set_ylabel(ylabel, fontweight="bold", color=(.4, .4, .4)) return ax def plot_loading(net, element="line", boxcolor="b", mediancolor="r", whiskercolor="k", ax=None, index_subset=None): if ax is None: plt.figure(facecolor="white", dpi=80) ax = plt.gca() if index_subset is None: index_subset = net[element].index loadings = net["res_%s" % element].loading_percent.values[net["res_%s" % element].index.isin(index_subset)] boxplot = ax.boxplot(loadings[~
np.isnan(loadings)
numpy.isnan
import os import sys import time import glob import cv2 from PIL import Image import numpy as np import matplotlib.pyplot as plt import scipy.io # from skimage.external import tifffile as sktiff import skimage.color import skimage.io from contextlib import suppress import tensorflow as tf def min_max_norm(images, norm_axis = 'channel_wise'): """ Min max normalization of images Parameters: images: Input stacked image list norm_axis: axis where the normalize should be computed, 'channel_wise': min max norm along the channel 'frame_wise': min max norm frame wise Return: Image list after min max normalization """ assert norm_axis=='channel_wise' or norm_axis=='frame_wise',\ "Please input 'channel_wise' or 'frame_wise'" if norm_axis == 'channel_wise': m = np.max(images) #max val along the channel mi = np.min(images) #min val along the channel output = (images - mi)/ (m - mi) elif norm_axis == 'frame_wise': #tile the tensor with respect to input image # so that the substaction with max and min val can be broadcasted tile_coef = tf.constant([1,100,100,1], tf.int32) #tile max #reduce max val along the axis 1 & 2 #(images.shape[0], 1, 1,1) images.shape[0]=>max val per frames max_tensor = tf.reshape(tf.math.reduce_max(tf.math.reduce_max(images, 1),1), (-1,1,1,1)) tile_max = tf.tile(max_tensor, tile_coef) #tile min #reduce min val along the axis 1 & 2 #(images.shape[0], 1, 1,1) images.shape[0]=>min val per frames min_tensor = tf.reshape(tf.math.reduce_min(tf.math.reduce_min(images, 1),1), (-1,1,1,1)) tile_min = tf.tile(min_tensor, tile_coef) #compute min max frame wise output = (images-tile_min)/(tile_max-tile_min) return output def resize(img_list, NEW_SIZE, interpolation=cv2.INTER_LINEAR): """ Resize image Parameter: image list, new size for image Return: resize image list """ new_img_list = [] for img in img_list: new_img = cv2.resize(img, (NEW_SIZE, NEW_SIZE), interpolation=interpolation) new_img_list.append(new_img) return np.asarray(new_img_list) def tiff(dir_path): ''' Read .tif extension :param dir_path: directory path where data is stored :return: shape of the particular tif file, arrays of the tif file ''' im = sktiff.imread(dir_path) return im.shape, im def append_tiff(path, verbose = True, timer = False): ''' Append tiff image from path :param path: data directory :param verbose: output directory info :param timer: time measurement :return: list of tiff images, list of directories of tiff images ''' start = time.time() dir_list = [] image_stack = [] for main_dir in sorted(os.listdir(path)): if verbose: print('Directory of mice index:', main_dir) print('Directory of .tif files stored:') merge_dir = os.path.join(path + main_dir) for file in sorted(os.listdir(merge_dir)): tif = glob.glob('{}/*.tif'.format(os.path.join(merge_dir + '/' + file))) shape, im = tiff(tif) dir_list.append(main_dir + '/' + file) image_stack.append(im) if verbose: print('{}, {}'.format(tif, shape)) images = np.asarray(image_stack) end = time.time() if timer == True: print('Total time elapsed: ', end - start) return images, dir_list def mat_2_npy(input_path, save_path): ''' convert arrays in .mat to numpy array .npy input_path: path where data files of LIN is store, no need on specific path of .mat! input path must be located at Desktop! save_path: where .npy is save ''' for main_dir in sorted(os.listdir(input_path)): print('Directory of mice index:',main_dir) merge_dir = os.path.join(input_path + main_dir) print('Directory of .mat files stored:') print() for file in sorted(os.listdir(merge_dir )): mat_list = glob.glob('{}/*.mat'.format(os.path.join(merge_dir + '/'+ file))) for mat in mat_list: print(mat) #obtain file name .mat for new file name during the conversion mat_dir_split = mat.split(os.sep) mat_name = mat_dir_split[-1] #print(mat_name) date_dir_split = file.split(os.sep) date_name = date_dir_split[-1] #print('{}_{}'.format(date_name, mat_name)) #returns dict with suppress(Exception): #ignore exception caused by preprocessedFvid.mat data = scipy.io.loadmat(mat) for i in data: if '__' not in i and 'readme' not in i: print(data[i].shape) save_file = (save_path + date_name + '/') if not os.path.exists(save_file): os.makedirs(save_file) #save matlab arrays into .npy file np.save(save_file + "{}_{}_{}.npy".format(date_name, mat_name, i), data[i]) print() def vid_2_frames(vid_path, output_path, extension='.jpg', verbose = False): ''' Converting video to image sequences with specified extension Params: vid_path: Path where video is stored output_path: Path where the converted image should be stored extension: Desired image extension, by DEFAULT .jpg verbose: Print progress of image creating Example: vid_path = '7-12-17-preprocessed.avi' output_path = retrieve_filename(vid_path) vid_2_frames(vid_path, '/' + output_path, extension = '.jpg', verbose = True) Return: >> For: 7-12-17-preprocessed.avi >> Creating..../7-12-17-preprocessed/frame_0000.jpg >> Creating..../7-12-17-preprocessed/frame_0001.jpg ... ''' # Read the video from specified path cam = cv2.VideoCapture(vid_path) try: # creating a folder named output_path if not os.path.exists(output_path): os.makedirs(output_path) # if not created then raise error except OSError: print('Error: Creating directory of output path') # frame currentframe = 0 print('For: ', vid_path) print() while (True): # reading from frame ret, frame = cam.read() if ret: # if video is still left continue creating images # name = ('./'+ output_path +'/frame_' + str(currentframe) + extension) name = ('{}/frame_{:04d}{}').format(output_path, currentframe, extension) if verbose: print('Creating...' + name) # writing the extracted images cv2.imwrite(name, frame) # increasing counter so that it will # show how many frames are created currentframe += 1 else: break # Release all space and windows once done cam.release() cv2.destroyAllWindows() def retrieve_filename(file_path): ''' Retrieve file name from path and remove file extension Example: file_path = 'home/user/Desktop/test.txt' retrieve_filename(file_path) Return: >> test ''' base_name = os.path.basename(file_path) # extract base name without extension base_name = os.path.splitext(base_name)[0] # print(base_name) return base_name def vid2frames_from_files(input_path, save_path): ''' Extension of vid_2_frames, which extract .avi from files :param input_path: Directory where all the .avi files is stored :param save_path: Specify safe path ''' for main_dir in sorted(os.listdir(input_path)): print('Directory of mice index:', main_dir) merge_dir = os.path.join(input_path + main_dir) print('Directory of .avi files stored:') print() for file in sorted(os.listdir(merge_dir)): avi_list = glob.glob('{}/*.avi'.format(os.path.join(merge_dir + '/' + file))) for avi in avi_list: #print(avi) # obtain file name .mat for new file name during the conversion avi_dir_split = avi.split(os.sep) avi_name = avi_dir_split[-1] # print(avi_name) date_dir_split = file.split(os.sep) date_name = date_dir_split[-1] # print('{}_{}'.format(date_name, avi_name)) vid_name = retrieve_filename(avi) save_dir = (save_path + '{}_{}_{}'.format(main_dir,date_name, vid_name)) vid_2_frames(avi, save_dir, extension='.jpg') print() def img_to_array(inp_img, RGB=True): ''' Convert single image from RGB or from Grayscale to array Params: inp_img: Desire image to convert to array RGB: Convert RGB image to grayscale if FALSE ''' if RGB: return skimage.io.imread(inp_img) else: img = skimage.io.imread(inp_img) grayscale = skimage.color.rgb2gray(img) return grayscale def imgs_to_arrays(inp_imgs, extension='.jpg', RGB=True, save_as_npy=False, img_resize = None, save_path=None): ''' Convert image stacks from RGB or from Grayscale to array Params: inp_imgs: Desire image stacks to convert to array extension: input images extension, by DEFAULT '.jpg' RGB: Convert RGB image to grayscale if FALSE save_as_npy: Save as .npy extension save_path: Specify save path ''' if img_resize != None: IMG_SIZE = img_resize imgs_list = [] for imgs in sorted(glob.glob('{}/*{}'.format(inp_imgs, extension))): img_array = img_to_array(imgs, RGB) img_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) imgs_list.append(img_array) imgs_list = np.asarray(imgs_list) if save_as_npy: assert save_path != None, "Save path not specified!" # by default if not os.path.exists(save_path): os.makedirs(save_path) save_name = retrieve_filename(inp_imgs) np.save(save_path + '{}.npy'.format(save_name), imgs_list) return imgs_list def masked_img(mean_imgs, mean_roi): ''' Plot masked image of an input mean image ''' # operations require dtype = uint8 for bitwise comparison scr1 = (mean_imgs * 255).astype(np.uint8) # scr image needs to be int(0,250) scr2 = mean_roi # mask image needs to be float (0,1) masked_output = scr1 * scr2 return masked_output.astype(np.uint8) def dice_coef_py(y_true, y_pred): ''' Dice coefficient for numpy ''' eps = 1e-07 y_true_f = y_true.flatten() y_pred_f = y_pred.flatten() intersection = np.sum(y_true_f * y_pred_f) return (2. * intersection + eps) /(np.sum(y_true_f) + np.sum(y_pred_f) + eps) def retrieve_centroid(inp_img, centroid_rad=3): ''' Estimate centroid from contour and plot centroids on mask image Parameters: inp_img: binarized input image centroid_rad: specify centroid radius during plot by DEFAULT 3 Return: centres list and img with centroids ''' assert inp_img.max() == 1.0, "Image not binarized!" # image needs to be binarized and of type int! cast_img = (inp_img).astype(np.uint8) print('Shape:{}, Min:{}, Max:{}, Type:{}'.format(cast_img.shape, cast_img.min(), cast_img.max(), cast_img.dtype)) contours, a = cv2.findContours(cast_img.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1) print('Number of detected ROIs:', len(contours)) centres = [] for i in range(len(contours)): moments = cv2.moments(contours[i]) centres.append((int(moments['m10'] / moments['m00']), int(moments['m01'] / moments['m00']))) # cv2.circle(img, (x,y), radius, (b, g, r), -1) img_with_centroids = cv2.circle(cast_img, centres[-1], centroid_rad, (0, 0, 0), -1) return centres, img_with_centroids def mean_image(imgs, img_size): ''' :param imgs: Image list :param img_size: specify image size :return: Mean image of shape (img_size, img_size) ''' sums = np.zeros((img_size, img_size)) total_index = 0 for i in range(len(imgs)): sums += np.squeeze(imgs[i]) total_index += 1 mean_img_ori = sums / total_index return mean_img_ori def MSE_image(img1, img2, IMG_SIZE): ''' :param img1: True image :param img2: Predicted image :return: Mean squared error of two images ''' img1, img2 = np.squeeze(img1), np.squeeze(img2) sq_error = (img1 - img2) ** 2 sums = np.sum(sq_error) return sums / (IMG_SIZE * IMG_SIZE) def MAE_image(img1, img2, IMG_SIZE): ''' :param img1: True image :param img2: Predicted image :return: Mean absoluate error of two images ''' img1, img2 = np.squeeze(img1), np.squeeze(img2) ab_error = np.abs(img1 - img2) sums = np.sum(ab_error) return sums / (IMG_SIZE * IMG_SIZE) def max_in_pro(img_stacks, n_imgs, n_rows, n_cols, norm=False): ''' Calculate the maximum intensity projection of image stacks (not optimized for tensorflow!) ''' pixel_flat = [] mip = [] std_dev = [] # (i, j ,k) # of images, # of rows, # of cols for j in range(n_rows): for k in range(n_cols): for i in range(n_imgs): # print(i, j, k) if img_stacks.ndim == 4: pixel_flat.append(img_stacks[i, j, k, :]) else: pixel_flat.append(img_stacks[i, j, k]) # acts as max. window of size n_imgs and strides of n_imgs for n in range(n_cols * n_rows): start = n * n_imgs end = (start) + (n_imgs) # print(start, end) max_pixel = np.max(pixel_flat[start:end]) mip.append(max_pixel) if norm: # print('Normalizing!') std_pixel = np.std(pixel_flat[start:end]) std_dev.append(std_pixel) mip = np.asarray(mip) if norm: # print('Normalizing!') std_dev = np.asarray(std_dev) # mip /= std_dev mip = np.multiply(mip, std_dev) # weight by std.dev mip_re = np.reshape(mip, (n_rows, n_cols)) return np.expand_dims(mip_re, -1) def batch_dataset(inp_imgs, BATCH_SIZE, IMG_SIZE): ''' Custom function for creating mini-batch of dataset :param inp_imgs: Input image list :param BATCH_SIZE: batch size :param IMG_SIZE: input image size :return: Batched dataset of dimension (n_batch, BATCH_SIZE, IMG_SIZE, IMG_SIZE, channel) ''' n_batch = int(len(inp_imgs) / BATCH_SIZE) mod = len(inp_imgs) % BATCH_SIZE if mod == 0: batch_imgs = np.reshape(inp_imgs, (n_batch, BATCH_SIZE, IMG_SIZE, IMG_SIZE, 1)).astype('float32') else: # divisible part divisible = inp_imgs[:(len(inp_imgs) - mod)] divisible_re = np.reshape(divisible, (n_batch, BATCH_SIZE, IMG_SIZE, IMG_SIZE, 1)) # remainder part remainder = inp_imgs[(len(inp_imgs) - mod):] # remainder shape must be padded to be the same as divisible shape # else python will return array of type "object" which tensorflow # cannot convert it to tensor pad_dim = int(BATCH_SIZE - mod) pad_array = np.zeros((pad_dim, IMG_SIZE, IMG_SIZE, 1)) remainder_pad = np.concatenate((remainder, pad_array), axis=0) # normalize trick for remainder to balance the mean of zeros array padding # such that in tf.reduce_mean, mean of remainder_pad = remainder_pad/BATCH_SIZE # which in this case, the true mean becomes remainder_pad/len(remainder) remainder_pad *= (BATCH_SIZE / len(remainder)) remainder_pad = np.expand_dims(remainder_pad, 0) # stack divisible and remainder batch_imgs = np.concatenate((divisible_re, remainder_pad), 0).astype('float32') return batch_imgs def stack4plot(one_hot_imgs): ''' Functions to sum all one hot images along axis=0 for easy plot ''' return tf.squeeze(tf.reduce_sum(one_hot_imgs, axis = 0)) # def similarity_multi(n_neurons, one_hot_imgs, similarity_score, img_size): # ''' # @param n_neurons: number of neurons # @param one_hot_imgs: one hot images generated by deconve model (100,100,1) # @param similarity_scores: similarity scores after dot product # @param img_size: image size # # This function multiply the similarity scores with the one hot image generate by a particular # coordinate # # return: # the sum of all the one hot image activations along the last channel # ''' # stack_imgs = np.zeros((img_size, img_size)) # for idx in range(n_neurons): # activations = similarity_score[idx] * np.squeeze(one_hot_imgs[idx]) # stack_imgs += activations # # return stack_imgs # (batch_size, img_size, img_size) def similarity_multi(one_hot_imgs, similarity_score, thr=None): ''' @param one_hot_imgs: one hot images generated by decoord-conv model (100,100,1) #(n_neurons, img_size, img_size, 1) @param similarity_scores: similarity scores after dot product #(batch_size, n_neurons) @param thr: threshold for sim scores multipied one hot pixel This function multiply the similarity scores with the one hot image generate by a particular coordinate return: the sum of all the one hot image activations along the last channel ''' onehot_multi_sim = tf.einsum('ij,jklm->ijklm', similarity_score, one_hot_imgs) #(batch_size, n_neurons, img_size, img_size, 1) onehot_multi_sim = tf.squeeze(tf.reduce_sum(onehot_multi_sim, axis=1)) if thr=='mean': ta = tf.TensorArray(tf.float32, size=0, dynamic_size=True) for i in tf.range(len(onehot_multi_sim)): ta = ta.write(i, tf.where(onehot_multi_sim[i]<tf.math.reduce_mean(onehot_multi_sim[i]),0.0,onehot_multi_sim[i])) onehot_multi_sim = tf.convert_to_tensor(ta.stack()) elif type(thr)==float: onehot_multi_sim = tf.where(onehot_multi_sim<thr,0.0,onehot_multi_sim) return onehot_multi_sim# (batch_size, img_size, img_size) def concat_recursive(a, b, max_count, count): ''' Recursively concatenate the image stacks with the next image stacks @param a: Top first image stacks @param b: Following image stacks ''' if count < max_count - 1: if (count == 0): c = np.concatenate((a[count], b[count + 1]), axis=0) else: c = np.concatenate((a, b[count + 1]), axis=0) a = c count += 1 return concat_recursive(a, b, max_count, count) if count == max_count - 1: return a def concat_batch(stack_batch_imgs): if tf.rank(tf.convert_to_tensor(stack_batch_imgs[0]))>=3: stack_list = [] for i in range(len(stack_batch_imgs)): slices = stack_batch_imgs[i] slices = tf.convert_to_tensor(slices, tf.float32) concat_imgs = concat_recursive(slices, slices, len(slices), 0) stack_list.append(concat_imgs) return stack_list else: stack_batch_imgs = tf.convert_to_tensor(stack_batch_imgs, tf.float32) concat_imgs = concat_recursive(stack_batch_imgs, stack_batch_imgs, len(stack_batch_imgs), 0) return concat_imgs def similarity_multiplication(similarity_list_npy, one_hot_imgs_list_npy, n_neurons, epoch_pos, img_size, threshold): stack_batch_imgs = [] stack_batch_imgs_thr = [] for batch_similarity in similarity_list_npy[epoch_pos]: stack_imgs = np.zeros((img_size,img_size)) for idx in range(n_neurons): test = batch_similarity[idx]*
np.squeeze(one_hot_imgs_list_npy[epoch_pos, idx])
numpy.squeeze
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import ctypes import hashlib import inspect import struct import zlib import numpy as np from typing import Any from typing import Tuple from typing import TypeVar from typing import Generic class constant: """Class to declare compile-time constants accessible from Warp kernels Args: x: Compile-time constant value, can be any of the built-in math types. """ def __init__(self, x): self.val = x constant._hash.update(bytes(str(x), 'utf-8')) def __eq__(self, other): return self.val == other # shared hash for all constants _hash = hashlib.sha256() #---------------------- # built-in types class vec2(ctypes.Array): _length_ = 2 _shape_ = (2,) _type_ = ctypes.c_float class vec3(ctypes.Array): _length_ = 3 _shape_ = (3,) _type_ = ctypes.c_float class vec4(ctypes.Array): _length_ = 4 _shape_ = (4,) _type_ = ctypes.c_float class quat(ctypes.Array): _length_ = 4 _shape_ = (4,) _type_ = ctypes.c_float class mat22(ctypes.Array): _length_ = 4 _shape_ = (2,2) _type_ = ctypes.c_float class mat33(ctypes.Array): _length_ = 9 _shape_ = (3,3) _type_ = ctypes.c_float class mat44(ctypes.Array): _length_ = 16 _shape_ = (4,4) _type_ = ctypes.c_float class spatial_vector(ctypes.Array): _length_ = 6 _shape_ = (6,) _type_ = ctypes.c_float class spatial_matrix(ctypes.Array): _length_ = 36 _shape_ = (6,6) _type_ = ctypes.c_float class transform(ctypes.Array): _length_ = 7 _shape_ = (7,) _type_ = ctypes.c_float def __init__(self, p=(0.0, 0.0, 0.0), q=(0.0, 0.0, 0.0, 1.0)): self[0:3] = vec3(*p) self[3:7] = quat(*q) @property def p(self): return self[0:3] @property def q(self): return self[3:7] class void: def __init__(self): pass class float32: _length_ = 1 _type_ = ctypes.c_float def __init__(self, x=0.0): self.value = x class float64: _length_ = 1 _type_ = ctypes.c_double def __init__(self, x=0.0): self.value = x class int8: _length_ = 1 _type_ = ctypes.c_int8 def __init__(self, x=0): self.value = x class uint8: _length_ = 1 _type_ = ctypes.c_uint8 def __init__(self, x=0): self.value = x class int16: _length_ = 1 _type_ = ctypes.c_int16 def __init__(self, x=0): self.value = x class uint16: _length_ = 1 _type_ = ctypes.c_uint16 def __init__(self, x=0): self.value = x class int32: _length_ = 1 _type_ = ctypes.c_int32 def __init__(self, x=0): self.value = x class uint32: _length_ = 1 _type_ = ctypes.c_uint32 def __init__(self, x=0): self.value = x class int64: _length_ = 1 _type_ = ctypes.c_int64 def __init__(self, x=0): self.value = x class uint64: _length_ = 1 _type_ = ctypes.c_uint64 def __init__(self, x=0): self.value = x scalar_types = [int8, uint8, int16, uint16, int32, uint32, int64, uint64, float32, float64] vector_types = [vec2, vec3, vec4, mat22, mat33, mat44, quat, transform, spatial_vector, spatial_matrix] np_dtype_to_warp_type = {
np.dtype(np.int8)
numpy.dtype
#!/usr/bin/env python # coding: utf-8 # # NaiveBayes_LogisticRegression_kNearestNeighbors # ## Beta-Binomial Naive Bayes Classifier Full Implementation # ## Gaussian Naive Bayes Classifier Full Implementation # ## Logistic Regression(BP + Newton's Method Update) Full Implementation # ## K-Nearest Neighbours Classifier Full Implementation ########################################################################### # Author: <NAME> # Date: 02/2019 # License: MIT License # Copyright (c) 2020 <NAME> ########################################################################### # Python imports import numpy as np # Matrix and vector computation package import matplotlib.pyplot as plt # Plotting library import time # Set the seed of the numpy random number generator np.random.seed(seed=1) from sklearn import metrics # data and evaluation utils from matplotlib.colors import colorConverter, ListedColormap # some plotting functions import scipy.io EMAIL_DATASET_DICT = scipy.io.loadmat('spamData.mat') X_TRAIN = np.array(EMAIL_DATASET_DICT["Xtrain"]) T_TRAIN = np.array(EMAIL_DATASET_DICT["ytrain"]) T_TRAIN = T_TRAIN.reshape(T_TRAIN.shape[0]) X_TEST = np.array(EMAIL_DATASET_DICT["Xtest"]) T_TEST = np.array(EMAIL_DATASET_DICT["ytest"]) T_TEST = T_TEST.reshape(T_TEST.shape[0]) EMAIL_DATASET = np.column_stack((np.vstack((X_TRAIN, X_TEST)),np.hstack((T_TRAIN, T_TEST)))) print(">>>>>> EMAIL DATASET FEATURE SPACE <<<<<<") print(">>> FULL <<<") print(np.array(EMAIL_DATASET).shape) print(">>> TRAIN <<<") print(X_TRAIN.shape) print(T_TRAIN.shape) print(">>> TEST <<<") print(X_TEST.shape) print(T_TEST.shape) def log_transform(x): """Transform x to natural_log(x).""" return np.log(x+0.1) def binary_transform(x): """Transform x to binary based on sign.""" return np.where(x>0, 1, 0) X_TRAIN_LOG = log_transform(X_TRAIN) X_TEST_LOG = log_transform(X_TEST) X_TRAIN_BNY = binary_transform(X_TRAIN) X_TEST_BNY = binary_transform(X_TEST) # SHARED HELPER FUNCTIONS FOR METRICS EXTRACTION & CONFUSION TABLE PLOT def get_accuracy(targets, predictions): """Helper Function for calculating the (%) accuracy of 'predictions' compared to 'targets'.""" return (np.abs(targets - predictions) < 1e-10 ).mean() * 100.0 def get_errors(outputs, targets): """Helper Function for calculating the error rates of 'outputs' compared to 'targets'. error - overall error rate. false_negatives_error - the % of samples wrongly outputed as '0' instead of '1'. false_positives_error - the % of samples wrongly outputed as '1' instead of '0'.""" error_per_sample = [] error = [] false_negatives_error = [] false_positives_error = [] if(np.array(outputs).ndim == 2): for idx, outputs_per_par in enumerate(outputs): error_per_sample.append(list(np.array(outputs_per_par) - np.array(targets))) error.append(sum(abs(i) for i in error_per_sample[idx])/len(error_per_sample[idx])*100) false_negatives_error.append(abs(sum(i for i in error_per_sample[idx] if i < 0))) false_positives_error.append(sum(i for i in error_per_sample[idx] if i > 0)) elif(np.array(outputs).ndim == 1): error_per_sample = (list(np.array(outputs) - np.array(targets))) error = (sum(abs(i) for i in error_per_sample)/len(error_per_sample)*100) false_negatives_error = (abs(sum(i for i in error_per_sample if i < 0))) false_positives_error = (sum(i for i in error_per_sample if i > 0)) return error, false_negatives_error, false_positives_error def get_cost(outputs, targets): """Return the cost/error rate at the output.""" cost_per_sample = [] cost = [] if(np.array(outputs).ndim == 2): for idx, outputs_per_epoch in enumerate(outputs): cost_per_sample.append(list(np.array(outputs_per_epoch) - np.array(targets))) cost.append(sum(abs(i) for i in cost_per_sample[idx])/len(cost_per_sample[idx])*100) elif(np.array(outputs).ndim == 1): cost_per_sample = (list(np.array(outputs) - np.array(targets))) cost = (sum(abs(i) for i in cost_per_sample)/len(cost_per_sample)*100) return cost def plot_confusion_table(y_true, y_pred, title): """Helper Function for displaying a confusion table of targets vs predictions.""" # Show confusion table conf_matrix = metrics.confusion_matrix(y_true, y_pred, labels=None) # Get confustion matrix # Plot the confusion table class_names = ['${:d}$'.format(x) for x in range(0, 2)] # Binary class names fig = plt.figure() ax = fig.add_subplot(111) # Show class labels on each axis ax.xaxis.tick_top() major_ticks = range(0,2) minor_ticks = [x + 0.5 for x in range(0, 2)] ax.xaxis.set_ticks(major_ticks, minor=False) ax.yaxis.set_ticks(major_ticks, minor=False) ax.xaxis.set_ticks(minor_ticks, minor=True) ax.yaxis.set_ticks(minor_ticks, minor=True) ax.xaxis.set_ticklabels(class_names, minor=False, fontsize=15) ax.yaxis.set_ticklabels(class_names, minor=False, fontsize=15) # Set plot labels ax.yaxis.set_label_position("right") ax.set_xlabel('Predicted Label', fontsize=15) ax.set_ylabel('True Label', fontsize=15) fig.suptitle(title, y=1.03, fontsize=15) # Show a grid to seperate digits ax.grid(b=True, which=u'minor') # Color each grid cell according to the number classes predicted ax.imshow(conf_matrix, interpolation='nearest', cmap='binary') # Show the number of samples in each cell for x in range(conf_matrix.shape[0]): for y in range(conf_matrix.shape[1]): color = 'w' if x == y else 'k' ax.text(x, y, conf_matrix[y,x], ha="center", va="center", color=color) plt.show() # # Q1 Beta-Binomial Naive Bayes Classifier class BetaBinomialNaiveBayes(object): """Beta-binomial naive Bayes classifier implementation.""" def __init__(self, n_features): """Initialize the log probability parameters. n_features - the number of features per sample.""" self.C_Prior = np.zeros(2) self.C_Cond = np.zeros((2,2,n_features)) def train(self, X_train, T_train, beta_par_1, beta_par_2, beta_prior = False, beta_cond = False): """Train the classifier by calculating the log class-prior & class-conditional probabilities. X_train - training input samples. T_train - training input sample labels. beta_par_(1/2) - Beta Prior Distribution hyperparameters. beta_prior - is a prior assumed for the class-prior probability. beta_cond - is a prior assumed for the class-conditional probability.""" ############################################ # Calculating Class Prior Probabilties ############################################ class_1_prior = (T_train.sum() + beta_prior*beta_par_1)/(T_train.shape[0] + beta_prior*(beta_par_1+beta_par_2)) self.C_Prior[1] = np.log(class_1_prior) self.C_Prior[0] = np.log(1-class_1_prior) ############################################# # Calculating Class_Conditional Probabilities ############################################# #Setting all samples from class 0 to (0) tmp = X_train*T_train[:, np.newaxis] #Removing all samples from class 0 tmp = tmp[~np.all(tmp == 0, axis=1)] #Calculating the maximum likelihood of the features to be 1 for class 1 class_1_1_cond = (np.sum(tmp, axis=0) + beta_cond*beta_par_1)/(tmp.shape[0] + beta_cond*(beta_par_1+beta_par_2)) #Calculating the log class=1 conditional probabilities self.C_Cond[1][1] = np.log(class_1_1_cond) self.C_Cond[1][0] = np.log(1-class_1_1_cond) #Setting all samples from class 1 to (0) tmp = X_train*np.logical_not(T_train).astype(int)[:, np.newaxis] #Removing all samples from calss 1 tmp = tmp[~np.all(tmp == 0, axis=1)] #Calculating the maximum likelihood of the features to be 1 for class 0 class_0_1_cond = (np.sum(tmp, axis=0) + beta_cond*beta_par_1)/(tmp.shape[0] + beta_cond*(beta_par_1+beta_par_2)) #Calculating the log class=0 conditional probabilities self.C_Cond[0][1] = np.log(class_0_1_cond) self.C_Cond[0][0] = np.log(1-class_0_1_cond) def predict(self, X_pred): """The classifier makes a prediction about the input-samples' labels, based on its model. X_pred - input samples.""" log_prob = [] #Calculating the probabilities for each sample to be of class 0 log_prob.append(self.C_Prior[0] + X_pred.dot(self.C_Cond[0][1]) + np.logical_not(X_pred).astype(int).dot(self.C_Cond[0][0])) #Calculating the probabilities for each sample to be of class 1 log_prob.append(self.C_Prior[1] + X_pred.dot(self.C_Cond[1][1]) + np.logical_not(X_pred).astype(int).dot(self.C_Cond[1][0])) return np.argmax(log_prob, axis=0) def fit_beta_classifier(classifier, X_train, T_train, X_test, T_test): """Function which performs classifier training, prediction and data gathering. classifier - a BetaBinomialNaiveBayes classifier object. INPUTS: X_train - train dataset samples. T_train - train dataset targets. X_test - test dataset samples. T_train - test dataset targets. OUTPUTS: for train, test: outputs - 2-D prediction matrix with all samples's predicted labels for all beta distributions. error - 1-D error rates matrix for each beta distribution. false_negative/positive - 1-D matrices for each beta distribution. accuracy - 1-D accuracy matrix for each beta distribution. t_time - time for performing the fit.""" outputs_train = [] outputs_test = [] accuracy_train = [] accuracy_test = [] start_time = time.time() # Fit for all beta distributions for beta_1, beta_2 in zip(beta_par_1, beta_par_2): print("Classifier with Beta({},{})".format(beta_1, beta_2)) #Train classifier.train(X_train, T_train, beta_1, beta_2, beta_prior, beta_cond) #Predict Train outputs_train.append(classifier.predict(X_train).reshape(X_train.shape[0])) accuracy_train.append(get_accuracy(T_train, outputs_train[-1])) #Predict Test outputs_test.append(classifier.predict(X_test).reshape(X_test.shape[0])) accuracy_test.append(get_accuracy(T_test, outputs_test[-1])) end_time = time.time() t_time = end_time - start_time error_train, false_negatives_error_train, false_positives_error_train = get_errors(outputs_train, T_train) error_test, false_negatives_error_test, false_positives_error_test = get_errors(outputs_test, T_test) return classifier, outputs_train, outputs_test, error_train, error_test, false_negatives_error_train, false_negatives_error_test, false_positives_error_train, false_positives_error_test, accuracy_train, accuracy_test, t_time def show_results_beta(outputs_train, outputs_test, T_train, T_test, beta_par, error_train, error_test, false_negatives_error_train, false_negatives_error_test, false_positives_error_train, false_positives_error_test, accuracy_train, accuracy_test, t_time): """Helper Function for displaying all data gathered from the fit.""" #PLOT TRAIN FALSE CLASSIFICATION width = 0.35 # the width of the bars p1 = plt.bar(beta_par, np.array(false_negatives_error_train)/T_train.shape[0]*100, width, color=(0.2588,0.4433,1.0)) p2 = plt.bar(beta_par, np.array(false_positives_error_train)/T_train.shape[0]*100, width, color=(1.0,0.5,0.62), bottom=np.array(false_negatives_error_train)/T_train.shape[0]*100) plt.ylabel('Rate (%)', fontsize=15) plt.xlabel('Beta(a,a) Hyperparameter', fontsize=15) plt.title('False Train Negatives/Postives Per Beta Distribution') plt.yticks(np.arange(0, 51, 5)) plt.legend((p1[0], p2[0]), ('False Train Negatives', 'False Train Positives')) plt.show() #PLOT TEST FALSE CLASSIFICATION width = 0.35 # the width of the bars p1 = plt.bar(beta_par, np.array(false_negatives_error_test)/T_test.shape[0]*100, width, color=(0.2588,0.4433,1.0)) p2 = plt.bar(beta_par, np.array(false_positives_error_test)/T_test.shape[0]*100, width, color=(1.0,0.5,0.62), bottom=np.array(false_negatives_error_test)/T_test.shape[0]*100) plt.ylabel('Rate (%)', fontsize=15) plt.xlabel('Beta(a,a) Hyperparameter', fontsize=15) plt.title('False Test Negatives/Postives Per Beta Distribution') plt.yticks(np.arange(0, 51, 5)) plt.legend((p1[0], p2[0]), ('False Test Negatives', 'False Test Positives')) plt.show() #PLOT OVERALL ERROR RATE plt.figure() plt.plot(beta_par, error_train, 'b-', linewidth=2, label='Train Error Rate') plt.plot(beta_par, error_test, 'r-', linewidth=2, label='Test Error Rate') # Add labels to the plot plt.xlabel('Beta(a,a) Hyperparameter', fontsize=15) plt.ylabel('Error Rate (%)', fontsize=15) plt.title('Train/Test Error Rates Per Beta Distribution') plt.legend() x1,x2,y1,y2 = plt.axis() plt.grid() plt.show() #PLOT ACCURACY plt.figure() plt.plot(beta_par, accuracy_train, 'b-', linewidth=2, label='Train Accuracy') plt.plot(beta_par, accuracy_test, 'r-', linewidth=3, label='Test Accuracy') # Add labels to the plot plt.xlabel('Beta(a,a) Hyperparameter', fontsize=15) plt.ylabel('Accuracy (%)', fontsize=15) plt.title('Accuracy Per Beta Distribution') plt.legend() x1,x2,y1,y2 = plt.axis() plt.grid() plt.show() #DISPLAY DATA for idx, beta in enumerate(beta_par): if beta in (1,10,100): print("BAYES CLASSIFIER(Beta({},{}))".format(beta, beta)) print("TRAIN ACCURACY: {}% | TEST ACCURACY: {}%".format(accuracy_train[idx], accuracy_test[idx])) print("TRAIN ERROR RATE: {:.2f}% | TEST ERROR RATE: {:.2f}%".format(error_train[idx], error_test[idx])) print("TRAIN FALSE NEGATIVES ERROR RATE: {:.2f}% | TEST FALSE NEGATIVES ERROR RATE: {:.2f}%".format(false_negatives_error_train[idx]*100/T_train.shape[0], false_negatives_error_test[idx]*100/T_test.shape[0])) print("TRAIN FALSE POSITIVES ERROR RATE: {:.2f}% | TEST FALSE POSITIVES ERROR RATE: {:.2f}%".format(false_positives_error_train[idx]*100/T_train.shape[0], false_positives_error_test[idx]*100/T_test.shape[0])) print("---------------------------------------------------------------------------------------") #Print time for experiment m, s = divmod(t_time, 60) h, m = divmod(m, 60) print("OVERALL TIME FOR CLASSIFIER FIT: {}h:{}m:{:.5f}s".format(h,m,s)) #Display data about the optimal beta best_beta_idx = np.argmax(accuracy_test) print("==============================================================================================") print("BEST PERFORMANCE ACHIEVED FOR: Beta({},{})".format(beta_par_1[best_beta_idx], beta_par_2[best_beta_idx])) print("TRAIN ACCURACY: {}% | TEST ACCURACY: {}%".format(accuracy_train[best_beta_idx], accuracy_test[best_beta_idx])) print("TRAIN ERROR RATE: {:.2f}% | TEST ERROR RATE: {:.2f}%".format(error_train[best_beta_idx], error_test[best_beta_idx])) print("TRAIN FALSE NEGATIVES ERROR RATE: {:.2f}% | TEST FALSE NEGATIVES ERROR RATE: {:.2f}%".format(false_negatives_error_train[best_beta_idx]*100/T_train.shape[0], false_negatives_error_test[best_beta_idx]*100/T_test.shape[0])) print("TRAIN FALSE POSITIVES ERROR RATE: {:.2f}% | TEST FALSE POSITIVES ERROR RATE: {:.2f}%".format(false_positives_error_train[best_beta_idx]*100/T_train.shape[0], false_positives_error_test[best_beta_idx]*100/T_test.shape[0])) print("==============================================================================================") plot_confusion_table(T_train, outputs_train[best_beta_idx], "Optimal Beta({},{}) Train Confusion Table".format(beta_par_1[best_beta_idx], beta_par_2[best_beta_idx])) plot_confusion_table(T_test, outputs_test[best_beta_idx], "Optimal Beta({},{}) Test Confusion Table".format(beta_par_1[best_beta_idx], beta_par_2[best_beta_idx])) # Control Hyperparameters beta_prior = False beta_cond = True beta_par_1 = np.linspace(0,100,num=201) beta_par_2 = np.linspace(0,100,num=201) # Define the classifier to be trained BBNB = BetaBinomialNaiveBayes(X_TRAIN_BNY.shape[1]) # Display Architecture print('>>>>>> BETA-BINOMIAL NAIVE BAYES ARCHITECTURE <<<<<<') print('LOG CLASS PRIORS: {}'.format(BBNB.C_Prior.shape)) print("LOG CLASS CONDITIONAL PROBABILITIES: {}".format(BBNB.C_Cond.shape)) # RUN BBNB, OUTPUTS_TRAIN, OUTPUTS_TEST, ERROR_TRAIN, ERROR_TEST, FALSE_NEGATIVES_ERROR_TRAIN, FALSE_NEGATIVES_ERROR_TEST, FALSE_POSITIVES_ERROR_TRAIN, FALSE_POSITIVES_ERROR_TEST, ACCURACY_TRAIN, ACCURACY_TEST, T_TIME = fit_beta_classifier(BBNB, X_TRAIN_BNY, T_TRAIN, X_TEST_BNY, T_TEST) show_results_beta(OUTPUTS_TRAIN, OUTPUTS_TEST, T_TRAIN, T_TEST, beta_par_1, ERROR_TRAIN, ERROR_TEST, FALSE_NEGATIVES_ERROR_TRAIN, FALSE_NEGATIVES_ERROR_TEST, FALSE_POSITIVES_ERROR_TRAIN, FALSE_POSITIVES_ERROR_TEST, ACCURACY_TRAIN, ACCURACY_TEST, T_TIME) # # Q2 Gaussian Naive Bayes Classifier class GaussianNaiveBayes(object): """Gaussian Naive Bayes classifier implementation.""" def __init__(self, n_features): """Initialize the log prior & class-cond mean/variance parameters. n_features is the number of features per sample.""" self.C_Prior = np.zeros(2) self.C_Mean = np.zeros((2, n_features)) self.C_Var = np.zeros((2, n_features)) def train(self, X_train, T_train): """Train the classifier by calculating the log class-prior & class mean/variance using Maximum Likelihood. X_train - training input samples. T_train - training input sample labels.""" ############################################ # Calculating Class Prior Probabilties ############################################ class_1_prior = T_train.sum()/(T_train.shape[0]) self.C_Prior[1] = np.log(class_1_prior) self.C_Prior[0] = np.log(1-class_1_prior) ############################################ # Calculating Class-Conditional Mean & Variance ############################################ #Setting all samples from class 0 to (0) tmp = X_train*T_train[:, np.newaxis] #Removing all samples from class 0 tmp = tmp[~np.all(tmp == 0, axis=1)] #Maximum Likelihood estimation of the mean and variance of each feature based on all training samples from class 1 self.C_Mean[1] = np.mean(tmp,axis=0) self.C_Var[1] = np.var(tmp,axis=0) #Setting all samples from class 1 to (0) tmp = X_train*np.logical_not(T_train).astype(int)[:, np.newaxis] #Removing all samples from calss 1 tmp = tmp[~np.all(tmp == 0, axis=1)] #Maximum Likelihood estimation of the mean and variance of each feature based on all training samples from class 0 self.C_Mean[0] = np.mean(tmp,axis=0) self.C_Var[0] = np.var(tmp,axis=0) def calculate_log_probability(self, X_pred): """Plug-in estimator of the natural log of the class-conditional probabilities. X_pred - input samples.""" #Calculating the class-conditional probability of the features for class 1 exponent = np.exp(-((X_pred - self.C_Mean[1])**2 / (2 * self.C_Var[1]))) #Calculating the log class=1 conditional probabilities class_1_log_cond = np.log((1 / (np.sqrt(2 * np.pi * self.C_Var[1]))) * exponent) #Calculating the class-conditional probability of the features for class 0 exponent = np.exp(-((X_pred - self.C_Mean[0])**2 / (2 * self.C_Var[0]))) #Calculating the log class=0 conditional probabilities class_0_log_cond = np.log((1 / (np.sqrt(2 * np.pi * self.C_Var[0]))) * exponent) return class_0_log_cond, class_1_log_cond def predict(self, X_pred): """The classifier makes a prediction about the inputs samples'labels, based on the trained priors and plugged-in input samples. X_pred - input samples.""" log_prob = [] class_0_log_cond, class_1_log_cond = self.calculate_log_probability(X_pred) #Calculating the probabilities for each sample to be of class 0 log_prob.append(self.C_Prior[0] + np.sum(class_0_log_cond,axis=1)) #Calculating the probabilities for each sample to be of class 1 log_prob.append(self.C_Prior[1] + np.sum(class_1_log_cond,axis=1)) return np.argmax(log_prob, axis=0) def fit_gaussian_classifier(classifier, X_train, T_train, X_test, T_test): """Function which performs classifier training, prediction and data gathering. classifier - a GaussianNaiveBayes classifier object. INPUTS: X_train - train dataset samples. T_train - train dataset targets. X_test - test dataset samples. T_train - test dataset targets. OUTPUTS: for train, test: outputs - 1-D prediction matrix with all samples's predicted labels. error - scalar error rate for the fit. false_negative/positive - scalar error rates for the fit. accuracy - scalar rate for the fit. t_time - time for performing the fit.""" start_time = time.time() print("Starting Gaussian Naive Bayes Classifier Fit") #Train classifier.train(X_train, T_train) #Predict train dataset outputs_train = classifier.predict(X_train).reshape(X_train.shape[0]) accuracy_train = get_accuracy(T_train, outputs_train) #Predict test dataset outputs_test = classifier.predict(X_test).reshape(X_test.shape[0]) accuracy_test = get_accuracy(T_test, outputs_test) end_time = time.time() t_time = end_time - start_time error_train, false_negatives_error_train, false_positives_error_train = get_errors(outputs_train, T_train) error_test, false_negatives_error_test, false_positives_error_test = get_errors(outputs_test, T_test) return classifier, outputs_train, outputs_test, error_train, error_test, false_negatives_error_train, false_negatives_error_test, false_positives_error_train, false_positives_error_test, accuracy_train, accuracy_test, t_time def show_results_gaussian(outputs_train, outputs_test, T_train, T_test, error_train, error_test, false_negatives_error_train, false_negatives_error_test, false_positives_error_train, false_positives_error_test, accuracy_train, accuracy_test, t_time): """Helper Function for displaying all data gathered from the fit.""" print(">>>>> GAUSSIAN NAIVE BAYES CLASSIFIER <<<<<") print("TRAIN ACCURACY: {}% | TEST ACCURACY: {}%".format(accuracy_train, accuracy_test)) print("TRAIN ERROR RATE: {:.2f}% | TEST ERROR RATE: {:.2f}%".format(error_train, error_test)) print("TRAIN FALSE NEGATIVES ERROR RATE: {:.2f}% | TEST FALSE NEGATIVES ERROR RATE: {:.2f}%".format(false_negatives_error_train*100/T_train.shape[0], false_negatives_error_test*100/T_test.shape[0])) print("TRAIN FALSE POSITIVES ERROR RATE: {:.2f}% | TEST FALSE POSITIVES ERROR RATE: {:.2f}%".format(false_positives_error_train*100/T_train.shape[0], false_positives_error_test*100/T_test.shape[0])) #Print time for experiment m, s = divmod(t_time, 60) h, m = divmod(m, 60) print("OVERALL TIME FOR CLASSIFIER FIT: {}h:{}m:{:.5f}s".format(h,m,s)) plot_confusion_table(T_train, outputs_train, "Gaussian Naive Bayes Train Confusion Table") plot_confusion_table(T_test, outputs_test, "Gaussian Naive Bayes Test Confusion Table") # Define the classifier to be trained GNB = GaussianNaiveBayes(X_TRAIN_LOG.shape[1]) # Display Architecture print('>>>>>> GAUSSIAN NAIVE BAYES ARCHITECTURE <<<<<<') print('LOG CLASS PRIORS: {}'.format(GNB.C_Prior.shape)) print("CLASS-CONDITIONAL MEANS: {}".format(GNB.C_Mean.shape)) print("CLASS-CONDITIONAL VARIANCES: {}".format(GNB.C_Var.shape)) # RUN GNB, OUTPUTS_TRAIN, OUTPUTS_TEST, ERROR_TRAIN, ERROR_TEST, FALSE_NEGATIVES_ERROR_TRAIN, FALSE_NEGATIVES_ERROR_TEST, FALSE_POSITIVES_ERROR_TRAIN, FALSE_POSITIVES_ERROR_TEST, ACCURACY_TRAIN, ACCURACY_TEST, T_TIME = fit_gaussian_classifier(GNB, X_TRAIN_LOG, T_TRAIN, X_TEST_LOG, T_TEST) show_results_gaussian(OUTPUTS_TRAIN, OUTPUTS_TEST, T_TRAIN, T_TEST, ERROR_TRAIN, ERROR_TEST, FALSE_NEGATIVES_ERROR_TRAIN, FALSE_NEGATIVES_ERROR_TEST, FALSE_POSITIVES_ERROR_TRAIN, FALSE_POSITIVES_ERROR_TEST, ACCURACY_TRAIN, ACCURACY_TEST, T_TIME) # # Q3 Logistic Regression def logistic(z): """Logistic/Sigmoid/Squashing function. Can take scalars and matrices.""" return 1 / (1 + np.exp(-z)) def logistic_deriv(y): """Logistic/Sigmoid/Squashing function 1st derivative. Can take scalars and matrices.""" return np.multiply(y, (1 - y)) def step(x): """Step function with threhold 0.5. Can take scalars and matrices.""" return 1 * (x >= 0.5) def step_Der(y): """Step function 1st derivative. Can take scalars and matrices.""" return np.full((y.shape), 1) class LogisticNeuron(object): """Logistic Regression Neuron class implementation.""" def __init__(self, n_features): """Initialize the parameters. n_features is the number of features per sample.""" self.weights = np.random.randn(n_features) * 0.1 self.bias = np.zeros(1) def get_log_odds(self, X_train): """Calculating the net activation (In the Logistic Regression case - the log-odds estimation). Equivalent to a linear forward pass. X_train - input samples.""" return X_train.dot(self.weights) + self.bias def get_posterior(self, log_odds): """Calculating the activation function output. (In the Logistic Regression case - the posterior probabilities estimation).""" return logistic(log_odds) def get_output(self, posterior): """Calcualting the output prediction. For Logistic Regression - it is a step function with decision boundary at 0.5.""" return step(posterior) def update_params_back_prop(self, Posterior_train, T_train, X_train, L2_rate, regularization = False): """"Function to calculate the Back Propagation Gradient Descent costs & update the parameters of the neuron by given learning rate. Weight decay (L2 regularization) is also implemented. Y_train - neuron output predictions. T_train - targets. X_train - input samples. L2_rate - regularization hyperparameter (lambda). regularization - switch for the weight decay.""" #Single input sample if(np.isscalar(T_train)): self.weights = self.weights - learning_rate*(X_train*logistic_deriv(Posterior_train)*(Posterior_train - T_train) - regularization*L2_rate*self.weights) self.bias = self.bias - learning_rate*logistic_deriv(Posterior_train)*(Posterior_train - T_train) #Matrix of input samples else: cost = (Posterior_train - T_train) / Posterior_train.shape[0] self.weights = self.weights - learning_rate*(X_train.T.dot(np.multiply(logistic_deriv(Posterior_train), cost)) - regularization*L2_rate*self.weights) self.bias = self.bias - learning_rate*np.sum(np.multiply(logistic_deriv(Posterior_train), cost)) def update_params_Newton(self, Posterior_train, T_train, X_train, L2_rate, regularization = False): """"Function to calculate the Newton's Method (2nd derivative estimation) costs & update the parameters of the neuron. Weight decay (L2 regularization) is also implemented. Posterior_train - neuron posterior probabilities predictions. T_train - targets. X_train - input samples. L2_rate - regularization hyperparameter (lambda). regularization - switch for the weight decay.""" #Adding a bias input to X_train bias_inputs = np.full((X_train.shape[0]), 1) X = np.column_stack((bias_inputs, X_train)) #Calcualting the S Matrix S = np.diag(Posterior_train*(1-Posterior_train)) #Buildinging the I Matrix I = np.diag(np.concatenate([np.array([0]),np.full((self.weights.shape[0]), 1)])) #Gradient G = X.T.dot(Posterior_train-T_train) + regularization*L2_rate*np.concatenate([np.array([0]),self.weights]) #Hessian H = X.T.dot(S).dot(X) + regularization*L2_rate*I try: H_inv = np.linalg.inv(H) except np.linalg.LinAlgError: # Not invertible. H_inv = H #Calculate the cost COST = np.dot(H_inv, G) #Update self.weights = self.weights - COST[1:] self.bias = self.bias - COST[0] def forward_step(LogisticNeuron, X_pred): """Compute and return the posterior probabilities and output predictions. LogisticNeuron - LogisticNeuron object. X_pred - input samples.""" log_odds = LogisticNeuron.get_log_odds(X_pred) posterior = LogisticNeuron.get_posterior(log_odds) output = LogisticNeuron.get_output(posterior) return posterior, output def train_logistic(LogisticNeuron, X_train, T_train, X_val, T_val, L2_rate, NewtonUpdate=True): """Function to perform the forward propagation & update the model parameters until convergence. It also gathers data for the training process. It is a good practise the models fit to be assesed on a validation set. Sequential/Minibatches/Batch learning is implemented. INPUTS: X_train - train dataset samples. T_train - train dataset targets. X_val - test dataset samples. T_val - test dataset targets. L2_rate - regularization parameter. OUTPUTS: for train, validation: error - 1-D matrix of error rates per epoch. false_negative/positive - 1-D matrix of error rates per epoch. accuracy - 1-D matrix of rates per epoch. nb_of_epochs - number of training epochs to convergence. nb_of_batches - number of minibatches. minibatch_costs - the error rate per minibatch. t_time - time for performing the fit.""" # Create batches (X,T) from the training set nb_of_batches = X_train.shape[0] / batch_size # Number of batches XT_batches = list(zip( np.array_split(X_train, nb_of_batches, axis=0), # X samples np.array_split(T_train, nb_of_batches, axis=0))) # T targets cost_per_epoch = [] minibatch_costs = [] accuracy_t = [] outputs_train = [] outputs_validation = [] accuracy_v = [] start_time = time.time() # Train for the maximum number of epochs for epoch in range(max_nb_of_epochs): for X, T in XT_batches: # For each minibatch sub-iteration posterior, outputs = forward_step(LogisticNeuron, X) # Get the predictions minibatch_costs.append(get_cost(outputs.reshape(outputs.shape[0]), T)) if NewtonUpdate: LogisticNeuron.update_params_Newton(posterior, T, X, L2_rate, regularization) #Newton update else: LogisticNeuron.update_params_back_prop(posterior, T, X, L2_rate, regularization) #Back Prop update # Get full training cost for future analysis (plots) outputs = forward_step(LogisticNeuron, X_train)[1] cost_per_epoch.append(get_cost(outputs.reshape(X_train.shape[0]), T_train.reshape(T_train.shape[0]))) outputs_train.append(outputs.reshape(outputs.shape[0])) accuracy_t.append(get_accuracy(T_train, outputs_train[-1])) # Get full validation cost for future analysis (plots) outputs = forward_step(LogisticNeuron, X_val)[1] outputs_validation.append(outputs.reshape(outputs.shape[0])) accuracy_v.append(get_accuracy(T_val, outputs_validation[-1])) if accuracy_v[-1] == 100: print("CONVERGENCE ACHIEVED!") break if learning_cost_stop and len(cost_per_epoch) >= 3: # Stop training if the cost doesn't decrease for 2 epochs if cost_per_epoch[-1] >= cost_per_epoch[-2] >= cost_per_epoch[-2]: print("CONVERGENCE ACHIEVED!") break end_time = time.time() t_time = end_time - start_time error_t, false_negatives_error_t, false_positives_error_t = get_errors(outputs_train, T_train) error_v, false_negatives_error_v, false_positives_error_v = get_errors(outputs_validation, T_val) nb_of_epochs = epoch + 1 return LogisticNeuron, nb_of_epochs, nb_of_batches, error_t, minibatch_costs, false_negatives_error_t, false_positives_error_t, accuracy_t, error_v, false_negatives_error_v, false_positives_error_v, accuracy_v, t_time def show_results_logistic(X_train, X_val, nb_of_epochs, nb_of_batches, error_t, minibatch_costs, false_negatives_error_t, false_positives_error_t, accuracy_t, error_v, false_negatives_error_v, false_positives_error_v, accuracy_v, t_time): """Helper Function for displaying all data gathered during training.""" #PLOT TRAIN FALSE CLASSIFICATION ind = np.linspace(1, nb_of_epochs, num=nb_of_epochs) # the x locations for the groups width = 0.35 # the width of the bars p1 = plt.bar(ind, np.array(false_negatives_error_t)/X_train.shape[0]*100, width, color=(0.2588,0.4433,1.0)) p2 = plt.bar(ind, np.array(false_positives_error_t)/X_train.shape[0]*100, width, color=(1.0,0.5,0.62), bottom=np.array(false_negatives_error_t)/X_train.shape[0]*100) plt.ylabel('Rate %', fontsize=15) plt.xlabel('Epoch', fontsize=15) plt.title('False Train Negatives/Postives Per Training Epoch') plt.xticks(np.arange(1, nb_of_epochs+1)) plt.legend((p1[0], p2[0]), ('False Train Negatives', 'False Train Positives')) plt.show() #PLOT VALIDATION FALSE CLASSIFICATION p1 = plt.bar(ind, np.array(false_negatives_error_v)/X_val.shape[0]*100, width, color=(0.2588,0.4433,1.0)) p2 = plt.bar(ind, np.array(false_positives_error_v)/X_val.shape[0]*100, width, color=(1.0,0.5,0.62), bottom=np.array(false_negatives_error_v)/X_val.shape[0]*100) plt.ylabel('Rate %', fontsize=15) plt.xlabel('Epoch', fontsize=15) plt.title('False Validation Negatives/Postives Per Training Epoch') plt.xticks(np.arange(1, nb_of_epochs+1)) plt.legend((p1[0], p2[0]), ('False Validation Negatives', 'False Validation Positives')) plt.show() #PLOT OVERALL/MINIBATCH ERROR RATES x_minibatch = np.linspace(1, nb_of_epochs, num=nb_of_epochs*nb_of_batches) x = np.linspace(1, nb_of_epochs, num=nb_of_epochs) plt.figure() if NewtonUpdate: plt.plot(x_minibatch, minibatch_costs, 'k-', linewidth=0.5, label='Minibatches Error Rates') plt.plot(x, error_t, 'b-', linewidth=2, label='Train Error Rate') plt.plot(x, error_v, 'r-', linewidth=2, label='Validation Error Rate') # Add labels to the plot plt.xlabel('Epoch', fontsize=15) plt.ylabel('Error Rate (%)', fontsize=15) plt.title('Error Rates Over Training Epochs') plt.legend() x1,x2,y1,y2 = plt.axis() plt.grid() plt.show() #PLOT ACCURACY x = np.linspace(1, nb_of_epochs, num=nb_of_epochs) plt.figure() plt.plot(x, accuracy_t, 'b-', linewidth=2, label='Accuracy Training Set') plt.plot(x, accuracy_v, 'r-', linewidth=3, label='Accuracy Validation Set') # Add labels to the plot plt.xlabel('Epoch', fontsize=15) plt.ylabel('Accuracy (%)', fontsize=15) plt.title('Accuracy Over Training Epochs') plt.legend() x1,x2,y1,y2 = plt.axis() plt.grid() plt.show() #DISPLAY DATA m, s = divmod(t_time, 60) h, m = divmod(m, 60) print("NUMBER OF TRAINING EPOCHS: {}".format(nb_of_epochs)) print("OVERALL TIME FOR TRAINING: {}h:{}m:{:.5f}s".format(h,m,s)) print("LAST TWO VALIDATION COSTS: {:.5f} {:.5f}".format(error_v[-2], error_v[-1])) def show_results_logistic_per_regularization(X_train, X_test, reg_rates, error_train_per_regrate, false_negatives_train_per_regrate, false_positives_train_per_regrate, accuracy_train_per_regrate, error_test_per_regrate, false_negatives_test_per_regrate, false_positives_test_per_regrate, accuracy_test_per_regrate, fit_time): """Helper Function for displaying all data gathered from the fit.""" #PLOT TRAIN FALSE CLASSIFICATION if NewtonUpdate: width = 0.7 else: width = 0.0008 # the width of the bars p1 = plt.bar(reg_rates, np.array(false_negatives_train_per_regrate)/X_train.shape[0]*100, width, color=(0.2588,0.4433,1.0)) p2 = plt.bar(reg_rates, np.array(false_positives_train_per_regrate)/X_train.shape[0]*100, width, color=(1.0,0.5,0.62), bottom=np.array(false_negatives_train_per_regrate)/X_train.shape[0]*100) plt.ylabel('Rate (%)', fontsize=15) plt.xlabel('Regularization Rate', fontsize=15) plt.title('False Train Negatives/Postives Per Regularization Rate') plt.legend((p1[0], p2[0]), ('False Train Negatives', 'False Train Positives')) plt.ylim(0, 13) plt.show() #PLOT TEST FALSE CLASSIFICATION p1 = plt.bar(reg_rates, np.array(false_negatives_test_per_regrate)/X_test.shape[0]*100, width, color=(0.2588,0.4433,1.0)) p2 = plt.bar(reg_rates, np.array(false_positives_test_per_regrate)/X_test.shape[0]*100, width, color=(1.0,0.5,0.62), bottom=np.array(false_negatives_test_per_regrate)/X_test.shape[0]*100) plt.ylabel('Rate (%)') plt.xlabel('Regularization Rate', fontsize=15) plt.title('False Test Negatives/Postives Per Regularization Rate') plt.legend((p1[0], p2[0]), ('False Test Negatives', 'False Test Positives')) plt.ylim(0, 13) plt.show() #PLOT ERROR RATES plt.figure() plt.plot(reg_rates, error_train_per_regrate, 'b-', linewidth=2, label='Train Error Rate') plt.plot(reg_rates, error_test_per_regrate, 'r-', linewidth=2, label='Test Error Rate') # Add labels to the plot plt.xlabel('Regularization Rate', fontsize=15) plt.ylabel('Error Rate (%)', fontsize=15) plt.title('Error Rate Per Regularization Rate') plt.legend() x1,x2,y1,y2 = plt.axis() plt.grid() plt.show() #PLOT ACCURACY plt.figure() plt.plot(reg_rates, accuracy_train_per_regrate, 'b-', linewidth=2, label='Train Accuracy') plt.plot(reg_rates, accuracy_test_per_regrate, 'r-', linewidth=3, label='Test Accuracy') # Add labels to the plot plt.xlabel('Regularization Rate', fontsize=15) plt.ylabel('Accuracy (%)', fontsize=15) plt.title('Accuracy Per Regularization Rate') plt.legend() x1,x2,y1,y2 = plt.axis() plt.grid() plt.show() #DISPLAY DATA m, s = divmod(fit_time, 60) h, m = divmod(m, 60) print("OVERALL TIME FOR FIT: {}h:{}m:{:.5f}s".format(h,m,s)) #Display data about the optimal regularization rate best_regrate_idx = np.argmax(accuracy_test_per_regrate) print("======================================================================================") print("BEST PERFORMANCE ACHIEVED FOR: L2_rate = {}".format(reg_rates[best_regrate_idx])) print("TRAIN ACCURACY: {}% | TEST ACCURACY: {}%".format(accuracy_train_per_regrate[best_regrate_idx], accuracy_test_per_regrate[best_regrate_idx])) print("TRAIN ERROR RATE: {:.2f}% | TEST ERROR RATE: {:.2f}%".format(error_train_per_regrate[best_regrate_idx], error_test_per_regrate[best_regrate_idx])) print("TRAIN FALSE NEGATIVES ERROR RATE: {:.2f}% | TEST FALSE NEGATIVES ERROR RATE: {:.2f}%".format(false_negatives_train_per_regrate[best_regrate_idx]*100/X_train.shape[0], false_negatives_test_per_regrate[best_regrate_idx]*100/X_test.shape[0])) print("TRAIN FALSE POSITIVES ERROR RATE: {:.2f}% | TEST FALSE POSITIVES ERROR RATE: {:.2f}%".format(false_positives_train_per_regrate[best_regrate_idx]*100/X_train.shape[0], false_positives_test_per_regrate[best_regrate_idx]*100/X_test.shape[0])) print("======================================================================================") def test_logistic(LogisticNeuron, X_test, T_test): """Function to test the learnt fit; gather data about its performance.""" outputs_test = forward_step(LogisticNeuron, X_test)[1] accuracy_test = get_accuracy(T_test, outputs_test) error_test, false_negatives_error_test, false_positives_error_test = get_errors(outputs_test, T_test) return outputs_test, accuracy_test, error_test, false_negatives_error_test, false_positives_error_test def fit_logistic(Regularization_rates, X_train, T_train, X_val, T_val, X_test, T_test): """A Wrapper Function which encapsulates training, testing, data gathering & data display for all regularization rates. INPUTS: X_train - train dataset samples. T_train - train dataset targets. X_val - validation dataset samples. T_val - validation dataset targets. X_test - test dataset samples. T_train - test dataset targets.""" accuracy_train_per_l2rate = [] accuracy_test_per_l2rate = [] error_train_per_l2rate = [] error_test_per_l2rate = [] false_negatives_train_per_l2rate = [] false_negatives_test_per_l2rate = [] false_positives_train_per_l2rate = [] false_positives_test_per_l2rate = [] start_time = time.time() for L2_rate in Regularization_rates: #INITIALISE THE LOGISTIC NEURON LP = LogisticNeuron(X_train.shape[1]) print("STARTING LOGISTIC FIT(L2_RATE: {})".format(L2_rate)) #TRAINING LP, NB_OF_EPOCHS, NB_OF_BATCHES, ERROR_T, MINIBATCH_COST, FALSE_NEGATIVES_ERROR_T, FALSE_POSITIVES_ERROR_T, ACCURACY_T, ERROR_V, FALSE_NEGATIVES_ERROR_V, FALSE_PSOTIVES_ERROR_V, ACCURACY_V, T_TIME = train_logistic(LP, X_train, T_train, X_val, T_val, L2_rate, NewtonUpdate) show_results_logistic(X_train, X_val, NB_OF_EPOCHS, NB_OF_BATCHES, ERROR_T, MINIBATCH_COST, FALSE_NEGATIVES_ERROR_T, FALSE_POSITIVES_ERROR_T, ACCURACY_T, ERROR_V, FALSE_NEGATIVES_ERROR_V, FALSE_PSOTIVES_ERROR_V, ACCURACY_V, T_TIME) #TESTING OUTPUTS_TRAIN, ACCURACY_TRAIN, ERROR_TRAIN, FALSE_NEGATIVES_ERROR_TRAIN, FALSE_POSTIVES_ERROR_TRAIN = test_logistic(LP, X_train, T_train) OUTPUTS_TEST, ACCURACY_TEST, ERROR_TEST, FALSE_NEGATIVES_ERROR_TEST, FALSE_POSTIVES_ERROR_TEST = test_logistic(LP, X_test, T_test) print("---------------------------------------------------------------------------------------") print(">>>>> LOGISTIC REGRESSION NEURON(L2_rate = {}) <<<<<".format(L2_rate)) print("TRAIN ACCURACY: {:.2f}% | TEST ACCURACY: {:.2f}%".format(ACCURACY_TRAIN, ACCURACY_TEST)) print("TRAIN ERROR RATE: {:.2f}% | TEST ERROR RATE: {:.2f}%".format(ERROR_TRAIN, ERROR_TEST)) print("TRAIN FALSE NEGATIVES ERROR RATE: {:.2f}% | TEST FALSE NEGATIVES ERROR RATE: {:.2f}%".format(FALSE_NEGATIVES_ERROR_TRAIN*100/T_train.shape[0], FALSE_NEGATIVES_ERROR_TEST*100/T_test.shape[0])) print("TRAIN FALSE POSITIVES ERROR RATE: {:.2f}% | TEST FALSE POSITIVES ERROR RATE: {:.2f}%".format(FALSE_POSTIVES_ERROR_TRAIN*100/T_train.shape[0], FALSE_POSTIVES_ERROR_TEST*100/T_test.shape[0])) print("---------------------------------------------------------------------------------------") plot_confusion_table(T_train, OUTPUTS_TRAIN, "Logistic FIt(L2_rate: {}) Train Confusion Table".format(L2_rate)) plot_confusion_table(T_test, OUTPUTS_TEST, "Logistic FIt(L2_rate: {}) Test Confusion Table".format(L2_rate)) #GATHERING DATA FOR PLOTS OVER REGULARIZATION RATES accuracy_train_per_l2rate.append(ACCURACY_TRAIN) accuracy_test_per_l2rate.append(ACCURACY_TEST) error_train_per_l2rate.append(ERROR_TRAIN) error_test_per_l2rate.append(ERROR_TEST) false_negatives_train_per_l2rate.append(FALSE_NEGATIVES_ERROR_TRAIN) false_negatives_test_per_l2rate.append(FALSE_NEGATIVES_ERROR_TEST) false_positives_train_per_l2rate.append(FALSE_POSTIVES_ERROR_TRAIN) false_positives_test_per_l2rate.append(FALSE_POSTIVES_ERROR_TEST) fit_time = time.time() - start_time print("DATA FOR THE FIT") show_results_logistic_per_regularization(X_train, X_test, Regularization_rates, error_train_per_l2rate, false_negatives_train_per_l2rate, false_positives_train_per_l2rate, accuracy_train_per_l2rate, error_test_per_l2rate, false_negatives_test_per_l2rate, false_positives_test_per_l2rate, accuracy_test_per_l2rate, fit_time) # Control Hyperparameters print(">>> Would You Like to Learn with Newton's Method or Backpropagation? <<<") print(">>>>> Type 'newton' or 'backprop' <<<<<") USER_I = input() if USER_I == "newton": NewtonUpdate = True elif USER_I == "backprop": NewtonUpdate = False else: NewtonUpdate = False print("Did not get that! Will run Backpropagation!") learning_cost_stop = True learning_rate = 0.002 if NewtonUpdate: L2_rates = np.concatenate((np.linspace(1,10,num=10), np.linspace(15,100,num=18))) batch_size = X_TRAIN_LOG.shape[0] # Approximately N samples per batch else: L2_rates = np.concatenate((np.linspace(1,10,num=10), np.linspace(15,100,num=18)))/1000 batch_size = X_TRAIN_LOG.shape[0]/X_TRAIN_LOG.shape[0] # Approximately N samples per batch regularization = True max_nb_of_epochs = 30 # RUN fit_logistic(L2_rates, X_TRAIN_LOG, T_TRAIN, X_TEST_LOG, T_TEST, X_TEST_LOG, T_TEST) # # Q4 K-Nearest Neighbors class KNearestNeighbors(object): """k-Nearest Neighbors classifier with L2(Euclidean) distance.""" def __init__(self): """Declare the classifier fields.""" self.X_train = None self.T_train = None def train(self, X_train, T_train): """Initialize the classifier fields with the training dataset.""" self.X_train = X_train self.T_train = T_train def euclidean_distance(self, X_pred): """Calculate the Euclidean distances between the input samples (X_pred) and the training samples.""" return np.sqrt(-2*np.dot(X_pred, self.X_train.T) + np.sum(self.X_train**2,axis=1) + np.sum(X_pred**2, axis=1)[:, np.newaxis]) def predict(self, X_pred, k=1): """Predicts the labels of the input samples by calculating the Euclidean distances between them & the training samples, and picking the most common label in the k-nearest training samples.""" num_pred = X_pred.shape[0] num_train = self.X_train.shape[0] #Calculating Euclidean distances dists = np.zeros((num_pred, num_train)) dists = self.euclidean_distance(X_pred) Y_pred = np.zeros(num_pred) #Picking the indexes of the k-nearest training samples KNN_idx = np.argpartition(dists, k, axis=1)[:, :k] #Getting the k-nearest training samples' labels KNN_lab = self.T_train[KNN_idx.reshape(num_pred*k)].reshape(num_pred,k) #Making a prediction by picking the most common label from the k-nearest labels Y_pred = np.apply_along_axis(lambda x: np.bincount(x, minlength=10), axis=1, arr=KNN_lab).argmax(axis=1) return Y_pred def cross_validate(KNearestNeighbors, X_train, T_train, K_values): """Perform a 5-fold cross-validation using the train dataset to pick the optimal K in between the K_values.""" accuracy_per_k = [] #Perform cross-validation across all Ks for k in K_values: print('Cross-Validation for K=',k) k_accuracy = [] #Fit 5 folds for each K for fold in range(5): print('Processing Fold',fold+1) #Create the sub-fold train dataset, consisting of 4 folds of input samples fold_X_train = np.delete(X_train,range(int(fold*len(X_train)/5),int((fold+1)*len(X_train)/5)),axis=0) fold_T_train = np.delete(T_train,range(int(fold*len(T_train)/5),int((fold+1)*len(T_train)/5)),axis=0) #Create the sub-fold validation dataset, consisting of 1 fold of input samples fold_X_val = X_train[int(fold*len(X_train)/5):int((fold+1)*len(X_train)/5)] fold_T_val = T_train[int(fold*len(T_train)/5):int((fold+1)*len(T_train)/5)] #Train KNearestNeighbors.train(fold_X_train, fold_T_train) #Predict Y_pred = KNearestNeighbors.predict(fold_X_val, k) #Calculate accuracy k_accuracy.append(get_accuracy(fold_T_val, Y_pred)) accuracy_per_k.append(np.mean(k_accuracy)) return accuracy_per_k def show_results_KNN(X_train, X_test, K_values, cross_val_accuracy, error_train_per_k, false_negatives_train_per_k, false_positives_train_per_k, accuracy_train_per_k, error_test_per_k, false_negatives_test_per_k, false_positives_test_per_k, accuracy_test_per_k, fit_time): """Helper Function for displaying all data gathered from the fit.""" #PLOT TRAIN FALSE CLASSIFICATION width = 0.35 # the width of the bars p1 = plt.bar(K_values, np.array(false_negatives_train_per_k)/X_train.shape[0]*100, width, color=(0.2588,0.4433,1.0)) p2 = plt.bar(K_values, np.array(false_positives_train_per_k)/X_train.shape[0]*100, width, color=(1.0,0.5,0.62), bottom=
np.array(false_negatives_train_per_k)
numpy.array
""" This module is a collection of metrics to assess the similarity between two images. Currently implemented metrics are FSIM, ISSM, PSNR, RMSE, SAM, SRE, SSIM, UIQ. """ import math import numpy as np from skimage.metrics import structural_similarity import phasepack.phasecong as pc import cv2 def _assert_image_shapes_equal(org_img: np.ndarray, pred_img: np.ndarray, metric: str): # shape of the image should be like this (rows, cols, bands) # Please note that: The interpretation of a 3-dimension array read from rasterio is: (bands, rows, columns) while # image processing software like scikit-image, pillow and matplotlib are generally ordered: (rows, columns, bands) # in order efficiently swap the axis order one can use reshape_as_raster, reshape_as_image from rasterio.plot msg = ( f"Cannot calculate {metric}. Input shapes not identical. y_true shape =" f"{str(org_img.shape)}, y_pred shape = {str(pred_img.shape)}" ) assert org_img.shape == pred_img.shape, msg def rmse(org_img: np.ndarray, pred_img: np.ndarray, max_p: int = 4095) -> float: """ Root Mean Squared Error Calculated individually for all bands, then averaged """ _assert_image_shapes_equal(org_img, pred_img, "RMSE") rmse_bands = [] for i in range(org_img.shape[2]): dif = np.subtract(org_img[:, :, i], pred_img[:, :, i]) m = np.mean(np.square(dif / max_p)) s = np.sqrt(m) rmse_bands.append(s) return np.mean(rmse_bands) def psnr(org_img: np.ndarray, pred_img: np.ndarray, max_p: int = 4095) -> float: """ Peek Signal to Noise Ratio, implemented as mean squared error converted to dB. It can be calculated as PSNR = 20 * log10(MAXp) - 10 * log10(MSE) When using 12-bit imagery MaxP is 4095, for 8-bit imagery 255. For floating point imagery using values between 0 and 1 (e.g. unscaled reflectance) the first logarithmic term can be dropped as it becomes 0 """ _assert_image_shapes_equal(org_img, pred_img, "PSNR") mse_bands = [] for i in range(org_img.shape[2]): mse_bands.append(np.mean(
np.square(org_img[:, :, i] - pred_img[:, :, i])
numpy.square
# -------------------------------------# # 调用摄像头或者视频进行检测 # 调用摄像头直接运行即可 # 调用视频可以将cv2.VideoCapture()指定路径 # 视频的保存并不难,可以百度一下看看 # -------------------------------------# import time import cv2 import numpy as np from PIL import Image import mediapipe as mp from yolo import YOLO yolo = YOLO() mp_drawing = mp.solutions.drawing_utils mp_holistic = mp.solutions.holistic # -------------------------------------# # 调用摄像头 # capture=cv2.VideoCapture("1.mp4") # -------------------------------------# with mp_holistic.Holistic( min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic: # capture = cv2.VideoCapture(0) capture = cv2.VideoCapture('C:\\Users\86151\Desktop\比赛资料\服创比赛说明材料\【A12】基于手势识别的会议控制系统【长安计算】-5 种基本动作示例视频\\2.平移.mp4') fps = 0.0 while (True): t1 = time.time() # 读取某一帧 ref, frame = capture.read() # 格式转变,BGRtoRGB frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # # 转变成Image frame = Image.fromarray(
np.uint8(frame)
numpy.uint8
""" DEPRECATED: please use MultiModeSystem instead. Driven Double-Mode Linear System with Beam-Splitter Coupling """ import warnings from typing import Dict import numpy as np from quantumnetworks.systems.base import SystemSolver class DoubleModeSystem(SystemSolver): def __init__(self, params: Dict[str, float], A_in=None, B_in=None) -> None: """ Arguments: A_in (function): takes in time t and returns np.ndarray """ warnings.warn( "Please use MultiModeSystem instead.", DeprecationWarning, stacklevel=2 ) super().__init__(params) self._A = None self._B = None self.A_in = A_in if A_in else lambda t: 0 self.B_in = B_in if B_in else lambda t: 0 def _param_validation(self): super()._param_validation() if "omega_a" not in self.params: self.params["omega_a"] = 2 * np.pi * 1 # 2pi * GHz if "omega_b" not in self.params: self.params["omega_b"] = 2 * np.pi * 2 # 2pi * GHz if "kappa_a" not in self.params: self.params["kappa_a"] = 2 * np.pi * 0.001 # 2pi * GHz if "kappa_b" not in self.params: self.params["kappa_b"] = 2 * np.pi * 0.005 # 2pi * GHz if "gamma_a" not in self.params: self.params["gamma_a"] = 2 * np.pi * 0.002 # 2pi * GHz if "gamma_b" not in self.params: self.params["gamma_b"] = 2 * np.pi * 0.002 # 2pi * GHz if "kerr_a" not in self.params: self.params["kerr_a"] = 2 * np.pi * 0.001 # 2pi * GHz if "kerr_b" not in self.params: self.params["kerr_b"] = 2 * np.pi * 0.001 # 2pi * GHz if "g_ab" not in self.params: self.params["g_ab"] = 2 * np.pi * 0.002 # 2pi * GHz # Known System Parameters and Load # ================================= @property def A(self): if self._A is None: omega_a = self.params["omega_a"] kappa_a = self.params["kappa_a"] gamma_a = self.params["gamma_a"] omega_b = self.params["omega_b"] kappa_b = self.params["kappa_b"] gamma_b = self.params["gamma_b"] g_ab = self.params["g_ab"] A = np.zeros((4, 4)) A[0, 0] = -kappa_a / 2 - gamma_a / 2 A[1, 1] = -kappa_a / 2 - gamma_a / 2 A[2, 2] = -kappa_b / 2 - gamma_b / 2 A[3, 3] = -kappa_b / 2 - gamma_b / 2 A[0, 1] = omega_a A[1, 0] = -omega_a A[2, 3] = omega_b A[3, 2] = -omega_b A[0, 3] = g_ab A[1, 2] = -g_ab A[2, 1] = g_ab A[3, 0] = -g_ab self._A = A return self._A @property def B(self): if self._B is None: kappa_a = self.params["kappa_a"] kappa_b = self.params["kappa_b"] B = np.zeros((4, 4)) B[0, 0] = -np.sqrt(kappa_a) B[1, 1] = -np.sqrt(kappa_a) B[2, 2] = -np.sqrt(kappa_b) B[3, 3] = -np.sqrt(kappa_b) self._B = B return self._B # Nonlinear # ================================= def f_nl(self, x: np.ndarray): """ Nonlinear part of eq of motion """ K_a = self.params["kerr_a"] K_b = self.params["kerr_b"] Ks = [K_a, K_b] non_linearity = np.zeros_like(x) for mode in [0, 1]: qi = 0 + mode * 2 pi = 1 + mode * 2 q = x[qi] p = x[pi] K = Ks[mode] non_linearity[qi] = 2 * K * (q ** 2 + p ** 2) * p non_linearity[pi] = -2 * K * (q ** 2 + p ** 2) * q return non_linearity def Jf_nl(self, x: np.ndarray): """ Jacobian of nonlinear part of eq of motion """ K_a = self.params["kerr_a"] K_b = self.params["kerr_b"] Ks = [K_a, K_b] nonlinear_Jf = np.zeros((x.size, x.size)) for mode in [0, 1]: qi = 0 + mode * 2 pi = 1 + mode * 2 q = x[qi] p = x[pi] K = Ks[mode] nonlinear_Jf[qi][qi] = 4 * K * q * p nonlinear_Jf[qi][pi] = 2 * K * (q ** 2 + p ** 2) + 4 * K * p ** 2 nonlinear_Jf[pi][qi] = -2 * K * (q ** 2 + p ** 2) - 4 * K * q ** 2 nonlinear_Jf[pi][pi] = -4 * K * q * p return nonlinear_Jf # Eval # ================================= def eval_f(self, x: np.ndarray, u: np.ndarray) -> np.ndarray: f = self.A.dot(x) + self.f_nl(x) + u return f def eval_u(self, t: float): A_in = self.A_in(t) B_in = self.B_in(t) in_vec = np.array([np.real(A_in),
np.imag(A_in)
numpy.imag
# coding=utf-8 # Copyright 2018 The DisentanglementLib Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Interventional Robustness Score. Based on the paper https://arxiv.org/abs/1811.00007. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging from disentanglement_lib.evaluation.metrics import utils import numpy as np import gin.tf import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.models import Sequential import tensorflow_hub as hub import copy import matplotlib.pyplot as plt import disentanglement_lib.evaluation.metrics.dci as dci from tensorflow.python.keras import losses import time import datetime import os from sklearn.manifold import TSNE rho = 7 user = os.environ.get("USER") path_to_save_images = '/home/{}/disentanglement_lib_cg/examples/s2_factor_vae_cg/'.format(user) reconstructions_path = '/home/{}/disentanglement_lib_cg/examples/causal_dataset_s2_factor_vae_cg_output/vae/model/tfhub'.format(user) if not os.path.exists(path_to_save_images): os.mkdir(path_to_save_images) def plot_latent_space(z_mu, z_label, i,dim=2): tsne = TSNE(n_components=dim, random_state=0, perplexity=50, learning_rate=500, n_iter=300) z_tsne = tsne.fit_transform(z_mu) dic = {} dic['dim1']= z_tsne[:, 0] dic['dim2']= z_tsne[:, 1] dic['label'] = z_label np.save(path_to_save_images+str(i)+'.npy', dic) def get_reconstructions(x): module_path = reconstructions_path with hub.eval_function_for_module(module_path) as f: output = f(dict(latent_vectors=x), signature="decoder", as_dict=True) return {key: np.array(values) for key, values in output.items()} @gin.configurable( "irs", blacklist=["ground_truth_data", "representation_function", "random_state", "artifact_dir"]) def compute_irs(ground_truth_data, representation_function, random_state, artifact_dir=None, diff_quantile=0.99, num_train=gin.REQUIRED, batch_size=gin.REQUIRED): """Computes the Interventional Robustness Score. Args: ground_truth_data: GroundTruthData to be sampled from. representation_function: Function that takes observations as input and outputs a dim_representation sized representation for each observation. random_state: Numpy random state used for randomness. artifact_dir: Optional path to directory where artifacts can be saved. diff_quantile: Float value between 0 and 1 to decide what quantile of diffs to select (use 1.0 for the version in the paper). num_train: Number of points used for training. batch_size: Batch size for sampling. Returns: Dict with IRS and number of active dimensions. """ del artifact_dir logging.info("Generating training set.") dci_d=dci.compute_dci(ground_truth_data, representation_function, random_state, artifact_dir=None, num_train=gin.REQUIRED, num_test=gin.REQUIRED, batch_size=16) mus, ys = utils.generate_batch_factor_code(ground_truth_data, representation_function, num_train, random_state, batch_size) assert mus.shape[1] == num_train discretizer = utils.make_discretizer(ys) ys_discrete = discretizer active_mus = _drop_constant_dims(mus) if not active_mus.any(): irs_score = 0.0 else: irs_score = scalable_disentanglement_score(ys_discrete.T, active_mus.T, np.transpose(ys), # active mus diff_quantile)["avg_score"] score_dict = {} score_dict["IRS"] = irs_score score_dict["num_active_dims"] = np.sum(active_mus) # active mus print(dci_d) return score_dict def get_max_deviations(dims, latents): indices_ = [[] for _ in range(latents.shape[0])] for idx, dim in enumerate(dims): for indx in range(latents.shape[0]): max_deviation = np.argmax(np.abs(latents[:, dim] - latents[indx, dim])) indices_[indx].append(latents[:, dim][max_deviation]) return indices_ def normalize(x): x[:,:,0] = (x[:,:,0] - np.min(x[:,:,0])) / (np.max(x[:,:,0]) - np.min(x[:,:,0])) x[:,:,1] = (x[:,:,1] - np.min(x[:,:,1])) / (np.max(x[:,:,1]) - np.min(x[:,:,1])) x[:,:,2] = (x[:,:,2] - np.min(x[:,:,2])) / (np.max(x[:,:,2]) - np.min(x[:,:,2])) return x def _drop_constant_dims(ys): """Returns a view of the matrix `ys` with dropped constant rows.""" ys = np.asarray(ys) if ys.ndim != 2: raise ValueError("Expecting a matrix.") variances = ys.var(axis=1) active_mask = variances > 0. return ys[active_mask, :] def scalable_disentanglement_score(gen_factors, latents, factors, diff_quantile=0.99): """Computes IRS scores of a dataset. Assumes no noise in X and crossed generative factors (i.e. one sample per combination of gen_factors). Assumes each g_i is an equally probable realization of g_i and all g_i are independent. Args: gen_factors: Numpy array of shape (num samples, num generative factors), matrix of ground truth generative factors. latents: Numpy array of shape (num samples, num latent dimensions), matrix of latent variables. diff_quantile: Float value between 0 and 1 to decide what quantile of diffs to select (use 1.0 for the version in the paper). Returns: Dictionary with IRS scores. """ k = gen_factors.shape[1] l = latents.shape[1] for i in range(factors.shape[1]): plot_latent_space(latents, factors[:,i],i) # Compute normalizer EMPIDA. max_deviations = np.max(np.abs(latents - latents.mean(axis=0)), axis=0) cum_deviations = np.zeros([l, k]) for i in range(k): unique_factors = np.unique(gen_factors[:, i], axis=0) assert unique_factors.ndim == 1 num_distinct_factors = unique_factors.shape[0] for k1 in range(num_distinct_factors): # Compute E[Z | g_i]. match = gen_factors[:, i] == unique_factors[k1] e_loc = np.mean(latents[match, :], axis=0) # Difference of each value within that group of constant g_i to its mean. # PIDA diffs =
np.abs(latents[match, :] - e_loc)
numpy.abs
""" image processing: class AIT for full sky ZEA for square region TSplot special adapter for ZEA author: <NAME> <EMAIL> $Header: /nfs/slac/g/glast/ground/cvs/pointlike/python/uw/utilities/image.py,v 1.47 2017/02/09 19:04:37 burnett Exp $ """ version = '$Revision: 1.47 $'.split()[1] import sys, pylab, types, os import math import numpy as np import pylab as pl import pylab as plt from matplotlib import pyplot, ticker import matplotlib as mpl from skymaps import SkyImage, SkyDir, double2, SkyProj,PySkyFunction,Hep3Vector from math import exp from numpy.fft import fft2,ifft2,fftshift from scipy import optimize import keyword_options SkyImage.setNaN(np.nan) class Ellipse(object): def __init__(self, q): """ q: ellipical parameters a, b, phi """ self.q = q def contour(self, r=1, count=50): """ return set of points in around closed figure""" s,c = math.sin(-self.q[2]), math.cos(self.q[2]) a,b = self.q[0],self.q[1] x = [] y = [] for t in np.linspace(0, 2*math.pi, count): ct,st = math.cos(t), math.sin(t) x.append( r*(a*ct*s - b*st*c)) y.append( r*(a*ct*c + b*st*s)) return x,y class Rescale(object): def __init__(self, image, nticks=5, galactic=False): """ image: a SkyImage object nticks: suggested number of ticks for the ticker warning: fails if the north pole is in the image (TODO: figure out a sensible approach) """ # get ra range from top, dec range along center of SkyImage nx,ny = image.nx, image.ny self.nx=nx self.ny=ny # convenient lat, lon functions for pixel coords lat = lambda x,y: image.skydir(x,y).l() if galactic else image.skydir(x,y).ra() lon = lambda x,y: image.skydir(x,y).b() if galactic else image.skydir(x,y).dec() xl,xr = lat(0,0), lat(nx,0) if xl<xr: # did it span the boundary? xr = xr-360 self.vmin, self.vmax = lon(0,0), lon(nx/2.,ny) ticklocator = ticker.MaxNLocator(nticks, steps=[1,2,5]) self.uticks = [ix if ix>-1e-6 else ix+360\ #for ix in ticklocator.bin_boundaries(xr,xl)[::-1]] #reverse for ix in ticklocator.tick_values(xr,xl)[::-1]] #reverse self.ul = xl self.ur = xr #self.vticks = ticklocator.bin_boundaries(self.vmin,self.vmax) self.vticks = ticklocator.tick_values(self.vmin,self.vmax) if len(self.vticks)==0: # protect against rare situatin self.vticks = [self.vmin,self.vmax] # extract positions in image coords, text labels self.xticks = [image.pixel(SkyDir(x,self.vmin,SkyDir.GALACTIC if galactic else SkyDir.EQUATORIAL))[0]\ for x in self.uticks] #self.yticks = [image.pixel(SkyDir(xl,v))[1] for v in self.vticks] # proportional is usually good? try: yscale = ny/(lon(0,ny)-self.vmin) self.yticks = [ (v-self.vmin)*yscale for v in self.vticks] self.xticklabels = self.formatter(self.uticks) self.yticklabels = self.formatter(self.vticks) except Exception as msg: print ('formatting failure in image.py: {}'.format(msg)) self.xticks=self.yticks=None def formatter(self, t): n=0 s = np.abs(np.array(t))+1e-9 for i in range(4): #print (s, s-np.floor(s), (s-np.floor(s)).max()) if (s-np.floor(s)).max()<1e-3: break s = s*10 n+=1 fmt = '%%5.%df'%n return [(fmt% x).strip() for x in t] def apply(self, axes): if self.xticks is None: return #note remove outer ones if len(self.xticks)>=3: axes.set_xticks(self.xticks[1:-1]) axes.set_xticklabels(self.xticklabels[1:-1]) axes.xaxis.set_ticks_position('bottom') #axes.set_xlim((0.5,self.nx+0.5)) # have to do again? if len(self.yticks)>=3: axes.set_yticks(self.yticks[1:-1]) axes.set_yticklabels(self.yticklabels[1:-1]) axes.yaxis.set_ticks_position('left') #axes.set_ylim((0.5,self.ny+0.5)) # have to do again? class AITproj(object): def __init__(self, proj): self.proj = proj self.center = proj(0,0) self.scale = ((proj(180,0)[0]-self.center[0])/180., (proj(0,90)[1]-self.center[1])/90) def __call__(self,l,b): r = self.proj(l,b) return [(r[i]-self.center[i])/self.scale[i] for i in range(2)] def draw_grid(self, labels=True, color='gray', pixelsize=0.5, textsize=8): label_offset = 5/pixelsize #my_axes = pylab.axes() #creates figure and axes if not set # # pylab.matplotlib.interactive(False) #my_axes.set_autoscale_on(False) #my_axes.set_xlim(0, 360/pixelsize) #my_axes.set_ylim(0, 180/pixelsize) #my_axes.set_axis_off() #my_axes.set_aspect('equal') ait = AITproj(self.projector.sph2pix) # the projector to use axes = self.axes bs = np.arange(-90, 91, 5) for l in np.hstack((np.arange(0, 360, 45),[180.01])): lstyle = '-' if int(l)==180 or int(l)==0 else '--' # axes.plot([ait(l,b)[0] for b in bs], [ait(l,b)[1] for b in bs], lstyle, color=color) axes.plot([ait(l,b)[0] for b in bs], [ait(l,b)[1] for b in bs], lstyle, color=color) if labels: x,y = ait(l, 45) axes.text(x,y, '%3.0f'%l ,size=textsize, ha='center') ls = np.hstack((np.arange(180, 0, -5), np.arange(355, 180,-5), [180.01])) for b in np.arange(-60, 61, 30): lstyle = '-' if int(b)==0 else '--' axes.plot([ait(l,b)[0] for l in ls], [ait(l,b)[1] for l in ls], lstyle, color=color) if labels: x,y = ait(180.1, b) axes.text(x+label_offset,y+b/60*label_offset, '%+3.0f'%b, size=textsize, ha='center',va='center') if labels: for b in [90,-90]: x,y = ait(0,b) axes.text(x,y+b/90*label_offset,'%+3.0f'%b, size=textsize, ha='center',va='center') class AIT_grid(): def __init__(self, fignum=20, axes=None, labels=True, color='gray', pixelsize=0.5, textsize=8, linestyle='-'): """Draws gridlines and labels for map. """ if axes is None: fig=plt.figure(fignum, figsize=(12,6)) fig.clf() self.axes = fig.gca() else: self.axes = axes self.pixelsize = pixelsize xsize,ysize = 325,162 crpix = double2(xsize/pixelsize/2., ysize/pixelsize/2.) crval = double2(0,0) cdelt = double2(-pixelsize, pixelsize) self.proj = SkyProj('AIT', crpix, crval, cdelt, 0, True) self.axes.set_autoscale_on(False) self.axes.set_xlim(0, 360/self.pixelsize) self.axes.set_ylim(0, 180/self.pixelsize) self.axes.set_axis_off() self.axes.set_aspect('equal') self.extent= (self.ait(180,0)[0],self.ait(180.001,0)[0], self.ait(0,-90)[1], self.ait(0,90)[1]) label_offset = 5/self.pixelsize bs = np.arange(-90, 91, 5) for l in np.hstack((np.arange(0, 360, 45),[180.01])): self.axes.plot([self.ait(l,b)[0] for b in bs], [self.ait(l,b)[1] for b in bs], linestyle, color=color) if labels: x,y = self.ait(l, 45) self.axes.text(x,y, '%3.0f'%l ,size=textsize, ha='center') ls = np.hstack((
np.arange(180, 0, -5)
numpy.arange
from __future__ import print_function import os.path as op from nose.tools import assert_true, assert_raises import warnings from copy import deepcopy import numpy as np from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_allclose, assert_equal) import pytest from scipy.fftpack import fft from mne.datasets import testing from mne import (stats, SourceEstimate, VectorSourceEstimate, VolSourceEstimate, Label, read_source_spaces, read_evokeds, MixedSourceEstimate, find_events, Epochs, read_source_estimate, morph_data, extract_label_time_course, spatio_temporal_tris_connectivity, spatio_temporal_src_connectivity, spatial_inter_hemi_connectivity, spatial_src_connectivity, spatial_tris_connectivity) from mne.source_estimate import (compute_morph_matrix, grade_to_vertices, grade_to_tris, _get_vol_mask) from mne.minimum_norm import (read_inverse_operator, apply_inverse, apply_inverse_epochs) from mne.label import read_labels_from_annot, label_sign_flip from mne.utils import (_TempDir, requires_pandas, requires_sklearn, requires_h5py, run_tests_if_main, requires_nibabel) from mne.io import read_raw_fif warnings.simplefilter('always') # enable b/c these tests throw warnings data_path = testing.data_path(download=False) subjects_dir = op.join(data_path, 'subjects') fname_inv = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif') fname_evoked = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-ave.fif') fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif') fname_t1 = op.join(data_path, 'subjects', 'sample', 'mri', 'T1.mgz') fname_src = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif') fname_src_fs = op.join(data_path, 'subjects', 'fsaverage', 'bem', 'fsaverage-ico-5-src.fif') fname_src_3 = op.join(data_path, 'subjects', 'sample', 'bem', 'sample-oct-4-src.fif') fname_stc = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg') fname_smorph = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg') fname_fmorph = op.join(data_path, 'MEG', 'sample', 'fsaverage_audvis_trunc-meg') fname_vol = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-grad-vol-7-fwd-sensmap-vol.w') fname_vsrc = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-vol-7-fwd.fif') rng = np.random.RandomState(0) @testing.requires_testing_data def test_spatial_inter_hemi_connectivity(): """Test spatial connectivity between hemispheres.""" # trivial cases conn = spatial_inter_hemi_connectivity(fname_src_3, 5e-6) assert_equal(conn.data.size, 0) conn = spatial_inter_hemi_connectivity(fname_src_3, 5e6) assert_equal(conn.data.size, np.prod(conn.shape) // 2) # actually interesting case (1cm), should be between 2 and 10% of verts src = read_source_spaces(fname_src_3) conn = spatial_inter_hemi_connectivity(src, 10e-3) conn = conn.tocsr() n_src = conn.shape[0] assert_true(n_src * 0.02 < conn.data.size < n_src * 0.10) assert_equal(conn[:src[0]['nuse'], :src[0]['nuse']].data.size, 0) assert_equal(conn[-src[1]['nuse']:, -src[1]['nuse']:].data.size, 0) c = (conn.T + conn) / 2. - conn c.eliminate_zeros() assert_equal(c.data.size, 0) # check locations upper_right = conn[:src[0]['nuse'], src[0]['nuse']:].toarray() assert_equal(upper_right.sum(), conn.sum() // 2) good_labels = ['S_pericallosal', 'Unknown', 'G_and_S_cingul-Mid-Post', 'G_cuneus'] for hi, hemi in enumerate(('lh', 'rh')): has_neighbors = src[hi]['vertno'][np.where(np.any(upper_right, axis=1 - hi))[0]] labels = read_labels_from_annot('sample', 'aparc.a2009s', hemi, subjects_dir=subjects_dir) use_labels = [l.name[:-3] for l in labels if np.in1d(l.vertices, has_neighbors).any()] assert_true(set(use_labels) - set(good_labels) == set()) @pytest.mark.slowtest @testing.requires_testing_data def test_volume_stc(): """Test volume STCs.""" tempdir = _TempDir() N = 100 data = np.arange(N)[:, np.newaxis] datas = [data, data, np.arange(2)[:, np.newaxis]] vertno = np.arange(N) vertnos = [vertno, vertno[:, np.newaxis], np.arange(2)[:, np.newaxis]] vertno_reads = [vertno, vertno, np.arange(2)] for data, vertno, vertno_read in zip(datas, vertnos, vertno_reads): stc = VolSourceEstimate(data, vertno, 0, 1) fname_temp = op.join(tempdir, 'temp-vl.stc') stc_new = stc for _ in range(2): stc_new.save(fname_temp) stc_new = read_source_estimate(fname_temp) assert_true(isinstance(stc_new, VolSourceEstimate)) assert_array_equal(vertno_read, stc_new.vertices) assert_array_almost_equal(stc.data, stc_new.data) # now let's actually read a MNE-C processed file stc = read_source_estimate(fname_vol, 'sample') assert_true(isinstance(stc, VolSourceEstimate)) assert_true('sample' in repr(stc)) stc_new = stc assert_raises(ValueError, stc.save, fname_vol, ftype='whatever') for _ in range(2): fname_temp = op.join(tempdir, 'temp-vol.w') stc_new.save(fname_temp, ftype='w') stc_new = read_source_estimate(fname_temp) assert_true(isinstance(stc_new, VolSourceEstimate)) assert_array_equal(stc.vertices, stc_new.vertices) assert_array_almost_equal(stc.data, stc_new.data) # save the stc as a nifti file and export try: import nibabel as nib with warnings.catch_warnings(record=True): warnings.simplefilter('always') src = read_source_spaces(fname_vsrc) vol_fname = op.join(tempdir, 'stc.nii.gz') stc.save_as_volume(vol_fname, src, dest='surf', mri_resolution=False) with warnings.catch_warnings(record=True): # nib<->numpy img = nib.load(vol_fname) assert_true(img.shape == src[0]['shape'] + (len(stc.times),)) with warnings.catch_warnings(record=True): # nib<->numpy t1_img = nib.load(fname_t1) stc.save_as_volume(op.join(tempdir, 'stc.nii.gz'), src, dest='mri', mri_resolution=True) with warnings.catch_warnings(record=True): # nib<->numpy img = nib.load(vol_fname) assert_true(img.shape == t1_img.shape + (len(stc.times),)) assert_array_almost_equal(img.affine, t1_img.affine, decimal=5) # export without saving img = stc.as_volume(src, dest='mri', mri_resolution=True) assert_true(img.shape == t1_img.shape + (len(stc.times),)) assert_array_almost_equal(img.affine, t1_img.affine, decimal=5) except ImportError: print('Save as nifti test skipped, needs NiBabel') @testing.requires_testing_data def test_expand(): """Test stc expansion.""" stc_ = read_source_estimate(fname_stc, 'sample') vec_stc_ = VectorSourceEstimate(np.zeros((stc_.data.shape[0], 3, stc_.data.shape[1])), stc_.vertices, stc_.tmin, stc_.tstep, stc_.subject) for stc in [stc_, vec_stc_]: assert_true('sample' in repr(stc)) labels_lh = read_labels_from_annot('sample', 'aparc', 'lh', subjects_dir=subjects_dir) new_label = labels_lh[0] + labels_lh[1] stc_limited = stc.in_label(new_label) stc_new = stc_limited.copy() stc_new.data.fill(0) for label in labels_lh[:2]: stc_new += stc.in_label(label).expand(stc_limited.vertices) assert_raises(TypeError, stc_new.expand, stc_limited.vertices[0]) assert_raises(ValueError, stc_new.expand, [stc_limited.vertices[0]]) # make sure we can't add unless vertno agree assert_raises(ValueError, stc.__add__, stc.in_label(labels_lh[0])) def _fake_stc(n_time=10): verts = [np.arange(10), np.arange(90)] return SourceEstimate(np.random.rand(100, n_time), verts, 0, 1e-1, 'foo') def _fake_vec_stc(n_time=10): verts = [np.arange(10), np.arange(90)] return VectorSourceEstimate(np.random.rand(100, 3, n_time), verts, 0, 1e-1, 'foo') def _real_vec_stc(): inv = read_inverse_operator(fname_inv) evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01) return apply_inverse(evoked, inv, pick_ori='vector') def _test_stc_integrety(stc): """Test consistency of tmin, tstep, data.shape[-1] and times.""" n_times = len(stc.times) assert_equal(stc._data.shape[-1], n_times) assert_array_equal(stc.times, stc.tmin + np.arange(n_times) * stc.tstep) def test_stc_attributes(): """Test STC attributes.""" stc = _fake_stc(n_time=10) vec_stc = _fake_vec_stc(n_time=10) _test_stc_integrety(stc) assert_array_almost_equal( stc.times, [0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]) def attempt_times_mutation(stc): stc.times -= 1 def attempt_assignment(stc, attr, val): setattr(stc, attr, val) # .times is read-only assert_raises(ValueError, attempt_times_mutation, stc) assert_raises(ValueError, attempt_assignment, stc, 'times', [1]) # Changing .tmin or .tstep re-computes .times stc.tmin = 1 assert_true(type(stc.tmin) == float) assert_array_almost_equal( stc.times, [1., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9]) stc.tstep = 1 assert_true(type(stc.tstep) == float) assert_array_almost_equal( stc.times, [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]) # tstep <= 0 is not allowed assert_raises(ValueError, attempt_assignment, stc, 'tstep', 0) assert_raises(ValueError, attempt_assignment, stc, 'tstep', -1) # Changing .data re-computes .times stc.data = np.random.rand(100, 5) assert_array_almost_equal( stc.times, [1., 2., 3., 4., 5.]) # .data must match the number of vertices assert_raises(ValueError, attempt_assignment, stc, 'data', [[1]]) assert_raises(ValueError, attempt_assignment, stc, 'data', None) # .data much match number of dimensions assert_raises(ValueError, attempt_assignment, stc, 'data', np.arange(100)) assert_raises(ValueError, attempt_assignment, vec_stc, 'data', [np.arange(100)]) assert_raises(ValueError, attempt_assignment, vec_stc, 'data', [[[np.arange(100)]]]) # .shape attribute must also work when ._data is None stc._kernel = np.zeros((2, 2)) stc._sens_data = np.zeros((2, 3)) stc._data = None assert_equal(stc.shape, (2, 3)) def test_io_stc(): """Test IO for STC files.""" tempdir = _TempDir() stc = _fake_stc() stc.save(op.join(tempdir, "tmp.stc")) stc2 = read_source_estimate(op.join(tempdir, "tmp.stc")) assert_array_almost_equal(stc.data, stc2.data) assert_array_almost_equal(stc.tmin, stc2.tmin) assert_equal(len(stc.vertices), len(stc2.vertices)) for v1, v2 in zip(stc.vertices, stc2.vertices): assert_array_almost_equal(v1, v2) assert_array_almost_equal(stc.tstep, stc2.tstep) @requires_h5py def test_io_stc_h5(): """Test IO for STC files using HDF5.""" for stc in [_fake_stc(), _fake_vec_stc()]: tempdir = _TempDir() assert_raises(ValueError, stc.save, op.join(tempdir, 'tmp'), ftype='foo') out_name = op.join(tempdir, 'tmp') stc.save(out_name, ftype='h5') stc.save(out_name, ftype='h5') # test overwrite stc3 = read_source_estimate(out_name) stc4 = read_source_estimate(out_name + '-stc') stc5 = read_source_estimate(out_name + '-stc.h5') assert_raises(RuntimeError, read_source_estimate, out_name, subject='bar') for stc_new in stc3, stc4, stc5: assert_equal(stc_new.subject, stc.subject) assert_array_equal(stc_new.data, stc.data) assert_array_equal(stc_new.tmin, stc.tmin) assert_array_equal(stc_new.tstep, stc.tstep) assert_equal(len(stc_new.vertices), len(stc.vertices)) for v1, v2 in zip(stc_new.vertices, stc.vertices): assert_array_equal(v1, v2) def test_io_w(): """Test IO for w files.""" tempdir = _TempDir() stc = _fake_stc(n_time=1) w_fname = op.join(tempdir, 'fake') stc.save(w_fname, ftype='w') src = read_source_estimate(w_fname) src.save(op.join(tempdir, 'tmp'), ftype='w') src2 = read_source_estimate(op.join(tempdir, 'tmp-lh.w')) assert_array_almost_equal(src.data, src2.data) assert_array_almost_equal(src.lh_vertno, src2.lh_vertno) assert_array_almost_equal(src.rh_vertno, src2.rh_vertno) def test_stc_arithmetic(): """Test arithmetic for STC files.""" stc = _fake_stc() data = stc.data.copy() vec_stc = _fake_vec_stc() vec_data = vec_stc.data.copy() out = list() for a in [data, stc, vec_data, vec_stc]: a = a + a * 3 + 3 * a - a ** 2 / 2 a += a a -= a with warnings.catch_warnings(record=True): warnings.simplefilter('always') a /= 2 * a a *= -a a += 2 a -= 1 a *= -1 a /= 2 b = 2 + a b = 2 - a b = +a assert_array_equal(b.data, a.data) with warnings.catch_warnings(record=True): warnings.simplefilter('always') a **= 3 out.append(a) assert_array_equal(out[0], out[1].data) assert_array_equal(out[2], out[3].data) assert_array_equal(stc.sqrt().data, np.sqrt(stc.data)) assert_array_equal(vec_stc.sqrt().data, np.sqrt(vec_stc.data)) assert_array_equal(abs(stc).data, abs(stc.data)) assert_array_equal(abs(vec_stc).data, abs(vec_stc.data)) stc_mean = stc.mean() assert_array_equal(stc_mean.data, np.mean(stc.data, 1)[:, None]) vec_stc_mean = vec_stc.mean() assert_array_equal(vec_stc_mean.data, np.mean(vec_stc.data, 2)[:, :, None]) @pytest.mark.slowtest @testing.requires_testing_data def test_stc_methods(): """Test stc methods lh_data, rh_data, bin(), resample().""" stc_ = read_source_estimate(fname_stc) # Make a vector version of the above source estimate x = stc_.data[:, np.newaxis, :] yz = np.zeros((x.shape[0], 2, x.shape[2])) vec_stc_ = VectorSourceEstimate( np.concatenate((x, yz), 1), stc_.vertices, stc_.tmin, stc_.tstep, stc_.subject ) for stc in [stc_, vec_stc_]: # lh_data / rh_data assert_array_equal(stc.lh_data, stc.data[:len(stc.lh_vertno)]) assert_array_equal(stc.rh_data, stc.data[len(stc.lh_vertno):]) # bin binned = stc.bin(.12) a = np.mean(stc.data[..., :np.searchsorted(stc.times, .12)], axis=-1) assert_array_equal(a, binned.data[..., 0]) stc = read_source_estimate(fname_stc) stc.subject = 'sample' label_lh = read_labels_from_annot('sample', 'aparc', 'lh', subjects_dir=subjects_dir)[0] label_rh = read_labels_from_annot('sample', 'aparc', 'rh', subjects_dir=subjects_dir)[0] label_both = label_lh + label_rh for label in (label_lh, label_rh, label_both): assert_true(isinstance(stc.shape, tuple) and len(stc.shape) == 2) stc_label = stc.in_label(label) if label.hemi != 'both': if label.hemi == 'lh': verts = stc_label.vertices[0] else: # label.hemi == 'rh': verts = stc_label.vertices[1] n_vertices_used = len(label.get_vertices_used(verts)) assert_equal(len(stc_label.data), n_vertices_used) stc_lh = stc.in_label(label_lh) assert_raises(ValueError, stc_lh.in_label, label_rh) label_lh.subject = 'foo' assert_raises(RuntimeError, stc.in_label, label_lh) stc_new = deepcopy(stc) o_sfreq = 1.0 / stc.tstep # note that using no padding for this STC reduces edge ringing... stc_new.resample(2 * o_sfreq, npad=0, n_jobs=2) assert_true(stc_new.data.shape[1] == 2 * stc.data.shape[1]) assert_true(stc_new.tstep == stc.tstep / 2) stc_new.resample(o_sfreq, npad=0) assert_true(stc_new.data.shape[1] == stc.data.shape[1]) assert_true(stc_new.tstep == stc.tstep) assert_array_almost_equal(stc_new.data, stc.data, 5) @testing.requires_testing_data def test_center_of_mass(): """Test computing the center of mass on an stc.""" stc = read_source_estimate(fname_stc) assert_raises(ValueError, stc.center_of_mass, 'sample') stc.lh_data[:] = 0 vertex, hemi, t = stc.center_of_mass('sample', subjects_dir=subjects_dir) assert_true(hemi == 1) # XXX Should design a fool-proof test case, but here were the # results: assert_equal(vertex, 124791) assert_equal(np.round(t, 2), 0.12) @testing.requires_testing_data def test_extract_label_time_course(): """Test extraction of label time courses from stc.""" n_stcs = 3 n_times = 50 src = read_inverse_operator(fname_inv)['src'] vertices = [src[0]['vertno'], src[1]['vertno']] n_verts = len(vertices[0]) + len(vertices[1]) # get some labels labels_lh = read_labels_from_annot('sample', hemi='lh', subjects_dir=subjects_dir) labels_rh = read_labels_from_annot('sample', hemi='rh', subjects_dir=subjects_dir) labels = list() labels.extend(labels_lh[:5]) labels.extend(labels_rh[:4]) n_labels = len(labels) label_means = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times)) label_maxs = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times)) # compute the mean with sign flip label_means_flipped = np.zeros_like(label_means) for i, label in enumerate(labels): label_means_flipped[i] = i * np.mean(label_sign_flip(label, src)) # generate some stc's with known data stcs = list() for i in range(n_stcs): data = np.zeros((n_verts, n_times)) # set the value of the stc within each label for j, label in enumerate(labels): if label.hemi == 'lh': idx = np.intersect1d(vertices[0], label.vertices) idx = np.searchsorted(vertices[0], idx) elif label.hemi == 'rh': idx = np.intersect1d(vertices[1], label.vertices) idx = len(vertices[0]) + np.searchsorted(vertices[1], idx) data[idx] = label_means[j] this_stc = SourceEstimate(data, vertices, 0, 1) stcs.append(this_stc) # test some invalid inputs assert_raises(ValueError, extract_label_time_course, stcs, labels, src, mode='notamode') # have an empty label empty_label = labels[0].copy() empty_label.vertices += 1000000 assert_raises(ValueError, extract_label_time_course, stcs, empty_label, src, mode='mean') # but this works: with warnings.catch_warnings(record=True): # empty label tc = extract_label_time_course(stcs, empty_label, src, mode='mean', allow_empty=True) for arr in tc: assert_true(arr.shape == (1, n_times)) assert_array_equal(arr, np.zeros((1, n_times))) # test the different modes modes = ['mean', 'mean_flip', 'pca_flip', 'max'] for mode in modes: label_tc = extract_label_time_course(stcs, labels, src, mode=mode) label_tc_method = [stc.extract_label_time_course(labels, src, mode=mode) for stc in stcs] assert_true(len(label_tc) == n_stcs) assert_true(len(label_tc_method) == n_stcs) for tc1, tc2 in zip(label_tc, label_tc_method): assert_true(tc1.shape == (n_labels, n_times)) assert_true(tc2.shape == (n_labels, n_times)) assert_true(np.allclose(tc1, tc2, rtol=1e-8, atol=1e-16)) if mode == 'mean': assert_array_almost_equal(tc1, label_means) if mode == 'mean_flip': assert_array_almost_equal(tc1, label_means_flipped) if mode == 'max': assert_array_almost_equal(tc1, label_maxs) # test label with very few vertices (check SVD conditionals) label = Label(vertices=src[0]['vertno'][:2], hemi='lh') x = label_sign_flip(label, src) assert_true(len(x) == 2) label = Label(vertices=[], hemi='lh') x = label_sign_flip(label, src) assert_true(x.size == 0) @pytest.mark.slowtest @testing.requires_testing_data def test_morph_data(): """Test morphing of data.""" tempdir = _TempDir() subject_from = 'sample' subject_to = 'fsaverage' stc_from = read_source_estimate(fname_smorph, subject='sample') stc_to = read_source_estimate(fname_fmorph) # make sure we can specify grade stc_from.crop(0.09, 0.1) # for faster computation stc_to.crop(0.09, 0.1) # for faster computation assert_array_equal(stc_to.time_as_index([0.09, 0.1], use_rounding=True), [0, len(stc_to.times) - 1]) assert_raises(ValueError, stc_from.morph, subject_to, grade=3, smooth=-1, subjects_dir=subjects_dir) stc_to1 = stc_from.morph(subject_to, grade=3, smooth=12, buffer_size=1000, subjects_dir=subjects_dir) stc_to1.save(op.join(tempdir, '%s_audvis-meg' % subject_to)) # Morphing to a density that is too high should raise an informative error # (here we need to push to grade=6, but for some subjects even grade=5 # will break) assert_raises(ValueError, stc_to1.morph, subject_from, grade=6, subjects_dir=subjects_dir) # make sure we can specify vertices vertices_to = grade_to_vertices(subject_to, grade=3, subjects_dir=subjects_dir) stc_to2 = morph_data(subject_from, subject_to, stc_from, grade=vertices_to, smooth=12, buffer_size=1000, subjects_dir=subjects_dir) # make sure we can use different buffer_size stc_to3 = morph_data(subject_from, subject_to, stc_from, grade=vertices_to, smooth=12, buffer_size=3, subjects_dir=subjects_dir) # make sure we get a warning about # of steps with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') morph_data(subject_from, subject_to, stc_from, grade=vertices_to, smooth=1, buffer_size=3, subjects_dir=subjects_dir) assert_equal(len(w), 2) assert_array_almost_equal(stc_to.data, stc_to1.data, 5) assert_array_almost_equal(stc_to1.data, stc_to2.data) assert_array_almost_equal(stc_to1.data, stc_to3.data) # make sure precomputed morph matrices work morph_mat = compute_morph_matrix(subject_from, subject_to, stc_from.vertices, vertices_to, smooth=12, subjects_dir=subjects_dir) stc_to3 = stc_from.morph_precomputed(subject_to, vertices_to, morph_mat) assert_array_almost_equal(stc_to1.data, stc_to3.data) assert_raises(ValueError, stc_from.morph_precomputed, subject_to, vertices_to, 'foo') assert_raises(ValueError, stc_from.morph_precomputed, subject_to, [vertices_to[0]], morph_mat) assert_raises(ValueError, stc_from.morph_precomputed, subject_to, [vertices_to[0][:-1], vertices_to[1]], morph_mat) assert_raises(ValueError, stc_from.morph_precomputed, subject_to, vertices_to, morph_mat, subject_from='foo') # steps warning with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') compute_morph_matrix(subject_from, subject_to, stc_from.vertices, vertices_to, smooth=1, subjects_dir=subjects_dir) assert_equal(len(w), 2) mean_from = stc_from.data.mean(axis=0) mean_to = stc_to1.data.mean(axis=0) assert_true(np.corrcoef(mean_to, mean_from).min() > 0.999) # make sure we can fill by morphing stc_to5 = morph_data(subject_from, subject_to, stc_from, grade=None, smooth=12, buffer_size=3, subjects_dir=subjects_dir) assert_true(stc_to5.data.shape[0] == 163842 + 163842) # Morph sparse data # Make a sparse stc stc_from.vertices[0] = stc_from.vertices[0][[100, 500]] stc_from.vertices[1] = stc_from.vertices[1][[200]] stc_from._data = stc_from._data[:3] assert_raises(RuntimeError, stc_from.morph, subject_to, sparse=True, grade=5, subjects_dir=subjects_dir) stc_to_sparse = stc_from.morph(subject_to, grade=None, sparse=True, subjects_dir=subjects_dir) assert_array_almost_equal(np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))) assert_equal(len(stc_from.rh_vertno), len(stc_to_sparse.rh_vertno)) assert_equal(len(stc_from.lh_vertno), len(stc_to_sparse.lh_vertno)) assert_equal(stc_to_sparse.subject, subject_to) assert_equal(stc_from.tmin, stc_from.tmin) assert_equal(stc_from.tstep, stc_from.tstep) stc_from.vertices[0] = np.array([], dtype=np.int64) stc_from._data = stc_from._data[:1] stc_to_sparse = stc_from.morph(subject_to, grade=None, sparse=True, subjects_dir=subjects_dir) assert_array_almost_equal(np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))) assert_equal(len(stc_from.rh_vertno), len(stc_to_sparse.rh_vertno)) assert_equal(len(stc_from.lh_vertno), len(stc_to_sparse.lh_vertno)) assert_equal(stc_to_sparse.subject, subject_to) assert_equal(stc_from.tmin, stc_from.tmin) assert_equal(stc_from.tstep, stc_from.tstep) # Morph vector data stc_vec = _real_vec_stc() # Ignore warnings about number of steps stc_vec_to1 = stc_vec.morph(subject_to, grade=3, smooth=12, buffer_size=1000, subjects_dir=subjects_dir) stc_vec_to2 = stc_vec.morph_precomputed(subject_to, vertices_to, morph_mat) assert_array_almost_equal(stc_vec_to1.data, stc_vec_to2.data) def _my_trans(data): """FFT that adds an additional dimension by repeating result.""" data_t = fft(data) data_t = np.concatenate([data_t[:, :, None], data_t[:, :, None]], axis=2) return data_t, None def test_transform_data(): """Test applying linear (time) transform to data.""" # make up some data n_sensors, n_vertices, n_times = 10, 20, 4 kernel = rng.randn(n_vertices, n_sensors) sens_data = rng.randn(n_sensors, n_times) vertices = np.arange(n_vertices) data = np.dot(kernel, sens_data) for idx, tmin_idx, tmax_idx in\ zip([None, np.arange(n_vertices // 2, n_vertices)], [None, 1], [None, 3]): if idx is None: idx_use = slice(None, None) else: idx_use = idx data_f, _ = _my_trans(data[idx_use, tmin_idx:tmax_idx]) for stc_data in (data, (kernel, sens_data)): stc = VolSourceEstimate(stc_data, vertices=vertices, tmin=0., tstep=1.) stc_data_t = stc.transform_data(_my_trans, idx=idx, tmin_idx=tmin_idx, tmax_idx=tmax_idx) assert_allclose(data_f, stc_data_t) def test_transform(): """Test applying linear (time) transform to data.""" # make up some data n_verts_lh, n_verts_rh, n_times = 10, 10, 10 vertices = [np.arange(n_verts_lh), n_verts_lh + np.arange(n_verts_rh)] data = rng.randn(n_verts_lh + n_verts_rh, n_times) stc = SourceEstimate(data, vertices=vertices, tmin=-0.1, tstep=0.1) # data_t.ndim > 2 & copy is True stcs_t = stc.transform(_my_trans, copy=True) assert_true(isinstance(stcs_t, list)) assert_array_equal(stc.times, stcs_t[0].times) assert_equal(stc.vertices, stcs_t[0].vertices) data = np.concatenate((stcs_t[0].data[:, :, None], stcs_t[1].data[:, :, None]), axis=2) data_t = stc.transform_data(_my_trans) assert_array_equal(data, data_t) # check against stc.transform_data() # data_t.ndim > 2 & copy is False assert_raises(ValueError, stc.transform, _my_trans, copy=False) # data_t.ndim = 2 & copy is True tmp = deepcopy(stc) stc_t = stc.transform(np.abs, copy=True) assert_true(isinstance(stc_t, SourceEstimate)) assert_array_equal(stc.data, tmp.data) # xfrm doesn't modify original? # data_t.ndim = 2 & copy is False times = np.round(1000 * stc.times) verts = np.arange(len(stc.lh_vertno), len(stc.lh_vertno) + len(stc.rh_vertno), 1) verts_rh = stc.rh_vertno tmin_idx = np.searchsorted(times, 0) tmax_idx = np.searchsorted(times, 501) # Include 500ms in the range data_t = stc.transform_data(np.abs, idx=verts, tmin_idx=tmin_idx, tmax_idx=tmax_idx) stc.transform(np.abs, idx=verts, tmin=-50, tmax=500, copy=False) assert_true(isinstance(stc, SourceEstimate)) assert_equal(stc.tmin, 0.) assert_equal(stc.times[-1], 0.5) assert_equal(len(stc.vertices[0]), 0) assert_equal(stc.vertices[1], verts_rh) assert_array_equal(stc.data, data_t) times = np.round(1000 * stc.times) tmin_idx, tmax_idx = np.searchsorted(times, 0), np.searchsorted(times, 250) data_t = stc.transform_data(np.abs, tmin_idx=tmin_idx, tmax_idx=tmax_idx) stc.transform(np.abs, tmin=0, tmax=250, copy=False) assert_equal(stc.tmin, 0.) assert_equal(stc.times[-1], 0.2) assert_array_equal(stc.data, data_t) @requires_sklearn def test_spatio_temporal_tris_connectivity(): """Test spatio-temporal connectivity from triangles.""" tris = np.array([[0, 1, 2], [3, 4, 5]]) connectivity = spatio_temporal_tris_connectivity(tris, 2) x = [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] components = stats.cluster_level._get_components(np.array(x), connectivity) # _get_components works differently now... old_fmt = [0, 0, -2, -2, -2, -2, 0, -2, -2, -2, -2, 1] new_fmt = np.array(old_fmt) new_fmt = [np.nonzero(new_fmt == v)[0] for v in np.unique(new_fmt[new_fmt >= 0])] assert_true(len(new_fmt), len(components)) for c, n in zip(components, new_fmt): assert_array_equal(c, n) @testing.requires_testing_data def test_spatio_temporal_src_connectivity(): """Test spatio-temporal connectivity from source spaces.""" tris = np.array([[0, 1, 2], [3, 4, 5]]) src = [dict(), dict()] connectivity = spatio_temporal_tris_connectivity(tris, 2) src[0]['use_tris'] = np.array([[0, 1, 2]]) src[1]['use_tris'] = np.array([[0, 1, 2]]) src[0]['vertno'] = np.array([0, 1, 2]) src[1]['vertno'] = np.array([0, 1, 2]) src[0]['type'] = 'surf' src[1]['type'] = 'surf' connectivity2 = spatio_temporal_src_connectivity(src, 2) assert_array_equal(connectivity.todense(), connectivity2.todense()) # add test for dist connectivity src[0]['dist'] = np.ones((3, 3)) - np.eye(3) src[1]['dist'] = np.ones((3, 3)) - np.eye(3) src[0]['vertno'] = [0, 1, 2] src[1]['vertno'] = [0, 1, 2] src[0]['type'] = 'surf' src[1]['type'] = 'surf' connectivity3 = spatio_temporal_src_connectivity(src, 2, dist=2) assert_array_equal(connectivity.todense(), connectivity3.todense()) # add test for source space connectivity with omitted vertices inverse_operator = read_inverse_operator(fname_inv) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') src_ = inverse_operator['src'] connectivity = spatio_temporal_src_connectivity(src_, n_times=2) assert_equal(len(w), 1) a = connectivity.shape[0] / 2 b = sum([s['nuse'] for s in inverse_operator['src']]) assert_true(a == b) assert_equal(grade_to_tris(5).shape, [40960, 3]) @requires_pandas def test_to_data_frame(): """Test stc Pandas exporter.""" n_vert, n_times = 10, 5 vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)] data = rng.randn(n_vert, n_times) stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1, subject='sample') stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1, subject='sample') for stc in [stc_surf, stc_vol]: assert_raises(ValueError, stc.to_data_frame, index=['foo', 'bar']) for ncat, ind in zip([1, 0], ['time', ['subject', 'time']]): df = stc.to_data_frame(index=ind) assert_true(df.index.names == ind if isinstance(ind, list) else [ind]) assert_array_equal(df.values.T[ncat:], stc.data) # test that non-indexed data were present as categorial variables assert_true(all([c in ['time', 'subject'] for c in df.reset_index().columns][:2])) def test_get_peak(): """Test peak getter.""" n_vert, n_times = 10, 5 vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)] data = rng.randn(n_vert, n_times) stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1, subject='sample') stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1, subject='sample') for ii, stc in enumerate([stc_surf, stc_vol]): assert_raises(ValueError, stc.get_peak, tmin=-100) assert_raises(ValueError, stc.get_peak, tmax=90) assert_raises(ValueError, stc.get_peak, tmin=0.002, tmax=0.001) vert_idx, time_idx = stc.get_peak() vertno = np.concatenate(stc.vertices) if ii == 0 else stc.vertices assert_true(vert_idx in vertno) assert_true(time_idx in stc.times) ch_idx, time_idx = stc.get_peak(vert_as_index=True, time_as_index=True) assert_true(vert_idx < stc.data.shape[0]) assert_true(time_idx < len(stc.times)) @testing.requires_testing_data def test_mixed_stc(): """Test source estimate from mixed source space.""" N = 90 # number of sources T = 2 # number of time points S = 3 # number of source spaces data = rng.randn(N, T) vertno = S * [np.arange(N // S)] # make sure error is raised if vertices are not a list of length >= 2 assert_raises(ValueError, MixedSourceEstimate, data=data, vertices=[np.arange(N)]) stc = MixedSourceEstimate(data, vertno, 0, 1) vol = read_source_spaces(fname_vsrc) # make sure error is raised for plotting surface with volume source assert_raises(ValueError, stc.plot_surface, src=vol) def test_vec_stc(): """Test vector source estimate.""" nn = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1], [np.sqrt(1 / 3.)] * 3 ]) src = [dict(nn=nn[:2]), dict(nn=nn[2:])] verts = [np.array([0, 1]), np.array([0, 1])] data = np.array([ [1, 0, 0], [0, 2, 0], [3, 0, 0], [1, 1, 1], ])[:, :, np.newaxis] stc = VectorSourceEstimate(data, verts, 0, 1, 'foo') # Magnitude of the vectors assert_array_equal(stc.magnitude().data[:, 0], [1, 2, 3, np.sqrt(3)]) # Vector components projected onto the vertex normals normal = stc.normal(src) assert_array_equal(normal.data[:, 0], [1, 2, 0,
np.sqrt(3)
numpy.sqrt
# -*- coding: utf-8 -*- # Copyright 2018 the HERA Project # Licensed under the MIT License import hera_cal.redcal as om import numpy as np import unittest from copy import deepcopy from hera_cal.utils import split_pol, conj_pol np.random.seed(0) def build_linear_array(nants, sep=14.7): antpos = {i: np.array([sep * i, 0, 0]) for i in range(nants)} return antpos def build_hex_array(hexNum, sep=14.7): antpos, i = {}, 0 for row in range(hexNum - 1, -(hexNum), -1): for col in range(2 * hexNum - abs(row) - 1): xPos = ((-(2 * hexNum - abs(row)) + 2) / 2.0 + col) * sep yPos = row * sep * 3**.5 / 2 antpos[i] = np.array([xPos, yPos, 0]) i += 1 return antpos class TestMethods(unittest.TestCase): def test_noise(self): n = om.noise((1024, 1024)) self.assertEqual(n.shape, (1024, 1024)) self.assertAlmostEqual(np.var(n), 1, 2) def test_sim_red_data(self): antpos = build_linear_array(10) reds = om.get_reds(antpos, pols=['XX'], pol_mode='1pol') gains, true_vis, data = om.sim_red_data(reds) self.assertEqual(len(gains), 10) self.assertEqual(len(data), 45) for bls in reds: bl0 = bls[0] ai, aj, pol = bl0 ans0 = data[bl0] / (gains[(ai, 'jxx')] * gains[(aj, 'jxx')].conj()) for bl in bls[1:]: ai, aj, pol = bl ans = data[bl] / (gains[(ai, 'jxx')] * gains[(aj, 'jxx')].conj()) np.testing.assert_almost_equal(ans0, ans, 7) reds = om.get_reds(antpos, pols=['XX', 'YY', 'XY', 'YX'], pol_mode='4pol') gains, true_vis, data = om.sim_red_data(reds) self.assertEqual(len(gains), 20) self.assertEqual(len(data), 4 * (45)) for bls in reds: bl0 = bls[0] ai, aj, pol = bl0 ans0xx = data[(ai, aj, 'XX',)] / (gains[(ai, 'jxx')] * gains[(aj, 'jxx')].conj()) ans0xy = data[(ai, aj, 'XY',)] / (gains[(ai, 'jxx')] * gains[(aj, 'jyy')].conj()) ans0yx = data[(ai, aj, 'YX',)] / (gains[(ai, 'jyy')] * gains[(aj, 'jxx')].conj()) ans0yy = data[(ai, aj, 'YY',)] / (gains[(ai, 'jyy')] * gains[(aj, 'jyy')].conj()) for bl in bls[1:]: ai, aj, pol = bl ans_xx = data[(ai, aj, 'XX',)] / (gains[(ai, 'jxx')] * gains[(aj, 'jxx')].conj()) ans_xy = data[(ai, aj, 'XY',)] / (gains[(ai, 'jxx')] * gains[(aj, 'jyy')].conj()) ans_yx = data[(ai, aj, 'YX',)] / (gains[(ai, 'jyy')] * gains[(aj, 'jxx')].conj()) ans_yy = data[(ai, aj, 'YY',)] / (gains[(ai, 'jyy')] * gains[(aj, 'jyy')].conj()) np.testing.assert_almost_equal(ans0xx, ans_xx, 7) np.testing.assert_almost_equal(ans0xy, ans_xy, 7) np.testing.assert_almost_equal(ans0yx, ans_yx, 7) np.testing.assert_almost_equal(ans0yy, ans_yy, 7) reds = om.get_reds(antpos, pols=['XX', 'YY', 'XY', 'yX'], pol_mode='4pol_minV') gains, true_vis, data = om.sim_red_data(reds) self.assertEqual(len(gains), 20) self.assertEqual(len(data), 4 * (45)) for bls in reds: bl0 = bls[0] ai, aj, pol = bl0 ans0xx = data[(ai, aj, 'XX',)] / (gains[(ai, 'jxx')] * gains[(aj, 'jxx')].conj()) ans0xy = data[(ai, aj, 'XY',)] / (gains[(ai, 'jxx')] * gains[(aj, 'jyy')].conj()) ans0yx = data[(ai, aj, 'YX',)] / (gains[(ai, 'jyy')] * gains[(aj, 'jxx')].conj()) ans0yy = data[(ai, aj, 'YY',)] / (gains[(ai, 'jyy')] * gains[(aj, 'jyy')].conj()) np.testing.assert_almost_equal(ans0xy, ans0yx, 7) for bl in bls[1:]: ai, aj, pol = bl ans_xx = data[(ai, aj, 'XX',)] / (gains[(ai, 'jxx')] * gains[(aj, 'jxx')].conj()) ans_xy = data[(ai, aj, 'XY',)] / (gains[(ai, 'jxx')] * gains[(aj, 'jyy')].conj()) ans_yx = data[(ai, aj, 'YX',)] / (gains[(ai, 'jyy')] * gains[(aj, 'jxx')].conj()) ans_yy = data[(ai, aj, 'YY',)] / (gains[(ai, 'jyy')] * gains[(aj, 'jyy')].conj()) np.testing.assert_almost_equal(ans0xx, ans_xx, 7) np.testing.assert_almost_equal(ans0xy, ans_xy, 7) np.testing.assert_almost_equal(ans0yx, ans_yx, 7) np.testing.assert_almost_equal(ans0yy, ans_yy, 7) def test_check_polLists_minV(self): polLists = [['XY']] self.assertFalse(om.check_polLists_minV(polLists)) polLists = [['XX', 'XY']] self.assertFalse(om.check_polLists_minV(polLists)) polLists = [['XX', 'XY', 'YX']] self.assertFalse(om.check_polLists_minV(polLists)) polLists = [['XY', 'YX'], ['XX'], ['YY'], ['XX'], ['YX', 'XY'], ['YY']] self.assertTrue(om.check_polLists_minV(polLists)) def test_parse_pol_mode(self): reds = [[(0, 1, 'XX')]] self.assertEqual(om.parse_pol_mode(reds), '1pol') reds = [[(0, 1, 'XX')], [(0, 1, 'YY')]] self.assertEqual(om.parse_pol_mode(reds), '2pol') reds = [[(0, 1, 'XX')], [(0, 1, 'XY')], [(0, 1, 'YX')], [(0, 1, 'YY')]] self.assertEqual(om.parse_pol_mode(reds), '4pol') reds = [[(0, 1, 'XX')], [(0, 1, 'XY'), (0, 1, 'YX')], [(0, 1, 'YY')]] self.assertEqual(om.parse_pol_mode(reds), '4pol_minV') reds = [[(0, 1, 'XX')], [(0, 1, 'XY'), (0, 1, 'YX')], [(0, 1, 'LR')]] self.assertEqual(om.parse_pol_mode(reds), 'unrecognized_pol_mode') reds = [[(0, 1, 'XX')], [(0, 1, 'XY')]] self.assertEqual(om.parse_pol_mode(reds), 'unrecognized_pol_mode') reds = [[(0, 1, 'XY')]] self.assertEqual(om.parse_pol_mode(reds), 'unrecognized_pol_mode') reds = [[(0, 1, 'XX')], [(0, 1, 'XY'), (0, 1, 'YY')], [(0, 1, 'YX')]] self.assertEqual(om.parse_pol_mode(reds), 'unrecognized_pol_mode') def test_get_pos_red(self): pos = build_hex_array(3, sep=14.7) self.assertEqual(len(om.get_pos_reds(pos)), 30) pos = build_hex_array(7, sep=14.7) self.assertEqual(len(om.get_pos_reds(pos)), 234) for ant, r in pos.items(): pos[ant] += [0, 0, 1 * r[0] - .5 * r[1]] self.assertEqual(len(om.get_pos_reds(pos)), 234) pos = build_hex_array(7, sep=1) self.assertLess(len(om.get_pos_reds(pos)), 234) self.assertEqual(len(om.get_pos_reds(pos, bl_error_tol=.1)), 234) pos = build_hex_array(7, sep=14.7) blerror = 1.0 - 1e-12 error = blerror / 4 for key, val in pos.items(): th = np.random.choice([0, np.pi / 2, np.pi]) phi = np.random.choice([0, np.pi / 2, np.pi, 3 * np.pi / 2]) pos[key] = val + error * np.array([np.sin(th) * np.cos(phi), np.sin(th) * np.sin(phi), np.cos(th)]) self.assertEqual(len(om.get_pos_reds(pos, bl_error_tol=1.0)), 234) self.assertGreater(len(om.get_pos_reds(pos, bl_error_tol=.99)), 234) pos = {0: np.array([0, 0, 0]), 1: np.array([20, 0, 0]), 2: np.array([10, 0, 0])} self.assertEqual(om.get_pos_reds(pos), [[(0, 2), (2, 1)], [(0, 1)]]) self.assertEqual(om.get_pos_reds(pos, low_hi=True), [[(0, 2), (1, 2)], [(0, 1)]]) def test_add_pol_reds(self): reds = [[(1, 2)]] polReds = om.add_pol_reds(reds, pols=['XX'], pol_mode='1pol') self.assertEqual(polReds, [[(1, 2, 'XX')]]) polReds = om.add_pol_reds(reds, pols=['XX', 'YY'], pol_mode='2pol') self.assertEqual(polReds, [[(1, 2, 'XX')], [(1, 2, 'YY')]]) polReds = om.add_pol_reds(reds, pols=['XX', 'XY', 'YX', 'YY'], pol_mode='4pol') self.assertEqual(polReds, [[(1, 2, 'XX')], [(1, 2, 'XY')], [(1, 2, 'YX')], [(1, 2, 'YY')]]) polReds = om.add_pol_reds(reds, pols=['XX', 'XY', 'YX', 'YY'], pol_mode='4pol_minV') self.assertEqual(polReds, [[(1, 2, 'XX')], [(1, 2, 'XY'), (1, 2, 'YX')], [(1, 2, 'YY')]]) polReds = om.add_pol_reds(reds, pols=['XX', 'YY'], pol_mode='2pol', ex_ants=[(2, 'jyy')]) self.assertEqual(polReds, [[(1, 2, 'XX')], []]) polReds = om.add_pol_reds(reds, pols=['XX', 'XY', 'YX', 'YY'], pol_mode='4pol', ex_ants=[(2, 'jyy')]) self.assertEqual(polReds, [[(1, 2, 'XX')], [], [(1, 2, 'YX')], []]) polReds = om.add_pol_reds(reds, pols=['XX', 'XY', 'YX', 'YY'], pol_mode='4pol_minV', ex_ants=[(2, 'jyy')]) self.assertEqual(polReds, [[(1, 2, 'XX')], [(1, 2, 'YX')], []]) def test_multiply_by_gains(self): vis_in = {(1, 2, 'XX'): 1.6 + 2.3j} gains = {(1, 'jxx'): .3 + 2.6j, (2, 'jxx'): -1.2 - 7.3j} vis_out = om.multiply_by_gains(vis_in, gains, target_type='vis') self.assertAlmostEqual(1.6 + 2.3j, vis_in[(1, 2, 'XX')], 10) self.assertAlmostEqual(-28.805 - 45.97j, vis_out[(1, 2, 'XX')], 10) gains_out = om.multiply_by_gains(gains, gains, target_type='gain') self.assertAlmostEqual(.3 + 2.6j, gains[(1, 'jxx')], 10) self.assertAlmostEqual(-6.67 + 1.56j, gains_out[(1, 'jxx')], 10) def test_divide_by_gains(self): vis_in = {(1, 2, 'XX'): 1.6 + 2.3j} gains = {(1, 'jxx'): .3 + 2.6j, (2, 'jxx'): -1.2 - 7.3j} vis_out = om.divide_by_gains(vis_in, gains, target_type='vis') self.assertAlmostEqual(1.6 + 2.3j, vis_in[(1, 2, 'XX')], 10) self.assertAlmostEqual(-0.088244747606364887 - 0.11468109538397521j, vis_out[(1, 2, 'XX')], 10) gains_out = om.divide_by_gains(gains, gains, target_type='gain') self.assertAlmostEqual(.3 + 2.6j, gains[(1, 'jxx')], 10) self.assertAlmostEqual(1.0, gains_out[(1, 'jxx')], 10) class TestRedundantCalibrator(unittest.TestCase): def test_build_eq(self): antpos = build_linear_array(3) reds = om.get_reds(antpos, pols=['XX'], pol_mode='1pol') gains, true_vis, data = om.sim_red_data(reds) info = om.RedundantCalibrator(reds) eqs = info.build_eqs(data.keys()) self.assertEqual(len(eqs), 3) self.assertEqual(eqs['g_0_jxx * g_1_jxx_ * u_0_XX'], (0, 1, 'XX')) self.assertEqual(eqs['g_1_jxx * g_2_jxx_ * u_0_XX'], (1, 2, 'XX')) self.assertEqual(eqs['g_0_jxx * g_2_jxx_ * u_1_XX'], (0, 2, 'XX')) reds = om.get_reds(antpos, pols=['XX', 'YY', 'XY', 'YX'], pol_mode='4pol') gains, true_vis, data = om.sim_red_data(reds) info = om.RedundantCalibrator(reds) eqs = info.build_eqs(data.keys()) self.assertEqual(len(eqs), 3 * 4) self.assertEqual(eqs['g_0_jxx * g_1_jyy_ * u_4_XY'], (0, 1, 'XY')) self.assertEqual(eqs['g_1_jxx * g_2_jyy_ * u_4_XY'], (1, 2, 'XY')) self.assertEqual(eqs['g_0_jxx * g_2_jyy_ * u_5_XY'], (0, 2, 'XY')) self.assertEqual(eqs['g_0_jyy * g_1_jxx_ * u_6_YX'], (0, 1, 'YX')) self.assertEqual(eqs['g_1_jyy * g_2_jxx_ * u_6_YX'], (1, 2, 'YX')) self.assertEqual(eqs['g_0_jyy * g_2_jxx_ * u_7_YX'], (0, 2, 'YX')) reds = om.get_reds(antpos, pols=['XX', 'YY', 'XY', 'YX'], pol_mode='4pol_minV') gains, true_vis, data = om.sim_red_data(reds) info = om.RedundantCalibrator(reds) eqs = info.build_eqs(data.keys()) self.assertEqual(len(eqs), 3 * 4) self.assertEqual(eqs['g_0_jxx * g_1_jyy_ * u_4_XY'], (0, 1, 'XY')) self.assertEqual(eqs['g_1_jxx * g_2_jyy_ * u_4_XY'], (1, 2, 'XY')) self.assertEqual(eqs['g_0_jxx * g_2_jyy_ * u_5_XY'], (0, 2, 'XY')) self.assertEqual(eqs['g_0_jyy * g_1_jxx_ * u_4_XY'], (0, 1, 'YX')) self.assertEqual(eqs['g_1_jyy * g_2_jxx_ * u_4_XY'], (1, 2, 'YX')) self.assertEqual(eqs['g_0_jyy * g_2_jxx_ * u_5_XY'], (0, 2, 'YX')) def test_solver(self): antpos = build_linear_array(3) reds = om.get_reds(antpos, pols=['XX'], pol_mode='1pol') info = om.RedundantCalibrator(reds) gains, true_vis, d = om.sim_red_data(reds) w = {} w = dict([(k, 1.) for k in d.keys()]) def solver(data, wgts, sparse, **kwargs): np.testing.assert_equal(data['g_0_jxx * g_1_jxx_ * u_0_XX'], d[0, 1, 'XX']) np.testing.assert_equal(data['g_1_jxx * g_2_jxx_ * u_0_XX'], d[1, 2, 'XX']) np.testing.assert_equal(data['g_0_jxx * g_2_jxx_ * u_1_XX'], d[0, 2, 'XX']) if len(wgts) == 0: return np.testing.assert_equal(wgts['g_0_jxx * g_1_jxx_ * u_0_XX'], w[0, 1, 'XX']) np.testing.assert_equal(wgts['g_1_jxx * g_2_jxx_ * u_0_XX'], w[1, 2, 'XX']) np.testing.assert_equal(wgts['g_0_jxx * g_2_jxx_ * u_1_XX'], w[0, 2, 'XX']) return info._solver(solver, d) info._solver(solver, d, w) def test_logcal(self): NANTS = 18 antpos = build_linear_array(NANTS) reds = om.get_reds(antpos, pols=['XX'], pol_mode='1pol') info = om.RedundantCalibrator(reds) gains, true_vis, d = om.sim_red_data(reds, gain_scatter=.05) w = dict([(k, 1.) for k in d.keys()]) sol = info.logcal(d) for i in xrange(NANTS): self.assertEqual(sol[(i, 'jxx')].shape, (10, 10)) for bls in reds: ubl = sol[bls[0]] self.assertEqual(ubl.shape, (10, 10)) for bl in bls: d_bl = d[bl] mdl = sol[(bl[0], 'jxx')] * sol[(bl[1], 'jxx')].conj() * ubl np.testing.assert_almost_equal(np.abs(d_bl), np.abs(mdl), 10) np.testing.assert_almost_equal(np.angle(d_bl * mdl.conj()), 0, 10) def test_lincal(self): NANTS = 18 antpos = build_linear_array(NANTS) reds = om.get_reds(antpos, pols=['XX'], pol_mode='1pol') info = om.RedundantCalibrator(reds) gains, true_vis, d = om.sim_red_data(reds, gain_scatter=.0099999) w = dict([(k, 1.) for k in d.keys()]) sol0 = dict([(k, np.ones_like(v)) for k, v in gains.items()]) sol0.update(info.compute_ubls(d, sol0)) #sol0 = info.logcal(d) #for k in sol0: sol0[k] += .01*capo.oqe.noise(sol0[k].shape) meta, sol = info.lincal(d, sol0) for i in xrange(NANTS): self.assertEqual(sol[(i, 'jxx')].shape, (10, 10)) for bls in reds: ubl = sol[bls[0]] self.assertEqual(ubl.shape, (10, 10)) for bl in bls: d_bl = d[bl] mdl = sol[(bl[0], 'jxx')] * sol[(bl[1], 'jxx')].conj() * ubl np.testing.assert_almost_equal(np.abs(d_bl), np.abs(mdl), 10) np.testing.assert_almost_equal(np.angle(d_bl * mdl.conj()), 0, 10) def test_lincal_hex_end_to_end_1pol_with_remove_degen_and_firstcal(self): antpos = build_hex_array(3) reds = om.get_reds(antpos, pols=['XX'], pol_mode='1pol') rc = om.RedundantCalibrator(reds) freqs = np.linspace(.1, .2, 10) gains, true_vis, d = om.sim_red_data(reds, gain_scatter=.1, shape=(1, len(freqs))) fc_delays = {ant: 100 * np.random.randn() for ant in gains.keys()} # in ns fc_gains = {ant: np.reshape(np.exp(-2.0j * np.pi * freqs * delay), (1, len(freqs))) for ant, delay in fc_delays.items()} for ant1, ant2, pol in d.keys(): d[(ant1, ant2, pol)] *= fc_gains[(ant1, split_pol(pol)[0])] * np.conj(fc_gains[(ant2, split_pol(pol)[1])]) for ant in gains.keys(): gains[ant] *= fc_gains[ant] w = dict([(k, 1.) for k in d.keys()]) sol0 = rc.logcal(d, sol0=fc_gains, wgts=w) meta, sol = rc.lincal(d, sol0, wgts=w) np.testing.assert_array_less(meta['iter'], 50 * np.ones_like(meta['iter'])) np.testing.assert_almost_equal(meta['chisq'], np.zeros_like(meta['chisq']), decimal=10) np.testing.assert_almost_equal(meta['chisq'], 0, 10) for i in xrange(len(antpos)): self.assertEqual(sol[(i, 'jxx')].shape, (1, len(freqs))) for bls in reds: ubl = sol[bls[0]] self.assertEqual(ubl.shape, (1, len(freqs))) for bl in bls: d_bl = d[bl] mdl = sol[(bl[0], 'jxx')] * sol[(bl[1], 'jxx')].conj() * ubl np.testing.assert_almost_equal(np.abs(d_bl), np.abs(mdl), 10) np.testing.assert_almost_equal(np.angle(d_bl * mdl.conj()), 0, 10) sol_rd = rc.remove_degen(antpos, sol) g, v = om.get_gains_and_vis_from_sol(sol_rd) ants = [key for key in sol_rd.keys() if len(key) == 2] gainSols = np.array([sol_rd[ant] for ant in ants]) meanSqAmplitude = np.mean([np.abs(g[key1] * g[key2]) for key1 in g.keys() for key2 in g.keys() if key1[1] == 'jxx' and key2[1] == 'jxx' and key1[0] != key2[0]], axis=0) np.testing.assert_almost_equal(meanSqAmplitude, 1, 10) #np.testing.assert_almost_equal(np.mean(np.angle(gainSols), axis=0), 0, 10) for bls in reds: ubl = sol_rd[bls[0]] self.assertEqual(ubl.shape, (1, len(freqs))) for bl in bls: d_bl = d[bl] mdl = sol_rd[(bl[0], 'jxx')] * sol_rd[(bl[1], 'jxx')].conj() * ubl np.testing.assert_almost_equal(np.abs(d_bl), np.abs(mdl), 10) np.testing.assert_almost_equal(np.angle(d_bl * mdl.conj()), 0, 10) sol_rd = rc.remove_degen(antpos, sol, degen_sol=gains) g, v = om.get_gains_and_vis_from_sol(sol_rd) meanSqAmplitude = np.mean([np.abs(g[key1] * g[key2]) for key1 in g.keys() for key2 in g.keys() if key1[1] == 'jxx' and key2[1] == 'jxx' and key1[0] != key2[0]], axis=0) degenMeanSqAmplitude = np.mean([np.abs(gains[key1] * gains[key2]) for key1 in g.keys() for key2 in g.keys() if key1[1] == 'jxx' and key2[1] == 'jxx' and key1[0] != key2[0]], axis=0) np.testing.assert_almost_equal(meanSqAmplitude, degenMeanSqAmplitude, 10) #np.testing.assert_almost_equal(np.mean(np.angle(gainSols), axis=0), 0, 10) for key, val in sol_rd.items(): if len(key) == 2: np.testing.assert_almost_equal(val, gains[key], 10) if len(key) == 3: np.testing.assert_almost_equal(val, true_vis[key], 10) rc.pol_mode = 'unrecognized_pol_mode' with self.assertRaises(ValueError): sol_rd = rc.remove_degen(antpos, sol) def test_lincal_hex_end_to_end_4pol_with_remove_degen_and_firstcal(self): antpos = build_hex_array(3) reds = om.get_reds(antpos, pols=['XX', 'XY', 'YX', 'YY'], pol_mode='4pol') rc = om.RedundantCalibrator(reds) freqs = np.linspace(.1, .2, 10) gains, true_vis, d = om.sim_red_data(reds, gain_scatter=.09, shape=(1, len(freqs))) fc_delays = {ant: 100 * np.random.randn() for ant in gains.keys()} # in ns fc_gains = {ant: np.reshape(np.exp(-2.0j * np.pi * freqs * delay), (1, len(freqs))) for ant, delay in fc_delays.items()} for ant1, ant2, pol in d.keys(): d[(ant1, ant2, pol)] *= fc_gains[(ant1, split_pol(pol)[0])] * np.conj(fc_gains[(ant2, split_pol(pol)[1])]) for ant in gains.keys(): gains[ant] *= fc_gains[ant] w = dict([(k, 1.) for k in d.keys()]) sol0 = rc.logcal(d, sol0=fc_gains, wgts=w) meta, sol = rc.lincal(d, sol0, wgts=w) np.testing.assert_array_less(meta['iter'], 50 * np.ones_like(meta['iter'])) np.testing.assert_almost_equal(meta['chisq'], np.zeros_like(meta['chisq']), decimal=10) np.testing.assert_almost_equal(meta['chisq'], 0, 10) for i in xrange(len(antpos)): self.assertEqual(sol[(i, 'jxx')].shape, (1, len(freqs))) self.assertEqual(sol[(i, 'jyy')].shape, (1, len(freqs))) for bls in reds: for bl in bls: ubl = sol[bls[0]] self.assertEqual(ubl.shape, (1, len(freqs))) d_bl = d[bl] mdl = sol[(bl[0], split_pol(bl[2])[0])] * sol[(bl[1], split_pol(bl[2])[1])].conj() * ubl np.testing.assert_almost_equal(np.abs(d_bl), np.abs(mdl), 10) np.testing.assert_almost_equal(np.angle(d_bl * mdl.conj()), 0, 10) sol_rd = rc.remove_degen(antpos, sol) ants = [key for key in sol_rd.keys() if len(key) == 2] gainPols = np.array([ant[1] for ant in ants]) bl_pairs = [key for key in sol.keys() if len(key) == 3] visPols = np.array([[bl[2][0], bl[2][1]] for bl in bl_pairs]) bl_vecs = np.array([antpos[bl_pair[0]] - antpos[bl_pair[1]] for bl_pair in bl_pairs]) gainSols = np.array([sol_rd[ant] for ant in ants]) g, v = om.get_gains_and_vis_from_sol(sol_rd) meanSqAmplitude = np.mean([np.abs(g[key1] * g[key2]) for key1 in g.keys() for key2 in g.keys() if key1[1] == 'jxx' and key2[1] == 'jxx' and key1[0] != key2[0]], axis=0) np.testing.assert_almost_equal(meanSqAmplitude, 1, 10) meanSqAmplitude = np.mean([np.abs(g[key1] * g[key2]) for key1 in g.keys() for key2 in g.keys() if key1[1] == 'jyy' and key2[1] == 'jyy' and key1[0] != key2[0]], axis=0) np.testing.assert_almost_equal(meanSqAmplitude, 1, 10) #np.testing.assert_almost_equal(np.mean(np.angle(gainSols[gainPols=='jxx']), axis=0), 0, 10) #np.testing.assert_almost_equal(np.mean(np.angle(gainSols[gainPols=='jyy']), axis=0), 0, 10) for bls in reds: for bl in bls: ubl = sol_rd[bls[0]] self.assertEqual(ubl.shape, (1, len(freqs))) d_bl = d[bl] mdl = sol_rd[(bl[0], split_pol(bl[2])[0])] * sol_rd[(bl[1], split_pol(bl[2])[1])].conj() * ubl np.testing.assert_almost_equal(np.abs(d_bl), np.abs(mdl), 10) np.testing.assert_almost_equal(np.angle(d_bl * mdl.conj()), 0, 10) sol_rd = rc.remove_degen(antpos, sol, degen_sol=gains) g, v = om.get_gains_and_vis_from_sol(sol_rd) meanSqAmplitude = np.mean([np.abs(g[key1] * g[key2]) for key1 in g.keys() for key2 in g.keys() if key1[1] == 'jxx' and key2[1] == 'jxx' and key1[0] != key2[0]], axis=0) degenMeanSqAmplitude = np.mean([np.abs(gains[key1] * gains[key2]) for key1 in g.keys() for key2 in g.keys() if key1[1] == 'jxx' and key2[1] == 'jxx' and key1[0] != key2[0]], axis=0)
np.testing.assert_almost_equal(meanSqAmplitude, degenMeanSqAmplitude, 10)
numpy.testing.assert_almost_equal
""" This is used for rllib training purpose. """ from dispatch.location.models import Location from dispatch.plugins.kandbox_planner.planner_engine.naive_manual_planner_shared_jobs_in_slots import ( NaivePlannerJobsInSlots, ) from dispatch.plugins.kandbox_planner.util.kandbox_date_util import extract_minutes_from_datetime from dispatch.plugins.bases.kandbox_planner import ( KandboxEnvPlugin, KandboxPlannerPluginType, KandboxEnvProxyPlugin, ) from dispatch.plugins.kandbox_planner.rule.lunch_break import KandboxRulePluginLunchBreak from dispatch.plugins.kandbox_planner.rule.travel_time import KandboxRulePluginSufficientTravelTime from dispatch.plugins.kandbox_planner.rule.working_hour import KandboxRulePluginWithinWorkingHour from dispatch.plugins.kandbox_planner.rule.requested_skills import KandboxRulePluginRequestedSkills from dispatch.plugins.kandbox_planner.travel_time_plugin import HaversineTravelTime # from dispatch.plugins.kandbox_planner.routing.travel_time_routingpy_redis import RoutingPyRedisTravelTime from dispatch.config import ( REDIS_HOST, REDIS_PORT, REDIS_PASSWORD, NBR_OF_OBSERVED_WORKERS, MINUTES_PER_DAY, MAX_NBR_OF_JOBS_PER_DAY_WORKER, SCORING_FACTOR_STANDARD_TRAVEL_MINUTES, DATA_START_DAY, MIN_START_MINUTES_FROM_NOW, TESTING_MODE, ) from dispatch import config from dispatch.service.planner_models import SingleJobDropCheckOutput from dispatch.plugins.kandbox_planner.env.env_enums import ( EnvRunModeType, JobPlanningStatus, ) from dispatch.plugins.kandbox_planner.env.env_enums import * from dispatch.plugins.kandbox_planner.env.env_models import ( WorkingTimeSlot, LocationTuple, JobLocation, Worker, Job, BaseJob, Appointment, ActionDict, Absence, SingleJobCommitInternalOutput, ActionEvaluationScore, JobLocationBase ) import dataclasses import dispatch.config as kandbox_config import dispatch.plugins.kandbox_planner.util.kandbox_date_util as date_util # from dispatch.plugins.kandbox_planner.env.recommendation_server import RecommendationServer from dispatch.plugins.kandbox_planner.data_adapter.kafka_adapter import KafkaAdapter from dispatch.plugins.kandbox_planner.data_adapter.kplanner_db_adapter import KPlannerDBAdapter from dispatch.plugins.kandbox_planner.env.cache_only_slot_server import CacheOnlySlotServer from dispatch.plugins.kandbox_planner.env.working_time_slot import ( WorkingTimeSlotServer, MissingSlotException, ) from dispatch.config import PLANNER_SERVER_ROLE, MAX_MINUTES_PER_TECH import socket import logging from redis.exceptions import LockError import redis import pandas as pd import pprint import math import random import numpy as np import sys from itertools import combinations from typing import List import copy import time from datetime import datetime, timedelta import json from gym import spaces from ray.rllib.utils.spaces.repeated import Repeated # This version works on top of json input and produce json out # Observation: each worker has multiple working_time=days, then divided by slots, each slot with start and end time, # import holidays hostname = socket.gethostname() log = logging.getLogger("rllib_env_job2slot") # log.setLevel(logging.ERROR) # log.setLevel(logging.WARN) # log.setLevel(logging.DEBUG) RULE_PLUGIN_DICT = { "kandbox_rule_within_working_hour": KandboxRulePluginWithinWorkingHour, "kandbox_rule_sufficient_travel_time": KandboxRulePluginSufficientTravelTime, "kandbox_rule_requested_skills": KandboxRulePluginRequestedSkills, "kandbox_rule_lunch_break": KandboxRulePluginLunchBreak, # } def min_max_normalize(x, input_min, input_max): y = (x - input_min) / (input_max - input_min) return y class KPlannerJob2SlotEnv(KandboxEnvPlugin): """ Action should be compatible with GYM, then it should be either categorical or numerical. ActionDict can be converted.. New design of actions are: [ vector of worker1_prob, worker2_prob (for N workers), start_day_i, job_start_minutes, shared_worker_count (shared = 1..M) ] # Benefit of using start_minutes is that I can use start minutes to find insert job i # but it is bigger value space for algorithm to decide. """ title = "Kandbox Environment Job2Slot" slug = "kprl_env_job2slot" author = "Kandbox" author_url = "https://github.com/qiyangduan" description = "Env for GYM for RL." version = "0.1.0" metadata = {"render.modes": ["human"]} NBR_FEATURE_PER_SLOT = 24 NBR_FEATURE_PER_UNPLANNED_JOB = 12 NBR_FEATURE_OVERVIEW = 8 def __del__(self): try: del self.kp_data_adapter except: log.warn("rl_env: Error when releasing kp_data_adapter.") def __init__(self, config=None): # # each worker and job is a dataclass object, internally transformed # env_config = config kp_data_adapter = None reset_cache = False self.workers_dict = {} # Dictionary of all workers, indexed by worker_code self.workers = [] # List of Workers, pointing to same object in self.workers_dict self.jobs_dict = {} # Dictionary of of all jobs, indexed by job_code self.jobs = [] # List of Jobs self.locations_dict = {} # Dictionary of JobLocation, indexed by location_code self.changed_job_codes_set = set() self.trial_count = 0 # used only for GYM game online training process self.trial_step_count = 0 self.run_mode = EnvRunModeType.PREDICT self.unplanned_job_code_list = [] self.job_generation_count = 0 self.all_locations = [] self.current_job_code = None self.current_job_i = 0 self.total_assigned_job_duration = 0 self.nbr_inplanning = 0 self.expected_travel_time_so_far = 0 self.total_travel_time = 0 self.total_travel_worker_job_count = 0 self.kafka_input_window_offset = 0 self.kafka_slot_changes_offset = 0 self.unplanned_job_codes = [] # self.config["daily_overtime_minutes"] = [] self.national_holidays = [] # TODO, change it to set() @duan self.weekly_working_days_flag = [] # self.daily_weekday_sequence = [] # Replaced by self.env_encode_day_seq_to_weekday(day_seq) # 2020-11-09 04:41:16 Duan, changed from [] to {}, since this will keep growing and should be purged regularly self.daily_working_flag = {} self.internal_obs_slot_list = [] self.config = { # "data_start_day": "20200501", # "nbr_of_days_planning_window": 2, "planner_code": "rl_job2slot", "allow_overtime": False, "nbr_observed_slots": NBR_OF_OBSERVED_WORKERS, "minutes_per_day": MINUTES_PER_DAY, "max_nbr_of_jobs_per_day_worker": MAX_NBR_OF_JOBS_PER_DAY_WORKER, # in minutes, 100 - travel / 1000 as the score "scoring_factor_standard_travel_minutes": SCORING_FACTOR_STANDARD_TRAVEL_MINUTES, # Team.flex_form_data will be copied here in the env top level. # The env does NOT have flex_form_data anymore ... 2021-07-05 12:18:45 # "flex_form_data": { "holiday_days": "20210325", "weekly_rest_day": "0", "travel_speed_km_hour": 40, "travel_min_minutes": 10, "planning_working_days": 1, # }, } if env_config is None: log.error("error, no env_config is provided!") raise ValueError("No env_config is provided!") if "rules" not in env_config.keys(): rule_set = [] for rule_slug_config in env_config["rules_slug_config_list"]: rule_plugin = RULE_PLUGIN_DICT[rule_slug_config[0]](config=rule_slug_config[1]) rule_set.append(rule_plugin) self.rule_set = rule_set else: self.rule_set = env_config["rules"] env_config.pop("rules", None) for x in env_config.keys(): self.config[x] = env_config[x] # TODO, 2021-06-14 07:47:06 self.config["nbr_of_days_planning_window"] = int(self.config["nbr_of_days_planning_window"]) self.PLANNING_WINDOW_LENGTH = ( self.config["minutes_per_day"] * self.config["nbr_of_days_planning_window"] ) evaluate_RequestedSkills = KandboxRulePluginRequestedSkills() self.rule_set_worker_check = [evaluate_RequestedSkills] # , evaluate_RetainTech self.data_start_datetime = datetime.strptime( DATA_START_DAY, kandbox_config.KANDBOX_DATE_FORMAT ) if kp_data_adapter is None: log.info("env is creating db_adapter by itslef, not injected.") kp_data_adapter = KPlannerDBAdapter(team_id=self.config["team_id"]) else: log.error("INTERNAL:kp_data_adapter is not None for env.__init__") self.kp_data_adapter = kp_data_adapter if REDIS_PASSWORD == "": self.redis_conn = redis.Redis(host=REDIS_HOST, port=REDIS_PORT, password=None) else: self.redis_conn = redis.Redis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD) # This team_env_key uniquely identify this Env by starting date and team key. Multiple instances on different servers share same key. self.team_env_key = "env_{}_{}".format(self.config["org_code"], self.config["team_id"]) # env_inst_seq is numeric and unique inside the team_env_key, uniquely identify one instance on a shared Env self.env_inst_seq = self.redis_conn.incr(self.get_env_inst_counter_redis_key()) # env_inst_code is a code for an env Instance, which **globally**, uniquely identify one instance on a shared Env self.env_inst_code = "{}_{}_{}".format(self.team_env_key, self.env_inst_seq, hostname) self.parse_team_flex_form_config() SharingEfficiencyLogic = "1_1.0;2_1.6;3_2.1" self._reset_horizon_start_minutes() self.efficiency_dict = {} for day_eff in SharingEfficiencyLogic.split(";"): self.efficiency_dict[int(day_eff.split("_")[0])] = float(day_eff.split("_")[1]) self.kp_data_adapter.reload_data_from_db() if PLANNER_SERVER_ROLE == "trainer": self.kafka_server = KafkaAdapter( env=None, role=KafkaRoleType.FAKE, team_env_key=self.team_env_key ) self.slot_server = CacheOnlySlotServer(env=self, redis_conn=self.redis_conn) self.kafka_input_window_offset = 0 else: self.kafka_server = KafkaAdapter(env=self, role=KafkaRoleType.ENV_ADAPTER) self.slot_server = WorkingTimeSlotServer(env=self, redis_conn=self.redis_conn) self.kafka_input_window_offset = ( self.kp_data_adapter.get_team_env_window_latest_offset() ) self.config.update(self.kp_data_adapter.get_team_flex_form_data()) # self.recommendation_server = RecommendationServer(env=self, redis_conn=self.redis_conn) if "data_end_day" in self.config.keys(): log.error("data_end_day is not supported from config!") # I don't know why, self.kp_data_adapter loses this workers_dict_by_id after next call. # 2021-05-06 21:34:01 self.workers_dict_by_id = copy.deepcopy(self.kp_data_adapter.workers_dict_by_id) # self._reset_data() self.replay_env() log.info("replay_env is done, for training purpose") # To be compatible with GYM Environment self._set_spaces() log.info("__init__ done, reloaded data from db, env is ready, please call reset to start") # Temp fix self.naive_opti_slot = NaivePlannerJobsInSlots(env=self) self.env_bootup_datetime = datetime.now() def reset(self, shuffle_jobs=False): # print("env reset") self._reset_data() # self._reset_gym_appt_data() self.slot_server.reset() self.trial_count += 1 self.trial_step_count = 0 self.inplanning_job_count = sum( [1 if j.planning_status != JobPlanningStatus.UNPLANNED else 0 for j in self.jobs] ) self.current_job_i = 0 self.total_assigned_job_duration = 0 self.nbr_inplanning = 0 self.expected_travel_time_so_far = 0 self.total_travel_time = 0 self.total_travel_worker_job_count = 0 self.current_observed_worker_list = self._get_sorted_worker_code_list(self.current_job_i) self.current_appt_i = 0 self._move_to_next_unplanned_job() return self._get_observation() def _reset_gym_appt_data(self): self.appts = list(self.kp_data_adapter.appointment_db_dict.keys()) self.appt_scores = {} # Used for get_reward, only for gym training self.job_travel_time_sample_list_static = [ ( self._get_travel_time_2_job_indices(ji, (ji + 1) % len(self.jobs)) + self._get_travel_time_2_job_indices(ji, (ji + 2) % len(self.jobs)) + self._get_travel_time_2_job_indices(ji, (ji + 3) % len(self.jobs)) ) / 3 for ji in range(0, len(self.jobs)) ] self.total_travel_time_static = sum( [self._get_travel_time_2_job_indices(ji, ji + 1) for ji in range(0, len(self.jobs) - 1)] ) def normalize(self, x, data_type: str): if data_type == "duration": return min_max_normalize(x, 0, 300) elif data_type == "start_minutes": return min_max_normalize(x, 0, 1440 * self.config["nbr_of_days_planning_window"]) elif data_type == "day_minutes_1440": return min_max_normalize(x, 0, 1440 * 1) elif data_type == "longitude": return min_max_normalize( x, self.config["geo_longitude_min"], self.config["geo_longitude_max"] ) elif data_type == "latitude": return min_max_normalize( x, self.config["geo_latitude_min"], self.config["geo_latitude_max"] ) elif data_type == "max_nbr_shared_workers": return min_max_normalize(x, 0, 4) elif data_type == "max_job_in_slot": return min_max_normalize(x, 0, 10) else: # log.error(f"Unknow data_type = {data_type}") raise ValueError(f"Unknow data_type = {data_type}") return x def _reset_data(self): """It should be used only inside reset () Location (self.locations_dict) remain unchanged in this process. """ self.workers = self.load_transformed_workers() self.workers_dict = {} # Dictionary of dict self.permanent_pairs = set() # for ji, x in enumerate(self.workers): self.workers_dict[x.worker_code] = x x.worker_index = ji for ji, x in self.workers_dict.items(): if x.belongs_to_pair is not None: is_valid_pair = True for paired_code in x.belongs_to_pair: if paired_code not in self.workers_dict.keys(): log.error( f"WORKER:{paired_code}:PAIR_TO:{x.belongs_to_pair}: the paired worker is not found." ) is_valid_pair = False if not is_valid_pair: continue self.permanent_pairs.add(x.belongs_to_pair) for paired_code in x.belongs_to_pair: self.workers_dict[paired_code].belongs_to_pair = x.belongs_to_pair # This function also alters self.locations_dict self.jobs = self.load_transformed_jobs() if len(self.jobs) < 1: log.debug("No Jobs on initialized Env.") # This encoding includes appointments for now # TODO, sperate appointment out? 2020-11-06 14:28:59 self.jobs_dict = {} # Dictionary of dict for ji, job in enumerate(self.jobs): if job.job_code in kandbox_config.DEBUGGING_JOB_CODE_SET: log.debug(f"_reset_data: {job.job_code}") job.requested_duration_minutes = int(job.requested_duration_minutes) # This reset status and is for training. # job.planning_status = "U" self.jobs_dict[job.job_code] = job job.job_index = ji log.debug("env _reset_data finished") # This is a key to map job_code to its sorted set of all recommendations (RecommendedAction) def get_recommendation_job_key(self, job_code: str, action_day: int) -> str: if action_day < 0: return "{}/rec/{}".format(self.team_env_key, job_code) else: return "{}/rec/{}/{}".format(self.team_env_key, job_code, action_day) # This is a key to map a slot to all recommendations (RecommendedAction) which are using this slot def get_slot_2_recommendation_job_key(self, slot_code: str) -> str: return "{}/slot_rec/{}".format(self.team_env_key, slot_code) # This is a key to store latest offset on kafka ENV_WINDOW, which is already replayed. # This is different from database team.latest_env_kafka_offset since that's indicating latest offset in PG/Mysql DB. def get_env_window_replay_till_offset_key(self) -> str: return "{}/env/env_window_replay_till_offset".format(self.team_env_key) def get_env_out_kafka_offset_key(self) -> str: return "{}/env/env_out_till_offset".format(self.team_env_key) def get_env_window_replay_till_offset(self) -> int: return int(self.redis_conn.get(self.get_env_window_replay_till_offset_key())) def set_env_window_replay_till_offset(self, offset: int): return self.redis_conn.set(self.get_env_window_replay_till_offset_key(), offset) def get_env_inst_counter_redis_key(self) -> int: return "{}/env/counter".format(self.team_env_key) def get_env_config_redis_key(self) -> int: return "{}/env/config".format(self.team_env_key) def get_env_planning_day_redis_key(self) -> int: return "{}/env/planning_days".format(self.team_env_key) def get_env_replay_lock_redis_key(self) -> int: return "lock_env/{}".format(self.team_env_key) def get_recommened_locked_slots_by_job_code_redis_key(self, job_code: str) -> str: return "{}/env_lock/by_job/{}".format(self.team_env_key, job_code) def get_redis_key_commited_slot_lock(self, slot_code: str) -> str: return "{}/env_lock/after_commit_slot/{}".format(self.team_env_key, slot_code) def get_recommened_locked_slot_redis_key(self, slot_code: str) -> str: return "{}/env_lock/slot/{}".format(self.team_env_key, slot_code) def get_env_planning_horizon_start_minutes(self) -> int: # worker_id, start_minutes, end_minutes, slot_type, worker_id,start_minutes, end_minutes, slot_type if self.horizon_start_minutes is not None: return self.horizon_start_minutes return int((datetime.now() - self.data_start_datetime).total_seconds() / 60) def get_env_planning_horizon_end_minutes(self) -> int: # worker_id, start_minutes, end_minutes, slot_type, worker_id,start_minutes, end_minutes, slot_type return 1440 * ( int(self.config["nbr_of_days_planning_window"]) + int(self.get_env_planning_horizon_start_minutes() / 1440) ) def get_start_gps_for_worker_day(self, w: Worker, day_seq: int) -> LocationTuple: return w.weekly_start_gps[self.env_encode_day_seq_to_weekday(day_seq)] def get_end_gps_for_worker_day(self, w: Worker, day_seq: int) -> LocationTuple: return w.weekly_end_gps[self.env_encode_day_seq_to_weekday(day_seq)] def get_worker_available_overtime_minutes(self, worker_code: str, day_seq: int) -> int: worker = self.workers_dict[worker_code] available_overtime_list = [] for limit_days_key in worker.overtime_limits.keys(): if day_seq in limit_days_key: total_overtime = sum([worker.used_overtime_minutes[dsq] for dsq in limit_days_key]) available_overtime_list.append( worker.overtime_limits[limit_days_key] - total_overtime ) if len(available_overtime_list) < 1: return 0 available_overtime = min(available_overtime_list) return available_overtime def get_worker_floating_slots(self, worker_code: str, query_start_minutes: int) -> List: overlap_slots = self.slot_server.get_overlapped_slots( worker_id=worker_code, start_minutes=0, end_minutes=MAX_MINUTES_PER_TECH, ) floating_slots = [] for a_slot in overlap_slots: # if self.slot_server.get_time_slot_key(a_slot) in kandbox_config.DEBUGGING_SLOT_CODE_SET: log.debug("debug atomic_slot_delete_and_add_back") if (a_slot.slot_type == TimeSlotType.FLOATING) or ( a_slot.start_overtime_minutes + a_slot.end_overtime_minutes > 0 ): if a_slot.start_minutes - query_start_minutes < 0: continue # if worker_code == "MY|D|3|CT29": # print("pause") floating_slots.append( [ a_slot.start_minutes - query_start_minutes, a_slot.end_minutes - query_start_minutes, a_slot.start_overtime_minutes, a_slot.end_overtime_minutes, ] ) return floating_slots def env_encode_day_seq_to_weekday(self, day_seq: int) -> int: today_start_date = self.data_start_datetime + timedelta(days=day_seq) return (today_start_date.weekday() + 1) % 7 def env_encode_from_datetime_to_minutes(self, input_datetime: datetime) -> int: # worker_id, start_minutes, end_minutes, slot_type, worker_id,start_minutes, end_minutes, slot_type assigned_start_minutes = int( (input_datetime - self.data_start_datetime).total_seconds() / 60 ) return assigned_start_minutes def env_encode_from_datetime_to_day_with_validation(self, input_datetime: datetime) -> int: # worker_id, start_minutes, end_minutes, slot_type, worker_id,start_minutes, end_minutes, slot_type the_minutes = self.env_encode_from_datetime_to_minutes(input_datetime) if (the_minutes < self.get_env_planning_horizon_start_minutes()) or ( the_minutes >= self.get_env_planning_horizon_end_minutes() ): # I removed 10 seconds from end of window. raise ValueError("Out of Planning Window") return int(the_minutes / self.config["minutes_per_day"]) def env_decode_from_minutes_to_datetime(self, input_minutes: int) -> datetime: # worker_id, start_minutes, end_minutes, slot_type, worker_id,start_minutes, end_minutes, slot_type assigned_start_datetime = self.data_start_datetime + timedelta(minutes=input_minutes) return assigned_start_datetime def get_encode_shared_duration_by_planning_efficiency_factor( self, requested_duration_minutes: int, nbr_workers: int ) -> int: factor = self.efficiency_dict[nbr_workers] return int(requested_duration_minutes * factor / nbr_workers) def parse_team_flex_form_config(self): # TODO team.country_code # country_code = "CN" team.country_code # self.national_holidays = holidays.UnitedStates() # self.national_holidays = holidays.CountryHoliday('US') if self.config["holiday_days"] is not None: self.national_holidays = self.config["holiday_days"].split(";") else: self.national_holidays = [] if self.config["weekly_rest_day"] is not None: __split = str(self.config["weekly_rest_day"]).split(";") else: __split = [] self.weekly_working_days_flag = [True for _ in range(7)] for day_s in __split: self.weekly_working_days_flag[int(day_s)] = False # 1. Travel time formula is defined as GPS straight line distance *1.5/ (40 KM/Hour), minimum 10 minutes. Those numbers like 1.5, 40, 10 minutes, # self.config["travel_speed_km_hour"] = self.config["flex_form_data"]["travel_speed_km_hour"] # self.config["travel_min_minutes"] = self.config["flex_form_data"]["travel_min_minutes"] self.travel_router = HaversineTravelTime( travel_speed=self.config["travel_speed_km_hour"], min_minutes=self.config["travel_min_minutes"], ) # self.travel_router = RoutingPyRedisTravelTime( # travel_speed=self.config["travel_speed_km_hour"], # min_minutes=self.config["travel_min_minutes"], # redis_conn=self.redis_conn, travel_mode="car" # ) def reload_env_from_redis(self): # observation = self.reset(shuffle_jobs=False) self.mutate_refresh_planning_window_from_redis() self._reset_data() if len(self.workers) < 1: log.warn( "No workers in env, skipped loading slots. Maybe this is the first initialization?" ) return for absence_code in self.kp_data_adapter.absence_db_dict: # This one loads all data first. The env will decide to replay it or not depending on cache_server(redis) job = self.env_encode_single_absence(self.kp_data_adapter.absence_db_dict[absence_code]) absence_job = self.mutate_create_worker_absence(job, auto_replay=False) for job_code in self.kp_data_adapter.appointment_db_dict: # This one loads all data first. The env will decide to replay it or not depending on cache_server(redis) if job_code in kandbox_config.DEBUGGING_JOB_CODE_SET: log.debug(f"reload_env_from_redis: {job_code}") appt = self.env_encode_single_appointment( self.kp_data_adapter.appointment_db_dict[job_code] ) job = self.mutate_create_appointment(appt, auto_replay=False) self.slot_server.reload_from_redis_server() def mutate_replay_jobs_single_working_day(self, day_seq: int): for job_code in self.jobs_dict.keys(): this_job = self.jobs_dict[job_code] if this_job.planning_status == JobPlanningStatus.UNPLANNED: continue if (this_job.scheduled_start_minutes < day_seq * 1440) or ( this_job.scheduled_start_minutes > (day_seq + 1) * 1440 ): continue if this_job.job_code in kandbox_config.DEBUGGING_JOB_CODE_SET: log.debug("mutate_replay_jobs_single_working_day: DEBUGGING_JOB_CODE_SET ") action_dict = self.gen_action_dict_from_job(job=this_job, is_forced_action=True) info = self.mutate_update_job_by_action_dict( a_dict=action_dict, post_changes_flag=False ) if info.status_code != ActionScoringResultType.OK: log.error( f"Error in job replay , but it will continue. code= {job_code}, info: {info} " ) def replay_env_to_redis(self): # self.slot_server.reset() for key in self.redis_conn.scan_iter(f"{self.team_env_key}/s/*"): self.redis_conn.delete(key) observation = self.reset(shuffle_jobs=False) self.mutate_extend_planning_window() if len(self.jobs) < 1: log.error("No jobs in the env, len(self.jobs) < 1:") return # raise ValueError("No jobs in the env, len(self.jobs) < 1:") # we assume sequence of I P U sorted_jobs = sorted( self.jobs, key=lambda job__i_: (job__i_.planning_status, job__i_.job_code) ) self.jobs = sorted_jobs for ji, job___ in enumerate(self.jobs): self.jobs_dict[job___.job_code].job_index = ji self.run_mode = EnvRunModeType.REPLAY self.current_job_i = 0 # previous_observation = self._get_observation() for step_job_code in self.jobs_dict.keys(): this_job = self.jobs_dict[step_job_code] if this_job.job_code in kandbox_config.DEBUGGING_JOB_CODE_SET: log.debug( f"JOB:{this_job.job_code}:INDEX:{self.current_job_i}: replaying on pause: starting at {this_job.scheduled_start_minutes}." ) if ( this_job.scheduled_start_minutes < self.get_env_planning_horizon_start_minutes() ) or (this_job.scheduled_start_minutes > self.get_env_planning_horizon_end_minutes()): log.warn( f"JOB:{this_job.job_code}:INDEX:{self.current_job_i}: is out of horizon, starting at {this_job.scheduled_start_minutes} and therefore is skipped." ) self.current_job_i += 1 continue if self.current_job_i >= len(self.jobs): break if this_job.planning_status not in [ JobPlanningStatus.IN_PLANNING, JobPlanningStatus.PLANNED, JobPlanningStatus.COMPLETED, ]: log.info( f"Replayed until first U-status, self.current_job_i = {self.current_job_i} " ) break # return observation, -1, False, None # break if this_job.scheduled_duration_minutes < 1: log.error( f"JOB:{this_job.job_code}:scheduled_duration_minutes = {this_job.scheduled_duration_minutes} < 1 , not allowed, skipped from replay" ) self.current_job_i += 1 continue # action = self.gen_action_from_one_job(self.jobs[self.current_job_i]) # action_dict = self.decode_action_into_dict(action) # This should work for both appt and absence. action_dict = self.gen_action_dict_from_job(job=this_job, is_forced_action=True) info = self.mutate_update_job_by_action_dict( a_dict=action_dict, post_changes_flag=False ) if info.status_code != ActionScoringResultType.OK: print( f"Error game replay got error, but it will continue: job_code={this_job.job_code}, current_job_i: {self.current_job_i}, info: {info} " ) # TODO self.replay_worker_absence_to_redis() self.replay_appointment_to_redis() self.run_mode = EnvRunModeType.PREDICT def replay_appointment_to_redis(self): # local_loader.load_batch_local_appointment_TODO(env=self) for appt_code, value in self.kp_data_adapter.appointment_db_dict.items(): appt = self.env_encode_single_appointment(value) self.mutate_create_appointment(appt, auto_replay=True) self.recommendation_server.search_for_recommendations(job_code=appt.job_code) log.info(f"APPT:{appt.job_code}: SUCCESSFULLY replayed one appointment") def replay_worker_absence_to_redis(self): for absence_code in self.kp_data_adapter.absence_db_dict: job = self.env_encode_single_absence(self.kp_data_adapter.absence_db_dict[absence_code]) absence_job = self.mutate_create_worker_absence(job, auto_replay=True) def replay_env(self): global_env_config = self.redis_conn.get(self.get_env_config_redis_key()) if global_env_config is None: # This initialize the env dataset in redis for this envionrment. # all subsequent env replay_env should read from this . log.info("Trying to get lock over the env key to applying messages") with self.redis_conn.lock( self.get_env_replay_lock_redis_key(), timeout=60 * 10 ) as lock: self.redis_conn.set(self.get_env_config_redis_key(), json.dumps(self.config)) self.set_env_window_replay_till_offset(0) self.replay_env_to_redis() # code you want executed only after the lock has been acquired # lock.release() log.info("Done with redis lock to applying messages") else: self.reload_env_from_redis() # Catch up with recent messages on Kafka. Optional ? TODO self.mutate_check_env_window_n_replay() self._move_to_next_unplanned_job() obs = None # self._get_observation() reward = -1 done = False if obs is None: done = True info = {"message": f"Replay done"} return (obs, reward, done, info) # Is this timeout seconds? # TODO, replace two with locks by this unified locking def mutate_check_env_window_n_replay(self): # I need to lock it to protect kafka, generator not threadsafe. # ValueError: generator already executing # with lock: if PLANNER_SERVER_ROLE == "trainer": return self.kafka_server.consume_env_messages() def env_encode_single_worker(self, worker=None): assert type(worker) == dict, "Wrong type, it must be dict" if worker["worker_code"] in kandbox_config.DEBUGGING_JOB_CODE_SET: log.debug("env_encode_single_worker debug MY|D|3|CT07") # worker_week_day = (self.data_start_datetime.weekday() + 1) % 7 flex_form_data = worker["flex_form_data"].copy() # db_session = self.cnx # _workers = pd.read_sql( # db_session.query(Location).filter(Location.location_code == # worker['location_id']).statement, # db_session.bind, # ) # worker_info = _workers.set_index("id").to_dict(orient="index") # Here it makes planner respect initial travel time if self.config["respect_initial_travel"] == True: location_type = LocationType.JOB else: location_type = LocationType.HOME home_location = JobLocationBase( float(worker["geo_longitude"]), float(worker["geo_latitude"]), location_type, worker["location_code"] ) # working_minutes_array = flex_form_data["StartEndTime"].split(";") weekly_start_gps = [home_location for _ in range(7)] weekly_end_gps = [home_location for _ in range(7)] _weekly_working_slots = [None for _ in range(7)] week_day_i = 0 for week_day_code in [ "sunday", "monday", "tuesday", "wednesday", "thursday", "friday", "saturday", ]: # (week_day_i * 1440) + today_start_minutes = date_util.int_hhmm_to_minutes( int(worker["business_hour"][week_day_code][0]["open"]) if worker["business_hour"][week_day_code][0]["isOpen"] else 0 ) today_end_minutes = date_util.int_hhmm_to_minutes( int(worker["business_hour"][week_day_code][0]["close"]) if worker["business_hour"][week_day_code][0]["isOpen"] else 0 ) _weekly_working_slots[week_day_i] = ( today_start_minutes, today_end_minutes, ) week_day_i += 1 skills = { "skills": set(flex_form_data["skills"]), } # loc = LocationTuple(loc_t[0], loc_t[1], LocationType.HOME, f"worker_loc_{worker['id']}",) belongs_to_pair = None if "assistant_to" in flex_form_data.keys(): if flex_form_data["assistant_to"]: belongs_to_pair = ( flex_form_data["assistant_to"], worker["code"], ) if "is_assistant" not in flex_form_data.keys(): flex_form_data["is_assistant"] = False overtime_minutes = 0 if "max_overtime_minutes" in flex_form_data.keys(): overtime_minutes = int(float(flex_form_data["max_overtime_minutes"])) w_r = Worker( worker_id=worker["id"], worker_code=worker["code"], flex_form_data=flex_form_data, # "level= worker.flex_form_data["level"], skills=skills, # location=loc, # # TODO, @duan, only 1 slot per day? 2020-11-17 15:36:00 # 6 times for _ in range(len(k_worker['result'])) weekly_working_slots=_weekly_working_slots, weekly_start_gps=weekly_start_gps, weekly_end_gps=weekly_end_gps, linear_working_slots=[], # 6 times for _ in range(len(k_worker['result'])) # linear_daily_start_gps=daily_start_gps, # linear_daily_end_gps=daily_end_gps, historical_job_location_distribution=worker["job_history_feature_data"], worker_index=worker["id"], belongs_to_pair=belongs_to_pair, is_active=worker["is_active"], daily_max_overtime_minutes=overtime_minutes, weekly_max_overtime_minutes=60 * 10, overtime_limits={}, used_overtime_minutes={}, ) return w_r def load_transformed_workers(self): # start_date = self.data_start_datetime w = [] # w_dict = {} # # index = 0 for wk, worker in self.kp_data_adapter.workers_db_dict.items(): active_int = 1 if worker["is_active"] else 0 if active_int != 1: print( "worker {} is not active, maybe it shoud be skipped from loading? ", worker.id, ) # TODO # included for now , since maybe job on it? continue # worker_dict = worker.__dict__ # if type(worker_dict["location"]) != dict: # worker_dict["location"] = worker.location.__dict__ w_r = self.env_encode_single_worker(worker) w.append(w_r) # w_dict[w_r.worker_code] = index # index += 1 sorted_workers = sorted(w, key=lambda x: x.worker_code) return sorted_workers def env_encode_single_appointment(self, appointment=None): assigned_start_minutes = self.env_encode_from_datetime_to_minutes( appointment["scheduled_start_datetime"] ) job_form = appointment["flex_form_data"] try: abs_location = self.locations_dict[appointment["location_code"]] except: included_job_code = appointment["included_job_codes"][0] if included_job_code not in self.jobs_dict.keys(): log.error( f"{appointment['appointment_code']}: I failed to find the job by code= {included_job_code}, and then failed to find the Location. Skipped this appointment" ) # return # abs_location = None # TODO? else: abs_location = self.jobs_dict[included_job_code].location requested_skills = {} scheduled_worker_codes = [] for jc in job_form["included_job_codes"]: if jc not in self.jobs_dict.keys(): log.error( f"missing included_job_codes, appointment_code= {appointment['appointment_code']}, job_code={jc} " ) return None if self.jobs_dict[jc].planning_status != JobPlanningStatus.UNPLANNED: # Keep last one for now scheduled_worker_codes = self.jobs_dict[jc].scheduled_worker_codes if len(scheduled_worker_codes) < 1: # log.debug( f"APPT:{appointment['appointment_code']}:Only u status in appt? I will take requested. " ) scheduled_worker_codes.append(self.jobs_dict[jc].requested_primary_worker_code) requested_day_minutes = int(assigned_start_minutes / 1440) * 1440 appt_job = Job( job_code=appointment["appointment_code"], job_id=-1, job_index=appointment["id"], job_type=JobType.APPOINTMENT, job_schedule_type=JobScheduleType.FIXED_SCHEDULE, # job_seq: 89, job['job_code'] planning_status=JobPlanningStatus.PLANNED, location=abs_location, requested_skills=requested_skills, # scheduled_worker_codes=scheduled_worker_codes, scheduled_start_minutes=assigned_start_minutes, scheduled_duration_minutes=appointment["scheduled_duration_minutes"], # requested_start_min_minutes=(job_form["ToleranceLower"] * 1440) + requested_day_minutes, requested_start_max_minutes=(job_form["ToleranceUpper"] * 1440) + requested_day_minutes, requested_start_minutes=requested_day_minutes, requested_time_slots=[], # job["requested_time_slots"] # requested_primary_worker_code=requested_primary_worker_code, requested_duration_minutes=appointment["scheduled_duration_minutes"], flex_form_data=job_form, included_job_codes=job_form["included_job_codes"], new_job_codes=[], searching_worker_candidates=[], appointment_status=job_form["appointment_status"], # is_active=True, is_auto_planning=False, ) self.set_searching_worker_candidates(appt_job) return appt_job def load_transformed_appointments(self): a = [] a_dict = {} # index = 0 for _, appointment in self.kp_data_adapter.appointments_db_dict.items(): a_r = self.env_encode_single_appointment(appointment) a.append(a_r) a_dict[a_r.appointment_code] = index index += 1 return a def _convert_availability_slot(self, x_str, prev_available_slots): orig_slot = x_str.split(";") the_result = [] # copy.copy(prev_available_slots) for slot in orig_slot: if (slot is None) or len(slot) < 1: continue start_time = datetime.strptime( slot.split("_")[0], kandbox_config.KANDBOX_DATETIME_FORMAT_GTS_SLOT ) end_time = datetime.strptime( slot.split("_")[1], kandbox_config.KANDBOX_DATETIME_FORMAT_GTS_SLOT ) start_minutes = self.env_encode_from_datetime_to_minutes(start_time) end_minutes = self.env_encode_from_datetime_to_minutes(end_time) the_result.append((start_minutes, end_minutes)) # if len(prev_available_slots) < 1: # TODO, i take new one simply as Last Known. Is it Right? 2021-02-20 10:01:44 return the_result # prev_tree= IntervalTree.from_tuples(prev_available_slots) # curr_tree = IntervalTree.from_tuples(the_result) # new_result = [(s[0], s[1]) for s in list(prev_tree)] # return new_result def _convert_lists_to_slots(self, input_list: list, job): orig_loc = self.locations_dict[job["location_code"]] CONSTANT_JOB_LOCATION = JobLocationBase( geo_longitude=orig_loc.geo_longitude, geo_latitude=orig_loc.geo_latitude, location_type=LocationType.HOME, location_code=orig_loc.location_code, # historical_serving_worker_distribution=None, # avg_actual_start_minutes=0, # avg_days_delay=0, # stddev_days_delay=0, # available_slots=tuple(), # list of [start,end] in linear scale # rejected_slots=job["rejected_slots"], ) job_available_slots = [] for slot in sorted(list(input_list), key=lambda x: x[0]): wts = WorkingTimeSlot( slot_type=TimeSlotType.FLOATING, start_minutes=slot[0], end_minutes=slot[1], prev_slot_code=None, next_slot_code=None, start_location=CONSTANT_JOB_LOCATION, end_location=CONSTANT_JOB_LOCATION, worker_id="_", available_free_minutes=0, assigned_job_codes=[], ) job_available_slots.append(wts) return job_available_slots def env_encode_single_job(self, job: dict) -> Job: # from db dict object to dataclass object if job is None: log.error("env_encode_single_job: job is None") return if job["code"] in kandbox_config.DEBUGGING_JOB_CODE_SET: log.debug(f"debug {kandbox_config.DEBUGGING_JOB_CODE_SET}") flex_form_data = job["flex_form_data"] if pd.isnull(job["requested_start_datetime"]): log.error("requested_start_datetime is null, not allowed") return None if pd.isnull(job["requested_duration_minutes"]): log.error("requested_duration_minutes is null, not allowed") return None assigned_start_minutes = 0 if job["planning_status"] in (JobPlanningStatus.PLANNED, JobPlanningStatus.IN_PLANNING): try: assigned_start_minutes = int( (job["scheduled_start_datetime"] - self.data_start_datetime).total_seconds() / 60 ) except ValueError as ve: log.error(f"Data error: failed to convert scheduled_start_datetime, job = {job}") return None requested_start_minutes = int( (job["requested_start_datetime"] - self.data_start_datetime).total_seconds() / 60 ) min_minutes = requested_start_minutes max_minutes = requested_start_minutes if "tolerance_start_minutes" in flex_form_data.keys(): min_minutes = requested_start_minutes + (flex_form_data["tolerance_start_minutes"]) if "tolerance_end_minutes" in flex_form_data.keys(): max_minutes = requested_start_minutes + (flex_form_data["tolerance_end_minutes"]) assigned_start_minutes = 0 if job["planning_status"] in (JobPlanningStatus.PLANNED, JobPlanningStatus.IN_PLANNING): assigned_start_minutes = int( (job["scheduled_start_datetime"] - self.data_start_datetime).total_seconds() / 60 ) historical_serving_worker_distribution = None if "job_history_feature_data" in job.keys(): if "historical_serving_worker_distribution" in job["job_history_feature_data"].keys(): historical_serving_worker_distribution = job["job_history_feature_data"][ "historical_serving_worker_distribution" ] if "requested_primary_worker_code" not in job.keys(): log.debug("No request primary code") if historical_serving_worker_distribution is None: historical_serving_worker_distribution = {job["requested_primary_worker_code"]: 1} if job["location_code"] not in self.locations_dict.keys(): job_location = JobLocation( geo_longitude=job["geo_longitude"], geo_latitude=job["geo_latitude"], location_type=LocationType.JOB, location_code=job["location_code"], historical_serving_worker_distribution=historical_serving_worker_distribution, avg_actual_start_minutes=0, avg_days_delay=0, stddev_days_delay=0, # rejected_slots=job["rejected_slots"], ) self.locations_dict[job_location.location_code] = job_location else: job_location = self.locations_dict[job["location_code"]] # if job_location.geo_longitude < 0: # log.warn( # f"Job {job['code']} has invalid location : {job_location.location_code} with geo_longitude = {job_location.geo_longitude}" # ) # prev_available_slots = [ # (s.start_minutes, s.end_minutes) for s in job_location.available_slots # ] net_avail_slots = [ [ self.get_env_planning_horizon_start_minutes(), self.get_env_planning_horizon_end_minutes(), ] ] # TODO duan, change job_location from tuple to dataclass. # job_location.available_slots.clear() job_available_slots = self._convert_lists_to_slots(net_avail_slots, job) # job_location.available_slots = sorted(list(net_avail_slots), key=lambda x: x[0]) if "requested_skills" in flex_form_data.keys(): requested_skills = { "skills": set(flex_form_data["requested_skills"]), } else: requested_skills = set() log.error(f"job({job['code']}) has no requested_skills") the_final_status_type = job["planning_status"] is_appointment_confirmed = False # if job_schedule_type == JobScheduleType.FIXED_SCHEDULE: # is_appointment_confirmed = True primary_workers = [] if not pd.isnull(job["scheduled_primary_worker_id"]): primary_workers.append( self.workers_dict_by_id[job["scheduled_primary_worker_id"]]["code"] ) final_job = Job( job_code=job["code"], job_id=job["id"], job_index=0, job_type=job["job_type"], # JobType.JOB, job_schedule_type=JobScheduleType.NORMAL, planning_status=the_final_status_type, location=job_location, requested_skills=requested_skills, # TODO # scheduled_worker_codes=primary_workers + job["scheduled_secondary_worker_codes"], scheduled_start_minutes=assigned_start_minutes, scheduled_duration_minutes=job["scheduled_duration_minutes"], # requested_start_min_minutes=min_minutes, requested_start_max_minutes=max_minutes, requested_start_minutes=requested_start_minutes, requested_time_slots=[[0, 0]], requested_primary_worker_code=job["requested_primary_worker_code"], requested_duration_minutes=job["requested_duration_minutes"], # available_slots=job_available_slots, flex_form_data=flex_form_data, searching_worker_candidates=[], included_job_codes=flex_form_data["included_job_codes"], new_job_codes=[], appointment_status=AppointmentStatus.NOT_APPOINTMENT, # is_active=job["is_active"], is_appointment_confirmed=is_appointment_confirmed, is_auto_planning=job["auto_planning"], ) self.set_searching_worker_candidates(final_job) # TODO, @xingtong. return final_job def load_transformed_jobs(self): # TODO , need data_window # This function also alters self.locations_dict # w = [] for k, row_dict in self.kp_data_adapter.jobs_db_dict.items(): if row_dict["code"] in kandbox_config.DEBUGGING_JOB_CODE_SET: log.debug( f"load_transformed_jobs Debug {str(kandbox_config.DEBUGGING_JOB_CODE_SET)} " ) if pd.isnull(row_dict["requested_primary_worker_id"]): continue job = self.env_encode_single_job(job=row_dict) if job is not None: w.append(job) return w def env_encode_single_absence(self, job: dict) -> Absence: assigned_start_minutes = int( (job["scheduled_start_datetime"] - self.data_start_datetime).total_seconds() / 60 ) scheduled_primary_worker_code = job["code"] job_code = job["absence_code"] abs_location = LocationTuple( geo_longitude=job["geo_longitude"], geo_latitude=job["geo_latitude"], location_type=LocationType.HOME, location_code=f"evt_loc_{job_code}", ) # loc = LocationTuple(loc_t[0], loc_t[1], LocationType.HOME, f"worker_loc_{worker['id']}",) return Absence( job_code=job_code, job_id=job["id"], job_index=0, job_type=JobType.ABSENCE, job_schedule_type=JobScheduleType.FIXED_SCHEDULE, # job_seq: 89, job['job_code'] "FS" planning_status=JobPlanningStatus.PLANNED, location=abs_location, requested_skills={}, # TODO # scheduled_worker_codes=[scheduled_primary_worker_code], scheduled_start_minutes=assigned_start_minutes, scheduled_duration_minutes=job["scheduled_duration_minutes"], # requested_start_min_minutes=0, requested_start_max_minutes=0, requested_start_minutes=0, requested_time_slots=[], # requested_primary_worker_code=scheduled_primary_worker_code, # requested_start_datetime=assigned_start_minutes, # No day, no minutes requested_duration_minutes=job["scheduled_duration_minutes"], # TODO remove plural?) searching_worker_candidates=[], included_job_codes=[], new_job_codes=[], available_slots=[], appointment_status=AppointmentStatus.NOT_APPOINTMENT, # is_active=True, is_replayed=False, is_auto_planning=False, flex_form_data=job["flex_form_data"], ) def set_current_job_i(self, job_code): self.current_job_i = self.jobs_dict[job_code].job_index def decode_single_job_to_solution(self, job: BaseJob): # _for_training all_worker_ids = [ self.workers_dict[wcode].worker_id for wcode in job.scheduled_worker_codes ] new_job = { "id": self.jobs_dict[job.job_code].job_id, "code": job.job_code, "planning_status": job.planning_status, "scheduled_start_datetime": None, "scheduled_duration_minutes": job.scheduled_duration_minutes, # TODO remove plural "scheduled_primary_worker_id": all_worker_ids[0], "scheduled_secondary_worker_ids": all_worker_ids[1:], } if job.planning_status != JobPlanningStatus.UNPLANNED: new_job["scheduled_start_datetime"] = self.env_decode_from_minutes_to_datetime( job.scheduled_start_minutes ) return new_job def get_solution_dataset(self, query_start_datetime, query_end_datetime): workers_dimensions = [ "index", "skills", "max_conflict_level", "worker_code", "geo_longitude", "geo_latitude", "weekly_working_minutes", "selected_flag", "worker_code", ] jobs_dimensions = [ "scheduled_worker_index", "scheduled_start_datetime", # _js "scheduled_end_datetime", # _js datetime in javascript MilliSecond. "job_code", "job_type", "scheduled_travel_minutes_before", "scheduled_travel_prev_code", "conflict_level", "scheduled_primary_worker_id", "geo_longitude", "geo_latitude", "changed_flag", "prev_geo_longitude", "prev_geo_latitude", "prev_location_type", ] planned_jobs_list = [] all_jobs_in_env_list = [] print( datetime.now(), "worker_job_dataset_json: Started transforming to dataset for web json... ", ) workers_start_end_dict = {} workers_dict = {} workers_list = [] # linear_free_slot = [[510, 610], [720, 840], [1440, 1640], [1840, 1940]] query_start_minutes = self.env_encode_from_datetime_to_minutes(query_start_datetime) for index, w in enumerate(self.workers): linear_free_slot = self.get_worker_floating_slots( worker_code=w.worker_code, query_start_minutes=query_start_minutes ) report_string_dict = copy.deepcopy(w.skills) report_string_dict["pair"] = w.belongs_to_pair worker1 = { "index": index, "skills": str(report_string_dict), # list(w.skills["product_code"]), # w["skills"], pprint.pformat( "max_conflict_level": 1, "worker_code": w.worker_code, "geo_longitude": 0, # w.location[0], "geo_latitude": 0, # w.location[1], "weekly_working_minutes": linear_free_slot, # w.linear_working_slots, "selected_flag": 0 if w.belongs_to_pair is None else 1, "worker_code": w.worker_code, } workers_dict[w.worker_code] = worker1 workers_list.append(worker1) new_df = pd.DataFrame(workers_list) # TODO , async warm up env df_count = new_df.count().max() if (pd.isnull(df_count)) or (df_count < 1): return { "workers_dimensions": workers_dimensions, "workers_data": [], "jobs_dimensions": jobs_dimensions, "planned_jobs_data": [], "all_jobs_in_env": [], # all_jobs_in_env "start_time": query_start_datetime.isoformat(), "end_time": query_end_datetime.isoformat(), # TODO: worker_time [[day_start, day_end], [day_start, day_end]], office_hours{[day_start, day_end, day_start, day_end, ...] }. } # # new_df.columns workers_data = new_df[workers_dimensions].values.tolist() jobs_json = self.get_solution_json(query_start_datetime, query_end_datetime) for index, j in enumerate(jobs_json): if j["job_code"] in kandbox_config.DEBUGGING_JOB_CODE_SET: print(f"pause for debugging {kandbox_config.DEBUGGING_JOB_CODE_SET }") if j["planning_status"] in [JobPlanningStatus.UNPLANNED]: j["scheduled_primary_worker_id"] = workers_data[0][3] if (j["scheduled_duration_minutes"] is None) or ( np.isnan(j["scheduled_duration_minutes"]) ): j["scheduled_duration_minutes"] = j["requested_duration_minutes"] j["scheduled_duration_minutes"] = 1 j["scheduled_start_minutes"] = 0 else: if j["scheduled_primary_worker_id"] not in workers_dict.keys(): # continue print( "Internal error, j['scheduled_primary_worker_id'] not in workers_dict.keys(): " ) # if workers_dict[curr_worker]['nbr_conflicts'] < conflict_level: # workers_dict[curr_worker]['nbr_conflicts'] = conflict_level scheduled_start_datetime = self.data_start_datetime + timedelta( minutes=j["scheduled_start_minutes"] ) scheduled_end_datetime = scheduled_start_datetime + timedelta( minutes=j["scheduled_duration_minutes"] ) scheduled_start_datetime_js = int( time.mktime(scheduled_start_datetime.timetuple()) * 1000 ) if "requested_start_datetime" not in j.keys(): j["requested_start_datetime"] = self.env_decode_from_minutes_to_datetime( (j["requested_start_min_minutes"] + j["requested_start_max_minutes"]) / 2 ) # j["requested_duration_minutes"] = j["requested_primary_worker_id"] = j["requested_primary_worker_code"] scheduled_end_datetime_js = int(time.mktime(scheduled_end_datetime.timetuple()) * 1000) # TODO 2020-10-17 21:59:03 if pd.isnull(j["scheduled_primary_worker_id"]): print("debug: j - scheduled_primary_worker_id is nan, please debug later.") continue if pd.isnull(j["scheduled_primary_worker_id"]): print("debug: j - scheduled_primary_worker_id is nan, please debug later.") continue if "job_id" not in j.keys(): print("debug") j["requested_primary_worker_id"] = j["scheduled_primary_worker_id"] j["changed_flag"] = False pass plot_job_type = ( f"{j['job_type']}" if j["job_type"] in {JobType.APPOINTMENT, JobType.ABSENCE} else f"{j['planning_status']}" # f"{j['job_schedule_type']}" ) # print(f"{j['job_code']} = {plot_job_type}") if j["planning_status"] in (JobPlanningStatus.UNPLANNED): j["scheduled_worker_codes"] = [j["requested_primary_worker_code"]] new_job = { "job_code": j["job_code"], "job_type": "{}_1_2_3_4_{}".format(plot_job_type, j["scheduled_share_status"]), "requested_primary_worker_id": j["requested_primary_worker_code"], "requested_start_datetime": j[ "requested_start_datetime" ].isoformat(), # requested_start_datetime_js, "requested_duration_minutes": j["requested_duration_minutes"], "scheduled_primary_worker_id": self.workers_dict[ j["scheduled_worker_codes"][0] ].worker_id, "scheduled_worker_codes": j["scheduled_worker_codes"], "scheduled_worker_index": workers_dict[j["scheduled_primary_worker_id"]]["index"], # https://stackoverflow.com/questions/455580/json-datetime-between-python-and-javascript "scheduled_start_datetime_js": scheduled_start_datetime_js, # scheduled_start_datetime.isoformat(), "scheduled_end_datetime_js": scheduled_end_datetime_js, # scheduled_end_datetime.isoformat(), "scheduled_start_datetime": scheduled_start_datetime.isoformat(), "scheduled_end_datetime": scheduled_end_datetime.isoformat(), # "scheduled_start_minutes": j["scheduled_start_minutes"], "scheduled_duration_minutes": j["scheduled_duration_minutes"], "planning_status": j["planning_status"], "conflict_level": 0, # j["conflict_level"], "scheduled_travel_minutes_after": 0, # j["scheduled_travel_minutes_after"], "scheduled_travel_minutes_before": j["scheduled_travel_minutes_before"], "scheduled_travel_prev_code": j["scheduled_travel_prev_code"], "geo_longitude": j["location"].geo_longitude, "geo_latitude": j["location"].geo_latitude, "changed_flag": j["is_changed"], "prev_geo_longitude": 0, "prev_geo_latitude": 0, "prev_location_type": "J", } if j["scheduled_share_status"] != "S": # add only those P, N. all_jobs_in_env_list.append(new_job) else: new_job["job_code"] = "{}_S_{}".format( j["job_code"], j["scheduled_primary_worker_id"] ) if j["planning_status"] not in [JobPlanningStatus.UNPLANNED]: # 'I', 'P', 'C' new_job["prev_geo_longitude"] = j["prev_geo_longitude"] new_job["prev_geo_latitude"] = j["prev_geo_latitude"] new_job["prev_location_type"] = j["prev_location_type"] planned_jobs_list.append(new_job) planned_jobs_data = [] all_jobs_in_env = all_jobs_in_env_list # is_NaN = all_jobs_in_env_df.isnull() # row_has_NaN = is_NaN.any(axis=1) # rows_with_NaN = all_jobs_in_env_df[row_has_NaN] if len(planned_jobs_list) > 0: new_planned_job_df = pd.DataFrame(planned_jobs_list).fillna(0) planned_jobs_data = new_planned_job_df[jobs_dimensions].values.tolist() all_jobs_in_env_df = pd.DataFrame(all_jobs_in_env).fillna(0) # /Users/qiyangduan/temp/nlns_env/lib/python3.7/site-packages/pandas/core/frame.py:1490: FutureWarning: Using short name for 'orient' is deprecated. Only the options: ('dict', list, 'series', 'split', 'records', 'index') # all_jobs_in_env = all_jobs_in_env_df.to_dict(orient="record") all_jobs_in_env = all_jobs_in_env_df.to_dict("record") print(datetime.now(), "worker_job_dataset_json: Finished.") # https://echarts.apache.org/en/option.html#series-custom.dimensions # echarts might infer type as number. # jobs_dimensions[3]= {"name": 'job_code', "type": 'ordinal'} return { "workers_dimensions": workers_dimensions, "workers_data": workers_data, "jobs_dimensions": jobs_dimensions, "planned_jobs_data": planned_jobs_data, "all_jobs_in_env": all_jobs_in_env, # all_jobs_in_env, "start_time": query_start_datetime.isoformat(), "end_time": query_end_datetime.isoformat(), # TODO: worker_time [[day_start, day_end], [day_start, day_end]], office_hours{[day_start, day_end, day_start, day_end, ...] }. } def get_solution_json(self, query_start_datetime, query_end_datetime): query_start_minutes = self.env_encode_from_datetime_to_minutes(query_start_datetime) query_end_minutes = self.env_encode_from_datetime_to_minutes(query_end_datetime) job_solution = [] inplanning_job_index_set = set() shared_prev_jobs = {} sorted_slot_codes = sorted(list(self.slot_server.time_slot_dict.keys())) slot_dict = self.slot_server.time_slot_dict # for worker_code in self.workers_dict.keys(): pre_job_code = "__HOME" prev_slot = None # In this loop, it first collects Only all (I/P) in/planned jobs, which are available from working time slots current_worker_id = "NOT_EXIST" for slot_code in sorted_slot_codes: # for work_time_i in range(len( self.workers_dict[worker_code]['assigned_jobs'] ) ): # nth assigned job time unit. if slot_code in kandbox_config.DEBUGGING_SLOT_CODE_SET: log.debug("debug atomic_slot_delete_and_add_back") # for assigned_job in self.workers_dict[worker_code]["assigned_jobs"]: # for day_i in range(self.config["nbr_of_days_planning_window"]): # a_slot = slot_dict[slot_code] # I Loop through all # if a_slot.slot_type in (TimeSlotType.JOB_FIXED, TimeSlotType.FLOATING): try: a_slot = self.slot_server.get_slot(self.redis_conn.pipeline(), slot_code) the_assigned_codes = sorted( a_slot.assigned_job_codes, key=lambda jc: self.jobs_dict[jc].scheduled_start_minutes, ) except KeyError as ke: log.error( f"unknown worker code, or unknown job codes to the env. slot_code = {slot_code}, error = {str(ke)}" ) print(ke) continue if a_slot.worker_id != current_worker_id: current_start_loc = a_slot.start_location elif (a_slot.slot_type == TimeSlotType.FLOATING) or (a_slot.prev_slot_code is None): current_start_loc = a_slot.start_location current_worker_id = a_slot.worker_id for assigned_index, assigned_job_code in enumerate(the_assigned_codes): assigned_job = self.jobs_dict[assigned_job_code] if assigned_job.job_code in kandbox_config.DEBUGGING_JOB_CODE_SET: print(f"pause for debugging {kandbox_config.DEBUGGING_JOB_CODE_SET }") if ( assigned_job.scheduled_start_minutes + assigned_job.scheduled_duration_minutes < query_start_minutes ) | (assigned_job.scheduled_start_minutes > query_end_minutes): log.warn( f"Should be error.In slot but Solution skipped job_code={assigned_job.job_code}, minutes = {query_start_minutes} not in {query_start_minutes} -- {query_end_minutes}" ) continue if len(assigned_job.scheduled_worker_codes) < 1: log.warn( "Internal BUG, why a job from assigned_jobs has no assigned_workers, but?" ) continue prev_travel_minutes = self.travel_router.get_travel_minutes_2locations( current_start_loc, assigned_job.location, ) # Only single worker jobs are collected in this loop. assigned_job_dict = dataclasses.asdict(assigned_job) # .copy().as_dict() assigned_job_dict[ "requested_start_datetime" ] = self.env_decode_from_minutes_to_datetime( assigned_job.requested_start_min_minutes ) if len(assigned_job.scheduled_worker_codes) == 1: # changed flag is moved to step() assigned_job_dict["scheduled_share_status"] = "N" elif len(assigned_job.scheduled_worker_codes) > 1: try: if assigned_job.scheduled_worker_codes.index(a_slot.worker_id) == 0: assigned_job_dict["scheduled_share_status"] = "P" else: assigned_job_dict["scheduled_share_status"] = "S" except ValueError as ve: log.error(f"Failed to find worker status, job = {assigned_job_dict}") print(ve) continue else: log.error(f"Lost assigned worker ID, job = {assigned_job_dict}") continue # assigned_job["requested_start_day"] = assigned_job["requested_start_day"] assigned_job_dict["scheduled_primary_worker_id"] = a_slot.worker_id assigned_job_dict["scheduled_travel_prev_code"] = pre_job_code assigned_job_dict["scheduled_travel_minutes_before"] = prev_travel_minutes assigned_job_dict["prev_geo_longitude"] = current_start_loc[0] # .geo_longitude assigned_job_dict["prev_geo_latitude"] = current_start_loc[1] # .geo_latitude assigned_job_dict["prev_location_type"] = current_start_loc[2] # .geo_latitude current_start_loc = assigned_job.location if a_slot.next_slot_code is not None: # End of original daily working hour pre_job_code = assigned_job_code else: pre_job_code = "__HOME" job_solution.append(assigned_job_dict) inplanning_job_index_set.add(assigned_job_code) if len(assigned_job_dict["scheduled_worker_codes"]) > 1: for worker_code in assigned_job_dict["scheduled_worker_codes"]: shared_prev_jobs[(worker_code, assigned_job_code)] = pre_job_code pre_job_code = assigned_job.job_code # In this loop, it collects Only U-planned jobs, which are not available from working time slots for job_code, new_job in self.jobs_dict.items(): if new_job.job_code in kandbox_config.DEBUGGING_JOB_CODE_SET: print(f"pause for debugging {kandbox_config.DEBUGGING_JOB_CODE_SET }") if job_code in inplanning_job_index_set: continue if not new_job.is_active: # events and appt can not be U anyway log.warn(f"job={ job_code} is skipped from solution because is_active == False") continue if new_job.planning_status != JobPlanningStatus.UNPLANNED: # Not available in slot, a problem to investigate if ( new_job.scheduled_start_minutes + new_job.scheduled_duration_minutes < query_start_minutes ) | (new_job.scheduled_start_minutes > query_end_minutes): # log.debug( # f"solution skipped job_code={assigned_job.job_code}, minutes = {query_start_minutes} not in {query_start_minutes} -- {query_end_minutes}" # ) continue log.error(f"job={job_code} is in planning, but not in inplanning_job_index_set") continue new_job_dict = dataclasses.asdict(new_job) try: # TODO, not necesasary 2020-10-27 15:55:09 # new_job_dict["scheduled_start_minutes"] = self.jobs[job_index]["requested_start_minutes"] # new_job_dict["scheduled_start_day"] = self.jobs[job_index]["requested_start_day"] new_job_dict["scheduled_duration_minutes"] = new_job.requested_duration_minutes new_job_dict["scheduled_primary_worker_id"] = new_job.requested_primary_worker_code except: # TODO, duan, 2020-10-20 16:20:36 , why? print("debug duan todo, appointment why?") continue new_job_dict["scheduled_start_datetime"] = self.env_decode_from_minutes_to_datetime( new_job_dict["scheduled_start_minutes"] ) new_job_dict["scheduled_share_status"] = "N" new_job_dict["scheduled_travel_prev_code"] = "__HOME" new_job_dict["scheduled_travel_minutes_before"] = 0 job_solution.append(new_job_dict) return job_solution def get_planner_score_stats(self, include_slot_details=False): assigned_job_stats = {} inplanning_job_index_set = set() shared_prev_jobs = {} total_travel_minutes = 0 sorted_slot_codes = sorted(list(self.slot_server.time_slot_dict.keys())) pre_job_code = "__HOME" prev_slot = None current_worker_id = "NOT_EXIST" slot_details = {} # In this loop, it first collects Only all (I/P) in/planned jobs, which are available from working time slots for slot_code in sorted_slot_codes: # for work_time_i in range(len( self.workers_dict[worker_code]['assigned_jobs'] ) ): # nth assigned job time unit. if slot_code in kandbox_config.DEBUGGING_SLOT_CODE_SET: log.debug("debug atomic_slot_delete_and_add_back") try: a_slot = self.slot_server.get_slot(self.redis_conn.pipeline(), slot_code) the_assigned_codes = sorted( a_slot.assigned_job_codes, key=lambda jc: self.jobs_dict[jc].scheduled_start_minutes, ) except KeyError as ke: log.error( f"unknown worker code during get_planner_score_stats, or unknown job codes to the env. slot_code = {slot_code}, error = {str(ke)}" ) print(ke) continue if include_slot_details: slot_duration = a_slot.end_minutes - a_slot.start_minutes slot_details[slot_code] = { "travel_n_duration": [], "free_minutes": slot_duration, "start_end_duration": [a_slot.start_minutes, a_slot.end_minutes, slot_duration], "the_assigned_codes": the_assigned_codes, } if a_slot.worker_id != current_worker_id: current_start_loc = a_slot.start_location elif (a_slot.slot_type == TimeSlotType.FLOATING) or (a_slot.prev_slot_code is None): current_start_loc = a_slot.start_location # if a_slot.slot_type in (TimeSlotType.JOB_FIXED, TimeSlotType.FLOATING): current_worker_id = a_slot.worker_id try: the_assigned_codes = sorted( a_slot.assigned_job_codes, key=lambda jc: self.jobs_dict[jc].scheduled_start_minutes, ) except KeyError as ke: log.error(f"not all job codes are in env. a_slot = {a_slot}, error = {str(ke)}") print(ke) continue for assigned_index, assigned_job_code in enumerate(the_assigned_codes): assigned_job = self.jobs_dict[assigned_job_code] if assigned_job.job_code in kandbox_config.DEBUGGING_JOB_CODE_SET: print(f"pause for debugging {kandbox_config.DEBUGGING_JOB_CODE_SET }") prev_travel_minutes = self.travel_router.get_travel_minutes_2locations( current_start_loc, assigned_job.location, ) if include_slot_details: slot_details[slot_code]["free_minutes"] -= ( prev_travel_minutes + assigned_job.requested_duration_minutes) slot_details[slot_code]["travel_n_duration"] .append( (prev_travel_minutes, assigned_job.requested_duration_minutes)) if assigned_job_code in assigned_job_stats: assigned_job_stats[assigned_job_code]["travel"] += prev_travel_minutes total_travel_minutes += prev_travel_minutes else: assigned_job_stats[assigned_job_code] = { "travel": prev_travel_minutes, "requested_duration_minutes": assigned_job.requested_duration_minutes, } total_travel_minutes += prev_travel_minutes inplanning_job_index_set.add(assigned_job.job_code) current_start_loc = assigned_job.location # In this loop, it collects Only U-planned jobs, which are not available from working time slots unplanned_job_count = 0 for job_code, new_job in self.jobs_dict.items(): if job_code in inplanning_job_index_set: continue if new_job.job_type == JobType.ABSENCE: continue if not new_job.is_active: # events and appt can not be U anyway log.warn(f"job={ job_code} is skipped from solution because is_active == False") continue if new_job.planning_status == JobPlanningStatus.UNPLANNED: unplanned_job_count += 1 elif new_job.planning_status in (JobPlanningStatus.COMPLETED,): continue elif new_job.planning_status in (JobPlanningStatus.PLANNED,): if ( new_job.scheduled_start_minutes + new_job.scheduled_duration_minutes < self.get_env_planning_horizon_start_minutes() ) | (new_job.scheduled_start_minutes > self.get_env_planning_horizon_end_minutes()): log.warn( f"solution skipped job_code={new_job.job_code}, minutes = {new_job.scheduled_start_minutes} not in planning window" ) continue else: log.error(f"Why not in slots? PLANNED, job_code = {job_code}") else: log.error(f"Why not in slots? INPLANNING, job_code = {job_code}") onsite_working_minutes = sum( [assigned_job_stats[j]["requested_duration_minutes"] for j in assigned_job_stats] ) inplanning_job_count = len(assigned_job_stats) planning_start = datetime.strftime( self.env_decode_from_minutes_to_datetime(self.get_env_planning_horizon_start_minutes()), "%m-%d", ) planning_end = datetime.strftime( self.env_decode_from_minutes_to_datetime(self.get_env_planning_horizon_end_minutes()), "%m-%d", ) total_overtime_minutes = 0 for w in self.workers_dict.keys(): total_overtime_minutes += sum( [ self.workers_dict[w].used_overtime_minutes[day_seq] for day_seq in self.workers_dict[w].used_overtime_minutes.keys() ] ) if inplanning_job_count + unplanned_job_count <= 0 or onsite_working_minutes <= 0: overall_score = 0 else: overall_score = ( (onsite_working_minutes / (total_travel_minutes + onsite_working_minutes)) + (inplanning_job_count / (inplanning_job_count + unplanned_job_count)) - (total_overtime_minutes / onsite_working_minutes) ) planner_score_stats = { "overall_score": overall_score, "score": "{:.3f}".format(overall_score), "total_travel_minutes": int(total_travel_minutes), "inplanning_job_count": inplanning_job_count, "unplanned_job_count": unplanned_job_count, "visible_job_count": len(self.jobs_dict), "onsite_working_minutes": onsite_working_minutes, "planning_window": f"{planning_start} ~ {planning_end}", "total_overtime_minutes": total_overtime_minutes, "slot_details": slot_details, } return planner_score_stats def get_planning_window_days_from_redis(self) -> set: days_on_redis = self.redis_conn.hgetall(self.get_env_planning_day_redis_key()) existing_working_days = set([int(di) for di in days_on_redis.keys()]) return existing_working_days # **---------------------------------------------------------------------------- # ## Extended functions # **---------------------------------------------------------------------------- def _reset_horizon_start_minutes(self): if TESTING_MODE == "yes": # if "env_start_day" in self.config.keys(): # Report exception if there is no env_start_day if self.config["env_start_day"] == "_": self.horizon_start_minutes = None else: # start_date = datetime.strptime( # self.config["env_start_day"], kandbox_config.KANDBOX_DATE_FORMAT # ) # self.horizon_start_minutes = self.env_encode_from_datetime_to_minutes(start_date) + 600 self.horizon_start_minutes = self.config["horizon_start_minutes"] else: self.horizon_start_minutes = None def mutate_refresh_planning_window_from_redis(self) -> bool: existing_working_days = self.get_planning_window_days_from_redis() self.existing_working_days = existing_working_days if len(existing_working_days) < 1: min_horizon_start_seq = 0 max_horizon_start_seq = 4 else: min_horizon_start_seq = min(existing_working_days) max_horizon_start_seq = max(existing_working_days) self._reset_horizon_start_minutes() # min_planning_day_seq = int(self.get_env_planning_horizon_start_minutes() / 1440) # max_planning_day_seq = max(existing_working_days) self.config["nbr_of_days_planning_window"] = ( max_horizon_start_seq - min_horizon_start_seq + 1 ) log.info( f"Refresh planning window done, min_horizon_start_seq= {min_horizon_start_seq}, max_horizon_start_seq = {max_horizon_start_seq}" ) def mutate_extend_planning_window(self) -> bool: existing_working_days = self.get_planning_window_days_from_redis() # Hold this value and do not call it multiple times in a loop today_start_date = self.env_decode_from_minutes_to_datetime( self.get_env_planning_horizon_start_minutes() ) horizon_day_seq = self.env_encode_from_datetime_to_day_with_validation(today_start_date) # Now find out all current days in planning windows. new_working_days = set() for day_i in range(100): new_start_date = today_start_date + timedelta(days=day_i) day_seq = (new_start_date - self.data_start_datetime).days new_weekday = self.env_encode_day_seq_to_weekday(day_seq) new_start_date_str = datetime.strftime( new_start_date, kandbox_config.KANDBOX_DATE_FORMAT ) if new_start_date_str in self.national_holidays: # This is a holiday. It overwrites weekly settings from weekly_working_days_flag. continue if self.weekly_working_days_flag[new_weekday]: # This is a working day self.daily_working_flag[day_seq] = True new_working_days.add(day_seq) else: self.daily_working_flag[day_seq] = False if len(new_working_days) >= self.config["planning_working_days"]: break # It may reduce several days of holidays # 2020-11-17 06:27:47 # If planning window start with Sunday, new_working_days does not contain it, horizon_day_seq should still point to Sunday self.config["nbr_of_days_planning_window"] = max(new_working_days) - horizon_day_seq + 1 if new_working_days <= existing_working_days: log.warn( f"There is no change in planning day when it is called at {datetime.now()}). existing_working_days={existing_working_days}. Maybe we have passed a weekend? " ) return False # Update nbr_of_days_planning_window, which may be larger than specified self.config["DaysForPlanning"] # nbr_of_days_planning_window may contain self.existing_working_days = new_working_days days_to_add = new_working_days - existing_working_days days_to_delete = existing_working_days - new_working_days for day_seq in days_to_delete: self._mutate_planning_window_delete_day(day_seq) log.info(f"A planning day (day_seq = {day_seq}) is purged out of planning window. ") if len(days_to_add) > 0: self.kp_data_adapter.reload_data_from_db() for day_seq in days_to_add: if self._mutate_planning_window_add_day(day_seq): # log.info( # f"A planning day (day_seq = {day_seq}) is added into the planning window. " # ) pass else: log.error(f"Failed to add a planning day (day_seq = {day_seq}) . ") self.mutate_replay_jobs_single_working_day(day_seq) self.kafka_server.post_refresh_planning_window() return True # fmt:off def _mutate_planning_window_delete_day(self, day_seq: int) -> bool: """ Right now, I delete all slots before this day. """ today_start_date = self.data_start_datetime + timedelta(days=day_seq) today_start_date_str = datetime.strftime(today_start_date, kandbox_config.KANDBOX_DATE_FORMAT) today_weekday = self.env_encode_day_seq_to_weekday(day_seq) self.redis_conn.hdel(self.get_env_planning_day_redis_key(), *[day_seq]) for worker_code in self.workers_dict.keys(): #working_day_start = day_seq * 1440 if self.workers_dict[worker_code].weekly_working_slots[0] > 0 else day_seq * 1440 + self.workers_dict[worker_code].weekly_working_slots[0] if self.workers_dict[worker_code].weekly_working_slots[today_weekday][1] < 1440: working_day_end = (day_seq) * 1440 + \ self.workers_dict[worker_code].weekly_working_slots[today_weekday][1] else: working_day_end = (day_seq + 1) * 1440 # Do not extending to the whole day if it less than the whole, because there may be time slots from next day, with < 0 start time.??? allowed? # forced actions to outside of working hour. # However, this may accidently delete self.slot_server.delete_slots_from_worker( worker_code=worker_code, start_minutes=0, # day_seq * 1440, end_minutes=working_day_end, ) # TODO # w.linear_working_slots.remove(slot) # fmt:on def _mutate_planning_window_add_day(self, day_seq: int) -> bool: today_start_date = self.data_start_datetime + timedelta(days=day_seq) today_start_date_str = datetime.strftime( today_start_date, kandbox_config.KANDBOX_DATE_FORMAT ) today_weekday = self.env_encode_day_seq_to_weekday(day_seq) """ Of course it must be inside this. if day_seq in self.daily_working_flag.keys(): log.error( f"The planning_window slot (day_seq = {day_seq}) is aready added. It is skipped this time." ) return False """ # self.redis_conn.hset(self.get_env_planning_day_redis_key(), mapping={day_seq: 0}) if today_start_date_str in self.national_holidays: # This is a holiday. It overwrites weekly settings. log.error(f"The planning_window slot (day_seq = {day_seq}) is in holiday.") return False if not self.weekly_working_days_flag[today_weekday]: log.error(f"The planning_window slot (day_seq = {day_seq}) is in weekly rest day .") return False self.redis_conn.hset( self.get_env_planning_day_redis_key(), key=day_seq, value=f"{today_start_date_str}_{day_seq*1440}->{(day_seq+1)*1440}" # mapping={day_seq: f"{today_start_date_str}_{day_seq*1440}->{(day_seq+1)*1440}"}, ) for w in self.workers: self._mutate_planning_window_add_worker_day(worker_code=w.worker_code, day_seq=day_seq) log.info( f"The planning window slot (day_seq = {day_seq}, today_start_date_str = {today_start_date_str}) is added succesfully!" ) return True def _mutate_planning_window_add_worker_day(self, worker_code: str, day_seq: int) -> WorkingTimeSlot: # I first calculate the working slot in this day min_day_seq = min(self.existing_working_days) w = self.workers_dict[worker_code] today_weekday = self.env_encode_day_seq_to_weekday(day_seq) slot = ( day_seq * 1440 + w.weekly_working_slots[today_weekday][0], day_seq * 1440 + w.weekly_working_slots[today_weekday][1], ) if slot[1] - slot[0] < 1: return False # Check where there are existing slots overlapping with this working slot from redis. overlap_slots = self.slot_server.get_overlapped_slots( worker_id=worker_code, start_minutes=slot[0], end_minutes=slot[1], # (day_seq + 1) * 1440, ) w.linear_working_slots.append(slot) if len(overlap_slots) > 0: overlap_slots_sorted = sorted(overlap_slots, key=lambda x: x.start_minutes) new_slot_start = slot[0] # new_slot_end = overlap_slots_sorted[0].end_minutes new_start_location = w.weekly_start_gps[today_weekday] # new_end_location = w.weekly_end_gps[today_weekday] for aslot_i, aslot_ in enumerate(overlap_slots_sorted): if aslot_.slot_type == TimeSlotType.FLOATING: log.error( f"WORKER:{worker_code}:DAY:{day_seq}:SLOT:{slot}, Encountered existing floating working time slot ({aslot_.start_minutes}->{aslot_.end_minutes}) while trying to add working slot. Aborted." ) return False log.warn( f"WORKER:{worker_code}:DAY:{day_seq}:SLOT:{slot}, Encountered existing working time slot ({aslot_.start_minutes}->{aslot_.end_minutes}) while trying to add working slot {slot}" ) new_slot_end = aslot_.start_minutes new_end_location = aslot_.start_location curr_slot = self.slot_server.add_single_working_time_slot( worker_code=w.worker_code, start_minutes=new_slot_start, end_minutes=new_slot_end, start_location=new_start_location, end_location=new_end_location, ) if aslot_i == 0: if min_day_seq == day_seq: self.workers_dict[w.worker_code].curr_slot = curr_slot new_slot_start = aslot_.end_minutes new_start_location = aslot_.end_location # Add the last time slot if present if new_slot_start < slot[1]: self.slot_server.add_single_working_time_slot( worker_code=w.worker_code, start_minutes=new_slot_start, end_minutes=slot[1], start_location=new_start_location, end_location=w.weekly_end_gps[today_weekday], ) return False else: curr_slot = self.slot_server.add_single_working_time_slot( worker_code=w.worker_code, start_minutes=slot[0], end_minutes=slot[1], start_location=w.weekly_start_gps[today_weekday], end_location=w.weekly_end_gps[today_weekday], ) if min_day_seq == day_seq: self.workers_dict[w.worker_code].curr_slot = curr_slot log.info( f"The worker_day slot (start_minutes = {slot[0]}, w.worker_code = {w.worker_code}) is added succesfully!" ) return True # *************************************************************** # Mutation functions, lock? # They are named as C-R-U-D, therefore Create will add the object to the ENV, Update will update existing one. # *************************************************************** def mutate_worker_add_overtime_minutes( self, worker_code: str, day_seq: int, net_overtime_minutes: int, post_changes_flag=False ) -> bool: added_successful = True if day_seq not in self.workers_dict[worker_code].used_overtime_minutes.keys(): log.warn( f"rejected, day_seq={day_seq} not in self.workers_dict[{worker_code}].used_overtime_minutes.keys()" ) return False self.workers_dict[worker_code].used_overtime_minutes[day_seq] += net_overtime_minutes if self.workers_dict[worker_code].used_overtime_minutes[day_seq] < 0: self.workers_dict[worker_code].used_overtime_minutes[day_seq] = 0 added_successful = False for limit_days_key in self.workers_dict[worker_code].overtime_limits.keys(): total_overtime = 0 all_days_valid = True for dsq in limit_days_key: if dsq in self.workers_dict[worker_code].used_overtime_minutes.keys(): total_overtime += self.workers_dict[worker_code].used_overtime_minutes[dsq] else: log.info( f"day_seq={dsq} is not longer in self.workers_dict[{worker_code}].used_overtime_minutes.keys() = {self.workers_dict[worker_code].used_overtime_minutes}. I will remove limit_days_key = {limit_days_key}" ) dsq_error = False break if not all_days_valid: # del self.workers_dict[worker_code].overtime_limits[limit_days_key] continue if total_overtime > self.workers_dict[worker_code].overtime_limits[limit_days_key]: log.warn( f"Overtime={total_overtime} is larger than limit for worker={worker_code}, key={limit_days_key}" ) added_successful = False if post_changes_flag: self.kafka_server.post_env_message( message_type=KafkaMessageType.UPDATE_WORKER_ATTRIBUTES, payload=[ { worker_code: { "used_overtime_minutes": self.workers_dict[ worker_code ].used_overtime_minutes } } ], ) # if worker_code == "MY|D|3|CT02": # log.debug( # f"{worker_code} - {net_overtime_minutes} = {self.workers_dict[worker_code].used_overtime_minutes}" # ) return added_successful def mutate_create_worker(self, new_worker: Worker): # For now it does not trigger re-planning affected, 2020-10-25 10:09:19 if new_worker.worker_code in self.workers_dict.keys(): log.error( f"mutate_create_worker: error, worker already existed: {new_worker.worker_code}" ) return False # raise ValueError("duplicate worker code '{0}' found".format(new_worker.worker_code)) self.workers.append(new_worker) self.workers_dict[new_worker.worker_code] = new_worker self.workers_dict[new_worker.worker_code].worker_index = len(self.workers) - 1 for day_seq in self.daily_working_flag.keys(): self._mutate_planning_window_add_worker_day( worker_code=new_worker.worker_code, day_seq=day_seq ) log.info( f"mutate_create_worker: successfully added worker, code = {new_worker.worker_code}" ) def mutate_update_worker(self, new_worker: Worker): # I assume it is Unplanned for now, 2020-04-24 07:22:53. # No replay if new_worker.worker_code not in self.workers_dict.keys(): log.error( "mutate_update_worker: The worker code '{0}' is not found".format( new_worker.worker_code ) ) return # raise ValueError("The worker code '{0}' is not found".format(new_worker.worker_code)) w_idx = self.workers_dict[new_worker.worker_code].worker_index if self.workers[w_idx].worker_code != new_worker.worker_code: log.error( f"worker_index mismatch during mutate_update_worker {new_worker}. Failed to update" ) # TODO, clean up and reset index. return self.workers_dict[new_worker.worker_code] = new_worker self.workers_dict[new_worker.worker_code].worker_index = w_idx self.workers[w_idx] = self.workers_dict[new_worker.worker_code] log.info(f"mutate_update_worker: success, worker is updated with new profile: {new_worker}") def mutate_create_appointment(self, new_job: Appointment, auto_replay=True): # I assume it is Unplanned for now, 2020-04-24 07:22:53. # No replay if new_job.job_code in kandbox_config.DEBUGGING_JOB_CODE_SET: log.debug(f"debug appt {kandbox_config.DEBUGGING_JOB_CODE_SET}") if new_job.job_code in self.jobs_dict.keys(): log.warn( f"APPT:{new_job.job_code}: mutate_create_appointment, job already existed", ) # raise ValueError("duplicate job code '{0}' found".format(new_job.job_code)) return # new_job.job_index = job_index self.jobs.append(new_job) job_index = len(self.jobs) - 1 new_job.job_index = job_index self.jobs_dict[new_job.job_code] = new_job if new_job.included_job_codes is None: new_job.included_job_codes = [] # First return occupied slots from included jobs for existing_job_code in new_job.flex_form_data["included_scheduled_visit_ids"].split(";"): # remove the job from time slots # step current appointment. stripped_job_code = existing_job_code.strip() try: v = self.jobs_dict[stripped_job_code] except KeyError: print( f"_get_appointment_form_dict: at least one visit is not found job_code={stripped_job_code.strip()}, ", new_job.flex_form_data["all_verified"], ) # new_job.flex_form_data["all_verified"] = False return False if stripped_job_code not in new_job.included_job_codes: new_job.included_job_codes.append(stripped_job_code) self.jobs_dict[stripped_job_code].is_active = False if self.jobs_dict[stripped_job_code].planning_status == JobPlanningStatus.UNPLANNED: log.warn( f"APPT:{new_job.job_code}:JOB:{stripped_job_code}: U status job () is included in appointment (). It is simply applied without modifying job." ) # log.warn continue # Then apply this appointment action # if False: # if not kandbox_config.DEBUG_ENABLE_APPOINTMENT_REPLAY: # return if auto_replay: release_success, info = self.slot_server.release_job_time_slots( self.jobs_dict[stripped_job_code] ) if not release_success: log.warn( f"Error releasing job (code={stripped_job_code}) inside the appointment ({new_job.job_code}), but I will continue appointment replay ..." ) # return False self.mutate_replay_appointment(job=new_job) self.redis_conn.hmset( "{}{}".format(kandbox_config.APPOINTMENT_ON_REDIS_KEY_PREFIX, new_job.job_code), {"rec_round": 0, "planning_status": "PENDING", "team_id": self.config["team_id"]}, ) def mutate_replay_appointment(self, job: Appointment): if (job.scheduled_start_minutes < self.get_env_planning_horizon_start_minutes()) or ( job.scheduled_start_minutes > self.get_env_planning_horizon_end_minutes() ): log.warn( f"Start time of appointment ({job.job_code}={job.scheduled_start_minutes}) is out of planning window, skippped replaying" ) return False action_dict = self.gen_action_dict_from_appointment(job) self.mutate_update_job_by_action_dict(a_dict=action_dict, post_changes_flag=False) return True # TODO, Third, trigger the heuristic search for recommendations # There is no update_appointment. This should be done by API->commit # def mutate_update_appointment(self, new_job): # Deprecated 2020-12-16 20:57:17 # Reason: I keep original appt code for multiple times re-scheduling def mutate_update_job_code__TODEL(self, old_job_code: str, new_job_code: str): # I assume it is Unplanned for now, 2020-04-24 07:22:53. # No replay if old_job_code not in self.jobs_dict.keys(): # raise ValueError("Job code '{0}' not found".format(old_job_code)) log.error("Job code '{0}' not found".format(old_job_code)) return if self.jobs_dict[old_job_code].job_type != JobType.APPOINTMENT: log.error( "ERROR: ONLY appointment job code can be changed, but {} is {} ".format( old_job_code, self.jobs_dict[old_job_code].job_type ) ) old_job = self.jobs_dict[old_job_code] old_job.job_code = new_job_code del self.jobs_dict[old_job_code] self.jobs_dict[new_job_code] = old_job # location in self.jobs remains untouched. # TODO, send to kafka. log.warn( f"mutate_update_job_code:APPT:{old_job_code}:NEW_APPT:{new_job_code}: appointment code to updated to new one by {self.env_inst_code}. No more recommendations to any of them." ) def mutate_delete_appointment(self, job_code): # I assume it is Unplanned for now, 2020-04-24 07:22:53. # No replay if job_code not in self.jobs_dict.keys(): log.error("mutate_delete_appointment: appt does not exist: ", job_code) return self.jobs_dict[job_code].is_active = False job_index = self.jobs_dict[job_code].job_index curr_appt = self.jobs_dict[job_code] release_success_flag, info = self.slot_server.release_job_time_slots(job=curr_appt) if not release_success_flag: log.warn( f"Error whiling tring to release existing appoitnment slot, {curr_appt.job_code}" ) # Restore job status after removing covering appointment. for included_job_code in curr_appt.included_job_codes: self.jobs_dict[included_job_code].is_active = True if self.jobs_dict[included_job_code].planning_status != JobPlanningStatus.UNPLANNED: self.mutate_replay_job(job=self.jobs_dict[included_job_code]) self.jobs_dict[job_code] = None del self.jobs_dict[job_code] try: if self.jobs[job_index].job_code != job_code: log.error(f"mutate_delete_appointment: job code mismatch {job_code}") else: del self.jobs[job_index] except: log.error( f"mutate_delete_appointment:exception: job code mismatch job_code={job_code}, job_index = {job_index}, " ) # Remove appt from redis recommendation frontend self.redis_conn.delete( "{}{}".format(kandbox_config.APPOINTMENT_ON_REDIS_KEY_PREFIX, job_code) ) # Remove recommendations from redis for rec_code in self.redis_conn.scan_iter( f"{self.get_recommendation_job_key(job_code=job_code, action_day=-1)}*" ): self.redis_conn.delete(rec_code) log.info(f"APPT:{job_code} is purged out of env {self.env_inst_code}") def mutate_create_worker_absence(self, new_job: Absence, auto_replay=True): if new_job.job_code in self.jobs_dict.keys(): print("add_job: error, job already existed: ", new_job.job_code) return # raise ValueError("duplicate job code '{0}' found".format(new_job.job_code)) # new_job.job_index = job_index self.jobs.append(new_job) job_index = len(self.jobs) - 1 new_job.job_index = job_index self.jobs_dict[new_job.job_code] = new_job if auto_replay: self.mutate_replay_worker_absence(job=new_job) log.debug( f"ABSENCE:{new_job.job_code}: the absence is created/added into env.", ) def mutate_replay_worker_absence(self, job: Absence): if (job.scheduled_start_minutes < self.get_env_planning_horizon_start_minutes()) or ( job.scheduled_start_minutes > self.get_env_planning_horizon_end_minutes() ): log.warn( f"Start time of absence ({job.job_code}={job.scheduled_start_minutes}) is out of planning window, skippped replaying" ) return False action_dict = self.gen_action_dict_from_worker_absence(job) self.mutate_update_job_by_action_dict(a_dict=action_dict, post_changes_flag=False) return True def mutate_create_job(self, new_job, auto_replay=True): # I assume it is Unplanned for now, 2020-04-24 07:22:53. # No replay if new_job.job_code in self.jobs_dict.keys(): log.error("add_job: error, job already existed: ", new_job.job_code) return # raise ValueError("duplicate job code '{0}' found".format(new_job.job_code)) # new_job.job_index = job_index else: self.jobs.append(new_job) new_job.job_index = len(self.jobs) - 1 self.jobs_dict[new_job.job_code] = new_job # Then apply this appointment action if auto_replay: if new_job.planning_status != JobPlanningStatus.UNPLANNED: self.mutate_replay_job(job=new_job) log.info(f"mutate_create_job: successfully added job, code = {new_job.job_code}") def mutate_update_job_metadata(self, new_job): # I assume it is Unplanned for now, 2020-04-24 07:22:53. # No replay if new_job.job_code not in self.jobs_dict.keys(): log.error("add_job: error, job already existed: ", new_job.job_code) return curr_job = self.jobs_dict[new_job.job_code] # Keep the scheduling information intact as before new_job.scheduled_worker_codes = curr_job.scheduled_worker_codes new_job.scheduled_start_minutes = curr_job.scheduled_start_minutes new_job.scheduled_duration_minutes = curr_job.scheduled_duration_minutes curr_job_index = curr_job.job_index if self.jobs[curr_job_index].job_code != new_job.job_code: log.warn(f"mismatched job_index while adding job {new_job.job_code}") # return self.jobs[curr_job_index] = new_job self.jobs_dict[new_job.job_code] = new_job log.info( f"Successfully updated job metadata, no schedulling action done. code = {new_job.job_code}" ) # Then I skip appling scheduling action def mutate_replay_job(self, job: Appointment): if (job.scheduled_start_minutes < self.get_env_planning_horizon_start_minutes()) or ( job.scheduled_start_minutes > self.get_env_planning_horizon_end_minutes() ): log.info( f"Start time of Job ({job.job_code}) is {job.scheduled_start_minutes}), out of planning window ({self.get_env_planning_horizon_start_minutes()}->{self.get_env_planning_horizon_end_minutes()}), skipped replaying" ) return False if job.planning_status == JobPlanningStatus.UNPLANNED: log.info(f"U-Status Job ({job.job_code}) is skipped from replaying.") return True action_dict = self.gen_action_dict_from_job(job, is_forced_action=True) self.mutate_update_job_by_action_dict(a_dict=action_dict, post_changes_flag=False) return True def mutate_complete_job(self, job_code): # Mark a job as completed and optionally remove it. if job_code not in self.jobs_dict.keys(): log.error("mutate_complete_job: error, job not exist: ", job_code) return curr_job = self.jobs_dict[job_code] # Keep the scheduling information intact as before release_success_flag, info = self.slot_server.release_job_time_slots(job=curr_job) if (not release_success_flag): log.warning( f"Error in release_job_time_slots, {curr_job.job_code}, error = {str(info)}") return False curr_job.planning_status = JobPlanningStatus.COMPLETED self.jobs_dict[job_code] = curr_job log.debug( f"Successfully mutate_complete_job. code = { job_code}" ) def mutate_update_job_by_action_dict( self, a_dict: ActionDict, post_changes_flag: bool = False ) -> SingleJobCommitInternalOutput: if a_dict.job_code in kandbox_config.DEBUGGING_JOB_CODE_SET: print(f"pause for {a_dict.job_code}") if post_changes_flag: if PLANNER_SERVER_ROLE == "recommendation": log.warn(f"recommender should not post changes, setting to false") # post_changes_flag = False # TODO If there is not enough capacities without considering travel and time slot, reject it if a_dict.job_code not in self.jobs_dict.keys(): log.error("add_job: error, job already existed: ", a_dict.job_code) return # duplicated check with above. # if len(self.jobs_dict) < 1: # log.error("No jobs to mutate") # return if self.current_job_i >= len(self.jobs): self.current_job_i = 0 # if self.jobs[self.current_job_i].job_code != a_dict.job_code: # self.current_job_i = self.jobs_dict[a_dict.job_code].job_index # log.warn( # f"job_code = { a_dict.job_code} missmatching. self.jobs[self.current_job_i].job_code != a_dict.job_code" # ) curr_job = self.jobs_dict[a_dict.job_code] # TODO, verify that this is not duplicated action by itself. 2020-10-30 17:25:51 job_commit_output = SingleJobCommitInternalOutput( status_code=ActionScoringResultType.ERROR, messages=[], nbr_changed_jobs=0, new_job_code="", ) if a_dict.scheduled_duration_minutes < 1: log.warn( f"action is rejected because scheduled_duration_minutes < 1, action = {a_dict}" ) job_commit_output.messages.append( f"action is rejected because scheduled_duration_minutes < 1" ) return job_commit_output if curr_job.planning_status in {JobPlanningStatus.PLANNED}: if (curr_job.job_type == JobType.JOB) and (not a_dict.is_forced_action): job_commit_output.messages.append( f"Failed to change job planning because planning_status == PLANNED and not is_forced_action" ) return job_commit_output if (curr_job.planning_status == JobPlanningStatus.UNPLANNED) & ( a_dict.action_type == ActionType.UNPLAN ): job_commit_output.messages.append( f"Job is already unplanned, and can not be unplanned." ) job_commit_output.status_code = ActionScoringResultType.OK return job_commit_output if curr_job.planning_status in { JobPlanningStatus.IN_PLANNING, JobPlanningStatus.PLANNED, # Here planned is only for replay }: if ( (a_dict.action_type != ActionType.UNPLAN) & (a_dict.scheduled_start_minutes == curr_job.scheduled_start_minutes) & (a_dict.scheduled_worker_codes == curr_job.scheduled_worker_codes) & (not a_dict.is_forced_action) ): job_commit_output.messages.append( f"Job is in-planning, the new scheduled_start_minutes, scheduled_worker_codes are same." ) job_commit_output.status_code = ActionScoringResultType.OK return job_commit_output if not curr_job.is_replayed: log.warn(f"job ({curr_job.job_code}) is not replayed for releasing?") # Now we first release previous slot release_success_flag, info = self.slot_server.release_job_time_slots(job=curr_job) if (not release_success_flag) & curr_job.is_replayed & (not a_dict.is_forced_action): log.warn(f"Error in release_job_time_slots, {curr_job.job_code}") job_commit_output.messages.append( f"Failed to release job slot for {curr_job.job_code}, release_success_flag = false, error = {str(info)}" ) return job_commit_output if a_dict.action_type == ActionType.UNPLAN: curr_job.planning_status = JobPlanningStatus.UNPLANNED if self.run_mode != EnvRunModeType.REPLAY: job_commit_output.nbr_changed_jobs += 1 curr_job.is_changed = True self.changed_job_codes_set.add(curr_job.job_code) if post_changes_flag: self.commit_changed_jobs(changed_job_codes_set={curr_job.job_code}) job_commit_output.status_code = ActionScoringResultType.OK log.info(f"JOB:{curr_job.job_code}: job is unplanned successfully. ") return job_commit_output else: log.info( f"JOB:{curr_job.job_code}: job is unplanned temporary by releasing slot for inplan again. release_success_flag = {release_success_flag}" ) # a normal job duration is 200 minutes. The jobs before 200 minute will not impact current planning window # TODO if ( a_dict.scheduled_start_minutes < self.get_env_planning_horizon_start_minutes() - 200 ) or (a_dict.scheduled_start_minutes > self.get_env_planning_horizon_end_minutes()): log.warn( f"action is rejected because scheduled_start_minutes is out of planning window, action = {a_dict}" ) job_commit_output.messages.append( f"action is rejected because scheduled_start_minutes is out of planning window" ) return job_commit_output if not a_dict.is_forced_action: rule_check_info = self._check_action_on_rule_set(a_dict) if rule_check_info.status_code != ActionScoringResultType.OK: job_commit_output.messages.append(rule_check_info) return job_commit_output # False, rule_check_info # {'message':'ok'} success_flag, info = self.slot_server.cut_off_time_slots(action_dict=a_dict) if not success_flag: job_commit_output.messages.append(info) if a_dict.is_forced_action: job_commit_output.status_code = ActionScoringResultType.WARNING log.error(f"failed to cut_off_time_slots for replaying job = {a_dict.job_code} ") # TODO, send to kafka for inspection else: job_commit_output.status_code = ActionScoringResultType.ERROR # self._move_to_next_unplanned_job() return job_commit_output else: curr_job.is_replayed = True if self.jobs_dict[a_dict.job_code].job_type == JobType.ABSENCE: # Do not need to update current job return job_commit_output # # Now update the job schedule status. # nbr_changed_jobs = 0 if curr_job.job_type == JobType.APPOINTMENT: # Align up all jobs included inside the current apointment curr_start_minutes = curr_job.scheduled_start_minutes for _j_code in curr_job.included_job_codes: # APPT_Required==1 will make IN_PLANNING same as PLANNED self.jobs_dict[_j_code].planning_status = JobPlanningStatus.IN_PLANNING self.jobs_dict[_j_code].scheduled_start_minutes = curr_start_minutes self.jobs_dict[_j_code].scheduled_worker_codes = a_dict.scheduled_worker_codes self.jobs_dict[ _j_code ].scheduled_duration_minutes = self.get_encode_shared_duration_by_planning_efficiency_factor( requested_duration_minutes=self.jobs_dict[_j_code].requested_duration_minutes, nbr_workers=len(a_dict.scheduled_worker_codes), ) self.jobs_dict[_j_code].is_active = False self.jobs_dict[_j_code].is_appointment_confirmed = True self.jobs_dict[_j_code].is_changed = True # It might be set in next curr_job.is_changed = True curr_start_minutes += self.jobs_dict[_j_code].scheduled_duration_minutes # Do not post individual jobs belonging to appt, as it will be posted by appt # # Now update the job with other 3 information: Tech, start, duration. # if curr_job.planning_status == JobPlanningStatus.UNPLANNED: curr_job.planning_status = JobPlanningStatus.IN_PLANNING curr_job.scheduled_worker_codes = a_dict.scheduled_worker_codes curr_job.scheduled_start_minutes = a_dict.scheduled_start_minutes # could be accross several days. curr_job.scheduled_duration_minutes = a_dict.scheduled_duration_minutes # Here I decide to publish the change or not if self.run_mode != EnvRunModeType.REPLAY: # and (not a_dict.is_forced_action) if curr_job.planning_status == JobPlanningStatus.UNPLANNED: # self.expected_travel_time_so_far += self.job_travel_time_sample_list_static[ # self.current_job_i # ] self.nbr_inplanning += 1 curr_job.is_changed = True self.changed_job_codes_set.add(curr_job.job_code) nbr_changed_jobs = len(self.changed_job_codes_set) # It might change multiple jobs if post_changes_flag: self.commit_changed_jobs(changed_job_codes_set={curr_job.job_code}) else: if post_changes_flag: log.error(f"Not allowed to post_changes_flag for EnvRunModeType.REPLAY") job_commit_output.status_code = ActionScoringResultType.OK job_commit_output.nbr_changed_jobs = nbr_changed_jobs log.debug( f"JOB:{curr_job.job_code}:WORKER:{a_dict.scheduled_worker_codes}:START_MINUTES:{a_dict.scheduled_start_minutes}: job is commited successfully. " ) return job_commit_output def commit_changed_jobs(self, changed_job_codes_set=set()): # for job in jobs: changed_jobs = [] changed_job_codes = [] self.changed_job_codes_set = changed_job_codes_set for job_code in self.changed_job_codes_set: job = self.jobs_dict[job_code] if job.is_changed: a_job = self.decode_single_job_to_solution(job) changed_jobs.append(a_job) # changed_job_codes.append(job.job_code) else: log.error("ERROR: tracked but job.is_changed == False") self.kp_data_adapter.save_changed_jobs(changed_jobs=changed_jobs) new_offset = self.post_changed_jobs(changed_job_codes_set=changed_job_codes_set) self.kp_data_adapter.set_team_env_window_latest_offset(offset=new_offset) # Reset all tracked changes. for job_code in self.changed_job_codes_set: self.jobs_dict[job_code].is_changed = False self.changed_job_codes_set = set() def post_changed_jobs(self, changed_job_codes_set): """This is used by ENV to post changed job to external""" jobs = [] for j in changed_job_codes_set: job = self.jobs_dict[j] if job.scheduled_duration_minutes > job.requested_duration_minutes: log.error( f"job.scheduled_duration_minutes>job.requested_duration_minutes, Error detected, post_changed_jobs skipped job_code = {job.job_code}, {job.scheduled_duration_minutes} > {job.requested_duration_minutes}" ) continue new_job = copy.copy(job) new_job.location = JobLocationBase(*new_job.location[0:4]) jobs.append(new_job) appt_included_jobs = [] for job in jobs: if job.job_type == JobType.APPOINTMENT: # Loop through included jobs and re-arrange start time for them curr_start_minutes = job.scheduled_start_minutes for included_job_code in job.included_job_codes: job_1 = copy.copy(self.jobs_dict[included_job_code]) job_1.location = JobLocationBase(*job_1.location[0:4]) job_1.scheduled_start_minutes = curr_start_minutes curr_start_minutes += job_1.scheduled_duration_minutes appt_included_jobs.append(job_1) self.kafka_server.post_env_out_message( message_type=KafkaMessageType.POST_CHANGED_JOBS, payload=jobs + appt_included_jobs ) # return offset in internal kafka window return self.kafka_server.post_env_message( message_type=KafkaMessageType.REFRESH_JOB, payload=jobs + appt_included_jobs ) # *************************************************************** # # Gym functions # *************************************************************** def step_by_action_dict(self, action_dict): # -> (obs, ..., SingleJobCommitInternalOutput) # action [1, 0, 0 ]. One hot coding, 1 means this worker take the job. if self.run_mode == EnvRunModeType.REPLAY: action_dict.is_forced_action = True result_info_obj = self.mutate_update_job_by_action_dict(a_dict=action_dict) result_info = dataclasses.asdict(result_info_obj) if result_info["status_code"] == ActionScoringResultType.OK: reward = 0.11 # self._get_reward() # 1 self.inplanning_job_count += 1 else: reward = -1 if self.run_mode == EnvRunModeType.REPLAY: self.current_job_i += 1 has_next = self.current_job_i < len(self.jobs) else: has_next = self._move_to_next_unplanned_job() if has_next: done = False else: done = True reward = 5 # print("Adding job {}--{} to Worker {}-{} , result: {}...".format(self.current_job_i - 1, self.jobs[self.current_job_i - 1]['job_code'],action['worker_code'],action['start_minutes'],add_result )) if self.run_mode == EnvRunModeType.REPLAY: return ([], 1, done, result_info) # print(f"Env Error: trail={self.trial_count}, step={self.trial_step_count}") # if self.trial_step_count > len(self.jobs) * 0.3: # done = True # reward = -5 # if self.trial_count % 1 == 0: # # print("No more unplanned jobs, done. internal error? It should be handled by has_next!") ) # log.info( # f"Env done with Failure: travel_time={self.total_travel_time:.2f}, trial={self.trial_count}, trial_step_count={self.trial_step_count}, nbr_inplanning={self.nbr_inplanning} ... " # ) self.nbr_inplanning = sum( [ 1 if self.jobs_dict[j_i].planning_status != "U" else 0 for j_i in self.jobs_dict.keys() ] ) if self.nbr_inplanning >= len(self.jobs): overall_score = self.get_planner_score_stats()["overall_score"] done = True reward = 4 * overall_score # if (done == True) & (self.trial_count % 1 == 0): # trial_count # # print("No more unplanned jobs, done. internal error? It should be handled by has_next!") ) # # self.get_planner_score_stats()["overall_score"] # log.info( # f"Env done with Success: self.inplanning_job_count = {self.inplanning_job_count}, trial_step_count = {self.trial_step_count}, reward={reward:.2f}, travel_time={self.total_travel_time:.2f}, nbr_inplanning={self.nbr_inplanning}, travel_worker_job_count = {self.total_travel_worker_job_count}, trial={self.trial_count}" # ) obs = self._get_observation() if ((len(obs["jobs"]) < 1) or (len(obs["slots"]) < 1)) and (not done): log.warn("No jobs or slots to observe, done?") done = True return (obs, reward, done, result_info) def step_recommend_appt(self, action_dict): curr_job = copy.deepcopy(self.jobs_dict[action_dict.job_code]) action_day = int(action_dict.scheduled_start_minutes / 1440) curr_job.requested_start_min_minutes = action_day * 1440 curr_job.requested_start_max_minutes = (action_day + 1) * 1440 action_dict_list = self.recommendation_server.search_action_dict_on_worker_day( a_worker_code_list=action_dict.scheduled_worker_codes, curr_job=curr_job, max_number_of_matching=3, ) if len(action_dict_list) < 1: reward = -0.1 else: reward = action_dict_list[0].score + 0.5 self.appt_scores[action_dict.job_code] = reward info = {"message": f"found {len(action_dict_list)} recommendations"} done = True for p_i in range(len(self.appts)): self.current_appt_i += 1 if self.current_appt_i >= len(self.appts): self.current_appt_i = 0 if self.appts[self.current_appt_i] not in self.appt_scores.keys(): done = False n_job_code = self.appts[self.current_appt_i] self.current_job_i = self.jobs_dict[n_job_code].job_index if self.jobs[self.current_job_i].job_code != n_job_code: log.error( f"n_job_code = {n_job_code}, self.jobs[self.current_job_i].job_code = {self.jobs[self.current_job_i].job_code}" ) break if done: self.current_job_i = 0 obs = self._get_observation() if self.trial_step_count > self.config["max_trial_step_count"]: done = True reward = -5 if self.trial_count % 20 == 0: print( f"Env done as Failed: travel_time={self.total_travel_time:.2f}, trial={self.trial_count}, step={self.trial_step_count}, nbr_inplanning={self.nbr_inplanning} ... " ) # if len(self.appt_scores) >= len(self.appts): # done = True # reward += 3 # if self.trial_count % 20 == 0: # # print("No more unplanned jobs, done. internal error? It should be handled by has_next!") ) # log.info( # f"Env done as Success: trial={self.trial_count}, step={self.trial_step_count}, reward={reward:.2f}, travel_time={self.total_travel_time:.2f}, nbr_inplanning={self.nbr_inplanning}, travel_worker_job_count = {self.total_travel_worker_job_count}" # ) def _calc_travel_minutes_difference( self, shared_time_slots_optimized, arranged_slots, current_job_code ): new_travel_minutes_difference = 0 for a_slot, arranged_slot in zip(shared_time_slots_optimized, arranged_slots): new_job_code_list = [s[1] for s in arranged_slot] ( prev_travel, next_travel, inside_travel, ) = self.get_travel_time_jobs_in_slot(a_slot, new_job_code_list) new_travel_minutes = prev_travel + next_travel + sum(inside_travel) new_job_code_list.remove(current_job_code) ( prev_travel, next_travel, inside_travel, ) = self.get_travel_time_jobs_in_slot(a_slot, new_job_code_list) original_travel_minutes = prev_travel + next_travel + sum(inside_travel) new_travel_minutes_difference += new_travel_minutes - original_travel_minutes return (100 - new_travel_minutes_difference) / 100 def step_recommend_and_plan_job(self, action_dict): curr_job = copy.deepcopy(self.jobs_dict[action_dict.job_code]) action_day = int(action_dict.scheduled_start_minutes / 1440) curr_job.requested_start_min_minutes = ( action_day * 1440 + self.get_env_planning_horizon_start_minutes() ) curr_job.requested_start_max_minutes = ( action_day + 1 ) * 1440 + self.get_env_planning_horizon_start_minutes() action_dict_list = self.recommendation_server.search_action_dict_on_worker_day( a_worker_code_list=action_dict.scheduled_worker_codes, curr_job=curr_job, max_number_of_matching=3, ) if curr_job.job_code in kandbox_config.DEBUGGING_JOB_CODE_SET: log.debug(f"step_recommend_and_plan_job curr_job.job_code = {curr_job.job_code}") if len(action_dict_list) >= 1: selected_action = action_dict_list[0].to_action_dict(self) return self.step_by_action_dict(action_dict=selected_action) # else: reward = -1 result_info = {"message": f"found no action in the given worker+day"} done = not self._move_to_next_unplanned_job() obs = self._get_observation() return (obs, reward, done, result_info) def step(self, action): self.trial_step_count += 1 if len(self.internal_obs_slot_list) < 1: log.error("len(self.internal_obs_slot_list) < 1, not ready... Reset not called yet?") return self._get_observation(), -1, False, {} # action [1, 0, 0 ]. One hot coding, 1 means this worker take the job. new_act = action.copy() max_i = np.argmax(new_act[0: len(self.internal_obs_slot_list)]) # if max_i >= len(self.internal_obs_slot_list): log.error("Wrong") temp_slot = copy.deepcopy(self.internal_obs_slot_list[max_i]) temp_slot.assigned_job_codes.append(self.jobs[self.current_job_i].job_code) shared_time_slots_optimized = [temp_slot] obs, reward, done, info = self.step_naive_search_and_plan_job(shared_time_slots_optimized) if (not done): if (self.trial_step_count > self.config["max_trial_step_count"]): done = True reward = -5 msg = f"Env done as Failure: inplanning = {self.inplanning_job_count}, trial_step_count = {self.trial_step_count}, reward={reward:.2f}, travel_time={self.total_travel_time:.2f}, nbr_inplanning={self.nbr_inplanning}, travel_worker_job_count = {self.total_travel_worker_job_count}, trial={self.trial_count}, when steps reaches maximum" info = { "message": msg } log.info(msg) else: if (self.trial_count % 1 == 0): log.info( f"Env done as Success: inplanning = {self.inplanning_job_count}, trial_step_count = {self.trial_step_count}, reward={reward:.2f}, travel_time={self.total_travel_time:.2f}, nbr_inplanning={self.nbr_inplanning}, travel_worker_job_count = {self.total_travel_worker_job_count}, trial={self.trial_count}, good" ) return obs, reward, done, info # try: # action_dict = self.decode_action_into_dict_native(action) # if self.run_mode == EnvRunModeType.REPLAY: # log.error(f"No more replays") # action_dict.is_forced_action = True # else: # action_dict.is_forced_action = False # except LookupError: # print("LookupError: failed to parse action") # # add_result = False # info = {"message": f"LookupError: failed to parse action into acction_dict {action}"} # obs = self._get_observation() # if self.trial_step_count > len(self.appts) * 2: # done = True # else: # done = False # reward = -1 # return (obs, reward, done, info) # obs, reward, done, info = self.step_recommend_and_plan_job(action_dict) def pprint_all_slots(self): for k in sorted(self.slot_server.time_slot_dict.keys()): job_list = self.slot_server.time_slot_dict[k].assigned_job_codes ( prev_travel, next_travel, inside_travel, ) = self.get_travel_time_jobs_in_slot(self.slot_server.time_slot_dict[k], job_list) print(k, self.slot_server.time_slot_dict[k].start_location[0:2], ( prev_travel, next_travel, inside_travel, )) print(self.slot_server.time_slot_dict[k].start_minutes, [ (self.jobs_dict[s].scheduled_start_minutes, s) for s in job_list]) def step_naive_search_and_plan_job(self, shared_time_slots_optimized): job_code = self.jobs[self.current_job_i].job_code res = self.naive_opti_slot.dispatch_jobs_in_slots(shared_time_slots_optimized) if res["status"] == OptimizerSolutionStatus.SUCCESS: selected_action = res["changed_action_dict_by_job_code"][job_code] obs, reward, done, result_info = self.step_by_action_dict(action_dict=selected_action) if reward == 0.11: travel_difference_score = self._calc_travel_minutes_difference( shared_time_slots_optimized, res["slots"], job_code ) reward += travel_difference_score reward = reward * (self.inplanning_job_count / len(self.jobs)) return obs, reward, done, result_info # else: reward = -1.5 # reward = -6 result_info = {"message": f"found no action in the specified slots"} done = not self._move_to_next_unplanned_job() # done = True # if (self.trial_count % 1 == 0): # log.info( # f"Env done with Failure: self.inplanning_job_count = {self.inplanning_job_count}, trial_step_count = {self.trial_step_count}, reward={reward:.2f}, nbr_inplanning={self.nbr_inplanning}, trial={self.trial_count}" # ) obs = self._get_observation() return (obs, reward, done, result_info) def step_future_for_job_actions_TODO(self, action): # action [1, 0, 0 ]. One hot coding, 1 means this worker take the job. self.trial_step_count += 1 try: a_dict = self.decode_action_into_dict(action) if self.run_mode == EnvRunModeType.REPLAY: a_dict.is_forced_action = True else: a_dict.is_forced_action = False except LookupError: log.debug("LookupError: failed to parse action") # add_result = False info = {"message": f"LookupError: failed to parse action into acction_dict {action}"} obs = self._get_observation() if self.trial_step_count > len(self.jobs) * 2: done = True else: done = False reward = -1 return (obs, reward, done, info) obs, reward, done, info = self.step_by_action_dict(action_dict=a_dict) return obs, reward, done, info def render(self, mode="human"): pass def close(self): pass def get_travel_time_jobs_in_slot(self, slot, all_jobs): prev_time = 0 next_time = 0 inside_time = [] if len(all_jobs) < 1: return 0, 0, [] if slot.start_location[2] == LocationType.JOB: prev_time = self.travel_router.get_travel_minutes_2locations( [ self.jobs_dict[all_jobs[0]].location.geo_longitude, self.jobs_dict[all_jobs[0]].location.geo_latitude, ], [slot.start_location[0], slot.start_location[1]], ) if slot.end_location[2] == LocationType.JOB: next_time = self.travel_router.get_travel_minutes_2locations( [ self.jobs_dict[all_jobs[-1]].location.geo_longitude, self.jobs_dict[all_jobs[-1]].location.geo_latitude, ], [slot.start_location[0], slot.start_location[1]], ) for job_i in range(len(all_jobs) - 1): inside_time.append( self.travel_router.get_travel_minutes_2locations( [ self.jobs_dict[all_jobs[job_i]].location.geo_longitude, self.jobs_dict[all_jobs[job_i]].location.geo_latitude, ], [ self.jobs_dict[all_jobs[job_i + 1]].location.geo_longitude, self.jobs_dict[all_jobs[job_i + 1]].location.geo_latitude, ], ) ) return prev_time, next_time, inside_time def _get_travel_time_2_job_indices(self, job_index_1, job_index_2): job_1 = self.jobs[job_index_1] job_2 = self.jobs[job_index_2] return self._get_travel_time_2jobs(job_1, job_2 ) def _get_travel_time_2jobs(self, job_1, job_2): return self.travel_router.get_travel_minutes_2locations( [ job_1.location.geo_longitude, job_1.location.geo_latitude, ], [ job_2.location.geo_longitude, job_2.location.geo_latitude, ], ) def set_searching_worker_candidates(self, final_job: BaseJob): if final_job.job_code in kandbox_config.DEBUGGING_JOB_CODE_SET: log.debug("final_job.job_code in kandbox_config.DEBUGGING_JOB_CODE_SET?") # if type(final_job.requested_primary_worker_code) == type(["a"]): # log.debug("WHY?") # because rule checkers are mutating job, I copy one here. curr_job = copy.deepcopy(final_job) # orig_scheduled_worker_codes = curr_job.scheduled_worker_codes shared_worker_count = set() if curr_job.planning_status != JobPlanningStatus.UNPLANNED: shared_worker_count.add(len(curr_job.scheduled_worker_codes)) # scheduled_duration_minutes = job.requested_duration_minutes min_number_of_workers = max_number_of_workers = 1 try: min_number_of_workers = int(curr_job.flex_form_data["min_number_of_workers"]) max_number_of_workers = int(curr_job.flex_form_data["max_number_of_workers"]) except: log.error( f"job {final_job.job_code} has no min_number_of_workers or max_number_of_workers and we assumed as 1") pass for nbr_worker in range( min_number_of_workers, max_number_of_workers + 1, ): shared_worker_count.add(nbr_worker) all_qualified_worker_codes = set() # evaluate_DateTimeTolerance = KandboxRuleToleranceRule() for worker_id in self.workers_dict.keys(): is_valid = True for a_rule in self.rule_set_worker_check: curr_job.scheduled_worker_codes = [worker_id] check_result = a_rule.evalute_normal_single_worker_n_job(self, job=curr_job) if check_result.score == -1: is_valid = False break if is_valid: all_qualified_worker_codes.add(worker_id) # KandboxRulePluginWithinWorkingHour() # KandboxRulePluginSufficientTravelTime # KandboxRulePluginLunchBreak # TODO, permenant pair & secondary only techs. @xingtong candidate_dict = {} # differen tiers of scoring SCORE_Primary = 1000_000 SCORE_Permenant_Pair = 10_000 # It has priority if tech is permanently paired. SCORE_History = 9_000 SCORE_Solo = 1_000 SCORE_Share = {2: 100, 3: 80, 4: 60, 5: 30} for k, v in curr_job.location.historical_serving_worker_distribution.items(): one_candidate_tuple = tuple(k.split(";")) new_score = v is_valid = True for w_code in one_candidate_tuple: if w_code not in all_qualified_worker_codes: # Though this worker served in history, he is no longer qualified for this job is_valid = False break if w_code == curr_job.requested_primary_worker_code: new_score += SCORE_Primary else: new_score = v + SCORE_History if not is_valid: continue if self.workers_dict[one_candidate_tuple[0]].flex_form_data["is_assistant"]: continue # Here I exclude those historical combinations no longer valid anymore if len(one_candidate_tuple) < min_number_of_workers: continue if len(one_candidate_tuple) > max_number_of_workers: continue # If 4 technicians served in the history, I also search for 4 tech combination shared_worker_count.add(len(one_candidate_tuple)) candidate_dict[one_candidate_tuple] = new_score # In case in the future, multiple requested worker? curr_job.requested_primary_worker_code = copy.deepcopy( final_job.requested_primary_worker_code ) if min_number_of_workers <= 1: for w_code in all_qualified_worker_codes: if (not self.workers_dict[w_code].flex_form_data["is_assistant"]) and ( (w_code,) not in candidate_dict.keys() ): candidate_dict[(w_code,)] = SCORE_Solo # It may overrite historical setting. But primary will highest priority try: candidate_dict[(curr_job.requested_primary_worker_code,)] = SCORE_Primary except: log.debug("WHY?") primary_worker_codes = (curr_job.requested_primary_worker_code,) if primary_worker_codes not in candidate_dict.keys(): if min_number_of_workers <= 1: log.debug(f"requested worker not added! {primary_worker_codes}") candidate_dict[primary_worker_codes] = SCORE_Primary if self.workers_dict[curr_job.requested_primary_worker_code].belongs_to_pair is not None: primary_worker_codes = self.workers_dict[ curr_job.requested_primary_worker_code ].belongs_to_pair if primary_worker_codes not in candidate_dict.keys(): log.debug(f"requested worker pair not added yet! {primary_worker_codes}") candidate_dict[primary_worker_codes] = SCORE_Primary qualified_secondary_worker_codes = sorted( list(all_qualified_worker_codes - set(primary_worker_codes)) ) shared_worker_count_to_check = shared_worker_count - {1} for share_count in shared_worker_count_to_check: # Primary must be default when shared. secondary_share_count = share_count - len(primary_worker_codes) if secondary_share_count < 1: continue for combined_worker in list( combinations(qualified_secondary_worker_codes, secondary_share_count) ): new_combined = primary_worker_codes + combined_worker if new_combined in self.permanent_pairs: candidate_dict[new_combined] = SCORE_Permenant_Pair else: share_count_score_index = share_count if share_count <= 5 else 5 candidate_dict[new_combined] = SCORE_Share[share_count_score_index] # if share_count > 2: # log.info(f"{final_job.job_code}--> {new_combined}, share_count {share_count} > 2, be careful ...") # # continue # Finally I sort all candidates by their scores # I take top 80 only for now. final_job_workers_ranked = [ k for k, v in sorted( candidate_dict.items(), key=lambda item: item[1], reverse=True, ) ][0:80] if len(candidate_dict) > 20: log.debug( f"{final_job.job_code}, candidates_length = {len(candidate_dict)}, be careful ..." ) # --> {candidate_dict} final_job.searching_worker_candidates = final_job_workers_ranked # [(curr_job.requested_primary_worker_code,)] # curr_job.scheduled_worker_codes = orig_scheduled_worker_codes return final_job_workers_ranked def _get_sorted_worker_code_list(self, job_index): # TODO w_set = set() if len(self.jobs) >= 1: for w_list in self.jobs[self.current_job_i].searching_worker_candidates: for w_code in w_list: w_set.add(w_code) return w_set # return list(self.workers_dict.keys())[0 : self.config["nbr_observed_slots"]] def _check_action_on_rule_set( self, a_dict: ActionDict, unplanned_job_codes: List = [] ) -> SingleJobDropCheckOutput: if (a_dict.scheduled_start_minutes < self.get_env_planning_horizon_start_minutes()) or ( a_dict.scheduled_start_minutes > self.get_env_planning_horizon_end_minutes() ): return SingleJobDropCheckOutput( status_code=ActionScoringResultType.ERROR, score=0, travel_time=15, messages=[ ActionEvaluationScore( score=-1, score_type="Planning Window", message=f"scheduled_start_minutes {a_dict.scheduled_start_minutes} out of horizon ({self.get_env_planning_horizon_start_minutes()} - {self.get_env_planning_horizon_end_minutes()})", metrics_detail={}, ) ], ) result_info = SingleJobDropCheckOutput( status_code=ActionScoringResultType.OK, score=0, travel_time=15, messages=[], ) if len(unplanned_job_codes) > 0: self.unplanned_job_codes = unplanned_job_codes for rule in self.rule_set: rule_checked = rule.evalute_action_normal(env=self, action_dict=a_dict) rule_checked.score_type = rule.title result_info.messages.append(rule_checked) # rule_checked_dict if (rule_checked.score < 1) & (result_info.status_code == ActionScoringResultType.OK): # Reduce from OK to Warning result_info.status_code = ActionScoringResultType.WARNING # Else it is already -1. keep it -1 if rule_checked.score == -1: # Reduce overall result to ERROR, and stays at ERROR result_info.status_code = ActionScoringResultType.ERROR self.unplanned_job_codes = [] return result_info def _move_to_next_unplanned_job(self): self.current_job_i += 1 # if self.current_job_i >= len(self.jobs): # return True for step_i in range(len(self.jobs)): if self.current_job_i >= len(self.jobs): self.current_job_i = 0 if self.jobs[self.current_job_i].planning_status == JobPlanningStatus.UNPLANNED: self.current_job_code = self.jobs[self.current_job_i].job_code return True self.current_job_i += 1 return False def _move_to_next_not_replayed_job(self) -> str: """Find next not replay, but inplanning/planned job""" self.current_job_i += 1 # if self.current_job_i >= len(self.jobs): # return True for step_i in range(len(self.jobs)): if self.current_job_i >= len(self.jobs): self.current_job_i = 0 if (self.jobs[self.current_job_i].planning_status != JobPlanningStatus.UNPLANNED) and ( not self.jobs[self.current_job_i].is_replayed ): return self.jobs[self.current_job_i].job_code self.current_job_i += 1 return None def _get_reward(self): # This only is based on inplanning if self.nbr_inplanning == 0: return 0 job_count = 0 inplanning_job_count = 0 for j in self.jobs: if not j.is_active: continue job_count += 1 if j.planning_status != JobPlanningStatus.UNPLANNED: inplanning_job_count += 1 if job_count <= 0: return 0 reward = inplanning_job_count / job_count return reward + 0.1 """ 2020-10-17 14:43:19 Not good. travel_reward = ( (self.expected_travel_time_so_far / self.nbr_inplanning) - (self.total_travel_time / self.total_travel_worker_job_count) ) / (self.expected_travel_time_so_far / self.nbr_inplanning) """ if travel_reward > 1: # Very unlikely travel_reward = 1 if travel_reward < -0.5: travel_reward = -0.5 travel_reward = 0 reward = (nbr_inplanning * 0.2 / len(self.jobs)) + travel_reward if self.nbr_inplanning == len(self.jobs): reward = reward + 2 # Additional points def _get_observation(self): # return self._get_observation_numerical() return self._get_observation_slot_list_dict() # return self._get_observation_slot_list_tuple() # return self._get_observation_slot_list_tuple_toy() try: return self._get_observation_numerical() except: log.error("Error in _get_observation_numerical , returning empty observation {}") return rl_env.action_space.sample() # return {} def _get_observation_numerical(self): # agent_vector is current observation. obs_dict = {} if (len(self.jobs) < 1) | (len(self.workers) < 1): log.error( "Error, no workers or no jobs , returning empty observation (obs_dict = empty)" ) # raise LookupError("Error, Env has no workers or no jobs , returning obs_dict = empty") return obs_dict self.config["NBR_FEATURE_PER_TECH"] = 19 # NBR_FEATURE_WORKER_ONLY = self.config['NBR_FEATURE_WORKER_ONLY'] # NBR_FEATURE_CUR_JOB_n_OVERALL = self.config['NBR_FEATURE_CUR_JOB_n_OVERALL'] # NBR_WORK_TIME_SLOT_PER_DAY = self.config['NBR_FEATURE_CUR_JOB_n_OVERALL'] # 1 self.current_observed_worker_list = self._get_sorted_worker_code_list(self.current_job_i) curr_work_time_slots = [] agent_vector = np.zeros( self.config["NBR_FEATURE_PER_TECH"] * self.config["nbr_of_days_planning_window"] * len(self.current_observed_worker_list) ) o_start_longitude = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) o_start_latitude = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) # o_max_available_working_slot_duration = np.zeros(self.config['nbr_observed_slots']* self.config['nbr_of_days_planning_window']) o_end_longitude = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) o_end_latitude = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) o_average_longitude = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) o_average_latitude = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) # = o_nbr_of_jobs_per_worker_day = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) o_total_travel_minutes = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) o_first_job_start_minutes = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) o_total_occupied_duration = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) o_total_unoccupied_duration = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) # = o_max_available_working_slot_duration = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) o_max_available_working_slot_start = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) o_max_available_working_slot_end = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) o_max_unoccupied_rest_slot_duration = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) o_total_available_working_slot_duration = np.zeros( self.config["nbr_observed_slots"] * self.config["nbr_of_days_planning_window"] ) # + NBR_FEATURE_WORKER_ONLY + NBR_FEATURE_CUR_JOB_n_OVERALL ) # .tolist() # Firstly the assigned job stats for current_job_worker_index in range(len(self.current_observed_worker_list)): # setup home (start,end) GPS # x,y = get_normalized_location(self.workers_dict[worker_index]['home_gps']) worker = self.workers_dict[self.current_observed_worker_list[current_job_worker_index]] worker_index = worker.worker_index # assigned time slots for each worker in agent_vector # curr_total_free_duration = self.workers_dict[worker_index]['total_free_duration'] for day_i in range(self.config["nbr_of_days_planning_window"]): # Features for this worker_day_assignment f_start_longlat = self.get_start_gps_for_worker_day(worker, day_i) f_end_longlat = self.get_end_gps_for_worker_day(worker, day_i) f_average_longlat = self.get_start_gps_for_worker_day(worker, day_i) f_nbr_of_jobs = 0 f_total_travel_minutes = 0 # I use 0--24 hours for each day. Do not accumulate. f_first_job_start_minutes = self.config["minutes_per_day"] f_last_job_end_minutes = self.config["minutes_per_day"] # (day_i + 1) * f_total_occupied_duration = 0 # Sum up from assigned_jobs f_total_unoccupied_duration = self.config["minutes_per_day"] * 1 f_max_available_working_slot_duration = 0 f_max_available_working_slot_start = 0 f_max_available_working_slot_end = 0 f_min_available_working_slot_duration = 0 # kandbox_config.KANDBOX_MAXINT f_min_available_working_slot_start = 0 f_min_available_working_slot_end = 0 f_max_unoccupied_rest_slot_duration = 0 f_total_available_working_slot_duration = 0 # Sum up from free_slots last_job_end = day_i * self.config["minutes_per_day"] # for assigned_job_index_info in worker[ "assigned_jobs" ]: # TODO, performance, already sorted, not necessary to loop through all. # for day_i in range(self.config["nbr_of_days_planning_window"]): job_code_list_today = [] travel_minutes_list_today = [] overlap_slots = self.slot_server.get_overlapped_slots( worker_id=worker.worker_code, start_minutes=day_i * 1440, end_minutes=(day_i + 1) * 1440, ) job_slot_prev_travel_minutes = 0 for a_slot in overlap_slots: if a_slot.slot_type == TimeSlotType.JOB_FIXED: assigned_job_code = a_slot.assigned_job_codes[0] job_code_list_today.append(a_slot.assigned_job_codes[0]) travel_minutes_list_today.append(job_slot_prev_travel_minutes) # TODO, performance, already sorted, not necessary to loop through all. elif a_slot.slot_type == TimeSlotType.FLOATING: ( prev_travel, next_travel, inside_travel, ) = self.get_travel_time_jobs_in_slot(a_slot, a_slot.assigned_job_codes) free_minutes = ( a_slot.end_minutes - a_slot.end_minutes - (prev_travel + next_travel + sum(inside_travel)) ) f_total_available_working_slot_duration += free_minutes if free_minutes > f_max_available_working_slot_duration: f_max_available_working_slot_duration = free_minutes f_max_available_working_slot_start = a_slot.start_minutes f_max_available_working_slot_end = a_slot.end_minutes if f_min_available_working_slot_duration == 0: f_min_available_working_slot_duration = free_minutes f_min_available_working_slot_start = a_slot.start_minutes f_min_available_working_slot_end = a_slot.end_minutes elif free_minutes < f_min_available_working_slot_duration: f_min_available_working_slot_duration = free_minutes f_min_available_working_slot_start = a_slot.start_minutes f_min_available_working_slot_end = a_slot.end_minutes if len(a_slot.assigned_job_codes) > 0: job_code_list_today += list(a_slot.assigned_job_codes) travel_minutes_list_today += [prev_travel] + inside_travel job_slot_prev_travel_minutes = ( next_travel # Here i assume that it is leading to next job/ or home ) for job_seq, assigned_job_code in enumerate(job_code_list_today): # try: the_job = self.jobs_dict[assigned_job_code] except KeyError: log.error(f"JOB:{assigned_job_code} is not found in ENV->self.jobs_dict") continue # This job is assigned to this day. if f_first_job_start_minutes < the_job.scheduled_start_minutes: f_first_job_start_minutes = the_job.scheduled_start_minutes f_start_longlat = [ the_job.location.geo_longitude, the_job.location.geo_latitude, ] # if ( the_job.scheduled_start_minutes + the_job.scheduled_duration_minutes < f_last_job_end_minutes ): f_last_job_end_minutes = ( the_job.scheduled_start_minutes + the_job.scheduled_duration_minutes ) f_end_longlat = [ the_job.location.geo_longitude, the_job.location.geo_latitude, ] # f_average_longlat = [ ((f_average_longlat[0] * f_nbr_of_jobs) + the_job.location.geo_longitude) / (f_nbr_of_jobs + 1), ((f_average_longlat[1] * f_nbr_of_jobs) + the_job.location.geo_latitude) / (f_nbr_of_jobs + 1), ] f_nbr_of_jobs += 1 f_total_travel_minutes += travel_minutes_list_today[job_seq] f_total_occupied_duration += the_job.scheduled_duration_minutes f_total_unoccupied_duration -= ( the_job.scheduled_duration_minutes + travel_minutes_list_today[job_seq] ) curr_rest_duration_before_job = ( the_job.scheduled_start_minutes - travel_minutes_list_today[job_seq] - last_job_end ) if curr_rest_duration_before_job > f_max_unoccupied_rest_slot_duration: f_max_unoccupied_rest_slot_duration = curr_rest_duration_before_job if f_total_available_working_slot_duration < 0: # log.debug("Error: f_total_available_working_slot_duration < 0") f_total_available_working_slot_duration = 0 curr_worker_day_i = ( current_job_worker_index * self.config["nbr_of_days_planning_window"] + day_i ) o_start_longitude[curr_worker_day_i] = f_start_longlat[ 0 ] # current_job_worker_index, day_i o_start_latitude[curr_worker_day_i] = f_start_longlat[1] o_end_longitude[curr_worker_day_i] = f_end_longlat[0] o_end_latitude[curr_worker_day_i] = f_end_longlat[1] o_average_longitude[curr_worker_day_i] = f_average_longlat[0] o_average_latitude[curr_worker_day_i] = f_average_longlat[1] # o_nbr_of_jobs_per_worker_day[curr_worker_day_i] = f_nbr_of_jobs o_total_travel_minutes[curr_worker_day_i] = f_total_travel_minutes o_first_job_start_minutes[curr_worker_day_i] = f_first_job_start_minutes o_total_occupied_duration[curr_worker_day_i] = f_total_occupied_duration o_total_unoccupied_duration[curr_worker_day_i] = f_total_unoccupied_duration # o_max_available_working_slot_duration[ curr_worker_day_i ] = f_max_available_working_slot_duration o_max_available_working_slot_start[ curr_worker_day_i ] = f_max_available_working_slot_start o_max_available_working_slot_end[ curr_worker_day_i ] = f_max_available_working_slot_end o_max_unoccupied_rest_slot_duration[ curr_worker_day_i ] = f_max_unoccupied_rest_slot_duration o_total_available_working_slot_duration[ curr_worker_day_i ] = f_total_available_working_slot_duration # Not useful, deprecated. Use obs_tuple instead 2020-09-18 08:29:37 agent_vector[ current_job_worker_index * self.config["NBR_FEATURE_PER_TECH"] * self.config["nbr_of_days_planning_window"] + day_i * self.config["NBR_FEATURE_PER_TECH"]: current_job_worker_index * self.config["NBR_FEATURE_PER_TECH"] * self.config["nbr_of_days_planning_window"] + (day_i + 1) * self.config["NBR_FEATURE_PER_TECH"] ] = [ f_start_longlat[0], f_start_longlat[1], f_end_longlat[0], f_end_longlat[1], f_average_longlat[0], f_average_longlat[1], f_nbr_of_jobs, f_total_travel_minutes, f_first_job_start_minutes, f_total_occupied_duration, f_total_unoccupied_duration, f_max_available_working_slot_duration, f_max_available_working_slot_start, f_max_available_working_slot_end, f_min_available_working_slot_duration, f_min_available_working_slot_start, f_min_available_working_slot_end, f_max_unoccupied_rest_slot_duration, f_total_available_working_slot_duration, ] # worker_feature_begin_offset = NBR_FEATURE_PER_TECH*worker_index + NBR_DAYS*MAX_ASSIGNED_TIME_SLOT_PER_DAY*NBR_WORK_TIME_SLOT_PER_DAY + NBR_DAYS # agent_vector[ worker_feature_begin_offset + 2] = curr_total_free_duration # agent_vector[worker_feature_begin_offset + 3] = curr_max_free_slot_duration """ # Secondary all worker statistics for current_job_worker_index in self.current_observed_worker_list: # setup home (start,end) GPS # x,y = get_normalized_location(self.workers_dict[worker_index]['home_gps']) worker = self.workers_dict[self.current_observed_worker_list[current_job_worker_index]] worker_index = worker['worker_index'] agent_vector[NBR_FEATURE_PER_TECH*worker_index + 0: \ NBR_FEATURE_PER_TECH*worker_index + NBR_WORK_TIME_SLOT_PER_DAY] \ = [ 0, 0 , worker['geo_longitude'] , worker['geo_latitude'] ] agent_vector[NBR_FEATURE_PER_TECH*(worker_index+1) - 4: \ NBR_FEATURE_PER_TECH*(worker_index+1) - 0 ] \ = [ 0, 0 , x,y] for worker_index in range(len(self.workers_dict)): # Historical customer visit GPS Gaussian , Sigma, Gamma, 2 DIMENSIONAL # and others 4 agent_vector[len(self.workers_dict)*NBR_FEATURE_PER_TECH + worker_index] \ = self.workers_dict[worker_index]['level'] / 5 """ # Thirdly the job statistics # Now append the visit information AS THE 2nd half. # job_feature_start_index = len(self.workers_dict)*NBR_FEATURE_PER_TECH + NBR_FEATURE_WORKER_ONLY if self.current_job_i >= len(self.jobs): new_job_i = len(self.jobs) - 1 else: new_job_i = self.current_job_i # obs_dict['worker_job_assignment_matrix'] = agent_vector obs_dict["assignment.start_longitude"] = o_start_longitude obs_dict["assignment.start_latitude"] = o_start_latitude obs_dict[ "assignment.max_available_working_slot_duration" ] = o_max_available_working_slot_duration # obs_dict['job.features'] = np.zeroes(3) # obs_dict['job.mandatory_minutes_minmax_flag'] = np.zeros(1) obs_dict[ "job.mandatory_minutes_minmax_flag" ] = 1 # self.jobs[new_job_i][ "mandatory_minutes_minmax_flag" ] obs_dict["job.requested_start_minutes"] = np.zeros(1) obs_dict["job.requested_start_minutes"][0] = self.jobs[ new_job_i ].requested_start_min_minutes if obs_dict["job.requested_start_minutes"][0] < 0: obs_dict["job.requested_start_minutes"][0] = 0 elif ( obs_dict["job.requested_start_minutes"][0] >= self.config["minutes_per_day"] * self.config["nbr_of_days_planning_window"] * 2 ): obs_dict["job.requested_start_minutes"][0] = ( self.config["minutes_per_day"] * self.config["nbr_of_days_planning_window"] * 2 - 1 ) obs_dict["job.requested_duration_minutes"] = np.zeros(1) obs_dict["job.requested_duration_minutes"][0] = self.jobs[ new_job_i ].requested_duration_minutes obs_dict["job.geo_longitude"] = np.zeros(1) obs_dict["job.geo_longitude"][0] = self.jobs[new_job_i].location.geo_longitude obs_dict["job.geo_latitude"] = np.zeros(1) obs_dict["job.geo_latitude"][0] = self.jobs[new_job_i].location.geo_latitude obs_tuple = ( o_start_longitude, o_start_latitude, o_end_longitude, o_end_latitude, o_average_longitude, o_average_latitude, # o_nbr_of_jobs_per_worker_day, o_total_travel_minutes, o_first_job_start_minutes, o_total_occupied_duration, o_total_unoccupied_duration, # o_max_available_working_slot_duration, o_max_available_working_slot_start, o_max_available_working_slot_end, o_max_unoccupied_rest_slot_duration, o_total_available_working_slot_duration, # 1, # self.jobs[new_job_i]["mandatory_minutes_minmax_flag"], obs_dict["job.requested_start_minutes"], obs_dict["job.requested_duration_minutes"], obs_dict["job.geo_longitude"], obs_dict["job.geo_latitude"], ) """ f_start_longlat[0], f_start_longlat[1], f_end_longlat[0], f_end_longlat[1], f_average_longlat[0], f_average_longlat[1], f_nbr_of_jobs, f_total_travel_minutes, f_first_job_start_minutes, f_total_occupied_duration, f_total_unoccupied_duration, f_max_available_working_slot_duration, f_max_available_working_slot_start, f_max_available_working_slot_end, f_min_available_working_slot_duration, f_min_available_working_slot_start, f_min_available_working_slot_end, f_max_unoccupied_rest_slot_duration, f_total_available_working_slot_duration """ """ visit_vector = list(range(5)) # Location of the new job is added to the end of agent_vector. visit_vector[0] = self.jobs[self.current_job_i]['requested_duration_minutes'] visit_vector[1] = self.jobs[self.current_job_i]['mandatory_minutes_minmax_flag'] # visit_vector[2] = self.jobs[self.current_job_i]['preferred_minutes_minmax_flag'] visit_vector[3] = self.jobs[self.current_job_i]['requested_start_minutes'] visit_vector[4] = self.jobs[self.current_job_i]['requested_start_minutes'] """ # obs_dict['job.requested_start_max_minutes'] = self.jobs[self.current_job_i]['requested_start_minutes'] # agent_vector[job_feature_start_index +3] = self.jobs[self.current_job_i]['expected_job_day'] / 30 # agent_vector[job_feature_start_index +4] = self.jobs[self.current_job_i]['tolerated_day_min'] /10 # agent_vector[job_feature_start_index +5] = self.jobs[self.current_job_i]['tolerated_day_max'] /10 # visit_vector[ 5] = 0 # self.jobs[self.current_job_i]['customer_level'] # visit_vector[ 6] = 0 # self.jobs[self.current_job_i]['product_level'] # obs_dict['current_job_vector'] = visit_vector # Finished looping through all workers return obs_tuple # OrderedDict(obs_dict) # *************************************************************** # # Internal functions # *************************************************************** def _set_spaces(self): obs_slot_low = ( [self.config["geo_longitude_min"]] * 4 + [self.config["geo_latitude_min"]] * 4 + [0] * 9 ) obs_slot_high = ( [self.config["geo_longitude_max"]] * 4 + [self.config["geo_latitude_max"]] * 4 + [self.config["max_nbr_of_jobs_per_day_worker"] + 1] + [self.config["minutes_per_day"]] * 3 + [self.config["minutes_per_day"] * self.config["nbr_of_days_planning_window"]] * 3 + [1] + [self.config["nbr_observed_slots"]] ) self.obs_slot_space = spaces.Box( low=np.array(obs_slot_low), high=np.array(obs_slot_high), # shape=(len(obs_slot_high),), dtype=np.float32, ) # self.obs_slot_space = spaces.Tuple( # ( # # start_loc, end_loc, avg_loc # spaces.Box( # low=self.config["geo_longitude_min"], # high=self.config["geo_longitude_max"], # shape=(4,), # dtype=np.float32, # ), # spaces.Box( # low=self.config["geo_latitude_min"], # high=self.config["geo_latitude_max"], # shape=(4,), # dtype=np.float32, # ), # # f_nbr_of_jobs, # spaces.Box( # low=0, # high=self.config["max_nbr_of_jobs_per_day_worker"] + 1, # shape=(1,), # dtype=np.float32, # ), # # f_slot_duration, f_total_travel_minutes,f_total_occupied_duration, # f_total_unoccupied_duration, f_max_available_working_slot_duration # spaces.Box( # low=0, # high=self.config["minutes_per_day"], # shape=(3,), # dtype=np.float32, # ), # # f_slot_start_minutes, f_first_job_start_minutes, # f_max_available_working_slot_start, f_max_available_working_slot_end, # spaces.Box( # low=0, # high=self.config["minutes_per_day"] # * self.config["nbr_of_days_planning_window"], # shape=(3,), # dtype=np.float32, # ), # # f_max_unoccupied_rest_slot_duration --- Looks like current RL can only do working hour dispatching. # # f_min_available_working_slot_duration, # # f_min_available_working_slot_start, # # f_min_available_working_slot_end, # # spaces.Discrete(2), # Mandatory start time or not # spaces.Discrete(2), # valid slot indicator. ==1 # spaces.Discrete(self.config["nbr_observed_slots"]), # technician ID # ) # ) obs_job_low = ( [self.config["geo_longitude_min"]] + [self.config["geo_latitude_min"]] + [0] + [0 - (self.PLANNING_WINDOW_LENGTH * 5)] * 3 + [0] * 4 ) obs_job_high = ( [self.config["geo_longitude_max"]] + [self.config["geo_latitude_max"]] + [self.config["minutes_per_day"]] + [self.PLANNING_WINDOW_LENGTH * 5] * 3 + [self.config["nbr_observed_slots"]] * 2 + [1] * 2 ) self.obs_job_space = spaces.Box( low=np.array(obs_job_low), high=np.array(obs_job_high), # shape=(len(obs_job_high),), dtype=np.float32, ) # self.obs_job_space = spaces.Tuple( # ( # # start_loc, end_loc, avg_loc # spaces.Box( # low=self.config["geo_longitude_min"], # high=self.config["geo_longitude_max"], # shape=(1,), # dtype=np.float32, # ), # spaces.Box( # low=self.config["geo_latitude_min"], # high=self.config["geo_latitude_max"], # shape=(1,), # dtype=np.float32, # ), # # f_job_duration, # spaces.Box( # low=0, # high=self.config["minutes_per_day"], # shape=(1,), # dtype=np.float32, # ), # # min, max, f_job_start_minutes # spaces.Box( # low=0 - (self.PLANNING_WINDOW_LENGTH * 5), # high=self.PLANNING_WINDOW_LENGTH * 5, # shape=(3,), # dtype=np.float32, # ), # # # min max nbr of share # spaces.Box( # low=0, # high=self.config["nbr_observed_slots"], # shape=(2,), # dtype=np.float32, # ), # # f_max_unoccupied_rest_slot_duration --- Looks like current RL can only do working hour dispatching. # # f_min_available_working_slot_duration, # # f_min_available_working_slot_start, # # f_min_available_working_slot_end, # # spaces.Discrete(2), # Mandatory start time or not # spaces.Discrete(2), # valid slot indicator. ==1 # spaces.Discrete(2), # fixed time requirements # ) # ) self.observation_space = spaces.Dict( { "slots": Repeated(self.obs_slot_space, max_len=self.config["nbr_observed_slots"]), "jobs": Repeated(self.obs_job_space, max_len=self.config["nbr_observed_slots"]), } ) # action_low = 0 # action_high = np.ones(MAX_OBSERVED_SLOTS) # action_low[0:self.config['nbr_observed_slots']] = 0 # action_high[0:self.config['nbr_observed_slots']] = 1 self.action_space = spaces.Box( low=0, high=1, shape=(self.config["nbr_observed_slots"],), dtype=np.float32 ) # self.action_space = spaces.Discrete(self.config["nbr_observed_slots"]) def _get_observation_slot_list_tuple(self): if (len(self.jobs) < 1) | (len(self.workers) < 1): log.error( "Error, no workers or no jobs , returning empty observation (obs_dict = empty)" ) # raise LookupError("Error, Env has no workers or no jobs , returning obs_dict = empty") return (0, 0) if self.current_job_i >= len(self.jobs): self.current_job_i = 0 # new_job_i = self.current_job_i current_capable_worker_set = self._get_sorted_worker_code_list(self.current_job_i) sorted_slot_codes = sorted(list(self.slot_server.time_slot_dict.keys())) slot_dict = self.slot_server.time_slot_dict curr_work_time_slots = [] max_available_working_slot_duration = 0 viewed_slots = [] for slot_code in sorted_slot_codes: # for work_time_i in range(len( self.workers_dict[worker_code]['assigned_jobs'] ) ): # nth assigned job time unit. if slot_code in config.DEBUGGING_SLOT_CODE_SET: log.debug(f"_get_observation_slot_list debug {slot_code}") # if a_slot.slot_type in (TimeSlotType.JOB_FIXED, TimeSlotType.FLOATING): try: a_slot = self.slot_server.get_slot(self.redis_conn.pipeline(), slot_code) if a_slot.worker_id not in current_capable_worker_set: continue the_assigned_codes = sorted( a_slot.assigned_job_codes, key=lambda jc: self.jobs_dict[jc].scheduled_start_minutes, ) except KeyError as ke: log.error( f"unknown worker code, or unknown job codes to the env. slot_code = {slot_code}, error = {str(ke)}" ) print(ke) continue except MissingSlotException as mse: log.error( f"MissingSlotException - unknow slot_code = {slot_code}, error = {str(mse)}" ) print(mse) continue ( prev_travel, next_travel, inside_travel, ) = self.get_travel_time_jobs_in_slot(a_slot, a_slot.assigned_job_codes) # , what if there is no job? you get 0,[],0 all_travels = [prev_travel] + inside_travel + [next_travel] f_total_travel_minutes = sum(all_travels) f_max_travel_minutes_index = sum(all_travels[:-1]) slot_vector = np.zeros(self.NBR_FEATURE_PER_SLOT) slot_vector[0:2] = [ self.normalize(a_slot.start_location[0], "longitude"), self.normalize(a_slot.start_location[1], "latitude"), ] slot_vector[2] = 0 if a_slot.start_location[2] == "H" else 1 slot_vector[3:5] = [ self.normalize(a_slot.end_location[0], "longitude"), self.normalize(a_slot.end_location[1], "latitude"), ] slot_vector[5] = 0 if a_slot.end_location[2] == "H" else 1 slot_vector[6] = self.normalize( len(a_slot.assigned_job_codes), "max_job_in_slot" ) # f_nbr_of_jobs = 0 slot_vector[7] = self.normalize(f_total_travel_minutes, "day_minutes_1440") if len(a_slot.assigned_job_codes) < 1: slot_vector[8:10] = slot_vector[0:2] slot_vector[10:12] = slot_vector[3:5] # all_location_0 = [a_slot.start_location[0], a_slot.end_location[0]] # all_location_1 = [a_slot.start_location[1], a_slot.end_location[1]] # [ # sum(all_location_0) / len(all_location_0), # sum(all_location_1) / len(all_location_1), # sum(all_location_0) / len(all_location_0), # sum(all_location_1) / len(all_location_1), # ] else: slot_vector[8:10] = [ self.normalize( self.jobs_dict[a_slot.assigned_job_codes[0]].location[0], "longitude" ), self.normalize( self.jobs_dict[a_slot.assigned_job_codes[0]].location[1], "latitude" ), ] slot_vector[10:12] = [ self.normalize( self.jobs_dict[a_slot.assigned_job_codes[-1]].location[0], "longitude" ), self.normalize( self.jobs_dict[a_slot.assigned_job_codes[-1]].location[1], "latitude" ), ] # all_location_0 = [ # self.jobs_dict[a_slot.assigned_job_codes[j]].location[0] # for j in range(len(a_slot.assigned_job_codes)) # ] # all_location_1 = [ # self.jobs_dict[a_slot.assigned_job_codes[j]].location[1] # for j in range(len(a_slot.assigned_job_codes)) # ] # slot_vector[10:12] = [ # sum(all_location_0) / len(all_location_0), # sum(all_location_1) / len(all_location_1), # ] # f_total_occupied_duration # Sum up from assigned_jobs f_total_occupied_duration = sum( self.jobs_dict[a_slot.assigned_job_codes[j]].scheduled_duration_minutes for j in range(len(a_slot.assigned_job_codes)) ) slot_vector[12] = self.normalize(f_total_occupied_duration, "day_minutes_1440") if ( a_slot.end_minutes - a_slot.start_minutes - slot_vector[12] > max_available_working_slot_duration ): max_available_working_slot_duration = ( a_slot.end_minutes - a_slot.start_minutes - slot_vector[12] ) slot_vector[13] = self.normalize(a_slot.start_minutes, "start_minutes") slot_vector[14] = self.normalize(a_slot.end_minutes, "start_minutes") # Start time within a day slot_vector[15] = self.normalize(a_slot.start_minutes % 1440, "day_minutes_1440") slot_vector[16] = self.normalize(a_slot.end_minutes % 1440, "day_minutes_1440") available_free_minutes = ( a_slot.end_minutes - a_slot.start_minutes - slot_vector[12] - f_total_travel_minutes ) slot_vector[17] = self.normalize(available_free_minutes, "day_minutes_1440") slot_vector[18] = self.normalize(a_slot.start_overtime_minutes, "duration") slot_vector[19] = self.normalize(a_slot.end_overtime_minutes, "duration") # Secondary tech slot_vector[20] = 0 # ( 0 if self.workers_dict[a_slot.worker_id].flex_form_data["is_assistant"] else 1 ) slot_vector[21] = 0 # self.workers_dict[a_slot.worker_id].worker_index slot_vector[22] = ( 1 if self.workers_dict[a_slot.worker_id].belongs_to_pair is not None else 0 ) slot_vector[23] = 0 # Future curr_work_time_slots.append(slot_vector) viewed_slots.append(a_slot) # Secondary overall statistics about workers, inplanning jobs, including un-planed visits unplanned_job_list = [] current_job_list = [] target_unplanned_job_i = None for job_code, new_job in self.jobs_dict.items(): if not new_job.is_active: # events and appt can not be U anyway continue if new_job.planning_status != JobPlanningStatus.UNPLANNED: continue unplanned_job_vector = np.zeros(self.NBR_FEATURE_PER_UNPLANNED_JOB) unplanned_job_vector[0] = self.normalize(new_job.requested_duration_minutes, "duration") unplanned_job_vector[1] = self.normalize( new_job.requested_start_min_minutes, "start_minutes" ) unplanned_job_vector[2] = self.normalize( new_job.requested_start_max_minutes, "start_minutes" ) # in case FS, FT, requested_start_min_minutes == requested_start_max_minutes. But they might mean other day - FT. unplanned_job_vector[3] = self.normalize( new_job.requested_start_minutes, "start_minutes" ) unplanned_job_vector[4] = self.normalize( new_job.requested_start_min_minutes % 1440, "day_minutes_1440" ) unplanned_job_vector[5] = 0 # 1 if new_job.flex_form_data["ServiceType"] == "FS" else 0 unplanned_job_vector[6] = 0 # 1 if new_job.flex_form_data["ServiceType"] == "FT" else 0 unplanned_job_vector[7:9] = [ self.normalize(new_job.location[0], "longitude"), self.normalize(new_job.location[1], "latitude"), ] # Min shared tech unplanned_job_vector[9] = self.normalize( new_job.flex_form_data["min_number_of_workers"], "max_nbr_shared_workers" ) unplanned_job_vector[10] = self.normalize( new_job.flex_form_data["max_number_of_workers"], "max_nbr_shared_workers" ) unplanned_job_vector[ 11 ] = 0 # self.workers_dict[ new_job.requested_primary_worker_code ].worker_index if new_job.job_code == self.jobs[self.current_job_i].job_code: target_unplanned_job_i = len(unplanned_job_list) - 1 current_job_list.append(unplanned_job_vector) else: unplanned_job_list.append(unplanned_job_vector) if len(unplanned_job_list) + len(current_job_list) < 1: log.error("No jobs to observe, done?") return None # (0, 0, 0) if len(curr_work_time_slots) < 1: log.error("No slots to observe, done?") return None # (0, 0, 0) # Thirdly the current job being dispatched overview_vector = np.zeros(self.NBR_FEATURE_OVERVIEW) overview_vector[0] = 0 # target_unplanned_job_i overview_vector[1] = max_available_working_slot_duration overview_vector[2] = len(self.workers_dict.keys()) overview_vector[3] = len(curr_work_time_slots) overview_vector[4] = len(self.jobs_dict.keys()) overview_vector[5] = len(unplanned_job_list) overview_vector[6] = self.get_env_planning_horizon_start_minutes() overview_vector[7] = int(self.get_env_planning_horizon_start_minutes() / 1440) * 1440 # Work, Rest days as one-hot # Overtime usage? # obs_tuple = [ np.stack(curr_work_time_slots, axis=0), np.stack(current_job_list + current_job_list, axis=0), # TODO + unplanned_job_list # np.stack(, axis=0), overview_vector, viewed_slots, ] return obs_tuple # OrderedDict(obs_dict) def _get_observation_slot_list_tuple_toy(self): curr_work_time_slots = self.curr_work_time_slots current_job_list = [self.unplanned_job_list[self.trial_step_count]] temp_merged = np.concatenate(( self.curr_work_time_slots, self.unplanned_job_list[self.trial_step_count:] + self.unplanned_job_list[:self.trial_step_count] ), axis=1) obs_tuple = [ np.stack(curr_work_time_slots, axis=0), np.stack(current_job_list + current_job_list, axis=0), np.stack(temp_merged, axis=0), ] return obs_tuple # OrderedDict(obs_dict) def _get_observation_slot_list_dict(self): if (len(self.jobs) < 1) | (len(self.workers) < 1): log.error( "Error, no workers or no jobs , returning empty observation (obs_dict = empty)" ) # raise LookupError("Error, Env has no workers or no jobs , returning obs_dict = empty") return (0, 0) if self.current_job_i >= len(self.jobs): self.current_job_i = 0 # new_job_i = self.current_job_i current_capable_worker_set = self._get_sorted_worker_code_list(self.current_job_i) sorted_slot_codes = sorted(list(self.slot_server.time_slot_dict.keys())) slot_dict = self.slot_server.time_slot_dict curr_work_time_slots = [] max_available_working_slot_duration = 0 viewed_slots = [] obs_dict = { "slots": [], "jobs": [], } for slot_code in sorted_slot_codes: # for work_time_i in range(len( self.workers_dict[worker_code]['assigned_jobs'] ) ): # nth assigned job time unit. if slot_code in kandbox_config.DEBUGGING_SLOT_CODE_SET: log.debug(f"_get_observation_slot_list debug {slot_code}") # if a_slot.slot_type in (TimeSlotType.JOB_FIXED, TimeSlotType.FLOATING): try: a_slot = self.slot_server.get_slot(self.redis_conn.pipeline(), slot_code) if a_slot.worker_id not in current_capable_worker_set: continue the_assigned_codes = sorted( a_slot.assigned_job_codes, key=lambda jc: self.jobs_dict[jc].scheduled_start_minutes, ) except KeyError as ke: log.error( f"unknown worker code, or unknown job codes to the env. slot_code = {slot_code}, error = {str(ke)}" ) print(ke) continue except MissingSlotException as mse: log.error( f"MissingSlotException - unknow slot_code = {slot_code}, error = {str(mse)}" ) print(mse) continue ( prev_travel, next_travel, inside_travel, ) = self.get_travel_time_jobs_in_slot(a_slot, a_slot.assigned_job_codes) # , what if there is no job? you get 0,[],0 all_travels = [prev_travel] + inside_travel + [next_travel] f_total_travel_minutes = sum(all_travels) f_max_travel_minutes_index = sum(all_travels[:-1]) longitude_vector = np.zeros(4) longitude_vector[0] = a_slot.start_location[0] longitude_vector[1] = a_slot.end_location[0] latitude_vector = np.zeros(4) latitude_vector[0] = a_slot.start_location[1] latitude_vector[1] = a_slot.end_location[1] if len(a_slot.assigned_job_codes) < 1: longitude_vector[2] = (longitude_vector[0] + longitude_vector[1]) / 2 latitude_vector[2] = (latitude_vector[0] + latitude_vector[1]) / 2 longitude_vector[3] = (longitude_vector[0] + longitude_vector[1]) / 2 latitude_vector[3] = (latitude_vector[0] + latitude_vector[1]) / 2 else: longitude_vector[2] = self.jobs_dict[a_slot.assigned_job_codes[0]].location[0] latitude_vector[2] = self.jobs_dict[a_slot.assigned_job_codes[0]].location[1] longitude_vector[3] = self.jobs_dict[a_slot.assigned_job_codes[-1]].location[0] latitude_vector[3] = self.jobs_dict[a_slot.assigned_job_codes[-1]].location[1] f_nbr_of_jobs = np.zeros(1) f_nbr_of_jobs[0] = len(a_slot.assigned_job_codes) slot_duration_vector = np.zeros(3) # f_slot_duration, f_total_travel_minutes,f_total_occupied_duration, # f_total_unoccupied_duration ### , f_max_available_working_slot_duration slot_duration_vector[0] = a_slot.end_minutes - a_slot.start_minutes slot_duration_vector[1] = f_total_travel_minutes slot_duration_vector[2] = f_total_occupied_duration = sum( self.jobs_dict[a_slot.assigned_job_codes[j]].scheduled_duration_minutes for j in range(len(a_slot.assigned_job_codes)) ) start_minutes_vector = np.zeros(3) # f_slot_start_minutes, f_first_job_start_minutes, f_last_job_end_minutes # f_max_available_working_slot_start, f_max_available_working_slot_end, start_minutes_vector[0] = ( a_slot.start_minutes - self.get_env_planning_horizon_start_minutes() ) start_minutes_vector[1] = start_minutes_vector[0] start_minutes_vector[2] = start_minutes_vector[0] if len(a_slot.assigned_job_codes) >= 1: start_minutes_vector[1] = ( self.jobs_dict[a_slot.assigned_job_codes[0]].scheduled_start_minutes - a_slot.start_minutes ) start_minutes_vector[2] = ( self.jobs_dict[a_slot.assigned_job_codes[-1]].scheduled_start_minutes + self.jobs_dict[a_slot.assigned_job_codes[-1]].scheduled_duration_minutes - a_slot.start_minutes ) if start_minutes_vector[1] < 0: start_minutes_vector[1] = 0 if start_minutes_vector[2] < 0: start_minutes_vector[2] = 0 if start_minutes_vector[1] >= self.PLANNING_WINDOW_LENGTH: start_minutes_vector[1] = self.PLANNING_WINDOW_LENGTH - 1 if start_minutes_vector[2] >= self.PLANNING_WINDOW_LENGTH: start_minutes_vector[2] = self.PLANNING_WINDOW_LENGTH - 1 # ( 0 if self.workers_dict[a_slot.worker_id].flex_form_data["is_assistant"] else 1 ) # 1 if self.workers_dict[a_slot.worker_id].belongs_to_pair is not None else 0 slot_obs = np.concatenate( ( np.array(longitude_vector), np.array(latitude_vector), np.array(f_nbr_of_jobs), np.array(slot_duration_vector), np.array(start_minutes_vector), # # valid slot, worker id np.array([1, self.workers_dict[a_slot.worker_id].worker_index]), ), axis=0, ) # ( # np.array(longitude_vector), # np.array(latitude_vector), # np.array(f_nbr_of_jobs), # np.array(slot_duration_vector), # np.array(start_minutes_vector), # 1, # self.workers_dict[a_slot.worker_id].worker_index, # ) obs_dict["slots"].append(slot_obs) viewed_slots.append(a_slot) if len(obs_dict["slots"]) >= self.config["nbr_observed_slots"]: break # Secondary overall statistics about workers, inplanning jobs, including un-planed visits unplanned_job_list = [] current_job_list = [] target_unplanned_job_i = None for job_code, new_job in self.jobs_dict.items(): if not new_job.is_active: # events and appt can not be U anyway continue if new_job.planning_status != JobPlanningStatus.UNPLANNED: continue longitude_vector = np.zeros(1) longitude_vector[0] = new_job.location[0] latitude_vector = np.zeros(1) latitude_vector[0] = new_job.location[1] duration_vector =
np.zeros(1)
numpy.zeros
import numpy as np import cv2 import math from skimage.morphology import skeletonize def rotate(origin, xy, radians): """Rotate a point around a given point. I call this the "high performance" version since we're caching some values that are needed >1 time. It's less readable than the previous function but it's faster. """ y, x = xy[:2] offset_y, offset_x = origin[:2] adjusted_x = (x - offset_x) adjusted_y = (y - offset_y) cos_rad = math.cos(radians) sin_rad = math.sin(radians) qx = offset_x + cos_rad * adjusted_x + sin_rad * adjusted_y qy = offset_y + -sin_rad * adjusted_x + cos_rad * adjusted_y return qx, qy def neighbour(x,y,image): """Return 8-neighbours of image point P1(x,y), in a clockwise order""" img = image.copy() x_1, y_1, x1, y1 = x-1, y-1, x+1, y+1; return [img[x_1][y], img[x_1][y1], img[x][y1], img[x1][y1], img[x1][y], img[x1][y_1], img[x][y_1], img[x_1][y_1]] def getSkeletonIntersection(skeleton): """ Given a skeletonised image, it will give the coordinates of the intersections of the skeleton. Keyword arguments: skeleton -- the skeletonised image to detect the intersections of Returns: List of 2-tuples (x,y) containing the intersection coordinates """ # A big list of valid intersections 2 3 4 # These are in the format shown to the right 1 C 5 # 8 7 6 validIntersection = [[0,1,0,1,0,0,1,0], [0,0,1,0,1,0,0,1], [1,0,0,1,0,1,0,0], [0,1,0,0,1,0,1,0], [0,0,1,0,0,1,0,1], [1,0,0,1,0,0,1,0], [0,1,0,0,1,0,0,1], [1,0,1,0,0,1,0,0], [0,1,0,0,0,1,0,1], [0,1,0,1,0,0,0,1], [0,1,0,1,0,1,0,0], [0,0,0,1,0,1,0,1], [1,0,1,0,0,0,1,0],[1,0,1,0,1,0,0,0],[0,0,1,0,1,0,1,0], [1,0,0,0,1,0,1,0],[1,0,0,1,1,1,0,0],[0,0,1,0,0,1,1,1], [1,1,0,0,1,0,0,1],[0,1,1,1,0,0,1,0],[1,0,1,1,0,0,1,0], [1,0,1,0,0,1,1,0],[1,0,1,1,0,1,1,0],[0,1,1,0,1,0,1,1], [1,1,0,1,1,0,1,0],[1,1,0,0,1,0,1,0],[0,1,1,0,1,0,1,0], [0,0,1,0,1,0,1,1],[1,0,0,1,1,0,1,0],[1,0,1,0,1,1,0,1], [1,0,1,0,1,1,0,0],[1,0,1,0,1,0,0,1],[0,1,0,0,1,0,1,1], [0,1,1,0,1,0,0,1],[1,1,0,1,0,0,1,0],[0,1,0,1,1,0,1,0], [0,0,1,0,1,1,0,1],[1,0,1,0,0,1,0,1],[1,0,0,1,0,1,1,0], [1,0,1,1,0,1,0,0]]; image = skeleton.copy(); image = image/255; row,col = image.shape[:2] intersections = [] neighbours = [] for x in range(1,row-1): for y in range(1,col-1): # If we have a white pixel if image[x,y] == 1: neighbours = neighbour(x,y,image) valid = True; if neighbours in validIntersection: intersections.append((y,x)); # Filter intersections to make sure we don't count them twice or ones that are very close together for point1 in intersections: for point2 in intersections: if (((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2) < 10**2) and (point1 != point2): intersections.remove(point2); # Remove duplicates intersections = list(set(intersections)); return intersections; def skeleton_endpoints(skel): # make out input nice, possibly necessary skel = skel.copy() skel[skel!=0] = 1 skel = np.uint8(skel) # apply the convolution kernel = np.uint8([[1, 1, 1], [1, 10, 1], [1, 1, 1]]) src_depth = -1 filtered = cv2.filter2D(skel,src_depth,kernel) # now look through to find the value of 11 # this returns a mask of the endpoints, but if you just want the coordinates, you could simply return np.where(filtered==11) out = np.zeros_like(skel) out =
np.where(filtered==11)
numpy.where
""" Define related utility functions for Fourier–Bessel (2D), Spherical Fourier–Bessel (3D) and prolate spheroidal wave function (PSWF) objects. """ import logging import numpy as np from numpy import diff, exp, log, pi from numpy.polynomial.legendre import leggauss from scipy.special import jn, jv, sph_harm from aspire.utils import grid_2d, grid_3d logger = logging.getLogger(__name__) def check_besselj_zeros(nu, z): """ Sanity-check a sequence of estimated zeros of the Bessel function with order `nu`. :param nu: The real number order of the Bessel function. :param z: (Array-like) A sequence of postulated zeros. :return result: True or False. """ # Compute first and second order differences of the sequence of zeros dz = np.diff(z) ddz = np.diff(dz) # Check criteria for acceptable zeros result = True # Real roots result = result and all(np.isreal(z)) # All roots should be > 0, check first of increasing sequence result = result and z[0] > 0 # Spacing between zeros is greater than 3 result = result and all(dz > 3) # Second order differences should be zero or just barely increasing to # within 16x machine precision. if nu >= 0.5: result = result and all(ddz < 16 * np.spacing(z[1:-1])) # For nu < 0.5 the spacing will be slightly decreasing, so flip the sign else: result = result and all(ddz > -16 * np.spacing(z[1:-1])) return result def besselj_newton(nu, z0, max_iter=10): """ Uses the Newton-Raphson method to compute the zero(s) of the Bessel function with order `nu` with initial guess(es) `z0`. :param nu: The real number order of the Bessel function. :param z0: (Array-like) The initial guess(es) for the root-finding algorithm. :param max_iter: Maximum number of iterations for Newton-Raphson (default: 10). :return z: (Array-like) The estimated root(s). """ z = z0 # Factor worse than machine precision c = 8 for i in range(max_iter): # Calculate values and derivatives at z f = jv(nu, z) fp = jv(nu - 1, z) - nu * f / z # Update zeros dz = -f / fp z = z + dz # Check for convergence if all(np.abs(dz) < c * np.spacing(z)): break # If we're not converging yet, start relaxing convergence criterion if i >= 6: c *= 2 return z def sph_bessel(ell, r): """ Compute spherical Bessel function values. :param ell: The order of the spherical Bessel function. :param r: The coordinates where the function is to be evaluated. :return: The value of j_ell at r. """ scalar = np.isscalar(r) len_r = 1 if scalar else len(r) j = np.zeros(len_r) j[r == 0] = 1 if ell == 0 else 0 r_mask = r != 0 j[r_mask] = np.sqrt(pi / (2 * r[r_mask])) * jv(ell + 0.5, r[r_mask]) if scalar: j = j.item() return j def norm_assoc_legendre(j, m, x): """ Evaluate the normalized associated Legendre polynomial :param j: The order of the associated Legendre polynomial, must satisfy |m| < j. :param m: The degree of the associated Legendre polynomial, must satisfy |m| < j. :param x: An array of values between -1 and +1 on which to evaluate. :return: The normalized associated Legendre polynomial evaluated at corresponding x. """ # For negative m, flip sign and use the symmetry identity. # In the rest, we assume that m is non-negative. if m < 0: m = -m px = (-1) ** m * norm_assoc_legendre(j, m, x) px *= (-1) ** m return px # Initialize the recurrence at (m, m) and (m, m+1). p0 = ( (-1) ** m * np.sqrt( (2 * m + 1) / 2 * np.prod(np.arange(2 * m - 1, 0, -2) / np.arange(2 * m, 0, -2)) ) * (1 - x * x) ** (m / 2) ) p1 = x * np.sqrt(2 * m + 3) * p0 # If these are the desired indices, return these initial values. if j == m: px = p0 elif j == m + 1: px = p1 else: # Fixing m, work our way up from (m, m+1) to (m, j). for n in range(m + 1, j): px = np.sqrt((2 * n + 3) / ((n + 1 + m) * (n + 1 - m))) * ( np.sqrt(2 * n + 1) * x * p1 - np.sqrt((n + m) * (n - m) / (2 * n - 1)) * p0 ) p0 = p1 p1 = px return px def real_sph_harmonic(j, m, theta, phi): """ Evaluate a real spherical harmonic :param j: The order of the spherical harmonic. These must satisfy |m| < j. :param m: The degree of the spherical harmonic. These must satisfy |m| < j. :param theta: The spherical coordinates of the points at which we want to evaluate the real spherical harmonic. `theta` is the latitude between 0 and pi :param phi: The spherical coordinates of the points at which we want to evaluate the real spherical harmonic. `phi` is the longitude, between 0 and 2*pi :return: The real spherical harmonics evaluated at the points (theta, phi). """ abs_m = abs(m) y = sph_harm(abs_m, j, phi, theta) if m < 0: y = np.sqrt(2) * np.imag(y) elif m > 0: y = np.sqrt(2) * np.real(y) else: y = np.real(y) return y def besselj_zeros(nu, k): """ Finds the first `k` zeros of the Bessel function of order `nu`, i.e. J_nu. Adapted from "zerobess.m" by <NAME> <<EMAIL>> :param nu: The real number order of the Bessel function (must be positive and <1e7). :param k: The number of zeros to return (must be >= 3). :return z: A 1D NumPy array of the first `k` zeros. """ assert k >= 3, "k must be >= 3" assert 0 <= nu <= 1e7, "nu must be between 0 and 1e7" z = np.zeros(k) # Guess first zeros using powers of nu c0 = np.array( [ [0.1701, -0.6563, 1.0355, 1.8558], [0.1608, -1.0189, 3.1348, 3.2447], [-0.2005, -1.2542, 5.7249, 4.3817], ] ) z0 = nu + c0 @ ((nu + 1) ** np.array([[-1, -2 / 3, -1 / 3, 1 / 3]]).T) # refine guesses z[:3] = besselj_newton(nu, z0).squeeze() n = 3 j = 2 err_tol = 5e-3 # Estimate further zeros iteratively using spacing of last three zeros so far while n < k: j = min(j, k - n) # Use last 3 zeros to predict spacing for next j zeros r = diff(z[n - 3 : n]) - pi if (r[0] * r[1]) > 0 and (r[0] / r[1]) > 1: p = log(r[0] / r[1]) / log(1 - 1 / (n - 1)) t = np.array(np.arange(1, j + 1), ndmin=2).T / (n - 1) dz = pi + r[1] * exp(p * log(1 + t)) else: dz = pi * np.ones((j, 1)) # Guess and refine z0 = z[n - 1] + np.cumsum(dz) z[n : n + j] = besselj_newton(nu, z0) # Check to see that the sequence of zeros makes sense assert check_besselj_zeros( nu, z[n - 2 : n + j] ), "Unable to properly estimate Bessel function zeros." # Check how far off we are err = (z[n : n + j] - z0) / np.diff(z[n - 1 : n + j]) n = n + j if max(abs(err)) < err_tol: # Predictions were close enough, double number of zeros j *= 2 else: # Some predictions were off, set to double the number of good predictions j = 2 * (np.where(abs(err) >= err_tol)[0][0] + 1) return z def all_besselj_zeros(ell, r): """ Compute the zeros of the order `ell` Bessel function which are less than `r`. :param ell: The real number order of the Bessel function. :param r: The upper bound for zeros returned. :return n, r0: The number of zeros and the zeros themselves as a NumPy array. """ k = 4 # get the first 4 zeros r0 = besselj_zeros(ell, k) while all(r0 < r): # increase the number of zeros sought # until one of the zeros is greater than `r` k *= 2 r0 = besselj_zeros(ell, k) r0 = r0[r0 < r] # return the number of zeros and the zeros themselves return len(r0), r0 def unique_coords_nd(N, ndim, shifted=False, normalized=True, dtype=np.float32): """ Generate unique polar coordinates from 2D or 3D rectangular coordinates. :param N: length size of a square or cube. :param ndim: number of dimension, 2 or 3. :param shifted: shifted half pixel or not for odd N. :param normalized: normalize the grid or not. :return: The unique polar coordinates in 2D or 3D """ assert ndim in ( 2, 3, ), "Only two- or three-dimensional basis functions are supported." assert N > 0, "Number of grid points should be greater than 0." if ndim == 2: grid = grid_2d( N, shifted=shifted, normalized=normalized, indexing="yx", dtype=dtype ) mask = grid["r"] <= 1 # Minor differences in r/theta/phi values are unimportant for the purpose # of this function, so round off before proceeding r = grid["r"][mask].round(5) phi = grid["phi"][mask].round(5) r_unique, r_idx = np.unique(r, return_inverse=True) ang_unique, ang_idx = np.unique(phi, return_inverse=True) else: grid = grid_3d( N, shifted=shifted, normalized=normalized, indexing="zyx", dtype=dtype ) mask = grid["r"] <= 1 # Minor differences in r/theta/phi values are unimportant for the purpose of this function, # so we round off before proceeding. r = grid["r"][mask].round(5) theta = grid["theta"][mask].round(5) phi = grid["phi"][mask].round(5) r_unique, r_idx = np.unique(r, return_inverse=True) ang_unique, ang_idx = np.unique( np.vstack([theta, phi]), axis=1, return_inverse=True ) return { "r_unique": r_unique, "ang_unique": ang_unique, "r_idx": r_idx, "ang_idx": ang_idx, "mask": mask, } def lgwt(ndeg, a, b, dtype=np.float32): """ Compute Legendre-Gauss quadrature Generates the Legendre-Gauss nodes and weights on an interval [a, b] with truncation order of ndeg for computing definite integrals using Legendre-Gauss quadrature. Suppose you have a continuous function f(x) which is defined on [a, b] which you can evaluate at any x in [a, b]. Simply evaluate it at all of the values contained in the x vector to obtain a vector f, then compute the definite integral using sum(f.*w); This is a 2rapper for numpy.polynomial leggauss which outputs only in the range of (-1, 1). :param ndeg: truncation order, that is, the number of nodes. :param a, b: The endpoints of the interval over which the quadrature is defined. :return x, w: The quadrature nodes and weights. """ x, w = leggauss(ndeg) scale_factor = (b - a) / 2 shift = (a + b) / 2 x = scale_factor * x + shift w = scale_factor * w return x.astype(dtype), w.astype(dtype) def d_decay_approx_fun(a, b, c, d): return np.square(c) / (16 * (np.square(d) + d * (2 * b + a + 1)) - np.square(c)) def p_n(n, alpha, beta, x): """ The first n jacobi polynomial of x as defined in Yoel's PSWF paper, eq (2), page 6 :param n: int, > 0 Number of polynomials to compute :param alpha: float, > -1 :param beta: float, > -1 :param x: (m,) ndarray :return: v: (m, n + 1) ndarray v[:, i] = P^{(alpha, beta)}_n(x) as defined in the paper """ m = len(x) if n < 0: return
np.array([])
numpy.array
import numpy as np from scipy import optimize import z_l_v import logging from numerik import nr_ls from numerik import rref, ref import itertools from setup_results_log import notify_status_func, setup_log_file import timeit eps = np.finfo(float).eps np.set_printoptions(linewidth=200) setup_log_file('log_bsp_pat_ue_03_2.log', with_console=False) # Modell feststellen alpha_tr, epsilon, sigma, psi, omega = z_l_v.use_pr_eos() p = 35. # bar temp = 273.15 + 220. # K t_flash = 273.15 + 60 # K t0_ref = 298.15 # K r = 8.314 # J/(mol K) namen = ['CO', 'H2', 'CO2', 'H2O', 'CH4', 'NH3', 'AR', 'O2', 'N2'] elemente = ['C', 'O', 'N', 'H', 'AR'] atom_m = np.array([ [1, 0, 1, 0, 1, 0, 0, 0, 0], [1, 0, 2, 1, 0, 0, 0, 2, 0], [0, 0, 0, 0, 0, 1, 0, 0, 2], [0, 2, 0, 2, 4, 3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0] ], dtype=float) mm_el = np.array([ 12.011, 15.999, 14.007, 1.008, 39.948, ]) / 1000. # kg/gmol mm_k = atom_m.T.dot(mm_el) red_atom_m = rref(ref(atom_m)[0]) rho = int(np.linalg.matrix_rank(red_atom_m)) n_c = len(namen) n_e = len(elemente) n_r = n_c - rho ne_dampf = np.array([ 0, 0, 0, 60000, 0, 0, 0, 0, 0 ], dtype=float) # kmol/h ne_rohgas = np.array([ 0, 0, 0, 0, 20000, 0, 0, 0, 0 ], dtype=float) # kmol/h ne_luft = np.array([ 0, 0, 0, 0, 0, 0, 0.01 * 15000, 0.21 * 15000, 0.78 * 15000 ], dtype=float) # kmol/h te_dampf = 500 + 273.15 # °K te_rohgas = 20 + 273.15 # °K te_luft = 20 + 273.15 # °K # Thermochemische Daten # <NAME>: Thermochemical Data of Pure Substances. # Weinheim, New York: VCH, 1993. h_298 = np.array( [-110.541, 0., -393.505, -241.826, -74.873, -45.940, 0., 0., 0.]) * 1000 # J/mol g_298 = np.array( [-169.474, -38.962, -457.240, -298.164, -130.393, -103.417, -46.167, -61.165, -57.128 ]) * 1000 # J/mol # Kritische Parameter Tc, Pc, omega(azentrischer Faktor) # e.V., VDI: VDI-Wärmeatlas. Wiesbaden: Springer Berlin Heidelberg, 2013. tc = np.array([ 132.86, 33.19, 304.13, 647.10, 190.56, 405.50, 150.69, 154.60, 126.19 ]) # K pc = np.array([ 34.98, 13.15, 73.77, 220.64, 45.99, 113.59, 48.63, 50.46, 33.96 ]) # bar omega_af = np.array([ 0.050, -0.219, 0.224, 0.344, 0.011, 0.256, -0.002, 0.022, 0.037 ]) # umformen (reshape), um direkte Division zu ermöglichen mm = np.array([ 28.01, 2.02, 44.01, 18.02, 16.04, 17.03, 39.95, 32.00, 28.01 ]).reshape([len(namen), 1]) # Koeffizienten für Cp(T)/R = B+(C-B)(T/(A+T))^2*( # 1-A/(A+T)*(D+E*T/(A+T)+F*(T/(A+T))^2+G*(T/(A+T))^3)) # Nach rechts hin: A, B, C, D # e.V., VDI: VDI-Wärmeatlas. Wiesbaden: Springer Ber<NAME>, 2013. cp_coefs = np.array([z for z in [ [ y.replace(',', '.').replace('–', '-') for y in x.split(' ') ] for x in """ 407,9796 3,5028 2,8524 –2,3018 32,9055 –100,1815 106,1141 392,8422 2,4906 –3,6262 –1,9624 35,6197 –81,3691 62,6668 514,5073 3,4923 –0,9306 –6,0861 54,1586 –97,5157 70,9687 706,3032 5,1703 –6,0865 –6,6011 36,2723 –63,0965 46,2085 1530,8043 4,2038 –16,6150 –3,5668 43,0563 –86,5507 65,5986 931,6298 4,8468 –7,1757 –7,6727 51,3877 –93,4217 67,9515 0,0000 2,5000 2,5000 0,0000 0,0000 0,0000 0,0000 2122,2098 3,5302 –7,1076 –1,4542 30,6057 –83,6696 79,4375 432,2027 3,5160 2,8021 –4,1924 42,0153 –114,2500 111,1019 """.split('\n') if len(x) > 0] if len(z) > 1], dtype=float) def cp_durch_r(t, component): a, b, c, d, e, f, g = cp_coefs[component, :] gamma_var = t / (a + t) return b + (c - b) * gamma_var**2 * ( 1 + (gamma_var - 1) * ( d + e * gamma_var + f * gamma_var**2 + g * gamma_var**3 )) # dimensionslos def int_cp_durch_r_dt_minus_const(t): a, b, c, d, e, f, g = [ item.reshape(n_c) for item in np.split( cp_coefs, cp_coefs.shape[1], axis=1 ) ] return b * t + (c - b) * ( t - (d + e + f + g + 2) * a * np.log(a + t) + -(2 * d + 3 * e + 4 * f + 5 * g + 1) * a**2 / (a + t) + +(1 * d + 3 * e + 6 * f + 10 * g) * a**3 / 2 / (a + t)**2 + -(1 * e + 4 * f + 10 * g) * a**4 / 3 / (a + t)**3 + +(1 * f + 5 * g) * a**5 / 4 / (a + t)**4 + - g * a**6 / 5 / (a + t)**5 ) def int_cp_durch_rt_dt_minus_const(t): a, b, c, d, e, f, g = [ item.reshape(n_c) for item in np.split( cp_coefs, cp_coefs.shape[1], axis=1 ) ] return b * np.log(t) + (c - b) * ( np.log(a + t) + (1 + d + e + f + g) * a / (a + t) + -(d / 2 + e + 3 * f / 2 + 2 * g) * a**2 / (a + t)**2 + +(e / 3 + f + 2 * g) * a**3 / (a + t)**3 + -(f / 4 + g) * a**4 / (a + t)**4 + +(g / 5) * a**5 / (a + t)**5 ) def mcph(x, t0, t): return sum(x * ( int_cp_durch_r_dt_minus_const(t) - int_cp_durch_r_dt_minus_const(t0)) ) / sum(x) / (t - t0) def mcps(x, t0, t): return sum(x * ( int_cp_durch_rt_dt_minus_const(t) - int_cp_durch_rt_dt_minus_const(t0)) ) / sum(x) / np.log(t / t0) # Berechne H(T), G(T) und K(T) mit Cp(T) def h(t): enthalpien = h_298 + r * ( int_cp_durch_r_dt_minus_const(t) - int_cp_durch_r_dt_minus_const(298.15) ) return enthalpien # J/mol def g(t, h_t): freie_energien = h_t - t / t0_ref * (h_298 - g_298) - \ r * t * (int_cp_durch_rt_dt_minus_const(t) - int_cp_durch_rt_dt_minus_const(t0_ref)) return freie_energien # J/mol def k(t, g_t, nuij): delta_g_t = nuij.T.dot(g_t) return np.exp(-delta_g_t / (r * t)) n_0 = (ne_dampf + ne_rohgas + ne_luft) * 1000 # mol/h h_dampf_ein = h(te_dampf) h_rohgas_ein = h(te_rohgas) h_luft_ein = h(te_luft) # Adiabate Vermischung sum(n_i h_i(T)-n_i h_i(T0))=0 t_ein = optimize.root(lambda temp: sum( ne_dampf * 1000 * (h(temp) - h_dampf_ein) + ne_rohgas * 1000 * (h(temp) - h_rohgas_ein) + ne_luft * 1000 * (h(temp) - h_luft_ein) ), (te_luft + te_dampf + te_rohgas) / 3 ).x h_t_ein = h(t_ein) g_t_ein = g(t_ein, h_t_ein) # J/mol t_aus_rdampfr = 995 + 273.15 # °K h_0 = h_t_ein g_0 = g_t_ein h_1 = h(t_aus_rdampfr) g_1 = g(t_aus_rdampfr, h_1) def stoech_matrix(atom_m, g_t, p, temp, namen, festgelegte_komponente=None): """ Hauptreaktionen nach Meyers 1986 REF: MYERS, <NAME>.; MYERS, <NAME>. Numerical solution of chemical equilibria with simultaneous reactions. The Journal of chemical physics, 1986, 84. Jg., Nr. 10, S. 5787-5795. :param atom_m: atomic matrix. Unsorted. E by C. :param g_t: Gibbs free energy of formation of species in atom matrix at T. :param p: Operating pressure :param namen: names of compounds in atomic matrix. :return: stoech_m, indexes, nach_g_sortieren, k_t, nuij """ nach_g_sortieren = np.argsort(g_t) # Hauptkomponente festlegen (bei Dampfrerormierung, CH4) # festgelegte_komponente = [4] # in nach g sortierten Koordinaten if festgelegte_komponente is None: festgelegte_komponente_sortiert = None else: festgelegte_komponente_sortiert = sorted( nach_g_sortieren.argsort()[festgelegte_komponente]) pot_gruppen = itertools.combinations(range(n_c), rho) i = 0 for komb in pot_gruppen: i += 1 indexes = np.concatenate([
np.array(komb)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 5 12:13:33 2018 @author: <NAME> (<EMAIL> / <EMAIL>) """ # Python dependencies from __future__ import division import pandas as pd import numpy as np import mpmath as mp import matplotlib as mpl import seaborn as sns from scipy.constants import codata from pylab import * from lmfit import minimize, report_fit # from scipy.optimize import leastsq pd.options.mode.chained_assignment = None # Plotting mpl.rc("mathtext", fontset="stixsans", default="regular") mpl.rcParams.update({"axes.labelsize": 22}) mpl.rc("xtick", labelsize=16) mpl.rc("ytick", labelsize=16) mpl.rc("legend", fontsize=14) F = codata.physical_constants["Faraday constant"][0] Rg = codata.physical_constants["molar gas constant"][0] ### Importing PyEIS add-ons from .PyEIS_Data_extraction import * from .PyEIS_Lin_KK import * from .PyEIS_Advanced_tools import * ### Frequency generator ## # def freq_gen(f_start, f_stop, pts_decade=7): """ Frequency Generator with logspaced freqencies Inputs ---------- f_start = frequency start [Hz] f_stop = frequency stop [Hz] pts_decade = Points/decade, default 7 [-] Output ---------- [0] = frequency range [Hz] [1] = Angular frequency range [1/s] """ f_decades = np.log10(f_start) - np.log10(f_stop) f_range = np.logspace( np.log10(f_start), np.log10(f_stop), num=np.around(pts_decade * f_decades).astype(int), endpoint=True, ) w_range = 2 * np.pi * f_range return f_range, w_range ### Simulation Element Functions ## # def elem_L(w, L): """ Simulation Function: -L- Returns the impedance of an inductor <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] L = Inductance [ohm * s] """ return 1j * w * L def elem_C(w, C): """ Simulation Function: -C- Inputs ---------- w = Angular frequency [1/s] C = Capacitance [F] """ return 1 / (C * (w * 1j)) def elem_Q(w, Q, n): """ Simulation Function: -Q- Inputs ---------- w = Angular frequency [1/s] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] """ return 1 / (Q * (w * 1j) ** n) ### Simulation Curciuts Functions ## # def cir_RsC(w, Rs, C): """ Simulation Function: -Rs-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] C = Capacitance [F] """ return Rs + 1 / (C * (w * 1j)) def cir_RsQ(w, Rs, Q, n): """ Simulation Function: -Rs-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] """ return Rs + 1 / (Q * (w * 1j) ** n) def cir_RQ(w, R="none", Q="none", n="none", fs="none"): """ Simulation Function: -RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- w = Angular frequency [1/s] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] fs = Summit frequency of RQ circuit [Hz] """ if R == "none": R = 1 / (Q * (2 * np.pi * fs) ** n) elif Q == "none": Q = 1 / (R * (2 * np.pi * fs) ** n) elif n == "none": n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) return R / (1 + R * Q * (w * 1j) ** n) def cir_RsRQ(w, Rs="none", R="none", Q="none", n="none", fs="none"): """ Simulation Function: -Rs-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] fs = Summit frequency of RQ circuit [Hz] """ if R == "none": R = 1 / (Q * (2 * np.pi * fs) ** n) elif Q == "none": Q = 1 / (R * (2 * np.pi * fs) ** n) elif n == "none": n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) return Rs + (R / (1 + R * Q * (w * 1j) ** n)) def cir_RC(w, C="none", R="none", fs="none"): """ Simulation Function: -RC- Returns the impedance of an RC circuit, using RQ definations where n=1. see cir_RQ() for details <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] R = Resistance [Ohm] C = Capacitance [F] fs = Summit frequency of RC circuit [Hz] """ return cir_RQ(w, R=R, Q=C, n=1, fs=fs) def cir_RsRQRQ( w, Rs, R="none", Q="none", n="none", fs="none", R2="none", Q2="none", n2="none", fs2="none", ): """ Simulation Function: -Rs-RQ-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [Ohm] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase element exponent [-] fs = Summit frequency of RQ circuit [Hz] R2 = Resistance [Ohm] Q2 = Constant phase element [s^n/ohm] n2 = Constant phase element exponent [-] fs2 = Summit frequency of RQ circuit [Hz] """ if R == "none": R = 1 / (Q * (2 * np.pi * fs) ** n) elif Q == "none": Q = 1 / (R * (2 * np.pi * fs) ** n) elif n == "none": n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if R2 == "none": R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2) elif Q2 == "none": Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n2) elif n2 == "none": n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2)) return ( Rs + (R / (1 + R * Q * (w * 1j) ** n)) + (R2 / (1 + R2 * Q2 * (w * 1j) ** n2)) ) def cir_RsRQQ(w, Rs, Q, n, R1="none", Q1="none", n1="none", fs1="none"): """ Simulation Function: -Rs-RQ-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] Q1 = Constant phase element in (RQ) circuit [s^n/ohm] n1 = Constant phase elelment exponent in (RQ) circuit [-] fs1 = Summit frequency of RQ circuit [Hz] Q = Constant phase element of series Q [s^n/ohm] n = Constant phase elelment exponent of series Q [-] """ return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_Q(w, Q, n) def cir_RsRQC(w, Rs, C, R1="none", Q1="none", n1="none", fs1="none"): """ Simulation Function: -Rs-RQ-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] Q1 = Constant phase element in (RQ) circuit [s^n/ohm] n1 = Constant phase elelment exponent in (RQ) circuit [-] fs1 = summit frequency of RQ circuit [Hz] C = Constant phase element of series Q [s^n/ohm] """ return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_C(w, C=C) def cir_RsRCC(w, Rs, R1, C1, C): """ Simulation Function: -Rs-RC-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] C1 = Constant phase element in (RQ) circuit [s^n/ohm] C = Capacitance of series C [s^n/ohm] """ return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_C(w, C=C) def cir_RsRCQ(w, Rs, R1, C1, Q, n): """ Simulation Function: -Rs-RC-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] C1 = Constant phase element in (RQ) circuit [s^n/ohm] Q = Constant phase element of series Q [s^n/ohm] n = Constant phase elelment exponent of series Q [-] """ return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_Q(w, Q, n) def Randles_coeff( w, n_electron, A, E="none", E0="none", D_red="none", D_ox="none", C_red="none", C_ox="none", Rg=Rg, F=F, T=298.15, ): """ Returns the Randles coefficient sigma [ohm/s^1/2]. Two cases: a) ox and red are both present in solution here both Cred and Dred are defined, b) In the particular case where initially only Ox species are present in the solution with bulk concentration C*_ox, the surface concentrations may be calculated as function of the electrode potential following Nernst equation. Here C_red and D_red == 'none' Ref.: - Lasia, A.L., ISBN: 978-1-4614-8932-0, "Electrochemical Impedance Spectroscopy and its Applications" - <NAME>., ISBN: 0-471-04372-9, <NAME>. (2001) "Electrochemical methods: Fundamentals and applications". New York: Wiley. <NAME> (<EMAIL> // <EMAIL>) Inputs ---------- n_electron = number of e- [-] A = geometrical surface area [cm2] D_ox = Diffusion coefficent of oxidized specie [cm2/s] D_red = Diffusion coefficent of reduced specie [cm2/s] C_ox = Bulk concetration of oxidized specie [mol/cm3] C_red = Bulk concetration of reduced specie [mol/cm3] T = Temperature [K] Rg = Gas constant [J/molK] F = Faradays consntat [C/mol] E = Potential [V] if reduced specie is absent == 'none' E0 = formal potential [V] if reduced specie is absent == 'none' Returns ---------- Randles coefficient [ohm/s^1/2] """ if C_red != "none" and D_red != "none": sigma = ((Rg * T) / ((n_electron ** 2) * A * (F ** 2) * (2 ** (1 / 2)))) * ( (1 / (D_ox ** (1 / 2) * C_ox)) + (1 / (D_red ** (1 / 2) * C_red)) ) elif C_red == "none" and D_red == "none" and E != "none" and E0 != "none": f = F / (Rg * T) x = (n_electron * f * (E - E0)) / 2 func_cosh2 = (np.cosh(2 * x) + 1) / 2 sigma = ( (4 * Rg * T) / ((n_electron ** 2) * A * (F ** 2) * C_ox * ((2 * D_ox) ** (1 / 2))) ) * func_cosh2 else: print("define E and E0") Z_Aw = sigma * (w ** (-0.5)) - 1j * sigma * (w ** (-0.5)) return Z_Aw def cir_Randles( w, n_electron, D_red, D_ox, C_red, C_ox, Rs, Rct, n, E, A, Q="none", fs="none", E0=0, F=F, Rg=Rg, T=298.15, ): """ Simulation Function: Randles -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit with full complity of the warbug constant NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- n_electron = number of e- [-] A = geometrical surface area [cm2] D_ox = Diffusion coefficent of oxidized specie [cm2/s] D_red = Diffusion coefficent of reduced specie [cm2/s] C_ox = Concetration of oxidized specie [mol/cm3] C_red = Concetration of reduced specie [mol/cm3] T = Temperature [K] Rg = Gas constant [J/molK] F = Faradays consntat [C/mol] E = Potential [V] if reduced specie is absent == 'none' E0 = Formal potential [V] if reduced specie is absent == 'none' Rs = Series resistance [ohm] Rct = charge-transfer resistance [ohm] Q = Constant phase element used to model the double-layer capacitance [F] n = expononent of the CPE [-] Returns ---------- The real and imaginary impedance of a Randles circuit [ohm] """ Z_Rct = Rct Z_Q = elem_Q(w, Q, n) Z_w = Randles_coeff( w, n_electron=n_electron, E=E, E0=E0, D_red=D_red, D_ox=D_ox, C_red=C_red, C_ox=C_ox, A=A, T=T, Rg=Rg, F=F, ) return Rs + 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) def cir_Randles_simplified(w, Rs, R, n, sigma, Q="none", fs="none"): """ Simulation Function: Randles -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit with a simplified NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> / <EMAIL>) """ if R == "none": R = 1 / (Q * (2 * np.pi * fs) ** n) elif Q == "none": Q = 1 / (R * (2 * np.pi * fs) ** n) elif n == "none": n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) Z_Q = 1 / (Q * (w * 1j) ** n) Z_R = R Z_w = sigma * (w ** (-0.5)) - 1j * sigma * (w ** (-0.5)) return Rs + 1 / (1 / Z_Q + 1 / (Z_R + Z_w)) # Polymer electrolytes def cir_C_RC_C(w, Ce, Cb="none", Rb="none", fsb="none"): """ Simulation Function: -C-(RC)-C- This circuit is often used for modeling blocking electrodes with a polymeric electrolyte, which exhibts a immobile ionic species in bulk that gives a capacitance contribution to the otherwise resistive electrolyte Ref: - <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London, Bruce, P. "Electrical Measurements on Polymer Electrolytes" <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Ce = Interfacial capacitance [F] Rb = Bulk/series resistance [Ohm] Cb = Bulk capacitance [F] fsb = summit frequency of bulk (RC) circuit [Hz] """ Z_C = elem_C(w, C=Ce) Z_RC = cir_RC(w, C=Cb, R=Rb, fs=fsb) return Z_C + Z_RC def cir_Q_RQ_Q(w, Qe, ne, Qb="none", Rb="none", fsb="none", nb="none"): """ Simulation Function: -Q-(RQ)-Q- Modified cir_C_RC_C() circuits that can be used if electrodes and bulk are not behaving like ideal capacitors <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Qe = Interfacial capacitance modeled with a CPE [F] ne = Interfacial constant phase element exponent [-] Rb = Bulk/series resistance [Ohm] Qb = Bulk capacitance modeled with a CPE [s^n/ohm] nb = Bulk constant phase element exponent [-] fsb = summit frequency of bulk (RQ) circuit [Hz] """ Z_Q = elem_Q(w, Q=Qe, n=ne) Z_RQ = cir_RQ(w, Q=Qb, R=Rb, fs=fsb, n=nb) return Z_Q + Z_RQ def tanh(x): """ As numpy gives errors when tanh becomes very large, above 10^250, this functions is used for np.tanh """ return (1 - np.exp(-2 * x)) / (1 + np.exp(-2 * x)) def cir_RCRCZD( w, L, D_s, u1, u2, Cb="none", Rb="none", fsb="none", Ce="none", Re="none", fse="none", ): """ Simulation Function: -RC_b-RC_e-Z_D This circuit has been used to study non-blocking electrodes with an ioniocally conducting electrolyte with a mobile and immobile ionic specie in bulk, this is mixed with a ionically conducting salt. This behavior yields in a impedance response, that consists of the interfacial impendaces -(RC_e)-, the ionically conducitng polymer -(RC_e)-, and the diffusional impedance from the dissolved salt. Refs.: - <NAME>. and <NAME>., Electrochimica Acta, 27, 1671-1675, 1982, "Conductivity, Charge Transfer and Transport number - An AC-Investigation of the Polymer Electrolyte LiSCN-Poly(ethyleneoxide)" - <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London Bruce, P. "Electrical Measurements on Polymer Electrolytes" <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] L = Thickness of electrode [cm] D_s = Diffusion coefficient of dissolved salt [cm2/s] u1 = Mobility of the ion reacting at the electrode interface u2 = Mobility of other ion Re = Interfacial resistance [Ohm] Ce = Interfacial capacitance [F] fse = Summit frequency of the interfacial (RC) circuit [Hz] Rb = Bulk/series resistance [Ohm] Cb = Bulk capacitance [F] fsb = Summit frequency of the bulk (RC) circuit [Hz] """ Z_RCb = cir_RC(w, C=Cb, R=Rb, fs=fsb) Z_RCe = cir_RC(w, C=Ce, R=Re, fs=fse) alpha = ((w * 1j * L ** 2) / D_s) ** (1 / 2) Z_D = Rb * (u2 / u1) * (tanh(x=alpha) / alpha) return Z_RCb + Z_RCe + Z_D # Transmission lines def cir_RsTLsQ(w, Rs, L, Ri, Q="none", n="none"): """ Simulation Function: -Rs-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] Q = Interfacial capacitance of non-faradaic interface [F/cm] n = exponent for the interfacial capacitance [-] """ Phi = 1 / (Q * (w * 1j) ** n) X1 = Ri # ohm/cm Lam = (Phi / X1) ** (1 / 2) # np.sqrt(Phi/X1) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) # Handles coth with x having very large or very small numbers Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_TLsQ def cir_RsRQTLsQ(w, Rs, R1, fs1, n1, L, Ri, Q, n, Q1="none"): """ Simulation Function: -Rs-RQ-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance(Q) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = Exponent for RQ circuit [-] Q1 = Constant phase element of RQ circuit [s^n/ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] Q = Interfacial capacitance of non-faradaic interface [F/cm] n = Exponent for the interfacial capacitance [-] Output ----------- Impdance of Rs-(RQ)1-TLsQ """ Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) Phi = 1 / (Q * (w * 1j) ** n) X1 = Ri Lam = (Phi / X1) ** (1 / 2) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j) Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLsQ def cir_RsTLs(w, Rs, L, Ri, R="none", Q="none", n="none", fs="none"): """ Simulation Function: -Rs-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] R = Interfacial Charge transfer resistance [ohm*cm] fs = Summit frequency of interfacial RQ circuit [Hz] n = Exponent for interfacial RQ circuit [-] Q = Constant phase element of interfacial capacitance [s^n/Ohm] Output ----------- Impedance of Rs-TLs(RQ) """ Phi = cir_RQ(w, R, Q, n, fs) X1 = Ri Lam = (Phi / X1) ** (1 / 2) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) # Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_TLs def cir_RsRQTLs(w, Rs, L, Ri, R1, n1, fs1, R2, n2, fs2, Q1="none", Q2="none"): """ Simulation Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - B<NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = Exponent for RQ circuit [-] Q1 = Constant phase element of RQ circuit [s^n/(ohm * cm)] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] R2 = Interfacial Charge transfer resistance [ohm*cm] fs2 = Summit frequency of interfacial RQ circuit [Hz] n2 = Exponent for interfacial RQ circuit [-] Q2 = Constant phase element of interfacial capacitance [s^n/Ohm] Output ----------- Impedance of Rs-(RQ)1-TLs(RQ)2 """ Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) Phi = cir_RQ(w=w, R=R2, Q=Q2, n=n2, fs=fs2) X1 = Ri Lam = (Phi / X1) ** (1 / 2) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) # Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLs ### Support function def sinh(x): """ As numpy gives errors when sinh becomes very large, above 10^250, this functions is used instead of np/mp.sinh() """ return (1 - np.exp(-2 * x)) / (2 * np.exp(-x)) def coth(x): """ As numpy gives errors when coth becomes very large, above 10^250, this functions is used instead of np/mp.coth() """ return (1 + np.exp(-2 * x)) / (1 - np.exp(-2 * x)) ### def cir_RsTLQ(w, L, Rs, Q, n, Rel, Ri): """ Simulation Function: -R-TLQ- (interfacial non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] Q = Constant phase element for the interfacial capacitance [s^n/ohm] n = exponenet for interfacial RQ element [-] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL """ # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_TL def cir_RsRQTLQ(w, L, Rs, Q, n, Rel, Ri, R1, n1, fs1, Q1="none"): """ Simulation Function: -R-RQ-TLQ- (interfacial non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = exponent for RQ circuit [-] Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)] Q = Constant phase element for the interfacial capacitance [s^n/ohm] n = exponenet for interfacial RQ element [-] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL """ # The impedance of the series resistance Z_Rs = Rs # The (RQ) circuit in series with the transmission line Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL(w, L, Rs, R, fs, n, Rel, Ri, Q="none"): """ Simulation Function: -R-TL- (interfacial reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R = Interfacial charge transfer resistance [ohm * cm] fs = Summit frequency for the interfacial RQ element [Hz] n = Exponenet for interfacial RQ element [-] Q = Constant phase element for the interfacial capacitance [s^n/ohm] Rel = Electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = Thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL """ # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = cir_RQ(w, R=R, Q=Q, n=n, fs=fs) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL(w, L, Rs, R1, fs1, n1, R2, fs2, n2, Rel, Ri, Q1="none", Q2="none"): """ Simulation Function: -R-RQ-TL- (interfacial reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = exponent for RQ circuit [-] Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)] R2 = interfacial charge transfer resistance [ohm * cm] fs2 = Summit frequency for the interfacial RQ element [Hz] n2 = exponenet for interfacial RQ element [-] Q2 = Constant phase element for the interfacial capacitance [s^n/ohm] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL """ # The impedance of the series resistance Z_Rs = Rs # The (RQ) circuit in series with the transmission line Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) # The Interfacial impedance is given by an -(RQ)- circuit Phi = cir_RQ(w, R=R2, Q=Q2, n=n2, fs=fs2) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_RQ1 + Z_TL # Transmission lines with solid-state transport def cir_RsTL_1Dsolid(w, L, D, radius, Rs, R, Q, n, R_w, n_w, Rel, Ri): """ Simulation Function: -R-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel Warburg element is specific for 1D solid-state diffusion Refs: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - <NAME>. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Illig, J., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014) - Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015) <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R = particle charge transfer resistance [ohm*cm^2] Q = Summit frequency peak of RQ element in the modified randles element of a particle [Hz] n = exponenet for internal RQ element in the modified randles element of a particle [-] Rel = electronic resistance of electrode [ohm/cm] Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm] R_w = polarization resistance of finite diffusion Warburg element [ohm] n_w = exponent for Warburg element [-] L = thickness of porous electrode [cm] D = solid-state diffusion coefficient [cm^2/s] radius = average particle radius [cm] Output -------------- Impedance of Rs-TL(Q(RW)) """ # The impedance of the series resistance Z_Rs = Rs # The impedance of a 1D Warburg Element time_const = (radius ** 2) / D x = (time_const * w * 1j) ** n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) Z_w = R_w * np.array(warburg_coth_mp) / x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R Z_Q = elem_Q(w, Q=Q, n=n) Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm # The Impedance of the Transmission Line lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2) x = L / lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_1Dsolid( w, L, D, radius, Rs, R1, fs1, n1, R2, Q2, n2, R_w, n_w, Rel, Ri, Q1="none" ): """ Simulation Function: -R-RQ-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel Warburg element is specific for 1D solid-state diffusion Refs: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" - <NAME>., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014) - Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015) <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = charge transfer resistance of the interfacial RQ element [ohm*cm^2] fs1 = max frequency peak of the interfacial RQ element[Hz] n1 = exponenet for interfacial RQ element R2 = particle charge transfer resistance [ohm*cm^2] Q2 = Summit frequency peak of RQ element in the modified randles element of a particle [Hz] n2 = exponenet for internal RQ element in the modified randles element of a particle [-] Rel = electronic resistance of electrode [ohm/cm] Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm] R_w = polarization resistance of finite diffusion Warburg element [ohm] n_w = exponent for Warburg element [-] L = thickness of porous electrode [cm] D = solid-state diffusion coefficient [cm^2/s] radius = average particle radius [cm] Output ------------------ Impedance of R-RQ-TL(Q(RW)) """ # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) # The impedance of a 1D Warburg Element time_const = (radius ** 2) / D x = (time_const * w * 1j) ** n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) Z_w = R_w * np.array(warburg_coth_mp) / x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R2 Z_Q = elem_Q(w, Q=Q2, n=n2) Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm # The Impedance of the Transmission Line lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2) x = L / lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_RQ + Z_TL ### Fitting Circuit Functions ## # def elem_C_fit(params, w): """ Fit Function: -C- """ C = params["C"] return 1 / (C * (w * 1j)) def elem_Q_fit(params, w): """ Fit Function: -Q- Constant Phase Element for Fitting """ Q = params["Q"] n = params["n"] return 1 / (Q * (w * 1j) ** n) def cir_RsC_fit(params, w): """ Fit Function: -Rs-C- """ Rs = params["Rs"] C = params["C"] return Rs + 1 / (C * (w * 1j)) def cir_RsQ_fit(params, w): """ Fit Function: -Rs-Q- """ Rs = params["Rs"] Q = params["Q"] n = params["n"] return Rs + 1 / (Q * (w * 1j) ** n) def cir_RC_fit(params, w): """ Fit Function: -RC- Returns the impedance of an RC circuit, using RQ definations where n=1 """ if str(params.keys())[10:].find("R") == -1: # if R == 'none': Q = params["C"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("C") == -1: # elif Q == 'none': R = params["R"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("n") == -1: # elif n == 'none': R = params["R"] Q = params["C"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none': R = params["R"] Q = params["C"] return cir_RQ(w, R=R, Q=C, n=1, fs=fs) def cir_RQ_fit(params, w): """ Fit Function: -RQ- Return the impedance of an RQ circuit: Z(w) = R / (1+ R*Q * (2w)^n) See Explanation of equations under cir_RQ() The params.keys()[10:] finds the names of the user defined parameters that should be interated over if X == -1, if the paramter is not given, it becomes equal to 'none' <NAME> (<EMAIL> / <EMAIL>) """ if str(params.keys())[10:].find("R") == -1: # if R == 'none': Q = params["Q"] n = params["n"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none': R = params["R"] n = params["n"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("n") == -1: # elif n == 'none': R = params["R"] Q = params["Q"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none': R = params["R"] n = params["n"] Q = params["Q"] return R / (1 + R * Q * (w * 1j) ** n) def cir_RsRQ_fit(params, w): """ Fit Function: -Rs-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RsRQ_fit() <NAME> (<EMAIL> / <EMAIL>) """ if str(params.keys())[10:].find("R") == -1: # if R == 'none': Q = params["Q"] n = params["n"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none': R = params["R"] n = params["n"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("n") == -1: # elif n == 'none': R = params["R"] Q = params["Q"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none': R = params["R"] Q = params["Q"] n = params["n"] Rs = params["Rs"] return Rs + (R / (1 + R * Q * (w * 1j) ** n)) def cir_RsRQRQ_fit(params, w): """ Fit Function: -Rs-RQ-RQ- Return the impedance of an Rs-RQ circuit. See details under cir_RsRQRQ() <NAME> (<EMAIL> / <EMAIL>) """ if str(params.keys())[10:].find("'R'") == -1: # if R == 'none': Q = params["Q"] n = params["n"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("'Q'") == -1: # elif Q == 'none': R = params["R"] n = params["n"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("'n'") == -1: # elif n == 'none': R = params["R"] Q = params["Q"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("'fs'") == -1: # elif fs == 'none': R = params["R"] Q = params["Q"] n = params["n"] if str(params.keys())[10:].find("'R2'") == -1: # if R == 'none': Q2 = params["Q2"] n2 = params["n2"] fs2 = params["fs2"] R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2) if str(params.keys())[10:].find("'Q2'") == -1: # elif Q == 'none': R2 = params["R2"] n2 = params["n2"] fs2 = params["fs2"] Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n2) if str(params.keys())[10:].find("'n2'") == -1: # elif n == 'none': R2 = params["R2"] Q2 = params["Q2"] fs2 = params["fs2"] n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2)) if str(params.keys())[10:].find("'fs2'") == -1: # elif fs == 'none': R2 = params["R2"] Q2 = params["Q2"] n2 = params["n2"] Rs = params["Rs"] return ( Rs + (R / (1 + R * Q * (w * 1j) ** n)) + (R2 / (1 + R2 * Q2 * (w * 1j) ** n2)) ) def cir_Randles_simplified_Fit(params, w): """ Fit Function: Randles simplified -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit. See more under cir_Randles_simplified() NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> || <EMAIL>) """ if str(params.keys())[10:].find("'R'") == -1: # if R == 'none': Q = params["Q"] n = params["n"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("'Q'") == -1: # elif Q == 'none': R = params["R"] n = params["n"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("'n'") == -1: # elif n == 'none': R = params["R"] Q = params["Q"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("'fs'") == -1: # elif fs == 'none': R = params["R"] Q = params["Q"] n = params["n"] Rs = params["Rs"] sigma = params["sigma"] Z_Q = 1 / (Q * (w * 1j) ** n) Z_R = R Z_w = sigma * (w ** (-0.5)) - 1j * sigma * (w ** (-0.5)) return Rs + 1 / (1 / Z_Q + 1 / (Z_R + Z_w)) def cir_RsRQQ_fit(params, w): """ Fit Function: -Rs-RQ-Q- See cir_RsRQQ() for details """ Rs = params["Rs"] Q = params["Q"] n = params["n"] Z_Q = 1 / (Q * (w * 1j) ** n) if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) return Rs + Z_RQ + Z_Q def cir_RsRQC_fit(params, w): """ Fit Function: -Rs-RQ-C- See cir_RsRQC() for details """ Rs = params["Rs"] C = params["C"] Z_C = 1 / (C * (w * 1j)) if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) return Rs + Z_RQ + Z_C def cir_RsRCC_fit(params, w): """ Fit Function: -Rs-RC-C- See cir_RsRCC() for details """ Rs = params["Rs"] R1 = params["R1"] C1 = params["C1"] C = params["C"] return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_C(w, C=C) def cir_RsRCQ_fit(params, w): """ Fit Function: -Rs-RC-Q- See cir_RsRCQ() for details """ Rs = params["Rs"] R1 = params["R1"] C1 = params["C1"] Q = params["Q"] n = params["n"] return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_Q(w, Q, n) # Polymer electrolytes def cir_C_RC_C_fit(params, w): """ Fit Function: -C-(RC)-C- See cir_C_RC_C() for details <NAME> (<EMAIL> || <EMAIL>) """ # Interfacial impedance Ce = params["Ce"] Z_C = 1 / (Ce * (w * 1j)) # Bulk impendance if str(params.keys())[10:].find("Rb") == -1: # if R == 'none': Cb = params["Cb"] fsb = params["fsb"] Rb = 1 / (Cb * (2 * np.pi * fsb)) if str(params.keys())[10:].find("Cb") == -1: # elif Q == 'none': Rb = params["Rb"] fsb = params["fsb"] Cb = 1 / (Rb * (2 * np.pi * fsb)) if str(params.keys())[10:].find("fsb") == -1: # elif fs == 'none': Rb = params["Rb"] Cb = params["Cb"] Z_RC = Rb / (1 + Rb * Cb * (w * 1j)) return Z_C + Z_RC def cir_Q_RQ_Q_Fit(params, w): """ Fit Function: -Q-(RQ)-Q- See cir_Q_RQ_Q() for details <NAME> (<EMAIL> || <EMAIL>) """ # Interfacial impedance Qe = params["Qe"] ne = params["ne"] Z_Q = 1 / (Qe * (w * 1j) ** ne) # Bulk impedance if str(params.keys())[10:].find("Rb") == -1: # if R == 'none': Qb = params["Qb"] nb = params["nb"] fsb = params["fsb"] Rb = 1 / (Qb * (2 * np.pi * fsb) ** nb) if str(params.keys())[10:].find("Qb") == -1: # elif Q == 'none': Rb = params["Rb"] nb = params["nb"] fsb = params["fsb"] Qb = 1 / (Rb * (2 * np.pi * fsb) ** nb) if str(params.keys())[10:].find("nb") == -1: # elif n == 'none': Rb = params["Rb"] Qb = params["Qb"] fsb = params["fsb"] nb = np.log(Qb * Rb) / np.log(1 / (2 * np.pi * fsb)) if str(params.keys())[10:].find("fsb") == -1: # elif fs == 'none': Rb = params["Rb"] nb = params["nb"] Qb = params["Qb"] Z_RQ = Rb / (1 + Rb * Qb * (w * 1j) ** nb) return Z_Q + Z_RQ def cir_RCRCZD_fit(params, w): """ Fit Function: -RC_b-RC_e-Z_D See cir_RCRCZD() for details <NAME> (<EMAIL> || <EMAIL>) """ # Interfacial impendace if str(params.keys())[10:].find("Re") == -1: # if R == 'none': Ce = params["Ce"] fse = params["fse"] Re = 1 / (Ce * (2 * np.pi * fse)) if str(params.keys())[10:].find("Ce") == -1: # elif Q == 'none': Re = params["Rb"] fse = params["fsb"] Ce = 1 / (Re * (2 * np.pi * fse)) if str(params.keys())[10:].find("fse") == -1: # elif fs == 'none': Re = params["Re"] Ce = params["Ce"] Z_RCe = Re / (1 + Re * Ce * (w * 1j)) # Bulk impendance if str(params.keys())[10:].find("Rb") == -1: # if R == 'none': Cb = params["Cb"] fsb = params["fsb"] Rb = 1 / (Cb * (2 * np.pi * fsb)) if str(params.keys())[10:].find("Cb") == -1: # elif Q == 'none': Rb = params["Rb"] fsb = params["fsb"] Cb = 1 / (Rb * (2 * np.pi * fsb)) if str(params.keys())[10:].find("fsb") == -1: # elif fs == 'none': Rb = params["Rb"] Cb = params["Cb"] Z_RCb = Rb / (1 + Rb * Cb * (w * 1j)) # Mass transport impendance L = params["L"] D_s = params["D_s"] u1 = params["u1"] u2 = params["u2"] alpha = ((w * 1j * L ** 2) / D_s) ** (1 / 2) Z_D = Rb * (u2 / u1) * (tanh(alpha) / alpha) return Z_RCb + Z_RCe + Z_D # Transmission lines def cir_RsTLsQ_fit(params, w): """ Fit Function: -Rs-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) See more under cir_RsTLsQ() <NAME> (<EMAIL> / <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] Q = params["Q"] n = params["n"] Phi = 1 / (Q * (w * 1j) ** n) X1 = Ri # ohm/cm Lam = (Phi / X1) ** (1 / 2) # np.sqrt(Phi/X1) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # # Z_TLsQ = Lam * X1 * coth_mp Z_TLsQ = Lam * X1 * coth(x) return Rs + Z_TLsQ def cir_RsRQTLsQ_Fit(params, w): """ Fit Function: -Rs-RQ-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) See more under cir_RsRQTLsQ <NAME> (<EMAIL> / <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] Q = params["Q"] n = params["n"] if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) Phi = 1 / (Q * (w * 1j) ** n) X1 = Ri Lam = (Phi / X1) ** (1 / 2) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) # Handles coth with x having very large or very small numbers Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLsQ def cir_RsTLs_Fit(params, w): """ Fit Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) See mor under cir_RsTLs() <NAME> (<EMAIL> / <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] if str(params.keys())[10:].find("R") == -1: # if R == 'none': Q = params["Q"] n = params["n"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none': R = params["R"] n = params["n"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("n") == -1: # elif n == 'none': R = params["R"] Q = params["Q"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none': R = params["R"] n = params["n"] Q = params["Q"] Phi = R / (1 + R * Q * (w * 1j) ** n) X1 = Ri Lam = (Phi / X1) ** (1 / 2) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) # Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_TLs def cir_RsRQTLs_Fit(params, w): """ Fit Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line with a faradaic interfacial impedance (RQ) See more under cir_RsRQTLs() <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) if str(params.keys())[10:].find("R2") == -1: # if R == 'none': Q2 = params["Q2"] n2 = params["n2"] fs2 = params["fs2"] R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2) if str(params.keys())[10:].find("Q2") == -1: # elif Q == 'none': R2 = params["R2"] n2 = params["n2"] fs2 = params["fs2"] Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n1) if str(params.keys())[10:].find("n2") == -1: # elif n == 'none': R2 = params["R2"] Q2 = params["Q2"] fs2 = params["fs2"] n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2)) if str(params.keys())[10:].find("fs2") == -1: # elif fs == 'none': R2 = params["R2"] n2 = params["n2"] Q2 = params["Q2"] Phi = R2 / (1 + R2 * Q2 * (w * 1j) ** n2) X1 = Ri Lam = (Phi / X1) ** (1 / 2) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) # Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLs def cir_RsTLQ_fit(params, w): """ Fit Function: -R-TLQ- (interface non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] Rel = params["Rel"] Q = params["Q"] n = params["n"] # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_TL def cir_RsRQTLQ_fit(params, w): """ Fit Function: -R-RQ-TLQ- (interface non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] Rel = params["Rel"] Q = params["Q"] n = params["n"] # The impedance of the series resistance Z_Rs = Rs # The (RQ) circuit in series with the transmission line if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ1 = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL_Fit(params, w): """ Fit Function: -R-TLQ- (interface reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel See cir_RsTL() for details <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] Rel = params["Rel"] # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R") == -1: # if R == 'none': Q = params["Q"] n = params["n"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none': R = params["R"] n = params["n"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("n") == -1: # elif n == 'none': R = params["R"] Q = params["Q"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none': R = params["R"] n = params["n"] Q = params["Q"] Phi = R / (1 + R * Q * (w * 1j) ** n) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_fit(params, w): """ Fit Function: -R-RQ-TL- (interface reacting, i.e. non-blocking) Transmission line w/ full complexity including both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] Rel = params["Rel"] # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) elif str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) elif str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) elif str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ1 = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) # # # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R2") == -1: # if R == 'none': Q2 = params["Q2"] n2 = params["n2"] fs2 = params["fs2"] R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2) elif str(params.keys())[10:].find("Q2") == -1: # elif Q == 'none': R2 = params["R2"] n2 = params["n2"] fs2 = params["fs2"] Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n1) elif str(params.keys())[10:].find("n2") == -1: # elif n == 'none': R2 = params["R2"] Q2 = params["Q2"] fs2 = params["fs2"] n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2)) elif str(params.keys())[10:].find("fs2") == -1: # elif fs == 'none': R2 = params["R2"] n2 = params["n2"] Q2 = params["Q2"] Phi = R2 / (1 + R2 * Q2 * (w * 1j) ** n2) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float((mp.coth(x_mp[i]).imag))*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real) + float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real)*1j) # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float((mp.sinh(x_mp[i]).imag))*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL_1Dsolid_fit(params, w): """ Fit Function: -R-TL(Q(RW))- Transmission line w/ full complexity See cir_RsTL_1Dsolid() for details <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] radius = params["radius"] D = params["D"] R = params["R"] Q = params["Q"] n = params["n"] R_w = params["R_w"] n_w = params["n_w"] Rel = params["Rel"] Ri = params["Ri"] # The impedance of the series resistance Z_Rs = Rs # The impedance of a 1D Warburg Element time_const = (radius ** 2) / D x = (time_const * w * 1j) ** n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) Z_w = R_w * np.array(warburg_coth_mp) / x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R Z_Q = elem_Q(w=w, Q=Q, n=n) Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm # The Impedance of the Transmission Line lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2) x = L / lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_1Dsolid_fit(params, w): """ Fit Function: -R-RQ-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel. The Warburg element is specific for 1D solid-state diffusion See cir_RsRQTL_1Dsolid() for details <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] radius = params["radius"] D = params["D"] R2 = params["R2"] Q2 = params["Q2"] n2 = params["n2"] R_w = params["R_w"] n_w = params["n_w"] Rel = params["Rel"] Ri = params["Ri"] # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) elif str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) elif str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) elif str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ1 = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) # The impedance of a 1D Warburg Element time_const = (radius ** 2) / D x = (time_const * w * 1j) ** n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) Z_w = R_w * np.array(warburg_coth_mp) / x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R2 Z_Q = elem_Q(w, Q=Q2, n=n2) Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm # The Impedance of the Transmission Line lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2) x = L / lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_RQ1 + Z_TL ### Least-Squares error function def leastsq_errorfunc(params, w, re, im, circuit, weight_func): """ Sum of squares error function for the complex non-linear least-squares fitting procedure (CNLS). The fitting function (lmfit) will use this function to iterate over until the total sum of errors is minimized. During the minimization the fit is weighed, and currently three different weigh options are avaliable: - modulus - unity - proportional Modulus is generially recommended as random errors and a bias can exist in the experimental data. <NAME> (<EMAIL> || <EMAIL>) Inputs ------------ - params: parameters needed for CNLS - re: real impedance - im: Imaginary impedance - circuit: The avaliable circuits are shown below, and this this parameter needs it as a string. - C - Q - R-C - R-Q - RC - RQ - R-RQ - R-RQ-RQ - R-RQ-Q - R-(Q(RW)) - R-(Q(RM)) - R-RC-C - R-RC-Q - R-RQ-Q - R-RQ-C - RC-RC-ZD - R-TLsQ - R-RQ-TLsQ - R-TLs - R-RQ-TLs - R-TLQ - R-RQ-TLQ - R-TL - R-RQ-TL - R-TL1Dsolid (reactive interface with 1D solid-state diffusion) - R-RQ-TL1Dsolid - weight_func Weight function - modulus - unity - proportional """ if circuit == "C": re_fit = elem_C_fit(params, w).real im_fit = -elem_C_fit(params, w).imag elif circuit == "Q": re_fit = elem_Q_fit(params, w).real im_fit = -elem_Q_fit(params, w).imag elif circuit == "R-C": re_fit = cir_RsC_fit(params, w).real im_fit = -cir_RsC_fit(params, w).imag elif circuit == "R-Q": re_fit = cir_RsQ_fit(params, w).real im_fit = -cir_RsQ_fit(params, w).imag elif circuit == "RC": re_fit = cir_RC_fit(params, w).real im_fit = -cir_RC_fit(params, w).imag elif circuit == "RQ": re_fit = cir_RQ_fit(params, w).real im_fit = -cir_RQ_fit(params, w).imag elif circuit == "R-RQ": re_fit = cir_RsRQ_fit(params, w).real im_fit = -cir_RsRQ_fit(params, w).imag elif circuit == "R-RQ-RQ": re_fit = cir_RsRQRQ_fit(params, w).real im_fit = -cir_RsRQRQ_fit(params, w).imag elif circuit == "R-RC-C": re_fit = cir_RsRCC_fit(params, w).real im_fit = -cir_RsRCC_fit(params, w).imag elif circuit == "R-RC-Q": re_fit = cir_RsRCQ_fit(params, w).real im_fit = -cir_RsRCQ_fit(params, w).imag elif circuit == "R-RQ-Q": re_fit = cir_RsRQQ_fit(params, w).real im_fit = -cir_RsRQQ_fit(params, w).imag elif circuit == "R-RQ-C": re_fit = cir_RsRQC_fit(params, w).real im_fit = -cir_RsRQC_fit(params, w).imag elif circuit == "R-(Q(RW))": re_fit = cir_Randles_simplified_Fit(params, w).real im_fit = -cir_Randles_simplified_Fit(params, w).imag elif circuit == "R-(Q(RM))": re_fit = cir_Randles_uelectrode_fit(params, w).real im_fit = -cir_Randles_uelectrode_fit(params, w).imag elif circuit == "C-RC-C": re_fit = cir_C_RC_C_fit(params, w).real im_fit = -cir_C_RC_C_fit(params, w).imag elif circuit == "Q-RQ-Q": re_fit = cir_Q_RQ_Q_Fit(params, w).real im_fit = -cir_Q_RQ_Q_Fit(params, w).imag elif circuit == "RC-RC-ZD": re_fit = cir_RCRCZD_fit(params, w).real im_fit = -cir_RCRCZD_fit(params, w).imag elif circuit == "R-TLsQ": re_fit = cir_RsTLsQ_fit(params, w).real im_fit = -cir_RsTLsQ_fit(params, w).imag elif circuit == "R-RQ-TLsQ": re_fit = cir_RsRQTLsQ_Fit(params, w).real im_fit = -cir_RsRQTLsQ_Fit(params, w).imag elif circuit == "R-TLs": re_fit = cir_RsTLs_Fit(params, w).real im_fit = -cir_RsTLs_Fit(params, w).imag elif circuit == "R-RQ-TLs": re_fit = cir_RsRQTLs_Fit(params, w).real im_fit = -cir_RsRQTLs_Fit(params, w).imag elif circuit == "R-TLQ": re_fit = cir_RsTLQ_fit(params, w).real im_fit = -cir_RsTLQ_fit(params, w).imag elif circuit == "R-RQ-TLQ": re_fit = cir_RsRQTLQ_fit(params, w).real im_fit = -cir_RsRQTLQ_fit(params, w).imag elif circuit == "R-TL": re_fit = cir_RsTL_Fit(params, w).real im_fit = -cir_RsTL_Fit(params, w).imag elif circuit == "R-RQ-TL": re_fit = cir_RsRQTL_fit(params, w).real im_fit = -cir_RsRQTL_fit(params, w).imag elif circuit == "R-TL1Dsolid": re_fit = cir_RsTL_1Dsolid_fit(params, w).real im_fit = -cir_RsTL_1Dsolid_fit(params, w).imag elif circuit == "R-RQ-TL1Dsolid": re_fit = cir_RsRQTL_1Dsolid_fit(params, w).real im_fit = -cir_RsRQTL_1Dsolid_fit(params, w).imag else: print("Circuit is not defined in leastsq_errorfunc()") error = [(re - re_fit) ** 2, (im - im_fit) ** 2] # sum of squares # Different Weighing options, see Lasia if weight_func == "modulus": weight = [ 1 / ((re_fit ** 2 + im_fit ** 2) ** (1 / 2)), 1 / ((re_fit ** 2 + im_fit ** 2) ** (1 / 2)), ] elif weight_func == "proportional": weight = [1 / (re_fit ** 2), 1 / (im_fit ** 2)] elif weight_func == "unity": unity_1s = [] for k in range(len(re)): unity_1s.append( 1 ) # makes an array of [1]'s, so that the weighing is == 1 * sum of squres. weight = [unity_1s, unity_1s] else: print("weight not defined in leastsq_errorfunc()") S = np.array(weight) * error # weighted sum of squares return S ### Fitting Class class EIS_exp: """ This class is used to plot and/or analyze experimental impedance data. The class has three major functions: - EIS_plot() - Lin_KK() - EIS_fit() - EIS_plot() is used to plot experimental data with or without fit - Lin_KK() performs a linear Kramers-Kronig analysis of the experimental data set. - EIS_fit() performs complex non-linear least-squares fitting of the experimental data to an equivalent circuit <NAME> (<EMAIL> || <EMAIL>) Inputs ----------- - path: path of datafile(s) as a string - data: datafile(s) including extension, e.g. ['EIS_data1', 'EIS_data2'] - cycle: Specific cycle numbers can be extracted using the cycle function. Default is 'none', which includes all cycle numbers. Specific cycles can be extracted using this parameter, insert cycle numbers in brackets, e.g. cycle number 1,4, and 6 are wanted. cycle=[1,4,6] - mask: ['high frequency' , 'low frequency'], if only a high- or low-frequency is desired use 'none' for the other, e.g. maks=[10**4,'none'] """ def __init__(self, path, data, cycle="off", mask=["none", "none"]): self.df_raw0 = [] self.cycleno = [] for j, f in enumerate(data, start=0): if f.endswith("mpt"): # file is a .mpt file self.df_raw0.append( extract_mpt(path=path, EIS_name=f) ) # reads all datafiles elif f.endswith("DTA"): # file is a .dta file self.df_raw0.append( extract_dta(path=path, EIS_name=f) ) # reads all datafiles elif f.endswith("z"): # file is a .z file self.df_raw0.append( extract_solar(path=path, EIS_name=f) ) # reads all datafiles elif f.endswith("txt"): self.df_raw0.append(extract_csv(path=path, EIS_name=f)) else: print("Data file(s) could not be identified") self.cycleno.append(self.df_raw0[j].cycle_number) if np.min(self.cycleno[j]) <= np.max(self.cycleno[j - 1]): if j > 0: # corrects cycle_number except for the first data file self.df_raw0[j].update( {"cycle_number": self.cycleno[j] + np.max(self.cycleno[j - 1])} ) # corrects cycle number # currently need to append a cycle_number coloumn to gamry files # adds individual dataframes into one if len(self.df_raw0) == 1: self.df_raw = self.df_raw0[0] elif len(self.df_raw0) == 2: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1]], axis=0) elif len(self.df_raw0) == 3: self.df_raw = pd.concat( [self.df_raw0[0], self.df_raw0[1], self.df_raw0[2]], axis=0 ) elif len(self.df_raw0) == 4: self.df_raw = pd.concat( [self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3]], axis=0, ) elif len(self.df_raw0) == 5: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], ], axis=0, ) elif len(self.df_raw0) == 6: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], ], axis=0, ) elif len(self.df_raw0) == 7: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], ], axis=0, ) elif len(self.df_raw0) == 8: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], ], axis=0, ) elif len(self.df_raw0) == 9: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], ], axis=0, ) elif len(self.df_raw0) == 10: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], ], axis=0, ) elif len(self.df_raw0) == 11: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], ], axis=0, ) elif len(self.df_raw0) == 12: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11], ], axis=0, ) elif len(self.df_raw0) == 13: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11], self.df_raw0[12], ], axis=0, ) elif len(self.df_raw0) == 14: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11], ], self.df_raw0[12], self.df_raw0[13], axis=0, ) elif len(self.df_raw0) == 15: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11], ], self.df_raw0[12], self.df_raw0[13], self.df_raw0[14], axis=0, ) else: print("Too many data files || 15 allowed") self.df_raw = self.df_raw.assign( w=2 * np.pi * self.df_raw.f ) # creats a new coloumn with the angular frequency # Masking data to each cycle self.df_pre = [] self.df_limited = [] self.df_limited2 = [] self.df = [] if mask == ["none", "none"] and cycle == "off": for i in range(len(self.df_raw.cycle_number.unique())): # includes all data self.df.append( self.df_raw[ self.df_raw.cycle_number == self.df_raw.cycle_number.unique()[i] ] ) elif mask == ["none", "none"] and cycle != "off": for i in range(len(cycle)): self.df.append( self.df_raw[self.df_raw.cycle_number == cycle[i]] ) # extracting dataframe for each cycle elif mask[0] != "none" and mask[1] == "none" and cycle == "off": self.df_pre = self.df_raw.mask(self.df_raw.f > mask[0]) self.df_pre.dropna(how="all", inplace=True) for i in range( len(self.df_pre.cycle_number.unique()) ): # Appending data based on cycle number self.df.append( self.df_pre[ self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i] ] ) elif ( mask[0] != "none" and mask[1] == "none" and cycle != "off" ): # or [i for i, e in enumerate(mask) if e == 'none'] == [0] self.df_limited = self.df_raw.mask(self.df_raw.f > mask[0]) for i in range(len(cycle)): self.df.append( self.df_limited[self.df_limited.cycle_number == cycle[i]] ) elif mask[0] == "none" and mask[1] != "none" and cycle == "off": self.df_pre = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_pre.dropna(how="all", inplace=True) for i in range(len(self.df_raw.cycle_number.unique())): # includes all data self.df.append( self.df_pre[ self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i] ] ) elif mask[0] == "none" and mask[1] != "none" and cycle != "off": self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) for i in range(len(cycle)): self.df.append( self.df_limited[self.df_limited.cycle_number == cycle[i]] ) elif mask[0] != "none" and mask[1] != "none" and cycle != "off": self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0]) for i in range(len(cycle)): self.df.append( self.df_limited[self.df_limited2.cycle_number == cycle[i]] ) elif mask[0] != "none" and mask[1] != "none" and cycle == "off": self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0]) for i in range(len(self.df_raw.cycle_number.unique())): self.df.append( self.df_limited[ self.df_limited2.cycle_number == self.df_raw.cycle_number.unique()[i] ] ) else: print("__init__ error (#2)") def Lin_KK( self, num_RC="auto", legend="on", plot="residuals", bode="off", nyq_xlim="none", nyq_ylim="none", weight_func="Boukamp", savefig="none", ): """ Plots the Linear Kramers-Kronig (KK) Validity Test The script is based on Boukamp and Schōnleber et al.'s papers for fitting the resistances of multiple -(RC)- circuits to the data. A data quality analysis can hereby be made on the basis of the relative residuals Ref.: - Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27 - Boukamp, B.A. J. Electrochem. Soc., 142, 6, 1885-1894 The function performs the KK analysis and as default the relative residuals in each subplot Note, that weigh_func should be equal to 'Boukamp'. <NAME> (<EMAIL> || <EMAIL>) Optional Inputs ----------------- - num_RC: - 'auto' applies an automatic algorithm developed by Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27 that ensures no under- or over-fitting occurs - can be hardwired by inserting any number (RC-elements/decade) - plot: - 'residuals' = plots the relative residuals in subplots correspoding to the cycle numbers picked - 'w_data' = plots the relative residuals with the experimental data, in Nyquist and bode plot if desired, see 'bode =' in description - nyq_xlim/nyq_xlim: Change the x/y-axis limits on nyquist plot, if not equal to 'none' state [min,max] value - legend: - 'on' = displays cycle number - 'potential' = displays average potential which the spectra was measured at - 'off' = off bode = Plots Bode Plot - options: 'on' = re, im vs. log(freq) 'log' = log(re, im) vs. log(freq) 're' = re vs. log(freq) 'log_re' = log(re) vs. log(freq) 'im' = im vs. log(freq) 'log_im' = log(im) vs. log(freq) """ if num_RC == "auto": print("cycle || No. RC-elements || u") self.decade = [] self.Rparam = [] self.t_const = [] self.Lin_KK_Fit = [] self.R_names = [] self.KK_R0 = [] self.KK_R = [] self.number_RC = [] self.number_RC_sort = [] self.KK_u = [] self.KK_Rgreater = [] self.KK_Rminor = [] M = 2 for i in range(len(self.df)): self.decade.append( np.log10(np.max(self.df[i].f)) - np.log10(np.min(self.df[i].f)) ) # determine the number of RC circuits based on the number of decades measured and num_RC self.number_RC.append(M) self.number_RC_sort.append(M) # needed for self.KK_R self.Rparam.append( KK_Rnam_val( re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]), )[0] ) # Creates intial guesses for R's self.t_const.append( KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC[i])) ) # Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit.append( minimize( KK_errorfunc, self.Rparam[i], method="leastsq", args=( self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC[i], weight_func, self.t_const[i], ), ) ) # maxfev=99 self.R_names.append( KK_Rnam_val( re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]), )[1] ) # creates R names for j in range(len(self.R_names[i])): self.KK_R0.append( self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value ) self.number_RC_sort.insert(0, 0) # needed for self.KK_R for i in range(len(self.df)): self.KK_R.append( self.KK_R0[ int(np.cumsum(self.number_RC_sort)[i]) : int( np.cumsum(self.number_RC_sort)[i + 1] ) ] ) # assigns resistances from each spectra to their respective df self.KK_Rgreater.append( np.where(np.array(self.KK_R)[i] >= 0, np.array(self.KK_R)[i], 0) ) self.KK_Rminor.append( np.where(np.array(self.KK_R)[i] < 0, np.array(self.KK_R)[i], 0) ) self.KK_u.append( 1 - ( np.abs(np.sum(self.KK_Rminor[i])) / np.abs(np.sum(self.KK_Rgreater[i])) ) ) for i in range(len(self.df)): while self.KK_u[i] <= 0.75 or self.KK_u[i] >= 0.88: self.number_RC_sort0 = [] self.KK_R_lim = [] self.number_RC[i] = self.number_RC[i] + 1 self.number_RC_sort0.append(self.number_RC) self.number_RC_sort = np.insert(self.number_RC_sort0, 0, 0) self.Rparam[i] = KK_Rnam_val( re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]), )[ 0 ] # Creates intial guesses for R's self.t_const[i] = KK_timeconst( w=self.df[i].w, num_RC=int(self.number_RC[i]) ) # Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit[i] = minimize( KK_errorfunc, self.Rparam[i], method="leastsq", args=( self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC[i], weight_func, self.t_const[i], ), ) # maxfev=99 self.R_names[i] = KK_Rnam_val( re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]), )[ 1 ] # creates R names self.KK_R0 = np.delete( np.array(self.KK_R0), np.s_[0 : len(self.KK_R0)] ) self.KK_R0 = [] for q in range(len(self.df)): for j in range(len(self.R_names[q])): self.KK_R0.append( self.Lin_KK_Fit[q].params.get(self.R_names[q][j]).value ) self.KK_R_lim = np.cumsum(self.number_RC_sort) # used for KK_R[i] self.KK_R[i] = self.KK_R0[ self.KK_R_lim[i] : self.KK_R_lim[i + 1] ] # assigns resistances from each spectra to their respective df self.KK_Rgreater[i] = np.where( np.array(self.KK_R[i]) >= 0, np.array(self.KK_R[i]), 0 ) self.KK_Rminor[i] = np.where( np.array(self.KK_R[i]) < 0, np.array(self.KK_R[i]), 0 ) self.KK_u[i] = 1 - ( np.abs(np.sum(self.KK_Rminor[i])) / np.abs(np.sum(self.KK_Rgreater[i])) ) else: print( "[" + str(i + 1) + "]" + " " + str(self.number_RC[i]), " " + str(np.round(self.KK_u[i], 2)), ) elif num_RC != "auto": # hardwired number of RC-elements/decade print("cycle || u") self.decade = [] self.number_RC0 = [] self.number_RC = [] self.Rparam = [] self.t_const = [] self.Lin_KK_Fit = [] self.R_names = [] self.KK_R0 = [] self.KK_R = [] for i in range(len(self.df)): self.decade.append( np.log10(np.max(self.df[i].f)) - np.log10(np.min(self.df[i].f)) ) # determine the number of RC circuits based on the number of decades measured and num_RC self.number_RC0.append(np.round(num_RC * self.decade[i])) self.number_RC.append( np.round(num_RC * self.decade[i]) ) # Creats the the number of -(RC)- circuits self.Rparam.append( KK_Rnam_val( re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC0[i]), )[0] ) # Creates intial guesses for R's self.t_const.append( KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC0[i])) ) # Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit.append( minimize( KK_errorfunc, self.Rparam[i], method="leastsq", args=( self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC0[i], weight_func, self.t_const[i], ), ) ) # maxfev=99 self.R_names.append( KK_Rnam_val( re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC0[i]), )[1] ) # creates R names for j in range(len(self.R_names[i])): self.KK_R0.append( self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value ) self.number_RC0.insert(0, 0) # print(report_fit(self.Lin_KK_Fit[i])) # prints fitting report self.KK_circuit_fit = [] self.KK_rr_re = [] self.KK_rr_im = [] self.KK_Rgreater = [] self.KK_Rminor = [] self.KK_u = [] for i in range(len(self.df)): self.KK_R.append( self.KK_R0[ int(np.cumsum(self.number_RC0)[i]) : int( np.cumsum(self.number_RC0)[i + 1] ) ] ) # assigns resistances from each spectra to their respective df self.KK_Rx = np.array(self.KK_R) self.KK_Rgreater.append(np.where(self.KK_Rx[i] >= 0, self.KK_Rx[i], 0)) self.KK_Rminor.append(np.where(self.KK_Rx[i] < 0, self.KK_Rx[i], 0)) self.KK_u.append( 1 - ( np.abs(np.sum(self.KK_Rminor[i])) / np.abs(np.sum(self.KK_Rgreater[i])) ) ) # currently gives incorrect values print( "[" + str(i + 1) + "]" + " " + str(np.round(self.KK_u[i], 2)) ) else: print("num_RC incorrectly defined") self.KK_circuit_fit = [] self.KK_rr_re = [] self.KK_rr_im = [] for i in range(len(self.df)): if int(self.number_RC[i]) == 2: self.KK_circuit_fit.append( KK_RC2( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 3: self.KK_circuit_fit.append( KK_RC3( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 4: self.KK_circuit_fit.append( KK_RC4( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 5: self.KK_circuit_fit.append( KK_RC5( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 6: self.KK_circuit_fit.append( KK_RC6( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 7: self.KK_circuit_fit.append( KK_RC7( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 8: self.KK_circuit_fit.append( KK_RC8( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 9: self.KK_circuit_fit.append( KK_RC9( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 10: self.KK_circuit_fit.append( KK_RC10( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 11: self.KK_circuit_fit.append( KK_RC11( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 12: self.KK_circuit_fit.append( KK_RC12( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 13: self.KK_circuit_fit.append( KK_RC13( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 14: self.KK_circuit_fit.append( KK_RC14( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 15: self.KK_circuit_fit.append( KK_RC15( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 16: self.KK_circuit_fit.append( KK_RC16( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 17: self.KK_circuit_fit.append( KK_RC17( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 18: self.KK_circuit_fit.append( KK_RC18( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 19: self.KK_circuit_fit.append( KK_RC19( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 20: self.KK_circuit_fit.append( KK_RC20( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 21: self.KK_circuit_fit.append( KK_RC21( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 22: self.KK_circuit_fit.append( KK_RC22( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 23: self.KK_circuit_fit.append( KK_RC23( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 24: self.KK_circuit_fit.append( KK_RC24( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 25: self.KK_circuit_fit.append( KK_RC25( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 26: self.KK_circuit_fit.append( KK_RC26( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 27: self.KK_circuit_fit.append( KK_RC27( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 28: self.KK_circuit_fit.append( KK_RC28( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 29: self.KK_circuit_fit.append( KK_RC29( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 30: self.KK_circuit_fit.append( KK_RC30( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 31: self.KK_circuit_fit.append( KK_RC31( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 32: self.KK_circuit_fit.append( KK_RC32( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 33: self.KK_circuit_fit.append( KK_RC33( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 34: self.KK_circuit_fit.append( KK_RC34( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 35: self.KK_circuit_fit.append( KK_RC35( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 36: self.KK_circuit_fit.append( KK_RC36( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 37: self.KK_circuit_fit.append( KK_RC37( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 38: self.KK_circuit_fit.append( KK_RC38( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 39: self.KK_circuit_fit.append( KK_RC39( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 40: self.KK_circuit_fit.append( KK_RC40( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 41: self.KK_circuit_fit.append( KK_RC41( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 42: self.KK_circuit_fit.append( KK_RC42( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 43: self.KK_circuit_fit.append( KK_RC43( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 44: self.KK_circuit_fit.append( KK_RC44( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 45: self.KK_circuit_fit.append( KK_RC45( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 46: self.KK_circuit_fit.append( KK_RC46( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 47: self.KK_circuit_fit.append( KK_RC47( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 48: self.KK_circuit_fit.append( KK_RC48( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 49: self.KK_circuit_fit.append( KK_RC49( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 50: self.KK_circuit_fit.append( KK_RC50( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 51: self.KK_circuit_fit.append( KK_RC51( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 52: self.KK_circuit_fit.append( KK_RC52( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 53: self.KK_circuit_fit.append( KK_RC53( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 54: self.KK_circuit_fit.append( KK_RC54( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 55: self.KK_circuit_fit.append( KK_RC55( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 56: self.KK_circuit_fit.append( KK_RC56( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 57: self.KK_circuit_fit.append( KK_RC57( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 58: self.KK_circuit_fit.append( KK_RC58( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 59: self.KK_circuit_fit.append( KK_RC59( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 60: self.KK_circuit_fit.append( KK_RC60( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 61: self.KK_circuit_fit.append( KK_RC61( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 62: self.KK_circuit_fit.append( KK_RC62( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 63: self.KK_circuit_fit.append( KK_RC63( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 64: self.KK_circuit_fit.append( KK_RC64( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 65: self.KK_circuit_fit.append( KK_RC65( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 66: self.KK_circuit_fit.append( KK_RC66( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 67: self.KK_circuit_fit.append( KK_RC67( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 68: self.KK_circuit_fit.append( KK_RC68( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 69: self.KK_circuit_fit.append( KK_RC69( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 70: self.KK_circuit_fit.append( KK_RC70( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 71: self.KK_circuit_fit.append( KK_RC71( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 72: self.KK_circuit_fit.append( KK_RC72( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 73: self.KK_circuit_fit.append( KK_RC73( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 74: self.KK_circuit_fit.append( KK_RC74( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 75: self.KK_circuit_fit.append( KK_RC75( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 76: self.KK_circuit_fit.append( KK_RC76( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 77: self.KK_circuit_fit.append( KK_RC77( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 78: self.KK_circuit_fit.append( KK_RC78( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 79: self.KK_circuit_fit.append( KK_RC79( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 80: self.KK_circuit_fit.append( KK_RC80( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) else: print("RC simulation circuit not defined") print(" Number of RC = ", self.number_RC) self.KK_rr_re.append( residual_real( re=self.df[i].re, fit_re=self.KK_circuit_fit[i].real, fit_im=-self.KK_circuit_fit[i].imag, ) ) # relative residuals for the real part self.KK_rr_im.append( residual_imag( im=self.df[i].im, fit_re=self.KK_circuit_fit[i].real, fit_im=-self.KK_circuit_fit[i].imag, ) ) # relative residuals for the imag part ### Plotting Linear_kk results ## # ### Label functions self.label_re_1 = [] self.label_im_1 = [] self.label_cycleno = [] if legend == "on": for i in range(len(self.df)): self.label_re_1.append("Z' (#" + str(i + 1) + ")") self.label_im_1.append("Z'' (#" + str(i + 1) + ")") self.label_cycleno.append("#" + str(i + 1)) elif legend == "potential": for i in range(len(self.df)): self.label_re_1.append( "Z' (" + str(np.round(np.average(self.df[i].E_avg), 2)) + " V)" ) self.label_im_1.append( "Z'' (" + str(np.round(np.average(self.df[i].E_avg), 2)) + " V)" ) self.label_cycleno.append( str(np.round(np.average(self.df[i].E_avg), 2)) + " V" ) if plot == "w_data": fig = figure(figsize=(6, 8), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust(left=0.1, right=0.95, hspace=0.5, bottom=0.1, top=0.95) ax = fig.add_subplot(311, aspect="equal") ax1 = fig.add_subplot(312) ax2 = fig.add_subplot(313) colors = sns.color_palette("colorblind", n_colors=len(self.df)) colors_real = sns.color_palette("Blues", n_colors=len(self.df) + 2) colors_imag = sns.color_palette("Oranges", n_colors=len(self.df) + 2) ### Nyquist Plot for i in range(len(self.df)): ax.plot( self.df[i].re, self.df[i].im, marker="o", ms=4, lw=2, color=colors[i], ls="-", alpha=0.7, label=self.label_cycleno[i], ) ### Bode Plot if bode == "on": for i in range(len(self.df)): ax1.plot( np.log10(self.df[i].f), self.df[i].re, color=colors_real[i + 1], marker="D", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_re_1[i], ) ax1.plot( np.log10(self.df[i].f), self.df[i].im, color=colors_imag[i + 1], marker="s", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_im_1[i], ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("Z', -Z'' [$\Omega$]") if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) elif bode == "re": for i in range(len(self.df)): ax1.plot( np.log10(self.df[i].f), self.df[i].re, color=colors_real[i + 1], marker="D", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_cycleno[i], ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("Z' [$\Omega$]") if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) elif bode == "log_re": for i in range(len(self.df)): ax1.plot( np.log10(self.df[i].f), np.log10(self.df[i].re), color=colors_real[i + 1], marker="D", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_cycleno[i], ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(Z') [$\Omega$]") if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) elif bode == "im": for i in range(len(self.df)): ax1.plot( np.log10(self.df[i].f), self.df[i].im, color=colors_imag[i + 1], marker="s", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_cycleno[i], ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("-Z'' [$\Omega$]") if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) elif bode == "log_im": for i in range(len(self.df)): ax1.plot( np.log10(self.df[i].f), np.log10(self.df[i].im), color=colors_imag[i + 1], marker="s", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_cycleno[i], ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(-Z'') [$\Omega$]") if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) elif bode == "log": for i in range(len(self.df)): ax1.plot( np.log10(self.df[i].f), np.log10(self.df[i].re), color=colors_real[i + 1], marker="D", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_re_1[i], ) ax1.plot( np.log10(self.df[i].f), np.log10(self.df[i].im), color=colors_imag[i + 1], marker="s", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_im_1[i], ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(Z', -Z'') [$\Omega$]") if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ### Kramers-Kronig Relative Residuals for i in range(len(self.df)): ax2.plot( np.log10(self.df[i].f), self.KK_rr_re[i] * 100, color=colors_real[i + 1], marker="D", ls="--", ms=6, alpha=0.7, label=self.label_re_1[i], ) ax2.plot( np.log10(self.df[i].f), self.KK_rr_im[i] * 100, color=colors_imag[i + 1], marker="s", ls="--", ms=6, alpha=0.7, label=self.label_im_1[i], ) ax2.set_xlabel("log(f) [Hz]") ax2.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]") if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and write 'KK-Test' on RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if np.min(self.KK_rr_im_min) > np.min(self.KK_rr_re_min): ax2.set_ylim( np.min(self.KK_rr_re_min) * 100 * 1.5, np.max(np.abs(self.KK_rr_re_min)) * 100 * 1.5, ) ax2.annotate( "Lin-KK", xy=[ np.min(np.log10(self.df[0].f)), np.max(self.KK_rr_re_max) * 100 * 0.9, ], color="k", fontweight="bold", ) elif np.min(self.KK_rr_im_min) < np.min(self.KK_rr_re_min): ax2.set_ylim( np.min(self.KK_rr_im_min) * 100 * 1.5, np.max(self.KK_rr_im_max) * 100 * 1.5, ) ax2.annotate( "Lin-KK", xy=[ np.min(np.log10(self.df[0].f)), np.max(self.KK_rr_im_max) * 100 * 0.9, ], color="k", fontweight="bold", ) ### Figure specifics if legend == "on" or legend == "potential": ax.legend(loc="best", fontsize=10, frameon=False) ax.set_xlabel("Z' [$\Omega$]") ax.set_ylabel("-Z'' [$\Omega$]") if nyq_xlim != "none": ax.set_xlim(nyq_xlim[0], nyq_xlim[1]) if nyq_ylim != "none": ax.set_ylim(nyq_ylim[0], nyq_ylim[1]) # Save Figure if savefig != "none": fig.savefig(savefig) ### Illustrating residuals only elif plot == "residuals": colors = sns.color_palette("colorblind", n_colors=9) colors_real = sns.color_palette("Blues", n_colors=9) colors_imag = sns.color_palette("Oranges", n_colors=9) ### 1 Cycle if len(self.df) == 1: fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax = fig.add_subplot(231) ax.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax.set_xlabel("log(f) [Hz]") ax.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]") if legend == "on" or legend == "potential": ax.legend(loc="best", fontsize=10, frameon=False) ax.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and write 'KK-Test' on RR subplot self.KK_rr_im_min = np.min(self.KK_rr_im) self.KK_rr_im_max = np.max(self.KK_rr_im) self.KK_rr_re_min = np.min(self.KK_rr_re) self.KK_rr_re_max = np.max(self.KK_rr_re) if self.KK_rr_re_max > self.KK_rr_im_max: self.KK_ymax = self.KK_rr_re_max else: self.KK_ymax = self.KK_rr_im_max if self.KK_rr_re_min < self.KK_rr_im_min: self.KK_ymin = self.KK_rr_re_min else: self.KK_ymin = self.KK_rr_im_min if np.abs(self.KK_ymin) > self.KK_ymax: ax.set_ylim( self.KK_ymin * 100 * 1.5, np.abs(self.KK_ymin) * 100 * 1.5 ) if legend == "on": ax.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin) * 100 * 1.3, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin) < self.KK_ymax: ax.set_ylim( np.negative(self.KK_ymax) * 100 * 1.5, np.abs(self.KK_ymax) * 100 * 1.5, ) if legend == "on": ax.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax * 100 * 1.3, ], color="k", fontweight="bold", ) # Save Figure if savefig != "none": fig.savefig(savefig) ### 2 Cycles elif len(self.df) == 2: fig = figure(figsize=(12, 5), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) # cycle 1 ax1.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax1.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ax1.axhline(0, ls="--", c="k", alpha=0.5) # cycle 2 ax2.plot( np.log10(self.df[1].f), self.KK_rr_re[1] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax2.plot( np.log10(self.df[1].f), self.KK_rr_im[1] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax2.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim( self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5 ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[0]) * 100 * 1.5, ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax[0] * 100 * 1.3, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim( self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5 ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim( np.negative(self.KK_ymax[1]) * 100 * 1.5, np.abs(self.KK_ymax[1]) * 100 * 1.5, ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.3, ], color="k", fontweight="bold", ) # Save Figure if savefig != "none": fig.savefig(savefig) ### 3 Cycles elif len(self.df) == 3: fig = figure(figsize=(12, 5), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) # cycle 1 ax1.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax1.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ax1.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 2 ax2.plot( np.log10(self.df[1].f), self.KK_rr_re[1] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax2.plot( np.log10(self.df[1].f), self.KK_rr_im[1] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax2.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 3 ax3.plot( np.log10(self.df[2].f), self.KK_rr_re[2] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax3.plot( np.log10(self.df[2].f), self.KK_rr_im[2] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax3.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax3.legend(loc="best", fontsize=10, frameon=False) ax3.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim( self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5 ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[0]) * 100 * 1.5, ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax[0] * 100 * 1.3, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim( self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5 ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim( np.negative(self.KK_ymax[1]) * 100 * 1.5, np.abs(self.KK_ymax[1]) * 100 * 1.5, ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.3, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim( self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5 ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[2]) * 100 * 1.5, ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), self.KK_ymax[2] * 100 * 1.3, ], color="k", fontweight="bold", ) # Save Figure if savefig != "none": fig.savefig(savefig) ### 4 Cycles elif len(self.df) == 4: fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) # cycle 1 ax1.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax1.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ax1.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 2 ax2.plot( np.log10(self.df[1].f), self.KK_rr_re[1] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax2.plot( np.log10(self.df[1].f), self.KK_rr_im[1] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax2.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 3 ax3.plot( np.log10(self.df[2].f), self.KK_rr_re[2] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax3.plot( np.log10(self.df[2].f), self.KK_rr_im[2] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax3.set_xlabel("log(f) [Hz]") ax3.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == "on" or legend == "potential": ax3.legend(loc="best", fontsize=10, frameon=False) ax3.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 4 ax4.plot( np.log10(self.df[3].f), self.KK_rr_re[3] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax4.plot( np.log10(self.df[3].f), self.KK_rr_im[3] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax4.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax4.legend(loc="best", fontsize=10, frameon=False) ax4.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim( self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5 ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[0]) * 100 * 1.5, ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax[0] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim( self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5 ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim( np.negative(self.KK_ymax[1]) * 100 * 1.5, np.abs(self.KK_ymax[1]) * 100 * 1.5, ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim( self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5 ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[2]) * 100 * 1.5, ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), self.KK_ymax[2] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim( self.KK_ymin[3] * 100 * 1.5, np.abs(self.KK_ymin[3]) * 100 * 1.5 ) if legend == "on": ax4.annotate( "Lin-KK, #4", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax4.annotate( "Lin-KK (" + str(np.round(np.average(self.df[3].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim( np.negative(self.KK_ymax[3]) * 100 * 1.5, np.abs(self.KK_ymax[3]) * 100 * 1.5, ) if legend == "on": ax4.annotate( "Lin-KK, #4", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax4.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[3].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[3].f)), self.KK_ymax[3] * 100 * 1.2, ], color="k", fontweight="bold", ) # Save Figure if savefig != "none": fig.savefig(savefig) ### 5 Cycles elif len(self.df) == 5: fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) ax4 = fig.add_subplot(234) ax5 = fig.add_subplot(235) # cycle 1 ax1.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax1.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ax1.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 2 ax2.plot( np.log10(self.df[1].f), self.KK_rr_re[1] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax2.plot( np.log10(self.df[1].f), self.KK_rr_im[1] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 3 ax3.plot( np.log10(self.df[2].f), self.KK_rr_re[2] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax3.plot( np.log10(self.df[2].f), self.KK_rr_im[2] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax3.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax3.legend(loc="best", fontsize=10, frameon=False) ax3.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 4 ax4.plot( np.log10(self.df[3].f), self.KK_rr_re[3] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax4.plot( np.log10(self.df[3].f), self.KK_rr_im[3] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) ax4.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax4.legend(loc="best", fontsize=10, frameon=False) ax4.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 5 ax5.plot( np.log10(self.df[4].f), self.KK_rr_re[4] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax5.plot( np.log10(self.df[4].f), self.KK_rr_im[4] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax5.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax5.legend(loc="best", fontsize=10, frameon=False) ax5.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim( self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5 ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[0]) * 100 * 1.5, ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax[0] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim( self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5 ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim( np.negative(self.KK_ymax[1]) * 100 * 1.5, np.abs(self.KK_ymax[1]) * 100 * 1.5, ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim( self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5 ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[2]) * 100 * 1.5, ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), self.KK_ymax[2] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim( self.KK_ymin[3] * 100 * 1.5, np.abs(self.KK_ymin[3]) * 100 * 1.5 ) if legend == "on": ax4.annotate( "Lin-KK, #4", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax4.annotate( "Lin-KK (" + str(np.round(np.average(self.df[3].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim( np.negative(self.KK_ymax[3]) * 100 * 1.5, np.abs(self.KK_ymax[3]) * 100 * 1.5, ) if legend == "on": ax4.annotate( "Lin-KK, #4", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax4.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[3].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[3].f)), self.KK_ymax[3] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]: ax5.set_ylim( self.KK_ymin[4] * 100 * 1.5, np.abs(self.KK_ymin[4]) * 100 * 1.5 ) if legend == "on": ax5.annotate( "Lin-KK, #5", xy=[ np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax5.annotate( "Lin-KK (" + str(np.round(np.average(self.df[4].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]: ax5.set_ylim( np.negative(self.KK_ymax[4]) * 100 * 1.5, np.abs(self.KK_ymax[4]) * 100 * 1.5, ) if legend == "on": ax5.annotate( "Lin-KK, #5", xy=[ np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymax[4]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax5.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[4].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[4].f)), self.KK_ymax[4] * 100 * 1.2, ], color="k", fontweight="bold", ) # Save Figure if savefig != "none": fig.savefig(savefig) ### 6 Cycles elif len(self.df) == 6: fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) ax4 = fig.add_subplot(234) ax5 = fig.add_subplot(235) ax6 = fig.add_subplot(236) # cycle 1 ax1.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax1.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ax1.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 2 ax2.plot( np.log10(self.df[1].f), self.KK_rr_re[1] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax2.plot( np.log10(self.df[1].f), self.KK_rr_im[1] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 3 ax3.plot( np.log10(self.df[2].f), self.KK_rr_re[2] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax3.plot( np.log10(self.df[2].f), self.KK_rr_im[2] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) if legend == "on" or legend == "potential": ax3.legend(loc="best", fontsize=10, frameon=False) ax3.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 4 ax4.plot( np.log10(self.df[3].f), self.KK_rr_re[3] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax4.plot( np.log10(self.df[3].f), self.KK_rr_im[3] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax4.set_xlabel("log(f) [Hz]") ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == "on" or legend == "potential": ax4.legend(loc="best", fontsize=10, frameon=False) ax4.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 5 ax5.plot( np.log10(self.df[4].f), self.KK_rr_re[4] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax5.plot( np.log10(self.df[4].f), self.KK_rr_im[4] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax5.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax5.legend(loc="best", fontsize=10, frameon=False) ax5.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 6 ax6.plot( np.log10(self.df[5].f), self.KK_rr_re[5] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax6.plot( np.log10(self.df[5].f), self.KK_rr_im[5] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax6.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax6.legend(loc="best", fontsize=10, frameon=False) ax6.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim( self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5 ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[0]) * 100 * 1.5, ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax[0] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim( self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5 ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim( np.negative(self.KK_ymax[1]) * 100 * 1.5, np.abs(self.KK_ymax[1]) * 100 * 1.5, ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim( self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5 ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[2]) * 100 * 1.5, ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(
np.log10(self.df[2].f)
numpy.log10