prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import from builtins import zip from builtins import range import os import numpy as np import subprocess import pkg_resources from .generalTools import calcForLogQ from .nebAbundTools import getNebAbunds def cloudyInput(dir_, model_name, **kwargs): ''' cloudyInput('./test/', 'ZAU115', logZ=-1.5, age=5.0e6, logU=-4.0) writes standard cloudy input to ./test/ZAU115.in defaults: 1Myr, logZ=-0.5, logU=-2.0, nH=100, r_inner=3 pc ''' pars = {"age":1.0e6, #age in years "logZ": -0.5, #logZ/Zsol (-2.0 to 0.2) "gas_logZ":None, "logQ":47.0, "logU":-2.0, #log of ionization parameter "dens":100.0, # number density of hydrogen "r_inner":1.0, #inner radius of cloud "r_in_pc":False, "use_Q":True, "set_name":"dopita", "dust":True, "re_z":False, "cloudy_mod":"FSPS_SPS.mod", "efrac":-1.0, "extras":"", "extra_output":True, "to_file":True, "verbose":False, "par1":"age", "par1val":5.0e6, "par2":"logz", "par2val":0.0, "maxStellar":None, "use_extended_lines":False, "geometry":"sphere" } for key, value in list(kwargs.items()): pars[key] = value # ----- if pars["to_file"]: file_name = dir_+model_name+".in" f = open(file_name, "w") def this_print(s, eol=True): if s is None: print('"None" parameter not printed') else: to_print = s.strip() if pars["verbose"]: print(to_print) if pars["to_file"]: if eol: to_print += "\n" f.write(to_print) #----------------------------------------------------- if pars["gas_logZ"] is None: pars["gas_logZ"] = pars["logZ"] abunds = getNebAbunds(pars["set_name"], pars["gas_logZ"], dust=pars["dust"], re_z=pars["re_z"]) this_print('////////////////////////////////////') this_print('title {0}'.format(model_name.split('/')[-1])) this_print('////////////////////////////////////') this_print('set punch prefix "{0}"'.format(model_name)) this_print('print line precision 6') #### if pars['par1'] == "age": pars['par1val'] = pars['age'] if pars['par2'] == "logz": pars['par2val'] = pars['logZ'] if pars['maxStellar'] is not None: if pars['logZ'] > pars['maxStellar']: pars['par2val'] = pars['maxStellar'] else: pars['par2val'] = pars['logZ'] this_print('table star "{0}" {1}={2:.2e} {3}={4:.2e}'.format(pars['cloudy_mod'], pars['par1'], pars['par1val'],pars['par2'], pars['par2val'])) if pars['use_Q']: this_print('Q(H) = {0:.3f} log'.format(pars['logQ'])) else: this_print('ionization parameter = {0:.3f} log'.format(pars['logU'])) #### this_print(abunds.solarstr) if pars['dust']: #this_print('metals grains {0:.2f} log'.format(pars['gas_logZ'])) this_print('grains {0:.2f} log'.format(pars['gas_logZ'])) #else: # #this_print('metals {0:.2f} log'.format(pars['gas_logZ'])) for line in abunds.elem_strs: this_print(line) #### if pars['r_in_pc']: pc_to_cm = 3.08568e18 r_out = np.log10(pars['r_inner']*pc_to_cm) else: r_out = pars['r_inner'] if pars['use_extended_lines']: linefile = 'cloudyLinesEXT.dat' else: linefile = 'cloudyLines.dat' this_print('radius {0:.3f} log'.format(r_out)) this_print('hden {0:.3f} log'.format(np.log10(pars['dens']))) this_print('{}'.format(pars['geometry'])) this_print('cosmic ray background') this_print('iterate to convergence max=5') this_print('stop temperature 100.0') this_print('stop efrac {0:.2f}'.format(pars['efrac'])) this_print('save last linelist ".lin" "{}" absolute column'.format(linefile)) this_print('save last outward continuum ".outwcont" units Angstrom no title') this_print('save last incident continuum ".inicont" units Angstrom no title') if len(pars["extras"]) > 0: this_print(pars["extras"]) if pars["extra_output"]: this_print(extra_str) if pars["verbose"]: print("Input written in {0}".format(file_name)) f.close() extra_str = ''' save last radius ".rad" save last physical conditions ".phys" save last element hydrogen ".ele_H" save last element helium ".ele_He" save last element carbon ".ele_C" save last element nitrogen ".ele_N" save last element oxygen ".ele_O" save last element sulphur ".ele_S" save last element silicon ".ele_Si" save last element iron ".ele_Fe" save last hydrogen Lya ".H_lya" save last hydrogen ionization ".H_ion" save last lines emissivity ".emis" H 1 6562.85A H 1 4861.36A H 1 4340.49A He 1 3888.63A He 1 4471.47A He 1 5875.61A He 2 1640.00A O 1 6300.00A O 1 6363.00A O II 3729.00A O II 3726.00A O 3 5007.00A TOTL 4363.00A O 3 4959.00A O 3 51.8000m N 2 6584.00A N 2 6548.00A S II 6731.00A S II 6716.00A S 3 9069.00A S 3 9532.00A S 3 18.6700m S 4 10.5100m Ar 3 7135.00A Ar 3 9.00000m Ne 3 3869.00A Ne 2 12.8100m Ne 3 15.5500m C 3 1910.00A C 3 1907.00A end of lines ''' def writeMake(dir_=None): ''' writes makefile that runs Cloudy on all files in directory with the same prefix. ''' makefile = open("{0}/Makefile".format(dir_), "w") txt_exe = "CLOUDY = {0}\n".format(os.environ["CLOUDY_EXE"]) txt = """ SRC = $(wildcard ${name}*.in) OBJ = $(SRC:.in=.out) #Usage: make -j n_proc name='NAME' #optional: NAME is a generic name, all models named NAME*.in will be run all: $(OBJ) %.out: %.in \t-$(CLOUDY) < $< > $@ #notice the previous line has TAB in first column """ makefile.write(txt_exe) makefile.write(txt) makefile.close() def runMake(dir_=None, n_proc=1, model_name=None): if dir_ is None: dir_="./" to_run = "cd {0} ; make -j {1:d}".format(dir_, n_proc) if model_name is not None: to_run += " name='{0}'".format(model_name) stdin = None stdout = subprocess.PIPE print("running: {0}".format(to_run)) proc = subprocess.Popen(to_run, shell=True, stdout=stdout, stdin=stdin) proc.communicate() def printParFile(dir_, mod_prefix, pars): ''' prints parameter file for easy parsing later modnum, Z, a, U, R, logQ, n, efrac ''' outfile = "{}{}.pars".format(dir_, mod_prefix) f = open(outfile, "w") for i in range(len(pars)): par = pars[i] if len(par) > 7: pstr = "{0} {1:.2f} {2:.2e} {3:.2f} {4:.2f} {5:.2f} {6:.2f} {7:.2f} {8:.2e}\n".format(i+1, *par) else: pstr = "{0} {1:.2f} {2:.2e} {3:.2f} {4:.2f} {5:.2f} {6:.2f} {7:.2f}\n".format(i+1, *par) f.write(pstr) f.close() return def writeParamFiles(**kwargs): ''' for making grids of parameters. can pass arrays of ages, logZs, logUs, nHs. cloudy_input.param_files(extras='extra line to add to input') ''' nom_dict = {"dir_":"./output/", "model_prefix":"ZAU", "ages":np.arange(1.0e6, 6.0e6, 1.0e6), "logZs":np.linspace(-2.0, 0.2, 5), "logQs":
np.linspace(45,49, 5)
numpy.linspace
#!/usr/bin/env python import unittest from unittest.mock import MagicMock import nbconvert import numpy as np with open("assignmenttest.ipynb") as f: exporter = nbconvert.PythonExporter() python_file, _ = exporter.from_file(f) with open("assignmenttest.py", "w") as f: f.write(python_file) from assignmenttest import IterativeSolver class TestSolution(unittest.TestCase): def test_solver(self): A = np.array([[2, -1, 0], [-1, 2, -1], [0, -1, 2]]) b = np.array([1, 2, 3]) solver = IterativeSolver(A, b) np.testing.assert_array_almost_equal(solver.gauss_seidel_solve(),
np.array([2.5, 4., 3.5])
numpy.array
import os import csv import json import logging import random import numpy as np from PIL import Image from torch.utils.data import Dataset from smoke.modeling.heatmap_coder import ( get_transfrom_matrix, affine_transform, gaussian_radius, draw_umich_gaussian, ) from smoke.modeling.smoke_coder import encode_label from smoke.structures.params_3d import ParamsList TYPE_ID_CONVERSION = { 'bicycle': 0, 'bus': 1, 'car': 2, 'construction_vehicle': 3, 'motorcycle': 4, 'pedestrian': 5, 'trailer': 6, 'truck': 7 } class NuScenesDataset(Dataset): def __init__(self, cfg, root, json_file, is_train=True, transforms=None): super(NuScenesDataset, self).__init__() self.root = root self.json_file = os.path.join(root, json_file) with open(self.json_file, 'r') as f: infos = json.load(f) self.image_infos = infos['images'] self.anns_infos = infos['annotations'] self.is_train = is_train self.transforms = transforms self.classes = cfg.DATASETS.DETECT_CLASSES if self.is_train: self.filter_samples(self.classes) self.num_samples = len(self.image_infos) self.flip_prob = cfg.INPUT.FLIP_PROB_TRAIN if is_train else 0 self.aug_prob = cfg.INPUT.SHIFT_SCALE_PROB_TRAIN if is_train else 0 self.shift_scale = cfg.INPUT.SHIFT_SCALE_TRAIN self.num_classes = len(self.classes) self.input_width = cfg.INPUT.WIDTH_TRAIN self.input_height = cfg.INPUT.HEIGHT_TRAIN self.output_width = self.input_width // cfg.MODEL.BACKBONE.DOWN_RATIO self.output_height = self.input_height // cfg.MODEL.BACKBONE.DOWN_RATIO self.max_objs = cfg.DATASETS.MAX_OBJECTS self.logger = logging.getLogger(__name__) self.logger.info("Initializing NuScenes {} with {} samples loaded".format(json_file, self.num_samples)) def __len__(self): return self.num_samples def __getitem__(self, idx): img, image_id, anns, calib = self.load_data(idx) K = calib['K'] center = np.array([i / 2 for i in img.size], dtype=np.float32) size = np.array([i for i in img.size], dtype=np.float32) """ resize, horizontal flip, and affine augmentation are performed here. since it is complicated to compute heatmap w.r.t transform. """ flipped = False if (self.is_train) and (random.random() < self.flip_prob): flipped = True img = img.transpose(Image.FLIP_LEFT_RIGHT) center[0] = size[0] - center[0] - 1 K[0, 2] = size[0] - K[0, 2] - 1 K[0, 3] *= -1 affine = False if (self.is_train) and (random.random() < self.aug_prob): affine = True shift, scale = self.shift_scale[0], self.shift_scale[1] shift_ranges = np.arange(-shift, shift + 0.1, 0.1) center[0] += size[0] * random.choice(shift_ranges) center[1] += size[1] * random.choice(shift_ranges) scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1) size *= random.choice(scale_ranges) center_size = [center, size] trans_affine = get_transfrom_matrix( center_size, [self.input_width, self.input_height] ) trans_affine_inv = np.linalg.inv(trans_affine) img = img.transform( (self.input_width, self.input_height), method=Image.AFFINE, data=trans_affine_inv.flatten()[:6], resample=Image.BILINEAR, ) trans_mat = get_transfrom_matrix( center_size, [self.output_width, self.output_height] ) if not self.is_train: # for inference we parametrize with original size target = ParamsList(image_size=size, is_train=self.is_train) target.add_field("trans_mat", trans_mat) target.add_field("K", K) target.add_field("ego_T_cam", calib['ego_T_cam']) target.add_field("global_T_ego", calib['global_T_ego']) if self.transforms is not None: img, target = self.transforms(img, target) return img, target, image_id heat_map = np.zeros([self.num_classes, self.output_height, self.output_width], dtype=np.float32) regression = np.zeros([self.max_objs, 3, 8], dtype=np.float32) cls_ids = np.zeros([self.max_objs], dtype=np.int32) proj_points = np.zeros([self.max_objs, 2], dtype=np.int32) p_offsets = np.zeros([self.max_objs, 2], dtype=np.float32) dimensions =
np.zeros([self.max_objs, 3], dtype=np.float32)
numpy.zeros
import pandas as pd import scanpy as sc import numpy as np from sklearn.metrics import pairwise_distances from scipy.sparse import issparse, csr_matrix def kfilter(x, k=5, keep_values=True): """ Sorts and array and return either a boolean array with True set to k smallest values (if keep_values is False) or sets all values to 0 and keeps k smallest values. Parameters ---------- x A numpy array () k Integer, number of smallest values to keep keep_values bool, whether to return boolean (if False) or values (if True) Returns ------- numpy array, bool (if keep_values is False), otherwise dtype of x """ inds = np.argsort(x)[range(k)] if keep_values: out = np.zeros(x.shape, dtype=x.dtype) out[inds] = x[inds] else: out = np.zeros(x.shape, dtype='bool') out[inds] = True return out def kneighbor_mask(array, k, axis=1): """ Runs kfilter on a 2 dimensional array, along the specified axis. """ array01 = np.apply_along_axis(kfilter, axis=axis, arr=array, k=k) return array01 def custom_scale(adata, mean, std, copy=True): ''' Zero-centered scaling (with unit variance) with defined means and standard deviations. Can be used to match scaled gene expression values to some refernce dataset. This is based on scanpy sc.pp.scale function and works with both sparse or dense arrays. Note: scanpy stores means and std after scaling in the .var slot Parameters ---------- X adata - AnnData object (with .X sparse or dense) mean numpy array with mean gene expression std numpy array with standard deviations copy boolean, whether to modify in place or return a copy ''' adata = adata.copy() if copy else adata X = adata.X if issparse(X): X = X.toarray() X -= mean X /= std adata.X = X if copy: return adata def get_label_mode(x): """ Convert array to pd.Series and return the mode. In case of ties the first value is returned. """ x = pd.Series(x) return x.mode()[0] # what if there ties? def get_label_by_threshold(x, tr=0.6): """ Get the most prevalent label above a threshold Parameters ---------- x list/array/pd.Series with labels (strings) tr float, between 0 and 1. Defines the label fraction threshold. Returns ------- Returns the most prevalent value if it occurs more than tr fraction. Otherwise returns unassigned. """ x = pd.Series(x) x = x.value_counts() if any(x >= tr*sum(x)): return(x.idxmax()) else: return('unassigned') def assign_numeric(nn, values, fun=np.mean): """ Assign summarised numeric values based on these values among nearest neighbors in the reference datasets. Parameters ---------- nn bolean numpy array with nearest neighbors between target dataset (each cell is a row) and reference dataset (each cell is a column) value numpy array/pd.Series with numeric values in the reference, needs to match the nnmatrix column order fun function used to summarise the values. Applied to each vector of length equal to the number of nearest neighbors Returns ------- Numpy array (length equal to rows in nnmatrix) with summarised values """ nobs = nn.shape[0] out = np.empty(nobs, dtype=values.dtype) for i in range(nobs): sub = nn[i, :] x = values[sub] out[i] = fun(x) return out def count_label_distribution(nn, labels): """ Count normalised label occurences among nearest neighbors. Parameters ---------- nn a numpy boolean array representing nn adjacency matrix (cells x cells shape) each row corresponds to a cell and its k nearest neighbors labelled as True. labels numpy array/pd.Series with labels, has to correspond to columns in the nn array Returns pd.DataFrame, rows are cells, columns are labels, values are number of label occurences for each label divided by the number of neighbors """ # Detecting k and number of cells (n) k = nn[0, :].sum() n = nn.shape[0] dl = np.empty((n, k), dtype='object') for i in range(n): dl[i, :] = labels[nn[i, :]] dl = pd.DataFrame(dl) dl = dl.melt(ignore_index=False, var_name='k', value_name='label') out = pd.crosstab(index=dl.index, columns=dl.label) out = out/k return out # Another way: use .value_counts() for each cell and store in an array # CAUTION then categories needs to be ordered Otherwise the order changes! def get_label_by_nndistribution(cross_nn, ref_nn, ref_labels): """ Assign label based on correlation in label distribution among nearest neighbors. First we compute the the number of each label among nearest neighbors in the reference dataset, then do the same but for nearest neighbors between the projected and reference dataset. Finally we compute pairwise correlations between and choose the best matching cells in the reference and assign its label. In case of ties we take the mode of labels of the best matching cells, and if there are ties there we take the first value. Parameters ---------- cross_nn dense numpy array or scipy sparse array (csr) with projected cells as rows and reference data in columns. Values are boolean and indicate if reference cells are nearest neighbors of projected cells ref_nn as in cross_nn but a square matrix indicating nearest neighbors within the reference dataset (from rows to columns) ref_labels numpy array/pd.Series with labels, has to correspond to columns in the cross_nn or ref_nn array Returns ------- Numpy array with assigned labels. Length equal to the number of projected cells. All cells are assigned a label. """ if issparse(cross_nn): cross_nn = cross_nn.toarray() if issparse(ref_nn): ref_nn = ref_nn.toarray() ref_ncounts = count_label_distribution(ref_nn, ref_labels) target_ncounts = count_label_distribution(cross_nn, ref_labels) ref_ncounts = ref_ncounts.loc[:, target_ncounts.columns] cordists = pairwise_distances(target_ncounts, ref_ncounts) n = target_ncounts.shape[0] new_labels = np.empty(n, dtype='object') for i in range(n): x = cordists[i, :] best = np.where(x == x.min())[0] if len(best) == 1: new_labels[i] = ref_labels[best][0] else: new_labels[i] = ref_labels[best].mode()[0] return new_labels def assign_label(cross_nn, ref_nn, ref_labels, how='mode'): """ Assign label to projected cells based on the labels among their nearest neighbors in the reference dataset. Parameters ---------- cross_nn dense numpy array or scipy sparse array (csr) with projected cells as rows and reference data in columns. Values are boolean and indicate if reference cells are nearest neighbors of projected cells ref_nn as in cross_nn but a square matrix indicating nearest neighbors within the reference dataset (from rows to columns) ref_labels numpy array/pd.Series with labels, has to correspond to columns in the cross_nn or ref_nn array how string, either 'mode', 'threshold' or 'distribution'. Specified the mode modified operation, and how the labels will be assigned. See the functions: get_label_mode, get_label_by_threshold and get_label_by_nndistribution for details. Returns ------- Numpy array with assigned labels. Length equal to the number of projected cells. If how = 'threshold', some cells may be labelled as 'unassigned'. """ if how == 'mode' or how == 'threshold': nobs = cross_nn.shape[0] out =
np.empty(nobs, dtype='object')
numpy.empty
import argparse import glob import cv2 import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, BatchNormalization, Lambda, Activation from keras.layers import Conv2D, MaxPooling2D, concatenate, Input from keras.callbacks import TensorBoard from keras.models import load_model, Model from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ModelCheckpoint import tqdm from moviepy.editor import VideoFileClip from scipy.ndimage.measurements import label from sklearn.model_selection import train_test_split import matplotlib import matplotlib.image as mpimg import matplotlib.pyplot as plt import json from PIL import Image, ImageDraw, ImageFont import multiprocessing matplotlib.style.use('ggplot') import logging BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8) #The background is set with 40 plus the number of the color, and the foreground with 30 #These are the sequences need to get colored ouput RESET_SEQ = "\033[0m" COLOR_SEQ = "\033[1;%dm" BOLD_SEQ = "\033[1m" def formatter_message(message, use_color = True): if use_color: message = message.replace("$RESET", RESET_SEQ).replace("$BOLD", BOLD_SEQ) else: message = message.replace("$RESET", "").replace("$BOLD", "") return message COLORS = { 'WARNING': YELLOW, 'INFO': WHITE, 'DEBUG': BLUE, 'CRITICAL': YELLOW, 'ERROR': RED } class ColoredFormatter(logging.Formatter): def __init__(self, msg, use_color = True): logging.Formatter.__init__(self, msg) self.use_color = use_color def format(self, record): levelname = record.levelname if self.use_color and levelname in COLORS: levelname_color = COLOR_SEQ % (30 + COLORS[levelname]) + levelname + RESET_SEQ record.levelname = levelname_color return logging.Formatter.format(self, record) # Custom logger class with multiple destinations class ColoredLogger(logging.Logger): FORMAT = "[$BOLD%(name)-20s$RESET][%(levelname)-18s] %(message)s ($BOLD%(filename)s$RESET:%(lineno)d)" COLOR_FORMAT = formatter_message(FORMAT, True) def __init__(self, name): logging.Logger.__init__(self, name, logging.DEBUG) color_formatter = ColoredFormatter(self.COLOR_FORMAT) console = logging.StreamHandler() console.setFormatter(color_formatter) self.addHandler(console) return logging.setLoggerClass(ColoredLogger) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) ####################################################### MAIN CODE ######################################################## class Frames: def __init__(self): self._initialized = False self._current_frame = 0 self._prev_bboxes = [] def init(self, img): self._heatmap = np.zeros_like(img) def _add_heat(self, bbox_list): for box in bbox_list: self._heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1 return self._heatmap def _apply_threshold(self, threshold): self._heatmap[self._heatmap <= threshold] = 0 return self._heatmap def get_labels(self, bboxes, threshold): if len(self._prev_bboxes) > threshold: # Then remove the last bbox list from the previous frames self._prev_bboxes.pop(0) for pbboxes in self._prev_bboxes: self._add_heat(pbboxes) self._add_heat(bboxes) # Add the latest one self._prev_bboxes.append(bboxes) # Figure out the thresholded value # self._apply_threshold(threshold) labels = label(self._heatmap) bboxes = [] # Iterate through all detected cars for car_number in range(1, labels[1] + 1): # Find pixels with each car_number label value nonzero = (labels[0] == car_number).nonzero() # Identify x and y values of those pixels nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Define a bounding box based on min/max x and y bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy))) bboxes.append(bbox) # Get a viewable heatmap heatmap = np.clip(self._heatmap, 0, 255) heatmap[heatmap[:, :, 0] > 0] += 100 heatmap[:, :, 1] = 0 heatmap[:, :, 2] = 0 return bboxes, heatmap frames = Frames() def overlay_text(image, text, pos=(0, 0), color=(255, 255, 255)): image = Image.fromarray(image) draw = ImageDraw.Draw(image) font = ImageFont.truetype("./fonts/liberation-sans.ttf", 64) draw.text(pos, text, color, font=font) image = np.asarray(image) return image def overlay_image(img1, img2): img1[0:img2.shape[0], 0:img2.shape[1]] = img2[:, :] return img1 # Here is your draw_boxes function from the previous exercise def draw_boxes(img, bboxes, color=(0, 255, 0), thick=2): # Make a copy of the image imcopy = np.copy(img) for bbox in bboxes: # Draw a rectangle given bbox coordinates cv2.rectangle(imcopy, bbox[0], bbox[1], color, thick) # Return the image copy with boxes drawn return imcopy class LeNet: @staticmethod def build(width, height, depth, weightsPath=None): model = Sequential() # First set Conv Layers model.add(Conv2D(8, (3, 3), padding='valid', input_shape=(width, height, depth), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(BatchNormalization()) # 2nd set Conv layers model.add(Conv2D(16, (3, 3), padding='valid', input_shape=(width, height, depth), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(BatchNormalization()) model.add(Conv2D(32, (3, 3), padding='valid', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(BatchNormalization()) model.add(Conv2D(64, (3, 3), padding='valid', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.5)) # Set of FC => Relu layers model.add(Flatten()) model.add(Dense(256)) model.add(Activation('relu')) model.add(Dropout(0.5)) # Softmax classifier model.add(Dense(1)) model.add(Activation('sigmoid')) if weightsPath is not None: model.load_weights(weightsPath) return model class SimpleInception: @staticmethod def build(width, height, depth, weightsPath=None): input_img = Input(shape=(width, height, depth)) model = Sequential() # First set Conv Layers tower_1 = Conv2D(32, (1, 1), padding='same', activation='relu')(input_img) tower_1 = Conv2D(32, (3, 3), padding='same', activation='relu')(tower_1) tower_2 = Conv2D(32, (1, 1), padding='same', activation='relu')(input_img) tower_2 = Conv2D(32, (5, 5), padding='same', activation='relu')(tower_2) tower_3 = MaxPooling2D((3, 3), strides=(1, 1), padding='same')(input_img) tower_3 = Conv2D(32, (1, 1), padding='same', activation='relu')(tower_3) concat = concatenate([tower_1, tower_2, tower_3], axis=3) # Set of FC => Relu layers flatten = Flatten()(concat) dense1 = (Dense(256)(flatten)) activation1 = Activation('relu')(dense1) dropout1 = Dropout(0.5)(activation1) # Softmax classifier dense2 = Dense(1)(dropout1) output = Activation('sigmoid')(dense2) model = Model(inputs=input_img, outputs=output) if weightsPath is not None: model.load_weights(weightsPath) return model def read_image(filename): logger.debug("Reading an image") img = mpimg.imread(filename) return img def create_training_data(): logger.info("Creating Training Data") vehicles = [] for filename in tqdm.tqdm(glob.iglob('training/vehicles/**/*.png', recursive=True)): img = read_image(filename) vehicles.append(img) nonvehicles = [] for filename in tqdm.tqdm(glob.iglob('training/non-vehicles/**/*.png', recursive=True)): img = read_image(filename) nonvehicles.append(img) return vehicles, nonvehicles def train_model(vehicles, non_vehicles): generator = ImageDataGenerator( featurewise_center=True, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=20., width_shift_range=0.4, height_shift_range=0.4, shear_range=0.2, zoom_range=0.2, channel_shift_range=0.1, fill_mode='nearest', horizontal_flip=True, vertical_flip=False, rescale=1.2, preprocessing_function=None) logger.info("Training the Model") vehicles_labels = np.ones(len(vehicles)) non_vehicles_labels = np.zeros(len(non_vehicles)) labels = np.hstack((vehicles_labels, non_vehicles_labels)) data = np.array(vehicles + non_vehicles) if len(vehicles[0].shape) == 3: width, height, depth = vehicles[0].shape[1], vehicles[0].shape[0], vehicles[0].shape[2] else: width, height, depth = vehicles[0].shape[1], vehicles[0].shape[0], 1 # model = LeNet.build(width, height, depth) model = SimpleInception.build(width, height, depth) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) trainData, testData, trainLabels, testLabels = train_test_split(data, labels, random_state=20) filepath = "inception.best.h5" checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') generator.fit(trainData) hist = model.fit_generator(generator.flow(trainData, trainLabels, batch_size=16), steps_per_epoch= int(len(trainData) / 16), epochs=30, verbose=1, validation_data=(testData, testLabels), callbacks=[TensorBoard(log_dir='logs'), checkpoint]) print("[INFO] dumping weights to file...") model.save("inception.h5", overwrite=True) model.save_weights("inception_weights.hdf5", overwrite=True) fp = open("history_inception.json", 'w') json.dump(hist.history, fp) def generate_sliding_windows_old(img, window_sizes): height, width = img.shape[0], img.shape[1] # x_start = width // 2 - 100 x_start = 0 x_stop = width y_start = height // 2 + 20 y_stop = height - 70 current_x = x_start current_y = y_start # Towards the bottom of the image use bigger bounding boxes window_list = [] for (window_size, overlap) in window_sizes: while current_x < x_stop: end_x = current_x + window_size[0] while current_y < y_stop: end_y = current_y + window_size[1] window_list.append(((int(current_x), int(current_y)), (int(end_x), int(end_y)))) current_y = end_y - window_size[1] * overlap[1] # At this point reset the x and update the y current_y = y_start current_x = end_x - (window_size[0] * overlap[0]) return window_list def slide_window(img, x_start_stop=[None, None], y_start_stop=[None, None], xy_window=(64, 64), xy_overlap=(0.5, 0.5)): # If x and/or y start/stop positions not defined, set to image size if x_start_stop[0] == None: x_start_stop[0] = 0 if x_start_stop[1] == None: x_start_stop[1] = img.shape[1] if y_start_stop[0] == None: y_start_stop[0] = 0 if y_start_stop[1] == None: y_start_stop[1] = img.shape[0] # Compute the span of the region to be searched xspan = x_start_stop[1] - x_start_stop[0] yspan = y_start_stop[1] - y_start_stop[0] # Compute the number of pixels per step in x/y nx_pix_per_step = np.int(xy_window[0] * (1 - xy_overlap[0])) ny_pix_per_step = np.int(xy_window[1] * (1 - xy_overlap[1])) # Compute the number of windows in x/y nx_buffer = np.int(xy_window[0] * (xy_overlap[0])) ny_buffer = np.int(xy_window[1] * (xy_overlap[1])) nx_windows = np.int((xspan - nx_buffer) / nx_pix_per_step) ny_windows = np.int((yspan - ny_buffer) / ny_pix_per_step) # Initialize a list to append window positions to window_list = [] # Loop through finding x and y window positions # Note: you could vectorize this step, but in practice # you'll be considering windows one by one with your # classifier, so looping makes sense for ys in range(ny_windows): for xs in range(nx_windows): # Calculate window position startx = xs * nx_pix_per_step + x_start_stop[0] endx = startx + xy_window[0] starty = ys * ny_pix_per_step + y_start_stop[0] endy = starty + xy_window[1] # Append window position to list window_list.append(((startx, starty), (endx, endy))) # Return the list of windows return window_list def generate_sliding_windows(img): n_win_size = 3 min_size = (30, 30) max_size = (120, 120) roi_upper = 380 roi_lower = 650 win_step_w = int((max_size[0] - min_size[0]) / n_win_size) win_step_h = int((max_size[1] - min_size[1]) / n_win_size) window_sizes = [(min_size[0] + i * win_step_w, min_size[1] + i * win_step_h) for i in range(n_win_size + 1)] all_windows = [] for win_size in window_sizes: windows = slide_window(img, x_start_stop=[None, None], y_start_stop=[roi_upper, roi_lower], xy_window=win_size, xy_overlap=(0.5, 0.5)) all_windows += windows f = open('all_windows_mine.csv', 'w') for w in all_windows: f.write(str(w)) f.write("\n") f.close() return all_windows def crop_and_predict(idx, img, window, spatial_size): global model cropped = img[window[0][1]:window[1][1], window[0][0]:window[1][0]] # cv2.imwrite("cropped/" + str(idx) + ".png", cropped) cropped = cv2.resize(cropped, spatial_size) cropped = np.array([cropped]) return (window, cropped) def add_heat(heatmap, bbox_list): # Iterate through list of bboxes for box in bbox_list: # Add += 1 for all pixels inside each bbox # Assuming each "box" takes the form ((x1, y1), (x2, y2)) heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1 # Return updated heatmap return heatmap # Iterate through list of bboxes def apply_threshold(heatmap, threshold): # Zero out pixels below the threshold heatmap[heatmap <= threshold] = 0 # Return thresholded map return heatmap def draw_labeled_bboxes(img, labels): # Iterate through all detected cars for car_number in range(1, labels[1]+1): # Find pixels with each car_number label value nonzero = (labels[0] == car_number).nonzero() # Identify x and y values of those pixels nonzeroy = np.array(nonzero[0]) nonzerox =
np.array(nonzero[1])
numpy.array
import numpy as np import cv2 import numpy as np import cmath import math def RA(img): kernel = np.ones((5,5), np.uint8) dilation = cv2.dilate(img, kernel, iterations = 7) kernel = np.ones((5,5), np.uint8) erosion = cv2.erode(dilation, kernel, iterations = 15) r1 = erosion[:,:,2].astype(np.float32) - erosion[:,:,0].astype(np.float32) r2 = erosion[:,:,2].astype(np.float32) - erosion[:,:,1].astype(np.float32) img1 = cv2.normalize(r1, None, 0, 1, cv2.NORM_MINMAX, cv2.CV_8U) img2 = cv2.normalize(r2, None, 0, 1, cv2.NORM_MINMAX, cv2.CV_8U) bitwiseAnd = cv2.bitwise_and(img1, img2) ret, thresh1 = cv2.threshold(bitwiseAnd, 0, 255, cv2.THRESH_BINARY) #plt.imshow(cv2.cvtColor(thresh1, cv2.COLOR_BGR2RGB)) return thresh1 def RC(img): r3 = img[:,:,2].astype(np.float32)-img[:,:,0].astype(np.float32) r4 = img[:,:,2].astype(np.float32)-img[:,:,1].astype(np.float32) img3 = cv2.normalize(r3, None, 0, 1, cv2.NORM_MINMAX, cv2.CV_8U) img4 = cv2.normalize(r4, None, 0, 1, cv2.NORM_MINMAX, cv2.CV_8U) bitwiseAnd2 = cv2.bitwise_and(img3, img4) ret, thresh2 = cv2.threshold(bitwiseAnd2, 0, 255, cv2.THRESH_BINARY_INV) #plt.imshow(cv2.cvtColor(thresh2, cv2.COLOR_BGR2RGB)) return thresh2 def Merge(img1, img2): bitwiseAnd3 = cv2.bitwise_and(img1, img2) #plt.imshow(cv2.cvtColor(bitwiseAnd3, cv2.COLOR_BGR2RGB)) return bitwiseAnd3 def Thinning(img): thinned = cv2.ximgproc.thinning(img) #plt.imshow(cv2.cvtColor(thinned, cv2.COLOR_BGR2RGB)) return thinned def Edges(img): edges = cv2.Canny(img, 50, 150, apertureSize = 3) #plt.imshow(cv2.cvtColor(edges, cv2.COLOR_BGR2RGB)) return edges def HoughLinesP(img, Original): lines = cv2.HoughLinesP(img, 1, np.pi/180, 100, minLineLength=180, maxLineGap=250) lines_data = np.empty([0,10]) if lines is not None: for line in lines: x1, y1, x2, y2 = line[0] if(x2-x1 != 0): # slope = abs((y2-y1)/(x2-x1)) slope = (y1-y2)/(x1-x2) Linear_Equation_A = -slope Linear_Equation_B = 1 Linear_Equation_C = y1-slope*x1 print(slope) angle_in_radians = math.atan(slope) angle_in_degrees = math.degrees(angle_in_radians) cv2.line(Original, (x1, y1), (x2, y2), (0, 255, 0), 1) print("(",x1,",",y1,") ",'(',x2,",",y2,')') cv2.circle(Original, (x1,y1), 5, (0,255,0), -1) cv2.circle(Original, (x2,y2), 5, (0,255,0), -1) a = np.array([(Linear_Equation_A, Linear_Equation_B, Linear_Equation_C,slope,x1,x2,y1,y2,angle_in_degrees,1)]) lines_data = np.append(lines_data,a, axis=0) else: print('Nothing!!!') return Original, lines_data def Intersection(img, lines_data): for i in range(len(lines_data)): for j in range(i+1,len(lines_data)): A =
np.array([[lines_data[i][0], lines_data[i][1]], [lines_data[j][0], lines_data[j][1]]])
numpy.array
#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap as lcmap from scipy.ndimage.filters import gaussian_filter, median_filter pred = np.load('prob_pred_full.npy') print(pred.shape) #print(pred.max()) #print(pred.min()) print(pred.dtype) if False: vis = np.where(pred.max(axis=-1) == 0, 0 , np.argmax(pred, axis=2)+1) elif True: vis = np.zeros(pred.shape[:-1], dtype=np.uint8) water = ((pred[...,0] > 0.05)|(pred[...,6] > 0.05)).astype(np.bool) xz = (pred[...,4] > 0.1).astype(np.bool) build = (pred[...,3] > 0.1).astype(np.bool) manmade = (pred[...,1] > 0.1).astype(np.bool) manmade_2 = (pred[...,5] > 0.1).astype(np.bool) green_1 = (pred[...,2] > 0.3).astype(np.bool) #green_2 = (pred[...,3] > 0.3).astype(np.bool) vis = np.where(green_1, 6, 0) vis = np.where(xz, 5, vis) vis = np.where(manmade_2, 4, vis) vis = np.where(manmade, 3, vis) vis = np.where(build, 2, vis) vis = np.where(water, 1, vis) vis = np.where(vis == 0, np.where(pred.max(axis=-1) == 0, 0 , np.argmax(pred, axis=2)+1) , vis) else: vis = (pred[...,5] > 0.05).astype(np.bool) np.save('tovect.npy', vis) print(np.unique(vis)) #vis = median_filter(vis,4) cs3 = plt.get_cmap('Set3').colors colors = [] colors.append((0,0,0)) #colors.extend(cs3) colors.append((0,0,1.)) colors.append((1.,0.,0.)) colors.append((1.,0.3,0)) colors.append((1.,0.7,0)) colors.append((1.,0.99,0)) colors.append((0.,1.,0.3)) #colors.append((0.,1.,0.8)) #colors.append((1.,0.,1.)) #cmap.colors = tuple(colors) cmap = lcmap(colors) if True: import map_envi as envi import re print('clusterized') fnames = envi.locate() fnames = [el for el in fnames if not re.search(r'_[dD][bB]', el)] fnames = [el for el in fnames if re.search(r'(Sigma)|(coh)', el)] full_shape, hdict = envi.read_header(fnames[0]) colors = (np.array(colors) * 254).astype(np.uint8) imgc = np.empty(vis.shape + (3,)) np.choose(vis, colors[...,0], out=imgc[...,0]) np.choose(vis, colors[...,1], out=imgc[...,1]) np.choose(vis, colors[...,2], out=imgc[...,2]) imgc[0,0,:] = np.array((0,0,0), dtype=np.uint8) imgc[-1,-1,:] =
np.array((255,255,255), dtype=np.uint8)
numpy.array
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: # # Copyright 2021 The NiPreps Developers <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # We support and encourage derived works from this project, please read # about our expectations at # # https://www.nipreps.org/community/licensing/ # """Plotting tools shared across MRIQC and FMRIPREP.""" import numpy as np import nibabel as nb import pandas as pd import matplotlib.pyplot as plt from matplotlib import gridspec as mgs import matplotlib.cm as cm from matplotlib.colors import ListedColormap, Normalize from matplotlib.colorbar import ColorbarBase DINA4_LANDSCAPE = (11.69, 8.27) class fMRIPlot: """Generates the fMRI Summary Plot.""" __slots__ = ("func_file", "mask_data", "tr", "seg_data", "confounds", "spikes") def __init__( self, func_file, mask_file=None, data=None, conf_file=None, seg_file=None, tr=None, usecols=None, units=None, vlines=None, spikes_files=None, ): func_img = nb.load(func_file) self.func_file = func_file self.tr = tr or _get_tr(func_img) self.mask_data = None self.seg_data = None if not isinstance(func_img, nb.Cifti2Image): self.mask_data = nb.fileslice.strided_scalar( func_img.shape[:3], np.uint8(1) ) if mask_file: self.mask_data = np.asanyarray(nb.load(mask_file).dataobj).astype( "uint8" ) if seg_file: self.seg_data = np.asanyarray(nb.load(seg_file).dataobj) if units is None: units = {} if vlines is None: vlines = {} self.confounds = {} if data is None and conf_file: data = pd.read_csv( conf_file, sep=r"[\t\s]+", usecols=usecols, index_col=False ) if data is not None: for name in data.columns.ravel(): self.confounds[name] = { "values": data[[name]].values.ravel().tolist(), "units": units.get(name), "cutoff": vlines.get(name), } self.spikes = [] if spikes_files: for sp_file in spikes_files: self.spikes.append((np.loadtxt(sp_file), None, False)) def plot(self, figure=None): """Main plotter""" import seaborn as sns sns.set_style("whitegrid") sns.set_context("paper", font_scale=0.8) if figure is None: figure = plt.gcf() nconfounds = len(self.confounds) nspikes = len(self.spikes) nrows = 1 + nconfounds + nspikes # Create grid grid = mgs.GridSpec( nrows, 1, wspace=0.0, hspace=0.05, height_ratios=[1] * (nrows - 1) + [5] ) grid_id = 0 for tsz, name, iszs in self.spikes: spikesplot( tsz, title=name, outer_gs=grid[grid_id], tr=self.tr, zscored=iszs ) grid_id += 1 if self.confounds: from seaborn import color_palette palette = color_palette("husl", nconfounds) for i, (name, kwargs) in enumerate(self.confounds.items()): tseries = kwargs.pop("values") confoundplot( tseries, grid[grid_id], tr=self.tr, color=palette[i], name=name, **kwargs ) grid_id += 1 plot_carpet( self.func_file, atlaslabels=self.seg_data, subplot=grid[-1], tr=self.tr ) # spikesplot_cb([0.7, 0.78, 0.2, 0.008]) return figure def plot_carpet( func, atlaslabels=None, detrend=True, nskip=0, size=(950, 800), subplot=None, title=None, output_file=None, legend=False, tr=None, lut=None, ): """ Plot an image representation of voxel intensities across time also know as the "carpet plot" or "Power plot". See Jonathan Power Neuroimage 2017 Jul 1; 154:150-158. Parameters ---------- func : string or nibabel-image object Path to NIfTI or CIFTI BOLD image, or a nibabel-image object atlaslabels: ndarray, optional A 3D array of integer labels from an atlas, resampled into ``img`` space. Required if ``func`` is a NIfTI image. detrend : boolean, optional Detrend and standardize the data prior to plotting. nskip : int, optional Number of volumes at the beginning of the scan marked as nonsteady state. Only used by volumetric NIfTI. size : tuple, optional Size of figure. subplot : matplotlib Subplot, optional Subplot to plot figure on. title : string, optional The title displayed on the figure. output_file : string, or None, optional The name of an image file to export the plot to. Valid extensions are .png, .pdf, .svg. If output_file is not None, the plot is saved to a file, and the display is closed. legend : bool Whether to render the average functional series with ``atlaslabels`` as overlay. tr : float , optional Specify the TR, if specified it uses this value. If left as None, # of frames is plotted instead of time. lut : ndarray, optional Look up table for segmentations """ epinii = None segnii = None nslices = None img = nb.load(func) if isinstance(func, str) else func if isinstance(img, nb.Cifti2Image): assert ( img.nifti_header.get_intent()[0] == "ConnDenseSeries" ), "Not a dense timeseries" data = img.get_fdata().T matrix = img.header.matrix struct_map = { "LEFT_CORTEX": 1, "RIGHT_CORTEX": 2, "SUBCORTICAL": 3, "CEREBELLUM": 4, } seg = np.zeros((data.shape[0],), dtype="uint32") for bm in matrix.get_index_map(1).brain_models: if "CORTEX" in bm.brain_structure: lidx = (1, 2)["RIGHT" in bm.brain_structure] elif "CEREBELLUM" in bm.brain_structure: lidx = 4 else: lidx = 3 index_final = bm.index_offset + bm.index_count seg[bm.index_offset:index_final] = lidx assert len(seg[seg < 1]) == 0, "Unassigned labels" # Decimate data data, seg = _decimate_data(data, seg, size) # preserve as much continuity as possible order = seg.argsort(kind="stable") cmap = ListedColormap([cm.get_cmap("Paired").colors[i] for i in (1, 0, 7, 3)]) assert len(cmap.colors) == len( struct_map ), "Mismatch between expected # of structures and colors" # ensure no legend for CIFTI legend = False else: # Volumetric NIfTI from nilearn._utils import check_niimg_4d from nilearn._utils.niimg import _safe_get_data img_nii = check_niimg_4d(img, dtype="auto",) func_data = _safe_get_data(img_nii, ensure_finite=True) func_data = func_data[..., nskip:] ntsteps = func_data.shape[-1] data = func_data[atlaslabels > 0].reshape(-1, ntsteps) oseg = atlaslabels[atlaslabels > 0].reshape(-1) # Map segmentation if lut is None: lut = np.zeros((256,), dtype="int") lut[1:11] = 1 lut[255] = 2 lut[30:99] = 3 lut[100:201] = 4 # Apply lookup table seg = lut[oseg.astype(int)] # Decimate data data, seg = _decimate_data(data, seg, size) # Order following segmentation labels order = np.argsort(seg)[::-1] # Set colormap cmap = ListedColormap(cm.get_cmap("tab10").colors[:4][::-1]) if legend: epiavg = func_data.mean(3) epinii = nb.Nifti1Image(epiavg, img_nii.affine, img_nii.header) segnii = nb.Nifti1Image( lut[atlaslabels.astype(int)], epinii.affine, epinii.header ) segnii.set_data_dtype("uint8") nslices = epiavg.shape[-1] return _carpet( data, seg, order, cmap, epinii=epinii, segnii=segnii, nslices=nslices, tr=tr, subplot=subplot, legend=legend, title=title, output_file=output_file, ) def _carpet( data, seg, order, cmap, tr=None, detrend=True, subplot=None, legend=False, title=None, output_file=None, epinii=None, segnii=None, nslices=None, ): """Common carpetplot building code for volumetric / CIFTI plots""" from nilearn.plotting import plot_img from nilearn.signal import clean notr = False if tr is None: notr = True tr = 1.0 # Detrend data v = (None, None) if detrend: data = clean(data.T, t_r=tr).T v = (-2, 2) # If subplot is not defined if subplot is None: subplot = mgs.GridSpec(1, 1)[0] # Define nested GridSpec wratios = [1, 100, 20] gs = mgs.GridSpecFromSubplotSpec( 1, 2 + int(legend), subplot_spec=subplot, width_ratios=wratios[: 2 + int(legend)], wspace=0.0, ) # Segmentation colorbar ax0 = plt.subplot(gs[0]) ax0.set_yticks([]) ax0.set_xticks([]) ax0.imshow(seg[order, np.newaxis], interpolation="none", aspect="auto", cmap=cmap) ax0.grid(False) ax0.spines["left"].set_visible(False) ax0.spines["bottom"].set_color("none") ax0.spines["bottom"].set_visible(False) # Carpet plot ax1 = plt.subplot(gs[1]) ax1.imshow( data[order], interpolation="nearest", aspect="auto", cmap="gray", vmin=v[0], vmax=v[1], ) ax1.grid(False) ax1.set_yticks([]) ax1.set_yticklabels([]) # Set 10 frame markers in X axis interval = max((int(data.shape[-1] + 1) // 10, int(data.shape[-1] + 1) // 5, 1)) xticks = list(range(0, data.shape[-1])[::interval]) if notr: xlabel = "time-points (index)" xticklabels = [round(xtick) for xtick in xticks] else: xlabel = "time (s)" xticklabels = ["%.02f" % (tr * xtick) for xtick in xticks] ax1.set_xticks(xticks) ax1.set_xlabel(xlabel) ax1.set_xticklabels(xticklabels) # Remove and redefine spines for side in ["top", "right"]: # Toggle the spine objects ax0.spines[side].set_color("none") ax0.spines[side].set_visible(False) ax1.spines[side].set_color("none") ax1.spines[side].set_visible(False) ax1.yaxis.set_ticks_position("left") ax1.xaxis.set_ticks_position("bottom") ax1.spines["bottom"].set_visible(False) ax1.spines["left"].set_color("none") ax1.spines["left"].set_visible(False) if title: ax1.set_title(title) ax2 = None if legend: gslegend = mgs.GridSpecFromSubplotSpec( 5, 1, subplot_spec=gs[2], wspace=0.0, hspace=0.0 ) coords = np.linspace(int(0.10 * nslices), int(0.95 * nslices), 5).astype( np.uint8 ) for i, c in enumerate(coords.tolist()): ax2 = plt.subplot(gslegend[i]) plot_img( segnii, bg_img=epinii, axes=ax2, display_mode="z", annotate=False, cut_coords=[c], threshold=0.1, cmap=cmap, interpolation="nearest", ) if output_file is not None: figure = plt.gcf() figure.savefig(output_file, bbox_inches="tight") plt.close(figure) figure = None return output_file return (ax0, ax1, ax2), gs def spikesplot( ts_z, outer_gs=None, tr=None, zscored=True, spike_thresh=6.0, title="Spike plot", ax=None, cmap="viridis", hide_x=True, nskip=0, ): """ A spikes plot. Thanks to <NAME> (this docstring needs be improved with proper ack) """ if ax is None: ax = plt.gca() if outer_gs is not None: gs = mgs.GridSpecFromSubplotSpec( 1, 2, subplot_spec=outer_gs, width_ratios=[1, 100], wspace=0.0 ) ax = plt.subplot(gs[1]) # Define TR and number of frames if tr is None: tr = 1.0 # Load timeseries, zscored slice-wise nslices = ts_z.shape[0] ntsteps = ts_z.shape[1] # Load a colormap my_cmap = cm.get_cmap(cmap) norm = Normalize(vmin=0, vmax=float(nslices - 1)) colors = [my_cmap(norm(sl)) for sl in range(nslices)] stem = len(np.unique(ts_z).tolist()) == 2 # Plot one line per axial slice timeseries for sl in range(nslices): if not stem: ax.plot(ts_z[sl, :], color=colors[sl], lw=0.5) else: markerline, stemlines, baseline = ax.stem(ts_z[sl, :]) plt.setp(markerline, "markerfacecolor", colors[sl]) plt.setp(baseline, "color", colors[sl], "linewidth", 1) plt.setp(stemlines, "color", colors[sl], "linewidth", 1) # Handle X, Y axes ax.grid(False) # Handle X axis last = ntsteps - 1 ax.set_xlim(0, last) xticks = list(range(0, last)[::20]) + [last] if not hide_x else [] ax.set_xticks(xticks) if not hide_x: if tr is None: ax.set_xlabel("time (frame #)") else: ax.set_xlabel("time (s)") ax.set_xticklabels(["%.02f" % t for t in (tr * np.array(xticks)).tolist()]) # Handle Y axis ylabel = "slice-wise noise average on background" if zscored: ylabel += " (z-scored)" zs_max = np.abs(ts_z).max() ax.set_ylim( ( -(np.abs(ts_z[:, nskip:]).max()) * 1.05, (np.abs(ts_z[:, nskip:]).max()) * 1.05, ) ) ytick_vals = np.arange(0.0, zs_max, float(np.floor(zs_max / 2.0))) yticks = ( list(reversed((-1.0 * ytick_vals[ytick_vals > 0]).tolist())) + ytick_vals.tolist() ) # TODO plot min/max or mark spikes # yticks.insert(0, ts_z.min()) # yticks += [ts_z.max()] for val in ytick_vals: ax.plot((0, ntsteps - 1), (-val, -val), "k:", alpha=0.2) ax.plot((0, ntsteps - 1), (val, val), "k:", alpha=0.2) # Plot spike threshold if zs_max < spike_thresh: ax.plot((0, ntsteps - 1), (-spike_thresh, -spike_thresh), "k:") ax.plot((0, ntsteps - 1), (spike_thresh, spike_thresh), "k:") else: yticks = [ ts_z[:, nskip:].min(), np.median(ts_z[:, nskip:]), ts_z[:, nskip:].max(), ] ax.set_ylim( 0, max(yticks[-1] * 1.05, (yticks[-1] - yticks[0]) * 2.0 + yticks[-1]) ) # ax.set_ylim(ts_z[:, nskip:].min() * 0.95, # ts_z[:, nskip:].max() * 1.05) ax.annotate( ylabel, xy=(0.0, 0.7), xycoords="axes fraction", xytext=(0, 0), textcoords="offset points", va="center", ha="left", color="gray", size=4, bbox={ "boxstyle": "round", "fc": "w", "ec": "none", "color": "none", "lw": 0, "alpha": 0.8, }, ) ax.set_yticks([]) ax.set_yticklabels([]) # if yticks: # # ax.set_yticks(yticks) # # ax.set_yticklabels(['%.02f' % y for y in yticks]) # # Plot maximum and minimum horizontal lines # ax.plot((0, ntsteps - 1), (yticks[0], yticks[0]), 'k:') # ax.plot((0, ntsteps - 1), (yticks[-1], yticks[-1]), 'k:') for side in ["top", "right"]: ax.spines[side].set_color("none") ax.spines[side].set_visible(False) if not hide_x: ax.spines["bottom"].set_position(("outward", 10)) ax.xaxis.set_ticks_position("bottom") else: ax.spines["bottom"].set_color("none") ax.spines["bottom"].set_visible(False) # ax.spines["left"].set_position(('outward', 30)) # ax.yaxis.set_ticks_position('left') ax.spines["left"].set_visible(False) ax.spines["left"].set_color(None) # labels = [label for label in ax.yaxis.get_ticklabels()] # labels[0].set_weight('bold') # labels[-1].set_weight('bold') if title: ax.set_title(title) return ax def spikesplot_cb(position, cmap="viridis", fig=None): # Add colorbar if fig is None: fig = plt.gcf() cax = fig.add_axes(position) cb = ColorbarBase( cax, cmap=cm.get_cmap(cmap), spacing="proportional", orientation="horizontal", drawedges=False, ) cb.set_ticks([0, 0.5, 1.0]) cb.set_ticklabels(["Inferior", "(axial slice)", "Superior"]) cb.outline.set_linewidth(0) cb.ax.xaxis.set_tick_params(width=0) return cax def confoundplot( tseries, gs_ts, gs_dist=None, name=None, units=None, tr=None, hide_x=True, color="b", nskip=0, cutoff=None, ylims=None, ): import seaborn as sns # Define TR and number of frames notr = False if tr is None: notr = True tr = 1.0 ntsteps = len(tseries) tseries = np.array(tseries) # Define nested GridSpec gs = mgs.GridSpecFromSubplotSpec( 1, 2, subplot_spec=gs_ts, width_ratios=[1, 100], wspace=0.0 ) ax_ts = plt.subplot(gs[1]) ax_ts.grid(False) # Set 10 frame markers in X axis interval = max((ntsteps // 10, ntsteps // 5, 1)) xticks = list(range(0, ntsteps)[::interval]) ax_ts.set_xticks(xticks) if not hide_x: if notr: ax_ts.set_xlabel("time (frame #)") else: ax_ts.set_xlabel("time (s)") labels = tr * np.array(xticks) ax_ts.set_xticklabels(["%.02f" % t for t in labels.tolist()]) else: ax_ts.set_xticklabels([]) if name is not None: if units is not None: name += " [%s]" % units ax_ts.annotate( name, xy=(0.0, 0.7), xytext=(0, 0), xycoords="axes fraction", textcoords="offset points", va="center", ha="left", color=color, size=8, bbox={ "boxstyle": "round", "fc": "w", "ec": "none", "color": "none", "lw": 0, "alpha": 0.8, }, ) for side in ["top", "right"]: ax_ts.spines[side].set_color("none") ax_ts.spines[side].set_visible(False) if not hide_x: ax_ts.spines["bottom"].set_position(("outward", 20)) ax_ts.xaxis.set_ticks_position("bottom") else: ax_ts.spines["bottom"].set_color("none") ax_ts.spines["bottom"].set_visible(False) # ax_ts.spines["left"].set_position(('outward', 30)) ax_ts.spines["left"].set_color("none") ax_ts.spines["left"].set_visible(False) # ax_ts.yaxis.set_ticks_position('left') ax_ts.set_yticks([]) ax_ts.set_yticklabels([]) nonnan = tseries[~
np.isnan(tseries)
numpy.isnan
import cv2 import sys import os import argparse import numpy as np import random import math import time WIDTH = 1000 HEIGHT = 1000 def example_draw(): Scene = np.ones((HEIGHT, WIDTH, 3), np.uint8) * 255 # Draw rectangle cv2.rectangle(Scene, (100, 100), (200, 200), (0, 255, 0), cv2.FILLED) # Draw circle cv2.circle(Scene, (500, 500), 50, (0, 0, 255), lineType=cv2.LINE_4, thickness=1) for i in range(4): for j in range(4): cv2.circle(Scene, (500+i*200, 500+j*200), 50, (0, 0, 255), cv2.FILLED) return Scene def tablechair_symx(): """Arrangement of 1 table and 4 chairs that is symmetric across the x axis""" Scene = np.ones((HEIGHT, WIDTH, 3), np.uint8) * 255 # Table table_tl= (300,430) table_br = (700,570) cv2.rectangle(Scene, table_tl, table_br, (0, 255, 0), cv2.FILLED) radius = 50 numpairs = 3 dist_chairs = 20 # distance between the circumference offsets_x = np.random.randint(0, 25, size=numpairs) offsets_y = np.random.randint(-0.8*20, 30, size=numpairs) # Symmetric chairs offsetted_circlecenter = table_tl[0]+radius for j in range(numpairs): # number of pairs if j == 0: offsetted_circlecenter += offsets_x[j] else: offsetted_circlecenter += 2*radius + dist_chairs + offsets_x[j] cv2.circle(Scene, (offsetted_circlecenter, table_tl[1]-radius-dist_chairs-offsets_y[j]), radius, (0, 0, 255), cv2.FILLED) cv2.circle(Scene, (offsetted_circlecenter, table_br[1]+radius+dist_chairs+offsets_y[j]), radius, (0, 0, 255), cv2.FILLED) return Scene def tablechair_symx_rot(): """Arrangement of 1 table and 4 chairs that is symmetric across the x axis""" Scene = np.ones((HEIGHT, WIDTH, 3), np.uint8) * 255 # Table table_tl= (300,430) table_br = (700,570) table_tr = (table_br[0], table_tl[1]) table_bl = (table_tl[0], table_br[1]) radius = 50 numpairs = 3 dist_chairs = 20 # distance between the circumference offsets_x = np.random.randint(0, 25, size=numpairs) offsets_y = np.random.randint(-0.6*20, 30, size=numpairs) degree = np.random.randint(0, 180) # print("# degree =", degree) pts = np.array([[rot_degree(degree, table_tl[0], table_tl[1]), rot_degree(degree, table_tr[0], table_tr[1]), \ rot_degree(degree, table_br[0], table_br[1]), rot_degree(degree, table_bl[0], table_bl[1])]]) cv2.fillPoly(Scene, pts, (0, 255, 0)) offsetted_circlecenter = table_tl[0]+radius for j in range(numpairs): # number of pairs if j == 0: offsetted_circlecenter += offsets_x[j] else: offsetted_circlecenter += 2*radius + dist_chairs + offsets_x[j] cv2.circle(Scene, tuple(rot_degree(degree, offsetted_circlecenter, table_tl[1]-radius-dist_chairs-offsets_y[j])), radius, (0, 0, 255), cv2.FILLED) cv2.circle(Scene, tuple(rot_degree(degree, offsetted_circlecenter, table_br[1]+radius+dist_chairs+offsets_y[j])), radius, (0, 0, 255), cv2.FILLED) return Scene def rot_degree(degree, x, y, origin=[WIDTH/2, HEIGHT/2]): """Rotate x and y by degree in counterclockwise direction with center of rotation being origin. Returns numpy array.""" # print(x, y) theta = np.radians(degree) R = np.array(( (np.cos(theta), -np.sin(theta)), (np.sin(theta), np.cos(theta)) )) rot_xy = np.dot(R,np.array((x-origin[0],y-origin[1]))) rot_xy = [int(rot_xy[0].item()+origin[0]), int(rot_xy[1].item()+origin[1])] return rot_xy def gen_data_sample(): Scene, centers = gen_tablechair() show_image(Scene) def show_image(Scene): cv2.namedWindow('Scene') while True: cv2.imshow('Scene', Scene) Key = cv2.waitKey(-1) if Key == ord('s'): cv2.imwrite('scene.png', Scene) if Key == 27: break def chairoffset_2_center(table_center, table_w, table_h, offsets_x, offsets_y, radius, mindist): """Returns (numObj x 2) array describing x and y coordinates of objects topleft -> bottomright in row by row order""" numPairs = offsets_x.shape[0]-1 # assume even for now centers = np.zeros((2*numPairs, 2)) table_top, table_bottom = table_center[1]-table_h/2, table_center[1]+table_h/2 centers[0] = [table_center[0]-table_w/2+radius+offsets_x[0], table_top-radius-mindist-offsets_y[0]] # row 1 centers[numPairs] = [centers[0,0], table_bottom+radius+mindist+offsets_y[0]] # row 2 for pair_i in range(1, numPairs): centers[pair_i] = [(centers[pair_i-1, 0]+2*radius+mindist+offsets_x[pair_i]), (table_top-radius-mindist-offsets_y[pair_i])] centers[pair_i+numPairs] = [centers[pair_i, 0], table_bottom+radius+mindist+offsets_y[pair_i]] return centers def tablecenter_2_pt(center, table_w, table_h): table_pts = np.array([[center[0]-table_w/2, center[1]-table_h/2], [center[0]+table_w/2, center[1]-table_h/2], \ [center[0]+table_w/2, center[1]+table_h/2], [center[0]-table_w/2, center[1]+table_h/2]], dtype=np.int32) return table_pts def build_rot_scene(unrotcenters, table_w, table_h, radius, degree): """Given unrotated centers, build rotated cv2 scene return rotated copy of the centers""" Scene = np.ones((HEIGHT, WIDTH, 3), np.uint8) * 255 table_pts = tablecenter_2_pt(unrotcenters[0, :], table_w, table_h) table_pts = np.array([rot_degree(degree, p[0], p[1]) for p in table_pts], dtype=np.int32) cv2.fillPoly(Scene, [table_pts], (0, 255, 0)) rotcenters = np.zeros(unrotcenters.shape,dtype=np.int32) rotcenters[0] = unrotcenters[0] for i in range(1, unrotcenters.shape[0]): rotcenters[i] = rot_degree(degree, unrotcenters[i, 0], unrotcenters[i, 1]) cv2.circle(Scene, tuple(rotcenters[i]), radius, (0, 0, 255), cv2.FILLED) if degree==0: degposes=np.zeros((rotcenters.shape[0], 1)) -1 degposes[0, 0] = 0 else: degposes=np.zeros((rotcenters.shape[0], 1))+degree rotcenters_degrees = np.concatenate((rotcenters, degposes), axis=1) return Scene, rotcenters_degrees def gen_tablechair(numpairs=None, radius=None, rot=False, to_perturb=True): """Arrangement of 1 table and 4 chairs that is symmetric across the x axis""" radius = radius if radius else random.randint(30,50) table_w = random.randint(400, numpairs*radius*2/0.4) if numpairs else random.randint(400, 800) table_h = 140 table_center = [[int(WIDTH/2), int(HEIGHT/2)]] # 1x2 (center of rotation) mindist_chairs = 20 # distance between the circumference maxnumpairs = math.floor((table_w + mindist_chairs)/(2*radius + mindist_chairs)) minnumpairs = math.ceil(table_w/(radius*2) *0.4) # same 0.4 as table_w above numpairs = numpairs if numpairs else random.randint(minnumpairs,maxnumpairs) degree = np.random.randint(0, 180) if rot else 0 offsets_x = np.random.random(size=numpairs+1) offsets_x_exp = [math.exp(e) for e in offsets_x] offsets_x = np.array([e/sum(offsets_x_exp) for e in offsets_x_exp])* (table_w - numpairs*2*radius - (numpairs-1)*mindist_chairs) # softmax offsets_y = np.random.randint(-0.5*mindist_chairs, 0.5*mindist_chairs, size=numpairs) chair_centers = chairoffset_2_center(table_center[0], table_w, table_h, offsets_x, offsets_y, radius, mindist_chairs) # list unrotcenters = np.concatenate((np.array(table_center), np.array(chair_centers)), axis=0) # nx2 if to_perturb: per_unrotcenters = perturb(np.copy(unrotcenters), table_w, table_h, radius, degree) Scene, rotcenters_degrees = build_rot_scene(unrotcenters, table_w, table_h, radius, degree) per_Scene, per_rotcenters_degrees = build_rot_scene(per_unrotcenters, table_w, table_h, radius, degree) shapes = np.repeat([[2,radius,radius]], (numpairs*2+1), axis=0) shapes[0] = [1, table_w, table_h] return Scene, rotcenters_degrees, per_Scene, per_rotcenters_degrees, shapes def perturb(unrotcenters, table_w, table_h, radius, degree=0): """Given unortated center (np array), return unrotated perturbed centers""" # translation perturbation (applied to center of table and whole scene) unrotcenters += np.random.normal(0,30,2) random_indices = list(range(1, unrotcenters.shape[0]-1)) random.shuffle(random_indices) # in-place for chair_i in random_indices: new_chair_cen = unrotcenters[chair_i] + np.random.normal(0,30,2) while (not is_valid(unrotcenters, chair_i, new_chair_cen, radius, table_w, table_h)): new_chair_cen = unrotcenters[chair_i] + np.random.normal(0,30,2) unrotcenters[chair_i] = new_chair_cen return unrotcenters def is_valid(centers, chair_i, new_chair_cen, radius, table_w, table_h): """checks if new_chair_cen for the ith chair is valid: no overlap with any other object""" # check against table if (abs(centers[0,0]-new_chair_cen[0])<radius+table_w/2) and (abs(centers[0,1]-new_chair_cen[1])<radius+table_h/2): return False # check against other chairs for i in range(1, centers.shape[0]): if i==chair_i: continue if np.linalg.norm(new_chair_cen-centers[i]) < 2*radius: # euclidean distance return False return True def gen_data(numinstances=10, numpairs=3, radius=50, rot=False, show=False, dir="./2dsimulator_data", save=True, start_idx=0): """Generate n data samples: 1. per_poses, per_shape: n x dim numpy array, where ith row describes pose/shape of the ith perturbed scene. (1st row=table) 2. clean_poses, clean_shape: n x dim numpy array, where ith row describes pose/shape of the ith clean scene (corresponds to ith perturbed scene) 3. Images of clean and pertubed scene for reference """ pose_d = 3 # center, rotation shape_d = 3 # Table: center, rotation, | type=1, width (fixed), height (fixed) # Chair: center, -1 (rotation) | type=2, radius (fixed), radius (fixed) clean_poses, per_poses =
np.zeros((numinstances,pose_d*(numpairs*2+1)))
numpy.zeros
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : <NAME> # @Date : 2020-12-14 # @Contact : <EMAIL> import numpy as np import multiprocessing as mp def check_n_jobs(n_jobs): cpu_count = mp.cpu_count() if n_jobs == 0: return 1 elif n_jobs > 0: return min(cpu_count, n_jobs) else: return max(1, cpu_count + 1 + n_jobs) def pairwise_distance(X, Y): A, M = X.shape B, _ = Y.shape matrix1 = X.reshape([A, 1, M]) matrix1 = np.repeat(matrix1, B, axis=1) matrix2 = Y.reshape([1, B, M]) matrix2 = np.repeat(matrix2, A, axis=0) distance_sqr =
np.sum((matrix1 - matrix2) ** 2, axis=-1)
numpy.sum
import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg import pickle import glob def get_camera_param(): # read in and make a list of calibration images cameraParam = np.load("../param/camera_param.npy", allow_pickle=True)[()] mtxParam = cameraParam["mtx"] distParam = cameraParam["dist"] return mtxParam, distParam def get_transform_param(): # read in and make a list of calibration images cameraParam = np.load("../param/transform_param.npy", allow_pickle=True)[()] MParam = cameraParam["M"] MinvParam = cameraParam["Minv"] return MParam, MinvParam def undistort_image(img, mtx, dist): return cv2.undistort(img, mtx, dist, None, mtx) def abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255)): # Apply the following steps to img # 1) Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # 2) Take the derivative in x or y given orient = 'x' or 'y' # 3) Take the absolute value of the derivative or gradient if orient == 'x': abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)) if orient == 'y': abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)) # 4) Scale to 8-bit (0 - 255) then convert to type = np.uint8 scaled_sobel = np.uint8(255 * abs_sobel / np.max(abs_sobel)) # 5) Create a mask of 1's where the scaled gradient magnitude # is > thresh_min and < thresh_max # 6) Return this mask as your binary_output image binary_output = np.zeros_like(scaled_sobel) # Here I'm using inclusive (>=, <=) thresholds, but exclusive is ok too binary_output[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1 return binary_output def mag_thresh(img, sobel_kernel=3, mag_thresh=(0, 255)): # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Take both Sobel x and y gradients sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # Calculate the gradient magnitude gradmag = np.sqrt(sobelx ** 2 + sobely ** 2) # Rescale to 8 bit scale_factor = np.max(gradmag) / 255 gradmag = (gradmag / scale_factor).astype(np.uint8) # Create a binary image of ones where threshold is met, zeros otherwise binary_output = np.zeros_like(gradmag) binary_output[(gradmag >= mag_thresh[0]) & (gradmag <= mag_thresh[1])] = 1 # Return the binary image return binary_output def dir_threshold(img, sobel_kernel=3, thresh=(0, np.pi / 2)): # Grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Calculate the x and y gradients sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # Take the absolute value of the gradient direction, # apply a threshold, and create a binary image result absgraddir = np.arctan2(np.absolute(sobely), np.absolute(sobelx)) binary_output = np.zeros_like(absgraddir) binary_output[(absgraddir >= thresh[0]) & (absgraddir <= thresh[1])] = 1 # Return the binary image return binary_output def hls_select(img, thresh_s=(0, 255), thresh_l=(0, 255)): # 1) Convert to HLS color space hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) # 2) Apply a threshold to the S channel s_channel = hls[:, :, 2] l_channel = hls[:, :, 1] binary_output_s = np.zeros_like(s_channel) binary_output_s[(s_channel > thresh_s[0]) & (s_channel <= thresh_s[1])] = 1 binary_output_l = np.zeros_like(l_channel) binary_output_l[(l_channel > thresh_l[0]) & (l_channel <= thresh_l[1])] = 1 # 3) Return a binary image of threshold result binary_output = cv2.bitwise_and(binary_output_l, binary_output_s) return binary_output def roi(img, vertices): # Next we'll create a masked edges image using cv2.fillPoly() mask = np.zeros_like(img) ignore_mask_color = 1 cv2.fillPoly(mask, vertices, ignore_mask_color) masked_img = cv2.bitwise_and(img, mask) return masked_img def find_lane_pixels(binary_warped): # Take a histogram of the bottom half of the image histogram = np.sum(binary_warped[binary_warped.shape[0] // 2:, :], axis=0) # Create an output image to draw on and visualize the result out_img = np.dstack((binary_warped, binary_warped, binary_warped)) # Find the peak of the left and right halves of the histogram # These will be the starting point for the left and right lines midpoint = np.int(histogram.shape[0] // 2) leftx_base = np.argmax(histogram[:midpoint]) rightx_base = np.argmax(histogram[midpoint:]) + midpoint # HYPERPARAMETERS # Choose the number of sliding windows nwindows = 9 # Set the width of the windows +/- margin margin = 100 # Set minimum number of pixels found to recenter window minpix = 50 # Set height of windows - based on nwindows above and image shape window_height = np.int(binary_warped.shape[0] // nwindows) # Identify the x and y positions of all nonzero pixels in the image nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Current positions to be updated later for each window in nwindows leftx_current = leftx_base rightx_current = rightx_base # Create empty lists to receive left and right lane pixel indices left_lane_inds = [] right_lane_inds = [] # Step through the windows one by one for window in range(nwindows): # Identify window boundaries in x and y (and right and left) win_y_low = binary_warped.shape[0] - (window + 1) * window_height win_y_high = binary_warped.shape[0] - window * window_height ### TO-DO: Find the four below boundaries of the window ### win_xleft_low = leftx_current - margin win_xleft_high = leftx_current + margin win_xright_low = rightx_current - margin win_xright_high = rightx_current + margin # Draw the windows on the visualization image cv2.rectangle(out_img, (win_xleft_low, win_y_low), (win_xleft_high, win_y_high), (0, 255, 0), 2) cv2.rectangle(out_img, (win_xright_low, win_y_low), (win_xright_high, win_y_high), (0, 255, 0), 2) ### TO-DO: Identify the nonzero pixels in x and y within the window ### good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0] good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0] # Append these indices to the lists left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) ### TO-DO: If you found > minpix pixels, recenter next window ### ### (`right` or `leftx_current`) on their mean position ### if len(good_left_inds) > minpix: leftx_current = np.int(
np.mean(nonzerox[good_left_inds])
numpy.mean
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module provides tools to extract cutouts of stars and data structures to hold the cutouts for fitting and building ePSFs. """ import warnings from astropy.nddata import NDData from astropy.nddata.utils import (overlap_slices, NoOverlapError, PartialOverlapError) from astropy.table import Table from astropy.utils import lazyproperty from astropy.utils.exceptions import AstropyUserWarning import numpy as np from ..aperture import BoundingBox __all__ = ['EPSFStar', 'EPSFStars', 'LinkedEPSFStar', 'extract_stars'] class EPSFStar: """ A class to hold a 2D cutout image and associated metadata of a star used to build an ePSF. Parameters ---------- data : `~numpy.ndarray` A 2D cutout image of a single star. weights : `~numpy.ndarray` or `None`, optional A 2D array of the weights associated with the input ``data``. cutout_center : tuple of two floats or `None`, optional The ``(x, y)`` position of the star's center with respect to the input cutout ``data`` array. If `None`, then the center of of the input cutout ``data`` array will be used. origin : tuple of two int, optional The ``(x, y)`` index of the origin (bottom-left corner) pixel of the input cutout array with respect to the original array from which the cutout was extracted. This can be used to convert positions within the cutout image to positions in the original image. ``origin`` and ``wcs_large`` must both be input for a linked star (a single star extracted from different images). wcs_large : `None` or WCS object, optional A WCS object associated with the large image from which the cutout array was extracted. It should not be the WCS object of the input cutout ``data`` array. The WCS object must support the `astropy shared interface for WCS <https://docs.astropy.org/en/stable/wcs/wcsapi.html>`_ (e.g., `astropy.wcs.WCS`, `gwcs.wcs.WCS`). ``origin`` and ``wcs_large`` must both be input for a linked star (a single star extracted from different images). id_label : int, str, or `None`, optional An optional identification number or label for the star. """ def __init__(self, data, weights=None, cutout_center=None, origin=(0, 0), wcs_large=None, id_label=None): self._data = np.asanyarray(data) self.shape = self._data.shape if weights is not None: if weights.shape != data.shape: raise ValueError('weights must have the same shape as the ' 'input data array.') self.weights = np.asanyarray(weights, dtype=float).copy() else: self.weights = np.ones_like(self._data, dtype=float) self.mask = (self.weights <= 0.) # mask out invalid image data invalid_data = np.logical_not(np.isfinite(self._data)) if np.any(invalid_data): self.weights[invalid_data] = 0. self.mask[invalid_data] = True self._cutout_center = cutout_center self.origin = np.asarray(origin) self.wcs_large = wcs_large self.id_label = id_label self.flux = self.estimate_flux() self._excluded_from_fit = False self._fitinfo = None def __array__(self): """ Array representation of the mask data array (e.g., for matplotlib). """ return self._data @property def data(self): """The 2D cutout image.""" return self._data @property def cutout_center(self): """ A `~numpy.ndarray` of the ``(x, y)`` position of the star's center with respect to the input cutout ``data`` array. """ return self._cutout_center @cutout_center.setter def cutout_center(self, value): if value is None: value = ((self.shape[1] - 1) / 2., (self.shape[0] - 1) / 2.) else: if len(value) != 2: raise ValueError('The "cutout_center" attribute must have ' 'two elements in (x, y) form.') self._cutout_center = np.asarray(value) @property def center(self): """ A `~numpy.ndarray` of the ``(x, y)`` position of the star's center in the original (large) image (not the cutout image). """ return self.cutout_center + self.origin @lazyproperty def slices(self): """ A tuple of two slices representing the cutout region with respect to the original (large) image. """ return (slice(self.origin[1], self.origin[1] + self.shape[1]), slice(self.origin[0], self.origin[0] + self.shape[0])) @lazyproperty def bbox(self): """ The minimal `~photutils.aperture.BoundingBox` for the cutout region with respect to the original (large) image. """ return BoundingBox(self.slices[1].start, self.slices[1].stop, self.slices[0].start, self.slices[0].stop) def estimate_flux(self): """ Estimate the star's flux by summing values in the input cutout array. Missing data is filled in by interpolation to better estimate the total flux. """ from .epsf import _interpolate_missing_data if np.any(self.mask): data_interp = _interpolate_missing_data(self.data, method='cubic', mask=self.mask) data_interp = _interpolate_missing_data(data_interp, method='nearest', mask=self.mask) flux = np.sum(data_interp, dtype=float) else: flux = np.sum(self.data, dtype=float) return flux def register_epsf(self, epsf): """ Register and scale (in flux) the input ``epsf`` to the star. Parameters ---------- epsf : `EPSFModel` The ePSF to register. Returns ------- data : `~numpy.ndarray` A 2D array of the registered/scaled ePSF. """ yy, xx = np.indices(self.shape, dtype=float) xx = xx - self.cutout_center[0] yy = yy - self.cutout_center[1] return self.flux * epsf.evaluate(xx, yy, flux=1.0, x_0=0.0, y_0=0.0) def compute_residual_image(self, epsf): """ Compute the residual image of the star data minus the registered/scaled ePSF. Parameters ---------- epsf : `EPSFModel` The ePSF to subtract. Returns ------- data : `~numpy.ndarray` A 2D array of the residual image. """ return self.data - self.register_epsf(epsf) @lazyproperty def _xy_idx(self): """ 1D arrays of x and y indices of unmasked pixels in the cutout reference frame. """ yidx, xidx = np.indices(self._data.shape) return xidx[~self.mask].ravel(), yidx[~self.mask].ravel() @lazyproperty def _xidx(self): """ 1D arrays of x indices of unmasked pixels in the cutout reference frame. """ return self._xy_idx[0] @lazyproperty def _yidx(self): """ 1D arrays of y indices of unmasked pixels in the cutout reference frame. """ return self._xy_idx[1] @property def _xidx_centered(self): """ 1D array of x indices of unmasked pixels, with respect to the star center, in the cutout reference frame. """ return self._xy_idx[0] - self.cutout_center[0] @property def _yidx_centered(self): """ 1D array of y indices of unmasked pixels, with respect to the star center, in the cutout reference frame. """ return self._xy_idx[1] - self.cutout_center[1] @lazyproperty def _data_values(self): """1D array of unmasked cutout data values.""" return self.data[~self.mask].ravel() @lazyproperty def _data_values_normalized(self): """ 1D array of unmasked cutout data values, normalized by the star's total flux. """ return self._data_values / self.flux @lazyproperty def _weight_values(self): """ 1D array of unmasked weight values. """ return self.weights[~self.mask].ravel() class EPSFStars: """ Class to hold a list of `EPSFStar` and/or `LinkedEPSFStar` objects. Parameters ---------- star_list : list of `EPSFStar` or `LinkedEPSFStar` objects A list of `EPSFStar` and/or `LinkedEPSFStar` objects. """ def __init__(self, stars_list): if isinstance(stars_list, (EPSFStar, LinkedEPSFStar)): self._data = [stars_list] elif isinstance(stars_list, list): self._data = stars_list else: raise ValueError('stars_list must be a list of EPSFStar and/or ' 'LinkedEPSFStar objects.') def __len__(self): return len(self._data) def __getitem__(self, index): return self.__class__(self._data[index]) def __delitem__(self, index): del self._data[index] def __iter__(self): for i in self._data: yield i # explicit set/getstate to avoid infinite recursion # from pickler using __getattr__ def __getstate__(self): return self.__dict__ def __setstate__(self, d): self.__dict__ = d def __getattr__(self, attr): if attr in ['cutout_center', 'center', 'flux', '_excluded_from_fit']: result = np.array([getattr(star, attr) for star in self._data]) else: result = [getattr(star, attr) for star in self._data] if len(self._data) == 1: result = result[0] return result def _getattr_flat(self, attr): values = [] for item in self._data: if isinstance(item, LinkedEPSFStar): values.extend(getattr(item, attr)) else: values.append(getattr(item, attr)) return np.array(values) @property def cutout_center_flat(self): """ A `~numpy.ndarray` of the ``(x, y)`` position of all the stars' centers (including linked stars) with respect to the input cutout ``data`` array, as a 2D array (``n_all_stars`` x 2). Note that when `EPSFStars` contains any `LinkedEPSFStar`, the ``cutout_center`` attribute will be a nested 3D array. """ return self._getattr_flat('cutout_center') @property def center_flat(self): """ A `~numpy.ndarray` of the ``(x, y)`` position of all the stars' centers (including linked stars) with respect to the original (large) image (not the cutout image) as a 2D array (``n_all_stars`` x 2). Note that when `EPSFStars` contains any `LinkedEPSFStar`, the ``center`` attribute will be a nested 3D array. """ return self._getattr_flat('center') @lazyproperty def all_stars(self): """ A list of all `EPSFStar` objects stored in this object, including those that comprise linked stars (i.e., `LinkedEPSFStar`), as a flat list. """ stars = [] for item in self._data: if isinstance(item, LinkedEPSFStar): stars.extend(item.all_stars) else: stars.append(item) return stars @property def all_good_stars(self): """ A list of all `EPSFStar` objects stored in this object that have not been excluded from fitting, including those that comprise linked stars (i.e., `LinkedEPSFStar`), as a flat list. """ stars = [] for star in self.all_stars: if star._excluded_from_fit: continue else: stars.append(star) return stars @lazyproperty def n_stars(self): """ The total number of stars. A linked star is counted only once. """ return len(self._data) @lazyproperty def n_all_stars(self): """ The total number of `EPSFStar` objects, including all the linked stars within `LinkedEPSFStar`. Each linked star is included in the count. """ return len(self.all_stars) @property def n_good_stars(self): """ The total number of `EPSFStar` objects, including all the linked stars within `LinkedEPSFStar`, that have not been excluded from fitting. Each non-excluded linked star is included in the count. """ return len(self.all_good_stars) @lazyproperty def _max_shape(self): """ The maximum x and y shapes of all the `EPSFStar` objects (including linked stars). """ return np.max([star.shape for star in self.all_stars], axis=0) class LinkedEPSFStar(EPSFStars): """ A class to hold a list of `EPSFStar` objects for linked stars. Linked stars are `EPSFStar` cutouts from different images that represent the same physical star. When building the ePSF, linked stars are constrained to have the same sky coordinates. Parameters ---------- star_list : list of `EPSFStar` objects A list of `EPSFStar` objects for the same physical star. Each `EPSFStar` object must have a valid ``wcs_large`` attribute to convert between pixel and sky coordinates. """ def __init__(self, stars_list): for star in stars_list: if not isinstance(star, EPSFStar): raise ValueError('stars_list must contain only EPSFStar ' 'objects.') if star.wcs_large is None: raise ValueError('Each EPSFStar object must have a valid ' 'wcs_large attribute.') super().__init__(stars_list) def constrain_centers(self): """ Constrain the centers of linked `EPSFStar` objects (i.e., the same physical star) to have the same sky coordinate. Only `EPSFStar` objects that have not been excluded during the ePSF build process will be used to constrain the centers. The single sky coordinate is calculated as the mean of sky coordinates of the linked stars. """ if len(self._data) < 2: # no linked stars return idx =
np.logical_not(self._excluded_from_fit)
numpy.logical_not
DATASET_DIR = '/home/ds/Projects/SARA/datasets/fields_segmentation' SRC_IMAGES_PREFIX = '/home/ds/Projects/SARA/data/generated_images/document_crops_rotated/' DST_IMAGES_PREFIX = '/home/ds/Projects/SARA/data/generated_images/fields_segm_resize_640_v1/' SRC_MASKS_PREFIX = '/home/ds/Projects/SARA/annotations/fields_segmentation/' DST_MASKS_PREFIX = '/home/ds/Projects/SARA/data/generated_images/fields_segm_resize_640_v1_masks/' import pandas as pd from torch.utils.data import DataLoader import os import torch from torchvision.transforms import ToTensor import cv2 import numpy as np import json import albumentations as alb from fline.pipelines.base_pipeline import BasePipeline from fline.utils.logging.trains import TrainsLogger from fline.utils.saver import Saver, MetricStrategies from fline.utils.data.dataset import BaseDataset from fline.utils.wrappers import ModelWrapper, DataWrapper from fline.utils.logging.base import EnumLogDataTypes from fline.utils.logging.groups import ProcessImage from fline.models.models.research.history.object_detection_model import ( ObjectDetectionSMP, ObjectDetectionSMPV2, ) from sklearn.model_selection import train_test_split from torch.utils.data._utils.collate import default_collate from fline.losses.segmentation.dice import BCEDiceLoss from fline.utils.data.image.io import imread_padding os.environ['TORCH_HOME'] = '/home/ds' os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ['NO_PROXY'] = 'koala03.ftc.ru' os.environ['no_proxy'] = 'koala03.ftc.ru' #SHAPE = (256, 256) PROECT_NAME = '[RESEARCH]ObjectDetection' TASK_NAME = 'test_corner_net' SEG_MODEL = 'seg_model' MASK = 'mask' BBOX = 'bbox' IMAGE = 'IMAGE' CONNECTIONS = 'connections' CORNERS = 'CORNERS' DEVICE = 'cuda:1' df = pd.read_csv(os.path.join(DATASET_DIR, 'dataset_v93.csv')) df[IMAGE] = df['image'].str.replace(SRC_IMAGES_PREFIX, DST_IMAGES_PREFIX) df[MASK] = df['annotation'].str.replace(SRC_MASKS_PREFIX, DST_MASKS_PREFIX) + '.png' df['original_image'] = df['image'].str.split('/').str[-3] #df = df.iloc[500:700] def add_classes(df): cdf = pd.read_csv('/home/ds/Projects/SARA/datasets/classification/dataset_v75.csv') def extract_class(annot_path): with open(annot_path) as f: annot = json.loads(f.read()) document_types = annot['file_attributes']['document_type'] if len(document_types.keys()) == 1: return list(document_types.keys())[0] cdf['class'] = cdf['annotation'].apply(extract_class) cdf['original_image'] = cdf['image'].str.split('/').str[-1] cdf = cdf.dropna(subset=['class']) del(cdf['annotation']) df = pd.merge( left=df, right=cdf, left_on='original_image', right_on='original_image', how='inner', ) return df df = add_classes(df) df = df[~df['class'].str.contains('играц')] df['valid_mask'] = df[MASK].apply(lambda x: cv2.imread(x) is not None) df = df[df['valid_mask']] train_df, val_df = train_test_split(df, test_size=0.25, random_state=42) train_augs_geometric = alb.Compose([ # alb.ShiftScaleRotate(), # alb.ElasticTransform(), ]) train_augs_values = alb.Compose([ alb.RandomBrightnessContrast(), alb.RandomGamma(), alb.RandomShadow(), alb.Blur(), ]) def generate_get_bboxes(mode='train'): def get_bboxes(row, res_dict): im = imread_padding(row[IMAGE], 64, 0).astype('uint8') mask = imread_padding(row[MASK], 64, 0).astype('uint8') #im = cv2.imread(row[IMAGE]).astype('uint8') #im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) #mask = cv2.imread(row[MASK]).astype('uint8') #mask = cv2.cvtColor(mask, cv2.COLOR_BGR2RGB) mask = mask[:, :, 2] SHAPE = im.shape #print(np.unique(mask)) r_mask = np.zeros((*SHAPE, 50), dtype='int') last_i = 0 bboxes = np.zeros((50, 4), dtype='float32') is_one_field = np.zeros((50,), dtype='int') bbox_corners = np.zeros((*SHAPE,)) bbox_corners_mask = np.zeros((*SHAPE, 3)) bbox_corners_labels = np.zeros((*SHAPE, 50)) #lt_corner = np.zeros((50,), dtype='int') #rb_corner = np.zeros((50,), dtype='int') for i, m in enumerate(np.unique(mask)): if m != 0: c_mask = (mask == m).astype('uint8') c_mask = cv2.resize( c_mask.astype('uint8'), SHAPE, interpolation=cv2.INTER_NEAREST, ).astype('uint8') cntrs, _ = cv2.findContours(c_mask, 1, 2) max_it = 0 for t, cnt in enumerate(cntrs): x, y, w, h = cv2.boundingRect(cnt) #print(x,y,w,h, y+h, x+w) if w <= 1 and h <= 1: w = w + 2 h = h + 2 if y+h >= SHAPE[1]: y = SHAPE[1]-h-1 if x+w >= SHAPE[0]: x = SHAPE[0]-w-1 if y-h <= 0: y = 1 if x-w >= 0: x = 1 if bbox_corners[y, x] == 1 or bbox_corners[y+h, x+w] == 2: continue if bbox_corners_mask[y, x, 1] == 1 or bbox_corners_mask[y+h, x+w, 2] == 1: continue bbox_corners[y, x] = 1 bbox_corners[y+h, x+w] = 2 bbox_corners_mask[y, x, 1] = 1 bbox_corners_mask[y+h, x+w, 2] = 1 #print(y,x, y+h, x+w, bbox_corners_mask[:, :, 1].sum(), bbox_corners_mask[:, :, 2].sum(), len(cntrs)) bbox_corners_labels[y, x, last_i + t] = 1 bbox_corners_labels[y+h, x+w, last_i + t] = 1 #lt_corner[last_i+t] = last_i+1 #rb_corner[last_i+t] = last_i+1 # buf = np.zeros(SHAPE) # buf = cv2.drawContours( # buf, # [cnt], -1, 1, -1, # ) # r_mask[:, :, last_i + t] = buf x = (x + w/2) / c_mask.shape[1] y = (y + h/2) / c_mask.shape[0] w = w / c_mask.shape[1] h = h / c_mask.shape[0] bboxes[last_i+t] = (x, y, w, h) max_it += 1 if len(cntrs) > 1: is_one_field[last_i+t] = last_i+1 # conn_max, conn = cv2.connectedComponents(c_mask) # for t in range(1, max_it): # r_mask[:, :, last_i+t] = (conn == t) # #print(last_i+t) last_i += max_it #print('last_i=', last_i) #print('-'*60) bboxes = bboxes[:last_i] #bbox_corners = bbox_corners[:last_i] #idx = np.arange(len(bboxes)) #np.random.shuffle(idx) #bboxes = bboxes[idx] #is_one_field = is_one_field[:last_i] #is_one_field = is_one_field[idx] #np.random.choice(bboxes, len(bboxes)) # idx = [i+1 for i in idx] #idx.insert(0, 0) #r_mask = r_mask[:, :, idx] bbox_corners_labels = bbox_corners_labels[:,:,:last_i].argmax(axis=2) lt_mask = bbox_corners_mask[:,:,1] == 1 rb_mask = bbox_corners_mask[:,:,2] == 1 #print(lt_mask.sum(), rb_mask.sum()) #print(bbox_corners.shape, lt_mask.shape, bbox_corners_labels.shape) lt = bbox_corners_labels[lt_mask[:,:]] rb = bbox_corners_labels[rb_mask[:,:]] bbox_corners_links = np.zeros((1, len(lt), len(rb)), dtype='float32') for i, p1 in enumerate(lt): for j, p2 in enumerate(rb): if p1 == p2: #print(i,j) bbox_corners_links[0, i, j] = 1 #r_mask = r_mask.argmax(axis=2) # connections_mask = np.zeros((3, len(bboxes), len(bboxes)), dtype='float32') # for i, box1 in enumerate(bboxes): # dif_up_y_min = np.inf # select_up = None # dif_down_y_min = np.inf # select_down = None # for j, box2 in enumerate(bboxes): # if i != j: # #connections_mask[0, i, j] = box1[0] - box2[0] > 0.05 # #connections_mask[1, i, j] = box2[0] - box1[0] > 0.05 # #connections_mask[2, i, j] = box1[1] - box2[1] > 0.05 # #connections_mask[3, i, j] = box2[1] - box1[1] > 0.05 # cur_dif_down = box1[1] - box2[1] # cur_dif_up = - cur_dif_down # if cur_dif_down > 0.05 and cur_dif_down < dif_down_y_min: # dif_down_y_min = cur_dif_down # select_down = j # if cur_dif_up > 0.05 and cur_dif_up < dif_up_y_min: # dif_up_y_min = cur_dif_up # select_up = j # if select_up is not None: # connections_mask[0, i, select_up] = 1 # if select_down is not None: # connections_mask[1, i, select_down] = 1 #print(is_one_field) #print(r_mask.max()) # for u in np.unique(is_one_field): # if u != 0: # cur_field_mask = (is_one_field == u) # cur_indexes = np.where(cur_field_mask)[0] # #print(cur_indexes) # for i in cur_indexes: # for j in cur_indexes: # if i != j: # connections_mask[2, i, j] = 1 #mask = r_mask #a = len(np.unique(mask)) im = cv2.resize(im.astype('uint8'), SHAPE).astype('uint8') #mask = cv2.resize(mask.astype('uint8'), SHAPE, interpolation=cv2.INTER_NEAREST).astype('uint8') #print(a, len(np.unique(mask))) bboxes = torch.tensor(bboxes, dtype=torch.float32) im = im.astype('float32') res_dict[IMAGE] = ToTensor()((im / 255).astype('float32')) res_dict[BBOX] = bboxes res_dict[CORNERS] = torch.tensor(bbox_corners) res_dict[MASK] = ToTensor()(bbox_corners_mask) #res_dict[MASK] = ToTensor()(mask.astype('float32')) res_dict[CONNECTIONS] = torch.tensor(bbox_corners_links) return res_dict return get_bboxes def generate_get_bboxes(mode='train'): def get_bboxes(row, res_dict): im = imread_padding(row[IMAGE], 64, 0).astype('uint8') mask = imread_padding(row[MASK], 64, 0).astype('uint8') #im = cv2.imread(row[IMAGE]).astype('uint8') #im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) #mask = cv2.imread(row[MASK]).astype('uint8') #mask = cv2.cvtColor(mask, cv2.COLOR_BGR2RGB) mask = mask[:, :, 2] SHAPE = (im.shape[0], im.shape[1]) left_top_points = np.zeros((*SHAPE, 50)) right_bottom_points = np.zeros((*SHAPE, 50)) pairs_counter = 0 for i, m in enumerate(np.unique(mask)): if m != 0: c_mask = (mask == m).astype('uint8') # c_mask = cv2.resize( # c_mask.astype('uint8'), # SHAPE, # interpolation=cv2.INTER_NEAREST, # ).astype('uint8') cntrs, _ = cv2.findContours(c_mask, 1, 2) for cnt in cntrs: x, y, w, h = cv2.boundingRect(cnt) left_top_points[y, x, pairs_counter] = 1 right_bottom_points[y+h-1, x+w-1, pairs_counter] = 1 pairs_counter += 1 left_top_points = left_top_points[:, :, :pairs_counter] right_bottom_points = right_bottom_points[:, :, :pairs_counter] idx = np.arange(pairs_counter) np.random.shuffle(idx) right_bottom_points = right_bottom_points[:, :, idx] bbox_corners_links = np.zeros((1, pairs_counter, pairs_counter), dtype='float32') for p in range(pairs_counter): bbox_corners_links[0, p, idx[p]] = 1 left_top_mask =
np.max(left_top_points, axis=2)
numpy.max
""" Utils for generative models adapted from https://github.com/DataResponsibly/DataSynthesizer Copyright <2018> <dataresponsibly.<EMAIL>> Licensed under MIT License """ from math import log, ceil from numpy import array, exp, isinf, full_like from numpy.random import choice, laplace from string import ascii_lowercase from itertools import combinations, product from pandas import Series, DataFrame, merge from sklearn.metrics import mutual_info_score, normalized_mutual_info_score def mutual_information(labels_x: Series, labels_y: DataFrame): """Mutual information of distributions in format of Series or DataFrame. Parameters ---------- labels_x : Series labels_y : DataFrame """ if labels_y.shape[1] == 1: labels_y = labels_y.iloc[:, 0] else: labels_y = labels_y.apply(lambda x: ' '.join(x.values), axis=1) return mutual_info_score(labels_x, labels_y) def pairwise_attributes_mutual_information(dataset): """Compute normalized mutual information for all pairwise attributes. Return a DataFrame.""" sorted_columns = sorted(dataset.columns) mi_df = DataFrame(columns=sorted_columns, index=sorted_columns, dtype=float) for row in mi_df.columns: for col in mi_df.columns: mi_df.loc[row, col] = normalized_mutual_info_score(dataset[row].astype(str), dataset[col].astype(str), average_method='arithmetic') return mi_df def normalize_given_distribution(frequencies): distribution = array(frequencies, dtype=float) distribution = distribution.clip(0) # replace negative values with 0 summation = distribution.sum() if summation > 0: if isinf(summation): return normalize_given_distribution(isinf(distribution)) else: return distribution / summation else: return full_like(distribution, 1 / distribution.size) def infer_numerical_attributes_in_dataframe(dataframe): describe = dataframe.describe() # DataFrame.describe() usually returns 8 rows. if describe.shape[0] == 8: return set(describe.columns) # DataFrame.describe() returns less than 8 rows when there is no numerical attribute. else: return set() def display_bayesian_network(bn): length = 0 for child, _ in bn: if len(child) > length: length = len(child) print('Constructed Bayesian network:') for child, parents in bn: print(" {0:{width}} has parents {1}.".format(child, parents, width=length)) def generate_random_string(length): return ''.join(choice(list(ascii_lowercase), size=length)) def bayes_worker(paras): child, V, num_parents, split, dataset = paras parents_pair_list = [] mutual_info_list = [] if split + num_parents - 1 < len(V): for other_parents in combinations(V[split + 1:], num_parents - 1): parents = list(other_parents) parents.append(V[split]) parents_pair_list.append((child, parents)) mi = mutual_information(dataset[child], dataset[parents]) mutual_info_list.append(mi) return parents_pair_list, mutual_info_list def get_encoded_attribute_distribution(attributes, encoded_dataset): data = encoded_dataset.copy().loc[:, attributes] data['count'] = 1 stats = data.groupby(attributes).sum() iterables = [range(int(encoded_dataset[attr].max()) + 1) for attr in attributes] full_space = DataFrame(columns=attributes, data=list(product(*iterables))) stats.reset_index(inplace=True) stats = merge(full_space, stats, how='left') stats.fillna(0, inplace=True) return stats def get_noisy_distribution_of_attributes(attributes, encoded_dataset, epsilon=0.1): data = encoded_dataset.copy().loc[:, attributes] data['count'] = 1 stats = data.groupby(attributes).sum() iterables = [range(int(encoded_dataset[attr].max()) + 1) for attr in attributes] full_space = DataFrame(columns=attributes, data=list(product(*iterables))) stats.reset_index(inplace=True) stats = merge(full_space, stats, how='left') stats.fillna(0, inplace=True) if epsilon: k = len(attributes) - 1 num_tuples, num_attributes = encoded_dataset.shape noise_para = laplace_noise_parameter(k, num_attributes, num_tuples, epsilon) laplace_noises = laplace(0, scale=noise_para, size=stats.index.size) stats['count'] += laplace_noises stats.loc[stats['count'] < 0, 'count'] = 0 return stats def laplace_noise_parameter(k, num_attributes, num_tuples, epsilon): """The noises injected into conditional distributions. PrivBayes Algorithm 1.""" return 2 * (num_attributes - k) / (num_tuples * epsilon) def calculate_sensitivity(num_tuples, child, parents, attr_to_is_binary): """Sensitivity function for Bayesian network construction. PrivBayes Lemma 1. Parameters ---------- num_tuples : int Number of tuples in sensitive dataset. Return -------- int Sensitivity value. """ if attr_to_is_binary[child] or (len(parents) == 1 and attr_to_is_binary[parents[0]]): a = log(num_tuples) / num_tuples b = (num_tuples - 1) / num_tuples b_inv = num_tuples / (num_tuples - 1) return a + b * log(b_inv) else: a = (2 / num_tuples) * log((num_tuples + 1) / 2) b = (1 - 1 / num_tuples) * log(1 + 2 / (num_tuples - 1)) return a + b def calculate_delta(num_attributes, sensitivity, epsilon): """Computing delta, which is a factor when applying differential privacy. More info is in PrivBayes Section 4.2 "A First-Cut Solution". Parameters ---------- num_attributes : int Number of attributes in dataset. sensitivity : float Sensitivity of removing one tuple. epsilon : float Parameter of differential privacy. """ return (num_attributes - 1) * sensitivity / epsilon def exponential_mechanism(epsilon, mutual_info_list, parents_pair_list, attr_to_is_binary, num_tuples, num_attributes): """Applied in Exponential Mechanism to sample outcomes.""" delta_array = [] for (child, parents) in parents_pair_list: sensitivity = calculate_sensitivity(num_tuples, child, parents, attr_to_is_binary) delta = calculate_delta(num_attributes, sensitivity, epsilon) delta_array.append(delta) mi_array = array(mutual_info_list) / (2 * array(delta_array)) mi_array =
exp(mi_array)
numpy.exp
import collections import numpy as np import time import datetime import os import networkx as nx import pytz import cloudvolume import pandas as pd from multiwrapper import multiprocessing_utils as mu from . import mincut from google.api_core.retry import Retry, if_exception_type from google.api_core.exceptions import Aborted, DeadlineExceeded, \ ServiceUnavailable from google.auth import credentials from google.cloud import bigtable from google.cloud.bigtable.row_filters import TimestampRange, \ TimestampRangeFilter, ColumnRangeFilter, ValueRangeFilter, RowFilterChain, \ ColumnQualifierRegexFilter, RowFilterUnion, ConditionalRowFilter, \ PassAllFilter, BlockAllFilter, RowFilter from google.cloud.bigtable.column_family import MaxVersionsGCRule from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple, Union # global variables HOME = os.path.expanduser("~") N_DIGITS_UINT64 = len(str(np.iinfo(np.uint64).max)) LOCK_EXPIRED_TIME_DELTA = datetime.timedelta(minutes=2, seconds=00) UTC = pytz.UTC # Setting environment wide credential path os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = \ HOME + "/.cloudvolume/secrets/google-secret.json" def compute_indices_pandas(data) -> pd.Series: """ Computes indices of all unique entries Make sure to remap your array to a dense range starting at zero https://stackoverflow.com/questions/33281957/faster-alternative-to-numpy-where :param data: np.ndarray :return: pandas dataframe """ d = data.ravel() f = lambda x: np.unravel_index(x.index, data.shape) return pd.Series(d).groupby(d).apply(f) def log_n(arr, n): """ Computes log to base n :param arr: array or float :param n: int base :return: return log_n(arr) """ if n == 2: return np.log2(arr) elif n == 10: return np.log10(arr) else: return np.log(arr) / np.log(n) def pad_node_id(node_id: np.uint64) -> str: """ Pad node id to 20 digits :param node_id: int :return: str """ return "%.20d" % node_id def serialize_uint64(node_id: np.uint64) -> bytes: """ Serializes an id to be ingested by a bigtable table row :param node_id: int :return: str """ return serialize_key(pad_node_id(node_id)) # type: ignore def deserialize_uint64(node_id: bytes) -> np.uint64: """ De-serializes a node id from a BigTable row :param node_id: bytes :return: np.uint64 """ return np.uint64(node_id.decode()) # type: ignore def serialize_key(key: str) -> bytes: """ Serializes a key to be ingested by a bigtable table row :param key: str :return: bytes """ return key.encode("utf-8") def deserialize_key(key: bytes) -> str: """ Deserializes a row key :param key: bytes :return: str """ return key.decode() def row_to_byte_dict(row: bigtable.row.Row, f_id: str = None, idx: int = None ) -> Dict[int, Dict]: """ Reads row entries to a dictionary :param row: row :param f_id: str :param idx: int :return: dict """ row_dict = {} for fam_id in row.cells.keys(): row_dict[fam_id] = {} for row_k in row.cells[fam_id].keys(): if idx is None: row_dict[fam_id][deserialize_key(row_k)] = \ [c.value for c in row.cells[fam_id][row_k]] else: row_dict[fam_id][deserialize_key(row_k)] = \ row.cells[fam_id][row_k][idx].value if f_id is not None and f_id in row_dict: return row_dict[f_id] elif f_id is None: return row_dict else: raise Exception("Family id not found") def compute_bitmasks(n_layers: int, fan_out: int) -> Dict[int, int]: """ :param n_layers: int :return: dict layer -> bits for layer id """ bitmask_dict = {} for i_layer in range(n_layers, 0, -1): if i_layer == 1: # Lock this layer to an 8 bit layout to maintain compatibility with # the exported segmentation # n_bits_for_layers = np.ceil(log_n(fan_out**(n_layers - 2), fan_out)) n_bits_for_layers = 8 else: n_bits_for_layers = max(1, np.ceil(log_n(fan_out**(n_layers - i_layer), fan_out))) # n_bits_for_layers = fan_out ** int(np.ceil(log_n(n_bits_for_layers, fan_out))) n_bits_for_layers = int(n_bits_for_layers) assert n_bits_for_layers <= 8 bitmask_dict[i_layer] = n_bits_for_layers return bitmask_dict class ChunkedGraph(object): def __init__(self, table_id: str, instance_id: str = "pychunkedgraph", project_id: str = "neuromancer-seung-import", chunk_size: Tuple[int, int, int] = None, fan_out: Optional[int] = None, n_layers: Optional[int] = None, credentials: Optional[credentials.Credentials] = None, client: bigtable.Client = None, cv_path: str = None, is_new: bool = False) -> None: if client is not None: self._client = client else: self._client = bigtable.Client(project=project_id, admin=True, credentials=credentials) self._instance = self.client.instance(instance_id) self._table_id = table_id self._table = self.instance.table(self.table_id) if is_new: self.check_and_create_table() self._n_layers = self.check_and_write_table_parameters("n_layers", n_layers) self._fan_out = self.check_and_write_table_parameters("fan_out", fan_out) self._cv_path = self.check_and_write_table_parameters("cv_path", cv_path) self._chunk_size = self.check_and_write_table_parameters("chunk_size", chunk_size) self._bitmasks = compute_bitmasks(self.n_layers, self.fan_out) self._cv = None # Hardcoded parameters self._n_bits_for_layer_id = 8 self._cv_mip = 3 @property def client(self) -> bigtable.Client: return self._client @property def instance(self) -> bigtable.instance.Instance: return self._instance @property def table(self) -> bigtable.table.Table: return self._table @property def table_id(self) -> str: return self._table_id @property def instance_id(self): return self.instance.instance_id @property def project_id(self): return self.client.project @property def family_id(self) -> str: return "0" @property def incrementer_family_id(self) -> str: return "1" @property def log_family_id(self) -> str: return "2" @property def cross_edge_family_id(self) -> str: return "3" @property def fan_out(self) -> int: return self._fan_out @property def chunk_size(self) -> np.ndarray: return self._chunk_size @property def n_layers(self) -> int: return self._n_layers @property def bitmasks(self) -> Dict[int, int]: return self._bitmasks @property def cv_path(self) -> str: return self._cv_path @property def cv_mip(self) -> int: return self._cv_mip @property def cv(self) -> cloudvolume.CloudVolume: if self._cv is None: self._cv = cloudvolume.CloudVolume(self.cv_path, mip=self._cv_mip) return self._cv @property def root_chunk_id(self): return self.get_chunk_id(layer=int(self.n_layers), x=0, y=0, z=0) def check_and_create_table(self) -> None: """ Checks if table exists and creates new one if necessary """ table_ids = [t.table_id for t in self.instance.list_tables()] if not self.table_id in table_ids: self.table.create() f = self.table.column_family(self.family_id) f.create() f_inc = self.table.column_family(self.incrementer_family_id, gc_rule=MaxVersionsGCRule(1)) f_inc.create() f_log = self.table.column_family(self.log_family_id) f_log.create() f_ce = self.table.column_family(self.cross_edge_family_id, gc_rule=MaxVersionsGCRule(1)) f_ce.create() print("Table created") def check_and_write_table_parameters(self, param_key: str, value: Optional[np.uint64] = None ) -> np.uint64: """ Checks if a parameter already exists in the table. If it already exists it returns the stored value, else it stores the given value. It raises an exception if no value is passed and the parameter does not exist, yet. :param param_key: str :param value: np.uint64 :return: np.uint64 value """ ser_param_key = serialize_key(param_key) row = self.table.read_row(serialize_key("params")) if row is None or ser_param_key not in row.cells[self.family_id]: assert value is not None if param_key in ["fan_out", "n_layers"]: val_dict = {param_key: np.array(value, dtype=np.uint64).tobytes()} elif param_key in ["cv_path"]: val_dict = {param_key: serialize_key(value)} elif param_key in ["chunk_size"]: val_dict = {param_key: np.array(value, dtype=np.uint64).tobytes()} else: raise Exception("Unknown type for parameter") row = self.mutate_row(serialize_key("params"), self.family_id, val_dict) self.bulk_write([row]) else: value = row.cells[self.family_id][ser_param_key][0].value if param_key in ["fan_out", "n_layers"]: value = np.frombuffer(value, dtype=np.uint64)[0] elif param_key in ["cv_path"]: value = deserialize_key(value) elif param_key in ["chunk_size"]: value = np.frombuffer(value, dtype=np.uint64) else: raise Exception("Unknown key") return value def get_serialized_info(self): """ Rerturns dictionary that can be used to load this ChunkedGraph :return: dict """ info = {"table_id": self.table_id, "instance_id": self.instance_id, "project_id": self.project_id} try: info["credentials"] = self.client.credentials except: info["credentials"] = self.client._credentials return info def get_chunk_layer(self, node_or_chunk_id: np.uint64) -> int: """ Extract Layer from Node ID or Chunk ID :param node_or_chunk_id: np.uint64 :return: int """ return int(node_or_chunk_id) >> 64 - self._n_bits_for_layer_id def get_chunk_coordinates(self, node_or_chunk_id: np.uint64 ) -> np.ndarray: """ Extract X, Y and Z coordinate from Node ID or Chunk ID :param node_or_chunk_id: np.uint64 :return: Tuple(int, int, int) """ layer = self.get_chunk_layer(node_or_chunk_id) bits_per_dim = self.bitmasks[layer] x_offset = 64 - self._n_bits_for_layer_id - bits_per_dim y_offset = x_offset - bits_per_dim z_offset = y_offset - bits_per_dim x = int(node_or_chunk_id) >> x_offset & 2 ** bits_per_dim - 1 y = int(node_or_chunk_id) >> y_offset & 2 ** bits_per_dim - 1 z = int(node_or_chunk_id) >> z_offset & 2 ** bits_per_dim - 1 return
np.array([x, y, z])
numpy.array
# -*- coding: utf-8 -*- """Description of NEXTXY flow direction type and methods to convert to/from general nextidx. This type is mainly used for the CaMa-Flood model. Note that X (column) and Y (row) coordinates are one-based.""" from pathlib import Path from typing import List, Union from numba import njit import numpy as np from . import core, gis_utils __all__ = ["read_nextxy"] # NEXTXY type _ftype = "nextxy" _mv = np.int32(-9999) # -10 is inland termination, -9 river outlet at ocean _pv = np.array([-9, -10], dtype=np.int32) # NOTE: data below for consistency with LDD / D8 types and testing _us = np.ones((2, 3, 3), dtype=np.int32) * 2 _us[:, 1, 1] = _pv[0] def from_array(flwdir, dtype=np.intp): if not ( (isinstance(flwdir, tuple) and len(flwdir) == 2) or ( isinstance(flwdir, np.ndarray) and flwdir.ndim == 3 and flwdir.shape[0] == 2 ) ): raise TypeError("NEXTXY flwdir data not understood") nextx, nexty = flwdir # convert [2,:,:] OR ([:,:], [:,:]) to [:,:], [:,:] return _from_array(nextx, nexty, dtype=dtype) def to_array(idxs_ds, shape, mv=core._mv): nextx, nexty = _to_array(idxs_ds, shape, mv=mv) return np.stack([nextx, nexty]) @njit def _from_array(nextx, nexty, _mv=_mv, dtype=np.intp): size = nextx.size nrow, ncol = nextx.shape[0], nextx.shape[-1] nextx_flat = nextx.ravel() nexty_flat = nexty.ravel() # allocate output arrays pits_lst = [] idxs_ds = np.full(nextx.size, core._mv, dtype=dtype) n = 0 for idx0 in range(nextx.size): if nextx_flat[idx0] == _mv: continue c1 = nextx_flat[idx0] r1 = nexty_flat[idx0] pit = ispit(c1) or ispit(r1) # convert from one- to zero-based index r_ds, c_ds = np.intp(r1 - 1), np.intp(c1 - 1) outside = r_ds >= nrow or c_ds >= ncol or r_ds < 0 or c_ds < 0 idx_ds = c_ds + r_ds * ncol # pit or outside or ds cell is mv if pit or outside or nextx_flat[idx_ds] == _mv: pits_lst.append(idx0) idxs_ds[idx0] = idx0 else: idxs_ds[idx0] = idx_ds n += 1 return idxs_ds, np.array(pits_lst, dtype=dtype), n @njit def _to_array(idxs_ds, shape, mv=core._mv): """convert 1D index to 3D NEXTXY raster""" ncol = shape[1] nextx = np.full(idxs_ds.size, _mv, dtype=np.int32) nexty = np.full(idxs_ds.size, _mv, dtype=np.int32) for idx0 in range(idxs_ds.size): idx_ds = idxs_ds[idx0] if idx_ds == mv: continue elif idx0 == idx_ds: # pit nextx[idx0] = _pv[0] nexty[idx0] = _pv[0] else: # convert idx_ds to one-based row / col indices nextx[idx0] = idx_ds % ncol + 1 nexty[idx0] = idx_ds // ncol + 1 return nextx.reshape(shape), nexty.reshape(shape) def isvalid(flwdir): """True if NEXTXY raster is valid""" isfmt1 = isinstance(flwdir, tuple) and len(flwdir) == 2 isfmt2 = ( isinstance(flwdir, np.ndarray) and flwdir.ndim == 3 and flwdir.shape[0] == 2 ) if not (isfmt1 or isfmt2): return False nextx, nexty = flwdir # should work for [2,:,:] and ([:,:], [:,:]) mask = np.logical_or(isnodata(nextx), ispit(nextx)) return ( nexty.dtype == "int32" and nextx.dtype == "int32" and np.all(nexty.shape == nextx.shape) and np.all(nextx[~mask] >= 0) and
np.all(nextx[mask] == nexty[mask])
numpy.all
import unittest import numpy as np from subt.artf_node import result2report, check_results, check_borders, get_border_lines DRONE_FX = 554.25469 class ArtifactDetectorDNNTest(unittest.TestCase): def test_result2report(self): result = [('backpack', [(60, 180, 0.9785775), (72, 180, 0.9795098), (60, 184, 0.97716093), (72, 184, 0.9782014)]), ['backpack', 0.99990773, [50, 150, 200, 250]]] row = [5000]*640 depth =
np.array([row]*360, dtype=np.uint16)
numpy.array
# -*- coding: utf-8 -*- """backend movie, get movie file * backend movie file to search timeline * get movie from YouTube as mp4 720p or 360p """ import numpy as np from pytube import YouTube from pytube import extract from pytube import exceptions import time as tm import cv2 import characters as cd import after_caluculation as ac import app as ap import common as cm import state_list as state # character name template CHARACTERS_DATA = [] # timer template SEC_DATA = [] # menu button template MENU_DATA = [] # score template SCORE_DATA = [] # total damage template DAMAGE_DATA = [] # anna icon template ICON_DATA = [] # SPEED icon template SPEED_DATA = [] # character names CHARACTERS = cd.characters_name # numbers NUMBERS = [ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", ] # analyzable resolution FRAME_RESOLUTION = [ # width, height (1280, 720), # RESOLUTION_16_9 (1280, 590), # RESOLUTION_2_1_a (1280, 592), # RESOLUTION_2_1_b (960, 720), # RESOLUTION_4_3 (640, 360) # RESOLUTION_16_9_SD ] RESOLUTION_16_9 = 0 RESOLUTION_2_1_a = 1 RESOLUTION_2_1_b = 2 RESOLUTION_4_3 = 3 RESOLUTION_16_9_SD = 4 # frame roi (x-min, y-min, x-max, y-max) UB_ROI = (0, 0, 0, 0) MIN_ROI = (0, 0, 0, 0) TEN_SEC_ROI = (0, 0, 0, 0) ONE_SEC_ROI = (0, 0, 0, 0) MENU_ROI = (0, 0, 0, 0) SCORE_ROI = (0, 0, 0, 0) DAMAGE_DATA_ROI = (0, 0, 0, 0) CHARACTER_ICON_ROI = (0, 0, 0, 0) SPEED_ICON_ROI = (0, 0, 0, 0) MENU_LOC = (0, 0) FRAME_THRESH = 200 SPEED_ICON_THRESH = 240 # timer storage place TIMER_MIN = 2 TIMER_TEN_SEC = 1 TIMER_SEC = 0 # analyze thresh values UB_THRESH = 0.6 TIMER_THRESH = 0.6 MENU_THRESH = 0.6 DAMAGE_THRESH = 0.65 ICON_THRESH = 0.6 SPEED_THRESH = 0.4 FOUND = 1 NOT_FOUND = 0 # analyzable movie length (res:1s) MOVIE_LENGTH_MAX = 600 ENEMY_UB = "――――敵UB――――" def model_init(video_type): """init model init model for template matching Args: video_type (int): movie resolution type Returns: """ global CHARACTERS_DATA # character name template global SEC_DATA # timer template global MENU_DATA # menu button template global SCORE_DATA # score template global DAMAGE_DATA # total damage template global ICON_DATA # anna icon template global SPEED_DATA # SPEED icon template if video_type is RESOLUTION_16_9: CHARACTERS_DATA = np.load("model/16_9/UB_name_16_9.npy") SEC_DATA = np.load("model/16_9/timer_sec_16_9.npy") MENU_DATA = np.load("model/16_9/menu_16_9.npy") SCORE_DATA = np.load("model/16_9/score_data_16_9.npy") DAMAGE_DATA = np.load("model/16_9/damage_data_16_9.npy") ICON_DATA = np.load("model/16_9/icon_data_16_9.npy") SPEED_DATA = np.load("model/16_9/speed_data_16_9.npy") elif video_type is RESOLUTION_2_1_a: CHARACTERS_DATA = np.load("model/2_1/UB_name_2_1.npy") SEC_DATA = np.load("model/2_1/timer_sec_2_1.npy") MENU_DATA = np.load("model/2_1/menu_2_1.npy") SCORE_DATA = np.load("model/2_1/score_data_2_1.npy") DAMAGE_DATA = np.load("model/2_1/damage_data_2_1.npy") ICON_DATA = np.load("model/2_1/icon_data_2_1.npy") SPEED_DATA = np.load("model/2_1/speed_data_2_1.npy") elif video_type is RESOLUTION_2_1_b: CHARACTERS_DATA = np.load("model/2_1/UB_name_2_1.npy") SEC_DATA = np.load("model/2_1/timer_sec_2_1.npy") MENU_DATA = np.load("model/2_1/menu_2_1.npy") SCORE_DATA = np.load("model/2_1/score_data_2_1.npy") DAMAGE_DATA = np.load("model/2_1/damage_data_2_1.npy") ICON_DATA = np.load("model/2_1/icon_data_2_1.npy") SPEED_DATA = np.load("model/2_1/speed_data_2_1.npy") elif video_type is RESOLUTION_4_3: CHARACTERS_DATA = np.load("model/4_3/UB_name_4_3.npy") SEC_DATA = np.load("model/4_3/timer_sec_4_3.npy") MENU_DATA = np.load("model/4_3/menu_4_3.npy") SCORE_DATA = np.load("model/4_3/score_data_4_3.npy") DAMAGE_DATA = np.load("model/4_3/damage_data_4_3.npy") ICON_DATA = np.load("model/4_3/icon_data_4_3.npy") SPEED_DATA =
np.load("model/4_3/speed_data_4_3.npy")
numpy.load
# Authors: <NAME> from __future__ import print_function try: from StringIO import StringIO except ImportError: from io import StringIO try: import Queue except ImportError: import queue as Queue try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib2 as urllib try: import cPickle as pickle except ImportError: import pickle import heapq import copy import threading import logging import uuid from collections import OrderedDict import socket import random import os import glob import subprocess import numpy as np from itertools import cycle import __main__ as main import re import shutil import numbers import theano import sys import warnings import inspect import zipfile import time import pprint from collections import defaultdict from functools import reduce from ..externals import dill sys.setrecursionlimit(40000) logging.basicConfig(level=logging.INFO, format='%(message)s') logger = logging.getLogger(__name__) string_f = StringIO() ch = logging.StreamHandler(string_f) # Automatically put the HTML break characters on there formatter = logging.Formatter('%(message)s<br>') ch.setFormatter(formatter) logger.addHandler(ch) def get_logger(): """ Fetch the global dagbldr logger. """ return logger FINALIZE_TRAINING = False def _get_finalize_train(): return FINALIZE_TRAINING def _set_finalize_train(): global FINALIZE_TRAINING FINALIZE_TRAINING = True # Storage of internal shared _lib_shared_params = OrderedDict() def get_lib_shared_params(): return _lib_shared_params # universal time tt = str(time.time()).split(".")[0] def get_time_string(): return tt def get_name(): base = str(uuid.uuid4()) return base def get_script(): py_file = None for argv in sys.argv[::-1]: if argv[-3:] == ".py": py_file = argv # slurm_script elif "slurm_" in argv: py_file = argv if "slurm" in py_file: script_name = os.environ['SLURM_JOB_NAME'] script_name = script_name.split(".")[0] else: assert py_file is not None script_path = os.path.abspath(py_file) script_name = script_path.split(os.path.sep)[-1].split(".")[0] # gotta play games for slurm runner return script_name def get_shared(name): if name in _lib_shared_params.keys(): logger.info("Found name %s in shared parameters" % name) return _lib_shared_params[name] else: raise NameError("Name not found in shared params!") def set_shared(name, variable): if name in _lib_shared_params.keys(): raise ValueError("Trying to set key %s which already exists!" % name) _lib_shared_params[name] = variable def del_shared(): for key in _lib_shared_params.keys(): del _lib_shared_params[key] def get_params(): """ Returns {name: param} """ params = OrderedDict() for name in _lib_shared_params.keys(): params[name] = _lib_shared_params[name] return params _type = "float32" def get_type(): return _type # TODO: Fetch from env NUM_SAVED_TO_KEEP = 2 # copied from utils to avoid circular deps def safe_zip(*args): """Like zip, but ensures arguments are of same length. Borrowed from pylearn2 - copied from utils to avoid circular import """ base = len(args[0]) for i, arg in enumerate(args[1:]): if len(arg) != base: raise ValueError("Argument 0 has length %d but argument %d has " "length %d" % (base, i+1, len(arg))) return zip(*args) def convert_to_one_hot(itr, n_classes, dtype="int32"): """ Convert 1D or 2D iterators of class to 2D or 3D iterators of one hot class indicators. Parameters ---------- itr : iterator itr can be list of list, 1D or 2D np.array. In all cases, the fundamental element must have type int32 or int64. n_classes : int number of classes to expand itr to - this will become shape[-1] of the returned array. dtype : optional, default "int32" dtype for the returned array. Returns ------- one_hot : array A 2D or 3D numpy array of one_hot values. List of list or 2D np.array will return a 3D numpy array, while 1D itr or list will return a 2D one_hot. """ is_two_d = False error_msg = """itr not understood. convert_to_one_hot accepts\n list of list of int, 1D or 2D numpy arrays of\n dtype int32 or int64""" if type(itr) is np.ndarray and itr.dtype not in [np.object]: if len(itr.shape) == 2: is_two_d = True if itr.dtype not in [np.int32, np.int64]: raise ValueError(error_msg) elif not isinstance(itr[0], numbers.Real): # Assume list of list # iterable of iterable, feature dim must be consistent is_two_d = True elif itr.dtype in [np.object]: is_two_d = True else: raise ValueError(error_msg) if is_two_d: lengths = [len(i) for i in itr] one_hot = np.zeros((max(lengths), len(itr), n_classes), dtype=dtype) for n in range(len(itr)): one_hot[np.arange(lengths[n]), n, itr[n]] = 1 else: one_hot = np.zeros((len(itr), n_classes), dtype=dtype) one_hot[np.arange(len(itr)), itr] = 1 return one_hot def _special_check(): ip_addr = socket.gethostbyname(socket.gethostname()) subnet = ".".join(ip_addr.split(".")[:-1]) if subnet == "132.204.25": logger.info("Found special runtime environment") return True else: return False # decided at import, should be consistent over training checkpoint_uuid = get_name()[:6] def get_checkpoint_dir(checkpoint_dir=None, folder=None, create_dir=True): """ Get checkpoint directory path """ if checkpoint_dir is None: checkpoint_dir = os.getenv("DAGBLDR_MODELS", os.path.join( os.path.expanduser("~"), "dagbldr_models")) # Figure out if this is necessary to run on localdisk @ U de M if _special_check(): checkpoint_dir = "/Tmp/kastner/dagbldr_models" if folder is None: checkpoint_name = get_script() tmp = checkpoint_dir + os.path.sep + checkpoint_name + "_" + checkpoint_uuid checkpoint_dir = tmp else: checkpoint_dir = os.path.join(checkpoint_dir, folder) if not os.path.exists(checkpoint_dir) and create_dir: os.makedirs(checkpoint_dir) return checkpoint_dir def in_nosetest(): return sys.argv[0].endswith('nosetests') def make_character_level_from_text(text): """ Create mapping and inverse mappings for text -> one_hot_char Parameters ---------- text : iterable of strings Returns ------- cleaned : list of list of ints, length (len(text), ) The original text, converted into list of list of integers mapper_func : function A function that can be used to map text into the correct form inverse_mapper_func : function A function that can be used to invert the output of mapper_func mapper : dict Dictionary containing the mapping of char -> integer """ # Try to catch invalid input try: ord(text[0]) raise ValueError("Text should be iterable of strings") except TypeError: pass all_chars = reduce(lambda x, y: set(x) | set(y), text, set()) mapper = {k: n + 2 for n, k in enumerate(list(all_chars))} # 1 is EOS mapper["EOS"] = 1 # 0 is UNK/MASK - unused here but needed in general mapper["UNK"] = 0 inverse_mapper = {v: k for k, v in mapper.items()} def mapper_func(text_line): return [mapper[c] if c in mapper.keys() else mapper["UNK"] for c in text_line] + [mapper["EOS"]] def inverse_mapper_func(symbol_line): return "".join([inverse_mapper[s] for s in symbol_line if s != mapper["EOS"]]) # Remove blank lines cleaned = [mapper_func(t) for t in text if t != ""] return cleaned, mapper_func, inverse_mapper_func, mapper def whitespace_tokenizer(line): '''Return the tokens of a sentence including punctuation. >>> tokenize('Bob dropped the apple. Where is the apple?') ['Bob', 'dropped', 'the', 'apple', '.', 'Where', 'is', 'the', 'apple', '?'] ''' return [x.strip() for x in re.split('(\W+)?', line) if x.strip()] def make_word_level_from_text(text, tokenizer="default"): """ Create mapping and inverse mappings for text -> one_hot_char Parameters ---------- text : iterable of strings Returns ------- cleaned : list of list of ints, length (len(text), ) The original text, converted into list of list of integers mapper_func : function A function that can be used to map text into the correct form inverse_mapper_func : function A function that can be used to invert the output of mapper_func mapper : dict Dictionary containing the mapping of char -> integer """ # Try to catch invalid input try: ord(text[0]) raise ValueError("Text should be iterable of strings") except TypeError: pass all_words = reduce(lambda x, y: set( whitespace_tokenizer(x)) | set(whitespace_tokenizer(y)), text, set()) mapper = {k: n + 2 for n, k in enumerate(list(all_words))} # 1 is EOS mapper["EOS"] = 1 # 0 is UNK/MASK - unused here but needed in general mapper["UNK"] = 0 inverse_mapper = {v: k for k, v in mapper.items()} def mapper_func(text_line): return [mapper[c] if c in mapper.keys() else mapper["UNK"] for c in text_line] + [mapper["EOS"]] def inverse_mapper_func(symbol_line): return "".join([inverse_mapper[s] for s in symbol_line if s != mapper["EOS"]]) # Remove blank lines cleaned = [mapper_func(t) for t in text if t != ""] return cleaned, mapper_func, inverse_mapper_func, mapper def dpickle(save_path, pickle_item): """ Simple wrapper for checkpoint dictionaries """ old_recursion_limit = sys.getrecursionlimit() sys.setrecursionlimit(40000) with open(save_path, mode="wb") as f: dill.dump(pickle_item, f, protocol=-1) sys.setrecursionlimit(old_recursion_limit) def dunpickle(save_path): """ Simple pickle wrapper for checkpoint dictionaries """ old_recursion_limit = sys.getrecursionlimit() sys.setrecursionlimit(40000) with open(save_path, mode="rb") as f: pickle_item = dill.load(f) sys.setrecursionlimit(old_recursion_limit) return pickle_item def get_shared_variables_from_function(func): """ Get all shared variables out of a compiled Theano function Parameters ---------- func : theano function Returns ------- shared_variables : list A list of theano shared variables """ shared_variable_indices = [n for n, var in enumerate(func.maker.inputs) if isinstance(var.variable, theano.compile.SharedVariable)] shared_variables = [func.maker.inputs[i].variable for i in shared_variable_indices] return shared_variables def get_values_from_function(func): """ Get all shared values out of a compiled Theano function Parameters ---------- func : theano function Returns ------- list_of_values : list A list of numpy arrays """ return [v.get_value() for v in get_shared_variables_from_function(func)] def set_shared_variables_in_function(func, list_of_values): """ Set all shared variables in a compiled Theano function Parameters ---------- func : theano function list_of_values : list List of numpy arrays to add into shared variables """ # TODO : Add checking that sizes are OK shared_variable_indices = [n for n, var in enumerate(func.maker.inputs) if isinstance(var.variable, theano.compile.SharedVariable)] shared_variables = [func.maker.inputs[i].variable for i in shared_variable_indices] [s.set_value(v) for s, v in safe_zip(shared_variables, list_of_values)] def load_checkpoint(saved_checkpoint_path): """ Simple pickle wrapper for checkpoint dictionaries """ old_recursion_limit = sys.getrecursionlimit() sys.setrecursionlimit(40000) with open(saved_checkpoint_path, mode="rb") as f: pickle_item = dill.load(f) sys.setrecursionlimit(old_recursion_limit) return pickle_item def load_last_checkpoint(append_name=None): """ Simple pickle wrapper for checkpoint dictionaries """ save_paths = glob.glob(os.path.join(get_checkpoint_dir(), "*.pkl")) save_paths = [s for s in save_paths if "results" not in s] if append_name is not None: save_paths = [s.split(append_name)[:-1] + s.split(append_name)[-1:] for s in save_paths] sorted_paths = get_file_matches("*.pkl", "best") sorted_paths = [s for s in sorted_paths if "results" not in s] if len(sorted_paths) == 0: raise ValueError("No checkpoint found in %s" % get_checkpoint_dir()) last_checkpoint_path = sorted_paths[-1] logger.info("Loading checkpoint from %s" % last_checkpoint_path) return load_checkpoint(last_checkpoint_path) def write_results_as_html(results_dict, save_path, default_show="all"): as_html = filled_js_template_from_results_dict( results_dict, default_show=default_show) with open(save_path, "w") as f: f.writelines(as_html) def get_file_matches(glob_ext, append_name): all_files = glob.glob( os.path.join(get_checkpoint_dir(), glob_ext)) if append_name is None: # This 3 is definitely brittle - need better checks selected = [f for n, f in enumerate(all_files) if len(f.split(os.sep)[-1].split("_")) == 3] else: selected = [f for n, f in enumerate(all_files) if append_name in f.split(os.sep)[-1]] def key_func(x): return int(x.split(os.sep)[-1].split(".")[0].split("_")[-1]) int_selected = [] for s in selected: try: key_func(s) int_selected.append(s) except ValueError: pass selected = sorted(int_selected, key=key_func) return selected def argsort(seq): return sorted(range(len(seq)), key=seq.__getitem__) def remove_old_files(sorted_files_list): n_saved_to_keep = NUM_SAVED_TO_KEEP if len(sorted_files_list) > n_saved_to_keep: times = [os.path.getctime(f) for f in sorted_files_list] times_rank = argsort(times) for t, f in zip(times_rank, sorted_files_list): if t not in range(0, len(times))[-n_saved_to_keep:]: os.remove(f) def cleanup_monitors(partial_match, append_name=None): selected_monitors = get_file_matches( "*" + partial_match + "*.html", append_name) remove_old_files(selected_monitors) def cleanup_checkpoints(append_name=None): selected_checkpoints = get_file_matches("*.pkl", append_name) remove_old_files(selected_checkpoints) selected_checkpoints = get_file_matches("*.npz", append_name) remove_old_files(selected_checkpoints) def zip_dir(src, dst): zf = zipfile.ZipFile(dst, "w", zipfile.ZIP_DEFLATED) abs_src = os.path.abspath(src) exclude_exts = [".js", ".pyc", ".html", ".txt", ".csv", ".gz"] for root, dirs, files in os.walk(src): for fname in files: if all([e not in fname for e in exclude_exts]): absname = os.path.abspath(os.path.join(root, fname)) arcname = "dagbldr" + os.sep + absname[len(abs_src) + 1:] zf.write(absname, arcname) zf.close() def archive_dagbldr(): checkpoint_dir = get_checkpoint_dir() code_snapshot_dir = checkpoint_dir + os.path.sep + "code_snapshot" if not os.path.exists(code_snapshot_dir): os.mkdir(code_snapshot_dir) try: theano_flags = os.environ["THEANO_FLAGS"] command_string = 'THEANO_FLAGS="' + theano_flags + '" ' + "python " command_string += get_script() + ".py " command_string += " ".join(sys.argv[1:]) except KeyError: command_string += get_script() + ".py " command_string += " ".join(sys.argv[1:]) command_script_path = code_snapshot_dir + os.path.sep + "run.sh" if not os.path.exists(command_script_path): with open(command_script_path, 'w') as f: f.writelines(command_string) save_script_path = code_snapshot_dir + os.path.sep + get_script() + ".py" lib_dir = str(os.sep).join(save_script_path.split(os.sep)[:-2]) save_lib_path = code_snapshot_dir + os.path.sep + "dagbldr_archive.zip" existing_reports = glob.glob(os.path.join(checkpoint_dir, "*.html")) existing_models = glob.glob(os.path.join(checkpoint_dir, "*.pkl")) empty = all([len(l) == 0 for l in (existing_reports, existing_models)]) if not os.path.exists(save_script_path) or empty: logger.info("Saving code archive %s at %s" % (lib_dir, save_lib_path)) script_name = get_script() + ".py" script_location = os.path.abspath(script_name) shutil.copy2(script_location, save_script_path) zip_dir(lib_dir, save_lib_path) def monitor_status_func(results_dict, append_name=None, status_type="checkpoint", nan_check=True, print_output=True): """ Dump the last results from a results dictionary """ n_seen = max([len(l) for l in results_dict.values()]) last_results = {k: v[-1] for k, v in results_dict.items()} # This really, really assumes a 1D numpy array (1,) or (1, 1) last_results = {k: float("%.15f" % v.ravel()[-1]) if isinstance(v, (np.generic, np.ndarray)) else float("%.15f" % v) for k, v in last_results.items()} pp = pprint.PrettyPrinter() filename = main.__file__ fileline = "Script %s" % str(filename) if status_type == "checkpoint": statusline = "Checkpoint %i" % n_seen else: raise ValueError("Unknown status_type %s" % status_type) breakline = "".join(["-"] * (len(statusline) + 1)) if print_output: logger.info(breakline) logger.info(fileline) logger.info(statusline) logger.info(breakline) logger.info(pp.pformat(last_results)) if status_type == "checkpoint": save_path = os.path.join(get_checkpoint_dir(), "model_checkpoint_%i.html" % n_seen) if append_name is not None: split = save_path.split("_") save_path = "_".join( split[:-1] + [append_name] + split[-1:]) if not in_nosetest(): # Don't dump if testing! # Only enable user defined keys nan_test = [(k, True) for k, r_v in results_dict.items() for v in r_v if np.isnan(v)] if nan_check and len(nan_test) > 0: nan_keys = set([tup[0] for tup in nan_test]) raise ValueError("Found NaN values in the following keys ", "%s, exiting training" % nan_keys) show_keys = [k for k in results_dict.keys() if "_auto" not in k] write_results_as_html(results_dict, save_path, default_show=show_keys) if status_type == "checkpoint": cleanup_monitors("checkpoint", append_name) def checkpoint_status_func(training_loop, results, append_name=None, nan_check=True): """ Saves a checkpoint dict """ checkpoint_dict = training_loop.checkpoint_dict checkpoint_dict["previous_results"] = results nan_test = [(k, True) for k, e_v in results.items() for v in e_v if np.isnan(v)] if nan_check and len(nan_test) > 0: nan_keys = set([tup[0] for tup in nan_test]) raise ValueError("Found NaN values in the following keys ", "%s, exiting training without saving" % nan_keys) n_seen = max([len(l) for l in results.values()]) checkpoint_save_path = os.path.join( get_checkpoint_dir(), "model_checkpoint_%i.pkl" % n_seen) weight_save_path = os.path.join( get_checkpoint_dir(), "model_weights_%i.npz" % n_seen) results_save_path = os.path.join( get_checkpoint_dir(), "model_results_%i.pkl" % n_seen) if append_name is not None: def mkpath(name): split = name.split("_") return "_".join(split[:-1] + [append_name] + split[-1:]) checkpoint_save_path = mkpath(checkpoint_save_path) weight_save_path = mkpath(weight_save_path) results_save_path = mkpath(results_save_path) if not in_nosetest(): # Don't dump if testing! save_checkpoint(checkpoint_save_path, training_loop) save_weights(weight_save_path, checkpoint_dict) save_results(results_save_path, results) cleanup_checkpoints(append_name) monitor_status_func(results, append_name=append_name) def default_status_func(status_number, epoch_number, epoch_results): """ Default status function for iterate_function. Prints epoch info. This is exactly equivalent to defining your own status_function as such: def status_func(status_number, epoch_number, epoch_results): print_status_func(epoch_results) Parameters ---------- status_number epoch_number epoch_results """ monitor_status_func(epoch_results) def even_slice(arr, size): """ Force array to be even by slicing off the end """ extent = -(len(arr) % size) if extent == 0: extent = None return arr[:extent] def make_minibatch(arg, slice_or_indices_list): """ Does not handle off-size minibatches returns list of [arg, mask] mask of ones if 3D else [arg] """ if len(arg.shape) == 3: sliced = arg[:, slice_or_indices_list, :] return [sliced, np.ones_like(sliced[:, :, 0].astype( theano.config.floatX))] elif len(arg.shape) == 2: return [arg[slice_or_indices_list, :]] else: return [arg[slice_or_indices_list]] def make_masked_minibatch(arg, slice_or_indices_list): """ Create masked minibatches returns list of [arg, mask] """ sliced = arg[slice_or_indices_list] is_two_d = True if len(sliced[0].shape) > 1: is_two_d = False if hasattr(arg, 'shape'): # should handle numpy arrays and hdf5 if is_two_d: data = arg[slice_or_indices_list] mask = np.ones_like(data[:, 0]).astype(theano.config.floatX) else: data = arg[:, slice_or_indices_list] mask = np.ones_like(data[:, :, 0]).astype(theano.config.floatX) return [data, mask] if is_two_d: # list of lists d0 = [s.shape[0] for s in sliced] max_len = max(d0) batch_size = len(sliced) data = np.zeros((batch_size, max_len)).astype(sliced[0].dtype) mask = np.zeros((batch_size, max_len)).astype(theano.config.floatX) for n, s in enumerate(sliced): data[n, :len(s)] = s mask[n, :len(s)] = 1 else: # list of arrays d0 = [s.shape[0] for s in sliced] d1 = [s.shape[1] for s in sliced] max_len = max(d0) batch_size = len(sliced) dim = d1[0] same_dim = all([d == dim for d in d1]) assert same_dim data = np.zeros((max_len, batch_size, dim)).astype(theano.config.floatX) mask = np.zeros((max_len, batch_size)).astype(theano.config.floatX) for n, s in enumerate(sliced): data[:len(s), n] = s mask[:len(s), n] = 1 return [data, mask] def make_embedding_minibatch(arg, slice_type): if type(slice_type) is not slice: raise ValueError("Text formatters for list of list can only use " "slice objects") sli = arg[slice_type] lengths = [len(s) for s in sli] maxlen = max(lengths) mask = np.zeros((max(lengths), len(sli)), dtype=theano.config.floatX) expanded = [np.zeros((maxlen,), dtype="int32") for s in sli] for n, l in enumerate(lengths): mask[:l, n] = 1. expanded[n][:l] = sli[n] return expanded, mask def gen_make_one_hot_minibatch(n_targets): """ returns function that returns list """ def make_one_hot_minibatch(arg, slice_or_indices_list): non_one_hot_minibatch = make_minibatch( arg, slice_or_indices_list)[0].squeeze() return [convert_to_one_hot(non_one_hot_minibatch, n_targets)] return make_one_hot_minibatch def gen_make_masked_one_hot_minibatch(n_targets): """ returns function that returns list """ def make_masked_one_hot_minibatch(arg, slice_or_indices_list): non_one_hot_minibatch = make_minibatch( arg, slice_or_indices_list)[0].squeeze() max_len = max([len(i) for i in non_one_hot_minibatch]) mask = np.zeros((max_len, len(non_one_hot_minibatch))).astype( theano.config.floatX) for n, i in enumerate(non_one_hot_minibatch): mask[:len(i), n] = 1. return [convert_to_one_hot(non_one_hot_minibatch, n_targets), mask] return make_masked_one_hot_minibatch def gen_make_list_one_hot_minibatch(n_targets): """ Returns a function that will turn a list into a minibatch of one_hot form. For use with iterate_function list_of_minibatch_functions argument. Example: n_chars = 84 text_minibatcher = gen_make_text_minibatch_func(n_chars) valid_results = iterate_function( cost_function, [X_clean_valid, y_clean_valid], minibatch_size, list_of_output_names=["valid_cost"], list_of_minibatch_functions=[text_minibatcher], n_epochs=1, shuffle=False) """ def make_list_one_hot_minibatch(arg, slice_type): if type(slice_type) is not slice: raise ValueError("Text formatters for list of list can only use " "slice objects") sli = arg[slice_type] expanded = convert_to_one_hot(sli, n_targets) lengths = [len(s) for s in sli] mask = np.zeros((max(lengths), len(sli)), dtype=theano.config.floatX) for n, l in enumerate(lengths): mask[np.arange(l), n] = 1. return expanded, mask return make_list_one_hot_minibatch def make_minibatch_from_indices(indices, minibatch_size): if len(indices) % minibatch_size != 0: warnings.warn("WARNING:Length of dataset should be evenly divisible" "by minibatch_size - slicing to match.", UserWarning) indices = even_slice(indices, len(indices) - len(indices) % minibatch_size) assert(len(indices) % minibatch_size == 0) minibatch_indices = [indices[i:i + minibatch_size] for i in np.arange(0, len(indices), minibatch_size)] # Check for contiguity to avoid unnecessary copies minibatch_indices = [slice(mi[0], mi[-1] + 1, 1) if np.all( np.abs(
np.array(mi)
numpy.array
''' 6 April 2020 Python file for generating anomalies in sample conductivity distributions. by <NAME> and <NAME> in collaboration with <NAME> and <NAME> from Solid State Physics Group at the University of Manchester ''' import numpy as np #import numpy.random as rand from random import SystemRandom import numpy.linalg as la rand = SystemRandom() def multivariateGaussian(x, mu, sigma, normalised=False): if normalised: denominator = 1. / (2 * np.pi * np.sqrt(np.linalg.det(sigma))) else: denominator = 1. x_centred = x - mu #path = np.einsum_path('ij, jk, ki->i', x_centred, np.linalg.inv(sigma), x_centred.T, optimize='optimal')[0] numerator = np.exp(-0.5 * np.einsum('ij, jk, ki->i', x_centred, np.linalg.inv(sigma), x_centred.T, optimize='optimal')) return numerator / denominator def generateContinuousConductivity(a, centre, number_of_gaussians, mu, sigma, npix, weightGauss=None, pts=None, tri=None): # array to store permitivity in different square if centre is None: centre=[0, 0] if (number_of_gaussians) == 0: if pts is not None and tri is not None: return np.ones((npix, npix)), np.ones(tri.shape[0]) else: return np.ones((npix, npix)), None # assumed that background permitivity is 1 (and therefore difference with uniform will be 0) permSquares = np.zeros((int(npix), int(npix)), dtype='f4') if pts is not None and tri is not None: permTri = np.zeros(tri.shape[0], dtype='f4') # initialises an array to store the coordinates of centres of squares (pixels) centresSquares = np.empty((npix, npix, 2), dtype='f4') # initialising the j vector to prepare for tiling j = np.arange(npix) # tiling j to itself npix times (makes array shape (npix, npix)) j = np.tile(j, (npix, 1)) # i and j are transposes of each other i = j j = j.T # assigning values to C_sq centresSquares[i, j, :] = np.transpose([a / 2 * ((2 * i + 1) / npix - 1) + centre[0], a / 2 * ((2 * j + 1) / npix - 1) + centre[1]]) if pts is not None and tri is not None: centresTriangles = np.mean(pts[tri], axis=1) centresSquares = centresSquares.reshape((npix * npix, 2)) if weightGauss is None: weightGauss = rand.uniform(size=(number_of_gaussians,), low=0., high=0.1) for i in range(number_of_gaussians): if type(weightGauss) is np.ndarray: weight = weightGauss[i] elif type(weightGauss) is float: weight = weightGauss else: raise TypeError("weight is not float or array of floats") permSquares[:] += (weight/number_of_gaussians) * multivariateGaussian(centresSquares, mu[i], sigma[i]).reshape(npix, npix) if pts is not None and tri is not None: permTri[:] += (weight/number_of_gaussians) * multivariateGaussian(centresTriangles, mu[i], sigma[i]) if pts is not None and tri is not None: if (np.abs(permSquares) < 5e-2).any(): a = np.random.randint(low = 4, high = 14) * 0.1 permSquares += a permTri += a ''' fig, ax = plt.subplots(figsize=(6, 4)) im = ax.imshow(np.real(permSquares) - np.ones((npix, npix)), interpolation='none', cmap=plt.cm.viridis, origin='lower', extent=[-1,1,-1,1]) fig.colorbar(im) ax.axis('equal') #plt.show ''' if pts is not None and tri is not None: return permSquares, permTri else: return permSquares, None def randomiseGaussianParams(a, centre, npix): if centre is None: centre = [0, 0] # randomise parameters of gaussians number_of_gaussians = rand.randint(low=0, high=5) if (number_of_gaussians) == 0: return 0, 0, 0 mu = np.empty(shape=(number_of_gaussians, 2)) mu[:, 0] = rand.normal(size=(number_of_gaussians), loc=0, scale=0.5) mu[:, 1] = rand.normal(size=(number_of_gaussians), loc=0, scale=0.5) sigma = np.empty(shape=(number_of_gaussians, 2, 2)) sigma[:, 0, 0] = rand.uniform(size=(number_of_gaussians), low = 0.2, high = 5.) sigma[:, 1, 1] = rand.uniform(size=(number_of_gaussians), low = 0.2, high = 5.) sigma[:, 1, 0] = rand.uniform(size=(number_of_gaussians), low = -np.sqrt(sigma[:,0,0]*sigma[:,1,1]), high = np.sqrt(sigma[:,0,0]*sigma[:,1,1])) sigma[:, 0, 1] = sigma[:, 1, 0] return number_of_gaussians, mu, sigma def randomiseGaussianParam(a=2., centre=None, npix=64): if centre is None: centre = [0, 0] # randomise parameters of gaussians mu = np.empty(shape=(1, 2)) mu[:, 0] = rand.uniform(-1, 1) mu[:, 1] = rand.uniform(-1, 1) #mu[:, 0] = rand.normal(size=(number_of_gaussians), loc=0, scale=0.5) #mu[:, 1] = rand.normal(size=(number_of_gaussians), loc=0, scale=0.5) sigma = np.empty(shape=(1, 2, 2)) sigma[:, 0, 0] = rand.uniform(0.08, 0.8) sigma[:, 1, 1] = rand.uniform(0.08, 0.8) sigma[:, 1, 0] = rand.uniform(-np.sqrt(sigma[:,0,0]*sigma[:,1,1]), np.sqrt(sigma[:,0,0]*sigma[:,1,1])) sigma[:, 0, 1] = sigma[:, 1, 0] return mu, sigma def triangle_area(x, y): ''' function that area given 2d coordinates of all vertices of triangle takes: x - array storing the x-coordinates of all vertices [3, 1] float y - array storing the y-coordinates of all vertices [3, 1] float returns: area of the triangle ''' return 0.5 * np.absolute(x[0] * (y[1] - y[2]) + x[1] * (y[2] - y[0]) + x[2] * (y[0] - y[1])) def generate_examplary_output(a, npix, anomaly, centre=None): ''' a function that generates true conductivity map to be used in training of U-net takes: a - side of square - float npix - number of pixels along each axis - int anomaly - dictionary of anomalies characteristics centre - centre of coordinate system - array shape (2,) returns: true conductivity distribution - array shape (npix, npix) ''' if centre is None: centre = [0, 0] # array to store permitivity in different square # assumed that background permitivity is 1 (and therefore difference with uniform will be 0) perm_sq = np.ones((npix, npix), dtype='f4') # initialises an array to store the coordinates of centres of squares (pixels) C_sq = np.empty((npix, npix, 2), dtype='f4') # initialising the j vector to prepare for tiling j = np.arange(npix) # tiling j to itself npix times (makes array shape (npix, npix)) j = np.tile(j, (npix, 1)) # i and j are transposes of each other i = j j = j.T # assigning values to C_sq C_sq[i, j, :] = np.transpose([a / 2 * ((2 * i + 1) / npix - 1) + centre[0], a / 2 * ((2 * j + 1) / npix - 1) + centre[1]]) # return an empty array if there are no anomalies generated if anomaly is None: return perm_sq - 1 # putting anomalies on map one by one for l in range(len(anomaly)): if anomaly[l]['name'] == 'ellipse': # check what squares have their centres inside the ellipse and set permittivity values x = anomaly[l]['x'] y = anomaly[l]['y'] a_ = anomaly[l]['a'] b = anomaly[l]['b'] angle = anomaly[l]['angle'] # equation for a rotated ellipse in 2d cartesians indices = np.sum(np.power([(np.cos(angle)*(C_sq[:, :, 0] - x) - np.sin(angle) * (C_sq[:, : , 1] - y))/a_, (np.sin(angle)*(C_sq[:, :, 0] - x) + np.cos(angle) * (C_sq[:, : , 1] - y))/b], 2), axis=0) < 1 # setting relative permittivity values perm_sq[indices] = anomaly[l]['perm'] # check what squares are crossed by the line element and set their permittivity values to zero elif anomaly[l]['name'] == 'line': x = anomaly[l]['x'] # of centre y = anomaly[l]['y'] theta = anomaly[l]['angle_line'] length = anomaly[l]['len'] # coordinates of endpoints of the line p_start = np.array([x + (length * np.cos(theta))/2, y + (length * np.sin(theta))/2]) p_end = np.array([x - (length * np.cos(theta))/2, y - (length * np.sin(theta))/2]) # find min and max x and y for any coordinates, so we have lower left and upper right corners of rectangle, whose diagonal is our line x_min_max = np.sort([x + (length * np.cos(theta))/2, x - (length * np.cos(theta))/2]) y_min_max = np.sort([y + (length * np.sin(theta))/2, y - (length * np.sin(theta))/2]) # checking whether pixel is in that rectangle by setting a limit on x and y of its centre if abs(y_min_max[0] - y_min_max[1]) < a / (npix/4): # the loop increases the allowed distances from the line if line is very close to horizontal index_1 = (C_sq[:,:,0] > x_min_max[0]) * (C_sq[:,:,0] < x_min_max[1]) * (C_sq[:,:,1] > y_min_max[0] - a / (npix * np.sqrt(2))) * (C_sq[:,:,1] < y_min_max[1] + a / (npix * np.sqrt(2))) elif abs(x_min_max[0] - x_min_max[1]) < a / (npix/4): # the loop increases the allowed distances from the line if line is very close to vertical index_1 = (C_sq[:,:,0] > x_min_max[0] - a / (npix/4)) * (C_sq[:,:,0] < x_min_max[1] + a / (npix/4)) * (C_sq[:,:,1] > y_min_max[0]) * (C_sq[:,:,1] < y_min_max[1]) else: index_1 = (C_sq[:,:,0] > x_min_max[0]) * (C_sq[:,:,0] < x_min_max[1]) * (C_sq[:,:,1] > y_min_max[0]) * (C_sq[:,:,1] < y_min_max[1]) # checking whether distance from the centre to the line is smaller than the diagonal of the square indices = (np.absolute(np.cross(p_end - p_start, np.array([p_start[0] - C_sq[:, :, 0], p_start[1] - C_sq[:, :, 1]]).T) / la.norm(p_end - p_start)) < a / (npix * np.sqrt(2))) indices = np.transpose(indices) # combining the two conditions 1)square in rectangle with line as diagonal and 2) distance to line smaller than half diagonal of pixel indices = np.multiply(indices, index_1) # setting permittivity values (relative) perm_sq[indices] = anomaly[l]['perm'] elif anomaly[l]['name'] == 'triangle': #extracting the coordinatec of each of the vertices A = anomaly[l]['A'] B = anomaly[l]['B'] C = anomaly[l]['C'] #for each point check whether the sum of the areas of the triangles formed by it and all combinations of #two of the vertices of the triangle is approximately equal to the area of the triangle index_tri = triangle_area([A[0], B[0], C_sq[:, :, 0]], [A[1], B[1], C_sq[:, :, 1]]) + triangle_area([B[0], C[0], C_sq[:, :, 0]], [B[1], C[1], C_sq[:, :, 1]]) + triangle_area([C[0], A[0], C_sq[:, :, 0]], [C[1], A[1], C_sq[:, :, 1]]) - triangle_area([A[0], B[0], C[0]], [A[1], B[1], C[1]]) < 0.01 #set permitivity of triangle equal to the permitivity of the anomaly perm_sq[index_tri] = anomaly[l]['perm'] elif anomaly[l]['name'] == 'gaussian_mixture': mu = anomaly[l]['mean'] sigma = anomaly[l]['covariance'] weightGauss = anomaly[l]['perm'] permGauss, _ = generateContinuousConductivity(2., None, 1, mu, sigma, npix, weightGauss) perm_sq += permGauss perm_sq[perm_sq < 0.005] = 0.005 perm_sq -= 1. #check whether any anomalies are too close to each of the edges indexx1 = (np.absolute(C_sq[:, :, 0] + a/2) < 0.15) indexx2 = (np.absolute(C_sq[:, :, 0] - a/2) < 0.15) indexy1 = (np.absolute(C_sq[:, :, 1] + a/2) < 0.15) indexy2 = (np.absolute(C_sq[:, :, 1] - a/2) < 0.15) #combine all edge conditions index = (indexx1 + indexx2 + indexy1 + indexy2) #check for permitivities close to 0 index_p = perm_sq < -0.9995 index = np.multiply(index_p, index) index = index > 0 #set such conditions equal to the background to ensure existing solution to forward problem perm_sq[index] = 0. ''' #optional plot conductivity distribution as a check plt.imshow(perm_sq, cmap=plt.cm.viridis, origin='lower', extent=[-1, 1, -1, 1]) plt.colorbar() #plt.show() ''' return perm_sq def generate_anoms(a, b): ''' a function that generates an array of a random number of dictionaries for the different anomalies; also randomises the type and characteristics of the different anomalies takes: a - length of side on x axis - float b - length of side on y axis - float returns: anoms - array of dictionaries with information about anomalies - array shape (number of anomalies); type(anoms[0]): object ''' # random number of anomalies (between 0 and 2) with a given probability #n_anom = int(np.round_(np.absolute(np.random.normal(1.3, 0.35)))) n_anom = int(np.random.choice([0,1,2,3], p=[0.07,0.45,0.38, 0.1])) #print(n_anom) # stop the function if n_anom == 0 if n_anom == 0: return None # initialises an empty array of objects(dictionaries) with length n_anom anoms = np.empty((n_anom,), dtype='O') # chooses types of anomalies, (ellipse ( == 0) with probability 0.5, line ( == 1 ) with probability 0.1 and triangle ( == 2) with probability 0.4) names = np.random.choice([0, 1, 2, 3], n_anom, p=[0.4, 0.1, 0.4, 0.1]) #names = 3 * np.ones(n_anom) # randomises characteristics of each anomaly and assigns dictionary to the anoms array for i in range(n_anom): if names[i] == 0: # x, y from -a to a or -b to b x = a * rand.random() - a/2 y = b * rand.random() - b/2 # a, b from 0 to a and 0 to b a_ = a * rand.random() b_ = b * rand.random() # angle from 0 to PI ang = np.pi * rand.random() #modulus to ensure positive values 0.25 times a random number + number from [0,1] based of power law of 1.2 + 0.5 base offset to prevent conductivities too low #main goal is to have a bias to higher conductivities since this is what we expect in real data perm = np.absolute(0.25 * np.random.randn() + np.random.power(1.2) + 0.5) # add anomaly to array anoms[i] = {'name': 'ellipse', 'x': x, 'y': y, 'a': a_, 'b': b_ ,'angle': ang, 'perm': perm} if names[i] == 1: # x, y from -a to a or -b to b x = a * rand.random() - a/2 y = b * rand.random() - b/2 # diagonal of the given line l = 0.5 * np.sqrt(a ** 2 + b ** 2) # total length of line anomaly ( with pdf proportional to 1.4) + constant length value #prevents existence of lines too short and overfitting of CNN length = l * (np.random.power(1.4) + 0.14) # angle from 0 to PI ang = np.pi * rand.random() # add anomaly to array anoms[i] = {'name': 'line', 'len': length, 'x': x, 'y': y, 'angle_line': ang, 'perm': 0.00001} if names[i] == 2: #two individual choices of triangles (one with random angles that are not too small with probability 70% and #one with angles 120/60 deg to capture the symmetry of the graphene sample) #tri_type = rand.choice([0, 1], p = [0.7, 0.3]) tri_type = rand.choice([0,0,0,0,0,0,0,1,1,1]) if tri_type == 0: #initialise cosines to be one rad. cosa = np.ones(3) while (np.absolute(cosa) - 0.5).all() > 0.01 and (np.absolute(cosa) - np.sqrt(3)/2).all() > 0.01: #initialise coordinates of two of the points Ax = a * rand.random() - a/2 Ay = b * rand.random() - b/2 Bx = a * rand.random() - a/2 By = b * rand.random() - b/2 #randomise which root to take since two such triangles will be possible for a set of 2 points sign = rand.choice([-1, 1]) #calculate length of line connecting A/B l = np.sqrt(np.power(Ax - Bx, 2) + np.power(Ay - By, 2)) #randomise length of second side of triangle (constant factor added to ensure existence of this specific triangle) l2 = np.sqrt(3) * l / 2 + rand.random() #calculate differences of y's of A/B diff = np.absolute(Ay - By) #initialise angle of 60 deg ang = 1/3 * np.pi #calculate angle needed to determine y coord of C beta = np.pi - np.arcsin(diff/l) - ang #Calculate coordinates of C[x, y] Cy = Ay - np.sin(beta)*l2 Cx = Ax - np.sqrt(np.power(l2, 2) - np.power(Ay - Cy, 2)) #iterate over created triangles to ensure desired result given lack of general formulation a_sq = np.power(Ax - Bx, 2) + np.power(Ay - By, 2) b_sq = np.power(Bx - Cx, 2) + np.power(By - Cy, 2) c_sq = np.power(Cx - Ax, 2) + np.power(Cy - Ay, 2) N1 = a_sq + b_sq - c_sq D1 = 2 * np.sqrt(a_sq) * np.sqrt(b_sq) N2 = b_sq + c_sq - a_sq D2 = 2 * np.sqrt(b_sq) * np.sqrt(c_sq) N3 = c_sq + a_sq - b_sq D3 = 2 * np.sqrt(c_sq) * np.sqrt(a_sq) cosa = ([np.true_divide(N1, D1), np.true_divide(N2, D2), np.true_divide(N3, D3)]) elif tri_type == 1: #initialise cosine in order to enter loop cosa = 1 #interate over created triangles to ensure no silver triangles while np.absolute(cosa) > np.sqrt(2)/2: #initialise coordinates randomly Ax = a * rand.random() - a/2 Ay = b * rand.random() - b/2 Bx = a * rand.random() - a/2 By = b * rand.random() - b/2 Cx = a * rand.random() - a/2 Cy = b * rand.random() - b/2 #calculate length of each side a_sq = np.power(Ax - Bx, 2) + np.power(Ay - By, 2) b_sq = np.power(Bx - Cx, 2) + np.power(By - Cy, 2) c_sq = np.power(Cx - Ax, 2) +
np.power(Cy - Ay, 2)
numpy.power
from functools import partial from typing import Union, List import numpy as np from statannotations.utils import check_is_in try: from statsmodels.stats.multitest import multipletests except ImportError: multipletests = None # For user convenience methods_names = {'bonferroni': 'Bonferroni', 'bonf': 'Bonferroni', 'Bonferroni': 'Bonferroni', 'holm-bonferroni': 'Holm-Bonferroni', 'HB': 'Holm-Bonferroni', 'Holm-Bonferroni': 'Holm-Bonferroni', 'holm': 'Holm-Bonferroni', 'benjamini-hochberg': 'Benjamini-Hochberg', 'BH': 'Benjamini-Hochberg', 'fdr_bh': 'Benjamini-Hochberg', 'Benjamini-Hochberg': 'Benjamini-Hochberg', 'fdr_by': 'Benjamini-Yekutieli', 'Benjamini-Yekutieli': 'Benjamini-Yekutieli', 'BY': 'Benjamini-Yekutieli' } # methods_data represents function and method type: # Type 0 means per-pvalue correction with modification # Type 1 means correction of interpretation of set of pvalues methods_data = {'Bonferroni': ["bonferroni", 0], 'Holm-Bonferroni': ["holm", 1], 'Benjamini-Hochberg': ["fdr_bh", 1], 'Benjamini-Yekutieli': ["fdr_by", 1]} IMPLEMENTED_METHODS = [name for name in methods_names.keys()] def get_validated_comparisons_correction(comparisons_correction): if comparisons_correction is None: return if isinstance(comparisons_correction, str): check_valid_correction_name(comparisons_correction) try: comparisons_correction = ComparisonsCorrection( comparisons_correction) except ImportError as e: raise ImportError(f"{e} Please install statsmodels or pass " f"`comparisons_correction=None`.") if not (isinstance(comparisons_correction, ComparisonsCorrection)): raise ValueError("comparisons_correction must be a statmodels " "method name or a ComparisonCorrection instance") return comparisons_correction def get_correction_parameters(name): if name is None: return None if name not in IMPLEMENTED_METHODS: raise NotImplementedError(f"Correction method {str(name)} is not " f"implemented.") correction_method = methods_names[name] return methods_data[correction_method] def check_valid_correction_name(name): check_is_in(name, IMPLEMENTED_METHODS + [None], label='argument `comparisons_correction`') def _get_correction_attributes(method: Union[str, callable], alpha, name, method_type, corr_kwargs): if isinstance(method, str): if multipletests is None: raise ImportError("The statsmodels package is required to use " "one of the multiple comparisons correction " "methods proposed in statannotations.") name = name if name is not None else method method, method_type = get_correction_parameters(method) if corr_kwargs is None: corr_kwargs = {} func = partial(multipletests, alpha=alpha, method=method, **corr_kwargs) else: if name is None: raise ValueError("A method name must be provided if passing a " "function") if method_type is None: raise ValueError("A method type must be provided if passing a " "function") func = method method = None if corr_kwargs is not None: func = partial(func, **corr_kwargs) return name, method, method_type, func class ComparisonsCorrection(object): def __init__(self, method: Union[str, callable], alpha: float = 0.05, name: str = None, method_type: int = None, statsmodels_api: bool = True, corr_kwargs: dict = None): """ Wrapper for a multiple testing correction method. All arguments must be provided here so that it can be called only with the pvalues. :param method: str that matches one of statsmodel multipletests methods or a callable :param alpha: If using statsmodel: FWER, family-wise error rate, else use `corr_kwargs` :param name: Necessary if `method` is a function, optional otherwise :param method_type: type 0: Per-pvalue correction with modification type 1 function: Correction of interpretation of set of (ordered) pvalues :param statsmodels_api: statsmodels multipletests returns reject and pvals_corrected as first and second values, which correspond to our type 1 and 0 method_type. Set to False if the used method only returns the correct array :param corr_kwargs: additional parameters for correction method """ self.name, self.method, self.type, self.func = \ _get_correction_attributes(method, alpha, name, method_type, corr_kwargs) self.alpha = alpha self.statsmodels_api = statsmodels_api self.name = methods_names.get(self.name, self.name) func = self.func while isinstance(func, partial): func = func.func self.document(func) def document(self, func): self.__doc__ = ( f"ComparisonCorrection wrapper for the function " f"'{func.__name__}', providing the attributes\n" f" `name`: {self.name}\n" f" `type`: {self.type} \n" f" `alpha (FWER)`: {self.alpha} \n") if self.method is not None: self.__doc__ += f" `method`: {self.method} \n" self.__doc__ += ( f"With\n" f" type 0 function: Per-pvalue correction with modification\n" f" type 1 function: Correction of interpretation of set of " f"pvalues\n" f"------ Original function documentation ------ \n" f"{func.__doc__}") def __call__(self, pvalues: Union[List[float], float], num_comparisons=None): try: # Will raise TypeError if scalar value n_vals = len(pvalues) got_pvalues_in_array = True except TypeError: n_vals = 1 pvalues =
np.array([pvalues])
numpy.array
# coding=utf-8 import copy import numpy as np from numpy import sin, cos from scipy.io import savemat, loadmat from petsc4py import PETSc from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from src.support_class import * import abc from scipy.special import hyp2f1 from scipy import interpolate, integrate, optimize, sparse from itertools import compress from scipy.spatial.transform import Rotation as spR from src.support_class import * __all__ = ['base_geo', 'sphere_geo', 'ellipse_base_geo', 'ellipse_3d_geo', 'geoComposit', 'tunnel_geo', 'pipe_cover_geo', 'supHelix', 'FatHelix', 'lineOnFatHelix', 'ThickLine_base_geo', 'SelfRepeat_body_geo', 'SelfRepeat_FatHelix', 'infgeo_1d', 'infHelix', 'infPipe', 'slb_geo', 'slb_helix', 'Johnson_helix', 'expJohnson_helix', 'sphereEnd_helix', 'regularizeDisk', 'helicoid', '_revolve_geo', 'revolve_pipe', 'revolve_ellipse', 'region', 'set_axes_equal'] class base_geo(): def __init__(self): self._nodes = np.array([]) self._elems = np.array([]) self._elemtype = ' ' self._normal = np.array([]) # norm of surface at each point. self._geo_norm = np.array((0, 0, 1)) # describing the aspect of the geo. self._origin = np.array((0, 0, 0)) self._u = np.array([]) self._deltaLength = 0 self._dmda = None # dof management self._stencil_width = 0 # --->>>if change in further version, deal with combine method. self._glbIdx = np.array([]) # global indices self._glbIdx_all = np.array([]) # global indices for all process. self._selfIdx = np.array([]) # indices of _glbIdx in _glbIdx_all self._dof = 3 # degrees of freedom pre node. self._type = 'general_geo' # geo type def __str__(self): return "%s(%r)" % (self.get_type(), id(self)) def mat_nodes(self, filename: str = '..', mat_handle: str = 'nodes'): err_msg = 'wrong mat file name. ' assert filename != '..', err_msg filename = check_file_extension(filename, '.mat') mat_contents = loadmat(filename) nodes = mat_contents[mat_handle].astype(np.float, order='F') err_msg = 'nodes is a n*3 numpy array containing x, y and z coordinates. ' assert nodes.shape[1] == 3, err_msg self._nodes = nodes self._u = np.zeros(self._nodes.size) self.set_dmda() return True def mat_elmes(self, filename: str = '..', mat_handle: str = 'elmes', elemtype: str = ' '): err_msg = 'wrong mat file name. ' assert filename != '..', err_msg mat_contents = loadmat(filename) elems = mat_contents[mat_handle].astype(np.int, order='F') elems = elems - elems.min() self._elems = elems self._elemtype = elemtype return True def text_nodes(self, filename: str = '..'): err_msg = 'wrong mat file name. ' assert filename != '..', err_msg nodes = np.loadtxt(filename) err_msg = 'nodes is a n*3 numpy array containing x, y and z coordinates. ' assert nodes.shape[1] == 3, err_msg self._nodes = np.asfortranarray(nodes) self._u = np.zeros(self._nodes.size) self.set_dmda() return True def mat_origin(self, filename: str = '..', mat_handle: str = 'origin'): err_msg = 'wrong mat file name. ' assert filename != '..', err_msg mat_contents = loadmat(filename) self._origin = mat_contents[mat_handle].astype(np.float) return True def mat_velocity(self, filename: str = '..', mat_handle: str = 'U'): err_msg = 'wrong mat file name. ' assert filename != '..', err_msg mat_contents = loadmat(filename) self._u = mat_contents[mat_handle].flatten() return True def node_rotation(self, norm=np.array([0, 0, 1]), theta=0, rotation_origin=None): rotM = get_rot_matrix(norm, theta) return self.node_rotM(rotM=rotM, rotation_origin=rotation_origin) def node_rotM(self, rotM, rotation_origin=None): # The rotation is counterclockwise if rotation_origin is None: rotation_origin = self.get_origin() else: rotation_origin = np.array(rotation_origin).reshape((3,)) self._nodes = np.dot(rotM, (self._nodes - rotation_origin).T).T + \ rotation_origin # The rotation is counterclockwise self._origin = np.dot(rotM, (self._origin - rotation_origin)) + rotation_origin self._geo_norm = np.dot(rotM, self._geo_norm) / np.linalg.norm(self._geo_norm) return True def coord_rotation(self, norm=np.array([0, 0, 1]), theta=0): # TODO: check the direction. assert 1 == 2 # theta = -theta # The rotation is counterclockwise rotation = get_rot_matrix(norm, theta) temp_u = self._u.reshape((3, -1), order='F') self._u = rotation.dot(temp_u).T.flatten() self._nodes = np.dot(rotation, self._nodes.T).T self._origin = 000 self._geo_norm = 000 return True def node_zoom(self, factor, zoom_origin=None): if zoom_origin is None: zoom_origin = self.get_origin() self._nodes = (self._nodes - zoom_origin) * factor + zoom_origin return True def node_zoom_x(self, factor, zoom_origin=None): if zoom_origin is None: zoom_origin = self.get_origin() self._nodes[:, 0] = (self._nodes[:, 0] - zoom_origin[0]) * factor + zoom_origin[0] return True def node_zoom_y(self, factor, zoom_origin=None): if zoom_origin is None: zoom_origin = self.get_origin() self._nodes[:, 1] = (self._nodes[:, 1] - zoom_origin[1]) * factor + zoom_origin[1] return True def node_zoom_z(self, factor, zoom_origin=None): if zoom_origin is None: zoom_origin = self.get_origin() self._nodes[:, 2] = (self._nodes[:, 2] - zoom_origin[2]) * factor + zoom_origin[2] return True def move(self, displacement: np.array): displacement = np.array(displacement).reshape((3,)) self.set_nodes(self.get_nodes() + displacement, self.get_deltaLength()) self.set_origin(self.get_origin() + displacement) return True def mirrorImage(self, norm=np.array([0, 0, 1]), rotation_origin=None): if rotation_origin is None: rotation_origin = self.get_origin() else: rotation_origin = np.array(rotation_origin).reshape((3,)) norm = norm / np.linalg.norm(norm) nodes = self.get_nodes() dist = nodes - rotation_origin parallel = np.einsum('i,j', np.einsum('ij,j', dist, norm), norm) perpendicular = dist - parallel dist2 = perpendicular + (-1 * parallel) nodes2 = dist2 + rotation_origin self.set_nodes(nodes2, self.get_deltaLength()) return True def combine(self, geo_list, deltaLength=None, origin=None, geo_norm=None): if len(geo_list) == 0: return False for geo1 in geo_list: err_msg = 'some objects in geo_list are not geo object. %s' % str(type(geo1)) assert isinstance(geo1, base_geo), err_msg err_msg = 'one or more objects not finished create yet. ' assert geo1.get_n_nodes() != 0, err_msg if deltaLength is None: deltaLength = geo_list[0].get_deltaLength() if origin is None: origin = geo_list[0].get_origin() if geo_norm is None: geo_norm = geo_list[0].get_geo_norm() geo1 = geo_list.pop(0) self.set_nodes(geo1.get_nodes(), deltalength=deltaLength) self.set_velocity(geo1.get_velocity()) for geo1 in geo_list: self.set_nodes(np.vstack((self.get_nodes(), geo1.get_nodes())), deltalength=deltaLength) self.set_velocity(np.hstack((self.get_velocity(), geo1.get_velocity()))) self.set_dmda() self._geo_norm = geo_norm self.set_origin(origin) return True def get_nodes(self): return self._nodes def get_nodes_petsc(self): nodes_petsc = self.get_dmda().createGlobalVector() nodes_petsc[:] = self._nodes.reshape((3, -1))[:] nodes_petsc.assemble() return nodes_petsc def set_nodes(self, nodes, deltalength, resetVelocity=False): nodes = np.array(nodes).reshape((-1, 3), order='F') self._nodes = nodes self._deltaLength = deltalength self.set_dmda() if resetVelocity: self._u = np.zeros(self._nodes.size) return True def get_nodes_x(self): return self._nodes[:, 0] def get_nodes_y(self): return self._nodes[:, 1] def get_nodes_z(self): return self._nodes[:, 2] def get_nodes_x_petsc(self): x_petsc = self.get_dmda().createGlobalVector() t_x = np.matlib.repmat(self._nodes[:, 0].reshape((-1, 1)), 1, 3).flatten() x_petsc[:] = t_x[:] x_petsc.assemble() return x_petsc def get_nodes_y_petsc(self): y_petsc = self.get_dmda().createGlobalVector() t_y = np.matlib.repmat(self._nodes[:, 1].reshape((-1, 1)), 1, 3).flatten() y_petsc[:] = t_y[:] y_petsc.assemble() return y_petsc def get_nodes_z_petsc(self): z_petsc = self.get_dmda().createGlobalVector() t_z = np.matlib.repmat(self._nodes[:, 2].reshape((-1, 1)), 1, 3).flatten() z_petsc[:] = t_z[:] z_petsc.assemble() return z_petsc def get_n_nodes(self): return self._nodes.shape[0] def get_n_velocity(self): return self._u.size def get_velocity(self): return self._u.flatten() def set_velocity(self, velocity): err_msg = 'set nodes first. ' assert self._nodes.size != 0, err_msg err_msg = 'velocity is a numpy array having a similar size of nodes. ' assert velocity.size == self._nodes.size, err_msg self._u = velocity.flatten() return True def set_rigid_velocity(self, U=np.zeros(6), center=None): """ :type U: np.array :param U: [u1, u2, u3, w1, w2, w3], velocity and angular velocity. :type center: np.array :param center: rotation center. """ if center is None: center = self._origin center = np.array(center) err_msg = 'center is a np.array containing 3 scales. ' assert center.size == 3, err_msg r = self._nodes - center self._u = np.zeros(self._nodes.size) self._u[0::3] = U[0] + U[4] * r[:, 2] - U[5] * r[:, 1] self._u[1::3] = U[1] + U[5] * r[:, 0] - U[3] * r[:, 2] self._u[2::3] = U[2] + U[3] * r[:, 1] - U[4] * r[:, 0] return True def get_velocity_x(self): return self._u[0::3].flatten() def get_velocity_y(self): return self._u[1::3].flatten() def get_velocity_z(self): return self._u[2::3].flatten() def get_polar_coord(self): phi = np.arctan2(self.get_nodes_y(), self.get_nodes_x()) rho = np.sqrt(self.get_nodes_x() ** 2 + self.get_nodes_y() ** 2) z = self.get_nodes_z() return phi, rho, z def get_normal(self): return self._normal def set_normal(self, normal): self._normal = normal return True def get_geo_norm(self): return self._geo_norm def set_geo_norm(self, geo_norm): geo_norm = np.array(geo_norm).ravel() assert geo_norm.size == 3 self._geo_norm = geo_norm return True def get_origin(self): return self._origin def get_center(self): return self.get_origin() def set_origin(self, origin): self._origin = np.array(origin).ravel() assert self._origin.size == 3 return True def set_center(self, origin): return self.set_origin(origin=origin) def get_deltaLength(self): return self._deltaLength def set_deltaLength(self, deltaLength): self._deltaLength = deltaLength return True def copy(self) -> 'base_geo': self.destroy_dmda() geo2 = copy.deepcopy(self) self.set_dmda() geo2.set_dmda() return geo2 def save_nodes(self, filename): comm = PETSc.COMM_WORLD.tompi4py() rank = comm.Get_rank() filename = check_file_extension(filename, extension='.mat') if rank == 0: savemat(filename, {'nodes': self.get_nodes()}, oned_as='column') return True def _show_velocity(self, length_factor=1, show_nodes=True): comm = PETSc.COMM_WORLD.tompi4py() rank = comm.Get_rank() if rank == 0: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.set_aspect('equal') # Be careful. the axis using in matplotlib is a left-handed coordinate system if show_nodes: ax.plot(self.get_nodes_x(), self.get_nodes_y(), self.get_nodes_z(), linestyle='None', c='b', marker='o') INDEX = np.zeros_like(self.get_nodes_z(), dtype=bool) INDEX[:] = True length = 1 / np.mean(self._deltaLength) * length_factor ax.quiver(self.get_nodes_x()[INDEX], self.get_nodes_y()[INDEX], self.get_nodes_z()[INDEX], self.get_velocity_x()[INDEX], self.get_velocity_y()[INDEX], self.get_velocity_z()[INDEX], color='r', length=length) # ax.quiver(self.get_nodes_x(), self.get_nodes_y(), self.get_nodes_z(), # 0, 0, self.get_nodes_z(), length=self._deltaLength * 2) X = np.hstack((self.get_nodes_x())) Y = np.hstack((self.get_nodes_y())) Z = np.hstack((self.get_nodes_z())) max_range = np.array( [X.max() - X.min(), Y.max() - Y.min(), Z.max() - Z.min()]).max() / 2.0 mid_x = (X.max() + X.min()) * 0.5 mid_y = (Y.max() + Y.min()) * 0.5 mid_z = (Z.max() + Z.min()) * 0.5 ax.set_xlim(mid_x - max_range, mid_x + max_range) ax.set_ylim(mid_y - max_range, mid_y + max_range) ax.set_zlim(mid_z - max_range, mid_z + max_range) ax.set_xlabel('$x_1$', size='xx-large') ax.set_ylabel('$x_2$', size='xx-large') ax.set_zlabel('$x_3$', size='xx-large') else: fig = None return fig def show_velocity(self, length_factor=1, show_nodes=True): comm = PETSc.COMM_WORLD.tompi4py() rank = comm.Get_rank() self._show_velocity(length_factor=length_factor, show_nodes=show_nodes) if rank == 0: plt.grid() # plt.get_current_fig_manager().window.showMaximized() plt.show() return True def core_show_nodes(self, linestyle='-', marker='.'): comm = PETSc.COMM_WORLD.tompi4py() rank = comm.Get_rank() if rank == 0: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.set_aspect('equal') ax.plot(self.get_nodes_x(), self.get_nodes_y(), self.get_nodes_z(), linestyle=linestyle, color='b', marker=marker) X = np.hstack((self.get_nodes_x())) Y = np.hstack((self.get_nodes_y())) Z = np.hstack((self.get_nodes_z())) max_range = np.array([X.max() - X.min(), Y.max() - Y.min(), Z.max() - Z.min()]).max() / 2.0 mid_x = (X.max() + X.min()) * 0.5 mid_y = (Y.max() + Y.min()) * 0.5 mid_z = (Z.max() + Z.min()) * 0.5 ax.set_xlim(mid_x - max_range, mid_x + max_range) ax.set_ylim(mid_y - max_range, mid_y + max_range) ax.set_zlim(mid_z - max_range, mid_z + max_range) ax.set_xlabel('$x_1$', size='xx-large') ax.set_ylabel('$x_2$', size='xx-large') ax.set_zlabel('$x_3$', size='xx-large') else: fig = None return fig def show_nodes(self, linestyle='-', marker='.'): comm = PETSc.COMM_WORLD.tompi4py() rank = comm.Get_rank() self.core_show_nodes(linestyle=linestyle, marker=marker) if rank == 0: plt.grid() # plt.get_current_fig_manager().window.showMaximized() plt.show() return True def png_nodes(self, finename, linestyle='-', marker='.'): comm = PETSc.COMM_WORLD.tompi4py() rank = comm.Get_rank() finename = check_file_extension(finename, '.png') fig = self.core_show_nodes(linestyle=linestyle, marker=marker) if rank == 0: fig.set_size_inches(18.5, 10.5) fig.savefig(finename, dpi=100) plt.close() return True def get_mesh(self): return self._elems, self._elemtype def get_dmda(self): return self._dmda def set_dmda(self): if self.get_dmda() is not None: self._dmda.destroy() if not hasattr(self, '_dof'): self._dof = 3 self._dmda = PETSc.DMDA().create(sizes=(self.get_n_nodes(),), dof=self._dof, stencil_width=self._stencil_width, comm=PETSc.COMM_WORLD) self._dmda.setFromOptions() self._dmda.setUp() # self._dmda.createGlobalVector() return True def destroy_dmda(self): self._dmda.destroy() self._dmda = None return True def get_dof(self): return self._dof def set_dof(self, dof): self._dof = dof return True def set_glbIdx(self, indices): comm = PETSc.COMM_WORLD.tompi4py() self._glbIdx = indices self._glbIdx_all = np.hstack(comm.allgather(indices)) self._selfIdx = np.searchsorted(self._glbIdx_all, self._glbIdx) return True def set_glbIdx_all(self, indices): self._glbIdx = [] self._selfIdx = [] self._glbIdx_all = indices return True def get_glbIdx(self): return self._glbIdx, self._glbIdx_all def get_selfIdx(self): return self._selfIdx # def _heaviside(self, n, factor): # f = lambda x: 1 / (1 + np.exp(-factor * x)) # x = np.linspace(-0.5, 0.5, n) # return (f(x) - f(-0.5)) / (f(0.5) - f(-0.5)) def get_type(self): return self._type def print_info(self): PETSc.Sys.Print(' %s: norm %s, center %s' % (str(self), str(self.get_geo_norm()), str(self.get_center()))) return True def pickmyself_prepare(self): if not self._dmda is None: self.destroy_dmda() return True class geoComposit(uniqueList): def __init__(self, liste=[]): acceptType = base_geo super().__init__(acceptType=acceptType) liste = list(tube_flatten((liste,))) for geoi in liste: self.append(geoi) def core_show_nodes(self, linestyle='-', marker='.'): color_list = ['b', 'g', 'r', 'c', 'm', 'y', 'k', ] comm = PETSc.COMM_WORLD.tompi4py() rank = comm.Get_rank() if len(self) == 0: return False if rank == 0: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.set_aspect('equal') xlim_list = np.zeros((len(self), 2)) ylim_list = np.zeros((len(self), 2)) zlim_list = np.zeros((len(self), 2)) for i0, geo0 in enumerate(self): if geo0.get_n_nodes() > 0: ax.plot(geo0.get_nodes_x(), geo0.get_nodes_y(), geo0.get_nodes_z(), linestyle=linestyle, color=color_list[i0 % len(color_list)], marker=marker) X = np.hstack((geo0.get_nodes_x())) Y = np.hstack((geo0.get_nodes_y())) Z = np.hstack((geo0.get_nodes_z())) max_range = np.array([X.max() - X.min(), Y.max() - Y.min(), Z.max() - Z.min()]).max() / 2.0 mid_x = (X.max() + X.min()) * 0.5 mid_y = (Y.max() + Y.min()) * 0.5 mid_z = (Z.max() + Z.min()) * 0.5 xlim_list[i0] = (mid_x - max_range, mid_x + max_range) ylim_list[i0] = (mid_y - max_range, mid_y + max_range) zlim_list[i0] = (mid_z - max_range, mid_z + max_range) else: xlim_list[i0] = (np.nan, np.nan) ylim_list[i0] = (np.nan, np.nan) zlim_list[i0] = (np.nan, np.nan) ax.set_xlim(np.nanmin(xlim_list), np.nanmax(xlim_list)) ax.set_ylim(np.nanmin(ylim_list), np.nanmax(ylim_list)) ax.set_zlim(np.nanmin(zlim_list), np.nanmax(zlim_list)) ax.set_xlabel('$x_1$', size='xx-large') ax.set_ylabel('$x_2$', size='xx-large') ax.set_zlabel('$x_3$', size='xx-large') set_axes_equal(ax) else: fig = None return fig def show_nodes(self, linestyle='-', marker='.'): if len(self) == 0: return False comm = PETSc.COMM_WORLD.tompi4py() rank = comm.Get_rank() self.core_show_nodes(linestyle=linestyle, marker=marker) if rank == 0: plt.grid() # plt.get_current_fig_manager().window.showMaximized() plt.show() return True def move(self, displacement: np.array): if len(self) == 0: return False else: for sub_geo in self: sub_geo.move(displacement=displacement) return True class ThickLine_base_geo(base_geo): def __init__(self): super().__init__() self._r = 0 # radius of thick line itself, thick is a cycle. self._dth = 0 # anglar between nodes in a cycle. self._axisNodes = np.array([]).reshape((-1, 3)) self._frenetFrame = (np.array([]).reshape((-1, 3)), np.array([]).reshape((-1, 3)), np.array([]).reshape((-1, 3))) self._iscover = [] # start: -1, body: 0, end: 1 self._with_cover = 0 self._factor = 1e-5 self._left_hand = False self._check_epsilon = True self._type = '_ThickLine_geo' # geo type self._cover_strat_idx = np.array([]) self._body_idx_list = [] self._cover_end_idx = np.array([]) self._local_rot = True # special parameter for selfrepeat_geo self._node_axisNode_idx = [] def set_check_epsilon(self, check_epsilon): self._check_epsilon = check_epsilon return True def get_check_epsilon(self): return self._check_epsilon def _get_theta(self): def eqr(dth, ds, r): return (ds / (2 * r)) ^ 2 + np.sin(dth / 4) ** 2 - np.sin(dth / 2) ** 2 from scipy import optimize as sop self._dth = sop.brentq(eqr, -1e-3 * np.pi, np.pi, args=(self.get_deltaLength(), self._r)) return self._dth def _get_deltalength(self): # dl = 2 * self._r * np.sqrt(np.sin(self._dth / 2) ** 2 - np.sin(self._dth / 4) ** 2) dl = 2 * self._r * np.sin(self._dth / 2) self.set_deltaLength(dl) return dl @abc.abstractmethod def _get_axis(self): return @abc.abstractmethod def _get_fgeo_axis(self, epsilon): return @abc.abstractmethod def _body_pretreatment(self, nodes, **kwargs): return @abc.abstractmethod def _strat_pretreatment(self, nodes, **kwargs): return @abc.abstractmethod def _end_pretreatment(self, nodes, **kwargs): return def _create_deltatheta(self, dth: float, # delta theta of the cycle for the mesh radius: float, # radius of the cycle epsilon=0, with_cover=0, local_rot=True): # the tunnel is along z axis err_msg = 'dth must less than pi' assert dth < np.pi, err_msg self._dth = dth self._r = radius self._with_cover = with_cover deltalength = self._get_deltalength() nc = np.ceil(2 * np.pi / dth).astype(int) angleCycle = np.linspace(0, 2 * np.pi, nc, endpoint=False) axisNodes, T_frame, N_frame, B_frame = self._get_axis() fgeo_axisNodes, fgeo_T_frame, fgeo_N_frame, fgeo_B_frame = self._get_fgeo_axis(epsilon) iscover = [] vgeo_nodes = [] fgeo_nodes = [] epsilon = (radius + epsilon * deltalength) / radius if self.get_check_epsilon(): err_msg = 'epsilon > %f. ' % (-radius / deltalength) assert epsilon > 0, err_msg ai_para = 0 t_node_idx = 0 local_rot = self._local_rot self._node_axisNode_idx = [] self._body_idx_list = [] # cover at start if with_cover == 1: # old version, cover is a plate. nc = np.ceil((radius - deltalength) / deltalength).astype(int) ri = np.linspace(deltalength / 2, radius, nc, endpoint=False) # self tidx = 0 for i0 in np.arange(0, nc): ai_para = ai_para + 1 if local_rot else 0 ni = np.ceil(2 * np.pi * ri[i0] / deltalength).astype(int) ai = np.linspace(0, 2 * np.pi, ni, endpoint=False) + (-1) ** ai_para * dth / 4 iscover.append(np.ones_like(ai) * -1) nodes_cycle = np.vstack( (np.cos(ai) * ri[i0], np.sin(ai) * ri[i0], np.zeros_like(ai))).T t_nodes = axisNodes[0] + np.dot(nodes_cycle, np.vstack((N_frame[0], B_frame[0], np.zeros_like(T_frame[0])))) vgeo_nodes.append(t_nodes) tidx = tidx + t_nodes.shape[0] tf_nodes = fgeo_axisNodes[0] + np.dot(nodes_cycle * epsilon, np.vstack((N_frame[0], B_frame[0], np.zeros_like(T_frame[0])))) fgeo_nodes.append(tf_nodes) self._strat_pretreatment(t_nodes) self._cover_strat_idx = np.arange(len(vgeo_nodes)) t_node_idx = self._cover_strat_idx[-1] + 1 if self._cover_strat_idx.size > 0 else 0 self._node_axisNode_idx.append(np.zeros(tidx)) elif with_cover == 2: # 20170929, new version, cover is a hemisphere vhsgeo = sphere_geo() vhsgeo.create_half_delta(deltalength, radius) vhsgeo.node_rotation((1, 0, 0), np.pi / 2 + ai_para) t_nodes = axisNodes[0] + np.dot(vhsgeo.get_nodes(), np.vstack((-T_frame[0], N_frame[0], B_frame[0]))) vgeo_nodes.append(t_nodes) self._cover_strat_idx = np.arange(t_nodes.shape[0]) + t_node_idx t_node_idx = self._cover_strat_idx[-1] + 1 fhsgeo = vhsgeo.copy() # fhsgeo.show_nodes() fhsgeo.node_zoom(epsilon) # fhsgeo.show_nodes() tf_nodes = fgeo_axisNodes[0] + np.dot(fhsgeo.get_nodes(), np.vstack((-T_frame[0], N_frame[0], B_frame[0]))) fgeo_nodes.append(tf_nodes) self._strat_pretreatment(t_nodes) iscover.append(np.ones(vhsgeo.get_n_nodes()) * -1) self._node_axisNode_idx.append(np.zeros(vhsgeo.get_n_nodes())) # body for i0, nodei_line in enumerate(axisNodes): ai_para = ai_para + 1 if local_rot else 0 ai = angleCycle + (-1) ** ai_para * dth / 4 nodes_cycle = np.vstack((np.cos(ai) * radius, np.sin(ai) * radius, np.zeros_like(ai))).T t_nodes = nodei_line + np.dot(nodes_cycle, np.vstack((N_frame[i0], B_frame[i0], np.zeros_like(T_frame[i0])))) vgeo_nodes.append(t_nodes) self._body_idx_list.append(np.arange(t_nodes.shape[0]) + t_node_idx) t_node_idx = self._body_idx_list[-1][-1] + 1 iscover.append(np.zeros_like(ai)) nodes_cycle = np.vstack( (np.cos(ai) * radius, np.sin(ai) * radius, np.zeros_like(ai))).T * epsilon tf_nodes = fgeo_axisNodes[i0] + np.dot(nodes_cycle, np.vstack( (fgeo_N_frame[i0], fgeo_B_frame[i0], np.zeros_like(fgeo_T_frame[i0])))) fgeo_nodes.append(tf_nodes) self._body_pretreatment(t_nodes) self._node_axisNode_idx.append(np.ones(ai.size) * i0) self._body_idx_list = np.array(self._body_idx_list) # cover at end if with_cover == 1: # old version, cover is a plate. nc = np.ceil((radius - deltalength) / deltalength).astype(int) ri = np.linspace(deltalength / 2, radius, nc, endpoint=False)[-1::-1] tidx = 0 for i0 in np.arange(0, nc): ai_para = ai_para + 1 if local_rot else 0 ni = np.ceil(2 * np.pi * ri[i0] / deltalength).astype(int) ai = np.linspace(0, 2 * np.pi, ni, endpoint=False) + (-1) ** ai_para * dth / 4 iscover.append(np.ones_like(ai)) nodes_cycle = np.vstack( (np.cos(ai) * ri[i0], np.sin(ai) * ri[i0], np.zeros_like(ai))).T t_nodes = axisNodes[-1] + np.dot(nodes_cycle, np.vstack((N_frame[-1], B_frame[-1], np.zeros_like(T_frame[-1])))) vgeo_nodes.append(t_nodes) tidx = tidx + t_nodes.shape[0] tf_nodes = fgeo_axisNodes[-1] + np.dot(nodes_cycle * epsilon, np.vstack( (fgeo_N_frame[-1], fgeo_B_frame[-1], np.zeros_like(fgeo_T_frame[-1])))) fgeo_nodes.append(tf_nodes) self._end_pretreatment(t_nodes) self._cover_end_idx = np.arange(len(vgeo_nodes) - t_node_idx) + t_node_idx self._node_axisNode_idx.append(np.ones(tidx) * (axisNodes.shape[0] - 1)) elif with_cover == 2: # 20170929, new version, cover is a hemisphere vhsgeo = sphere_geo() vhsgeo.create_half_delta(deltalength, radius) vhsgeo.node_rotation((1, 0, 0), -np.pi / 2 - ai_para) t_nodes = axisNodes[-1] + np.dot(vhsgeo.get_nodes(), np.vstack((T_frame[-1], N_frame[-1], B_frame[-1]))) vgeo_nodes.append(np.flipud(t_nodes)) self._cover_end_idx = np.arange(t_nodes.shape[0]) + t_node_idx fhsgeo = vhsgeo.copy() fhsgeo.node_zoom(epsilon) tf_nodes = fgeo_axisNodes[-1] + np.dot(fhsgeo.get_nodes(), np.vstack( (T_frame[-1], N_frame[-1], B_frame[-1]))) fgeo_nodes.append(np.flipud(tf_nodes)) self._end_pretreatment(t_nodes) iscover.append(np.ones(vhsgeo.get_n_nodes())) self._node_axisNode_idx.append(np.ones(vhsgeo.get_n_nodes()) * (axisNodes.shape[0] - 1)) self._iscover = np.hstack(iscover) self._nodes = np.asfortranarray(np.vstack(vgeo_nodes)) self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((self._nodes.shape[0], 2), order='F') self._node_axisNode_idx = np.hstack(self._node_axisNode_idx).astype('int') fgeo = self.copy() # fgeo.set_dof(self.get_dof()) fgeo.set_nodes(np.asfortranarray(np.vstack(fgeo_nodes)), deltalength=deltalength * epsilon, resetVelocity=True) return fgeo def get_iscover(self): return self._iscover def _factor_fun(self, n, factor): err_msg = 'factor must positive' assert factor > 0, err_msg if np.abs(factor - 1) < 0.01: y = np.linspace(0, 1, n) else: f1 = lambda x: (np.exp(x * factor) - 1) / (2 * (np.exp(0.5 * factor) - 1)) f2 = lambda x: np.log(2 * (np.exp(0.5 / factor) - 1) * x + 1) * factor x = np.linspace(-0.5, 0.5, n) y1 = np.sign(x) * f1(np.abs(x)) + 0.5 y2 = np.sign(x) * f2(np.abs(x)) + 0.5 y = (y1 * factor + y2 / factor) / (y1[-1] * factor + y2[-1] / factor) return y @property def axisNodes(self): return self._axisNodes @property def frenetFrame(self): return self._frenetFrame @property def cover_strat_idx(self): return self._cover_strat_idx @property def body_idx_list(self): return self._body_idx_list @property def cover_end_idx(self): return self._cover_end_idx @property def with_cover(self): return self._with_cover @property def cover_start_nodes(self): return self.get_nodes()[self.cover_strat_idx] @property def body_nodes_list(self): return [self.get_nodes()[tidx] for tidx in self.body_idx_list] @property def cover_end_nodes(self): return self.get_nodes()[self.cover_end_idx] @property def node_axisNode_idx(self): return self._node_axisNode_idx @property def left_hand(self): return self.left_hand # def node_rotation(self, norm=np.array([0, 0, 1]), theta=0, rotation_origin=None): # # The rotation is counterclockwise # super().node_rotation(norm, theta, rotation_origin) # # if rotation_origin is None: # rotation_origin = self.get_origin() # else: # rotation_origin = np.array(rotation_origin).reshape((3,)) # # rotation = get_rot_matrix(norm, theta) # t_axisNodes = self._axisNodes # self._axisNodes = np.dot(rotation, (self._axisNodes - rotation_origin).T).T + \ # rotation_origin # The rotation is counterclockwise # t0 = [] # for i0 in range(3): # t1 = [] # for t2, taxis0, taxis in zip(self._frenetFrame[i0], t_axisNodes, self._axisNodes): # t2 = np.dot(rotation, (t2 + taxis0 - rotation_origin)) \ # + rotation_origin - taxis # t2 = t2 / np.linalg.norm(t2) # t1.append(t2) # t0.append(np.vstack(t1)) # self._frenetFrame = t0 # return True def node_rotM(self, rotM, rotation_origin=None): # The rotation is counterclockwise super().node_rotM(rotM, rotation_origin) if rotation_origin is None: rotation_origin = self.get_origin() else: rotation_origin = np.array(rotation_origin).reshape((3,)) t_axisNodes = self._axisNodes self._axisNodes = np.dot(rotM, (self._axisNodes - rotation_origin).T).T + \ rotation_origin # The rotation is counterclockwise t0 = [] for i0 in range(3): t1 = [] for t2, taxis0, taxis in zip(self._frenetFrame[i0], t_axisNodes, self._axisNodes): t2 = np.dot(rotM, (t2 + taxis0 - rotation_origin)) \ + rotation_origin - taxis t2 = t2 / np.linalg.norm(t2) t1.append(t2) t0.append(np.vstack(t1)) self._frenetFrame = t0 return True def move(self, displacement: np.array): super().move(displacement) displacement = np.array(displacement).reshape((3,)) self._axisNodes = self._axisNodes + displacement return True def nodes_local_coord(self, nodes, axis_idx): tnode_line = self.axisNodes[axis_idx] tT = self.frenetFrame[0][axis_idx] tN = self.frenetFrame[1][axis_idx] tB = self.frenetFrame[2][axis_idx] tfnodes_local = np.dot((nodes - tnode_line), np.vstack((tN, tB, tT)).T) return tfnodes_local def selfnodes_local_coord(self, axis_idx): nodes = self.get_nodes()[self.body_idx_list[axis_idx]] return self.nodes_local_coord(nodes, axis_idx) def force_local_coord(self, force, axis_idx): tT = self.frenetFrame[0][axis_idx] tN = self.frenetFrame[1][axis_idx] tB = self.frenetFrame[2][axis_idx] tfi_local = np.dot(force, np.vstack((tN, tB, tT)).T) return tfi_local def frenetFrame_local(self, axis_idx): tT = self.frenetFrame[0][axis_idx] tN = self.frenetFrame[1][axis_idx] tB = self.frenetFrame[2][axis_idx] return tT, tN, tB class ellipse_base_geo(base_geo): def __init__(self): super().__init__() self._type = 'ellipse_geo' # geo type def create_n(self, n: int, # number of nodes. headA: float, # major axis = 2*headA headC: float): # minor axis = 2*headC err_msg = 'both major and minor axises should positive. ' assert headA > 0 and headC > 0, err_msg jj = np.arange(n) xlocH = -1 + 2 * jj / (n - 1) numf = 0.5 prefac = 3.6 * np.sqrt(headC / headA) spherePhi = np.ones(n) for i0 in range(0, n): if i0 == 0 or i0 == n - 1: spherePhi[i0] = 0 else: tr = np.sqrt(1 - xlocH[i0] ** 2) wgt = prefac * (1 - numf * (1 - tr)) / tr spherePhi[i0] = (spherePhi[i0 - 1] + wgt / np.sqrt(n)) % (2 * np.pi) tsin = np.sqrt(1 - xlocH ** 2) self._nodes = np.zeros((n, 3), order='F') self._nodes[:, 0] = headC * xlocH self._nodes[:, 1] = headA * tsin * np.cos(spherePhi) self._nodes[:, 2] = headA * tsin * np.sin(spherePhi) self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((n, 2), order='F') return True def create_delta(self, ds: float, # length of the mesh a: float, # axis1 = 2*a b: float): # axis2 = 2*b err_msg = 'both major and minor axises should positive. ' assert a > 0 and b > 0, err_msg self._deltaLength = ds # fit arc length as function F of theta using 2-degree pylonomial from scipy.special import ellipeinc from scipy.optimize import curve_fit func = lambda theta, a, b: a * theta ** 2 + b * theta theta = np.linspace(0, np.pi / 2, 100) arcl = b * ellipeinc(theta, 1 - (a / b) ** 2) popt, _ = curve_fit(func, theta, arcl) # # dbg # plt.plot(theta, arcl, '.') # plt.plot(theta, func(theta, popt[0], popt[1])) # plt.show() # assert 1 == 2 # divided arc length equally, and get theta using F^-1. n = np.ceil(arcl[-1] / ds).astype(int) t_arcl = np.linspace(0, arcl[-1], n, endpoint=False) + ds / 2 # do something to correct the fitting error. while t_arcl[-1] > arcl[-1]: t_arcl = t_arcl[:-1] t_theta1 = (-popt[1] + np.sqrt(popt[1] ** 2 + 4 * popt[0] * t_arcl)) / (2 * popt[0]) t_theta2 = (-popt[1] - np.sqrt(popt[1] ** 2 + 4 * popt[0] * t_arcl)) / (2 * popt[0]) b_theta1 = [a and b for a, b in zip(t_theta1 > 0, t_theta1 < np.pi / 2)] b_theta2 = [a and b for a, b in zip(t_theta2 > 0, t_theta2 < np.pi / 2)] err_msg = 'something is wrong, theta of ellipse is uncertain. ' assert all([a != b for a, b in zip(b_theta1, b_theta2)]), err_msg t_theta0 = t_theta1 * b_theta1 + t_theta2 * b_theta2 t_theta = np.hstack((t_theta0, np.pi / 2, np.pi - t_theta0[::-1])) t_x = a * np.cos(t_theta) t_y = b * np.sin(t_theta) # generate nodes. x = [] y = [] z = [] ai_para = 0 for xi, yi in zip(t_x, t_y): ai_para = ai_para + 1 ni = np.ceil(2 * np.pi * yi / ds).astype(int) ai, da = np.linspace(0, 2 * np.pi, ni, endpoint=False, retstep=True) ai = ai + (-1) ** ai_para * da / 4 + np.sign(xi) * np.pi / 2 x.append(xi * np.ones_like(ai)) y.append(np.sign(xi) * yi * np.cos(ai)) z.append(np.sign(xi) * yi * np.sin(ai)) self._nodes = np.vstack((np.hstack(x), np.hstack(y), np.hstack(z))).T self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((self._nodes.shape[0], 2), order='F') self._geo_norm = np.array((1, 0, 0)) return True def create_half_delta(self, ds: float, # length of the mesh a: float, # axis1 = 2*a b: float): # axis2 = 2*b err_msg = 'both major and minor axises should positive. ' assert a > 0 and b > 0, err_msg self._deltaLength = ds # fit arc length as function F of theta using 2-degree pylonomial from scipy.special import ellipeinc from scipy.optimize import curve_fit func = lambda theta, a, b: a * theta ** 2 + b * theta theta = np.linspace(0, np.pi / 2, 100) arcl = b * ellipeinc(theta, 1 - (a / b) ** 2) popt, _ = curve_fit(func, theta, arcl) # # dbg # plt.plot(theta, arcl, '.') # plt.plot(theta, func(theta, popt[0], popt[1])) # plt.show() # assert 1 == 2 # divided arc length equally, and get theta using F^-1. n = np.ceil(arcl[-1] / ds).astype(int) t_arcl = np.linspace(0, arcl[-1], n, endpoint=False) + ds / 2 # do something to correct the fitting error. while t_arcl[-1] > arcl[-1]: t_arcl = t_arcl[:-1] t_theta1 = (-popt[1] + np.sqrt(popt[1] ** 2 + 4 * popt[0] * t_arcl)) / (2 * popt[0]) t_theta2 = (-popt[1] - np.sqrt(popt[1] ** 2 + 4 * popt[0] * t_arcl)) / (2 * popt[0]) b_theta1 = [a and b for a, b in zip(t_theta1 > 0, t_theta1 < np.pi / 2)] b_theta2 = [a and b for a, b in zip(t_theta2 > 0, t_theta2 < np.pi / 2)] err_msg = 'something is wrong, theta of ellipse is uncertain. ' assert all([a != b for a, b in zip(b_theta1, b_theta2)]), err_msg t_theta0 = t_theta1 * b_theta1 + t_theta2 * b_theta2 t_x = a * np.cos(t_theta0) t_y = b * np.sin(t_theta0) # generate nodes. x = [] y = [] z = [] ai_para = 0 for xi, yi in zip(t_x, t_y): ai_para = ai_para + 1 ni = np.ceil(2 * np.pi * yi / ds).astype(int) ai, da = np.linspace(0, 2 * np.pi, ni, endpoint=False, retstep=True) ai = ai + (-1) ** ai_para * da / 4 + np.sign(xi) * np.pi / 2 x.append(xi * np.ones_like(ai)) y.append(np.sign(xi) * yi * np.cos(ai)) z.append(np.sign(xi) * yi * np.sin(ai)) self._nodes = np.vstack((np.hstack(x), np.hstack(y), np.hstack(z))).T self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((self._nodes.shape[0], 2), order='F') return True class ellipse_3d_geo(base_geo): def __init__(self): super().__init__() self._type = 'ellipse_3d_geo' # geo type def create_delta(self, ds: float, # length of the mesh a: float, # axis1 = 2*a b1: float, b2: float): # axis2 = 2*b tgeo = ellipse_base_geo() tgeo.create_delta(ds, a, b1) tnode = tgeo.get_nodes() tnode[:, 2] = tnode[:, 2] / b1 * b2 self._deltaLength = ds self._nodes = tnode self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((self._nodes.shape[0], 2), order='F') self._geo_norm = np.array((1, 0, 0)) return True class sphere_geo(ellipse_base_geo): def __init__(self): super().__init__() self._type = 'sphere_geo' # geo type def create_n(self, n: int, # number of nodes. radius: float, *args): # radius err_msg = 'additional parameters are useless. ' assert not args, err_msg self._deltaLength = np.sqrt(4 * np.pi * radius * radius / n) return super().create_n(n, radius, radius) def create_delta(self, deltaLength: float, # length of the mesh radius: float, *args): # radius err_msg = 'additional parameters are useless. ' assert not args, err_msg return super().create_delta(deltaLength, radius, radius) def create_half_delta(self, ds: float, # length of the mesh a: float, *args): err_msg = 'additional parameters are useless. ' assert not args, err_msg return super().create_half_delta(ds, a, a) def normal(self): self._normal = np.zeros((self._nodes.shape[0], 2)) # {Sin[a] Sin[b], -Cos[a] Sin[b], Cos[b]} = {n1, n2, n3} is the normal vector normal_vector = self._nodes / np.sqrt( self._nodes[:, 0] ** 2 + self._nodes[:, 1] ** 2 + self._nodes[:, 2] ** 2).reshape( self._nodes.shape[0], 1) self._normal[:, 1] = np.arccos(normal_vector[:, 2]) # b self._normal[:, 0] = np.arcsin(normal_vector[:, 0] / np.sin(self._normal[:, 1])) # a return True # noinspection PyUnresolvedReferences class tunnel_geo(ThickLine_base_geo): def __init__(self): super().__init__() self._length = 0 self._cover_strat_list = [] self._cover_end_list = [] self._type = 'tunnel_geo' # geo type def create_n(self, n: int, # number of nodes. length: float, # length of the tunnel radius: float): # radius of the tunnel deltaLength = np.sqrt(2 * np.pi * radius * length / n) self._deltaLength = deltaLength deltaTheta = deltaLength / radius # the geo is symmetrical if n % 2: # if n is odd n_half = int((n - 1) / 2) theta = np.arange(-n_half, n_half + 1) * deltaTheta else: # if n is even n_half = int(n / 2) theta = np.arange(-n_half, n_half) * deltaTheta + deltaTheta / 2 self._nodes = np.zeros((n, 3), order='F') self._nodes[:, 0] = deltaLength * theta / 2 / np.pi self._nodes[:, 1] = radius * np.sin(theta) self._nodes[:, 2] = radius * np.cos(theta) self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((n, 2), order='F') self._geo_norm = np.array((1, 0, 0)) return True def create_deltalength(self, deltaLength: float, # length of the mesh length: float, # length of the tunnel radius: float): # radius of the tunnel # the tunnel is along z axis self._deltaLength = deltaLength a = np.arange(0, 2 * np.pi - deltaLength / radius / 2, deltaLength / radius) x, y = np.cos(a) * radius, np.sin(a) * radius z = np.linspace(-length / 2, length / 2, num=np.ceil((length / deltaLength)).astype(int)) n_a, n_z = a.size, z.size self._nodes = np.zeros((n_a * n_z, 3), order='F') self._nodes[:, 0] = np.tile(z, n_a).reshape(n_a, -1).flatten(order='F') self._nodes[:, 1] = np.tile(x, (n_z, 1)).reshape(-1, 1).flatten(order='F') self._nodes[:, 2] = np.tile(y, (n_z, 1)).reshape(-1, 1).flatten(order='F') self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((self._nodes.shape[0], 2), order='F') self._geo_norm = np.array((0, 0, 1)) return True def create_deltatheta(self, dth: float, # delta theta of the cycle for the mesh radius: float, length: float, epsilon=0, with_cover=0, factor=1, left_hand=False): self._length = length self._factor = factor self._left_hand = left_hand self._geo_norm = np.array((0, 0, 1)) return self._create_deltatheta(dth, radius, epsilon, with_cover) def _get_axis(self): length = self._length factor = self._factor left_hand = self._left_hand ds = self.get_deltaLength() nl = np.ceil(length / ds).astype(int) z = self._factor_fun(nl, factor) * length - length / 2 self._axisNodes = np.vstack((np.zeros_like(z), np.zeros_like(z), z)).T if left_hand: T_frame = np.vstack((np.zeros(nl), np.zeros(nl), np.ones(nl))).T # (0, 0, 1) N_frame = np.vstack((np.ones(nl), np.zeros(nl), np.zeros(nl))).T # (1, 0, 0) B_frame = np.vstack((np.zeros(nl), np.ones(nl), np.zeros(nl))).T # (0, 1, 0) else: T_frame = np.vstack((np.zeros(nl), np.zeros(nl), np.ones(nl))).T # (0, 0, 1) N_frame = np.vstack((np.zeros(nl), np.ones(nl), np.zeros(nl))).T # (0, 1, 0) B_frame = np.vstack((np.ones(nl), np.zeros(nl), np.zeros(nl))).T # (1, 0, 0) self._frenetFrame = (T_frame, N_frame, B_frame) return self._axisNodes, self._frenetFrame[0], self._frenetFrame[1], self._frenetFrame[2] def _get_fgeo_axis(self, epsilon): length = self._length factor = self._factor nl = self._axisNodes.shape[0] ds = -self.get_deltaLength() * epsilon / 4 z = self._factor_fun(nl, factor) * (length - ds * 2) - length / 2 + ds axisNodes = np.vstack((np.zeros_like(z), np.zeros_like(z), z)).T return axisNodes, self._frenetFrame[0], self._frenetFrame[1], self._frenetFrame[2] def _strat_pretreatment(self, nodes, **kwargs): def cart2pol(x, y): rho = np.sqrt(x ** 2 + y ** 2) phi = np.arctan2(y, x) return rho, phi r, ai = cart2pol(nodes[:, 0], nodes[:, 1]) self._cover_strat_list.append((np.mean(r), ai, np.mean(nodes[:, 2]))) return True def _end_pretreatment(self, nodes, **kwargs): def cart2pol(x, y): rho = np.sqrt(x ** 2 + y ** 2) phi = np.arctan2(y, x) return (rho, phi) r, ai = cart2pol(nodes[:, 0], nodes[:, 1]) self._cover_end_list.append((np.mean(r), ai, np.mean(nodes[:, 2]))) return True def get_cover_start_list(self): return self._cover_strat_list def get_cover_end_list(self): return self._cover_end_list def normal(self): self._normal = np.zeros((self._nodes.shape[0], 2)) # {Sin[a] Sin[b], -Cos[a] Sin[b], Cos[b]} = {n1, n2, n3} is the normal vector normal_vector = -1 * self._nodes / np.sqrt( self._nodes[:, 1] ** 2 + self._nodes[:, 2] ** 2).reshape( self._nodes.shape[0], 1) # -1 means swap direction self._normal[:, 1] = np.arccos(normal_vector[:, 2]) # b self._normal[:, 0] = 0 # a return True def node_zoom_radius(self, factor): def cart2pol(x, y): rho = np.sqrt(x ** 2 + y ** 2) phi = np.arctan2(y, x) return rho, phi def pol2cart(rho, phi): x = rho * np.cos(phi) y = rho * np.sin(phi) return x, y # zooming geo along radius of tunnel, keep longitude axis. # 1. copy temp_geo = base_geo() temp_nodes = self.get_nodes() - self.get_origin() temp_geo.set_nodes(temp_nodes, self.get_deltaLength()) # temp_geo.show_nodes() # 2. rotation, tunnel center line along x axis. temp_norm = self._geo_norm rotation_norm = np.cross(temp_norm, [1, 0, 0]) temp_theta = -np.arccos(temp_norm[0] / np.linalg.norm(temp_norm)) doRotation = (not np.array_equal(rotation_norm, np.array((0, 0, 0)))) and temp_theta != 0. if doRotation: temp_geo.node_rotation(rotation_norm, temp_theta) # 3. zooming temp_nodes = temp_geo.get_nodes() temp_R, temp_phi = cart2pol(temp_nodes[:, 1], temp_nodes[:, 2]) temp_R = temp_R * factor X1 = np.min(temp_nodes[:, 0]) X2 = np.max(temp_nodes[:, 0]) factor = (factor - 1) / 2 + 1 temp_nodes[:, 0] = (temp_nodes[:, 0] - (X1 + X2) / 2) * factor + (X1 + X2) / 2 temp_nodes[:, 1], temp_nodes[:, 2] = pol2cart(temp_R, temp_phi) temp_geo.set_nodes(temp_nodes, self.get_deltaLength()) # 4. rotation back if doRotation: temp_geo.node_rotation(rotation_norm, -temp_theta) # 5. set # temp_geo.show_nodes() self.set_nodes(temp_geo.get_nodes() + self.get_origin(), self.get_deltaLength()) return True class _revolve_geo(base_geo): def __init__(self): super().__init__() def create_full_geo(self, n_c): # rotate alone z axis def rot_nodes(nodes): r = nodes[:, 0] z = nodes[:, 2] theta = np.linspace(0, 2 * np.pi, n_c, endpoint=False) x = np.outer(r, np.cos(theta)).flatten() y = np.outer(r, np.sin(theta)).flatten() z = np.outer(z, np.ones_like(theta)).flatten() nodes = np.vstack((x, y, z)).T return nodes self.set_nodes(rot_nodes(self.get_nodes()), self.get_deltaLength(), resetVelocity=True) return True class revolve_ellipse(_revolve_geo): def __init__(self): super().__init__() self._length = 0 self._radius = 0 self._type = 'revolve_ellipse' def create_deltaz(self, ds: float, # length of the mesh a: float, # axis1 = 2*a b: float): # axis2 = 2*b epsilon1 = 1 / 3 epsilon2 = 0.3 err_msg = 'both major and minor axises should positive. ' assert a > 0 and b > 0, err_msg self._deltaLength = ds n_2 = np.ceil(a / 2 / ds).astype(int) dz = a / n_2 z0 = np.linspace(a - dz / 2, dz / 2, n_2) z1 = np.hstack([z0, np.flipud(z0) * -1]) x1 = np.sqrt(b ** 2 * (1 - (z1 / a) ** 2)) # generate nodes. self._nodes = np.zeros((x1.size, 3), order='F') self._nodes[:, 0] = x1.flatten(order='F') self._nodes[:, 2] = z1.flatten(order='F') self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((self._nodes.shape[0], 2), order='F') self._geo_norm = np.array((0, 0, 1)) # associated force geo move_delta = dz * epsilon1 z0 = z0 - move_delta z1 = np.hstack([z0, np.flipud(z0) * -1]) dx = x1 / b * dz * epsilon2 x1 = x1 - dx f_geo = self.copy() fnodes = np.vstack((x1, np.zeros_like(x1), z1)).T f_geo.set_nodes(fnodes, 1) return f_geo def create_half_deltaz(self, ds: float, # length of the mesh a: float, # axis1 = 2*a b: float): # axis2 = 2*b epsilon1 = 1 / 3 epsilon2 = 0.3 err_msg = 'both major and minor axises should positive. ' assert a > 0 and b > 0, err_msg self._deltaLength = ds n_2 = np.ceil(a / 2 / ds).astype(int) dz = a / n_2 z1 = np.linspace(a - dz / 2, dz / 2, n_2) x1 = np.sqrt(b ** 2 * (1 - (z1 / a) ** 2)) # generate nodes. self._nodes = np.zeros((x1.size, 3), order='F') self._nodes[:, 0] = x1.flatten(order='F') self._nodes[:, 2] = z1.flatten(order='F') self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((self._nodes.shape[0], 2), order='F') self._geo_norm = np.array((0, 0, 1)) # associated force geo move_delta = dz * epsilon1 z1 = z1 - move_delta dx = x1 / b * dz * epsilon2 x1 = x1 - dx f_geo = self.copy() fnodes = np.vstack((x1, np.zeros_like(x1), z1)).T f_geo.set_nodes(fnodes, 1) return f_geo def create_delta(self, ds: float, # length of the mesh a: float, # axis1 = 2*a b: float, # axis2 = 2*b epsilon): err_msg = 'both major and minor axises should positive. ' assert a > 0 and b > 0, err_msg self._deltaLength = ds # fit arc length as function F of theta using 2-degree pylonomial from scipy.special import ellipeinc from scipy.optimize import curve_fit func = lambda theta, a, b: a * theta ** 2 + b * theta theta = np.linspace(0, np.pi / 2, 100) arcl = b * ellipeinc(theta, 1 - (a / b) ** 2) popt, _ = curve_fit(func, theta, arcl) # divided arc length equally, and get theta using F^-1. n = np.ceil(arcl[-1] / ds).astype(int) t_arcl = np.linspace(0, arcl[-1], n, endpoint=False) + ds / 2 # do something to correct the fitting error. while t_arcl[-1] > arcl[-1]: t_arcl = t_arcl[:-1] t_theta1 = (-popt[1] + np.sqrt(popt[1] ** 2 + 4 * popt[0] * t_arcl)) / (2 * popt[0]) t_theta2 = (-popt[1] - np.sqrt(popt[1] ** 2 + 4 * popt[0] * t_arcl)) / (2 * popt[0]) b_theta1 = [a and b for a, b in zip(t_theta1 > 0, t_theta1 < np.pi / 2)] b_theta2 = [a and b for a, b in zip(t_theta2 > 0, t_theta2 < np.pi / 2)] err_msg = 'something is wrong, theta of ellipse is uncertain. ' assert all([a != b for a, b in zip(b_theta1, b_theta2)]), err_msg t_theta0 = t_theta1 * b_theta1 + t_theta2 * b_theta2 t_theta = np.hstack((t_theta0, np.pi / 2, np.pi - t_theta0[::-1])) t_x = a * np.cos(t_theta) t_y = b * np.sin(t_theta) self._nodes = np.vstack((t_y, np.zeros_like(t_y), np.hstack(t_x))).T self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((self._nodes.shape[0], 2), order='F') self._geo_norm = np.array((0, 0, 1)) # force geo tfct = (a + epsilon * ds) / a t_x = a * tfct * np.cos(t_theta) t_y = b * tfct * np.sin(t_theta) fnodes = np.vstack((t_y, np.zeros_like(t_y), np.hstack(t_x))).T f_geo = self.copy() f_geo.set_nodes(fnodes, 1) return f_geo def create_half_delta(self, ds: float, # length of the mesh a: float, # axis1 = 2*a b: float, # axis2 = 2*b epsilon): err_msg = 'both major and minor axises should positive. ' assert a > 0 and b > 0, err_msg self._deltaLength = ds # fit arc length as function F of theta using 2-degree pylonomial from scipy.special import ellipeinc from scipy.optimize import curve_fit func = lambda theta, a, b: a * theta ** 2 + b * theta theta = np.linspace(0, np.pi / 2, 100) arcl = b * ellipeinc(theta, 1 - (a / b) ** 2) popt, _ = curve_fit(func, theta, arcl) # divided arc length equally, and get theta using F^-1. n = np.ceil(arcl[-1] / ds).astype(int) t_arcl = np.linspace(0, arcl[-1], n, endpoint=False) + ds / 2 # do something to correct the fitting error. while t_arcl[-1] > arcl[-1]: t_arcl = t_arcl[:-1] t_theta1 = (-popt[1] + np.sqrt(popt[1] ** 2 + 4 * popt[0] * t_arcl)) / (2 * popt[0]) t_theta2 = (-popt[1] - np.sqrt(popt[1] ** 2 + 4 * popt[0] * t_arcl)) / (2 * popt[0]) b_theta1 = [a and b for a, b in zip(t_theta1 > 0, t_theta1 < np.pi / 2)] b_theta2 = [a and b for a, b in zip(t_theta2 > 0, t_theta2 < np.pi / 2)] err_msg = 'something is wrong, theta of ellipse is uncertain. ' assert all([a != b for a, b in zip(b_theta1, b_theta2)]), err_msg t_theta0 = t_theta1 * b_theta1 + t_theta2 * b_theta2 t_x = a * np.cos(t_theta0) t_y = b * np.sin(t_theta0) self._nodes = np.vstack((t_y, np.zeros_like(t_y), np.hstack(t_x))).T self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((self._nodes.shape[0], 2), order='F') self._geo_norm = np.array((0, 0, 1)) # force geo tfct = (a + epsilon * ds) / a t_x = a * tfct * np.cos(t_theta0) t_y = b * tfct * np.sin(t_theta0) fnodes = np.vstack((t_y, np.zeros_like(t_y), np.hstack(t_x))).T f_geo = self.copy() f_geo.set_nodes(fnodes, 1) return f_geo class revolve_pipe(_revolve_geo): def __init__(self): super().__init__() self._length = 0 self._radius = 0 self._type = 'revolve_pipe' def create_deltaz(self, ds: float, # length of the mesh length: float, # length of the tunnel radius: float): # radius of the tunnel epsilon_x = 1 / 2 epsilon_z = 1 / 3 cover_fct = 2 self._deltaLength = ds self._length = length self._radius = radius # the tunnel is along z axis # due to the symmetry of pipe, generate the first part and get the image as the other part. z0 = np.linspace((length - ds) / 2, 0, num=np.ceil((length / ds / 2)).astype(int))[1:] z0 = z0 + ds / 2 x0 = np.ones_like(z0) * radius # cover 1 x1 = np.linspace(0, radius, num=cover_fct * np.ceil((radius / ds)).astype(int)) z1 = np.ones_like(x1) * length / 2 # half pard xi = np.hstack((x1, x0)) zi = np.hstack((z1, z0)) # all x = np.hstack((xi, np.flipud(xi))) z = np.hstack((zi, np.flipud(zi) * -1)) self._nodes = np.zeros((x.size, 3), order='F') self._nodes[:, 0] = x.flatten(order='F') self._nodes[:, 1] = np.zeros_like(x).flatten(order='F') self._nodes[:, 2] = z.flatten(order='F') self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((self._nodes.shape[0], 2), order='F') self._geo_norm = np.array((0, 0, 1)) # associated force geo f_geo = self.copy() epsilon_x = epsilon_x / cover_fct a = (radius - ds * epsilon_x * 2) / radius b = ds * epsilon_x z0 = z0 - ds * epsilon_z x0 = a * x0 + b x1 = a * x1 + b z1 = np.ones_like(x1) * length / 2 - ds * epsilon_z # half pard xi = np.hstack((x1, x0)) zi = np.hstack((z1, z0)) # all x = np.hstack((xi, np.flipud(xi))) z = np.hstack((zi, np.flipud(zi) * -1)) fnodes = np.vstack((x, np.zeros_like(x), z)).T f_geo.set_nodes(fnodes, 1) return f_geo def create_half_deltaz(self, ds: float, # length of the mesh length: float, # length of the tunnel radius: float): # radius of the tunnel epsilon_x = 1 / 2 epsilon_z = 1 / 2 cover_fct = 1.5 self._deltaLength = ds self._length = length self._radius = radius # the tunnel is along z axis z0 = np.linspace(length / 2, ds / 2, num=np.ceil(length / ds / 2).astype(int))[1:] x0 = np.ones_like(z0) * radius # cover x1 = np.linspace(0, radius, num=np.ceil(cover_fct * radius / ds).astype(int)) z1 = np.ones_like(x1) * length / 2 # half part xi = np.hstack((x1, x0)) zi = np.hstack((z1, z0)) self._nodes = np.zeros((xi.size, 3), order='F') self._nodes[:, 0] = xi.flatten(order='F') self._nodes[:, 1] = np.zeros_like(xi).flatten(order='F') self._nodes[:, 2] = zi.flatten(order='F') self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((self._nodes.shape[0], 2), order='F') self._geo_norm = np.array((0, 0, 1)) # associated force geo f_geo = self.copy() epsilon_x = epsilon_x / cover_fct a = (radius - ds * epsilon_x * 2) / radius b = ds * epsilon_x z0 = z0 - ds * epsilon_z x0 = a * x0 + b x1 = a * x1 + b z1 = np.ones_like(x1) * length / 2 - ds * epsilon_z # half part xi = np.hstack((x1, x0)) zi = np.hstack((z1, z0)) fnodes = np.vstack((xi, np.zeros_like(xi), zi)).T f_geo.set_nodes(fnodes, 1) return f_geo def create_half_deltaz_v2(self, ds: float, # length of the mesh length: float, # length of the tunnel radius: float): # radius of the tunnel epsilon_x = 1 / 2 epsilon_z = 1 / 2 epsilon_3 = 1 / 5 # radio between radii of tangent curve and pipe. cover_fct = 1 tc_fct = 5 self._deltaLength = ds self._length = length self._radius = radius # the tunnel is along z axis z0 = np.linspace(length / 2, ds / 2, num=np.ceil(length / ds / 2).astype(int))[1:] x0 = np.ones_like(z0) * radius # Tangent curve tnz = np.ceil(epsilon_3 * radius / ds).astype(int) r_cv = ds * tnz z1 = np.flipud(np.arange(tnz) * ds + length / 2) x1 = (r_cv ** tc_fct - (z1 - length / 2) ** tc_fct) ** (1 / tc_fct) + radius - r_cv # cover num = np.ceil(cover_fct * x1[0] / ds).astype(int) x2 = np.linspace(0, x1[0], num=num)[:np.ceil(-2 * cover_fct).astype(int)] z2 = np.ones_like(x2) * z1[0] # half part xi = np.hstack((x2, x1, x0)) zi = np.hstack((z2, z1, z0)) self._nodes = np.zeros((xi.size, 3), order='F') self._nodes[:, 0] = xi.flatten(order='F') self._nodes[:, 1] = np.zeros_like(xi).flatten(order='F') self._nodes[:, 2] = zi.flatten(order='F') self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((self._nodes.shape[0], 2), order='F') self._geo_norm = np.array((0, 0, 1)) # associated force geo f_geo = self.copy() epsilon_x = epsilon_x / cover_fct a = (radius - ds * epsilon_x * 2) / radius b = ds * epsilon_x x0 = a * x0 + b z0 = z0 - ds * epsilon_z x1 = a * x1 + b z1 = z1 - ds * epsilon_z x2 = a * x2 + b z2 = np.ones_like(x2) * length / 2 - ds * epsilon_z + r_cv # half part xi = np.hstack((x2, x1, x0)) zi = np.hstack((z2, z1, z0)) fnodes = np.vstack((xi, np.zeros_like(xi), zi)).T f_geo.set_nodes(fnodes, 1) return f_geo def create_half_deltaz_v3(self, ds: float, # length of the mesh length: float, # length of the tunnel radius: float): # radius of the tunnel epsilon_x = 1 / 2 epsilon_z = 1 / 2 epsilon_3 = 1 / 1 # radio between radii of tangent curve and pipe. cover_fct = 1.5 tc_fct = 2 self._deltaLength = ds self._length = length self._radius = radius # the tunnel is along z axis z0 = np.linspace(length / 2, ds / 2, num=np.ceil(length / ds / 2).astype(int))[1:] x0 = np.ones_like(z0) * radius # Tangent curve tnz = np.ceil(epsilon_3 * radius / ds).astype(int) r_cv = ds * tnz z1 = np.flipud(np.arange(tnz) * ds + length / 2) x1 = (r_cv ** tc_fct - (z1 - length / 2) ** tc_fct) ** (1 / tc_fct) + radius - r_cv # cover num = np.ceil(cover_fct * x1[0] / ds).astype(int) x2 = np.linspace(0, x1[0], num=num)[:np.ceil(-2 * cover_fct).astype(int)] z2 = np.ones_like(x2) * length / 2 + r_cv # half part xi = np.hstack((x2, x1, x0)) zi = np.hstack((z2, z1, z0)) self._nodes = np.zeros((xi.size, 3), order='F') self._nodes[:, 0] = xi.flatten(order='F') self._nodes[:, 1] = np.zeros_like(xi).flatten(order='F') self._nodes[:, 2] = zi.flatten(order='F') self.set_dmda() self._u = np.zeros(self._nodes.size) self._normal = np.zeros((self._nodes.shape[0], 2), order='F') self._geo_norm = np.array((0, 0, 1)) # associated force geo f_geo = self.copy() epsilon_x = epsilon_x / cover_fct a = (radius - ds * epsilon_x * 2) / radius b = ds * epsilon_x x0 = a * x0 + b z0 = z0 - ds * epsilon_z x1 = a * x1 + b z1 = z1 - ds * epsilon_z x2 = a * x2 + b z2 = np.ones_like(x2) * length / 2 - ds * epsilon_z + r_cv # half part xi = np.hstack((x2, x1, x0)) zi = np.hstack((z2, z1, z0)) fnodes = np.vstack((xi, np.zeros_like(xi), zi)).T f_geo.set_nodes(fnodes, 1) return f_geo class pipe_cover_geo(tunnel_geo): def __init__(self): super().__init__() self._cover_node_list = uniqueList() self._type = 'pipe_cover_geo' # geo type def create_with_cover(self, deltaLength: float, # length of the mesh length: float, # length of the tunnel radius: float, # radius of the tunnel a_factor=1e-6, z_factor=1e-6): # the tunnel is along z axis. self._deltaLength = deltaLength # pipe na = np.ceil(2 * np.pi * radius / deltaLength).astype(int) a = np.linspace(-1, 1, na, endpoint=False) a = (1 / (1 + np.exp(-a_factor * a)) - 1 / (1 + np.exp(a_factor))) / ( 1 / (1 + np.exp(-a_factor)) - 1 / (1 + np.exp(a_factor))) * 2 * np.pi nz = np.ceil(length / deltaLength).astype(int) nodes_z = np.linspace(1, -1, nz) nodes_z = np.sign(nodes_z) * (np.exp(np.abs(nodes_z) * z_factor) - 1) / ( np.exp(z_factor) - 1) * length / 2 a, nodes_z = np.meshgrid(a, nodes_z) a = a.flatten() nodes_z = nodes_z.flatten() nodes_x = np.cos(a) * radius nodes_y = np.sin(a) * radius iscover = np.ones_like(nodes_z, dtype=bool) iscover[:] = False # cover nc =
np.ceil((radius - deltaLength) / deltaLength)
numpy.ceil
__author__ = '<NAME>' __email__ = '<EMAIL>' # todo: Clean this up! Make it into a real module import os, sys, itertools import networkx as nx import pandas as pd from statsmodels.tsa.stattools import ccf import matplotlib.pyplot as plt import numpy as np from collections import Counter import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams['font.sans-serif'] = 'Arial' from scipy.stats import pearsonr from sklearn.metrics.cluster import entropy from sklearn.metrics.cluster import expected_mutual_information from sklearn.utils.validation import check_array from math import log from Swing.util.Evaluator import Evaluator def get_experiment_list(filename, timepoints=None, perturbs=None, time_col='Time'): # load files timecourse = pd.read_csv(filename, sep="\t") if timepoints is None: timepoints = len(set(timecourse[time_col])) if perturbs is None: perturbs = len(timecourse)/timepoints if perturbs.is_integer(): perturbs = int(perturbs) else: raise ValueError("Uneven number of timepoints between perturbation experiments") # divide into list of dataframes experiments = [] for i in range(0, timepoints * perturbs - timepoints + 1, timepoints): experiments.append(timecourse.ix[i:i + timepoints - 1]) # reformat for idx, exp in enumerate(experiments): exp = exp.set_index(time_col) experiments[idx] = exp return experiments def xcorr_experiments(experiments, gene_axis=1): """ Cross correlate the g :param experiments: list list of dataframes :param gene_axis: int axis corresponding to each gene. 0 for rows, 1 for columns :return: """ return np.array([cc_experiment(experiment.values.T) if gene_axis == 1 else cc_experiment(experiment.values) for experiment in experiments]) def cc_experiment(experiment): """ For one experiment. x should be n rows (genes) by m columns (timepoints) :param experiment: :return: """ ccf_array = np.zeros((experiment.shape[0], experiment.shape[0], experiment.shape[1])) for ii, static in enumerate(experiment): for jj, moving in enumerate(experiment): if ii == jj: unbiased = True else: unbiased = False ccf_array[ii][jj] = ccf(static, moving, unbiased=unbiased) return ccf_array def get_xcorr_indices(diff_ts, lag, tolerance): pair_list = [] # get all pairs targets = np.array(np.where((diff_ts >= lag-tolerance ) & (diff_ts <= lag+tolerance))) n_ind = targets.shape[1] pair_list = [tuple(targets[:,x]) for x in range(n_ind)] # only keep tuples where the parent index is greater than the child if lag != 0: pair_list = [ x for x in pair_list if x[1] < x[2]] p_pair_list = [(x[0],x[1]) for x in pair_list] c_pair_list = [(x[0],x[2]) for x in pair_list] return(p_pair_list,c_pair_list) def get_pairwise_xcorr(parent,child,experiment,time_map,lag,tolerance,rc): ts_shape = time_map.shape[1]-1 ts = time_map.iloc[:,:ts_shape] ts = ts.values all_ps_values = np.zeros(rc) all_cs_values = np.zeros(rc) # make an array of differences diff_ts = np.abs(ts[:,:,None] - ts[:,None,:]) # get all indices with the same difference ps_values = np.zeros(rc) cs_values = np.zeros(rc) ps = [x[parent].values for x in experiment] cs = [x[child].values for x in experiment] all_ps_values = np.vstack(ps) all_cs_values = np.vstack(cs) p_idx,c_idx = get_xcorr_indices(diff_ts, lag, tolerance) ps_values = [all_ps_values[x] for x in p_idx] cs_values = [all_cs_values[x] for x in c_idx] rsq, pval = pearsonr(ps_values,cs_values) #c_xy = np.histogram2d(ps_values, cs_values, 10)[0] #n_samples = len(ps_values) #mi = my_mutual_info_score(n_samples, x_val = ps_values, y_val = cs_values, labels_true=None, labels_pred=None, contingency=c_xy) #print(mi, parent, child, lag) return(rsq,pval) def my_mutual_info_score(n_samples, x_val, y_val, labels_true, labels_pred, contingency=None): """Mutual Information between two clusterings. The Mutual Information is a measure of the similarity between two labels of the same data. Where :math:`P(i)` is the probability of a random sample occurring in cluster :math:`U_i` and :math:`P'(j)` is the probability of a random sample occurring in cluster :math:`V_j`, the Mutual Information between clusterings :math:`U` and :math:`V` is given as: .. math:: MI(U,V)=\sum_{i=1}^R \sum_{j=1}^C P(i,j)\log\\frac{P(i,j)}{P(i)P'(j)} This is equal to the Kullback-Leibler divergence of the joint distribution with the product distribution of the marginals. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. contingency : {None, array, sparse matrix}, shape = [n_classes_true, n_classes_pred] A contingency matrix given by the :func:`contingency_matrix` function. If value is ``None``, it will be computed, otherwise the given value is used, with ``labels_true`` and ``labels_pred`` ignored. Returns ------- mi : float Mutual information, a non-negative value See also -------- adjusted_mutual_info_score: Adjusted against chance Mutual Information normalized_mutual_info_score: Normalized Mutual Information """ if contingency is None: labels_true, labels_pred = check_clusterings(labels_true, labels_pred) contingency = contingency_matrix(labels_true, labels_pred, sparse=True) else: contingency = check_array(contingency, accept_sparse=['csr', 'csc', 'coo'], dtype=[int, np.int32, np.int64]) if isinstance(contingency, np.ndarray): # For an array nzx, nzy = np.nonzero(contingency) nz_val = contingency[nzx, nzy] elif sp.issparse(contingency): # For a sparse matrix nzx, nzy, nz_val = sp.find(contingency) else: raise ValueError("Unsupported type for 'contingency': %s" % type(contingency)) contingency_sum = contingency.sum() pi = np.ravel(contingency.sum(axis=1)) pj = np.ravel(contingency.sum(axis=0)) log_contingency_nm = np.log(nz_val) contingency_nm = nz_val / contingency_sum # Don't need to calculate the full outer product, just for non-zeroes outer = pi.take(nzx) * pj.take(nzy) log_outer = -np.log(outer) + log(pi.sum()) + log(pj.sum()) mi = (contingency_nm * (log_contingency_nm - log(contingency_sum)) + contingency_nm * log_outer) mi = mi.sum() emi = expected_mutual_information(contingency, n_samples) # Calculate entropy for each labeling h_true, h_pred = entropy(x_val), entropy(y_val) ami = (mi - emi) / (max(h_true, h_pred) - emi) return ami def calc_edge_lag2(experiments,genes, signed_edge_list=None, tolerance = 8, rc = (23,6), mode=None): # load the interval file edges = signed_edge_list['regulator-target'] #initialize dataframe to return col, row = np.meshgrid(range(len(genes)), range(len(genes))) edge_lag = pd.DataFrame() edge_lag['parent'] = np.array(genes)[row.flatten()] edge_lag['child'] = np.array(genes)[col.flatten()] edge_lag['Edge'] = list(zip(edge_lag['parent'], edge_lag['child'])) lag_results = [] if mode is 'marbach': time_map = pd.read_csv('../../data/invitro/marbach_timesteps.tsv', sep='\t') rc = (23,6) lags = [0,5,10,20,30,40] tolerance = 3 else: time_map = pd.read_csv('../../data/invitro/omranian_timesteps.tsv', sep='\t') lags = [0,10,20,30,60,90] time_steps = time_map['Timestep'].tolist() for edge in edges: # Ignore self edges if edge[0] == edge[1]: continue tolerance = 8 c_list = [] for lag in lags: r,p = get_pairwise_xcorr(edge[0],edge[1],experiments,time_map,lag,tolerance,rc) c_list.append((lag,r,p)) sign = signed_edge_list[signed_edge_list['regulator-target'] == edge]['signs'].tolist() best_lag = min(c_list, key = lambda x: x[2]) if best_lag[2] > 0.05/len(edges): true_lag = np.nan else: true_lag = best_lag[0] lag_results.append({'Edge':edge, 'Lag':true_lag, 'Sign': sign, 'Lag_list': c_list}) lag_results = pd.DataFrame(lag_results) edge_lag = pd.merge(edge_lag, lag_results, how='outer', on='Edge') lag_results['parent'] = [x[0] for x in lag_results['Edge'].tolist()] lag_results['child'] = [x[1] for x in lag_results['Edge'].tolist()] return(lag_results, edge_lag) def calc_edge_lag(xcorr, genes, sc_frac=0.1, min_ccf=0.5, timestep=1, signed_edge_list=None, flat=True, return_raw=False): """ :param xcorr: 4d array 4 axes in order: experiments, parent, child, time :param genes: list :param sc_frac: float related filtering. see filter_ccfs :param min_ccf: float minimum cross correlation needed to call a lag :param timestep: int :param signed: dataframe can be a list of signed edges or none (default) maximize either negative or positive correlation depending on prior information :param flat: boolean true: return the mean lag for each edge false: return the list of all lags (for each exp) for each edge :return: """ e, p, c, t = xcorr.shape if signed_edge_list is not None: edges = signed_edge_list['regulator-target'] else: edges = itertools.product(genes, genes) lag_estimate = np.zeros((p,c)) sc_thresh = sc_frac * t #initialize dataframe to return col, row = np.meshgrid(range(len(genes)), range(len(genes))) edge_lag = pd.DataFrame() edge_lag['Parent'] = np.array(genes)[row.flatten()] edge_lag['Child'] = np.array(genes)[col.flatten()] edge_lag['Edge'] = list(zip(edge_lag['Parent'], edge_lag['Child'])) lag_results = [] for edge in edges: # Ignore self edges if edge[0] == edge[1]: continue p_idx = genes.index(edge[0]) c_idx = genes.index(edge[1]) if signed_edge_list is not None: sign = signed_edge_list[signed_edge_list['regulator-target'] == edge]['signs'].tolist()[0] # The ccf keeps the parent static and moves the child. Therefore the reversed xcorr would show the true lag reverse = xcorr[:, c_idx, p_idx] filtered = filter_ccfs(reverse, sc_thresh, min_ccf) if filtered.shape[0] > 0: # f, axarr = plt.subplots(1,2) # axarr[0].plot(reverse.T) # axarr[1].plot(filtered.T) # plt.show() # default setting if flat: if signed_edge_list is None: lag_estimate[p_idx, c_idx] = float(np.mean(np.argmax(np.abs(filtered), axis=1)))*timestep elif sign == '+': lag_estimate[p_idx, c_idx] = float(np.mean(np.argmax(filtered, axis=1)))*timestep elif sign == '-': lag_estimate[p_idx, c_idx] = float(np.mean(np.argmin(filtered, axis=1)))*timestep elif sign == '+-': lag_estimate[p_idx, c_idx] = float(np.mean(np.argmax(
np.abs(filtered)
numpy.abs
""" Sample code for Convolutional Neural Networks for Sentence Classification http://arxiv.org/pdf/1408.5882v2.pdf Much of the code is modified from - deeplearning.net (for ConvNet classes) - https://github.com/mdenil/dropout (for dropout) - https://groups.google.com/forum/#!topic/pylearn-dev/3QbKtCumAW4 (for Adadelta) """ # from conv_net_classes import LeNetConvPoolLayer, MLPDropout # import _pickle as cPickle import cPickle import numpy as np from collections import defaultdict, OrderedDict import theano import theano.tensor as T from theano.ifelse import ifelse import os import warnings import sys import time import getpass import csv from conv_net_classes_gpu import LeNetConvPoolLayer, MLPDropout warnings.filterwarnings("ignore") # different non-linearities def ReLU(x): y = T.maximum(0.0, x) return (y) def Sigmoid(x): y = T.nnet.sigmoid(x) return (y) def Tanh(x): y = T.tanh(x) return (y) def Iden(x): y = x return (y) def train_conv_net(datasets, U, ofile, cv=0, attr=0, img_w=300, filter_hs=[3, 4, 5], hidden_units=[100, 2], dropout_rate=[0.5], shuffle_batch=True, n_epochs=25, batch_size=50, lr_decay=0.95, conv_non_linear="relu", activations=[Iden], sqr_norm_lim=9, non_static=True): """ Train a simple conv net img_h = sentence length (padded where necessary) img_w = word vector length (300 for word2vec) filter_hs = filter window sizes hidden_units = [x,y] x is the number of feature maps (per filter window), and y is the penultimate layer sqr_norm_lim = s^2 in the paper lr_decay = adadelta decay parameter """ rng = np.random.RandomState(3435) img_h = len(datasets[0][0][0]) filter_w = img_w feature_maps = hidden_units[0] filter_shapes = [] pool_sizes = [] for filter_h in filter_hs: filter_shapes.append((feature_maps, 1, filter_h, filter_w)) pool_sizes.append((img_h - filter_h + 1, img_w - filter_w + 1)) parameters = [("image shape", img_h, img_w), ("filter shape", filter_shapes), ("hidden_units", hidden_units), ("dropout", dropout_rate), ("batch_size", batch_size), ("non_static", non_static), ("learn_decay", lr_decay), ("conv_non_linear", conv_non_linear), ("non_static", non_static) , ("sqr_norm_lim", sqr_norm_lim), ("shuffle_batch", shuffle_batch)] print(parameters) # define model architecture index = T.iscalar() x = T.tensor3('x', dtype=theano.config.floatX) y = T.ivector('y') mair = T.matrix('mair') Words = theano.shared(value=U, name="Words") zero_vec_tensor = T.vector(dtype=theano.config.floatX) zero_vec = np.zeros(img_w, dtype=theano.config.floatX) set_zero = theano.function([zero_vec_tensor], updates=[(Words, T.set_subtensor(Words[0, :], zero_vec_tensor))], allow_input_downcast=True) conv_layers = [] for i in range(len(filter_hs)): filter_shape = filter_shapes[i] pool_size = pool_sizes[i] conv_layer = LeNetConvPoolLayer(rng, image_shape=None, filter_shape=filter_shape, poolsize=pool_size, non_linear=conv_non_linear) conv_layers.append(conv_layer) layer0_input = Words[T.cast(x.flatten(), dtype="int32")].reshape( (x.shape[0], x.shape[1], x.shape[2], Words.shape[1])) def convolve_user_statuses(statuses): layer1_inputs = [] def sum_mat(mat, out): z = ifelse(T.neq(T.sum(mat, dtype=theano.config.floatX), T.constant(0, dtype=theano.config.floatX)), T.constant(1, dtype=theano.config.floatX), T.constant(0, dtype=theano.config.floatX)) return out + z, theano.scan_module.until(T.eq(z, T.constant(0, dtype=theano.config.floatX))) status_count, _ = theano.scan(fn=sum_mat, sequences=statuses, outputs_info=T.constant(0, dtype=theano.config.floatX)) # Slice-out dummy (zeroed) sentences relv_input = statuses[:T.cast(status_count[-1], dtype='int32')].dimshuffle(0, 'x', 1, 2) for conv_layer in conv_layers: layer1_inputs.append(conv_layer.set_input(input=relv_input).flatten(2)) features = T.concatenate(layer1_inputs, axis=1) avg_feat = T.max(features, axis=0) return avg_feat conv_feats, _ = theano.scan(fn=convolve_user_statuses, sequences=layer0_input) # Add Mairesse features layer1_input = T.concatenate([conv_feats, mair], axis=1) ##mairesse_change hidden_units[0] = feature_maps * len(filter_hs) + datasets[4].shape[1] ##mairesse_change classifier = MLPDropout(rng, input=layer1_input, layer_sizes=hidden_units, activations=activations, dropout_rates=dropout_rate) svm_data = T.concatenate([classifier.layers[0].output, y.dimshuffle(0, 'x')], axis=1) # define parameters of the model and update functions using adadelta params = classifier.params for conv_layer in conv_layers: params += conv_layer.params if non_static: # if word vectors are allowed to change, add them as model parameters params += [Words] cost = classifier.negative_log_likelihood(y) dropout_cost = classifier.dropout_negative_log_likelihood(y) grad_updates = sgd_updates_adadelta(params, dropout_cost, lr_decay, 1e-6, sqr_norm_lim) # shuffle dataset and assign to mini batches. if dataset size is not a multiple of mini batches, replicate # extra data (at random) np.random.seed(3435) if datasets[0].shape[0] % batch_size > 0: extra_data_num = batch_size - datasets[0].shape[0] % batch_size rand_perm = np.random.permutation(range(len(datasets[0]))) train_set_x = datasets[0][rand_perm] train_set_y = datasets[1][rand_perm] train_set_m = datasets[4][rand_perm] extra_data_x = train_set_x[:extra_data_num] extra_data_y = train_set_y[:extra_data_num] extra_data_m = train_set_m[:extra_data_num] new_data_x = np.append(datasets[0], extra_data_x, axis=0) new_data_y = np.append(datasets[1], extra_data_y, axis=0) new_data_m = np.append(datasets[4], extra_data_m, axis=0) else: new_data_x = datasets[0] new_data_y = datasets[1] new_data_m = datasets[4] rand_perm = np.random.permutation(range(len(new_data_x))) new_data_x = new_data_x[rand_perm] new_data_y = new_data_y[rand_perm] new_data_m = new_data_m[rand_perm] n_batches = new_data_x.shape[0] / batch_size n_train_batches = int(np.round(n_batches * 0.9)) # divide train set into train/val sets test_set_x = datasets[2] test_set_y = np.asarray(datasets[3], "int32") test_set_m = datasets[5] train_set_x, train_set_y, train_set_m = shared_dataset((new_data_x[:n_train_batches * batch_size], new_data_y[:n_train_batches * batch_size], new_data_m[:n_train_batches * batch_size])) val_set_x, val_set_y, val_set_m = shared_dataset((new_data_x[n_train_batches * batch_size:], new_data_y[n_train_batches * batch_size:], new_data_m[n_train_batches * batch_size:])) n_val_batches = n_batches - n_train_batches val_model = theano.function([index], classifier.errors(y), givens={ x: val_set_x[index * batch_size: (index + 1) * batch_size], y: val_set_y[index * batch_size: (index + 1) * batch_size], mair: val_set_m[index * batch_size: (index + 1) * batch_size]}, ##mairesse_change allow_input_downcast=False) # compile theano functions to get train/val/test errors test_model = theano.function([index], [classifier.errors(y), svm_data], givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size], mair: train_set_m[index * batch_size: (index + 1) * batch_size]}, ##mairesse_change allow_input_downcast=True) train_model = theano.function([index], cost, updates=grad_updates, givens={ x: train_set_x[index * batch_size:(index + 1) * batch_size], y: train_set_y[index * batch_size:(index + 1) * batch_size], mair: train_set_m[index * batch_size: (index + 1) * batch_size]}, ##mairesse_change allow_input_downcast=True) test_y_pred = classifier.predict(layer1_input) test_error = T.sum(T.neq(test_y_pred, y), dtype=theano.config.floatX) true_p = T.sum(test_y_pred * y, dtype=theano.config.floatX) false_p = T.sum(test_y_pred * T.mod(y + T.ones_like(y, dtype=theano.config.floatX), T.constant(2, dtype='int32'))) false_n = T.sum(y * T.mod(test_y_pred + T.ones_like(y, dtype=theano.config.floatX), T.constant(2, dtype='int32'))) test_model_all = theano.function([x, y, mair ##mairesse_change ] , [test_error, true_p, false_p, false_n, svm_data], allow_input_downcast=True) test_batches = test_set_x.shape[0] / batch_size; # start training over mini-batches print('... training') epoch = 0 best_val_perf = 0 val_perf = 0 test_perf = 0 fscore = 0 cost_epoch = 0 while (epoch < n_epochs): start_time = time.time() epoch = epoch + 1 if shuffle_batch: for minibatch_index in np.random.permutation(range(n_train_batches)): cost_epoch = train_model(minibatch_index) set_zero(zero_vec) else: for minibatch_index in range(n_train_batches): cost_epoch = train_model(minibatch_index) set_zero(zero_vec) train_losses = [test_model(i) for i in range(n_train_batches)] train_perf = 1 - np.mean([loss[0] for loss in train_losses]) val_losses = [val_model(i) for i in range(n_val_batches)] val_perf = 1 - np.mean(val_losses) epoch_perf = 'epoch: %i, training time: %.2f secs, train perf: %.2f %%, val perf: %.2f %%' % ( epoch, time.time() - start_time, train_perf * 100., val_perf * 100.) print(epoch_perf) ofile.write(epoch_perf + "\n") ofile.flush() if val_perf >= best_val_perf: best_val_perf = val_perf test_loss_list = [test_model_all(test_set_x[idx * batch_size:(idx + 1) * batch_size], test_set_y[idx * batch_size:(idx + 1) * batch_size], test_set_m[idx * batch_size:(idx + 1) * batch_size] ##mairesse_change ) for idx in range(test_batches)] if test_set_x.shape[0] > test_batches * batch_size: test_loss_list.append( test_model_all(test_set_x[test_batches * batch_size:], test_set_y[test_batches * batch_size:], test_set_m[test_batches * batch_size:] ##mairesse_change )) test_loss_list_temp = test_loss_list test_loss_list = np.asarray([t[:-1] for t in test_loss_list]) test_loss = np.sum(test_loss_list[:, 0]) / float(test_set_x.shape[0]) test_perf = 1 - test_loss tp = np.sum(test_loss_list[:, 1]) fp = np.sum(test_loss_list[:, 2]) fn =
np.sum(test_loss_list[:, 3])
numpy.sum
""" Tests for deepreg/model/layer_util.py in pytest style """ from test.unit.util import is_equal_tf from typing import Tuple, Union import numpy as np import pytest import tensorflow as tf import deepreg.model.layer_util as layer_util def test_get_reference_grid(): """ Test get_reference_grid by confirming that it generates a sample grid test case to is_equal_tf's tolerance level. """ want = tf.constant( np.array( [[[[0, 0, 0], [0, 0, 1], [0, 0, 2]], [[0, 1, 0], [0, 1, 1], [0, 1, 2]]]], dtype=np.float32, ) ) get = layer_util.get_reference_grid(grid_size=[1, 2, 3]) assert is_equal_tf(want, get) def test_get_n_bits_combinations(): """ Test get_n_bits_combinations by confirming that it generates appropriate solutions for 1D, 2D, and 3D cases. """ # Check n=1 - Pass assert layer_util.get_n_bits_combinations(1) == [[0], [1]] # Check n=2 - Pass assert layer_util.get_n_bits_combinations(2) == [[0, 0], [0, 1], [1, 0], [1, 1]] # Check n=3 - Pass assert layer_util.get_n_bits_combinations(3) == [ [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ] class TestPyramidCombination: def test_1d(self): weights = tf.constant(np.array([[0.2]], dtype=np.float32)) values = tf.constant(np.array([[1], [2]], dtype=np.float32)) # expected = 1 * 0.2 + 2 * 2 expected = tf.constant(np.array([1.8], dtype=np.float32)) got = layer_util.pyramid_combination( values=values, weight_floor=weights, weight_ceil=1 - weights ) assert is_equal_tf(got, expected) def test_2d(self): weights = tf.constant(np.array([[0.2], [0.3]], dtype=np.float32)) values = tf.constant( np.array( [ [1], # value at corner (0, 0), weight = 0.2 * 0.3 [2], # value at corner (0, 1), weight = 0.2 * 0.7 [3], # value at corner (1, 0), weight = 0.8 * 0.3 [4], # value at corner (1, 1), weight = 0.8 * 0.7 ], dtype=np.float32, ) ) # expected = 1 * 0.2 * 0.3 # + 2 * 0.2 * 0.7 # + 3 * 0.8 * 0.3 # + 4 * 0.8 * 0.7 expected = tf.constant(np.array([3.3], dtype=np.float32)) got = layer_util.pyramid_combination( values=values, weight_floor=weights, weight_ceil=1 - weights ) assert is_equal_tf(got, expected) def test_error_dim(self): weights = tf.constant(np.array([[[0.2]], [[0.2]]], dtype=np.float32)) values = tf.constant(np.array([[1], [2]], dtype=np.float32)) with pytest.raises(ValueError) as err_info: layer_util.pyramid_combination( values=values, weight_floor=weights, weight_ceil=1 - weights ) assert ( "In pyramid_combination, elements of values, weight_floor, " "and weight_ceil should have same dimension" in str(err_info.value) ) def test_error_len(self): weights = tf.constant(np.array([[0.2]], dtype=np.float32)) values = tf.constant(np.array([[1]], dtype=np.float32)) with pytest.raises(ValueError) as err_info: layer_util.pyramid_combination( values=values, weight_floor=weights, weight_ceil=1 - weights ) assert ( "In pyramid_combination, num_dim = len(weight_floor), " "len(values) must be 2 ** num_dim" in str(err_info.value) ) class TestLinearResample: x_min, x_max = 0, 2 y_min, y_max = 0, 2 # vol are values on grid [0,2]x[0,2] # values on each point is 3x+y # shape = (1,3,3) vol = tf.constant(np.array([[[0, 1, 2], [3, 4, 5], [6, 7, 8]]]), dtype=tf.float32) # loc are some points, especially # shape = (1,4,3,2) loc = tf.constant( np.array( [ [ [[0, 0], [0, 1], [1, 2]], # boundary corners [[0.4, 0], [0.5, 2], [2, 1.7]], # boundary edge [[-0.4, 0.7], [0, 3], [2, 3]], # outside boundary [[0.4, 0.7], [1, 1], [0.6, 0.3]], # internal ] ] ), dtype=tf.float32, ) @pytest.mark.parametrize("channel", [0, 1, 2]) def test_repeat_extrapolation(self, channel): x = self.loc[..., 0] y = self.loc[..., 1] x = tf.clip_by_value(x, self.x_min, self.x_max) y = tf.clip_by_value(y, self.y_min, self.y_max) expected = 3 * x + y vol = self.vol if channel > 0: vol = tf.repeat(vol[..., None], channel, axis=-1) expected = tf.repeat(expected[..., None], channel, axis=-1) got = layer_util.resample(vol=vol, loc=self.loc, zero_boundary=False) assert is_equal_tf(expected, got) @pytest.mark.parametrize("channel", [0, 1, 2]) def test_repeat_zero_bound(self, channel): x = self.loc[..., 0] y = self.loc[..., 1] expected = 3 * x + y expected = ( expected * tf.cast(x > self.x_min, tf.float32) * tf.cast(x <= self.x_max, tf.float32) ) expected = ( expected * tf.cast(y > self.y_min, tf.float32) * tf.cast(y <= self.y_max, tf.float32) ) vol = self.vol if channel > 0: vol = tf.repeat(vol[..., None], channel, axis=-1) expected = tf.repeat(expected[..., None], channel, axis=-1) got = layer_util.resample(vol=vol, loc=self.loc, zero_boundary=True) assert is_equal_tf(expected, got) def test_shape_error(self): vol = tf.constant(np.array([[0]], dtype=np.float32)) # shape = [1,1] loc = tf.constant(np.array([[0, 0], [0, 0]], dtype=np.float32)) # shape = [2,2] with pytest.raises(ValueError) as err_info: layer_util.resample(vol=vol, loc=loc) assert "vol shape inconsistent with loc" in str(err_info.value) def test_interpolation_error(self): interpolation = "nearest" vol = tf.constant(np.array([[0]], dtype=np.float32)) # shape = [1,1] loc = tf.constant(
np.array([[0, 0], [0, 0]], dtype=np.float32)
numpy.array
import abc import logging from typing import Union, Dict, Tuple, List, Set, Callable import pandas as pd import warnings import numpy as np import scipy.sparse import xarray as xr import patsy try: import anndata except ImportError: anndata = None import batchglm.data as data_utils from batchglm.xarray_sparse import SparseXArrayDataArray, SparseXArrayDataSet from batchglm.models.glm_nb import Model as GeneralizedLinearModel from ..stats import stats from . import correction from ..models.batch_bfgs.optim import Estim_BFGS from diffxpy import pkg_constants logger = logging.getLogger(__name__) def _dmat_unique(dmat, sample_description): dmat, idx = np.unique(dmat, axis=0, return_index=True) sample_description = sample_description.iloc[idx].reset_index(drop=True) return dmat, sample_description class _Estimation(GeneralizedLinearModel, metaclass=abc.ABCMeta): """ Dummy class specifying all needed methods / parameters necessary for a model fitted for DifferentialExpressionTest. Useful for type hinting. """ @property @abc.abstractmethod def X(self) -> np.ndarray: pass @property @abc.abstractmethod def design_loc(self) -> np.ndarray: pass @property @abc.abstractmethod def design_scale(self) -> np.ndarray: pass @property @abc.abstractmethod def constraints_loc(self) -> np.ndarray: pass @property @abc.abstractmethod def constraints_scale(self) -> np.ndarray: pass @property @abc.abstractmethod def num_observations(self) -> int: pass @property @abc.abstractmethod def num_features(self) -> int: pass @property @abc.abstractmethod def features(self) -> np.ndarray: pass @property @abc.abstractmethod def observations(self) -> np.ndarray: pass @property @abc.abstractmethod def log_likelihood(self, **kwargs) -> np.ndarray: pass @property @abc.abstractmethod def loss(self, **kwargs) -> np.ndarray: pass @property @abc.abstractmethod def gradients(self, **kwargs) -> np.ndarray: pass @property @abc.abstractmethod def hessians(self, **kwargs) -> np.ndarray: pass @property @abc.abstractmethod def fisher_inv(self, **kwargs) -> np.ndarray: pass class _DifferentialExpressionTest(metaclass=abc.ABCMeta): """ Dummy class specifying all needed methods / parameters necessary for DifferentialExpressionTest. Useful for type hinting. Structure: Methods which are called by constructor and which compute (corrected) p-values: _test() _correction() Accessor methods for important metrics which have to be extracted from estimated models: log_fold_change() reduced_model_gradient() full_model_gradient() Interface method which provides summary of results: results() plot() """ def __init__(self): self._pval = None self._qval = None self._mean = None self._log_likelihood = None @property @abc.abstractmethod def gene_ids(self) -> np.ndarray: pass @property @abc.abstractmethod def X(self): pass @abc.abstractmethod def log_fold_change(self, base=np.e, **kwargs): pass def log2_fold_change(self, **kwargs): """ Calculates the pairwise log_2 fold change(s) for this DifferentialExpressionTest. """ return self.log_fold_change(base=2, **kwargs) def log10_fold_change(self, **kwargs): """ Calculates the log_10 fold change(s) for this DifferentialExpressionTest. """ return self.log_fold_change(base=10, **kwargs) def _test(self, **kwargs) -> np.ndarray: pass def _correction(self, method) -> np.ndarray: """ Performs multiple testing corrections available in statsmodels.stats.multitest.multipletests() on self.pval. :param method: Multiple testing correction method. Browse available methods in the annotation of statsmodels.stats.multitest.multipletests(). """ if np.all(np.isnan(self.pval)): return self.pval else: return correction.correct(pvals=self.pval, method=method) def _ave(self): """ Returns a xr.DataArray containing the mean expression by gene :return: xr.DataArray """ pass @property def log_likelihood(self): if self._log_likelihood is None: self._log_likelihood = self._ll().compute() return self._log_likelihood @property def mean(self): if self._mean is None: self._mean = self._ave() if isinstance(self._mean, xr.DataArray): # Could also be np.ndarray coming out of XArraySparseDataArray self._mean = self._mean.compute() return self._mean @property def pval(self): if self._pval is None: self._pval = self._test().copy() return self._pval @property def qval(self, method="fdr_bh"): if self._qval is None: self._qval = self._correction(method=method).copy() return self._qval def log10_pval_clean(self, log10_threshold=-30): """ Return log10 transformed and cleaned p-values. NaN p-values are set to one and p-values below log10_threshold in log10 space are set to log10_threshold. :param log10_threshold: minimal log10 p-value to return. :return: Cleaned log10 transformed p-values. """ pvals = np.reshape(self.pval, -1) pvals = np.nextafter(0, 1, out=pvals, where=pvals == 0) log10_pval_clean = np.log(pvals) / np.log(10) log10_pval_clean[np.isnan(log10_pval_clean)] = 1 log10_pval_clean = np.clip(log10_pval_clean, log10_threshold, 0, log10_pval_clean) return log10_pval_clean def log10_qval_clean(self, log10_threshold=-30): """ Return log10 transformed and cleaned q-values. NaN p-values are set to one and q-values below log10_threshold in log10 space are set to log10_threshold. :param log10_threshold: minimal log10 q-value to return. :return: Cleaned log10 transformed q-values. """ qvals = np.reshape(self.qval, -1) qvals = np.nextafter(0, 1, out=qvals, where=qvals == 0) log10_qval_clean = np.log(qvals) / np.log(10) log10_qval_clean[np.isnan(log10_qval_clean)] = 1 log10_qval_clean = np.clip(log10_qval_clean, log10_threshold, 0, log10_qval_clean) return log10_qval_clean @abc.abstractmethod def summary(self, **kwargs) -> pd.DataFrame: pass def _threshold_summary(self, res, qval_thres=None, fc_upper_thres=None, fc_lower_thres=None, mean_thres=None) -> pd.DataFrame: """ Reduce differential expression results into an output table with desired thresholds. """ if qval_thres is not None: res = res.iloc[res['qval'].values <= qval_thres, :] if fc_upper_thres is not None and fc_lower_thres is None: res = res.iloc[res['log2fc'].values >= np.log(fc_upper_thres) / np.log(2), :] elif fc_upper_thres is None and fc_lower_thres is not None: res = res.iloc[res['log2fc'].values <= np.log(fc_lower_thres) / np.log(2), :] elif fc_upper_thres is not None and fc_lower_thres is not None: res = res.iloc[np.logical_or( res['log2fc'].values <= np.log(fc_lower_thres) / np.log(2), res['log2fc'].values >= np.log(fc_upper_thres) / np.log(2)), :] if mean_thres is not None: res = res.iloc[res['mean'].values >= mean_thres, :] return res def plot_volcano( self, corrected_pval=True, log10_p_threshold=-30, log2_fc_threshold=10, alpha=0.05, min_fc=1, size=20, highlight_ids: List = [], highlight_size: float = 30, highlight_col: str = "red", show: bool = True, save: Union[str, None] = None, suffix: str = "_volcano.png" ): """ Returns a volcano plot of p-value vs. log fold change :param corrected_pval: Whether to use multiple testing corrected or raw p-values. :param log10_p_threshold: lower bound of log10 p-values displayed in plot. :param log2_fc_threshold: Negative lower and upper bound of log2 fold change displayed in plot. :param alpha: p/q-value lower bound at which a test is considered non-significant. The corresponding points are colored in grey. :param min_fc: Fold-change lower bound for visualization, the points below the threshold are colored in grey. :param size: Size of points. :param highlight_ids: Genes to highlight in volcano plot. :param highlight_ids: Size of points of genes to highlight in volcano plot. :param highlight_ids: Color of points of genes to highlight in volcano plot. :param show: Whether (if save is not None) and where (save indicates dir and file stem) to display plot. :param save: Path+file name stem to save plots to. File will be save+suffix. Does not save if save is None. :param suffix: Suffix for file name to save plot to. Also use this to set the file type. :return: Tuple of matplotlib (figure, axis) """ import seaborn as sns import matplotlib.pyplot as plt from matplotlib import gridspec from matplotlib import rcParams plt.ioff() if corrected_pval == True: neg_log_pvals = - self.log10_qval_clean(log10_threshold=log10_p_threshold) else: neg_log_pvals = - self.log10_pval_clean(log10_threshold=log10_p_threshold) logfc = np.reshape(self.log2_fold_change(), -1) # Clipping throws errors if not performed in actual data format (ndarray or DataArray): if isinstance(logfc, xr.DataArray): logfc = logfc.clip(-log2_fc_threshold, log2_fc_threshold) else: logfc = np.clip(logfc, -log2_fc_threshold, log2_fc_threshold, logfc) fig, ax = plt.subplots() is_significant = np.logical_and( neg_log_pvals >= - np.log(alpha) / np.log(10), np.abs(logfc) >= np.log(min_fc) / np.log(2) ) sns.scatterplot(y=neg_log_pvals, x=logfc, hue=is_significant, ax=ax, legend=False, s=size, palette={True: "orange", False: "black"}) highlight_ids_found = np.array([x in self.gene_ids for x in highlight_ids]) highlight_ids_clean = [highlight_ids[i] for i in np.where(highlight_ids_found == True)[0]] highlight_ids_not_found = [highlight_ids[i] for i in np.where(highlight_ids_found == False)[0]] if len(highlight_ids_not_found) > 0: logger.warning("not all highlight_ids were found in data set: ", ", ".join(highlight_ids_not_found)) if len(highlight_ids_clean) > 0: neg_log_pvals_highlights = np.zeros([len(highlight_ids_clean)]) logfc_highlights = np.zeros([len(highlight_ids_clean)]) is_highlight = np.zeros([len(highlight_ids_clean)]) for i,id in enumerate(highlight_ids_clean): idx = np.where(self.gene_ids == id)[0] neg_log_pvals_highlights[i] = neg_log_pvals[idx] logfc_highlights[i] = logfc[idx] sns.scatterplot(y=neg_log_pvals_highlights, x=logfc_highlights, hue=is_highlight, ax=ax, legend=False, s=highlight_size, palette={0: highlight_col}) if corrected_pval == True: ax.set(xlabel="log2FC", ylabel='-log10(corrected p-value)') else: ax.set(xlabel="log2FC", ylabel='-log10(p-value)') # Save, show and return figure. if save is not None: plt.savefig(save + suffix) if show: plt.show() plt.close(fig) return ax def plot_ma( self, corrected_pval=True, log2_fc_threshold=10, alpha=0.05, size=20, highlight_ids: List = [], highlight_size: float = 30, highlight_col: str = "red", show: bool = True, save: Union[str, None] = None, suffix: str = "_my_plot.png" ): """ Returns an MA plot of mean expression vs. log fold change with significance super-imposed. :param corrected_pval: Whether to use multiple testing corrected or raw p-values. :param log2_fc_threshold: Negative lower and upper bound of log2 fold change displayed in plot. :param alpha: p/q-value lower bound at which a test is considered non-significant. The corresponding points are colored in grey. :param size: Size of points. :param highlight_ids: Genes to highlight in volcano plot. :param highlight_ids: Size of points of genes to highlight in volcano plot. :param highlight_ids: Color of points of genes to highlight in volcano plot. :param show: Whether (if save is not None) and where (save indicates dir and file stem) to display plot. :param save: Path+file name stem to save plots to. File will be save+suffix. Does not save if save is None. :param suffix: Suffix for file name to save plot to. Also use this to set the file type. :return: Tuple of matplotlib (figure, axis) """ import seaborn as sns import matplotlib.pyplot as plt from matplotlib import gridspec from matplotlib import rcParams plt.ioff() ave = np.log(self.mean + 1e-08) logfc = np.reshape(self.log2_fold_change(), -1) # Clipping throws errors if not performed in actual data format (ndarray or DataArray): if isinstance(logfc, xr.DataArray): logfc = logfc.clip(-log2_fc_threshold, log2_fc_threshold) else: logfc = np.clip(logfc, -log2_fc_threshold, log2_fc_threshold, logfc) fig, ax = plt.subplots() if corrected_pval: is_significant = self.pval < alpha else: is_significant = self.qval < alpha sns.scatterplot(y=logfc, x=ave, hue=is_significant, ax=ax, legend=False, s=size, palette={True: "orange", False: "black"}) highlight_ids_found = np.array([x in self.gene_ids for x in highlight_ids]) highlight_ids_clean = [highlight_ids[i] for i in np.where(highlight_ids_found == True)[0]] highlight_ids_not_found = [highlight_ids[i] for i in np.where(highlight_ids_found == False)[0]] if len(highlight_ids_not_found) > 0: logger.warning("not all highlight_ids were found in data set: ", ", ".join(highlight_ids_not_found)) if len(highlight_ids_clean) > 0: ave_highlights = np.zeros([len(highlight_ids_clean)]) logfc_highlights = np.zeros([len(highlight_ids_clean)]) is_highlight = np.zeros([len(highlight_ids_clean)]) for i,id in enumerate(highlight_ids_clean): idx = np.where(self.gene_ids == id)[0] ave_highlights[i] = ave[idx] logfc_highlights[i] = logfc[idx] sns.scatterplot(y=logfc_highlights, x=ave_highlights, hue=is_highlight, ax=ax, legend=False, s=highlight_size, palette={0: highlight_col}) ax.set(xlabel="log2FC", ylabel='log mean expression') # Save, show and return figure. if save is not None: plt.savefig(save + suffix) if show: plt.show() plt.close(fig) return ax def plot_diagnostics(self): """ Directly plots a set of diagnostic diagrams """ import matplotlib.pyplot as plt volcano = self.plot_volcano() plt.show() class _DifferentialExpressionTestSingle(_DifferentialExpressionTest, metaclass=abc.ABCMeta): """ _DifferentialExpressionTest for unit_test with a single test per gene. The individual test object inherit directly from this class. All implementations of this class should return one p-value and one fold change per gene. """ def summary( self, qval_thres=None, fc_upper_thres=None, fc_lower_thres=None, mean_thres=None, **kwargs ) -> pd.DataFrame: """ Summarize differential expression results into an output table. """ assert self.gene_ids is not None res = pd.DataFrame({ "gene": self.gene_ids, "pval": self.pval, "qval": self.qval, "log2fc": self.log2_fold_change(), "mean": self.mean }) return res class DifferentialExpressionTestLRT(_DifferentialExpressionTestSingle): """ Single log-likelihood ratio test per gene. """ sample_description: pd.DataFrame full_design_loc_info: patsy.design_info full_estim: _Estimation reduced_design_loc_info: patsy.design_info reduced_estim: _Estimation def __init__( self, sample_description: pd.DataFrame, full_design_loc_info: patsy.design_info, full_estim, reduced_design_loc_info: patsy.design_info, reduced_estim ): super().__init__() self.sample_description = sample_description self.full_design_loc_info = full_design_loc_info self.full_estim = full_estim self.reduced_design_loc_info = reduced_design_loc_info self.reduced_estim = reduced_estim @property def gene_ids(self) -> np.ndarray: return np.asarray(self.full_estim.features) @property def X(self): return self.full_estim.X @property def reduced_model_gradient(self): return self.reduced_estim.gradients @property def full_model_gradient(self): return self.full_estim.gradients def _test(self): if np.any(self.full_estim.log_likelihood < self.reduced_estim.log_likelihood): logger.warning("Test assumption failed: full model is (partially) less probable than reduced model") return stats.likelihood_ratio_test( ll_full=self.full_estim.log_likelihood, ll_reduced=self.reduced_estim.log_likelihood, df_full=self.full_estim.constraints_loc.shape[1] + self.full_estim.constraints_scale.shape[1], df_reduced=self.reduced_estim.constraints_loc.shape[1] + self.reduced_estim.constraints_scale.shape[1], ) def _ave(self): """ Returns a xr.DataArray containing the mean expression by gene :return: xr.DataArray """ return np.mean(self.full_estim.X, axis=0) def _log_fold_change(self, factors: Union[Dict, Tuple, Set, List], base=np.e): """ Returns a xr.DataArray containing the locations for the different categories of the factors :param factors: the factors to select. E.g. `condition` or `batch` if formula would be `~ 1 + batch + condition` :param base: the log base to use; default is the natural logarithm :return: xr.DataArray """ if not (isinstance(factors, list) or isinstance(factors, tuple) or isinstance(factors, set)): factors = {factors} if not isinstance(factors, set): factors = set(factors) di = self.full_design_loc_info sample_description = self.sample_description[[f.name() for f in di.subset(factors).factor_infos]] dmat = self.full_estim.design_loc # make rows unique dmat, sample_description = _dmat_unique(dmat, sample_description) # factors = factors.intersection(di.term_names) # select the columns of the factors cols = np.arange(len(di.column_names)) sel = np.concatenate([cols[di.slice(f)] for f in factors], axis=0) neg_sel =
np.ones_like(cols)
numpy.ones_like
import datetime as dt from unittest import SkipTest from nose.plugins.attrib import attr import numpy as np from holoviews import Dimension, Image, Curve, RGB, HSV, Dataset, Table from holoviews.element.comparison import ComparisonTestCase from holoviews.core.util import date_range from holoviews.core.data.interface import DataError from .testdataset import DatatypeContext class ImageInterfaceTest(ComparisonTestCase): datatype = 'image' def setUp(self): self.eltype = Image self.restore_datatype = self.eltype.datatype self.eltype.datatype = [self.datatype] self.init_data() def init_data(self): self.array = np.arange(10) * np.arange(10)[:, np.newaxis] self.image = Image(np.flipud(self.array), bounds=(-10, 0, 10, 10)) def tearDown(self): self.eltype.datatype = self.restore_datatype def test_init_data_tuple(self): xs = np.arange(5) ys = np.arange(10) array = xs * ys[:, np.newaxis] Image((xs, ys, array)) def test_init_data_tuple_error(self): xs = np.arange(5) ys = np.arange(10) array = xs * ys[:, np.newaxis] with self.assertRaises(DataError): Image((ys, xs, array)) def test_init_data_datetime_xaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') Image(np.flipud(self.array), bounds=(start, 0, end, 10)) def test_init_data_datetime_yaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') Image(np.flipud(self.array), bounds=(-10, start, 10, end)) def test_init_bounds(self): self.assertEqual(self.image.bounds.lbrt(), (-10, 0, 10, 10)) def test_init_bounds_datetime_xaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') bounds = (start, 0, end, 10) image = Image(np.flipud(self.array), bounds=bounds) self.assertEqual(image.bounds.lbrt(), bounds) def test_init_bounds_datetime_yaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') bounds = (-10, start, 10, end) image = Image(np.flipud(self.array), bounds=bounds) self.assertEqual(image.bounds.lbrt(), bounds) def test_init_densities(self): self.assertEqual(self.image.xdensity, 0.5) self.assertEqual(self.image.ydensity, 1) def test_init_densities_datetime_xaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') bounds = (start, 0, end, 10) image = Image(np.flipud(self.array), bounds=bounds) self.assertEqual(image.xdensity, 1e-5) self.assertEqual(image.ydensity, 1) def test_init_densities_datetime_yaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') bounds = (-10, start, 10, end) image = Image(np.flipud(self.array), bounds=bounds) self.assertEqual(image.xdensity, 0.5) self.assertEqual(image.ydensity, 1e-5) def test_dimension_values_xs(self): self.assertEqual(self.image.dimension_values(0, expanded=False), np.linspace(-9, 9, 10)) def test_dimension_values_ys(self): self.assertEqual(self.image.dimension_values(1, expanded=False), np.linspace(0.5, 9.5, 10)) def test_dimension_values_vdim(self): self.assertEqual(self.image.dimension_values(2, flat=False), self.array) def test_index_single_coordinate(self): self.assertEqual(self.image[0.3, 5.1], 25) def test_slice_xaxis(self): sliced = self.image[0.3:5.2] self.assertEqual(sliced.bounds.lbrt(), (0, 0, 6, 10)) self.assertEqual(sliced.xdensity, 0.5) self.assertEqual(sliced.ydensity, 1) self.assertEqual(sliced.dimension_values(2, flat=False), self.array[:, 5:8]) def test_slice_datetime_xaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') bounds = (start, 0, end, 10) image = Image(np.flipud(self.array), bounds=bounds) sliced = image[start+np.timedelta64(530, 'ms'): start+np.timedelta64(770, 'ms')] self.assertEqual(sliced.dimension_values(2, flat=False), self.array[:, 5:8]) def test_slice_yaxis(self): sliced = self.image[:, 1.2:5.2] self.assertEqual(sliced.bounds.lbrt(), (-10, 1., 10, 5)) self.assertEqual(sliced.xdensity, 0.5) self.assertEqual(sliced.ydensity, 1) self.assertEqual(sliced.dimension_values(2, flat=False), self.array[1:5, :]) def test_slice_datetime_yaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') bounds = (-10, start, 10, end) image = Image(np.flipud(self.array), bounds=bounds) sliced = image[:, start+np.timedelta64(120, 'ms'): start+np.timedelta64(520, 'ms')] self.assertEqual(sliced.dimension_values(2, flat=False), self.array[1:5, :]) def test_slice_both_axes(self): sliced = self.image[0.3:5.2, 1.2:5.2] self.assertEqual(sliced.bounds.lbrt(), (0, 1., 6, 5)) self.assertEqual(sliced.xdensity, 0.5) self.assertEqual(sliced.ydensity, 1) self.assertEqual(sliced.dimension_values(2, flat=False), self.array[1:5, 5:8]) def test_slice_x_index_y(self): sliced = self.image[0.3:5.2, 5.2] self.assertEqual(sliced.bounds.lbrt(), (0, 5.0, 6.0, 6.0)) self.assertEqual(sliced.xdensity, 0.5) self.assertEqual(sliced.ydensity, 1) self.assertEqual(sliced.dimension_values(2, flat=False), self.array[5:6, 5:8]) def test_index_x_slice_y(self): sliced = self.image[3.2, 1.2:5.2] self.assertEqual(sliced.bounds.lbrt(), (2.0, 1.0, 4.0, 5.0)) self.assertEqual(sliced.xdensity, 0.5) self.assertEqual(sliced.ydensity, 1) self.assertEqual(sliced.dimension_values(2, flat=False), self.array[1:5, 6:7]) def test_range_xdim(self): self.assertEqual(self.image.range(0), (-10, 10)) def test_range_datetime_xdim(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') bounds = (start, 0, end, 10) image = Image(np.flipud(self.array), bounds=bounds) self.assertEqual(image.range(0), (start, end)) def test_range_ydim(self): self.assertEqual(self.image.range(1), (0, 10)) def test_range_datetime_ydim(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') bounds = (-10, start, 10, end) image = Image(np.flipud(self.array), bounds=bounds) self.assertEqual(image.range(1), (start, end)) def test_range_vdim(self): self.assertEqual(self.image.range(2), (0, 81)) def test_dimension_values_xcoords(self): self.assertEqual(self.image.dimension_values(0, expanded=False), np.linspace(-9, 9, 10)) def test_dimension_values_datetime_xcoords(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') bounds = (start, 0, end, 10) image = Image(np.flipud(self.array), bounds=bounds) self.assertEqual(image.dimension_values(0, expanded=False), date_range(start, end, 10)) def test_dimension_values_ycoords(self): self.assertEqual(self.image.dimension_values(1, expanded=False), np.linspace(0.5, 9.5, 10)) def test_sample_xcoord(self): ys = np.linspace(0.5, 9.5, 10) zs = [0, 7, 14, 21, 28, 35, 42, 49, 56, 63] with DatatypeContext([self.datatype, 'dictionary' , 'dataframe'], self.image): self.assertEqual(self.image.sample(x=5), Curve((ys, zs), kdims=['y'], vdims=['z'])) def test_sample_ycoord(self): xs = np.linspace(-9, 9, 10) zs = [0, 4, 8, 12, 16, 20, 24, 28, 32, 36] with DatatypeContext([self.datatype, 'dictionary' , 'dataframe'], self.image): self.assertEqual(self.image.sample(y=5), Curve((xs, zs), kdims=['x'], vdims=['z'])) def test_sample_coords(self): arr = np.arange(10)*np.arange(5)[np.newaxis].T xs = np.linspace(0.12, 0.81, 10) ys = np.linspace(0.12, 0.391, 5) img = Image((xs, ys, arr), kdims=['x', 'y'], vdims=['z'], datatype=[self.datatype]) sampled = img.sample([(0.15, 0.15), (0.15, 0.4), (0.8, 0.4), (0.8, 0.15)]) self.assertIsInstance(sampled, Table) yidx = [0, 4, 4, 0] xidx = [0, 0, 9, 9] table = Table((xs[xidx], ys[yidx], arr[yidx, xidx]), kdims=['x', 'y'], vdims=['z']) self.assertEqual(sampled, table) def test_reduce_to_scalar(self): self.assertEqual(self.image.reduce(['x', 'y'], function=np.mean), 20.25) def test_reduce_x_dimension(self): ys = np.linspace(0.5, 9.5, 10) zs = [0., 4.5, 9., 13.5, 18., 22.5, 27., 31.5, 36., 40.5] with DatatypeContext([self.datatype, 'dictionary' , 'dataframe'], Image): self.assertEqual(self.image.reduce(x=np.mean), Curve((ys, zs), kdims=['y'], vdims=['z'])) def test_reduce_y_dimension(self): xs = np.linspace(-9, 9, 10) zs = [0., 4.5, 9., 13.5, 18., 22.5, 27., 31.5, 36., 40.5] with DatatypeContext([self.datatype, 'dictionary' , 'dataframe'], Image): self.assertEqual(self.image.reduce(y=np.mean), Curve((xs, zs), kdims=['x'], vdims=['z'])) def test_dataset_reindex_constant(self): selected = Dataset(self.image.select(x=0)) reindexed = selected.reindex(['y']) data = Dataset(selected.columns(['y', 'z']), kdims=['y'], vdims=['z']) self.assertEqual(reindexed, data) def test_dataset_reindex_non_constant(self): ds = Dataset(self.image) reindexed = ds.reindex(['y']) data = Dataset(ds.columns(['y', 'z']), kdims=['y'], vdims=['z']) self.assertEqual(reindexed, data) def test_aggregate_with_spreadfn(self): with DatatypeContext([self.datatype, 'dictionary' , 'dataframe'], self.image): agg = self.image.aggregate('x', np.mean, np.std) xs = self.image.dimension_values('x', expanded=False) mean = self.array.mean(axis=0) std = self.array.std(axis=0) self.assertEqual(agg, Curve((xs, mean, std), kdims=['x'], vdims=['z', 'z_std'])) class ImageGridInterfaceTest(ImageInterfaceTest): datatype = 'grid' def init_data(self): self.xs = np.linspace(-9, 9, 10) self.ys = np.linspace(0.5, 9.5, 10) self.array = np.arange(10) * np.arange(10)[:, np.newaxis] self.image = Image((self.xs, self.ys, self.array)) self.image_inv = Image((self.xs[::-1], self.ys[::-1], self.array[::-1, ::-1])) def test_init_data_datetime_xaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') xs = date_range(start, end, 10) Image((xs, self.ys, self.array)) def test_init_data_datetime_yaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') ys = date_range(start, end, 10) Image((self.xs, ys, self.array)) def test_init_bounds_datetime_xaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') xs = date_range(start, end, 10) image = Image((xs, self.ys, self.array)) self.assertEqual(image.bounds.lbrt(), (start, 0, end, 10)) def test_init_bounds_datetime_yaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') ys = date_range(start, end, 10) image = Image((self.xs, ys, self.array)) self.assertEqual(image.bounds.lbrt(), (-10, start, 10, end)) def test_init_densities_datetime_xaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') xs = date_range(start, end, 10) image = Image((xs, self.ys, self.array)) self.assertEqual(image.xdensity, 1e-5) self.assertEqual(image.ydensity, 1) def test_init_densities_datetime_yaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') ys = date_range(start, end, 10) image = Image((self.xs, ys, self.array)) self.assertEqual(image.xdensity, 0.5) self.assertEqual(image.ydensity, 1e-5) def test_sample_datetime_xaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') xs = date_range(start, end, 10) image = Image((xs, self.ys, self.array)) curve = image.sample(x=xs[3]) self.assertEqual(curve, Curve((self.ys, self.array[:, 3]), 'y', 'z')) def test_sample_datetime_yaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') ys = date_range(start, end, 10) image = Image((self.xs, ys, self.array)) curve = image.sample(y=ys[3]) self.assertEqual(curve, Curve((self.xs, self.array[3]), 'x', 'z')) def test_range_datetime_xdim(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') xs = date_range(start, end, 10) image = Image((xs, self.ys, self.array)) self.assertEqual(image.range(0), (start, end)) def test_range_datetime_ydim(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') ys = date_range(start, end, 10) image = Image((self.xs, ys, self.array)) self.assertEqual(image.range(1), (start, end)) def test_dimension_values_datetime_xcoords(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') xs = date_range(start, end, 10) image = Image((xs, self.ys, self.array)) self.assertEqual(image.dimension_values(0, expanded=False), xs) def test_dimension_values_datetime_ycoords(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') ys = date_range(start, end, 10) image = Image((self.xs, ys, self.array)) self.assertEqual(image.dimension_values(1, expanded=False), ys) def test_slice_datetime_xaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') xs = date_range(start, end, 10) image = Image((xs, self.ys, self.array)) sliced = image[start+np.timedelta64(530, 'ms'): start+np.timedelta64(770, 'ms')] self.assertEqual(sliced.dimension_values(2, flat=False), self.array[:, 5:8]) def test_slice_datetime_yaxis(self): start = np.datetime64(dt.datetime.today()) end = start+np.timedelta64(1, 's') ys = date_range(start, end, 10) image = Image((self.xs, ys, self.array)) sliced = image[:, start+np.timedelta64(120, 'ms'): start+np.timedelta64(520, 'ms')] self.assertEqual(sliced.dimension_values(2, flat=False), self.array[1:5, :]) def test_slice_xaxis_inv(self): sliced = self.image_inv[0.3:5.2] self.assertEqual(sliced.bounds.lbrt(), (0, 0, 6, 10)) self.assertEqual(sliced.xdensity, 0.5) self.assertEqual(sliced.ydensity, 1) self.assertEqual(sliced.dimension_values(2, flat=False), self.array[:, 5:8]) def test_slice_yaxis_inv(self): sliced = self.image_inv[:, 1.2:5.2] self.assertEqual(sliced.bounds.lbrt(), (-10, 1., 10, 5)) self.assertEqual(sliced.xdensity, 0.5) self.assertEqual(sliced.ydensity, 1) self.assertEqual(sliced.dimension_values(2, flat=False), self.array[1:5, :]) def test_slice_both_axes_inv(self): sliced = self.image_inv[0.3:5.2, 1.2:5.2] self.assertEqual(sliced.bounds.lbrt(), (0, 1., 6, 5)) self.assertEqual(sliced.xdensity, 0.5) self.assertEqual(sliced.ydensity, 1) self.assertEqual(sliced.dimension_values(2, flat=False), self.array[1:5, 5:8]) def test_slice_x_index_y_inv(self): sliced = self.image_inv[0.3:5.2, 5.2] self.assertEqual(sliced.bounds.lbrt(), (0, 5.0, 6.0, 6.0)) self.assertEqual(sliced.xdensity, 0.5) self.assertEqual(sliced.ydensity, 1) self.assertEqual(sliced.dimension_values(2, flat=False), self.array[5:6, 5:8]) def test_index_x_slice_y_inv(self): sliced = self.image_inv[3.2, 1.2:5.2] self.assertEqual(sliced.bounds.lbrt(), (2.0, 1.0, 4.0, 5.0)) self.assertEqual(sliced.xdensity, 0.5) self.assertEqual(sliced.ydensity, 1) self.assertEqual(sliced.dimension_values(2, flat=False), self.array[1:5, 6:7]) @attr(optional=1) class ImageXArrayInterfaceTest(ImageGridInterfaceTest): datatype = 'xarray' def setUp(self): try: import xarray as xr # noqa except: raise SkipTest('Test requires xarray') super(ImageXArrayInterfaceTest, self).setUp() def test_dataarray_dimension_order(self): import xarray as xr x = np.linspace(-3, 7, 53) y = np.linspace(-5, 8, 89) z = np.exp(-1*(x**2 + y[:, np.newaxis]**2)) array = xr.DataArray(z, coords=[y, x], dims=['x', 'y']) img = Image(array) self.assertEqual(img.kdims, [Dimension('x'), Dimension('y')]) def test_dataarray_shape(self): import xarray as xr x = np.linspace(-3, 7, 53) y = np.linspace(-5, 8, 89) z = np.exp(-1*(x**2 + y[:, np.newaxis]**2)) array = xr.DataArray(z, coords=[y, x], dims=['x', 'y']) img = Image(array, ['x', 'y']) self.assertEqual(img.interface.shape(img, gridded=True), (53, 89)) def test_dataarray_shape_transposed(self): import xarray as xr x = np.linspace(-3, 7, 53) y = np.linspace(-5, 8, 89) z = np.exp(-1*(x**2 + y[:, np.newaxis]**2)) array = xr.DataArray(z, coords=[y, x], dims=['x', 'y']) img = Image(array, ['y', 'x']) self.assertEqual(img.interface.shape(img, gridded=True), (89, 53)) def test_select_on_transposed_dataarray(self): import xarray as xr x = np.linspace(-3, 7, 53) y = np.linspace(-5, 8, 89) z = np.exp(-1*(x**2 + y[:, np.newaxis]**2)) array = xr.DataArray(z, coords=[y, x], dims=['x', 'y']) img = Image(array)[1:3] self.assertEqual(img['z'], Image(array.sel(x=slice(1, 3)))['z']) @attr(optional=1) class ImageIrisInterfaceTest(ImageGridInterfaceTest): datatype = 'cube' def init_data(self): xs =
np.linspace(-9, 9, 10)
numpy.linspace
import numpy as np import pandas as pd import xarray as xr def get_summary_stats_for_date(tick_quotes: np.ndarray) -> xr.Dataset: specs = tick_quotes['index'][['expiry', 'strike', 'payoff']] specs_uniq = np.concatenate([specs[:1], specs[1:][specs[1:] != specs[:-1]]]) np.testing.assert_equal(specs_uniq, np.unique(specs_uniq)) expiries, n_options =
np.unique(specs_uniq['expiry'], return_counts=True)
numpy.unique
# -*- coding: utf-8 -*- """ Function to ensure external sorting for contiguity 'across adjacent sublaminates' Created on Mon Jan 29 12:00:18 2018 @author: <NAME> """ import numpy as np def external_contig(angle, n_plies_group, constraints, ss_before, angle2 = None): ''' returns only the stacking sequences that satisfy constraints concerning contiguity at the junction with an adjacent group of plies, but not within the group of plies OUTPUTS - angle: the selected sublaminate stacking sequences line by line - angle2: the selected sublaminate stacking sequences line by line if a second sublaminate is given as input for angle2 INPUTS - angle: the first sublaminate stacking sequences - angle:2 matrix storing the second sublaminate stacking sequences - ss_before is the stacking sequence of the sublaminate adjacent to the first sublaminate ''' if angle.ndim == 1: angle = angle.reshape((1, angle.size)) ss_beforeLength = ss_before.size # CHECK FOR CORRECT INPUTS SIZE if n_plies_group > angle.shape[1]: raise Exception('The input set of angles have fewer elements that what is asked to be checked') if angle2 is None: # TO ENSURE CONTIGUITY if constraints.contig: # To ensure the contiguity constraint at the junction of ply groups if ss_beforeLength>=1: if constraints.n_contig ==2: if n_plies_group>1: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 3: if n_plies_group>2: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1] \ and angle[ii, 2] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 4: if n_plies_group>3: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1] \ and angle[ii, 2] == ss_before[-1] \ and angle[ii, 3] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 5: if n_plies_group>4: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1] \ and angle[ii, 2] == ss_before[-1] \ and angle[ii, 3] == ss_before[-1]\ and angle[ii, 4] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 6: if n_plies_group>5: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1] \ and angle[ii, 2] == ss_before[-1] \ and angle[ii, 3] == ss_before[-1] \ and angle[ii, 4] == ss_before[-1] \ and angle[ii, 5] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue else: raise Exception( 'constraints.n_contig must be 2, 3, 4 or 5') if ss_beforeLength>=2: if constraints.n_contig ==2: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and angle[ii, 0] == ss_before[-2]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 3: if n_plies_group>1: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1] \ and ss_before[-2] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 4: if n_plies_group>2: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1] \ and angle[ii, 2] == ss_before[-1] \ and ss_before[-2] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 5: if n_plies_group>3: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1] \ and angle[ii, 2] == ss_before[-1] \ and ss_before[-2] == ss_before[-1] \ and angle[ii, 3] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 6: if n_plies_group>4: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1] \ and angle[ii, 2] == ss_before[-1] \ and ss_before[-2] == ss_before[-1] \ and angle[ii, 3] == ss_before[-1] \ and angle[ii, 4] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue else: raise Exception( 'constraints.n_contig must be 2, 3, 4 or 5') if ss_beforeLength>=3: if constraints.n_contig == 2: pass elif constraints.n_contig == 3: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and ss_before[-3] == ss_before[-1] \ and ss_before[-2] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 4: if n_plies_group>1: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1] \ and ss_before[-3] == ss_before[-1] \ and ss_before[-2] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 5: if n_plies_group>2: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1] \ and ss_before[-3] == ss_before[-1] \ and ss_before[-2] == ss_before[-1] \ and angle[ii, 2] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 6: if n_plies_group>3: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1] \ and ss_before[-3] == ss_before[-1] \ and ss_before[-2] == ss_before[-1] \ and angle[ii, 2] == ss_before[-1] \ and angle[ii, 3] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue else: raise Exception( 'constraints.n_contig must be 2, 3, 4 or 5') if ss_beforeLength>=4: if constraints.n_contig ==2: pass elif constraints.n_contig == 3: pass elif constraints.n_contig == 4: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and ss_before[-4] == ss_before[-1] \ and ss_before[-3] == ss_before[-1] \ and ss_before[-2] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 5: if n_plies_group>1: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and ss_before[-4] == ss_before[-1] \ and ss_before[-3] == ss_before[-1] \ and ss_before[-2] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 6: if n_plies_group>2: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and ss_before[-4] == ss_before[-1] \ and ss_before[-3] == ss_before[-1] \ and ss_before[-2] == ss_before[-1] \ and angle[ii, 1] == ss_before[-1] \ and angle[ii, 2] == ss_before[-1]: angle = np.delete(angle, np.s_[ii], axis=0) continue else: raise Exception( 'constraints.n_contig must be 2, 3, 4 or 5') if ss_beforeLength>=5: if constraints.n_contig ==2: pass elif constraints.n_contig == 3: pass elif constraints.n_contig == 4: pass elif constraints.n_contig == 5: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and ss_before[-4] == ss_before[-1] \ and ss_before[-3] == ss_before[-1] \ and ss_before[-2] == ss_before[-1] \ and angle[ii, 0] == ss_before[-5]: angle = np.delete(angle, np.s_[ii], axis=0) continue elif constraints.n_contig == 6: if n_plies_group>1: a = angle.shape[0] for ii in range(a)[::-1]: if angle[ii, 0] == ss_before[-1] \ and ss_before[-4] == ss_before[-1] \ and ss_before[-3] == ss_before[-1] \ and ss_before[-2] == ss_before[-1] \ and angle[ii, 0] == ss_before[-5] \ and angle[ii, 1] == ss_before[-5]: angle =
np.delete(angle, np.s_[ii], axis=0)
numpy.delete
# Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: BSD (3-clause) import os import os.path as op import pytest import numpy as np from scipy.io import savemat from copy import deepcopy from functools import partial from string import ascii_lowercase from numpy.testing import (assert_array_equal, assert_almost_equal, assert_allclose, assert_array_almost_equal, assert_array_less, assert_equal) from mne import create_info, EvokedArray, read_evokeds, __file__ as _mne_file from mne.channels import (Montage, read_montage, read_dig_montage, get_builtin_montages, DigMontage, read_dig_egi, read_dig_captrack, read_dig_fif) from mne.channels.montage import _set_montage, make_dig_montage from mne.channels.montage import transform_to_head from mne.channels import read_polhemus_fastscan, read_dig_polhemus_isotrak from mne.channels import compute_dev_head_t from mne.channels._dig_montage_utils import _transform_to_head_call from mne.channels._dig_montage_utils import _fix_data_fiducials from mne.utils import (_TempDir, run_tests_if_main, assert_dig_allclose, object_diff, Bunch) from mne.bem import _fit_sphere from mne.transforms import apply_trans, get_ras_to_neuromag_trans from mne.io.constants import FIFF from mne._digitization import Digitization from mne._digitization._utils import _read_dig_points, _format_dig_points from mne._digitization._utils import _get_fid_coords from mne._digitization.base import _get_dig_eeg, _count_points_by_type from mne.viz._3d import _fiducial_coords from mne.io.kit import read_mrk from mne.io import (read_raw_brainvision, read_raw_egi, read_raw_fif, read_raw_cnt, read_raw_edf, read_raw_nicolet, read_raw_bdf, read_raw_eeglab, read_fiducials, __file__ as _mne_io_file) from mne.datasets import testing data_path = testing.data_path(download=False) fif_dig_montage_fname = op.join(data_path, 'montage', 'eeganes07.fif') egi_dig_montage_fname = op.join(data_path, 'montage', 'coordinates.xml') egi_raw_fname = op.join(data_path, 'montage', 'egi_dig_test.raw') egi_fif_fname = op.join(data_path, 'montage', 'egi_dig_raw.fif') bvct_dig_montage_fname = op.join(data_path, 'montage', 'captrak_coords.bvct') bv_raw_fname = op.join(data_path, 'montage', 'bv_dig_test.vhdr') bv_fif_fname = op.join(data_path, 'montage', 'bv_dig_raw.fif') locs_montage_fname = op.join(data_path, 'EEGLAB', 'test_chans.locs') evoked_fname = op.join(data_path, 'montage', 'level2_raw-ave.fif') eeglab_fname = op.join(data_path, 'EEGLAB', 'test_raw.set') bdf_fname1 = op.join(data_path, 'BDF', 'test_generator_2.bdf') bdf_fname2 = op.join(data_path, 'BDF', 'test_bdf_stim_channel.bdf') egi_fname1 = op.join(data_path, 'EGI', 'test_egi.mff') cnt_fname = op.join(data_path, 'CNT', 'scan41_short.cnt') io_dir = op.dirname(_mne_io_file) kit_dir = op.join(io_dir, 'kit', 'tests', 'data') elp = op.join(kit_dir, 'test_elp.txt') hsp = op.join(kit_dir, 'test_hsp.txt') hpi = op.join(kit_dir, 'test_mrk.sqd') bv_fname = op.join(io_dir, 'brainvision', 'tests', 'data', 'test.vhdr') fif_fname = op.join(io_dir, 'tests', 'data', 'test_raw.fif') edf_path = op.join(io_dir, 'edf', 'tests', 'data', 'test.edf') bdf_path = op.join(io_dir, 'edf', 'tests', 'data', 'test_bdf_eeglab.mat') egi_fname2 = op.join(io_dir, 'egi', 'tests', 'data', 'test_egi.raw') vhdr_path = op.join(io_dir, 'brainvision', 'tests', 'data', 'test.vhdr') ctf_fif_fname = op.join(io_dir, 'tests', 'data', 'test_ctf_comp_raw.fif') nicolet_fname = op.join(io_dir, 'nicolet', 'tests', 'data', 'test_nicolet_raw.data') def test_fiducials(): """Test handling of fiducials.""" # Eventually the code used here should be unified with montage.py, but for # now it uses code in odd places for fname in (fif_fname, ctf_fif_fname): fids, coord_frame = read_fiducials(fname) points = _fiducial_coords(fids, coord_frame) assert points.shape == (3, 3) # Fids assert_allclose(points[:, 2], 0., atol=1e-6) assert_allclose(points[::2, 1], 0., atol=1e-6) assert points[2, 0] > 0 # RPA assert points[0, 0] < 0 # LPA # Nasion assert_allclose(points[1, 0], 0., atol=1e-6) assert points[1, 1] > 0 def test_documented(): """Test that montages are documented.""" docs = read_montage.__doc__ lines = [line[4:] for line in docs.splitlines()] start = stop = None for li, line in enumerate(lines): if line.startswith('====') and li < len(lines) - 2 and \ lines[li + 1].startswith('Kind') and\ lines[li + 2].startswith('===='): start = li + 3 elif start is not None and li > start and line.startswith('===='): stop = li break assert (start is not None) assert (stop is not None) kinds = [line.split(' ')[0] for line in lines[start:stop]] kinds = [kind for kind in kinds if kind != ''] montages = os.listdir(op.join(op.dirname(_mne_file), 'channels', 'data', 'montages')) montages = sorted(op.splitext(m)[0] for m in montages) assert_equal(len(set(montages)), len(montages)) assert_equal(len(set(kinds)), len(kinds), err_msg=str(sorted(kinds))) assert_equal(set(montages), set(kinds)) def test_montage(): """Test making montages.""" tempdir = _TempDir() inputs = dict( sfp='FidNz 0 9.071585155 -2.359754454\n' 'FidT9 -6.711765 0.040402876 -3.251600355\n' 'very_very_very_long_name -5.831241498 -4.494821698 4.955347697\n' 'Cz 0 0 8.899186843', csd='// MatLab Sphere coordinates [degrees] Cartesian coordinates\n' # noqa: E501 '// Label Theta Phi Radius X Y Z off sphere surface\n' # noqa: E501 'E1 37.700 -14.000 1.000 0.7677 0.5934 -0.2419 -0.00000000000000011\n' # noqa: E501 'E3 51.700 11.000 1.000 0.6084 0.7704 0.1908 0.00000000000000000\n' # noqa: E501 'E31 90.000 -11.000 1.000 0.0000 0.9816 -0.1908 0.00000000000000000\n' # noqa: E501 'E61 158.000 -17.200 1.000 -0.8857 0.3579 -0.2957 -0.00000000000000022', # noqa: E501 mm_elc='# ASA electrode file\nReferenceLabel avg\nUnitPosition mm\n' # noqa:E501 'NumberPositions= 68\n' 'Positions\n' '-86.0761 -19.9897 -47.9860\n' '85.7939 -20.0093 -48.0310\n' '0.0083 86.8110 -39.9830\n' '-86.0761 -24.9897 -67.9860\n' 'Labels\nLPA\nRPA\nNz\nDummy\n', m_elc='# ASA electrode file\nReferenceLabel avg\nUnitPosition m\n' 'NumberPositions= 68\nPositions\n-.0860761 -.0199897 -.0479860\n' # noqa:E501 '.0857939 -.0200093 -.0480310\n.0000083 .00868110 -.0399830\n' '.08 -.02 -.04\n' 'Labels\nLPA\nRPA\nNz\nDummy\n', txt='Site Theta Phi\n' 'Fp1 -92 -72\n' 'Fp2 92 72\n' 'very_very_very_long_name -92 72\n' 'O2 92 -90\n', elp='346\n' 'EEG\t F3\t -62.027\t -50.053\t 85\n' 'EEG\t Fz\t 45.608\t 90\t 85\n' 'EEG\t F4\t 62.01\t 50.103\t 85\n' 'EEG\t FCz\t 68.01\t 58.103\t 85\n', hpts='eeg Fp1 -95.0 -3. -3.\n' 'eeg AF7 -1 -1 -3\n' 'eeg A3 -2 -2 2\n' 'eeg A 0 0 0', bvef='<?xml version="1.0" encoding="UTF-8" standalone="yes"?>\n' '<!-- Generated by EasyCap Configurator 19.05.2014 -->\n' '<Electrodes defaults="false">\n' ' <Electrode>\n' ' <Name>Fp1</Name>\n' ' <Theta>-90</Theta>\n' ' <Phi>-72</Phi>\n' ' <Radius>1</Radius>\n' ' <Number>1</Number>\n' ' </Electrode>\n' ' <Electrode>\n' ' <Name>Fz</Name>\n' ' <Theta>45</Theta>\n' ' <Phi>90</Phi>\n' ' <Radius>1</Radius>\n' ' <Number>2</Number>\n' ' </Electrode>\n' ' <Electrode>\n' ' <Name>F3</Name>\n' ' <Theta>-60</Theta>\n' ' <Phi>-51</Phi>\n' ' <Radius>1</Radius>\n' ' <Number>3</Number>\n' ' </Electrode>\n' ' <Electrode>\n' ' <Name>F7</Name>\n' ' <Theta>-90</Theta>\n' ' <Phi>-36</Phi>\n' ' <Radius>1</Radius>\n' ' <Number>4</Number>\n' ' </Electrode>\n' '</Electrodes>', ) # Get actual positions and save them for checking # csd comes from the string above, all others come from commit 2fa35d4 poss = dict( sfp=[[0.0, 9.07159, -2.35975], [-6.71176, 0.0404, -3.2516], [-5.83124, -4.49482, 4.95535], [0.0, 0.0, 8.89919]], mm_elc=[[-0.08608, -0.01999, -0.04799], [0.08579, -0.02001, -0.04803], [1e-05, 0.08681, -0.03998], [-0.08608, -0.02499, -0.06799]], m_elc=[[-0.08608, -0.01999, -0.04799], [0.08579, -0.02001, -0.04803], [1e-05, 0.00868, -0.03998], [0.08, -0.02, -0.04]], txt=[[-26.25044, 80.79056, -2.96646], [26.25044, 80.79056, -2.96646], [-26.25044, -80.79056, -2.96646], [0.0, -84.94822, -2.96646]], elp=[[-48.20043, 57.55106, 39.86971], [0.0, 60.73848, 59.4629], [48.1426, 57.58403, 39.89198], [41.64599, 66.91489, 31.8278]], hpts=[[-95, -3, -3], [-1, -1., -3.], [-2, -2, 2.], [0, 0, 0]], bvef=[[-2.62664445e-02, 8.08398039e-02, 5.20474890e-18], [3.68031324e-18, 6.01040764e-02, 6.01040764e-02], [-4.63256329e-02, 5.72073923e-02, 4.25000000e-02], [-6.87664445e-02, 4.99617464e-02, 5.20474890e-18]], ) for key, text in inputs.items(): kind = key.split('_')[-1] fname = op.join(tempdir, 'test.' + kind) with open(fname, 'w') as fid: fid.write(text) unit = 'mm' if kind == 'bvef' else 'm' montage = read_montage(fname, unit=unit) if kind in ('sfp', 'txt'): assert ('very_very_very_long_name' in montage.ch_names) assert_equal(len(montage.ch_names), 4) assert_equal(len(montage.ch_names), len(montage.pos)) assert_equal(montage.pos.shape, (4, 3)) assert_equal(montage.kind, 'test') if kind == 'csd': dtype = [('label', 'S4'), ('theta', 'f8'), ('phi', 'f8'), ('radius', 'f8'), ('x', 'f8'), ('y', 'f8'), ('z', 'f8'), ('off_sph', 'f8')] try: table = np.loadtxt(fname, skip_header=2, dtype=dtype) except TypeError: table = np.loadtxt(fname, skiprows=2, dtype=dtype) poss['csd'] = np.c_[table['x'], table['y'], table['z']] if kind == 'elc': # Make sure points are reasonable distance from geometric centroid centroid = np.sum(montage.pos, axis=0) / montage.pos.shape[0] distance_from_centroid = np.apply_along_axis( np.linalg.norm, 1, montage.pos - centroid) assert_array_less(distance_from_centroid, 0.2) assert_array_less(0.01, distance_from_centroid) assert_array_almost_equal(poss[key], montage.pos, 4, err_msg=key) # Bvef is either auto or mm in terms of "units" with pytest.raises(ValueError, match='be "auto" or "mm" for .bvef files.'): bvef_file = op.join(tempdir, 'test.' + 'bvef') read_montage(bvef_file, unit='m') # Test reading in different letter case. ch_names = ["F3", "FZ", "F4", "FC3", "FCz", "FC4", "C3", "CZ", "C4", "CP3", "CPZ", "CP4", "P3", "PZ", "P4", "O1", "OZ", "O2"] montage = read_montage('standard_1020', ch_names=ch_names) assert_array_equal(ch_names, montage.ch_names) # test transform input_strs = [""" eeg Fp1 -95.0 -31.0 -3.0 eeg AF7 -81 -59 -3 eeg AF3 -87 -41 28 cardinal 2 -91 0 -42 cardinal 1 0 -91 -42 cardinal 3 0 91 -42 """, """ Fp1 -95.0 -31.0 -3.0 AF7 -81 -59 -3 AF3 -87 -41 28 FidNz -91 0 -42 FidT9 0 -91 -42 FidT10 0 91 -42 """] # sfp files seem to have Nz, T9, and T10 as fiducials: # https://github.com/mne-tools/mne-python/pull/4482#issuecomment-321980611 kinds = ['test_fid.hpts', 'test_fid.sfp'] for kind, input_str in zip(kinds, input_strs): fname = op.join(tempdir, kind) with open(fname, 'w') as fid: fid.write(input_str) montage = read_montage(op.join(tempdir, kind), transform=True) # check coordinate transformation pos = np.array([-95.0, -31.0, -3.0]) nasion = np.array([-91, 0, -42]) lpa = np.array([0, -91, -42]) rpa = np.array([0, 91, -42]) fids = np.vstack((nasion, lpa, rpa)) trans = get_ras_to_neuromag_trans(fids[0], fids[1], fids[2]) pos = apply_trans(trans, pos) assert_array_equal(montage.pos[0], pos) assert_array_equal(montage.nasion[[0, 2]], [0, 0]) assert_array_equal(montage.lpa[[1, 2]], [0, 0]) assert_array_equal(montage.rpa[[1, 2]], [0, 0]) pos = np.array([-95.0, -31.0, -3.0]) montage_fname = op.join(tempdir, kind) montage = read_montage(montage_fname, unit='mm') assert_array_equal(montage.pos[0], pos * 1e-3) # test with last info = create_info(montage.ch_names, 1e3, ['eeg'] * len(montage.ch_names)) _set_montage(info, montage) pos2 = np.array([c['loc'][:3] for c in info['chs']]) assert_array_equal(pos2, montage.pos) assert_equal(montage.ch_names, info['ch_names']) info = create_info( montage.ch_names, 1e3, ['eeg'] * len(montage.ch_names)) evoked = EvokedArray( data=np.zeros((len(montage.ch_names), 1)), info=info, tmin=0) # test return type as well as set montage assert (isinstance(evoked.set_montage(montage), type(evoked))) pos3 = np.array([c['loc'][:3] for c in evoked.info['chs']]) assert_array_equal(pos3, montage.pos) assert_equal(montage.ch_names, evoked.info['ch_names']) # Warning should be raised when some EEG are not specified in montage info = create_info(montage.ch_names + ['foo', 'bar'], 1e3, ['eeg'] * (len(montage.ch_names) + 2)) with pytest.warns(RuntimeWarning, match='position specified'): _set_montage(info, montage) # Channel names can be treated case insensitive info = create_info(['FP1', 'af7', 'AF3'], 1e3, ['eeg'] * 3) _set_montage(info, montage) # Unless there is a collision in names info = create_info(['FP1', 'Fp1', 'AF3'], 1e3, ['eeg'] * 3) assert (info['dig'] is None) with pytest.warns(RuntimeWarning, match='position specified'): _set_montage(info, montage) assert len(info['dig']) == 5 # 2 EEG w/pos, 3 fiducials montage.ch_names = ['FP1', 'Fp1', 'AF3'] info = create_info(['fp1', 'AF3'], 1e3, ['eeg', 'eeg']) assert (info['dig'] is None) with pytest.warns(RuntimeWarning, match='position specified'): _set_montage(info, montage, set_dig=False) assert (info['dig'] is None) # test get_pos2d method montage = read_montage("standard_1020") c3 = montage.get_pos2d()[montage.ch_names.index("C3")] c4 = montage.get_pos2d()[montage.ch_names.index("C4")] fz = montage.get_pos2d()[montage.ch_names.index("Fz")] oz = montage.get_pos2d()[montage.ch_names.index("Oz")] f1 = montage.get_pos2d()[montage.ch_names.index("F1")] assert (c3[0] < 0) # left hemisphere assert (c4[0] > 0) # right hemisphere assert (fz[1] > 0) # frontal assert (oz[1] < 0) # occipital assert_allclose(fz[0], 0, atol=1e-2) # midline assert_allclose(oz[0], 0, atol=1e-2) # midline assert (f1[0] < 0 and f1[1] > 0) # left frontal # test get_builtin_montages function montages = get_builtin_montages() assert (len(montages) > 0) # MNE should always ship with montages assert ("standard_1020" in montages) # 10/20 montage assert ("standard_1005" in montages) # 10/05 montage @testing.requires_testing_data def test_read_locs(): """Test reading EEGLAB locs.""" pos = read_montage(locs_montage_fname).pos expected = [[0., 9.99779165e-01, -2.10157875e-02], [3.08738197e-01, 7.27341573e-01, -6.12907052e-01], [-5.67059636e-01, 6.77066318e-01, 4.69067752e-01], [0., 7.14575231e-01, 6.99558616e-01]] assert_allclose(pos[:4], expected, atol=1e-7) def test_read_dig_montage(): """Test read_dig_montage.""" names = ['nasion', 'lpa', 'rpa', '1', '2', '3', '4', '5'] montage = read_dig_montage(hsp, hpi, elp, names, transform=False) elp_points = _read_dig_points(elp) hsp_points = _read_dig_points(hsp) hpi_points = read_mrk(hpi) with pytest.deprecated_call(): assert_equal(montage.point_names, names) assert_array_equal(montage.elp, elp_points) assert_array_equal(montage.hsp, hsp_points) assert (montage.dev_head_t is None) montage = read_dig_montage(hsp, hpi, elp, names, transform=True, dev_head_t=True) # check coordinate transformation # nasion with pytest.deprecated_call(): assert_almost_equal(montage.nasion[0], 0) assert_almost_equal(montage.nasion[2], 0) # lpa and rpa with pytest.deprecated_call(): assert_allclose(montage.lpa[1:], 0, atol=1e-16) assert_allclose(montage.rpa[1:], 0, atol=1e-16) # device head transform EXPECTED_DEV_HEAD_T = np.array( [[-3.72201691e-02, -9.98212167e-01, -4.67667497e-02, -7.31583414e-04], [8.98064989e-01, -5.39382685e-02, 4.36543170e-01, 1.60134431e-02], [-4.38285221e-01, -2.57513699e-02, 8.98466990e-01, 6.13035748e-02], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]] )
assert_allclose(montage.dev_head_t, EXPECTED_DEV_HEAD_T, atol=1e-7)
numpy.testing.assert_allclose
import numpy as np import streamlit as st @st.cache def get_xor(): X = np.zeros((200, 2)) X[:50] = np.random.random((50, 2)) / 2 + 0.5 X[50:100] = np.random.random((50, 2)) / 2 X[100:150] =
np.random.random((50, 2))
numpy.random.random
# --*-- coding: utf-8 --*-- # Copyright (c) 2020 Guangzhou fermion Technology Co.,Ltd. All rights reserved. # create by Ben 2020/3/13 上午9:40 from sklearn.metrics import accuracy_score, roc_auc_score, recall_score, precision_score, f1_score, \ mean_absolute_error, precision_recall_curve, auc, mean_squared_error, r2_score import numpy as np try: import tensorflow as tf except: pass def maskNan(yPred, yMask, logger=None): if logger and np.sum(np.isnan(yPred)) > 0: logger.warn('yPred existed nan,mask') yMask = np.clip(yMask - np.isnan(yPred), 0, 1) return yMask def prc_auc_score(yTrue, yPred): precision, recall, _ = precision_recall_curve(yTrue, yPred) prc_auc = auc(recall, precision) return prc_auc def root_mean_squared_error(yTrue, yPred): rmse = mean_squared_error(yTrue, yPred) ** 0.5 return rmse def fn_roc_auc(yTrue, yPred, yMask): yTrue = np.array(yTrue, dtype=np.int64) yPred = np.array(yPred, dtype=np.float64) yMask = np.array(yMask, dtype=np.int64) # ===================================== roc_auc_list = [] for i in range(yTrue.shape[1]): yMask_i = yMask[:, i] if np.mean(yMask_i) > 0.0: yTrue_i = yTrue[:, i][yMask_i != 0] yPred_i = yPred[:, i][yMask_i != 0] # ---------------------------------------- yTrue_mean = np.mean(yTrue_i) if yTrue_mean > 0.0 and yTrue_mean < 1.0: roc_auc_list.append(roc_auc_score(yTrue_i, yPred_i)) if len(roc_auc_list) > 0: roc_auc = np.mean(roc_auc_list) else: roc_auc = 0.0 return roc_auc def fn_accuracy(yTrue, yPred, yMask): yTrue = np.array(yTrue, dtype=np.int64) yPred = np.array(yPred, dtype=np.float64) yPred_int = np.int64(yPred > 0.5) yMask = np.array(yMask, dtype=np.int64) # ===================================== accuracy_list = [] for i in range(yTrue.shape[1]): yMask_i = yMask[:, i] if np.mean(yMask_i) > 0.0: yTrue_i = yTrue[:, i][yMask_i != 0] yPred_int_i = yPred_int[:, i][yMask_i != 0] accuracy_list.append(accuracy_score(yTrue_i, yPred_int_i)) if len(accuracy_list) > 0: accuracy = np.mean(accuracy_list) else: accuracy = 0.0 return accuracy def fn_prc_auc(yTrue, yPred, yMask): yTrue = np.array(yTrue, dtype=np.int64) yPred = np.array(yPred, dtype=np.float64) yMask = np.array(yMask, dtype=np.int64) # ===================================== prc_auc_list = [] for i in range(yTrue.shape[1]): yMask_i = yMask[:, i] if np.mean(yMask_i) > 0.0: yTrue_i = yTrue[:, i][yMask_i != 0] yPred_i = yPred[:, i][yMask_i != 0] yTrue_mean = np.mean(yTrue_i) if yTrue_mean > 0.0 and yTrue_mean < 1.0: prc_auc_list.append(prc_auc_score(yTrue_i, yPred_i)) # ===================================== if len(prc_auc_list) > 0: prc_auc = np.mean(prc_auc_list) else: prc_auc = 0.0 return prc_auc def fn_recall(yTrue, yPred, yMask): yTrue = np.array(yTrue, dtype=np.int64) yPred = np.array(yPred, dtype=np.float64) yPred_int = np.int64(yPred > 0.5) yMask = np.array(yMask, dtype=np.int64) # ===================================== recall_list = [] for i in range(yTrue.shape[1]): yMask_i = yMask[:, i] if np.mean(yMask_i) > 0.0: yTrue_i = yTrue[:, i][yMask_i != 0] yPred_int_i = yPred_int[:, i][yMask_i != 0] # ---------------------------------------- recall_list.append(recall_score(yTrue_i, yPred_int_i)) if len(recall_list) > 0: recall = np.mean(recall_list) else: recall = 0.0 return recall def fn_precision(yTrue, yPred, yMask): yTrue = np.array(yTrue, dtype=np.int64) yPred = np.array(yPred, dtype=np.float64) yPred_int =
np.int64(yPred > 0.5)
numpy.int64
""" QTNM base field module. Provides the abstract classes, QtnmBaseField and QtnmBaseSolver. New concrete implementations of this class should be compatible with other python code within the Electron-Tracking package. """ from abc import ABC, abstractmethod import numpy as np import matplotlib.pyplot as plt from scipy.constants import electron_mass as me, elementary_charge as qe from scipy.integrate import solve_ivp from utils import calculate_omega class QtnmBaseSolver(ABC): def __init__(self, charge=-qe, mass=me, b_field=1.0, calc_b_field=None): self.mass = mass self.charge = charge self.b_field = b_field self.calc_b_field = calc_b_field if calc_b_field is not None: # Handle cases where calc_b_field returns a single component if np.size(calc_b_field(0, 0, 0)) == 1: self.calc_b_field = lambda x, y, z: \ np.array([0.0, 0.0, calc_b_field(x, y, z)]) # If calc_b_field not provided, assume constant field, and store omega if calc_b_field is None: omega0 = calculate_omega(b_field, mass=mass, charge=charge) if np.size(omega0) == 3: self.omega0 = omega0 elif np.size(omega0) == 1: self.omega0 =
np.array([0, 0, omega0], dtype=float)
numpy.array
import os import tqdm import random import numpy as np from os import listdir from os.path import join import event_representations as er from numpy.lib import recfunctions as rfn from dataloader.prophesee import dat_events_tools from dataloader.prophesee import npy_events_tools from dataloader.dataloader_mnist import NMNIST from dataloader.dataloader_pilotney import PilotNet import pickle def random_shift_events(events, max_shift=20, resolution=(180, 240), bounding_box=None): H, W = resolution if bounding_box is not None: x_shift = np.random.randint(-min(bounding_box[0, 0], max_shift), min(W - bounding_box[2, 0], max_shift), size=(1,)) y_shift = np.random.randint(-min(bounding_box[0, 1], max_shift), min(H - bounding_box[2, 1], max_shift), size=(1,)) bounding_box[:, 0] += x_shift bounding_box[:, 1] += y_shift else: x_shift, y_shift = np.random.randint(-max_shift, max_shift+1, size=(2,)) events[:, 0] += x_shift events[:, 1] += y_shift valid_events = (events[:, 0] >= 0) & (events[:, 0] < W) & (events[:, 1] >= 0) & (events[:, 1] < H) events = events[valid_events] if bounding_box is None: return events return events, bounding_box def random_flip_events_along_x(events, resolution=(180, 240), p=0.5, bounding_box=None): H, W = resolution flipped = False if np.random.random() < p: events[:, 0] = W - 1 - events[:, 0] flipped = True if bounding_box is None: return events if flipped: bounding_box[:, 0] = W - 1 - bounding_box[:, 0] bounding_box = bounding_box[[1, 0, 3, 2]] return events, bounding_box def getDataloader(name): dataset_dict = {'NCaltech101': NCaltech101, 'NCaltech101_ObjectDetection': NCaltech101_ObjectDetection, 'Prophesee': Prophesee, 'NCars': NCars, 'NMNIST': NMNIST, 'PilotNet': PilotNet } dl = dataset_dict.get(name) dl.dataset_name = name return dl # class NMNIST: # def __init__(self, root, object_classes, height, width, nr_events_window=-1, augmentation=False, mode='training', # event_representation='histogram', shuffle=True): # root = os.path.join(root, mode) # class PilotNet: # def __init__(self, root, object_classes, height, width, nr_events_window=-1, augmentation=False, mode='training', # event_representation='histogram', shuffle=True): # root = os.path.join(root, mode) class NCaltech101: def __init__(self, root, object_classes, height, width, nr_events_window=-1, augmentation=False, mode='training', event_representation='histogram', shuffle=True,proc_rate=1250): """ Creates an iterator over the N_Caltech101 dataset. :param root: path to dataset root :param object_classes: list of string containing objects or 'all' for all classes :param height: height of dataset image :param width: width of dataset image :param nr_events_window: number of events in a sliding window histogram, -1 corresponds to all events :param augmentation: flip, shift and random window start for training :param mode: 'training', 'testing' or 'validation' :param event_representation: 'histogram' or 'event_queue' """ root = os.path.join(root, mode) if object_classes == 'all': self.object_classes = listdir(root) else: self.object_classes = object_classes self.width = width self.height = height self.augmentation = augmentation self.nr_events_window = nr_events_window self.nr_classes = len(self.object_classes) self.event_representation = event_representation self.files = [] self.labels = [] for i, object_class in enumerate(self.object_classes): new_files = [join(root, object_class, f) for f in listdir(join(root, object_class))] self.files += new_files self.labels += [i] * len(new_files) self.nr_samples = len(self.labels) if shuffle: zipped_lists = list(zip(self.files, self.labels)) # random.seed(7) random.shuffle(zipped_lists) self.files, self.labels = zip(*zipped_lists) self.proc_rate = proc_rate def __len__(self): return len(self.files) def __getitem__(self, idx): """ returns events and label, loading events from aedat :param idx: :return: x,y,t,p, label """ label = self.labels[idx] filename = self.files[idx] events = np.load(filename).astype(np.float32) nr_events = events.shape[0] window_start0 = 0 window_start1 = min(nr_events,self.proc_rate) window_end0 = nr_events window_end1 = nr_events if self.augmentation: events = random_shift_events(events, max_shift=10,resolution=(self.height, self.width)) events = random_flip_events_along_x(events, resolution=(self.height, self.width)) window_start0 = random.randrange(0, max(1, nr_events - self.nr_events_window-self.proc_rate)) window_start1 = min(nr_events, window_start0+self.proc_rate) if self.nr_events_window != -1: # Catch case if number of events in batch is lower than number of events in window. window_end0 = min(nr_events, window_start0 + self.nr_events_window) window_end1 = min(nr_events, window_start1 + self.nr_events_window) # First Events events0 = events[window_start0:window_end0, :] histogram0= self.generate_input_representation(events0, (self.height, self.width)) events1 = events[window_start1:window_end1, :] histogram1= self.generate_input_representation(events1, (self.height, self.width)) if 0: import matplotlib.pyplot as plt plt.imshow(histogram0[:,:,0]/histogram0.max()) plt.savefig('histogram0_.png') plt.imshow(histogram1[:,:,0]/histogram0.max()) plt.savefig('histogram1_.png') return events0,events1, label, histogram0, histogram1 def generate_input_representation(self, events, shape): """ Events: N x 4, where cols are x, y, t, polarity, and polarity is in {0,1}. x and y correspond to image coordinates u and v. """ if self.event_representation == 'histogram': return self.generate_event_histogram(events, shape) elif self.event_representation == 'event_queue': return self.generate_event_queue(events, shape) @staticmethod def generate_event_histogram(events, shape, no_t=False): """ Events: N x 4, where cols are x, y, t, polarity, and polarity is in {0,1}. x and y correspond to image coordinates u and v. """ H, W = shape if no_t: x, y, p = events.T else: x, y, t, p = events.T x = x.astype(np.int) y = y.astype(np.int) img_pos = np.zeros((H * W,), dtype="float32") img_neg = np.zeros((H * W,), dtype="float32") np.add.at(img_pos, x[p == 1] + W * y[p == 1], 1) np.add.at(img_neg, x[p == -1] + W * y[p == -1], 1) histogram = np.stack([img_neg, img_pos], -1).reshape((H, W, 2)) return histogram @staticmethod def generate_event_queue(events, shape, K=15): """ Events: N x 4, where cols are x, y, t, polarity, and polarity is in {0,1}. x and y correspond to image coordinates u and v. """ H, W = shape events = events.astype(np.float32) if events.shape[0] == 0: return np.zeros([H, W, 2*K], dtype=np.float32) # [2, K, height, width], [0, ...] time, [:, 0, :, :] newest events four_d_tensor = er.event_queue_tensor(events, K, H, W, -1).astype(np.float32) # Normalize four_d_tensor[0, ...] = four_d_tensor[0, 0, None, :, :] - four_d_tensor[0, :, :, :] max_timestep = np.amax(four_d_tensor[0, :, :, :], axis=0, keepdims=True) # four_d_tensor[0, ...] = np.divide(four_d_tensor[0, ...], max_timestep, where=max_timestep.astype(np.bool)) four_d_tensor[0, ...] = four_d_tensor[0, ...] / (max_timestep + (max_timestep == 0).astype(np.float)) return four_d_tensor.reshape([2*K, H, W]).transpose(1, 2, 0) class NCaltech101_ObjectDetection(NCaltech101): def __init__(self, root, object_classes, height, width, nr_events_window=-1, augmentation=False, mode='training', event_representation='histogram', shuffle=True): """ Creates an iterator over the N_Caltech101 object recognition dataset. :param root: path to dataset root :param object_classes: list of string containing objects or 'all' for all classes :param height: height of dataset image :param width: width of dataset image :param nr_events_window: number of events in a sliding window histogram, -1 corresponds to all events :param augmentation: flip, shift and random window start for training :param mode: 'training', 'testing' or 'validation' :param event_representation: 'histogram' or 'event_queue' """ if object_classes == 'all': self.object_classes = listdir(os.path.join(root, 'Caltech101')) else: self.object_classes = object_classes self.object_classes.sort() self.root = root self.mode = mode self.width = width self.height = height self.augmentation = augmentation self.nr_events_window = nr_events_window self.nr_classes = len(self.object_classes) self.event_representation = event_representation self.files = [] self.class_labels = [] self.bounding_box_list = [] self.createDataset() self.nr_samples = len(self.files) if shuffle: zipped_lists = list(zip(self.files, self.class_labels, self.bounding_box_list)) random.shuffle(zipped_lists) self.files, self.class_labels, self.bounding_box_list = zip(*zipped_lists) def createDataset(self): """Does a stratified training, testing, validation split""" np_random_state = np.random.RandomState(42) training_ratio = 0.7 testing_ratio = 0.2 # Validation Ratio will be 0.1 for i_class, object_class in enumerate(self.object_classes): if object_class == 'BACKGROUND_Google': continue dir_path = os.path.join(self.root, 'Caltech101', object_class) image_files = listdir(dir_path) nr_samples = len(image_files) random_permutation = np_random_state.permutation(nr_samples) nr_samples_train = int(nr_samples*training_ratio) nr_samples_test = int(nr_samples*testing_ratio) if self.mode == 'training': start_idx = 0 end_idx = nr_samples_train elif self.mode == 'testing': start_idx = nr_samples_train end_idx = nr_samples_train + nr_samples_test elif self.mode == 'validation': start_idx = nr_samples_train + nr_samples_test end_idx = nr_samples for idx in random_permutation[start_idx:end_idx]: self.files.append(os.path.join(self.root, 'Caltech101', object_class, image_files[idx])) annotation_file = 'annotation' + image_files[idx][5:] self.readBoundingBox(os.path.join(self.root, 'Caltech101_annotations', object_class, annotation_file)) self.class_labels.append(i_class) def readBoundingBox(self, file_path): f = open(file_path) annotations = np.fromfile(f, dtype=np.int16) f.close() self.bounding_box_list.append(annotations[2:10]) def loadEventsFile(self, file_name): f = open(file_name, 'rb') raw_data = np.fromfile(f, dtype=np.uint8) f.close() raw_data = np.uint32(raw_data) all_y = raw_data[1::5] all_x = raw_data[0::5] all_p = (raw_data[2::5] & 128) >> 7 # bit 7 all_ts = ((raw_data[2::5] & 127) << 16) | (raw_data[3::5] << 8) | (raw_data[4::5]) all_p = all_p.astype(np.float64) all_p[all_p == 0] = -1 return np.column_stack((all_x, all_y, all_ts, all_p)) def __len__(self): return len(self.files) def __getitem__(self, idx): """ returns events and label, loading events from aedat :param idx: :return: x,y,t,p, label """ class_label = self.class_labels[idx] bounding_box = self.bounding_box_list[idx] bounding_box = bounding_box.reshape([4, 2]) # Set negative corners to zero bounding_box = np.maximum(bounding_box,
np.zeros_like(bounding_box)
numpy.zeros_like
# -*- coding: utf-8 -*- # from __future__ import division import numpy import sympy def _s3(symbolic): frac = sympy.Rational if symbolic else lambda x, y: x / y return numpy.full((1, 3), frac(1, 3)) def _s21(a): a = numpy.array(a) b = 1 - 2 * a return numpy.array([[a, a, b], [a, b, a], [b, a, a]]) def _s111(a, b): c = 1 - a - b return numpy.array( [[a, b, c], [c, a, b], [b, c, a], [b, a, c], [c, b, a], [a, c, b]] ) def _s111ab(a, b): c = 1 - a - b out = numpy.array( [[a, b, c], [c, a, b], [b, c, a], [b, a, c], [c, b, a], [a, c, b]] ) out = numpy.swapaxes(out, 0, 1) return out def _rot_ab(a, b): c = 1 - a - b out = numpy.array([[a, b, c], [c, a, b], [b, c, a]]) out = numpy.swapaxes(out, 0, 1) return out def _collapse0(a): """Collapse all dimensions of `a` except the first. """ return a.reshape(a.shape[0], -1) def untangle2(data, symbolic=False): bary = [] weights = [] if "s3" in data: d = numpy.array(data["s3"]).T bary.append(_s3(symbolic).T) weights.append(numpy.tile(d[0], 1)) if "s2" in data: d = numpy.array(data["s2"]).T s2_data = _s21(d[1]) bary.append(_collapse0(s2_data)) weights.append(numpy.tile(d[0], 3)) if "s1" in data: d = numpy.array(data["s1"]).T s1_data = _s111ab(*d[1:]) bary.append(_collapse0(s1_data)) weights.append(numpy.tile(d[0], 6)) if "rot" in data: d =
numpy.array(data["rot"])
numpy.array
from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Sequential from tensorflow.keras import Input from tensorflow.keras.layers import Dense from tensorflow.keras.utils import to_categorical import numpy import collections import random from typing import List, Union from yahtzee import Player, Round class State: def __init__(self, data: List[int] = []) -> None: self.data = data self.num_fields = len(data) def to_data(self) -> List[int]: return numpy.asarray(self.data) class Agent: """Deep Q-Network Agent""" def __init__( self, weights_path: str, input_size: int, output_size: int, epsilon: float = 1.0, learning_rate: float = 0.0005, first_layer_size: int = 50, second_layer_size: int = 300, third_layer_size: int = 50, memory_size: int = 2500, load_weights: bool = False, ) -> None: self.gamma = 0.9 self.short_memory = numpy.array([]) self.learning_rate = learning_rate self.epsilon = epsilon self.first_layer = first_layer_size self.second_layer = second_layer_size self.third_layer = third_layer_size self.input_size = input_size self.output_size = output_size self.memory = collections.deque(maxlen=memory_size) self.weights = weights_path self.load_weights = load_weights self.model = self.network() def network(self): model = Sequential() model.add(Input(shape=(self.input_size))) model.add(Dense(self.first_layer, activation="relu")) model.add(Dense(self.second_layer, activation="relu")) model.add(Dense(self.third_layer, activation="relu")) model.add(Dense(self.output_size, activation="softmax")) opt = Adam(self.learning_rate) model.compile(loss="mse", optimizer=opt) if self.load_weights: model.load_weights(self.weights) return model def get_state(self, player: Player, round: Round) -> State: raise Exception("Not implemented") def get_reward(self, player: Player, round: Round): return player.total_score() def remember( self, state: State, action: int, reward: int, next_state: State, done: bool ): self.memory.append( (state.to_data(), action, reward, next_state.to_data(), done) ) def replay_new(self, memory, batch_size): if len(memory) > batch_size: minibatch = random.sample(memory, batch_size) else: minibatch = memory for state, action, reward, next_state, done in minibatch: target = reward if not done: target = reward + self.gamma * numpy.amax( self.model.predict(numpy.array([next_state]))[0] ) target_f = self.model.predict(numpy.array([state])) target_f[0][
numpy.argmax(action)
numpy.argmax
# test_basic.py: some basic tests of the code import numpy numpy.random.seed(2) from extreme_deconvolution import extreme_deconvolution def test_single_gauss_1d_nounc(): # Generate data from a single Gaussian, recover mean and variance ndata= 3001 ydata= numpy.atleast_2d(numpy.random.normal(size=ndata)).T ycovar= numpy.zeros_like(ydata) # initialize fit K= 1 initamp= numpy.ones(K) initmean= numpy.atleast_2d(numpy.mean(ydata)+1.) initcovar= numpy.atleast_3d(3.*numpy.var(ydata)) # Run XD extreme_deconvolution(ydata,ycovar,initamp,initmean,initcovar) # Test tol= 10./numpy.sqrt(ndata) assert numpy.fabs(initmean-0.) < tol, 'XD does not recover correct mean for single Gaussian w/o uncertainties' assert numpy.fabs(initcovar-1.) < tol, 'XD does not recover correct variance for single Gaussian w/o uncertainties' return None def test_single_gauss_1d_constunc(): # Generate data from a single Gaussian, recover mean and variance ndata= 3001 ydata= numpy.atleast_2d(numpy.random.normal(size=ndata)).T ycovar= numpy.ones_like(ydata)*0.25 ydata+= numpy.atleast_2d(numpy.random.normal(size=ndata)).T\ *numpy.sqrt(ycovar) # initialize fit K= 1 initamp= numpy.ones(K) initmean= numpy.atleast_2d(numpy.mean(ydata)+1.5) initcovar= numpy.atleast_3d(3.*numpy.var(ydata)) # Run XD extreme_deconvolution(ydata,ycovar,initamp,initmean,initcovar) # Test tol= 10./numpy.sqrt(ndata) assert numpy.fabs(initmean-0.) < tol, 'XD does not recover correct mean for single Gaussian w/ constant uncertainties' assert numpy.fabs(initcovar-1.) < tol, 'XD does not recover correct variance for single Gaussian w/ constant uncertainties' return None def test_single_gauss_1d_varunc(): # Generate data from a single Gaussian, recover mean and variance ndata= 3001 ydata= numpy.atleast_2d(numpy.random.normal(size=ndata)).T ycovar= numpy.ones_like(ydata)*\ numpy.atleast_2d(numpy.random.uniform(size=ndata)).T ydata+= numpy.atleast_2d(numpy.random.normal(size=ndata)).T\ *numpy.sqrt(ycovar) # initialize fit K= 1 initamp= numpy.ones(K) initmean= numpy.atleast_2d(numpy.mean(ydata)+numpy.std(ydata)) initcovar= numpy.atleast_3d(3.*numpy.var(ydata)) # Run XD extreme_deconvolution(ydata,ycovar,initamp,initmean,initcovar) # Test tol= 10./numpy.sqrt(ndata) assert numpy.fabs(initmean-0.) < tol, 'XD does not recover correct mean for single Gaussian w/ uncertainties' assert numpy.fabs(initcovar-1.) < tol, 'XD does not recover correct variance for single Gaussian w/ uncertainties' return None def test_dual_gauss_1d_nounc(): # Generate data from two Gaussians, recover mean and variance ndata= 3001 amp_true= 0.3 assign= numpy.random.binomial(1,1.-amp_true,ndata) ydata= numpy.zeros((ndata,1)) ydata[assign==0,0]= numpy.random.normal(size=numpy.sum(assign==0))-2. ydata[assign==1,0]= numpy.random.normal(size=numpy.sum(assign==1))*2.+1. ycovar= numpy.zeros_like(ydata) # initialize fit K= 2 initamp= numpy.ones(K)/float(K) initmean= numpy.array([[-1.],[2.]]) initcovar= numpy.zeros((K,1,1)) for kk in range(K): initcovar[kk]= numpy.mean(3.*numpy.var(ydata)) # Run XD extreme_deconvolution(ydata,ycovar,initamp,initmean,initcovar) # Test tol= 12./numpy.sqrt(ndata) first= initamp < 0.5 assert numpy.fabs(initamp[first]-amp_true) < tol, 'XD does not recover correct amp for dual Gaussian w/o uncertainties' assert numpy.fabs(initmean[first]--2.) < tol, 'XD does not recover correct mean for dual Gaussian w/o uncertainties' assert numpy.fabs(initcovar[first]-1.) < tol, 'XD does not recover correct variance for dual Gaussian w/o uncertainties' second= initamp >= 0.5 assert numpy.fabs(initamp[second]-(1.-amp_true)) < tol, 'XD does not recover correct amp for dual Gaussian w/o uncertainties' assert numpy.fabs(initmean[second]-1.) < 2.*tol, 'XD does not recover correct mean for dual Gaussian w/o uncertainties' assert numpy.fabs(initcovar[second]-4.) < 2.*tol, 'XD does not recover correct variance for dual Gaussian w/o uncertainties' return None def test_dual_gauss_1d_constunc(): # Generate data from two Gaussians, recover mean and variance ndata= 3001 amp_true= 0.3 assign= numpy.random.binomial(1,1.-amp_true,ndata) ydata= numpy.zeros((ndata,1)) ydata[assign==0,0]= numpy.random.normal(size=numpy.sum(assign==0))-2. ydata[assign==1,0]= numpy.random.normal(size=numpy.sum(assign==1))*2.+1. ycovar= numpy.ones_like(ydata)*0.25 ydata+= numpy.atleast_2d(numpy.random.normal(size=ndata)).T\ *numpy.sqrt(ycovar) # initialize fit K= 2 initamp= numpy.ones(K)/float(K) initmean= numpy.array([[-1.],[0.]]) initcovar= numpy.zeros((K,1,1)) for kk in range(K): initcovar[kk]= numpy.mean(3.*numpy.var(ydata)) # Run XD extreme_deconvolution(ydata,ycovar,initamp,initmean,initcovar) # Test tol= 20./numpy.sqrt(ndata) first= initamp < 0.5 assert
numpy.fabs(initamp[first]-amp_true)
numpy.fabs
""" Zade-Mamdani fuzzy model =============================================================================== """ import matplotlib.pyplot as plt import numpy as np from .core import ( apply_modifiers, plot_crisp_input, plot_fuzzy_input, plot_fuzzyvariable, ) # ############################################################################# # # # Fuzzy Variable # # # ############################################################################# class FuzzyVariable: """Creates a (fuzzy) linguistic variable. Args: name (string): variable name. universe (list, numpy.array): list of points defining the universe of the variable. sets (dict): dictionary where keys are the name of the sets, and the values correspond to the membership for each point of the universe. Returns: A fuzzy variable. """ def __init__(self, name, universe, sets=None): self.name = name.replace(" ", "_") self.universe = universe if sets is None: self.sets = {} else: self.sets = sets for key in sets.keys(): self.sets[key] = np.array(self.sets[key]) def __getitem__(self, name): """Returns the membership function for the specified fuzzy set. Args: name (string): Fuzzy set name Returns: A numpy array. """ return self.sets[name] def __setitem__(self, name, memberships): """Sets the membership function values for the specified fuzzy set. Args: name (string): Fuzzy set name. memberships (list, numpy.array): membership values. """ self.sets[name] = np.array(memberships) def plot(self, fmt="-", linewidth=2): """Plots the fuzzy sets defined for the variable. Args: figsize (tuple): figure size. """ plot_fuzzyvariable( universe=self.universe, memberships=[self.sets[k] for k in self.sets.keys()], labels=list(self.sets.keys()), title=self.name, fmt=fmt, linewidth=linewidth, view_xaxis=True, view_yaxis=True, ) def plot_input(self, value, fuzzyset, view_xaxis=True, view_yaxis="left"): if isinstance(value, (np.ndarray, list)): plot_fuzzy_input( value=value, universe=self.universe, membership=self.sets[fuzzyset], name=self.name, view_xaxis=view_xaxis, view_yaxis=view_yaxis, ) else: plot_crisp_input( value=value, universe=self.universe, membership=self.sets[fuzzyset], name=self.name, view_xaxis=view_xaxis, view_yaxis=view_yaxis, ) def apply_modifiers(self, fuzzyset, modifiers): """Computes a modified membership function. Args: fuzzyset (string): Identifier of the fuzzy set. modifiers (list of string): {"very"|"somewhat"|"more_or_less"|"extremely"|"plus"|"intensify"|"slightly"|None} Returns: A numpy.array. """ if modifiers is None: return self.sets[fuzzyset] return apply_modifiers(membership=self.sets[fuzzyset], modifiers=modifiers) def fuzzificate(self, value, fuzzyset, modifiers=None): """Computes the value of the membership function on a specifyied point of the universe for the fuzzy set. Args: value (float, numpy.array): point to evaluate the value of the membership function. fuzzyset (string): name of the fuzzy set. modifier (string): membership function modifier. negation (bool): returns the negation?. Returns: A float number or numpy.array. """ membership = self.apply_modifiers(fuzzyset, modifiers) return np.interp( x=value, xp=self.universe, fp=membership, ) # ############################################################################# # # # Operators over fuzzy sets # # # ############################################################################# def defuzzificate(universe, membership, operator="cog"): """Computes a representative crisp value for the fuzzy set. Args: fuzzyset (string): Fuzzy set to defuzzify operator (string): {"cog"|"bisection"|"mom"|"lom"|"som"} Returns: A float value. """ def cog(): start = np.min(universe) stop = np.max(universe) x = np.linspace(start, stop, num=200) m = np.interp(x, xp=universe, fp=membership) return np.sum(x * m) / sum(m) def coa(): start = np.min(universe) stop = np.max(universe) x = np.linspace(start, stop, num=200) m = np.interp(x, xp=universe, fp=membership) area = np.sum(m) cum_area = np.cumsum(m) return np.interp(area / 2, xp=cum_area, fp=x) def mom(): maximum = np.max(membership) maximum = np.array([u for u, m in zip(universe, membership) if m == maximum]) return np.mean(maximum) def lom(): maximum = np.max(membership) maximum = np.array([u for u, m in zip(universe, membership) if m == maximum]) return np.max(maximum) def som(): maximum = np.max(membership) maximum = np.array([u for u, m in zip(universe, membership) if m == maximum]) return np.min(maximum) if np.sum(membership) == 0.0: return 0.0 return { "cog": cog, "coa": coa, "mom": mom, "lom": lom, "som": som, }[operator]() def aggregate(memberships, operator): """Replace the fuzzy sets by a unique fuzzy set computed by the aggregation operator. Args: operator (string): {"max"|"sim"|"probor"} aggregation operator. Returns: A FuzzyVariable """ result = memberships[0] if operator == "max": for membership in memberships[1:]: result = np.maximum(result, membership) return result if operator == "sum": for membership in memberships[1:]: result = result + membership return np.minimum(1, result) if operator == "probor": for membership in memberships[1:]: result = result + membership - result * membership return np.maximum(1, np.minimum(1, result)) # ############################################################################# # # # Zadeh-Mamdani's Rule # # # ############################################################################# class FuzzyRule: """Mamdani fuzzy rule. Creates a Mamdani fuzzy fule. Args: antecedents (list of tuples): Fuzzy variables in the rule antecedent. consequent (tuple): Fuzzy variable in the consequence. is_and (bool): When True, membership values are combined using the specified AND operator; when False, the OR operator is used. """ def __init__( self, premises, consequence, ): self.premises = premises self.consequence = consequence # def __repr__(self): text = "IF " space = " " * 4 for i_premise, premise in enumerate(self.premises): if i_premise == 0: text += premise[0].name + " IS" for t in premise[1:]: text += " " + t text += "\n" else: text += space + premise[0] + " " + premise[1].name + " IS" for t in premise[2:]: text += " " + t text += "\n" text += "THEN\n" text += space + self.consequence[0].name + " IS" for t in self.consequence[1:]: text += " " + t return text # ############################################################################# # # # Generic inference method # # # ############################################################################# def probor(a, b): return np.maximum(0, np.minimum(1, a + b - a * b)) class InferenceMethod: def __init__( self, and_operator, or_operator, composition_operator, production_link, defuzzification_operator, ): self.and_operator = and_operator self.or_operator = or_operator self.composition_operator = composition_operator self.production_link = production_link self.defuzzification_operator = defuzzification_operator # self.rules = [] def compute_modified_premise_memberships(self): for rule in self.rules: rule.modified_premise_memberships = {} rule.universes = {} for i_premise, premise in enumerate(rule.premises): if i_premise == 0: if len(premise) == 2: fuzzyvar, fuzzyset = premise modifiers = None else: fuzzyvar = premise[0] fuzzyset = premise[-1] modifiers = premise[1:-1] else: if len(premise) == 3: _, fuzzyvar, fuzzyset = premise modifiers = None else: fuzzyvar = premise[1] fuzzyset = premise[-1] modifiers = premise[2:-1] rule.modified_premise_memberships[ fuzzyvar.name ] = fuzzyvar.apply_modifiers(fuzzyset, modifiers) rule.universes[fuzzyvar.name] = fuzzyvar.universe def compute_modified_consequence_membership(self): for rule in self.rules: if len(rule.consequence) == 2: modifiers = None else: modifiers = rule.consequence[1:-1] fuzzyset = rule.consequence[-1] rule.modified_consequence_membership = rule.consequence[0].apply_modifiers( fuzzyset, modifiers ) def build_infered_consequence(self): self.infered_consequence = FuzzyVariable( name=self.rules[0].consequence[0].name, universe=self.rules[0].consequence[0].universe, ) for i_rule, rule in enumerate(self.rules): self.infered_consequence["Rule-{}".format(i_rule)] = rule.infered_membership def aggregate_productions(self): """Computes the output fuzzy set of the inference system.""" infered_membership = None if self.production_link == "max": for rule in self.rules: if infered_membership is None: infered_membership = rule.infered_membership else: infered_membership = np.maximum( infered_membership, rule.infered_membership ) self.infered_membership = infered_membership def fuzzificate(self, **values): """Computes the memberships of the antecedents. Args: values: crisp values for the antecedentes in the rule. """ for rule in self.rules: rule.fuzzificated_values = {} for name in rule.modified_premise_memberships.keys(): crisp_value = values[name] rule.fuzzificated_values[name] = np.interp( x=crisp_value, xp=rule.universes[name], fp=rule.modified_premise_memberships[name], ) def defuzzificate(self): self.defuzzificated_infered_membership = defuzzificate( universe=self.infered_consequence.universe, membership=self.infered_membership, operator=self.defuzzification_operator, ) # ############################################################################# # # # Decompositional Inference Method # # # ############################################################################# class DecompositionalInference(InferenceMethod): def __init__( self, input_type, and_operator, or_operator, implication_operator, composition_operator, production_link, defuzzification_operator, ): super().__init__( and_operator=and_operator, or_operator=or_operator, composition_operator=composition_operator, production_link=production_link, defuzzification_operator=defuzzification_operator, ) self.implication_operator = implication_operator self.input_type = input_type # def __call__(self, rules, **values): self.rules = rules self.compute_modified_premise_memberships() self.compute_modified_consequence_membership() self.compute_fuzzy_implication() if self.input_type == "crisp": self.fuzzificate(**values) else: self.fuzzificated_values = values.copy() self.compute_fuzzy_composition() self.compute_aggregation() self.build_infered_consequence() self.aggregate_productions() self.defuzzificate() return self.defuzzificated_infered_membership def compute_fuzzy_implication(self): # # Implication operators # See Kasabov, pag. 185 # Ra = lambda u, v: np.minimum(1, 1 - u + v) Rm = lambda u, v: np.maximum(np.minimum(u, v), 1 - u) Rc = lambda u, v: np.minimum(u, v) Rb = lambda u, v:
np.maximum(1 - u, v)
numpy.maximum
import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl cols_t=np.array(['M_star', 'v_disk', 'm_cold gas', 'sfr_ave100Myr']) # old columns cols_t = np.array(['halo_index (long) (0)', 'birthhaloid (long long)(1)', 'roothaloid (long long)(2)', 'redshift(3)', 'sat_type 0= central(4)', 'mhalo total halo mass [1.0E09 Msun](5)', 'm_strip stripped mass [1.0E09 Msun](6)', 'rhalo halo virial radius [Mpc)](7)', 'mstar stellar mass [1.0E09 Msun](8)', 'mbulge stellar mass of bulge [1.0E09 Msun] (9)', ' mstar_merge stars entering via mergers] [1.0E09 Msun](10)', ' v_disk rotation velocity of disk [km/s] (11)', ' sigma_bulge velocity dispersion of bulge [km/s](12)', ' r_disk exponential scale radius of stars+gas disk [kpc] (13)', ' r_bulge 3D effective radius of bulge [kpc](14)', ' mcold cold gas mass in disk [1.0E09 Msun](15)', ' mHI cold gas mass [1.0E09 Msun](16)', ' mH2 cold gas mass [1.0E09 Msun](17)', ' mHII cold gas mass [1.0E09 Msun](18)', ' Metal_star metal mass in stars [Zsun*Msun](19)', ' Metal_cold metal mass in cold gas [Zsun*Msun] (20)', ' sfr instantaneous SFR [Msun/yr](21)', ' sfrave20myr SFR averaged over 20 Myr [Msun/yr](22)', ' sfrave100myr SFR averaged over 100 Myr [Msun/yr](23)', ' sfrave1gyr SFR averaged over 1 Gyr [Msun/yr](24)', ' mass_outflow_rate [Msun/yr](25)', ' metal_outflow_rate [Msun/yr](26)', ' mBH black hole mass [1.0E09 Msun](27)', ' maccdot accretion rate onto BH [Msun/yr](28)', ' maccdot_radio accretion rate in radio mode [Msun/yr](29)', ' tmerge time since last merger [Gyr] (30)', ' tmajmerge time since last major merger [Gyr](31)', ' mu_merge mass ratio of last merger [](32)', ' t_sat time since galaxy became a satellite in this halo [Gyr](33)', ' r_fric distance from halo center [Mpc](34)', ' x_position x coordinate [cMpc](35)', ' y_position y coordinate [cMpc](36)', ' z_position z coordinate [cMpc](37)', ' vx x component of velocity [km/s](38)', ' vy y component of velocity [km/s](39)', ' vz z component of velocity [km/s](40)']) cols_t = [t.replace(' ','') for t in cols_t] cols_t = [t.replace('/','') for t in cols_t] cols_t = np.array(cols_t) def SAM_base(ys, pred, xs, Mh): ''' Basic lotting scheme for an unspecified range of targets, xs/Mh keywords aren't used, left for dependency ys/pred should be the same dimensionality''' fig, ax =plt.subplots(figsize=(6,6)) ax.plot(ys,pred, 'ro', alpha=0.3) ax.plot([min(ys),max(ys)],[min(ys),max(ys)], 'k--', label='Perfect correspondance') ax.set(xlabel='SAM Truth',ylabel='GNN Prediction', title='True/predicted correlation') yhat=r'$\hat{y}$' ax.text(0.6,0.15, f'Bias (mean(y-{yhat})) : {np.mean(ys-pred):.3f}', transform=ax.transAxes) ax.text(0.6,0.1, r'$\sigma$ : '+f'{np.std(ys-pred):.3f}', transform=ax.transAxes) ax.legend() return fig def multi_base(ys, pred, xs, Mh, targets): ''' Plotting scheme for an unspecified range of targets, xs/Mh keywords aren't used, left for dependency ys/pred should be the same dimensionality, targets should be numerical indexed, not boolean''' n_t = len(targets) figs=[] for n in range(n_t): fig, ax =plt.subplots(1,2, figsize=(12,6)) ax=ax.flatten() ax[0].plot(ys[:,n],pred[:,n], 'ro', alpha=0.3) ax[0].plot([min(ys[:,n]),max(ys[:,n])],[min(ys[:,n]),max(ys[:,n])], 'k--', label='Perfect correspondance') ax[0].set(xlabel='SAM Truth',ylabel='GNN Prediction', title=cols_t[targets[n]]) yhat=r'$\hat{y}$' ax[0].text(0.6,0.15, f'Bias (mean(y-{yhat})) : {np.mean(ys[:,n]-pred[:,n]):.3f}', transform=ax[0].transAxes) ax[0].text(0.6,0.1, r'$\sigma$ : '+f'{np.std(ys[:,n]-pred[:,n]):.3f}', transform=ax[0].transAxes) ax[0].legend() vals, x, y, _ =ax[1].hist2d(ys[:,n],pred[:,n],bins=50, norm=mpl.colors.LogNorm(), cmap=mpl.cm.magma) X, Y = np.meshgrid((x[1:]+x[:-1])/2, (y[1:]+y[:-1])/2) ax[1].contour(X,Y,
np.log(vals.T+1)
numpy.log
from collections import OrderedDict import copy import getpass import itertools import numpy as np from scipy import signal import time LOCAL_MODE = getpass.getuser() == 'tom' CONFIG = { 'halite_config_setting_divisor': 1.0, 'collect_smoothed_multiplier': 0.0, 'collect_actual_multiplier': 5.0, 'collect_less_halite_ships_multiplier_base': 0.55, 'collect_base_nearest_distance_exponent': 0.2, 'return_base_multiplier': 8.0, 'return_base_less_halite_ships_multiplier_base': 0.85, 'early_game_return_base_additional_multiplier': 0.1, 'early_game_return_boost_step': 50, 'establish_base_smoothed_multiplier': 0.0, 'establish_first_base_smoothed_multiplier_correction': 2.0, 'establish_base_dm_exponent': 1.1, 'first_base_no_4_way_camping_spot_bonus': 300*0, 'start_camp_if_not_winning': 0, 'max_camper_ship_budget': 2*1, 'relative_step_start_camping': 0.15, 'establish_base_deposit_multiplier': 1.0, 'establish_base_less_halite_ships_multiplier_base': 1.0, 'max_attackers_per_base': 3*1, 'attack_base_multiplier': 300.0, 'attack_base_less_halite_ships_multiplier_base': 0.9, 'attack_base_halite_sum_multiplier': 2.0, 'attack_base_run_opponent_multiplier': 1.0, 'attack_base_catch_opponent_multiplier': 1.0, 'collect_run_opponent_multiplier': 10.0, 'return_base_run_opponent_multiplier': 2.5, 'establish_base_run_opponent_multiplier': 2.5, 'collect_catch_opponent_multiplier': 1.0, 'return_base_catch_opponent_multiplier': 1.0, 'establish_base_catch_opponent_multiplier': 0.5, 'two_step_avoid_boxed_opponent_multiplier_base': 0.7, 'n_step_avoid_boxed_opponent_multiplier_base': 0.45, 'min_consecutive_chase_extrapolate': 6, 'chase_return_base_exponential_bonus': 2.0, 'ignore_catch_prob': 0.3, 'max_initial_ships': 60, 'max_final_ships': 60, 'max_standard_ships_decided_end_pack_hunting': 2, 'nearby_ship_halite_spawn_constant': 3.0, 'nearby_halite_spawn_constant': 5.0, 'remaining_budget_spawn_constant': 0.2, 'spawn_score_threshold': 75.0, 'boxed_in_halite_convert_divisor': 1.0, 'n_step_avoid_min_die_prob_cutoff': 0.05, 'n_step_avoid_window_size': 7, 'influence_map_base_weight': 2.0, 'influence_map_min_ship_weight': 0.0, 'influence_weights_additional_multiplier': 2.0, 'influence_weights_exponent': 8.0, 'escape_influence_prob_divisor': 3.0, 'rescue_ships_in_trouble': 1, 'target_strategic_base_distance': 8.0, 'target_strategic_num_bases_ship_divisor': 9, 'target_strategic_triangle_weight': 20.0, # initially: 20 'target_strategic_independent_base_distance_multiplier': 8.0, # initially 8.0 'target_strategic_influence_desirability_multiplier': 1.0, # initially: 1.0 'target_strategic_potential_divisor': 15.0, # initially: 15.0 'max_spawn_relative_step_divisor': 12.0, 'no_spawn_near_base_ship_limit': 100, 'avoid_cycles': 1, 'max_risk_n_step_risky': 0.5, 'max_steps_n_step_risky': 70, 'log_near_base_distance': 2, 'max_recent_considered_relevant_zero_move_count': 120, 'near_base_2_step_risky_min_count': 50, 'relative_stand_still_collect_boost': 1.5, 'initial_collect_boost_away_from_base': 2.0, 'start_hunting_season_relative_step': 0.1875, 'end_hunting_season_relative_step': 0.75, 'early_hunting_season_less_collect_relative_step': 0.375, 'max_standard_ships_early_hunting_season': 2, 'late_hunting_season_more_collect_relative_step': 0.5, 'late_hunting_season_collect_max_n_step_risk': 0.2, 'after_hunting_season_collect_max_n_step_risk': 0.5, 'late_hunting_season_standard_min_fraction': 0.7, 'max_standard_ships_late_hunting_season': 15, 'collect_on_safe_return_relative_step': 0.075, 'min_halite_to_stop_early_hunt': 15000.0, 'early_best_opponent_relative_step': 0.5, 'surrounding_ships_cycle_extrapolate_step_count': 5, 'surrounding_ships_extended_cycle_extrapolate_step_count': 7, } NORTH = "NORTH" SOUTH = "SOUTH" EAST = "EAST" WEST = "WEST" CONVERT = "CONVERT" SPAWN = "SPAWN" NOT_NONE_DIRECTIONS = [NORTH, SOUTH, EAST, WEST] MOVE_DIRECTIONS = [None, NORTH, SOUTH, EAST, WEST] MOVE_DIRECTIONS_TO_ID = {None: 0, NORTH: 1, SOUTH: 2, EAST: 3, WEST: 4} RELATIVE_DIR_MAPPING = {None: (0, 0), NORTH: (-1, 0), SOUTH: (1, 0), EAST: (0, 1), WEST: (0, -1)} RELATIVE_DIR_TO_DIRECTION_MAPPING = { v: k for k, v in RELATIVE_DIR_MAPPING.items()} OPPOSITE_MAPPING = {None: None, NORTH: SOUTH, SOUTH: NORTH, EAST: WEST, WEST: EAST} RELATIVE_DIRECTIONS = [(-1, 0), (1, 0), (0, -1), (0, 1), (0, 0)] RELATIVE_NOT_NONE_DIRECTIONS = [(-1, 0), (1, 0), (0, -1), (0, 1)] MOVE_GATHER_OPTIONS = [(-1, 0, False), (1, 0, False), (0, -1, False), (0, 1, False), (0, 0, True)] TWO_STEP_THREAT_DIRECTIONS = { (-2, 0): [(-1, 0)], (-1, -1): [(-1, 0), (0, -1)], (-1, 0): [(-1, 0), (0, 0)], (-1, 1): [(-1, 0), (0, 1)], (0, -2): [(0, -1)], (0, -1): [(0, -1), (0, 0)], (0, 1): [(0, 1), (0, 0)], (0, 2): [(0, 1)], (1, -1): [(1, 0), (0, -1)], (1, 0): [(1, 0), (0, 0)], (1, 1): [(1, 0),(0, 1)], (2, 0): [(1, 0)], } GAUSSIAN_2D_KERNELS = {} for dim in range(3, 20, 2): # Modified from https://scipy-lectures.org/intro/scipy/auto_examples/solutions/plot_image_blur.html center_distance = np.floor(np.abs(np.arange(dim) - (dim-1)/2)) horiz_distance = np.tile(center_distance, [dim, 1]) vert_distance = np.tile(np.expand_dims(center_distance, 1), [1, dim]) manh_distance = horiz_distance + vert_distance kernel = np.exp(-manh_distance/(dim/4)) kernel[manh_distance > dim/2] = 0 GAUSSIAN_2D_KERNELS[dim] = kernel DISTANCES = {} DISTANCE_MASKS = {} HALF_PLANES_CATCH = {} HALF_PLANES_RUN = {} ROW_COL_DISTANCE_MASKS = {} ROW_COL_MAX_DISTANCE_MASKS = {} ROW_COL_BOX_MAX_DISTANCE_MASKS = {} ROW_COL_BOX_DIR_MAX_DISTANCE_MASKS = {} BOX_DIR_MAX_DISTANCE = 4 BOX_DIRECTION_MASKS = {} ROW_MASK = {} COLUMN_MASK = {} DISTANCE_MASK_DIM = 21 half_distance_mask_dim = int(DISTANCE_MASK_DIM/2) for row in range(DISTANCE_MASK_DIM): row_mask = np.zeros((DISTANCE_MASK_DIM, DISTANCE_MASK_DIM), dtype=np.bool) row_mask[row] = 1 col_mask = np.zeros((DISTANCE_MASK_DIM, DISTANCE_MASK_DIM), dtype=np.bool) col_mask[:, row] = 1 ROW_MASK [row] = row_mask COLUMN_MASK[row] = col_mask for col in range(DISTANCE_MASK_DIM): horiz_distance = np.minimum( np.abs(np.arange(DISTANCE_MASK_DIM) - col), np.abs(np.arange(DISTANCE_MASK_DIM) - col - DISTANCE_MASK_DIM)) horiz_distance = np.minimum( horiz_distance, np.abs(np.arange(DISTANCE_MASK_DIM) - col + DISTANCE_MASK_DIM)) vert_distance = np.minimum( np.abs(np.arange(DISTANCE_MASK_DIM) - row), np.abs(np.arange(DISTANCE_MASK_DIM) - row - DISTANCE_MASK_DIM)) vert_distance = np.minimum( vert_distance, np.abs(np.arange(DISTANCE_MASK_DIM) - row + DISTANCE_MASK_DIM)) horiz_distance = np.tile(horiz_distance, [DISTANCE_MASK_DIM, 1]) vert_distance = np.tile(np.expand_dims(vert_distance, 1), [1, DISTANCE_MASK_DIM]) manh_distance = horiz_distance + vert_distance kernel = np.exp(-manh_distance/(DISTANCE_MASK_DIM/4)) DISTANCE_MASKS[(row, col)] = kernel DISTANCES[(row, col)] = manh_distance catch_distance_masks = {} run_distance_masks = {} for d in MOVE_DIRECTIONS: if d is None: catch_rows = np.array([]).astype(np.int) catch_cols = np.array([]).astype(np.int) if d == NORTH: catch_rows = np.mod(row - np.arange(half_distance_mask_dim) - 1, DISTANCE_MASK_DIM) catch_cols = np.arange(DISTANCE_MASK_DIM) box_dir_rows = np.mod(row + np.arange(BOX_DIR_MAX_DISTANCE) + 1, DISTANCE_MASK_DIM) box_dir_cols = np.mod(col + np.arange( 2*(BOX_DIR_MAX_DISTANCE+1)-1) - BOX_DIR_MAX_DISTANCE, DISTANCE_MASK_DIM) if d == SOUTH: catch_rows = np.mod(row + np.arange(half_distance_mask_dim) + 1, DISTANCE_MASK_DIM) catch_cols = np.arange(DISTANCE_MASK_DIM) box_dir_rows = np.mod(row - np.arange(BOX_DIR_MAX_DISTANCE) - 1, DISTANCE_MASK_DIM) box_dir_cols = np.mod(col + np.arange( 2*(BOX_DIR_MAX_DISTANCE+1)-1) - BOX_DIR_MAX_DISTANCE, DISTANCE_MASK_DIM) if d == WEST: catch_cols = np.mod(col - np.arange(half_distance_mask_dim) - 1, DISTANCE_MASK_DIM) catch_rows = np.arange(DISTANCE_MASK_DIM) box_dir_cols = np.mod(col + np.arange(BOX_DIR_MAX_DISTANCE) + 1, DISTANCE_MASK_DIM) box_dir_rows = np.mod(row + np.arange( 2*(BOX_DIR_MAX_DISTANCE+1)-1) - BOX_DIR_MAX_DISTANCE, DISTANCE_MASK_DIM) if d == EAST: catch_cols = np.mod(col + np.arange(half_distance_mask_dim) + 1, DISTANCE_MASK_DIM) catch_rows = np.arange(DISTANCE_MASK_DIM) box_dir_cols = np.mod(col - np.arange(BOX_DIR_MAX_DISTANCE) - 1, DISTANCE_MASK_DIM) box_dir_rows = np.mod(row + np.arange( 2*(BOX_DIR_MAX_DISTANCE+1)-1) - BOX_DIR_MAX_DISTANCE, DISTANCE_MASK_DIM) catch_mask = np.zeros((DISTANCE_MASK_DIM, DISTANCE_MASK_DIM), dtype=np.bool) catch_mask[catch_rows[:, None], catch_cols] = 1 run_mask = np.copy(catch_mask) run_mask[row, col] = 1 catch_distance_masks[d] = catch_mask run_distance_masks[d] = run_mask if d is not None: box_dir_mask = np.zeros((DISTANCE_MASK_DIM, DISTANCE_MASK_DIM), dtype=np.bool) box_dir_mask[box_dir_rows[:, None], box_dir_cols] = 1 if d in [NORTH, SOUTH]: box_dir_mask &= (horiz_distance <= vert_distance) else: box_dir_mask &= (horiz_distance >= vert_distance) ROW_COL_BOX_DIR_MAX_DISTANCE_MASKS[(row, col, d)] = box_dir_mask HALF_PLANES_CATCH[(row, col)] = catch_distance_masks HALF_PLANES_RUN[(row, col)] = run_distance_masks for d in range(1, DISTANCE_MASK_DIM): ROW_COL_DISTANCE_MASKS[(row, col, d)] = manh_distance == d for d in range(half_distance_mask_dim): ROW_COL_MAX_DISTANCE_MASKS[(row, col, d)] = manh_distance <= d ROW_COL_BOX_MAX_DISTANCE_MASKS[(row, col, d)] = np.logical_and( horiz_distance <= d, vert_distance <= d) for dist in range(2, half_distance_mask_dim+1): dist_mask_dim = dist*2+1 row_pos = np.tile(np.expand_dims(np.arange(dist_mask_dim), 1), [1, dist_mask_dim]) col_pos = np.tile(np.arange(dist_mask_dim), [dist_mask_dim, 1]) for direction in NOT_NONE_DIRECTIONS: if direction == NORTH: box_mask = (row_pos < dist) & ( np.abs(col_pos-dist) <= (dist-row_pos)) if direction == SOUTH: box_mask = (row_pos > dist) & ( np.abs(col_pos-dist) <= (row_pos-dist)) if direction == WEST: box_mask = (col_pos < dist) & ( np.abs(row_pos-dist) <= (dist-col_pos)) if direction == EAST: box_mask = (col_pos > dist) & ( np.abs(row_pos-dist) <= (col_pos-dist)) BOX_DIRECTION_MASKS[(dist, direction)] = box_mask CONSIDERED_OTHER_DISTANCES = [13] OTHER_DISTANCES = {} for other_distance in CONSIDERED_OTHER_DISTANCES: for row in range(other_distance): for col in range(other_distance): horiz_distance = np.minimum( np.abs(np.arange(other_distance) - col), np.abs(np.arange(other_distance) - col - other_distance)) horiz_distance = np.minimum( horiz_distance, np.abs(np.arange(other_distance) - col + other_distance)) vert_distance = np.minimum( np.abs(np.arange(other_distance) - row), np.abs(np.arange(other_distance) - row - other_distance)) vert_distance = np.minimum( vert_distance, np.abs(np.arange(other_distance) - row + other_distance)) horiz_distance = np.tile(horiz_distance, [other_distance, 1]) vert_distance = np.tile(np.expand_dims(vert_distance, 1), [1, other_distance]) manh_distance = horiz_distance + vert_distance OTHER_DISTANCES[(row, col, other_distance)] = manh_distance D2_ROW_COL_SHIFTS_DISTANCES = [ (-2, 0, 2), (-1, -1, 2), (-1, 0, 1), (-1, 1, 2), (0, -2, 2), (0, -1, 1), (0, 1, 1), (0, 2, 2), (1, -1, 2), (1, 0, 1), (1, 1, 2), (2, 0, 2), ] def row_col_from_square_grid_pos(pos, size): col = pos % size row = pos // size return row, col def move_ship_row_col(row, col, direction, size): if direction == "NORTH": return (size-1 if row == 0 else row-1, col) elif direction == "SOUTH": return (row+1 if row < (size-1) else 0, col) elif direction == "EAST": return (row, col+1 if col < (size-1) else 0) elif direction == "WEST": return (row, size-1 if col == 0 else col-1) elif direction is None: return (row, col) def get_directional_distance(r1, c1, r2, c2, size, d): relative_pos = get_relative_position(r1, c1, r2, c2, size) if d == NORTH: directional_distance = -relative_pos[0] elif d == SOUTH: directional_distance = relative_pos[0] elif d == EAST: directional_distance = relative_pos[1] elif d == WEST: directional_distance = -relative_pos[1] return directional_distance def mirror_edges(observation, num_mirror_dim): if num_mirror_dim > 0: # observation = np.arange(225).reshape((15,15)) # Debugging test assert len(observation.shape) == 2 grid_size = observation.shape[0] new_grid_size = grid_size + 2*num_mirror_dim mirrored_obs = np.full((new_grid_size, new_grid_size), np.nan) # Fill in the original data mirrored_obs[num_mirror_dim:(-num_mirror_dim), num_mirror_dim:(-num_mirror_dim)] = observation # Add top and bottom mirrored data mirrored_obs[:num_mirror_dim, num_mirror_dim:( -num_mirror_dim)] = observation[-num_mirror_dim:, :] mirrored_obs[-num_mirror_dim:, num_mirror_dim:( -num_mirror_dim)] = observation[:num_mirror_dim, :] # Add left and right mirrored data mirrored_obs[:, :num_mirror_dim] = mirrored_obs[ :, -(2*num_mirror_dim):(-num_mirror_dim)] mirrored_obs[:, -num_mirror_dim:] = mirrored_obs[ :, num_mirror_dim:(2*num_mirror_dim)] observation = mirrored_obs return observation def smooth2d(grid, smooth_kernel_dim=7, return_kernel=False): edge_augmented = mirror_edges(grid, smooth_kernel_dim-1) kernel = GAUSSIAN_2D_KERNELS[int(2*smooth_kernel_dim-1)] convolved = signal.convolve2d(edge_augmented, kernel, mode="valid") if return_kernel: return convolved, kernel else: return convolved def get_relative_position(row, col, other_row, other_col, size): if row >= other_row: if (other_row + size - row) < (row - other_row): row_diff = (other_row + size - row) else: row_diff = -(row - other_row) else: if (row + size - other_row) < (other_row - row): row_diff = -(row + size - other_row) else: row_diff = other_row - row if col >= other_col: if (other_col + size - col) < (col - other_col): col_diff = (other_col + size - col) else: col_diff = -(col - other_col) else: if (col + size - other_col) < (other_col - col): col_diff = -(col + size - other_col) else: col_diff = other_col - col return (row_diff, col_diff) def update_scores_opponent_ships( config, collect_grid_scores, return_to_base_scores, establish_base_scores, attack_base_scores, opponent_ships, opponent_bases, halite_ships, row, col, grid_size, spawn_cost, drop_None_valid, obs_halite, collect_rate, np_rng, opponent_ships_sensible_actions, opponent_ships_sensible_actions_no_risk, ignore_bad_attack_directions, observation, ship_k, my_bases, my_ships, steps_remaining, history, escape_influence_probs, player_ids, env_obs_ids, env_observation, main_base_distances, nearest_base_distances, end_game_base_return, camping_override_strategy, attack_campers_override_strategy, boxed_in_attack_squares, safe_to_collect, boxed_in_zero_halite_opponents, ignore_convert_positions, avoid_attack_squares_zero_halite, n_step_avoid_min_die_prob_cutoff, safe_to_return_halites, safe_to_return_base_halites, my_nearest_base_distances): direction_halite_diff_distance_raw = { NORTH: [], SOUTH: [], EAST: [], WEST: []} my_bases_or_ships = np.logical_or(my_bases, my_ships) chase_details = history['chase_counter'][0].get(ship_k, None) take_my_square_next_halite_diff = None take_my_next_square_dir = None wide_cycle_mask = ROW_COL_MAX_DISTANCE_MASKS[row, col, 3] tight_cycle_mask = ROW_COL_MAX_DISTANCE_MASKS[row, col, 2] opponents_in_cycle = np.any(opponent_ships[tight_cycle_mask]) and ( np.all(history['empty_or_cycled_positions'][wide_cycle_mask]) or ( np.all(history['empty_or_extended_cycled_positions'][tight_cycle_mask]))) if opponents_in_cycle: print("EXTRAPOLATING OPPONENT CYCLIC BEHAVIOR", observation['step'], row, col) if len(camping_override_strategy) == 0: navigation_zero_halite_risk_threshold = 0 else: navigation_zero_halite_risk_threshold = camping_override_strategy[0] if camping_override_strategy[1].max() >= 1e4: collect_grid_scores = 1e-4*collect_grid_scores + ( camping_override_strategy[1]) else: collect_grid_scores += camping_override_strategy[1] attack_base_scores += camping_override_strategy[2] if len(attack_campers_override_strategy) > 0: ignore_opponent_row = attack_campers_override_strategy[0] ignore_opponent_col = attack_campers_override_strategy[1] ignore_opponent_distance = attack_campers_override_strategy[5] collect_grid_scores[ignore_opponent_row, ignore_opponent_col] += ( attack_campers_override_strategy[2]) navigation_zero_halite_risk_threshold = max( navigation_zero_halite_risk_threshold, attack_campers_override_strategy[6]) else: ignore_opponent_row = None ignore_opponent_col = None ignore_opponent_distance = None # Identify directions where I can certainly reach the base in time and always # mark them as valid ship_halite = halite_ships[row, col] safe_return_base_directions = [] if ship_halite < safe_to_return_halites[row, col]: for base_safe_return_halite, base_location in safe_to_return_base_halites: if ship_halite < base_safe_return_halite[row, col]: for d in get_dir_from_target( row, col, base_location[0], base_location[1], grid_size): if not d is None and not d in safe_return_base_directions: safe_return_base_directions.append(d) # if observation['step'] == 131 and ship_k in ['63-1']: # import pdb; pdb.set_trace() can_stay_still_zero_halite = True for row_shift, col_shift, distance in D2_ROW_COL_SHIFTS_DISTANCES: considered_row = (row + row_shift) % grid_size considered_col = (col + col_shift) % grid_size if opponent_ships[considered_row, considered_col] and ( ignore_opponent_row is None or ((( considered_row != ignore_opponent_row) or ( considered_col != ignore_opponent_col)) and ( ignore_opponent_distance > 2))): relevant_dirs = [] halite_diff = halite_ships[row, col] - halite_ships[ considered_row, considered_col] assume_take_my_square_next = False # if observation['step'] == 266 and row == 11 and col == 15: # import pdb; pdb.set_trace() # Extrapolate the opponent behavior if we have been chased for a # while and chasing is likely to continue if distance == 1 and chase_details is not None and ( chase_details[1] >= config[ 'min_consecutive_chase_extrapolate']) and ( considered_row, considered_col) == ( chase_details[4], chase_details[5]): chaser_row = chase_details[4] chaser_col = chase_details[5] to_opponent_dir = get_dir_from_target( row, col, chaser_row, chaser_col, grid_size)[0] opp_to_me_dir = OPPOSITE_MAPPING[to_opponent_dir] rel_opp_to_me_dir = RELATIVE_DIR_MAPPING[opp_to_me_dir] opp_can_move_to_me = rel_opp_to_me_dir in ( opponent_ships_sensible_actions_no_risk[chaser_row, chaser_col]) # There is a unique opponent id with the least amount of halite # on the chaser square or the chaser has at least one friendly # ship that can replace it chaser_can_replace = None chaser_is_chased_by_not_me = None if opp_can_move_to_me: chaser_id = player_ids[chaser_row, chaser_col] near_chaser = ROW_COL_MAX_DISTANCE_MASKS[ chaser_row, chaser_col, 1] near_halite = halite_ships[near_chaser] near_chaser_friendly_halite = near_halite[ (near_halite >= 0) & (player_ids[near_chaser] == chaser_id)] min_non_chaser_halite = near_halite[ (near_halite >= 0) & ( player_ids[near_chaser] != chaser_id)].min() min_near_chaser_halite = near_halite[near_halite >= 0].min() opponent_min_hal_ids = player_ids[np.logical_and( near_chaser, halite_ships == min_near_chaser_halite)] near_me = ROW_COL_MAX_DISTANCE_MASKS[row, col, 1] near_me_threat_players = player_ids[np.logical_and( near_me, (halite_ships >= 0) & ( halite_ships < halite_ships[row, col]))] double_opp_chase = (near_me_threat_players.size > 1) and ( np.all(near_me_threat_players == chaser_id)) chaser_can_replace = ((opponent_min_hal_ids.size > 1) and ( np.all(opponent_min_hal_ids == chaser_id) or ( (opponent_min_hal_ids == chaser_id).sum() > 1)) or ( (near_chaser_friendly_halite <= ( min_non_chaser_halite)).sum() > 1)) or double_opp_chase if opp_can_move_to_me and not chaser_can_replace: chaser_players_index = env_obs_ids[chaser_id] chaser_k = [k for k, v in env_observation.players[ chaser_players_index][2].items() if v[0] == ( chaser_row*grid_size + chaser_col)][0] chaser_is_chased = chaser_k in history[ 'chase_counter'][chaser_id] chaser_is_chased_by_not_me = chaser_is_chased if chaser_is_chased: chaser_chaser = history['chase_counter'][chaser_id][chaser_k] chaser_is_chased_by_not_me = (chaser_chaser[4] is None) or ( player_ids[chaser_chaser[4], chaser_chaser[5]] != 0) if opp_can_move_to_me and not chaser_can_replace and not ( chaser_is_chased_by_not_me): assume_take_my_square_next = True take_my_square_next_halite_diff = halite_diff take_my_next_square_dir = to_opponent_dir # if observation['step'] == 96 and ship_k in ['80-1']: # import pdb; pdb.set_trace() can_ignore_ship = False if (considered_row, considered_col) in boxed_in_zero_halite_opponents: can_stay_still_zero_halite = can_stay_still_zero_halite and ( distance == 2) else: if halite_ships[row, col] == halite_ships[ considered_row, considered_col]: opponent_id = player_ids[considered_row, considered_col] # Note: use the opponent distance because the opponent model is # learned using the opponent distance to the nearest base (with near # base distance cutoff typically at 2) is_near_base = nearest_base_distances[ considered_row, considered_col] <= config['log_near_base_distance'] risk_lookup_k = str(is_near_base) + '_' + str(distance) if distance == 2: can_ignore_ship = history['zero_halite_move_behavior'][ opponent_id][risk_lookup_k] <= ( navigation_zero_halite_risk_threshold) else: risk_lookup_k_dist_zero = str(is_near_base) + '_' + str(0) d1_threat = history['zero_halite_move_behavior'][ opponent_id][risk_lookup_k] > ( navigation_zero_halite_risk_threshold) d0_threat = history['zero_halite_move_behavior'][ opponent_id][risk_lookup_k_dist_zero] > ( navigation_zero_halite_risk_threshold) can_stay_still_zero_halite = can_stay_still_zero_halite and ( not d0_threat) # if is_near_base and history['zero_halite_move_behavior'][ # opponent_id][str(is_near_base) + '_' + str(0) + '_ever_risky']: # import pdb; pdb.set_trace() can_ignore_ship = not (d0_threat or d1_threat) if not assume_take_my_square_next and not can_ignore_ship: relevant_dirs += [] if row_shift >= 0 else [NORTH] relevant_dirs += [] if row_shift <= 0 else [SOUTH] relevant_dirs += [] if col_shift <= 0 else [EAST] relevant_dirs += [] if col_shift >= 0 else [WEST] # When the opponents are in a cycle: only consider the direction I # expect my opponent to be at in the next step (if any) if opponents_in_cycle: relevant_dirs = [] opponent_ship_key = history['opponent_ship_pos_to_key'][( considered_row, considered_col)] opponent_id = player_ids[considered_row, considered_col] likely_opponent_action = history['opponent_cycle_counters'][ opponent_id-1][opponent_ship_key][1][0] likely_opponent_next_pos = move_ship_row_col( considered_row, considered_col, likely_opponent_action, grid_size) relative_other_pos = get_relative_position( row, col, likely_opponent_next_pos[0], likely_opponent_next_pos[1], grid_size) current_opp_relative_dir = get_relative_position( row, col, considered_row, considered_col, grid_size) if np.abs(relative_other_pos[0]) + np.abs( relative_other_pos[1]) <= 1: # At distance 1 or 0 # import pdb; pdb.set_trace() if relative_other_pos[0] == 0 and relative_other_pos[1] == 0: relevant_dirs = [RELATIVE_DIR_TO_DIRECTION_MAPPING[ current_opp_relative_dir]] elif relative_other_pos == (0, 0): relevant_dirs = [RELATIVE_DIR_TO_DIRECTION_MAPPING[ relative_other_pos]] # if observation['step'] == 215 and ship_k == '2-2': # import pdb; pdb.set_trace() for d in relevant_dirs: direction_halite_diff_distance_raw[d].append( (halite_diff, distance)) direction_halite_diff_distance = {} for d in direction_halite_diff_distance_raw: vals = np.array(direction_halite_diff_distance_raw[d]) if vals.size: diffs = vals[:, 0] distances = vals[:, 1] max_diff = diffs.max() if max_diff > 0: if can_stay_still_zero_halite: greater_min_distance = distances[diffs > 0].min() else: # My halite is > 0 and I have a threat at D1 of an aggressive equal # halite ships and a threat of a less halite ship at D2 greater_min_distance = distances[diffs >= 0].min() direction_halite_diff_distance[d] = (max_diff, greater_min_distance) elif max_diff == 0: equal_min_distance = distances[diffs == 0].min() direction_halite_diff_distance[d] = (max_diff, equal_min_distance) else: min_diff = diffs.min() min_diff_min_distance = distances[diffs == min_diff].min() direction_halite_diff_distance[d] = (min_diff, min_diff_min_distance) else: direction_halite_diff_distance[d] = None preferred_directions = [] strongly_preferred_directions = [] valid_directions = copy.copy(MOVE_DIRECTIONS) one_step_valid_directions = copy.copy(MOVE_DIRECTIONS) bad_directions = [] ignore_catch = np_rng.uniform() < config['ignore_catch_prob'] # if observation['step'] == 221 and ship_k == '54-1': # import pdb; pdb.set_trace() # x=1 for direction, halite_diff_dist in direction_halite_diff_distance.items(): if halite_diff_dist is not None: move_row, move_col = move_ship_row_col(row, col, direction, grid_size) no_escape_bonus = 0 if not ( boxed_in_attack_squares[move_row, move_col]) else 5e3 halite_diff = halite_diff_dist[0] if halite_diff >= 0: # I should avoid a collision distance_multiplier = 1/halite_diff_dist[1] mask_collect_return = np.copy(HALF_PLANES_RUN[(row, col)][direction]) valid_directions.remove(direction) one_step_valid_directions.remove(direction) bad_directions.append(direction) if halite_diff_dist[1] == 1: if halite_diff > 0 or not can_stay_still_zero_halite: # Only suppress the stay still action if the opponent has something # to gain. # Exception: the opponent may aggressively attack my zero halite # ships if None in valid_directions: valid_directions.remove(None) one_step_valid_directions.remove(None) bad_directions.append(None) else: mask_collect_return[row, col] = False # I can safely mine halite at the current square if the opponent ship # is >1 move away if halite_diff_dist[1] > 1: mask_collect_return[row, col] = False collect_grid_scores -= mask_collect_return*(ship_halite+spawn_cost)*( config['collect_run_opponent_multiplier'])*distance_multiplier return_to_base_scores -= mask_collect_return*(ship_halite+spawn_cost)*( config['return_base_run_opponent_multiplier']) base_nearby_in_direction_mask = np.logical_and( ROW_COL_MAX_DISTANCE_MASKS[(row, col, 2)], mask_collect_return) base_nearby_in_direction = np.logical_and( base_nearby_in_direction_mask, opponent_bases).sum() > 0 if not ignore_bad_attack_directions and not base_nearby_in_direction: attack_base_scores -= mask_collect_return*(ship_halite+spawn_cost)*( config['attack_base_run_opponent_multiplier']) mask_establish = np.copy(mask_collect_return) mask_establish[row, col] = False establish_base_scores -= mask_establish*(ship_halite+spawn_cost)*( config['establish_base_run_opponent_multiplier']) elif halite_diff < 0 and ( not ignore_catch or no_escape_bonus > 0) and (not ( move_row, move_col) in ignore_convert_positions): # I would like a collision unless if there is another opponent ship # chasing me - risk avoiding policy for now: if there is at least # one ship in a direction that has less halite, I should avoid it if no_escape_bonus > 0: halite_diff = max(-spawn_cost/2, halite_diff) - no_escape_bonus else: halite_diff = 0 # Dubious choice, likely not very important # halite_diff = max(-spawn_cost/2, halite_diff) - no_escape_bonus distance_multiplier = 1/halite_diff_dist[1] mask_collect_return = np.copy(HALF_PLANES_CATCH[(row, col)][direction]) collect_grid_scores -= mask_collect_return*halite_diff*( config['collect_catch_opponent_multiplier'])*distance_multiplier return_to_base_scores -= mask_collect_return*halite_diff*( config['return_base_catch_opponent_multiplier'])*distance_multiplier attack_base_scores -= mask_collect_return*halite_diff*( config['attack_base_catch_opponent_multiplier'])*distance_multiplier mask_establish = np.copy(mask_collect_return) mask_establish[row, col] = False establish_base_scores -= mask_establish*halite_diff*( config['establish_base_catch_opponent_multiplier'])*( distance_multiplier) if no_escape_bonus > 0: strongly_preferred_directions.append(direction) if boxed_in_attack_squares[row, col] and no_escape_bonus > 0 and ( ship_halite > 0 or obs_halite[row, col] == 0): # Also incentivize the None action when it is a possible escape # square of an opponent - divide by 2 to make the None action less # dominant (likely check in several directions) collect_grid_scores[row, col] += no_escape_bonus/2 if not None in strongly_preferred_directions: strongly_preferred_directions.append(None) preferred_directions.append(direction) if take_my_square_next_halite_diff is not None and None in valid_directions: valid_directions.remove(None) one_step_valid_directions.remove(None) bad_directions.append(None) if drop_None_valid and None in valid_directions: valid_directions.remove(None) one_step_valid_directions.remove(None) valid_non_base_directions = [] base_directions = [] for d in valid_directions: move_row, move_col = move_ship_row_col(row, col, d, grid_size) if not opponent_bases[move_row, move_col] : valid_non_base_directions.append(d) else: base_directions.append(d) # For the remaining valid non base directions: compute a score that resembles # the probability of being boxed in during the next step two_step_bad_directions = [] n_step_bad_directions = [] n_step_bad_directions_die_probs = {} if steps_remaining > 1: for d in valid_non_base_directions: my_next_halite = halite_ships[row, col] if d != None else ( halite_ships[row, col] + int(collect_rate*obs_halite[row, col])) move_row, move_col = move_ship_row_col(row, col, d, grid_size) my_next_halite = 0 if my_bases[move_row, move_col] else my_next_halite opponent_mask = ROW_COL_MAX_DISTANCE_MASKS[(move_row, move_col, 3)] less_halite_threat_opponents = np.where(np.logical_and( opponent_mask, np.logical_and( opponent_ships, my_next_halite > halite_ships))) num_threat_ships = less_halite_threat_opponents[0].size if num_threat_ships > 1 and not d in safe_return_base_directions: all_dir_threat_counter = { (-1, 0): 0, (1, 0): 0, (0, -1): 0, (0, 1): 0, (0, 0): 0} for i in range(num_threat_ships): other_row = less_halite_threat_opponents[0][i] other_col = less_halite_threat_opponents[1][i] relative_other_pos = get_relative_position( move_row, move_col, other_row, other_col, grid_size) for diff_rel_row, diff_rel_col, other_gather in MOVE_GATHER_OPTIONS: # Only consider sensible opponent actions if (diff_rel_row, diff_rel_col) in opponent_ships_sensible_actions[ other_row, other_col]: is_threat = (not other_gather) or (my_next_halite > ( halite_ships[other_row, other_col] + int( collect_rate*obs_halite[other_row, other_col]))) if is_threat: other_rel_row = relative_other_pos[0] + diff_rel_row other_rel_col = relative_other_pos[1] + diff_rel_col move_diff = np.abs(other_rel_row) + np.abs(other_rel_col) if move_diff < 3 and move_diff > 0: threat_dirs = TWO_STEP_THREAT_DIRECTIONS[ (other_rel_row, other_rel_col)] for threat_row_diff, threat_col_diff in threat_dirs: all_dir_threat_counter[ (threat_row_diff, threat_col_diff)] += 1 # if observation['step'] == 112 and ship_k == '76-1': # import pdb; pdb.set_trace() # Aggregate the threat count in all_dir_threat_counter threat_counts = np.array(list(all_dir_threat_counter.values())) threat_score = np.sqrt(threat_counts.prod()) if threat_score > 0: # Disincentivize an action that can get me boxed in on the next step mask_avoid_two_steps = np.copy(HALF_PLANES_RUN[(row, col)][d]) if d is not None: mask_avoid_two_steps[row, col] = False collect_grid_scores[mask_avoid_two_steps] *= (( config['two_step_avoid_boxed_opponent_multiplier_base']) ** ( threat_score)) return_to_base_scores[mask_avoid_two_steps] *= (( config['two_step_avoid_boxed_opponent_multiplier_base']) ** ( threat_score)) establish_base_scores[mask_avoid_two_steps] *= (( config['two_step_avoid_boxed_opponent_multiplier_base']) ** ( threat_score)) two_step_bad_directions.append(d) if d not in two_step_bad_directions and not end_game_base_return and ( my_next_halite > 0) and (not d in safe_return_base_directions) and ( d is not None or not safe_to_collect[row, col]): # For the remaining valid directions: compute a score that resembles # the probability of being boxed in sometime in the future opponent_mask_lt = ROW_COL_MAX_DISTANCE_MASKS[ (move_row, move_col, min( steps_remaining, config['n_step_avoid_window_size']))] less_halite_threat_opponents_lt = np.where(np.logical_and( opponent_mask_lt, np.logical_and( opponent_ships, my_next_halite > halite_ships))) num_threat_ships_lt = less_halite_threat_opponents_lt[0].size # Ignore the box in threat if I have a base and at least one zero # halite ship one step from the move square ignore_threat = my_bases[ ROW_COL_DISTANCE_MASKS[(move_row, move_col, 1)]].sum() > 0 and (( halite_ships[np.logical_and( my_ships, ROW_COL_DISTANCE_MASKS[move_row, move_col, 1])] == 0).sum() > 0) # if observation['step'] == 359 and ship_k == '67-1': # import pdb; pdb.set_trace() if not ignore_threat: lt_catch_prob = {k: [] for k in RELATIVE_NOT_NONE_DIRECTIONS} for i in range(num_threat_ships_lt): other_row = less_halite_threat_opponents_lt[0][i] other_col = less_halite_threat_opponents_lt[1][i] other_sensible_actions = opponent_ships_sensible_actions[ other_row, other_col] relative_other_pos = get_relative_position( move_row, move_col, other_row, other_col, grid_size) # Give less weight to the other ship if there is a base of mine or # a/multiple less halite ships in between # FUTURE WORK: Also give additional move leeway if I have nearby # bases? Especially relevant for None (collect) actions distance_move_other = np.abs(relative_other_pos).sum() mask_between_move_and_threat = np.logical_and( DISTANCES[(move_row, move_col)] < distance_move_other, DISTANCES[(other_row, other_col)] < distance_move_other) less_halite_ship_base_count = np.logical_and( np.logical_and(my_bases_or_ships, mask_between_move_and_threat), halite_ships <= halite_ships[other_row, other_col]).sum() + 0*( my_bases[ROW_COL_MAX_DISTANCE_MASKS[ move_row, move_col, 2]].sum()) my_material_defense_multiplier = 2**less_halite_ship_base_count for threat_dir in RELATIVE_NOT_NONE_DIRECTIONS: nz_dim = int(threat_dir[0] == 0) dir_offset = relative_other_pos[nz_dim]*threat_dir[nz_dim] other_dir_abs_offset = np.abs(relative_other_pos[1-nz_dim]) # if observation['step'] == 155 and ship_k == '63-2': # import pdb; pdb.set_trace() if dir_offset >= 0 and (other_dir_abs_offset-1) <= dir_offset: # Ignore the threat if the ship is on the diagonal and can not # move in the direction of the threat dir if (other_dir_abs_offset-1) == dir_offset and len( other_sensible_actions) < len(MOVE_DIRECTIONS): if nz_dim == 0: threat_other_dir = ( 0, 1 if relative_other_pos[1-nz_dim] < 0 else -1) else: threat_other_dir = ( 1 if relative_other_pos[1-nz_dim] < 0 else -1, 0) threat_other_dirs = [threat_other_dir, threat_dir] threats_actionable = np.array([ t in other_sensible_actions for t in threat_other_dirs]) consider_this_threat = np.any(threats_actionable) if threats_actionable[1] and not threats_actionable[0]: # Lower the threat weight - the opponent can not directly # attack the considered threat direction and can only move # along the threat direction other_dir_abs_offset += 2 else: consider_this_threat = True if other_dir_abs_offset == 0 and dir_offset == 0: # The scenario where a one step threat is ignored due to # being chased for a while and moving to the threat is # currently considered. # This avoids division by zero but is overridden later anyway other_dir_abs_offset = 2 if consider_this_threat: lt_catch_prob[threat_dir].append(max(2, other_dir_abs_offset+dir_offset)*( my_material_defense_multiplier)) # Add a "bootstrapped" catch probability using the density of the # players towards the edge of the threat direction # Only add it if the next halite is > 0 (otherwise assume I can # always escape) # Also factor in the distance to my nearest non abandoned base if my_next_halite > 0: current_nearest_base_distance = my_nearest_base_distances[row, col] moved_nearest_base_distance = my_nearest_base_distances[ move_row, move_col] move_distance_difference = current_nearest_base_distance - ( moved_nearest_base_distance) for threat_dir in RELATIVE_NOT_NONE_DIRECTIONS: dens_threat_rows = np.mod(move_row + threat_dir[0]*( np.arange(config['n_step_avoid_window_size']//2, config['n_step_avoid_window_size'])), grid_size) dens_threat_cols = np.mod(move_col + threat_dir[1]*( 1+np.arange(config['n_step_avoid_window_size']//2, config['n_step_avoid_window_size'])), grid_size) escape_probs = escape_influence_probs[ dens_threat_rows, dens_threat_cols] mean_escape_prob = escape_probs.mean() if escape_probs[:2].min() < 1: if move_distance_difference > 0: # When in trouble, it is typically better to move towards one # of my bases. The move closer distance is of course 1. mean_escape_prob *= 1.25 if mean_escape_prob < 1: lt_catch_prob[threat_dir].append(1/(1-mean_escape_prob+1e-9)) # if observation['step'] == 75 and ship_k == '64-1' and d in [ # EAST, WEST]: # import pdb; pdb.set_trace() # if observation['step'] == 112 and ship_k == '76-1': # import pdb; pdb.set_trace() if np.all([len(v) > 0 for v in lt_catch_prob.values()]): # Interpretation: for a threat at distance d, I have a probability # of surviving it of (d-1)/d. The probability of surviving all # threat is the product of all individual threats survive_probs = np.array([ (np.maximum(0.2, (np.array(lt_catch_prob[k])-1)/np.array( lt_catch_prob[k]))).prod() for k in lt_catch_prob]) min_die_prob = 1-survive_probs.max() if main_base_distances.max() > 0: if main_base_distances[move_row, move_col] <= 2: min_die_prob = 0 else: min_die_prob = max( 0, min_die_prob-0.33**main_base_distances[ move_row, move_col]) # if observation['step'] == 155 and ship_k in ['63-2', '63-1']: # import pdb; pdb.set_trace() # Disincentivize an action that can get me boxed in during the next # N steps mask_avoid_n_steps = np.copy(HALF_PLANES_RUN[(row, col)][d]) if d is not None: mask_avoid_n_steps[row, col] = False collect_grid_scores[mask_avoid_n_steps] *= (( config['n_step_avoid_boxed_opponent_multiplier_base']) ** ( min_die_prob)) return_to_base_scores[mask_avoid_n_steps] *= ( config['n_step_avoid_boxed_opponent_multiplier_base']) ** ( min_die_prob) establish_base_scores[mask_avoid_n_steps] *= ( config['n_step_avoid_boxed_opponent_multiplier_base']) ** ( min_die_prob) n_step_bad_directions_die_probs[d] = min_die_prob # Correction to act with more risk towards the end of the game die_prob_cutoff = (n_step_avoid_min_die_prob_cutoff + 0.01*max( 0, 50-steps_remaining)) if d is None: if observation['relative_step'] > config[ 'end_hunting_season_relative_step']: die_prob_cutoff = max(die_prob_cutoff, config[ 'after_hunting_season_collect_max_n_step_risk']) elif observation['relative_step'] > config[ 'late_hunting_season_more_collect_relative_step']: die_prob_cutoff = max(die_prob_cutoff, config[ 'late_hunting_season_collect_max_n_step_risk']) # print(observation['step'], die_prob_cutoff) if min_die_prob > die_prob_cutoff: n_step_bad_directions.append(d) # if observation['step'] == 215 and ship_k == '2-2': # import pdb; pdb.set_trace() # Corner case: if I have a zero halite ship that is boxed in by other zero # halite ships on a zero halite square: compute the risk for all available # actions and only retain the actions with the lowest collision risks if halite_ships[row, col] == 0 and len(valid_directions) == 0 and ( obs_halite[row, col] == 0): risk_scores = np.zeros(len(MOVE_DIRECTIONS)) for risk_id, d in enumerate(MOVE_DIRECTIONS): move_row, move_col = move_ship_row_col(row, col, d, grid_size) for potential_threat_dir in MOVE_DIRECTIONS: threat_row, threat_col = move_ship_row_col( move_row, move_col, potential_threat_dir, grid_size) if opponent_ships[threat_row, threat_col] and halite_ships[ threat_row, threat_col] == 0: opponent_id = player_ids[threat_row, threat_col] is_near_base = nearest_base_distances[ threat_row, threat_col] <= config['log_near_base_distance'] distance = int(d is not None) + int(potential_threat_dir is not None) risk_lookup_k = str(is_near_base) + '_' + str(distance) risk_scores[risk_id] = max( risk_scores[risk_id], history['zero_halite_move_behavior'][ opponent_id][risk_lookup_k]) best_risk_score = risk_scores.min() if best_risk_score < 0.05: valid_directions = [d for d_id, d in enumerate( MOVE_DIRECTIONS) if risk_scores[d_id] == best_risk_score] else: valid_directions = [None] one_step_valid_directions = copy.copy(valid_directions) bad_directions = list(set(MOVE_DIRECTIONS) - set(valid_directions)) # if observation['step'] == 169 and ship_k == '65-2': # import pdb; pdb.set_trace() # Corner case: if I have a zero halite ship that is boxed in by other zero # halite ships on a non-zero halite square: prefer moving in directions where # there is a lower risk of losing the ship as a function of opponent zero # halite behavior if halite_ships[row, col] == 0 and obs_halite[row, col] > 0 and ( (len(valid_directions) == 1 and (valid_directions[0] is None)) or ( len(valid_directions) == 0)): risk_scores = np.zeros(len(MOVE_DIRECTIONS)) risk_scores[0] = 1 # Definitely don't stand still for risk_id, d in enumerate(MOVE_DIRECTIONS): move_row, move_col = move_ship_row_col(row, col, d, grid_size) for potential_threat_dir in MOVE_DIRECTIONS: threat_row, threat_col = move_ship_row_col( move_row, move_col, potential_threat_dir, grid_size) if opponent_ships[threat_row, threat_col] and halite_ships[ threat_row, threat_col] == 0: opponent_id = player_ids[threat_row, threat_col] is_near_base = nearest_base_distances[ threat_row, threat_col] <= config['log_near_base_distance'] distance = int(d is not None) + int(potential_threat_dir is not None) risk_lookup_k = str(is_near_base) + '_' + str(distance) risk_scores[risk_id] = max( risk_scores[risk_id], history['zero_halite_move_behavior'][ opponent_id][risk_lookup_k]) best_risk_score = risk_scores.min() valid_directions = [d for d_id, d in enumerate( MOVE_DIRECTIONS) if risk_scores[d_id] == best_risk_score] one_step_valid_directions = copy.copy(valid_directions) bad_directions = list(set(MOVE_DIRECTIONS) - set(valid_directions)) # Treat attack squares I should avoid with a zero halite ship as N-step bad # directions, if that leaves us with options if np.any(avoid_attack_squares_zero_halite) and halite_ships[ row, col] == 0 and steps_remaining > 1: avoid_attack_directions = [] for d in valid_non_base_directions: move_row, move_col = move_ship_row_col(row, col, d, grid_size) if avoid_attack_squares_zero_halite[move_row, move_col]: avoid_attack_directions.append(d) if len(avoid_attack_directions): all_bad_dirs = set(bad_directions + ( two_step_bad_directions + n_step_bad_directions)) updated_bad_dirs = all_bad_dirs.union(set(avoid_attack_directions)) if len(updated_bad_dirs) > len(all_bad_dirs) and len( updated_bad_dirs) < len(MOVE_DIRECTIONS): new_bad_directions = list(updated_bad_dirs.difference(all_bad_dirs)) # import pdb; pdb.set_trace() n_step_bad_directions.extend(new_bad_directions) for new_bad_dir in new_bad_directions: if not new_bad_dir in n_step_bad_directions_die_probs: n_step_bad_directions_die_probs[new_bad_dir] = 0 # Corner case: if I can replace a chaser position and there are only very # bad two step escape directions left: replace the chaser if take_my_next_square_dir is not None and ( take_my_next_square_dir in two_step_bad_directions): make_chase_replace_n_bad = True for d in NOT_NONE_DIRECTIONS: if not d == take_my_next_square_dir: if d in n_step_bad_directions: if n_step_bad_directions_die_probs[d] < 0.6: make_chase_replace_n_bad = False break elif d in valid_directions: make_chase_replace_n_bad = False break if make_chase_replace_n_bad: print("CHASE: turning two step bad into n step bad", observation['step'], row, col) two_step_bad_directions.remove(take_my_next_square_dir) # Treat the chasing - replace chaser position as an n-step bad action. # Otherwise, we can get trapped in a loop of dumb behavior. if take_my_next_square_dir is not None and not take_my_next_square_dir in ( two_step_bad_directions) and not take_my_next_square_dir in ( n_step_bad_directions): n_step_bad_directions.append(take_my_next_square_dir) n_step_bad_directions_die_probs[take_my_next_square_dir] = 1/4 # If all valid non base directions are n step bad actions: drop n step bad # actions (call them 2 step bad) that are significantly worse than other n # step bad actions all_original_n_step_bad_directions = copy.copy(n_step_bad_directions) all_n_step_bad_directions_die_probs = copy.copy( n_step_bad_directions_die_probs) if len(n_step_bad_directions) > 1 and len( n_step_bad_directions) == len(valid_non_base_directions) and np.all( np.array([d in n_step_bad_directions for d in ( valid_non_base_directions)])): die_probs = np.array(list(n_step_bad_directions_die_probs.values())) max_die_prob = min(die_probs.min()*2, die_probs.min()+0.1) delete_from_n_step_bad = [] for d in n_step_bad_directions: if n_step_bad_directions_die_probs[d] > max_die_prob and ( not d in safe_return_base_directions): delete_from_n_step_bad.append(d) for d in delete_from_n_step_bad: two_step_bad_directions.append(d) n_step_bad_directions.remove(d) del n_step_bad_directions_die_probs[d] if valid_non_base_directions: valid_not_preferred_dirs = list(set( two_step_bad_directions + n_step_bad_directions)) if valid_not_preferred_dirs and ( len(valid_non_base_directions) - len(valid_not_preferred_dirs)) > 0: # Drop 2 and n step bad directions if that leaves us with valid options bad_directions.extend(valid_not_preferred_dirs) bad_directions = list(set(bad_directions)) valid_directions = list( set(valid_directions) - set(valid_not_preferred_dirs)) else: # Drop 2 step bad directions if that leaves us with valid options valid_not_preferred_dirs = set(two_step_bad_directions) if valid_not_preferred_dirs and ( len(valid_non_base_directions) - len(valid_not_preferred_dirs)) > 0: bad_directions.extend(valid_not_preferred_dirs) valid_directions = list( set(valid_directions) - set(valid_not_preferred_dirs)) # Only keep the strongly preferred directions if there are any if len(strongly_preferred_directions) > 0: preferred_directions = strongly_preferred_directions # Drop repetitive actions if that leaves us with valid options if ship_k in history['avoid_cycle_actions']: repetitive_action = history['avoid_cycle_actions'][ship_k] if repetitive_action in valid_directions and len(valid_directions) > 1: valid_directions.remove(repetitive_action) if repetitive_action in preferred_directions: preferred_directions.remove(repetitive_action) if repetitive_action in one_step_valid_directions: one_step_valid_directions.remove(repetitive_action) bad_directions.append(repetitive_action) # if observation['step'] == 180 and ship_k == '10-2': # import pdb; pdb.set_trace() return (collect_grid_scores, return_to_base_scores, establish_base_scores, attack_base_scores, preferred_directions, valid_directions, len(bad_directions) == len(MOVE_DIRECTIONS), two_step_bad_directions, n_step_bad_directions, one_step_valid_directions, n_step_bad_directions_die_probs, all_original_n_step_bad_directions, all_n_step_bad_directions_die_probs) # Update the scores as a function of blocking opponent bases def update_scores_blockers( collect_grid_scores, return_to_base_scores, establish_base_scores, attack_base_scores, row, col, grid_size, blockers, blocker_max_distances_to_consider, valid_directions, one_step_valid_directions, early_base_direct_dir=None, blocker_max_distance=half_distance_mask_dim, update_attack_base=True): one_step_bad_directions = [] for d in NOT_NONE_DIRECTIONS: if d == NORTH: rows = np.mod(row - (1 + np.arange(blocker_max_distance)), grid_size) cols = np.repeat(col, blocker_max_distance) considered_vals = blockers[rows, col] considered_max_distances = blocker_max_distances_to_consider[rows, col] elif d == SOUTH: rows = np.mod(row + (1 + np.arange(blocker_max_distance)), grid_size) cols = np.repeat(col, blocker_max_distance) considered_vals = blockers[rows, col] considered_max_distances = blocker_max_distances_to_consider[rows, col] elif d == WEST: rows = np.repeat(row, blocker_max_distance) cols = np.mod(col - (1 + np.arange(blocker_max_distance)), grid_size) considered_vals = blockers[row, cols] considered_max_distances = blocker_max_distances_to_consider[row, cols] elif d == EAST: rows = np.repeat(row, blocker_max_distance) cols = np.mod(col + (1 + np.arange(blocker_max_distance)), grid_size) considered_vals = blockers[row, cols] considered_max_distances = blocker_max_distances_to_consider[row, cols] if d == early_base_direct_dir: considered_vals[0] = 1 is_blocking = np.logical_and(considered_vals, np.arange( blocker_max_distance) < considered_max_distances) if np.any(is_blocking): first_blocking_id = np.where(is_blocking)[0][0] mask_rows = rows[first_blocking_id:] mask_cols = cols[first_blocking_id:] collect_grid_scores[mask_rows, mask_cols] = -1e12 return_to_base_scores[mask_rows, mask_cols] = -1e12 establish_base_scores[mask_rows, mask_cols] = -1e12 if update_attack_base: attack_base_scores[mask_rows, mask_cols] = -1e12 if first_blocking_id == 0: one_step_bad_directions.append(d) if d in valid_directions: valid_directions.remove(d) if d in one_step_valid_directions: one_step_valid_directions.remove(d) # Lower the score for entire quadrants when the two quadrant directions are # blocking the movement num_bad_one_directions = len(one_step_bad_directions) if num_bad_one_directions > 1: for i in range(num_bad_one_directions-1): bad_direction_1 = one_step_bad_directions[i] for j in range(i+1, num_bad_one_directions): bad_direction_2 = one_step_bad_directions[j] if (bad_direction_1 in [NORTH, SOUTH]) != ( bad_direction_2 in [NORTH, SOUTH]): bad_quadrant_mask = np.logical_and( HALF_PLANES_CATCH[row, col][bad_direction_1], HALF_PLANES_CATCH[row, col][bad_direction_2]) collect_grid_scores[bad_quadrant_mask] = -1e12 return_to_base_scores[bad_quadrant_mask] = -1e12 establish_base_scores[bad_quadrant_mask] = -1e12 if update_attack_base: attack_base_scores[bad_quadrant_mask] = -1e12 # Additional logic for the use of avoiding collisions when there is only a # single escape direction if blockers[row, col]: collect_grid_scores[row, col] = -1e12 return_to_base_scores[row, col] = -1e12 establish_base_scores[row, col] = -1e12 attack_base_scores[row, col] = -1e12 if None in valid_directions: valid_directions.remove(None) if None in one_step_valid_directions: one_step_valid_directions.remove(None) return (collect_grid_scores, return_to_base_scores, establish_base_scores, attack_base_scores, valid_directions, one_step_valid_directions, one_step_bad_directions) def set_scores_single_nearby_zero(scores, nearby, size, ship_row, ship_col, nearby_distance=1): nearby_pos = np.where(nearby) row = nearby_pos[0][0] col = nearby_pos[1][0] next_nearby_pos = None drop_None_valid = False for i in range(-nearby_distance, nearby_distance+1): near_row = (row + i) % size for j in range(-nearby_distance, nearby_distance+1): near_col = (col + j) % size if i != 0 or j != 0: # Don't gather near the base and don't move on top of it scores[near_row, near_col] = -1e7 if near_row == ship_row and near_col == ship_col: next_nearby_pos = get_dir_from_target( ship_row, ship_col, row, col, size)[0] else: if near_row == ship_row and near_col == ship_col: # Don't stay on top of the base drop_None_valid = True return scores, next_nearby_pos, drop_None_valid def grid_distance(r1, c1, r2, c2, size): horiz_diff = c2-c1 horiz_distance = min(np.abs(horiz_diff), min(np.abs(horiz_diff-size), np.abs(horiz_diff+size))) vert_diff = r2-r1 vert_distance = min(np.abs(vert_diff), min(np.abs(vert_diff-size), np.abs(vert_diff+size))) return horiz_distance+vert_distance def override_early_return_base_scores( base_return_grid_multiplier, my_bases, ship_row, ship_col, my_ship_count): base_pos = np.where(my_bases) base_row = base_pos[0][0] base_col = base_pos[1][0] dist_to_base = DISTANCES[base_row, base_col][ship_row, ship_col] # Remember the rule that blocks spawning when a ship is about to return if dist_to_base <= 10-my_ship_count: base_return_grid_multiplier[base_row, base_col] = 0 return base_return_grid_multiplier def get_nearest_base_distances(grid_size, ignore_abandoned, observation): base_dms = [] base_distances = [] # for b in player_obs[1]: # row, col = row_col_from_square_grid_pos(player_obs[1][b], grid_size) # if not (row, col) in ignore_abandoned: # base_dms.append(DISTANCE_MASKS[(row, col)]) # base_distances.append(DISTANCES[(row, col)]) my_bases = np.copy(observation['rewards_bases_ships'][0][1]) for r, c in ignore_abandoned: my_bases[r, c] = 0 num_my_bases = my_bases.sum() if num_my_bases > 0: my_base_positions = np.where(my_bases) for base_id in range(num_my_bases): base_row = my_base_positions[0][base_id] base_col = my_base_positions[1][base_id] base_dms.append(DISTANCE_MASKS[(base_row, base_col)]) base_distances.append(DISTANCES[(base_row, base_col)]) if base_dms: base_nearest_distance_scores = np.stack(base_dms).max(0) all_base_distances = np.stack(base_distances) else: base_nearest_distance_scores = np.ones((grid_size, grid_size)) all_base_distances = 99*np.ones((1, grid_size, grid_size)) nearest_base_distances = np.min(all_base_distances, 0) return (base_nearest_distance_scores, all_base_distances, nearest_base_distances) def get_valid_opponent_ship_actions( config, rewards_bases_ships, halite_ships, size, history, nearest_base_distances, observation, env_config): opponent_ships_sensible_actions = {} opponent_ships_sensible_actions_no_risk = {} boxed_in_zero_halite_opponents = [] likely_convert_opponent_positions = [] possible_convert_opponent_positions = [] num_agents = len(rewards_bases_ships) convert_cost = env_config.convertCost stacked_bases = np.stack([rbs[1] for rbs in rewards_bases_ships]) stacked_ships = np.stack([rbs[2] for rbs in rewards_bases_ships]) num_players = stacked_ships.shape[0] grid_size = stacked_ships.shape[1] player_base_ids = -1*np.ones((grid_size, grid_size)) boxed_in_attack_squares = np.zeros((grid_size, grid_size), dtype=np.bool) boxed_in_opponent_ids = -1*np.ones((grid_size, grid_size), dtype=np.int) opponent_single_escape_pos = np.zeros( (grid_size, grid_size), dtype=np.bool) single_escape_mapping = {} for i in range(num_players): player_base_ids[stacked_bases[i]] = i for i in range(1, num_agents): opponent_ships = stacked_ships[i] enemy_ships = np.delete(stacked_ships, (i), axis=0).sum(0) ship_pos = np.where(opponent_ships) num_ships = ship_pos[0].size for j in range(num_ships): valid_rel_directions = copy.copy(RELATIVE_DIRECTIONS) valid_rel_directions_no_move_risk = copy.copy(RELATIVE_DIRECTIONS) row = ship_pos[0][j] col = ship_pos[1][j] ship_halite = halite_ships[row, col] for row_diff in range(-2, 3): for col_diff in range(-2, 3): distance = (np.abs(row_diff) + np.abs(col_diff)) if distance == 1 or distance == 2: other_row = (row + row_diff) % size other_col = (col + col_diff) % size if enemy_ships[other_row, other_col]: hal_diff = halite_ships[other_row, other_col] - ship_halite # if observation['step'] == 189 and row == 14 and col == 2: # import pdb; pdb.set_trace() ignores_move_collision = False risky_stay_still_collision = False if halite_ships[row, col] == halite_ships[ other_row, other_col]: # Note: use the opponent distance because the opponent model is # learned using the opponent distance to the nearest base (with # near base distance cutoff typically at 2) is_near_base = nearest_base_distances[ other_row, other_col] <= config['log_near_base_distance'] risk_lookup_k = str(is_near_base) + '_' + str(distance) + ( '_ever_risky') if distance == 2: ignores_move_collision = history[ 'zero_halite_move_behavior'][i][risk_lookup_k] else: risk_lookup_k_dist_zero = str(is_near_base) + '_' + str( 0) + '_ever_risky' risky_stay_still_collision = history[ 'zero_halite_move_behavior'][i][risk_lookup_k] ignores_move_collision = history[ 'zero_halite_move_behavior'][i][risk_lookup_k_dist_zero] # if ignores_move_collision and distance == 1: # import pdb; pdb.set_trace() # x=1 rem_dirs = [] if risky_stay_still_collision: rem_dirs += [(0, 0)] if distance == 1 and hal_diff <= 0 else [] else: rem_dirs += [(0, 0)] if distance == 1 and hal_diff < 0 else [] if not ignores_move_collision: rem_dirs += [(-1, 0)] if row_diff < 0 and hal_diff <= 0 else [] rem_dirs += [(1, 0)] if row_diff > 0 and hal_diff <= 0 else [] rem_dirs += [(0, -1)] if col_diff < 0 and hal_diff <= 0 else [] rem_dirs += [(0, 1)] if col_diff > 0 and hal_diff <= 0 else [] for d in rem_dirs: if d in valid_rel_directions: valid_rel_directions.remove(d) # if observation['step'] == 146 and row == 13 and col == 13: # import pdb; pdb.set_trace() # Don't check for risky opponent zero halite behavior rem_dirs = [] if risky_stay_still_collision: rem_dirs += [(0, 0)] if distance == 1 and hal_diff <= 0 else [] else: rem_dirs += [(0, 0)] if distance == 1 and hal_diff < 0 else [] rem_dirs += [(-1, 0)] if row_diff < 0 and hal_diff <= 0 else [] rem_dirs += [(1, 0)] if row_diff > 0 and hal_diff <= 0 else [] rem_dirs += [(0, -1)] if col_diff < 0 and hal_diff <= 0 else [] rem_dirs += [(0, 1)] if col_diff > 0 and hal_diff <= 0 else [] for d in rem_dirs: if d in valid_rel_directions_no_move_risk: valid_rel_directions_no_move_risk.remove(d) # Prune for opponent base positions rem_dirs = [] for rel_dir in valid_rel_directions: d = RELATIVE_DIR_TO_DIRECTION_MAPPING[rel_dir] move_row, move_col = move_ship_row_col(row, col, d, grid_size) move_base_id = player_base_ids[move_row, move_col] if move_base_id >= 0 and move_base_id != i: rem_dirs.append(rel_dir) for d in rem_dirs: valid_rel_directions.remove(d) # if observation['step'] == 146 and row == 14 and col == 13: # import pdb; pdb.set_trace() rem_dirs = [] for rel_dir in valid_rel_directions_no_move_risk: d = RELATIVE_DIR_TO_DIRECTION_MAPPING[rel_dir] move_row, move_col = move_ship_row_col(row, col, d, grid_size) move_base_id = player_base_ids[move_row, move_col] if move_base_id >= 0 and move_base_id != i: rem_dirs.append(rel_dir) for d in rem_dirs: valid_rel_directions_no_move_risk.remove(d) if len(valid_rel_directions) == 0: player_halite_budget = observation['rewards_bases_ships'][i][0] if ((ship_halite + player_halite_budget) >= convert_cost): if ship_halite >= history['inferred_boxed_in_conv_threshold'][i][1]: likely_convert_opponent_positions.append((row, col)) if ship_halite >= history['inferred_boxed_in_conv_threshold'][i][0]: possible_convert_opponent_positions.append((row, col)) if ship_halite > 0: for d in MOVE_DIRECTIONS: move_row, move_col = move_ship_row_col(row, col, d, grid_size) boxed_in_attack_squares[move_row, move_col] = True boxed_in_opponent_ids[move_row, move_col] = i if ship_halite == 0 and len(valid_rel_directions_no_move_risk) == 1 and ( valid_rel_directions_no_move_risk[0] == (0, 0)): boxed_in_zero_halite_opponents.append((row, col)) if len(valid_rel_directions_no_move_risk) == 1: escape_dir = RELATIVE_DIR_TO_DIRECTION_MAPPING[ valid_rel_directions_no_move_risk[0]] escape_square = move_ship_row_col(row, col, escape_dir, grid_size) opponent_single_escape_pos[escape_square] = 1 single_escape_mapping[(row, col)] = escape_square opponent_ships_sensible_actions[(row, col)] = valid_rel_directions opponent_ships_sensible_actions_no_risk[(row, col)] = ( valid_rel_directions_no_move_risk) # if observation['step'] == 146: # import pdb; pdb.set_trace() # Do another pass over the zero halite ships to figure if they are boxed in # by the escape squares of their own non zero halite ships - these ships # will very likely take risky actions and should therefore be avoided if np.any(opponent_single_escape_pos): for j in range(num_ships): row = ship_pos[0][j] col = ship_pos[1][j] ship_halite = halite_ships[row, col] if ship_halite == 0: valid_rel_directions = opponent_ships_sensible_actions[(row, col)] valid_rel_directions_no_move_risk = ( opponent_ships_sensible_actions_no_risk[row, col]) # if observation['step'] == 146 and row == 15 and col == 12: # import pdb; pdb.set_trace() # if observation['step'] == 146 and row == 14 and col == 13: # import pdb; pdb.set_trace() for d in NOT_NONE_DIRECTIONS: move_row, move_col = move_ship_row_col(row, col, d, grid_size) if opponent_single_escape_pos[move_row, move_col]: my_escape_square = False if (row, col) in single_escape_mapping: my_escape_square = (move_row, move_col) == ( single_escape_mapping[row, col]) if my_escape_square: # Still treat it as a bad direction if there is another ship # that has my escape square as it's only escape square num_escape_count = np.array( [v == (move_row, move_col) for v in ( single_escape_mapping.values())]).sum() my_escape_square = num_escape_count == 1 if not my_escape_square: avoid_rel_direction = RELATIVE_DIR_MAPPING[d] if avoid_rel_direction in valid_rel_directions: valid_rel_directions.remove(avoid_rel_direction) if avoid_rel_direction in valid_rel_directions_no_move_risk: valid_rel_directions_no_move_risk.remove(avoid_rel_direction) if (len(valid_rel_directions_no_move_risk) == 0 or ( len(valid_rel_directions_no_move_risk) == 1 and ( valid_rel_directions_no_move_risk[0] == (0, 0)))) and ( not (row, col) in boxed_in_zero_halite_opponents): # print("AVOIDING chained zero halite collision", # observation['step'], row, col) boxed_in_zero_halite_opponents.append((row, col)) opponent_ships_sensible_actions[(row, col)] = valid_rel_directions opponent_ships_sensible_actions_no_risk[(row, col)] = ( valid_rel_directions_no_move_risk) return (opponent_ships_sensible_actions, opponent_ships_sensible_actions_no_risk, boxed_in_attack_squares, boxed_in_opponent_ids, boxed_in_zero_halite_opponents, likely_convert_opponent_positions, possible_convert_opponent_positions) def scale_attack_scores_bases_ships( config, observation, player_obs, spawn_cost, non_abandoned_base_distances, weighted_base_mask, steps_remaining, obs_halite, halite_ships, history, smoothed_halite, player_influence_maps, nearest_base_distances_with_my_excluded, player_ids, laplace_smoother_rel_ship_count=4, initial_normalize_ship_diff=10, final_normalize_ship_diff=3): stacked_bases = np.stack([rbs[1] for rbs in observation[ 'rewards_bases_ships']]) my_bases = stacked_bases[0] # Exclude bases that are persistently camped by opponents for base_pos in history['my_base_not_attacked_positions']: my_bases[base_pos] = 0 stacked_opponent_bases = stacked_bases[1:] stacked_ships = np.stack([rbs[2] for rbs in observation[ 'rewards_bases_ships']]) stacked_opponent_ships = stacked_ships[1:] base_counts = stacked_opponent_bases.sum((1, 2)) my_ship_count = len(player_obs[2]) ship_counts = stacked_opponent_ships.sum((1, 2)) grid_size = stacked_opponent_bases.shape[1] approximate_scores = history['current_scores'] num_players = stacked_bases.shape[0] player_ranks = np.zeros(num_players) for i in range(num_players): player_ranks[i] = (approximate_scores >= approximate_scores[i]).sum() # print(approximate_scores) # Factor 1: an opponent with less bases is more attractive to attack base_count_multiplier = np.where(base_counts == 0, 0, 1/(base_counts+1e-9)) # Factor 2: an opponent that is closer in score is more attractive to attack spawn_diffs = (approximate_scores[0] - approximate_scores[1:])/spawn_cost abs_spawn_diffs = np.abs(spawn_diffs) currently_winning = approximate_scores[0] >= approximate_scores[1:] approximate_score_diff = approximate_scores[0] - approximate_scores[1:] normalize_diff = initial_normalize_ship_diff - observation['relative_step']*( initial_normalize_ship_diff-final_normalize_ship_diff) abs_rel_normalized_diff = np.maximum( 0, (normalize_diff-abs_spawn_diffs)/normalize_diff) rel_score_max_y = initial_normalize_ship_diff/normalize_diff rel_score_multiplier = abs_rel_normalized_diff*rel_score_max_y # Factor 3: an opponent with less ships is more attractive to attack since it # is harder for them to defend the base rel_ship_count_multiplier = (my_ship_count+laplace_smoother_rel_ship_count)/( ship_counts+laplace_smoother_rel_ship_count) # Additional term: attack bases nearby my main base opponent_bases = stacked_opponent_bases.sum(0).astype(np.bool) if opponent_bases.sum() > 0 and non_abandoned_base_distances.max() > 0: additive_nearby_main_base = 3/max(0.15, observation['relative_step'])/( 1.5**non_abandoned_base_distances)/( weighted_base_mask[my_bases].sum()) additive_nearby_main_base[~opponent_bases] = 0 else: additive_nearby_main_base = 0 attack_multipliers = base_count_multiplier*rel_score_multiplier*( rel_ship_count_multiplier) tiled_multipliers = np.tile(attack_multipliers.reshape((-1, 1, 1)), [1, grid_size, grid_size]) # if observation['step'] == 391: # import pdb; pdb.set_trace() opponent_bases_scaled = (stacked_opponent_bases*tiled_multipliers).sum(0) + ( additive_nearby_main_base) # Compute the priority of attacking the ships of opponents opponent_ships_scaled = np.maximum(0, 1 - np.abs( approximate_scores[0]-approximate_scores[1:])/steps_remaining/10) # print(observation['step'], opponent_ships_scaled, approximate_scores) # if observation['step'] == 300: # import pdb; pdb.set_trace() # If I am winning by a considerable margin before the game is over, and the # number three is far behind the number two: go ballistic on the number two # Prefer opponent bases that are close to my bases and halite, and where the # opponent has a relatively low density # Make sure to guarantee some continuity with a start and stop mode # Ballistic scenarios: # - I am well ahead of all opponents: target the initial best agent # - I am winning with a solid margin and the number three is far behind # the number two: target the number two # - I am in a close fight with the number two/one and the number three is # very far behind: target the number two winning_massively = np.all(spawn_diffs >= ( 18-9*observation['relative_step'])) if not winning_massively: history['ballistic_early_best_target_mode'] = False winning_very_clearly = np.all(spawn_diffs >= ( 14-7*observation['relative_step'])) winning_clearly = np.all(spawn_diffs >= (8-4*observation['relative_step'])) winning_considerably = np.all(spawn_diffs >= ( 6-4*observation['relative_step'] + int(history[ 'ballistic_early_best_target_mode']))) winning_massively_near_end_game = winning_massively and observation[ 'relative_step'] > 0.75 winning_massively_before_end_game = winning_massively and not ( winning_massively_near_end_game) first_opp_id = np.argsort(spawn_diffs)[0] second_opp_id = np.argsort(spawn_diffs)[1] second_third_spawn_diff = spawn_diffs[second_opp_id] - spawn_diffs[ first_opp_id] very_tight_fight_for_first = np.abs(spawn_diffs[first_opp_id]) < 1 and ( spawn_diffs[second_opp_id] >= (12-8*observation['relative_step'])) tight_fight_for_first = np.abs(spawn_diffs[first_opp_id]) < 3 and ( spawn_diffs[second_opp_id] >= (8-6*observation['relative_step'])) prev_ballistic_mode = history['ballistic_mode'] should_start_ballistic = (not winning_massively_before_end_game) and ( winning_clearly and second_third_spawn_diff > ( 7-2*observation['relative_step']) or very_tight_fight_for_first or ( winning_massively_near_end_game)) and ( my_ship_count >= 15-max(0, 40*(observation['relative_step']-0.8))) should_continue_ballistic = not ( winning_massively_before_end_game) and (winning_very_clearly or ( winning_clearly and (second_third_spawn_diff > 1)) or ( winning_considerably and ( second_third_spawn_diff > (2-observation['relative_step']))) or ( tight_fight_for_first) ) and (my_ship_count >= 10-max(0, 20*(observation['relative_step']-0.8))) ballistic_mode = should_start_ballistic or ( prev_ballistic_mode and should_continue_ballistic) # Select the next target in line if the opponent has no bases and no ships if history['ballistic_early_best_targets_sorted'] is not None: for opponent_id in history['ballistic_early_best_targets_sorted']: ballistic_early_best_target_mode_target = opponent_id num_opponent_bases = stacked_bases[opponent_id+1].sum() num_opponent_ships = stacked_ships[opponent_id+1].sum() if num_opponent_bases > 0 or num_opponent_ships > 0: break else: ballistic_early_best_target_mode_target = first_opp_id # print(observation['step'], ballistic_early_best_target_mode_target) # if observation['step'] == 146: # import pdb; pdb.set_trace() # Ballistic early best target mode override of the opponent id: prefer to # attack opponents that have a base which is close to one of my non # abandoned bases opponent_base_positions = np.where(stacked_opponent_bases.sum(0) > 0) opponent_near_my_base_distances = nearest_base_distances_with_my_excluded[ opponent_base_positions] targeted_base_override = None if np.any(opponent_base_positions) and winning_very_clearly and ( opponent_near_my_base_distances.min() < 6): prev_ballistic_target_override = history['prev_ballistic_target_override'] if history['prev_ballistic_target_override'] is not None and ( opponent_bases[prev_ballistic_target_override]): targeted_base_override = prev_ballistic_target_override else: # Sort annoying bases by score: prefer to attack opponent bases that # belong to the best opponent smoothed_halite = smooth2d(observation['halite']) opponent_near_my_base_scores = opponent_near_my_base_distances + 0.6*( player_ranks[player_ids[opponent_base_positions]-1]) - 1e-9*( smoothed_halite[opponent_base_positions]) target_base_id = np.argmin(opponent_near_my_base_scores) targeted_base_override = ( opponent_base_positions[0][target_base_id], opponent_base_positions[1][target_base_id]) history['prev_ballistic_target_override'] = targeted_base_override if ballistic_mode and not prev_ballistic_mode and ( winning_massively_near_end_game): # Switch to early best target mode - override of the target id print(observation['step'], "Start attack on early best target", ballistic_early_best_target_mode_target+1) ballistic_early_best_target_mode = True ballistic_target_id = ballistic_early_best_target_mode_target elif ballistic_mode: ballistic_early_best_target_mode = history[ 'ballistic_early_best_target_mode'] and winning_very_clearly if ballistic_early_best_target_mode or winning_massively_near_end_game: # Early best target mode ballistic_target_id = ballistic_early_best_target_mode_target else: # Standard ballistic mode ballistic_target_id = first_opp_id # print(observation['step'], "Winning massively near end?", # winning_massively_near_end_game, ballistic_target_id) else: ballistic_early_best_target_mode = False # Consider going ballistic on the nearest contender for the second place # when the first place no longer seems possible first_out_of_reach = spawn_diffs.min() <= ( -40+36*observation['relative_step']) # This should be conservative if first_out_of_reach and np.abs(spawn_diffs[first_opp_id]) > np.abs( spawn_diffs[second_opp_id]): ballistic_target_id = second_opp_id third_opp_id = np.argsort(spawn_diffs)[2] spawn_diffs_not_best = np.array([spawn_diffs[i] for i in range(3) if ( not i == first_opp_id)]) winning_clearly_second = np.all( spawn_diffs_not_best >= (8-4*observation['relative_step'])) winning_considerably_second = np.all(spawn_diffs_not_best >= ( 6-4*observation['relative_step'])) third_fourth_spawn_diff = spawn_diffs[third_opp_id] - ( spawn_diffs[second_opp_id]) very_tight_fight_for_second = ( np.abs(spawn_diffs[second_opp_id]) < np.abs( spawn_diffs[third_opp_id])/2) and ( spawn_diffs[third_opp_id] >= (12-8*observation['relative_step'])) tight_fight_for_second = ( np.abs(spawn_diffs[second_opp_id]) < np.abs( spawn_diffs[third_opp_id])) and ( spawn_diffs[third_opp_id] >= (10-7*observation['relative_step'])) should_start_ballistic = ( winning_clearly_second and third_fourth_spawn_diff > ( 4-2*observation['relative_step']) or ( very_tight_fight_for_second)) and ( my_ship_count >= 15-max(0, 40*(observation['relative_step']-0.8))) should_continue_ballistic = (( winning_clearly_second and (third_fourth_spawn_diff > 1)) or ( winning_considerably_second and ( third_fourth_spawn_diff > (2-observation['relative_step']))) or ( tight_fight_for_second) ) and (my_ship_count >= 10-max( 0, 20*(observation['relative_step']-0.8))) ballistic_mode = should_start_ballistic or ( prev_ballistic_mode and should_continue_ballistic) # if observation['step'] == 363: # import pdb; pdb.set_trace() # if ballistic_mode: # print("SECOND BALLISTIC MODE", observation['step'], # ballistic_target_id) if not ballistic_mode: ballistic_target_id = 0 # This could be 1 or 2 as well history['ballistic_early_best_target_mode'] = ( ballistic_early_best_target_mode) if not ballistic_mode and targeted_base_override is not None: print("Go ballistic on nearby base", observation['step'], targeted_base_override) ballistic_mode = True ballistic_target_id = np.argmax(base_counts) num_target_bases = base_counts[ballistic_target_id] ballistic_attack_base_targets = [] if ballistic_mode and num_target_bases > 0: target_bases = stacked_opponent_bases[ballistic_target_id] target_base_locations = np.where(target_bases) attack_target_base_scores = np.zeros(num_target_bases) my_base_density = smooth2d(my_bases, 10) for base_id in range(num_target_bases): base_row = target_base_locations[0][base_id] base_col = target_base_locations[1][base_id] attack_target_base_scores[base_id] = 5e-4*smoothed_halite[ base_row, base_col] + player_influence_maps[0, base_row, base_col] - ( player_influence_maps[ballistic_target_id+1, base_row, base_col]) + ( 100*int((base_row, base_col) in history['prev_step'][ 'ballistic_attack_base_targets'])) + 10*my_base_density[ base_row, base_col] # import pdb; pdb.set_trace() ordered_base_ids = np.argsort(-attack_target_base_scores) num_attacked_bases = 1 # 1 is plenty of aggression for the world for attack_id in range(num_attacked_bases): if attack_id == 0 and targeted_base_override is not None: # print("Targeted base override", observation['step'], # targeted_base_override) base_row, base_col = targeted_base_override else: base_id = ordered_base_ids[attack_id] base_row = target_base_locations[0][base_id] base_col = target_base_locations[1][base_id] opponent_bases_scaled[base_row, base_col] = 1e4 ballistic_attack_base_targets.append((base_row, base_col)) del_keys = [] for k in history['camping_ships_strategy']: if history['camping_ships_strategy'][k][5] in ( ballistic_attack_base_targets): del_keys.append(k) for k in del_keys: del history['camping_ships_strategy'][k] # print(observation['step'], ballistic_mode, ballistic_attack_base_targets) history['ballistic_mode'] = ballistic_mode return (opponent_bases_scaled, opponent_ships_scaled, abs_rel_normalized_diff, currently_winning, approximate_score_diff, history, ballistic_attack_base_targets) def get_influence_map(config, stacked_bases, stacked_ships, halite_ships, observation, player_obs, smooth_kernel_dim=7): # FUTURE WORK: incorporate the number of ships in computing the base weights # Reasoning: a base without ships is not really a threat all_ships = stacked_ships.sum(0).astype(np.bool) my_ships = stacked_ships[0].astype(np.bool) if my_ships.sum() == 0: return None, None, None, None, None, None num_players = stacked_ships.shape[0] grid_size = my_ships.shape[0] ship_range = 1-config['influence_map_min_ship_weight'] all_ships_halite = halite_ships[all_ships] unique_vals, unique_counts = np.unique( all_ships_halite, return_counts=True) assert np.all(np.diff(unique_vals) > 0) unique_halite_vals = np.sort(unique_vals).astype(np.int).tolist() num_ships = all_ships_halite.size halite_ranks = [np.array( [unique_halite_vals.index(hs) for hs in halite_ships[ stacked_ships[i]]]) for i in range(num_players)] less_rank_cum_counts = np.cumsum(unique_counts) num_unique = unique_counts.size halite_rank_counts = [np.array( [less_rank_cum_counts[r-1] if r > 0 else 0 for r in ( halite_ranks[i])]) for i in range(num_players)] ship_weights = [1 - r/(num_ships-1+1e-9)*ship_range for r in ( halite_rank_counts)] raw_influence_maps = np.zeros((num_players, grid_size, grid_size)) raw_influence_maps_unweighted = np.zeros((num_players, grid_size, grid_size)) influence_maps = np.zeros((num_players, grid_size, grid_size)) influence_maps_unweighted = np.zeros((num_players, grid_size, grid_size)) for i in range(num_players): raw_influence_maps[i][stacked_ships[i]] += ship_weights[i] raw_influence_maps[i][stacked_bases[i]] += config[ 'influence_map_base_weight'] raw_influence_maps_unweighted[i][stacked_ships[i]] += 1 raw_influence_maps_unweighted[i][stacked_bases[i]] += 1 influence_maps[i] = smooth2d(raw_influence_maps[i], smooth_kernel_dim=smooth_kernel_dim) influence_maps_unweighted[i] = smooth2d( raw_influence_maps_unweighted[i], smooth_kernel_dim=smooth_kernel_dim) my_influence = influence_maps[0] max_other_influence = influence_maps[1:].max(0) influence_map = my_influence - max_other_influence influence_map_unweighted = influence_maps_unweighted[0] - ( influence_maps_unweighted[1:].sum(0)) # Define the escape influence map rem_other_influence = influence_maps[1:].sum(0) - max_other_influence escape_influence_map = 3*my_influence-( 2*max_other_influence+rem_other_influence) escape_influence_probs = np.exp(np.minimum(0, escape_influence_map)/config[ 'escape_influence_prob_divisor']) # Derive the priority scores based on the influence map priority_scores = 1/(1+np.abs(influence_map)) # Extract a dict of my ship weights ship_priority_weights = {} for ship_k in player_obs[2]: row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ship_halite = halite_ships[row, col] halite_rank = unique_halite_vals.index(ship_halite) ship_priority_weights[ship_k] = 1 - halite_rank/( num_unique-1+1e-9)*ship_range return (influence_map, influence_map_unweighted, influence_maps, priority_scores, ship_priority_weights, escape_influence_probs) # Compute the weighted base mask - the base with value one represents the # main base and the values are used as a multiplier in the return to base # scores. def get_weighted_base_mask(stacked_bases, stacked_ships, observation, history, consistent_main_base_bonus=3): my_bases = stacked_bases[0] # Exclude bases that are persistently camped by opponents for base_pos in history['my_base_not_attacked_positions']: my_bases[base_pos] = 0 num_bases = my_bases.sum() my_base_locations = np.where(my_bases) grid_size = stacked_bases.shape[1] ship_diff_smoothed = smooth2d(stacked_ships[0] - stacked_ships[1:].sum(0)) if num_bases == 0: base_mask = np.ones((grid_size, grid_size)) main_base_distances = -1*np.ones((grid_size, grid_size)) non_abandoned_base_distances = -1*np.ones((grid_size, grid_size)) elif num_bases >= 1: all_non_abandoned_base_distances = [] for base_id in range(num_bases): base_row = my_base_locations[0][base_id] base_col = my_base_locations[1][base_id] all_non_abandoned_base_distances.append(DISTANCES[ base_row, base_col]) non_abandoned_base_distances = np.stack( all_non_abandoned_base_distances).min(0) # Add a bonus to identify the main base id, but don't include the bonus # in the base scaling ship_diff_smoothed_with_bonus = np.copy(ship_diff_smoothed) prev_main_base_location = history['prev_step']['my_main_base_location'] # print(observation['step'], prev_main_base_location, num_bases) if prev_main_base_location[0] >= 0: ship_diff_smoothed_with_bonus[prev_main_base_location] += ( consistent_main_base_bonus) base_densities = ship_diff_smoothed[my_base_locations] base_densities_with_bonus = ship_diff_smoothed_with_bonus[ my_base_locations] highest_base_density_with_bonus = base_densities_with_bonus.max() best_ids = np.where( base_densities_with_bonus == highest_base_density_with_bonus)[0] highest_base_density = base_densities[best_ids[0]] # Subtract some small value of the non max densities to break rare ties main_base_row = my_base_locations[0][best_ids[0]] main_base_col = my_base_locations[1][best_ids[0]] main_base_distances = DISTANCES[main_base_row, main_base_col] all_densities = np.minimum(ship_diff_smoothed, highest_base_density-1e-5) all_densities[main_base_row, main_base_col] += 1e-5 # Linearly compute the weighted base mask: 1 is my best base and 0 is the # lowest ship_diff_smoothed value all_densities -= all_densities.min() base_mask = all_densities/all_densities.max() return (base_mask, main_base_distances, non_abandoned_base_distances, ship_diff_smoothed) # Force returning to a base when the episode is almost over def force_return_base_end_episode( my_bases, base_return_grid_multiplier, main_base_distances, row, col, steps_remaining, opponent_less_halite_ships, weighted_base_mask, safe_to_collect): num_bases = my_bases.sum() base_positions = np.where(my_bases) # List the bases I *can* return to can_return_scores = np.zeros(num_bases) for i in range(num_bases): base_row = base_positions[0][i] base_col = base_positions[1][i] base_distance = DISTANCES[row, col][base_row, base_col] threat_mask = np.logical_and( DISTANCES[(row, col)] <= base_distance, DISTANCES[(base_row, base_col)] <= base_distance) if base_distance > 1: threat_mask[row, col] = 0 threat_mask[base_row, base_col] = 0 threat_ships_mask = opponent_less_halite_ships[threat_mask] can_return_scores[i] = (base_distance <= steps_remaining)*(10+ max(int(safe_to_collect[row, col]), weighted_base_mask[base_row, base_col]) - 5*( threat_ships_mask.mean()) - base_distance/30) # if observation['step'] == 384 and row == 8 and col == 11: # import pdb; pdb.set_trace() # Force an emergency return if the best return scores demand an urgent # return in order to bring the halite home before the episode is over end_game_base_return = False if num_bases > 0: best_return_id = np.argmax(can_return_scores) best_base_row = base_positions[0][best_return_id] best_base_col = base_positions[1][best_return_id] best_base_distance = DISTANCES[row, col][best_base_row, best_base_col] end_game_base_return = best_base_distance in [ steps_remaining-1, steps_remaining] if end_game_base_return: base_return_grid_multiplier[best_base_row, best_base_col] += 1e15 return base_return_grid_multiplier, end_game_base_return def edge_aware_square_subset_mask(data, row, col, window, box, grid_size): # Figure out how many rows to roll the data and box to end up with a # contiguous subset min_row = row - window max_row = row + window if min_row < 0: data = np.roll(data, -min_row, axis=0) box = np.roll(box, -min_row, axis=0) elif max_row >= grid_size: data = np.roll(data, grid_size-max_row-1, axis=0) box = np.roll(box, grid_size-max_row-1, axis=0) # Figure out how many columns to roll the data and box to end up with a # contiguous subset min_col = col - window max_col = col + window if min_col < 0: data = np.roll(data, -min_col, axis=1) box = np.roll(box, -min_col, axis=1) elif max_col >= grid_size: data = np.roll(data, grid_size-max_col-1, axis=1) box = np.roll(box, grid_size-max_col-1, axis=1) return data[box] def update_scores_opponent_boxing_in( all_ship_scores, stacked_ships, observation, env_config, opponent_ships_sensible_actions, halite_ships, steps_remaining, player_obs, np_rng, opponent_ships_scaled, collect_rate, obs_halite, main_base_distances, history, on_rescue_mission, my_defend_base_ship_positions, env_observation, player_influence_maps, override_move_squares_taken, ignore_convert_positions, convert_unavailable_positions, always_attack_opponent_id, num_non_abandoned_bases, likely_convert_opponent_positions, possible_convert_opponent_positions, my_current_base_distances, box_in_window=3, min_attackers_to_box=4): # Loop over the opponent ships and derive if I can box them in # For now this is just greedy. We should probably consider decoupling finding # targets from actually boxing in. # FUTURE WORK: proper handling of opponent bases opponent_positions = np.where(stacked_ships[1:].sum(0) > 0) opponent_bases = np.stack([rbs[1] for rbs in observation[ 'rewards_bases_ships']])[1:].sum(0) num_opponent_ships = opponent_positions[0].size double_window = box_in_window*2 dist_mask_dim = 2*double_window+1 nearby_rows = np.tile(np.expand_dims(np.arange(dist_mask_dim), 1), [1, dist_mask_dim]) nearby_cols = np.tile(np.arange(dist_mask_dim), [dist_mask_dim, 1]) ships_available = np.copy(stacked_ships[0]) & (~on_rescue_mission) & ( ~my_defend_base_ship_positions) & (~convert_unavailable_positions) boxing_in = np.zeros_like(on_rescue_mission) grid_size = stacked_ships.shape[1] # ship_pos_to_key = {v[0]: k for k, v in player_obs[2].items()} prev_step_boxing_in_ships = history['prev_step_boxing_in_ships'] num_players = stacked_ships.shape[0] spawn_cost = env_config.spawnCost ship_pos_to_key = {} for i in range(num_players): ship_pos_to_key.update({ v[0]: k for k, v in env_observation.players[i][2].items()}) # Loop over the camping ships and exclude the ones from the available mask # that have flagged they are not available for boxing in camping_ships_strategy = history['camping_ships_strategy'] for ship_k in camping_ships_strategy: if not camping_ships_strategy[ship_k][3]: camping_row, camping_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ships_available[camping_row, camping_col] = 0 # Loop over the ships that attack opponent camplers and exclude them from the # available mask attack_opponent_campers = history['attack_opponent_campers'] for ship_k in attack_opponent_campers: attacking_camper_row, attacking_camper_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ships_available[attacking_camper_row, attacking_camper_col] = 0 # Loop over the ships that are stuck in a loop and mark them as unavailable for ship_k in history['avoid_cycle_actions']: cycle_row, cycle_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) ships_available[cycle_row, cycle_col] = 0 original_ships_available = np.copy(ships_available) my_ship_density = smooth2d(ships_available, smooth_kernel_dim=2) # Compute the priorities of attacking each ship # Compute the minimum opponent halite in the neighborhood of each square # by looping over all opponent ships attack_ship_priorities = np.zeros(num_opponent_ships) near_opponent_min_halite = np.ones((grid_size, grid_size))*1e6 near_opponent_2_min_halite = np.ones((grid_size, grid_size))*1e6 near_opponent_specific_2_min_halite = [ np.ones((grid_size, grid_size))*1e6 for _ in range(num_players)] should_attack = np.zeros(num_opponent_ships, dtype=np.bool) for i in range(num_opponent_ships): row = opponent_positions[0][i] col = opponent_positions[1][i] opponent_ship_k = ship_pos_to_key[row*grid_size+col] boxing_in_prev_step = opponent_ship_k in prev_step_boxing_in_ships opponent_halite = halite_ships[row, col] clipped_opponent_halite = min(spawn_cost, opponent_halite) opponent_id = np.where(stacked_ships[:, row, col])[0][0] attack_ship_priorities[i] = 1e5*boxing_in_prev_step + ( clipped_opponent_halite) + 1000*( opponent_ships_scaled[opponent_id-1]) + 1000*my_ship_density[row, col] near_opp_mask = ROW_COL_MAX_DISTANCE_MASKS[(row, col, box_in_window)] near_opp_2_mask = ROW_COL_MAX_DISTANCE_MASKS[(row, col, 2)] near_opponent_min_halite[near_opp_mask] = np.minimum( opponent_halite, near_opponent_min_halite[near_opp_mask]) near_opponent_2_min_halite[near_opp_2_mask] = np.minimum( opponent_halite, near_opponent_2_min_halite[near_opp_2_mask]) near_opponent_specific_2_min_halite[opponent_id][near_opp_2_mask] = ( np.minimum(opponent_halite, near_opponent_specific_2_min_halite[opponent_id][ near_opp_2_mask])) # if observation['step'] == 163 and row == 2: # import pdb; pdb.set_trace() should_attack[i] = (main_base_distances[row, col] >= (9-( observation['relative_step']*6 + 3*num_non_abandoned_bases)) or ( opponent_halite < history[ 'inferred_boxed_in_conv_threshold'][opponent_id][0]) or ( always_attack_opponent_id == opponent_id)) and not ( (row, col) in ignore_convert_positions) box_opponent_positions = [] boxing_in_ships = [] ships_on_box_mission = {} opponent_ship_order = np.argsort(-attack_ship_priorities) for i in range(num_opponent_ships): opponent_ship_id = opponent_ship_order[i] row = opponent_positions[0][opponent_ship_id] col = opponent_positions[1][opponent_ship_id] opponent_id = np.where(stacked_ships[:, row, col])[0][0] opponent_ship_k = ship_pos_to_key[row*grid_size+col] sensible_target_actions = opponent_ships_sensible_actions[row, col] target_halite = halite_ships[row, col] my_less_halite_mask = np.logical_and( halite_ships < target_halite, ships_available) # if observation['step'] == 210 and row == 1 and col == 8: # import pdb; pdb.set_trace() # Drop non zero halite ships towards the end of a game (they should return) my_less_halite_mask = np.logical_and( my_less_halite_mask, np.logical_or( halite_ships == 0, steps_remaining > 20)) max_dist_mask = ROW_COL_MAX_DISTANCE_MASKS[(row, col, double_window)] my_less_halite_mask &= max_dist_mask box_pos = ROW_COL_BOX_MAX_DISTANCE_MASKS[row, col, double_window] # if observation['step'] == 157 and row == 13 and col == 1: # import pdb; pdb.set_trace() if my_less_halite_mask.sum() >= min_attackers_to_box and should_attack[ opponent_ship_id]: # Look up the near opponent min halite in the square which is in the # middle between my attackers and the target - don't attack when there is # a less halite ship near that ship or if there is an equal halite ship # near that square and close to the opponent my_considered_pos = np.where(my_less_halite_mask) if my_considered_pos[0].size: considered_rows = my_considered_pos[0] considered_cols = my_considered_pos[1] mid_rows = np.where( np.abs(considered_rows-row) <= (grid_size // 2), np.round((considered_rows*(1-1e-9)+row*(1+1e-9))/2), np.where(considered_rows*(1-1e-9)+row*(1+1e-9) >= grid_size, np.round( (considered_rows*(1-1e-9)+row*(1+1e-9)-grid_size)/2), np.mod(np.round( (considered_rows*(1-1e-9)+row*(1+1e-9)+grid_size)/2), grid_size)) ).astype(np.int) mid_cols = np.where( np.abs(considered_cols-col) <= (grid_size // 2), np.round((considered_cols*(1-1e-9)+col*(1+1e-9))/2), np.where(considered_cols*(1-1e-9)+col*(1+1e-9) >= grid_size, np.round( (considered_cols*(1-1e-9)+col*(1+1e-9)-grid_size)/2), np.mod(np.round( (considered_cols*(1-1e-9)+col*(1+1e-9)+grid_size)/2), grid_size)) ).astype(np.int) # Only box in with ships that can safely do so without becoming a # target themselves. Take more risk when the halite on board is # equal to that of other target surrounding ships (typically 0 halite) considered_to_target_distances = DISTANCES[(row, col)][ (considered_rows, considered_cols)] considered_min_halite_limits = np.where( considered_to_target_distances < 3, near_opponent_2_min_halite[ (mid_rows, mid_cols)], near_opponent_min_halite[ (mid_rows, mid_cols)]) drop_ids = (considered_min_halite_limits < ( halite_ships[(considered_rows, considered_cols)])) | ( (considered_min_halite_limits == ( halite_ships[(considered_rows, considered_cols)])) & ( near_opponent_specific_2_min_halite[opponent_id][ (row, col)] <= ( halite_ships[(considered_rows, considered_cols)]))) if np.any(drop_ids): drop_row_ids = considered_rows[drop_ids] drop_col_ids = considered_cols[drop_ids] my_less_halite_mask[(drop_row_ids, drop_col_ids)] = 0 my_less_halite_mask_box = edge_aware_square_subset_mask( my_less_halite_mask, row, col, double_window, box_pos, grid_size) nearby_less_halite_mask = my_less_halite_mask_box.reshape( (dist_mask_dim, dist_mask_dim)) # if observation['step'] == 32: # import pdb; pdb.set_trace() my_num_nearby = nearby_less_halite_mask.sum() else: my_num_nearby = 0 if my_num_nearby >= min_attackers_to_box: # Check all directions to make sure I can box the opponent in can_box_in = True box_in_mask_dirs = np.zeros( (4, dist_mask_dim, dist_mask_dim), dtype=np.bool) for dim_id, d in enumerate(NOT_NONE_DIRECTIONS): dir_and_ships = BOX_DIRECTION_MASKS[(double_window, d)] & ( nearby_less_halite_mask) if not np.any(dir_and_ships): can_box_in = False break else: box_in_mask_dirs[dim_id] = dir_and_ships if can_box_in: # Sketch out the escape squares for the target ship opponent_distances = np.abs(nearby_rows-double_window) + np.abs( nearby_cols-double_window) opponent_euclid_distances = np.sqrt( (nearby_rows-double_window)**2 + ( nearby_cols-double_window)**2) nearby_mask_pos = np.where(nearby_less_halite_mask) my_nearest_distances = np.stack([np.abs( nearby_rows-nearby_mask_pos[0][j]) + np.abs( nearby_cols-nearby_mask_pos[1][j]) for j in range( my_num_nearby)]) my_nearest_euclid_distances = np.stack([np.sqrt(( nearby_rows-nearby_mask_pos[0][j])**2 + ( nearby_cols-nearby_mask_pos[1][j])**2) for j in range( my_num_nearby)]) # No boxing in if the opponent has a base in one of the escape squares escape_squares = opponent_distances <= my_nearest_distances.min(0) cropped_distances = OTHER_DISTANCES[ (double_window, double_window, dist_mask_dim)] for dim_id, d in enumerate(NOT_NONE_DIRECTIONS): box_dir_mask = BOX_DIRECTION_MASKS[(double_window, d)] closest_dim_distance = cropped_distances[ box_in_mask_dirs[dim_id]].min() escape_squares[box_dir_mask] &= ( cropped_distances[box_dir_mask] <= closest_dim_distance) if not np.any(observation['rewards_bases_ships'][opponent_id][1][ box_pos][escape_squares.flatten()]): # Let's box the opponent in! # We should move towards the opponent if we can do so without opening # up an escape direction # if observation['step'] == 32: # import pdb; pdb.set_trace() # Order the planning by priority of direction and distance to the # opponent # Reasoning: mid-distance ships plan first since that allows fast # boxing in - the nearby ships then just have to cover the remaining # directions. # Ships which cover hard to cover directions plan later. box_in_mask_dirs_sum = box_in_mask_dirs.sum((1, 2)) ship_priorities = np.zeros(my_num_nearby) must_attack_converting_square = ((row, col) in ( likely_convert_opponent_positions)) and not ( (row, col) in ignore_convert_positions) and (( always_attack_opponent_id == opponent_id) or ( my_current_base_distances[:, row, col].min() < 5)) threatened_one_step = set() for j in range(my_num_nearby): my_row = nearby_mask_pos[0][j] my_col = nearby_mask_pos[1][j] box_directions = box_in_mask_dirs[:, my_row, my_col] opponent_distance = np.abs(my_row-double_window) + np.abs( my_col-double_window) ship_priorities[j] = 20/( box_in_mask_dirs_sum[box_directions].prod())+np.abs( opponent_distance**0.9-box_in_window**0.9) if opponent_distance == 2 and box_directions.sum() == 2 and np.all( box_in_mask_dirs_sum[box_directions] == 1): two_step_dirs = [MOVE_DIRECTIONS[move_id+1] for move_id in ( np.where(box_directions)[0])] threatened_one_step.update(two_step_dirs) # I can always attack all escape squares if I have at least 5 ships # at a maximum distance of two with at least one attacker on each # half plane vert_diff = double_window-nearby_mask_pos[0] horiz_diff = double_window-nearby_mask_pos[1] distances = np.abs(vert_diff) + np.abs(horiz_diff) is_near = distances <= 2 near_vert_diff = vert_diff[is_near] near_horiz_diff = horiz_diff[is_near] i_can_attack_all_escape_squares = distances.min() == 1 and ( is_near.sum() >= 5) and np.sign(near_vert_diff).ptp() == 2 and ( np.sign(near_horiz_diff).ptp() == 2) if i_can_attack_all_escape_squares and (distances == 1).sum() == 1: # I can only attack all escape squares if my attacker can be # replaced one_step_diff_id = np.argmin(distances) single_attack_row = nearby_mask_pos[0][one_step_diff_id] single_attack_col = nearby_mask_pos[1][one_step_diff_id] can_replace = False for row_offset in [-1, 1]: for col_offset in [-1, 1]: if nearby_less_halite_mask[single_attack_row + row_offset, single_attack_col + col_offset]: can_replace = True break i_can_attack_all_escape_squares = can_replace # DISCERN if we are just chasing or actually attacking the ship in # the next move - dummy rule to have at least K neighboring ships # for us to attack the position of the targeted ship - this makes it # hard to guess the escape direction ship_target_1_distances = my_nearest_distances[ :, double_window, double_window] == 1 next_step_attack = (len(sensible_target_actions) == 0 and ( ship_target_1_distances.sum() > 2)) or ( i_can_attack_all_escape_squares) or ( must_attack_converting_square and np.any( ship_target_1_distances)) # if next_step_attack and not ( # (len(sensible_target_actions) == 0 and ( # ship_target_1_distances.sum() > 2)) or ( # i_can_attack_all_escape_squares)): # import pdb; pdb.set_trace() opponent_boxed_bases = edge_aware_square_subset_mask( opponent_bases, row, col, double_window, box_pos, grid_size).reshape((dist_mask_dim, dist_mask_dim)) pos_taken = np.copy(opponent_boxed_bases) box_override_assignment_not_next_attack = {} if next_step_attack: # If there is a ship that can take the position of my attacker: # attack with that ship and replace its position. # Otherwise pick a random attacker and keep the others in place. # Initial approach: don't move with ships at distance 1. ship_target_2_distance_ids = np.where(my_nearest_distances[ :, double_window, double_window] == 2)[0].tolist() move_ids_directions_next_attack = {} # Reorder ship_target_2_distance_ids so that the ones that can # replace a 1 step threat are considered last, except when there is # only a single 1 step threat (it would always move to the target). # Also prefer to consider ships that only have a single option # to move to the target first two_step_distance_scores = np.zeros( len(ship_target_2_distance_ids)) for two_step_id, two_step_diff_id in enumerate( ship_target_2_distance_ids): my_row = nearby_mask_pos[0][two_step_diff_id] my_col = nearby_mask_pos[1][two_step_diff_id] mask_between = get_mask_between_exclude_ends( my_row, my_col, double_window, double_window, dist_mask_dim) two_step_distance_scores[two_step_id] = mask_between.sum() + 10*( nearby_less_halite_mask[mask_between].sum())*( ship_target_1_distances.sum() > 1) # if observation['step'] == 134: # import pdb; pdb.set_trace() ship_target_2_distance_ids = np.array( ship_target_2_distance_ids)[ np.argsort(two_step_distance_scores)].tolist() # Add the positions of the one step attackers for one_step_diff_id in np.where(ship_target_1_distances)[0]: my_row = nearby_mask_pos[0][one_step_diff_id] my_col = nearby_mask_pos[1][one_step_diff_id] # If I only have one ship that can attack the target: attack with # that ship! if ship_target_1_distances.sum() == 1: attack_direction = get_dir_from_target( my_row, my_col, double_window, double_window, grid_size=1000)[0] pos_taken[double_window, double_window] = True move_ids_directions_next_attack[one_step_diff_id] = ( attack_direction) else: pos_taken[my_row, my_col] = 1 # if observation['step'] == 176: # import pdb; pdb.set_trace() two_step_pos_taken = [] while ship_target_2_distance_ids: two_step_diff_id = ship_target_2_distance_ids.pop(0) my_row = nearby_mask_pos[0][two_step_diff_id] my_col = nearby_mask_pos[1][two_step_diff_id] # Consider the shortest directions towards the target shortest_directions = get_dir_from_target( my_row, my_col, double_window, double_window, grid_size=1000) has_selected_action = False for d in shortest_directions: # Prefer empty 1-step to target spaces over replacing a one # step threat move_row, move_col = move_ship_row_col( my_row, my_col, d, size=1000) if not pos_taken[move_row, move_col] and (not ( (move_row, move_col) in two_step_pos_taken)): two_step_pos_taken.append((move_row, move_col)) move_ids_directions_next_attack[two_step_diff_id] = d has_selected_action = True break if not has_selected_action: # Replace a 1-step threatening ship for d in shortest_directions: move_row, move_col = move_ship_row_col( my_row, my_col, d, size=1000) if pos_taken[move_row, move_col] and not pos_taken[ double_window, double_window] and not opponent_boxed_bases[ move_row, move_col]: move_ids_directions_next_attack[two_step_diff_id] = d # Find the ids of the 1-step ship and make sure that ship # attacks replaced_id = np.where(my_nearest_distances[ :, move_row, move_col] == 0)[0][0] one_step_attack_dir = get_dir_from_target( move_row, move_col, double_window, double_window, grid_size=1000)[0] move_ids_directions_next_attack[replaced_id] = ( one_step_attack_dir) pos_taken[double_window, double_window] = True # Recompute the priority of the remaining two step ships # Prefer ships with the lowest pos_taken shortest actions two_step_distance_scores = np.zeros( len(ship_target_2_distance_ids)) for two_step_id, two_step_diff_id in enumerate( ship_target_2_distance_ids): my_row = nearby_mask_pos[0][two_step_diff_id] my_col = nearby_mask_pos[1][two_step_diff_id] shortest_directions = get_dir_from_target( my_row, my_col, double_window, double_window, grid_size=1000) for d in shortest_directions: move_row, move_col = move_ship_row_col( my_row, my_col, d, size=1000) two_step_distance_scores[two_step_id] += int( not (pos_taken[move_row, move_col] or ( (move_row, move_col) in two_step_pos_taken))) ship_target_2_distance_ids = np.array( ship_target_2_distance_ids)[ np.argsort(two_step_distance_scores)].tolist() one_step_diff_ids = np.where(ship_target_1_distances)[0] if pos_taken[double_window, double_window]: # Add the remaining one step attackers with stay in place actions for one_step_diff_id in one_step_diff_ids: if not one_step_diff_id in move_ids_directions_next_attack: move_ids_directions_next_attack[one_step_diff_id] = None else: # Prefer to avoid stay in place actions with zero halite ships real_mask_pos = ( np.mod(nearby_mask_pos[0]+row-double_window, grid_size), np.mod(nearby_mask_pos[1]+col-double_window, grid_size) ) one_step_halite_on_board = halite_ships[real_mask_pos][ one_step_diff_ids] one_step_halite_on_square = obs_halite[real_mask_pos][ one_step_diff_ids] prefers_box_in = (one_step_halite_on_board == 0) & ( one_step_halite_on_square > 0) if np.all(~prefers_box_in): one_step_diff_ids_attack = one_step_diff_ids else: one_step_diff_ids_attack = one_step_diff_ids[ prefers_box_in] # Of the remaining attack options: prefer an attacker from the # direction where we have the highest influence, relative to the # targeted opponent # one_step_attacker_id = np_rng.choice(one_step_diff_ids_attack) my_influences = player_influence_maps[0][real_mask_pos][ one_step_diff_ids_attack] opponent_influences = player_influence_maps[opponent_id][ real_mask_pos][one_step_diff_ids_attack] influence_differences = my_influences - opponent_influences one_step_attacker_id = one_step_diff_ids_attack[ np.argmax(influence_differences)] # Pick a random one step attacker to attack the target and make # sure the remaining 1-step ships stay in place for one_step_diff_id in one_step_diff_ids: if one_step_diff_id == one_step_attacker_id: my_row = nearby_mask_pos[0][one_step_diff_id] my_col = nearby_mask_pos[1][one_step_diff_id] attack_dir = get_dir_from_target( my_row, my_col, double_window, double_window, grid_size=1000)[0] else: attack_dir = None move_ids_directions_next_attack[one_step_diff_id] = attack_dir elif len(sensible_target_actions) == 0 or ( len(sensible_target_actions) == 1 and ( sensible_target_actions[0] == (0, 0))): # Inspect what directions I can move right next to when the # opponent has no valid escape actions. Use a greedy search to # determine the action selection order can_box_immediately = [] can_box_immediately_counts = np.zeros(4) for j in range(my_num_nearby): my_row = nearby_mask_pos[0][j] my_col = nearby_mask_pos[1][j] box_directions = box_in_mask_dirs[:, my_row, my_col] opponent_distance = np.abs(my_row-double_window) + np.abs( my_col-double_window) if opponent_distance <= 2: immediate_box_dirs = np.where(box_directions)[0] can_box_immediately.append(( j, immediate_box_dirs, box_directions, my_row, my_col)) can_box_immediately_counts[box_directions] += 1 can_box_progress = [list(cb) for cb in can_box_immediately] can_box_immediately_counts_progress = np.copy( can_box_immediately_counts) not_boxed_dirs = np.ones(4, dtype=np.bool) # if observation['step'] == 97: # import pdb; pdb.set_trace() # Iteratively look for directions where I can box in in one step # when I have others that can box in the remaining directions # and nobody else can box that direction in box_in_mask_rem_dirs_sum = np.copy(box_in_mask_dirs_sum) while len(can_box_progress) > 0 and np.any(not_boxed_dirs) and ( can_box_immediately_counts_progress.sum() > 0): considered_dir = np.argmin( can_box_immediately_counts_progress + 100*( can_box_immediately_counts_progress <= 0) + 1e-2*( box_in_mask_rem_dirs_sum)) considered_dir_ids = [( j, cb[0], box_in_mask_rem_dirs_sum[cb[1]], cb[1], cb[3], cb[4]) for j, cb in enumerate(can_box_progress) if ( considered_dir in cb[1] and np.all( box_in_mask_rem_dirs_sum[cb[1]] >= 1))] num_considered_dir_ids = len(considered_dir_ids) if num_considered_dir_ids > 0: # Tie breaker: the one with the most ships in the other dir # support if num_considered_dir_ids > 1: scores = np.zeros(num_considered_dir_ids) for k in range(num_considered_dir_ids): scores[k] = 100*len(considered_dir_ids[k][2]) - ( considered_dir_ids[k][2].sum()) picked_dir_id = np.argmin(scores) else: picked_dir_id = 0 picked = considered_dir_ids[picked_dir_id] box_override_assignment_not_next_attack[picked[1]] = ( considered_dir, picked[4], picked[5]) # If I move closer with a diagonal ship: subtract the # immediate box counter for the other direction picked_other_immediate_box_dirs = picked[3][ picked[3] != considered_dir] can_box_immediately_counts_progress[considered_dir] = 0 can_box_immediately_counts_progress[ picked_other_immediate_box_dirs] -= 1 not_boxed_dirs[considered_dir] = 0 box_in_mask_rem_dirs_sum[picked[3]] -= 1 ship_priorities[picked[1]] -= 1e6 del can_box_progress[picked[0]] else: break num_covered_directions = np.zeros(4, dtype=np.int) num_one_step_from_covered = np.zeros(4, dtype=np.bool) ship_order = np.argsort(ship_priorities) box_in_mask_rem_dirs_sum = np.copy(box_in_mask_dirs_sum) update_ship_scores = [] one_square_threats = [] almost_covered_dirs = [] for j in range(my_num_nearby): attack_id = ship_order[j] my_row = nearby_mask_pos[0][attack_id] my_col = nearby_mask_pos[1][attack_id] my_abs_row = (row+my_row-double_window) % grid_size my_abs_col = (col+my_col-double_window) % grid_size ship_pos = my_abs_row*grid_size+my_abs_col ship_k = ship_pos_to_key[ship_pos] box_directions = box_in_mask_dirs[:, my_row, my_col] opponent_distance = np.abs(my_row-double_window) + np.abs( my_col-double_window) box_in_mask_rem_dirs_sum[box_directions] -= 1 # if observation['step'] == 341: # import pdb; pdb.set_trace() if next_step_attack: # Increase the ship scores for the planned actions if attack_id in move_ids_directions_next_attack: move_dir = move_ids_directions_next_attack[attack_id] move_row, move_col = move_ship_row_col( my_abs_row, my_abs_col, move_dir, grid_size) # if observation['step'] == 204: # import pdb; pdb.set_trace() update_ship_scores.append( (ship_k, move_row, move_col, 2e6, opponent_distance, None, my_abs_row, my_abs_col)) else: # Figure out if we should use this ship to attack the target - # there is no point in using too many ships! # if observation['step'] == 201 and my_row == 6 and my_col == 7: # import pdb; pdb.set_trace() if (opponent_distance > 2) and ( (num_covered_directions[box_directions] + 0.5*( box_in_mask_rem_dirs_sum[box_directions])).min() >= 2 and ( np.all(num_covered_directions[box_directions] > 0)) or ( box_in_mask_rem_dirs_sum[box_directions].min() > 2) and ( opponent_distance > box_in_window)): # print("Dropping ship", my_abs_row, my_abs_col, "from attack") continue rel_pos_diff = (my_row-double_window, my_col-double_window) num_covered_attacker = num_covered_directions[box_directions] # Logic to cover a direction that is almost covered almost_covered_override = False if np.all((num_covered_attacker > 0) | ( box_in_mask_rem_dirs_sum[box_directions] >= 1)) & np.any( num_one_step_from_covered) and ( box_directions.sum() == 1) and len( threatened_one_step) > 0 and (( np.abs(my_row - my_col) == 1) or (my_row + my_col in [ double_window-1, double_window+1])): move_dir = None if my_row-my_col == -1: if WEST in threatened_one_step and my_row < double_window: almost_covered_dir = WEST move_dir = SOUTH elif SOUTH in threatened_one_step and my_row > double_window: almost_covered_dir = SOUTH move_dir = WEST elif my_row-my_col == 1: if NORTH in threatened_one_step and my_row < double_window: almost_covered_dir = NORTH move_dir = EAST elif EAST in threatened_one_step and my_row > double_window: almost_covered_dir = EAST move_dir = NORTH elif my_row+my_col == double_window-1: if EAST in threatened_one_step and my_row < double_window: almost_covered_dir = EAST move_dir = SOUTH elif SOUTH in threatened_one_step and my_row > double_window: almost_covered_dir = SOUTH move_dir = EAST elif my_row+my_col == double_window+1: if NORTH in threatened_one_step and my_row < double_window: almost_covered_dir = NORTH move_dir = WEST elif WEST in threatened_one_step and my_row > double_window: almost_covered_dir = WEST move_dir = NORTH if move_dir is not None: move_row, move_col = move_ship_row_col( my_row, my_col, move_dir, grid_size) if not pos_taken[move_row, move_col]: # Override: when we are next to the target: expect opponent # to move almost_covered_override = True if opponent_distance == 1: threat_dir = OPPOSITE_MAPPING[get_dir_from_target( my_row, my_col, double_window, double_window, 1000)[0]] one_square_threats.append(threat_dir) move_dir = None else: # Make sure that the square we want to move to is # available almost_covered_dirs.append(almost_covered_dir) if not almost_covered_override: if attack_id in box_override_assignment_not_next_attack: attack_move_id = box_override_assignment_not_next_attack[ attack_id][0] assert box_directions[attack_move_id] else: attack_dir_scores = num_covered_attacker + 0.1*( box_in_mask_rem_dirs_sum[box_directions]) attack_dir_id = np.argmin(attack_dir_scores) attack_move_id = np.where(box_directions)[0][attack_dir_id] rel_pos_diff = (my_row-double_window, my_col-double_window) attack_cover_dir = np.array(NOT_NONE_DIRECTIONS)[ attack_move_id] one_hot_cover_dirs = np.zeros(4, dtype=bool) one_hot_cover_dirs[attack_move_id] = 1 other_dirs_covered = one_hot_cover_dirs | ( num_covered_directions > 0) | (box_in_mask_rem_dirs_sum >= 1) wait_reinforcements = not np.all(other_dirs_covered) or ( opponent_distance == 1) # if observation['step'] == 357: # import pdb; pdb.set_trace() # print(my_row, my_col, threatened_one_step, # num_covered_directions, num_one_step_from_covered) if wait_reinforcements: # Move away from the target if staying would mean having more # halite than the target my_next_halite = halite_ships[my_abs_row, my_abs_col] + int( collect_rate*obs_halite[my_abs_row, my_abs_col]) if my_next_halite > target_halite: move_away_dirs = get_dir_from_target( double_window, double_window, my_row, my_col, grid_size=1000) # import pdb; pdb.set_trace() move_dir = np_rng.choice(move_away_dirs) else: move_dir = None else: if num_covered_directions[attack_move_id] > 0: # Move towards the target on the diagonal (empowerment) move_penalties = 0.001*opponent_euclid_distances**4 + ( my_nearest_euclid_distances[attack_id]**4) + 1e3*( pos_taken) move_penalties[my_row, my_col] += 1e3 best_penalty_pos = np.where( move_penalties == move_penalties.min()) target_move_row = best_penalty_pos[0][0] target_move_col = best_penalty_pos[1][0] move_dir = get_dir_from_target( my_row, my_col, target_move_row, target_move_col, grid_size=1000)[0] if attack_cover_dir == NORTH: if np.abs(rel_pos_diff[1]) < (np.abs(rel_pos_diff[0])-1): move_dir = SOUTH elif rel_pos_diff[1] < 0: move_dir = EAST else: move_dir = WEST elif attack_cover_dir == SOUTH: if np.abs(rel_pos_diff[1]) < (np.abs(rel_pos_diff[0])-1): move_dir = NORTH elif rel_pos_diff[1] < 0: move_dir = EAST else: move_dir = WEST elif attack_cover_dir == EAST: if np.abs(rel_pos_diff[0]) < (np.abs(rel_pos_diff[1])-1): move_dir = WEST elif rel_pos_diff[0] < 0: move_dir = SOUTH else: move_dir = NORTH elif attack_cover_dir == WEST: if np.abs(rel_pos_diff[0]) < (np.abs(rel_pos_diff[1])-1): move_dir = EAST elif rel_pos_diff[0] < 0: move_dir = SOUTH else: move_dir = NORTH # Increase the ship scores for the planned actions moved_rel_dir = RELATIVE_DIR_MAPPING[move_dir] new_rel_pos = (rel_pos_diff[0] + moved_rel_dir[0], rel_pos_diff[1] + moved_rel_dir[1]) new_grid_pos = (double_window + new_rel_pos[0], double_window + new_rel_pos[1]) if new_grid_pos[0] < 0 or new_grid_pos[1] < 0 or new_grid_pos[ 0] > 2*double_window or new_grid_pos[1] > 2*double_window: new_rel_pos = (rel_pos_diff[0], rel_pos_diff[1]) new_grid_pos = (double_window + new_rel_pos[0], double_window + new_rel_pos[1]) if pos_taken[new_grid_pos] and opponent_distance == 2: # Override - if I can move right next to the target: do it. shortest_directions = get_dir_from_target( my_row, my_col, double_window, double_window, grid_size=1000) for move_dir in shortest_directions: moved_rel_dir = RELATIVE_DIR_MAPPING[move_dir] new_rel_pos = (rel_pos_diff[0] + moved_rel_dir[0], rel_pos_diff[1] + moved_rel_dir[1]) new_grid_pos = (double_window + new_rel_pos[0], double_window + new_rel_pos[1]) if not pos_taken[new_grid_pos]: break move_row, move_col = move_ship_row_col( my_abs_row, my_abs_col, move_dir, grid_size) if not pos_taken[new_grid_pos] and not new_rel_pos == (0, 0): # Update the covered attack directions ship_covered_directions = np.zeros(4, dtype=np.bool) ship_one_step_from_covered_directions = np.zeros( 4, dtype=np.bool) for threat_dir in RELATIVE_NOT_NONE_DIRECTIONS: nz_dim = int(threat_dir[0] == 0) dir_offset = new_rel_pos[nz_dim]*threat_dir[nz_dim] other_dir_abs_offset = np.abs(new_rel_pos[1-nz_dim]) if dir_offset > 0 and other_dir_abs_offset <= dir_offset: covered_id = np.where( RELATIVE_DIR_TO_DIRECTION_MAPPING[threat_dir] == ( np.array(NOT_NONE_DIRECTIONS)))[0][0] ship_one_step_from_covered_directions[covered_id] = 1 if other_dir_abs_offset < dir_offset: ship_covered_directions[covered_id] = 1 # if observation['step'] == 210 and row == 1 and col == 8: # import pdb; pdb.set_trace() # Join the attack - add actions to the list num_covered_directions[ship_covered_directions] += 1 num_one_step_from_covered[ ship_one_step_from_covered_directions] = 1 update_ship_scores.append( (ship_k, move_row, move_col, 2e6, opponent_distance, np.where(ship_covered_directions)[0], my_abs_row, my_abs_col)) pos_taken[new_grid_pos] = 1 # We can almost box the opponent in and rely on the opponent not # taking risky actions to escape almost_attack_nearby_blockers = False if len(threatened_one_step) > 0 and ( len(one_square_threats+almost_covered_dirs) > 0) and not np.all( num_covered_directions > 0) and not next_step_attack: not_covered_dirs = [MOVE_DIRECTIONS[i+1] for i in np.where( num_covered_directions == 0)[0]] if len(one_square_threats) > 0 and np.all( [d in threatened_one_step for d in not_covered_dirs]): almost_attack_nearby_blockers = True else: almost_attack_nearby_blockers = len( threatened_one_step.intersection(almost_covered_dirs)) > 0 # if observation['step'] == 87: # import pdb; pdb.set_trace() if next_step_attack or np.all(num_covered_directions > 0) or ( almost_attack_nearby_blockers and np.any( num_covered_directions > 0)): # Prune the attackers: only keep the closest two in each direction if not next_step_attack: drop_rows = [] distance_dir = np.array([[u[4], u[5][0]] for u in ( update_ship_scores) if u[5].size > 0]) for d_id in np.arange(4): if (distance_dir[:, 1] == d_id).sum() > 2: dir_rows = np.where(distance_dir[:, 1] == d_id)[0] drop_ids = np.argsort(distance_dir[dir_rows, 0])[2:] drop_rows.extend(dir_rows[drop_ids].tolist()) for dr in np.sort(drop_rows)[::-1]: del update_ship_scores[dr] # if observation['step'] == 237: # import pdb; pdb.set_trace() box_opponent_positions.append((row, col)) boxing_in_ships.append(opponent_ship_k) for (ship_k, move_row, move_col, new_collect_score, distance_to_target, _, my_abs_row, my_abs_col) in ( update_ship_scores): # Only update the ship scores if the box in action is in my one # step valid actions box_dir = get_dir_from_target( my_abs_row, my_abs_col, move_row, move_col, grid_size)[0] if box_dir in all_ship_scores[ship_k][9]: all_ship_scores[ship_k][0][move_row, move_col] = ( new_collect_score) # Flag the boxing in ships as unavailable for other hunts ships_available[my_abs_row, my_abs_col] = 0 boxing_in[my_abs_row, my_abs_col] = 1 ships_on_box_mission[ship_k] = distance_to_target override_move_squares_taken[move_row, move_col] = 1 # Make sure that I attack all squares where an opponent is converting that # I can not allow to happen for (row, col) in possible_convert_opponent_positions: if not (row, col) in ignore_convert_positions: my_base_distances = my_current_base_distances[:, row, col] must_attack_converting_square = my_base_distances.min() < (3.5 - ( observation['relative_step'])) if must_attack_converting_square and not override_move_squares_taken[ row, col]: # Look for nearby ships of mine that can attack the converting ship for d in NOT_NONE_DIRECTIONS: my_row, my_col = move_ship_row_col(row, col, d, grid_size) if original_ships_available[my_row, my_col] or ( my_defend_base_ship_positions[my_row, my_col]): to_target_dir = OPPOSITE_MAPPING[d] ship_pos = my_row*grid_size+my_col ship_k = ship_pos_to_key[ship_pos] if to_target_dir in all_ship_scores[ship_k][6]: all_ship_scores[ship_k][0][row, col] = 1e9 boxing_in[my_row, my_col] = 1 print("ATTACKING POSSIBLY CONVERTING SHIP", observation['step'], row, col, my_row, my_col) break history['prev_step_boxing_in_ships'] = boxing_in_ships return (all_ship_scores, boxing_in, box_opponent_positions, override_move_squares_taken, ships_on_box_mission) def update_scores_pack_hunt( all_ship_scores, config, stacked_ships, observation, opponent_ships_sensible_actions, halite_ships, steps_remaining, player_obs, np_rng, opponent_ships_scaled, collect_rate, obs_halite, main_base_distances, history, on_rescue_mission, boxing_in_mission, my_defend_base_ship_positions, env_observation, box_opponent_positions, override_move_squares_taken, player_influence_maps, ignore_convert_positions, convert_unavailable_positions, early_hunting_season, late_hunting_season, safe_collect_margin, spawn_cost, change_standard_consecutive_steps=5): available_pack_hunt_ships = np.copy(stacked_ships[0]) grid_size = available_pack_hunt_ships.shape[0] hunting_season_started = history['hunting_season_started'] prev_standard_ships = history['hunting_season_standard_ships'] # # FUTURE WORK: Make the number of standard ships a function of the hunt # # success? # # FUTURE WORK: Make the number of standard ships a function of ship losses? if early_hunting_season: max_standard_ships_hunting_season = config[ 'max_standard_ships_early_hunting_season'] elif late_hunting_season: max_standard_ships_hunting_season = max(config[ 'max_standard_ships_late_hunting_season'], int(len(player_obs[2])*( config['late_hunting_season_standard_min_fraction']))) else: max_standard_ships_hunting_season = max(10, int(len(player_obs[2])/2.5)) # print(observation['step'], len(player_obs[2]), # max_standard_ships_hunting_season) # print(observation['step'], opponent_hunt_fraction, num_my_ships, # my_target_standard_ships, max_standard_ships_hunting_season) # Determine if I should preferably target a specific opponent. # In games where there is a clear difference between the top two agents and # my agent, where I am one of those two: mostly harrass/hoard the other top # agent current_scores = history['current_scores'] spawn_diffs = (current_scores[0] - current_scores[1:])/spawn_cost first_opponent_id = np.argsort(spawn_diffs)[0] second_opponent_id = np.argsort(spawn_diffs)[1] my_agent_in_top_two = (spawn_diffs < 0).sum() <= 1 spawn_diff_first = np.abs(spawn_diffs[first_opponent_id]) spawn_diff_second = np.abs(spawn_diffs[second_opponent_id]) prev_targeted_hoard_mode = history['targeted_hoard_mode'] should_start_targeted_hoard_mode = my_agent_in_top_two and ( spawn_diff_second > 2*spawn_diff_first) and (spawn_diff_second > 6) should_continue_targeted_hoard_mode = my_agent_in_top_two and ( spawn_diff_second > spawn_diff_first) and (spawn_diff_second > 4) targeted_hoard_mode = should_start_targeted_hoard_mode or ( prev_targeted_hoard_mode and should_continue_targeted_hoard_mode) history['targeted_hoard_mode'] = targeted_hoard_mode preferred_victim = None if targeted_hoard_mode: preferred_victim = first_opponent_id+1 if should_start_targeted_hoard_mode and not prev_targeted_hoard_mode: print(observation['step'], "Start selective hoarding of opponent", preferred_victim) prev_step_opponent_ship_moves = history['prev_step_opponent_ship_moves'] num_players = stacked_ships.shape[0] ship_pos_to_key = {} for i in range(num_players): ship_pos_to_key.update({ v[0]: k for k, v in env_observation.players[i][2].items()}) ship_key_to_pos = {v: k for k, v in ship_pos_to_key.items()} player_ids = -1*np.ones((grid_size, grid_size), dtype=np.int) for i in range(stacked_ships.shape[0]): player_ids[stacked_ships[i]] = i not_available_due_to_camping = np.zeros_like(available_pack_hunt_ships) # Loop over the camping ships and exclude the ones from the available mask # that have flagged they are not available for boxing in camping_ships_strategy = history['camping_ships_strategy'] for ship_k in camping_ships_strategy: if not camping_ships_strategy[ship_k][3]: camping_row, camping_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) not_available_due_to_camping[camping_row, camping_col] = 1 # Loop over the ships that attack opponent camplers and exclude them from the # available mask attack_opponent_campers = history['attack_opponent_campers'] for ship_k in attack_opponent_campers: attacking_camper_row, attacking_camper_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) not_available_due_to_camping[ attacking_camper_row, attacking_camper_col] = 1 # Loop over the ships that are stuck in a loop and mark them as unavailable not_available_due_to_cycle = np.zeros_like(available_pack_hunt_ships) for ship_k in history['avoid_cycle_actions']: cycle_row, cycle_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) not_available_due_to_cycle[cycle_row, cycle_col] = 1 # Loop over the ships that are temporarily assigned a collect task not_available_due_to_temp_collect = np.zeros_like(available_pack_hunt_ships) delete_keys = [] for ship_k in history['temporary_hoarding_collect_ships']: if ship_k in player_obs[2]: collect_row, collect_col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) not_available_due_to_temp_collect[collect_row, collect_col] = 1 else: delete_keys.append(ship_k) for k in delete_keys: history['temporary_hoarding_collect_ships'].remove(k) # List the ships that are definitely not available for the pack hunt # In this group: # - Opponent base camping # - Attack opponent base campers # - Ships that are are on a rescue mission (rescuer and rescued) # - Base defense emergency ships # - Boxing in other ships available_pack_hunt_ships &= (~not_available_due_to_camping) available_pack_hunt_ships &= (~on_rescue_mission) available_pack_hunt_ships &= (~my_defend_base_ship_positions) available_pack_hunt_ships &= (~boxing_in_mission) available_pack_hunt_ships &= (~convert_unavailable_positions) available_pack_hunt_ships &= (~not_available_due_to_cycle) available_pack_hunt_ships &= (~not_available_due_to_temp_collect) # Of the remaining list: identify 'max_standard_ships_hunting_season' ships # that are available to gather halite/attack bases. # Preferably select ships that were also selected for these modes in the # previous step and have halite on board. # Only change the gather/attack ships if one of my gatherers was destroyed # Assign a new gatherer if my gatherer is assigned to the base camping # attack or defense (These ships tend to be indefinitely unavailable), or if # the ship was destroyed. # Prefer non-zero halite ships for the initial gathering ships. my_ship_pos_to_k = {v[0]: k for k, v in player_obs[2].items()} available_positions = np.where(available_pack_hunt_ships) num_available_ships = available_pack_hunt_ships.sum() standard_ships = [] if num_available_ships > 0: best_standard_scores = np.zeros(num_available_ships) pos_keys = [] for i in range(num_available_ships): row = available_positions[0][i] col = available_positions[1][i] pos_key = my_ship_pos_to_k[row*grid_size+col] best_standard_scores[i] = all_ship_scores[pos_key][0].max() - 1e6*( halite_ships[row, col] == 0) pos_keys.append(pos_key) if hunting_season_started: already_included_ids = np.zeros(num_available_ships, dtype=np.bool) for ship_k in prev_standard_ships: if ship_k in player_obs[2]: # The ship still exists and was a standard ship in the previous step row, col = row_col_from_square_grid_pos( player_obs[2][ship_k][0], grid_size) if my_defend_base_ship_positions[row, col] or boxing_in_mission[ row, col] or on_rescue_mission[row, col] or ( not_available_due_to_cycle[row, col]): # We can use the ship for collecting soon (now it is rescuing or # boxing in or defending the base) standard_ships.append(ship_k) elif available_pack_hunt_ships[row, col]: # The ship is available now. Flag it for exclusion so it doesn't # get added twice standard_ships.append(ship_k) match_id = np.where((available_positions[0] == row) & ( available_positions[1] == col))[0][0] already_included_ids[match_id] = True else: # The ship is now used for base camping or base conversion or # additional collection # Exclude it from the standard ships group assert not_available_due_to_camping[row, col] or ( convert_unavailable_positions[row, col]) or ( not_available_due_to_temp_collect[row, col]) best_standard_scores = best_standard_scores[~already_included_ids] available_positions = (available_positions[0][~already_included_ids], available_positions[1][~already_included_ids]) pos_keys = np.array(pos_keys)[~already_included_ids].tolist() num_unassigned = max_standard_ships_hunting_season - len(standard_ships) # if num_unassigned > 0: # import pdb; pdb.set_trace() num_to_assign = min(num_unassigned, num_available_ships) num_to_assign_phase_1 = max(0, num_to_assign - config[ 'max_standard_ships_decided_end_pack_hunting']) num_to_assign_phase_2 = num_to_assign-num_to_assign_phase_1 num_available_ships = best_standard_scores.size else: num_to_assign = max_standard_ships_hunting_season num_to_assign_phase_1 = min(num_to_assign, num_available_ships) num_to_assign_phase_2 = 0 # Assign the remaining standard ships # Assign the available ships with the highest collect score for collecting # (preferably non zero halite ships) best_standard_ids = np.argsort(-best_standard_scores)[ :num_to_assign_phase_1] for standard_id in best_standard_ids: standard_row = available_positions[0][standard_id] standard_col = available_positions[1][standard_id] standard_key = pos_keys[standard_id] assert not standard_key in standard_ships standard_ships.append(standard_key) # Mark the standard ships as unavailable for pack hunting for standard_key in standard_ships: standard_row, standard_col = row_col_from_square_grid_pos( player_obs[2][standard_key][0], grid_size) available_pack_hunt_ships[standard_row, standard_col] = 0 # The remaining ships are considered for pack hunting. Send the ones with # halite on board to a base. considered_hunting_ships_pos = np.where(available_pack_hunt_ships) num_available_ships = available_pack_hunt_ships.sum() for i in range(num_available_ships): row = considered_hunting_ships_pos[0][i] col = considered_hunting_ships_pos[1][i] if halite_ships[row, col] > 0: available_pack_hunt_ships[row, col] = 0 ship_k = my_ship_pos_to_k[row*grid_size+col] # Let the ship collect at will (but prefer to go to a base sooner rather # than later) before joining the pack hunt (after touching base) for j in [2, 3]: all_ship_scores[ship_k][j][:] = -1e6 # Let a hoarding ship gather when it is safe to do so if (obs_halite[row, col] < 100 or safe_collect_margin[ row, col] <= 0) and ( not ship_k in history['temporary_hoarding_collect_ships']): # FUTURE WORK: Make the multiplier a function of the opponent # aggression level? all_ship_scores[ship_k][1][:] *= 4 elif not ship_k in history['temporary_hoarding_collect_ships'] and ( safe_collect_margin[row, col] > 0): history['temporary_hoarding_collect_ships'].append(ship_k) # print(observation['step'], row, col, ship_k, # "Temporarily collecting") # Ignore ships for hunting that are already being boxed in with my box-in # ships box_opponent_mask = np.zeros((grid_size, grid_size), dtype=np.bool) for boxed_target_row, boxed_target_col in box_opponent_positions: box_opponent_mask[boxed_target_row, boxed_target_col] = 1 # Consider what to do with the zero halite ships that are available for # hunting. # First attempt: do something similar as mzotkiew # Main idea: move to the nearest non zero halite opponent if that direction # is valid. opponent_ships = stacked_ships[1:].sum(0) > 0 potential_targets = opponent_ships & (halite_ships > 0) & ( ~box_opponent_mask) hunting_ships_pos = np.where(available_pack_hunt_ships) num_hunting_ships = available_pack_hunt_ships.sum() # Exclude targets that I am willfully letting convert for (ignore_convert_row, ignore_convert_col) in ignore_convert_positions: potential_targets[ignore_convert_row, ignore_convert_col] = 0 # Exclude targets that have a safe path to one of their bases if num_hunting_ships > 0: stacked_bases = np.stack( [rbs[1] for rbs in observation['rewards_bases_ships']]) nearest_opponent_base_distances = [None] for opponent_id in range(1, num_players): num_bases = stacked_bases[opponent_id].sum() opponent_base_locations = np.where(stacked_bases[opponent_id]) all_opponent_base_distances = [DISTANCES[ opponent_base_locations[0][i], opponent_base_locations[1][i]] for i in ( range(num_bases))] + [99*np.ones((grid_size, grid_size))] nearest_opponent_base_distances.append(np.stack( all_opponent_base_distances).min(0)) considered_targets_pos = np.where(potential_targets) for j in range(potential_targets.sum()): target_row = considered_targets_pos[0][j] target_col = considered_targets_pos[1][j] opponent_id = np.where(stacked_ships[:, target_row, target_col])[0][0] opp_nearest_base_distances = nearest_opponent_base_distances[opponent_id] target_distance_to_nearest_base = opp_nearest_base_distances[ target_row, target_col] my_min_distance_to_opp_nearest_base = opp_nearest_base_distances[ hunting_ships_pos].min() # if target_row == 20 and target_col == 12 and observation['step'] == 160: # import pdb; pdb.set_trace() if target_distance_to_nearest_base < my_min_distance_to_opp_nearest_base: potential_targets[target_row, target_col] = 0 potential_targets_pos = np.where(potential_targets) num_potential_targets = potential_targets.sum() # print(observation['step'], num_hunting_ships, num_potential_targets) hoarded_one_step_opponent_keys = [] if num_potential_targets > 0 and num_hunting_ships > 0: # print(observation['step']) ordered_ship_keys = [] all_target_distances = np.zeros((num_hunting_ships, num_potential_targets)) for i in range(num_hunting_ships): row = hunting_ships_pos[0][i] col = hunting_ships_pos[1][i] ship_k = my_ship_pos_to_k[row*grid_size+col] ordered_ship_keys.append(ship_k) potential_target_distances = DISTANCES[row, col][potential_targets] # Update the target distances to only include potential targets that # correspond with valid actions potential_targets_rows = potential_targets_pos[0] potential_targets_cols = potential_targets_pos[1] south_dist = np.where( potential_targets_rows >= row, potential_targets_rows-row, potential_targets_rows-row+grid_size) east_dist = np.where( potential_targets_cols >= col, potential_targets_cols-col, potential_targets_cols-col+grid_size) valid_directions = all_ship_scores[ship_k][6] valid_move_counts = 2*np.ones(num_potential_targets) for d in NOT_NONE_DIRECTIONS: if not d in valid_directions: if d == NORTH: decrement_ids = south_dist >= grid_size/2 elif d == SOUTH: decrement_ids = (south_dist <= grid_size/2) & (south_dist > 0) elif d == EAST: decrement_ids = (east_dist <= grid_size/2) & (east_dist > 0) elif d == WEST: decrement_ids = east_dist >= grid_size/2 valid_move_counts[decrement_ids] -= 1 # Handle the case of being in the same row or column valid_move_counts[south_dist == 0] -= 1 valid_move_counts[east_dist == 0] -= 1 # if observation['step'] == 91 and row == 6 and col == 3: # import pdb; pdb.set_trace() assert np.all(valid_move_counts >= 0) potential_target_distances[valid_move_counts == 0] += 100 all_target_distances[i] = potential_target_distances opponent_num_escape_directions = np.zeros(num_potential_targets) for j in range(num_potential_targets): target_row = potential_targets_pos[0][j] target_col = potential_targets_pos[1][j] opponent_num_escape_directions[j] = len(opponent_ships_sensible_actions[ target_row, target_col]) # First coordinate my hunters to ships that have no valid escape directions hunting_ships_available = np.ones(num_hunting_ships, dtype=np.bool) for j in range(num_potential_targets): num_escape_dirs = opponent_num_escape_directions[j] if num_escape_dirs == 0: target_row = potential_targets_pos[0][j] target_col = potential_targets_pos[1][j] # Loop over my hunting ships at a distance of max two and take as many # of the potential escape squares as possible my_near_ships = np.where((all_target_distances[:, j] <= 2) & ( hunting_ships_available))[0] num_my_near_ships = my_near_ships.size if num_my_near_ships > 0: # You can always attack at most 2 escape squares. Keep track of what # escape squares each of my ships can attack without collecting # halite on the next turn (ignoring ship collision halite gain) my_target_relative_attack_dirs = np.zeros((num_my_near_ships, 5)) for loop_id, my_ship_id in enumerate(my_near_ships): row = hunting_ships_pos[0][my_ship_id] col = hunting_ships_pos[1][my_ship_id] ship_k = my_ship_pos_to_k[row*grid_size+col] valid_attack_dirs = all_ship_scores[ship_k][6] considered_attack_dirs = get_dir_from_target( row, col, target_row, target_col, grid_size) if all_target_distances[my_ship_id, j] == 1 and ( obs_halite[row, col] == 0): considered_attack_dirs.append(None) attack_dirs = list(set(considered_attack_dirs) & set( valid_attack_dirs)) # Get the relative directions from the target that I can attack for d in attack_dirs: move_row, move_col = move_ship_row_col( row, col, d, grid_size) relative_covered_dir = MOVE_DIRECTIONS_TO_ID[get_dir_from_target( target_row, target_col, move_row, move_col, grid_size)[0]] my_target_relative_attack_dirs[loop_id, relative_covered_dir] = 1 direction_covered = np.zeros(len(MOVE_DIRECTIONS), dtype=np.bool) for dir_id, d in enumerate(MOVE_DIRECTIONS): rel_target_row, rel_target_col = move_ship_row_col( target_row, target_col, d, grid_size) if override_move_squares_taken[rel_target_row, rel_target_col]: direction_covered[dir_id] = 1 # First, handle the ships that can only attack a single square that # is not covered yet my_target_relative_attack_dirs[:, direction_covered] = 0 # if observation['step'] == 149: # import pdb; pdb.set_trace() # Greedily loop over directions by ordering the count of the number # of ships that cover. Prefer low but strictly positive directions. while my_target_relative_attack_dirs.sum() > 0: ship_num_possible_attacks = my_target_relative_attack_dirs.sum(1) dir_num_possible_attacks = my_target_relative_attack_dirs.sum(0) # The None action is slightly preferred since that guarantees a max # distance of 1 on the next turn dir_num_possible_attacks[0] -= 0.1 non_zero_min_count = dir_num_possible_attacks[ dir_num_possible_attacks > 0].min() best_dir_ids = np.where(dir_num_possible_attacks == ( non_zero_min_count))[0] dir_id = np_rng.choice(best_dir_ids) considered_ships = np.where( my_target_relative_attack_dirs[:, dir_id])[0] # Break ties with the number of directions each ship covers cover_ship_scores = ship_num_possible_attacks[considered_ships] considered_ships_attacker_id = considered_ships[ np.argmin(cover_ship_scores)] attacker_id = my_near_ships[considered_ships_attacker_id] # Move my ship to the relative position of the target rel_target_row, rel_target_col = move_ship_row_col( target_row, target_col, MOVE_DIRECTIONS[dir_id], grid_size) attacker_row = hunting_ships_pos[0][attacker_id] attacker_col = hunting_ships_pos[1][attacker_id] ship_k = my_ship_pos_to_k[attacker_row*grid_size+attacker_col] all_ship_scores[ship_k][0][rel_target_row, rel_target_col] = 2e5 override_move_squares_taken[rel_target_row, rel_target_col] = 1 hunting_ships_available[attacker_id] = 0 # Update the attack dir counts my_target_relative_attack_dirs[considered_ships_attacker_id] = 0 my_target_relative_attack_dirs[:, dir_id] = 0 # if observation['step'] == 188: # import pdb; pdb.set_trace() # Next, coordinate my hunters to ships that have a single moving escape # direction. # These ship are preferred targets since it is likely that I can soon box # them in, especially if it is me who cuts off three of the move directions # Order the ships so that the ships that had a single escape direction in # the previous step are handled first, so we can coordinate the # interception one_step_opponent_ids = np.arange(num_potential_targets).tolist() priority_ids = [] for opponent_ship_k in history['prev_step_hoarded_one_step_opponent_keys']: if opponent_ship_k in ship_key_to_pos: opponent_pos = ship_key_to_pos[opponent_ship_k] target_row, target_col = row_col_from_square_grid_pos( opponent_pos, grid_size) if potential_targets[target_row, target_col]: # We need to check because the target may no longer be available for # pack hunting due to boxing in or getting close to a friendly base opponent_priority_id = np.where( (potential_targets_pos[0] == target_row) & ( potential_targets_pos[1] == target_col))[0][0] priority_ids.append(opponent_priority_id) remaining_ids = list(set(one_step_opponent_ids) - set(priority_ids)) remaining_ids.sort() # Set intersect can be flaky one_step_opponent_ids = priority_ids + remaining_ids one_step_opponent_positions_directions = [] for j in one_step_opponent_ids: target_row = potential_targets_pos[0][j] target_col = potential_targets_pos[1][j] target_escape_directions = opponent_ships_sensible_actions[ target_row, target_col] move_escape_directions = copy.copy(target_escape_directions) if (0, 0) in move_escape_directions: move_escape_directions.remove((0, 0)) num_move_escape_dirs = len(move_escape_directions) # nearest_target_distances = np.tile( # all_target_distances.min(1)[:, None], [1, num_potential_targets]) if num_move_escape_dirs == 1: # The <= ensures we consider piling up on inidividual ships potential_nearby_attackers = np.where(hunting_ships_available & ( all_target_distances[:, j] <= 2))[0] if potential_nearby_attackers.size >= 2: # Figure out if I have at least one available ship at a max distance # of 2 that can push the opponent in one direction escape_dir = RELATIVE_DIR_TO_DIRECTION_MAPPING[ move_escape_directions[0]] potential_nearby_distances = all_target_distances[ potential_nearby_attackers, j] if potential_nearby_distances.min() == 1: # The None direction is covered - verify the other directions uncovered_dirs = copy.copy(NOT_NONE_DIRECTIONS) uncovered_dirs.remove(escape_dir) ignore_attacker_ids = [] d1_hunters = [] for attacker_id in potential_nearby_attackers: attacker_row = hunting_ships_pos[0][attacker_id] attacker_col = hunting_ships_pos[1][attacker_id] ship_k = my_ship_pos_to_k[attacker_row*grid_size+attacker_col] valid_directions = all_ship_scores[ship_k][6] if escape_dir in valid_directions: threat_dirs = get_dir_from_target( target_row, target_col, attacker_row, attacker_col, grid_size) uncovered_dirs = list(set(uncovered_dirs) - set(threat_dirs)) if DISTANCES[target_row, target_col][ attacker_row, attacker_col] == 1: d1_hunters.append(attacker_id) else: ignore_attacker_ids.append(attacker_id) if len(uncovered_dirs) == 0 or ( len(uncovered_dirs) == 1 and len(d1_hunters) > 1): one_step_opponent_positions_directions.append(( target_row, target_col, escape_dir)) opponent_ship_k = ship_pos_to_key[ target_row*grid_size+target_col] hoarded_one_step_opponent_keys.append(opponent_ship_k) if len(uncovered_dirs) > 0: potential_nearby_attackers = d1_hunters # Move the attackers in the single escape direction # import pdb; pdb.set_trace() for attacker_id in potential_nearby_attackers: if not attacker_id in ignore_attacker_ids: attacker_row = hunting_ships_pos[0][attacker_id] attacker_col = hunting_ships_pos[1][attacker_id] move_row, move_col = move_ship_row_col( attacker_row, attacker_col, escape_dir, grid_size) ship_k = my_ship_pos_to_k[ attacker_row*grid_size+attacker_col] all_ship_scores[ship_k][0][move_row, move_col] = 2e5 override_move_squares_taken[move_row, move_col] = 1 hunting_ships_available[attacker_id] = 0 # Try to get into a position where the opponent can only move in one # direction (from two to one escape direction) for j in range(num_potential_targets): num_escape_dirs = opponent_num_escape_directions[j] if num_escape_dirs == 2: target_row = potential_targets_pos[0][j] target_col = potential_targets_pos[1][j] potential_nearby_attackers = np.where(hunting_ships_available & ( all_target_distances[:, j] == 1))[0] attack_selected = False if potential_nearby_attackers.size == 2: escape_directions = opponent_ships_sensible_actions[ target_row, target_col] if (escape_directions[0][0] == 0 and ( escape_directions[1][0] == 0)) or ( escape_directions[0][1] == 0 and ( escape_directions[1][1] == 0)): # Scenario: ME | OPPONENT | ME - guess the action and then chase # Guess the opponent's next action opponent_id = np.where( stacked_ships[:, target_row, target_col])[0][0] escape_dir_scores = np.zeros(2) for escape_id, escape_dir in enumerate(escape_directions): move_row, move_col = move_ship_row_col( target_row, target_col, RELATIVE_DIR_TO_DIRECTION_MAPPING[ escape_dir], grid_size) opponent_influence = player_influence_maps[opponent_id][ move_row, move_col] my_influence = player_influence_maps[0][move_row, move_col] escape_dir_scores[escape_id] = opponent_influence-my_influence likely_opponent_move = RELATIVE_DIR_TO_DIRECTION_MAPPING[ escape_directions[np.argmax(escape_dir_scores)]] # Only continue if both my ships can move in the selected # directions both_can_move = True can_stay = np.zeros(2, dtype=np.bool) for attacker_0_or_1, attacker_id in enumerate( potential_nearby_attackers): attacker_row = hunting_ships_pos[0][attacker_id] attacker_col = hunting_ships_pos[1][attacker_id] ship_k = my_ship_pos_to_k[attacker_row*grid_size+attacker_col] both_can_move = both_can_move and likely_opponent_move in ( all_ship_scores[ship_k][6]) can_stay[attacker_0_or_1] = obs_halite[ attacker_row, attacker_col] == 0 if both_can_move: # If both are on non zero halite squares: move both in the likely # escape direction. Otherwise, select a random ship to move in # the escape direction where the ship that remains in place has # no halite at the considered square if not np.any(can_stay): stay_in_place_ids = [] else: stay_in_place_ids = [np_rng.choice(potential_nearby_attackers[ can_stay])] for attacker_id in potential_nearby_attackers: # import pdb; pdb.set_trace() attacker_row = hunting_ships_pos[0][attacker_id] attacker_col = hunting_ships_pos[1][attacker_id] move_dir = None if attacker_id in stay_in_place_ids else ( likely_opponent_move) move_row, move_col = move_ship_row_col( attacker_row, attacker_col, move_dir, grid_size) ship_k = my_ship_pos_to_k[ attacker_row*grid_size+attacker_col] all_ship_scores[ship_k][0][move_row, move_col] = 2e5 override_move_squares_taken[move_row, move_col] = 1 hunting_ships_available[attacker_id] = 0 attack_selected = True escape_directions = opponent_ships_sensible_actions[ target_row, target_col] if not attack_selected and not (0, 0) in escape_directions and len( escape_directions) == 2: # Scenario: ME | OPPONENT | | ME - guess the action and then chase available_nearby = np.where(hunting_ships_available & ( all_target_distances[:, j] <= 2))[0] if available_nearby.size >= 2: attacker_rows = hunting_ships_pos[0][available_nearby] attacker_cols = hunting_ships_pos[1][available_nearby] north_dist = np.where( target_row >= attacker_rows, target_row-attacker_rows, target_row-attacker_rows+grid_size) vert_rel_pos = np.where( north_dist < 3, north_dist, north_dist-grid_size) west_dist = np.where( target_col >= attacker_cols, target_col-attacker_cols, target_col-attacker_cols+grid_size) horiz_rel_pos = np.where( west_dist < 3, west_dist, west_dist-grid_size) same_row_ids = (vert_rel_pos == 0) same_col_ids = (horiz_rel_pos == 0) consider_attack = False if np.any(horiz_rel_pos[same_row_ids] < 0) and np.any( horiz_rel_pos[same_row_ids] > 0): if np.any(horiz_rel_pos[same_row_ids] == 1) and np.any( horiz_rel_pos[same_row_ids] == -2): move_to_target_id = available_nearby[same_row_ids][np.where( horiz_rel_pos[same_row_ids] == -2)[0][0]] move_escape_id = available_nearby[same_row_ids][np.where( horiz_rel_pos[same_row_ids] == 1)[0][0]] consider_attack = True elif np.any(horiz_rel_pos[same_row_ids] == -1) and np.any( horiz_rel_pos[same_row_ids] == 2): move_to_target_id = available_nearby[same_row_ids][np.where( horiz_rel_pos[same_row_ids] == 2)[0][0]] move_escape_id = available_nearby[same_row_ids][np.where( horiz_rel_pos[same_row_ids] == -1)[0][0]] consider_attack = True elif np.any(vert_rel_pos[same_col_ids] < 0) and np.any( vert_rel_pos[same_col_ids] > 0): if np.any(vert_rel_pos[same_col_ids] == 1) and np.any( vert_rel_pos[same_col_ids] == -2): move_to_target_id = available_nearby[same_col_ids][np.where( vert_rel_pos[same_col_ids] == -2)[0][0]] move_escape_id = available_nearby[same_col_ids][np.where( vert_rel_pos[same_col_ids] == 1)[0][0]] consider_attack = True elif np.any(vert_rel_pos[same_col_ids] == -1) and np.any( vert_rel_pos[same_col_ids] == 2): move_to_target_id = available_nearby[same_col_ids][np.where( vert_rel_pos[same_col_ids] == 2)[0][0]] move_escape_id = available_nearby[same_col_ids][np.where( vert_rel_pos[same_col_ids] == -1)[0][0]] consider_attack = True if consider_attack: opponent_id = np.where( stacked_ships[:, target_row, target_col])[0][0] escape_dir_scores = np.zeros(2) for escape_id, escape_dir in enumerate(escape_directions): move_row, move_col = move_ship_row_col( target_row, target_col, RELATIVE_DIR_TO_DIRECTION_MAPPING[ escape_dir], grid_size) opponent_influence = player_influence_maps[opponent_id][ move_row, move_col] my_influence = player_influence_maps[0][move_row, move_col] escape_dir_scores[escape_id] = opponent_influence-my_influence likely_opponent_move = RELATIVE_DIR_TO_DIRECTION_MAPPING[ escape_directions[
np.argmax(escape_dir_scores)
numpy.argmax
import numpy as np import torch import mathutils import piq import lpips from scipy.spatial.transform import Rotation as R def rotate2D(deg): rad = np.deg2rad(deg) r = R.from_rotvec(rad * np.array([0, 0, 1])) return r.as_matrix() def pt2xyz(p, t, r = 1): """[Polar to cartesian transform] Args: p ([Tensor bx1x...]): [phi \in [0,2pi]] t ([Tensor bx1x...]): [theta \in [0,pi]] r (int or Tensor bx1x..., optional): [radius > 0]. Defaults to 1. Returns: [x,y,z]: [tuple of bx1x... Tensors] """ if(type(p) == torch.Tensor): cos = torch.cos sin = torch.sin else: cos = np.cos sin = np.sin x = r * sin(t) * cos(p) y = r * sin(t) * sin(p) z = r * cos(t) return x,y,z def xyz2pt(x, y, z): """[cartesian to polar transform] Args: x ([ndarray or tensor]): [description] y ([ndarray or tensor]): [description] z ([ndarray or tensor]): [description] Returns: [tuple]: [phi \in [0,2\pi] and theta \in [0, \pi]] """ assert(type(x) == type(y),'type mismatch') assert(type(y) == type(z),'type mismatch') if(type(x) == torch.Tensor): acos = torch.acos atan2 = torch.atan2 atan = torch.atan else: acos = np.arccos atan2 = np.arctan2 atan = np.arctan r = (x**2+y**2+z**2) ** 0.5 p = atan2(y,x) p[p<0] = p[p<0] + 2*np.pi t = acos(z/(r+1e-20)) return p, t def pt2uv(p,t): """[polar to uniform] Args: p ([ndarray or tensor]): [description] t ([ndarray or tensor]): [description] Returns: [tuple]: [u \in [0,1] and v \in [0,1]] """ return p/(np.pi * 2),t/np.pi def uv2pt(u,v): """[Converts polar to cartesian] Args: u ([Tensor or ndarray]): [Azimuth \in [0,1]] v ([Tensor or ndarray]): [Elevation \in [0,1]] Returns: [tuple of Tensor or ndarray]: [\phi \in [0-2 \pi], theta \in [0,\pi] ] """ t = v * np.pi p = u * 2 * np.pi return p,t def uv2ptUniform(u,v): """[Converts polar to cartesian uniformly on a sphere] Args: u ([Tensor or ndarray]): [Azimuth \in [0,1]] v ([Tensor or ndarray]): [Elevation \in [0,1]] Returns: [tuple of Tensor or ndarray]: [\phi \in [0-2 \pi], theta \in [0,\pi] ] """ if(type(v) == np.ndarray): acos = np.arccos elif(type(v) == torch.Tensor): acos = torch.acos t = acos(1- 2 * v) p = u * 2 * np.pi return p,t def intersect_ray_plane(o,w,p,n): """[Compute the intersection point between a ray and a plane] Args: o ([ndarray]): [ray origin] w ([ndarray]): [ray direction] p ([ndarray]): [plane origin] n ([ndarray]): [plane normal vector] Returns: [ndarray]: [intersection point, distance to ray origin] """ #derived from <n,p - (o+wt)>=0 t = ((n * p).sum(-1,keepdim=True) - (n * o).sum(-1,keepdim=True)) / ((n * w).sum(-1,keepdim=True) +1e-5) return o + w * t, t def boxMuller(u1,u2): """[Generate 2d normal distribution given uniform] Args: u1 ([type]): [description] u2 ([type]): [description] """ if(type(u1) == np.ndarray): sin = np.sin cos = np.cos ln = np.log elif(type(u1) == torch.Tensor): sin = torch.sin cos = torch.cos ln = torch.log z0 = (-2 * ln(u1)) ** 0.5 * cos(2 * np.pi * u2) z1 = (-2 * ln(u1)) ** 0.5 * sin(2 * np.pi * u2) return z0, z1 def normalPDF(mu,variance,x): if(type(x) == np.ndarray): exp = np.exp elif(type(x) == torch.Tensor): exp = torch.exp coeff = 1 / ((variance * 2 * np.pi) ** 0.5) e = exp(-0.5 * (x-mu) ** 2 / variance) return coeff * e def naiveSampleOnSphere(u,v): p,t = uv2pt(u,v) return pt2xyz(p,t) def uniformSampleOnSphere(u,v): if(type(u) == np.array): acos = np.acos else: acos = torch.arccos p,t = (acos(2*v-1), 2 * np.pi * u) return pt2xyz(p,t) def vectorNormalize(v): """[Normalize a vector as v/||v||] Args: v ([Tensor b,1,...]): [Input vector] Returns: [Tensor b,1,...]: [Normalized vector] """ return v / ((v**2).sum(dim=1) ** 0.5 + 1e-20) def relerr(a,b): return (((a-b) ** 2 / b **2) ** 0.5).sum() def normal2frame(n,dim): """[Creates a nxn local frame given a normal vector] :param n: [nd Normal vector] :type n: [Array] :return: [Local frame] :rtype: [nxn ndarray] """ if(type(n) == np.array): rand = lambda x:np.random.rand(*x.shape) norm = lambda x:np.linalg.norm(x,axis=-1) cross = np.cross stack = lambda x,axis:np.stack(x,axis=axis) normalize = lambda x:np.linalg.normalize(x,axis=-1) elif(type(n) == torch.Tensor): rand = lambda x:torch.rand(*x.shape,dtype=x.dtype,device=n.device) norm = lambda x:torch.norm(x,axis=-1) cross = lambda a1,a2,a3,b1,b2,b3:torch.stack(((a2*b3-a3*b2), (a3*b1-a1*b3), (a1*b2 - a2*b1)),dim=-1) stack = lambda x,axis:torch.stack(x,dim=axis) normalize = lambda x,axis:torch.nn.functional.normalize(x,dim=axis) else: print('Unknown data type') exit(0) r = normalize(rand(n),axis=dim) y = cross(n[...,0],n[...,1],n[...,2],r[...,0],r[...,1],r[...,2]) y = normalize(y,dim) x = cross(y[...,0],y[...,1],y[...,2],n[...,0],n[...,1],n[...,2]) x = normalize(x,dim) return stack((x,y,n),axis=dim) def normalize(x,dim): return x / ((x ** 2 + 1e-8) ** 0.5).sum(dim=dim,keepdim=True) def lookAt(Origin, LookAt, Up): """[Creates camera matrix in right hand coordinate. Implementation of https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/lookat-function] Args: Origin ([Tensor b,3,...]): [Camera Origin in world space] LookAt ([Tensor b,3,...]): [Camera lookat position in world space] Up ([Tensor b,3,...]): [Camera Up direction in world space] Returns: [Tensor b,4,4,...]: [Camera extrinsic matrix] """ Forward = LookAt - Origin Forward = vectorNormalize(Forward) Up = vectorNormalize(Up) Right = torch.cross(Up, Forward) Right = vectorNormalize(Right) newUp = torch.cross(Forward, Right) newUp = vectorNormalize(newUp) m = torch.stack((Right,newUp,Forward),dim=1) newOrigin = torch.einsum('bmn...,bn...->bm...', m, Origin) m = torch.cat((m,newOrigin.unsqueeze(2)),dim=2) m = torch.cat((m,torch.zeros_like(m)[:,0:1,:,...]),dim=1) m[:,3,3,...] = 1 return m def perspective(fov,near,far): """[Generate 4x4 perspective transform matrix. Re-implementation of Mitsuba] Args: near ([float]): [near plane] far ([float]): [far plane] fov ([float]): [Field of view in degrees] Returns: [ndarray]: [4x4 projection matrix] """ #mitsuba recip = 1.0 / (far - near) cot = 1.0 / np.tan(np.deg2rad(fov * 0.5)) perspective = torch.diagflat(torch.Tensor([cot,cot,far*recip,0.0])) perspective[2,3] = -near * far * recip perspective[3,2] = 1.0 return perspective def perspective_projection(fov,near,far,filmSize=np.array([1,1]),cropSize=np.array([1,1]),cropOffset=np.array([0,0])): """[Reimplementation of Mitsuba perspective_projection function] Args: fov ([float]): [Field of view in degrees] near ([float]): [Near plane] far ([float]): [Far plane] filmSize ([1x2 ndarray], optional): [Film size]. Defaults to np.array([1,1]). cropSize ([1x2 ndarray], optional): [crop size]. Defaults to np.array([1,1]). cropOffset ([1x2 ndarray], optional): [Crop offset]. Defaults to np.array([0,0]). Returns: [4x4 tensor]: [Perspective camera projection matrix] """ aspect = filmSize[0] / filmSize[1] rel_offset = cropOffset / filmSize rel_size = cropSize / filmSize p = perspective(fov,near,far) translate = torch.eye(4) translate[:3,-1] = torch.Tensor([-1.0, -1.0 / aspect, 0.0]) scale = torch.diagflat(torch.Tensor([-0.5,-0.5*aspect,1.0,1.0])) translateCrop = torch.eye(4) translateCrop[:3,-1] = torch.Tensor([-rel_offset[0],-rel_offset[1],0.0]) scaleCrop = torch.diagflat(torch.Tensor([1/rel_size[0],1/rel_size[1],1.0,1.0])) m1 = torch.mm(scaleCrop,torch.mm(translateCrop,torch.mm(scale,torch.mm(translate,p)))) return m1 def sampleRay(h,w,far,near,fov,samples,ext): """[Reimplementation of Mitsuba sample_ray] Args: far ([float]): [float] near ([float]): [float] fov ([float]): [float] Returns: [4x4 array]: [float] """ aspect = w/h camera_to_sample = perspective_projection(fov,near,far,filmSize=np.array([w,h]),cropSize=np.array([w,h])) sample_to_camera = torch.inverse(camera_to_sample[None,...]) samples = np.concatenate((samples,np.zeros_like(samples[:,0:1,...]),np.ones_like(samples[:,0:1,...])),axis=1) d = torch.einsum('abc,acd->abd',sample_to_camera,torch.Tensor(samples)) d = d[:,:3,...] / d[:,3,...] d = vectorNormalize(d) d = torch.einsum('abc,ac...->ab...',ext[:,:3,:3,...].transpose(2,1),d[:,:3,...]) return d def u1tou2(u1,u2): """[Compute shortest rotation between two vectors] Args: u1 ([ndarray]): [1st vector] u2 ([ndarray]): [2nd vector] Returns: [Quaternion]: [Shortest rotation] """ u1 = u1 / np.sum(u1 ** 2) ** 0.5 u2 = u2 /
np.sum(u2 ** 2)
numpy.sum
# !/usr/bin/env python # -*- coding: utf-8 -*- """quantity module : allows manipulation of physical quantities. TODO: - [X] : find a better way to include SI units in - [ ] : sum() : problem with init of iterator, using radd, needs to start with sum(y_q,Quantity(1,Dimension("L"))) - [ ] : avec Q_vectorize qui utilise interp, lève une erreur pas claire si on renvoi une valeur dans un array déjà initialisé avec une autre dimension - [ ] : make DISPLAY_DIGITS and EXP_THRESHOLD variable-attribute, not constant - [X] : PENDING : make __true_div__ = __div__ - [ ] : try to factor quantify and make_quantity - [X] : add a method for fast-friendly display in another unit - [X] : add methods to check dimensions (is_length, is_surface, etc) - [ ] : factorize quad and dblquad, and make nquad - [X] : make a decorator for trigo functions - [ ] : deal with precision of quads - [X] : make a round method - [ ] : quick plot method for array value (matplotlib) - [ ] : interp and vectorize adds "no-dimension" if needed - homogenize - [ ] : init favunit to SI unit if none is passed ? - [X] : make cos, sin, etc method for numpy compatibility - [ ] : test quantity with complex and fractions.fractions - [ ] : float must be commented for solvers to work.... - [ ] : make default symbol variable name ? - [ ] : make favunit defaults to SI ? - [ ] : for trigo method, prevent when unit is sr ? - [X] : create a Wrong dimension Error, for trigo functions for eg - [X] : deal with numpy slicing a[a>1] - [ ] : improve Inration of eq, ne (ex : assertNotEqual when dealing with arrays) - [ ] : when uncertainties is implemented, add an automatic plotting - [X] : add a format method --> need a refactor of repr.. - [X] : add a method to reset favunit ? - [ ] : better tests for complex number support - [ ] : see if possible to not rely on sympy, numpy and scipy - [ ] : improve code for __array_ufunc__ - [ ] : better tests for Fraction support PROPOSITIONS/QUESTIONS : - make sum, mean, integrate, is_dimensionless properties IO methods ? - add a 0 quantity to radd to allow magic function sum ? - should __pow__ be allowed with array, returning an array of quantities (and quantity of array if power is scalar) - should mul and rmul be different : - [1,2,3]*m = ([1,2,3])m - m*[1,2,3] = [1m, 2m, 3m] - make Quantity self)converted to numpy : ex : np.cos(q) if q is dimensionless 'Quantity' object has no attribute 'cos' ??? - when multiplying or dividing not quanity with quantity, propagate favunit ? - should setting dimension be forbiden ? or with a warning ? - make a floordiv ? - no np.all in comparison for indexing a[a>1], but then np.all is needed in functions verifications - should repr precise the favunit and symbol ? - switch base system by replacing the dimension dict (or making it setable) - exponent repr : use re to change “**” to “^” or to “” - base nominal representation and str should allow plain copy/paste to be reused in code - list unicode possible changes : micron character, superscripts for exponents - quantify in each method is ugly - should redefine every numpy ufunc as method ? """ import math import numbers as nb import numpy as np import sympy as sp import warnings from .dimension import Dimension, DimensionError, SI_UNIT_SYMBOL # # Constantes UNIT_PREFIX= " " DISPLAY_DIGITS = 2 EXP_THRESHOLD = 2 UNIT_SUFFIX = "" LATEX_VALUE_UNIT_SEPARATOR = "\,"#" \cdot " #SCIENTIFIC = '%.' + str(DISPLAY_DIGITS) + 'E' # (syntaxe : "%.2f" % mon_nombre #CLASSIC = '%.' + str(DISPLAY_DIGITS) + 'f' HANDLED_FUNCTIONS = {} class Quantity(object): """Quantity class : """ __quantity_priority__ = 1000 DIGITS = DISPLAY_DIGITS EXP_THRESH = EXP_THRESHOLD LATEX_SEP = LATEX_VALUE_UNIT_SEPARATOR def __init__(self, value, dimension, symbol="UndefinedSymbol", favunit=None, description=""): self.__array_priority__ = 100 self.value = value self.dimension = dimension self.symbol = symbol self.favunit = favunit self.description = description def __setattr__(self, name, value): if name == "value": if isinstance(value, np.ndarray): super().__setattr__(name, value) super().__setattr__("size", self.value.size) elif (isinstance(value,nb.Number) or type(value) == np.int64 or type(value) == np.int32): #isinstance(value, (int, float)):#isinstance(value,float) or #isinstance(value,int) or type(value) == numpy.int64 or #type(value) == numpy.int32: #or numpy.isrealobj(valeur): super().__setattr__(name, value) super().__setattr__("size", 1) elif isinstance(value, list) or isinstance(value, tuple): super().__setattr__(name, np.array(value)) elif value is None: super().__setattr__(name, value) else: super().__setattr__(name, value) super().__setattr__("size", 1) #else: # raise TypeError(("Value of Quantity must be a number " # "or numpy array, not {}").format(type(value))) #elif name == "dimension": # if isinstance(value,Dimension) : # super().__setattr__(name,value) # else: # raise TypeError(("Dimension of Quantity must be a Dimension," # "not {}").format(type(value))) elif name == "symbol": if isinstance(value,sp.Expr): super().__setattr__(name, value) elif isinstance(value,str): super().__setattr__(name,sp.Symbol(value)) else: raise TypeError(("Symbol of Quantity must be a string " "or a sympy-symbol, " "not {}").format(type(value))) elif name == "favunit": if isinstance(value,Quantity) or value == None: super().__setattr__(name, value) elif np.isscalar(value): super().__setattr__(name, None) else: raise TypeError(("Favorite unit of Quantity must be a Quantity " "or None, not {}").format(type(value))) #elif name == "description": # if not isinstance(value, str): # raise TypeError("desc attribute must be a string.") # super().__setattr__(name, value) else: super().__setattr__(name, value) def __add__(self, y): y = quantify(y) if not self.dimension == y.dimension: raise DimensionError(self.dimension, y.dimension) #return Quantity(self.value + y.value, # self.dimension) return type(self)(self.value + y.value, self.dimension) def __radd__(self, x): return self + x def __sub__(self, y): y = quantify(y) if not self.dimension == y.dimension: raise DimensionError(self.dimension, y.dimension) return type(self)(self.value - y.value, self.dimension) def __rsub__(self, x): return quantify(x) - self def __mul__(self,y): y = quantify(y) return type(self)(self.value * y.value, self.dimension * y.dimension, symbol = self.symbol * y.symbol).rm_dim_if_dimless() __rmul__ = __mul__ def __matmul__(self, y): y = quantify(y) return type(self)(self.value @ y.value, self.dimension * y.dimension, symbol = self.symbol * y.symbol).rm_dim_if_dimless() def __truediv__(self, y): y = quantify(y) return type(self)(self.value / y.value, self.dimension / y.dimension, symbol = self.symbol / y.symbol).rm_dim_if_dimless() def __rtruediv__(self, x): return quantify(x) / self def __floordiv__(self, y): """ Any returned quantity should be dimensionless, but leaving the Quantity().remove() because more intuitive """ y = quantify(y) if not self.dimension == y.dimension: raise DimensionError(self.dimension, y.dimension) return type(self)(self.value // y.value, self.dimension).rm_dim_if_dimless() def __rfloordiv__(self, x): x = quantify(x) if not self.dimension == x.dimension: raise DimensionError(self.dimension, x.dimension) return type(self)(x.value // self.value, self.dimension).rm_dim_if_dimless() def __mod__(self,y): """ There is no rm_dim_if_dimless() because a modulo operation would not change the dimension. """ y = quantify(y) if not self.dimension == y.dimension: raise DimensionError(self.dimension, y.dimension) return type(self)(self.value % y.value, self.dimension)#.rm_dim_if_dimless() def __pow__(self,power): """ A power must always be a dimensionless scalar. If a = 1*m, we can't do a ** [1,2], because the result would be an array of quantity, and can't be a quantity with array-value, since the quantities won't be the same dimension. """ #if not np.isscalar(power):#(isinstance(power,int) or isinstance(power,float)): # raise TypeError(("Power must be a number, " # "not {}").format(type(power))) return type(self)(self.value ** power, self.dimension ** power, symbol = self.symbol ** power, ).rm_dim_if_dimless() def __neg__(self): return self * (-1) def __pos__(self): return self def __len__(self): return len(self.value) def __bool__(self): return bool(self.value) # min and max uses the iterator #def __min__(self): # return Quantity(min(self.value), # self.dimension, # favunit=self.favunit) #def __max__(self): # return Quantity(max(self.value), # self.dimension, # favunit=self.favunit) def __eq__(self,y): try: y = quantify(y) if self.dimension == y.dimension: return self.value == y.value # comparing arrays returns array of bool else: return False except Exception as e: return False def __ne__(self,y): return np.invert(self == y) #np.invert for element-wise not, for array compatibility def __gt__(self,y): y = quantify(y) if self.dimension == y.dimension: return self.value > y.value else: raise DimensionError(self.dimension,y.dimension) def __lt__(self,y): y = quantify(y) if self.dimension == y.dimension: return self.value < y.value else: raise DimensionError(self.dimension,y.dimension) def __ge__(self,y): return (self > y) | (self == y) # or bitwise def __le__(self,y): return (self < y) | (self == y) # or bitwise def __abs__(self): return type(self)(abs(self.value), self.dimension, favunit = self.favunit) def __complex__(self): if not self.is_dimensionless_ext(): raise DimensionError(self.dimension, Dimension(None), binary=False) return complex(self.value) def __int__(self): if not self.is_dimensionless_ext(): raise DimensionError(self.dimension, Dimension(None), binary=False) return int(self.value) def __float__(self): if not self.is_dimensionless_ext(): raise DimensionError(self.dimension, Dimension(None), binary=False) return float(self.value) def __round__(self, i=None): return type(self)(round(self.value, i), self.dimension, favunit = self.favunit) def __copy__(self): return type(self)(self.value, self.dimension, favunit=self.favunit, symbol=self.symbol) def copy(self): return self.__copy__() def __repr__(self): if str(self.symbol) != "UndefinedSymbol": sym = ", symbol="+str(self.symbol) else: sym = "" return '<Quantity : ' + str(self.value) + " " + str(self.dimension.str_SI_unit()) + sym + ">" def __str__(self): complement_value_for_repr = self._compute_complement_value() if not complement_value_for_repr == "": return str(self._compute_value()) + UNIT_PREFIX + complement_value_for_repr + UNIT_SUFFIX else: return str(self._compute_value()) + UNIT_SUFFIX def __hash__(self): return hash(str(self.value)+str(self.dimension)) def __ceil__(self): """ To handle math.ceil """ return type(self)(math.ceil(self.value), self.dimension) def __floor__(self): """ To handle math.floor """ return type(self)(math.floor(self.value), self.dimension) def __trunc__(self): return type(self)(math.trunc(self.value), self.dimension) #@property #def latex(self): # return self._repr_latex_() #@property #def html(self): # return self._repr_html_() #def _repr_pretty_(self, p, cycle): # """Markdown hook for ipython repr. # See https://ipython.readthedocs.io/en/stable/config/integrating.html""" # print("repr_pretty") # return p.text(self._repr_latex_()) def plot(self, kind="y", other=None, ax=None): from physipy.quantity.plot import plotting_context if ax is None: import matplotlib.pyplot as plt fig, ax = plt.subplots() with plotting_context(): if kind =="y" and other is None: ax.plot(self) elif kind =="x" and other is not None: ax.plot(self, other) else: raise ValueError("kind must be y of x with other") def _repr_latex_(self): """Markdown hook for ipython repr in latex. See https://ipython.readthedocs.io/en/stable/config/integrating.html""" # create a copy q = self.__copy__() # to set a favunit for display purpose # only change the favunit if not already defined if q.favunit == None: q.favunit = self._pick_smart_favunit() formatted_value = q._format_value() complemented = q._compute_complement_value() if complemented != "": complement_value_str = sp.printing.latex(sp.parsing.sympy_parser.parse_expr(complemented)) else: complement_value_str = "" # if self.value is an array, only wrap the complement in latex if isinstance(self.value, np.ndarray): return formatted_value + "$" + self.LATEX_SEP + complement_value_str + "$" # if self.value is a scalar, use sympy to parse expression value_str = sp.printing.latex(sp.parsing.sympy_parser.parse_expr(formatted_value)) return "$" + value_str + self.LATEX_SEP + complement_value_str + "$" def _pick_smart_favunit(self, array_to_scal=np.mean): """Method to pick the best favunit among the units dict. A smart favunit always have the same dimension as self. The 'best' favunit is the one minimizing the difference with self. In case self.value is an array, array_to_scal is used to convert the array to a single value. """ from .units import units from .utils import asqarray same_dim_unit_list = [value for value in units.values() if self.dimension == value.dimension] # if no unit with same dim already exists if len(same_dim_unit_list) == 0: return None same_dim_unit_arr = asqarray(same_dim_unit_list) self_val = self if not isinstance(self.value, np.ndarray) else array_to_scal(self) best_ixd = np.abs(same_dim_unit_arr - np.abs(self_val)).argmin() best_favunit = same_dim_unit_list[best_ixd] return best_favunit def _format_value(self): """Used to format the value on repr as a str. If the value is > to 10**self.EXP_THRESH, it is displayed with scientific notation. Else floating point notation is used. """ value = self._compute_value() if not np.isscalar(value): return str(value) else: if abs(value) >= 10**self.EXP_THRESH or abs(value) < 10**(-self.EXP_THRESH): return ("{:." + str(self.DIGITS) + "e}").format(value) else: return ("{:." + str(self.DIGITS) + "f}").format(value) #def _repr_markdown_(self): # """Markdown hook for ipython repr in markdown. # this seems to take precedence over _repr_latex_""" # return self.__repr__() #def _repr_html(self): # return self._repr_latex_() #def __format_raw__(self, format_spec): # return format(self.value, format_spec) + " " + str(self.dimension.str_SI_unit()) def __format__(self, format_spec): """This method is used when using format or f-string. The format is applied to the numerical value part only.""" complement_value_for_repr = self._compute_complement_value() prefix = UNIT_PREFIX if "~" in format_spec: format_spec = format_spec.replace("~", "") prefix = "" if not complement_value_for_repr == "": return format(self._compute_value(), format_spec) + prefix + complement_value_for_repr + UNIT_SUFFIX else: return format(self._compute_value(), format_spec) + prefix def _compute_value(self): """Return the numerical value corresponding to favunit.""" if isinstance(self.favunit, Quantity): ratio_favunit = make_quantity(self/self.favunit) return ratio_favunit.value else: return self.value def _compute_complement_value(self, custom_favunit=None): """Return the complement to the value as a str.""" if custom_favunit is None: favunit = self.favunit else: favunit = custom_favunit if isinstance(favunit, Quantity): ratio_favunit = make_quantity(self/favunit) dim_SI = ratio_favunit.dimension if dim_SI == Dimension(None): return str(favunit.symbol) else: return str(favunit.symbol) + "*" + dim_SI.str_SI_unit() else: return self.dimension.str_SI_unit() #used for plotting @property def _SI_unitary_quantity(self): """Return a one-value quantity with same dimension. Such that self = self.value * self._SI_unitary_quantity """ return type(self)(1, self.dimension, symbol=self.dimension.str_SI_unit()) def __getitem__(self, idx): return type(self)(self.value[idx], self.dimension, favunit=self.favunit) def __setitem__(self, idx, q): q = quantify(q) if not q.dimension == self.dimension: raise DimensionError(q.dimension,self.dimension) if isinstance(idx,np.bool_) and idx == True: self.valeur = q.value elif isinstance(idx,np.bool_) and idx == False: pass else: self.value[idx] = q.value #def __iter__(self): # if isinstance(self.value,np.ndarray): # return QuantityIterator(self) # else: # return iter(self.value) @property def flat(self): # pint implementation #for v in self.value.flat: # yield Quantity(v, self.dimension) # astropy return FlatQuantityIterator(self) def flatten(self): return type(self)(self.value.flatten(), self.dimension, favunit=self.favunit) def tolist(self): return [Quantity(i, self.dimension) for i in self.value] @property def real(self): return type(self)(self.value.real, self.dimension) @property def imag(self): return type(self)(self.value.imag, self.dimension) @property def T(self): return type(self)(self.value.T, self.dimension) def std(self, *args, **kwargs): return np.std(self, *args, **kwargs) def inverse(self): """is this method usefull ?""" return type(self)(1/self.value, 1/self.dimension) def sum(self, **kwargs): return np.sum(self, **kwargs) def mean(self, **kwargs): return np.mean(self, **kwargs) def integrate(self, *args, **kwargs): return np.trapz(self, *args, **kwargs) def is_dimensionless(self): return self.dimension == Dimension(None) def rm_dim_if_dimless(self): if self.is_dimensionless(): return self.value else: return self def has_integer_dimension_power(self): return all(value == int(value) for value in self.dimension.dim_dict.values()) def to(self, y): """return quantity with another favunit.""" if not isinstance(y, Quantity): raise TypeError("Cannot express Quantity in not Quantity") q = self.__copy__() q.favunit = y return q def set_favunit(self, fav): """ To be used as one-line declaration : (np.linspace(3, 10)*mum).set_favunit(mum) """ self.favunit = fav return self def ito(self, y): """in-place change of favunit.""" self.favunit = y return self def into(self, y): """like to, but with same dimension""" if not self.dimension == y.dimension: raise ValueError("must have same unit. Try to().") return self.to(y) def iinto(self, y): """like ito, but with same dimension""" if not self.dimension == y.dimension: raise ValueError("must have same unit. Try to().") return self.ito(y) # Shortcut for checking dimension def is_length(self): return self.dimension == Dimension("L") def is_surface(self): return self.dimension == Dimension("L")**2 def is_volume(self): return self.dimension == Dimension("L")**3 def is_time(self): return self.dimension == Dimension("T") def is_mass(self): return self.dimension == Dimension("M") def is_angle(self): return self.dimension == Dimension("RAD") def is_solid_angle(self): return self.dimension == Dimension("SR") def is_temperature(self): return self.dimension == Dimension("theta") def is_nan(self): "For use with pandas extension" return np.isnan(self.value) def is_dimensionless_ext(self): return self.is_dimensionless() or self.is_angle() def check_dim(self, dim): return self.dimension == dimensionify(dim) # for munits support def _plot_get_value_for_plot(self, q_unit): q_unit = quantify(q_unit) if not self.dimension == q_unit.dimension: raise DimensionError(self.dimension, q_unit.dimension) return self/q_unit # for munits support def _plot_extract_q_for_axe(self): favunit = self.favunit if isinstance(favunit, Quantity): ratio_favunit = make_quantity(self/favunit) dim_SI = ratio_favunit.dimension if dim_SI == Dimension(None): return favunit else: return make_quantity(favunit * ratio_favunit._SI_unitary_quantity, symbol=str(favunit.symbol) + "*" + ratio_favunit._SI_unitary_quantity.dimension.str_SI_unit()) else: return self._SI_unitary_quantity def __getattr__(self, item): """ Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance attribute nor is it found in the class tree for self). name is the attribute name. This method should return the (computed) attribute value or raise an AttributeError exception. Note that if the attribute is found through the normal mechanism, __getattr__() is not called. """ if item == '__iter__': if isinstance(self.value,np.ndarray): return QuantityIterator(self) else: return iter(self.value) if item.startswith('__array_'): warnings.warn("The unit of the quantity is stripped.") if isinstance(self.value, np.ndarray): return getattr(self.value, item) else: # If an `__array_` attributes is requested but the magnitude is not an ndarray, # we convert the magnitude to a numpy ndarray. self.value = np.array(self.value) return getattr(self.value, item) try: res = getattr(self.value, item) return res except AttributeError as ex: raise AttributeError("Neither Quantity object nor its value ({}) " "has attribute '{}'".format(self.value, item)) #def to_numpy(self): # return np.asarray(self.value) def reshape(self, *args, **kwargs): return Quantity(self.value.reshape(*args, **kwargs), self.dimension) def __array_function__(self, func, types, args, kwargs): if func not in HANDLED_FUNCTIONS: return NotImplemented # Note: this allows subclasses that don't override # __array_function__ to handle DiagonalArray objects. #if not all(issubclass(t, self.__class__) for t in types): # return NotImplemented return HANDLED_FUNCTIONS[func](*args, **kwargs) # TODO : make this a static function ? def __array_ufunc__(self, ufunc, method, *args, **kwargs): """ https://numpy.org/doc/1.18/user/basics.dispatch.html?highlight=array%20interface The __array_ufunc__ receives: - ufunc, a function like numpy.multiply - method, a string, differentiating between numpy.multiply(...) and variants like numpy.multiply.outer, numpy.multiply.accumulate, and so on. For the common case, numpy.multiply(...), method == '__call__'. - inputs, which could be a mixture of different types - kwargs, keyword arguments passed to the function This doesn't need __getattr__ nor __array__ """ if method == "__call__": return self._ufunc_call(ufunc, method, *args, **kwargs) elif method == "reduce": return self._ufunc_reduce(ufunc, method, *args, **kwargs) elif method == "accumulate": return self._ufunc_accumulate(ufunc, method, *args, **kwargs) else: raise NotImplementedError(f"array ufunc {ufunc} with method {method} not implemented") def _ufunc_accumulate(self, ufunc, method, *args, **kwargs): ufunc_name = ufunc.__name__ left = args[0] # hypot doesn't have a reduce if ufunc_name in ["add"]: res = ufunc.accumulate(left.value, **kwargs) return type(self)(res, left.dimension) else: raise NotImplementedError(f"array ufunc {ufunc} with method {method} not implemented") def _ufunc_reduce(self, ufunc, method, *args, **kwargs): """ The method == "reduce" part of __array_ufunc__ interface. """ if not method == "reduce": raise NotImplementedError(f"array ufunc {ufunc} with method {method} not implemented") ufunc_name = ufunc.__name__ left = args[0] # removed quantify... # hypot doesn't have a reduce if ufunc_name in same_dim_out_2 and ufunc_name != "hypot": res = ufunc.reduce(left.value) return type(self)(res, left.dimension) # only multiply seems to be possible elif ufunc_name in skip_2: res = ufunc.reduce(left.value) if ufunc_name == "multiply" or ufunc_name == "matmul": return type(self)(res, left.dimension ** len(left.value)) else: raise NotImplementedError(f"array ufunc {ufunc} with method {method} not implemented") # return booleans : elif ufunc_name in same_dim_in_2_nodim_out: res = ufunc.reduce(left.value) return res # ValueError: reduce only supported for binary functions elif ufunc_name in unary_ufuncs: raise ValueError("reduce only supported for binary functions.") else: raise NotImplementedError(f"array ufunc {ufunc} with method {method} not implemented") def _ufunc_call(self, ufunc, method, *args, **kwargs): """ The method == "__call__" part of __array_ufunc__ interface. """ if not method == "__call__": raise NotImplementedError(f"array ufunc {ufunc} with method {method} not implemented") ufunc_name = ufunc.__name__ left = quantify(args[0]) if ufunc_name in same_dim_out_2: other = quantify(args[1]) if not left.dimension == other.dimension: raise DimensionError(left.dimension, other.dimension) res = ufunc.__call__(left.value,other.value) return type(self)(res, left.dimension) elif ufunc_name in skip_2: other = quantify(args[1]) res = ufunc.__call__(left.value, other.value) if ufunc_name == "multiply" or ufunc_name == "matmul": return type(self)(res, left.dimension * other.dimension) elif ufunc_name == 'divide' or ufunc_name == "true_divide": return type(self)(res, left.dimension / other.dimension).rm_dim_if_dimless() elif ufunc_name == "copysign" or ufunc_name == "nextafter": return type(self)(res, left.dimension) elif ufunc_name in no_dim_1: if not left.dimension == Dimension(None): raise DimensionError(left.dimension, Dimension(None)) res = ufunc.__call__(left.value) return type(self)(res, Dimension(None)) elif ufunc_name in angle_1: if not left.is_dimensionless_ext(): raise DimensionError(left.dimension, Dimension(None), binary=True) res = ufunc.__call__(left.value) return type(self)(res, Dimension(None)).rm_dim_if_dimless() elif ufunc_name in same_out: res = ufunc.__call__(left.value) return type(self)(res, left.dimension).rm_dim_if_dimless() elif ufunc_name in special_dict: if ufunc_name == "sqrt": res = ufunc.__call__(left.value) return type(self)(res, left.dimension**(1/2)) elif ufunc_name == "power": power_num = args[1] if not (isinstance(power_num,int) or isinstance(power_num,float)): raise TypeError(("Power must be a number, " "not {}").format(type(power_num))) res = ufunc.__call__(left.value, power_num) return type(self)(res, left.dimension ** power_num, symbol = left.symbol ** power_num).rm_dim_if_dimless() elif ufunc_name == "reciprocal": res = ufunc.__call__(left.value) return type(self)(res, 1/left.dimension) elif ufunc_name == "square": res = ufunc.__call__(left.value) return type(self)(res, left.dimension**2) elif ufunc_name == "cbrt": res = ufunc.__call__(left.value) return type(self)(res, left.dimension**(1/3)) elif ufunc_name == "modf": res = ufunc.__call__(left.value) frac, integ = res return (type(self)(frac, left.dimension), type(self)(integ, left.dimension)) elif ufunc_name == "arctan2": # both x and y should have same dim such that the ratio is dimless other = quantify(args[1]) if not left.dimension == other.dimension: raise DimensionError(left.dimension, other.dimension) # use the value so that the 0-comparison works res = ufunc.__call__(left.value, other.value, **kwargs) return res else: raise ValueError elif ufunc_name in same_dim_in_2_nodim_out: other = quantify(args[1]) if not left.dimension == other.dimension: raise DimensionError(left.dimension, other.dimension) res = ufunc.__call__(left.value, other.value) return res elif ufunc_name in inv_angle_1: if not left.dimension == Dimension(None): raise DimensionError(left.dimension, Dimension(None)) res = ufunc.__call__(left.value) return res #elif ufunc_name in inv_angle_2: # other = quantify(args[1]) # if not (left.dimension == Dimension(None) and other.dimension == Dimension(None)): # raise DimensionError(left.dimension, Dimension(None)) # res = ufunc.__call__(left.value, other.value) # return res elif ufunc_name in same_dim_in_1_nodim_out: res = ufunc.__call__(left.value) return res elif ufunc_name in no_dim_2: other = quantify(args[1]) if not (left.dimension == Dimension(None) and other.dimension == Dimension(None)): raise DimensionError(left.dimension, Dimension(None)) res = ufunc.__call__(left.value, other.value) return res else: raise ValueError("ufunc not implemented ?: ", str(ufunc)) def squeeze(self, *args, **kwargs): """ Helper function to wrap numpy's squeeze. """ return Quantity(self.value.squeeze(*args, **kwargs), self.dimension) # Numpy functions # Override functions - used with __array_function__ def implements(np_function): def decorator(func): HANDLED_FUNCTIONS[np_function] = func return func return decorator @implements(np.asanyarray) def np_asanyarray(a): return Quantity(np.asanyarray(a.value), a.dimension) @implements(np.amax) def np_amax(q): return Quantity(np.amax(q.value), q.dimension, favunit=q.favunit) @implements(np.amin) def np_amin(q): return Quantity(np.amin(q.value), q.dimension, favunit=q.favunit) @implements(np.append) def np_append(arr, values, **kwargs): values = quantify(values) if not arr.dimension == values.dimension: raise DimensionError(arr.dimension, values.dimension) return Quantity(np.append(arr.value, values.value, **kwargs), arr.dimension) @implements(np.argmax) def np_argmax(a, **kwargs): return Quantity(np.argmax(a.value, **kwargs), a.dimension) @implements(np.argsort) def np_argsort(a, **kwargs): return np.argsort(a.value, **kwargs) @implements(np.sort) def np_sort(a, **kwargs): return Quantity(np.sort(a.value, **kwargs), a.dimension) @implements(np.argmin) def np_argmin(a, **kwargs): return Quantity(np.argmin(a.value, **kwargs), a.dimension) @implements(np.around) def np_around(a, **kwargs): return Quantity(np.around(a.value, **kwargs), a.dimension) @implements(np.atleast_1d) def np_atleast_1d(*arys): res = [Quantity(np.atleast_1d(arr.value), arr.dimension) for arr in arys] return res if len(res)>1 else res[0] @implements(np.atleast_2d) def np_atleast_2d(*arys): res = [Quantity(np.atleast_2d(arr.value), arr.dimension) for arr in arys] return res if len(res)>1 else res[0] @implements(np.atleast_3d) def np_atleast_3d(*arys): res = [Quantity(np.atleast_3d(arr.value), arr.dimension) for arr in arys] return res if len(res)>1 else res[0] @implements(np.average) def np_average(q): return Quantity(np.average(q.value), q.dimension, favunit=q.favunit) # np.block : todo @implements(np.broadcast_to) def np_broadcast_to(array, *args, **kwargs): return Quantity(np.broadcast_to(array.value, *args, **kwargs), array.dimension) @implements(np.broadcast_arrays) def np_broadcast_arrays(*args, **kwargs): qargs = [quantify(a) for a in args] # get arrays values arrs = [qarg.value for qarg in qargs] # get broadcasted arrays res = np.broadcast_arrays(*arrs, **kwargs) return [Quantity(r, q.dimension) for r, q in zip(res, qargs)] @implements(np.linalg.lstsq) def np_linalg_lstsq(a, b, **kwargs): a = quantify(a) b = quantify(b) sol = np.linalg.lstsq(a.value, b.value, **kwargs) return Quantity(sol, b.dimension/a.dimension) @implements(np.linalg.inv) def np_inv(a): return Quantity(np.linalg.inv(a.value), 1/a.dimension) @implements(np.random.normal) def np_random_normal(loc=0.0, scale=1.0, **kwargs): loc = quantify(loc) scale = quantify(scale) if not loc.dimension == scale.dimension: raise DimensionError(loc.dimension, scale.dimension) return Quantity(np.random.normal(loc=loc.value, scale=scale.value, **kwargs)) @implements(np.may_share_memory) def np_may_share_memory(a, b, **kwargs): return np.may_share_memory(a.value, b.value, **kwargs) @implements(np.clip) def np_clip(a, a_min, a_max, *args, **kwargs): a_min = quantify(a_min) a_max = quantify(a_max) if a.dimension != a_min.dimension: raise DimensionError(a.dimension, a_min.dimension) if a.dimension != a_max.dimension: raise DimensionError(a.dimension, a_max.dimension) return Quantity(np.clip(a.value, a_min.value, a_max.value, *args, **kwargs), a.dimension) @implements(np.copyto) def np_copyto(dst, src, **kwargs): dst = quantify(dst) src = quantify(src) if dst.dimension != src.dimension: raise DimensionError(dst.dimension, src.dimension) return np.copyto(dst.value, src.value, **kwargs) @implements(np.column_stack) def np_column_stack(tup): dim = tup[0].dimension for arr in tup: if arr.dimension != dim: raise DimensionError(arr.dimension, dim) return Quantity(np.column_stack(tuple(arr.value for arr in tup)), dim) @implements(np.compress) def np_compress(condition, a, **kwargs): return Quantity(np.compress(condition, a.value, **kwargs), a.dimension) @implements(np.concatenate) def np_concatenate(tup, axis=0, out=None): dim = tup[0].dimension for arr in tup: if arr.dimension != dim: raise DimensionError(arr.dimension, dim) return Quantity(np.concatenate(tuple(arr.value for arr in tup)), dim) @implements(np.copy) def np_copy(a, **kwargs): return Quantity(np.copy(a.value, **kwargs), a.dimension) # np.copyto todo # np.count_nonzero @implements(np.cross) def np_cross(a, b, **kwargs): return Quantity(np.cross(a.value, b.value), a.dimension*b.dimension) # np.cumprod : cant have an array with different dimensions @implements(np.cumsum) def np_cumsum(a, **kwargs): return Quantity(np.cumsum(a.value, **kwargs), a.dimension) @implements(np.histogram) def np_histogram(a, bins=10, range=None, normed=None, weights=None, **kwargs): if range is not None: range = (quantify(range[0]), quantify(range[1])) if not range[0].dimension == range[1].dimension: raise DimensionError(range[0].dimension, range[1].dimension) hist, bin_edges = np.histogram(a.value, bins=bins, range=range, normed=normed, weights=weights) return hist, Quantity(bin_edges, a.dimension) @implements(np.diagonal) def np_diagonal(a, **kwargs): return Quantity(np.diagonal(a.value, **kwargs), a.dimension) #@implements(np.diff) #def np_diff(a, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue): # if prepend != np._NoValue: # if prepend.dimension != a.dimension: # raise DimensionError(a.dimension, prepend.dimension) # if append != np._NoValue: # if append.dimension != a.dimension: # raise DimensionError(a.dimension, append.dimension) # return Quantity(np.diff(a.value, n=n, axis=axis, prepend=prepend, append=append), a.dimension) @implements(np.ndim) def np_ndim(a): return np.ndim(a.value) @implements(np.dot) def np_dot(a, b, **kwargs): a = quantify(a) b = quantify(b) return Quantity(np.dot(a.value, b.value), a.dimension * b.dimension) @implements(np.cov) def np_cov(m, y=None, *args, **kwargs): m = quantify(m) if y is not None: y = quantify(y) raw =
np.cov(m.value, y.value, *args, **kwargs)
numpy.cov
import numpy as np from sklearn.metrics.pairwise import cosine_similarity import tensorflow as tf from pysc2.lib.actions import FunctionCall, FUNCTIONS from rl.agents.runner import BaseRunner from rl.common.pre_processing import Preprocessor from rl.common.pre_processing import is_spatial_action, stack_ndarray_dicts from rl.common.util import mask_unused_argument_samples, flatten_first_dims, flatten_first_dims_dict class FeudalRunner(BaseRunner): def __init__(self, agent, envs, summary_writer, args): """ Args: agent: A2CAgent instance. envs: SubprocVecEnv instance. summary_writer: summary writer to log episode scores. args: { } """ self.agent = agent self.envs = envs self.summary_writer = summary_writer self.train = args.train self.c = args.c self.d = args.d self.T = args.steps_per_batch #T is the length of the actualy trajectory self.n_steps = 2 * self.c + self.T self.discount = args.discount self.preproc = Preprocessor() self.last_obs = self.preproc.preprocess_obs(self.envs.reset()) print('\n### Feudal Runner #######') print(f'# agent = {self.agent}') print(f'# train = {self.train}') print(f'# n_steps = {self.n_steps}') print(f'# discount = {self.discount}') print('######################\n') self.states = agent.initial_state # Holds the managers and workers hidden states self.last_c_goals = np.zeros((self.envs.n_envs,self.c,self.d)) self.lc_manager_outputs = np.zeros((self.envs.n_envs,self.c,self.d)) self.episode_counter = 1 self.max_score = 0.0 self.cumulative_score = 0.0 def run_batch(self, train_summary): last_obs = self.last_obs shapes = (self.n_steps, self.envs.n_envs) values = np.zeros(np.concatenate([[2], shapes]), dtype=np.float32) #first dim: manager values, second dim: worker values rewards = np.zeros(shapes, dtype=np.float32) dones = np.zeros(shapes, dtype=np.float32) all_obs, all_actions = [], [] mb_states = self.states #first dim: manager values, second dim: worker values s = np.zeros((self.n_steps, self.envs.n_envs, self.d), dtype=np.float32) mb_last_c_goals = np.zeros((self.n_steps, self.envs.n_envs, self.c, self.d), dtype=np.float32) mb_last_mo =
np.zeros((self.n_steps, self.envs.n_envs, self.c, self.d), dtype=np.float32)
numpy.zeros
""" Environment Probing Interaction (EPI) https://arxiv.org/abs/1907.11740 Modules: 0. pretrained task-specific policy for collecting transition dataset 1. EPI policy 2. Embedding model 3. EPI prediction model 4. prediction model """ import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Normal import math import os,sys,inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0,parentdir) # add parent path from sim2real_policies.utils.rl_utils import load, load_model from utils.choose_env import choose_env import torch.optim as optim import torch.multiprocessing as mp from torch.multiprocessing import Process from multiprocessing.managers import BaseManager torch.multiprocessing.set_start_method('forkserver', force=True) # critical for make multiprocessing work from torch.utils.tensorboard import SummaryWriter from gym import spaces from sim2real_policies.utils.policy_networks import DPG_PolicyNetwork, RandomPolicy, PPO_PolicyNetwork from sim2real_policies.utils.buffers import ReplayBuffer from sim2real_policies.sys_id.common.utils import query_params, query_key_params, offline_history_collection from sim2real_policies.sys_id.common.operations import plot, size_splits from sim2real_policies.sys_id.common.nets import PredictionNetwork, EmbedNetwork from sim2real_policies.utils.envs import make_env from sim2real_policies.utils.evaluate import evaluate, evaluate_epi from sim2real_policies.ppo.ppo_multiprocess import PPO from sim2real_policies.td3.td3_multiprocess import TD3_Trainer from sim2real_policies.utils.load_params import load_params import pickle import copy import time import argparse from mujoco_py import MujocoException # EPI algorthm hyper parameters DEFAULT_REWARD_SCALE = 1. PREDICTION_REWARD_SCALE = 0.5 PREDICTION_REWARD_SCALE0 = 1e5 PREDICTOR_LR = 1e-4 EPI_PREDICTOR_LR = 1e-4 EPI_TOTAL_ITR = 1000 EPI_POLICY_ITR = 5 # udpate iterations of EPI polciy; without considering 10 times inside update of ppo policy PREDICTOR_ITER = 5 # udpate itertations of predictors and embedding net EVAL_INTERVAL = 100 # evaluation interval (episodes) of task-specific policy HIDDEN_DIM=512 PREFIX='' NUM_WORKERS = 3 ENV_NAME = ['SawyerReach', 'SawyerPush', 'SawyerSlide'][0] RANDOMSEED = 2 # random seed EPI_TRAJ_LENGTH = 10 EPI_EPISODE_LENGTH = 30 # shorter than normal task-specific episode length, only probing through initial exploration steps EMBEDDING_DIM = 10 DISCRETE = True # if true, discretized randomization range VINE = True # if true, data collected in vine manner SEPARATION_LOSS = True NO_RESET = True # the env is not reset after EPI rollout in each episode EPI_POLICY_ALG = ['ppo', 'random'][0] TASK_POLICY_ALG = ['td3', 'ppo'][0] # task specific policy EP_MAX=12000 EP_LEN=100 writer = SummaryWriter() class EPI(object): """ The class of environment probing interaction policies """ def __init__(self, env, traj_length=EPI_TRAJ_LENGTH, \ GAMMA=0.9, data_path='./data/', model_path='./model/epi'): self.embed_dim = EMBEDDING_DIM self.data_path = data_path self.model_path = model_path self.traj_length = traj_length self.GAMMA = GAMMA action_space = env.action_space state_space = env.observation_space self.state_dim = state_space.shape[0] self.action_dim = action_space.shape[0] traj_dim = traj_length*(self.state_dim+self.action_dim) state_embedding_space = spaces.Box(-np.inf, np.inf, shape=(state_space.shape[0]+self.embed_dim, )) # add the embedding param dim # initialize epi policy if EPI_POLICY_ALG == 'ppo': self.epi_policy = PPO(self.state_dim, self.action_dim) self.epi_policy.to_cuda() elif EPI_POLICY_ALG == 'random': self.epi_policy = RandomPolicy(self.action_dim) else: raise NotImplementedError # initialize task specific policy if TASK_POLICY_ALG == 'ppo': self.task_specific_policy = PPO(self.state_dim+self.embed_dim, self.action_dim) elif TASK_POLICY_ALG == 'td3': self.task_specific_policy = TD3_Trainer(replay_buffer, state_embedding_space, action_space, \ hidden_dim, q_lr, policy_lr, action_range, policy_target_update_interval) else: raise NotImplementedError self.embed_net = EmbedNetwork(traj_dim, self.embed_dim, HIDDEN_DIM).cuda() self.sa_dim=self.state_dim+self.action_dim self.predict_net = PredictionNetwork(self.sa_dim, self.state_dim, HIDDEN_DIM).cuda() self.sae_dim = self.sa_dim+self.embed_dim self.epi_predict_net = PredictionNetwork(self.sae_dim, self.state_dim, HIDDEN_DIM).cuda() self.predict_net_optimizer = optim.Adam(self.predict_net.parameters(), PREDICTOR_LR) embed_epi_predict_net_params = list(self.epi_predict_net.parameters()) + list(self.embed_net.parameters()) self.embed_epi_predict_net_optimizer = optim.Adam(embed_epi_predict_net_params, EPI_PREDICTOR_LR) self.criterion = nn.MSELoss() def save_model(self, model_name=None): if model_name is 'predictor_and_embedding': torch.save(self.predict_net.state_dict(), self.model_path +'_predictor') torch.save(self.epi_predict_net.state_dict(), self.model_path+'_EPIpredictor') torch.save(self.embed_net.state_dict(), self.model_path+'_embedding') # print('Predictor, EPI Predictor, and Embedding model saved.') elif model_name is 'epi_policy': self.epi_policy.save_model(path = self.model_path +'_'+EPI_POLICY_ALG+ '_epi_policy') # print('EPI policy saved.') elif model_name is 'task_specific_policy': self.task_specific_policy.save_model(path = self.model_path+'_'+TASK_POLICY_ALG + '_policy') # print('Task specific policy saved.') def load_model(self, model_name=None): if model_name is 'predictor_and_embedding': self.predict_net.load_state_dict(torch.load(self.model_path+'_predictor')) self.epi_predict_net.load_state_dict(torch.load(self.model_path+'_EPIpredictor')) self.embed_net.load_state_dict(torch.load(self.model_path+'_embedding')) self.predict_net.eval() self.epi_predict_net.eval() self.embed_net.eval() # print('Predictor, EPI_Predictor, and Embedding model loaded.') elif model_name is 'epi_policy': self.epi_policy.load_model(path = self.model_path +'_'+EPI_POLICY_ALG+ '_epi_policy') # print('EPI policy loaded.') elif model_name is 'task_specific_policy': self.task_specific_policy.load_model(path =self.model_path+'_'+TASK_POLICY_ALG + '_policy') # print('Task specific policy loaded.') def load_transition_data(self, path = None): """ transition data format: { 'x_train': (# episodes 1, # steps, state_dim + action_dim) 'x_test': (# episodes 2, # steps, state_dim + action_dim) 'y_train': (# episodes 1, # steps, state_dim) 'y_test': (# episodes 2, # steps, state_dim) 'param_train': (# episodes 1, # steps, param_dic) 'param_test': (# episodes 2, # steps, param_dic) } """ if path is None: path = self.data_path if DISCRETE: path+='_discrete' if VINE: path+='_vine' path+='_data.pckl' path = os.path.join(os.path.dirname(os.path.realpath(__file__)), path) data = pickle.load(open(os.path.abspath(path),'rb' )) return data def where_equal(self, array_of_array, array): """Return index of array_of_array where its item equals to array""" idx=[] for i in range(array_of_array.shape[0]): if (array_of_array[i]==array).all(): idx.append(i) return idx # """ # original implementation of separation loss in EPI paper is follow: # def separation_loss(y_true, y_pred): # # y_true = tf.squeeze(y_true) # env_id, _ = tf.unique(y_true) # # mu = [] # sigma = [] # for i in range(EPI.NUM_OF_ENVS): # idx = tf.where(tf.equal(y_true, env_id[i])) # traj = tf.gather(y_pred, idx) # mu.append(tf.squeeze(K.mean(traj, axis=0))) # this_sigma = tf.maximum(K.mean(K.std(traj, axis=0))-0.1, 0) # sigma.append(this_sigma) # # mu = tf.stack(mu) # r = tf.reduce_sum(mu * mu, 1) # r = tf.reshape(r, [-1, 1]) # D = (r - 2 * tf.matmul(mu, tf.transpose(mu)) + tf.transpose(r))/tf.constant(EPI.EMBEDDING_DIMENSION, dtype=tf.float32) # D = tf.sqrt(D + tf.eye(EPI.NUM_OF_ENVS, dtype=tf.float32)) # distance = K.mean(tf.reduce_sum(0.1 - tf.minimum(D, 0.1))) # # sigma = tf.stack(sigma) # # return (distance + K.mean(sigma))*0.01 # """ def separation_loss(self, params_list, trajs): # get list of parameters from ordered dictionary list_params = [] for params in params_list: set_params = [] for key, value in list(params.items()): # print(type(value)) if isinstance(value, np.ndarray): value = value.reshape(-1).astype(float) set_params = np.concatenate((set_params, value)).tolist() else: set_params.append(value.astype(float).tolist()) list_params.append(set_params) # unique_params_list = np.unique(np.array(list_params).astype('float32'), axis=0) unique_params_list = [list(x) for x in set(tuple(x) for x in list_params)] number_envs = len(unique_params_list) mu=[] sigma=[] for unique_params in unique_params_list: specific_env_idx = self.where_equal(np.array(list_params), np.array(unique_params)) specific_env_trajs = trajs[specific_env_idx] specific_env_trajs = torch.FloatTensor(specific_env_trajs).cuda() embedding = self.embed_net(specific_env_trajs) # (len(specific_env_trajs), len(embedding)) if len(embedding.shape)>2: embedding = embedding.view(-1, embedding.shape[-1]) mu.append(torch.squeeze(torch.mean(embedding, dim=0))) this_sigma = torch.max(torch.mean(torch.std(embedding, dim=0))-0.1, 0)[0] # values of max sigma.append(this_sigma) mu = torch.stack(mu) r = torch.sum(mu*mu, 1) r = r.view(-1,1) D = (r-2*torch.mm(mu, torch.t(mu)) + torch.t(r))/self.embed_dim D = torch.sqrt(D+torch.eye(number_envs).cuda()) distance = torch.mean(torch.sum(0.1-torch.min(D, torch.as_tensor(0.1).cuda()))) sigma = torch.stack(sigma) return (distance + torch.mean(sigma)) * 0.01 def predictor_update(self, input, label, trajs, params_list): """ Update the two predictors: 1. predictor with (s,a) as input 2. predictor with (embedding, s,a) as input """ # prediction network update state_action_in_trajs = np.array(trajs[:, :, :, :-1]) # remove the rewards state_action_in_trajs = state_action_in_trajs.reshape(state_action_in_trajs.shape[0], state_action_in_trajs.shape[1], -1 )# merge last two dims input = torch.FloatTensor(input).cuda() label = torch.FloatTensor(label).cuda() predict = self.predict_net(input) predict_loss = self.criterion(predict, label) self.predict_net_optimizer.zero_grad() predict_loss.backward() self.predict_net_optimizer.step() batch_loss = [] # embedding prediction network update for epi in range(state_action_in_trajs.shape[0]): for traj in range(state_action_in_trajs.shape[1]): embedding = self.embed_net(state_action_in_trajs[epi][traj]) embed_input = torch.cat((embedding.repeat(input[epi].shape[0], 1), input[epi]), dim=1) # repeat embedding to the batch size epi_predict = self.epi_predict_net(embed_input) epi_predict_loss = self.criterion(epi_predict, label[epi]) if torch.isnan(epi_predict_loss).any(): # capture nan cases print('Nan EPI prediction loss') print(state_action_in_trajs[epi][traj], embedding, embed_input, epi_predict, label[epi]) else: batch_loss.append(epi_predict_loss) sum_epi_predict_loss = sum(batch_loss) if SEPARATION_LOSS: separation_loss=self.separation_loss(params_list, state_action_in_trajs) if torch.isnan(separation_loss).any(): # capture nan cases print('Nan separation loss') else: sum_epi_predict_loss+=separation_loss else: separation_loss = 0. self.embed_epi_predict_net_optimizer.zero_grad() sum_epi_predict_loss.backward() self.embed_epi_predict_net_optimizer.step() return predict_loss, torch.mean(torch.stack(batch_loss)).detach().cpu().numpy(), separation_loss.detach().cpu().numpy() def prediction_reward(self, input, label, trajs): """ Generate prediction reward for each trajectory """ r_trajs = [] sa_trajs = [] rewards = [] predict_rewards = [] state_action_in_trajs = trajs[:, :, :, :-1] # remove the rewards reward_in_trajs = trajs[:, :, :, -1:] # only the rewards state_action_in_trajs_ = state_action_in_trajs.reshape(state_action_in_trajs.shape[0], state_action_in_trajs.shape[1], -1 ) # merge last two dims reward_in_trajs_ = reward_in_trajs.reshape(reward_in_trajs.shape[0], reward_in_trajs.shape[1], -1) # merge last two dims input = torch.FloatTensor(input).cuda() label = torch.FloatTensor(label).cuda() for epi in range(state_action_in_trajs_.shape[0]): predict = self.predict_net(input[epi]) predict_loss = self.criterion(predict, label[epi]) episode_epi_predict_loss = [] for traj in range(state_action_in_trajs_.shape[1]): embedding = self.embed_net(state_action_in_trajs_[epi][traj]) # print(embedding) embed_input = torch.cat((embedding.repeat(input[epi].shape[0], 1), input[epi]), dim=1) epi_predict = self.epi_predict_net(embed_input) epi_predict_loss = self.criterion(epi_predict, label[epi]) predict_r = (epi_predict_loss - predict_loss).detach().cpu().numpy() predict_r = np.clip(predict_r*PREDICTION_REWARD_SCALE0, 0, 1000) # accoring to original implementation, multiplied factor and non-negative # print(predict_r) augmented_r = DEFAULT_REWARD_SCALE * reward_in_trajs_[epi][traj] + PREDICTION_REWARD_SCALE * predict_r rewards.append(augmented_r) predict_rewards.append(predict_r) r_trajs.append(augmented_r) sa_trajs.append(state_action_in_trajs[epi][traj]) return [np.array(sa_trajs), r_trajs], np.mean(rewards), np.mean(predict_rewards) def EPIpolicy_rollout(self, env, max_steps=30, params=None): """ Roll one trajectory with max_steps return: traj: shape of (max_steps, state_dim+action_dim+reward_dim) s_: next observation env.get_state(): next underlying state """ if params is not None: env.set_dynamics_parameters(params) # env.renderer_on() for _ in range(10): # max iteration for getting a single rollout s = env.reset() traj=[] for _ in range(max_steps): a = self.epi_policy.choose_action(s) # env.render() try: s_, r, done, _ = env.step(a) except MujocoException: print('EPI Rollout: MujocoException') break s_a_r = np.concatenate((s,a, [r])) # state, action, reward traj.append(s_a_r) s=s_ if len(traj) == max_steps: break if len(traj)<max_steps: print('EPI rollout length smaller than expected!') return traj, [s_, env.get_state()] def EPIpolicy_update(self, buffer): """ update the EPI policy buffer = [trajectories, rewards] trajectories: (# trajs, traj_length, state_dim+action_dim) rewards: (# trajs, traj_length) """ # how to learn the policy with the reward for policy, and batch of trajectories to generate one reward [trajs, rewards]=buffer states = trajs[:, :, :self.state_dim] actions = trajs[:, :, self.state_dim:] # update ppo s_ = states[:, -1] # not considering done here, for reaching no problem for pushing may have problem (done is terminal state) v_s_ = self.epi_policy.critic(torch.Tensor([s_]).cuda()).cpu().detach().numpy()[0, 0] discounted_r = [] for r in np.array(rewards).swapaxes(0,1)[-2::-1]: # on episode steps dim, [1,2,3,4][-2::-1] gives 3,2,1 v_s_ = np.expand_dims(r, axis=1) + self.GAMMA * v_s_ # make r has same shape as v_s_: (N, 1) discounted_r.append(v_s_) discounted_r.reverse() # print('r: ', np.array(discounted_r).shape) # (traj_length, # trajs, 1) bs, ba, br = np.vstack(states[:, :-1]), \ np.vstack(actions[:, :-1]), \ np.vstack(np.array(discounted_r).swapaxes(0,1)) # print(bs.shape, ba.shape, br.shape) self.epi_policy.update(bs, ba, br) def sample_randomized_params(self, dataset_params, batch_size): """ Sample environment parameters from the loaded transition dataset. Note: this implementation is different from original implementation for the paper, but it saves the steps for matching the env idexes between the trajectory generation of EPI policy in randomized envs and the envs in transition dataset. """ random_idx = np.random.randint(len(dataset_params), size=batch_size) # with replacement return random_idx,
np.array(dataset_params)
numpy.array
# from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import time import datetime import numpy as np import tensorflow as tf #from tf.nn import rnn, rnn_cell import codecs import collections import random from collections import Counter import xml.etree.ElementTree as ET import glob import nltk from nltk.stem.porter import PorterStemmer import sys import pickle import os import shutil import os.path from sklearn.metrics import confusion_matrix def print_and_log(log_str): print (log_str) logging.info(log_str) SESSION_NAME = "session_name" SESSION_DATA = "session_data" SESSION_EVENTS = "session_events" # Data to train auto-encoder rig_data = [] glyph_data = [] def read_project_data(): for file_name in glob.glob('data/*.txt'): project_name = file_name[file_name.rfind('/') + 1:] project_name = project_name[:len(project_name)-4] print ("File name = %s, project name = %s " % (file_name, project_name)) tree = ET.parse(file_name) doc = tree.getroot() for session_element in doc.findall('session'): session_data = {} session_name = session_element.attrib['name'] print(session_name) session_data[SESSION_NAME] = session_name session_data[SESSION_DATA] = [] session_data[SESSION_EVENTS] = [] frame_elements = session_element.findall('data/frame') for frame_element in frame_elements: object_point_elements = frame_element.findall('o') point_data = [] for object_point_element in object_point_elements: for s in object_point_element.text.split(','): point_data.append(float(s)) rig_data.append(point_data[:39]) glyph_data.append(point_data[39:51]) glyph_data.append(point_data[51:63]) def turn_to_intermediate_data(data, data_point_size, batch_size): rearranged_data = np.array(data) epoch_size = len(data) // batch_size return rearranged_data[:epoch_size * batch_size].\ reshape((epoch_size, batch_size, data_point_size)) class Auto_Encoder_Config(object): session_training_percentage = (0, 0.8) session_testing_percentage = (0.8, 1.0) class Autoencoder(object): def __init__(self, is_training, config): with tf.device('/gpu:2'): # multiple batch sizes self.batch_sizes = batch_sizes = config.batch_sizes # multiple input sizes self.n_inputs = n_inputs = config.n_inputs hidden_size_1 = config.hidden_size_layer_1 hidden_size_2 = config.hidden_size_layer_2 self._input_datas = input_datas = [tf.placeholder(tf.float32, [batch_size, n_input]) for (batch_size, n_input) in zip(batch_sizes, n_inputs)] weights = {} biases = {} with tf.variable_scope("encoder"): for i, n_input in enumerate(n_inputs): weights['encoder_h1_' + str(i)] = tf.get_variable('weight_encoder_h1_' + str(i), [n_input, hidden_size_1]) biases['encoder_h1_' + str(i)] = tf.get_variable('bias_encoder_h1_' + str(i), [hidden_size_1]) # # Shared between different input types # weights['encoder_h2_' + str(i)] = tf.get_variable('weight_encoder_h2_' + str(i), [hidden_size_1, hidden_size_2]) # biases['encoder_h2_' + str(i)] = tf.get_variable('bias_encoder_h2_' + str(i), [hidden_size_2]) weights['encoder_h2'] = tf.get_variable('weight_encoder_h2', [hidden_size_1, hidden_size_2]) biases['encoder_h2'] = tf.get_variable('bias_encoder_h2', [hidden_size_2]) with tf.variable_scope("decoder"): # Shared between different input types weights['decoder_b1' ] = tf.get_variable('weight_decoder_b1', [hidden_size_2, hidden_size_1]) biases['decoder_b1' ] = tf.get_variable('bias_decoder_b1', [hidden_size_1]) for i, n_input in enumerate(n_inputs): # weights['decoder_b1_' + str(i)] = tf.get_variable('weight_decoder_b1' + str(i), [hidden_size_2, hidden_size_1]) # biases['decoder_b1_' + str(i)] = tf.get_variable('bias_decoder_b1_' + str(i), [hidden_size_1]) weights['decoder_b2_' + str(i)] = tf.get_variable("weight_decoder_b2_" + str(i), [hidden_size_1, n_input]) biases['decoder_b2_' + str(i)] = tf.get_variable("bias_decoder_b2_" + str(i), [n_input]) error_squared = [] decodeds = [] for i in xrange(len(n_inputs)): encoder_layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(input_datas[i], weights['encoder_h1_'+ str(i)]), biases['encoder_h1_'+ str(i)])) if is_training and config.keep_prob < 1: encoder_layer_1 = tf.nn.dropout(encoder_layer_1, config.keep_prob) # encoder_layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(encoder_layer_1, weights['encoder_h2_' + str(i)]), # biases['encoder_h2_' + str(i)])) encoder_layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(encoder_layer_1, weights['encoder_h2']), biases['encoder_h2'])) if is_training and config.keep_prob < 1: encoder_layer_2 = tf.nn.dropout(encoder_layer_2, config.keep_prob) # decoder_layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(encoder_layer_2, weights['decoder_b1_' + str(i)]), # biases['decoder_b1_' + str(i)])) decoder_layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(encoder_layer_2, weights['decoder_b1' ]), biases['decoder_b1'])) # The output layer should be linear to predict real values decoder_layer_2 = tf.add(tf.matmul(decoder_layer_1, weights['decoder_b2_' + str(i)]), biases['decoder_b2_' + str(i)]) # size = batch_sizes[i] error_squared.append(tf.reduce_mean(tf.pow(input_datas[i] - decoder_layer_2, 2))) decodeds.append(decoder_layer_2) # error_squared = tf.concat(0, error_squared) self._cost = cost = tf.reduce_mean(error_squared) if is_training: self._lr = tf.Variable(0.0, trainable=False) self._train_op = tf.train.RMSPropOptimizer(self._lr).minimize(cost) # tvars = tf.trainable_variables() # grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), config.max_grad_norm) # self._train_op = tf.train.GradientDescentOptimizer(self.lr).apply_gradients(zip(grads, tvars)) else: self._test_op = decodeds self._saver = saver = tf.train.Saver() @property def debug(self): return self._debug def assign_lr(self, session, lr_value): session.run(tf.assign(self.lr, lr_value)) @property def saver(self): return self._saver @property def input_datas(self): return self._input_datas @property def cost(self): return self._cost @property def lr(self): return self._lr @property def train_op(self): return self._train_op @property def test_op(self): return self._test_op '''Generate a training set and a testing set of data''' def generate_data(datas, config) : training_data = [] testing_data = [] expectations = [] for data in datas: expectation = np.mean(data, 0) expectations.append(expectation) data -= expectation # Flatten the data (collapse the project and session hierarchy into a list of session_data) shuffled_data = random.sample(data, len(data)) training_data.append(shuffled_data[int(config.session_training_percentage[0] * len(shuffled_data)): int(config.session_training_percentage[1] * len(shuffled_data))]) testing_data.append(shuffled_data[int(config.session_testing_percentage[0] * len(shuffled_data)): int(config.session_testing_percentage[1] * len(shuffled_data))]) return (training_data, testing_data, expectations) ''' Parameters: rearranged_data: (epoch_size, batch_size, data_point_size) Yields: Take batch_size of data samples, each is a chain of num_steps data points x: [batch_size, data_point_size] ''' def gothrough(rearranged_data): for i in range(np.shape(rearranged_data)[0]): x = rearranged_data[i, :, :] yield x def run_epoch(session, m, datas, eval_op, verbose=False, is_training=True): """Runs the model on the given data.""" start_time = time.time() # costs = np.zeros(len(m.label_classes)) costs = 0 for step, x in enumerate( zip(*[gothrough(data) for data in datas]) ): feed_dict = {} for i in xrange(len(m.input_datas)): feed_dict[m.input_datas[i]] = x[i] cost, eval_val = session.run([m.cost, eval_op], feed_dict) costs += cost if verbose and not is_training: print('True values') print(x) print('Predicted values') print(eval_val) if step % 5 == 0 and step > 0: print_and_log("cost %.5f, costs %.5f, Step %d, average cost: %.5f" % (cost, costs, step, costs / (step + 1))) if not is_training: print_and_log("End of epoch: costs %.5f, Step %d, average cost: %.5f" % (costs, step, costs / (step + 1) )) # default mode is to train and test at the same time TRAIN = 'TRAIN' TEST = 'TEST' mode = TRAIN if __name__ == '__main__': # ======================================================================== # ======================================================================== # ===========================SETUP TRAIN TEST============================= if len(sys.argv) > 1: train_test_config = sys.argv[1] if train_test_config == 'train': mode = TRAIN if train_test_config == 'test' : mode = TEST if mode == TRAIN: if len(sys.argv) > 2: log_dir = sys.argv[2] else: current_time = datetime.datetime.now() time_str = '%s_%s_%s_%s_%s_%s' % (current_time.year, current_time.month, current_time.day, current_time.hour, current_time.minute, current_time.second) log_dir = 'logs/run_' + time_str print('Train and output into directory ' + log_dir) os.makedirs(log_dir) logging.basicConfig(filename = log_dir + '/logs.log',level=logging.DEBUG) # Copy the current executed py file to log (To make sure we can replicate the experiment with the same code) shutil.copy(os.path.realpath(__file__), log_dir) if mode == TEST: if len(sys.argv) > 2: model_path = sys.argv[2] print('Test using model ' + model_path) else: sys.exit("autoencoder.py test model_path") # ======================================================================== # ======================================================================== # =============================READING INPUT ============================= SIMPLE_SPLIT = 'autoencoder_train_test.pkl' if os.path.isfile(SIMPLE_SPLIT) : # Load the file logging.info("Load file into training and testing data sets " + SIMPLE_SPLIT) with open(SIMPLE_SPLIT, 'rb') as f: t = pickle.load(f) train = t['train'] test = t['test'] expectation = t['expectation'] else: logging.info("Read training and testing data sets from data directory ") read_project_data() train, test, expectation = generate_data([rig_data, glyph_data], Auto_Encoder_Config) with open(SIMPLE_SPLIT, 'wb') as f: pickle.dump({'train': train, 'test': test, 'expectation': expectation}, f, pickle.HIGHEST_PROTOCOL) print_and_log('----Done saving training and testing data---') print_and_log('Train size ' + str(len(train))) for i in xrange(len(train)): print_and_log('Type ' + str(i) + " = " + str(len(train[i]))) print(train[0][5]) print_and_log('Test size ' + str(len(test))) for i in xrange(len(test)): print_and_log('Type ' + str(i) + " = " + str(len(test[i]))) print(test[0][5]) print_and_log('expectation') print_and_log(expectation) class SmallConfig(object): """Small config.""" init_scale = 0.5 learning_rate = 0.02 # Set this value higher without norm clipping # might make the cost explodes hidden_size_layer_1 = 50 # the number of LSTM units hidden_size_layer_2 = 200 # the number of LSTM units max_epoch = 10 # The number of epochs trained with the initial learning rate max_max_epoch = 500 # Number of running epochs keep_prob = 0.8 # Drop out keep probability, = 1.0 no dropout lr_decay = 0.990 # Learning rate decay batch_sizes = [200, 400] # We could actually still use batch_size for convenient n_inputs = [39, 12] # Number of float values for each frame test_epoch = 50 # Test after these many epochs save_epoch = 25 max_grad_norm = 5 config = SmallConfig() intermediate_config = SmallConfig() intermediate_config.keep_prob = 1 eval_config = SmallConfig() eval_config.keep_prob = 1 eval_config.batch_sizes = [200, 400] eval_config_2 = SmallConfig() eval_config_2.keep_prob = 1 eval_config_2.batch_sizes = [1, 1] print('Turn train data to intermediate form') im_train_data = [turn_to_intermediate_data(train_data, config.n_inputs[i], config.batch_sizes[i]) for i, train_data in enumerate(train)] print('Turn test data to intermediate form') im_inter_test_data = [turn_to_intermediate_data(test_data, intermediate_config.n_inputs[i], intermediate_config.batch_sizes[i]) for i, test_data in enumerate(test)] im_final_test_data = [turn_to_intermediate_data(test_data, eval_config.n_inputs[i], eval_config.batch_sizes[i]) for i, test_data in enumerate(test)] logging.info("Train Configuration") for attr in dir(config): # Not default properties if attr[:2] != '__': log_str = "%s = %s" % (attr, getattr(config, attr)) logging.info(log_str) logging.info("Evaluation Configuration") for attr in dir(eval_config): # Not default properties if attr[:2] != '__': log_str = "%s = %s" % (attr, getattr(eval_config, attr)) logging.info(log_str) with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto( allow_soft_placement=True)) as session: initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale) print('-------- Setup m model ---------') with tf.variable_scope("model", reuse=None, initializer=initializer): m = Autoencoder(is_training=True, config=config) print('-------- Setup m_intermediate_test model ---------') with tf.variable_scope("model", reuse=True, initializer=initializer): m_intermediate_test = Autoencoder(is_training=False, config=intermediate_config) print('-------- Setup mtest model ----------') with tf.variable_scope("model", reuse=True, initializer=initializer): mtest = Autoencoder(is_training=False, config=eval_config) with tf.variable_scope("model", reuse=True, initializer=initializer): mtest_test = Autoencoder(is_training=False, config=eval_config_2) if mode == TRAIN: tf.initialize_all_variables().run() print_and_log('---------------BASELINE-------------') run_epoch(session, m_intermediate_test, im_inter_test_data, m_intermediate_test.test_op, is_training=False, verbose=False) print_and_log('----------------TRAIN---------------') for i in range(config.max_max_epoch): try: print_and_log('-------------------------------') start_time = time.time() lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0) m.assign_lr(session, config.learning_rate * lr_decay) print_and_log("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr))) run_epoch(session, m, im_train_data, m.train_op, verbose=False) print_and_log("Time %.3f" % (time.time() - start_time) ) print_and_log('-------------------------------') if i % config.test_epoch == 0: print_and_log('----------Intermediate test -----------') # Run test on train print_and_log('Run model on train data') run_epoch(session, m_intermediate_test, im_train_data, m_intermediate_test.test_op, is_training=False, verbose = False) print_and_log('Run model on test data') run_epoch(session, m_intermediate_test, im_inter_test_data, m_intermediate_test.test_op, is_training=False, verbose = False) if i % config.save_epoch == 0: start_time = time.time() model_path = m.saver.save(session, log_dir + "/model.ckpt") print_and_log("Model saved in file: %s" % model_path) print_and_log("Time %.3f" % (time.time() - start_time) ) except ValueError: print_and_log("Value error, reload the most recent saved model") m.saver.restore(session, model_path) break model_path = m.saver.save(session, log_dir + "/model.ckpt") print_and_log("Model saved in file: %s" % model_path) if mode == TEST: m.saver.restore(session, model_path) print_and_log("Restore model saved in file: %s" % model_path) print_and_log('--------------TEST--------------') print_and_log('Run model on test data') run_epoch(session, mtest, im_final_test_data, mtest.test_op, is_training=False, verbose=False) print_and_log('Run model on sample data') a = np.array([0.7345144,0.2071555,1.218503,0.6770352,0.2617454,1.340257,0.6781173,0.07657745,1.497948,0.637142,-0.06540541,1.2899,0.6534985, -0.1020509,1.250801,0.6258702,-0.138501,1.138003,0.6847188,-0.1192688,1.216028,0.7559613,0.1016199,1.152093,0.8359883,-0.0585327,1.101261, 0.6747639,-0.1555298,1.110413,0.6371136,-0.1579534,1.140965,0.5651836,-0.1791936,1.140071,0.6521184,-0.1845737,1.168485]) a -= expectation[0] b = np.array([-0.4483964,-0.2694907,1.222,-0.4602559,-0.1941137,1.227,-0.4279048,-0.2011898,1.445,-0.3881741,-0.2630816,1.323]) b -= expectation[1] a = a.reshape((1,1,39)) b = b.reshape((1,1,12)) run_epoch(session, mtest_test, [a,b], mtest_test.test_op, is_training=False, verbose=True) run_epoch(session, mtest_test, [np.array(test[0][0]).reshape((1,1,39)),
np.array(test[1][0])
numpy.array
import numpy as np import cv2 import os import h5py from scipy.io import loadmat import random class_name = "03001627_chair" hdf5_path = class_name+"/"+class_name[:8]+"_vox256.hdf5" voxel_input = h5py.File(hdf5_path, 'r') voxel_input_voxels = voxel_input["voxels"][:] voxel_input_points_16 = voxel_input["points_16"][:] voxel_input_values_16 = voxel_input["values_16"][:] voxel_input_points_32 = voxel_input["points_32"][:] voxel_input_values_32 = voxel_input["values_32"][:] voxel_input_points_64 = voxel_input["points_64"][:] voxel_input_values_64 = voxel_input["values_64"][:] if not os.path.exists("tmp"): os.makedirs("tmp") for idx in range(64): vox = voxel_input_voxels[idx,:,:,:,0]*255 img1 = np.clip(np.amax(vox, axis=0)*256, 0,255).astype(np.uint8) img2 = np.clip(np.amax(vox, axis=1)*256, 0,255).astype(np.uint8) img3 = np.clip(np.amax(vox, axis=2)*256, 0,255).astype(np.uint8) cv2.imwrite("tmp/"+str(idx)+"_vox_1.png",img1) cv2.imwrite("tmp/"+str(idx)+"_vox_2.png",img2) cv2.imwrite("tmp/"+str(idx)+"_vox_3.png",img3) vox = np.zeros([256,256,256],np.uint8) batch_points_int = voxel_input_points_16[idx] batch_values = voxel_input_values_16[idx] vox[batch_points_int[:,0],batch_points_int[:,1],batch_points_int[:,2]] = np.reshape(batch_values, [-1]) img1 = np.clip(np.amax(vox, axis=0)*256, 0,255).astype(np.uint8) img2 = np.clip(np.amax(vox, axis=1)*256, 0,255).astype(np.uint8) img3 = np.clip(np.amax(vox, axis=2)*256, 0,255).astype(np.uint8) cv2.imwrite("tmp/"+str(idx)+"_p16_1.png",img1) cv2.imwrite("tmp/"+str(idx)+"_p16_2.png",img2) cv2.imwrite("tmp/"+str(idx)+"_p16_3.png",img3) vox =
np.zeros([256,256,256],np.uint8)
numpy.zeros
import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score from sklearn.preprocessing import MinMaxScaler, MaxAbsScaler, StandardScaler, Normalizer from sklearn.feature_selection import VarianceThreshold, SelectKBest, RFE from sklearn.model_selection import cross_val_score from xgboost import XGBRegressor data = pd.read_excel("/Users/ashzerm/item/GasOline/data/oline.xlsx") target = np.array(data['RON_LOSS'].copy()) data = data[data.columns[16:]] data =
np.array(data)
numpy.array
import numpy as np from PIL import Image import tensorflow as tf from groupmembers import print_group_members from utilities import Utilities def main(): print_group_members() feature_for_classification = 'Eyeglasses' data_file_path = './data/img_align_celeba/' # read label file label_file_name = './data/list_attr_celeba.txt' features = np.genfromtxt(label_file_name, skip_header=1, max_rows=1, dtype='str') # print(len(features)) # bad method but couldn't find any alternative feature_col_index = np.where(features == feature_for_classification)[0][0] print('Eyeglass column index: ', feature_col_index) label = np.genfromtxt(label_file_name, dtype='str', skip_header=2, usecols=(0, feature_col_index)) dataset_count = len(label) training_count = int(0.8 * dataset_count) test_count = int(0.2 * dataset_count) small_training_count = training_count ##int(0.01 * training_count) # python's random module isn’t made to deal with numpy arrays # since it’s not exactly the same as nested python lists np.random.seed(20) np.random.shuffle(label) image_file_names = label[:, 0] expected_output = label[:, 1] b = expected_output.astype(np.int).clip(min=0) one_hot_outputs =
np.eye(2)
numpy.eye
import cv2 import numpy as np from scipy.ndimage.morphology import distance_transform_cdt import torch from scipy.ndimage.morphology import distance_transform_edt, binary_erosion,generate_binary_structure from skimage.io import imsave device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # ----------- IoU and Accuracy ----------- def compute_iou_and_accuracy(arrs, edge_mask1): intersection = cv2.bitwise_and(arrs, edge_mask1) union = cv2.bitwise_or(arrs, edge_mask1) intersection_sum = np.sum(intersection) union_sum = np.sum(union) iou = (intersection_sum) / (union_sum) total = np.sum(arrs) correct_predictions = intersection_sum accuracy = correct_predictions / total # print(iou, accuracy) return iou, accuracy def __surface_distances(result, reference, voxelspacing=None, connectivity=1): """ The distances between the surface voxel of binary objects in result and their nearest partner surface voxel of a binary object in reference. """ result = np.atleast_1d(result.astype(np.bool)) reference = np.atleast_1d(reference.astype(np.bool)) if voxelspacing is not None: voxelspacing = _ni_support._normalize_sequence(voxelspacing, result.ndim) voxelspacing = np.asarray(voxelspacing, dtype=np.float64) if not voxelspacing.flags.contiguous: voxelspacing = voxelspacing.copy() # binary structure footprint = generate_binary_structure(result.ndim, connectivity) # test for emptiness if 0 == np.count_nonzero(result): raise RuntimeError('The first supplied array does not contain any binary object.') if 0 == np.count_nonzero(reference): raise RuntimeError('The second supplied array does not contain any binary object.') # extract only 1-pixel border line of objects result_border = result ^ binary_erosion(result, structure=footprint, iterations=1) reference_border = reference ^ binary_erosion(reference, structure=footprint, iterations=1) dt = distance_transform_edt(~reference_border, sampling=voxelspacing) # print(dt) reference_border = (reference_border + 0).astype(np.float32) sds = dt[result_border] return sds # ----------- Hausdorff Distance metrics ----------- def hd(result, reference, voxelspacing=None, connectivity=1): hd1 = __surface_distances(result, reference, voxelspacing, connectivity).max() hd2 = __surface_distances(reference, result, voxelspacing, connectivity).max() hd = max(hd1, hd2) return hd def hd95(result, reference, voxelspacing=None, connectivity=1): hd1 = __surface_distances(result, reference, voxelspacing, connectivity) hd2 = __surface_distances(reference, result, voxelspacing, connectivity) hd95 = np.percentile(
np.hstack((hd1, hd2))
numpy.hstack
""" Utility routines """ from __future__ import (print_function, absolute_import, division, unicode_literals) import numpy as np import os import glob import pdb from matplotlib import pyplot as plt from astropy.table import Table from astropy.io import fits from xastropy.xutils import xdebug as xdb from cosredux import utils as cr_utils def set_background_region(obj_tr, segm, coadd_corrtag_woPHA_file, apert=25., ywidth=50., low_yoff=-10., check=False): """ Defines background region (2 regions for FUVA, 1 region for FUVB) Parameters ---------- obj_tr : float, int object trace segm : str segment coadd_corrtag_woPHA_file : str For wavelength info apert: float, optional aperture ywidth : float, optional width of the region low_yoff: float, int, optional offset from the aperture for the lower region check : bool, optional plot region Returns ------- bg_region : dict dict with background region(s) """ # Load data = Table.read(coadd_corrtag_woPHA_file) wave = data['WAVELENGTH'].data # Set bg_region = {} if segm == 'FUVA': x1=1200. x2=max(wave) elif segm == 'FUVB': x1=900. x2=max(wave) bg_region['lower'] = (x1,x2, obj_tr-apert+low_yoff, obj_tr-apert-ywidth+low_yoff) if segm == 'FUVA': bg_region['upper'] = (x1,x2, obj_tr+apert, obj_tr+apert+ywidth) # Write and Return outfile = coadd_corrtag_woPHA_file.replace('.fits', '_bgregion.json') if check: yfull = data['YFULL'] plt.scatter(wave,yfull,s=1) # Upper for key in ['lower', 'upper']: try: x1,x2,y1,y2 = bg_region[key] except KeyError: continue plt.plot([x1,x2,x2,x1,x1],[y1,y1,y2,y2,y1],'r',linewidth=3.3) plt.xlim(x1-10,x2+10) if segm == 'FUVB': plt.xlim(50.,x2+10) plt.ylim(min(yfull[wave > x1]),max(yfull[wave > x1])) plt.show() # Return return bg_region def get_pha_values_science(region, corrtagfile, segm, background=True): """ Grab the PHA values in the input region Parameters ---------- region : dict background or extraction region(s) corrtagfile: str segm: str background : bool, optional is it background region Returns ------- all_phas : ndarray PHA values in the region xdopp_min : float xdopp_max : float min and max values for XDOPP in the region(s) """ if background: reg_keys = ['lower', 'upper'] if segm == 'FUVB': reg_keys = ['lower'] else: reg_keys = ['extraction'] # Read data = Table.read(corrtagfile) wave = data['WAVELENGTH'] xdopp = data['XDOPP'].data yfull = data['YFULL'] dq = data['DQ'] pha = data['PHA'].data # Loop all_phas = [] all_xdopp = [] for key in reg_keys: try: x1,x2,y1,y2 = region[key] except KeyError: print("No region={:s} provided. Skipping it".format(key)) continue if (y1 > y2): yn=y1 y1=y2 y2=yn if (x1 > x2): xn=x1 x1=x2 x2=xn iphas = (wave >= x1) & (wave <= x2) & (dq == 0) & (yfull > y1) & (yfull < y2) all_phas.append(pha[iphas]) all_xdopp.append(xdopp[iphas]) # Concatenate all_phas = np.concatenate(all_phas) all_xdopp = np.concatenate(all_xdopp) xdopp_min, xdopp_max = np.min(all_xdopp), np.max(all_xdopp) # Return return all_phas, xdopp_min, xdopp_max def get_pha_values_dark(bg_region, dark_corrtag, xdopp_mnx): """ Grab the PHA values in the input region Parameters ---------- bg_region : dict background region(s) dark_corrtag : str dark file xdopp_mnx : tuple min and max values for XDOPP in the region(s) Returns ------- all_phas : ndarray PHA values in the region # xdopp_min : float # xdopp_max : float """ # Read data = Table.read(dark_corrtag) xdopp = data['XDOPP'].data yfull = data['YFULL'] dq = data['DQ'] pha = data['PHA'].data all_phas = [] for key in ['lower', 'upper']: try: x1,x2,y1,y2 = bg_region[key] except KeyError: print("No region={:s} provided. Skipping it".format(key)) continue # Over-ride with xdopp x1, x2 = xdopp_mnx if (y1 > y2): yn=y1 y1=y2 y2=yn if (x1 > x2): xn=x1 x1=x2 x2=xn iphas = (xdopp >= x1) & (xdopp <= x2) & (dq == 0) & (yfull > y1) & (yfull < y2) all_phas.append(pha[iphas]) # Concatenate all_phas =
np.concatenate(all_phas)
numpy.concatenate
import os import os.path as osp import numpy as np import random import collections import torch import torchvision import cv2 from torch.utils import data import matplotlib.pyplot as plt import nibabel as nib from skimage.transform import resize import SimpleITK as sitk import math from batchgenerators.transforms.abstract_transforms import Compose from batchgenerators.transforms.spatial_transforms import SpatialTransform, MirrorTransform from batchgenerators.transforms.color_transforms import BrightnessMultiplicativeTransform, GammaTransform, \ BrightnessTransform, ContrastAugmentationTransform from batchgenerators.transforms.noise_transforms import GaussianNoiseTransform, GaussianBlurTransform from batchgenerators.transforms.resample_transforms import SimulateLowResolutionTransform class MOTSDataSet(data.Dataset): def __init__(self, root, list_path, max_iters=None, crop_size=(64, 192, 192), mean=(128, 128, 128), scale=True, mirror=True, ignore_label=255): self.root = root self.list_path = list_path self.crop_d, self.crop_h, self.crop_w = crop_size self.scale = scale self.ignore_label = ignore_label self.mean = mean self.is_mirror = mirror self.img_ids = [i_id.strip().split() for i_id in open(self.root + self.list_path)] if not max_iters == None: self.img_ids = self.img_ids * int(np.ceil(float(max_iters) / len(self.img_ids))) self.files = [] spacing = { 0: [0.8, 0.8, 1.5], 1: [0.8, 0.8, 1.5], 2: [0.8, 0.8, 1.5], 3: [0.8, 0.8, 1.5], 4: [0.8, 0.8, 1.5], 5: [0.8, 0.8, 1.5], 6: [0.8, 0.8, 1.5], } print("Start preprocessing....") for item in self.img_ids: print(item) image_path, label_path = item task_id = int(image_path[16 + 5]) if task_id != 1: name = osp.splitext(osp.basename(label_path))[0] else: name = label_path[31 + 5:41 + 5] img_file = osp.join(self.root, image_path) label_file = osp.join(self.root, label_path) label = nib.load(label_file).get_data() if task_id == 1: label = label.transpose((1, 2, 0)) boud_h, boud_w, boud_d = np.where(label >= 1) self.files.append({ "image": img_file, "label": label_file, "name": name, "task_id": task_id, "spacing": spacing[task_id], "bbx": [boud_h, boud_w, boud_d] }) print('{} images are loaded!'.format(len(self.img_ids))) def __len__(self): return len(self.files) def truncate(self, CT, task_id): min_HU = -325 max_HU = 325 subtract = 0 divide = 325. # truncate CT[np.where(CT <= min_HU)] = min_HU CT[np.where(CT >= max_HU)] = max_HU CT = CT - subtract CT = CT / divide return CT def id2trainId(self, label, task_id): if task_id == 0 or task_id == 1 or task_id == 3: organ = (label >= 1) tumor = (label == 2) elif task_id == 2: organ = (label == 1) tumor = (label == 2) elif task_id == 4 or task_id == 5: organ = None tumor = (label == 1) elif task_id == 6: organ = (label == 1) tumor = None else: print("Error, No such task!") return None shape = label.shape results_map = np.zeros((2, shape[0], shape[1], shape[2])).astype(np.float32) if organ is None: results_map[0, :, :, :] = results_map[0, :, :, :] - 1 else: results_map[0, :, :, :] = np.where(organ, 1, 0) if tumor is None: results_map[1, :, :, :] = results_map[1, :, :, :] - 1 else: results_map[1, :, :, :] = np.where(tumor, 1, 0) return results_map def locate_bbx(self, label, scaler, bbx): scale_d = int(self.crop_d * scaler) scale_h = int(self.crop_h * scaler) scale_w = int(self.crop_w * scaler) img_h, img_w, img_d = label.shape # boud_h, boud_w, boud_d = np.where(label >= 1) boud_h, boud_w, boud_d = bbx margin = 32 # pixels bbx_h_min = boud_h.min() bbx_h_max = boud_h.max() bbx_w_min = boud_w.min() bbx_w_max = boud_w.max() bbx_d_min = boud_d.min() bbx_d_max = boud_d.max() if (bbx_h_max - bbx_h_min) <= scale_h: bbx_h_maxt = bbx_h_max + math.ceil((scale_h - (bbx_h_max - bbx_h_min)) / 2) bbx_h_mint = bbx_h_min - math.ceil((scale_h - (bbx_h_max - bbx_h_min)) / 2) if bbx_h_mint < 0: bbx_h_maxt -= bbx_h_mint bbx_h_mint = 0 bbx_h_max = bbx_h_maxt bbx_h_min = bbx_h_mint if (bbx_w_max - bbx_w_min) <= scale_w: bbx_w_maxt = bbx_w_max + math.ceil((scale_w - (bbx_w_max - bbx_w_min)) / 2) bbx_w_mint = bbx_w_min - math.ceil((scale_w - (bbx_w_max - bbx_w_min)) / 2) if bbx_w_mint < 0: bbx_w_maxt -= bbx_w_mint bbx_w_mint = 0 bbx_w_max = bbx_w_maxt bbx_w_min = bbx_w_mint if (bbx_d_max - bbx_d_min) <= scale_d: bbx_d_maxt = bbx_d_max + math.ceil((scale_d - (bbx_d_max - bbx_d_min)) / 2) bbx_d_mint = bbx_d_min - math.ceil((scale_d - (bbx_d_max - bbx_d_min)) / 2) if bbx_d_mint < 0: bbx_d_maxt -= bbx_d_mint bbx_d_mint = 0 bbx_d_max = bbx_d_maxt bbx_d_min = bbx_d_mint bbx_h_min = np.max([bbx_h_min - margin, 0]) bbx_h_max = np.min([bbx_h_max + margin, img_h]) bbx_w_min = np.max([bbx_w_min - margin, 0]) bbx_w_max = np.min([bbx_w_max + margin, img_w]) bbx_d_min = np.max([bbx_d_min - margin, 0]) bbx_d_max = np.min([bbx_d_max + margin, img_d]) if random.random() < 0.8: d0 = random.randint(bbx_d_min, np.max([bbx_d_max - scale_d, bbx_d_min])) h0 = random.randint(bbx_h_min, np.max([bbx_h_max - scale_h, bbx_h_min])) w0 = random.randint(bbx_w_min, np.max([bbx_w_max - scale_w, bbx_w_min])) else: d0 = random.randint(0, img_d - scale_d) h0 = random.randint(0, img_h - scale_h) w0 = random.randint(0, img_w - scale_w) d1 = d0 + scale_d h1 = h0 + scale_h w1 = w0 + scale_w return [h0, h1, w0, w1, d0, d1] def pad_image(self, img, target_size): """Pad an image up to the target size.""" rows_missing = math.ceil(target_size[0] - img.shape[0]) cols_missing = math.ceil(target_size[1] - img.shape[1]) dept_missing = math.ceil(target_size[2] - img.shape[2]) if rows_missing < 0: rows_missing = 0 if cols_missing < 0: cols_missing = 0 if dept_missing < 0: dept_missing = 0 padded_img = np.pad(img, ((0, rows_missing), (0, cols_missing), (0, dept_missing)), 'constant') return padded_img def __getitem__(self, index): datafiles = self.files[index] # read nii file imageNII = nib.load(datafiles["image"]) labelNII = nib.load(datafiles["label"]) image = imageNII.get_data() label = labelNII.get_data() name = datafiles["name"] task_id = datafiles["task_id"] if task_id == 1: image = image.transpose((1, 2, 0)) label = label.transpose((1, 2, 0)) if self.scale and np.random.uniform() < 0.2: scaler = np.random.uniform(0.7, 1.4) else: scaler = 1 image = self.pad_image(image, [self.crop_h * scaler, self.crop_w * scaler, self.crop_d * scaler]) label = self.pad_image(label, [self.crop_h * scaler, self.crop_w * scaler, self.crop_d * scaler]) # print(datafiles["label"]) [h0, h1, w0, w1, d0, d1] = self.locate_bbx(label, scaler, datafiles["bbx"]) image = image[h0: h1, w0: w1, d0: d1] label = label[h0: h1, w0: w1, d0: d1] image = self.truncate(image, task_id) label = self.id2trainId(label, task_id) image = image[np.newaxis, :] image = image.transpose((0, 3, 1, 2)) # Channel x Depth x H x W label = label.transpose((0, 3, 1, 2)) # Depth x H x W if self.is_mirror: if np.random.rand(1) <= 0.5: # flip W image = image[:, :, :, ::-1] label = label[:, :, :, ::-1] if
np.random.rand(1)
numpy.random.rand
import tensorflow as tf from time import time import numpy as np from random import shuffle import os from keras.applications.mobilenet_v2 import MobileNetV2 from keras.applications.inception_v3 import InceptionV3 from keras.applications.resnet50 import ResNet50 from keras.applications.vgg16 import VGG16 from keras_efficientnets import EfficientNetB0 from DatasetProvider import DatasetProvider from keras.optimizers import * from sklearn.cluster import KMeans from shutil import copy from matplotlib import pyplot as plt from matplotlib import ticker, cm #from keras_adamw import AdamW, get_weight_decays, fill_dict_in_order from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances import sys sys.path.append('../keras-auto-augment/') from PIL import Image from dataset import Cifar10ImageDataGenerator, SVHNImageDataGenerator, ImageNetImageDataGenerator from keras import backend as K import keras import argparse import glob import pickle import random random.seed(10) from keras.models import Sequential from keras.layers import Dense, Conv2D, MaxPooling2D, Input, Conv2DTranspose, Flatten, Add, Activation, UpSampling2D, \ Dropout, BatchNormalization, GlobalAveragePooling2D, Layer, Lambda from keras.models import Model from utils import * import sys # Model and dataset directory: batch_size = 256 cluster_idx = 6 figure_size = (15, 15) checkpoint_idx = -1 #distance_range = 2 dataset = 'Oxford_IIIT_Pet' dataset_dir = '../../datasets' results_dir = './visualization' number_of_similar_samples = 15 number_of_effective_clusters = 5 number_of_samples_per_cluster = 30 model_folder = 'backbone_EfficientNet_rbf_dims_64_centers_50_learning_rate_7.487e-05_weights_imagenet_augmentation_autogment_' model_dir = os.path.join('models', dataset, model_folder) # Import the model setup function and read the hyperparameters: sys.path.append(model_dir) from run_experiment import ModelSetup def compute_embeddings_activations(tf_sess, img_input, tensors, x_train): length = tensors[0].shape.as_list()[-1] length1 = tensors[1].shape.as_list()[-1] length2 = tensors[2].shape.as_list()[-1] start, samples = 0, x_train.shape[0] np_embeddings = -np.ones([samples, length])#, dtype=np.uint8) np_activations = -np.ones([samples, length1]) np_predictions = -np.ones([samples, length2]) while start < samples: embeds, acts, preds = tf_sess.run(tensors, feed_dict={img_input: x_train[start:start+batch_size, :, :, :]}) np_embeddings[start:start+batch_size, :] = embeds np_activations[start:start+batch_size, :] = acts np_predictions[start:start+batch_size, :] = preds start += batch_size print('Extract embeddings and predictions: {:05d}/{:05d}'.format(start, samples)) print('Sum of the unfilled elements in embeddings: {:d}'.format(np.sum(np_embeddings==-1))) print('Sum of the unfilled elements in activations: {:d}'.format(np.sum(np_activations==-1))) print('Sum of the unfilled elements in predictions: {:d}'.format(np.sum(np_predictions==-1))) return np_embeddings, np_activations, np_predictions def load_obj(name): with open(name + '.pkl', 'rb') as f: return pickle.load(f) def augmentation_prepration(): parser = argparse.ArgumentParser() args = parser.parse_args() args.depth = int(28) args.width = int(10) args.epochs = int(1) args.cutout = False args.auto_augment = True return args def plot_ground(w, distance_range=2): fig = plt.figure(figsize=figure_size) #ax = fig.add_subplot(111, aspect='equal') left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 ax = fig.add_axes([left, bottom, width, height]) xlist = np.linspace(-distance_range, distance_range, 100) ylist = np.linspace(-distance_range, distance_range, 100) X, Y = np.meshgrid(xlist, ylist) Z = np.sqrt(X ** 2 + Y ** 2) cp = plt.contour(X, Y, Z, colors=6*['red'], linewidths=1.0) ax.clabel(cp, inline=True, fontsize=16) cp = plt.contourf(X, Y, 1-Z/w, cmap=cm.PuBu_r) plt.axis('equal') plt.axis('tight') #plt.colorbar() tick_values = 0.8*distance_range xy_labels = np.around(np.abs(np.linspace(-tick_values, tick_values, 5)), decimals=1) xy_ticks = np.linspace(-tick_values, tick_values, 5) plt.xticks(xy_ticks, xy_labels) plt.yticks(xy_ticks, xy_labels) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(24) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(24) #ax.set_title('Cluster') ax.set_xlabel('Distance to the cluster center', fontsize=24) ax.set_ylabel('Distance to the cluster center', fontsize=24) #plt.show() #plt.show() return ax, plt def compute_metric_distance(a, b, r=None): # Compute the distances between a sample a and samples in matrix b based on the trained metric r a, b = np.squeeze(a), np.squeeze(b) if r is None: print('Define the distance based on dot product!') def compute_dist(_a, _b, _r): # Compute distance between two samples distance = np.dot(_a, _b) return distance else: print('Define the distance based on the trained metric!') r = np.squeeze(r) def compute_dist(_a, _b, _r): # Compute distance between two samples diff = np.expand_dims(_a - _b, 0) distance = np.matmul(np.matmul(diff, np.diag(_r)), np.transpose(diff)) return distance if len(a.shape) == 1 and len(b.shape) == 1: distances = compute_dist(a, b, r) elif len(a.shape) == 1 and len(b.shape) != 1: distances = np.zeros(b.shape[0]) for i in range(b.shape[0]): distances[i] = compute_dist(a, b[i, :], r) elif len(a.shape) != 1 and len(b.shape) == 1: distances = np.zeros(a.shape[0]) for i in range(a.shape[0]): distances[i] = compute_dist(a[i, :], b, r) else: distances = np.zeros([a.shape[0], b.shape[0]]) for i in range(a.shape[0]): for j in range(b.shape[0]): distances[i, j] = compute_dist(a[i, :], b[j, :], r) return np.squeeze(distances) def find_samples(np_embeddings, width, distance_range=2): number_of_bins = 15 samples = [1, 0, 0, 3, 0, 5, 0, 9, 0, 12, 0, 0, 16, 0, 0, 0] distances = np.sqrt(width*(1-np_embeddings)) #if distance_range < np.min(distances): # distance_range = (np.min(distances)+np.max(distances))/2 bin_edges = np.linspace(0, distance_range, number_of_bins) #samples_per_bin, = int(number_of_samples/number_of_bins), [] indecies, theta = [], [] for i in range(len(bin_edges)-1): samples_per_bin = samples[i] if samples_per_bin > 0: found_indecies = list(np.where(np.bitwise_and(distances>bin_edges[i], distances<bin_edges[i+1]))[0]) shuffle(found_indecies) found_indecies = found_indecies[:samples_per_bin] indecies += list(found_indecies) N = len(found_indecies) theta += list(np.linspace(0, 2*np.pi*(1-1/np.max([1, N])), N)+(np.pi/18)*(np.random.rand(N)-0.5)) samples_per_bin = samples[i] return np.array(indecies), np.array(theta) def plot_images(ax, images, embeddings, w, theta, image_size=[64, 64]): distances = np.sqrt(w*(1-embeddings)) for i in range(images.shape[0]): x, y = distances[i]*np.cos(theta[i]), distances[i]*np.sin(theta[i]) im = np.array(Image.fromarray(images[i, :, :, :]).resize(image_size)) imagebox = offsetbox.AnnotationBbox(offsetbox.OffsetImage(im), np.array([x, y])) ax.add_artist(imagebox) def plot_single_images(ax, images, embeddings, w, theta, distance_range=2, image_size=[96, 96]): distances = np.sqrt(w*(1-embeddings)) x, y = distances*np.cos(theta), distances*np.sin(theta) if x < -distance_range: x, y = distance_range, distance_range im = np.array(Image.fromarray(images[:, :, :]).resize(image_size)) im = prepare_test_image(im) imagebox = offsetbox.AnnotationBbox(offsetbox.OffsetImage(im), np.array([x, y])) ax.add_artist(imagebox) def discriminant_clusters(activatios, weights, clusters): values = np.multiply(activatios, weights) indecies = np.flip(np.argsort(values)[-clusters-1:]) return indecies def prepare_test_image(image): image[0:5, :, :], image[-5:, :, :] = [255, 0, 0], [255, 0, 0] image[:, 0:5, :], image[:, -5:, :] = [255, 0, 0], [255, 0, 0] return image def main(): paramters_dict = load_obj(os.path.join(model_dir, 'parameters')) # Set the keras session config = tf.ConfigProto() config.gpu_options.allow_growth = True tf_sess = tf.Session(config=config) K.set_session(tf_sess) # Prepare the data data_provider = DatasetProvider(dataset_dir, dataset) x_train_org, y_train, x_test_org, y_test = data_provider.load_data() number_of_classes, image_size_dataset = data_provider.number_of_classes, data_provider.image_size datagen = Cifar10ImageDataGenerator(augmentation_prepration()) x_train, x_test = datagen.standardize(x_train_org), datagen.standardize(x_test_org) #x_train, x_test = x_train[:1000, :, :, :], x_test[:500, :, :, :] #y_train, y_test = y_train[:1000, :], y_test[:500, :] # Build the model: backbone, rbf_dims, number_of_centers = paramters_dict['backbone'], paramters_dict['rbf_dims'], paramters_dict['centers'] dropout, weights = paramters_dict['dropout'], paramters_dict['weights'] model_definer = ModelSetup(x_train.shape[1:], backbone, rbf_dims, number_of_centers, dropout, number_of_classes, weights) model, img_input, embeddings, activations, predictions = model_definer.define_model() model.summary() # Load the model: filenames = sorted(glob.glob(os.path.join(model_dir, '*.h5'))) print(filenames) model.load_weights(filenames[checkpoint_idx]) print(filenames[checkpoint_idx]) cluster_coordinate = model.layers[-2].get_weights()[0] distance_metric = model.layers[-2].get_weights()[1] output_weights = model.layers[-2].get_weights()[-1][1:, :] width = model.layers[-2].get_weights()[2] np.set_printoptions(precision=4, suppress=True) # Compute the embeddings, activations and Test the accuracy: embeddings_train, activations_train, train_predictions = compute_embeddings_activations(tf_sess, img_input, [embeddings, activations, model.output], x_train) embeddings_test, activations_test, test_predictions = compute_embeddings_activations(tf_sess, img_input, [embeddings, activations, model.output], x_test) train_accuracy = np.mean(np.argmax(train_predictions, 1)==np.argmax(y_train, 1)) test_accuracy = np.mean(np.argmax(test_predictions, 1)==np.argmax(y_test, 1)) print('Testing the loaded model. Training accuracy: {:0.4f}, test accuracy: {:0.4f}.'.format(train_accuracy, test_accuracy)) # Plot the contour of the distances to the center of the classifier (background color is proportional to the activation value) _activations = activations_train[:, cluster_idx] dists = np.sqrt(width[0, cluster_idx]*(1-_activations)) min_dist, max_dist = np.min(dists), np.max(dists) distance_range = np.max([2, (min_dist+max_dist)/2]) ax, fig = plot_ground(width[0, cluster_idx], distance_range) # For a given cluster get the sample with lower metric distance than 4/5 (histogram) samples_indices, theta = find_samples(_activations, width[0, cluster_idx], distance_range) # Make the scatter plot to show the images based on their distance and a random angle to the center plot_images(ax, x_train_org[samples_indices, :, :, :], activations_train[samples_indices, cluster_idx], width[0, cluster_idx], theta) # Save the complete image fig.savefig('sample_cluster.png', bbox_inches = 'tight') random.seed(10) rand_idx = [np.random.randint(0, x_test.shape[0]) for x in range(20)] rand_idx = [779, 56, 1665, 3526, 2523, 435, 2701, 2428, 3429, 952] for sp in range(len(rand_idx)): # Test sample ID: test_idx = rand_idx[sp] # Find the similar samples to a given test image in training samples based on embedding (trained metric distance) sample_label = np.argmax(y_test[test_idx, :]) sample_prediction = np.argmax(test_predictions[test_idx, :]) #distances = cosine_similarity(embeddings_test, embeddings_train)[test_idx, :] #distances = euclidean_distances(embeddings_test, embeddings_train)[test_idx, :] distances = compute_metric_distance(embeddings_test[test_idx, :], embeddings_train, distance_metric) idx =
np.argsort(distances)
numpy.argsort
from mock import patch import pyCGM_Single.pyCGM as pyCGM import pytest import numpy as np rounding_precision = 6 class TestUpperBodyAxis(): """ This class tests the upper body axis functions in pyCGM.py: headJC thoraxJC findshoulderJC shoulderAxisCalc elbowJointCenter wristJointCenter handJointCenter """ nan_3d = [np.nan, np.nan, np.nan] rand_coor = [np.random.randint(0, 10), np.random.randint(0, 10), np.random.randint(0, 10)] @pytest.mark.parametrize(["frame", "vsk", "expected"], [ # Test from running sample data ({'LFHD': np.array([184.55158997, 409.68713379, 1721.34289551]), 'RFHD': np.array([325.82983398, 402.55450439, 1722.49816895]), 'LBHD': np.array([197.8621521 , 251.28889465, 1696.90197754]), 'RBHD': np.array([304.39898682, 242.91339111, 1694.97497559])}, {'HeadOffset': 0.2571990469310653}, [[[255.21685582510975, 407.11593887758056, 1721.8253843887082], [254.19105385179665, 406.146809183757, 1721.9176771191715], [255.19034370229795, 406.2160090443217, 1722.9159912851449]], [255.19071197509766, 406.1208190917969, 1721.9205322265625]]), # Basic test with a variance of 1 in the x and y dimensions of the markers ({'LFHD': np.array([1, 1, 0]), 'RFHD': np.array([0, 1, 0]), 'LBHD': np.array([1, 0, 0]), 'RBHD': np.array([0, 0, 0])}, {'HeadOffset': 0.0}, [[[0.5, 2, 0], [1.5, 1, 0], [0.5, 1, -1]], [0.5, 1, 0]]), # Setting the markers so there's no variance in the x-dimension ({'LFHD': np.array([0, 1, 0]), 'RFHD': np.array([0, 1, 0]), 'LBHD': np.array([0, 0, 0]), 'RBHD': np.array([0, 0, 0])}, {'HeadOffset': 0.0}, [[nan_3d, nan_3d, nan_3d], [0, 1, 0]]), # Setting the markers so there's no variance in the y-dimension ({'LFHD': np.array([1, 0, 0]), 'RFHD': np.array([0, 0, 0]), 'LBHD': np.array([1, 0, 0]), 'RBHD': np.array([0, 0, 0])}, {'HeadOffset': 0.0}, [[nan_3d, nan_3d, nan_3d], [0.5, 0, 0]]), # Setting each marker in a different xy quadrant ({'LFHD': np.array([-1, 1, 0]), 'RFHD': np.array([1, 1, 0]), 'LBHD': np.array([-1, -1, 0]), 'RBHD': np.array([1, -1, 0])}, {'HeadOffset': 0.0}, [[[0, 2, 0], [-1, 1, 0], [0, 1, 1]], [0, 1, 0]]), # Setting values of the markers so that midpoints will be on diagonals ({'LFHD': np.array([-2, 1, 0]), 'RFHD': np.array([1, 2, 0]), 'LBHD': np.array([-1, -2, 0]), 'RBHD': np.array([2, -1, 0])}, {'HeadOffset': 0.0}, [[[-0.81622777, 2.4486833 , 0], [-1.4486833, 1.18377223, 0], [-0.5, 1.5, 1]], [-0.5, 1.5, 0]]), # Adding the value of 1 in the z dimension for all 4 markers ({'LFHD': np.array([1, 1, 1]), 'RFHD': np.array([0, 1, 1]), 'LBHD': np.array([1, 0, 1]), 'RBHD': np.array([0, 0, 1])}, {'HeadOffset': 0.0}, [[[0.5, 2, 1], [1.5, 1, 1], [0.5, 1, 0]], [0.5, 1, 1]]), # Setting the z dimension value higher for LFHD and LBHD ({'LFHD': np.array([1, 1, 2]), 'RFHD': np.array([0, 1, 1]), 'LBHD': np.array([1, 0, 2]), 'RBHD': np.array([0, 0, 1])}, {'HeadOffset': 0.0}, [[[0.5, 2, 1.5], [1.20710678, 1, 2.20710678], [1.20710678, 1, 0.79289322]], [0.5, 1, 1.5]]), # Setting the z dimension value higher for LFHD and RFHD ({'LFHD': np.array([1, 1, 2]), 'RFHD': np.array([0, 1, 2]), 'LBHD': np.array([1, 0, 1]), 'RBHD': np.array([0, 0, 1])}, {'HeadOffset': 0.0}, [[[0.5, 1.70710678, 2.70710678], [1.5, 1, 2], [0.5, 1.70710678, 1.29289322]], [0.5, 1, 2]]), # Adding a value for HeadOffset ({'LFHD': np.array([1, 1, 0]), 'RFHD': np.array([0, 1, 0]), 'LBHD': np.array([1, 0, 0]), 'RBHD': np.array([0, 0, 0])}, {'HeadOffset': 0.5}, [[[0.5, 1.87758256, 0.47942554], [1.5, 1, 0], [0.5, 1.47942554, -0.87758256]], [0.5, 1, 0]]), # Testing that when frame is a list of ints and headOffset is an int ({'LFHD': [1, 1, 0], 'RFHD': [0, 1, 0], 'LBHD': [1, 0, 0], 'RBHD': [0, 0, 0]}, {'HeadOffset': 1.0}, [[[0.5, 1.5403023058681398, 0.8414709848078965], [1.5, 1, 0], [0.5, 1.8414709848078965, -0.5403023058681398]], [0.5, 1, 0]]), # Testing that when frame is a numpy array of ints and headOffset is an int ({'LFHD': np.array([1, 1, 0], dtype='int'), 'RFHD': np.array([0, 1, 0], dtype='int'), 'LBHD': np.array([1, 0, 0], dtype='int'), 'RBHD': np.array([0, 0, 0], dtype='int')}, {'HeadOffset': 1}, [[[0.5, 1.5403023058681398, 0.8414709848078965], [1.5, 1, 0], [0.5, 1.8414709848078965, -0.5403023058681398]], [0.5, 1, 0]]), # Testing that when frame is a list of floats and headOffset is a float ({'LFHD': [1.0, 1.0, 0.0], 'RFHD': [0.0, 1.0, 0.0], 'LBHD': [1.0, 0.0, 0.0], 'RBHD': [0.0, 0.0, 0.0]}, {'HeadOffset': 1.0}, [[[0.5, 1.5403023058681398, 0.8414709848078965], [1.5, 1, 0], [0.5, 1.8414709848078965, -0.5403023058681398]], [0.5, 1, 0]]), # Testing that when frame is a numpy array of floats and headOffset is a float ({'LFHD': np.array([1.0, 1.0, 0.0], dtype='float'), 'RFHD': np.array([0.0, 1.0, 0.0], dtype='float'), 'LBHD': np.array([1.0, 0.0, 0.0], dtype='float'), 'RBHD': np.array([0.0, 0.0, 0.0], dtype='float')}, {'HeadOffset': 1.0}, [[[0.5, 1.5403023058681398, 0.8414709848078965], [1.5, 1, 0], [0.5, 1.8414709848078965, -0.5403023058681398]], [0.5, 1, 0]])]) def test_headJC(self, frame, vsk, expected): """ This test provides coverage of the headJC function in pyCGM.py, defined as headJC(frame, vsk) This test takes 3 parameters: frame: dictionary of marker lists vsk: dictionary containing subject measurements from a VSK file expected: the expected result from calling headJC on frame and vsk The function uses the LFHD, RFHD, LBHD, and RBHD markers from the frame to calculate the midpoints of the front, back, left, and right center positions of the head. The head axis vector components are then calculated using the aforementioned midpoints. Afterwords, the axes are made orthogonal by calculating the cross product of each individual axis. Finally, the head axis is then rotated around the y axis based off the head offset angle in the VSK. This test is checking to make sure the head joint center and head joint axis are calculated correctly given the 4 coordinates given in frame. This includes testing when there is no variance in the coordinates, when the coordinates are in different quadrants, when the midpoints will be on diagonals, and when the z dimension is variable. It also checks to see the difference when a value is set for HeadOffSet in vsk. Lastly, it checks that the resulting output is correct when frame is a list of ints, a numpy array of ints, a list of floats, and a numpy array of floats and when headOffset is an int and a float. """ result = pyCGM.headJC(frame, vsk) np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) @pytest.mark.parametrize(["frame", "expected"], [ # Test from running sample data ({'C7': np.array([251.22619629, 229.75683594, 1533.77624512]), 'T10': np.array([228.64323425, 192.32041931, 1279.6418457]), 'CLAV': np.array([256.78051758, 371.28042603, 1459.70300293]), 'STRN': np.array([251.67492676, 414.10391235, 1292.08508301])}, [[[256.23991128535846, 365.30496976939753, 1459.662169500559], [257.1435863244796, 364.21960599061947, 1459.588978712983], [256.0843053658035, 364.32180498523223, 1458.6575930699294]], [256.149810236564, 364.3090603933987, 1459.6553639290375]]), # Basic test with a variance of 1 in the x and y dimensions of the markers ({'C7': np.array([1, 1, 0]), 'T10': np.array([0, 1, 0]), 'CLAV': np.array([1, 0, 0]), 'STRN': np.array([0, 0, 0])}, [[[1, 6, 0], [1, 7, 1], [0, 7, 0]], [1, 7, 0]]), # Setting the markers so there's no variance in the x-dimension ({'C7': np.array([0, 1, 0]), 'T10': np.array([0, 1, 0]), 'CLAV': np.array([0, 0, 0]), 'STRN': np.array([0, 0, 0])}, [[nan_3d, nan_3d, nan_3d], nan_3d]), # Setting the markers so there's no variance in the y-dimension ({'C7': np.array([1, 0, 0]), 'T10': np.array([0, 0, 0]), 'CLAV': np.array([1, 0, 0]), 'STRN': np.array([0, 0, 0])}, [[nan_3d, nan_3d, nan_3d], nan_3d]), # Setting each marker in a different xy quadrant ({'C7': np.array([-1, 1, 0]), 'T10': np.array([1, 1, 0]), 'CLAV': np.array([-1, -1, 0]), 'STRN': np.array([1, -1, 0])}, [[[-1, 5, 0], [-1, 6, -1], [0, 6, 0]], [-1, 6, 0]]), # Setting values of the markers so that midpoints will be on diagonals ({'C7': np.array([-2, 1, 0]), 'T10': np.array([1, 2, 0]), 'CLAV': np.array([-1, -2, 0]), 'STRN': np.array([2, -1, 0])}, [[[-2.8973666, 3.69209979, 0], [-3.21359436, 4.64078309, -1], [-2.26491106, 4.95701085, 0]], [-3.21359436, 4.64078309, 0]]), # Adding the value of 1 in the z dimension for all 4 markers ({'C7': np.array([1, 1, 1]), 'T10': np.array([0, 1, 1]), 'CLAV': np.array([1, 0, 1]), 'STRN': np.array([0, 0, 1])}, [[[1, 6, 1], [1, 7, 2], [0, 7, 1]], [1, 7, 1]]), # Setting the z dimension value higher for C7 and CLAV ({'C7': np.array([1, 1, 2]), 'T10': np.array([0, 1, 1]), 'CLAV': np.array([1, 0, 2]), 'STRN': np.array([0, 0, 1])}, [[[1, 6, 2], [0.29289322, 7, 2.70710678], [0.29289322, 7, 1.29289322]], [1, 7, 2]]), # Setting the z dimension value higher for C7 and T10 ({'C7': np.array([1, 1, 2]), 'T10': np.array([0, 1, 2]), 'CLAV': np.array([1, 0, 1]), 'STRN': np.array([0, 0, 1])}, [[[1, 4.24264069, 5.24264069], [1, 4.24264069, 6.65685425], [0, 4.94974747, 5.94974747]], [1, 4.94974747, 5.94974747]]), # Testing that when frame is a list of ints ({'C7': [1, 1, 2], 'T10': [0, 1, 2], 'CLAV': [1, 0, 1], 'STRN': [0, 0, 1]}, [[[1, 4.24264069, 5.24264069], [1, 4.24264069, 6.65685425], [0, 4.94974747, 5.94974747]], [1, 4.94974747, 5.94974747]]), # Testing that when frame is a numpy array of ints ({'C7': np.array([1, 1, 2], dtype='int'), 'T10': np.array([0, 1, 2], dtype='int'), 'CLAV': np.array([1, 0, 1], dtype='int'), 'STRN': np.array([0, 0, 1], dtype='int')}, [[[1, 4.24264069, 5.24264069], [1, 4.24264069, 6.65685425], [0, 4.94974747, 5.94974747]], [1, 4.94974747, 5.94974747]]), # Testing that when frame is a list of floats ({'C7': [1.0, 1.0, 2.0], 'T10': [0.0, 1.0, 2.0], 'CLAV': [1.0, 0.0, 1.0], 'STRN': [0.0, 0.0, 1.0]}, [[[1, 4.24264069, 5.24264069], [1, 4.24264069, 6.65685425], [0, 4.94974747, 5.94974747]], [1, 4.94974747, 5.94974747]]), # Testing that when frame is a numpy array of floats ({'C7': np.array([1.0, 1.0, 2.0], dtype='float'), 'T10': np.array([0.0, 1.0, 2.0], dtype='float'), 'CLAV': np.array([1.0, 0.0, 1.0], dtype='float'), 'STRN': np.array([0.0, 0.0, 1.0], dtype='float')}, [[[1, 4.24264069, 5.24264069], [1, 4.24264069, 6.65685425], [0, 4.94974747, 5.94974747]], [1, 4.94974747, 5.94974747]])]) def test_thoraxJC(self, frame, expected): """ This test provides coverage of the thoraxJC function in pyCGM.py, defined as thoraxJC(frame) This test takes 2 parameters: frame: dictionary of marker lists expected: the expected result from calling thoraxJC on frame The function uses the CLAV, C7, STRN, and T10 markers from the frame to calculate the midpoints of the front, back, left, and right center positions of the thorax. The thorax axis vector components are then calculated using subtracting the pairs (left to right, back to front) of the aforementioned midpoints. Afterwords, the axes are made orthogonal by calculating the cross product of each individual axis. Finally, the head axis is then rotated around the x axis based off the thorax offset angle in the VSK. This test is checking to make sure the thorax joint center and thorax joint axis are calculated correctly given the 4 coordinates given in frame. This includes testing when there is no variance in the coordinates, when the coordinates are in different quadrants, when the midpoints will be on diagonals, and when the z dimension is variable. Lastly, it checks that the resulting output is correct when frame is a list of ints, a numpy array of ints, a list of floats, and a numpy array of floats. """ result = pyCGM.thoraxJC(frame) np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) @pytest.mark.parametrize(["frame", "thorax", "wand", "vsk", "expected_args"], [ # Test from running sample data ({'RSHO': np.array([428.88476562, 270.552948, 1500.73010254]), 'LSHO': np.array([68.24668121, 269.01049805, 1510.1072998])}, [[[256.23991128535846, 365.30496976939753, 1459.662169500559], [257.1435863244796, 364.21960599061947, 1459.588978712983], [256.0843053658035, 364.32180498523223, 1458.6575930699294]], [256.149810236564, 364.3090603933987, 1459.6553639290375]], [[255.92550222678443, 364.3226950497605, 1460.6297868417887], [256.42380097331767, 364.27770361353487, 1460.6165849382387]], {'RightShoulderOffset': 40.0, 'LeftShoulderOffset': 40.0}, [[[255.92550222678443, 364.3226950497605, 1460.6297868417887], [256.149810236564, 364.3090603933987, 1459.6553639290375], np.array([ 428.88476562, 270.552948 , 1500.73010254]), 47.0], [[256.42380097331767, 364.27770361353487, 1460.6165849382387], [256.149810236564, 364.3090603933987, 1459.6553639290375], np.array([68.24668121, 269.01049805, 1510.1072998]), 47.0]]), # Basic test with zeros for all params ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0])}, [[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]], {'RightShoulderOffset': 0.0, 'LeftShoulderOffset': 0.0}, [[[0, 0, 0], [0, 0, 0], np.array([0, 0, 0]), 7.0], [[0, 0, 0], [0, 0, 0], np.array([0, 0, 0]), 7.0]]), # Testing when values are added to RSHO and LSHO ({'RSHO': np.array([2, -1, 3]), 'LSHO': np.array([-3, 1, 2])}, [[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]], {'RightShoulderOffset': 0.0, 'LeftShoulderOffset': 0.0}, [[[0, 0, 0], [0, 0, 0], np.array([2, -1, 3]), 7.0], [[0, 0, 0], [0, 0, 0], np.array([-3, 1, 2]), 7.0]]), # Testing when a value is added to thorax_origin ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0])}, [[rand_coor, rand_coor, rand_coor], [5, -2, 7]], [[0, 0, 0], [0, 0, 0]], {'RightShoulderOffset': 0.0, 'LeftShoulderOffset': 0.0}, [[[0, 0, 0], [5, -2, 7], np.array([0, 0, 0]), 7.0], [[0, 0, 0], [5, -2, 7], np.array([0, 0, 0]), 7.0]]), # Testing when a value is added to wand ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0])}, [[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [[2, 6, -4], [-3, 5, 2]], {'RightShoulderOffset': 0.0, 'LeftShoulderOffset': 0.0}, [[[2, 6, -4], [0, 0, 0], np.array([0, 0, 0]), 7.0], [[-3, 5, 2], [0, 0, 0], np.array([0, 0, 0]), 7.0]]), # Testing when values are added to RightShoulderOffset and LeftShoulderOffset ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0])}, [[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]], {'RightShoulderOffset': 20.0, 'LeftShoulderOffset': -20.0}, [[[0, 0, 0], [0, 0, 0], np.array([0, 0, 0]), 27.0], [[0, 0, 0], [0, 0, 0], np.array([0, 0, 0]), -13.0]]), # Adding when values are added to all params ({'RSHO': np.array([3, -5, 2]), 'LSHO': np.array([-7, 3 , 9])}, [[rand_coor, rand_coor, rand_coor], [-1, -9, -5]], [[-7, -1, 5], [5, -9, 2]], {'RightShoulderOffset': -6.0, 'LeftShoulderOffset': 42.0}, [[[-7, -1, 5], [-1, -9, -5], np.array([3, -5, 2]), 1.0], [[5, -9, 2], [-1, -9, -5], np.array([-7, 3 , 9]), 49.0]]), # Testing that when frame, thorax, wand and vsk are lists of ints ({'RSHO': [3, -5, 2], 'LSHO': [-7, 3, 9]}, [[rand_coor, rand_coor, rand_coor], [-1, -9, -5]], [[-7, -1, 5], [5, -9, 2]], {'RightShoulderOffset': -6, 'LeftShoulderOffset': 42}, [[[-7, -1, 5], [-1, -9, -5], np.array([3, -5, 2]), 1.0], [[5, -9, 2], [-1, -9, -5], np.array([-7, 3, 9]), 49.0]]), # Testing that when frame, wand and vsk are numpy arrays of ints ({'RSHO': np.array([3, -5, 2], dtype='int'), 'LSHO': np.array([-7, 3, 9], dtype='int')}, [[rand_coor, rand_coor, rand_coor], np.array([-1, -9, -5], dtype='int')], np.array([[-7, -1, 5], [5, -9, 2]], dtype='int'), {'RightShoulderOffset': -6, 'LeftShoulderOffset': 42}, [[[-7, -1, 5], [-1, -9, -5], np.array([3, -5, 2]), 1.0], [[5, -9, 2], [-1, -9, -5], np.array([-7, 3, 9]), 49.0]]), # Testing that when frame, thorax, wand and vsk are lists of floats ({'RSHO': [3.0, -5.0, 2.0], 'LSHO': [-7.0, 3.0, 9.0]}, [[rand_coor, rand_coor, rand_coor], [-1.0, -9.0, -5.0]], [[-7.0, -1.0, 5.0], [5.0, -9.0, 2.0]], {'RightShoulderOffset': -6.0, 'LeftShoulderOffset': 42.0}, [[[-7, -1, 5], [-1, -9, -5], np.array([3, -5, 2]), 1.0], [[5, -9, 2], [-1, -9, -5], np.array([-7, 3, 9]), 49.0]]), # Testing that when frame, wand and vsk are numpy arrays of floats ({'RSHO': np.array([3.0, -5.0, 2.0], dtype='float'), 'LSHO': np.array([-7.0, 3.0, 9.0], dtype='float')}, [[rand_coor, rand_coor, rand_coor], np.array([-1.0, -9.0, -5.0], dtype='float')], np.array([[-7.0, -1.0, 5.0], [5.0, -9.0, 2.0]], dtype='float'), {'RightShoulderOffset': -6.0, 'LeftShoulderOffset': 42.0}, [[[-7, -1, 5], [-1, -9, -5], np.array([3, -5, 2]), 1.0], [[5, -9, 2], [-1, -9, -5], np.array([-7, 3, 9]), 49.0]])]) def test_findshoulderJC(self, frame, thorax, wand, vsk, expected_args): """ This test provides coverage of the findshoulderJC function in pyCGM.py, defined as findshoulderJC(frame, thorax, wand, vsk) This test takes 5 parameters: frame: dictionary of marker lists thorax: array containing several x,y,z markers for the thorax wand: array containing two x,y,z markers for wand vsk: dictionary containing subject measurements from a VSK file expected_args: the expected arguments used to call the mocked function, findJointC The function uses the RSHO and LSHO markers from the frame given, as well as the thorax origin position and the wand. The right shoulder joint center by using the the RSHO marker, right wand position, and thorax origin position, as positions in a plane for the Rodriques' rotation formula to find the right shoulder joint center. It is the same for the left shoulder joint center, although the left wand and LSHO markers are used instead. This test is checking to make sure the shoulder joint center is calculated correctly given the input parameters. This tests mocks findJointC to make sure the correct parameters are being passed into it given the parameters passed into findshoulderJC. Lastly, it checks that the resulting output is correct when frame and wand are a list of ints, a numpy array of ints, a list of floats, and a numpy array of floats, vsk values are either an int or a float, and thorax values are either an int or a float. Thorax cannot be a numpy array due it not being shaped like a multi-dimensional array. """ rand_coor = [np.random.randint(0, 10), np.random.randint(0, 10), np.random.randint(0, 10)] with patch.object(pyCGM, 'findJointC', return_value=rand_coor) as mock_findJointC: result = pyCGM.findshoulderJC(frame, thorax, wand, vsk) # Asserting that there were only 2 calls to findJointC np.testing.assert_equal(mock_findJointC.call_count, 2) # Asserting that the correct params were sent in the 1st (right) call to findJointC np.testing.assert_almost_equal(expected_args[0][0], mock_findJointC.call_args_list[0][0][0], rounding_precision) np.testing.assert_almost_equal(expected_args[0][1], mock_findJointC.call_args_list[0][0][1], rounding_precision) np.testing.assert_almost_equal(expected_args[0][2], mock_findJointC.call_args_list[0][0][2], rounding_precision) np.testing.assert_almost_equal(expected_args[0][3], mock_findJointC.call_args_list[0][0][3], rounding_precision) # Asserting that the correct params were sent in the 2nd (left) call to findJointC np.testing.assert_almost_equal(expected_args[1][0], mock_findJointC.call_args_list[1][0][0], rounding_precision) np.testing.assert_almost_equal(expected_args[1][1], mock_findJointC.call_args_list[1][0][1], rounding_precision) np.testing.assert_almost_equal(expected_args[1][2], mock_findJointC.call_args_list[1][0][2], rounding_precision) np.testing.assert_almost_equal(expected_args[1][3], mock_findJointC.call_args_list[1][0][3], rounding_precision) # Asserting that findShoulderJC returned the correct result given the return value given by mocked findJointC np.testing.assert_almost_equal(result[0], rand_coor, rounding_precision) np.testing.assert_almost_equal(result[1], rand_coor, rounding_precision) @pytest.mark.parametrize(["thorax", "shoulderJC", "wand", "expected"], [ # Test from running sample data ([[[256.23991128535846, 365.30496976939753, 1459.662169500559], [257.1435863244796, 364.21960599061947, 1459.588978712983], [256.0843053658035, 364.32180498523223, 1458.6575930699294]], [256.149810236564, 364.3090603933987, 1459.6553639290375]], [np.array([429.66951995, 275.06718615, 1453.95397813]), np.array([64.51952734, 274.93442161, 1463.6313334 ])], [[255.92550222678443, 364.3226950497605, 1460.6297868417887], [256.42380097331767, 364.27770361353487, 1460.6165849382387]], [[np.array([429.66951995, 275.06718615, 1453.95397813]), np.array([64.51952734, 274.93442161, 1463.6313334 ])], [[[430.12731330596756, 275.9513661907463, 1454.0469882869343], [429.6862168456729, 275.1632337671314, 1452.9587414419757], [428.78061812142147, 275.5243518770602, 1453.9831850281803]], [[64.10400324869988, 275.83192826468195, 1463.7790545425955], [64.59882848203122, 274.80838068265837, 1464.620183745389], [65.42564601518438, 275.3570272042577, 1463.6125331307376]]]]), # Test with zeros for all params ([[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [np.array([0, 0, 0]), np.array([0, 0, 0])], [[0, 0, 0], [0, 0, 0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]]]), # Testing when adding values in thorax but zeros for all other params ([[rand_coor, rand_coor, rand_coor], [8, 2, -6]], [np.array([0, 0, 0]), np.array([0, 0, 0])], [[0, 0, 0], [0, 0, 0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, [0.78446454, 0.19611614, -0.58834841]], [nan_3d, nan_3d, [0.78446454, 0.19611614, -0.58834841]]]]), # Testing when adding values in shoulderJC but zeros for all other params ([[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [np.array([1, 5, -3]), np.array([0, -9, 2])], [[0, 0, 0], [0, 0, 0]], [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[nan_3d, nan_3d, [0.830969149054, 4.154845745271, -2.4929074471]], [nan_3d, nan_3d, [0.0, -8.02381293981, 1.783069542181]]]]), # Testing when adding values in wand but zeros for all other params ([[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [np.array([0, 0, 0]), np.array([0, 0, 0])], [[1, 0, -7], [-3, 5, 3]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]]]), # Testing when adding values to thorax and shoulderJC ([[rand_coor, rand_coor, rand_coor], [8, 2, -6]], [np.array([1, 5, -3]), np.array([0, -9, 2])], [[0, 0, 0], [0, 0, 0]], [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[[0.50428457, 4.62821343, -3.78488277], [1.15140320, 5.85290468, -3.49963055], [1.85518611, 4.63349167, -3.36650833]], [[-0.5611251741, -9.179560055, 1.191979749], [-0.65430149, -8.305871473, 2.3001252440], [0.5069794004, -8.302903324, 1.493020599]]]]), # Testing when adding values to thorax and wand ([[rand_coor, rand_coor, rand_coor], [8, 2, -6]], [np.array([0, 0, 0]), np.array([0, 0, 0])], [[1, 0, -7], [-3, 5, 3]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[[-0.269430125, 0.96225044, -0.03849001], [0.55859, 0.18871284, 0.80769095], [0.78446454, 0.19611614, -0.58834841]], [[-0.6130824329, 0.10218040549, -0.7833831087], [-0.09351638899, 0.9752423423, 0.20039226212], [0.7844645405, 0.19611613513, -0.5883484054]]]]), # Testing when adding values to shoulderJC and wand ([[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [np.array([1, 5, -3]), np.array([0, -9, 2])], [[1, 0, -7], [-3, 5, 3]], [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[[1.98367400, 4.88758011, -2.85947514], [0.93824211, 5.52256679, -2.14964131], [0.83096915, 4.15484575, -2.49290745]], [[-0.80094836, -9.12988352, 1.41552417], [-0.59873343, -8.82624991, 2.78187543], [0.0, -8.02381294, 1.78306954]]]]), # Testing when adding values to thorax, shoulderJC and wand ([[rand_coor, rand_coor, rand_coor], [8, 2, -6]], [np.array([1, 5, -3]), np.array([0, -9, 2])], [[1, 0, -7], [-3, 5, 3]], [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[[0.93321781, 5.62330046, -3.77912558], [1.51400083, 5.69077360, -2.49143833], [1.85518611, 4.63349167, -3.36650833]], [[-0.64460664, -9.08385127, 1.24009787], [-0.57223612, -8.287942994, 2.40684228], [0.50697940, -8.30290332, 1.4930206]]]]), # Testing that when thorax, shoulderJC, and wand are lists of ints ([[rand_coor, rand_coor, rand_coor], [8, 2, -6]], [[1, 5, -3], [0, -9, 2]], [[1, 0, -7], [-3, 5, 3]], [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[[0.93321781, 5.62330046, -3.77912558], [1.51400083, 5.69077360, -2.49143833], [1.85518611, 4.63349167, -3.36650833]], [[-0.64460664, -9.08385127, 1.24009787], [-0.57223612, -8.287942994, 2.40684228], [0.50697940, -8.30290332, 1.4930206]]]]), # Testing that when thorax, shoulderJC and wand are numpy arrays of ints ([[rand_coor, rand_coor, rand_coor], np.array([8, 2, -6], dtype='int')], np.array([np.array([1, 5, -3], dtype='int'), np.array([0, -9, 2], dtype='int')], dtype='int'), np.array([np.array([1, 0, -7], dtype='int'), np.array([-3, 5, 3], dtype='int')], dtype='int'), [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[[0.93321781, 5.62330046, -3.77912558], [1.51400083, 5.69077360, -2.49143833], [1.85518611, 4.63349167, -3.36650833]], [[-0.64460664, -9.08385127, 1.24009787], [-0.57223612, -8.287942994, 2.40684228], [0.50697940, -8.30290332, 1.4930206]]]]), # Testing that when thorax, shoulderJC and wand are lists of floats ([[rand_coor, rand_coor, rand_coor], [8.0, 2.0, -6.0]], [[1.0, 5.0, -3.0], [0.0, -9.0, 2.0]], [[1.0, 0.0, -7.0], [-3.0, 5.0, 3.0]], [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[[0.93321781, 5.62330046, -3.77912558], [1.51400083, 5.69077360, -2.49143833], [1.85518611, 4.63349167, -3.36650833]], [[-0.64460664, -9.08385127, 1.24009787], [-0.57223612, -8.287942994, 2.40684228], [0.50697940, -8.30290332, 1.4930206]]]]), # Testing that when thorax, shoulderJC and wand are numpy arrays of floats ([[rand_coor, rand_coor, rand_coor], np.array([8.0, 2.0, -6.0], dtype='float')], np.array([np.array([1.0, 5.0, -3.0], dtype='float'), np.array([0.0, -9.0, 2.0], dtype='float')], dtype='float'), np.array([np.array([1.0, 0.0, -7.0], dtype='float'), np.array([-3.0, 5.0, 3.0], dtype='float')], dtype='float'), [[np.array([1.0, 5.0, -3.0]), np.array([0.0, -9.0, 2.0])], [[[0.93321781, 5.62330046, -3.77912558], [1.51400083, 5.69077360, -2.49143833], [1.85518611, 4.63349167, -3.36650833]], [[-0.64460664, -9.08385127, 1.24009787], [-0.57223612, -8.287942994, 2.40684228], [0.50697940, -8.30290332, 1.4930206]]]])]) def test_shoulderAxisCalc(self, thorax, shoulderJC, wand, expected): """ This test provides coverage of the shoulderAxisCalc function in pyCGM.py, defined as shoulderAxisCalc(frame, thorax, shoulderJC, wand) This test takes 4 parameters: thorax: array containing several x,y,z markers for the thorax shoulderJC: array containing x,y,z position of the shoulder joint center wand: array containing two x,y,z markers for wand expected: the expected result from calling shoulderAxisCalc on thorax, shoulderJC, and wand For the left and right shoulder axis, the respective axis is calculated by taking the difference from the respective direction (left or right) and the throax origin. The difference is then used to get the direction of each respective shoulder joint center for each shoulder axis in the order of Z, X, Y. The direction is then applied backwords to each shoulder joint center to account for variations in marker sizes. Lastly, it checks that the resulting output is correct when shoulderJC and wand are a list of ints, a numpy array of ints, a list of floats, and a numpy array of floats, and thorax values are either an int or a float. Thorax cannot be a numpy array due it not being shaped like a multi-dimensional array. """ result = pyCGM.shoulderAxisCalc(None, thorax, shoulderJC, wand) np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) @pytest.mark.parametrize(["frame", "thorax", "shoulderJC", "vsk", "mockReturnVal", "expectedMockArgs", "expected"], [ # Test from running sample data ({'RSHO': np.array([428.88476562, 270.552948, 1500.73010254]), 'LSHO': np.array([68.24668121, 269.01049805, 1510.1072998]), 'RELB': np.array([658.90338135, 326.07580566, 1285.28515625]), 'LELB': np.array([-156.32162476, 335.2583313, 1287.39916992]), 'RWRA': np.array([ 776.51898193, 495.68103027, 1108.38464355]), 'RWRB': np.array([ 830.9072876 , 436.75341797, 1119.11901855]), 'LWRA': np.array([-249.28146362, 525.32977295, 1117.09057617]), 'LWRB': np.array([-311.77532959, 477.22512817, 1125.1619873 ])}, [[rand_coor, [257.1435863244796, 364.21960599061947, 1459.588978712983], rand_coor], [256.149810236564, 364.3090603933987, 1459.6553639290375]], [np.array([429.66951995, 275.06718615, 1453.95397813]), np.array([64.51952734, 274.93442161, 1463.6313334])], {'RightElbowWidth': 74.0, 'LeftElbowWidth': 74.0, 'RightWristWidth': 55.0, 'LeftWristWidth': 55.0}, [[633.66707588, 304.95542115, 1256.07799541], [-129.16952219, 316.8671644, 1258.06440717]], [[[429.7839232523795, 96.8248244295684, 904.5644429627703], [429.66951995, 275.06718615, 1453.95397813], [658.90338135, 326.07580566, 1285.28515625], -44.0], [[-409.6146956013004, 530.6280208729519, 1671.682014527917], [64.51952734, 274.93442161, 1463.6313334], [-156.32162476, 335.2583313, 1287.39916992], 44.0]], [[np.array([633.66707587, 304.95542115, 1256.07799541]), np.array([-129.16952218, 316.8671644, 1258.06440717])], [[[633.8107013869995, 303.96579004975194, 1256.07658506845], [634.3524799178464, 305.0538658933253, 1256.799473014224], [632.9532180390149, 304.85083190737765, 1256.770431750491]], [[-129.32391792749496, 315.8807291324946, 1258.008662931836], [-128.45117135279028, 316.79382333592827, 1257.3726028780698], [-128.49119037560908, 316.72030884193634, 1258.7843373067021]]], [[793.3281430325068, 451.2913478825204, 1084.4325513020426], [-272.4594189740742, 485.801522109477, 1091.3666238350822]]]), # Test with zeros for all params ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0]), 'RELB': np.array([0, 0, 0]), 'LELB': np.array([0, 0, 0]), 'RWRA': np.array([0, 0, 0]), 'RWRB': np.array([0, 0, 0]), 'LWRA': np.array([0, 0, 0]), 'LWRB': np.array([0, 0, 0])}, [[rand_coor, [0, 0, 0], rand_coor], [0, 0, 0]], [np.array([0, 0, 0]), np.array([0, 0, 0])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[0, 0, 0], [0, 0, 0]], [[nan_3d, [0, 0, 0], [0, 0, 0], -7.0], [nan_3d, [0, 0, 0], [0, 0, 0], 7.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]], [nan_3d, nan_3d]]), # Testing when values are added to frame ({'RSHO': np.array([9, -7, -6]), 'LSHO': np.array([3, -8, 5]), 'RELB': np.array([-9, 1, -4]), 'LELB': np.array([-4, 1, -6]), 'RWRA': np.array([2, -3, 9]), 'RWRB': np.array([-4, -2, -7]), 'LWRA': np.array([-9, 1, -1]), 'LWRB': np.array([-3, -4, -9])}, [[rand_coor, [0, 0, 0], rand_coor], [0, 0, 0]], [np.array([0, 0, 0]), np.array([0, 0, 0])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[0, 0, 0], [0, 0, 0]], [[[149.87576359540907, -228.48721408225754, -418.8422716102348], [0, 0, 0], [-9, 1, -4], -7.0], [[282.73117218166414, -326.69276820761615, -251.76957615571214], [0, 0, 0], [-4, 1, -6], 7.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]], [[4.7413281, -5.7386979, -1.35541665], [-4.96790631, 4.69256216, -8.09628108]]]), # Testing when values are added to thorax ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0]), 'RELB': np.array([0, 0, 0]), 'LELB': np.array([0, 0, 0]), 'RWRA': np.array([0, 0, 0]), 'RWRB': np.array([0, 0, 0]), 'LWRA': np.array([0, 0, 0]), 'LWRB': np.array([0, 0, 0])}, [[rand_coor, [-9, 5, -5], rand_coor], [-5, -2, -3]], [np.array([0, 0, 0]), np.array([0, 0, 0])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[0, 0, 0], [0, 0, 0]], [[nan_3d, [0, 0, 0], [0, 0, 0], -7.0], [nan_3d, [0, 0, 0], [0, 0, 0], 7.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]], [nan_3d, nan_3d]]), # Testing when values are added to shoulderJC ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0]), 'RELB': np.array([0, 0, 0]), 'LELB': np.array([0, 0, 0]), 'RWRA': np.array([0, 0, 0]), 'RWRB': np.array([0, 0, 0]), 'LWRA': np.array([0, 0, 0]), 'LWRB': np.array([0, 0, 0])}, [[rand_coor, [0, 0, 0], rand_coor], [0, 0, 0]], [np.array([-2, -8, -3]), np.array([5, -3, 2])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[0, 0, 0], [0, 0, 0]], [[nan_3d, [-2, -8, -3], [0, 0, 0], -7.0], [nan_3d, [5, -3, 2], [0, 0, 0], 7.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, [-0.2279211529192759, -0.9116846116771036, -0.3418817293789138]], [nan_3d, nan_3d, [0.8111071056538127, -0.48666426339228763, 0.3244428422615251]]], [nan_3d, nan_3d]]), # Testing when values are added to vsk ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0]), 'RELB': np.array([0, 0, 0]), 'LELB': np.array([0, 0, 0]), 'RWRA': np.array([0, 0, 0]), 'RWRB': np.array([0, 0, 0]), 'LWRA': np.array([0, 0, 0]), 'LWRB': np.array([0, 0, 0])}, [[rand_coor, [0, 0, 0], rand_coor], [0, 0, 0]], [np.array([0, 0, 0]), np.array([0, 0, 0])], {'RightElbowWidth': -38.0, 'LeftElbowWidth': 6.0, 'RightWristWidth': 47.0, 'LeftWristWidth': -7.0}, [[0, 0, 0], [0, 0, 0]], [[nan_3d, [0, 0, 0], [0, 0, 0], 12.0], [nan_3d, [0, 0, 0], [0, 0, 0], 10.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]], [nan_3d, nan_3d]]), # Testing when values are added to mockReturnVal ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0]), 'RELB': np.array([0, 0, 0]), 'LELB': np.array([0, 0, 0]), 'RWRA': np.array([0, 0, 0]), 'RWRB': np.array([0, 0, 0]), 'LWRA': np.array([0, 0, 0]), 'LWRB': np.array([0, 0, 0])}, [[rand_coor, [0, 0, 0], rand_coor], [0, 0, 0]], [np.array([0, 0, 0]), np.array([0, 0, 0])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[5, 4, -4], [6, 3, 5]], [[nan_3d, [0, 0, 0], [0, 0, 0], -7.0], [nan_3d, [0, 0, 0], [0, 0, 0], 7.0]], [[np.array([5, 4, -4]), np.array([6, 3, 5])], [[nan_3d, nan_3d, [4.337733821467478, 3.4701870571739826, -3.4701870571739826]], [nan_3d, nan_3d, [5.2828628343993635, 2.6414314171996818, 4.4023856953328036]]], [nan_3d, nan_3d]]), # Testing when values are added to frame and thorax ({'RSHO': np.array([9, -7, -6]), 'LSHO': np.array([3, -8, 5]), 'RELB': np.array([-9, 1, -4]), 'LELB': np.array([-4, 1, -6]), 'RWRA': np.array([2, -3, 9]), 'RWRB': np.array([-4, -2, -7]), 'LWRA': np.array([-9, 1, -1]), 'LWRB': np.array([-3, -4, -9])}, [[rand_coor, [-9, 5, -5], rand_coor], [-5, -2, -3]], [np.array([0, 0, 0]), np.array([0, 0, 0])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[0, 0, 0], [0, 0, 0]], [[[149.87576359540907, -228.48721408225754, -418.8422716102348], [0, 0, 0], [-9, 1, -4], -7.0], [[282.73117218166414, -326.69276820761615, -251.76957615571214], [0, 0, 0], [-4, 1, -6], 7.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]], [[4.7413281, -5.7386979, -1.35541665], [-4.96790631, 4.69256216, -8.09628108]]]), # Testing when values are added to frame, thorax, and shoulderJC ({'RSHO': np.array([9, -7, -6]), 'LSHO': np.array([3, -8, 5]), 'RELB': np.array([-9, 1, -4]), 'LELB': np.array([-4, 1, -6]), 'RWRA': np.array([2, -3, 9]), 'RWRB': np.array([-4, -2, -7]), 'LWRA': np.array([-9, 1, -1]), 'LWRB': np.array([-3, -4, -9])}, [[rand_coor, [-9, 5, -5], rand_coor], [-5, -2, -3]], [np.array([-2, -8, -3]), np.array([5, -3, 2])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[0, 0, 0], [0, 0, 0]], [[[-311.42865408643604, -195.76081109238007, 342.15327877363165], [-2, -8, -3], [-9, 1, -4], -7.0], [[183.9753004933977, -292.7114070209339, -364.32791656553934], [5, -3, 2], [-4, 1, -6], 7.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[[-0.9661174276011973, 0.2554279765068226, -0.03706298561739535], [0.12111591199009825, 0.3218504585188577, -0.9390118307103527], [-0.2279211529192759, -0.9116846116771036, -0.3418817293789138]], [[-0.40160401780320154, -0.06011448807273248, 0.9138383123989052], [-0.4252287337918506, -0.8715182976051595, -0.24420561192811296], [0.8111071056538127, -0.48666426339228763, 0.3244428422615251]]], [[4.7413281, -5.7386979, -1.35541665], [-4.96790631, 4.69256216, -8.09628108]]]), # Testing when values are added to frame, thorax, shoulderJC, and vsk ({'RSHO': np.array([9, -7, -6]), 'LSHO': np.array([3, -8, 5]), 'RELB': np.array([-9, 1, -4]), 'LELB': np.array([-4, 1, -6]), 'RWRA': np.array([2, -3, 9]), 'RWRB': np.array([-4, -2, -7]), 'LWRA': np.array([-9, 1, -1]), 'LWRB': np.array([-3, -4, -9])}, [[rand_coor, [-9, 5, -5], rand_coor], [-5, -2, -3]], [np.array([-2, -8, -3]), np.array([5, -3, 2])], {'RightElbowWidth': -38.0, 'LeftElbowWidth': 6.0, 'RightWristWidth': 47.0, 'LeftWristWidth': -7.0}, [[0, 0, 0], [0, 0, 0]], [[[-311.42865408643604, -195.76081109238007, 342.15327877363165], [-2, -8, -3], [-9, 1, -4], 12.0], [[183.9753004933977, -292.7114070209339, -364.32791656553934], [5, -3, 2], [-4, 1, -6], 10.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[[-0.9685895544902782, 0.17643783885299713, 0.17522546605219314], [-0.09942948749879241, 0.3710806621909213, -0.9232621075099284], [-0.2279211529192759, -0.9116846116771036, -0.3418817293789138]], [[-0.10295276972565287, 0.4272479327059481, 0.8982538233730544], [-0.5757655689286321, -0.7619823480470763, 0.29644040025096585], [0.8111071056538127, -0.48666426339228763, 0.3244428422615251]]], [[24.015786700696715, -16.61146942090584, -9.262886851567883], [-5.48395315345786, 1.5962810792528397, -6.54814053962642]]]), # Testing when values are added to frame, thorax, shoulderJC, vsk and mockReturnVal ({'RSHO': np.array([9, -7, -6]), 'LSHO': np.array([3, -8, 5]), 'RELB': np.array([-9, 1, -4]), 'LELB': np.array([-4, 1, -6]), 'RWRA': np.array([2, -3, 9]), 'RWRB': np.array([-4, -2, -7]), 'LWRA': np.array([-9, 1, -1]), 'LWRB': np.array([-3, -4, -9])}, [[rand_coor, [-9, 5, -5], rand_coor], [-5, -2, -3]], [np.array([-2, -8, -3]), np.array([5, -3, 2])], {'RightElbowWidth': -38.0, 'LeftElbowWidth': 6.0, 'RightWristWidth': 47.0, 'LeftWristWidth': -7.0}, [[5, 4, -4], [6, 3, 5]], [[[-311.42865408643604, -195.76081109238007, 342.15327877363165], [-2, -8, -3], [-9, 1, -4], 12.0], [[183.9753004933977, -292.7114070209339, -364.32791656553934], [5, -3, 2], [-4, 1, -6], 10.0]], [[np.array([5, 4, -4]), np.array([6, 3, 5])], [[[4.156741342815987, 4.506819397152288, -3.8209778344606247], [4.809375978699987, 4.029428853750657, -4.981221904092206], [4.4974292889675835, 3.138450209658714, -3.928204184138226]], [[6.726856988207308, 2.5997910101837682, 5.558132316896694], [5.329224487433077, 2.760784472038086, 5.702022893446135], [5.852558043845103, 2.1153482630706173, 4.557674131535308]]], [[17.14176226312361, -25.58951560761187, -7.246255574147096], [-5.726512929518925, 1.5474273567891164, -6.699526795132392]]]), # Testing that when frame, thorax, and shoulderJC are list of ints and vsk values are ints ({'RSHO': [9, -7, -6], 'LSHO': [3, -8, 5], 'RELB': [-9, 1, -4], 'LELB': [-4, 1, -6], 'RWRA': [2, -3, 9], 'RWRB': [-4, -2, -7], 'LWRA': [-9, 1, -1], 'LWRB': [-3, -4, -9]}, [[rand_coor, [-9, 5, -5], rand_coor], [-5, -2, -3]], [[-2, -8, -3], [5, -3, 2]], {'RightElbowWidth': -38, 'LeftElbowWidth': 6, 'RightWristWidth': 47, 'LeftWristWidth': -7}, [[5, 4, -4], [6, 3, 5]], [[[-311.42865408643604, -195.76081109238007, 342.15327877363165], [-2, -8, -3], [-9, 1, -4], 12.0], [[183.9753004933977, -292.7114070209339, -364.32791656553934], [5, -3, 2], [-4, 1, -6], 10.0]], [[np.array([5, 4, -4]), np.array([6, 3, 5])], [[[4.156741342815987, 4.506819397152288, -3.8209778344606247], [4.809375978699987, 4.029428853750657, -4.981221904092206], [4.4974292889675835, 3.138450209658714, -3.928204184138226]], [[6.726856988207308, 2.5997910101837682, 5.558132316896694], [5.329224487433077, 2.760784472038086, 5.702022893446135], [5.852558043845103, 2.1153482630706173, 4.557674131535308]]], [[17.14176226312361, -25.58951560761187, -7.246255574147096], [-5.726512929518925, 1.5474273567891164, -6.699526795132392]]]), # Testing that when frame, thorax, and shoulderJC are a numpy array of ints and vsk values are ints ({'RSHO': np.array([9, -7, -6], dtype='int'), 'LSHO': np.array([3, -8, 5], dtype='int'), 'RELB': np.array([-9, 1, -4], dtype='int'), 'LELB': np.array([-4, 1, -6], dtype='int'), 'RWRA': np.array([2, -3, 9], dtype='int'), 'RWRB': np.array([-4, -2, -7], dtype='int'), 'LWRA': np.array([-9, 1, -1], dtype='int'), 'LWRB': np.array([-3, -4, -9], dtype='int')}, [[rand_coor, np.array([-9, 5, -5], dtype='int'), rand_coor], np.array([-5, -2, -3], dtype='int')], [np.array([-2, -8, -3], dtype='int'), np.array([5, -3, 2], dtype='int')], {'RightElbowWidth': -38, 'LeftElbowWidth': 6, 'RightWristWidth': 47, 'LeftWristWidth': -7}, [[5, 4, -4], [6, 3, 5]], [[[-311.42865408643604, -195.76081109238007, 342.15327877363165], [-2, -8, -3], [-9, 1, -4], 12.0], [[183.9753004933977, -292.7114070209339, -364.32791656553934], [5, -3, 2], [-4, 1, -6], 10.0]], [[np.array([5, 4, -4]), np.array([6, 3, 5])], [[[4.156741342815987, 4.506819397152288, -3.8209778344606247], [4.809375978699987, 4.029428853750657, -4.981221904092206], [4.4974292889675835, 3.138450209658714, -3.928204184138226]], [[6.726856988207308, 2.5997910101837682, 5.558132316896694], [5.329224487433077, 2.760784472038086, 5.702022893446135], [5.852558043845103, 2.1153482630706173, 4.557674131535308]]], [[17.14176226312361, -25.58951560761187, -7.246255574147096], [-5.726512929518925, 1.5474273567891164, -6.699526795132392]]]), # Testing that when frame, thorax, and shoulderJC are a list of floats and vsk values are floats ({'RSHO': [9.0, -7.0, -6.0], 'LSHO': [3.0, -8.0, 5.0], 'RELB': [-9.0, 1.0, -4.0], 'LELB': [-4.0, 1.0, -6.0], 'RWRA': [2.0, -3.0, 9.0], 'RWRB': [-4.0, -2.0, -7.0], 'LWRA': [-9.0, 1.0, -1.0], 'LWRB': [-3.0, -4.0, -9.0]}, [[rand_coor, [-9.0, 5.0, -5.0], rand_coor], [-5.0, -2.0, -3.0]], [[-2.0, -8.0, -3.0], [5.0, -3.0, 2.0]], {'RightElbowWidth': -38.0, 'LeftElbowWidth': 6.0, 'RightWristWidth': 47.0, 'LeftWristWidth': -7.0}, [[5, 4, -4], [6, 3, 5]], [[[-311.42865408643604, -195.76081109238007, 342.15327877363165], [-2, -8, -3], [-9, 1, -4], 12.0], [[183.9753004933977, -292.7114070209339, -364.32791656553934], [5, -3, 2], [-4, 1, -6], 10.0]], [[
np.array([5, 4, -4])
numpy.array
#!/usr/bin/python3 import Jetson.GPIO as GPIO from datetime import datetime import numpy as np import cv2 def check_spray(frame=0, save_check_photo=True, trigger_photo=False, path_check_photo=None, position=0, reshape_photo=300, convertion_base=0, qqt_sprayer=0, phis_dist=0, cut_width=0, count_photos=0): # trigger_photo = 'check_photo' variable from mov_detect # check_check_photo_name = 'photo_name' variable from infer_camera_processing '''This function in going to take a photo from the sprayed weed and check if it was sprayed correctly. count_photos: if it's the first photo, it will adjust the phisical distance for a first time. disk_hole_num: the quantity of holes in the rotary reader to be used to resize the lines convertion_base: This is the base to be used to count photos. Below are the step in this process: * Take a photo * Blur it * define which color we are going to filter, other colors are going to be dismissed ''' print('[WEEDS] Taking photo of the sprayed map') if trigger_photo == False: resized_bbox_map = 0 else: now = datetime.now() #Setting basis for filename period = [now.year, now.month, now.day, now.hour, now.minute, now.second] for idx, time in enumerate(period): if len(f'{time}') == 1: period[idx] = f'0{time}' photo_name = ''.join([str(x) for x in period]) # Cutting the width photo, so when resize it won't be weird (IF YOU WANT TO CENTRALIZE CUT IN BOTH SIDE, # IF YOU DON'T CUT IN ONE SIDE AND MULTP. BY 2) # It also will put the infer camera and check camera on the same basis frame = frame[:,cut_width:frame.shape[1]] print('WIDTH AND HEIGHT AFTER CUT', frame.shape[0], frame.shape[1]) print('[WEEDS] CHECK PHOTO TRIGGERED') count_photos += 1 # This is going to be the base file to put the contours of the sprayed photos. sprayed_map = np.zeros((reshape_photo, reshape_photo), np.uint8) # HSV RANGE (RED AND BLUE) low =
np.array([0, 0, 0])
numpy.array
import numpy as np import os import urllib import subprocess import tempfile from collections import OrderedDict from lucid.modelzoo.vision_base import Model from lucid.misc.io import save from lucid.misc.io.writing import write_handle from lucid.scratch.rl_util.nmf import LayerNMF, rescale_opacity from lucid.scratch.rl_util.attribution import ( get_acts, default_score_fn, get_grad, get_attr, get_multi_path_attr, ) from lucid.scratch.rl_util.util import ( get_shape, concatenate_horizontally, channels_to_rgb, conv2d, norm_filter, brightness_to_opacity, ) from .compiling import get_compiled_js from ..svelte3 import compile_html def get_model(model_bytes): model_fd, model_path = tempfile.mkstemp(suffix=".model.pb") with open(model_fd, "wb") as model_file: model_file.write(model_bytes) return Model.load(model_path) def exists_path(model, *, from_names, to_names, without_names=[]): for from_name in from_names: if from_name not in without_names: if from_name in to_names: return True next_names = [ name.rsplit(":", 1)[0] for node in model.graph_def.node if node.name == from_name for name in node.input ] if exists_path( model, from_names=next_names, to_names=to_names, without_names=without_names, ): return True return False def longest_common_prefix(l): l = set([s[: min(map(len, l))] for s in l]) while len(l) > 1: l = set([s[:-1] for s in l]) return list(l)[0] def longest_common_suffix(l): l = set([s[-min(map(len, l)) :] for s in l]) while len(l) > 1: l = set([s[1:] for s in l]) return list(l)[0] def get_abbreviator(names): if len(names) <= 1: return slice(None, None) prefix = longest_common_prefix(names) prefix = prefix.rsplit("/", 1)[0] + "/" if "/" in prefix else "" suffix = longest_common_suffix(names) suffix = "/" + suffix.split("/", 1)[-1] if "/" in suffix else "" return slice(len(prefix), None if len(suffix) == 0 else -len(suffix)) def get_layer_names( model, output_names, *, name_contains_one_of, op_is_one_of, bottleneck_only, discard_first_n, ): if isinstance(name_contains_one_of, str): name_contains_one_of = [name_contains_one_of] if isinstance(op_is_one_of, str): name_contains_one_of = [op_is_one_of] nodes = model.graph_def.node shape_condition = lambda node: len(get_shape(model, node.name)) >= 4 op_condition = lambda node: any(node.op.lower() == s.lower() for s in op_is_one_of) if bottleneck_only: bottleneck_names = [ node.name for node in nodes if not exists_path( model, from_names=output_names, to_names=[model.input_name], without_names=[node.name], ) ] conv_names = [node.name for node in nodes if node.op.lower()[:4] == "conv"] bottleneck_condition = lambda node: not exists_path( model, from_names=[node.name], to_names=conv_names, without_names=bottleneck_names, ) else: bottleneck_condition = lambda node: True layer_names = [ node.name for node in nodes if shape_condition(node) and op_condition(node) and bottleneck_condition(node) ] abbreviator = get_abbreviator(layer_names) if name_contains_one_of is None: name_condition = lambda name: True else: name_condition = lambda name: any(s in name for s in name_contains_one_of) return OrderedDict( [(name[abbreviator], name) for name in layer_names if name_condition(name)][ discard_first_n: ] ) def batched_get(data, batch_size, process_minibatch): n_points = data.shape[0] n_minibatches = -((-n_points) // batch_size) return np.concatenate( [ process_minibatch(data[i * batch_size : (i + 1) * batch_size]) for i in range(n_minibatches) ], axis=0, ) def compute_gae(trajectories, *, gae_gamma, gae_lambda): values = trajectories["values"] next_values = values[:, 1:] rewards = trajectories["rewards"][:, :-1] try: dones = trajectories["dones"][:, :-1] except KeyError: dones = trajectories["firsts"][:, 1:] assert next_values.shape == rewards.shape == dones.shape deltas = rewards + (1 - dones) * gae_gamma * next_values - values[:, :-1] result = np.zeros(values.shape, values.dtype) for step in reversed(range(values.shape[1] - 1)): result[:, step] = ( deltas[:, step] + (1 - dones[:, step]) * gae_gamma * gae_lambda * result[:, step + 1] ) return result def get_bookmarks(trajectories, *, sign, num): advantages = trajectories["advantages"] dones = trajectories["dones"].copy() dones[:, -1] = np.ones_like(dones[:, -1]) high_scores_and_coords = [] for trajectory in range(advantages.shape[0]): high_score = 0 high_score_coords = None for step in range(advantages.shape[1]): score = advantages[trajectory][step] * sign if score > high_score: high_score = score high_score_coords = (trajectory, step) if dones[trajectory][step] and high_score_coords is not None: high_scores_and_coords.append((high_score, high_score_coords)) high_score = 0 high_score_coords = None high_scores_and_coords.sort(key=lambda x: -x[0]) return list(map(lambda x: x[1], high_scores_and_coords[:num])) def number_to_string(x): s = str(x) if s.endswith(".0"): s = s[:-2] return "".join([c for c in s if c.isdigit() or c == "e"]) def get_html_colors(n, grayscale=False, mix_with=None, mix_weight=0.5, **kwargs): if grayscale: colors = np.linspace(0, 1, n)[..., None].repeat(3, axis=1) else: colors = channels_to_rgb(np.eye(n), **kwargs) colors = colors / colors.max(axis=-1, keepdims=True) if mix_with is not None: colors = colors * (1 - mix_weight) + mix_with[None] * mix_weight colors = np.round(colors * 255) colors = np.vectorize(lambda x: hex(x)[2:].zfill(2))(colors.astype(int)) return ["#" + "".join(color) for color in colors] def removeprefix(s, prefix): if s.startswith(prefix): return s[len(prefix) :] return s def generate( *, output_dir, model_bytes, observations, observations_full=None, trajectories, policy_logits_name, value_function_name, env_name=None, numpy_precision=6, inline_js=True, inline_large_json=None, batch_size=512, action_combos=None, action_group_fns=[ lambda combo: "RIGHT" in combo, lambda combo: "LEFT" in combo, lambda combo: "UP" in combo, lambda combo: "DOWN" in combo, lambda combo: "RIGHT" not in combo and "LEFT" not in combo and "UP" not in combo and "DOWN" not in combo, ], layer_kwargs={}, input_layer_include=False, input_layer_name="input", gae_gamma=None, gae_lambda=None, trajectory_bookmarks=16, nmf_features=8, nmf_attr_opts=None, vis_subdiv_mults=[0.25, 0.5, 1, 2], vis_subdiv_mult_default=1, vis_expand_mults=[1, 2, 4, 8], vis_expand_mult_default=4, vis_thumbnail_num_mult=4, vis_thumbnail_expand_mult=4, scrub_range=(42 / 64, 44 / 64), attr_integrate_steps=10, attr_max_paths=None, attr_policy=False, attr_single_channels=True, observations_subdir="observations/", trajectories_subdir="trajectories/", trajectories_scrub_subdir="trajectories_scrub/", features_subdir="features/", thumbnails_subdir="thumbnails/", attribution_subdir="attribution/", attribution_scrub_subdir="attribution_scrub/", features_grids_subdir="features_grids/", attribution_totals_subdir="attribution_totals/", video_height="16em", video_width="16em", video_speed=12, policy_display_height="2em", policy_display_width="40em", navigator_width="24em", scrubber_height="4em", scrubber_width="48em", scrubber_visible_duration=256, legend_item_height="6em", legend_item_width="6em", feature_viewer_height="40em", feature_viewer_width="40em", attribution_weight=0.9, graph_colors={ "v": "green", "action": "red", "action_group": "orange", "advantage": "blue", }, trajectory_color="blue", ): from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() model = get_model(model_bytes) if rank == 0: js_source_path = get_compiled_js() if env_name is None: env_name = "unknown" if inline_large_json is None: inline_large_json = "://" not in output_dir layer_kwargs.setdefault("name_contains_one_of", None) layer_kwargs.setdefault("op_is_one_of", ["relu"]) layer_kwargs.setdefault("bottleneck_only", True) layer_kwargs.setdefault("discard_first_n", 0) if observations_full is None: observations_full = observations if "observations_full" not in trajectories: trajectories["observations_full"] = trajectories["observations"] if np.issubdtype(observations.dtype, np.integer): observations = observations / np.float32(255) if np.issubdtype(observations_full.dtype, np.integer): observations_full = observations_full / np.float32(255) if np.issubdtype(trajectories["observations"].dtype, np.integer): trajectories["observations"] = trajectories["observations"] / np.float32(255) if np.issubdtype(trajectories["observations_full"].dtype, np.integer): trajectories["observations_full"] = trajectories[ "observations_full" ] / np.float32(255) if action_combos is None: num_actions = get_shape(model, policy_logits_name)[-1] action_combos = list(map(lambda x: (str(x),), range(num_actions))) if env_name == "coinrun_old": action_combos = [ (), ("RIGHT",), ("LEFT",), ("UP",), ("RIGHT", "UP"), ("LEFT", "UP"), ("DOWN",), ("A",), ("B",), ][:num_actions] if gae_gamma is None: gae_gamma = 0.999 if gae_lambda is None: gae_lambda = 0.95 layer_names = get_layer_names( model, [policy_logits_name, value_function_name], **layer_kwargs ) if not layer_names: raise RuntimeError( "No appropriate layers found. " "Please adapt layer_kwargs to your architecture" ) squash = lambda s: s.replace("/", "").replace("_", "") if len(set([squash(layer_key) for layer_key in layer_names.keys()])) < len( layer_names ): raise RuntimeError( "Error squashing abbreviated layer names. " "Different substitutions must be used" ) mpi_enumerate = lambda l: ( lambda indices: list(enumerate(l))[indices[rank] : indices[rank + 1]] )(np.linspace(0, len(l), comm.Get_size() + 1).astype(int)) save_image = lambda image, path: save( image, os.path.join(output_dir, path), domain=(0, 1) ) save_images = lambda images, path: save_image( concatenate_horizontally(images), path ) json_preloaded = {} save_json = lambda data, path: ( json_preloaded.update({path: data}) if inline_large_json else save(data, os.path.join(output_dir, path), indent=None) ) get_scrub_slice = lambda width: slice( int(np.round(scrub_range[0] * width)), int( np.maximum( np.round(scrub_range[1] * width), np.round(scrub_range[0] * width) + 1 ) ), ) action_groups = [ [action for action, combo in enumerate(action_combos) if group_fn(combo)] for group_fn in action_group_fns ] action_groups = list( filter(lambda action_group: len(action_group) > 1, action_groups) ) for index, observation in mpi_enumerate(observations_full): observation_path = os.path.join(observations_subdir, f"{index}.png") save_image(observation, observation_path) for index, trajectory_observations in mpi_enumerate( trajectories["observations_full"] ): trajectory_path = os.path.join(trajectories_subdir, f"{index}.png") save_images(trajectory_observations, trajectory_path) scrub_slice = get_scrub_slice(trajectory_observations.shape[2]) scrub = trajectory_observations[:, :, scrub_slice, :] scrub_path = os.path.join(trajectories_scrub_subdir, f"{index}.png") save_images(scrub, scrub_path) trajectories["policy_logits"] = [] trajectories["values"] = [] for trajectory_observations in trajectories["observations"]: trajectories["policy_logits"].append( batched_get( trajectory_observations, batch_size, lambda minibatch: get_acts(model, policy_logits_name, minibatch), ) ) trajectories["values"].append( batched_get( trajectory_observations, batch_size, lambda minibatch: get_acts(model, value_function_name, minibatch), ) ) trajectories["policy_logits"] = np.array(trajectories["policy_logits"]) trajectories["values"] = np.array(trajectories["values"]) trajectories["advantages"] = compute_gae( trajectories, gae_gamma=gae_gamma, gae_lambda=gae_lambda ) if "dones" not in trajectories: trajectories["dones"] = np.concatenate( [ trajectories["firsts"][:, 1:], np.zeros_like(trajectories["firsts"][:, :1]), ], axis=-1, ) bookmarks = { "high": get_bookmarks(trajectories, sign=1, num=trajectory_bookmarks), "low": get_bookmarks(trajectories, sign=-1, num=trajectory_bookmarks), } nmf_kwargs = {"attr_layer_name": value_function_name} if nmf_attr_opts is not None: nmf_kwargs["attr_opts"] = nmf_attr_opts nmfs = { layer_key: LayerNMF( model, layer_name, observations, obses_full=observations_full, features=nmf_features, **nmf_kwargs, ) for layer_key, layer_name in layer_names.items() } features = [] attributions = [] attribution_totals = [] for layer_key, layer_name in layer_names.items(): nmf = nmfs[layer_key] if rank == 0: thumbnails = [] for number in range(nmf.features): thumbnail = nmf.vis_dataset_thumbnail( number, num_mult=vis_thumbnail_num_mult, expand_mult=vis_thumbnail_expand_mult, )[0] thumbnail = rescale_opacity(thumbnail, max_scale=1, keep_zeros=True) thumbnails.append(thumbnail) thumbnails_path = os.path.join( thumbnails_subdir, f"{squash(layer_key)}.png" ) save_images(thumbnails, thumbnails_path) for _, number in mpi_enumerate(range(nmf.features)): feature = { "layer": layer_key, "number": number, "images": [], "overlay_grids": [], "metadata": {"subdiv_mult": [], "expand_mult": []}, } for subdiv_mult in vis_subdiv_mults: for expand_mult in vis_expand_mults: image, overlay_grid = nmf.vis_dataset( number, subdiv_mult=subdiv_mult, expand_mult=expand_mult ) image = rescale_opacity(image) filename_root = ( f"{squash(layer_key)}_" f"feature{number}_" f"{number_to_string(subdiv_mult)}_" f"{number_to_string(expand_mult)}" ) image_filename = filename_root + ".png" overlay_grid_filename = filename_root + ".json" image_path = os.path.join(features_subdir, image_filename) overlay_grid_path = os.path.join( features_grids_subdir, overlay_grid_filename ) save_image(image, image_path) save_json(overlay_grid, overlay_grid_path) feature["images"].append(image_filename) feature["overlay_grids"].append(overlay_grid_filename) feature["metadata"]["subdiv_mult"].append(subdiv_mult) feature["metadata"]["expand_mult"].append(expand_mult) features.append(feature) for layer_key, layer_name in ( [(input_layer_name, None)] if input_layer_include else [] ) + list(layer_names.items()): if layer_name is None: nmf = None else: nmf = nmfs[layer_key] for index, trajectory_observations in mpi_enumerate( trajectories["observations"] ): attribution = { "layer": layer_key, "trajectory": index, "images": [], "metadata": {"type": [], "data": [], "direction": [], "channel": []}, } if layer_name is not None: totals = { "layer": layer_key, "trajectory": index, "channels": [], "residuals": [], "metadata": {"type": [], "data": []}, } def get_attr_minibatch( minibatch, output_name, *, score_fn=default_score_fn ): if layer_name is None: return get_grad(model, output_name, minibatch, score_fn=score_fn) elif attr_max_paths is None: return get_attr( model, output_name, layer_name, minibatch, score_fn=score_fn, integrate_steps=attr_integrate_steps, ) else: return get_multi_path_attr( model, output_name, layer_name, minibatch, nmf, score_fn=score_fn, integrate_steps=attr_integrate_steps, max_paths=attr_max_paths, ) def get_attr_batched(output_name, *, score_fn=default_score_fn): return batched_get( trajectory_observations, batch_size, lambda minibatch: get_attr_minibatch( minibatch, output_name, score_fn=score_fn ), ) def transform_attr(attr): if layer_name is None: return attr, None else: attr_trans = nmf.transform(np.maximum(attr, 0)) - nmf.transform( np.maximum(-attr, 0) ) attr_res = ( attr - ( nmf.inverse_transform(np.maximum(attr_trans, 0)) - nmf.inverse_transform(np.maximum(-attr_trans, 0)) ) ).sum(-1, keepdims=True) nmf_norms = nmf.channel_dirs.sum(-1) return attr_trans * nmf_norms[None, None, None], attr_res def save_attr(attr, attr_res, *, type_, data): if attr_res is None: attr_res = np.zeros_like(attr).sum(-1, keepdims=True) filename_root = f"{squash(layer_key)}_{index}_{type_}" if data is not None: filename_root = f"{filename_root}_{data}" if layer_name is not None: channels_filename = f"{filename_root}_channels.json" residuals_filename = f"{filename_root}_residuals.json" channels_path = os.path.join( attribution_totals_subdir, channels_filename ) residuals_path = os.path.join( attribution_totals_subdir, residuals_filename ) save_json(attr.sum(-2).sum(-2), channels_path) save_json(attr_res[..., 0].sum(-1).sum(-1), residuals_path) totals["channels"].append(channels_filename) totals["residuals"].append(residuals_filename) totals["metadata"]["type"].append(type_) totals["metadata"]["data"].append(data) attr_scale = np.median(attr.max(axis=(-3, -2, -1))) if attr_scale == 0: attr_scale = attr.max() if attr_scale == 0: attr_scale = 1 attr_scaled = attr / attr_scale attr_res_scaled = attr_res / attr_scale channels = ["prin", "all"] if attr_single_channels and layer_name is not None: channels += list(range(nmf.features)) + ["res"] for direction in ["abs", "pos", "neg"]: if direction == "abs": attr = np.abs(attr_scaled) attr_res = np.abs(attr_res_scaled) elif direction == "pos": attr = np.maximum(attr_scaled, 0) attr_res = np.maximum(attr_res_scaled, 0) elif direction == "neg": attr = np.maximum(-attr_scaled, 0) attr_res =
np.maximum(-attr_res_scaled, 0)
numpy.maximum
import torch import numpy as np from tqdm import tqdm from data.imagenet.move import move_file from torchvision import datasets, transforms from data.voc.voc_dataset import VOC_CLASSES from sklearn.metrics import average_precision_score from data.voc.voc_dataloader import get_voc_dataloader from torchvision.datasets import VOCSegmentation as VOC def fetch_dataloader(dataset, path, batch_size): if dataset == "voc": VOC(path, "2012", "train", True) train = get_voc_dataloader('train', batch_size) val = get_voc_dataloader('val', batch_size) test = get_voc_dataloader('test', batch_size) elif dataset == "ImageNet": move_file() normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train = torch.utils.data.DataLoader( datasets.ImageNet( root=path, split="train", transform=transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])), batch_size=batch_size, num_workers=4, shuffle=True, pin_memory=True, drop_last=True) val = torch.utils.data.DataLoader( datasets.ImageNet( root=path, split="val", transform=transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])), batch_size=batch_size, num_workers=4, shuffle=True, pin_memory=True, drop_last=False) test = torch.utils.data.DataLoader( datasets.ImageFolder( root=path, split="val", transform=transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])), batch_size=batch_size, num_workers=4, shuffle=False, pin_memory=True, drop_last=False) else: raise NameError("This dataset is not supported.") return train, val, test def test_imagenet(test_iter, model, criterion, device): model.eval() test_loss = 0 with torch.no_grad(): y_true = np.zeros((0, 1000)) y_score = np.zeros((0, 1000)) for src, tgt in tqdm(test_iter): src = src.to(device) tgt = tgt.to(device) logits = model(src) y_true = np.concatenate((y_true, tgt.cpu().numpy()), axis=0) y_score = np.concatenate((y_score, logits.cpu().numpy()), axis=0) loss = criterion(logits, tgt) test_loss += loss.item() aps = [] for i in range(1, y_true.shape[1]): ap = average_precision_score(y_true[:, i], y_score[:, i]) aps.append(ap) mAP = np.mean(aps) test_loss /= len(test_iter) print( f"Test Loss: {round(test_loss, 3)}, Test Accuracy: {round(mAP,3)}") def test_voc(test_iter, model, device): model.eval() print("Testing...") with torch.no_grad(): y_true = np.zeros((0, 21)) y_score =
np.zeros((0, 21))
numpy.zeros
import os import sys import gc import numpy as np import pandas as pd import math import scipy.stats as scst import scipy as sp import scipy.linalg as la from bgen_reader import read_bgen import qtl_loader_utils import pdb from glimix_core.lmm import LMM def run_QTL_analysis_load_intersect_phenotype_covariates_kinship_sample_mapping(pheno_filename, anno_filename, geno_prefix, plinkGenotype, minimum_test_samples= 10, relatedness_score=None, cis_mode=True, skipAutosomeFiltering = False, snps_filename=None, feature_filename=None, snp_feature_filename=None, selection='all', covariates_filename=None, randomeff_filename=None, sample_mapping_filename=None, extended_anno_filename=None, feature_variant_covariate_filename=None): # pheno_filename = "/Users/chaaya/dhonveli_dkfz/hipsci_pipeline/geuvadis_CEU_test_data/Expression/Geuvadis_CEU_YRI_Expr.txt.gz" # anno_filename = "/Users/chaaya/dhonveli_dkfz/hipsci_pipeline/geuvadis_CEU_test_data/Expression/Geuvadis_CEU_Annot.txt" # geno_prefix = "/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Genotypes/Geuvadis" # plinkGenotype = "/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Genotypes/Geuvadis" # minimum_test_samples = 10 # relatedness_score = 0.95 # cis_mode = True # skipAutosomeFiltering = False # snps_filename = None # feature_filename = None # snp_feature_filename = None # selection = 'all' # covariates_filename = "/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Expression/Geuvadis_CEU_YRI_covariates.txt" # randomeff_filename = "/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Genotypes/Geuvadis_chr1_kinship.normalized.txt,/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Genotypes/Geuvadis_readdepth.txt" # sample_mapping_filename = "/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Geuvadis_CEU_gte.txt" # extended_anno_filename = None # feature_variant_covariate_filename = None # output_dir = "/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Output2/" # window_size = 250000 # min_maf = 0.05 # min_hwe_P = 0.001 # min_call_rate = 0.95 # blocksize = 1000 # gaussianize_method = None # genetic_range = "all" # seed = np.random.randint(40000) # n_perm = 0 # write_permutations = False # regressCovariatesUpfront = False # write_feature_top_permutations = False # selection based on coordinates selectionStart = None selectionEnd = None if(":" in selection): parts = selection.split(":") if("-" not in parts[1]): print("No correct sub selection.") print("Given in: "+selection) print("Expected format: (chr number):(start location)-(stop location)") sys.exit() chromosome = parts[0] if("-" in parts[1]): parts2 = parts[1].split("-") selectionStart = int(parts2[0]) selectionEnd = int(parts2[1]) else : chromosome=selection ''' function to take input and intersect sample and genotype.''' #Load input data files & filter for relevant data #Load input data filesf # loading phenotype and annotation files phenotype_df = qtl_loader_utils.get_phenotype_df(pheno_filename) annotation_df = qtl_loader_utils.get_annotation_df(anno_filename) phenotype_df.columns = phenotype_df.columns.astype("str") phenotype_df.index = phenotype_df.index.astype("str") annotation_df.columns = annotation_df.columns.astype("str") annotation_df.index = annotation_df.index.astype("str") # loading genotype if(plinkGenotype): bim,fam,bed = qtl_loader_utils.get_genotype_data(geno_prefix) bgen=None else : bgen = read_bgen(geno_prefix+'.bgen', verbose=False) bed=None fam =bgen['samples'] fam = fam.to_frame("iid") fam.index=fam["iid"] bim = bgen['variants'].compute() bim = bim.assign(i = range(bim.shape[0])) bim['id'] = bim['rsid'] bim = bim.rename(index=str, columns={"id": "snp"}) bim['a1'] = bim['allele_ids'].str.split(",", expand=True)[0] bim.index = bim["snp"].astype(str).values bim.index.name = "candidate" ##Fix chromosome ids bim['chrom'].replace('^chr','',regex=True,inplace=True) bim['chrom'].replace(['X', 'Y', 'XY', 'MT'], ['23', '24', '25', '26'],inplace=True) ##Remove non-biallelic & non-ploidy 2 (to be sure). print("Warning, the current software only supports biallelic SNPs and ploidy 2") bim.loc[np.logical_and(bim['nalleles']<3,bim['nalleles']>0),:] # converting chromsome names annotation_df.replace(['X', 'Y', 'XY', 'MT'], ['23', '24', '25', '26'],inplace=True) if chromosome=='X' : chromosome = '23' elif chromosome=='Y': chromosome = '24' elif chromosome=='XY': chromosome='25' elif chromosome=='MT': chromosome='26' print("Intersecting data.") if(annotation_df.shape[0] != annotation_df.groupby(annotation_df.index).first().shape[0]): print("Only one location per feature supported. If multiple locations are needed please look at: --extended_anno_file") sys.exit() ##Make sure that there is only one entry per feature id!. sample2individual_df = qtl_loader_utils.get_samplemapping_df(sample_mapping_filename,list(phenotype_df.columns),'sample') sample2individual_df.index = sample2individual_df.index.astype('str') sample2individual_df = sample2individual_df.astype('str') sample2individual_df['sample']=sample2individual_df.index sample2individual_df = sample2individual_df.drop_duplicates(); ##Filter first the linking files! #Subset linking to relevant genotypes. orgSize = sample2individual_df.shape[0] sample2individual_df = sample2individual_df.loc[sample2individual_df['iid'].map(lambda x: x in list(map(str, fam.index))),:] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the genotype file.") #Subset linking to relevant phenotypes. sample2individual_df = sample2individual_df.loc[np.intersect1d(sample2individual_df.index,phenotype_df.columns),:] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the phenotype file.") #Subset linking vs kinship. kinship_df = None readdepth_df = None if randomeff_filename is not None: kinship_df,readdepth_df = qtl_loader_utils.get_randeff_df(randomeff_filename) if kinship_df is not None: #Filter from individual2sample_df & sample2individual_df since we don't want to filter from the genotypes. sample2individual_df = sample2individual_df[sample2individual_df['iid'].map(lambda x: x in list(map(str, kinship_df.index)))] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the kinship file.") if readdepth_df is not None: #This needs to come from the covariate site not the genotype side! #Filter from individual2sample_df & sample2individual_df since we don't want to filter from the genotypes. sample2individual_df = sample2individual_df[sample2individual_df['sample'].map(lambda x: x in list(map(str, readdepth_df.index)))] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the second random effect file.") #Subset linking vs covariates. covariate_df = qtl_loader_utils.get_covariate_df(covariates_filename) if covariate_df is not None: if np.nansum(covariate_df==1,0).max()<covariate_df.shape[0]: covariate_df.insert(0, 'ones', np.ones(covariate_df.shape[0])) sample2individual_df = sample2individual_df.loc[list(set(sample2individual_df.index) & set(covariate_df.index)),:] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the covariate file.") ### print("Number of samples with genotype & phenotype data: " + str(sample2individual_df.shape[0])) if(sample2individual_df.shape[0]<minimum_test_samples): print("Not enough samples with both genotype & phenotype data.") sys.exit() ##Filter now the actual data! #Filter phenotype data based on the linking files. phenotype_df = phenotype_df.loc[list(set(phenotype_df.index)&set(annotation_df.index)),sample2individual_df.index.values] #Filter kinship data based on the linking files. genetically_unique_individuals = None if kinship_df is not None: kinship_df = kinship_df.loc[np.intersect1d(kinship_df.index,sample2individual_df['iid']),np.intersect1d(kinship_df.index,sample2individual_df['iid'])] if (kinship_df is not None) and (relatedness_score is not None): genetically_unique_individuals = get_unique_genetic_samples(kinship_df, relatedness_score); #Filter covariate data based on the linking files. snp_feature_filter_df= qtl_loader_utils.get_snp_feature_df(snp_feature_filename) try: feature_filter_df = qtl_loader_utils.get_snp_df(feature_filename) except: if feature_filename is not None: feature_filter_df=pd.DataFrame(index=feature_filename) #Do filtering on features. if feature_filter_df is not None: phenotype_df = phenotype_df.loc[feature_filter_df.index,:] ##Filtering on features to test. if snp_feature_filter_df is not None: lst3 = set(phenotype_df.index).intersection(np.unique(snp_feature_filter_df['feature_id'])) phenotype_df = phenotype_df.loc[lst3,:] ##Filtering on features to test from the combined feature snp filter. if ((not cis_mode) and len(set(bim['chrom']))<22) : print("Warning, running a trans-analysis on snp data from less than 22 chromosomes.\nTo merge data later the permutation P-values need to be written out.") if(cis_mode): #Remove features from the annotation that are on chromosomes which are not present anyway. annotation_df = annotation_df[np.in1d(annotation_df['chromosome'],list(set(bim['chrom'])))] #Prepare to filter on snps. snp_filter_df = qtl_loader_utils.get_snp_df(snps_filename) if snp_filter_df is not None: toSelect = set(snp_filter_df.index).intersection(set(bim['snp'])) bim = bim.loc[bim['snp'].isin(toSelect)] ##Filtering on SNPs to test from the snp filter. if snp_feature_filter_df is not None: toSelect = set(np.unique(snp_feature_filter_df['snp_id'])).intersection(set(bim['snp'])) bim = bim.loc[bim['snp'].isin(toSelect)] ##Filtering on features to test from the combined feature snp filter. #Filtering for sites on non allosomes. if not skipAutosomeFiltering : annotation_df = annotation_df[annotation_df['chromosome'].map(lambda x: x in list(map(str, range(1, 23))))] #Determine features to be tested if chromosome=='all': feature_list = list(set(annotation_df.index)&set(phenotype_df.index)) else: if not selectionStart is None : lowest = min([selectionStart,selectionEnd]) highest = max([selectionStart,selectionEnd]) annotation_df['mean'] = ((annotation_df["start"] + annotation_df["end"])/2) feature_list = list(set(annotation_df.iloc[(annotation_df['chromosome'].values==chromosome) & (annotation_df['mean'].values>=lowest) & (annotation_df["mean"].values<highest)].index.values)&set(phenotype_df.index)) del annotation_df['mean'] else : feature_list = list(set(annotation_df[annotation_df['chromosome']==chromosome].index)&set(phenotype_df.index)) #Drop not used feature information. phenotype_df = phenotype_df.loc[feature_list,:] gc.collect() print("Number of features to be tested: " + str(len(feature_list))) print("Total number of variants to be considered, before variante QC and feature intersection: " + str(bim.shape[0])) if(phenotype_df.shape[1]<minimum_test_samples): print("Not enough samples with both genotype & phenotype data, for current number of covariates.") sys.exit() if extended_anno_filename is not None: complete_annotation_df = pd.read_csv(extended_anno_filename,sep='\t',index_col=0) annotation_df['index']=annotation_df.index complete_annotation_df['index']=complete_annotation_df.index complete_annotation_df = pd.concat([annotation_df,complete_annotation_df]).drop_duplicates() del complete_annotation_df['index'] else: complete_annotation_df = annotation_df feature_variant_covariate_df = qtl_loader_utils.get_snp_feature_df(feature_variant_covariate_filename) if len(bim["snp"].values) > len(set(bim["snp"].values)): print("Warning duplicated SNP ids (After filtering if applied).") print("Removing variants observed twice.") bim = bim[bim["snp"].value_counts()==1] return [phenotype_df, kinship_df,readdepth_df, covariate_df, sample2individual_df, complete_annotation_df, annotation_df, snp_filter_df, snp_feature_filter_df, genetically_unique_individuals, minimum_test_samples, feature_list, bim, fam, bed, bgen, chromosome, selectionStart, selectionEnd, feature_variant_covariate_df] def run_structLMM_QTL_analysis_load_intersect_phenotype_environments_covariates_kinship_sample_mapping\ (pheno_filename, anno_filename, env_filename, geno_prefix, plinkGenotype, cis_mode = True, association_mode = True, skipAutosomeFiltering = False, minimum_test_samples = 10, relatedness_score = 0.95, snps_filename = None, feature_filename = None, snp_feature_filename = None, selection = 'all', covariates_filename = None, kinship_filename = None, sample_mapping_filename = None, extended_anno_filename = None, feature_variant_covariate_filename = None): selectionStart = None selectionEnd = None if(":" in selection): parts = selection.split(":") if("-" not in parts[1]): print("No correct sub selection.") print("Given in: "+selection) print("Expected format: (chr number):(start location)-(stop location)") sys.exit() chromosome = parts[0] if("-" in parts[1]): parts2 = parts[1].split("-") selectionStart = int(parts2[0]) selectionEnd = int(parts2[1]) else : chromosome=selection ''' function to take input and intersect sample and genotype.''' #Load input data files & filter for relevant data #Load input data filesf phenotype_df = qtl_loader_utils.get_phenotype_df(pheno_filename) annotation_df = qtl_loader_utils.get_annotation_df(anno_filename) if(plinkGenotype): bim,fam,bed = qtl_loader_utils.get_genotype_data(geno_prefix) annotation_df.replace(['X', 'Y', 'XY', 'MT'], ['23', '24', '25', '26'],inplace=True) if chromosome=='X' : chromosome = '23' elif chromosome=='Y': chromosome = '24' elif chromosome=='XY': chromosome='25' elif chromosome=='MT': chromosome='26' #X -> 23 #Y -> 24 #XY -> 25 #MT -> 26 else : geno_prefix+='.bgen' print(geno_prefix) print("Intersecting data.") if(annotation_df.shape[0] != annotation_df.groupby(annotation_df.index).first().shape[0]): print("Only one location per feature supported. If multiple locations are needed please look at: --extended_anno_file") sys.exit() ##Make sure that there is only one entry per feature id!. sample2individual_df = qtl_loader_utils.get_samplemapping_df(sample_mapping_filename,list(phenotype_df.columns),'sample') sample2individual_df['sample']=sample2individual_df.index sample2individual_df = sample2individual_df.drop_duplicates(); ##Filter first the linking files! #Subset linking to relevant genotypes. orgSize = sample2individual_df.shape[0] sample2individual_df = sample2individual_df.loc[sample2individual_df['iid'].map(lambda x: x in list(map(str, fam.index))),:] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the genotype file.") #Subset linking to relevant phenotypes. sample2individual_df = sample2individual_df.loc[np.intersect1d(sample2individual_df.index,phenotype_df.columns),:] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the phenotype file.") #Subset linking vs kinship. kinship_df = qtl_loader_utils.get_kinship_df(kinship_filename) if kinship_df is not None: #Filter from individual2sample_df & sample2individual_df since we don't want to filter from the genotypes. sample2individual_df = sample2individual_df[sample2individual_df['iid'].map(lambda x: x in list(map(str, kinship_df.index)))] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the kinship file.") #Subset linking vs covariates. covariate_df = qtl_loader_utils.get_covariate_df(covariates_filename) if covariate_df is not None: if np.nansum(covariate_df==1,0).max()<covariate_df.shape[0]: covariate_df.insert(0, 'ones',np.ones(covariate_df.shape[0])) sample2individual_df = sample2individual_df.loc[list(set(sample2individual_df.index) & set(covariate_df.index)),:] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the covariate file.") #Subset linking vs environments. environment_df = qtl_loader_utils.get_env_df(env_filename) if np.nansum(environment_df==1,0).max()<environment_df.shape[0]: environment_df.insert(0, 'ones',np.ones(environment_df.shape[0])) sample2individual_df = sample2individual_df.loc[list(set(sample2individual_df.index) & set(environment_df.index)),:] diff = orgSize - sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the environment file.") ### print("Number of samples with genotype & phenotype data: " + str(sample2individual_df.shape[0])) if(sample2individual_df.shape[0]<minimum_test_samples): print("Not enough samples with both genotype & phenotype data.") sys.exit() ##Filter now the actual data! #Filter phenotype data based on the linking files. phenotype_df = phenotype_df.loc[list(set(phenotype_df.index)&set(annotation_df.index)),sample2individual_df.index.values] #Filter kinship data based on the linking files. genetically_unique_individuals = None if kinship_df is not None: kinship_df = kinship_df.loc[np.intersect1d(kinship_df.index,sample2individual_df['iid']),np.intersect1d(kinship_df.index,sample2individual_df['iid'])] genetically_unique_individuals = get_unique_genetic_samples(kinship_df, relatedness_score); #Filter covariate data based on the linking files. if covariate_df is not None: covariate_df = covariate_df.loc[np.intersect1d(covariate_df.index,sample2individual_df.index.values),:] snp_feature_filter_df= qtl_loader_utils.get_snp_feature_df(snp_feature_filename) try: feature_filter_df = qtl_loader_utils.get_snp_df(feature_filename) except: if feature_filename is not None: feature_filter_df=pd.DataFrame(index=feature_filename) #Do filtering on features. if feature_filter_df is not None: phenotype_df = phenotype_df.loc[feature_filter_df.index,:] ##Filtering on features to test. if snp_feature_filter_df is not None: phenotype_df = phenotype_df.loc[np.unique(snp_feature_filter_df['feature']),:] ##Filtering on features to test from the combined feature snp filter. if ((not cis_mode) and len(set(bim['chrom']))<22) : print("Warning, running a trans-analysis on snp data from less than 22 chromosomes.\nTo merge data later the permutation P-values need to be written out.") if(cis_mode): #Remove features from the annotation that are on chromosomes which are not present anyway. annotation_df = annotation_df[np.in1d(annotation_df['chromosome'],list(set(bim['chrom'])))] #Prepare to filter on snps. snp_filter_df = qtl_loader_utils.get_snp_df(snps_filename) if snp_filter_df is not None: toSelect = set(snp_filter_df.index).intersection(set(bim['snp'])) bim = bim.loc[bim['snp'].isin(toSelect)] ##Filtering on SNPs to test from the snp filter. if snp_feature_filter_df is not None: toSelect = set(np.unique(snp_feature_filter_df['snp_id'])).intersection(set(bim['snp'])) bim = bim.loc[bim['snp'].isin(toSelect)] ##Filtering on features to test from the combined feature snp filter. #Filtering for sites on non allosomes. if not skipAutosomeFiltering : annotation_df = annotation_df[annotation_df['chromosome'].map(lambda x: x in list(map(str, range(1, 23))))] #Determine features to be tested if chromosome=='all': feature_list = list(set(annotation_df.index)&set(phenotype_df.index)) else: if not selectionStart is None : lowest = min([selectionStart,selectionEnd]) highest = max([selectionStart,selectionEnd]) annotation_df['mean'] = ((annotation_df["start"] + annotation_df["end"])/2) feature_list = list(set(annotation_df.iloc[(annotation_df['chromosome'].values==chromosome) & (annotation_df['mean'].values>=lowest) & (annotation_df["mean"].values<highest)].index.values)&set(phenotype_df.index)) del annotation_df['mean'] else : feature_list = list(set(annotation_df[annotation_df['chromosome']==chromosome].index)&set(phenotype_df.index)) print("Number of features to be tested: " + str(len(feature_list))) print("Total number of variants to be considered, before variante QC and feature intersection: " + str(bim.shape[0])) if(phenotype_df.shape[1]<minimum_test_samples): print("Not enough samples with both genotype & phenotype data, for current number of covariates.") sys.exit() if extended_anno_filename is not None: complete_annotation_df = pd.read_csv(extended_anno_filename,sep='\t',index_col=0) annotation_df['index']=annotation_df.index complete_annotation_df['index']=complete_annotation_df.index complete_annotation_df = pd.concat([annotation_df,complete_annotation_df]).drop_duplicates() del complete_annotation_df['index'] else: complete_annotation_df = annotation_df feature_variant_covariate_df = qtl_loader_utils.get_snp_feature_df(feature_variant_covariate_filename) return [phenotype_df, kinship_df, covariate_df, environment_df, sample2individual_df, complete_annotation_df, annotation_df, snp_filter_df, snp_feature_filter_df, genetically_unique_individuals, minimum_test_samples, feature_list,bim,fam,bed, chromosome, selectionStart, selectionEnd, feature_variant_covariate_df] def run_PrsQtl_analysis_load_intersect_phenotype_covariates_kinship_sample_mapping\ (pheno_filename, anno_filename, prsFile, minimum_test_samples= 10, relatedness_score=0.95, skipAutosomeFiltering = False, snps_filename=None, feature_filename=None, snp_feature_filename=None, selection='all', covariates_filename=None, kinship_filename=None, sample_mapping_filename=None, feature_variant_covariate_filename=None): selectionStart = None selectionEnd = None if(":" in selection): parts = selection.split(":") if("-" not in parts[1]): print("No correct sub selection.") print("Given in: "+selection) print("Expected format: (chr number):(start location)-(stop location)") sys.exit() chromosome = parts[0] if("-" in parts[1]): parts2 = parts[1].split("-") selectionStart = int(parts2[0]) selectionEnd = int(parts2[1]) else : chromosome=selection ''' function to take input and intersect sample and genotype.''' #Load input data files & filter for relevant data #Load input data filesf #import pdb; pdb.set_trace(); phenotype_df = qtl_loader_utils.get_phenotype_df(pheno_filename) annotation_df = qtl_loader_utils.get_annotation_df(anno_filename) phenotype_df.columns = phenotype_df.columns.astype("str") phenotype_df.index = phenotype_df.index.astype("str") annotation_df.columns = annotation_df.columns.astype("str") annotation_df.index = annotation_df.index.astype("str") if(annotation_df.shape[0] != annotation_df.groupby(annotation_df.index).first().shape[0]): print("Only one location per feature supported. If multiple locations are needed please look at: --extended_anno_file") sys.exit() #Determine features to be tested if chromosome!='all': if not selectionStart is None : lowest = min([selectionStart,selectionEnd]) highest = max([selectionStart,selectionEnd]) annotation_df['mean'] = ((annotation_df["start"] + annotation_df["end"])/2) feature_list = list(set(annotation_df.iloc[(annotation_df['chromosome'].values==chromosome) & (annotation_df['mean'].values>=lowest) & (annotation_df["mean"].values<highest)].index.values)) annotation_df = annotation_df.loc[feature_list,] del annotation_df['mean'] else : feature_list = list(annotation_df[annotation_df['chromosome']==chromosome].index) annotation_df = annotation_df.loc[feature_list,] #To be able to read variants from a large file we change the loading here. #First we subset the genes to the chunk and get the relevant SNPs based on that. snp_feature_filter_df= qtl_loader_utils.get_snp_feature_df(snp_feature_filename) feature_filter_df = qtl_loader_utils.get_snp_df(feature_filename) snp_filter_df = qtl_loader_utils.get_snp_df(snps_filename) feature_variant_covariate_df = qtl_loader_utils.get_snp_feature_df(feature_variant_covariate_filename) #import pdb; pdb.set_trace() #Do filtering on variants and features first stage. if snp_feature_filter_df is not None: if feature_filter_df is not None: toSelect = set(feature_filter_df.index.values).intersection(set(annotation_df.index.values)) annotation_df = annotation_df.loc[toSelect,] toSelect = list(set(snp_feature_filter_df['feature'].values).intersection(set(annotation_df.index.values))) snp_feature_filter_df = snp_feature_filter_df.loc[snp_feature_filter_df['feature'].isin(toSelect)] relSnps = snp_feature_filter_df['snp_id'].values if snp_filter_df is not None: relSnps = set(snp_filter_df.index).intersection(set(relSnps)) if feature_variant_covariate_df is not None: feature_variant_covariate_df = feature_variant_covariate_df.loc[feature_variant_covariate_df['feature'].isin(toSelect)] relSnps = np.union1d(relSnps, feature_variant_covariate_df["snp_id"].values) relSnps = np.unique(relSnps) risk_df = qtl_loader_utils.get_grs_subset_df(prsFile, relSnps) if risk_df is None: print("No variants selected during SNP reading.") sys.exit() risk_df = risk_df.assign(SnpId=risk_df.index.values) risk_df = risk_df.drop_duplicates(keep='first') risk_df = risk_df.drop(['SnpId'], axis='columns') risk_df = risk_df.loc[risk_df.isnull().sum(axis=1)!=risk_df.shape[1],] elif snp_filter_df is not None: relSnps = snp_filter_df.index if feature_variant_covariate_df is not None: feature_variant_covariate_df = feature_variant_covariate_df.loc[feature_variant_covariate_df['feature'].isin(toSelect)] relSnps = np.union1d(relSnps, feature_variant_covariate_df["snp_id"].values) relSnps = np.unique(relSnps) risk_df = qtl_loader_utils.get_grs_subset_df(prsFile, relSnps) if risk_df is None: print("No variants selected during SNP reading.") sys.exit() risk_df = risk_df.assign(SnpId=risk_df.index.values) risk_df = risk_df.drop_duplicates(keep='first') risk_df = risk_df.drop(['SnpId'], axis='columns') risk_df = risk_df.loc[risk_df.isnull().sum(axis=1)!=risk_df.shape[1],] else : risk_df = qtl_loader_utils.get_phenotype_df(prsFile) print("Intersecting data.") risk_df = risk_df.astype(float) #pdb.set_trace(); ##Make sure that there is only one entry per feature id!. sample2individual_df = qtl_loader_utils.get_samplemapping_df( _filename,list(phenotype_df.columns),'sample') sample2individual_df.index = sample2individual_df.index.astype('str') sample2individual_df = sample2individual_df.astype('str') sample2individual_df['sample']=sample2individual_df.index sample2individual_df = sample2individual_df.drop_duplicates(); ##Filter first the linking files! #Subset linking to relevant genotypes. orgSize = sample2individual_df.shape[0] sample2individual_df = sample2individual_df.loc[sample2individual_df['iid'].map(lambda x: x in list(map(str, risk_df.columns))),:] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the genotype file.") #Subset linking to relevant phenotypes. sample2individual_df = sample2individual_df.loc[np.intersect1d(sample2individual_df.index,phenotype_df.columns),:] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the phenotype file.") #Subset linking vs kinship. # extract filename from randomeffects filename kinship_filename,readdepth_filename = randomeff_filename.split(",") kinship_df = qtl_loader_utils.get_kinship_df(kinship_filename) c = qtl_loader_utils.get_readdepth_df(readdepth_filename) randomeff_df = mixRandomEff(kinship_df,kinship_df) if kinship_df is not None: #Filter from individual2sample_df & sample2individual_df since we don't want to filter from the genotypes. sample2individual_df = sample2individual_df[sample2individual_df['iid'].map(lambda x: x in list(map(str, kinship_df.index)))] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the kinship file.") #Subset linking vs covariates. covariate_df = qtl_loader_utils.get_covariate_df(covariates_filename) if covariate_df is not None: if np.nansum(covariate_df==1,0).max()<covariate_df.shape[0]: covariate_df.insert(0, 'ones',np.ones(covariate_df.shape[0])) sample2individual_df = sample2individual_df.loc[list(set(sample2individual_df.index) & set(covariate_df.index)),:] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the covariate file.") ### print("Number of samples with genotype & phenotype data: " + str(sample2individual_df.shape[0])) if(sample2individual_df.shape[0]<minimum_test_samples): print("Not enough samples with both genotype & phenotype data.") sys.exit() #import pdb; pdb.set_trace() ##Filter now the actual data! #Filter phenotype data based on the linking files. phenotype_df = phenotype_df.loc[list(set(phenotype_df.index)&set(annotation_df.index)),sample2individual_df.index.values] #Filter kinship data based on the linking files. genetically_unique_individuals = None if kinship_df is not None: kinship_df = kinship_df.loc[np.intersect1d(kinship_df.index,sample2individual_df['iid']),np.intersect1d(kinship_df.index,sample2individual_df['iid'])] if kinship_df is not None and (relatedness_score is not None): genetically_unique_individuals = get_unique_genetic_samples(kinship_df, relatedness_score); #Filter covariate data based on the linking files. #Do filtering on features. if feature_filter_df is not None: toSelect = set(feature_filter_df.index.values).intersection(set(phenotype_df.index.values)) phenotype_df = phenotype_df.loc[toSelect,:] ##Filtering on features to test. if snp_feature_filter_df is not None: toSelect = set(snp_feature_filter_df['feature'].values).intersection(set(phenotype_df.index.values)) phenotype_df = phenotype_df.loc[toSelect,:] if feature_filter_df is not None: snp_feature_filter_df = snp_feature_filter_df.loc[snp_feature_filter_df['feature'].isin(toSelect)] ##Filtering on features to test from the combined feature snp filter. #Prepare to filter on SNPs. if snp_filter_df is not None: toSelect = set(snp_filter_df.index).intersection(set(risk_df.index.values)) risk_df=risk_df.loc[toSelect,:] ##Filtering on SNPs to test from the snp filter. if snp_feature_filter_df is not None: toSelect = set(np.unique(snp_feature_filter_df['snp_id'])).intersection(set(risk_df.index.values)) risk_df=risk_df.loc[toSelect,:] ##Filtering on features to test from the combined feature snp filter. #Filtering for sites on non allosomes. if not skipAutosomeFiltering : annotation_df = annotation_df[annotation_df['chromosome'].map(lambda x: x in list(map(str, range(1, 23))))] feature_list = list(set(annotation_df.index)&set(phenotype_df.index)) print("Number of features to be tested: " + str(len(feature_list))) print("Total number of variants to be considered, before variante QC and feature intersection: " + str(risk_df.shape[0])) if(phenotype_df.shape[1]<minimum_test_samples): print("Not enough samples with both genotype & phenotype data, for current number of covariates.") sys.exit() return [phenotype_df, kinship_df, covariate_df, sample2individual_df, annotation_df, snp_filter_df, snp_feature_filter_df, genetically_unique_individuals, minimum_test_samples, feature_list, risk_df, chromosome, selectionStart, selectionEnd, feature_variant_covariate_df] def merge_QTL_results(results_dir): '''Merge QTL results for individual chromosomes into a combined, indexed hdf5 file.''' qtl_results_files = sorted(glob.glob(results_dir+'qtl_results_*.txt')) hdf5_outfile = qtl_output.hdf5_writer(results_dir+'qtl_results.h5') for filename in qtl_results_files: df = pd.read_csv(filename,sep='\t') hdf5_outfile.add_result_df(df) hdf5_outfile.close() def chunker(seq, size): return (seq[pos:pos + np.int(size)] for pos in range(0, len(seq), np.int(size))) def get_unique_genetic_samples(kinship_df, relatedness_score): # tril returns the lower triungular. # if two lines are > identity then kinship_df>=relatedness_score should have an offdiagonal 1. # if there is one 1 in the tril then it means that in the upper triul there was a line withe identical genotype return (kinship_df.index[(np.tril(kinship_df>=relatedness_score,k=-1)).sum(1)==0]) def force_normal_distribution(phenotype, method='gaussnorm', reference=None): _doc='rank transform x into ref/ gaussian;keep the range; keep ties' if method=='log': return np.log(1+phenotype) if method=='log_standardize': temp=np.log(1+phenotype) return (temp-np.nanmean(temp))/np.nanstd(temp) if method=='arcsin': return np.arcsin(np.sqrt(phenotype)) if method=='arcsin_standardize': temp=np.arcsin(np.sqrt(phenotype)) return (temp-np.nanmean(temp))/np.nanstd(temp) if method=='standardize': return (phenotype-np.nanmean(phenotype))/np.nanstd(phenotype) indextoupdate = np.isfinite(phenotype) y1 = phenotype[indextoupdate] yuni,yindex=np.unique(y1, return_inverse=True) phenotypenorm=phenotype.copy() if method =='gaussnorm': sref = scst.norm.isf(np.linspace(0.001, 0.999,num=yuni.shape[0])[::-1]) phenotypenorm[indextoupdate]=sref[yindex] return phenotypenorm elif method=='ranknorm': try: xref1=np.unique(reference[np.isfinite(reference)]) sref=np.sort(xref1)[np.linspace(0,xref1.shape[0]-0.001, num=y1.shape[0]).astype(int)] except: print ('reference missing. provide reference to force_normal_distribution or choose gaussnorm') return 1 phenotypenorm[indextoupdate]=sref[np.argsort(np.argsort(y1))] return phenotypenorm elif method=='ranknorm_duplicates': try: xref1=np.unique(reference[np.isfinite(reference)])### unique values from reference sref=np.sort(xref1)[np.linspace(0,xref1.shape[0]-0.001, num=yuni.shape[0]).astype(int)] except: print ('reference missing. provide reference to force_normal_distribution or choose gaussnorm') return 1 phenotypenorm[indextoupdate]=sref[yindex] return phenotypenorm else: print ('methods are: log, log_standardize, standardize, gaussnorm, ranknorm, ranknorm_duplicates, arcsin, arcsin_standardize') #get_shuffeld_genotypes_preserving_kinship(genetically_unique_individuals, relatedness_score, snp_matrix_DF,kinship_df.loc[individual_ids,individual_ids], n_perm) def get_shuffeld_genotypes_preserving_kinship(genetically_unique_individuals, relatedness_score, snp_matrix_DF,kinship_df1,n_perm): # take only one line for replicates (those with the same name) boolean_selection = ~snp_matrix_DF.index.duplicated() temp = snp_matrix_DF.loc[boolean_selection,:] boolean_selection = ~kinship_df1.index.duplicated() kinship_df1 = kinship_df1.loc[boolean_selection, boolean_selection] # subset snp matrix to genetically_unique_individuals u_snp_matrix = temp.loc[genetically_unique_individuals,:] '''has replicates but not same lines form donor (np.setdiff1d(individual_ids,genetically_unique_individuals))''' #Shuffle and reinflate locationBuffer = np.zeros(snp_matrix_DF.shape[0], dtype=np.int) #Prepare location search for permuted snp_matrix_df. index_samples = np.arange(u_snp_matrix.shape[0]) for index,current_name in enumerate(genetically_unique_individuals): # find all samples that are related to current_name, or are current_name itself. kinship_row = kinship_df1.loc[current_name] selection = np.logical_or(kinship_row>=relatedness_score, kinship_row.index==current_name) locationBuffer[np.where(selection)] = index snp_matrix_copy = np.zeros((snp_matrix_DF.shape[0],snp_matrix_DF.shape[1]*n_perm)) counter = 0 end = (snp_matrix_DF.shape[1]) for perm_id in range(0,n_perm) : np.random.shuffle(index_samples) temp_u = u_snp_matrix.values[index_samples,:] snp_matrix_copy[:,counter:end] = temp_u[locationBuffer,:] counter+= snp_matrix_DF.shape[1] end+= snp_matrix_DF.shape[1] return(snp_matrix_copy) def get_shuffeld_genotypes(snp_matrix_DF,n_perm): snp_matrix_copy = np.zeros((snp_matrix_DF.shape[0],snp_matrix_DF.shape[1]*n_perm)) counter = 0 end = (snp_matrix_DF.shape[1]) index_samples = np.arange(snp_matrix_DF.shape[0]) for perm_id in range(0,n_perm) :
np.random.shuffle(index_samples)
numpy.random.shuffle
""" auspectra696.py 696 project Handles the primary functions """ # !/usr/bin/env python3 from __future__ import print_function import sys from argparse import ArgumentParser import numpy as np import matplotlib.pyplot as plt import os import numpy as np import matplotlib.pyplot as plt import xlrd import pandas as pd import collections as cl import six SUCCESS = 0 INVALID_DATA = 1 IO_ERROR = 2 __author__ = 'salwan' # DEFAULT_DATA_FILE_NAME = 'LongerTest.xlsx' DATA_DIR = os.path.join(os.path.dirname(__file__), 'data') DEFAULT_DATA_FILE_NAME = os.path.join(DATA_DIR, "LongerTest.xlsx") def warning(*objs): """Writes a message to stderr.""" print("WARNING: ", *objs, file=sys.stderr) def parse_cmdline(argv): """ Returns the parsed argument list and return code. `argv` is a list of arguments, or `None` for ``sys.argv[1:]``. """ if argv is None: argv = sys.argv[1:] # initialize the parser object: parser = ArgumentParser( description='Reads data from xlsx file, analyzes it, plots it, and reports key parameters. ' 'All program output is user-controlled' '') parser.add_argument("-w", "--workbook", help="The location (directory and file name) of the Excel file with " " The default file is {} ".format(DEFAULT_DATA_FILE_NAME), default=DEFAULT_DATA_FILE_NAME) parser.add_argument("-p", "--plot", help="Plot data from Excel file (default is true). Goes to 'data' directory", action='store_true') parser.add_argument("-n", "--normalize", help="Normalize data to max absorbance (default is true).", action='store_true') parser.add_argument("-t", "--table", help="Tabular summary of SampleID, Amax, lMax, size (default is true). Goes to 'data' directory", action='store_true') args = None try: args = parser.parse_args(argv) # args.wb_data = xlrd.open_workbook(input("Enter a file name (LongerTest.xlsx for testing purposes): ")) except IOError as e: warning("Problems reading file:", e) parser.print_help() return args, IO_ERROR return vars(args), SUCCESS # make sample input have a list of expected args and compare def norm(rawAbs, Amax, x): absoNorm = [x / Amax for x in rawAbs] # normalizes to Amax maxAbsAfterNorm = max(absoNorm) return absoNorm def data_analysisNorm(data_file): #read data from xlsx wb_data = xlrd.open_workbook(data_file) sheet1 = wb_data.sheet_by_index(0) r = sheet1.nrows c = sheet1.ncols xLimLflt = sheet1.cell(1, 0).value # must be less than 400 xLimL = int(xLimLflt) # Upper limit xLimUflt = sheet1.cell(r - 1, 0).value xLimU = int(xLimUflt) # dict for extracted or calculated values from data data = cl.OrderedDict({'Sample ID': [], 'lambdaMax (nm)': [], 'Amax': [], 'Size (nm)': [] }) for x in range(3, c): # 299 is the number of data points minus 2 lambdas = sheet1.col_values(colx=0, start_rowx=(xLimU - 299) - xLimL, end_rowx=r) # x-vals (wavelength) abso = sheet1.col_values(colx=x, start_rowx=(xLimU - 299) - xLimL, end_rowx=r) # y-vals (absorbance) # 400 is the lambda we start plotting at sID = sheet1.cell(0, x).value # name of each column lMax = abso.index(max(abso)) + 400 # find max lambda for a column Amax = max(abso) # get max Abs to norm against it absoNorm = norm(abso, Amax, x) # absoNorm = [x / Amax for x in abso] # normalizes to Amax size = -0.02111514 * (lMax ** 2.0) + 24.6 * (lMax) - 7065. # J. Phys. Chem. C 2007, 111, 14664-14669 # if lambdaMax outisde of this range then 1) particles aggregated and 2)outside of correlation if 518 < lMax < 570: data['Size (nm)'].append(int(size)) else: data['Size (nm)'].append('>100') # added extracted/calculated items into dict 'data' data['Sample ID'].append(sID) data['lambdaMax (nm)'].append(lMax) data['Amax'].append(Amax) # plot each column (cycle in loop) plt.plot(lambdas, absoNorm, linewidth=2, label=sheet1.cell(0, x).value) axes = plt.gca() box = axes.get_position() axes.set_position([box.x0, box.y0, box.width * 0.983, box.height]) plt.xlabel('Wavelength (nm)') plt.ylabel('Absorbance (Normalized to Amax)') plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True) axes.set_xlim([400, 700]) axes.set_ylim([0, 1.5]) # plt.show() plt.savefig('data/dataOutput/AuPlotNorm.png', format='png', dpi=500) return data def data_analysis(data_file, plot=True): #read data from xlsx wb_data = xlrd.open_workbook(data_file) sheet1 = wb_data.sheet_by_index(0) r = sheet1.nrows c = sheet1.ncols xLimLflt = sheet1.cell(1, 0).value # must be less than 400 xLimL = int(xLimLflt) # Upper limit xLimUflt = sheet1.cell(r - 1, 0).value xLimU = int(xLimUflt) # dict for extracted or calculated values from data data = cl.OrderedDict({'Sample ID': [], 'lambdaMax (nm)': [], 'Amax': [], 'Size (nm)': [] }) for x in range(3, c): # 299 is the number of data points minus 2 lambdas = sheet1.col_values(colx=0, start_rowx=(xLimU - 299) - xLimL, end_rowx=r) # x-vals (wavelength) abso = sheet1.col_values(colx=x, start_rowx=(xLimU - 299) - xLimL, end_rowx=r) # y-vals (absorbance) # 400 is the lambda we start plotting at sID = sheet1.cell(0, x).value # name of each column lMax = abso.index(max(abso)) + 400 # find max lambda for a column Amax = max(abso) # get max Abs to norm against it size = -0.02111514 * (lMax ** 2.0) + 24.6 * (lMax) - 7065. # J. Phys. Chem. C 2007, 111, 14664-14669 # if lambdaMax outisde of this range then 1) particles aggregated and 2)outside of correlation if 518 < lMax < 570: data['Size (nm)'].append(int(size)) else: data['Size (nm)'].append('>100') # added extracted/calculated items into dict 'data' data['Sample ID'].append(sID) data['lambdaMax (nm)'].append(lMax) data['Amax'].append(Amax) # plot each column (cycle in loop) if plot is True: plt.plot(lambdas, abso, linewidth=2, label=sheet1.cell(0, x).value) axes = plt.gca() box = axes.get_position() axes.set_position([box.x0, box.y0, box.width * 0.983, box.height]) plt.xlabel('Wavelength (nm)') plt.ylabel('Absorbance') plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True) axes.set_xlim([400, 700]) axes.set_ylim([0, Amax + 0.05]) plt.savefig('data/dataOutput/AuPlot.png', format='png', dpi=5000) return data # output data frame as nice table def render_mpl_table(data, col_width=4.0, row_height=0.625, font_size=14, header_color='#40466e', row_colors=['#f1f1f2', 'w'], edge_color='w', bbox=[0, 0, 1, 1], header_columns=0, ax=None, **kwargs): if ax is None: size = (np.array(data.shape[::-1]) + np.array([0, 1])) *
np.array([col_width, row_height])
numpy.array
import math import numpy as np import pytest import vg def test_basic(): perpendicular = np.array([[1.0, 1.0, 0.0], [-1.0, 1.0, 0.0]]) assert vg.angle(*perpendicular) == 90 assert vg.angle(*perpendicular[::-1]) == 90 assert isinstance(vg.angle(*perpendicular), float) acute = np.array([[1.0, 2.0, 0.0], [-1.0, 2.0, 0.0]]) acute_angle = math.acos(3.0 / 5.0) assert vg.angle(*acute, units="rad") == acute_angle assert vg.angle(*acute, units="rad") == acute_angle def test_units(): v1 = np.array([1, 1, 0]) v2 = np.array([-1, 1, 0]) assert vg.angle(v1, v2, units="deg") == 90 assert vg.angle(v2, v1, units="rad") == math.pi / 2.0 with pytest.raises(ValueError): vg.angle(v2, v1, units="cm") def test_assume_normalized(): acute = np.array([[1.0, 2.0, 0.0], [-1.0, 2.0, 0.0]]) acute_angle = math.acos(3.0 / 5.0) np.testing.assert_almost_equal( vg.angle(*acute, units="rad", assume_normalized=False), acute_angle ) np.testing.assert_raises( AssertionError, np.testing.assert_almost_equal, vg.angle(*acute, units="rad", assume_normalized=True), acute_angle, ) acute_norm = vg.normalize(acute) np.testing.assert_almost_equal( vg.angle(*acute_norm, units="rad", assume_normalized=False), acute_angle ) np.testing.assert_almost_equal( vg.angle(*acute_norm, units="rad", assume_normalized=True), acute_angle ) def test_look(): v1 =
np.array([1, 1, 1])
numpy.array
import numpy as np from scipy.stats import pearsonr from skimage import morphology import matplotlib.pyplot as plt from src.correlation_map import apply_motion_correction from utils.io_functs import create_directory, export_np_array from visualisation.depth_projection import depth_volume_plot """ ROI extraction ------ We will now generate a function that extracts ROIs (regions of interest). The function should take 4 inputs: a correlation map, the final stack of aligned frames, a correlation threshold value and a max size of an ROI in pixels. The function should: * Identify the pixel with the highest correlation value in the correlation map (the ROI seed). Initialize the list of pixels in this ROI with this **seed.** * Compute the individual correlations of the fluorescence time-series in this pixel with its 8 neighbours. A convenient way of idetifying the neighbours of a region is by dilating the reion by one piexl. You can do this by importing morphology from skimage and using `morphology.binary_dilation`. * Add the neighbours whose correlation exceeds the threshold to the ROI. * Repeat by looking at the neighbouring pixels of the new ROI and computing the correlation of their fluorescence with the total fluorescence of the ROI. Add the pixels to the ROI if they exceed the threshold. * Stop the function if no neighbouring pixels exceed the threshold or if the size of the ROI exceeds the maximum size (the last input to the function). * The function should return the pixels within the ROI, the fluoresence trace of the ROI, the size of the ROI and the correlation map with the values of the pixels in the extracted ROI set to zero. Mike's notes for finding the regions: 1. use the threshold and find the maximum correlation value in the map as a seed 2. take indices of nearest neighbours 3. assign seed as the template trace and extract traces of neighbours 4. find correlation with template trace and that of each neighbouring trace 5. join neighbours beyond a given threshold and reasign the total average as the new trace """ def next_roi(correlation_volume, frames, correlation_threshold, max_volume): # find maximum existing correlation point this_max = np.nanmax(correlation_volume) # print(this_max) # get the index coordinates max correlation value (seed) result = np.where(correlation_volume == this_max) coords = list(zip(result[0], result[1], result[2])) # store each index for each dimension I, J, K = coords[0][:] # extract timeseries for the seed this_roi_trace = np.squeeze(frames[:, I, J, K]) # create a correlation map for the ROI this_roi = np.zeros_like(correlation_volume) # assign correlation value to seed as 1 this_roi[I, J, K] = 1 this_correlation_map = np.copy(correlation_volume) this_correlation_map[I, J, K] = 0; added = 1 while np.sum(this_roi != 0) < max_volume and added == 1: added = 0 # dilated = morphology.binary_dilation(this_roi, np.ones((3, 3, 3))).astype(np.uint8) dilated = morphology.binary_dilation(this_roi, morphology.cube(width=3)).astype(np.uint8)# converta boolean type new_pixels = dilated - this_roi # locate index of neighbouring pixels and stack as coordinated coords = np.stack(np.where(new_pixels == 1), axis=1).astype(dtype=np.int32) # iterate through each neighbour and calc correlation with ROI for a in range(coords.shape[0]): # extract index for coordinate I, J, K = coords[a] # check it hasn't already been used otherwise it would've been set to zero """ map_corr_func = lambda a, b, c: pearsonr(a[:,b], c)[0] list(map(map_corr_func, frames, coords, Y)) """ if this_correlation_map[I, J, K] != 0: # extract time series Y = np.squeeze(frames[:, I, J, K]) # calculate timeseries correlation with the roi timeseries C, _ = pearsonr(this_roi_trace, Y) # if they are highly correlated join, and update the masks if C > correlation_threshold: # mark as part of the ROI this_roi[I, J, K] = 1 # set correlation value to 0 on the map this_correlation_map[I, J, K] = 0 # add to ROI timeseries this_roi_trace = this_roi_trace + Y # check if you need to average rather than add # keep in while loop added = 1 return this_roi, this_roi_trace, np.sum(this_roi), this_correlation_map if __name__ == '__main__': parent_path = f'F:\\OptovinScape\\20210628\\tiff_stacks\\20210628_6dpf_elavl3_H2B_fish3_run1' # read in aligned frames aligned_frames = apply_motion_correction(parent_path=parent_path) # read in correlation map original_correlation_map = np.load(f"{parent_path}\\correlation_vol_reduced.npy") # original_correlation_map = np.load(f"{parent_path}\\correlation_vol.npy") correlation_map = np.copy(original_correlation_map) n_rois = 200 # create a timeseries array of all ROIs all_traces = np.zeros((n_rois, aligned_frames.shape[0])) # create an ROI volume all_rois =
np.zeros_like(original_correlation_map)
numpy.zeros_like
import cv2 import numpy as np import random import os def smudge_boundaries(img, block_size): # WIP: COMPLTETE IT LATER, NOT ON PRIORITY # we have to smudge the internal boundaries area which is the center area vertically and horizontally h, w = img.shape[:2] cv2.namedWindow('final img', cv2.WINDOW_FREERATIO) signs = [-1, 1] hori_smudge_y = int((h/2.0) - (block_size/2)) for x in range(0, w, block_size): add_sub = random.choice(signs) patch_y = int((h / 2.0) + add_sub*2 * block_size) img_patch = img[patch_y: patch_y + block_size, x: x + block_size] # cv2.imshow('patch img', img_patch) # cv2.waitKey(0) # print(img_patch.shape) img[hori_smudge_y:hori_smudge_y+block_size, x:x + block_size] = img_patch img[hori_smudge_y-int(block_size/2):hori_smudge_y+int(block_size/2), x:x+block_size] = \ cv2.GaussianBlur(img[hori_smudge_y-int(block_size/2):hori_smudge_y+int(block_size/2), x:x+block_size],\ (5, 5), 0) # print("x: ", x) # smudge the center area # pass cv2.imshow('patch img', img_patch) cv2.imshow('final img', img) cv2.waitKey(0) for y in range(0, h, block_size): add_sub = random.choice(signs) vert_smudge_x = int((w / 2.0) + add_sub*2 * block_size) print("y: ", y) def stack_img(img1, img2, side="RIGHT"): # stack THE imgs according to the side if side == "RIGHT": stacked_img =
np.concatenate((img1, img2), axis=1)
numpy.concatenate
# -*- coding: UTF-8 -*- """ 此脚本用于展示随机变量引起的模型幻觉 """ import numpy as np import matplotlib.pyplot as plt def generateData(seed, num): x = 0 np.random.seed(seed) data = [] for i in range(num): x +=
np.random.normal()
numpy.random.normal
# -*- coding: utf-8 -*- # Copyright 2018 the HERA Project # Licensed under the MIT License '''Tests for io.py''' import unittest import numpy as np import pyuvdata from pyuvdata import UVCal, UVData from hera_cal.data import DATA_PATH from collections import OrderedDict as odict from hera_cal.datacontainer import DataContainer import hera_cal.io as io from hera_cal.io import HERACal, HERAData from hera_cal.utils import polnum2str, polstr2num, jnum2str, jstr2num import os import warnings import shutil import copy class Test_HERACal(unittest.TestCase): def setUp(self): self.fname_xx = os.path.join(DATA_PATH, "test_input/zen.2457698.40355.xx.HH.uvc.omni.calfits") self.fname_yy = os.path.join(DATA_PATH, "test_input/zen.2457698.40355.yy.HH.uvc.omni.calfits") self.fname_both = os.path.join(DATA_PATH, "test_input/zen.2457698.40355.HH.uvcA.omni.calfits") def test_init(self): hc = HERACal(self.fname_xx) self.assertEqual(hc.filepaths, [self.fname_xx]) hc = HERACal([self.fname_xx, self.fname_yy]) self.assertEqual(hc.filepaths, [self.fname_xx, self.fname_yy]) hc = HERACal((self.fname_xx, self.fname_yy)) self.assertEqual(hc.filepaths, [self.fname_xx, self.fname_yy]) with self.assertRaises(TypeError): hc = HERACal([0, 1]) with self.assertRaises(ValueError): hc = HERACal(None) def test_read(self): # test one file with both polarizations and a non-None total quality array hc = HERACal(self.fname_both) gains, flags, quals, total_qual = hc.read() uvc = UVCal() uvc.read_calfits(self.fname_both) np.testing.assert_array_equal(uvc.gain_array[0, 0, :, :, 0].T, gains[9, 'jxx']) np.testing.assert_array_equal(uvc.flag_array[0, 0, :, :, 0].T, flags[9, 'jxx']) np.testing.assert_array_equal(uvc.quality_array[0, 0, :, :, 0].T, quals[9, 'jxx']) np.testing.assert_array_equal(uvc.total_quality_array[0, :, :, 0].T, total_qual['jxx']) np.testing.assert_array_equal(np.unique(uvc.freq_array), hc.freqs) np.testing.assert_array_equal(np.unique(uvc.time_array), hc.times) self.assertEqual(hc.pols, ['jxx', 'jyy']) self.assertEqual(set([ant[0] for ant in hc.ants]), set(uvc.ant_array)) # test list loading hc = HERACal([self.fname_xx, self.fname_yy]) gains, flags, quals, total_qual = hc.read() self.assertEqual(len(gains.keys()), 36) self.assertEqual(len(flags.keys()), 36) self.assertEqual(len(quals.keys()), 36) self.assertEqual(hc.freqs.shape, (1024,)) self.assertEqual(hc.times.shape, (3,)) self.assertEqual(sorted(hc.pols), ['jxx', 'jyy']) def test_write(self): hc = HERACal(self.fname_both) gains, flags, quals, total_qual = hc.read() for key in gains.keys(): gains[key] *= 2.0 + 1.0j flags[key] = np.logical_not(flags[key]) quals[key] *= 2.0 for key in total_qual.keys(): total_qual[key] *= 2 hc.update(gains=gains, flags=flags, quals=quals, total_qual=total_qual) hc.write_calfits('test.calfits', clobber=True) gains_in, flags_in, quals_in, total_qual_in = hc.read() hc2 = HERACal('test.calfits') gains_out, flags_out, quals_out, total_qual_out = hc2.read() for key in gains_in.keys(): np.testing.assert_array_equal(gains_in[key] * (2.0 + 1.0j), gains_out[key]) np.testing.assert_array_equal(np.logical_not(flags_in[key]), flags_out[key]) np.testing.assert_array_equal(quals_in[key] * (2.0), quals_out[key]) for key in total_qual.keys(): np.testing.assert_array_equal(total_qual_in[key] * (2.0), total_qual_out[key]) os.remove('test.calfits') from hera_cal.data import DATA_PATH import os class Test_HERAData(unittest.TestCase): def setUp(self): self.uvh5_1 = os.path.join(DATA_PATH, "zen.2458116.61019.xx.HH.h5XRS_downselected") self.uvh5_2 = os.path.join(DATA_PATH, "zen.2458116.61765.xx.HH.h5XRS_downselected") self.miriad_1 = os.path.join(DATA_PATH, "zen.2458043.12552.xx.HH.uvORA") self.miriad_2 = os.path.join(DATA_PATH, "zen.2458043.13298.xx.HH.uvORA") self.uvfits = os.path.join(DATA_PATH, 'zen.2458043.12552.xx.HH.uvA.vis.uvfits') self.four_pol = [os.path.join(DATA_PATH, 'zen.2457698.40355.{}.HH.uvcA'.format(pol)) for pol in ['xx', 'yy', 'xy', 'yx']] def test_init(self): # single uvh5 file hd = HERAData(self.uvh5_1) self.assertEqual(hd.filepaths, [self.uvh5_1]) for meta in hd.HERAData_metas: self.assertIsNotNone(getattr(hd, meta)) self.assertEqual(len(hd.freqs), 1024) self.assertEqual(len(hd.bls), 3) self.assertEqual(len(hd.times), 60) self.assertEqual(len(hd.lsts), 60) self.assertEqual(hd._writers, {}) # multiple uvh5 files files = [self.uvh5_1, self.uvh5_2] hd = HERAData(files) self.assertEqual(hd.filepaths, files) for meta in hd.HERAData_metas: self.assertIsNotNone(getattr(hd, meta)) for f in files: self.assertEqual(len(hd.freqs[f]), 1024) self.assertEqual(len(hd.bls[f]), 3) self.assertEqual(len(hd.times[f]), 60) self.assertEqual(len(hd.lsts[f]), 60) self.assertFalse(hasattr(hd, '_writers')) # miriad hd = HERAData(self.miriad_1, filetype='miriad') self.assertEqual(hd.filepaths, [self.miriad_1]) for meta in hd.HERAData_metas: self.assertIsNone(getattr(hd, meta)) # uvfits hd = HERAData(self.uvfits, filetype='uvfits') self.assertEqual(hd.filepaths, [self.uvfits]) for meta in hd.HERAData_metas: self.assertIsNone(getattr(hd, meta)) # test errors with self.assertRaises(TypeError): hd = HERAData([1, 2]) with self.assertRaises(ValueError): hd = HERAData(None) with self.assertRaises(NotImplementedError): hd = HERAData(self.uvh5_1, 'not a real type') with self.assertRaises(IOError): hd = HERAData('fake path') def test_reset(self): hd = HERAData(self.uvh5_1) hd.read() hd.reset() self.assertIsNone(hd.data_array) self.assertIsNone(hd.flag_array) self.assertIsNone(hd.nsample_array) self.assertEqual(hd.filepaths, [self.uvh5_1]) for meta in hd.HERAData_metas: self.assertIsNotNone(getattr(hd, meta)) self.assertEqual(len(hd.freqs), 1024) self.assertEqual(len(hd.bls), 3) self.assertEqual(len(hd.times), 60) self.assertEqual(len(hd.lsts), 60) self.assertEqual(hd._writers, {}) def test_get_metadata_dict(self): hd = HERAData(self.uvh5_1) metas = hd.get_metadata_dict() for meta in hd.HERAData_metas: self.assertTrue(meta in metas) self.assertEqual(len(metas['freqs']), 1024) self.assertEqual(len(metas['bls']), 3) self.assertEqual(len(metas['times']), 60) self.assertEqual(len(metas['lsts']), 60) np.testing.assert_array_equal(metas['times'], np.unique(list(metas['times_by_bl'].values()))) np.testing.assert_array_equal(metas['lsts'], np.unique(list(metas['lsts_by_bl'].values()))) def test_determine_blt_slicing(self): hd = HERAData(self.uvh5_1) for s in hd._blt_slices.values(): self.assertIsInstance(s, slice) for bl, s in hd._blt_slices.items(): np.testing.assert_array_equal(np.arange(180)[np.logical_and(hd.ant_1_array == bl[0], hd.ant_2_array == bl[1])], np.arange(180)[s]) # test check for non-regular spacing hd.ant_1_array = hd.ant_2_array with self.assertRaises(NotImplementedError): hd._determine_blt_slicing() def test_determine_pol_indexing(self): hd = HERAData(self.uvh5_1) self.assertEqual(hd._polnum_indices, {-5: 0}) hd = HERAData(self.four_pol, filetype='miriad') hd.read(bls=[(53, 53)]) self.assertEqual(hd._polnum_indices, {-8: 3, -7: 2, -6: 1, -5: 0}) def test_get_slice(self): hd = HERAData(self.uvh5_1) hd.read() for bl in hd.bls: np.testing.assert_array_equal(hd._get_slice(hd.data_array, bl), hd.get_data(bl)) np.testing.assert_array_equal(hd._get_slice(hd.data_array, (54, 53, 'XX')), hd.get_data((54, 53, 'XX'))) np.testing.assert_array_equal(hd._get_slice(hd.data_array, (53, 54))['XX'], hd.get_data((53, 54, 'XX'))) np.testing.assert_array_equal(hd._get_slice(hd.data_array, 'XX')[(53, 54)], hd.get_data((53, 54, 'XX'))) with self.assertRaises(KeyError): hd._get_slice(hd.data_array, (1, 2, 3, 4)) hd = HERAData(self.four_pol, filetype='miriad') d, f, n = hd.read(bls=[(80, 81)]) for p in d.pols(): np.testing.assert_array_almost_equal(hd._get_slice(hd.data_array, (80, 81, p)), hd.get_data((80, 81, p))) np.testing.assert_array_almost_equal(hd._get_slice(hd.data_array, (81, 80, p)), hd.get_data((81, 80, p))) def test_set_slice(self): hd = HERAData(self.uvh5_1) hd.read() np.random.seed(21) for bl in hd.bls: new_vis = np.random.randn(60, 1024) + np.random.randn(60, 1024) * 1.0j hd._set_slice(hd.data_array, bl, new_vis) np.testing.assert_array_almost_equal(new_vis, hd.get_data(bl)) new_vis = np.random.randn(60, 1024) + np.random.randn(60, 1024) * 1.0j hd._set_slice(hd.data_array, (54, 53, 'xx'), new_vis) np.testing.assert_array_almost_equal(np.conj(new_vis), hd.get_data((53, 54, 'xx'))) new_vis = np.random.randn(60, 1024) + np.random.randn(60, 1024) * 1.0j hd._set_slice(hd.data_array, (53, 54), {'xx': new_vis}) np.testing.assert_array_almost_equal(new_vis, hd.get_data((53, 54, 'xx'))) new_vis = np.random.randn(60, 1024) + np.random.randn(60, 1024) * 1.0j to_set = {(53, 54): new_vis, (54, 54): 2 * new_vis, (53, 53): 3 * new_vis} hd._set_slice(hd.data_array, 'XX', to_set) np.testing.assert_array_almost_equal(new_vis, hd.get_data((53, 54, 'xx'))) with self.assertRaises(KeyError): hd._set_slice(hd.data_array, (1, 2, 3, 4), None) def test_build_datacontainers(self): hd = HERAData(self.uvh5_1) d, f, n = hd.read() for bl in hd.bls: np.testing.assert_array_almost_equal(d[bl], hd.get_data(bl)) np.testing.assert_array_almost_equal(f[bl], hd.get_flags(bl)) np.testing.assert_array_almost_equal(n[bl], hd.get_nsamples(bl)) for dc in [d, f, n]: self.assertIsInstance(dc, DataContainer) for k in dc.antpos.keys(): self.assertTrue(
np.all(dc.antpos[k] == hd.antpos[k])
numpy.all
import unittest from nose.plugins.skip import SkipTest import numpy import theano from theano.tensor import dmatrix, iscalar, lscalar, dmatrices from theano import tensor from theano.compile import In from theano.compile import pfunc from theano.compile import shared from theano.compile import config def data_of(s): """Return the raw value of a shared variable""" return s.container.storage[0] class Test_pfunc(unittest.TestCase): def test_doc(self): """Ensure the code given in pfunc.txt works as expected""" # Example #1. a = lscalar() b = shared(1) f1 = pfunc([a], (a + b)) f2 = pfunc([In(a, value=44)], a + b, updates={b: b + 1}) self.assertTrue(b.get_value() == 1) self.assertTrue(f1(3) == 4) self.assertTrue(f2(3) == 4) self.assertTrue(b.get_value() == 2) self.assertTrue(f1(3) == 5) b.set_value(0) self.assertTrue(f1(3) == 3) # Example #2. a = tensor.lscalar() b = shared(7) f1 = pfunc([a], a + b) f2 = pfunc([a], a * b) self.assertTrue(f1(5) == 12) b.set_value(8) self.assertTrue(f1(5) == 13) self.assertTrue(f2(4) == 32) def test_shared(self): # CHECK: two functions (f1 and f2) can share w w = shared(numpy.random.rand(2, 2), 'w') wval = w.get_value(borrow=False) x = dmatrix() out1 = w + x out2 = w * x f1 = pfunc([x], [out1]) f2 = pfunc([x], [out2]) xval = numpy.random.rand(2, 2) assert numpy.all(f1(xval) == xval + wval) assert numpy.all(f2(xval) == xval * wval) # CHECK: updating a shared value f3 = pfunc([x], out1, updates=[(w, (w - 1))]) # f3 changes the value of w assert numpy.all(f3(xval) == xval + wval) # this same value is read by f1 assert numpy.all(f1(xval) == xval + (wval - 1)) w.set_value(w.get_value(borrow=True) * 10, borrow=True) # this same value is read by f1 assert numpy.all(f1(xval) == xval + w.get_value(borrow=True)) def test_no_shared_as_input(self): """Test that shared variables cannot be used as function inputs.""" w_init = numpy.random.rand(2, 2) w = shared(w_init.copy(), 'w') try: pfunc([w], theano.tensor.sum(w * w)) assert False except TypeError as e: msg = 'Cannot use a shared variable (w) as explicit input' if str(e).find(msg) < 0: raise def test_default_container(self): # Ensure it is possible to (implicitly) use a shared variable in a # function, as a 'state' that can be updated at will. rng = numpy.random.RandomState(1827) w_init = rng.rand(5) w = shared(w_init.copy(), 'w') reg = theano.tensor.sum(w * w) f = pfunc([], reg) assert f() == numpy.sum(w_init * w_init) # Change the value of w and ensure the output changes accordingly. w.set_value(w.get_value(borrow=True) + 1.0, borrow=True) assert f() == numpy.sum((w_init + 1) ** 2) def test_default_scalar_container(self): # Similar in spirit to test_default_container, but updating a scalar # variable. This is a sanity check for non mutable types. x = shared(0.0, 'x') f = pfunc([], x) assert f() == 0 x.set_value(x.get_value(borrow=True) + 1, borrow=True) assert f() == 1 def test_param_strict(self): a = tensor.dvector() b = shared(7) out = a + b f = pfunc([In(a, strict=False)], [out]) # works, rand generates float64 by default f(
numpy.random.rand(8)
numpy.random.rand
# -*- coding: utf-8 -*- # Copyright (c) 2019 the HERA Project # Licensed under the MIT License """Tests for metrics_io module.""" import pytest import yaml import numpy as np import os import h5py import pyuvdata.tests as uvtest from hera_qm.data import DATA_PATH from hera_qm import metrics_io import hera_qm.tests as qmtest from hera_qm.version import hera_qm_version_str class dummy_class(object): """A dummy class to break h5py object types.""" def __init__(self): """Create blank object.""" pass def test_reds_list_to_dict_type(): """Test type returned is dict.""" test_list = [(1, 2), (3, 4)] test_dict = metrics_io._reds_list_to_dict(test_list) assert isinstance(test_dict, dict) def test_reds_dict_to_list_type(): """Test type returned is list.""" test_dict = {'0': [[0, 1], [1, 2]], '1': [[0, 2], [1, 3]]} test_list = metrics_io._reds_dict_to_list(test_dict) assert isinstance(test_list, list) def test_reds_list_to_dict_to_list_unchanged(): """Test list to dict to list conversion does not change input.""" test_list = [[(1, 2), (3, 4)]] test_dict = metrics_io._reds_list_to_dict(test_list) test_list2 = metrics_io._reds_dict_to_list(test_dict) assert np.allclose(test_list, test_list2) def test_recursive_error_for_object_arrays(): """Test a TypeError is raised if dictionary items are np.arrays of objects.""" test_file = os.path.join(DATA_PATH, 'test_output', 'test.h5') path = '/' bad_dict = {'1': np.array(['123', 1, np.pi], dtype='object')} with h5py.File(test_file, 'w') as h5_test: pytest.raises(TypeError, metrics_io._recursively_save_dict_to_group, h5_test, path, bad_dict) os.remove(test_file) def test_recursive_error_for_dict_of_object(): """Test a TypeError is raised if dictionary items are objects.""" test_file = os.path.join(DATA_PATH, 'test_output', 'test.h5') path = '/' bad_dict = {'0': dummy_class()} with h5py.File(test_file, 'w') as h5_test: pytest.raises(TypeError, metrics_io._recursively_save_dict_to_group, h5_test, path, bad_dict) os.remove(test_file) def test_recursive_error_for_object_in_nested_dict(): """Test TypeError is raised if object is nested in dict.""" test_file = os.path.join(DATA_PATH, 'test_output', 'test.h5') path = '/' bad_dict = {'0': {'0.0': dummy_class()}} with h5py.File(test_file, 'w') as h5_test: pytest.raises(TypeError, metrics_io._recursively_save_dict_to_group, h5_test, path, bad_dict) os.remove(test_file) def test_recursive_adds_numpy_array_to_h5file(): """Test that proper numpy arrays are added to h5file.""" test_file = os.path.join(DATA_PATH, 'test_output', 'test.h5') test_array = np.arange(10) path = '/' good_dict = {'0': test_array} with h5py.File(test_file, 'w') as h5_test: metrics_io._recursively_save_dict_to_group(h5_test, path, good_dict) assert np.allclose(test_array, h5_test["0"][()]) os.remove(test_file) def test_recursive_adds_nested_numpy_array_to_h5file(): """Test that a numpy array nested in a dict is added to h5file.""" test_file = os.path.join(DATA_PATH, 'test_output', 'test.h5') test_array = np.arange(10) path = '/' good_dict = {'0': {1: test_array}} with h5py.File(test_file, 'w') as h5_test: metrics_io._recursively_save_dict_to_group(h5_test, path, good_dict) assert np.allclose(test_array, h5_test["0/1"][()]) os.remove(test_file) def test_recursive_adds_scalar_to_h5file(): """Test that a scalar type is added to h5file.""" test_file = os.path.join(DATA_PATH, 'test_output', 'test.h5') test_scalar = 'hello world' path = '/' good_dict = {'filestem': test_scalar} with h5py.File(test_file, 'w') as h5_test: metrics_io._recursively_save_dict_to_group(h5_test, path, good_dict) # we convert to np.string_ types so use that to compare assert np.string_(test_scalar), h5_test["filestem"][()] os.remove(test_file) def test_recursive_adds_nested_scalar_to_h5file(): """Test that a scalar nested in a dict is added to h5file.""" test_file = os.path.join(DATA_PATH, 'test_output', 'test.h5') test_scalar = 'hello world' good_dict = {'0': {'filestem': test_scalar}} path = '/' with h5py.File(test_file, 'w') as h5_test: metrics_io._recursively_save_dict_to_group(h5_test, path, good_dict) assert np.string_(test_scalar), h5_test["0/filestem"][()] os.remove(test_file) def test_write_metric_error_for_existing_file(): """Test an error is raised if an existing file is given and overwrite=False.""" test_file = os.path.join(DATA_PATH, 'test_output', 'test.h5') with open(test_file, 'w') as f: pass pytest.raises(IOError, metrics_io.write_metric_file, test_file, {}) os.remove(test_file) def test_write_metric_error_for_existing_file_no_appellation(): """Test an error is raised if an existing file is given with no appelation and overwrite=False.""" test_file = os.path.join(DATA_PATH, 'test_output', 'test') with open(test_file + '.hdf5', 'w') as f: pass pytest.raises(IOError, metrics_io.write_metric_file, test_file, {}) os.remove(test_file + '.hdf5') def test_write_metric_succeeds_for_existing_file_no_appellation_overwrite(): """Test an write is successful if an existing file is given and overwrite=True.""" test_file = os.path.join(DATA_PATH, 'test_output', 'test') with open(test_file + '.hdf5', 'w') as f: pass metrics_io.write_metric_file(test_file, {}, True) assert os.path.exists(test_file + '.hdf5') os.remove(test_file + '.hdf5') def test_write_metric_file_hdf5(): """Test that correct hdf5 structure created from write_metric_file.""" test_file = os.path.join(DATA_PATH, 'test_output', 'test.h5') test_scalar = 'hello world' test_array = np.arange(10) test_dict = {'filestem': test_scalar, 1: {'filestem': test_scalar, '1': test_array}} path = '/' metrics_io.write_metric_file(test_file, test_dict) with h5py.File(test_file, 'r') as test_h5: assert np.string_(test_scalar) == test_h5["/Metrics/filestem"][()] assert np.string_(test_scalar) == test_h5["/Metrics/1/filestem"][()] assert np.allclose(test_array, test_h5["Metrics/1/1"][()]) os.remove(test_file) def test_write_metric_file_hdf5_no_appellation_exists(): """Test hdf5 file created from write_metric_file if no appellation given.""" test_file = os.path.join(DATA_PATH, 'test_output', 'test') test_scalar = 'hello world' test_array = np.arange(10) test_dict = {'filestem': test_scalar, 1: {'filestem': test_scalar, '1': test_array}} path = '/' metrics_io.write_metric_file(test_file, test_dict) test_file += '.hdf5' assert os.path.exists(test_file) os.remove(test_file) def test_write_metric_warning_json(): """Test the known warning is issued when writing to json.""" json_file = os.path.join(DATA_PATH, 'test_output', 'test_save.json') test_scalar = 'hello world' test_array = np.arange(10) test_dict = {'filestem': test_scalar, 1: {'filestem': test_scalar, '1': test_array}} warn_message = ["JSON-type files can still be written but are no longer " "written by default.\n" "Write to HDF5 format for future compatibility."] with uvtest.check_warnings( PendingDeprecationWarning, match=warn_message, nwarnings=1 ): json_dict = metrics_io.write_metric_file(json_file, test_dict, overwrite=True) assert os.path.exists(json_file) os.remove(json_file) def test_write_metric_warning_pickle(): """Test the known warning is issued when writing to pickles.""" pickle_file = os.path.join(DATA_PATH, 'test_output', 'test_save.pkl') test_scalar = 'hello world' test_array =
np.arange(10)
numpy.arange
import sys import numpy as np from scipy.sparse import csr_matrix if sys.version_info[0] >= 3: from topn import topn as ct from topn import topn_threaded as ct_thread else: import topn as ct import topn_threaded as ct_thread def awesome_topn(r, c, d, ntop, n_rows=-1, n_jobs=1): """ r, c, and d are 1D numpy arrays all of the same length N. This function will return arrays rn, cn, and dn of length n <= N such that the set of triples {(rn[i], cn[i], dn[i]) : 0 < i < n} is a subset of {(r[j], c[j], d[j]) : 0 < j < N} and that for every distinct value x = rn[i], dn[i] is among the first ntop existing largest d[j]'s whose r[j] = x. Input: r and c: two 1D integer arrays of the same length d: 1D array of single or double precision floating point type of the same length as r or c ntop maximum number of maximum d's returned n_rows: an int. If > -1 it will replace output rn with Rn the index pointer array for the compressed sparse row (CSR) matrix whose elements are {C[rn[i], cn[i]] = dn: 0 < i < n}. This matrix will have its number of rows = n_rows. Thus the length of Rn is n_rows + 1 n_jobs: number of threads, must be >= 1 Output: (rn, cn, dn) where rn, cn, dn are all arrays as described above, or (Rn, cn, dn) where Rn is described above """ dtype = r.dtype assert c.dtype == dtype idx_dtype = np.int32 rr = r.astype(idx_dtype) len_r = len(r) if (n_rows + 1) > len_r: rr.resize(n_rows + 1, refcheck=False) cc = c.astype(idx_dtype) dd = d.copy() new_len = ct_thread.topn_threaded( rr, cc, dd, ntop, n_rows, n_jobs ) rr.resize((new_len if n_rows < 0 else (n_rows + 1)), refcheck=False) cc.resize(new_len, refcheck=False) dd.resize(new_len, refcheck=False) return rr, cc, dd def awesome_hstack_topn(blocks, ntop, sort=True, use_threads=False, n_jobs=1): """ Returns, in CSR format, the matrix formed by horizontally stacking the sequence of CSR matrices in parameter 'blocks', with only the largest ntop elements of each row returned. Also, each row will be sorted in descending order only when ntop < total number of columns in blocks or sort=True, otherwise the rows will be unsorted. :param blocks: list of CSR matrices to be stacked horizontally. :param ntop: int. The maximum number of elements to be returned for each row. :param sort: bool. Each row of the returned matrix will be sorted in descending order only when ntop < total number of columns in blocks or sort=True, otherwise the rows will be unsorted. :param use_threads: bool. Will use the multi-threaded versions of this routine if True otherwise the single threaded version will be used. In multi-core systems setting this to True can lead to acceleration. :param n_jobs: int. When use_threads=True, denotes the number of threads that are to be spawned by the multi-threaded routines. Recommended value is number of cores minus one. Output: (scipy.sparse.csr_matrix) matrix in CSR format """ n_blocks = len(blocks) r = np.concatenate([b.indptr for b in blocks]) c = np.concatenate([b.indices for b in blocks]) d = np.concatenate([b.data for b in blocks]) n_cols = np.array([b.shape[1] for b in blocks]).astype(c.dtype) M = blocks[0].shape[0] N =
np.sum(n_cols)
numpy.sum
# -*- coding: utf-8 -*- """ Created on Wed Nov 30 17:33:29 2016 @author: betienne """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.utils.extmath import randomized_svd class MCA(object): def __init__(self, X, ind=None, supp=None, n_components=None): """ Starts a MCA Params: X : array of size (n,m), typically a pandas dataframe ncols : number of categorical variables n_components : number of axis to keep (non-zero eigenvalues) If None, it is equal to min(n-1,m-ncol) supp : supplementary variables, will not be taken into the computation but can be represented. """ self.ncols = X.shape[1] if supp: self.X_supp = pd.get_dummies(X[supp]) self.columns_supp = list(self.X_supp.columns) self.X_supp = self.X_supp.values self.m_supp = self.X_supp.shape[1] self.supp = True if supp else False if ind: X = pd.get_dummies(X[ind]) else: X = pd.get_dummies(X) self.index = list(X.index) self.columns = list(X.columns) self.K =
np.matrix(X.values, dtype=np.int8)
numpy.matrix
# Modifications copyright 2021 AI Singapore # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Original copyright (c) 2019 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Drawing functions for yolo """ from typing import List, Dict, Tuple, Any import numpy as np import cv2 def draw_outputs(img: np.array, outputs: Tuple[List[np.array], List[float], List[str]], class_names: Dict[str, Any]) -> np.array: """Draw object bounding box, confident score, and class name on the object in the image. Input: - img: the image - outputs: the outputs of prediction, which contain the object' bounding box, confident score, and class index - class_names: dictionary of classes string names Output: - img: the image with the draw of outputs """ boxes, objectness, classes = outputs width_height = np.flip(img.shape[0:2]) for i, oneclass in enumerate(classes): x1y1 = tuple((
np.array(boxes[i][0:2])
numpy.array
# MIT License # # Copyright (C) IBM Corporation 2019 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import, division, print_function, unicode_literals import logging import unittest import numpy as np from art.utils import load_dataset, master_seed from tests.utils_test import get_classifier_kr_tf, get_classifier_kr_tf_binary from art.wrappers.output_reverse_sigmoid import OutputReverseSigmoid logger = logging.getLogger(__name__) class TestReverseSigmoid(unittest.TestCase): """ A unittest class for testing the Reverse Sigmoid wrapper. """ @classmethod def setUpClass(cls): (x_train, y_train), (x_test, y_test), _, _ = load_dataset('mnist') cls.mnist = (x_train, y_train), (x_test, y_test) def setUp(self): master_seed(1234) def test_reverse_sigmoid(self): """ Test reverse sigmoid """ (_, _), (x_test, _) = self.mnist classifier = get_classifier_kr_tf() wrapped_classifier = OutputReverseSigmoid(classifier=classifier, beta=1.0, gamma=0.1) classifier_prediction_expected = np.asarray([[0.12109935, 0.0498215, 0.0993958, 0.06410096, 0.11366928, 0.04645343, 0.06419807, 0.30685693, 0.07616714, 0.05823757]], dtype=np.float32) wrapped_classifier_prediction_expected = np.asarray([[0.10733664, 0.07743666, 0.09712707, 0.08230411, 0.10377649, 0.0764482, 0.08234023, 0.20600921, 0.08703023, 0.08019119]], dtype=np.float32) np.testing.assert_array_almost_equal(classifier.predict(x_test[0:1]), classifier_prediction_expected, decimal=4) np.testing.assert_array_almost_equal(wrapped_classifier.predict(x_test[0:1]), wrapped_classifier_prediction_expected, decimal=4) def test_reverse_sigmoid_beta(self): """ Test reverse sigmoid parameter beta """ (_, _), (x_test, _) = self.mnist classifier = get_classifier_kr_tf() wrapped_classifier = OutputReverseSigmoid(classifier=classifier, beta=0.75, gamma=0.1) classifier_prediction_expected = np.asarray([[0.12109935, 0.0498215, 0.0993958, 0.06410096, 0.11366928, 0.04645343, 0.06419807, 0.30685693, 0.07616714, 0.05823757]], dtype=np.float32) wrapped_classifier_prediction_expected = np.asarray([[0.1097239, 0.07264659, 0.09752058, 0.07914664, 0.10549247, 0.07124537, 0.07919333, 0.22350204, 0.08514594, 0.07638316]], dtype=np.float32) np.testing.assert_array_almost_equal(classifier.predict(x_test[0:1]), classifier_prediction_expected, decimal=4) np.testing.assert_array_almost_equal(wrapped_classifier.predict(x_test[0:1]), wrapped_classifier_prediction_expected, decimal=4) def test_reverse_sigmoid_gamma(self): """ Test reverse sigmoid parameter gamma """ (_, _), (x_test, _) = self.mnist classifier = get_classifier_kr_tf() wrapped_classifier = OutputReverseSigmoid(classifier=classifier, beta=1.0, gamma=0.5) classifier_prediction_expected = np.asarray([[0.12109935, 0.0498215, 0.0993958, 0.06410096, 0.11366928, 0.04645343, 0.06419807, 0.30685693, 0.07616714, 0.05823757]], dtype=np.float32) wrapped_classifier_prediction_expected = np.asarray([[0.09699764, 0.10062696, 0.09689676, 0.09873781, 0.0968849, 0.10121989, 0.0987279, 0.11275949, 0.09774373, 0.09940492]], dtype=np.float32) np.testing.assert_array_almost_equal(classifier.predict(x_test[0:1]), classifier_prediction_expected, decimal=4) np.testing.assert_array_almost_equal(wrapped_classifier.predict(x_test[0:1]), wrapped_classifier_prediction_expected, decimal=4) def test_reverse_sigmoid_binary(self): """ Test reverse sigmoid for binary classifier """ (_, _), (x_test, _) = self.mnist classifier = get_classifier_kr_tf_binary() wrapped_classifier = OutputReverseSigmoid(classifier=classifier, beta=1.0, gamma=0.1) classifier_prediction_expected = np.asarray([[0.5301345]], dtype=np.float32) wrapped_classifier_prediction_expected = np.asarray([[0.52711743]], dtype=np.float32) np.testing.assert_array_almost_equal(classifier.predict(x_test[0:1]), classifier_prediction_expected, decimal=4) np.testing.assert_array_almost_equal(wrapped_classifier.predict(x_test[0:1]), wrapped_classifier_prediction_expected, decimal=4) def test_reverse_sigmoid_beta_binary(self): """ Test reverse sigmoid parameter beta for binary classifier """ (_, _), (x_test, _) = self.mnist classifier = get_classifier_kr_tf_binary() wrapped_classifier = OutputReverseSigmoid(classifier=classifier, beta=0.75, gamma=0.1) classifier_prediction_expected = np.asarray([[0.5301345]], dtype=np.float32) wrapped_classifier_prediction_expected =
np.asarray([[0.5278717]], dtype=np.float32)
numpy.asarray
"""Implements base two-point counter, to be extended when implementing a new engine.""" import os import time import numpy as np from .utils import BaseClass, get_mpi, _make_array, _nan_to_zero from . import utils class TwoPointCounterError(Exception): """Exception raised when issue with two-point counting.""" def get_twopoint_counter(engine='corrfunc'): """ Return :class:`BaseTwoPointCounter`-subclass corresponding to input engine name. Parameters ---------- engine : string, default='corrfunc' Name of two-point counter engine, one of ["corrfunc", "analytic", "jackknife"]. Returns ------- counter : type Two-point counter class. """ if isinstance(engine, str): if engine.lower() == 'corrfunc': from . import corrfunc try: engine = BaseTwoPointCounter._registry[engine.lower()] except KeyError: raise TwoPointCounterError('Unknown two-point counter {}.'.format(engine)) return engine class RegisteredTwoPointCounter(type(BaseClass)): """Metaclass registering :class:`BaseTwoPointCounter`-derived classes.""" _registry = {} def __new__(meta, name, bases, class_dict): cls = super().__new__(meta, name, bases, class_dict) meta._registry[cls.name] = cls return cls class MetaTwoPointCounter(type(BaseClass)): """Metaclass to return correct two-point counter engine.""" def __call__(cls, *args, engine='corrfunc', **kwargs): return get_twopoint_counter(engine)(*args, **kwargs) class TwoPointCounter(BaseClass, metaclass=MetaTwoPointCounter): """ Entry point to two-point counter engines. Parameters ---------- engine : string, default='corrfunc' Name of two-point counter engine, one of ["corrfunc", "analytical"]. args : list Arguments for two-point counter engine, see :class:`BaseTwoPointCounter`. kwargs : dict Arguments for two-point counter engine, see :class:`BaseTwoPointCounter`. Returns ------- engine : BaseTwoPointCounter """ @classmethod def from_state(cls, state): """Return new two-point counter based on state dictionary.""" state = state.copy() cls = get_twopoint_counter(state.pop('name')) new = cls.__new__(cls) new.__setstate__(state) return new def _vlogical_and(*arrays): # & between any number of arrays toret = arrays[0].copy() for array in arrays[1:]: toret &= array return toret def get_default_nrealizations(weights): """Return default number of realizations given input bitwise weights = the number of bits in input weights plus one.""" return 1 + 8 * sum(weight.dtype.itemsize for weight in weights) def get_inverse_probability_weight(*weights, noffset=1, nrealizations=None, default_value=0., dtype='f8'): r""" Return inverse probability weight given input bitwise weights. Inverse probability weight is computed as::math:`\mathrm{nrealizations}/(\mathrm{noffset} + \mathrm{popcount}(w_{1} \& w_{2} \& ...))`. If denominator is 0, weight is set to default_value. Parameters ---------- weights : int arrays Bitwise weights. noffset : int, default=1 The offset to be added to the bitwise counts in the denominator (defaults to 1). nrealizations : int, default=None Number of realizations (defaults to the number of bits in input weights plus one). default_value : float, default=0. Default weight value, if the denominator is zero (defaults to 0). dtype : string, np.dtype Type for output weight. Returns ------- weight : array IIP weight. """ if nrealizations is None: nrealizations = get_default_nrealizations(weights[0]) # denom = noffset + sum(utils.popcount(w1 & w2) for w1, w2 in zip(*weights)) denom = noffset + sum(utils.popcount(_vlogical_and(*weight)) for weight in zip(*weights)) mask = denom == 0 denom[mask] = 1 toret = np.empty_like(denom, dtype=dtype) toret[...] = nrealizations / denom toret[mask] = default_value return toret def _format_positions(positions, mode='auto', position_type='xyz', dtype=None, copy=True, mpicomm=None, mpiroot=None): # Format input array of positions # position_type in ["xyz", "rdd", "pos"] mode = mode.lower() position_type = position_type.lower() if position_type == 'auto': if mode in ['theta', 'angular']: position_type = 'rd' else: position_type = 'xyz' def __format_positions(positions): pt = position_type if position_type == 'pos': # array of shape (N, 3) positions = np.array(positions, dtype=dtype, copy=copy) if positions.shape[-1] != 3: return None, 'For position type = {}, please provide a (N, 3) array for positions'.format(position_type) positions = positions.T pt = 'xyz' # Array of shape (3, N) for ip, p in enumerate(positions): # Cast to the input dtype if exists (may be set by previous weights) positions[ip] = np.array(p, dtype=dtype, copy=copy) size = len(positions[0]) dt = positions[0].dtype if not np.issubdtype(dt, np.floating): return None, 'Input position arrays should be of floating type, not {}'.format(dt) for p in positions[1:]: if len(p) != size: return None, 'All position arrays should be of the same size' if p.dtype != dt: return None, 'All position arrays should be of the same type, you can e.g. provide dtype' if pt != 'auto' and len(positions) != len(pt): return None, 'For position type = {}, please provide a list of {:d} arrays for positions (found {:d})'.format(pt, len(pt), len(positions)) if mode in ['theta', 'angular']: if pt == 'xyz': positions = utils.cartesian_to_sky(positions, degree=True)[:2] elif pt in ['rdd', 'rdz']: positions = list(positions)[:2] elif pt != 'rd': return None, 'For mode = {}, position type should be one of ["xyz", "rdz", "rd"]'.format(mode) else: if pt == 'rdd': positions = utils.sky_to_cartesian(positions, degree=True) elif pt != 'xyz': return None, 'For mode = {}, position type should be one of ["pos", "xyz", "rdd"]'.format(mode) return positions, None error = None if mpiroot is None or (mpicomm.rank == mpiroot): if positions is not None and (position_type == 'pos' or not all(position is None for position in positions)): positions, error = __format_positions(positions) # return error separately to raise on all processes if mpicomm is not None: error = mpicomm.allgather(error) else: error = [error] errors = [err for err in error if err is not None] if errors: raise TwoPointCounterError(errors[0]) if mpiroot is not None and mpicomm.bcast(positions is not None if mpicomm.rank == mpiroot else None, root=mpiroot): n = mpicomm.bcast(len(positions) if mpicomm.rank == mpiroot else None, root=mpiroot) if mpicomm.rank != mpiroot: positions = [None] * n positions = [get_mpi().scatter_array(position, mpicomm=mpicomm, root=mpiroot) for position in positions] return positions def _format_weights(weights, weight_type='auto', size=None, dtype=None, copy=True, mpicomm=None, mpiroot=None): # Format input weights, as a list of n_bitwise_weights uint8 arrays, and optionally a float array for individual weights. # Return formated list of weights, and n_bitwise_weights. def __format_weights(weights): islist = isinstance(weights, (tuple, list)) or getattr(weights, 'ndim', 1) == 2 if not islist: weights = [weights] if all(weight is None for weight in weights): return [], 0 individual_weights, bitwise_weights = [], [] for w in weights: if np.issubdtype(w.dtype, np.integer): if weight_type == 'product_individual': # enforce float individual weight individual_weights.append(w) else: # certainly bitwise weight bitwise_weights.append(w) else: individual_weights.append(w) # any integer array bit size will be a multiple of 8 bitwise_weights = utils.reformat_bitarrays(*bitwise_weights, dtype=np.uint8, copy=copy) n_bitwise_weights = len(bitwise_weights) weights = bitwise_weights if individual_weights: if len(individual_weights) > 1 or copy: weight = np.prod(individual_weights, axis=0, dtype=dtype) else: weight = individual_weights[0].astype(dtype, copy=False) weights += [weight] return weights, n_bitwise_weights weights, n_bitwise_weights = __format_weights(weights) if mpiroot is None: if mpicomm is not None: size_weights = mpicomm.allgather(len(weights)) if len(set(size_weights)) != 1: raise ValueError('mpiroot = None but weights are None/empty on some ranks') else: n = mpicomm.bcast(len(weights) if mpicomm.rank == mpiroot else None, root=mpiroot) if mpicomm.rank != mpiroot: weights = [None] * n weights = [get_mpi().scatter_array(weight, mpicomm=mpicomm, root=mpiroot) for weight in weights] n_bitwise_weights = mpicomm.bcast(n_bitwise_weights, root=mpiroot) if size is not None: if not all(len(weight) == size for weight in weights): raise ValueError('All weight arrays should be of the same size as position arrays') return weights, n_bitwise_weights class BaseTwoPointCounter(BaseClass, metaclass=RegisteredTwoPointCounter): """ Base class for two-point counters. Extend this class to implement a new two-point counter engine. Attributes ---------- wcounts : array (Optionally weighted) two-point counts. wnorm : float Two-point count normalization. """ name = 'base' def __init__(self, mode, edges, positions1, positions2=None, weights1=None, weights2=None, bin_type='auto', position_type='auto', weight_type='auto', weight_attrs=None, twopoint_weights=None, los='midpoint', boxsize=None, compute_sepsavg=True, dtype=None, nthreads=None, mpicomm=None, mpiroot=None, **kwargs): r""" Initialize :class:`BaseTwoPointCounter`, and run actual two-point counts (calling :meth:`run`), setting :attr:`wcounts` and :attr:`sep`. Parameters ---------- mode : string Type of two-point counts, one of: - "theta": as a function of angle (in degree) between two particles - "s": as a function of distance between two particles - "smu": as a function of distance between two particles and cosine angle :math:`\mu` w.r.t. the line-of-sight - "rppi": as a function of distance transverse (:math:`r_{p}`) and parallel (:math:`\pi`) to the line-of-sight - "rp": same as "rppi", without binning in :math:`\pi` edges : tuple, array Tuple of bin edges (arrays), for the first (e.g. :math:`r_{p}`) and optionally second (e.g. :math:`\pi > 0`, :math:`\mu \in [-1, 1]`) dimensions. In case of single-dimension binning (e.g. ``mode`` is "theta", "s" or "rp"), the single array of bin edges can be provided directly. Edges are inclusive on the low end, exclusive on the high end, i.e. a pair separated by :math:`s` falls in bin `i` if ``edges[i] <= s < edges[i+1]``. In case ``mode`` is "smu" however, the first :math:`\mu`-bin is exclusive on the low end (increase the :math:`\mu`-range by a tiny value to include :math:`\mu = \pm 1`). Pairs at separation :math:`s = 0` are included in the :math:`\mu = 0` bin. In case of auto-correlation (no ``positions2`` provided), auto-pairs (pairs of same objects) are not counted. In case of cross-correlation, all pairs are counted. In any case, duplicate objects (with separation zero) will be counted. positions1 : list, array Positions in the first catalog. Typically of shape (3, N), but can be (2, N) when ``mode`` is "theta". See ``position_type``. positions2 : list, array, default=None Optionally, for cross-two-point counts, positions in the second catalog. See ``positions1``. weights1 : array, list, default=None Weights of the first catalog. Not required if ``weight_type`` is either ``None`` or "auto". See ``weight_type``. weights2 : array, list, default=None Optionally, for cross-two-point counts, weights in the second catalog. See ``weights1``. bin_type : string, default='auto' Binning type for first dimension, e.g. :math:`r_{p}` when ``mode`` is "rppi". Set to ``lin`` for speed-up in case of linearly-spaced bins. In this case, the bin number for a pair separated by a (3D, projected, angular...) separation ``sep`` is given by ``(sep - edges[0])/(edges[-1] - edges[0])*(len(edges) - 1)``, i.e. only the first and last bins of input edges are considered. Then setting ``compute_sepsavg`` is virtually costless. For non-linear binning, set to "custom". "auto" allows for auto-detection of the binning type: linear binning will be chosen if input edges are within ``rtol = 1e-05`` (relative tolerance) *or* ``atol = 1e-08`` (absolute tolerance) of the array ``np.linspace(edges[0], edges[-1], len(edges))``. position_type : string, default='auto' Type of input positions, one of: - "rd": RA/Dec in degree, only if ``mode`` is "theta" - "rdd": RA/Dec in degree, distance, for any ``mode`` - "xyz": Cartesian positions, shape (3, N) - "pos": Cartesian positions, shape (N, 3). weight_type : string, default='auto' The type of weighting to apply to provided weights. One of: - ``None``: no weights are applied. - "product_individual": each pair is weighted by the product of weights :math:`w_{1} w_{2}`. - "inverse_bitwise": each pair is weighted by :math:`\mathrm{nrealizations}/(\mathrm{noffset} + \mathrm{popcount}(w_{1} \& w_{2}))`. Multiple bitwise weights can be provided as a list. Individual weights can additionally be provided as float arrays. In case of cross-correlations with floating weights, bitwise weights are automatically turned to IIP weights, i.e. :math:`\mathrm{nrealizations}/(\mathrm{noffset} + \mathrm{popcount}(w_{1}))`. - "auto": automatically choose weighting based on input ``weights1`` and ``weights2``, i.e. ``None`` when ``weights1`` and ``weights2`` are ``None``, "inverse_bitwise" if one of input weights is integer, else "product_individual". In addition, angular upweights can be provided with ``twopoint_weights``. weight_attrs : dict, default=None Dictionary of weighting scheme attributes. In case ``weight_type`` is "inverse_bitwise", one can provide "nrealizations", the total number of realizations (*including* current one; defaulting to the number of bits in input weights plus one); "noffset", the offset to be added to the bitwise counts in the denominator (defaulting to 1) and "default_value", the default value of pairwise weights if the denominator is zero (defaulting to 0). One can also provide "nalways", stating the number of bits systematically set to 1 (defaulting to 0), and "nnever", stating the number of bits systematically set to 0 (defaulting to 0). These will only impact the normalization factors. For example, for the "zero-truncated" estimator (arXiv:1912.08803), one would use noffset = 0, nalways = 1, nnever = 0. twopoint_weights : WeightTwoPointEstimator, default=None Weights to be applied to each pair of particles. A :class:`WeightTwoPointEstimator` instance or any object with arrays ``sep`` (separations) and ``weight`` (weight at given separation) as attributes (i.e. to be accessed through ``twopoint_weights.sep``, ``twopoint_weights.weight``) or as keys (i.e. ``twopoint_weights['sep']``, ``twopoint_weights['weight']``) or as element (i.e. ``sep, weight = twopoint_weights``) los : string, default='midpoint' Line-of-sight to be used when ``mode`` is "smu", "rppi" or "rp"; one of: - "midpoint": the mean position of the pair: :math:`\mathbf{\eta} = (\mathbf{r}_{1} + \mathbf{r}_{2})/2` - "x", "y" or "z": cartesian axis boxsize : array, float, default=None For periodic wrapping, the side-length(s) of the periodic cube. compute_sepsavg : bool, default=True Set to ``False`` to *not* calculate the average separation for each bin. This can make the two-point counts faster if ``bin_type`` is "custom". In this case, :attr:`sep` will be set the midpoint of input edges. dtype : string, np.dtype, default=None Array type for positions and weights. If ``None``, defaults to type of first ``positions1`` array. Double precision is highly recommended in case ``mode`` is "theta", ``twopoint_weights`` is provided (due to cosine), or ``compute_sepsavg`` is ``True``. nthreads : int, default=None Number of OpenMP threads to use. mpicomm : MPI communicator, default=None The MPI communicator, to MPI-distribute calculation. mpiroot : int, default=None In case ``mpicomm`` is provided, if ``None``, input positions and weights are assumed to be scattered across all ranks. Else the MPI rank where input positions and weights are gathered. kwargs : dict Two-point counter engine-specific options. """ self.attrs = kwargs self.mpicomm = mpicomm if self.mpicomm is None and mpiroot is not None: raise TwoPointCounterError('mpiroot is not None, but no mpicomm provided') self._set_nthreads(nthreads) self._set_mode(mode) self._set_boxsize(boxsize) self._set_edges(edges, bin_type=bin_type) self._set_los(los) self._set_compute_sepsavg(compute_sepsavg) self._set_positions(positions1, positions2, position_type=position_type, dtype=dtype, copy=False, mpiroot=mpiroot) self._set_weights(weights1, weights2, weight_type=weight_type, twopoint_weights=twopoint_weights, weight_attrs=weight_attrs, copy=False, mpiroot=mpiroot) self._set_zeros() self._set_reversible() self.wnorm = self.normalization() t0 = time.time() self.run() t1 = time.time() if not self.with_mpi or self.mpicomm.rank == 0: self.log_debug('Two-point counts computed in elapsed time {:.2f} s.'.format(t1 - t0)) del self.positions1, self.positions2, self.weights1, self.weights2 def run(self): """ Method that computes the actual two-point counts and set :attr:`wcounts` and :attr:`sep`, to be implemented in your new engine. """ raise NotImplementedError('Implement method "run" in your {}'.format(self.__class__.__name__)) def _set_nthreads(self, nthreads): if nthreads is None: self.nthreads = int(os.getenv('OMP_NUM_THREADS', '1')) else: self.nthreads = int(nthreads) def _set_mode(self, mode): self.mode = mode.lower() def _set_reversible(self): self.is_reversible = self.mode in ['theta', 's', 'rp', 'rppi'] if self.mode == 'smu': self.is_reversible = self.autocorr or (self.los_type not in ['firstpoint', 'endpoint']) # even smu is reversible for midpoint los, i.e. positions1 <-> positions2 def _set_zeros(self): self._set_default_seps() self.wcounts = np.zeros_like(self.sep) self.ncounts = np.zeros_like(self.sep, dtype='i8') def _set_compute_sepsavg(self, compute_sepsavg): if 'compute_sepavg' in self.attrs: self.log_warning('Use compute_sepsavg instead of compute_sepavg.') compute_sepsavg = self.attrs.pop('compute_sepavg') if np.ndim(compute_sepsavg) == 0: compute_sepsavg = (compute_sepsavg,) * self.ndim self.compute_sepsavg = [bool(c) for c in compute_sepsavg] if len(self.compute_sepsavg) != self.ndim: raise TwoPointCounterError('compute_sepsavg must be either a boolean or its length must match number of dimensions = {:d} for mode = {:d}'.format(self.ndim, self.mode)) def _set_edges(self, edges, bin_type='auto'): if np.ndim(edges[0]) == 0: edges = (edges,) self.edges = [np.array(edge, dtype='f8') for edge in edges] if self.mode in ['smu', 'rppi']: if not self.ndim == 2: raise TwoPointCounterError('A tuple of edges should be provided to two-point counter in mode {}'.format(self.mode)) else: if not self.ndim == 1: raise TwoPointCounterError('Only one edge array should be provided to two-point counter in mode {}'.format(self.mode)) self._set_bin_type(bin_type) def _set_bin_type(self, bin_type): self.bin_type = bin_type.lower() allowed_bin_types = ['lin', 'custom', 'auto'] if self.bin_type not in allowed_bin_types: raise TwoPointCounterError('bin type should be one of {}'.format(allowed_bin_types)) if self.bin_type == 'auto': edges = self.edges[0] if np.allclose(edges, np.linspace(edges[0], edges[-1], len(edges))): self.bin_type = 'lin' @property def shape(self): """Return shape of obtained counts :attr:`wcounts`.""" return tuple(len(edges) - 1 for edges in self.edges) @property def ndim(self): """Return binning dimensionality.""" return len(self.edges) @property def periodic(self): """Whether periodic wrapping is used (i.e. :attr:`boxsize` is not ``None``).""" return self.boxsize is not None @property def with_mpi(self): """Whether to use MPI.""" if not hasattr(self, 'mpicomm'): self.mpicomm = None return self.mpicomm is not None and self.mpicomm.size > 1 def _set_positions(self, positions1, positions2=None, position_type='auto', dtype=None, copy=False, mpiroot=None): self.positions1 = _format_positions(positions1, mode=self.mode, position_type=position_type, dtype=dtype, copy=copy, mpicomm=self.mpicomm, mpiroot=mpiroot) self.dtype = self.positions1[0].dtype self.positions2 = _format_positions(positions2, mode=self.mode, position_type=position_type, dtype=self.dtype, copy=copy, mpicomm=self.mpicomm, mpiroot=mpiroot) self.autocorr = self.positions2 is None if self.periodic: self.positions1 = [p % b.astype(p.dtype) for p, b in zip(self.positions1, self.boxsize)] if not self.autocorr: self.positions2 = [p % b.astype(p.dtype) for p, b in zip(self.positions2, self.boxsize)] self.size1 = self.size2 = len(self.positions1[0]) if not self.autocorr: self.size2 = len(self.positions2[0]) if self.with_mpi: self.size1, self.size2 = self.mpicomm.allreduce(self.size1), self.mpicomm.allreduce(self.size2) def _set_weights(self, weights1, weights2=None, weight_type='auto', twopoint_weights=None, weight_attrs=None, copy=False, mpiroot=None): if weight_type is not None: weight_type = weight_type.lower() allowed_weight_types = [None, 'auto', 'product_individual', 'inverse_bitwise'] if weight_type not in allowed_weight_types: raise TwoPointCounterError('weight_type should be one of {}'.format(allowed_weight_types)) self.weight_type = weight_type weight_attrs = weight_attrs or {} self.weight_attrs = {} self.n_bitwise_weights = 0 if weight_type is None: self.weights1 = self.weights2 = [] else: self.weight_attrs.update(nalways=weight_attrs.get('nalways', 0), nnever=weight_attrs.get('nnever', 0)) noffset = weight_attrs.get('noffset', 1) default_value = weight_attrs.get('default_value', 0.) self.weight_attrs.update(noffset=noffset, default_value=default_value) self.weights1, n_bitwise_weights1 = _format_weights(weights1, weight_type=self.weight_type, size=len(self.positions1[0]), dtype=self.dtype, copy=copy, mpicomm=self.mpicomm, mpiroot=mpiroot) def get_nrealizations(n_bitwise_weights): nrealizations = weight_attrs.get('nrealizations', None) if nrealizations is None: nrealizations = n_bitwise_weights * 8 + 1 return nrealizations if self.autocorr: nrealizations = get_nrealizations(n_bitwise_weights1) self.weight_attrs.update(nrealizations=nrealizations) self.weights2 = self.weights1 self.n_bitwise_weights = n_bitwise_weights1 else: self.weights2, n_bitwise_weights2 = _format_weights(weights2, weight_type=self.weight_type, size=len(self.positions2[0]), dtype=self.dtype, copy=copy, mpicomm=self.mpicomm, mpiroot=mpiroot) if n_bitwise_weights2 == n_bitwise_weights1: nrealizations = get_nrealizations(n_bitwise_weights1) self.n_bitwise_weights = n_bitwise_weights1 else: if n_bitwise_weights2 == 0: indweights = self.weights1[n_bitwise_weights1] if len(self.weights1) > n_bitwise_weights1 else 1. nrealizations = get_nrealizations(n_bitwise_weights1) self.weights1 = [get_inverse_probability_weight(self.weights1[:n_bitwise_weights1], nrealizations=nrealizations, noffset=noffset, default_value=default_value, dtype=self.dtype) * indweights] self.n_bitwise_weights = 0 if not self.with_mpi or self.mpicomm.rank == 0: self.log_info('Setting IIP weights for first catalog.') elif n_bitwise_weights1 == 0: indweights = self.weights2[n_bitwise_weights2] if len(self.weights2) > n_bitwise_weights2 else 1. nrealizations = get_nrealizations(n_bitwise_weights2) self.weights2 = [get_inverse_probability_weight(self.weights2[:n_bitwise_weights2], nrealizations=nrealizations, noffset=noffset, default_value=default_value, dtype=self.dtype) * indweights] self.n_bitwise_weights = 0 if not self.with_mpi or self.mpicomm.rank == 0: self.log_info('Setting IIP weights for second catalog.') else: raise TwoPointCounterError('Incompatible length of bitwise weights: {:d} and {:d} bytes'.format(n_bitwise_weights1, n_bitwise_weights2)) self.weight_attrs.update(nrealizations=nrealizations) if len(self.weights1) == len(self.weights2) + 1: self.weights2.append(np.ones(len(self.positions2[0]), dtype=self.dtype)) elif len(self.weights1) == len(self.weights2) - 1: self.weights1.append(np.ones(len(self.positions1[0]), dtype=self.dtype)) elif len(self.weights1) != len(self.weights2): raise ValueError('Something fishy happened with weights; number of weights1/weights2 is {:d}/{:d}'.format(len(self.weights1), len(self.weights2))) self.twopoint_weights = twopoint_weights self.cos_twopoint_weights = None if twopoint_weights is not None: if self.periodic: raise TwoPointCounterError('Cannot use angular weights in case of periodic boundary conditions (boxsize)') from collections import namedtuple TwoPointWeight = namedtuple('TwoPointWeight', ['sep', 'weight']) try: sep = twopoint_weights.sep weight = twopoint_weights.weight except AttributeError: try: sep = twopoint_weights['sep'] weight = twopoint_weights['weight'] except IndexError: sep, weight = twopoint_weights # just to make sure we use the correct dtype sep = np.cos(np.radians(np.array(sep, dtype=self.dtype))) argsort = np.argsort(sep) self.cos_twopoint_weights = TwoPointWeight(sep=np.array(sep[argsort], dtype=self.dtype), weight=
np.array(weight[argsort], dtype=self.dtype)
numpy.array
from __future__ import print_function import numpy as np from scipy.special import factorial def gamma_hrf(duration, A=1., tau=1.08, n=3, delta=2.05, Fs=1.0): r"""A gamma function hrf model, with two parameters, based on [Boynton1996]_ Parameters ---------- duration: float the length of the HRF (in the inverse units of the sampling rate) A: float a scaling factor, sets the max of the function, defaults to 1 tau: float The time constant of the gamma function, defaults to 1.08 n: int The phase delay of the gamma function, defaults to 3 delta: float A pure delay, allowing for an additional delay from the onset of the time-series to the beginning of the gamma hrf, defaults to 2.05 Fs: float The sampling rate, defaults to 1.0 Returns ------- h: the gamma function hrf, as a function of time Notes ----- This is based on equation 3 in Boynton (1996): .. math:: h(t) = \frac{(\frac{t-\delta}{\tau})^{(n-1)} e^{-(\frac{t-\delta}{\tau})}}{\tau(n-1)!} <NAME>, <NAME>, <NAME> and <NAME> (1996). Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1. J Neurosci 16: 4207-4221 """ # XXX Maybe change to take out the time (Fs, duration, etc) from this and # instead implement this in units of sampling interval (pushing the time # aspect to the higher level)? if type(n) is not int: print(('gamma_hrf received unusual input, converting n from %s to %i' % (str(n), int(n)))) n = int(n) #Prevent negative delta values: if delta < 0: raise ValueError('in gamma_hrf, delta cannot be smaller than 0') #Prevent cases in which the delta is larger than the entire hrf: if delta > duration: e_s = 'in gamma_hrf, delta cannot be larger than the duration' raise ValueError(e_s) t_max = duration - delta t = np.hstack([np.zeros((delta * Fs)), np.linspace(0, t_max, t_max * Fs)]) t_tau = t / tau h = (t_tau ** (n - 1) * np.exp(-1 * (t_tau)) / (tau * factorial(n - 1))) return A * h / max(h) def polonsky_hrf(A, B, tau1, f1, tau2, f2, t_max, Fs=1.0): r""" HRF based on Polonsky (2000): .. math:: H(t) = exp(\frac{-t}{\tau_1}) sin(2\cdot\pi f_1 \cdot t) -a\cdot exp(-\frac{t}{\tau_2})*sin(2\pi f_2 t) <NAME>, <NAME>, <NAME> and <NAME> (2000). Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neuroscience 3: 1153-1159 """ sampling_interval = 1 / float(Fs) t = np.arange(0, t_max, sampling_interval) h = (np.exp(-t / tau1) * np.sin(2 * np.pi * f1 * t) - (B *
np.exp(-t / tau2)
numpy.exp
import json import os from neuralparticles.tools.param_helpers import * from neuralparticles.tools.data_helpers import PatchExtractor, get_data, get_data_pair, get_norm_factor, get_nearest_idx import numpy as np from neuralparticles.tools.uniio import readNumpyRaw from neuralparticles.tensorflow.models.PUNet import PUNet import shutil, math import keras from keras.models import Model from neuralparticles.tools.plot_helpers import write_csv, plot_particles if __name__ == "__main__": data_path = getParam("data", "data/") config_path = getParam("config", "config/version_00.txt") mode = int(getParam("mode", 0)) cnt = int(getParam("cnt", 100)) patch_seed = int(getParam("seed", 0)) dataset = int(getParam("dataset", -1)) checkUnusedParams() if not os.path.exists(data_path + "statistics/"): os.makedirs(data_path + "statistics/") np.random.seed(34) src_path = data_path + "source/" ref_path = data_path + "reference/" with open(config_path, 'r') as f: config = json.loads(f.read()) with open(os.path.dirname(config_path) + '/' + config['data'], 'r') as f: data_config = json.loads(f.read()) with open(os.path.dirname(config_path) + '/' + config['preprocess'], 'r') as f: pre_config = json.loads(f.read()) with open(os.path.dirname(config_path) + '/' + config['train'], 'r') as f: train_config = json.loads(f.read()) fac_d = math.pow(pre_config['factor'], 1/data_config['dim']) par_cnt = pre_config['par_cnt'] par_cnt_ref = pre_config['par_cnt_ref'] patch_size = pre_config['patch_size'] * data_config['res'] / fac_d patch_size_ref = pre_config['patch_size_ref'] * data_config['res'] norm_factor = get_norm_factor(data_path, config_path) config_dict = {**data_config, **pre_config, **train_config} punet = PUNet(**config_dict) punet.load_model(data_path + "models/%s_%s_trained.h5" % (data_config['prefix'], config['id'])) features = Model(inputs=punet.model.inputs, outputs=[punet.model.get_layer("concatenate_1").output]) if len(punet.model.inputs) > 1: print("Too many inputs!") exit() if mode < 10: # synthetic data input_points = np.ones((cnt, par_cnt, punet.model.inputs[0].get_shape()[-1])) * (-2) if mode == 0: for i in range(cnt): input_points[i,0,:3] = i * 0.01 elif mode == 1: for i in range(cnt): input_points[i,0,:3] = 0.5 input_points[i,0,3:6] = [i*norm_factor[0]/cnt,0,0] else: print("Mode %d not supported!" % mode) output = features.predict(input_points)[:,0] write_csv(data_path + "statistics/%s_%s-%s-%s_m%02d_features.csv"%(data_config['prefix'], data_config['id'], pre_config['id'], train_config['id'], mode), output) if mode >= 10: # real data d_start = 0 d_end = data_config['test_count'] if dataset < 0: dataset = d_start t_start = 0 t_end = data_config['frame_count'] output = None if mode == 10 or mode == 11: np.random.seed(patch_seed) patch_pos = np.random.random((cnt, 3)) * data_config['res'] / fac_d input_points = np.ones(((t_end-t_start), cnt, par_cnt, punet.model.inputs[0].get_shape()[-1])) * (-2) src_data = None p_idx = 0 patch_path = data_path + "statistics/%s_%s-%s-%s_m%02d_patches/"%(data_config['prefix'], data_config['id'], pre_config['id'], train_config['id'], mode) if not os.path.exists(patch_path): os.makedirs(patch_path) patch_path += "patch_%04d.png" print(t_end) for t in range(t_start, t_end): print(t) path_src = "%sreal/%s_%s_d%03d_%03d" % (data_path, data_config['prefix'], data_config['id'], dataset, t) src_data, sdf_data, par_aux = get_data(path_src, par_aux=train_config['features']) patch_extractor = PatchExtractor(src_data, sdf_data, patch_size, par_cnt, pre_config['surf'], 0, aux_data=par_aux, features=train_config['features'], pad_val=pre_config['pad_val'], bnd=data_config['bnd']/fac_d, last_pos=patch_pos, temp_coh=True, stride_hys=1.0, shuffle=True) patch_pos = patch_extractor.positions patches = patch_extractor.get_patches()[0] ci = np.argmin(
np.linalg.norm(patches[...,:3], axis=-1)
numpy.linalg.norm
import numpy as np import matplotlib as mpl import mpl_toolkits.axes_grid1 as mplax import matplotlib.colors as mplc import matplotlib.cm as mplcm import numba import warnings import scipy.misc as scm import scipy.optimize as spo import scipy.ndimage as scnd import scipy.signal as scsig import skimage.color as skc import stemtool as st def move_by_phase(image_to_move, x_pixels, y_pixels): """ Move Images with sub-pixel precision Parameters ---------- image_to_move: ndarray Original Image to be moved x_pixels: float Pixels to shift in X direction y_pixels: float Pixels to Shift in Y direction Returns ------- moved_image: ndarray Moved Image Notes ----- The underlying idea is that a shift in the real space is phase shift in Fourier space. So we take the original image, and take it's Fourier transform. Also, we calculate how much the image shifts result in the phase change, by calculating the Fourier pixel dimensions. We then multiply the FFT of the image with the phase shift value and then take the inverse FFT. :Authors: <NAME> <<EMAIL>> """ image_size = (np.asarray(image_to_move.shape)).astype(int) fourier_cal_y = np.linspace( (-image_size[0] / 2), ((image_size[0] / 2) - 1), image_size[0] ) fourier_cal_y = fourier_cal_y / (image_size[0]).astype(np.float64) fourier_cal_x = np.linspace( (-image_size[1] / 2), ((image_size[1] / 2) - 1), image_size[1] ) fourier_cal_x = fourier_cal_x / (image_size[1]).astype(np.float64) [fourier_mesh_x, fourier_mesh_y] = np.meshgrid(fourier_cal_x, fourier_cal_y) move_matrix = np.multiply(fourier_mesh_x, x_pixels) + np.multiply( fourier_mesh_y, y_pixels ) move_phase = np.exp((-2) * np.pi * 1j * move_matrix) original_image_fft = np.fft.fftshift(np.fft.fft2(image_to_move)) moved_in_fourier = np.multiply(move_phase, original_image_fft) moved_image = np.fft.ifft2(moved_in_fourier) return moved_image def image_normalizer(image_orig): """ Normalizing Image Parameters ---------- image_orig: ndarray 'image_orig' is the original input image to be normalized Returns ------- image_norm: ndarray Normalized Image Notes ----- We normalize a real valued image here so that it's values lie between o and 1. This is done by first subtracting the minimum value of the image from the image itself, and then subsequently dividing the image by the maximum value of the subtracted image. :Authors: <NAME> <<EMAIL>> """ image_norm = np.zeros_like(image_orig, dtype=np.float64) image_norm = (image_orig -
np.amin(image_orig)
numpy.amin
""" Analyze PGWAVE seeds $Header: /nfs/slac/g/glast/ground/cvs/pointlike/python/uw/like2/analyze/pgwave.py,v 1.1 2016/03/21 18:54:57 burnett Exp $ """ import os, pickle import numpy as np import pylab as plt import pandas as pd from skymaps import SkyDir from .. import associate, seeds from .analysis_base import FloatFormat from . import (analysis_base, _html, sourceinfo) from analysis_base import html_table, FloatFormat class PGwave( sourceinfo.SourceInfo): """Analysis of the PGWave seeds <br> <p> From file %(pgw_filename)s, month %(month)s """ def setup(self, **kw): self.plotfolder = self.seedname='pgwave' self.spectral_type='power law' assert self.skymodel.startswith('month'), 'Current folder not a month' self.month=int(self.skymodel[5:]); try: self.pgw_filename='/nfs/farm/g/glast/g/catalog/transients/TBIN_%d_all_pgw.txt'% (self.month-1) assert os.path.exists(self.pgw_filename), 'PGWAVE file %s not found'% pgw_filensme t=self.df = seeds.read_seedfile('pgw') prefix = 'PGW_%02d'%self.month except: self.pgw_filename='/nfs/farm/g/glast/g/catalog/transients/P302/PGW/1m_1mp15_PGW_ALL.fits' t=self.df = seeds.read_seedfile('PGW') prefix = 'PG{:02d}'.format(self.month) sdirs = map(SkyDir, t.ra,t.dec) t['l']=[s.l() for s in sdirs] t.l[t.l>180]-=360 t['b']=[s.b() for s in sdirs] # now make tables for sources that were accepted sdf = pickle.load(open('sources.pickle')) used = [n.startswith(prefix) for n in sdf.index] self.udf=udf = sdf[used] good = (udf.ts>10) & (udf.a<0.50) & (udf.locqual<8) print ('Used, good:',sum(used),sum(good)) self.good=good def skyplot(self): """seed positions """ t=self.df fig, axx = plt.subplots(2,2, figsize=(12,12)) ax = axx[0,0] ax.plot(t.l, t.b, '.') plt.setp(ax, xlabel='l', ylabel='b', xlim=(180,-180), ylim=(-90,90)) ax.axhline(0, color='k', alpha=0.3) ax.axvline(0, color='k', alpha=0.3) ax = axx[1,0] sinb = np.sin(np.radians(t.b)) dom = np.linspace(-1,1,51) ax.hist(list(sinb),dom); plt.setp(ax, xlabel='sin(b)') ax.grid(True, alpha=0.5) ax = axx[0,1] ax.plot(t.l, t.b, '.') plt.setp(ax, xlabel='l', ylabel='b', xlim=(180,-180), ylim=(-25,25)) ax.axhline(0, color='k', alpha=0.3) ax.axvline(0, color='k', alpha=0.3) ax= axx[1,1] ax.hist(list(t.l), np.linspace(-180, 180,31)); plt.setp(ax, xlim=(180,-180), xlabel='l') ax.grid(True, alpha=0.5) return fig def seed_skyplot(self): """seed positions """ t=self.df fig, ax = plt.subplots(1,1, figsize=(8,8)) ax.plot(t.l, t.b, '.') plt.setp(ax, xlabel='l', ylabel='b', xlim=(180,-180), ylim=(-90,90)) ax.axhline(0, color='k', alpha=0.8) ax.axvline(0, color='k', alpha=0.8) return fig def pg_cumulative_ts(self): """ Cumulative TS for accepted seeds """ fig=self.cumulative_ts(self.udf[self.good].ts, check_localized=False); plt.setp(fig.get_axes()[0], xlim=(9,100), ylim=(1,100)) return fig def skyplot_good(self): """ positions of accepted PGWAVE seeds """ udf = self.udf good =self.good glon =
np.array(udf.glon[good],float)
numpy.array
""" Optimization code for Gaussian Process """ import numpy as np from numpy.linalg import LinAlgError from scipy.linalg import cholesky, cho_solve from scipy.spatial.distance import pdist, squareform from .math import ichol_gauss def elbo(params, mask, *args): """ELBO with full posterior covariance matrix""" t, mu, post_cov = args K, dK = kernel(t, params) dK *= mask[np.newaxis, np.newaxis, :] try: L = cholesky(K, lower=True) except LinAlgError: return -np.inf, np.zeros_like(params) Kinv = cho_solve((L, True), np.eye(K.shape[0])) # K inverse if mu.ndim == 1: mu = mu[:, np.newaxis] alpha = cho_solve((L, True), mu) ll_dims = -0.5 * np.einsum("ik,ik->k", mu, alpha) tmp =
np.einsum("ik,jk->ijk", alpha, alpha)
numpy.einsum
import numpy as np import os.path import scipy.misc import imageio import tensorflow as tf import time import scipy.io import pdb import myParams import GTools as GT from tensorflow.python.client import timeline FLAGS = tf.app.flags.FLAGS def np3DCToImg(label,FN): # label=label+0.37; LabelA=np.sqrt(np.power(label[:,:,:,0],2)+np.power(label[:,:,:,1],2)) LabelP=np.arctan2(label[:,:,:,1],label[:,:,:,0])/(2*np.pi)+0.5; image = np.concatenate([label[:,:,:,0], label[:,:,:,1],LabelA,LabelP], axis=2) image = np.reshape(image,[image.shape[0], image.shape[1], image.shape[2], 1]) image = np.concatenate([image,image,image], axis=3) image = image[:,:,:,:] image=np.reshape(image,[image.shape[1], image.shape[2],image.shape[3]]) filename = '%s.png' % (FN) filename = os.path.join(myParams.myDict['train_dir'], filename) # scipy.misc.toimage(image, cmin=0., cmax=1.).save(filename) imageio.imwrite(filename,image) return def _summarize_progress(train_data, label, gene_output, batch, suffix, max_samples=8): td = train_data size = [label.shape[1], label.shape[2]] if max_samples>myParams.myDict['batch_size']: max_samples=myParams.myDict['batch_size'] # AEops = [v for v in td.sess.graph.get_operations() if "ForPNG" in v.name and not ("_1" in v.name)] # AEouts = [v.outputs[0] for v in AEops] # label=td.sess.run(AEouts[0]) # filename = 'WV%06d_%s' % (batch, suffix) # np3DCToImg(label,filename) if myParams.myDict['ImgMode'] == 'Cmplx_MB': Matops = [v for v in td.sess.graph.get_operations() if "ForMat" in v.name and not (("_1" in v.name) or ("ApplyAdam" in v.name) or ("Assign" in v.name) or ("read" in v.name) or ("optimizer" in v.name))] Matouts = [v.outputs[0] for v in Matops] VLen=Matouts.__len__() if VLen>1: for x in Matops: print(x.name +' ' + str(x.outputs[0].shape)) # pdb.set_trace() # save all: TrainSummary={} filenamex = 'ForMat_%06d.mat' % (batch) filename = os.path.join(myParams.myDict['train_dir'], filenamex) var_list=[] for i in range(0, VLen): var_list.append(Matops[i].name); tmp=td.sess.run(Matouts[i]) s1=Matops[i].name print("Saving %s" % (s1)) s1=s1.replace(':','_') s1=s1.replace('/','_') TrainSummary[s1]=tmp scipy.io.savemat(filename,TrainSummary) Matops = [v for v in td.sess.graph.get_operations() if "ForOut" in v.name and not (("_1" in v.name) or ("ApplyAdam" in v.name) or ("Assign" in v.name) or ("read" in v.name) or ("optimizer" in v.name))] Matouts = [v.outputs[0] for v in Matops] VLen=Matouts.__len__() if VLen>1: for x in Matops: print(x.name +' ' + str(x.outputs[0].shape)) # pdb.set_trace() # save all: TrainSummary={} filenamex = 'ForOut_%06d.mat' % (batch) filename = os.path.join(myParams.myDict['train_dir'], filenamex) var_list=[] for i in range(0, VLen): var_list.append(Matops[i].name); tmp=td.sess.run(Matouts[i]) s1=Matops[i].name print("Saving %s" % (s1)) s1=s1.replace(':','_') s1=s1.replace('/','_') TrainSummary[s1]=tmp scipy.io.savemat(filename,TrainSummary) LabelA=np.sqrt(np.power(label[:,:,:,0],2)+np.power(label[:,:,:,1],2)) LabelP=np.arctan2(label[:,:,:,1],label[:,:,:,0])/(2*np.pi)+0.5; GeneA=np.sqrt(np.power(gene_output[:,:,:,0],2)+np.power(gene_output[:,:,:,1],2)) GeneA=np.maximum(np.minimum(GeneA, 1.0), 0.0) GeneP=np.arctan2(gene_output[:,:,:,1],gene_output[:,:,:,0])/(2*np.pi)+0.5; gene_output=(gene_output+1)/2 label=(label+1)/2 # clipped = tf.maximum(tf.minimum(gene_output, 1.0), 0.0) clipped = np.maximum(np.minimum(gene_output, 1.0), 0.0) # image = tf.concat([clipped[:,:,:,0], label[:,:,:,0], clipped[:,:,:,1], label[:,:,:,1],LabelA,GeneA,LabelP,GeneP], 2) image=np.concatenate((clipped[:,:,:,0], label[:,:,:,0], clipped[:,:,:,1], label[:,:,:,1],LabelA,GeneA,LabelP,GeneP), axis=2) # image = tf.reshape(image,[image.shape[0], image.shape[1], image.shape[2], 1]) image = np.reshape(image,[image.shape[0], image.shape[1], image.shape[2], 1]) # image = tf.concat([image,image,image], 3) image = np.concatenate((image,image,image), axis=3) image = image[0:max_samples,:,:,:] # image = tf.concat([image[i,:,:,:] for i in range(int(max_samples))], 0) # image = np.concatenate(((image[i,:,:,:] for i in ra/nge(int(max_samples)))), axis=0) image = np.reshape(image,[image.shape[0]*image.shape[1],image.shape[2],image.shape[3]]) # image = td.sess.run(image) filename = 'batch%06d_%s.png' % (batch, suffix) filename = os.path.join(myParams.myDict['train_dir'], filename) # scipy.misc.toimage(image, cmin=0., cmax=1.).save(filename) imageio.imwrite(filename,image) print(" Saved %s" % (filename,)) return if myParams.myDict['ImgMode'] == 'Cmplx_AP': Matops = [v for v in td.sess.graph.get_operations() if "ForMat" in v.name and not (("_1" in v.name) or ("ApplyAdam" in v.name) or ("Assign" in v.name) or ("read" in v.name) or ("optimizer" in v.name))] Matouts = [v.outputs[0] for v in Matops] VLen=Matouts.__len__() if VLen>1: for x in Matops: print(x.name +' ' + str(x.outputs[0].shape)) # pdb.set_trace() # save all: TrainSummary={} filenamex = 'ForMat_%06d.mat' % (batch) filename = os.path.join(myParams.myDict['train_dir'], filenamex) var_list=[] for i in range(0, VLen): var_list.append(Matops[i].name); tmp=td.sess.run(Matouts[i]) s1=Matops[i].name print("Saving %s" % (s1)) s1=s1.replace(':','_') s1=s1.replace('/','_') TrainSummary[s1]=tmp scipy.io.savemat(filename,TrainSummary) Matops = [v for v in td.sess.graph.get_operations() if "ForOut" in v.name and not (("_1" in v.name) or ("ApplyAdam" in v.name) or ("Assign" in v.name) or ("read" in v.name) or ("optimizer" in v.name))] Matouts = [v.outputs[0] for v in Matops] VLen=Matouts.__len__() if VLen>1: for x in Matops: print(x.name +' ' + str(x.outputs[0].shape)) # pdb.set_trace() # save all: TrainSummary={} filenamex = 'ForOut_%06d.mat' % (batch) filename = os.path.join(myParams.myDict['train_dir'], filenamex) var_list=[] for i in range(0, VLen): var_list.append(Matops[i].name); tmp=td.sess.run(Matouts[i]) s1=Matops[i].name print("Saving %s" % (s1)) s1=s1.replace(':','_') s1=s1.replace('/','_') TrainSummary[s1]=tmp scipy.io.savemat(filename,TrainSummary) LabelA=np.sqrt(np.power(label[:,:,:,0],2)+np.power(label[:,:,:,1],2)) LabelP=np.arctan2(label[:,:,:,1],label[:,:,:,0])/(2*np.pi)+0.5; GeneA=np.sqrt(np.power(gene_output[:,:,:,0],2)+np.power(gene_output[:,:,:,1],2)) GeneA=np.maximum(np.minimum(GeneA, 1.0), 0.0) GeneP=np.arctan2(gene_output[:,:,:,1],gene_output[:,:,:,0])/(2*np.pi)+0.5; gene_output=(gene_output+1)/2 label=(label+1)/2 # clipped = tf.maximum(tf.minimum(gene_output, 1.0), 0.0) clipped = np.maximum(np.minimum(gene_output, 1.0), 0.0) # image = tf.concat([clipped[:,:,:,0], label[:,:,:,0], clipped[:,:,:,1], label[:,:,:,1],LabelA,GeneA,LabelP,GeneP], 2) # image=np.concatenate((clipped[:,:,:,0], label[:,:,:,0], clipped[:,:,:,1], label[:,:,:,1],LabelA,GeneA,LabelP,GeneP), axis=2) image=np.concatenate((LabelA,GeneA,LabelP,GeneP), axis=2) # image = tf.reshape(image,[image.shape[0], image.shape[1], image.shape[2], 1]) image = np.reshape(image,[image.shape[0], image.shape[1], image.shape[2], 1]) # image = tf.concat([image,image,image], 3) image = np.concatenate((image,image,image), axis=3) image = image[0:max_samples,:,:,:] # image = tf.concat([image[i,:,:,:] for i in range(int(max_samples))], 0) # image = np.concatenate(((image[i,:,:,:] for i in ra/nge(int(max_samples)))), axis=0) # image = np.concatenate((image[0,:,:,:],image[1,:,:,:],image[2,:,:,:],image[3,:,:,:],image[4,:,:,:],image[5,:,:,:],image[6,:,:,:],image[7,:,:,:]), axis=0) # image = np.concatenate((image[0,:,:,:],image[1,:,:,:],image[2,:,:,:],image[3,:,:,:],image[4,:,:,:],image[5,:,:,:]), axis=0) # image = np.concatenate((image[0,:,:,:],image[1,:,:,:],image[2,:,:,:],image[3,:,:,:]), axis=0) image = np.reshape(image,[image.shape[0]*image.shape[1],image.shape[2],image.shape[3]]) # image = td.sess.run(image) filename = 'batch%06d_%s.png' % (batch, suffix) filename = os.path.join(myParams.myDict['train_dir'], filename) # scipy.misc.toimage(image, cmin=0., cmax=1.).save(filename) imageio.imwrite(filename,image) print(" Saved %s" % (filename,)) return if myParams.myDict['ImgMode'] == 'Cmplx': Matops = [v for v in td.sess.graph.get_operations() if "ForMat" in v.name and not (("_1" in v.name) or ("ApplyAdam" in v.name) or ("Assign" in v.name) or ("read" in v.name) or ("optimizer" in v.name))] Matouts = [v.outputs[0] for v in Matops] VLen=Matouts.__len__() if VLen>1: for x in Matops: print(x.name +' ' + str(x.outputs[0].shape)) # pdb.set_trace() # save all: TrainSummary={} filenamex = 'ForMat_%06d.mat' % (batch) filename = os.path.join(myParams.myDict['train_dir'], filenamex) var_list=[] for i in range(0, VLen): var_list.append(Matops[i].name); tmp=td.sess.run(Matouts[i]) s1=Matops[i].name print("Saving %s" % (s1)) s1=s1.replace(':','_') s1=s1.replace('/','_') TrainSummary[s1]=tmp scipy.io.savemat(filename,TrainSummary) Matops = [v for v in td.sess.graph.get_operations() if "ForOut" in v.name and not (("_1" in v.name) or ("ApplyAdam" in v.name) or ("Assign" in v.name) or ("read" in v.name) or ("optimizer" in v.name))] Matouts = [v.outputs[0] for v in Matops] VLen=Matouts.__len__() if VLen>1: for x in Matops: print(x.name +' ' + str(x.outputs[0].shape)) # pdb.set_trace() # save all: TrainSummary={} filenamex = 'ForOut_%06d.mat' % (batch) filename = os.path.join(myParams.myDict['train_dir'], filenamex) var_list=[] for i in range(0, VLen): var_list.append(Matops[i].name); tmp=td.sess.run(Matouts[i]) s1=Matops[i].name print("Saving %s" % (s1)) s1=s1.replace(':','_') s1=s1.replace('/','_') TrainSummary[s1]=tmp scipy.io.savemat(filename,TrainSummary) LabelA=np.sqrt(np.power(label[:,:,:,0],2)+np.power(label[:,:,:,1],2)) LabelP=np.arctan2(label[:,:,:,1],label[:,:,:,0])/(2*np.pi)+0.5; GeneA=np.sqrt(np.power(gene_output[:,:,:,0],2)+np.power(gene_output[:,:,:,1],2)) GeneA=np.maximum(np.minimum(GeneA, 1.0), 0.0) GeneP=np.arctan2(gene_output[:,:,:,1],gene_output[:,:,:,0])/(2*np.pi)+0.5; gene_output=(gene_output+1)/2 label=(label+1)/2 # clipped = tf.maximum(tf.minimum(gene_output, 1.0), 0.0) clipped = np.maximum(np.minimum(gene_output, 1.0), 0.0) # image = tf.concat([clipped[:,:,:,0], label[:,:,:,0], clipped[:,:,:,1], label[:,:,:,1],LabelA,GeneA,LabelP,GeneP], 2) image=np.concatenate((clipped[:,:,:,0], label[:,:,:,0], clipped[:,:,:,1], label[:,:,:,1],LabelA,GeneA,LabelP,GeneP), axis=2) # image = tf.reshape(image,[image.shape[0], image.shape[1], image.shape[2], 1]) image = np.reshape(image,[image.shape[0], image.shape[1], image.shape[2], 1]) # image = tf.concat([image,image,image], 3) image = np.concatenate((image,image,image), axis=3) image = image[0:max_samples,:,:,:] # image = tf.concat([image[i,:,:,:] for i in range(int(max_samples))], 0) # image = np.concatenate(((image[i,:,:,:] for i in ra/nge(int(max_samples)))), axis=0) # image = np.concatenate((image[0,:,:,:],image[1,:,:,:],image[2,:,:,:],image[3,:,:,:],image[4,:,:,:],image[5,:,:,:],image[6,:,:,:],image[7,:,:,:]), axis=0) # image = np.concatenate((image[0,:,:,:],image[1,:,:,:],image[2,:,:,:],image[3,:,:,:],image[4,:,:,:],image[5,:,:,:]), axis=0) # image = np.concatenate((image[0,:,:,:],image[1,:,:,:],image[2,:,:,:],image[3,:,:,:]), axis=0) image = np.reshape(image,[image.shape[0]*image.shape[1],image.shape[2],image.shape[3]]) # image = td.sess.run(image) filename = 'batch%06d_%s.png' % (batch, suffix) filename = os.path.join(myParams.myDict['train_dir'], filename) # scipy.misc.toimage(image, cmin=0., cmax=1.).save(filename) imageio.imwrite(filename,image) print(" Saved %s" % (filename,)) return if myParams.myDict['ImgMode'] == 'SimpleImg2': clipped = np.maximum(np.minimum(gene_output, 1.0), 0.0) image=np.concatenate((clipped[:,:,:,0],label[:,:,:,0],clipped[:,:,:,1],label[:,:,:,1]), axis=2) image = np.reshape(image,[image.shape[0], image.shape[1], image.shape[2], 1]) image = np.concatenate((image,image,image), axis=3) image = image[0:max_samples,:,:,:] image =
np.reshape(image,[image.shape[0]*image.shape[1],image.shape[2],image.shape[3]])
numpy.reshape
#!/usr/bin/env python # -*- coding:utf-8 -*- """ An extension to the standard STScI data model for MIRI dark reference data. Essentially the same as the MIRI measured image data model, with additional metadata. :Reference: The STScI jwst.datamodels documentation. See https://jwst-pipeline.readthedocs.io/en/latest/jwst/datamodels/index.html :History: 19 Dec 2012: Created 21 Jan 2013: Included data type in metadata. 23 Jan 2013: Added plotting. 05 Feb 2013: Reformatted test code using "with" context manager. Modified to use functions from MiriDataModel. 08 Feb 2013: Replaced 'to_fits' with more generic 'save' method. 21 Feb 2013: Base a dark reference model on MiriMeasuredModel rather than MiriRampModel, to allow for 3-D dark data. 04 Mar 2013: Only check the dimensionality of the main data array if it has been explicitly provided. 04 Jul 2013: Don't display masked data when it is the same as unmasked data. 10 Dec 2013: Delimiter in MIRI schema names changed from "." to "_". 10 Apr 2014: Modified for jsonschema draft 4: Functions made more independent of schema structure. Modified to define data units using the set_data_units method. 09 Jul 2014: JWST reference flags table added. 29 Aug 2014: JWST reference flags table updated. Included new reference file keywords (REFTYPE, AUTHOR, PEDIGREE) 25 Sep 2014: Updated the reference flags. insert_value_column function used to convert between 3 column and 4 column flag tables. TYPE and REFTYPE are no longer identical. 30 Sep 2014: Superflous flags commented out. 28 Oct 2014: Disabled automatic inclusion of the FITERR extension. 16 Jan 2015: Ensure the main data array is 3-D or 4-D when specified explicitly or when read from a file. 20 Aug 2015: Duplicated parts of schema now reference STScI model. 11 Sep 2015: Removed duplicated plot method. 01 Jun 2016: DARK data can now be 2-D, 3-D or 4-D. 20 Jun 2016: DARK DQ array can also now be 2-D, 3-D or 4-D. 15 Jul 2016: Removed obsolete flags. 17 Mar 2017: Corrected some documentation typos. 15 Jun 2017: Added average_group and extract_group methods. Added a comment to the data model created by the average_group and extract_group methods. 15 Jun 2017: meta.reffile schema level removed to match changes in the JWST build 7.1 data models release. meta.reffile.type also changed to meta.reftype. TYPE keyword replaced by DATAMODL. Added average_groups function. 07 Jul 2017: Added averaged flag. 12 Jul 2017: Replaced "clobber" parameter with "overwrite". 06 Jul 2018: Merged schema with JWST software. DARK data is now only accepted with 4-D data, err and dq arrays. 15 Nov 2018: Schema switched to use JWST darkMIRI.schema. 3-D DARK reference data are no longer accepted. 30 Jan 2019: self.meta.model_type now set to the name of the STScI data model this model is designed to match (skipped if there isn't a corresponding model defined in ancestry.py). 07 Oct 2019: Removed '.yaml' suffix from schema references. 26 Mar 2020: Ensure the model_type remains as originally defined when saving to a file. @author: <NAME> (UKATC), <NAME> (UKATC) """ import numpy as np #import numpy.ma as ma #import numpy.linalg as LA # Import the MIRI ramp data model utilities. from miri.datamodels.ancestry import get_my_model_type from miri.datamodels.dqflags import insert_value_column from miri.datamodels.miri_measured_model import MiriMeasuredModel # List all classes and global functions here. __all__ = ['dark_reference_flags', 'MiriDarkReferenceModel'] # The new JWST dark reference flags. Note that these flags are a subset # of the JWST master flags table. The names and descriptions are the same # but the bit values can be different. dark_reference_setup = \ [(0, 'DO_NOT_USE', 'Bad pixel. Do not use.'), (1, 'UNRELIABLE_DARK', 'Dark variance large')] dark_reference_flags = insert_value_column(dark_reference_setup) # # Global helper function # def linear_regression(x, y): """ Linear regression function. Fit an intercept and a slope to a set of x,y coordinates """ #print("Fitting", y, "\nagainst", x) matrix = np.vstack( [x, np.ones_like(x)] ).T slope, intercept = np.linalg.lstsq(matrix,y)[0] #print("gives slope=", slope, "intercept=", intercept) return (slope, intercept) class MiriDarkReferenceModel(MiriMeasuredModel): """ A data model for MIRI dark reference data. :Parameters: init: shape tuple, file path, file object, pyfits.HDUList, numpy array An optional initializer for the data model, which can have one of the following forms: * None: A default data model with no shape. (If a data array is provided in the data parameter, the shape is derived from the array.) * Shape tuple: Initialize with empty data of the given shape. * File path: Initialize from the given file. * Readable file object: Initialize from the given file object. * pyfits.HDUList: Initialize from the given pyfits.HDUList. data: numpy array (optional) A 3-D or 4-D array containing the dark data. If a data parameter is provided, its contents overwrite the data initialized by the init parameter. err: numpy array (optional) An array containing the uncertainty in the dark data. Must be broadcastable onto the data array. dq: numpy array (optional) An array containing the quality of the dark data. Must be broadcastable onto the data array. dq_def: list of tuples or numpy record array (optional) Either: A list of tuples containing (value:int, name:str, title:str), giving the meaning of values stored in the data quality array. For example: [(0, 'good','Good data'), (1, 'dead', 'Dead Pixel'), (2, 'hot', 'Hot Pixel')]; Or: A numpy record array containing the same information as above. If not specified, it will default to the MIRI reserved flags. integration: number, optional The integration number for which this dark is valid. fitted_after_frame: number, optional The frame number beyond which the dark is fitted. averaged: bool, optional Indicates if the data model contains averaged dark data. The default is False. \*\*kwargs: All other keyword arguments are passed to the DataModel initialiser. See the jwst.datamodels documentation for the meaning of these keywords. """ schema_url = "miri_dark_reference.schema" _default_dq_def = dark_reference_flags def __init__(self, init=None, data=None, dq=None, err=None, dq_def=None, integration=None, fitted_after=None, averaged=False, **kwargs): """ Initialises the MiriDarkReferenceModel class. Parameters: See class doc string. """ super(MiriDarkReferenceModel, self).__init__(init=init, data=data, dq=dq, err=err, dq_def=dq_def, **kwargs) # Data type is dark. self.meta.reftype = 'DARK' # Initialise the model type self._init_data_type() self.averaged = averaged # This is a reference data model. self._reference_model() # Define the exposure type (if not already contained in the data model) if not self.meta.exposure.type: self.set_exposure_type( datatype='DARK' ) if integration is not None: self.meta.integration_number = integration if fitted_after is not None: self.meta.fitted_after_frame = fitted_after # The main data array should be 2-D, 3-D or 4-D. # TODO: Can this check be included in the schema? if data is not None: if not hasattr(data, 'ndim'): data = np.asarray(data) if data.ndim < 2 or data.ndim > 4: strg = "The main data array in a dark reference object must be " strg += "2-D, 3-D or 4-D. %d-D data provided" % data.ndim raise ValueError(strg) elif self.data is not None and len(self.data) > 0 and \ hasattr(self.data, 'ndim'): if self.data.ndim < 2 or self.data.ndim > 4: strg = "The main data array in a dark reference object must be " strg += "2-D, 3-D or 4-D. %d-D data provided" % self.data.ndim raise ValueError(strg) # if fiterr is not None: # self.fiterr = fiterr # self._fiterr_mask = None # self._fiterr_fill = 'max' # self._fiterr_fill_value = None # # # Set the units of the fiterr array, if defined in the schema. # fitunits = self.set_data_units('fiterr') def _init_data_type(self): # Initialise the data model type model_type = get_my_model_type( self.__class__.__name__ ) self.meta.model_type = model_type def on_save(self, path): super(MiriDarkReferenceModel, self).on_save(path) # Re-initialise data type on save self._init_data_type() def __str__(self): """ Return the contents of the dark reference object as a readable string. """ # First obtain a string describing the underlying measured # model. strg = super(MiriDarkReferenceModel, self).__str__() # Add the extras # if self.fiterr is not None: # strg += self.get_data_str('fiterr', underline=True, underchar="-") # if self.maskable(): # fiterr_masked = self.fiterr_masked # if fiterr_masked is not None: # title = self.get_data_title('fiterr') + " (masked)" # len2 = len(title) # title += "\n" + (len2 * '~') # strg += title + "\n" + str(fiterr_masked) + "\n" return strg def slope_data(self, startgroup=None, endgroup=None): """ Return a new data model in which the group planes have been fitted with a straight line to make slope data. The units of the output data change from 'DN' to 'DN/s' NOTE: This function is very inefficient! :Parameters: startgroup: int, optional The first group to be averaged. Defaults to the first group in the data model. endgroup: int, optional The last group to be averaged. Defaults to the last group in the data model. :Returned: slope_model: MiriDarkReferenceModel A MiriDarkReferenceModel with a slope fitted to all the group data. """ # First determine the group time from the detector readout mode grptime = 1.0 if hasattr(self, 'meta') and hasattr( self.meta, 'exposure'): if hasattr(self.meta.exposure, 'group_time') and \ self.meta.exposure.group_time is not None: grptime = self.meta.exposure.group_time elif hasattr( self.meta.exposure, 'readpatt') and \ self.meta.exposure.readpatt is not None: readpatt = self.meta.exposure.readpatt # TODO: Subarray modes not implemented yet if 'FAST' in readpatt: grptime = 2.785 else: grptime = 27.85 if hasattr(self.meta.exposure, 'group_time'): self.meta.exposure.group_time = grptime if self.data.ndim == 4: nints = self.data.shape[0] ngroups = self.data.shape[1] nrows = self.data.shape[2] ncolumns = self.data.shape[3] # Initialise the output. output = np.zeros([nints, nrows, ncolumns], dtype=self.data.dtype) # Full straight line fit if startgroup is None and endgroup is None: timearray = grptime * np.array( list(range(0, ngroups)) ) for intg in range(0, nints): for row in range(0, nrows): for column in range(0, ncolumns): # Ouch! Slope calculated one (row,column) at a time. # Can the efficiency be improved? (slope, ic) = linear_regression( timearray, self.data[intg,:,row,column] ) output[intg,row,column] = slope else: if startgroup is None: startgroup = 0 if endgroup is None: endgroup = self.data.shape[1] timearray = grptime * np.array( list(range(startgroup, endgroup)) ) for intg in range(0, nints): for row in range(0, nrows): for column in range(0, ncolumns): # Ouch! Slope calculated one (row,column) at a time. # Can the efficiency be improved? (slope, ic) = linear_regression( timearray, self.data[intg,startgroup:endgroup,row,column] ) output[intg,row,column] = slope output_dq = np.squeeze(self.dq) # Create a new 3-D dark data model from this slope data. newmodel = MiriDarkReferenceModel( data=output, err=None, dq=output_dq ) # Copy the metadata to the new data model. # NOTE: The WCS metadata may be copied incorrectly. newmodel.copy_metadata( self ) if grptime == 1.0: newmodel.meta.data.units = 'DN/group' else: newmodel.meta.data.units = 'DN/s' newmodel.add_comment( "TGROUP assumed %.3fs" % grptime ) historystrg = "New DARK made by calculating the slope for %d groups" % \ ngroups newmodel.add_comment( historystrg ) return newmodel elif self.data.ndim == 3: ngroups = self.data.shape[0] nrows = self.data.shape[1] ncolumns = self.data.shape[2] # Initialise the output. output = np.zeros([nrows, ncolumns], dtype=self.data.dtype) # Full straight line fit if startgroup is None and endgroup is None: timearray = grptime * np.array( list(range(0, ngroups)) ) for row in range(0, nrows): for column in range(0, ncolumns): # Ouch! Slope calculated one (row,column) at a time. # Can the efficiency be improved? (slope, ic) = linear_regression( timearray, self.data[intg,:,row,column] ) output[intg,row,column] = slope else: if startgroup is None: startgroup = 0 if endgroup is None: endgroup = self.data.shape[1] timearray = grptime * np.array( list(range(startgroup, endgroup)) ) for row in range(0, nrows): for column in range(0, ncolumns): # Ouch! Slope calculated one (row,column) at a time. # Can the efficiency be improved? (slope, ic) = linear_regression( timearray, self.data[intg,startgroup:endgroup,row,column] ) output[intg,row,column] = slope output_dq = np.squeeze(self.dq) # Create a new 3-D dark data model from this slope data. newmodel = MiriDarkReferenceModel( data=output, err=None, dq=output_dq, averaged=True ) # Copy the metadata to the new data model. # NOTE: The WCS metadata may be copied incorrectly. newmodel.copy_metadata( self ) if grptime == 1.0: newmodel.meta.data.units = 'DN/group' else: newmodel.meta.data.units = 'DN/s' newmodel.add_comment( "TGROUP assumed %.3fs" % grptime ) historystrg = "New DARK made by calculating the slope for %d groups" % \ ngroups newmodel.add_comment( historystrg ) return newmodel else: raise TypeError("Data model has wrong number of dimensions") def average_groups(self, startgroup=None, endgroup=None, normalize=False): """ Return a new data model in which the groups have been averaged. A 4-D data model [integrations, groups, rows, columns] will be reduced to 3-D [integrations, rows, columns] and a 3-D model [groups, rows, columns] will be reduced to 2-D [rows, columns]. :Parameters: startgroup: int, optional The first group to be averaged. Defaults to the first group in the data model. endgroup: int, optional The last group to be averaged. Defaults to the last group in the data model. normalize: bool, optional If True, normalize the data so the average is 1.0. The default is False. :Returned: averaged_model: MiriDarkReferenceModel A MiriDarkReferenceModel with all the group data averaged together. """ if self.data.ndim == 4: # Determine a new 3-D dark data model by averaging together # the specified groups. if startgroup is None and endgroup is None: ngroups = self.data.shape[1] cube_data = np.sum(self.data, 1) cube_data = cube_data / float(ngroups) #cube_err = LA.norm(self.err, ord=2, axis=1) errsq = self.err * self.err cube_err = np.sum(errsq, 1) cube_err = np.sqrt( cube_err ) / float(ngroups) else: if startgroup is None: startgroup = 0 if endgroup is None: endgroup = self.data.shape[1] ngroups = endgroup - startgroup + 1 cube_data = np.sum(self.data[:,startgroup:endgroup,:,:], 1) cube_data = cube_data / float(ngroups) #cube_err = LA.norm(self.err, ord=2, axis=1) errsq = self.err[:,startgroup:endgroup,:,:] * \ self.err[:,startgroup:endgroup,:,:] cube_err = np.sum(errsq, 1) cube_err = np.sqrt( cube_err ) / float(ngroups) if normalize: posdata = np.where(cube_data > 0.0) factor = np.mean(cube_data[posdata]) # print("Normalizing by a factor of %f" % factor) if factor > 0.0: cube_data = cube_data / factor cube_err = cube_err / factor cube_dq = np.squeeze(self.dq) newmodel = MiriDarkReferenceModel( data=cube_data, err=cube_err, dq=cube_dq ) # Copy the metadata to the new data model. # NOTE: The WCS metadata may be copied incorrectly. newmodel.copy_metadata( self ) historystrg = "New DARK made by averaging groups %d to %d" % \ (startgroup, endgroup) if normalize: historystrg += " (normalized to 1.0)" newmodel.add_comment( historystrg ) return newmodel elif self.data.ndim == 3: # Determine a new 2-D dark data model by averaging together # all the groups. if startgroup is None and endgroup is None: ngroups = self.data.shape[0] image_data = np.sum(self.data, 0) image_data = image_data / float(ngroups) errsq = self.err * self.err image_err = np.sum(errsq, 0) image_err = np.sqrt( image_err ) / float(ngroups) else: if startgroup is None: startgroup = 0 if endgroup is None: endgroup = self.data.shape[0] ngroups = endgroup - startgroup + 1 image_data = np.sum(self.data[startgroup:endgroup,:,:], 0) image_data = image_data / float(ngroups) errsq = self.err[startgroup:endgroup,:,:] * \ self.err[startgroup:endgroup,:,:] image_err = np.sum(errsq, 0) image_err = np.sqrt( image_err ) / float(ngroups) if normalize: posdata = np.where(image_data > 0.0) factor = np.mean(image_data[posdata]) # print("Normalizing by a factor of %f" % factor) if factor > 0.0: image_data = image_data / factor image_err = image_err / factor image_dq = np.squeeze(self.dq) newmodel = MiriDarkReferenceModel( data=image_data, err=image_err, dq=image_dq, averaged=True ) # Copy the metadata to the new data model. # NOTE: The WCS metadata may be copied incorrectly. newmodel.copy_metadata( self ) historystrg = "New DARK made by averaging groups %d to %d" % \ (startgroup, endgroup) if normalize: historystrg += " (normalized to 1.0)" newmodel.add_comment( historystrg ) return newmodel else: raise TypeError("Data model has wrong number of dimensions") def extract_group(self, group=0, normalize=False): """ Return a new data model containing a single group extracted from the current data model. A 4-D data model [integrations, groups, rows, columns] will be reduced to 3-D [integrations, rows, columns] and a 3-D model [groups, rows, columns] will be reduced to 2-D [rows, columns]. :Parameters: group: int The group to be extracted. normalize: bool, optional If True, normalize the data so the average is 1.0. The default is False. :Returned: extracted_model: MiriDarkReferenceModel A MiriDarkReferenceModel with a single group extracted. """ if self.data.ndim == 4: # Determine a new 3-D dark data model by extracting the # specified group. cube_data = self.data[:,group,:,:] cube_err = self.err[:,group,:,:] if normalize: posdata = np.where(cube_data > 0.0) factor = np.mean(cube_data[posdata]) # print("Normalizing by a factor of %f" % factor) if factor > 0.0: cube_data = cube_data / factor cube_err = cube_err / factor cube_dq = np.squeeze(self.dq) newmodel = MiriDarkReferenceModel( data=cube_data, err=cube_err, dq=cube_dq ) # Copy the metadata to the new data model. # NOTE: The WCS metadata may be copied incorrectly. newmodel.copy_metadata( self ) historystrg = "New DARK made by extracting group %d" % group if normalize: historystrg += " (normalized to 1.0)" newmodel.add_comment( historystrg ) return newmodel elif self.data.ndim == 3: # Determine a new 2-D dark data model by extracting the # specified group. image_data = self.data[group,:,:] image_err = self.err[group,:,:] if normalize: posdata = np.where(image_data > 0.0) factor =
np.mean(image_data[posdata])
numpy.mean
# -*- coding: utf-8 -*- """ Created on Tue Jun 23 12:37:35 2015 Fock State Simulation, based on <NAME>, Chapman group thesis use fourth order Runge-Kutta to integrate equations. @author: zag """ import numpy as np import matplotlib.pyplot as plt from numba import autojit import sys import time from tqdm import trange ########################## #Define Runge-Kutta method ########################## def ynplus1(func, yn,t,dt,**kwargs): """evolve Runge kutta with function func which takes two input arguments yn and t and possibly extra arguments Parameters ------------ yn : iterable value at the previous iteration t : float the time at current iteration dt : float time step Returns ----------- yn : iterable evolution of wavefunction after one step """ k1 = func(yn,t,**kwargs) k2 = func(yn+dt/2*k1,t+dt/2,**kwargs) k3 = func(yn+dt/2*k2,t+dt/2,**kwargs) k4 = func(yn+dt*k3,t+dt,**kwargs) a = k1+ 2 * k2 + 2 * k3 + k4 return yn + dt*a/6 ######################### #Calculate magnetic field ######################### def heaviside(x): """heaviside step function""" return 0.5 * (np.sign(x) + 1) def bcon(t): a = (2-0.210) * heaviside(2e-3 -t) b = (2-0.210)/2e-3 * heaviside(t)*heaviside(2e-3-t)*t return a-b + 0.210 def bzdot(Bz,t,tauB): return 1/tauB*(bcon(t)-Bz) def calculate_magnetic_field(total_time,dt,tauB): num_iter = int(total_time/dt) #prop_func = bzdot(yn,t,tauB) #create list of magnetic fields Blist = np.zeros(num_iter) Blist[0] = bcon(0) #define function to iterate def func(yn,t): return bzdot(yn,t,tauB) #now iterate in time for i in range(1,num_iter,1): Blist[i] = ynplus1(func,Blist[i-1],i*dt,dt) return Blist ####################################################################### #FOCK STATE #Vector is k[i] where [n-1,n0,n1] = [k-m1,N-2k+ml,k], k in (0,(N+ml)/2) ####################################################################### @autojit def tri_ham(c,bfield,psi,n_atoms): '''compute the tridiagonal hamiltonian for fock state Parameters ---------- c : float quadratic zeeman shift bfield : float magnetic field in hz psi : np.array(complex) wavefunction n_atoms : int total number of atoms Returns ------- ans : np.array(complex) 1d Hamiltonian in pairs basis. ''' ans = np.empty(len(psi), dtype=complex) #first for diagonal interation for i in range(len(psi)): ans[i] = (i*(2*(n_atoms-2*i))-1)* c/n_atoms*psi[i] + 2 * bfield * i*psi[i] #now for ineraction with kp = i-1 for i in range(1,len(psi)): ans[i] += i * np.sqrt((n_atoms - 2 * (i-1) - 1)*(n_atoms - 2*(i-1)))*psi[i-1]* c/n_atoms #now for kp = i +1 for i in range(len(psi)-1): ans[i] += (i+1)*np.sqrt((n_atoms-2*(i+1)+1)*(n_atoms-2*(i+1)+2))*psi[i+1]* c/n_atoms return ans def tri_ham2(c,bfield,psi,n_atoms,m): ans = np.empty(len(psi), dtype = complex) #may need higher precision integration def func_to_integrate(yn,t,bfield,c,n_atoms): com = tri_ham(c,bfield,yn,n_atoms) return np.complex(0,-1)*com def set_up_simulation(total_time,dt,tauB,mag_time,c,n_atoms): num_steps = int(total_time/dt) #calculate B field b_field = calculate_magnetic_field(mag_time,dt,tauB) params = { 'c':c, 'n_atoms':n_atoms, 'bfield':b_field[0] } b_steps = int(mag_time/dt) return params, num_steps,b_steps,b_field def create_init_state(n_atoms,pairs = 0): state = np.zeros(int(n_atoms/2)+1,dtype = complex) state[pairs]= np.complex(1,0) return state def get_bfield(bfield,b_steps,step): if step < b_steps: ans = bfield[step] else: ans = 0.21 return 2*np.pi * 276.8 * ans**2*2 ################################################ #Calculate Expectation Values ################################################ @autojit def calc_n0_vals(psi,num_atoms): n0 = 0 n0sqr = 0 for k in range(len(psi)): n0 += (num_atoms-2*k) * abs(psi[k])**2 n0sqr += (num_atoms-2*k)**2 * abs(psi[k])**2 n0var = n0sqr - n0**2 return n0, n0sqr , n0var @autojit def calc_sx_sqr(psi,n): ans = 0 #where i indexes k for i in range(len(psi)): ans += (-4*i*i+2*i*n-i+n)*np.abs(psi[i]*psi[i]) for i in range(len(psi)-1): ans += i*np.sqrt((n-2*i+1)*(n-2*i+2))*np.abs(psi[i]*psi[i+1]) for i in range(1,len(psi)): ans += (i+1)*np.sqrt((n-2*i)*(n-2*i-1))*np.abs(psi[i]*psi[i-1]) return ans @autojit def calc_qyz_sqr(psi,n): ans = 0 #here i indexes k for i in range(len(psi)): ans += (-4*i*i+2*i*n-i+n)*np.abs(psi[i]*psi[i]) for i in range(len(psi)-1): ans += -i*np.sqrt((n-2*i+1)*(n-2*i+2))*np.abs(psi[i]*psi[i+1]) for i in range(1,len(psi)): ans += -(i+1)*np.sqrt((n-2*i)*(n-2*i-1))*np.abs(psi[i]*psi[i-1]) return ans ############################################### # main routine ############################################### def fock_sim(total_time,dt,mag_time,tauB,n_atoms,c, bf,npairs): try: """bf,c,total_time,dt are a list""" #calculate B field num_steps = [int(total_time[i]/dt[i]) for i in range(len(dt))] psi = create_init_state(n_atoms,npairs) psi_init = create_init_state(n_atoms,npairs) n0_ret = np.array([]) n0sqr_ret = np.zeros([]) n0var_ret = np.zeros([]) sxsqr_ret = np.zeros([]) qyzsqr_ret = np.zeros([]) time_ret = np.zeros([]) init_norm_ret = np.zeros([]) t_sim = 0 for step in trange(len(dt),desc='outer_loop',leave=True): params = { 'c':c[step], 'n_atoms':n_atoms, 'bfield':bf[step]**2*277 } n0 = np.zeros(num_steps[step]) n0sqr = np.zeros(num_steps[step]) n0var = np.zeros(num_steps[step]) sxsqr = np.zeros(num_steps[step]) qyzsqr = np.zeros(num_steps[step]) time =
np.zeros(num_steps[step])
numpy.zeros
__author__ = 'sibirrer' from astrofunc.LensingProfiles.sis import SIS import numpy as np import pytest class TestSIS(object): """ tests the Gaussian methods """ def setup(self): self.SIS = SIS() def test_function(self): x = np.array([1]) y = np.array([2]) phi_E = 1. values = self.SIS.function(x, y, phi_E) assert values[0] == 2.2360679774997898 x = np.array([0]) y = np.array([0]) phi_E = 1. values = self.SIS.function( x, y, phi_E) assert values[0] == 0 x = np.array([2,3,4]) y = np.array([1,1,1]) values = self.SIS.function( x, y, phi_E) assert values[0] == 2.2360679774997898 assert values[1] == 3.1622776601683795 assert values[2] == 4.1231056256176606 def test_derivatives(self): x = np.array([1]) y = np.array([2]) phi_E = 1. f_x, f_y = self.SIS.derivatives( x, y, phi_E) assert f_x[0] == 0.44721359549995793 assert f_y[0] == 0.89442719099991586 x = np.array([0]) y = np.array([0]) f_x, f_y = self.SIS.derivatives( x, y, phi_E) assert f_x[0] == 0 assert f_y[0] == 0 x = np.array([1,3,4]) y = np.array([2,1,1]) values = self.SIS.derivatives(x, y, phi_E) assert values[0][0] == 0.44721359549995793 assert values[1][0] == 0.89442719099991586 assert values[0][1] == 0.94868329805051377 assert values[1][1] == 0.31622776601683794 def test_hessian(self): x = np.array([1]) y = np.array([2]) phi_E = 1. f_xx, f_yy,f_xy = self.SIS.hessian( x, y, phi_E) assert f_xx[0] == 0.35777087639996635 assert f_yy[0] == 0.089442719099991588 assert f_xy[0] == -0.17888543819998318 x =
np.array([1,3,4])
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import random import statistics import tensorflow as tf from sklearn import linear_model from sklearn.model_selection import ShuffleSplit from sklearn.metrics import auc, precision_recall_curve, roc_auc_score from utils.data_helper import load_test flags = tf.app.flags FLAGS = flags.FLAGS def sigmoid(x): return 1 / (1 + np.exp(-x)) def get_normalized_inner_product_score(vector1, vector2): """ adapted from https://github.com/THUDM/GATNE Calculate normalized inner product for vector1 and vector2. """ return np.dot(vector1, vector2) / (np.linalg.norm(vector1) * np.linalg.norm(vector2)) def get_sigmoid_score(vector1, vector2): """ Calculate sigmoid score of the dot product for vector1 and vector2. """ return sigmoid(np.dot(vector1, vector2)) def get_average_score(vector1, vector2): """ Calculate average (element-wise average) for vector1 and vector2. Note the result is not a scalar, it has dimension same as vector1 or vector2. """ return (vector1 + vector2)/2 def get_hadamard_score(vector1, vector2): """ Calculate Hadamard product score (element-wise multiplication) for vector1 and vector2. Note the result is not a scalar, it has dimension same as vector1 or vector2. """ return np.multiply(vector1, vector2) def get_l1_score(vector1, vector2): """ Calculate Weighted-L1 for vector1 and vector2. Note the result is not a scalar, it has dimension same as vector1 or vector2. """ return np.abs(vector1 - vector2) def get_l2_score(vector1, vector2): """ Calculate Weighted-L2 for vector1 and vector2. Note the result is not a scalar, it has dimension same as vector1 or vector2. """ return np.square(vector1 - vector2) def get_link_score(embeds, node1, node2, score_type): """ Calculate link_score for node1 and node2 according to score_type. """ if score_type not in ["cosine", "sigmoid", "hadamard", "average", "l1", "l2"]: raise NotImplementedError vector_dimension = len(embeds[random.choice(list(embeds.keys()))]) try: vector1 = embeds[node1] vector2 = embeds[node2] except Exception as e: # print(e) if score_type in ["cosine", "sigmoid"]: return 0 elif score_type in ["hadamard", "average", "l1", "l2"]: return np.zeros(vector_dimension) if score_type == "cosine": score = get_normalized_inner_product_score(vector1, vector2) elif score_type == "sigmoid": score = get_sigmoid_score(vector1, vector2) elif score_type == "hadamard": score = get_hadamard_score(vector1, vector2) elif score_type == "average": score = get_average_score(vector1, vector2) elif score_type == "l1": score = get_l1_score(vector1, vector2) elif score_type == "l2": score = get_l2_score(vector1, vector2) return score def get_links_scores(embeds, links, score_type): """ Calculate link score for a list of links (node pairs). """ features = [] num_links = 0 for l in links: num_links = num_links + 1 # if num_links % 1000 == 0: # print("get_links_score, num of edges processed: {}".format(num_links)) node1, node2 = l[0], l[1] f = get_link_score(embeds, node1, node2, score_type) features.append(f) return features def evaluate_classifier(embeds, train_pos_edges, train_neg_edges, test_pos_edges, test_neg_edges, score_type): """ Use Logistic Regression to do link prediction. """ train_pos_feats = np.array(get_links_scores(embeds, train_pos_edges, score_type)) train_neg_feats = np.array(get_links_scores(embeds, train_neg_edges, score_type)) train_pos_labels = np.ones(train_pos_feats.shape[0]) train_neg_labels = np.zeros(train_neg_feats.shape[0]) # train_data = np.vstack((train_pos_feats, train_neg_feats)) train_data = np.concatenate((train_pos_feats, train_neg_feats), axis=0) train_labels = np.append(train_pos_labels, train_neg_labels) test_pos_feats = np.array(get_links_scores(embeds, test_pos_edges, score_type)) test_neg_feats = np.array(get_links_scores(embeds, test_neg_edges, score_type)) test_pos_labels = np.ones(test_pos_feats.shape[0]) test_neg_labels = np.zeros(test_neg_feats.shape[0]) # test_data = np.vstack((test_pos_feats, test_neg_feats)) test_data = np.concatenate((test_pos_feats, test_neg_feats), axis=0) test_labels = np.append(test_pos_labels, test_neg_labels) train_data_indices_not_zero = train_data != 0 # train_data_indices_not_zero = np.prod(train_data, axis=1) == 0 train_data = train_data[train_data_indices_not_zero] train_labels = train_labels[train_data_indices_not_zero] test_data_indices_not_zero = test_data != 0 # test_data_indices_not_zero = np.prod(test_data, axis=1) == 0 test_data = test_data[test_data_indices_not_zero] test_labels = test_labels[test_data_indices_not_zero] # # training: eliminate the edges formed by new nodes. Their edge feats are 0s. # train_data_filtered = train_data[(np.product(train_data, axis=1) + np.sum(train_data, axis=1)) != 0, :] # train_labels_filtered = train_labels[(np.product(train_data, axis=1) + np.sum(train_data, axis=1)) != 0] train_data_filtered = train_data train_labels_filtered = train_labels if len(train_data_filtered.shape) == 1: train_data_filtered =
np.expand_dims(train_data_filtered, axis=1)
numpy.expand_dims
# Copyright (c) 2020 Mitsubishi Electric Research Laboratories (MERL). All rights reserved. The software, documentation and/or data in this file is provided on an "as is" basis, and MERL has no obligations to provide maintenance, support, updates, enhancements or modifications. MERL specifically disclaims any warranties, including, but not limited to, the implied warranties of merchantability and fitness for any particular purpose. In no event shall MERL be liable to any party for direct, indirect, special, incidental, or consequential damages, including lost profits, arising out of the use of this software and its documentation, even if MERL has been advised of the possibility of such damages. As more fully described in the license agreement that was required in order to download this software, documentation and/or data, permission to use, copy and modify this software without fee is granted, but only for educational, research and non-commercial purposes. ################################################################################# # Note: The code requires PyTorch 1.1 # ################################################################################# import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import argparse import numpy as np import time import sys import os from shutil import copytree, copy from model import MotionNetMGDA, FeatEncoder from data.nuscenes_dataloader import TrainDatasetMultiSeq from min_norm_solvers import MinNormSolver class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {avg' + self.fmt + '}' return fmtstr.format(**self.__dict__) def check_folder(folder_path): if not os.path.exists(folder_path): os.mkdir(folder_path) return folder_path pred_adj_frame_distance = True # Whether to predict the relative offset between frames height_feat_size = 13 # The size along the height dimension cell_category_num = 5 # The number of object categories (including the background) out_seq_len = 20 # The number of future frames we are going to predict trans_matrix_idx = 1 # Among N transformation matrices (N=2 in our experiment), which matrix is used for alignment (see paper) parser = argparse.ArgumentParser() parser.add_argument('-d', '--data', default=None, type=str, help='The path to the preprocessed sparse BEV training data') parser.add_argument('--resume', default='', type=str, help='The path to the saved model that is loaded to resume training') parser.add_argument('--batch', default=8, type=int, help='Batch size') parser.add_argument('--nepoch', default=70, type=int, help='Number of epochs') parser.add_argument('--nworker', default=4, type=int, help='Number of workers') parser.add_argument('--reg_weight_bg_tc', default=0.1, type=float, help='Weight of background temporal consistency term') parser.add_argument('--reg_weight_fg_tc', default=2.5, type=float, help='Weight of instance temporal consistency') parser.add_argument('--reg_weight_sc', default=15.0, type=float, help='Weight of spatial consistency term') parser.add_argument('--reg_weight_cls', default=2.0, type=float, help='The extra weight for grid cell classification term') parser.add_argument('--use_bg_tc', action='store_true', help='Whether to use background temporal consistency loss') parser.add_argument('--use_fg_tc', action='store_true', help='Whether to use foreground loss in st.') parser.add_argument('--use_sc', action='store_true', help='Whether to use spatial consistency loss') parser.add_argument('--nn_sampling', action='store_true', help='Whether to use nearest neighbor sampling in bg_tc loss') parser.add_argument('--log', action='store_true', help='Whether to log') parser.add_argument('--logpath', default='', help='The path to the output log file') args = parser.parse_args() print(args) need_log = args.log BATCH_SIZE = args.batch num_epochs = args.nepoch num_workers = args.nworker reg_weight_bg_tc = args.reg_weight_bg_tc # The weight of background temporal consistency term reg_weight_fg_tc = args.reg_weight_fg_tc # The weight of foreground temporal consistency term reg_weight_sc = args.reg_weight_sc # The weight of spatial consistency term reg_weight_cls = args.reg_weight_cls # The weight for grid cell classification term use_bg_temporal_consistency = args.use_bg_tc use_fg_temporal_consistency = args.use_fg_tc use_spatial_consistency = args.use_sc use_nn_sampling = args.nn_sampling def main(): start_epoch = 1 # Whether to log the training information if need_log: logger_root = args.logpath if args.logpath != '' else 'logs' time_stamp = time.strftime("%Y-%m-%d_%H-%M-%S") if args.resume == '': model_save_path = check_folder(logger_root) model_save_path = check_folder(os.path.join(model_save_path, 'train_multi_seq')) model_save_path = check_folder(os.path.join(model_save_path, time_stamp)) log_file_name = os.path.join(model_save_path, 'log.txt') saver = open(log_file_name, "w") saver.write("GPU number: {}\n".format(torch.cuda.device_count())) saver.flush() # Logging the details for this experiment saver.write("command line: {}\n".format(" ".join(sys.argv[0:]))) saver.write(args.__repr__() + "\n\n") saver.flush() # Copy the code files as logs copytree('nuscenes-devkit', os.path.join(model_save_path, 'nuscenes-devkit')) copytree('data', os.path.join(model_save_path, 'data')) python_files = [f for f in os.listdir('.') if f.endswith('.py')] for f in python_files: copy(f, model_save_path) else: model_save_path = args.resume # eg, "logs/train_multi_seq/1234-56-78-11-22-33" log_file_name = os.path.join(model_save_path, 'log.txt') saver = open(log_file_name, "a") saver.write("GPU number: {}\n".format(torch.cuda.device_count())) saver.flush() # Logging the details for this experiment saver.write("command line: {}\n".format(" ".join(sys.argv[1:]))) saver.write(args.__repr__() + "\n\n") saver.flush() # Specify gpu device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device_num = torch.cuda.device_count() print("device number", device_num) voxel_size = (0.25, 0.25, 0.4) area_extents = np.array([[-32., 32.], [-32., 32.], [-3., 2.]]) trainset = TrainDatasetMultiSeq(dataset_root=args.data, future_frame_skip=0, voxel_size=voxel_size, area_extents=area_extents, num_category=cell_category_num) trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers) print("Training dataset size:", len(trainset)) model_encoder = FeatEncoder(height_feat_size=height_feat_size) model_head = MotionNetMGDA(out_seq_len=out_seq_len, motion_category_num=2) model_encoder = nn.DataParallel(model_encoder) model_encoder = model_encoder.to(device) model_head = nn.DataParallel(model_head) model_head = model_head.to(device) criterion = nn.SmoothL1Loss(reduction='none') encoder_optimizer = optim.Adam(model_encoder.parameters(), lr=0.002) head_optimizer = optim.Adam(model_head.parameters(), lr=0.002) encoder_scheduler = torch.optim.lr_scheduler.MultiStepLR(encoder_optimizer, milestones=[20, 40, 50, 60], gamma=0.5) head_scheduler = torch.optim.lr_scheduler.MultiStepLR(head_optimizer, milestones=[20, 40, 50, 60], gamma=0.5) if args.resume != '': checkpoint = torch.load(args.resume) start_epoch = checkpoint['epoch'] + 1 model_encoder.load_state_dict(checkpoint['encoder_state_dict']) model_head.load_state_dict(checkpoint['head_state_dict']) encoder_optimizer.load_state_dict(checkpoint['encoder_optimizer_state_dict']) head_optimizer.load_state_dict(checkpoint['head_optimizer_state_dict']) encoder_scheduler.load_state_dict(checkpoint['encoder_scheduler_state_dict']) head_scheduler.load_state_dict(checkpoint['head_scheduler_state_dict']) print("Load model from {}, at epoch {}".format(args.resume, start_epoch - 1)) for epoch in range(start_epoch, num_epochs + 1): lr = encoder_optimizer.param_groups[0]['lr'] print("Epoch {}, learning rate {}".format(epoch, lr)) if need_log: saver.write("epoch: {}, lr: {}\t".format(epoch, lr)) saver.flush() encoder_scheduler.step() head_scheduler.step() model_encoder.train() model_head.train() models = [model_encoder, model_head] optimizers = [encoder_optimizer, head_optimizer] loss_disp, loss_class, loss_motion, loss_bg_tc, loss_sc, loss_fg_tc \ = train(models, criterion, trainloader, optimizers, device, epoch) if need_log: saver.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(loss_disp, loss_class, loss_motion, loss_bg_tc, loss_fg_tc, loss_sc)) saver.flush() # save model if need_log and (epoch % 5 == 0 or epoch == num_epochs or epoch == 1 or epoch > 40): save_dict = {'epoch': epoch, 'encoder_state_dict': model_encoder.state_dict(), 'head_state_dict': model_head.state_dict(), 'encoder_optimizer_state_dict': encoder_optimizer.state_dict(), 'head_optimizer_state_dict': head_optimizer.state_dict(), 'encoder_scheduler_state_dict': encoder_scheduler.state_dict(), 'head_scheduler_state_dict': head_scheduler.state_dict(), 'loss': loss_disp.avg} torch.save(save_dict, os.path.join(model_save_path, 'epoch_' + str(epoch) + '.pth')) if need_log: saver.close() def train(models, criterion, trainloader, optimizers, device, epoch): running_loss_bg_tc = AverageMeter('bg_tc', ':.7f') # background temporal consistency error running_loss_fg_tc = AverageMeter('fg_tc', ':.7f') # foreground temporal consistency error running_loss_sc = AverageMeter('sc', ':.7f') # spatial consistency error running_loss_disp = AverageMeter('Disp', ':.6f') # for motion prediction error running_loss_class = AverageMeter('Obj_Cls', ':.6f') # for cell classification error running_loss_motion = AverageMeter('Motion_Cls', ':.6f') # for state estimation error encoder = models[0] pred_head = models[1] for i, data in enumerate(trainloader, 0): padded_voxel_points, all_disp_field_gt, all_valid_pixel_maps, non_empty_map, pixel_cat_map_gt, \ trans_matrices, motion_gt, pixel_instance_map, num_past_frames, num_future_frames = data # Move to GPU/CPU padded_voxel_points = padded_voxel_points.view(-1, num_past_frames[0].item(), 256, 256, height_feat_size) padded_voxel_points = padded_voxel_points.to(device) # Make prediction # -- Prepare for computing coefficients of loss terms with torch.no_grad(): shared_feats = encoder(padded_voxel_points) # Compute loss coefficients shared_feats_tensor = shared_feats.clone().detach().requires_grad_(True) disp_pred_tensor, class_pred_tensor, motion_pred_tensor = pred_head(shared_feats_tensor) scale = compute_loss_coeff(optimizers, device, num_future_frames[0].item(), all_disp_field_gt, all_valid_pixel_maps, pixel_cat_map_gt, disp_pred_tensor, criterion, non_empty_map, class_pred_tensor, motion_gt, motion_pred_tensor, shared_feats_tensor) # Forward prediction shared_feats = encoder(padded_voxel_points) disp_pred, class_pred, motion_pred = pred_head(shared_feats) # Compute and back-propagate the losses loss_disp, loss_class, loss_motion, loss_bg_tc, loss_sc, loss_fg_tc = \ compute_and_bp_loss(optimizers, device, num_future_frames[0].item(), all_disp_field_gt, all_valid_pixel_maps, pixel_cat_map_gt, disp_pred, criterion, non_empty_map, class_pred, motion_gt, motion_pred, trans_matrices, pixel_instance_map, scale) if not all((loss_disp, loss_class, loss_motion)): print("{}, \t{}, \tat epoch {}, \titerations {} [empty occupy map]". format(running_loss_disp, running_loss_class, epoch, i)) continue running_loss_bg_tc.update(loss_bg_tc) running_loss_fg_tc.update(loss_fg_tc) running_loss_sc.update(loss_sc) running_loss_disp.update(loss_disp) running_loss_class.update(loss_class) running_loss_motion.update(loss_motion) print("[{}/{}]\t{}, \t{}, \t{}, \t{}, \t{}, \t{}". format(epoch, i, running_loss_disp, running_loss_class, running_loss_motion, running_loss_bg_tc, running_loss_sc, running_loss_fg_tc)) return running_loss_disp, running_loss_class, running_loss_motion, running_loss_bg_tc, \ running_loss_sc, running_loss_fg_tc # Compute the loss coefficients adaptively def compute_loss_coeff(optimizers, device, future_frames_num, all_disp_field_gt, all_valid_pixel_maps, pixel_cat_map_gt, disp_pred, criterion, non_empty_map, class_pred, motion_gt, motion_pred, shared_feats_tensor): encoder_optimizer = optimizers[0] head_optimizer = optimizers[1] encoder_optimizer.zero_grad() head_optimizer.zero_grad() grads = {} # Compute the displacement loss all_disp_field_gt = all_disp_field_gt.view(-1, future_frames_num, 256, 256, 2) gt = all_disp_field_gt[:, -future_frames_num:, ...].contiguous() gt = gt.view(-1, gt.size(2), gt.size(3), gt.size(4)) gt = gt.permute(0, 3, 1, 2).to(device) all_valid_pixel_maps = all_valid_pixel_maps.view(-1, future_frames_num, 256, 256) valid_pixel_maps = all_valid_pixel_maps[:, -future_frames_num:, ...].contiguous() valid_pixel_maps = valid_pixel_maps.view(-1, valid_pixel_maps.size(2), valid_pixel_maps.size(3)) valid_pixel_maps = torch.unsqueeze(valid_pixel_maps, 1) valid_pixel_maps = valid_pixel_maps.to(device) valid_pixel_num = torch.nonzero(valid_pixel_maps).size(0) if valid_pixel_num == 0: return [None] * 3 # --------------------------------------------------------------------- # -- Generate the displacement w.r.t. the keyframe if pred_adj_frame_distance: disp_pred = disp_pred.view(-1, future_frames_num, disp_pred.size(-3), disp_pred.size(-2), disp_pred.size(-1)) for c in range(1, disp_pred.size(1)): disp_pred[:, c, ...] = disp_pred[:, c, ...] + disp_pred[:, c - 1, ...] disp_pred = disp_pred.view(-1, disp_pred.size(-3), disp_pred.size(-2), disp_pred.size(-1)) # --------------------------------------------------------------------- # -- Compute the gated displacement loss pixel_cat_map_gt = pixel_cat_map_gt.view(-1, 256, 256, cell_category_num) pixel_cat_map_gt_numpy = pixel_cat_map_gt.numpy() pixel_cat_map_gt_numpy = np.argmax(pixel_cat_map_gt_numpy, axis=-1) + 1 cat_weight_map = np.zeros_like(pixel_cat_map_gt_numpy, dtype=np.float32) weight_vector = [0.005, 1.0, 1.0, 1.0, 1.0] # [bg, car & bus, ped, bike, other] for k in range(5): mask = pixel_cat_map_gt_numpy == (k + 1) cat_weight_map[mask] = weight_vector[k] cat_weight_map = cat_weight_map[:, np.newaxis, np.newaxis, ...] # (batch, 1, 1, h, w) cat_weight_map = torch.from_numpy(cat_weight_map).to(device) map_shape = cat_weight_map.size() loss_disp = criterion(gt * valid_pixel_maps, disp_pred * valid_pixel_maps) loss_disp = loss_disp.view(map_shape[0], -1, map_shape[-3], map_shape[-2], map_shape[-1]) loss_disp = torch.sum(loss_disp * cat_weight_map) / valid_pixel_num encoder_optimizer.zero_grad() head_optimizer.zero_grad() loss_disp.backward(retain_graph=True) # this operation is expensive grads[0] = [] grads[0].append(shared_feats_tensor.grad.data.clone().detach()) shared_feats_tensor.grad.data.zero_() # --------------------------------------------------------------------- # -- Compute the classification loss non_empty_map = non_empty_map.view(-1, 256, 256) non_empty_map = non_empty_map.to(device) pixel_cat_map_gt = pixel_cat_map_gt.permute(0, 3, 1, 2).to(device) log_softmax_probs = F.log_softmax(class_pred, dim=1) map_shape = cat_weight_map.size() cat_weight_map = cat_weight_map.view(map_shape[0], map_shape[-2], map_shape[-1]) # (bs, h, w) loss_class = torch.sum(- pixel_cat_map_gt * log_softmax_probs, dim=1) * cat_weight_map loss_class = torch.sum(loss_class * non_empty_map) / torch.nonzero(non_empty_map).size(0) encoder_optimizer.zero_grad() head_optimizer.zero_grad() loss_class.backward(retain_graph=True) grads[1] = [] grads[1].append(shared_feats_tensor.grad.data.clone().detach()) shared_feats_tensor.grad.data.zero_() # --------------------------------------------------------------------- # -- Compute the speed level classification loss motion_gt = motion_gt.view(-1, 256, 256, 2) motion_gt_numpy = motion_gt.numpy() motion_gt = motion_gt.permute(0, 3, 1, 2).to(device) log_softmax_motion_pred = F.log_softmax(motion_pred, dim=1) motion_gt_numpy = np.argmax(motion_gt_numpy, axis=-1) + 1 motion_weight_map = np.zeros_like(motion_gt_numpy, dtype=np.float32) weight_vector = [0.005, 1.0] for k in range(2): mask = motion_gt_numpy == (k + 1) motion_weight_map[mask] = weight_vector[k] motion_weight_map = torch.from_numpy(motion_weight_map).to(device) loss_speed = torch.sum(- motion_gt * log_softmax_motion_pred, dim=1) * motion_weight_map loss_motion = torch.sum(loss_speed * non_empty_map) / torch.nonzero(non_empty_map).size(0) encoder_optimizer.zero_grad() head_optimizer.zero_grad() loss_motion.backward(retain_graph=True) grads[2] = [] grads[2].append(shared_feats_tensor.grad.data.clone().detach()) shared_feats_tensor.grad.data.zero_() # --------------------------------------------------------------------- # -- Frank-Wolfe iteration to compute scales. scale = np.zeros(3, dtype=np.float32) sol, min_norm = MinNormSolver.find_min_norm_element([grads[t] for t in range(3)]) for i in range(3): scale[i] = float(sol[i]) return scale # Compute and back-propagate the loss def compute_and_bp_loss(optimizers, device, future_frames_num, all_disp_field_gt, all_valid_pixel_maps, pixel_cat_map_gt, disp_pred, criterion, non_empty_map, class_pred, motion_gt, motion_pred, trans_matrices, pixel_instance_map, scale): encoder_optimizer = optimizers[0] head_optimizer = optimizers[1] encoder_optimizer.zero_grad() head_optimizer.zero_grad() # Compute the displacement loss all_disp_field_gt = all_disp_field_gt.view(-1, future_frames_num, 256, 256, 2) gt = all_disp_field_gt[:, -future_frames_num:, ...].contiguous() gt = gt.view(-1, gt.size(2), gt.size(3), gt.size(4)) gt = gt.permute(0, 3, 1, 2).to(device) all_valid_pixel_maps = all_valid_pixel_maps.view(-1, future_frames_num, 256, 256) valid_pixel_maps = all_valid_pixel_maps[:, -future_frames_num:, ...].contiguous() valid_pixel_maps = valid_pixel_maps.view(-1, valid_pixel_maps.size(2), valid_pixel_maps.size(3)) valid_pixel_maps = torch.unsqueeze(valid_pixel_maps, 1) valid_pixel_maps = valid_pixel_maps.to(device) valid_pixel_num = torch.nonzero(valid_pixel_maps).size(0) if valid_pixel_num == 0: return [None] * 6 # --------------------------------------------------------------------- # -- Generate the displacement w.r.t. the keyframe if pred_adj_frame_distance: disp_pred = disp_pred.view(-1, future_frames_num, disp_pred.size(-3), disp_pred.size(-2), disp_pred.size(-1)) # Compute temporal consistency loss if use_bg_temporal_consistency: bg_tc_loss = background_temporal_consistency_loss(disp_pred, pixel_cat_map_gt, non_empty_map, trans_matrices) if use_fg_temporal_consistency or use_spatial_consistency: instance_spatio_temp_loss, instance_spatial_loss_value, instance_temporal_loss_value \ = instance_spatial_temporal_consistency_loss(disp_pred, pixel_instance_map) for c in range(1, disp_pred.size(1)): disp_pred[:, c, ...] = disp_pred[:, c, ...] + disp_pred[:, c - 1, ...] disp_pred = disp_pred.view(-1, disp_pred.size(-3), disp_pred.size(-2), disp_pred.size(-1)) # --------------------------------------------------------------------- # -- Compute the masked displacement loss pixel_cat_map_gt = pixel_cat_map_gt.view(-1, 256, 256, cell_category_num) # Note: have also tried focal loss, but did not observe noticeable improvement pixel_cat_map_gt_numpy = pixel_cat_map_gt.numpy() pixel_cat_map_gt_numpy = np.argmax(pixel_cat_map_gt_numpy, axis=-1) + 1 cat_weight_map = np.zeros_like(pixel_cat_map_gt_numpy, dtype=np.float32) weight_vector = [0.005, 1.0, 1.0, 1.0, 1.0] # [bg, car & bus, ped, bike, other] for k in range(len(weight_vector)): mask = pixel_cat_map_gt_numpy == (k + 1) cat_weight_map[mask] = weight_vector[k] cat_weight_map = cat_weight_map[:, np.newaxis, np.newaxis, ...] # (batch, 1, 1, h, w) cat_weight_map = torch.from_numpy(cat_weight_map).to(device) map_shape = cat_weight_map.size() loss_disp = criterion(gt * valid_pixel_maps, disp_pred * valid_pixel_maps) loss_disp = loss_disp.view(map_shape[0], -1, map_shape[-3], map_shape[-2], map_shape[-1]) loss_disp = torch.sum(loss_disp * cat_weight_map) / valid_pixel_num # --------------------------------------------------------------------- # -- Compute the grid cell classification loss non_empty_map = non_empty_map.view(-1, 256, 256) non_empty_map = non_empty_map.to(device) pixel_cat_map_gt = pixel_cat_map_gt.permute(0, 3, 1, 2).to(device) log_softmax_probs = F.log_softmax(class_pred, dim=1) map_shape = cat_weight_map.size() cat_weight_map = cat_weight_map.view(map_shape[0], map_shape[-2], map_shape[-1]) # (bs, h, w) loss_class = torch.sum(- pixel_cat_map_gt * log_softmax_probs, dim=1) * cat_weight_map loss_class = torch.sum(loss_class * non_empty_map) / torch.nonzero(non_empty_map).size(0) # --------------------------------------------------------------------- # -- Compute the speed level classification loss motion_gt = motion_gt.view(-1, 256, 256, 2) motion_gt_numpy = motion_gt.numpy() motion_gt = motion_gt.permute(0, 3, 1, 2).to(device) log_softmax_motion_pred = F.log_softmax(motion_pred, dim=1) motion_gt_numpy = np.argmax(motion_gt_numpy, axis=-1) + 1 motion_weight_map = np.zeros_like(motion_gt_numpy, dtype=np.float32) weight_vector = [0.005, 1.0] # [static, moving] for k in range(len(weight_vector)): mask = motion_gt_numpy == (k + 1) motion_weight_map[mask] = weight_vector[k] motion_weight_map = torch.from_numpy(motion_weight_map).to(device) loss_speed = torch.sum(- motion_gt * log_softmax_motion_pred, dim=1) * motion_weight_map loss_motion = torch.sum(loss_speed * non_empty_map) / torch.nonzero(non_empty_map).size(0) # --------------------------------------------------------------------- # -- Sum up all the losses if use_bg_temporal_consistency and (use_fg_temporal_consistency or use_spatial_consistency): loss = scale[0] * loss_disp + reg_weight_cls * scale[1] * loss_class + scale[2] * loss_motion + \ reg_weight_bg_tc * bg_tc_loss + instance_spatio_temp_loss elif use_bg_temporal_consistency: loss = scale[0] * loss_disp + reg_weight_cls * scale[1] * loss_class + scale[2] * loss_motion + \ reg_weight_bg_tc * bg_tc_loss elif use_spatial_consistency or use_fg_temporal_consistency: loss = scale[0] * loss_disp + reg_weight_cls * scale[1] * loss_class + scale[2] * loss_motion + \ instance_spatio_temp_loss else: loss = scale[0] * loss_disp + reg_weight_cls * scale[1] * loss_class + scale[2] * loss_motion loss.backward() encoder_optimizer.step() head_optimizer.step() if use_bg_temporal_consistency: bg_tc_loss_value = bg_tc_loss.item() else: bg_tc_loss_value = -1 if use_spatial_consistency or use_fg_temporal_consistency: sc_loss_value = instance_spatial_loss_value fg_tc_loss_value = instance_temporal_loss_value else: sc_loss_value = -1 fg_tc_loss_value = -1 return loss_disp.item(), loss_class.item(), loss_motion.item(), bg_tc_loss_value, \ sc_loss_value, fg_tc_loss_value def background_temporal_consistency_loss(disp_pred, pixel_cat_map_gt, non_empty_map, trans_matrices): """ disp_pred: Should be relative displacement between adjacent frames. shape (batch * 2, sweep_num, 2, h, w) pixel_cat_map_gt: Shape (batch, 2, h, w, cat_num) non_empty_map: Shape (batch, 2, h, w) trans_matrices: Shape (batch, 2, sweep_num, 4, 4) """ criterion = nn.SmoothL1Loss(reduction='sum') non_empty_map_numpy = non_empty_map.numpy() pixel_cat_maps = pixel_cat_map_gt.numpy() max_prob = np.amax(pixel_cat_maps, axis=-1) filter_mask = max_prob == 1.0 pixel_cat_maps = np.argmax(pixel_cat_maps, axis=-1) + 1 # category starts from 1 (background), etc pixel_cat_maps = (pixel_cat_maps * non_empty_map_numpy * filter_mask) # (batch, 2, h, w) trans_matrices = trans_matrices.numpy() device = disp_pred.device pred_shape = disp_pred.size() disp_pred = disp_pred.view(-1, 2, pred_shape[1], pred_shape[2], pred_shape[3], pred_shape[4]) seq_1_pred = disp_pred[:, 0] # (batch, sweep_num, 2, h, w) seq_2_pred = disp_pred[:, 1] seq_1_absolute_pred_list = list() seq_2_absolute_pred_list = list() seq_1_absolute_pred_list.append(seq_1_pred[:, 1]) for i in range(2, pred_shape[1]): seq_1_absolute_pred_list.append(seq_1_pred[:, i] + seq_1_absolute_pred_list[i - 2]) seq_2_absolute_pred_list.append(seq_2_pred[:, 0]) for i in range(1, pred_shape[1] - 1): seq_2_absolute_pred_list.append(seq_2_pred[:, i] + seq_2_absolute_pred_list[i - 1]) # ----------------- Compute the consistency loss ----------------- # Compute the transformation matrices # First, transform the coordinate transformed_disp_pred_list = list() trans_matrix_global = trans_matrices[:, 1] # (batch, sweep_num, 4, 4) trans_matrix_global = trans_matrix_global[:, trans_matrix_idx, 0:3] # (batch, 3, 4) # <--- trans_matrix_global = trans_matrix_global[:, :, (0, 1, 3)] # (batch, 3, 3) trans_matrix_global[:, 2] = np.array([0.0, 0.0, 1.0]) # --- Move pixel coord to global and rescale; then rotate; then move back to local pixel coord translate_to_global = np.array([[1.0, 0.0, -120.0], [0.0, 1.0, -120.0], [0.0, 0.0, 1.0]], dtype=np.float32) scale_global = np.array([[0.25, 0.0, 0.0], [0.0, 0.25, 0.0], [0.0, 0.0, 1.0]], dtype=np.float32) trans_global = scale_global @ translate_to_global inv_trans_global = np.linalg.inv(trans_global) trans_global = np.expand_dims(trans_global, axis=0) inv_trans_global = np.expand_dims(inv_trans_global, axis=0) trans_matrix_total = inv_trans_global @ trans_matrix_global @ trans_global # --- Generate grid transformation matrix, so as to use Pytorch affine_grid and grid_sample function w, h = pred_shape[-2], pred_shape[-1] resize_m = np.array([ [2 / w, 0.0, -1], [0.0, 2 / h, -1], [0.0, 0.0, 1] ], dtype=np.float32) inverse_m = np.linalg.inv(resize_m) resize_m =
np.expand_dims(resize_m, axis=0)
numpy.expand_dims
""" Shared pytest fixtures for unit tests. """ import numpy as np import pytest from scipy.integrate import solve_ivp from pysindy.differentiation import FiniteDifference from pysindy.differentiation import SpectralDerivative from pysindy.feature_library import CustomLibrary from pysindy.feature_library import FourierLibrary from pysindy.feature_library import GeneralizedLibrary from pysindy.feature_library import PDELibrary from pysindy.feature_library import PolynomialLibrary from pysindy.feature_library import SINDyPILibrary from pysindy.utils.odes import logistic_map from pysindy.utils.odes import logistic_map_control from pysindy.utils.odes import logistic_map_multicontrol from pysindy.utils.odes import lorenz from pysindy.utils.odes import lorenz_control @pytest.fixture def data_1d(): t = np.linspace(0, 5, 100) x = 2 * t.reshape(-1, 1) return x, t @pytest.fixture def data_1d_bad_shape(): t = np.linspace(0, 5, 100) x = 2 * t return x, t @pytest.fixture def data_lorenz(): t = np.linspace(0, 5, 500) x0 = [8, 27, -7] x = solve_ivp(lorenz, (t[0], t[-1]), x0, t_eval=t).y.T return x, t @pytest.fixture def data_multiple_trajctories(): n_points = [100, 200, 500] initial_conditions = [ [8, 27, -7], [-10.9595724, 21.7346758, 24.5722540], [-3.95406365, -9.21825124, 12.07459147], ] x_list = [] t_list = [] for n, x0 in zip(n_points, initial_conditions): t = np.linspace(0, 5, n) t_list.append(t) x_list.append(solve_ivp(lorenz, (t[0], t[-1]), x0, t_eval=t).y.T) return x_list, t_list @pytest.fixture def diffuse_multiple_trajectories(): def diffuse(t, u, dx, nx): u = np.reshape(u, nx) du = SpectralDerivative(d=2, axis=0)._differentiate(u, dx) return np.reshape(u * du, nx) # Required for accurate solve_ivp results integrator_keywords = {} integrator_keywords["rtol"] = 1e-12 integrator_keywords["method"] = "LSODA" integrator_keywords["atol"] = 1e-12 N = 200 h0 = 1.0 L = 5 T = 1 t = np.linspace(0, T, N) x = np.arange(0, N) * L / N ep = 0.5 * h0 y0 = np.reshape( h0 + ep * np.cos(4 * np.pi / L * x) + ep * np.cos(2 * np.pi / L * x), N ) y1 = np.reshape( h0 + ep * np.cos(4 * np.pi / L * x) - ep * np.cos(2 * np.pi / L * x), N ) dx = x[1] - x[0] sol1 = solve_ivp( diffuse, (t[0], t[-1]), y0=y0, t_eval=t, args=(dx, N), **integrator_keywords ) sol2 = solve_ivp( diffuse, (t[0], t[-1]), y0=y1, t_eval=t, args=(dx, N), **integrator_keywords ) u = [np.reshape(sol1.y, (N, N, 1)), np.reshape(sol2.y, (N, N, 1))] return t, x, u @pytest.fixture def data_discrete_time(): n_steps = 100 mu = 3.6 x = np.zeros((n_steps)) x[0] = 0.5 for i in range(1, n_steps): x[i] = logistic_map(x[i - 1], mu) return x @pytest.fixture def data_discrete_time_multiple_trajectories(): n_steps = 100 mus = [1, 2.3, 3.6] x = [np.zeros((n_steps)) for mu in mus] for i, mu in enumerate(mus): x[i][0] = 0.5 for k in range(1, n_steps): x[i][k] = logistic_map(x[i][k - 1], mu) return x @pytest.fixture def data_1d_random_pde(): n = 100 t = np.linspace(0, 10, n) dt = t[1] - t[0] x = np.linspace(0, 10, n) u = np.random.randn(n, n, 1) u_dot = FiniteDifference(axis=1)._differentiate(u, t=dt) return t, x, u, u_dot @pytest.fixture def data_2d_random_pde(): n = 4 t = np.linspace(0, 10, n) dt = t[1] - t[0] x = np.linspace(0, 10, n) y = np.linspace(0, 10, n) X, Y =
np.meshgrid(x, y)
numpy.meshgrid
import numpy as np import scipy.sparse from numpy import sin, cos, tan import sys import slepc4py slepc4py.init(sys.argv) from petsc4py import PETSc from slepc4py import SLEPc opts = PETSc.Options() import pickle as pkl class Model(): def __init__(self, model_variables, model_parameters, physical_constants): self.model_variables = model_variables self.model_parameters = model_parameters self.physical_constants = physical_constants for key in model_parameters: exec('self.'+str(key)+' = model_parameters[\''+str(key)+'\']') for key in physical_constants: exec('self.'+str(key)+' = physical_constants[\''+str(key)+'\']') self.calculate_nondimensional_parameters() self.set_up_grid(self.R, self.h) def set_up_grid(self, R, h): """ Creates the r and theta coordinate vectors inputs: R: radius of outer core in m h: layer thickness in m outputs: None """ self.R = R self.h = h self.Size_var = self.Nk*self.Nl self.SizeM = len(self.model_variables)*self.Size_var self.rmin = (R-h)/self.r_star self.rmax = R/self.r_star self.dr = (self.rmax-self.rmin)/(self.Nk) ones = np.ones((self.Nk,self.Nl)) self.r = (ones.T*np.linspace(self.rmin+self.dr/2., self.rmax-self.dr/2.,num=self.Nk)).T # r value at center of each cell self.rp = (ones.T*np.linspace(self.rmin+self.dr, self.rmax, num=self.Nk)).T # r value at plus border (top) of cell self.rm = (ones.T*np.linspace(self.rmin, self.rmax-self.dr, num=self.Nk)).T # r value at minus border (bottom) of cell self.dth = np.pi/(self.Nl) self.th = ones*np.linspace(self.dth/2., np.pi-self.dth/2., num=self.Nl) # theta value at center of cell self.thp = ones*np.linspace(self.dth, np.pi, num=self.Nl) # theta value at plus border (top) of cell self.thm = ones*np.linspace(0,np.pi-self.dth, num=self.Nl) return None def calculate_nondimensional_parameters(self): ''' Calculates the non-dimensional parameters in model from the physical constants. ''' self.t_star = 1/self.Omega # seconds self.r_star = self.R # meters self.P_star = self.rho*self.r_star**2/self.t_star**2 self.B_star = (self.eta*self.mu_0*self.rho/self.t_star)**0.5 self.u_star = self.r_star/self.t_star self.E = self.nu*self.t_star/self.r_star**2 self.Pm = self.nu/self.eta return None def set_Br(self, BrT): ''' Sets the background phi magnetic field in Tesla BrT = Br values for each cell in Tesla''' if isinstance(BrT, (float, int)): self.BrT = np.ones((self.Nk, self.Nl))*BrT self.Br = self.BrT/self.B_star elif isinstance(BrT, np.ndarray) and BrT.shape == (self.Nk, self.Nl): self.BrT = BrT self.Br = self.BrT/self.B_star else: raise TypeError("BrT must either be an int, float, or np.ndarray of correct size") def set_Bth(self, BthT): ''' Sets the background phi magnetic field in Tesla BthT = Bth values for each cell in Tesla''' if isinstance(BthT, (float, int)): self.BthT = np.ones((self.Nk, self.Nl))*BthT self.Bth = self.BthT/self.B_star elif isinstance(BthT, np.ndarray) and BthT.shape == (self.Nk, self.Nl) : self.BthT = BthT self.Bth = self.BthT/self.B_star else: raise TypeError("BthT must either be an int, float, or np.ndarray of correct size") def set_Bph(self, BphT): ''' Sets the background phi magnetic field in Tesla BphT = Bph values for each cell in Tesla''' if isinstance(BphT, (float, int)): self.BphT = np.ones((self.Nk, self.Nl))*BphT self.Bph = self.BphT/self.B_star elif isinstance(BphT, np.ndarray) and BphT.shape ==(self.Nk, self.Nl): self.BphT = BphT self.Bph = self.BphT/self.B_star else: raise TypeError("BphT must either be an int, float, or np.ndarray of correct size") def set_Br_dipole(self, Bd, const=0): ''' Sets the background magnetic field to a dipole field with Bd = dipole constant in Tesla ''' self.Bd = Bd self.BrT = 2*cos(self.th)*Bd + const self.Br = self.BrT/self.B_star self.set_Bth(0.0) self.set_Bph(0.0) return None def set_B_dipole(self, Bd, const=0): ''' Sets the background magnetic field to a dipole field with Bd = dipole constant in Tesla ''' self.Bd = Bd self.BrT = 2*cos(self.th)*Bd + const self.Br = self.BrT/self.B_star self.BthT = sin(self.th)*Bd + const self.Bth = self.BthT/self.B_star self.set_Bph(0.0) return None def set_B_abs_dipole(self, Bd, const=0): ''' Sets the background magnetic Br and Bth field to the absolute value of a dipole field with Bd = dipole constant in Tesla ''' self.Bd = Bd self.BrT = 2*abs(cos(self.th))*Bd + const self.Br = self.BrT/self.B_star self.BthT = abs(sin(self.th))*Bd + const self.Bth = self.BthT/self.B_star self.set_Bph(0.0) return None def set_B_dipole_absrsymth(self, Bd, const=0): ''' Sets the background magnetic Br and Bth field to the absolute value of a dipole field with Bd = dipole constant in Tesla ''' self.Bd = Bd self.BrT = 2*abs(cos(self.th))*Bd + const self.Br = self.BrT/self.B_star self.BthT = sin(self.th)*Bd + const self.Bth = self.BthT/self.B_star self.set_Bph(0.0) return None def set_Br_abs_dipole(self, Bd, const=0, noise=None, N=10000): ''' Sets the background Br magnetic field the absolute value of a dipole with Bd = dipole constant in Tesla. optionally, can offset the dipole by a constant with const or add numerical noise with noise ''' if noise: from scipy.special import erf def folded_mean(mu, s): return s*(2/np.pi)**0.5*np.exp(-mu**2/(2*s**2)) - mu*erf(-mu/(2*s**2)**0.5) self.Bd = Bd Bdip = 2*Bd*np.abs(np.cos(self.th)) Bdip_noise = np.zeros_like(Bdip) for (i,B) in enumerate(Bdip): Bdip_noise[i] = folded_mean(Bdip[i], noise) self.BrT = np.ones((self.Nk, self.Nl))*Bdip_noise self.Br = self.BrT/self.B_star else: self.Bd = Bd self.BrT = 2*abs(cos(self.th))*Bd + const self.Br = self.BrT/self.B_star self.set_Bth(0.0) self.set_Bph(0.0) return None def set_Br_sinfunc(self, Bmin, Bmax, sin_exp=2.5): self.BrT = ((1-sin(self.th)**sin_exp)*(Bmax-Bmin)+Bmin) self.Br = self.BrT/self.B_star self.set_Bth(0.0) self.set_Bph(0.0) return None def set_B_by_type(self, B_type, Bd=0.0, Br=0.0, Bth=0.0, Bph=0.0, const=0.0, Bmin=0.0, Bmax=0.0, sin_exp=2.5, noise=0.0): ''' Sets the background magnetic field to given type. B_type choices: * dipole : Br, Bth dipole; specify scalar dipole constant Bd (T) * abs_dipole : absolute value of dipole in Br and Bth, specify scalar Bd (T) * dipole_Br : Br dipole, Bth=0; specify scalar dipole constant Bd (T) * abs_dipole_Br : absolute value of dipole in Br, specify scalar Bd (T) * constant_Br : constant Br, Bth=0; specify scalar Br (T) * set : specify array Br, Bth, and Bph values in (T) * dipole_absrsymth : absolute value of dipole in Br, symmetric in Bth, specify scalar Bd (T) ''' if B_type == 'dipole': self.set_B_dipole(Bd, const=const) elif B_type == 'dipoleBr': self.set_Br_dipole(Bd, const=const) elif B_type == 'constantBr': self.set_Br(Br*np.ones((self.Nk, self.Nl))) self.set_Bth(0.0) self.set_Bph(0.0) elif B_type == 'set': self.set_Br(Br) self.set_Bth(Bth) self.set_Bph(Bph) elif B_type == 'absDipoleBr': self.set_Br_abs_dipole(Bd, const=const, noise=noise) elif B_type == 'absDipole': self.set_B_abs_dipole(Bd, const=const) elif B_type == 'dipoleAbsRSymTh': self.set_B_dipole_absrsymth(Bd, const=const) elif B_type == 'sinfuncBr': self.set_Br_sinfunc(Bmin, Bmax, sin_exp=sin_exp) else: raise ValueError('B_type not valid') def set_CC_skin_depth(self, period): ''' sets the magnetic skin depth for conducting core BC inputs: period = period of oscillation in years returns: delta_C = skin depth in (m) ''' self.delta_C = np.sqrt(2*self.eta/(2*np.pi/(period*365.25*24*3600))) self.physical_constants['delta_C'] = self.delta_C return self.delta_C def set_Uphi(self, Uphi): '''Sets the background velocity field in m/s''' if isinstance(Uphi, (float, int)): self.Uphi = np.ones((self.Nk, self.Nl))*Uphi elif isinstance(Uphi, np.ndarray): self.Uphi = Uphi else: raise TypeError("The value passed for Uphi must be either an int, float, or np.ndarray") self.U0 = self.Uphi*self.r_star/self.t_star return None def set_buoyancy(self, drho_dr): '''Sets the buoyancy structure of the layer''' self.omega_g = np.sqrt(-self.g/self.rho*drho_dr) self.N = self.omega_g**2*self.t_star**2 def set_buoy_by_type(self, buoy_type, buoy_ratio): self.omega_g0 = buoy_ratio*self.Omega if buoy_type == 'constant': self.omega_g = np.ones((self.Nk, self.Nl))*self.omega_g0 elif buoy_type == 'linear': self.omega_g = (np.ones((self.Nk, self.Nl)).T*np.linspace(0, self.omega_g0, self.Nk)).T self.N = self.omega_g**2*self.t_star**2 def get_index(self, k, l, var): ''' Takes coordinates for a point, gives back index in matrix. inputs: k: k grid value from 0 to K-1 l: l grid value from 0 to L-1 var: variable name in model_variables outputs: index of location in matrix ''' Nk = self.Nk Nl = self.Nl SizeM = self.SizeM Size_var = self.Size_var if (var not in self.model_variables): raise RuntimeError('variable not in model_variables') elif not (l >= 0 and l <= Nl-1): raise RuntimeError('l index out of bounds') elif not (k >= 0 and k <= Nk-1): raise RuntimeError('k index out of bounds') return Size_var*self.model_variables.index(var) + k + l*Nk def get_variable(self, vector, var): ''' Takes a flat vector and a variable name, returns the variable in a np.matrix inputs: vector: flat vector array with len == SizeM var: str of variable name in model outputs: variable in np.array ''' Nk = self.Nk Nl = self.Nl if (var not in self.model_variables): raise RuntimeError('variable not in model_variables') elif len(vector) != self.SizeM: raise RuntimeError('vector given is not correct length in this \ model') else: var_start = self.get_index(0, 0, var) var_end = self.get_index(Nk-1, Nl-1, var)+1 variable = np.array(np.reshape(vector[var_start:var_end], (Nk, Nl), 'F')) return variable def create_vector(self, variables): ''' Takes a set of variables and creates a vector out of them. inputs: variables: list of (Nk x Nl) matrices or vectors for each model variable outputs: vector of size (SizeM x 1) ''' Nk = self.Nk Nl = self.Nl vector = np.array([1]) # Check Inputs: if len(variables) != len(self.model_variables): raise RuntimeError('Incorrect number of variable vectors passed') for var in variables: vector = np.vstack((vector, np.reshape(var, (Nk*Nl, 1)))) return np.array(vector[1:]) def add_gov_equation(self, name, variable): setattr(self, name, GovEquation(self, variable)) def setup_SLEPc(self, nev=10, Target=None, Which='TARGET_MAGNITUDE'): self.EPS = SLEPc.EPS().create() self.EPS.setDimensions(10, PETSc.DECIDE) self.EPS.setOperators(self.A_SLEPc, self.M_SLEPc) self.EPS.setProblemType(SLEPc.EPS.ProblemType.PGNHEP) self.EPS.setTarget(Target) self.EPS.setWhichEigenpairs(eval('self.EPS.Which.'+Which)) self.EPS.setFromOptions() self.ST = self.EPS.getST() self.ST.setType(SLEPc.ST.Type.SINVERT) return self.EPS def solve_SLEPc(self, Target=None): self.EPS.solve() conv = self.EPS.getConverged() vs, ws = PETSc.Mat.getVecs(self.A_SLEPc) vals = [] vecs = [] for ind in range(conv): vals.append(self.EPS.getEigenpair(ind, ws)) vecs.append(ws.getArray()) return vals, vecs def save_mat_PETSc(self, filename, mat, type='Binary'): ''' Saves a Matrix in PETSc format ''' if type == 'Binary': viewer = PETSc.Viewer().createBinary(filename, 'w') elif type == 'ASCII': viewer = PETSc.Viewer().createASCII(filename, 'w') viewer(mat) def load_mat_PETSc(self, filename, type='Binary'): ''' Loads and returns a Matrix stored in PETSc format ''' if type == 'Binary': viewer = PETSc.Viewer().createBinary(filename, 'r') elif type == 'ASCII': viewer = PETSc.Viewer().createASCII(filename, 'r') return PETSc.Mat().load(viewer) def save_vec_PETSc(self, filename, vec, type='Binary'): ''' Saves a vector in PETSc format ''' if type == 'Binary': viewer = PETSc.Viewer().createBinary(filename, 'w') elif type == 'ASCII': viewer = PETSc.Viewer().createASCII(filename, 'w') viewer(vec) def load_vec_PETSc(self, filename, type='Binary'): ''' Loads and returns a vector stored in PETSc format ''' if type == 'Binary': viewer = PETSc.Viewer().createBinary(filename, 'r') elif type == 'ASCII': viewer = PETSc.Viewer().createASCII(filename, 'r') return PETSc.Mat().load(viewer) def save_model(self, filename): ''' Saves the model structure without the computed A and M matrices''' try: self.A except: pass else: A = self.A del self.A try: self.M except: pass else: M = self.M del self.M pkl.dump(self, open(filename, 'wb')) try: A except: pass else: self.A = A try: M except: pass else: self.M = M def make_d2Mat(self): self.d2_rows = [] self.d2_cols = [] self.d2_vals = [] for var in self.model_variables: self.add_gov_equation('d2_'+var, var) exec('self.d2_'+var+'.add_d2_bd0(\''+var+'\','+str(self.m)+')') exec('self.d2_rows = self.d2_'+var+'.rows') exec('self.d2_cols = self.d2_'+var+'.cols') exec('self.d2_vals = self.d2_'+var+'.vals') self.d2Mat = coo_matrix((self.d2_vals, (self.d2_rows, self.d2_cols)), shape=(self.SizeM, self.SizeM)) return self.d2Mat def make_dthMat(self): self.dth_rows = [] self.dth_cols = [] self.dth_vals = [] for var in self.model_variables: self.add_gov_equation('dth_'+var, var) exec('self.dth_'+var+'.add_dth(\''+var+'\','+str(self.m)+')') exec('self.dth_rows += self.dth_'+var+'.rows') exec('self.dth_cols += self.dth_'+var+'.cols') exec('self.dth_vals += self.dth_'+var+'.vals') self.dthMat = coo_matrix((self.dth_vals, (self.dth_rows, self.dth_cols)), shape=(self.SizeM, self.SizeM)) return self.dthMat def make_dphMat(self): self.dph_rows = [] self.dph_cols = [] self.dph_vals = [] for var in self.model_variables: self.add_gov_equation('dth_'+var, var) exec('self.dph_'+var+'.add_dth(\''+var+'\','+str(self.m)+')') exec('self.dph_rows += self.dth_'+var+'.rows') exec('self.dph_cols += self.dth_'+var+'.cols') exec('self.dph_vals += self.dth_'+var+'.vals') self.dthMat = coo_matrix((self.dph_vals, (self.dph_rows, self.dph_cols)), shape=(self.SizeM, self.SizeM)) return self.dphMat def make_Bobs(self): BrobsT = 2*np.ones((self.Nk, self.Nl))*cos(self.th) self.Brobs = BrobsT/self.B_star gradBrobsT = -2*np.ones((self.Nk, self.Nl))*sin(self.th)/self.R self.gradBrobs = gradBrobsT/self.B_star*self.r_star self.add_gov_equation('Bobs', self.model_variables[0]) self.Bobs.add_term('uth', self.gradBrobs) self.Bobs.add_dth('uth', C= self.Brobs) self.Bobs.add_dph('uph', C= self.Brobs) self.BobsMat = coo_matrix((self.Bobs.vals, (self.Bobs.rows, self.Bobs.cols)), shape=(self.SizeM, self.SizeM)) return self.BobsMat def make_operators(self): """ :return: """ dr = self.dr r = self.r rp = self.rp rm = self.rm dth = self.dth th = self.th thm = self.thm thp = self.thp Nk = self.Nk Nl = self.Nl m = self.m delta_C = self.delta_C/self.r_star E = self.E Pm = self.Pm # ddr self.ddr_kp1 = rp**2/(2*r**2*dr) self.ddr_km1 = -rm**2/(2*r**2*dr) self.ddr = 1/r self.ddr_kp1_b0 = np.array(self.ddr_kp1) self.ddr_km1_b0 = np.array(self.ddr_km1) self.ddr_b0 = np.array(self.ddr) self.ddr_kp1_b0[-1,:] = np.zeros(Nl) self.ddr_b0[-1,:] = -rm[-1,:]**2/(2*r[-1,:]**2*dr) self.ddr_km1_b0[0,:] = np.zeros(Nl) self.ddr_b0[0,:] = rp[0,:]**2/(2*r[0,:]**2*dr) self.ddr_kp1_bd0 = np.array(self.ddr_kp1) self.ddr_km1_bd0 = np.array(self.ddr_km1) self.ddr_bd0 = np.array(self.ddr) self.ddr_kp1_bd0[-1,:] = np.zeros(Nl) self.ddr_bd0[-1,:] = (2*rp[-1,:]**2 -rm[-1,:]**2)/(2*r[-1,:]**2*dr) self.ddr_km1_bd0[0,:] = np.zeros(Nl) self.ddr_bd0[0,:] = (rp[0,:]**2 - 2*rm[0,:]**2)/(2*r[0,:]**2*dr) # ddr for Conducting core boundary conditions self.ddr_kp1_ccb0 = np.array(self.ddr_kp1_b0) self.ddr_kp1_ccb0[0,:] = rp[0,:]**2/(r[0,:]**2*2*dr) self.ddr_km1_ccb0 = np.array(self.ddr_km1_b0) self.ddr_km1_ccb0[0,:] = np.zeros(Nl) self.ddr_ccb0 = np.array(self.ddr_b0) self.ddr_ccb0[0,:] = rp[0,:]**2/(r[0,:]**2*2*dr) self.ddr_u_ccb0 = -rm[0,:]**2/(r[0,:]**2*dr) # ddth self.ddth_lp1 = sin(thp)/(2*r*sin(th)*dth) self.ddth_lm1 = -sin(thm)/(2*r*sin(th)*dth) self.ddth = (sin(thp)-sin(thm))/(2*r*sin(th)*dth) # ddph self.ddph = 1j*m/(r*sin(th)) # drP self.drP_kp1 = rp**2/(2*dr*r**2) self.drP_km1 = -rm**2/(2*dr*r**2) self.drP_lp1 = -sin(thp)/(4*r*sin(th)) self.drP_lm1 = -sin(thm)/(4*r*sin(th)) self.drP = -(sin(thp)+sin(thm))/(4*r*sin(th)) self.drP_kp1[-1,:] = np.zeros(Nl) self.drP[-1,:] = rp[-1,:]**2/(2*dr*r[-1,:]**2) \ - (sin(thp[-1,:]) + sin(thm[-1,:]))/(4*r[-1,:]*sin(th[-1,:])) self.drP_km1[0,:] = np.zeros(Nl) self.drP[0,:] = -rm[0,:]**2/(2*dr*r[0,:]**2) \ - (sin(thp[0,:]) + sin(thm[0,:]))/(4*r[0,:]*sin(th[0,:])) # dthP self.dthP_lp1 = sin(thp)/(2*r*sin(th)*dth) self.dthP_lm1 = -sin(thm)/(2*r*sin(th)*dth) self.dthP = (sin(thp)-sin(thm))/(2*r*sin(th)*dth) - cos(th)/(r*sin(th)) # dphP self.dphP = 1j*m/(r*sin(th)) # Laplacian self.d2_kp1 = (rp/(r*dr))**2 self.d2_km1 = (rm/(r*dr))**2 self.d2_lp1 = sin(thp)/(sin(th)*(r*dth)**2) self.d2_lm1 = sin(thm)/(sin(th)*(r*dth)**2) self.d2 = -((rp**2+rm**2)/(r*dr)**2 + (sin(thp) + sin(thm))/(sin(th)*(r*dth)**2) + (m/(r*sin(th)))**2) # Laplacian for B.C. var = 0 self.d2_kp1_b0 = np.array(self.d2_kp1) self.d2_km1_b0 = np.array(self.d2_km1) self.d2_lp1_b0 = self.d2_lp1 self.d2_lm1_b0 = self.d2_lm1 self.d2_b0 = np.array(self.d2) self.d2_kp1_b0[-1,:] = np.zeros(Nl) self.d2_b0[-1,:] = (-((2*rp**2+rm**2)/(r*dr)**2 + (sin(thp) + sin(thm))/(sin(th)*(r*dth)**2) + (m/(r*sin(th)))**2))[-1,:] self.d2_km1_b0[0,:] = np.zeros(Nl) self.d2_b0[0,:] = (-((rp**2+2*rm**2)/(r*dr)**2 + (sin(thp) + sin(thm))/(sin(th)*(r*dth)**2) + (m/(r*sin(th)))**2))[0,:] # Laplacian for B.C. d(var)/dr = 0 self.d2_kp1_bd0 = np.array(self.d2_kp1) self.d2_km1_bd0 = np.array(self.d2_km1) self.d2_lp1_bd0 = self.d2_lp1 self.d2_lm1_bd0 = self.d2_lm1 self.d2_bd0 = np.array(self.d2) self.d2_kp1_bd0[-1,:] = np.zeros(Nl) self.d2_bd0[-1,:] = (-((rm**2)/(r*dr)**2 + (
sin(thp)
numpy.sin
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.2.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # OpenGLを用いたMCMCのリアルタイム可視化 # OpenGLとGLFWをインポートします from OpenGL.GL import * from OpenGL.GLUT import * import glfw import numpy as np from math import gamma class gibbs_random_chain(): def __init__(self, a, *, rho=0.5, diagonal_components=1): self.a = np.array(a) self.K = self.a.size self.rho = rho self.SIGMA = (np.ones((self.K,self.K))-np.eye(self.K))*rho + np.eye(self.K)*diagonal_components self.L = np.linalg.cholesky(self.SIGMA) self.z_t = self.L.dot(self.produce_vec_y()) self.z_t = np.ones(self.K)/self.K # 区間(-1,1)の一様乱数ベクトルzを利用して独立なD個のサンプルベクトルyを得る関数 def produce_vec_y(self): z_array = 2*np.random.rand(self.K) - 1 while (z_array**2).sum() > 1: z_array = 2*np.random.rand(self.K) - 1 squared_r = (z_array**2).sum() y = z_array * np.sqrt((-2*np.log(squared_r)/squared_r)) self.z_array = z_array return y def produce_z_k(self, z_not_k): z_k_limit = 1 - (z_not_k**2).sum() return np.random.rand()*np.sqrt(z_k_limit)*(2*np.random.randint(0,2)-1) def generate_random(self): z_array = np.array(self.z_array) ind = np.ones(self.K, dtype=bool) for k in range(self.K): ind[k] = False z_array[k] = self.produce_z_k(z_array[ind]) ind[k] = True return self.z_t + self.L.dot(z_array), z_array def set_z_t(self, z_t): self.z_t = z_t def set_z_array(self, z_array): self.z_array = z_array def alpha(self, z): x = np.abs(np.array(z)) x /= x.sum() x_t = np.abs(np.array(self.z_t)) x_t /= x_t.sum() return min(1, p_tilde(x,self.a)/p_tilde(x_t,self.a)) class gibbs_over_relaxation(): def __init__(self, a, *, rho=0, diagonal_components=1, param_mu=0, param_sigma=1, param_alpha=0): self.a = np.array(a) self.K = self.a.size self.rho = rho self.SIGMA = (np.ones((self.K,self.K))-np.eye(self.K))*rho + np.eye(self.K)*diagonal_components self.inv_SIGMA = np.linalg.inv(self.SIGMA) self.L = np.linalg.cholesky(self.SIGMA) self.z_t = self.L.dot(self.produce_vec_y()) self.z_t = np.ones(self.K)/self.K if (type(param_mu) is int) or (type(param_mu) is float): self.param_mu = np.ones(self.K)*param_mu else: self.param_mu = np.array(param_mu) if (type(param_sigma) is int) or (type(param_sigma) is float): self.param_sigma = np.ones(self.K)*param_sigma else: self.param_sigma = np.array(param_sigma) if (type(param_alpha) is int) or (type(param_alpha) is float): self.param_alpha = param_alpha else: raise ValueError("param_alpha is needed scalar") # 区間(-1,1)の一様乱数ベクトルzを利用して独立なD個のサンプルベクトルyを得る関数 def produce_vec_y(self): z_array = 2*np.random.rand(self.K) - 1 while (z_array**2).sum() > 1: z_array = 2*np.random.rand(self.K) - 1 squared_r = (z_array**2).sum() y = z_array * np.sqrt((-2*np.log(squared_r)/squared_r)) self.z_array = z_array return y def produce_z_k(self, z_not_k): z_k_limit = 1 - (z_not_k**2).sum() return np.random.rand()*np.sqrt(z_k_limit)*(2*np.random.randint(0,2)-1) def generate_random(self): z_array = np.array(self.z_array) ind = np.ones(self.K, dtype=bool) for k in range(self.K): ind[k] = False z_array[k] = self.produce_z_k(z_array[ind]) ind[k] = True z_dash = (self.param_mu + self.param_alpha*(self.z_t-self.param_mu) + (self.param_sigma**2)*((1-self.param_alpha**2)**(1/2))*z_array) return z_dash, z_array def set_z_t(self, z_t): self.z_t = z_t def set_z_array(self, z_array): self.z_array = z_array def alpha(self, z): x = np.abs(np.array(z)) x_t = np.abs(np.array(self.z_t)) x /= x.sum() x_t /= x_t.sum() return min(1, p_tilde(x,self.a)/p_tilde(x_t,self.a)*np.exp(((x-self.param_mu).dot(self.inv_SIGMA).dot(x-self.param_mu)-(x_t-self.param_mu).dot(self.inv_SIGMA).dot(x_t-self.param_mu))/2)) def draw(): global mcmc global mean_point global sigma_points glClearColor(0.0, 0.5, 0.5, 0.0) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) # 軸をプロット glColor(1.0, 1.0, 1.0, 1.0) glBegin(GL_TRIANGLES) glVertex(p1) glVertex(p2) glVertex(p3) glEnd() # データ点をプロット glPointSize(5) glColor(0.7, 0.7, 0.2, 0.0) glBegin(GL_POINTS) for x in x_accepted: glVertex(x) glEnd() # 分散をプロット n_sigma = len(sigma_points) colormap = np.linspace(0,1,n_sigma) for n in range(n_sigma)[::-1]: glColor(colormap[n_sigma-1-n], 0.0, colormap[n], 0.0) glBegin(GL_TRIANGLES) for x in sigma_points[n]: glVertex(x) glEnd() # 重心をプロット glPointSize(10) glColor(0.0, 0.0, 0.0, 0.0) glBegin(GL_POINTS) glVertex(mean_point) glEnd() # 軸の説明文 glRasterPos(p1[0]-0.1, p1[1]) [glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, ord(s)) for s in "theta_1"] glRasterPos(p2) [glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, ord(s)) for s in "theta_2"] glRasterPos(p3[0]-0.2, p3[1]) [glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, ord(s)) for s in "theta_3"] # 操作説明 glRasterPos(p1[0]-1.0, p1[1]+0.2) [glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, ord(s)) for s in " q:quit"] glRasterPos(p1[0]-1.0, p1[1]+0.1) [glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, ord(s)) for s in "number key:run n times"] glRasterPos(p1[0]+0.3, p1[1]+0.2) [glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, ord(s)) for s in "black dot:means"] glRasterPos(p1[0]+0.3, p1[1]+0.1) [glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, ord(s)) for s in "green dot:samples"] glRasterPos(p1[0]+0.3, p1[1]) [glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, ord(s)) for s in "red triangle:1 sigma area"] glRasterPos(p1[0]+0.3, p1[1]-0.1) [glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, ord(s)) for s in "purple triangle:2 sigma area"] glRasterPos(p1[0]+0.3, p1[1]-0.2) [glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, ord(s)) for s in "blue triangle:3 sigma area"] glRasterPos(p1[0]+0.3, p1[1]-0.3) [glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, ord(s)) for s in "parameter a:"+str(list(mcmc.a))] glFlush() glutSwapBuffers() def resize(w, h): glViewport(0, 0, w, h) # + # def mouse(button, state, x, y): # print(x, y) # + # def motion(x, y): # print("drag:", x, y) # - def keyboard(key, x, y, *, n_samples=10): global mean_point global sigma_points key = key.decode('utf-8') if key == 'q': sys.exit() elif key.isdigit(): n_samples = int(key) for i in range(n_samples): z_dash,z_array = mcmc.generate_random() mcmc.set_z_t(z_dash) mcmc.set_z_array(z_array) x_dash = np.array(z_dash) x_dash += np.abs(x_dash.min())*2 x_dash /= x_dash.sum() z_accepted.append(z_dash) x_accepted.append(p1 * x_dash[0] + p2 * x_dash[1] + p3 * x_dash[2]) mean_z_dash = np.mean(z_accepted, axis=0) mean_point = mean_z_dash + np.abs(mean_z_dash.min())*2 mean_point /= mean_point.sum() mean_point = p1 * mean_point[0] + p2 * mean_point[1] + p3 * mean_point[2] var_z_dash = np.var(z_accepted, axis=0) sigma_points = [np.array([mean_z_dash for i in mean_z_dash]) for n in range(3)] for n in range(3): for i in range(mean_z_dash.size): sigma_points[n][i][i] += (n+1) * var_z_dash[i] sigma_points[n][i] += np.abs(sigma_points[n][i].min())*2 sigma_points[n][i] /= sigma_points[n][i].sum() sigma_points = [[p1 * s[0] + p2 * s[1] + p3 * s[2] for s in sigma] for sigma in sigma_points] # 描画を更新 glutPostRedisplay() # print(np.cov(np.array(z_accepted).T)) if __name__ == '__main__': # ディリクレ分布の各次元とする頂点を指定 p1 =
np.array([0.0, (3.0**0.5) - 1.0])
numpy.array
# -*- coding: utf-8 -*- """ The module contains the Somoclu class that trains and visualizes self-organizing maps and emergent self-organizing maps. Created on Sun July 26 15:07:47 2015 @author: <NAME> """ from __future__ import division, print_function import sys import matplotlib.cm as cm import matplotlib.pyplot as plt import matplotlib.collections as mcoll import numpy as np from scipy.spatial.distance import cdist try: import seaborn as sns from sklearn.metrics.pairwise import pairwise_distances have_heatmap = True except ImportError: have_heatmap = False try: from .somoclu_wrap import train as wrap_train except ImportError: print("Warning: the binary library cannot be imported. You cannot train " "maps, but you can load and analyze ones that you have already saved.") if sys.platform.startswith('win'): print("If you installed Somoclu with pip on Windows, this typically " "means missing DLLs. Please refer to the documentation.") elif sys.platform.startswith('darwin'): print("If you installed Somoclu with pip on macOS, this typically " "means missing a linked library. If you compiled Somoclu with " "GCC, please make sure you have set DYLD_LIBRARY_PATH to include " "the GCC path. For more information, please refer to the " "documentation.") else: print("The problem occurs because either compilation failed when you " "installed Somoclu or a path is missing from the dependencies " "when you are trying to import it. Please refer to the " "documentation to see your options.") def is_pos_real(s): """ Returns True if s is a positive real. """ try: return (float(s) > 0) except ValueError: return False class Somoclu(object): """Class for training and visualizing a self-organizing map. Attributes: codebook The codebook of the self-organizing map. bmus The BMUs corresponding to the data points. :param n_columns: The number of columns in the map. :type n_columns: int. :param n_rows: The number of rows in the map. :type n_rows: int. :param initialcodebook: Optional parameter to start the training with a given codebook. :type initialcodebook: 2D numpy.array of float32. :param kerneltype: Optional parameter to specify which kernel to use: * 0: dense CPU kernel (default) * 1: dense GPU kernel (if compiled with it) :type kerneltype: int. :param maptype: Optional parameter to specify the map topology: * "planar": Planar map (default) * "toroid": Toroid map :type maptype: str. :param gridtype: Optional parameter to specify the grid form of the nodes: * "rectangular": rectangular neurons (default) * "hexagonal": hexagonal neurons :type gridtype: str. :param compactsupport: Optional parameter to cut off map updates beyond the training radius with the Gaussian neighborhood. Default: True. :type compactsupport: bool. :param neighborhood: Optional parameter to specify the neighborhood: * "gaussian": Gaussian neighborhood (default) * "bubble": bubble neighborhood function :type neighborhood: str. :param vect_distance: Optional parameter to specify the vector distance function: * "euclidean": Euclidean (default) * "norm-inf": infinite norm (max absolute distance among components) * "norm-p": p-th root of sum of absolute differences ^ p (only supported by kerneltype 0) :type vect_distance: str. :param std_coeff: Optional parameter to set the coefficient in the Gaussian neighborhood function exp(-||x-y||^2/(2*(coeff*radius)^2)) Default: 0.5 :type std_coeff: float. :param initialization: Optional parameter to specify the initalization: * "random": random weights in the codebook * "pca": codebook is initialized from the first subspace spanned by the first two eigenvectors of the correlation matrix :type initialization: str. :param verbose: Optional parameter to specify verbosity (0, 1, or 2). :type verbose: int. """ def __init__(self, n_columns, n_rows, initialcodebook=None, kerneltype=0, maptype="planar", gridtype="rectangular", compactsupport=True, neighborhood="gaussian", std_coeff=0.5, initialization=None, data=None, verbose=0, vect_distance="euclidean"): """Constructor for the class. """ self._n_columns, self._n_rows = n_columns, n_rows self._kernel_type = kerneltype self._map_type = maptype self._grid_type = gridtype self._compact_support = compactsupport self._neighborhood = neighborhood self._vect_distance = vect_distance self._std_coeff = std_coeff self._verbose = verbose self._check_parameters() self.activation_map = None if initialcodebook is not None and initialization is not None: raise Exception("An initial codebook is given but initilization" " is also requested") self.bmus = None self.umatrix = np.zeros(n_columns * n_rows, dtype=np.float32) self.codebook = initialcodebook if initialization is None or initialization == "random": self._initialization = "random" elif initialization == "pca": self._initialization = "pca" else: raise Exception("Unknown initialization method") self.n_vectors = 0 self.n_dim = 0 self.clusters = None self._data = None if data is not None: print("Warning: passing the data in the constructor is deprecated.") self.update_data(data) def load_bmus(self, filename): """Load the best matching units from a file to the Somoclu object. :param filename: The name of the file. :type filename: str. """ self.bmus = np.loadtxt(filename, comments='%', usecols=(1, 2)) if self.n_vectors != 0 and len(self.bmus) != self.n_vectors: raise Exception("The number of best matching units does not match " "the number of data instances") else: self.n_vectors = len(self.bmus) tmp = self.bmus[:, 0].copy() self.bmus[:, 0] = self.bmus[:, 1].copy() self.bmus[:, 1] = tmp if max(self.bmus[:, 0]) > self._n_columns - 1 or \ max(self.bmus[:, 1]) > self._n_rows - 1: raise Exception("The dimensions of the best matching units do not " "match that of the map") def load_umatrix(self, filename): """Load the umatrix from a file to the Somoclu object. :param filename: The name of the file. :type filename: str. """ self.umatrix = np.loadtxt(filename, comments='%') if self.umatrix.shape != (self._n_rows, self._n_columns): raise Exception("The dimensions of the U-matrix do not " "match that of the map") def load_codebook(self, filename): """Load the codebook from a file to the Somoclu object. :param filename: The name of the file. :type filename: str. """ self.codebook = np.loadtxt(filename, comments='%') if self.n_dim == 0: self.n_dim = self.codebook.shape[1] if self.codebook.shape != (self._n_rows * self._n_columns, self.n_dim): raise Exception("The dimensions of the codebook do not " "match that of the map") self.codebook.shape = (self._n_rows, self._n_columns, self.n_dim) def train(self, data=None, epochs=10, radius0=0, radiusN=1, radiuscooling="linear", scale0=0.1, scaleN=0.01, scalecooling="linear"): """Train the map on the current data in the Somoclu object. :param data: Optional parameter to provide training data. It is not necessary if the data was added via the method `update_data`. :type data: 2D numpy.array of float32. :param epochs: The number of epochs to train the map for. :type epochs: int. :param radius0: The initial radius on the map where the update happens around a best matching unit. Default value of 0 will trigger a value of min(n_columns, n_rows)/2. :type radius0: float. :param radiusN: The radius on the map where the update happens around a best matching unit in the final epoch. Default: 1. :type radiusN: float. :param radiuscooling: The cooling strategy between radius0 and radiusN: * "linear": Linear interpolation (default) * "exponential": Exponential decay :param scale0: The initial learning scale. Default value: 0.1. :type scale0: float. :param scaleN: The learning scale in the final epoch. Default: 0.01. :type scaleN: float. :param scalecooling: The cooling strategy between scale0 and scaleN: * "linear": Linear interpolation (default) * "exponential": Exponential decay :type scalecooling: str. """ _check_cooling_parameters(radiuscooling, scalecooling) if self._data is None and data is None: raise Exception("No data was provided!") elif data is not None: self.update_data(data) self._init_codebook() self.umatrix.shape = (self._n_rows * self._n_columns, ) self.bmus.shape = (self.n_vectors * 2, ) wrap_train(
np.ravel(self._data)
numpy.ravel
import numpy as np import torch import os import random import bisect import histogram from tqdm import tqdm class EarlyStopMonitor(object): def __init__(self, max_round=5, higher_better=True, tolerance=1e-3): self.max_round = max_round self.num_round = 0 self.epoch_count = 0 self.best_epoch = 0 self.last_best = None self.higher_better = higher_better self.tolerance = tolerance def early_stop_check(self, curr_val): self.epoch_count += 1 if not self.higher_better: curr_val *= -1 if self.last_best is None: self.last_best = curr_val elif (curr_val - self.last_best) / np.abs(self.last_best) > self.tolerance: self.last_best = curr_val self.num_round = 0 self.best_epoch = self.epoch_count else: self.num_round += 1 return self.num_round >= self.max_round def roc_auc_score_me(y_true, y_score, multi_class='ovo'): a = [roc_auc_score(y_true, y_score, multi_class='ovo')] if len(y_true.shape) > 1: pass else: nb_classes = max(y_true) + 1 one_hot_targets = np.eye(nb_classes)[y_true] for i in range(len(y_score[0])): a.append(roc_auc_score(one_hot_targets[:,i], y_score[:,i], average='weighted')) return a # preprocess dataset def preprocess_dataset(ts_list, src_list, dst_list, node_max, edge_idx_list, label_list, time_window_factor=0.05, time_start_factor=0.4): t_max = ts_list.max() t_min = ts_list.min() time_window = time_window_factor * (t_max - t_min) time_start = t_min + time_start_factor * (t_max - t_min) time_end = t_max - time_window_factor * (t_max - t_min) edges = {} # edges dict: all the edges edges_idx = {} # edges index dict: all the edges index, corresponding with edges adj_list = {} node_idx = {} node_simplex = {} ts_last = -1 simplex_idx = 0 simplex_ts = [] list_simplex = set() node_first_time= {} node2simplex = None simplex_ts.append(ts_list[0]) print(max(label_list)) for i in tqdm(range(len(src_list))): ts = ts_list[i] src = src_list[i] tgt = dst_list[i] node_idx[src] = 1 node_idx[tgt] = 1 if (i>0) and (label_list[i] != label_list[i-1]): simplex_ts.append(ts) if (i>0) and (label_list[i] != label_list[i-1]): for _i in list(list_simplex): for _j in list(list_simplex): for _l in list(list_simplex): if (_i, _j, _l) in node_simplex: continue if len(set([_i, _j, _l])) != 3: continue if ((_i, _j) in edges) and (edges[(_i, _j)] <= time_end) and (node_first_time[_l] < edges[(_i, _j)]): # assume w first appear at the same time as edge(u,v), then no previous information, no way to predict timing = ts_list[i-1] - edges[(_i, _j)] if (timing > 0) and (timing < time_window): node_simplex[(_i, _j, _l)] = simplex_idx simplex_idx += 1 list_simplex = set() list_simplex.add(src) list_simplex.add(tgt) if src in node_first_time: node_first_time[src] = min(node_first_time[src], ts) else: node_first_time[src] = ts if tgt in node_first_time: node_first_time[tgt] = min(node_first_time[tgt], ts) else: node_first_time[tgt] = ts if (src, tgt) in edges: if edges[(src, tgt)] > ts: edges[(src, tgt)] = ts edges_idx[(src, tgt)] = edge_idx_list[i] else: edges[(src, tgt)] = ts edges_idx[(src, tgt)] = edge_idx_list[i] if src in adj_list: adj_list[src].append(tgt) else: adj_list[src] = [tgt] # simplex, consider edge as undirected src = dst_list[i] tgt = src_list[i] if (src, tgt) in edges: if edges[(src, tgt)] > ts: edges[(src, tgt)] = ts edges_idx[(src, tgt)] = edge_idx_list[i] else: edges[(src, tgt)] = ts edges_idx[(src, tgt)] = edge_idx_list[i] if src in adj_list: adj_list[src].append(tgt) else: adj_list[src] = [tgt] print("node from ", min(node_idx), ' to ', max(node_idx)) print('total nodes out ', len(adj_list.keys())) print('total nodes ', len(node_idx.keys())) print('simplex time', len(simplex_ts)) print("close triangle", len(node_simplex.keys())) return find_triangle_closure(ts_list, node_max, edges, adj_list, edges_idx, node_simplex, simplex_ts, node_first_time, node2simplex, time_window_factor, time_start_factor) def find_triangle_closure(ts_list, node_max, edges, adj_list, edges_idx, node_simplex, simplex_ts, node_first_time, node2simplex, time_window_factor, time_start_factor=0.4): positive_three_cycle = [] positive_two_cycle = [] positive_three_ffw = [] positive_two_ffw = [] negative = [] node_max = int(node_max) t_max = ts_list.max() t_min = ts_list.min() time_window = time_window_factor * (t_max - t_min) time_start = t_min + time_start_factor * (t_max - t_min) time_end = t_max - time_window_factor * (t_max - t_min) # close triangle src_1_cls_tri = [] src_2_cls_tri = [] dst_cls_tri = [] ts_cls_tri_1 = [] ts_cls_tri_2 = [] ts_cls_tri_3 = [] edge_idx_cls_tri_1 = [] edge_idx_cls_tri_2 = [] edge_idx_cls_tri_3 = [] count_cls_tri = 0 # open triangle src_1_opn_tri = [] # feed forward src_2_opn_tri = [] dst_opn_tri = [] ts_opn_tri_1 = [] ts_opn_tri_2 = [] ts_opn_tri_3 = [] edge_idx_opn_tri_1 = [] edge_idx_opn_tri_2 = [] edge_idx_opn_tri_3 = [] count_opn_tri = 0 # wedge src_1_wedge = [] src_2_wedge = [] dst_wedge = [] ts_wedge_1 = [] ts_wedge_2 = [] count_wedge = 0 edge_idx_wedge_1 = [] edge_idx_wedge_2 = [] # negative(only one edge between the first two nodes in three nodes) src_1_neg = [] src_2_neg = [] dst_neg = [] ts_neg_1 = [] edge_idx_neg_1 = [] count_negative = 0 # <a,b> set_all_node = set(adj_list.keys()) print(len(list(set_all_node))) dict_processed_bool = {} for k_idx, edge_i in enumerate(edges.keys()): # first edge i = edge_i[0] j = edge_i[1] if not (j in adj_list): # exist second edge continue # second edge (j,l) x1 = edges[edge_i] if (x1 < time_start) or (x1 > time_end): continue x1_idx = edges_idx[edge_i] """ deal with no interaction with the third nodes set_all_nodes - {(i, x)} - {(j,x)} calculate the original situation (only one link between the first two nodes) """ if not ((i,j) in dict_processed_bool): dict_processed_bool[(i,j)] = 1 dict_processed_bool[(j,i)] = 1 set_negative = list(set_all_node - set(adj_list[j]) - set(adj_list[i])) for l in set_negative: # (i,j,l) if node_first_time[l] <= x1: src_1_neg.append(i) src_2_neg.append(j) dst_neg.append(l) ts_neg_1.append(x1) edge_idx_neg_1.append(x1_idx) count_negative += 1 for l in adj_list[j]: if (l==j) or (l==i) or (node_first_time[l] >= x1): continue x2 = edges[(j,l)] x2_idx = edges_idx[(j,l)] if (x2 - x1 > time_window): src_1_neg.append(i) src_2_neg.append(j) dst_neg.append(l) ts_neg_1.append(x1) edge_idx_neg_1.append(x1_idx) count_negative += 1 continue if (x1 > x2) or (x1 == x2 and x1_idx > x2_idx): # TODO: x1 >= x2 continue l3 = 0 if (l,i) in edges: x3 = edges[(l,i)] x3_idx = edges_idx[(l,i)] if x3 - x1 > time_window: src_1_neg.append(i) src_2_neg.append(j) dst_neg.append(l) ts_neg_1.append(x1) edge_idx_neg_1.append(x1_idx) count_negative += 1 continue if ((x3 > x2) or (x3 == x2 and x3_idx > x2_idx)) and (x3 - x1 < time_window) and (x3 - x1 > 0): #TODO: x3 > x2 l3 = 1 l1 = (i, j, l) in node_simplex if l1: _ts = simplex_ts[node_simplex[(i, j, l)]] # (i,j,l) src_1_cls_tri.append(i) src_2_cls_tri.append(j) dst_cls_tri.append(l) ts_cls_tri_1.append(x1) ts_cls_tri_2.append(_ts) # changed ts_cls_tri_3.append(_ts) # changed edge_idx_cls_tri_1.append(x1_idx) edge_idx_cls_tri_2.append(x2_idx) edge_idx_cls_tri_3.append(x3_idx) # total positive cycle count_cls_tri += 1 elif l3 == 1: # Triangle src_1_opn_tri.append(i) src_2_opn_tri.append(j) dst_opn_tri.append(l) ts_opn_tri_1.append(x1) ts_opn_tri_2.append(x2) ts_opn_tri_3.append(x3) edge_idx_opn_tri_1.append(x1_idx) edge_idx_opn_tri_2.append(x2_idx) edge_idx_opn_tri_3.append(x3_idx) # total positive cycle count_opn_tri += 1 elif l3 == 0: # Wedge if (x2 - x1 > 0) and (x2 - x1 < time_window): src_1_wedge.append(i) src_2_wedge.append(j) dst_wedge.append(l) ts_wedge_1.append(x1) ts_wedge_2.append(x2) edge_idx_wedge_1.append(x1_idx) edge_idx_wedge_2.append(x2_idx) count_wedge += 1 cls_tri = [np.array(src_1_cls_tri), np.array(src_2_cls_tri), np.array(dst_cls_tri),
np.array(ts_cls_tri_1)
numpy.array
"""Provide a function for bounding node assignment costs with edgewise info.""" import numpy as np import pandas as pd import numba import os import tqdm import time def iter_adj_pairs(tmplt, world): """Generator for pairs of adjacency matrices. Each pair of adjacency matrices corresponds to the same channel in both the template and the world. Parameters ---------- tmplt : Graph Template graph to be matched. world : Graph World graph to be searched. Yields ------- (spmatrix, spmatrix) A tuple of sparse adjacency matrices """ for channel, tmplt_adj in tmplt.ch_to_adj.items(): world_adj = world.ch_to_adj[channel] yield (tmplt_adj, world_adj) yield (tmplt_adj.T, world_adj.T) def get_src_dst_weights(smp, src_idx, dst_idx): """ Returns a tuple of src_weight, dst_weight indicating the weighting for edge costs to node costs. Weights sum to 2, as they will later be divided by 2 in from_local_bounds. """ if isinstance(src_idx, list) or isinstance(dst_idx, list): if len(src_idx) == 1: return (2, 0) elif len(dst_idx) == 1: return (0, 2) if not smp.use_monotone: if hasattr(smp, "next_tmplt_idx") and smp.next_tmplt_idx in [src_idx, dst_idx]: if src_idx == smp.next_tmplt_idx: return (2, 0) elif dst_idx == smp.next_tmplt_idx: return (0, 2) else: assigned_tmplt_idxs = smp.assigned_tmplt_idxs if src_idx in assigned_tmplt_idxs and dst_idx not in assigned_tmplt_idxs: return (0, 2) elif dst_idx in assigned_tmplt_idxs and src_idx not in assigned_tmplt_idxs: return (2, 0) else: return (1, 1) else: return (1, 1) def get_edgelist_iterator(edgelist, src_col, dst_col, attr_keys, node_as_str=True): n_edges = len(edgelist.index) srcs = edgelist[src_col] dsts = edgelist[dst_col] if node_as_str: srcs = srcs.astype(str) dsts = dsts.astype(str) attr_cols = [edgelist[key] for key in attr_keys] return zip(range(n_edges), srcs, dsts, *attr_cols) from numba import float64, int64, void @numba.njit(void(float64[:,:], int64, int64[:], float64[:])) def set_assignment_costs(assignment_costs, tmplt_idx, cand_idxs, attr_costs): for cand_idx, attr_cost in zip(cand_idxs, attr_costs): if attr_cost < assignment_costs[tmplt_idx, cand_idx]: assignment_costs[tmplt_idx, cand_idx] = attr_cost def get_edge_to_unique_attr(edgelist, src_col, dst_col): """Get a map from edge indexes to unique attribute indexes. Parameters ---------- edgelist : DataFrame Each row of the dataframe should contain the source, destination, and attributes of an edge. src_col : str Column name for the source of each edge in `edgelist`. dst_col : str Column name for the destination of each edge in `edgelist`. Returns ------- edge_to_attr_idx : dict(int, int) Map edge indexes to the indexes of the attributes in a uniquified list of attributes unique_attrs : array_like(str) The unique attributes for the edges of `graph` """ attr_names = [a for a in edgelist.columns if a not in [src_col, dst_col, 'id', 'template_id']] attrs = edgelist[attr_names].to_numpy() # attrs1d = [str(attr_row) for attr_row in attrs] str_array = np.frompyfunc(str, 1, 1) _, index, inverse = np.unique(str_array(attrs).astype(str), axis=0, return_index=True, return_inverse=True) unique_attrs = attrs[index] # Do we need to turn unique_attrs back into a dataframe? return unique_attrs, inverse def edgewise_no_attrs(smp, changed_cands=None): """Compute edgewise costs in the case where no attribute distance function is provided. Parameters ---------- smp : MatchingProblem A subgraph matching problem on which to compute edgewise cost bounds. changed_cands : ndarray(bool) Boolean array indicating which template nodes have candidates that have changed since the last run of the edgewise filter. Only these nodes and their neighboring template nodes have to be reevaluated. """ new_local_costs = np.zeros(smp.shape) candidates = smp.candidates() for src_idx, dst_idx in smp.tmplt.nbr_idx_pairs: if changed_cands is not None: # If neither the source nor destination has changed, there is no # point in filtering on this pair of nodes if not (changed_cands[src_idx] or changed_cands[dst_idx]): continue # get indicators of candidate nodes in the world adjacency matrices src_is_cand = candidates[src_idx] dst_is_cand = candidates[dst_idx] if ~np.any(src_is_cand) or ~np.any(dst_is_cand): print("No candidates for given nodes, skipping edge") continue # This sparse matrix stores the number of supported template edges # between each pair of candidates for src and dst # i.e. the number of template edges between src and dst that also exist # between their candidates in the world supported_edges = None # Number of total edges in the template between src and dst total_tmplt_edges = 0 for tmplt_adj, world_adj in iter_adj_pairs(smp.tmplt, smp.world): tmplt_adj_val = tmplt_adj[src_idx, dst_idx] total_tmplt_edges += tmplt_adj_val # if there are no edges in this channel of the template, skip it if tmplt_adj_val == 0: continue # sub adjacency matrix corresponding to edges from the source # candidates to the destination candidates world_sub_adj = world_adj[:, dst_is_cand][src_is_cand, :] # Edges are supported up to the number of edges in the template if supported_edges is None: supported_edges = world_sub_adj.minimum(tmplt_adj_val) else: supported_edges += world_sub_adj.minimum(tmplt_adj_val) src_support = supported_edges.max(axis=1) src_least_cost = total_tmplt_edges - src_support.A # Different algorithm from REU # Main idea: assigning u' to u and v' to v causes cost for u to increase # based on minimum between cost of v and missing edges between u and v # src_least_cost = np.maximum(total_tmplt_edges - supported_edges.A, # local_costs[dst_idx][dst_is_cand]).min(axis=1) src_least_cost = np.array(src_least_cost).flatten() # Update the local cost bound new_local_costs[src_idx][src_is_cand] += src_least_cost if src_idx != dst_idx: dst_support = supported_edges.max(axis=0) dst_least_cost = total_tmplt_edges - dst_support.A dst_least_cost = np.array(dst_least_cost).flatten() new_local_costs[dst_idx][dst_is_cand] += dst_least_cost return new_local_costs def generate_edgewise_cost_cache(smp, cache_by_unique_attrs=True): """Generate a cache of edgewise costs for later use. Parameters ---------- cache_by_unique_attrs : bool Cache the edgewise costs between edges with unique attributes, and generate the mapping from edges to unique attribute indices. """ src_col = smp.tmplt.source_col dst_col = smp.tmplt.target_col tmplt_attr_keys = [attr for attr in smp.tmplt.edgelist.columns if attr not in [src_col, dst_col, 'id', 'template_id']] if cache_by_unique_attrs: print('Calculating edge to unique attr map') start_time = time.time() if 'importance' not in smp.tmplt.edgelist.columns: # Template edges with the same attributes could still be different if they have different importances # For now, prevent the code from removing them as duplicates tmplt_attr_keys = [attr for attr in smp.tmplt.edgelist.columns if attr not in ['id', 'template_id']] tmplt_unique_attrs, tmplt_edge_to_attr_idx = get_edge_to_unique_attr(smp.tmplt.edgelist, None, None) else: tmplt_unique_attrs, tmplt_edge_to_attr_idx = get_edge_to_unique_attr(smp.tmplt.edgelist, smp.tmplt.source_col, smp.tmplt.target_col) world_unique_attrs, world_edge_to_attr_idx = get_edge_to_unique_attr(smp.world.edgelist, smp.world.source_col, smp.world.target_col) print('Edge to unique attr map calculated in {} seconds'.format(time.time()-start_time)) smp.tmplt_edge_to_attr_idx = np.array(tmplt_edge_to_attr_idx) smp.world_edge_to_attr_idx = np.array(world_edge_to_attr_idx) smp._edgewise_costs_cache = np.zeros((len(tmplt_unique_attrs), len(world_unique_attrs))) pbar = tqdm.tqdm(total=len(tmplt_unique_attrs), position=0, leave=True, ascii=True) for tmplt_unique_idx, tmplt_attrs in enumerate(tmplt_unique_attrs): tmplt_attrs_dict = dict(zip(tmplt_attr_keys, tmplt_attrs)) if 'importance' in tmplt_attr_keys: edge_key = None else: # Retrieve the source and destination, and reconstruct the edge key edge_key = (str(tmplt_attrs_dict[smp.tmplt.source_col]), str(tmplt_attrs_dict[smp.tmplt.target_col])) del tmplt_attrs_dict[smp.tmplt.source_col] del tmplt_attrs_dict[smp.tmplt.target_col] src_col_world = smp.world.source_col dst_col_world = smp.world.target_col cand_attr_keys = [attr for attr in smp.world.edgelist.columns if attr not in [src_col_world, dst_col_world, 'id']] for world_unique_idx, cand_attrs in enumerate(world_unique_attrs): cand_attrs_dict = dict(zip(cand_attr_keys, cand_attrs)) if 'importance' in tmplt_attr_keys: importance = tmplt_attrs_dict['importance'] else: importance = None attr_cost = smp.edge_attr_fn(edge_key, None, tmplt_attrs_dict, cand_attrs_dict, importance_value=importance) smp._edgewise_costs_cache[tmplt_unique_idx, world_unique_idx] = attr_cost pbar.update(1) pbar.close() else: n_tmplt_edges = len(smp.tmplt.edgelist.index) n_world_edges = len(smp.world.edgelist.index) smp._edgewise_costs_cache = np.zeros((n_tmplt_edges, n_world_edges)) pbar = tqdm.tqdm(total=len(smp.tmplt.edgelist.index), position=0, leave=True, ascii=True) for tmplt_edge_idx, src_node, dst_node, *tmplt_attrs in get_edgelist_iterator(smp.tmplt.edgelist, src_col, dst_col, tmplt_attr_keys): tmplt_attrs_dict = dict(zip(tmplt_attr_keys, tmplt_attrs)) src_col_world = smp.world.source_col dst_col_world = smp.world.target_col cand_attr_keys = [attr for attr in smp.world.edgelist.columns if attr not in [src_col_world, dst_col_world]] for world_edge_idx, src_cand, dst_cand, *cand_attrs in get_edgelist_iterator(smp.world.edgelist, src_col_world, dst_col_world, cand_attr_keys): cand_attrs_dict = dict(zip(cand_attr_keys, cand_attrs)) if 'importance' in tmplt_attr_keys: attr_cost = smp.edge_attr_fn((src_node, dst_node), (src_cand, dst_cand), tmplt_attrs_dict, cand_attrs_dict, importance_value=tmplt_attrs_dict['importance']) else: attr_cost = smp.edge_attr_fn((src_node, dst_node), (src_cand, dst_cand), tmplt_attrs_dict, cand_attrs_dict) smp._edgewise_costs_cache[tmplt_edge_idx, world_edge_idx] = attr_cost pbar.update(1) pbar.close() if smp.cache_path is not None: np.save(os.path.join(smp.cache_path, "edgewise_costs_cache.npy"), smp._edgewise_costs_cache) if cache_by_unique_attrs: np.save(os.path.join(smp.cache_path, "tmplt_edge_to_attr_idx.npy"), smp.tmplt_edge_to_attr_idx) np.save(os.path.join(smp.cache_path, "world_edge_to_attr_idx.npy"), smp.world_edge_to_attr_idx) try: os.chmod(smp.cache_path, 0o770) except: pass print("Edge-to-edge costs saved to cache") def verify_edgewise_cost_cache(smp, cache_by_unique_attrs=True): """Check that the edgewise cost cache was successfully loaded and generate edge to attr maps if none are found. Parameters ---------- smp : MatchingProblem A subgraph matching problem on which to compute edgewise cost bounds. """ n_tmplt_edges = len(smp.tmplt.edgelist.index) n_world_edges = len(smp.world.edgelist.index) if cache_by_unique_attrs: if not hasattr(smp, 'tmplt_edge_to_attr_idx'): try: smp.tmplt_edge_to_attr_idx = np.load(os.path.join(smp.cache_path, "tmplt_edge_to_attr_idx.npy")) smp.world_edge_to_attr_idx = np.load(os.path.join(smp.cache_path, "world_edge_to_attr_idx.npy")) print('Edge to attr maps loaded from cache') except: print('Edge to attr cache not found') print('Calculating edge to unique attr map') start_time = time.time() if 'importance' not in smp.tmplt.edgelist.columns: tmplt_unique_attrs, tmplt_edge_to_attr_idx = get_edge_to_unique_attr(smp.tmplt.edgelist, None, None) else: tmplt_unique_attrs, tmplt_edge_to_attr_idx = get_edge_to_unique_attr(smp.tmplt.edgelist, smp.tmplt.source_col, smp.tmplt.target_col) world_unique_attrs, world_edge_to_attr_idx = get_edge_to_unique_attr(smp.world.edgelist, smp.world.source_col, smp.world.target_col) smp.tmplt_edge_to_attr_idx = tmplt_edge_to_attr_idx smp.world_edge_to_attr_idx = world_edge_to_attr_idx print('Edge to unique attr map calculated in {} seconds'.format(time.time()-start_time)) if len(smp.tmplt_edge_to_attr_idx) != n_tmplt_edges or len(smp.world_edge_to_attr_idx) != n_world_edges: raise Exception("Edgewise costs cache not properly computed!") # TODO: implement a more effective check here else: if smp._edgewise_costs_cache.shape != (n_tmplt_edges, n_world_edges): raise Exception("Edgewise costs cache not properly computed!") def edgewise_local_costs(smp, changed_cands=None, use_cost_cache=True, cache_by_unique_attrs=True): """Compute edge disagreements between candidates. Computes a lower bound on the local cost of assignment by iterating over template edges and comparing candidates for the endpoints. The lower bound for an assignment (u, u') is the sum over all neighbors v of u of the minimum number of missing edges between (u', v') over all v' where v' is a candidate for v. TODO: Cite paper from REU. Parameters ---------- smp : MatchingProblem A subgraph matching problem on which to compute edgewise cost bounds. changed_cands : ndarray(bool) Boolean array indicating which template nodes have candidates that have changed since the last run of the edgewise filter. Only these nodes and their neighboring template nodes have to be reevaluated. """ if smp.edge_attr_fn is None: return edgewise_no_attrs(smp, changed_cands=changed_cands) else: new_local_costs = np.zeros(smp.shape) candidates = smp.candidates() # Iterate over template edges and consider best matches for world edges if use_cost_cache: # Edge index -> unique attribute idx # Avoid recalculating edge distance for identical attribute tuples src_col = smp.tmplt.source_col dst_col = smp.tmplt.target_col tmplt_attr_keys = [attr for attr in smp.tmplt.edgelist.columns if attr not in [src_col, dst_col, 'id', 'template_id']] n_tmplt_edges = len(smp.tmplt.edgelist.index) n_world_edges = len(smp.world.edgelist.index) if smp._edgewise_costs_cache is None: generate_edgewise_cost_cache(smp, cache_by_unique_attrs=cache_by_unique_attrs) else: verify_edgewise_cost_cache(smp, cache_by_unique_attrs=cache_by_unique_attrs) for tmplt_edge_idx, src_node, dst_node, *tmplt_attrs in get_edgelist_iterator(smp.tmplt.edgelist, src_col, dst_col, tmplt_attr_keys, node_as_str=False): tmplt_attrs_dict = dict(zip(tmplt_attr_keys, tmplt_attrs)) if isinstance(src_node, list) or isinstance(dst_node, list): # Handle templates with multiple alternatives if len(src_node) > 1 and len(dst_node) > 1: raise Exception("Edgewise cost bound cannot handle template edges with both multiple sources and multiple destinations.") elif len(src_node) == 1 and len(dst_node) == 1: src_node = src_node[0] dst_node = dst_node[0] src_idx = smp.tmplt.node_idxs[src_node] dst_idx = smp.tmplt.node_idxs[dst_node] src_node, dst_node = str(src_node), str(dst_node) else: src_idx = [smp.tmplt.node_idxs[src_node_i] for src_node_i in src_node] dst_idx = [smp.tmplt.node_idxs[dst_node_i] for dst_node_i in dst_node] else: # Get candidates for src and dst src_idx = smp.tmplt.node_idxs[src_node] dst_idx = smp.tmplt.node_idxs[dst_node] src_node, dst_node = str(src_node), str(dst_node) # Matrix of costs of assigning template node src_idx and dst_idx # to candidates row_idx and col_idx assignment_costs = np.zeros(smp.shape) if 'importance' in tmplt_attr_keys: missing_edge_cost = smp.missing_edge_cost_fn((src_node, dst_node), tmplt_attrs_dict['importance']) else: missing_edge_cost = smp.missing_edge_cost_fn((src_node, dst_node)) # Put the weight of assignments on the unassigned nodes, when possible # Only works if monotone is disabled src_weight, dst_weight = get_src_dst_weights(smp, src_idx, dst_idx) if src_weight > 0: assignment_costs[src_idx, :] = src_weight * missing_edge_cost if dst_weight > 0: assignment_costs[dst_idx, :] = dst_weight * missing_edge_cost # TODO: add some data to the graph classes to store the node indexes # of the source and destination of each edge. You can then use this # to efficiently get your masks by: # >>> candidates[src_idx, smp.world.src_idxs] world_edge_src_idxs = smp.world.edge_src_idxs if isinstance(src_idx, list): cand_edge_src_mask = np.sum(candidates[src_idx, :][:, world_edge_src_idxs], axis=0) else: cand_edge_src_mask = candidates[src_idx, world_edge_src_idxs] world_edge_dst_idxs = smp.world.edge_dst_idxs if isinstance(dst_idx, list): cand_edge_dst_mask = np.sum(candidates[dst_idx, :][:, world_edge_dst_idxs], axis=0) else: cand_edge_dst_mask = candidates[dst_idx, world_edge_dst_idxs] cand_edge_mask =
np.logical_and(cand_edge_src_mask, cand_edge_dst_mask)
numpy.logical_and
import numpy as n from kde.cudakde import bootstrap_kde, gaussian_kde from .qfakde.code.common import Point from .qfakde.code.quadtree import DynamicQuadTree __license__ = """ MIT License Copyright (c) 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ class quadtree_kde(gaussian_kde): def __init__(self, data, quadtree_granularity=20, quadtree_max_depth=10, bandwidth_factor_power=0.5, use_cuda=False): gaussian_kde.__init__(self, data, use_cuda=use_cuda) x_max = n.max(data[0, :]) x_min = n.min(data[0, :]) y_max = n.max(data[1, :]) y_min = n.min(data[1, :]) x_center = (x_max - x_min) / 2 + x_min y_center = (y_max - y_min) / 2 + y_min dimension = max((x_max - x_min) / 2, (y_max - y_min) / 2) num_data_points = len(data[0]) max_points_per_node = pow(num_data_points, 1 / 2) qt = DynamicQuadTree(centerPt=Point(x_center, y_center, 'center'), dimension=dimension, max_points=max_points_per_node / quadtree_granularity, max_depth=quadtree_max_depth) for i in range(len(data[0])): qt.insert(Point(data[0,i], data[1,i], i)) bandwidth_scale_factor = {} bandwidth_scale_factor = self.get_lambdas_from_quadtree( qt.root, bandwidth_scale_factor) self.lambdas = pow(n.array([bandwidth_scale_factor[k] for k in sorted(bandwidth_scale_factor)]), bandwidth_factor_power) def get_lambdas_from_quadtree(self, node, lambdas): d = node.boundary.dimension pts = list(node._points) for pt in pts: lambdas[pt.key] = d for region in node._nodes: lambdas = self.get_lambdas_from_quadtree( node._nodes[region], lambdas) return lambdas def __call__(self, grid_points): return gaussian_kde.__call__(self, grid_points) class quadtree_bootstrap_kde(bootstrap_kde): def __init__(self, data, num_bootstraps, **kwargs): assert int(num_bootstraps) == float(num_bootstraps) num_bootstraps = int(num_bootstraps) self.kernels = [] self.bootstrap_indices = [] self.data =
n.atleast_2d(data)
numpy.atleast_2d
# # Author: <NAME> 2013 # from __future__ import division, print_function, absolute_import import math import numpy as np from numpy import asarray_chkfinite, asarray import scipy.linalg from scipy._lib import doccer from scipy.special import gammaln, psi, multigammaln, xlogy, entr from scipy._lib._util import check_random_state from scipy.linalg.blas import drot from scipy.linalg.misc import LinAlgError from scipy.linalg.lapack import get_lapack_funcs from ._discrete_distns import binom from . import mvn __all__ = ['multivariate_normal', 'matrix_normal', 'dirichlet', 'wishart', 'invwishart', 'multinomial', 'special_ortho_group', 'ortho_group', 'random_correlation', 'unitary_group'] _LOG_2PI = np.log(2 * np.pi) _LOG_2 = np.log(2) _LOG_PI = np.log(np.pi) _doc_random_state = """\ random_state : {None, int, np.random.RandomState, np.random.Generator}, optional Used for drawing random variates. If `seed` is `None` the `~np.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with seed. If `seed` is already a ``RandomState`` or ``Generator`` instance, then that object is used. Default is None. """ def _squeeze_output(out): """ Remove single-dimensional entries from array and convert to scalar, if necessary. """ out = out.squeeze() if out.ndim == 0: out = out[()] return out def _eigvalsh_to_eps(spectrum, cond=None, rcond=None): """ Determine which eigenvalues are "small" given the spectrum. This is for compatibility across various linear algebra functions that should agree about whether or not a Hermitian matrix is numerically singular and what is its numerical matrix rank. This is designed to be compatible with scipy.linalg.pinvh. Parameters ---------- spectrum : 1d ndarray Array of eigenvalues of a Hermitian matrix. cond, rcond : float, optional Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. Returns ------- eps : float Magnitude cutoff for numerical negligibility. """ if rcond is not None: cond = rcond if cond in [None, -1]: t = spectrum.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps eps = cond * np.max(abs(spectrum)) return eps def _pinv_1d(v, eps=1e-5): """ A helper function for computing the pseudoinverse. Parameters ---------- v : iterable of numbers This may be thought of as a vector of eigenvalues or singular values. eps : float Values with magnitude no greater than eps are considered negligible. Returns ------- v_pinv : 1d float ndarray A vector of pseudo-inverted numbers. """ return np.array([0 if abs(x) <= eps else 1/x for x in v], dtype=float) class _PSD(object): """ Compute coordinated functions of a symmetric positive semidefinite matrix. This class addresses two issues. Firstly it allows the pseudoinverse, the logarithm of the pseudo-determinant, and the rank of the matrix to be computed using one call to eigh instead of three. Secondly it allows these functions to be computed in a way that gives mutually compatible results. All of the functions are computed with a common understanding as to which of the eigenvalues are to be considered negligibly small. The functions are designed to coordinate with scipy.linalg.pinvh() but not necessarily with np.linalg.det() or with np.linalg.matrix_rank(). Parameters ---------- M : array_like Symmetric positive semidefinite matrix (2-D). cond, rcond : float, optional Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : bool, optional Whether the pertinent array data is taken from the lower or upper triangle of M. (Default: lower) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. allow_singular : bool, optional Whether to allow a singular matrix. (Default: True) Notes ----- The arguments are similar to those of scipy.linalg.pinvh(). """ def __init__(self, M, cond=None, rcond=None, lower=True, check_finite=True, allow_singular=True): # Compute the symmetric eigendecomposition. # Note that eigh takes care of array conversion, chkfinite, # and assertion that the matrix is square. s, u = scipy.linalg.eigh(M, lower=lower, check_finite=check_finite) eps = _eigvalsh_to_eps(s, cond, rcond) if np.min(s) < -eps: raise ValueError('the input matrix must be positive semidefinite') d = s[s > eps] if len(d) < len(s) and not allow_singular: raise np.linalg.LinAlgError('singular matrix') s_pinv = _pinv_1d(s, eps) U = np.multiply(u, np.sqrt(s_pinv)) # Initialize the eagerly precomputed attributes. self.rank = len(d) self.U = U self.log_pdet = np.sum(np.log(d)) # Initialize an attribute to be lazily computed. self._pinv = None @property def pinv(self): if self._pinv is None: self._pinv = np.dot(self.U, self.U.T) return self._pinv class multi_rv_generic(object): """ Class which encapsulates common functionality between all multivariate distributions. """ def __init__(self, seed=None): super(multi_rv_generic, self).__init__() self._random_state = check_random_state(seed) @property def random_state(self): """ Get or set the RandomState object for generating random variates. This can be either None, int, a RandomState instance, or a np.random.Generator instance. If None (or np.random), use the RandomState singleton used by np.random. If already a RandomState or Generator instance, use it. If an int, use a new RandomState instance seeded with seed. """ return self._random_state @random_state.setter def random_state(self, seed): self._random_state = check_random_state(seed) def _get_random_state(self, random_state): if random_state is not None: return check_random_state(random_state) else: return self._random_state class multi_rv_frozen(object): """ Class which encapsulates common functionality between all frozen multivariate distributions. """ @property def random_state(self): return self._dist._random_state @random_state.setter def random_state(self, seed): self._dist._random_state = check_random_state(seed) _mvn_doc_default_callparams = """\ mean : array_like, optional Mean of the distribution (default zero) cov : array_like, optional Covariance matrix of the distribution (default one) allow_singular : bool, optional Whether to allow a singular covariance matrix. (Default: False) """ _mvn_doc_callparams_note = \ """Setting the parameter `mean` to `None` is equivalent to having `mean` be the zero-vector. The parameter `cov` can be a scalar, in which case the covariance matrix is the identity times that value, a vector of diagonal entries for the covariance matrix, or a two-dimensional array_like. """ _mvn_doc_frozen_callparams = "" _mvn_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" mvn_docdict_params = { '_mvn_doc_default_callparams': _mvn_doc_default_callparams, '_mvn_doc_callparams_note': _mvn_doc_callparams_note, '_doc_random_state': _doc_random_state } mvn_docdict_noparams = { '_mvn_doc_default_callparams': _mvn_doc_frozen_callparams, '_mvn_doc_callparams_note': _mvn_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class multivariate_normal_gen(multi_rv_generic): r""" A multivariate normal random variable. The `mean` keyword specifies the mean. The `cov` keyword specifies the covariance matrix. Methods ------- ``pdf(x, mean=None, cov=1, allow_singular=False)`` Probability density function. ``logpdf(x, mean=None, cov=1, allow_singular=False)`` Log of the probability density function. ``cdf(x, mean=None, cov=1, allow_singular=False, maxpts=1000000*dim, abseps=1e-5, releps=1e-5)`` Cumulative distribution function. ``logcdf(x, mean=None, cov=1, allow_singular=False, maxpts=1000000*dim, abseps=1e-5, releps=1e-5)`` Log of the cumulative distribution function. ``rvs(mean=None, cov=1, size=1, random_state=None)`` Draw random samples from a multivariate normal distribution. ``entropy()`` Compute the differential entropy of the multivariate normal. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the mean and covariance parameters, returning a "frozen" multivariate normal random variable: rv = multivariate_normal(mean=None, cov=1, allow_singular=False) - Frozen object with the same methods but holding the given mean and covariance fixed. Notes ----- %(_mvn_doc_callparams_note)s The covariance matrix `cov` must be a (symmetric) positive semi-definite matrix. The determinant and inverse of `cov` are computed as the pseudo-determinant and pseudo-inverse, respectively, so that `cov` does not need to have full rank. The probability density function for `multivariate_normal` is .. math:: f(x) = \frac{1}{\sqrt{(2 \pi)^k \det \Sigma}} \exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right), where :math:`\mu` is the mean, :math:`\Sigma` the covariance matrix, and :math:`k` is the dimension of the space where :math:`x` takes values. .. versionadded:: 0.14.0 Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import multivariate_normal >>> x = np.linspace(0, 5, 10, endpoint=False) >>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129, 0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349]) >>> fig1 = plt.figure() >>> ax = fig1.add_subplot(111) >>> ax.plot(x, y) The input quantiles can be any shape of array, as long as the last axis labels the components. This allows us for instance to display the frozen pdf for a non-isotropic random variable in 2D as follows: >>> x, y = np.mgrid[-1:1:.01, -1:1:.01] >>> pos = np.dstack((x, y)) >>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]]) >>> fig2 = plt.figure() >>> ax2 = fig2.add_subplot(111) >>> ax2.contourf(x, y, rv.pdf(pos)) """ def __init__(self, seed=None): super(multivariate_normal_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, mvn_docdict_params) def __call__(self, mean=None, cov=1, allow_singular=False, seed=None): """ Create a frozen multivariate normal distribution. See `multivariate_normal_frozen` for more information. """ return multivariate_normal_frozen(mean, cov, allow_singular=allow_singular, seed=seed) def _process_parameters(self, dim, mean, cov): """ Infer dimensionality from mean or covariance matrix, ensure that mean and covariance are full vector resp. matrix. """ # Try to infer dimensionality if dim is None: if mean is None: if cov is None: dim = 1 else: cov = np.asarray(cov, dtype=float) if cov.ndim < 2: dim = 1 else: dim = cov.shape[0] else: mean = np.asarray(mean, dtype=float) dim = mean.size else: if not np.isscalar(dim): raise ValueError("Dimension of random variable must be " "a scalar.") # Check input sizes and return full arrays for mean and cov if # necessary if mean is None: mean = np.zeros(dim) mean = np.asarray(mean, dtype=float) if cov is None: cov = 1.0 cov = np.asarray(cov, dtype=float) if dim == 1: mean.shape = (1,) cov.shape = (1, 1) if mean.ndim != 1 or mean.shape[0] != dim: raise ValueError("Array 'mean' must be a vector of length %d." % dim) if cov.ndim == 0: cov = cov * np.eye(dim) elif cov.ndim == 1: cov = np.diag(cov) elif cov.ndim == 2 and cov.shape != (dim, dim): rows, cols = cov.shape if rows != cols: msg = ("Array 'cov' must be square if it is two dimensional," " but cov.shape = %s." % str(cov.shape)) else: msg = ("Dimension mismatch: array 'cov' is of shape %s," " but 'mean' is a vector of length %d.") msg = msg % (str(cov.shape), len(mean)) raise ValueError(msg) elif cov.ndim > 2: raise ValueError("Array 'cov' must be at most two-dimensional," " but cov.ndim = %d" % cov.ndim) return dim, mean, cov def _process_quantiles(self, x, dim): """ Adjust quantiles array so that last axis labels the components of each data point. """ x = np.asarray(x, dtype=float) if x.ndim == 0: x = x[np.newaxis] elif x.ndim == 1: if dim == 1: x = x[:, np.newaxis] else: x = x[np.newaxis, :] return x def _logpdf(self, x, mean, prec_U, log_det_cov, rank): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function mean : ndarray Mean of the distribution prec_U : ndarray A decomposition such that np.dot(prec_U, prec_U.T) is the precision matrix, i.e. inverse of the covariance matrix. log_det_cov : float Logarithm of the determinant of the covariance matrix rank : int Rank of the covariance matrix. Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ dev = x - mean maha = np.sum(np.square(np.dot(dev, prec_U)), axis=-1) return -0.5 * (rank * _LOG_2PI + log_det_cov + maha) def logpdf(self, x, mean=None, cov=1, allow_singular=False): """ Log of the multivariate normal probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s Returns ------- pdf : ndarray or scalar Log of the probability density function evaluated at `x` Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) x = self._process_quantiles(x, dim) psd = _PSD(cov, allow_singular=allow_singular) out = self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank) return _squeeze_output(out) def pdf(self, x, mean=None, cov=1, allow_singular=False): """ Multivariate normal probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s Returns ------- pdf : ndarray or scalar Probability density function evaluated at `x` Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) x = self._process_quantiles(x, dim) psd = _PSD(cov, allow_singular=allow_singular) out = np.exp(self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank)) return _squeeze_output(out) def _cdf(self, x, mean, cov, maxpts, abseps, releps): """ Parameters ---------- x : ndarray Points at which to evaluate the cumulative distribution function. mean : ndarray Mean of the distribution cov : array_like Covariance matrix of the distribution maxpts: integer The maximum number of points to use for integration abseps: float Absolute error tolerance releps: float Relative error tolerance Notes ----- As this function does no argument checking, it should not be called directly; use 'cdf' instead. .. versionadded:: 1.0.0 """ lower = np.full(mean.shape, -np.inf) # mvnun expects 1-d arguments, so process points sequentially func1d = lambda x_slice: mvn.mvnun(lower, x_slice, mean, cov, maxpts, abseps, releps)[0] out = np.apply_along_axis(func1d, -1, x) return _squeeze_output(out) def logcdf(self, x, mean=None, cov=1, allow_singular=False, maxpts=None, abseps=1e-5, releps=1e-5): """ Log of the multivariate normal cumulative distribution function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s maxpts: integer, optional The maximum number of points to use for integration (default `1000000*dim`) abseps: float, optional Absolute error tolerance (default 1e-5) releps: float, optional Relative error tolerance (default 1e-5) Returns ------- cdf : ndarray or scalar Log of the cumulative distribution function evaluated at `x` Notes ----- %(_mvn_doc_callparams_note)s .. versionadded:: 1.0.0 """ dim, mean, cov = self._process_parameters(None, mean, cov) x = self._process_quantiles(x, dim) # Use _PSD to check covariance matrix _PSD(cov, allow_singular=allow_singular) if not maxpts: maxpts = 1000000 * dim out = np.log(self._cdf(x, mean, cov, maxpts, abseps, releps)) return out def cdf(self, x, mean=None, cov=1, allow_singular=False, maxpts=None, abseps=1e-5, releps=1e-5): """ Multivariate normal cumulative distribution function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s maxpts: integer, optional The maximum number of points to use for integration (default `1000000*dim`) abseps: float, optional Absolute error tolerance (default 1e-5) releps: float, optional Relative error tolerance (default 1e-5) Returns ------- cdf : ndarray or scalar Cumulative distribution function evaluated at `x` Notes ----- %(_mvn_doc_callparams_note)s .. versionadded:: 1.0.0 """ dim, mean, cov = self._process_parameters(None, mean, cov) x = self._process_quantiles(x, dim) # Use _PSD to check covariance matrix _PSD(cov, allow_singular=allow_singular) if not maxpts: maxpts = 1000000 * dim out = self._cdf(x, mean, cov, maxpts, abseps, releps) return out def rvs(self, mean=None, cov=1, size=1, random_state=None): """ Draw random samples from a multivariate normal distribution. Parameters ---------- %(_mvn_doc_default_callparams)s size : integer, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `N`), where `N` is the dimension of the random variable. Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) random_state = self._get_random_state(random_state) out = random_state.multivariate_normal(mean, cov, size) return _squeeze_output(out) def entropy(self, mean=None, cov=1): """ Compute the differential entropy of the multivariate normal. Parameters ---------- %(_mvn_doc_default_callparams)s Returns ------- h : scalar Entropy of the multivariate normal distribution Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) _, logdet = np.linalg.slogdet(2 * np.pi * np.e * cov) return 0.5 * logdet multivariate_normal = multivariate_normal_gen() class multivariate_normal_frozen(multi_rv_frozen): def __init__(self, mean=None, cov=1, allow_singular=False, seed=None, maxpts=None, abseps=1e-5, releps=1e-5): """ Create a frozen multivariate normal distribution. Parameters ---------- mean : array_like, optional Mean of the distribution (default zero) cov : array_like, optional Covariance matrix of the distribution (default one) allow_singular : bool, optional If this flag is True then tolerate a singular covariance matrix (default False). seed : {None, int, `~np.random.RandomState`, `~np.random.Generator`}, optional This parameter defines the object to use for drawing random variates. If `seed` is `None` the `~np.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with seed. If `seed` is already a ``RandomState`` or ``Generator`` instance, then that object is used. Default is None. maxpts: integer, optional The maximum number of points to use for integration of the cumulative distribution function (default `1000000*dim`) abseps: float, optional Absolute error tolerance for the cumulative distribution function (default 1e-5) releps: float, optional Relative error tolerance for the cumulative distribution function (default 1e-5) Examples -------- When called with the default parameters, this will create a 1D random variable with mean 0 and covariance 1: >>> from scipy.stats import multivariate_normal >>> r = multivariate_normal() >>> r.mean array([ 0.]) >>> r.cov array([[1.]]) """ self._dist = multivariate_normal_gen(seed) self.dim, self.mean, self.cov = self._dist._process_parameters( None, mean, cov) self.cov_info = _PSD(self.cov, allow_singular=allow_singular) if not maxpts: maxpts = 1000000 * self.dim self.maxpts = maxpts self.abseps = abseps self.releps = releps def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.mean, self.cov_info.U, self.cov_info.log_pdet, self.cov_info.rank) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def logcdf(self, x): return np.log(self.cdf(x)) def cdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._cdf(x, self.mean, self.cov, self.maxpts, self.abseps, self.releps) return _squeeze_output(out) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.mean, self.cov, size, random_state) def entropy(self): """ Computes the differential entropy of the multivariate normal. Returns ------- h : scalar Entropy of the multivariate normal distribution """ log_pdet = self.cov_info.log_pdet rank = self.cov_info.rank return 0.5 * (rank * (_LOG_2PI + 1) + log_pdet) # Set frozen generator docstrings from corresponding docstrings in # multivariate_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'logcdf', 'cdf', 'rvs']: method = multivariate_normal_gen.__dict__[name] method_frozen = multivariate_normal_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat(method.__doc__, mvn_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, mvn_docdict_params) _matnorm_doc_default_callparams = """\ mean : array_like, optional Mean of the distribution (default: `None`) rowcov : array_like, optional Among-row covariance matrix of the distribution (default: `1`) colcov : array_like, optional Among-column covariance matrix of the distribution (default: `1`) """ _matnorm_doc_callparams_note = \ """If `mean` is set to `None` then a matrix of zeros is used for the mean. The dimensions of this matrix are inferred from the shape of `rowcov` and `colcov`, if these are provided, or set to `1` if ambiguous. `rowcov` and `colcov` can be two-dimensional array_likes specifying the covariance matrices directly. Alternatively, a one-dimensional array will be be interpreted as the entries of a diagonal matrix, and a scalar or zero-dimensional array will be interpreted as this value times the identity matrix. """ _matnorm_doc_frozen_callparams = "" _matnorm_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" matnorm_docdict_params = { '_matnorm_doc_default_callparams': _matnorm_doc_default_callparams, '_matnorm_doc_callparams_note': _matnorm_doc_callparams_note, '_doc_random_state': _doc_random_state } matnorm_docdict_noparams = { '_matnorm_doc_default_callparams': _matnorm_doc_frozen_callparams, '_matnorm_doc_callparams_note': _matnorm_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class matrix_normal_gen(multi_rv_generic): r""" A matrix normal random variable. The `mean` keyword specifies the mean. The `rowcov` keyword specifies the among-row covariance matrix. The 'colcov' keyword specifies the among-column covariance matrix. Methods ------- ``pdf(X, mean=None, rowcov=1, colcov=1)`` Probability density function. ``logpdf(X, mean=None, rowcov=1, colcov=1)`` Log of the probability density function. ``rvs(mean=None, rowcov=1, colcov=1, size=1, random_state=None)`` Draw random samples. Parameters ---------- X : array_like Quantiles, with the last two axes of `X` denoting the components. %(_matnorm_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the mean and covariance parameters, returning a "frozen" matrix normal random variable: rv = matrix_normal(mean=None, rowcov=1, colcov=1) - Frozen object with the same methods but holding the given mean and covariance fixed. Notes ----- %(_matnorm_doc_callparams_note)s The covariance matrices specified by `rowcov` and `colcov` must be (symmetric) positive definite. If the samples in `X` are :math:`m \times n`, then `rowcov` must be :math:`m \times m` and `colcov` must be :math:`n \times n`. `mean` must be the same shape as `X`. The probability density function for `matrix_normal` is .. math:: f(X) = (2 \pi)^{-\frac{mn}{2}}|U|^{-\frac{n}{2}} |V|^{-\frac{m}{2}} \exp\left( -\frac{1}{2} \mathrm{Tr}\left[ U^{-1} (X-M) V^{-1} (X-M)^T \right] \right), where :math:`M` is the mean, :math:`U` the among-row covariance matrix, :math:`V` the among-column covariance matrix. The `allow_singular` behaviour of the `multivariate_normal` distribution is not currently supported. Covariance matrices must be full rank. The `matrix_normal` distribution is closely related to the `multivariate_normal` distribution. Specifically, :math:`\mathrm{Vec}(X)` (the vector formed by concatenating the columns of :math:`X`) has a multivariate normal distribution with mean :math:`\mathrm{Vec}(M)` and covariance :math:`V \otimes U` (where :math:`\otimes` is the Kronecker product). Sampling and pdf evaluation are :math:`\mathcal{O}(m^3 + n^3 + m^2 n + m n^2)` for the matrix normal, but :math:`\mathcal{O}(m^3 n^3)` for the equivalent multivariate normal, making this equivalent form algorithmically inefficient. .. versionadded:: 0.17.0 Examples -------- >>> from scipy.stats import matrix_normal >>> M = np.arange(6).reshape(3,2); M array([[0, 1], [2, 3], [4, 5]]) >>> U = np.diag([1,2,3]); U array([[1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> V = 0.3*np.identity(2); V array([[ 0.3, 0. ], [ 0. , 0.3]]) >>> X = M + 0.1; X array([[ 0.1, 1.1], [ 2.1, 3.1], [ 4.1, 5.1]]) >>> matrix_normal.pdf(X, mean=M, rowcov=U, colcov=V) 0.023410202050005054 >>> # Equivalent multivariate normal >>> from scipy.stats import multivariate_normal >>> vectorised_X = X.T.flatten() >>> equiv_mean = M.T.flatten() >>> equiv_cov = np.kron(V,U) >>> multivariate_normal.pdf(vectorised_X, mean=equiv_mean, cov=equiv_cov) 0.023410202050005054 """ def __init__(self, seed=None): super(matrix_normal_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, matnorm_docdict_params) def __call__(self, mean=None, rowcov=1, colcov=1, seed=None): """ Create a frozen matrix normal distribution. See `matrix_normal_frozen` for more information. """ return matrix_normal_frozen(mean, rowcov, colcov, seed=seed) def _process_parameters(self, mean, rowcov, colcov): """ Infer dimensionality from mean or covariance matrices. Handle defaults. Ensure compatible dimensions. """ # Process mean if mean is not None: mean = np.asarray(mean, dtype=float) meanshape = mean.shape if len(meanshape) != 2: raise ValueError("Array `mean` must be two dimensional.") if np.any(meanshape == 0): raise ValueError("Array `mean` has invalid shape.") # Process among-row covariance rowcov = np.asarray(rowcov, dtype=float) if rowcov.ndim == 0: if mean is not None: rowcov = rowcov * np.identity(meanshape[0]) else: rowcov = rowcov * np.identity(1) elif rowcov.ndim == 1: rowcov = np.diag(rowcov) rowshape = rowcov.shape if len(rowshape) != 2: raise ValueError("`rowcov` must be a scalar or a 2D array.") if rowshape[0] != rowshape[1]: raise ValueError("Array `rowcov` must be square.") if rowshape[0] == 0: raise ValueError("Array `rowcov` has invalid shape.") numrows = rowshape[0] # Process among-column covariance colcov = np.asarray(colcov, dtype=float) if colcov.ndim == 0: if mean is not None: colcov = colcov * np.identity(meanshape[1]) else: colcov = colcov * np.identity(1) elif colcov.ndim == 1: colcov = np.diag(colcov) colshape = colcov.shape if len(colshape) != 2: raise ValueError("`colcov` must be a scalar or a 2D array.") if colshape[0] != colshape[1]: raise ValueError("Array `colcov` must be square.") if colshape[0] == 0: raise ValueError("Array `colcov` has invalid shape.") numcols = colshape[0] # Ensure mean and covariances compatible if mean is not None: if meanshape[0] != numrows: raise ValueError("Arrays `mean` and `rowcov` must have the " "same number of rows.") if meanshape[1] != numcols: raise ValueError("Arrays `mean` and `colcov` must have the " "same number of columns.") else: mean = np.zeros((numrows, numcols)) dims = (numrows, numcols) return dims, mean, rowcov, colcov def _process_quantiles(self, X, dims): """ Adjust quantiles array so that last two axes labels the components of each data point. """ X = np.asarray(X, dtype=float) if X.ndim == 2: X = X[np.newaxis, :] if X.shape[-2:] != dims: raise ValueError("The shape of array `X` is not compatible " "with the distribution parameters.") return X def _logpdf(self, dims, X, mean, row_prec_rt, log_det_rowcov, col_prec_rt, log_det_colcov): """ Parameters ---------- dims : tuple Dimensions of the matrix variates X : ndarray Points at which to evaluate the log of the probability density function mean : ndarray Mean of the distribution row_prec_rt : ndarray A decomposition such that np.dot(row_prec_rt, row_prec_rt.T) is the inverse of the among-row covariance matrix log_det_rowcov : float Logarithm of the determinant of the among-row covariance matrix col_prec_rt : ndarray A decomposition such that np.dot(col_prec_rt, col_prec_rt.T) is the inverse of the among-column covariance matrix log_det_colcov : float Logarithm of the determinant of the among-column covariance matrix Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ numrows, numcols = dims roll_dev = np.rollaxis(X-mean, axis=-1, start=0) scale_dev = np.tensordot(col_prec_rt.T, np.dot(roll_dev, row_prec_rt), 1) maha = np.sum(np.sum(np.square(scale_dev), axis=-1), axis=0) return -0.5 * (numrows*numcols*_LOG_2PI + numcols*log_det_rowcov + numrows*log_det_colcov + maha) def logpdf(self, X, mean=None, rowcov=1, colcov=1): """ Log of the matrix normal probability density function. Parameters ---------- X : array_like Quantiles, with the last two axes of `X` denoting the components. %(_matnorm_doc_default_callparams)s Returns ------- logpdf : ndarray Log of the probability density function evaluated at `X` Notes ----- %(_matnorm_doc_callparams_note)s """ dims, mean, rowcov, colcov = self._process_parameters(mean, rowcov, colcov) X = self._process_quantiles(X, dims) rowpsd = _PSD(rowcov, allow_singular=False) colpsd = _PSD(colcov, allow_singular=False) out = self._logpdf(dims, X, mean, rowpsd.U, rowpsd.log_pdet, colpsd.U, colpsd.log_pdet) return _squeeze_output(out) def pdf(self, X, mean=None, rowcov=1, colcov=1): """ Matrix normal probability density function. Parameters ---------- X : array_like Quantiles, with the last two axes of `X` denoting the components. %(_matnorm_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `X` Notes ----- %(_matnorm_doc_callparams_note)s """ return np.exp(self.logpdf(X, mean, rowcov, colcov)) def rvs(self, mean=None, rowcov=1, colcov=1, size=1, random_state=None): """ Draw random samples from a matrix normal distribution. Parameters ---------- %(_matnorm_doc_default_callparams)s size : integer, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `dims`), where `dims` is the dimension of the random matrices. Notes ----- %(_matnorm_doc_callparams_note)s """ size = int(size) dims, mean, rowcov, colcov = self._process_parameters(mean, rowcov, colcov) rowchol = scipy.linalg.cholesky(rowcov, lower=True) colchol = scipy.linalg.cholesky(colcov, lower=True) random_state = self._get_random_state(random_state) std_norm = random_state.standard_normal(size=(dims[1], size, dims[0])) roll_rvs = np.tensordot(colchol, np.dot(std_norm, rowchol.T), 1) out = np.rollaxis(roll_rvs.T, axis=1, start=0) + mean[np.newaxis, :, :] if size == 1: out = out.reshape(mean.shape) return out matrix_normal = matrix_normal_gen() class matrix_normal_frozen(multi_rv_frozen): def __init__(self, mean=None, rowcov=1, colcov=1, seed=None): """ Create a frozen matrix normal distribution. Parameters ---------- %(_matnorm_doc_default_callparams)s seed : {None, int, `~np.random.RandomState`, `~np.random.Generator`}, optional This parameter defines the object to use for drawing random variates. If `seed` is `None` the `~np.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with seed. If `seed` is already a ``RandomState`` or ``Generator`` instance, then that object is used. Default is None. Examples -------- >>> from scipy.stats import matrix_normal >>> distn = matrix_normal(mean=np.zeros((3,3))) >>> X = distn.rvs(); X array([[-0.02976962, 0.93339138, -0.09663178], [ 0.67405524, 0.28250467, -0.93308929], [-0.31144782, 0.74535536, 1.30412916]]) >>> distn.pdf(X) 2.5160642368346784e-05 >>> distn.logpdf(X) -10.590229595124615 """ self._dist = matrix_normal_gen(seed) self.dims, self.mean, self.rowcov, self.colcov = \ self._dist._process_parameters(mean, rowcov, colcov) self.rowpsd = _PSD(self.rowcov, allow_singular=False) self.colpsd = _PSD(self.colcov, allow_singular=False) def logpdf(self, X): X = self._dist._process_quantiles(X, self.dims) out = self._dist._logpdf(self.dims, X, self.mean, self.rowpsd.U, self.rowpsd.log_pdet, self.colpsd.U, self.colpsd.log_pdet) return _squeeze_output(out) def pdf(self, X): return np.exp(self.logpdf(X)) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.mean, self.rowcov, self.colcov, size, random_state) # Set frozen generator docstrings from corresponding docstrings in # matrix_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'rvs']: method = matrix_normal_gen.__dict__[name] method_frozen = matrix_normal_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat(method.__doc__, matnorm_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, matnorm_docdict_params) _dirichlet_doc_default_callparams = """\ alpha : array_like The concentration parameters. The number of entries determines the dimensionality of the distribution. """ _dirichlet_doc_frozen_callparams = "" _dirichlet_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" dirichlet_docdict_params = { '_dirichlet_doc_default_callparams': _dirichlet_doc_default_callparams, '_doc_random_state': _doc_random_state } dirichlet_docdict_noparams = { '_dirichlet_doc_default_callparams': _dirichlet_doc_frozen_callparams, '_doc_random_state': _doc_random_state } def _dirichlet_check_parameters(alpha): alpha = np.asarray(alpha) if np.min(alpha) <= 0: raise ValueError("All parameters must be greater than 0") elif alpha.ndim != 1: raise ValueError("Parameter vector 'a' must be one dimensional, " "but a.shape = %s." % (alpha.shape, )) return alpha def _dirichlet_check_input(alpha, x): x = np.asarray(x) if x.shape[0] + 1 != alpha.shape[0] and x.shape[0] != alpha.shape[0]: raise ValueError("Vector 'x' must have either the same number " "of entries as, or one entry fewer than, " "parameter vector 'a', but alpha.shape = %s " "and x.shape = %s." % (alpha.shape, x.shape)) if x.shape[0] != alpha.shape[0]: xk = np.array([1 - np.sum(x, 0)]) if xk.ndim == 1: x = np.append(x, xk) elif xk.ndim == 2: x = np.vstack((x, xk)) else: raise ValueError("The input must be one dimensional or a two " "dimensional matrix containing the entries.") if np.min(x) < 0: raise ValueError("Each entry in 'x' must be greater than or equal " "to zero.") if np.max(x) > 1: raise ValueError("Each entry in 'x' must be smaller or equal one.") # Check x_i > 0 or alpha_i > 1 xeq0 = (x == 0) alphalt1 = (alpha < 1) if x.shape != alpha.shape: alphalt1 = np.repeat(alphalt1, x.shape[-1], axis=-1).reshape(x.shape) chk = np.logical_and(xeq0, alphalt1) if np.sum(chk): raise ValueError("Each entry in 'x' must be greater than zero if its " "alpha is less than one.") if (np.abs(np.sum(x, 0) - 1.0) > 10e-10).any(): raise ValueError("The input vector 'x' must lie within the normal " "simplex. but np.sum(x, 0) = %s." % np.sum(x, 0)) return x def _lnB(alpha): r""" Internal helper function to compute the log of the useful quotient .. math:: B(\alpha) = \frac{\prod_{i=1}{K}\Gamma(\alpha_i)} {\Gamma\left(\sum_{i=1}^{K} \alpha_i \right)} Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- B : scalar Helper quotient, internal use only """ return np.sum(gammaln(alpha)) - gammaln(np.sum(alpha)) class dirichlet_gen(multi_rv_generic): r""" A Dirichlet random variable. The `alpha` keyword specifies the concentration parameters of the distribution. .. versionadded:: 0.15.0 Methods ------- ``pdf(x, alpha)`` Probability density function. ``logpdf(x, alpha)`` Log of the probability density function. ``rvs(alpha, size=1, random_state=None)`` Draw random samples from a Dirichlet distribution. ``mean(alpha)`` The mean of the Dirichlet distribution ``var(alpha)`` The variance of the Dirichlet distribution ``entropy(alpha)`` Compute the differential entropy of the Dirichlet distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix concentration parameters, returning a "frozen" Dirichlet random variable: rv = dirichlet(alpha) - Frozen object with the same methods but holding the given concentration parameters fixed. Notes ----- Each :math:`\alpha` entry must be positive. The distribution has only support on the simplex defined by .. math:: \sum_{i=1}^{K} x_i \le 1 The probability density function for `dirichlet` is .. math:: f(x) = \frac{1}{\mathrm{B}(\boldsymbol\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1} where .. math:: \mathrm{B}(\boldsymbol\alpha) = \frac{\prod_{i=1}^K \Gamma(\alpha_i)} {\Gamma\bigl(\sum_{i=1}^K \alpha_i\bigr)} and :math:`\boldsymbol\alpha=(\alpha_1,\ldots,\alpha_K)`, the concentration parameters and :math:`K` is the dimension of the space where :math:`x` takes values. Note that the dirichlet interface is somewhat inconsistent. The array returned by the rvs function is transposed with respect to the format expected by the pdf and logpdf. Examples -------- >>> from scipy.stats import dirichlet Generate a dirichlet random variable >>> quantiles = np.array([0.2, 0.2, 0.6]) # specify quantiles >>> alpha = np.array([0.4, 5, 15]) # specify concentration parameters >>> dirichlet.pdf(quantiles, alpha) 0.2843831684937255 The same PDF but following a log scale >>> dirichlet.logpdf(quantiles, alpha) -1.2574327653159187 Once we specify the dirichlet distribution we can then calculate quantities of interest >>> dirichlet.mean(alpha) # get the mean of the distribution array([0.01960784, 0.24509804, 0.73529412]) >>> dirichlet.var(alpha) # get variance array([0.00089829, 0.00864603, 0.00909517]) >>> dirichlet.entropy(alpha) # calculate the differential entropy -4.3280162474082715 We can also return random samples from the distribution >>> dirichlet.rvs(alpha, size=1, random_state=1) array([[0.00766178, 0.24670518, 0.74563305]]) >>> dirichlet.rvs(alpha, size=2, random_state=2) array([[0.01639427, 0.1292273 , 0.85437844], [0.00156917, 0.19033695, 0.80809388]]) """ def __init__(self, seed=None): super(dirichlet_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, dirichlet_docdict_params) def __call__(self, alpha, seed=None): return dirichlet_frozen(alpha, seed=seed) def _logpdf(self, x, alpha): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function %(_dirichlet_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ lnB = _lnB(alpha) return - lnB + np.sum((xlogy(alpha - 1, x.T)).T, 0) def logpdf(self, x, alpha): """ Log of the Dirichlet probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s Returns ------- pdf : ndarray or scalar Log of the probability density function evaluated at `x`. """ alpha = _dirichlet_check_parameters(alpha) x = _dirichlet_check_input(alpha, x) out = self._logpdf(x, alpha) return _squeeze_output(out) def pdf(self, x, alpha): """ The Dirichlet probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s Returns ------- pdf : ndarray or scalar The probability density function evaluated at `x`. """ alpha = _dirichlet_check_parameters(alpha) x = _dirichlet_check_input(alpha, x) out = np.exp(self._logpdf(x, alpha)) return _squeeze_output(out) def mean(self, alpha): """ Compute the mean of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- mu : ndarray or scalar Mean of the Dirichlet distribution. """ alpha = _dirichlet_check_parameters(alpha) out = alpha / (np.sum(alpha)) return _squeeze_output(out) def var(self, alpha): """ Compute the variance of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- v : ndarray or scalar Variance of the Dirichlet distribution. """ alpha = _dirichlet_check_parameters(alpha) alpha0 =
np.sum(alpha)
numpy.sum
#%% import random import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.keras as keras from itertools import product import pandas as pd import seaborn as sns import numpy as np import pickle def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict # %% file_to_load = 'result/res.pickle' res = unpickle(file_to_load) reps = len(res) task_acc_single = np.zeros((10,reps),dtype=float) task_acc_uf = np.zeros((10,reps),dtype=float) task_acc_rf = np.zeros((10,reps),dtype=float) task_acc_l2f= np.zeros((10,reps),dtype=float) for i in range(reps): task_acc_single[:,i], task_acc_uf[:,i], task_acc_rf[:,i], task_acc_l2f[:,i] = res[i] #%% fontsize = 24 ticksize = 20 fig, ax = plt.subplots(1,1, figsize=(8,8)) colors = sns.color_palette('Set1', n_colors=4) mean_acc = np.mean(task_acc_l2f,axis=1) std_acc = np.std(task_acc_l2f,axis=1,ddof=1) ax.plot(np.arange(1, 11), mean_acc, c=colors[0], label='L2F') ax.fill_between(np.arange(1, 11), mean_acc+ 1.96*np.array(std_acc), mean_acc - 1.96*np.array(std_acc), where=mean_acc + 1.96*np.array(std_acc) >= mean_acc - 1.96*np.array(std_acc), facecolor=colors[0], alpha=0.15, interpolate=False) mean_acc = np.mean(task_acc_single,axis=1) std_acc = np.std(task_acc_single,axis=1,ddof=1) ax.plot(np.arange(1, 11), mean_acc, c=colors[1], label='UF fixed tree') ax.fill_between(np.arange(1, 11), mean_acc+ 1.96*np.array(std_acc), mean_acc - 1.96*np.array(std_acc), where=mean_acc + 1.96*np.array(std_acc) >= mean_acc - 1.96*np.array(std_acc), facecolor=colors[1], alpha=0.15, interpolate=False) mean_acc = np.mean(task_acc_uf,axis=1) std_acc = np.std(task_acc_uf,axis=1,ddof=1) ax.plot(np.arange(1, 11), mean_acc, c=colors[2], label='UF increasing tree') ax.fill_between(np.arange(1, 11), mean_acc+ 1.96*np.array(std_acc), mean_acc - 1.96*np.array(std_acc), where=mean_acc + 1.96*np.array(std_acc) >= mean_acc - 1.96*np.array(std_acc), facecolor=colors[2], alpha=0.15, interpolate=False) mean_acc = np.mean(task_acc_rf,axis=1) std_acc = np.std(task_acc_rf,axis=1,ddof=1) ax.plot(
np.arange(1, 11)
numpy.arange
""" """ import ConfigParser import os import pdb import sys import projects import numpy as np from netCDF4 import Dataset class ESMValProject(object): """ class to easily retrieve informations for ESMVal project_info in alphabetical order (mixed general and diagnostics specific) """ def __init__(self, project_info): """ Parameters ---------- project_info : dict project information like provided by the launcher """ self.project_info = project_info self.firstime = True self.oldvar = "" # self.version = os.environ['0_ESMValTool_version'] def _get_path_with_sep(self, p): """ ensure that a pathname has the path separator at the end """ if p[-1] == os.sep: return p else: return p + os.sep def average_data(self, data, dim_index): """Returns the mean values over certain dimensions. """ # Usually the input array is three dimensional (time, lats, lons) if (type(dim_index) == int): means = np.zeros(data.shape[dim_index]) for mean in xrange(len(means)): if (dim_index == 0): means[mean] = np.mean(data[mean, :, :]) if (dim_index == 1): means[mean] = np.mean(data[:, mean, :]) if (dim_index == 2): means[mean] = np.mean(data[:, :, mean]) elif (dim_index == 'monthly'): means = np.zeros(12) for month in xrange(12): means[month] = np.mean(data[month::12, :, :]) elif (dim_index == 'annual'): new_shape = data.shape new_shape = list(new_shape) new_shape[0] = 12 means = np.zeros((new_shape)) for month in xrange(12): for lat in xrange(means.shape[1]): for lon in xrange(means.shape[2]): means[month, lat, lon] = np.mean(data[month::12, lat, lon]) elif (dim_index == 'annual'): new_shape = data.shape new_shape = list(new_shape) new_shape[0] = 12 means = np.zeros((new_shape)) for month in xrange(12): for lat in xrange(means.shape[1]): for lon in xrange(means.shape[2]): means[month, lat, lon] = np.mean(data[month::12, lat, lon]) return means def check_model_instances(self, first_set, second_set): """Checks that two model sets have same elemenents. """ # Not pretty but effective: we do a loop for both sets for model in first_set: try: second_set[model] except KeyError: print("PY ERROR: I am getting inconsistent model sets for " + "precipitation and temperature") print("PY ERROR: All models must have both variables present.") print("PY ERROR: This error is caused by " + model) print("PY ERROR: Stopping the script and exiting") sys.exit() for model in second_set: try: first_set[model] except KeyError: print("PY ERROR: I am getting inconsistent model sets for " + "precipitation and temperature") print("PY ERROR: All models must have both variables present.") print("PY ERROR: This error is caused by " + model) print("PY ERROR: Stopping the script and exiting") sys.exit() def ensure_directory(self, path): """ Checks if a given directory exists and creates it if necessary. """ if not (os.path.exists(path)): os.makedirs(path) def ensure_looping(self, array): """ Checks the first and last element of array, currently only done for lons. FIXME if you need lats as well. """ array.flags.writeable = True if (array[0] > array[-1]): for i in xrange(len(array) - 1): if (array[i + 1] < array[i]): array[i + 1] += 360 return array def extract_seasonal_mean_values(self, modelconfig, data, experiment, season, monthly=False): """Returns the season specific mean values for each lat, lon from data. We assume the usual indexing of time, lat, lon""" season_key = experiment + '_season_' + season data_shape = data.shape if (season == 'annual'): # For annual season we merely copy the data masked_values = data else: # For a specific season we mask the undesired values season_months = modelconfig.get(season_key, 'season_months').split() mask = np.ones((data_shape)) for month in season_months: month_loc = int(month) - 1 mask[month_loc::12, :, :] = 0 masked_values = np.ma.masked_array(data, mask) if (monthly): return masked_values mean_values = np.zeros((data_shape[1], data_shape[2])) # Seasonal mean values for lat in xrange(data_shape[1]): for lon in xrange(data_shape[2]): mean_values[lat, lon] = masked_values[:, lat, lon].mean() return mean_values def find_nearest_value(self, array, value): """ Finds the nearest value in an array. """ return
np.abs(array - value)
numpy.abs
from __future__ import absolute_import import math from math import acos from math import asin from math import atan2 from math import cos from math import pi from math import sin import numpy as np # epsilon for testing whether a number is close to zero _EPS = np.finfo(float).eps * 4.0 def _wrap_axis(axis): """Convert axis to float vector. Parameters ---------- axis : list or numpy.ndarray or str or bool or None rotation axis indicated by number or string. Returns ------- axis : numpy.ndarray conveted axis Examples -------- >>> from skrobot.coordinates.math import _wrap_axis >>> _wrap_axis('x') array([1, 0, 0]) >>> _wrap_axis('y') array([0, 1, 0]) >>> _wrap_axis('z') array([0, 0, 1]) >>> _wrap_axis('xy') array([1, 1, 0]) >>> _wrap_axis([1, 1, 1]) array([1, 1, 1]) >>> _wrap_axis(True) array([0, 0, 0]) >>> _wrap_axis(False) array([1, 1, 1]) """ if isinstance(axis, str): if axis in ['x', 'xx']: axis = np.array([1, 0, 0]) elif axis in ['y', 'yy']: axis = np.array([0, 1, 0]) elif axis in ['z', 'zz']: axis = np.array([0, 0, 1]) elif axis == '-x': axis = np.array([-1, 0, 0]) elif axis == '-y': axis = np.array([0, -1, 0]) elif axis == '-z': axis = np.array([0, 0, -1]) elif axis in ['xy', 'yx']: axis = np.array([1, 1, 0]) elif axis in ['yz', 'zy']: axis = np.array([0, 1, 1]) elif axis in ['zx', 'xz']: axis = np.array([1, 0, 1]) else: raise NotImplementedError elif isinstance(axis, list): if not len(axis) == 3: raise ValueError axis = np.array(axis) elif isinstance(axis, np.ndarray): if not axis.shape == (3,): raise ValueError elif isinstance(axis, bool): if axis is True: return np.array([0, 0, 0]) else: return np.array([1, 1, 1]) elif axis is None: return np.array([1, 1, 1]) else: raise ValueError return axis def _check_valid_rotation(rotation): """Checks that the given rotation matrix is valid.""" rotation = np.array(rotation) if not isinstance( rotation, np.ndarray) or not np.issubdtype( rotation.dtype, np.number): raise ValueError('Rotation must be specified as numeric numpy array') if len(rotation.shape) != 2 or \ rotation.shape[0] != 3 or rotation.shape[1] != 3: raise ValueError('Rotation must be specified as a 3x3 ndarray') if np.abs(np.linalg.det(rotation) - 1.0) > 1e-3: raise ValueError('Illegal rotation. Must have determinant == 1.0, ' 'get {}'.format(np.linalg.det(rotation))) return rotation def _check_valid_translation(translation): """Checks that the translation vector is valid.""" if not isinstance( translation, np.ndarray) or not np.issubdtype( translation.dtype, np.number): raise ValueError( 'Translation must be specified as numeric numpy array') t = translation.squeeze() if len(t.shape) != 1 or t.shape[0] != 3: raise ValueError( 'Translation must be specified as a 3-vector, ' '3x1 ndarray, or 1x3 ndarray') def wxyz2xyzw(quat): """Convert quaternion [w, x, y, z] to [x, y, z, w] order. Parameters ---------- quat : list or numpy.ndarray quaternion [w, x, y, z] Returns ------- quaternion : numpy.ndarray quaternion [x, y, z, w] Examples -------- >>> from skrobot.coordinates.math import wxyz2xyzw >>> wxyz2xyzw([1, 2, 3, 4]) array([2, 3, 4, 1]) """ if isinstance(quat, list): quat = np.array(quat) return np.roll(quat, -1) def xyzw2wxyz(quat): """Convert quaternion [x, y, z, w] to [w, x, y, z] order. Parameters ---------- quat : list or numpy.ndarray quaternion [x, y, z, w] Returns ------- quaternion : numpy.ndarray quaternion [w, x, y, z] Examples -------- >>> from skrobot.coordinates.math import xyzw2wxyz >>> xyzw2wxyz([1, 2, 3, 4]) array([4, 1, 2, 3]) """ if isinstance(quat, list): quat = np.array(quat) return np.roll(quat, 1) def triple_product(a, b, c): """Returns Triple Product See https://en.wikipedia.org/wiki/Triple_product. Geometrically, the scalar triple product :math:`a\\cdot(b \\times c)` is the (signed) volume of the parallelepiped defined by the three vectors given. Parameters ---------- a : numpy.ndarray vector a b : numpy.ndarray vector b c : numpy.ndarray vector c Returns ------- triple product : float calculated triple product Examples -------- >>> from skrobot.math import triple_product >>> triple_product([1, 1, 1], [1, 1, 1], [1, 1, 1]) 0 >>> triple_product([1, 0, 0], [0, 1, 0], [0, 0, 1]) 1 """ return np.dot(a, np.cross(b, c)) def sr_inverse(J, k=1.0, weight_vector=None): """Returns SR-inverse of given Jacobian. Calculate Singularity-Robust Inverse See: `Inverse Kinematic Solutions With Singularity Robustness \ for Robot Manipulator Control` Parameters ---------- J : numpy.ndarray jacobian k : float coefficients weight_vector : None or numpy.ndarray weight vector Returns ------- ret : numpy.ndarray result of SR-inverse """ r, _ = J.shape # without weight if weight_vector is None: return sr_inverse_org(J, k) # k=0 => sr-inverse = pseudo-inverse if k == 0.0: return np.linalg.pinv(J) # with weight weight_matrix = np.diag(weight_vector) # umat = J W J^T + kI # ret = W J^T (J W J^T + kI)^(-1) weight_J = np.matmul(weight_matrix, J.T) umat = np.matmul(J, weight_J) + k * np.eye(r) ret = np.matmul(weight_J, np.linalg.inv(umat)) return ret def sr_inverse_org(J, k=1.0): """Return SR-inverse of given J Definition of SR-inverse is following. :math:`J^* = J^T(JJ^T + kI_m)^{-1}` Parameters ---------- J : numpy.ndarray jacobian k : float coefficients Returns ------- sr_inverse : numpy.ndarray calculated SR-inverse """ r, _ = J.shape return np.matmul(J.T, np.linalg.inv(np.matmul(J, J.T) + k * np.eye(r))) def manipulability(J): """Return manipulability of given matrix. Definition of manipulability is following. :math:`w = \\sqrt{\\det J(\\theta)J^T(\\theta)}` Parameters ---------- J : numpy.ndarray jacobian Returns ------- w : float manipulability """ return np.sqrt(max(0.0, np.linalg.det(np.matmul(J, J.T)))) def midpoint(p, a, b): """Return midpoint Parameters ---------- p : float ratio of a:b a : numpy.ndarray vector b : numpy.ndarray vector Returns ------- midpoint : numpy.ndarray midpoint Examples -------- >>> import numpy as np >>> from skrobot.coordinates.math import midpoint >>> midpoint(0.5, np.ones(3), np.zeros(3)) >>> array([0.5, 0.5, 0.5]) """ return a + (b - a) * p def midrot(p, r1, r2): """Returns mid (or p) rotation matrix of given two matrix r1 and r2. Parameters ---------- p : float ratio of r1:r2 r1 : numpy.ndarray 3x3 rotation matrix r2 : numpy.ndarray 3x3 rotation matrix Returns ------- r : numpy.ndarray 3x3 rotation matrix Examples -------- >>> import numpy as np >>> from skrobot.coordinates.math import midrot >>> midrot(0.5, np.eye(3), np.array([[0, 0, 1], [0, 1, 0], [-1, 0, 0]])) array([[ 0.70710678, 0. , 0.70710678], [ 0. , 1. , 0. ], [-0.70710678, 0. , 0.70710678]]) >>> from skrobot.coordinates.math import rpy_angle >>> np.rad2deg(rpy_angle(midrot(0.5, np.eye(3), np.array([[0, 0, 1], [0, 1, 0], [-1, 0, 0]])))[0]) array([ 0., 45., 0.]) """ r1 = _check_valid_rotation(r1) r2 = _check_valid_rotation(r2) r = np.matmul(r1.T, r2) omega = matrix_log(r) r = matrix_exponent(omega, p) return np.matmul(r1, r) def transform(m, v): """Return transform m v Parameters ---------- m : numpy.ndarray 3 x 3 rotation matrix. v : numpy.ndarray or list input vector. Returns ------- np.matmul(m, v) : numpy.ndarray transformed vector. """ m = np.array(m) v = np.array(v) return np.matmul(m, v) def rotation_matrix(theta, axis): """Return the rotation matrix. Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. Parameters ---------- theta : float radian axis : str or list or numpy.ndarray rotation axis such that 'x', 'y', 'z' [0, 0, 1], [0, 1, 0], [1, 0, 0] Returns ------- rot : numpy.ndarray rotation matrix about the given axis by theta radians. Examples -------- >>> import numpy as np >>> from skrobot.coordinates.math import rotation_matrix >>> rotation_matrix(np.pi / 2.0, [1, 0, 0]) array([[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 2.22044605e-16, -1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 2.22044605e-16]]) >>> rotation_matrix(np.pi / 2.0, 'y') array([[ 2.22044605e-16, 0.00000000e+00, 1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [-1.00000000e+00, 0.00000000e+00, 2.22044605e-16]]) """ axis = _wrap_axis(axis) axis = axis / np.sqrt(np.dot(axis, axis)) a = np.cos(theta / 2.0) b, c, d = -axis * np.sin(theta / 2.0) aa, bb, cc, dd = a * a, b * b, c * c, d * d bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]]) def rotate_vector(vec, theta, axis): """Rotate vector. Rotate vec with respect to axis. Parameters ---------- vec : list or numpy.ndarray target vector theta : float rotation angle axis : list or numpy.ndarray or str axis of rotation. Returns ------- rotated_vec : numpy.ndarray rotated vector. Examples -------- >>> from numpy import pi >>> from skrobot.coordinates.math import rotate_vector >>> rotate_vector([1, 0, 0], pi / 6.0, [1, 0, 0]) array([1., 0., 0.]) >>> rotate_vector([1, 0, 0], pi / 6.0, [0, 1, 0]) array([ 0.8660254, 0. , -0.5 ]) >>> rotate_vector([1, 0, 0], pi / 6.0, [0, 0, 1]) array([0.8660254, 0.5 , 0. ]) """ rot = rotation_matrix(theta, axis) rotated_vec = transform(rot, vec) return rotated_vec def rotate_matrix(matrix, theta, axis, world=None): if world is False or world is None: return np.dot(matrix, rotation_matrix(theta, axis)) return np.dot(rotation_matrix(theta, axis), matrix) def rpy_matrix(az, ay, ax): """Return rotation matrix from yaw-pitch-roll This function creates a new rotation matrix which has been rotated ax radian around x-axis in WORLD, ay radian around y-axis in WORLD, and az radian around z axis in WORLD, in this order. These angles can be extracted by the rpy function. Parameters ---------- az : float rotated around z-axis(yaw) in radian. ay : float rotated around y-axis(pitch) in radian. ax : float rotated around x-axis(roll) in radian. Returns ------- r : numpy.ndarray rotation matrix Examples -------- >>> import numpy as np >>> from skrobot.coordinates.math import rpy_matrix >>> yaw = np.pi / 2.0 >>> pitch = np.pi / 3.0 >>> roll = np.pi / 6.0 >>> rpy_matrix(yaw, pitch, roll) array([[ 1.11022302e-16, -8.66025404e-01, 5.00000000e-01], [ 5.00000000e-01, 4.33012702e-01, 7.50000000e-01], [-8.66025404e-01, 2.50000000e-01, 4.33012702e-01]]) """ r = rotation_matrix(ax, 'x') r = rotate_matrix(r, ay, 'y', world=True) r = rotate_matrix(r, az, 'z', world=True) return r def rpy_angle(matrix): """Decomposing a rotation matrix to yaw-pitch-roll. Parameters ---------- matrix : list or numpy.ndarray 3x3 rotation matrix Returns ------- rpy : tuple(numpy.ndarray, numpy.ndarray) pair of rpy in yaw-pitch-roll order. Examples -------- >>> import numpy as np >>> from skrobot.coordinates.math import rpy_matrix >>> from skrobot.coordinates.math import rpy_angle >>> yaw = np.pi / 2.0 >>> pitch = np.pi / 3.0 >>> roll = np.pi / 6.0 >>> rot = rpy_matrix(yaw, pitch, roll) >>> rpy_angle(rot) (array([1.57079633, 1.04719755, 0.52359878]), array([ 4.71238898, 2.0943951 , -2.61799388])) """ if np.sqrt(matrix[1, 0] ** 2 + matrix[0, 0] ** 2) < _EPS: a = 0.0 else: a = np.arctan2(matrix[1, 0], matrix[0, 0]) sa = np.sin(a) ca = np.cos(a) b = np.arctan2(-matrix[2, 0], ca * matrix[0, 0] + sa * matrix[1, 0]) c = np.arctan2(sa * matrix[0, 2] - ca * matrix[1, 2], -sa * matrix[0, 1] + ca * matrix[1, 1]) rpy = np.array([a, b, c]) a = a + np.pi sa = np.sin(a) ca = np.cos(a) b = np.arctan2(-matrix[2, 0], ca * matrix[0, 0] + sa * matrix[1, 0]) c = np.arctan2(sa * matrix[0, 2] - ca * matrix[1, 2], -sa * matrix[0, 1] + ca * matrix[1, 1]) return rpy, np.array([a, b, c]) def normalize_vector(v, ord=2): """Return normalized vector Parameters ---------- v : list or numpy.ndarray vector ord : int (optional) ord of np.linalg.norm Returns ------- v : numpy.ndarray normalized vector Examples -------- >>> from skrobot.coordinates.math import normalize_vector >>> normalize_vector([1, 1, 1]) array([0.57735027, 0.57735027, 0.57735027]) >>> normalize_vector([0, 0, 0]) array([0., 0., 0.]) """ v = np.array(v, dtype=np.float64) norm = np.linalg.norm(v, ord=ord) if norm == 0: return v return v / norm def matrix2quaternion(m): """Returns quaternion of given rotation matrix. Parameters ---------- m : list or numpy.ndarray 3x3 rotation matrix Returns ------- quaternion : numpy.ndarray quaternion [w, x, y, z] order Examples -------- >>> import numpy >>> from skrobot.coordinates.math import matrix2quaternion >>> matrix2quaternion(np.eye(3)) array([1., 0., 0., 0.]) """ m = np.array(m, dtype=np.float64) tr = m[0, 0] + m[1, 1] + m[2, 2] if tr > 0: S = math.sqrt(tr + 1.0) * 2 qw = 0.25 * S qx = (m[2, 1] - m[1, 2]) / S qy = (m[0, 2] - m[2, 0]) / S qz = (m[1, 0] - m[0, 1]) / S elif (m[0, 0] > m[1, 1]) and (m[0, 0] > m[2, 2]): S = math.sqrt(1. + m[0, 0] - m[1, 1] - m[2, 2]) * 2 qw = (m[2, 1] - m[1, 2]) / S qx = 0.25 * S qy = (m[0, 1] + m[1, 0]) / S qz = (m[0, 2] + m[2, 0]) / S elif m[1, 1] > m[2, 2]: S = math.sqrt(1. + m[1, 1] - m[0, 0] - m[2, 2]) * 2 qw = (m[0, 2] - m[2, 0]) / S qx = (m[0, 1] + m[1, 0]) / S qy = 0.25 * S qz = (m[1, 2] + m[2, 1]) / S else: S = math.sqrt(1. + m[2, 2] - m[0, 0] - m[1, 1]) * 2 qw = (m[1, 0] - m[0, 1]) / S qx = (m[0, 2] + m[2, 0]) / S qy = (m[1, 2] + m[2, 1]) / S qz = 0.25 * S return np.array([qw, qx, qy, qz]) def quaternion2matrix(q, normalize=False): """Returns matrix of given quaternion. Parameters ---------- quaternion : list or numpy.ndarray quaternion [w, x, y, z] order normalize : bool if normalize is True, input quaternion is normalized. Returns ------- rot : numpy.ndarray 3x3 rotation matrix Examples -------- >>> import numpy >>> from skrobot.coordinates.math import quaternion2matrix >>> quaternion2matrix([1, 0, 0, 0]) array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) """ q = np.array(q) if normalize: q = quaternion_normalize(q) else: norm = quaternion_norm(q) if not np.allclose(norm, 1.0): raise ValueError("quaternion q's norm is not 1") if q.ndim == 1: q0 = q[0] q1 = q[1] q2 = q[2] q3 = q[3] m = np.zeros((3, 3)) m[0, 0] = q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3 m[0, 1] = 2 * (q1 * q2 - q0 * q3) m[0, 2] = 2 * (q1 * q3 + q0 * q2) m[1, 0] = 2 * (q1 * q2 + q0 * q3) m[1, 1] = q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3 m[1, 2] = 2 * (q2 * q3 - q0 * q1) m[2, 0] = 2 * (q1 * q3 - q0 * q2) m[2, 1] = 2 * (q2 * q3 + q0 * q1) m[2, 2] = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3 elif q.ndim == 2: m = np.zeros((q.shape[0], 3, 3), dtype=np.float64) m[:, 0, 0] = q[:, 0] * q[:, 0] + \ q[:, 1] * q[:, 1] - q[:, 2] * q[:, 2] - q[:, 3] * q[:, 3] m[:, 0, 1] = 2 * (q[:, 1] * q[:, 2] - q[:, 0] * q[:, 3]) m[:, 0, 2] = 2 * (q[:, 1] * q[:, 3] + q[:, 0] * q[:, 2]) m[:, 1, 0] = 2 * (q[:, 1] * q[:, 2] + q[:, 0] * q[:, 3]) m[:, 1, 1] = q[:, 0] * q[:, 0] - \ q[:, 1] * q[:, 1] + q[:, 2] * q[:, 2] - q[:, 3] * q[:, 3] m[:, 1, 2] = 2 * (q[:, 2] * q[:, 3] - q[:, 0] * q[:, 1]) m[:, 2, 0] = 2 * (q[:, 1] * q[:, 3] - q[:, 0] * q[:, 2]) m[:, 2, 1] = 2 * (q[:, 2] * q[:, 3] + q[:, 0] * q[:, 1]) m[:, 2, 2] = q[:, 0] * q[:, 0] - \ q[:, 1] * q[:, 1] - q[:, 2] * q[:, 2] + q[:, 3] * q[:, 3] return m def matrix_log(m): """Returns matrix log of given rotation matrix, it returns [-pi, pi] Parameters ---------- m : list or numpy.ndarray 3x3 rotation matrix Returns ------- matrixlog : numpy.ndarray vector of shape (3, ) Examples -------- >>> import numpy as np >>> from skrobot.coordinates.math import matrix_log >>> matrix_log(np.eye(3)) array([0., 0., 0.]) """ # calc logarithm of quaternion q = matrix2quaternion(m) q_w = q[0] q_xyz = q[1:] theta = 2.0 * np.arctan(np.linalg.norm(q_xyz) / q_w) if theta > np.pi: theta = theta - 2.0 * np.pi elif theta < - np.pi: theta = theta + 2.0 * np.pi return theta * normalize_vector(q_xyz) def matrix_exponent(omega, p=1.0): """Returns exponent of given omega. This function is similar to cv2.Rodrigues. Convert rvec (which is log quaternion) to rotation matrix. Parameters ---------- omega : list or numpy.ndarray vector of shape (3,) Returns ------- rot : numpy.ndarray exponential matrix of given omega Examples -------- >>> import numpy as np >>> from skrobot.coordinates.math import matrix_exponent >>> matrix_exponent([1, 1, 1]) array([[ 0.22629564, -0.18300792, 0.95671228], [ 0.95671228, 0.22629564, -0.18300792], [-0.18300792, 0.95671228, 0.22629564]]) >>> matrix_exponent([1, 0, 0]) array([[ 1. , 0. , 0. ], [ 0. , 0.54030231, -0.84147098], [ 0. , 0.84147098, 0.54030231]]) """ w = np.linalg.norm(omega) amat = outer_product_matrix(normalize_vector(omega)) return np.eye(3) + np.sin(w * p) * amat + \ (1.0 - np.cos(w * p)) * np.matmul(amat, amat) def outer_product_matrix(v): """Returns outer product matrix of given v. Returns following outer product matrix. .. math:: \\left( \\begin{array}{ccc} 0 & -v_2 & v_1 \\\\ v_2 & 0 & -v_0 \\\\ -v_1 & v_0 & 0 \\end{array} \\right) Parameters ---------- v : numpy.ndarray or list [x, y, z] Returns ------- matrix : numpy.ndarray 3x3 rotation matrix. Examples -------- >>> from skrobot.coordinates.math import outer_product_matrix >>> outer_product_matrix([1, 2, 3]) array([[ 0, -3, 2], [ 3, 0, -1], [-2, 1, 0]]) """ return np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]) def cross_product(a, b): """Return cross product. Parameters ---------- a : numpy.ndarray 3-dimensional vector. b : numpy.ndarray 3-dimensional vector. Returns ------- cross_prod : numpy.ndarray calculated cross product """ return np.dot(outer_product_matrix(a), b) def quaternion2rpy(q): """Returns Roll-pitch-yaw angles of a given quaternion. Parameters ---------- q : numpy.ndarray or list Quaternion in [w x y z] format. Returns ------- rpy : numpy.ndarray Array of yaw-pitch-roll angles, in radian. Examples -------- >>> from skrobot.coordinates.math import quaternion2rpy >>> quaternion2rpy([1, 0, 0, 0]) (array([ 0., -0., 0.]), array([3.14159265, 3.14159265, 3.14159265])) >>> quaternion2rpy([0, 1, 0, 0]) (array([ 0. , -0. , 3.14159265]), array([3.14159265, 3.14159265, 0. ])) """ roll = atan2( 2 * q[2] * q[3] + 2 * q[0] * q[1], q[3] ** 2 - q[2] ** 2 - q[1] ** 2 + q[0] ** 2) pitch = -asin( 2 * q[1] * q[3] - 2 * q[0] * q[2]) yaw = atan2( 2 * q[1] * q[2] + 2 * q[0] * q[3], q[1] ** 2 + q[0] ** 2 - q[3] ** 2 - q[2] ** 2) rpy = np.array([yaw, pitch, roll]) return rpy, np.pi - rpy def rpy2quaternion(rpy): """Return Quaternion from yaw-pitch-roll angles. Parameters ---------- rpy : numpy.ndarray or list Vector of yaw-pitch-roll angles in radian. Returns ------- quat : numpy.ndarray Quaternion in [w x y z] format. Examples -------- >>> import numpy as np >>> from skrobot.coordinates.math import rpy2quaternion >>> rpy2quaternion([0, 0, 0]) array([1., 0., 0., 0.]) >>> yaw = np.pi / 3.0 >>> rpy2quaternion([yaw, 0, 0]) array([0.8660254, 0. , 0. , 0.5 ]) >>> rpy2quaternion([np.pi * 2 - yaw, 0, 0]) array([-0.8660254, -0. , 0. , 0.5 ]) """ yaw, pitch, roll = rpy cr, cp, cy = cos(roll / 2.), cos(pitch / 2.), cos(yaw / 2.) sr, sp, sy = sin(roll / 2.), sin(pitch / 2.), sin(yaw / 2.) return np.array([ cr * cp * cy + sr * sp * sy, -cr * sp * sy + cp * cy * sr, cr * cy * sp + sr * cp * sy, cr * cp * sy - sr * cy * sp]) def rotation_matrix_from_rpy(rpy): """Returns Rotation matrix from yaw-pitch-roll angles. Parameters ---------- rpy : numpy.ndarray or list Vector of yaw-pitch-roll angles in radian. Returns ------- rot : numpy.ndarray 3x3 rotation matrix Examples -------- >>> import numpy as np >>> from skrobot.coordinates.math import rotation_matrix_from_rpy >>> rotation_matrix_from_rpy([0, np.pi / 3, 0]) array([[ 0.5 , 0. , 0.8660254], [ 0. , 1. , 0. ], [-0.8660254, 0. , 0.5 ]]) """ return quaternion2matrix(quat_from_rpy(rpy)) def rotation_matrix_from_axis( first_axis=(1, 0, 0), second_axis=(0, 1, 0), axes='xy'): """Return rotation matrix orienting first_axis Parameters ---------- first_axis : list or tuple or numpy.ndarray direction of first axis second_axis : list or tuple or numpy.ndarray direction of second axis. This input axis is normalized using Gram-Schmidt. axes : str valid inputs are 'xy', 'yx', 'xz', 'zx', 'yz', 'zy'. first index indicates first_axis's axis. Returns ------- rotation_matrix : numpy.ndarray Rotation matrix Examples -------- >>> from skrobot.coordinates.math import rotation_matrix_from_axis >>> rotation_matrix_from_axis((1, 0, 0), (0, 1, 0)) array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> rotation_matrix_from_axis((1, 1, 1), (0, 1, 0)) array([[ 0.57735027, -0.40824829, -0.70710678], [ 0.57735027, 0.81649658, 0. ], [ 0.57735027, -0.40824829, 0.70710678]]) """ if axes not in ['xy', 'yx', 'xz', 'zx', 'yz', 'zy']: raise ValueError("Valid axes are 'xy', 'yx', 'xz', 'zx', 'yz', 'zy'.") e1 = normalize_vector(first_axis) e2 = normalize_vector(second_axis - np.dot(second_axis, e1) * e1) if axes in ['xy', 'zx', 'yz']: third_axis = cross_product(e1, e2) else: third_axis = cross_product(e2, e1) e3 = normalize_vector( third_axis - np.dot(third_axis, e1) * e1 -
np.dot(third_axis, e2)
numpy.dot
""" This file contains utilities to set up hexagonal convolution and pooling kernels in PyTorch. The size of the input is abitrary, whereas the layout from top to bottom (along tensor index 2) has to be of zig-zag-edge shape and from left to right (along tensor index 3) of armchair-edge shape as shown below. __ __ __ __ __ __ /11\__/31\__ . . . |11|21|31|41| . . . \__/21\__/41\ |__|__|__|__| /12\__/32\__/ . . . _______|\ |12|22|32|42| . . . \__/22\__/42\ | \ |__|__|__|__| \__/ \__/ |_______ / . . . . . |/ . . . . . . . . . . . . . . . . . . . . . . . . . For more information visit https://github.com/ai4iacts/hexagdly """ import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter import numpy as np class HexBase(): def __init__(self): super(HexBase, self).__init__() self.hexbase_size = None self.depth_size = None self.hexbase_stride = None self.depth_stride = None self.input_size_is_known = False self.odd_columns_slices = [] self.odd_columns_pads = [] self.even_columns_slices = [] self.even_columns_pads = [] self.dimensions = None self.combine = None self.process = None self.kwargs = dict() def shape_for_odd_columns(self, input_size, kernel_number): slices = [None, None, None, None] pads = [0, 0, 0, 0] # left pads[0] = kernel_number # right pads[1] = max(0, kernel_number - ((input_size[-1] - 1) % (2 * self.hexbase_stride))) # top pads[2] = self.hexbase_size - int(kernel_number / 2) # bottom constraint = input_size[-2] - 1 - int((input_size[-2] - 1 - int(self.hexbase_stride / 2)) / self.hexbase_stride) * self.hexbase_stride bottom = (self.hexbase_size - int((kernel_number + 1) / 2)) - constraint if bottom >= 0: pads[3] = bottom else: slices[1] = bottom return slices, pads def shape_for_even_columns(self, input_size, kernel_number): slices = [None, None, None, None] pads = [0, 0, 0, 0] # left left = kernel_number - self.hexbase_stride if left >= 0: pads[0] = left else: slices[2] = -left # right pads[1] = max(0, kernel_number - ((input_size[-1] - 1 - self.hexbase_stride) % (2 * self.hexbase_stride))) # top top_shift = -(kernel_number % 2) if (self.hexbase_stride % 2) == 1 else 0 top = (self.hexbase_size - int(kernel_number / 2)) + top_shift - int(self.hexbase_stride / 2) if top >= 0: pads[2] = top else: slices[0] = -top # bottom bottom_shift = 0 if (self.hexbase_stride % 2) == 1 else -(kernel_number % 2) pads[3] = max(0, self.hexbase_size - int(kernel_number / 2) + bottom_shift - ((input_size[-2] - int(self.hexbase_stride / 2) - 1) % self.hexbase_stride)) return slices, pads def get_padded_input(self, input, pads): if self.dimensions == 2: return nn.ZeroPad2d(tuple(pads))(input) elif self.dimensions == 3: return nn.ConstantPad3d(tuple(pads+[0,0]), 0)(input) def get_sliced_input(self, input, slices): if self.dimensions == 2: return input[:, :, slices[0]:slices[1], slices[2]:slices[3]] elif self.dimensions == 3: return input[:, :, :, slices[0]:slices[1], slices[2]:slices[3]] def get_dilation(self, dilation_2d): if self.dimensions == 2: return dilation_2d elif self.dimensions == 3: return tuple([1] + list(dilation_2d)) def get_stride(self): if self.dimensions == 2: return (self.hexbase_stride, 2 * self.hexbase_stride) elif self.dimensions == 3: return (self.depth_stride, self.hexbase_stride, 2 * self.hexbase_stride) def get_ordered_output(self, input, order): if self.dimensions == 2: return input[:, :, :, order] elif self.dimensions == 3: return input[:, :, :, :, order] # general implementation of an operation with a hexagonal kernel def operation_with_arbitrary_stride(self, input): assert (input.size(-2) - (self.hexbase_stride // 2) >= 0), 'Too few rows to apply hex conv with the stide that is set' odd_columns = None even_columns = None for i in range(self.hexbase_size + 1): dilation_base = (1, 1) if i == 0 else (1, 2 * i) if not self.input_size_is_known: slices, pads = self.shape_for_odd_columns(input.size(), i) self.odd_columns_slices.append(slices) self.odd_columns_pads.append(pads) slices, pads = self.shape_for_even_columns(input.size(), i) self.even_columns_slices.append(slices) self.even_columns_pads.append(pads) if i == self.hexbase_size: self.input_size_is_known = True if odd_columns is None: odd_columns = self.process(self.get_padded_input(self.get_sliced_input(input, self.odd_columns_slices[i]), self.odd_columns_pads[i]), getattr(self, 'kernel' + str(i)), dilation=self.get_dilation(dilation_base), stride=self.get_stride(), **self.kwargs) else: odd_columns = self.combine(odd_columns, self.process(self.get_padded_input(self.get_sliced_input(input, self.odd_columns_slices[i]), self.odd_columns_pads[i]), getattr(self, 'kernel' + str(i)), dilation=self.get_dilation(dilation_base), stride=self.get_stride())) if even_columns is None: even_columns = self.process(self.get_padded_input(self.get_sliced_input(input, self.even_columns_slices[i]), self.even_columns_pads[i]), getattr(self, 'kernel' + str(i)), dilation=self.get_dilation(dilation_base), stride=self.get_stride(), **self.kwargs) else: even_columns = self.combine(even_columns, self.process(self.get_padded_input(self.get_sliced_input(input, self.even_columns_slices[i]), self.even_columns_pads[i]), getattr(self, 'kernel' + str(i)), dilation=self.get_dilation(dilation_base), stride=self.get_stride())) concatenated_columns = torch.cat((odd_columns, even_columns), 1+self.dimensions) n_odd_columns = odd_columns.size(-1) n_even_columns = even_columns.size(-1) if n_odd_columns == n_even_columns: order = [int(i + x * n_even_columns) for i in range(n_even_columns) for x in range(2)] else: order = [int(i + x * n_odd_columns) for i in range(n_even_columns) for x in range(2)] order.append(n_even_columns) return self.get_ordered_output(concatenated_columns, order) # a slightly faster, case specific implementation of the hexagonal convolution def operation_with_single_hexbase_stride(self, input): columns_mod2 = input.size(-1) % 2 odd_kernels_odd_columns = [] odd_kernels_even_columns = [] even_kernels_all_columns = [] even_kernels_all_columns = self.process(self.get_padded_input(input, [0, 0, self.hexbase_size, self.hexbase_size]), self.kernel0, stride=(1, 1) if self.dimensions == 2 else (self.depth_stride, 1, 1), **self.kwargs) if self.hexbase_size >= 1: odd_kernels_odd_columns = self.process(self.get_padded_input(input, [1, columns_mod2, self.hexbase_size, self.hexbase_size - 1]), self.kernel1, dilation=self.get_dilation((1, 2)), stride=self.get_stride()) odd_kernels_even_columns = self.process(self.get_padded_input(input, [0, 1 - columns_mod2, self.hexbase_size - 1, self.hexbase_size]), self.kernel1, dilation=self.get_dilation((1, 2)), stride=self.get_stride()) if self.hexbase_size > 1: for i in range(2, self.hexbase_size + 1): if i % 2 == 0: even_kernels_all_columns = self.combine(even_kernels_all_columns, self.process(self.get_padded_input(input, [i, i, self.hexbase_size - int(i / 2), self.hexbase_size - int(i / 2)]), getattr(self, 'kernel' + str(i)), dilation=self.get_dilation((1, 2 * i)), stride=(1, 1) if self.dimensions == 2 else (self.depth_stride, 1, 1))) else: x = self.hexbase_size + int((1 - i) / 2) odd_kernels_odd_columns = self.combine(odd_kernels_odd_columns, self.process(self.get_padded_input(input, [i, i - 1 + columns_mod2, x, x - 1]), getattr(self, 'kernel' + str(i)), dilation=self.get_dilation((1, 2 * i)), stride=self.get_stride())) odd_kernels_even_columns = self.combine(odd_kernels_even_columns, self.process(self.get_padded_input(input, [i - 1, i - columns_mod2, x - 1, x]), getattr(self, 'kernel' + str(i)), dilation=self.get_dilation((1, 2 * i)), stride=self.get_stride())) odd_kernels_concatenated_columns = torch.cat((odd_kernels_odd_columns, odd_kernels_even_columns), 1+self.dimensions) n_odd_columns = odd_kernels_odd_columns.size(-1) n_even_columns = odd_kernels_even_columns.size(-1) if n_odd_columns == n_even_columns: order = [int(i + x * n_even_columns) for i in range(n_even_columns) for x in range(2)] else: order = [int(i + x * n_odd_columns) for i in range(n_even_columns) for x in range(2)] order.append(n_even_columns) return self.combine(even_kernels_all_columns , self.get_ordered_output(odd_kernels_concatenated_columns, order)) class Conv2d(HexBase, nn.Module): r"""Applies a 2D hexagonal convolution` Args: in_channels: int: number of input channels out_channels: int: number of output channels kernel_size: int: number of layers with neighbouring pixels covered by the pooling kernel stride: int: length of strides bias: bool: add bias if True (default) debug: bool: switch to debug mode False: weights are initalised with kaiming normal, bias with 0.01 (default) True: weights / bias are set to 1. Examples:: >>> conv2d = hexagdly.Conv2d(1,3,2,1) >>> input = torch.randn(1, 1, 4, 2) >>> output = conv2d(input) >>> print(output) """ def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, bias=True, debug=False): super(Conv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.hexbase_size = kernel_size self.hexbase_stride = stride self.debug = debug self.bias = bias self.dimensions = 2 self.process = F.conv2d self.combine = torch.add for i in range(self.hexbase_size + 1): setattr(self, 'kernel' + str(i), Parameter(torch.Tensor(out_channels, in_channels, 1 + 2 * self.hexbase_size - i, 1 if i==0 else 2))) if self.bias: self.bias_tensor = Parameter(torch.Tensor(out_channels)) self.kwargs = {'bias': self.bias_tensor} else: self.kwargs = {'bias': None} self.init_parameters(self.debug) def init_parameters(self, debug): if debug: for i in range(self.hexbase_size + 1): nn.init.constant_(getattr(self, 'kernel' + str(i)), 1) if self.bias: nn.init.constant_(getattr(self, 'kwargs')['bias'], 1.) else: for i in range(self.hexbase_size + 1): nn.init.kaiming_normal_(getattr(self, 'kernel' + str(i))) if self.bias: nn.init.constant_(getattr(self, 'kwargs')['bias'], 0.01) def forward(self, input): if self.hexbase_stride == 1: return self.operation_with_single_hexbase_stride(input) else: return self.operation_with_arbitrary_stride(input) def __repr__(self): s = ('{name}({in_channels}, {out_channels}, kernel_size={hexbase_size}' ', stride={hexbase_stride}') if self.bias is False: s += ', bias=False' if self.debug is True: s += ', debug=True' s += ')' return s.format(name=self.__class__.__name__, **self.__dict__) class Conv2d_CustomKernel(HexBase, nn.Module): r"""Applies a 2D hexagonal convolution with custom kernels` Args: sub_kernels: list: list containing sub-kernels as numpy arrays stride: int: length of strides bias: array: numpy array with biases (default: None) requires_grad: bool: trainable parameters if True (default: False) debug: bool: If True a kernel of size one with all values set to 1 will be applied as well as no bias (default: False) Examples:: Given in the online repository https://github.com/ai4iacts/hexagdly """ def __init__(self, sub_kernels=[], stride=1, bias=None, requires_grad=False, debug=False): super(Conv2d_CustomKernel, self).__init__() self.sub_kernels = sub_kernels self.bias_array = bias self.hexbase_stride = stride self.requires_grad = requires_grad self.debug = debug self.dimensions = 2 self.process = F.conv2d self.combine = torch.add self.init_parameters(self.debug) def init_parameters(self, debug): if debug or len(self.sub_kernels)==0: print('The debug kernel is used for {name}!'.format(name=self.__class__.__name__)) self.sub_kernels = [np.array([[[[1],[1],[1]]]]),
np.array([[[[1,1],[1,1]]]])
numpy.array
"""Generate halfway phase shifted ring. TODO[Faruk]: I need to revisit and seriously cleanup this script once revision rush is over. """ import os import numpy as np import matplotlib.pyplot as plt OUTDIR = "/home/faruk/gdrive/paper-350_micron/paper_figures/revision-distortions" DIMS = 900, 900 RADIUS_OUTER = 450 RADIUS_INNER = 150 SEGMENTS_INNER = 25 NR_LAYERS = 11 KAYCUBE_FACTOR = 32 DPI = 192 plt.style.use('dark_background') # ============================================================================= # Generate coordinates coords = np.zeros((DIMS[0], DIMS[1], 2)) center = DIMS[0]/2, DIMS[1]/2 for i in range(DIMS[0]): for j in range(DIMS[1]): coords[i, j, 0] = i coords[i, j, 1] = j coords[:, :, 0] -= center[0] coords[:, :, 1] -= center[1] # ----------------------------------------------------------------------------- # Generate ring mag = np.linalg.norm(coords, axis=-1) data = np.zeros(DIMS) data[mag < RADIUS_OUTER] = 200 data[mag < RADIUS_INNER] = 0 # Extend horizontally DIMS2 = DIMS[0], DIMS[1]+DIMS[1]*2//3 data2 = np.zeros((DIMS2[0], DIMS2[1])) data2[0:DIMS[0]//2, 0:DIMS[1]] = data[0:DIMS[0]//2, :] data2[DIMS[0]//2:, DIMS[1]*2//3:] = data[DIMS[0]//2:, :] # Add notebook texture lines = np.zeros(data2.shape) lines[::KAYCUBE_FACTOR, :] = 100 lines[:, ::KAYCUBE_FACTOR] = 100 lines[data2 == 0] = 0 data3 = np.copy(data2) data3[lines != 0] = 100 # ----------------------------------------------------------------------------- # Compute circumference ratio of equal line segments circum_ratio = (2 * np.pi * RADIUS_OUTER) / (2 * np.pi * RADIUS_INNER) SEGMENTS_OUTER = int(SEGMENTS_INNER / circum_ratio) circum_ratio2 = (2 * np.pi * ((RADIUS_OUTER+RADIUS_INNER)/2)) / (2 * np.pi * RADIUS_INNER) SEGMENTS_MIDDLE = int((SEGMENTS_INNER + circum_ratio) // 2) nr_segments_outer = 360 // SEGMENTS_OUTER nr_segments_inner = 360 // SEGMENTS_INNER nr_segments_middle = 360 // SEGMENTS_MIDDLE rhos = np.linspace(RADIUS_INNER, RADIUS_OUTER, NR_LAYERS) # ============================================================================= # Generate points def pol2cart(rho, phi): x = rho * np.cos(phi) y = rho * np.sin(phi) return(x, y) def cart2pol(x, y): rho = np.sqrt(x**2 + y**2) phi = np.arctan2(y, x) return(rho, phi) # ============================================================================= # Deep surface mesh # ============================================================================= # Part 1 points1 = np.zeros((NR_LAYERS, nr_segments_outer, 2)) phis = np.linspace(np.pi, 2*np.pi, nr_segments_outer) for k, r in enumerate(rhos): for i, j in enumerate(phis): points1[k, i, :] = pol2cart(r, j) # Adjust point coordinates to array grid coordinates points1[k, :, :] += center # Part 2 points2 = np.zeros((NR_LAYERS, nr_segments_inner, 2)) phis = np.linspace(0, np.pi, nr_segments_inner) for k, r in enumerate(rhos): for i, j in enumerate(phis): points2[k, i, :] = pol2cart(r, j) # Adjust point coordinates to array grid coordinates points2[k, :, :] += center points2[k, :, 0] += RADIUS_OUTER + RADIUS_INNER points_d = np.zeros((NR_LAYERS, nr_segments_outer + nr_segments_inner, 2)) points_d[:, :nr_segments_outer, :] = points1 points_d[:, nr_segments_outer:, :] = points2[::-1, ::-1, :] # ============================================================================= fig = plt.figure(figsize=(1920/DPI, 1080/DPI), dpi=DPI) plt.imshow(data2, cmap="gray", origin="lower") for i in range(NR_LAYERS): if i == NR_LAYERS-1: plt.plot(points_d[i, :, 0], points_d[i, :, 1], marker="o", markersize=6, linewidth=2, color=[1, 0, 0]) else: plt.plot(points_d[i, :, 0], points_d[i, :, 1], marker="o", markersize=3, linewidth=1, color=[0.5, 0.5, 0.5]) plt.xlim([0, DIMS2[1]]) plt.ylim([0, DIMS2[0]]) plt.axis('off') plt.ioff() plt.savefig(os.path.join(OUTDIR, "1_deep_mesh.png"), bbox_inches='tight') plt.clf() # ----------------------------------------------------------------------------- # Notebook texture plot plt.imshow(data3, cmap="gray", origin="lower") for i in range(NR_LAYERS): if i == NR_LAYERS-1: plt.plot(points_d[i, :, 0], points_d[i, :, 1], marker="o", markersize=2, linestyle='None', color=[1, 0, 0]) else: plt.plot(points_d[i, :, 0], points_d[i, :, 1], marker="o", markersize=2, linestyle='None', color=[0.5, 0.5, 0.5]) plt.xlim([0, DIMS2[1]]) plt.ylim([0, DIMS2[0]]) plt.axis('off') plt.ioff() plt.savefig(os.path.join(OUTDIR, "1_deep_mesh_alt.png"), bbox_inches='tight') plt.clf() # ============================================================================= # Superficial surface mesh # ============================================================================= points1 = np.zeros((NR_LAYERS, nr_segments_inner, 2)) phis = np.linspace(np.pi, 2*np.pi, nr_segments_inner) for k, r in enumerate(rhos): for i, j in enumerate(phis): points1[k, i, :] = pol2cart(r, j) # Adjust point coordinates to array grid coordinates points1[k, :, :] += center # ----------------------------------------------------------------------------- points2 = np.zeros((NR_LAYERS, nr_segments_outer, 2)) phis = np.linspace(0, np.pi, nr_segments_outer) for k, r in enumerate(rhos): for i, j in enumerate(phis): points2[k, i, :] = pol2cart(r, j) # Adjust point coordinates to array grid coordinates points2[k, :, :] += center points2[k, :, 0] += RADIUS_OUTER + RADIUS_INNER points_s = np.zeros((NR_LAYERS, nr_segments_outer + nr_segments_inner, 2)) points_s[:, :nr_segments_inner, :] = points1 points_s[:, nr_segments_inner:, :] = points2[::-1, ::-1, :] # ============================================================================= fig = plt.figure(figsize=(1920/DPI, 1080/DPI), dpi=DPI) plt.imshow(data2, cmap="gray", origin="lower") for i in range(NR_LAYERS): if i == 0: plt.plot(points_s[i, :, 0], points_s[i, :, 1], marker="o", markersize=6, linewidth=2, color=[0, 0.5, 1]) else: plt.plot(points_s[i, :, 0], points_s[i, :, 1], marker="o", markersize=3, color=[0.5, 0.5, 0.5]) plt.xlim([0, DIMS2[1]]) plt.ylim([0, DIMS2[0]]) plt.axis('off') plt.ioff() plt.savefig(os.path.join(OUTDIR, "2_sup_mesh.png"), bbox_inches='tight') plt.clf() # ----------------------------------------------------------------------------- # Notebook texture plot plt.imshow(data3, cmap="gray", origin="lower") for i in range(NR_LAYERS): if i == 0: plt.plot(points_s[i, :, 0], points_s[i, :, 1], marker="o", markersize=2, linestyle='None', color=[0, 0.5, 1]) else: plt.plot(points_s[i, :, 0], points_s[i, :, 1], marker="o", markersize=2, linestyle='None', color=[0.5, 0.5, 0.5]) plt.xlim([0, DIMS2[1]]) plt.ylim([0, DIMS2[0]]) plt.axis('off') plt.ioff() plt.savefig(os.path.join(OUTDIR, "2_sup_mesh_alt.png"), bbox_inches='tight') plt.clf() # ============================================================================= # Middle surface mesh # ============================================================================= points_m = np.zeros((NR_LAYERS, nr_segments_middle*2, 2)) phis = np.linspace(-np.pi, np.pi, nr_segments_middle*2) for k, r in enumerate(rhos): for i, j in enumerate(phis): points_m[k, i, :] = pol2cart(r, j) # Adjust point coordinates to array grid coordinates points_m[k, :, :] += center points_m[:, nr_segments_middle:, 0] *= -1 points_m[:, nr_segments_middle:, 0] += RADIUS_OUTER*3 + RADIUS_INNER points_m[:, nr_segments_middle:, :] = points_m[::-1, nr_segments_middle:, :] # ----------------------------------------------------------------------------- fig = plt.figure(figsize=(1920/DPI, 1080/DPI), dpi=DPI) plt.imshow(data2, cmap="gray", origin="lower") for i in range(NR_LAYERS): if i == NR_LAYERS//2: plt.plot(points_m[i, :, 0], points_m[i, :, 1], marker="o", markersize=6, linewidth=2, color=[0, 220/255, 0]) else: plt.plot(points_m[i, :, 0], points_m[i, :, 1], marker="o", markersize=3, color=[0.5, 0.5, 0.5]) plt.xlim([0, DIMS2[1]]) plt.ylim([0, DIMS2[0]]) plt.axis('off') plt.ioff() plt.savefig(os.path.join(OUTDIR, "3_middle_mesh.png"), bbox_inches='tight') plt.clf() # ----------------------------------------------------------------------------- # Notebook texture plot plt.imshow(data3, cmap="gray", origin="lower") for i in range(NR_LAYERS): if i == NR_LAYERS//2: plt.plot(points_m[i, :, 0], points_m[i, :, 1], marker="o", markersize=2, linestyle='None', color=[1, 0, 0]) else: plt.plot(points_m[i, :, 0], points_m[i, :, 1], marker="o", markersize=2, linestyle='None', color=[1, 0, 0]) plt.xlim([0, DIMS2[1]]) plt.ylim([0, DIMS2[0]]) plt.axis('off') plt.ioff() plt.savefig(os.path.join(OUTDIR, "3_middle_mesh_alt.png"), bbox_inches='tight') plt.clf() # ============================================================================= # Point cloud # ============================================================================= x = np.arange(KAYCUBE_FACTOR//2, DIMS2[1]-1, KAYCUBE_FACTOR, dtype="int") y =
np.arange(KAYCUBE_FACTOR//2, DIMS2[0]-1, KAYCUBE_FACTOR, dtype="int")
numpy.arange
import numpy as np import random import copy import time t = time.time() # Stopwatch started puzzle = [] # Created an empty list # puzzle = np.array([[1, 0, 3], [4, 2, 5], [7, 8, 6]]) # puzzle = np.arange(9) # np.random.shuffle(puzzle) # puzzle.shape = (3, 3) # Created class for back tracing the path class Tree: def __init__(self, child, parent=None, index=0): self.child = child self.parent = parent self.index = index # function to find blank tile's location def BlankTileLocation(p): for m in range(3): for n in range(3): if p[m, n] == 0: pos = m+1, n+1 return pos # function to backtrace the path def backtrace(strate): street = [] current_state = strate while current_state is not None: street.append(current_state) current_state = current_state.parent street.reverse() # Create a empty file with open('nodePath.txt', 'w') as nPath: for current_state in street: # Writing path in the text file nPath.writelines(str(current_state.child.flatten('F')).strip('[]')+'\n') # function to move the blank tile left def ActionMoveLeft(puzL): #m, n = BlankTileLocation(puzL) m, n = BlankTileLocation(puzL.child) if n > 1: puzL.child[m-1, n-1] = puzL.child[m-1, n-1-1] puzL.child[m-1, n-1-1] = 0 stat = 1 # print(puzL, 'Inside function') # print('Moving left.') else: # print('Cannot move left.') stat = 0 return stat, puzL # function to move the blank tile right def ActionMoveRight(puzR): m, n = BlankTileLocation(puzR.child) if n < 3: puzR.child[m-1, n-1] = puzR.child[m-1, n-1+1] puzR.child[m-1, n-1+1] = 0 stat = 1 # print(puzR, 'Inside Function') # print('Moving right.') else: # print('Cannot move right!!') stat = 0 return stat, puzR # function to move the blank tile up def ActionMoveUp(puzU): m, n = BlankTileLocation(puzU.child) if m > 1: puzU.child[m-1, n-1] = puzU.child[m-1-1, n-1] puzU.child[m-1-1, n-1] = 0 stat = 1 # print(puzU, 'Inside Function') # print('Moving up.') else: # print('Cannot move up!!') stat = 0 return stat, puzU # function to move the blank tile down def ActionMoveDown(puzD): m, n = BlankTileLocation(puzD.child) if m < 3: puzD.child[m-1, n-1] = puzD.child[m-1+1, n-1] puzD.child[m-1+1, n-1] = 0 stat = 1 # print(puzD, 'Inside Function') # print('Moving down.') else: # print('Cannot move down!!') stat = 0 return stat, puzD # function to check the solvability of the puzzle def solvable(puzS): ctr = 0 puzS = puzS.flatten() for m in range(9): for n in range(m+1, 9): if puzS[n] and puzS[m] and puzS[m] > puzS[n]: ctr += 1 return ctr # function to check goal achieved or not def goalTest(puzG): goal =
np.array([[1, 2, 3], [4, 5, 6], [7, 8, 0]])
numpy.array
#!/usr/bin/env python3 # coding: utf-8 __author__ = '<NAME>' __version__ = '0.1' __email__ = '<EMAIL>' __status__ = 'Development' import os import csv import logging import argparse import numpy as np import matplotlib.pyplot as plt from matplotlib.backend_bases import MouseButton logging.basicConfig(level=logging.INFO, format='%(message)s') logger = logging.getLogger(__name__) # Global variables fig, ax = plt.subplots() points = None dataset = None output = None def onclick(event): global dataset global points # clear the plot ax.cla() # redraw the points x = points[:,0] y = points[:,1] ax.plot(x, y) # get the x coordinate from the clicked point ex = event.xdata # add or remove the point from the dataset if event.button is MouseButton.LEFT: # find the closest point to the original points, using the X axis x_distances = np.abs(x - ex) closest_idx = np.argmin(x_distances) cx = x[closest_idx] cy = y[closest_idx] dataset.append([cx, cy]) logger.info('Add a Point %s', [cx, cy]) elif event.button is MouseButton.RIGHT: # find the closest point to the selected points, using the X axis if len(dataset) > 0: d =
np.array(dataset)
numpy.array
#!/usr/bin/env python import argparse import os import sys import logging import numpy as np import re import time import scipy.io import glob import unet import tensorflow as tf import keras from keras import backend as K import scipy.stats import pyBigWig print('tf-' + tf.__version__, 'keras-' + keras.__version__) from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.07 set_session(tf.Session(config=config)) K.set_image_data_format('channels_last') # TF dimension ordering in this code def score(x1,x2): mse=((x1-x2) ** 2.).mean() pearson=np.corrcoef((x1,x2))[0,1] y1=scipy.stats.rankdata(x1) y2=scipy.stats.rankdata(x2) spearman=np.corrcoef((y1,y2))[0,1] return mse,pearson,spearman ###### PARAMETER ############### size25=128 size=size25*25 write_pred=True # whether generate .vec prediction file size_edge=int(10) # chunk edges to be excluded batch=200 path0='../../data/bigwig_all/' #path1='../../data/bigwig_cv2/' chr_all=['chr1','chr2','chr3','chr4','chr5','chr6','chr7','chr8','chr9','chr10','chr11','chr12','chr13','chr14','chr15','chr16','chr17','chr18','chr19','chr20','chr21','chr22','chrX'] #num_bp=[248956422,242193529,198295559,190214555,181538259,170805979,159345973,145138636,138394717,133797422,135086622,133275309,114364328,107043718,101991189,90338345,83257441,80373285,58617616,64444167,46709983,50818468,156040895] num_bp=[249250621,243199373,198022430,191154276,180915260,171115067,159138663,146364022,141213431,135534747,135006516,133851895,115169878,107349540,102531392,90354753,81195210,78077248,59128983,63025520,48129895,51304566,155270560] chr_len_cut={} for i in np.arange(len(chr_all)): chr_len_cut[chr_all[i]]=int(np.floor(num_bp[i]/25.0)*25) # HERE I cut tails chr_len={} for i in np.arange(len(chr_all)): chr_len[chr_all[i]]=num_bp[i] chr_len_bin={} for i in np.arange(len(chr_all)): chr_len_bin[chr_all[i]]=int(np.ceil(num_bp[i]/25.0)) ## test cell exclude_all=[] list_dna=['A','C','G','T'] # argv def get_args(): parser = argparse.ArgumentParser(description="globe prediction") parser.add_argument('-f', '--feature', default='H3K4me1', nargs='+', type=str, help='feature assay') parser.add_argument('-t', '--target', default='H3K9ac',type=str, help='target assay') parser.add_argument('-c', '--cell', default='E002', nargs='+',type=str, help='cell lines as common and specific features') parser.add_argument('-s', '--seed', default='0', type=int, help='seed for common - specific partition') parser.add_argument('-ct', '--cell_test', default='E002', type=str, help='the testing cell line') parser.add_argument('-m', '--model', default='epoch01/weights_1.h5', type=str, help='model') args = parser.parse_args() return args args=get_args() print(args) assay_target = args.target assay_feature = args.feature cell_all = args.cell seed_partition = args.seed cell_test = args.cell_test list_label_test=[cell_test + '_' + assay_target] ## parition common & specific cell types np.random.seed(seed_partition) np.random.shuffle(cell_all) ratio=[0.5,0.5] num = int(len(cell_all)*ratio[0]) cell_common = cell_all[:num] cell_tv = cell_all[num:] cell_all.sort() cell_common.sort() cell_tv.sort() ## partition train-vali cell types np.random.seed(0) #TODO np.random.shuffle(cell_tv) ratio=[0.75,0.25] num = int(len(cell_tv)*ratio[0]) cell_train = cell_tv[:num] cell_vali = cell_tv[num:] cell_tv.sort() cell_train.sort() cell_vali.sort() # model num_class = 1 num_channel = 4 + len(assay_feature)*2 + len(cell_common)*2 model1 = unet.get_unet(num_class=num_class,num_channel=num_channel,size=size) model1.load_weights(args.model) #model1.summary() # load pyBigWig #dict_label={} #for the_cell in cell_tv: # the_id = the_cell + '_' + assay_target # dict_label[the_id]=pyBigWig.open(path0 + 'gt_' + the_id + '.bigwig') dict_dna={} for the_id in list_dna: dict_dna[the_id]=pyBigWig.open(path0 + the_id + '.bigwig') dict_feature_common={} for the_cell in cell_common: the_id = the_cell + '_' + assay_target dict_feature_common[the_id]=pyBigWig.open(path0 + the_id + '.bigwig') dict_feature_specific={} for the_cell in [cell_test]: dict_feature_specific[the_cell]={} for the_assay in assay_feature: the_id = the_cell + '_' + the_assay dict_feature_specific[the_cell][the_id]=pyBigWig.open(path0 + the_id + '.bigwig') dict_avg={} dict_avg[assay_target]=pyBigWig.open(path0 + 'avg_' + assay_target + '.bigwig') for the_assay in assay_feature: dict_avg[the_assay]=pyBigWig.open(path0 + 'avg_' + the_assay + '.bigwig') print('assay_target', assay_target) print('assay_feature', len(assay_feature), assay_feature) print('cell_common', len(cell_common), cell_common) print('cell_tv', len(cell_tv), cell_tv) print('cell_train', len(cell_train), cell_train) print('cell_vali', len(cell_vali), cell_vali) print('cell_test', len(cell_test), cell_test) list_chr=chr_all #list_chr=['chr21'] # TODO path_pred='/'.join(args.model.split('/')[:-1]) + '/' id_label_test = cell_test + '_' + assay_target bw_output = pyBigWig.open(path_pred + 'pred_' + id_label_test + '_seed' + str(seed_partition) + '.bigwig','w') bw_output.addHeader(list(zip(chr_all , np.ceil(np.array(num_bp)/25).astype('int').tolist())), maxZooms=0) #file_score=open(path_pred + 'score_' + id_label_test + '_' + cell_train + '_' + cell_vali + '.txt','w') #mse_all=[] #pearson_all=[] #spearman_all=[] for the_chr in list_chr: print(the_chr) output_all=np.zeros((len(list_label_test), int(chr_len_cut[the_chr]/25.0))) count_all=np.zeros((len(list_label_test), int(chr_len_cut[the_chr]/25.0))) ## 2. batch prediction ########################## phase=0.5 tmp=int(size*batch) index=np.arange(0,int(np.floor(chr_len_cut[the_chr]/tmp))*tmp, tmp) index=np.concatenate((index,np.arange(int(size*phase),int(np.floor(chr_len_cut[the_chr]/tmp))*tmp, tmp))) index=np.concatenate((index,np.array([chr_len_cut[the_chr]-tmp]))) index=np.concatenate((index,np.array([chr_len_cut[the_chr]-tmp-int(size*phase)]))) index.sort() print(index) for i in index: # all start positions start = i end = i + size*batch ## 2. image image=np.zeros((num_channel, size*batch), dtype='float32') # 2.1 dna num=0 for j in np.arange(len(list_dna)): the_id=list_dna[j] image[num,:] = dict_dna[the_id].values(the_chr,start,end) num+=1 # 2.2 feature & diff the_avg=dict_avg[assay_target].values(the_chr,start,end) for j in np.arange(len(cell_common)): the_id=cell_common[j] + '_' + assay_target # feature image[num,:] = dict_feature_common[the_id].values(the_chr,start,end) # diff image[num+1,:]=image[num,:] - the_avg num+=2 for j in np.arange(len(assay_feature)): the_assay = assay_feature[j] the_id=cell_test + '_' + the_assay # feature image[num,:] = dict_feature_specific[cell_test][the_id].values(the_chr,start,end) # diff the_assay=the_id.split('_')[1] image[num+1,:]=image[num,:] - dict_avg[the_assay].values(the_chr,start,end) num+=2 ## make predictions ################ input_pred=
np.reshape(image.T,(batch,size,num_channel))
numpy.reshape
#!/usr/bin/python # coding=utf-8 import numpy as np from scipy.interpolate import Rbf import matplotlib.pyplot as plt import sys from math import pi, sqrt, degrees, acos import os import pandas as pd import warnings from scipy.constants import physical_constants from shapely.geometry import LineString, Point m_p = physical_constants['proton mass'][0] def isnamedtupleinstance(x): """ :param x: :return: """ t = type(x) b = t.__bases__ if len(b) != 1 or b[0] != tuple: return False f = getattr(t, '_fields', None) if not isinstance(f, tuple): return False return all(type(n) == str for n in f) def iterate_namedtuple(object, df): if isnamedtupleinstance(object): for key, item in object._asdict().items(): if isnamedtupleinstance(item): iterate_namedtuple(item, df) else: df[key] = pd.Series(item.flatten(), name=key) else: pass return df # isclose is included in python3.5+, so you can delete this if the code ever gets ported into python3.5+ def isclose(a, b, rel_tol=1e-09, abs_tol=0.0): return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) def print_progress(iteration, total, prefix='', suffix='', decimals=0, bar_length=50): """creates a progress bar Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) bar_length - Optional : character length of bar (Int) """ str_format = "{0:." + str(decimals) + "f}" percents = str_format.format(100 * ((iteration + 1) / float(total))) filled_length = int(round(bar_length * (iteration + 1) / float(total))) bar = '█' * filled_length + '-' * (bar_length - filled_length) sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, percents, '%', suffix)) def calc_cell_pts(neut): sys.setrecursionlimit(100000) def loop(neut, oldcell, curcell, cellscomplete, xcoords, ycoords): beta[curcell, :neut.nSides[curcell]] = np.cumsum( np.roll(neut.angles[curcell, :neut.nSides[curcell]], 1) - 180) + 180 # if first cell: if oldcell == 0 and curcell == 0: # rotate cell by theta0 value (specified) beta[curcell, :neut.nSides[curcell]] = beta[curcell, :neut.nSides[curcell]] + neut.cell1_theta0 x_comp = np.cos(np.radians(beta[curcell, :neut.nSides[curcell]])) * neut.lsides[curcell, :neut.nSides[curcell]] y_comp = np.sin(np.radians(beta[curcell, :neut.nSides[curcell]])) * neut.lsides[curcell, :neut.nSides[curcell]] xcoords[curcell, :neut.nSides[curcell]] = np.roll(np.cumsum(x_comp), 1) + neut.cell1_ctr_x ycoords[curcell, :neut.nSides[curcell]] = np.roll(np.cumsum(y_comp), 1) + neut.cell1_ctr_y # for all other cells: else: # adjust all values in beta for current cell such that the side shared # with oldcell has the same beta as the oldcell side oldcell_beta = beta[oldcell, :][np.where(neut.adjCell[oldcell, :] == curcell)][0] delta_beta = beta[curcell, np.where(neut.adjCell[curcell, :] == oldcell)] + 180 - oldcell_beta beta[curcell, :neut.nSides[curcell]] = beta[curcell, :neut.nSides[curcell]] - delta_beta # calculate non-shifted x- and y- coordinates x_comp = np.cos(np.radians(beta[curcell, :neut.nSides[curcell]])) * neut.lsides[curcell, :neut.nSides[curcell]] y_comp = np.sin(np.radians(beta[curcell, :neut.nSides[curcell]])) * neut.lsides[curcell, :neut.nSides[curcell]] xcoords[curcell, :neut.nSides[curcell]] = np.roll(np.cumsum(x_comp), 1) # xcoords[oldcell,np.where(neut.adjCell[oldcell,:]==curcell)[0][0]] ycoords[curcell, :neut.nSides[curcell]] = np.roll(np.cumsum(y_comp), 1) # ycoords[oldcell,np.where(neut.adjCell[oldcell,:]==curcell)[0][0]] cur_in_old = np.where(neut.adjCell[oldcell, :] == curcell)[0][0] old_in_cur = np.where(neut.adjCell[curcell, :] == oldcell)[0][0] mdpt_old_x = (xcoords[oldcell, cur_in_old] + np.roll(xcoords[oldcell, :], -1)[cur_in_old]) / 2 mdpt_old_y = (ycoords[oldcell, cur_in_old] + np.roll(ycoords[oldcell, :], -1)[cur_in_old]) / 2 mdpt_cur_x = (xcoords[curcell, old_in_cur] + np.roll(xcoords[curcell, :], -1)[old_in_cur]) / 2 mdpt_cur_y = (ycoords[curcell, old_in_cur] + np.roll(ycoords[curcell, :], -1)[old_in_cur]) / 2 xshift = mdpt_old_x - mdpt_cur_x yshift = mdpt_old_y - mdpt_cur_y xcoords[curcell, :] = xcoords[curcell, :] + xshift # xcoords[oldcell,np.where(neut.adjCell[oldcell,:]==curcell)[0][0]] ycoords[curcell, :] = ycoords[curcell, :] + yshift # ycoords[oldcell,np.where(neut.adjCell[oldcell,:]==curcell)[0][0]] # continue looping through adjacent cells for j, newcell in enumerate(neut.adjCell[curcell, :neut.nSides[curcell]]): # if the cell under consideration is a normal cell (>3 sides) and not complete, then move into that cell and continue if neut.nSides[newcell] >= 3 and cellscomplete[newcell] == 0: cellscomplete[newcell] = 1 loop(neut, curcell, newcell, cellscomplete, xcoords, ycoords) return xcoords, ycoords xcoords = np.zeros(neut.adjCell.shape) ycoords = np.zeros(neut.adjCell.shape) beta = np.zeros(neut.adjCell.shape) # beta is the angle of each side with respect to the +x axis. ## Add initial cell to the list of cells that are complete cellscomplete = np.zeros(neut.nCells) cellscomplete[0] = 1 xs, ys = loop(neut, 0, 0, cellscomplete, xcoords, ycoords) return xs, ys class NeutpyTools: def __init__(self, neut=None): # get vertices in R, Z geometry self.xs, self.ys = self.calc_cell_pts(neut) # localize densities, ionization rates, and a few other parameters that might be needed. self.n_n_slow = neut.nn.s self.n_n_thermal = neut.nn.t self.n_n_total = neut.nn.tot self.izn_rate_slow = neut.izn_rate.s self.izn_rate_thermal = neut.izn_rate.t self.izn_rate_total = neut.izn_rate.tot self.flux_in_s = neut.flux.inc.s self.flux_in_t = neut.flux.inc.t self.flux_in_tot = self.flux_in_s + self.flux_in_t self.flux_out_s = neut.flux.out.s self.flux_out_t = neut.flux.out.t self.flux_out_tot = self.flux_out_s + self.flux_out_t self.create_flux_outfile() self.create_cell_outfile() flux_s_xcomp, flux_s_ycomp, flux_s_mag = self.calc_flow('slow', norm=True) flux_t_xcomp, flux_t_ycomp, flux_t_mag = self.calc_flow('thermal', norm=True) flux_tot_xcomp, flux_tot_ycomp, flux_tot_mag = self.calc_flow('total', norm=True) self.vars = {} self.vars['n_n_slow'] = neut.nn.s self.vars['n_n_thermal'] = neut.nn.t self.vars['n_n_total'] = neut.nn.tot self.vars['flux_s_xcomp'] = flux_s_xcomp self.vars['flux_s_ycomp'] = flux_s_ycomp self.vars['flux_s_mag'] = flux_s_mag self.vars['flux_t_xcomp'] = flux_t_xcomp self.vars['flux_t_ycomp'] = flux_t_ycomp self.vars['flux_t_mag'] = flux_t_mag self.vars['flux_tot_xcomp'] = flux_tot_xcomp self.vars['flux_tot_ycomp'] = flux_tot_ycomp self.vars['flux_tot_mag'] = flux_tot_mag print('attempting to start plot_cell_vals') self.plot_cell_vals() def create_cell_outfile(self): df = pd.DataFrame() df['R'] = pd.Series(np.mean(self.xs, axis=1), name='R') df['Z'] = pd.Series(np.mean(self.ys, axis=1), name='Z') df['n_n_slow'] = pd.Series(self.n_n_slow, name='n_n_slow') df['n_n_thermal'] = pd.Series(self.n_n_thermal, name='n_n_thermal') df['n_n_total'] = pd.Series(self.n_n_total, name='n_n_total') df['izn_rate_slow'] = pd.Series(self.izn_rate_slow, name='izn_rate_slow') df['izn_rate_thermal'] = pd.Series(self.izn_rate_thermal, name='izn_rate_thermal') df['izn_rate_total'] = pd.Series(self.izn_rate_thermal, name='izn_rate_total') #cell_df = iterate_namedtuple(neut.cell, df) df.to_csv(os.getcwd() + '/outputs/neutpy_cell_values.txt') def interp_RZ(self, var): x = np.average(self.xs, axis=1) y = np.average(self.ys, axis=1) d = self.vars[var] return Rbf(x, y, d) def calc_flow(self, ntrl_pop='tot', norm=True): """Creates interpolation functions for net flux directions and magnitudes flux_in: fluxes coming into cells. Can be slow, thermal, total or any other fluxes. Array of size (nCells, 3) flux_in: fluxes leaving cells. Can be slow, thermal, total or any other fluxes. Array of size (nCells, 3) norm: returns normalized x- and y-component interpolation functions. Useful for plotting quiver plots with equally sized arrows or if you only care about the direction of the flux (You can still get the magnitude from "flux_net_av_mag" interpolation object.) """ if ntrl_pop == 'slow': flux_in = self.flux_in_s[:, :-1] flux_out = self.flux_out_s[:, :-1] elif ntrl_pop == 'thermal': flux_in = self.flux_in_t[:, :-1] flux_out = self.flux_out_t[:, :-1] elif ntrl_pop == 'total': flux_in = self.flux_in_tot[:, :-1] flux_out = self.flux_out_tot[:, :-1] flux_net = flux_out - flux_in cent_pts_x = np.average(self.xs, axis=1) cent_pts_y = np.average(self.ys, axis=1) x_comp = np.roll(self.xs, -1, axis=1) - self.xs y_comp = np.roll(self.ys, -1, axis=1) - self.ys lside = np.sqrt(x_comp**2 + y_comp**2) perim = np.sum(lside, axis=1).reshape((-1, 1)) l_frac = lside / perim side_angles = np.arctan2(y_comp, x_comp) side_angles = np.where(side_angles < 0, side_angles+2*pi, side_angles) outwd_nrmls = side_angles + pi/2 outwd_nrmls = np.where(outwd_nrmls < 0, outwd_nrmls+2*pi, outwd_nrmls) outwd_nrmls = np.where(outwd_nrmls >= 2*pi, outwd_nrmls-2*pi, outwd_nrmls) flux_net_dir = np.where(flux_net < 0, outwd_nrmls+pi, outwd_nrmls) flux_net_dir = np.where(flux_net_dir < 0, flux_net_dir+2*pi, flux_net_dir) flux_net_dir = np.where(flux_net_dir >= 2*pi, flux_net_dir-2*pi, flux_net_dir) # x- and y-component of fluxes flux_net_xcomp =
np.abs(flux_net)
numpy.abs
import jax.numpy as np import numpy as onp import tensorflow_datasets as tfds import tensorflow as tf from enum import Enum def _one_hot(x, k, dtype=np.float32): """Create a one-hot encoding of x of size k.""" return onp.array(x[:, None] == onp.arange(k), dtype) CIFAR_ANIMAL_IDS = [2,3,4,5,6,7] CIFAR_VEHICLE_IDS = [0,1,8,9] Dataset = Enum('Dataset', ['cifar10','cifar6','cifar4','cifar2', 'mnist']) ImageNoise = Enum('ImageNoise',['none','gaussian']) BackgroundNoise = Enum('BackgroundNoise',['none','gaussian','blocks','imagenet']) BlockNoiseDataset = Enum('BlockNoiseDataset',['cifar10','cifar6','cifar4']) Placement = Enum('Placement', ['fixed_corner','random_corner','random_loc']) for e in [Dataset,ImageNoise,BackgroundNoise,BlockNoiseDataset,Placement]: e.__str__ = lambda self: self.name def load_data(dataset=Dataset.cifar10, image_size=32, background_size=32, image_noise=ImageNoise.none, background_noise=BackgroundNoise.none, block_noise_data = BlockNoiseDataset.cifar6, image_noise_scalar=1.0, background_noise_scalar=1.0, placement=Placement.fixed_corner, num_train=-1, num_test=-1): if dataset == Dataset.mnist: train_images, train_ys, test_images, test_ys =mnist(num_train, num_test) # TODO: not passing image size for mnist else: c10_train_xs, c10_train_ys, c10_test_xs, c10_test_ys = cifar_with_size(image_size) # TODO: not passing num examples for cifar if dataset == Dataset.cifar10: train_images, train_ys, test_images, test_ys = c10_train_xs, c10_train_ys, c10_test_xs, c10_test_ys elif dataset == Dataset.cifar2: train_ys = onp.vectorize(lambda label: 1 if label in CIFAR_ANIMAL_IDS else 0)(c10_train_ys) test_ys = onp.vectorize(lambda label: 1 if label in CIFAR_ANIMAL_IDS else 0)(c10_test_ys) train_images, test_images = c10_train_xs, c10_test_xs elif dataset == Dataset.cifar4: train_images, train_ys, test_images, test_ys = cifar_with_only(CIFAR_VEHICLE_IDS, c10_train_xs, c10_train_ys, c10_test_xs, c10_test_ys) elif dataset == Dataset.cifar6: train_images, train_ys, test_images, test_ys = cifar_with_only(CIFAR_ANIMAL_IDS, c10_train_xs, c10_train_ys, c10_test_xs, c10_test_ys) if image_noise==ImageNoise.gaussian: train_images += onp.random.normal(scale=image_noise_scalar,size=train_images.shape) test_images += onp.random.normal(scale=image_noise_scalar,size=test_images.shape) if image_size == background_size: train_xs, test_xs = train_images, test_images else: if background_noise == BackgroundNoise.none: background_train = onp.zeros((train_images.shape[0], background_size, background_size, train_images.shape[-1])) background_test = onp.zeros((test_images.shape[0], background_size, background_size, train_images.shape[-1])) elif background_noise == BackgroundNoise.gaussian: background_train = onp.random.normal(scale=background_noise_scalar,size=(train_images.shape[0], background_size, background_size, train_images.shape[-1])) background_test = onp.random.normal(scale=background_noise_scalar,size=(test_images.shape[0], background_size, background_size, train_images.shape[-1])) elif background_noise == BackgroundNoise.blocks: c10_train_xs, _, c10_test_xs, _ = cifar_with_size(background_size//2) if block_noise_data == BlockNoiseDataset.cifar4: background_images,_,_,_ = cifar_with_only(CIFAR_VEHICLE_IDS, c10_train_xs, c10_train_ys, c10_test_xs, c10_test_ys) elif block_noise_data == BlockNoiseDataset.cifar6: background_images,_,_,_ = cifar_with_only(CIFAR_ANIMAL_IDS, c10_train_xs, c10_train_ys, c10_test_xs, c10_test_ys) background_train = blocks(background_images, train_images.shape[0]) background_test = blocks(background_images, test_images.shape[0]) elif background_noise == BackgroundNoise.imagenet: background_train = load_imagenet_plants(train_images.shape[0]) background_test = load_imagenet_plants(test_images.shape[0]) background_train *= background_noise_scalar background_test *= background_noise_scalar train_xs, test_xs = place_images(placement, train_images, background_train), place_images(placement, test_images, background_test) k = max(train_ys) + 1 print('There are {:} categories'.format(k)) train_ys, test_ys = _one_hot(train_ys, k), _one_hot(test_ys, k) return train_xs, train_ys, test_xs, test_ys def mnist(num_train=-1, num_test=-1, size=28): ds_train, ds_test = tfds.load('mnist', split=['train','test'],data_dir='data/') if size != 28: ds_train = ds_train.map(lambda ex: {'image':tf.image.resize(ex['image'], [size,size])/255., 'label':ex['label']}) ds_test = ds_test.map(lambda ex: {'image':tf.image.resize(ex['image'], [size,size])/255., 'label':ex['label']}) ds_train = ds_train.batch(60000).as_numpy_iterator() ds_train = next(ds_train) ds_test = ds_test.batch(10000).as_numpy_iterator() ds_test = next(ds_test) train_xs, train_ys, test_xs, test_ys = (ds_train["image"], ds_train["label"], ds_test["image"], ds_test["label"]) if size == 28: train_xs = train_xs / 255. test_xs = test_xs / 255. num_train = num_train if num_train > 0 else 60000 num_test = num_test if num_test > 0 else 10000 keep_idx_train = onp.random.choice(train_xs.shape[0],size=num_train) keep_idx_test = onp.random.choice(test_xs.shape[0],size=num_test) return train_xs[keep_idx_train], train_ys[keep_idx_train], test_xs[keep_idx_test], test_ys[keep_idx_test] def cifar_with_size(size): ds_train, ds_test = tfds.load('cifar10', split=['train','test'],data_dir='data/') if size != 32: ds_train = ds_train.map(lambda ex: {'id': ex['id'], 'image':tf.image.resize(ex['image'], [size,size])/255., 'label':ex['label']}) ds_test = ds_test.map(lambda ex: {'id': ex['id'], 'image':tf.image.resize(ex['image'], [size,size])/255., 'label':ex['label']}) ds_train = ds_train.batch(50000).as_numpy_iterator() ds_train = next(ds_train) ds_test = ds_test.batch(10000).as_numpy_iterator() ds_test = next(ds_test) train_xs, train_ys, test_xs, test_ys = (ds_train["image"], ds_train["label"], ds_test["image"], ds_test["label"]) if size == 32: # otherwise this had to be done above during resizing, per tf.image api train_xs = train_xs / 255. test_xs = test_xs / 255. return train_xs, train_ys, test_xs, test_ys def cifar_with_only(class_ids, train_xs, train_ys, test_xs, test_ys): is_allowed_train = onp.equal(train_ys.reshape(-1,1),onp.array(class_ids).reshape(1,-1)).any(axis=-1) is_allowed_test = onp.equal(test_ys.reshape(-1,1),onp.array(class_ids).reshape(1,-1)).any(axis=-1) train_xs, train_ys = train_xs[is_allowed_train], train_ys[is_allowed_train] test_xs, test_ys = test_xs[is_allowed_test], test_ys[is_allowed_test] train_ys = onp.vectorize(lambda label: class_ids.index(label))(train_ys) test_ys = onp.vectorize(lambda label: class_ids.index(label))(test_ys) return train_xs, train_ys, test_xs, test_ys def blocks(dataset, num_examples): num_images = dataset.shape[0] out = onp.concatenate([onp.concatenate([dataset[
onp.random.choice(num_images, size=num_examples)
numpy.random.choice
import sys import numpy as np import torch from torch import nn import torch.nn.functional as F from torch.optim import Adam, AdamW, SGD, RMSprop from .base import TrainerBase class AssistTrainer(TrainerBase): def __init__(self, args): super(AssistTrainer, self).__init__(args) self.args = args self.data = args.data self.loader = args.loader self.model = None def dataloader(self): """ load data and build dataset -> loaders """ # load / split data train_data = self.data.get_train_data() if self.args.use_dev: train_data, dev_data = self.data.split_data(train_data) test_data = self.data.get_test_data() #print(train_data[0]) #print(dev_data[0]) #print(test_data[0]) # build dataset train_dataset = self.loader.build_dataset( train_data, self.args.train_max_seq_len) train_loader = self.loader.build_dataloader( train_dataset, 'train') test_dataset = self.loader.build_dataset( test_data, self.args.eval_max_seq_len) test_loader = self.loader.build_dataloader( test_dataset, 'test') if self.args.use_dev: dev_dataset = self.loader.build_dataset( dev_data, self.args.eval_max_seq_len) dev_loader = self.loader.build_dataloader( dev_dataset, 'dev') return train_loader, dev_loader, test_loader else: return train_loader, test_loader def process_batch(self, batch, max_seq_len): qid, correct, mask, n_questions = batch # qid : [args.train_batch_size, args.max_seq_len], float # correct : [args.train_batch_size, args.max_seq_len], float # mask : [args.train_batch_size, args.max_seq_len], bool (for each example, mask length is n_questions -1) # n_questions : [args.max_seq_len], int # 0. actual sequence -1 masks mask = mask.type(torch.FloatTensor) # 1. build input_X (~2q dim) # [incorrect 0 0 0 0 0 correct 0 0 0 0 0] input_index = correct * self.args.n_questions + qid max_input_index = 2 * self.args.n_questions inputX = F.one_hot( input_index, max_input_index)[:,:max_seq_len,:] inputX = inputX.type(torch.FloatTensor) * mask.unsqueeze(2) #print(inputX.size()) # 2. build inputY (q dim) : answer one-hot ids inputY = F.one_hot( qid, self.args.n_questions)[:,1:,:] inputY = inputY.type(torch.FloatTensor) * mask.unsqueeze(2) #print(inputY.size()) # 3. build correct (q dim) : answer 1/0 correct = inputY * correct[:,1:].unsqueeze(2) * mask.unsqueeze(2) #print(correct.size()) #print(mask) #print(inputX[0][:4]) #print(inputY[0][:4]) #print(correct[0][:4]) inputX = inputX.to(self.args.device) inputY = inputY.to(self.args.device) correct = correct.to(self.args.device) mask = mask.to(self.args.device) return inputX, inputY, correct, mask def compute_loss(self, logit, correct, mask): """ input : logit : (batch_size, max_seq_len, n_questions) correct : (batch_size, max_seq_len, n_questions) mask : (batch_size, max_seq_len) output : loss """ loss = self.loss_function( logit, correct) * mask.unsqueeze(2) # loss = torch.sum(loss, dim=2) # masked dim loss = torch.mean(loss) return loss def update_params(self, loss): """ update self.model.parameters() # TODO : gradient accumulation """ loss.backward() torch.nn.utils.clip_grad_norm_( self.model.parameters(), self.args.clip_grad) self.optimizer.step() self.optimizer.zero_grad() self.n_updates += 1 def set_model(self): self.model = self.args.model(self.args) self.model.to(self.args.device) # load model to target device def train(self): # load dataloadrers if self.args.use_dev: train_loader, dev_loader, test_loader = self.dataloader() else: train_loader, test_loader = self.dataloader() # set trainer components if self.model is None: self.set_model() # set loss / optim self.loss_function = self.set_loss() self.set_optimizer(self.model.parameters()) self.optimizer.zero_grad() # train model for i in range(self.args.n_epochs): print("Start Training: Epoch", str(i+1)) self.model.train() for train_batch in train_loader: # process inputs inputX, inputY, correct, mask = self.process_batch( train_batch, self.args.train_max_seq_len) # forward step logits = self.model(inputX, inputY) # compute loss loss = self.compute_loss(logits, correct, mask) # backward params self.update_params(loss) if self.n_updates % self.args.log_steps == 0: print("Training steps:", str(self.n_updates), "Loss:", str(loss.item())) self.n_epochs += 1 if self.args.save_model: if self.n_epochs % self.args.save_epochs == 0 and self.n_epochs != 0: self.save_model(self.model, self.optimizer) # eval model if self.args.use_dev: dev_tp, dev_tc, dev_tm = self.predict(dev_loader) dev_predict, dev_correct = self.metrics.flatten(dev_tp, dev_tc, dev_tm) dev_auc = self.metrics.auc(dev_predict, dev_correct) print("Dev AUC:", dev_auc) tst_tp, tst_tc, tst_tm = self.predict(test_loader) tst_predict, tst_correct = self.metrics.flatten(tst_tp, tst_tc, tst_tm) tst_auc = self.metrics.auc(tst_predict, tst_correct) print("Test AUC:", tst_auc) def predict(self, eval_loader): total_predictions = [] total_correct = [] total_mask = [] if self.model is None: self.set_model() self.model.eval() for eval_batch in eval_loader: # process inputs inputX, inputY, correct, mask = self.process_batch( eval_batch, self.args.eval_max_seq_len) # forward step logits = self.model(inputX, inputY) # predictions # product with mask because of logit=0 is sigm(0) != 0 predictions = torch.mean( self.model.activation(logits) * mask.unsqueeze(2), 2) correct = torch.sum(correct, 2) # if using GPU, move every batch predictions to CPU # to not consume GPU memory for all prediction results if self.args.device == 'cuda': predictions = predictions.to('cpu').detach().numpy() correct = correct.to('cpu').detach().numpy() mask = mask.to('cpu').detach().numpy() else: # cpu predictions = predictions.detach().numpy() correct = correct.detach().numpy() mask = mask.detach().numpy() total_predictions.append(predictions) total_correct.append(correct) total_mask.append(mask) total_predictions = np.concatenate(total_predictions) # (total eval examples, max_sequence_length) total_correct = np.concatenate(total_correct) # (total eval examples, max_sequence_length) total_mask =
np.concatenate(total_mask)
numpy.concatenate