formal
stringlengths 41
427k
| informal
stringclasses 1
value |
---|---|
Std.RBNode.forM_eq_forM_toList ** m : Type u_1 → Type u_2 α : Type u_3 f : α → m PUnit inst✝¹ : Monad m inst✝ : LawfulMonad m t : RBNode α ⊢ forM f t = List.forM (toList t) f ** induction t <;> simp [*] ** Qed
| |
Std.RBNode.foldlM_eq_foldlM_toList ** m : Type u_1 → Type u_2 α : Type u_3 a✝ : Type u_1 f : a✝ → α → m a✝ init : a✝ inst✝¹ : Monad m inst✝ : LawfulMonad m t : RBNode α ⊢ foldlM f init t = List.foldlM f init (toList t) ** induction t generalizing init <;> simp [*] ** Qed
| |
Std.RBNode.forIn_visit_eq_bindList ** m : Type u_1 → Type u_2 α : Type u_3 α✝ : Type u_1 f : α → α✝ → m (ForInStep α✝) init : α✝ inst✝¹ : Monad m inst✝ : LawfulMonad m t : RBNode α ⊢ forIn.visit f t init = ForInStep.bindList f (toList t) (ForInStep.yield init) ** induction t generalizing init <;> simp [*, forIn.visit] ** Qed
| |
Std.RBNode.forIn_eq_forIn_toList ** m : Type u_1 → Type u_2 α : Type u_3 α✝ : Type u_1 init : α✝ f : α → α✝ → m (ForInStep α✝) inst✝¹ : Monad m inst✝ : LawfulMonad m t : RBNode α ⊢ forIn t init f = forIn (toList t) init f ** simp [forIn, RBNode.forIn] ** m : Type u_1 → Type u_2 α : Type u_3 α✝ : Type u_1 init : α✝ f : α → α✝ → m (ForInStep α✝) inst✝¹ : Monad m inst✝ : LawfulMonad m t : RBNode α ⊢ ForInStep.run <$> forIn.visit f t init = forIn (toList t) init f ** rw [List.forIn_eq_bindList, forIn_visit_eq_bindList] ** Qed
| |
Std.RBNode.Stream.foldr_cons ** α : Type u_1 t : RBNode.Stream α l : List α ⊢ foldr (fun x x_1 => x :: x_1) t l = toList t ++ l ** unfold toList ** α : Type u_1 t : RBNode.Stream α l : List α ⊢ foldr (fun x x_1 => x :: x_1) t l = foldr (fun x x_1 => x :: x_1) t [] ++ l ** apply Eq.symm ** case h α : Type u_1 t : RBNode.Stream α l : List α ⊢ foldr (fun x x_1 => x :: x_1) t [] ++ l = foldr (fun x x_1 => x :: x_1) t l ** induction t <;> simp [*, foldr, RBNode.foldr_cons] ** Qed
| |
Std.RBNode.Stream.toList_cons ** α : Type u_1 x : α r : RBNode α s : RBNode.Stream α ⊢ toList (cons x r s) = x :: RBNode.toList r ++ toList s ** rw [toList, toList, foldr, RBNode.foldr_cons] ** α : Type u_1 x : α r : RBNode α s : RBNode.Stream α ⊢ x :: (RBNode.toList r ++ foldr (fun x x_1 => x :: x_1) s []) = x :: RBNode.toList r ++ foldr (fun x x_1 => x :: x_1) s [] ** rfl ** Qed
| |
Std.RBNode.Stream.foldr_eq_foldr_toList ** α : Type u_1 α✝ : Type u_2 f : α → α✝ → α✝ init : α✝ s : RBNode.Stream α ⊢ foldr f s init = List.foldr f init (toList s) ** induction s <;> simp [*, RBNode.foldr_eq_foldr_toList] ** Qed
| |
Std.RBNode.Stream.foldl_eq_foldl_toList ** α : Type u_1 α✝ : Type u_2 f : α✝ → α → α✝ init : α✝ t : RBNode.Stream α ⊢ foldl f init t = List.foldl f init (toList t) ** induction t generalizing init <;> simp [*, RBNode.foldl_eq_foldl_toList] ** Qed
| |
Std.RBNode.Stream.forIn_eq_forIn_toList ** m : Type u_1 → Type u_2 α : Type u_3 α✝ : Type u_1 init : α✝ f : α → α✝ → m (ForInStep α✝) inst✝¹ : Monad m inst✝ : LawfulMonad m t : RBNode α ⊢ forIn t init f = forIn (RBNode.toList t) init f ** simp [forIn, RBNode.forIn] ** m : Type u_1 → Type u_2 α : Type u_3 α✝ : Type u_1 init : α✝ f : α → α✝ → m (ForInStep α✝) inst✝¹ : Monad m inst✝ : LawfulMonad m t : RBNode α ⊢ ForInStep.run <$> forIn.visit f t init = forIn (RBNode.toList t) init f ** rw [List.forIn_eq_bindList, forIn_visit_eq_bindList] ** Qed
| |
Std.RBNode.toStream_toList' ** α : Type u_1 t : RBNode α s : RBNode.Stream α ⊢ Stream.toList (toStream t s) = toList t ++ Stream.toList s ** induction t generalizing s <;> simp [*, toStream] ** Qed
| |
Std.RBNode.toStream_toList ** α : Type u_1 t : RBNode α ⊢ Stream.toList (toStream t Stream.nil) = toList t ** simp [toStream_toList'] ** Qed
| |
Std.RBNode.ordered_iff ** α : Type u_1 cmp : α → α → Ordering t : RBNode α ⊢ Ordered cmp t ↔ List.Pairwise (cmpLT cmp) (toList t) ** induction t with
| nil => simp
| node c l v r ihl ihr =>
simp [*, List.pairwise_append, Ordered, All_def,
and_assoc, and_left_comm, and_comm, imp_and, forall_and]
exact fun _ _ hl hr a ha b hb => (hl _ ha).trans (hr _ hb) ** case nil α : Type u_1 cmp : α → α → Ordering ⊢ Ordered cmp nil ↔ List.Pairwise (cmpLT cmp) (toList nil) ** simp ** case node α : Type u_1 cmp : α → α → Ordering c : RBColor l : RBNode α v : α r : RBNode α ihl : Ordered cmp l ↔ List.Pairwise (cmpLT cmp) (toList l) ihr : Ordered cmp r ↔ List.Pairwise (cmpLT cmp) (toList r) ⊢ Ordered cmp (node c l v r) ↔ List.Pairwise (cmpLT cmp) (toList (node c l v r)) ** simp [*, List.pairwise_append, Ordered, All_def,
and_assoc, and_left_comm, and_comm, imp_and, forall_and] ** case node α : Type u_1 cmp : α → α → Ordering c : RBColor l : RBNode α v : α r : RBNode α ihl : Ordered cmp l ↔ List.Pairwise (cmpLT cmp) (toList l) ihr : Ordered cmp r ↔ List.Pairwise (cmpLT cmp) (toList r) ⊢ List.Pairwise (cmpLT cmp) (toList l) → List.Pairwise (cmpLT cmp) (toList r) → (∀ (x : α), x ∈ l → cmpLT cmp x v) → (∀ (x : α), x ∈ r → cmpLT cmp v x) → ∀ (x : α), x ∈ l → ∀ (a : α), a ∈ r → cmpLT cmp x a ** exact fun _ _ hl hr a ha b hb => (hl _ ha).trans (hr _ hb) ** Qed
| |
Std.RBNode.setBlack_toList ** α : Type u_1 t : RBNode α ⊢ toList (setBlack t) = toList t ** cases t <;> simp [setBlack] ** Qed
| |
Std.RBNode.setRed_toList ** α : Type u_1 t : RBNode α ⊢ toList (setRed t) = toList t ** cases t <;> simp [setRed] ** Qed
| |
Std.RBNode.balance1_toList ** α : Type u_1 l : RBNode α v : α r : RBNode α ⊢ toList (balance1 l v r) = toList l ++ v :: toList r ** unfold balance1 ** α : Type u_1 l : RBNode α v : α r : RBNode α ⊢ toList (match l, v, r with | node red (node red a x b) y c, z, d => node red (node black a x b) y (node black c z d) | node red a x (node red b y c), z, d => node red (node black a x b) y (node black c z d) | a, x, b => node black a x b) = toList l ++ v :: toList r ** split <;> simp ** Qed
| |
Std.RBNode.balance2_toList ** α : Type u_1 l : RBNode α v : α r : RBNode α ⊢ toList (balance2 l v r) = toList l ++ v :: toList r ** unfold balance2 ** α : Type u_1 l : RBNode α v : α r : RBNode α ⊢ toList (match l, v, r with | a, x, node red (node red b y c) z d => node red (node black a x b) y (node black c z d) | a, x, node red b y (node red c z d) => node red (node black a x b) y (node black c z d) | a, x, b => node black a x b) = toList l ++ v :: toList r ** split <;> simp ** Qed
| |
Std.RBNode.balLeft_toList ** α : Type u_1 l : RBNode α v : α r : RBNode α ⊢ toList (balLeft l v r) = toList l ++ v :: toList r ** unfold balLeft ** α : Type u_1 l : RBNode α v : α r : RBNode α ⊢ toList (match l with | node red a x b => node red (node black a x b) v r | l => match r with | node black a y b => balance2 l v (node red a y b) | node red (node black a y b) z c => node red (node black l v a) y (balance2 b z (setRed c)) | r => node red l v r) = toList l ++ v :: toList r ** split <;> (try simp) ** case h_2 α : Type u_1 l : RBNode α v : α r l✝ : RBNode α x✝ : ∀ (a : RBNode α) (x : α) (b : RBNode α), l = node red a x b → False ⊢ toList (match r with | node black a y b => balance2 l v (node red a y b) | node red (node black a y b) z c => node red (node black l v a) y (balance2 b z (setRed c)) | r => node red l v r) = toList l ++ v :: toList r ** split <;> simp ** case h_1 α : Type u_1 v : α r l✝ a✝ : RBNode α x✝ : α b✝ : RBNode α ⊢ toList (node red (node black a✝ x✝ b✝) v r) = toList (node red a✝ x✝ b✝) ++ v :: toList r ** try simp ** case h_1 α : Type u_1 v : α r l✝ a✝ : RBNode α x✝ : α b✝ : RBNode α ⊢ toList (node red (node black a✝ x✝ b✝) v r) = toList (node red a✝ x✝ b✝) ++ v :: toList r ** simp ** Qed
| |
Std.RBNode.balRight_toList ** α : Type u_1 l : RBNode α v : α r : RBNode α ⊢ toList (balRight l v r) = toList l ++ v :: toList r ** unfold balRight ** α : Type u_1 l : RBNode α v : α r : RBNode α ⊢ toList (match r with | node red b y c => node red l v (node black b y c) | r => match l with | node black a x b => balance1 (node red a x b) v r | node red a x (node black b y c) => node red (balance1 (setRed a) x b) y (node black c v r) | l => node red l v r) = toList l ++ v :: toList r ** split <;> (try simp) ** case h_2 α : Type u_1 l : RBNode α v : α r l✝ : RBNode α x✝ : ∀ (a : RBNode α) (x : α) (b : RBNode α), r = node red a x b → False ⊢ toList (match l with | node black a x b => balance1 (node red a x b) v r | node red a x (node black b y c) => node red (balance1 (setRed a) x b) y (node black c v r) | l => node red l v r) = toList l ++ v :: toList r ** split <;> simp ** case h_1 α : Type u_1 l : RBNode α v : α l✝ a✝ : RBNode α x✝ : α b✝ : RBNode α ⊢ toList (node red l v (node black a✝ x✝ b✝)) = toList l ++ v :: toList (node red a✝ x✝ b✝) ** try simp ** case h_1 α : Type u_1 l : RBNode α v : α l✝ a✝ : RBNode α x✝ : α b✝ : RBNode α ⊢ toList (node red l v (node black a✝ x✝ b✝)) = toList l ++ v :: toList (node red a✝ x✝ b✝) ** simp ** Qed
| |
Std.RBNode.size_eq ** α : Type u_1 t : RBNode α ⊢ size t = List.length (toList t) ** induction t <;> simp [*, size] ** case node α : Type u_1 c✝ : RBColor l✝ : RBNode α v✝ : α r✝ : RBNode α l_ih✝ : size l✝ = List.length (toList l✝) r_ih✝ : size r✝ = List.length (toList r✝) ⊢ List.length (toList l✝) + List.length (toList r✝) + 1 = List.length (toList l✝) + Nat.succ (List.length (toList r✝)) ** rfl ** Qed
| |
Std.RBNode.Path.rootOrdered_iff ** α : Type u_1 cmp : α → α → Ordering v : α p : Path α hp : Ordered cmp p ⊢ RootOrdered cmp p v ↔ (∀ (a : α), a ∈ listL p → cmpLT cmp a v) ∧ ∀ (a : α), a ∈ listR p → cmpLT cmp v a ** induction p with
(simp [All_def] at hp; simp [*, and_assoc, and_left_comm, and_comm, or_imp, forall_and])
| left _ _ x _ ih => exact fun vx _ _ _ ha => vx.trans (hp.2.1 _ ha)
| right _ _ x _ ih => exact fun xv _ _ _ ha => (hp.2.1 _ ha).trans xv ** case root α : Type u_1 cmp : α → α → Ordering v : α hp : Ordered cmp root ⊢ RootOrdered cmp root v ↔ (∀ (a : α), a ∈ listL root → cmpLT cmp a v) ∧ ∀ (a : α), a ∈ listR root → cmpLT cmp v a ** simp [All_def] at hp ** case root α : Type u_1 cmp : α → α → Ordering v : α hp : True ⊢ RootOrdered cmp root v ↔ (∀ (a : α), a ∈ listL root → cmpLT cmp a v) ∧ ∀ (a : α), a ∈ listR root → cmpLT cmp v a ** simp [*, and_assoc, and_left_comm, and_comm, or_imp, forall_and] ** case left α : Type u_1 cmp : α → α → Ordering v : α c✝ : RBColor parent✝ : Path α x : α r✝ : RBNode α ih : Ordered cmp parent✝ → (RootOrdered cmp parent✝ v ↔ (∀ (a : α), a ∈ listL parent✝ → cmpLT cmp a v) ∧ ∀ (a : α), a ∈ listR parent✝ → cmpLT cmp v a) hp : Ordered cmp parent✝ ∧ (∀ (x_1 : α), x_1 ∈ r✝ → cmpLT cmp x x_1) ∧ RootOrdered cmp parent✝ x ∧ (∀ (x : α), x ∈ r✝ → RootOrdered cmp parent✝ x) ∧ RBNode.Ordered cmp r✝ ⊢ cmpLT cmp v x → (∀ (a : α), a ∈ listL parent✝ → cmpLT cmp a v) → (∀ (a : α), a ∈ listR parent✝ → cmpLT cmp v a) → ∀ (x : α), x ∈ r✝ → cmpLT cmp v x ** exact fun vx _ _ _ ha => vx.trans (hp.2.1 _ ha) ** case right α : Type u_1 cmp : α → α → Ordering v : α c✝ : RBColor l✝ : RBNode α x : α parent✝ : Path α ih : Ordered cmp parent✝ → (RootOrdered cmp parent✝ v ↔ (∀ (a : α), a ∈ listL parent✝ → cmpLT cmp a v) ∧ ∀ (a : α), a ∈ listR parent✝ → cmpLT cmp v a) hp : Ordered cmp parent✝ ∧ (∀ (x_1 : α), x_1 ∈ l✝ → cmpLT cmp x_1 x) ∧ RootOrdered cmp parent✝ x ∧ (∀ (x : α), x ∈ l✝ → RootOrdered cmp parent✝ x) ∧ RBNode.Ordered cmp l✝ ⊢ cmpLT cmp x v → (∀ (a : α), a ∈ listL parent✝ → cmpLT cmp a v) → (∀ (a : α), a ∈ listR parent✝ → cmpLT cmp v a) → ∀ (x : α), x ∈ l✝ → cmpLT cmp x v ** exact fun xv _ _ _ ha => (hp.2.1 _ ha).trans xv ** Qed
| |
Std.RBNode.Path.fill_toList ** α : Type u_1 t : RBNode α p : Path α ⊢ toList (fill p t) = withList p (toList t) ** induction p generalizing t <;> simp [*] ** Qed
| |
Std.RBNode.Path.ins_toList ** α : Type u_1 t : RBNode α p : Path α ⊢ toList (ins p t) = withList p (toList t) ** match p with
| .root | .left red .. | .right red .. | .left black .. | .right black .. =>
simp [ins, ins_toList] ** α : Type u_1 t : RBNode α p : Path α l✝ : RBNode α v✝ : α parent✝ : Path α ⊢ toList (ins (right black l✝ v✝ parent✝) t) = withList (right black l✝ v✝ parent✝) (toList t) ** simp [ins, ins_toList] ** Qed
| |
Std.RBNode.mem_insert ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t ⊢ v' ∈ insert cmp t v ↔ v' ∈ t ∧ find? (cmp v) t ≠ some v' ∨ v' = v ** refine ⟨fun h => ?_, fun | .inl ⟨h₁, h₂⟩ => ?_ | .inr h => ?_⟩ ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t h : v' ∈ insert cmp t v p : Path α e : zoom (cmp v) t Path.root = (nil, p) ⊢ v' ∈ t ∧ find? (cmp v) t ≠ some v' ∨ v' = v ** let ⟨_, _, h₁, h₂⟩ := exists_insert_toList_zoom_nil ht e ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t h : v' ∈ insert cmp t v p : Path α e : zoom (cmp v) t Path.root = (nil, p) w✝¹ w✝ : List α h₁ : toList t = w✝¹ ++ w✝ h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ ⊢ v' ∈ t ∧ find? (cmp v) t ≠ some v' ∨ v' = v ** simp [← mem_toList, h₂] at h ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t p : Path α e : zoom (cmp v) t Path.root = (nil, p) w✝¹ w✝ : List α h₁ : toList t = w✝¹ ++ w✝ h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h : v' ∈ w✝¹ ∨ v' = v ∨ v' ∈ w✝ ⊢ v' ∈ t ∧ find? (cmp v) t ≠ some v' ∨ v' = v ** rw [← or_assoc, or_right_comm] at h ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t p : Path α e : zoom (cmp v) t Path.root = (nil, p) w✝¹ w✝ : List α h₁ : toList t = w✝¹ ++ w✝ h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h : (v' ∈ w✝¹ ∨ v' ∈ w✝) ∨ v' = v ⊢ v' ∈ t ∧ find? (cmp v) t ≠ some v' ∨ v' = v ** refine h.imp_left fun h => ?_ ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t p : Path α e : zoom (cmp v) t Path.root = (nil, p) w✝¹ w✝ : List α h₁ : toList t = w✝¹ ++ w✝ h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h✝ : (v' ∈ w✝¹ ∨ v' ∈ w✝) ∨ v' = v h : v' ∈ w✝¹ ∨ v' ∈ w✝ ⊢ v' ∈ t ∧ find? (cmp v) t ≠ some v' ** simp [← mem_toList, h₁, h] ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t p : Path α e : zoom (cmp v) t Path.root = (nil, p) w✝¹ w✝ : List α h₁ : toList t = w✝¹ ++ w✝ h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h✝ : (v' ∈ w✝¹ ∨ v' ∈ w✝) ∨ v' = v h : v' ∈ w✝¹ ∨ v' ∈ w✝ ⊢ ¬find? (cmp v) t = some v' ** rw [find?_eq_zoom, e] ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t p : Path α e : zoom (cmp v) t Path.root = (nil, p) w✝¹ w✝ : List α h₁ : toList t = w✝¹ ++ w✝ h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h✝ : (v' ∈ w✝¹ ∨ v' ∈ w✝) ∨ v' = v h : v' ∈ w✝¹ ∨ v' ∈ w✝ ⊢ ¬root? (nil, p).fst = some v' ** intro. ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t h : v' ∈ insert cmp t v c✝ : RBColor l✝ : RBNode α v✝ : α r✝ : RBNode α p : Path α e : zoom (cmp v) t Path.root = (node c✝ l✝ v✝ r✝, p) ⊢ v' ∈ t ∧ find? (cmp v) t ≠ some v' ∨ v' = v ** let ⟨_, _, h₁, h₂⟩ := exists_insert_toList_zoom_node ht e ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t h : v' ∈ insert cmp t v c✝ : RBColor l✝ : RBNode α v✝ : α r✝ : RBNode α p : Path α e : zoom (cmp v) t Path.root = (node c✝ l✝ v✝ r✝, p) w✝¹ w✝ : List α h₁ : toList t = w✝¹ ++ v✝ :: w✝ h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ ⊢ v' ∈ t ∧ find? (cmp v) t ≠ some v' ∨ v' = v ** simp [← mem_toList, h₂] at h ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t c✝ : RBColor l✝ : RBNode α v✝ : α r✝ : RBNode α p : Path α e : zoom (cmp v) t Path.root = (node c✝ l✝ v✝ r✝, p) w✝¹ w✝ : List α h₁ : toList t = w✝¹ ++ v✝ :: w✝ h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h : v' ∈ w✝¹ ∨ v' = v ∨ v' ∈ w✝ ⊢ v' ∈ t ∧ find? (cmp v) t ≠ some v' ∨ v' = v ** simp [← mem_toList, h₁] ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t c✝ : RBColor l✝ : RBNode α v✝ : α r✝ : RBNode α p : Path α e : zoom (cmp v) t Path.root = (node c✝ l✝ v✝ r✝, p) w✝¹ w✝ : List α h₁ : toList t = w✝¹ ++ v✝ :: w✝ h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h : v' ∈ w✝¹ ∨ v' = v ∨ v' ∈ w✝ ⊢ (v' ∈ w✝¹ ∨ v' = v✝ ∨ v' ∈ w✝) ∧ ¬find? (cmp v) t = some v' ∨ v' = v ** rw [or_left_comm] at h ⊢ ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t c✝ : RBColor l✝ : RBNode α v✝ : α r✝ : RBNode α p : Path α e : zoom (cmp v) t Path.root = (node c✝ l✝ v✝ r✝, p) w✝¹ w✝ : List α h₁ : toList t = w✝¹ ++ v✝ :: w✝ h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h : v' = v ∨ v' ∈ w✝¹ ∨ v' ∈ w✝ ⊢ (v' = v✝ ∨ v' ∈ w✝¹ ∨ v' ∈ w✝) ∧ ¬find? (cmp v) t = some v' ∨ v' = v ** rcases h with _|h <;> simp [*] ** case inr α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t c✝ : RBColor l✝ : RBNode α v✝ : α r✝ : RBNode α p : Path α e : zoom (cmp v) t Path.root = (node c✝ l✝ v✝ r✝, p) w✝¹ w✝ : List α h₁ : toList t = w✝¹ ++ v✝ :: w✝ h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h : v' ∈ w✝¹ ∨ v' ∈ w✝ ⊢ ¬find? (cmp v) t = some v' ∨ v' = v ** refine .inl fun h => ?_ ** case inr α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t c✝ : RBColor l✝ : RBNode α v✝ : α r✝ : RBNode α p : Path α e : zoom (cmp v) t Path.root = (node c✝ l✝ v✝ r✝, p) w✝¹ w✝ : List α h₁ : toList t = w✝¹ ++ v✝ :: w✝ h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h✝ : v' ∈ w✝¹ ∨ v' ∈ w✝ h : find? (cmp v) t = some v' ⊢ False ** rw [find?_eq_zoom, e] at h ** case inr α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t c✝ : RBColor l✝ : RBNode α v✝ : α r✝ : RBNode α p : Path α e : zoom (cmp v) t Path.root = (node c✝ l✝ v✝ r✝, p) w✝¹ w✝ : List α h₁ : toList t = w✝¹ ++ v✝ :: w✝ h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h✝ : v' ∈ w✝¹ ∨ v' ∈ w✝ h : root? (node c✝ l✝ v✝ r✝, p).fst = some v' ⊢ False ** cases h ** case inr.refl α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t c✝ : RBColor l✝ r✝ : RBNode α p : Path α w✝¹ w✝ : List α h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h : v' ∈ w✝¹ ∨ v' ∈ w✝ e : zoom (cmp v) t Path.root = (node c✝ l✝ v' r✝, p) h₁ : toList t = w✝¹ ++ v' :: w✝ ⊢ False ** suffices cmpLT cmp v' v' by cases OrientedCmp.cmp_refl.symm.trans this.1 ** case inr.refl α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t c✝ : RBColor l✝ r✝ : RBNode α p : Path α w✝¹ w✝ : List α h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h : v' ∈ w✝¹ ∨ v' ∈ w✝ e : zoom (cmp v) t Path.root = (node c✝ l✝ v' r✝, p) h₁ : toList t = w✝¹ ++ v' :: w✝ ⊢ cmpLT cmp v' v' ** have := ht₂.toList_sorted ** case inr.refl α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t c✝ : RBColor l✝ r✝ : RBNode α p : Path α w✝¹ w✝ : List α h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h : v' ∈ w✝¹ ∨ v' ∈ w✝ e : zoom (cmp v) t Path.root = (node c✝ l✝ v' r✝, p) h₁ : toList t = w✝¹ ++ v' :: w✝ this : List.Pairwise (cmpLT cmp) (toList t) ⊢ cmpLT cmp v' v' ** simp [h₁, List.pairwise_append] at this ** α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t c✝ : RBColor l✝ r✝ : RBNode α p : Path α w✝¹ w✝ : List α h₂ : toList (insert cmp t v) = w✝¹ ++ v :: w✝ h : v' ∈ w✝¹ ∨ v' ∈ w✝ e : zoom (cmp v) t Path.root = (node c✝ l✝ v' r✝, p) h₁ : toList t = w✝¹ ++ v' :: w✝ this : cmpLT cmp v' v' ⊢ False ** cases OrientedCmp.cmp_refl.symm.trans this.1 ** case refine_2 α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t h₁ : v' ∈ t h₂ : find? (cmp v) t ≠ some v' ⊢ v' ∈ insert cmp t v ** exact (mem_insert_of_mem ht h₁).resolve_right fun h' => h₂ <| ht₂.find?_some.2 ⟨h₁, h'⟩ ** case refine_3 α : Type u_1 cmp : α → α → Ordering c : RBColor n : Nat v' v : α inst✝ : TransCmp cmp t : RBNode α ht : Balanced t c n ht₂ : Ordered cmp t h : v' = v ⊢ v' ∈ insert cmp t v ** exact h ▸ mem_insert_self ht ** Qed
| |
Std.RBSet.mem_iff_mem_toList ** α : Type u_1 cmp : α → α → Ordering x : α t : RBSet α cmp ⊢ (∃ y, y ∈ t.val ∧ cmp x y = Ordering.eq) ↔ ∃ y, y ∈ toList t ∧ cmp x y = Ordering.eq ** simp [mem_toList] ** Qed
| |
Std.RBSet.find?_some ** α : Type u_1 cmp : α → α → Ordering x y : α inst✝ : TransCmp cmp t : RBSet α cmp ⊢ y ∈ t.val ∧ cmp x y = Ordering.eq ↔ y ∈ toList t ∧ cmp x y = Ordering.eq ** simp [mem_toList] ** Qed
| |
Std.RBSet.find?_congr ** α : Type u_1 cmp : α → α → Ordering v₁ v₂ : α inst✝ : TransCmp cmp t : RBSet α cmp h : cmp v₁ v₂ = Ordering.eq ⊢ find? t v₁ = find? t v₂ ** simp [find?, TransCmp.cmp_congr_left' h] ** Qed
| |
Nat.strongRec_eq ** motive : Nat → Sort u_1 ind : (n : Nat) → ((m : Nat) → m < n → motive m) → motive n t : Nat ⊢ Nat.strongRec ind t = ind t fun m x => Nat.strongRec ind m ** conv => lhs; unfold Nat.strongRec ** Qed
| |
Nat.recDiagAux_zero_left ** motive : Nat → Nat → Sort u_1 zero_left : (n : Nat) → motive 0 n zero_right : (m : Nat) → motive m 0 succ_succ : (m n : Nat) → motive m n → motive (m + 1) (n + 1) n : Nat ⊢ Nat.recDiagAux zero_left zero_right succ_succ 0 n = zero_left n ** cases n <;> rfl ** Qed
| |
Nat.recDiagAux_zero_right ** motive : Nat → Nat → Sort u_1 zero_left : (n : Nat) → motive 0 n zero_right : (m : Nat) → motive m 0 succ_succ : (m n : Nat) → motive m n → motive (m + 1) (n + 1) m : Nat h : autoParam (zero_left 0 = zero_right 0) _auto✝ ⊢ Nat.recDiagAux zero_left zero_right succ_succ m 0 = zero_right m ** cases m ** case zero motive : Nat → Nat → Sort u_1 zero_left : (n : Nat) → motive 0 n zero_right : (m : Nat) → motive m 0 succ_succ : (m n : Nat) → motive m n → motive (m + 1) (n + 1) h : autoParam (zero_left 0 = zero_right 0) _auto✝ ⊢ Nat.recDiagAux zero_left zero_right succ_succ zero 0 = zero_right zero case succ motive : Nat → Nat → Sort u_1 zero_left : (n : Nat) → motive 0 n zero_right : (m : Nat) → motive m 0 succ_succ : (m n : Nat) → motive m n → motive (m + 1) (n + 1) h : autoParam (zero_left 0 = zero_right 0) _auto✝ n✝ : Nat ⊢ Nat.recDiagAux zero_left zero_right succ_succ (succ n✝) 0 = zero_right (succ n✝) ** exact h ** case succ motive : Nat → Nat → Sort u_1 zero_left : (n : Nat) → motive 0 n zero_right : (m : Nat) → motive m 0 succ_succ : (m n : Nat) → motive m n → motive (m + 1) (n + 1) h : autoParam (zero_left 0 = zero_right 0) _auto✝ n✝ : Nat ⊢ Nat.recDiagAux zero_left zero_right succ_succ (succ n✝) 0 = zero_right (succ n✝) ** rfl ** Qed
| |
Nat.recDiag_zero_succ ** motive : Nat → Nat → Sort u_1 zero_zero : motive 0 0 zero_succ : (n : Nat) → motive 0 n → motive 0 (n + 1) succ_zero : (m : Nat) → motive m 0 → motive (m + 1) 0 succ_succ : (m n : Nat) → motive m n → motive (m + 1) (n + 1) n : Nat ⊢ Nat.recDiag zero_zero zero_succ succ_zero succ_succ 0 (n + 1) = zero_succ n (Nat.recDiag zero_zero zero_succ succ_zero succ_succ 0 n) ** simp [Nat.recDiag] ** motive : Nat → Nat → Sort u_1 zero_zero : motive 0 0 zero_succ : (n : Nat) → motive 0 n → motive 0 (n + 1) succ_zero : (m : Nat) → motive m 0 → motive (m + 1) 0 succ_succ : (m n : Nat) → motive m n → motive (m + 1) (n + 1) n : Nat ⊢ recDiag.left zero_zero zero_succ (n + 1) = zero_succ n (recDiag.left zero_zero zero_succ n) ** rfl ** Qed
| |
Nat.recDiag_succ_zero ** motive : Nat → Nat → Sort u_1 zero_zero : motive 0 0 zero_succ : (n : Nat) → motive 0 n → motive 0 (n + 1) succ_zero : (m : Nat) → motive m 0 → motive (m + 1) 0 succ_succ : (m n : Nat) → motive m n → motive (m + 1) (n + 1) m : Nat ⊢ Nat.recDiag zero_zero zero_succ succ_zero succ_succ (m + 1) 0 = succ_zero m (Nat.recDiag zero_zero zero_succ succ_zero succ_succ m 0) ** simp [Nat.recDiag] ** motive : Nat → Nat → Sort u_1 zero_zero : motive 0 0 zero_succ : (n : Nat) → motive 0 n → motive 0 (n + 1) succ_zero : (m : Nat) → motive m 0 → motive (m + 1) 0 succ_succ : (m n : Nat) → motive m n → motive (m + 1) (n + 1) m : Nat ⊢ Nat.recDiagAux (recDiag.left zero_zero zero_succ) (recDiag.right zero_zero succ_zero) succ_succ (m + 1) 0 = succ_zero m (Nat.recDiagAux (recDiag.left zero_zero zero_succ) (recDiag.right zero_zero succ_zero) succ_succ m 0) ** cases m <;> rfl ** Qed
| |
Nat.eq_zero_or_eq_succ_pred ** n : Nat ⊢ n = 0 ∨ n = succ (pred n) ** cases n <;> simp ** Qed
| |
Nat.succ_eq_one_add ** n : Nat ⊢ succ n = 1 + n ** rw [Nat.succ_eq_add_one, Nat.add_comm] ** Qed
| |
Nat.pred_inj ** a b : Nat x✝¹ : 0 < a + 1 x✝ : 0 < b + 1 h : pred (a + 1) = pred (b + 1) ⊢ a + 1 = b + 1 ** rw [show a = b from h] ** Qed
| |
Nat.eq_zero_of_add_eq_zero_right ** m : Nat ⊢ 0 + m = 0 → 0 = 0 ** simp [Nat.zero_add] ** n m : Nat h : n + 1 + m = 0 ⊢ n + 1 = 0 ** rw [add_one, succ_add] at h ** n m : Nat h : succ (n + m) = 0 ⊢ n + 1 = 0 ** cases succ_ne_zero _ h ** Qed
| |
Nat.succ_add_eq_succ_add ** n m : Nat ⊢ succ n + m = n + succ m ** simp [succ_add, add_succ] ** Qed
| |
Nat.one_add ** n : Nat ⊢ 1 + n = succ n ** simp [Nat.add_comm] ** Qed
| |
Nat.lt_of_add_lt_add_left ** k n m : Nat h : k + n < k + m heq : n = m ⊢ k + m < k + m ** rwa [heq] at h ** Qed
| |
Nat.lt_of_add_lt_add_right ** a b c : Nat h : a + b < c + b ⊢ b + a < b + c ** rwa [Nat.add_comm b a, Nat.add_comm b c] ** Qed
| |
Nat.lt_add_of_pos_left ** n k : Nat h : 0 < k ⊢ n < k + n ** rw [Nat.add_comm] ** n k : Nat h : 0 < k ⊢ n < n + k ** exact Nat.lt_add_of_pos_right h ** Qed
| |
Nat.pos_of_lt_add_left ** n k : Nat h : n < k + n ⊢ 0 + ?m.18605 h < k + ?m.18605 h ** rw [Nat.zero_add] ** n k : Nat h : n < k + n ⊢ ?m.18605 h < k + ?m.18605 h ⊢ {n k : Nat} → n < k + n → Nat ** exact h ** Qed
| |
Nat.add_pos_right ** n m : Nat h : 0 < n ⊢ 0 < m + n ** rw [Nat.add_comm] ** n m : Nat h : 0 < n ⊢ 0 < n + m ** exact add_pos_left h m ** Qed
| |
Nat.le_of_le_of_sub_le_sub_right ** n m k : Nat h₀ : succ k ≤ succ m h₁ : succ n - succ k ≤ succ m - succ k ⊢ succ n ≤ succ m ** simp [succ_sub_succ] at h₁ ** n m k : Nat h₀ : succ k ≤ succ m h₁ : n - k ≤ m - k ⊢ succ n ≤ succ m ** exact succ_le_succ <| Nat.le_of_le_of_sub_le_sub_right (le_of_succ_le_succ h₀) h₁ ** Qed
| |
Nat.add_le_to_le_sub ** x y k : Nat h : k ≤ y ⊢ x + k ≤ y ↔ x ≤ y - k ** rw [← Nat.add_sub_cancel x k, Nat.sub_le_sub_iff_right h, Nat.add_sub_cancel] ** Qed
| |
Nat.le_of_sub_eq_zero ** n : Nat H : n - 0 = 0 ⊢ n ≤ 0 ** rw [Nat.sub_zero] at H ** n : Nat H : n = 0 ⊢ n ≤ 0 ** simp [H] ** n m : Nat H : n + 1 - (m + 1) = 0 ⊢ n - m = 0 ** simp [Nat.add_sub_add_right] at H ** n m : Nat H : n - m = 0 ⊢ n - m = 0 ** exact H ** Qed
| |
Nat.sub_eq_iff_eq_add ** a b c : Nat ab : b ≤ a c_eq : a - b = c ⊢ a = c + b ** rw [c_eq.symm, Nat.sub_add_cancel ab] ** a b c : Nat ab : b ≤ a a_eq : a = c + b ⊢ a - b = c ** rw [a_eq, Nat.add_sub_cancel] ** Qed
| |
Nat.lt_of_sub_eq_succ ** m n l : Nat H : m - n = succ l H' : m ≤ n ⊢ False ** simp [Nat.sub_eq_zero_of_le H'] at H ** Qed
| |
Nat.sub_le_sub_left ** n m k a : Nat h : n ≤ n + a ⊢ k - (n + a) ≤ k - n ** rw [← Nat.sub_sub] ** n m k a : Nat h : n ≤ n + a ⊢ k - n - a ≤ k - n ** apply sub_le ** Qed
| |
Nat.succ_sub_sub_succ ** n m k : Nat ⊢ succ n - m - succ k = n - m - k ** rw [Nat.sub_sub, Nat.sub_sub, add_succ, succ_sub_succ] ** Qed
| |
Nat.sub_right_comm ** m n k : Nat ⊢ m - n - k = m - k - n ** rw [Nat.sub_sub, Nat.sub_sub, Nat.add_comm] ** Qed
| |
Nat.sub_pos_of_lt ** m n : Nat h : m < n ⊢ 0 < n - m ** apply Nat.lt_of_add_lt_add_right (b := m) ** m n : Nat h : m < n ⊢ 0 + m < n - m + m ** rwa [Nat.zero_add, Nat.sub_add_cancel (Nat.le_of_lt h)] ** Qed
| |
Nat.sub_add_comm ** n m k : Nat h : k ≤ n ⊢ n + m - k = n - k + m ** rw [Nat.sub_eq_iff_eq_add (Nat.le_trans h (Nat.le_add_right ..))] ** n m k : Nat h : k ≤ n ⊢ n + m = n - k + m + k ** rwa [Nat.add_right_comm, Nat.sub_add_cancel] ** Qed
| |
Nat.sub_one_sub_lt ** i n : Nat h : i < n ⊢ n - 1 - i < n ** rw [Nat.sub_sub] ** i n : Nat h : i < n ⊢ n - (1 + i) < n ** apply Nat.sub_lt (Nat.lt_of_lt_of_le (Nat.zero_lt_succ _) h) ** i n : Nat h : i < n ⊢ 0 < 1 + i ** rw [Nat.add_comm] ** i n : Nat h : i < n ⊢ 0 < i + 1 ** apply Nat.zero_lt_succ ** Qed
| |
Nat.sub_lt_self ** a b : Nat h₀ : 0 < a h₁ : a ≤ b ⊢ b - a < b ** apply sub_lt _ h₀ ** a b : Nat h₀ : 0 < a h₁ : a ≤ b ⊢ 0 < b ** apply Nat.lt_of_lt_of_le h₀ h₁ ** Qed
| |
Nat.add_sub_cancel' ** n m : Nat h : m ≤ n ⊢ m + (n - m) = n ** rw [Nat.add_comm, Nat.sub_add_cancel h] ** Qed
| |
Nat.le_sub_iff_add_le ** x y k : Nat h : k ≤ y ⊢ x ≤ y - k ↔ x + k ≤ y ** rw [← Nat.add_sub_cancel x k, Nat.sub_le_sub_iff_right h, Nat.add_sub_cancel] ** Qed
| |
Nat.sub_le_sub_iff_left ** n m k : Nat hn : n ≤ k ⊢ k - m ≤ k - n ↔ n ≤ m ** refine ⟨fun h => ?_, Nat.sub_le_sub_left _⟩ ** n m k : Nat hn : n ≤ k h : k - m ≤ k - n ⊢ n ≤ m ** rwa [Nat.sub_le_iff_le_add', ← Nat.add_sub_assoc hn,
le_sub_iff_add_le (Nat.le_trans hn (Nat.le_add_left ..)),
Nat.add_comm, Nat.add_le_add_iff_right] at h ** Qed
| |
Nat.le_min ** a b c : Nat x✝ : a ≤ b ∧ a ≤ c h₁ : a ≤ b h₂ : a ≤ c ⊢ a ≤ min b c ** rw [Nat.min_def] ** a b c : Nat x✝ : a ≤ b ∧ a ≤ c h₁ : a ≤ b h₂ : a ≤ c ⊢ a ≤ if b ≤ c then b else c ** split <;> assumption ** Qed
| |
Nat.min_eq_left ** a b : Nat h : a ≤ b ⊢ min a b = a ** simp [Nat.min_def, h] ** Qed
| |
Nat.min_eq_right ** a b : Nat h : b ≤ a ⊢ min a b = b ** rw [Nat.min_comm a b] ** a b : Nat h : b ≤ a ⊢ min b a = b ** exact Nat.min_eq_left h ** Qed
| |
Nat.max_le ** a b c : Nat x✝ : a ≤ c ∧ b ≤ c h₁ : a ≤ c h₂ : b ≤ c ⊢ max a b ≤ c ** rw [Nat.max_def] ** a b c : Nat x✝ : a ≤ c ∧ b ≤ c h₁ : a ≤ c h₂ : b ≤ c ⊢ (if a ≤ b then b else a) ≤ c ** split <;> assumption ** Qed
| |
Nat.max_eq_right ** a b : Nat h : a ≤ b ⊢ max a b = b ** simp [Nat.max_def, h, Nat.not_lt.2 h] ** Qed
| |
Nat.max_eq_left ** a b : Nat h : b ≤ a ⊢ max a b = a ** rw [← Nat.max_comm b a] ** a b : Nat h : b ≤ a ⊢ max b a = a ** exact Nat.max_eq_right h ** Qed
| |
Nat.min_succ_succ ** x y : Nat ⊢ min (succ x) (succ y) = succ (min x y) ** simp [Nat.min_def, succ_le_succ_iff] ** x y : Nat ⊢ (if x ≤ y then succ x else succ y) = succ (if x ≤ y then x else y) ** split <;> rfl ** Qed
| |
Nat.sub_eq_sub_min ** n m : Nat ⊢ n - m = n - min n m ** rw [Nat.min_def] ** n m : Nat ⊢ n - m = n - if n ≤ m then n else m ** split ** case inl n m : Nat h✝ : n ≤ m ⊢ n - m = n - n ** rw [Nat.sub_eq_zero_of_le ‹n ≤ m›, Nat.sub_self] ** case inr n m : Nat h✝ : ¬n ≤ m ⊢ n - m = n - m ** rfl ** Qed
| |
Nat.mul_right_comm ** n m k : Nat ⊢ n * m * k = n * k * m ** rw [Nat.mul_assoc, Nat.mul_comm m, ← Nat.mul_assoc] ** Qed
| |
Nat.mul_mul_mul_comm ** a b c d : Nat ⊢ a * b * (c * d) = a * c * (b * d) ** rw [Nat.mul_assoc, Nat.mul_assoc, Nat.mul_left_comm b] ** Qed
| |
Nat.mul_two ** n : Nat ⊢ n * 2 = n + n ** simp [Nat.mul_succ] ** Qed
| |
Nat.two_mul ** n : Nat ⊢ 2 * n = n + n ** simp [Nat.succ_mul] ** Qed
| |
Nat.mul_eq_zero ** n✝ m✝ : Nat h✝ : n✝ * m✝ = 0 n m : Nat h : (n + 1) * m = 0 ⊢ n + 1 = 0 ∨ m = 0 ** rw [succ_mul] at h ** n✝ m✝ : Nat h✝ : n✝ * m✝ = 0 n m : Nat h : n * m + m = 0 ⊢ n + 1 = 0 ∨ m = 0 ** exact .inr (Nat.eq_zero_of_add_eq_zero_left h) ** n m : Nat h : m = 0 ⊢ n * m = 0 ** simp [h] ** Qed
| |
Nat.mul_ne_zero_iff ** n m : Nat ⊢ n * m ≠ 0 ↔ n ≠ 0 ∧ m ≠ 0 ** simp [mul_eq_zero, not_or] ** Qed
| |
Nat.mul_le_mul_of_nonneg_left ** a b c : Nat h₁ : a ≤ b ⊢ c * a ≤ c * b ** if hba : b ≤ a then simp [Nat.le_antisymm hba h₁] else
if hc0 : c ≤ 0 then simp [Nat.le_antisymm hc0 (zero_le c), Nat.zero_mul] else
exact Nat.le_of_lt (Nat.mul_lt_mul_of_pos_left (Nat.not_le.1 hba) (Nat.not_le.1 hc0)) ** a b c : Nat h₁ : a ≤ b hba : b ≤ a ⊢ c * a ≤ c * b ** simp [Nat.le_antisymm hba h₁] ** a b c : Nat h₁ : a ≤ b hba : ¬b ≤ a ⊢ c * a ≤ c * b ** if hc0 : c ≤ 0 then simp [Nat.le_antisymm hc0 (zero_le c), Nat.zero_mul] else
exact Nat.le_of_lt (Nat.mul_lt_mul_of_pos_left (Nat.not_le.1 hba) (Nat.not_le.1 hc0)) ** a b c : Nat h₁ : a ≤ b hba : ¬b ≤ a hc0 : c ≤ 0 ⊢ c * a ≤ c * b ** simp [Nat.le_antisymm hc0 (zero_le c), Nat.zero_mul] ** a b c : Nat h₁ : a ≤ b hba : ¬b ≤ a hc0 : ¬c ≤ 0 ⊢ c * a ≤ c * b ** exact Nat.le_of_lt (Nat.mul_lt_mul_of_pos_left (Nat.not_le.1 hba) (Nat.not_le.1 hc0)) ** Qed
| |
Nat.mul_le_mul_of_nonneg_right ** a b c : Nat h₁ : a ≤ b ⊢ a * c ≤ b * c ** if hba : b ≤ a then simp [Nat.le_antisymm hba h₁] else
if hc0 : c ≤ 0 then simp [Nat.le_antisymm hc0 (zero_le c), Nat.mul_zero] else
exact Nat.le_of_lt (Nat.mul_lt_mul_of_pos_right (Nat.not_le.1 hba) (Nat.not_le.1 hc0)) ** a b c : Nat h₁ : a ≤ b hba : b ≤ a ⊢ a * c ≤ b * c ** simp [Nat.le_antisymm hba h₁] ** a b c : Nat h₁ : a ≤ b hba : ¬b ≤ a ⊢ a * c ≤ b * c ** if hc0 : c ≤ 0 then simp [Nat.le_antisymm hc0 (zero_le c), Nat.mul_zero] else
exact Nat.le_of_lt (Nat.mul_lt_mul_of_pos_right (Nat.not_le.1 hba) (Nat.not_le.1 hc0)) ** a b c : Nat h₁ : a ≤ b hba : ¬b ≤ a hc0 : c ≤ 0 ⊢ a * c ≤ b * c ** simp [Nat.le_antisymm hc0 (zero_le c), Nat.mul_zero] ** a b c : Nat h₁ : a ≤ b hba : ¬b ≤ a hc0 : ¬c ≤ 0 ⊢ a * c ≤ b * c ** exact Nat.le_of_lt (Nat.mul_lt_mul_of_pos_right (Nat.not_le.1 hba) (Nat.not_le.1 hc0)) ** Qed
| |
Nat.succ_mul_succ_eq ** a b : Nat ⊢ succ a * succ b = a * b + a + b + 1 ** rw [mul_succ, succ_mul, Nat.add_right_comm _ a] ** a b : Nat ⊢ a * b + b + succ a = a * b + b + a + 1 ** rfl ** Qed
| |
Nat.mul_self_sub_mul_self_eq ** a b : Nat ⊢ a * a - b * b = (a + b) * (a - b) ** rw [Nat.mul_sub_left_distrib, Nat.right_distrib, Nat.right_distrib,
Nat.mul_comm b a, Nat.add_comm (a*a) (a*b), Nat.add_sub_add_left] ** Qed
| |
Nat.div_one ** n : Nat ⊢ n / 1 = n ** have := mod_add_div n 1 ** n : Nat this : n % 1 + 1 * (n / 1) = n ⊢ n / 1 = n ** rwa [mod_one, Nat.zero_add, Nat.one_mul] at this ** Qed
| |
Nat.div_zero ** n : Nat ⊢ n / 0 = 0 ** rw [div_eq] ** n : Nat ⊢ (if 0 < 0 ∧ 0 ≤ n then (n - 0) / 0 + 1 else 0) = 0 ** simp [Nat.lt_irrefl] ** Qed
| |
Nat.le_div_iff_mul_le ** k x y : Nat k0 : 0 < k ⊢ x ≤ y / k ↔ x * k ≤ y ** induction y, k using mod.inductionOn generalizing x with
(rw [div_eq]; simp [h]; cases x with | zero => simp [zero_le] | succ x => ?_)
| base y k h =>
simp [not_succ_le_zero x, succ_mul, Nat.add_comm]
refine Nat.lt_of_lt_of_le ?_ (Nat.le_add_right ..)
exact Nat.not_le.1 fun h' => h ⟨k0, h'⟩
| ind y k h IH =>
rw [← add_one, Nat.add_le_add_iff_right, IH k0, succ_mul,
← Nat.add_sub_cancel (x*k) k, Nat.sub_le_sub_iff_right h.2, Nat.add_sub_cancel] ** case ind y k : Nat h : 0 < k ∧ k ≤ y IH : ∀ {x : Nat}, 0 < k → (x ≤ (y - k) / k ↔ x * k ≤ y - k) x : Nat k0 : 0 < k ⊢ x ≤ y / k ↔ x * k ≤ y ** rw [div_eq] ** case ind y k : Nat h : 0 < k ∧ k ≤ y IH : ∀ {x : Nat}, 0 < k → (x ≤ (y - k) / k ↔ x * k ≤ y - k) x : Nat k0 : 0 < k ⊢ (x ≤ if 0 < k ∧ k ≤ y then (y - k) / k + 1 else 0) ↔ x * k ≤ y ** simp [h] ** case ind y k : Nat h : 0 < k ∧ k ≤ y IH : ∀ {x : Nat}, 0 < k → (x ≤ (y - k) / k ↔ x * k ≤ y - k) x : Nat k0 : 0 < k ⊢ x ≤ (y - k) / k + 1 ↔ x * k ≤ y ** cases x with | zero => simp [zero_le] | succ x => ?_ ** case ind.zero y k : Nat h : 0 < k ∧ k ≤ y IH : ∀ {x : Nat}, 0 < k → (x ≤ (y - k) / k ↔ x * k ≤ y - k) k0 : 0 < k ⊢ zero ≤ (y - k) / k + 1 ↔ zero * k ≤ y ** simp [zero_le] ** case base.succ y k : Nat h : ¬(0 < k ∧ k ≤ y) k0 : 0 < k x : Nat ⊢ succ x = 0 ↔ succ x * k ≤ y ** simp [not_succ_le_zero x, succ_mul, Nat.add_comm] ** case base.succ y k : Nat h : ¬(0 < k ∧ k ≤ y) k0 : 0 < k x : Nat ⊢ y < k + x * k ** refine Nat.lt_of_lt_of_le ?_ (Nat.le_add_right ..) ** case base.succ y k : Nat h : ¬(0 < k ∧ k ≤ y) k0 : 0 < k x : Nat ⊢ y < k ** exact Nat.not_le.1 fun h' => h ⟨k0, h'⟩ ** case ind.succ y k : Nat h : 0 < k ∧ k ≤ y IH : ∀ {x : Nat}, 0 < k → (x ≤ (y - k) / k ↔ x * k ≤ y - k) k0 : 0 < k x : Nat ⊢ succ x ≤ (y - k) / k + 1 ↔ succ x * k ≤ y ** rw [← add_one, Nat.add_le_add_iff_right, IH k0, succ_mul,
← Nat.add_sub_cancel (x*k) k, Nat.sub_le_sub_iff_right h.2, Nat.add_sub_cancel] ** Qed
| |
Nat.div_le_of_le_mul ** m n : Nat x✝ : m ≤ 0 * n ⊢ m / 0 ≤ n ** simp [Nat.div_zero, n.zero_le] ** m n k : Nat h : m ≤ succ k * n ⊢ m / succ k ≤ n ** suffices succ k * (m / succ k) ≤ succ k * n from
Nat.le_of_mul_le_mul_left this (zero_lt_succ _) ** m n k : Nat h : m ≤ succ k * n ⊢ succ k * (m / succ k) ≤ succ k * n ** have h1 : succ k * (m / succ k) ≤ m % succ k + succ k * (m / succ k) := Nat.le_add_left _ _ ** m n k : Nat h : m ≤ succ k * n h1 : succ k * (m / succ k) ≤ m % succ k + succ k * (m / succ k) ⊢ succ k * (m / succ k) ≤ succ k * n ** have h2 : m % succ k + succ k * (m / succ k) = m := by rw [mod_add_div] ** m n k : Nat h : m ≤ succ k * n h1 : succ k * (m / succ k) ≤ m % succ k + succ k * (m / succ k) h2 : m % succ k + succ k * (m / succ k) = m ⊢ succ k * (m / succ k) ≤ succ k * n ** have h3 : m ≤ succ k * n := h ** m n k : Nat h : m ≤ succ k * n h1 : succ k * (m / succ k) ≤ m % succ k + succ k * (m / succ k) h2 : m % succ k + succ k * (m / succ k) = m h3 : m ≤ succ k * n ⊢ succ k * (m / succ k) ≤ succ k * n ** rw [← h2] at h3 ** m n k : Nat h : m ≤ succ k * n h1 : succ k * (m / succ k) ≤ m % succ k + succ k * (m / succ k) h2 : m % succ k + succ k * (m / succ k) = m h3 : m % succ k + succ k * (m / succ k) ≤ succ k * n ⊢ succ k * (m / succ k) ≤ succ k * n ** exact Nat.le_trans h1 h3 ** m n k : Nat h : m ≤ succ k * n h1 : succ k * (m / succ k) ≤ m % succ k + succ k * (m / succ k) ⊢ m % succ k + succ k * (m / succ k) = m ** rw [mod_add_div] ** Qed
| |
Nat.div_eq_sub_div ** b a : Nat h₁ : 0 < b h₂ : b ≤ a ⊢ a / b = (a - b) / b + 1 ** rw [div_eq a, if_pos] ** case hc b a : Nat h₁ : 0 < b h₂ : b ≤ a ⊢ 0 < b ∧ b ≤ a ** constructor <;> assumption ** Qed
| |
Nat.div_eq_of_lt ** a b : Nat h₀ : a < b ⊢ a / b = 0 ** rw [div_eq a, if_neg] ** case hnc a b : Nat h₀ : a < b ⊢ ¬(0 < b ∧ b ≤ a) ** intro h₁ ** case hnc a b : Nat h₀ : a < b h₁ : 0 < b ∧ b ≤ a ⊢ False ** apply Nat.not_le_of_gt h₀ h₁.right ** Qed
| |
Nat.div_lt_iff_lt_mul ** k x y : Nat Hk : 0 < k ⊢ x / k < y ↔ x < y * k ** rw [← Nat.not_le, ← Nat.not_le] ** k x y : Nat Hk : 0 < k ⊢ ¬y ≤ x / k ↔ ¬y * k ≤ x ** exact not_congr (le_div_iff_mul_le Hk) ** Qed
| |
Nat.sub_mul_div ** x n p : Nat h₁ : n * p ≤ x ⊢ (x - n * p) / n = x / n - p ** match eq_zero_or_pos n with
| .inl h₀ => rw [h₀, Nat.div_zero, Nat.div_zero, Nat.zero_sub]
| .inr h₀ => induction p with
| zero => rw [Nat.mul_zero, Nat.sub_zero, Nat.sub_zero]
| succ p IH =>
have h₂ : n * p ≤ x := Nat.le_trans (Nat.mul_le_mul_left _ (le_succ _)) h₁
have h₃ : x - n * p ≥ n := by
apply Nat.le_of_add_le_add_right
rw [Nat.sub_add_cancel h₂, Nat.add_comm]
rw [mul_succ] at h₁
exact h₁
rw [sub_succ, ← IH h₂, div_eq_sub_div h₀ h₃]
simp [add_one, Nat.pred_succ, mul_succ, Nat.sub_sub] ** x n p : Nat h₁ : n * p ≤ x h₀ : n = 0 ⊢ (x - n * p) / n = x / n - p ** rw [h₀, Nat.div_zero, Nat.div_zero, Nat.zero_sub] ** x n p : Nat h₁ : n * p ≤ x h₀ : n > 0 ⊢ (x - n * p) / n = x / n - p ** induction p with
| zero => rw [Nat.mul_zero, Nat.sub_zero, Nat.sub_zero]
| succ p IH =>
have h₂ : n * p ≤ x := Nat.le_trans (Nat.mul_le_mul_left _ (le_succ _)) h₁
have h₃ : x - n * p ≥ n := by
apply Nat.le_of_add_le_add_right
rw [Nat.sub_add_cancel h₂, Nat.add_comm]
rw [mul_succ] at h₁
exact h₁
rw [sub_succ, ← IH h₂, div_eq_sub_div h₀ h₃]
simp [add_one, Nat.pred_succ, mul_succ, Nat.sub_sub] ** case zero x n : Nat h₀ : n > 0 h₁ : n * zero ≤ x ⊢ (x - n * zero) / n = x / n - zero ** rw [Nat.mul_zero, Nat.sub_zero, Nat.sub_zero] ** case succ x n : Nat h₀ : n > 0 p : Nat IH : n * p ≤ x → (x - n * p) / n = x / n - p h₁ : n * succ p ≤ x ⊢ (x - n * succ p) / n = x / n - succ p ** have h₂ : n * p ≤ x := Nat.le_trans (Nat.mul_le_mul_left _ (le_succ _)) h₁ ** case succ x n : Nat h₀ : n > 0 p : Nat IH : n * p ≤ x → (x - n * p) / n = x / n - p h₁ : n * succ p ≤ x h₂ : n * p ≤ x ⊢ (x - n * succ p) / n = x / n - succ p ** have h₃ : x - n * p ≥ n := by
apply Nat.le_of_add_le_add_right
rw [Nat.sub_add_cancel h₂, Nat.add_comm]
rw [mul_succ] at h₁
exact h₁ ** case succ x n : Nat h₀ : n > 0 p : Nat IH : n * p ≤ x → (x - n * p) / n = x / n - p h₁ : n * succ p ≤ x h₂ : n * p ≤ x h₃ : x - n * p ≥ n ⊢ (x - n * succ p) / n = x / n - succ p ** rw [sub_succ, ← IH h₂, div_eq_sub_div h₀ h₃] ** case succ x n : Nat h₀ : n > 0 p : Nat IH : n * p ≤ x → (x - n * p) / n = x / n - p h₁ : n * succ p ≤ x h₂ : n * p ≤ x h₃ : x - n * p ≥ n ⊢ (x - n * succ p) / n = pred ((x - n * p - n) / n + 1) ** simp [add_one, Nat.pred_succ, mul_succ, Nat.sub_sub] ** x n : Nat h₀ : n > 0 p : Nat IH : n * p ≤ x → (x - n * p) / n = x / n - p h₁ : n * succ p ≤ x h₂ : n * p ≤ x ⊢ x - n * p ≥ n ** apply Nat.le_of_add_le_add_right ** case a x n : Nat h₀ : n > 0 p : Nat IH : n * p ≤ x → (x - n * p) / n = x / n - p h₁ : n * succ p ≤ x h₂ : n * p ≤ x ⊢ n + ?b ≤ x - n * p + ?b case b x n : Nat h₀ : n > 0 p : Nat IH : n * p ≤ x → (x - n * p) / n = x / n - p h₁ : n * succ p ≤ x h₂ : n * p ≤ x ⊢ Nat ** rw [Nat.sub_add_cancel h₂, Nat.add_comm] ** case a x n : Nat h₀ : n > 0 p : Nat IH : n * p ≤ x → (x - n * p) / n = x / n - p h₁ : n * succ p ≤ x h₂ : n * p ≤ x ⊢ n * p + n ≤ x ** rw [mul_succ] at h₁ ** case a x n : Nat h₀ : n > 0 p : Nat IH : n * p ≤ x → (x - n * p) / n = x / n - p h₁ : n * p + n ≤ x h₂ : n * p ≤ x ⊢ n * p + n ≤ x ** exact h₁ ** Qed
| |
Nat.div_mul_le_self ** m : Nat ⊢ m / 0 * 0 ≤ m ** simp ** Qed
| |
Nat.add_div_right ** x z : Nat H : 0 < z ⊢ (x + z) / z = succ (x / z) ** rw [div_eq_sub_div H (Nat.le_add_left _ _), Nat.add_sub_cancel] ** Qed
| |
Nat.add_div_left ** x z : Nat H : 0 < z ⊢ (z + x) / z = succ (x / z) ** rw [Nat.add_comm, add_div_right x H] ** Qed
| |
Nat.mul_div_right ** n m : Nat H : 0 < m ⊢ m * n / m = n ** induction n <;> simp_all [mul_succ] ** Qed
| |
Nat.mul_div_left ** m n : Nat H : 0 < n ⊢ m * n / n = m ** rw [Nat.mul_comm, mul_div_right _ H] ** Qed
| |
Nat.div_self ** n : Nat H : 0 < n ⊢ n / n = 1 ** let t := add_div_right 0 H ** n : Nat H : 0 < n t : (0 + n) / n = succ (0 / n) := add_div_right 0 H ⊢ n / n = 1 ** rwa [Nat.zero_add, Nat.zero_div] at t ** Qed
| |
Nat.add_mul_div_left ** x z y : Nat H : 0 < y ⊢ (x + y * z) / y = x / y + z ** induction z with
| zero => rw [Nat.mul_zero, Nat.add_zero, Nat.add_zero]
| succ z ih => rw [mul_succ, ← Nat.add_assoc, add_div_right _ H, ih]; rfl ** case zero x y : Nat H : 0 < y ⊢ (x + y * zero) / y = x / y + zero ** rw [Nat.mul_zero, Nat.add_zero, Nat.add_zero] ** case succ x y : Nat H : 0 < y z : Nat ih : (x + y * z) / y = x / y + z ⊢ (x + y * succ z) / y = x / y + succ z ** rw [mul_succ, ← Nat.add_assoc, add_div_right _ H, ih] ** case succ x y : Nat H : 0 < y z : Nat ih : (x + y * z) / y = x / y + z ⊢ succ (x / y + z) = x / y + succ z ** rfl ** Qed
| |
Nat.add_mul_div_right ** x y z : Nat H : 0 < z ⊢ (x + y * z) / z = x / z + y ** rw [Nat.mul_comm, add_mul_div_left _ _ H] ** Qed
| |
Nat.mul_div_cancel ** m n : Nat H : 0 < n ⊢ m * n / n = m ** let t := add_mul_div_right 0 m H ** m n : Nat H : 0 < n t : (0 + m * n) / n = 0 / n + m := add_mul_div_right 0 m H ⊢ m * n / n = m ** rwa [Nat.zero_add, Nat.zero_div, Nat.zero_add] at t ** Qed
| |
Nat.mul_div_cancel_left ** m n : Nat H : 0 < n ⊢ n * m / n = m ** rw [Nat.mul_comm, Nat.mul_div_cancel _ H] ** Qed
| |
Nat.div_eq_of_eq_mul_left ** n m k : Nat H1 : 0 < n H2 : m = k * n ⊢ m / n = k ** rw [H2, Nat.mul_div_cancel _ H1] ** Qed
| |
Nat.div_eq_of_eq_mul_right ** n m k : Nat H1 : 0 < n H2 : m = n * k ⊢ m / n = k ** rw [H2, Nat.mul_div_cancel_left _ H1] ** Qed
| |
Nat.div_eq_of_lt_le ** k n m : Nat lo : k * n ≤ m hi : m < succ k * n hn : n = 0 ⊢ False ** rw [hn, Nat.mul_zero] at hi lo ** k n m : Nat lo : 0 ≤ m hi : m < 0 hn : n = 0 ⊢ False ** exact absurd lo (Nat.not_le_of_gt hi) ** Qed
| |
Nat.mul_sub_div ** x n p : Nat h₁ : x < n * p ⊢ (n * p - succ x) / n = p - succ (x / n) ** have npos : 0 < n := (eq_zero_or_pos _).resolve_left fun n0 => by
rw [n0, Nat.zero_mul] at h₁; exact not_lt_zero _ h₁ ** x n p : Nat h₁ : x < n * p npos : 0 < n ⊢ (n * p - succ x) / n = p - succ (x / n) ** apply Nat.div_eq_of_lt_le ** x n p : Nat h₁ : x < n * p n0 : n = 0 ⊢ False ** rw [n0, Nat.zero_mul] at h₁ ** x n p : Nat h₁ : x < 0 n0 : n = 0 ⊢ False ** exact not_lt_zero _ h₁ ** case lo x n p : Nat h₁ : x < n * p npos : 0 < n ⊢ (p - succ (x / n)) * n ≤ n * p - succ x ** rw [Nat.mul_sub_right_distrib, Nat.mul_comm] ** case lo x n p : Nat h₁ : x < n * p npos : 0 < n ⊢ n * p - succ (x / n) * n ≤ n * p - succ x ** exact Nat.sub_le_sub_left _ <| (div_lt_iff_lt_mul npos).1 (lt_succ_self _) ** case hi x n p : Nat h₁ : x < n * p npos : 0 < n ⊢ n * p - succ x < succ (p - succ (x / n)) * n ** show succ (pred (n * p - x)) ≤ (succ (pred (p - x / n))) * n ** case hi x n p : Nat h₁ : x < n * p npos : 0 < n ⊢ succ (pred (n * p - x)) ≤ succ (pred (p - x / n)) * n ** rw [succ_pred_eq_of_pos (Nat.sub_pos_of_lt h₁),
fun h => succ_pred_eq_of_pos (Nat.sub_pos_of_lt h)] ** case hi x n p : Nat h₁ : x < n * p npos : 0 < n ⊢ n * p - x ≤ (p - x / n) * n ** rw [Nat.mul_sub_right_distrib, Nat.mul_comm] ** case hi x n p : Nat h₁ : x < n * p npos : 0 < n ⊢ p * n - x ≤ p * n - x / n * n ** exact Nat.sub_le_sub_left _ <| div_mul_le_self .. ** case hi x n p : Nat h₁ : x < n * p npos : 0 < n ⊢ x / n < p ** rwa [div_lt_iff_lt_mul npos, Nat.mul_comm] ** Qed
| |
Nat.div_div_eq_div_mul ** m n k : Nat ⊢ m / n / k = m / (n * k) ** cases eq_zero_or_pos k with
| inl k0 => rw [k0, Nat.mul_zero, Nat.div_zero, Nat.div_zero] | inr kpos => ?_ ** case inr m n k : Nat kpos : k > 0 ⊢ m / n / k = m / (n * k) ** cases eq_zero_or_pos n with
| inl n0 => rw [n0, Nat.zero_mul, Nat.div_zero, Nat.zero_div] | inr npos => ?_ ** case inr.inr m n k : Nat kpos : k > 0 npos : n > 0 ⊢ m / n / k = m / (n * k) ** apply Nat.le_antisymm ** case inl m n k : Nat k0 : k = 0 ⊢ m / n / k = m / (n * k) ** rw [k0, Nat.mul_zero, Nat.div_zero, Nat.div_zero] ** case inr.inl m n k : Nat kpos : k > 0 n0 : n = 0 ⊢ m / n / k = m / (n * k) ** rw [n0, Nat.zero_mul, Nat.div_zero, Nat.zero_div] ** case inr.inr.h₁ m n k : Nat kpos : k > 0 npos : n > 0 ⊢ m / n / k ≤ m / (n * k) ** apply (le_div_iff_mul_le (Nat.mul_pos npos kpos)).2 ** case inr.inr.h₁ m n k : Nat kpos : k > 0 npos : n > 0 ⊢ m / n / k * (n * k) ≤ m ** rw [Nat.mul_comm n k, ← Nat.mul_assoc] ** case inr.inr.h₁ m n k : Nat kpos : k > 0 npos : n > 0 ⊢ m / n / k * k * n ≤ m ** apply (le_div_iff_mul_le npos).1 ** case inr.inr.h₁ m n k : Nat kpos : k > 0 npos : n > 0 ⊢ m / n / k * k ≤ m / n ** apply (le_div_iff_mul_le kpos).1 ** case inr.inr.h₁ m n k : Nat kpos : k > 0 npos : n > 0 ⊢ m / n / k ≤ m / n / k ** (apply Nat.le_refl) ** case inr.inr.h₁ m n k : Nat kpos : k > 0 npos : n > 0 ⊢ m / n / k ≤ m / n / k ** apply Nat.le_refl ** case inr.inr.h₂ m n k : Nat kpos : k > 0 npos : n > 0 ⊢ m / (n * k) ≤ m / n / k ** apply (le_div_iff_mul_le kpos).2 ** case inr.inr.h₂ m n k : Nat kpos : k > 0 npos : n > 0 ⊢ m / (n * k) * k ≤ m / n ** apply (le_div_iff_mul_le npos).2 ** case inr.inr.h₂ m n k : Nat kpos : k > 0 npos : n > 0 ⊢ m / (n * k) * k * n ≤ m ** rw [Nat.mul_assoc, Nat.mul_comm n k] ** case inr.inr.h₂ m n k : Nat kpos : k > 0 npos : n > 0 ⊢ m / (k * n) * (k * n) ≤ m ** apply (le_div_iff_mul_le (Nat.mul_pos kpos npos)).1 ** case inr.inr.h₂ m n k : Nat kpos : k > 0 npos : n > 0 ⊢ m / (k * n) ≤ m / (k * n) ** apply Nat.le_refl ** Qed
| |
Nat.mul_div_mul_left ** m n k : Nat H : 0 < m ⊢ m * n / (m * k) = n / k ** rw [← Nat.div_div_eq_div_mul, Nat.mul_div_cancel_left _ H] ** Qed
| |
Nat.mul_div_mul_right ** m n k : Nat H : 0 < m ⊢ n * m / (k * m) = n / k ** rw [Nat.mul_comm, Nat.mul_comm k, Nat.mul_div_mul_left _ _ H] ** Qed
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.