File size: 1,449 Bytes
f94fdeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb898c5
f94fdeb
 
eb898c5
f94fdeb
eb898c5
f94fdeb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Usage: python upload.py --dir <dir> --hub-name <hub_name>

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

import argparse


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--path", type=str)
    parser.add_argument("--hub-name", type=str)
    return parser.parse_args()


def main():
    args = get_args()
    print(f"Args: {args}")
    
    print(f"Loading tokenizer from path: {args.path}")
    tokenizer = AutoTokenizer.from_pretrained(args.path)
    print(f"Pushing the tokenizer to the Hub at {args.hub_name}")
    tokenizer.push_to_hub(args.hub_name, private=True)
    
    print(f"Loading model from path: {args.path}")
    model = AutoModelForCausalLM.from_pretrained(
        args.path,
        return_dict=True,
        torch_dtype=torch.bfloat16,
        device_map="auto",
    )
    print(f"Pushing the model to the Hub at {args.hub_name}")
    model.push_to_hub(args.hub_name, private=True)
    
    from huggingface_hub import HfApi

    api = HfApi()
    for file in ["training_args.bin", "all_results.json", "eval_results.json"]:
        try:
            api.upload_file(
                path_or_fileobj=f"{args.path}/{file}",
                path_in_repo=file,
                repo_id=args.hub_name,
                repo_type="model",
            )
        except Exception as e:
            print(f"Failed to upload {file}: {e}")


if __name__ == "__main__":
    main()