File size: 5,432 Bytes
d68daa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import torch
import torch.nn as nn
import torch.nn.functional as F
class FrequencyModulation(nn.Module):
def __init__(self, frequency):
super(FrequencyModulation, self).__init__()
self.frequency = frequency
def forward(self, x):
# Apply a sine function for modulation
return torch.sin(2 * torch.pi * self.frequency * x)
class EncryptionLayer(nn.Module):
def __init__(self, key_frequency):
super(EncryptionLayer, self).__init__()
self.key_frequency = key_frequency
def forward(self, x):
# Apply frequency shift as a form of encryption
return torch.sin(2 * torch.pi * (self.key_frequency + x))
class FrequencyHopping(nn.Module):
def __init__(self, frequencies):
super(FrequencyHopping, self).__init__()
self.frequencies = frequencies
def forward(self, x):
# Apply frequency hopping
for freq in self.frequencies:
x = torch.sin(2 * torch.pi * freq * x)
return x
class DecryptionLayer(nn.Module):
def __init__(self, key_frequency):
super(DecryptionLayer, self).__init__()
self.key_frequency = key_frequency
def forward(self, x):
# Inverse of the encryption process
return torch.asin(x) / (2 * torch.pi * self.key_frequency)
class FrequencyVPN(nn.Module):
def __init__(self, frequency, key_frequency, hopping_frequencies):
super(FrequencyVPN, self).__init__()
self.modulation = FrequencyModulation(frequency)
self.encryption = EncryptionLayer(key_frequency)
self.hopping = FrequencyHopping(hopping_frequencies)
self.decryption = DecryptionLayer(key_frequency)
def forward(self, x):
x = self.modulation(x)
x = self.encryption(x)
x = self.hopping(x)
return self.decryption(x)
# Example usage
model = FrequencyVPN(frequency=5, key_frequency=10, hopping_frequencies=[15, 20, 25])
data = torch.tensor([1.0, 0.5, 0.3]) # Example data
encrypted_data = model(data)
!pip install matplotlib
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
# Define the Frequency Modulation Layer
class FrequencyModulation(nn.Module):
def __init__(self, frequency):
super(FrequencyModulation, self).__init__()
self.frequency = frequency
def forward(self, x):
return torch.sin(2 * torch.pi * self.frequency * x)
# Define the Encryption Layer
class EncryptionLayer(nn.Module):
def __init__(self, key_frequency):
super(EncryptionLayer, self).__init__()
self.key_frequency = key_frequency
def forward(self, x):
return torch.sin(2 * torch.pi * (self.key_frequency + x))
# Define the Frequency Hopping Layer
class FrequencyHopping(nn.Module):
def __init__(self, frequencies):
super(FrequencyHopping, self).__init__()
self.frequencies = frequencies
def forward(self, x):
for freq in self.frequencies:
x = torch.sin(2 * torch.pi * freq * x)
return x
# Define the Decryption Layer
class DecryptionLayer(nn.Module):
def __init__(self, key_frequency):
super(DecryptionLayer, self).__init__()
self.key_frequency = key_frequency
def forward(self, x):
return torch.asin(x) / (2 * torch.pi * self.key_frequency)
# Define the FrequencyVPN Model
class FrequencyVPN(nn.Module):
def __init__(self, frequency, key_frequency, hopping_frequencies):
super(FrequencyVPN, self).__init__()
self.modulation = FrequencyModulation(frequency)
self.encryption = EncryptionLayer(key_frequency)
self.hopping = FrequencyHopping(hopping_frequencies)
self.decryption = DecryptionLayer(key_frequency)
def forward(self, x):
x_modulated = self.modulation(x)
x_encrypted = self.encryption(x_modulated)
x_hopped = self.hopping(x_encrypted)
x_decrypted = self.decryption(x_hopped)
return x_modulated, x_encrypted, x_hopped, x_decrypted
# Set the parameters for the model
frequency = 5 # Modulation frequency
key_frequency = 10 # Encryption key frequency
hopping_frequencies = [15, 20, 25] # Frequencies for hopping
# Create the FrequencyVPN model
model = FrequencyVPN(frequency, key_frequency, hopping_frequencies)
# Example data (simulating a data packet)
data = torch.linspace(0, 1, 100) # 100 data points between 0 and 1
# Pass the data through the model
x_modulated, x_encrypted, x_hopped, x_decrypted = model(data)
# Convert the torch tensors to numpy arrays for plotting
data_np = data.numpy()
x_modulated_np = x_modulated.detach().numpy()
x_encrypted_np = x_encrypted.detach().numpy()
x_hopped_np = x_hopped.detach().numpy()
x_decrypted_np = x_decrypted.detach().numpy()
# Plot the data at each stage
plt.figure(figsize=(12, 8))
plt.subplot(4, 1, 1)
plt.plot(data_np, x_modulated_np, label='Modulated Data', color='blue')
plt.title('Modulated Data')
plt.grid(True)
plt.subplot(4, 1, 2)
plt.plot(data_np, x_encrypted_np, label='Encrypted Data', color='green')
plt.title('Encrypted Data')
plt.grid(True)
plt.subplot(4, 1, 3)
plt.plot(data_np, x_hopped_np, label='Frequency Hopped Data', color='red')
plt.title('Frequency Hopped Data')
plt.grid(True)
plt.subplot(4, 1, 4)
plt.plot(data_np, x_decrypted_np, label='Decrypted Data', color='purple')
plt.title('Decrypted Data')
plt.grid(True)
plt.tight_layout()
plt.show() |