File size: 5,432 Bytes
d68daa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import torch.nn as nn
import torch.nn.functional as F

class FrequencyModulation(nn.Module):
    def __init__(self, frequency):
        super(FrequencyModulation, self).__init__()
        self.frequency = frequency

    def forward(self, x):
        # Apply a sine function for modulation
        return torch.sin(2 * torch.pi * self.frequency * x)

class EncryptionLayer(nn.Module):
    def __init__(self, key_frequency):
        super(EncryptionLayer, self).__init__()
        self.key_frequency = key_frequency

    def forward(self, x):
        # Apply frequency shift as a form of encryption
        return torch.sin(2 * torch.pi * (self.key_frequency + x))

class FrequencyHopping(nn.Module):
    def __init__(self, frequencies):
        super(FrequencyHopping, self).__init__()
        self.frequencies = frequencies

    def forward(self, x):
        # Apply frequency hopping
        for freq in self.frequencies:
            x = torch.sin(2 * torch.pi * freq * x)
        return x

class DecryptionLayer(nn.Module):
    def __init__(self, key_frequency):
        super(DecryptionLayer, self).__init__()
        self.key_frequency = key_frequency

    def forward(self, x):
        # Inverse of the encryption process
        return torch.asin(x) / (2 * torch.pi * self.key_frequency)

class FrequencyVPN(nn.Module):
    def __init__(self, frequency, key_frequency, hopping_frequencies):
        super(FrequencyVPN, self).__init__()
        self.modulation = FrequencyModulation(frequency)
        self.encryption = EncryptionLayer(key_frequency)
        self.hopping = FrequencyHopping(hopping_frequencies)
        self.decryption = DecryptionLayer(key_frequency)

    def forward(self, x):
        x = self.modulation(x)
        x = self.encryption(x)
        x = self.hopping(x)
        return self.decryption(x)

# Example usage
model = FrequencyVPN(frequency=5, key_frequency=10, hopping_frequencies=[15, 20, 25])
data = torch.tensor([1.0, 0.5, 0.3])  # Example data
encrypted_data = model(data)

!pip install matplotlib

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np

# Define the Frequency Modulation Layer
class FrequencyModulation(nn.Module):
    def __init__(self, frequency):
        super(FrequencyModulation, self).__init__()
        self.frequency = frequency

    def forward(self, x):
        return torch.sin(2 * torch.pi * self.frequency * x)

# Define the Encryption Layer
class EncryptionLayer(nn.Module):
    def __init__(self, key_frequency):
        super(EncryptionLayer, self).__init__()
        self.key_frequency = key_frequency

    def forward(self, x):
        return torch.sin(2 * torch.pi * (self.key_frequency + x))

# Define the Frequency Hopping Layer
class FrequencyHopping(nn.Module):
    def __init__(self, frequencies):
        super(FrequencyHopping, self).__init__()
        self.frequencies = frequencies

    def forward(self, x):
        for freq in self.frequencies:
            x = torch.sin(2 * torch.pi * freq * x)
        return x

# Define the Decryption Layer
class DecryptionLayer(nn.Module):
    def __init__(self, key_frequency):
        super(DecryptionLayer, self).__init__()
        self.key_frequency = key_frequency

    def forward(self, x):
        return torch.asin(x) / (2 * torch.pi * self.key_frequency)

# Define the FrequencyVPN Model
class FrequencyVPN(nn.Module):
    def __init__(self, frequency, key_frequency, hopping_frequencies):
        super(FrequencyVPN, self).__init__()
        self.modulation = FrequencyModulation(frequency)
        self.encryption = EncryptionLayer(key_frequency)
        self.hopping = FrequencyHopping(hopping_frequencies)
        self.decryption = DecryptionLayer(key_frequency)

    def forward(self, x):
        x_modulated = self.modulation(x)
        x_encrypted = self.encryption(x_modulated)
        x_hopped = self.hopping(x_encrypted)
        x_decrypted = self.decryption(x_hopped)
        return x_modulated, x_encrypted, x_hopped, x_decrypted

# Set the parameters for the model
frequency = 5           # Modulation frequency
key_frequency = 10      # Encryption key frequency
hopping_frequencies = [15, 20, 25]  # Frequencies for hopping

# Create the FrequencyVPN model
model = FrequencyVPN(frequency, key_frequency, hopping_frequencies)

# Example data (simulating a data packet)
data = torch.linspace(0, 1, 100)  # 100 data points between 0 and 1

# Pass the data through the model
x_modulated, x_encrypted, x_hopped, x_decrypted = model(data)

# Convert the torch tensors to numpy arrays for plotting
data_np = data.numpy()
x_modulated_np = x_modulated.detach().numpy()
x_encrypted_np = x_encrypted.detach().numpy()
x_hopped_np = x_hopped.detach().numpy()
x_decrypted_np = x_decrypted.detach().numpy()

# Plot the data at each stage
plt.figure(figsize=(12, 8))

plt.subplot(4, 1, 1)
plt.plot(data_np, x_modulated_np, label='Modulated Data', color='blue')
plt.title('Modulated Data')
plt.grid(True)

plt.subplot(4, 1, 2)
plt.plot(data_np, x_encrypted_np, label='Encrypted Data', color='green')
plt.title('Encrypted Data')
plt.grid(True)

plt.subplot(4, 1, 3)
plt.plot(data_np, x_hopped_np, label='Frequency Hopped Data', color='red')
plt.title('Frequency Hopped Data')
plt.grid(True)

plt.subplot(4, 1, 4)
plt.plot(data_np, x_decrypted_np, label='Decrypted Data', color='purple')
plt.title('Decrypted Data')
plt.grid(True)

plt.tight_layout()
plt.show()