Unnamed: 0
int64
0
16k
text_prompt
stringlengths
110
62.1k
code_prompt
stringlengths
37
152k
3,000
Given the following text description, write Python code to implement the functionality described below step by step Description: Distributed Training with Keras Learning Objectives How to define distribution strategy and set input pipeline. How to create the Keras model. How to define the callbacks. How to train and evaluate the model. Introduction The tf.distribute.Strategy API provides an abstraction for distributing your training across multiple processing units. The goal is to allow users to enable distributed training using existing models and training code, with minimal changes. This notebook uses the tf.distribute.MirroredStrategy, which does in-graph replication with synchronous training on many GPUs on one machine. Essentially, it copies all of the model's variables to each processor. Then, it uses all-reduce to combine the gradients from all processors and applies the combined value to all copies of the model. MirroredStrategy is one of several distribution strategy available in TensorFlow core. You can read about more strategies at distribution strategy guide. Each learning objective will correspond to a #TODO in this student lab notebook -- try to complete this notebook first and then review the solution notebook. Keras API This example uses the tf.keras API to build the model and training loop. For custom training loops, see the tf.distribute.Strategy with training loops tutorial. Import dependencies Step1: Download the dataset Download the MNIST dataset and load it from TensorFlow Datasets. This returns a dataset in tf.data format. Setting with_info to True includes the metadata for the entire dataset, which is being saved here to info. Among other things, this metadata object includes the number of train and test examples. Step2: Define distribution strategy Create a MirroredStrategy object. This will handle distribution, and provides a context manager (tf.distribute.MirroredStrategy.scope) to build your model inside. Step3: Setup input pipeline When training a model with multiple GPUs, you can use the extra computing power effectively by increasing the batch size. In general, use the largest batch size that fits the GPU memory, and tune the learning rate accordingly. Step4: Pixel values, which are 0-255, have to be normalized to the 0-1 range. Define this scale in a function. Step5: Apply this function to the training and test data, shuffle the training data, and batch it for training. Notice we are also keeping an in-memory cache of the training data to improve performance. Step6: Create the model Create and compile the Keras model in the context of strategy.scope. Step7: Define the callbacks The callbacks used here are Step8: Train and evaluate Now, train the model in the usual way, calling fit on the model and passing in the dataset created at the beginning of the tutorial. This step is the same whether you are distributing the training or not. Step9: As you can see below, the checkpoints are getting saved. Step10: To see how the model perform, load the latest checkpoint and call evaluate on the test data. Call evaluate as before using appropriate datasets. Step11: To see the output, you can download and view the TensorBoard logs at the terminal. $ tensorboard --logdir=path/to/log-directory Step12: Export to SavedModel Export the graph and the variables to the platform-agnostic SavedModel format. After your model is saved, you can load it with or without the scope. Step13: Load the model without strategy.scope. Step14: Load the model with strategy.scope.
Python Code: # Import TensorFlow and TensorFlow Datasets import tensorflow_datasets as tfds import tensorflow as tf import os # Here we'll show the currently installed version of TensorFlow print(tf.__version__) Explanation: Distributed Training with Keras Learning Objectives How to define distribution strategy and set input pipeline. How to create the Keras model. How to define the callbacks. How to train and evaluate the model. Introduction The tf.distribute.Strategy API provides an abstraction for distributing your training across multiple processing units. The goal is to allow users to enable distributed training using existing models and training code, with minimal changes. This notebook uses the tf.distribute.MirroredStrategy, which does in-graph replication with synchronous training on many GPUs on one machine. Essentially, it copies all of the model's variables to each processor. Then, it uses all-reduce to combine the gradients from all processors and applies the combined value to all copies of the model. MirroredStrategy is one of several distribution strategy available in TensorFlow core. You can read about more strategies at distribution strategy guide. Each learning objective will correspond to a #TODO in this student lab notebook -- try to complete this notebook first and then review the solution notebook. Keras API This example uses the tf.keras API to build the model and training loop. For custom training loops, see the tf.distribute.Strategy with training loops tutorial. Import dependencies End of explanation # Loads the named dataset into a tf.data.Dataset # TODO: Your code goes here mnist_train, mnist_test = datasets['train'], datasets['test'] Explanation: Download the dataset Download the MNIST dataset and load it from TensorFlow Datasets. This returns a dataset in tf.data format. Setting with_info to True includes the metadata for the entire dataset, which is being saved here to info. Among other things, this metadata object includes the number of train and test examples. End of explanation # Synchronous training across multiple replicas on one machine. # TODO: Your code goes here print('Number of devices: {}'.format(strategy.num_replicas_in_sync)) Explanation: Define distribution strategy Create a MirroredStrategy object. This will handle distribution, and provides a context manager (tf.distribute.MirroredStrategy.scope) to build your model inside. End of explanation # You can also do info.splits.total_num_examples to get the total # number of examples in the dataset. num_train_examples = info.splits['train'].num_examples num_test_examples = info.splits['test'].num_examples BUFFER_SIZE = 10000 BATCH_SIZE_PER_REPLICA = 64 BATCH_SIZE = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync Explanation: Setup input pipeline When training a model with multiple GPUs, you can use the extra computing power effectively by increasing the batch size. In general, use the largest batch size that fits the GPU memory, and tune the learning rate accordingly. End of explanation def scale(image, label): image = tf.cast(image, tf.float32) image /= 255 return image, label Explanation: Pixel values, which are 0-255, have to be normalized to the 0-1 range. Define this scale in a function. End of explanation train_dataset = mnist_train.map(scale).cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE) eval_dataset = mnist_test.map(scale).batch(BATCH_SIZE) Explanation: Apply this function to the training and test data, shuffle the training data, and batch it for training. Notice we are also keeping an in-memory cache of the training data to improve performance. End of explanation with strategy.scope(): model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(10) ]) # Configures the model for training. # TODO: Your code goes here Explanation: Create the model Create and compile the Keras model in the context of strategy.scope. End of explanation # Define the checkpoint directory to store the checkpoints # TODO: Your code goes here # Name of the checkpoint files # TODO: Your code goes here # Function for decaying the learning rate. # You can define any decay function you need. def decay(epoch): if epoch < 3: return 1e-3 elif epoch >= 3 and epoch < 7: return 1e-4 else: return 1e-5 # Callback for printing the LR at the end of each epoch. class PrintLR(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): print('\nLearning rate for epoch {} is {}'.format(epoch + 1, model.optimizer.lr.numpy())) callbacks = [ tf.keras.callbacks.TensorBoard(log_dir='./logs'), tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix, save_weights_only=True), tf.keras.callbacks.LearningRateScheduler(decay), PrintLR() ] Explanation: Define the callbacks The callbacks used here are: TensorBoard: This callback writes a log for TensorBoard which allows you to visualize the graphs. Model Checkpoint: This callback saves the model after every epoch. Learning Rate Scheduler: Using this callback, you can schedule the learning rate to change after every epoch/batch. For illustrative purposes, add a print callback to display the learning rate in the notebook. End of explanation # Train the model with the new callback # TODO: Your code goes here Explanation: Train and evaluate Now, train the model in the usual way, calling fit on the model and passing in the dataset created at the beginning of the tutorial. This step is the same whether you are distributing the training or not. End of explanation # check the checkpoint directory !ls {checkpoint_dir} Explanation: As you can see below, the checkpoints are getting saved. End of explanation # Loads the weights model.load_weights(tf.train.latest_checkpoint(checkpoint_dir)) eval_loss, eval_acc = model.evaluate(eval_dataset) print('Eval loss: {}, Eval Accuracy: {}'.format(eval_loss, eval_acc)) Explanation: To see how the model perform, load the latest checkpoint and call evaluate on the test data. Call evaluate as before using appropriate datasets. End of explanation !ls -sh ./logs Explanation: To see the output, you can download and view the TensorBoard logs at the terminal. $ tensorboard --logdir=path/to/log-directory End of explanation path = 'saved_model/' # Save the entire model as a SavedModel. # TODO: Your code goes here Explanation: Export to SavedModel Export the graph and the variables to the platform-agnostic SavedModel format. After your model is saved, you can load it with or without the scope. End of explanation unreplicated_model = tf.keras.models.load_model(path) unreplicated_model.compile( loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy']) eval_loss, eval_acc = unreplicated_model.evaluate(eval_dataset) print('Eval loss: {}, Eval Accuracy: {}'.format(eval_loss, eval_acc)) Explanation: Load the model without strategy.scope. End of explanation # Recreate the exact same model, including its weights and the optimizer with strategy.scope(): replicated_model = tf.keras.models.load_model(path) replicated_model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy']) eval_loss, eval_acc = replicated_model.evaluate(eval_dataset) print ('Eval loss: {}, Eval Accuracy: {}'.format(eval_loss, eval_acc)) Explanation: Load the model with strategy.scope. End of explanation
3,001
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Atmoschem MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Software Properties 3. Key Properties --&gt; Timestep Framework 4. Key Properties --&gt; Timestep Framework --&gt; Split Operator Order 5. Key Properties --&gt; Tuning Applied 6. Grid 7. Grid --&gt; Resolution 8. Transport 9. Emissions Concentrations 10. Emissions Concentrations --&gt; Surface Emissions 11. Emissions Concentrations --&gt; Atmospheric Emissions 12. Emissions Concentrations --&gt; Concentrations 13. Gas Phase Chemistry 14. Stratospheric Heterogeneous Chemistry 15. Tropospheric Heterogeneous Chemistry 16. Photo Chemistry 17. Photo Chemistry --&gt; Photolysis 1. Key Properties Key properties of the atmospheric chemistry 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 1.3. Chemistry Scheme Scope Is Required Step7: 1.4. Basic Approximations Is Required Step8: 1.5. Prognostic Variables Form Is Required Step9: 1.6. Number Of Tracers Is Required Step10: 1.7. Family Approach Is Required Step11: 1.8. Coupling With Chemical Reactivity Is Required Step12: 2. Key Properties --&gt; Software Properties Software properties of aerosol code 2.1. Repository Is Required Step13: 2.2. Code Version Is Required Step14: 2.3. Code Languages Is Required Step15: 3. Key Properties --&gt; Timestep Framework Timestepping in the atmospheric chemistry model 3.1. Method Is Required Step16: 3.2. Split Operator Advection Timestep Is Required Step17: 3.3. Split Operator Physical Timestep Is Required Step18: 3.4. Split Operator Chemistry Timestep Is Required Step19: 3.5. Split Operator Alternate Order Is Required Step20: 3.6. Integrated Timestep Is Required Step21: 3.7. Integrated Scheme Type Is Required Step22: 4. Key Properties --&gt; Timestep Framework --&gt; Split Operator Order ** 4.1. Turbulence Is Required Step23: 4.2. Convection Is Required Step24: 4.3. Precipitation Is Required Step25: 4.4. Emissions Is Required Step26: 4.5. Deposition Is Required Step27: 4.6. Gas Phase Chemistry Is Required Step28: 4.7. Tropospheric Heterogeneous Phase Chemistry Is Required Step29: 4.8. Stratospheric Heterogeneous Phase Chemistry Is Required Step30: 4.9. Photo Chemistry Is Required Step31: 4.10. Aerosols Is Required Step32: 5. Key Properties --&gt; Tuning Applied Tuning methodology for atmospheric chemistry component 5.1. Description Is Required Step33: 5.2. Global Mean Metrics Used Is Required Step34: 5.3. Regional Metrics Used Is Required Step35: 5.4. Trend Metrics Used Is Required Step36: 6. Grid Atmospheric chemistry grid 6.1. Overview Is Required Step37: 6.2. Matches Atmosphere Grid Is Required Step38: 7. Grid --&gt; Resolution Resolution in the atmospheric chemistry grid 7.1. Name Is Required Step39: 7.2. Canonical Horizontal Resolution Is Required Step40: 7.3. Number Of Horizontal Gridpoints Is Required Step41: 7.4. Number Of Vertical Levels Is Required Step42: 7.5. Is Adaptive Grid Is Required Step43: 8. Transport Atmospheric chemistry transport 8.1. Overview Is Required Step44: 8.2. Use Atmospheric Transport Is Required Step45: 8.3. Transport Details Is Required Step46: 9. Emissions Concentrations Atmospheric chemistry emissions 9.1. Overview Is Required Step47: 10. Emissions Concentrations --&gt; Surface Emissions ** 10.1. Sources Is Required Step48: 10.2. Method Is Required Step49: 10.3. Prescribed Climatology Emitted Species Is Required Step50: 10.4. Prescribed Spatially Uniform Emitted Species Is Required Step51: 10.5. Interactive Emitted Species Is Required Step52: 10.6. Other Emitted Species Is Required Step53: 11. Emissions Concentrations --&gt; Atmospheric Emissions TO DO 11.1. Sources Is Required Step54: 11.2. Method Is Required Step55: 11.3. Prescribed Climatology Emitted Species Is Required Step56: 11.4. Prescribed Spatially Uniform Emitted Species Is Required Step57: 11.5. Interactive Emitted Species Is Required Step58: 11.6. Other Emitted Species Is Required Step59: 12. Emissions Concentrations --&gt; Concentrations TO DO 12.1. Prescribed Lower Boundary Is Required Step60: 12.2. Prescribed Upper Boundary Is Required Step61: 13. Gas Phase Chemistry Atmospheric chemistry transport 13.1. Overview Is Required Step62: 13.2. Species Is Required Step63: 13.3. Number Of Bimolecular Reactions Is Required Step64: 13.4. Number Of Termolecular Reactions Is Required Step65: 13.5. Number Of Tropospheric Heterogenous Reactions Is Required Step66: 13.6. Number Of Stratospheric Heterogenous Reactions Is Required Step67: 13.7. Number Of Advected Species Is Required Step68: 13.8. Number Of Steady State Species Is Required Step69: 13.9. Interactive Dry Deposition Is Required Step70: 13.10. Wet Deposition Is Required Step71: 13.11. Wet Oxidation Is Required Step72: 14. Stratospheric Heterogeneous Chemistry Atmospheric chemistry startospheric heterogeneous chemistry 14.1. Overview Is Required Step73: 14.2. Gas Phase Species Is Required Step74: 14.3. Aerosol Species Is Required Step75: 14.4. Number Of Steady State Species Is Required Step76: 14.5. Sedimentation Is Required Step77: 14.6. Coagulation Is Required Step78: 15. Tropospheric Heterogeneous Chemistry Atmospheric chemistry tropospheric heterogeneous chemistry 15.1. Overview Is Required Step79: 15.2. Gas Phase Species Is Required Step80: 15.3. Aerosol Species Is Required Step81: 15.4. Number Of Steady State Species Is Required Step82: 15.5. Interactive Dry Deposition Is Required Step83: 15.6. Coagulation Is Required Step84: 16. Photo Chemistry Atmospheric chemistry photo chemistry 16.1. Overview Is Required Step85: 16.2. Number Of Reactions Is Required Step86: 17. Photo Chemistry --&gt; Photolysis Photolysis scheme 17.1. Method Is Required Step87: 17.2. Environmental Conditions Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'nims-kma', 'sandbox-1', 'atmoschem') Explanation: ES-DOC CMIP6 Model Properties - Atmoschem MIP Era: CMIP6 Institute: NIMS-KMA Source ID: SANDBOX-1 Topic: Atmoschem Sub-Topics: Transport, Emissions Concentrations, Gas Phase Chemistry, Stratospheric Heterogeneous Chemistry, Tropospheric Heterogeneous Chemistry, Photo Chemistry. Properties: 84 (39 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:54:28 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Software Properties 3. Key Properties --&gt; Timestep Framework 4. Key Properties --&gt; Timestep Framework --&gt; Split Operator Order 5. Key Properties --&gt; Tuning Applied 6. Grid 7. Grid --&gt; Resolution 8. Transport 9. Emissions Concentrations 10. Emissions Concentrations --&gt; Surface Emissions 11. Emissions Concentrations --&gt; Atmospheric Emissions 12. Emissions Concentrations --&gt; Concentrations 13. Gas Phase Chemistry 14. Stratospheric Heterogeneous Chemistry 15. Tropospheric Heterogeneous Chemistry 16. Photo Chemistry 17. Photo Chemistry --&gt; Photolysis 1. Key Properties Key properties of the atmospheric chemistry 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of atmospheric chemistry model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of atmospheric chemistry model code. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.chemistry_scheme_scope') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "troposhere" # "stratosphere" # "mesosphere" # "mesosphere" # "whole atmosphere" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.3. Chemistry Scheme Scope Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Atmospheric domains covered by the atmospheric chemistry model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.basic_approximations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.4. Basic Approximations Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Basic approximations made in the atmospheric chemistry model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.prognostic_variables_form') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "3D mass/mixing ratio for gas" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.5. Prognostic Variables Form Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Form of prognostic variables in the atmospheric chemistry component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.number_of_tracers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 1.6. Number Of Tracers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Number of advected tracers in the atmospheric chemistry model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.family_approach') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 1.7. Family Approach Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Atmospheric chemistry calculations (not advection) generalized into families of species? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.coupling_with_chemical_reactivity') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 1.8. Coupling With Chemical Reactivity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Atmospheric chemistry transport scheme turbulence is couple with chemical reactivity? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Software Properties Software properties of aerosol code 2.1. Repository Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Location of code for this component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.2. Code Version Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Code version identifier. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.3. Code Languages Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Code language(s). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Operator splitting" # "Integrated" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Timestep Framework Timestepping in the atmospheric chemistry model 3.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Mathematical method deployed to solve the evolution of a given variable End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_advection_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.2. Split Operator Advection Timestep Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Timestep for chemical species advection (in seconds) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_physical_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.3. Split Operator Physical Timestep Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Timestep for physics (in seconds). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_chemistry_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.4. Split Operator Chemistry Timestep Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Timestep for chemistry (in seconds). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_alternate_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 3.5. Split Operator Alternate Order Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.integrated_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.6. Integrated Timestep Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Timestep for the atmospheric chemistry model (in seconds) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.integrated_scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Implicit" # "Semi-implicit" # "Semi-analytic" # "Impact solver" # "Back Euler" # "Newton Raphson" # "Rosenbrock" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 3.7. Integrated Scheme Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Specify the type of timestep scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.turbulence') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Timestep Framework --&gt; Split Operator Order ** 4.1. Turbulence Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for turbulence scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.convection') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.2. Convection Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for convection scheme This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.3. Precipitation Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for precipitation scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.emissions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.4. Emissions Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for emissions scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.5. Deposition Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for deposition scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.gas_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.6. Gas Phase Chemistry Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for gas phase chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.tropospheric_heterogeneous_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.7. Tropospheric Heterogeneous Phase Chemistry Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for tropospheric heterogeneous phase chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.stratospheric_heterogeneous_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.8. Stratospheric Heterogeneous Phase Chemistry Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for stratospheric heterogeneous phase chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.photo_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.9. Photo Chemistry Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for photo chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.aerosols') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.10. Aerosols Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Call order for aerosols scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Key Properties --&gt; Tuning Applied Tuning methodology for atmospheric chemistry component 5.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General overview description of tuning: explain and motivate the main targets and metrics retained. &amp;Document the relative weight given to climate performance metrics versus process oriented metrics, &amp;and on the possible conflicts with parameterization level tuning. In particular describe any struggle &amp;with a parameter value that required pushing it to its limits to solve a particular model deficiency. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.2. Global Mean Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List set of metrics of the global mean state used in tuning model/component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.3. Regional Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List of regional metrics of mean state used in tuning model/component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.4. Trend Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List observed trend metrics used in tuning model/component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6. Grid Atmospheric chemistry grid 6.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general structure of the atmopsheric chemistry grid End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.matches_atmosphere_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6.2. Matches Atmosphere Grid Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 * Does the atmospheric chemistry grid match the atmosphere grid?* End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7. Grid --&gt; Resolution Resolution in the atmospheric chemistry grid 7.1. Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.2. Canonical Horizontal Resolution Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 7.3. Number Of Horizontal Gridpoints Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Total number of horizontal (XY) points (or degrees of freedom) on computational grid. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 7.4. Number Of Vertical Levels Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Number of vertical levels resolved on computational grid. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 7.5. Is Adaptive Grid Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Default is False. Set true if grid resolution changes during execution. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Transport Atmospheric chemistry transport 8.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General overview of transport implementation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.use_atmospheric_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 8.2. Use Atmospheric Transport Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is transport handled by the atmosphere, rather than within atmospheric cehmistry? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.transport_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.3. Transport Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If transport is handled within the atmospheric chemistry scheme, describe it. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9. Emissions Concentrations Atmospheric chemistry emissions 9.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview atmospheric chemistry emissions End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Vegetation" # "Soil" # "Sea surface" # "Anthropogenic" # "Biomass burning" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10. Emissions Concentrations --&gt; Surface Emissions ** 10.1. Sources Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Sources of the chemical species emitted at the surface that are taken into account in the emissions scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Climatology" # "Spatially uniform mixing ratio" # "Spatially uniform concentration" # "Interactive" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10.2. Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Methods used to define chemical species emitted directly into model layers above the surface (several methods allowed because the different species may not use the same method). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 10.3. Prescribed Climatology Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted at the surface and prescribed via a climatology, and the nature of the climatology (E.g. CO (monthly), C2H6 (constant)) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 10.4. Prescribed Spatially Uniform Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted at the surface and prescribed as spatially uniform End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 10.5. Interactive Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted at the surface and specified via an interactive method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 10.6. Other Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted at the surface and specified via any other method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Aircraft" # "Biomass burning" # "Lightning" # "Volcanos" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 11. Emissions Concentrations --&gt; Atmospheric Emissions TO DO 11.1. Sources Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Sources of chemical species emitted in the atmosphere that are taken into account in the emissions scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Climatology" # "Spatially uniform mixing ratio" # "Spatially uniform concentration" # "Interactive" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 11.2. Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Methods used to define the chemical species emitted in the atmosphere (several methods allowed because the different species may not use the same method). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.3. Prescribed Climatology Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted in the atmosphere and prescribed via a climatology (E.g. CO (monthly), C2H6 (constant)) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.4. Prescribed Spatially Uniform Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted in the atmosphere and prescribed as spatially uniform End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.5. Interactive Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted in the atmosphere and specified via an interactive method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.6. Other Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of chemical species emitted in the atmosphere and specified via an &quot;other method&quot; End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.concentrations.prescribed_lower_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12. Emissions Concentrations --&gt; Concentrations TO DO 12.1. Prescribed Lower Boundary Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of species prescribed at the lower boundary. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.concentrations.prescribed_upper_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.2. Prescribed Upper Boundary Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of species prescribed at the upper boundary. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 13. Gas Phase Chemistry Atmospheric chemistry transport 13.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview gas phase atmospheric chemistry End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HOx" # "NOy" # "Ox" # "Cly" # "HSOx" # "Bry" # "VOCs" # "isoprene" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.2. Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Species included in the gas phase chemistry scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_bimolecular_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 13.3. Number Of Bimolecular Reactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of bi-molecular reactions in the gas phase chemistry scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_termolecular_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 13.4. Number Of Termolecular Reactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of ter-molecular reactions in the gas phase chemistry scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_tropospheric_heterogenous_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 13.5. Number Of Tropospheric Heterogenous Reactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of reactions in the tropospheric heterogeneous chemistry scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_stratospheric_heterogenous_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 13.6. Number Of Stratospheric Heterogenous Reactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of reactions in the stratospheric heterogeneous chemistry scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_advected_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 13.7. Number Of Advected Species Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of advected species in the gas phase chemistry scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 13.8. Number Of Steady State Species Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of gas phase species for which the concentration is updated in the chemical solver assuming photochemical steady state End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.interactive_dry_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 13.9. Interactive Dry Deposition Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is dry deposition interactive (as opposed to prescribed)? Dry deposition describes the dry processes by which gaseous species deposit themselves on solid surfaces thus decreasing their concentration in the air. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.wet_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 13.10. Wet Deposition Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is wet deposition included? Wet deposition describes the moist processes by which gaseous species deposit themselves on solid surfaces thus decreasing their concentration in the air. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.wet_oxidation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 13.11. Wet Oxidation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is wet oxidation included? Oxidation describes the loss of electrons or an increase in oxidation state by a molecule End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14. Stratospheric Heterogeneous Chemistry Atmospheric chemistry startospheric heterogeneous chemistry 14.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview stratospheric heterogenous atmospheric chemistry End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.gas_phase_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Cly" # "Bry" # "NOy" # TODO - please enter value(s) Explanation: 14.2. Gas Phase Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Gas phase species included in the stratospheric heterogeneous chemistry scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.aerosol_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Polar stratospheric ice" # "NAT (Nitric acid trihydrate)" # "NAD (Nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particule))" # TODO - please enter value(s) Explanation: 14.3. Aerosol Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Aerosol species included in the stratospheric heterogeneous chemistry scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 14.4. Number Of Steady State Species Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of steady state species in the stratospheric heterogeneous chemistry scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.sedimentation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 14.5. Sedimentation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is sedimentation is included in the stratospheric heterogeneous chemistry scheme or not? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.coagulation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 14.6. Coagulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is coagulation is included in the stratospheric heterogeneous chemistry scheme or not? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15. Tropospheric Heterogeneous Chemistry Atmospheric chemistry tropospheric heterogeneous chemistry 15.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview tropospheric heterogenous atmospheric chemistry End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.gas_phase_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.2. Gas Phase Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of gas phase species included in the tropospheric heterogeneous chemistry scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.aerosol_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Nitrate" # "Sea salt" # "Dust" # "Ice" # "Organic" # "Black carbon/soot" # "Polar stratospheric ice" # "Secondary organic aerosols" # "Particulate organic matter" # TODO - please enter value(s) Explanation: 15.3. Aerosol Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Aerosol species included in the tropospheric heterogeneous chemistry scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 15.4. Number Of Steady State Species Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of steady state species in the tropospheric heterogeneous chemistry scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.interactive_dry_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 15.5. Interactive Dry Deposition Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is dry deposition interactive (as opposed to prescribed)? Dry deposition describes the dry processes by which gaseous species deposit themselves on solid surfaces thus decreasing their concentration in the air. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.coagulation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 15.6. Coagulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is coagulation is included in the tropospheric heterogeneous chemistry scheme or not? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 16. Photo Chemistry Atmospheric chemistry photo chemistry 16.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview atmospheric photo chemistry End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.number_of_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 16.2. Number Of Reactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of reactions in the photo-chemistry scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.photolysis.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Offline (clear sky)" # "Offline (with clouds)" # "Online" # TODO - please enter value(s) Explanation: 17. Photo Chemistry --&gt; Photolysis Photolysis scheme 17.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Photolysis scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.photolysis.environmental_conditions') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.2. Environmental Conditions Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe any environmental conditions taken into account by the photolysis scheme (e.g. whether pressure- and temperature-sensitive cross-sections and quantum yields in the photolysis calculations are modified to reflect the modelled conditions.) End of explanation
3,002
Given the following text description, write Python code to implement the functionality described below step by step Description: Working with time series data Some imports Step1: Case study Step2: I downloaded and preprocessed some of the data (python-airbase) Step3: As you can see, the missing values are indicated by -9999. This can be recognized by read_csv by passing the na_values keyword Step4: Exploring the data Some useful methods Step5: info() Step6: Getting some basic summary statistics about the data with describe Step7: Quickly visualizing the data Step8: This does not say too much .. We can select part of the data (eg the latest 500 data points) Step9: Or we can use some more advanced time series features -> next section! Working with time series data When we ensure the DataFrame has a DatetimeIndex, time-series related functionality becomes available Step10: Indexing a time series works with strings Step11: A nice feature is "partial string" indexing, where we can do implicit slicing by providing a partial datetime string. E.g. all data of 2012 Step12: Normally you would expect this to access a column named '2012', but as for a DatetimeIndex, pandas also tries to interprete it as a datetime slice. Or all data of January up to March 2012 Step13: Time and date components can be accessed from the index Step14: <div class="alert alert-success"> <b>EXERCISE</b> Step15: <div class="alert alert-success"> <b>EXERCISE</b> Step16: <div class="alert alert-success"> <b>EXERCISE</b> Step17: <div class="alert alert-success"> <b>EXERCISE</b> Step18: The power of pandas Step19: By default, resample takes the mean as aggregation function, but other methods can also be specified Step20: The string to specify the new time frequency Step21: <div class="alert alert-success"> <b>QUESTION</b>
Python Code: %matplotlib inline import pandas as pd import numpy as np import matplotlib.pyplot as plt try: import seaborn except: pass pd.options.display.max_rows = 8 Explanation: Working with time series data Some imports: End of explanation from IPython.display import HTML HTML('<iframe src=http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8#tab-data-by-country width=900 height=350></iframe>') Explanation: Case study: air quality data of European monitoring stations (AirBase) AirBase (The European Air quality dataBase): hourly measurements of all air quality monitoring stations from Europe. End of explanation !head -5 data/airbase_data.csv Explanation: I downloaded and preprocessed some of the data (python-airbase): data/airbase_data.csv. This file includes the hourly concentrations of NO2 for 4 different measurement stations: FR04037 (PARIS 13eme): urban background site at Square de Choisy FR04012 (Paris, Place Victor Basch): urban traffic site at Rue d'Alesia BETR802: urban traffic site in Antwerp, Belgium BETN029: rural background site in Houtem, Belgium See http://www.eea.europa.eu/themes/air/interactive/no2 Importing the data Import the csv file: End of explanation data = pd.read_csv('data/airbase_data.csv', index_col=0, parse_dates=True, na_values=[-9999]) Explanation: As you can see, the missing values are indicated by -9999. This can be recognized by read_csv by passing the na_values keyword: End of explanation data.head(3) data.tail() Explanation: Exploring the data Some useful methods: head and tail End of explanation data.info() Explanation: info() End of explanation data.describe() Explanation: Getting some basic summary statistics about the data with describe: End of explanation data.plot(kind='box', ylim=[0,250]) data['BETR801'].plot(kind='hist', bins=50) data.plot(figsize=(12,6)) Explanation: Quickly visualizing the data End of explanation data[-500:].plot(figsize=(12,6)) Explanation: This does not say too much .. We can select part of the data (eg the latest 500 data points): End of explanation data.index Explanation: Or we can use some more advanced time series features -> next section! Working with time series data When we ensure the DataFrame has a DatetimeIndex, time-series related functionality becomes available: End of explanation data["2010-01-01 09:00": "2010-01-01 12:00"] Explanation: Indexing a time series works with strings: End of explanation data['2012'] Explanation: A nice feature is "partial string" indexing, where we can do implicit slicing by providing a partial datetime string. E.g. all data of 2012: End of explanation data['2012-01':'2012-03'] Explanation: Normally you would expect this to access a column named '2012', but as for a DatetimeIndex, pandas also tries to interprete it as a datetime slice. Or all data of January up to March 2012: End of explanation data.index.hour data.index.year Explanation: Time and date components can be accessed from the index: End of explanation data = data['1999':] Explanation: <div class="alert alert-success"> <b>EXERCISE</b>: select all data starting from 1999 </div> End of explanation data[data.index.month == 1] Explanation: <div class="alert alert-success"> <b>EXERCISE</b>: select all data in January for all different years </div> End of explanation data['months'] = data.index.month data[data['months'].isin([1, 2, 3])] Explanation: <div class="alert alert-success"> <b>EXERCISE</b>: select all data in January, February and March for all different years </div> End of explanation data[(data.index.hour >= 8) & (data.index.hour < 20)] data.between_time('08:00', '20:00') Explanation: <div class="alert alert-success"> <b>EXERCISE</b>: select all 'daytime' data (between 8h and 20h) for all days </div> End of explanation data.resample('D').head() Explanation: The power of pandas: resample A very powerfull method is resample: converting the frequency of the time series (e.g. from hourly to daily data). The time series has a frequency of 1 hour. I want to change this to daily: End of explanation data.resample('D', how='max').head() Explanation: By default, resample takes the mean as aggregation function, but other methods can also be specified: End of explanation data.resample('M').plot() # 'A' # data['2012'].resample('D').plot() Explanation: The string to specify the new time frequency: http://pandas.pydata.org/pandas-docs/dev/timeseries.html#offset-aliases These strings can also be combined with numbers, eg '10D'. Further exploring the data: End of explanation data.groupby(data.index.year).mean().plot() Explanation: <div class="alert alert-success"> <b>QUESTION</b>: plot the monthly mean and median concentration of the 'FR04037' station for the years 2009-2012 </div> <div class="alert alert-success"> <b>QUESTION</b>: plot the monthly mininum and maximum daily concentration of the 'BETR801' station </div> <div class="alert alert-success"> <b>QUESTION</b>: make a bar plot of the mean of the stations in year of 2012 </div> <div class="alert alert-success"> <b>QUESTION</b>: The evolution of the yearly averages with, and the overall mean of all stations? </div> Combination with groupby resample can actually be seen as a specific kind of groupby. E.g. taking annual means with data.resample('A', 'mean') is equivalent to data.groupby(data.index.year).mean() (only the result of resample still has a DatetimeIndex). End of explanation
3,003
Given the following text description, write Python code to implement the functionality described below step by step Description: Lending Club Loan Data Step1: 2. Loan Book Distribution across the U.S. States (D3 Choropleths by leveraging the "Bokeh" library) Here, we provide two choropleth maps concerning the Loan Book Value and the Loan Book Volume distribution across the U.S. States. To do so, we have used the "Bokeh" Python library, a GeoJSON file which defines the U.S. States boundaries and it has been produced from a cartographic boundary shapefile that is provided from the official site of the U.S. Census Bureau, and the Pandas DataFrame grouped_agg_df, where we aggregate the number, and the value of loans per U.S. State. "Bokeh" is a Python library for interactive D3 visualizations! Step2: 2.1 Loan book Value by U.S. States Step3: 2.2 Loan book Volume by U.S. States
Python Code: # Required Libraries import os import pandas as pd import numpy as np # Path Definitions of Required Data Sets loan_df_path = os.path.join('/media/ML_HOME/ML-Data_Repository/data', 'loan_df') us_states_GeoJSON = os.path.join('/media/ML_HOME/ML-Data_Repository/maps', 'us_states-albersUSA-Geo.json') Explanation: Lending Club Loan Data: Loan Book Distribution ("Bokeh" Viz) Description: Analyze Lending Club's issued loans These files contain complete loan data for all loans issued through the 2007-2015, including the current loan status ('Current', 'Late', 'Fully Paid', etc.) and latest payment information. Additional features include credit scores, number of finance inquiries, address including zip codes, and state, and collections among others. The file is a matrix of about 890 thousand observations and 75 variables. Here, we use a previously transformed data set, which is however a full copy of the original one. For more information, or if you want to download these data, consult: Source Lending Club - About Lending Club Statistics - Download Data kaggle Datasets Table of Contents <p><div class="lev1 toc-item"><a href="#Lending-Club-Loan-Data:-Loan-Book-Distribution-(&quot;Bokeh&quot;-Viz)" data-toc-modified-id="Lending-Club-Loan-Data:-Loan-Book-Distribution-(&quot;Bokeh&quot;-Viz)-1"><span class="toc-item-num">1&nbsp;&nbsp;</span>Lending Club Loan Data: Loan Book Distribution ("Bokeh" Viz)</a></div><div class="lev2 toc-item"><a href="#Description:-Analyze-Lending-Club's-issued-loans" data-toc-modified-id="Description:-Analyze-Lending-Club's-issued-loans-11"><span class="toc-item-num">1.1&nbsp;&nbsp;</span>Description: Analyze Lending Club's issued loans</a></div><div class="lev2 toc-item"><a href="#Source" data-toc-modified-id="Source-12"><span class="toc-item-num">1.2&nbsp;&nbsp;</span>Source</a></div><div class="lev2 toc-item"><a href="#1.-Loading-Libraries-and-Data-Sets" data-toc-modified-id="1.-Loading-Libraries-and-Data-Sets-13"><span class="toc-item-num">1.3&nbsp;&nbsp;</span>1. Loading Libraries and Data Sets</a></div><div class="lev2 toc-item"><a href="#2.-Loan-Book-Distribution-across-the-U.S.-States-(D3-Choropleths-by-leveraging-the-&quot;Bokeh&quot;-library)" data-toc-modified-id="2.-Loan-Book-Distribution-across-the-U.S.-States-(D3-Choropleths-by-leveraging-the-&quot;Bokeh&quot;-library)-14"><span class="toc-item-num">1.4&nbsp;&nbsp;</span>2. Loan Book Distribution across the U.S. States (D3 Choropleths by leveraging the "Bokeh" library)</a></div><div class="lev3 toc-item"><a href="#2.1-Loan-book-Value-by-U.S.-States" data-toc-modified-id="2.1-Loan-book-Value-by-U.S.-States-141"><span class="toc-item-num">1.4.1&nbsp;&nbsp;</span>2.1 Loan book Value by U.S. States</a></div><div class="lev3 toc-item"><a href="#2.2-Loan-book-Volume-by-U.S.-States" data-toc-modified-id="2.2-Loan-book-Volume-by-U.S.-States-142"><span class="toc-item-num">1.4.2&nbsp;&nbsp;</span>2.2 Loan book Volume by U.S. States</a></div> ## 1. Loading Libraries and Data Sets End of explanation # Load the Data Set of interest loan_df = pd.read_pickle(loan_df_path) # A fast look in the available data set.. loan_df.info(null_counts=True) # Compute the "Loan Book Amount & Volume" per "US State" grouped = loan_df.groupby(by=['addr_state']) grouped_agg = (grouped[['loan_amnt']].agg(np.sum) .rename(columns={'loan_amnt': 'loanbook_amnt_per_state'})) grouped_agg['loanbook_vol_per_state'] = grouped['loan_amnt'].agg(np.count_nonzero) grouped_agg_df = grouped_agg.reset_index() grouped_agg_df.head() # Prepare the "grouped_agg_df" Data Frame as a JSON file... # This JSON file has been appropriately joined into the GeoJSON Data Source, "us_states_GeoJSON", that we use here. grouped_agg_df[:5].to_json(orient='records') Explanation: 2. Loan Book Distribution across the U.S. States (D3 Choropleths by leveraging the "Bokeh" library) Here, we provide two choropleth maps concerning the Loan Book Value and the Loan Book Volume distribution across the U.S. States. To do so, we have used the "Bokeh" Python library, a GeoJSON file which defines the U.S. States boundaries and it has been produced from a cartographic boundary shapefile that is provided from the official site of the U.S. Census Bureau, and the Pandas DataFrame grouped_agg_df, where we aggregate the number, and the value of loans per U.S. State. "Bokeh" is a Python library for interactive D3 visualizations! End of explanation # Load the necessary libraries for the D3 Visualization from bokeh.io import show, output_notebook from bokeh.palettes import ( YlOrRd9 as palette1, YlGnBu9 as palette2) from bokeh.plotting import figure from bokeh.models import ( GeoJSONDataSource, LogColorMapper, HoverTool, LogTicker, ColorBar) # Load the enriched GeoJSON Data Source, with the loanbook measures of interest with open(us_states_GeoJSON, 'r') as f: geo_source = GeoJSONDataSource(geojson=f.read()) # Output the Choropleth Plots in Notebook output_notebook() # PROVIDE THE CHOROPLETH OF "LOAN BOOK AMOUNT PER STATE" palette1.reverse() color_mapper = LogColorMapper(palette=palette1, low=grouped_agg_df['loanbook_amnt_per_state'].min(), high=grouped_agg_df['loanbook_amnt_per_state'].max()) # Define the figure "Tools" we want to make available TOOLS = "pan, wheel_zoom, reset, hover, save" # Plot the figure # Define the figure dimensions and its general details p = figure(title="Loan Book Value by U.S. States", tools=TOOLS, plot_width=960, plot_height=500, x_range=(0, 960), y_range=(500, 0), x_axis_location=None, y_axis_location=None) # Render the "Bokeh" patches in Glyph p.patches('xs', 'ys', source=geo_source, fill_color={'field': "loanbook_amnt_per_state" ,'transform': color_mapper}, fill_alpha=0.7, line_color="white", line_width=0.5) # Add a Hover Tools over the U.S. States hover = p.select_one(HoverTool) hover.point_policy = "follow_mouse" hover.tooltips = [ ("State", "@state"), ("Loan Book Amount", "@loanbook_amnt_per_state{,.2f} USD"), ("(Long, Lat)", "($x, $y)"), ] # Add a ColorBar Legend color_bar = ColorBar(color_mapper=color_mapper, ticker=LogTicker(), background_fill_alpha=0.7, label_standoff=5, major_label_text_color='black', major_tick_line_color='black', major_tick_line_width=1.3, major_tick_out=5, border_line_color=None, location=(0,0), orientation='horizontal', width=500) p.add_layout(color_bar, 'above') show(p) Explanation: 2.1 Loan book Value by U.S. States End of explanation # PROVIDE THE CHOROPLETH OF "LOAN BOOK VOLUME PER STATE" palette2.reverse() color_mapper = LogColorMapper(palette=palette2, low=grouped_agg_df['loanbook_vol_per_state'].min(), high=grouped_agg_df['loanbook_vol_per_state'].max()) # Define the figure "Tools" we want to make available TOOLS = "pan, wheel_zoom, reset, hover, save" # Plot the figure # Define the figure dimensions and its general details p = figure(title="Loan Book Volume by U.S. States", tools=TOOLS, plot_width=960, plot_height=500, x_range=(0, 960), y_range=(500, 0), x_axis_location=None, y_axis_location=None) # Render the "Bokeh" patches in Glyph p.patches('xs', 'ys', source=geo_source, fill_color={'field': "loanbook_vol_per_state" ,'transform': color_mapper}, fill_alpha=0.7, line_color="white", line_width=0.5) # Add a Hover Tools over the U.S. States hover = p.select_one(HoverTool) hover.point_policy = "follow_mouse" hover.tooltips = [ ("State", "@state"), ("Loan Book Volume", "@loanbook_vol_per_state{,}"), ("(Long, Lat)", "($x, $y)"), ] # Add a ColorBar Legend color_bar = ColorBar(color_mapper=color_mapper, ticker=LogTicker(), background_fill_alpha=0.7, label_standoff=5, major_label_text_color='black', major_tick_line_color='black', major_tick_line_width=1.3, major_tick_out=5, border_line_color=None, location=(0,0), orientation='horizontal', width=500) p.add_layout(color_bar, 'above') show(p) Explanation: 2.2 Loan book Volume by U.S. States End of explanation
3,004
Given the following text description, write Python code to implement the functionality described below step by step Description: Shear Wave Splitting for the Novice When a shear wave encounters an anisotropic medium, it splits its energy into orthogonally polarised wave sheets. The effect is easily measured on waveforms with -- at least -- 2-component data (provided those 2 components are orthogonal to the wavefront vector, which can be different from the ray vector). The key parameters are the polarisation of the wave fronts (which is captured by the parameter, $\phi$, which ca be defined as a vector in 3 dimensions, but in practice). This angle is measured relative to some well-defined direction, e.g. North, or upwards, in the plane normal to the wave prop Splitting the signal Let's start with two components. Put a pulse of energy and some noise on these components, with a polarisation of 40 degrees. Note the pulse of energy is centred in the middle of the trace -- this is deliberate -- it is a feature of this software that analysis is always done at the centre of traces. Step1: Now let's add a bit of splitting. Note, this shortens trace length slightly. And the pulse is still at the centre. Step2: Measuring shear wave splitting involves searching for the splitting parameters that, when removed from the data, best linearise the particle motion. We know the splitting parameters so no need to search. Let's just confirm that when we undo the splitting we get linearised particle motion. Again, this shortens the trace, and the pulse is still at the centre. Step3: The window The window should capture the power in the pulse of arriving energy in such a way as to maximise the signal to noise ratio. It should also be wide enough to account for pulse broadening when splitting operators are applied to the data. Step4: The measurement
Python Code: import sys sys.path.append("..") import splitwavepy as sw import matplotlib.pyplot as plt import numpy as np data = sw.Pair(noise=0.05,pol=40,delta=0.1) data.plot() Explanation: Shear Wave Splitting for the Novice When a shear wave encounters an anisotropic medium, it splits its energy into orthogonally polarised wave sheets. The effect is easily measured on waveforms with -- at least -- 2-component data (provided those 2 components are orthogonal to the wavefront vector, which can be different from the ray vector). The key parameters are the polarisation of the wave fronts (which is captured by the parameter, $\phi$, which ca be defined as a vector in 3 dimensions, but in practice). This angle is measured relative to some well-defined direction, e.g. North, or upwards, in the plane normal to the wave prop Splitting the signal Let's start with two components. Put a pulse of energy and some noise on these components, with a polarisation of 40 degrees. Note the pulse of energy is centred in the middle of the trace -- this is deliberate -- it is a feature of this software that analysis is always done at the centre of traces. End of explanation data.split(40,1.6) data.plot() Explanation: Now let's add a bit of splitting. Note, this shortens trace length slightly. And the pulse is still at the centre. End of explanation data.unsplit(80,1.6) data.plot() Explanation: Measuring shear wave splitting involves searching for the splitting parameters that, when removed from the data, best linearise the particle motion. We know the splitting parameters so no need to search. Let's just confirm that when we undo the splitting we get linearised particle motion. Again, this shortens the trace, and the pulse is still at the centre. End of explanation # Let's start afresh, and this time put the splitting on straight away. data = sw.Pair(delta=0.1,noise=0.01,pol=40,fast=80,lag=1.2) # plot power in signal fig, ax1 = plt.subplots() ax1.plot(data.t(),data.power()) # generate a window window = data.window(25,12,tukey=0.1) # window = sw.Window(data.centre(),150) ax2 = ax1.twinx() ax2.plot(data.t(),window.asarray(data.t().size),'r') plt.show() data.plot(window=window) # Now repreat but this time apply loads of splitting and see the energy broaden data = sw.Pair(delta=0.1,noise=0.01,pol=40,fast=80,lag=5.2) # plot power in signal fig, ax1 = plt.subplots() ax1.plot(data.t(),data.power()) # generate a window window = data.window(25,12,tukey=0.1) # window = sw.Window(data.centre(),150) ax2 = ax1.twinx() ax2.plot(data.t(),window.asarray(data.t().size),'r') plt.show() data.plot(window=window) # large window largewindow = data.window(23,24,tukey=0.1) data.plot(window=largewindow) Explanation: The window The window should capture the power in the pulse of arriving energy in such a way as to maximise the signal to noise ratio. It should also be wide enough to account for pulse broadening when splitting operators are applied to the data. End of explanation # sparse search tlags = np.linspace(0,7.0,60) degs = np.linspace(-90,90,60) M = sw.EigenM(tlags=tlags,degs=degs,noise=0.03,fast=112,lag=5.3,delta=0.2) M.plot() # dense search # tlags = np.linspace(0.,7.0,200) # degs = np.linspace(0,180,200) # M = sw.EigenM(M.data,tlags=tlags,degs=degs) # M.plot() M.tlags M = sw.EigenM(delta=0.1,noise=0.02,fast=60,lag=1.3) M.plot() np.linspace(0,0.5,15) p = sw.Pair(delta=0.1,pol=30,fast=30,lag=1.2,noise=0.01) p.plot() p.angle Explanation: The measurement End of explanation
3,005
Given the following text description, write Python code to implement the functionality described below step by step Description: Random Sampling Copyright 2015 Allen Downey License Step1: Suppose we want to estimate the average weight of men and women in the U.S. And we want to quantify the uncertainty of the estimate. One approach is to simulate many experiments and see how much the results vary from one experiment to the next. I'll start with the unrealistic assumption that we know the actual distribution of weights in the population. Then I'll show how to solve the problem without that assumption. Based on data from the BRFSS, I found that the distribution of weight in kg for women in the U.S. is well modeled by a lognormal distribution with the following parameters Step2: Here's what that distribution looks like Step3: make_sample draws a random sample from this distribution. The result is a NumPy array. Step4: Here's an example with n=100. The mean and std of the sample are close to the mean and std of the population, but not exact. Step5: We want to estimate the average weight in the population, so the "sample statistic" we'll use is the mean Step6: One iteration of "the experiment" is to collect a sample of 100 women and compute their average weight. We can simulate running this experiment many times, and collect a list of sample statistics. The result is a NumPy array. Step7: The next line runs the simulation 1000 times and puts the results in sample_means Step8: Let's look at the distribution of the sample means. This distribution shows how much the results vary from one experiment to the next. Remember that this distribution is not the same as the distribution of weight in the population. This is the distribution of results across repeated imaginary experiments. Step9: The mean of the sample means is close to the actual population mean, which is nice, but not actually the important part. Step10: The standard deviation of the sample means quantifies the variability from one experiment to the next, and reflects the precision of the estimate. This quantity is called the "standard error". Step11: We can also use the distribution of sample means to compute a "90% confidence interval", which contains 90% of the experimental results Step12: The following function takes an array of sample statistics and prints the SE and CI Step13: And here's what that looks like Step14: Now we'd like to see what happens as we vary the sample size, n. The following function takes n, runs 1000 simulated experiments, and summarizes the results. Step15: Here's a test run with n=100 Step16: Now we can use interact to run plot_sample_stats with different values of n. Note Step17: This framework works with any other quantity we want to estimate. By changing sample_stat, you can compute the SE and CI for any sample statistic Step24: So far we have shown that if we know the actual distribution of the population, we can compute the sampling distribution for any sample statistic, and from that we can compute SE and CI. But in real life we don't know the actual distribution of the population. If we did, we wouldn't need to estimate it! In real life, we use the sample to build a model of the population distribution, then use the model to generate the sampling distribution. A simple and popular way to do that is "resampling," which means we use the sample itself as a model of the population distribution and draw samples from it. Before we go on, I want to collect some of the code from Part One and organize it as a class. This class represents a framework for computing sampling distributions. Step25: The following function instantiates a Resampler and runs it. Step26: Here's a test run with n=100 Step27: Now we can use plot_resampled_stats in an interaction Step30: Now we can write a new class called StdResampler that inherits from Resampler and overrides sample_stat so it computes the standard deviation of the resampled data. Step31: Here's how it works Step32: When your StdResampler is working, you should be able to interact with it Step33: We can extend this framework to compute SE and CI for a difference in means. For example, men are heavier than women on average. Here's the women's distribution again (from BRFSS data) Step34: And here's the men's distribution Step35: I'll simulate a sample of 100 men and 100 women Step36: The difference in means should be about 17 kg, but will vary from one random sample to the next Step38: Here's the function that computes Cohen's $d$ again Step39: The difference in weight between men and women is about 1 standard deviation Step40: Now we can write a version of the Resampler that computes the sampling distribution of $d$. Step41: Now we can instantiate a CohenResampler and plot the sampling distribution.
Python Code: from __future__ import print_function, division import numpy import scipy.stats import matplotlib.pyplot as pyplot from IPython.html.widgets import interact, fixed from IPython.html import widgets # seed the random number generator so we all get the same results numpy.random.seed(18) # some nicer colors from http://colorbrewer2.org/ COLOR1 = '#7fc97f' COLOR2 = '#beaed4' COLOR3 = '#fdc086' COLOR4 = '#ffff99' COLOR5 = '#386cb0' %matplotlib inline Explanation: Random Sampling Copyright 2015 Allen Downey License: Creative Commons Attribution 4.0 International End of explanation weight = scipy.stats.lognorm(0.23, 0, 70.8) weight.mean(), weight.std() Explanation: Suppose we want to estimate the average weight of men and women in the U.S. And we want to quantify the uncertainty of the estimate. One approach is to simulate many experiments and see how much the results vary from one experiment to the next. I'll start with the unrealistic assumption that we know the actual distribution of weights in the population. Then I'll show how to solve the problem without that assumption. Based on data from the BRFSS, I found that the distribution of weight in kg for women in the U.S. is well modeled by a lognormal distribution with the following parameters: End of explanation xs = numpy.linspace(20, 160, 100) ys = weight.pdf(xs) pyplot.plot(xs, ys, linewidth=4, color=COLOR1) pyplot.xlabel('weight (kg)') pyplot.ylabel('PDF') None Explanation: Here's what that distribution looks like: End of explanation def make_sample(n=100): sample = weight.rvs(n) return sample Explanation: make_sample draws a random sample from this distribution. The result is a NumPy array. End of explanation sample = make_sample(n=100) sample.mean(), sample.std() Explanation: Here's an example with n=100. The mean and std of the sample are close to the mean and std of the population, but not exact. End of explanation def sample_stat(sample): return sample.mean() Explanation: We want to estimate the average weight in the population, so the "sample statistic" we'll use is the mean: End of explanation def compute_sample_statistics(n=100, iters=1000): stats = [sample_stat(make_sample(n)) for i in range(iters)] return numpy.array(stats) Explanation: One iteration of "the experiment" is to collect a sample of 100 women and compute their average weight. We can simulate running this experiment many times, and collect a list of sample statistics. The result is a NumPy array. End of explanation sample_means = compute_sample_statistics(n=100, iters=1000) Explanation: The next line runs the simulation 1000 times and puts the results in sample_means: End of explanation pyplot.hist(sample_means, color=COLOR5) pyplot.xlabel('sample mean (n=100)') pyplot.ylabel('count') None Explanation: Let's look at the distribution of the sample means. This distribution shows how much the results vary from one experiment to the next. Remember that this distribution is not the same as the distribution of weight in the population. This is the distribution of results across repeated imaginary experiments. End of explanation sample_means.mean() Explanation: The mean of the sample means is close to the actual population mean, which is nice, but not actually the important part. End of explanation std_err = sample_means.std() std_err Explanation: The standard deviation of the sample means quantifies the variability from one experiment to the next, and reflects the precision of the estimate. This quantity is called the "standard error". End of explanation conf_int = numpy.percentile(sample_means, [5, 95]) conf_int Explanation: We can also use the distribution of sample means to compute a "90% confidence interval", which contains 90% of the experimental results: End of explanation def summarize_sampling_distribution(sample_stats): print('SE', sample_stats.std()) print('90% CI', numpy.percentile(sample_stats, [5, 95])) Explanation: The following function takes an array of sample statistics and prints the SE and CI: End of explanation summarize_sampling_distribution(sample_means) Explanation: And here's what that looks like: End of explanation def plot_sample_stats(n, xlim=None): sample_stats = compute_sample_statistics(n, iters=1000) summarize_sampling_distribution(sample_stats) pyplot.hist(sample_stats, color=COLOR2) pyplot.xlabel('sample statistic') pyplot.xlim(xlim) Explanation: Now we'd like to see what happens as we vary the sample size, n. The following function takes n, runs 1000 simulated experiments, and summarizes the results. End of explanation plot_sample_stats(100) Explanation: Here's a test run with n=100: End of explanation def sample_stat(sample): return sample.mean() slider = widgets.IntSliderWidget(min=10, max=1000, value=100) interact(plot_sample_stats, n=slider, xlim=fixed([55, 95])) None Explanation: Now we can use interact to run plot_sample_stats with different values of n. Note: xlim sets the limits of the x-axis so the figure doesn't get rescaled as we vary n. End of explanation def sample_stat(sample): return sample.std() slider = widgets.IntSliderWidget(min=10, max=1000, value=100) interact(plot_sample_stats, n=slider, xlim=fixed([0, 40])) None Explanation: This framework works with any other quantity we want to estimate. By changing sample_stat, you can compute the SE and CI for any sample statistic: Standard deviation of the sample. Coefficient of variation, which is the sample standard deviation divided by the sample standard mean. Min or Max Median (which is the 50th percentile) 10th or 90th percentile. Interquartile range (IQR), which is the difference between the 75th and 25th percentiles. NumPy array methods you might find useful include std, min, max, and percentile. Depending on the results, you might want to adjust xlim. End of explanation class Resampler(object): Represents a framework for computing sampling distributions. def __init__(self, sample, xlim=None): Stores the actual sample. self.sample = sample self.n = len(sample) self.xlim = xlim def resample(self): Generates a new sample by choosing from the original sample with replacement. new_sample = numpy.random.choice(self.sample, self.n, replace=True) return new_sample def sample_stat(self, sample): Computes a sample statistic using the original sample or a simulated sample. return sample.mean() def compute_sample_statistics(self, iters=1000): Simulates many experiments and collects the resulting sample statistics. stats = [self.sample_stat(self.resample()) for i in range(iters)] return numpy.array(stats) def plot_sample_stats(self): Runs simulated experiments and summarizes the results. sample_stats = self.compute_sample_statistics() summarize_sampling_distribution(sample_stats) pyplot.hist(sample_stats, color=COLOR2) pyplot.xlabel('sample statistic') pyplot.xlim(self.xlim) Explanation: So far we have shown that if we know the actual distribution of the population, we can compute the sampling distribution for any sample statistic, and from that we can compute SE and CI. But in real life we don't know the actual distribution of the population. If we did, we wouldn't need to estimate it! In real life, we use the sample to build a model of the population distribution, then use the model to generate the sampling distribution. A simple and popular way to do that is "resampling," which means we use the sample itself as a model of the population distribution and draw samples from it. Before we go on, I want to collect some of the code from Part One and organize it as a class. This class represents a framework for computing sampling distributions. End of explanation def plot_resampled_stats(n=100): sample = weight.rvs(n) resampler = Resampler(sample, xlim=[55, 95]) resampler.plot_sample_stats() Explanation: The following function instantiates a Resampler and runs it. End of explanation plot_resampled_stats(100) Explanation: Here's a test run with n=100 End of explanation slider = widgets.IntSliderWidget(min=10, max=1000, value=100) interact(plot_resampled_stats, n=slider, xlim=fixed([1, 15])) None Explanation: Now we can use plot_resampled_stats in an interaction: End of explanation class StdResampler(Resampler): Computes the sampling distribution of the standard deviation. def sample_stat(self, sample): Computes a sample statistic using the original sample or a simulated sample. return sample.std() Explanation: Now we can write a new class called StdResampler that inherits from Resampler and overrides sample_stat so it computes the standard deviation of the resampled data. End of explanation def plot_resampled_stats(n=100): sample = weight.rvs(n) resampler = StdResampler(sample, xlim=[0, 40]) resampler.plot_sample_stats() plot_resampled_stats() Explanation: Here's how it works: End of explanation slider = widgets.IntSliderWidget(min=10, max=1000, value=40) interact(plot_resampled_stats, n=slider) None Explanation: When your StdResampler is working, you should be able to interact with it: End of explanation female_weight = scipy.stats.lognorm(0.23, 0, 70.8) female_weight.mean(), female_weight.std() Explanation: We can extend this framework to compute SE and CI for a difference in means. For example, men are heavier than women on average. Here's the women's distribution again (from BRFSS data): End of explanation male_weight = scipy.stats.lognorm(0.20, 0, 87.3) male_weight.mean(), male_weight.std() Explanation: And here's the men's distribution: End of explanation female_sample = female_weight.rvs(100) male_sample = male_weight.rvs(100) Explanation: I'll simulate a sample of 100 men and 100 women: End of explanation male_sample.mean() - female_sample.mean() Explanation: The difference in means should be about 17 kg, but will vary from one random sample to the next: End of explanation def CohenEffectSize(group1, group2): Compute Cohen's d. group1: Series or NumPy array group2: Series or NumPy array returns: float diff = group1.mean() - group2.mean() n1, n2 = len(group1), len(group2) var1 = group1.var() var2 = group2.var() pooled_var = (n1 * var1 + n2 * var2) / (n1 + n2) d = diff / numpy.sqrt(pooled_var) return d Explanation: Here's the function that computes Cohen's $d$ again: End of explanation CohenEffectSize(male_sample, female_sample) Explanation: The difference in weight between men and women is about 1 standard deviation: End of explanation class CohenResampler(Resampler): def __init__(self, group1, group2, xlim=None): self.group1 = group1 self.group2 = group2 self.xlim = xlim def resample(self): group1 = numpy.random.choice(self.group1, len(self.group1), replace=True) group2 = numpy.random.choice(self.group2, len(self.group2), replace=True) return group1, group2 def sample_stat(self, groups): group1, group2 = groups return CohenEffectSize(group1, group2) # NOTE: The following functions are the same as the ones in Resampler, # so I could just inherit them, but I'm including them for readability def compute_sample_statistics(self, iters=1000): stats = [self.sample_stat(self.resample()) for i in range(iters)] return numpy.array(stats) def plot_sample_stats(self): sample_stats = self.compute_sample_statistics() summarize_sampling_distribution(sample_stats) pyplot.hist(sample_stats, color=COLOR2) pyplot.xlabel('sample statistic') pyplot.xlim(self.xlim) Explanation: Now we can write a version of the Resampler that computes the sampling distribution of $d$. End of explanation resampler = CohenResampler(male_sample, female_sample) resampler.plot_sample_stats() Explanation: Now we can instantiate a CohenResampler and plot the sampling distribution. End of explanation
3,006
Given the following text description, write Python code to implement the functionality described below step by step Description: Step1: Session 5 Step2: <a name="part-1---generative-adversarial-networks-gan--deep-convolutional-gan-dcgan"></a> Part 1 - Generative Adversarial Networks (GAN) / Deep Convolutional GAN (DCGAN) <a name="introduction"></a> Introduction Recall from the lecture that a Generative Adversarial Network is two networks, a generator and a discriminator. The "generator" takes a feature vector and decodes this feature vector to become an image, exactly like the decoder we built in Session 3's Autoencoder. The discriminator is exactly like the encoder of the Autoencoder, except it can only have 1 value in the final layer. We use a sigmoid to squash this value between 0 and 1, and then interpret the meaning of it as Step3: <a name="building-the-encoder"></a> Building the Encoder Let's build our encoder just like in Session 3. We'll create a function which accepts the input placeholder, a list of dimensions describing the number of convolutional filters in each layer, and a list of filter sizes to use for the kernel sizes in each convolutional layer. We'll also pass in a parameter for which activation function to apply. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step4: <a name="building-the-discriminator-for-the-training-samples"></a> Building the Discriminator for the Training Samples Finally, let's take the output of our encoder, and make sure it has just 1 value by using a fully connected layer. We can use the libs/utils module's, linear layer to do this, which will also reshape our 4-dimensional tensor to a 2-dimensional one prior to using the fully connected layer. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step5: Now let's create the discriminator for the real training data coming from X Step6: And we can see what the network looks like now Step7: <a name="building-the-decoder"></a> Building the Decoder Now we're ready to build the Generator, or decoding network. This network takes as input a vector of features and will try to produce an image that looks like our training data. We'll send this synthesized image to our discriminator which we've just built above. Let's start by building the input to this network. We'll need a placeholder for the input features to this network. We have to be mindful of how many features we have. The feature vector for the Generator will eventually need to form an image. What we can do is create a 1-dimensional vector of values for each element in our batch, giving us [None, n_features]. We can then reshape this to a 4-dimensional Tensor so that we can build a decoder network just like in Session 3. But how do we assign the values from our 1-d feature vector (or 2-d tensor with Batch number of them) to the 3-d shape of an image (or 4-d tensor with Batch number of them)? We have to go from the number of features in our 1-d feature vector, let's say n_latent to height x width x channels through a series of convolutional transpose layers. One way to approach this is think of the reverse process. Starting from the final decoding of height x width x channels, I will use convolution with a stride of 2, so downsample by 2 with each new layer. So the second to last decoder layer would be, height // 2 x width // 2 x ?. If I look at it like this, I can use the variable n_pixels denoting the height and width to build my decoder, and set the channels to whatever I want. Let's start with just our 2-d placeholder which will have None x n_features, then convert it to a 4-d tensor ready for the decoder part of the network (a.k.a. the generator). Step8: Now we'll build the decoder in much the same way as we built our encoder. And exactly as we've done in Session 3! This requires one additional parameter "channels" which is how many output filters we want for each net layer. We'll interpret the dimensions as the height and width of the tensor in each new layer, the channels is how many output filters we want for each net layer, and the filter_sizes is the size of the filters used for convolution. We'll default to using a stride of two which will downsample each layer. We're also going to collect each hidden layer h in a list. We'll end up needing this for Part 2 when we combine the variational autoencoder w/ the generative adversarial network. Step9: <a name="building-the-generator"></a> Building the Generator Now we're ready to use our decoder to take in a vector of features and generate something that looks like our training images. We have to ensure that the last layer produces the same output shape as the discriminator's input. E.g. we used a [None, 64, 64, 3] input to the discriminator, so our generator needs to also output [None, 64, 64, 3] tensors. In other words, we have to ensure the last element in our dimensions list is 64, and the last element in our channels list is 3. Step10: Now let's call the generator function with our input placeholder Z. This will take our feature vector and generate something in the shape of an image. Step11: <a name="building-the-discriminator-for-the-generated-samples"></a> Building the Discriminator for the Generated Samples Lastly, we need another discriminator which takes as input our generated images. Recall the discriminator that we have made only takes as input our placeholder X which is for our actual training samples. We'll use the same function for creating our discriminator and reuse the variables we already have. This is the crucial part! We aren't making new trainable variables, but reusing the ones we have. We just create a new set of operations that takes as input our generated image. So we'll have a whole new set of operations exactly like the ones we have created for our first discriminator. But we are going to use the exact same variables as our first discriminator, so that we optimize the same values. Step12: Now we can look at the graph and see the new discriminator inside the node for the discriminator. You should see the original discriminator and a new graph of a discriminator within it, but all the weights are shared with the original discriminator. Step13: <a name="gan-loss-functions"></a> GAN Loss Functions We now have all the components to our network. We just have to train it. This is the notoriously tricky bit. We will have 3 different loss measures instead of our typical network with just a single loss. We'll later connect each of these loss measures to two optimizers, one for the generator and another for the discriminator, and then pin them against each other and see which one wins! Exciting times! Recall from Session 3's Supervised Network, we created a binary classification task Step14: What we've just written is a loss function for our generator. The generator is optimized when the discriminator for the generated samples produces all ones. In contrast to the generator, the discriminator will have 2 measures to optimize. One which is the opposite of what we have just written above, as well as 1 more measure for the real samples. Try writing these two losses and we'll combine them using their average. We want to optimize the Discriminator for the real samples producing all 1s, and the Discriminator for the fake samples producing all 0s Step15: With our loss functions, we can create an optimizer for the discriminator and generator Step16: We can also apply regularization to our network. This will penalize weights in the network for growing too large. Step17: The last thing you may want to try is creating a separate learning rate for each of your generator and discriminator optimizers like so Step18: Now you can feed the placeholders to your optimizers. If you run into errors creating these, then you likely have a problem with your graph's definition! Be sure to go back and reset the default graph and check the sizes of your different operations/placeholders. With your optimizers, you can now train the network by "running" the optimizer variables with your session. You'll need to set the var_list parameter of the minimize function to only train the variables for the discriminator and same for the generator's optimizer Step19: <a name="loading-a-dataset"></a> Loading a Dataset Let's use the Celeb Dataset just for demonstration purposes. In Part 2, you can explore using your own dataset. This code is exactly the same as we did in Session 3's homework with the VAE. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step20: <a name="training"></a> Training We'll now go through the setup of training the network. We won't actually spend the time to train the network but just see how it would be done. This is because in Part 2, we'll see an extension to this network which makes it much easier to train. Step21: <a name="equilibrium"></a> Equilibrium Equilibrium is at 0.693. Why? Consider what the cost is measuring, the binary cross entropy. If we have random guesses, then we have as many 0s as we have 1s. And on average, we'll be 50% correct. The binary cross entropy is Step22: When we go to train the network, we switch back and forth between each optimizer, feeding in the appropriate values for each optimizer. The opt_g optimizer only requires the Z and lr_g placeholders, while the opt_d optimizer requires the X, Z, and lr_d placeholders. Don't train this network for very long because GANs are a huge pain to train and require a lot of fiddling. They very easily get stuck in their adversarial process, or get overtaken by one or the other, resulting in a useless model. What you need to develop is a steady equilibrium that optimizes both. That will likely take two weeks just trying to get the GAN to train and not have enough time for the rest of the assignment. They require a lot of memory/cpu and can take many days to train once you have settled on an architecture/training process/dataset. Just let it run for a short time and then interrupt the kernel (don't restart!), then continue to the next cell. From there, we'll go over an extension to the GAN which uses a VAE like we used in Session 3. By using this extra network, we can actually train a better model in a fraction of the time and with much more ease! But the network's definition is a bit more complicated. Let's see how the GAN is trained first and then we'll train the VAE/GAN network instead. While training, the "real" and "fake" cost will be printed out. See how this cost wavers around the equilibrium and how we enforce it to try and stay around there by including a margin and some simple logic for updates. This is highly experimental and the research does not have a good answer for the best practice on how to train a GAN. I.e., some people will set the learning rate to some ratio of the performance between fake/real networks, others will have a fixed update schedule but train the generator twice and the discriminator only once. Step23: <a name="part-2---variational-auto-encoding-generative-adversarial-network-vaegan"></a> Part 2 - Variational Auto-Encoding Generative Adversarial Network (VAEGAN) In our definition of the generator, we started with a feature vector, Z. This feature vector was not connected to anything before it. Instead, we had to randomly create its values using a random number generator of its n_latent values from -1 to 1, and this range was chosen arbitrarily. It could have been 0 to 1, or -3 to 3, or 0 to 100. In any case, the network would have had to learn to transform those values into something that looked like an image. There was no way for us to take an image, and find the feature vector that created it. In other words, it was not possible for us to encode an image. The closest thing to an encoding we had was taking an image and feeding it to the discriminator, which would output a 0 or 1. But what if we had another network that allowed us to encode an image, and then we used this network for both the discriminator and generative parts of the network? That's the basic idea behind the VAEGAN Step24: <a name="batch-normalization"></a> Batch Normalization You may have noticed from the VAE code that I've used something called "batch normalization". This is a pretty effective technique for regularizing the training of networks by "reducing internal covariate shift". The basic idea is that given a minibatch, we optimize the gradient for this small sample of the greater population. But this small sample may have different characteristics than the entire population's gradient. Consider the most extreme case, a minibatch of 1. In this case, we overfit our gradient to optimize the gradient of the single observation. If our minibatch is too large, say the size of the entire population, we aren't able to manuvuer the loss manifold at all and the entire loss is averaged in a way that doesn't let us optimize anything. What we want to do is find a happy medium between a too-smooth loss surface (i.e. every observation), and a very peaky loss surface (i.e. a single observation). Up until now we only used mini-batches to help with this. But we can also approach it by "smoothing" our updates between each mini-batch. That would effectively smooth the manifold of the loss space. Those of you familiar with signal processing will see this as a sort of low-pass filter on the gradient updates. In order for us to use batch normalization, we need another placeholder which is a simple boolean Step25: The original paper that introduced the idea suggests to use batch normalization "pre-activation", meaning after the weight multipllication or convolution, and before the nonlinearity. We can use the tensorflow.contrib.layers.batch_norm module to apply batch normalization to any input tensor give the tensor and the placeholder defining whether or not we are training. Let's use this module and you can inspect the code inside the module in your own time if it interests you. Step26: <a name="building-the-encoder-1"></a> Building the Encoder We can now change our encoder to accept the is_training placeholder and apply batch_norm just before the activation function is applied Step27: Let's now create the input to the network using a placeholder. We can try a slightly larger image this time. But be careful experimenting with much larger images as this is a big network. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step28: And now we'll connect the input to an encoder network. We'll also use the tf.nn.elu activation instead. Explore other activations but I've found this to make the training much faster (e.g. 10x faster at least!). See the paper for more details Step29: <a name="building-the-variational-layer"></a> Building the Variational Layer In Session 3, we introduced the idea of Variational Bayes when we used the Variational Auto Encoder. The variational bayesian approach requires a richer understanding of probabilistic graphical models and bayesian methods which we we're not able to go over in this course (it requires a few courses all by itself!). For that reason, please treat this as a "black box" in this course. For those of you that are more familiar with graphical models, Variational Bayesian methods attempt to model an approximate joint distribution of $Q(Z)$ using some distance function to the true distribution $P(X)$. Kingma and Welling show how this approach can be used in a graphical model resembling an autoencoder and can be trained using KL-Divergence, or $KL(Q(Z) || P(X))$. The distribution Q(Z) is the variational distribution, and attempts to model the lower-bound of the true distribution $P(X)$ through the minimization of the KL-divergence. Another way to look at this is the encoder of the network is trying to model the parameters of a known distribution, the Gaussian Distribution, through a minimization of this lower bound. We assume that this distribution resembles the true distribution, but it is merely a simplification of the true distribution. To learn more about this, I highly recommend picking up the book by Christopher Bishop called "Pattern Recognition and Machine Learning" and reading the original Kingma and Welling paper on Variational Bayes. Now back to coding, we'll create a general variational layer that does exactly the same thing as our VAE in session 3. Treat this as a black box if you are unfamiliar with the math. It takes an input encoding, h, and an integer, n_code defining how many latent Gaussians to use to model the latent distribution. In return, we get the latent encoding from sampling the Gaussian layer, z, the mean and log standard deviation, as well as the prior loss, loss_z. Step30: Let's connect this layer to our encoding, and keep all the variables it returns. Treat this as a black box if you are unfamiliar with variational bayes! <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step31: <a name="building-the-decoder-1"></a> Building the Decoder In the GAN network, we built a decoder and called it the generator network. Same idea here. We can use these terms interchangeably. Before we connect our latent encoding, Z to the decoder, we'll implement batch norm in our decoder just like we did with the encoder. This is a simple fix Step32: Now we'll build a decoder just like in Session 3, and just like our Generator network in Part 1. In Part 1, we created Z as a placeholder which we would have had to feed in as random values. However, now we have an explicit coding of an input image in X stored in Z by having created the encoder network. Step33: Now we need to build our discriminators. We'll need to add a parameter for the is_training placeholder. We're also going to keep track of every hidden layer in the discriminator. Our encoder already returns the Hs of each layer. Alternatively, we could poll the graph for each layer in the discriminator and ask for the correspond layer names. We're going to need these layers when building our costs. Step34: Recall the regular GAN and DCGAN required 2 discriminators Step35: <a name="building-vaegan-loss-functions"></a> Building VAE/GAN Loss Functions Let's now see how we can compose our loss. We have 3 losses for our discriminator. Along with measuring the binary cross entropy between each of them, we're going to also measure each layer's loss from our two discriminators using an l2-loss, and this will form our loss for the log likelihood measure. The details of how these are constructed are explained in more details in the paper Step36: <a name="creating-the-optimizers"></a> Creating the Optimizers We now have losses for our encoder, decoder, and discriminator networks. We can connect each of these to their own optimizer and start training! Just like with Part 1's GAN, we'll ensure each network's optimizer only trains its part of the network Step37: <a name="loading-the-dataset"></a> Loading the Dataset We'll now load our dataset just like in Part 1. Here is where you should explore with your own data! <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step38: We'll also create a latent manifold just like we've done in Session 3 and Part 1. This is a random sampling of 4 points in the latent space of Z. We then interpolate between them to create a "hyper-plane" and show the decoding of 10 x 10 points on that hyperplane. Step39: Now create a session and create a coordinator to manage our queues for fetching data from the input pipeline and start our queue runners Step40: Load an existing checkpoint if it exists to continue training. Step41: We'll also try resynthesizing a test set of images. This will help us understand how well the encoder/decoder network is doing Step42: <a name="training-1"></a> Training Almost ready for training. Let's get some variables which we'll need. These are the same as Part 1's training process. We'll keep track of t_i which we'll use to create images of the current manifold and reconstruction every so many iterations. And we'll keep track of the current batch number within the epoch and the current epoch number. Step43: Just like in Part 1, we'll train trying to maintain an equilibrium between our Generator and Discriminator networks. You should experiment with the margin depending on how the training proceeds. Step44: Now we'll train! Just like Part 1, we measure the real_cost and fake_cost. But this time, we'll always update the encoder. Based on the performance of the real/fake costs, then we'll update generator and discriminator networks. This will take a long time to produce something nice, but not nearly as long as the regular GAN network despite the additional parameters of the encoder and variational networks. Be sure to monitor the reconstructions to understand when your network has reached the capacity of its learning! For reference, on Celeb Net, I would use about 5 layers in each of the Encoder, Generator, and Discriminator networks using as input a 100 x 100 image, and a minimum of 200 channels per layer. This network would take about 1-2 days to train on an Nvidia TITAN X GPU. Step45: <a name="part-3---latent-space-arithmetic"></a> Part 3 - Latent-Space Arithmetic <a name="loading-the-pre-trained-model"></a> Loading the Pre-Trained Model We're now going to work with a pre-trained VAEGAN model on the Celeb Net dataset. Let's load this model Step46: We'll load the graph_def contained inside this dictionary. It follows the same idea as the inception, vgg16, and i2v pretrained networks. It is a dictionary with the key graph_def defined, with the graph's pretrained network. It also includes labels and a preprocess key. We'll have to do one additional thing which is to turn off the random sampling from variational layer. This isn't really necessary but will ensure we get the same results each time we use the network. We'll use the input_map argument to do this. Don't worry if this doesn't make any sense, as we didn't cover the variational layer in any depth. Just know that this is removing a random process from the network so that it is completely deterministic. If we hadn't done this, we'd get slightly different results each time we used the network (which may even be desirable for your purposes). Step47: Now let's get the relevant parts of the network Step48: Let's get some data to play with Step49: Now preprocess the image, and see what the generated image looks like (i.e. the lossy version of the image through the network's encoding and decoding). Step50: So we lost a lot of details but it seems to be able to express quite a bit about the image. Our inner most layer, Z, is only 512 values yet our dataset was 200k images of 64 x 64 x 3 pixels (about 2.3 GB of information). That means we're able to express our nearly 2.3 GB of information with only 512 values! Having some loss of detail is certainly expected! <a name="exploring-the-celeb-net-attributes"></a> Exploring the Celeb Net Attributes Let's now try and explore the attributes of our dataset. We didn't train the network with any supervised labels, but the Celeb Net dataset has 40 attributes for each of its 200k images. These are already parsed and stored for you in the net dictionary Step51: Let's see what attributes exist for one of the celeb images Step52: <a name="find-the-latent-encoding-for-an-attribute"></a> Find the Latent Encoding for an Attribute The Celeb Dataset includes attributes for each of its 200k+ images. This allows us to feed into the encoder some images that we know have a specific attribute, e.g. "smiling". We store what their encoding is and retain this distribution of encoded values. We can then look at any other image and see how it is encoded, and slightly change the encoding by adding the encoded of our smiling images to it! The result should be our image but with more smiling. That is just insane and we're going to see how to do it. First lets inspect our latent space Step53: We have 512 features that we can encode any image with. Assuming our network is doing an okay job, let's try to find the Z of the first 100 images with the 'Bald' attribute Step54: Let's get all the bald image indexes Step55: Now let's just load 100 of their images Step56: Let's see if the mean image looks like a good bald person or not Step57: Yes that is definitely a bald person. Now we're going to try to find the encoding of a bald person. One method is to try and find every other possible image and subtract the "bald" person's latent encoding. Then we could add this encoding back to any new image and hopefully it makes the image look more bald. Or we can find a bunch of bald people's encodings and then average their encodings together. This should reduce the noise from having many different attributes, but keep the signal pertaining to the baldness. Let's first preprocess the images Step58: Now we can find the latent encoding of the images by calculating Z and feeding X with our bald_p images Step59: Now let's calculate the mean encoding Step60: Let's try and synthesize from the mean bald feature now and see how it looks Step61: <a name="latent-feature-arithmetic"></a> Latent Feature Arithmetic Let's now try to write a general function for performing everything we've just done so that we can do this with many different features. We'll then try to combine them and synthesize people with the features we want them to have... Step62: Let's try getting some attributes positive and negative features. Be sure to explore different attributes! Also try different values of n_imgs, e.g. 2, 3, 5, 10, 50, 100. What happens with different values? <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step63: Now let's interpolate between the "Male" and "Not Male" categories Step64: And the same for smiling Step65: There's also no reason why we have to be within the boundaries of 0-1. We can extrapolate beyond, in, and around the space. Step67: <a name="extensions"></a> Extensions Tom White, Lecturer at Victoria University School of Design, also recently demonstrated an alternative way of interpolating using a sinusoidal interpolation. He's created some of the most impressive generative images out there and luckily for us he has detailed his process in the arxiv preprint Step68: It's certainly worth trying especially if you are looking to explore your own model's latent space in new and interesting ways. Let's try and load an image that we want to play with. We need an image as similar to the Celeb Dataset as possible. Unfortunately, we don't have access to the algorithm they used to "align" the faces, so we'll need to try and get as close as possible to an aligned face image. One way you can do this is to load up one of the celeb images and try and align an image to it using e.g. Photoshop or another photo editing software that lets you blend and move the images around. That's what I did for my own face... Step69: Let's see how the network encodes it Step70: Notice how blurry the image is. Tom White's preprint suggests one way to sharpen the image is to find the "Blurry" attribute vector Step71: Notice that the image also gets brighter and perhaps other features than simply the bluriness of the image changes. Tom's preprint suggests that this is due to the correlation that blurred images have with other things such as the brightness of the image, possibly due biases in labeling or how photographs are taken. He suggests that another way to unblur would be to synthetically blur a set of images and find the difference in the encoding between the real and blurred images. We can try it like so Step72: For some reason, it also doesn't like my glasses very much. Let's try and add them back. Step73: Well, more like sunglasses then. Let's try adding everything in there now! Step74: Well it was worth a try anyway. We can also try with a lot of images and create a gif montage of the result Step75: Exploring multiple feature vectors and applying them to images from the celeb dataset to produce animations of a face, saving it as a GIF. Recall you can store each image frame in a list and then use the gif.build_gif function to create a gif. Explore your own syntheses and then include a gif of the different images you create as "celeb.gif" in the final submission. Perhaps try finding unexpected synthetic latent attributes in the same way that we created a blur attribute. You can check the documentation in scipy.ndimage for some other image processing techniques, for instance
Python Code: # First check the Python version import sys if sys.version_info < (3,4): print('You are running an older version of Python!\n\n', 'You should consider updating to Python 3.4.0 or', 'higher as the libraries built for this course', 'have only been tested in Python 3.4 and higher.\n') print('Try installing the Python 3.5 version of anaconda' 'and then restart `jupyter notebook`:\n', 'https://www.continuum.io/downloads\n\n') # Now get necessary libraries try: import os import numpy as np import matplotlib.pyplot as plt from skimage.transform import resize from skimage import data from scipy.misc import imresize from scipy.ndimage.filters import gaussian_filter import IPython.display as ipyd import tensorflow as tf from libs import utils, gif, datasets, dataset_utils, nb_utils except ImportError as e: print("Make sure you have started notebook in the same directory", "as the provided zip file which includes the 'libs' folder", "and the file 'utils.py' inside of it. You will NOT be able", "to complete this assignment unless you restart jupyter", "notebook inside the directory created by extracting", "the zip file or cloning the github repo.") print(e) # We'll tell matplotlib to inline any drawn figures like so: %matplotlib inline plt.style.use('ggplot') # Bit of formatting because I don't like the default inline code style: from IPython.core.display import HTML HTML(<style> .rendered_html code { padding: 2px 4px; color: #c7254e; background-color: #f9f2f4; border-radius: 4px; } </style>) Explanation: Session 5: Generative Networks Assignment: Generative Adversarial Networks and Recurrent Neural Networks <p class="lead"> <a href="https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow/info">Creative Applications of Deep Learning with Google's Tensorflow</a><br /> <a href="http://pkmital.com">Parag K. Mital</a><br /> <a href="https://www.kadenze.com">Kadenze, Inc.</a> </p> Table of Contents <!-- MarkdownTOC autolink="true" autoanchor="true" bracket="round" --> Overview Learning Goals Part 1 - Generative Adversarial Networks (GAN) / Deep Convolutional GAN (DCGAN) Introduction Building the Encoder Building the Discriminator for the Training Samples Building the Decoder Building the Generator Building the Discriminator for the Generated Samples GAN Loss Functions Building the Optimizers w/ Regularization Loading a Dataset Training Equilibrium Part 2 - Variational Auto-Encoding Generative Adversarial Network (VAEGAN) Batch Normalization Building the Encoder Building the Variational Layer Building the Decoder Building VAE/GAN Loss Functions Creating the Optimizers Loading the Dataset Training Part 3 - Latent-Space Arithmetic Loading the Pre-Trained Model Exploring the Celeb Net Attributes Find the Latent Encoding for an Attribute Latent Feature Arithmetic Extensions Part 4 - Character-Level Language Model Part 5 - Pretrained Char-RNN of Donald Trump Getting the Trump Data Basic Text Analysis Loading the Pre-trained Trump Model Inference: Keeping Track of the State Probabilistic Sampling Inference: Temperature Inference: Priming Assignment Submission <!-- /MarkdownTOC --> <a name="overview"></a> Overview This is certainly the hardest session and will require a lot of time and patience to complete. Also, many elements of this session may require further investigation, including reading of the original papers and additional resources in order to fully grasp their understanding. The models we cover are state of the art and I've aimed to give you something between a practical and mathematical understanding of the material, though it is a tricky balance. I hope for those interested, that you delve deeper into the papers for more understanding. And for those of you seeking just a practical understanding, that these notebooks will suffice. This session covered two of the most advanced generative networks: generative adversarial networks and recurrent neural networks. During the homework, we'll see how these work in more details and try building our own. I am not asking you train anything in this session as both GANs and RNNs take many days to train. However, I have provided pre-trained networks which we'll be exploring. We'll also see how a Variational Autoencoder can be combined with a Generative Adversarial Network to allow you to also encode input data, and I've provided a pre-trained model of this type of model trained on the Celeb Faces dataset. We'll see what this means in more details below. After this session, you are also required to submit your final project which can combine any of the materials you have learned so far to produce a short 1 minute clip demonstrating any aspect of the course you want to invesitgate further or combine with anything else you feel like doing. This is completely open to you and to encourage your peers to share something that demonstrates creative thinking. Be sure to keep the final project in mind while browsing through this notebook! <a name="learning-goals"></a> Learning Goals Learn to build the components of a Generative Adversarial Network and how it is trained Learn to combine the Variational Autoencoder with a Generative Adversarial Network Learn to use latent space arithmetic with a pre-trained VAE/GAN network Learn to build the components of a Character Recurrent Neural Network and how it is trained Learn to sample from a pre-trained CharRNN model End of explanation # We'll keep a variable for the size of our image. n_pixels = 32 n_channels = 3 input_shape = [None, n_pixels, n_pixels, n_channels] # And then create the input image placeholder X = tf.placeholder(name='X'... Explanation: <a name="part-1---generative-adversarial-networks-gan--deep-convolutional-gan-dcgan"></a> Part 1 - Generative Adversarial Networks (GAN) / Deep Convolutional GAN (DCGAN) <a name="introduction"></a> Introduction Recall from the lecture that a Generative Adversarial Network is two networks, a generator and a discriminator. The "generator" takes a feature vector and decodes this feature vector to become an image, exactly like the decoder we built in Session 3's Autoencoder. The discriminator is exactly like the encoder of the Autoencoder, except it can only have 1 value in the final layer. We use a sigmoid to squash this value between 0 and 1, and then interpret the meaning of it as: 1, the image you gave me was real, or 0, the image you gave me was generated by the generator, it's a FAKE! So the discriminator is like an encoder which takes an image and then perfoms lie detection. Are you feeding me lies? Or is the image real? Consider the AE and VAE we trained in Session 3. The loss function operated partly on the input space. It said, per pixel, what is the difference between my reconstruction and the input image? The l2-loss per pixel. Recall at that time we suggested that this wasn't the best idea because per-pixel differences aren't representative of our own perception of the image. One way to consider this is if we had the same image, and translated it by a few pixels. We would not be able to tell the difference, but the per-pixel difference between the two images could be enormously high. The GAN does not use per-pixel difference. Instead, it trains a distance function: the discriminator. The discriminator takes in two images, the real image and the generated one, and learns what a similar image should look like! That is really the amazing part of this network and has opened up some very exciting potential future directions for unsupervised learning. Another network that also learns a distance function is known as the siamese network. We didn't get into this network in this course, but it is commonly used in facial verification, or asserting whether two faces are the same or not. The GAN network is notoriously a huge pain to train! For that reason, we won't actually be training it. Instead, we'll discuss an extension to this basic network called the VAEGAN which uses the VAE we created in Session 3 along with the GAN. We'll then train that network in Part 2. For now, let's stick with creating the GAN. Let's first create the two networks: the discriminator and the generator. We'll first begin by building a general purpose encoder which we'll use for our discriminator. Recall that we've already done this in Session 3. What we want is for the input placeholder to be encoded using a list of dimensions for each of our encoder's layers. In the case of a convolutional network, our list of dimensions should correspond to the number of output filters. We also need to specify the kernel heights and widths for each layer's convolutional network. We'll first need a placeholder. This will be the "real" image input to the discriminator and the discrimintator will encode this image into a single value, 0 or 1, saying, yes this is real, or no, this is not real. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation def encoder(x, channels, filter_sizes, activation=tf.nn.tanh, reuse=None): # Set the input to a common variable name, h, for hidden layer h = x # Now we'll loop over the list of dimensions defining the number # of output filters in each layer, and collect each hidden layer hs = [] for layer_i in range(len(channels)): with tf.variable_scope('layer{}'.format(layer_i+1), reuse=reuse): # Convolve using the utility convolution function # This requirs the number of output filter, # and the size of the kernel in `k_h` and `k_w`. # By default, this will use a stride of 2, meaning # each new layer will be downsampled by 2. h, W = utils.conv2d(... # Now apply the activation function h = activation(h) # Store each hidden layer hs.append(h) # Finally, return the encoding. return h, hs Explanation: <a name="building-the-encoder"></a> Building the Encoder Let's build our encoder just like in Session 3. We'll create a function which accepts the input placeholder, a list of dimensions describing the number of convolutional filters in each layer, and a list of filter sizes to use for the kernel sizes in each convolutional layer. We'll also pass in a parameter for which activation function to apply. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation def discriminator(X, channels=[50, 50, 50, 50], filter_sizes=[4, 4, 4, 4], activation=utils.lrelu, reuse=None): # We'll scope these variables to "discriminator_real" with tf.variable_scope('discriminator', reuse=reuse): # Encode X: H, Hs = encoder(X, channels, filter_sizes, activation, reuse) # Now make one last layer with just 1 output. We'll # have to reshape to 2-d so that we can create a fully # connected layer: shape = H.get_shape().as_list() H = tf.reshape(H, [-1, shape[1] * shape[2] * shape[3]]) # Now we can connect our 2D layer to a single neuron output w/ # a sigmoid activation: D, W = utils.linear(... return D Explanation: <a name="building-the-discriminator-for-the-training-samples"></a> Building the Discriminator for the Training Samples Finally, let's take the output of our encoder, and make sure it has just 1 value by using a fully connected layer. We can use the libs/utils module's, linear layer to do this, which will also reshape our 4-dimensional tensor to a 2-dimensional one prior to using the fully connected layer. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation D_real = discriminator(X) Explanation: Now let's create the discriminator for the real training data coming from X: End of explanation graph = tf.get_default_graph() nb_utils.show_graph(graph.as_graph_def()) Explanation: And we can see what the network looks like now: End of explanation # We'll need some variables first. This will be how many # channels our generator's feature vector has. Experiment w/ # this if you are training your own network. n_code = 16 # And in total how many feature it has, including the spatial dimensions. n_latent = (n_pixels // 16) * (n_pixels // 16) * n_code # Let's build the 2-D placeholder, which is the 1-d feature vector for every # element in our batch. We'll then reshape this to 4-D for the decoder. Z = tf.placeholder(name='Z', shape=[None, n_latent], dtype=tf.float32) # Now we can reshape it to input to the decoder. Here we have to # be mindful of the height and width as described before. We need # to make the height and width a factor of the final height and width # that we want. Since we are using strided convolutions of 2, then # we can say with 4 layers, that first decoder's layer should be: # n_pixels / 2 / 2 / 2 / 2, or n_pixels / 16: Z_tensor = tf.reshape(Z, [-1, n_pixels // 16, n_pixels // 16, n_code]) Explanation: <a name="building-the-decoder"></a> Building the Decoder Now we're ready to build the Generator, or decoding network. This network takes as input a vector of features and will try to produce an image that looks like our training data. We'll send this synthesized image to our discriminator which we've just built above. Let's start by building the input to this network. We'll need a placeholder for the input features to this network. We have to be mindful of how many features we have. The feature vector for the Generator will eventually need to form an image. What we can do is create a 1-dimensional vector of values for each element in our batch, giving us [None, n_features]. We can then reshape this to a 4-dimensional Tensor so that we can build a decoder network just like in Session 3. But how do we assign the values from our 1-d feature vector (or 2-d tensor with Batch number of them) to the 3-d shape of an image (or 4-d tensor with Batch number of them)? We have to go from the number of features in our 1-d feature vector, let's say n_latent to height x width x channels through a series of convolutional transpose layers. One way to approach this is think of the reverse process. Starting from the final decoding of height x width x channels, I will use convolution with a stride of 2, so downsample by 2 with each new layer. So the second to last decoder layer would be, height // 2 x width // 2 x ?. If I look at it like this, I can use the variable n_pixels denoting the height and width to build my decoder, and set the channels to whatever I want. Let's start with just our 2-d placeholder which will have None x n_features, then convert it to a 4-d tensor ready for the decoder part of the network (a.k.a. the generator). End of explanation def decoder(z, dimensions, channels, filter_sizes, activation=tf.nn.relu, reuse=None): h = z hs = [] for layer_i in range(len(dimensions)): with tf.variable_scope('layer{}'.format(layer_i+1), reuse=reuse): h, W = utils.deconv2d(x=h, n_output_h=dimensions[layer_i], n_output_w=dimensions[layer_i], n_output_ch=channels[layer_i], k_h=filter_sizes[layer_i], k_w=filter_sizes[layer_i], reuse=reuse) h = activation(h) hs.append(h) return h, hs Explanation: Now we'll build the decoder in much the same way as we built our encoder. And exactly as we've done in Session 3! This requires one additional parameter "channels" which is how many output filters we want for each net layer. We'll interpret the dimensions as the height and width of the tensor in each new layer, the channels is how many output filters we want for each net layer, and the filter_sizes is the size of the filters used for convolution. We'll default to using a stride of two which will downsample each layer. We're also going to collect each hidden layer h in a list. We'll end up needing this for Part 2 when we combine the variational autoencoder w/ the generative adversarial network. End of explanation # Explore these parameters. def generator(Z, dimensions=[n_pixels//8, n_pixels//4, n_pixels//2, n_pixels], channels=[50, 50, 50, n_channels], filter_sizes=[4, 4, 4, 4], activation=utils.lrelu): with tf.variable_scope('generator'): G, Hs = decoder(Z_tensor, dimensions, channels, filter_sizes, activation) return G Explanation: <a name="building-the-generator"></a> Building the Generator Now we're ready to use our decoder to take in a vector of features and generate something that looks like our training images. We have to ensure that the last layer produces the same output shape as the discriminator's input. E.g. we used a [None, 64, 64, 3] input to the discriminator, so our generator needs to also output [None, 64, 64, 3] tensors. In other words, we have to ensure the last element in our dimensions list is 64, and the last element in our channels list is 3. End of explanation G = generator(Z) graph = tf.get_default_graph() nb_utils.show_graph(graph.as_graph_def()) Explanation: Now let's call the generator function with our input placeholder Z. This will take our feature vector and generate something in the shape of an image. End of explanation D_fake = discriminator(G, reuse=True) Explanation: <a name="building-the-discriminator-for-the-generated-samples"></a> Building the Discriminator for the Generated Samples Lastly, we need another discriminator which takes as input our generated images. Recall the discriminator that we have made only takes as input our placeholder X which is for our actual training samples. We'll use the same function for creating our discriminator and reuse the variables we already have. This is the crucial part! We aren't making new trainable variables, but reusing the ones we have. We just create a new set of operations that takes as input our generated image. So we'll have a whole new set of operations exactly like the ones we have created for our first discriminator. But we are going to use the exact same variables as our first discriminator, so that we optimize the same values. End of explanation nb_utils.show_graph(graph.as_graph_def()) Explanation: Now we can look at the graph and see the new discriminator inside the node for the discriminator. You should see the original discriminator and a new graph of a discriminator within it, but all the weights are shared with the original discriminator. End of explanation with tf.variable_scope('loss/generator'): loss_G = tf.reduce_mean(utils.binary_cross_entropy(D_fake, tf.ones_like(D_fake))) Explanation: <a name="gan-loss-functions"></a> GAN Loss Functions We now have all the components to our network. We just have to train it. This is the notoriously tricky bit. We will have 3 different loss measures instead of our typical network with just a single loss. We'll later connect each of these loss measures to two optimizers, one for the generator and another for the discriminator, and then pin them against each other and see which one wins! Exciting times! Recall from Session 3's Supervised Network, we created a binary classification task: music or speech. We again have a binary classification task: real or fake. So our loss metric will again use the binary cross entropy to measure the loss of our three different modules: the generator, the discriminator for our real images, and the discriminator for our generated images. To find out the loss function for our generator network, answer the question, what makes the generator successful? Successfully fooling the discriminator. When does that happen? When the discriminator for the fake samples produces all ones. So our binary cross entropy measure will measure the cross entropy with our predicted distribution and the true distribution which has all ones. End of explanation with tf.variable_scope('loss/discriminator/real'): loss_D_real = utils.binary_cross_entropy(D_real, ... with tf.variable_scope('loss/discriminator/fake'): loss_D_fake = utils.binary_cross_entropy(D_fake, ... with tf.variable_scope('loss/discriminator'): loss_D = tf.reduce_mean((loss_D_real + loss_D_fake) / 2) nb_utils.show_graph(graph.as_graph_def()) Explanation: What we've just written is a loss function for our generator. The generator is optimized when the discriminator for the generated samples produces all ones. In contrast to the generator, the discriminator will have 2 measures to optimize. One which is the opposite of what we have just written above, as well as 1 more measure for the real samples. Try writing these two losses and we'll combine them using their average. We want to optimize the Discriminator for the real samples producing all 1s, and the Discriminator for the fake samples producing all 0s: <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation # Grab just the variables corresponding to the discriminator # and just the generator: vars_d = [v for v in tf.trainable_variables() if ...] print('Training discriminator variables:') [print(v.name) for v in tf.trainable_variables() if v.name.startswith('discriminator')] vars_g = [v for v in tf.trainable_variables() if ...] print('Training generator variables:') [print(v.name) for v in tf.trainable_variables() if v.name.startswith('generator')] Explanation: With our loss functions, we can create an optimizer for the discriminator and generator: <a name="building-the-optimizers-w-regularization"></a> Building the Optimizers w/ Regularization We're almost ready to create our optimizers. We just need to do one extra thing. Recall that our loss for our generator has a flow from the generator through the discriminator. If we are training both the generator and the discriminator, we have two measures which both try to optimize the discriminator, but in opposite ways: the generator's loss would try to optimize the discriminator to be bad at its job, and the discriminator's loss would try to optimize it to be good at its job. This would be counter-productive, trying to optimize opposing losses. What we want is for the generator to get better, and the discriminator to get better. Not for the discriminator to get better, then get worse, then get better, etc... The way we do this is when we optimize our generator, we let the gradient flow through the discriminator, but we do not update the variables in the discriminator. Let's try and grab just the discriminator variables and just the generator variables below: <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation d_reg = tf.contrib.layers.apply_regularization( tf.contrib.layers.l2_regularizer(1e-6), vars_d) g_reg = tf.contrib.layers.apply_regularization( tf.contrib.layers.l2_regularizer(1e-6), vars_g) Explanation: We can also apply regularization to our network. This will penalize weights in the network for growing too large. End of explanation learning_rate = 0.0001 lr_g = tf.placeholder(tf.float32, shape=[], name='learning_rate_g') lr_d = tf.placeholder(tf.float32, shape=[], name='learning_rate_d') Explanation: The last thing you may want to try is creating a separate learning rate for each of your generator and discriminator optimizers like so: End of explanation opt_g = tf.train.AdamOptimizer(learning_rate=lr_g).minimize(...) opt_d = tf.train.AdamOptimizer(learning_rate=lr_d).minimize(loss_D + d_reg, var_list=vars_d) Explanation: Now you can feed the placeholders to your optimizers. If you run into errors creating these, then you likely have a problem with your graph's definition! Be sure to go back and reset the default graph and check the sizes of your different operations/placeholders. With your optimizers, you can now train the network by "running" the optimizer variables with your session. You'll need to set the var_list parameter of the minimize function to only train the variables for the discriminator and same for the generator's optimizer: <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation # You'll want to change this to your own data if you end up training your own GAN. batch_size = 64 n_epochs = 1 crop_shape = [n_pixels, n_pixels, 3] crop_factor = 0.8 input_shape = [218, 178, 3] files = datasets.CELEB() batch = dataset_utils.create_input_pipeline( files=files, batch_size=batch_size, n_epochs=n_epochs, crop_shape=crop_shape, crop_factor=crop_factor, shape=input_shape) Explanation: <a name="loading-a-dataset"></a> Loading a Dataset Let's use the Celeb Dataset just for demonstration purposes. In Part 2, you can explore using your own dataset. This code is exactly the same as we did in Session 3's homework with the VAE. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation ckpt_name = './gan.ckpt' sess = tf.Session() saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() tf.get_default_graph().finalize() threads = tf.train.start_queue_runners(sess=sess, coord=coord) if os.path.exists(ckpt_name + '.index') or os.path.exists(ckpt_name): saver.restore(sess, ckpt_name) print("VAE model restored.") n_examples = 10 zs = np.random.uniform(0.0, 1.0, [4, n_latent]).astype(np.float32) zs = utils.make_latent_manifold(zs, n_examples) Explanation: <a name="training"></a> Training We'll now go through the setup of training the network. We won't actually spend the time to train the network but just see how it would be done. This is because in Part 2, we'll see an extension to this network which makes it much easier to train. End of explanation equilibrium = 0.693 margin = 0.2 Explanation: <a name="equilibrium"></a> Equilibrium Equilibrium is at 0.693. Why? Consider what the cost is measuring, the binary cross entropy. If we have random guesses, then we have as many 0s as we have 1s. And on average, we'll be 50% correct. The binary cross entropy is: \begin{align} \sum_i \text{X}_i * \text{log}(\tilde{\text{X}}_i) + (1 - \text{X}_i) * \text{log}(1 - \tilde{\text{X}}_i) \end{align} Which is written out in tensorflow as: python (-(x * tf.log(z) + (1. - x) * tf.log(1. - z))) Where x is the discriminator's prediction of the true distribution, in the case of GANs, the input images, and z is the discriminator's prediction of the generated images corresponding to the mathematical notation of $\tilde{\text{X}}$. We sum over all features, but in the case of the discriminator, we have just 1 feature, the guess of whether it is a true image or not. If our discriminator guesses at chance, i.e. 0.5, then we'd have something like: \begin{align} 0.5 * \text{log}(0.5) + (1 - 0.5) * \text{log}(1 - 0.5) = -0.693 \end{align} So this is what we'd expect at the start of learning and from a game theoretic point of view, where we want things to remain. So unlike our previous networks, where our loss continues to drop closer and closer to 0, we want our loss to waver around this value as much as possible, and hope for the best. End of explanation t_i = 0 batch_i = 0 epoch_i = 0 n_files = len(files) if not os.path.exists('imgs'): os.makedirs('imgs') while epoch_i < n_epochs: batch_i += 1 batch_xs = sess.run(batch) / 255.0 batch_zs = np.random.uniform( 0.0, 1.0, [batch_size, n_latent]).astype(np.float32) real_cost, fake_cost = sess.run([ loss_D_real, loss_D_fake], feed_dict={ X: batch_xs, Z: batch_zs}) real_cost = np.mean(real_cost) fake_cost = np.mean(fake_cost) if (batch_i % 20) == 0: print(batch_i, 'real:', real_cost, '/ fake:', fake_cost) gen_update = True dis_update = True if real_cost > (equilibrium + margin) or \ fake_cost > (equilibrium + margin): gen_update = False if real_cost < (equilibrium - margin) or \ fake_cost < (equilibrium - margin): dis_update = False if not (gen_update or dis_update): gen_update = True dis_update = True if gen_update: sess.run(opt_g, feed_dict={ Z: batch_zs, lr_g: learning_rate}) if dis_update: sess.run(opt_d, feed_dict={ X: batch_xs, Z: batch_zs, lr_d: learning_rate}) if batch_i % (n_files // batch_size) == 0: batch_i = 0 epoch_i += 1 print('---------- EPOCH:', epoch_i) # Plot example reconstructions from latent layer recon = sess.run(G, feed_dict={Z: zs}) recon = np.clip(recon, 0, 1) m1 = utils.montage(recon.reshape([-1] + crop_shape), 'imgs/manifold_%08d.png' % t_i) recon = sess.run(G, feed_dict={Z: batch_zs}) recon = np.clip(recon, 0, 1) m2 = utils.montage(recon.reshape([-1] + crop_shape), 'imgs/reconstructions_%08d.png' % t_i) fig, axs = plt.subplots(1, 2, figsize=(15, 10)) axs[0].imshow(m1) axs[1].imshow(m2) plt.show() t_i += 1 # Save the variables to disk. save_path = saver.save(sess, "./" + ckpt_name, global_step=batch_i, write_meta_graph=False) print("Model saved in file: %s" % save_path) # Tell all the threads to shutdown. coord.request_stop() # Wait until all threads have finished. coord.join(threads) # Clean up the session. sess.close() Explanation: When we go to train the network, we switch back and forth between each optimizer, feeding in the appropriate values for each optimizer. The opt_g optimizer only requires the Z and lr_g placeholders, while the opt_d optimizer requires the X, Z, and lr_d placeholders. Don't train this network for very long because GANs are a huge pain to train and require a lot of fiddling. They very easily get stuck in their adversarial process, or get overtaken by one or the other, resulting in a useless model. What you need to develop is a steady equilibrium that optimizes both. That will likely take two weeks just trying to get the GAN to train and not have enough time for the rest of the assignment. They require a lot of memory/cpu and can take many days to train once you have settled on an architecture/training process/dataset. Just let it run for a short time and then interrupt the kernel (don't restart!), then continue to the next cell. From there, we'll go over an extension to the GAN which uses a VAE like we used in Session 3. By using this extra network, we can actually train a better model in a fraction of the time and with much more ease! But the network's definition is a bit more complicated. Let's see how the GAN is trained first and then we'll train the VAE/GAN network instead. While training, the "real" and "fake" cost will be printed out. See how this cost wavers around the equilibrium and how we enforce it to try and stay around there by including a margin and some simple logic for updates. This is highly experimental and the research does not have a good answer for the best practice on how to train a GAN. I.e., some people will set the learning rate to some ratio of the performance between fake/real networks, others will have a fixed update schedule but train the generator twice and the discriminator only once. End of explanation tf.reset_default_graph() Explanation: <a name="part-2---variational-auto-encoding-generative-adversarial-network-vaegan"></a> Part 2 - Variational Auto-Encoding Generative Adversarial Network (VAEGAN) In our definition of the generator, we started with a feature vector, Z. This feature vector was not connected to anything before it. Instead, we had to randomly create its values using a random number generator of its n_latent values from -1 to 1, and this range was chosen arbitrarily. It could have been 0 to 1, or -3 to 3, or 0 to 100. In any case, the network would have had to learn to transform those values into something that looked like an image. There was no way for us to take an image, and find the feature vector that created it. In other words, it was not possible for us to encode an image. The closest thing to an encoding we had was taking an image and feeding it to the discriminator, which would output a 0 or 1. But what if we had another network that allowed us to encode an image, and then we used this network for both the discriminator and generative parts of the network? That's the basic idea behind the VAEGAN: https://arxiv.org/abs/1512.09300. It is just like the regular GAN, except we also use an encoder to create our feature vector Z. We then get the best of both worlds: a GAN that looks more or less the same, but uses the encoding from an encoder instead of an arbitrary feature vector; and an autoencoder that can model an input distribution using a trained distance function, the discriminator, leading to nicer encodings/decodings. Let's try to build it! Refer to the paper for the intricacies and a great read. Luckily, by building the encoder and decoder functions, we're almost there. We just need a few more components and will change these slightly. Let's reset our graph and recompose our network as a VAEGAN: End of explanation # placeholder for batch normalization is_training = tf.placeholder(tf.bool, name='istraining') Explanation: <a name="batch-normalization"></a> Batch Normalization You may have noticed from the VAE code that I've used something called "batch normalization". This is a pretty effective technique for regularizing the training of networks by "reducing internal covariate shift". The basic idea is that given a minibatch, we optimize the gradient for this small sample of the greater population. But this small sample may have different characteristics than the entire population's gradient. Consider the most extreme case, a minibatch of 1. In this case, we overfit our gradient to optimize the gradient of the single observation. If our minibatch is too large, say the size of the entire population, we aren't able to manuvuer the loss manifold at all and the entire loss is averaged in a way that doesn't let us optimize anything. What we want to do is find a happy medium between a too-smooth loss surface (i.e. every observation), and a very peaky loss surface (i.e. a single observation). Up until now we only used mini-batches to help with this. But we can also approach it by "smoothing" our updates between each mini-batch. That would effectively smooth the manifold of the loss space. Those of you familiar with signal processing will see this as a sort of low-pass filter on the gradient updates. In order for us to use batch normalization, we need another placeholder which is a simple boolean: True or False, denoting when we are training. We'll use this placeholder to conditionally update batch normalization's statistics required for normalizing our minibatches. Let's create the placeholder and then I'll get into how to use this. End of explanation from tensorflow.contrib.layers import batch_norm help(batch_norm) Explanation: The original paper that introduced the idea suggests to use batch normalization "pre-activation", meaning after the weight multipllication or convolution, and before the nonlinearity. We can use the tensorflow.contrib.layers.batch_norm module to apply batch normalization to any input tensor give the tensor and the placeholder defining whether or not we are training. Let's use this module and you can inspect the code inside the module in your own time if it interests you. End of explanation def encoder(x, is_training, channels, filter_sizes, activation=tf.nn.tanh, reuse=None): # Set the input to a common variable name, h, for hidden layer h = x print('encoder/input:', h.get_shape().as_list()) # Now we'll loop over the list of dimensions defining the number # of output filters in each layer, and collect each hidden layer hs = [] for layer_i in range(len(channels)): with tf.variable_scope('layer{}'.format(layer_i+1), reuse=reuse): # Convolve using the utility convolution function # This requirs the number of output filter, # and the size of the kernel in `k_h` and `k_w`. # By default, this will use a stride of 2, meaning # each new layer will be downsampled by 2. h, W = utils.conv2d(h, channels[layer_i], k_h=filter_sizes[layer_i], k_w=filter_sizes[layer_i], d_h=2, d_w=2, reuse=reuse) h = batch_norm(h, is_training=is_training) # Now apply the activation function h = activation(h) print('layer:', layer_i, ', shape:', h.get_shape().as_list()) # Store each hidden layer hs.append(h) # Finally, return the encoding. return h, hs Explanation: <a name="building-the-encoder-1"></a> Building the Encoder We can now change our encoder to accept the is_training placeholder and apply batch_norm just before the activation function is applied: End of explanation n_pixels = 64 n_channels = 3 input_shape = [None, n_pixels, n_pixels, n_channels] # placeholder for the input to the network X = tf.placeholder(...) Explanation: Let's now create the input to the network using a placeholder. We can try a slightly larger image this time. But be careful experimenting with much larger images as this is a big network. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation channels = [64, 64, 64] filter_sizes = [5, 5, 5] activation = tf.nn.elu n_hidden = 128 with tf.variable_scope('encoder'): H, Hs = encoder(... Z = utils.linear(H, n_hidden)[0] Explanation: And now we'll connect the input to an encoder network. We'll also use the tf.nn.elu activation instead. Explore other activations but I've found this to make the training much faster (e.g. 10x faster at least!). See the paper for more details: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation def variational_bayes(h, n_code): # Model mu and log(\sigma) z_mu = tf.nn.tanh(utils.linear(h, n_code, name='mu')[0]) z_log_sigma = 0.5 * tf.nn.tanh(utils.linear(h, n_code, name='log_sigma')[0]) # Sample from noise distribution p(eps) ~ N(0, 1) epsilon = tf.random_normal(tf.stack([tf.shape(h)[0], n_code])) # Sample from posterior z = z_mu + tf.multiply(epsilon, tf.exp(z_log_sigma)) # Measure loss loss_z = -0.5 * tf.reduce_sum( 1.0 + 2.0 * z_log_sigma - tf.square(z_mu) - tf.exp(2.0 * z_log_sigma), 1) return z, z_mu, z_log_sigma, loss_z Explanation: <a name="building-the-variational-layer"></a> Building the Variational Layer In Session 3, we introduced the idea of Variational Bayes when we used the Variational Auto Encoder. The variational bayesian approach requires a richer understanding of probabilistic graphical models and bayesian methods which we we're not able to go over in this course (it requires a few courses all by itself!). For that reason, please treat this as a "black box" in this course. For those of you that are more familiar with graphical models, Variational Bayesian methods attempt to model an approximate joint distribution of $Q(Z)$ using some distance function to the true distribution $P(X)$. Kingma and Welling show how this approach can be used in a graphical model resembling an autoencoder and can be trained using KL-Divergence, or $KL(Q(Z) || P(X))$. The distribution Q(Z) is the variational distribution, and attempts to model the lower-bound of the true distribution $P(X)$ through the minimization of the KL-divergence. Another way to look at this is the encoder of the network is trying to model the parameters of a known distribution, the Gaussian Distribution, through a minimization of this lower bound. We assume that this distribution resembles the true distribution, but it is merely a simplification of the true distribution. To learn more about this, I highly recommend picking up the book by Christopher Bishop called "Pattern Recognition and Machine Learning" and reading the original Kingma and Welling paper on Variational Bayes. Now back to coding, we'll create a general variational layer that does exactly the same thing as our VAE in session 3. Treat this as a black box if you are unfamiliar with the math. It takes an input encoding, h, and an integer, n_code defining how many latent Gaussians to use to model the latent distribution. In return, we get the latent encoding from sampling the Gaussian layer, z, the mean and log standard deviation, as well as the prior loss, loss_z. End of explanation # Experiment w/ values between 2 - 100 # depending on how difficult the dataset is n_code = 32 with tf.variable_scope('encoder/variational'): Z, Z_mu, Z_log_sigma, loss_Z = variational_bayes(h=Z, n_code=n_code) Explanation: Let's connect this layer to our encoding, and keep all the variables it returns. Treat this as a black box if you are unfamiliar with variational bayes! <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation def decoder(z, is_training, dimensions, channels, filter_sizes, activation=tf.nn.elu, reuse=None): h = z for layer_i in range(len(dimensions)): with tf.variable_scope('layer{}'.format(layer_i+1), reuse=reuse): h, W = utils.deconv2d(x=h, n_output_h=dimensions[layer_i], n_output_w=dimensions[layer_i], n_output_ch=channels[layer_i], k_h=filter_sizes[layer_i], k_w=filter_sizes[layer_i], reuse=reuse) h = batch_norm(h, is_training=is_training) h = activation(h) return h Explanation: <a name="building-the-decoder-1"></a> Building the Decoder In the GAN network, we built a decoder and called it the generator network. Same idea here. We can use these terms interchangeably. Before we connect our latent encoding, Z to the decoder, we'll implement batch norm in our decoder just like we did with the encoder. This is a simple fix: add a second argument for is_training and then apply batch normalization just after the deconv2d operation and just before the nonlinear activation. End of explanation dimensions = [n_pixels // 8, n_pixels // 4, n_pixels // 2, n_pixels] channels = [30, 30, 30, n_channels] filter_sizes = [4, 4, 4, 4] activation = tf.nn.elu n_latent = n_code * (n_pixels // 16)**2 with tf.variable_scope('generator'): Z_decode = utils.linear( Z, n_output=n_latent, name='fc', activation=activation)[0] Z_decode_tensor = tf.reshape( Z_decode, [-1, n_pixels//16, n_pixels//16, n_code], name='reshape') G = decoder( Z_decode_tensor, is_training, dimensions, channels, filter_sizes, activation) Explanation: Now we'll build a decoder just like in Session 3, and just like our Generator network in Part 1. In Part 1, we created Z as a placeholder which we would have had to feed in as random values. However, now we have an explicit coding of an input image in X stored in Z by having created the encoder network. End of explanation def discriminator(X, is_training, channels=[50, 50, 50, 50], filter_sizes=[4, 4, 4, 4], activation=tf.nn.elu, reuse=None): # We'll scope these variables to "discriminator_real" with tf.variable_scope('discriminator', reuse=reuse): H, Hs = encoder( X, is_training, channels, filter_sizes, activation, reuse) shape = H.get_shape().as_list() H = tf.reshape( H, [-1, shape[1] * shape[2] * shape[3]]) D, W = utils.linear( x=H, n_output=1, activation=tf.nn.sigmoid, name='fc', reuse=reuse) return D, Hs Explanation: Now we need to build our discriminators. We'll need to add a parameter for the is_training placeholder. We're also going to keep track of every hidden layer in the discriminator. Our encoder already returns the Hs of each layer. Alternatively, we could poll the graph for each layer in the discriminator and ask for the correspond layer names. We're going to need these layers when building our costs. End of explanation D_real, Hs_real = discriminator(X, is_training) D_fake, Hs_fake = discriminator(G, is_training, reuse=True) Explanation: Recall the regular GAN and DCGAN required 2 discriminators: one for the generated samples in Z, and one for the input samples in X. We'll do the same thing here. One discriminator for the real input data, X, which the discriminator will try to predict as 1s, and another discriminator for the generated samples that go from X through the encoder to Z, and finally through the decoder to G. The discriminator will be trained to try and predict these as 0s, whereas the generator will be trained to try and predict these as 1s. End of explanation with tf.variable_scope('loss'): # Loss functions loss_D_llike = 0 for h_real, h_fake in zip(Hs_real, Hs_fake): loss_D_llike += tf.reduce_sum(tf.squared_difference( utils.flatten(h_fake), utils.flatten(h_real)), 1) eps = 1e-12 loss_real = tf.log(D_real + eps) loss_fake = tf.log(1 - D_fake + eps) loss_GAN = tf.reduce_sum(loss_real + loss_fake, 1) gamma = 0.75 loss_enc = tf.reduce_mean(loss_Z + loss_D_llike) loss_dec = tf.reduce_mean(gamma * loss_D_llike - loss_GAN) loss_dis = -tf.reduce_mean(loss_GAN) nb_utils.show_graph(tf.get_default_graph().as_graph_def()) Explanation: <a name="building-vaegan-loss-functions"></a> Building VAE/GAN Loss Functions Let's now see how we can compose our loss. We have 3 losses for our discriminator. Along with measuring the binary cross entropy between each of them, we're going to also measure each layer's loss from our two discriminators using an l2-loss, and this will form our loss for the log likelihood measure. The details of how these are constructed are explained in more details in the paper: https://arxiv.org/abs/1512.09300 - please refer to this paper for more details that are way beyond the scope of this course! One parameter within this to pay attention to is gamma, which the authors of the paper suggest control the weighting between content and style, just like in Session 4's Style Net implementation. End of explanation learning_rate = 0.0001 opt_enc = tf.train.AdamOptimizer( learning_rate=learning_rate).minimize( loss_enc, var_list=[var_i for var_i in tf.trainable_variables() if ...]) opt_gen = tf.train.AdamOptimizer( learning_rate=learning_rate).minimize( loss_dec, var_list=[var_i for var_i in tf.trainable_variables() if ...]) opt_dis = tf.train.AdamOptimizer( learning_rate=learning_rate).minimize( loss_dis, var_list=[var_i for var_i in tf.trainable_variables() if var_i.name.startswith('discriminator')]) Explanation: <a name="creating-the-optimizers"></a> Creating the Optimizers We now have losses for our encoder, decoder, and discriminator networks. We can connect each of these to their own optimizer and start training! Just like with Part 1's GAN, we'll ensure each network's optimizer only trains its part of the network: the encoder's optimizer will only update the encoder variables, the generator's optimizer will only update the generator variables, and the discriminator's optimizer will only update the discriminator variables. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation from libs import datasets, dataset_utils batch_size = 64 n_epochs = 100 crop_shape = [n_pixels, n_pixels, n_channels] crop_factor = 0.8 input_shape = [218, 178, 3] # Try w/ CELEB first to make sure it works, then explore w/ your own dataset. files = datasets.CELEB() batch = dataset_utils.create_input_pipeline( files=files, batch_size=batch_size, n_epochs=n_epochs, crop_shape=crop_shape, crop_factor=crop_factor, shape=input_shape) Explanation: <a name="loading-the-dataset"></a> Loading the Dataset We'll now load our dataset just like in Part 1. Here is where you should explore with your own data! <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation n_samples = 10 zs = np.random.uniform( -1.0, 1.0, [4, n_code]).astype(np.float32) zs = utils.make_latent_manifold(zs, n_samples) Explanation: We'll also create a latent manifold just like we've done in Session 3 and Part 1. This is a random sampling of 4 points in the latent space of Z. We then interpolate between them to create a "hyper-plane" and show the decoding of 10 x 10 points on that hyperplane. End of explanation # We create a session to use the graph sess = tf.Session() init_op = tf.global_variables_initializer() saver = tf.train.Saver() coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) sess.run(init_op) Explanation: Now create a session and create a coordinator to manage our queues for fetching data from the input pipeline and start our queue runners: End of explanation if os.path.exists("vaegan.ckpt"): saver.restore(sess, "vaegan.ckpt") print("GAN model restored.") Explanation: Load an existing checkpoint if it exists to continue training. End of explanation n_files = len(files) test_xs = sess.run(batch) / 255.0 if not os.path.exists('imgs'): os.mkdir('imgs') m = utils.montage(test_xs, 'imgs/test_xs.png') plt.imshow(m) Explanation: We'll also try resynthesizing a test set of images. This will help us understand how well the encoder/decoder network is doing: End of explanation t_i = 0 batch_i = 0 epoch_i = 0 ckpt_name = './vaegan.ckpt' Explanation: <a name="training-1"></a> Training Almost ready for training. Let's get some variables which we'll need. These are the same as Part 1's training process. We'll keep track of t_i which we'll use to create images of the current manifold and reconstruction every so many iterations. And we'll keep track of the current batch number within the epoch and the current epoch number. End of explanation equilibrium = 0.693 margin = 0.4 Explanation: Just like in Part 1, we'll train trying to maintain an equilibrium between our Generator and Discriminator networks. You should experiment with the margin depending on how the training proceeds. End of explanation while epoch_i < n_epochs: if batch_i % (n_files // batch_size) == 0: batch_i = 0 epoch_i += 1 print('---------- EPOCH:', epoch_i) batch_i += 1 batch_xs = sess.run(batch) / 255.0 real_cost, fake_cost, _ = sess.run([ loss_real, loss_fake, opt_enc], feed_dict={ X: batch_xs, is_training: True}) real_cost = -np.mean(real_cost) fake_cost = -np.mean(fake_cost) gen_update = True dis_update = True if real_cost > (equilibrium + margin) or \ fake_cost > (equilibrium + margin): gen_update = False if real_cost < (equilibrium - margin) or \ fake_cost < (equilibrium - margin): dis_update = False if not (gen_update or dis_update): gen_update = True dis_update = True if gen_update: sess.run(opt_gen, feed_dict={ X: batch_xs, is_training: True}) if dis_update: sess.run(opt_dis, feed_dict={ X: batch_xs, is_training: True}) if batch_i % 50 == 0: print('real:', real_cost, '/ fake:', fake_cost) # Plot example reconstructions from latent layer recon = sess.run(G, feed_dict={ Z: zs, is_training: False}) recon = np.clip(recon, 0, 1) m1 = utils.montage(recon.reshape([-1] + crop_shape), 'imgs/manifold_%08d.png' % t_i) # Plot example reconstructions recon = sess.run(G, feed_dict={ X: test_xs, is_training: False}) recon = np.clip(recon, 0, 1) m2 = utils.montage(recon.reshape([-1] + crop_shape), 'imgs/reconstruction_%08d.png' % t_i) fig, axs = plt.subplots(1, 2, figsize=(15, 10)) axs[0].imshow(m1) axs[1].imshow(m2) plt.show() t_i += 1 if batch_i % 200 == 0: # Save the variables to disk. save_path = saver.save(sess, "./" + ckpt_name, global_step=batch_i, write_meta_graph=False) print("Model saved in file: %s" % save_path) # One of the threads has issued an exception. So let's tell all the # threads to shutdown. coord.request_stop() # Wait until all threads have finished. coord.join(threads) # Clean up the session. sess.close() Explanation: Now we'll train! Just like Part 1, we measure the real_cost and fake_cost. But this time, we'll always update the encoder. Based on the performance of the real/fake costs, then we'll update generator and discriminator networks. This will take a long time to produce something nice, but not nearly as long as the regular GAN network despite the additional parameters of the encoder and variational networks. Be sure to monitor the reconstructions to understand when your network has reached the capacity of its learning! For reference, on Celeb Net, I would use about 5 layers in each of the Encoder, Generator, and Discriminator networks using as input a 100 x 100 image, and a minimum of 200 channels per layer. This network would take about 1-2 days to train on an Nvidia TITAN X GPU. End of explanation tf.reset_default_graph() from libs import celeb_vaegan as CV net = CV.get_celeb_vaegan_model() Explanation: <a name="part-3---latent-space-arithmetic"></a> Part 3 - Latent-Space Arithmetic <a name="loading-the-pre-trained-model"></a> Loading the Pre-Trained Model We're now going to work with a pre-trained VAEGAN model on the Celeb Net dataset. Let's load this model: End of explanation sess = tf.Session() g = tf.get_default_graph() tf.import_graph_def(net['graph_def'], name='net', input_map={ 'encoder/variational/random_normal:0': np.zeros(512, dtype=np.float32)}) names = [op.name for op in g.get_operations()] print(names) Explanation: We'll load the graph_def contained inside this dictionary. It follows the same idea as the inception, vgg16, and i2v pretrained networks. It is a dictionary with the key graph_def defined, with the graph's pretrained network. It also includes labels and a preprocess key. We'll have to do one additional thing which is to turn off the random sampling from variational layer. This isn't really necessary but will ensure we get the same results each time we use the network. We'll use the input_map argument to do this. Don't worry if this doesn't make any sense, as we didn't cover the variational layer in any depth. Just know that this is removing a random process from the network so that it is completely deterministic. If we hadn't done this, we'd get slightly different results each time we used the network (which may even be desirable for your purposes). End of explanation X = g.get_tensor_by_name('net/x:0') Z = g.get_tensor_by_name('net/encoder/variational/z:0') G = g.get_tensor_by_name('net/generator/x_tilde:0') Explanation: Now let's get the relevant parts of the network: X, the input image to the network, Z, the input image's encoding, and G, the decoded image. In many ways, this is just like the Autoencoders we learned about in Session 3, except instead of Y being the output, we have G from our generator! And the way we train it is very different: we use an adversarial process between the generator and discriminator, and use the discriminator's own distance measure to help train the network, rather than pixel-to-pixel differences. End of explanation files = datasets.CELEB() img_i = 50 img = plt.imread(files[img_i]) plt.imshow(img) Explanation: Let's get some data to play with: End of explanation p = CV.preprocess(img) synth = sess.run(G, feed_dict={X: p[np.newaxis]}) fig, axs = plt.subplots(1, 2, figsize=(10, 5)) axs[0].imshow(p) axs[1].imshow(synth[0] / synth.max()) Explanation: Now preprocess the image, and see what the generated image looks like (i.e. the lossy version of the image through the network's encoding and decoding). End of explanation net.keys() len(net['labels']) net['labels'] Explanation: So we lost a lot of details but it seems to be able to express quite a bit about the image. Our inner most layer, Z, is only 512 values yet our dataset was 200k images of 64 x 64 x 3 pixels (about 2.3 GB of information). That means we're able to express our nearly 2.3 GB of information with only 512 values! Having some loss of detail is certainly expected! <a name="exploring-the-celeb-net-attributes"></a> Exploring the Celeb Net Attributes Let's now try and explore the attributes of our dataset. We didn't train the network with any supervised labels, but the Celeb Net dataset has 40 attributes for each of its 200k images. These are already parsed and stored for you in the net dictionary: End of explanation plt.imshow(img) [net['labels'][i] for i, attr_i in enumerate(net['attributes'][img_i]) if attr_i] Explanation: Let's see what attributes exist for one of the celeb images: End of explanation Z.get_shape() Explanation: <a name="find-the-latent-encoding-for-an-attribute"></a> Find the Latent Encoding for an Attribute The Celeb Dataset includes attributes for each of its 200k+ images. This allows us to feed into the encoder some images that we know have a specific attribute, e.g. "smiling". We store what their encoding is and retain this distribution of encoded values. We can then look at any other image and see how it is encoded, and slightly change the encoding by adding the encoded of our smiling images to it! The result should be our image but with more smiling. That is just insane and we're going to see how to do it. First lets inspect our latent space: End of explanation bald_label = net['labels'].index('Bald') bald_label Explanation: We have 512 features that we can encode any image with. Assuming our network is doing an okay job, let's try to find the Z of the first 100 images with the 'Bald' attribute: End of explanation bald_img_idxs = np.where(net['attributes'][:, bald_label])[0] bald_img_idxs Explanation: Let's get all the bald image indexes: End of explanation bald_imgs = [plt.imread(files[bald_img_i])[..., :3] for bald_img_i in bald_img_idxs[:100]] Explanation: Now let's just load 100 of their images: End of explanation plt.imshow(np.mean(bald_imgs, 0).astype(np.uint8)) Explanation: Let's see if the mean image looks like a good bald person or not: End of explanation bald_p = np.array([CV.preprocess(bald_img_i) for bald_img_i in bald_imgs]) Explanation: Yes that is definitely a bald person. Now we're going to try to find the encoding of a bald person. One method is to try and find every other possible image and subtract the "bald" person's latent encoding. Then we could add this encoding back to any new image and hopefully it makes the image look more bald. Or we can find a bunch of bald people's encodings and then average their encodings together. This should reduce the noise from having many different attributes, but keep the signal pertaining to the baldness. Let's first preprocess the images: End of explanation bald_zs = sess.run(Z, feed_dict=... Explanation: Now we can find the latent encoding of the images by calculating Z and feeding X with our bald_p images: <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation bald_feature = np.mean(bald_zs, 0, keepdims=True) bald_feature.shape Explanation: Now let's calculate the mean encoding: End of explanation bald_generated = sess.run(G, feed_dict=... plt.imshow(bald_generated[0] / bald_generated.max()) Explanation: Let's try and synthesize from the mean bald feature now and see how it looks: <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation def get_features_for(label='Bald', has_label=True, n_imgs=50): label_i = net['labels'].index(label) label_idxs = np.where(net['attributes'][:, label_i] == has_label)[0] label_idxs = np.random.permutation(label_idxs)[:n_imgs] imgs = [plt.imread(files[img_i])[..., :3] for img_i in label_idxs] preprocessed = np.array([CV.preprocess(img_i) for img_i in imgs]) zs = sess.run(Z, feed_dict={X: preprocessed}) return np.mean(zs, 0) Explanation: <a name="latent-feature-arithmetic"></a> Latent Feature Arithmetic Let's now try to write a general function for performing everything we've just done so that we can do this with many different features. We'll then try to combine them and synthesize people with the features we want them to have... End of explanation # Explore different attributes z1 = get_features_for('Male', True, n_imgs=10) z2 = get_features_for('Male', False, n_imgs=10) z3 = get_features_for('Smiling', True, n_imgs=10) z4 = get_features_for('Smiling', False, n_imgs=10) b1 = sess.run(G, feed_dict={Z: z1[np.newaxis]}) b2 = sess.run(G, feed_dict={Z: z2[np.newaxis]}) b3 = sess.run(G, feed_dict={Z: z3[np.newaxis]}) b4 = sess.run(G, feed_dict={Z: z4[np.newaxis]}) fig, axs = plt.subplots(1, 4, figsize=(15, 6)) axs[0].imshow(b1[0] / b1.max()), axs[0].set_title('Male'), axs[0].grid('off'), axs[0].axis('off') axs[1].imshow(b2[0] / b2.max()), axs[1].set_title('Not Male'), axs[1].grid('off'), axs[1].axis('off') axs[2].imshow(b3[0] / b3.max()), axs[2].set_title('Smiling'), axs[2].grid('off'), axs[2].axis('off') axs[3].imshow(b4[0] / b4.max()), axs[3].set_title('Not Smiling'), axs[3].grid('off'), axs[3].axis('off') Explanation: Let's try getting some attributes positive and negative features. Be sure to explore different attributes! Also try different values of n_imgs, e.g. 2, 3, 5, 10, 50, 100. What happens with different values? <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation notmale_vector = z2 - z1 n_imgs = 5 amt = np.linspace(0, 1, n_imgs) zs = np.array([z1 + notmale_vector*amt_i for amt_i in amt]) g = sess.run(G, feed_dict={Z: zs}) fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4)) for i, ax_i in enumerate(axs): ax_i.imshow(np.clip(g[i], 0, 1)) ax_i.grid('off') ax_i.axis('off') Explanation: Now let's interpolate between the "Male" and "Not Male" categories: End of explanation smiling_vector = z3 - z4 amt = np.linspace(0, 1, n_imgs) zs = np.array([z4 + smiling_vector*amt_i for amt_i in amt]) g = sess.run(G, feed_dict={Z: zs}) fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4)) for i, ax_i in enumerate(axs): ax_i.imshow(np.clip(g[i] / g[i].max(), 0, 1)) ax_i.grid('off') Explanation: And the same for smiling: End of explanation n_imgs = 5 amt = np.linspace(-1.5, 2.5, n_imgs) zs = np.array([z4 + smiling_vector*amt_i for amt_i in amt]) g = sess.run(G, feed_dict={Z: zs}) fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4)) for i, ax_i in enumerate(axs): ax_i.imshow(np.clip(g[i], 0, 1)) ax_i.grid('off') ax_i.axis('off') Explanation: There's also no reason why we have to be within the boundaries of 0-1. We can extrapolate beyond, in, and around the space. End of explanation def slerp(val, low, high): Spherical interpolation. val has a range of 0 to 1. if val <= 0: return low elif val >= 1: return high omega = np.arccos(np.dot(low/np.linalg.norm(low), high/np.linalg.norm(high))) so = np.sin(omega) return np.sin((1.0-val)*omega) / so * low + np.sin(val*omega)/so * high amt = np.linspace(0, 1, n_imgs) zs = np.array([slerp(amt_i, z1, z2) for amt_i in amt]) g = sess.run(G, feed_dict={Z: zs}) fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4)) for i, ax_i in enumerate(axs): ax_i.imshow(np.clip(g[i], 0, 1)) ax_i.grid('off') ax_i.axis('off') Explanation: <a name="extensions"></a> Extensions Tom White, Lecturer at Victoria University School of Design, also recently demonstrated an alternative way of interpolating using a sinusoidal interpolation. He's created some of the most impressive generative images out there and luckily for us he has detailed his process in the arxiv preprint: https://arxiv.org/abs/1609.04468 - as well, be sure to check out his twitter bot, https://twitter.com/smilevector - which adds smiles to people :) - Note that the network we're using is only trained on aligned faces that are frontally facing, though this twitter bot is capable of adding smiles to any face. I suspect that he is running a face detection algorithm such as AAM, CLM, or ASM, cropping the face, aligning it, and then running a similar algorithm to what we've done above. Or else, perhaps he has trained a new model on faces that are not aligned. In any case, it is well worth checking out! Let's now try and use sinusoidal interpolation using his implementation in plat which I've copied below: End of explanation img = plt.imread('parag.png')[..., :3] img = CV.preprocess(img, crop_factor=1.0)[np.newaxis] Explanation: It's certainly worth trying especially if you are looking to explore your own model's latent space in new and interesting ways. Let's try and load an image that we want to play with. We need an image as similar to the Celeb Dataset as possible. Unfortunately, we don't have access to the algorithm they used to "align" the faces, so we'll need to try and get as close as possible to an aligned face image. One way you can do this is to load up one of the celeb images and try and align an image to it using e.g. Photoshop or another photo editing software that lets you blend and move the images around. That's what I did for my own face... End of explanation img_ = sess.run(G, feed_dict={X: img}) fig, axs = plt.subplots(1, 2, figsize=(10, 5)) axs[0].imshow(img[0]), axs[0].grid('off') axs[1].imshow(np.clip(img_[0] / np.max(img_), 0, 1)), axs[1].grid('off') Explanation: Let's see how the network encodes it: End of explanation z1 = get_features_for('Blurry', True, n_imgs=25) z2 = get_features_for('Blurry', False, n_imgs=25) unblur_vector = z2 - z1 z = sess.run(Z, feed_dict={X: img}) n_imgs = 5 amt = np.linspace(0, 1, n_imgs) zs = np.array([z[0] + unblur_vector * amt_i for amt_i in amt]) g = sess.run(G, feed_dict={Z: zs}) fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4)) for i, ax_i in enumerate(axs): ax_i.imshow(np.clip(g[i] / g[i].max(), 0, 1)) ax_i.grid('off') ax_i.axis('off') Explanation: Notice how blurry the image is. Tom White's preprint suggests one way to sharpen the image is to find the "Blurry" attribute vector: End of explanation from scipy.ndimage import gaussian_filter idxs = np.random.permutation(range(len(files))) imgs = [plt.imread(files[idx_i]) for idx_i in idxs[:100]] blurred = [] for img_i in imgs: img_copy = np.zeros_like(img_i) for ch_i in range(3): img_copy[..., ch_i] = gaussian_filter(img_i[..., ch_i], sigma=3.0) blurred.append(img_copy) # Now let's preprocess the original images and the blurred ones imgs_p = np.array([CV.preprocess(img_i) for img_i in imgs]) blur_p = np.array([CV.preprocess(img_i) for img_i in blurred]) # And then compute each of their latent features noblur = sess.run(Z, feed_dict={X: imgs_p}) blur = sess.run(Z, feed_dict={X: blur_p}) synthetic_unblur_vector = np.mean(noblur - blur, 0) n_imgs = 5 amt = np.linspace(0, 1, n_imgs) zs = np.array([z[0] + synthetic_unblur_vector * amt_i for amt_i in amt]) g = sess.run(G, feed_dict={Z: zs}) fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4)) for i, ax_i in enumerate(axs): ax_i.imshow(np.clip(g[i], 0, 1)) ax_i.grid('off') ax_i.axis('off') Explanation: Notice that the image also gets brighter and perhaps other features than simply the bluriness of the image changes. Tom's preprint suggests that this is due to the correlation that blurred images have with other things such as the brightness of the image, possibly due biases in labeling or how photographs are taken. He suggests that another way to unblur would be to synthetically blur a set of images and find the difference in the encoding between the real and blurred images. We can try it like so: End of explanation z1 = get_features_for('Eyeglasses', True) z2 = get_features_for('Eyeglasses', False) glass_vector = z1 - z2 z = sess.run(Z, feed_dict={X: img}) n_imgs = 5 amt = np.linspace(0, 1, n_imgs) zs = np.array([z[0] + glass_vector * amt_i + unblur_vector * amt_i for amt_i in amt]) g = sess.run(G, feed_dict={Z: zs}) fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4)) for i, ax_i in enumerate(axs): ax_i.imshow(np.clip(g[i], 0, 1)) ax_i.grid('off') ax_i.axis('off') Explanation: For some reason, it also doesn't like my glasses very much. Let's try and add them back. End of explanation n_imgs = 5 amt = np.linspace(0, 1.0, n_imgs) zs = np.array([z[0] + glass_vector * amt_i + unblur_vector * amt_i + amt_i * smiling_vector for amt_i in amt]) g = sess.run(G, feed_dict={Z: zs}) fig, axs = plt.subplots(1, n_imgs, figsize=(20, 4)) for i, ax_i in enumerate(axs): ax_i.imshow(np.clip(g[i], 0, 1)) ax_i.grid('off') ax_i.axis('off') Explanation: Well, more like sunglasses then. Let's try adding everything in there now! End of explanation n_imgs = 5 amt = np.linspace(0, 1.5, n_imgs) z = sess.run(Z, feed_dict={X: imgs_p}) imgs = [] for amt_i in amt: zs = z + synthetic_unblur_vector * amt_i + amt_i * smiling_vector g = sess.run(G, feed_dict={Z: zs}) m = utils.montage(np.clip(g, 0, 1)) imgs.append(m) gif.build_gif(imgs, saveto='celeb.gif') ipyd.Image(url='celeb.gif?i={}'.format( np.random.rand()), height=1000, width=1000) Explanation: Well it was worth a try anyway. We can also try with a lot of images and create a gif montage of the result: End of explanation imgs = [] ... DO SOMETHING AWESOME ! ... gif.build_gif(imgs=imgs, saveto='vaegan.gif') Explanation: Exploring multiple feature vectors and applying them to images from the celeb dataset to produce animations of a face, saving it as a GIF. Recall you can store each image frame in a list and then use the gif.build_gif function to create a gif. Explore your own syntheses and then include a gif of the different images you create as "celeb.gif" in the final submission. Perhaps try finding unexpected synthetic latent attributes in the same way that we created a blur attribute. You can check the documentation in scipy.ndimage for some other image processing techniques, for instance: http://www.scipy-lectures.org/advanced/image_processing/ - and see if you can find the encoding of another attribute that you then apply to your own images. You can even try it with many images and use the utils.montage function to create a large grid of images that evolves over your attributes. Or create a set of expressions perhaps. Up to you just explore! <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation
3,007
Given the following text description, write Python code to implement the functionality described below step by step Description: Personal implementation of arXiv Step1: gathering_game class test Step3: DQN class Just take it from [2] Step6: Experience replay memory This will be used during the training when the loss function to be minimized will be averaged over a minibatch (sample) of experiences drawn randomly from the replay_memory .memory object using method .sample Step9: Policy Step11: Initialization Step13: Optimize Step15: Training loop
Python Code: # General import import numpy as np import matplotlib import matplotlib.pyplot as plt from collections import namedtuple from itertools import count #from copy import deepcopy #from PIL import Image import math import random import torch import torch.nn as nn import torch.optim as optim import torch.autograd as autograd import torch.nn.functional as F #import torchvision.transforms as T # is_ipython = 'inline' in matplotlib.get_backend() # if is_ipython: # from IPython import display Explanation: Personal implementation of arXiv:1702.03037 [cs.MA]. Refs: [1] DQN paper [2] An implementation of a simpler game in PyTorch at http://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html Language chosen PyTorch since new, python, GPU. End of explanation from modules.gathering import gathering_game # test gathering_game class. test init functions game_pars={} game_pars['gamma']=.99 game_pars['N_apples']=2 game_pars['N_tagged']=5 # local vars, should not be changed game_pars['W'] = 33 # Width, always odd game_pars['H'] = 11 # Height, always odd game_pars['size_obs_ahead'] = 15 # number of sites the players can see in front of them game_pars['size_obs_side'] = 10 # number of sites the players can see on their side test = gathering_game(game_pars) print('pars',test.pars) print(test.dir) print(test.s.shape) test.show_screen() test.reset() # s_t, a_{0,t}, a_{1,t}, s_{t+1} test.show_screen() r0,r1=test.transition_and_get_reward(test.actions_dict['stand_still'], test.actions_dict['rotate_right']) test.show_screen() # test of observation functions # test of obs_0 r0,r1=test.transition_and_get_reward(test.actions_dict['rotate_right'], test.actions_dict['rotate_left']) test.show_screen() #print('Reward', r0,r1) obs_0_s=test.obs_0() to_show = obs_0_s.transpose((2,1,0)) print(to_show.shape) plt.imshow(to_show,origin='lower') plt.show() # test of obs_1 obs_1_s=test.obs_1() to_show = obs_1_s.transpose((2,1,0)) print(to_show.shape) plt.imshow(to_show,origin='lower') plt.show() test.reset() test.show_screen() for i in range(15): test.transition_and_get_reward(test.actions_dict['step_forward'], test.actions_dict['step_forward']) test.show_screen() #r0,r1=test.transition_and_get_reward(test.actions_dict['stand_still'], test.actions_dict['stand_still']) r0,r1=test.transition_and_get_reward(test.actions_dict['step_forward'], test.actions_dict['step_forward']) #r0,r1=test.transition_and_get_reward(test.actions_dict['step_left'], test.actions_dict['step_right']) test.show_screen() print('Reward',r0,r1) r0,r1=test.transition_and_get_reward(test.actions_dict['step_right'], test.actions_dict['step_right']) test.show_screen() print('Reward', r0,r1) # test the transition functions by performing random moves: import time def random_actions(): # init game = gathering_game(game_pars) # play N random actions and show on screen N = 5 for t in range(N): print('Time',game.global_time) a0,a1 = (8*np.random.random((2,))).astype(int) for k,v in game.actions_dict.items(): if a0 == v: print('Action 0:',k) if a1 == v: print('Action 1:',k) game.transition_and_get_reward(a0, a1) game.show_screen() time.sleep(1) random_actions() Explanation: gathering_game class test End of explanation # Helper function that compute the output of a cross correlation def dim_out(dim_in,ks,stride): return math.floor((dim_in-ks)/stride+1) class DQN(nn.Module): def __init__(self, hp): hp = hyperparameters, dictionary super(DQN, self).__init__() # Conv2D has arguments C_in, C_out, ... where C_in is the number of input channels and C_out that of # output channels, not to be confused with the size of the image at input and output which is automatically # computed given the input and the kernel_size. # Further, in the help, (N,C,H,W) are resp. number of samples, number of channels, height, width. # Note: that instead nn.Linear requires both number of input and output neurons. The reason is that # conv2d only has parameters in the kernel, which is independent of the number of neurons. # Note: we do not use any normalization layer self.C_H = hp['C_H'] ks = hp['kernel_size'] stride = hp['stride'] self.conv1 = nn.Conv2d(hp['C_in'], self.C_H, kernel_size=ks, stride=stride) self.H1 = dim_out(hp['obs_window_H'],ks,stride) self.W1 = dim_out(hp['obs_window_W'],ks,stride) in_size = self.C_H*self.W1*self.H1 self.lin1 = nn.Linear(in_size, in_size) #lots of parameters! self.conv2 = nn.Conv2d(self.C_H, self.C_H, kernel_size=ks, stride=stride) H2 = dim_out(self.H1,ks,stride) W2 = dim_out(self.W1,ks,stride) in_size = self.C_H*W2*H2 self.lin2 = nn.Linear(in_size, hp['C_out']) def forward(self, x): # Apply rectified unit (relu) after each layer x = F.relu(self.conv1(x)) # to feed into self.lin. we reshape x has a (size(0), rest) tensor where size(0) is number samples. # -1 tells it to infer size automatically. x = x.view(x.size(0), -1) x = F.relu(self.lin1(x)) # reshape to feed it into conv2, this time: x = x.view(x.size(0), self.C_H, self.H1, self.W1) x = F.relu(self.conv2(x)) # reshape to feed it into lin2, this time: x = x.view(x.size(0), -1) x = F.relu(self.lin2(x)) return x # TEST of DQN hp = {} hp['C_in'] = 3 # for RGB hp['C_H'] = 32 # number of hidden units (or channels) hp['C_out'] = 8 # number of actions. hp['kernel_size'] = 5 hp['stride'] = 2 # width and height of observation region hp['obs_window_W'] = 21 hp['obs_window_H'] = 16 #print(dim_out(dim_out(30,5,2),5,2)) model_test = DQN(hp) for p in model_test.parameters(): print(p.size()) # test with a random smaple (use unsqueeze to get extra batch dimension) x_test = autograd.Variable(torch.randn(3, hp['obs_window_H'], hp['obs_window_W']).unsqueeze(0)) print('x',x_test.size(),type(x_test)) y_pred = model_test(x_test) print(y_pred.data) print(y_pred.data.max(1)) print(y_pred.data.max(1)[1]) #print("y : ",y_pred.data.size()) #print(y_pred[0,:]) Explanation: DQN class Just take it from [2] End of explanation # namedtuple: tuple subclass with elements accessible by name with . operator (here name class=name instance) # e_t = (s_t, a_t, r_t, s_{t+1}) # globally defined and used by replay_memory experience = namedtuple('Experience', ('observation', 'action', 'reward', 'next_observation')) class replay_memory(object): A cyclic buffer of bounded size that holds the transitions observed recently. It also implements a .sample() method for selecting a random batch of transitions for training. def __init__(self, capacity): self.capacity = capacity self.memory = [] self.position = 0 def push(self, *args): Saves a transition. if len(self.memory) < self.capacity: self.memory.append(None) self.memory[self.position] = experience(*args) # cyclicity: self.position = (self.position + 1) % self.capacity def sample(self, batch_size): return random.sample(self.memory, batch_size) def __len__(self): return len(self.memory) # test namedtuple. all its members are torch tensors # s = torch.randn(3,2,2).unsqueeze(0) # a = torch.Tensor([1]) # sp = torch.randn(3,2,2).unsqueeze(0) # r = torch.Tensor([0]) # test_exp = experience(s,a,r,sp) # test_exp.action # test of memory: OK N=1 batch_size = 1 rm_test = replay_memory(N) for i in range(N): s = torch.randn(3,2,2).unsqueeze(0) a = torch.floor(torch.rand(1)*8) sp = torch.randn(3,2,2).unsqueeze(0) # r = torch.randn(1) r = torch.ByteTensor([1]) rm_test.push(s,a,r,sp) # this is a list of namedtuples sample_experience = rm_test.sample(batch_size) # Transpose the batch (see http://stackoverflow.com/a/19343/3343043 for # detailed explanation). # This is a namedtuple of lists minibatch = experience(*zip(*sample_experience)) # get obs,action,next_obs,reward batches in Variable for s in minibatch.next_observation: if s is None: print('########### None') next_obs_batch = autograd.Variable(torch.cat(minibatch.next_observation), volatile=True) obs_batch = autograd.Variable(torch.cat(minibatch.observation)) action_batch = autograd.Variable(torch.cat(minibatch.action)) reward_batch = autograd.Variable(torch.cat(minibatch.reward)) sample_experience[0].action minibatch.action Explanation: Experience replay memory This will be used during the training when the loss function to be minimized will be averaged over a minibatch (sample) of experiences drawn randomly from the replay_memory .memory object using method .sample End of explanation def eps_decay(eps_start, eps_end, gamma, t): Returns the value of eps at time t according to epsilon decay from eps_start to eps_end with decay rate gamma ret = eps_end + \ (eps_start - eps_end) * np.exp(-1. * t / gamma) return ret def policy(model, obs, n_actions, eps): epsilon-greedy policy. Input: model : nn approximator for Q, obs : an observation, tensor below promoted to autograd.Variable n_action : the number of possible actions (gathering, = 8) t : time. Returns an action. assert(0 <= eps <= 1) random_num = random.random() print('rand',random_num, 'eps',eps) if random_num > eps: # to be adjusted eventually. # volatile: Boolean indicating that the Variable should be used in # inference mode (forward), i.e. don't save the history. See # :ref:`excluding-subgraphs` for more details. # Can be changed only on leaf Variables. print('In max policy') y_pred = model(autograd.Variable(obs, volatile=True)) # data.max(1) returns an array with 0 component the maximum values for each sample in the batch # and 1 component their indices, which is selected here, so giving which action maximizes the model for Q. return y_pred.data.max(1)[1].cpu() else: print('In rand policy') return torch.LongTensor([[random.randrange(n_actions)]]) Explanation: Policy: epsilon greedy. End of explanation # preprocess: def get_preprocessed_obs(game,pl): preprocessed input observation window of player pl from game. Convert to float, convert to torch tensor (this doesn't require a copy) and add a batch dimension assert(pl==0 or pl==1) if pl == 0: ret = game.obs_0() else: ret = game.obs_1() ret = np.ascontiguousarray(ret, dtype=np.float32) ret = torch.from_numpy(ret).unsqueeze(0) #print('my_obs',my_obs.size(),type(my_obs)) return ret # parameters game_pars={} game_pars['N_apples']=2 game_pars['N_tagged']=5 # local vars, should not be changed game_pars['W'] = 33 # Width, always odd game_pars['H'] = 11 # Height, always odd game_pars['size_obs_ahead'] = 15 # number of sites the players can see in front of them game_pars['size_obs_side'] = 10 # number of sites the players can see on their side # and hyper-parameters hp = {} hp['C_in'] = 3 # for RGB hp['C_H'] = 32 # number of hidden units (or channels) hp['C_out'] = 8 # number of actions. hp['kernel_size'] = 5 hp['stride'] = 2 # size of the observation window, related to output of obs_* hp['obs_window_W'] = 21 hp['obs_window_H'] = 16 # for replay_memory mem_pars = {} mem_pars['capacity'] = 2 mem_pars['batch_size'] = 1 # gamma = discount of reward gamma = .99 # eps for policy eps_start = 0.9 eps_end = 0.05 decay_rate = 200 # # Now init the variables # # Q function approximators for player 0 and 1 Q_0 = DQN(hp) Q_1 = DQN(hp) rpl_memory_0 = replay_memory(mem_pars['capacity']) rpl_memory_1 = replay_memory(mem_pars['capacity']) # game definition game = gathering_game(game_pars) obs_0 = get_preprocessed_obs(game,0) obs_1 = get_preprocessed_obs(game,1) # test of policy: OK my_obs = obs_1 # nn: my_model = Q_1 a=policy(my_model, my_obs, game.n_actions, 0.5) type(a[0,0]) Explanation: Initialization End of explanation # Choose minimum square error loss function and SGD optimizer loss_fn = torch.nn.MSELoss(size_average=False) optimizer_0 = optim.SGD(Q_0.parameters(),lr=0.01) optimizer_1 = optim.SGD(Q_1.parameters(),lr=0.01) def optimize(model, loss_fn, optimizer, rpl_memory, batch_size, gamma): TODO: understand issue with volatile... # if the memory is smaller than wanted, don't do anything and keep building memory print('In optimize: len(rpl_memory), bacth_size', len(rpl_memory), batch_size) if len(rpl_memory) < batch_size: return #otherwise get minibatch of experiences # this is a list of namedtuples sample_experience = rpl_memory.sample(batch_size) # Transpose the batch (see http://stackoverflow.com/a/19343/3343043 for # detailed explanation). # This is a namedtuple of lists minibatch = experience(*zip(*sample_experience)) print('minibatch.reward:',minibatch.reward) # get obs,action,next_obs,reward batches in Variable for s in minibatch.next_observation: if s is None: print('########### None') # Compute a mask of non-final states and concatenate the batch elements. This to get rid of None #non_final_mask = torch.ByteTensor( # tuple(map(lambda s: s is not None, minibatch.next_observation))) next_obs_batch = autograd.Variable(torch.cat(minibatch.next_observation), volatile=True) obs_batch = autograd.Variable(torch.cat(minibatch.observation)) action_batch = autograd.Variable(torch.cat(minibatch.action)) reward_batch = autograd.Variable(torch.cat(minibatch.reward)) # Compute Q(obs, action) - the model computes Q(obs), then we select the # columns of actions taken print("In optimize: obs_batch", obs_batch.data.size()) obs_action_values = model(obs_batch).gather(1, action_batch) # Compute V(obs')=max_a Q(obs, a) for all next states. next_obs_values = model(next_obs_batch).max(1)[0] # Now, we don't want to mess up the loss with a volatile flag, so let's # clear it. After this, we'll just end up with a Variable that has # requires_grad=False next_obs_values.volatile = False # Compute y y = (next_obs_values * gamma) + reward_batch # Compute loss loss = loss_fn(obs_action_values, y) # Optimize the model optimizer.zero_grad() loss.backward() for param in model.parameters(): param.grad.data.clamp_(-1, 1) optimizer.step() Explanation: Optimize End of explanation # training loop over episodes def train(M,T,eps_start,eps_end,decay_rate,Q_0,Q_1,obs_0,obs_1): ... for episode in range(M): for t in range(T): # policy eps = eps_decay(eps_start, eps_end, decay_rate, t) a_0 = policy(Q_0, obs_0, game.n_actions, eps) a_1 = policy(Q_1, obs_1, game.n_actions, eps) print(a_0,a_1) # execute action in emulator. (policy returns a 1x1 tensor) r_0, r_1 = game.transition_and_get_reward(a_0[0,0], a_1[0,0]) obs_0_p = get_preprocessed_obs(game,0) obs_1_p = get_preprocessed_obs(game,1) # store experience (converting r: it is only 0,1 but treat as float since then added to return) rpl_memory_0.push(obs_0, a_0, torch.FloatTensor([r_0]), obs_0_p) rpl_memory_1.push(obs_1, a_1, torch.FloatTensor([r_1]), obs_1_p) obs_0 = obs_0_p obs_1 = obs_1_p # optimize optimize(Q_0, loss_fn, optimizer_0, rpl_memory_0, mem_pars['batch_size'], gamma) optimize(Q_1, loss_fn, optimizer_1, rpl_memory_1, mem_pars['batch_size'], gamma) M = 1 T = 2 train(M,T,eps_start,eps_end,decay_rate,Q_0,Q_1,obs_0,obs_1) Explanation: Training loop End of explanation
3,008
Given the following text description, write Python code to implement the functionality described below step by step Description: Multiprocessing and scarplet This simple example shows how to use the match_template and compare methods with a multiprocessing worker pool. It is available as a Jupyter notebook (link) in the repository. Sample data is provided in the data folder. Step1: For each set of input parameters, we can start a separate masking task. These can be run in parallel, which is what scarplet does by default. Step2: To compare, we can a loop to fit the templates sequentially.
Python Code: import numpy as np import matplotlib.pyplot as plt from functools import partial from multiprocessing import Pool import scarplet as sl from scarplet.datasets import load_synthetic from scarplet.WindowedTemplate import Scarp data = load_synthetic() # Define parmaters for search scale = 10 age = 10. angles = np.linspace(-np.pi / 2, np.pi / 2, 181) nprocs = 3 Explanation: Multiprocessing and scarplet This simple example shows how to use the match_template and compare methods with a multiprocessing worker pool. It is available as a Jupyter notebook (link) in the repository. Sample data is provided in the data folder. End of explanation # Start separate search tasks pool = Pool(processes=nprocs) wrapper = partial(sl.match_template, data, Scarp, scale, age) results = pool.imap(wrapper, angles, chunksize=1) %%time # Reduce the final results as they are completed ny, nx = data.shape best = sl.compare(results, nx, ny) Explanation: For each set of input parameters, we can start a separate masking task. These can be run in parallel, which is what scarplet does by default. End of explanation %%time best = np.zeros((4, ny, nx)) for angle in angles: results = sl.match_template(data, Scarp, scale, age, angle) best = sl.compare([best, results], nx, ny) Explanation: To compare, we can a loop to fit the templates sequentially. End of explanation
3,009
Given the following text description, write Python code to implement the functionality described below step by step Description: IDX2016B - Week 2 presentations Classifiers in machine learning - which should I choose and how do I use it? Kyle Willett 14 June 2016 Step1: Logistic regression Logistic regression is a method of fitting a regression model based on one dependent variable (DV) and one or more independent variables (IVs). The difference between logistic and linear regression is that logistic regression predicts results of discrete categories, meaning that $y | x$ is the result of a Bernoulli distribution rather than a Gaussian. Linear regression is more appropriate if the dependent variable is continuous. Advantages of logistic regression Step2: So, now you have a predictor for the class of any future object based on the input data (length and width of sepals). For example Step3: Decision trees Decision trees are a non-parametric, supervised method for learning both classification and regression. It works by creating series of increasingly deeper rules for separating the independent variables based on combinations of the dependent variables. Rules can include simple thresholds on the DVs, Gini coefficient, cross-entropy, or misclassification. Advantages of decision trees Step4: So this model has higher accuracy on the training set since it creates smaller niches and separated areas of different classes. However, this illustrates the danger of overfitting the model; further test sets will likely have poorer performance. Like logistic regression, you can extract both discrete predictions and probabilities for each class Step5: How could we not overfit? Maybe try trees with different depths. Step6: Random forest Random forest (RF) is an example of an ensemble method of classification; this takes many individual estimators that each have some element of randomness built into them, and then combines the individual results to reduce the total variance (although potentially with a small increase in bias). Random forests are built on individual decision trees. For the construction of the classifier in each tree, rather than picking the best split among all features at each node in the tree, the algorithm will pick the best split for a random subset of the features and then continue constructing the classifier. This means that all the trees will have slightly different classifications even based on identical training sets. The scikit-learn implementation of RF combines the classifiers by averaging the probabilistic prediction in each tree. Advantages Step7: Support vector classification Support vector machines are another class of supervised learning methods. They rely on finding the weights necessary to create a set of hypervectors that separate the classes in a set. Like decision trees, they can be used for both classification and regression. Advantages
Python Code: %matplotlib inline # Setup - import some packages we'll need import numpy as np import matplotlib.pyplot as plt Explanation: IDX2016B - Week 2 presentations Classifiers in machine learning - which should I choose and how do I use it? Kyle Willett 14 June 2016 End of explanation from sklearn import datasets # Import some data to fit. We'll use the iris data and fit only to the first two features. iris = datasets.load_iris() X = iris.data[:, :2] Y = iris.target n_classes = len(set(Y)) # Plot the training data and take a look at the classes fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(111) md = {0:'o',1:'^',2:'s'} cm = plt.cm.Set1 for i in range(n_classes): inds = (Y==i) ax.scatter(X[inds,0],X[inds,1],c=cm(int(i/float(n_classes-1) * 255)), cmap=plt.cm.Set1,marker=md[i],s=50) ax.set_xlabel(iris['feature_names'][0]) ax.set_ylabel(iris['feature_names'][1]); # Train the logistic regression model h = 0.02 # step size in the mesh # Create an instance of the classifier from sklearn import linear_model logreg = linear_model.LogisticRegression(C=1e5) # Fit the data with the classifier logreg.fit(X, Y) # Create a 2D grid to evaluate the classifier on x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Evaluate the classifier at every point in the grid Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Reshape the output so that it can be overplotted on our grid Z = Z.reshape(xx.shape) fig,(ax1,ax2) = plt.subplots(1,2,figsize=(12,6)) # Plot the training points for i in range(n_classes): inds = (Y==i) ax1.scatter(X[inds,0],X[inds,1],c=cm(int(i/float(n_classes-1) * 255)), cmap=plt.cm.Set1,marker=md[i],s=50) # Plot the classifier with the training points on top ax2.pcolormesh(xx, yy, Z, cmap=cm) for i in range(n_classes): inds = (Y==i) ax2.scatter(X[inds,0],X[inds,1],c=cm(int(i/float(n_classes-1) * 255)), cmap=cm,marker=md[i],s=50,edgecolor='k') # Label the axes and remove the ticks for ax in (ax1,ax2): ax.set_xlabel(iris['feature_names'][0]) ax.set_ylabel(iris['feature_names'][1]) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()); Explanation: Logistic regression Logistic regression is a method of fitting a regression model based on one dependent variable (DV) and one or more independent variables (IVs). The difference between logistic and linear regression is that logistic regression predicts results of discrete categories, meaning that $y | x$ is the result of a Bernoulli distribution rather than a Gaussian. Linear regression is more appropriate if the dependent variable is continuous. Advantages of logistic regression: does not assume statistical independence of your IV(s) does not assume a normal distribution of DV returns a probabilistic interpretation as the model model can be quickly updated (using gradient descent, for example) assumes boundaries are linear, but do not have to be parallel to the IV axes quite fast Disadvantages of logistic regression: does not predict continuous data requires more data to get reasonable fit assuming a single continuous boundary means that it does not handle local structure well End of explanation length = 6.0 width = 3.2 # Just the discrete answer data = np.array([width,length]).reshape(1,-1) pred_class = logreg.predict(data)[0] target_name = iris['target_names'][pred_class] print "Overall predicted class of the new flower is {0:}.\n".format(target_name) # Probabilities for all the classes pred_probs = logreg.predict_proba(data) for name,prob in zip(iris['target_names'],pred_probs[0]): print "\tProbability of class {0:12} is {1:.2f}%.".format(name,prob*100.) Explanation: So, now you have a predictor for the class of any future object based on the input data (length and width of sepals). For example: End of explanation # Let's try it out again on the iris dataset. from sklearn import tree tree_classifier = tree.DecisionTreeClassifier() tree_classifier.fit(X,Y) # Evaluate the classifier at every point in the gricdb Z = tree_classifier.predict(np.c_[xx.ravel(), yy.ravel()]) # Reshape the output so that it can be overplotted on our grid Z = Z.reshape(xx.shape) fig,(ax1,ax2) = plt.subplots(1,2,figsize=(12,6)) # Plot the training points for i in range(n_classes): inds = (Y==i) ax1.scatter(X[inds,0],X[inds,1],c=cm(int(i/float(n_classes-1) * 255)), cmap=plt.cm.Set1,marker=md[i],s=50) # Plot the classifier with the training points on top ax2.pcolormesh(xx, yy, Z, cmap=cm) for i in range(n_classes): inds = (Y==i) ax2.scatter(X[inds,0],X[inds,1],c=cm(int(i/float(n_classes-1) * 255)), cmap=cm,marker=md[i],s=50,edgecolor='k') # Label the axes and remove the ticks for ax in (ax1,ax2): ax.set_xlabel(iris['feature_names'][0]) ax.set_ylabel(iris['feature_names'][1]) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()); Explanation: Decision trees Decision trees are a non-parametric, supervised method for learning both classification and regression. It works by creating series of increasingly deeper rules for separating the independent variables based on combinations of the dependent variables. Rules can include simple thresholds on the DVs, Gini coefficient, cross-entropy, or misclassification. Advantages of decision trees: simple to interpret and robust against missing values $\mathcal{O}(\log N)$ for $N$ data samples can validate model with statistical tests Disadvatages of decision trees: fairly easily prone to over-fitting. To avoid this, use methods like pruning, limits on minimum samples per leaf node, or setting maximum depth of the tree biased toward classes that are over-represented in the tree single decision trees can be unstable; better performance by using many in an ensemble (ie, a random forest) must be rebuilt if new features or training data are added End of explanation # Just the discrete answer data = np.array([width,length]).reshape(1,-1) pred_class = tree_classifier.predict(data)[0] target_name = iris['target_names'][pred_class] print "Overall predicted class of the new flower is {0:}.\n".format(target_name) # Probabilities for all the classes pred_probs = tree_classifier.predict_proba(data) for name,prob in zip(iris['target_names'],pred_probs[0]): print "\tProbability of class {0:12} is {1:.2f}%.".format(name,prob*100.) Explanation: So this model has higher accuracy on the training set since it creates smaller niches and separated areas of different classes. However, this illustrates the danger of overfitting the model; further test sets will likely have poorer performance. Like logistic regression, you can extract both discrete predictions and probabilities for each class: End of explanation fig,axarr = plt.subplots(2,3,figsize=(15,10)) for depth,ax in zip(range(1,7),axarr.ravel()): tree_depthlim = tree.DecisionTreeClassifier(max_depth=depth) tree_depthlim.fit(X,Y) # Evaluate the classifier at every point in the gricdb Z = tree_depthlim.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape) # Plot the classifier with the training points on top ax.pcolormesh(xx, yy, Z, cmap=cm) for i in range(n_classes): inds = (Y==i) ax.scatter(X[inds,0],X[inds,1],c=cm(int(i/float(n_classes-1) * 255)), cmap=cm,marker=md[i],s=50,edgecolor='k') # Label the axes and remove the ticks ax.set_title('Max. depth = {0}'.format(depth)) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()); Explanation: How could we not overfit? Maybe try trees with different depths. End of explanation from sklearn.ensemble import RandomForestClassifier rf_classifier = RandomForestClassifier(max_depth=5, n_estimators=10) rf_classifier.fit(X,Y) # Evaluate the classifier at every point in the gricdb Z = rf_classifier.predict(np.c_[xx.ravel(), yy.ravel()]) # Reshape the output so that it can be overplotted on our grid Z = Z.reshape(xx.shape) fig,(ax1,ax2) = plt.subplots(1,2,figsize=(12,6)) # Plot the training points for i in range(n_classes): inds = (Y==i) ax1.scatter(X[inds,0],X[inds,1],c=cm(int(i/float(n_classes-1) * 255)), cmap=plt.cm.Set1,marker=md[i],s=50) # Plot the classifier with the training points on top ax2.pcolormesh(xx, yy, Z, cmap=cm) for i in range(n_classes): inds = (Y==i) ax2.scatter(X[inds,0],X[inds,1],c=cm(int(i/float(n_classes-1) * 255)), cmap=cm,marker=md[i],s=50,edgecolor='k') # Label the axes and remove the ticks for ax in (ax1,ax2): ax.set_xlabel(iris['feature_names'][0]) ax.set_ylabel(iris['feature_names'][1]) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()); Explanation: Random forest Random forest (RF) is an example of an ensemble method of classification; this takes many individual estimators that each have some element of randomness built into them, and then combines the individual results to reduce the total variance (although potentially with a small increase in bias). Random forests are built on individual decision trees. For the construction of the classifier in each tree, rather than picking the best split among all features at each node in the tree, the algorithm will pick the best split for a random subset of the features and then continue constructing the classifier. This means that all the trees will have slightly different classifications even based on identical training sets. The scikit-learn implementation of RF combines the classifiers by averaging the probabilistic prediction in each tree. Advantages: reduces variance in the model fast and scalable few parameters to tune (max depth, number of features, nature of randomness) Disadvantages: slightly increases bias, especially for non-balanced datasets must be rebuilt if new features or training data are added End of explanation from sklearn import svm svm_classifier = svm.SVC() svm_classifier.fit(X,Y) # Evaluate the classifier at every point in the gricdb Z = svm_classifier.predict(np.c_[xx.ravel(), yy.ravel()]) # Reshape the output so that it can be overplotted on our grid Z = Z.reshape(xx.shape) fig,(ax1,ax2) = plt.subplots(1,2,figsize=(12,6)) # Plot the training points for i in range(n_classes): inds = (Y==i) ax1.scatter(X[inds,0],X[inds,1],c=cm(int(i/float(n_classes-1) * 255)), cmap=plt.cm.Set1,marker=md[i],s=50) # Plot the classifier with the training points on top ax2.pcolormesh(xx, yy, Z, cmap=cm) for i in range(n_classes): inds = (Y==i) ax2.scatter(X[inds,0],X[inds,1],c=cm(int(i/float(n_classes-1) * 255)), cmap=cm,marker=md[i],s=50,edgecolor='k') # Label the axes and remove the ticks for ax in (ax1,ax2): ax.set_xlabel(iris['feature_names'][0]) ax.set_ylabel(iris['feature_names'][1]) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()); # Just the discrete answer data = np.array([width,length]).reshape(1,-1) pred_class = svm_classifier.predict(data)[0] target_name = iris['target_names'][pred_class] print "Overall predicted class of the new flower is {0:}.\n".format(target_name) Explanation: Support vector classification Support vector machines are another class of supervised learning methods. They rely on finding the weights necessary to create a set of hypervectors that separate the classes in a set. Like decision trees, they can be used for both classification and regression. Advantages: work in high-dimensional spaces can be used even if $\mathcal{N}>n$ (number of dimensions are greater than number of samples) memory efficient can tune the kernel that controls decision function Disadvantages: must tune the kernel that controls the decision function many more parameters that can potentially be set no direct probability estimates The heart of an SVC is the kernel; this "mathematical trick" is what allows the algorithm to efficiently map coordinates into feature space by only computing the inner product on pairs of images, rather than a complete coordinate transformation. The shape of the kernel also determines the available shapes for the discriminating hyperplances. In scikit-learn, there are four precompiled kernels available (you can also define your own): linear polynomial rbf ("radial basis function"; default) sigmoid End of explanation
3,010
Given the following text description, write Python code to implement the functionality described below step by step Description: Lesson 49 Step1: This lesson will control all the keyboard controlling functions in the module. The typewrite() function will type text into a given textbox. It may be useful to use the mouse operators to navigate and click into a field before running. Step2: Again, to simulate more human interaction, we can an interval parameter like duration before. Step3: For more complex characters, we can pass a list of complex characters, like the arrow keys, shift, etc. Step4: A list of keys are available in the KEYBOARD_KEYS Step5: These are case-sensitive, but often map to the same function anyway. Step6: We can also pass variables in hotkey mode, i.e. pressed together.
Python Code: import pyautogui Explanation: Lesson 49: Controlling the Keyboard with Python Python can be used to control the keyboard and mouse, which allows us to automate any program that uses these as inputs. Graphical User Interface (GUI) Automation is particularly useful for repetative clicking or keyboard entry. The program's own module will probably deliver better programmatic performance, but GUI automation is more broadly applicable. We will be using the pyautogui module. Lesson 48 details how to install this package. End of explanation # Writes to the cell right below (70 pixels down) pyautogui.moveRel(0,70) pyautogui.click() pyautogui.typewrite('Hello world!') Explanation: This lesson will control all the keyboard controlling functions in the module. The typewrite() function will type text into a given textbox. It may be useful to use the mouse operators to navigate and click into a field before running. End of explanation # Writes to the cell right below (70 pixels down) pyautogui.moveRel(0,70) pyautogui.click() pyautogui.typewrite('Hello world!', interval=0.2) Explanation: Again, to simulate more human interaction, we can an interval parameter like duration before. End of explanation # Writes to the cell right below (70 pXixels down) pyautogui.moveRel(0,70) pyautogui.click() pyautogui.typewrite(['a','b','left','left','X','Y'], interval=1) XYab Explanation: For more complex characters, we can pass a list of complex characters, like the arrow keys, shift, etc. End of explanation pyautogui.KEYBOARD_KEYS Explanation: A list of keys are available in the KEYBOARD_KEYS End of explanation pyautogui.typewrite('F1') pyautogui.typewrite('f1') Explanation: These are case-sensitive, but often map to the same function anyway. End of explanation # Simulates ctrl + alt + delete pyautogui.hotkey('ctrl','alt','delete') Explanation: We can also pass variables in hotkey mode, i.e. pressed together. End of explanation
3,011
Given the following text description, write Python code to implement the functionality described below step by step Description: Iris Demo Check any null and invalid values Ensure the properties of features and labels Convert the string value into computational forms PCA -> Cluster Verification (optional) Logistic Regreesion/SVM (optional) Import Iris DataSet from sklearn Step1: Convert data form into Pandas format Step2: Check if there is any null values Step3: 3 group to classify Step4: 150 instances and 4 features Step5: Convet all the unique string values into integers. Perform label encoding on the data Step6: Check the encoded values Step7: Plot boxplot to visualize the distribution of the data Step8: Info of features Step9: Standardising the features Step10: PCA(optional) Step11: The last 1 componen has less amount of variance of the data. The first 3 components retains more than 90% of the data.(Here, compared with only 4 features, there're enough instances to support the final results. We shall take all features into consideration) Consider first 3 components and visualise it using K-means clustering Step12: Using K-means, we are able to segregate 3 classes well using the first 3 components with maximum variance. (Don't mind the color type, which is meaningless in clustering). You can apply PCA firstly before using machine learning in the next steps Splitting the data into training and testing dataset Step13: Default Logistic Regression(optional) Step14: Tuned Logistic Regression(optional) Step15: Search best combinations of parameter values based on the dataset. + "C" Step16: SVM(optional)
Python Code: from sklearn.datasets import load_iris irisdata = load_iris() Explanation: Iris Demo Check any null and invalid values Ensure the properties of features and labels Convert the string value into computational forms PCA -> Cluster Verification (optional) Logistic Regreesion/SVM (optional) Import Iris DataSet from sklearn End of explanation import pandas as pd features = pd.DataFrame(irisdata['data']) features.columns = irisdata['feature_names'] targets = pd.DataFrame(irisdata['target']) targets = targets.replace([0,1,2],irisdata['target_names']) Explanation: Convert data form into Pandas format End of explanation features.isnull().sum() targets.isnull().sum() Explanation: Check if there is any null values End of explanation targets[0].unique() Explanation: 3 group to classify End of explanation features.shape Explanation: 150 instances and 4 features End of explanation from sklearn.preprocessing import LabelEncoder labelencoder=LabelEncoder() for col in targets.columns: targets[col] = labelencoder.fit_transform(targets[col]) Explanation: Convet all the unique string values into integers. Perform label encoding on the data End of explanation targets[0].unique() print(targets.groupby(0).size()) Explanation: Check the encoded values End of explanation import matplotlib.pyplot as plt %matplotlib inline fig,axes = plt.subplots(nrows=2,ncols=2,figsize=(9,9)) fig1 = axes[0,0].boxplot(features['sepal length (cm)'],patch_artist=True) fig2 = axes[0,1].boxplot(features['sepal width (cm)'],patch_artist=True) fig3 = axes[1,0].boxplot(features['petal length (cm)'],patch_artist=True) fig4 = axes[1,1].boxplot(features['petal width (cm)'],patch_artist=True) Explanation: Plot boxplot to visualize the distribution of the data End of explanation features.describe() features.corr() Explanation: Info of features End of explanation from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(features) X Explanation: Standardising the features End of explanation from sklearn.decomposition import PCA pca = PCA() pca.fit_transform(X) covariance = pca.get_covariance() explained_variance = pca.explained_variance_ explained_variance import matplotlib.pyplot as plt %matplotlib inline plt.figure(figsize=(6, 4)) plt.bar(range(4), explained_variance, alpha=0.5, align='center', label='individual explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.tight_layout() Explanation: PCA(optional) End of explanation from sklearn.cluster import KMeans from sklearn.decomposition import PCA pca = PCA(n_components=3) x_pca = pca.fit_transform(X) kmeans = KMeans(n_clusters=3, random_state=5) x_clustered = kmeans.fit_predict(x_pca) y = targets.values y = y.reshape(y.size) import matplotlib.pyplot as plt %matplotlib inline LABEL_COLOR_MAP = {0 : 'g', 1 : 'y', 2 : 'r' } label_color = [LABEL_COLOR_MAP[i] for i in x_clustered] y_color = [LABEL_COLOR_MAP[i] for i in y] fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(5,3)) axes[0].scatter(X[:,0],X[:,1], c= label_color) axes[0].set_title('PCA') axes[1].scatter(X[:,0],X[:,1], c= y_color) axes[1].set_title('True Cluster'); Explanation: The last 1 componen has less amount of variance of the data. The first 3 components retains more than 90% of the data.(Here, compared with only 4 features, there're enough instances to support the final results. We shall take all features into consideration) Consider first 3 components and visualise it using K-means clustering End of explanation from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=4) Explanation: Using K-means, we are able to segregate 3 classes well using the first 3 components with maximum variance. (Don't mind the color type, which is meaningless in clustering). You can apply PCA firstly before using machine learning in the next steps Splitting the data into training and testing dataset End of explanation from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn import metrics modelLR = LogisticRegression(n_jobs=-1) modelLR.fit(X_train,y_train); y_pred = modelLR.predict(X_test) modelLR.score(X_test,y_pred) confusion_matrix=metrics.confusion_matrix(y_test,y_pred) confusion_matrix import matplotlib.pyplot as plt %matplotlib inline LABEL_COLOR_MAP = {0 : 'g', 1 : 'y', 2 : 'r' } pred_color = [LABEL_COLOR_MAP[i] for i in y_pred] test_color = [LABEL_COLOR_MAP[i] for i in y_test] fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(5,2)) axes[0].scatter(X_test[:,0],X_test[:,1], c= pred_color) axes[0].set_title('Predicted') axes[1].scatter(X_test[:,0],X_test[:,1], c= test_color) axes[1].set_title('True'); Explanation: Default Logistic Regression(optional) End of explanation from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn import metrics from sklearn.model_selection import GridSearchCV LRs= LogisticRegression() tuned_parameters = {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000] , 'penalty':['l1','l2'] } modelLR=GridSearchCV(LRs, tuned_parameters,cv=10) Explanation: Tuned Logistic Regression(optional) End of explanation modelLR.fit(X_train,y_train) print(modelLR.best_params_) y_pred = modelLR.predict(X_test) modelLR.score(X_test,y_pred) confusion_matrix=metrics.confusion_matrix(y_test,y_pred) confusion_matrix auc_roc=metrics.classification_report(y_test,y_pred) auc_roc import matplotlib.pyplot as plt %matplotlib inline LABEL_COLOR_MAP = {0 : 'g', 1 : 'y', 2 : 'r' } pred_color = [LABEL_COLOR_MAP[i] for i in y_pred] test_color = [LABEL_COLOR_MAP[i] for i in y_test] fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(5,2)) axes[0].scatter(X_test[:,0],X_test[:,1], c= pred_color) axes[0].set_title('Predicted') axes[1].scatter(X_test[:,0],X_test[:,1], c= test_color) axes[1].set_title('True'); Explanation: Search best combinations of parameter values based on the dataset. + "C": Inverse of regularization strength + "Penalty": The norm used in the penalization End of explanation from sklearn.svm import SVC svm= SVC() tuned_parameters = { 'C': [1, 10, 100,500, 1000], 'kernel': ['linear','rbf'], 'C': [1, 10, 100,500, 1000], 'gamma': [1,0.1,0.01,0.001, 0.0001], 'kernel': ['rbf'], #'degree': [2,3,4,5,6] , 'C':[1,10,100,500,1000] , 'kernel':['poly'] } from sklearn.model_selection import RandomizedSearchCV modelsvm = RandomizedSearchCV(svm, tuned_parameters,cv=10,scoring='accuracy',n_iter=20) modelsvm.fit(X_train, y_train) print(modelsvm.best_score_) modelsvm.cv_results_ print(modelsvm.best_params_) y_pred= modelsvm.predict(X_test) print(metrics.accuracy_score(y_pred,y_test)) confusion_matrix=metrics.confusion_matrix(y_test,y_pred) confusion_matrix auc_roc=metrics.classification_report(y_test,y_pred) auc_roc import matplotlib.pyplot as plt %matplotlib inline LABEL_COLOR_MAP = {0 : 'g', 1 : 'y', 2 : 'r' } pred_color = [LABEL_COLOR_MAP[i] for i in y_pred] test_color = [LABEL_COLOR_MAP[i] for i in y_test] fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(5,2)) axes[0].scatter(X_test[:,0],X_test[:,1], c= pred_color) axes[0].set_title('Predicted') axes[1].scatter(X_test[:,0],X_test[:,1], c= test_color) axes[1].set_title('True'); Explanation: SVM(optional) End of explanation
3,012
Given the following text description, write Python code to implement the functionality described below step by step Description: Using numpy The foundation for numerical computation in Python is the numpy package, and essentially all scientific libraries in Python build on this - e.g. scipy, pandas, statsmodels, scikit-learn, cv2 etc. The basic data structure in numpy is the NDArray, and it is essential to become familiar with how to slice and dice this object. Numpy also has the random, and linalg modules that we will discuss in later lectures. Resources Numpy for R users NumPy Step1: Array creation Step2: Array manipulation Step3: Array indexing Step4: Boolean indexing Step5: Fancy indexing Step6: Calculations and broadcasting Broadcasting refers to the set of rules that numpy uses to perfrom operations on arrays with different shapes. See official documentation for a clear explanation of the rules. Array shapes can be manipulated using the reshape method or by inserting a new axis with np.newaxis. Note that np.newaxis is an alias for None, which I sometimes use in my examples. Step7: Combining and splitting arrays Step8: Reductions Step9: Standardize by column mean and standard deviation Step10: Standardize by row mean and standard deviation Step13: Example Step14: Using broadcasting Step15: We want to end up with a 4 by 4 matrix, so sum over the axis with dimension 2. This is axis=2, or axis=-1 since it is the first axis from the end. Step16: Basically, the distance matrix can be calculated in one line of numpy code Step17: Let's put them in functions and compare the time. Step18: Check that the outputs are the same Step19: But don't give up on loops yet Step20: What is going on? This is 3-5 times faster than the broadcasting version! We have just performed Just In Time (JIT) compilation of a function, which will be discussed in a later lecture. Example Step21: Use broadcasting to create a new index matrix Step22: All but one R uses negative indexing to mean delete the component at that index. Because Python uses negative indexing to mean count from the end, we have to do a little more work to get the same effect. Here are two ways of deleting one item from a vector. Step23: Universal functions (Ufuncs) Functions that work on both scalars and arrays are known as ufuncs. For arrays, ufuncs apply the function in an element-wise fashion. Use of ufuncs is an esssential aspect of vectorization and typically much more computationally efficient than using an explicit loop over each element. Step24: Generalized ufuncs A universal function performs vectorized looping over scalars. A generalized ufunc performs looping over vectors or arrays. Currently, numpy only ships with a single generalized ufunc. However, they play an important role for JIT compilation with numba, a topic we will cover in future lectures. Step25: Saving and loading NDArrays Saving to and loading from text files Step26: Saving to and loading from binary files (much faster and also preserves dtype) Step27: Version information
Python Code: x = np.array([1,2,3,4,5,6]) print(x) print('dytpe', x.dtype) print('shape', x.shape) print('strides', x.strides) x.shape = (2,3) print(x) print('dytpe', x.dtype) print('shape', x.shape) print('strides', x.strides) x = x.astype('complex') print(x) print('dytpe', x.dtype) print('shape', x.shape) print('strides', x.strides) Explanation: Using numpy The foundation for numerical computation in Python is the numpy package, and essentially all scientific libraries in Python build on this - e.g. scipy, pandas, statsmodels, scikit-learn, cv2 etc. The basic data structure in numpy is the NDArray, and it is essential to become familiar with how to slice and dice this object. Numpy also has the random, and linalg modules that we will discuss in later lectures. Resources Numpy for R users NumPy: creating and manipulating numerical data Advanced Numpy 100 Numpy Exercises NDArray The base structure in numpy is ndarray, used to represent vectors, matrices and higher-dimensional arrays. Each ndarray has the following attributes: dtype = corresponds to data types in C shape = dimensions of array strides = number of bytes to step in each direction when traversing the array End of explanation np.array([1,2,3]) np.array([1,2,3], np.float64) np.arange(3) np.arange(3, 6, 0.5) np.array([[1,2,3],[4,5,6]]) np.ones(3) np.zeros((3,4)) np.eye(4) np.diag([1,2,3,4]) np.fromfunction(lambda i, j: i**2+j**2, (4,5)) Explanation: Array creation End of explanation x = np.fromfunction(lambda i, j: i**2+j**2, (4,5)) x x.shape x.size x.dtype x.astype(np.int64) x.T x.reshape(2,-1) Explanation: Array manipulation End of explanation x x[0] x[0,:] x[:,0] x[-1] x[1,1] x[:, 1:3] Explanation: Array indexing End of explanation x >= 2 x[x > 2] Explanation: Boolean indexing End of explanation x[0, [1,2]] Explanation: Fancy indexing End of explanation x = np.fromfunction(lambda i, j: i**2+j**2, (2,3)) x x * 5 x + x x @ x.T x.T @ x np.log1p(x) np.exp(x) Explanation: Calculations and broadcasting Broadcasting refers to the set of rules that numpy uses to perfrom operations on arrays with different shapes. See official documentation for a clear explanation of the rules. Array shapes can be manipulated using the reshape method or by inserting a new axis with np.newaxis. Note that np.newaxis is an alias for None, which I sometimes use in my examples. End of explanation x np.r_[x, x] np.vstack([x, x]) np.concatenate([x, x], axis=0) np.c_[x,x] np.hstack([x, x]) np.concatenate([x,x], axis=1) y = np.r_[x, x] y a, b, c = np.hsplit(y, 3) a b c np.vsplit(y, [3]) np.split(y, [3], axis=0) np.hstack(np.hsplit(y, 3)) Explanation: Combining and splitting arrays End of explanation y y.sum() y.sum(0) # column sum y.sum(1) # row sum Explanation: Reductions End of explanation z = (y - y.mean(0))/y.std(0) z z.mean(0), z.std(0) Explanation: Standardize by column mean and standard deviation End of explanation z = (y - y.mean(1)[:,None])/y.std(1)[:,None] z z.mean(1), z.std(1) Explanation: Standardize by row mean and standard deviation End of explanation def distance_matrix_py(pts): Returns matrix of pairwise Euclidean distances. Pure Python version. n = len(pts) p = len(pts[0]) m = np.zeros((n, n)) for i in range(n): for j in range(n): s = 0 for k in range(p): s += (pts[i,k] - pts[j,k])**2 m[i, j] = s**0.5 return m def distance_matrix_np(pts): Returns matrix of pairwise Euclidean distances. Vectorized numpy version. return np.sum((pts[None,:] - pts[:, None])**2, -1)**0.5 pts = np.array([(0,0), (4,0), (4,3), (0,3)]) pts pts.shape n = pts.shape[0] p = pts.shape[1] dist = np.zeros((n, n)) for i in range(n): for j in range(n): s = 0 for k in range(p): s += (pts[i, k] - pts[j, k])**2 dist[i, j] = np.sqrt(s) dist Explanation: Example: Calculating pairwise distance matrix using broadcasting and vectorization Calculate the pairwise distance matrix between the following points (0,0) (4,0) (4,3) (0,3) End of explanation pts[None, :].shape pts[:, None].shape m = pts[None, :] - pts[:, None] m m**2 (m**2).shape Explanation: Using broadcasting End of explanation np.sum((pts[None, :] - pts[:, None])**2, -1) Explanation: We want to end up with a 4 by 4 matrix, so sum over the axis with dimension 2. This is axis=2, or axis=-1 since it is the first axis from the end. End of explanation np.sqrt(np.sum((pts[None, :] - pts[:, None])**2, -1)) Explanation: Basically, the distance matrix can be calculated in one line of numpy code End of explanation def pdist1(pts): n = pts.shape[0] p = pts.shape[1] dist = np.zeros((n, n)) for i in range(n): for j in range(n): s = 0 for k in range(p): s += (pts[i, k] - pts[j, k])**2 dist[i, j] = s return np.sqrt(dist) def pdist2(pts): return np.sqrt(np.sum((pts[None, :] - pts[:, None])**2, -1)) Explanation: Let's put them in functions and compare the time. End of explanation np.alltrue(pdist1(pts) == pdist2(pts)) pts = np.random.random((1000, 2)) %timeit pdist1(pts) %timeit pdist2(pts) Explanation: Check that the outputs are the same End of explanation from numba import njit @njit def pdist3(pts): n = pts.shape[0] p = pts.shape[1] dist = np.zeros((n, n)) for i in range(n): for j in range(n): s = 0 for k in range(p): s += (pts[i, k] - pts[j, k])**2 dist[i, j] = s return np.sqrt(dist) %timeit pdist3(pts) Explanation: But don't give up on loops yet End of explanation N = 5 np.tri(N) np.tri(N, N-1) np.tri(N, N-1, -1) Explanation: What is going on? This is 3-5 times faster than the broadcasting version! We have just performed Just In Time (JIT) compilation of a function, which will be discussed in a later lecture. Example: Consructing leave-one-out arrays Another example of numpy trickery is to construct a leave-one-out matrix of a vector of length k. In the matrix, each row is a vector of length k-1, with a different vector component dropped each time. This can be used for LOOCV to evalaute the out-of-sample accuracy of a predictive model. For example, suppose you have data points [(1,4), (2,7), (3,11), (4,9), (5,15)] that you want to perfrom LOOCV on for a simple regression model. For each cross-validation, you use one point for testing, and the remaining 4 points for training. In other words, you want the training set to be: [(2,7), (3,11), (4,9), (5,15)] [(1,4), (3,11), (4,9), (5,15)] [(1,4), (2,7), (4,9), (5,15)] [(1,4), (2,7), (3,11), (5,15)] [(1,4), (2,7), (3,11), (4,9)] Here is one way to do create the training set using numpy tricks. Create a triangular matrix with N rows, N-1 columns and offset from diagnonal by -1 End of explanation np.arange(1, N) np.arange(1, N) - np.tri(N, N-1, -1) idx = np.arange(1, N) - np.tri(N, N-1, -1).astype('int') data = np.array([(1,4), (2,7), (3,11), (4,9), (5,15)]) data data[idx] Explanation: Use broadcasting to create a new index matrix End of explanation def f1(a, k): idx = np.ones_like(a).astype('bool') idx[k] = 0 return a[idx] def f2(a, k): return np.r_[a[:k], a[k+1:]] a = np.arange(100) k = 50 %timeit f1(a, k) %timeit f2(a, k) Explanation: All but one R uses negative indexing to mean delete the component at that index. Because Python uses negative indexing to mean count from the end, we have to do a little more work to get the same effect. Here are two ways of deleting one item from a vector. End of explanation import matplotlib.pyplot as plt %matplotlib inline xs = np.linspace(0, 2*np.pi, 100) ys = np.sin(xs) # np.sin is a universal function plt.plot(xs, ys); Explanation: Universal functions (Ufuncs) Functions that work on both scalars and arrays are known as ufuncs. For arrays, ufuncs apply the function in an element-wise fashion. Use of ufuncs is an esssential aspect of vectorization and typically much more computationally efficient than using an explicit loop over each element. End of explanation from numpy.core.umath_tests import matrix_multiply print(matrix_multiply.signature) us = np.random.random((5, 2, 3)) # 5 2x3 matrics vs = np.random.random((5, 3, 4)) # 5 3x4 matrices us vs # perform matrix multiplication for each of the 5 sets of matrices ws = matrix_multiply(us, vs) ws.shape ws Explanation: Generalized ufuncs A universal function performs vectorized looping over scalars. A generalized ufunc performs looping over vectors or arrays. Currently, numpy only ships with a single generalized ufunc. However, they play an important role for JIT compilation with numba, a topic we will cover in future lectures. End of explanation x1 = np.arange(1,10).reshape(3,3) x1 np.savetxt('../data/x1.txt', x1) !cat ../data/x1.txt x2 = np.loadtxt('../data/x1.txt') x2 Explanation: Saving and loading NDArrays Saving to and loading from text files End of explanation np.save('../data/x1.npy', x1) !cat ../data/x1.npy x3 = np.load('../data/x1.npy') x3 Explanation: Saving to and loading from binary files (much faster and also preserves dtype) End of explanation %load_ext version_information %version_information numpy, numba, matplotlib Explanation: Version information End of explanation
3,013
Given the following text description, write Python code to implement the functionality described below step by step Description: Step1: Using CAD-Based Geometries In this notebook we'll be exploring how to use CAD-based geometries in OpenMC via the DagMC toolkit. The models we'll be using in this notebook have already been created using Trelis and faceted into a surface mesh represented as .h5m files in the Mesh Oriented DatABase format. We'll be retrieving these files using the function below. Step2: This notebook is intended to demonstrate how DagMC problems are run in OpenMC. For more information on how DagMC models are created, please refer to the DagMC User's Guide. Step3: To start, we'll be using a simple U235 fuel pin surrounded by a water moderator, so let's create those materials. Step4: Now let's get our DAGMC geometry. We'll be using prefabricated models in this notebook. For information on how to create your own DAGMC models, you can refer to the instructions here. Let's download the DAGMC model. These models come in the form of triangle surface meshes stored using the the Mesh Oriented datABase (MOAB) in an HDF5 file with the extension .h5m. An example of a coarse triangle mesh looks like Step5: First we'll need to grab some pre-made DagMC models. Step6: OpenMC expects that the model has the name "dagmc.h5m" so we'll name the file that and indicate to OpenMC that a DAGMC geometry is being used by setting the settings.dagmc attribute to True. Step7: Unlike conventional geometries in OpenMC, we really have no way of knowing what our model looks like at this point. Thankfully DagMC geometries can be plotted just like any other OpenMC geometry to give us an idea of what we're now working with. Note that material assignments have already been applied to this model. Materials can be assigned either using ids or names of materials in the materials.xml file. It is recommended that material names are used for assignment for readability. Step8: Now that we've had a chance to examine the model a bit, we can finish applying our settings and add a source. Step9: Tallies work in the same way when using DAGMC geometries too. We'll add a tally on the fuel cell here. Step10: Note Step11: More Complicated Geometry Neat! But this pincell is something we could've done with CSG. Let's take a look at something more complex. We'll download a pre-built model of the Utah teapot and use it here. Step12: Our teapot is made out of iron, so we'll want to create that material and make sure it is in our materials.xml file. Step13: To make sure we've updated the file correctly, let's make a plot of the teapot. Step14: Here we start to see some of the advantages CAD geometries provide. This particular file was pulled from the GrabCAD and pushed through the DAGMC workflow without modification (other than the addition of material assignments). It would take a considerable amount of time to create a model like this using CSG! Step15: Now let's brew some tea! ... using a very hot neutron source. We'll use some well-placed point sources distributed throughout the model. Step16: ...and setup a couple mesh tallies. One for the kettle, and one for the water inside. Step17: Note that the performance is significantly lower than our pincell model due to the increased complexity of the model, but it allows us to examine tally results like these
Python Code: import urllib.request fuel_pin_url = 'https://tinyurl.com/y3ugwz6w' # 1.2 MB teapot_url = 'https://tinyurl.com/y4mcmc3u' # 29 MB def download(url): Helper function for retrieving dagmc models u = urllib.request.urlopen(url) if u.status != 200: raise RuntimeError("Failed to download file.") # save file as dagmc.h5m with open("dagmc.h5m", 'wb') as f: f.write(u.read()) Explanation: Using CAD-Based Geometries In this notebook we'll be exploring how to use CAD-based geometries in OpenMC via the DagMC toolkit. The models we'll be using in this notebook have already been created using Trelis and faceted into a surface mesh represented as .h5m files in the Mesh Oriented DatABase format. We'll be retrieving these files using the function below. End of explanation %matplotlib inline from IPython.display import Image import openmc Explanation: This notebook is intended to demonstrate how DagMC problems are run in OpenMC. For more information on how DagMC models are created, please refer to the DagMC User's Guide. End of explanation # materials u235 = openmc.Material(name="fuel") u235.add_nuclide('U235', 1.0, 'ao') u235.set_density('g/cc', 11) u235.id = 40 water = openmc.Material(name="water") water.add_nuclide('H1', 2.0, 'ao') water.add_nuclide('O16', 1.0, 'ao') water.set_density('g/cc', 1.0) water.add_s_alpha_beta('c_H_in_H2O') water.id = 41 mats = openmc.Materials([u235, water]) mats.export_to_xml() Explanation: To start, we'll be using a simple U235 fuel pin surrounded by a water moderator, so let's create those materials. End of explanation Image("./images/cylinder_mesh.png", width=350) Explanation: Now let's get our DAGMC geometry. We'll be using prefabricated models in this notebook. For information on how to create your own DAGMC models, you can refer to the instructions here. Let's download the DAGMC model. These models come in the form of triangle surface meshes stored using the the Mesh Oriented datABase (MOAB) in an HDF5 file with the extension .h5m. An example of a coarse triangle mesh looks like: End of explanation download(fuel_pin_url) Explanation: First we'll need to grab some pre-made DagMC models. End of explanation settings = openmc.Settings() settings.dagmc = True settings.batches = 10 settings.inactive = 2 settings.particles = 5000 settings.export_to_xml() Explanation: OpenMC expects that the model has the name "dagmc.h5m" so we'll name the file that and indicate to OpenMC that a DAGMC geometry is being used by setting the settings.dagmc attribute to True. End of explanation p = openmc.Plot() p.width = (25.0, 25.0) p.pixels = (400, 400) p.color_by = 'material' p.colors = {u235: 'yellow', water: 'blue'} openmc.plot_inline(p) Explanation: Unlike conventional geometries in OpenMC, we really have no way of knowing what our model looks like at this point. Thankfully DagMC geometries can be plotted just like any other OpenMC geometry to give us an idea of what we're now working with. Note that material assignments have already been applied to this model. Materials can be assigned either using ids or names of materials in the materials.xml file. It is recommended that material names are used for assignment for readability. End of explanation settings.source = openmc.Source(space=openmc.stats.Box([-4., -4., -4.], [ 4., 4., 4.])) settings.export_to_xml() Explanation: Now that we've had a chance to examine the model a bit, we can finish applying our settings and add a source. End of explanation tally = openmc.Tally() tally.scores = ['total'] tally.filters = [openmc.CellFilter(1)] tallies = openmc.Tallies([tally]) tallies.export_to_xml() Explanation: Tallies work in the same way when using DAGMC geometries too. We'll add a tally on the fuel cell here. End of explanation openmc.run() Explanation: Note: Applying tally filters in DagMC models requires prior knowledge of the model. Here, we know that the fuel cell's volume ID in the CAD sofware is 1. To identify cells without use of CAD software, load them into the OpenMC plotter where cell, material, and volume IDs can be identified for native both OpenMC and DagMC geometries. Now we're ready to run the simulation just like any other OpenMC run. End of explanation download(teapot_url) Image("./images/teapot.jpg", width=600) Explanation: More Complicated Geometry Neat! But this pincell is something we could've done with CSG. Let's take a look at something more complex. We'll download a pre-built model of the Utah teapot and use it here. End of explanation iron = openmc.Material(name="iron") iron.add_nuclide("Fe54", 0.0564555822608) iron.add_nuclide("Fe56", 0.919015287728) iron.add_nuclide("Fe57", 0.0216036861685) iron.add_nuclide("Fe58", 0.00292544384231) iron.set_density("g/cm3", 7.874) mats = openmc.Materials([iron, water]) mats.export_to_xml() Explanation: Our teapot is made out of iron, so we'll want to create that material and make sure it is in our materials.xml file. End of explanation p = openmc.Plot() p.basis = 'xz' p.origin = (0.0, 0.0, 0.0) p.width = (30.0, 20.0) p.pixels = (450, 300) p.color_by = 'material' p.colors = {iron: 'gray', water: 'blue'} openmc.plot_inline(p) Explanation: To make sure we've updated the file correctly, let's make a plot of the teapot. End of explanation p.width = (18.0, 6.0) p.basis = 'xz' p.origin = (10.0, 0.0, 5.0) p.pixels = (600, 200) p.color_by = 'material' openmc.plot_inline(p) Explanation: Here we start to see some of the advantages CAD geometries provide. This particular file was pulled from the GrabCAD and pushed through the DAGMC workflow without modification (other than the addition of material assignments). It would take a considerable amount of time to create a model like this using CSG! End of explanation settings = openmc.Settings() settings.dagmc = True settings.batches = 10 settings.particles = 5000 settings.run_mode = "fixed source" src_locations = ((-4.0, 0.0, -2.0), ( 4.0, 0.0, -2.0), ( 4.0, 0.0, -6.0), (-4.0, 0.0, -6.0), (10.0, 0.0, -4.0), (-8.0, 0.0, -4.0)) # we'll use the same energy for each source src_e = openmc.stats.Discrete(x=[12.0,], p=[1.0,]) # create source for each location sources = [] for loc in src_locations: src_pnt = openmc.stats.Point(xyz=loc) src = openmc.Source(space=src_pnt, energy=src_e) sources.append(src) src_str = 1.0 / len(sources) for source in sources: source.strength = src_str settings.source = sources settings.export_to_xml() Explanation: Now let's brew some tea! ... using a very hot neutron source. We'll use some well-placed point sources distributed throughout the model. End of explanation mesh = openmc.RegularMesh() mesh.dimension = (120, 1, 40) mesh.lower_left = (-20.0, 0.0, -10.0) mesh.upper_right = (20.0, 1.0, 4.0) mesh_filter = openmc.MeshFilter(mesh) pot_filter = openmc.CellFilter([1]) pot_tally = openmc.Tally() pot_tally.filters = [mesh_filter, pot_filter] pot_tally.scores = ['flux'] water_filter = openmc.CellFilter([5]) water_tally = openmc.Tally() water_tally.filters = [mesh_filter, water_filter] water_tally.scores = ['flux'] tallies = openmc.Tallies([pot_tally, water_tally]) tallies.export_to_xml() openmc.run() Explanation: ...and setup a couple mesh tallies. One for the kettle, and one for the water inside. End of explanation sp = openmc.StatePoint("statepoint.10.h5") water_tally = sp.get_tally(scores=['flux'], id=water_tally.id) water_flux = water_tally.mean water_flux.shape = (40, 120) water_flux = water_flux[::-1, :] pot_tally = sp.get_tally(scores=['flux'], id=pot_tally.id) pot_flux = pot_tally.mean pot_flux.shape = (40, 120) pot_flux = pot_flux[::-1, :] del sp from matplotlib import pyplot as plt fig = plt.figure(figsize=(18, 16)) sub_plot1 = plt.subplot(121, title="Kettle Flux") sub_plot1.imshow(pot_flux) sub_plot2 = plt.subplot(122, title="Water Flux") sub_plot2.imshow(water_flux) Explanation: Note that the performance is significantly lower than our pincell model due to the increased complexity of the model, but it allows us to examine tally results like these: End of explanation
3,014
Given the following text description, write Python code to implement the functionality described below step by step Description: Evaluate impact of kernel activation and initialization 1. Generate random training data Step3: 2. Build a simple fully connected model Step4: 3. Weights initialization http Step5: b) Sigmoid Step6: c) tanh Step7: c) Lecun tanh Step8: d) SNN - SeLU Step9: Travail perso Self normalizing Exponential Unit (SExU) Step10: Self normalizing Shifted Exponential Unit (SSExU) The weights should be shifted by $\alpha$ to converge Step11: Self normalizing Gated Exponential Neural Network (SGENN)
Python Code: import numpy as np import matplotlib.pyplot as plt %pylab inline %matplotlib inline pylab.rcParams['figure.figsize'] = (5, 3) # Create random train data X_train = np.random.normal(size=(1000, 100)) Y_train = (X_train.sum(axis=1) > 0) * 1 print Y_train.mean() print X_train.shape print Y_train.shape # Normalize it X_train -= X_train.mean() X_train /= X_train.std() plt.hist(X_train.reshape(-1), 50) plt.show() Explanation: Evaluate impact of kernel activation and initialization 1. Generate random training data End of explanation import keras import keras.backend as K from keras.layers import Input, Dense, multiply, Lambda from keras.models import Model from keras.activations import tanh_perso, sig_perso from keras.initializers import VarianceScaling import shutil import time import os def _func_to_str(func): if func is a function, returns its string name return func.func_name if callable(func) else str(func) def simple_FC_model(activation, initializer): # Define input tensor input_tensor = Input(shape=(100,)) if callable(initializer) is True: initializer = initializer() # Propagate it through 10 fully connected layers x = Dense(256, activation=activation, kernel_initializer=initializer)(input_tensor) for _ in range(9): x = Dense(256, activation=activation, kernel_initializer=initializer)(x) x = Dense(1, activation='sigmoid', kernel_initializer='lecun_normal')(x) # Build the keras model model = Model(input_tensor, x, name='') sgd = keras.optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='binary_crossentropy') return model def show_model(activations, initializers, func_model=None): Shows prediction distribution for each pair of activation/initializer Params: activations: a list of activations initializers: a list of initializers (same lenght as activations) start = time.time() n_fig = len(activations) is_gated = False if func_model is None else True fig, axs = plt.subplots(2, n_fig) for i in range(n_fig): act, init = zip(activations, initializers)[i] # Parameters to Strings act_str = _func_to_str(act) if is_gated is True: act_str = 'gated_' + act_str init_str = _func_to_str(init) # Build the model and evaluate it K.clear_session() func_model = func_model or simple_FC_model model = func_model(act, init) get_activations = K.function([model.layers[0].input, K.learning_phase()], [model.layers[-2].output] ) act_hist = get_activations([X_train, False])[0] # Show the 1st results axs[0, i].hist(act_hist.reshape(-1), 50) axs[0, i].set_title(act_str + " - " + init_str) # Show the 2nd results log_dir = './logs/' + act_str + '-' + init_str if os.path.isdir(log_dir): shutil.rmtree(log_dir) tensorboard = keras.callbacks.TensorBoard(histogram_freq=1, log_dir=log_dir, write_grads=True) model.fit(X_train, Y_train, validation_data=(X_train, Y_train), epochs=10, batch_size=128, verbose=False, callbacks=[tensorboard, ]) pred2 = model.predict(X_train) act_hist2 = get_activations([X_train, False])[0] axs[1, i].hist(act_hist2.reshape(-1), 50) # Write some debug print "{} {} std: {:.4f}, mean: {:.3f}, acc: {}".format( act_str, init_str, act_hist.std(), act_hist.mean(), (pred2.round().T == Y_train).mean()) K.clear_session() end = time.time() forward_pass_time = (end - start) / n_fig print "\nTook and average of {:.3} sec. to perfom training".format(forward_pass_time) plt.show() Explanation: 2. Build a simple fully connected model End of explanation pylab.rcParams['figure.figsize'] = (15, 4) activations = ['relu']*4 initializers = ['uniform', 'glorot_uniform', 'normal', 'glorot_normal'] show_model(activations, initializers) Explanation: 3. Weights initialization http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf Normal: draws weights from a normal distribution with $\mu=0$ and $\sigma = 1$ Glorot normal initializer: draws weights from truncated normal with $\mu=0$ and $\sigma = \sqrt\frac{2}{\text{fan_in} + \text{fan_out}}$ Lecun normal initializer: draws weights from truncated normal with $\mu=0$ and $\sigma = \sqrt\frac{1}{\text{fan_in}}$ Uniform: draws weights from a uniform distribution with $f : \mathbb{R} \to [-x_{max}; x_{max}]$ and $x_{max} = 0.05$ Glorot uniform initializer: draws weights Uniform distribution with $x_{max} = \sqrt\frac{6}{\text{fan_in} + \text{fan_out}}$ Lecun Uniform initializer: draws weights Uniform distribution with $x_{max} = \sqrt\frac{3}{\text{fan_in}}$ 4. Show activation distributions a) Relu End of explanation pylab.rcParams['figure.figsize'] = (15, 4) activations = ['sigmoid']*6 initializers = ['uniform', 'glorot_uniform', 'lecun_uniform', 'normal', 'glorot_normal', 'lecun_normal'] show_model(activations, initializers) Explanation: b) Sigmoid End of explanation pylab.rcParams['figure.figsize'] = (15, 4) activations = ['tanh']*4 initializers = ['uniform', 'glorot_uniform', 'normal', 'glorot_normal'] show_model(activations, initializers) Explanation: c) tanh End of explanation pylab.rcParams['figure.figsize'] = (15, 4) def lecun_tanh(x): return 1.7159 * K.tanh(2 * x / 3) activations = [lecun_tanh]*6 initializers = ['uniform', 'glorot_uniform', 'lecun_uniform', 'normal', 'glorot_normal', 'lecun_normal'] show_model(activations, initializers) Explanation: c) Lecun tanh End of explanation pylab.rcParams['figure.figsize'] = (15, 4) activations = ['selu']*6 initializers = ['uniform', 'glorot_uniform', 'lecun_uniform', 'normal', 'glorot_normal', 'lecun_normal'] show_model(activations, initializers) Explanation: d) SNN - SeLU End of explanation pylab.rcParams['figure.figsize'] = (15, 4) activations = [keras.activations.tanh_perso]*4 initializers = ['glorot_uniform', 'lecun_uniform', 'glorot_normal', 'lecun_normal'] show_model(activations, initializers) Explanation: Travail perso Self normalizing Exponential Unit (SExU) End of explanation pylab.rcParams['figure.figsize'] = (15, 4) activations = [keras.activations.sig_perso]*4 initializers = ['glorot_uniform', 'lecun_uniform', 'glorot_normal', 'lecun_normal'] show_model(activations, initializers) Explanation: Self normalizing Shifted Exponential Unit (SSExU) The weights should be shifted by $\alpha$ to converge End of explanation def gated_activation(n_units, activation=None, initializer=None): def func(x): alpha = 1.7580993408473768599402175208123 normalizer = np.sqrt(1 + alpha ** 2) gate = Dense(n_units, activation='linear', kernel_initializer=initializer)(x) gate = Lambda(lambda x: x + alpha)(gate) gate = keras.layers.Activation(sig_perso)(gate) act = Dense(n_units, activation=activation, kernel_initializer=initializer)(x) gated_act = multiply([gate, act]) gated_act = Lambda(lambda x: x / normalizer)(gated_act) return gated_act return func def simple_gated_model(activation, initializer): # Define input tensor input_tensor = Input(shape=(100,)) # Propagate it through 20 fully connected layers x = gated_activation(256, activation, initializer)(input_tensor) for _ in range(19): x = gated_activation(256, activation, initializer)(x) x = Dense(1, activation='sigmoid', kernel_initializer='lecun_normal')(x) # Build the keras model model = Model(input_tensor, x, name='') sgd = keras.optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='binary_crossentropy') return model pylab.rcParams['figure.figsize'] = (15, 4) activations = [tanh_perso]*6 initializers = ['uniform', 'glorot_uniform', 'lecun_uniform', 'normal', 'glorot_normal', 'lecun_normal'] show_model(activations, initializers, func_model=simple_gated_model) import numpy as np import matplotlib.pyplot as plt import keras import keras.backend as K from keras.layers import Input, Dense, multiply, Lambda, Dense_gated from keras.models import Model from keras.activations import tanh_perso, sig_perso from keras.initializers import VarianceScaling import shutil import time import os # Create random train data X_train = np.random.normal(size=(1000, 100)) Y_train = (X_train.sum(axis=1) > 0) * 1 print Y_train.mean() print X_train.shape print Y_train.shape # Normalize it X_train -= X_train.mean() X_train /= X_train.std() # Define input tensor input_tensor = Input(shape=(100,)) my_dense_layer = lambda : Dense_gated(256, activation1=tanh_perso, kernel_initializer1='lecun_uniform', activation2=tanh_perso, kernel_initializer2='lecun_uniform', shift=1.75809934084737685994, normalizer=np.sqrt(1 + 1.75809934084737685994 ** 2) ) # Propagate it through 20 fully connected layers x = my_dense_layer()(input_tensor) for _ in range(30): x = my_dense_layer()(x) x = Dense(1, activation='sigmoid', kernel_initializer='lecun_normal')(x) # Build the keras model model = Model(input_tensor, x, name='') sgd = keras.optimizers.SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=['acc']) model.fit(X_train, Y_train, validation_data=(X_train, Y_train), epochs=10, batch_size=128, verbose=True ) Explanation: Self normalizing Gated Exponential Neural Network (SGENN) End of explanation
3,015
Given the following text description, write Python code to implement the functionality described below step by step Description: Multiclass Support Vector Machine exercise Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website. In this exercise you will Step1: CIFAR-10 Data Loading and Preprocessing Step2: SVM Classifier As you can see, we have prefilled the function compute_loss_naive which uses for loops to evaluate the multiclass SVM loss function. Step3: The grad returned from the function above is right now all zero. Derive and implement the gradient for the SVM cost function and implement it inline inside the function svm_loss_naive. You will find it helpful to interleave your new code inside the existing function. To check that you have correctly implemented the gradient correctly, you can numerically estimate the gradient of the loss function and compare the numeric estimate to the gradient that you computed. We have provided code that does this for you Step4: Inline Question 1 Step5: Stochastic Gradient Descent We now have vectorized and efficient expressions for the loss, the gradient and our gradient matches the numerical gradient. We are therefore ready to do SGD to minimize the loss.
Python Code: import os os.chdir(os.getcwd() + '/..') # Run some setup code for this notebook import random import numpy as np import matplotlib.pyplot as plt from utils.data_utils import load_CIFAR10 %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # Some more magic so that the notebook will reload external python modules; # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 Explanation: Multiclass Support Vector Machine exercise Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website. In this exercise you will: implement a fully-vectorized loss function for the SVM implement the fully-vectorized expression for its analytic gradient check your implementation using numerical gradient use a validation set to tune the learning rate and regularization strength optimize the loss function with SGD visualize the final learned weights End of explanation # Load the raw CIFAR-10 data cifar10_dir = 'datasets/cifar-10-batches-py' X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) print('Training data shape: ', X_train.shape) print('Training labels shape: ', y_train.shape) print('Test data shape: ', X_test.shape) print('Test labels shape: ', y_test.shape) # Visualize some examples from the dataset. # We show a few examples of training images from each class. classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] num_classes = len(classes) samples_per_class = 7 for y, cls in enumerate(classes): idxs = np.flatnonzero(y == y_train) idxs = np.random.choice(idxs, samples_per_class, replace=False) for i, idx in enumerate(idxs): plt_idx = i * num_classes + y + 1 plt.subplot(samples_per_class, num_classes, plt_idx) plt.imshow(X_train[idx].astype('uint8')) plt.axis('off') if i == 0: plt.title(cls) plt.show() # Split the data num_training = 49000 num_validation = 1000 num_test = 1000 num_dev = 500 mask = range(num_training, num_training+num_validation) X_val = X_train[mask] y_val = y_train[mask] mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] mask = np.random.choice(num_training, num_dev, replace=False) X_dev = X_train[mask] y_dev = y_train[mask] print('Train data shape: ', X_train.shape) print('Train labels shape: ', y_train.shape) print('Validation data shape: ', X_val.shape) print('Validation labels shape: ', y_val.shape) print('Test data shape: ', X_test.shape) print('Test labels shape: ', y_test.shape) # Preprocessing: reshape the image data into rows X_train = X_train.reshape(X_train.shape[0], -1) X_val = X_val.reshape(X_val.shape[0], -1) X_test = X_test.reshape(X_test.shape[0], -1) X_dev = X_dev.reshape(X_dev.shape[0], -1) print('Train data shape: ', X_train.shape) print('Validation data shape: ', X_val.shape) print('Test data shape: ', X_test.shape) # Preprocessing: subtract the mean image # first: compute the image mean based on the training data mean_image = np.mean(X_train, axis=0) print(mean_image[:10]) # print a few of the elements plt.figure(figsize=(4, 4)) plt.imshow(mean_image.reshape((32, 32, 3)).astype('uint8')) plt.show() # second: subtract the mean image from train and test data X_train -= mean_image X_val -= mean_image X_test -= mean_image X_dev -= mean_image # third: append the bias dimension of ones X_train = np.hstack((X_train, np.ones((X_train.shape[0], 1)))) X_val = np.hstack((X_val, np.ones((X_val.shape[0], 1)))) X_test = np.hstack((X_test, np.ones((X_test.shape[0], 1)))) X_dev= np.hstack((X_dev, np.ones((X_dev.shape[0], 1)))) print(X_train.shape, X_val.shape, X_test.shape, X_dev.shape) Explanation: CIFAR-10 Data Loading and Preprocessing End of explanation # Evaluate the naive implementation of the loss we provided for you: from classifiers.linear_classifier import svm_loss_naive import time # generate a random SVM weight matrix of small numbers W = np.random.randn(3073, 10) * 0.0001 loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.000005) print('loss: %f' % (loss, )) Explanation: SVM Classifier As you can see, we have prefilled the function compute_loss_naive which uses for loops to evaluate the multiclass SVM loss function. End of explanation # gradient check loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.0) from utils.gradient_check import grad_check_sparse f = lambda w: svm_loss_naive(w, X_dev, y_dev, 0.0)[0] grad_numerical = grad_check_sparse(f, W, grad) # with regularization loss, grad = svm_loss_naive(W, X_dev, y_dev, 5e1) f = lambda w: svm_loss_naive(w, X_dev, y_dev, 5e1)[0] grad_numerical = grad_check_sparse(f, W, grad) Explanation: The grad returned from the function above is right now all zero. Derive and implement the gradient for the SVM cost function and implement it inline inside the function svm_loss_naive. You will find it helpful to interleave your new code inside the existing function. To check that you have correctly implemented the gradient correctly, you can numerically estimate the gradient of the loss function and compare the numeric estimate to the gradient that you computed. We have provided code that does this for you: End of explanation # implement the function svm_loss_vectorized tic = time.time() loss_naive, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005) toc = time.time() print('Naive loss: %e computed in %fs' % (loss_naive, toc - tic)) from classifiers.linear_classifier import svm_loss_vectorized tic = time.time() loss_vectorized, grad_vectorized = svm_loss_vectorized(W, X_dev, y_dev, 0.000005) toc = time.time() print('Vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic)) # The losses and grad should match but your vectorized implementation should be much faster. print('loss difference: %f' % (loss_naive - loss_vectorized)) difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro') print('grad difference: %f' % difference) Explanation: Inline Question 1: It is possible that once in a while a dimension in the gradcheck will not match exactly. What could such a discrepancy be caused by? Is it a reason for concern? What is a simple example in one dimension where a gradient check could fail? Hint: the SVM loss function is not strictly speaking differentiable Your Answer: the SVM loss function is not strictly speaking differentiable End of explanation from classifiers.linear_classifier import LinearSVM svm = LinearSVM() tic = time.time() loss_hist = svm.train(X_train, y_train, learning_rate=1e-7, reg=2.5e4, num_iters=1500, batch_size=200, verbose=True) toc = time.time() print('That took %fs' % (toc - tic)) # A useful debugging strategy is to plot the loss as a function of # iteration number: plt.plot(loss_hist) plt.xlabel('Iteration number') plt.ylabel('Loss value') plt.show() y_train_pred = svm.predict(X_train) print('training accuracy: %f' % (np.mean(y_train == y_train_pred))) y_val_pred = svm.predict(X_val) print('validation accuracy: %f' % (np.mean(y_val == y_val_pred))) # Use the validation set to tune hyperparameters (regularization strength and # learning rate). # accuracy of about 0.4 on the validation set learning_rates = [7e-7, 8e-7, 9e-7] regularization_strengths = [9e2, 1e3, 2e3] # results[(learning_rate, reg)] = (train_accuracy, val_accuracy) results = {} best_val = -1 best_svm = None for learning_rate in learning_rates: for reg in regularization_strengths: model = LinearSVM() model.train(X_train, y_train, learning_rate=learning_rate, reg=reg, num_iters=5000, batch_size=300, verbose=True) y_train_pred = model.predict(X_train) train_accuracy = np.mean(y_train == y_train_pred) y_val_pred = model.predict(X_val) val_accuracy = np.mean(y_val == y_val_pred) results[(learning_rate, reg)] = (train_accuracy, val_accuracy) if val_accuracy > best_val: best_val = val_accuracy best_svm = model print('lr %e reg %e train_accuracy: %f val_accuracy: %f' % (learning_rate, reg, train_accuracy, val_accuracy)) print for lr, reg in sorted(results): train_accuracy, val_accuracy = results[(lr, reg)] print('lr %e reg %e train_accuracy: %f val_accuracy: %f' % (lr, reg, train_accuracy, val_accuracy)) print('best validation accuracy achieved during cross-validation: %f' % best_val) for lr, reg in sorted(results): train_accuracy, val_accuracy = results[(lr, reg)] print('lr %e reg %e train_accuracy: %f val_accuracy: %f' % (lr, reg, train_accuracy, val_accuracy)) # Visualize the cross-validation results import math x_scatter = [math.log10(x[0]) for x in results] y_scatter = [math.log10(x[1]) for x in results] # plot training accuracy marker_size = 100 colors = [results[x][0] for x in results] plt.subplot(2, 1, 1) plt.scatter(x_scatter, y_scatter, marker_size, c=colors) plt.colorbar() plt.xlabel('log learning rate') plt.ylabel('log regularization strength') plt.title('CIFAR-10 training accuracy') # plot validation accuracy colors = [results[x][1] for x in results] plt.subplot(2, 1, 2) plt.scatter(x_scatter, y_scatter, marker_size, c=colors) plt.colorbar() plt.xlabel('log learning rate') plt.ylabel('log regularization strength') plt.title('CIFAR-10 validation accuracy') plt.show() # Evaluate the best svm on test set y_test_pred = best_svm.predict(X_test) test_accuracy = np.mean(y_test == y_test_pred) print('linear SVM on raw pixels final test set accuracy: %f' % test_accuracy) # Visualize the learned weights for each class. w = best_svm.W[:-1, :] # STRIP OUT THE BIAS w = w.reshape(32, 32, 3, 10) w_min, w_max = np.min(w), np.max(w) classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] for i in range(10): plt.subplot(2, 5, i + 1) #Rescale the weights to be between 0 and 255 wing = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min) plt.imshow(wing.astype('uint8')) plt.axis('off') plt.title(classes[i]) Explanation: Stochastic Gradient Descent We now have vectorized and efficient expressions for the loss, the gradient and our gradient matches the numerical gradient. We are therefore ready to do SGD to minimize the loss. End of explanation
3,016
Given the following text description, write Python code to implement the functionality described below step by step Description: Filtrado eventos de seguridad en forma conservativa con Learninspy <img style="display Step1: Carga de datos Step2: Procesamiento y etiquetado de datos Step3: Configuración del modelo y su optimización Step4: Pre-entrenamiento Step5: Ajuste fino Step6: Resultados Step7: Guardar modelo Step8: KDDTest+ Dataset Step9: Resultados Step10: KDDTest -21 Dataset Step11: Resultados Step12: Gráficas
Python Code: # Librerias de Python import time import copy # Dependencias internas from learninspy.core.autoencoder import StackedAutoencoder from learninspy.core.model import NetworkParameters from learninspy.core.optimization import OptimizerParameters from learninspy.core.stops import criterion from learninspy.utils.data import split_data, label_data from learninspy.utils.data import StandardScaler, LocalLabeledDataSet from learninspy.utils.evaluation import ClassificationMetrics from learninspy.utils.plots import plot_neurons, plot_fitting, plot_confusion_matrix # Dependencias externas import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline Explanation: Filtrado eventos de seguridad en forma conservativa con Learninspy <img style="display: inline;" src="docs/img/Learninspy-logo_grande2.png" width="300" /> Metodología: Modelar el baseline de los datos para obtener un filtrado conservativo Recall máximo posible descartando lo normal. Precision máxima posible reteniendo lo anormal. Datos usados: NSL-KDD dataset (network traffic) Referencias: Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A. (2009). A detailed analysis of the KDD CUP 99 data set. In Proceedings of the Second IEEE Symposium on Computational Intelligence for Security and Defence Applications 2009. Dependencias End of explanation pathtrain = "/home/leeandro04/Documentos/Datos/KDD/NSL_KDD/20 Percent Training Set.csv" pathtest = "/home/leeandro04/Documentos/Datos/KDD/NSL_KDD/KDDTest+.csv" pathtest21 = "/home/leeandro04/Documentos/Datos/KDD/NSL_KDD/KDDTest-21.txt" alltrain = pd.read_csv(pathtrain, header=None) test = pd.read_csv(pathtest, header=None) test21 = pd.read_csv(pathtest21, header=None) alltrain # Dropping drop = [0, 1, 2, 3, 4, 5, 6, 7, 8, # Basic Features 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, # Content Features ] for d in drop: alltrain.drop(d, axis=1, inplace=True) test.drop(d, axis=1, inplace=True) test21.drop(d, axis=1, inplace=True) alltrain.describe() # Explicacion de ataques en los datos etiquetados de KDDTrain+ dict_attacks = {'dos': ['back', 'land', 'neptune', 'pod', 'smurf', 'teardrop'], 'u2r': ['buffer_overflow', 'loadmodule', 'perl', 'rootkit'], 'r2l': ['ftp_write', 'guess_passwd', 'imap', 'multihop', 'phf', 'spy', 'warezclient', 'warezmaster'], 'probe': ['ipsweep', 'nmap', 'portsweep', 'satan']} Explanation: Carga de datos End of explanation # Separo lo normal de los ataques en base a un Ground Truth (columna de etiquetas) normal = alltrain[alltrain[41] == 'normal'] attack = alltrain[alltrain[41] != 'normal'] # Tiro las columnas de etiquetas normal = normal.ix[:, :40] attack = attack.ix[:, :40] # Etiqueto datos normal = label_data(normal.values, [0]*len(normal.values)) attack = label_data(attack.values, [1]*len(attack.values)) train, valid = split_data(normal, fractions=[0.7, 0.3]) print "Dimension de características: ", len(normal[0].features) print "Cantidad de ejemplos normales: ", len(normal) print "Cantidad de ejemplos de ataques: ", len(attack) print "Cantidad de train: ", len(train) print "Cantidad de valid: ", len(valid) Explanation: Procesamiento y etiquetado de datos End of explanation # Defino configuración del Stacked AutoEncoder y entreno net_params = NetworkParameters(units_layers=[19, 10, 2], activation='ReLU', classification=True, dropout_ratios=[0.2, 0.0], strength_l1=1e-6, strength_l2=5e-5) saekdd = StackedAutoencoder(net_params, dropout=[0.0, 0.0]) # Para el pre-entrenamiento local_stops_sae = [criterion['MaxIterations'](30), criterion['AchieveTolerance'](0.95, key='hits')] global_stops_sae = [criterion['MaxIterations'](20), criterion['AchieveTolerance'](0.95, key='hits')] opt_params_sae = OptimizerParameters(algorithm='Adadelta', options={'step-rate': 1, 'decay': 0.995, 'momentum': 0.7, 'offset': 1e-8}, stops=local_stops_sae, merge_criter='w_avg', merge_goal='hits') # Para el ajuste fino local_stops_ft = [criterion['MaxIterations'](5), criterion['AchieveTolerance'](0.9, key='hits')] global_stops_ft = [criterion['MaxIterations'](20), criterion['AchieveTolerance'](0.85, key='hits')] opt_params_ft = OptimizerParameters(algorithm='GD', options={'step-rate': 1e-3, 'momentum': 0.9, 'momentum_type': 'nesterov'}, stops=local_stops_ft, merge_criter='w_avg') Explanation: Configuración del modelo y su optimización End of explanation hits_valid = saekdd.fit(train, valid, mini_batch=20, parallelism=10, valid_iters=1, stops=global_stops_sae, optimizer_params=opt_params_sae, reproducible=True) hits_attack, predictions = saekdd.evaluate(attack[1000:5000], predictions=True) print "Hits de valid: ", hits_valid print "Hits de ataques: ", hits_attack print "Accuracy de ataques: ", len(filter(lambda (lp, p): lp.label == p, zip(attack[1000:5000], predictions))) / float(len(attack[1000:5000])) Explanation: Pre-entrenamiento End of explanation train2, valid2 = split_data(train+attack[:1000], fractions=[0.7, 0.3]) hits_total = saekdd.finetune(train2, valid2, mini_batch=20, parallelism=10, stops=global_stops_ft, valid_iters=1, optimizer_params=opt_params_sae, keep_best=True) Explanation: Ajuste fino End of explanation print "Metricas: " hits, predictions = saekdd.evaluate(valid+attack[1000:], predictions=True) labels = map(lambda lp: float(lp.label), valid+attack[1000:]) metrics = ClassificationMetrics(zip(predictions, labels), 2) print "Total of normal events: ", len(valid) print "Precision of normal: ", metrics.precision(label=0) print "Recall of normal: ", metrics.recall(label=0) print "F1-Score of normal: ", metrics.f_measure(label=0) print "Accuracy of normal: ", metrics.accuracy(label=0) print "" print "Total of attack events: ", len(attack[1000:5000]) print "Precision of attacks: ", metrics.precision(label=1) print "Recall of attacks: ", metrics.recall(label=1) print "F1-Score of attacks: ", metrics.f_measure(label=1) print "Accuracy of attacks: ", metrics.accuracy(label=1) print "" print "Precision of total: ", metrics.precision() print "Recall of total: ", metrics.recall() print "F1-Score of total: ", metrics.f_measure() print "Accuracy of total: ", metrics.accuracy() plot_confusion_matrix(metrics.confusion_matrix(), show=True) reduction = 1. - (metrics.confusion_matrix()[0][1]+metrics.confusion_matrix()[1][1]) / float(sum(sum(metrics.confusion_matrix()))) print "Reduction of total: ", reduction * 100,"%" Explanation: Resultados End of explanation filename = '/tmp/model/nsl-kdd_learninspy_conft' saekdd.save(filename) print "Modelo StackedAutoencoder:" print str(saekdd.params) print "Optimización no-supervisada:" print str(opt_params_sae) print "Fine-tuning supervisado:" print str(opt_params_ft) Explanation: Guardar modelo End of explanation test.describe() # Separo lo normal de los ataques en base a un Ground Truth (columna de etiquetas) normal = test[test[41] == 'normal'] anomal = test[test[41] != 'normal'] # Tiro las columnas de etiquetas normal = normal.ix[:, :40] anomal = anomal.ix[:, :40] # Etiqueto datos normal = label_data(normal.values, [0]*len(normal.values)) anomal = label_data(anomal.values, [1]*len(anomal.values)) Explanation: KDDTest+ Dataset End of explanation print "Metricas: " hits, predictions = saekdd.evaluate(normal+anomal, predictions=True) labels = map(lambda lp: float(lp.label), normal+anomal) metrics = ClassificationMetrics(zip(predictions, labels), 2) print "Precision of normal: ", metrics.precision(label=0) print "Recall of normal: ", metrics.recall(label=0) print "F1-Score of normal: ", metrics.f_measure(label=0) print "Accuracy of normal: ", metrics.accuracy(label=0) print "" print "Precision of attacks: ", metrics.precision(label=1) print "Recall of attacks: ", metrics.recall(label=1) print "F1-Score of attacks: ", metrics.f_measure(label=1) print "Accuracy of attacks: ", metrics.accuracy(label=1) print "" print "Precision of total: ", metrics.precision() print "Recall of total: ", metrics.recall() print "F1-Score of total: ", metrics.f_measure() print "Accuracy of total: ", metrics.accuracy() plot_confusion_matrix(metrics.confusion_matrix(), show=True) reduction = 1. - (metrics.confusion_matrix()[0][1]+metrics.confusion_matrix()[1][1]) / float(sum(sum(metrics.confusion_matrix()))) print "Reduction of total: ", reduction * 100,"%" Explanation: Resultados End of explanation test21.describe() # Separo lo normal de los ataques en base a un Ground Truth (columna de etiquetas) normal = test21[test21[41] == 'normal'] anomal = test21[test21[41] != 'normal'] # Tiro las columnas de etiquetas normal = normal.ix[:, :40] anomal = anomal.ix[:, :40] # Etiqueto datos normal = label_data(normal.values, [0]*len(normal.values)) anomal = label_data(anomal.values, [1]*len(anomal.values)) Explanation: KDDTest -21 Dataset End of explanation print "Metricas: " hits, predictions = saekdd.evaluate(normal+anomal, predictions=True) labels = map(lambda lp: float(lp.label), normal+anomal) metrics = ClassificationMetrics(zip(predictions, labels), 2) print "Precision of normal: ", metrics.precision(label=0) print "Recall of normal: ", metrics.recall(label=0) print "F1-Score of normal: ", metrics.f_measure(label=0) print "Accuracy of normal: ", metrics.accuracy(label=0) print "" print "Precision of attacks: ", metrics.precision(label=1) print "Recall of attacks: ", metrics.recall(label=1) print "F1-Score of attacks: ", metrics.f_measure(label=1) print "Accuracy of attacks: ", metrics.accuracy(label=1) print "" print "Precision of total: ", metrics.precision() print "Recall of total: ", metrics.recall() print "F1-Score of total: ", metrics.f_measure() print "Accuracy of total: ", metrics.accuracy() plot_confusion_matrix(metrics.confusion_matrix(), show=True) reduction = 1. - (metrics.confusion_matrix()[0][1]+metrics.confusion_matrix()[1][1]) / float(sum(sum(metrics.confusion_matrix()))) print "Reduction of total: ", reduction * 100,"%" Explanation: Resultados End of explanation from learninspy.utils.plots import plot_fitting print "Desempeño del ajuste fino" plot_fitting(saekdd) print "Pesos sinápticos del AE" plot_neurons(saekdd) data = normal x = data[100].features en1 = saekdd.list_layers[0].encode(x).matrix print "Patrón original: " print x print "Patrón codificado: " print list(en1.T[0]) print "" median_feat = np.median(map(lambda r: r.features, data), 0) median_encod = np.median(map(lambda r: saekdd.list_layers[0].encode(r.features).matrix.T[0], data), 0) print "Mediana de features originales" plt.stem(median_feat) plt.show() print "" print "Mediana de features codificadas" plt.stem(median_encod) plt.show() Explanation: Gráficas End of explanation
3,017
Given the following text description, write Python code to implement the functionality described below step by step Description: Functions Functions are defined as def function_name(parameters) Step1: Recursive function recursive function is an easy way to solve some mathemtical problems but performance varies. The following is an example of a recursive function calculating the nth number in the Fibonacci Sequence. Step2: Class Class is a blueprint defining the charactaristics and behaviors of an object. python class MyClass Step3: This is a basic class definition, the age and salary are needed when creating this object. The new class can be invoked like this Step4: The __init__ initilaze the variables stored in the class. When they are called inside the class, we should add a self. in front of the variable. The out(Self) method are arbitary functions that can be used by calling Yourclass.yourfunction(). The input to the functions can be added after the self input. Scope of variables Very important Step5: So is it "call-by-value"? The value does not changed? But Try this Step6: Confused? Why the list is changeable but the string is not? Step7: More Confused? Why the function return the same object, is it say that it is call-by-reference?
Python Code: def hello(a,b): return a+b hello(1,1) hello('a','b') Explanation: Functions Functions are defined as def function_name(parameters): End of explanation def Fibonacci(n): if n < 2: return n else: return Fibonacci(n-1)+Fibonacci(n-2) print Fibonacci(10) def Fibonacci(n): return n if n < 2 else Fibonacci(n-1)+Fibonacci(n-2) print Fibonacci(10) Explanation: Recursive function recursive function is an easy way to solve some mathemtical problems but performance varies. The following is an example of a recursive function calculating the nth number in the Fibonacci Sequence. End of explanation class Person: def __init__(self,age,salary): self.age = age self.salary = salary def out(self): print self.age print self.salary Explanation: Class Class is a blueprint defining the charactaristics and behaviors of an object. python class MyClass: ... ... For a simple class, one shall define an instance python __init__() to handle variable when it created. Let's try the following example: End of explanation a = Person(30,10000) a.out() Explanation: This is a basic class definition, the age and salary are needed when creating this object. The new class can be invoked like this: End of explanation a = 'Alice' print a def change_my_name(my_name): my_name = 'Bob' change_my_name(a) print a a = 'Alice' print a def change_my_name(my_name): my_name = 'Bob' return my_name b = change_my_name(a) print b Explanation: The __init__ initilaze the variables stored in the class. When they are called inside the class, we should add a self. in front of the variable. The out(Self) method are arbitary functions that can be used by calling Yourclass.yourfunction(). The input to the functions can be added after the self input. Scope of variables Very important: "call-by-value" or "call-by-reference"? It is not a simple question, it often confused many people..We now try to do some testing.. End of explanation a_list_of_names = ['Alice','Bob','Christ','Dora'] print a_list_of_names def change_a_value(something): something[0] = 'Not Alice' change_a_value(a_list_of_names) print a_list_of_names Explanation: So is it "call-by-value"? The value does not changed? But Try this: End of explanation a_list_of_names = ['Alice','Bob','Christ','Dora'] print a_list_of_names a_new_list_of_names = a_list_of_names print a_new_list_of_names def change_a_value(something): something[0] = 'Not Alice' change_a_value(a_list_of_names) print "After change_a_value:" print a_list_of_names print a_new_list_of_names print "Is 'a_new_list_of_names' same as 'a_list_of_names' ?" print a_new_list_of_names is a_list_of_names Explanation: Confused? Why the list is changeable but the string is not? End of explanation some_guy = 'Alice' a_list_of_names = [] a_list_of_names.append(some_guy) print "Is 'some_guy' same as the first element in a_list_of_names ?" print (some_guy is a_list_of_names[0]) another_list_of_names = a_list_of_names print "Is 'a_list_of_names' same as the 'another_list_of_names' ?" print (a_list_of_names is another_list_of_names) some_guy = 'Bob' another_list_of_names.append(some_guy) print "We have added Bob to the list, now is 'a_list_of_names' same as the 'another_list_of_names' ? " print (a_list_of_names is another_list_of_names) print (some_guy,a_list_of_names,another_list_of_names) some_guy = 'Christ' print (some_guy,a_list_of_names,another_list_of_names) Explanation: More Confused? Why the function return the same object, is it say that it is call-by-reference? End of explanation
3,018
Given the following text description, write Python code to implement the functionality described below step by step Description: Hypothesis testing for number of mixture components Step1: Load data, downsample, and keep only first 96 features Step2: Perform model selection using BIC to find the most likely number of mixture components $\hat{k}$ Step3: Statistical inference Step 1 Step4: Step 4a Step5: Step 4b Step6: Step 5 Step7: Step 6
Python Code: import itertools import csv import numpy as np from scipy import linalg from scipy.stats import cumfreq import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture %matplotlib inline np.random.seed(1) Explanation: Hypothesis testing for number of mixture components End of explanation with open('/Users/Tyler/Google Drive/DataScience/synapse_features_z-score.csv','r') as csvfile: reader = csv.reader(csvfile) X = np.array([[float(e) for e in r] for r in reader]) # Keep only first 96 features X = X[np.random.choice(range(X.shape[0]),size=100000,replace=False),0:24*4] #X = X[:,0:24*4] print 'data loaded' Explanation: Load data, downsample, and keep only first 96 features End of explanation lowest_bic = np.infty bic = [] n_components_range = range(1, 21) cv_types = ['spherical', 'tied', 'diag', 'full'] for cv_type in cv_types: for n_components in n_components_range: # Fit a mixture of Gaussians with EM gmm = mixture.GMM(n_components=n_components, covariance_type=cv_type) gmm.fit(X) bic.append(gmm.bic(X)) if bic[-1] < lowest_bic: lowest_bic = bic[-1] best_gmm = gmm bic = np.array(bic) color_iter = itertools.cycle(['k', 'r', 'g', 'b', 'c', 'm', 'y']) clf = best_gmm bars = [] # Plot the BIC scores spl = plt.subplot(1, 1, 1) for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)): xpos = np.array(n_components_range) + .2 * (i - 2) bars.append(plt.bar(xpos, bic[i * len(n_components_range): (i + 1) * len(n_components_range)], width=.2, color=color)) plt.xticks(n_components_range) plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()]) plt.title('BIC score per model') xpos = np.mod(bic.argmin(), len(n_components_range)) + .65 +\ .2 * np.floor(bic.argmin() / len(n_components_range)) plt.text(xpos, bic.min() * 0.97 + .03 * bic.max(), '*', fontsize=14) spl.set_xlabel('Number of components') spl.legend([b[0] for b in bars], cv_types) plt.show() Explanation: Perform model selection using BIC to find the most likely number of mixture components $\hat{k}$ End of explanation def gmm_test(X,k0,k1,nboot): nsample = X.shape[0] gmm0 = mixture.GMM(n_components=k0, covariance_type='full') gmm0.fit(X) L0 = sum(gmm0.score(X)) gmm1 = mixture.GMM(n_components=k1, covariance_type='full') gmm1.fit(X) L1 = sum(gmm1.score(X)) LRstat = -2*(L1 - L0) LRstat0 = [] for i in range(nboot): Xboot = gmm0.sample(n_samples=nsample) gmm0_boot = mixture.GMM(n_components=k0, covariance_type = 'full') gmm0_boot.fit(Xboot) L0_boot = sum(gmm0_boot.score(Xboot)) gmm1_boot = mixture.GMM(n_components=k1, covariance_type = 'full') gmm1_boot.fit(Xboot) L1_boot = sum(gmm1_boot.score(Xboot)) LRstat0.append(-2*(L1_boot - L0_boot)) ecdf, lowlim, binsize, extrapoints = cumfreq(LRstat0) ecdf = ecdf/len(LRstat0) bin = np.mean([lowlim,lowlim+binsize]) bins = [] for i in range(len(ecdf)): bins.append(bin) bin = bin + binsize if min(bins) > LRstat: p = 0 else: p = max(ecdf[bins<=LRstat]) return p Explanation: Statistical inference Step 1: Define model and assumptions $\vec{X} ~ f_{\vec{X}} \in {F_{\vec{X}}(\cdot;\theta): \theta \in \Theta}$ We assume $f$ is a GMM and $\theta = [\bf{\mu}, \bf{\Sigma}, \vec{\pi}, k]$, where k is the number of mixture components and $\vec{\pi}$ are the mixing weights of each mixture component. Step 2: Formalize test $H_0: k = k_0$ $H_1: k = k_1$ Step 3: Describe the test statistic $\Lambda = \frac{L(\theta_1;X)}{L(\theta_0;X)}$ End of explanation alpha = 0.05 k0 = 1 k1 = 3 nboot = 100 n_samples = np.array(range(1,101,5))*10 n_iterations = 100 pow_null = np.array((), dtype=np.dtype('float64')) gmm0 = mixture.GMM(n_components=k0, covariance_type='full') gmm0.means_ = np.array([[0]]) gmm0.covars_ = np.array([[[1]]]) gmm0.weights_ = np.array([1]) for n in n_samples: p = np.array((), dtype=np.dtype('float64')) for i in range(n_iterations): X0 = gmm0.sample(n) p = np.append(p,gmm_test(X0,k0,k1,nboot)) pow_null = np.append(pow_null, np.sum(1.0*(p < alpha))/n_iterations) print 'finished sampling from null' print n print i Explanation: Step 4a: Sample from the null End of explanation pow_alt = np.array((), dtype=np.dtype('float64')) gmm1 = mixture.GMM(n_components=k1, covariance_type='full') gmm1.means_ = np.array([[-2],[0],[2]]) gmm1.covars_ = np.array([[[1]],[[1]],[[1]]]) gmm1.weights_ = np.array([.4, .2, .4]) for n in n_samples: p = np.array((), dtype=np.dtype('float64')) for i in range(n_iterations): X1 = gmm1.sample(n) p = np.append(p,gmm_test(X1,k0,k1,nboot)) pow_alt = np.append(pow_alt, np.sum(1.0*(p < alpha))/n_iterations) print 'finished sampling from alternative' Explanation: Step 4b: Sample from the alternative End of explanation plt.scatter(n_samples, pow_null, hold=True, label='null') plt.scatter(n_samples, pow_alt, color='green', hold=True, label='alt') plt.xscale('log') plt.xlabel('number of samples') plt.ylabel('power') plt.title('Power of likelihood ratio test under null model') plt.axhline(alpha, color='red', linestyle='--', label='alpha') plt.legend(loc=5) plt.show() Explanation: Step 5: Plot power vs n End of explanation k0 = 1 k1 = 17 nboot = 100 p = gmm_test(X,k0,k1,nboot) print p Explanation: Step 6: Apply test to actual data End of explanation
3,019
Given the following text description, write Python code to implement the functionality described below step by step Description: Применение машины опорных векторов к выявлению фальшивых купюр Подключим необходимые библиотеки. Step1: Данные были взяты из репозитория UCI Machine Learning Repository по адресу http Step2: В исследуемых данных мы имеем следующее число точек Step3: Загруженные данные разбиваем на две выборки Step4: В обучающей выборке имеем столько наблюдений Step5: Рассмотрим SVM в линейно неразделимом случае с $L^1$ нормой на зазоры $(\xi_i){i=1}^n$ Step6: Параметры вида ядра (и соответственно отображений признаков $\phi Step7: полимониальное $$ K( x, y ) = \bigl( 1 + \langle x, y\rangle\bigr)^p \,, $$ Step8: и линейное (в $\mathbb{R}^d$) $$ K( x, y ) = \langle x, y\rangle \,,$$ Step9: Результаты поиска приведены ниже Step10: Посмотрим точность лучших моделей в каждом классе ядер на тестовтй выборке. Линейное ядро Step11: Гауссовское ядро Step12: Полимониальное ядро Step13: Построим ROC-AUC кривую для лучшей моделей.
Python Code: import numpy as np, pandas as pd import matplotlib.pyplot as plt from sklearn import * %matplotlib inline random_state = np.random.RandomState( None ) def collect_result( grid_, names = [ ] ) : df = pd.DataFrame( { "2-Отклонение" : [ np.std(v_[ 2 ] ) for v_ in grid_.grid_scores_ ], "1-Точность" : [ v_[ 1 ] for v_ in grid_.grid_scores_ ], }, index = pd.MultiIndex.from_tuples( [ v_[ 0 ].values() for v_ in grid_.grid_scores_ ], names = names ) ) df.sort_index( ) return df Explanation: Применение машины опорных векторов к выявлению фальшивых купюр Подключим необходимые библиотеки. End of explanation df = pd.read_csv( 'data_banknote_authentication.txt', sep = ",", decimal = ".", header = None, names = [ "variance", "skewness", "curtosis", "entropy", "class" ] ) y = df.xs( "class", axis = 1 ) X = df.drop( "class", axis = 1 ) Explanation: Данные были взяты из репозитория UCI Machine Learning Repository по адресу http://archive.ics.uci.edu/ml/datasets/banknote+authentication. Выборка сконструирована при помощи вейвлет преобразования избражений фальшивых и аутентичных банкнот в градациях серого. End of explanation print len( X ) Explanation: В исследуемых данных мы имеем следующее число точек: End of explanation X_train, X_test, y_train, y_test = cross_validation.train_test_split( X, y, test_size = 0.60, random_state = random_state ) Explanation: Загруженные данные разбиваем на две выборки: обучающую ($\text{_train}$) и тестовую. которая будет не будет использоваться при обучении ($\text{_test}$). Разобьём выборку на обучающую и тестовую в соотношении 2:3. End of explanation print len( X_train ) Explanation: В обучающей выборке имеем столько наблюдений: End of explanation svm_clf_ = svm.SVC( probability = True, max_iter = 100000 ) Explanation: Рассмотрим SVM в линейно неразделимом случае с $L^1$ нормой на зазоры $(\xi_i){i=1}^n$: $$ \frac{1}{2} \|\beta\|^2 + C \sum{i=1}^n \xi_i \to \min_{\beta, \beta_0, (\xi_i)_{i=1}^n} \,, $$ при условиях: для любого $i=1,\ldots,n$ требуется $\xi_i \geq 0$ и $$ \bigl( \beta' \phi(x_i) + \beta_0 \bigr) y_i \geq 1 - \xi_i \,.$$ End of explanation ## Вид ядра : Гауссовское ядро grid_rbf_ = grid_search.GridSearchCV( svm_clf_, param_grid = { ## Параметр регуляризции: C = 0.0001, 0.001, 0.01, 0.1, 1, 10. "C" : np.logspace( -4, 1, num = 6 ), "kernel" : [ "rbf" ], ## Параметр "концентрации" Гауссовского ядра "gamma" : np.logspace( -2, 2, num = 10 ), }, cv = 5, n_jobs = -1, verbose = 0 ).fit( X_train, y_train ) df_rbf_ = collect_result( grid_rbf_, names = [ "Ядро", "C", "Параметр" ] ) Explanation: Параметры вида ядра (и соответственно отображений признаков $\phi:\mathcal{X}\to\mathcal{H}$) и параметр регуляризации $C$ будем искать с помощью переборного поиска на сетке с $5$-fold кроссвалидацией на тренировочной выборке $\text{X_train}$. Рассмотрим три ядра: гауссовское $$ K( x, y ) = \text{exp}\bigl{ -\frac{1}{2\gamma^2} \|x-y\|^2 \bigr} \,,$$ End of explanation ## Вид ядра : Полиномиальное ядро grid_poly_ = grid_search.GridSearchCV( svm.SVC( probability = True, max_iter = 20000, kernel = "poly" ), param_grid = { ## Параметр регуляризции: C = 0.0001, 0.001, 0.01, 0.1, 1, 10. "C" : np.logspace( -4, 1, num = 6 ), "kernel" : [ "poly" ], ## Степень полиномиального ядра "degree" : [ 2, 3, 5, 7 ], }, cv = 5, n_jobs = -1, verbose = 0 ).fit( X_train, y_train ) df_poly_ = collect_result( grid_poly_, names = [ "Ядро", "C", "Параметр" ] ) Explanation: полимониальное $$ K( x, y ) = \bigl( 1 + \langle x, y\rangle\bigr)^p \,, $$ End of explanation ## Вид ядра : линейное ядро grid_linear_ = grid_search.GridSearchCV( svm_clf_, param_grid = { ## Параметр регуляризции: C = 0.0001, 0.001, 0.01, 0.1, 1, 10. "C" : np.logspace( -4, 1, num = 6 ), "kernel" : [ "linear" ], "degree" : [ 0 ] }, cv = 5, n_jobs = -1, verbose = 0 ).fit( X_train, y_train ) df_linear_ = collect_result( grid_linear_, names = [ "Ядро", "C", "Параметр" ] ) Explanation: и линейное (в $\mathbb{R}^d$) $$ K( x, y ) = \langle x, y\rangle \,,$$ End of explanation pd.concat( [ df_linear_, df_poly_, df_rbf_ ], axis = 0 ).sort_index( ) Explanation: Результаты поиска приведены ниже: End of explanation print grid_linear_.best_estimator_ print "Accuracy: %0.3f%%" % ( grid_linear_.best_estimator_.score( X_test, y_test ) * 100, ) Explanation: Посмотрим точность лучших моделей в каждом классе ядер на тестовтй выборке. Линейное ядро End of explanation print grid_rbf_.best_estimator_ print "Accuracy: %0.3f%%" % ( grid_rbf_.best_estimator_.score( X_test, y_test ) * 100, ) Explanation: Гауссовское ядро End of explanation print grid_poly_.best_estimator_ print "Accuracy: %0.3f%%" % ( grid_poly_.best_estimator_.score( X_test, y_test ) * 100, ) Explanation: Полимониальное ядро End of explanation result_ = { name_: metrics.roc_curve( y_test, estimator_.predict_proba( X_test )[:,1] ) for name_, estimator_ in { "Linear": grid_linear_.best_estimator_, "Polynomial": grid_poly_.best_estimator_, "RBF": grid_rbf_.best_estimator_ }.iteritems( ) } fig = plt.figure( figsize = ( 16, 9 ) ) ax = fig.add_subplot( 111 ) ax.set_ylim( -0.1, 1.1 ) ; ax.set_xlim( -0.1, 1.1 ) ax.set_xlabel( "FPR" ) ; ax.set_ylabel( u"TPR" ) ax.set_title( u"ROC-AUC" ) for name_, value_ in result_.iteritems( ) : fpr, tpr, _ = value_ ax.plot( fpr, tpr, lw=2, label = name_ ) ax.legend( loc = "lower right" ) Explanation: Построим ROC-AUC кривую для лучшей моделей. End of explanation
3,020
Given the following text description, write Python code to implement the functionality described below step by step Description: MNIST Convolutional Neural Network - 2nd model This time we are going to implement a model similar to the one used by Dan Ciresan, Ueli Meier and Jurgen Schmidhuber in 2012. The model should have an error of 0.23% and it's quite similar to the previous one we implemented from Keras documentation. The network was not only one of the best for MNIST, ranking second best at the moment, but also very good on NIST SD 19 and NORB. We are also going to use Keras checkpoints because of the many epochs required by the model and we're going to integrate some of the most recent techniques, like dropout. Again for this notebook we are going to use TensorFlow with Keras. Step1: We are using TensorFlow-GPU 0.12.1 on Python 3.5.2, running on Windows 10 with Cuda 8.0. We have 3 machines with the same environment and 3 different GPUs, respectively with 384, 1024 and 1664 Cuda cores. Imports Step2: Definitions Step3: Data load Step4: Model definition The model is structurally similar to the previous one, with 2 Convolutional layers and 1 Fully conneted layers. However there are major difference in values and sizes, and also there is one more intermediate max pooling layer and the activation function is a scaled hyperbolic tangent, as described in the paper. However, since Rectified Linear Units started spreading after 2015, we are going to compare two different CNN, one using tanh (as in the paper) and the other one using relu. 1x29x29-20C4-MP2-40C5-MP3-150N-10N DNN. <img src="images/cvpr2012.PNG" alt="1x29x29-20C4-MP2-40C5-MP3-150N-10N DNN" style="width Step5: Training and evaluation Using non verbose output for training, since we already get some informations from the callback. Step6: Inspecting the result Step7: Examples of correct predictions (tanh) Step8: Examples of incorrect predictions (tanh) Step9: Examples of correct predictions (relu) Step10: Examples of incorrect predictions (relu) Step11: Confusion matrix (tanh) Step12: Confusion matrix (relu)
Python Code: import tensorflow as tf # We don't really need to import TensorFlow here since it's handled by Keras, # but we do it in order to output the version we are using. tf.__version__ Explanation: MNIST Convolutional Neural Network - 2nd model This time we are going to implement a model similar to the one used by Dan Ciresan, Ueli Meier and Jurgen Schmidhuber in 2012. The model should have an error of 0.23% and it's quite similar to the previous one we implemented from Keras documentation. The network was not only one of the best for MNIST, ranking second best at the moment, but also very good on NIST SD 19 and NORB. We are also going to use Keras checkpoints because of the many epochs required by the model and we're going to integrate some of the most recent techniques, like dropout. Again for this notebook we are going to use TensorFlow with Keras. End of explanation import os.path from IPython.display import Image from util import Util u = Util() import numpy as np # Explicit random seed for reproducibility np.random.seed(1337) from keras.callbacks import ModelCheckpoint from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utils from keras import backend as K from keras.datasets import mnist Explanation: We are using TensorFlow-GPU 0.12.1 on Python 3.5.2, running on Windows 10 with Cuda 8.0. We have 3 machines with the same environment and 3 different GPUs, respectively with 384, 1024 and 1664 Cuda cores. Imports End of explanation batch_size = 512 nb_classes = 10 nb_epoch = 800 # checkpoint path checkpoints_filepath_tanh = "checkpoints/02_MNIST_tanh_weights.best.hdf5" checkpoints_filepath_relu = "checkpoints/02_MNIST_relu_weights.best.hdf5" # model image path model_image_path = 'images/model_02_MNIST.png' # saving only relu # input image dimensions img_rows, img_cols = 28, 28 # number of convolutional filters to use nb_filters1 = 20 nb_filters2 = 40 # size of pooling area for max pooling pool_size1 = (2, 2) pool_size2 = (3, 3) # convolution kernel size kernel_size1 = (4, 4) kernel_size2 = (5, 5) # dense layer size dense_layer_size1 = 150 # dropout rate dropout = 0.15 Explanation: Definitions End of explanation # the data, shuffled and split between train and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() u.plot_images(X_train[0:9], y_train[0:9]) if K.image_dim_ordering() == 'th': X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1) X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) Explanation: Data load End of explanation model_tanh = Sequential() model_relu = Sequential() def initialize_network_with_activation_function(model, activation, checkpoints_filepath): model.add(Convolution2D(nb_filters1, kernel_size1[0], kernel_size1[1], border_mode='valid', input_shape=input_shape, name='covolution_1_' + str(nb_filters1) + '_filters')) model.add(Activation(activation, name='activation_1_' + activation)) model.add(MaxPooling2D(pool_size=pool_size1, name='max_pooling_1_' + str(pool_size1) + '_pool_size')) model.add(Convolution2D(nb_filters2, kernel_size2[0], kernel_size2[1])) model.add(Activation(activation, name='activation_2_' + activation)) model.add(MaxPooling2D(pool_size=pool_size2, name='max_pooling_1_' + str(pool_size2) + '_pool_size')) model.add(Dropout(dropout)) model.add(Flatten()) model.add(Dense(dense_layer_size1, name='fully_connected_1_' + str(dense_layer_size1) + '_neurons')) model.add(Activation(activation, name='activation_3_' + activation)) model.add(Dropout(dropout)) model.add(Dense(nb_classes, name='output_' + str(nb_classes) + '_neurons')) model.add(Activation('softmax', name='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy', 'precision', 'recall', 'mean_absolute_error']) # loading weights from checkpoints if os.path.exists(checkpoints_filepath): model.load_weights(checkpoints_filepath) initialize_network_with_activation_function(model_tanh, 'tanh', checkpoints_filepath_tanh) initialize_network_with_activation_function(model_relu, 'relu', checkpoints_filepath_relu) Image(u.maybe_save_network(model_relu, model_image_path), width=300) Explanation: Model definition The model is structurally similar to the previous one, with 2 Convolutional layers and 1 Fully conneted layers. However there are major difference in values and sizes, and also there is one more intermediate max pooling layer and the activation function is a scaled hyperbolic tangent, as described in the paper. However, since Rectified Linear Units started spreading after 2015, we are going to compare two different CNN, one using tanh (as in the paper) and the other one using relu. 1x29x29-20C4-MP2-40C5-MP3-150N-10N DNN. <img src="images/cvpr2012.PNG" alt="1x29x29-20C4-MP2-40C5-MP3-150N-10N DNN" style="width: 400px;"/> The paper doesn't seem to use any dropout layer to avoid overfitting, so we're going to use a dropout of 0.15, way lower then we did before. It is also worth mentioning that the authors of the paper have their methods to avoid overfitting, like dataset expansion by adding translations, rotations and deformations to the images of the training set. End of explanation # checkpoint checkpoint_tanh = ModelCheckpoint(checkpoints_filepath_tanh, monitor='val_acc', verbose=1, save_best_only=True, mode='max') callbacks_list_tanh = [checkpoint_tanh] # training print('training tanh model') history_tanh = model_tanh.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, validation_data=(X_test, Y_test), callbacks=callbacks_list_tanh) # evaluation print('evaluating tanh model') score = model_tanh.evaluate(X_test, Y_test, verbose=1) print('Test score:', score[0]) print('Test accuracy:', score[1]) print('Test error:', (1-score[2])*100, '%') u.plot_history(history_tanh) u.plot_history(history_tanh, metric='loss', loc='upper left') # checkpoint checkpoint_relu = ModelCheckpoint(checkpoints_filepath_relu, monitor='val_acc', verbose=1, save_best_only=True, mode='max') callbacks_list_relu = [checkpoint_relu] # training print('training relu model') history_relu = model_relu.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, validation_data=(X_test, Y_test), callbacks=callbacks_list_relu) # evaluation print('evaluating relu model') score = model_relu.evaluate(X_test, Y_test, verbose=1) print('Test score:', score[0]) print('Test accuracy:', score[1]) print('Test error:', (1-score[2])*100, '%') u.plot_history(history_relu) u.plot_history(history_relu, metric='loss', loc='upper left') Explanation: Training and evaluation Using non verbose output for training, since we already get some informations from the callback. End of explanation # The predict_classes function outputs the highest probability class # according to the trained classifier for each input example. predicted_classes_tanh = model_tanh.predict_classes(X_test) predicted_classes_relu = model_relu.predict_classes(X_test) # Check which items we got right / wrong correct_indices_tanh = np.nonzero(predicted_classes_tanh == y_test)[0] incorrect_indices_tanh = np.nonzero(predicted_classes_tanh != y_test)[0] correct_indices_relu = np.nonzero(predicted_classes_relu == y_test)[0] incorrect_indices_relu = np.nonzero(predicted_classes_relu != y_test)[0] Explanation: Inspecting the result End of explanation u.plot_images(X_test[correct_indices_tanh[:9]], y_test[correct_indices_tanh[:9]], predicted_classes_tanh[correct_indices_tanh[:9]]) Explanation: Examples of correct predictions (tanh) End of explanation u.plot_images(X_test[incorrect_indices_tanh[:9]], y_test[incorrect_indices_tanh[:9]], predicted_classes_tanh[incorrect_indices_tanh[:9]]) Explanation: Examples of incorrect predictions (tanh) End of explanation u.plot_images(X_test[correct_indices_relu[:9]], y_test[correct_indices_relu[:9]], predicted_classes_relu[correct_indices_relu[:9]]) Explanation: Examples of correct predictions (relu) End of explanation u.plot_images(X_test[incorrect_indices_relu[:9]], y_test[incorrect_indices_relu[:9]], predicted_classes_relu[incorrect_indices_relu[:9]]) Explanation: Examples of incorrect predictions (relu) End of explanation u.plot_confusion_matrix(y_test, nb_classes, predicted_classes_tanh) Explanation: Confusion matrix (tanh) End of explanation u.plot_confusion_matrix(y_test, nb_classes, predicted_classes_relu) Explanation: Confusion matrix (relu) End of explanation
3,021
Given the following text description, write Python code to implement the functionality described below step by step Description: Messy modelling Step1: Introducing kNN Step2: Let's examine the shape of the dataset (the number of rows and columns), the types of features it contains, and some summary statistics for each feature. Step3: Next up, let's convert the pandas dataframe into a numpy array and isolate the outcome variable we'd like to predict (here, 0 means 'non-spam', 1 means 'spam') Step4: Next up, let's split the dataset into a training and test set. The training set will be used to develop and tune our predictive models. The test will be completely left alone until the very end, at which point you'll run your finished models on it. Having a test set will allow you to get a good estimate of how well our models would perform out in the wild on unseen data. Step5: We are first going to try to predict spam emails with a random forest classifier. Chapter 8 of the Introduction to Statistical Learning book provides a truly excellent introduction to theory behind random forests. Briefly, random forests build a collection of classification trees, which each try to predict classes by recursively splitting the data on the features (and feature values) that split the classes best. Each tree is trained on bootstrapped data, and each split is only allowed to use certain variables. So, an element of randomness is introduced, a variety of different trees are built, and the 'random forest' ensembles these base learners together. Out of the box, scikit's random forest classifier already performs quite well on the spam dataset Step6: An overall accuracy of 0.95 is very good for a start, but keep in mind that this is a heavily idealized dataset. Next up, we are going to learn how to pick the best parameters for the random forest algorithm (as well as for an SVM and logistic regression classifier) in order to get better models with (hopefully!) improved accuracy. The perils of overfitting In order to build the best possible model that does a good job at describing the underlying trends in a dataset, we need to pick the right HP values. In the following example, we will introduce different strategies of searching for the set of HPs that define the best model, but we will first need to make a slight detour to explain how to avoid a major pitfall when it comes to tuning models - overfitting. The hallmark of overfitting is good training performance and bad testing performance. As we mentioned above, HPs are not optimised while a learning algorithm is learning. Hence, we need other strategies to optimise them. The most basic way would just to test different possible values for the HPs and see how the model performs. In a random forest, some hyperparameters we can optimise are n_estimators and max_features. n_estimators controls the number of trees in the forest - the more the better, but more trees comes at the expense of longer training time. max_features controls the size of the random selection of features the algorithm is allowed to consider when splitting a node. Let's try out some HP values. Step7: We can manually write a small loop to test out how well the different combinations of these fare (later, we'll find out better ways to do this)
Python Code: import wget import pandas as pd # Import the dataset data_url = 'https://raw.githubusercontent.com/nslatysheva/data_science_blogging/master/datasets/spam/spam_dataset.csv' dataset = wget.download(data_url) dataset = pd.read_csv(dataset, sep=",") # Take a peak at the data dataset.head() Explanation: Messy modelling: overfitting, cross-validation, and the bias-variance trade-off Introduction In the next blog post, you will learn how to tune models. Other posts in this series will include random forests, naive bayes, logistic regression and combinging different models into an ensembled meta-model. Loading and exploring the dataset We start off by collecting the dataset. It can be found both online and (in a slightly nicer form) in our GitHub repository, so we just fetch it via wget (note: make sure you first type pip install wget into your Terminal since wget is not a preinstalled Python library). It will download a copy of the dataset to your current working directory. End of explanation knn3scores = cross_val_score(knn3, XTrain, yTrain, cv = 5) print knn3scores print "Mean of scores KNN3:", knn3scores.mean() knn99scores = cross_val_score(knn99, XTrain, yTrain, cv = 5) print knn99scores print "Mean of scores KNN99:", knn99scores.mean() XTrain, XTest, yTrain, yTest = train_test_split(X, y, random_state = 1) #seed 1 knn = KNeighborsClassifier() n_neighbors = np.arange(3, 151, 2) grid = GridSearchCV(knn, [{'n_neighbors':n_neighbors}], cv = 10) grid.fit(XTrain, yTrain) cv_scores = [x[1] for x in grid.grid_scores_] train_scores = list() test_scores = list() for n in n_neighbors: knn.n_neighbors = n knn.fit(XTrain, yTrain) train_scores.append(metrics.accuracy_score(yTrain, knn.predict(XTrain))) test_scores.append(metrics.accuracy_score(yTest, knn.predict(XTest))) plt.plot(n_neighbors, train_scores, c = "blue", label = "Training Scores") plt.plot(n_neighbors, test_scores, c = "brown", label = "Test Scores") plt.plot(n_neighbors, cv_scores, c = "black", label = "CV Scores") plt.xlabel('Number of K nearest neighbors') plt.ylabel('Classification Accuracy') plt.gca().invert_xaxis() plt.legend(loc = "upper left") plt.show() Explanation: Introducing kNN End of explanation # Examine shape of dataset and some column names print (dataset.shape) print (dataset.columns.values) # Summarise feature values dataset.describe() Explanation: Let's examine the shape of the dataset (the number of rows and columns), the types of features it contains, and some summary statistics for each feature. End of explanation import numpy as np # Convert dataframe to numpy array and split # data into input matrix X and class label vector y npArray = np.array(dataset) X = npArray[:,:-1].astype(float) y = npArray[:,-1] Explanation: Next up, let's convert the pandas dataframe into a numpy array and isolate the outcome variable we'd like to predict (here, 0 means 'non-spam', 1 means 'spam'): End of explanation from sklearn.cross_validation import train_test_split # Split into training and test sets XTrain, XTest, yTrain, yTest = train_test_split(X, y, random_state=1) Explanation: Next up, let's split the dataset into a training and test set. The training set will be used to develop and tune our predictive models. The test will be completely left alone until the very end, at which point you'll run your finished models on it. Having a test set will allow you to get a good estimate of how well our models would perform out in the wild on unseen data. End of explanation from sklearn.ensemble import RandomForestClassifier from sklearn import metrics rf = RandomForestClassifier() rf.fit(XTrain, yTrain) rf_predictions = rf.predict(XTest) print (metrics.classification_report(yTest, rf_predictions)) print ("Overall Accuracy:", round(metrics.accuracy_score(yTest, rf_predictions),2)) Explanation: We are first going to try to predict spam emails with a random forest classifier. Chapter 8 of the Introduction to Statistical Learning book provides a truly excellent introduction to theory behind random forests. Briefly, random forests build a collection of classification trees, which each try to predict classes by recursively splitting the data on the features (and feature values) that split the classes best. Each tree is trained on bootstrapped data, and each split is only allowed to use certain variables. So, an element of randomness is introduced, a variety of different trees are built, and the 'random forest' ensembles these base learners together. Out of the box, scikit's random forest classifier already performs quite well on the spam dataset: End of explanation n_estimators = np.array([5, 100]) max_features = np.array([10, 50]) Explanation: An overall accuracy of 0.95 is very good for a start, but keep in mind that this is a heavily idealized dataset. Next up, we are going to learn how to pick the best parameters for the random forest algorithm (as well as for an SVM and logistic regression classifier) in order to get better models with (hopefully!) improved accuracy. The perils of overfitting In order to build the best possible model that does a good job at describing the underlying trends in a dataset, we need to pick the right HP values. In the following example, we will introduce different strategies of searching for the set of HPs that define the best model, but we will first need to make a slight detour to explain how to avoid a major pitfall when it comes to tuning models - overfitting. The hallmark of overfitting is good training performance and bad testing performance. As we mentioned above, HPs are not optimised while a learning algorithm is learning. Hence, we need other strategies to optimise them. The most basic way would just to test different possible values for the HPs and see how the model performs. In a random forest, some hyperparameters we can optimise are n_estimators and max_features. n_estimators controls the number of trees in the forest - the more the better, but more trees comes at the expense of longer training time. max_features controls the size of the random selection of features the algorithm is allowed to consider when splitting a node. Let's try out some HP values. End of explanation from itertools import product # get grid of all possible combinations of hp values hp_combinations = list(itertools.product(n_estimators, max_features)) for hp_combo in range(len(hp_combinations)): print (hp_combinations[hp_combo]) # Train and output accuracies rf = RandomForestClassifier(n_estimators=hp_combinations[hp_combo][0], max_features=hp_combinations[hp_combo][1]) rf.fit(XTrain, yTrain) RF_predictions = rf.predict(XTest) print ("Overall Accuracy:", round(metrics.accuracy_score(yTest, RF_predictions),2)) Explanation: We can manually write a small loop to test out how well the different combinations of these fare (later, we'll find out better ways to do this): End of explanation
3,022
Given the following text description, write Python code to implement the functionality described below step by step Description: Step1: Check whether a SMIRNOFF-format force field is able to parametrize a dataset of interest This notebook runs a quick initial analysis of whether a molecule set can be simulated by a given SMIRNOFF-format force field. While some attempt has been made to improve the speed of this code, it is not particuarly high-performance in its current state, and may crash the notebook you try to analyze more than 10,000 molecules. First, we define global variables, and create a helper function to check for parameterization failures. It is not important to understand or modify the following two notebook cells. Step2: Loading the molecule dataset There are several ways to load molecules into the Open Force Field Toolkit. Below, we show how to load molecule databases from .smi, .sdf, and .mol2 format files. It's important that these databases contain a complete representation of each molecule, including formal charge, stereochemistry, and protonation state. Note that loading .mol2 files is currently only supported using the OpenEye Toolkit. Option 1 Step3: Option 2 Step4: Option 3 Step5: Analyze all molecules in the data set Option 1 Step6: Option 2 Step7: Write a report of parameterization failures Since the results from above are only held in memory during this Python session, it can be helpful to save this analysis to disk. The following code will write files containing a 2D image and a tagged SMILES for each unparameterizable motif found above. Results for each molecule are saved to different folders. If molecule names were not provided, these folders will be named molecule_N/, where N is the order in which the molecules were read. A single molecule may have multiple parameterization failures, and each one is written both as an image (eg. molecule_2/Bonds_1-2.png) and a tagged SMILES (eg. molecule_2/Bonds_1-2.smi). Note that this does not clear previous outputs, so it is possible that running this script on several datasets will overwrite or mix data with previous runs. Run rm -r molecule_* between runs to prevent potential issues. When a molecule contains even one instance of unparameterizable chemistry, it can result in a large number of ProperTorsions failures being reported. To help reduce redundancy in these cases, the code below groups ProperTorsions output such that the atom indices defining the central bond are written first in the file name, followed by the atom indices of the whole torsion. This way, lexical (alphabetical) displays of file names make it easier to identify possibly-redundant outputs. Concretely, the second molecule in the SMILES set is an example of this issue, as 1-indexed atom in that molecule is an unparameterizable Hg. This leads to the following output
Python Code: from openff.toolkit.topology import Molecule, Topology from openff.toolkit.typing.engines.smirnoff import (ForceField, UnassignedValenceParameterException, BondHandler, AngleHandler, ProperTorsionHandler, ImproperTorsionHandler, vdWHandler) from simtk import unit import numpy as np from rdkit import Chem from rdkit.Chem import Draw, AllChem from rdkit.Chem.Draw import IPythonConsole from IPython.display import display from copy import deepcopy import time import os # Define "super generics", which are parameters that will match # each instance of a valence type. By adding these to a ForceField # object, we ensure that a given ParameterHandler will not encounter # a parameterization failure super_generics = {'Bonds': BondHandler.BondType(smirks='[*:1]~[*:2]', k=0*unit.kilocalorie/unit.mole/unit.angstrom**2, length=0*unit.angstrom ), 'Angles': AngleHandler.AngleType(smirks='[*:1]~[*:2]~[*:3]', angle=0*unit.degree, k=0*unit.kilocalorie/unit.mole/unit.degree**2 ), 'ProperTorsions': ProperTorsionHandler.ProperTorsionType(smirks='[*:1]~[*:2]~[*:3]~[*:4]', phase1=0*unit.degree, periodicity1=0, k1=0*unit.kilocalorie/unit.mole, idivf1=1 ), 'ImproperTorsions': ImproperTorsionHandler.ImproperTorsionType(smirks='[*:1]~[*:2](~[*:3])~[*:4]', phase1=0*unit.degree, periodicity1=0, k1=0*unit.kilocalorie/unit.mole, idivf1=1 ), 'vdW': vdWHandler.vdWType(smirks='[*:1]', rmin_half=0*unit.angstrom, epsilon = 0*unit.kilocalorie/unit.mole ), } def report_missing_parameters(molecule, forcefield): Analyze a molecule using a provided ForceField, generating a report of any chemical groups in the molecule that are lacking parameters. Parameters ---------- molecule : an openforcefield.topology.FrozenMolecule The molecule to analyze forcefield : an openforcefield.typing.engine.smirnoff.ForceField The ForceField object to use Returns ------- missing_parameters : dict[tagname: list[dict[tagged_smiles:string, image:PIL.Image, atom indices:list[int]]]] A hierarchical dictionary, with first level keys indicating ForceField tag names (eg. "Bonds"), and first-level values which are lists of dictionaries. Each dictionary in this list reflects one missing parameter, and contains the following key:value pairs : * "image": PIL.Image * shows a 2D drawing, highlighting the feature that could not be parametrized * "tagged_smiles": string * SMILES of the whole molecule, tagging the atom indices which could not be parametrized * "atom_indices": tuple(int) * The indices of atoms which could not be parametrized highlight_color = (0.75, 0.75, 0.75) # Make deepcopies of both inputs, since we may modify them in this function forcefield = deepcopy(forcefield) molecule = deepcopy(molecule) # Set partial charges to placeholder values so that we can skip AM1-BCC # during parameterization molecule.partial_charges = (np.zeros(molecule.n_atoms) + 0.1) * unit.elementary_charge # Prepare dictionary to catch parameterization failure info success = False missing_params = {} while not success: # Try to parameterize the system, catching the exception if there is one. try: forcefield.create_openmm_system(molecule.to_topology(), charge_from_molecules=[molecule], allow_nonintegral_charges=True) success = True except UnassignedValenceParameterException as e: success = False # Ensure that there is a list initialized for missing parameters # under this tagname handler_tagname = e.handler_class._TAGNAME if handler_tagname not in missing_params: missing_params[handler_tagname] = [] # Create a shortcut to the topology atom tuples attached to # the parametrization error top_atom_tuples = e.unassigned_topology_atom_tuples # Make a summary of the missing parameters from this attempt and add it to # the missing_params dict rdmol = molecule.to_rdkit() for top_atom_tuple in top_atom_tuples: orig_atom_indices = [i.topology_atom_index for i in top_atom_tuple] # Make a copy of the input RDMol so that we don't modify the original this_rdmol = deepcopy(rdmol) # Attach tags to relevant atoms so that a tagged SMILES can be written orig_rdatoms = [] for tag_idx, atom_idx in enumerate(orig_atom_indices): rdatom = this_rdmol.GetAtomWithIdx(atom_idx) rdatom.SetAtomMapNum(tag_idx + 1) orig_rdatoms.append(rdatom) tagged_smiles = Chem.MolToSmiles(this_rdmol) # Make tagged hydrogens into deuteriums so that RemoveHs doesn't get rid of them for rdatom in orig_rdatoms: if rdatom.GetAtomicNum() == 1: rdatom.SetIsotope(2) # Remove hydrogens, since they clutter up the 2D drawing # (tagged Hs are not removed, since they were converted to deuterium) h_less_rdmol = Chem.RemoveHs(this_rdmol) # Generate 2D coords, since drawing from 3D can look really weird Draw.rdDepictor.Compute2DCoords(h_less_rdmol) # Search over the molecule to find the indices of the tagged atoms # after hydrogen removal h_less_atom_indices = [None for i in orig_atom_indices] for rdatom in h_less_rdmol.GetAtoms(): # Convert deuteriums back into hydrogens if rdatom.GetAtomicNum() == 1: rdatom.SetIsotope(1) atom_map_num = rdatom.GetAtomMapNum() if atom_map_num == 0: continue h_less_atom_indices[atom_map_num-1] = rdatom.GetIdx() # Once the new atom indices are found, use them to find the H-less # bond indices h_less_rdbonds = [] for i in range(len(h_less_atom_indices)-1): rdbond = h_less_rdmol.GetBondBetweenAtoms( h_less_atom_indices[i], h_less_atom_indices[i+1]) h_less_rdbonds.append(rdbond) h_less_bond_indices = [bd.GetIdx() for bd in h_less_rdbonds] # Create a 2D drawing of the molecule, highlighting the # parameterization failure highlight_atom_colors = {idx:highlight_color for idx in h_less_atom_indices} highlight_bond_colors = {idx:highlight_color for idx in h_less_bond_indices} image = Draw.MolsToGridImage([h_less_rdmol], highlightAtomLists=[h_less_atom_indices], highlightBondLists=[h_less_bond_indices], molsPerRow=1, highlightAtomColors=[highlight_atom_colors], highlightBondColors=[highlight_bond_colors], subImgSize=(600,600), returnPNG=False, ) # Structure and append the relevant info to the missing_params dictionary param_description = {'atom_indices': orig_atom_indices, 'image': image, 'tagged_smiles': tagged_smiles } missing_params[handler_tagname].append(param_description) # Add a "super generic" parameter to the top of this handler's ParameterList, # which will make it always find parameters for each term. This will prevent the same # parameterization exception from being raised in the next attempt. param_list = forcefield.get_parameter_handler(handler_tagname).parameters param_list.insert(0, super_generics[handler_tagname]) return missing_params Explanation: Check whether a SMIRNOFF-format force field is able to parametrize a dataset of interest This notebook runs a quick initial analysis of whether a molecule set can be simulated by a given SMIRNOFF-format force field. While some attempt has been made to improve the speed of this code, it is not particuarly high-performance in its current state, and may crash the notebook you try to analyze more than 10,000 molecules. First, we define global variables, and create a helper function to check for parameterization failures. It is not important to understand or modify the following two notebook cells. End of explanation molecules = Molecule.from_file('example_molecules.smi', allow_undefined_stereo=True) # We also provide a SMILES dataset of ~1000 problematic molecules #molecules = Molecule.from_file('problem_smiles.smi', allow_undefined_stereo=True) print(f'Loaded {len(molecules)} molecules') Explanation: Loading the molecule dataset There are several ways to load molecules into the Open Force Field Toolkit. Below, we show how to load molecule databases from .smi, .sdf, and .mol2 format files. It's important that these databases contain a complete representation of each molecule, including formal charge, stereochemistry, and protonation state. Note that loading .mol2 files is currently only supported using the OpenEye Toolkit. Option 1: Load a SMILES dataset End of explanation molecules = Molecule.from_file('example_molecules.sdf', allow_undefined_stereo=True) print(f'Loaded {len(molecules)} molecules') Explanation: Option 2: Load a SDF dataset End of explanation try: molecules = Molecule.from_file('example_molecules.mol2', allow_undefined_stereo=True) print(f'Loaded {len(molecules)} molecules') except NotImplementedError as e: print(e) print("Loading mol2 files requires the OpenEye Toolkits") Explanation: Option 3: Load a mol2 dataset This option requires the OpenEye Toolkit! End of explanation start_time = time.time() forcefield = ForceField('openff-1.0.0.offxml') results = {} for mol_idx, molecule in enumerate(molecules): # Prepare a title for this molecule if molecule.name == '': mol_name = f'molecule_{mol_idx+1}' else: mol_name = molecule.name print('\n'*3) print('=' * 60) print('=' * 60) print(f'Processing "{mol_name}" with smiles {molecule.to_smiles()}') print('=' * 60) print('=' * 60) # Analyze missing parameters time_i = time.time() missing_params = report_missing_parameters(molecule, forcefield) print(f'Molecule analysis took {time.time()-time_i} seconds') results[mol_name] = missing_params for tagname, missing_tag_params in missing_params.items(): print('~'*60) print(tagname) print('~'*60) for missing_param in missing_tag_params: print(missing_param['tagged_smiles']) display(missing_param['image']) print(f'Processing {len(molecules)} molecules took {time.time()-start_time} seconds') Explanation: Analyze all molecules in the data set Option 1: Live visualization (single thread: ~1 second per molecule) Here, we run the above-defined function on all molecules in the dataset. The parameterization failures will be shown in the notebook as the data set is processed. Note: If the dataset is large this will take a very long time, and displaying all parameterization failures may run into memory/output limits in the notebook. If you're analyzing more than ~1,000 molecules, use Option 2 below. End of explanation from multiprocessing import set_start_method, cpu_count, Pool set_start_method('fork') num_threads = max(1, int(cpu_count() * 0.75)) def check_molecule(inputs): mol_idx = inputs[0] molecule = inputs[1] forcefield = ForceField('openff-1.0.0-RC1.offxml') # Prepare a title for this molecule if molecule.name == '': mol_name = f'molecule_{mol_idx+1}' else: mol_name = molecule.name print('\n'*3) print('=' * 60) print('=' * 60) print(f'Processing "{mol_name}" with smiles {molecule.to_smiles()}') print('=' * 60) print('=' * 60) # Analyze missing parameters time_i = time.time() missing_params = report_missing_parameters(molecule, forcefield) print(f'Molecule analysis took {time.time()-time_i} seconds') return (mol_name, missing_params) start_time = time.time() p = Pool(num_threads) job_args = [(idx, molecule) for idx, molecule in enumerate(molecules)] result_list = p.map(check_molecule, job_args) results = dict(result_list) print(f'Processing {len(molecules)} molecules took {time.time()-start_time} seconds') Explanation: Option 2: No live visualization (multiple threads: ~(1/num_threads) seconds per molecule) This method is faster than Option 1, but will not display unparameterizable chemistry in the notebook. 2D depictions and tagged SMILES of unparameterizable chemistry will be written to file in the final cell of the notebook. This will by default use 75% of the system's CPUs. If this is not desired, manually set num_threads below. End of explanation # Iterate over all molecules, and create a folder for each # one that experienced a parameterization failure for mol_name, result_dict in results.items(): if result_dict == {}: continue if not os.path.exists(mol_name): os.mkdir(mol_name) # Write each parameterization failure to file for tagname, missing_parm_dicts in result_dict.items(): elements = [] for missing_parm_dict in missing_parm_dicts: inds = missing_parm_dict['atom_indices'] inds_str = '-'.join([str(i) for i in inds]) if tagname == 'ProperTorsions': cent_atom_1 = min(inds[1], inds[2]) cent_atom_2 = max(inds[1], inds[2]) file_prefix = f'{tagname}__{cent_atom_1}-{cent_atom_2}__{inds_str}' else: file_prefix = f'{tagname}_{inds_str}' png_file = os.path.join(mol_name, file_prefix+'.png') smi_file = os.path.join(mol_name, file_prefix+'.smi') missing_parm_dict['image'].save(png_file) with open(smi_file, 'w') as of: of.write(missing_parm_dict['tagged_smiles']) ! ls molecule_*/* Explanation: Write a report of parameterization failures Since the results from above are only held in memory during this Python session, it can be helpful to save this analysis to disk. The following code will write files containing a 2D image and a tagged SMILES for each unparameterizable motif found above. Results for each molecule are saved to different folders. If molecule names were not provided, these folders will be named molecule_N/, where N is the order in which the molecules were read. A single molecule may have multiple parameterization failures, and each one is written both as an image (eg. molecule_2/Bonds_1-2.png) and a tagged SMILES (eg. molecule_2/Bonds_1-2.smi). Note that this does not clear previous outputs, so it is possible that running this script on several datasets will overwrite or mix data with previous runs. Run rm -r molecule_* between runs to prevent potential issues. When a molecule contains even one instance of unparameterizable chemistry, it can result in a large number of ProperTorsions failures being reported. To help reduce redundancy in these cases, the code below groups ProperTorsions output such that the atom indices defining the central bond are written first in the file name, followed by the atom indices of the whole torsion. This way, lexical (alphabetical) displays of file names make it easier to identify possibly-redundant outputs. Concretely, the second molecule in the SMILES set is an example of this issue, as 1-indexed atom in that molecule is an unparameterizable Hg. This leads to the following output: ``` molecule_2/ProperTorsions__0-1__2-1-0-23.png molecule_2/ProperTorsions__0-1__2-1-0-24.png molecule_2/ProperTorsions__0-1__2-1-0-25.png molecule_2/ProperTorsions__1-2__0-1-2-3.png molecule_2/ProperTorsions__1-2__0-1-2-4.png molecule_2/ProperTorsions__1-2__0-1-2-5.png ``` Here, listing the central atoms early in the filename makes it easy to see that the 1-indexed atom is likely to be the cause of the error. When reporting parameterization failures, note that the tagged SMILES contains the full identity of the molecule, and that it is not trivial to extract only the motif which caused the parameterization failure. To report a parameterization failure without revealing the identity of the entire molecule, consider cropping the molecule image to only show the tagged atoms and their first or second neighbors, and uploading it to the Open Force Field Toolkit issue tracker End of explanation
3,023
Given the following text description, write Python code to implement the functionality described below step by step Description: Lab of data analysis with python In this lab we will introduce some of the modules that we will use in the rest of the labs of the course. The usual beginning of any python module is a list of import statements. In most of our files we will use the following modules Step1: 1. NUMPY The numpy module is useful for scientific computing in Python. 1.a Create numpy arrays The main data structure in numpy is the n-dimensional array. You can define a numpy array from a list or a list or lists. Python will try to build it with the appropiate dimensions. You can check the dimensions of the array with shape() Step2: Define a new 3x2 array named my_array2 with [1, 2, 3] in the first row and [4,5,6] in the second. Check the dimensions of the array. Step3: Until now, we have created arrays defining their elements. But you can also create it defining the range Step4: Check the functions np.linspace, np.logspace and np.meshgrid which let you create more sophisticated ranges You can create numpy arrays in several ways. For example numpy provides a number of functions to create special types of matrices. Create 3 arrays usings ones, zeros and eye. If you have any doubt about the parameters of the functions have a look at the help with the function help( ). Step5: 1.b Elementwise operations One of the main advantages of numpy arrays is that operations are propagated to the individual elements of the array Step6: Compare this with operations over python lists Step7: 1.c Indexing numpy arrays There are several operations you can do with numpy arrays similar to the ones you can do with matrices in Matlab. One of the most important is slicing (we saw it when we talked about lists). It consists in extracting some subarray from the array. Step8: One important thing to consider when you do slicing are the dimensions of the output array. Run the following cell and check the shape of my_array3. Check also its dimension with ndim function Step9: If you have correctly computed it you will see that my_array3 is one dimensional. Sometimes this can be a problem when you are working with 2D matrixes (and vectors can be considered as 2D matrixes with one of the sizes equal to 1). To solve this, numpy provides the newaxis constant. Step10: Check again the shape and dimension of my_array3 Step11: When you try to index different rows and columns of a matrix you have to define it element by element. For example, consider that we want to select elements of rows [0, 3] and columns [0, 2], we have to define the row 0 index for each column to be selected.... Step12: To make this easier, we can use the ix_ function which automatically creates all the needed indexes Step13: Another important array manipulation method is array concatenation or stacking. It is useful to always state explicitly in which direction we want to stack the arrays. For example in the following example we are stacking the arrays vertically. 1.d Concatenate numpy arrays Step14: EXERCISE Step15: Numpy also includes the functions hstack() and vstack() to concatenate by columns or rows, respectively. EXERCISE Step16: 1.e Matrix multiplications Finally numpy provides all the basic matrix operations Step17: EXERCISE Step18: 1.f Other useful functions Some functions let you Step19: Compute the maximum, minimum or, even, the positions of the maximum or minimum Step20: Sort a vector Step21: Calculate some statistical parameters Step22: Obtain random numbers Step23: In addition to numpy we have a more advanced library for scientific computing, scipy. Scipy includes modules for linear algebra, signal processing, fourier transform, ... 2. Matplotlib One important step of data analysis is data visualization. In python the simplest plotting library is matplotlib and its sintax is similar to Matlab plotting library. In the next example we plot two sinusoids with different simbols. Step24: 3. Classification example One of the main machine learning problems is clasification. In the following example we will load and visualize a dataset that can be used in a clasification problem. The iris dataset is the most popular pattern recognition dataset. And it consists on 150 instances of 4 features of iris flowers Step25: In the previous code we have saved the features in matrix X and the class labels in the vector labels. Both are 2D numpy arrays. We are also printing the shapes of each variable (see that we can also use array_name.shape to get the shape, apart from function shape( )). This shape checking is good to see if we are not making mistakes. 3.2 Visualizing the data Extract the first two features of the data (sepal length and width) and plot the first versus the second in a figure, use a different color for the data corresponding to different classes. First of all, you probably want to split the data according to each class label. Step26: According to this plot, which classes seem more difficult to distinguish? 4. Regression example Now that we know how to load some data and visualize it we will try to solve a simple regression task. Our objective in this example is to predict the crime rates in different areas of the US using some socio-demographic data. This dataset has 127 socioeconomic variables, of different nature Step27: Take the columns (5,6,17) of the data and save them in a matrix X_com. This will be our input data. Convert this array into a float array. The shape should be (1994,3) EXERCISE Step28: EXERCISE Step29: 4.3 Train/Test splitting Now we are about to start doing machine learning. But, first of all, we have to separate our data between train and test. The train data will be used to adjust the parameters of our model (train). The test data will be used to evaluate our model. EXERCISE Step30: 4.4 Normalization Most machine learning algorithms require that the data is standarized (mean=0, standard deviation= 1). Scikit-learn provides a tool to do that in the object sklearn.preprocessing.StandardScaler EXERCISE Step31: 4.5 Training We will use two different K-NN regressors for this example. One with K (n_neighbors) = 1 and the other with K=7. Read the API and this example to understand how to fit the model. EXERCISE Step32: 4.6 Prediction and evaluation Now use the two models you have trained to predict the test output y_test. Then evaluate it measuring the Mean-Square Error (MSE). The formula of MSE is $$\text{MSE}=\frac{1}{K}\sum_{k=1}^{K}(\hat{y}-y)^2$$ The answer should be Step33: 4.7 Saving the results Finally we will save all our prediction for the model with K=1 in a csv file. To do so you can use the following code Snippet, where y_pred are the predicted output values for test.
Python Code: %matplotlib inline # The line above is needed to include the figures in this notebook, you can remove it if you work with a normal script import numpy as np import csv import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import StandardScaler from sklearn.cross_validation import train_test_split Explanation: Lab of data analysis with python In this lab we will introduce some of the modules that we will use in the rest of the labs of the course. The usual beginning of any python module is a list of import statements. In most of our files we will use the following modules: numpy: The basic scientific computing library. csv: Used for input/output using comma separated values files, one of the standard formats in data management. matplotlib: Used for plotting figures and graphs. sklearn: Scikit-learn is the machine learning library for python. End of explanation my_array = np.array([[1, 2],[3, 4]]) print my_array print np.shape(my_array) Explanation: 1. NUMPY The numpy module is useful for scientific computing in Python. 1.a Create numpy arrays The main data structure in numpy is the n-dimensional array. You can define a numpy array from a list or a list or lists. Python will try to build it with the appropiate dimensions. You can check the dimensions of the array with shape() End of explanation my_array2 = np.array([[1, 2, 3],[4, 5, 6]]) print my_array2 print np.shape(my_array2) Explanation: Define a new 3x2 array named my_array2 with [1, 2, 3] in the first row and [4,5,6] in the second. Check the dimensions of the array. End of explanation my_new_array = np.arange(3,11,2) print my_new_array Explanation: Until now, we have created arrays defining their elements. But you can also create it defining the range End of explanation A1 = np.zeros((3,4)) print A1 A2 = np.ones((2,6)) print A2 A3 = np.eye(5) print A3 Explanation: Check the functions np.linspace, np.logspace and np.meshgrid which let you create more sophisticated ranges You can create numpy arrays in several ways. For example numpy provides a number of functions to create special types of matrices. Create 3 arrays usings ones, zeros and eye. If you have any doubt about the parameters of the functions have a look at the help with the function help( ). End of explanation a = np.array([0,1,2,3,4,5]) print a*2 print a**2 Explanation: 1.b Elementwise operations One of the main advantages of numpy arrays is that operations are propagated to the individual elements of the array End of explanation [1,2,3,4,5]*2 Explanation: Compare this with operations over python lists: End of explanation x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) print x[1:7:2] # start:stop:step print x[-2:10] # confusing, avoid negative values... print x[8:10] # equivalent print x[-3:3:-1] # confusing, avoid negative values... print x[7:3:-1] # equivalent print x[:7] # when start value is not indicated, it takes the first print x[5:] # when stop value is not indicated, it takes the last print x[:] # select "from first to last" == "all" Explanation: 1.c Indexing numpy arrays There are several operations you can do with numpy arrays similar to the ones you can do with matrices in Matlab. One of the most important is slicing (we saw it when we talked about lists). It consists in extracting some subarray from the array. End of explanation my_array = np.array([[1, 2],[3, 4]]) my_array3 = my_array[:,1] print my_array3 print my_array[1,0:2] print my_array3.shape print my_array3.ndim Explanation: One important thing to consider when you do slicing are the dimensions of the output array. Run the following cell and check the shape of my_array3. Check also its dimension with ndim function: End of explanation my_array3 = my_array3[:,np.newaxis] Explanation: If you have correctly computed it you will see that my_array3 is one dimensional. Sometimes this can be a problem when you are working with 2D matrixes (and vectors can be considered as 2D matrixes with one of the sizes equal to 1). To solve this, numpy provides the newaxis constant. End of explanation print my_array3.shape print my_array3.ndim Explanation: Check again the shape and dimension of my_array3 End of explanation x = np.array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) # We want to select elements of rows [0, 3] and columns [0, 2] rows = np.array([[0, 0],[3, 3]], dtype=np.intp) columns = np.array([[0, 2],[0, 2]], dtype=np.intp) print x[rows, columns] Explanation: When you try to index different rows and columns of a matrix you have to define it element by element. For example, consider that we want to select elements of rows [0, 3] and columns [0, 2], we have to define the row 0 index for each column to be selected.... End of explanation # With ix_ rows = np.array([0, 3], dtype=np.intp) columns = np.array([0, 2], dtype=np.intp) print np.ix_(rows, columns) print x[np.ix_(rows, columns)] Explanation: To make this easier, we can use the ix_ function which automatically creates all the needed indexes End of explanation my_array = np.array([[1, 2],[3, 4]]) my_array2 = np.array([[11, 12],[13, 14]]) print np.concatenate( (my_array, my_array2) , axis=1) # columnwise concatenation Explanation: Another important array manipulation method is array concatenation or stacking. It is useful to always state explicitly in which direction we want to stack the arrays. For example in the following example we are stacking the arrays vertically. 1.d Concatenate numpy arrays End of explanation print <COMPLETAR> Explanation: EXERCISE: Concatenate the first column of my_array and the second column of my_array2 The answer should be: <pre><code> [[ 1 12] [ 3 14]] </code></pre> End of explanation print <COMPLETAR> Explanation: Numpy also includes the functions hstack() and vstack() to concatenate by columns or rows, respectively. EXERCISE: Use these functions to concatenate my_array and my_array2 by rows and columns. The answer should be: <pre><code> [[ 1 12] [ 3 14]] </code></pre> End of explanation x=np.array([1,2,3]) y=np.array([1,2,3]) print x*y #Element-wise print np.multiply(x,y) #Element-wise print sum(x*y) # dot product print #Fast matrix product Explanation: 1.e Matrix multiplications Finally numpy provides all the basic matrix operations: multiplications, dot products, ... You can find information about them in the Numpy manual End of explanation x=[1,2,3] dot_product_x = <COMPLETAR> print dot_product_x Explanation: EXERCISE: Try to compute the dot product with python arrays: The answer should be: <pre><code> 14 </code></pre> End of explanation x = np.array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) print x print np.where(x>4) print np.nonzero(x>4) Explanation: 1.f Other useful functions Some functions let you: * Find elements holding a condition End of explanation print a.argmax(axis=0) print a.max(axis=0) # a.min(axis=0), a.argmin(axis=0) Explanation: Compute the maximum, minimum or, even, the positions of the maximum or minimum End of explanation a = np.array([[1,4], [3,1]]) print a a.sort(axis=1) print a a.sort(axis=0) b = a print b Explanation: Sort a vector End of explanation x = np.array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) print x.mean(axis=0) print x.var(axis=0) print x.std(axis=0) Explanation: Calculate some statistical parameters End of explanation np.random.seed(0) perm = np.random.permutation(100) perm[:10] Explanation: Obtain random numbers End of explanation t = np.arange(0.0, 1.0, 0.05) a1 = np.sin(2*np.pi*t) a2 = np.sin(4*np.pi*t) plt.figure() ax1 = plt.subplot(211) ax1.plot(t,a1) plt.xlabel('t') plt.ylabel('a_1(t)') ax2 = plt.subplot(212) ax2.plot(t,a2, 'r.') plt.xlabel('t') plt.ylabel('a_2(t)') plt.show() Explanation: In addition to numpy we have a more advanced library for scientific computing, scipy. Scipy includes modules for linear algebra, signal processing, fourier transform, ... 2. Matplotlib One important step of data analysis is data visualization. In python the simplest plotting library is matplotlib and its sintax is similar to Matlab plotting library. In the next example we plot two sinusoids with different simbols. End of explanation # Open up the csv file in to a Python object csv_file_object = csv.reader(open('data/iris_data.csv', 'rb')) datalist = [] # Create a variable called 'data'. for row in csv_file_object: # Run through each row in the csv file, datalist.append(row) # adding each row to the data variable data = np.array(datalist) # Then convert from a list to an array # Be aware that each item is currently # a string in this format print np.shape(data) X = data[:,0:-1] label = data[:,-1,np.newaxis] print X.shape print label.shape Explanation: 3. Classification example One of the main machine learning problems is clasification. In the following example we will load and visualize a dataset that can be used in a clasification problem. The iris dataset is the most popular pattern recognition dataset. And it consists on 150 instances of 4 features of iris flowers: sepal length in cm sepal width in cm petal length in cm petal width in cm The objective is usually to distinguish three different classes of iris plant: Iris setosa, Iris versicolor and Iris virginica. 3.1 Loading the data We give you the data in .csv format. In each line of the csv file we have the 4 real-valued features of each instance and then a string defining the class of that instance: Iris-setosa, Iris-versicolor or Iris-virginica. There are 150 instances of flowers (lines) in the csv file. Let's se how we can load the data in an array. End of explanation x = X[:,0:2] #print len(set(list(label))) list_label = [l[0] for l in label] labels = list(set(list_label)) colors = ['bo', 'ro', 'go'] #print list_label plt.figure() for i, l in enumerate(labels): pos = np.where(np.array(list_label) == l) plt.plot(x[pos,0], x[pos,1], colors[i]) plt.xlabel('Sepal length') plt.ylabel('Sepal width') Explanation: In the previous code we have saved the features in matrix X and the class labels in the vector labels. Both are 2D numpy arrays. We are also printing the shapes of each variable (see that we can also use array_name.shape to get the shape, apart from function shape( )). This shape checking is good to see if we are not making mistakes. 3.2 Visualizing the data Extract the first two features of the data (sepal length and width) and plot the first versus the second in a figure, use a different color for the data corresponding to different classes. First of all, you probably want to split the data according to each class label. End of explanation csv_file_object = csv.reader(open('communities.csv', 'rb')) datalist = [] for row in csv_file_object: datalist.append(row) data = np.array(datalist) print np.shape(data) Explanation: According to this plot, which classes seem more difficult to distinguish? 4. Regression example Now that we know how to load some data and visualize it we will try to solve a simple regression task. Our objective in this example is to predict the crime rates in different areas of the US using some socio-demographic data. This dataset has 127 socioeconomic variables, of different nature: categorical, integer, real, and for some of them there are also missing data (check wikipedia). This is usually a problem when training machine learning models, but we will ignore that problem and take only a small number of variables that we think can be useful for regression and which have no missing values. population: population for community householdsize: mean people per household medIncome: median household income The objective in the regresion problem is another real value that contains the total number of violent crimes per 100K population. 4.1 Loading the data First of all, load the data from file communities.csv in a new array. This array should have 1994 rows (instances) and 128 columns. End of explanation X_com = <COMPLETAR> Nrow = np.shape(data)[0] Ncol = np.shape(data)[1] print X_com.shape y_com = <COMPLETAR> print y_com.shape Explanation: Take the columns (5,6,17) of the data and save them in a matrix X_com. This will be our input data. Convert this array into a float array. The shape should be (1994,3) EXERCISE: Get the last column of the data and save it in an array called y_com. Convert this matrix into a float array. Check that the shape is (1994,1) . End of explanation plt.figure() plt.plot(<COMPLETAR>, 'bo') plt.xlabel('X_com[0]') plt.ylabel('y_com') plt.figure() plt.plot(<COMPLETAR>, 'ro') plt.xlabel('X_com[1]') plt.ylabel('y_com') plt.figure() plt.plot(<COMPLETAR>, 'go') plt.xlabel('X_com[2]') plt.ylabel('y_com') Explanation: EXERCISE: Plot each variable in X_com versus y_com to have a first (partial) view of the data. End of explanation from sklearn.cross_validation import train_test_split Random_state = 131 X_train, X_test, y_train, y_test = train_test_split(<COMPLETAR>, <COMPLETAR>, test_size=<COMPLETAR>, random_state=Random_state) print X_train.shape print X_test.shape print y_train.shape print y_test.shape Explanation: 4.3 Train/Test splitting Now we are about to start doing machine learning. But, first of all, we have to separate our data between train and test. The train data will be used to adjust the parameters of our model (train). The test data will be used to evaluate our model. EXERCISE: Use sklearn.cross_validation.train_test_split to split the data in train (60%) and test (40%). Save the results in variables named X_train, X_test, y_train, y_test. End of explanation print "Values before normalizing:\n" print <COMPLETAR>.mean(axis=0) print X_test.<COMPLETAR> print <COMPLETAR>.std(axis=0) print X_test.<COMPLETAR> # from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(<COMPLETAR>) # computes mean and std using the train dataset X_train_normalized = scaler.transform(<COMPLETAR>) # applies the normalization to train X_test_normalized = scaler.transform(<COMPLETAR>) # applies the normalization to test print "\nValues after normalizing:\n" print <COMPLETAR> print <COMPLETAR> print <COMPLETAR> print <COMPLETAR> Explanation: 4.4 Normalization Most machine learning algorithms require that the data is standarized (mean=0, standard deviation= 1). Scikit-learn provides a tool to do that in the object sklearn.preprocessing.StandardScaler EXERCISE: Compute and print the mean and standard deviation of the data. Then normalize the data, such that it has zero mean and unit standard deviation, and check the results. The answer should be: <pre><code> Values before normalizing: [ 0.06044314 0.46025084 0.36419732] [ 0.0533208 0.46810777 0.35651629] [ 0.13651131 0.16684793 0.21110026] [ 0.11073518 0.15868603 0.20651214] Values after normalizing: [ -6.99180587e-16 -2.18145828e-17 1.69596778e-15] [-0.052174 0.04709039 -0.03638571] [ 1. 1. 1.] [ 0.81117952 0.95108182 0.97826567] </code></pre> End of explanation from sklearn import neighbors knn1_model = neighbors.KNeighborsRegressor(<COMPLETAR>) knn1_model.fit(<COMPLETAR>.astype(np.float), <COMPLETAR>.astype(np.float)) knn7_model = neighbors.KNeighborsRegressor(<COMPLETAR>) knn7_model.fit(<COMPLETAR>.astype(np.float), <COMPLETAR>.astype(np.float)) print knn1_model print knn7_model Explanation: 4.5 Training We will use two different K-NN regressors for this example. One with K (n_neighbors) = 1 and the other with K=7. Read the API and this example to understand how to fit the model. EXERCISE: Train the two models described above with default parameters. The answer should be: <pre><code> KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=1, p=2, weights='uniform') KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=7, p=2, weights='uniform') </code></pre> End of explanation y_predict_1 = knn1_model.predict(<COMPLETAR>.astype(np.float)) mse1 = <COMPLETAR> print " The MSE value for model1 is %f\n " % mse1 y_predict_7 = knn7_model.predict(<COMPLETAR>.astype(np.float)) mse7 = <COMPLETAR> print " The MSE value for model7 is %f\n " % mse7 print "First 5 prediction values with model 1:\n" print <COMPLETAR> print "\nFirst 5 prediction values with model 7:\n" print <COMPLETAR> Explanation: 4.6 Prediction and evaluation Now use the two models you have trained to predict the test output y_test. Then evaluate it measuring the Mean-Square Error (MSE). The formula of MSE is $$\text{MSE}=\frac{1}{K}\sum_{k=1}^{K}(\hat{y}-y)^2$$ The answer should be: <pre><code> The MSE value for model1 is 0.060090 The MSE value for model7 is 0.038202 First 5 prediction values with model 1: [[ 0.51] [ 0.17] [ 0.46] [ 0.2 ] [ 0.34]] First 5 prediction values with model 7: [[ 0.40857143] [ 0.21285714] [ 0.27428571] [ 0.32 ] [ 0.36857143]] </code></pre> End of explanation y_pred = y_predict_1.squeeze() csv_file_object = csv.writer(open('output.csv', 'wb')) for index, y_aux in enumerate(<COMPLETAR>): # Run through each row in the csv file, csv_file_object.writerow([index,y_aux]) Explanation: 4.7 Saving the results Finally we will save all our prediction for the model with K=1 in a csv file. To do so you can use the following code Snippet, where y_pred are the predicted output values for test. End of explanation
3,024
Given the following text description, write Python code to implement the functionality described below step by step Description: Automatic Differentiation with autograd Technically, autograd is layer that wraps and extends numpy. Hence it is most often imported as follows Step1: The function sigmoid implements the sigmoid function, which is defined as $$ \texttt{S}(x) = \frac{1}{1 + \mathrm{e}^{-x}}. $$ Step2: The function S_prime computes the derivative of the Sigmoid function. We implement it using automatic differentiation. This is the closest thing to magic I have seen yet. Step3: In the lecture we have seen that the following identity holds for the derivative of the sigmoid function
Python Code: import autograd import autograd.numpy as np Explanation: Automatic Differentiation with autograd Technically, autograd is layer that wraps and extends numpy. Hence it is most often imported as follows: End of explanation def S(x): return 1.0 / (1.0 + np.exp(-x)) def Q(x): return np.multiply(x, x) Q_grad = autograd.grad(Q) Q_grad(1.0) Explanation: The function sigmoid implements the sigmoid function, which is defined as $$ \texttt{S}(x) = \frac{1}{1 + \mathrm{e}^{-x}}. $$ End of explanation S_prime = autograd.grad(S) Explanation: The function S_prime computes the derivative of the Sigmoid function. We implement it using automatic differentiation. This is the closest thing to magic I have seen yet. End of explanation for x in np.arange(-2.0, 2.0, 0.1): print(S_prime(x)- S(x) * (1.0 - S(x))) Explanation: In the lecture we have seen that the following identity holds for the derivative of the sigmoid function: $$ S'(x) = S(x) \cdot \bigl(1 - S(x)\bigr) $$ Let's test this identity. End of explanation
3,025
Given the following text description, write Python code to implement the functionality described below step by step Description: <a href='http Step1: The Data There are some fake data csv files you can read in as dataframes Step2: Style Sheets Matplotlib has style sheets you can use to make your plots look a little nicer. These style sheets include plot_bmh,plot_fivethirtyeight,plot_ggplot and more. They basically create a set of style rules that your plots follow. I recommend using them, they make all your plots have the same look and feel more professional. You can even create your own if you want your company's plots to all have the same look (it is a bit tedious to create on though). Here is how to use them. Before plt.style.use() your plots look like this Step3: Call the style Step4: Now your plots look like this Step5: Let's stick with the ggplot style and actually show you how to utilize pandas built-in plotting capabilities! Plot Types There are several plot types built-in to pandas, most of them statistical plots by nature Step6: Barplots Step7: Histograms Step8: Line Plots Step9: Scatter Plots Step10: You can use c to color based off another column value Use cmap to indicate colormap to use. For all the colormaps, check out Step11: Or use s to indicate size based off another column. s parameter needs to be an array, not just the name of a column Step12: BoxPlots Step13: Hexagonal Bin Plot Useful for Bivariate Data, alternative to scatterplot Step14: Kernel Density Estimation plot (KDE)
Python Code: import numpy as np import pandas as pd %matplotlib inline Explanation: <a href='http://www.pieriandata.com'> <img src='../../Pierian_Data_Logo.png' /></a> Pandas Built-in Data Visualization In this lecture we will learn about pandas built-in capabilities for data visualization! It's built-off of matplotlib, but it baked into pandas for easier usage! Let's take a look! Imports End of explanation df1 = pd.read_csv('df1', index_col = 0) df2 = pd.read_csv('df2') Explanation: The Data There are some fake data csv files you can read in as dataframes: End of explanation df1['A'].hist() Explanation: Style Sheets Matplotlib has style sheets you can use to make your plots look a little nicer. These style sheets include plot_bmh,plot_fivethirtyeight,plot_ggplot and more. They basically create a set of style rules that your plots follow. I recommend using them, they make all your plots have the same look and feel more professional. You can even create your own if you want your company's plots to all have the same look (it is a bit tedious to create on though). Here is how to use them. Before plt.style.use() your plots look like this: End of explanation import matplotlib.pyplot as plt plt.style.use('ggplot') Explanation: Call the style: End of explanation df1['A'].hist() plt.style.use('bmh') df1['A'].hist() plt.style.use('dark_background') df1['A'].hist() plt.style.use('fivethirtyeight') df1['A'].hist() plt.style.use('ggplot') Explanation: Now your plots look like this: End of explanation df2.plot.area(alpha = 0.4) Explanation: Let's stick with the ggplot style and actually show you how to utilize pandas built-in plotting capabilities! Plot Types There are several plot types built-in to pandas, most of them statistical plots by nature: df.plot.area df.plot.barh df.plot.density df.plot.hist df.plot.line df.plot.scatter df.plot.bar df.plot.box df.plot.hexbin df.plot.kde df.plot.pie You can also just call df.plot(kind='hist') or replace that kind argument with any of the key terms shown in the list above (e.g. 'box','barh', etc..) Let's start going through them! Area End of explanation df2.head() df2.plot.bar() df2.plot.bar(stacked = True) Explanation: Barplots End of explanation df1['A'].plot.hist(bins = 50) Explanation: Histograms End of explanation df1.plot.line(x = df1.index, y = 'B', figsize = (12,3), lw = 1) Explanation: Line Plots End of explanation df1.plot.scatter(x = 'A', y = 'B') Explanation: Scatter Plots End of explanation df1.plot.scatter(x = 'A', y = 'B', c = 'C', cmap = 'coolwarm') Explanation: You can use c to color based off another column value Use cmap to indicate colormap to use. For all the colormaps, check out: http://matplotlib.org/users/colormaps.html End of explanation df1.plot.scatter(x = 'A', y = 'B', s = df1['C']*200) Explanation: Or use s to indicate size based off another column. s parameter needs to be an array, not just the name of a column: End of explanation df2.plot.box() # Can also pass a by= argument for groupby Explanation: BoxPlots End of explanation df = pd.DataFrame(np.random.randn(1000, 2), columns = ['a', 'b']) df.plot.hexbin(x = 'a', y = 'b', gridsize = 25, cmap = 'Oranges') Explanation: Hexagonal Bin Plot Useful for Bivariate Data, alternative to scatterplot: End of explanation df2['a'].plot.kde() df2.plot.density() Explanation: Kernel Density Estimation plot (KDE) End of explanation
3,026
Given the following text description, write Python code to implement the functionality described below step by step Description: Array manipulation routines Step1: Q1. Let x be a ndarray [10, 10, 3] with all elements set to one. Reshape x so that the size of the second dimension equals 150. Step2: Q2. Let x be array [[1, 2, 3], [4, 5, 6]]. Convert it to [1 4 2 5 3 6]. Step3: Q3. Let x be array [[1, 2, 3], [4, 5, 6]]. Get the 5th element. Step4: Q4. Let x be an arbitrary 3-D array of shape (3, 4, 5). Permute the dimensions of x such that the new shape will be (4,3,5). Step5: Q5. Let x be an arbitrary 2-D array of shape (3, 4). Permute the dimensions of x such that the new shape will be (4,3). Step6: Q5. Let x be an arbitrary 2-D array of shape (3, 4). Insert a nex axis such that the new shape will be (3, 1, 4). Step7: Q6. Let x be an arbitrary 3-D array of shape (3, 4, 1). Remove a single-dimensional entries such that the new shape will be (3, 4). Step8: Q7. Lex x be an array <br/> [[ 1 2 3]<br/> [ 4 5 6].<br/><br/> and y be an array <br/> [[ 7 8 9]<br/> [10 11 12]].<br/> Concatenate x and y so that a new array looks like <br/>[[1, 2, 3, 7, 8, 9], <br/>[4, 5, 6, 10, 11, 12]]. Step9: Q8. Lex x be an array <br/> [[ 1 2 3]<br/> [ 4 5 6].<br/><br/> and y be an array <br/> [[ 7 8 9]<br/> [10 11 12]].<br/> Concatenate x and y so that a new array looks like <br/>[[ 1 2 3]<br/> [ 4 5 6]<br/> [ 7 8 9]<br/> [10 11 12]] Step10: Q8. Let x be an array [1 2 3] and y be [4 5 6]. Convert it to [[1, 4], [2, 5], [3, 6]]. Step11: Q9. Let x be an array [[1],[2],[3]] and y be [[4], [5], [6]]. Convert x to [[[1, 4]], [[2, 5]], [[3, 6]]]. Step12: Q10. Let x be an array [1, 2, 3, ..., 9]. Split x into 3 arrays, each of which has 4, 2, and 3 elements in the original order. Step13: Q11. Let x be an array<br/> [[[ 0., 1., 2., 3.],<br/> [ 4., 5., 6., 7.]],<br/> [[ 8., 9., 10., 11.],<br/> [ 12., 13., 14., 15.]]].<br/> Split it into two such that the first array looks like<br/> [[[ 0., 1., 2.],<br/> [ 4., 5., 6.]],<br/> [[ 8., 9., 10.],<br/> [ 12., 13., 14.]]].<br/> and the second one look like Step14: Q12. Let x be an array <br /> [[ 0., 1., 2., 3.],<br> [ 4., 5., 6., 7.],<br> [ 8., 9., 10., 11.],<br> [ 12., 13., 14., 15.]].<br> Split it into two arrays along the second axis. Step15: Q13. Let x be an array <br /> [[ 0., 1., 2., 3.],<br> [ 4., 5., 6., 7.],<br> [ 8., 9., 10., 11.],<br> [ 12., 13., 14., 15.]].<br> Split it into two arrays along the first axis. Step16: Q14. Let x be an array [0, 1, 2]. Convert it to <br/> [[0, 1, 2, 0, 1, 2],<br/> [0, 1, 2, 0, 1, 2]]. Step17: Q15. Let x be an array [0, 1, 2]. Convert it to <br/> [0, 0, 1, 1, 2, 2]. Step18: Q16. Let x be an array [0, 0, 0, 1, 2, 3, 0, 2, 1, 0].<br/> remove the leading the trailing zeros. Step19: Q17. Let x be an array [2, 2, 1, 5, 4, 5, 1, 2, 3]. Get two arrays of unique elements and their counts. Step20: Q18. Lex x be an array <br/> [[ 1 2]<br/> [ 3 4].<br/> Flip x along the second axis. Step21: Q19. Lex x be an array <br/> [[ 1 2]<br/> [ 3 4].<br/> Flip x along the first axis. Step22: Q20. Lex x be an array <br/> [[ 1 2]<br/> [ 3 4].<br/> Rotate x 90 degrees counter-clockwise. Step23: Q21 Lex x be an array <br/> [[ 1 2 3 4]<br/> [ 5 6 7 8].<br/> Shift elements one step to right along the second axis.
Python Code: import numpy as np np.__version__ Explanation: Array manipulation routines End of explanation x = np.ones([10, 10, 3]) out = np.reshape(x, [-1, 150]) print out assert np.allclose(out, np.ones([10, 10, 3]).reshape([-1, 150])) Explanation: Q1. Let x be a ndarray [10, 10, 3] with all elements set to one. Reshape x so that the size of the second dimension equals 150. End of explanation x = np.array([[1, 2, 3], [4, 5, 6]]) out1 = np.ravel(x, order='F') out2 = x.flatten(order="F") assert np.allclose(out1, out2) print out1 Explanation: Q2. Let x be array [[1, 2, 3], [4, 5, 6]]. Convert it to [1 4 2 5 3 6]. End of explanation x = np.array([[1, 2, 3], [4, 5, 6]]) out1 = x.flat[4] out2 = np.ravel(x)[4] assert np.allclose(out1, out2) print out1 Explanation: Q3. Let x be array [[1, 2, 3], [4, 5, 6]]. Get the 5th element. End of explanation x = np.zeros((3, 4, 5)) out1 = np.swapaxes(x, 1, 0) out2 = x.transpose([1, 0, 2]) assert out1.shape == out2.shape print out1.shape Explanation: Q4. Let x be an arbitrary 3-D array of shape (3, 4, 5). Permute the dimensions of x such that the new shape will be (4,3,5). End of explanation x = np.zeros((3, 4)) out1 = np.swapaxes(x, 1, 0) out2 = x.transpose() out3 = x.T assert out1.shape == out2.shape == out3.shape print out1.shape Explanation: Q5. Let x be an arbitrary 2-D array of shape (3, 4). Permute the dimensions of x such that the new shape will be (4,3). End of explanation x = np.zeros((3, 4)) print np.expand_dims(x, axis=1).shape Explanation: Q5. Let x be an arbitrary 2-D array of shape (3, 4). Insert a nex axis such that the new shape will be (3, 1, 4). End of explanation x = np.zeros((3, 4, 1)) print np.squeeze(x).shape Explanation: Q6. Let x be an arbitrary 3-D array of shape (3, 4, 1). Remove a single-dimensional entries such that the new shape will be (3, 4). End of explanation x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.array([[7, 8, 9], [10, 11, 12]]) out1 = np.concatenate((x, y), 1) out2 = np.hstack((x, y)) assert np.allclose(out1, out2) print out2 Explanation: Q7. Lex x be an array <br/> [[ 1 2 3]<br/> [ 4 5 6].<br/><br/> and y be an array <br/> [[ 7 8 9]<br/> [10 11 12]].<br/> Concatenate x and y so that a new array looks like <br/>[[1, 2, 3, 7, 8, 9], <br/>[4, 5, 6, 10, 11, 12]]. End of explanation x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.array([[7, 8, 9], [10, 11, 12]]) out1 = np.concatenate((x, y), 0) out2 = np.vstack((x, y)) assert np.allclose(out1, out2) print out2 Explanation: Q8. Lex x be an array <br/> [[ 1 2 3]<br/> [ 4 5 6].<br/><br/> and y be an array <br/> [[ 7 8 9]<br/> [10 11 12]].<br/> Concatenate x and y so that a new array looks like <br/>[[ 1 2 3]<br/> [ 4 5 6]<br/> [ 7 8 9]<br/> [10 11 12]] End of explanation x = np.array((1,2,3)) y = np.array((4,5,6)) out1 = np.column_stack((x, y)) out2 = np.squeeze(np.dstack((x, y))) out3 = np.vstack((x, y)).T assert np.allclose(out1, out2) assert np.allclose(out2, out3) print out1 Explanation: Q8. Let x be an array [1 2 3] and y be [4 5 6]. Convert it to [[1, 4], [2, 5], [3, 6]]. End of explanation x = np.array([[1],[2],[3]]) y = np.array([[4],[5],[6]]) out = np.dstack((x, y)) print out Explanation: Q9. Let x be an array [[1],[2],[3]] and y be [[4], [5], [6]]. Convert x to [[[1, 4]], [[2, 5]], [[3, 6]]]. End of explanation x = np.arange(1, 10) print np.split(x, [4, 6]) Explanation: Q10. Let x be an array [1, 2, 3, ..., 9]. Split x into 3 arrays, each of which has 4, 2, and 3 elements in the original order. End of explanation x = np.arange(16).reshape(2, 2, 4) out1 = np.split(x, [3],axis=2) out2 = np.dsplit(x, [3]) assert np.allclose(out1[0], out2[0]) assert np.allclose(out1[1], out2[1]) print out1 Explanation: Q11. Let x be an array<br/> [[[ 0., 1., 2., 3.],<br/> [ 4., 5., 6., 7.]],<br/> [[ 8., 9., 10., 11.],<br/> [ 12., 13., 14., 15.]]].<br/> Split it into two such that the first array looks like<br/> [[[ 0., 1., 2.],<br/> [ 4., 5., 6.]],<br/> [[ 8., 9., 10.],<br/> [ 12., 13., 14.]]].<br/> and the second one look like:<br/> [[[ 3.],<br/> [ 7.]],<br/> [[ 11.],<br/> [ 15.]]].<br/> End of explanation x = np.arange(16).reshape((4, 4)) out1 = np.hsplit(x, 2) out2 = np.split(x, 2, 1) assert np.allclose(out1[0], out2[0]) assert np.allclose(out1[1], out2[1]) print out1 Explanation: Q12. Let x be an array <br /> [[ 0., 1., 2., 3.],<br> [ 4., 5., 6., 7.],<br> [ 8., 9., 10., 11.],<br> [ 12., 13., 14., 15.]].<br> Split it into two arrays along the second axis. End of explanation x = np.arange(16).reshape((4, 4)) out1 = np.vsplit(x, 2) out2 = np.split(x, 2, 0) assert np.allclose(out1[0], out2[0]) assert np.allclose(out1[1], out2[1]) print out1 Explanation: Q13. Let x be an array <br /> [[ 0., 1., 2., 3.],<br> [ 4., 5., 6., 7.],<br> [ 8., 9., 10., 11.],<br> [ 12., 13., 14., 15.]].<br> Split it into two arrays along the first axis. End of explanation x = np.array([0, 1, 2]) out1 = np.tile(x, [2, 2]) out2 = np.resize(x, [2, 6]) assert np.allclose(out1, out2) print out1 Explanation: Q14. Let x be an array [0, 1, 2]. Convert it to <br/> [[0, 1, 2, 0, 1, 2],<br/> [0, 1, 2, 0, 1, 2]]. End of explanation x = np.array([0, 1, 2]) print np.repeat(x, 2) Explanation: Q15. Let x be an array [0, 1, 2]. Convert it to <br/> [0, 0, 1, 1, 2, 2]. End of explanation x = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) out = np.trim_zeros(x) print out Explanation: Q16. Let x be an array [0, 0, 0, 1, 2, 3, 0, 2, 1, 0].<br/> remove the leading the trailing zeros. End of explanation x = np.array([2, 2, 1, 5, 4, 5, 1, 2, 3]) u, indices = np.unique(x, return_counts=True) print u, indices Explanation: Q17. Let x be an array [2, 2, 1, 5, 4, 5, 1, 2, 3]. Get two arrays of unique elements and their counts. End of explanation x = np.array([[1,2], [3,4]]) out1 = np.fliplr(x) out2 = x[:, ::-1] assert np.allclose(out1, out2) print out1 Explanation: Q18. Lex x be an array <br/> [[ 1 2]<br/> [ 3 4].<br/> Flip x along the second axis. End of explanation x = np.array([[1,2], [3,4]]) out1 = np.flipud(x) out2 = x[::-1, :] assert np.allclose(out1, out2) print out1 Explanation: Q19. Lex x be an array <br/> [[ 1 2]<br/> [ 3 4].<br/> Flip x along the first axis. End of explanation x = np.array([[1,2], [3,4]]) out = np.rot90(x) print out Explanation: Q20. Lex x be an array <br/> [[ 1 2]<br/> [ 3 4].<br/> Rotate x 90 degrees counter-clockwise. End of explanation x = np.arange(1, 9).reshape([2, 4]) print np.roll(x, 1, axis=1) Explanation: Q21 Lex x be an array <br/> [[ 1 2 3 4]<br/> [ 5 6 7 8].<br/> Shift elements one step to right along the second axis. End of explanation
3,027
Given the following text description, write Python code to implement the functionality described below step by step Description: 베이지안 모수 추정의 예 베이지안 모수 추정(Bayesian parameter estimation) 방법은 모수의 값에 해당하는 특정한 하나의 숫자를 계산하는 것이 아니라 모수의 값이 가질 수 있는 모든 가능성, 즉 모수의 분포를 계산하는 작업이다. 이때 계산된 모수의 분포를 표현 방법은 두 가지가 있다. 비모수적(non-parametric) 방법 샘플을 제시한 후 히스토그램와 같은 방법으로 임의의 분포를 표현한다. MCMC(Markov chain Monte Carlo)와 같은 몬테카를로 방법에서 사용한다. 세타가 될 수 있는 정보를 준다. 이거로 히스토그램을 그린다. 답이 될 수 있는 후보 정보를 주는 것이다. 수식으로 나타내기 힘든 분포가 있다. 가능한 것을 아예 다 줘서 히스토그램을 그려보면 어느 부분에 몰려 있다. 그러면 0.5에 몰려 있다면 0.5에 밀집되어 있다. 원래 모드를 찾아야 되는데 모드 찾기가 힘들다. 삐죽삐죽하기 때문에 찾기가 힘들어서 중앙값이나 평균값을 찾는 것이 편하다. 그게 세타에 대한 대푯값으로 보통 쓴다. 모수적(parametric) 방법 모수의 분포를 잘 알려진 확률 분포 모형을 사용하여 나타낸다. 이렇게 하면 모수를 나타내는 확률 분포 수식이 다시 모수(parameter)를 가지게 되는데 이를 hyper-parameter라고도 부른다. 모수적 방법은 결국 hypter-parameter의 값을 숫자로 계산하는 작업이 된다. 여기에서는 모수적 방법의 몇 가지 간단한 예를 보인다. 베이지안 모수 추정의 기본 원리 베이지안 모수 추정 방법은 다음 공식을 사용하여 모수의 분포 $p(\theta)$를 $p(\theta \mid x_{1},\ldots,x_{N})$ 로 갱신(update)하는 작업이다. $$ p(\theta \mid x_{1},\ldots,x_{N}) = \dfrac{p(x_{1},\ldots,x_{N} \mid \theta) \cdot p(\theta)}{p(x_{1},\ldots,x_{N})} \propto p(x_{1},\ldots,x_{N} \mid \theta ) \cdot p(\theta) $$ 이 식에서 $p(\theta)$ 는 사전(Prior) 분포라고 한다. 사전 분포는 베이지안 추정 작업을 하기 전에 이미 알고 있던 모수 $\theta$의 분포를 뜻한다. 아무런 지식이 없는 경우에는 보통 uniform 분포 $\text{Beta}(1,1)$나 0 을 중심으로하는 정규 분포 $\mathcal{N}(0, 1)$를 사용한다 $p(\theta \mid x_{1},\ldots,x_{N})$ 는 사후(Posterior) 분포라고 한다. 수학적으로는 데이터 $x_{1},\ldots,x_{N}$가 알려진 상태에서의 $\theta$에 대한 조건부 확률 분포이다. 우리가 베이지안 모수 추정 작업을 통해 구하고자 하는 것이 바로 이 사후 분포이다. $p(x_{1},\ldots,x_{N} \mid \theta)$ 분포는 우도(Likelihood) 분포라고 한다. 현재 우리가 알고 있는 값은 데이터 $x_{1},\ldots,x_{N}$ 이고 $\theta$가 미지수이다. 이와 반대로 $theta$를 알고 있는 상태에서의 데이터 $x_{1},\ldots,x_{N}$ 가 나올 조건부 확률 분포를 우도라고 한다. 베르누이 분포의 모수 추정 가장 단순한 이산 확률 분포인 베르누이 분포의 모수 $\theta$를 베이지안 추정법으로 추정해 본다. 베르누이 분포의 모수는 0부터 1사이의 값을 가지므로 사전 분포는 하이퍼 모수 $a=b=1$인 베타 분포로 한다. $$ P(\theta) \propto \theta^{a−1}(1−\theta)^{b−1} \;\;\; (a=1, b=1)$$ 데이터는 모두 독립적인 베르누이 분포의 곱이므로 우도는 다음과 같이 이항 분포가 된다. $$ p(x_{1},\ldots,x_{N} \mid \theta) = \prod_{i=1}^N \theta^{x_i} (1 - \theta)^{1-x_i} $$ 베이지안 규칙을 사용하여 사후 분포를 구하면 다음과 같이 갱신된 하이퍼 모수 $a'$, $b'$를 가지는 베타 분포가 된다. $$ \begin{eqnarray} p(\theta \mid x_{1},\ldots,x_{N}) &\propto & p(x_{1},\ldots,x_{N} \mid \theta) P(\theta) \ &=& \prod_{i=1}^N \theta^{x_i} (1 - \theta)^{1-x_i} \cdot \theta^{a−1}(1−\theta)^{b−1} \ &=& \theta^{\sum_{i=1}^N x_i + a−1} (1 - \theta)^{\sum_{i=1}^N (1-x_i) + b−1 } \ &=& \theta^{N_1 + a−1} (1 - \theta)^{N_0 + b−1 } \ &=& \theta^{a'−1} (1 - \theta)^{b'−1 } \ \end{eqnarray} $$ 이렇게 사전 분포와 사후 분포가 같은 확률 분포 모형을 가지게 하는 사전 분포를 conjugated prior 라고 한다. 갱신된 하이퍼 모수의 값은 다음과 같다. $$ a' = N_1 + a $$ $$ b' = N_0 + b $$ Step1: 조건부 독립 보통 조건부독립만 성립한다. 예를 들어 고등학교 남학생들만. 초등학교 1~고3까지. 어느 반 골랐는지 몰라. 반이 엄청 많은데 그 중 한 반을 골랐어. 고3일 수도 있고 초딩일수도 있어. 1번 학생 키 180, 2번 학생 50? 당연히 180 근처라고 생각할 것이다. 그래서 우리가 하는 것은 모두 독립이 아니다. 앞의 자료가 뒤에 영향을 미친다. 그런데 모수가 정해져 있는 경우 즉 조건부 독립이라고 했을 때, 고 3이라고 가정했을 때! 반 학생들의 키는 독립적이다. 조건부확률, 조건부 독립을 이해하는 것이 데이터 분석을 이해하는 것이다. 조건부 독립. 사실은 모든 독립은 조건부 독립이다. 이게 옳아. 예를 들어서 주사위의 경우. 주사위를 선택했다는 조건이 붙는 것이고. 무 조건부에서는 다음을 예측할 수 있다. 그래서 독립이 아니다. 무 조건부의 경우는 1~6주사위와 1~2 주사위가 있다면 99번 던졌는데 1과 2만 나왔다. 그래서 100번째에는 1이나 2로 예측을 할 수 있다. 그래서 조건부 안에서는 독립인 것이고 무조건부의 경우에는 독립이 아니다. 같은 클래스와 모수에서 뽑은 Data는 조건부 독립이다. 카테고리 분포의 모수 추정 여기까지는 실제로 안 쓰인다. 너무 쉽기 때문에. 원리를 이해해라. 실제로 쓰이는 것은 아랫단계부터 다음으로 클래스 갯수가 $K$인 카테고리 분포의 모수 $\theta$ 벡터를 베이지안 추정법으로 추정해 본다. 카테고리 분포의 모수의 각 원소는 모두 0부터 1사이의 값을 가지므로 사전 분포는 하이퍼 모수 $\alpha_i=\dfrac{1}{K}$인 디리클리 분포로 한다. $$ P(\theta) \propto \prod_{k=1}^K \theta_i^{\alpha_i - 1} \;\;\; (\alpha_i = 1/K , \; \text{ for all } i) $$ 데이터는 모두 독립적인 카테고리 분포의 곱이므로 우도는 다음과 같이 다항 분포가 된다. $$ p(x_{1},\ldots,x_{N} \mid \theta) = \prod_{i=1}^N \prod_{k=1}^K \theta_k^{x_{i,k}} $$ 베이지안 규칙을 사용하여 사후 분포를 구하면 다음과 같이 갱신된 하이퍼 모수 $\alpha'_i$를 가지는 디리클리 분포가 된다. $$ \begin{eqnarray} p(\theta \mid x_{1},\ldots,x_{N}) &\propto & p(x_{1},\ldots,x_{N} \mid \theta) P(\theta) \ &=& \prod_{i=1}^N \prod_{k=1}^K \theta_k^{x_{i,k}} \cdot \prod_{k=1}^K \theta_i^{\alpha_i - 1} \ &=& \prod_{k=1}^K \theta^{\sum_{i=1}^N x_i + \alpha_i − 1} \ &=& \prod_{k=1}^K \theta^{N_i + \alpha_i −1} \ &=& \prod_{k=1}^K \theta^{\alpha'_i −1} \ \end{eqnarray} $$ 이 경우에도 conjugated prior 임을 알 수 있다. 갱신된 하이퍼 모수의 값은 다음과 같다. $$ \alpha'_i = N_i + \alpha_i $$ Step2: 정규 분포의 기댓값 모수 추정 이번에는 정규 분포의 기댓값 모수를 베이지안 방법으로 추정한다. 분산 모수 $\sigma^2$은 알고 있다고 가정한다. 기댓값은 $-\infty$부터 $\infty$까지의 모든 수가 가능하기 때문에 모수의 사전 분포로는 정규 분포를 사용한다. $$ P(\mu) = N(\mu_0, \sigma^2_0) = \dfrac{1}{\sqrt{2\pi\sigma_0^2}} \exp \left(-\dfrac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)$$ 데이터는 모두 독립적인 정규 분포의 곱이므로 우도는 다음과 같이 된다. $$ P(x_{1},\ldots,x_{N} \mid \mu) = \prod_{i=1}^N N(x_i \mid \mu ) = \prod_{i=1}^N \dfrac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\dfrac{(x_i-\mu)^2}{2\sigma^2}\right) $$ $$ \begin{eqnarray} P(\theta \mid x_{1},\ldots,x_{N}) &\propto & P(x_{1},\ldots,x_{N} \mid \theta) P(\theta) \ &\propto & \exp \left(-\dfrac{(\mu-\mu'_0)^2}{2\sigma_0^{'2}}\right) \ \end{eqnarray} $$ 베이지안 규칙을 사용하여 사후 분포를 구하면 다음과 같이 갱신된 하이퍼 모수 를 가지는 정규 분포가 된다. $$ \begin{eqnarray} \mu'_0 &=& \dfrac{\sigma^2}{N\sigma_0^2 + \sigma^2}\mu_0 + \dfrac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \dfrac{\sum x_i}{N} \ \dfrac{1}{\sigma_0^{'2}} &=& \dfrac{1}{\sigma_0^{2}} + \dfrac{N}{\sigma^{'2}} \end{eqnarray} $$
Python Code: theta0 = 0.6 a0, b0 = 1, 1 print("step 0: mode = unknown") xx = np.linspace(0, 1, 1000) plt.plot(xx, sp.stats.beta(a0, b0).pdf(xx), label="initial"); np.random.seed(0) x = sp.stats.bernoulli(theta0).rvs(50) N0, N1 = np.bincount(x, minlength=2) a1, b1 = a0 + N1, b0 + N0 plt.plot(xx, sp.stats.beta(a1, b1).pdf(xx), label="1st"); print("step 1: mode =", (a1 - 1)/(a1 + b1 - 2)) x = sp.stats.bernoulli(theta0).rvs(50) N0, N1 = np.bincount(x, minlength=2) a2, b2 = a1 + N1, b1 + N0 plt.plot(xx, sp.stats.beta(a2, b2).pdf(xx), label="2nd"); print("step 2: mode =", (a2 - 1)/(a2 + b2 - 2)) x = sp.stats.bernoulli(theta0).rvs(50) N0, N1 = np.bincount(x, minlength=2) a3, b3 = a2 + N1, b2 + N0 plt.plot(xx, sp.stats.beta(a3, b3).pdf(xx), label="3rd"); print("step 3: mode =", (a3 - 1)/(a3 + b3 - 2)) x = sp.stats.bernoulli(theta0).rvs(50) N0, N1 = np.bincount(x, minlength=2) a4, b4 = a3 + N1, b3 + N0 plt.plot(xx, sp.stats.beta(a4, b4).pdf(xx), label="4th"); print("step 4: mode =", (a4 - 1)/(a4 + b4 - 2)) plt.legend() plt.show() Explanation: 베이지안 모수 추정의 예 베이지안 모수 추정(Bayesian parameter estimation) 방법은 모수의 값에 해당하는 특정한 하나의 숫자를 계산하는 것이 아니라 모수의 값이 가질 수 있는 모든 가능성, 즉 모수의 분포를 계산하는 작업이다. 이때 계산된 모수의 분포를 표현 방법은 두 가지가 있다. 비모수적(non-parametric) 방법 샘플을 제시한 후 히스토그램와 같은 방법으로 임의의 분포를 표현한다. MCMC(Markov chain Monte Carlo)와 같은 몬테카를로 방법에서 사용한다. 세타가 될 수 있는 정보를 준다. 이거로 히스토그램을 그린다. 답이 될 수 있는 후보 정보를 주는 것이다. 수식으로 나타내기 힘든 분포가 있다. 가능한 것을 아예 다 줘서 히스토그램을 그려보면 어느 부분에 몰려 있다. 그러면 0.5에 몰려 있다면 0.5에 밀집되어 있다. 원래 모드를 찾아야 되는데 모드 찾기가 힘들다. 삐죽삐죽하기 때문에 찾기가 힘들어서 중앙값이나 평균값을 찾는 것이 편하다. 그게 세타에 대한 대푯값으로 보통 쓴다. 모수적(parametric) 방법 모수의 분포를 잘 알려진 확률 분포 모형을 사용하여 나타낸다. 이렇게 하면 모수를 나타내는 확률 분포 수식이 다시 모수(parameter)를 가지게 되는데 이를 hyper-parameter라고도 부른다. 모수적 방법은 결국 hypter-parameter의 값을 숫자로 계산하는 작업이 된다. 여기에서는 모수적 방법의 몇 가지 간단한 예를 보인다. 베이지안 모수 추정의 기본 원리 베이지안 모수 추정 방법은 다음 공식을 사용하여 모수의 분포 $p(\theta)$를 $p(\theta \mid x_{1},\ldots,x_{N})$ 로 갱신(update)하는 작업이다. $$ p(\theta \mid x_{1},\ldots,x_{N}) = \dfrac{p(x_{1},\ldots,x_{N} \mid \theta) \cdot p(\theta)}{p(x_{1},\ldots,x_{N})} \propto p(x_{1},\ldots,x_{N} \mid \theta ) \cdot p(\theta) $$ 이 식에서 $p(\theta)$ 는 사전(Prior) 분포라고 한다. 사전 분포는 베이지안 추정 작업을 하기 전에 이미 알고 있던 모수 $\theta$의 분포를 뜻한다. 아무런 지식이 없는 경우에는 보통 uniform 분포 $\text{Beta}(1,1)$나 0 을 중심으로하는 정규 분포 $\mathcal{N}(0, 1)$를 사용한다 $p(\theta \mid x_{1},\ldots,x_{N})$ 는 사후(Posterior) 분포라고 한다. 수학적으로는 데이터 $x_{1},\ldots,x_{N}$가 알려진 상태에서의 $\theta$에 대한 조건부 확률 분포이다. 우리가 베이지안 모수 추정 작업을 통해 구하고자 하는 것이 바로 이 사후 분포이다. $p(x_{1},\ldots,x_{N} \mid \theta)$ 분포는 우도(Likelihood) 분포라고 한다. 현재 우리가 알고 있는 값은 데이터 $x_{1},\ldots,x_{N}$ 이고 $\theta$가 미지수이다. 이와 반대로 $theta$를 알고 있는 상태에서의 데이터 $x_{1},\ldots,x_{N}$ 가 나올 조건부 확률 분포를 우도라고 한다. 베르누이 분포의 모수 추정 가장 단순한 이산 확률 분포인 베르누이 분포의 모수 $\theta$를 베이지안 추정법으로 추정해 본다. 베르누이 분포의 모수는 0부터 1사이의 값을 가지므로 사전 분포는 하이퍼 모수 $a=b=1$인 베타 분포로 한다. $$ P(\theta) \propto \theta^{a−1}(1−\theta)^{b−1} \;\;\; (a=1, b=1)$$ 데이터는 모두 독립적인 베르누이 분포의 곱이므로 우도는 다음과 같이 이항 분포가 된다. $$ p(x_{1},\ldots,x_{N} \mid \theta) = \prod_{i=1}^N \theta^{x_i} (1 - \theta)^{1-x_i} $$ 베이지안 규칙을 사용하여 사후 분포를 구하면 다음과 같이 갱신된 하이퍼 모수 $a'$, $b'$를 가지는 베타 분포가 된다. $$ \begin{eqnarray} p(\theta \mid x_{1},\ldots,x_{N}) &\propto & p(x_{1},\ldots,x_{N} \mid \theta) P(\theta) \ &=& \prod_{i=1}^N \theta^{x_i} (1 - \theta)^{1-x_i} \cdot \theta^{a−1}(1−\theta)^{b−1} \ &=& \theta^{\sum_{i=1}^N x_i + a−1} (1 - \theta)^{\sum_{i=1}^N (1-x_i) + b−1 } \ &=& \theta^{N_1 + a−1} (1 - \theta)^{N_0 + b−1 } \ &=& \theta^{a'−1} (1 - \theta)^{b'−1 } \ \end{eqnarray} $$ 이렇게 사전 분포와 사후 분포가 같은 확률 분포 모형을 가지게 하는 사전 분포를 conjugated prior 라고 한다. 갱신된 하이퍼 모수의 값은 다음과 같다. $$ a' = N_1 + a $$ $$ b' = N_0 + b $$ End of explanation def plot_dirichlet(alpha): def project(x): n1 = np.array([1, 0, 0]) n2 = np.array([0, 1, 0]) n3 = np.array([0, 0, 1]) n12 = (n1 + n2)/2 m1 = np.array([1, -1, 0]) m2 = n3 - n12 m1 = m1/np.linalg.norm(m1) m2 = m2/np.linalg.norm(m2) return np.dstack([(x-n12).dot(m1), (x-n12).dot(m2)])[0] def project_reverse(x): n1 = np.array([1, 0, 0]) n2 = np.array([0, 1, 0]) n3 = np.array([0, 0, 1]) n12 = (n1 + n2)/2 m1 = np.array([1, -1, 0]) m2 = n3 - n12 m1 = m1/np.linalg.norm(m1) m2 = m2/np.linalg.norm(m2) return x[:,0][:, np.newaxis] * m1 + x[:,1][:, np.newaxis] * m2 + n12 eps = np.finfo(float).eps * 10 X = project([[1-eps,0,0], [0,1-eps,0], [0,0,1-eps]]) import matplotlib.tri as mtri triang = mtri.Triangulation(X[:,0], X[:,1], [[0, 1, 2]]) refiner = mtri.UniformTriRefiner(triang) triang2 = refiner.refine_triangulation(subdiv=6) XYZ = project_reverse(np.dstack([triang2.x, triang2.y, 1-triang2.x-triang2.y])[0]) pdf = sp.stats.dirichlet(alpha).pdf(XYZ.T) plt.tricontourf(triang2, pdf) plt.axis("equal") plt.show() theta0 = np.array([0.2, 0.6, 0.2]) np.random.seed(0) x1 = np.random.choice(3, 20, p=theta0) N1 = np.bincount(x1, minlength=3) x2 = np.random.choice(3, 100, p=theta0) N2 = np.bincount(x2, minlength=3) x3 = np.random.choice(3, 1000, p=theta0) N3 = np.bincount(x3, minlength=3) a0 = np.ones(3) / 3 plot_dirichlet(a0) a1 = a0 + N1 plot_dirichlet(a1) print((a1 - 1)/(a1.sum() - 3)) a2 = a1 + N2 plot_dirichlet(a2) print((a2 - 1)/(a2.sum() - 3)) a3 = a2 + N3 plot_dirichlet(a3) print((a3 - 1)/(a3.sum() - 3)) Explanation: 조건부 독립 보통 조건부독립만 성립한다. 예를 들어 고등학교 남학생들만. 초등학교 1~고3까지. 어느 반 골랐는지 몰라. 반이 엄청 많은데 그 중 한 반을 골랐어. 고3일 수도 있고 초딩일수도 있어. 1번 학생 키 180, 2번 학생 50? 당연히 180 근처라고 생각할 것이다. 그래서 우리가 하는 것은 모두 독립이 아니다. 앞의 자료가 뒤에 영향을 미친다. 그런데 모수가 정해져 있는 경우 즉 조건부 독립이라고 했을 때, 고 3이라고 가정했을 때! 반 학생들의 키는 독립적이다. 조건부확률, 조건부 독립을 이해하는 것이 데이터 분석을 이해하는 것이다. 조건부 독립. 사실은 모든 독립은 조건부 독립이다. 이게 옳아. 예를 들어서 주사위의 경우. 주사위를 선택했다는 조건이 붙는 것이고. 무 조건부에서는 다음을 예측할 수 있다. 그래서 독립이 아니다. 무 조건부의 경우는 1~6주사위와 1~2 주사위가 있다면 99번 던졌는데 1과 2만 나왔다. 그래서 100번째에는 1이나 2로 예측을 할 수 있다. 그래서 조건부 안에서는 독립인 것이고 무조건부의 경우에는 독립이 아니다. 같은 클래스와 모수에서 뽑은 Data는 조건부 독립이다. 카테고리 분포의 모수 추정 여기까지는 실제로 안 쓰인다. 너무 쉽기 때문에. 원리를 이해해라. 실제로 쓰이는 것은 아랫단계부터 다음으로 클래스 갯수가 $K$인 카테고리 분포의 모수 $\theta$ 벡터를 베이지안 추정법으로 추정해 본다. 카테고리 분포의 모수의 각 원소는 모두 0부터 1사이의 값을 가지므로 사전 분포는 하이퍼 모수 $\alpha_i=\dfrac{1}{K}$인 디리클리 분포로 한다. $$ P(\theta) \propto \prod_{k=1}^K \theta_i^{\alpha_i - 1} \;\;\; (\alpha_i = 1/K , \; \text{ for all } i) $$ 데이터는 모두 독립적인 카테고리 분포의 곱이므로 우도는 다음과 같이 다항 분포가 된다. $$ p(x_{1},\ldots,x_{N} \mid \theta) = \prod_{i=1}^N \prod_{k=1}^K \theta_k^{x_{i,k}} $$ 베이지안 규칙을 사용하여 사후 분포를 구하면 다음과 같이 갱신된 하이퍼 모수 $\alpha'_i$를 가지는 디리클리 분포가 된다. $$ \begin{eqnarray} p(\theta \mid x_{1},\ldots,x_{N}) &\propto & p(x_{1},\ldots,x_{N} \mid \theta) P(\theta) \ &=& \prod_{i=1}^N \prod_{k=1}^K \theta_k^{x_{i,k}} \cdot \prod_{k=1}^K \theta_i^{\alpha_i - 1} \ &=& \prod_{k=1}^K \theta^{\sum_{i=1}^N x_i + \alpha_i − 1} \ &=& \prod_{k=1}^K \theta^{N_i + \alpha_i −1} \ &=& \prod_{k=1}^K \theta^{\alpha'_i −1} \ \end{eqnarray} $$ 이 경우에도 conjugated prior 임을 알 수 있다. 갱신된 하이퍼 모수의 값은 다음과 같다. $$ \alpha'_i = N_i + \alpha_i $$ End of explanation mu, sigma2 = 2, 4 mu0, sigma20 = 0, 1 xx = np.linspace(1, 3, 1000) np.random.seed(0) N = 10 x = sp.stats.norm(mu).rvs(N) mu0 = sigma2/(N*sigma20 + sigma2) * mu0 + (N*sigma20)/(N*sigma20 + sigma2)*x.mean() sigma20 = 1/(1/sigma20 + N/sigma2) plt.plot(xx, sp.stats.norm(mu0, sigma20).pdf(xx), label="1st"); print(mu0) N = 20 x = sp.stats.norm(mu).rvs(N) mu0 = sigma2/(N*sigma20 + sigma2) * mu0 + (N*sigma20)/(N*sigma20 + sigma2)*x.mean() sigma20 = 1/(1/sigma20 + N/sigma2) plt.plot(xx, sp.stats.norm(mu0, sigma20).pdf(xx), label="2nd"); print(mu0) N = 50 x = sp.stats.norm(mu).rvs(N) mu0 = sigma2/(N*sigma20 + sigma2) * mu0 + (N*sigma20)/(N*sigma20 + sigma2)*x.mean() sigma20 = 1/(1/sigma20 + N/sigma2) plt.plot(xx, sp.stats.norm(mu0, sigma20).pdf(xx), label="3rd"); print(mu0) N = 100 x = sp.stats.norm(mu).rvs(N) mu0 = sigma2/(N*sigma20 + sigma2) * mu0 + (N*sigma20)/(N*sigma20 + sigma2)*x.mean() sigma20 = 1/(1/sigma20 + N/sigma2) plt.plot(xx, sp.stats.norm(mu0, sigma20).pdf(xx), label="4th"); print(mu0) plt.axis([1, 3, 0, 20]) plt.legend() plt.show() Explanation: 정규 분포의 기댓값 모수 추정 이번에는 정규 분포의 기댓값 모수를 베이지안 방법으로 추정한다. 분산 모수 $\sigma^2$은 알고 있다고 가정한다. 기댓값은 $-\infty$부터 $\infty$까지의 모든 수가 가능하기 때문에 모수의 사전 분포로는 정규 분포를 사용한다. $$ P(\mu) = N(\mu_0, \sigma^2_0) = \dfrac{1}{\sqrt{2\pi\sigma_0^2}} \exp \left(-\dfrac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)$$ 데이터는 모두 독립적인 정규 분포의 곱이므로 우도는 다음과 같이 된다. $$ P(x_{1},\ldots,x_{N} \mid \mu) = \prod_{i=1}^N N(x_i \mid \mu ) = \prod_{i=1}^N \dfrac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\dfrac{(x_i-\mu)^2}{2\sigma^2}\right) $$ $$ \begin{eqnarray} P(\theta \mid x_{1},\ldots,x_{N}) &\propto & P(x_{1},\ldots,x_{N} \mid \theta) P(\theta) \ &\propto & \exp \left(-\dfrac{(\mu-\mu'_0)^2}{2\sigma_0^{'2}}\right) \ \end{eqnarray} $$ 베이지안 규칙을 사용하여 사후 분포를 구하면 다음과 같이 갱신된 하이퍼 모수 를 가지는 정규 분포가 된다. $$ \begin{eqnarray} \mu'_0 &=& \dfrac{\sigma^2}{N\sigma_0^2 + \sigma^2}\mu_0 + \dfrac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \dfrac{\sum x_i}{N} \ \dfrac{1}{\sigma_0^{'2}} &=& \dfrac{1}{\sigma_0^{2}} + \dfrac{N}{\sigma^{'2}} \end{eqnarray} $$ End of explanation
3,028
Given the following text description, write Python code to implement the functionality described below step by step Description: Visualization with Matplotlib Learning Objectives Step1: Overview The following conceptual organization is simplified and adapted from Benjamin Root's AnatomyOfMatplotlib tutorial. Figures and Axes In Matplotlib a single visualization is a Figure. A Figure can have multiple areas, called subplots. Each subplot is an Axes. If you don't create a Figure and Axes yourself, Matplotlib will automatically create one for you. All plotting commands apply to the current Figure and Axes. The following functions can be used to create and manage Figure and Axes objects. Function | Description Step2: Basic plot modification With a third argument you can provide the series color and line/marker style. Here we create a Figure object and modify its size. Step3: Here is a list of the single character color strings Step4: To change the plot's limits, use xlim and ylim Step5: You can change the ticks along a given axis by using xticks, yticks and tick_params Step6: Box and grid You can enable a grid or disable the box. Notice that the ticks and tick labels remain. Step7: Multiple series Multiple calls to a plotting function will all target the current Axes Step8: Subplots Subplots allow you to create a grid of plots in a single figure. There will be an Axes associated with each subplot and only one Axes can be active at a time. The first way you can create subplots is to use the subplot function, which creates and activates a new Axes for the active Figure Step9: In many cases, it is easier to use the subplots function, which creates a new Figure along with an array of Axes objects that can be indexed in a rational manner Step10: The subplots function also makes it easy to pass arguments to Figure and to share axes Step11: More marker and line styling All plot commands, including plot, accept keyword arguments that can be used to style the lines in more detail. Fro more information see
Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np Explanation: Visualization with Matplotlib Learning Objectives: Learn how to make basic plots using Matplotlib's pylab API and how to use the Matplotlib documentation. This notebook focuses only on the Matplotlib API, rather that the broader question of how you can use this API to make effective and beautiful visualizations. Imports The following imports should be used in all of your notebooks where Matplotlib in used: End of explanation t = np.linspace(0, 10.0, 100) plt.plot(t, np.sin(t)) plt.xlabel('Time') plt.ylabel('Signal') plt.title('My Plot'); # supress text output Explanation: Overview The following conceptual organization is simplified and adapted from Benjamin Root's AnatomyOfMatplotlib tutorial. Figures and Axes In Matplotlib a single visualization is a Figure. A Figure can have multiple areas, called subplots. Each subplot is an Axes. If you don't create a Figure and Axes yourself, Matplotlib will automatically create one for you. All plotting commands apply to the current Figure and Axes. The following functions can be used to create and manage Figure and Axes objects. Function | Description :-----------------|:---------------------------------------------------------- figure | Creates a new Figure gca | Get the current Axes instance savefig | Save the current Figure to a file sca | Set the current Axes instance subplot | Create a new subplot Axes for the current Figure subplots | Create a new Figure and a grid of subplots Axes Plotting Functions Once you have created a Figure and one or more Axes objects, you can use the following function to put data onto that Axes. Function | Description :-----------------|:-------------------------------------------- bar | Make a bar plot barh | Make a horizontal bar plot boxplot | Make a box and whisker plot contour | Plot contours contourf | Plot filled contours hist | Plot a histogram hist2d | Make a 2D histogram plot imshow | Display an image on the axes matshow | Display an array as a matrix pcolor | Create a pseudocolor plot of a 2-D array pcolormesh | Plot a quadrilateral mesh plot | Plot lines and/or markers plot_date | Plot with data with dates polar | Make a polar plot scatter | Make a scatter plot of x vs y Plot modifiers You can then use the following functions to modify your visualization. Function | Description :-----------------|:--------------------------------------------------------------------- annotate | Create an annotation: a piece of text referring to a data point box | Turn the Axes box on or off clabel | Label a contour plot colorbar | Add a colorbar to a plot grid | Turn the Axes grids on or off legend | Place a legend on the current Axes loglog | Make a plot with log scaling on both the x and y axis semilogx | Make a plot with log scaling on the x axis semilogy | Make a plot with log scaling on the y axis subplots_adjust | Tune the subplot layout tick_params | Change the appearance of ticks and tick labels ticklabel_format| Change the ScalarFormatter used by default for linear axes tight_layout | Automatically adjust subplot parameters to give specified padding text | Add text to the axes title | Set a title of the current axes xkcd | Turns on XKCD sketch-style drawing mode xlabel | Set the x axis label of the current axis xlim | Get or set the x limits of the current axes xticks | Get or set the x-limits of the current tick locations and labels ylabel | Set the y axis label of the current axis ylim | Get or set the y-limits of the current axes yticks | Get or set the y-limits of the current tick locations and labels Basic plotting For now, we will work with basic line plots (plt.plot) to show how the Matplotlib pylab plotting API works. In this case, we don't create a Figure so Matplotlib does that automatically. End of explanation f = plt.figure(figsize=(10,6)) # 9" x 6", default is 8" x 5.5" plt.plot(t, np.sin(t), 'r.'); plt.xlabel('x') plt.ylabel('y') Explanation: Basic plot modification With a third argument you can provide the series color and line/marker style. Here we create a Figure object and modify its size. End of explanation from matplotlib import lines lines.lineStyles.keys() from matplotlib import markers markers.MarkerStyle.markers.keys() Explanation: Here is a list of the single character color strings: b: blue g: green r: red c: cyan m: magenta y: yellow k: black w: white The following will show all of the line and marker styles: End of explanation plt.plot(t, np.sin(t)*np.exp(-0.1*t),'bo') plt.xlim(-1.0, 11.0) plt.ylim(-1.0, 1.0) Explanation: To change the plot's limits, use xlim and ylim: End of explanation plt.plot(t, np.sin(t)*np.exp(-0.1*t),'bo') plt.xlim(0.0, 10.0) plt.ylim(-1.0, 1.0) plt.xticks([0,5,10], ['zero','five','10']) plt.tick_params(axis='y', direction='inout', length=10) Explanation: You can change the ticks along a given axis by using xticks, yticks and tick_params: End of explanation plt.plot(np.random.rand(100), 'b-') plt.grid(True) plt.box(False) Explanation: Box and grid You can enable a grid or disable the box. Notice that the ticks and tick labels remain. End of explanation plt.plot(t, np.sin(t), label='sin(t)') plt.plot(t, np.cos(t), label='cos(t)') plt.xlabel('t') plt.ylabel('Signal(t)') plt.ylim(-1.5, 1.5) plt.xlim(right=12.0) plt.legend() Explanation: Multiple series Multiple calls to a plotting function will all target the current Axes: End of explanation plt.subplot(2,1,1) # 2 rows x 1 col, plot 1 plt.plot(t, np.exp(0.1*t)) plt.ylabel('Exponential') plt.subplot(2,1,2) # 2 rows x 1 col, plot 2 plt.plot(t, t**2) plt.ylabel('Quadratic') plt.xlabel('x') plt.tight_layout() Explanation: Subplots Subplots allow you to create a grid of plots in a single figure. There will be an Axes associated with each subplot and only one Axes can be active at a time. The first way you can create subplots is to use the subplot function, which creates and activates a new Axes for the active Figure: End of explanation f, ax = plt.subplots(2, 2) for i in range(2): for j in range(2): plt.sca(ax[i,j]) plt.plot(np.random.rand(20)) plt.xlabel('x') plt.ylabel('y') Explanation: In many cases, it is easier to use the subplots function, which creates a new Figure along with an array of Axes objects that can be indexed in a rational manner: End of explanation f, ax = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(6,6)) for i in range(2): for j in range(2): plt.sca(ax[i,j]) plt.plot(np.random.rand(20)) if i==1: plt.xlabel('x') if j==0: plt.ylabel('y') plt.tight_layout() Explanation: The subplots function also makes it easy to pass arguments to Figure and to share axes: End of explanation plt.plot(t, np.sin(t), marker='o', color='darkblue', linestyle='--', alpha=0.3, markersize=10) Explanation: More marker and line styling All plot commands, including plot, accept keyword arguments that can be used to style the lines in more detail. Fro more information see: Controlling line properties Specifying colors End of explanation
3,029
Given the following text description, write Python code to implement the functionality described below step by step Description: Step3: Functions for angular velocity & integration The particle is an ellipsoid. The reference state (corresponding to no rotation) is that the ellipsoid is axis-aligned and the axis lengths are (a_x, a_y, a_z). The shape parameters in the code below are l = a_z/a_x k = a_y/a_x Its orientation is represented by the rotation (as a Quaternion) from the reference state. See Appendix A of https Step4: Omega & E (strain) for simple shear flow Step5: Validate code against axisymmetric case (Jeffery orbits) Step6: Case 1 Step7: B
Python Code: def jeffery_omega(L, K, n1, n2, n3, Omega, E): Compute Jeffery angular velocity L: (lambda^2-1)/(lambda^2+1) K: (kappa^2-1)/(kappa^2+1) n1,n2,n3: vector triplet representing current orientation Omega: vorticity (lab frame) E: strain matrix (lab frame) Returns (3,) ndarray with angular velocity of particle (body frame) See Appendix A in http://hdl.handle.net/2077/40830 omega1 = n1.dot(Omega) + (L-K)/(L*K-1.) * (n2.dot(E.dot(n3))) omega2 = n2.dot(Omega) + L * (n1.dot(E.dot(n3))) omega3 = n3.dot(Omega) - K * (n1.dot(E.dot(n2))) return np.array([omega1, omega2, omega3]) def jeffery_numerical(L, K, q0, Omega, E, max_t = None, dt = 1e-3): Integrate one trajectory according to Jeffery's equations. L: (lambda^2-1)/(lambda^2+1) shape parameter 1 K: (kappa^2-1)/(kappa^2+1) shape parameter 2 q0: quaternion representing initial orientation Omega: vorticity (lab frame) E: strain matrix (lab frame) max_t: Max time of trajectory, defaults to 2 Jeffery periods based on L dt: Integration timestep See Appendix A in https://arxiv.org/abs/1705.06997 for quaternion convention. Returns (ts, qs, n2s, n3s) where ts is (N,1) ndarray with timestamps (starting at 0) for N steps qs is (N,4) ndarray with orientations (quaternions) for N steps n2s is (N,3) ndarray with n2 vector for N steps n3s is (N,3) ndarray with n3 vector for N steps if max_t is None: maxKL = max(abs(L),abs(K)) jeffery_T = 4*np.pi/np.sqrt(1-maxKL*maxKL) max_t = 2*jeffery_T N = int(max_t/dt) ts = np.zeros((N,1)) n2s = np.zeros((N,3)) n3s = np.zeros((N,3)) qs = np.zeros((N,4)) q = q0 t=0 for n in range(N): R = q.get_R() n1 = R[:,0] n2 = R[:,1] n3 = R[:,2] ts[n] = n*dt n2s[n,:] = n2 n3s[n,:] = n3 qs[n,:] = q.q omega = jeffery_omega(L, K, n1, n2, n3, Omega, E) qdot = 0.5 * omega.dot(q.get_G()) q = q + dt*qdot q.normalize() return ts, qs, n2s, n3s def jeffery_axisymmetric_exact(L, q0, Omega, E, max_t = None, dt = 1e-1): Generate one exact trajectory for axisymmetric particle ('Jeffery orbit') L: (lambda^2-1)/(lambda^2+1) shape parameter q0: quaternion representing initial orientation Omega: vorticity (lab frame) E: strain matrix (lab frame) max_t: Max time of trajectory, defaults to 2 Jeffery periods based on L dt: Sample spacing See Appendix A in https://arxiv.org/abs/1705.06997 for quaternion convention. Returns (ts, qs, n2s, n3s) where ts is (N,1) ndarray with timestamps (starting at 0) for N steps n3s is (N,3) ndarray with n3 vector for N steps if max_t is None: jeffery_T = 4*np.pi/np.sqrt(1-L*L) max_t = 2*jeffery_T N = int(max_t/dt) levi_civita = np.zeros((3, 3, 3)) levi_civita[0, 1, 2] = levi_civita[1, 2, 0] = levi_civita[2, 0, 1] = 1 levi_civita[0, 2, 1] = levi_civita[2, 1, 0] = levi_civita[1, 0, 2] = -1 O = -np.einsum('ijk,k',levi_civita, Omega) B = O + L*E n30 = q0.get_R().dot(np.array([0,0,1])) ts = np.zeros((N,1)) n3s = np.zeros( (N,3) ) for n in range(N): t = dt*n M = scipy.linalg.expm(B*t) n3 = M.dot(n30) n3 = n3/np.linalg.norm(n3) ts[n] = t n3s[n,:] = n3 return (ts, n3s) Explanation: Functions for angular velocity & integration The particle is an ellipsoid. The reference state (corresponding to no rotation) is that the ellipsoid is axis-aligned and the axis lengths are (a_x, a_y, a_z). The shape parameters in the code below are l = a_z/a_x k = a_y/a_x Its orientation is represented by the rotation (as a Quaternion) from the reference state. See Appendix A of https://arxiv.org/abs/1705.06997 for the quaternion convention. End of explanation Omega = np.array([0,0,-.5]) E = np.array([ [0,.5,0], [.5,0,0], [0,0,0] ]) Explanation: Omega & E (strain) for simple shear flow End of explanation angles = np.pi/2 * np.linspace(0.05,1,5) ## first test is axisymmetric along n3 (K=0) ax = plt.subplot(1,2,1) for angle in angles: q0 = Quaternion(axis=[0,1,0], angle=angle) l = 7 k = 1 L = (l**2-1)/(l**2+1) K = (k**2-1)/(k**2+1) (ts, qs, n2s, n3s) = jeffery_numerical(L, K, q0, Omega, E) ax.plot(n3s[:,0],n3s[:,1],ls='solid', color='C0') (ts, n3s) = jeffery_axisymmetric_exact(L,q0,Omega,E) ax.plot(n3s[:,0],n3s[:,1],ls=(0, (5, 10)),color='C1') ax.set_xlim(-1.1,1.1) ax.set_ylim(-1.1,1.1) ax.set_aspect('equal') ## second test is axisymmetric along n2 (L=0) ax = plt.subplot(1,2,2) for angle in angles: q0_tri = Quaternion(axis=[1,0,0], angle=-angle) q0_axi = Quaternion(axis=[1,0,0], angle=np.pi/2-angle) l = 1 k = 7 L = (l**2-1)/(l**2+1) K = (k**2-1)/(k**2+1) (ts, qs, n2s, n3s) = jeffery_numerical(L, K, q0_tri, Omega, E) ax.plot(n2s[:,0],n2s[:,1],ls='solid', color='C0') (ts, n3s) = jeffery_axisymmetric_exact(K,q0_axi,Omega,E) ax.plot(n3s[:,0],n3s[:,1],ls=(0, (5, 10)),color='C1') ax.set_xlim(-1.1,1.1) ax.set_ylim(-1.1,1.1) ax.set_aspect('equal') plt.show() Explanation: Validate code against axisymmetric case (Jeffery orbits) End of explanation rot1=Quaternion(axis=[0,0,1], angle=0.1*np.pi/2) # this sets psi rot2=Quaternion(axis=[1,0,0], angle=np.pi/2-0.1) # this sets theta q0 = rot1.mul(rot2) max_t = 300 fig = plt.figure(figsize=(15,8)) l = 7 k = 1 L = (l**2-1)/(l**2+1) K = (k**2-1)/(k**2+1) ax = fig.add_subplot(1,2,1, projection='3d') (ts, qs, n2s, n3s) = jeffery_numerical(L, K, q0, Omega, E, max_t = max_t) ax.plot(n3s[:,0],n3s[:,1],n3s[:,2],ls='solid', color='C0') ax.set_xlim(-1.1,1.1) ax.set_ylim(-1.1,1.1) ax.set_zlim(-1.1,1.1) ax.set_aspect('equal') ax.set_title('l={:.2f} | k={:.2f}'.format(l,k)) ax = fig.add_subplot(1,2,2, projection='3d') l = 7 k = 1.2 L = (l**2-1)/(l**2+1) K = (k**2-1)/(k**2+1) (ts, qs, n2s, n3s) = jeffery_numerical(L, K, q0, Omega, E, max_t = max_t) ax.plot(n3s[:,0],n3s[:,1],n3s[:,2],ls='solid', color='C0') ax.set_xlim(-1.1,1.1) ax.set_ylim(-1.1,1.1) ax.set_zlim(-1.1,1.1) ax.set_aspect('equal') ax.set_title('l={:.2f} | k={:.2f}'.format(l,k)) plt.show() Explanation: Case 1: Axisymmetric (1,1,7) vs slightly asymmetric (1,1.2,7) Side-by-side comparison between two slightly different particles started in the same initial condition. A: initial condition in integrable region See Fig 3.11 in Jonas' thesis for definitions of psi & theta. These initial conditions are inside the integrable region, so the difference between symmetric and asymmetric particle is bounded. End of explanation rot1=Quaternion(axis=[0,0,1], angle=0.95*np.pi/2) # this sets psi rot2=Quaternion(axis=[1,0,0], angle=np.pi/2-0.1) # this sets theta q0 = rot1.mul(rot2) max_t = 300 fig = plt.figure(figsize=(15,8)) l = 7 k = 1 L = (l**2-1)/(l**2+1) K = (k**2-1)/(k**2+1) ax = fig.add_subplot(1,2,1, projection='3d') (ts, qs, n2s, n3s) = jeffery_numerical(L, K, q0, Omega, E, max_t = max_t) ax.plot(n3s[:,0],n3s[:,1],n3s[:,2],ls='solid', color='C0') np.savetxt('symmetric-l7-k1.csv', np.hstack((ts,qs)), delimiter=',') # export! ax.set_xlim(-1.1,1.1) ax.set_ylim(-1.1,1.1) ax.set_zlim(-1.1,1.1) ax.set_aspect('equal') ax.set_title('l={:.2f} | k={:.2f}'.format(l,k)) ax = fig.add_subplot(1,2,2, projection='3d') l = 7 k = 1.2 L = (l**2-1)/(l**2+1) K = (k**2-1)/(k**2+1) (ts, qs, n2s, n3s) = jeffery_numerical(L, K, q0, Omega, E, max_t = max_t) ax.plot(n3s[:,0],n3s[:,1],n3s[:,2],ls='solid', color='C0') np.savetxt('asymmetric-l7-k1-2.csv', np.hstack((ts,qs)), delimiter=',') # export! ax.set_xlim(-1.1,1.1) ax.set_ylim(-1.1,1.1) ax.set_zlim(-1.1,1.1) ax.set_aspect('equal') ax.set_title('l={:.2f} | k={:.2f}'.format(l,k)) plt.show() Explanation: B: initial condition in chaotic region See Fig 3.11 in Jonas' thesis for definitions of psi & theta. These initial conditions are inside the chaotic region, so the difference between symmetric and asymmetric particle is more pronounced. End of explanation
3,030
Given the following text description, write Python code to implement the functionality described below step by step Description: Recommender System The Netflix Challenge The principle of this recommander system is the same as the Netflix Challenge Step1: Scale all the grade between 0 (with lowest value) and 10 (the one with highest value) Step2: Mentee should fill the array by giving a for each topic according to his preferences
Python Code: authorID_to_titles_stem = utils.load_pickle("../pmi_data/authorID_to_titles_stem.p") score_by_author = utils.load_pickle("../pmi_data/score_by_author_by_document.p") Explanation: Recommender System The Netflix Challenge The principle of this recommander system is the same as the Netflix Challenge: In the nexflix challenge we start with one matrix NxM with the user in the row and the movies in the column. The matrix is not full The goal is to factorize the matrix in 2 others matrix V=NxK and Z=KxM where K is a variable. It represents also the number of features There is an explanation to this factorization. Indeed the matrix V represent the user and the différent features that caracterize a movie (love, horror, action, period of time,...) and the user give a score to each of those features. In the mean time we have the matrix Z where each line is a features and each column is a movie. The goal is to describe each movie according to the features The last step is to do a matrix multiplication among V and Z and we obtain the score a user would give to the movie Mentor-Mentee recommender system Is it possible to map that prblem to the Netflix Challenge. Indeed every mentor and every mentee will have their own favorite field. And we can imagine other features as well. But let's keep it simple. So if we can find a list of features to describe the mentors and to reprente what the mentee are looking for, we end up with the same representation as in the Netflix challenge: -user == mentee -movie == mentor To fill the matrix V (the one representing the mentee) we can imagine asking question to the mentee that will help giving a score to each feautres (topics) or directly ask to give a grade to each topics. To fill the Z matrix (mentor) we will use the dblp file and infer k topics from the titles and give a grade to each mentor in each detected topics The last step will be to do the matrix multiplication among 1 or many mentee and the mentor. Then assign one mentee to a mentor based one the rulse we want to apply (1-1 mapping, 1-N mapping,...) End of explanation def scale_list(list_): min_ = min(list_) max_ = max(list_) diff = max_ - min_ finale_scale = 10 return [(i-min_)/diff * finale_scale for i in list_] score_by_author = np.apply_along_axis(scale_list, axis=1, arr=score_by_author) score_by_author[0] def get_mentor(mentee): return np.argmax(np.dot(mentee, score_by_author.T), axis=1) Explanation: Scale all the grade between 0 (with lowest value) and 10 (the one with highest value) End of explanation mentee1 = np.zeros(20) mentee1[1] = 10 author_id = get_mentor([mentee1]) author_id list(authorID_to_titles_stem.values())[author_id[0]] Explanation: Mentee should fill the array by giving a for each topic according to his preferences End of explanation
3,031
Given the following text description, write Python code to implement the functionality described below step by step Description: Save & Restore with a minist example Minist예제를 수행하면 알겠지만, Train에 생각보다는 꽤 많은 시간이 소요됩니다. 이 이유만이 아니라 평가시에는 trainnig후에 model의 parameter를 저장했다가 평가시에는 그 parameter를 불러들여서 사용하는 것이 일반적입니다. 여기에 사용되는 함수는 torch.save, torch.load와 model.state_dict(), model.load_state_dict()입니다. 사실 4장의 tutorial의 마지막에 torch.save를 이용하여 model parameter를 저장을 했습니다. 따라서 이번 장에서는 train과정 없이 save된 file로 부터 model의 parameter를 복구하여 사용해보도록 하겠습니다. ```python training end torch.save(model.state_dict(), checkpoint_filename) evaluating start checkpoint = torch.load(checkpoint_filename) model.load_state_dict(checkpoint) ``` Step1: 1. 입력DataLoader 설정 Step2: 2. 사전 설정 * model * loss (train을 하지 않으므로, 생략) * opimizer (train을 하지 않으므로, 생략) Step3: 3. Restore model paramter from saved file Step4: 6. Predict & Evaluate train을 하지 않았음에도 이전에 학습된 model parameter를 복원하여 정확도가 98%이상인 것을 알 수 있습니다. Step5: 5. plot weights model의 weight를 plot하여 봅니다.
Python Code: %matplotlib inline Explanation: Save & Restore with a minist example Minist예제를 수행하면 알겠지만, Train에 생각보다는 꽤 많은 시간이 소요됩니다. 이 이유만이 아니라 평가시에는 trainnig후에 model의 parameter를 저장했다가 평가시에는 그 parameter를 불러들여서 사용하는 것이 일반적입니다. 여기에 사용되는 함수는 torch.save, torch.load와 model.state_dict(), model.load_state_dict()입니다. 사실 4장의 tutorial의 마지막에 torch.save를 이용하여 model parameter를 저장을 했습니다. 따라서 이번 장에서는 train과정 없이 save된 file로 부터 model의 parameter를 복구하여 사용해보도록 하겠습니다. ```python training end torch.save(model.state_dict(), checkpoint_filename) evaluating start checkpoint = torch.load(checkpoint_filename) model.load_state_dict(checkpoint) ``` End of explanation import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import datasets, transforms from torch.autograd import Variable import matplotlib.pyplot as plt is_cuda = torch.cuda.is_available() # cuda 사용가능시, True checkpoint_filename = 'minist.ckpt' test_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=False, transform=transforms.ToTensor()), batch_size=100, shuffle=False) Explanation: 1. 입력DataLoader 설정 End of explanation class MnistModel(nn.Module): def __init__(self): super(MnistModel, self).__init__() # input is 28x28 # padding=2 for same padding self.conv1 = nn.Conv2d(1, 32, 5, padding=2) # feature map size is 14*14 by pooling # padding=2 for same padding self.conv2 = nn.Conv2d(32, 64, 5, padding=2) # feature map size is 7*7 by pooling self.fc1 = nn.Linear(64*7*7, 1024) self.fc2 = nn.Linear(1024, 10) def forward(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), 2) x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, 64*7*7) # reshape Variable x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x) model = MnistModel() if is_cuda : model.cuda() Explanation: 2. 사전 설정 * model * loss (train을 하지 않으므로, 생략) * opimizer (train을 하지 않으므로, 생략) End of explanation checkpoint = torch.load(checkpoint_filename) model.load_state_dict(checkpoint) Explanation: 3. Restore model paramter from saved file End of explanation model.eval() correct = 0 for image, target in test_loader: if is_cuda : image, target = image.cuda(), target.cuda() image, target = Variable(image, volatile=True), Variable(target) output = model(image) prediction = output.data.max(1)[1] correct += prediction.eq(target.data).sum() print('\nTest set: Accuracy: {:.2f}%'.format(100. * correct / len(test_loader.dataset))) Explanation: 6. Predict & Evaluate train을 하지 않았음에도 이전에 학습된 model parameter를 복원하여 정확도가 98%이상인 것을 알 수 있습니다. End of explanation model.state_dict().keys() plt.rcParams["figure.figsize"] = [8, 4] weight = model.state_dict()['conv1.weight'] wmax, wmin = torch.max(weight), torch.min(weight) gridimg = torchvision.utils.make_grid(weight).cpu().numpy().transpose((1,2,0)) plt.imshow(gridimg[:,:,0], vmin = wmin, vmax =wmax, interpolation='nearest', cmap='seismic') # gridimg[:, :, 0]는 한 color channel을 출력 plt.rcParams["figure.figsize"] = [8, 8] weight = model.state_dict()['conv2.weight'] # 64 x 32 x 5 x 5 weight = weight[:, 0:1, :, :] # 64 x 1 x 5 x 5 wmax, wmin = torch.max(weight), torch.min(weight) gridimg = torchvision.utils.make_grid(weight).cpu().numpy().transpose((1,2,0)) plt.imshow(gridimg[:,:,0], vmin = wmin, vmax =wmax, interpolation='nearest', cmap='seismic') # gridimg[:, :, 0]는 한 color channel을 출력 Explanation: 5. plot weights model의 weight를 plot하여 봅니다. End of explanation
3,032
Given the following text description, write Python code to implement the functionality described below step by step Description: Indirection They say "all problems in computer science can be solved with an extra level of indirection." It certainly provides some real leverage in data wrangling. Rather than write a bunch of spaghetti code, we will build a table that defines the transformation we would like to perform on the raw data in order to have something cleaner to work with. In this we can map the indecipherable identifiers into something more understandable; we can establish formatters; we can translate field encodings into clear mnemonics, and so on. We need a tool for finding elements in the translation table; that's table_lookup. Then we can build our mapping tool, map_raw_table. Step1: Descriptive statistics - smoking Step2: What is the effect of smoking on weight? Step3: Permutation tests Step4: Is the difference observed between these samples representative of the larger population? Step5: The 4.5 kg difference is certainly not an artifact of the sample we started with. The smokers definitely weigh less. At the same time, these are not light people in this study. Better go back and understand what was the purpose of the study that led to the selection of these six thousand individuals. Other Factors
Python Code: health_map = Table(["raw label", "label", "encoding", "Description"]).with_rows( [["hhidpn", "id", None, "identifier"], ["r8agey_m", "age", None, "age in years in wave 8"], ["ragender", "gender", ['male','female'], "1 = male, 2 = female)"], ["raracem", "race", ['white','black','other'], "(1 = white, 2 = black, 3 = other)"], ["rahispan", "hispanic", None, "(1 = yes)"], ["raedyrs", "education", None, "education in years"], ["h8cpl", "couple", None, "in a couple household (1 = yes)"], ["r8bpavgs", "blood pressure", None,"average systolic BP"], ["r8bpavgp", "pulse", None, "average pulse"], ["r8smoken", "smoker",None, "currently smokes cigarettes"], ["r8mdactx", "exercise", None, "frequency of moderate exercise (1=everyday, 2=>1perweek, 3=1perweek, 4=1-3permonth\ , 5=never)"], ["r8weightbio", "weight", None, "objective weight in kg"], ["r8heightbio","height", None, "objective height in m"]]) health_map def table_lookup(table,key_col,key,map_col): row = np.where(table[key_col]==key) if len(row[0]) == 1: return table[map_col][row[0]][0] else: return -1 def map_raw_table(raw_table,map_table): mapped = Table() for raw_label in raw_table : if raw_label in map_table["raw label"] : new_label = table_lookup(map_table,'raw label',raw_label,'label') encoding = table_lookup(map_table,'raw label',raw_label,'encoding') if encoding is None : mapped[new_label] = raw_table[raw_label] else: mapped[new_label] = raw_table.apply(lambda x: encoding[x-1], raw_label) return mapped # create a more usable table by mapping the raw to finished health = map_raw_table(hrec06,health_map) health Explanation: Indirection They say "all problems in computer science can be solved with an extra level of indirection." It certainly provides some real leverage in data wrangling. Rather than write a bunch of spaghetti code, we will build a table that defines the transformation we would like to perform on the raw data in order to have something cleaner to work with. In this we can map the indecipherable identifiers into something more understandable; we can establish formatters; we can translate field encodings into clear mnemonics, and so on. We need a tool for finding elements in the translation table; that's table_lookup. Then we can build our mapping tool, map_raw_table. End of explanation def firstQtile(x) : return np.percentile(x,25) def thirdQtile(x) : return np.percentile(x,25) summary_ops = (min, firstQtile, np.median, np.mean, thirdQtile, max, sum) # Let's try what is the effect of smoking smokers = health.where('smoker',1) nosmokers = health.where('smoker',0) print(smokers.num_rows, ' smokers') print(nosmokers.num_rows, ' non-smokers') smokers.stats(summary_ops) nosmokers.stats(summary_ops) help(smokers.hist) Explanation: Descriptive statistics - smoking End of explanation smokers.hist('weight', bins=20) nosmokers.hist('weight', bins=20) np.mean(nosmokers['weight'])-np.mean(smokers['weight']) Explanation: What is the effect of smoking on weight? End of explanation # Lets draw two samples of equal size n_sample = 200 smoker_sample = smokers.sample(n_sample) nosmoker_sample = nosmokers.sample(n_sample) weight = Table().with_columns([('NoSmoke', nosmoker_sample['weight']),('Smoke', smoker_sample['weight'])]) weight.hist(overlay=True,bins=30,normed=True) weight.stats(summary_ops) Explanation: Permutation tests End of explanation combined = Table().with_column('all', np.append(nosmoker_sample['weight'],smoker_sample['weight'])) combined.num_rows # permutation test, split the combined into two random groups, do the comparison of those def getdiff(): A,B = combined.split(n_sample) return (np.mean(A['all'])-np.mean(B['all'])) # Do the permutation many times and form the distribution of results num_samples = 300 diff_samples = Table().with_column('diffs', [getdiff() for i in range(num_samples)]) diff_samples.hist(bins=np.arange(-5,5,0.5), normed=True) Explanation: Is the difference observed between these samples representative of the larger population? End of explanation # A sense of the overall population represented - older health.select(['age','education']).hist(bins=20) # How does education correlate with age? health.select(['age','education']).scatter('age', fit_line=True) health.pivot_hist('race','education',normed=True) # How are races represented in the dataset and how does hispanic overlay the three? race = health.select(['race', 'hispanic']) race['count']=1 by_race = race.group('race',sum) by_race['race frac'] = by_race['count sum']/np.sum(by_race['count sum']) by_race['hisp frac'] = by_race['hispanic sum'] / by_race['count sum'] by_race health.select(['height','weight']).scatter('height','weight',fit_line=True) Explanation: The 4.5 kg difference is certainly not an artifact of the sample we started with. The smokers definitely weigh less. At the same time, these are not light people in this study. Better go back and understand what was the purpose of the study that led to the selection of these six thousand individuals. Other Factors End of explanation
3,033
Given the following text description, write Python code to implement the functionality described below step by step Description: Adding a Reduction Operation This notebook will show you how to add a new reduction operation last_date to the existing backend SQLite. A reduction operation is a function that maps $N$ rows to 1 row, for example the sum function. Description We're going to add a last_date function to ibis. last_date simply returns the latest date of a list of dates. Step 1 Step2: We just defined a LastDate class that takes one date column as input, and returns a scalar output of the same type as the input. This matches both the requirements of a reduction and the spepcifics of the function that we want to implement. Note Step3: Interlude Step4: Step 3 Step5: Step 4 Step6: Create and execute a bitwise_and expression Step7: Last country to gain independence in our database Step8: Last country to gain independence from the Spanish Empire, using the where parameter
Python Code: import ibis.expr.datatypes as dt import ibis.expr.rules as rlz from ibis.expr.operations import Reduction class LastDate(Reduction): arg = rlz.column(rlz.date) where = rlz.optional(rlz.boolean) output_dtype = rlz.dtype_like('arg') output_shape = rlz.Shape.SCALAR Explanation: Adding a Reduction Operation This notebook will show you how to add a new reduction operation last_date to the existing backend SQLite. A reduction operation is a function that maps $N$ rows to 1 row, for example the sum function. Description We're going to add a last_date function to ibis. last_date simply returns the latest date of a list of dates. Step 1: Define the Operation Let's define the last_date operation as a function that takes any date column as input and returns a date: ```python import datetime import typing def last_date(dates: typing.List[datetime.date]) -> datetime.date: Latest date ``` End of explanation from ibis.expr.types import ( DateColumn, # not DateValue! reductions are only valid on columns ) def last_date(date_column, where=None): return LastDate(date_column, where=where).to_expr() DateColumn.last_date = last_date Explanation: We just defined a LastDate class that takes one date column as input, and returns a scalar output of the same type as the input. This matches both the requirements of a reduction and the spepcifics of the function that we want to implement. Note: It is very important that you write the correct argument rules and output type here. The expression will not work otherwise. Step 2: Define the API Because every reduction in ibis has the ability to filter out values during aggregation (a typical feature in databases and analytics tools), to make an expression out of LastDate we need to pass an additional argument: where to our LastDate constructor. End of explanation import ibis people = ibis.table( dict(name='string', country='string', date_of_birth='date'), name='people' ) people.date_of_birth.last_date() people.date_of_birth.last_date(people.country == 'Indonesia') Explanation: Interlude: Create some expressions using last_date End of explanation import sqlalchemy as sa @ibis.sqlite.add_operation(LastDate) def _last_date(translator, expr): # pull out the arguments to the expression arg, where = expr.op().args # compile the argument compiled_arg = translator.translate(arg) # call the appropriate SQLite function (`max` for the latest/maximum date) agg = sa.func.max(compiled_arg) # handle a non-None filter clause if where is not None: return agg.filter(translator.translate(where)) return agg Explanation: Step 3: Turn the Expression into SQL End of explanation !curl -LsS -o $TEMPDIR/geography.db 'https://storage.googleapis.com/ibis-tutorial-data/geography.db' import os import tempfile import ibis db_fname = os.path.join(tempfile.gettempdir(), 'geography.db') con = ibis.sqlite.connect(db_fname) Explanation: Step 4: Putting it all Together End of explanation independence = con.table('independence') independence Explanation: Create and execute a bitwise_and expression End of explanation expr = independence.independence_date.last_date() expr sql_expr = expr.compile() print(sql_expr) expr.execute() Explanation: Last country to gain independence in our database: End of explanation expr = independence.independence_date.last_date( where=independence.independence_from == 'Spanish Empire' ) expr result = expr.execute() result Explanation: Last country to gain independence from the Spanish Empire, using the where parameter: End of explanation
3,034
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Land MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Conservation Properties 3. Key Properties --&gt; Timestepping Framework 4. Key Properties --&gt; Software Properties 5. Grid 6. Grid --&gt; Horizontal 7. Grid --&gt; Vertical 8. Soil 9. Soil --&gt; Soil Map 10. Soil --&gt; Snow Free Albedo 11. Soil --&gt; Hydrology 12. Soil --&gt; Hydrology --&gt; Freezing 13. Soil --&gt; Hydrology --&gt; Drainage 14. Soil --&gt; Heat Treatment 15. Snow 16. Snow --&gt; Snow Albedo 17. Vegetation 18. Energy Balance 19. Carbon Cycle 20. Carbon Cycle --&gt; Vegetation 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality 26. Carbon Cycle --&gt; Litter 27. Carbon Cycle --&gt; Soil 28. Carbon Cycle --&gt; Permafrost Carbon 29. Nitrogen Cycle 30. River Routing 31. River Routing --&gt; Oceanic Discharge 32. Lakes 33. Lakes --&gt; Method 34. Lakes --&gt; Wetlands 1. Key Properties Land surface key properties 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 1.3. Description Is Required Step7: 1.4. Land Atmosphere Flux Exchanges Is Required Step8: 1.5. Atmospheric Coupling Treatment Is Required Step9: 1.6. Land Cover Is Required Step10: 1.7. Land Cover Change Is Required Step11: 1.8. Tiling Is Required Step12: 2. Key Properties --&gt; Conservation Properties TODO 2.1. Energy Is Required Step13: 2.2. Water Is Required Step14: 2.3. Carbon Is Required Step15: 3. Key Properties --&gt; Timestepping Framework TODO 3.1. Timestep Dependent On Atmosphere Is Required Step16: 3.2. Time Step Is Required Step17: 3.3. Timestepping Method Is Required Step18: 4. Key Properties --&gt; Software Properties Software properties of land surface code 4.1. Repository Is Required Step19: 4.2. Code Version Is Required Step20: 4.3. Code Languages Is Required Step21: 5. Grid Land surface grid 5.1. Overview Is Required Step22: 6. Grid --&gt; Horizontal The horizontal grid in the land surface 6.1. Description Is Required Step23: 6.2. Matches Atmosphere Grid Is Required Step24: 7. Grid --&gt; Vertical The vertical grid in the soil 7.1. Description Is Required Step25: 7.2. Total Depth Is Required Step26: 8. Soil Land surface soil 8.1. Overview Is Required Step27: 8.2. Heat Water Coupling Is Required Step28: 8.3. Number Of Soil layers Is Required Step29: 8.4. Prognostic Variables Is Required Step30: 9. Soil --&gt; Soil Map Key properties of the land surface soil map 9.1. Description Is Required Step31: 9.2. Structure Is Required Step32: 9.3. Texture Is Required Step33: 9.4. Organic Matter Is Required Step34: 9.5. Albedo Is Required Step35: 9.6. Water Table Is Required Step36: 9.7. Continuously Varying Soil Depth Is Required Step37: 9.8. Soil Depth Is Required Step38: 10. Soil --&gt; Snow Free Albedo TODO 10.1. Prognostic Is Required Step39: 10.2. Functions Is Required Step40: 10.3. Direct Diffuse Is Required Step41: 10.4. Number Of Wavelength Bands Is Required Step42: 11. Soil --&gt; Hydrology Key properties of the land surface soil hydrology 11.1. Description Is Required Step43: 11.2. Time Step Is Required Step44: 11.3. Tiling Is Required Step45: 11.4. Vertical Discretisation Is Required Step46: 11.5. Number Of Ground Water Layers Is Required Step47: 11.6. Lateral Connectivity Is Required Step48: 11.7. Method Is Required Step49: 12. Soil --&gt; Hydrology --&gt; Freezing TODO 12.1. Number Of Ground Ice Layers Is Required Step50: 12.2. Ice Storage Method Is Required Step51: 12.3. Permafrost Is Required Step52: 13. Soil --&gt; Hydrology --&gt; Drainage TODO 13.1. Description Is Required Step53: 13.2. Types Is Required Step54: 14. Soil --&gt; Heat Treatment TODO 14.1. Description Is Required Step55: 14.2. Time Step Is Required Step56: 14.3. Tiling Is Required Step57: 14.4. Vertical Discretisation Is Required Step58: 14.5. Heat Storage Is Required Step59: 14.6. Processes Is Required Step60: 15. Snow Land surface snow 15.1. Overview Is Required Step61: 15.2. Tiling Is Required Step62: 15.3. Number Of Snow Layers Is Required Step63: 15.4. Density Is Required Step64: 15.5. Water Equivalent Is Required Step65: 15.6. Heat Content Is Required Step66: 15.7. Temperature Is Required Step67: 15.8. Liquid Water Content Is Required Step68: 15.9. Snow Cover Fractions Is Required Step69: 15.10. Processes Is Required Step70: 15.11. Prognostic Variables Is Required Step71: 16. Snow --&gt; Snow Albedo TODO 16.1. Type Is Required Step72: 16.2. Functions Is Required Step73: 17. Vegetation Land surface vegetation 17.1. Overview Is Required Step74: 17.2. Time Step Is Required Step75: 17.3. Dynamic Vegetation Is Required Step76: 17.4. Tiling Is Required Step77: 17.5. Vegetation Representation Is Required Step78: 17.6. Vegetation Types Is Required Step79: 17.7. Biome Types Is Required Step80: 17.8. Vegetation Time Variation Is Required Step81: 17.9. Vegetation Map Is Required Step82: 17.10. Interception Is Required Step83: 17.11. Phenology Is Required Step84: 17.12. Phenology Description Is Required Step85: 17.13. Leaf Area Index Is Required Step86: 17.14. Leaf Area Index Description Is Required Step87: 17.15. Biomass Is Required Step88: 17.16. Biomass Description Is Required Step89: 17.17. Biogeography Is Required Step90: 17.18. Biogeography Description Is Required Step91: 17.19. Stomatal Resistance Is Required Step92: 17.20. Stomatal Resistance Description Is Required Step93: 17.21. Prognostic Variables Is Required Step94: 18. Energy Balance Land surface energy balance 18.1. Overview Is Required Step95: 18.2. Tiling Is Required Step96: 18.3. Number Of Surface Temperatures Is Required Step97: 18.4. Evaporation Is Required Step98: 18.5. Processes Is Required Step99: 19. Carbon Cycle Land surface carbon cycle 19.1. Overview Is Required Step100: 19.2. Tiling Is Required Step101: 19.3. Time Step Is Required Step102: 19.4. Anthropogenic Carbon Is Required Step103: 19.5. Prognostic Variables Is Required Step104: 20. Carbon Cycle --&gt; Vegetation TODO 20.1. Number Of Carbon Pools Is Required Step105: 20.2. Carbon Pools Is Required Step106: 20.3. Forest Stand Dynamics Is Required Step107: 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis TODO 21.1. Method Is Required Step108: 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration TODO 22.1. Maintainance Respiration Is Required Step109: 22.2. Growth Respiration Is Required Step110: 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation TODO 23.1. Method Is Required Step111: 23.2. Allocation Bins Is Required Step112: 23.3. Allocation Fractions Is Required Step113: 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology TODO 24.1. Method Is Required Step114: 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality TODO 25.1. Method Is Required Step115: 26. Carbon Cycle --&gt; Litter TODO 26.1. Number Of Carbon Pools Is Required Step116: 26.2. Carbon Pools Is Required Step117: 26.3. Decomposition Is Required Step118: 26.4. Method Is Required Step119: 27. Carbon Cycle --&gt; Soil TODO 27.1. Number Of Carbon Pools Is Required Step120: 27.2. Carbon Pools Is Required Step121: 27.3. Decomposition Is Required Step122: 27.4. Method Is Required Step123: 28. Carbon Cycle --&gt; Permafrost Carbon TODO 28.1. Is Permafrost Included Is Required Step124: 28.2. Emitted Greenhouse Gases Is Required Step125: 28.3. Decomposition Is Required Step126: 28.4. Impact On Soil Properties Is Required Step127: 29. Nitrogen Cycle Land surface nitrogen cycle 29.1. Overview Is Required Step128: 29.2. Tiling Is Required Step129: 29.3. Time Step Is Required Step130: 29.4. Prognostic Variables Is Required Step131: 30. River Routing Land surface river routing 30.1. Overview Is Required Step132: 30.2. Tiling Is Required Step133: 30.3. Time Step Is Required Step134: 30.4. Grid Inherited From Land Surface Is Required Step135: 30.5. Grid Description Is Required Step136: 30.6. Number Of Reservoirs Is Required Step137: 30.7. Water Re Evaporation Is Required Step138: 30.8. Coupled To Atmosphere Is Required Step139: 30.9. Coupled To Land Is Required Step140: 30.10. Quantities Exchanged With Atmosphere Is Required Step141: 30.11. Basin Flow Direction Map Is Required Step142: 30.12. Flooding Is Required Step143: 30.13. Prognostic Variables Is Required Step144: 31. River Routing --&gt; Oceanic Discharge TODO 31.1. Discharge Type Is Required Step145: 31.2. Quantities Transported Is Required Step146: 32. Lakes Land surface lakes 32.1. Overview Is Required Step147: 32.2. Coupling With Rivers Is Required Step148: 32.3. Time Step Is Required Step149: 32.4. Quantities Exchanged With Rivers Is Required Step150: 32.5. Vertical Grid Is Required Step151: 32.6. Prognostic Variables Is Required Step152: 33. Lakes --&gt; Method TODO 33.1. Ice Treatment Is Required Step153: 33.2. Albedo Is Required Step154: 33.3. Dynamics Is Required Step155: 33.4. Dynamic Lake Extent Is Required Step156: 33.5. Endorheic Basins Is Required Step157: 34. Lakes --&gt; Wetlands TODO 34.1. Description Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'test-institute-2', 'sandbox-3', 'land') Explanation: ES-DOC CMIP6 Model Properties - Land MIP Era: CMIP6 Institute: TEST-INSTITUTE-2 Source ID: SANDBOX-3 Topic: Land Sub-Topics: Soil, Snow, Vegetation, Energy Balance, Carbon Cycle, Nitrogen Cycle, River Routing, Lakes. Properties: 154 (96 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:54:45 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Conservation Properties 3. Key Properties --&gt; Timestepping Framework 4. Key Properties --&gt; Software Properties 5. Grid 6. Grid --&gt; Horizontal 7. Grid --&gt; Vertical 8. Soil 9. Soil --&gt; Soil Map 10. Soil --&gt; Snow Free Albedo 11. Soil --&gt; Hydrology 12. Soil --&gt; Hydrology --&gt; Freezing 13. Soil --&gt; Hydrology --&gt; Drainage 14. Soil --&gt; Heat Treatment 15. Snow 16. Snow --&gt; Snow Albedo 17. Vegetation 18. Energy Balance 19. Carbon Cycle 20. Carbon Cycle --&gt; Vegetation 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality 26. Carbon Cycle --&gt; Litter 27. Carbon Cycle --&gt; Soil 28. Carbon Cycle --&gt; Permafrost Carbon 29. Nitrogen Cycle 30. River Routing 31. River Routing --&gt; Oceanic Discharge 32. Lakes 33. Lakes --&gt; Method 34. Lakes --&gt; Wetlands 1. Key Properties Land surface key properties 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of land surface model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of land surface model code (e.g. MOSES2.2) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.3. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of the processes modelled (e.g. dymanic vegation, prognostic albedo, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_atmosphere_flux_exchanges') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "water" # "energy" # "carbon" # "nitrogen" # "phospherous" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.4. Land Atmosphere Flux Exchanges Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Fluxes exchanged with the atmopshere. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.atmospheric_coupling_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.5. Atmospheric Coupling Treatment Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the treatment of land surface coupling with the Atmosphere model component, which may be different for different quantities (e.g. dust: semi-implicit, water vapour: explicit) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_cover') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bare soil" # "urban" # "lake" # "land ice" # "lake ice" # "vegetated" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.6. Land Cover Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Types of land cover defined in the land surface model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_cover_change') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.7. Land Cover Change Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe how land cover change is managed (e.g. the use of net or gross transitions) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.8. Tiling Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general tiling procedure used in the land surface (if any). Include treatment of physiography, land/sea, (dynamic) vegetation coverage and orography/roughness End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.energy') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Conservation Properties TODO 2.1. Energy Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how energy is conserved globally and to what level (e.g. within X [units]/year) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.water') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.2. Water Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how water is conserved globally and to what level (e.g. within X [units]/year) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.3. Carbon Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how carbon is conserved globally and to what level (e.g. within X [units]/year) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.timestep_dependent_on_atmosphere') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Timestepping Framework TODO 3.1. Timestep Dependent On Atmosphere Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is a time step dependent on the frequency of atmosphere coupling? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.2. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overall timestep of land surface model (i.e. time between calls) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.timestepping_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.3. Timestepping Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of time stepping method and associated time step(s) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Software Properties Software properties of land surface code 4.1. Repository Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Location of code for this component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.2. Code Version Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Code version identifier. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.3. Code Languages Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Code language(s). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Grid Land surface grid 5.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of the grid in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.horizontal.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6. Grid --&gt; Horizontal The horizontal grid in the land surface 6.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general structure of the horizontal grid (not including any tiling) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.horizontal.matches_atmosphere_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6.2. Matches Atmosphere Grid Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the horizontal grid match the atmosphere? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.vertical.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7. Grid --&gt; Vertical The vertical grid in the soil 7.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general structure of the vertical grid in the soil (not including any tiling) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.vertical.total_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 7.2. Total Depth Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The total depth of the soil (in metres) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Soil Land surface soil 8.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of soil in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_water_coupling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.2. Heat Water Coupling Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the coupling between heat and water in the soil End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.number_of_soil layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 8.3. Number Of Soil layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of soil layers End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.4. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the soil scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9. Soil --&gt; Soil Map Key properties of the land surface soil map 9.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of soil map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.structure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.2. Structure Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil structure map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.texture') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.3. Texture Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil texture map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.organic_matter') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.4. Organic Matter Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil organic matter map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.5. Albedo Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil albedo map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.water_table') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.6. Water Table Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil water table map, if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.continuously_varying_soil_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 9.7. Continuously Varying Soil Depth Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the soil properties vary continuously with depth? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.soil_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.8. Soil Depth Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil depth map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.prognostic') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 10. Soil --&gt; Snow Free Albedo TODO 10.1. Prognostic Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is snow free albedo prognostic? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.functions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation type" # "soil humidity" # "vegetation state" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10.2. Functions Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If prognostic, describe the dependancies on snow free albedo calculations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.direct_diffuse') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "distinction between direct and diffuse albedo" # "no distinction between direct and diffuse albedo" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10.3. Direct Diffuse Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If prognostic, describe the distinction between direct and diffuse albedo End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.number_of_wavelength_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 10.4. Number Of Wavelength Bands Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If prognostic, enter the number of wavelength bands used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11. Soil --&gt; Hydrology Key properties of the land surface soil hydrology 11.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of the soil hydrological model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 11.2. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of river soil hydrology in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.3. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil hydrology tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.vertical_discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.4. Vertical Discretisation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the typical vertical discretisation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.number_of_ground_water_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 11.5. Number Of Ground Water Layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of soil layers that may contain water End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.lateral_connectivity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "perfect connectivity" # "Darcian flow" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 11.6. Lateral Connectivity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Describe the lateral connectivity between tiles End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Bucket" # "Force-restore" # "Choisnel" # "Explicit diffusion" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 11.7. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The hydrological dynamics scheme in the land surface model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.number_of_ground_ice_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 12. Soil --&gt; Hydrology --&gt; Freezing TODO 12.1. Number Of Ground Ice Layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How many soil layers may contain ground ice End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.ice_storage_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.2. Ice Storage Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method of ice storage End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.permafrost') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.3. Permafrost Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the treatment of permafrost, if any, within the land surface scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.drainage.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 13. Soil --&gt; Hydrology --&gt; Drainage TODO 13.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General describe how drainage is included in the land surface scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.drainage.types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Gravity drainage" # "Horton mechanism" # "topmodel-based" # "Dunne mechanism" # "Lateral subsurface flow" # "Baseflow from groundwater" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.2. Types Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Different types of runoff represented by the land surface model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14. Soil --&gt; Heat Treatment TODO 14.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of how heat treatment properties are defined End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 14.2. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of soil heat scheme in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.3. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil heat treatment tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.vertical_discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.4. Vertical Discretisation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the typical vertical discretisation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.heat_storage') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Force-restore" # "Explicit diffusion" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.5. Heat Storage Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Specify the method of heat storage End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "soil moisture freeze-thaw" # "coupling with snow temperature" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.6. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Describe processes included in the treatment of soil heat End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15. Snow Land surface snow 15.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of snow in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the snow tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.number_of_snow_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 15.3. Number Of Snow Layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of snow levels used in the land surface scheme/model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.density') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "constant" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.4. Density Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of snow density End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.water_equivalent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.5. Water Equivalent Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of the snow water equivalent End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.heat_content') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.6. Heat Content Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of the heat content of snow End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.temperature') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.7. Temperature Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of snow temperature End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.liquid_water_content') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.8. Liquid Water Content Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of snow liquid water End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_cover_fractions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "ground snow fraction" # "vegetation snow fraction" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.9. Snow Cover Fractions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Specify cover fractions used in the surface snow scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "snow interception" # "snow melting" # "snow freezing" # "blowing snow" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.10. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Snow related processes in the land surface scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.11. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the snow scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_albedo.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "prescribed" # "constant" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16. Snow --&gt; Snow Albedo TODO 16.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the treatment of snow-covered land albedo End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_albedo.functions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation type" # "snow age" # "snow density" # "snow grain type" # "aerosol deposition" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16.2. Functions Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N *If prognostic, * End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17. Vegetation Land surface vegetation 17.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of vegetation in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 17.2. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of vegetation scheme in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.dynamic_vegetation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 17.3. Dynamic Vegetation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is there dynamic evolution of vegetation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.4. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the vegetation tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation types" # "biome types" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.5. Vegetation Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Vegetation classification used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "broadleaf tree" # "needleleaf tree" # "C3 grass" # "C4 grass" # "vegetated" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.6. Vegetation Types Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List of vegetation types in the classification, if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biome_types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "evergreen needleleaf forest" # "evergreen broadleaf forest" # "deciduous needleleaf forest" # "deciduous broadleaf forest" # "mixed forest" # "woodland" # "wooded grassland" # "closed shrubland" # "opne shrubland" # "grassland" # "cropland" # "wetlands" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.7. Biome Types Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List of biome types in the classification, if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_time_variation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed (not varying)" # "prescribed (varying from files)" # "dynamical (varying from simulation)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.8. Vegetation Time Variation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How the vegetation fractions in each tile are varying with time End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_map') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.9. Vegetation Map Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If vegetation fractions are not dynamically updated , describe the vegetation map used (common name and reference, if possible) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.interception') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 17.10. Interception Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is vegetation interception of rainwater represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.phenology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic (vegetation map)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.11. Phenology Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Treatment of vegetation phenology End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.phenology_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.12. Phenology Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of vegetation phenology End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.leaf_area_index') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prescribed" # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.13. Leaf Area Index Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Treatment of vegetation leaf area index End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.leaf_area_index_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.14. Leaf Area Index Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of leaf area index End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biomass') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.15. Biomass Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 *Treatment of vegetation biomass * End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biomass_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.16. Biomass Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of vegetation biomass End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biogeography') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.17. Biogeography Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Treatment of vegetation biogeography End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biogeography_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.18. Biogeography Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of vegetation biogeography End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.stomatal_resistance') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "light" # "temperature" # "water availability" # "CO2" # "O3" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.19. Stomatal Resistance Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Specify what the vegetation stomatal resistance depends on End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.stomatal_resistance_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.20. Stomatal Resistance Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of vegetation stomatal resistance End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.21. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the vegetation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 18. Energy Balance Land surface energy balance 18.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of energy balance in land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 18.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the energy balance tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.number_of_surface_temperatures') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 18.3. Number Of Surface Temperatures Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The maximum number of distinct surface temperatures in a grid cell (for example, each subgrid tile may have its own temperature) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.evaporation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "alpha" # "beta" # "combined" # "Monteith potential evaporation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18.4. Evaporation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Specify the formulation method for land surface evaporation, from soil and vegetation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "transpiration" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18.5. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Describe which processes are included in the energy balance scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 19. Carbon Cycle Land surface carbon cycle 19.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of carbon cycle in land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 19.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the carbon cycle tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 19.3. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of carbon cycle in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.anthropogenic_carbon') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "grand slam protocol" # "residence time" # "decay time" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 19.4. Anthropogenic Carbon Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Describe the treament of the anthropogenic carbon pool End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 19.5. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the carbon scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 20. Carbon Cycle --&gt; Vegetation TODO 20.1. Number Of Carbon Pools Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Enter the number of carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 20.2. Carbon Pools Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.forest_stand_dynamics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 20.3. Forest Stand Dynamics Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the treatment of forest stand dyanmics End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.photosynthesis.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis TODO 21.1. Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the general method used for photosynthesis (e.g. type of photosynthesis, distinction between C3 and C4 grasses, Nitrogen depencence, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.autotrophic_respiration.maintainance_respiration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration TODO 22.1. Maintainance Respiration Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the general method used for maintainence respiration End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.autotrophic_respiration.growth_respiration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.2. Growth Respiration Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the general method used for growth respiration End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation TODO 23.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general principle behind the allocation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.allocation_bins') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "leaves + stems + roots" # "leaves + stems + roots (leafy + woody)" # "leaves + fine roots + coarse roots + stems" # "whole plant (no distinction)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.2. Allocation Bins Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Specify distinct carbon bins used in allocation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.allocation_fractions') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "function of vegetation type" # "function of plant allometry" # "explicitly calculated" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.3. Allocation Fractions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how the fractions of allocation are calculated End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.phenology.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology TODO 24.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general principle behind the phenology scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.mortality.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality TODO 25.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general principle behind the mortality scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 26. Carbon Cycle --&gt; Litter TODO 26.1. Number Of Carbon Pools Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Enter the number of carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 26.2. Carbon Pools Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 26.3. Decomposition Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the decomposition methods used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 26.4. Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the general method used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 27. Carbon Cycle --&gt; Soil TODO 27.1. Number Of Carbon Pools Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Enter the number of carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 27.2. Carbon Pools Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 27.3. Decomposition Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the decomposition methods used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 27.4. Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the general method used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.is_permafrost_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 28. Carbon Cycle --&gt; Permafrost Carbon TODO 28.1. Is Permafrost Included Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is permafrost included? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.emitted_greenhouse_gases') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 28.2. Emitted Greenhouse Gases Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the GHGs emitted End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 28.3. Decomposition Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the decomposition methods used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.impact_on_soil_properties') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 28.4. Impact On Soil Properties Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the impact of permafrost on soil properties End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29. Nitrogen Cycle Land surface nitrogen cycle 29.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of the nitrogen cycle in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the notrogen cycle tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 29.3. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of nitrogen cycle in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29.4. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the nitrogen scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30. River Routing Land surface river routing 30.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of river routing in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the river routing, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 30.3. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of river routing scheme in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.grid_inherited_from_land_surface') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 30.4. Grid Inherited From Land Surface Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is the grid inherited from land surface? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.grid_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.5. Grid Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of grid, if not inherited from land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.number_of_reservoirs') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 30.6. Number Of Reservoirs Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Enter the number of reservoirs End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.water_re_evaporation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "flood plains" # "irrigation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 30.7. Water Re Evaporation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N TODO End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.coupled_to_atmosphere') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 30.8. Coupled To Atmosphere Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Is river routing coupled to the atmosphere model component? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.coupled_to_land') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.9. Coupled To Land Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the coupling between land and rivers End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.quantities_exchanged_with_atmosphere') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 30.10. Quantities Exchanged With Atmosphere Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If couple to atmosphere, which quantities are exchanged between river routing and the atmosphere model components? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.basin_flow_direction_map') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "present day" # "adapted for other periods" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 30.11. Basin Flow Direction Map Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What type of basin flow direction map is being used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.flooding') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.12. Flooding Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the representation of flooding, if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.13. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the river routing End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.oceanic_discharge.discharge_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "direct (large rivers)" # "diffuse" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31. River Routing --&gt; Oceanic Discharge TODO 31.1. Discharge Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Specify how rivers are discharged to the ocean End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.oceanic_discharge.quantities_transported') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31.2. Quantities Transported Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Quantities that are exchanged from river-routing to the ocean model component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 32. Lakes Land surface lakes 32.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of lakes in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.coupling_with_rivers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 32.2. Coupling With Rivers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Are lakes coupled to the river routing model component? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 32.3. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of lake scheme in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.quantities_exchanged_with_rivers') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 32.4. Quantities Exchanged With Rivers Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If coupling with rivers, which quantities are exchanged between the lakes and rivers End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.vertical_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 32.5. Vertical Grid Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the vertical grid of lakes End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 32.6. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the lake scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.ice_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 33. Lakes --&gt; Method TODO 33.1. Ice Treatment Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is lake ice included? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 33.2. Albedo Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the treatment of lake albedo End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.dynamics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "No lake dynamics" # "vertical" # "horizontal" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 33.3. Dynamics Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Which dynamics of lakes are treated? horizontal, vertical, etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.dynamic_lake_extent') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 33.4. Dynamic Lake Extent Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is a dynamic lake extent scheme included? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.endorheic_basins') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 33.5. Endorheic Basins Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Basins not flowing to ocean included? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.wetlands.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 34. Lakes --&gt; Wetlands TODO 34.1. Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the treatment of wetlands, if any End of explanation
3,035
Given the following text description, write Python code to implement the functionality described below step by step Description: A comparison of methods of random choice random.choice vs. a random.multinomial based implementation of the same weighted choice. Also compare with a GNU Scientific Library based implementation. Context Step1: GSL based multinomial called using CythonGSL wrapper Step2: GSL based multinomial called directly Step3: Test equivalence of results Step4: Conclusion Step5: The multinomial based method is (surprisingly?) an order of magnitude faster. This is probably fixed in the bleeding edge version of numpy (see https Step6: For large N the gsl multinomial function is significantly faster than using np.random Seeding of gsl multinomial generator
Python Code: import numpy as np %load_ext Cython Explanation: A comparison of methods of random choice random.choice vs. a random.multinomial based implementation of the same weighted choice. Also compare with a GNU Scientific Library based implementation. Context: random.choice is only available in numpy >= 1.7, so I was trying to find a simple substitute for machines running older numpy versions. End of explanation %%cython -l gsl cimport cython from cython_gsl cimport * import numpy as np from numpy cimport * cdef gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937) def multinomial(ndarray[double, ndim=1] p, unsigned int N): cdef: size_t K = p.shape[0] ndarray[uint32_t, ndim=1] n = np.empty_like(p, dtype='uint32') # void gsl_ran_multinomial (const gsl_rng * r, size_t K, unsigned int N, const double p[], unsigned int n[]) gsl_ran_multinomial(r, K, N, <double*> p.data, <unsigned int *> n.data) return n Explanation: GSL based multinomial called using CythonGSL wrapper End of explanation %%cython -l gsl cimport cython import numpy as np from numpy cimport * cdef extern from "gsl/gsl_rng.h": ctypedef struct gsl_rng_type ctypedef struct gsl_rng cdef gsl_rng_type *gsl_rng_mt19937 gsl_rng *gsl_rng_alloc ( gsl_rng_type * T) nogil cdef extern from "gsl/gsl_randist.h": void gsl_ran_multinomial ( gsl_rng * r, size_t K, unsigned int N, double p[], unsigned int n[] ) nogil void gsl_rng_set (const gsl_rng * r, unsigned long int s) nogil cdef gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937) def seed_directgsl(unsigned long int seed): gsl_rng_set(r, seed) def multinomial_directgsl(ndarray[double, ndim=1] p, unsigned int N): cdef: size_t K = p.shape[0] ndarray[uint32_t, ndim=1] n = np.empty_like(p, dtype='uint32') # void gsl_ran_multinomial (const gsl_rng * r, size_t K, unsigned int N, const double p[], unsigned int n[]) gsl_ran_multinomial(r, K, N, <double*> p.data, <unsigned int *> n.data) return n def choice(p): n = np.random.random(p.shape) pcum = p.cumsum() return pcum.searchsorted(n) Explanation: GSL based multinomial called directly End of explanation p = np.array([0.5, 0.3, 0.2]) prng = np.random.RandomState(3) print prng.choice(3, size = 3, p = p) print np.repeat(np.arange(3), prng.multinomial(3, p)) print np.repeat(np.arange(3), multinomial(p, 3)) print np.repeat(np.arange(3), multinomial_directgsl(p, 3)) N = 100000 print np.bincount(np.random.choice(3, size = 3 * N, p = p))/(3.0 * N) print np.bincount(np.asarray([np.repeat(np.arange(3), np.random.multinomial(3, p)) for i in range(N)]).flatten())/(3.0 *N) print np.bincount(np.asarray([np.repeat(np.arange(3), multinomial(p, 3)) for i in range(N)]).flatten())/(3.0 *N) print np.bincount(np.asarray([np.repeat(np.arange(3), multinomial_directgsl(p, 3)) for i in range(N)]).flatten())/(3.0 *N) print np.bincount(np.asarray([choice(p) for i in range(N)]).flatten())/(3.0 *N) Explanation: Test equivalence of results End of explanation p = np.array([0.5, 0.3, 0.2]) %timeit -n 10000 prng.choice(3, size = 3, p = p) %timeit -n 10000 np.repeat(np.arange(3), prng.multinomial(3, p)) %timeit -n 10000 np.repeat(np.arange(3), multinomial(p, 3)) %timeit -n 10000 np.repeat(np.arange(3), multinomial_directgsl(p, 3)) %timeit -n 10000 choice(p) Explanation: Conclusion: All methods are statistically equivalent. They do not give the same results for the same random seed, though. Time execution times End of explanation N = 10000 p = np.random.rand(N) p /= np.sum(p) N_arange = np.arange(N) %timeit -n 100 prng.choice(N, size = N, p = p) %timeit -n 100 np.repeat(N_arange, prng.multinomial(N, p)) %timeit -n 100 np.repeat(N_arange, multinomial(p, N)) %timeit -n 100 np.repeat(N_arange, multinomial_directgsl(p, N)) %timeit -n 100 choice(p) Explanation: The multinomial based method is (surprisingly?) an order of magnitude faster. This is probably fixed in the bleeding edge version of numpy (see https://github.com/numpy/numpy/issues/4188). End of explanation p = np.array([0.5, 0.3, 0.2]) print(multinomial_directgsl(p, 3)) print(multinomial_directgsl(p, 3)) seed_directgsl(10) print(multinomial_directgsl(p, 3)) seed_directgsl(10) print(multinomial_directgsl(p, 3)) Explanation: For large N the gsl multinomial function is significantly faster than using np.random Seeding of gsl multinomial generator End of explanation
3,036
Given the following text description, write Python code to implement the functionality described below step by step Description: Getting started Step1: Authenticate your GCP account If you are using AI Platform Notebooks, your environment is already authenticated. Skip this step. If you are using Colab, run the cell below and follow the instructions when prompted to authenticate your account via oAuth. Otherwise, follow these steps Step2: Create a Cloud Storage bucket The following steps are required, regardless of your notebook environment. When you submit a training job using the Cloud SDK, you upload a Python package containing your training code to a Cloud Storage bucket. AI Platform runs the code from this package. In this tutorial, AI Platform also saves the trained model that results from your job in the same bucket. You can then create an AI Platform model version based on this output in order to serve online predictions. Set the name of your Cloud Storage bucket below. It must be unique across all Cloud Storage buckets. You may also change the REGION variable, which is used for operations throughout the rest of this notebook. Make sure to choose a region where Cloud AI Platform services are available. Step3: Only if your bucket doesn't already exist Step4: Finally, validate access to your Cloud Storage bucket by examining its contents Step5: Part 1. Quickstart for training in AI Platform This section of the tutorial walks you through submitting a training job to Cloud AI Platform. This job runs sample code that uses Keras to train a deep neural network on the United States Census data. It outputs the trained model as a TensorFlow SavedModel directory in your Cloud Storage bucket. Get training code and dependencies First, download the training code and change the notebook's working directory Step6: Notice that the training code is structured as a Python package in the trainer/ subdirectory Step7: Run the following cell to install Python dependencies needed to train the model locally. When you run the training job in AI Platform, dependencies are preinstalled based on the runtime version you choose. Step8: Train your model locally Before training on AI Platform, train the job locally to verify the file structure and packaging is correct. For a complex or resource-intensive job, you may want to train locally on a small sample of your dataset to verify your code. Then you can run the job on AI Platform to train on the whole dataset. This sample runs a relatively quick job on a small dataset, so the local training and the AI Platform job run the same code on the same data. Run the following cell to train a model locally Step9: Train your model using AI Platform Next, submit a training job to AI Platform. This runs the training module in the cloud and exports the trained model to Cloud Storage. First, give your training job a name and choose a directory within your Cloud Storage bucket for saving intermediate and output files Step10: Run the following command to package the trainer/ directory, upload it to the specified --job-dir, and instruct AI Platform to run the trainer.task module from that package. The --stream-logs flag lets you view training logs in the cell below. You can also see logs and other job details in the GCP Console. Hyperparameter tuning You can optionally perform hyperparameter tuning by using the included hptuning_config.yaml configuration file. This file tells AI Platform to tune the batch size and learning rate for training over multiple trials to maximize accuracy. In this example, the training code uses a TensorBoard callback, which creates TensorFlow Summary Events during training. AI Platform uses these events to track the metric you want to optimize. Learn more about hyperparameter tuning in AI Platform Training. Step11: Part 2. Quickstart for online predictions in AI Platform This section shows how to use AI Platform and your trained model from Part 1 to predict a person's income bracket from other Census information about them. Create model and version resources in AI Platform To serve online predictions using the model you trained and exported in Part 1, create a model resource in AI Platform and a version resource within it. The version resource is what actually uses your trained model to serve predictions. This structure lets you adjust and retrain your model many times and organize all the versions together in AI Platform. Learn more about models and versions. While you specify --region $REGION in gcloud commands, you will use regional endpoint. You can also specify --region global to use global endpoint. Please note that you must create versions using the same endpoint as the one you use to create the model. Learn more about available regional endpoints. First, name and create the model resource Step12: Next, create the model version. The training job from Part 1 exported a timestamped TensorFlow SavedModel directory to your Cloud Storage bucket. AI Platform uses this directory to create a model version. Learn more about SavedModel and AI Platform. You may be able to find the path to this directory in your training job's logs. Look for a line like Step13: Prepare input for prediction To receive valid and useful predictions, you must preprocess input for prediction in the same way that training data was preprocessed. In a production system, you may want to create a preprocessing pipeline that can be used identically at training time and prediction time. For this exercise, use the training package's data-loading code to select a random sample from the evaluation data. This data is in the form that was used to evaluate accuracy after each epoch of training, so it can be used to send test predictions without further preprocessing Step14: Notice that categorical fields, like occupation, have already been converted to integers (with the same mapping that was used for training). Numerical fields, like age, have been scaled to a z-score. Some fields have been dropped from the original data. Compare the prediction input with the raw data for the same examples Step15: Export the prediction input to a newline-delimited JSON file Step16: The gcloud command-line tool accepts newline-delimited JSON for online prediction, and this particular Keras model expects a flat list of numbers for each input example. AI Platform requires a different format when you make online prediction requests to the REST API without using the gcloud tool. The way you structure your model may also change how you must format data for prediction. Learn more about formatting data for online prediction. Submit the online prediction request Use gcloud to submit your online prediction request. Step17: Since the model's last layer uses a sigmoid function for its activation, outputs between 0 and 0.5 represent negative predictions ("<=50K") and outputs between 0.5 and 1 represent positive ones (">50K"). Do the predicted income brackets match the actual ones? Run the following cell to see the true labels. Step18: Part 3. Developing the Keras model from scratch At this point, you have trained a machine learning model on AI Platform, deployed the trained model as a version resource on AI Platform, and received online predictions from the deployment. The next section walks through recreating the Keras code used to train your model. It covers the following parts of developing a machine learning model for use with AI Platform Step19: Then, define some useful constants Step22: Download and preprocess data Download the data Next, define functions to download training and evaluation data. These functions also fix minor irregularities in the data's formatting. Step23: Use those functions to download the data for training and verify that you have CSV files for training and evaluation Step24: Next, load these files using Pandas and examine the data Step26: Preprocess the data The first preprocessing step removes certain features from the data and converts categorical features to numerical values for use with Keras. Learn more about feature engineering and bias in data. Step27: Run the following cell to see how preprocessing changed the data. Notice in particular that income_bracket, the label that you're training the model to predict, has changed from &lt;=50K and &gt;50K to 0 and 1 Step28: Next, separate the data into features ("x") and labels ("y"), and reshape the label arrays into a format for use with tf.data.Dataset later Step30: Scaling training data so each numerical feature column has a mean of 0 and a standard deviation of 1 can improve your model. In a production system, you may want to save the means and standard deviations from your training set and use them to perform an identical transformation on test data at prediction time. For convenience in this exercise, temporarily combine the training and evaluation data to scale all of them Step31: Finally, examine some of your fully preprocessed training data Step33: Design and train the model Create training and validation datasets Create an input function to convert features and labels into a tf.data.Dataset for training or evaluation Step34: Next, create these training and evaluation datasets.Use the NUM_EPOCHS and BATCH_SIZE hyperparameters defined previously to define how the training dataset provides examples to the model during training. Set up the validation dataset to provide all its examples in one batch, for a single validation step at the end of each training epoch. Step36: Design a Keras Model Design your neural network using the Keras Sequential API. This deep neural network (DNN) has several hidden layers, and the last layer uses a sigmoid activation function to output a value between 0 and 1 Step37: Next, create the Keras model object and examine its structure Step38: Train and evaluate the model Define a learning rate decay to encourage model paramaters to make smaller changes as training goes on Step39: Finally, train the model. Provide the appropriate steps_per_epoch for the model to train on the entire training dataset (with BATCH_SIZE examples per step) during each epoch. And instruct the model to calculate validation accuracy with one big validation batch at the end of each epoch. Step40: Visualize training and export the trained model Visualize training Import matplotlib to visualize how the model learned over the training period. Step41: Plot the model's loss (binary cross-entropy) and accuracy, as measured at the end of each training epoch Step42: Over time, loss decreases and accuracy increases. But do they converge to a stable level? Are there big differences between the training and validation metrics (a sign of overfitting)? Learn about how to improve your machine learning model. Then, feel free to adjust hyperparameters or the model architecture and train again. Export the model for serving AI Platform requires when you create a model version resource. Since not all optimizers can be exported to the SavedModel format, you may see warnings during the export process. As long you successfully export a serving graph, AI Platform can used the SavedModel to serve predictions. Step43: You may export a SavedModel directory to your local filesystem or to Cloud Storage, as long as you have the necessary permissions. In your current environment, you granted access to Cloud Storage by authenticating your GCP account and setting the GOOGLE_APPLICATION_CREDENTIALS environment variable. AI Platform training jobs can also export directly to Cloud Storage, because AI Platform service accounts have access to Cloud Storage buckets in their own project. Try exporting directly to Cloud Storage Step44: You can now deploy this model to AI Platform and serve predictions by following the steps from Part 2. Cleaning up To clean up all GCP resources used in this project, you can delete the GCP project you used for the tutorial. Alternatively, you can clean up individual resources by running the following commands
Python Code: PROJECT_ID = "<your-project-id>" #@param {type:"string"} ! gcloud config set project $PROJECT_ID Explanation: Getting started: Training and prediction with Keras in AI Platform <img src="https://storage.googleapis.com/cloud-samples-data/ai-platform/census/keras-tensorflow-cmle.png" alt="Keras, TensorFlow, and AI Platform logos" width="300px"> <table align="left"> <td> <a href="https://cloud.google.com/ml-engine/docs/tensorflow/getting-started-keras"> <img src="https://cloud.google.com/_static/images/cloud/icons/favicons/onecloud/super_cloud.png" alt="Google Cloud logo" width="32px"> Read on cloud.google.com </a> </td> <td> <a href="https://colab.research.google.com/github/GoogleCloudPlatform/cloudml-samples/blob/main/notebooks/tensorflow/getting-started-keras.ipynb"> <img src="https://cloud.google.com/ml-engine/images/colab-logo-32px.png" alt="Colab logo"> Run in Colab </a> </td> <td> <a href="https://github.com/GoogleCloudPlatform/cloudml-samples/blob/main/notebooks/tensorflow/getting-started-keras.ipynb"> <img src="https://cloud.google.com/ml-engine/images/github-logo-32px.png" alt="GitHub logo"> View on GitHub </a> </td> </table> Overview This tutorial shows how to train a neural network on AI Platform using the Keras sequential API and how to serve predictions from that model. Keras is a high-level API for building and training deep learning models. tf.keras is TensorFlow’s implementation of this API. The first two parts of the tutorial walk through training a model on Cloud AI Platform using prewritten Keras code, deploying the trained model to AI Platform, and serving online predictions from the deployed model. The last part of the tutorial digs into the training code used for this model and ensuring it's compatible with AI Platform. To learn more about building machine learning models in Keras more generally, read TensorFlow's Keras tutorials. Dataset This tutorial uses the United States Census Income Dataset provided by the UC Irvine Machine Learning Repository. This dataset contains information about people from a 1994 Census database, including age, education, marital status, occupation, and whether they make more than $50,000 a year. Objective The goal is to train a deep neural network (DNN) using Keras that predicts whether a person makes more than $50,000 a year (target label) based on other Census information about the person (features). This tutorial focuses more on using this model with AI Platform than on the design of the model itself. However, it's always important to think about potential problems and unintended consequences when building machine learning systems. See the Machine Learning Crash Course exercise about fairness to learn about sources of bias in the Census dataset, as well as machine learning fairness more generally. Costs This tutorial uses billable components of Google Cloud Platform (GCP): AI Platform Cloud Storage Learn about AI Platform pricing and Cloud Storage pricing, and use the Pricing Calculator to generate a cost estimate based on your projected usage. Before you begin You must do several things before you can train and deploy a model in AI Platform: Set up your local development environment. Set up a GCP project with billing and the necessary APIs enabled. Authenticate your GCP account in this notebook. Create a Cloud Storage bucket to store your training package and your trained model. Set up your local development environment If you are using Colab or AI Platform Notebooks, your environment already meets all the requirements to run this notebook. You can skip this step. Otherwise, make sure your environment meets this notebook's requirements. You need the following: The Google Cloud SDK Git Python 3 virtualenv Jupyter notebook running in a virtual environment with Python 3 The Google Cloud guide to Setting up a Python development environment and the Jupyter installation guide provide detailed instructions for meeting these requirements. The following steps provide a condensed set of instructions: Install and initialize the Cloud SDK. Install Python 3. Install virtualenv and create a virtual environment that uses Python 3. Activate that environment and run pip install jupyter in a shell to install Jupyter. Run jupyter notebook in a shell to launch Jupyter. Open this notebook in the Jupyter Notebook Dashboard. Set up your GCP project The following steps are required, regardless of your notebook environment. Select or create a GCP project. Make sure that billing is enabled for your project. Enable the AI Platform ("Cloud Machine Learning Engine") and Compute Engine APIs. Enter your project ID in the cell below. Then run the cell to make sure the Cloud SDK uses the right project for all the commands in this notebook. Note: Jupyter runs lines prefixed with ! as shell commands, and it interpolates Python variables prefixed with $ into these commands. End of explanation import sys # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. if 'google.colab' in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. else: %env GOOGLE_APPLICATION_CREDENTIALS '' Explanation: Authenticate your GCP account If you are using AI Platform Notebooks, your environment is already authenticated. Skip this step. If you are using Colab, run the cell below and follow the instructions when prompted to authenticate your account via oAuth. Otherwise, follow these steps: In the GCP Console, go to the Create service account key page. From the Service account drop-down list, select New service account. In the Service account name field, enter a name. From the Role drop-down list, select Machine Learning Engine > AI Platform Admin and Storage > Storage Object Admin. Click Create. A JSON file that contains your key downloads to your local environment. Enter the path to your service account key as the GOOGLE_APPLICATION_CREDENTIALS variable in the cell below and run the cell. End of explanation BUCKET_NAME = "<your-bucket-name>" #@param {type:"string"} REGION = "us-central1" #@param {type:"string"} Explanation: Create a Cloud Storage bucket The following steps are required, regardless of your notebook environment. When you submit a training job using the Cloud SDK, you upload a Python package containing your training code to a Cloud Storage bucket. AI Platform runs the code from this package. In this tutorial, AI Platform also saves the trained model that results from your job in the same bucket. You can then create an AI Platform model version based on this output in order to serve online predictions. Set the name of your Cloud Storage bucket below. It must be unique across all Cloud Storage buckets. You may also change the REGION variable, which is used for operations throughout the rest of this notebook. Make sure to choose a region where Cloud AI Platform services are available. End of explanation ! gsutil mb -l $REGION gs://$BUCKET_NAME Explanation: Only if your bucket doesn't already exist: Run the following cell to create your Cloud Storage bucket. End of explanation ! gsutil ls -al gs://$BUCKET_NAME Explanation: Finally, validate access to your Cloud Storage bucket by examining its contents: End of explanation # Clone the repository of AI Platform samples ! git clone --depth 1 https://github.com/GoogleCloudPlatform/cloudml-samples # Set the working directory to the sample code directory %cd cloudml-samples/census/tf-keras Explanation: Part 1. Quickstart for training in AI Platform This section of the tutorial walks you through submitting a training job to Cloud AI Platform. This job runs sample code that uses Keras to train a deep neural network on the United States Census data. It outputs the trained model as a TensorFlow SavedModel directory in your Cloud Storage bucket. Get training code and dependencies First, download the training code and change the notebook's working directory: End of explanation # `ls` shows the working directory's contents. The `p` flag adds trailing # slashes to subdirectory names. The `R` flag lists subdirectories recursively. ! ls -pR Explanation: Notice that the training code is structured as a Python package in the trainer/ subdirectory: End of explanation ! pip install -r requirements.txt Explanation: Run the following cell to install Python dependencies needed to train the model locally. When you run the training job in AI Platform, dependencies are preinstalled based on the runtime version you choose. End of explanation # Explicitly tell `gcloud ai-platform local train` to use Python 3 ! gcloud config set ml_engine/local_python $(which python3) # This is similar to `python -m trainer.task --job-dir local-training-output` # but it better replicates the AI Platform environment, especially for # distributed training (not applicable here). ! gcloud ai-platform local train \ --package-path trainer \ --module-name trainer.task \ --job-dir local-training-output Explanation: Train your model locally Before training on AI Platform, train the job locally to verify the file structure and packaging is correct. For a complex or resource-intensive job, you may want to train locally on a small sample of your dataset to verify your code. Then you can run the job on AI Platform to train on the whole dataset. This sample runs a relatively quick job on a small dataset, so the local training and the AI Platform job run the same code on the same data. Run the following cell to train a model locally: End of explanation JOB_NAME = 'my_first_keras_job' JOB_DIR = 'gs://' + BUCKET_NAME + '/keras-job-dir' Explanation: Train your model using AI Platform Next, submit a training job to AI Platform. This runs the training module in the cloud and exports the trained model to Cloud Storage. First, give your training job a name and choose a directory within your Cloud Storage bucket for saving intermediate and output files: End of explanation ! gcloud ai-platform jobs submit training $JOB_NAME \ --package-path trainer/ \ --module-name trainer.task \ --region $REGION \ --python-version 3.7 \ --runtime-version 1.15 \ --job-dir $JOB_DIR \ --stream-logs Explanation: Run the following command to package the trainer/ directory, upload it to the specified --job-dir, and instruct AI Platform to run the trainer.task module from that package. The --stream-logs flag lets you view training logs in the cell below. You can also see logs and other job details in the GCP Console. Hyperparameter tuning You can optionally perform hyperparameter tuning by using the included hptuning_config.yaml configuration file. This file tells AI Platform to tune the batch size and learning rate for training over multiple trials to maximize accuracy. In this example, the training code uses a TensorBoard callback, which creates TensorFlow Summary Events during training. AI Platform uses these events to track the metric you want to optimize. Learn more about hyperparameter tuning in AI Platform Training. End of explanation MODEL_NAME = "my_first_keras_model" ! gcloud ai-platform models create $MODEL_NAME \ --region $REGION Explanation: Part 2. Quickstart for online predictions in AI Platform This section shows how to use AI Platform and your trained model from Part 1 to predict a person's income bracket from other Census information about them. Create model and version resources in AI Platform To serve online predictions using the model you trained and exported in Part 1, create a model resource in AI Platform and a version resource within it. The version resource is what actually uses your trained model to serve predictions. This structure lets you adjust and retrain your model many times and organize all the versions together in AI Platform. Learn more about models and versions. While you specify --region $REGION in gcloud commands, you will use regional endpoint. You can also specify --region global to use global endpoint. Please note that you must create versions using the same endpoint as the one you use to create the model. Learn more about available regional endpoints. First, name and create the model resource: End of explanation MODEL_VERSION = "v1" # Get a list of directories in the `keras_export` parent directory KERAS_EXPORT_DIRS = ! gsutil ls $JOB_DIR/keras_export/ # Update the directory as needed, in case you've trained # multiple times SAVED_MODEL_PATH = keras_export # Create model version based on that SavedModel directory ! gcloud ai-platform versions create $MODEL_VERSION \ --region $REGION \ --model $MODEL_NAME \ --runtime-version 1.15 \ --python-version 3.7 \ --framework tensorflow \ --origin $SAVED_MODEL_PATH Explanation: Next, create the model version. The training job from Part 1 exported a timestamped TensorFlow SavedModel directory to your Cloud Storage bucket. AI Platform uses this directory to create a model version. Learn more about SavedModel and AI Platform. You may be able to find the path to this directory in your training job's logs. Look for a line like: Model exported to: gs://&lt;your-bucket-name&gt;/keras-job-dir/keras_export/1545439782 Execute the following command to identify your SavedModel directory and use it to create a model version resource: End of explanation from trainer import util _, _, eval_x, eval_y = util.load_data() prediction_input = eval_x.sample(20) prediction_targets = eval_y[prediction_input.index] prediction_input Explanation: Prepare input for prediction To receive valid and useful predictions, you must preprocess input for prediction in the same way that training data was preprocessed. In a production system, you may want to create a preprocessing pipeline that can be used identically at training time and prediction time. For this exercise, use the training package's data-loading code to select a random sample from the evaluation data. This data is in the form that was used to evaluate accuracy after each epoch of training, so it can be used to send test predictions without further preprocessing: End of explanation import pandas as pd _, eval_file_path = util.download(util.DATA_DIR) raw_eval_data = pd.read_csv(eval_file_path, names=util._CSV_COLUMNS, na_values='?') raw_eval_data.iloc[prediction_input.index] Explanation: Notice that categorical fields, like occupation, have already been converted to integers (with the same mapping that was used for training). Numerical fields, like age, have been scaled to a z-score. Some fields have been dropped from the original data. Compare the prediction input with the raw data for the same examples: End of explanation import json with open('prediction_input.json', 'w') as json_file: for row in prediction_input.values.tolist(): json.dump(row, json_file) json_file.write('\n') ! cat prediction_input.json Explanation: Export the prediction input to a newline-delimited JSON file: End of explanation ! gcloud ai-platform predict \ --region $REGION \ --model $MODEL_NAME \ --version $MODEL_VERSION \ --json-instances prediction_input.json Explanation: The gcloud command-line tool accepts newline-delimited JSON for online prediction, and this particular Keras model expects a flat list of numbers for each input example. AI Platform requires a different format when you make online prediction requests to the REST API without using the gcloud tool. The way you structure your model may also change how you must format data for prediction. Learn more about formatting data for online prediction. Submit the online prediction request Use gcloud to submit your online prediction request. End of explanation prediction_targets Explanation: Since the model's last layer uses a sigmoid function for its activation, outputs between 0 and 0.5 represent negative predictions ("<=50K") and outputs between 0.5 and 1 represent positive ones (">50K"). Do the predicted income brackets match the actual ones? Run the following cell to see the true labels. End of explanation import os from six.moves import urllib import tempfile import numpy as np import pandas as pd import tensorflow as tf # Examine software versions print(__import__('sys').version) print(tf.__version__) print(tf.keras.__version__) Explanation: Part 3. Developing the Keras model from scratch At this point, you have trained a machine learning model on AI Platform, deployed the trained model as a version resource on AI Platform, and received online predictions from the deployment. The next section walks through recreating the Keras code used to train your model. It covers the following parts of developing a machine learning model for use with AI Platform: Downloading and preprocessing data Designing and training the model Visualizing training and exporting the trained model While this section provides more detailed insight to the tasks completed in previous parts, to learn more about using tf.keras, read TensorFlow's guide to Keras. To learn more about structuring code as a training packge for AI Platform, read Packaging a training application and reference the complete training code, which is structured as a Python package. Import libraries and define constants First, import Python libraries required for training: End of explanation ### For downloading data ### # Storage directory DATA_DIR = os.path.join(tempfile.gettempdir(), 'census_data') # Download options. DATA_URL = 'https://storage.googleapis.com/cloud-samples-data/ai-platform' \ '/census/data' TRAINING_FILE = 'adult.data.csv' EVAL_FILE = 'adult.test.csv' TRAINING_URL = '%s/%s' % (DATA_URL, TRAINING_FILE) EVAL_URL = '%s/%s' % (DATA_URL, EVAL_FILE) ### For interpreting data ### # These are the features in the dataset. # Dataset information: https://archive.ics.uci.edu/ml/datasets/census+income _CSV_COLUMNS = [ 'age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'gender', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income_bracket' ] _CATEGORICAL_TYPES = { 'workclass': pd.api.types.CategoricalDtype(categories=[ 'Federal-gov', 'Local-gov', 'Never-worked', 'Private', 'Self-emp-inc', 'Self-emp-not-inc', 'State-gov', 'Without-pay' ]), 'marital_status': pd.api.types.CategoricalDtype(categories=[ 'Divorced', 'Married-AF-spouse', 'Married-civ-spouse', 'Married-spouse-absent', 'Never-married', 'Separated', 'Widowed' ]), 'occupation': pd.api.types.CategoricalDtype([ 'Adm-clerical', 'Armed-Forces', 'Craft-repair', 'Exec-managerial', 'Farming-fishing', 'Handlers-cleaners', 'Machine-op-inspct', 'Other-service', 'Priv-house-serv', 'Prof-specialty', 'Protective-serv', 'Sales', 'Tech-support', 'Transport-moving' ]), 'relationship': pd.api.types.CategoricalDtype(categories=[ 'Husband', 'Not-in-family', 'Other-relative', 'Own-child', 'Unmarried', 'Wife' ]), 'race': pd.api.types.CategoricalDtype(categories=[ 'Amer-Indian-Eskimo', 'Asian-Pac-Islander', 'Black', 'Other', 'White' ]), 'native_country': pd.api.types.CategoricalDtype(categories=[ 'Cambodia', 'Canada', 'China', 'Columbia', 'Cuba', 'Dominican-Republic', 'Ecuador', 'El-Salvador', 'England', 'France', 'Germany', 'Greece', 'Guatemala', 'Haiti', 'Holand-Netherlands', 'Honduras', 'Hong', 'Hungary', 'India', 'Iran', 'Ireland', 'Italy', 'Jamaica', 'Japan', 'Laos', 'Mexico', 'Nicaragua', 'Outlying-US(Guam-USVI-etc)', 'Peru', 'Philippines', 'Poland', 'Portugal', 'Puerto-Rico', 'Scotland', 'South', 'Taiwan', 'Thailand', 'Trinadad&Tobago', 'United-States', 'Vietnam', 'Yugoslavia' ]), 'income_bracket': pd.api.types.CategoricalDtype(categories=[ '<=50K', '>50K' ]) } # This is the label (target) we want to predict. _LABEL_COLUMN = 'income_bracket' ### Hyperparameters for training ### # This the training batch size BATCH_SIZE = 128 # This is the number of epochs (passes over the full training data) NUM_EPOCHS = 20 # Define learning rate. LEARNING_RATE = .01 Explanation: Then, define some useful constants: Information for downloading training and evaluation data Information required for Pandas to interpret the data and convert categorical fields into numeric features Hyperparameters for training, such as learning rate and batch size End of explanation def _download_and_clean_file(filename, url): Downloads data from url, and makes changes to match the CSV format. The CSVs may use spaces after the comma delimters (non-standard) or include rows which do not represent well-formed examples. This function strips out some of these problems. Args: filename: filename to save url to url: URL of resource to download temp_file, _ = urllib.request.urlretrieve(url) with tf.io.gfile.GFile(temp_file, 'r') as temp_file_object: with tf.io.gfile.GFile(filename, 'w') as file_object: for line in temp_file_object: line = line.strip() line = line.replace(', ', ',') if not line or ',' not in line: continue if line[-1] == '.': line = line[:-1] line += '\n' file_object.write(line) tf.io.gfile.remove(temp_file) def download(data_dir): Downloads census data if it is not already present. Args: data_dir: directory where we will access/save the census data tf.io.gfile.makedirs(data_dir) training_file_path = os.path.join(data_dir, TRAINING_FILE) if not tf.io.gfile.exists(training_file_path): _download_and_clean_file(training_file_path, TRAINING_URL) eval_file_path = os.path.join(data_dir, EVAL_FILE) if not tf.io.gfile.exists(eval_file_path): _download_and_clean_file(eval_file_path, EVAL_URL) return training_file_path, eval_file_path Explanation: Download and preprocess data Download the data Next, define functions to download training and evaluation data. These functions also fix minor irregularities in the data's formatting. End of explanation training_file_path, eval_file_path = download(DATA_DIR) # You should see 2 files: adult.data.csv and adult.test.csv !ls -l $DATA_DIR Explanation: Use those functions to download the data for training and verify that you have CSV files for training and evaluation: End of explanation # This census data uses the value '?' for fields (column) that are missing data. # We use na_values to find ? and set it to NaN values. # https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html train_df = pd.read_csv(training_file_path, names=_CSV_COLUMNS, na_values='?') eval_df = pd.read_csv(eval_file_path, names=_CSV_COLUMNS, na_values='?') # Here's what the data looks like before we preprocess the data. train_df.head() Explanation: Next, load these files using Pandas and examine the data: End of explanation UNUSED_COLUMNS = ['fnlwgt', 'education', 'gender'] def preprocess(dataframe): Converts categorical features to numeric. Removes unused columns. Args: dataframe: Pandas dataframe with raw data Returns: Dataframe with preprocessed data dataframe = dataframe.drop(columns=UNUSED_COLUMNS) # Convert integer valued (numeric) columns to floating point numeric_columns = dataframe.select_dtypes(['int64']).columns dataframe[numeric_columns] = dataframe[numeric_columns].astype('float32') # Convert categorical columns to numeric cat_columns = dataframe.select_dtypes(['object']).columns dataframe[cat_columns] = dataframe[cat_columns].apply(lambda x: x.astype( _CATEGORICAL_TYPES[x.name])) dataframe[cat_columns] = dataframe[cat_columns].apply(lambda x: x.cat.codes) return dataframe prepped_train_df = preprocess(train_df) prepped_eval_df = preprocess(eval_df) Explanation: Preprocess the data The first preprocessing step removes certain features from the data and converts categorical features to numerical values for use with Keras. Learn more about feature engineering and bias in data. End of explanation prepped_train_df.head() Explanation: Run the following cell to see how preprocessing changed the data. Notice in particular that income_bracket, the label that you're training the model to predict, has changed from &lt;=50K and &gt;50K to 0 and 1: End of explanation # Split train and test data with labels. # The pop() method will extract (copy) and remove the label column from the dataframe train_x, train_y = prepped_train_df, prepped_train_df.pop(_LABEL_COLUMN) eval_x, eval_y = prepped_eval_df, prepped_eval_df.pop(_LABEL_COLUMN) # Reshape label columns for use with tf.data.Dataset train_y = np.asarray(train_y).astype('float32').reshape((-1, 1)) eval_y = np.asarray(eval_y).astype('float32').reshape((-1, 1)) Explanation: Next, separate the data into features ("x") and labels ("y"), and reshape the label arrays into a format for use with tf.data.Dataset later: End of explanation def standardize(dataframe): Scales numerical columns using their means and standard deviation to get z-scores: the mean of each numerical column becomes 0, and the standard deviation becomes 1. This can help the model converge during training. Args: dataframe: Pandas dataframe Returns: Input dataframe with the numerical columns scaled to z-scores dtypes = list(zip(dataframe.dtypes.index, map(str, dataframe.dtypes))) # Normalize numeric columns. for column, dtype in dtypes: if dtype == 'float32': dataframe[column] -= dataframe[column].mean() dataframe[column] /= dataframe[column].std() return dataframe # Join train_x and eval_x to normalize on overall means and standard # deviations. Then separate them again. all_x = pd.concat([train_x, eval_x], keys=['train', 'eval']) all_x = standardize(all_x) train_x, eval_x = all_x.xs('train'), all_x.xs('eval') Explanation: Scaling training data so each numerical feature column has a mean of 0 and a standard deviation of 1 can improve your model. In a production system, you may want to save the means and standard deviations from your training set and use them to perform an identical transformation on test data at prediction time. For convenience in this exercise, temporarily combine the training and evaluation data to scale all of them: End of explanation # Verify dataset features # Note how only the numeric fields (not categorical) have been standardized train_x.head() Explanation: Finally, examine some of your fully preprocessed training data: End of explanation def input_fn(features, labels, shuffle, num_epochs, batch_size): Generates an input function to be used for model training. Args: features: numpy array of features used for training or inference labels: numpy array of labels for each example shuffle: boolean for whether to shuffle the data or not (set True for training, False for evaluation) num_epochs: number of epochs to provide the data for batch_size: batch size for training Returns: A tf.data.Dataset that can provide data to the Keras model for training or evaluation if labels is None: inputs = features else: inputs = (features, labels) dataset = tf.data.Dataset.from_tensor_slices(inputs) if shuffle: dataset = dataset.shuffle(buffer_size=len(features)) # We call repeat after shuffling, rather than before, to prevent separate # epochs from blending together. dataset = dataset.repeat(num_epochs) dataset = dataset.batch(batch_size) return dataset Explanation: Design and train the model Create training and validation datasets Create an input function to convert features and labels into a tf.data.Dataset for training or evaluation: End of explanation # Pass a numpy array by using DataFrame.values training_dataset = input_fn(features=train_x.values, labels=train_y, shuffle=True, num_epochs=NUM_EPOCHS, batch_size=BATCH_SIZE) num_eval_examples = eval_x.shape[0] # Pass a numpy array by using DataFrame.values validation_dataset = input_fn(features=eval_x.values, labels=eval_y, shuffle=False, num_epochs=NUM_EPOCHS, batch_size=num_eval_examples) Explanation: Next, create these training and evaluation datasets.Use the NUM_EPOCHS and BATCH_SIZE hyperparameters defined previously to define how the training dataset provides examples to the model during training. Set up the validation dataset to provide all its examples in one batch, for a single validation step at the end of each training epoch. End of explanation def create_keras_model(input_dim, learning_rate): Creates Keras Model for Binary Classification. Args: input_dim: How many features the input has learning_rate: Learning rate for training Returns: The compiled Keras model (still needs to be trained) Dense = tf.keras.layers.Dense model = tf.keras.Sequential( [ Dense(100, activation=tf.nn.relu, kernel_initializer='uniform', input_shape=(input_dim,)), Dense(75, activation=tf.nn.relu), Dense(50, activation=tf.nn.relu), Dense(25, activation=tf.nn.relu), Dense(1, activation=tf.nn.sigmoid) ]) # Custom Optimizer: # https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer optimizer = tf.keras.optimizers.RMSprop( lr=learning_rate) # Compile Keras model model.compile( loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model Explanation: Design a Keras Model Design your neural network using the Keras Sequential API. This deep neural network (DNN) has several hidden layers, and the last layer uses a sigmoid activation function to output a value between 0 and 1: The input layer has 100 units using the ReLU activation function. The hidden layer has 75 units using the ReLU activation function. The hidden layer has 50 units using the ReLU activation function. The hidden layer has 25 units using the ReLU activation function. The output layer has 1 units using a sigmoid activation function. The optimizer uses the binary cross-entropy loss function, which is appropriate for a binary classification problem like this one. Feel free to change these layers to try to improve the model: End of explanation num_train_examples, input_dim = train_x.shape print('Number of features: {}'.format(input_dim)) print('Number of examples: {}'.format(num_train_examples)) keras_model = create_keras_model( input_dim=input_dim, learning_rate=LEARNING_RATE) # Take a detailed look inside the model keras_model.summary() Explanation: Next, create the Keras model object and examine its structure: End of explanation # Setup Learning Rate decay. lr_decay_cb = tf.keras.callbacks.LearningRateScheduler( lambda epoch: LEARNING_RATE + 0.02 * (0.5 ** (1 + epoch)), verbose=True) # Setup TensorBoard callback. tensorboard_cb = tf.keras.callbacks.TensorBoard( os.path.join(JOB_DIR, 'keras_tensorboard'), histogram_freq=1) Explanation: Train and evaluate the model Define a learning rate decay to encourage model paramaters to make smaller changes as training goes on: End of explanation history = keras_model.fit(training_dataset, epochs=NUM_EPOCHS, steps_per_epoch=int(num_train_examples/BATCH_SIZE), validation_data=validation_dataset, validation_steps=1, callbacks=[lr_decay_cb, tensorboard_cb], verbose=1) Explanation: Finally, train the model. Provide the appropriate steps_per_epoch for the model to train on the entire training dataset (with BATCH_SIZE examples per step) during each epoch. And instruct the model to calculate validation accuracy with one big validation batch at the end of each epoch. End of explanation ! pip install matplotlib from matplotlib import pyplot as plt %matplotlib inline Explanation: Visualize training and export the trained model Visualize training Import matplotlib to visualize how the model learned over the training period. End of explanation # Visualize History for Loss. plt.title('Keras model loss') plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['training', 'validation'], loc='upper right') plt.show() # Visualize History for Accuracy. plt.title('Keras model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.legend(['training', 'validation'], loc='lower right') plt.show() Explanation: Plot the model's loss (binary cross-entropy) and accuracy, as measured at the end of each training epoch: End of explanation # Export the model to a local SavedModel directory export_path = tf.keras.experimental.export_saved_model(keras_model, 'keras_export') print("Model exported to: ", export_path) Explanation: Over time, loss decreases and accuracy increases. But do they converge to a stable level? Are there big differences between the training and validation metrics (a sign of overfitting)? Learn about how to improve your machine learning model. Then, feel free to adjust hyperparameters or the model architecture and train again. Export the model for serving AI Platform requires when you create a model version resource. Since not all optimizers can be exported to the SavedModel format, you may see warnings during the export process. As long you successfully export a serving graph, AI Platform can used the SavedModel to serve predictions. End of explanation # Export the model to a SavedModel directory in Cloud Storage export_path = tf.keras.experimental.export_saved_model(keras_model, JOB_DIR + '/keras_export') print("Model exported to: ", export_path) Explanation: You may export a SavedModel directory to your local filesystem or to Cloud Storage, as long as you have the necessary permissions. In your current environment, you granted access to Cloud Storage by authenticating your GCP account and setting the GOOGLE_APPLICATION_CREDENTIALS environment variable. AI Platform training jobs can also export directly to Cloud Storage, because AI Platform service accounts have access to Cloud Storage buckets in their own project. Try exporting directly to Cloud Storage: End of explanation # Delete model version resource ! gcloud ai-platform versions delete $MODEL_VERSION --region $REGION --quiet --model $MODEL_NAME # Delete model resource ! gcloud ai-platform models delete $MODEL_NAME --region $REGION --quiet # Delete Cloud Storage objects that were created ! gsutil -m rm -r $JOB_DIR # If the training job is still running, cancel it ! gcloud ai-platform jobs cancel $JOB_NAME --quiet --verbosity critical Explanation: You can now deploy this model to AI Platform and serve predictions by following the steps from Part 2. Cleaning up To clean up all GCP resources used in this project, you can delete the GCP project you used for the tutorial. Alternatively, you can clean up individual resources by running the following commands: End of explanation
3,037
Given the following text description, write Python code to implement the functionality described below step by step Description: Explore with Sqlite databases Step1: Get utterances from certain time periods in each experiment or for certain episodes Step2: Get mutual information between words used in referring expressions and properties of the referent
Python Code: import sys sys.path.append("../python/") import pentoref.IO as IO import sqlite3 as sqlite # Create databases if required if False: # make True if you need to create the databases from the derived data for corpus_name in ["TAKE", "TAKECV", "PENTOCV"]: data_dir = "../../../pentoref/{0}_PENTOREF".format(corpus_name) dfwords, dfutts, dfrefs, dfscenes, dfactions = IO.convert_subcorpus_raw_data_to_dataframes(data_dir) IO.write_corpus_to_database("{0}.db".format(corpus_name), corpus_name, dfwords, dfutts, dfrefs, dfscenes, dfactions) # Connect to database CORPUS = "PENTOCV" db = sqlite.connect("{0}.db".format(CORPUS)) cursor = db.cursor() # get the table column header names print("utts", [x[1] for x in cursor.execute("PRAGMA table_info(utts)")]) print("words", [x[1] for x in cursor.execute("PRAGMA table_info(words)")]) print("refs", [x[1] for x in cursor.execute("PRAGMA table_info(refs)")]) print("scenes", [x[1] for x in cursor.execute("PRAGMA table_info(scenes)")]) print("actions", [x[1] for x in cursor.execute("PRAGMA table_info(actions)")]) Explanation: Explore with Sqlite databases End of explanation for row in db.execute("SELECT gameID, starttime, speaker, utt_clean FROM utts" + \ " WHERE starttime >= 200 AND starttime <= 300" + \ ' AND gameID = "r8_1_1_b"' + \ " ORDER BY gameID, starttime"): print(row) Explanation: Get utterances from certain time periods in each experiment or for certain episodes End of explanation from collections import Counter from pentoref.IOutils import clean_utt piece_counter = Counter() word_counter = Counter() word_piece_counter = Counter() for row in db.execute("SELECT id, gameID, text, uttID FROM refs"): #for row in db.execute("SELECT shape, colour, orientation, gridPosition, gameID, pieceID FROM scenes"): #isTarget = db.execute('SELECT refID FROM refs WHERE gameID ="' + row[4] + '" AND pieceID ="' + row[5] + '"') #target = False #for r1 in isTarget: # target = True #if not target: # continue #print(r) #shape, colour, orientation, gridPosition, gameID, pieceID = row #piece = gridPosition #shape + "_" + colour piece, gameID, text, uttID = row if CORPUS in ["TAKECV", "TAKE"]: for f in db.execute('SELECT word from words WHERE gameID ="' + str(gameID) + '"'): #print(f) for word in f[0].lower().split(): word_counter[word] += 1 word_piece_counter[piece+"__"+word]+=1 piece_counter[piece] += 1 elif CORPUS == "PENTOCV": for word in clean_utt(text.lower()).split(): word_counter[word] += 1 word_piece_counter[piece+"__"+word]+=1 piece_counter[piece] += 1 good_pieces = ["X", "Y", "P", "N", "U", "F", "Z", "L", "T", "I", "W", "V", "UNK"] print("non standard pieces", {k:v for k,v in piece_counter.items() if k not in good_pieces}) piece_counter word_counter.most_common(20) word_total = sum(word_piece_counter.values()) piece_total= sum(piece_counter.values()) for piece, p_count in piece_counter.items(): print("piece:", piece, p_count) p_piece = p_count/piece_total highest = -1 best_word = "" rank = {} for word, w_count in word_counter.items(): if w_count < 3: continue p_word = w_count / word_total p_word_piece = word_piece_counter[piece+"__"+word] / word_total mi = (p_word_piece/(p_piece * p_word)) rank[word] = mi if mi > highest: highest = mi best_word = word if True: top = 5 for k, v in sorted(rank.items(), key=lambda x:x[1], reverse=True): print(k, v) top -=1 if top <= 0: break print("*" * 30) db.close() Explanation: Get mutual information between words used in referring expressions and properties of the referent End of explanation
3,038
Given the following text description, write Python code to implement the functionality described below step by step Description: The subprocess module allows you to spawn new processes, connect to their input/output/error pipes, and obtain their return codes. Running External Command Step1: Capturing Output The standard input and output channels for the process started by run() are bound to the parent’s input and output. That means the calling program cannot capture the output of the command. Pass PIPE for the stdout and stderr arguments to capture the output for later processing. Step2: Suppressing Output For cases where the output should not be shown or captured, use DEVNULL to suppress an output stream. This example suppresses both the standard output and error streams. Step3: Execute on shell setting the shell argument to a true value causes subprocess to spwan an intermediate shell process which runs the command. the default is to run the command directly Step4: if you don't run this command on a shell, this is a error, because HOME is not defined Step5: Working with Pipes Directly The functions run(), call(), check_call(), and check_output() are wrappers around the Popen class. Using Popen directly gives more control over how the command is run, and how its input and output streams are processed. For example, by passing different arguments for stdin, stdout, and stderr it is possible to mimic the variations of os.popen(). One-way communication With a process Step6: Connecting Segments of a Pipe Step7: Interacting with Another Command Signaling Between Processes The process management examples for the os module include a demonstration of signaling between processes using os.fork() and os.kill(). Since each Popen instance provides a pid attribute with the process id of the child process, it is possible to do something similar with subprocess. The next example combines two scripts. This child process sets up a signal handler for the USR signal. Step8: Process Groups / Session If the process created by Popen spawns sub-processes, those children will not receive any signals sent to the parent. That means when using the shell argument to Popen it will be difficult to cause the command started in the shell to terminate by sending SIGINT or SIGTERM. Step9: The pid used to send the signal does not match the pid of the child of the shell script waiting for the signal, because in this example there are three separate processes interacting
Python Code: import subprocess completed = subprocess.run(['ls', '-l']) completed Explanation: The subprocess module allows you to spawn new processes, connect to their input/output/error pipes, and obtain their return codes. Running External Command End of explanation completed = subprocess.run(['ls', '-l'], stdout=subprocess.PIPE) completed Explanation: Capturing Output The standard input and output channels for the process started by run() are bound to the parent’s input and output. That means the calling program cannot capture the output of the command. Pass PIPE for the stdout and stderr arguments to capture the output for later processing. End of explanation import subprocess try: completed = subprocess.run( 'echo to stdout; echo to stderr 1>&2; exit 1', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, ) except subprocess.CalledProcessError as err: print('ERROR:', err) else: print('returncode:', completed.returncode) print('stdout is {!r}'.format(completed.stdout)) print('stderr is {!r}'.format(completed.stderr)) Explanation: Suppressing Output For cases where the output should not be shown or captured, use DEVNULL to suppress an output stream. This example suppresses both the standard output and error streams. End of explanation import subprocess completed = subprocess.run('echo $HOME', shell=True, stdout=subprocess.PIPE) completed Explanation: Execute on shell setting the shell argument to a true value causes subprocess to spwan an intermediate shell process which runs the command. the default is to run the command directly End of explanation import subprocess try: completed = subprocess.run('echo $HOME', stdout=subprocess.PIPE) except: print("Get Error if don't execute on shell") Explanation: if you don't run this command on a shell, this is a error, because HOME is not defined End of explanation import subprocess print("read:") proc = subprocess.Popen(['echo', '"to stdout"'], stdout = subprocess.PIPE) stdout_value = proc.communicate()[0].decode("utf-8") print('stdout', repr(stdout_value)) Explanation: Working with Pipes Directly The functions run(), call(), check_call(), and check_output() are wrappers around the Popen class. Using Popen directly gives more control over how the command is run, and how its input and output streams are processed. For example, by passing different arguments for stdin, stdout, and stderr it is possible to mimic the variations of os.popen(). One-way communication With a process End of explanation import subprocess cat = subprocess.Popen( ['cat', 'index.rst'], stdout=subprocess.PIPE, ) grep = subprocess.Popen( ['grep', '.. literalinclude::'], stdin=cat.stdout, stdout=subprocess.PIPE, ) cut = subprocess.Popen( ['cut', '-f', '3', '-d:'], stdin=grep.stdout, stdout=subprocess.PIPE, ) end_of_pipe = cut.stdout print('Included files:') for line in end_of_pipe: print(line.decode('utf-8').strip()) Explanation: Connecting Segments of a Pipe End of explanation # %load signal_child.py import os import signal import time import sys pid = os.getpid() received = False def signal_usr1(signum, frame): "Callback invoked when a signal is received" global received received = True print('CHILD {:>6}: Received USR1'.format(pid)) sys.stdout.flush() print('CHILD {:>6}: Setting up signal handler'.format(pid)) sys.stdout.flush() signal.signal(signal.SIGUSR1, signal_usr1) print('CHILD {:>6}: Pausing to wait for signal'.format(pid)) sys.stdout.flush() time.sleep(3) if not received: print('CHILD {:>6}: Never received signal'.format(pid)) # %load signal_parent.py import os import signal import subprocess import time import sys proc = subprocess.Popen(['python3', 'signal_child.py']) print('PARENT : Pausing before sending signal...') sys.stdout.flush() time.sleep(1) print('PARENT : Signaling child') sys.stdout.flush() os.kill(proc.pid, signal.SIGUSR1) !python signal_parent.py Explanation: Interacting with Another Command Signaling Between Processes The process management examples for the os module include a demonstration of signaling between processes using os.fork() and os.kill(). Since each Popen instance provides a pid attribute with the process id of the child process, it is possible to do something similar with subprocess. The next example combines two scripts. This child process sets up a signal handler for the USR signal. End of explanation import os import signal import subprocess import tempfile import time import sys script = '''#!/bin/sh echo "Shell script in process $$" set -x python3 signal_child.py ''' script_file = tempfile.NamedTemporaryFile('wt') script_file.write(script) script_file.flush() proc = subprocess.Popen(['sh', script_file.name]) print('PARENT : Pausing before signaling {}...'.format( proc.pid)) sys.stdout.flush() time.sleep(1) print('PARENT : Signaling child {}'.format(proc.pid)) sys.stdout.flush() os.kill(proc.pid, signal.SIGUSR1) time.sleep(3) Explanation: Process Groups / Session If the process created by Popen spawns sub-processes, those children will not receive any signals sent to the parent. That means when using the shell argument to Popen it will be difficult to cause the command started in the shell to terminate by sending SIGINT or SIGTERM. End of explanation import os import signal import subprocess import tempfile import time import sys def show_setting_prgrp(): print('Calling os.setpgrp() from {}'.format(os.getpid())) os.setpgrp() print('Process group is now {}'.format( os.getpid(), os.getpgrp())) sys.stdout.flush() script = '''#!/bin/sh echo "Shell script in process $$" set -x python3 signal_child.py ''' script_file = tempfile.NamedTemporaryFile('wt') script_file.write(script) script_file.flush() proc = subprocess.Popen( ['sh', script_file.name], preexec_fn=show_setting_prgrp, ) print('PARENT : Pausing before signaling {}...'.format( proc.pid)) sys.stdout.flush() time.sleep(1) print('PARENT : Signaling process group {}'.format( proc.pid)) sys.stdout.flush() os.killpg(proc.pid, signal.SIGUSR1) time.sleep(3) Explanation: The pid used to send the signal does not match the pid of the child of the shell script waiting for the signal, because in this example there are three separate processes interacting: The program subprocess_signal_parent_shell.py The shell process running the script created by the main python program The program signal_child.py To send signals to descendants without knowing their process id, use a process group to associate the children so they can be signaled together. The process group is created with os.setpgrp(), which sets process group id to the process id of the current process. All child processes inherit their process group from their parent, and since it should only be set in the shell created by Popen and its descendants, os.setpgrp() should not be called in the same process where the Popen is created. Instead, the function is passed to Popen as the preexec_fn argument so it is run after the fork() inside the new process, before it uses exec() to run the shell. To signal the entire process group, use os.killpg() with the pid value from the Popen instance. End of explanation
3,039
Given the following text description, write Python code to implement the functionality described below step by step Description: LINEAR REGRESSION is the simplest machine learning model is used for finding linear relationship between target and one or more predictors there are two types of linear regression Step1: Evaluation of your model Step2: To evaulate the performance of the model, we can compute the error between the real house value (y_test_1) and the predicted values we got form our model (predictions_1). One such metric is called the residual sum of squares (RSS) Step3: This number doesn't tell us much - is 7027 good? Is it bad? Unfortunatelly, there is no right answer - it depends on the data. Sometimes RSS of 7000 indicates very bad model, and sometimes 7000 is as good as it gets. That's why we use RSS when comparing models - the model with lowest RSS is the best. The other metrics we can use to evaluate our model is called coefficient of determination. It's denoted as $R^{2}$ and it is the proportion of the variance in the dependent variable that is predictable from the independent variable(s). To calculate it, we use .score function in Python. Step4: This means that only 51% of variability is explained by our model. In general, $R^{2}$ is a number between 0 and 1 - the closer it is to 1, the better the model is. Since we got only 0.51, we can conclude that this is not a very good model. But we can try to build a model with second variable - RM - and check if we can get better result. More linear regression models Step5: Since RSS is lower for second modell (and lower the RSS, better the model) and $R^{2}$ is higher for second modell (and we want $R^{2}$ as close to 1 as possible), both measures tells us that second model is better. However, difference is not big - out second model performs slightly better, but we still can't say it fits our data well. Next thing we can try is to build a model with all features we have available and see if using multiple features improves performace of the model.
Python Code: import pandas as pd import numpy as np import json import graphviz import matplotlib.pyplot as plt from sklearn import linear_model pd.set_option("display.max_rows",6) %matplotlib inline df_data = pd.read_csv('varsom_ml_preproc.csv', index_col=0) X = df_data.filter(['mountain_weather_wind_speed_num', 'mountain_weather_precip_most_exposed'])#, 'ZN', 'INDUS', 'CHAS', 'RM', 'AGE', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']) y = df_data['danger_level'] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 222, test_size = 0.3) # split the data lm = linear_model.LinearRegression() model_lr = lm.fit(X_train, y_train) # train the model predictions_lr = model_lr.predict(X_test) # predict values for test dataset print(f'{model_lr.intercept_:.2f}, {model_lr.coef_}') plt.scatter(y, X['mountain_weather_precip_most_exposed'], c=X['mountain_weather_wind_speed_num']) print("Our third model: \n \ny = {0:.2f}".format(model_lr.intercept_) + " {0:.2f}".format(model_lr.coef_[0]) + " * CRIM" + " + {0:.2f}".format(model_lr.coef_[1]) + " * ZN" + " + {0:.2f}".format(model_lr.coef_[2]) + " * INDUS" + " + {0:.2f}".format(model_lr.coef_[3]) + " + * CHAS" + " {0:.2f}".format(model_lr.coef_[4]) + " * RM" + " + {0:.2f}".format(model_lr.coef_[5]) + " * AGE" + " + {0:.2f}".format(model_lr.coef_[6]) + " * RAD" + "\n {0:.2f}".format(model_lr.coef_[7]) + " * TAX" + " {0:.2f}".format(model_lr.coef_[8]) + " * PTRATIO" + " + {0:.2f}".format(model_lr.coef_[9]) + " * B" + " {0:.2f}".format(model_lr.coef_[10]) + " * LSTAT") from sklearn.model_selection import train_test_split X_train_1, X_test_1, y_train_1, y_test_1 = train_test_split(df_data, random_state = 222, test_size = 0.3) # we are importing machine learning model we'll use lm1 = linear_model.LinearRegression() model_1 = lm1.fit(X_train_1, y_train_1) # we have just created a model! :) # as we said before, the model in this simple case is a line that has two parameters # so we ask: what are our estimated parameters? (alpha and beta?) print("Our first model: y = {0:.2f}".format(model_1.intercept_) + " {0:.2f}".format(model_1.coef_[0]) + " * x") print("Intercept: {0:.2f}".format(model_1.intercept_)) print("Extra price per extra unit of LSTAT: {0:.2f}".format(model_1.coef_[0])) # now we'd like is to predict house price for test data (data that model hasn't seen yet) predictions_1 = model_1.predict(X_test_1) predictions_1[0:5] # let's visualize our regression line plt.plot(X_test_1, y_test_1, 'o') plt.plot(X_test_1, predictions_1, color = 'red') plt.xlabel('% of lower status of the population') plt.ylabel('Median home value in $1000s') Explanation: LINEAR REGRESSION is the simplest machine learning model is used for finding linear relationship between target and one or more predictors there are two types of linear regression: Simple (one feature) Multiple (two or more features) The main idea of linear regression is to obtain a line that best fits the data. That means finding the one line for which total prediction error (for all data points) are as small as possible. (Error is the distance between actual values and values predicted using regression line.) First linear regression model First we'll create a simple linear regression model - we saw that LSTAT and RM are two variables that are highly correlated with target. We will see how good predicteions we can get with just one feature - and how to decide which one of these features is better for estimating median house price? Step one is to divide our dataset into training and testing part - it is important to test our model against data that has never been used for training – that tells us how the model might perform against data that it has not yet seen and it is meant to be representative of how the model might perform in the real world. That's why we will use only 70% of our data to train the model and then we'll use the rest of data (30%) to evaluate our model. End of explanation # let's try to visualize the estimated and real house values for all data points in test dataset fig, ax = plt.subplots(figsize=(15, 5)) plt.subplot(1, 2, 1) plt.plot(X_test_1,predictions_1, 'o') plt.xlabel('% of lower status of the population') plt.ylabel('Estimated home value in $1000s') plt.subplot(1, 2, 2) plt.plot(X_test_1,y_test_1, 'o') plt.xlabel('% of lower status of the population') plt.ylabel('Median home value in $1000s') plt.tight_layout() plt.show() Explanation: Evaluation of your model End of explanation # first we define our RSS function def RSS(y, p): return sum((y - p)**2) # then we calculate RSS: RSS_model_1 = RSS(y_test_1, predictions_1) RSS_model_1 Explanation: To evaulate the performance of the model, we can compute the error between the real house value (y_test_1) and the predicted values we got form our model (predictions_1). One such metric is called the residual sum of squares (RSS): End of explanation lm1.score(X_test_1,y_test_1) Explanation: This number doesn't tell us much - is 7027 good? Is it bad? Unfortunatelly, there is no right answer - it depends on the data. Sometimes RSS of 7000 indicates very bad model, and sometimes 7000 is as good as it gets. That's why we use RSS when comparing models - the model with lowest RSS is the best. The other metrics we can use to evaluate our model is called coefficient of determination. It's denoted as $R^{2}$ and it is the proportion of the variance in the dependent variable that is predictable from the independent variable(s). To calculate it, we use .score function in Python. End of explanation # we just repeat everything as before X_train_2, X_test_2, y_train_2, y_test_2 = train_test_split(boston_data[['RM']], boston_data.MEDV, random_state = 222, test_size = 0.3) # split the data lm = linear_model.LinearRegression() model_2 = lm.fit(X_train_2, y_train_2) # train the model predictions_2 = model_2.predict(X_test_2) # predict values for test dataset print("Our second model: y = {0:.2f}".format(model_2.intercept_) + " + {0:.2f}".format(model_2.coef_[0]) + " * x") # let's visualize our regression line plt.plot(X_test_2, y_test_2, 'o') plt.plot(X_test_2, predictions_2, color = 'red') plt.xlabel('Average number of rooms') plt.ylabel('Median home value in $1000s') # let's calculate RSS and R^2 print (RSS(y_test_2, predictions_2)) print (lm.score(X_test_2, y_test_2)) # now we can compare our models print("RSS for first model is {0:.2f}".format(RSS(y_test_1, predictions_1)) + ", and RSS for second model is {0:.2f}".format(RSS(y_test_2, predictions_2)) + '\n' + '\n' + "R^2 for first model is {0:.2f}".format(lm1.score(X_test_1, y_test_1)) + ", and R^2 for second model is {0:.2f}".format(lm.score(X_test_2, y_test_2))) Explanation: This means that only 51% of variability is explained by our model. In general, $R^{2}$ is a number between 0 and 1 - the closer it is to 1, the better the model is. Since we got only 0.51, we can conclude that this is not a very good model. But we can try to build a model with second variable - RM - and check if we can get better result. More linear regression models End of explanation X = boston_data[['CRIM', 'ZN', 'INDUS', 'CHAS', 'RM', 'AGE', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']] y = boston_data["MEDV"] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 222, test_size = 0.3) # split the data lm = linear_model.LinearRegression() model_lr = lm.fit(X_train, y_train) # train the model predictions_lr = model_lr.predict(X_test) # predict values for test dataset print("Our third model: \n \ny = {0:.2f}".format(model_lr.intercept_) + " {0:.2f}".format(model_lr.coef_[0]) + " * CRIM" + " + {0:.2f}".format(model_lr.coef_[1]) + " * ZN" + " + {0:.2f}".format(model_lr.coef_[2]) + " * INDUS" + " + {0:.2f}".format(model_lr.coef_[3]) + " + * CHAS" + " {0:.2f}".format(model_lr.coef_[4]) + " * RM" + " + {0:.2f}".format(model_lr.coef_[5]) + " * AGE" + " + {0:.2f}".format(model_lr.coef_[6]) + " * RAD" + "\n {0:.2f}".format(model_lr.coef_[7]) + " * TAX" + " {0:.2f}".format(model_lr.coef_[8]) + " * PTRATIO" + " + {0:.2f}".format(model_lr.coef_[9]) + " * B" + " {0:.2f}".format(model_lr.coef_[10]) + " * LSTAT") # let's evaluate the model print("RSS for the third model is {0:.2f}".format(RSS(y_test, predictions_lr)) + '\n' + '\n' + "R^2 for the third model is {0:.2f}".format(lm.score(X_test, y_test)) ) Explanation: Since RSS is lower for second modell (and lower the RSS, better the model) and $R^{2}$ is higher for second modell (and we want $R^{2}$ as close to 1 as possible), both measures tells us that second model is better. However, difference is not big - out second model performs slightly better, but we still can't say it fits our data well. Next thing we can try is to build a model with all features we have available and see if using multiple features improves performace of the model. End of explanation
3,040
Given the following text description, write Python code to implement the functionality described below step by step Description: Matrix generation Init symbols for sympy Step1: Lame params Step2: Metric tensor ${\displaystyle \hat{G}=\sum_{i,j} g^{ij}\vec{R}_i\vec{R}_j}$ Step3: ${\displaystyle \hat{G}=\sum_{i,j} g_{ij}\vec{R}^i\vec{R}^j}$ Step4: Christoffel symbols Step5: Gradient of vector $ \left( \begin{array}{c} \nabla_1 u_1 \ \nabla_2 u_1 \ \nabla_3 u_1 \ \nabla_1 u_2 \ \nabla_2 u_2 \ \nabla_3 u_2 \ \nabla_1 u_3 \ \nabla_2 u_3 \ \nabla_3 u_3 \ \end{array} \right) = B \cdot \left( \begin{array}{c} u_1 \ \frac { \partial u_1 } { \partial \alpha_1} \ \frac { \partial u_1 } { \partial \alpha_2} \ \frac { \partial u_1 } { \partial \alpha_3} \ u_2 \ \frac { \partial u_2 } { \partial \alpha_1} \ \frac { \partial u_2 } { \partial \alpha_2} \ \frac { \partial u_2 } { \partial \alpha_3} \ u_3 \ \frac { \partial u_3 } { \partial \alpha_1} \ \frac { \partial u_3 } { \partial \alpha_2} \ \frac { \partial u_3 } { \partial \alpha_3} \ \end{array} \right) = B \cdot D \cdot \left( \begin{array}{c} u^1 \ \frac { \partial u^1 } { \partial \alpha_1} \ \frac { \partial u^1 } { \partial \alpha_2} \ \frac { \partial u^1 } { \partial \alpha_3} \ u^2 \ \frac { \partial u^2 } { \partial \alpha_1} \ \frac { \partial u^2 } { \partial \alpha_2} \ \frac { \partial u^2 } { \partial \alpha_3} \ u^3 \ \frac { \partial u^3 } { \partial \alpha_1} \ \frac { \partial u^3 } { \partial \alpha_2} \ \frac { \partial u^3 } { \partial \alpha_3} \ \end{array} \right) $ Step6: Physical coordinates $u_i=u_{[i]} H_i$ Step7: Strain tensor $ \left( \begin{array}{c} \varepsilon_{11} \ \varepsilon_{22} \ \varepsilon_{33} \ 2\varepsilon_{12} \ 2\varepsilon_{13} \ 2\varepsilon_{23} \ \end{array} \right) = \left(E + E_{NL} \left( \nabla \vec{u} \right) \right) \cdot \left( \begin{array}{c} \nabla_1 u_1 \ \nabla_2 u_1 \ \nabla_3 u_1 \ \nabla_1 u_2 \ \nabla_2 u_2 \ \nabla_3 u_2 \ \nabla_1 u_3 \ \nabla_2 u_3 \ \nabla_3 u_3 \ \end{array} \right)$ Step8: Virtual work Step9: Tymoshenko theory $u_1 \left( \alpha_1, \alpha_2, \alpha_3 \right)=u\left( \alpha_1 \right)+\alpha_3\gamma \left( \alpha_1 \right) $ $u_2 \left( \alpha_1, \alpha_2, \alpha_3 \right)=0 $ $u_3 \left( \alpha_1, \alpha_2, \alpha_3 \right)=w\left( \alpha_1 \right) $ $ \left( \begin{array}{c} u_1 \ \frac { \partial u_1 } { \partial \alpha_1} \ \frac { \partial u_1 } { \partial \alpha_2} \ \frac { \partial u_1 } { \partial \alpha_3} \ u_2 \ \frac { \partial u_2 } { \partial \alpha_1} \ \frac { \partial u_2 } { \partial \alpha_2} \ \frac { \partial u_2 } { \partial \alpha_3} \ u_3 \ \frac { \partial u_3 } { \partial \alpha_1} \ \frac { \partial u_3 } { \partial \alpha_2} \ \frac { \partial u_3 } { \partial \alpha_3} \ \end{array} \right) = T \cdot \left( \begin{array}{c} u \ \frac { \partial u } { \partial \alpha_1} \ \gamma \ \frac { \partial \gamma } { \partial \alpha_1} \ w \ \frac { \partial w } { \partial \alpha_1} \ \end{array} \right) $ Step10: Square theory $u^1 \left( \alpha_1, \alpha_2, \alpha_3 \right)=u_{10}\left( \alpha_1 \right)p_0\left( \alpha_3 \right)+u_{11}\left( \alpha_1 \right)p_1\left( \alpha_3 \right)+u_{12}\left( \alpha_1 \right)p_2\left( \alpha_3 \right) $ $u^2 \left( \alpha_1, \alpha_2, \alpha_3 \right)=0 $ $u^3 \left( \alpha_1, \alpha_2, \alpha_3 \right)=u_{30}\left( \alpha_1 \right)p_0\left( \alpha_3 \right)+u_{31}\left( \alpha_1 \right)p_1\left( \alpha_3 \right)+u_{32}\left( \alpha_1 \right)p_2\left( \alpha_3 \right) $ $ \left( \begin{array}{c} u^1 \ \frac { \partial u^1 } { \partial \alpha_1} \ \frac { \partial u^1 } { \partial \alpha_2} \ \frac { \partial u^1 } { \partial \alpha_3} \ u^2 \ \frac { \partial u^2 } { \partial \alpha_1} \ \frac { \partial u^2 } { \partial \alpha_2} \ \frac { \partial u^2 } { \partial \alpha_3} \ u^3 \ \frac { \partial u^3 } { \partial \alpha_1} \ \frac { \partial u^3 } { \partial \alpha_2} \ \frac { \partial u^3 } { \partial \alpha_3} \ \end{array} \right) = L \cdot \left( \begin{array}{c} u_{10} \ \frac { \partial u_{10} } { \partial \alpha_1} \ u_{11} \ \frac { \partial u_{11} } { \partial \alpha_1} \ u_{12} \ \frac { \partial u_{12} } { \partial \alpha_1} \ u_{30} \ \frac { \partial u_{30} } { \partial \alpha_1} \ u_{31} \ \frac { \partial u_{31} } { \partial \alpha_1} \ u_{32} \ \frac { \partial u_{32} } { \partial \alpha_1} \ \end{array} \right) $ Step11: Mass matrix
Python Code: from sympy import * from geom_util import * from sympy.vector import CoordSys3D N = CoordSys3D('N') alpha1, alpha2, alpha3 = symbols("alpha_1 alpha_2 alpha_3", real = True, positive=True) init_printing() %matplotlib inline %reload_ext autoreload %autoreload 2 %aimport geom_util Explanation: Matrix generation Init symbols for sympy End of explanation H1=symbols('H1') H2=S(1) H3=S(1) H=[H1, H2, H3] DIM=3 dH = zeros(DIM,DIM) for i in range(DIM): for j in range(DIM): if (i == 0 and j != 1): dH[i,j]=Symbol('H_{{{},{}}}'.format(i+1,j+1)) dH Explanation: Lame params End of explanation G_up = getMetricTensorUpLame(H1, H2, H3) Explanation: Metric tensor ${\displaystyle \hat{G}=\sum_{i,j} g^{ij}\vec{R}_i\vec{R}_j}$ End of explanation G_down = getMetricTensorDownLame(H1, H2, H3) Explanation: ${\displaystyle \hat{G}=\sum_{i,j} g_{ij}\vec{R}^i\vec{R}^j}$ End of explanation DIM=3 G_down_diff = MutableDenseNDimArray.zeros(DIM, DIM, DIM) for i in range(DIM): for j in range(DIM): for k in range(DIM): G_down_diff[i,i,k]=2*H[i]*dH[i,k] GK = getChristoffelSymbols2(G_up, G_down_diff, (alpha1, alpha2, alpha3)) GK Explanation: Christoffel symbols End of explanation def row_index_to_i_j_grad(i_row): return i_row // 3, i_row % 3 B = zeros(9, 12) B[0,1] = S(1) B[1,2] = S(1) B[2,3] = S(1) B[3,5] = S(1) B[4,6] = S(1) B[5,7] = S(1) B[6,9] = S(1) B[7,10] = S(1) B[8,11] = S(1) for row_index in range(9): i,j=row_index_to_i_j_grad(row_index) B[row_index, 0] = -GK[i,j,0] B[row_index, 4] = -GK[i,j,1] B[row_index, 8] = -GK[i,j,2] B Explanation: Gradient of vector $ \left( \begin{array}{c} \nabla_1 u_1 \ \nabla_2 u_1 \ \nabla_3 u_1 \ \nabla_1 u_2 \ \nabla_2 u_2 \ \nabla_3 u_2 \ \nabla_1 u_3 \ \nabla_2 u_3 \ \nabla_3 u_3 \ \end{array} \right) = B \cdot \left( \begin{array}{c} u_1 \ \frac { \partial u_1 } { \partial \alpha_1} \ \frac { \partial u_1 } { \partial \alpha_2} \ \frac { \partial u_1 } { \partial \alpha_3} \ u_2 \ \frac { \partial u_2 } { \partial \alpha_1} \ \frac { \partial u_2 } { \partial \alpha_2} \ \frac { \partial u_2 } { \partial \alpha_3} \ u_3 \ \frac { \partial u_3 } { \partial \alpha_1} \ \frac { \partial u_3 } { \partial \alpha_2} \ \frac { \partial u_3 } { \partial \alpha_3} \ \end{array} \right) = B \cdot D \cdot \left( \begin{array}{c} u^1 \ \frac { \partial u^1 } { \partial \alpha_1} \ \frac { \partial u^1 } { \partial \alpha_2} \ \frac { \partial u^1 } { \partial \alpha_3} \ u^2 \ \frac { \partial u^2 } { \partial \alpha_1} \ \frac { \partial u^2 } { \partial \alpha_2} \ \frac { \partial u^2 } { \partial \alpha_3} \ u^3 \ \frac { \partial u^3 } { \partial \alpha_1} \ \frac { \partial u^3 } { \partial \alpha_2} \ \frac { \partial u^3 } { \partial \alpha_3} \ \end{array} \right) $ End of explanation P=zeros(12,12) P[0,0]=H[0] P[1,0]=dH[0,0] P[1,1]=H[0] P[2,0]=dH[0,1] P[2,2]=H[0] P[3,0]=dH[0,2] P[3,3]=H[0] P[4,4]=H[1] P[5,4]=dH[1,0] P[5,5]=H[1] P[6,4]=dH[1,1] P[6,6]=H[1] P[7,4]=dH[1,2] P[7,7]=H[1] P[8,8]=H[2] P[9,8]=dH[2,0] P[9,9]=H[2] P[10,8]=dH[2,1] P[10,10]=H[2] P[11,8]=dH[2,2] P[11,11]=H[2] P=simplify(P) P B_P = zeros(9,9) for i in range(3): for j in range(3): row_index = i*3+j B_P[row_index, row_index] = 1/(H[i]*H[j]) Grad_U_P = simplify(B_P*B*P) Grad_U_P Explanation: Physical coordinates $u_i=u_{[i]} H_i$ End of explanation E=zeros(6,9) E[0,0]=1 E[1,4]=1 E[2,8]=1 E[3,1]=1 E[3,3]=1 E[4,2]=1 E[4,6]=1 E[5,5]=1 E[5,7]=1 E StrainL=simplify(E*Grad_U_P) StrainL def E_NonLinear(grad_u): N = 3 du = zeros(N, N) # print("===Deformations===") for i in range(N): for j in range(N): index = i*N+j du[j,i] = grad_u[index] # print("========") I = eye(3) a_values = S(1)/S(2) * du * G_up E_NL = zeros(6,9) E_NL[0,0] = a_values[0,0] E_NL[0,3] = a_values[0,1] E_NL[0,6] = a_values[0,2] E_NL[1,1] = a_values[1,0] E_NL[1,4] = a_values[1,1] E_NL[1,7] = a_values[1,2] E_NL[2,2] = a_values[2,0] E_NL[2,5] = a_values[2,1] E_NL[2,8] = a_values[2,2] E_NL[3,1] = 2*a_values[0,0] E_NL[3,4] = 2*a_values[0,1] E_NL[3,7] = 2*a_values[0,2] E_NL[4,0] = 2*a_values[2,0] E_NL[4,3] = 2*a_values[2,1] E_NL[4,6] = 2*a_values[2,2] E_NL[5,2] = 2*a_values[1,0] E_NL[5,5] = 2*a_values[1,1] E_NL[5,8] = 2*a_values[1,2] return E_NL %aimport geom_util u=getUHat3DPlane(alpha1, alpha2, alpha3) # u=getUHatU3Main(alpha1, alpha2, alpha3) gradu=B*u E_NL = E_NonLinear(gradu)*B E_NL %aimport geom_util u=getUHatU3MainPlane(alpha1, alpha2, alpha3) gradup=Grad_U_P*u # e=E*gradup # e E_NLp = E_NonLinear(gradup)*gradup simplify(E_NLp) w Explanation: Strain tensor $ \left( \begin{array}{c} \varepsilon_{11} \ \varepsilon_{22} \ \varepsilon_{33} \ 2\varepsilon_{12} \ 2\varepsilon_{13} \ 2\varepsilon_{23} \ \end{array} \right) = \left(E + E_{NL} \left( \nabla \vec{u} \right) \right) \cdot \left( \begin{array}{c} \nabla_1 u_1 \ \nabla_2 u_1 \ \nabla_3 u_1 \ \nabla_1 u_2 \ \nabla_2 u_2 \ \nabla_3 u_2 \ \nabla_1 u_3 \ \nabla_2 u_3 \ \nabla_3 u_3 \ \end{array} \right)$ End of explanation %aimport geom_util C_tensor = getIsotropicStiffnessTensor() C = convertStiffnessTensorToMatrix(C_tensor) C StrainL.T*C*StrainL*H1 Explanation: Virtual work End of explanation T=zeros(12,6) T[0,0]=1 T[0,2]=alpha3 T[1,1]=1 T[1,3]=alpha3 T[3,2]=1 T[8,4]=1 T[9,5]=1 T D_p_T = StrainL*T simplify(D_p_T) u = Function("u") t = Function("theta") w = Function("w") u1=u(alpha1)+alpha3*t(alpha1) u3=w(alpha1) gu = zeros(12,1) gu[0] = u1 gu[1] = u1.diff(alpha1) gu[3] = u1.diff(alpha3) gu[8] = u3 gu[9] = u3.diff(alpha1) gradup=Grad_U_P*gu # E_NLp = E_NonLinear(gradup)*gradup # simplify(E_NLp) # gradup=Grad_U_P*gu # o20=(K*u(alpha1)-w(alpha1).diff(alpha1)+t(alpha1))/2 # o21=K*t(alpha1) # O=1/2*o20*o20+alpha3*o20*o21-alpha3*K/2*o20*o20 # O=expand(O) # O=collect(O,alpha3) # simplify(O) StrainNL = E_NonLinear(gradup)*gradup StrainL*gu+simplify(StrainNL) Explanation: Tymoshenko theory $u_1 \left( \alpha_1, \alpha_2, \alpha_3 \right)=u\left( \alpha_1 \right)+\alpha_3\gamma \left( \alpha_1 \right) $ $u_2 \left( \alpha_1, \alpha_2, \alpha_3 \right)=0 $ $u_3 \left( \alpha_1, \alpha_2, \alpha_3 \right)=w\left( \alpha_1 \right) $ $ \left( \begin{array}{c} u_1 \ \frac { \partial u_1 } { \partial \alpha_1} \ \frac { \partial u_1 } { \partial \alpha_2} \ \frac { \partial u_1 } { \partial \alpha_3} \ u_2 \ \frac { \partial u_2 } { \partial \alpha_1} \ \frac { \partial u_2 } { \partial \alpha_2} \ \frac { \partial u_2 } { \partial \alpha_3} \ u_3 \ \frac { \partial u_3 } { \partial \alpha_1} \ \frac { \partial u_3 } { \partial \alpha_2} \ \frac { \partial u_3 } { \partial \alpha_3} \ \end{array} \right) = T \cdot \left( \begin{array}{c} u \ \frac { \partial u } { \partial \alpha_1} \ \gamma \ \frac { \partial \gamma } { \partial \alpha_1} \ w \ \frac { \partial w } { \partial \alpha_1} \ \end{array} \right) $ End of explanation L=zeros(12,12) h=Symbol('h') p0=1/2-alpha3/h p1=1/2+alpha3/h p2=1-(2*alpha3/h)**2 L[0,0]=p0 L[0,2]=p1 L[0,4]=p2 L[1,1]=p0 L[1,3]=p1 L[1,5]=p2 L[3,0]=p0.diff(alpha3) L[3,2]=p1.diff(alpha3) L[3,4]=p2.diff(alpha3) L[8,6]=p0 L[8,8]=p1 L[8,10]=p2 L[9,7]=p0 L[9,9]=p1 L[9,11]=p2 L[11,6]=p0.diff(alpha3) L[11,8]=p1.diff(alpha3) L[11,10]=p2.diff(alpha3) L D_p_L = StrainL*L simplify(D_p_L) h = 0.5 exp=(0.5-alpha3/h)*(1-(2*alpha3/h)**2)#/(1+alpha3*0.8) p02=integrate(exp, (alpha3, -h/2, h/2)) integral = expand(simplify(p02)) integral Explanation: Square theory $u^1 \left( \alpha_1, \alpha_2, \alpha_3 \right)=u_{10}\left( \alpha_1 \right)p_0\left( \alpha_3 \right)+u_{11}\left( \alpha_1 \right)p_1\left( \alpha_3 \right)+u_{12}\left( \alpha_1 \right)p_2\left( \alpha_3 \right) $ $u^2 \left( \alpha_1, \alpha_2, \alpha_3 \right)=0 $ $u^3 \left( \alpha_1, \alpha_2, \alpha_3 \right)=u_{30}\left( \alpha_1 \right)p_0\left( \alpha_3 \right)+u_{31}\left( \alpha_1 \right)p_1\left( \alpha_3 \right)+u_{32}\left( \alpha_1 \right)p_2\left( \alpha_3 \right) $ $ \left( \begin{array}{c} u^1 \ \frac { \partial u^1 } { \partial \alpha_1} \ \frac { \partial u^1 } { \partial \alpha_2} \ \frac { \partial u^1 } { \partial \alpha_3} \ u^2 \ \frac { \partial u^2 } { \partial \alpha_1} \ \frac { \partial u^2 } { \partial \alpha_2} \ \frac { \partial u^2 } { \partial \alpha_3} \ u^3 \ \frac { \partial u^3 } { \partial \alpha_1} \ \frac { \partial u^3 } { \partial \alpha_2} \ \frac { \partial u^3 } { \partial \alpha_3} \ \end{array} \right) = L \cdot \left( \begin{array}{c} u_{10} \ \frac { \partial u_{10} } { \partial \alpha_1} \ u_{11} \ \frac { \partial u_{11} } { \partial \alpha_1} \ u_{12} \ \frac { \partial u_{12} } { \partial \alpha_1} \ u_{30} \ \frac { \partial u_{30} } { \partial \alpha_1} \ u_{31} \ \frac { \partial u_{31} } { \partial \alpha_1} \ u_{32} \ \frac { \partial u_{32} } { \partial \alpha_1} \ \end{array} \right) $ End of explanation rho=Symbol('rho') B_h=zeros(3,12) B_h[0,0]=1 B_h[1,4]=1 B_h[2,8]=1 M=simplify(rho*P.T*B_h.T*G_up*B_h*P) M M_p = L.T*M*L integrate(M_p, (alpha3, -h/2, h/2)) Explanation: Mass matrix End of explanation
3,041
Given the following text description, write Python code to implement the functionality described below step by step Description: First read in the original data Step1: repeat the processing with all_encounter_data in ICO.py Step2: After setting up the standard range of outliers, we lost at most 600 points for each variable in all_encounter_data. (And set the times of IQR from 1.5 to 2 does not really remain as many points as I was expecting. So I choose the standard times of 1.5) And after removing the outliers, the variables seem a lot more normal distributed. Step3: What about we crush all_encounter_data to all_person_data by group Person_Nbr? Step4: From above we can tell, after I identify the outliers, no more than 4% points of each variable are removed, which is acceptable for me. Step5: Now use 04/15 processed person data (added new features) Step6: Get the dummy value for the categorical features Step7: Group the quantitive features by Age and Gender But there are still null values within the grouped mean values. Step8: Group the quantitive features by Age_group (and maybe gender) Divide patients into groups with same amount of patients by age and created a new column called Age_group Divide patients into groups by quantile of age and get dummy values Step9: The missing value percentage in different age group as following Step10: Implement ANOVA test To test if the mean values of the each feature are equal after being grouped Step11: Fill up the missing values with the mean of the non-null variable grouped by age group Step12: Group the quantitive features by DR diagnosis The missing value percentage in different diagnosis as following Step13: Implement ANOVA test To test if the mean values of the each feature are equal after being grouped Step14: Fill up the missing values with the mean of the non-null variable grouped by DR diagnosis Step15: Modeling trial Varibles Step16: Decision Tree modeling exploration Step17: Logistic Regression modeling exploration Step18: Output the filled up data
Python Code: import re data = pd.read_pickle(os.getcwd() + '/data/all_encounter_data.pickle') Explanation: First read in the original data End of explanation d_enc = data.drop(["Enc_ID","Person_ID"], axis=1) pattern0= re.compile("\d+\s*\/\s*\d+") index1 = d_enc['Glucose'].str.contains(pattern0, na=False) temp = d_enc.loc[index1, 'Glucose'] d_enc.loc[index1, 'Glucose'] = d_enc.loc[index1, 'BP'] d_enc.loc[index1, 'BP'] = temp index2 = d_enc.BP[d_enc.BP.notnull()][~d_enc.BP[d_enc.BP.notnull()].str.contains('/')].index temp = d_enc.loc[index2, 'Glucose'] d_enc.loc[index2, 'Glucose'] = d_enc.loc[index2, 'BP'] d_enc.loc[index2, 'BP'] = temp # Split up the BP field into Systolic and Diastolic readings pattern1 = re.compile("(?P<BP_Systolic>\d+)\s*\/\s*(?P<BP_Diastolic>\d+)") d_enc = pd.merge(d_enc, d_enc["BP"].str.extract(pattern1, expand=True), left_index=True, right_index=True).drop("BP", axis=1) # Define ranges for reasonable values. Identify the data outside of 1.5 times of IQR as outliers NaN = float("NaN") quantitive_columns=['A1C', 'BMI', 'Glucose', 'BP_Diastolic', 'BP_Systolic'] for column in quantitive_columns: d_enc[column] = pd.to_numeric(d_enc[column], errors='coerce') temp = d_enc[column][d_enc[column].notnull()] Q2 = temp.quantile(0.75) Q1 = temp.quantile(0.25) IQR = Q2-Q1 print(temp[Q1 - 2 * IQR < temp][temp[Q1 - 2 * IQR < temp] < Q2 + 2 * IQR].shape[0], temp.shape[0], d_enc.shape[0]) print(column, Q1 - 2 * IQR, Q2 + 2 * IQR) for column in quantitive_columns: d_enc[column] = pd.to_numeric(d_enc[column], errors='coerce') temp = d_enc[column][d_enc[column].notnull()] Q2 = temp.quantile(0.75) Q1 = temp.quantile(0.25) IQR = Q2-Q1 print(temp[Q1 - 1.5 * IQR < temp][temp[Q1 - 1.5 * IQR < temp] < Q2 + 1.5 * IQR].shape[0], temp.shape[0], d_enc.shape[0]) print(column, Q1 - 1.5 * IQR, Q2 + 1.5 * IQR) Explanation: repeat the processing with all_encounter_data in ICO.py End of explanation import matplotlib.pyplot as plt for column in quantitive_columns: f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) temp0 = pd.to_numeric(d_enc[column], errors='coerce') ax1.hist(temp0[temp0.notnull()]) ax1.set_title('before') temp = temp0[temp0.notnull()] Q2 = temp.quantile(0.75) Q1 = temp.quantile(0.25) IQR = Q2-Q1 d_enc[column] = temp0.map(lambda x: x if Q1 - 1.5 * IQR < x < Q2 + 1.5 * IQR else NaN) ax2.hist(d_enc[column][d_enc[column].notnull()]) ax2.set_title('after') f.suptitle(column) plt.show() Explanation: After setting up the standard range of outliers, we lost at most 600 points for each variable in all_encounter_data. (And set the times of IQR from 1.5 to 2 does not really remain as many points as I was expecting. So I choose the standard times of 1.5) And after removing the outliers, the variables seem a lot more normal distributed. End of explanation person_data_old = pd.read_pickle(os.getcwd() + '/data/all_person_data_Richard_20170307.pickle') person_data_new = pd.read_pickle(os.getcwd() + '/data/all_person_data_Dan_20170406.pickle') person_data_old[quantitive_columns].isnull().sum(axis=0)/person_data_old.shape[0] person_data_new[quantitive_columns].isnull().sum(axis=0)/person_data_new.shape[0] Explanation: What about we crush all_encounter_data to all_person_data by group Person_Nbr? End of explanation plt.bar(range(0,5), person_data_new[quantitive_columns].isnull().sum(axis=0)/person_data_new.shape[0]) plt.gca().set_ylim([0,1]) plt.xticks(range(0,5), quantitive_columns) plt.ylabel('Missing value percentage') plt.xlabel('Quantative variables') plt.show() Explanation: From above we can tell, after I identify the outliers, no more than 4% points of each variable are removed, which is acceptable for me. End of explanation person_data_new = pd.read_pickle(os.getcwd() + '/data/all_person_data_Dan_20170415.pickle') person_data_new.columns.values quantitive_columns = ["A1C", "BMI", "Glucose", "BP_Systolic", "BP_Diastolic", 'MR_OD_SPH_Numeric', 'MR_OD_CYL_Numeric', 'MR_OS_SPH_Numeric', 'MR_OS_CYL_Numeric', 'MR_OS_DVA_ability', 'MR_OD_DVA_ability', 'MR_OS_NVA_ability', 'MR_OD_NVA_ability'] Explanation: Now use 04/15 processed person data (added new features) End of explanation dummy_columns = ['DM', 'ME', 'Glaucoma_Suspect', 'Open_angle_Glaucoma', 'Cataract'] categorical_columns = ['Gender', 'Race', 'recent_smoking_status', 'family_DM', 'family_G'] for column in categorical_columns: temp = pd.get_dummies(person_data_new[column], prefix=column) person_data_new[temp.columns.values]=temp dummy_columns.extend(temp.columns.values.tolist()) Explanation: Get the dummy value for the categorical features End of explanation temp = person_data_new.copy() mean_value = temp.groupby(['Gender', pd.cut(temp['Age'], 6)]).apply( lambda x: x['A1C'][x['A1C'].notnull()].mean()) missing_index = temp.groupby(['Gender', pd.cut(temp['Age'], 6)]).apply( lambda x: x['A1C'][x['A1C'].isnull()]) for i in mean_value.index.to_series().tolist(): if i in missing_index.index: temp.set_value(missing_index[i].index, 'A1C', mean_value[i]) mean_value temp[temp['A1C'].isnull()].shape[0] Explanation: Group the quantitive features by Age and Gender But there are still null values within the grouped mean values. End of explanation age_group = np.array([person_data_new.Age.quantile(1.0/6*i) for i in range(1,7)]) age_group person_data_new['Age_group_numeric']=person_data_new.Age.apply(lambda x: sum(age_group<x)+1) age_group_dict = {1: '(18, 48]', 2: '(49, 55]', 3: '(56, 60]', 4: '(61, 66]', 5: '(67, 74]', 6: '(75, 114]'} person_data_new['Age_group'] = person_data_new.Age_group_numeric.apply(lambda x: age_group_dict.get(x)) person_data_new.groupby('Age_group').apply(lambda x: x.shape[0]) temp = pd.get_dummies(person_data_new['Age_group'], prefix = 'Age_group') person_data_new[temp.columns.values] = temp dummy_columns.extend(temp.columns.values.tolist()) Explanation: Group the quantitive features by Age_group (and maybe gender) Divide patients into groups with same amount of patients by age and created a new column called Age_group Divide patients into groups by quantile of age and get dummy values End of explanation person_data_new.groupby('Age_group').apply(lambda x: x[quantitive_columns].isnull().sum(axis=0)/x.shape[0]) Explanation: The missing value percentage in different age group as following: End of explanation from scipy.stats import f_oneway for column in quantitive_columns: temp = {k:list(v[column]) for k,v in person_data_new[person_data_new[column].notnull()].groupby('Age_group_numeric')} print column print f_oneway(temp[1], temp[2], temp[3], temp[4], temp[5], temp[6]) for column in quantitive_columns: temp = {k:list(v[column]) for k,v in person_data_new[person_data_new[column].notnull()].groupby('Gender')} print column print f_oneway(temp['F'], temp['M']) Explanation: Implement ANOVA test To test if the mean values of the each feature are equal after being grouped End of explanation person_data_fillup = {} temp = person_data_new.copy() for column in quantitive_columns: mean_value = temp.groupby('Age_group').apply( lambda x: x[column][x[column].notnull()].mean()) missing_index = temp.groupby('Age_group').apply( lambda x: x[column][x[column].isnull()]) for i in mean_value.index.to_series().tolist(): if i in missing_index.index: temp.set_value(missing_index[i].index, column, mean_value[i]) person_data_fillup['groupbyAgegroup_mean'] = temp Explanation: Fill up the missing values with the mean of the non-null variable grouped by age group End of explanation person_data_new.groupby('recent_DR').apply(lambda x: x.shape[0]) person_data_new.groupby('recent_DR').apply(lambda x: x[quantitive_columns].isnull().sum(axis=0)/x.shape[0]) person_data_new.groupby('worst_DR').apply(lambda x: x.shape[0]) person_data_new.groupby('worst_DR').apply(lambda x: x[quantitive_columns].isnull().sum(axis=0)/x.shape[0]) Explanation: Group the quantitive features by DR diagnosis The missing value percentage in different diagnosis as following: End of explanation for column in quantitive_columns: temp = {k:list(v[column]) for k,v in person_data_new[person_data_new[column].notnull()].groupby('recent_DR')} print column print f_oneway(temp['PDR'], temp['SNPDR'], temp['MNPDR'], temp['mNPDR'], temp['no_DR']) Explanation: Implement ANOVA test To test if the mean values of the each feature are equal after being grouped End of explanation DR_diagnoses = ['PDR', 'SNPDR', 'MNPDR', 'mNPDR', 'no_DR'] temp = person_data_new.copy() for column in quantitive_columns: mean_value = temp.groupby('recent_DR').apply(lambda x: x[column][x[column].notnull()].mean()) missing_index = temp.groupby('recent_DR').apply(lambda x: x[column][x[column].isnull()]) for diagnosis in DR_diagnoses: temp.set_value(missing_index[diagnosis].index, column, mean_value[diagnosis]) person_data_fillup['recent_groupbyDR_mean'] = temp temp = person_data_new.copy() for column in quantitive_columns: mean_value = temp.groupby('worst_DR').apply(lambda x: x[column][x[column].notnull()].mean()) missing_index = temp.groupby('worst_DR').apply(lambda x: x[column][x[column].isnull()]) for diagnosis in DR_diagnoses: temp.set_value(missing_index[diagnosis].index, column, mean_value[diagnosis]) person_data_fillup['worst_groupbyDR_mean'] = temp Explanation: Fill up the missing values with the mean of the non-null variable grouped by DR diagnosis End of explanation dummy_columns quantitive_columns target_columns = {'recent_groupbyDR_mean': 'recent_DR', 'worst_groupbyDR_mean': 'worst_DR', 'groupbyAgegroup_mean': 'recent_DR'} Explanation: Modeling trial Varibles End of explanation from sklearn import tree from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.metrics import confusion_matrix for method, temp in person_data_fillup.items(): print(method) X = temp[quantitive_columns + dummy_columns] y = temp[target_columns[method]] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) clf = tree.DecisionTreeClassifier() clf = clf.fit(X_train, y_train) preds = clf.predict(X = X_test) #preds = label_encoder.inverse_transform(preds.tolist()) #y_test = label_encoder.inverse_transform(y_test) print(pd.crosstab(y_test, preds)) print(metrics.classification_report(y_true = y_test, y_pred=preds)) tree.export_graphviz(clf, feature_names = quantitive_columns + dummy_columns, class_names = ['MNPDR','PDR','SNPDR','mNPDR','no_DR'], out_file='DT.dot') Explanation: Decision Tree modeling exploration End of explanation from sklearn.linear_model import LogisticRegression for method, temp in person_data_fillup.items(): print(method) X = temp[quantitive_columns + dummy_columns] y = temp[target_columns[method]] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) clf = LogisticRegression() clf = clf.fit(X_train, y_train) preds = clf.predict(X = X_test) #preds = label_encoder.inverse_transform(preds.tolist()) #y_test = label_encoder.inverse_transform(y_test) print(pd.crosstab(y_test, preds)) print(metrics.classification_report(y_true = y_test, y_pred=preds)) Explanation: Logistic Regression modeling exploration End of explanation temp = person_data_fillup['groupbyAgegroup_mean'][quantitive_columns + dummy_columns + ['worst_DR', 'recent_DR']] temp.describe(include='all') #temp.to_pickle('baseline_missingHandled_Dan_20170406.pickle') temp.to_pickle('Morefeatures_missingHandled_Dan_20170415.pickle') temp = person_data_new[quantitive_columns + dummy_columns + ['worst_DR', 'recent_DR']] temp.describe(include='all') #temp.to_pickle('baseline_raw_Dan_20170406.pickle') temp.to_pickle('Morefeatures_raw_Dan_20170415.pickle') Explanation: Output the filled up data End of explanation
3,042
Given the following text description, write Python code to implement the functionality described below step by step Description: With rerun = True, all experiments are executed again (takes several hours). With False, the data are taken from the *.csv files Step1: The generate function may be used to generate random formulae. Uncomment the function call below to generate different set of formulae. Step2: Deterministic automata We compare output of ltl3tela -D1, ltl2tgba -DG (this setting guarantees that the output will be deterministic), Delag and Rabinizer 4. Step3: The sum of states, edges and acceptance sets over the set of 1000 random formulae Step4: The sum of states, edges and acceptance sets over the set of patterns and literature formulae, including timeouts (TO) and parse errors (PE). The latter means that ltlcross was unable to parse the produced automaton due to excessive number of acceptance sets. Step5: Comparison of ltl3tela and ltl2tgba on patterns formulae where the produced automata have different numbers of states Step6: Merge the tables to get the TeX output later Step7: Nondeterministic automata Since ltl3ba sometimes produces slighlty incorrect HOAF, be more tolerant about this (otherwise ltlcross refuses to parse its output) Step8: The following computations work the same way as for deterministic automata. Step9: Merge tables Step10: Highlight & export to LaTeX Step11: Cross comparisons In the following tables, the value in (row, col) is the number of cases where tool row delivers a better automaton than tool col. Better means strictly smaller in the lexicographic order on (#states, #acc marks, #edges). The last column in each row sums the number of such victories of the corresponding tool row. Step12: Formulae excluded from the evaluation The following tables contain results on formulae excluded from the evaluation due to error (timeout or parse error) in some translation. In case of successful translation, number of states is shown in the table. The first and second table contain data for deterministic and nondeterministic translators, respectively. Step13: Finally, we are interested in formulae where the difference between best and worst translator (in terms of states count) is larger than some threshold. Both tables compare deterministic translators over patterns (with threshold 20) and random formulae (threshold 10). Such statistics can be produced by calling large_diff(dataset, list_of_interesting_tools, threshold).
Python Code: rerun = False %%bash ltl3ba -v ltl3tela -v ltl2tgba --version delag --version ltl2dgra --version # Rabinizer 4 Explanation: With rerun = True, all experiments are executed again (takes several hours). With False, the data are taken from the *.csv files: End of explanation def generate(n=1000,func=(lambda x: True),filename=None,priorities='',ap=['a','b','c','d','e']): if filename is None: file_h = sys.stdout else: file_h = open(filename,'w') f = spot.randltl(ap, ltl_priorities=priorities, simplify=3,tree_size=15).relabel_bse(spot.Abc) i = 0 printed = set() while(i < n): form = next(f) if form in printed: continue if func(form) and not form.is_tt() and not form.is_ff(): print(form,file=file_h) printed.add(form) i += 1 f_rand = 'formulae/atva19/rand.ltl' f_patterns = 'formulae/atva19/patterns.ltl' # generate(1000, filename = f_rand) Explanation: The generate function may be used to generate random formulae. Uncomment the function call below to generate different set of formulae. End of explanation d_tools = { "ltl3tela-D1": "ltl3tela -D1 -f %f > %O", "ltl2tgba-DG": "ltl2tgba -DG %f > %O", "delag": "delag %f > %O", "rabinizer4": "ltl2dgra %f > %O" } d_order = ["ltl3tela-D1", "ltl2tgba-DG", "delag", "rabinizer4"] d_cols = ["states", "edges", "acc"] d_csv_rand = 'formulae/atva19/det.rand.csv' d_data_rand = LtlcrossRunner(d_tools, formula_files = [f_rand], res_filename = d_csv_rand, cols = d_cols) if rerun: d_data_rand.run_ltlcross(automata = False, timeout = '60') d_data_rand.parse_results() Explanation: Deterministic automata We compare output of ltl3tela -D1, ltl2tgba -DG (this setting guarantees that the output will be deterministic), Delag and Rabinizer 4. End of explanation det_rand = d_data_rand.cummulative(col = d_cols).unstack(level = 0).loc[d_order, d_cols] det_rand d_csv_patterns = 'formulae/atva19/det.patterns.csv' d_data_patterns = LtlcrossRunner(d_tools, formula_files = [f_patterns], res_filename = d_csv_patterns, cols = d_cols) if rerun: d_data_patterns.run_ltlcross(automata = False, timeout = '60') d_data_patterns.parse_results() Explanation: The sum of states, edges and acceptance sets over the set of 1000 random formulae: End of explanation det_to = pd.DataFrame(d_data_patterns.get_error_count(),columns=['TO.literature']) det_err = pd.DataFrame(d_data_patterns.get_error_count('parse error',False),columns=['PE.literature']) det_lit = d_data_patterns.cummulative(col = d_cols).unstack(level = 0).loc[d_order, d_cols] det_lit = pd.concat([det_lit,det_to,det_err],axis=1,join='inner',sort=False) det_lit to = d_data_rand.exit_status to[to != "ok"].dropna(how='all') Explanation: The sum of states, edges and acceptance sets over the set of patterns and literature formulae, including timeouts (TO) and parse errors (PE). The latter means that ltlcross was unable to parse the produced automaton due to excessive number of acceptance sets. End of explanation d_data_patterns.smaller_than('ltl3tela-D1', 'ltl2tgba-DG') d_data_patterns.smaller_than('ltl2tgba-DG', 'ltl3tela-D1') Explanation: Comparison of ltl3tela and ltl2tgba on patterns formulae where the produced automata have different numbers of states: End of explanation det_tmp = pd.merge(det_rand, det_lit, suffixes=('.random','.literature'),on='tool') det_tmp det = split_cols(det_tmp,'.').swaplevel(axis=1) det Explanation: Merge the tables to get the TeX output later: End of explanation import os os.environ['SPOT_HOA_TOLERANT']='TRUE' Explanation: Nondeterministic automata Since ltl3ba sometimes produces slighlty incorrect HOAF, be more tolerant about this (otherwise ltlcross refuses to parse its output): End of explanation n_tools = { "ltl3tela": "ltl3tela -f %f > %O", "ltl2tgba": "ltl2tgba %f > %O", "ltl2tgba-G": "ltl2tgba -G %f > %O", "ltl3ba": "ltldo 'ltl3ba -H2' -f %f > %O", } n_order = ["ltl3tela", "ltl2tgba-G", "ltl2tgba", "ltl3ba"] n_cols = ["states", "edges", "acc"] n_csv_rand = 'formulae/atva19/nondet.rand.csv' n_data_rand = LtlcrossRunner(n_tools, formula_files = [f_rand], res_filename = n_csv_rand, cols = n_cols) if rerun: n_data_rand.run_ltlcross(automata = False, timeout = '60') n_data_rand.parse_results() nd_rand = n_data_rand.cummulative(col = n_cols).unstack(level = 0).loc[n_order, n_cols] nd_rand n_csv_patterns = 'formulae/atva19/nondet.patterns.csv' n_data_patterns = LtlcrossRunner(n_tools, formula_files = [f_patterns], res_filename = n_csv_patterns, cols = n_cols) if rerun: n_data_patterns.run_ltlcross(automata = False, timeout = '60') n_data_patterns.parse_results() nd_to = pd.DataFrame(n_data_patterns.get_error_count(),columns=['TO.literature']) nd_err = pd.DataFrame(n_data_patterns.get_error_count('parse error',False),columns=['PE.literature']) nd_lit = n_data_patterns.cummulative(col = n_cols).unstack(level = 0).loc[n_order, n_cols] nd_lit = pd.concat([nd_lit,nd_to,nd_err],axis=1,join='inner',sort=False) nd_lit n_data_patterns.smaller_than('ltl3tela', 'ltl2tgba-G') n_data_patterns.smaller_than('ltl2tgba-G', 'ltl3tela') nd_tmp = pd.merge(nd_rand, nd_lit, suffixes=('.random','.literature'),on='tool') nd_tmp nd = split_cols(nd_tmp,'.').swaplevel(axis=1) nd n_data_patterns.get_error_count() n_data_rand.get_error_count() Explanation: The following computations work the same way as for deterministic automata. End of explanation det #Merge det & nondet merged = pd.concat([det,nd],keys=["deterministic","nondeterministic"],join='outer',sort=False) merged Explanation: Merge tables End of explanation filename = 'colored_res.tex' merged_high = highlight_by_level(merged, high_min) cummulative_to_latex(merged_high, filename) fix_latex(merged_high, filename) d_lit_c = len(d_data_patterns.values.dropna()) n_lit_c = len(n_data_patterns.values.dropna()) print('Number of formulas without errors:\n' + ' det: {}\nnondet: {}'.format(d_lit_c, n_lit_c)) Explanation: Highlight & export to LaTeX End of explanation d_data_patterns.cross_compare(include_fails=False,props=['states','acc','edges']) d_data_rand.cross_compare(include_fails=False,props=['states','acc','edges']) n_data_patterns.cross_compare(include_fails=False,props=['states','acc','edges']) n_data_rand.cross_compare(include_fails=False,props=['states','acc','edges']) Explanation: Cross comparisons In the following tables, the value in (row, col) is the number of cases where tool row delivers a better automaton than tool col. Better means strictly smaller in the lexicographic order on (#states, #acc marks, #edges). The last column in each row sums the number of such victories of the corresponding tool row. End of explanation d_fails = d_data_patterns.values[d_data_patterns.values.isnull().any(axis = 1)]['states']\ .join(d_data_patterns.exit_status, lsuffix = '.states', rsuffix = '.response') for tool in d_order: d_fails[tool] = d_fails[tool + '.states'].combine_first(d_fails[tool + '.response']) d_fails_out = d_fails[d_order] d_fails_out n_fails = n_data_patterns.values[n_data_patterns.values.isnull().any(axis = 1)]['states']\ .join(n_data_patterns.exit_status, lsuffix = '.states', rsuffix = '.response') for tool in n_order: n_fails[tool] = n_fails[tool + '.states'].combine_first(n_fails[tool + '.response']) n_fails_out = n_fails[n_order] n_fails_out Explanation: Formulae excluded from the evaluation The following tables contain results on formulae excluded from the evaluation due to error (timeout or parse error) in some translation. In case of successful translation, number of states is shown in the table. The first and second table contain data for deterministic and nondeterministic translators, respectively. End of explanation def large_diff(res, tools, threshold): df = res.values.dropna()['states'] df['diff'] = df.loc[:, tools].max(axis = 1) - df.loc[:, tools].min(axis = 1) return df[df['diff'] > threshold][tools] large_diff(d_data_patterns, d_tools, 20) large_diff(d_data_rand, d_tools, 10) Explanation: Finally, we are interested in formulae where the difference between best and worst translator (in terms of states count) is larger than some threshold. Both tables compare deterministic translators over patterns (with threshold 20) and random formulae (threshold 10). Such statistics can be produced by calling large_diff(dataset, list_of_interesting_tools, threshold). End of explanation
3,043
Given the following text description, write Python code to implement the functionality described below step by step Description: Preamble Step1: Feature Union with Heterogeneous Data Sources Polynomial basis function The polynomial basis function is provided by scikit-learn in the sklearn.preprocessing module. Step2: Custom basis functions Unfortunately, this is pretty much the extent of what scikit-learn provides in the way of basis functions. Here we define some standard basis functions, while adhering to the scikit-learn interface. This will be important when we try to incorporate our basis functions in pipelines and feature unions later on. While this is not strictly required, it will certainly make life easier for us down the road. Radial Basis Function Step3: Sigmoidal Basis Function Step4: Real-world Dataset Now that we have a few basis functions at our disposal, let's try to apply different basis functions to different features of a dataset. We use the diabetes dataset, a real-world dataset with 442 instances and 10 features. We first work through each step manually, and show how the steps can be combined using scikit-learn's feature unions and pipelines to form a single model that will perform all the necessary steps in one fell swoop. Step5: We print every other feature for just the first few instances, just to get an idea of what the data looks like Step6: Assume for some reason we are interested in training a model using, say, features 2 and 5 with a polynomial basis, and features 6, 8 and 9 with a radial basis. We first slice up our original dataset. Step7: Now we apply the respective basis functions. Polynomial Step8: Radial Step9: Now we're ready to concatenate these augmented datasets. Step10: Now we are ready to train a regressor with this augmented dataset. For this example, we'll simply use a linear regression model. Step11: (To no one's surprise, our model performs quite poorly, since zero effort was made to identify and incorporate the most informative features or appropriate basis functions. Rather, they were chosen solely to maximize clarity of exposition.) Recap So let's recap what we've done. We started out with a dataset with 442 samples and 10 features, represented by 442x10 matrix X For one reason or another, we wanted to use different basis functions for different subsets of features. Apparently, we wanted features 2 and 5 for one basis function and features 6, 8 and 9 for another. Therefore, we sliced the matrix X to obtain 442 by 2 matrix X1 and sliced the matrix X to obtain 442 by 3 matrix X2. We applied a polynomial basis function of degree 2 to X1 with 2 features and 442 samples. This returns a dataset X1_poly with $\begin{pmatrix} 4 \ 2 \end{pmatrix} = 6$ features and 442 samples. (NB Step12: This effectively composes each of the steps we had to manually perform and amalgamated it into a single transformer. We can even append a regressor at the end to make it a complete estimator/predictor. Step13: Breaking it Down The most important thing to note is that everything in scikit-learn is either a transformer or a predictor, and are almost always an estimator. An estimator is simply a class that implements the fit method, while a transfromer and predictor implements a, well, transform and predict method respectively. From this simple interface, we get a surprising hight amount of functionality and flexibility. Pipeline A pipeline behaves as a transformer or a predictor depending on what the last step of the pipleline is. If the last step is a transformer, the entire pipeline is a transformer and one can call fit, transform or fit_transform like an ordinary transformer. The same is true if the last step is a predictor. Essentially, all it does is chain the fit_transform calls of every transformer in the pipeline. If we think of ordinary transformers like functions, pipelines can be thought of as a higher-order function that simply composes an arbitary number of functions. Step14: Union A union is a transformer that is initialized with an arbitrary number of transformers. When fit_transform is called on a dataset, it simply calls fit_transform of the transformers it was given and horizontally concatenates its results. Step15: If we run this on the original 442x10 dataset, we expect to get a dataset with the same number of samples and $\begin{pmatrix} 12 \ 2 \end{pmatrix} + 3 = 66 + 3 = 69$ features. Step16: Putting it all together The above union applies the basis functions on the entire dataset, but we're interested in applying different basis functions to different features. To do this, we can simply define a rather frivolous transformer that simply slices the input data, and that's exactly what ArraySlicer was for. Step17: Then we can combine this all together to form our mega-transformer which we showed earlier. Step18: This gives us a predictor which takes some input, slices up the respective features, churns it through a basis function and finally trains a linear regressor on it, all in one go!
Python Code: import numpy as np from scipy.spatial.distance import cdist from scipy.special import expit from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import make_pipeline, make_union from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.datasets import load_diabetes Explanation: Preamble End of explanation X = np.arange(1, 9).reshape(4, 2) X PolynomialFeatures(degree=2).fit_transform(X) Explanation: Feature Union with Heterogeneous Data Sources Polynomial basis function The polynomial basis function is provided by scikit-learn in the sklearn.preprocessing module. End of explanation class RadialFeatures(BaseEstimator, TransformerMixin): def __init__(self, mu=0, s=1): self.mu = mu self.s = s def fit(self, X, y=None): # this basis function stateless # need only return self return self def transform(self, X, y=None): return np.exp(-cdist(X, self.mu, 'sqeuclidean')/(2*self.s**2)) Explanation: Custom basis functions Unfortunately, this is pretty much the extent of what scikit-learn provides in the way of basis functions. Here we define some standard basis functions, while adhering to the scikit-learn interface. This will be important when we try to incorporate our basis functions in pipelines and feature unions later on. While this is not strictly required, it will certainly make life easier for us down the road. Radial Basis Function End of explanation class SigmoidalFeatures(BaseEstimator, TransformerMixin): def __init__(self, mu=0, s=1): self.mu = mu self.s = s def fit(self, X, y=None): # this basis function stateless # need only return self return self def transform(self, X, y=None): return expit(cdist(X, self.mu)/self.s) mu = np.linspace(0.1, 1, 10).reshape(5, 2) mu RadialFeatures(mu=mu).fit_transform(X).round(2) SigmoidalFeatures(mu=mu).fit_transform(X).round(2) Explanation: Sigmoidal Basis Function End of explanation diabetes = load_diabetes() X, y = diabetes.data, diabetes.target X.shape y.shape Explanation: Real-world Dataset Now that we have a few basis functions at our disposal, let's try to apply different basis functions to different features of a dataset. We use the diabetes dataset, a real-world dataset with 442 instances and 10 features. We first work through each step manually, and show how the steps can be combined using scikit-learn's feature unions and pipelines to form a single model that will perform all the necessary steps in one fell swoop. End of explanation # sanity check X[:5, ::2] # sanity check y[:5] Explanation: We print every other feature for just the first few instances, just to get an idea of what the data looks like End of explanation X1 = X[:, np.array([2, 5])] X1.shape # sanity check X1[:5] X2 = X[:, np.array([6, 8, 9])] X2.shape # sanity check X2[:5] Explanation: Assume for some reason we are interested in training a model using, say, features 2 and 5 with a polynomial basis, and features 6, 8 and 9 with a radial basis. We first slice up our original dataset. End of explanation X1_poly = PolynomialFeatures().fit_transform(X1) X1_poly.shape # sanity check X1_poly[:5].round(2) Explanation: Now we apply the respective basis functions. Polynomial End of explanation mu = np.linspace(0, 1, 6).reshape(2, 3) mu X2_radial = RadialFeatures(mu).fit_transform(X2) X2_radial.shape # sanity check X2_radial[:5].round(2) Explanation: Radial End of explanation X_concat = np.hstack((X1_poly, X2_radial)) X_concat.shape # sanity check X_concat[:5, ::2].round(2) Explanation: Now we're ready to concatenate these augmented datasets. End of explanation model = LinearRegression() model.fit(X_concat, y) model.score(X_concat, y) Explanation: Now we are ready to train a regressor with this augmented dataset. For this example, we'll simply use a linear regression model. End of explanation class ArraySlicer(BaseEstimator, TransformerMixin): def __init__(self, index_exp): self.index_exp = index_exp def fit(self, X, y=None): return self def transform(self, X, y=None): return X[self.index_exp] model = \ make_pipeline( make_union( make_pipeline( ArraySlicer(np.index_exp[:, np.array([2, 5])]), PolynomialFeatures() ), make_pipeline( ArraySlicer(np.index_exp[:, np.array([6, 8, 9])]), RadialFeatures(mu) ) ) ) model.fit(X) model.transform(X).shape # sanity check model.transform(X)[:5, ::2].round(2) Explanation: (To no one's surprise, our model performs quite poorly, since zero effort was made to identify and incorporate the most informative features or appropriate basis functions. Rather, they were chosen solely to maximize clarity of exposition.) Recap So let's recap what we've done. We started out with a dataset with 442 samples and 10 features, represented by 442x10 matrix X For one reason or another, we wanted to use different basis functions for different subsets of features. Apparently, we wanted features 2 and 5 for one basis function and features 6, 8 and 9 for another. Therefore, we sliced the matrix X to obtain 442 by 2 matrix X1 and sliced the matrix X to obtain 442 by 3 matrix X2. We applied a polynomial basis function of degree 2 to X1 with 2 features and 442 samples. This returns a dataset X1_poly with $\begin{pmatrix} 4 \ 2 \end{pmatrix} = 6$ features and 442 samples. (NB: In general, the number of output features for a polynomial basis function of degree $d$ on $n$ features is the number of multisets of cardinality $d$, with elements taken from a finite set of cardinality $n+1$, which is given by the multiset coefficient $\begin{pmatrix} \begin{pmatrix} n + 1 \ d \end{pmatrix} \end{pmatrix} = \begin{pmatrix} n + d \ d \end{pmatrix}$.) So from 442 by 2 matrix X1 we obtain 442 by 6 matrix X1_poly applied a radial basis function with 2 mean vectors $\mu_1 = \begin{pmatrix} 0 & 0.2 & 0.4 \end{pmatrix}^T$ and $\mu_2 = \begin{pmatrix} 0.6 & 0.8 & 1.0 \end{pmatrix}^T$, which is represented by the 2 by 3 matrix mu. From the 442 by 3 matrix X2, we obtain 442 by 2 matrix X2_radial Next, we horizontally concatenated 442 by 6 matrix X1_poly with 442 by 2 matrix X2_radial to obtain the final 442 by 8 matrix X_concat Finally, we fitted a linear model on X_concat. So this is how we went from a 442x10 matrix X to the 442x8 matrix X_concat. With Pipeline and Feature Union First we define a transformer that slices up the input data. Note instead of working with (tuples of) slice objects, it is usually more convenient to use the Numpy function np.index_exp. We explain later why this is necessary. End of explanation model = \ make_pipeline( make_union( make_pipeline( ArraySlicer(np.index_exp[:, np.array([2, 5])]), PolynomialFeatures() ), make_pipeline( ArraySlicer(np.index_exp[:, np.array([6, 8, 9])]), RadialFeatures(mu) ) ), LinearRegression() ) model.fit(X, y) model.score(X, y) Explanation: This effectively composes each of the steps we had to manually perform and amalgamated it into a single transformer. We can even append a regressor at the end to make it a complete estimator/predictor. End of explanation model = \ make_pipeline( PolynomialFeatures(), # transformer LinearRegression() # predictor ) model.fit(X, y) model.score(X, y) Explanation: Breaking it Down The most important thing to note is that everything in scikit-learn is either a transformer or a predictor, and are almost always an estimator. An estimator is simply a class that implements the fit method, while a transfromer and predictor implements a, well, transform and predict method respectively. From this simple interface, we get a surprising hight amount of functionality and flexibility. Pipeline A pipeline behaves as a transformer or a predictor depending on what the last step of the pipleline is. If the last step is a transformer, the entire pipeline is a transformer and one can call fit, transform or fit_transform like an ordinary transformer. The same is true if the last step is a predictor. Essentially, all it does is chain the fit_transform calls of every transformer in the pipeline. If we think of ordinary transformers like functions, pipelines can be thought of as a higher-order function that simply composes an arbitary number of functions. End of explanation mu_ = np.linspace(0, 10, 30).reshape(3, 10) model = \ make_union( PolynomialFeatures(), RadialFeatures(mu_) ) Explanation: Union A union is a transformer that is initialized with an arbitrary number of transformers. When fit_transform is called on a dataset, it simply calls fit_transform of the transformers it was given and horizontally concatenates its results. End of explanation model.fit_transform(X).shape Explanation: If we run this on the original 442x10 dataset, we expect to get a dataset with the same number of samples and $\begin{pmatrix} 12 \ 2 \end{pmatrix} + 3 = 66 + 3 = 69$ features. End of explanation model = \ make_pipeline( ArraySlicer(np.index_exp[:, np.array([2, 5])]), PolynomialFeatures() ) model.fit(X) model.transform(X).shape # sanity check model.transform(X)[:5].round(2) Explanation: Putting it all together The above union applies the basis functions on the entire dataset, but we're interested in applying different basis functions to different features. To do this, we can simply define a rather frivolous transformer that simply slices the input data, and that's exactly what ArraySlicer was for. End of explanation model = \ make_pipeline( make_union( make_pipeline( ArraySlicer(np.index_exp[:, np.array([2, 5])]), PolynomialFeatures() ), make_pipeline( ArraySlicer(np.index_exp[:, np.array([6, 8, 9])]), RadialFeatures(mu) ) ), LinearRegression() ) Explanation: Then we can combine this all together to form our mega-transformer which we showed earlier. End of explanation model.fit(X, y) model.score(X, y) Explanation: This gives us a predictor which takes some input, slices up the respective features, churns it through a basis function and finally trains a linear regressor on it, all in one go! End of explanation
3,044
Given the following text description, write Python code to implement the functionality described below step by step Description: Features of BIDMat and Scala BIDMat is a multi-platform matrix library similar to R, Matlab, Julia or Numpy/Scipy. It takes full advantage of the very powerful Scala Language. Its intended primarily for machine learning, but is has a broad set of operations and datatypes and should be suitable for many other applications. BIDMat has several unique features Step1: These calls check that CPU and GPU native libs loaded correctly, and what GPUs are accessible. If you have a GPU and CUDA installed, GPUmem will printout the fraction of free memory, the absolute free memory and the total memory for the default GPU. CPU and GPU matrices BIDMat's matrix types are given in the table below. All are children of the "Mat" parent class, which allows code to be written generically. Many of BIDMach's learning algorithms will run with either single or double precision, dense or sparse input data. <table style="width Step2: CPU matrix operations use Intel MKL acceleration for linear algebra, scientific and statistical functions. BIDMat includes "tic" and "toc" for timing, and "flip" and "flop" for floating point performance. Step3: GPU matrices behave very similarly. Step4: But much of the power of BIDMat is that we dont have to worry about matrix types. Lets explore that with an example. SVD (Singular Value Decomposition) on a Budget Now lets try solving a real problem with this infrastructure Step5: Notice that the code above used only the "Mat" matrix type. If you examine the variables V and P in a Scala IDE (Eclipse has one) you will find that they both also have type "Mat". Let's try it with an FMat (CPU single precision, dense matrix). Movie Data Example We load some data from the MovieLens project. Step6: Let's take a peek at the singular values on a plot Step7: Which shrinks a little too fast. Lets look at it on a log-log plot instead Step8: Now lets try it with a GPU, single-precision, dense matrix. Step9: That's not bad, the GPU version was nearly 4x faster. Now lets try a sparse, CPU single-precision matrix. Note that by construction our matrix was only 10% dense anyway. Sparse SVD Step10: This next one is important. Dense matrix operations are the bread-and-butter of scientific computing, and now most deep learning. But other machine learning tasks (logistic regression, SVMs, k-Means, topic models etc) most commonly take sparse input data like text, URLs, cookies etc. And so performance on sparse matrix operations is critical. GPU performance on sparse data, especially power law data - which covers most of the case above (the commerically important cases) - has historically been poor. But in fact GPU hardware supports extremely fast sparse operations when the kernels are carefully designed. Such kernels are only available in BIDMat right now. NVIDIA's sparse matrix kernels, which have been tuned for sparse scientific data, do not work well on power-law data. In any case, let's try BIDMat's GPU sparse matrix type Step11: That's a 10x improvement end-to-end, which is similar to the GPU's advantage on dense matrices. This result is certainly not specific to SVD, and is reproduced in most ML algorithms. So GPUs have a key role to play in general machine learning, and its likely that at some point they will assume a central role as they currently enjoy in scientific computing and deep learning. GPU Double Precision One last performance issue Step12: Which is noticebly slower, but still 3x faster than the CPU version running in single precision. Using Cusparse NVIDIA's cusparse library, which is optimized for scientific data, doesnt perform as well on power-law data. Step13: Unicode Math Operators, Functions and Variables As well as the standard operators +,-,*,/, BIDMat includes several other important operators with their standard unicode representation. They have an ASCII alias in case unicode input is difficult. Here they are Step14: Hadamard (element-wise) multiply Step15: Dot product, by default along columns Step16: Dot product along rows Step17: Kronecker product Step18: As well as operators, functions in BIDMach can use unicode characters. e.g. Step19: You can certainly define new unicode operators Step20: and use as much Greek as you want Step21: or English Step22: Transposed Multiplies Matrix multiply is the most expensive step in many calculations, and often involves transposed matrices. To speed up those calcualtions, we expose two operators that combine the transpose and multiply operations Step23: Highlights of the Scala Language Scala is a remarkable language. It is an object-oriented language with similar semantics to Java which it effectively extends. But it also has a particular clean functional syntax for anonymous functions and closures. It has a REPL (Read-Eval-Print-Loop) like Python, and can be used interactively or it can run scripts in or outside an interactive session. Like Python, types are determined by assignments, but they are static rather than dynamic. So the language has the economy of Python, but the type-safety of a static language. Scala includes a tuple type for multiple-value returns, and on-the-fly data structuring. Finally it has outstanding support for concurrency with parallel classes and an actor system called Akka. Performance First we examine the performance of Scala as a scientific language. Let's implement an example that has been widely used to illustrate the performance of the Julia language. Its a random walk, i.e. a 1D array with random steps from one element to the next. Step24: If we try the same calculation in the Julia language (a new language designed for scientific computing) and in Python we find that Step25: Which is better, due to the faster random number generation in the vectorized rand function. But More interesting is the GPU running time Step26: If we run similar operators in Julia and Python we find Step27: Almost every piece of Java code can be used in Scala. And therefore any piece of Java code can be used interactively. There's very little work to do. You find a package and add it to your dependencies and then import as you would in Java. Step28: Apache Commons Math includes a Statistics package with many useful functions and tests. Lets create two arrays of random data and compare them. Step29: BIDMat has enriched matrix types like FMat, SMat etc, while Apache Commons Math expects Java Arrays of Double precision floats. To get these, we can convert FMat to DMat (double) and extra the data field which contains the matrices data. Step30: But rather than doing this conversion every time we want to use some BIDMat matrices, we can instruct Scala to do the work for us. We do this with an implicit conversion from FMat to Array[Double]. Simply defining this function will case a coercion whenever we supply an FMat argument to a function that expects Array[Double]. Step31: And magically we can perform t-Tests on BIDMat matrices as though they had known each other all along. Step32: and its important to get your daily dose of beta Step33: Deconstruction Step34: Let's make a raw Java Array of float integers. Step35: First of all, Scala supports Tuple types for ad-hoc data structuring. Step36: We can also deconstruct tuples using Scala Pattern matching Step37: And reduce operations can use deconstruction as well
Python Code: import BIDMat.{CMat,CSMat,DMat,Dict,IDict,FMat,FND,GMat,GDMat,GIMat,GLMat,GSMat,GSDMat, HMat,IMat,Image,LMat,Mat,ND,SMat,SBMat,SDMat} import BIDMat.MatFunctions._ import BIDMat.SciFunctions._ import BIDMat.Solvers._ import BIDMat.JPlotting._ Mat.checkMKL Mat.checkCUDA Mat.setInline if (Mat.hasCUDA > 0) GPUmem Explanation: Features of BIDMat and Scala BIDMat is a multi-platform matrix library similar to R, Matlab, Julia or Numpy/Scipy. It takes full advantage of the very powerful Scala Language. Its intended primarily for machine learning, but is has a broad set of operations and datatypes and should be suitable for many other applications. BIDMat has several unique features: Built from the ground up with GPU + CPU backends. BIDMat code is implementation independent. GPU memory management uses caching, designed to support iterative algorithms. Natural and extensible syntax (thanks to scala). Math operators include +,-,*,/,⊗,∙,∘ Probably the most complete support for matrix types: dense matrices of float32, double, int and long. Sparse matrices with single or double elements. All are available on CPU or GPU. Highest performance sparse matrix operations on power-law data. BIDMat has several other state-of-the-art features: * Interactivity. Thanks to the Scala language, BIDMat is interactive and scriptable. * Massive code base thanks to Java. * Easy-to-use Parallelism, thanks to Scala's actor framework and parallel collection classes. * Runs on JVM, extremely portable. Runs on Mac, Linux, Windows, Android. * Cluster-ready, leverages Hadoop, Yarn, Spark etc. BIDMat is a library that is loaded by a startup script, and a set of imports that include the default classes and functions. We include them explicitly in this notebook. End of explanation val n = 4096 // "val" designates a constant. n is statically typed (as in Int here), but its type is inferred. val a = rand(n,n) // Create an nxn matrix (on the CPU) %type a // Most scientific funtions in BIDMat return single-precision results by default. Explanation: These calls check that CPU and GPU native libs loaded correctly, and what GPUs are accessible. If you have a GPU and CUDA installed, GPUmem will printout the fraction of free memory, the absolute free memory and the total memory for the default GPU. CPU and GPU matrices BIDMat's matrix types are given in the table below. All are children of the "Mat" parent class, which allows code to be written generically. Many of BIDMach's learning algorithms will run with either single or double precision, dense or sparse input data. <table style="width:4in" align="left"> <tr><td/><td colspan="2"><b>CPU Matrices</b></td><td colspan="2"><b>GPU Matrices</b></td></tr> <tr><td></td><td><b>Dense</b></td><td><b>Sparse</b></td><td><b>Dense</b></td><td><b>Sparse</b></td></tr> <tr><td><b>Float32</b></td><td>FMat</td><td>SMat</td><td>GMat</td><td>GSMat</td></tr> <tr><td><b>Float64</b></td><td>DMat</td><td>SDMat</td><td>GDMat</td><td>GSDMat</td></tr> <tr><td><b>Int32</b></td><td>IMat</td><td></td><td>GIMat</td><td></td></tr> <tr><td><b>Int64</b></td><td>LMat</td><td></td><td>GLMat</td><td></td></tr> </table> End of explanation flip; val b = a * a; val gf=gflop print("The product took %4.2f seconds at %3.0f gflops" format (gf._2, gf._1)) gf Explanation: CPU matrix operations use Intel MKL acceleration for linear algebra, scientific and statistical functions. BIDMat includes "tic" and "toc" for timing, and "flip" and "flop" for floating point performance. End of explanation val ga = grand(n,n) // Another nxn random matrix flip; val gb = ga * ga; val gf=gflop print("The product took %4.2f seconds at %3.0f gflops" format (gf._2, gf._1)) gf %type ga Explanation: GPU matrices behave very similarly. End of explanation def SVD(M:Mat, ndims:Int, niter:Int) = { var Q = M.zeros(M.nrows, ndims) // A block of ndims column vectors normrnd(0, 1, Q) // randomly initialize the vectors Mat.useCache = true // Turn matrix caching on for (i <- 0 until niter) { // Perform subspace iteration val P = (Q.t * M *^ M).t // Compute P = M * M^t * Q efficiently QRdecompt(P, Q, null) // QR-decomposition of P, saving Q } Mat.useCache = false // Turn caching off after the iteration val P = (Q.t * M *^ M).t // Compute P again. (Q, P ∙ Q) // Return Left singular vectors and singular values } Explanation: But much of the power of BIDMat is that we dont have to worry about matrix types. Lets explore that with an example. SVD (Singular Value Decomposition) on a Budget Now lets try solving a real problem with this infrastructure: An approximate Singular-Value Decomposition (SVD) or PCA of a matrix $M$. We'll do this by computing the leading eigenvalues and eigenvectors of $MM^T$. The method we use is subspace iteration and it generalizes the power method for computing the largest-magnitude eigenvalue. An eigenvector is a vector $v$ such that $$Mv =\lambda v$$ where $\lambda$ is a scalar called the eigenvalue. End of explanation val ndims = 32 // Number of PCA dimension val niter = 128 // Number of iterations to do val S = loadSMat("../data/movielens/train.smat.lz4")(0->10000,0->4000) val M = full(S) // Put in a dense matrix flip; val (svecs, svals) = SVD(M, ndims, niter); // Compute the singular vectors and values val gf=gflop print("The calculation took %4.2f seconds at %2.1f gflops" format (gf._2, gf._1)) svals.t Explanation: Notice that the code above used only the "Mat" matrix type. If you examine the variables V and P in a Scala IDE (Eclipse has one) you will find that they both also have type "Mat". Let's try it with an FMat (CPU single precision, dense matrix). Movie Data Example We load some data from the MovieLens project. End of explanation S.nnz plot(svals) Explanation: Let's take a peek at the singular values on a plot End of explanation loglog(row(1 to svals.length), svals) Explanation: Which shrinks a little too fast. Lets look at it on a log-log plot instead: End of explanation val G = GMat(M) // Try a dense GPU matrix flip; val (svecs, svals) = SVD(G, ndims, niter); // Compute the singular vectors and values val gf=gflop print("The calculation took %4.2f seconds at %2.1f gflops" format (gf._2, gf._1)) svals.t Explanation: Now lets try it with a GPU, single-precision, dense matrix. End of explanation flip; // Try a sparse CPU matrix val (svecs, svals) = SVD(S, ndims, niter); // Compute the singular vectors and values val gf=gflop print("The calculation took %4.2f seconds at %2.1f gflops" format (gf._2, gf._1)) svals.t Explanation: That's not bad, the GPU version was nearly 4x faster. Now lets try a sparse, CPU single-precision matrix. Note that by construction our matrix was only 10% dense anyway. Sparse SVD End of explanation val GS = GSMat(S) // Try a sparse GPU matrix flip; val (svecs, svals) = SVD(GS, ndims, niter); // Compute the singular vectors and values val gf=gflop print("The calculation took %4.2f seconds at %2.1f gflops" format (gf._2, gf._1)) svals.t Explanation: This next one is important. Dense matrix operations are the bread-and-butter of scientific computing, and now most deep learning. But other machine learning tasks (logistic regression, SVMs, k-Means, topic models etc) most commonly take sparse input data like text, URLs, cookies etc. And so performance on sparse matrix operations is critical. GPU performance on sparse data, especially power law data - which covers most of the case above (the commerically important cases) - has historically been poor. But in fact GPU hardware supports extremely fast sparse operations when the kernels are carefully designed. Such kernels are only available in BIDMat right now. NVIDIA's sparse matrix kernels, which have been tuned for sparse scientific data, do not work well on power-law data. In any case, let's try BIDMat's GPU sparse matrix type: End of explanation val GSD = GSDMat(GS) // Try a sparse, double GPU matrix flip; val (svecs, svals) = SVD(GSD, ndims, niter); // Compute the singular vectors and values val gf=gflop print("The calculation took %4.2f seconds at %2.1f gflops" format (gf._2, gf._1)) svals.t Explanation: That's a 10x improvement end-to-end, which is similar to the GPU's advantage on dense matrices. This result is certainly not specific to SVD, and is reproduced in most ML algorithms. So GPUs have a key role to play in general machine learning, and its likely that at some point they will assume a central role as they currently enjoy in scientific computing and deep learning. GPU Double Precision One last performance issue: GPU hardware normally prioritizes single-precision floating point over double-precision, and there is a big gap on dense matrix operations. But calculations on sparse data are memory-limited and this largely masks the difference in arithmetic. Lets try a sparse, double-precision matrix, which will force all the calculations to double precision. End of explanation def SVD(M:Mat, ndims:Int, niter:Int) = { var Q = M.zeros(M.nrows, ndims) normrnd(0, 1, Q) Mat.useCache = true for (i <- 0 until niter) { // Perform subspace iteration val P = M * (M ^* Q) // Compute P = M * M^t * Q with cusparse QRdecompt(P, Q, null) } Mat.useCache = false val P = M * (M ^* Q) // Compute P again. (Q, getdiag(P ^* Q)) // Left singular vectors and singular values } // Try sparse GPU matrix flip; val (svecs, svals) = SVD(GS, ndims, niter); val gf=gflop print("The calculation took %4.2f seconds at %2.1f gflops" format (gf._2, gf._1)) svals.t Explanation: Which is noticebly slower, but still 3x faster than the CPU version running in single precision. Using Cusparse NVIDIA's cusparse library, which is optimized for scientific data, doesnt perform as well on power-law data. End of explanation val a = ones(4,1) * row(1->5) val b = col(1->5) * ones(1,4) Explanation: Unicode Math Operators, Functions and Variables As well as the standard operators +,-,*,/, BIDMat includes several other important operators with their standard unicode representation. They have an ASCII alias in case unicode input is difficult. Here they are: <pre> Unicode operator ASCII alias Operation ================ =========== ========= ∘ *@ Element-wise (Hadamard) product ∙ dot Column-wise dot product ∙→ dotr Row-wise dot product ⊗ kron Kronecker (Cartesian) product </pre> End of explanation b ∘ a Explanation: Hadamard (element-wise) multiply End of explanation b ∙ a Explanation: Dot product, by default along columns End of explanation b ∙→ a Explanation: Dot product along rows End of explanation b ⊗ a Explanation: Kronecker product End of explanation val ii = row(1->10) ii on Γ(ii) // Stack this row on the results of a Gamma function applied to it Explanation: As well as operators, functions in BIDMach can use unicode characters. e.g. End of explanation def √(x:Mat) = sqrt(x) def √(x:Double) = math.sqrt(x) √(ii) Explanation: You can certainly define new unicode operators: End of explanation val α = row(1->10) val β = α + 2 val γ = β on Γ(β) Explanation: and use as much Greek as you want: End of explanation class NewMat(nr:Int, nc:Int, data0:Array[Float]) extends FMat(nr,nc,data0) { def quick(a:FMat) = this * a; def fox(a:FMat) = this + a; def over(a:FMat) = this - a; def lazzy(a:FMat) = this / a ; } implicit def convNew(a:FMat):NewMat = new NewMat(a.nrows, a.ncols, a.data) val n = 2; val the = rand(n,n); val brown = rand(n,n); val jumps = rand(n,n); val dog = rand(n,n); the quick brown fox jumps over the lazzy dog Explanation: or English: End of explanation a ^* b a.t * b a *^ b a * b.t Explanation: Transposed Multiplies Matrix multiply is the most expensive step in many calculations, and often involves transposed matrices. To speed up those calcualtions, we expose two operators that combine the transpose and multiply operations: <pre> ^&ast; - transpose the first argument, so a ^&ast; b is equivalent to a.t &ast; b &ast;^ - transpose the second argument, so a &ast;^ b is equivalent to a &ast; b.t </pre> these operators are implemented natively, i.e. they do not actually perform transposes, but implement the effective calculation. This is particulary important for sparse matrices since transpose would involve an index sort. End of explanation import java.util.Random val random = new Random() def rwalk(m:FMat) = { val n = m.length m(0) = random.nextFloat var i = 1 while (i < n) { m(i) = m(i-1) + random.nextFloat - 0.5f i += 1 } } val n = 100000000 val a = zeros(n, 1) tic; val x = rwalk(a); val t=toc print("computed %2.1f million steps per second in %2.1f seconds" format (n/t/1e6f, t)) Explanation: Highlights of the Scala Language Scala is a remarkable language. It is an object-oriented language with similar semantics to Java which it effectively extends. But it also has a particular clean functional syntax for anonymous functions and closures. It has a REPL (Read-Eval-Print-Loop) like Python, and can be used interactively or it can run scripts in or outside an interactive session. Like Python, types are determined by assignments, but they are static rather than dynamic. So the language has the economy of Python, but the type-safety of a static language. Scala includes a tuple type for multiple-value returns, and on-the-fly data structuring. Finally it has outstanding support for concurrency with parallel classes and an actor system called Akka. Performance First we examine the performance of Scala as a scientific language. Let's implement an example that has been widely used to illustrate the performance of the Julia language. Its a random walk, i.e. a 1D array with random steps from one element to the next. End of explanation tic; rand(a); val b=cumsum(a-0.5f); val t=toc print("computed %2.1f million steps per second in %2.1f seconds" format (n/t/1e6f, t)) Explanation: If we try the same calculation in the Julia language (a new language designed for scientific computing) and in Python we find that: <table style="width:4in" align="left"> <tr><td></td><td><b>Scala</b></td><td><b>Julia</b></td><td><b>Python</b></td></tr> <tr><td><b>with rand</b></td><td>1.0s</td><td>0.43s</td><td>147s</td></tr> <tr><td><b>without rand</b></td><td>0.1s</td><td>0.26s</td><td>100s</td></tr> </table> Vectorized Operations But does this matter? A random walk can be computed efficiently with vector operations: vector random numbers and a cumulative sum. And in general most ML algorithms can be implemented with vector and matrix operations efficiently. Let's try in BIDMat: End of explanation val ga = GMat(a) tic; rand(ga); val gb=cumsum(ga-0.5f); val t=toc print("computed %2.1f million steps per second in %2.1f seconds" format (n/t/1e6f, t)) Explanation: Which is better, due to the faster random number generation in the vectorized rand function. But More interesting is the GPU running time: End of explanation <img style="width:4in" alt="NGC 4414 (NASA-med).jpg" src="https://upload.wikimedia.org/wikipedia/commons/thumb/c/c3/NGC_4414_%28NASA-med%29.jpg/1200px-NGC_4414_%28NASA-med%29.jpg"/> Explanation: If we run similar operators in Julia and Python we find: <table style="width:5in" align="left"> <tr><td></td><td><b>BIDMach(CPU)</b></td><td><b>BIDMach(GPU)</b></td><td><b>Julia</b></td><td><b>Python</b></td></tr> <tr><td><b>with rand</b></td><td>0.6s</td><td>0.1s</td><td>0.44s</td><td>1.4s</td></tr> <tr><td><b>without rand</b></td><td>0.3s</td><td>0.05s</td><td>0.26s</td><td>0.5s</td></tr> </table> Vectorized operators even the playing field, and bring Python up to speed compared to the other systems. On the other hand, GPU hardware maintains a near-order-of-magnitude advantage for vector operations. GPU Performance Summary GPU-acceleration gives an order-of-magnitude speedup (or more) for the following operations: * Dense matrix multiply * Sparse matrix multiply * Vector operations and reductions * Random numbers and transcendental function evaluation * Sorting So its not just for scientific computing or deep learning, but for a much wider gamut of data processing and ML. Tapping the Java Universe End of explanation import org.apache.commons.math3.stat.inference.TestUtils._ Explanation: Almost every piece of Java code can be used in Scala. And therefore any piece of Java code can be used interactively. There's very little work to do. You find a package and add it to your dependencies and then import as you would in Java. End of explanation val x = normrnd(0,1,1,40) val y = normrnd(0,1,1,40) + 0.5 Explanation: Apache Commons Math includes a Statistics package with many useful functions and tests. Lets create two arrays of random data and compare them. End of explanation val dx = DMat(x) val dy = DMat(y) tTest(dx.data, dy.data) Explanation: BIDMat has enriched matrix types like FMat, SMat etc, while Apache Commons Math expects Java Arrays of Double precision floats. To get these, we can convert FMat to DMat (double) and extra the data field which contains the matrices data. End of explanation implicit def fMatToDarray(a:FMat):Array[Double] = DMat(a).data Explanation: But rather than doing this conversion every time we want to use some BIDMat matrices, we can instruct Scala to do the work for us. We do this with an implicit conversion from FMat to Array[Double]. Simply defining this function will case a coercion whenever we supply an FMat argument to a function that expects Array[Double]. End of explanation tTest(x, y) Explanation: And magically we can perform t-Tests on BIDMat matrices as though they had known each other all along. End of explanation import org.apache.commons.math3.distribution._ val betadist = new BetaDistribution(2,5) val n = 100000 val x = new DMat(1, n, (0 until n).map(x => betadist.sample).toArray); null hist(x, 100) Explanation: and its important to get your daily dose of beta: End of explanation <image src="https://sketchesfromthealbum.files.wordpress.com/2015/01/jacquesderrida.jpg" style="width:4in"/> Explanation: Deconstruction End of explanation val i = row(0->10).data Explanation: Let's make a raw Java Array of float integers. End of explanation val j = i.map(x => (x, x*x)) Explanation: First of all, Scala supports Tuple types for ad-hoc data structuring. End of explanation j.map{case (x,y) => (y,x)} Explanation: We can also deconstruct tuples using Scala Pattern matching: End of explanation val k = j.reduce((ab,cd) => {val (a,b) = ab; val (c,d) = cd; (a+c, b+d)}) Explanation: And reduce operations can use deconstruction as well: End of explanation
3,045
Given the following text description, write Python code to implement the functionality described below step by step Description: <img src="../../../images/qiskit-heading.png" alt="Note Step1: Quantum walk, phase I/II on $N=4$ lattice$(t=8)$ Step2: Below is the result when executing the circuit on the simulator. Step3: And below is the result when executing the circuit on the real device. Step4: Conclusion Step5: Below is the result when executing the circuit on the simulator. Step6: And below is the result when executing the circuit on the real device.
Python Code: #initialization import sys import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing QISKit from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import Aer, IBMQ, execute from qiskit.wrapper.jupyter import * from qiskit.backends.ibmq import least_busy from qiskit.tools.visualization import matplotlib_circuit_drawer as circuit_drawer from qiskit.tools.visualization import plot_histogram, qx_color_scheme IBMQ.load_accounts() sim_backend = Aer.get_backend('qasm_simulator') device_backend = least_busy(IBMQ.backends(operational=True, simulator=False)) device_coupling = device_backend.configuration()['coupling_map'] print("the best backend is " + device_backend.name() + " with coupling " + str(device_coupling)) Explanation: <img src="../../../images/qiskit-heading.png" alt="Note: In order for images to show up in this jupyter notebook you need to select File => Trusted Notebook" width="500 px" align="left"> Topological Quantum Walks on IBM Q This notebook is based on the paper of Radhakrishnan Balu, Daniel Castillo, and George Siopsis, "Physical realization of topological quantum walks on IBM-Q and beyond" arXiv:1710.03615 [quant-ph](2017). Contributors Keita Takeuchi (Univ. of Tokyo) and Rudy Raymond (IBM Research - Tokyo) Introduction: challenges in implementing topological walk In this section, we introduce one model of quantum walk called split-step topological quantum walk. We define Hilbert space of quantum walker states and coin states as $\mathcal{H}{\mathcal{w}}={\vert x \rangle, x\in\mathbb{Z}_N}, \mathcal{H}{\mathcal{c}}={\vert 0 \rangle, \vert 1 \rangle}$, respectively. Then, step operator is defined as $$ S^+ := \vert 0 \rangle_c \langle 0 \vert \otimes L^+ + \vert 1 \rangle_c \langle 1 \vert \otimes \mathbb{I}\ S^- := \vert 0 \rangle_c \langle 0 \vert \otimes \mathbb{I} + \vert 1 \rangle_c \langle 1 \vert \otimes L^-, $$ where $$ L^{\pm}\vert x \rangle_{\mathcal w} := \vert (x\pm1)\ \rm{mod}\ N \rangle_{\mathcal w} $$ is a shift operator. The boundary condition is included. Also, we define the coin operator as $$ T(\theta):=e^{-i\theta Y} = \begin{bmatrix} \cos\theta & -\sin\theta \ \sin\theta & \cos\theta \end{bmatrix}. $$ One step of quantum walk is the unitary operator defined as below that uses two mode of coins, i.e., $\theta_1$ and $\theta_2$: $$ W := S^- T(\theta_2)S^+ T(\theta_1). $$ Intuitively speaking, the walk consists of flipping coin states and based on the outcome of the coins, the shifting operator is applied to determine the next position of the walk. Next, we consider a walk with two phases that depend on the current position: $$ (\theta_1,\theta_2) = \begin{cases} (\theta_{1}^{-},\ \theta_{2}^{-}) & 0 \leq x < \frac{N}{2} \ (\theta_{1}^{+},\ \theta_{2}^{+}) & \frac{N}{2} \leq x < N. \end{cases} $$ Then, two coin operators are rewritten as $$ \mathcal T_i = \sum^{N-1}_{x=0}e^{-i\theta_i(x) Y_c}\otimes \vert x \rangle_w \langle x \vert,\ i=1,2. $$ By using this, one step of quantum walk is equal to $$ W = S^- \mathcal T_2 S^+ \mathcal T_1. $$ In principle, we can execute the quantum walk by multiplying $W$ many times, but then we need many circuit elements to construct it. This is not possible with the current approximate quantum computers due to large errors produced after each application of circuit elements (gates). Hamiltonian of topological walk Altenatively, we can think of time evolution of the states. The Hamiltonian $H$ is regarded as $H=\lim_{n \to \infty}W^n$(See below for further details.). For example, when $(\theta_1,\ \theta_2) = (0,\ \pi/2)$, the Schrödinger equation is $$ i\frac{d}{dt}\vert \Psi \rangle = H_{\rm I} \vert \Psi \rangle,\ H_{\rm I} = -Y\otimes [2\mathbb I+L^+ + L^-]. $$ If Hamiltonian is time independent, the solution of the Schrödinger equation is $$ \vert \Psi(t) \rangle = e^{-iHt} \vert \Psi(0) \rangle, $$ so we can get the final state at arbitrary time $t$ at once without operating W step by step, if we know the corresponding Hamiltonian. The Hamiltonian can be computed as below. Set $(\theta_1,\ \theta_2) = (\epsilon,\ \pi/2+\epsilon)$, and $\epsilon\to 0$ and the number of step $s\to \infty$ while $se=t/2$(finite variable). Then, \begin{align} H_I&=\lim_{n \to \infty}W^n\ \rm{(LHS)} &= \mathbb{I}-iH_{I}t+O(t^2)\ \rm{(RHS)} &= \lim_{\substack{s\to \infty\ \epsilon\to 0}}(W^4)^{s/4}= \lim_{\substack{s\to \infty\ \epsilon\to0}}(\mathbb{I}+O(\epsilon))^{s/4}\ &\simeq \lim_{\substack{s\to \infty\ \epsilon\to 0}}\mathbb{I}+\frac{s}{4}O(\epsilon)\ &= \lim_{\epsilon\to 0}\mathbb{I}+iY\otimes [2\mathbb I+L^+ + L^-]t+O(\epsilon). \end{align} Therefore, $$H_{\rm I} = -Y\otimes [2\mathbb I+L^+ + L^-].$$ Computation model In order to check the correctness of results of the implementation of quantum walk by using IBMQ, we investigate two models, which have different features of coin phases. Let the number of positions on the line $n$ is 4. - $\rm I / \rm II:\ (\theta_1,\theta_2) = \begin{cases} (0,\ -\pi/2) & 0 \leq x < 2 \ (0,\ \pi/2) & 2 \leq x < 4 \end{cases}$ - $\rm I:\ (\theta_1,\theta_2)=(0,\ \pi/2),\ 0 \leq x < 4$ That is, the former is a quantum walk on a line with two phases of coins, while the latter is that with only one phase of coins. <img src="../images/q_walk_lattice_2phase.png" width="30%" height="30%"> <div style="text-align: center;"> Figure 1. Quantum Walk on a line with two phases </div> The Hamiltonian operators for each of the walk on the line are, respectively, $$ H_{\rm I/II} = Y \otimes \mathbb I \otimes \frac{\mathbb I + Z}{2}\ H_{\rm I} = Y\otimes (2\mathbb I\otimes \mathbb I + \mathbb I\otimes X + X \otimes X). $$ Then, we want to implement the above Hamiltonian operators with the unitary operators as product of two-qubit gates CNOTs, CZs, and single-qubit gate rotation matrices. Notice that the CNOT and CZ gates are \begin{align} \rm{CNOT_{ct}}&=\left |0\right\rangle_c\left\langle0\right | \otimes I_t + \left |1\right\rangle_c\left\langle1\right | \otimes X_t\ \rm{CZ_{ct}}&=\left |0\right\rangle_c\left\langle0\right | \otimes I_t + \left |1\right\rangle_c\left\langle1\right | \otimes Z_t. \end{align} Below is the reference of converting Hamiltonian into unitary operators useful for the topological quantum walk. <br><br> <div style="text-align: center;"> Table 1. Relation between the unitary operator and product of elementary gates </div> |unitary operator|product of circuit elements| |:-:|:-:| |$e^{-i\theta X_c X_j}$|$\rm{CNOT_{cj}}\cdot e^{-i\theta X_c t}\cdot \rm{CNOT_{cj}}$| |$e^{-i\theta X_c Z_j}$|$\rm{CZ_{cj}}\cdot e^{-i\theta X_c t}\cdot \rm{CZ_{cj}}$| |$e^{-i\theta Y_c X_j}$|$\rm{CNOT_{cj}}\cdot e^{i\theta Y_c t}\cdot \rm{CNOT_{cj}}$| |$e^{-i\theta Y_c Z_j}$|$\rm{CNOT_{jc}}\cdot e^{-i\theta Y_c t}\cdot \rm{CNOT_{jc}}$| |$e^{-i\theta Z_c X_j}$|$\rm{CZ_{cj}}\cdot e^{-i\theta X_j t}\cdot \rm{CZ_{cj}}$| |$e^{-i\theta Z_c Z_j}$|$\rm{CNOT_{jc}}\cdot e^{-i\theta Z_c t}\cdot \rm{CNOT_{jc}}$| By using these formula, the unitary operators are represented by only CNOT, CZ, and rotation matrices, so we can implement them by using IBM Q, as below. Phase I/II:<br><br> \begin{align} e^{-iH_{I/II}t}=~&e^{-itY_c \otimes \mathbb I_0 \otimes \frac{\mathbb I_1 + Z_1}{2}}\ =~& e^{-iY_c t}e^{-itY_c\otimes Z_1}\ =~& e^{-iY_c t}\cdot\rm{CNOT_{1c}}\cdot e^{-i Y_c t}\cdot\rm{CNOT_{1c}} \end{align} <img src="../images/c12.png" width="50%" height="60%"> <div style="text-align: center;"> Figure 2. Phase I/II on $N=4$ lattice$(t=8)$ - $q[0]:2^0,\ q[1]:coin,\ q[2]:2^1$ </div> <br><br> Phase I:<br><br> \begin{align} e^{-iH_I t}=~&e^{-itY_c\otimes (2\mathbb I_0\otimes \mathbb I_1 + \mathbb I_0\otimes X_1 + X_0 \otimes X_1)}\ =~&e^{-2itY_c}e^{-itY_c\otimes X_1}e^{-itY_c\otimes X_0 \otimes X_1}\ =~&e^{-2iY_c t}\cdot\rm{CNOT_{c1}}\cdot\rm{CNOT_{c0}}\cdot e^{-iY_c t}\cdot\rm{CNOT_{c0}}\cdot e^{-iY_c t}\cdot\rm{CNOT_{c1}} \end{align} <img src="../images/c1.png" width="70%" height="70%"> <div style="text-align: center;"> Figure 3. Phase I on $N=4$ lattice$(t=8)$ - $q[0]:2^0,\ q[1]:2^1,\ q[2]:coin$ </div> Implementation End of explanation t=8 #time q1_2 = QuantumRegister(3) c1_2 = ClassicalRegister(3) qw1_2 = QuantumCircuit(q1_2, c1_2) qw1_2.x(q1_2[2]) qw1_2.u3(t, 0, 0, q1_2[1]) qw1_2.cx(q1_2[2], q1_2[1]) qw1_2.u3(t, 0, 0, q1_2[1]) qw1_2.cx(q1_2[2], q1_2[1]) qw1_2.measure(q1_2[0], c1_2[0]) qw1_2.measure(q1_2[1], c1_2[2]) qw1_2.measure(q1_2[2], c1_2[1]) print(qw1_2.qasm()) circuit_drawer(qw1_2, style=qx_color_scheme()) Explanation: Quantum walk, phase I/II on $N=4$ lattice$(t=8)$ End of explanation job = execute(qw1_2, sim_backend, shots=1000) result = job.result() plot_histogram(result.get_counts()) Explanation: Below is the result when executing the circuit on the simulator. End of explanation %%qiskit_job_status HTMLProgressBar() job = execute(qw1_2, backend=device_backend, coupling_map=device_coupling, shots=100) result = job.result() plot_histogram(result.get_counts()) Explanation: And below is the result when executing the circuit on the real device. End of explanation t=8 #time q1 = QuantumRegister(3) c1 = ClassicalRegister(3) qw1 = QuantumCircuit(q1, c1) qw1.x(q1[1]) qw1.cx(q1[2], q1[1]) qw1.u3(t, 0, 0, q1[2]) qw1.cx(q1[2], q1[0]) qw1.u3(t, 0, 0, q1[2]) qw1.cx(q1[2], q1[0]) qw1.cx(q1[2], q1[1]) qw1.u3(2*t, 0, 0, q1[2]) qw1.measure(q1[0], c1[0]) qw1.measure(q1[1], c1[1]) qw1.measure(q1[2], c1[2]) print(qw1.qasm()) circuit_drawer(qw1, style=qx_color_scheme()) Explanation: Conclusion: The walker is bounded at the initial state, which is the boundary of two phases, when the quantum walk on the line has two phases. Quantum walk, phase I on $N=4$ lattice$(t=8)$ End of explanation job = execute(qw1, sim_backend, shots=1000) result = job.result() plot_histogram(result.get_counts()) Explanation: Below is the result when executing the circuit on the simulator. End of explanation %%qiskit_job_status HTMLProgressBar() job = execute(qw1, backend=device_backend, coupling_map=device_coupling, shots=100) result = job.result() plot_histogram(result.get_counts()) Explanation: And below is the result when executing the circuit on the real device. End of explanation
3,046
Given the following text description, write Python code to implement the functionality described below step by step Description: Step1: Project Euler Step2: Now write a set of assert tests for your number_to_words function that verifies that it is working as expected. Step4: Now define a count_letters(n) that returns the number of letters used to write out the words for all of the the numbers 1 to n inclusive. Step5: Now write a set of assert tests for your count_letters function that verifies that it is working as expected. Step6: Finally used your count_letters function to solve the original question.
Python Code: def number_to_words(n): Given a number n between 1-1000 inclusive return a list of words for the number. # YOUR CODE HERE # English name of each digit/ place in dictionary one = { 0: '', 1: 'one', 2: 'two', 3: 'three', 4: 'four', 5: 'five', 6: 'six', 7: 'seven', 8: 'eight', 9: 'nine' } teen = { 10: 'ten', 11: 'eleven', 12: 'twelve', 13: 'thirteen', 14: 'fourteen', 15: 'fifteen', 16: 'sixteen', 17: 'seventeen', 18: 'eighteen', 19: 'nineteen', } ten = { 0: '', 2: 'twenty', 3: 'thirty', 4: 'forty', 5: 'fifty', 6: 'sixty', 7: 'seventy', 8: 'eighty', 9: 'ninety' } hundred = { 1: 'onehundred', 2: 'twohundred', 3: 'threehundred', 4: 'fourhundred', 5: 'fivehundred', 6: 'sixhundred', 7: 'sevenhundred', 8: 'eighthundred', 9: 'ninehundred' } hundredand = { 1: 'onehundredand', 2: 'twohundredand', 3: 'threehundredand', 4: 'fourhundredand', 5: 'fivehundredand', 6: 'sixhundredand', 7: 'sevenhundredand', 8: 'eighthundredand', 9: 'ninehundredand' } #return the name of 1-9 as a string if n in range (0, 10): return one[n] #return the name of 10-19 as a string elif n in range(10, 20): return teen[n] #return the name of 20-99 as a string elif n in range (20, 100): #turn number in to string a = str(n) #Call name of first digat from ten list b = int(a[0]) #Call name of second digat from one list c = int(a[1]) #return names as linked string return ten[b] + one[c] #return the name of 100-999 as a string elif n in range (99, 1000): #turn number into string a = str(n) #if last 2 digits are in teens if int(a[1]) == 1: #call name of first digit from hundred list b = int(a[0]) #call name of last 2 digits from teen list c = int(a[1:]) #return number as linked string return hundredand[b] + teen[c] #If it ends in a double zero if int(a[1:]) == 0: b = int(a[0]) return hundred[b] #If last 2 digits are not in teen or 00 else: #call name of first digit from hundred list d = int(a[0]) #Call name of second digat from ten list e = int(a[1]) #Call name of second digat from one list f = int(a[2]) return hundredand[d] + ten[e] + one[f] #retun onethousan if n = 1000 elif n == 1000: return 'onethousand' #If anything that is not 1 - 1000 is enterd return fail as a string else: return 'fail' Explanation: Project Euler: Problem 17 https://projecteuler.net/problem=17 If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total. If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used? NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage. First write a number_to_words(n) function that takes an integer n between 1 and 1000 inclusive and returns a list of words for the number as described above End of explanation # YOUR CODE HERE assert number_to_words(9) == 'nine' assert number_to_words(16) == 'sixteen' assert number_to_words(56) == 'fiftysix' assert number_to_words(200) == 'twohundred' assert number_to_words(315) == 'threehundredandfifteen' assert number_to_words(638) == 'sixhundredandthirtyeight' assert number_to_words(1000) == 'onethousand' assert True # use this for grading the number_to_words tests. Explanation: Now write a set of assert tests for your number_to_words function that verifies that it is working as expected. End of explanation def count_letters(n): Count the number of letters used to write out the words for 1-n inclusive. # YOUR CODE HERe #Return the length number_to_word as an integer return int(len(number_to_words(n))) Explanation: Now define a count_letters(n) that returns the number of letters used to write out the words for all of the the numbers 1 to n inclusive. End of explanation # YOUR CODE HERE assert count_letters(9) == 4 assert count_letters(16) == 7 assert count_letters(56) == 8 assert count_letters(200) == 10 assert count_letters(315) == 22 assert count_letters(638) == 24 assert count_letters(1000) == 11 assert True # use this for gradig the count_letters test. Explanation: Now write a set of assert tests for your count_letters function that verifies that it is working as expected. End of explanation # YOUR CODE HERE n = 0 i = 0 while n < 1000: n = n + 1 i = i + count_letters(n) print (i) assert True # use this for gradig the original sloution. Explanation: Finally used your count_letters function to solve the original question. End of explanation
3,047
Given the following text description, write Python code to implement the functionality described below step by step Description: Installation pip install https Step1: Importing data For this tutorial, we are using anthropometric data from the Genetic Investigation of ANthropometric Traits (GIANT) consortium Step2: Manhattan plots Import the module for Manhattan plots Step3: Classic Manhattan plot Step4: Recoloring the plot Step5: Adding genome-wide significant line, and suggestive lines Step6: Plotting two groups in the same figure (double plot) Step7: Plotting two groups in the same figure (inverted plot) Step8: QQ plots First, let's impot the module for QQ plots
Python Code: %matplotlib inline #Here we set the dimensions for the figures in this notebook import matplotlib as mpl mpl.rcParams['figure.dpi']=150 mpl.rcParams['savefig.dpi']=150 mpl.rcParams['figure.figsize']=7.375, 3.375 Explanation: Installation pip install https://github.com/khramts/assocplots/archive/master.zip This tutorial provides examples of code for static Manhattan and QQ pltos. In order to view the figures in this notebook it is necessary to included the following line: End of explanation import numpy as np hip_m=np.genfromtxt('HIP_MEN_chr_pos_rs_pval.txt', dtype=None) hip_w=np.genfromtxt('HIP_WOMEN_chr_pos_rs_pval.txt', dtype=None) Explanation: Importing data For this tutorial, we are using anthropometric data from the Genetic Investigation of ANthropometric Traits (GIANT) consortium: https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files Result are described in Randall JC, Winkler TW, Kutalik Z, Berndt SI, Jackson AU, Monda KL, et al. (2013) Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits. PLoS Genet 9(6): e1003500. doi:10.1371/journal.pgen.1003500 http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003500 In this tutorial we will be using one trait (hip circumference) measured in two groups: males and females. These are the files listed under Sex Stratified Anthropometrics subsection. For example, here is one of the files called GIANT_Randall2013PlosGenet_stage1_publicrelease_HapMapCeuFreq_HIP_WOMEN_N.txt and the first couple of lines looks like this: MarkerName A1 A2 Freq.Hapmap.Ceu BETA SE.2gc P.2gc N rs4747841 a g 0.55 0.0054 0.0080 0.50 40354.8 rs4749917 t c 0.45 -0.0054 0.0080 0.50 40354.8 rs737656 a g 0.3667 0.0035 0.0083 0.67 40354.7 rs737657 a g 0.3583 0.0020 0.0083 0.81 40351.8 The P.2gc column is the p-value of the association test. For the Manhattan plot, besides the p-value, we also need to know SNPs chromosome and genomic position. To obtain the chromosome number and position for each SNP I used a python script called LiftRsNumber.py from this Goncalo Abecasis’ group http://genome.sph.umich.edu/wiki/LiftOver Since we only need to know the SNP's chromosome, position, and p-value, I generated the following file out of the one above: HIP_WOMEN_chr_pos_rs_pval.txt, where column 1 = chromosome, 2=position, 3=SNP rs number, 4=p-value 10 9918166 rs4747841 0.5 10 9918296 rs4749917 0.5 10 98252982 rs737656 0.67 10 98253133 rs737657 0.81 Alternatively, you can download reduced data from https://www.dropbox.com/sh/hw6ao63ieh363nd/AAB13crEGYAic6Fjv3a-yxVVa?dl=0 We'll beging making the plots by importing the data. End of explanation from assocplots.manhattan import * Explanation: Manhattan plots Import the module for Manhattan plots End of explanation chrs = [str(i) for i in range(1,23)] chrs_names = np.array([str(i) for i in range(1,23)]) chrs_names[1::2] = '' cmap = plt.get_cmap('viridis') colors = [cmap(i) for i in [0.0,0.33,0.67,0.90]] # Alternatively you can input colors by hand from matplotlib.colors import hex2color colors = ['#1b9e77', "#d95f02", '#7570b3', '#e7298a'] # Converting from HEX into RGB colors = [hex2color(colors[i]) for i in range(len(colors))] # hip_m['f0'].astype(str) is required in Python 3, since it reads unicode string by default manhattan( hip_m['f3'], hip_m['f1'], hip_m['f0'].astype(str), 'Hip men', plot_type='single', chrs_plot=[str(i) for i in range(1,23)], chrs_names=chrs_names, cut = 0, title='Anthropometric traits', xlabel='chromosome', ylabel='-log10(p-value)', lines= [], colors = colors, scaling = '-log10') Explanation: Classic Manhattan plot End of explanation # To recolor the plot, select a different color map: http://matplotlib.org/examples/color/colormaps_reference.html cmap = plt.get_cmap('seismic') colors = [cmap(i) for i in [0.0,0.33,0.67,0.90]] manhattan( hip_m['f3'], hip_m['f1'], hip_m['f0'].astype(str), 'Hip men', plot_type='single', chrs_plot=[str(i) for i in range(1,23)], chrs_names=chrs_names, cut = 0, title='Anthropometric traits', xlabel='chromosome', ylabel='-log10(p-value)', lines= [], colors = colors) Explanation: Recoloring the plot End of explanation manhattan( hip_m['f3'], hip_m['f1'], hip_m['f0'].astype(str), 'Hip men', plot_type='single', chrs_plot=[str(i) for i in range(1,23)], chrs_names=chrs_names, cut = 0, title='Anthropometric traits', xlabel='chromosome', ylabel='-log10(p-value)', lines= [6, 8], lines_colors=['b', 'r'], lines_styles=['-','--'], lines_widths=[1,2], colors = colors) plt.savefig('Manhattan_HipMen.png', dpi=300) Explanation: Adding genome-wide significant line, and suggestive lines End of explanation mpl.rcParams['figure.figsize']=7.375, 5.375 manhattan( hip_m['f3'], hip_m['f1'], hip_m['f0'].astype(str), 'Hip men', p2=hip_w['f3'], pos2=hip_w['f1'], chr2=hip_w['f0'].astype(str), label2='Hip women', plot_type='double', chrs_plot=[str(i) for i in range(1,23)], chrs_names=chrs_names, cut = 0, title='Anthropometric traits', xlabel='chromosome', ylabel='-log10(p-value)', lines= [], top1 = 15, top2 = 15, colors = colors) plt.subplots_adjust(hspace=0.08) Explanation: Plotting two groups in the same figure (double plot) End of explanation mpl.rcParams['figure.figsize']=7.375, 5.375 manhattan( hip_m['f3'], hip_m['f1'], hip_m['f0'].astype(str), 'Hip men', p2=hip_w['f3'], pos2=hip_w['f1'], chr2=hip_w['f0'].astype(str), label2='Hip women', plot_type='inverted', chrs_plot=[str(i) for i in range(1,23)], chrs_names=chrs_names, cut = 0, title='Anthropometric traits', xlabel='chromosome', ylabel='-log10(p-value)', lines= [], top1 = 15, top2 = 15, colors = colors) plt.savefig('Manhattan_Hip_inverted.png', dpi=300) Explanation: Plotting two groups in the same figure (inverted plot) End of explanation from assocplots.qqplot import * # This is an example of a classic QQ plot with 95% confidence interval plotted for the null distribution mpl.rcParams['figure.dpi']=100 mpl.rcParams['savefig.dpi']=100 mpl.rcParams['figure.figsize']=5.375, 5.375 qqplot([hip_m['f3']], ['HIP men'], color=['b'], fill_dens=[0.2], error_type='theoretical', distribution='beta', title='') plt.savefig('qq_HIPmen_theoretical_error.png', dpi=300) # Now we want to calculate the genomic control (inflation factor, lambda) get_lambda(hip_m['f3'], definition = 'median') # This is a qq plot showing two experimental groups mpl.rcParams['figure.dpi']=100 mpl.rcParams['savefig.dpi']=100 mpl.rcParams['figure.figsize']=5.375, 5.375 qqplot([hip_m['f3'], hip_w['f3']], ['HIP men', 'HIP women'], color=['b','r'], fill_dens=[0.2,0.2], error_type='experimental', distribution='beta', title='Anthropometric traits') plt.savefig('qq_two_hip_groups.png', dpi=300) Explanation: QQ plots First, let's impot the module for QQ plots: End of explanation
3,048
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Seaice MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties --&gt; Model 2. Key Properties --&gt; Variables 3. Key Properties --&gt; Seawater Properties 4. Key Properties --&gt; Resolution 5. Key Properties --&gt; Tuning Applied 6. Key Properties --&gt; Key Parameter Values 7. Key Properties --&gt; Assumptions 8. Key Properties --&gt; Conservation 9. Grid --&gt; Discretisation --&gt; Horizontal 10. Grid --&gt; Discretisation --&gt; Vertical 11. Grid --&gt; Seaice Categories 12. Grid --&gt; Snow On Seaice 13. Dynamics 14. Thermodynamics --&gt; Energy 15. Thermodynamics --&gt; Mass 16. Thermodynamics --&gt; Salt 17. Thermodynamics --&gt; Salt --&gt; Mass Transport 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics 19. Thermodynamics --&gt; Ice Thickness Distribution 20. Thermodynamics --&gt; Ice Floe Size Distribution 21. Thermodynamics --&gt; Melt Ponds 22. Thermodynamics --&gt; Snow Processes 23. Radiative Processes 1. Key Properties --&gt; Model Name of seaice model used. 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 2. Key Properties --&gt; Variables List of prognostic variable in the sea ice model. 2.1. Prognostic Is Required Step7: 3. Key Properties --&gt; Seawater Properties Properties of seawater relevant to sea ice 3.1. Ocean Freezing Point Is Required Step8: 3.2. Ocean Freezing Point Value Is Required Step9: 4. Key Properties --&gt; Resolution Resolution of the sea ice grid 4.1. Name Is Required Step10: 4.2. Canonical Horizontal Resolution Is Required Step11: 4.3. Number Of Horizontal Gridpoints Is Required Step12: 5. Key Properties --&gt; Tuning Applied Tuning applied to sea ice model component 5.1. Description Is Required Step13: 5.2. Target Is Required Step14: 5.3. Simulations Is Required Step15: 5.4. Metrics Used Is Required Step16: 5.5. Variables Is Required Step17: 6. Key Properties --&gt; Key Parameter Values Values of key parameters 6.1. Typical Parameters Is Required Step18: 6.2. Additional Parameters Is Required Step19: 7. Key Properties --&gt; Assumptions Assumptions made in the sea ice model 7.1. Description Is Required Step20: 7.2. On Diagnostic Variables Is Required Step21: 7.3. Missing Processes Is Required Step22: 8. Key Properties --&gt; Conservation Conservation in the sea ice component 8.1. Description Is Required Step23: 8.2. Properties Is Required Step24: 8.3. Budget Is Required Step25: 8.4. Was Flux Correction Used Is Required Step26: 8.5. Corrected Conserved Prognostic Variables Is Required Step27: 9. Grid --&gt; Discretisation --&gt; Horizontal Sea ice discretisation in the horizontal 9.1. Grid Is Required Step28: 9.2. Grid Type Is Required Step29: 9.3. Scheme Is Required Step30: 9.4. Thermodynamics Time Step Is Required Step31: 9.5. Dynamics Time Step Is Required Step32: 9.6. Additional Details Is Required Step33: 10. Grid --&gt; Discretisation --&gt; Vertical Sea ice vertical properties 10.1. Layering Is Required Step34: 10.2. Number Of Layers Is Required Step35: 10.3. Additional Details Is Required Step36: 11. Grid --&gt; Seaice Categories What method is used to represent sea ice categories ? 11.1. Has Mulitple Categories Is Required Step37: 11.2. Number Of Categories Is Required Step38: 11.3. Category Limits Is Required Step39: 11.4. Ice Thickness Distribution Scheme Is Required Step40: 11.5. Other Is Required Step41: 12. Grid --&gt; Snow On Seaice Snow on sea ice details 12.1. Has Snow On Ice Is Required Step42: 12.2. Number Of Snow Levels Is Required Step43: 12.3. Snow Fraction Is Required Step44: 12.4. Additional Details Is Required Step45: 13. Dynamics Sea Ice Dynamics 13.1. Horizontal Transport Is Required Step46: 13.2. Transport In Thickness Space Is Required Step47: 13.3. Ice Strength Formulation Is Required Step48: 13.4. Redistribution Is Required Step49: 13.5. Rheology Is Required Step50: 14. Thermodynamics --&gt; Energy Processes related to energy in sea ice thermodynamics 14.1. Enthalpy Formulation Is Required Step51: 14.2. Thermal Conductivity Is Required Step52: 14.3. Heat Diffusion Is Required Step53: 14.4. Basal Heat Flux Is Required Step54: 14.5. Fixed Salinity Value Is Required Step55: 14.6. Heat Content Of Precipitation Is Required Step56: 14.7. Precipitation Effects On Salinity Is Required Step57: 15. Thermodynamics --&gt; Mass Processes related to mass in sea ice thermodynamics 15.1. New Ice Formation Is Required Step58: 15.2. Ice Vertical Growth And Melt Is Required Step59: 15.3. Ice Lateral Melting Is Required Step60: 15.4. Ice Surface Sublimation Is Required Step61: 15.5. Frazil Ice Is Required Step62: 16. Thermodynamics --&gt; Salt Processes related to salt in sea ice thermodynamics. 16.1. Has Multiple Sea Ice Salinities Is Required Step63: 16.2. Sea Ice Salinity Thermal Impacts Is Required Step64: 17. Thermodynamics --&gt; Salt --&gt; Mass Transport Mass transport of salt 17.1. Salinity Type Is Required Step65: 17.2. Constant Salinity Value Is Required Step66: 17.3. Additional Details Is Required Step67: 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics Salt thermodynamics 18.1. Salinity Type Is Required Step68: 18.2. Constant Salinity Value Is Required Step69: 18.3. Additional Details Is Required Step70: 19. Thermodynamics --&gt; Ice Thickness Distribution Ice thickness distribution details. 19.1. Representation Is Required Step71: 20. Thermodynamics --&gt; Ice Floe Size Distribution Ice floe-size distribution details. 20.1. Representation Is Required Step72: 20.2. Additional Details Is Required Step73: 21. Thermodynamics --&gt; Melt Ponds Characteristics of melt ponds. 21.1. Are Included Is Required Step74: 21.2. Formulation Is Required Step75: 21.3. Impacts Is Required Step76: 22. Thermodynamics --&gt; Snow Processes Thermodynamic processes in snow on sea ice 22.1. Has Snow Aging Is Required Step77: 22.2. Snow Aging Scheme Is Required Step78: 22.3. Has Snow Ice Formation Is Required Step79: 22.4. Snow Ice Formation Scheme Is Required Step80: 22.5. Redistribution Is Required Step81: 22.6. Heat Diffusion Is Required Step82: 23. Radiative Processes Sea Ice Radiative Processes 23.1. Surface Albedo Is Required Step83: 23.2. Ice Radiation Transmission Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'fio-ronm', 'sandbox-3', 'seaice') Explanation: ES-DOC CMIP6 Model Properties - Seaice MIP Era: CMIP6 Institute: FIO-RONM Source ID: SANDBOX-3 Topic: Seaice Sub-Topics: Dynamics, Thermodynamics, Radiative Processes. Properties: 80 (63 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:54:01 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties --&gt; Model 2. Key Properties --&gt; Variables 3. Key Properties --&gt; Seawater Properties 4. Key Properties --&gt; Resolution 5. Key Properties --&gt; Tuning Applied 6. Key Properties --&gt; Key Parameter Values 7. Key Properties --&gt; Assumptions 8. Key Properties --&gt; Conservation 9. Grid --&gt; Discretisation --&gt; Horizontal 10. Grid --&gt; Discretisation --&gt; Vertical 11. Grid --&gt; Seaice Categories 12. Grid --&gt; Snow On Seaice 13. Dynamics 14. Thermodynamics --&gt; Energy 15. Thermodynamics --&gt; Mass 16. Thermodynamics --&gt; Salt 17. Thermodynamics --&gt; Salt --&gt; Mass Transport 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics 19. Thermodynamics --&gt; Ice Thickness Distribution 20. Thermodynamics --&gt; Ice Floe Size Distribution 21. Thermodynamics --&gt; Melt Ponds 22. Thermodynamics --&gt; Snow Processes 23. Radiative Processes 1. Key Properties --&gt; Model Name of seaice model used. 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of sea ice model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of sea ice model code (e.g. CICE 4.2, LIM 2.1, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.variables.prognostic') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sea ice temperature" # "Sea ice concentration" # "Sea ice thickness" # "Sea ice volume per grid cell area" # "Sea ice u-velocity" # "Sea ice v-velocity" # "Sea ice enthalpy" # "Internal ice stress" # "Salinity" # "Snow temperature" # "Snow depth" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Variables List of prognostic variable in the sea ice model. 2.1. Prognostic Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List of prognostic variables in the sea ice component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS-10" # "Constant" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Seawater Properties Properties of seawater relevant to sea ice 3.1. Ocean Freezing Point Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Equation used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.2. Ocean Freezing Point Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If using a constant seawater freezing point, specify this value. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Resolution Resolution of the sea ice grid 4.1. Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 This is a string usually used by the modelling group to describe the resolution of this grid e.g. N512L180, T512L70, ORCA025 etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.2. Canonical Horizontal Resolution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.3. Number Of Horizontal Gridpoints Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Total number of horizontal (XY) points (or degrees of freedom) on computational grid. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Key Properties --&gt; Tuning Applied Tuning applied to sea ice model component 5.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.target') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.2. Target Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What was the aim of tuning, e.g. correct sea ice minima, correct seasonal cycle. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.simulations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.3. Simulations Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 *Which simulations had tuning applied, e.g. all, not historical, only pi-control? * End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.metrics_used') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.4. Metrics Used Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List any observed metrics used in tuning model/parameters End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.5. Variables Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Which variables were changed during the tuning process? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.typical_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ice strength (P*) in units of N m{-2}" # "Snow conductivity (ks) in units of W m{-1} K{-1} " # "Minimum thickness of ice created in leads (h0) in units of m" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6. Key Properties --&gt; Key Parameter Values Values of key parameters 6.1. Typical Parameters Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N What values were specificed for the following parameters if used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.additional_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.2. Additional Parameters Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If you have any additional paramterised values that you have used (e.g. minimum open water fraction or bare ice albedo), please provide them here as a comma separated list End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.description') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7. Key Properties --&gt; Assumptions Assumptions made in the sea ice model 7.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General overview description of any key assumptions made in this model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.on_diagnostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.2. On Diagnostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Note any assumptions that specifically affect the CMIP6 diagnostic sea ice variables. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.missing_processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.3. Missing Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List any key processes missing in this model configuration? Provide full details where this affects the CMIP6 diagnostic sea ice variables? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Key Properties --&gt; Conservation Conservation in the sea ice component 8.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Provide a general description of conservation methodology. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.properties') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Mass" # "Salt" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 8.2. Properties Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Properties conserved in sea ice by the numerical schemes. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.3. Budget Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 For each conserved property, specify the output variables which close the related budgets. as a comma separated list. For example: Conserved property, variable1, variable2, variable3 End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 8.4. Was Flux Correction Used Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does conservation involved flux correction? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.5. Corrected Conserved Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List any variables which are conserved by more than the numerical scheme alone. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Ocean grid" # "Atmosphere Grid" # "Own Grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9. Grid --&gt; Discretisation --&gt; Horizontal Sea ice discretisation in the horizontal 9.1. Grid Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Grid on which sea ice is horizontal discretised? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Structured grid" # "Unstructured grid" # "Adaptive grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9.2. Grid Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the type of sea ice grid? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite differences" # "Finite elements" # "Finite volumes" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9.3. Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the advection scheme? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.thermodynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 9.4. Thermodynamics Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the time step in the sea ice model thermodynamic component in seconds. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.dynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 9.5. Dynamics Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the time step in the sea ice model dynamic component in seconds. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.6. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify any additional horizontal discretisation details. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.layering') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Zero-layer" # "Two-layers" # "Multi-layers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10. Grid --&gt; Discretisation --&gt; Vertical Sea ice vertical properties 10.1. Layering Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N What type of sea ice vertical layers are implemented for purposes of thermodynamic calculations? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.number_of_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 10.2. Number Of Layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 If using multi-layers specify how many. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 10.3. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify any additional vertical grid details. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.has_mulitple_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 11. Grid --&gt; Seaice Categories What method is used to represent sea ice categories ? 11.1. Has Mulitple Categories Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Set to true if the sea ice model has multiple sea ice categories. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.number_of_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 11.2. Number Of Categories Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 If using sea ice categories specify how many. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.category_limits') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.3. Category Limits Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 If using sea ice categories specify each of the category limits. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.ice_thickness_distribution_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.4. Ice Thickness Distribution Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the sea ice thickness distribution scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.other') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.5. Other Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If the sea ice model does not use sea ice categories specify any additional details. For example models that paramterise the ice thickness distribution ITD (i.e there is no explicit ITD) but there is assumed distribution and fluxes are computed accordingly. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.has_snow_on_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 12. Grid --&gt; Snow On Seaice Snow on sea ice details 12.1. Has Snow On Ice Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is snow on ice represented in this model? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.number_of_snow_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 12.2. Number Of Snow Levels Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Number of vertical levels of snow on ice? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.snow_fraction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.3. Snow Fraction Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how the snow fraction on sea ice is determined End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.4. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify any additional details related to snow on ice. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.horizontal_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13. Dynamics Sea Ice Dynamics 13.1. Horizontal Transport Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of horizontal advection of sea ice? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.transport_in_thickness_space') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.2. Transport In Thickness Space Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of sea ice transport in thickness space (i.e. in thickness categories)? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.ice_strength_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Hibler 1979" # "Rothrock 1975" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.3. Ice Strength Formulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Which method of sea ice strength formulation is used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.redistribution') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Rafting" # "Ridging" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.4. Redistribution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Which processes can redistribute sea ice (including thickness)? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.rheology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Free-drift" # "Mohr-Coloumb" # "Visco-plastic" # "Elastic-visco-plastic" # "Elastic-anisotropic-plastic" # "Granular" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.5. Rheology Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Rheology, what is the ice deformation formulation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.enthalpy_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice latent heat (Semtner 0-layer)" # "Pure ice latent and sensible heat" # "Pure ice latent and sensible heat + brine heat reservoir (Semtner 3-layer)" # "Pure ice latent and sensible heat + explicit brine inclusions (Bitz and Lipscomb)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14. Thermodynamics --&gt; Energy Processes related to energy in sea ice thermodynamics 14.1. Enthalpy Formulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the energy formulation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.thermal_conductivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice" # "Saline ice" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.2. Thermal Conductivity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What type of thermal conductivity is used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Conduction fluxes" # "Conduction and radiation heat fluxes" # "Conduction, radiation and latent heat transport" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.3. Heat Diffusion Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of heat diffusion? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.basal_heat_flux') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heat Reservoir" # "Thermal Fixed Salinity" # "Thermal Varying Salinity" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.4. Basal Heat Flux Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method by which basal ocean heat flux is handled? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.fixed_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 14.5. Fixed Salinity Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If you have selected {Thermal properties depend on S-T (with fixed salinity)}, supply fixed salinity value for each sea ice layer. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_content_of_precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.6. Heat Content Of Precipitation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method by which the heat content of precipitation is handled. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.precipitation_effects_on_salinity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.7. Precipitation Effects On Salinity Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If precipitation (freshwater) that falls on sea ice affects the ocean surface salinity please provide further details. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.new_ice_formation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15. Thermodynamics --&gt; Mass Processes related to mass in sea ice thermodynamics 15.1. New Ice Formation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method by which new sea ice is formed in open water. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_vertical_growth_and_melt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.2. Ice Vertical Growth And Melt Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method that governs the vertical growth and melt of sea ice. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_lateral_melting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Floe-size dependent (Bitz et al 2001)" # "Virtual thin ice melting (for single-category)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.3. Ice Lateral Melting Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of sea ice lateral melting? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_surface_sublimation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.4. Ice Surface Sublimation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method that governs sea ice surface sublimation. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.frazil_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.5. Frazil Ice Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method of frazil ice formation. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.has_multiple_sea_ice_salinities') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 16. Thermodynamics --&gt; Salt Processes related to salt in sea ice thermodynamics. 16.1. Has Multiple Sea Ice Salinities Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the sea ice model use two different salinities: one for thermodynamic calculations; and one for the salt budget? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.sea_ice_salinity_thermal_impacts') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 16.2. Sea Ice Salinity Thermal Impacts Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does sea ice salinity impact the thermal properties of sea ice? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17. Thermodynamics --&gt; Salt --&gt; Mass Transport Mass transport of salt 17.1. Salinity Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is salinity determined in the mass transport of salt calculation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 17.2. Constant Salinity Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If using a constant salinity value specify this value in PSU? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.3. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the salinity profile used. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics Salt thermodynamics 18.1. Salinity Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is salinity determined in the thermodynamic calculation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 18.2. Constant Salinity Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If using a constant salinity value specify this value in PSU? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 18.3. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the salinity profile used. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_thickness_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Virtual (enhancement of thermal conductivity, thin ice melting)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 19. Thermodynamics --&gt; Ice Thickness Distribution Ice thickness distribution details. 19.1. Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is the sea ice thickness distribution represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Parameterised" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 20. Thermodynamics --&gt; Ice Floe Size Distribution Ice floe-size distribution details. 20.1. Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is the sea ice floe-size represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 20.2. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Please provide further details on any parameterisation of floe-size. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.are_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 21. Thermodynamics --&gt; Melt Ponds Characteristics of melt ponds. 21.1. Are Included Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Are melt ponds included in the sea ice model? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flocco and Feltham (2010)" # "Level-ice melt ponds" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 21.2. Formulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What method of melt pond formulation is used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.impacts') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Albedo" # "Freshwater" # "Heat" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 21.3. Impacts Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N What do melt ponds have an impact on? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_aging') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 22. Thermodynamics --&gt; Snow Processes Thermodynamic processes in snow on sea ice 22.1. Has Snow Aging Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Set to True if the sea ice model has a snow aging scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_aging_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.2. Snow Aging Scheme Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the snow aging scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_ice_formation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 22.3. Has Snow Ice Formation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Set to True if the sea ice model has snow ice formation. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_ice_formation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.4. Snow Ice Formation Scheme Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the snow ice formation scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.redistribution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.5. Redistribution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the impact of ridging on snow cover? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Single-layered heat diffusion" # "Multi-layered heat diffusion" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 22.6. Heat Diffusion Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the heat diffusion through snow methodology in sea ice thermodynamics? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.surface_albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Parameterized" # "Multi-band albedo" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23. Radiative Processes Sea Ice Radiative Processes 23.1. Surface Albedo Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method used to handle surface albedo. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.ice_radiation_transmission') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Exponential attenuation" # "Ice radiation transmission per category" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.2. Ice Radiation Transmission Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Method by which solar radiation through sea ice is handled. End of explanation
3,049
Given the following text description, write Python code to implement the functionality described below step by step Description: Initialise the libs Step1: Load the data Step2: Data exploration Step3: Helper functions Step4: Ridge regression model fitting Step5: Ridge regression on subsets Using ridge regression with small l2 Step6: Applying a higher L2 value Step7: Selecting an L2 penalty via cross-validation Just like the polynomial degree, the L2 penalty is a "magic" parameter we need to select. We could use the validation set approach as we did in the last module, but that approach has a major disadvantage Step8: Minimize the l2 by using cross validation Step9: Use the best l2 to train the model on all the data
Python Code: import pandas as pd import matplotlib.pyplot as plt from sklearn import linear_model import numpy as np from math import ceil Explanation: Initialise the libs End of explanation dtype_dict = {'bathrooms':float, 'waterfront':int, 'sqft_above':int, 'sqft_living15':float, 'grade':int, 'yr_renovated':int, 'price':float, 'bedrooms':float, 'zipcode':str, 'long':float, 'sqft_lot15':float, 'sqft_living':float, 'floors':float, 'condition':int, 'lat':float, 'date':str, 'sqft_basement':int, 'yr_built':int, 'id':str, 'sqft_lot':int, 'view':int} regressionDir = '/home/weenkus/workspace/Machine Learning - University of Washington/Regression/datasets/' sales = pd.read_csv(regressionDir + 'kc_house_data.csv', dtype = dtype_dict) sales = sales.sort(['sqft_living','price']) # dtype_dict same as above set_1 = pd.read_csv(regressionDir + 'wk3_kc_house_set_1_data.csv', dtype=dtype_dict) set_2 = pd.read_csv(regressionDir + 'wk3_kc_house_set_2_data.csv', dtype=dtype_dict) set_3 = pd.read_csv(regressionDir + 'wk3_kc_house_set_3_data.csv', dtype=dtype_dict) set_4 = pd.read_csv(regressionDir + 'wk3_kc_house_set_4_data.csv', dtype=dtype_dict) train_valid_shuffled = pd.read_csv(regressionDir + 'wk3_kc_house_train_valid_shuffled.csv', dtype=dtype_dict) test = pd.read_csv(regressionDir + 'wk3_kc_house_test_data.csv', dtype=dtype_dict) training = pd.read_csv(regressionDir + 'wk3_kc_house_train_data.csv', dtype=dtype_dict) Explanation: Load the data End of explanation # Show plots in jupyter %matplotlib inline sales.head() sales['price'].head() Explanation: Data exploration End of explanation def polynomial_dataframe(feature, degree): # feature is pandas.Series type # assume that degree >= 1 # initialize the dataframe: poly_dataframe = pd.DataFrame() # and set poly_dataframe['power_1'] equal to the passed feature poly_dataframe['power_1'] = feature # first check if degree > 1 if degree > 1: # then loop over the remaining degrees: for power in range(2, degree+1): # first we'll give the column a name: name = 'power_' + str(power) # assign poly_dataframe[name] to be feature^power; use apply(*) poly_dataframe[name] = feature; poly_dataframe[name] = poly_dataframe[name].apply(lambda x: x**power) return poly_dataframe Explanation: Helper functions End of explanation poly15_data = polynomial_dataframe(sales['sqft_living'], 15) # use equivalent of `polynomial_sframe` print(poly15_data) l2_small_penalty = 1.5e-5 model = linear_model.Ridge(alpha=l2_small_penalty, normalize=True) model.fit(poly15_data, sales['price']) model.coef_ plt.plot(poly15_data, model.predict(poly15_data), poly15_data, sales['price']) plt.show() Explanation: Ridge regression model fitting End of explanation l2_small_penalty=1e-9 poly15_data_set1 = polynomial_dataframe(set_1['sqft_living'], 15) # use equivalent of `polynomial_sframe` model1 = linear_model.Ridge(alpha=l2_small_penalty, normalize=True) model1.fit(poly15_data_set1, set_1['price']) poly15_data_set2 = polynomial_dataframe(set_2['sqft_living'], 15) # use equivalent of `polynomial_sframe` model2 = linear_model.Ridge(alpha=l2_small_penalty, normalize=True) model2.fit(poly15_data_set2, set_2['price']) poly15_data_set3 = polynomial_dataframe(set_3['sqft_living'], 15) # use equivalent of `polynomial_sframe` model3 = linear_model.Ridge(alpha=l2_small_penalty, normalize=True) model3.fit(poly15_data_set3, set_3['price']) poly15_data_set4 = polynomial_dataframe(set_4['sqft_living'], 15) # use equivalent of `polynomial_sframe` model4 = linear_model.Ridge(alpha=l2_small_penalty, normalize=True) model4.fit(poly15_data_set4, set_4['price']) plt.plot(poly15_data_set1, model1.predict(poly15_data_set1), poly15_data_set1, set_1['price']) plt.show() plt.plot(poly15_data_set2, model2.predict(poly15_data_set2), poly15_data_set2, set_2['price']) plt.show() plt.plot(poly15_data_set3, model3.predict(poly15_data_set3), poly15_data_set3, set_3['price']) plt.show() plt.plot(poly15_data_set4, model4.predict(poly15_data_set4), poly15_data_set4, set_4['price']) plt.show() print('Model 1 coefficients: ', model1.coef_) print('Model 2 coefficients: ', model2.coef_) print('Model 3 coefficients: ', model3.coef_) print('Model 4 coefficients: ', model4.coef_) Explanation: Ridge regression on subsets Using ridge regression with small l2 End of explanation l2_large_penalty=1.23e2 poly15_data_set1 = polynomial_dataframe(set_1['sqft_living'], 15) # use equivalent of `polynomial_sframe` model1 = linear_model.Ridge(alpha=l2_large_penalty, normalize=True) model1.fit(poly15_data_set1, set_1['price']) poly15_data_set2 = polynomial_dataframe(set_2['sqft_living'], 15) # use equivalent of `polynomial_sframe` model2 = linear_model.Ridge(alpha=l2_large_penalty, normalize=True) model2.fit(poly15_data_set2, set_2['price']) poly15_data_set3 = polynomial_dataframe(set_3['sqft_living'], 15) # use equivalent of `polynomial_sframe` model3 = linear_model.Ridge(alpha=l2_large_penalty, normalize=True) model3.fit(poly15_data_set3, set_3['price']) poly15_data_set4 = polynomial_dataframe(set_4['sqft_living'], 15) # use equivalent of `polynomial_sframe` model4 = linear_model.Ridge(alpha=l2_large_penalty, normalize=True) model4.fit(poly15_data_set4, set_4['price']) plt.plot(poly15_data_set1, model1.predict(poly15_data_set1), poly15_data_set1, set_1['price']) plt.show() plt.plot(poly15_data_set2, model2.predict(poly15_data_set2), poly15_data_set2, set_2['price']) plt.show() plt.plot(poly15_data_set3, model3.predict(poly15_data_set3), poly15_data_set3, set_3['price']) plt.show() plt.plot(poly15_data_set4, model4.predict(poly15_data_set4), poly15_data_set4, set_4['price']) plt.show() print('Model 1 coefficients: ', model1.coef_) print('Model 2 coefficients: ', model2.coef_) print('Model 3 coefficients: ', model3.coef_) print('Model 4 coefficients: ', model4.coef_) Explanation: Applying a higher L2 value End of explanation def k_fold_cross_validation(k, l2_penalty, data, output): n = len(data) sumRSS = 0 for i in range(k): # Get the validation/training interval start = (n*i)/k end = (n*(i+1))/k-1 #print (i, (ceil(start), ceil(end))) train_valid_shuffled[0:ceil(start)].append(train_valid_shuffled[ceil(end)+1:n]) # Train the model model = linear_model.Ridge(alpha=l2_penalty, normalize=True) model.fit(data, output) # Calculate RSS RSS = (abs(output - model.predict(data)) ** 2).sum() # Add the RSS to the sum for computing the average sumRSS += RSS return (sumRSS / k) print (k_fold_cross_validation(10, 1e-9, poly15_data_set2, set_2['price'])) Explanation: Selecting an L2 penalty via cross-validation Just like the polynomial degree, the L2 penalty is a "magic" parameter we need to select. We could use the validation set approach as we did in the last module, but that approach has a major disadvantage: it leaves fewer observations available for training. Cross-validation seeks to overcome this issue by using all of the training set in a smart way. We will implement a kind of cross-validation called k-fold cross-validation. The method gets its name because it involves dividing the training set into k segments of roughtly equal size. Similar to the validation set method, we measure the validation error with one of the segments designated as the validation set. The major difference is that we repeat the process k times as follows: Set aside segment 0 as the validation set, and fit a model on rest of data, and evalutate it on this validation set Set aside segment 1 as the validation set, and fit a model on rest of data, and evalutate it on this validation set ... Set aside segment k-1 as the validation set, and fit a model on rest of data, and evalutate it on this validation set After this process, we compute the average of the k validation errors, and use it as an estimate of the generalization error. Notice that all observations are used for both training and validation, as we iterate over segments of data. End of explanation import sys l2s = np.logspace(3, 9, num=13) train_valid_shuffled_poly15 = polynomial_dataframe(train_valid_shuffled['sqft_living'], 15) k = 10 minError = sys.maxsize for l2 in l2s: avgError = k_fold_cross_validation(k, l2, train_valid_shuffled_poly15, train_valid_shuffled['price']) print ('For l2:', l2, ' the CV is ', avgError) if avgError < minError: minError = avgError bestl2 = l2 print (minError) print (bestl2) Explanation: Minimize the l2 by using cross validation End of explanation train_poly15 = polynomial_dataframe(training['sqft_living'], 15) test_poly15 = polynomial_dataframe(test['sqft_living'], 15) model = linear_model.Ridge(alpha=1000, normalize=True) model.fit(train_poly15, training['price']) print("Residual sum of squares: %.2f" % ((model.predict(test_poly15) - test['price']) ** 2).sum()) Explanation: Use the best l2 to train the model on all the data End of explanation
3,050
Given the following text description, write Python code to implement the functionality described below step by step Description: Integración numérica Montecarlo Referencia Step1: Integración Montecarlo tipo 1 Se basa en la definición de valor promedio de una función y en el valor esperado de una variable aleatoria uniforme. Presentamos esto mediante un ejemplo. Ejemplo. Aproxime el área bajo la curva $y=x^2$ en el intervalo $\left[0,1\right]$. Veamos primero cómo luce dicha área. Step2: Entonces, lo que queremos es aproximar el área de la región $\mathcal{D}$. Llamaremos esta área $A(\mathcal{D})$. De cálculo integral, sabemos que $$A(\mathcal{D})=\int_{0}^{1}y\text{d}x=\int_{0}^{1}x^2\text{d}x$$. Por definición, el valor promedio de una función $f Step3: En este caso, la integral se puede hacer fácilmente. Comparemos el resultado con el valor real Step4: Ver que los resultados son distintos cada vez (¿porqué?). Sin embargo, se aproximan más o menos en la misma medida. Aproximación de integrales en intervalos distintos a $\left[0,1\right]$. Sin embargo, no todas las integrales que hacemos son en el intervalo $\left[0,1\right]$. En general, podemos integrar cualquier función continua en el intervalo $\left[a,b\right]$, donde $a,b\in\mathbb{R}$ con $a<b$. Sea $f Step5: Actividad. Utilizar la anterior función para realizar las siguientes integrales. Poner los resultados en una tabla cuyas filas correspondan a la cantidad de términos utilizados en la aproximación (usar 10, 100, 1000, 10000 y 100000 términos) y cuyas columnas correspondan a las funciones. - $\int_{4}^{5} e^{x^2}\text{d}x$. - $\int_{4}^{5} \frac{1}{log(x)}\text{d}x$. - $\int_{4}^{5} \frac{sin(x)}{x}\text{d}x$. Step6: Integración Montecarlo tipo 2 Con la integración montecarlo tipo 1 pudimos aproximar integrales de funciones continuas de una variable en un intervalo dado. En realidad este mismo análisis se puede ampliar para aproximar integrales definidas de funciones continuas de varias variables (integrales sobre áreas, volúmenes e hipervolúmenes) dado que la noción de valor promedio de una función se extiende a cualquier dimensión. Este es en realidad el caso interesante, pues las integrales de funciones complicadas también se pueden aproximar por métodos numéricos clásicos, pero cuando la dimensión aumenta es cuando montecarlo se vuelve una herramienta relevante. Dado que no lo veremos en clase por la limitación de que la mayoría no han visto cálculo en varias variables, este tema puede ser elegido como proyecto de módulo, donde se exploraría también como mejorar la aproximación de integrales montecarlo. Como vimos en el ejemplo (y como debe ser claro de su curso de cálculo integral) una de las aplicaciones más importantes de la integración es hallar áreas. Y no solo el área bajo una curva, sino áreas entre curvas y áreas de regiones más complicadas. Antes de ver la integración montecarlo tipo 2, ¿cómo podemos usar la integración montecarlo tipo 1 para aproximar el área entre curvas? Ejemplo. Aproxime el área entre las curvas $y=x$, y $y=x^2$ en el intervalo $\left[0,1\right]$. Veamos primero cómo luce dicha área. Step7: De cálculo integral, sabemos que $$A(\mathcal{D})=\int_{0}^{1}x-x^2\text{d}x.$$ Entonces... Step8: De modo que si la región se puede describir fácilmente, diría el ferras 'no hay pedo, lo pago' (podemos usar montecarlo tipo 1). Step9: Pero, ¿qué pasa si la geometría de la región no se puede describir fácilmente? Como en el caso anterior, motivaremos el método con un caso conocido. Vamos a aproximar el valor de $\pi$ usando el área de un círculo unitario. Dibujemos el círculo unitario en la región $\mathcal{R}=\left[-1,1\right]\times\left[-1,1\right]$. Step10: Si aproximamos $A(\mathcal{D})$ aproximamos el valor de $\pi$, pues el área del círculo unitario es Step11: La probabilidad de que el punto $(X,Y)$ esté en el círculo unitario $\mathcal{D}$ es $$P((X,Y)\in\mathcal{D})=\frac{A(\mathcal{D})}{A(\mathcal{R})}=\frac{\pi}{4}.$$ Luego, definimos una variable aleatoria de Bernoulli $B$ de manera que $$B=\left\lbrace\begin{array}{ccc}0 & \text{si} & (X,Y)\notin\mathcal{D}\1 & \text{si} & (X,Y)\in\mathcal{D} \end{array}\right.=\left\lbrace\begin{array}{ccc}0 & \text{si} & X^2+Y^2>1\1 & \text{si} & X^2+Y^2\leq 1 \end{array}\right..$$ Entonces, el valor esperado de la variable aleatoria $B$ es $$E\left[B\right]=\theta=P((X,Y)\in\mathcal{D})=\frac{A(\mathcal{D})}{A(\mathcal{R})}.$$ De lo anterior, una estimación de theta se puede obtener como $$\theta=\frac{A(\mathcal{D})}{A(\mathcal{R})}\approx \frac{1}{N}\sum_{i=1}^{N}b_i,$$ donde $$b_i=\left\lbrace\begin{array}{ccc}0 & \text{si} & x_i^2+y_i^2>1\1 & \text{si} & x_i^2+y_i^2\leq 1 \end{array}\right.$$ son realizaciones de la variable aleatoria $B$, que a su vez es producto de las realizaciones $x_i$ e $y_i$ de las variables aleatorias $X$ e $Y$, respectivamente. Finalmente, la aproximación montecarlo tipo 2 con $N$ términos es $$A(\mathcal{D})\approx \frac{A(\mathcal{R})}{N}\sum_{i=1}^{N}b_i.$$ Step12: De nuevo, comparemos con el valor real Step13: Escribamos una función que tenga como entradas Step14: Actividad. Utilizar la anterior función para aproximar el área de la región descrita por $$4(2x-1)^4+8(2y-1)^8<1+2(2y-1)^3(3x-2)^2$$ Poner los resultados en una tabla cuyas filas correspondan a la cantidad de términos utilizados en la aproximación (usar 10, 100, 1000, 10000 y 100000 términos).
Python Code: from IPython.display import YouTubeVideo YouTubeVideo('Ti5zUD08w5s') YouTubeVideo('jmsFC0mNayM') Explanation: Integración numérica Montecarlo Referencia: - https://ocw.mit.edu/courses/mechanical-engineering/2-086-numerical-computation-for-mechanical-engineers-fall-2014/nutshells-guis/MIT2_086F14_Monte_Carlo.pdf - http://ta.twi.tudelft.nl/mf/users/oosterle/oosterlee/lec8-hit-2009.pdf - Sauer, Timothy. Análisis Numérico, 2da. Edición, ISBN: 978-607-32-2059-0. <img style="float: center; margin: 0px 0px 15px 15px;" src="https://upload.wikimedia.org/wikipedia/commons/f/f2/Integral_as_region_under_curve.svg" width="300px" height="100px" /> Motivación En análisis de ingeniería, normalmente debemos evaluar integrales definidas sobre un dominio complejo o en un espacio de dimensión alta. Por ejemplo, podríamos querer calcular: - la deflexión en una viga de geometría complicada, - el volumen de una parte tridimensional de una aeronave, - o evaluar alguna medida de rendimiento (rentabilidad) en algún proceso que sea expresada como una integral de alguna función sin antiderivada primitiva (que se pueda expresar en términos de funciones elementales). A la mano tenemos herramientas de integración analítica cuando tanto el espacio de integración como la función a integrar son simples. Cuando la función a integrar es difícil (incluso, imposible) de integrar podemos aún recurrir a métodos numéricos de integración. Desafortunadamente, los métodos determinísiticos de integración fallan cuando: - la región es demasiado compleja para discretizarla, - o la función a integrar es demasiado irregular, - o la convergencia es demasiado lenta debido a la alta dimensionalidad del espacio de integración (ver Maldición de la dimensionalidad). Por eso en esta clase veremos una técnica alternativa de integración numérica: Integración Montecarlo. Ejemplos de funciones sin antiderivada primitiva. De su curso de cálculo integral seguro recordarán (o estarán viendo) que existen funciones cuya integral no tiene primitiva. Es decir, que no podemos encontrar una función que se pueda expresar en forma de funciones elementales cuya derivada sea tal función. Esto no significa que dicha función no se pueda integrar, ya que sabemos que cualquier función continua es integrable (y la mayoría de funciones que vemos a ese nivel, lo son). Lo que ocurre es que no podemos expresar dicha integral de una forma sencilla (por ejemplo, en función de exponenciales, senos, cosenos, logaritmos...). Algunas integrales que no son elementales son: - $\int e^{p(x)}\text{d}x$, donde $p(x)$ es un polinomio de grado mayor o igual a dos. - $\int \frac{1}{log(x)}\text{d}x$. - $\int \frac{sin(x)}{x}\text{d}x$ Referencia: - https://www.gaussianos.com/funciones-sin-primitiva-elemental/ Ejemplos de regiones difíciles de discretizar. End of explanation import matplotlib.pyplot as plt import numpy as np %matplotlib inline def parab(x): return x**2 x = np.linspace(0,1) y = parab(x) plt.fill_between(x,y) plt.text(0.8,0.2,'$\mathcal{D}$',fontsize=20) plt.show() Explanation: Integración Montecarlo tipo 1 Se basa en la definición de valor promedio de una función y en el valor esperado de una variable aleatoria uniforme. Presentamos esto mediante un ejemplo. Ejemplo. Aproxime el área bajo la curva $y=x^2$ en el intervalo $\left[0,1\right]$. Veamos primero cómo luce dicha área. End of explanation help(np.random.uniform) N = 100000 x = np.random.uniform(0, 1, N) A_Dapprox = np.sum(parab(x))/N A_Dapprox Explanation: Entonces, lo que queremos es aproximar el área de la región $\mathcal{D}$. Llamaremos esta área $A(\mathcal{D})$. De cálculo integral, sabemos que $$A(\mathcal{D})=\int_{0}^{1}y\text{d}x=\int_{0}^{1}x^2\text{d}x$$. Por definición, el valor promedio de una función $f:\left[a,b\right]\to\mathbb{R}$ en un intervalo $\left[a,b\right]$ es $$\frac{1}{b-a}\int_{a}^{b}f(x)\text{d}x.$$ Entonces, el área bajo la curva $y=x^2$ es exactamente el valor promedio de $f(x)=x^2$ en $\left[0,1\right]$. Este valor promedio puede aproximarse mediante el promedio de los valores de la función en puntos aleatorios uniformemente distribuidos en el intervalo $\left[0,1\right]$. Es decir, $$A(\mathcal{D})=\int_{0}^{1}x^2\text{d}x=\int_{0}^{1}f(x)\text{d}x\approx \frac{1}{N}\sum_{i=1}^{N}f(u_i)=\frac{1}{N}\sum_{i=1}^{N}u_i^2$$, donde $u_i$ son realizaciones de la variable aleatoria $U\sim\mathcal{U}\left[0,1\right]$ ($U$ distribuye uniformemente en el intervalo $\left[0,1\right]$). ¿Cómo construit vectores de números aleatorios? - Ver numpy.random. En este caso necesitamos $N$ números aleatorios uniformemente distribuidos... End of explanation import pandas as pd A_D = 1/3 N = np.logspace(1,7,7) df = pd.DataFrame(index=N,columns=['Valor_aproximacion', 'Error_relativo'], dtype='float') df.index.name = "Cantidad_terminos" for n in N: x = np.random.uniform(0, 1, n.astype(int)) df.loc[n,"Valor_aproximacion"] = np.sum(parab(x))/n df.loc[n,"Error_relativo"] = np.abs(df.loc[n,"Valor_aproximacion"]-A_D)/A_D df Explanation: En este caso, la integral se puede hacer fácilmente. Comparemos el resultado con el valor real: $$A(\mathcal{D})=\int_{0}^{1}x^2\text{d}x=\left.\frac{x^3}{3}\right|_{x=0}^{x=1}=\frac{1}{3}$$ Hagamos una tabla viendo: - cantidad de terminos - valor de la aproximacion - error relativo End of explanation # Escribir la función acá def int_montecarlo1(f, a, b, N): return (b-a)/N*np.sum(f(np.random.uniform(a,b,N))) Explanation: Ver que los resultados son distintos cada vez (¿porqué?). Sin embargo, se aproximan más o menos en la misma medida. Aproximación de integrales en intervalos distintos a $\left[0,1\right]$. Sin embargo, no todas las integrales que hacemos son en el intervalo $\left[0,1\right]$. En general, podemos integrar cualquier función continua en el intervalo $\left[a,b\right]$, donde $a,b\in\mathbb{R}$ con $a<b$. Sea $f:\left[a,b\right]\to\mathbb{R}$ una función continua en el intervalo $\left(a,b\right)$ (por lo tanto es integrable endicho intervalo). Queremos resolver: $$\int_{a}^{b}f(x)\text{d}x.$$ ¿Cómo podemos usar la idea del valor promedio para resolver esto? El valor promedio de $f$ en $\left[a,b\right]$ es: $$\frac{1}{b-a}\int_{a}^{b}f(x)\text{d}x.$$ Este valor promedio puede aproximarse mediante el promedio de $N$ valores de la función en puntos aleatorios uniformemente distribuidos en el intervalo $\left[a,b\right]$. Es decir, $$\frac{1}{b-a}\int_{a}^{b}f(x)\text{d}x\approx \frac{1}{N}\sum_{i=1}^{N}f(u_i)$$, donde $u_i$ son realizaciones de la variable aleatoria $U\sim\mathcal{U}\left[a,b\right]$ ($U$ distribuye uniformemente en el intervalo $\left[a,b\right]$). Finalmente, la aproximación montecarlo tipo 1 con $N$ términos es $$\int_{a}^{b}f(x)\text{d}x\approx \frac{b-a}{N}\sum_{i=1}^{N}f(u_i)$$, Escribamos una función que tenga como entradas: - la función a integrar $f$, - los límites de integración $a$ y $b$, y - el número de términos que se usará en la aproximación $N$, y que devuelva la aproximación montecarlo tipo 1 de la integral $\int_{a}^{b}f(x)\text{d}x$. End of explanation # Resolver def func1(x): return np.exp(x**2) def func2(x): return 1/np.log(x) def func3(x): return np.sin(x)/x a, b = 4, 5 N = np.logspace(1,5,5) df = pd.DataFrame(index=N,columns=['Funcion1', 'Funcion2', 'Funcion3'], dtype='float') df.index.name = "Cantidad_terminos" for n in N: df.loc[n,"Funcion1"] = int_montecarlo1(func1, a, b, n.astype(int)) df.loc[n,"Funcion2"] = int_montecarlo1(func2, a, b, n.astype(int)) df.loc[n,"Funcion3"] = int_montecarlo1(func3, a, b, n.astype(int)) df Explanation: Actividad. Utilizar la anterior función para realizar las siguientes integrales. Poner los resultados en una tabla cuyas filas correspondan a la cantidad de términos utilizados en la aproximación (usar 10, 100, 1000, 10000 y 100000 términos) y cuyas columnas correspondan a las funciones. - $\int_{4}^{5} e^{x^2}\text{d}x$. - $\int_{4}^{5} \frac{1}{log(x)}\text{d}x$. - $\int_{4}^{5} \frac{sin(x)}{x}\text{d}x$. End of explanation x = np.linspace(-0.1,1.1) y = parab(x) plt.plot(x,x,'k--',label='$y=x$') plt.plot(x,y,'k',label='$y=x^2$') plt.fill_between(x,x,y) plt.text(0.5,0.4,'$\mathcal{D}$',fontsize=20) plt.legend(loc='best') plt.show() Explanation: Integración Montecarlo tipo 2 Con la integración montecarlo tipo 1 pudimos aproximar integrales de funciones continuas de una variable en un intervalo dado. En realidad este mismo análisis se puede ampliar para aproximar integrales definidas de funciones continuas de varias variables (integrales sobre áreas, volúmenes e hipervolúmenes) dado que la noción de valor promedio de una función se extiende a cualquier dimensión. Este es en realidad el caso interesante, pues las integrales de funciones complicadas también se pueden aproximar por métodos numéricos clásicos, pero cuando la dimensión aumenta es cuando montecarlo se vuelve una herramienta relevante. Dado que no lo veremos en clase por la limitación de que la mayoría no han visto cálculo en varias variables, este tema puede ser elegido como proyecto de módulo, donde se exploraría también como mejorar la aproximación de integrales montecarlo. Como vimos en el ejemplo (y como debe ser claro de su curso de cálculo integral) una de las aplicaciones más importantes de la integración es hallar áreas. Y no solo el área bajo una curva, sino áreas entre curvas y áreas de regiones más complicadas. Antes de ver la integración montecarlo tipo 2, ¿cómo podemos usar la integración montecarlo tipo 1 para aproximar el área entre curvas? Ejemplo. Aproxime el área entre las curvas $y=x$, y $y=x^2$ en el intervalo $\left[0,1\right]$. Veamos primero cómo luce dicha área. End of explanation # Usar la funcion int_montecarlo1 def f(x): return x-x**2 A_Daprox = int_montecarlo1(f, 0, 1, 100000000) A_Daprox Explanation: De cálculo integral, sabemos que $$A(\mathcal{D})=\int_{0}^{1}x-x^2\text{d}x.$$ Entonces... End of explanation YouTubeVideo('G8fOTMYDPEA') Explanation: De modo que si la región se puede describir fácilmente, diría el ferras 'no hay pedo, lo pago' (podemos usar montecarlo tipo 1). End of explanation def circ_arriba(x, r): return np.sqrt(r**2-x**2) def circ_abajo(x, r): return -np.sqrt(r**2-x**2) x = np.linspace(-1,1,100) y1 = circ_arriba(x, 1) y2 = circ_abajo(x, 1) plt.figure(figsize=(5,5)) plt.plot(x,y1,'k') plt.plot(x,y2,'k') plt.fill_between(x,y1,y2) plt.text(0,0,'$\mathcal{D}$',fontsize=20) plt.text(0.8,0.8,'$\mathcal{R}$',fontsize=20) plt.show() Explanation: Pero, ¿qué pasa si la geometría de la región no se puede describir fácilmente? Como en el caso anterior, motivaremos el método con un caso conocido. Vamos a aproximar el valor de $\pi$ usando el área de un círculo unitario. Dibujemos el círculo unitario en la región $\mathcal{R}=\left[-1,1\right]\times\left[-1,1\right]$. End of explanation N = 1000000 x = np.random.uniform(-1, 1, N) y = np.random.uniform(-1, 1, N) X, Y = np.meshgrid(x,y) plt.figure(figsize=(5,5)) plt.scatter(X,Y) plt.show() Explanation: Si aproximamos $A(\mathcal{D})$ aproximamos el valor de $\pi$, pues el área del círculo unitario es: $$A(\mathcal{D})=\pi(1)^2=\pi.$$ Por otra parte es claro que el área de la región $\mathcal{R}=\left[-1,1\right]\times\left[-1,1\right]$ es $$A(\mathcal{R})=4.$$ Ahora, haremos uso de nuestro generador de números aleatorios. Supongamos que escogemos un punto aleatorio en la región $\mathcal{R}=\left[-1,1\right]\times\left[-1,1\right]$. Describimos este punto como $(X,Y)$ para $X$ e $Y$ variables aleatorias uniformes sobre el intervalo $\left[-1,1\right]$. ¿Cómo generamos puntos aleatorios en un rectángulo? End of explanation def reg_circ(x,y): return x**2+y**2<=1 A_R = 4 A_Dapprox = A_R*np.sum(reg_circ(x,y))/N A_Dapprox Explanation: La probabilidad de que el punto $(X,Y)$ esté en el círculo unitario $\mathcal{D}$ es $$P((X,Y)\in\mathcal{D})=\frac{A(\mathcal{D})}{A(\mathcal{R})}=\frac{\pi}{4}.$$ Luego, definimos una variable aleatoria de Bernoulli $B$ de manera que $$B=\left\lbrace\begin{array}{ccc}0 & \text{si} & (X,Y)\notin\mathcal{D}\1 & \text{si} & (X,Y)\in\mathcal{D} \end{array}\right.=\left\lbrace\begin{array}{ccc}0 & \text{si} & X^2+Y^2>1\1 & \text{si} & X^2+Y^2\leq 1 \end{array}\right..$$ Entonces, el valor esperado de la variable aleatoria $B$ es $$E\left[B\right]=\theta=P((X,Y)\in\mathcal{D})=\frac{A(\mathcal{D})}{A(\mathcal{R})}.$$ De lo anterior, una estimación de theta se puede obtener como $$\theta=\frac{A(\mathcal{D})}{A(\mathcal{R})}\approx \frac{1}{N}\sum_{i=1}^{N}b_i,$$ donde $$b_i=\left\lbrace\begin{array}{ccc}0 & \text{si} & x_i^2+y_i^2>1\1 & \text{si} & x_i^2+y_i^2\leq 1 \end{array}\right.$$ son realizaciones de la variable aleatoria $B$, que a su vez es producto de las realizaciones $x_i$ e $y_i$ de las variables aleatorias $X$ e $Y$, respectivamente. Finalmente, la aproximación montecarlo tipo 2 con $N$ términos es $$A(\mathcal{D})\approx \frac{A(\mathcal{R})}{N}\sum_{i=1}^{N}b_i.$$ End of explanation A_D = np.pi N = np.logspace(1,7,7) df = pd.DataFrame(index=N,columns=['Valor_aproximacion', 'Error_relativo'], dtype='float') df.index.name = "Cantidad_terminos" for n in N: x = np.random.uniform(-1, 1, n.astype(int)) y = np.random.uniform(-1, 1, n.astype(int)) df.loc[n,"Valor_aproximacion"] = A_R*np.sum(reg_circ(x,y))/n df.loc[n,"Error_relativo"] = np.abs(df.loc[n,"Valor_aproximacion"]-A_D)/A_D df Explanation: De nuevo, comparemos con el valor real End of explanation # Escribir la función acá def int_montecarlo2(region, a1, b1, a2, b2, N): A_R = (b1-a1)*(b2-a2) x = np.random.uniform(a1, b1, N.astype(int)) y = np.random.uniform(a2, b2, N.astype(int)) return A_R*np.sum(region(x,y))/N Explanation: Escribamos una función que tenga como entradas: - la función que describe la region $region$, - los límites de la region $a_1$, $b_1$, $a_2$ y $b_2$, con $R=\left[a_1,b_1\right]\times\left[a_2,b_2\right]$ y - el número de términos que se usará en la aproximación $N$, y que devuelva la aproximación montecarlo tipo 2 del area de la region. End of explanation N = 100 x = np.linspace(0, 1, N) y = np.linspace(0, 1, N) def region(x,y): return 4*(2*x-1)**4+8*(2*y-1)**8 < 1+2*(2*y-1)**3*(3*x-2)**2 X, Y = np.meshgrid(x,y) plt.figure(figsize=(5,5)) plt.scatter(X,Y,c=~region(X,Y),cmap='bone') plt.show() # Resolver a1, a2, b1, b2 = 0, 0, 1, 1 N = np.logspace(1,5,5) df = pd.DataFrame(index=N,columns=['Valor_aproximacion'], dtype='float') df.index.name = "Cantidad_terminos" for n in N: df.loc[n,"Valor_aproximacion"] = int_montecarlo2(region, a1, b1, a2, b2, n) df Explanation: Actividad. Utilizar la anterior función para aproximar el área de la región descrita por $$4(2x-1)^4+8(2y-1)^8<1+2(2y-1)^3(3x-2)^2$$ Poner los resultados en una tabla cuyas filas correspondan a la cantidad de términos utilizados en la aproximación (usar 10, 100, 1000, 10000 y 100000 términos). End of explanation
3,051
Given the following text description, write Python code to implement the functionality described below step by step Description: Schelling Segregation Model Background The Schelling (1971) segregation model is a classic of agent-based modeling, demonstrating how agents following simple rules lead to the emergence of qualitatively different macro-level outcomes. Agents are randomly placed on a grid. There are two types of agents, one constituting the majority and the other the minority. All agents want a certain number (generally, 3) of their 8 surrounding neighbors to be of the same type in order for them to be happy. Unhappy agents will move to a random available grid space. While individual agents do not have a preference for a segregated outcome (e.g. they would be happy with 3 similar neighbors and 5 different ones), the aggregate outcome is nevertheless heavily segregated. Implementation This is a demonstration of running a Mesa model in an IPython Notebook. The actual model and agent code are implemented in Schelling.py, in the same directory as this notebook. Below, we will import the model class, instantiate it, run it, and plot the time series of the number of happy agents. Step1: Now we instantiate a model instance Step2: We want to run the model until all the agents are happy with where they are. However, there's no guarentee that a given model instantiation will ever settle down. So let's run it for either 100 steps or until it stops on its own, whichever comes first Step3: The model has a DataCollector object, which checks and stores how many agents are happy at the end of each step. It can also generate a pandas DataFrame of the data it has collected Step4: Finally, we can plot the 'happy' series Step5: For testing purposes, here is a table giving each agent's x and y values at each step. Step6: Effect of Homophily on segregation Now, we can do a parameter sweep to see how segregation changes with homophily. First, we create a function which takes a model instance and returns what fraction of agents are segregated -- that is, have no neighbors of the opposite type. Step7: Now, we set up the batch run, with a dictionary of fixed and changing parameters. Let's hold everything fixed except for Homophily.
Python Code: import matplotlib.pyplot as plt %matplotlib inline from Schelling import model Explanation: Schelling Segregation Model Background The Schelling (1971) segregation model is a classic of agent-based modeling, demonstrating how agents following simple rules lead to the emergence of qualitatively different macro-level outcomes. Agents are randomly placed on a grid. There are two types of agents, one constituting the majority and the other the minority. All agents want a certain number (generally, 3) of their 8 surrounding neighbors to be of the same type in order for them to be happy. Unhappy agents will move to a random available grid space. While individual agents do not have a preference for a segregated outcome (e.g. they would be happy with 3 similar neighbors and 5 different ones), the aggregate outcome is nevertheless heavily segregated. Implementation This is a demonstration of running a Mesa model in an IPython Notebook. The actual model and agent code are implemented in Schelling.py, in the same directory as this notebook. Below, we will import the model class, instantiate it, run it, and plot the time series of the number of happy agents. End of explanation model = SchellingModel(10, 10, 0.8, 0.2, 3) Explanation: Now we instantiate a model instance: a 10x10 grid, with an 80% change of an agent being placed in each cell, approximately 20% of agents set as minorities, and agents wanting at least 3 similar neighbors. End of explanation while model.running and model.schedule.steps < 100: model.step() print(model.schedule.steps) # Show how many steps have actually run Explanation: We want to run the model until all the agents are happy with where they are. However, there's no guarentee that a given model instantiation will ever settle down. So let's run it for either 100 steps or until it stops on its own, whichever comes first: End of explanation model_out = model.datacollector.get_model_vars_dataframe() model_out.head() Explanation: The model has a DataCollector object, which checks and stores how many agents are happy at the end of each step. It can also generate a pandas DataFrame of the data it has collected: End of explanation model_out.happy.plot() Explanation: Finally, we can plot the 'happy' series: End of explanation x_positions = model.datacollector.get_agent_vars_dataframe() x_positions.head() Explanation: For testing purposes, here is a table giving each agent's x and y values at each step. End of explanation from mesa.batchrunner import BatchRunner def get_segregation(model): ''' Find the % of agents that only have neighbors of their same type. ''' segregated_agents = 0 for agent in model.schedule.agents: segregated = True for neighbor in model.grid.neighbor_iter(agent.pos): if neighbor.type != agent.type: segregated = False break if segregated: segregated_agents += 1 return segregated_agents / model.schedule.get_agent_count() Explanation: Effect of Homophily on segregation Now, we can do a parameter sweep to see how segregation changes with homophily. First, we create a function which takes a model instance and returns what fraction of agents are segregated -- that is, have no neighbors of the opposite type. End of explanation parameters = {"height": 10, "width": 10, "density": 0.8, "minority_pc": 0.2, "homophily": range(1,9)} model_reporters = {"Segregated_Agents": get_segregation} param_sweep = BatchRunner(SchellingModel, parameters, iterations=10, max_steps=200, model_reporters=model_reporters) param_sweep.run_all() df = param_sweep.get_model_vars_dataframe() plt.scatter(df.homophily, df.Segregated_Agents) plt.grid(True) Explanation: Now, we set up the batch run, with a dictionary of fixed and changing parameters. Let's hold everything fixed except for Homophily. End of explanation
3,052
Given the following text description, write Python code to implement the functionality described below step by step Description: Tasa atractiva mínima (MARR) Notas de clase sobre ingeniería economica avanzada usando Python Juan David Velásquez Henao [email protected] Universidad Nacional de Colombia, Sede Medellín Facultad de Minas Medellín, Colombia Software utilizado Este es un documento interactivo escrito como un notebook de Jupyter , en el cual se presenta un tutorial sobre finanzas corporativas usando Python. Los notebooks de Jupyter permiten incoporar simultáneamente código, texto, gráficos y ecuaciones. El código presentado en este notebook puede ejecutarse en los sistemas operativos Linux y OS X. Haga click aquí para obtener instrucciones detalladas sobre como instalar Jupyter en Windows y Mac OS X. Descargue la última versión de este documento a su disco duro; luego, carguelo y ejecutelo en línea en Try Jupyter! Contenido Bibliografía [1] SAS/ETS 14.1 User's Guide, 2015. [2] hp 12c platinum financial calculator. User's guide. [3] HP Business Consultant II Owner's manual. [4] C.S. Park and G.P. Sharp-Bette. Advanced Engineering Economics. John Wiley & Sons, Inc., 1990. Problema del costo de capital A medida que se invierte más capital los rendimientos obtenidos son menores (es más dificil acceder a inversiones con rentabilidades altas). A medida que se presta más capital los interses son más altos (es más dificil acceder a créditos baratos) Si se tiene un proyecto cuyos fondos provienen del aporte de los socios y de diferentes esquemas de financiación, ¿cómo se calculá el costo de dichos fondos?. <img src="images/wacc-explain.png" width=850> Caso práctico Una compañía tiene las siguientes fuentes de financiamiento Step1: En la modelación de créditos con cashflow se consideran dos tipos de costos
Python Code: import cashflows as cf ## ## Se tienen cuatro fuentes de capital con diferentes costos ## sus datos se almacenarar en las siguientes listas: ## monto = [0] * 4 interes = [0] * 4 ## emision de acciones ## -------------------------------------- monto[0] = 4000 interes[0] = 25.0 / 1.0 # tasa de descueto de la accion ## préstamo 1. ## ------------------------------------------------------- ## nrate = cf.nominal_rate(const_value=20, nper=5) credito1 = cf.fixed_ppal_loan(amount = 2000, # monto nrate = nrate, # tasa de interés orgpoints = 50/2000) # costos de originación credito1 Explanation: Tasa atractiva mínima (MARR) Notas de clase sobre ingeniería economica avanzada usando Python Juan David Velásquez Henao [email protected] Universidad Nacional de Colombia, Sede Medellín Facultad de Minas Medellín, Colombia Software utilizado Este es un documento interactivo escrito como un notebook de Jupyter , en el cual se presenta un tutorial sobre finanzas corporativas usando Python. Los notebooks de Jupyter permiten incoporar simultáneamente código, texto, gráficos y ecuaciones. El código presentado en este notebook puede ejecutarse en los sistemas operativos Linux y OS X. Haga click aquí para obtener instrucciones detalladas sobre como instalar Jupyter en Windows y Mac OS X. Descargue la última versión de este documento a su disco duro; luego, carguelo y ejecutelo en línea en Try Jupyter! Contenido Bibliografía [1] SAS/ETS 14.1 User's Guide, 2015. [2] hp 12c platinum financial calculator. User's guide. [3] HP Business Consultant II Owner's manual. [4] C.S. Park and G.P. Sharp-Bette. Advanced Engineering Economics. John Wiley & Sons, Inc., 1990. Problema del costo de capital A medida que se invierte más capital los rendimientos obtenidos son menores (es más dificil acceder a inversiones con rentabilidades altas). A medida que se presta más capital los interses son más altos (es más dificil acceder a créditos baratos) Si se tiene un proyecto cuyos fondos provienen del aporte de los socios y de diferentes esquemas de financiación, ¿cómo se calculá el costo de dichos fondos?. <img src="images/wacc-explain.png" width=850> Caso práctico Una compañía tiene las siguientes fuentes de financiamiento: Un total de \$ 4000 por la emisión de 4.000 acciones. Se espera un dividendo de \$ 0.25 por acción para los próximos años. Un préstamo bancario (Préstamo 1) de \$ 2.000. El préstamo se paga en 4 cuotas iguales a capital más intereses sobre el saldo total de deuda liquidados a una tasa efectiva de interés del 20%. En el momento del desembolso se cobró una comisión bancaria de \$ 50. Un préstamo bancario (Préstamo 2) de \$ 1.000 con descuento de 24 puntos. El préstamo se paga en 4 cuotas totales iguales que incluyen intereses más capital. La tasa de interés es del 20%. La venta de un bono con pago principal de \$ 5.000, el cual fue vendido por \$ 4.000. El capital se dedimirá en 4 periodos y se pagarán intereses a una tasa del 7%. El bono tiene un costo de venta de \$ 50. El impuesto de renta es del 30%. Solución End of explanation ## flujo de caja para el crédito antes de impuestos credito1.to_cashflow(tax_rate = 30.0) ## la tasa efectiva pagada por el crédito es ## aquella que hace el valor presente cero para ## el flujo de caja anterior (antes o después de ## impuestos) credito1.true_rate(tax_rate = 30.0) ## se almacenna los datos para este credito monto[1] = 2000 interes[1] = credito1.true_rate(tax_rate = 30.0) ## préstamo 2. ## ------------------------------------------------------- ## credito2 = cf.fixed_rate_loan(amount = 1000, # monto nrate = 20, # tasa de interés start = None, grace = 0, life = 4, # número de cuotas dispoints = 0.24) # costos de originación credito2 credito2.to_cashflow(tax_rate = 30) credito2.true_rate(tax_rate = 30) ## se almacenna los datos para este credito monto[2] = 1000 interes[2] = credito2.true_rate(tax_rate = 30) ## préstamo 3. ## ------------------------------------------------------- ## nrate = cf.nominal_rate(const_value=7, nper=5) credito3 = cf.bullet_loan(amount = 5000, # monto nrate = nrate, # tasa de interés orgpoints = 0.01, # costos de originación dispoints = 0.20) # puntos de descuento credito3 credito3.to_cashflow(tax_rate = 30.0) ### malo credito3.true_rate(tax_rate = 30.0) ## se almacenan los datos de este crédito monto[3] = 5000 interes[3] = credito3.true_rate(tax_rate = 30.0) ## montos monto ## tasas interes ## Costo ponderado del capital (WACC) ## ------------------------------------------------------------- ## es el promdio ponderado de las tasas por ## el porcentaje de capital correspondiente a cada fuente ## s = sum(monto) # capital total wacc = sum([x*r/s for x, r in zip(monto, interes)]) wacc Explanation: En la modelación de créditos con cashflow se consideran dos tipos de costos: Los puntos de descuento (dispoints) como porcentaje sobre el monto de la deuda. Estos son una forma de pago de intereses por anticipado con el fin de bajar la tasa de interés del crédito. Los puntos de originación (orgpoints) como porcentaje del monto de deuda. Son los costos de constitución del crédito y no son considerados como intereses. Ya que los intereses de los créditos pueden descontarse como costos financieros, estos disminuyen el pago del impuesto de renta. Por consiguiente, en el análisis de los créditos debe tenerse en cuenta el beneficio por pago de intereses el cual equivale a los impuestos pagados por periodo multiplicados por la tasa del impuesto de renta. Ya que los puntos de descuento son intereses, estos se tienen en cuenta en el cálculo de este beneficio. End of explanation
3,053
Given the following text description, write Python code to implement the functionality described below step by step Description: if,elif,else Statements if Statements in Python allows us to tell the computer to perform alternative actions based on a certain set of results. Verbally, we can imagine we are telling the computer Step1: Let's add in some else logic Step2: Multiple Branches Let's get a fuller picture of how far if, elif, and else can take us! We write this out in a nested strucutre. Take note of how the if,elif,and else line up in the code. This can help you see what if is related to what elif or else statements. We'll reintroduce a comparison syntax for Python. Step3: Note how the nested if statements are each checked until a True boolean causes the nested code below it to run. You should also note that you can put in as many elif statements as you want before you close off with an else. Let's create two more simple examples for the if,elif, and else statements
Python Code: if True: print 'It was true!' Explanation: if,elif,else Statements if Statements in Python allows us to tell the computer to perform alternative actions based on a certain set of results. Verbally, we can imagine we are telling the computer: "Hey if this case happens, perform some action" We can then expand the idea further with elif and else statements, which allow us to tell the computer: "Hey if this case happens, perform some action. Else if another case happens, perform some other action. Else-- none of the above cases happened, perform this action" Let's go ahead and look at the syntax format for if statements to get a better idea of this: if case1: perform action1 elif case2: perform action2 else: perform action 3 First Example Let's see a quick example of this: End of explanation x = False if x: print 'x was True!' else: print 'I will be printed in any case where x is not true' Explanation: Let's add in some else logic: End of explanation loc = 'Bank' if loc == 'Auto Shop': print 'Welcome to the Auto Shop!' elif loc == 'Bank': print 'Welcome to the bank!' else: print "Where are you?" Explanation: Multiple Branches Let's get a fuller picture of how far if, elif, and else can take us! We write this out in a nested strucutre. Take note of how the if,elif,and else line up in the code. This can help you see what if is related to what elif or else statements. We'll reintroduce a comparison syntax for Python. End of explanation person = 'Sammy' if person == 'Sammy': print 'Welcome Sammy!' else: print "Welcome, what's your name?" person = 'George' if person == 'Sammy': print 'Welcome Sammy!' elif person =='George': print "Welcome George!" else: print "Welcome, what's your name?" Explanation: Note how the nested if statements are each checked until a True boolean causes the nested code below it to run. You should also note that you can put in as many elif statements as you want before you close off with an else. Let's create two more simple examples for the if,elif, and else statements: End of explanation
3,054
Given the following text description, write Python code to implement the functionality described below step by step Description: Basic Manipulation Splipy implements all affine transformations like translate (move), rotate, scale etc. These should be available as operators where this makes sense. To start, we need to import the libraries we are going to use first Step1: Rotate Step2: Translate Step3: Note that translate can also be applied as an operator Step4: Scaling Note that scaling is done in relation to the origin. Depending on your use, you might want to center the object around the origin before scaling. Step5: Scaling is also available as operators Step6: Control-point manipulation For special case manipulation, it is possible to manipulate the controlpoints directly
Python Code: import splipy as sp import numpy as np import matplotlib.pyplot as plt import splipy.curve_factory as curve_factory Explanation: Basic Manipulation Splipy implements all affine transformations like translate (move), rotate, scale etc. These should be available as operators where this makes sense. To start, we need to import the libraries we are going to use first End of explanation crv = curve_factory.n_gon(6) # create a sample curve t0 = crv.start() # parametric starting point t1 = crv.end() # parametric end point t = np.linspace(t0, t1, 361) # uniform grid of 361 evaluation points on the parametric domain x = crv(t) plt.plot(x[:,0], x[:,1]) # plot curve crv.rotate(10.0/360*2*np.pi) # rotate by 10 degrees (input is in radians) x = crv(t) plt.plot(x[:,0], x[:,1], 'r-') # plot curve (in red) plt.axis('equal') plt.show() Explanation: Rotate End of explanation crv = curve_factory.n_gon(6) # create a sample curve t0 = crv.start() # parametric starting point t1 = crv.end() # parametric end point t = np.linspace(t0, t1, 361) # uniform grid of 361 evaluation points on the parametric domain x = crv(t) plt.plot(x[:,0], x[:,1]) # plot curve dx = [0.1, 0.1] # translation amount crv.translate(dx) # move the object by 'dx' x = crv(t) plt.plot(x[:,0], x[:,1], 'r-') # plot curve (in red) plt.axis('equal') plt.show() Explanation: Translate End of explanation crv.translate([1, 2]) # moves object 1 in x-direction, 2 in y-direction crv += [1,2] # does the exact same thing crv = crv + [1,2] # same thing crv_2 = crv + [1,2] # creates a new object crv_2 which is the translated version of crv crv += (1,2) # translation vector only needs to be array-like (any indexable input will work) Explanation: Note that translate can also be applied as an operator End of explanation crv = curve_factory.n_gon(6) # create a sample curve t0 = crv.start() # parametric starting point t1 = crv.end() # parametric end point t = np.linspace(t0, t1, 361) # uniform grid of 361 evaluation points on the parametric domain x = crv(t) plt.plot(x[:,0], x[:,1]) # plot curve crv.scale(1.5) # scales the object by a factor of 150% x = crv(t) plt.plot(x[:,0], x[:,1], 'r-') # plot curve (in red) plt.axis('equal') plt.show() Explanation: Scaling Note that scaling is done in relation to the origin. Depending on your use, you might want to center the object around the origin before scaling. End of explanation crv.scale(1.5) crv *= 1.5 # does the exact same thing crv = crv * 1.5 # same thing crv_2 = crv * 1.5 # keeps crv unchanged, returns a new object crv_2 which is the scaled version of crv crv *= (2,1) # doubles the size in x-direction, while leaving the size in y-direction unchanged Explanation: Scaling is also available as operators End of explanation curve = curve_factory.n_gon(6) # for a slightly more inefficient translation operations, we may manipulate the controlpoints one-by-one for controlpoint in curve: controlpoint += [1,0] # alternative way of iterating over the controlpoints of a spline object for i in range(len(curve)): curve[i] += [1,0] print(curve) curve[0] += [1,0] # this will move the first controlpoint one unit in the x-direction curve[0,0] += 1 # exact same thing (now moved a total of two) print(curve) Explanation: Control-point manipulation For special case manipulation, it is possible to manipulate the controlpoints directly End of explanation
3,055
Given the following text description, write Python code to implement the functionality described below step by step Description: Lab exercises Simplicial complex in Dionysus is just a list of its simplices. See how we define a full triangle spanned on vertices labeled with 0, 1 and 2 in the following example. Step1: Since specifying each simplex in a complex is a cumbersome task, dionysus has a closure method which automatically adds missing simplices of lower dimensions in the complex. So the above complex can also be defined as follows.
Python Code: from dionysus import Simplex complex = [Simplex([0]), Simplex([1]), Simplex([2]), Simplex([0, 1]), Simplex([0, 2]), Simplex([2, 1]), Simplex([0, 1, 2])] complex Explanation: Lab exercises Simplicial complex in Dionysus is just a list of its simplices. See how we define a full triangle spanned on vertices labeled with 0, 1 and 2 in the following example. End of explanation from dionysus import closure # Closure accepts 2 arguments: a complex and its dimension complex = closure([Simplex([0, 1, 2])], 2) complex Explanation: Since specifying each simplex in a complex is a cumbersome task, dionysus has a closure method which automatically adds missing simplices of lower dimensions in the complex. So the above complex can also be defined as follows. End of explanation
3,056
Given the following text description, write Python code to implement the functionality described below step by step Description: VIX S&P500 Volatility In this notebook, we'll take a look at the VIX S&P500 Volatility dataset, available on the Quantopian Store. This dataset spans 02 Jan 2004 through the current day. This data has a daily frequency. Calculated by the CBOE, Quantopian sources this data from Quandl. Quandl has multiple data sets for VIX. Quantopian hosts two of them Step1: Let's go over the columns Step2: <a id='pipeline'></a> Pipeline Overview Accessing the data in your algorithms & research The only method for accessing partner data within algorithms running on Quantopian is via the pipeline API. Different data sets work differently but in the case of this data, you can add this data to your pipeline as follows Step3: Now that we've imported the data, let's take a look at which fields are available for each dataset. You'll find the dataset, the available fields, and the datatypes for each of those fields. Step4: Now that we know what fields we have access to, let's see what this data looks like when we run it through Pipeline. This is constructed the same way as you would in the backtester. For more information on using Pipeline in Research view this thread Step5: Here, you'll notice that each security is mapped to the corresponding value, so you could grab any security to get what you need. Taking what we've seen from above, let's see how we'd move that into the backtester.
Python Code: # For use in Quantopian Research, exploring interactively from quantopian.interactive.data.quandl import cboe_vix as dataset # import data operations from odo import odo # import other libraries we will use import pandas as pd # Let's use blaze to understand the data a bit using Blaze dshape() dataset.dshape # And how many rows are there? # N.B. we're using a Blaze function to do this, not len() dataset.count() # Let's see what the data looks like. We'll grab the first three rows. dataset[:3] Explanation: VIX S&P500 Volatility In this notebook, we'll take a look at the VIX S&P500 Volatility dataset, available on the Quantopian Store. This dataset spans 02 Jan 2004 through the current day. This data has a daily frequency. Calculated by the CBOE, Quantopian sources this data from Quandl. Quandl has multiple data sets for VIX. Quantopian hosts two of them: this one, sourced by Quandl directly from the CBOE. A second is delivered to Quandl through Yahoo. Notebook Contents There are two ways to access the data and you'll find both of them listed below. Just click on the section you'd like to read through. <a href='#interactive'><strong>Interactive overview</strong></a>: This is only available on Research and uses blaze to give you access to large amounts of data. Recommended for exploration and plotting. <a href='#pipeline'><strong>Pipeline overview</strong></a>: Data is made available through pipeline which is available on both the Research & Backtesting environment. Recommended for custom factor development and moving back & forth between research/backtesting. Free samples and limits One key caveat: we limit the number of results returned from any given expression to 10,000 to protect against runaway memory usage. To be clear, you have access to all the data server side. We are limiting the size of the responses back from Blaze. There is a free version of this dataset as well as a paid one. The free sample includes data until 2 months prior to the current date. To access the most up-to-date values for this data set for trading a live algorithm (as with other partner sets), you need to purchase acess to the full set. With preamble in place, let's get started: <a id='interactive'></a> Interactive Overview Accessing the data with Blaze and Interactive on Research Partner datasets are available on Quantopian Research through an API service known as Blaze. Blaze provides the Quantopian user with a convenient interface to access very large datasets, in an interactive, generic manner. Blaze provides an important function for accessing these datasets. Some of these sets are many millions of records. Bringing that data directly into Quantopian Research directly just is not viable. So Blaze allows us to provide a simple querying interface and shift the burden over to the server side. It is common to use Blaze to reduce your dataset in size, convert it over to Pandas and then to use Pandas for further computation, manipulation and visualization. Helpful links: * Query building for Blaze * Pandas-to-Blaze dictionary * SQL-to-Blaze dictionary. Once you've limited the size of your Blaze object, you can convert it to a Pandas DataFrames using: from odo import odo odo(expr, pandas.DataFrame) To see how this data can be used in your algorithm, search for the Pipeline Overview section of this notebook or head straight to <a href='#pipeline'>Pipeline Overview</a> End of explanation # Plotting this DataFrame since 2007 df = odo(dataset, pd.DataFrame) df.head(5) # So we can plot it, we'll set the index as the `asof_date` df['asof_date'] = pd.to_datetime(df['asof_date']) df = df.set_index(['asof_date']) df.head(5) import matplotlib.pyplot as plt df.vix_open.plot(label=str(dataset)) plt.ylabel(str(dataset)) plt.legend() plt.title("Graphing %s since %s" % (str(dataset), min(df.index))) Explanation: Let's go over the columns: - vix_open: opening price for the day indicated on asof_date - vix_high: high price for the day indicated on asof_date - vix_low: lowest price for the day indicated by asof_date - vix_close: closing price for asof_date - asof_date: the timeframe to which this data applies - timestamp: this is our timestamp on when we registered the data. We've done much of the data processing for you. Fields like timestamp are standardized across all our Store Datasets, so the datasets are easy to combine. We can select columns and rows with ease. Below, we'll do a simple plot. End of explanation # Import necessary Pipeline modules from quantopian.pipeline import Pipeline from quantopian.research import run_pipeline from quantopian.pipeline.factors import AverageDollarVolume # Import the datasets available from quantopian.pipeline.data.quandl import cboe_vix Explanation: <a id='pipeline'></a> Pipeline Overview Accessing the data in your algorithms & research The only method for accessing partner data within algorithms running on Quantopian is via the pipeline API. Different data sets work differently but in the case of this data, you can add this data to your pipeline as follows: Import the data set here from quantopian.pipeline.data.quandl import cboe_vix Then in intialize() you could do something simple like adding the raw value of one of the fields to your pipeline: pipe.add(cboe_vix.vix_open.latest, 'open_vix') Pipeline usage is very similar between the backtester and Research so let's go over how to import this data through pipeline and view its outputs. End of explanation print "Here are the list of available fields per dataset:" print "---------------------------------------------------\n" def _print_fields(dataset): print "Dataset: %s\n" % dataset.__name__ print "Fields:" for field in list(dataset.columns): print "%s - %s" % (field.name, field.dtype) print "\n" _print_fields(cboe_vix) print "---------------------------------------------------\n" Explanation: Now that we've imported the data, let's take a look at which fields are available for each dataset. You'll find the dataset, the available fields, and the datatypes for each of those fields. End of explanation pipe = Pipeline() pipe.add(cboe_vix.vix_open.latest, 'open_vix') # Setting some basic liquidity strings (just for good habit) dollar_volume = AverageDollarVolume(window_length=20) top_1000_most_liquid = dollar_volume.rank(ascending=False) < 1000 pipe.set_screen(top_1000_most_liquid & cboe_vix.vix_open.latest.notnan()) # The show_graph() method of pipeline objects produces a graph to show how it is being calculated. pipe.show_graph(format='png') # run_pipeline will show the output of your pipeline pipe_output = run_pipeline(pipe, start_date='2013-11-01', end_date='2013-11-25') pipe_output Explanation: Now that we know what fields we have access to, let's see what this data looks like when we run it through Pipeline. This is constructed the same way as you would in the backtester. For more information on using Pipeline in Research view this thread: https://www.quantopian.com/posts/pipeline-in-research-build-test-and-visualize-your-factors-and-filters End of explanation # This section is only importable in the backtester from quantopian.algorithm import attach_pipeline, pipeline_output # General pipeline imports from quantopian.pipeline import Pipeline from quantopian.pipeline.factors import AverageDollarVolume # For use in your algorithms via the pipeline API from quantopian.pipeline.data.quandl import cboe_vix def make_pipeline(): # Create our pipeline pipe = Pipeline() # Screen out penny stocks and low liquidity securities. dollar_volume = AverageDollarVolume(window_length=20) is_liquid = dollar_volume.rank(ascending=False) < 1000 # Create the mask that we will use for our percentile methods. base_universe = (is_liquid) # Add the datasets available pipe.add(cboe_vix.vix_open.latest, 'vix_open') # Set our pipeline screens pipe.set_screen(is_liquid) return pipe def initialize(context): attach_pipeline(make_pipeline(), "pipeline") def before_trading_start(context, data): results = pipeline_output('pipeline') Explanation: Here, you'll notice that each security is mapped to the corresponding value, so you could grab any security to get what you need. Taking what we've seen from above, let's see how we'd move that into the backtester. End of explanation
3,057
Given the following text description, write Python code to implement the functionality described below step by step Description: Interact Exercise 4 Imports Step2: Line with Gaussian noise Write a function named random_line that creates x and y data for a line with y direction random noise that has a normal distribution $N(0,\sigma^2)$ Step5: Write a function named plot_random_line that takes the same arguments as random_line and creates a random line using random_line and then plots the x and y points using Matplotlib's scatter function Step6: Use interact to explore the plot_random_line function using
Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np from IPython.html.widgets import interact, interactive, fixed from IPython.display import display Explanation: Interact Exercise 4 Imports End of explanation def random_line(m, b, sigma, size=10): Create a line y = m*x + b + N(0,sigma**2) between x=[-1.0,1.0] Parameters ---------- m : float The slope of the line. b : float The y-intercept of the line. sigma : float The standard deviation of the y direction normal distribution noise. size : int The number of points to create for the line. Returns ------- x : array of floats The array of x values for the line with `size` points. y : array of floats The array of y values for the lines with `size` points. x = np.linspace(-1.0,1.0,size) errors = np.random.normal(sigma**2) y = np.asarray(m*x + b + errors) print(x) print(y) #?np.random.normal m = 0.0; b = 1.0; sigma=0.0; size=3 x, y = random_line(m, b, sigma, size) assert len(x)==len(y)==size assert list(x)==[-1.0,0.0,1.0] assert list(y)==[1.0,1.0,1.0] sigma = 1.0 m = 0.0; b = 0.0 size = 500 x, y = random_line(m, b, sigma, size) assert np.allclose(np.mean(y-m*x-b), 0.0, rtol=0.1, atol=0.1) assert np.allclose(np.std(y-m*x-b), sigma, rtol=0.1, atol=0.1) Explanation: Line with Gaussian noise Write a function named random_line that creates x and y data for a line with y direction random noise that has a normal distribution $N(0,\sigma^2)$: $$ y = m x + b + N(0,\sigma^2) $$ Be careful about the sigma=0.0 case. End of explanation def ticks_out(ax): Move the ticks to the outside of the box. ax.get_xaxis().set_tick_params(direction='out', width=1, which='both') ax.get_yaxis().set_tick_params(direction='out', width=1, which='both') def plot_random_line(m, b, sigma, size=10, color='red'): Plot a random line with slope m, intercept b and size points. x = np.linspace(-1.0,1.0,size) errors = np.random.normal(loc = 0, scale = sigma**2) y = m*x + b + errors plt.scatter(x, y,size, c = color) plt.title('Awesome Random Line') plt.xlabel('The x-axis') plt.ylabel('The y-axis') plt.grid(True) plt.xlim(-1.1,1.1) plt.ylim(-10.0,10.0) #?plt.xlim plot_random_line(5.0, -1.0, 2.0, 50) assert True # use this cell to grade the plot_random_line function Explanation: Write a function named plot_random_line that takes the same arguments as random_line and creates a random line using random_line and then plots the x and y points using Matplotlib's scatter function: Make the marker color settable through a color keyword argument with a default of red. Display the range $x=[-1.1,1.1]$ and $y=[-10.0,10.0]$. Customize your plot to make it effective and beautiful. End of explanation interact(plot_random_line, m=[-10.0,1.0,0.1], b = [-5.0,5.0,0.1], sigma = [0.0,5.0,0.01], size=[10,100,10], color = ['red','green','blue']) #### assert True # use this cell to grade the plot_random_line interact Explanation: Use interact to explore the plot_random_line function using: m: a float valued slider from -10.0 to 10.0 with steps of 0.1. b: a float valued slider from -5.0 to 5.0 with steps of 0.1. sigma: a float valued slider from 0.0 to 5.0 with steps of 0.01. size: an int valued slider from 10 to 100 with steps of 10. color: a dropdown with options for red, green and blue. End of explanation
3,058
Given the following text description, write Python code to implement the functionality described below step by step Description: Using ReNA to find supervoxels The aims of the notebook is to provide an illustration of how to use ReNA to build superpixels. This corresponds to clustering voxels. Here we use the Haxby dataset, which can be fetched via nilearn. Loading the data Step1: Get the connectivity (spatial structure) Step2: Custering Step3: Visualizing the results
Python Code: from nilearn import datasets dataset = datasets.fetch_haxby(subjects=1) import numpy as np from nilearn.input_data import NiftiMasker masker = NiftiMasker(mask_strategy='epi', smoothing_fwhm=6, memory='cache') X_masked = masker.fit_transform(dataset.func[0]) X_train = X_masked[:100, :] X_data = masker.inverse_transform(X_train).get_data() n_x, n_y, n_z, n_samples = X_data.shape mask = masker.mask_img_.get_data() print('number of samples: %i, \nDimensions n_x: %i, n_y: %i, n_z: %i' % (n_samples, n_x, n_y, n_z)) Explanation: Using ReNA to find supervoxels The aims of the notebook is to provide an illustration of how to use ReNA to build superpixels. This corresponds to clustering voxels. Here we use the Haxby dataset, which can be fetched via nilearn. Loading the data End of explanation from sklearn.feature_extraction.image import grid_to_graph from rena import weighted_connectivity_graph connectivity_ward = grid_to_graph(n_x=n_x, n_y=n_y, n_z=n_z, mask=mask) connectivity_rena = weighted_connectivity_graph(X_data, n_features=X_masked.shape[1], mask=mask) import time from sklearn.cluster import AgglomerativeClustering from rena import recursive_nearest_agglomeration n_clusters = 2000 ward = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity_ward, linkage='ward') ti_ward = time.clock() ward.fit(X_masked.T) to_ward = time.clock() - ti_ward labels_ward = ward.labels_ ti_rena = time.clock() labels_rena = recursive_nearest_agglomeration(X_masked, connectivity_rena, n_clusters=n_clusters) to_rena = time.clock() - ti_rena print('Time Ward: %0.3f, Time ReNA: %0.3f' % (to_ward, to_rena)) Explanation: Get the connectivity (spatial structure) End of explanation from rena import reduce_data, approximate_data X_red_rena = reduce_data(X_masked, labels_rena) X_red_ward = reduce_data(X_masked, labels_ward) X_approx_rena = approximate_data(X_red_rena, labels_rena) X_approx_ward = approximate_data(X_red_ward, labels_ward) Explanation: Custering End of explanation def visualize_labels(labels, masker): # Shuffle the labels (for better visualization): permutation = np.random.permutation(labels.shape[0]) labels = permutation[labels] return masker.inverse_transform(labels) cut_coords = (-34, -16) n_image = 0 %matplotlib inline import matplotlib.pyplot as plt from nilearn.plotting import plot_stat_map, plot_epi labels_rena_img = visualize_labels(labels_rena, masker) labels_ward_img = visualize_labels(labels_ward, masker) clusters_rena_fig = plot_stat_map(labels_rena_img, bg_img=dataset.anat[0], title='ReNA: clusters', display_mode='yz', cut_coords=cut_coords, colorbar=False) clusters_ward_fig = plot_stat_map(labels_ward_img, bg_img=dataset.anat[0], title='Ward: clusters', display_mode='yz', cut_coords=cut_coords, colorbar=False) compress_rena_fig = plot_epi(masker.inverse_transform(X_approx_rena[n_image]), title='ReNA: approximated', display_mode='yz', cut_coords=cut_coords) compress_ward_fig = plot_epi(masker.inverse_transform(X_approx_ward[n_image]), title='Ward: approximated', display_mode='yz', cut_coords=cut_coords) original_fig = plot_epi(masker.inverse_transform(X_masked[n_image]), title='original', display_mode='yz', cut_coords=cut_coords) plt.show() # saving data clusters_rena_fig.savefig('figures/clusters_rena.png') clusters_ward_fig.savefig('figures/clusters_ward.png') compress_rena_fig.savefig('figures/compress_rena.png') compress_ward_fig.savefig('figures/compress_ward.png') original_fig.savefig('figures/original.png') Explanation: Visualizing the results End of explanation
3,059
Given the following text description, write Python code to implement the functionality described below step by step Description: Infinite Hidden Markov Model authors Step1: First we define the possible states in the model. In this case we make them all have normal distributions. Step2: We then create the HMM object, naming it, logically, "infinite". Step3: We then add the possible transition, making sure not to add an end state. Thus with no end state, the model is infinite! Step4: Finally we "bake" the model, finalizing the model. Step5: Now we can check whether or not our model is infinite. Step6: Now lets the possible states in the model. Step7: Now lets test out our model by feeding it a sequence of values. We feed our sequence of values first through a forward algorithm in our HMM. Step8: That looks good as well. Now lets feed our sequence into the model through a backwards algorithm. Step9: Continuing on we now feed the sequence in through a forward-backward algorithm. Step10: Finally we feed the sequence through a Viterbi algorithm to find the most probable sequence of states. Step11: Finally we try and reproduce the transition matrix from 100,000 samples.
Python Code: from pomegranate import * import itertools as it import numpy as np Explanation: Infinite Hidden Markov Model authors:<br> Jacob Schreiber [<a href="mailto:[email protected]">[email protected]</a>]<br> Nicholas Farn [<a href="mailto:[email protected]">[email protected]</a>] This example shows how to use pomegranate to sample from an infinite HMM. The premise is that you have an HMM which does not have transitions to the end state, and so can continue on forever. This is done by not adding transitions to the end state. If you bake a model with no transitions to the end state, you get an infinite model, with no extra work! This change is passed on to all the algorithms. End of explanation s1 = State( NormalDistribution( 5, 2 ), name="S1" ) s2 = State( NormalDistribution( 15, 2 ), name="S2" ) s3 = State( NormalDistribution( 25, 2 ), name="S3" ) Explanation: First we define the possible states in the model. In this case we make them all have normal distributions. End of explanation model = HiddenMarkovModel( "infinite" ) Explanation: We then create the HMM object, naming it, logically, "infinite". End of explanation model.add_transition( model.start, s1, 0.7 ) model.add_transition( model.start, s2, 0.2 ) model.add_transition( model.start, s3, 0.1 ) model.add_transition( s1, s1, 0.6 ) model.add_transition( s1, s2, 0.1 ) model.add_transition( s1, s3, 0.3 ) model.add_transition( s2, s1, 0.4 ) model.add_transition( s2, s2, 0.4 ) model.add_transition( s2, s3, 0.2 ) model.add_transition( s3, s1, 0.05 ) model.add_transition( s3, s2, 0.15 ) model.add_transition( s3, s3, 0.8 ) Explanation: We then add the possible transition, making sure not to add an end state. Thus with no end state, the model is infinite! End of explanation model.bake() Explanation: Finally we "bake" the model, finalizing the model. End of explanation # Not implemented: print model.is_infinite() Explanation: Now we can check whether or not our model is infinite. End of explanation print("States") print("\n".join( state.name for state in model.states )) Explanation: Now lets the possible states in the model. End of explanation sequence = [ 4.8, 5.6, 24.1, 25.8, 14.3, 26.5, 15.9, 5.5, 5.1 ] print("Forward") print(model.forward( sequence )) Explanation: Now lets test out our model by feeding it a sequence of values. We feed our sequence of values first through a forward algorithm in our HMM. End of explanation print("Backward") print(model.backward( sequence )) Explanation: That looks good as well. Now lets feed our sequence into the model through a backwards algorithm. End of explanation print("Forward-Backward") trans, emissions = model.forward_backward( sequence ) print(trans) print(emissions) Explanation: Continuing on we now feed the sequence in through a forward-backward algorithm. End of explanation print("Viterbi") prob, states = model.viterbi( sequence ) print("Prob: {}".format( prob )) print("\n".join( state[1].name for state in states )) print() print("MAP") prob, states = model.maximum_a_posteriori( sequence ) print("Prob: {}".format( prob )) print("\n".join( state[1].name for state in states )) Explanation: Finally we feed the sequence through a Viterbi algorithm to find the most probable sequence of states. End of explanation print("Should produce a matrix close to the following: ") print(" [ [ 0.60, 0.10, 0.30 ] ") print(" [ 0.40, 0.40, 0.20 ] ") print(" [ 0.05, 0.15, 0.80 ] ] ") print() print("Transition Matrix From 100000 Samples:") sample, path = model.sample( 100000, path=True ) trans = np.zeros((3,3)) for state, n_state in it.izip( path[1:-2], path[2:-1] ): state_name = int( state.name[1:] )-1 n_state_name = int( n_state.name[1:] )-1 trans[ state_name, n_state_name ] += 1 trans = (trans.T / trans.sum( axis=1 )).T print(trans) Explanation: Finally we try and reproduce the transition matrix from 100,000 samples. End of explanation
3,060
Given the following text description, write Python code to implement the functionality described below step by step Description: In the above cell, I have used the first element of the array for calculating 'yactual' value Step1: The .fit function is throwing out an error saying that first argument in that function must be 2 Dimensional or lesser. When I try to put in all the three matrixes A, B, C, it is giving an error saying that the first argument is four dimensional, which I could'nt resolve Hence, to see how it works out for a single matrix, I have used the fit function
Python Code: len(Amatrix[0]) #performing multiple simple linear regression for only the a,Amatrix, because of error of the .fit function from sklearn import linear_model regr=linear_model.LinearRegression()#performing the simple linear regression regr.fit(a[0].reshape(len(a),1),yactual.reshape(len(yactual),1)) Explanation: In the above cell, I have used the first element of the array for calculating 'yactual' value End of explanation plt.scatter(yactual.reshape(len(yactual),1),a[0].reshape(len(yactual),1)) plt.plot([0,2],[0,23],lw=4,color='red')#the line Y=2a+b+9c plt.show() Explanation: The .fit function is throwing out an error saying that first argument in that function must be 2 Dimensional or lesser. When I try to put in all the three matrixes A, B, C, it is giving an error saying that the first argument is four dimensional, which I could'nt resolve Hence, to see how it works out for a single matrix, I have used the fit function End of explanation
3,061
Given the following text description, write Python code to implement the functionality described below step by step Description: Copyright 2019 The TensorFlow Authors. Step1: Embeddings de Palavras <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https Step2: Usando a camada Embedding Keras facilita o uso de embedding de palavras. Vamos dar uma olhada na camada [Embedding] (https Step3: Quando você cria uma camada de embedding, os pesos para a incorporação são inicializados aleatoriamente (como qualquer outra camada). Durante o treinamento, eles são ajustados gradualmente via retropropagação. Uma vez treinadas, as combinações de palavras aprendidas codificam aproximadamente semelhanças entre as palavras (como foram aprendidas para o problema específico em que seu modelo é treinado). Se você passar um número inteiro para uma camada de embedding, o resultado substituirá cada número inteiro pelo vetor da tabela de embedding Step4: Para problemas de texto ou sequência, a camada Embedding usa um tensor 2D de números inteiros, de forma (samples, sequence_length), onde cada entrada é uma sequência de números inteiros. Pode incorporar seqüências de comprimentos variáveis. Você pode alimentar a camada de embedding acima dos lotes com as formas (32, 10) (lote de 32 sequências de comprimento 10) ou (64, 15) (lote de 64 sequências de comprimento 15). O tensor retornado possui mais um eixo que a entrada, os vetores de embedding são alinhados ao longo do novo último eixo. Passe um lote de entrada (2, 3) e a saída é (2, 3, N) Step5: Quando recebe um lote de seqüências como entrada, uma camada de embedding retorna um tensor de ponto flutuante 3D, de forma (amostras, comprimento_de_ sequência, dimensão_de_implantação). Para converter dessa sequência de comprimento variável para uma representação fixa, há uma variedade de abordagens padrão. Você pode usar uma camada RNN, Attention ou pooling antes de passá-la para uma camada Dense. Este tutorial usa o pool porque é mais simples. O tutorial [Classificação de texto com um RNN] (text_classification_rnn.ipynb) é um bom próximo passo. Aprendendo embeddings do zero Neste tutorial, você treinará um classificador de sentimentos nas críticas de filmes do IMDB. No processo, o modelo aprenderá o embedding do zero. Usaremos para um conjunto de dados pré-processado. Para carregar um conjunto de dados de texto do zero, consulte o [Carregando texto tutorial] (../ load_data / text.ipynb). Step6: Obtenha o codificador (tfds.features.text.SubwordTextEncoder) e dê uma rápida olhada no vocabulário. O \_ no vocabulário representa espaços. Observe como o vocabulário inclui palavras inteiras (terminando com \_) e palavras parciais que podem ser usadas para criar palavras maiores Step7: As críticas de filmes podem ter diferentes comprimentos. Usaremos o método padded_batch para padronizar os comprimentos das revisões. Step8: Conforme importado, o texto das revisões é codificado por número inteiro (cada número inteiro representa uma palavra específica ou parte da palavra no vocabulário). Observe os zeros à direita, porque o lote é preenchido no exemplo mais longo. Step9: Crie um modelo simples Usaremos a [Keras Sequential API] (../../guide/keras) para definir nosso modelo. Nesse caso, é um modelo de estilo "Saco contínuo de palavras". Em seguida, a camada Embedding pega o vocabulário codificado por número inteiro e procura o vetor de embedding para cada índice de palavras. Esses vetores são aprendidos à medida que o modelo treina. Os vetores adicionam uma dimensão à matriz de saída. As dimensões resultantes são Step10: Compile e treine o modelo Step11: Com essa abordagem, nosso modelo alcança uma acurácia de validação de cerca de 88% (observe que o modelo está adaptado demais (overfitting), a precisão do treinamento é significativamente maior). Step12: Recuperar os embeddings aprendidos Em seguida, vamos recuperar o embedding da palavra aprendida durante o treinamento. Esta será uma matriz de forma (vocab_size, embedding-dimension). Step13: Vamos agora escrever os pesos no disco. Para usar o [Embedding Projector] (http Step14: Se você estiver executando este tutorial em [Colaboratory] (https
Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Explanation: Copyright 2019 The TensorFlow Authors. End of explanation from __future__ import absolute_import, division, print_function, unicode_literals try: # %tensorflow_version only exists in Colab. !pip install tf-nightly except Exception: pass import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import tensorflow_datasets as tfds tfds.disable_progress_bar() Explanation: Embeddings de Palavras <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https://www.tensorflow.org/tutorials/text/word_embeddings"> <img src="https://www.tensorflow.org/images/tf_logo_32px.png" /> Ver no TensorFlow.org</a> </td> <td> <a target="_blank" href="https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/pt-br/tutorials/text/word_embeddings.ipynb"> <img src="https://www.tensorflow.org/images/colab_logo_32px.png" /> Executar no Google Colab</a> </td> <td> <a target="_blank" href="https://github.com/tensorflow/docs-l10n/blob/master/site/pt-br/tutorials/text/word_embeddings.ipynb"> <img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" /> Ver código fonte no GitHub</a> </td> <td> <a href="https://storage.googleapis.com/tensorflow_docs/docs-l10n/site/pt-br/tutorials/text/word_embeddings.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png" />Baixar notebook</a> </td> </table> Este tutorial apresenta embedding de palavras. Ele contém código completo para treinar combinações de palavras do zero em um pequeno conjunto de dados e para visualizá-las usando o [Embedding Projector] (http://projector.tensorflow.org) (mostrado na imagem abaixo). <img src = "https://github.com/tensorflow/docs/blob/master/site/en/tutorials/text/images/embedding.jpg?raw=1" alt = "Captura de tela do projetor de embedding" width = "400" /> Representando texto como números Os modelos de aprendizado de máquina recebem vetores (matrizes de números) como entrada. Ao trabalhar com texto, a primeira coisa que devemos fazer é criar uma estratégia para converter seqüências de caracteres em números (ou "vetorizar" o texto) antes de alimentá-lo no modelo. Nesta seção, examinaremos três estratégias para fazê-lo. Codificações one-hot Como primeira idéia, podemos "codificar" cada palavra em nosso vocabulário. Considere a frase "The cat sat on the mat". O vocabulário (ou palavras únicas) nesta frase é (cat, mat, on, sat, the). Para representar cada palavra, criaremos um vetor de zeros com comprimento igual ao vocabulário e, em seguida, colocaremos 1 no índice que corresponder à palavra. Essa abordagem é mostrada no diagrama a seguir. <img src = "https://github.com/tensorflow/docs/blob/master/site/en/tutorials/text/images/one-hot.png?raw=1" alt = "Diagrama de codificações únicas" width ="400"/> Para criar um vetor que contenha a codificação da sentença, poderíamos concatenar o vetor one-hot de cada palavra. Ponto-chave: Essa abordagem é ineficiente. Um vetor one-hot é escasso (ou seja, a maioria das indicações é zero). Imagine que temos 10.000 palavras no vocabulário. Para codificar cada palavra, criaríamos um vetor em que 99,99% dos elementos são zero. Codifique cada palavra com um número único Uma segunda abordagem que podemos tentar é codificar cada palavra usando um número único. Continuando o exemplo acima, poderíamos atribuir 1 a "cat", 2 a "mat" e assim por diante. Poderíamos então codificar a frase "The cat sat on the mat" como um vetor denso como [5, 1, 4, 3, 5, 2]. Esta abordagem é eficiente. Em vez de um vetor esparso, agora temos um denso (onde todos os elementos estão cheios). No entanto, existem duas desvantagens nessa abordagem: A codificação de número inteiro é arbitrária (não captura nenhuma relação entre palavras). Uma codificação de número inteiro pode ser desafiadora para um modelo interpretar. Um classificador linear, por exemplo, aprende um único peso para cada recurso. Como não há relação entre a similaridade de duas palavras e a similaridade de suas codificações, essa combinação de peso e característica não tem significado. Embeddings de palavras O embedding de palavras nos fornece uma maneira de usar uma representação eficiente e densa, na qual palavras semelhantes têm uma codificação semelhante. É importante ressaltar que não precisamos especificar essa codificação manualmente. Um embedding é um vetor denso de valores de ponto flutuante (o comprimento do vetor é um parâmetro que você especifica). Em vez de especificar os valores para o embedding manualmente, eles são parâmetros treináveis ​​(pesos aprendidos pelo modelo durante o treinamento, da mesma maneira que um modelo aprende pesos para uma camada densa). É comum ver combinações de palavras de 8 dimensões (para conjuntos de dados pequenos), com até 1024 dimensões ao trabalhar com conjuntos de dados grandes. Um embedding dimensional mais alto pode capturar relacionamentos refinados entre as palavras, mas exige mais dados para aprender. <img src = "https://github.com/tensorflow/docs/blob/master/site/en/tutorials/text/images/embedding2.png?raw=1" alt = "Diagrama de um Embedding" width = "400"/> Acima está um diagrama para um embedding de uma palavra. Cada palavra é representada como um vetor quadridimensional de valores de ponto flutuante. Outra maneira de pensar em um embedding é como "tabela de pesquisa". Depois que esses pesos foram aprendidos, podemos codificar cada palavra procurando o vetor denso a que corresponde na tabela. Configuração End of explanation embedding_layer = layers.Embedding(1000, 5) Explanation: Usando a camada Embedding Keras facilita o uso de embedding de palavras. Vamos dar uma olhada na camada [Embedding] (https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding). A camada de embedding pode ser entendida como uma tabela de pesquisa que mapeia de índices inteiros (que significam palavras específicas) a vetores densos (seus embeddings). A dimensionalidade (ou largura) do embedding é um parâmetro com o qual você pode experimentar para ver o que funciona bem para o seu problema, da mesma maneira que você experimentaria com o número de neurônios em uma camada Dense. End of explanation result = embedding_layer(tf.constant([1,2,3])) result.numpy() Explanation: Quando você cria uma camada de embedding, os pesos para a incorporação são inicializados aleatoriamente (como qualquer outra camada). Durante o treinamento, eles são ajustados gradualmente via retropropagação. Uma vez treinadas, as combinações de palavras aprendidas codificam aproximadamente semelhanças entre as palavras (como foram aprendidas para o problema específico em que seu modelo é treinado). Se você passar um número inteiro para uma camada de embedding, o resultado substituirá cada número inteiro pelo vetor da tabela de embedding: End of explanation result = embedding_layer(tf.constant([[0,1,2],[3,4,5]])) result.shape Explanation: Para problemas de texto ou sequência, a camada Embedding usa um tensor 2D de números inteiros, de forma (samples, sequence_length), onde cada entrada é uma sequência de números inteiros. Pode incorporar seqüências de comprimentos variáveis. Você pode alimentar a camada de embedding acima dos lotes com as formas (32, 10) (lote de 32 sequências de comprimento 10) ou (64, 15) (lote de 64 sequências de comprimento 15). O tensor retornado possui mais um eixo que a entrada, os vetores de embedding são alinhados ao longo do novo último eixo. Passe um lote de entrada (2, 3) e a saída é (2, 3, N) End of explanation (train_data, test_data), info = tfds.load( 'imdb_reviews/subwords8k', split = (tfds.Split.TRAIN, tfds.Split.TEST), with_info=True, as_supervised=True) Explanation: Quando recebe um lote de seqüências como entrada, uma camada de embedding retorna um tensor de ponto flutuante 3D, de forma (amostras, comprimento_de_ sequência, dimensão_de_implantação). Para converter dessa sequência de comprimento variável para uma representação fixa, há uma variedade de abordagens padrão. Você pode usar uma camada RNN, Attention ou pooling antes de passá-la para uma camada Dense. Este tutorial usa o pool porque é mais simples. O tutorial [Classificação de texto com um RNN] (text_classification_rnn.ipynb) é um bom próximo passo. Aprendendo embeddings do zero Neste tutorial, você treinará um classificador de sentimentos nas críticas de filmes do IMDB. No processo, o modelo aprenderá o embedding do zero. Usaremos para um conjunto de dados pré-processado. Para carregar um conjunto de dados de texto do zero, consulte o [Carregando texto tutorial] (../ load_data / text.ipynb). End of explanation encoder = info.features['text'].encoder encoder.subwords[:20] Explanation: Obtenha o codificador (tfds.features.text.SubwordTextEncoder) e dê uma rápida olhada no vocabulário. O \_ no vocabulário representa espaços. Observe como o vocabulário inclui palavras inteiras (terminando com \_) e palavras parciais que podem ser usadas para criar palavras maiores End of explanation train_batches = train_data.shuffle(1000).padded_batch(10) test_batches = test_data.shuffle(1000).padded_batch(10) Explanation: As críticas de filmes podem ter diferentes comprimentos. Usaremos o método padded_batch para padronizar os comprimentos das revisões. End of explanation train_batch, train_labels = next(iter(train_batches)) train_batch.numpy() Explanation: Conforme importado, o texto das revisões é codificado por número inteiro (cada número inteiro representa uma palavra específica ou parte da palavra no vocabulário). Observe os zeros à direita, porque o lote é preenchido no exemplo mais longo. End of explanation embedding_dim=16 model = keras.Sequential([ layers.Embedding(encoder.vocab_size, embedding_dim), layers.GlobalAveragePooling1D(), layers.Dense(16, activation='relu'), layers.Dense(1, activation='sigmoid') ]) model.summary() Explanation: Crie um modelo simples Usaremos a [Keras Sequential API] (../../guide/keras) para definir nosso modelo. Nesse caso, é um modelo de estilo "Saco contínuo de palavras". Em seguida, a camada Embedding pega o vocabulário codificado por número inteiro e procura o vetor de embedding para cada índice de palavras. Esses vetores são aprendidos à medida que o modelo treina. Os vetores adicionam uma dimensão à matriz de saída. As dimensões resultantes são: (lote, sequência, incorporação). Em seguida, uma camada GlobalAveragePooling1D retorna um vetor de saída de comprimento fixo para cada exemplo calculando a média sobre a dimensão de sequência. Isso permite que o modelo lide com entradas de comprimento variável, da maneira mais simples possível. Esse vetor de saída de comprimento fixo é canalizado através de uma camada totalmente conectada (dense) com 16 unidades ocultas. A última camada está densamente conectada com um único nó de saída. Usando a função de ativação sigmóide, esse valor é um valor flutuante entre 0 e 1, representando uma probabilidade (ou nível de confiança) de que a revisão seja positiva. Cuidado: Este modelo não usa mascaramento; portanto, o preenchimento zero é usado como parte da entrada; portanto, o comprimento do preenchimento pode afetar a saída. Para corrigir isso, consulte o [guia de máscara e preenchimento] (../../guide/keras/masking_and_padding). End of explanation model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit( train_batches, epochs=10, validation_data=test_batches, validation_steps=20) Explanation: Compile e treine o modelo End of explanation import matplotlib.pyplot as plt history_dict = history.history acc = history_dict['accuracy'] val_acc = history_dict['val_accuracy'] loss = history_dict['loss'] val_loss = history_dict['val_loss'] epochs = range(1, len(acc) + 1) plt.figure(figsize=(12,9)) plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() plt.figure(figsize=(12,9)) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend(loc='lower right') plt.ylim((0.5,1)) plt.show() Explanation: Com essa abordagem, nosso modelo alcança uma acurácia de validação de cerca de 88% (observe que o modelo está adaptado demais (overfitting), a precisão do treinamento é significativamente maior). End of explanation e = model.layers[0] weights = e.get_weights()[0] print(weights.shape) # formato: (vocab_size, embedding_dim) Explanation: Recuperar os embeddings aprendidos Em seguida, vamos recuperar o embedding da palavra aprendida durante o treinamento. Esta será uma matriz de forma (vocab_size, embedding-dimension). End of explanation import io encoder = info.features['text'].encoder out_v = io.open('vecs.tsv', 'w', encoding='utf-8') out_m = io.open('meta.tsv', 'w', encoding='utf-8') for num, word in enumerate(encoder.subwords): vec = weights[num+1] # pule o 0, está preenchido. out_m.write(word + "\n") out_v.write('\t'.join([str(x) for x in vec]) + "\n") out_v.close() out_m.close() Explanation: Vamos agora escrever os pesos no disco. Para usar o [Embedding Projector] (http://projector.tensorflow.org), enviaremos dois arquivos em formato separado por tabulação: um arquivo de vetores (contendo a incorporação) e um arquivo de metadados (contendo as palavras). End of explanation try: from google.colab import files except ImportError: pass else: files.download('vecs.tsv') files.download('meta.tsv') Explanation: Se você estiver executando este tutorial em [Colaboratory] (https://colab.research.google.com), poderá usar o seguinte trecho para fazer o download desses arquivos na máquina local (ou usar o navegador de arquivos, * Exibir -> Tabela de conteúdo -> Navegador de arquivos *). End of explanation
3,062
Given the following text description, write Python code to implement the functionality described below step by step Description: Formatting csv data for loading into atlasbiowork Postgres database First, get column names set up. Implement foreign keys FIRST, as csv, and then by join operation with site table. Then use to_json to nest the values fields for the postgres JSON field. Step1: soil samples from analysis.csv Step2: For soil samples, type=31 and values fields are as follows "values"
Python Code: import pandas as pd import numpy as np import json #fields for csv site_fields = ['id', 'name', 'geometry','accuracy'] observation_fields = ['entered', 'values','observer_id', 'site_id', 'type_id', 'parentobs_id'] Explanation: Formatting csv data for loading into atlasbiowork Postgres database First, get column names set up. Implement foreign keys FIRST, as csv, and then by join operation with site table. Then use to_json to nest the values fields for the postgres JSON field. End of explanation df = pd.read_csv('C:/Users/Peter/Documents/scc/challenge/obs_types/analysis.csv') #add foreign key fields mystartID = 1000 #primary key to start numbering new data from df['observer_id'] = 1 # this is my observer_id df['site_id'] = np.nan df['type_id'] = np.nan df['parentobs_id'] = np.nan df['id']=df.index+mystartID df.columns Explanation: soil samples from analysis.csv End of explanation #get soil samples fields soil_samples_renaming = {"value1": "top_cm", "value2": "bottom_cm","date": "oldDate", "id": "sampleID", "type": "description"} df.rename(columns=soil_samples_renaming, inplace=True) df['date'] = pd.to_datetime(df['oldDate'],infer_datetime_format=True) df.columns #add a few needed fields df['entered'] = "2017-06-01 00:00:00.000" #arbitrary for loading data df['observer_id'] = 1 #given that all these observations are mine df['site_id'] = 0 df['type_id'] = 31 # for soil samples df['parentobs_id'] = 0 df['samplers'] = '' #use regex to replace substrings with numbers for num_composited field replacements = { r'8': 8, r'3': 3, r'4': 4, r'pit':4, r'single': 1, r'density': 1 } df['num_composited'] = df.description.replace(replacements, regex=True) #df.loc[df.text.str.contains('\.'), 'text'] = 'other' df.num_composited.value_counts() #gives occurrences of each unique value #here we filter for the soil samples only, not the analyses or calculated stats searchfor = ['single','density','composite sample','8','4','3'] #y = df[df.description.str.contains('|'.join(searchfor))] #df w rows that contain terms #x = df[~df.description.str.contains('|'.join(searchfor))] #df without rows that contain terms df = df[df.description.str.contains('|'.join(searchfor))] #df w rows that contain terms df['description'] = df['description'] + ". " + df['note'] #in order to make a few text changes, e.g. describe samples a bit more #df.to_csv('C:/Users/Peter/Documents/scc/challenge/obs_types/soil_samples.csv', index=False) df = pd.read_csv('C:/Users/Peter/Documents/scc/challenge/obs_types/soil_samples.csv') df=pd.read_csv('C:/Users/Peter/Documents/scc/challenge/obs_types/soil_samples.csv') JSONfield = ['top_cm', 'bottom_cm', 'description','num_composited','sampleID','date','samplers'] jsonvalues= df[JSONfield] jsonvalues.columns #create dataframe with same length to hold JSON field json = pd.DataFrame(index = df.index, columns = ['values']) for i, row in jsonvalues.iterrows(): json.values[i]= jsonvalues.loc[i].to_json() #print(values.values[i]) #now we create a df with all fields, including the JSON values field merged = df.merge(json, left_index=True, right_index=True) merged.to_csv('C:/Users/Peter/Documents/scc/challenge/obs_types/soil_samples.csv', index=False) mystart = 1000 #primary key to start with merged['id'] = merged.index + mystart observation_fields #observation_fields.append('group') final = merged[observation_fields] final final.to_csv('C:/Users/Peter/Documents/scc/challenge/obs_types/soil_samples_readyFK.csv', index=False) final = pd.read_csv('C:/Users/Peter/Documents/scc/challenge/obs_types/soil_samples_readyFK.csv') final final[final['group']=='BCLA1'] Explanation: For soil samples, type=31 and values fields are as follows "values": { "top_cm": "28", "bottom_cm": "35", "description": "3-inch diameter density sample", "num_composited": "1", "sampleID": "Linne1C1", "date": "2017-04-11", "samplers": null } End of explanation
3,063
Given the following text description, write Python code to implement the functionality described below step by step Description: 1 Make a request from the Forecast.io API for where you were born (or lived, or want to visit!) Tip Step1: 2. What's the current wind speed? How much warmer does it feel than it actually is? Step2: 3. Moon Visible in New York The first daily forecast is the forecast for today. For the place you decided on up above, how much of the moon is currently visible? Step3: 4. What's the difference between the high and low temperatures for today? Step4: 5. Next Week's Prediction Loop through the daily forecast, printing out the next week's worth of predictions. I'd like to know the high temperature for each day, and whether it's hot, warm, or cold, based on what temperatures you think are hot, warm or cold. Step5: 6.Weather in Florida What's the weather looking like for the rest of today in Miami, Florida? I'd like to know the temperature for every hour, and if it's going to have cloud cover of more than 0.5 say "{temperature} and cloudy" instead of just the temperature. Step6: 7. Temperature in Central Park What was the temperature in Central Park on Christmas Day, 1980? How about 1990? 2000?
Python Code: #https://api.forecast.io/forecast/APIKEY/LATITUDE,LONGITUDE,TIME response = requests.get('https://api.forecast.io/forecast/4da699cf85f9706ce50848a7e59591b7/12.971599,77.594563') data = response.json() #print(data) #print(data.keys()) print("Bangalore is in", data['timezone'], "timezone") timezone_find = data.keys() #find representation print("The longitude is", data['longitude'], "The latitude is", data['latitude']) Explanation: 1 Make a request from the Forecast.io API for where you were born (or lived, or want to visit!) Tip: Once you've imported the JSON into a variable, check the timezone's name to make sure it seems like it got the right part of the world! Tip 2: How is north vs. south and east vs. west latitude/longitude represented? Is it the normal North/South/East/West? End of explanation response = requests.get('https://api.forecast.io/forecast/4da699cf85f9706ce50848a7e59591b7/40.712784,-74.005941, 2016-06-08T09:00:46-0400') data = response.json() #print(data.keys()) print("The current windspeed at New York is", data['currently']['windSpeed']) #print(data['currently']) - find how much warmer print("It is",data['currently']['apparentTemperature'], "warmer it feels than it actually is") Explanation: 2. What's the current wind speed? How much warmer does it feel than it actually is? End of explanation response = requests.get('https://api.forecast.io/forecast/4da699cf85f9706ce50848a7e59591b7/40.712784,-74.005941, 2016-06-08T09:00:46-0400') data = response.json() #print(data.keys()) #print(data['daily']['data']) now_moon = data['daily']['data'] for i in now_moon: print("The visibility of moon today in New York is", i['moonPhase'], "and is in the middle of new moon phase and the first quarter moon") Explanation: 3. Moon Visible in New York The first daily forecast is the forecast for today. For the place you decided on up above, how much of the moon is currently visible? End of explanation response = requests.get('https://api.forecast.io/forecast/4da699cf85f9706ce50848a7e59591b7/40.712784,-74.005941, 2016-06-08T09:00:46-0400') data = response.json() TemMax = data['daily']['data'] for i in TemMax: tem_diff = i['temperatureMax'] - i['temperatureMin'] print("The temparature difference for today approximately is", round(tem_diff)) Explanation: 4. What's the difference between the high and low temperatures for today? End of explanation response = requests.get('https://api.forecast.io/forecast/4da699cf85f9706ce50848a7e59591b7/40.712784,-74.005941') data = response.json() temp = data['daily']['data'] #print(temp) count = 0 for i in temp: count = count+1 print("The high temperature for the day", count, "is", i['temperatureMax'], "and the low temperature is", i['temperatureMin']) if float(i['temperatureMin']) < 40: print("it's a cold weather") elif (float(i['temperatureMin']) > 40) & (float(i['temperatureMin']) < 60): print("It's a warm day!") else: print("It's very hot weather") Explanation: 5. Next Week's Prediction Loop through the daily forecast, printing out the next week's worth of predictions. I'd like to know the high temperature for each day, and whether it's hot, warm, or cold, based on what temperatures you think are hot, warm or cold. End of explanation response = requests.get('https://api.forecast.io/forecast/4da699cf85f9706ce50848a7e59591b7/25.761680,-80.191790, 2016-06-09T12:01:00-0400') data = response.json() #print(data['hourly']['data']) Tem = data['hourly']['data'] count = 0 for i in Tem: count = count +1 print("The temperature in Miami, Florida on 9th June in the", count, "hour is", i['temperature']) if float(i['cloudCover']) > 0.5: print("and is cloudy") Explanation: 6.Weather in Florida What's the weather looking like for the rest of today in Miami, Florida? I'd like to know the temperature for every hour, and if it's going to have cloud cover of more than 0.5 say "{temperature} and cloudy" instead of just the temperature. End of explanation response = requests.get('https://api.forecast.io/forecast/4da699cf85f9706ce50848a7e59591b7/40.771133,-73.974187, 1980-12-25T12:01:00-0400') data = response.json() Temp = data['currently']['temperature'] print("The temperature in Central Park, NY on the Christmas Day of 1980 was", Temp) response = requests.get('https://api.forecast.io/forecast/4da699cf85f9706ce50848a7e59591b7/40.771133,-73.974187, 1990-12-25T12:01:00-0400') data = response.json() Temp = data['currently']['temperature'] print("The temperature in Central Park, NY on the Christmas Day of 1990 was", Temp) response = requests.get('https://api.forecast.io/forecast/4da699cf85f9706ce50848a7e59591b7/40.771133,-73.974187, 2000-12-25T12:01:00-0400') data = response.json() Temp = data['currently']['temperature'] print("The temperature in Central Park, NY on the Christmas Day of 2000 was", Temp) Explanation: 7. Temperature in Central Park What was the temperature in Central Park on Christmas Day, 1980? How about 1990? 2000? End of explanation
3,064
Given the following text description, write Python code to implement the functionality described below step by step Description: Setup Step1: Prepare Vectors Step2: Use Scikit's semisupervised learning There are two semisupervised methods that scikit has. Label Propagation and Label Spreading. The difference is in how they regularize. Step3: Measuring effectiveness. Step4: PCA
Python Code: import tsvopener import pandas as pd import numpy as np from nltk import word_tokenize from sklearn.feature_extraction.text import CountVectorizer from scipy.sparse import csr_matrix, vstack from sklearn.semi_supervised import LabelPropagation, LabelSpreading regex_categorized = tsvopener.open_tsv("categorized.tsv") human_categorized = tsvopener.open_tsv("human_categorized.tsv") # Accuracy Check # # match = 0 # no_match = 0 # for key in human_categorized: # if human_categorized[key] == regex_categorized[key]: # match += 1 # else: # no_match += 1 # # print("accuracy of regex data in {} human-categorized words".format( # len(human_categorized))) # print(match/(match+no_match)) # # accuracy of regex data in 350 human-categorized words # 0.7857142857142857 Explanation: Setup End of explanation # set up targets for the human-categorized data targets = pd.DataFrame.from_dict(human_categorized, 'index') targets[0] = pd.Categorical(targets[0]) targets['code'] = targets[0].cat.codes # form: | word (label) | language | code (1-5) tmp_dict = {} for key in human_categorized: tmp_dict[key] = tsvopener.etymdict[key] supervised_sents = pd.DataFrame.from_dict(tmp_dict, 'index') all_sents = pd.DataFrame.from_dict(tsvopener.etymdict, 'index') vectorizer = CountVectorizer(stop_words='english', max_features=10000) all_sents.index.get_loc("anyways (adv.)") # vectorize the unsupervised vectors. vectors = vectorizer.fit_transform(all_sents.values[:,0]) print(vectors.shape) # supervised_vectors = vectorizer.fit_transform(supervised_data.values[:,0]) # add labels # initialize to -1 all_sents['code'] = -1 supervised_vectors = csr_matrix((len(human_categorized), vectors.shape[1]), dtype=vectors.dtype) j = 0 for key in supervised_sents.index: all_sents.loc[key]['code'] = targets.loc[key]['code'] i = all_sents.index.get_loc(key) supervised_vectors[j] = vectors[i] j += 1 # supervised_vectors = csr_matrix((len(human_categorized), # unsupervised_vectors.shape[1]), # dtype=unsupervised_vectors.dtype) # j = 0 # for key in supervised_data.index: # i = unsupervised_data.index.get_loc(key) # supervised_vectors[j] = unsupervised_vectors[i] # j += 1 all_sents.loc['dicky (n.)'] Explanation: Prepare Vectors End of explanation num_points = 1000 num_test = 50 x = vstack([vectors[:num_points], supervised_vectors]).toarray() t = all_sents['code'][:num_points].append(targets['code']) x_test = x[-num_test:] t_test = t[-num_test:] x = x[:-num_test] t = t[:-num_test] label_prop_model = LabelSpreading(kernel='knn') from time import time print("fitting model") timer_start = time() label_prop_model.fit(x, t) print("runtime: %0.3fs" % (time()-timer_start)) print("done!") # unsupervised_data['code'].iloc[:1000] import pickle # with open("classifiers/labelspreading_knn_all_but_100.pkl", 'bw') as writefile: # pickle.dump(label_prop_model, writefile) import smtplib server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login("[email protected]", "Picardy3") msg = "Job's done!" server.sendmail("[email protected]", "[email protected]", msg) server.quit() targets Explanation: Use Scikit's semisupervised learning There are two semisupervised methods that scikit has. Label Propagation and Label Spreading. The difference is in how they regularize. End of explanation from sklearn.metrics import precision_score, accuracy_score, f1_score, recall_score t_pred = label_prop_model.predict(x_test) print("Metrics based on 50 hold-out points") print("Macro") print("accuracy: %f" % accuracy_score(t_test, t_pred)) print("precision: %f" % precision_score(t_test, t_pred, average='macro')) print("recall: %f" % recall_score(t_test, t_pred, average='macro')) print("f1: %f" % f1_score(t_test, t_pred, average='macro')) print("\n\nMicro") print("accuracy: %f" % accuracy_score(t_test, t_pred)) print("precision: %f" % precision_score(t_test, t_pred, average='micro')) print("recall: %f" % recall_score(t_test, t_pred, average='micro')) print("f1: %f" % f1_score(t_test, t_pred, average='micro')) from sklearn import metrics import matplotlib.pyplot as pl labels = ["English", "French", "Greek", "Latin","Norse", "Other"] labels_digits = [0, 1, 2, 3, 4, 5] cm = metrics.confusion_matrix(t_test, t_pred, labels_digits) fig = pl.figure() ax = fig.add_subplot(111) cax = ax.matshow(cm) pl.title("Label Spreading with KNN kernel (k=7)") fig.colorbar(cax) ax.set_xticklabels([''] + labels) ax.set_yticklabels([''] + labels) pl.xlabel('Predicted') pl.ylabel('True') pl.show() Explanation: Measuring effectiveness. End of explanation supervised_vectors import matplotlib.pyplot as pl u, s, v = np.linalg.svd(supervised_vectors.toarray()) pca = np.dot(u[:,0:2], np.diag(s[0:2])) english = np.empty((0,2)) french = np.empty((0,2)) greek = np.empty((0,2)) latin = np.empty((0,2)) norse = np.empty((0,2)) other = np.empty((0,2)) for i in range(pca.shape[0]): if targets[0].iloc[i] == "English": english = np.vstack((english, pca[i])) elif targets[0].iloc[i] == "French": french = np.vstack((french, pca[i])) elif targets[0].iloc[i] == "Greek": greek = np.vstack((greek, pca[i])) elif targets[0].iloc[i] == "Latin": latin = np.vstack((latin, pca[i])) elif targets[0].iloc[i] == "Norse": norse = np.vstack((norse, pca[i])) elif targets[0].iloc[i] == "Other": other = np.vstack((other, pca[i])) pl.plot( english[:,0], english[:,1], "ro", french[:,0], french[:,1], "bs", greek[:,0], greek[:,1], "g+", latin[:,0], latin[:,1], "c^", norse[:,0], norse[:,1], "mD", other[:,0], other[:,1], "kx") pl.axis([-5,0,-2, 5]) pl.show() print (s) Explanation: PCA: Let's see what it looks like Performing PCA End of explanation
3,065
Given the following text description, write Python code to implement the functionality described below step by step Description: Experiment Step1: Load and check data Step2: ## Analysis Experiment Details Step3: What is the impact of removing connections with highest coactivation Step4: What is the optimal combination of both Step5: The opposite logic of hebbian pruning, when weight pruning is set to 0, clearly affects the model performance. Acc when full pruning is done at each state is 0.965 {(1,0), (0,1), (1,1)} Acc with no pruning is 0.977 {(0,0)} Best acc is still with only magnitude based pruning {(0,0.2), (0, 0.4)} Opposite of hebbian prunning (removing connections with highest coactivation) only is harmful to the model, with acc equal or worst than full pruning, even with as low as 0.2 pruning What is the impact of the adding connections with lowest coactivation
Python Code: %load_ext autoreload %autoreload 2 import sys sys.path.append("../../") from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import tabulate import pprint import click import numpy as np import pandas as pd from ray.tune.commands import * from dynamic_sparse.common.browser import * Explanation: Experiment: Opposite of Hebbian Learning: Hebbian Learning by pruning the highest coactivation, instead of the lowest. Opposite of Hebbian Growth: growth connections by allowing gradient flow on connections with the lowest coactivation, instead of the highest Motivation. Verify the relevance of highest coactivated units, by checking their impact on the model when they are pruned Verify the relevance of lowest coactivated units, by checking their impact on the model when they are added to the model Conclusions: The opposite logic of hebbian pruning, when weight pruning is set to 0, clearly affects the model performance. Acc when full pruning is done at each state is 0.965 {(1,0), (0,1), (1,1)} Acc with no pruning is 0.977 {(0,0)} Best acc is still with only magnitude based pruning {(0,0.2), (0, 0.4)} Opposite of hebbian prunning (removing connections with highest coactivation) only is harmful to the model, with acc equal or worst than full pruning, even with as low as 0.2 pruning Opposite random growth (adding connections with lowest activation) reduces acc by ~ 0.02 End of explanation exps = ['neurips_debug_test10', 'neurips_debug_test11'] paths = [os.path.expanduser("~/nta/results/{}".format(e)) for e in exps] df = load_many(paths) df.head(5) # replace hebbian prine df['hebbian_prune_perc'] = df['hebbian_prune_perc'].replace(np.nan, 0.0, regex=True) df['weight_prune_perc'] = df['weight_prune_perc'].replace(np.nan, 0.0, regex=True) df.columns df.shape df.iloc[1] df.groupby('model')['model'].count() Explanation: Load and check data End of explanation # Did any trials failed? df[df["epochs"]<30]["epochs"].count() # Removing failed or incomplete trials df_origin = df.copy() df = df_origin[df_origin["epochs"]>=30] df.shape # which ones failed? # failed, or still ongoing? df_origin['failed'] = df_origin["epochs"]<30 df_origin[df_origin['failed']]['epochs'] # helper functions def mean_and_std(s): return "{:.3f} ± {:.3f}".format(s.mean(), s.std()) def round_mean(s): return "{:.0f}".format(round(s.mean())) stats = ['min', 'max', 'mean', 'std'] def agg(columns, filter=None, round=3): if filter is None: return (df.groupby(columns) .agg({'val_acc_max_epoch': round_mean, 'val_acc_max': stats, 'model': ['count']})).round(round) else: return (df[filter].groupby(columns) .agg({'val_acc_max_epoch': round_mean, 'val_acc_max': stats, 'model': ['count']})).round(round) Explanation: ## Analysis Experiment Details End of explanation random_grow = (df['hebbian_grow'] == False) agg(['hebbian_prune_perc'], random_grow) agg(['weight_prune_perc'], random_grow) Explanation: What is the impact of removing connections with highest coactivation End of explanation pd.pivot_table(df[random_grow], index='hebbian_prune_perc', columns='weight_prune_perc', values='val_acc_max', aggfunc=mean_and_std) Explanation: What is the optimal combination of both End of explanation # with and without hebbian grow agg('hebbian_grow') # with and without hebbian grow pd.pivot_table(df, index=['hebbian_grow', 'hebbian_prune_perc'], columns='weight_prune_perc', values='val_acc_max', aggfunc=mean_and_std) Explanation: The opposite logic of hebbian pruning, when weight pruning is set to 0, clearly affects the model performance. Acc when full pruning is done at each state is 0.965 {(1,0), (0,1), (1,1)} Acc with no pruning is 0.977 {(0,0)} Best acc is still with only magnitude based pruning {(0,0.2), (0, 0.4)} Opposite of hebbian prunning (removing connections with highest coactivation) only is harmful to the model, with acc equal or worst than full pruning, even with as low as 0.2 pruning What is the impact of the adding connections with lowest coactivation End of explanation
3,066
Given the following text description, write Python code to implement the functionality described below step by step Description: Pandas querying and metadata with Epochs objects Demonstrating pandas-style string querying with Epochs metadata. For related uses of Step1: We can use this metadata attribute to select subsets of Epochs. This uses the Pandas Step2: Next we'll choose a subset of words to keep. Step3: Note that traditional epochs sub-selection still works. The traditional MNE methods for selecting epochs will supersede the rich metadata querying. Step4: Below we'll show a more involved example that leverages the metadata of each epoch. We'll create a new column in our metadata object and use it to generate averages for many subsets of trials. Step5: Now we can quickly extract (and plot) subsets of the data. For example, to look at words split by word length and concreteness Step6: To compare words which are 4, 5, 6, 7 or 8 letters long Step7: And finally, for the interaction between concreteness and continuous length in letters Step8: <div class="alert alert-info"><h4>Note</h4><p>Creating an
Python Code: # Authors: Chris Holdgraf <[email protected]> # Jona Sassenhagen <[email protected]> # Eric Larson <[email protected]> # License: BSD (3-clause) import mne import numpy as np import matplotlib.pyplot as plt # Load the data from the internet path = mne.datasets.kiloword.data_path() + '/kword_metadata-epo.fif' epochs = mne.read_epochs(path) # The metadata exists as a Pandas DataFrame print(epochs.metadata.head(10)) Explanation: Pandas querying and metadata with Epochs objects Demonstrating pandas-style string querying with Epochs metadata. For related uses of :class:mne.Epochs, see the starting tutorial tut-epochs-class. Sometimes you may have a complex trial structure that cannot be easily summarized as a set of unique integers. In this case, it may be useful to use the metadata attribute of :class:mne.Epochs objects. This must be a :class:pandas.DataFrame where each row corresponds to an epoch, and each column corresponds to a metadata attribute of each epoch. Columns must contain either strings, ints, or floats. In this dataset, subjects were presented with individual words on a screen, and the EEG activity in response to each word was recorded. We know which word was displayed in each epoch, as well as extra information about the word (e.g., word frequency). Loading the data First we'll load the data. If metadata exists for an :class:mne.Epochs fif file, it will automatically be loaded in the metadata attribute. End of explanation av1 = epochs['Concreteness < 5 and WordFrequency < 2'].average() av2 = epochs['Concreteness > 5 and WordFrequency > 2'].average() joint_kwargs = dict(ts_args=dict(time_unit='s'), topomap_args=dict(time_unit='s')) av1.plot_joint(show=False, **joint_kwargs) av2.plot_joint(show=False, **joint_kwargs) Explanation: We can use this metadata attribute to select subsets of Epochs. This uses the Pandas :meth:pandas.DataFrame.query method under the hood. Any valid query string will work. Below we'll make two plots to compare between them: End of explanation words = ['film', 'cent', 'shot', 'cold', 'main'] epochs['WORD in {}'.format(words)].plot_image(show=False) Explanation: Next we'll choose a subset of words to keep. End of explanation epochs['cent'].average().plot(show=False, time_unit='s') Explanation: Note that traditional epochs sub-selection still works. The traditional MNE methods for selecting epochs will supersede the rich metadata querying. End of explanation # Create two new metadata columns metadata = epochs.metadata is_concrete = metadata["Concreteness"] > metadata["Concreteness"].median() metadata["is_concrete"] = np.where(is_concrete, 'Concrete', 'Abstract') is_long = metadata["NumberOfLetters"] > 5 metadata["is_long"] = np.where(is_long, 'Long', 'Short') epochs.metadata = metadata Explanation: Below we'll show a more involved example that leverages the metadata of each epoch. We'll create a new column in our metadata object and use it to generate averages for many subsets of trials. End of explanation query = "is_long == '{0}' & is_concrete == '{1}'" evokeds = dict() for concreteness in ("Concrete", "Abstract"): for length in ("Long", "Short"): subset = epochs[query.format(length, concreteness)] evokeds["/".join((concreteness, length))] = list(subset.iter_evoked()) # For the actual visualisation, we store a number of shared parameters. style_plot = dict( colors={"Long": "Crimson", "Short": "Cornflowerblue"}, linestyles={"Concrete": "-", "Abstract": ":"}, split_legend=True, ci=.68, show_sensors='lower right', legend='lower left', truncate_yaxis="auto", picks=epochs.ch_names.index("Pz"), ) fig, ax = plt.subplots(figsize=(6, 4)) mne.viz.plot_compare_evokeds(evokeds, axes=ax, **style_plot) plt.show() Explanation: Now we can quickly extract (and plot) subsets of the data. For example, to look at words split by word length and concreteness: End of explanation letters = epochs.metadata["NumberOfLetters"].unique().astype(int).astype(str) evokeds = dict() for n_letters in letters: evokeds[n_letters] = epochs["NumberOfLetters == " + n_letters].average() style_plot["colors"] = {n_letters: int(n_letters) for n_letters in letters} style_plot["cmap"] = ("# of Letters", "viridis_r") del style_plot['linestyles'] fig, ax = plt.subplots(figsize=(6, 4)) mne.viz.plot_compare_evokeds(evokeds, axes=ax, **style_plot) plt.show() Explanation: To compare words which are 4, 5, 6, 7 or 8 letters long: End of explanation evokeds = dict() query = "is_concrete == '{0}' & NumberOfLetters == {1}" for concreteness in ("Concrete", "Abstract"): for n_letters in letters: subset = epochs[query.format(concreteness, n_letters)] evokeds["/".join((concreteness, n_letters))] = subset.average() style_plot["linestyles"] = {"Concrete": "-", "Abstract": ":"} fig, ax = plt.subplots(figsize=(6, 4)) mne.viz.plot_compare_evokeds(evokeds, axes=ax, **style_plot) plt.show() Explanation: And finally, for the interaction between concreteness and continuous length in letters: End of explanation data = epochs.get_data() metadata = epochs.metadata.copy() epochs_new = mne.EpochsArray(data, epochs.info, metadata=metadata) Explanation: <div class="alert alert-info"><h4>Note</h4><p>Creating an :class:`mne.Epochs` object with metadata is done by passing a :class:`pandas.DataFrame` to the ``metadata`` kwarg as follows:</p></div> End of explanation
3,067
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Landice MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Software Properties 3. Grid 4. Glaciers 5. Ice 6. Ice --&gt; Mass Balance 7. Ice --&gt; Mass Balance --&gt; Basal 8. Ice --&gt; Mass Balance --&gt; Frontal 9. Ice --&gt; Dynamics 1. Key Properties Land ice key properties 1.1. Overview Is Required Step5: 1.2. Model Name Is Required Step6: 1.3. Ice Albedo Is Required Step7: 1.4. Atmospheric Coupling Variables Is Required Step8: 1.5. Oceanic Coupling Variables Is Required Step9: 1.6. Prognostic Variables Is Required Step10: 2. Key Properties --&gt; Software Properties Software properties of land ice code 2.1. Repository Is Required Step11: 2.2. Code Version Is Required Step12: 2.3. Code Languages Is Required Step13: 3. Grid Land ice grid 3.1. Overview Is Required Step14: 3.2. Adaptive Grid Is Required Step15: 3.3. Base Resolution Is Required Step16: 3.4. Resolution Limit Is Required Step17: 3.5. Projection Is Required Step18: 4. Glaciers Land ice glaciers 4.1. Overview Is Required Step19: 4.2. Description Is Required Step20: 4.3. Dynamic Areal Extent Is Required Step21: 5. Ice Ice sheet and ice shelf 5.1. Overview Is Required Step22: 5.2. Grounding Line Method Is Required Step23: 5.3. Ice Sheet Is Required Step24: 5.4. Ice Shelf Is Required Step25: 6. Ice --&gt; Mass Balance Description of the surface mass balance treatment 6.1. Surface Mass Balance Is Required Step26: 7. Ice --&gt; Mass Balance --&gt; Basal Description of basal melting 7.1. Bedrock Is Required Step27: 7.2. Ocean Is Required Step28: 8. Ice --&gt; Mass Balance --&gt; Frontal Description of claving/melting from the ice shelf front 8.1. Calving Is Required Step29: 8.2. Melting Is Required Step30: 9. Ice --&gt; Dynamics ** 9.1. Description Is Required Step31: 9.2. Approximation Is Required Step32: 9.3. Adaptive Timestep Is Required Step33: 9.4. Timestep Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'uhh', 'sandbox-2', 'landice') Explanation: ES-DOC CMIP6 Model Properties - Landice MIP Era: CMIP6 Institute: UHH Source ID: SANDBOX-2 Topic: Landice Sub-Topics: Glaciers, Ice. Properties: 30 (21 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:54:41 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Software Properties 3. Grid 4. Glaciers 5. Ice 6. Ice --&gt; Mass Balance 7. Ice --&gt; Mass Balance --&gt; Basal 8. Ice --&gt; Mass Balance --&gt; Frontal 9. Ice --&gt; Dynamics 1. Key Properties Land ice key properties 1.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of land surface model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of land surface model code End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.ice_albedo') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "prescribed" # "function of ice age" # "function of ice density" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.3. Ice Albedo Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Specify how ice albedo is modelled End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.atmospheric_coupling_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.4. Atmospheric Coupling Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Which variables are passed between the atmosphere and ice (e.g. orography, ice mass) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.oceanic_coupling_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.5. Oceanic Coupling Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Which variables are passed between the ocean and ice End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "ice velocity" # "ice thickness" # "ice temperature" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.6. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Which variables are prognostically calculated in the ice model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Software Properties Software properties of land ice code 2.1. Repository Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Location of code for this component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.2. Code Version Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Code version identifier. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.3. Code Languages Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Code language(s). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3. Grid Land ice grid 3.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of the grid in the land ice scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 3.2. Adaptive Grid Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is an adative grid being used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.base_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.3. Base Resolution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The base resolution (in metres), before any adaption End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.resolution_limit') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.4. Resolution Limit Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If an adaptive grid is being used, what is the limit of the resolution (in metres) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.projection') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.5. Projection Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The projection of the land ice grid (e.g. albers_equal_area) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.glaciers.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4. Glaciers Land ice glaciers 4.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of glaciers in the land ice scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.glaciers.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.2. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the treatment of glaciers, if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.glaciers.dynamic_areal_extent') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 4.3. Dynamic Areal Extent Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Does the model include a dynamic glacial extent? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Ice Ice sheet and ice shelf 5.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of the ice sheet and ice shelf in the land ice scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.grounding_line_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "grounding line prescribed" # "flux prescribed (Schoof)" # "fixed grid size" # "moving grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 5.2. Grounding Line Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Specify the technique used for modelling the grounding line in the ice sheet-ice shelf coupling End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.ice_sheet') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 5.3. Ice Sheet Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Are ice sheets simulated? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.ice_shelf') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 5.4. Ice Shelf Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Are ice shelves simulated? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.surface_mass_balance') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6. Ice --&gt; Mass Balance Description of the surface mass balance treatment 6.1. Surface Mass Balance Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how and where the surface mass balance (SMB) is calulated. Include the temporal coupling frequeny from the atmosphere, whether or not a seperate SMB model is used, and if so details of this model, such as its resolution End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.basal.bedrock') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7. Ice --&gt; Mass Balance --&gt; Basal Description of basal melting 7.1. Bedrock Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the implementation of basal melting over bedrock End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.basal.ocean') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.2. Ocean Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the implementation of basal melting over the ocean End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.frontal.calving') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Ice --&gt; Mass Balance --&gt; Frontal Description of claving/melting from the ice shelf front 8.1. Calving Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the implementation of calving from the front of the ice shelf End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.frontal.melting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.2. Melting Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the implementation of melting from the front of the ice shelf End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.dynamics.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9. Ice --&gt; Dynamics ** 9.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description if ice sheet and ice shelf dynamics End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.dynamics.approximation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "SIA" # "SAA" # "full stokes" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9.2. Approximation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Approximation type used in modelling ice dynamics End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.dynamics.adaptive_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 9.3. Adaptive Timestep Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is there an adaptive time scheme for the ice scheme? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.dynamics.timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 9.4. Timestep Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Timestep (in seconds) of the ice scheme. If the timestep is adaptive, then state a representative timestep. End of explanation
3,068
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Seaice MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties --&gt; Model 2. Key Properties --&gt; Variables 3. Key Properties --&gt; Seawater Properties 4. Key Properties --&gt; Resolution 5. Key Properties --&gt; Tuning Applied 6. Key Properties --&gt; Key Parameter Values 7. Key Properties --&gt; Assumptions 8. Key Properties --&gt; Conservation 9. Grid --&gt; Discretisation --&gt; Horizontal 10. Grid --&gt; Discretisation --&gt; Vertical 11. Grid --&gt; Seaice Categories 12. Grid --&gt; Snow On Seaice 13. Dynamics 14. Thermodynamics --&gt; Energy 15. Thermodynamics --&gt; Mass 16. Thermodynamics --&gt; Salt 17. Thermodynamics --&gt; Salt --&gt; Mass Transport 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics 19. Thermodynamics --&gt; Ice Thickness Distribution 20. Thermodynamics --&gt; Ice Floe Size Distribution 21. Thermodynamics --&gt; Melt Ponds 22. Thermodynamics --&gt; Snow Processes 23. Radiative Processes 1. Key Properties --&gt; Model Name of seaice model used. 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 2. Key Properties --&gt; Variables List of prognostic variable in the sea ice model. 2.1. Prognostic Is Required Step7: 3. Key Properties --&gt; Seawater Properties Properties of seawater relevant to sea ice 3.1. Ocean Freezing Point Is Required Step8: 3.2. Ocean Freezing Point Value Is Required Step9: 4. Key Properties --&gt; Resolution Resolution of the sea ice grid 4.1. Name Is Required Step10: 4.2. Canonical Horizontal Resolution Is Required Step11: 4.3. Number Of Horizontal Gridpoints Is Required Step12: 5. Key Properties --&gt; Tuning Applied Tuning applied to sea ice model component 5.1. Description Is Required Step13: 5.2. Target Is Required Step14: 5.3. Simulations Is Required Step15: 5.4. Metrics Used Is Required Step16: 5.5. Variables Is Required Step17: 6. Key Properties --&gt; Key Parameter Values Values of key parameters 6.1. Typical Parameters Is Required Step18: 6.2. Additional Parameters Is Required Step19: 7. Key Properties --&gt; Assumptions Assumptions made in the sea ice model 7.1. Description Is Required Step20: 7.2. On Diagnostic Variables Is Required Step21: 7.3. Missing Processes Is Required Step22: 8. Key Properties --&gt; Conservation Conservation in the sea ice component 8.1. Description Is Required Step23: 8.2. Properties Is Required Step24: 8.3. Budget Is Required Step25: 8.4. Was Flux Correction Used Is Required Step26: 8.5. Corrected Conserved Prognostic Variables Is Required Step27: 9. Grid --&gt; Discretisation --&gt; Horizontal Sea ice discretisation in the horizontal 9.1. Grid Is Required Step28: 9.2. Grid Type Is Required Step29: 9.3. Scheme Is Required Step30: 9.4. Thermodynamics Time Step Is Required Step31: 9.5. Dynamics Time Step Is Required Step32: 9.6. Additional Details Is Required Step33: 10. Grid --&gt; Discretisation --&gt; Vertical Sea ice vertical properties 10.1. Layering Is Required Step34: 10.2. Number Of Layers Is Required Step35: 10.3. Additional Details Is Required Step36: 11. Grid --&gt; Seaice Categories What method is used to represent sea ice categories ? 11.1. Has Mulitple Categories Is Required Step37: 11.2. Number Of Categories Is Required Step38: 11.3. Category Limits Is Required Step39: 11.4. Ice Thickness Distribution Scheme Is Required Step40: 11.5. Other Is Required Step41: 12. Grid --&gt; Snow On Seaice Snow on sea ice details 12.1. Has Snow On Ice Is Required Step42: 12.2. Number Of Snow Levels Is Required Step43: 12.3. Snow Fraction Is Required Step44: 12.4. Additional Details Is Required Step45: 13. Dynamics Sea Ice Dynamics 13.1. Horizontal Transport Is Required Step46: 13.2. Transport In Thickness Space Is Required Step47: 13.3. Ice Strength Formulation Is Required Step48: 13.4. Redistribution Is Required Step49: 13.5. Rheology Is Required Step50: 14. Thermodynamics --&gt; Energy Processes related to energy in sea ice thermodynamics 14.1. Enthalpy Formulation Is Required Step51: 14.2. Thermal Conductivity Is Required Step52: 14.3. Heat Diffusion Is Required Step53: 14.4. Basal Heat Flux Is Required Step54: 14.5. Fixed Salinity Value Is Required Step55: 14.6. Heat Content Of Precipitation Is Required Step56: 14.7. Precipitation Effects On Salinity Is Required Step57: 15. Thermodynamics --&gt; Mass Processes related to mass in sea ice thermodynamics 15.1. New Ice Formation Is Required Step58: 15.2. Ice Vertical Growth And Melt Is Required Step59: 15.3. Ice Lateral Melting Is Required Step60: 15.4. Ice Surface Sublimation Is Required Step61: 15.5. Frazil Ice Is Required Step62: 16. Thermodynamics --&gt; Salt Processes related to salt in sea ice thermodynamics. 16.1. Has Multiple Sea Ice Salinities Is Required Step63: 16.2. Sea Ice Salinity Thermal Impacts Is Required Step64: 17. Thermodynamics --&gt; Salt --&gt; Mass Transport Mass transport of salt 17.1. Salinity Type Is Required Step65: 17.2. Constant Salinity Value Is Required Step66: 17.3. Additional Details Is Required Step67: 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics Salt thermodynamics 18.1. Salinity Type Is Required Step68: 18.2. Constant Salinity Value Is Required Step69: 18.3. Additional Details Is Required Step70: 19. Thermodynamics --&gt; Ice Thickness Distribution Ice thickness distribution details. 19.1. Representation Is Required Step71: 20. Thermodynamics --&gt; Ice Floe Size Distribution Ice floe-size distribution details. 20.1. Representation Is Required Step72: 20.2. Additional Details Is Required Step73: 21. Thermodynamics --&gt; Melt Ponds Characteristics of melt ponds. 21.1. Are Included Is Required Step74: 21.2. Formulation Is Required Step75: 21.3. Impacts Is Required Step76: 22. Thermodynamics --&gt; Snow Processes Thermodynamic processes in snow on sea ice 22.1. Has Snow Aging Is Required Step77: 22.2. Snow Aging Scheme Is Required Step78: 22.3. Has Snow Ice Formation Is Required Step79: 22.4. Snow Ice Formation Scheme Is Required Step80: 22.5. Redistribution Is Required Step81: 22.6. Heat Diffusion Is Required Step82: 23. Radiative Processes Sea Ice Radiative Processes 23.1. Surface Albedo Is Required Step83: 23.2. Ice Radiation Transmission Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'ec-earth-consortium', 'ec-earth3-hr', 'seaice') Explanation: ES-DOC CMIP6 Model Properties - Seaice MIP Era: CMIP6 Institute: EC-EARTH-CONSORTIUM Source ID: EC-EARTH3-HR Topic: Seaice Sub-Topics: Dynamics, Thermodynamics, Radiative Processes. Properties: 80 (63 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:53:59 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties --&gt; Model 2. Key Properties --&gt; Variables 3. Key Properties --&gt; Seawater Properties 4. Key Properties --&gt; Resolution 5. Key Properties --&gt; Tuning Applied 6. Key Properties --&gt; Key Parameter Values 7. Key Properties --&gt; Assumptions 8. Key Properties --&gt; Conservation 9. Grid --&gt; Discretisation --&gt; Horizontal 10. Grid --&gt; Discretisation --&gt; Vertical 11. Grid --&gt; Seaice Categories 12. Grid --&gt; Snow On Seaice 13. Dynamics 14. Thermodynamics --&gt; Energy 15. Thermodynamics --&gt; Mass 16. Thermodynamics --&gt; Salt 17. Thermodynamics --&gt; Salt --&gt; Mass Transport 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics 19. Thermodynamics --&gt; Ice Thickness Distribution 20. Thermodynamics --&gt; Ice Floe Size Distribution 21. Thermodynamics --&gt; Melt Ponds 22. Thermodynamics --&gt; Snow Processes 23. Radiative Processes 1. Key Properties --&gt; Model Name of seaice model used. 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of sea ice model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of sea ice model code (e.g. CICE 4.2, LIM 2.1, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.variables.prognostic') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sea ice temperature" # "Sea ice concentration" # "Sea ice thickness" # "Sea ice volume per grid cell area" # "Sea ice u-velocity" # "Sea ice v-velocity" # "Sea ice enthalpy" # "Internal ice stress" # "Salinity" # "Snow temperature" # "Snow depth" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Variables List of prognostic variable in the sea ice model. 2.1. Prognostic Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List of prognostic variables in the sea ice component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS-10" # "Constant" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Seawater Properties Properties of seawater relevant to sea ice 3.1. Ocean Freezing Point Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Equation used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.2. Ocean Freezing Point Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If using a constant seawater freezing point, specify this value. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Resolution Resolution of the sea ice grid 4.1. Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 This is a string usually used by the modelling group to describe the resolution of this grid e.g. N512L180, T512L70, ORCA025 etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.2. Canonical Horizontal Resolution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.3. Number Of Horizontal Gridpoints Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Total number of horizontal (XY) points (or degrees of freedom) on computational grid. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Key Properties --&gt; Tuning Applied Tuning applied to sea ice model component 5.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.target') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.2. Target Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What was the aim of tuning, e.g. correct sea ice minima, correct seasonal cycle. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.simulations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.3. Simulations Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 *Which simulations had tuning applied, e.g. all, not historical, only pi-control? * End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.metrics_used') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.4. Metrics Used Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List any observed metrics used in tuning model/parameters End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.5. Variables Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Which variables were changed during the tuning process? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.typical_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ice strength (P*) in units of N m{-2}" # "Snow conductivity (ks) in units of W m{-1} K{-1} " # "Minimum thickness of ice created in leads (h0) in units of m" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6. Key Properties --&gt; Key Parameter Values Values of key parameters 6.1. Typical Parameters Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N What values were specificed for the following parameters if used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.additional_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.2. Additional Parameters Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If you have any additional paramterised values that you have used (e.g. minimum open water fraction or bare ice albedo), please provide them here as a comma separated list End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.description') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7. Key Properties --&gt; Assumptions Assumptions made in the sea ice model 7.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General overview description of any key assumptions made in this model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.on_diagnostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.2. On Diagnostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Note any assumptions that specifically affect the CMIP6 diagnostic sea ice variables. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.missing_processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.3. Missing Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List any key processes missing in this model configuration? Provide full details where this affects the CMIP6 diagnostic sea ice variables? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Key Properties --&gt; Conservation Conservation in the sea ice component 8.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Provide a general description of conservation methodology. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.properties') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Mass" # "Salt" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 8.2. Properties Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Properties conserved in sea ice by the numerical schemes. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.3. Budget Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 For each conserved property, specify the output variables which close the related budgets. as a comma separated list. For example: Conserved property, variable1, variable2, variable3 End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 8.4. Was Flux Correction Used Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does conservation involved flux correction? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.5. Corrected Conserved Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List any variables which are conserved by more than the numerical scheme alone. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Ocean grid" # "Atmosphere Grid" # "Own Grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9. Grid --&gt; Discretisation --&gt; Horizontal Sea ice discretisation in the horizontal 9.1. Grid Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Grid on which sea ice is horizontal discretised? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Structured grid" # "Unstructured grid" # "Adaptive grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9.2. Grid Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the type of sea ice grid? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite differences" # "Finite elements" # "Finite volumes" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9.3. Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the advection scheme? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.thermodynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 9.4. Thermodynamics Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the time step in the sea ice model thermodynamic component in seconds. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.dynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 9.5. Dynamics Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the time step in the sea ice model dynamic component in seconds. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.6. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify any additional horizontal discretisation details. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.layering') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Zero-layer" # "Two-layers" # "Multi-layers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10. Grid --&gt; Discretisation --&gt; Vertical Sea ice vertical properties 10.1. Layering Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N What type of sea ice vertical layers are implemented for purposes of thermodynamic calculations? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.number_of_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 10.2. Number Of Layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 If using multi-layers specify how many. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 10.3. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify any additional vertical grid details. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.has_mulitple_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 11. Grid --&gt; Seaice Categories What method is used to represent sea ice categories ? 11.1. Has Mulitple Categories Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Set to true if the sea ice model has multiple sea ice categories. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.number_of_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 11.2. Number Of Categories Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 If using sea ice categories specify how many. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.category_limits') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.3. Category Limits Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 If using sea ice categories specify each of the category limits. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.ice_thickness_distribution_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.4. Ice Thickness Distribution Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the sea ice thickness distribution scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.other') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.5. Other Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If the sea ice model does not use sea ice categories specify any additional details. For example models that paramterise the ice thickness distribution ITD (i.e there is no explicit ITD) but there is assumed distribution and fluxes are computed accordingly. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.has_snow_on_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 12. Grid --&gt; Snow On Seaice Snow on sea ice details 12.1. Has Snow On Ice Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is snow on ice represented in this model? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.number_of_snow_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 12.2. Number Of Snow Levels Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Number of vertical levels of snow on ice? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.snow_fraction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.3. Snow Fraction Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how the snow fraction on sea ice is determined End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.4. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify any additional details related to snow on ice. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.horizontal_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13. Dynamics Sea Ice Dynamics 13.1. Horizontal Transport Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of horizontal advection of sea ice? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.transport_in_thickness_space') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.2. Transport In Thickness Space Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of sea ice transport in thickness space (i.e. in thickness categories)? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.ice_strength_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Hibler 1979" # "Rothrock 1975" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.3. Ice Strength Formulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Which method of sea ice strength formulation is used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.redistribution') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Rafting" # "Ridging" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.4. Redistribution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Which processes can redistribute sea ice (including thickness)? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.rheology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Free-drift" # "Mohr-Coloumb" # "Visco-plastic" # "Elastic-visco-plastic" # "Elastic-anisotropic-plastic" # "Granular" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.5. Rheology Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Rheology, what is the ice deformation formulation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.enthalpy_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice latent heat (Semtner 0-layer)" # "Pure ice latent and sensible heat" # "Pure ice latent and sensible heat + brine heat reservoir (Semtner 3-layer)" # "Pure ice latent and sensible heat + explicit brine inclusions (Bitz and Lipscomb)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14. Thermodynamics --&gt; Energy Processes related to energy in sea ice thermodynamics 14.1. Enthalpy Formulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the energy formulation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.thermal_conductivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice" # "Saline ice" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.2. Thermal Conductivity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What type of thermal conductivity is used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Conduction fluxes" # "Conduction and radiation heat fluxes" # "Conduction, radiation and latent heat transport" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.3. Heat Diffusion Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of heat diffusion? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.basal_heat_flux') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heat Reservoir" # "Thermal Fixed Salinity" # "Thermal Varying Salinity" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.4. Basal Heat Flux Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method by which basal ocean heat flux is handled? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.fixed_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 14.5. Fixed Salinity Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If you have selected {Thermal properties depend on S-T (with fixed salinity)}, supply fixed salinity value for each sea ice layer. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_content_of_precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.6. Heat Content Of Precipitation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method by which the heat content of precipitation is handled. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.precipitation_effects_on_salinity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.7. Precipitation Effects On Salinity Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If precipitation (freshwater) that falls on sea ice affects the ocean surface salinity please provide further details. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.new_ice_formation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15. Thermodynamics --&gt; Mass Processes related to mass in sea ice thermodynamics 15.1. New Ice Formation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method by which new sea ice is formed in open water. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_vertical_growth_and_melt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.2. Ice Vertical Growth And Melt Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method that governs the vertical growth and melt of sea ice. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_lateral_melting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Floe-size dependent (Bitz et al 2001)" # "Virtual thin ice melting (for single-category)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.3. Ice Lateral Melting Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of sea ice lateral melting? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_surface_sublimation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.4. Ice Surface Sublimation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method that governs sea ice surface sublimation. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.frazil_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.5. Frazil Ice Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method of frazil ice formation. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.has_multiple_sea_ice_salinities') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 16. Thermodynamics --&gt; Salt Processes related to salt in sea ice thermodynamics. 16.1. Has Multiple Sea Ice Salinities Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the sea ice model use two different salinities: one for thermodynamic calculations; and one for the salt budget? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.sea_ice_salinity_thermal_impacts') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 16.2. Sea Ice Salinity Thermal Impacts Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does sea ice salinity impact the thermal properties of sea ice? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17. Thermodynamics --&gt; Salt --&gt; Mass Transport Mass transport of salt 17.1. Salinity Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is salinity determined in the mass transport of salt calculation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 17.2. Constant Salinity Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If using a constant salinity value specify this value in PSU? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.3. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the salinity profile used. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics Salt thermodynamics 18.1. Salinity Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is salinity determined in the thermodynamic calculation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 18.2. Constant Salinity Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If using a constant salinity value specify this value in PSU? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 18.3. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the salinity profile used. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_thickness_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Virtual (enhancement of thermal conductivity, thin ice melting)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 19. Thermodynamics --&gt; Ice Thickness Distribution Ice thickness distribution details. 19.1. Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is the sea ice thickness distribution represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Parameterised" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 20. Thermodynamics --&gt; Ice Floe Size Distribution Ice floe-size distribution details. 20.1. Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is the sea ice floe-size represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 20.2. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Please provide further details on any parameterisation of floe-size. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.are_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 21. Thermodynamics --&gt; Melt Ponds Characteristics of melt ponds. 21.1. Are Included Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Are melt ponds included in the sea ice model? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flocco and Feltham (2010)" # "Level-ice melt ponds" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 21.2. Formulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What method of melt pond formulation is used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.impacts') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Albedo" # "Freshwater" # "Heat" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 21.3. Impacts Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N What do melt ponds have an impact on? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_aging') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 22. Thermodynamics --&gt; Snow Processes Thermodynamic processes in snow on sea ice 22.1. Has Snow Aging Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Set to True if the sea ice model has a snow aging scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_aging_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.2. Snow Aging Scheme Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the snow aging scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_ice_formation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 22.3. Has Snow Ice Formation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Set to True if the sea ice model has snow ice formation. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_ice_formation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.4. Snow Ice Formation Scheme Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the snow ice formation scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.redistribution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.5. Redistribution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the impact of ridging on snow cover? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Single-layered heat diffusion" # "Multi-layered heat diffusion" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 22.6. Heat Diffusion Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the heat diffusion through snow methodology in sea ice thermodynamics? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.surface_albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Parameterized" # "Multi-band albedo" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23. Radiative Processes Sea Ice Radiative Processes 23.1. Surface Albedo Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method used to handle surface albedo. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.ice_radiation_transmission') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Exponential attenuation" # "Ice radiation transmission per category" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.2. Ice Radiation Transmission Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Method by which solar radiation through sea ice is handled. End of explanation
3,069
Given the following text description, write Python code to implement the functionality described below step by step Description: <font size='5' face='Courier New'><h1 align="center"><i>The Primal & Dual Linear Programming Problems Step1: <font size='7' face='Times New Roman'><b>1. <u>Primal</u></b></font> Step2: <font size='7' face='Times New Roman'><b>2. <u>Dual</u></b></font>
Python Code: # Imports import numpy as np import gurobipy as gbp import datetime as dt # Constants Aij = np.random.randint(5, 50, 25) Aij = Aij.reshape(5,5) AijSum = np.sum(Aij) Cj = np.random.randint(10, 20, 5) CjSum = np.sum(Cj) Bi = np.random.randint(10, 20, 5) BiSum = np.sum(Bi) # Matrix Shape rows = range(len(Aij)) cols = range(len(Aij[0])) Explanation: <font size='5' face='Courier New'><h1 align="center"><i>The Primal & Dual Linear Programming Problems: Canonical Form</i></h1></font> <font face='Times New Roman' size='6'><h3 align="center"><u>James&nbsp;D.&nbsp;Gaboardi</u></h3></font> <font face='Times New Roman' size='5'><h3 align="center">Florida State University &nbsp;&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;&nbsp; Department of Geography</h3></font> <p><font size='4' face='Times New Roman'>Adapted from:</font></p> <p><font size='4' face='Times New Roman'><b>Daskin, M. S.</b> 1995. <i>Network and Discrete Location: Models, Algorithms, and Applications</i>. Hoboken, NJ, USA: John Wiley & Sons, Inc.</font></p> <font size='7' face='Times New Roman'><b>0. <u>Imports and Data Creation</u></b></font> End of explanation # Instantiate Model mPrimal_Canonical_GUROBI = gbp.Model(' -- Canonical Primal Linear Programming Problem -- ') # Set Focus to Optimality gbp.setParam('MIPFocus', 2) # Decision Variables desc_var = [] for dest in cols: desc_var.append([]) desc_var[dest].append(mPrimal_Canonical_GUROBI.addVar(vtype=gbp.GRB.CONTINUOUS, name='y'+str(dest+1))) # Update Model mPrimal_Canonical_GUROBI.update() #Objective Function mPrimal_Canonical_GUROBI.setObjective(gbp.quicksum(Cj[dest]*desc_var[dest][0] for dest in cols), gbp.GRB.MINIMIZE) # Constraints for orig in rows: mPrimal_Canonical_GUROBI.addConstr(gbp.quicksum(Aij[orig][dest]*desc_var[dest][0] for dest in cols) - Bi[orig] >= 0) # Optimize mPrimal_Canonical_GUROBI.optimize() # Write LP file mPrimal_Canonical_GUROBI.write('LP.lp') print '\n*************************************************************************' print ' | Decision Variables' for v in mPrimal_Canonical_GUROBI.getVars(): print ' | ', v.VarName, '=', v.x print '*************************************************************************' val = mPrimal_Canonical_GUROBI.objVal print ' | Objective Value ------------------ ', val print ' | Aij Sum -------------------------- ', AijSum print ' | Cj Sum --------------------------- ', CjSum print ' | Bi Sum --------------------------- ', BiSum print ' | Matrix Dimensions ---------------- ', Aij.shape print ' | Date/Time ------------------------ ', dt.datetime.now() print '*************************************************************************' print '-- Gurobi Canonical Primal Linear Programming Problem --' print '\nJames Gaboardi, 2015' Explanation: <font size='7' face='Times New Roman'><b>1. <u>Primal</u></b></font> End of explanation # Instantiate Model mDual_Canonical_GUROBI = gbp.Model(' -- Canonical Dual Linear Programming Problem -- ') # Set Focus to Optimality gbp.setParam('MIPFocus', 2) # Decision Variables desc_var = [] for dest in cols: desc_var.append([]) desc_var[dest].append(mDual_Canonical_GUROBI.addVar(vtype=gbp.GRB.CONTINUOUS, name='u'+str(dest+1))) # Update Model mDual_Canonical_GUROBI.update() #Objective Function mDual_Canonical_GUROBI.setObjective(gbp.quicksum(Bi[orig]*desc_var[orig][0] for orig in rows), gbp.GRB.MAXIMIZE) # Constraints for dest in cols: mDual_Canonical_GUROBI.addConstr(gbp.quicksum(Aij[orig][dest]*desc_var[dest][0] for orig in rows) - Cj[dest] <= 0) # Optimize mDual_Canonical_GUROBI.optimize() # Write LP file mDual_Canonical_GUROBI.write('LP.lp') print '\n*************************************************************************' print ' | Decision Variables' for v in mDual_Canonical_GUROBI.getVars(): print ' | ', v.VarName, '=', v.x print '*************************************************************************' val = mDual_Canonical_GUROBI.objVal print ' | Objective Value ------------------ ', val print ' | Aij Sum -------------------------- ', AijSum print ' | Cj Sum --------------------------- ', CjSum print ' | Bi Sum --------------------------- ', BiSum print ' | Matrix Dimensions ---------------- ', Aij.shape print ' | Date/Time ------------------------ ', dt.datetime.now() print '*************************************************************************' print '-- Gurobi Canonical Dual Linear Programming Problem --' print '\nJames Gaboardi, 2015' Explanation: <font size='7' face='Times New Roman'><b>2. <u>Dual</u></b></font> End of explanation
3,070
Given the following text description, write Python code to implement the functionality described below step by step Description: Interact Exercise 01 Import Step2: Interact basics Write a print_sum function that prints the sum of its arguments a and b. Step3: Use the interact function to interact with the print_sum function. a should be a floating point slider over the interval [-10., 10.] with step sizes of 0.1 b should be an integer slider the interval [-8, 8] with step sizes of 2. Step5: Write a function named print_string that prints a string and additionally prints the length of that string if a boolean parameter is True. Step6: Use the interact function to interact with the print_string function. s should be a textbox with the initial value "Hello World!". length should be a checkbox with an initial value of True.
Python Code: %matplotlib inline from matplotlib import pyplot as plt import numpy as np from IPython.html.widgets import interact, interactive, fixed from IPython.display import display Explanation: Interact Exercise 01 Import End of explanation def print_sum(a, b): Print the sum of the arguments a and b. print(a + b) #raise NotImplementedError() Explanation: Interact basics Write a print_sum function that prints the sum of its arguments a and b. End of explanation interact(print_sum, a = (-10., 10., 0.1), b = (-8, 8, 2)); #raise NotImplementedError() assert True # leave this for grading the print_sum exercise Explanation: Use the interact function to interact with the print_sum function. a should be a floating point slider over the interval [-10., 10.] with step sizes of 0.1 b should be an integer slider the interval [-8, 8] with step sizes of 2. End of explanation def print_string(s, length=False): Print the string s and optionally its length. print(s) if length: print(len(s)) #raise NotImplementedError() Explanation: Write a function named print_string that prints a string and additionally prints the length of that string if a boolean parameter is True. End of explanation interact(print_string, s = "Hello World!", length = True); #raise NotImplementedError() assert True # leave this for grading the print_string exercise Explanation: Use the interact function to interact with the print_string function. s should be a textbox with the initial value "Hello World!". length should be a checkbox with an initial value of True. End of explanation
3,071
Given the following text description, write Python code to implement the functionality described below step by step Description: Regression Algorithms Step1: PCA Step2: PCA Algorithm Basics The PCA Algorithm relies heavily on the Spectral (eigenvalue) related properties of a matrix. Dumb question $ -$ what are the eigenvalues of a non-square matrix? Recall that we can think of $m$ features of $n$ samples as being represented by a $(m, n)$ matrix. Step3: Looks like we'll have to cheat a bit. I mean -- do something smart! Consider two matrices, A of shape $(m, n)$ and B of shape $(n, m)$. We can compute their product and wind up with a matrix of shape $(m, m)$ or $(n, n)$ -- depending on whether A or B comes first. Pop quiz! What is the first Matrix that comes to mind for an $(n, m)$ matrix that has shape $(m, n)$? The TRANSPOSE OF IT!!! Step4: This.... actually makes sense. Lets compare the other multiplication just to see whats going on. Step5: Huh.... looks like they share some eigenvalues Look at the leading 5 numbers. And it seems like the rest are effectively 0 -- this is just a rounding error. They are 0. And are they in descending order or is it just my imigination? Theorem 1 Step6: Discussion It seems like we can translate them between the two different representations without a problem. Thats good enough for me! We can consider the non-square matrix $A$ of shape $(5, 10)$ to have 5 eigenvalues. WE ONLY NEED A NUMBER OF EIGENVALUES EQUAL TO THE NUMBER OF FEATURES!!!! We actually do not have to summarize our data as much as it seems like we might. From here on out we need to define a few statistical Matrices. These will be left as challenges Define a mean vector $\vec \mu$ derived from the original A, which is a vector of the mean of each of the original features. Define a matrix B (m, n), such that each element of B is A - $\vec \mu$ applied to each sample. Define the covariance matrix $S \colon = \frac{1}{n-1} B \times B^T$. Step7: Recall the Covariance Formular For Two Variables $Cov(A,B) = \frac{1}{n-1}((a_1 - \mu_A)(b_1-\mu_B)+ ... + (a_n - \mu_a)(b_n - \mu_b))$ Step8: The Trace of a Matrix $$Tr(A) = \Sigma \lambda_i$$ The trace is the sum of the eigenvalues of a matrix. It can be alternatively stated as the sum of the values on the diagonal, but this is not obvious!! In our case, we know the values on the Diagonal are the Variance for the feature in that column/row. Therefore the $Tr(S)$ is just the total variance in the data set! The eigenvectors $\vec v_i $ are the directions of maximum variance. The eigenvalues are the amount of variance in that direction.
Python Code: # Can't find good material for this... Explanation: Regression Algorithms End of explanation # Can't find good material for this. Explanation: PCA End of explanation # Let us see what this would look like in numpy. # First make choose m and n such that m != n m = 5 n = 10 # Make the matrix A A = np.random.rand(m, n) print(A) # Now compute its eigenvalues. try: vals, vecs = np.linalg.eig(A) print(vals) except: print("Uh Oh we caused a linear algebra error!") print("The last two dimensions must be square!") print("This means we can't compute the eigenvalues of the matrix.") Explanation: PCA Algorithm Basics The PCA Algorithm relies heavily on the Spectral (eigenvalue) related properties of a matrix. Dumb question $ -$ what are the eigenvalues of a non-square matrix? Recall that we can think of $m$ features of $n$ samples as being represented by a $(m, n)$ matrix. End of explanation # Let's double check that real fast. print("The shape of A is: {}".format(A.shape)) print("A^T has shape: {}".format(A.transpose().shape)) # Let's see what the spectrum looks like. A_T = A.transpose() vals, vecs = np.linalg.eig(A_T) print(vals) # Darn it it still isn't square! # What about.... A * A^T A_AT = np.matmul(A, A_T) vals, vecs = np.linalg.eig(A_AT) print(vals) Explanation: Looks like we'll have to cheat a bit. I mean -- do something smart! Consider two matrices, A of shape $(m, n)$ and B of shape $(n, m)$. We can compute their product and wind up with a matrix of shape $(m, m)$ or $(n, n)$ -- depending on whether A or B comes first. Pop quiz! What is the first Matrix that comes to mind for an $(n, m)$ matrix that has shape $(m, n)$? The TRANSPOSE OF IT!!! End of explanation AT_A = np.matmul(A_T, A) vals, vecs = np.linalg.eig(AT_A) print(vals) Explanation: This.... actually makes sense. Lets compare the other multiplication just to see whats going on. End of explanation # Exercise try it! Extract an eigenvector from A x A^T and left multiply it by A. # Check the resulting eigenvector is in A^T x A. Explanation: Huh.... looks like they share some eigenvalues Look at the leading 5 numbers. And it seems like the rest are effectively 0 -- this is just a rounding error. They are 0. And are they in descending order or is it just my imigination? Theorem 1: The matrices $A \times A^T$ and $A^T \times A$ share the same nonzero eigenvalues. Theorem 2: The matrices $A \times A^T$ and $A^T \times A$ have non-negative eigenvalues. Note: This actually follows from the fact that they are symmetric. Lemma 1: (A Helper Theorem or important observation.) To translate an eigenvector of $A \times A^T$ to an eigenvector of $A^T \times A$ we simply left multiply the eigenvector $A \times \vec{v}$. This holds the other way as well. End of explanation # Why should the covariance matrix be a square matrix in the number of features? Explanation: Discussion It seems like we can translate them between the two different representations without a problem. Thats good enough for me! We can consider the non-square matrix $A$ of shape $(5, 10)$ to have 5 eigenvalues. WE ONLY NEED A NUMBER OF EIGENVALUES EQUAL TO THE NUMBER OF FEATURES!!!! We actually do not have to summarize our data as much as it seems like we might. From here on out we need to define a few statistical Matrices. These will be left as challenges Define a mean vector $\vec \mu$ derived from the original A, which is a vector of the mean of each of the original features. Define a matrix B (m, n), such that each element of B is A - $\vec \mu$ applied to each sample. Define the covariance matrix $S \colon = \frac{1}{n-1} B \times B^T$. End of explanation # Is the name Covariance Matrix justified? # What are the values on the Diagonal of the Covariance Matrix? Explanation: Recall the Covariance Formular For Two Variables $Cov(A,B) = \frac{1}{n-1}((a_1 - \mu_A)(b_1-\mu_B)+ ... + (a_n - \mu_a)(b_n - \mu_b))$ End of explanation def gen_noisy_line(n_samples=50): ''' This function generates a noisy line of slope 1 and returns the matrix associated with these n_samples, with noise +- 1 from a straight line. This matrix follows the convention that rows are features, and columns are samples. ''' return matrix_A def make_B_from_A(matrix_A): ''' This function generates the B matrix from the sample matrix A. ''' return matrix_B def make_S_from_B(matrix_B): ''' This function generates the matrix S from B. ''' return matrix_S Explanation: The Trace of a Matrix $$Tr(A) = \Sigma \lambda_i$$ The trace is the sum of the eigenvalues of a matrix. It can be alternatively stated as the sum of the values on the diagonal, but this is not obvious!! In our case, we know the values on the Diagonal are the Variance for the feature in that column/row. Therefore the $Tr(S)$ is just the total variance in the data set! The eigenvectors $\vec v_i $ are the directions of maximum variance. The eigenvalues are the amount of variance in that direction. End of explanation
3,072
Given the following text description, write Python code to implement the functionality described below step by step Description: Projecting terrestrial biodiversity using PREDICTS and LUH2 This notebook shows how to use rasterset to project a PREDICTS model using the LUH2 land-use data. You can set three parameters below Step1: Local imports Step2: Parameters Step3: Models This notebook uses Sam's LUH2 abundance models. Thus we need to load a forested and a non-forested model, project using both and then combine the projection. Step4: Rastersets Use the PREDICTS python module to generate the appropriate rastersets. Each rasterset is like a DataFrame or hash (dict in python). The columns are variables and hold a function that describes how to compute the data. Generating a rasterset is a two-step process. First generate a hash (dict in python) and then pass the dict to the constructor. Each model will be evaluated only where the forested mask is set (or not set). Load the mask from the LUH2 statis data set. Note that we need to explicitly assign the R model we loaded in the previous cell to the corresponding variable of the rasterset. Step5: Eval Now evaluate each model in turn and then combine the data. Because we are guaranteed that the data is non-overlaping (no cell should have valid data in both projections) we can simply add them together (with masked values filled in as 0). The overall mask is the logical AND of the two invalid masks. Step6: Rendering Use matplotlib (via rasterio.plot) to render the generated data. This will display the data in-line in the notebook.
Python Code: import click %matplotlib inline import matplotlib.pyplot as plt import numpy as np import numpy.ma as ma import rasterio from rasterio.plot import show, show_hist Explanation: Projecting terrestrial biodiversity using PREDICTS and LUH2 This notebook shows how to use rasterset to project a PREDICTS model using the LUH2 land-use data. You can set three parameters below: scenario: can be either historical (850CE - 2015CE) or one of he LUH2 scenarios available (all in lowercase, e.g. ssp1_rcp2.6_image). year: year for which to generate the projection. For the historical scenario the year must be between 850-2015. For the SSP scenarios the year must be between 2015-2100. what: the name of the variable to evaluate. Many abundance models evaluate a variable called LogAbund. If you want to project abundance than what should be LogAbund. But you can use any of the intermediate variables as well. For example setting what to hpd will generate a projection of human population density. Imports (non-local) End of explanation from projections.rasterset import RasterSet, Raster from projections.simpleexpr import SimpleExpr import projections.r2py.modelr as modelr import projections.predicts as predicts import projections.utils as utils Explanation: Local imports End of explanation scenario = 'historical' year = 2000 what = 'LogAbund' Explanation: Parameters End of explanation modf = modelr.load('ab-fst-1.rds') intercept_f = modf.intercept predicts.predictify(modf) modn = modelr.load('ab-nfst-1.rds') intercept_n = modn.intercept predicts.predictify(modn) Explanation: Models This notebook uses Sam's LUH2 abundance models. Thus we need to load a forested and a non-forested model, project using both and then combine the projection. End of explanation fstnf = rasterio.open(utils.luh2_static('fstnf')) rastersf = predicts.rasterset('luh2', scenario, year, 'f') rsf = RasterSet(rastersf, mask=fstnf, maskval=0.0) rastersn = predicts.rasterset('luh2', scenario, year, 'n') rsn = RasterSet(rastersn, mask=fstnf, maskval=1.0) vname = modf.output assert modf.output == modn.output rsf[vname] = modf rsn[vname] = modn Explanation: Rastersets Use the PREDICTS python module to generate the appropriate rastersets. Each rasterset is like a DataFrame or hash (dict in python). The columns are variables and hold a function that describes how to compute the data. Generating a rasterset is a two-step process. First generate a hash (dict in python) and then pass the dict to the constructor. Each model will be evaluated only where the forested mask is set (or not set). Load the mask from the LUH2 statis data set. Note that we need to explicitly assign the R model we loaded in the previous cell to the corresponding variable of the rasterset. End of explanation datan, meta = rsn.eval(what, quiet=True) dataf, _ = rsf.eval(what, quiet=True) data_vals = dataf.filled(0) + datan.filled(0) data = data_vals.view(ma.MaskedArray) data.mask = np.logical_and(dataf.mask, datan.mask) Explanation: Eval Now evaluate each model in turn and then combine the data. Because we are guaranteed that the data is non-overlaping (no cell should have valid data in both projections) we can simply add them together (with masked values filled in as 0). The overall mask is the logical AND of the two invalid masks. End of explanation show(data, cmap='viridis') Explanation: Rendering Use matplotlib (via rasterio.plot) to render the generated data. This will display the data in-line in the notebook. End of explanation
3,073
Given the following text description, write Python code to implement the functionality described below step by step Description: Table of Contents <p><div class="lev1 toc-item"><a href="#Generating-Fractal-From-Random-Points---The-Chaos-Game" data-toc-modified-id="Generating-Fractal-From-Random-Points---The-Chaos-Game-1"><span class="toc-item-num">1&nbsp;&nbsp;</span>Generating Fractal From Random Points - The Chaos Game</a></div><div class="lev2 toc-item"><a href="#Initial-Definitions" data-toc-modified-id="Initial-Definitions-1.1"><span class="toc-item-num">1.1&nbsp;&nbsp;</span>Initial Definitions</a></div><div class="lev2 toc-item"><a href="#Make-A-Fractal" data-toc-modified-id="Make-A-Fractal-1.2"><span class="toc-item-num">1.2&nbsp;&nbsp;</span>Make A Fractal</a></div><div class="lev4 toc-item"><a href="#Regular-Polygons" data-toc-modified-id="Regular-Polygons-1.2.0.1"><span class="toc-item-num">1.2.0.1&nbsp;&nbsp;</span>Regular Polygons</a></div><div class="lev4 toc-item"><a href="#Exploring-Further Step1: Generating Fractal From Random Points - The Chaos Game Initial Definitions Step2: Make A Fractal Step3: Regular Polygons Step4: Exploring Further Step5: Randomness on Large Scales Step6: Learn More Step7: For Barnsley's Fern
Python Code: import pickle,glob import numpy as np import matplotlib.pyplot as plt import pandas as pd %pylab inline Explanation: Table of Contents <p><div class="lev1 toc-item"><a href="#Generating-Fractal-From-Random-Points---The-Chaos-Game" data-toc-modified-id="Generating-Fractal-From-Random-Points---The-Chaos-Game-1"><span class="toc-item-num">1&nbsp;&nbsp;</span>Generating Fractal From Random Points - The Chaos Game</a></div><div class="lev2 toc-item"><a href="#Initial-Definitions" data-toc-modified-id="Initial-Definitions-1.1"><span class="toc-item-num">1.1&nbsp;&nbsp;</span>Initial Definitions</a></div><div class="lev2 toc-item"><a href="#Make-A-Fractal" data-toc-modified-id="Make-A-Fractal-1.2"><span class="toc-item-num">1.2&nbsp;&nbsp;</span>Make A Fractal</a></div><div class="lev4 toc-item"><a href="#Regular-Polygons" data-toc-modified-id="Regular-Polygons-1.2.0.1"><span class="toc-item-num">1.2.0.1&nbsp;&nbsp;</span>Regular Polygons</a></div><div class="lev4 toc-item"><a href="#Exploring-Further:-Dimension" data-toc-modified-id="Exploring-Further:-Dimension-1.2.0.2"><span class="toc-item-num">1.2.0.2&nbsp;&nbsp;</span>Exploring Further: Dimension</a></div><div class="lev4 toc-item"><a href="#Randomness-on-Large-Scales" data-toc-modified-id="Randomness-on-Large-Scales-1.2.0.3"><span class="toc-item-num">1.2.0.3&nbsp;&nbsp;</span>Randomness on Large Scales</a></div><div class="lev2 toc-item"><a href="#Learn-More:" data-toc-modified-id="Learn-More:-1.3"><span class="toc-item-num">1.3&nbsp;&nbsp;</span>Learn More:</a></div><div class="lev2 toc-item"><a href="#Modeling-Life" data-toc-modified-id="Modeling-Life-1.4"><span class="toc-item-num">1.4&nbsp;&nbsp;</span>Modeling Life</a></div><div class="lev4 toc-item"><a href="#For-Barnsley's-Fern:" data-toc-modified-id="For-Barnsley's-Fern:-1.4.0.1"><span class="toc-item-num">1.4.0.1&nbsp;&nbsp;</span>For Barnsley's Fern:</a></div> End of explanation def placeStartpoint(npts,fixedpts): #Start Point #start = (0.5,0.5) start = (np.random.random(),np.random.random()) if fixedpts == []: #generates a set of random verticies for i in range(npts): randx = np.random.random() randy = np.random.random() point = (randx,randy) fixedpts.append(point) return (start,fixedpts) def choosePts(npts,fixedpts,frac): #chooses a vertex at random #further rules could be applied here roll = floor(npts*np.random.random()) point = fixedpts[int(roll)] return point def placeItteratePts(npts,itt,start,fixedpts,frac): ittpts = [] for i in range(itt): point = choosePts(npts,fixedpts,frac) #chooses a vertex at random # halfway = ((point[0]+start[0])*frac,(point[1]+start[1])*frac) #calculates the halfway point between the starting point and the vertex halfway = ((point[0]-start[0])*(1.0 - frac)+start[0],(point[1]-start[1])*(1.0 - frac)+start[1]) ittpts.append(halfway) start = halfway #sets the starting point to the new point return ittpts def plotFractal(start,fixedpts,ittpts): # set axes range plt.xlim(-0.05,1.05) plt.ylim(-0.05,1.05) plt.axes().set_aspect('equal') #plots the verticies plt.scatter(transpose(fixedpts)[0],transpose(fixedpts)[1],alpha=0.8, c='black', edgecolors='none', s=30) #plots the starting point plt.scatter(start[0],start[1],alpha=0.8, c='red', edgecolors='none', s=30) #plots the itterated points plt.scatter(transpose(ittpts)[0],transpose(ittpts)[1],alpha=0.5, c='blue', edgecolors='none', s=2) return def GenerateFractal(npts,frac,itt,reg=False): #Error Control if npts < 1 or frac >= 1.0 or frac <= 0.0 or type(npts) is not int or type(frac) is not float or type(itt) is not int: print("number of points must be a positive integer, compression fraction must be a positive float less than 1.0, itt must be a positive integer") return if frac > 0.5: print("Warning: compression fractions over 1/2 do not lead to fractals") #Initilize Verticies if not reg: fixedpts = [] #Random Verticies else: if npts == 3: fixedpts = [(0.0,0.0),(1.0,0.0),(0.5,0.5*sqrt(3.0))] #Equilateral Triangle (npts = 3) elif npts == 4: fixedpts = [(0.0,0.0),(1.0,0.0),(1.0,1.0),(0.0,1.0)] #Square elif npts == 5: fixedpts = [(0.0,2./(1+sqrt(5.))),(0.5-2./(5+sqrt(5.)),0.0),(0.5,1.0),(0.5+2./(5+sqrt(5.)),0.0),(1.0,2./(1+sqrt(5.)))] #Regular Pentagon elif npts == 6: fixedpts = [(0.0,0.5),(1./4,0.5+.25*sqrt(3.)),(3./4,0.5+.25*sqrt(3.)),(1.0,0.5),(3./4,0.5-.25*sqrt(3.)),(1./4,0.5-.25*sqrt(3.))] #Regular Hexagon elif npts == 8: fixedpts = [(0.0,0.0),(1.0,0.0),(1.0,1.0),(0.0,1.0),(0.0,0.5),(1.0,0.5),(0.5,0.0),(0.5,1.0)] #Squares elif npts == 2: fixedpts = [(0.0,0.0),(1.0,1.0)] #Line elif npts == 1: fixedpts = [(0.5,0.5)] #Line else: print("No regular polygon stored with that many verticies, switching to default with randomly assigned verticies") fixedpts = [] #Random Verticies #Compression Fraction # frac = 1.0/2.0 #Sierpinski's Triangle (npts = 3) # frac = 1.0/2.0 #Sierpinski's "Square" (filled square, npts = 4) # frac = 1.0/3.0 #Sierpinski's Pentagon (npts = 5) # frac = 3.0/8.0 #Sierpinski's Hexagon (npts = 6) if len(fixedpts) != npts and len(fixedpts) != 0: print("The number of verticies don't match the length of the list of verticies. If you want the verticies generated at random, set fixedpts to []") return if len(fixedpts) != 0: print("Fractal Dimension = {}".format(-log(npts)/log(frac))) (start, fixedpts) = placeStartpoint(npts,fixedpts) ittpts = placeItteratePts(npts,itt,start,fixedpts,frac) plotFractal(start,fixedpts,ittpts) return Explanation: Generating Fractal From Random Points - The Chaos Game Initial Definitions End of explanation # Call the GenerateFractal function with a number of verticies, a number of itterations, and the compression fraction # The starting verticies are random by default. An optional input of True will set the verticies to those of a regular polygon. GenerateFractal(7,.5,5000) Explanation: Make A Fractal End of explanation GenerateFractal(3,.5,5000,True) GenerateFractal(5,1./3,50000,True) GenerateFractal(6,3./8,50000,True) GenerateFractal(8,1./3,50000,True) Explanation: Regular Polygons End of explanation GenerateFractal(1,.5,50000,True) GenerateFractal(2,.5,50000,True) GenerateFractal(4,.5,50000,True) Explanation: Exploring Further: Dimension End of explanation GenerateFractal(10,.5,100) GenerateFractal(10,.5,5000) GenerateFractal(100,.5,5000) GenerateFractal(100,.5,100000) Explanation: Randomness on Large Scales End of explanation def makeFern(f,itt): colname = ["percent","a","b","c","d","e","f"] print(pd.DataFrame(data=np.array(f), columns = colname)) x,y = {0.5,0.0} xypts=[] if abs(sum(f[j][0] for j in range(len(f)))-1.0) < 10^-10: print("Probabilities must sum to 1") return for i in range(itt): rand = (np.random.random()) cond = 0.0 for j in range(len(f)): if (cond <= rand) and (rand <= (cond+f[j][0])): x = f[j][1]*x+f[j][2]*y+f[j][5] y = f[j][3]*x+f[j][4]*y+f[j][6] xypts.append((x,y)) cond = cond + f[j][0] xmax,ymax = max(abs(transpose(xypts)[0])),max(abs(transpose(xypts)[1])) plt.axes().set_aspect('equal') color = transpose([[abs(r)/xmax for r in transpose(xypts)[0]],[abs(g)/ymax for g in transpose(xypts)[1]],[b/itt for b in range(itt)]]) plt.scatter(transpose(xypts)[0],transpose(xypts)[1],alpha=0.5, facecolors=color, edgecolors='none', s=1) Explanation: Learn More: Chaos Game Wiki Numberphile Video Chaos in the Classroom Chaos Rules! Barnsley Fern Modeling Life End of explanation f = ((0.01,0.0,0.0,0.0,0.16,0.0,0.0), (0.85,0.85,0.08,-0.08,0.85,0.0,1.60), (0.07,0.20,-0.26,0.23,0.22,0.0,1.60), (0.07,-0.15,0.28,0.26,0.24,0.0,0.44)) makeFern(f,5000) Explanation: For Barnsley's Fern: Use the following values |Percent|A|B|C|D|E|F| |:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |0.01|0.0|0.0|0.0|0.16|0.0|0.0| |0.85|0.85|0.04|-0.04|0.85|0.0|1.60| |0.07|0.20|-0.26|0.23|0.22|0.0|1.60| |0.07|-0.15|0.28|0.26|0.24|0.0|0.44| Of course, this is only one solution so try as changing the values. Some values modify the curl, some change the thickness, others completely rearrange the structure. End of explanation
3,074
Given the following text description, write Python code to implement the functionality described below step by step Description: Libraries and Packages Step1: Connecting to National Data Service Step2: Extracting Data of Midwestern states of the United states from 1992 - 2016. The following query will extract data from the mongoDB instance and project only selected attributes such as structure number, yearBuilt, deck, year, superstructure, owner, countryCode, structure type, type of wearing surface, and subtructure. Step3: Filteration of NBI Data The following routine removes the missing data such as 'N', 'NA' from deck, substructure,and superstructure , and also removing data with structure Type - 19 and type of wearing surface - 6. Step4: Particularly in the area of determining a deterioration model of bridges, There is an observed sudden increase in condition ratings of bridges over the period of time, This sudden increase in the condition rating is attributed to the reconstruction of the bridges. NBI dataset contains an attribute to record this reconstruction of the bridge. An observation of an increase in condition rating of bridges over time without any recorded information of reconstruction of that bridge in NBI dataset suggests that dataset is not updated consistently. In order to have an accurate deterioration model, such unrecorded reconstruction activities must be accounted in the deterioration model of the bridges. Step5: A utility function to plot the graphs. Step6: The following script will select all the bridges in the midwestern United States, filter missing and not required data. The script also provides information of how much of the data is being filtered. Step7: In following figures, shows the cumulative distribution function of the probability of reconstruction over the bridges' lifespan, of bridges in the midwestern United States, as the bridges grow older the probability of reconstruction increases. Step8: The below figure presents CDF Probability of reconstruction, of bridge in the midwestern United States. Step9: In the following figures, provides the probability of reconstruction at every age. Note this is not a cumulative probability function. the constant number of reconstruction of the bridges can be explained by various factors. one particularly interesting reason could be funding provided to reconstruct bridges, this explain why some of the states have perfect linear curve. Step10: A key observation in this investigation of several state reveals a constant number of bridges are reconstructed every year, this could be an effect of fixed budget allocated for reconstruction by the state. This also highlights the fact that not all bridges that might require reconstruction are reconstructed. To Understand this phenomena in clearing, the following figure presents probability of reconstruction vs age of all individual states in the midwestern United States.
Python Code: import pymongo from pymongo import MongoClient import time import pandas as pd import numpy as np import seaborn as sns from matplotlib.pyplot import * import matplotlib.pyplot as plt import folium import datetime as dt import random as rnd import warnings import datetime as dt import csv %matplotlib inline Explanation: Libraries and Packages End of explanation warnings.filterwarnings(action="ignore") Client = MongoClient("mongodb://bridges:[email protected]/bridge") db = Client.bridge collection = db["bridges"] Explanation: Connecting to National Data Service: The Lab Benchwork's NBI - MongoDB instance End of explanation def getData(state): pipeline = [{"$match":{"$and":[{"year":{"$gt":1991, "$lt":2017}},{"stateCode":state}]}}, {"$project":{"_id":0, "structureNumber":1, "yearBuilt":1, "yearReconstructed":1, "deck":1, ## Rating of deck "year":1, 'owner':1, "countyCode":1, "substructure":1, ## rating of substructure "superstructure":1, ## rating of superstructure "Structure Type":"$structureTypeMain.typeOfDesignConstruction", "Type of Wearing Surface":"$wearingSurface/ProtectiveSystem.typeOfWearingSurface", }}] dec = collection.aggregate(pipeline) conditionRatings = pd.DataFrame(list(dec)) ## Creating new column: Age conditionRatings['Age'] = conditionRatings['year']- conditionRatings['yearBuilt'] return conditionRatings Explanation: Extracting Data of Midwestern states of the United states from 1992 - 2016. The following query will extract data from the mongoDB instance and project only selected attributes such as structure number, yearBuilt, deck, year, superstructure, owner, countryCode, structure type, type of wearing surface, and subtructure. End of explanation ## filter and convert them into interger def filterConvert(conditionRatings): before = len(conditionRatings) print("Total Records before filteration: ",len(conditionRatings)) conditionRatings = conditionRatings.loc[~conditionRatings['deck'].isin(['N','NA'])] conditionRatings = conditionRatings.loc[~conditionRatings['substructure'].isin(['N','NA'])] conditionRatings = conditionRatings.loc[~conditionRatings['superstructure'].isin(['N','NA'])] conditionRatings = conditionRatings.loc[~conditionRatings['Structure Type'].isin([19])] conditionRatings = conditionRatings.loc[~conditionRatings['Type of Wearing Surface'].isin(['6'])] after = len(conditionRatings) print("Total Records after filteration: ",len(conditionRatings)) print("Difference: ", before - after) return conditionRatings Explanation: Filteration of NBI Data The following routine removes the missing data such as 'N', 'NA' from deck, substructure,and superstructure , and also removing data with structure Type - 19 and type of wearing surface - 6. End of explanation ## make it into a function def findSurvivalProbablities(conditionRatings): i = 1 j = 2 probabilities = [] while j < 121: v = list(conditionRatings.loc[conditionRatings['Age'] == i]['deck']) k = list(conditionRatings.loc[conditionRatings['Age'] == i]['structureNumber']) Age1 = {key:int(value) for key, value in zip(k,v)} #v = conditionRatings.loc[conditionRatings['Age'] == j] v_2 = list(conditionRatings.loc[conditionRatings['Age'] == j]['deck']) k_2 = list(conditionRatings.loc[conditionRatings['Age'] == j]['structureNumber']) Age2 = {key:int(value) for key, value in zip(k_2,v_2)} intersectedList = list(Age1.keys() & Age2.keys()) reconstructed = 0 for structureNumber in intersectedList: if Age1[structureNumber] < Age2[structureNumber]: if (Age1[structureNumber] - Age2[structureNumber]) < -1: reconstructed = reconstructed + 1 try: probability = reconstructed / len(intersectedList) except ZeroDivisionError: probability = 0 probabilities.append(probability*100) i = i + 1 j = j + 1 return probabilities Explanation: Particularly in the area of determining a deterioration model of bridges, There is an observed sudden increase in condition ratings of bridges over the period of time, This sudden increase in the condition rating is attributed to the reconstruction of the bridges. NBI dataset contains an attribute to record this reconstruction of the bridge. An observation of an increase in condition rating of bridges over time without any recorded information of reconstruction of that bridge in NBI dataset suggests that dataset is not updated consistently. In order to have an accurate deterioration model, such unrecorded reconstruction activities must be accounted in the deterioration model of the bridges. End of explanation def plotCDF(cumsum_probabilities): fig = plt.figure(figsize=(15,8)) ax = plt.axes() plt.title('CDF of Reonstruction Vs Age') plt.xlabel('Age') plt.ylabel('CDF of Reonstruction') plt.yticks([0,10,20,30,40,50,60,70,80,90,100]) plt.ylim(0,100) x = [i for i in range(1,120)] y = cumsum_probabilities ax.plot(x,y) return plt.show() Explanation: A utility function to plot the graphs. End of explanation states = ['25','09','23','33','44','50','34','36','42'] # Mapping state code to state abbreviation stateNameDict = {'25':'MA', '04':'AZ', '08':'CO', '38':'ND', '09':'CT', '19':'IA', '26':'MI', '48':'TX', '35':'NM', '17':'IL', '51':'VA', '23':'ME', '16':'ID', '36':'NY', '56':'WY', '29':'MO', '39':'OH', '28':'MS', '11':'DC', '21':'KY', '18':'IN', '06':'CA', '47':'TN', '12':'FL', '24':'MD', '34':'NJ', '46':'SD', '13':'GA', '55':'WI', '30':'MT', '54':'WV', '15':'HI', '32':'NV', '37':'NC', '10':'DE', '33':'NH', '44':'RI', '50':'VT', '42':'PA', '05':'AR', '20':'KS', '45':'SC', '22':'LA', '40':'OK', '72':'PR', '41':'OR', '27':'MN', '53':'WA', '01':'AL', '31':'NE', '02':'AK', '49':'UT' } def getProbs(states, stateNameDict): # Initializaing the dataframes for deck, superstructure and subtructure df_prob_recon = pd.DataFrame({'Age':range(1,61)}) df_cumsum_prob_recon = pd.DataFrame({'Age':range(1,61)}) for state in states: conditionRatings_state = getData(state) stateName = stateNameDict[state] print("STATE - ",stateName) conditionRatings_state = filterConvert(conditionRatings_state) print("\n") probabilities_state = findSurvivalProbablities(conditionRatings_state) cumsum_probabilities_state = np.cumsum(probabilities_state) df_prob_recon[stateName] = probabilities_state[:60] df_cumsum_prob_recon[stateName] = cumsum_probabilities_state[:60] # df_prob_recon.set_index('Age', inplace = True) # df_cumsum_prob_recon.set_index('Age', inplace = True) return df_prob_recon, df_cumsum_prob_recon df_prob_recon, df_cumsum_prob_recon = getProbs(states, stateNameDict) # save dataframes into csv files df_prob_recon Explanation: The following script will select all the bridges in the midwestern United States, filter missing and not required data. The script also provides information of how much of the data is being filtered. End of explanation plt.figure(figsize=(12,8)) plt.title("CDF Probability of Reconstruction vs Age") palette = [ 'blue', 'blue', 'green', 'magenta', 'cyan', 'brown', 'grey', 'red', 'silver', 'purple', 'gold', 'black','olive' ] linestyles =[':','-.','--','-',':','-.','--','-',':','-.','--','-'] for num, state in enumerate(df_cumsum_prob_recon.drop('Age', axis = 1)): plt.plot(df_cumsum_prob_recon[state], color = palette[num], linestyle = linestyles[num], linewidth = 4) plt.xlabel('Age'); plt.ylabel('Probablity of Reconstruction'); plt.legend([state for state in df_cumsum_prob_recon.drop('Age', axis = 1)], loc='upper left', ncol = 2) plt.ylim(1,60) plt.show() Explanation: In following figures, shows the cumulative distribution function of the probability of reconstruction over the bridges' lifespan, of bridges in the midwestern United States, as the bridges grow older the probability of reconstruction increases. End of explanation plt.figure(figsize = (16,12)) plt.xlabel('Age') plt.ylabel('Mean') # Initialize the figure plt.style.use('seaborn-darkgrid') # create a color palette palette = [ 'blue', 'blue', 'green', 'magenta', 'cyan', 'brown', 'grey', 'red', 'silver', 'purple', 'gold', 'black','olive' ] # multiple line plot num = 1 linestyles = [':','-.','--','-',':','-.','--','-',':','-.','--','-'] for n, column in enumerate(df_cumsum_prob_recon.drop('Age', axis=1)): # Find the right spot on the plot plt.subplot(4,3, num) # Plot the lineplot plt.plot(df_cumsum_prob_recon['Age'], df_cumsum_prob_recon[column], linestyle = linestyles[n] , color=palette[num], linewidth=4, alpha=0.9, label=column) # Same limits for everybody! plt.xlim(1,60) plt.ylim(1,100) # Not ticks everywhere if num in range(10) : plt.tick_params(labelbottom='off') if num not in [1,4,7,10]: plt.tick_params(labelleft='off') # Add title plt.title(column, loc='left', fontsize=12, fontweight=0, color=palette[num]) plt.text(30, -1, 'Age', ha='center', va='center') plt.text(1, 50, 'Probability', ha='center', va='center', rotation='vertical') num = num + 1 # general title plt.suptitle("CDF Probability of Reconstruction vs Age", fontsize=13, fontweight=0, color='black', style='italic', y=1.02) Explanation: The below figure presents CDF Probability of reconstruction, of bridge in the midwestern United States. End of explanation plt.figure(figsize=(12,8)) plt.title("Probability of Reconstruction vs Age") palette = [ 'blue', 'blue', 'green', 'magenta', 'cyan', 'brown', 'grey', 'red', 'silver', 'purple', 'gold', 'black','olive' ] linestyles =[':','-.','--','-',':','-.','--','-',':','-.','--','-'] for num, state in enumerate(df_cumsum_prob_recon.drop('Age', axis = 1)): plt.plot(df_prob_recon[state], color = palette[num], linestyle = linestyles[num], linewidth = 4) plt.xlabel('Age'); plt.ylabel('Probablity of Reconstruction'); plt.legend([state for state in df_cumsum_prob_recon.drop('Age', axis = 1)], loc='upper left', ncol = 2) plt.ylim(1,25) plt.show() Explanation: In the following figures, provides the probability of reconstruction at every age. Note this is not a cumulative probability function. the constant number of reconstruction of the bridges can be explained by various factors. one particularly interesting reason could be funding provided to reconstruct bridges, this explain why some of the states have perfect linear curve. End of explanation plt.figure(figsize = (16,12)) plt.xlabel('Age') plt.ylabel('Mean') # Initialize the figure plt.style.use('seaborn-darkgrid') # create a color palette palette = [ 'blue', 'blue', 'green', 'magenta', 'cyan', 'brown', 'grey', 'red', 'silver', 'purple', 'gold', 'black','olive' ] # multiple line plot num = 1 linestyles = [':','-.','--','-',':','-.','--','-',':','-.','--','-'] for n, column in enumerate(df_prob_recon.drop('Age', axis=1)): # Find the right spot on the plot plt.subplot(4,3, num) # Plot the lineplot plt.plot(df_prob_recon['Age'], df_prob_recon[column], linestyle = linestyles[n] , color=palette[num], linewidth=4, alpha=0.9, label=column) # Same limits for everybody! plt.xlim(1,60) plt.ylim(1,25) # Not ticks everywhere if num in range(10) : plt.tick_params(labelbottom='off') if num not in [1,4,7,10]: plt.tick_params(labelleft='off') # Add title plt.title(column, loc='left', fontsize=12, fontweight=0, color=palette[num]) plt.text(30, -1, 'Age', ha='center', va='center') plt.text(1, 12.5, 'Probability', ha='center', va='center', rotation='vertical') num = num + 1 # general title plt.suptitle("Probability of Reconstruction vs Age", fontsize=13, fontweight=0, color='black', style='italic', y=1.02) Explanation: A key observation in this investigation of several state reveals a constant number of bridges are reconstructed every year, this could be an effect of fixed budget allocated for reconstruction by the state. This also highlights the fact that not all bridges that might require reconstruction are reconstructed. To Understand this phenomena in clearing, the following figure presents probability of reconstruction vs age of all individual states in the midwestern United States. End of explanation
3,075
Given the following text description, write Python code to implement the functionality described below step by step Description: Non-parametric embedding with UMAP. This notebook shows an example of a non-parametric embedding using the same training loops as are used with a parametric embedding. load data Step1: create parametric umap model Step2: plot results Step3: plotting loss
Python Code: from tensorflow.keras.datasets import mnist (train_images, Y_train), (test_images, Y_test) = mnist.load_data() train_images = train_images.reshape((train_images.shape[0], -1))/255. test_images = test_images.reshape((test_images.shape[0], -1))/255. Explanation: Non-parametric embedding with UMAP. This notebook shows an example of a non-parametric embedding using the same training loops as are used with a parametric embedding. load data End of explanation from umap.parametric_umap import ParametricUMAP embedder = ParametricUMAP(parametric_embedding=False, verbose=True) embedding = embedder.fit_transform(train_images) Explanation: create parametric umap model End of explanation import matplotlib.pyplot as plt fig, ax = plt.subplots( figsize=(8, 8)) sc = ax.scatter( embedding[:, 0], embedding[:, 1], c=Y_train.astype(int), cmap="tab10", s=0.1, alpha=0.5, rasterized=True, ) ax.axis('equal') ax.set_title("UMAP in Tensorflow embedding", fontsize=20) plt.colorbar(sc, ax=ax); Explanation: plot results End of explanation embedder._history.keys() fig, ax = plt.subplots() ax.plot(embedder._history['loss']) ax.set_ylabel('Cross Entropy') ax.set_xlabel('Epoch') Explanation: plotting loss End of explanation
3,076
Given the following text description, write Python code to implement the functionality described below step by step Description: Data Loading Get some data to play with Step1: Data is always a numpy array (or sparse matrix) of shape (n_samples, n_features) Split the data to get going Step2: Exercises Load the iris dataset from the sklearn.datasets module using the load_iris function. The function returns a dictionary-like object that has the same attributes as digits. What is the number of classes, features and data points in this dataset? Use a scatterplot to visualize the dataset. You can look at DESCR attribute to learn more about the dataset. Usually data doesn't come in that nice a format. You can find the csv file that contains the iris dataset at the following path
Python Code: from sklearn.datasets import load_digits import numpy as np digits = load_digits() digits.keys() digits.data.shape digits.target.shape digits.target np.bincount(digits.target) import matplotlib.pyplot as plt %matplotlib notebook # you can also use matplotlib inline plt.matshow(digits.data[0].reshape(8, 8), cmap=plt.cm.Greys) digits.target[0] fig, axes = plt.subplots(4, 4) for x, y, ax in zip(digits.data, digits.target, axes.ravel()): ax.set_title(y) ax.imshow(x.reshape(8, 8), cmap="gray_r") ax.set_xticks(()) ax.set_yticks(()) plt.tight_layout() Explanation: Data Loading Get some data to play with End of explanation from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target) Explanation: Data is always a numpy array (or sparse matrix) of shape (n_samples, n_features) Split the data to get going End of explanation # %load solutions/load_iris.py Explanation: Exercises Load the iris dataset from the sklearn.datasets module using the load_iris function. The function returns a dictionary-like object that has the same attributes as digits. What is the number of classes, features and data points in this dataset? Use a scatterplot to visualize the dataset. You can look at DESCR attribute to learn more about the dataset. Usually data doesn't come in that nice a format. You can find the csv file that contains the iris dataset at the following path: python import sklearn.datasets import os iris_path = os.path.join(sklearn.datasets.__path__[0], 'data', 'iris.csv') Try loading the data from there using pandas pd.read_csv method. End of explanation
3,077
Given the following text description, write Python code to implement the functionality described below step by step Description: Copyright 2020 DeepMind Technologies Limited. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https Step2: If you choose chain_length 3 the data will look like this Step3: Load the data. Step4: Looking at what we loaded.
Python Code: from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf import collections import os from google.colab import auth auth.authenticate_user() #@title Choices about the dataset you want to load. # Make choices about the dataset here. chain_length = 3 #@param {type:"slider", min:3, max:4, step:1} mode = 'valid' #@param ['train', 'test', 'valid'] Explanation: Copyright 2020 DeepMind Technologies Limited. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. The dataset used for the Paired associate inference task This is the dataset used for the paired associated inference task in "MEMO: A Deep Network for Flexible Combination of Episodic Memories ". End of explanation # Train has 500 shards, valid 150, test 100. if mode == 'train': num_shards = 500 elif mode == 'test': num_shards = 100 elif mode == 'valid': num_shards = 150 DatasetInfo = collections.namedtuple( 'DatasetInfo', ['basepath', 'size', 'chain_length'] ) _DATASETS = dict( memo=DatasetInfo( basepath=mode, size=num_shards, chain_length=chain_length) ) def _get_dataset_files(dataset_info, root): Generates lists of files for a given dataset version. basepath = dataset_info.basepath base = os.path.join(root, basepath) num_files = dataset_info.size length = len(str(num_files)) template = 'trials-{:0%d}-of-{:0%d}' % (5, 5) return [os.path.join(base, template.format(i, num_files)) for i in range(num_files)] def parser_tf_examples(raw_data, chain_length=chain_length): if chain_length == 3: feature_map = { 'trials' : tf.io.FixedLenFeature( shape=[48, 3, 1000], dtype=tf.float32), 'correct_answer': tf.io.FixedLenFeature( shape=[48], dtype=tf.int64), 'difficulty': tf.io.FixedLenFeature( shape=[48], dtype=tf.int64), 'trial_type': tf.io.FixedLenFeature( shape=[48], dtype=tf.int64), 'memory': tf.io.FixedLenFeature( shape=[32, 2, 1000], dtype=tf.float32), } elif chain_length == 4: feature_map = { 'trials' : tf.io.FixedLenFeature( shape=[96, 3, 1000], dtype=tf.float32), 'correct_answer': tf.io.FixedLenFeature( shape=[96], dtype=tf.int64), 'difficulty': tf.io.FixedLenFeature( shape=[96], dtype=tf.int64), 'trial_type': tf.io.FixedLenFeature( shape=[96], dtype=tf.int64), 'memory': tf.io.FixedLenFeature( shape=[48, 2, 1000], dtype=tf.float32), } example = tf.io.parse_example(raw_data, feature_map) batch = [example["trials"], example["correct_answer"], example["difficulty"], example["trial_type"], example["memory"]] return batch Explanation: If you choose chain_length 3 the data will look like this: trials shape: (48, 3, 1000); 48 trials x the target picture, left and right option x picture dimensions. correct answer: (48); whether the left or right picture is correct. difficulty (48); How far apart are the target picture and the two options.(e.g. AB are 0 steps apart, AC is 1) trial type (48); See below. memory shape (32, 2, 1000); Content of memory store, 32 pairs of images. Trial types: * 1: AB * 2: BC * 3: AC If you choose chain_length 4 the data will look like this: * trials: (96, 3, 1000) * correct answer: (96) * difficulty: (96) * trial type: (96) * memory shape: (48, 2, 1000) Trial types: * 1: AB * 2: BC * 3: AC * 4: CD * 5: BD * 6: AD End of explanation dataset_info = 'memo' root = 'gs://deepmind-memo/length' + str(chain_length) + '/' num_epochs = 100 shuffle_buffer_size = 150 num_readers = 4 dataset_info = _DATASETS['memo'] filenames = _get_dataset_files(dataset_info, root) num_map_threads = 4 batch_size = 10 data = tf.data.Dataset.from_tensor_slices(filenames) data = data.repeat(num_epochs) data = data.shuffle(shuffle_buffer_size) data = data.interleave(tf.data.TFRecordDataset, cycle_length=num_readers, block_length=1) data = data.shuffle(shuffle_buffer_size) data = data.map(parser_tf_examples, num_parallel_calls=num_map_threads) data = data.batch(batch_size) Explanation: Load the data. End of explanation iterator = data.__iter__() element = iterator.get_next() print(element[0].shape) # trials print(element[1].shape) # correct answer print(element[2].shape) # difficulty print(element[3].shape) # trialtype print(element[4].shape) # memory Explanation: Looking at what we loaded. End of explanation
3,078
Given the following text description, write Python code to implement the functionality described below step by step Description: Your first neural network In this project, you'll build your first neural network and use it to predict daily bike rental ridership. We've provided some of the code, but left the implementation of the neural network up to you (for the most part). After you've submitted this project, feel free to explore the data and the model more. Step1: Load and prepare the data A critical step in working with neural networks is preparing the data correctly. Variables on different scales make it difficult for the network to efficiently learn the correct weights. Below, we've written the code to load and prepare the data. You'll learn more about this soon! Step2: Checking out the data This dataset has the number of riders for each hour of each day from January 1 2011 to December 31 2012. The number of riders is split between casual and registered, summed up in the cnt column. You can see the first few rows of the data above. Below is a plot showing the number of bike riders over the first 10 days or so in the data set. (Some days don't have exactly 24 entries in the data set, so it's not exactly 10 days.) You can see the hourly rentals here. This data is pretty complicated! The weekends have lower over all ridership and there are spikes when people are biking to and from work during the week. Looking at the data above, we also have information about temperature, humidity, and windspeed, all of these likely affecting the number of riders. You'll be trying to capture all this with your model. Step3: Dummy variables Here we have some categorical variables like season, weather, month. To include these in our model, we'll need to make binary dummy variables. This is simple to do with Pandas thanks to get_dummies(). Step4: Scaling target variables To make training the network easier, we'll standardize each of the continuous variables. That is, we'll shift and scale the variables such that they have zero mean and a standard deviation of 1. The scaling factors are saved so we can go backwards when we use the network for predictions. Step5: Splitting the data into training, testing, and validation sets We'll save the data for the last approximately 21 days to use as a test set after we've trained the network. We'll use this set to make predictions and compare them with the actual number of riders. Step6: We'll split the data into two sets, one for training and one for validating as the network is being trained. Since this is time series data, we'll train on historical data, then try to predict on future data (the validation set). Step7: Time to build the network Below you'll build your network. We've built out the structure and the backwards pass. You'll implement the forward pass through the network. You'll also set the hyperparameters Step8: Unit tests Run these unit tests to check the correctness of your network implementation. This will help you be sure your network was implemented correctly befor you starting trying to train it. These tests must all be successful to pass the project. Step9: Training the network Here you'll set the hyperparameters for the network. The strategy here is to find hyperparameters such that the error on the training set is low, but you're not overfitting to the data. If you train the network too long or have too many hidden nodes, it can become overly specific to the training set and will fail to generalize to the validation set. That is, the loss on the validation set will start increasing as the training set loss drops. You'll also be using a method know as Stochastic Gradient Descent (SGD) to train the network. The idea is that for each training pass, you grab a random sample of the data instead of using the whole data set. You use many more training passes than with normal gradient descent, but each pass is much faster. This ends up training the network more efficiently. You'll learn more about SGD later. Choose the number of iterations This is the number of batches of samples from the training data we'll use to train the network. The more iterations you use, the better the model will fit the data. However, if you use too many iterations, then the model with not generalize well to other data, this is called overfitting. You want to find a number here where the network has a low training loss, and the validation loss is at a minimum. As you start overfitting, you'll see the training loss continue to decrease while the validation loss starts to increase. Choose the learning rate This scales the size of weight updates. If this is too big, the weights tend to explode and the network fails to fit the data. A good choice to start at is 0.1. If the network has problems fitting the data, try reducing the learning rate. Note that the lower the learning rate, the smaller the steps are in the weight updates and the longer it takes for the neural network to converge. Choose the number of hidden nodes The more hidden nodes you have, the more accurate predictions the model will make. Try a few different numbers and see how it affects the performance. You can look at the losses dictionary for a metric of the network performance. If the number of hidden units is too low, then the model won't have enough space to learn and if it is too high there are too many options for the direction that the learning can take. The trick here is to find the right balance in number of hidden units you choose. Step10: Check out your predictions Here, use the test data to view how well your network is modeling the data. If something is completely wrong here, make sure each step in your network is implemented correctly.
Python Code: %matplotlib inline %config InlineBackend.figure_format = 'retina' import numpy as np import pandas as pd import matplotlib.pyplot as plt Explanation: Your first neural network In this project, you'll build your first neural network and use it to predict daily bike rental ridership. We've provided some of the code, but left the implementation of the neural network up to you (for the most part). After you've submitted this project, feel free to explore the data and the model more. End of explanation data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) rides.head() Explanation: Load and prepare the data A critical step in working with neural networks is preparing the data correctly. Variables on different scales make it difficult for the network to efficiently learn the correct weights. Below, we've written the code to load and prepare the data. You'll learn more about this soon! End of explanation rides[:24*10].plot(x='dteday', y='cnt') Explanation: Checking out the data This dataset has the number of riders for each hour of each day from January 1 2011 to December 31 2012. The number of riders is split between casual and registered, summed up in the cnt column. You can see the first few rows of the data above. Below is a plot showing the number of bike riders over the first 10 days or so in the data set. (Some days don't have exactly 24 entries in the data set, so it's not exactly 10 days.) You can see the hourly rentals here. This data is pretty complicated! The weekends have lower over all ridership and there are spikes when people are biking to and from work during the week. Looking at the data above, we also have information about temperature, humidity, and windspeed, all of these likely affecting the number of riders. You'll be trying to capture all this with your model. End of explanation dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False) rides = pd.concat([rides, dummies], axis=1) fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 'weekday', 'atemp', 'mnth', 'workingday', 'hr'] data = rides.drop(fields_to_drop, axis=1) data.head() Explanation: Dummy variables Here we have some categorical variables like season, weather, month. To include these in our model, we'll need to make binary dummy variables. This is simple to do with Pandas thanks to get_dummies(). End of explanation quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed'] # Store scalings in a dictionary so we can convert back later scaled_features = {} for each in quant_features: mean, std = data[each].mean(), data[each].std() scaled_features[each] = [mean, std] data.loc[:, each] = (data[each] - mean)/std Explanation: Scaling target variables To make training the network easier, we'll standardize each of the continuous variables. That is, we'll shift and scale the variables such that they have zero mean and a standard deviation of 1. The scaling factors are saved so we can go backwards when we use the network for predictions. End of explanation # Save data for approximately the last 21 days test_data = data[-21*24:] # Now remove the test data from the data set data = data[:-21*24] # Separate the data into features and targets target_fields = ['cnt', 'casual', 'registered'] features, targets = data.drop(target_fields, axis=1), data[target_fields] test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields] Explanation: Splitting the data into training, testing, and validation sets We'll save the data for the last approximately 21 days to use as a test set after we've trained the network. We'll use this set to make predictions and compare them with the actual number of riders. End of explanation # Hold out the last 60 days or so of the remaining data as a validation set train_features, train_targets = features[:-60*24], targets[:-60*24] val_features, val_targets = features[-60*24:], targets[-60*24:] Explanation: We'll split the data into two sets, one for training and one for validating as the network is being trained. Since this is time series data, we'll train on historical data, then try to predict on future data (the validation set). End of explanation class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in input, hidden and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize weights self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5, (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.lr = learning_rate #### TODO: Set self.activation_function to your implemented sigmoid function #### # # Note: in Python, you can define a function with a lambda expression, # as shown below. #self.activation_function = lambda x : 0 # Replace 0 with your sigmoid calculation. ### If the lambda code above is not something you're familiar with, # You can uncomment out the following three lines and put your # implementation there instead. # def sigmoid(x): return 1. / (1. + np.exp(-x)) # Replace 0 with your sigmoid calculation here self.activation_function = sigmoid def train(self, features, targets): ''' Train the network on batch of features and targets. Arguments --------- features: 2D array, each row is one data record, each column is a feature targets: 1D array of target values ''' n_records = features.shape[0] delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape) delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape) for X, y in zip(features, targets): #### Implement the forward pass here #### ### Forward pass ### # TODO: Hidden layer - Replace these values with your calculations. hidden_inputs = np.dot(X, self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with your calculations. final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer #### Implement the backward pass here #### ### Backward pass ### # TODO: Output error - Replace this value with your calculations. error = y - final_outputs # Output layer error is the difference between desired target and actual output. output_error_term = error * 1.0 # TODO: Calculate the hidden layer's contribution to the error hidden_error = np.dot(output_error_term, self.weights_hidden_to_output.T) # TODO: Backpropagated error terms - Replace these values with your calculations. hidden_error_term = hidden_error * hidden_outputs * (1 - hidden_outputs) # Weight step (input to hidden) delta_weights_i_h += hidden_error_term * X[:, None] # Weight step (hidden to output) delta_weights_h_o += output_error_term * hidden_outputs[:, None] # TODO: Update the weights - Replace these values with your calculations. self.weights_hidden_to_output += self.lr * delta_weights_h_o / n_records # update hidden-to-output weights with gradient descent step self.weights_input_to_hidden += self.lr * delta_weights_i_h / n_records # update input-to-hidden weights with gradient descent step def run(self, features): ''' Run a forward pass through the network with input features Arguments --------- features: 1D array of feature values ''' #### Implement the forward pass here #### # TODO: Hidden layer - replace these values with the appropriate calculations. hidden_inputs = np.dot(features, self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with the appropriate calculations. final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer return final_outputs def MSE(y, Y): return np.mean((y-Y)**2) Explanation: Time to build the network Below you'll build your network. We've built out the structure and the backwards pass. You'll implement the forward pass through the network. You'll also set the hyperparameters: the learning rate, the number of hidden units, and the number of training passes. <img src="assets/neural_network.png" width=300px> The network has two layers, a hidden layer and an output layer. The hidden layer will use the sigmoid function for activations. The output layer has only one node and is used for the regression, the output of the node is the same as the input of the node. That is, the activation function is $f(x)=x$. A function that takes the input signal and generates an output signal, but takes into account the threshold, is called an activation function. We work through each layer of our network calculating the outputs for each neuron. All of the outputs from one layer become inputs to the neurons on the next layer. This process is called forward propagation. We use the weights to propagate signals forward from the input to the output layers in a neural network. We use the weights to also propagate error backwards from the output back into the network to update our weights. This is called backpropagation. Hint: You'll need the derivative of the output activation function ($f(x) = x$) for the backpropagation implementation. If you aren't familiar with calculus, this function is equivalent to the equation $y = x$. What is the slope of that equation? That is the derivative of $f(x)$. Below, you have these tasks: 1. Implement the sigmoid function to use as the activation function. Set self.activation_function in __init__ to your sigmoid function. 2. Implement the forward pass in the train method. 3. Implement the backpropagation algorithm in the train method, including calculating the output error. 4. Implement the forward pass in the run method. End of explanation import unittest inputs = np.array([[0.5, -0.2, 0.1]]) targets = np.array([[0.4]]) test_w_i_h = np.array([[0.1, -0.2], [0.4, 0.5], [-0.3, 0.2]]) test_w_h_o = np.array([[0.3], [-0.1]]) class TestMethods(unittest.TestCase): ########## # Unit tests for data loading ########## def test_data_path(self): # Test that file path to dataset has been unaltered self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv') def test_data_loaded(self): # Test that data frame loaded self.assertTrue(isinstance(rides, pd.DataFrame)) ########## # Unit tests for network functionality ########## def test_activation(self): network = NeuralNetwork(3, 2, 1, 0.5) # Test that the activation function is a sigmoid self.assertTrue(np.all(network.activation_function(0.5) == 1/(1+np.exp(-0.5)))) def test_train(self): # Test that weights are updated correctly on training network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() network.train(inputs, targets) self.assertTrue(np.allclose(network.weights_hidden_to_output, np.array([[ 0.37275328], [-0.03172939]]))) self.assertTrue(np.allclose(network.weights_input_to_hidden, np.array([[ 0.10562014, -0.20185996], [0.39775194, 0.50074398], [-0.29887597, 0.19962801]]))) def test_run(self): # Test correctness of run method network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() self.assertTrue(np.allclose(network.run(inputs), 0.09998924)) suite = unittest.TestLoader().loadTestsFromModule(TestMethods()) unittest.TextTestRunner().run(suite) Explanation: Unit tests Run these unit tests to check the correctness of your network implementation. This will help you be sure your network was implemented correctly befor you starting trying to train it. These tests must all be successful to pass the project. End of explanation # import sys ### Set the hyperparameters here ### iterations = 15000 learning_rate = 0.1 hidden_nodes = 6 output_nodes = 1 N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train':[], 'validation':[]} for ii in range(iterations): # Go through a random batch of 128 records from the training data set batch = np.random.choice(train_features.index, size=128) X, y = train_features.ix[batch].values, train_targets.ix[batch]['cnt'] network.train(X, y) # Printing out the training progress train_loss = MSE(network.run(train_features).T, train_targets['cnt'].values) val_loss = MSE(network.run(val_features).T, val_targets['cnt'].values) sys.stdout.write("\rProgress: {:2.1f}".format(100 * ii/float(iterations)) \ + "% ... Training loss: " + str(train_loss)[:5] \ + " ... Validation loss: " + str(val_loss)[:5]) sys.stdout.flush() losses['train'].append(train_loss) losses['validation'].append(val_loss) plt.plot(losses['train'], label='Training loss') plt.plot(losses['validation'], label='Validation loss') plt.legend() _ = plt.ylim() Explanation: Training the network Here you'll set the hyperparameters for the network. The strategy here is to find hyperparameters such that the error on the training set is low, but you're not overfitting to the data. If you train the network too long or have too many hidden nodes, it can become overly specific to the training set and will fail to generalize to the validation set. That is, the loss on the validation set will start increasing as the training set loss drops. You'll also be using a method know as Stochastic Gradient Descent (SGD) to train the network. The idea is that for each training pass, you grab a random sample of the data instead of using the whole data set. You use many more training passes than with normal gradient descent, but each pass is much faster. This ends up training the network more efficiently. You'll learn more about SGD later. Choose the number of iterations This is the number of batches of samples from the training data we'll use to train the network. The more iterations you use, the better the model will fit the data. However, if you use too many iterations, then the model with not generalize well to other data, this is called overfitting. You want to find a number here where the network has a low training loss, and the validation loss is at a minimum. As you start overfitting, you'll see the training loss continue to decrease while the validation loss starts to increase. Choose the learning rate This scales the size of weight updates. If this is too big, the weights tend to explode and the network fails to fit the data. A good choice to start at is 0.1. If the network has problems fitting the data, try reducing the learning rate. Note that the lower the learning rate, the smaller the steps are in the weight updates and the longer it takes for the neural network to converge. Choose the number of hidden nodes The more hidden nodes you have, the more accurate predictions the model will make. Try a few different numbers and see how it affects the performance. You can look at the losses dictionary for a metric of the network performance. If the number of hidden units is too low, then the model won't have enough space to learn and if it is too high there are too many options for the direction that the learning can take. The trick here is to find the right balance in number of hidden units you choose. End of explanation fig, ax = plt.subplots(figsize=(8,4)) mean, std = scaled_features['cnt'] predictions = network.run(test_features).T*std + mean ax.plot(predictions[0], label='Prediction') ax.plot((test_targets['cnt']*std + mean).values, label='Data') ax.set_xlim(right=len(predictions)) ax.legend() dates = pd.to_datetime(rides.ix[test_data.index]['dteday']) dates = dates.apply(lambda d: d.strftime('%b %d')) ax.set_xticks(np.arange(len(dates))[12::24]) _ = ax.set_xticklabels(dates[12::24], rotation=45) Explanation: Check out your predictions Here, use the test data to view how well your network is modeling the data. If something is completely wrong here, make sure each step in your network is implemented correctly. End of explanation
3,079
Given the following text description, write Python code to implement the functionality described below step by step Description: Skill Clustering by Matrix Factorization Steps of skill clustering Step1: First, we try it on count matrix as the matrix is already avail. NMF on count matrix Step2: There are various choices to initialize NMF including random and by SVD. We try random NMF, denoted as rnmf.
Python Code: import my_util as my_util import cluster_skill_helpers as cluster_skill_helpers from cluster_skill_helpers import * import random as rd HOME_DIR = 'd:/larc_projects/job_analytics/' SKILL_DAT = HOME_DIR + 'data/clean/skill_cluster/' SKILL_RES = HOME_DIR + 'results/' + 'skill_cluster/new/' Explanation: Skill Clustering by Matrix Factorization Steps of skill clustering: + Obtain a representation of skills in a space of latent factors: this can be done by Matrix Factorization (MF) approach + Measure distance between skills in the latent space + Cluster skills based on their distance in the space We can try MF on count matrix or tfidf matrix. However, on building these matrices, we need to take of "duplication" problem. End of explanation # Load count matrix skill_df = pd.read_csv(SKILL_DAT + 'skill_index.csv') skills = skill_df['skill'] doc_skill = mmread(SKILL_DAT + 'doc_skill.mtx') Explanation: First, we try it on count matrix as the matrix is already avail. NMF on count matrix End of explanation ks = range(10, 60, 10) rnmf = {k: NMF(n_components=k, random_state=0) for k in ks} print( "Fitting NMF using random initialization..." ) print('No. of factors, Error, Running time') rnmf_error = [] for k in ks: t0 = time() rnmf[k].fit(doc_skill) elapsed = time() - t0 err = rnmf[k].reconstruction_err_ print('%d, %0.1f, %0.1fs' %(k, err, elapsed)) rnmf_error.append(err) # end # Save learned factor-skill matrices nmf_dir = SKILL_RES + 'nmf/' for k in ks: fname = '{}factor_skill.csv'.format(k) pd.DataFrame(rnmf[k].components_).to_csv(nmf_dir + fname, index=False) print('saved {}factor-skill matrix'.format(k)) Explanation: There are various choices to initialize NMF including random and by SVD. We try random NMF, denoted as rnmf. End of explanation
3,080
Given the following text description, write Python code to implement the functionality described below step by step Description: Face verification using Siamese Networks Goals train a network for face similarity using siamese networks work data augmentation, generators and hard negative mining use the model on your picture Dataset We will be using Labeled Faces in the Wild (LFW) dataset available openly at http Step1: Processing the dataset The dataset consists of folders corresponding to each identity. The folder name is the name of the person. We map each class (identity) to an integer id, and build mappings as dictionaries name_to_classid and classid_to_name Step2: In each directory, there is one or more images corresponding to the identity. We map each image path with an integer id, then build a few dictionaries Step3: The following histogram shows the number of images per class Step4: Siamese nets A siamese net takes as input two images $x_1$ and $x_2$ and outputs a single value which corresponds to the similarity between $x_1$ and $x_2$, as follows Step5: Let's build positive and a negative pairs for class 5 Step6: Now that we have a way to compute the pairs, let's load all the possible JPEG-compressed image files into a single numpy array in RAM. There are more than 1000 images, so 100MB of RAM will be used, which will not cause any issue. Note Step7: The following function builds a large number of positives/negatives pairs (train and test) Step9: Data augmentation and generator We're building a generator, which will modify images through dataaugmentation on the fly. The generator enables We use iaa library which offers tremendous possibilities for data augmentation Step10: Exercise - Add your own dataaugmentations in the process. You may look at Step11: Simple convolutional model Step12: Exercise - Build a convolutional model which transforms the input to a fixed dimension $d = 50$ - You may alternate convolutions and maxpooling and layers, - Use the relu activation on convolutional layers, - At the end, Flatten the last convolutional output and plug it into a dense layer. - Feel free to use some Dropout prior to the Dense layer. Use between 32 and 128 channels on convolutional layers. Be careful Step13: Exercise Assemble the siamese model by combining Step14: We can now fit the model and checkpoint it to keep the best version. We can expect to get a model with around 0.75 as "accuracy_sim" on the validation set Step15: Exercise Finding the most similar images Run the shared_conv model on all images; (Optional) add Charles and Olivier's faces from the test_images folder to the test set; build a most_sim function which returns the most similar vectors to a given vector. Step16: Most similar faces The following enables to display an image alongside with most similar images Step17: Note that this model is still underfitting, even when running queries against the training set. Even if the results are not correct, the mistakes often seem to "make sense" though. Running a model to convergence on higher resolution images, possibly with a deeper and wider convolutional network might yield better results. In the next notebook we will try with a better loss and with hard negative mining. Playing with the camera - The following code enables you to find the most similar faces to yours - What do you observe? - Try to think of reasons why it doesn't work very well, and how you could improve it.
Python Code: import tensorflow as tf # If you have a GPU, execute the following lines to restrict the amount of VRAM used: gpus = tf.config.experimental.list_physical_devices('GPU') if len(gpus) > 1: print("Using GPU {}".format(gpus[0])) tf.config.experimental.set_visible_devices(gpus[0], 'GPU') else: print("Using CPU") import os import random import itertools from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Input, Concatenate, Lambda, Dot from tensorflow.keras.layers import Conv2D, MaxPool2D, GlobalAveragePooling2D, Flatten, Dropout import numpy as np from sklearn.manifold import TSNE import matplotlib.pyplot as plt Explanation: Face verification using Siamese Networks Goals train a network for face similarity using siamese networks work data augmentation, generators and hard negative mining use the model on your picture Dataset We will be using Labeled Faces in the Wild (LFW) dataset available openly at http://vis-www.cs.umass.edu/lfw/ For computing purposes, we'll only restrict ourselves to a subpart of the dataset. You're welcome to train on the whole dataset on GPU, by setting USE_SUBSET=False in the following cells, We will also load pretrained weights End of explanation PATH = "lfw/lfw-deepfunneled/" USE_SUBSET = True dirs = sorted(os.listdir(PATH)) if USE_SUBSET: dirs = dirs[:500] name_to_classid = {d: i for i, d in enumerate(dirs)} classid_to_name = {v: k for k, v in name_to_classid.items()} num_classes = len(name_to_classid) print("number of classes: ", num_classes) Explanation: Processing the dataset The dataset consists of folders corresponding to each identity. The folder name is the name of the person. We map each class (identity) to an integer id, and build mappings as dictionaries name_to_classid and classid_to_name End of explanation # read all directories img_paths = {c: [PATH + subfolder + "/" + img for img in sorted(os.listdir(PATH + subfolder))] for subfolder, c in name_to_classid.items()} # retrieve all images all_images_path = [] for img_list in img_paths.values(): all_images_path += img_list # map to integers path_to_id = {v: k for k, v in enumerate(all_images_path)} id_to_path = {v: k for k, v in path_to_id.items()} all_images_path[:10] len(all_images_path) # build mappings between images and class classid_to_ids = {k: [path_to_id[path] for path in v] for k, v in img_paths.items()} id_to_classid = {v: c for c, imgs in classid_to_ids.items() for v in imgs} dict(list(id_to_classid.items())[0:13]) Explanation: In each directory, there is one or more images corresponding to the identity. We map each image path with an integer id, then build a few dictionaries: - mappings from imagepath and image id: path_to_id and id_to_path - mappings from class id to image ids: classid_to_ids and id_to_classid End of explanation plt.hist([len(v) for k, v in classid_to_ids.items()], bins=range(1, 10)) plt.show() np.median([len(ids) for ids in classid_to_ids.values()]) [(classid_to_name[x], len(classid_to_ids[x])) for x in np.argsort([len(v) for k, v in classid_to_ids.items()])[::-1][:10]] Explanation: The following histogram shows the number of images per class: there are many classes with only one image. These classes are useful as negatives, only as we can't make a positive pair with them. End of explanation # build pairs of positive image ids for a given classid def build_pos_pairs_for_id(classid, max_num=50): imgs = classid_to_ids[classid] if len(imgs) == 1: return [] pos_pairs = list(itertools.combinations(imgs, 2)) random.shuffle(pos_pairs) return pos_pairs[:max_num] # build pairs of negative image ids for a given classid def build_neg_pairs_for_id(classid, classes, max_num=20): imgs = classid_to_ids[classid] neg_classes_ids = random.sample(classes, max_num+1) if classid in neg_classes_ids: neg_classes_ids.remove(classid) neg_pairs = [] for id2 in range(max_num): img1 = imgs[random.randint(0, len(imgs) - 1)] imgs2 = classid_to_ids[neg_classes_ids[id2]] img2 = imgs2[random.randint(0, len(imgs2) - 1)] neg_pairs += [(img1, img2)] return neg_pairs Explanation: Siamese nets A siamese net takes as input two images $x_1$ and $x_2$ and outputs a single value which corresponds to the similarity between $x_1$ and $x_2$, as follows: <img src="images/siamese.svg" style="width: 600px;" /> In order to train such a system, one has to build positive and negative pairs for the training. End of explanation build_pos_pairs_for_id(5, max_num=10) build_neg_pairs_for_id(5, list(range(num_classes)), max_num=6) Explanation: Let's build positive and a negative pairs for class 5 End of explanation from skimage.io import imread from skimage.transform import resize def resize100(img): return resize( img, (100, 100), preserve_range=True, mode='reflect', anti_aliasing=True )[20:80, 20:80, :] def open_all_images(id_to_path): all_imgs = [] for path in id_to_path.values(): all_imgs += [np.expand_dims(resize100(imread(path)), 0)] return np.vstack(all_imgs) all_imgs = open_all_images(id_to_path) all_imgs.shape print(f"{all_imgs.nbytes / 1e6} MB") Explanation: Now that we have a way to compute the pairs, let's load all the possible JPEG-compressed image files into a single numpy array in RAM. There are more than 1000 images, so 100MB of RAM will be used, which will not cause any issue. Note: if you plan on opening more images, you should not open them all at once, and rather build a generator End of explanation def build_train_test_data(split=0.8): listX1 = [] listX2 = [] listY = [] split = int(num_classes * split) # train for class_id in range(split): pos = build_pos_pairs_for_id(class_id) neg = build_neg_pairs_for_id(class_id, list(range(split))) for pair in pos: listX1 += [pair[0]] listX2 += [pair[1]] listY += [1] for pair in neg: if sum(listY) > len(listY) / 2: listX1 += [pair[0]] listX2 += [pair[1]] listY += [0] perm = np.random.permutation(len(listX1)) X1_ids_train = np.array(listX1)[perm] X2_ids_train = np.array(listX2)[perm] Y_ids_train = np.array(listY)[perm] listX1 = [] listX2 = [] listY = [] #test for id in range(split, num_classes): pos = build_pos_pairs_for_id(id) neg = build_neg_pairs_for_id(id, list(range(split, num_classes))) for pair in pos: listX1 += [pair[0]] listX2 += [pair[1]] listY += [1] for pair in neg: if sum(listY) > len(listY) / 2: listX1 += [pair[0]] listX2 += [pair[1]] listY += [0] X1_ids_test = np.array(listX1) X2_ids_test = np.array(listX2) Y_ids_test = np.array(listY) return (X1_ids_train, X2_ids_train, Y_ids_train, X1_ids_test, X2_ids_test, Y_ids_test) X1_ids_train, X2_ids_train, train_Y, X1_ids_test, X2_ids_test, test_Y = build_train_test_data() X1_ids_train.shape, X2_ids_train.shape, train_Y.shape np.mean(train_Y) X1_ids_test.shape, X2_ids_test.shape, test_Y.shape np.mean(test_Y) Explanation: The following function builds a large number of positives/negatives pairs (train and test) End of explanation from imgaug import augmenters as iaa seq = iaa.Sequential([ iaa.Fliplr(0.5), # horizontally flip 50% of the images # You can add more transformation like random rotations, random change of luminance, etc. ]) class Generator(tf.keras.utils.Sequence): def __init__(self, X1, X2, Y, batch_size, all_imgs): self.batch_size = batch_size self.X1 = X1 self.X2 = X2 self.Y = Y self.imgs = all_imgs self.num_samples = Y.shape[0] def __len__(self): return self.num_samples // self.batch_size def __getitem__(self, batch_index): This method returns the `batch_index`-th batch of the dataset. Keras choose by itself the order in which batches are created, and several may be created in the same time using multiprocessing. Therefore, avoid any side-effect in this method! low_index = batch_index * self.batch_size high_index = (batch_index + 1) * self.batch_size imgs1 = seq.augment_images(self.imgs[self.X1[low_index:high_index]]) imgs2 = seq.augment_images(self.imgs[self.X2[low_index:high_index]]) targets = self.Y[low_index:high_index] return ([imgs1, imgs2], targets) gen = Generator(X1_ids_train, X2_ids_train, train_Y, 32, all_imgs) print("Number of batches: {}".format(len(gen))) [x1, x2], y = gen[0] x1.shape, x2.shape, y.shape plt.figure(figsize=(16, 6)) for i in range(6): plt.subplot(2, 6, i + 1) plt.imshow(x1[i] / 255) plt.axis('off') for i in range(6): plt.subplot(2, 6, i + 7) plt.imshow(x2[i] / 255) if y[i]==1.0: plt.title("similar") else: plt.title("different") plt.axis('off') plt.show() Explanation: Data augmentation and generator We're building a generator, which will modify images through dataaugmentation on the fly. The generator enables We use iaa library which offers tremendous possibilities for data augmentation End of explanation test_X1 = all_imgs[X1_ids_test] test_X2 = all_imgs[X2_ids_test] test_X1.shape, test_X2.shape, test_Y.shape Explanation: Exercise - Add your own dataaugmentations in the process. You may look at: http://imgaug.readthedocs.io for instance use iaa.Affine; - Be careful not to make the task to difficult, and to add meaningful augmentations; - Rerun the generator plot above to check whether the image pairs look not too distorted to recognize the identities. Test images In addition to our generator, we need test images, unaffected by the augmentation End of explanation @tf.function def contrastive_loss(y_true, y_pred, margin=0.25): '''Contrastive loss from Hadsell-et-al.'06 http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf ''' y_true = tf.cast(y_true, "float32") return tf.reduce_mean( y_true * tf.square(1 - y_pred) + (1 - y_true) * tf.square(tf.maximum(y_pred - margin, 0))) @tf.function def accuracy_sim(y_true, y_pred, threshold=0.5): '''Compute classification accuracy with a fixed threshold on similarity. ''' y_thresholded = tf.cast(y_pred > threshold, "float32") return tf.reduce_mean(tf.cast(tf.equal(y_true, y_thresholded), "float32")) Explanation: Simple convolutional model End of explanation class SharedConv(tf.keras.Model): def __init__(self): super().__init__(self, name="sharedconv") # TODO def call(self, inputs): # TODO shared_conv = SharedConv() # %load solutions/shared_conv.py all_imgs.shape shared_conv.predict(all_imgs[:10]).shape shared_conv.summary() Explanation: Exercise - Build a convolutional model which transforms the input to a fixed dimension $d = 50$ - You may alternate convolutions and maxpooling and layers, - Use the relu activation on convolutional layers, - At the end, Flatten the last convolutional output and plug it into a dense layer. - Feel free to use some Dropout prior to the Dense layer. Use between 32 and 128 channels on convolutional layers. Be careful: large convolutions on high dimensional images can be very slow on CPUs. Try to run your randomly initialized shared_conv model on a batch of the first 10 images from all_imgs. What is the expected shape of the output? End of explanation class Siamese(tf.keras.Model): def __init__(self, shared_conv): super().__init__(self, name="siamese") # TODO def call(self, inputs): pass # TODO model = Siamese(shared_conv) model.compile(loss=contrastive_loss, optimizer='rmsprop', metrics=[accuracy_sim]) # %load solutions/siamese.py Explanation: Exercise Assemble the siamese model by combining: shared_conv on both inputs; compute the cosine similarity using the Dot layer with normalize=True on the outputs of the two shared_conv instance lanes; the loss of siamese model is the constrastive loss defined previously; use the accuracy_sim function defined previously as a metric. End of explanation from tensorflow.keras.callbacks import ModelCheckpoint from tensorflow.keras.models import load_model best_model_fname = "siamese_checkpoint.h5" best_model_cb = ModelCheckpoint(best_model_fname, monitor='val_accuracy_sim', save_best_only=True, verbose=1) model.fit_generator(generator=gen, epochs=15, validation_data=([test_X1, test_X2], test_Y), callbacks=[best_model_cb], verbose=2) model.load_weights("siamese_checkpoint.h5") # You may load a pre-trained model if you have the exact solution architecture. # This model is a start, but far from perfect ! # model.load_weights("siamese_pretrained.h5") Explanation: We can now fit the model and checkpoint it to keep the best version. We can expect to get a model with around 0.75 as "accuracy_sim" on the validation set: End of explanation # TODO emb = None def most_sim(x, emb, topn=3): return None # %load solutions/most_similar.py Explanation: Exercise Finding the most similar images Run the shared_conv model on all images; (Optional) add Charles and Olivier's faces from the test_images folder to the test set; build a most_sim function which returns the most similar vectors to a given vector. End of explanation def display(img): img = img.astype('uint8') plt.imshow(img) plt.axis('off') plt.show() interesting_classes = list(filter(lambda x: len(x[1]) > 4, classid_to_ids.items())) class_id = random.choice(interesting_classes)[0] query_id = random.choice(classid_to_ids[class_id]) print("query:", classid_to_name[class_id], query_id) # display(all_imgs[query_id]) print("nearest matches") for result_id, sim in most_sim(emb[query_id], emb): class_name = classid_to_name.get(id_to_classid.get(result_id)) print(class_name, result_id, sim) display(all_imgs[result_id]) Explanation: Most similar faces The following enables to display an image alongside with most similar images: The results are weak, first because of the size of the dataset Also, the network can be greatly improved End of explanation import cv2 def camera_grab(camera_id=0, fallback_filename=None): camera = cv2.VideoCapture(camera_id) try: # take 10 consecutive snapshots to let the camera automatically tune # itself and hope that the contrast and lightning of the last snapshot # is good enough. for i in range(10): snapshot_ok, image = camera.read() if snapshot_ok: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) else: print("WARNING: could not access camera") if fallback_filename: image = imread(fallback_filename) finally: camera.release() return image image = camera_grab(camera_id=0, fallback_filename='test_images/olivier/img_olivier_0.jpeg') x = resize100(image) out = shared_conv(np.reshape(x, (1, 60, 60, 3))) print("query image:") display(x) for id, sim in most_sim(out[0], emb, topn=10): class_name = classid_to_name.get(id_to_classid.get(id)) if class_name is None: print(id) print(class_name, id, sim) display(all_imgs[id]) Explanation: Note that this model is still underfitting, even when running queries against the training set. Even if the results are not correct, the mistakes often seem to "make sense" though. Running a model to convergence on higher resolution images, possibly with a deeper and wider convolutional network might yield better results. In the next notebook we will try with a better loss and with hard negative mining. Playing with the camera - The following code enables you to find the most similar faces to yours - What do you observe? - Try to think of reasons why it doesn't work very well, and how you could improve it. End of explanation
3,081
Given the following text description, write Python code to implement the functionality described below step by step Description: Assignment Step1: Problem 3 Write a Python program that solves $Ax = b$ using LU decomposition. Use the functions <i>lu_factor</i> and <i>lu_solve</i> from <i>scipy.linalg</i> package. $$ A = \begin{bmatrix} 1 & 4 & 1 \ 1 & 6 & -1 \ 2 & -1 & 2 \end{bmatrix}B = \begin{bmatrix} 7 \ 13 \ 5 \end{bmatrix}$$ Solution We can use the functions lu_factor and lu_solve from scipy.linalg to solve the problem by using LU decomposition. Function lu_factor returns lu (N,N) which is a matrix containing U in its upper triangle, and L in its lower triangle. The function also returns piv (N,) which i representing the permutation matrix P. In function <i>lu_decomp1(A, b)</i>, the result of lu_factor is saved into a variable (PLU) which is later referred in lu_solve(PLU, b) function call, which gives us the result of $Ax = b$. An alternative method for solving the problem would be to use "lu"-function, which unpacks the matrices into separate variables, which could be useful if you need to modify the variables or you don't want to use lu_solve to calculate the end result. The expected result is Step2: Problem 6 Invert the following matrices with any method $$ A = \begin{bmatrix} 5 & -3 & -1 & 0 \ -2 & 1 & 1 & 1 \ 3 & -5 & 1 & 2 \ 0 & 8 & -4 & -3 \end{bmatrix} B = \begin{bmatrix} 1 & 3 & -9 & 6 & 4 \ 2 & -1 & 6 & 7 & 1 \ 3 & 2 & -3 & 15 & 5 \ 8 & -1 & 1 & 4 & 2 \ 11 & 1 & -2 & 18 & 7 \end{bmatrix}$$ Comment on the reliability of the results. Solution Probably the simplest way to inverse the given matrices is to use inv() function from the numpy.linalg package. Inv() function returns inverse of the matrix given as a parameter in the function call. Step3: Reliability The result of matrix A is correct and the results have 16 decimal precision. In this case, the matrix B is also correctly inverted. However, the determinent is close to zero and if we would be reducing the precision to be less than it's now, we would not be able to invert the matrix. Step4: If you want to invert matrices with small determinant, the solution is to ensure the tolerances are low enough so that the inv() function can invert the matrix. Problem 9 Use the Gauss-Seidel with relaxation to solve $Ax = b$, where $$A = \begin{bmatrix} 4 & -1 & 0 & 0 \ -1 & 4 & -1 & 0 \ 0 & -1 & 4 & -1 \ 0 & 0 & -1 & 3 \end{bmatrix} B = \begin{bmatrix} 15 \ 10 \ 10 \ 10 \ \end{bmatrix}$$ Take $x_i = b_i/A_{ii}$ as the starting vector, and use $ω = 1.1$ for the relaxation factor. Solution We can use the sample code created during class as a baseline for the exercise. We need to make couple of modifications to the source code in order to take the value of omega into the account. We also want to stop iterating once good enough accuracy is achieved. Accuracy is defined in the tol -variable. The tolerance needed is calculated by taking dot product of xOld (taken before iteration) and x (current iteration) and comparing it against the tol variable. If the difference is less than the tol variable, it means the value of x has not changed more than the tolerence, which indicates we are close to the level of accuracy we need. Expected result is
Python Code: # Initial import statements %matplotlib inline import matplotlib.pyplot as plt import numpy as np from matplotlib.pyplot import * from numpy import * from numpy.linalg import * Explanation: Assignment: 05 LU decomposition etc. Introduction to Numerical Problem Solving, Spring 2017 19.2.2017, Joonas Forsberg<br /> Helsinki Metropolia University of Applied Sciences End of explanation from scipy.linalg import lu_factor, lu_solve # Create a function which can be used later if needed def lu_decomp1(A, b): # Solve by using lu_factor and lu_solve PLU = lu_factor(A) x = lu_solve(PLU, b) return x # Create variables A = np.matrix(((1, 4, 1), (1, 6, -1), (2, -1, 2))) b = np.array(([7, 13, 5])) x = lu_decomp1(A, b) print(dot(inv(A), b)) print("Result = {}".format(x)) Explanation: Problem 3 Write a Python program that solves $Ax = b$ using LU decomposition. Use the functions <i>lu_factor</i> and <i>lu_solve</i> from <i>scipy.linalg</i> package. $$ A = \begin{bmatrix} 1 & 4 & 1 \ 1 & 6 & -1 \ 2 & -1 & 2 \end{bmatrix}B = \begin{bmatrix} 7 \ 13 \ 5 \end{bmatrix}$$ Solution We can use the functions lu_factor and lu_solve from scipy.linalg to solve the problem by using LU decomposition. Function lu_factor returns lu (N,N) which is a matrix containing U in its upper triangle, and L in its lower triangle. The function also returns piv (N,) which i representing the permutation matrix P. In function <i>lu_decomp1(A, b)</i>, the result of lu_factor is saved into a variable (PLU) which is later referred in lu_solve(PLU, b) function call, which gives us the result of $Ax = b$. An alternative method for solving the problem would be to use "lu"-function, which unpacks the matrices into separate variables, which could be useful if you need to modify the variables or you don't want to use lu_solve to calculate the end result. The expected result is: $[5.5,0.9,-2.1]$ End of explanation A = np.array([[5, -3, -1, 0], [-2, 1, 1, 1], [3, -5, 1, 2], [0, 8, -4, -3]]) B = np.array(([1, 3, -9, 6, 4], [2, -1, 6, 7, 1], [3, 2, -3, 15, 5], [8, -1, 1, 4, 2], [11, 1, -2, 18, 7])) ainv = inv(A) binv = inv(B) print("Inverse of A:\n {}".format(ainv)) print("\nInverse of B:\n {}".format(binv)) Explanation: Problem 6 Invert the following matrices with any method $$ A = \begin{bmatrix} 5 & -3 & -1 & 0 \ -2 & 1 & 1 & 1 \ 3 & -5 & 1 & 2 \ 0 & 8 & -4 & -3 \end{bmatrix} B = \begin{bmatrix} 1 & 3 & -9 & 6 & 4 \ 2 & -1 & 6 & 7 & 1 \ 3 & 2 & -3 & 15 & 5 \ 8 & -1 & 1 & 4 & 2 \ 11 & 1 & -2 & 18 & 7 \end{bmatrix}$$ Comment on the reliability of the results. Solution Probably the simplest way to inverse the given matrices is to use inv() function from the numpy.linalg package. Inv() function returns inverse of the matrix given as a parameter in the function call. End of explanation print("Determinant of A: {}".format(np.linalg.det(A))) print("Determinant of B: {}".format(np.linalg.det(B))) Explanation: Reliability The result of matrix A is correct and the results have 16 decimal precision. In this case, the matrix B is also correctly inverted. However, the determinent is close to zero and if we would be reducing the precision to be less than it's now, we would not be able to invert the matrix. End of explanation def gaussSeidel(A, b): omega = 1.1 # Amount of iterations p = 1000 # Define tolerance tol = 1.0e-9 n = len(b) x = np.zeros(n) # Generate array based on starting vector for y in range(n): x[y] = b[y]/A[y, y] # Iterate p times for k in range(p): xOld = x.copy() for i in range(n): s = 0 for j in range(n): if j != i: s = s + A[i, j] * x[j] x[i] = omega/A[i, i] * (b[i] - s) + (1 - omega)*x[i] # Break execution if we are within the tolerance needed dx = math.sqrt(np.dot(x-xOld,x-xOld)) if dx < tol: return x return x A = np.array(([4.0, -1, 0, 0], [-1, 4, -1, 0], [0, -1, 4, -1], [0, 0, -1, 3])) b = np.array(([15.0, 10, 10, 10])) x = gaussSeidel(A, b) print("Result = {}".format(x)) Explanation: If you want to invert matrices with small determinant, the solution is to ensure the tolerances are low enough so that the inv() function can invert the matrix. Problem 9 Use the Gauss-Seidel with relaxation to solve $Ax = b$, where $$A = \begin{bmatrix} 4 & -1 & 0 & 0 \ -1 & 4 & -1 & 0 \ 0 & -1 & 4 & -1 \ 0 & 0 & -1 & 3 \end{bmatrix} B = \begin{bmatrix} 15 \ 10 \ 10 \ 10 \ \end{bmatrix}$$ Take $x_i = b_i/A_{ii}$ as the starting vector, and use $ω = 1.1$ for the relaxation factor. Solution We can use the sample code created during class as a baseline for the exercise. We need to make couple of modifications to the source code in order to take the value of omega into the account. We also want to stop iterating once good enough accuracy is achieved. Accuracy is defined in the tol -variable. The tolerance needed is calculated by taking dot product of xOld (taken before iteration) and x (current iteration) and comparing it against the tol variable. If the difference is less than the tol variable, it means the value of x has not changed more than the tolerence, which indicates we are close to the level of accuracy we need. Expected result is: [ 5. 5. 5. 5.] End of explanation
3,082
Given the following text description, write Python code to implement the functionality described below step by step Description: RoadRunner transit model example I - basics Author Step1: Import the model Step2: Example 1 Step3: Next, we initialise and set up a RoadRunnerModel choosing to use the four-parameter nonlinear limb darkening model and giving it the mid-exposure time array Step4: Evaluation for scalar parameters After the transit model has been initialised and the data set, we can evaluate the model for a given radius ratio (k), limb darkening ccoefficients (ldc), zero epoch (t0), orbital period (p), scaled semi-major axis ($a/R_\star$, a), orbital inclination (i), eccentricity (e), and argument of periastron (w). Eccentricity and argument of periastron are optional and default to zero if not given. The tm.evaluate method returns a 1D array with shape (npt) with the transit model evaluated for each mid-exposure time given in the time array. Note Step5: Evaluation for a set of parameters Like the rest of the PyTransit transit models, the RoadRunner model can be evaluated simultaneously for a set of parameters. This is also done using tm.evaluate, but now each argument is a vector with npv values. Model evaluation is parallelised and can be significantly faster than looping over an parameter array in Python. Now, the tm.evaluate returns a 2D array with shape [npv, npt] with the transit model evaluated for each parameter vector and mid-transit time given in the time array Step6: Supersampling A single photometry observation is always an exposure over time. If the exposure time is short compared to the changes in the transit signal shape during the exposure, the observation can be modelled by evaluating the model at the mid-exposure time. However, if the exposure time is long, we need to simluate the integration by calculating the model average over the exposure time (although numerical integration is also a valid approach, it is slightly more demanding computationally and doesn't improve the accuracy significantly). This is achieved by supersampling the model, that is, evaluating the model at several locations inside the exposure and averaging the samples. Evaluating the model many times for each observation naturally increases the computational burden of the model, but is necessary to model long-cadence observations from the Kepler and TESS telescopes. All the transit models in PyTransit support supersampling. GPU computing Step7: Example 2 Step8: The second dataset considers a more realistic scenario where we have three separate transits observed in two passbands. We create this by tiling our time array three times. Step9: Achromatic radius ratio Let's see how this works in practice. We divide our current light curve into two halves observed in different passbands. These passbands have different limb darkening, but we first assume that the radius ratio is achromatic. Step10: Chromatic radius ratio Next, we assume that the radius ratio is chromatic, that is, it depends on the passband. This is achieved by giving the model an array of radius ratios (where the number should equal to the number of passbands) instead of giving it a scalar radius ratio. Step11: Different superampling rates Next, let's set different supersampling rates to the two light curves. There's no reason why we couldn't also let them have different passbands, but it's better to keep things simple at this stage. Step12: Everything together Finally, let's throw everything together and create a set of light curves observed in different passbands, requiring different supersampling rates, assuming chromatic radius ratios, for a set of parameter vectors.
Python Code: %pylab inline rc('figure', figsize=(13,5)) def plot_lc(time, flux, c=None, ylim=(0.9865, 1.0025), ax=None): if ax is None: fig, ax = subplots() else: fig, ax = None, ax ax.plot(time, flux, c=c) ax.autoscale(axis='x', tight=True) setp(ax, xlabel='Time [d]', ylabel='Flux', xlim=time[[0,-1]], ylim=ylim) if fig is not None: fig.tight_layout() return ax Explanation: RoadRunner transit model example I - basics Author: Hannu Parviainen<br> Last modified: 16.9.2020 The RoadRunner transit model (Parviainen, submitted 2020) implemented by pytransit.RoadRunnerModel is a fast transit model that allows for any radially symmetric function to be used to model stellar limb darkening. The model offers flexibility with performance that is similar or superior to the analytical quadratic model by Mandel & Agol (2002) implemented by pytransit.QuadraticModel. The model follows the standard PyTransit API. The limb darkening model is given in the initialisation, and can be either the name of a set of built-in standard analytical limb darkening models constant, linear, quadratic, nonlinear, general, power2, and power2-pm, an instance of pytransit.LDTkModel, a Python callable that takes an array of $\mu$ values and a parameter vector, or a tuple with two callables where the first is the limb darkening model and the second a function returning the stellar surface brightness integrated over the stellar disk. I demonstrate the use of custom limb darkening models and the LDTk-based limb darkening model (pytransit.LDTkModel) in the next notebooks, and here show basic examples of the RoadRunner model use with the named limb darkening models. End of explanation from pytransit import RoadRunnerModel Explanation: Import the model End of explanation time = linspace(-0.05, 0.05, 1500) Explanation: Example 1: simple light curve We begin with a simple light curve without any fancy stuff such as multipassband modeling. First, we create a time array centred around zero End of explanation tm = RoadRunnerModel('nonlinear') tm.set_data(time) Explanation: Next, we initialise and set up a RoadRunnerModel choosing to use the four-parameter nonlinear limb darkening model and giving it the mid-exposure time array End of explanation flux1 = tm.evaluate(k=0.1, ldc=[0.36, 0.04, 0.1, 0.05], t0=0.0, p=1.0, a=4.2, i=0.5*pi, e=0.0, w=0.0) plot_lc(time, flux1); Explanation: Evaluation for scalar parameters After the transit model has been initialised and the data set, we can evaluate the model for a given radius ratio (k), limb darkening ccoefficients (ldc), zero epoch (t0), orbital period (p), scaled semi-major axis ($a/R_\star$, a), orbital inclination (i), eccentricity (e), and argument of periastron (w). Eccentricity and argument of periastron are optional and default to zero if not given. The tm.evaluate method returns a 1D array with shape (npt) with the transit model evaluated for each mid-exposure time given in the time array. Note: The first tm.set_data and tm.evaluate evaluation takes a significantly longer time than the succeeding calls to these methods. This is because most of the PyTransit routines are accelerated with numba, and numba takes some time compiling all the required methods. End of explanation npv = 5 ks = normal(0.10, 0.002, (npv, 1)) t0s = normal(0, 0.001, npv) ps = normal(1.0, 0.01, npv) smas = normal(4.2, 0.1, npv) incs = uniform(0.48*pi, 0.5*pi, npv) es = uniform(0, 0.25, size=npv) os = uniform(0, 2*pi, size=npv) ldc = uniform(0, 0.2, size=(npv,1,4)) flux2 = tm.evaluate(ks, ldc, t0s, ps, smas, incs, es, os) plot_lc(time, flux2.T); Explanation: Evaluation for a set of parameters Like the rest of the PyTransit transit models, the RoadRunner model can be evaluated simultaneously for a set of parameters. This is also done using tm.evaluate, but now each argument is a vector with npv values. Model evaluation is parallelised and can be significantly faster than looping over an parameter array in Python. Now, the tm.evaluate returns a 2D array with shape [npv, npt] with the transit model evaluated for each parameter vector and mid-transit time given in the time array End of explanation tm = RoadRunnerModel('nonlinear') tm.set_data(time, exptimes=0.02, nsamples=10) flux3 = tm.evaluate(k=0.1, ldc=[0.36, 0.04, 0.1, 0.05], t0=0.0, p=1.0, a=4.2, i=0.5*pi, e=0.0, w=0.0) ax = plot_lc(time, flux1, c='0.75') plot_lc(time, flux3, ax=ax); Explanation: Supersampling A single photometry observation is always an exposure over time. If the exposure time is short compared to the changes in the transit signal shape during the exposure, the observation can be modelled by evaluating the model at the mid-exposure time. However, if the exposure time is long, we need to simluate the integration by calculating the model average over the exposure time (although numerical integration is also a valid approach, it is slightly more demanding computationally and doesn't improve the accuracy significantly). This is achieved by supersampling the model, that is, evaluating the model at several locations inside the exposure and averaging the samples. Evaluating the model many times for each observation naturally increases the computational burden of the model, but is necessary to model long-cadence observations from the Kepler and TESS telescopes. All the transit models in PyTransit support supersampling. GPU computing: supersampling increases the computational burden of a single observation, what also leads to increasing advantage of using a GPU version of the transit model rather than a CPU version. End of explanation lcids1 = zeros(time.size, int) lcids1[time.size//2:] = 1 plot_lc(time, lcids1, ylim=(-0.5, 1.5)); Explanation: Example 2: heterogeneous light curve Multiple passbands PyTransit aims to simplify modelling of heterogeneous light curves as much as possible. Here heterogeneous means that we can model light curves observed in different passbands, with different instruments, and with different supersampling requirements in one go. This is because most of the real exoplanet transit modelling science cases nowadays involve heterogeneous datasets, such as modelling long-cadence Kepler light curves together with short-cadence ground-based observations, or transmission spectroscopy where the light curves are created from a spectroscopic time series. To model heterogeneous light curves, PyTransit designates each observation (exposure, datapoint) to a specific light curve, and each light curve to a specific passband. This is done throught the light curve index array (lcids) and passband index array (pbids). Light curve index array is an integer array giving an index for each observed datapoints (suchs as, the indices for dataset of light curves would be either 0 or 1), while the passband index array is an integer array containing a passband index for each light curve in the dataset. So, a dataset of two light curves observed in a same passband would be times = [0, 1, 2, 3] lcids = [0, 0, 1, 1] pbids = [0, 0] while a dataset containing two light curves observed in different passbands would be times = [0, 1, 2, 3] lcids = [0, 0, 1, 1] pbids = [0, 1] Let's create two datasets. The first one divides our single light curve into two halves parts and gives each a different light curve index (0 for the first half and 1 for the second) End of explanation time2 = tile(time, 3) lcids2 = repeat([0, 1, 1], time.size) ax = plot_lc(arange(time2.size), lcids2, ylim=(-0.5, 1.5)) [ax.axvline(i*time.size, c='k', ls='--') for i in range(1,3)]; Explanation: The second dataset considers a more realistic scenario where we have three separate transits observed in two passbands. We create this by tiling our time array three times. End of explanation tm = RoadRunnerModel('power-2') tm.set_data(time, lcids=lcids1, pbids=[0, 1]) flux = tm.evaluate(k=0.1, ldc=[[3.1, 0.1],[2.1, 0.03]], t0=0.0, p=1.0, a=4.3, i=0.5*pi) plot_lc(time, flux); tm.set_data(time2, lcids=lcids2, pbids=[0, 1]) flux = tm.evaluate(k=0.1, ldc=[[3.1, 0.1],[2.1, 0.03]], t0=0.0, p=1.0, a=4.3, i=0.5*pi) plot_lc(arange(flux.size), flux); Explanation: Achromatic radius ratio Let's see how this works in practice. We divide our current light curve into two halves observed in different passbands. These passbands have different limb darkening, but we first assume that the radius ratio is achromatic. End of explanation tm.set_data(time, lcids=lcids1, pbids=[0, 1]) flux = tm.evaluate(k=[0.105, 0.08], ldc=[[3.1, 0.1],[2.1, 0.03]], t0=0.0, p=1.0, a=4.3, i=0.5*pi) plot_lc(time, flux); tm.set_data(time2, lcids=lcids2, pbids=[0, 1]) flux = tm.evaluate(k=[0.105, 0.08], ldc=[[3.1, 0.1],[2.1, 0.03]], t0=0.0, p=1.0, a=4.3, i=0.5*pi) plot_lc(arange(flux.size), flux); Explanation: Chromatic radius ratio Next, we assume that the radius ratio is chromatic, that is, it depends on the passband. This is achieved by giving the model an array of radius ratios (where the number should equal to the number of passbands) instead of giving it a scalar radius ratio. End of explanation tm.set_data(time, lcids=lcids1, exptimes=[0.0, 0.02], nsamples=[1, 10]) flux = tm.evaluate(k=0.105, ldc=[3.1, 0.1], t0=0.0, p=1.0, a=4.3, i=0.5*pi) plot_lc(time, flux); tm.set_data(time2, lcids=lcids2, exptimes=[0.0, 0.02], nsamples=[1, 10]) flux = tm.evaluate(k=0.105, ldc=[3.1, 0.1], t0=0.0, p=1.0, a=4.3, i=0.5*pi) plot_lc(arange(flux.size), flux); Explanation: Different superampling rates Next, let's set different supersampling rates to the two light curves. There's no reason why we couldn't also let them have different passbands, but it's better to keep things simple at this stage. End of explanation tm = RoadRunnerModel('quadratic-tri') time3 = tile(time, 3) lcids3 = repeat([0, 1, 2], time.size) tm.set_data(time3, lcids=lcids3, pbids=[0, 1, 2], exptimes=[0.0, 0.02, 0.0], nsamples=[1, 10, 1]) npv = 5 ks = uniform(0.09, 0.1, (npv, 3)) t0s = normal(0, 0.002, npv) ps = normal(1.0, 0.01, npv) smas = normal(5.0, 0.1, npv) incs = uniform(0.48*pi, 0.5*pi, npv) es = uniform(0, 0.25, size=npv) os = uniform(0, 2*pi, size=npv) ldc = uniform(0, 0.5, size=(npv,3,2)) flux = tm.evaluate(k=ks, ldc=ldc, t0=t0s, p=ps, a=smas, i=incs, e=es, w=os) plot_lc(arange(flux.shape[1]), flux.T + linspace(0, 0.06, npv), ylim=(0.988, 1.065)); Explanation: Everything together Finally, let's throw everything together and create a set of light curves observed in different passbands, requiring different supersampling rates, assuming chromatic radius ratios, for a set of parameter vectors. End of explanation
3,083
Given the following text description, write Python code to implement the functionality described below step by step Description: Author Step1: Exploratory analysis First let's check out what the data look like and see if we can identify some patterns. Step2: From a cursory look at the data we can see that there are at least two ways to genderize job titles Step3: Extracting gender This is the part where we actually do things. Bracket notation Example Step4: Looks like our regex is pretty good! Both nouns and qualifiers are subject to genderization. Here are some examples of how these postfixes are meant to transform the preceding word Step5: Looks like there is only one case, and the '(s)' plural postfix is frankly unnecessary (here the singular form already implies you can supervise many sites). So instead of making the regex needlessly complex to account for this, we'll just skip this particular case in the substitution code. Caveat Step11: It appears that masculine words like "Accastilleur" and "Contrôleur", which both end in -eur, sometimes use the "(se)" and sometimes the "(euse)" postfix! We also see that conversely, (euse) is both used for words ending in -er (like "Manager") and -eur ("Contrôleur")! Which means the postfixes are not normalized and we unfortunately have a many-to-many mapping Step12: Now all that's left is to run it
Python Code: from itertools import chain import pandas as pd import re from bob_emploi.data_analysis.lib import cleaned_data jobs = cleaned_data.rome_jobs('../../../data') Explanation: Author: Paul Duan Skip the run test because the ROME version has to be updated to make it work in the exported repository. TODO: Update ROME and remove the skiptest flag. ROME Genderization Problem statement: This notebook is an exploration of how we could normalize the genderization of (French) job titles in ROME (Répertoire Opérationnel des Métiers et des Emplois), which is published by Pôle Emploi. These are often inconsistently specified, which leads to confusion and poorer user experience. In addition it makes the job title longer than it should be, which makes them harder to identify at a glance. Input: ROME job titles, with hardcoded genderization in the plaintext job titles. Desired output: A more structured format where jobs have both a masculine and a feminine version (which may be the same if the job is not genderized). Example problem and output: An English-language example of the problem would be that a job such as "Senior Fireman" might sometimes be genderized as "Senior Fireman / Senior Firewoman" and sometimes as "Senior Fire(wo)man". We want to turn any variant of these possible genderizations into a normalized pair of two fields: ("Senior Fireman", "Senior Firewoman"). If a job title is not gendered, for example "Artist", we want to simply return ("Artist", "Artist"). Additional outputs (TODO): We could also re-define a normalized way of returning a genderized string when the user's gender is unknown (like the current ROME job titles, but enforcing a consistent notation for how genderization is handled). This, along with the rest, could be given back to Pôle Emploi so we can help them push the improvements upstream to the official ROME. End of explanation jobs Explanation: Exploratory analysis First let's check out what the data look like and see if we can identify some patterns. End of explanation is_genderized = jobs['name'].apply(lambda x: '(' in x or '/' in x) print('Number of genderized names :', sum(is_genderized)) print('Out of total names :', len(jobs), 'i.e.', sum(is_genderized)/len(jobs), '%') Explanation: From a cursory look at the data we can see that there are at least two ways to genderize job titles: * masculine_title / feminine_title (e.g. "Abbateur / Abbateuse"); we'll call this the slash notation * masculine_title(feminine_postfix) (e.g."Accompagnateur(trice)"); we'll call this the bracket notation When the adjective itself needs to be in concordance with the gender: * In the bracket notation, the adjective itself will have the gender postfix in a bracket, e.g. "Accompagnateur(trice) médicosocial(e) vie journalière" in jobs.loc['10220'] * In the slash notation, both will be repeated, as in "Accompagnateur médicosocial / Accompagnatrice médicosociale" in jobs.loc['10219'] Remarks: There isn't an obvious logic as to when bracket notation is used. One hypothesis I had was that this would depend on whether there would be an adjective to be concorded (in which case the bracket notation seems more adapted), but this is not the case. There are many examples of cases where bracket notation is still used despite there being no adjective (e.g. "Accompagnateur(trice) voyages" in jobs.loc['10212'], especially since later we have a "Accompagnateur / Accompagnatrice tourisme", as well as examples of items in slash notations that also have an adjective. One tricky thing is that the postfix is sometimes meant to replace the word end as in "Accompagnateur(trice), whereas other times it's meant to be added to the end, as in "socioprofessionnel(le)"; this can be covered easily enough since there aren't too many possible postfixes, but this is one thing we have to be mindful of. Another annoying thing is that in the slash notation, usually qualifiers are not repeated and are instead meant to be left-distributive; for example, "Accompagnateur / Accompagnatrice tourisme" should translate to ("Accompagnateur tourisme", "Accompagnatrice tourisme"). With that said, other times they are repeated, as in "Accompagnateur médicosocial / Accompagnatrice médicosociale", especially (but not necessarily) when the qualifier is a concorded adjective. Though rarer, is sometimes also happens on the left side, for example with "Responsable éditorial / éditoriale web" in jobs.loc['38966'] which should translate to ("Responsable éditorial web", "Responsable éditoriale web") and features both a distributive qualifier on the left and on the right. How many genderized job names are there? As a quick way to estimate this number we'll just count the number of names containing slashes or brackets: End of explanation postfix_rule = re.compile(r"(?<=\S)\(([\S]+?)\)") has_bracket = jobs['name'].apply(lambda x: '(' in x) postfixes = jobs[has_bracket].name.apply( lambda x: re.findall(postfix_rule, x)) postfixes_types = set(chain.from_iterable(postfixes)) print(postfixes_types) Explanation: Extracting gender This is the part where we actually do things. Bracket notation Example: "Accompagnateur(trice) médicosocial(e) vie journalière"; we want ("Accompagnateur médicosocial vie journalière", "Accompagnatrice médicosociale vie journalière"). This is the more complex case. Here let's extract brackets and the preceding word (non-greedily, to account for cases where there are multiple brackets) but do not match when the character before the bracket is non-alphabetical. This is because we want to make sure the bracket is a postfix directly appended to a noun without space, since brackets can only be used by themselves. As such, a possible regex expression that would capture both a genderized word and its postfix is: r"(\S+?)\((\S+?)\)" To only capture the bracket, a regex would be: r"(?&lt;=\S)\(([\S]+?)\)" With the positive lookbehind ensuring that the preceding character is not a space. How many types of postfixes are there? Because rules for properly handling postfixes are complicated (and postfixes for according jobs and adjectives are few), I believe it's better to simply exhaustively list them then hardcode their associated substitution rules. Let's list them: (side note: as a bonus this also verifies that our regex is good and has no false positives) End of explanation jobs[jobs.name.apply(lambda x: '(s)' in x)] Explanation: Looks like our regex is pretty good! Both nouns and qualifiers are subject to genderization. Here are some examples of how these postfixes are meant to transform the preceding word: Abbateur(se) -> Abbateur, Abbateuse Accompagnateur(trice) -> Accompagnateur, Accompagnatrice social(e) -> social, sociale Technicien(ne) -> Technicien, Technicienne administratif(ive) -> administratif, administrative Only the 's' postfix looks out of place, as it doesn't seem to be a gender postfix (it's a plural postfix). Let's see if this is a big deal: End of explanation print(jobs[jobs.name.apply(lambda x: '(euse)' in x)][:3]) print(jobs[jobs.name.apply(lambda x: '(se)' in x)][:3]) Explanation: Looks like there is only one case, and the '(s)' plural postfix is frankly unnecessary (here the singular form already implies you can supervise many sites). So instead of making the regex needlessly complex to account for this, we'll just skip this particular case in the substitution code. Caveat: Is the mapping of postfixes to word endings bijective? Looking at the list of postfixes, it appears that we both have "se" and "euse" as possible postfixes. This is problematic, because it means the mapping is possibly inconsistent: End of explanation POSTFIX_MAP = { 'e': [''], # empty string if the postfix can be appended 'ère': ['er'], 'se': ['r'], 'sse': [''], 'euse': ['eur', 'er'], 've': ['f'], 're': ['r'], 'rice': ['eur'], 'ne': [''], 'trice': ['teur'], 'le': [''], 'ive': ['if'], 'ière': ['ier'], } def check_mapping_specification(postfix_map): Check whether the mapping of postfix to word endings correctly returns a list of possible word endings to substitute that goes from more specified (longer) to more general. for postfix, postfix_map in postfix_map.items(): if postfix_map != sorted(postfix_map, key=len, reverse=True): return False return True def substitute_postfix(word, postfix, postfix_map): Perform the correct postfix substitution from a masculine word to a feminine word, taking into account the fact that some postfix are meant to be appended to the base string while others are meant to be substituted. Both nouns and adjectives may be genderized. Examples: - Abbateur(se) -> Abbateur, Abbateuse - Accompagnateur(trice) -> Accompagnateur, Accompagnatrice - social(e) -> social, sociale - Technicien(ne) -> Technicien, Technicienne - administratif(ive) -> administratif, administrative etc. The integral set of postfixes in the ROME dataset is: {'e', 'ère', 'se', 'sse', 'euse', 've', 're', 'rice', 'ne', 'trice', 'le', 's', 'ive', 'ière'} (The 's' postfix is an exception, as it relates to the plural form rather than gender.) Since there are only a limited number of postfixes, we can exhaustively list them and the word ending they are meant to substitute, which is safer in case new unaccounted ones pop up. Note that the same postfix can be specified multiple ways for multiple types of word endings. For example, "Manager(euse)" is feminized as "Manageuse", but both "Masseur(euse)" and "Masseur(se)" both translate to "Masseuse". Therefore the substitution dictionary has the form: {postfix: [possible_word_ending1, possible_word_ending2, ...]} Here we perform the first substitution that matches the actual word ending. This means the list of possible word endings must therefore be ordered by decreasing length, so more specific cases are always checked before more general ones. if not len(word): raise ValueError("word is empty") if postfix in POSTFIX_MAP: known_endings = POSTFIX_MAP[postfix] for known_ending in known_endings: if word.endswith(known_ending): root = word[:len(word) - len(known_ending)] return root + postfix error_string = "{0}: unmapped word ending for postfix '{1}'" raise ValueError(error_string.format(word, postfix)) else: raise ValueError("unknown postfix:" + postfix) def extract_bracket_notation(raw_job_name, postfix_map): Extract the genderized strings from a job title with the bracket notation, by going through the string and replacing brackets. Return None if the item doesn't appear to be in bracket notation. # nb: we only want brackets directly following a character bracket_regex = re.compile(r"(\S+?)\((\S+?)\)") matches = re.findall(bracket_regex, raw_job_name) if not matches: return None # masculine name is just the string without the bracket content; # to get feminine names we also substitute the relevant words. # we'll perform these deletions/substitutions iteratively masculine_name = feminine_name = raw_job_name for word, postfix in matches: if postfix != 's': # if not the plural postfix edge case masculine_name = masculine_name.replace("({})".format(postfix), '') feminine_name = feminine_name.replace("({})".format(postfix), '') new_word = substitute_postfix(word, postfix, postfix_map) feminine_name = feminine_name.replace(word, new_word) return masculine_name, feminine_name def extract_slash_notation(raw_job_name): Extract the genderized strings from a job title with the slash notation. Simply split the raw job name according to the slashes, then deal with the qualifiers distribution by appending all additional words from the feminine (right) string to the masculine one. In addition, any leading words on the left side must be appended to the right side as well. One subtlety is that detecting when the leading words end (or if they exist) is complicated by the fact that the first common word may be gendered, so we need to fuzzy match. For our purposes simply comparing the first few characters should be enough. Return None if the item doesn't appear to be in slash notation. chars_to_compare = 3 substrings = raw_job_name.split(' / ') if len(substrings) != 2: return None masculine_name, feminine_name = substrings feminine_words = feminine_name.split(' ') masculine_words = masculine_name.split(' ') n_masculine_words = len(masculine_words) # insert until a word that looks like right side's first # word is encountered to_insert = [] for word in masculine_words: if word[:chars_to_compare] != feminine_words[0][:chars_to_compare]: to_insert.append(word) else: break feminine_words = to_insert + feminine_words feminine_name = ' '.join(feminine_words) # append extra right-side words to the the left side for i, word in enumerate(feminine_words): if i > n_masculine_words - 1: masculine_words.append(word) masculine_name = ' '.join(masculine_words) return masculine_name, feminine_name def genderize(df, postfix_map): Take a dataframe of the same form as the one returned by cleaned_data.rome_jobs and genderize it, adding a masculine_name and a feminine_name field to it. By default, masculine_name = feminine_name = raw_job_name, then we overwrite the value when either the slash notation or bracket notation rule is successful. masculine_name = df['name'].copy() feminine_name = df['name'].copy() bracket_output = df.name.apply(extract_bracket_notation, postfix_map=postfix_map) slash_output = df.name.apply(extract_slash_notation) is_bracket = bracket_output.notnull() is_slash = slash_output.notnull() masculine_name[is_bracket] = bracket_output[is_bracket].apply( lambda x: x[0]) feminine_name[is_bracket] = bracket_output[is_bracket].apply( lambda x: x[1]) masculine_name[is_slash] = slash_output[is_slash].apply( lambda x: x[0]) feminine_name[is_slash] = slash_output[is_slash].apply( lambda x: x[1]) df['masculine_name'] = masculine_name df['feminine_name'] = feminine_name return df Explanation: It appears that masculine words like "Accastilleur" and "Contrôleur", which both end in -eur, sometimes use the "(se)" and sometimes the "(euse)" postfix! We also see that conversely, (euse) is both used for words ending in -er (like "Manager") and -eur ("Contrôleur")! Which means the postfixes are not normalized and we unfortunately have a many-to-many mapping :( Slash notation Example: "Accordeur / Accordeuse de pianos"; we want ("Accordeur de pianos", "Accordeuse de pianos"). This case is easier: we'll just split the sentence according to slashes. The left side of the slash is always the masculine case, and the right side the feminine case. Caveat: We need to make sure we handle qualifiers properly, because sometimes they are repeated on both sides of the slash and sometimes not, in which case they are meant to be distributive. For example, in "Responsable éditorial / éditoriale web", the word "Responsable" on the left side is meant to be repeated on the right side, and conversely the word "web" on the right side must be repeated on the left side. Sometimes this is not the case (all qualifiers are already repeated on both sides), sometimes one side only features distributive qualifiers, sometimes both (as in the example in the previous sentence). One way of handling this is to first insert any words at the beginning of the left side that is not present in the ride side in front of the string in the right side. Then once this is done we can consider that if the left side contains n words, then these also represent the first n words on the right side, with all extra words on the ride side needing to be appended to the left side as well. Putting it all back together End of explanation postfix_map = POSTFIX_MAP assert check_mapping_specification(postfix_map), "ill-specified postfix map" genderize(jobs, postfix_map) Explanation: Now all that's left is to run it: End of explanation
3,084
Given the following text description, write Python code to implement the functionality described below step by step Description: This is an example of using Python and R together within a Jupyter notebook. First, let's generate some data within python. Step1: Now, we pass those two variables into R and perform linear regression, and get back the result. Step2: Now let's look at the contents of the variable that we got back (which should contain the parameter estimates)
Python Code: import numpy %load_ext rpy2.ipython x=numpy.random.randn(100) beta=3 y=beta*x+numpy.random.randn(100) Explanation: This is an example of using Python and R together within a Jupyter notebook. First, let's generate some data within python. End of explanation %%R -i x,y -o beta_est result=lm(y~x) beta_est=result$coefficients summary(result) Explanation: Now, we pass those two variables into R and perform linear regression, and get back the result. End of explanation print(beta_est) Explanation: Now let's look at the contents of the variable that we got back (which should contain the parameter estimates) End of explanation
3,085
Given the following text description, write Python code to implement the functionality described below step by step Description: Machine Learning Model Business Problem Startup XYZ is in the business of giving personal loans, structured as non-recourse loans. The defaults on their loans are much higher than their competitors. Also, the underlying collaterals lose their value way too quicky and has resulted in huge losses for Bank XYZ. Alice was recently appointed as the Senior VP of the Risk Organization. She comes from a strong analytics background and wants to leverage data science to identify customer's risk before approving loan. She's appointed you as a consultant to help her and the team solve this problem. Note Step1: 3. Refine Lets check the dataset for compeleteness - by checking for missing values Missing values Step2: So, we see that years have missing values. The column is numeric. We have three options for dealing with missing values Options to treat Missing Values REMOVE - NAN rows IMPUTATION - Replace them with something?? Mean Median Fixed Number - Domain Relevant High Number (999) - Issue with modelling BINNING - Categorical variable and "Missing becomes a number DOMAIN SPECIFIC - Entry error, pipeline, etc. Step3: We also need to check for quality - by checking for outliers in the data. For this workshop, we will skip doing that. But remember to check for outliers when doing in real-life 4. Explore The goal is to build some intuition around the data Single Variable Exploration - Univariate Analysis Step4: Dual Variable Exploration - Bivariate Analysis Step5: EXERCISE Three Variables Exploration Explore the relationship between age, income and defualt 5. Transform Step6: Two of the columns are categorical in nature - grade and ownership. To build models, we need all of the features to be numeric. There exists a number of ways to convert categorical variables to numeric values. We will use one of the popular options Step7: EXERCISE Do label encoding on ownership 6. Model Common approaches Step8: Step 2 - Build decision tree model Step9: Step 3 - Visualize the decision tree Step10: Let's see the decision boundaries Step11: EXERCISE Change the depth of the Decision Tree classifier to 10 and plot the decision boundaries again. Lets understand first just the difference between Class prediction and Class Probabilities Step12: Model Validation While we have created the model, we still don't have a measure of how good the model is. We need to measure some accuracy metric of the model and have confidence that it will generalize well. We should be confident that when we put the model in production (real-life), the accuracy we get from the model results should mirror the metrics we obtained when we built the model. Selecting the right accuracy metric for the model is important. This wiki has a good overview of some of the common metrics. We will use a metric - Area Under the Curve Area Under the Curve In a Receiver Operating Characteristic (ROC) curve the true positive rate (Sensitivity) is plotted in function of the false positive rate (100-Specificity) for different cut-off points. Each point on the ROC curve represents a sensitivity/specificity pair corresponding to a particular decision threshold. A test with perfect discrimination (no overlap in the two distributions) has a ROC curve that passes through the upper left corner (100% sensitivity, 100% specificity). Therefore the closer the ROC curve is to the upper left corner, the higher the overall accuracy of the test (source) Step13: EXERCISE Build a decison tree classifier with max_depth = 10 and plot confusion_matrix & auc Cross-validation Now that we have chosen the error metric, how do we find the generalization error? We do this using cross-validation. ([source] (https Step14: EXERCISE Build a classifier with max_depth = 10 and run a 5-fold CV to get the auc score. Build a classifier with max_depth = 20 and run a 5-fold CV to get the auc score. Bagging Decision trees in general have low bias and high variance. We can think about it like this Step15: EXERCISE Change the number of trees from 10 to 100 and make it 5-fold. And report the cross-validation error (Hint Step16: Model serialization We need to serialize the model and the label encoders.
Python Code: #Load the libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt #Default Variables %matplotlib inline plt.rcParams['figure.figsize'] = (8,6) plt.style.use('ggplot') pd.set_option('display.float_format', lambda x: '%.2f' % x) #Load the training dataset df = pd.read_csv("../data/historical_loan.csv") #View the first few rows of training dataset df.head() #View the columns of the train dataset df.columns #View the data types of the train dataset df.dtypes #View the number of records in the data df.shape #View summary of raw data df.describe() Explanation: Machine Learning Model Business Problem Startup XYZ is in the business of giving personal loans, structured as non-recourse loans. The defaults on their loans are much higher than their competitors. Also, the underlying collaterals lose their value way too quicky and has resulted in huge losses for Bank XYZ. Alice was recently appointed as the Senior VP of the Risk Organization. She comes from a strong analytics background and wants to leverage data science to identify customer's risk before approving loan. She's appointed you as a consultant to help her and the team solve this problem. Note: This case study was inspired by the bank marketing case study. The data is a modified version of what is available in that site Brainstorming 1. Frame The first step is to convert the business problem into an analytics problem Alice wants to know customer's risk. Let's try to predict the propensity of a customer to default, given the details he/she has entered on the loan application form 2. Acquire After discussions with the IT team of Startup XYZ, you have obtained some historical data from the bank. It has the following columns Application Attributes: - years: Number of years the applicant has been employed - ownership: Whether the applicant owns a house or not - income: Annual income of the applicant - age: Age of the applicant - amount : Amount of Loan requested by the applicant Behavioural Attributes: - grade: Credit grade of the applicant Outcome Variable: default : Whether the applicant has defaulted or not Load the data End of explanation # Find if df has missing values. df.isnull().head() # In a large dataset, this is hard to find if there are any missing values or not. # We can chain operators on the output. Let's use sum() df.isnull().sum() Explanation: 3. Refine Lets check the dataset for compeleteness - by checking for missing values Missing values End of explanation # Let's replace missing values with mean # There's a fillna function df.years = df.years.fillna(np.mean(df.years)) #Finding unique values of years pd.unique(df.years) Explanation: So, we see that years have missing values. The column is numeric. We have three options for dealing with missing values Options to treat Missing Values REMOVE - NAN rows IMPUTATION - Replace them with something?? Mean Median Fixed Number - Domain Relevant High Number (999) - Issue with modelling BINNING - Categorical variable and "Missing becomes a number DOMAIN SPECIFIC - Entry error, pipeline, etc. End of explanation # Create histogram for target variable - default df.default.plot.hist() # Explore grade df.grade.value_counts().plot.barh() # Explore age df.age.plot.hist(bins=50) Explanation: We also need to check for quality - by checking for outliers in the data. For this workshop, we will skip doing that. But remember to check for outliers when doing in real-life 4. Explore The goal is to build some intuition around the data Single Variable Exploration - Univariate Analysis End of explanation # Explore the impact of age with income df.plot.scatter(x='age', y='income', alpha=0.7) Explanation: Dual Variable Exploration - Bivariate Analysis End of explanation # Let's again revisit the data types in the dataset df.dtypes Explanation: EXERCISE Three Variables Exploration Explore the relationship between age, income and defualt 5. Transform End of explanation from sklearn.preprocessing import LabelEncoder # Let's not modify the original dataset. # Let's transform it in another dataset df_encoded = df.copy() # instantiate label encoder le_grade = LabelEncoder() # fit label encoder le_grade = le_grade.fit(df_encoded["grade"]) df_encoded.grade = le_grade.transform(df.grade) df_encoded.head() Explanation: Two of the columns are categorical in nature - grade and ownership. To build models, we need all of the features to be numeric. There exists a number of ways to convert categorical variables to numeric values. We will use one of the popular options: LabelEncoding End of explanation X_2 = df_encoded.loc[:,('age', 'amount')] y = df_encoded.loc[:,'default'] Explanation: EXERCISE Do label encoding on ownership 6. Model Common approaches: Linear models Tree-based models Neural Networks ... Some choices to consider: Interpretability Run-time Model complexity Scalability For the purpose of this workshop, we will use tree-based models. We will do the following two: Decision Tree Random Forest Decision Trees Decision Trees are a non-parametric supervised learning method used for classification and regression. The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. Let's first build a model using just two features to build some intuition around decision trees Step 1 - Create features matrix and target vector End of explanation from sklearn import tree # instantiate the decision tree object clf_dt_2 = tree.DecisionTreeClassifier(max_depth=2) # fit the decision tree model clf_dt_2 = clf_dt_2.fit(X_2, y) Explanation: Step 2 - Build decision tree model End of explanation import pydotplus from IPython.display import Image dot_data = tree.export_graphviz(clf_dt_2, out_file='tree.dot', feature_names=X_2.columns, class_names=['no', 'yes'], filled=True, rounded=True, special_characters=True) # Incase you don't have graphviz installed # txt = open("tree_3.dot").read().replace("\\n", "\n ").replace(";", ";\n") # print(txt) graph = pydotplus.graph_from_dot_file('tree.dot') Image(graph.create_png()) Explanation: Step 3 - Visualize the decision tree End of explanation def plot_boundaries(X2, clf): x_min, x_max = X2.iloc[:, 0].min() - 1, X2.iloc[:, 0].max() + 1 y_min, y_max = X2.iloc[:, 1].min() - 1, X2.iloc[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, (x_max - x_min)/100), np.arange(y_min, y_max, (y_max - y_min)/100)) Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:,1] Z = Z.reshape(xx.shape) target = clf.predict(X2) plt.scatter(x = X2.iloc[:,0], y = X2.iloc[:,1], c = y, s = 20, cmap=plt.cm.magma) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.viridis, alpha = 0.4) plot_boundaries(X_2, clf_dt_2) Explanation: Let's see the decision boundaries End of explanation pred_class = clf_dt_10.predict(X_2) pred_proba = clf_dt_10.predict_proba(X_2) plt.hist(pred_class); import seaborn as sns sns.kdeplot(pred_proba[:,1], shade=True) Explanation: EXERCISE Change the depth of the Decision Tree classifier to 10 and plot the decision boundaries again. Lets understand first just the difference between Class prediction and Class Probabilities End of explanation from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve X = df_encoded.iloc[:,1:] y = df_encoded.iloc[:,0] clf_dt = tree.DecisionTreeClassifier(max_depth=5) def pred_df(clf, X, y): clf = clf.fit(X,y) y_pred = clf.predict(X) y_proba = clf.predict_proba(X)[:,1] pred_df = pd.DataFrame({"actual": np.array(y), "predicted": y_pred, "probability": y_proba}) return pred_df pred_dt = pred_df(clf_dt, X,y) pred_dt.head() pd.crosstab(pred_dt.predicted, pred_dt.actual) confusion_matrix(pred_dt.predicted, pred_dt.actual) def plot_prediction(pred_df): pred_df_0 = pred_df[pred_df.actual == 0] pred_df_1 = pred_df[pred_df.actual == 1] sns.kdeplot(pred_df_0.probability, shade=True, label="no default") sns.kdeplot(pred_df_1.probability, shade=True, label="default") plot_prediction(pred_dt) def plot_roc_auc(pred_df): fpr, tpr, thresholds = roc_curve(pred_df.actual, pred_df.probability) auc_score = roc_auc_score(pred_df.actual,pred_df.probability) plt.plot(fpr, tpr, label='AUC = %0.2f' % auc_score) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.legend(loc="lower right") return print("AUC = %0.2f" % auc_score) plot_roc_auc(pred_dt) Explanation: Model Validation While we have created the model, we still don't have a measure of how good the model is. We need to measure some accuracy metric of the model and have confidence that it will generalize well. We should be confident that when we put the model in production (real-life), the accuracy we get from the model results should mirror the metrics we obtained when we built the model. Selecting the right accuracy metric for the model is important. This wiki has a good overview of some of the common metrics. We will use a metric - Area Under the Curve Area Under the Curve In a Receiver Operating Characteristic (ROC) curve the true positive rate (Sensitivity) is plotted in function of the false positive rate (100-Specificity) for different cut-off points. Each point on the ROC curve represents a sensitivity/specificity pair corresponding to a particular decision threshold. A test with perfect discrimination (no overlap in the two distributions) has a ROC curve that passes through the upper left corner (100% sensitivity, 100% specificity). Therefore the closer the ROC curve is to the upper left corner, the higher the overall accuracy of the test (source) End of explanation from sklearn.model_selection import StratifiedKFold def cross_val(clf, k): # Instantiate stratified k fold. kf = StratifiedKFold(n_splits=k) # Let's use an array to store the results of cross-validation kfold_auc_score = [] # Run kfold CV for train_index, test_index in kf.split(X,y): clf = clf.fit(X.iloc[train_index], y.iloc[train_index]) proba = clf.predict_proba(X.iloc[test_index])[:,1] auc_score = roc_auc_score(y.iloc[test_index],proba) print(auc_score) kfold_auc_score.append(auc_score) print("Mean K Fold CV:", np.mean(kfold_auc_score)) cross_val(clf_dt, 3) Explanation: EXERCISE Build a decison tree classifier with max_depth = 10 and plot confusion_matrix & auc Cross-validation Now that we have chosen the error metric, how do we find the generalization error? We do this using cross-validation. ([source] (https://en.wikipedia.org/wiki/Cross-validation_(statistics)) From wiki: One round of cross-validation involves partitioning a sample of data into complementary subsets, performing the analysis on one subset (called the training set), and validating the analysis on the other subset (called the validation set or testing set). To reduce variability, multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds. We will use StratifiedKFold. This ensures that in each fold, the proportion of positive class and negative class remain similar to the original dataset This is the process we will follow to get the mean cv-score Generate k-fold Train the model using k-1 fold Predict for the kth fold Find the accuracy. Append it to the array Repeat 2-5 for different validation folds Report the mean cross validation score End of explanation from sklearn.ensemble import RandomForestClassifier clf_rf = RandomForestClassifier(n_estimators=10) cross_val(clf_rf, 5) Explanation: EXERCISE Build a classifier with max_depth = 10 and run a 5-fold CV to get the auc score. Build a classifier with max_depth = 20 and run a 5-fold CV to get the auc score. Bagging Decision trees in general have low bias and high variance. We can think about it like this: given a training set, we can keep asking questions until we are able to distinguish between ALL examples in the data set. We could keep asking questions until there is only a single example in each leaf. Since this allows us to correctly classify all elements in the training set, the tree is unbiased. However, there are many possible trees that could distinguish between all elements, which means higher variance. How do we reduce variance? In order to reduce the variance of a single error tree, we usually place a restriction on the number of questions asked in a tree. This is true for single decision trees which we have seen in previous notebooks. Along with this other method to do reduce variance is to ensemble models of decision trees. The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator. How to ensemble? Averaging: Build several estimators independently and then average their predictions. On average, the combined estimator is usually better than any of the single base estimator because its variance is reduced. Examples: Bagging Random Forest Extremely Randomized Trees Boosting: Build base estimators sequentially and then try to reduce the bias of the combined estimator. The motivation is to combine several weak models to produce a powerful ensemble. AdaBoost Gradient Boosting (e.g. xgboost) Random Forest In random forests, each tree in the ensemble is built from a sample drawn with replacement (i.e., a bootstrap sample) from the training set. In addition, when splitting a node during the construction of the tree, the split that is chosen is no longer the best split among all features. Instead, the split that is picked is the best split among a random subset of the features. As a result of this randomness, the bias of the forest usually slightly increases (with respect to the bias of a single non-random tree) but, due to averaging, its variance also decreases, usually more than compensating for the increase in bias, hence yielding an overall better model. Random Forest Model The advantage of the scikit-learn API is that the syntax remains fairly consistent across all the classifiers. If we change the DecisionTreeClassifier to RandomForestClassifier in the above code, we should be good to go :-) End of explanation final_model = RandomForestClassifier(n_estimators=100) final_model = final_model.fit(X, y) Explanation: EXERCISE Change the number of trees from 10 to 100 and make it 5-fold. And report the cross-validation error (Hint: You should get ~ 0.74. ) A more detailed version of bagging and random forest can be found in the speakers' introductory machine learning workshop material bagging random forest Model Selection We choose the model and its hyper-parameters that has the best cross-validation score on the chosen error metric. In our case, it is random forest. Now - how do we get the model? We need to run the model with the chosen hyper-parameters on all of the train data. And serialize it. End of explanation from sklearn.externals import joblib joblib.dump(final_model, "model.pkl") joblib.dump(le_grade, "le_grade.pkl") joblib.dump(le_ownership, "le_ownership.pkl"); Explanation: Model serialization We need to serialize the model and the label encoders. End of explanation
3,086
Given the following text description, write Python code to implement the functionality described below step by step Description: Multi-Task Learning Example This is a simple example to show how to use mxnet for multi-task learning. The network is jointly going to learn whether a number is odd or even and to actually recognize the digit. For example 1 Step1: Parameters Step2: Data We get the traditionnal MNIST dataset and add a new label to the existing one. For each digit we return a new label that stands for Odd or Even Step3: We assign the transform to the original dataset Step4: We load the datasets DataLoaders Step5: Multi-task Network The output of the featurization is passed to two different outputs layers Step6: We can use two different losses, one for each output Step7: We create and initialize the network Step8: Evaluate Accuracy We need to evaluate the accuracy of each task separately Step9: Training Loop We need to balance the contribution of each loss to the overall training and do so by tuning this alpha parameter within [0,1]. Step10: Testing
Python Code: import logging import random import time import matplotlib.pyplot as plt import mxnet as mx from mxnet import gluon, nd, autograd import numpy as np Explanation: Multi-Task Learning Example This is a simple example to show how to use mxnet for multi-task learning. The network is jointly going to learn whether a number is odd or even and to actually recognize the digit. For example 1 : 1 and odd 2 : 2 and even 3 : 3 and odd etc In this example we don't expect the tasks to contribute to each other much, but for example multi-task learning has been successfully applied to the domain of image captioning. In A Multi-task Learning Approach for Image Captioning by Wei Zhao, Benyou Wang, Jianbo Ye, Min Yang, Zhou Zhao, Ruotian Luo, Yu Qiao, they train a network to jointly classify images and generate text captions End of explanation batch_size = 128 epochs = 5 ctx = mx.gpu() if mx.context.num_gpus() > 0 else mx.cpu() lr = 0.01 Explanation: Parameters End of explanation train_dataset = gluon.data.vision.MNIST(train=True) test_dataset = gluon.data.vision.MNIST(train=False) def transform(x,y): x = x.transpose((2,0,1)).astype('float32')/255. y1 = y y2 = y % 2 #odd or even return x, np.float32(y1), np.float32(y2) Explanation: Data We get the traditionnal MNIST dataset and add a new label to the existing one. For each digit we return a new label that stands for Odd or Even End of explanation train_dataset_t = train_dataset.transform(transform) test_dataset_t = test_dataset.transform(transform) Explanation: We assign the transform to the original dataset End of explanation train_data = gluon.data.DataLoader(train_dataset_t, shuffle=True, last_batch='rollover', batch_size=batch_size, num_workers=5) test_data = gluon.data.DataLoader(test_dataset_t, shuffle=False, last_batch='rollover', batch_size=batch_size, num_workers=5) print("Input shape: {}, Target Labels: {}".format(train_dataset[0][0].shape, train_dataset_t[0][1:])) Explanation: We load the datasets DataLoaders End of explanation class MultiTaskNetwork(gluon.HybridBlock): def __init__(self): super(MultiTaskNetwork, self).__init__() self.shared = gluon.nn.HybridSequential() with self.shared.name_scope(): self.shared.add( gluon.nn.Dense(128, activation='relu'), gluon.nn.Dense(64, activation='relu'), gluon.nn.Dense(10, activation='relu') ) self.output1 = gluon.nn.Dense(10) # Digist recognition self.output2 = gluon.nn.Dense(1) # odd or even def hybrid_forward(self, F, x): y = self.shared(x) output1 = self.output1(y) output2 = self.output2(y) return output1, output2 Explanation: Multi-task Network The output of the featurization is passed to two different outputs layers End of explanation loss_digits = gluon.loss.SoftmaxCELoss() loss_odd_even = gluon.loss.SigmoidBCELoss() Explanation: We can use two different losses, one for each output End of explanation mx.random.seed(42) random.seed(42) net = MultiTaskNetwork() net.initialize(mx.init.Xavier(), ctx=ctx) net.hybridize() # hybridize for speed trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate':lr}) Explanation: We create and initialize the network End of explanation def evaluate_accuracy(net, data_iterator): acc_digits = mx.metric.Accuracy(name='digits') acc_odd_even = mx.metric.Accuracy(name='odd_even') for i, (data, label_digit, label_odd_even) in enumerate(data_iterator): data = data.as_in_context(ctx) label_digit = label_digit.as_in_context(ctx) label_odd_even = label_odd_even.as_in_context(ctx).reshape(-1,1) output_digit, output_odd_even = net(data) acc_digits.update(label_digit, output_digit.softmax()) acc_odd_even.update(label_odd_even, output_odd_even.sigmoid() > 0.5) return acc_digits.get(), acc_odd_even.get() Explanation: Evaluate Accuracy We need to evaluate the accuracy of each task separately End of explanation alpha = 0.5 # Combine losses factor for e in range(epochs): # Accuracies for each task acc_digits = mx.metric.Accuracy(name='digits') acc_odd_even = mx.metric.Accuracy(name='odd_even') # Accumulative losses l_digits_ = 0. l_odd_even_ = 0. for i, (data, label_digit, label_odd_even) in enumerate(train_data): data = data.as_in_context(ctx) label_digit = label_digit.as_in_context(ctx) label_odd_even = label_odd_even.as_in_context(ctx).reshape(-1,1) with autograd.record(): output_digit, output_odd_even = net(data) l_digits = loss_digits(output_digit, label_digit) l_odd_even = loss_odd_even(output_odd_even, label_odd_even) # Combine the loss of each task l_combined = (1-alpha)*l_digits + alpha*l_odd_even l_combined.backward() trainer.step(data.shape[0]) l_digits_ += l_digits.mean() l_odd_even_ += l_odd_even.mean() acc_digits.update(label_digit, output_digit.softmax()) acc_odd_even.update(label_odd_even, output_odd_even.sigmoid() > 0.5) print("Epoch [{}], Acc Digits {:.4f} Loss Digits {:.4f}".format( e, acc_digits.get()[1], l_digits_.asscalar()/(i+1))) print("Epoch [{}], Acc Odd/Even {:.4f} Loss Odd/Even {:.4f}".format( e, acc_odd_even.get()[1], l_odd_even_.asscalar()/(i+1))) print("Epoch [{}], Testing Accuracies {}".format(e, evaluate_accuracy(net, test_data))) Explanation: Training Loop We need to balance the contribution of each loss to the overall training and do so by tuning this alpha parameter within [0,1]. End of explanation def get_random_data(): idx = random.randint(0, len(test_dataset)) img = test_dataset[idx][0] data, _, _ = test_dataset_t[idx] data = data.as_in_context(ctx).expand_dims(axis=0) plt.imshow(img.squeeze().asnumpy(), cmap='gray') return data data = get_random_data() digit, odd_even = net(data) digit = digit.argmax(axis=1)[0].asnumpy() odd_even = (odd_even.sigmoid()[0] > 0.5).asnumpy() print("Predicted digit: {}, odd: {}".format(digit, odd_even)) Explanation: Testing End of explanation
3,087
Given the following text description, write Python code to implement the functionality described below step by step Description: 이 자체로 훌륭한 테스트 코드라고 말하는 것은 어렵다. 주피터 노트북용 테스트 코드였다. python에서는 테스트 코드를 작성할 수 있는 unittest 모듈을 제공한다. Step1: 개발 프로세스를 살펴보면 TDD => 테스트 주도 개발 ( Test Driven Development ) 왜 중요할까요? 테스트 > 코드 => "테스트 코드가 원래 코드보다 더 많으니까 개발 시간이 일단 오래 걸려요" 프로젝트가 커지면 커질수록, 의존성++ 테스트 코드 (X) => 유지보수 하기가 굉장히 어렵다. 조그마한 기능 단위로 테스팅을 무조건 시작해야합니다. ( unit test ) => 통합 테스트 ( integration test ) 테스트 주도 개발을 시작하는 방법 유닛 테스트를 합니다. 테스트 시나리오 => 일련의 기능들을 어떤 순서와 방법으로 여러 형태를 테스트를 해보는 프로세스를 정한다. TDD Cycle을 아래 3개처럼 부른다. RED => 경고. 테스트가 실패 합니다. GREEN => 테스트가 성공하도록 코드를 변경함 Refactor => 계속 성공하면서, 코드를 더 예쁘게 리팩토링 합니다.
Python Code: # 우선 형태만 보면 # class TestDoubleFunction(unittest.TestCase): # def test_5_should_return_10(self): # self.assertEqual(double(5), 10) # 이거랑 동일 assert double(5) == 10 # 주피터노트북에서는 이러한 형태로 테스트 못한다. 그래서 일단 pass # 우선 hello.py라는 txt파일을 만든다. 안에 내용은 # def hello(name): # print("hello, {name}".format(name=name)) # hello("kimkipoy") # hello("김기표") %run hello.py Explanation: 이 자체로 훌륭한 테스트 코드라고 말하는 것은 어렵다. 주피터 노트북용 테스트 코드였다. python에서는 테스트 코드를 작성할 수 있는 unittest 모듈을 제공한다. End of explanation # 직접 해 볼 양식 # "김기표, 010-6235-3317, 주소\" # def preprocess_user_information(information): # pass # "김기표, 010-6235-****" #함수를 짜기 전에 먼저 테스트 코드를 짠다. def preprocess_user_information(information): return information[:-4] + "****" assert preprocess_user_information("김기표, 010-6235-3317") == "김기표, 010-6235-****" assert preprocess_user_information("김기정, 010-6666-3317") == "김기정, 010-6666-****" assert preprocess_user_information("김기, 010-1111-5736") == "김기, 010-1111-****" #root폴더에다가 txt파일을 만들어라. 아래와 같은 양식으로 # 김기표, 880518-1111111 # 김기표일, 880518-222222 # 김기표이, 880518-333333 # 김기표삼, 880518-444444 # 김사, 880518-555555 def get_information(file_name): with open(file_name, "r", encoding='utf8') as f: return f.read() get_information("info.txt") info_file = get_information("info.txt") informations = info_file.split("\n") informations # information = f.readlines() # 프린트를 테스팅하는 것은 불가능 # 프린트 하기 전에 이것을 별로 만들어주는 함수를 만들고 그것을 테스트 def preprocess(information): return information[:-7] + "*" * 7 assert preprocess("김기표, 880518-1111111") == "김기표, 880518-*******" assert preprocess("김기표일, 880518-2222222") == "김기표일, 880518-*******" [ preprocess(information) for information in informations ] # 정규표현식 ( = Regular Expression; Regex ) # 기본 원리만 알면 => 다 적용할 수 있습니다. ( 기본 원리가 아주 많은 문법 ) info_file import re #re라는 패키지에서 정규표현식 제공 pattern = re.compile("(?P<birth>\d{6})[-]\d{7}") # 940223-1701234 => birth == "940223" (birth는 변수명) pattern.sub("\g<birth>-*******", info_file) Explanation: 개발 프로세스를 살펴보면 TDD => 테스트 주도 개발 ( Test Driven Development ) 왜 중요할까요? 테스트 > 코드 => "테스트 코드가 원래 코드보다 더 많으니까 개발 시간이 일단 오래 걸려요" 프로젝트가 커지면 커질수록, 의존성++ 테스트 코드 (X) => 유지보수 하기가 굉장히 어렵다. 조그마한 기능 단위로 테스팅을 무조건 시작해야합니다. ( unit test ) => 통합 테스트 ( integration test ) 테스트 주도 개발을 시작하는 방법 유닛 테스트를 합니다. 테스트 시나리오 => 일련의 기능들을 어떤 순서와 방법으로 여러 형태를 테스트를 해보는 프로세스를 정한다. TDD Cycle을 아래 3개처럼 부른다. RED => 경고. 테스트가 실패 합니다. GREEN => 테스트가 성공하도록 코드를 변경함 Refactor => 계속 성공하면서, 코드를 더 예쁘게 리팩토링 합니다. End of explanation
3,088
Given the following text description, write Python code to implement the functionality described below step by step Description: 内容索引 该小结主要介绍了NumPy数组的基本操作。 子目1中,介绍创建和索引数组,数据类型,dtype类,自定义异构数据类型。 子目2中,介绍数组的索引和切片,主要是对[]运算符的操作。 子目3中,介绍如何改变数组的维度,分别介绍了ravel函数、flatten函数、transpose函数、resize函数、reshape函数的用法。 Step1: ndarray是一个多维数组对象,该对象由实际的数据、描述这些数据的元数据组成,大部分数组操作仅仅修改元数据部分,而不改变底层的实际数据。 用arange函数创建数组 Step2: 数组的shape属性返回一个元祖(tuple),元组中的元素即NumPy数组每一个维度的大小。 1. 创建多维数组 array函数可以依据给定的对象生成数组。 给定的对象应是类数组,如python的列表、numpy的arange函数 Step3: 选取元素 Step4: NumPy数据类型 Numpy除了Python支持的整型、浮点型、复数型之外,还添加了很多其他的数据类型。 Type Remarks Character code bool_ compatible Step5: 复数不能转换成整数和浮点数 Numpy数组中每一个元素均为相同的数据类型,现在给出单个元素所占字节 Step6: dtype类的属性 Step7: str属性可以给出数据类型的字符串表示,该字符串的首个字符表示字节序,然后是字符编码,然后是所占字节数 字节序是指位长为32和64的字(word)存储的顺序,包括大端序(big-endian)和小端序(little-endian)。 大端序是将最高位字节存储在最低的内存地址处,用>表示;与之相反,小端序是将最低位字节存储在最低的内存地址处,用<表示。 创建自定义数据类型 自定义数据类型是一种异构数据类型,可以当做用来记录电子表格或数据库中一行数据的结构。 下面我们创建一种自定义的异构数据类型,该数据类型包括一个用字符串记录的名字、一个用整数记录的数字以及一个用浮点数记录的价格。 Step8: 2. 数组的索引和切片 Step9: 多维数组的切片和索引 Step10: 用三维坐标选定任意一个房间,即楼层、行号、列号 Step11: 3. 改变数组的维度 ravel 完成展平操作 Step12: flatten 也是展平 flatten函数会请求分配内存来保存结果,而ravel函数只是返回数组的一个视图(view) Step13: 用元组设置维度 Step14: transpose转置矩阵 Step15: resize和reshape函数功能一样 但resize会直接改变所操作的数组
Python Code: %pylab inline Explanation: 内容索引 该小结主要介绍了NumPy数组的基本操作。 子目1中,介绍创建和索引数组,数据类型,dtype类,自定义异构数据类型。 子目2中,介绍数组的索引和切片,主要是对[]运算符的操作。 子目3中,介绍如何改变数组的维度,分别介绍了ravel函数、flatten函数、transpose函数、resize函数、reshape函数的用法。 End of explanation a = arange(5) a.dtype a a.shape Explanation: ndarray是一个多维数组对象,该对象由实际的数据、描述这些数据的元数据组成,大部分数组操作仅仅修改元数据部分,而不改变底层的实际数据。 用arange函数创建数组 End of explanation m = array([arange(2), arange(2)]) print m print m.shape print type(m) print type(m.shape) Explanation: 数组的shape属性返回一个元祖(tuple),元组中的元素即NumPy数组每一个维度的大小。 1. 创建多维数组 array函数可以依据给定的对象生成数组。 给定的对象应是类数组,如python的列表、numpy的arange函数 End of explanation a = array([[1,2],[3,4]]) print a[0,0] print a[0,1] Explanation: 选取元素 End of explanation print float64(42) print int8(42.0) print bool(42) print float(True) arange(8, dtype=uint16) Explanation: NumPy数据类型 Numpy除了Python支持的整型、浮点型、复数型之外,还添加了很多其他的数据类型。 Type Remarks Character code bool_ compatible: Python bool '?' bool8 8 bits Integers: byte compatible: C char 'b' short compatible: C short 'h' intc compatible: C int 'i' int_ compatible: Python int 'l' longlong compatible: C long long 'q' intp large enough to fit a pointer 'p' int8 8 bits int16 16 bits int32 32 bits int64 64 bits Unsigned integers: ubyte compatible: C unsigned char 'B' ushort compatible: C unsigned short 'H' uintc compatible: C unsigned int 'I' uint compatible: Python int 'L' ulonglong compatible: C long long 'Q' uintp large enough to fit a pointer 'P' uint8 8 bits uint16 16 bits uint32 32 bits uint64 64 bits Floating-point numbers: half 'e' single compatible: C float 'f' double compatible: C double float_ compatible: Python float 'd' longfloat compatible: C long float 'g' float16 16 bits float32 32 bits float64 64 bits float96 96 bits, platform? float128 128 bits, platform? Complex floating-point numbers: csingle 'F' complex_ compatible: Python complex 'D' clongfloat 'G' complex64 two 32-bit floats complex128 two 64-bit floats complex192 two 96-bit floats, platform? complex256 two 128-bit floats, platform? Any Python object: object_ any Python object 'O' 每一种数据类型均有对应的类型转换函数 End of explanation a.dtype a.dtype.itemsize Explanation: 复数不能转换成整数和浮点数 Numpy数组中每一个元素均为相同的数据类型,现在给出单个元素所占字节 End of explanation t = dtype('float64') print t.char print t.type print t.str Explanation: dtype类的属性 End of explanation t = dtype([('name', str_, 40), ('numitems', int32), ('price', float32)]) t t['name'] itemz = array([('Meaning of life DVD', 32, 3.14), ('Butter', 13, 2.72)], dtype=t) itemz[1] Explanation: str属性可以给出数据类型的字符串表示,该字符串的首个字符表示字节序,然后是字符编码,然后是所占字节数 字节序是指位长为32和64的字(word)存储的顺序,包括大端序(big-endian)和小端序(little-endian)。 大端序是将最高位字节存储在最低的内存地址处,用>表示;与之相反,小端序是将最低位字节存储在最低的内存地址处,用<表示。 创建自定义数据类型 自定义数据类型是一种异构数据类型,可以当做用来记录电子表格或数据库中一行数据的结构。 下面我们创建一种自定义的异构数据类型,该数据类型包括一个用字符串记录的名字、一个用整数记录的数字以及一个用浮点数记录的价格。 End of explanation a = arange(9) #下标0-7, 以2为步长 print a[:7:2] #以负数下标翻转数组 print a[::-1] print a[::-2] Explanation: 2. 数组的索引和切片 End of explanation b = arange(24).reshape(2,3,4) print b.shape print b Explanation: 多维数组的切片和索引 End of explanation #选取第一层楼所有房间 print b[0] print print b[0, :, :] #多个冒号用一个省略号代替 b[0, ...] #间隔选元素 b[0,1,::2] #多维数组执行翻转一维数组的命令,将在最前面的维度上翻转元素的顺序 b[::-1] b[::-1,::-1,::-1] Explanation: 用三维坐标选定任意一个房间,即楼层、行号、列号 End of explanation b.ravel() Explanation: 3. 改变数组的维度 ravel 完成展平操作 End of explanation b.flatten() Explanation: flatten 也是展平 flatten函数会请求分配内存来保存结果,而ravel函数只是返回数组的一个视图(view) End of explanation b.shape = (6, 4) b Explanation: 用元组设置维度 End of explanation b.transpose() Explanation: transpose转置矩阵 End of explanation b.reshape(2,3,4) b b.resize(2,12) b Explanation: resize和reshape函数功能一样 但resize会直接改变所操作的数组 End of explanation
3,089
Given the following text description, write Python code to implement the functionality described below step by step Description: GLM Step1: Local Functions Step2: Generate Data This dummy dataset is created to emulate some data created as part of a study into quantified self, and the real data is more complicated than this. Ask Ian Osvald if you'd like to know more https Step3: View means of the various combinations (poisson mean values) Step4: Briefly Describe Dataset Step5: Observe Step6: 1. Manual method, create design matrices and manually specify model Create Design Matrices Step7: Create Model Step8: Sample Model Step9: View Diagnostics Step10: Observe Step11: Observe Step12: Sample Model Step13: View Traces Step14: Transform coeffs Step15: Observe Step16: ... of 9.45 with a range [25%, 75%] of [4.17, 24.18], we see this is pretty close to the overall mean of
Python Code: ## Interactive magics %matplotlib inline import sys import warnings warnings.filterwarnings('ignore') import re import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import patsy as pt from scipy import optimize # pymc3 libraries import pymc3 as pm import theano as thno import theano.tensor as T sns.set(style="darkgrid", palette="muted") pd.set_option('display.mpl_style', 'default') plt.rcParams['figure.figsize'] = 14, 6 np.random.seed(0) Explanation: GLM: Poisson Regression A minimal reproducable example of poisson regression to predict counts using dummy data. This Notebook is basically an excuse to demo poisson regression using PyMC3, both manually and using the glm library to demo interactions using the patsy library. We will create some dummy data, poisson distributed according to a linear model, and try to recover the coefficients of that linear model through inference. For more statistical detail see: Basic info on Wikipedia GLMs: Poisson regression, exposure, and overdispersion in Chapter 6.2 of ARM, Gelmann & Hill 2006 This worked example from ARM 6.2 by Clay Ford This very basic model is insipired by a project by Ian Osvald, which is concerend with understanding the various effects of external environmental factors upon the allergic sneezing of a test subject. Contents Setup Local Functions Generate Data Poisson Regression Create Design Matrices Create Model Sample Model View Diagnostics and Outputs Package Requirements (shown as a conda-env YAML): ``` $> less conda_env_pymc3_examples.yml name: pymc3_examples channels: - defaults dependencies: - python=3.5 - jupyter - ipywidgets - numpy - scipy - matplotlib - pandas - pytables - scikit-learn - statsmodels - seaborn - patsy - requests - pip - pip: - regex $> conda env create --file conda_env_pymc3_examples.yml $> source activate pymc3_examples $> pip install --process-dependency-links git+https://github.com/pymc-devs/pymc3 ``` Setup End of explanation def strip_derived_rvs(rvs): '''Convenience fn: remove PyMC3-generated RVs from a list''' ret_rvs = [] for rv in rvs: if not (re.search('_log',rv.name) or re.search('_interval',rv.name)): ret_rvs.append(rv) return ret_rvs def plot_traces_pymc(trcs, varnames=None): ''' Convenience fn: plot traces with overlaid means and values ''' nrows = len(trcs.varnames) if varnames is not None: nrows = len(varnames) ax = pm.traceplot(trcs, varnames=varnames, figsize=(12,nrows*1.4), lines={k: v['mean'] for k, v in pm.df_summary(trcs,varnames=varnames).iterrows()}) for i, mn in enumerate(pm.df_summary(trcs, varnames=varnames)['mean']): ax[i,0].annotate('{:.2f}'.format(mn), xy=(mn,0), xycoords='data', xytext=(5,10), textcoords='offset points', rotation=90, va='bottom', fontsize='large', color='#AA0022') Explanation: Local Functions End of explanation # decide poisson theta values theta_noalcohol_meds = 1 # no alcohol, took an antihist theta_alcohol_meds = 3 # alcohol, took an antihist theta_noalcohol_nomeds = 6 # no alcohol, no antihist theta_alcohol_nomeds = 36 # alcohol, no antihist # create samples q = 1000 df = pd.DataFrame({ 'nsneeze': np.concatenate((np.random.poisson(theta_noalcohol_meds, q), np.random.poisson(theta_alcohol_meds, q), np.random.poisson(theta_noalcohol_nomeds, q), np.random.poisson(theta_alcohol_nomeds, q))), 'alcohol': np.concatenate((np.repeat(False, q), np.repeat(True, q), np.repeat(False, q), np.repeat(True, q))), 'nomeds': np.concatenate((np.repeat(False, q), np.repeat(False, q), np.repeat(True, q), np.repeat(True, q)))}) df.tail() Explanation: Generate Data This dummy dataset is created to emulate some data created as part of a study into quantified self, and the real data is more complicated than this. Ask Ian Osvald if you'd like to know more https://twitter.com/ianozsvald Assumptions: The subject sneezes N times per day, recorded as nsneeze (int) The subject may or may not drink alcohol during that day, recorded as alcohol (boolean) The subject may or may not take an antihistamine medication during that day, recorded as the negative action nomeds (boolean) I postulate (probably incorrectly) that sneezing occurs at some baseline rate, which increases if an antihistamine is not taken, and further increased after alcohol is consumed. The data is aggegated per day, to yield a total count of sneezes on that day, with a boolean flag for alcohol and antihistamine usage, with the big assumption that nsneezes have a direct causal relationship. Create 4000 days of data: daily counts of sneezes which are poisson distributed w.r.t alcohol consumption and antihistamine usage End of explanation df.groupby(['alcohol','nomeds']).mean().unstack() Explanation: View means of the various combinations (poisson mean values) End of explanation g = sns.factorplot(x='nsneeze', row='nomeds', col='alcohol', data=df, kind='count', size=4, aspect=1.5) Explanation: Briefly Describe Dataset End of explanation fml = 'nsneeze ~ alcohol + antihist + alcohol:antihist' # full patsy formulation fml = 'nsneeze ~ alcohol * nomeds' # lazy, alternative patsy formulation Explanation: Observe: This looks a lot like poisson-distributed count data (because it is) With nomeds == False and alcohol == False (top-left, akak antihistamines WERE used, alcohol was NOT drunk) the mean of the poisson distribution of sneeze counts is low. Changing alcohol == True (top-right) increases the sneeze count nsneeze slightly Changing nomeds == True (lower-left) increases the sneeze count nsneeze further Changing both alcohol == True and nomeds == True (lower-right) increases the sneeze count nsneeze a lot, increasing both the mean and variance. Poisson Regression Our model here is a very simple Poisson regression, allowing for interaction of terms: $$ \theta = exp(\beta X)$$ $$ Y_{sneeze_count} ~ Poisson(\theta)$$ Create linear model for interaction of terms End of explanation (mx_en, mx_ex) = pt.dmatrices(fml, df, return_type='dataframe', NA_action='raise') pd.concat((mx_ex.head(3),mx_ex.tail(3))) Explanation: 1. Manual method, create design matrices and manually specify model Create Design Matrices End of explanation with pm.Model() as mdl_fish: # define priors, weakly informative Normal b0 = pm.Normal('b0_intercept', mu=0, sd=10) b1 = pm.Normal('b1_alcohol[T.True]', mu=0, sd=10) b2 = pm.Normal('b2_nomeds[T.True]', mu=0, sd=10) b3 = pm.Normal('b3_alcohol[T.True]:nomeds[T.True]', mu=0, sd=10) # define linear model and exp link function theta = (b0 + b1 * mx_ex['alcohol[T.True]'] + b2 * mx_ex['nomeds[T.True]'] + b3 * mx_ex['alcohol[T.True]:nomeds[T.True]']) ## Define Poisson likelihood y = pm.Poisson('y', mu=np.exp(theta), observed=mx_en['nsneeze'].values) Explanation: Create Model End of explanation with mdl_fish: trc_fish = pm.sample(2000, tune=1000, njobs=4)[1000:] Explanation: Sample Model End of explanation rvs_fish = [rv.name for rv in strip_derived_rvs(mdl_fish.unobserved_RVs)] plot_traces_pymc(trc_fish, varnames=rvs_fish) Explanation: View Diagnostics End of explanation np.exp(pm.df_summary(trc_fish, varnames=rvs_fish)[['mean','hpd_2.5','hpd_97.5']]) Explanation: Observe: The model converges quickly and traceplots looks pretty well mixed Transform coeffs and recover theta values End of explanation with pm.Model() as mdl_fish_alt: pm.glm.GLM.from_formula(fml, df, family=pm.glm.families.Poisson()) Explanation: Observe: The contributions from each feature as a multiplier of the baseline sneezecount appear to be as per the data generation: exp(b0_intercept): mean=1.02 cr=[0.96, 1.08] Roughly linear baseline count when no alcohol and meds, as per the generated data: theta_noalcohol_meds = 1 (as set above) theta_noalcohol_meds = exp(b0_intercept) = 1 exp(b1_alcohol): mean=2.88 cr=[2.69, 3.09] non-zero positive effect of adding alcohol, a ~3x multiplier of baseline sneeze count, as per the generated data: theta_alcohol_meds = 3 (as set above) theta_alcohol_meds = exp(b0_intercept + b1_alcohol) = exp(b0_intercept) * exp(b1_alcohol) = 1 * 3 = 3 exp(b2_nomeds[T.True]): mean=5.76 cr=[5.40, 6.17] larger, non-zero positive effect of adding nomeds, a ~6x multiplier of baseline sneeze count, as per the generated data: theta_noalcohol_nomeds = 6 (as set above) theta_noalcohol_nomeds = exp(b0_intercept + b2_nomeds) = exp(b0_intercept) * exp(b2_nomeds) = 1 * 6 = 6 exp(b3_alcohol[T.True]:nomeds[T.True]): mean=2.12 cr=[1.98, 2.30] small, positive interaction effect of alcohol and meds, a ~2x multiplier of baseline sneeze count, as per the generated data: theta_alcohol_nomeds = 36 (as set above) theta_alcohol_nomeds = exp(b0_intercept + b1_alcohol + b2_nomeds + b3_alcohol:nomeds) = exp(b0_intercept) * exp(b1_alcohol) * exp(b2_nomeds * b3_alcohol:nomeds) = 1 * 3 * 6 * 2 = 36 2. Alternative method, using pymc.glm Create Model Alternative automatic formulation using pmyc.glm End of explanation with mdl_fish_alt: trc_fish_alt = pm.sample(4000, tune=2000)[2000:] Explanation: Sample Model End of explanation rvs_fish_alt = [rv.name for rv in strip_derived_rvs(mdl_fish_alt.unobserved_RVs)] plot_traces_pymc(trc_fish_alt, varnames=rvs_fish_alt) Explanation: View Traces End of explanation np.exp(pm.df_summary(trc_fish_alt, varnames=rvs_fish_alt)[['mean','hpd_2.5','hpd_97.5']]) Explanation: Transform coeffs End of explanation np.percentile(trc_fish_alt['mu'], [25,50,75]) Explanation: Observe: The traceplots look well mixed The transformed model coeffs look moreorless the same as those generated by the manual model Note also that the mu coeff is for the overall mean of the dataset and has an extreme skew, if we look at the median value ... End of explanation df['nsneeze'].mean() Explanation: ... of 9.45 with a range [25%, 75%] of [4.17, 24.18], we see this is pretty close to the overall mean of: End of explanation
3,090
Given the following text description, write Python code to implement the functionality described below step by step Description: <h1>SKLearn predictor - Regressor</h1> <hr style="border Step1: <span> Build a processor. </span> <br> <span> This is required by the regressor in order to parse the input raw data.<br> A ATTPlainHitProcessor is needed here. </span> Step2: <span> We build the regressor now, injecting the processor </span> Step3: <span> We define the training data source file </span> Step4: <span> And load the dataset </span> Step5: <span> Now, train </span> Step6: <span> And finally test </span>
Python Code: import sys #sys.path.insert(0, 'I:/git/att/src/python/') sys.path.insert(0, 'i:/dev/workspaces/python/att-workspace/att/src/python/') Explanation: <h1>SKLearn predictor - Regressor</h1> <hr style="border: 1px solid #000;"> <span> <h2>ATT hit predictor.</h2> </span> <br> <span> This notebook shows how the hit predictor works.<br> The Hit predictor aim is to guess (x,y) coords from serial port readings. There are two steps: Train and Predict. </span> <span> Set modules path first: </span> End of explanation from hit.process.processor import ATTPlainHitProcessor plainProcessor = ATTPlainHitProcessor() Explanation: <span> Build a processor. </span> <br> <span> This is required by the regressor in order to parse the input raw data.<br> A ATTPlainHitProcessor is needed here. </span> End of explanation from hit.train.regressor import ATTSkLearnHitRegressor regressor = ATTSkLearnHitRegressor(plainProcessor) Explanation: <span> We build the regressor now, injecting the processor </span> End of explanation TRAIN_VALUES_FILE_LEFT = "train_data/train_points_20160129_left.txt" Explanation: <span> We define the training data source file </span> End of explanation import numpy as np (training_values, Y) = regressor.collect_train_hits_from_file(TRAIN_VALUES_FILE_LEFT) print "Train Values: ", np.shape(training_values), np.shape(Y) Explanation: <span> And load the dataset </span> End of explanation regressor.train(training_values, Y) Explanation: <span> Now, train </span> End of explanation hit = "hit: {1568:6 1416:5 3230:6 787:8 2757:4 0:13 980:4 3116:4 l}" print '(6,30)' print regressor.predict(hit) Explanation: <span> And finally test </span> End of explanation
3,091
Given the following text description, write Python code to implement the functionality described below step by step Description: Step1: 1. Get zip code from wikipedia Step6: 2. Convert zip code to coordinates Step7: 3. Sanity check Step8: 4. Get bussiness type and # of establishments per year from US census Check US census for the data. It can be downloaded as csv format. Step9: 3. Collect property values per zip code over time Step12: Neighborhood boundaries in SF
Python Code: GET SF ZIP CODES from http://www.city-data.com/zipmaps/San-Francisco-California.html import itertools sf_zip_codes = [94102, 94103, 94104, 94105, 94107, 94108, 94109, 94110, 94111, 94112, 94114, 94115, 94116, 94117, 94118, 94121, 94122, 94123, 94124, 94127, 94129, 94131, 94132, 94133, 94134, 94158] Explanation: 1. Get zip code from wikipedia End of explanation Geopy has zip code converter! from geopy.geocoders import Nominatim geolocator = Nominatim() location = geolocator.geocode("78704") print 'EXAMPLE:' print(location.address) print((location.latitude, location.longitude)) But something is wrong. location = geolocator.geocode(sf_zip_codes[0]) print 'EXAMPLE:' print(location.address) print((location.latitude, location.longitude)) So we're using Google Geocode API. GOOGLE_KEY = '' query_url = 'https://maps.googleapis.com/maps/api/geocode/json?address=94102&key=%s' % (GOOGLE_KEY) r = requests.get(query_url) r.json() Get coordinates. temp = r.json() temp_ = temp['results'][0]['geometry']['location'] temp_ lats = [] lngs = [] for sf_zip_code in sf_zip_codes: query_url = 'https://maps.googleapis.com/maps/api/geocode/json?address=%s&key=%s' % (str(sf_zip_code),GOOGLE_KEY) r = requests.get(query_url) temp = r.json() lat = temp['results'][0]['geometry']['location']['lat'] lng = temp['results'][0]['geometry']['location']['lng'] lats.append(lat) lngs.append(lng) Explanation: 2. Convert zip code to coordinates End of explanation import folium m = folium.Map(location=[37.7786871, -122.4212424],zoom_start=13) m.circle_marker(location=[37.7786871, -122.4212424],radius=100) for i in range(len(sf_zip_codes)): m.circle_marker(location=[lats[i], lngs[i]], radius=500, #100 seems good enough for now popup=str(sf_zip_codes[i]), line_color = "#980043", fill_color="#980043", fill_opacity=.2) m.create_map(path='sf_zip_code_map.html') Explanation: 3. Sanity check: map visualization End of explanation # business type df = pd.read_csv('zbp13detail.txt') df.head() sf_zip_codes = [94102, 94103, 94104, 94105, 94107, 94108, 94109, 94110, 94111, 94112, 94114, 94115, 94116, 94117, 94118, 94121, 94122, 94123, 94124, 94127, 94129, 94131, 94132, 94133, 94134, 94158] oak_zip_codes = [94601, 94602, 94603, 94605, 94606, 94607, 94610, 94611, 94612, 94613, 94621] bay_zip_codes = sf_zip_codes + oak_zip_codes # save zipcode file import csv myfile = open('bay_zip_codes.csv', 'wb') wr = csv.writer(myfile) wr.writerow(bay_zip_codes) # load zipcode file with open('bay_zip_codes.csv', 'rb') as f: reader = csv.reader(f) bay_zip_codes = list(reader)[0] # convert str list to int list bay_zip_codes = map(int, bay_zip_codes) df_sf_oak = df.loc[df['zip'].isin(bay_zip_codes)] # save as a file df_sf_oak.to_csv('ZCBT_sf_oak_2013.csv',encoding='utf-8',index=False) # sf1.sort(columns='est',ascending=False) df_sf_oak.tail() # let's compare to EPA epa = b.loc[b['zip'] == 94303] epa.sort(columns='est',ascending=False) Explanation: 4. Get bussiness type and # of establishments per year from US census Check US census for the data. It can be downloaded as csv format. End of explanation import trulia.stats as trustat import trulia.location as truloc zip_code_stats = trulia.stats.TruliaStats(TRULIA_KEY).get_zip_code_stats(zip_code='90025', start_date='2014-01-01', end_date='2014-01-31') temp = zip_code_stats['listingStats']['listingStat'] df = DataFrame(temp) df.head() def func(x,key): k = x['subcategory'][0][key] # here I read key values return pd.Series(k) df['numProperties']=df['listingPrice'].apply((lambda x: func(x,'numberOfProperties'))) df['medPrice']=df['listingPrice'].apply((lambda x: func(x,'medianListingPrice'))) df['avrPrice']=df['listingPrice'].apply((lambda x: func(x,'averageListingPrice'))) df = df.drop('listingPrice',1) df.head() Explanation: 3. Collect property values per zip code over time End of explanation Get neighborhoods neighborhoods = trulia.location.LocationInfo(TRULIA_KEY).get_neighborhoods_in_city('San Francisco', 'CA') neighborhoods Trulia does not provide coordinates. Alamo_Square = neighborhoods[0] Alamo_Square neighborhood_stats = trustat.TruliaStats(TRULIA_KEY).get_neighborhood_stats(neighborhood_id=7183, start_date='2012-01-01', end_date='2012-06-30') neighborhood_stats.keys() neighborhood_stats['listingStats'].keys() a = neighborhood_stats['listingStats']['listingStat'] b = DataFrame(a) b.head() # Let's focus on All properties x = b['listingPrice'][0] x['subcategory'][0] x['subcategory'][0]['type'] b['numProperties']=b['listingPrice'].apply((lambda x: func(x,'numberOfProperties'))) b['medPrice']=b['listingPrice'].apply((lambda x: func(x,'medianListingPrice'))) b['avrPrice']=b['listingPrice'].apply((lambda x: func(x,'averageListingPrice'))) b.drop('listingPrice',1) matplotlib.dates.date2num(a) date_list=[] for date in b['weekEndingDate']: date_list.append(datetime.strptime(date,'%Y-%m-%d')) #a = datetime.strptime(b['weekEndingDate'],'%Y-%m-%d') # plot time vs. value dates = matplotlib.dates.date2num(date_list) fig, ax = plt.subplots() ax.plot_date(dates, b.medPrice,'-') Explanation: Neighborhood boundaries in SF End of explanation
3,092
Given the following text description, write Python code to implement the functionality described below step by step Description: Set up working directory Step1: README This part of pipeline search for the SSU rRNA gene fragments, classify them, and extract reads aligned specific region. It is also heavy lifting part of the whole pipeline (more cpu will help). This part works with one seqfile a time. You just need to change the "Seqfile" and maybe other parameters in the two cells bellow. To run commands, click "Cell" then "Run All". After it finishes, you will see "*** pipeline runs successsfully Step2: Other parameters to set Step3: Pass hits to mothur aligner Step4: Get aligned seqs that have > 50% matched to references Step5: Search is done here (the computational intensive part). Hooray! \$Tag.ssu.out/\$Tag.qc.\$Gene.align.filter Step6: Classify SSU rRNA gene seqs using SILVA Step7: Classify SSU rRNA gene seqs with Greengene for copy correction later Step8: This part of pipeline (working with one sequence file) finishes here. Next we will combine samples for community analysis (see unsupervised analysis). Following are files useful for community analysis
Python Code: cd /usr/local/notebooks mkdir -p ./workdir #check seqfile files to process in data directory (make sure you still remember the data directory) !ls ./data/test/data Explanation: Set up working directory End of explanation Seqfile='./data/test/data/2d.fa' Explanation: README This part of pipeline search for the SSU rRNA gene fragments, classify them, and extract reads aligned specific region. It is also heavy lifting part of the whole pipeline (more cpu will help). This part works with one seqfile a time. You just need to change the "Seqfile" and maybe other parameters in the two cells bellow. To run commands, click "Cell" then "Run All". After it finishes, you will see "*** pipeline runs successsfully :)" at bottom of this pape. If your computer has many processors, there are two ways to make use of the resource: Set "Cpu" higher number. make more copies of this notebook (click "File" then "Make a copy" in menu bar), so you can run the step on multiple files at the same time. (Again we assume the "Seqfile" is quality trimmed.) Here we will process one file at a time; set the "Seqfile" variable to the seqfile name to be be processed First part of seqfile basename (separated by ".") will be the label of this sample, so named it properly. e.g. for "/usr/local/notebooks/data/test/data/1c.fa", "1c" will the label of this sample. End of explanation Cpu='2' # number of maxixum threads for search and alignment Hmm='./data/SSUsearch_db/Hmm.ssu.hmm' # hmm model for ssu Gene='ssu' Script_dir='./SSUsearch/scripts' Gene_model_org='./data/SSUsearch_db/Gene_model_org.16s_ecoli_J01695.fasta' Ali_template='./data/SSUsearch_db/Ali_template.silva_ssu.fasta' Start='577' #pick regions for de novo clustering End='727' Len_cutoff='100' # min length for reads picked for the region Gene_tax='./data/SSUsearch_db/Gene_tax.silva_taxa_family.tax' # silva 108 ref Gene_db='./data/SSUsearch_db/Gene_db.silva_108_rep_set.fasta' Gene_tax_cc='./data/SSUsearch_db/Gene_tax_cc.greengene_97_otus.tax' # greengene 2012.10 ref for copy correction Gene_db_cc='./data/SSUsearch_db/Gene_db_cc.greengene_97_otus.fasta' # first part of file basename will the label of this sample import os Filename=os.path.basename(Seqfile) Tag=Filename.split('.')[0] import os Hmm=os.path.abspath(Hmm) Seqfile=os.path.abspath(Seqfile) Script_dir=os.path.abspath(Script_dir) Gene_model_org=os.path.abspath(Gene_model_org) Ali_template=os.path.abspath(Ali_template) Gene_tax=os.path.abspath(Gene_tax) Gene_db=os.path.abspath(Gene_db) Gene_tax_cc=os.path.abspath(Gene_tax_cc) Gene_db_cc=os.path.abspath(Gene_db_cc) os.environ.update( {'Cpu':Cpu, 'Hmm':os.path.abspath(Hmm), 'Gene':Gene, 'Seqfile':os.path.abspath(Seqfile), 'Filename':Filename, 'Tag':Tag, 'Script_dir':os.path.abspath(Script_dir), 'Gene_model_org':os.path.abspath(Gene_model_org), 'Ali_template':os.path.abspath(Ali_template), 'Start':Start, 'End':End, 'Len_cutoff':Len_cutoff, 'Gene_tax':os.path.abspath(Gene_tax), 'Gene_db':os.path.abspath(Gene_db), 'Gene_tax_cc':os.path.abspath(Gene_tax_cc), 'Gene_db_cc':os.path.abspath(Gene_db_cc)}) !echo "*** make sure: parameters are right" !echo "Seqfile: $Seqfile\nCpu: $Cpu\nFilename: $Filename\nTag: $Tag" cd workdir mkdir -p $Tag.ssu.out ### start hmmsearch !echo "*** hmmsearch starting" !time hmmsearch --incE 10 --incdomE 10 --cpu $Cpu \ --domtblout $Tag.ssu.out/$Tag.qc.$Gene.hmmdomtblout \ -o /dev/null -A $Tag.ssu.out/$Tag.qc.$Gene.sto \ $Hmm $Seqfile !echo "*** hmmsearch finished" !python $Script_dir/get-seq-from-hmmout.py \ $Tag.ssu.out/$Tag.qc.$Gene.hmmdomtblout \ $Tag.ssu.out/$Tag.qc.$Gene.sto \ $Tag.ssu.out/$Tag.qc.$Gene Explanation: Other parameters to set End of explanation !echo "*** Starting mothur align" !cat $Gene_model_org $Tag.ssu.out/$Tag.qc.$Gene > $Tag.ssu.out/$Tag.qc.$Gene.RFadded # mothur does not allow tab between its flags, thus no indents here !time mothur "#align.seqs(candidate=$Tag.ssu.out/$Tag.qc.$Gene.RFadded, template=$Ali_template, threshold=0.5, flip=t, processors=$Cpu)" !rm -f mothur.*.logfile Explanation: Pass hits to mothur aligner End of explanation !python $Script_dir/mothur-align-report-parser-cutoff.py \ $Tag.ssu.out/$Tag.qc.$Gene.align.report \ $Tag.ssu.out/$Tag.qc.$Gene.align \ $Tag.ssu.out/$Tag.qc.$Gene.align.filter \ 0.5 !python $Script_dir/remove-gap.py $Tag.ssu.out/$Tag.qc.$Gene.align.filter $Tag.ssu.out/$Tag.qc.$Gene.align.filter.fa Explanation: Get aligned seqs that have > 50% matched to references End of explanation !python $Script_dir/region-cut.py $Tag.ssu.out/$Tag.qc.$Gene.align.filter $Start $End $Len_cutoff !mv $Tag.ssu.out/$Tag.qc.$Gene.align.filter."$Start"to"$End".cut.lenscreen $Tag.ssu.out/$Tag.forclust Explanation: Search is done here (the computational intensive part). Hooray! \$Tag.ssu.out/\$Tag.qc.\$Gene.align.filter: aligned SSU rRNA gene fragments \$Tag.ssu.out/\$Tag.qc.\$Gene.align.filter.fa: unaligned SSU rRNA gene fragments Extract the reads mapped 150bp region in V4 (577-727 in E.coli SSU rRNA gene position) for unsupervised clustering End of explanation !rm -f $Tag.ssu.out/$Tag.qc.$Gene.align.filter.*.wang.taxonomy !mothur "#classify.seqs(fasta=$Tag.ssu.out/$Tag.qc.$Gene.align.filter.fa, template=$Gene_db, taxonomy=$Gene_tax, cutoff=50, processors=$Cpu)" !mv $Tag.ssu.out/$Tag.qc.$Gene.align.filter.*.wang.taxonomy \ $Tag.ssu.out/$Tag.qc.$Gene.align.filter.wang.silva.taxonomy !python $Script_dir/count-taxon.py \ $Tag.ssu.out/$Tag.qc.$Gene.align.filter.wang.silva.taxonomy \ $Tag.ssu.out/$Tag.qc.$Gene.align.filter.wang.silva.taxonomy.count !rm -f mothur.*.logfile Explanation: Classify SSU rRNA gene seqs using SILVA End of explanation !rm -f $Tag.ssu.out/$Tag.qc.$Gene.align.filter.*.wang.taxonomy !mothur "#classify.seqs(fasta=$Tag.ssu.out/$Tag.qc.$Gene.align.filter.fa, template=$Gene_db_cc, taxonomy=$Gene_tax_cc, cutoff=50, processors=$Cpu)" !mv $Tag.ssu.out/$Tag.qc.$Gene.align.filter.*.wang.taxonomy \ $Tag.ssu.out/$Tag.qc.$Gene.align.filter.wang.gg.taxonomy !python $Script_dir/count-taxon.py \ $Tag.ssu.out/$Tag.qc.$Gene.align.filter.wang.gg.taxonomy \ $Tag.ssu.out/$Tag.qc.$Gene.align.filter.wang.gg.taxonomy.count !rm -f mothur.*.logfile # check the output directory !ls $Tag.ssu.out Explanation: Classify SSU rRNA gene seqs with Greengene for copy correction later End of explanation !echo "*** pipeline runs successsfully :)" Explanation: This part of pipeline (working with one sequence file) finishes here. Next we will combine samples for community analysis (see unsupervised analysis). Following are files useful for community analysis: 1c.577to727: aligned fasta file of seqs mapped to target region for de novo clustering 1c.qc.ssu.align.filter: aligned fasta file of all SSU rRNA gene fragments 1c.qc.ssu.align.filter.wang.gg.taxonomy: Greengene taxonomy (for copy correction) 1c.qc.ssu.align.filter.wang.silva.taxonomy: SILVA taxonomy End of explanation
3,093
Given the following text description, write Python code to implement the functionality described below step by step Description: Copyright 2022 The TensorFlow Authors. Step1: Assess privacy risks of an Image classification model with Secret Sharer Attack <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https Step3: Functions for the model, and the CIFAR-10 data Step8: Secret sharer attack on the model The general idea of secret sharer is to check if the model behaves differently on data it has seen vs. has not seen. Such memorization does not happen only on generative sequence models. It is thus natural to ask if the idea can be adapted to image classification tasks as well. Here, we present one potential way to do secret sharer on image classification task. Specifically, we will consider two types of secrets, where the secret is - (an image with each pixel sampled uniformly at random, a random label) - (an image with text on it, a random label) But of course, you can try other secrets, for example, you can use images from another dataset (like MNIST), and a fixed label. Generate Secrets First, we define the functions needed to generate random image, image with random text, and random labels. Step10: Now we will use the functions above to generate the secrets. Here, we plan to try secrets that are repeated once, 10 times and 50 times. For each repetition value, we will pick 20 secrets, to get a more accurate exposure estimation. We will leave out 65536 samples as references. Step11: Train the Model We will train two models, one with the original CIFAR-10 data, the other with CIFAR-10 combined with the secrets. Step13: Secret Sharer Evaluation Similar to perplexity in language model, here we will use the cross entropy loss for our image classification model to measure how confident the model is on an example.
Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Explanation: Copyright 2022 The TensorFlow Authors. End of explanation # @title Install dependencies # You may need to restart the runtime to use tensorflow-privacy. from IPython.display import clear_output !pip install git+https://github.com/tensorflow/privacy.git clear_output() # @title Imports import functools import os import numpy as np import tensorflow as tf import tensorflow_datasets as tfds from PIL import Image, ImageDraw, ImageFont from matplotlib import pyplot as plt import math from tensorflow_privacy.privacy.privacy_tests.secret_sharer.generate_secrets import SecretConfig, construct_secret, generate_random_sequences, construct_secret_dataset from tensorflow_privacy.privacy.privacy_tests.secret_sharer.exposures import compute_exposure_interpolation, compute_exposure_extrapolation from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.utils import log_loss Explanation: Assess privacy risks of an Image classification model with Secret Sharer Attack <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https://colab.research.google.com/github/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/privacy_tests/secret_sharer/secret_sharer_image_example.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" />Run in Google Colab</a> </td> <td> <a target="_blank" href="https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/privacy_tests/secret_sharer/secret_sharer_image_example.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" />View source on GitHub</a> </td> </table> In this colab, we adapt secret sharer in an image classification model. We will train a model with "secrets", i.e. random images, inserted in the training data, and then evaluate if the model has "memorized" those secrets. Setup You may set the runtime to use a GPU by Runtime > Change runtime type > Hardware accelerator. End of explanation # @title Functions for defining model and loading data. def small_cnn(): Setup a small CNN for image classification. model = tf.keras.models.Sequential() model.add(tf.keras.layers.Input(shape=(32, 32, 3))) for _ in range(3): model.add(tf.keras.layers.Conv2D(32, (3, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D()) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(64, activation='relu')) model.add(tf.keras.layers.Dense(10)) return model def load_cifar10(): def convert_to_numpy(ds): images, labels = [], [] for sample in tfds.as_numpy(ds): images.append(sample['image']) labels.append(sample['label']) return np.array(images).astype(np.float32) / 255, np.array(labels).astype(np.int32) ds_train = tfds.load('cifar10', split='train') ds_test = tfds.load('cifar10', split='test') x_train, y_train = convert_to_numpy(ds_train) x_test, y_test = convert_to_numpy(ds_test) # x has shape (n, 32, 32, 3), y has shape (n,) return x_train, y_train, x_test, y_test # @title Function for training the model. def train_model(x_train, y_train, x_test, y_test, learning_rate=0.02, batch_size=250, epochs=50): model = small_cnn() optimizer = tf.keras.optimizers.SGD(lr=learning_rate, momentum=0.9) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy']) # Train model model.fit( x_train, y_train, epochs=epochs, validation_data=(x_test, y_test), batch_size=batch_size, verbose=2) return model Explanation: Functions for the model, and the CIFAR-10 data End of explanation # @title Functions for generating secrets def generate_random_label(n, nclass, seed): Generates random labels. return np.random.RandomState(seed).choice(nclass, n) def generate_uniform_random(shape, n, seed): Generates uniformly random images. rng = np.random.RandomState(seed) data = rng.uniform(size=(n,) + shape) return data def images_from_texts(sequences, shape, font_fn, num_lines=3, bg_color=(255, 255, 255), fg_color=(0, 0, 0)): Generates an image with a given text sequence. characters_per_line = len(sequences[0]) // num_lines if characters_per_line * num_lines < len(sequences[0]): characters_per_line += 1 line_height = shape[1] // num_lines font_size = line_height font_width = ImageFont.truetype(font_fn, font_size).getsize('a')[0] if font_width > shape[0] / characters_per_line: font_size = int(math.floor(font_size / font_width * (shape[0] / characters_per_line))) assert font_size > 0 font = ImageFont.truetype(font_fn, font_size) imgs = [] for sequence in sequences: img = Image.new('RGB', shape, color=bg_color) d = ImageDraw.Draw(img) for i in range(num_lines): d.text((0, i * line_height), sequence[i * characters_per_line:(i + 1) * characters_per_line], font=font, fill=fg_color) imgs.append(img) return imgs def generate_random_text_image(shape, n, seed, font_fn, vocab, pattern, num_lines, bg_color, fg_color): Generates images with random texts. text_sequences = generate_random_sequences(vocab, pattern, n, seed) imgs = images_from_texts(text_sequences, shape, font_fn, num_lines, bg_color, fg_color) return np.array([np.array(i) for i in imgs]) # The function for plotting text on image needs a font, so we download it here. # You can try other fonts. Notice that the images_from_texts is implemented under the assumption that the font is monospace. !wget https://github.com/google/fonts/raw/main/apache/robotomono/RobotoMono%5Bwght%5D.ttf font_fn = 'RobotoMono[wght].ttf' Explanation: Secret sharer attack on the model The general idea of secret sharer is to check if the model behaves differently on data it has seen vs. has not seen. Such memorization does not happen only on generative sequence models. It is thus natural to ask if the idea can be adapted to image classification tasks as well. Here, we present one potential way to do secret sharer on image classification task. Specifically, we will consider two types of secrets, where the secret is - (an image with each pixel sampled uniformly at random, a random label) - (an image with text on it, a random label) But of course, you can try other secrets, for example, you can use images from another dataset (like MNIST), and a fixed label. Generate Secrets First, we define the functions needed to generate random image, image with random text, and random labels. End of explanation #@title Generate secrets num_repetitions = [1, 10, 50] num_secrets_for_repetitions = [20] * len(num_repetitions) num_references = 65536 secret_config_text = SecretConfig(name='random text image', num_repetitions=num_repetitions, num_secrets_for_repetitions=num_secrets_for_repetitions, num_references=num_references) secret_config_rand = SecretConfig(name='uniform random image', num_repetitions=num_repetitions, num_secrets_for_repetitions=num_secrets_for_repetitions, num_references=num_references) seed = 123 shape = (32, 32) nclass = 10 n = num_references + sum(num_secrets_for_repetitions) # setting for text image num_lines = 3 bg_color=(255, 255, 0) fg_color=(0, 0, 0) image_text = generate_random_text_image(shape, n, seed, font_fn, list('0123456789'), 'My SSN is {}{}{}-{}{}-{}{}{}{}', num_lines, bg_color, fg_color) image_text = image_text.astype(np.float32) / 255 image_rand = generate_uniform_random(shape + (3,), n, seed) label = generate_random_label(n, nclass, seed) data_text = list(zip(image_text, label)) # pair up the image and label data_rand = list(zip(image_rand, label)) `construct_secret` partitions data into subsets of secrets that are going to be repeated for different number of times, and a references set. It returns a SecretsSet with 3 fields: config is the configuration of the secrets set references is a list of `num_references` samples to be used as references secrets is a dictionary, where the key is the number of repetition, the value is a list of samples secrets_text = construct_secret(secret_config_text, data_text) secrets_rand = construct_secret(secret_config_rand, data_rand) #@title Let's look at the secrets we generated def visualize_images(imgs): f, axes = plt.subplots(1, len(imgs)) for i, img in enumerate(imgs): axes[i].imshow(img) visualize_images(image_text[:5]) visualize_images(image_rand[:5]) Explanation: Now we will use the functions above to generate the secrets. Here, we plan to try secrets that are repeated once, 10 times and 50 times. For each repetition value, we will pick 20 secrets, to get a more accurate exposure estimation. We will leave out 65536 samples as references. End of explanation # @title Train a model with original data x_train, y_train, x_test, y_test = load_cifar10() model_original = train_model(x_train, y_train, x_test, y_test) # @title Train model with original data combined with secrets # `construct_secret_dataset` returns a list of secrets, repeated for the # required number of times. secret_dataset = construct_secret_dataset([secrets_text, secrets_rand]) x_secret, y_secret = zip(*secret_dataset) x_combined = np.concatenate([x_train, x_secret]) y_combined = np.concatenate([y_train, y_secret]) print(f'We will inject {len(x_secret)} samples so the total number of training data is {x_combined.shape[0]}') model_secret = train_model(x_combined, y_combined, x_test, y_test) Explanation: Train the Model We will train two models, one with the original CIFAR-10 data, the other with CIFAR-10 combined with the secrets. End of explanation # @title Functions for computing losses and exposures def calculate_losses(model, samples, is_logit=False, batch_size=1000): Calculate losses of model prediction on data, provided true labels. data, labels = zip(*samples) data, labels = np.array(data), np.array(labels) pred = model.predict(data, batch_size=batch_size, verbose=0) if is_logit: pred = tf.nn.softmax(pred).numpy() loss = log_loss(labels, pred) return loss def compute_loss_for_secret(secrets, model): losses_ref = calculate_losses(model, secrets.references) losses = {rep: calculate_losses(model, samples) for rep, samples in secrets.secrets.items()} return losses, losses_ref def compute_exposure_for_secret(secrets, model): losses, losses_ref = compute_loss_for_secret(secrets, model) exposure_interpolation = compute_exposure_interpolation(losses, losses_ref) exposure_extrapolation = compute_exposure_extrapolation(losses, losses_ref) return exposure_interpolation, exposure_extrapolation, losses, losses_ref # @title Check the exposures exp_i_orig_text, exp_e_orig_text, _, _ = compute_exposure_for_secret(secrets_text, model_original) exp_i_orig_rand, exp_e_orig_rand, _, _ = compute_exposure_for_secret(secrets_rand, model_original) exp_i_scrt_text, exp_e_scrt_text, _, _ = compute_exposure_for_secret(secrets_text, model_secret) exp_i_scrt_rand, exp_e_scrt_rand, _, _ = compute_exposure_for_secret(secrets_rand, model_secret) # First, let's confirm that the model trained with original data won't show any exposure print('On model trained with original data:') print('Text secret') print(' Interpolation:', '; '.join([f'repetition={r}, avg_exposure={np.mean(exp):.2f}±{np.std(exp):.2f}' for r, exp in exp_i_orig_text.items()])) print(' Extrapolation:', '; '.join([f'repetition={r}, avg_exposure={np.mean(exp):.2f}±{np.std(exp):.2f}' for r, exp in exp_e_orig_text.items()])) print('Random secret') print(' Interpolation:', '; '.join([f'repetition={r}, avg_exposure={np.mean(exp):.2f}±{np.std(exp):.2f}' for r, exp in exp_i_orig_rand.items()])) print(' Extrapolation:', '; '.join([f'repetition={r}, avg_exposure={np.mean(exp):.2f}±{np.std(exp):.2f}' for r, exp in exp_e_orig_rand.items()])) # Then, let's look at the model trained with combined data print('On model trained with original data + secrets:') print('Text secret') print(' Interpolation:', '; '.join([f'repetition={r}, avg_exposure={np.mean(exp):.2f}±{np.std(exp):.2f}' for r, exp in exp_i_scrt_text.items()])) print(' Extrapolation:', '; '.join([f'repetition={r}, avg_exposure={np.mean(exp):.2f}±{np.std(exp):.2f}' for r, exp in exp_e_scrt_text.items()])) print('Random secret') print(' Interpolation:', '; '.join([f'repetition={r}, avg_exposure={np.mean(exp):.2f}±{np.std(exp):.2f}' for r, exp in exp_i_scrt_rand.items()])) print(' Extrapolation:', '; '.join([f'repetition={r}, avg_exposure={np.mean(exp):.2f}±{np.std(exp):.2f}' for r, exp in exp_e_scrt_rand.items()])) Explanation: Secret Sharer Evaluation Similar to perplexity in language model, here we will use the cross entropy loss for our image classification model to measure how confident the model is on an example. End of explanation
3,094
Given the following text description, write Python code to implement the functionality described below step by step Description: Copyright 2018 The TensorFlow Hub Authors. Licensed under the Apache License, Version 2.0 (the "License"); Step1: TF-Hub로 Kaggle 문제를 해결하는 방법 <table class="tfo-notebook-buttons" align="left"> <td><a target="_blank" href="https Step2: 이 튜토리얼에서는 Kaggle의 데이터세트를 사용하기 때문에 Kaggle 계정에 대한 API 토큰을 만들고 Colab 환경에 토큰을 업로드해야 합니다. Step3: 시작하기 데이터 Kaggle의 영화 리뷰에 대한 감정 분석 작업을 해결해 보려고 합니다. 데이터세트는 Rotten Tomatoes 영화 리뷰의 구문론적 하위 문구로 구성됩니다. 여기서 해야 할 작업은 문구에 1에서 5까지의 척도로 부정적 또는 긍정적 레이블을 지정하는 것입니다. API를 사용하여 데이터를 다운로드하려면 먼저 경쟁 규칙을 수락해야 합니다. Step4: 참고 Step5: 모델 훈련하기 참고 Step6: 예측 검증 세트 및 훈련 세트에 대한 예측을 실행합니다. Step7: 혼동 행렬 특히 다중 클래스 문제에 대한 또 다른 매우 흥미로운 통계는 혼동 행렬입니다. 혼동 행렬을 사용하면 레이블이 올바르게 지정된 예와 그렇지 않은 예의 비율을 시각화할 수 있습니다. 분류자의 편향된 정도와 레이블 분포가 적절한지 여부를 쉽게 확인할 수 있습니다. 예측값의 가장 큰 부분이 대각선을 따라 분포되는 것이 이상적입니다.
Python Code: # Copyright 2018 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== Explanation: Copyright 2018 The TensorFlow Hub Authors. Licensed under the Apache License, Version 2.0 (the "License"); End of explanation !pip install -q kaggle import tensorflow as tf import tensorflow_hub as hub import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import zipfile from sklearn import model_selection Explanation: TF-Hub로 Kaggle 문제를 해결하는 방법 <table class="tfo-notebook-buttons" align="left"> <td><a target="_blank" href="https://www.tensorflow.org/hub/tutorials/text_classification_with_tf_hub_on_kaggle"><img src="https://www.tensorflow.org/images/tf_logo_32px.png">TensorFlow.org에서 보기</a></td> <td><a target="_blank" href="https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/ko/hub/tutorials/text_classification_with_tf_hub_on_kaggle.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png">Google Colab에서 실행</a></td> <td><a target="_blank" href="https://github.com/tensorflow/docs-l10n/blob/master/site/ko/hub/tutorials/text_classification_with_tf_hub_on_kaggle.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png"> GitHub에서 소스 보기</a></td> <td><a href="https://storage.googleapis.com/tensorflow_docs/docs-l10n/site/ko/hub/tutorials/text_classification_with_tf_hub_on_kaggle.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png">노트북 다운로드</a></td> <td><a href="https://tfhub.dev/google/nnlm-en-dim128/1"><img src="https://www.tensorflow.org/images/hub_logo_32px.png">TF Hub 모델보기</a></td> </table> TF-허브는 재사용 가능한 리소스, 특히 사전 훈련된 모듈 형태로 머신러닝에 대한 전문 지식을 공유하는 플랫폼입니다. 이 튜토리얼에서는 TF-허브 텍스트 임베딩 모듈을 사용하여 합리적인 기준 정확성으로 간단한 감정 분류자를 훈련합니다. 그런 다음 Kaggle에 예측을 제출합니다. TF-허브를 사용한 텍스트 분류에 대한 자세한 튜토리얼과 정확성 향상을 위한 추가 단계는 TF-허브를 이용한 텍스트 분류를 살펴보세요. 설정 End of explanation import os import pathlib # Upload the API token. def get_kaggle(): try: import kaggle return kaggle except OSError: pass token_file = pathlib.Path("~/.kaggle/kaggle.json").expanduser() token_file.parent.mkdir(exist_ok=True, parents=True) try: from google.colab import files except ImportError: raise ValueError("Could not find kaggle token.") uploaded = files.upload() token_content = uploaded.get('kaggle.json', None) if token_content: token_file.write_bytes(token_content) token_file.chmod(0o600) else: raise ValueError('Need a file named "kaggle.json"') import kaggle return kaggle kaggle = get_kaggle() Explanation: 이 튜토리얼에서는 Kaggle의 데이터세트를 사용하기 때문에 Kaggle 계정에 대한 API 토큰을 만들고 Colab 환경에 토큰을 업로드해야 합니다. End of explanation SENTIMENT_LABELS = [ "negative", "somewhat negative", "neutral", "somewhat positive", "positive" ] # Add a column with readable values representing the sentiment. def add_readable_labels_column(df, sentiment_value_column): df["SentimentLabel"] = df[sentiment_value_column].replace( range(5), SENTIMENT_LABELS) # Download data from Kaggle and create a DataFrame. def load_data_from_zip(path): with zipfile.ZipFile(path, "r") as zip_ref: name = zip_ref.namelist()[0] with zip_ref.open(name) as zf: return pd.read_csv(zf, sep="\t", index_col=0) # The data does not come with a validation set so we'll create one from the # training set. def get_data(competition, train_file, test_file, validation_set_ratio=0.1): data_path = pathlib.Path("data") kaggle.api.competition_download_files(competition, data_path) competition_path = (data_path/competition) competition_path.mkdir(exist_ok=True, parents=True) competition_zip_path = competition_path.with_suffix(".zip") with zipfile.ZipFile(competition_zip_path, "r") as zip_ref: zip_ref.extractall(competition_path) train_df = load_data_from_zip(competition_path/train_file) test_df = load_data_from_zip(competition_path/test_file) # Add a human readable label. add_readable_labels_column(train_df, "Sentiment") # We split by sentence ids, because we don't want to have phrases belonging # to the same sentence in both training and validation set. train_indices, validation_indices = model_selection.train_test_split( np.unique(train_df["SentenceId"]), test_size=validation_set_ratio, random_state=0) validation_df = train_df[train_df["SentenceId"].isin(validation_indices)] train_df = train_df[train_df["SentenceId"].isin(train_indices)] print("Split the training data into %d training and %d validation examples." % (len(train_df), len(validation_df))) return train_df, validation_df, test_df train_df, validation_df, test_df = get_data( "sentiment-analysis-on-movie-reviews", "train.tsv.zip", "test.tsv.zip") Explanation: 시작하기 데이터 Kaggle의 영화 리뷰에 대한 감정 분석 작업을 해결해 보려고 합니다. 데이터세트는 Rotten Tomatoes 영화 리뷰의 구문론적 하위 문구로 구성됩니다. 여기서 해야 할 작업은 문구에 1에서 5까지의 척도로 부정적 또는 긍정적 레이블을 지정하는 것입니다. API를 사용하여 데이터를 다운로드하려면 먼저 경쟁 규칙을 수락해야 합니다. End of explanation train_df.head(20) Explanation: 참고: 이 경쟁에서 주어진 과제는 전체 리뷰를 평가하는 것이 아니라 리뷰 내의 개별 문구를 평가하는 것입니다. 이것은 훨씬 더 어려운 작업입니다. End of explanation class MyModel(tf.keras.Model): def __init__(self, hub_url): super().__init__() self.hub_url = hub_url self.embed = hub.load(self.hub_url).signatures['default'] self.sequential = tf.keras.Sequential([ tf.keras.layers.Dense(500), tf.keras.layers.Dense(100), tf.keras.layers.Dense(5), ]) def call(self, inputs): phrases = inputs['Phrase'][:,0] embedding = 5*self.embed(phrases)['default'] return self.sequential(embedding) def get_config(self): return {"hub_url":self.hub_url} model = MyModel("https://tfhub.dev/google/nnlm-en-dim128/1") model.compile( loss = tf.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=tf.optimizers.Adam(), metrics = [tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy")]) history = model.fit(x=dict(train_df), y=train_df['Sentiment'], validation_data=(dict(validation_df), validation_df['Sentiment']), epochs = 25) Explanation: 모델 훈련하기 참고: 이 작업을 회귀로 모델링할 수도 있습니다(TF-허브를 사용한 텍스트 분류 참조). End of explanation plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) train_eval_result = model.evaluate(dict(train_df), train_df['Sentiment']) validation_eval_result = model.evaluate(dict(validation_df), validation_df['Sentiment']) print(f"Training set accuracy: {train_eval_result[1]}") print(f"Validation set accuracy: {validation_eval_result[1]}") Explanation: 예측 검증 세트 및 훈련 세트에 대한 예측을 실행합니다. End of explanation predictions = model.predict(dict(validation_df)) predictions = tf.argmax(predictions, axis=-1) predictions cm = tf.math.confusion_matrix(validation_df['Sentiment'], predictions) cm = cm/cm.numpy().sum(axis=1)[:, tf.newaxis] sns.heatmap( cm, annot=True, xticklabels=SENTIMENT_LABELS, yticklabels=SENTIMENT_LABELS) plt.xlabel("Predicted") plt.ylabel("True") Explanation: 혼동 행렬 특히 다중 클래스 문제에 대한 또 다른 매우 흥미로운 통계는 혼동 행렬입니다. 혼동 행렬을 사용하면 레이블이 올바르게 지정된 예와 그렇지 않은 예의 비율을 시각화할 수 있습니다. 분류자의 편향된 정도와 레이블 분포가 적절한지 여부를 쉽게 확인할 수 있습니다. 예측값의 가장 큰 부분이 대각선을 따라 분포되는 것이 이상적입니다. End of explanation
3,095
Given the following text description, write Python code to implement the functionality described below step by step Description: Developmental file for modifying the 1D advection solver to work for multiple wave equations Step1: Prototype implementation of LF flux for multiple-u's
Python Code: import os import sys sys.path.insert(0, os.path.abspath('../../')) import numpy as np from matplotlib import pyplot as plt import arrayfire as af from dg_maxwell import params from dg_maxwell import lagrange from dg_maxwell import wave_equation as w1d from dg_maxwell import utils af.set_backend('opencl') af.set_device(1) af.info() plt.rcParams['figure.figsize'] = 12, 7.5 plt.rcParams['lines.linewidth'] = 1.5 plt.rcParams['font.family'] = 'serif' plt.rcParams['font.weight'] = 'bold' plt.rcParams['font.size'] = 20 plt.rcParams['font.sans-serif'] = 'serif' plt.rcParams['text.usetex'] = True plt.rcParams['axes.linewidth'] = 1.5 plt.rcParams['axes.titlesize'] = 'medium' plt.rcParams['axes.labelsize'] = 'medium' plt.rcParams['xtick.major.size'] = 8 plt.rcParams['xtick.minor.size'] = 4 plt.rcParams['xtick.major.pad'] = 8 plt.rcParams['xtick.minor.pad'] = 8 plt.rcParams['xtick.color'] = 'k' plt.rcParams['xtick.labelsize'] = 'medium' plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.major.size'] = 8 plt.rcParams['ytick.minor.size'] = 4 plt.rcParams['ytick.major.pad'] = 8 plt.rcParams['ytick.minor.pad'] = 8 plt.rcParams['ytick.color'] = 'k' plt.rcParams['ytick.labelsize'] = 'medium' plt.rcParams['ytick.direction'] = 'in' plt.rcParams['text.usetex'] = True plt.rcParams['text.latex.unicode'] = True # 1. Set the initial conditions E_00 = 1. E_01 = 1. B_00 = 0.2 B_01 = 0.5 E_z_init = E_00 * af.sin(2 * np.pi * params.element_LGL) \ + E_01 * af.cos(2 * np.pi * params.element_LGL) B_y_init = B_00 * af.sin(2 * np.pi * params.element_LGL) \ + B_01 * af.cos(2 * np.pi * params.element_LGL) u_init = af.constant(0., d0 = params.N_LGL, d1 = params.N_Elements, d2 = 2) u_init[:, :, 0] = E_z_init u_init[:, :, 1] = B_y_init element_LGL_flat = af.flat(params.element_LGL) E_z_init_flat = af.flat(u_init[:, :, 0]) B_y_init_flat = af.flat(u_init[:, :, 1]) plt.plot(element_LGL_flat, E_z_init_flat, label = r'$E_z$') plt.plot(element_LGL_flat, B_y_init_flat, label = r'$B_y$') plt.title(r'Plot of $E_z(t = 0)$ and $B_y(t = 0)$') plt.xlabel(r'$x$') plt.ylabel(r'$y$') plt.legend(prop={'size': 14}) plt.show() Explanation: Developmental file for modifying the 1D advection solver to work for multiple wave equations End of explanation # Older LF flux code u_n = u_init[:, :, :] u_iplus1_0 = af.shift(u_n[0, :], 0, -1) u_i_N_LGL = u_n[-1, :] flux_iplus1_0 = w1d.flux_x(u_iplus1_0) flux_i_N_LGL = w1d.flux_x(u_i_N_LGL) boundary_flux = (flux_iplus1_0 + flux_i_N_LGL) / 2 \ - params.c_lax * (u_iplus1_0 - u_i_N_LGL) / 2 print(boundary_flux) Explanation: Prototype implementation of LF flux for multiple-u's End of explanation
3,096
Given the following text description, write Python code to implement the functionality described below step by step Description: Tabular data Step1: Starting from reading this dataset, to answering questions about this data in a few lines of code Step2: How does the survival rate of the passengers differ between sexes? Step3: Or how does it differ between the different classes? Step4: Are young people more likely to survive? Step5: All the needed functionality for the above examples will be explained throughout this tutorial. Data structures Pandas provides two fundamental data objects, for 1D (Series) and 2D data (DataFrame). Series A Series is a basic holder for one-dimensional labeled data. It can be created much as a NumPy array is created Step6: Attributes of a Series Step7: You can access the underlying numpy array representation with the .values attribute Step8: We can access series values via the index, just like for NumPy arrays Step9: Unlike the NumPy array, though, this index can be something other than integers Step10: In this way, a Series object can be thought of as similar to an ordered dictionary mapping one typed value to another typed value. In fact, it's possible to construct a series directly from a Python dictionary Step11: We can index the populations like a dict as expected Step12: but with the power of numpy arrays Step13: DataFrames Step14: Attributes of the DataFrame A DataFrame has besides a index attribute, also a columns attribute Step15: To check the data types of the different columns Step16: An overview of that information can be given with the info() method Step17: Also a DataFrame has a values attribute, but attention Step18: If we don't like what the index looks like, we can reset it and set one of our columns Step19: To access a Series representing a column in the data, use typical indexing syntax Step20: Basic operations on Series/Dataframes As you play around with DataFrames, you'll notice that many operations which work on NumPy arrays will also work on dataframes. Step21: Elementwise-operations (like numpy) Just like with numpy arrays, many operations are element-wise Step22: Alignment! (unlike numpy) Only, pay attention to alignment Step23: Reductions (like numpy) The average population number Step24: The minimum area Step25: For dataframes, often only the numeric columns are included in the result Step26: <div class="alert alert-success"> <b>EXERCISE</b> Step27: <div class="alert alert-success"> <b>EXERCISE</b> Step28: Some other useful methods Sorting the rows of the DataFrame according to the values in a column Step29: One useful method to use is the describe method, which computes summary statistics for each column Step30: The plot method can be used to quickly visualize the data in different ways Step31: However, for this dataset, it does not say that much Step32: You can play with the kind keyword
Python Code: df = pd.read_csv("data/titanic.csv") df.head() Explanation: Tabular data End of explanation df['Age'].hist() Explanation: Starting from reading this dataset, to answering questions about this data in a few lines of code: What is the age distribution of the passengers? End of explanation df.groupby('Sex')[['Survived']].aggregate(lambda x: x.sum() / len(x)) Explanation: How does the survival rate of the passengers differ between sexes? End of explanation df.groupby('Pclass')['Survived'].aggregate(lambda x: x.sum() / len(x)).plot(kind='bar') Explanation: Or how does it differ between the different classes? End of explanation df['Survived'].sum() / df['Survived'].count() df25 = df[df['Age'] <= 25] df25['Survived'].sum() / len(df25['Survived']) Explanation: Are young people more likely to survive? End of explanation s = pd.Series([0.1, 0.2, 0.3, 0.4]) s Explanation: All the needed functionality for the above examples will be explained throughout this tutorial. Data structures Pandas provides two fundamental data objects, for 1D (Series) and 2D data (DataFrame). Series A Series is a basic holder for one-dimensional labeled data. It can be created much as a NumPy array is created: End of explanation s.index Explanation: Attributes of a Series: index and values The series has a built-in concept of an index, which by default is the numbers 0 through N - 1 End of explanation s.values Explanation: You can access the underlying numpy array representation with the .values attribute: End of explanation s[0] Explanation: We can access series values via the index, just like for NumPy arrays: End of explanation s2 = pd.Series(np.arange(4), index=['a', 'b', 'c', 'd']) s2 s2['c'] Explanation: Unlike the NumPy array, though, this index can be something other than integers: End of explanation pop_dict = {'Germany': 81.3, 'Belgium': 11.3, 'France': 64.3, 'United Kingdom': 64.9, 'Netherlands': 16.9} population = pd.Series(pop_dict) population Explanation: In this way, a Series object can be thought of as similar to an ordered dictionary mapping one typed value to another typed value. In fact, it's possible to construct a series directly from a Python dictionary: End of explanation population['France'] Explanation: We can index the populations like a dict as expected: End of explanation population * 1000 Explanation: but with the power of numpy arrays: End of explanation data = {'country': ['Belgium', 'France', 'Germany', 'Netherlands', 'United Kingdom'], 'population': [11.3, 64.3, 81.3, 16.9, 64.9], 'area': [30510, 671308, 357050, 41526, 244820], 'capital': ['Brussels', 'Paris', 'Berlin', 'Amsterdam', 'London']} countries = pd.DataFrame(data) countries Explanation: DataFrames: Multi-dimensional Data A DataFrame is a tablular data structure (multi-dimensional object to hold labeled data) comprised of rows and columns, akin to a spreadsheet, database table, or R's data.frame object. You can think of it as multiple Series object which share the same index. <img src="img/dataframe.png" width=110%> One of the most common ways of creating a dataframe is from a dictionary of arrays or lists. Note that in the IPython notebook, the dataframe will display in a rich HTML view: End of explanation countries.index countries.columns Explanation: Attributes of the DataFrame A DataFrame has besides a index attribute, also a columns attribute: End of explanation countries.dtypes Explanation: To check the data types of the different columns: End of explanation countries.info() Explanation: An overview of that information can be given with the info() method: End of explanation countries.values Explanation: Also a DataFrame has a values attribute, but attention: when you have heterogeneous data, all values will be upcasted: End of explanation countries = countries.set_index('country') countries Explanation: If we don't like what the index looks like, we can reset it and set one of our columns: End of explanation countries['area'] Explanation: To access a Series representing a column in the data, use typical indexing syntax: End of explanation # redefining the example objects population = pd.Series({'Germany': 81.3, 'Belgium': 11.3, 'France': 64.3, 'United Kingdom': 64.9, 'Netherlands': 16.9}) countries = pd.DataFrame({'country': ['Belgium', 'France', 'Germany', 'Netherlands', 'United Kingdom'], 'population': [11.3, 64.3, 81.3, 16.9, 64.9], 'area': [30510, 671308, 357050, 41526, 244820], 'capital': ['Brussels', 'Paris', 'Berlin', 'Amsterdam', 'London']}) Explanation: Basic operations on Series/Dataframes As you play around with DataFrames, you'll notice that many operations which work on NumPy arrays will also work on dataframes. End of explanation population / 100 countries['population'] / countries['area'] Explanation: Elementwise-operations (like numpy) Just like with numpy arrays, many operations are element-wise: End of explanation s1 = population[['Belgium', 'France']] s2 = population[['France', 'Germany']] s1 s2 s1 + s2 Explanation: Alignment! (unlike numpy) Only, pay attention to alignment: operations between series will align on the index: End of explanation population.mean() Explanation: Reductions (like numpy) The average population number: End of explanation countries['area'].min() Explanation: The minimum area: End of explanation countries.median() Explanation: For dataframes, often only the numeric columns are included in the result: End of explanation population / population['Belgium'].mean() Explanation: <div class="alert alert-success"> <b>EXERCISE</b>: Calculate the population numbers relative to Belgium </div> End of explanation countries['population']*1000000 / countries['area'] countries['density'] = countries['population']*1000000 / countries['area'] countries Explanation: <div class="alert alert-success"> <b>EXERCISE</b>: Calculate the population density for each country and add this as a new column to the dataframe. </div> End of explanation countries.sort_values('density', ascending=False) Explanation: Some other useful methods Sorting the rows of the DataFrame according to the values in a column: End of explanation countries.describe() Explanation: One useful method to use is the describe method, which computes summary statistics for each column: End of explanation countries.plot() Explanation: The plot method can be used to quickly visualize the data in different ways: End of explanation countries['population'].plot(kind='bar') Explanation: However, for this dataset, it does not say that much: End of explanation pd.read states.to Explanation: You can play with the kind keyword: 'line', 'bar', 'hist', 'density', 'area', 'pie', 'scatter', 'hexbin' Importing and exporting data A wide range of input/output formats are natively supported by pandas: CSV, text SQL database Excel HDF5 json html pickle ... End of explanation
3,097
Given the following text description, write Python code to implement the functionality described below step by step Description: Riemann interactive In this notebook, we show interactive solutions of two Riemann problems for shallow water equations and acoustics. The user can interactively modify the phase planes and x-t planes and see its corresponding solutions. The code to produce these apps uses the mpld3 library, and it can be found on the clawpack folder riemann/riemann_interactive.py. First we need to load the mpld3 and numpy libraries as well as the riemann_interactive code. Step1: Shallow water equations In this section we show the interactive riemann solution of the exact solver for the shallow water equations. We first define the initial left and right state, the $g$ paramter and the plot range, then we call our riemann interactive plotting and display it. The commented line "mpld3.save_html" can be uncommented to save the output as html. On the app feel free to drag and drop the $q_l$ and $q_r$ states in the phase plane. The time can also be adjusted by dragging up and down the black dot in the horizontal time bar in the $x-t$ plane. Step2: Acoustic equations Here we show the exact solution for the Riemann problem of linear acoustics. We again determine the initial left and right states, and we provide the eigenvectors ($r_1,r_2$) and eigenvalues ($\lambda_1,\lambda_2$) of the solution. It is written in this way, so one can easily input the eigenvalues of any other two dimensional linear Riemann problem. Additional optional input can be added to adjust the plotted window. In this case, the time is fixed in "plotopts" and only the left and right states ($q_l,q_r$) can be moved interactively.
Python Code: import mpld3 import numpy as np from clawpack.riemann import riemann_interactive Explanation: Riemann interactive In this notebook, we show interactive solutions of two Riemann problems for shallow water equations and acoustics. The user can interactively modify the phase planes and x-t planes and see its corresponding solutions. The code to produce these apps uses the mpld3 library, and it can be found on the clawpack folder riemann/riemann_interactive.py. First we need to load the mpld3 and numpy libraries as well as the riemann_interactive code. End of explanation # Define left and right state (h,hu) ql = np.array([3.0, 5.0]) qr = np.array([3.0, -5.0]) # Defineoptional parameters (otherwise chooses default values) plotopts = {'g':1.0, 'time':2.0, 'tmax':5, 'hmax':10, 'humin':-15, 'humax':15} # Call interactive function (can be called without any argument) pt = riemann_interactive.shallow_water(ql,qr,**plotopts) #mpld3.save_html(pt,"test2.html") mpld3.display() Explanation: Shallow water equations In this section we show the interactive riemann solution of the exact solver for the shallow water equations. We first define the initial left and right state, the $g$ paramter and the plot range, then we call our riemann interactive plotting and display it. The commented line "mpld3.save_html" can be uncommented to save the output as html. On the app feel free to drag and drop the $q_l$ and $q_r$ states in the phase plane. The time can also be adjusted by dragging up and down the black dot in the horizontal time bar in the $x-t$ plane. End of explanation # Define left and right state ql = np.array([-2.0, 2.0]) qr = np.array([0.0, -3.0]) # Define two eigenvectors and eigenvalues (acoustics) zz = 2.0 rho0 = 1.0 r1 = np.array([zz,1.0]) r2 = np.array([-zz,1.0]) lam1 = zz/rho0 lam2 = -zz/rho0 plotopts={'q1min':-5, 'q1max':5, 'q2min':-5, 'q2max':5, 'domain':5, 'time':1, 'title1':"Pressure", 'title2':"Velocity"} riemann_interactive.linear_phase_plane(ql,qr,r1,r2,lam1,lam2,**plotopts) mpld3.display() Explanation: Acoustic equations Here we show the exact solution for the Riemann problem of linear acoustics. We again determine the initial left and right states, and we provide the eigenvectors ($r_1,r_2$) and eigenvalues ($\lambda_1,\lambda_2$) of the solution. It is written in this way, so one can easily input the eigenvalues of any other two dimensional linear Riemann problem. Additional optional input can be added to adjust the plotted window. In this case, the time is fixed in "plotopts" and only the left and right states ($q_l,q_r$) can be moved interactively. End of explanation
3,098
Given the following text description, write Python code to implement the functionality described below step by step Description: Since we announced our collaboration with the World Bank and more partners to create the Open Traffic platform, we’ve been busy. We’ve shared two technical previews of the OSMLR linear referencing system. Now we’re ready to share more about how we’re using Mapzen Map Matching to “snap” GPS-derived locations to OSMLR segments, and how we’re using a data-driven approach to evaluate and improve the algorithms. A "data-driven" approach to improving map-matching - Part I Step1: User vars Step2: 1. Generate Routes The first step in route generation is picking a test region, which for us was San Francisco. Routes are defined as a set of start and stop coordinates, which we obtain by randomly sampling venues from Mapzen’s Who’s on First gazetteer for the specified city. Additionally, we want to limit our route distances to be between ½ km and 1 km because this is the localized scale at which map matching actually takes place. In this example, we specify 200 fake routes Step3: a) Get random start and end coordinates Step4: A sample route Step5: b) Get the route shapes and attributes For each route, we then pass the start and end coordinates to the Turn-By-Turn API to obtain the coordinates of the road segments along the route Step6: The Turn-By-Turn API returns the shape of the route as an encoded polyline Step7: The route shape then gets passed to the map matching service in order to obtain the coordinates and attributes of the road segments (i.e. edges) that lie along the original route Step8: We can inspect the attributes returned for our example route Step9: 2. Iterate Through Routes, Generate Fake GPS, and Score the Matches a) Define the noise levels and sample rates for synthetic GPS Now that we have a set of "ground-truthed" routes, meaning route coordinates and their associated road segments, we want to simulate what the GPS data recorded along these routes might look like. This involves two main steps Step10: b) Defining a validation metric In order to validate our matched routes, we need an effective method of scoring. Should Type I error (false negatives) carry as much weight as Type II (false negatives)? Should a longer mismatched segment carry a greater penalty than one that is shorter? We adopt the scoring mechanism proposed by Newton and Krumm (2009), upon whose map-matching algorithm the Meili service is based Step11: Iterating through each our 200 routes at 5 sample rates and 21 levels of noise, we simulate 21,000 distinct GPS traces. We then pass each of these simulated traces through to the map-matching service, and compare the resulting routes against the ground-truthed, pre-perturbation route segments. <center><i>The same route is perturbed with varying levels of gaussian noise (red dots) with standard deviations ranging from 0 to 100 m. The resulting matched routes are shown as red lines, which only deviate from the true route at higher levels of noise.</i></center> The previous step will typically take a long time to run if you are generating a lot of routes (> 10), so it's a good idea to save your dataframes for later use. Step12: d) Check for Pattern Failure Ensure that the Reporter is not failing frequently for any particular sample rate or noise level Step13: 3. Visualize the Scores The graphs below represent the median scores for 6 error metrics applied to each of our 21,000 routes, broken down by sample rate and noise level. Plots in the left column are based solely on error rate, i.e the percentage of Type I, Type II, or Type I/II mismatches. The right-hand column shows the same metrics as the left, but weighted by segment length. The top right plot thus represents the metric used by Newton and Krumm, and the two plots below it represent the same value broken out by error type.
Python Code: from __future__ import division from matplotlib import pyplot as plt from matplotlib import cm, colors, patheffects import numpy as np import os import glob import urllib import json import pandas as pd from random import shuffle, choice import pickle import sys; sys.path.insert(0, os.path.abspath('..')); import validator.validator as val %matplotlib inline Explanation: Since we announced our collaboration with the World Bank and more partners to create the Open Traffic platform, we’ve been busy. We’ve shared two technical previews of the OSMLR linear referencing system. Now we’re ready to share more about how we’re using Mapzen Map Matching to “snap” GPS-derived locations to OSMLR segments, and how we’re using a data-driven approach to evaluate and improve the algorithms. A "data-driven" approach to improving map-matching - Part I: VALIDATION ============================================================================================ Mapzen has been testing and matching GPS measurements from some of Open Traffic’s partners since development began, but one burning question remained: were our matches any good? Map-matching real-time GPS traces is one thing, but without on-the-ground knowledge about where the traces actually came from, it was impossible to to determine how close to — or far from — the truth our predictions were. Our in-house solution was to use Mapzen's very own Turn-By-Turn routing API to simulate fake GPS data, send the synthetic data through the Mapzen Map Matching service, and compare the results to the original routes used to simulate the fake traces. We have documented this process below: 0. Setup test environment End of explanation mapzenKey = os.environ.get('MAPZEN_API') gmapsKey = os.environ.get('GOOGLE_MAPS') Explanation: User vars End of explanation cityName = 'San Francisco' minRouteLen = 0.5 # specified in km maxRouteLen = 1 # specified in km numRoutes = 200 Explanation: 1. Generate Routes The first step in route generation is picking a test region, which for us was San Francisco. Routes are defined as a set of start and stop coordinates, which we obtain by randomly sampling venues from Mapzen’s Who’s on First gazetteer for the specified city. Additionally, we want to limit our route distances to be between ½ km and 1 km because this is the localized scale at which map matching actually takes place. In this example, we specify 200 fake routes: End of explanation # Using Mapzen Venues (requires good Who's on First coverage) routeList = val.get_routes_by_length(cityName, minRouteLen, maxRouteLen, numRoutes, apiKey=mapzenKey) ## Using Google Maps POIs (better for non-Western capitals): # routeList = val.get_POI_routes_by_length(cityName, minRouteLen, maxRouteLen, numRoutes, gmapsKey) Explanation: a) Get random start and end coordinates End of explanation myRoute = routeList[2] myRoute Explanation: A sample route: End of explanation shape, routeUrl = val.get_route_shape(myRoute) Explanation: b) Get the route shapes and attributes For each route, we then pass the start and end coordinates to the Turn-By-Turn API to obtain the coordinates of the road segments along the route: End of explanation shape Explanation: The Turn-By-Turn API returns the shape of the route as an encoded polyline: End of explanation edges, matchedPts, shapeCoords, _ = val.get_trace_attrs(shape) edges = val.get_coords_per_second(shapeCoords, edges, '2768') Explanation: The route shape then gets passed to the map matching service in order to obtain the coordinates and attributes of the road segments (i.e. edges) that lie along the original route: End of explanation val.format_edge_df(edges).head() Explanation: We can inspect the attributes returned for our example route: End of explanation sampleRates = [1, 5, 10, 20, 30] # specified in seconds noiseLevels = np.linspace(0, 100, 21) # specified in meters Explanation: 2. Iterate Through Routes, Generate Fake GPS, and Score the Matches a) Define the noise levels and sample rates for synthetic GPS Now that we have a set of "ground-truthed" routes, meaning route coordinates and their associated road segments, we want to simulate what the GPS data recorded along these routes might look like. This involves two main steps: 1. resampling the coordinates to reflect real-world GPS sample frequencies 2. perturbing the coordinates to simulate the effect of GPS "noise" To resample the coordinates, we use the known speeds along each road segment to retain points along the route after every $n$ seconds. To simulate GPS noise, we randomly sample from a normal distribution with standard deviation equal to a specified level of noise (in meters). We then apply this vector of noise to a given coordinate pair, and use a rolling average to smooth out the change in noise between subsequent "measurements", recreating the phenomenon of GPS "drift". <center><i>A route (blue line) is resampled at 5 second intervals (blue dots). The resampled points are then perturbed with noise sampled from a gaussian distribution with mean 0 and standard deviation of 60. The resulting “measurements” (red dots) represent a simulated GPS trace.</i></center> Since we are interested in assessing the performance of map-matching under a variety of different conditions, we define a range of realistic sample rates and noise levels: End of explanation matchDf, _, _ = val.get_route_metrics(routeList, sampleRates, noiseLevels, saveResults=False) Explanation: b) Defining a validation metric In order to validate our matched routes, we need an effective method of scoring. Should Type I error (false negatives) carry as much weight as Type II (false negatives)? Should a longer mismatched segment carry a greater penalty than one that is shorter? We adopt the scoring mechanism proposed by Newton and Krumm (2009), upon whose map-matching algorithm the Meili service is based: <img src="krumm_newson_dist.png" alt="Drawing" style="width: 400px;" align="center"/> <center><i>From Newton and Krumm (2009)</i></center> In the above schematic, $\text{d}+$ refers to a false positive or Type I error, while $\text{d}-$ represents a false negative, or Type II error. The final reported error is a combination of both types of mismatches, weighted by their respective lengths. c) Generate the scores Behind the scenes, the get_route_metrics() function will perform the following actions: 1. resample points along a given route at each of the specified sample rates 2. apply gaussian noise to each of the resample points at each of the specified noise levels 3. pass these synthetic measurements to the Open Traffic Reporter and record the matched routes that are returned 4. compare the segments on the "matched" route to the segments of the original route and score the results End of explanation matchDf.to_csv('{0}_{1}_matches.csv'.format(cityName, str(numRoutes)), index=False) Explanation: Iterating through each our 200 routes at 5 sample rates and 21 levels of noise, we simulate 21,000 distinct GPS traces. We then pass each of these simulated traces through to the map-matching service, and compare the resulting routes against the ground-truthed, pre-perturbation route segments. <center><i>The same route is perturbed with varying levels of gaussian noise (red dots) with standard deviations ranging from 0 to 100 m. The resulting matched routes are shown as red lines, which only deviate from the true route at higher levels of noise.</i></center> The previous step will typically take a long time to run if you are generating a lot of routes (> 10), so it's a good idea to save your dataframes for later use. End of explanation val.plot_pattern_failure(matchDf, sampleRates, noiseLevels) Explanation: d) Check for Pattern Failure Ensure that the Reporter is not failing frequently for any particular sample rate or noise level End of explanation val.plot_distance_metrics(matchDf, sampleRates) Explanation: 3. Visualize the Scores The graphs below represent the median scores for 6 error metrics applied to each of our 21,000 routes, broken down by sample rate and noise level. Plots in the left column are based solely on error rate, i.e the percentage of Type I, Type II, or Type I/II mismatches. The right-hand column shows the same metrics as the left, but weighted by segment length. The top right plot thus represents the metric used by Newton and Krumm, and the two plots below it represent the same value broken out by error type. End of explanation
3,099
Given the following text description, write Python code to implement the functionality described below step by step Description: Adding new passbands to PHOEBE In this tutorial we will show you how to add your own passband to PHOEBE. Adding a custom passband involves Step1: If you plan on computing model atmosphere intensities (as opposed to only blackbody intensities), you will need to download atmosphere tables and unpack them into a local directory of your choice. Keep in mind that this will take a long time. Plan to go for lunch or leave it overnight. The good news is that this needs to be done only once. For the purpose of this document, we will use a local tables/ directory and assume that we are computing intensities for all available model atmospheres Step2: Getting started Let us start by importing phoebe, numpy and matplotlib Step3: Passband transmission function The passband transmission function is typically a user-provided two-column file. The first column is wavelength, and the second column is passband transmission. For the purposes of this tutorial, we will simulate the passband as a uniform box. Step4: Let us plot this mock passband transmission function to see what it looks like Step5: Let us now save these data in a file that we will use to register a new passband. Step6: Registering a passband The first step in introducing a new passband into PHOEBE is registering it with the system. We use the Passband class for that. Step7: The first argument, ptf, is the passband transmission file we just created. Of course, you would provide an actual passband transmission function that comes from a respectable source rather than this silly tutorial. The next two arguments, pbset and pbname, should be taken in unison. The way PHOEBE refers to passbands is a pbset Step8: Since we have not computed any tables yet, the list is empty for now. Blackbody functions for computing the lookup tables are built into PHOEBE and you do not need any auxiliary files to generate them. The lookup tables are defined for effective temperatures between 300K and 500,000K. To compute the blackbody response, issue Step9: Checking the content property again shows that the table has been successfully computed Step10: We can now test-drive the blackbody lookup table we just created. For this we will use a low-level class method that computes normal emergent passband intensity, Inorm(). For the sake of simplicity, we will turn off limb darkening by setting ld_func to 'linear' and ld_coeffs to '[0.0]' Step11: Let us now plot a range of temperatures, to make sure that normal emergent passband intensities do what they are supposed to do. While at it, let us compare what we get for the Johnson Step12: This makes perfect sense Step13: Note, of course, that you will need to change the path to point to the directory where you unpacked the ck2004 tables. The verbosity parameter verbose will report on the progress as computation is being done. Depending on your computer speed, this step will take up to a minute to complete. We can now check the passband's content attribute again Step14: Let us now use the same low-level function as before to compare normal emergent passband intensity for our custom passband for blackbody and ck2004 model atmospheres. One other complication is that, unlike blackbody model that depends only on the temperature, the ck2004 model depends on surface gravity (log g) and heavy metal abundances as well, so we need to pass those arrays. Step15: Quite a difference. That is why using model atmospheres is superior when accuracy is of importance. Next, we need to compute direction-dependent intensities for all our limb darkening and boosting needs. This is a step that takes a long time; depending on your computer speed, it can take a few minutes to complete. Step16: This step will allow PHOEBE to compute all direction-dependent intensities on the fly, including the interpolation of the limb darkening coefficients that is model-independent. When limb darkening models are preferred (for example, when you don't quite trust direction-dependent intensities from the model atmosphere), we need to calculate two more tables Step17: This completes the computation of Castelli & Kurucz auxiliary tables. Computing PHOENIX response PHOENIX is a 3-D model atmosphere code. Because of that, it is more complex and better behaved for cooler stars (down to ~2300K). The steps to compute PHOENIX intensity tables are analogous to the ones we used for ck2004; so we can do all of them in a single step Step18: There is one extra step that we need to do for phoenix atmospheres Step19: Now we can compare all three model atmospheres Step20: We see that, as temperature increases, model atmosphere intensities can differ quite a bit. That explains why the choice of a model atmosphere is quite important and should be given proper consideration. Importing Wilson-Devinney response PHOEBE no longer shares any codebase with the WD code, but for comparison purposes it is sometimes useful to use the same atmosphere tables. If the passband you are registering with PHOEBE has been defined in WD's atmcof.dat and atmcofplanck.dat files, PHOEBE can import those coefficients and use them to compute intensities. To import a set of WD atmospheric coefficients, you need to know the corresponding index of the passband (you can look it up in the WD user manual available at ftp Step21: We can consult the content attribute to see the entire set of supported tables, and plot different atmosphere models for comparison purposes Step22: Still an appreciable difference. Saving the passband table The final step of all this (computer's) hard work is to save the passband file so that these steps do not need to be ever repeated. From now on you will be able to load the passband file explicitly and PHOEBE will have full access to all of its tables. Your new passband will be identified as 'Custom
Python Code: #!pip install -I "phoebe>=2.2,<2.3" Explanation: Adding new passbands to PHOEBE In this tutorial we will show you how to add your own passband to PHOEBE. Adding a custom passband involves: downloading and setting up model atmosphere tables; providing a passband transmission function; defining and registering passband parameters; computing blackbody response for the passband; [optional] computing Castelli & Kurucz (2004) passband tables; [optional] computing Husser et al. (2013) PHOENIX passband tables; [optional] if the passband is one of the passbands included in the Wilson-Devinney code, importing the WD response; and saving the generated passband file. <!-- * \[optional\] computing Werner et al. (2012) TMAP passband tables; --> Let's first make sure we have the correct version of PHOEBE installed. Uncomment the following line if running in an online notebook session such as colab. End of explanation import phoebe from phoebe import u # Register a passband: pb = phoebe.atmospheres.passbands.Passband( ptf='my_passband.ptf', pbset='Custom', pbname='mypb', effwl=330, wlunits=u.nm, calibrated=True, reference='A completely made-up passband published in Nowhere (2017)', version=1.0, comments='This is my first custom passband' ) # Blackbody response: pb.compute_blackbody_response() # CK2004 response: pb.compute_ck2004_response(path='tables/ck2004') pb.compute_ck2004_intensities(path='tables/ck2004') pb.compute_ck2004_ldcoeffs() pb.compute_ck2004_ldints() # PHOENIX response: pb.compute_phoenix_response(path='tables/phoenix') pb.compute_phoenix_intensities(path='tables/phoenix') pb.compute_phoenix_ldcoeffs() pb.compute_phoenix_ldints() # Impute missing values from the PHOENIX model atmospheres: pb.impute_atmosphere_grid(pb._phoenix_energy_grid) pb.impute_atmosphere_grid(pb._phoenix_photon_grid) pb.impute_atmosphere_grid(pb._phoenix_ld_energy_grid) pb.impute_atmosphere_grid(pb._phoenix_ld_photon_grid) pb.impute_atmosphere_grid(pb._phoenix_ldint_energy_grid) pb.impute_atmosphere_grid(pb._phoenix_ldint_photon_grid) for i in range(len(pb._phoenix_intensity_axes[3])): pb.impute_atmosphere_grid(pb._phoenix_Imu_energy_grid[:,:,:,i,:]) pb.impute_atmosphere_grid(pb._phoenix_Imu_photon_grid[:,:,:,i,:]) # Wilson-Devinney response: pb.import_wd_atmcof('atmcofplanck.dat', 'atmcof.dat', 22) # Save the passband: pb.save('my_passband.fits') Explanation: If you plan on computing model atmosphere intensities (as opposed to only blackbody intensities), you will need to download atmosphere tables and unpack them into a local directory of your choice. Keep in mind that this will take a long time. Plan to go for lunch or leave it overnight. The good news is that this needs to be done only once. For the purpose of this document, we will use a local tables/ directory and assume that we are computing intensities for all available model atmospheres: mkdir tables cd tables wget http://phoebe-project.org/static/atms/ck2004.tgz wget http://phoebe-project.org/static/atms/phoenix.tgz <!-- wget http://phoebe-project.org/static/atms/tmap.tgz --> Once the data are downloaded, unpack the archives: tar xvzf ck2004.tgz tar xvzf phoenix.tgz <!-- tar xvzf tmap.tgz --> That should leave you with the following directory structure: tables |____ck2004 | |____TxxxxxGxxPxx.fits (3800 files) |____phoenix | |____ltexxxxx-x.xx-x.x.PHOENIX-ACES-AGSS-COND-SPECINT-2011.fits (7260 files) I don't care about the details, just show/remind me how it's done Makes sense, and we don't judge: you want to get to science. Provided that you have the passband transmission file available and the atmosphere tables already downloaded, the sequence that will generate/register a new passband is: End of explanation %matplotlib inline import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger(clevel='WARNING') Explanation: Getting started Let us start by importing phoebe, numpy and matplotlib: End of explanation wl = np.linspace(300, 360, 61) ptf = np.zeros(len(wl)) ptf[(wl>=320) & (wl<=340)] = 1.0 Explanation: Passband transmission function The passband transmission function is typically a user-provided two-column file. The first column is wavelength, and the second column is passband transmission. For the purposes of this tutorial, we will simulate the passband as a uniform box. End of explanation plt.xlabel('Wavelength [nm]') plt.ylabel('Passband transmission') plt.plot(wl, ptf, 'b-') plt.show() Explanation: Let us plot this mock passband transmission function to see what it looks like: End of explanation np.savetxt('my_passband.ptf', np.vstack((wl, ptf)).T) Explanation: Let us now save these data in a file that we will use to register a new passband. End of explanation pb = phoebe.atmospheres.passbands.Passband( ptf='my_passband.ptf', pbset='Custom', pbname='mypb', effwl=330., wlunits=u.nm, calibrated=True, reference='A completely made-up passband published in Nowhere (2017)', version=1.0, comments='This is my first custom passband') Explanation: Registering a passband The first step in introducing a new passband into PHOEBE is registering it with the system. We use the Passband class for that. End of explanation pb.content Explanation: The first argument, ptf, is the passband transmission file we just created. Of course, you would provide an actual passband transmission function that comes from a respectable source rather than this silly tutorial. The next two arguments, pbset and pbname, should be taken in unison. The way PHOEBE refers to passbands is a pbset:pbname string, for example Johnson:V, Cousins:Rc, etc. Thus, our fake passband will be Custom:mypb. The following two arguments, effwl and wlunits, also come as a pair. PHOEBE uses effective wavelength to apply zero-level passband corrections when better options (such as model atmospheres) are unavailable. Effective wavelength is a transmission-weighted average wavelength in the units given by wlunits. The calibrated parameter instructs PHOEBE whether to take the transmission function as calibrated, i.e. the flux through the passband is absolutely calibrated. If set to True, PHOEBE will assume that absolute intensities computed using the passband transmission function do not need further calibration. If False, the intensities are considered as scaled rather than absolute, i.e. correct to a scaling constant. Most modern passbands provided in the recent literature are calibrated. The reference parameter holds a reference string to the literature from which the transmission function was taken from. It is common that updated transmission functions become available, which is the point of the version parameter. If there are multiple versions of the transmission function, PHOEBE will by default take the largest value, or the value that is explicitly requested in the filter string, i.e. Johnson:V:1.0 or Johnson:V:2.0. Finally, the comments parameter is a convenience parameter to store any additional pertinent information. Computing blackbody response To significantly speed up calculations, passband intensities are stored in lookup tables instead of computing them over and over again on the fly. Computed passband tables are tagged in the content property of the class: End of explanation pb.compute_blackbody_response() Explanation: Since we have not computed any tables yet, the list is empty for now. Blackbody functions for computing the lookup tables are built into PHOEBE and you do not need any auxiliary files to generate them. The lookup tables are defined for effective temperatures between 300K and 500,000K. To compute the blackbody response, issue: End of explanation pb.content Explanation: Checking the content property again shows that the table has been successfully computed: End of explanation pb.Inorm(Teff=5772, atm='blackbody', ld_func='linear', ld_coeffs=[0.0]) Explanation: We can now test-drive the blackbody lookup table we just created. For this we will use a low-level class method that computes normal emergent passband intensity, Inorm(). For the sake of simplicity, we will turn off limb darkening by setting ld_func to 'linear' and ld_coeffs to '[0.0]': End of explanation jV = phoebe.get_passband('Johnson:V') teffs = np.linspace(5000, 8000, 100) plt.xlabel('Temperature [K]') plt.ylabel('Inorm [W/m^3]') plt.plot(teffs, pb.Inorm(teffs, atm='blackbody', ld_func='linear', ld_coeffs=[0.0]), label='mypb') plt.plot(teffs, jV.Inorm(teffs, atm='blackbody', ld_func='linear', ld_coeffs=[0.0]), label='jV') plt.legend(loc='lower right') plt.show() Explanation: Let us now plot a range of temperatures, to make sure that normal emergent passband intensities do what they are supposed to do. While at it, let us compare what we get for the Johnson:V passband. End of explanation pb.compute_ck2004_response(path='tables/ck2004', verbose=False) Explanation: This makes perfect sense: Johnson V transmission function is wider than our boxed transmission function, so intensity in the V band is larger the lower temperatures. However, for the hotter temperatures the contribution to the UV flux increases and our box passband with a perfect transmission of 1 takes over. Computing Castelli & Kurucz (2004) response For any real science you will want to generate model atmosphere tables. The default choice in PHOEBE are the models computed by Fiorella Castelli and Bob Kurucz (website, paper) that feature new opacity distribution functions. In principle, you can generate PHOEBE-compatible tables for any model atmospheres, but that would require a bit of book-keeping legwork in the PHOEBE backend. Contact us to discuss an extension to other model atmospheres. To compute Castelli & Kurucz (2004) passband tables, we will use the previously downloaded model atmospheres. We start with the ck2004 normal intensities: End of explanation pb.content Explanation: Note, of course, that you will need to change the path to point to the directory where you unpacked the ck2004 tables. The verbosity parameter verbose will report on the progress as computation is being done. Depending on your computer speed, this step will take up to a minute to complete. We can now check the passband's content attribute again: End of explanation loggs = np.ones(len(teffs))*4.43 abuns = np.zeros(len(teffs)) plt.xlabel('Temperature [K]') plt.ylabel('Inorm [W/m^3]') plt.plot(teffs, pb.Inorm(teffs, atm='blackbody', ld_func='linear', ld_coeffs=[0.0]), label='blackbody') plt.plot(teffs, pb.Inorm(teffs, loggs, abuns, atm='ck2004', ld_func='linear', ld_coeffs=[0.0]), label='ck2004') plt.legend(loc='lower right') plt.show() Explanation: Let us now use the same low-level function as before to compare normal emergent passband intensity for our custom passband for blackbody and ck2004 model atmospheres. One other complication is that, unlike blackbody model that depends only on the temperature, the ck2004 model depends on surface gravity (log g) and heavy metal abundances as well, so we need to pass those arrays. End of explanation pb.compute_ck2004_intensities(path='tables/ck2004', verbose=False) Explanation: Quite a difference. That is why using model atmospheres is superior when accuracy is of importance. Next, we need to compute direction-dependent intensities for all our limb darkening and boosting needs. This is a step that takes a long time; depending on your computer speed, it can take a few minutes to complete. End of explanation pb.compute_ck2004_ldcoeffs() pb.compute_ck2004_ldints() Explanation: This step will allow PHOEBE to compute all direction-dependent intensities on the fly, including the interpolation of the limb darkening coefficients that is model-independent. When limb darkening models are preferred (for example, when you don't quite trust direction-dependent intensities from the model atmosphere), we need to calculate two more tables: one for limb darkening coefficients and the other for the integrated limb darkening. That is done by two methods that can take a couple of minutes to complete: End of explanation pb.compute_phoenix_response(path='tables/phoenix', verbose=False) pb.compute_phoenix_intensities(path='tables/phoenix', verbose=False) pb.compute_phoenix_ldcoeffs() pb.compute_phoenix_ldints() print(pb.content) Explanation: This completes the computation of Castelli & Kurucz auxiliary tables. Computing PHOENIX response PHOENIX is a 3-D model atmosphere code. Because of that, it is more complex and better behaved for cooler stars (down to ~2300K). The steps to compute PHOENIX intensity tables are analogous to the ones we used for ck2004; so we can do all of them in a single step: End of explanation pb.impute_atmosphere_grid(pb._phoenix_energy_grid) pb.impute_atmosphere_grid(pb._phoenix_photon_grid) pb.impute_atmosphere_grid(pb._phoenix_ld_energy_grid) pb.impute_atmosphere_grid(pb._phoenix_ld_photon_grid) pb.impute_atmosphere_grid(pb._phoenix_ldint_energy_grid) pb.impute_atmosphere_grid(pb._phoenix_ldint_photon_grid) for i in range(len(pb._phoenix_intensity_axes[3])): pb.impute_atmosphere_grid(pb._phoenix_Imu_energy_grid[:,:,:,i,:]) pb.impute_atmosphere_grid(pb._phoenix_Imu_photon_grid[:,:,:,i,:]) Explanation: There is one extra step that we need to do for phoenix atmospheres: because there are gaps in the coverage of atmospheric parameters, we need to impute those values in order to allow for seamless interpolation. This is achieved by the call to impute_atmosphere_grid(). It is a computationally intensive step that can take 10+ minutes. End of explanation plt.xlabel('Temperature [K]') plt.ylabel('Inorm [W/m^3]') plt.plot(teffs, pb.Inorm(teffs, atm='blackbody', ldatm='ck2004', ld_func='linear', ld_coeffs=[0.0]), label='blackbody') plt.plot(teffs, pb.Inorm(teffs, loggs, abuns, atm='ck2004', ldatm='ck2004', ld_func='linear', ld_coeffs=[0.0]), label='ck2004') plt.plot(teffs, pb.Inorm(teffs, loggs, abuns, atm='phoenix', ldatm='phoenix', ld_func='linear', ld_coeffs=[0.0]), label='phoenix') plt.legend(loc='lower right') plt.show() Explanation: Now we can compare all three model atmospheres: End of explanation pb.import_wd_atmcof('atmcofplanck.dat', 'atmcof.dat', 22) Explanation: We see that, as temperature increases, model atmosphere intensities can differ quite a bit. That explains why the choice of a model atmosphere is quite important and should be given proper consideration. Importing Wilson-Devinney response PHOEBE no longer shares any codebase with the WD code, but for comparison purposes it is sometimes useful to use the same atmosphere tables. If the passband you are registering with PHOEBE has been defined in WD's atmcof.dat and atmcofplanck.dat files, PHOEBE can import those coefficients and use them to compute intensities. To import a set of WD atmospheric coefficients, you need to know the corresponding index of the passband (you can look it up in the WD user manual available at ftp://ftp.astro.ufl.edu/pub/wilson/lcdc2003/ebdoc2003.2feb2004.pdf.gz) and you need to grab the files ftp://ftp.astro.ufl.edu/pub/wilson/lcdc2003/atmcofplanck.dat.gz and ftp://ftp.astro.ufl.edu/pub/wilson/lcdc2003/atmcof.dat.gz from Bob Wilson's webpage. For this particular passband the index is 22. To import, issue: End of explanation pb.content plt.xlabel('Temperature [K]') plt.ylabel('Inorm [W/m^3]') plt.plot(teffs, pb.Inorm(teffs, atm='blackbody', ldatm='ck2004', ld_func='linear', ld_coeffs=[0.0]), label='blackbody') plt.plot(teffs, pb.Inorm(teffs, loggs, abuns, atm='ck2004', ldatm='ck2004', ld_func='linear', ld_coeffs=[0.0]), label='ck2004') plt.plot(teffs, pb.Inorm(teffs, loggs, abuns, atm='phoenix', ldatm='phoenix', ld_func='linear', ld_coeffs=[0.0]), label='phoenix') plt.plot(teffs, pb.Inorm(teffs, loggs, abuns, atm='extern_atmx', ldatm='phoenix', ld_func='linear', ld_coeffs=[0.0]), label='wd_atmx') plt.legend(loc='lower right') plt.show() Explanation: We can consult the content attribute to see the entire set of supported tables, and plot different atmosphere models for comparison purposes: End of explanation pb.save('~/.phoebe/atmospheres/tables/passbands/my_passband.fits') Explanation: Still an appreciable difference. Saving the passband table The final step of all this (computer's) hard work is to save the passband file so that these steps do not need to be ever repeated. From now on you will be able to load the passband file explicitly and PHOEBE will have full access to all of its tables. Your new passband will be identified as 'Custom:mypb'. To make PHOEBE automatically load the passband, it needs to be added to one of the passband directories that PHOEBE recognizes. If there are no proprietary aspects that hinder the dissemination of the tables, please consider contributing them to PHOEBE so that other users can use them. End of explanation