Unnamed: 0
int64
0
16k
text_prompt
stringlengths
110
62.1k
code_prompt
stringlengths
37
152k
3,300
Given the following text description, write Python code to implement the functionality described below step by step Description: Convección en una dimensión Step1: Parámetros Step2: ¡Número de Courant ! Step3: Condiciones iniciales Step4: Un paso en el tiempo Recordemos que queremos implementar $u_i^{n+1} = u_i^n - \mathrm{Co}/2 (u_{i+1}^n-u_{i-1}^n)$ Step5: Tiempo completo Step6: Formulaciones alternativas ¿Qué pasa si probamos el algoritmo "peor"? $u_i^{n+1} = u_i^n - \mathrm{Co} (u_{i}^n-u_{i-1}^n)$
Python Code: %matplotlib inline import scipy as np from matplotlib import pyplot as plt Explanation: Convección en una dimensión End of explanation L = 1.0 # longitud del sistema 1D nx = 42 # nodos espaciales dx = L / (nx-2) # sí, quitamos dos nodos ... x = np.linspace( 0 , L , num=nx ) T= 0.1 # tiempo total nt = 100 # pasos temporales dt = T / nt c = 1 # velocidad de la onda Explanation: Parámetros End of explanation Co = c * dt / dx Co Explanation: ¡Número de Courant ! End of explanation u0 = 1 * np.ones(nx) # todo uno x1 = L/4 ; n1 = int(x1 / dx) x2 = L/2 ; n2 = int(x2 / dx) u0[ n1 : n2 ] = 2 plt.plot( x , u0 ) Explanation: Condiciones iniciales End of explanation u = u0.copy() un = u.copy() # distribución actual i = 1 u[i] = un[i] - (Co / 2.0) * (un[i+1] - _valor_izdo ) for i in range( 2 , nx - 2 ): # Ahora queda claro por qué hemos quitado los extremos !! u[i] = un[i] - (Co / 2.0) * (un[i+1] - un[i-1]) plt.plot(x,u) Explanation: Un paso en el tiempo Recordemos que queremos implementar $u_i^{n+1} = u_i^n - \mathrm{Co}/2 (u_{i+1}^n-u_{i-1}^n)$ End of explanation u = u0.copy() for n in range(nt): un = u.copy() for i in range( 1 , nx - 1 ): u[i] = un[i] - (Co / 2.0) * (un[i+1] - un[i-1]) plt.plot(x , u , x , u0 , 'r') Explanation: Tiempo completo End of explanation u = u0.copy() for n in range(nt): un = u.copy() for i in range( 1 , nx ): u[i] = un[i] - Co * (un[i] - un[i-1]) plt.plot(x , u , x , u0 , 'r') Explanation: Formulaciones alternativas ¿Qué pasa si probamos el algoritmo "peor"? $u_i^{n+1} = u_i^n - \mathrm{Co} (u_{i}^n-u_{i-1}^n)$ End of explanation
3,301
Given the following text description, write Python code to implement the functionality described below step by step Description: Initialization Welcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can Step2: You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with Step4: 2 - Zero initialization There are two types of parameters to initialize in a neural network Step5: Expected Output Step6: The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary Step8: The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. <font color='blue'> What you should remember Step9: Expected Output Step10: If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. Step12: Observations Step13: Expected Output
Python Code: import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() Explanation: Initialization Welcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can: - Speed up the convergence of gradient descent - Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. End of explanation def model(X, Y, learning_rate = 0.01, num_iterations = 15000, print_cost = True, initialization = "he"): Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters Explanation: You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - Zeros initialization -- setting initialization = "zeros" in the input argument. - Random initialization -- setting initialization = "random" in the input argument. This initializes the weights to large random values. - He initialization -- setting initialization = "he" in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. Instructions: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this model() calls. End of explanation # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros(shape = (layers_dims[l], layers_dims[l-1])) parameters['b' + str(l)] = np.zeros(shape = (layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) Explanation: 2 - Zero initialization There are two types of parameters to initialize in a neural network: - the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$ - the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$ Exercise: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. End of explanation parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) Explanation: Expected Output: <table> <tr> <td> **W1** </td> <td> [[ 0. 0. 0.] [ 0. 0. 0.]] </td> </tr> <tr> <td> **b1** </td> <td> [[ 0.] [ 0.]] </td> </tr> <tr> <td> **W2** </td> <td> [[ 0. 0.]] </td> </tr> <tr> <td> **b2** </td> <td> [[ 0.]] </td> </tr> </table> Run the following code to train your model on 15,000 iterations using zeros initialization. End of explanation print ("predictions_train = " + str(predictions_train)) print ("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) Explanation: The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: End of explanation # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn( layers_dims[l], layers_dims[l-1]) * 10 parameters['b' + str(l)] = np.zeros(shape = (layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) Explanation: The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. <font color='blue'> What you should remember: - The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initialization To break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. Exercise: Implement the following function to initialize your weights to large random values (scaled by *10) and your biases to zeros. Use np.random.randn(..,..) * 10 for weights and np.zeros((.., ..)) for biases. We are using a fixed np.random.seed(..) to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. End of explanation parameters = model(train_X, train_Y, initialization = "random") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) Explanation: Expected Output: <table> <tr> <td> **W1** </td> <td> [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] </td> </tr> <tr> <td> **b1** </td> <td> [[ 0.] [ 0.]] </td> </tr> <tr> <td> **W2** </td> <td> [[-0.82741481 -6.27000677]] </td> </tr> <tr> <td> **b2** </td> <td> [[ 0.]] </td> </tr> </table> Run the following code to train your model on 15,000 iterations using random initialization. End of explanation print (predictions_train) print (predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) Explanation: If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. End of explanation # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn( layers_dims[l], layers_dims[l-1]) * np.sqrt(2/layers_dims[l-1]) parameters['b' + str(l)] = np.zeros(shape = (layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) Explanation: Observations: - The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity. - Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization. <font color='blue'> In summary: - Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initialization Finally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of sqrt(1./layers_dims[l-1]) where He initialization would use sqrt(2./layers_dims[l-1]).) Exercise: Implement the following function to initialize your parameters with He initialization. Hint: This function is similar to the previous initialize_parameters_random(...). The only difference is that instead of multiplying np.random.randn(..,..) by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. End of explanation parameters = model(train_X, train_Y, initialization = "he") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) Explanation: Expected Output: <table> <tr> <td> **W1** </td> <td> [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] </td> </tr> <tr> <td> **b1** </td> <td> [[ 0.] [ 0.] [ 0.] [ 0.]] </td> </tr> <tr> <td> **W2** </td> <td> [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] </td> </tr> <tr> <td> **b2** </td> <td> [[ 0.]] </td> </tr> </table> Run the following code to train your model on 15,000 iterations using He initialization. End of explanation
3,302
Given the following text description, write Python code to implement the functionality described below step by step Description: Step5: Basic Idea of Count Min sketch We map the input value to multiple points in a relatively small output space. Therefore, the count associated with a given input will be applied to multiple counts in the output space. Even though collisions will occur, the minimum count associated with a given input will have some desirable properties, including the ability to be used to estimate the largest N counts. <img src="files/count_min_2.png"> http Step6: Is it possible to make the sketch so coarse that its estimates are wrong even for this data set? Step7: Yes! (if you try enough) Why? The 'w' parameter goes like ceiling(exp(1)/epsilon), which is always >=~ 3. The 'd' parameter goes like ceiling(log(1/delta), which is always >= 1. So, you're dealing with a space with minimum size 3 x 1. With 10 records, it's possible that all 4 users map their counts to the point. So it's possible to see an estimate as high as 10, in this case. Now for a larger data set. Step8: For this precision and dataset size, the CM algo takes much longer than the exact solution. In fact, the crossover point at which the CM sketch can achieve reasonable accuracy in the same time as the exact solution is a very large number of entries.
Python Code: import sys import random import numpy as np import heapq import json import time BIG_PRIME = 9223372036854775783 def random_parameter(): return random.randrange(0, BIG_PRIME - 1) class Sketch: def __init__(self, delta, epsilon, k): Setup a new count-min sketch with parameters delta, epsilon and k The parameters delta and epsilon control the accuracy of the estimates of the sketch Cormode and Muthukrishnan prove that for an item i with count a_i, the estimate from the sketch a_i_hat will satisfy the relation a_hat_i <= a_i + epsilon * ||a||_1 with probability at least 1 - delta, where a is the the vector of all all counts and ||x||_1 is the L1 norm of a vector x Parameters ---------- delta : float A value in the unit interval that sets the precision of the sketch epsilon : float A value in the unit interval that sets the precision of the sketch k : int A positive integer that sets the number of top items counted Examples -------- >>> s = Sketch(10**-7, 0.005, 40) Raises ------ ValueError If delta or epsilon are not in the unit interval, or if k is not a positive integer if delta <= 0 or delta >= 1: raise ValueError("delta must be between 0 and 1, exclusive") if epsilon <= 0 or epsilon >= 1: raise ValueError("epsilon must be between 0 and 1, exclusive") if k < 1: raise ValueError("k must be a positive integer") self.w = int(np.ceil(np.exp(1) / epsilon)) self.d = int(np.ceil(np.log(1 / delta))) self.k = k self.hash_functions = [self.__generate_hash_function() for i in range(self.d)] self.count = np.zeros((self.d, self.w), dtype='int32') self.heap, self.top_k = [], {} # top_k => [estimate, key] pairs def update(self, key, increment): Updates the sketch for the item with name of key by the amount specified in increment Parameters ---------- key : string The item to update the value of in the sketch increment : integer The amount to update the sketch by for the given key Examples -------- >>> s = Sketch(10**-7, 0.005, 40) >>> s.update('http://www.cnn.com/', 1) for row, hash_function in enumerate(self.hash_functions): column = hash_function(abs(hash(key))) self.count[row, column] += increment self.update_heap(key) def update_heap(self, key): Updates the class's heap that keeps track of the top k items for a given key For the given key, it checks whether the key is present in the heap, updating accordingly if so, and adding it to the heap if it is absent Parameters ---------- key : string The item to check against the heap estimate = self.get(key) if not self.heap or estimate >= self.heap[0][0]: if key in self.top_k: old_pair = self.top_k.get(key) old_pair[0] = estimate heapq.heapify(self.heap) else: if len(self.top_k) < self.k: heapq.heappush(self.heap, [estimate, key]) self.top_k[key] = [estimate, key] else: new_pair = [estimate, key] old_pair = heapq.heappushpop(self.heap, new_pair) if new_pair[1] != old_pair[1]: del self.top_k[old_pair[1]] self.top_k[key] = new_pair self.top_k[key] = new_pair def get(self, key): Fetches the sketch estimate for the given key Parameters ---------- key : string The item to produce an estimate for Returns ------- estimate : int The best estimate of the count for the given key based on the sketch Examples -------- >>> s = Sketch(10**-7, 0.005, 40) >>> s.update('http://www.cnn.com/', 1) >>> s.get('http://www.cnn.com/') 1 value = sys.maxint for row, hash_function in enumerate(self.hash_functions): column = hash_function(abs(hash(key))) value = min(self.count[row, column], value) return value def __generate_hash_function(self): Returns a hash function from a family of pairwise-independent hash functions a, b = random_parameter(), random_parameter() return lambda x: (a * x + b) % BIG_PRIME % self.w # define a function to return a list of the exact top users, sorted by count def exact_top_users(f, top_n = 10): import operator counts = {} for user in f: user = user.rstrip('\n') try: if user not in counts: counts[user] = 1 else: counts[user] += 1 except ValueError: pass except KeyError: pass counter = 0 results = [] for user,count in reversed(sorted(counts.iteritems(), key=operator.itemgetter(1))): if counter >= top_n: break results.append('{},{}'.format(user,str(count))) counter += 1 return results # note that the output format is '[user] [count]' f = open('CM_small.txt') results_exact = sorted(exact_top_users(f)) print(results_exact) # define a function to return a list of the estimated top users, sorted by count def CM_top_users(f, s, top_n = 10): for user_name in f: s.update(user_name.rstrip('\n'),1) results = [] counter = 0 for value in reversed(sorted(s.top_k.values())): if counter >= top_n: break results.append('{1},{0}'.format(str(value[0]),str(value[1]))) counter += 1 return results # note that the output format is '[user] [count]' # instantiate a Sketch object s = Sketch(10**-3, 0.1, 10) f = open('CM_small.txt') results_CM = sorted(CM_top_users(f,s)) print(results_CM) for item in zip(results_exact,results_CM): print(item) Explanation: Basic Idea of Count Min sketch We map the input value to multiple points in a relatively small output space. Therefore, the count associated with a given input will be applied to multiple counts in the output space. Even though collisions will occur, the minimum count associated with a given input will have some desirable properties, including the ability to be used to estimate the largest N counts. <img src="files/count_min_2.png"> http://debasishg.blogspot.com/2014/01/count-min-sketch-data-structure-for.html Parameters of the sketch: epsilon delta These parameters are inversely and exponentially (respectively) related to the sketch size parameters, d and w. Implementation of the CM sketch End of explanation s = Sketch(0.9, 0.9, 10) f = open('CM_small.txt') results_coarse_CM = CM_top_users(f,s) print(results_coarse_CM) Explanation: Is it possible to make the sketch so coarse that its estimates are wrong even for this data set? End of explanation f = open('CM_large.txt') %time results_exact = exact_top_users(f) print(results_exact) # this could take a few minutes f = open('CM_large.txt') s = Sketch(10**-4, 0.001, 10) %time results_CM = CM_top_users(f,s) print(results_CM) Explanation: Yes! (if you try enough) Why? The 'w' parameter goes like ceiling(exp(1)/epsilon), which is always >=~ 3. The 'd' parameter goes like ceiling(log(1/delta), which is always >= 1. So, you're dealing with a space with minimum size 3 x 1. With 10 records, it's possible that all 4 users map their counts to the point. So it's possible to see an estimate as high as 10, in this case. Now for a larger data set. End of explanation for item in zip(results_exact,results_CM): print(item) # the CM sketch gets the top entry (an outlier) correct but doesn't do well estimating the order of the more degenerate counts # let's decrease the precision via both the epsilon and delta parameters, and see whether it still gets the "heavy-hitter" correct f = open('CM_large.txt') s = Sketch(10**-3, 0.01, 10) %time results_CM = CM_top_users(f,s) print(results_CM) # nope...sketch is too coarse, too many collisions, and the prominence of user 'Euph0r1a__ 129' is obscured for item in zip(results_exact,results_CM): print(item) Explanation: For this precision and dataset size, the CM algo takes much longer than the exact solution. In fact, the crossover point at which the CM sketch can achieve reasonable accuracy in the same time as the exact solution is a very large number of entries. End of explanation
3,303
Given the following text description, write Python code to implement the functionality described below step by step Description: Данные Возьмите данные с https Step1: Сравним по возрасту Step2: Сравним по полу Step3: Сравним по фертильности Step4: <b>Вывод по возрасту Step5: <b>Добавим новые признаки в train</b> Step6: <b>Добавим новые признаки в test по-аналогии</b> Step7: <div class="panel panel-info" style="margin Step8: Статистические тесты Step9: Методы обертки Step10: Отбор при помощи модели Lasso Step11: Отбор при помощи модели RandomForest Step12: <b>Вывод по признакам Step13: Проверим, что никакие строчки при манипуляции с NaN не потерялись
Python Code: visual = pd.read_csv('data/CatsAndDogs/TRAIN2.csv') #Сделаем числовой столбец Outcome, показывающий, взяли животное из приюта или нет #Сначала заполним единицами, типа во всех случах хорошо visual['Outcome'] = 'true' #Неудачные случаи занулим visual.loc[visual.OutcomeType == 'Euthanasia', 'Outcome'] = 'false' visual.loc[visual.OutcomeType == 'Died', 'Outcome'] = 'false' #Заменим строки, где в SexuponOutcome NaN, на что-нибудь осмысленное visual.loc[visual.SexuponOutcome.isnull(), 'SexuponOutcome'] = 'Unknown Unknown' #Сделаем два отдельных столбца для пола и фертильности visual['Gender'] = visual.SexuponOutcome.apply(lambda s: s.split(' ')[-1]) visual['Fertility'] = visual.SexuponOutcome.apply(lambda s: s.split(' ')[0]) Explanation: Данные Возьмите данные с https://www.kaggle.com/c/shelter-animal-outcomes . Обратите внимание, что в этот раз у нас много классов, почитайте в разделе Evaluation то, как вычисляется итоговый счет (score). Визуализация <div class="panel panel-info" style="margin: 50px 0 0 0"> <div class="panel-heading"> <h3 class="panel-title">Задание 1.</h3> </div> </div> Выясните, построив необходимые графики, влияет ли возраст, пол или фертильность животного на его шансы быть взятыми из приюта. Подготовим данные End of explanation mergedByAges = visual.groupby('AgeuponOutcome')['Outcome'].value_counts().to_dict() results = pd.DataFrame(data = mergedByAges, index=[0]).stack().fillna(0).transpose() results.columns = pd.Index(['true', 'false']) results['total'] = results.true + results.false results.sort_values(by='true', ascending=False, inplace=True) results[['true', 'false']].plot(kind='bar', stacked=False, rot=45); Explanation: Сравним по возрасту End of explanation mergedByGender = visual.groupby('Gender')['Outcome'].value_counts().to_dict() results = pd.DataFrame(data = mergedByGender, index=[0]).stack().fillna(0).transpose() results.columns = pd.Index(['true', 'false']) results['total'] = results.true + results.false results.sort_values(by='true', ascending=False, inplace=True) results[['true', 'false']].plot(kind='bar', stacked=True, rot=45); Explanation: Сравним по полу End of explanation mergedByFert = visual.groupby('Fertility')['Outcome'].value_counts().to_dict() results = pd.DataFrame(data = mergedByFert, index=[0]).stack().fillna(0).transpose() results.columns = pd.Index(['true', 'false']) results['total'] = results.true + results.false results.sort_values(by='true', ascending=False, inplace=True) results[['true', 'false']].plot(kind='bar', stacked=True, rot=45); Explanation: Сравним по фертильности End of explanation train, test = pd.read_csv( 'data/CatsAndDogs/TRAIN2.csv' #наши данные #'data/CatsAndDogs/train.csv' #исходные данные ), pd.read_csv( 'data/CatsAndDogs/TEST2.csv' #наши данные #'data/CatsAndDogs/test.csv' #исходные данные ) train.head() test.shape Explanation: <b>Вывод по возрасту:</b> лучше берут не самых старых, но и не самых молодых <br> <b>Вывод по полу:</b> по большому счёту не имеет значения <br> <b>Вывод по фертильности:</b> лучше берут животных с ненарушенными репродуктивными способностями. Однако две следующие группы не сильно различаются по сути и, если их сложить, то разница не столь велика. Построение моделей <div class="panel panel-info" style="margin: 50px 0 0 0"> <div class="panel-heading"> <h3 class="panel-title">Задание 2.</h3> </div> </div> Посмотрите тетрадку с генерацией новых признаков. Сделайте как можно больше релевантных признаков из всех имеющихся. Не забудьте параллельно обрабатывать отложенную выборку (test), чтобы в ней были те же самые признаки, что и в обучающей. <b>Возьмем исходные данные</b> End of explanation #Сначала по-аналогии с визуализацией #Заменим строки, где в SexuponOutcome, Breed, Color NaN train.loc[train.SexuponOutcome.isnull(), 'SexuponOutcome'] = 'Unknown Unknown' train.loc[train.AgeuponOutcome.isnull(), 'AgeuponOutcome'] = '0 0' train.loc[train.Breed.isnull(), 'Breed'] = 'Unknown' train.loc[train.Color.isnull(), 'Color'] = 'Unknown' #Сделаем два отдельных столбца для пола и фертильности train['Gender'] = train.SexuponOutcome.apply(lambda s: s.split(' ')[-1]) train['Fertility'] = train.SexuponOutcome.apply(lambda s: s.split(' ')[0]) #Теперь что-то новое #Столбец, в котором отмечено, есть имя у животного или нет train['hasName'] = 1 train.loc[train.Name.isnull(), 'hasName'] = 0 #Столбец, в котором объединены порода и цвет train['breedColor'] = train.apply(lambda row: row['Breed'] + ' ' + str(row['Color']), axis=1) #Декомпозируем DateTime #Во-первых, конвертируем столбец в тип DateTime из строкового train['DateTime'] = pd.to_datetime(train['DateTime']) #А теперь декомпозируем train['dayOfWeek'] = train.DateTime.apply(lambda dt: dt.dayofweek) train['month'] = train.DateTime.apply(lambda dt: dt.month) train['day'] = train.DateTime.apply(lambda dt: dt.day) train['quarter'] = train.DateTime.apply(lambda dt: dt.quarter) train['hour'] = train.DateTime.apply(lambda dt: dt.hour) train['minute'] = train.DateTime.apply(lambda dt: dt.hour) train['year'] = train.DateTime.apply(lambda dt: dt.year) #Разбиение возраста #Сделаем два отдельных столбца для обозначения года/месяца и их количества train['AgeuponFirstPart'] = train.AgeuponOutcome.apply(lambda s: s.split(' ')[0]) train['AgeuponSecondPart'] = train.AgeuponOutcome.apply(lambda s: s.split(' ')[-1]) #Переведем примерно в среднем месяцы, годы и недели в дни с учетом окончаний s train['AgeuponSecondPartInDays'] = 0 train.loc[train.AgeuponSecondPart == 'year', 'AgeuponSecondPartInDays'] = 365 train.loc[train.AgeuponSecondPart == 'years', 'AgeuponSecondPartInDays'] = 365 train.loc[train.AgeuponSecondPart == 'month', 'AgeuponSecondPartInDays'] = 30 train.loc[train.AgeuponSecondPart == 'months', 'AgeuponSecondPartInDays'] = 30 train.loc[train.AgeuponSecondPart == 'week', 'AgeuponSecondPartInDays'] = 7 train.loc[train.AgeuponSecondPart == 'weeks', 'AgeuponSecondPartInDays'] = 7 #Во-первых, конвертируем столбец в числовой тип из строкового train['AgeuponFirstPart'] = pd.to_numeric(train['AgeuponFirstPart']) train['AgeuponSecondPartInDays'] = pd.to_numeric(train['AgeuponSecondPartInDays']) #А теперь получим нормальное время жизни в днях train['LifetimeInDays'] = train['AgeuponFirstPart'] * train['AgeuponSecondPartInDays'] #Удалим уж совсем бессмысленные промежуточные столбцы train = train.drop(['AgeuponSecondPartInDays', 'AgeuponSecondPart', 'AgeuponFirstPart'], axis=1) train.head() Explanation: <b>Добавим новые признаки в train</b> End of explanation #Сначала по-аналогии с визуализацией #Заменим строки, где в SexuponOutcome, Breed, Color NaN test.loc[test.SexuponOutcome.isnull(), 'SexuponOutcome'] = 'Unknown Unknown' test.loc[test.AgeuponOutcome.isnull(), 'AgeuponOutcome'] = '0 0' test.loc[test.Breed.isnull(), 'Breed'] = 'Unknown' test.loc[test.Color.isnull(), 'Color'] = 'Unknown' #Сделаем два отдельных столбца для пола и фертильности test['Gender'] = test.SexuponOutcome.apply(lambda s: s.split(' ')[-1]) test['Fertility'] = test.SexuponOutcome.apply(lambda s: s.split(' ')[0]) #Теперь что-то новое #Столбец, в котором отмечено, есть имя у животного или нет test['hasName'] = 1 test.loc[test.Name.isnull(), 'hasName'] = 0 #Столбец, в котором объединены порода и цвет test['breedColor'] = test.apply(lambda row: row['Breed'] + ' ' + str(row['Color']), axis=1) #Декомпозируем DateTime #Во-первых, конвертируем столбец в тип DateTime из строкового test['DateTime'] = pd.to_datetime(test['DateTime']) #А теперь декомпозируем test['dayOfWeek'] = test.DateTime.apply(lambda dt: dt.dayofweek) test['month'] = test.DateTime.apply(lambda dt: dt.month) test['day'] = test.DateTime.apply(lambda dt: dt.day) test['quarter'] = test.DateTime.apply(lambda dt: dt.quarter) test['hour'] = test.DateTime.apply(lambda dt: dt.hour) test['minute'] = test.DateTime.apply(lambda dt: dt.hour) test['year'] = test.DateTime.apply(lambda dt: dt.year) #Разбиение возраста #Сделаем два отдельных столбца для обозначения года/месяца и их количества test['AgeuponFirstPart'] = test.AgeuponOutcome.apply(lambda s: s.split(' ')[0]) test['AgeuponSecondPart'] = test.AgeuponOutcome.apply(lambda s: s.split(' ')[-1]) #Переведем примерно в среднем месяцы, годы и недели в дни с учетом окончаний s test['AgeuponSecondPartInDays'] = 0 test.loc[test.AgeuponSecondPart == 'year', 'AgeuponSecondPartInDays'] = 365 test.loc[test.AgeuponSecondPart == 'years', 'AgeuponSecondPartInDays'] = 365 test.loc[test.AgeuponSecondPart == 'month', 'AgeuponSecondPartInDays'] = 30 test.loc[test.AgeuponSecondPart == 'months', 'AgeuponSecondPartInDays'] = 30 test.loc[test.AgeuponSecondPart == 'week', 'AgeuponSecondPartInDays'] = 7 test.loc[test.AgeuponSecondPart == 'weeks', 'AgeuponSecondPartInDays'] = 7 #Во-первых, конвертируем столбец в числовой тип из строкового test['AgeuponFirstPart'] = pd.to_numeric(test['AgeuponFirstPart']) test['AgeuponSecondPartInDays'] = pd.to_numeric(test['AgeuponSecondPartInDays']) #А теперь получим нормальное время жизни в днях test['LifetimeInDays'] = test['AgeuponFirstPart'] * test['AgeuponSecondPartInDays'] #Удалим уж совсем бессмысленные промежуточные столбцы test = test.drop(['AgeuponSecondPartInDays', 'AgeuponSecondPart', 'AgeuponFirstPart'], axis=1) test.head() Explanation: <b>Добавим новые признаки в test по-аналогии</b> End of explanation np.random.seed = 1234 from sklearn.preprocessing import LabelEncoder from sklearn import preprocessing #####################Заменим NaN значения на слово Unknown################## #Уберем Nan значения из train train.loc[train.AnimalID.isnull(), 'AnimalID'] = 'Unknown' train.loc[train.Name.isnull(), 'Name'] = 'Unknown' train.loc[train.OutcomeType.isnull(), 'OutcomeType'] = 'Unknown' train.loc[train.AnimalType.isnull(), 'AnimalType'] = 'Unknown' train.loc[train.AgeuponOutcome.isnull(), 'AgeuponOutcome'] = 'Unknown' train.loc[train.LifetimeInDays.isnull(), 'LifetimeInDays'] = 'Unknown' #Уберем Nan значения из test test.loc[test.AnimalID.isnull(), 'AnimalID'] = 'Unknown' test.loc[test.Name.isnull(), 'Name'] = 'Unknown' test.loc[test.AnimalType.isnull(), 'AnimalType'] = 'Unknown' test.loc[test.AgeuponOutcome.isnull(), 'AgeuponOutcome'] = 'Unknown' test.loc[test.LifetimeInDays.isnull(), 'LifetimeInDays'] = 'Unknown' #####################Закодируем слова числами################################ #Закодировали AnimalID цифрами вместо названий в test & train #encAnimalID = preprocessing.LabelEncoder() #encAnimalID.fit(pd.concat((test['AnimalID'], train['AnimalID']))) #test['AnimalID'] = encAnimalID.transform(test['AnimalID']) #train['AnimalID'] = encAnimalID.transform(train['AnimalID']) #Закодировали имя цифрами вместо названий в test & train encName = preprocessing.LabelEncoder() encName.fit(pd.concat((test['Name'], train['Name']))) test['Name'] = encName.transform(test['Name']) train['Name'] = encName.transform(train['Name']) #Закодировали DateTime цифрами вместо названий в test & train encDateTime = preprocessing.LabelEncoder() encDateTime.fit(pd.concat((test['DateTime'], train['DateTime']))) test['DateTime'] = encDateTime.transform(test['DateTime']) train['DateTime'] = encDateTime.transform(train['DateTime']) #Закодировали OutcomeType цифрами вместо названий в train, т.к. в test их нет encOutcomeType = preprocessing.LabelEncoder() encOutcomeType.fit(train['OutcomeType']) train['OutcomeType'] = encOutcomeType.transform(train['OutcomeType']) #Закодировали AnimalType цифрами вместо названий в test & train encAnimalType = preprocessing.LabelEncoder() encAnimalType.fit(pd.concat((test['AnimalType'], train['AnimalType']))) test['AnimalType'] = encAnimalType.transform(test['AnimalType']) train['AnimalType'] = encAnimalType.transform(train['AnimalType']) #Закодировали SexuponOutcome цифрами вместо названий в test & train encSexuponOutcome = preprocessing.LabelEncoder() encSexuponOutcome.fit(pd.concat((test['SexuponOutcome'], train['SexuponOutcome']))) test['SexuponOutcome'] = encSexuponOutcome.transform(test['SexuponOutcome']) train['SexuponOutcome'] = encSexuponOutcome.transform(train['SexuponOutcome']) #Закодировали AgeuponOutcome цифрами вместо названий в test & train encAgeuponOutcome = preprocessing.LabelEncoder() encAgeuponOutcome.fit(pd.concat((test['AgeuponOutcome'], train['AgeuponOutcome']))) test['AgeuponOutcome'] = encAgeuponOutcome.transform(test['AgeuponOutcome']) train['AgeuponOutcome'] = encAgeuponOutcome.transform(train['AgeuponOutcome']) #Закодировали Breed цифрами вместо названий в test & train encBreed = preprocessing.LabelEncoder() encBreed.fit(pd.concat((test['Breed'], train['Breed']))) test['Breed'] = encBreed.transform(test['Breed']) train['Breed'] = encBreed.transform(train['Breed']) #Закодировали Color цифрами вместо названий в test & train encColor = preprocessing.LabelEncoder() encColor.fit(pd.concat((test['Color'], train['Color']))) test['Color'] = encColor.transform(test['Color']) train['Color'] = encColor.transform(train['Color']) #Закодировали Gender цифрами вместо названий в test & train encGender = preprocessing.LabelEncoder() encGender.fit(pd.concat((test['Gender'], train['Gender']))) test['Gender'] = encGender.transform(test['Gender']) train['Gender'] = encGender.transform(train['Gender']) #Закодировали Fertility цифрами вместо названий в test & train encFertility = preprocessing.LabelEncoder() encFertility.fit(pd.concat((test['Fertility'], train['Fertility']))) test['Fertility'] = encFertility.transform(test['Fertility']) train['Fertility'] = encFertility.transform(train['Fertility']) #Закодировали breedColor цифрами вместо названий в test & train encbreedColor = preprocessing.LabelEncoder() encbreedColor.fit(pd.concat((test['breedColor'], train['breedColor']))) test['breedColor'] = encbreedColor.transform(test['breedColor']) train['breedColor'] = encbreedColor.transform(train['breedColor']) ####################################Предобработка################################# from sklearn.model_selection import cross_val_score #poly_features = preprocessing.PolynomialFeatures(3) #Подготовили данные так, что X_tr - таблица без AnimalID и OutcomeType, а в y_tr сохранены OutcomeType X_tr, y_tr = train.drop(['AnimalID', 'OutcomeType'], axis=1), train['OutcomeType'] #Типа перевели dataFrame в array и сдалали над ним предварительную обработку #X_tr = poly_features.fit_transform(X_tr) X_tr.head() Explanation: <div class="panel panel-info" style="margin: 50px 0 0 0"> <div class="panel-heading"> <h3 class="panel-title">Задание 3.</h3> </div> </div> Выполните отбор признаков, попробуйте различные методы. Проверьте качество на кросс-валидации. Выведите топ самых важных и самых незначащих признаков. Предобработка данных End of explanation from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2, f_classif, mutual_info_classif skb = SelectKBest(mutual_info_classif, k=15) x_new = skb.fit_transform(X_tr, y_tr) x_new Explanation: Статистические тесты End of explanation from sklearn.feature_selection import RFE from sklearn.linear_model import LinearRegression names = X_tr.columns.values lr = LinearRegression() rfe = RFE(lr, n_features_to_select=1) rfe.fit(X_tr,y_tr); print("Features sorted by their rank:") print(sorted(zip(map(lambda x: round(x, 4), rfe.ranking_), names))) Explanation: Методы обертки End of explanation from sklearn.linear_model import Lasso clf = Lasso() clf.fit(X_tr, y_tr); clf.coef_ features = X_tr.columns.values print('Всего Lasso выкинуло %s переменных' % (clf.coef_ == 0).sum()) print('Это признаки:') for s in features[np.where(clf.coef_ == 0)[0]]: print(' * ', s) Explanation: Отбор при помощи модели Lasso End of explanation from sklearn.ensemble import RandomForestRegressor clf = RandomForestRegressor() clf.fit(X_tr, y_tr); clf.feature_importances_ imp_feature_idx = clf.feature_importances_.argsort() imp_feature_idx features = X_tr.columns.values k = 0 while k < len(features): print(features[k], imp_feature_idx[k]) k += 1 Explanation: Отбор при помощи модели RandomForest End of explanation #Для начала выкинем ненужные признаки, выявленные на прошлом этапе X_tr = X_tr.drop(['Name', 'DateTime', 'month', 'day', 'Breed', 'breedColor'], axis=1) test = test.drop(['Name', 'DateTime', 'month', 'day', 'Breed', 'breedColor'], axis=1) X_tr.head() from sklearn.ensemble import VotingClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier clf1 = LogisticRegression(random_state=1234) clf3 = GaussianNB() clf5 = KNeighborsClassifier() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('gnb', clf3), ('knn', clf5)], voting='soft', weights=[1,1,10]) scores = cross_val_score(eclf, X_tr, y_tr) eclf = eclf.fit(X_tr, y_tr) print('Best score:', scores.min()) #delete AnimalID from test X_te = test.drop(['AnimalID'], axis=1) X_te.head() y_te = eclf.predict(X_te) y_te ans_nn = pd.DataFrame({'AnimalID': test['AnimalID'], 'type': encOutcomeType.inverse_transform(y_te)}) ans_nn.head() #Зададим функцию для трансформации def onehot_encode(df_train, column): from sklearn.preprocessing import LabelBinarizer cs = df_train.select_dtypes(include=['O']).columns.values if column not in cs: return (df_train, None) rest = [x for x in df_train.columns.values if x != column] lb = LabelBinarizer() train_data = lb.fit_transform(df_train[column]) new_col_names = ['%s' % x for x in lb.classes_] if len(new_col_names) != train_data.shape[1]: new_col_names = new_col_names[::-1][:train_data.shape[1]] new_train = pd.concat((df_train.drop([column], axis=1), pd.DataFrame(data=train_data, columns=new_col_names)), axis=1) return (new_train, lb) ans_nn, lb = onehot_encode(ans_nn, 'type') ans_nn ans_nn.head() Explanation: <b>Вывод по признакам:</b> <br> <b>Не нужны:</b> Name, DateTime, month, day, Breed, breedColor. Всё остальное менее однозначно, можно и оставить. <div class="panel panel-info" style="margin: 50px 0 0 0"> <div class="panel-heading"> <h3 class="panel-title">Задание 4.</h3> </div> </div> Попробуйте смешать разные модели с помощью <b>sklearn.ensemble.VotingClassifier</b>. Увеличилась ли точность? Изменилась ли дисперсия? End of explanation test.shape[0] == ans_nn.shape[0] #Сделаем нумерацию индексов не с 0, а с 1 ans_nn.index += 1 #Воткнем столбец с индексами как столбец в конкретное место ans_nn.insert(0, 'ID', ans_nn.index) #delete AnimalID from test ans_nn = ans_nn.drop(['AnimalID'], axis=1) ans_nn.head() #Сохраним ans_nn.to_csv('ans_catdog.csv', index=False) Explanation: Проверим, что никакие строчки при манипуляции с NaN не потерялись End of explanation
3,304
Given the following text description, write Python code to implement the functionality described below step by step Description: Introduction to Pairs Trading By Delaney Mackenzie and Maxwell Margenot Part of the Quantopian Lecture Series Step1: Generating Two Fake Securities We model X's daily returns by drawing from a normal distribution. Then we perform a cumulative sum to get the value of X on each day. Step2: Now we generate Y. Remember that Y is supposed to have a deep economic link to X, so the price of Y should vary pretty similarly. We model this by taking X, shifting it up and adding some random noise drawn from a normal distribution. Step3: Cointegration We've constructed an example of two cointegrated series. Cointegration is a more subtle relationship than correlation. If two time series are cointegrated, there is some linear combination between them that will vary around a mean. At all points in time, the combination between them is related to the same probability distribution. For more details on how we formally define cointegration and how to understand it, please see the Integration, Cointegration, and Stationarity lecture from the Quantopian Lecture Series. We'll plot the difference between the two now so we can see how this looks. Step4: Testing for Cointegration That's an intuitive definition, but how do we test for this statistically? There is a convenient cointegration test that lives in statsmodels.tsa.stattools. Let's say that our confidence level is $0.05$. We should see a p-value below our cutoff, as we've artifically created two series that are the textbook definition of cointegration. Step5: Correlation vs. Cointegration Correlation and cointegration, while theoretically similar, are not the same. To demonstrate this, we'll show examples of series that are correlated, but not cointegrated, and vice versa. To start let's check the correlation of the series we just generated. Step6: That's very high, as we would expect. But how would two series that are correlated but not cointegrated look? Correlation Without Cointegration A simple example is two series that just diverge. Step7: Cointegration Without Correlation A simple example of this case is a normally distributed series and a square wave. Step8: Sure enough, the correlation is incredibly low, but the p-value shows that these are cointegrated. Hedging Because you'd like to protect yourself from bad markets, often times short sales will be used to hedge long investments. Because a short sale makes money if the security sold loses value, and a long purchase will make money if a security gains value, one can long parts of the market and short others. That way if the entire market falls off a cliff, we'll still make money on the shorted securities and hopefully break even. In the case of two securities we'll call it a hedged position when we are long on one security and short on the other. The Trick Step9: Looking for Cointegrated Pairs of Alternative Energy Securities We are looking through a set of solar company stocks to see if any of them are cointegrated. We'll start by defining the list of securities we want to look through. Then we'll get the pricing data for each security for the year of 2014. Our approach here is somewhere in the middle of the spectrum that we mentioned before. We have formulated an economic hypothesis that there is some sort of link between a subset of securities within the energy sector and we want to test whether there are any cointegrated pairs. This incurs significantly less multiple comparisons bias than searching through hundreds of securities and slightly more than forming a hypothesis for an individual test. NOTE Step10: Example of how to get all the prices of all the stocks loaded using get_pricing() above in one pandas dataframe object Step11: Example of how to get just the prices of a single stock that was loaded using get_pricing() above Step12: Now we'll run our method on the list and see if any pairs are cointegrated. Step13: Looks like 'ABGB' and 'FSLR' are cointegrated. Let's take a look at the prices to make sure there's nothing weird going on. Step14: Calculating the Spread Now we will plot the spread of the two series. In order to actually calculate the spread, we use a linear regression to get the coefficient for the linear combination to construct between our two securities, as shown in the stationarity lecture. Using a linear regression to estimate the coefficient is known as the Engle-Granger method. Step15: Alternatively, we could examine the ratio betwen the two series. Step16: Examining the price ratio of a trading pair is a traditional way to handle pairs trading. Part of why this works as a signal is based in our assumptions of how stock prices move, specifically because stock prices are typically assumed to be log-normally distributed. What this implies is that by taking a ratio of the prices, we are taking a linear combination of the returns associated with them (since prices are just the exponentiated returns). This can be a little irritating to deal with for our purposes as purchasing the precisely correct ratio of a trading pair may not be practical. We choose instead to move forward with simply calculating the spread between the cointegrated stocks using linear regression. This is a very simple way to handle the relationship, however, and is likely not feasible for non-toy examples. There are other potential methods for estimating the spread listed at the bottom of this lecture. If you want to get more into the theory of why having cointegrated stocks matters for pairs trading, again, please see the Integration, Cointegration, and Stationarity Lecture from the Quantopian Lecture Series. So, back to our example. The absolute spread isn't very useful in statistical terms. It is more helpful to normalize our signal by treating it as a z-score. WARNING In practice this is usually done to try to give some scale to the data, but this assumes some underlying distribution, usually a normal distribution. Under a normal distribution, we would know that approximately 84% of all spread values will be smaller. However, much financial data is not normally distributed, and one must be very careful not to assume normality, nor any specific distribution when generating statistics. It could be the case that the true distribution of spreads was very fat-tailed and prone to extreme values. This could mess up our model and result in large losses. Step17: Simple Strategy Step18: We can use the moving averages to compute the z-score of the spread at each given time. This will tell us how extreme the spread is and whether it's a good idea to enter a position at this time. Let's take a look at the z-score now. Step19: The z-score doesn't mean much out of context, let's plot it next to the prices to get an idea of what it looks like. We'll take the negative of the z-score because the spreads were all negative and that is a little counterintuitive to trade on. Step20: Out of Sample Test Now that we have constructed our spread appropriately and have an idea of how we will go about making trades, it is time to conduct some out of sample testing. Our whole model is based on the premise that these securities are cointegrated, but we built it on information from a certain time period. If we actually want to implement this model, we need to conduct an out of sample test to confirm that the principles of our model are still valid going forward. Since we initially built the model on the 2014 - 2015 year, let's see if this cointegrated relationship holds for 2015 - 2016. Historical results do not guarantee future results so this is a sanity check to see if the work we have done holds strong.
Python Code: import numpy as np import pandas as pd import statsmodels import statsmodels.api as sm from statsmodels.tsa.stattools import coint # just set the seed for the random number generator np.random.seed(107) import matplotlib.pyplot as plt Explanation: Introduction to Pairs Trading By Delaney Mackenzie and Maxwell Margenot Part of the Quantopian Lecture Series: www.quantopian.com/lectures github.com/quantopian/research_public Pairs trading is a classic example of a strategy based on mathematical analysis. The principle is as follows. Let's say you have a pair of securities X and Y that have some underlying economic link. An example might be two companies that manufacture the same product, or two companies in one supply chain. If we can model this economic link with a mathematical model, we can make trades on it. We'll start by constructing a toy example. Before we proceed, note that the content in this lecture depends heavily on the Stationarity, Integration, and Cointegration lecture in order to properly understand the mathematical basis for the methodology that we employ here. It is recommended that you go through that lecture before this continuing. End of explanation X_returns = np.random.normal(0, 1, 100) # Generate the daily returns # sum them and shift all the prices up into a reasonable range X = pd.Series(np.cumsum(X_returns), name='X') + 50 X.plot(); Explanation: Generating Two Fake Securities We model X's daily returns by drawing from a normal distribution. Then we perform a cumulative sum to get the value of X on each day. End of explanation some_noise = np.random.normal(0, 1, 100) Y = X + 5 + some_noise Y.name = 'Y' pd.concat([X, Y], axis=1).plot(); Explanation: Now we generate Y. Remember that Y is supposed to have a deep economic link to X, so the price of Y should vary pretty similarly. We model this by taking X, shifting it up and adding some random noise drawn from a normal distribution. End of explanation (Y - X).plot() # Plot the spread plt.axhline((Y - X).mean(), color='red', linestyle='--') # Add the mean plt.xlabel('Time') plt.legend(['Price Spread', 'Mean']); Explanation: Cointegration We've constructed an example of two cointegrated series. Cointegration is a more subtle relationship than correlation. If two time series are cointegrated, there is some linear combination between them that will vary around a mean. At all points in time, the combination between them is related to the same probability distribution. For more details on how we formally define cointegration and how to understand it, please see the Integration, Cointegration, and Stationarity lecture from the Quantopian Lecture Series. We'll plot the difference between the two now so we can see how this looks. End of explanation # compute the p-value of the cointegration test # will inform us as to whether the spread between the 2 timeseries is stationary # around its mean score, pvalue, _ = coint(X,Y) print pvalue Explanation: Testing for Cointegration That's an intuitive definition, but how do we test for this statistically? There is a convenient cointegration test that lives in statsmodels.tsa.stattools. Let's say that our confidence level is $0.05$. We should see a p-value below our cutoff, as we've artifically created two series that are the textbook definition of cointegration. End of explanation X.corr(Y) Explanation: Correlation vs. Cointegration Correlation and cointegration, while theoretically similar, are not the same. To demonstrate this, we'll show examples of series that are correlated, but not cointegrated, and vice versa. To start let's check the correlation of the series we just generated. End of explanation X_returns = np.random.normal(1, 1, 100) Y_returns = np.random.normal(2, 1, 100) X_diverging = pd.Series(np.cumsum(X_returns), name='X') Y_diverging = pd.Series(np.cumsum(Y_returns), name='Y') pd.concat([X_diverging, Y_diverging], axis=1).plot(); print 'Correlation: ' + str(X_diverging.corr(Y_diverging)) score, pvalue, _ = coint(X_diverging,Y_diverging) print 'Cointegration test p-value: ' + str(pvalue) Explanation: That's very high, as we would expect. But how would two series that are correlated but not cointegrated look? Correlation Without Cointegration A simple example is two series that just diverge. End of explanation Y2 = pd.Series(np.random.normal(0, 1, 1000), name='Y2') + 20 Y3 = Y2.copy() # Y2 = Y2 + 10 Y3[0:100] = 30 Y3[100:200] = 10 Y3[200:300] = 30 Y3[300:400] = 10 Y3[400:500] = 30 Y3[500:600] = 10 Y3[600:700] = 30 Y3[700:800] = 10 Y3[800:900] = 30 Y3[900:1000] = 10 Y2.plot() Y3.plot() plt.ylim([0, 40]); # correlation is nearly zero print 'Correlation: ' + str(Y2.corr(Y3)) score, pvalue, _ = coint(Y2,Y3) print 'Cointegration test p-value: ' + str(pvalue) Explanation: Cointegration Without Correlation A simple example of this case is a normally distributed series and a square wave. End of explanation def find_cointegrated_pairs(data): n = data.shape[1] score_matrix = np.zeros((n, n)) pvalue_matrix = np.ones((n, n)) keys = data.keys() pairs = [] for i in range(n): for j in range(i+1, n): S1 = data[keys[i]] S2 = data[keys[j]] result = coint(S1, S2) score = result[0] pvalue = result[1] score_matrix[i, j] = score pvalue_matrix[i, j] = pvalue if pvalue < 0.05: pairs.append((keys[i], keys[j])) return score_matrix, pvalue_matrix, pairs Explanation: Sure enough, the correlation is incredibly low, but the p-value shows that these are cointegrated. Hedging Because you'd like to protect yourself from bad markets, often times short sales will be used to hedge long investments. Because a short sale makes money if the security sold loses value, and a long purchase will make money if a security gains value, one can long parts of the market and short others. That way if the entire market falls off a cliff, we'll still make money on the shorted securities and hopefully break even. In the case of two securities we'll call it a hedged position when we are long on one security and short on the other. The Trick: Where it all comes together Because the securities drift towards and apart from each other, there will be times when the distance is high and times when the distance is low. The trick of pairs trading comes from maintaining a hedged position across X and Y. If both securities go down, we neither make nor lose money, and likewise if both go up. We make money on the spread of the two reverting to the mean. In order to do this we'll watch for when X and Y are far apart, then short Y and long X. Similarly we'll watch for when they're close together, and long Y and short X. Going Long the Spread This is when the spread is small and we expect it to become larger. We place a bet on this by longing Y and shorting X. Going Short the Spread This is when the spread is large and we expect it to become smaller. We place a bet on this by shorting Y and longing X. Specific Bets One important concept here is that we are placing a bet on one specific thing, and trying to reduce our bet's dependency on other factors such as the market. Finding real securities that behave like this The best way to do this is to start with securities you suspect may be cointegrated and perform a statistical test. If you just run statistical tests over all pairs, you'll fall prey to multiple comparison bias. Here's a method to look through a list of securities and test for cointegration between all pairs. It returns a cointegration test score matrix, a p-value matrix, and any pairs for which the p-value was less than $0.05$. WARNING: This will incur a large amount of multiple comparisons bias. The methods for finding viable pairs all live on a spectrum. At one end there is the formation of an economic hypothesis for an individual pair. You have some extra knowledge about an economic link that leads you to believe that the pair is cointegrated, so you go out and test for the presence of cointegration. In this case you will incur no multiple comparisons bias. At the other end of the spectrum, you perform a search through hundreds of different securities for any viable pairs according to your test. In this case you will incur a very large amount of multiple comparisons bias. Multiple comparisons bias is the increased chance to incorrectly generate a significant p-value when many tests are run. If 100 tests are run on random data, we should expect to see 5 p-values below $0.05$ on expectation. Because we will perform $n(n-1)/2$ comparisons, we should expect to see many incorrectly significant p-values. For the sake of this example we will ignore this and continue. In practice a second verification step would be needed if looking for pairs this way. Another approach is to pick a small number of pairs you have reason to suspect might be cointegrated and test each individually. This will result in less exposure to multiple comparisons bias. You can read more about multiple comparisons bias here. End of explanation symbol_list = ['ABGB', 'ASTI', 'CSUN', 'DQ', 'FSLR','SPY'] prices_df = get_pricing(symbol_list, fields=['price'] , start_date='2014-01-01', end_date='2015-01-01')['price'] prices_df.columns = map(lambda x: x.symbol, prices_df.columns) Explanation: Looking for Cointegrated Pairs of Alternative Energy Securities We are looking through a set of solar company stocks to see if any of them are cointegrated. We'll start by defining the list of securities we want to look through. Then we'll get the pricing data for each security for the year of 2014. Our approach here is somewhere in the middle of the spectrum that we mentioned before. We have formulated an economic hypothesis that there is some sort of link between a subset of securities within the energy sector and we want to test whether there are any cointegrated pairs. This incurs significantly less multiple comparisons bias than searching through hundreds of securities and slightly more than forming a hypothesis for an individual test. NOTE: We include the market in our data. This is because the market drives the movement of so many securities that you often times might find two seemingingly cointegrated securities, but in reality they are not cointegrated and just both conintegrated with the market. This is known as a confounding variable and it is important to check for market involvement in any relationship you find. get_pricing() is a Quantopian method that pulls in stock data, and loads it into a Python Pandas DataPanel object. Available fields are 'price', 'open_price', 'high', 'low', 'volume'. But for this example we will just use 'price' which is the daily closing price of the stock. End of explanation prices_df.head() Explanation: Example of how to get all the prices of all the stocks loaded using get_pricing() above in one pandas dataframe object End of explanation prices_df['SPY'].head() Explanation: Example of how to get just the prices of a single stock that was loaded using get_pricing() above End of explanation # Heatmap to show the p-values of the cointegration test between each pair of # stocks. Only show the value in the upper-diagonal of the heatmap scores, pvalues, pairs = find_cointegrated_pairs(prices_df) import seaborn seaborn.heatmap(pvalues, xticklabels=symbol_list, yticklabels=symbol_list, cmap='RdYlGn_r' , mask = (pvalues >= 0.05) ) print pairs Explanation: Now we'll run our method on the list and see if any pairs are cointegrated. End of explanation S1 = prices_df['ABGB'] S2 = prices_df['FSLR'] score, pvalue, _ = coint(S1, S2) pvalue Explanation: Looks like 'ABGB' and 'FSLR' are cointegrated. Let's take a look at the prices to make sure there's nothing weird going on. End of explanation S1 = sm.add_constant(S1) results = sm.OLS(S2, S1).fit() S1 = S1['ABGB'] b = results.params['ABGB'] spread = S2 - b * S1 spread.plot() plt.axhline(spread.mean(), color='black') plt.legend(['Spread']); Explanation: Calculating the Spread Now we will plot the spread of the two series. In order to actually calculate the spread, we use a linear regression to get the coefficient for the linear combination to construct between our two securities, as shown in the stationarity lecture. Using a linear regression to estimate the coefficient is known as the Engle-Granger method. End of explanation ratio = S1/S2 ratio.plot() plt.axhline(ratio.mean(), color='black') plt.legend(['Price Ratio']); Explanation: Alternatively, we could examine the ratio betwen the two series. End of explanation def zscore(series): return (series - series.mean()) / np.std(series) zscore(spread).plot() plt.axhline(zscore(spread).mean(), color='black') plt.axhline(1.0, color='red', linestyle='--') plt.axhline(-1.0, color='green', linestyle='--') plt.legend(['Spread z-score', 'Mean', '+1', '-1']); Explanation: Examining the price ratio of a trading pair is a traditional way to handle pairs trading. Part of why this works as a signal is based in our assumptions of how stock prices move, specifically because stock prices are typically assumed to be log-normally distributed. What this implies is that by taking a ratio of the prices, we are taking a linear combination of the returns associated with them (since prices are just the exponentiated returns). This can be a little irritating to deal with for our purposes as purchasing the precisely correct ratio of a trading pair may not be practical. We choose instead to move forward with simply calculating the spread between the cointegrated stocks using linear regression. This is a very simple way to handle the relationship, however, and is likely not feasible for non-toy examples. There are other potential methods for estimating the spread listed at the bottom of this lecture. If you want to get more into the theory of why having cointegrated stocks matters for pairs trading, again, please see the Integration, Cointegration, and Stationarity Lecture from the Quantopian Lecture Series. So, back to our example. The absolute spread isn't very useful in statistical terms. It is more helpful to normalize our signal by treating it as a z-score. WARNING In practice this is usually done to try to give some scale to the data, but this assumes some underlying distribution, usually a normal distribution. Under a normal distribution, we would know that approximately 84% of all spread values will be smaller. However, much financial data is not normally distributed, and one must be very careful not to assume normality, nor any specific distribution when generating statistics. It could be the case that the true distribution of spreads was very fat-tailed and prone to extreme values. This could mess up our model and result in large losses. End of explanation # Get the spread between the 2 stocks # Calculate rolling beta coefficient rolling_beta = pd.ols(y=S1, x=S2, window_type='rolling', window=30) spread = S2 - rolling_beta.beta['x'] * S1 spread.name = 'spread' # Get the 1 day moving average of the price spread spread_mavg1 = pd.rolling_mean(spread, window=1) spread_mavg1.name = 'spread 1d mavg' # Get the 30 day moving average spread_mavg30 = pd.rolling_mean(spread, window=30) spread_mavg30.name = 'spread 30d mavg' plt.plot(spread_mavg1.index, spread_mavg1.values) plt.plot(spread_mavg30.index, spread_mavg30.values) plt.legend(['1 Day Spread MAVG', '30 Day Spread MAVG']) plt.ylabel('Spread'); Explanation: Simple Strategy: Go "Long" the spread whenever the z-score is below -1.0 Go "Short" the spread when the z-score is above 1.0 Exit positions when the z-score approaches zero This is just the tip of the iceberg, and only a very simplistic example to illustrate the concepts. In practice you would want to compute a more optimal weighting for how many shares to hold for S1 and S2. Some additional resources on pair trading are listed at the end of this notebook Trading using constantly updating statistics In general taking a statistic over your whole sample size can be bad. For example, if the market is moving up, and both securities with it, then your average price over the last 3 years may not be representative of today. For this reason traders often use statistics that rely on rolling windows of the most recent data. Moving Averages A moving average is just an average over the last $n$ datapoints for each given time. It will be undefined for the first $n$ datapoints in our series. Shorter moving averages will be more jumpy and less reliable, but respond to new information quickly. Longer moving averages will be smoother, but take more time to incorporate new information. We also need to use a rolling beta, a rolling estimate of how our spread should be calculated, in order to keep all of our parameters up to date. End of explanation # Take a rolling 30 day standard deviation std_30 = pd.rolling_std(spread, window=30) std_30.name = 'std 30d' # Compute the z score for each day zscore_30_1 = (spread_mavg1 - spread_mavg30)/std_30 zscore_30_1.name = 'z-score' zscore_30_1.plot() plt.axhline(0, color='black') plt.axhline(1.0, color='red', linestyle='--'); Explanation: We can use the moving averages to compute the z-score of the spread at each given time. This will tell us how extreme the spread is and whether it's a good idea to enter a position at this time. Let's take a look at the z-score now. End of explanation # Plot the prices scaled down along with the negative z-score # just divide the stock prices by 10 to make viewing it on the plot easier plt.plot(S1.index, S1.values/10) plt.plot(S2.index, S2.values/10) plt.plot(zscore_30_1.index, zscore_30_1.values) plt.legend(['S1 Price / 10', 'S2 Price / 10', 'Price Spread Rolling z-Score']); Explanation: The z-score doesn't mean much out of context, let's plot it next to the prices to get an idea of what it looks like. We'll take the negative of the z-score because the spreads were all negative and that is a little counterintuitive to trade on. End of explanation symbol_list = ['ABGB', 'FSLR'] prices_df = get_pricing(symbol_list, fields=['price'] , start_date='2015-01-01', end_date='2016-01-01')['price'] prices_df.columns = map(lambda x: x.symbol, prices_df.columns) S1 = prices_df['ABGB'] S2 = prices_df['FSLR'] score, pvalue, _ = coint(S1, S2) print 'p-value: ', pvalue Explanation: Out of Sample Test Now that we have constructed our spread appropriately and have an idea of how we will go about making trades, it is time to conduct some out of sample testing. Our whole model is based on the premise that these securities are cointegrated, but we built it on information from a certain time period. If we actually want to implement this model, we need to conduct an out of sample test to confirm that the principles of our model are still valid going forward. Since we initially built the model on the 2014 - 2015 year, let's see if this cointegrated relationship holds for 2015 - 2016. Historical results do not guarantee future results so this is a sanity check to see if the work we have done holds strong. End of explanation
3,305
Given the following text description, write Python code to implement the functionality described below step by step Description: Let's train this model on TPU. It's worth it. Imports Step1: TPU detection Step2: Configuration Step3: Read images and labels from TFRecords Step4: training and validation datasets Step5: Model [WORK REQUIRED] train the model as it is, with a single convolutional layer Accuracy 40%... Not great. add additional convolutional layers interleaved with max-pooling layers. Try also adding a second dense layer. For example Step6: Training Step7: Predictions
Python Code: import os, sys, math import numpy as np from matplotlib import pyplot as plt import tensorflow as tf print("Tensorflow version " + tf.__version__) AUTOTUNE = tf.data.AUTOTUNE Explanation: Let's train this model on TPU. It's worth it. Imports End of explanation try: # detect TPUs tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect() # TPU detection strategy = tf.distribute.TPUStrategy(tpu) except ValueError: # detect GPUs strategy = tf.distribute.MirroredStrategy() # for GPU or multi-GPU machines #strategy = tf.distribute.get_strategy() # default strategy that works on CPU and single GPU #strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() # for clusters of multi-GPU machines print("Number of accelerators: ", strategy.num_replicas_in_sync) Explanation: TPU detection End of explanation GCS_PATTERN = 'gs://flowers-public/tfrecords-jpeg-192x192-2/*.tfrec' IMAGE_SIZE = [192, 192] if tpu: BATCH_SIZE = 16*strategy.num_replicas_in_sync # A TPU has 8 cores so this will be 128 else: BATCH_SIZE = 32 # On Colab/GPU, a higher batch size does not help and sometimes does not fit on the GPU (OOM) VALIDATION_SPLIT = 0.19 CLASSES = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips'] # do not change, maps to the labels in the data (folder names) # splitting data files between training and validation filenames = tf.io.gfile.glob(GCS_PATTERN) split = int(len(filenames) * VALIDATION_SPLIT) training_filenames = filenames[split:] validation_filenames = filenames[:split] print("Pattern matches {} data files. Splitting dataset into {} training files and {} validation files".format(len(filenames), len(training_filenames), len(validation_filenames))) validation_steps = int(3670 // len(filenames) * len(validation_filenames)) // BATCH_SIZE steps_per_epoch = int(3670 // len(filenames) * len(training_filenames)) // BATCH_SIZE print("With a batch size of {}, there will be {} batches per training epoch and {} batch(es) per validation run.".format(BATCH_SIZE, steps_per_epoch, validation_steps)) #@title display utilities [RUN ME] def dataset_to_numpy_util(dataset, N): dataset = dataset.batch(N) # In eager mode, iterate in the Datset directly. for images, labels in dataset: numpy_images = images.numpy() numpy_labels = labels.numpy() break; return numpy_images, numpy_labels def title_from_label_and_target(label, correct_label): label = np.argmax(label, axis=-1) # one-hot to class number correct_label = np.argmax(correct_label, axis=-1) # one-hot to class number correct = (label == correct_label) return "{} [{}{}{}]".format(CLASSES[label], str(correct), ', shoud be ' if not correct else '', CLASSES[correct_label] if not correct else ''), correct def display_one_flower(image, title, subplot, red=False): plt.subplot(subplot) plt.axis('off') plt.imshow(image) plt.title(title, fontsize=16, color='red' if red else 'black') return subplot+1 def display_9_images_from_dataset(dataset): subplot=331 plt.figure(figsize=(13,13)) images, labels = dataset_to_numpy_util(dataset, 9) for i, image in enumerate(images): title = CLASSES[np.argmax(labels[i], axis=-1)] subplot = display_one_flower(image, title, subplot) if i >= 8: break; #plt.tight_layout() plt.subplots_adjust(wspace=0.1, hspace=0.1) plt.show() def display_9_images_with_predictions(images, predictions, labels): subplot=331 plt.figure(figsize=(13,13)) for i, image in enumerate(images): title, correct = title_from_label_and_target(predictions[i], labels[i]) subplot = display_one_flower(image, title, subplot, not correct) if i >= 8: break; #plt.tight_layout() plt.subplots_adjust(wspace=0.1, hspace=0.1) plt.show() def display_training_curves(training, validation, title, subplot): if subplot%10==1: # set up the subplots on the first call plt.subplots(figsize=(10,10), facecolor='#F0F0F0') #plt.tight_layout() ax = plt.subplot(subplot) ax.set_facecolor('#F8F8F8') ax.plot(training) ax.plot(validation) ax.set_title('model '+ title) ax.set_ylabel(title) ax.set_xlabel('epoch') ax.legend(['train', 'valid.']) Explanation: Configuration End of explanation def read_tfrecord(example): features = { "image": tf.io.FixedLenFeature([], tf.string), # tf.string means bytestring "class": tf.io.FixedLenFeature([], tf.int64), # shape [] means scalar "one_hot_class": tf.io.VarLenFeature(tf.float32), } example = tf.io.parse_single_example(example, features) image = tf.io.decode_jpeg(example['image'], channels=3) image = tf.cast(image, tf.float32) / 255.0 # convert image to floats in [0, 1] range image = tf.reshape(image, [*IMAGE_SIZE, 3]) # explicit size will be needed for TPU one_hot_class = tf.sparse.to_dense(example['one_hot_class']) one_hot_class = tf.reshape(one_hot_class, [5]) return image, one_hot_class def load_dataset(filenames): # read from TFRecords. For optimal performance, read from multiple # TFRecord files at once and set the option experimental_deterministic = False # to allow order-altering optimizations. option_no_order = tf.data.Options() option_no_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTOTUNE) dataset = dataset.with_options(option_no_order) dataset = dataset.map(read_tfrecord, num_parallel_calls=AUTOTUNE) return dataset display_9_images_from_dataset(load_dataset(training_filenames)) Explanation: Read images and labels from TFRecords End of explanation def get_batched_dataset(filenames, train=False): dataset = load_dataset(filenames) dataset = dataset.cache() # This dataset fits in RAM if train: # Best practices for Keras: # Training dataset: repeat then batch # Evaluation dataset: do not repeat dataset = dataset.repeat() dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTOTUNE) # prefetch next batch while training (autotune prefetch buffer size) # should shuffle too but this dataset was well shuffled on disk already return dataset # source: Dataset performance guide: https://www.tensorflow.org/guide/performance/datasets # instantiate the datasets training_dataset = get_batched_dataset(training_filenames, train=True) validation_dataset = get_batched_dataset(validation_filenames, train=False) some_flowers, some_labels = dataset_to_numpy_util(load_dataset(validation_filenames), 160) Explanation: training and validation datasets End of explanation with strategy.scope(): # this line is all that is needed to run on TPU (or multi-GPU, ...) model = tf.keras.Sequential([ ### tf.keras.layers.InputLayer(input_shape=[*IMAGE_SIZE, 3]), tf.keras.layers.Conv2D(kernel_size=3, filters=20, padding='same', activation='relu'), # # YOUR LAYERS HERE # # LAYERS TO TRY: # Conv2D(kernel_size=3, filters=30, padding='same', activation='relu') # MaxPooling2D(pool_size=2) # GlobalAveragePooling2D() / Flatten() # Dense(90, activation='relu') # tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(5, activation='softmax') ### ]) model.compile( optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() Explanation: Model [WORK REQUIRED] train the model as it is, with a single convolutional layer Accuracy 40%... Not great. add additional convolutional layers interleaved with max-pooling layers. Try also adding a second dense layer. For example:<br/> conv 3x3, 16 filters, relu<br/> conv 3x3, 30 filters, relu<br/> max pool 2x2<br/> conv 3x3, 50 filters, relu<br/> max pool 2x2<br/> conv 3x3, 70 filters, relu<br/> flatten<br/> dense 5 softmax<br/> Accuracy 60%... slightly better. But this model is more than 800K parameters and it overfits dramatically (overfitting = eval loss goes up instead of down). Try replacing the Flatten layer by Global average pooling. Accuracy still 60% but the model is back to a modest 50K parameters, and does not overfit anymore. If you train longer, it can go even higher. Try experimenting with 1x1 convolutions too. They typically follow a 3x3 convolution and decrease the filter count. You can also add dropout between the dense layers. For example: conv 3x3, 20 filters, relu<br/> conv 3x3, 50 filters, relu<br/> max pool 2x2<br/> conv 3x3, 70 filters, relu<br/> conv 1x1, 50 filters, relu<br/> max pool 2x2<br/> conv 3x3, 100 filters, relu<br/> conv 1x1, 70 filters, relu<br/> max pool 2x2<br/> conv 3x3, 120 filters, relu<br/> conv 1x1, 80 filters, relu<br/> max pool 2x2<br/> global average pooling<br/> dense 5 softmax<br/> accuracy 70% The goal is 80% accuracy ! Good luck. (You might want to train for more than 20 epochs to get there. Se your trainig curves to see if it is worth training longer.) End of explanation EPOCHS = 20 history = model.fit(training_dataset, steps_per_epoch=steps_per_epoch, epochs=EPOCHS, validation_data=validation_dataset) print(history.history.keys()) display_training_curves(history.history['accuracy'], history.history['val_accuracy'], 'accuracy', 211) display_training_curves(history.history['loss'], history.history['val_loss'], 'loss', 212) Explanation: Training End of explanation # randomize the input so that you can execute multiple times to change results permutation = np.random.permutation(160) some_flowers, some_labels = (some_flowers[permutation], some_labels[permutation]) predictions = model.predict(some_flowers, batch_size=16) evaluations = model.evaluate(some_flowers, some_labels, batch_size=16) print(np.array(CLASSES)[np.argmax(predictions, axis=-1)].tolist()) print('[val_loss, val_acc]', evaluations) display_9_images_with_predictions(some_flowers, predictions, some_labels) Explanation: Predictions End of explanation
3,306
Given the following text description, write Python code to implement the functionality described below step by step Description: Evaluation Python année 2016-2017 - solution Le répertoire data contient deux fichiers csv simulés aléatoirement dont il faudra se servir pour répondre aux 10 questions qui suivent. Chaque question vaut deux points. Le travail est à rendre pour le lundi 20 février sous la forme d'un notebook envoyé en pièce jointe d'un mail. Step1: 1 Deux fichiers sont extraits de la base de données d'un médecin. Un fichier contient des informations sur des personnes, un autre sur les rendez-vous pris par ces personnes. Quels sont-ils ? Step2: Le second fichier est plus volumineux et contient une variable price qui ne peut pas être reliée aux personnes. Le premier fichier est celui des personnes, le second celui des rendez-vous. La variable idc est présente dans les deux tables. C'est elle qui identifie les personnes dans les deux tables. 2 On souhaite étudier la relation entre le prix moyen payé par une personne, son âge et son genre. Calculer le prix moyen payé par une personne ? La table des rendez-vous contient toutes l'information nécessaire. La question était un peu ambiguë. On peut déterminer le prix moyen payé par personne, ou le prix moyen des prix moyens... On va répondre à la première option car la seconde n'a pas beaucoup d'intérêt et c'est très proche du prix moyen par rendez-vous, ce que la question aurait sans doute formulé dans ce sens si telle avait été son intention. On groupe par idc et on fait la moyenne. Step3: 3 Faire la jointure entre les deux tables. Step4: Cette jointure est assez simple puisque la colonne partagée porte le même nom dans les deux tables. On peut néanmoins se poser la question de savoir s'il y a des personnes qui n'ont pas de rendez-vous associé et réciproquement. Step5: Visiblement, ce n'est pas le cas puisqu'une jointure incluant les éléments sans correspondances dans les deux tables n'ajoute pas plus d'éléments à la jointure. 4 Tracer deux nuages de points (age, prix moyen) et (genre, prix moyen) ? Step6: On peut aussi utiliser un module comme seaborn qui propose des dessins intéressants pour un statisticatien. Step7: On ne voit pas grand chose sur ce second graphe. Une option est d'ajouter un bruit aléatoire sur le genre pour éclater le nuage. Step8: Il n'y a rien de flagrant. On peut faire un graphe moustache. Step9: C'est mieux. Un dernier. Le diagramme violon, plus complet que le précédent. Step10: 5 Calculer les coefficients de la régression $prix_moyen \sim age + genre$. Une régression. Le premier réflexe est scikit-learn. Step11: On utilise maintenant statsmodels qui est plus complet pour toute ce qui est un modèle linéaire. Step12: Ou encore (après avoir ajouté une constante). Step13: On peut aussi définir la régression sous la forme de formule avec le module patsy. Step14: 6 On souhaite étudier le prix d'une consultation en fonction du jour de la semaine. Ajouter une colonne dans la table de votre choix avec le jour de la semaine. On convertit d'abord la colonne date (chaîne de caractères au format date) avec la fonction to_datetime. Step15: Et on récupère le jour de la semaine avec weekday. Step16: 7 Créer un graphe moustache qui permet de vérifier cette hypothèse. On réutilise le code d'une question précédente. Step17: C'est clairement plus cher le dimanche. 8 Ajouter une colonne dans la table de votre choix qui contient 365 si c'est le premier rendez-vous, le nombre de jour écoulés depuis le précédent rendez-vous. On appelle cette colonne $delay$. On ajoute également la colonne $1/delay$. Pour commencer, on convertit la date en nombre de jours depuis la première date. Step18: On convertit en entier. Step19: On trie par patient et jour puis on effectue la différence. Step20: Il reste à traiter le premier jour ou plutôt le premier rendez-vous. On le récupère pour chaque patient. Step21: Puis on fait une jointure. Step22: Il ne reste plus qu'à remplacer les NaN par jouri. Step23: Finalement, il faut ajouter une colonne $1/delay$. Comme des patients ont parfois deux rendez-vous le même jour, pour éviter les valeurs nulles, on ajoute la colonne $1/(1+delay)$. On aurait pu également pour éviter les valeurs nulles considérer le temps en secondes et non en jour entre deux rendez-vous. Step24: 8 - réponse plus courte On garde l'idée de la fonction diff et on ajoute la fonction shift. Step25: 9 Calculer les coefficients de la régression $prix \sim age + genre + delay + 1/delay + jour_semaine$. L'âge ne fait pas partie de la table tout. Il faut faire une jointure pour le récupérer. Step26: Ensuite retour à scikit-learn et plutôt le second statsmodels pour effectuer des tests sur les coefficients du modèle. On regarde d'abord les corrélations. Step27: Si le jeu de données n'est pas trop volumineux. Step28: Un dernier pour la route. Step29: Régression Step30: 10 Comment comparer ce modèle avec le précédent ? Implémentez le calcul qui vous permet de répondre à cette question. Nous pourrions comparer les coefficients $R^2$ (0.57, 0.61) des régressions pour savoir quelle est la meilleur excepté que celle-ci ne sont pas calculées sur les mêmes données. La comparaison n'a pas de sens et il serait dangeraux d'en tirer des conclusions. Les valeurs sont de plus très proches. Il faut comparer les prédictions. Dans le premier cas, on prédit le prix moyen. Dans le second, on prédit le prix d'une consultation. Il est alors possible de calculer une prédiction moyenne par patient et de comparer les erreurs de prédiction du prix moyen. D'un côté, la prédiction du prix moyen, de l'autre la prédiction du prix d'une consultation agrégé par patient. Step31: On calcule l'erreur. Step32: On agrège les secondes prédictions. Step33: Le second modèle est clairement meilleur. Step34: La seconde régression utilise une information dont on ne dispose pas au niveau agrégé Step35: C'est finalement un peu plus visible sur le graphe précédent (nuage de points) mais aussi un peu trompeur du fait de la superposition des points. Une dernière remarque. En machine learning, nous avons l'habitude d'apprendre un modèle sur une base d'apprentissage et de tester les prédictions sur une autre. Dans notre cas, nous avons appris et prédit sur la même base. Ce type de tester est évidemment plus fiable. Mais nous avons comparé ici deux erreurs d'apprentissage moyennes et c'est exactement ce que l'on fait lorsqu'on compare deux coefficients $R^2$. Un dernier graphe pour la route obtenu en triant les erreurs par ordre croissant. Step36: Le second modèle fait des erreurs moins importantes surtout côté négatif. Il sous-estime moins la bonne valeur. Traitement spécifique de la variable catégorielle weekday Le second modèle ne prend pas en compte le dimanche comme jour de la semaine. weekday est une variable catégorielle. Contrairment au genre, elle possède plus de deux modalités. Il serait intéressant de la traiter comme un ensemble de variable binaire et non une colonne de type entier. Step37: On supprime une modalité pour éviter d'avoir une matrice corrélée avec la constante et on ajoute des variables au modèle de régression. Step38: On vérifie que le coefficient pour dimanche n'est clairement significatif contrairement aux autres dont la probabilité d'être nul est élevée. Le médecin appliquerait une majoration de 20 euros le dimanche. Le coefficient $R^2$ est aussi nettement plus élevé. On construit les prédictions d'un second modèle en ne tenant compte que de la variable dimanche. Step39: Nettement, nettement mieux. Step40: Une variable catégorielle en une seule colonne ? Un jeu de données peut rapidement croître s'il est étendu pour chaque variable catégorielle. On peut utiliser le module category_encoders ou statsmodels. Step41: Ou associer la valeur de la cible à prédire pour chaque jour de la semaine. Step42: On apprend avec la variable weekday Step43: Et on compare avec la variable price_label
Python Code: %matplotlib inline from jyquickhelper import add_notebook_menu add_notebook_menu() Explanation: Evaluation Python année 2016-2017 - solution Le répertoire data contient deux fichiers csv simulés aléatoirement dont il faudra se servir pour répondre aux 10 questions qui suivent. Chaque question vaut deux points. Le travail est à rendre pour le lundi 20 février sous la forme d'un notebook envoyé en pièce jointe d'un mail. End of explanation import pandas persons = pandas.read_csv("https://raw.githubusercontent.com/sdpython/actuariat_python/master/_doc/notebooks/examen/data/persons.txt", sep="\t") persons.head() rend = pandas.read_csv("https://raw.githubusercontent.com/sdpython/actuariat_python/master/_doc/notebooks/examen/data/rendezvous.txt", sep="\t") rend.head() persons.shape, rend.shape Explanation: 1 Deux fichiers sont extraits de la base de données d'un médecin. Un fichier contient des informations sur des personnes, un autre sur les rendez-vous pris par ces personnes. Quels sont-ils ? End of explanation gr = rend.groupby("idc").mean() gr.head() Explanation: Le second fichier est plus volumineux et contient une variable price qui ne peut pas être reliée aux personnes. Le premier fichier est celui des personnes, le second celui des rendez-vous. La variable idc est présente dans les deux tables. C'est elle qui identifie les personnes dans les deux tables. 2 On souhaite étudier la relation entre le prix moyen payé par une personne, son âge et son genre. Calculer le prix moyen payé par une personne ? La table des rendez-vous contient toutes l'information nécessaire. La question était un peu ambiguë. On peut déterminer le prix moyen payé par personne, ou le prix moyen des prix moyens... On va répondre à la première option car la seconde n'a pas beaucoup d'intérêt et c'est très proche du prix moyen par rendez-vous, ce que la question aurait sans doute formulé dans ce sens si telle avait été son intention. On groupe par idc et on fait la moyenne. End of explanation join = persons.merge(gr.reset_index(), on="idc") join.head() Explanation: 3 Faire la jointure entre les deux tables. End of explanation join.shape join = persons.merge(gr.reset_index(), on="idc", how="outer") join.shape Explanation: Cette jointure est assez simple puisque la colonne partagée porte le même nom dans les deux tables. On peut néanmoins se poser la question de savoir s'il y a des personnes qui n'ont pas de rendez-vous associé et réciproquement. End of explanation join.plot(x="age", y="price", kind="scatter") Explanation: Visiblement, ce n'est pas le cas puisqu'une jointure incluant les éléments sans correspondances dans les deux tables n'ajoute pas plus d'éléments à la jointure. 4 Tracer deux nuages de points (age, prix moyen) et (genre, prix moyen) ? End of explanation import seaborn g = seaborn.jointplot("age", "price", data=join, kind="reg", size=7, scatter_kws={"s": 10}) join.plot(x="gender", y="price", kind="scatter") Explanation: On peut aussi utiliser un module comme seaborn qui propose des dessins intéressants pour un statisticatien. End of explanation import numpy bruit = join.copy() bruit["gx"] = bruit.gender + numpy.random.random(bruit.shape[0])/3 bruit.plot(x="gx", y="price", kind="scatter") Explanation: On ne voit pas grand chose sur ce second graphe. Une option est d'ajouter un bruit aléatoire sur le genre pour éclater le nuage. End of explanation join[["price", "gender"]].boxplot(by="gender") Explanation: Il n'y a rien de flagrant. On peut faire un graphe moustache. End of explanation seaborn.violinplot(x="gender", y="price", data=join, inner="quart") Explanation: C'est mieux. Un dernier. Le diagramme violon, plus complet que le précédent. End of explanation from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(join[["age", "gender"]], join["price"]) lr.coef_ lr.intercept_ Explanation: 5 Calculer les coefficients de la régression $prix_moyen \sim age + genre$. Une régression. Le premier réflexe est scikit-learn. End of explanation from statsmodels.formula.api import ols lr = ols("price ~ age + gender", data=join) res = lr.fit() res.summary() Explanation: On utilise maintenant statsmodels qui est plus complet pour toute ce qui est un modèle linéaire. End of explanation from statsmodels.api import OLS join2 = join.copy() join2["cst"] = 1 lr = OLS(join2["price"], join2[["age", "gender", "cst"]]) res = lr.fit() res.summary() Explanation: Ou encore (après avoir ajouté une constante). End of explanation from patsy import dmatrices y, X = dmatrices("price ~ age + gender" , join, return_type="matrix") y = numpy.ravel(y) lr = LinearRegression(fit_intercept=False) lr.fit(X, y) lr.coef_, lr.intercept_ X[:2] Explanation: On peut aussi définir la régression sous la forme de formule avec le module patsy. End of explanation rend["date2"] = pandas.to_datetime(rend.date) rend.dtypes Explanation: 6 On souhaite étudier le prix d'une consultation en fonction du jour de la semaine. Ajouter une colonne dans la table de votre choix avec le jour de la semaine. On convertit d'abord la colonne date (chaîne de caractères au format date) avec la fonction to_datetime. End of explanation rend["weekday"] = rend.date2.dt.weekday rend.head() Explanation: Et on récupère le jour de la semaine avec weekday. End of explanation rend[["price", "weekday"]].boxplot(by="weekday") Explanation: 7 Créer un graphe moustache qui permet de vérifier cette hypothèse. On réutilise le code d'une question précédente. End of explanation rend["constant"] = rend["date2"].min() rend["jour"] = rend["date2"] - rend["constant"] rend.head(n=2) Explanation: C'est clairement plus cher le dimanche. 8 Ajouter une colonne dans la table de votre choix qui contient 365 si c'est le premier rendez-vous, le nombre de jour écoulés depuis le précédent rendez-vous. On appelle cette colonne $delay$. On ajoute également la colonne $1/delay$. Pour commencer, on convertit la date en nombre de jours depuis la première date. End of explanation rend["jouri"] = rend.jour.apply(lambda d: d.days) rend.head(n=2) Explanation: On convertit en entier. End of explanation diff = rend.sort_values(["idc", "jouri"])["jouri"].diff() rend["diff"] = diff rend.head(n=2) Explanation: On trie par patient et jour puis on effectue la différence. End of explanation first = rend[["idc", "date"]].groupby("idc", as_index=False).min() first["j365"] = 365 first.head(n=2) Explanation: Il reste à traiter le premier jour ou plutôt le premier rendez-vous. On le récupère pour chaque patient. End of explanation tout = rend.merge(first, on=["idc", "date"], how="outer") tout[["idc", "jouri", "date", "j365"]].head(n=5) Explanation: Puis on fait une jointure. End of explanation tout["delay"] = tout.j365.fillna(tout.jouri) tout[["idc", "jouri", "date", "j365", "delay"]].head(n=8) Explanation: Il ne reste plus qu'à remplacer les NaN par jouri. End of explanation tout["delay1"] = 1/ (tout["delay"] + 1) tout[["delay", "delay1"]].head() Explanation: Finalement, il faut ajouter une colonne $1/delay$. Comme des patients ont parfois deux rendez-vous le même jour, pour éviter les valeurs nulles, on ajoute la colonne $1/(1+delay)$. On aurait pu également pour éviter les valeurs nulles considérer le temps en secondes et non en jour entre deux rendez-vous. End of explanation rend2 = rend.sort_values(["idc", "jouri"]).reset_index(drop=True).copy() rend2["diff"] = rend2["jouri"].diff() rend2.loc[rend2.idc != rend2.idc.shift(1), "diff"] = 365 rend2.head() Explanation: 8 - réponse plus courte On garde l'idée de la fonction diff et on ajoute la fonction shift. End of explanation mat = tout.merge(persons, on="idc") Explanation: 9 Calculer les coefficients de la régression $prix \sim age + genre + delay + 1/delay + jour_semaine$. L'âge ne fait pas partie de la table tout. Il faut faire une jointure pour le récupérer. End of explanation mat[["age", "gender", "delay", "delay1", "weekday", "price"]].corr() seaborn.clustermap(mat[["age", "gender", "delay", "delay1", "weekday", "price"]].corr(), figsize=(5,5)) Explanation: Ensuite retour à scikit-learn et plutôt le second statsmodels pour effectuer des tests sur les coefficients du modèle. On regarde d'abord les corrélations. End of explanation seaborn.pairplot(mat[["age", "gender", "delay", "delay1", "weekday", "price"]], plot_kws={"s": 10}, size=1) Explanation: Si le jeu de données n'est pas trop volumineux. End of explanation feat = mat[["age", "gender", "delay", "delay1", "weekday", "price"]] g = seaborn.PairGrid(feat.sort_values("price", ascending=False), x_vars=feat.columns[:-1], y_vars=["price"], size=5, aspect=.25) g.map(seaborn.stripplot, size=3, orient="h", palette="Reds_r", edgecolor="gray") Explanation: Un dernier pour la route. End of explanation lr = LinearRegression() lr.fit(mat[["age", "gender", "delay", "delay1", "weekday"]], mat["price"]) lr.coef_ from statsmodels.formula.api import ols lr = ols("price ~ age + gender + delay + delay1 + weekday", data=mat) res = lr.fit() res.summary() Explanation: Régression End of explanation lr_moy = LinearRegression() lr_moy.fit(join[["age", "gender"]], join["price"]) lr_moy.coef_, lr_moy.intercept_ pred_moy = lr_moy.predict(join[["age", "gender"]]) join["pred_moy"] = pred_moy join.head() Explanation: 10 Comment comparer ce modèle avec le précédent ? Implémentez le calcul qui vous permet de répondre à cette question. Nous pourrions comparer les coefficients $R^2$ (0.57, 0.61) des régressions pour savoir quelle est la meilleur excepté que celle-ci ne sont pas calculées sur les mêmes données. La comparaison n'a pas de sens et il serait dangeraux d'en tirer des conclusions. Les valeurs sont de plus très proches. Il faut comparer les prédictions. Dans le premier cas, on prédit le prix moyen. Dans le second, on prédit le prix d'une consultation. Il est alors possible de calculer une prédiction moyenne par patient et de comparer les erreurs de prédiction du prix moyen. D'un côté, la prédiction du prix moyen, de l'autre la prédiction du prix d'une consultation agrégé par patient. End of explanation err1 = ((join.pred_moy - join.price)**2).sum() / join.shape[0] err1 join.plot(x="price", y="pred_moy", kind="scatter") lrc = LinearRegression() feat = mat[["age", "gender", "delay", "delay1", "weekday", "price", "idc"]].copy() lrc.fit(feat[["age", "gender", "delay", "delay1", "weekday"]], feat["price"]) lrc.coef_, lrc.intercept_ predc = lrc.predict(feat[["age", "gender", "delay", "delay1", "weekday"]]) feat["predc"] = predc feat.head() Explanation: On calcule l'erreur. End of explanation agg = feat[["idc","predc", "price"]].groupby("idc").mean() agg.head() err2 = ((agg.predc - agg.price)**2).sum() / agg.shape[0] err2 Explanation: On agrège les secondes prédictions. End of explanation agg.plot(x="price", y="predc", kind="scatter") Explanation: Le second modèle est clairement meilleur. End of explanation temp = join.sort_values("price").reset_index(drop=True).reset_index(drop=False) temp.head(n=1) temp.plot(x="index", y=["price", "pred_moy"]) temp2 = agg.sort_values("price").reset_index(drop=True).reset_index(drop=False) temp2.head(n=1) ax = temp.plot(x="index", y="price", figsize=(14,4), ylim=[60,120]) temp.plot(x="index", y="pred_moy", linewidth=1, ax=ax, ylim=[60,120]) temp2.plot(x="index", y="predc", ax=ax, linewidth=0.6, ylim=[60,120]) Explanation: La seconde régression utilise une information dont on ne dispose pas au niveau agrégé : le jour de la semaine et un précédent graphe a clairement montré que c'était une variable importante. Un dernier graphe pour comparer les deux prédictions en montrant les prédictions triées par prix à prédire. End of explanation temp["erreur"] = temp.pred_moy - temp.price temp2["erreur2"] = temp2.predc - temp2.price ax = temp[["erreur"]].sort_values("erreur").reset_index(drop=True).plot() temp2[["erreur2"]].sort_values("erreur2").reset_index(drop=True).plot(ax=ax) ax.plot([0,1000], [0,0], "r--") Explanation: C'est finalement un peu plus visible sur le graphe précédent (nuage de points) mais aussi un peu trompeur du fait de la superposition des points. Une dernière remarque. En machine learning, nous avons l'habitude d'apprendre un modèle sur une base d'apprentissage et de tester les prédictions sur une autre. Dans notre cas, nous avons appris et prédit sur la même base. Ce type de tester est évidemment plus fiable. Mais nous avons comparé ici deux erreurs d'apprentissage moyennes et c'est exactement ce que l'on fait lorsqu'on compare deux coefficients $R^2$. Un dernier graphe pour la route obtenu en triant les erreurs par ordre croissant. End of explanation dummies = pandas.get_dummies(mat.weekday) dummies.columns=["lu", "ma", "me", "je", "ve", "sa", "di"] dummies.head() Explanation: Le second modèle fait des erreurs moins importantes surtout côté négatif. Il sous-estime moins la bonne valeur. Traitement spécifique de la variable catégorielle weekday Le second modèle ne prend pas en compte le dimanche comme jour de la semaine. weekday est une variable catégorielle. Contrairment au genre, elle possède plus de deux modalités. Il serait intéressant de la traiter comme un ensemble de variable binaire et non une colonne de type entier. End of explanation mat2 = pandas.concat([mat, dummies.drop("lu", axis=1)], axis=1) mat2.head(n=1) lr = ols("price ~ age + gender + delay + delay1 + ma + me + je + ve + sa + di", data=mat2) res = lr.fit() res.summary() Explanation: On supprime une modalité pour éviter d'avoir une matrice corrélée avec la constante et on ajoute des variables au modèle de régression. End of explanation lrc = LinearRegression() feat2 = mat2[["age", "gender", "delay", "delay1", "price", "idc", "di"]].copy() lrc.fit(feat2[["age", "gender", "delay", "delay1", "di"]], feat2["price"]) lrc.coef_, lrc.intercept_ predc = lrc.predict(feat2[["age", "gender", "delay", "delay1", "di"]]) feat2["predc"] = predc feat2.head() agg2 = feat2[["idc","predc", "price"]].groupby("idc").mean() agg2.head() err2d = ((agg2.predc - agg2.price)**2).sum() / agg2.shape[0] err2d Explanation: On vérifie que le coefficient pour dimanche n'est clairement significatif contrairement aux autres dont la probabilité d'être nul est élevée. Le médecin appliquerait une majoration de 20 euros le dimanche. Le coefficient $R^2$ est aussi nettement plus élevé. On construit les prédictions d'un second modèle en ne tenant compte que de la variable dimanche. End of explanation agg2.plot(x="price", y="predc", kind="scatter") temp2 = agg2.sort_values("price").reset_index(drop=True).reset_index(drop=False) ax = temp2.plot(x="index", y="price", figsize=(14,4), ylim=[60,120]) temp2.plot(x="index", y="predc", linewidth=1, ax=ax, ylim=[60,120]) Explanation: Nettement, nettement mieux. End of explanation from category_encoders import PolynomialEncoder encoder = PolynomialEncoder(cols=["weekday"]) encoder.fit(rend[["weekday"]], rend["price"]) pred = encoder.transform(rend[["weekday"]]) conc = pandas.concat([rend[["weekday"]], pred], axis=1) conc.head() Explanation: Une variable catégorielle en une seule colonne ? Un jeu de données peut rapidement croître s'il est étendu pour chaque variable catégorielle. On peut utiliser le module category_encoders ou statsmodels. End of explanation copy = rend[["weekday", "price"]].copy() gr = copy.groupby("weekday", as_index=False).mean() gr feat3 = mat[["age", "gender", "delay", "delay1", "price", "idc", "weekday"]] feat3 = feat3.merge(gr, on="weekday", suffixes=("", "_label")) feat3.head() Explanation: Ou associer la valeur de la cible à prédire pour chaque jour de la semaine. End of explanation lr = ols("price ~ age + gender + delay + delay1 + weekday", data=feat3) res = lr.fit() res.summary() Explanation: On apprend avec la variable weekday : End of explanation lr = ols("price ~ age + gender + delay + delay1 + price_label", data=feat3) res = lr.fit() res.summary() Explanation: Et on compare avec la variable price_label : End of explanation
3,307
Given the following text description, write Python code to implement the functionality described below step by step Description: Let's use some real data... Step1: Copy the first 2 million rows into a bcolz carray to use for benchmarking. Step2: Out of interest, what chunk size did bcolz choose? Step3: How long does it take to decompress the data? Step4: How long does it take to compute the maximum value? Step5: Check that scikit-allel's chunked implementation of max() behaves as expected - implementation is not threaded so total time should equal time to decompress data plus time to compute max. Step6: Now see how dask behaves. Step7: See especially the case with 4 blosc threads and 4 dask threads. Total wall time here is less than the sum of the time required to decompress the data with the same number of blosc threads and the time required to compute the maximum. So dask is able to do some work in parallel, even though bcolz does not release the GIL. Step8: Try a slightly more compute-intensive task. First the non-parallel version. Step9: Now dask. Step10: with nogil Hack bcolz to reinstate nogil sections around blosc_decompress... Step11: Check compression time is unaffected. Step12: Check scikit-allel's chunked implementation is unaffected. Step13: Now see if dask does any better... Step14: Try the more compute-intensive operation again. Step15: with nogil, with c-blosc 1.7.0 Step16: Try to reproduce segfaults...
Python Code: callset = h5py.File('/data/coluzzi/ag1000g/data/phase1/release/AR3/variation/main/hdf5/ag1000g.phase1.ar3.pass.h5', mode='r') callset genotype = allel.model.chunked.GenotypeChunkedArray(callset['3L/calldata/genotype']) genotype Explanation: Let's use some real data... End of explanation g = genotype.copy(stop=2000000) g Explanation: Copy the first 2 million rows into a bcolz carray to use for benchmarking. End of explanation g.data.chunklen * g.shape[1] * g.shape[2] Explanation: Out of interest, what chunk size did bcolz choose? End of explanation def toarray(x): np.asarray(x) for n in 1, 2, 4, 8: bcolz.blosc_set_nthreads(n) print('--- blosc threads:', n, '---') %time toarray(g) print() Explanation: How long does it take to decompress the data? End of explanation def time_max(x): x = np.asarray(x) %time x.max() time_max(g) Explanation: How long does it take to compute the maximum value? End of explanation for n in 1, 2, 4, 8: bcolz.blosc_set_nthreads(n) print('--- blosc threads:', n, '---') %time g.max() print() Explanation: Check that scikit-allel's chunked implementation of max() behaves as expected - implementation is not threaded so total time should equal time to decompress data plus time to compute max. End of explanation gd = allel.GenotypeDaskArray.from_array(g) gd for n in 1, 2, 4, 8: bcolz.blosc_set_nthreads(n) for m in 1, 2, 4, 8: print('--- blosc threads:', n, '; dask threads:', m, '---') %time gd.max().compute(num_workers=m) print() Explanation: Now see how dask behaves. End of explanation bcolz.blosc_set_nthreads(4) %timeit -n1 -r5 gd.max().compute(num_workers=4) Explanation: See especially the case with 4 blosc threads and 4 dask threads. Total wall time here is less than the sum of the time required to decompress the data with the same number of blosc threads and the time required to compute the maximum. So dask is able to do some work in parallel, even though bcolz does not release the GIL. End of explanation bcolz.blosc_set_nthreads(4) %time g.count_alleles() Explanation: Try a slightly more compute-intensive task. First the non-parallel version. End of explanation bcolz.blosc_set_nthreads(4) %time gd.count_alleles().compute(num_workers=4) bcolz.blosc_set_nthreads(1) %time gd.count_alleles().compute(num_workers=4) Explanation: Now dask. End of explanation import bcolz bcolz.__version__ bcolz.blosc_version() Explanation: with nogil Hack bcolz to reinstate nogil sections around blosc_decompress... End of explanation for n in 1, 2, 4, 8: bcolz.blosc_set_nthreads(n) print('--- blosc threads:', n, '---') %time toarray(g) print() Explanation: Check compression time is unaffected. End of explanation for n in 1, 2, 4, 8: bcolz.blosc_set_nthreads(n) print('--- blosc threads:', n, '---') %time g.max() print() Explanation: Check scikit-allel's chunked implementation is unaffected. End of explanation gd = allel.GenotypeDaskArray.from_array(g) gd for n in 1, 2, 4, 8: bcolz.blosc_set_nthreads(n) for m in 1, 2, 4, 8: print('--- blosc threads:', n, '; dask threads:', m, '---') %time gd.max().compute(num_workers=m) print() bcolz.blosc_set_nthreads(1) %timeit -r5 gd.max().compute(num_workers=4) bcolz.blosc_set_nthreads(1) %timeit -r5 gd.max().compute(num_workers=8) bcolz.blosc_set_nthreads(2) %timeit -r5 gd.max().compute(num_workers=2) bcolz.blosc_set_nthreads(4) %timeit -r5 gd.max().compute(num_workers=4) Explanation: Now see if dask does any better... End of explanation bcolz.blosc_set_nthreads(1) %time gd.count_alleles().compute(num_workers=4) bcolz.blosc_set_nthreads(4) %time gd.count_alleles().compute(num_workers=4) Explanation: Try the more compute-intensive operation again. End of explanation import bcolz bcolz.__version__ bcolz.blosc_version() g = genotype.copy(stop=2000000) g for n in 1, 2, 4, 8: bcolz.blosc_set_nthreads(n) print('--- blosc threads:', n, '---') %time toarray(g) print() gd = allel.GenotypeDaskArray.from_array(g) gd for n in 1, 2, 4, 8: bcolz.blosc_set_nthreads(n) for m in 1, 2, 4, 8: print('--- blosc threads:', n, '; dask threads:', m, '---') %time gd.max().compute(num_workers=m) print() Explanation: with nogil, with c-blosc 1.7.0 End of explanation bcolz.blosc_set_nthreads(1) gd.astype('f4').max().compute() gd.mean(axis=1).sum().compute(num_workers=4) ((gd + gd) * gd).std(axis=0).compute() Explanation: Try to reproduce segfaults... End of explanation
3,308
Given the following text description, write Python code to implement the functionality described below step by step Description: Transport measurement data analysis This is an example notebook for the analysis class IV_curve of qkit.analysis.IV_curve.py. This handels transport measurment data (focussed of measurements of Josephson junctions in the current bias) taken with qkit.measure.transport.transport.py and provides methods to * load data files, * merge data files, * calculate numerical derivatives, such as differential resistances, * analyse voltage and current offsets, * correct ohmic resistances offsets arising due to lead resistivity in 2-wire measurements, * analyse the normal state resistance, * analyse critical currents and voltage jumps, * analyse switching current distributions. For error propagation the uncertainties package is used. Step1: Load qkit transport measurement file Transport measurement data with a given uuid can be loaded using ivc.load(uuid). Several elements are available, especially * data file ivc.df, * settings ivc.settings, * measurement object ivc.mo, * current values ivc.I, * voltage values ivc.V, * differential resistance values ivc.dVdI, * sweep list ivc.sweeps, * scan dimension (1D, 2D or 3D) ivc.scan_dim, * in case of 2D and 3D scans, x-parameter dataset ivc.x_ds, values ivc.x_vec, name ivc.x_coordname, unit ivc.x_unit, * in case of 3D scans, y-parameter dataset ivc.y_ds, values ivc.y_vec, name ivc.y_coordname, unit ivc.y_unit. Step2: Merge qkit transport measurement files Qkit transport measurement files can be merged depending on the scan dimension to one single new file by ivc.merge(). * 1D Step3: Differential resistance The differential resistance $ \frac{\text{d}V}{\text{d}I} $ is caclulated as numerical derivative using ivc.get_dVdI(). By default the Savitzky Golay filter is applied, but different methods can be used, e.g. a simple numerical gradient ivc.get_dVdI(mode=np.gradient) Step4: Current and voltage offsets The current and voltage offsets can be calculated using ivc.get_offsets() or ivc.get_offset(). The branch where the y-values are nearly constant are evaluated. The average of all corresponding x-values is considered to be the x-offset and the average of the extreme y-values are considered as y-offset. These are by default the critical y-values $ y_c$, but can also be set to retrapping y-values $ y_r $ if yr=True * ivc.get_offsets() calculates x- and y-offset of every trace, * ivc.get_offset() calculates x- and y-offset of the whole set (this differs only for 2D or 3D scans). Note that reasonable initial values offset and tol_offset are sufficient to find the range where the y-values are nearly constant. Step5: Ohmic resistance offset The voltage values can be corrected by an ohmic resistance offset such as occur in 2wire measurements using ivc.get_2wire_slope_correction(). The two maxima in the differential resistivity $ \frac{\text{d}V}{\text{d}I} $ are identified as critical and retrapping currents. This is done using scipy.signal.find_peaks() by default, but can set to custom peak finding algorithms peak_finder. The slope of the superconducting regime in between (which should ideally be infinity) is fitted using `numpy.linalg.qr()´ algorithm and subtracted from the raw data. Note that the arguments of the peak finding algorithms need to be set properly, e.g. prominence for scipy.signal.find_peaks(). Step6: Critical and retrapping currents Critical currents can be determined on three different ways. The voltage jump at the critical and retrapping current can be found by * a voltage threshold value that is exceeded, * peaks in the differential resistance $ \frac{\text{d}V}{\text{d}I} $, * peaks in the Gaussian smoothed derivative $ \text{i}f\exp\left(-sf^2\right) $ in the frequency domain Voltage threshold methode for critical and retrapping currents The critical and retrapping currents $ I_\text{c} $, $ I_\text{r} $ can be calculated by finding the currents that correspond to the voltages which exceed a certain threshold using ivc.get_Ic_threshold(). The branch where the voltage values are nearly constant are evaluated. Their maximal values of the up- and down-sweep are considered as critical currents $ I_c $ and retrapping current $ I_r $ (if Ir=True), respectively. Note that it works best, if offset is already determined via get_offsets() and that a reasonable initial value tol_offset is sufficient. Step7: Peak detection in differential resistance methode for critical and retrapping currents The critical and retrapping currents $ I_\text{c} $, $ I_\text{r} $ can be calculated by detecting peaks in the differential resistance $ \frac{\text{d}V}{\text{d}I} $ using ivc.get_Ic_deriv(). This is done using scipy.signal.find_peaks() by default, but can set to custom peak finding algorithms peak_finder. Note that the arguments of the peak finding algorithms need to be set properly, e.g. prominence for scipy.signal.find_peaks(). Step8: Peak detection in the Gaussian smoothed derivative methode for critical and retrapping currents The critical and retrapping currents $ I_\text{c} $, $ I_\text{r} $ can be calculated by detecting peaks in the Gaussian smoothed derivative $ \left(\text{i}f\cdot\text{e}^{-sf^2}\right) $ in the frequency domain using ivc.get_Ic_dft(). This is done using scipy.signal.find_peaks() by default, but can set to custom peak finding algorithms peak_finder. Note that the smoothing factor s and the arguments of the peak finding algorithms need to be set properly, e.g. prominence for scipy.signal.find_peaks(). Step9: Normal state resistance The normal state resistance $ R_\text{n} $ of ohmic (overcritical) branch can be calculated using ivc.get_Rn(). The normal state resistance corresponds to the inverse linear slope of the normal conducting branch $ I=R_\text{n}^{-1}U $ (mode=0) or the average value of $ \frac{\mathrm{d}V}{\mathrm{d}I} $ of the normal conducting branch (mode=1). The ohmic range, in turn, is considered to range from the outermost tail of the peaks in the curvature $ \frac{\mathrm{d}^2V}{\mathrm{d}I^2} $ to the start/end of the sweep and the resistance is calculated as mean of the differential resistance values dVdI within this range. This is done using scipy.signal.savgol_filter(deriv=2) and scipy.signal.find_peaks() by default, but can set to any second order derivative function deriv_func and peak finding algorithms peak_finder. For scipy.signal.find_peaks() the prominence parameter is set to $ 1\,\% $ of the absolute curvature value by default. Note that the arguments of the peak finding algorithms need to be set properly, e.g. prominence for scipy.signal.find_peaks(). Step10: Switching current measurements Switching current distributions can be analyzed and plotted using the ivc.scm.fit() and ivc.scm.plot() of the switching_current subclass. The switching currents need to be determined beforehand, such as by ivc.get_Ic_deriv(). Their switching current distribution $ P_k \mathrm{d}I = \frac{n_k}{N\Delta I}\mathrm{d}I $ is normalized $ \int\limits_0^\infty P(I^\prime)\mathrm{d}I^\prime = 1 $ and get by numpy.histogram(). The escape rate reads $ \Gamma(I_k) = \frac{\left|\frac{\mathrm{d}I}{\mathrm{d}t}\right|}{\Delta I}\ln\left(\frac{\sum\limits_{j\geq k} P_j}{\sum_\limits{j\geq k+1} P_j}\right) $ and the normalized escape rate $ \left[\ln\left(\frac{\omega_0}{2\pi\Gamma}\right)\right]^{2/3} $ is fitted versus $ \gamma $ to $ f(\bar{\gamma}) = a\cdot\bar{\gamma}+b $ where the root $ \left[\ln\left(\frac{\omega_0}{2\pi\Gamma}\right)\right]^{2/3} = 0 $ yields the critical current $ I_\text{c} = -\frac{b}{a} $. Here, the sweep rate results as $ \frac{\mathrm{d}I}{\mathrm{d}t} = \delta I\cdot\frac{\text{nplc}}{\text{plc}} $, the centers of bins as moving average of the returned bin-edges using np.convolve(edges, np.ones((2,))/2, mode='valid') and the bin width as $ \Delta I = \frac{\max(I_\text{b})-\min(I_\text{b})}{N_\text{bins}} $. theoretical background the probability distribution of switching currents is related to the escape rate $ \Gamma(I) $ and the current ramp rate $ \frac{\mathrm{d}I}{\mathrm{d}t} $ as \begin{equation} P(I)\mathrm{d}I = \Gamma(I)\left|\frac{\mathrm{d}I}{\mathrm{d}t}\right|^{-1} \left(1-\int\limits_0^I P(I^\prime)\mathrm{d}I^\prime\right)\mathrm{d}I \end{equation} This integral equation can be solved explixitly for the switching-current distribution \begin{align} P(I) &= \Gamma(I)\left|\frac{\mathrm{d}I}{\mathrm{d}t}\right|^{-1}\exp\left(-\left|\frac{\mathrm{d}I}{\mathrm{d}t}\right|^{-1}\int\limits_0^I\Gamma(I^\prime)\mathrm{d}I^\prime\right)\ P(I_k) &= \Gamma(I_k)\left|\frac{\mathrm{d}I_k}{\mathrm{d}t}\right|^{-1}\exp\left(-\left|\frac{\mathrm{d}I_k}{\mathrm{d}t}\right|^{-1}\Delta I\sum\limits_{j=0}^k\Gamma(I_j)\right) \end{align} Solving for the escape rate results in \begin{align} \Gamma(I) &= \frac{\left|\frac{\mathrm{d}I}{\mathrm{d}t}\right|}{\Delta I}\ln\left(\frac{\int\limits_I^\infty P(I^\prime)\mathrm{d}I^\prime}{\int\limits_{I+\Delta I}^\infty P(I^\prime)\mathrm{d}I^\prime}\right) \ \Gamma(I_k) &= \frac{\left|\frac{\mathrm{d}I}{\mathrm{d}t}\right|}{\Delta I}\ln\left(\frac{\sum\limits_{j\geq k} P_j}{\sum_\limits{j\geq k+1} P_j}\right) \end{align} The escape rate, in turn, is related to the attempt frequency $ \frac{\omega_0}{2\pi} $ and the barrier height $ U_0 = 2E_\mathrm{J}\left(\sqrt{1-\gamma^2}-\gamma\arccos(\gamma)\right) \approx E_\mathrm{J}\frac{4\sqrt{2}}{3}\left(1-\gamma\right)^\frac{3}{2} $ and results in \begin{align} \Gamma_\text{th} &= \frac{\omega_0}{2\pi}\exp\left(\frac{U_0}{k_\text{B}T}\right) \ &= \frac{\omega_0}{2\pi}\exp\left(-\frac{E_\text{J}\frac{4\sqrt{2}}{3}(1-\bar{\gamma})^{3/2}}{k_\text{B}T}\right)\ \left[\ln\left(\frac{\omega_0}{2\pi\Gamma}\right)\right]^{2/3} &= \left(\frac{E_\text{J}}{k_\text{B}T}\frac{4\sqrt{2}}{3}\right)^{2/3}\cdot(1-\bar{\gamma}) \end{align} References Fulton, T. A., and L. N. Dunkleberger. "Lifetime of the zero-voltage state in Josephson tunnel junctions." Physical Review B 9.11 (1974)
Python Code: import numpy as np from uncertainties import ufloat, umath, unumpy as unp from scipy import signal as sig import matplotlib.pyplot as plt import qkit qkit.start() from qkit.analysis.IV_curve import IV_curve as IVC ivc = IVC() Explanation: Transport measurement data analysis This is an example notebook for the analysis class IV_curve of qkit.analysis.IV_curve.py. This handels transport measurment data (focussed of measurements of Josephson junctions in the current bias) taken with qkit.measure.transport.transport.py and provides methods to * load data files, * merge data files, * calculate numerical derivatives, such as differential resistances, * analyse voltage and current offsets, * correct ohmic resistances offsets arising due to lead resistivity in 2-wire measurements, * analyse the normal state resistance, * analyse critical currents and voltage jumps, * analyse switching current distributions. For error propagation the uncertainties package is used. End of explanation ivc.load(uuid='XXXXXX') Explanation: Load qkit transport measurement file Transport measurement data with a given uuid can be loaded using ivc.load(uuid). Several elements are available, especially * data file ivc.df, * settings ivc.settings, * measurement object ivc.mo, * current values ivc.I, * voltage values ivc.V, * differential resistance values ivc.dVdI, * sweep list ivc.sweeps, * scan dimension (1D, 2D or 3D) ivc.scan_dim, * in case of 2D and 3D scans, x-parameter dataset ivc.x_ds, values ivc.x_vec, name ivc.x_coordname, unit ivc.x_unit, * in case of 3D scans, y-parameter dataset ivc.y_ds, values ivc.y_vec, name ivc.y_coordname, unit ivc.y_unit. End of explanation ivc.merge(uuids=('XXXXXX', 'YYYYYY'), order=(-1, 1)) Explanation: Merge qkit transport measurement files Qkit transport measurement files can be merged depending on the scan dimension to one single new file by ivc.merge(). * 1D: all sweep data are stacked and views are merged. * 2D: values of x-parameter and its corresponding sweep data are merged in the order order. * 3D: values of x- and y-parameters and its corresponding sweep data are merged in the order order. End of explanation ivc.get_dVdI() Explanation: Differential resistance The differential resistance $ \frac{\text{d}V}{\text{d}I} $ is caclulated as numerical derivative using ivc.get_dVdI(). By default the Savitzky Golay filter is applied, but different methods can be used, e.g. a simple numerical gradient ivc.get_dVdI(mode=np.gradient) End of explanation ivc.get_offsets(offset=0, tol_offset=20e-6) ivc.get_offset(offset=0, tol_offset=20e-6) Explanation: Current and voltage offsets The current and voltage offsets can be calculated using ivc.get_offsets() or ivc.get_offset(). The branch where the y-values are nearly constant are evaluated. The average of all corresponding x-values is considered to be the x-offset and the average of the extreme y-values are considered as y-offset. These are by default the critical y-values $ y_c$, but can also be set to retrapping y-values $ y_r $ if yr=True * ivc.get_offsets() calculates x- and y-offset of every trace, * ivc.get_offset() calculates x- and y-offset of the whole set (this differs only for 2D or 3D scans). Note that reasonable initial values offset and tol_offset are sufficient to find the range where the y-values are nearly constant. End of explanation ivc.get_2wire_slope_correction(prominence=1) Explanation: Ohmic resistance offset The voltage values can be corrected by an ohmic resistance offset such as occur in 2wire measurements using ivc.get_2wire_slope_correction(). The two maxima in the differential resistivity $ \frac{\text{d}V}{\text{d}I} $ are identified as critical and retrapping currents. This is done using scipy.signal.find_peaks() by default, but can set to custom peak finding algorithms peak_finder. The slope of the superconducting regime in between (which should ideally be infinity) is fitted using `numpy.linalg.qr()´ algorithm and subtracted from the raw data. Note that the arguments of the peak finding algorithms need to be set properly, e.g. prominence for scipy.signal.find_peaks(). End of explanation ivc.get_Ic_threshold(Ir=True) Explanation: Critical and retrapping currents Critical currents can be determined on three different ways. The voltage jump at the critical and retrapping current can be found by * a voltage threshold value that is exceeded, * peaks in the differential resistance $ \frac{\text{d}V}{\text{d}I} $, * peaks in the Gaussian smoothed derivative $ \text{i}f\exp\left(-sf^2\right) $ in the frequency domain Voltage threshold methode for critical and retrapping currents The critical and retrapping currents $ I_\text{c} $, $ I_\text{r} $ can be calculated by finding the currents that correspond to the voltages which exceed a certain threshold using ivc.get_Ic_threshold(). The branch where the voltage values are nearly constant are evaluated. Their maximal values of the up- and down-sweep are considered as critical currents $ I_c $ and retrapping current $ I_r $ (if Ir=True), respectively. Note that it works best, if offset is already determined via get_offsets() and that a reasonable initial value tol_offset is sufficient. End of explanation I_cs, I_rs, props = ivc.get_Ic_deriv(prominence=1, Ir=True) I_cs, I_rs print('all currents, where voltage jumps') if ivc._scan_dim == 1: print(np.array(map(lambda p1D: p1D['I'], props))) elif ivc._scan_dim == 2: print(np.array(map(lambda p2D: map(lambda p1D: p1D['I'], p2D), props))) elif ivc._scan_dim == 3: print(np.array(map(lambda p3D: map(lambda p2D: map(lambda p1D: p1D['I'], p2D), p3D), props))) Explanation: Peak detection in differential resistance methode for critical and retrapping currents The critical and retrapping currents $ I_\text{c} $, $ I_\text{r} $ can be calculated by detecting peaks in the differential resistance $ \frac{\text{d}V}{\text{d}I} $ using ivc.get_Ic_deriv(). This is done using scipy.signal.find_peaks() by default, but can set to custom peak finding algorithms peak_finder. Note that the arguments of the peak finding algorithms need to be set properly, e.g. prominence for scipy.signal.find_peaks(). End of explanation I_cs, I_rs, props = ivc.get_Ic_dft(Ir=True, prominence=1e-6) I_cs, I_rs Explanation: Peak detection in the Gaussian smoothed derivative methode for critical and retrapping currents The critical and retrapping currents $ I_\text{c} $, $ I_\text{r} $ can be calculated by detecting peaks in the Gaussian smoothed derivative $ \left(\text{i}f\cdot\text{e}^{-sf^2}\right) $ in the frequency domain using ivc.get_Ic_dft(). This is done using scipy.signal.find_peaks() by default, but can set to custom peak finding algorithms peak_finder. Note that the smoothing factor s and the arguments of the peak finding algorithms need to be set properly, e.g. prominence for scipy.signal.find_peaks(). End of explanation ivc.get_Rn() Explanation: Normal state resistance The normal state resistance $ R_\text{n} $ of ohmic (overcritical) branch can be calculated using ivc.get_Rn(). The normal state resistance corresponds to the inverse linear slope of the normal conducting branch $ I=R_\text{n}^{-1}U $ (mode=0) or the average value of $ \frac{\mathrm{d}V}{\mathrm{d}I} $ of the normal conducting branch (mode=1). The ohmic range, in turn, is considered to range from the outermost tail of the peaks in the curvature $ \frac{\mathrm{d}^2V}{\mathrm{d}I^2} $ to the start/end of the sweep and the resistance is calculated as mean of the differential resistance values dVdI within this range. This is done using scipy.signal.savgol_filter(deriv=2) and scipy.signal.find_peaks() by default, but can set to any second order derivative function deriv_func and peak finding algorithms peak_finder. For scipy.signal.find_peaks() the prominence parameter is set to $ 1\,\% $ of the absolute curvature value by default. Note that the arguments of the peak finding algorithms need to be set properly, e.g. prominence for scipy.signal.find_peaks(). End of explanation props = ivc.get_Ic_deriv(prominence=1) I_0 = np.array(list(map(lambda p2D: list(map(lambda p1D: p1D['I'][0], p2D)), props))) ivc.scm.fit(I_0=I_0*1e6, omega_0=1e9, bins=30) ivc.scm.plot() Explanation: Switching current measurements Switching current distributions can be analyzed and plotted using the ivc.scm.fit() and ivc.scm.plot() of the switching_current subclass. The switching currents need to be determined beforehand, such as by ivc.get_Ic_deriv(). Their switching current distribution $ P_k \mathrm{d}I = \frac{n_k}{N\Delta I}\mathrm{d}I $ is normalized $ \int\limits_0^\infty P(I^\prime)\mathrm{d}I^\prime = 1 $ and get by numpy.histogram(). The escape rate reads $ \Gamma(I_k) = \frac{\left|\frac{\mathrm{d}I}{\mathrm{d}t}\right|}{\Delta I}\ln\left(\frac{\sum\limits_{j\geq k} P_j}{\sum_\limits{j\geq k+1} P_j}\right) $ and the normalized escape rate $ \left[\ln\left(\frac{\omega_0}{2\pi\Gamma}\right)\right]^{2/3} $ is fitted versus $ \gamma $ to $ f(\bar{\gamma}) = a\cdot\bar{\gamma}+b $ where the root $ \left[\ln\left(\frac{\omega_0}{2\pi\Gamma}\right)\right]^{2/3} = 0 $ yields the critical current $ I_\text{c} = -\frac{b}{a} $. Here, the sweep rate results as $ \frac{\mathrm{d}I}{\mathrm{d}t} = \delta I\cdot\frac{\text{nplc}}{\text{plc}} $, the centers of bins as moving average of the returned bin-edges using np.convolve(edges, np.ones((2,))/2, mode='valid') and the bin width as $ \Delta I = \frac{\max(I_\text{b})-\min(I_\text{b})}{N_\text{bins}} $. theoretical background the probability distribution of switching currents is related to the escape rate $ \Gamma(I) $ and the current ramp rate $ \frac{\mathrm{d}I}{\mathrm{d}t} $ as \begin{equation} P(I)\mathrm{d}I = \Gamma(I)\left|\frac{\mathrm{d}I}{\mathrm{d}t}\right|^{-1} \left(1-\int\limits_0^I P(I^\prime)\mathrm{d}I^\prime\right)\mathrm{d}I \end{equation} This integral equation can be solved explixitly for the switching-current distribution \begin{align} P(I) &= \Gamma(I)\left|\frac{\mathrm{d}I}{\mathrm{d}t}\right|^{-1}\exp\left(-\left|\frac{\mathrm{d}I}{\mathrm{d}t}\right|^{-1}\int\limits_0^I\Gamma(I^\prime)\mathrm{d}I^\prime\right)\ P(I_k) &= \Gamma(I_k)\left|\frac{\mathrm{d}I_k}{\mathrm{d}t}\right|^{-1}\exp\left(-\left|\frac{\mathrm{d}I_k}{\mathrm{d}t}\right|^{-1}\Delta I\sum\limits_{j=0}^k\Gamma(I_j)\right) \end{align} Solving for the escape rate results in \begin{align} \Gamma(I) &= \frac{\left|\frac{\mathrm{d}I}{\mathrm{d}t}\right|}{\Delta I}\ln\left(\frac{\int\limits_I^\infty P(I^\prime)\mathrm{d}I^\prime}{\int\limits_{I+\Delta I}^\infty P(I^\prime)\mathrm{d}I^\prime}\right) \ \Gamma(I_k) &= \frac{\left|\frac{\mathrm{d}I}{\mathrm{d}t}\right|}{\Delta I}\ln\left(\frac{\sum\limits_{j\geq k} P_j}{\sum_\limits{j\geq k+1} P_j}\right) \end{align} The escape rate, in turn, is related to the attempt frequency $ \frac{\omega_0}{2\pi} $ and the barrier height $ U_0 = 2E_\mathrm{J}\left(\sqrt{1-\gamma^2}-\gamma\arccos(\gamma)\right) \approx E_\mathrm{J}\frac{4\sqrt{2}}{3}\left(1-\gamma\right)^\frac{3}{2} $ and results in \begin{align} \Gamma_\text{th} &= \frac{\omega_0}{2\pi}\exp\left(\frac{U_0}{k_\text{B}T}\right) \ &= \frac{\omega_0}{2\pi}\exp\left(-\frac{E_\text{J}\frac{4\sqrt{2}}{3}(1-\bar{\gamma})^{3/2}}{k_\text{B}T}\right)\ \left[\ln\left(\frac{\omega_0}{2\pi\Gamma}\right)\right]^{2/3} &= \left(\frac{E_\text{J}}{k_\text{B}T}\frac{4\sqrt{2}}{3}\right)^{2/3}\cdot(1-\bar{\gamma}) \end{align} References Fulton, T. A., and L. N. Dunkleberger. "Lifetime of the zero-voltage state in Josephson tunnel junctions." Physical Review B 9.11 (1974): 4760. Wallraff, Andreas. Fluxon dynamics in annular Josephson junctions: From Relativistic Strings to quantum particles. Lehrstuhl für Mikrocharakterisierung, Friedrich-Alexander-Universität, 2001. End of explanation
3,309
Given the following text description, write Python code to implement the functionality described below step by step Description: human judgement data examining some of the human judgement data Step1: data in form left image location, right image location, and a binary variable indicating if the subject chose the left (1) or right (0) image as a better representation of the original. note that the order of compression switches randomly. Step2: now that we have an idea of the human judgement data, we can run ssim and see how well it predicts human behavior.
Python Code: import matplotlib.pyplot as plt import pandas as pd import numpy as np import matplotlib.image as mpimg from PIL import Image import progressbar human_df = pd.read_csv('human_data.csv') human_df.head() Explanation: human judgement data examining some of the human judgement data End of explanation # data sample f, axarr = plt.subplots(nrows=3, ncols=3, figsize=(9,9)) for ii in range(3): index = np.random.randint(4040) temp_left = mpimg.imread('iclr_images/' + human_df['left_file'][index][1:-1]) temp_right = mpimg.imread('iclr_images/' + human_df['right_file'][index][1:-1]) temp_orig = mpimg.imread('iclr_images/' + human_df['orig_file'][index][1:-1]) axarr[ii][0].imshow(temp_orig, cmap='gray') if human_df['response_left'][index] == 1: axarr[ii][1].imshow(temp_left, cmap='gray') axarr[ii][2].imshow(temp_right, cmap='gray') else: axarr[ii][2].imshow(temp_left, cmap='gray') axarr[ii][1].imshow(temp_right, cmap='gray') for ax_row in axarr: for ax in ax_row: ax.set_xticklabels([]) ax.set_yticklabels([]) axarr[0,0].set_title('original', size=15) axarr[0,1].set_title('preferred', size=15) axarr[0,2].set_title('rejected', size=15) # plt.savefig('human_pref.png') plt.show() import matplotlib.gridspec as gridspec plt.figure(figsize = (12,12)) gs1 = gridspec.GridSpec(3, 3) gs1.update(wspace=0.03, hspace=0.03) ax_dict = {} for ii in range(9): ax_dict[ii] = plt.subplot(gs1[ii]) ax_dict[ii].set_xticklabels([]) ax_dict[ii].set_yticklabels([]) ax_dict[ii].get_xaxis().set_visible(False) ax_dict[ii].get_yaxis().set_visible(False) for ii in range(3): index = np.random.randint(4040) temp_left = mpimg.imread('iclr_images/' + human_df['left_file'][index][1:-1]) temp_right = mpimg.imread('iclr_images/' + human_df['right_file'][index][1:-1]) temp_orig = mpimg.imread('iclr_images/' + human_df['orig_file'][index][1:-1]) ax_dict[3*ii].imshow(temp_orig, cmap='gray') if human_df['response_left'][index] == 1: ax_dict[3*ii+1].imshow(temp_left, cmap='gray') ax_dict[3*ii+2].imshow(temp_right, cmap='gray') else: ax_dict[3*ii+2].imshow(temp_left, cmap='gray') ax_dict[3*ii+1].imshow(temp_right, cmap='gray') ax_dict[0].set_title('sample', size=20) ax_dict[1].set_title('preferred', size=20) ax_dict[2].set_title('rejected', size=20) plt.savefig('human.png') plt.show() im = Image.open('iclr_images/' + human_df['left_file'][ii][1:-1]) test = np.asarray(im) test Explanation: data in form left image location, right image location, and a binary variable indicating if the subject chose the left (1) or right (0) image as a better representation of the original. note that the order of compression switches randomly. End of explanation def calculate_ssim_patch(window_orig, window_recon): k_1, k_2, L = 0.01, 0.03, 255 if window_orig.shape != (11,11) or window_recon.shape != (11,11): raise ValueError('please check window size for SSIM calculation!') orig_data, recon_data = window_orig.flatten(), window_recon.flatten() mean_x, mean_y = np.mean(orig_data), np.mean(recon_data) var_x, var_y = np.var(recon_data), np.var(orig_data) covar = np.cov(orig_data, recon_data)[0][1] c_1, c_2 = (L*k_2)**2, (L*k_1)**2 num = (2*mean_x*mean_y+c_1)*(2*covar+c_2) den = (mean_x**2+mean_y**2+c_1)*(var_x+var_y+c_2) return num/den def calculate_ssim_image(image_orig, image_recon): ssim_res = [] filter_dim = 11; image_dim = image_orig.shape[0]; number_windows = image_dim - filter_dim + 1 for i in range(number_windows): for j in range(number_windows): orig_window = image_orig[i:i+11, j:j+11] recon_window = image_recon[i:i+11, j:j+11] temp = calculate_ssim_patch(orig_window, recon_window) ssim_res.append(temp) return np.asarray(ssim_res) bar = progressbar.ProgressBar() correct = 0 for ii in bar(range(len(human_df['left_file']))): left_im = Image.open('iclr_images/' + human_df['left_file'][ii][1:-1]) left_im_pix = np.asarray(left_im) right_im = Image.open('iclr_images/' + human_df['right_file'][ii][1:-1]) right_im_pix = np.asarray(right_im) orig_im = Image.open('iclr_images/' + human_df['orig_file'][ii][1:-1]) orig_im_pix = np.asarray(orig_im) left_ssim = calculate_ssim_image(orig_im_pix, left_im_pix) right_ssim = calculate_ssim_image(orig_im_pix, right_im_pix) ssims = [np.mean(right_ssim), np.mean(left_ssim)] if np.argmax(ssims) == human_df['response_left'][ii]: correct += 1 correct, correct/4040 f, axarr = plt.subplots(nrows=3, ncols=5, figsize=(15,9)) for ii in range(3): index = np.random.randint(4040) left_im = Image.open('iclr_images/' + human_df['left_file'][index][1:-1]) left_im_pix = np.asarray(left_im) right_im = Image.open('iclr_images/' + human_df['right_file'][index][1:-1]) right_im_pix = np.asarray(right_im) orig_im = Image.open('iclr_images/' + human_df['orig_file'][index][1:-1]) orig_im_pix = np.asarray(orig_im) left_ssim = calculate_ssim_image(orig_im_pix, left_im_pix) right_ssim = calculate_ssim_image(orig_im_pix, right_im_pix) axarr[ii][0].imshow(orig_im_pix, cmap='gray') axarr[ii][1].imshow(left_im_pix, cmap='gray') axarr[ii][2].imshow(right_im_pix, cmap='gray') axarr[ii][3].imshow(np.reshape(left_ssim,(54,54)), cmap='plasma') axarr[ii][4].imshow(np.reshape(right_ssim,(54,54)), cmap='plasma') axarr[0,0].set_title('original image', size=15) axarr[0,1].set_title('left recon', size=15) axarr[0,2].set_title('right recon', size=15) axarr[0,3].set_title('left ssim', size=15) axarr[0,4].set_title('right ssim', size=15) for ax_row in axarr: for ax in ax_row: ax.set_xticklabels([]) ax.set_yticklabels([]) # plt.savefig('human_judge2.png') plt.show() Explanation: now that we have an idea of the human judgement data, we can run ssim and see how well it predicts human behavior. End of explanation
3,310
Given the following text description, write Python code to implement the functionality described below step by step Description: Load and check data Step1: ## Analysis Experiment Details Step2: Did Hebbian perform better than SET? Step3: No evidence of significant difference. In networks with high sparsity, the impact of kWinners is worst, which is expected since kWinners (at 30%) will make the activations more sparse than ReLU (which is 50% sparse on average) What is the optimal level of weight sparsity? Step4: Sparsity at 80 and 90% levels seem more or less equivalent, difference is 1 point in accuracy. The jump from 90 to 95% shows a drastic increase in acc, of 6 points. Hebbian grow helps learning? Step5: No strong evidence it helps in low sparsity case. In high sparsity (95%), seems very harmful Hebbian pruning helps learning? Step6: There is good evidence it helps. The trend is very clear in the low sparsity (80% sparse) cases. Step7: Results seem similar even when no magnitude pruning is involved, only hebbian pruning Magnitude pruning helps learning? Step8: In low sparsity cases, results are the same for any amount of pruning. In average and high sparsity, there is a gaussian like curve, with the peak at around 0.2 (maybe extending to 0.3). Results are consistent with what has been seen in previous experiments and in related papers. Worth note that although results are better at 0.2, it also takes slightly longer to achieve better results compared to m Step9: Somewhat inconsistent result looking at cases where there is no hebbian learning, only pruning by magnitude. There is an anomaly at the last entry where 50% of the weights are pruned - results are similar to 20%. Number of samples averaged from is a lot lower in this pivot What is the optimal combination of weight and magnitude pruning? Step10: There is a more clear trend in the low sparsity case. Results from high sparsity are inconclusive, with several runs failing to "converge" Weight pruning alone improves the model by up to 0.7% from 10% pruning to 50% magnitude pruning Hebbian pruning alone improves the model by 1.5% Both combined can increase from 1.5% seem in hebbian only to 1.8% improvement. Comparisons above are from 0.1 to 0.5 pruning. There is a question left of why no pruning at both sides - the (0,0) point - it is an anomaly to the trend shown in the pivot.
Python Code: exps = ['neurips_1_eval1', ] paths = [os.path.expanduser("~/nta/results/{}".format(e)) for e in exps] df = load_many(paths) df.head(5) df.columns df.shape df.iloc[1] df.groupby('model')['model'].count() Explanation: Load and check data End of explanation # Did any trials failed? df[df["epochs"]<30]["epochs"].count() # Removing failed trials df_origin = df.copy() df = df_origin[df_origin["epochs"]>=30] df.shape # which ones failed? # failed, or still ongoing? df_origin['failed'] = df_origin["epochs"]<100 df_origin[df_origin['failed']]['epochs'] # helper functions def mean_and_std(s): return "{:.3f} ± {:.3f}".format(s.mean(), s.std()) def round_mean(s): return "{:.0f}".format(round(s.mean())) stats = ['min', 'max', 'mean', 'std'] def agg(columns, filter=None, round=3): if filter is None: return (df.groupby(columns) .agg({'val_acc_max_epoch': round_mean, 'val_acc_max': stats, 'model': ['count']})).round(round) else: return (df[filter].groupby(columns) .agg({'val_acc_max_epoch': round_mean, 'val_acc_max': stats, 'model': ['count']})).round(round) Explanation: ## Analysis Experiment Details End of explanation agg(['model']) high_sparsity = (df['on_perc']==0.05) avg_sparsity = (df['on_perc']==0.1) low_sparsity = (df['on_perc']==0.2) agg(['kwinners'], low_sparsity) agg(['kwinners'], high_sparsity) Explanation: Did Hebbian perform better than SET? End of explanation agg(['on_perc']) Explanation: No evidence of significant difference. In networks with high sparsity, the impact of kWinners is worst, which is expected since kWinners (at 30%) will make the activations more sparse than ReLU (which is 50% sparse on average) What is the optimal level of weight sparsity? End of explanation agg(['hebbian_grow']) agg(['hebbian_grow'], low_sparsity) agg(['hebbian_grow'], high_sparsity) Explanation: Sparsity at 80 and 90% levels seem more or less equivalent, difference is 1 point in accuracy. The jump from 90 to 95% shows a drastic increase in acc, of 6 points. Hebbian grow helps learning? End of explanation agg(['hebbian_prune_perc']) agg(['hebbian_prune_perc'], low_sparsity) agg(['hebbian_prune_perc'], high_sparsity) Explanation: No strong evidence it helps in low sparsity case. In high sparsity (95%), seems very harmful Hebbian pruning helps learning? End of explanation no_magnitude = (df['weight_prune_perc'] == 0) agg(['hebbian_prune_perc'], no_magnitude) no_magnitude = (df['weight_prune_perc'] == 0) agg(['hebbian_prune_perc'], (no_magnitude & low_sparsity)) Explanation: There is good evidence it helps. The trend is very clear in the low sparsity (80% sparse) cases. End of explanation agg(['weight_prune_perc']) agg(['weight_prune_perc'], low_sparsity) agg(['weight_prune_perc'], high_sparsity) agg(['weight_prune_perc'], avg_sparsity) Explanation: Results seem similar even when no magnitude pruning is involved, only hebbian pruning Magnitude pruning helps learning? End of explanation no_hebbian = (df['hebbian_prune_perc'] == 0) agg(['weight_prune_perc'], no_hebbian) Explanation: In low sparsity cases, results are the same for any amount of pruning. In average and high sparsity, there is a gaussian like curve, with the peak at around 0.2 (maybe extending to 0.3). Results are consistent with what has been seen in previous experiments and in related papers. Worth note that although results are better at 0.2, it also takes slightly longer to achieve better results compared to m End of explanation pd.pivot_table(df, index='hebbian_prune_perc', columns='weight_prune_perc', values='val_acc_max', aggfunc=mean_and_std) pd.pivot_table(df[low_sparsity], index=['kwinners','hebbian_prune_perc'], columns='weight_prune_perc', values='val_acc_max', aggfunc=mean_and_std) pd.pivot_table(df[avg_sparsity], index=['kwinners','hebbian_prune_perc'], columns='weight_prune_perc', values='val_acc_max', aggfunc=mean_and_std) Explanation: Somewhat inconsistent result looking at cases where there is no hebbian learning, only pruning by magnitude. There is an anomaly at the last entry where 50% of the weights are pruned - results are similar to 20%. Number of samples averaged from is a lot lower in this pivot What is the optimal combination of weight and magnitude pruning? End of explanation pd.pivot_table(df[avg_sparsity], index='hebbian_prune_perc', columns='weight_prune_perc', values='val_acc_max', aggfunc=mean_and_std) pd.pivot_table(df[high_sparsity], index='hebbian_prune_perc', columns='weight_prune_perc', values='val_acc_max', aggfunc=mean_and_std) Explanation: There is a more clear trend in the low sparsity case. Results from high sparsity are inconclusive, with several runs failing to "converge" Weight pruning alone improves the model by up to 0.7% from 10% pruning to 50% magnitude pruning Hebbian pruning alone improves the model by 1.5% Both combined can increase from 1.5% seem in hebbian only to 1.8% improvement. Comparisons above are from 0.1 to 0.5 pruning. There is a question left of why no pruning at both sides - the (0,0) point - it is an anomaly to the trend shown in the pivot. End of explanation
3,311
Given the following text description, write Python code to implement the functionality described below step by step Description: Modélisation du modèle Sommaire 1 - Introduction 2 - Polymère 3 - Calcul de la concentration 4 - Table des valeurs 5 - Calcul de c2 6 - Graphiques Introduction Ce programme nous permet de modéliser la concentration (c2) pour différents food simulant. Cela nous permet également de tracer différents graphiques. Step1: Polymère Step2: Calcul de la concentration finale Nous avons besoin de différentes valeurs de concentration qui sont les suivantes Step3: Table des valeurs Ici, nous pouvons voir les valeurs obtenus pour chaque expériences. Nous avons donc la valeur de l'épaisseur du film utilisé, le food simulant utilisé, la concentration initiale d'antioxydant dans le plastique, la valeur de K qui est le coefficient de partition du migrant entre le polymer et le food simulant.Dp est le coefficient de diffusion de l'antioxydant dans le polymère, RMSE permet de prédire l'erreur faite sur la valeur, et enfin k est le coefficient de transfert massique. Grâce à ces valeurs nous pouvons déterminer la concentration finale dans le plastique. Step4: Calcul de c2 Ce calcul nous permet donc d'obtenir les valeurs de la concentration finale dans le plastique et donc de déterminer l'efficacité du procédé. Step5: Graphique Step6: Graphique Step7: Graphique Step8: Grapgique Step9: Nous remarquons que réunir tous les graphiques n'est pas spécialement adéquat car les résultats sont totalement illisibles.
Python Code: import numpy as np import pandas as pd import math import cmath from scipy.optimize import root import matplotlib.pyplot as plt %matplotlib inline Explanation: Modélisation du modèle Sommaire 1 - Introduction 2 - Polymère 3 - Calcul de la concentration 4 - Table des valeurs 5 - Calcul de c2 6 - Graphiques Introduction Ce programme nous permet de modéliser la concentration (c2) pour différents food simulant. Cela nous permet également de tracer différents graphiques. End of explanation a = ("Table1.txt") a Explanation: Polymère End of explanation class InterfazPolimero: def __init__ (self,a): self.a=a def Lire(self): self.tab = pd.read_csv(self.a,sep=" ") coef =self.tab.values self.Experiment = coef[:,0] self.Thickness = coef[:,1] self.FoodSimulant = coef[:,2] self.Cpo = coef[:,3] self.K = coef [:,4] self.Dp = coef[:,5] self.RMSE = coef[:,6] self.k = coef[:,7] self.c4 = coef[:,8] # self.c1 =coef[:,9] self.c2 = np.zeros(10) return self.tab def inicializarC2(self): self.c2 = np.zeros(10) self.dimension = np.shape(self.c2) print(self.dimension) return self.c2 def calcul(self): self.tab["j1"] = (self.tab["Dp"] / (self.tab["Thickness"] / 2)) * (self.tab["Cpo"] - self.c2) print(self.tab["j1"]) self.c3 = self.c2 / self.K self.j2 = self.k * (self.c3 - self.tab["c4"]) return (self.tab["j1"] - self.j2) / self.tab["j1"] def calcul2(self): i = 0 for self.tab["Thickness"], self.tab["Dp"], self.tab["K"], self.tab["k"], self.tab["c"] in enumerate(tab): self.sol = root(calcul,15,args=(float(self.tab["Dp"]),float(self.tab["k"]),float(self.tab["K"]),float(self.tab["c4"]),float(self.tab["Cpo"]),float(self.tab["Thickness"]))) c2[i]= self.sol.x i = i + 1 print(self.c2) return self.c2 def Garder(self): raw_data ={"résultat" : [1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793]} df = pd.DataFrame(raw_data,index=["1","2","3","4","5","6","7","8","9","10"]) df.to_csv("c2rep") return df def Graphique(self): plt.plot(self.tab["Dp"],self.Cpo,"^") plt.title("f(Dp)=Cpo") plt.xlabel("Dp") plt.ylabel("Cpo") def Graphique2(self): plt.plot(self.tab["Dp"],[1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793],"^") plt.title("f(Dp)=c2") plt.xlabel("Dp") plt.ylabel("c2") def Graphique3(self): plt.plot(self.tab["Cpo"],[1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793],"^") plt.title("f(Cpo)=c2") plt.xlabel("Cpo") plt.ylabel("c2") def Graphique4(self): plt.plot(self.tab["Thickness"],[1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793],"^") plt.title("f(Epaisseur)=c2") plt.xlabel("Epaisseur") plt.ylabel("c2") def Graphique5(self): fig,axes=plt.subplots(2,2) axes[0,0].plot(self.tab["Dp"],self.Cpo,"^") axes[1,1].plot(self.tab["Dp"],[1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793],"^") axes[0,1].plot(self.tab["Cpo"],[1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793],"^") axes[1,0].plot(self.tab["Thickness"],[1.115510936772821, 1.0542169426645587, 1.041340418781726, 1.0219,1.4353658536585368, 1.0542169426645587, 1.058921125781793,1.0217682926829268, 1.05340368852459, 1.058921125781793],"^") p = InterfazPolimero("Table1.txt") p Explanation: Calcul de la concentration finale Nous avons besoin de différentes valeurs de concentration qui sont les suivantes : Afin de calculer la concentration finale, nous avons besoin d'équations qui sont les suivantes : Afin de calculer cela, il faut suivre la méthode précédente. C'est à dire, il faut connaître les propriétés principales, la structure utilisée, les conditions initales et le coefficient de partition K. Ensuite, il faut faire une hypothèse sur la concentration de migrant au sein du polymère et du simulant alimentaire. Ensuite, il faut calculer le transfert massique de migrant a l'intérieur du polymère (Jp) et également à l'intérieur du simulant alimentaire (Jfs). Ceux sont des phénomènes de transfert de matière. Le phénomène de transfert massique est un phénomène irréversible durant lequel une grandeur physique est transportée par le biais de molécules, cela nous amène à la loi de Fick cependant, dans notre cas, la loi de Fick est simplifiée, en effet, la loi de Fick ne comportera ici qu'une seule dimension. Et ce transfert peut être défini de cette manière J = (Dp/(L/2))x(C1-C2). Grâce au coefficient de partition (K), nous pouvons déterminer C2, cependant, il faut connaître C3, afin de connaître C3, nous devons déterminer le déterminer le transfert dans la couche limite du simulant alimentaire qui est donné par la relation suivante : J2 = k*(C3-C4). Il y a des conditions initiales, premièrement, Cpx = Cp0 et deuxièmement, au temps t = 0, C1=C2=Cp0, donc au début de la migration on a Cfs = 0. La dernière condition est que $ \frac{\partial c_{Cpx}}{\partial x}$ est égale à 0. La méthode "Regula Falsi" est utilisée afin de réduire le nombre de concentrations interfaciales. Le nombre d'itérations s'arrête losque J1=J2. End of explanation p.Lire() Explanation: Table des valeurs Ici, nous pouvons voir les valeurs obtenus pour chaque expériences. Nous avons donc la valeur de l'épaisseur du film utilisé, le food simulant utilisé, la concentration initiale d'antioxydant dans le plastique, la valeur de K qui est le coefficient de partition du migrant entre le polymer et le food simulant.Dp est le coefficient de diffusion de l'antioxydant dans le polymère, RMSE permet de prédire l'erreur faite sur la valeur, et enfin k est le coefficient de transfert massique. Grâce à ces valeurs nous pouvons déterminer la concentration finale dans le plastique. End of explanation p.calcul() Explanation: Calcul de c2 Ce calcul nous permet donc d'obtenir les valeurs de la concentration finale dans le plastique et donc de déterminer l'efficacité du procédé. End of explanation p.Graphique() Explanation: Graphique : f(Dp) = Cpo Ici nous remarquons que le coefficient de diffusion n'est pas spécialement lié à la concentration initiale. De plus, les résultats sont très étranges. End of explanation p.Graphique2() Explanation: Graphique : f(Dp) = c2 Ici nous remarquons que le coefficient de diffusion n'influe pas directement sur la concentration finale. Les résultats sont également très étranges. End of explanation p.Graphique3() Explanation: Graphique : f(Cpo) = c2 Ici nous remarquons un point étrange situé aux alentours de 2000/1.45 car il n'est pas proche des autres. Donc nous pouvons supposer qu'il y a des erreurs de calculs. Cependant, nous pouvons voir que la concentration finale fluctue en fonction de la concentration initiale. End of explanation p.Graphique4() Explanation: Grapgique : f(Epaisseur) = c2 Ici nous remarquons que le graphique est très étrange car les valeurs sont parfois décroissantes et parfois stagnes. End of explanation p.Graphique5() Explanation: Nous remarquons que réunir tous les graphiques n'est pas spécialement adéquat car les résultats sont totalement illisibles. End of explanation
3,312
Given the following text description, write Python code to implement the functionality described below step by step Description: Tutorial on how to use timestaps in Field construction Step1: Some NetCDF files, such as for example those from the World Ocean Atlas, have time calendars that can't be parsed by xarray. These result in a ValueError Step2: However, we can create our own numpy array of timestamps associated with each of the 12 snapshots in the netcdf file Step3: And then we can add the timestamps as an extra argument
Python Code: from parcels import Field from glob import glob import numpy as np Explanation: Tutorial on how to use timestaps in Field construction End of explanation # tempfield = Field.from_netcdf(glob('WOA_data/woa18_decav_*_04.nc'), 't_an', # {'lon': 'lon', 'lat': 'lat', 'time': 'time'}) Explanation: Some NetCDF files, such as for example those from the World Ocean Atlas, have time calendars that can't be parsed by xarray. These result in a ValueError: unable to decode time units, for example when the calendar is in 'months since' a particular date. In these cases, a workaround in Parcels is to use the timestamps argument in Field (or FieldSet) creation. Here, we show how this works for example temperature data from the World Ocean Atlas in the Pacific Ocean The following cell would give an error, since the calendar of the World Ocean Atlas data is in "months since 1955-01-01 00:00:00" End of explanation timestamps = np.expand_dims(np.array([np.datetime64('2001-%.2d-15' %m) for m in range(1,13)]), axis=1) Explanation: However, we can create our own numpy array of timestamps associated with each of the 12 snapshots in the netcdf file End of explanation tempfield = Field.from_netcdf(glob('WOA_data/woa18_decav_*_04.nc'), 't_an', {'lon': 'lon', 'lat': 'lat', 'time': 'time'}, timestamps=timestamps) Explanation: And then we can add the timestamps as an extra argument End of explanation
3,313
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Atmos MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties --&gt; Overview 2. Key Properties --&gt; Resolution 3. Key Properties --&gt; Timestepping 4. Key Properties --&gt; Orography 5. Grid --&gt; Discretisation 6. Grid --&gt; Discretisation --&gt; Horizontal 7. Grid --&gt; Discretisation --&gt; Vertical 8. Dynamical Core 9. Dynamical Core --&gt; Top Boundary 10. Dynamical Core --&gt; Lateral Boundary 11. Dynamical Core --&gt; Diffusion Horizontal 12. Dynamical Core --&gt; Advection Tracers 13. Dynamical Core --&gt; Advection Momentum 14. Radiation 15. Radiation --&gt; Shortwave Radiation 16. Radiation --&gt; Shortwave GHG 17. Radiation --&gt; Shortwave Cloud Ice 18. Radiation --&gt; Shortwave Cloud Liquid 19. Radiation --&gt; Shortwave Cloud Inhomogeneity 20. Radiation --&gt; Shortwave Aerosols 21. Radiation --&gt; Shortwave Gases 22. Radiation --&gt; Longwave Radiation 23. Radiation --&gt; Longwave GHG 24. Radiation --&gt; Longwave Cloud Ice 25. Radiation --&gt; Longwave Cloud Liquid 26. Radiation --&gt; Longwave Cloud Inhomogeneity 27. Radiation --&gt; Longwave Aerosols 28. Radiation --&gt; Longwave Gases 29. Turbulence Convection 30. Turbulence Convection --&gt; Boundary Layer Turbulence 31. Turbulence Convection --&gt; Deep Convection 32. Turbulence Convection --&gt; Shallow Convection 33. Microphysics Precipitation 34. Microphysics Precipitation --&gt; Large Scale Precipitation 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics 36. Cloud Scheme 37. Cloud Scheme --&gt; Optical Cloud Properties 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution 40. Observation Simulation 41. Observation Simulation --&gt; Isscp Attributes 42. Observation Simulation --&gt; Cosp Attributes 43. Observation Simulation --&gt; Radar Inputs 44. Observation Simulation --&gt; Lidar Inputs 45. Gravity Waves 46. Gravity Waves --&gt; Orographic Gravity Waves 47. Gravity Waves --&gt; Non Orographic Gravity Waves 48. Solar 49. Solar --&gt; Solar Pathways 50. Solar --&gt; Solar Constant 51. Solar --&gt; Orbital Parameters 52. Solar --&gt; Insolation Ozone 53. Volcanos 54. Volcanos --&gt; Volcanoes Treatment 1. Key Properties --&gt; Overview Top level key properties 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 1.3. Model Family Is Required Step7: 1.4. Basic Approximations Is Required Step8: 2. Key Properties --&gt; Resolution Characteristics of the model resolution 2.1. Horizontal Resolution Name Is Required Step9: 2.2. Canonical Horizontal Resolution Is Required Step10: 2.3. Range Horizontal Resolution Is Required Step11: 2.4. Number Of Vertical Levels Is Required Step12: 2.5. High Top Is Required Step13: 3. Key Properties --&gt; Timestepping Characteristics of the atmosphere model time stepping 3.1. Timestep Dynamics Is Required Step14: 3.2. Timestep Shortwave Radiative Transfer Is Required Step15: 3.3. Timestep Longwave Radiative Transfer Is Required Step16: 4. Key Properties --&gt; Orography Characteristics of the model orography 4.1. Type Is Required Step17: 4.2. Changes Is Required Step18: 5. Grid --&gt; Discretisation Atmosphere grid discretisation 5.1. Overview Is Required Step19: 6. Grid --&gt; Discretisation --&gt; Horizontal Atmosphere discretisation in the horizontal 6.1. Scheme Type Is Required Step20: 6.2. Scheme Method Is Required Step21: 6.3. Scheme Order Is Required Step22: 6.4. Horizontal Pole Is Required Step23: 6.5. Grid Type Is Required Step24: 7. Grid --&gt; Discretisation --&gt; Vertical Atmosphere discretisation in the vertical 7.1. Coordinate Type Is Required Step25: 8. Dynamical Core Characteristics of the dynamical core 8.1. Overview Is Required Step26: 8.2. Name Is Required Step27: 8.3. Timestepping Type Is Required Step28: 8.4. Prognostic Variables Is Required Step29: 9. Dynamical Core --&gt; Top Boundary Type of boundary layer at the top of the model 9.1. Top Boundary Condition Is Required Step30: 9.2. Top Heat Is Required Step31: 9.3. Top Wind Is Required Step32: 10. Dynamical Core --&gt; Lateral Boundary Type of lateral boundary condition (if the model is a regional model) 10.1. Condition Is Required Step33: 11. Dynamical Core --&gt; Diffusion Horizontal Horizontal diffusion scheme 11.1. Scheme Name Is Required Step34: 11.2. Scheme Method Is Required Step35: 12. Dynamical Core --&gt; Advection Tracers Tracer advection scheme 12.1. Scheme Name Is Required Step36: 12.2. Scheme Characteristics Is Required Step37: 12.3. Conserved Quantities Is Required Step38: 12.4. Conservation Method Is Required Step39: 13. Dynamical Core --&gt; Advection Momentum Momentum advection scheme 13.1. Scheme Name Is Required Step40: 13.2. Scheme Characteristics Is Required Step41: 13.3. Scheme Staggering Type Is Required Step42: 13.4. Conserved Quantities Is Required Step43: 13.5. Conservation Method Is Required Step44: 14. Radiation Characteristics of the atmosphere radiation process 14.1. Aerosols Is Required Step45: 15. Radiation --&gt; Shortwave Radiation Properties of the shortwave radiation scheme 15.1. Overview Is Required Step46: 15.2. Name Is Required Step47: 15.3. Spectral Integration Is Required Step48: 15.4. Transport Calculation Is Required Step49: 15.5. Spectral Intervals Is Required Step50: 16. Radiation --&gt; Shortwave GHG Representation of greenhouse gases in the shortwave radiation scheme 16.1. Greenhouse Gas Complexity Is Required Step51: 16.2. ODS Is Required Step52: 16.3. Other Flourinated Gases Is Required Step53: 17. Radiation --&gt; Shortwave Cloud Ice Shortwave radiative properties of ice crystals in clouds 17.1. General Interactions Is Required Step54: 17.2. Physical Representation Is Required Step55: 17.3. Optical Methods Is Required Step56: 18. Radiation --&gt; Shortwave Cloud Liquid Shortwave radiative properties of liquid droplets in clouds 18.1. General Interactions Is Required Step57: 18.2. Physical Representation Is Required Step58: 18.3. Optical Methods Is Required Step59: 19. Radiation --&gt; Shortwave Cloud Inhomogeneity Cloud inhomogeneity in the shortwave radiation scheme 19.1. Cloud Inhomogeneity Is Required Step60: 20. Radiation --&gt; Shortwave Aerosols Shortwave radiative properties of aerosols 20.1. General Interactions Is Required Step61: 20.2. Physical Representation Is Required Step62: 20.3. Optical Methods Is Required Step63: 21. Radiation --&gt; Shortwave Gases Shortwave radiative properties of gases 21.1. General Interactions Is Required Step64: 22. Radiation --&gt; Longwave Radiation Properties of the longwave radiation scheme 22.1. Overview Is Required Step65: 22.2. Name Is Required Step66: 22.3. Spectral Integration Is Required Step67: 22.4. Transport Calculation Is Required Step68: 22.5. Spectral Intervals Is Required Step69: 23. Radiation --&gt; Longwave GHG Representation of greenhouse gases in the longwave radiation scheme 23.1. Greenhouse Gas Complexity Is Required Step70: 23.2. ODS Is Required Step71: 23.3. Other Flourinated Gases Is Required Step72: 24. Radiation --&gt; Longwave Cloud Ice Longwave radiative properties of ice crystals in clouds 24.1. General Interactions Is Required Step73: 24.2. Physical Reprenstation Is Required Step74: 24.3. Optical Methods Is Required Step75: 25. Radiation --&gt; Longwave Cloud Liquid Longwave radiative properties of liquid droplets in clouds 25.1. General Interactions Is Required Step76: 25.2. Physical Representation Is Required Step77: 25.3. Optical Methods Is Required Step78: 26. Radiation --&gt; Longwave Cloud Inhomogeneity Cloud inhomogeneity in the longwave radiation scheme 26.1. Cloud Inhomogeneity Is Required Step79: 27. Radiation --&gt; Longwave Aerosols Longwave radiative properties of aerosols 27.1. General Interactions Is Required Step80: 27.2. Physical Representation Is Required Step81: 27.3. Optical Methods Is Required Step82: 28. Radiation --&gt; Longwave Gases Longwave radiative properties of gases 28.1. General Interactions Is Required Step83: 29. Turbulence Convection Atmosphere Convective Turbulence and Clouds 29.1. Overview Is Required Step84: 30. Turbulence Convection --&gt; Boundary Layer Turbulence Properties of the boundary layer turbulence scheme 30.1. Scheme Name Is Required Step85: 30.2. Scheme Type Is Required Step86: 30.3. Closure Order Is Required Step87: 30.4. Counter Gradient Is Required Step88: 31. Turbulence Convection --&gt; Deep Convection Properties of the deep convection scheme 31.1. Scheme Name Is Required Step89: 31.2. Scheme Type Is Required Step90: 31.3. Scheme Method Is Required Step91: 31.4. Processes Is Required Step92: 31.5. Microphysics Is Required Step93: 32. Turbulence Convection --&gt; Shallow Convection Properties of the shallow convection scheme 32.1. Scheme Name Is Required Step94: 32.2. Scheme Type Is Required Step95: 32.3. Scheme Method Is Required Step96: 32.4. Processes Is Required Step97: 32.5. Microphysics Is Required Step98: 33. Microphysics Precipitation Large Scale Cloud Microphysics and Precipitation 33.1. Overview Is Required Step99: 34. Microphysics Precipitation --&gt; Large Scale Precipitation Properties of the large scale precipitation scheme 34.1. Scheme Name Is Required Step100: 34.2. Hydrometeors Is Required Step101: 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics Properties of the large scale cloud microphysics scheme 35.1. Scheme Name Is Required Step102: 35.2. Processes Is Required Step103: 36. Cloud Scheme Characteristics of the cloud scheme 36.1. Overview Is Required Step104: 36.2. Name Is Required Step105: 36.3. Atmos Coupling Is Required Step106: 36.4. Uses Separate Treatment Is Required Step107: 36.5. Processes Is Required Step108: 36.6. Prognostic Scheme Is Required Step109: 36.7. Diagnostic Scheme Is Required Step110: 36.8. Prognostic Variables Is Required Step111: 37. Cloud Scheme --&gt; Optical Cloud Properties Optical cloud properties 37.1. Cloud Overlap Method Is Required Step112: 37.2. Cloud Inhomogeneity Is Required Step113: 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution Sub-grid scale water distribution 38.1. Type Is Required Step114: 38.2. Function Name Is Required Step115: 38.3. Function Order Is Required Step116: 38.4. Convection Coupling Is Required Step117: 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution Sub-grid scale ice distribution 39.1. Type Is Required Step118: 39.2. Function Name Is Required Step119: 39.3. Function Order Is Required Step120: 39.4. Convection Coupling Is Required Step121: 40. Observation Simulation Characteristics of observation simulation 40.1. Overview Is Required Step122: 41. Observation Simulation --&gt; Isscp Attributes ISSCP Characteristics 41.1. Top Height Estimation Method Is Required Step123: 41.2. Top Height Direction Is Required Step124: 42. Observation Simulation --&gt; Cosp Attributes CFMIP Observational Simulator Package attributes 42.1. Run Configuration Is Required Step125: 42.2. Number Of Grid Points Is Required Step126: 42.3. Number Of Sub Columns Is Required Step127: 42.4. Number Of Levels Is Required Step128: 43. Observation Simulation --&gt; Radar Inputs Characteristics of the cloud radar simulator 43.1. Frequency Is Required Step129: 43.2. Type Is Required Step130: 43.3. Gas Absorption Is Required Step131: 43.4. Effective Radius Is Required Step132: 44. Observation Simulation --&gt; Lidar Inputs Characteristics of the cloud lidar simulator 44.1. Ice Types Is Required Step133: 44.2. Overlap Is Required Step134: 45. Gravity Waves Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources. 45.1. Overview Is Required Step135: 45.2. Sponge Layer Is Required Step136: 45.3. Background Is Required Step137: 45.4. Subgrid Scale Orography Is Required Step138: 46. Gravity Waves --&gt; Orographic Gravity Waves Gravity waves generated due to the presence of orography 46.1. Name Is Required Step139: 46.2. Source Mechanisms Is Required Step140: 46.3. Calculation Method Is Required Step141: 46.4. Propagation Scheme Is Required Step142: 46.5. Dissipation Scheme Is Required Step143: 47. Gravity Waves --&gt; Non Orographic Gravity Waves Gravity waves generated by non-orographic processes. 47.1. Name Is Required Step144: 47.2. Source Mechanisms Is Required Step145: 47.3. Calculation Method Is Required Step146: 47.4. Propagation Scheme Is Required Step147: 47.5. Dissipation Scheme Is Required Step148: 48. Solar Top of atmosphere solar insolation characteristics 48.1. Overview Is Required Step149: 49. Solar --&gt; Solar Pathways Pathways for solar forcing of the atmosphere 49.1. Pathways Is Required Step150: 50. Solar --&gt; Solar Constant Solar constant and top of atmosphere insolation characteristics 50.1. Type Is Required Step151: 50.2. Fixed Value Is Required Step152: 50.3. Transient Characteristics Is Required Step153: 51. Solar --&gt; Orbital Parameters Orbital parameters and top of atmosphere insolation characteristics 51.1. Type Is Required Step154: 51.2. Fixed Reference Date Is Required Step155: 51.3. Transient Method Is Required Step156: 51.4. Computation Method Is Required Step157: 52. Solar --&gt; Insolation Ozone Impact of solar insolation on stratospheric ozone 52.1. Solar Ozone Impact Is Required Step158: 53. Volcanos Characteristics of the implementation of volcanoes 53.1. Overview Is Required Step159: 54. Volcanos --&gt; Volcanoes Treatment Treatment of volcanoes in the atmosphere 54.1. Volcanoes Implementation Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'messy-consortium', 'emac-2-53-aerchem', 'atmos') Explanation: ES-DOC CMIP6 Model Properties - Atmos MIP Era: CMIP6 Institute: MESSY-CONSORTIUM Source ID: EMAC-2-53-AERCHEM Topic: Atmos Sub-Topics: Dynamical Core, Radiation, Turbulence Convection, Microphysics Precipitation, Cloud Scheme, Observation Simulation, Gravity Waves, Solar, Volcanos. Properties: 156 (127 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:54:10 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties --&gt; Overview 2. Key Properties --&gt; Resolution 3. Key Properties --&gt; Timestepping 4. Key Properties --&gt; Orography 5. Grid --&gt; Discretisation 6. Grid --&gt; Discretisation --&gt; Horizontal 7. Grid --&gt; Discretisation --&gt; Vertical 8. Dynamical Core 9. Dynamical Core --&gt; Top Boundary 10. Dynamical Core --&gt; Lateral Boundary 11. Dynamical Core --&gt; Diffusion Horizontal 12. Dynamical Core --&gt; Advection Tracers 13. Dynamical Core --&gt; Advection Momentum 14. Radiation 15. Radiation --&gt; Shortwave Radiation 16. Radiation --&gt; Shortwave GHG 17. Radiation --&gt; Shortwave Cloud Ice 18. Radiation --&gt; Shortwave Cloud Liquid 19. Radiation --&gt; Shortwave Cloud Inhomogeneity 20. Radiation --&gt; Shortwave Aerosols 21. Radiation --&gt; Shortwave Gases 22. Radiation --&gt; Longwave Radiation 23. Radiation --&gt; Longwave GHG 24. Radiation --&gt; Longwave Cloud Ice 25. Radiation --&gt; Longwave Cloud Liquid 26. Radiation --&gt; Longwave Cloud Inhomogeneity 27. Radiation --&gt; Longwave Aerosols 28. Radiation --&gt; Longwave Gases 29. Turbulence Convection 30. Turbulence Convection --&gt; Boundary Layer Turbulence 31. Turbulence Convection --&gt; Deep Convection 32. Turbulence Convection --&gt; Shallow Convection 33. Microphysics Precipitation 34. Microphysics Precipitation --&gt; Large Scale Precipitation 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics 36. Cloud Scheme 37. Cloud Scheme --&gt; Optical Cloud Properties 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution 40. Observation Simulation 41. Observation Simulation --&gt; Isscp Attributes 42. Observation Simulation --&gt; Cosp Attributes 43. Observation Simulation --&gt; Radar Inputs 44. Observation Simulation --&gt; Lidar Inputs 45. Gravity Waves 46. Gravity Waves --&gt; Orographic Gravity Waves 47. Gravity Waves --&gt; Non Orographic Gravity Waves 48. Solar 49. Solar --&gt; Solar Pathways 50. Solar --&gt; Solar Constant 51. Solar --&gt; Orbital Parameters 52. Solar --&gt; Insolation Ozone 53. Volcanos 54. Volcanos --&gt; Volcanoes Treatment 1. Key Properties --&gt; Overview Top level key properties 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of atmosphere model code (CAM 4.0, ARPEGE 3.2,...) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_family') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "AGCM" # "ARCM" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.3. Model Family Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Type of atmospheric model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.basic_approximations') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "primitive equations" # "non-hydrostatic" # "anelastic" # "Boussinesq" # "hydrostatic" # "quasi-hydrostatic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.4. Basic Approximations Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Basic approximations made in the atmosphere. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.horizontal_resolution_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Resolution Characteristics of the model resolution 2.1. Horizontal Resolution Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.2. Canonical Horizontal Resolution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.range_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.3. Range Horizontal Resolution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 2.4. Number Of Vertical Levels Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Number of vertical levels resolved on the computational grid. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.high_top') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 2.5. High Top Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the atmosphere have a high-top? High-Top atmospheres have a fully resolved stratosphere with a model top above the stratopause. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_dynamics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Timestepping Characteristics of the atmosphere model time stepping 3.1. Timestep Dynamics Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Timestep for the dynamics, e.g. 30 min. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_shortwave_radiative_transfer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.2. Timestep Shortwave Radiative Transfer Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Timestep for the shortwave radiative transfer, e.g. 1.5 hours. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_longwave_radiative_transfer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.3. Timestep Longwave Radiative Transfer Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Timestep for the longwave radiative transfer, e.g. 3 hours. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.orography.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "present day" # "modified" # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Orography Characteristics of the model orography 4.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time adaptation of the orography. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.orography.changes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "related to ice sheets" # "related to tectonics" # "modified mean" # "modified variance if taken into account in model (cf gravity waves)" # TODO - please enter value(s) Explanation: 4.2. Changes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N If the orography type is modified describe the time adaptation changes. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Grid --&gt; Discretisation Atmosphere grid discretisation 5.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of grid discretisation in the atmosphere End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "spectral" # "fixed grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6. Grid --&gt; Discretisation --&gt; Horizontal Atmosphere discretisation in the horizontal 6.1. Scheme Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Horizontal discretisation type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "finite elements" # "finite volumes" # "finite difference" # "centered finite difference" # TODO - please enter value(s) Explanation: 6.2. Scheme Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Horizontal discretisation method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "second" # "third" # "fourth" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6.3. Scheme Order Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Horizontal discretisation function order End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.horizontal_pole') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "filter" # "pole rotation" # "artificial island" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6.4. Horizontal Pole Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Horizontal discretisation pole singularity treatment End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Gaussian" # "Latitude-Longitude" # "Cubed-Sphere" # "Icosahedral" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6.5. Grid Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Horizontal grid type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.vertical.coordinate_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "isobaric" # "sigma" # "hybrid sigma-pressure" # "hybrid pressure" # "vertically lagrangian" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 7. Grid --&gt; Discretisation --&gt; Vertical Atmosphere discretisation in the vertical 7.1. Coordinate Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Type of vertical coordinate system End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Dynamical Core Characteristics of the dynamical core 8.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of atmosphere dynamical core End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.2. Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name for the dynamical core of the model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.timestepping_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Adams-Bashforth" # "explicit" # "implicit" # "semi-implicit" # "leap frog" # "multi-step" # "Runge Kutta fifth order" # "Runge Kutta second order" # "Runge Kutta third order" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 8.3. Timestepping Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Timestepping framework type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "surface pressure" # "wind components" # "divergence/curl" # "temperature" # "potential temperature" # "total water" # "water vapour" # "water liquid" # "water ice" # "total water moments" # "clouds" # "radiation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 8.4. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List of the model prognostic variables End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_boundary_condition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "sponge layer" # "radiation boundary condition" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9. Dynamical Core --&gt; Top Boundary Type of boundary layer at the top of the model 9.1. Top Boundary Condition Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Top boundary condition End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_heat') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.2. Top Heat Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Top boundary heat treatment End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_wind') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.3. Top Wind Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Top boundary wind treatment End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.lateral_boundary.condition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "sponge layer" # "radiation boundary condition" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10. Dynamical Core --&gt; Lateral Boundary Type of lateral boundary condition (if the model is a regional model) 10.1. Condition Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Type of lateral boundary condition End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11. Dynamical Core --&gt; Diffusion Horizontal Horizontal diffusion scheme 11.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Horizontal diffusion scheme name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "iterated Laplacian" # "bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 11.2. Scheme Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Horizontal diffusion scheme method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heun" # "Roe and VanLeer" # "Roe and Superbee" # "Prather" # "UTOPIA" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 12. Dynamical Core --&gt; Advection Tracers Tracer advection scheme 12.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Tracer advection scheme name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_characteristics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Eulerian" # "modified Euler" # "Lagrangian" # "semi-Lagrangian" # "cubic semi-Lagrangian" # "quintic semi-Lagrangian" # "mass-conserving" # "finite volume" # "flux-corrected" # "linear" # "quadratic" # "quartic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 12.2. Scheme Characteristics Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Tracer advection scheme characteristics End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conserved_quantities') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "dry mass" # "tracer mass" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 12.3. Conserved Quantities Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Tracer advection scheme conserved quantities End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conservation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "conservation fixer" # "Priestley algorithm" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 12.4. Conservation Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Tracer advection scheme conservation method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "VanLeer" # "Janjic" # "SUPG (Streamline Upwind Petrov-Galerkin)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13. Dynamical Core --&gt; Advection Momentum Momentum advection scheme 13.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Momentum advection schemes name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_characteristics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "2nd order" # "4th order" # "cell-centred" # "staggered grid" # "semi-staggered grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.2. Scheme Characteristics Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Momentum advection scheme characteristics End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_staggering_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Arakawa B-grid" # "Arakawa C-grid" # "Arakawa D-grid" # "Arakawa E-grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.3. Scheme Staggering Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Momentum advection scheme staggering type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conserved_quantities') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Angular momentum" # "Horizontal momentum" # "Enstrophy" # "Mass" # "Total energy" # "Vorticity" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.4. Conserved Quantities Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Momentum advection scheme conserved quantities End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conservation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "conservation fixer" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.5. Conservation Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Momentum advection scheme conservation method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.aerosols') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "sulphate" # "nitrate" # "sea salt" # "dust" # "ice" # "organic" # "BC (black carbon / soot)" # "SOA (secondary organic aerosols)" # "POM (particulate organic matter)" # "polar stratospheric ice" # "NAT (nitric acid trihydrate)" # "NAD (nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particle)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14. Radiation Characteristics of the atmosphere radiation process 14.1. Aerosols Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Aerosols whose radiative effect is taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15. Radiation --&gt; Shortwave Radiation Properties of the shortwave radiation scheme 15.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of shortwave radiation in the atmosphere End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.2. Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name for the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_integration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "wide-band model" # "correlated-k" # "exponential sum fitting" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.3. Spectral Integration Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Shortwave radiation scheme spectral integration End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.transport_calculation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "two-stream" # "layer interaction" # "bulk" # "adaptive" # "multi-stream" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.4. Transport Calculation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Shortwave radiation transport calculation methods End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_intervals') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 15.5. Spectral Intervals Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Shortwave radiation scheme number of spectral intervals End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.greenhouse_gas_complexity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CO2" # "CH4" # "N2O" # "CFC-11 eq" # "CFC-12 eq" # "HFC-134a eq" # "Explicit ODSs" # "Explicit other fluorinated gases" # "O3" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16. Radiation --&gt; Shortwave GHG Representation of greenhouse gases in the shortwave radiation scheme 16.1. Greenhouse Gas Complexity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Complexity of greenhouse gases whose shortwave radiative effects are taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.ODS') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CFC-12" # "CFC-11" # "CFC-113" # "CFC-114" # "CFC-115" # "HCFC-22" # "HCFC-141b" # "HCFC-142b" # "Halon-1211" # "Halon-1301" # "Halon-2402" # "methyl chloroform" # "carbon tetrachloride" # "methyl chloride" # "methylene chloride" # "chloroform" # "methyl bromide" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16.2. ODS Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Ozone depleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.other_flourinated_gases') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HFC-134a" # "HFC-23" # "HFC-32" # "HFC-125" # "HFC-143a" # "HFC-152a" # "HFC-227ea" # "HFC-236fa" # "HFC-245fa" # "HFC-365mfc" # "HFC-43-10mee" # "CF4" # "C2F6" # "C3F8" # "C4F10" # "C5F12" # "C6F14" # "C7F16" # "C8F18" # "c-C4F8" # "NF3" # "SF6" # "SO2F2" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16.3. Other Flourinated Gases Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Other flourinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17. Radiation --&gt; Shortwave Cloud Ice Shortwave radiative properties of ice crystals in clouds 17.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General shortwave radiative interactions with cloud ice crystals End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bi-modal size distribution" # "ensemble of ice crystals" # "mean projected area" # "ice water path" # "crystal asymmetry" # "crystal aspect ratio" # "effective crystal radius" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.2. Physical Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical representation of cloud ice crystals in the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.3. Optical Methods Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Optical methods applicable to cloud ice crystals in the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18. Radiation --&gt; Shortwave Cloud Liquid Shortwave radiative properties of liquid droplets in clouds 18.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General shortwave radiative interactions with cloud liquid droplets End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud droplet number concentration" # "effective cloud droplet radii" # "droplet size distribution" # "liquid water path" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18.2. Physical Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical representation of cloud liquid droplets in the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "geometric optics" # "Mie theory" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18.3. Optical Methods Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Optical methods applicable to cloud liquid droplets in the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_inhomogeneity.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Monte Carlo Independent Column Approximation" # "Triplecloud" # "analytic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 19. Radiation --&gt; Shortwave Cloud Inhomogeneity Cloud inhomogeneity in the shortwave radiation scheme 19.1. Cloud Inhomogeneity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method for taking into account horizontal cloud inhomogeneity End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 20. Radiation --&gt; Shortwave Aerosols Shortwave radiative properties of aerosols 20.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General shortwave radiative interactions with aerosols End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "number concentration" # "effective radii" # "size distribution" # "asymmetry" # "aspect ratio" # "mixing state" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 20.2. Physical Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical representation of aerosols in the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 20.3. Optical Methods Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Optical methods applicable to aerosols in the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_gases.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 21. Radiation --&gt; Shortwave Gases Shortwave radiative properties of gases 21.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General shortwave radiative interactions with gases End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22. Radiation --&gt; Longwave Radiation Properties of the longwave radiation scheme 22.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of longwave radiation in the atmosphere End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.2. Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name for the longwave radiation scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_integration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "wide-band model" # "correlated-k" # "exponential sum fitting" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 22.3. Spectral Integration Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Longwave radiation scheme spectral integration End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.transport_calculation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "two-stream" # "layer interaction" # "bulk" # "adaptive" # "multi-stream" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 22.4. Transport Calculation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Longwave radiation transport calculation methods End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_intervals') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 22.5. Spectral Intervals Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Longwave radiation scheme number of spectral intervals End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.greenhouse_gas_complexity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CO2" # "CH4" # "N2O" # "CFC-11 eq" # "CFC-12 eq" # "HFC-134a eq" # "Explicit ODSs" # "Explicit other fluorinated gases" # "O3" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23. Radiation --&gt; Longwave GHG Representation of greenhouse gases in the longwave radiation scheme 23.1. Greenhouse Gas Complexity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Complexity of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.ODS') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CFC-12" # "CFC-11" # "CFC-113" # "CFC-114" # "CFC-115" # "HCFC-22" # "HCFC-141b" # "HCFC-142b" # "Halon-1211" # "Halon-1301" # "Halon-2402" # "methyl chloroform" # "carbon tetrachloride" # "methyl chloride" # "methylene chloride" # "chloroform" # "methyl bromide" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.2. ODS Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Ozone depleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.other_flourinated_gases') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HFC-134a" # "HFC-23" # "HFC-32" # "HFC-125" # "HFC-143a" # "HFC-152a" # "HFC-227ea" # "HFC-236fa" # "HFC-245fa" # "HFC-365mfc" # "HFC-43-10mee" # "CF4" # "C2F6" # "C3F8" # "C4F10" # "C5F12" # "C6F14" # "C7F16" # "C8F18" # "c-C4F8" # "NF3" # "SF6" # "SO2F2" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.3. Other Flourinated Gases Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Other flourinated gases whose longwave radiative effects are explicitly taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 24. Radiation --&gt; Longwave Cloud Ice Longwave radiative properties of ice crystals in clouds 24.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General longwave radiative interactions with cloud ice crystals End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.physical_reprenstation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bi-modal size distribution" # "ensemble of ice crystals" # "mean projected area" # "ice water path" # "crystal asymmetry" # "crystal aspect ratio" # "effective crystal radius" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 24.2. Physical Reprenstation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical representation of cloud ice crystals in the longwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 24.3. Optical Methods Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Optical methods applicable to cloud ice crystals in the longwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25. Radiation --&gt; Longwave Cloud Liquid Longwave radiative properties of liquid droplets in clouds 25.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General longwave radiative interactions with cloud liquid droplets End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud droplet number concentration" # "effective cloud droplet radii" # "droplet size distribution" # "liquid water path" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25.2. Physical Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical representation of cloud liquid droplets in the longwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "geometric optics" # "Mie theory" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25.3. Optical Methods Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Optical methods applicable to cloud liquid droplets in the longwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_inhomogeneity.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Monte Carlo Independent Column Approximation" # "Triplecloud" # "analytic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 26. Radiation --&gt; Longwave Cloud Inhomogeneity Cloud inhomogeneity in the longwave radiation scheme 26.1. Cloud Inhomogeneity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method for taking into account horizontal cloud inhomogeneity End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 27. Radiation --&gt; Longwave Aerosols Longwave radiative properties of aerosols 27.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General longwave radiative interactions with aerosols End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "number concentration" # "effective radii" # "size distribution" # "asymmetry" # "aspect ratio" # "mixing state" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 27.2. Physical Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical representation of aerosols in the longwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 27.3. Optical Methods Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Optical methods applicable to aerosols in the longwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_gases.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 28. Radiation --&gt; Longwave Gases Longwave radiative properties of gases 28.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General longwave radiative interactions with gases End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29. Turbulence Convection Atmosphere Convective Turbulence and Clouds 29.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of atmosphere convection and turbulence End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Mellor-Yamada" # "Holtslag-Boville" # "EDMF" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 30. Turbulence Convection --&gt; Boundary Layer Turbulence Properties of the boundary layer turbulence scheme 30.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Boundary layer turbulence scheme name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "TKE prognostic" # "TKE diagnostic" # "TKE coupled with water" # "vertical profile of Kz" # "non-local diffusion" # "Monin-Obukhov similarity" # "Coastal Buddy Scheme" # "Coupled with convection" # "Coupled with gravity waves" # "Depth capped at cloud base" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 30.2. Scheme Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Boundary layer turbulence scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 30.3. Closure Order Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Boundary layer turbulence scheme closure order End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.counter_gradient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 30.4. Counter Gradient Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Uses boundary layer turbulence scheme counter gradient End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 31. Turbulence Convection --&gt; Deep Convection Properties of the deep convection scheme 31.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Deep convection scheme name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "adjustment" # "plume ensemble" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31.2. Scheme Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Deep convection scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CAPE" # "bulk" # "ensemble" # "CAPE/WFN based" # "TKE/CIN based" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31.3. Scheme Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Deep convection scheme method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vertical momentum transport" # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "updrafts" # "downdrafts" # "radiative effect of anvils" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31.4. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical processes taken into account in the parameterisation of deep convection End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31.5. Microphysics Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Microphysics scheme for deep convection. Microphysical processes directly control the amount of detrainment of cloud hydrometeor and water vapor from updrafts End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 32. Turbulence Convection --&gt; Shallow Convection Properties of the shallow convection scheme 32.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Shallow convection scheme name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "cumulus-capped boundary layer" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 32.2. Scheme Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N shallow convection scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "same as deep (unified)" # "included in boundary layer turbulence" # "separate diagnosis" # TODO - please enter value(s) Explanation: 32.3. Scheme Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 shallow convection scheme method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 32.4. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical processes taken into account in the parameterisation of shallow convection End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 32.5. Microphysics Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Microphysics scheme for shallow convection End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 33. Microphysics Precipitation Large Scale Cloud Microphysics and Precipitation 33.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of large scale cloud microphysics and precipitation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 34. Microphysics Precipitation --&gt; Large Scale Precipitation Properties of the large scale precipitation scheme 34.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name of the large scale precipitation parameterisation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.hydrometeors') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "liquid rain" # "snow" # "hail" # "graupel" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 34.2. Hydrometeors Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Precipitating hydrometeors taken into account in the large scale precipitation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics Properties of the large scale cloud microphysics scheme 35.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name of the microphysics parameterisation scheme used for large scale clouds. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mixed phase" # "cloud droplets" # "cloud ice" # "ice nucleation" # "water vapour deposition" # "effect of raindrops" # "effect of snow" # "effect of graupel" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 35.2. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Large scale cloud microphysics processes End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 36. Cloud Scheme Characteristics of the cloud scheme 36.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of the atmosphere cloud scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 36.2. Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name for the cloud scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.atmos_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "atmosphere_radiation" # "atmosphere_microphysics_precipitation" # "atmosphere_turbulence_convection" # "atmosphere_gravity_waves" # "atmosphere_solar" # "atmosphere_volcano" # "atmosphere_cloud_simulator" # TODO - please enter value(s) Explanation: 36.3. Atmos Coupling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Atmosphere components that are linked to the cloud scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.uses_separate_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 36.4. Uses Separate Treatment Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Different cloud schemes for the different types of clouds (convective, stratiform and boundary layer) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "entrainment" # "detrainment" # "bulk cloud" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 36.5. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Processes included in the cloud scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 36.6. Prognostic Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is the cloud scheme a prognostic scheme? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.diagnostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 36.7. Diagnostic Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is the cloud scheme a diagnostic scheme? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud amount" # "liquid" # "ice" # "rain" # "snow" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 36.8. Prognostic Variables Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List the prognostic variables used by the cloud scheme, if applicable. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_overlap_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "random" # "maximum" # "maximum-random" # "exponential" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 37. Cloud Scheme --&gt; Optical Cloud Properties Optical cloud properties 37.1. Cloud Overlap Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Method for taking into account overlapping of cloud layers End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 37.2. Cloud Inhomogeneity Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Method for taking into account cloud inhomogeneity End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s) Explanation: 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution Sub-grid scale water distribution 38.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sub-grid scale water distribution type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 38.2. Function Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sub-grid scale water distribution function name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 38.3. Function Order Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sub-grid scale water distribution function type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s) Explanation: 38.4. Convection Coupling Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Sub-grid scale water distribution coupling with convection End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s) Explanation: 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution Sub-grid scale ice distribution 39.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sub-grid scale ice distribution type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 39.2. Function Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sub-grid scale ice distribution function name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 39.3. Function Order Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sub-grid scale ice distribution function type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s) Explanation: 39.4. Convection Coupling Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Sub-grid scale ice distribution coupling with convection End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 40. Observation Simulation Characteristics of observation simulation 40.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of observation simulator characteristics End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_estimation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "no adjustment" # "IR brightness" # "visible optical depth" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 41. Observation Simulation --&gt; Isscp Attributes ISSCP Characteristics 41.1. Top Height Estimation Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Cloud simulator ISSCP top height estimation methodUo End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "lowest altitude level" # "highest altitude level" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 41.2. Top Height Direction Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator ISSCP top height direction End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.run_configuration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Inline" # "Offline" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 42. Observation Simulation --&gt; Cosp Attributes CFMIP Observational Simulator Package attributes 42.1. Run Configuration Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator COSP run configuration End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_grid_points') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 42.2. Number Of Grid Points Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator COSP number of grid points End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_sub_columns') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 42.3. Number Of Sub Columns Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator COSP number of sub-cloumns used to simulate sub-grid variability End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 42.4. Number Of Levels Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator COSP number of levels End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.frequency') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 43. Observation Simulation --&gt; Radar Inputs Characteristics of the cloud radar simulator 43.1. Frequency Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator radar frequency (Hz) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "surface" # "space borne" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 43.2. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator radar type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.gas_absorption') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 43.3. Gas Absorption Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator radar uses gas absorption End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.effective_radius') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 43.4. Effective Radius Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator radar uses effective radius End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.ice_types') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "ice spheres" # "ice non-spherical" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 44. Observation Simulation --&gt; Lidar Inputs Characteristics of the cloud lidar simulator 44.1. Ice Types Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator lidar ice type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.overlap') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "max" # "random" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 44.2. Overlap Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Cloud simulator lidar overlap End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 45. Gravity Waves Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources. 45.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of gravity wave parameterisation in the atmosphere End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.sponge_layer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Rayleigh friction" # "Diffusive sponge layer" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 45.2. Sponge Layer Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sponge layer in the upper levels in order to avoid gravity wave reflection at the top. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "continuous spectrum" # "discrete spectrum" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 45.3. Background Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Background wave distribution End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.subgrid_scale_orography') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "effect on drag" # "effect on lifting" # "enhanced topography" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 45.4. Subgrid Scale Orography Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Subgrid scale orography effects taken into account. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 46. Gravity Waves --&gt; Orographic Gravity Waves Gravity waves generated due to the presence of orography 46.1. Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name for the orographic gravity wave scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "linear mountain waves" # "hydraulic jump" # "envelope orography" # "low level flow blocking" # "statistical sub-grid scale variance" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 46.2. Source Mechanisms Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Orographic gravity wave source mechanisms End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "non-linear calculation" # "more than two cardinal directions" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 46.3. Calculation Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Orographic gravity wave calculation method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "includes boundary layer ducting" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 46.4. Propagation Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Orographic gravity wave propogation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 46.5. Dissipation Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Orographic gravity wave dissipation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 47. Gravity Waves --&gt; Non Orographic Gravity Waves Gravity waves generated by non-orographic processes. 47.1. Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name for the non-orographic gravity wave scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convection" # "precipitation" # "background spectrum" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 47.2. Source Mechanisms Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Non-orographic gravity wave source mechanisms End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "spatially dependent" # "temporally dependent" # TODO - please enter value(s) Explanation: 47.3. Calculation Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Non-orographic gravity wave calculation method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 47.4. Propagation Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Non-orographic gravity wave propogation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 47.5. Dissipation Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Non-orographic gravity wave dissipation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 48. Solar Top of atmosphere solar insolation characteristics 48.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of solar insolation of the atmosphere End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_pathways.pathways') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "SW radiation" # "precipitating energetic particles" # "cosmic rays" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 49. Solar --&gt; Solar Pathways Pathways for solar forcing of the atmosphere 49.1. Pathways Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Pathways for the solar forcing of the atmosphere model domain End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s) Explanation: 50. Solar --&gt; Solar Constant Solar constant and top of atmosphere insolation characteristics 50.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time adaptation of the solar constant. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.fixed_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 50.2. Fixed Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If the solar constant is fixed, enter the value of the solar constant (W m-2). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.transient_characteristics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 50.3. Transient Characteristics Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 solar constant transient characteristics (W m-2) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s) Explanation: 51. Solar --&gt; Orbital Parameters Orbital parameters and top of atmosphere insolation characteristics 51.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time adaptation of orbital parameters End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.fixed_reference_date') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 51.2. Fixed Reference Date Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Reference date for fixed orbital parameters (yyyy) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.transient_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 51.3. Transient Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of transient orbital parameters End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.computation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Berger 1978" # "Laskar 2004" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 51.4. Computation Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method used for computing orbital parameters. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.insolation_ozone.solar_ozone_impact') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 52. Solar --&gt; Insolation Ozone Impact of solar insolation on stratospheric ozone 52.1. Solar Ozone Impact Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does top of atmosphere insolation impact on stratospheric ozone? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 53. Volcanos Characteristics of the implementation of volcanoes 53.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of the implementation of volcanic effects in the atmosphere End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.volcanoes_treatment.volcanoes_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "high frequency solar constant anomaly" # "stratospheric aerosols optical thickness" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 54. Volcanos --&gt; Volcanoes Treatment Treatment of volcanoes in the atmosphere 54.1. Volcanoes Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How volcanic effects are modeled in the atmosphere. End of explanation
3,314
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Toplevel MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Flux Correction 3. Key Properties --&gt; Genealogy 4. Key Properties --&gt; Software Properties 5. Key Properties --&gt; Coupling 6. Key Properties --&gt; Tuning Applied 7. Key Properties --&gt; Conservation --&gt; Heat 8. Key Properties --&gt; Conservation --&gt; Fresh Water 9. Key Properties --&gt; Conservation --&gt; Salt 10. Key Properties --&gt; Conservation --&gt; Momentum 11. Radiative Forcings 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect 24. Radiative Forcings --&gt; Aerosols --&gt; Dust 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt 28. Radiative Forcings --&gt; Other --&gt; Land Use 29. Radiative Forcings --&gt; Other --&gt; Solar 1. Key Properties Key properties of the model 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 2. Key Properties --&gt; Flux Correction Flux correction properties of the model 2.1. Details Is Required Step7: 3. Key Properties --&gt; Genealogy Genealogy and history of the model 3.1. Year Released Is Required Step8: 3.2. CMIP3 Parent Is Required Step9: 3.3. CMIP5 Parent Is Required Step10: 3.4. Previous Name Is Required Step11: 4. Key Properties --&gt; Software Properties Software properties of model 4.1. Repository Is Required Step12: 4.2. Code Version Is Required Step13: 4.3. Code Languages Is Required Step14: 4.4. Components Structure Is Required Step15: 4.5. Coupler Is Required Step16: 5. Key Properties --&gt; Coupling ** 5.1. Overview Is Required Step17: 5.2. Atmosphere Double Flux Is Required Step18: 5.3. Atmosphere Fluxes Calculation Grid Is Required Step19: 5.4. Atmosphere Relative Winds Is Required Step20: 6. Key Properties --&gt; Tuning Applied Tuning methodology for model 6.1. Description Is Required Step21: 6.2. Global Mean Metrics Used Is Required Step22: 6.3. Regional Metrics Used Is Required Step23: 6.4. Trend Metrics Used Is Required Step24: 6.5. Energy Balance Is Required Step25: 6.6. Fresh Water Balance Is Required Step26: 7. Key Properties --&gt; Conservation --&gt; Heat Global heat convervation properties of the model 7.1. Global Is Required Step27: 7.2. Atmos Ocean Interface Is Required Step28: 7.3. Atmos Land Interface Is Required Step29: 7.4. Atmos Sea-ice Interface Is Required Step30: 7.5. Ocean Seaice Interface Is Required Step31: 7.6. Land Ocean Interface Is Required Step32: 8. Key Properties --&gt; Conservation --&gt; Fresh Water Global fresh water convervation properties of the model 8.1. Global Is Required Step33: 8.2. Atmos Ocean Interface Is Required Step34: 8.3. Atmos Land Interface Is Required Step35: 8.4. Atmos Sea-ice Interface Is Required Step36: 8.5. Ocean Seaice Interface Is Required Step37: 8.6. Runoff Is Required Step38: 8.7. Iceberg Calving Is Required Step39: 8.8. Endoreic Basins Is Required Step40: 8.9. Snow Accumulation Is Required Step41: 9. Key Properties --&gt; Conservation --&gt; Salt Global salt convervation properties of the model 9.1. Ocean Seaice Interface Is Required Step42: 10. Key Properties --&gt; Conservation --&gt; Momentum Global momentum convervation properties of the model 10.1. Details Is Required Step43: 11. Radiative Forcings Radiative forcings of the model for historical and scenario (aka Table 12.1 IPCC AR5) 11.1. Overview Is Required Step44: 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 Carbon dioxide forcing 12.1. Provision Is Required Step45: 12.2. Additional Information Is Required Step46: 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 Methane forcing 13.1. Provision Is Required Step47: 13.2. Additional Information Is Required Step48: 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O Nitrous oxide forcing 14.1. Provision Is Required Step49: 14.2. Additional Information Is Required Step50: 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 Troposheric ozone forcing 15.1. Provision Is Required Step51: 15.2. Additional Information Is Required Step52: 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 Stratospheric ozone forcing 16.1. Provision Is Required Step53: 16.2. Additional Information Is Required Step54: 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC Ozone-depleting and non-ozone-depleting fluorinated gases forcing 17.1. Provision Is Required Step55: 17.2. Equivalence Concentration Is Required Step56: 17.3. Additional Information Is Required Step57: 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 SO4 aerosol forcing 18.1. Provision Is Required Step58: 18.2. Additional Information Is Required Step59: 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon Black carbon aerosol forcing 19.1. Provision Is Required Step60: 19.2. Additional Information Is Required Step61: 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon Organic carbon aerosol forcing 20.1. Provision Is Required Step62: 20.2. Additional Information Is Required Step63: 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate Nitrate forcing 21.1. Provision Is Required Step64: 21.2. Additional Information Is Required Step65: 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect Cloud albedo effect forcing (RFaci) 22.1. Provision Is Required Step66: 22.2. Aerosol Effect On Ice Clouds Is Required Step67: 22.3. Additional Information Is Required Step68: 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect Cloud lifetime effect forcing (ERFaci) 23.1. Provision Is Required Step69: 23.2. Aerosol Effect On Ice Clouds Is Required Step70: 23.3. RFaci From Sulfate Only Is Required Step71: 23.4. Additional Information Is Required Step72: 24. Radiative Forcings --&gt; Aerosols --&gt; Dust Dust forcing 24.1. Provision Is Required Step73: 24.2. Additional Information Is Required Step74: 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic Tropospheric volcanic forcing 25.1. Provision Is Required Step75: 25.2. Historical Explosive Volcanic Aerosol Implementation Is Required Step76: 25.3. Future Explosive Volcanic Aerosol Implementation Is Required Step77: 25.4. Additional Information Is Required Step78: 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic Stratospheric volcanic forcing 26.1. Provision Is Required Step79: 26.2. Historical Explosive Volcanic Aerosol Implementation Is Required Step80: 26.3. Future Explosive Volcanic Aerosol Implementation Is Required Step81: 26.4. Additional Information Is Required Step82: 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt Sea salt forcing 27.1. Provision Is Required Step83: 27.2. Additional Information Is Required Step84: 28. Radiative Forcings --&gt; Other --&gt; Land Use Land use forcing 28.1. Provision Is Required Step85: 28.2. Crop Change Only Is Required Step86: 28.3. Additional Information Is Required Step87: 29. Radiative Forcings --&gt; Other --&gt; Solar Solar forcing 29.1. Provision Is Required Step88: 29.2. Additional Information Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'mohc', 'hadgem3-gc31-mm', 'toplevel') Explanation: ES-DOC CMIP6 Model Properties - Toplevel MIP Era: CMIP6 Institute: MOHC Source ID: HADGEM3-GC31-MM Sub-Topics: Radiative Forcings. Properties: 85 (42 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:54:15 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Flux Correction 3. Key Properties --&gt; Genealogy 4. Key Properties --&gt; Software Properties 5. Key Properties --&gt; Coupling 6. Key Properties --&gt; Tuning Applied 7. Key Properties --&gt; Conservation --&gt; Heat 8. Key Properties --&gt; Conservation --&gt; Fresh Water 9. Key Properties --&gt; Conservation --&gt; Salt 10. Key Properties --&gt; Conservation --&gt; Momentum 11. Radiative Forcings 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect 24. Radiative Forcings --&gt; Aerosols --&gt; Dust 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt 28. Radiative Forcings --&gt; Other --&gt; Land Use 29. Radiative Forcings --&gt; Other --&gt; Solar 1. Key Properties Key properties of the model 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Top level overview of coupled model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of coupled model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.flux_correction.details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Flux Correction Flux correction properties of the model 2.1. Details Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how flux corrections are applied in the model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.year_released') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Genealogy Genealogy and history of the model 3.1. Year Released Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Year the model was released End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.CMIP3_parent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.2. CMIP3 Parent Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 CMIP3 parent if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.CMIP5_parent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.3. CMIP5 Parent Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 CMIP5 parent if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.previous_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.4. Previous Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Previously known as End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Software Properties Software properties of model 4.1. Repository Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Location of code for this component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.2. Code Version Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Code version identifier. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.3. Code Languages Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Code language(s). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.components_structure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.4. Components Structure Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe how model realms are structured into independent software components (coupled via a coupler) and internal software components. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.coupler') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OASIS" # "OASIS3-MCT" # "ESMF" # "NUOPC" # "Bespoke" # "Unknown" # "None" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 4.5. Coupler Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Overarching coupling framework for model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Key Properties --&gt; Coupling ** 5.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of coupling in the model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.atmosphere_double_flux') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 5.2. Atmosphere Double Flux Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is the atmosphere passing a double flux to the ocean and sea ice (as opposed to a single one)? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.atmosphere_fluxes_calculation_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Atmosphere grid" # "Ocean grid" # "Specific coupler grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 5.3. Atmosphere Fluxes Calculation Grid Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Where are the air-sea fluxes calculated End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.atmosphere_relative_winds') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 5.4. Atmosphere Relative Winds Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Are relative or absolute winds used to compute the flux? I.e. do ocean surface currents enter the wind stress calculation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6. Key Properties --&gt; Tuning Applied Tuning methodology for model 6.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General overview description of tuning: explain and motivate the main targets and metrics/diagnostics retained. Document the relative weight given to climate performance metrics/diagnostics versus process oriented metrics/diagnostics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.2. Global Mean Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List set of metrics/diagnostics of the global mean state used in tuning model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.3. Regional Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List of regional metrics/diagnostics of mean state (e.g THC, AABW, regional means etc) used in tuning model/component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.4. Trend Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List observed trend metrics/diagnostics used in tuning model/component (such as 20th century) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.energy_balance') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.5. Energy Balance Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how energy balance was obtained in the full system: in the various components independently or at the components coupling stage? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.fresh_water_balance') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.6. Fresh Water Balance Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how fresh_water balance was obtained in the full system: in the various components independently or at the components coupling stage? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.global') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7. Key Properties --&gt; Conservation --&gt; Heat Global heat convervation properties of the model 7.1. Global Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how heat is conserved globally End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.atmos_ocean_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.2. Atmos Ocean Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how heat is conserved at the atmosphere/ocean coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.atmos_land_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.3. Atmos Land Interface Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how heat is conserved at the atmosphere/land coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.atmos_sea-ice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.4. Atmos Sea-ice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how heat is conserved at the atmosphere/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.ocean_seaice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.5. Ocean Seaice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how heat is conserved at the ocean/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.land_ocean_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.6. Land Ocean Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how heat is conserved at the land/ocean coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.global') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Key Properties --&gt; Conservation --&gt; Fresh Water Global fresh water convervation properties of the model 8.1. Global Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how fresh_water is conserved globally End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.atmos_ocean_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.2. Atmos Ocean Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how fresh_water is conserved at the atmosphere/ocean coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.atmos_land_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.3. Atmos Land Interface Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how fresh water is conserved at the atmosphere/land coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.atmos_sea-ice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.4. Atmos Sea-ice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how fresh water is conserved at the atmosphere/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.ocean_seaice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.5. Ocean Seaice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how fresh water is conserved at the ocean/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.runoff') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.6. Runoff Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe how runoff is distributed and conserved End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.iceberg_calving') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.7. Iceberg Calving Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how iceberg calving is modeled and conserved End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.endoreic_basins') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.8. Endoreic Basins Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how endoreic basins (no ocean access) are treated End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.snow_accumulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.9. Snow Accumulation Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe how snow accumulation over land and over sea-ice is treated End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.salt.ocean_seaice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9. Key Properties --&gt; Conservation --&gt; Salt Global salt convervation properties of the model 9.1. Ocean Seaice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how salt is conserved at the ocean/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.momentum.details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 10. Key Properties --&gt; Conservation --&gt; Momentum Global momentum convervation properties of the model 10.1. Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how momentum is conserved in the model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11. Radiative Forcings Radiative forcings of the model for historical and scenario (aka Table 12.1 IPCC AR5) 11.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of radiative forcings (GHG and aerosols) implementation in model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CO2.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 Carbon dioxide forcing 12.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CO2.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CH4.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 Methane forcing 13.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CH4.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 13.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.N2O.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O Nitrous oxide forcing 14.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.N2O.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.tropospheric_O3.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 Troposheric ozone forcing 15.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.tropospheric_O3.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.stratospheric_O3.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 Stratospheric ozone forcing 16.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.stratospheric_O3.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 16.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CFC.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC Ozone-depleting and non-ozone-depleting fluorinated gases forcing 17.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CFC.equivalence_concentration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "Option 1" # "Option 2" # "Option 3" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.2. Equivalence Concentration Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Details of any equivalence concentrations used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CFC.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.3. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.SO4.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 SO4 aerosol forcing 18.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.SO4.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 18.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.black_carbon.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon Black carbon aerosol forcing 19.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.black_carbon.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 19.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.organic_carbon.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon Organic carbon aerosol forcing 20.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.organic_carbon.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 20.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.nitrate.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate Nitrate forcing 21.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.nitrate.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 21.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_albedo_effect.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect Cloud albedo effect forcing (RFaci) 22.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_albedo_effect.aerosol_effect_on_ice_clouds') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 22.2. Aerosol Effect On Ice Clouds Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Radiative effects of aerosols on ice clouds are represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_albedo_effect.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.3. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect Cloud lifetime effect forcing (ERFaci) 23.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.aerosol_effect_on_ice_clouds') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 23.2. Aerosol Effect On Ice Clouds Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Radiative effects of aerosols on ice clouds are represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.RFaci_from_sulfate_only') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 23.3. RFaci From Sulfate Only Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Radiative forcing from aerosol cloud interactions from sulfate aerosol only? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 23.4. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.dust.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 24. Radiative Forcings --&gt; Aerosols --&gt; Dust Dust forcing 24.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.dust.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 24.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic Tropospheric volcanic forcing 25.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.historical_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25.2. Historical Explosive Volcanic Aerosol Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How explosive volcanic aerosol is implemented in historical simulations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.future_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25.3. Future Explosive Volcanic Aerosol Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How explosive volcanic aerosol is implemented in future simulations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 25.4. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic Stratospheric volcanic forcing 26.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.historical_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 26.2. Historical Explosive Volcanic Aerosol Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How explosive volcanic aerosol is implemented in historical simulations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.future_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 26.3. Future Explosive Volcanic Aerosol Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How explosive volcanic aerosol is implemented in future simulations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 26.4. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.sea_salt.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt Sea salt forcing 27.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.sea_salt.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 27.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.land_use.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 28. Radiative Forcings --&gt; Other --&gt; Land Use Land use forcing 28.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.land_use.crop_change_only') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 28.2. Crop Change Only Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Land use change represented via crop change only? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.land_use.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 28.3. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.solar.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "irradiance" # "proton" # "electron" # "cosmic ray" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 29. Radiative Forcings --&gt; Other --&gt; Solar Solar forcing 29.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How solar forcing is provided End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.solar.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation
3,315
Given the following text description, write Python code to implement the functionality described below step by step Description: <h1>Table of Contents<span class="tocSkip"></span></h1> <div class="toc"><ul class="toc-item"><li><span><a href="#Notebook-Extensions" data-toc-modified-id="Notebook-Extensions-1">Notebook Extensions</a></span><ul class="toc-item"><li><span><a href="#Check-out-nbdime" data-toc-modified-id="Check-out-nbdime-1.1">Check out nbdime</a></span></li><li><span><a href="#ToC(2)" data-toc-modified-id="ToC(2)-1.2">ToC(2)</a></span></li><li><span><a href="#ExecuteTime" data-toc-modified-id="ExecuteTime-1.3">ExecuteTime</a></span></li><li><span><a href="#Snippets-Menu" data-toc-modified-id="Snippets-Menu-1.4">Snippets Menu</a></span></li><li><span><a href="#Python-Markdown----Maybe-doesn't-work-right-now-for-some-reason?" data-toc-modified-id="Python-Markdown----Maybe-doesn't-work-right-now-for-some-reason?-1.5">Python Markdown -- Maybe doesn't work right now for some reason?</a></span></li><li><span><a href="#Code-prettify" data-toc-modified-id="Code-prettify-1.6">Code prettify</a></span></li><li><span><a href="#Collapsible-Headings" data-toc-modified-id="Collapsible-Headings-1.7">Collapsible Headings</a></span></li><li><span><a href="#Notify----disappointing- Step1: Notebook Extensions Check out nbdime https Step2: Snippets Menu Step3: Python Markdown -- Maybe doesn't work right now for some reason? The value of a is {{a}}. Useful for anything you want to report, this Step4: Collapsible Headings Notify -- disappointing
Python Code: from __future__ import print_function, division import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline import numpy as np import pandas as pd import textwrap import os import sys import warnings warnings.filterwarnings('ignore') # special things from pivottablejs import pivot_ui from ipywidgets import FloatSlider, interactive, IntSlider from scipy import interpolate # sql %load_ext sql_magic import sqlalchemy import sqlite3 from sqlalchemy import create_engine sqlite_engine = create_engine('sqlite://') # autoreload %load_ext autoreload %autoreload 1 # %aimport module_to_reload # ehh... # import bqplot.pyplot as plt import ipyvolume as ipv import altair as alt from vega_datasets import data import seaborn as sns sns.set_context('poster', font_scale=1.3) a = "hi" b = np.array([1, 2, 4, 6]) Explanation: <h1>Table of Contents<span class="tocSkip"></span></h1> <div class="toc"><ul class="toc-item"><li><span><a href="#Notebook-Extensions" data-toc-modified-id="Notebook-Extensions-1">Notebook Extensions</a></span><ul class="toc-item"><li><span><a href="#Check-out-nbdime" data-toc-modified-id="Check-out-nbdime-1.1">Check out nbdime</a></span></li><li><span><a href="#ToC(2)" data-toc-modified-id="ToC(2)-1.2">ToC(2)</a></span></li><li><span><a href="#ExecuteTime" data-toc-modified-id="ExecuteTime-1.3">ExecuteTime</a></span></li><li><span><a href="#Snippets-Menu" data-toc-modified-id="Snippets-Menu-1.4">Snippets Menu</a></span></li><li><span><a href="#Python-Markdown----Maybe-doesn't-work-right-now-for-some-reason?" data-toc-modified-id="Python-Markdown----Maybe-doesn't-work-right-now-for-some-reason?-1.5">Python Markdown -- Maybe doesn't work right now for some reason?</a></span></li><li><span><a href="#Code-prettify" data-toc-modified-id="Code-prettify-1.6">Code prettify</a></span></li><li><span><a href="#Collapsible-Headings" data-toc-modified-id="Collapsible-Headings-1.7">Collapsible Headings</a></span></li><li><span><a href="#Notify----disappointing-:(" data-toc-modified-id="Notify----disappointing-:(-1.8">Notify -- disappointing :(</a></span></li></ul></li><li><span><a href="#Outside-Notebooks" data-toc-modified-id="Outside-Notebooks-2">Outside Notebooks</a></span><ul class="toc-item"><li><span><a href="#Tree-Filter" data-toc-modified-id="Tree-Filter-2.1">Tree Filter</a></span></li></ul></li></ul></div> End of explanation print("hello world") Explanation: Notebook Extensions Check out nbdime https://github.com/jupyter/nbdime and the documentation about adding the nbdime https://nbdime.readthedocs.io/en/latest/extensions.html ToC(2) ExecuteTime End of explanation a = 4 report = "FAIL" Explanation: Snippets Menu End of explanation weight_categories = [ "vlow_weight", "low_weight", "mid_weight", "high_weight", "vhigh_weight",] players['weightclass'] = pd.qcut(players['weight'], len(weight_categories), weight_categories) weight_categories = [ "vlow_weight", "low_weight", "mid_weight", "high_weight", "vhigh_weight", ] players["weightclass"] = pd.qcut( players["weight"], len(weight_categories), weight_categories ) Explanation: Python Markdown -- Maybe doesn't work right now for some reason? The value of a is {{a}}. Useful for anything you want to report, this: {{report}}. Code prettify Copy/paste the following into the "json defining library calls required to load the kernel-specific prettifying modules, and the prefix & postfix for the json-format string required to make the prettifying call." box. { "python": { "library": "import json\ndef black_reformat(cell_text):\n import black\n import re\n cell_text = re.sub('^%', '#%#', cell_text, flags=re.M)\n try:\n reformated_text = black.format_str(cell_text, 88)\n except TypeError:\n reformated_text = black.format_str(cell_text, mode=black.FileMode(line_length=88))\n return re.sub('^#%#', '%', reformated_text, flags=re.M)", "prefix": "print(json.dumps(black_reformat(u", "postfix": ")))" }, "r": { "library": "library(formatR)\nlibrary(jsonlite)", "prefix": "cat(toJSON(paste(tidy_source(text=", "postfix": ", output=FALSE)[['text.tidy']], collapse='\n')))" }, "javascript": { "library": "jsbeautify = require('js-beautify')", "prefix": "console.log(JSON.stringify(jsbeautify.js_beautify(", "postfix": ")));" } } From: https://neuralcoder.science/Black-Jupyter/ End of explanation import time time.sleep(10) Explanation: Collapsible Headings Notify -- disappointing :( In theory, this will give you a browser notification if your kernel has been busy for at least N seconds (after you give permission). End of explanation
3,316
Given the following text description, write Python code to implement the functionality described below step by step Description: Search Project for CST 495 CMU Movie Summary Corpus http Step1: now is the time to join the docs together Step2: term freq Step3: start by computing frequncy of entire corpus Step4: now that we have normailised the data we can compute the term frequency Step5: doc freq Step6: compute dtf for item descriptions Step7: term freq matrix with the lexicon we are able to compute the term freq matrix Step8: sparsity of term frequency matrix We took the approach of using Bokeh for displaying the sparsity of term frequency matrix Step9: boolean search After doing the term frequency matrix, we went into using our first ranking function. We are using a boolean search to find documents that contains the words that are included within a user specified query. This is how our boolean search algorithm works Step10: To compute the document ranking score we used the function get_results_tf() with results from the term frequency matrix Step11: Inverted Index the inverted index maps terms to the document in which they can be found Step12: inverted index for document titles Step13: improve the ranking function Step14: enter different queries Step15: TF-IDF To implement TF-IDF we used the function Step16: TF-IDF Intuition Step17: TF-IDF Ranking We then created an inverted index for the TD-IDF ranking Step18: Ideally we do not want scores to be the same for lots of documents. High TF-IDF scores in shorter documents should be more relevant - so we could try by boosting the score for documents that are shorter than average. Step19: Implementing BM25 To implement BM25, we used the function get_results_bm25 that used arguments "query, corpus, and the index sizes. We then printed out the results using a Bokeh chart. Step20: Implementing Random Forest Machine Learning Using the example from class to implement random forest ranking algorithm.
Python Code: import csv import re with open("data/MovieSummaries/plot_summaries.tsv") as f: r = csv.reader(f, delimiter='\t', quotechar='"') tag = re.compile(r'\b[0-9]+\b') rgx = re.compile(r'\b[a-zA-Z]+\b') #docs = [ (' '.join(re.findall(tag, x[0])).lower(), ' '.join(re.findall(rgx, x[1])).lower()) for i,x in enumerate(r) if r>1 ] docs= {} for i,x in enumerate(r): if i >1: docs[' '.join(re.findall(tag, x[0])).lower()] = ' '.join(re.findall(rgx, x[1])).lower() import csv import re with open("data/MovieSummaries/movie.metadata.tsv") as f: r = csv.reader(f, delimiter='\t', quotechar='"') tag = re.compile(r'\b[0-9]+\b') rgx = re.compile(r'\b[a-zA-Z]+\b') docs2= {} for i,x in enumerate(r): if i >1: docs2[' '.join(re.findall(tag, x[0])).lower()] = ' '.join(re.findall(rgx, x[2])).lower(), ' '.join(re.findall(rgx, x[8])).lower() #print(docs2) Explanation: Search Project for CST 495 CMU Movie Summary Corpus http://www.cs.cmu.edu/~ark/personas/ Dustin D'Avignon Chris Ngo Let's go We begin with normalise the text by removing unwanted characters and converting to lowercase End of explanation doc = [(docs2.get(x), y) for x, y in docs.items() if docs2.get(x)] # for testing # import random #print doc[random.randint(0, len(doc)-1)] print doc[0][0], doc[0][1] items_t = [ d[0] for d in doc ] # item titles items_d = [ d[1] for d in doc ] # item description items_i = range(0 , len(items_t)) # item id Explanation: now is the time to join the docs together End of explanation corpus = items_d[0:25] print corpus Explanation: term freq End of explanation tf = {} for doc in corpus: for word in doc.split(): if word in tf: tf[word] += 1 else: tf[word] = 1 print(tf) Explanation: start by computing frequncy of entire corpus End of explanation from collections import Counter def get_tf(corpus): tf = Counter() for doc in corpus: for word in doc.split(): tf[word] += 1 return tf tf = get_tf(corpus) print(tf) Explanation: now that we have normailised the data we can compute the term frequency End of explanation import collections def get_tf(document): tf = Counter() for word in document.split(): tf[word] += 1 return tf def get_dtf(corpus): dtf = {} for i,doc in enumerate(corpus): dtf[i]= get_tf(doc) return dtf dtf = get_dtf(items_d) dtf[342] Explanation: doc freq End of explanation dtf = get_dtf(items_d) dtf[12] Explanation: compute dtf for item descriptions End of explanation def get_tfm(corpus): def get_lexicon(corpus): lexicon = set() for doc in corpus: lexicon.update([word for word in doc.split()]) return list(lexicon) lexicon = get_lexicon(corpus) tfm =[] for doc in corpus: tfv = [0]*len(lexicon) for term in doc.split(): tfv[lexicon.index(term)] += 1 tfm.append(tfv) return tfm, lexicon #test_corpus = ['mountain bike', 'road bike carbon', 'bike helmet'] #tfm, lexicon = get_tfm(test_corpus) #print lexicon #print tfm Explanation: term freq matrix with the lexicon we are able to compute the term freq matrix End of explanation #!pip install bokeh import pandas as pd from bokeh.plotting import figure, output_notebook, show, vplot # sparsity as a function of document count n = [] s = [] for i in range(100,1000,100): corpus = items_d[0:i] tfm, lexicon = get_tfm(corpus) c = [ [x.count(0), x.count(1)] for x in tfm] n_zero = sum([ y[0] for y in c]) n_one = sum( [y[1] for y in c]) s.append(1.0 - (float(n_one) / (n_one + n_zero))) n.append(i) output_notebook(hide_banner=True) p = figure(x_axis_label='Documents', y_axis_label='Sparsity', plot_width=400, plot_height=400) p.line(n, s, line_width=2) p.circle(n, s, fill_color="white", size=8) show(p) Explanation: sparsity of term frequency matrix We took the approach of using Bokeh for displaying the sparsity of term frequency matrix End of explanation # compute term frequency matrix and lexicon tfm, lexicon = get_tfm(corpus) # define our query qry = 'red bike' # convert query to query vector using lexicon qrv = [0]*len(lexicon) for term in qry.split(): if term in lexicon: qrv[lexicon.index(term)] = 1 #print qrv # compare query vector to each term frequency vector # this is dot product between qrv and each row of tfm for i,tfv in enumerate(tfm): print i, sum([ xy[0] * xy[1] for xy in zip(qrv, tfv) ]) Explanation: boolean search After doing the term frequency matrix, we went into using our first ranking function. We are using a boolean search to find documents that contains the words that are included within a user specified query. This is how our boolean search algorithm works: Compute the lexicon for the corpus Compute the term frequency matrix for the corpus Convert query to query vector using the same lexicon Compare each documents term frequncy vector to the query vector - specifically for each document in the corpus: Compute a ranking score for each document by taking the dot product of the document's term frequency vector and the query vector Sort the documents by ranking score End of explanation def get_results_tf(qry, tfm, lexicon): qrv =[0]*len(lexicon) for term in qry.split(): if term in lexicon: qrv[lexicon.index(term)] = 1 results = [] for i, tfv in enumerate(tfm): score = 0 score = sum([ xy[0] * xy[1] for xy in zip(qrv,tfv)]) results.append([score, i]) sorted_results = sorted(results, key=lambda t: t[0] * -1) return sorted_results def print_results(results,n, head=True): ''' Helper function to print results ''' if head: print('\nTop %d from recall set of %d items:' % (n,len(results))) for r in results[:n]: print('\t%0.2f - %s'%(r[0],items_t[r[1]])) else: print('\nBottom %d from recall set of %d items:' % (n,len(results))) for r in results[-n:]: print('\t%0.2f - %s'%(r[0],items_t[r[1]])) tfm, lexicon = get_tfm(items_d[:1000]) results = get_results_tf('fun times', tfm , lexicon) print_results(results,10) Explanation: To compute the document ranking score we used the function get_results_tf() with results from the term frequency matrix End of explanation def create_inverted_index(corpus): idx={} for i, document in enumerate(corpus): for word in document.split(): if word in idx: idx[word].append(i) else: idx[word] = [i] ## HIDE return idx test_corpus = ['mountain bike red','road bike carbon','bike helmet'] idx = create_inverted_index(test_corpus) print(idx) Explanation: Inverted Index the inverted index maps terms to the document in which they can be found End of explanation idx = create_inverted_index(items_d) print(set(idx['good']).intersection(set(idx['times']))) print(items_d[2061]) Explanation: inverted index for document titles End of explanation def get_results_tf(qry, idx): score = Counter() for term in qry.split(): for doc in idx[term]: score[doc] += 1 results=[] for x in [[r[0],r[1]] for r in zip(score.keys(), score.values())]: if x[1] > 0: results.append([x[1],x[0]]) sorted_results = sorted(results, key=lambda t: t[0] * -1 ) return sorted_results; idx = create_inverted_index(items_d) results = get_results_tf('zombies', idx) print_results(results,20) Explanation: improve the ranking function End of explanation results = get_results_tf('ghouls and ghosts', idx) print_results(results, 10) import pandas as pd from bokeh.plotting import output_notebook, show from bokeh.charts import Bar from bokeh.charts.attributes import CatAttr #from bokeh.models import ColumnDataSource df = pd.DataFrame({'term':[x for x in idx.keys()],'freq':[len(x) for x in idx.values()]}) output_notebook(hide_banner=True) p = Bar(df.sort_values('freq', ascending=False)[:30], label=CatAttr(columns=['term'], sort=False), values='freq', plot_width=800, plot_height=400) show(p) Explanation: enter different queries End of explanation import math def idf(term, idx, n): return math.log( float(n) / (1 + len(idx[term]))) print(idf('zombie',idx,len(items_d))) print(idf('survival',idx,len(items_d))) print(idf('invasions',idx,len(items_d))) Explanation: TF-IDF To implement TF-IDF we used the function: $$ IDF = log ( 1 + \frac{N}{n_t} ) $$ End of explanation from bokeh.charts import vplot idx = create_inverted_index(items_d) df = pd.DataFrame({'term':[x for x in idx.keys()],'freq':[len(x) for x in idx.values()], 'idf':[idf(x, idx, len(items_t)) for x in idx.keys()]}) output_notebook(hide_banner=True) p1 = Bar(df.sort_values('freq', ascending=False)[:30], label=CatAttr(columns=['term'], sort=False), values='freq', plot_width=800, plot_height=400) p2 = Bar(df.sort_values('freq', ascending=False)[:30], label=CatAttr(columns=['term'], sort=False), values='idf', plot_width=800, plot_height=400) p = vplot(p1, p2) show(p) Explanation: TF-IDF Intuition End of explanation def create_inverted_index(corpus): idx={} for i, doc in enumerate(corpus): for word in doc.split(): if word in idx: if i in idx[word]: # Update document's frequency idx[word][i] += 1 else: # Add document idx[word][i] = 1 else: # Add term idx[word] = {i:1} return idx def get_results_tfidf(qry, idx, n): score = Counter() for term in qry.split(): if term in idx: i = idf(term, idx, n) for doc in idx[term]: score[doc] += idx[term][doc] * i results=[] for x in [[r[0],r[1]] for r in zip(score.keys(), score.values())]: if x[1] > 0: results.append([x[1],x[0]]) sorted_results = sorted(results, key=lambda t: t[0] * -1 ) return sorted_results idx = create_inverted_index(items_d) results = get_results_tfidf('lookout action bike zombie', idx, len(items_d)) print_results(results,10) Explanation: TF-IDF Ranking We then created an inverted index for the TD-IDF ranking End of explanation def get_results_tfidf_boost(qry, corpus): idx = create_inverted_index(corpus) n = len(corpus) d = [len(x.split()) for x in corpus] d_avg = float(sum(d)) / len(d) score = Counter() for term in qry.split(): if term in idx: i = idf(term, idx, n) for doc in idx[term]: f = float(idx[term][doc]) score[doc] += i * ( f / (float(d[doc]) / d_avg) ) results=[] for x in [[r[0],r[1]] for r in zip(score.keys(), score.values())]: if x[1] > 0: # output [0] score, [1] doc_id results.append([x[1],x[0]]) sorted_results = sorted(results, key=lambda t: t[0] * -1 ) return sorted_results from bokeh.charts import Scatter results = get_results_tfidf_boost('zombie invasion', items_d) print_results(results, 10) # Plot score vs item length df = pd.DataFrame({'score':[float(x[0]) for x in results], 'length':[len(items_d[x[1]].split()) for x in results]}) output_notebook() p = Scatter(df, x='score', y='length') show(p) Explanation: Ideally we do not want scores to be the same for lots of documents. High TF-IDF scores in shorter documents should be more relevant - so we could try by boosting the score for documents that are shorter than average. End of explanation def get_results_bm25(qry, corpus, k1=1.5, b=0.75): idx = create_inverted_index(corpus) # 1.Assign (integer) n to be the number of documents in the corpus n = len(corpus) # 2.Assign (list) d with elements corresponding to the number of terms in each document in the corpus d = [len(x.split()) for x in corpus] # 3.Assign (float) d_avg as the average document length of the documents in the corpus d_avg = float(sum(d)) / len(d) score = Counter() for term in qry.split(): if term in idx: i = idf(term, idx, n) for doc in idx[term]: # 4.Assign (float) f equal to the number of times the term appears in doc f = float(idx[term][doc]) # 5.Assign (float) s the BM25 score for this (term, document) pair s = i * (( f * (k1 + 1) ) / (f + k1 * (1 - b + (b * (float(d[doc]) / d_avg))))) score[doc] += s results=[] for x in [[r[0],r[1]] for r in zip(score.keys(), score.values())]: if x[1] > 0: results.append([x[1],x[0]]) sorted_results = sorted(results, key=lambda t: t[0] * -1 ) return sorted_results results = get_results_bm25('zombie apacolypse', items_d) print_results(results, 10) !pip install bokeh from bokeh.charts import Scatter results = get_results_bm25('zombie apacolypse', items_d, k1=1.5, b=0.75) # Plot score vs item length df = pd.DataFrame({'score':[float(x[0]) for x in results], 'length':[len(items_d[x[1]].split()) for x in results]}) output_notebook() p = Scatter(df, x='score', y='length') show(p) Explanation: Implementing BM25 To implement BM25, we used the function get_results_bm25 that used arguments "query, corpus, and the index sizes. We then printed out the results using a Bokeh chart. End of explanation import findspark import os findspark.init(os.getenv('HOME') + '/spark-1.6.0-bin-hadoop2.6') os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages com.databricks:spark-csv_2.10:1.3.0 pyspark-shell' import pyspark try: print(sc) except NameError: sc = pyspark.SparkContext() print(sc) from pyspark.sql import SQLContext import os sqlContext = SQLContext(sc) df = sqlContext.read.format('data/MovieSummaries/plot_summaries.tsv').options().options(header='true', inferSchema='true', delimiter=',') \ .load(os.getcwd() + 'data/MovieSummaries/plot_summaries.tsv') df.schema df.dropna() sqlContext.registerDataFrameAsTable(df,'dataset') sqlContext.tableNames() data_full = sqlContext.sql("select label_relevanceBinary, feature_1, feature_2, feature_3, feature_4 \ feature_5, feature_6, feature_7, feature_8, feature_9, feature_10 \ from dataset").rdd from pyspark.mllib.classification import SVMWithSGD, SVMModel from pyspark.mllib.regression import LabeledPoint from pyspark.mllib.feature import StandardScaler label = data_full.map(lambda row: row[0]) features = data_full.map(lambda row: row[1:]) model = StandardScaler().fit(features) features_transform = model.transform(features) # Now combine and convert back to labelled points: transformedData = label.zip(features_transform) transformedData = transformedData.map(lambda row: LabeledPoint(row[0],[row[1]])) transformedData.take(5) data_train, data_test = transformedData.randomSplit([.75,.25],seed=1973) print('Training data records = ' + str(data_train.count())) print('Training data records = ' + str(data_test.count())) from pyspark.mllib.tree import RandomForest model = RandomForest.trainClassifier(data_train, numClasses=2, categoricalFeaturesInfo={}, numTrees=400, featureSubsetStrategy="auto", impurity='gini', maxDepth=10, maxBins=32) Explanation: Implementing Random Forest Machine Learning Using the example from class to implement random forest ranking algorithm. End of explanation
3,317
Given the following text description, write Python code to implement the functionality described below step by step Description: Day 9 - January 6, 2018 Problem 24 A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are Step1: Day 8 - January 4, 2018 Problem 23 A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number. A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n. As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit. Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers. Step2: Problem 22 Using names.txt (right click and 'Save Link/Target As...'), a 46K text file containing over five-thousand first names, begin by sorting it into alphabetical order. Then working out the alphabetical value for each name, multiply this value by its alphabetical position in the list to obtain a name score. For example, when the list is sorted into alphabetical order, COLIN, which is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list. So, COLIN would obtain a score of 938 × 53 = 49714. What is the total of all the name scores in the file? Step3: Problem 21 Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers. For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220. Evaluate the sum of all the amicable numbers under 10000. Note Step4: Day 7 - January 3, 2018 Problem 20 n! means n × (n − 1) × ... × 3 × 2 × 1 For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. Find the sum of the digits in the number 100! Step5: Problem 19 You are given the following information, but you may prefer to do some research for yourself. 1 Jan 1900 was a Monday. Thirty days has September, April, June and November. All the rest have thirty-one, Saving February alone, Which has twenty-eight, rain or shine. And on leap years, twenty-nine. A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400. How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)? Note Step6: Problem 18 and 67 By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom of the triangle below Step7: Day 6 - January 2, 2018 Problem 17 If the numbers 1 to 5 are written out in words Step8: Problem 16 215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 21000? Step9: Day 5 - January 1, 2018 Problem 15 Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner. How many such routes are there through a 20×20 grid? Note Step10: Problem 14 The following iterative sequence is defined for the set of positive integers Step11: Problem 13 Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. Step12: Day 4 - December 31 Problem 12 The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be Step13: Problem 11 In the 20×20 grid below, four numbers along a diagonal line have been marked in red. 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 The product of these numbers is 26 × 63 × 78 × 14 = 1788696. What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid? Step14: Problem 10 The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of all the primes below two million. This took longer then I hoped. TODO - Think about optimizing Step15: Day 3 - December 30 Problem 9 A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, aa + bb = c*c For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2. There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc. Note Step16: Problem 8 The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product? Note Step17: Problem 7 By listing the first six prime numbers Step18: Day 2 - December ?? Problem 6 The sum of the squares of the first ten natural numbers is, 12 + 22 + ... + 102 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)2 = 552 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum. Step19: Problem 5 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder. What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20? Note Step20: Problem 4 A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. Find the largest palindrome made from the product of two 3-digit numbers. Step21: Day 1 - December 27 Problem 1 If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. You are the 715697th person to have solved this problem. Step22: Problem 2 Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be Step23: Problem 3 The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 600851475143 ? TODO
Python Code: %%timeit import itertools as i a = [x for x in i.permutations(range(10))] value = a[1000000] moo = '' for x in a[1000000]: moo = moo + str(x) print(moo) %%timeit # with math import math alist = [0,1,2,3,4,5,6,7,8,9] value = '' remain = 1000000 for x in range(9,0,-1): boo = math.factorial(x) place = (math.floor(remain / boo)) value = value + str(alist[place]) alist.pop(place) remain = remain % boo value = value + str(alist[0]) # print(value) Explanation: Day 9 - January 6, 2018 Problem 24 A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are: 012 021 102 120 201 210 What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9? Note: What permutation changes the End of explanation smallest = 24 # 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16 biggest = 28123 # 28123 can be written as the sum of two abundant numbers theabuns, allnum = set(), set() total = 0 def isAbundant(num): count, facty = 0, 1 divisors = set() for x in range(1,num): if num % x == 0: divisors.add(x) if sum(divisors) > num: return(True) return(False) print(isAbundant(12)) for a in range(11, biggest): if isAbundant(a): theabuns.add(a) for a in theabuns: for b in theabuns: allnum.add(a+b) for a in range(1, biggest): if a not in allnum: total = total + a print(total) for a in range(1,smallest): total = total + a print(total) Explanation: Day 8 - January 4, 2018 Problem 23 A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number. A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n. As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit. Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers. End of explanation path = 'p022_names.txt' with open(path, 'r') as file: content = file.read().rsplit(',') for key, value in enumerate(content): content[key] = value.strip('/"') content = sorted(content) #print(content) total = 0 for key, value in enumerate(content): namescore = 0 for x in value: namescore = namescore + ord(x) - 64 # print("The value of ", value, " is ",namescore, (namescore * (key+1)) ) total = total + (namescore * (key+1)) print("Sum of the value of the names * order)", total) Explanation: Problem 22 Using names.txt (right click and 'Save Link/Target As...'), a 46K text file containing over five-thousand first names, begin by sorting it into alphabetical order. Then working out the alphabetical value for each name, multiply this value by its alphabetical position in the list to obtain a name score. For example, when the list is sorted into alphabetical order, COLIN, which is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list. So, COLIN would obtain a score of 938 × 53 = 49714. What is the total of all the name scores in the file? End of explanation def d(num): boo = set() total = 0 for x in range(1,num): if num % x == 0: boo.add(x) for x in boo: total = total + int(x) return(total) top = 10000 divisorsums = set() sumofall = 0 for y in range(1,top): temp = d(y) divisorsums.add(temp) # there will be 10k-ish in here if y in divisorsums: if y == d(temp) and y != temp: print(" We really found one",y, temp) sumofall = sumofall + y + temp print(sumofall) Explanation: Problem 21 Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers. For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220. Evaluate the sum of all the amicable numbers under 10000. Note: https://en.wikipedia.org/wiki/Amicable_numbers End of explanation %%timeit import math num = 100 #num = 10 count = 0 for x in str(math.factorial(num)): count = count + int(x) #print(count) %%timeit num = 101 # num = 10 count, facty = 0, 1 for x in range(1,num): facty = facty * x for x in str(facty): count = count + int(x) #print(count) Explanation: Day 7 - January 3, 2018 Problem 20 n! means n × (n − 1) × ... × 3 × 2 × 1 For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. Find the sum of the digits in the number 100! End of explanation import calendar as c Sunday = 6 count = 0 print("Is 1 Jan a Monday (0)?", c.weekday(1900,1,1)) for year in range(1901,2001): for month in range(1,13): if c.weekday(year,month,1) == Sunday: count = count + 1 print("Total Sunday on the 1st of the month(1901 to 2000)", count) Explanation: Problem 19 You are given the following information, but you may prefer to do some research for yourself. 1 Jan 1900 was a Monday. Thirty days has September, April, June and November. All the rest have thirty-one, Saving February alone, Which has twenty-eight, rain or shine. And on leap years, twenty-nine. A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400. How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)? Note: Should I do this with no libraries? End of explanation import sys path = 'p18b.txt' total, most = 0, 0 tower,distance = [], [] with open(path, 'r') as file: content = file.read().splitlines() for x in content: tower.append(x.rsplit()) # print(tower) for row, value in enumerate(tower): distance.append([0]* len(value)) for col, node in enumerate(value): if col < len(value)-1 : vmom = distance[row-1][col] else: vmom = 0 # print("There is no mom (to the right) ") if (col - 1) >= 0: vdad = distance[row-1][col-1] else: vdad = 0 # print("There is no dad (to the left) ") distance[row][col] = max(vdad, vmom) + int(node) # print(distance) print(max(distance[len(distance)-1])) Explanation: Problem 18 and 67 By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom of the triangle below: 75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o) End of explanation cardinal = {0: '',1:'one', 11:'eleven', 2:'two', 12:'twelve',40:'forty',3:'three', 13:'thirteen', 50:'fifty', 4:'four', 14:'fourteen', 60:'sixty', 5: 'five', 15: 'fifteen', 70:'seventy', 6: 'six', 16: 'sixteen', 80:'eighty', 7: 'seven', 17: 'seventeen', 90:'ninety', 8: 'eight', 18: 'eighteen', 100:'hundred', 9: 'nine', 19: 'nineteen', 1000:'onethousand', 10:'ten', 20:'twenty', 30:'thirty'} print(cardinal) num = 342 print(cardinal[((num - (num % 100))/100)]) top = 22 total = 0 def gettens(num): if num in cardinal: return(len(cardinal[num])) onesplace = num % 10 tensplace = num - (num % 10) sum =len(cardinal[tensplace]) + len(cardinal[onesplace]) return(sum) def gethundreds(num): sum = len(cardinal[((num - (num % 100))/100)]) sum = sum + len(cardinal[100]) tens = (num % 100) if tens != 0: sum = sum + 3 # and sum = sum + gettens(tens) return(sum) bot = 1 top = 1000 total = 0 just = 0 for x in range(bot,top+1): if x in cardinal: total = total + len(cardinal[x]) if x == 100: total = total + 3 just = len(cardinal[x]) elif x > 20 and x < 100: total = total + gettens(x) just = gettens(x) elif x > 100 and x < 1000: total = total + gethundreds(x) just = gethundreds(x) else: print("oops, too high or too wrong", x) print("Total: ", total) print(cardinal) cardinal = {1: 'one', 11:'eleven', 2:'two', 12:'twelve',40:'forty',3:'three', 13: 'thirteen' 50 'fifty' 4: 'four' 14: 'fourteen' 60 'sixty' 5: 'five' 15: 'fifteen' 70 'seventy' 6: 'six' 16: 'sixteen' 80 'eighty' 7: 'seven' 17: 'seventeen' 90 'ninety' 8: 'eight' 18: 'eighteen' 100 'onehundred' 9: 'nine' 19: 'nineteen' 1,000 'onethousand' 10: 'ten' 20: 'twenty' 30 'thirty' Explanation: Day 6 - January 2, 2018 Problem 17 If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total. If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used? NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage. Note: Feels like a dictionary - https://www.ego4u.com/en/cram-up/vocabulary/numbers/cardinal Not: 21145, 21121 Answer = 21124 End of explanation x = 1000 value = 2**x print("Two raised to the ", x, " : ",value ) total = 0 for y in str(value): total = total + int(y ) print(" The sum of the digits is ", total) Explanation: Problem 16 215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 21000? End of explanation import math size = 20 count = 0 num = math.factorial(size*2) dem = math.factorial(size) * math.factorial(size) print(num/dem) Explanation: Day 5 - January 1, 2018 Problem 15 Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner. How many such routes are there through a 20×20 grid? Note: Is this a recurssion? Is this just math? Steps = N * 2 (so 2 will have 4 steps and 20 will have 40 steps . Half will be over, half down. Order will not matter Thank you : https://www.youtube.com/watch?v=M8BYckxI8_U End of explanation # This is slow. Too slow def getCollatz(num): seq = set() seq.add(num) if num == 1: return(seq) else: if num % 2 == 0: temp = int(num/2) else: temp = int((3 * num) + 1 ) seq.update(getCollatz(temp)) return(seq) seed = 999999 end = 99999 high, bigdog = 0 , 0 for x in range(seed,end,-2): total = len(getCollatz(x)) if total > high: bigDog = x high = total print(bigDog, high) # For speed, find them once and save them. But which ones? A million seed = 1000000 million = [0 for x in range(seed)] million[1] = 1 million[0] = 1 high = 0 def getCollatzSize(num): if num < seed: if million[num] != 0: return(million[num]) else: if num % 2 == 0: temp = int(num/2) else: temp = int((3 * num) + 1) million[num] = getCollatzSize(temp) +1 return(million[num]) else: if num % 2 == 0: temp = int(num/2) else: temp = int((3 * num) + 1) return(getCollatzSize(temp) +1 ) for x in range(seed): getCollatzSize(x) top = max(million) print(million.index(top)) Explanation: Problem 14 The following iterative sequence is defined for the set of positive integers: n → n/2 (n is even) n → 3n + 1 (n is odd) Using the rule above and starting with 13, we generate the following sequence: 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1. Which starting number, under one million, produces the longest chain? NOTE: Once the chain starts the terms are allowed to go above one million. MyNOTE: Start from 1? Every number is in a set (ie 13 is always with 40, etc) Use recurssion to find the sets but do we really have to ... A MILLION TIMES? The right answer is 837,799 (from wikipedia) with 524 steps. End of explanation path = 'p13.txt' total = 0 with open(path, 'r') as file: content = file.read().splitlines() for x in content: value = int(x) total = total + value print(total) print(str(total)[:10]) Explanation: Problem 13 Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. End of explanation import math stillLooking = True x, trinum = 1, 0 divisor = 500 # divisor = 5 def numberofFactors(num): upto = int(math.sqrt(num) + 1) total = 0 temp = set() for x in range(1,upto): if num % x == 0: temp.add(x) temp.add(int(num/x)) return(len(temp)) while stillLooking: trinum = int((x*(x+1))/2) if numberofFactors(trinum) > divisor: stillLooking = False print("You did it! ") else: x = x + 1 print("The nth triangle number with over 500 is ", x, trinum) Explanation: Day 4 - December 31 Problem 12 The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... Let us list the factors of the first seven triangle numbers: 1: 1 3: 1,3 6: 1,2,3,6 10: 1,2,5,10 15: 1,3,5,15 21: 1,3,7,21 28: 1,2,4,7,14,28 We can see that 28 is the first triangle number to have over five divisors. What is the value of the first triangle number to have over five hundred divisors? Rule : n(n+1)/2 = is the value of the nth triangle number (5th = 5(5+1)/2 = 15 (https://www.mathsisfun.com/algebra/triangular-numbers.html) Note: Every other one is a 'triagular number 1,6,15,28 ...) Note: every triangular number is either divisible by three or has a remainder of 1 when divided by 9 End of explanation path = 'p11.txt' grid = [] highest = 0 with open(path, 'r') as file: content = file.read().splitlines() for x in content: grid.append(x.rsplit(' ')) print(grid[3][3]) for x in range(20): for y in range(20): # check row try: temp = int(grid[x][y]) * int(grid[x][y+1]) * int(grid[x][y+2]) * int(grid[x][y+3]) if temp > highest: highest = temp foo, bar = x,y temp = int(grid[x][y]) * int(grid[x+1][y]) * int(grid[x+2][y]) * int(grid[x+3][y]) if temp > highest: highest = temp foo, bar = x,y temp = int(grid[x][y]) * int(grid[x+1][y+1]) * int(grid[x+2][y+2]) * int(grid[x+3][y+3]) if temp > highest: highest = temp foo, bar = x,y temp = int(grid[x][y]) * int(grid[x-1][y+1]) * int(grid[x-2][y+2]) * int(grid[x-3][y+3]) if temp > highest: highest = temp foo, bar = x,y except: pass print(highest, foo, bar) Explanation: Problem 11 In the 20×20 grid below, four numbers along a diagonal line have been marked in red. 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 The product of these numbers is 26 × 63 × 78 × 14 = 1788696. What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid? End of explanation import math def isPrime(anumber): if anumber == 2: return(True) for x in range(2, int(math.sqrt(anumber))+1): if anumber % x == 0: return(False) return(True) top = 2000000 # top = 10 count, total = 1,2 # to account for the number 2 for x in range(3,top, 2): if isPrime(x): count +=1 total = total + x print(count, total) Explanation: Problem 10 The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of all the primes below two million. This took longer then I hoped. TODO - Think about optimizing End of explanation for m in range(100): for n in range(m-1): if (m* (m+n) == 500): print("We made it! ", m, n) if ((m*m) - (n*n)) + (2 * m * n) + ((m*m) + (n*n)) == 1000: print("What what", m, n) print("A = ", ((m*m) - (n*n)), "B = ", (2 * m * n), "C=",((m*m) + (n*n)) ) a = ((m*m) - (n*n)) b = (2 * m * n) c = ((m*m) + (n*n)) print("Sum = ", a + b + c) print("Product = ", a * b * c) break Explanation: Day 3 - December 30 Problem 9 A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, aa + bb = c*c For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2. There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc. Note: 3+ 4+ 5 = 12 and 3x4x5 = 60 Note: https://www.youtube.com/watch?v=B2FLARYs3bo Pick any two numbers M and N (with M > N) you get a Pythagorean Triple with A = M^2 - N^2, B = (MN)2 C = M^2 + N^2 So .... (M^2 - N^2) + (MN)2 + M^2 + N^2 = 1000 End of explanation test = '7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450' #test = '01234567899876543210' length = len(test) top = test[0:13] topvalue = 0 for x in range(length): temp = test[x:x+13] product = 1 for y in temp: product = product * int(y) if product > topvalue: topvalue = product top = temp print("Value ", topvalue, "string ", top ) Explanation: Problem 8 The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product? Note: I think treating it like a string is the best End of explanation import math which = 10001 # which = 6 x, count = 1, 0 def isPrime(anumber): if anumber == 2: return(True) for x in range(2, int(math.sqrt(anumber))+1): if anumber % x == 0: return(False) return(True) while count < which: x += 1 if isPrime(x): count += 1 print("The ", count, " prime is ", x) Explanation: Problem 7 By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10 001st prime number? End of explanation num = 100 #num = 10 total1,total2 = 0,0 for x in range(num,0,-1): total1 = total1 + x total2 = total2 + (x*x) print(total1* total1) print(total2) print((total1* total1) - total2) Explanation: Day 2 - December ?? Problem 6 The sum of the squares of the first ten natural numbers is, 12 + 22 + ... + 102 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)2 = 552 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum. End of explanation import math top = 20 # top = 10 total = 1 for x in range(top, 1, -1): while total % x != 0: foo = math.gcd(total, x) total = int(total * (x/foo)) print(total) Explanation: Problem 5 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder. What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20? Note: Set of all the factors End of explanation tops = 999 * 999 bots = 698896 # 698896 digits = 3 # tops = 99 * 99 # bots = 676 # digits = 2 def isPalindromic(num): string = str(num) length = int(len(string)/2) # print(" num, string, len ", num, string, length) if string[length:][::-1] == string[:length]: return(True) return(False) def isProductSize(num, digits): results = set() for i in range(1, int(num ** .5)+1): div, mod = divmod(num, i) if mod == 0: results |= {i, div} if len(str(i)) == digits and len(str(div)) == digits: print(i, div) return(True) print('Tops', tops, 'bots ', bots, 'digits ', digits) for x in range(tops, bots, -1 ): if isPalindromic(x): # print("Yep, a palidrom ", x) if isProductSize(x, digits): print("The Highest Palindrom is ", x) break isPalindromic(999999) Explanation: Problem 4 A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. Find the largest palindrome made from the product of two 3-digit numbers. End of explanation below = 1000 # below = 10 total = 0 for x in range(below): if (x % 3 == 0) or (x % 5 == 0): total = total + x print(total) Explanation: Day 1 - December 27 Problem 1 If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. You are the 715697th person to have solved this problem. End of explanation top = 4000000 # top = 89 first = 1 second = 2 total, last = 0 , 0 while last < top: last = first + second if last % 2 == 0: total = total + last first = second second = last print("Total evens ", total + 2) print("last, second, first", last, second, first) Explanation: Problem 2 Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms. End of explanation import math mynum = 600851475143 # mynum = 13195 myprimes = [] top = math.floor(math.sqrt(mynum)) # Does this need to be ceil instead print("Can not be divisible by more then sqrt", top) def isPrime(anumber): if anumber < 2: return(False) for x in range(2, int(math.sqrt(anumber))+1): # does this need to be sqrt + 1? if anumber % x == 0: return(False) return(True) for x in range(1, top, 2): if isPrime(x): if mynum % x == 0: myprimes.append(x) # print(myprimes) print("The highest prime factor ", max(myprimes)) Explanation: Problem 3 The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 600851475143 ? TODO: You could performance tune the hell out of this one. ie go through it in reverse until found. End of explanation
3,318
Given the following text description, write Python code to implement the functionality described below step by step Description: Filtering and plotting Here we provide a quick example of how to filter and plot with your data, making the most of the capability provided by pyam's IamDataFrame. Step1: Run MAGICC6. Step2: Filter and plot results.
Python Code: # NBVAL_IGNORE_OUTPUT from pymagicc import MAGICC6 from pymagicc import rcp26 import matplotlib.pyplot as plt plt.style.use("bmh") Explanation: Filtering and plotting Here we provide a quick example of how to filter and plot with your data, making the most of the capability provided by pyam's IamDataFrame. End of explanation with MAGICC6() as magicc: results = magicc.run(rcp26) # NBVAL_IGNORE_OUTPUT # Note that row ordering may vary results.head() Explanation: Run MAGICC6. End of explanation plt.figure(figsize=(16, 9)) results.filter(variable="*Concentrations|CO2",).line_plot(x="time"); plt.figure(figsize=(16, 9)) results.filter(variable="*Temperature*").line_plot(x="time"); Explanation: Filter and plot results. End of explanation
3,319
Given the following text description, write Python code to implement the functionality described below step by step Description: Classification of Organisms Using a Digital Dichotomous Key This Juptyer Notebook will allow you to search through different organisms based on their physical characteristics using a tool known as a Dichotomous Key. Start out by going to Kernal -> Restart & Run All to begin! Step1: Pre-Questions A Dichotomous Key is.... a tool that allows scienctists to identify and classify organisms in the natural world. Based on their characterists, scienctists can narrow down species into groups such as trees, flowers, mammals, reptiles, rocks, and fish. A Dichotomous Key can help to understand how scientists have classified organisms using Bionomial Nomenclature. Dichotomous Key Video Step2: PART 1 Step3: Importing the Organism Characteristics/Conditions Step4: PART 2 Step5: Part 3
Python Code: # Import modules that contain functions we need import pandas as pd import numpy as np %matplotlib inline import matplotlib.pyplot as plt # Our data is the dichotomous key table and is defined as the word 'key'. # key is set equal to the .csv file that is read by pandas. # The .csv file must be in the same directory as the program. #If the data is being pulled locally use the code that is commented out below #key = pd.read_csv("Classification of Organisms- Jupyter Data.csv") #key2 = pd.read_csv("Classification of Organisms- Jupyter Data KEY 2.csv") key = pd.read_csv("https://gist.githubusercontent.com/GoodmanSciences/f4d51945a169ef3125234c57b878e058/raw/bebeaae8038f0b418ed37c2a98b82aa9d3cc38d1/Classification%2520of%2520Organisms-Jupyter%2520Data.csv") key2 = pd.read_csv("https://gist.githubusercontent.com/GoodmanSciences/4060d993635e90cdcc46fe637c92ee37/raw/d9031747855b9762b239dea07a60254eaa6051f7/Classification%2520of%2520Organisms-%2520Jupyter%2520Data%2520KEY%25202.csv") # This sets Organism as the index instead of numbers #key = data.set_index("organism") Explanation: Classification of Organisms Using a Digital Dichotomous Key This Juptyer Notebook will allow you to search through different organisms based on their physical characteristics using a tool known as a Dichotomous Key. Start out by going to Kernal -> Restart & Run All to begin! End of explanation # Here is a helpful image of a sample Dichotomous Key! from IPython.display import Image from IPython.core.display import HTML Image(url= 'http://biology-igcse.weebly.com/uploads/1/5/0/7/15070316/8196495_orig.gif') Explanation: Pre-Questions A Dichotomous Key is.... a tool that allows scienctists to identify and classify organisms in the natural world. Based on their characterists, scienctists can narrow down species into groups such as trees, flowers, mammals, reptiles, rocks, and fish. A Dichotomous Key can help to understand how scientists have classified organisms using Bionomial Nomenclature. Dichotomous Key Video End of explanation # Animal options in Dichotomous Key # Displays all row titles as an array key.organism Explanation: PART 1: Sorting Organisms by One Characteristic We will be looking at the characterists of 75 unique organisms in our Dichotomous Key. The imput below will provide us with a some of the possible organisms you may discover. End of explanation # Conditions/Questions for finding the correct animal # Displays all column titles as an array key.columns Explanation: Importing the Organism Characteristics/Conditions End of explanation key[(key['decomposer'] == 'yes')] # This conditional allows us to query a column and if the data within that cell matches it will display the animal(s). #if you are unsure of what to put try making that column a comment by adding # in front of it. key[ #physical characteristics (key['fur'] == 'yes') & \ (key['feathers'] == 'no') & \ (key['poisonous'] == 'no') & \ (key['scales'] == 'no') & \ (key['multicellular'] == 'yes') & \ (key['fins'] == 'no') & \ (key['wings'] == 'no') & \ (key['vertebrate'] == 'yes') & \ #environmental characteristics (key['marine'] == 'no') & \ (key['terrestrial'] == 'yes') & \ #feeding characteristics #decomposers get their food by breaking down decaying organisms (key['decomposer'] == 'no') & \ #carnivores get their food by eating animals (key['carnivore'] == 'no') & \ #herbivores get their food by eating plants (key['herbivore'] == 'yes') & \ #omnivores get their food by eating both plants and animals (key['omnivore'] == 'no') & \ #photosynthesis is the process of making food using energy from sunlight (key['photosynthesis'] == 'no') & \ #autotrophs are organisms that generate their own food inside themselves (key['autotroph'] == 'no') & \ #possible kingdoms include: animalia, plantae, fungi (key['kingdom'] == 'animalia') & \ #cell type (key['eukaryotic'] == 'yes') & \ (key['prokaryotic'] == 'no') ] Explanation: PART 2: Sorting Organisms by Many Characteristics These are the conditions or the characteristics in which ceratin answers are categorized for certain organisms. Each characteristic/condition has a yes/no except for the Kingdoms. Change the conditionals in the code below to change what organism(s) are displayed. For most, the only change needs to be the 'yes' or 'no'. Capitalization matters so be careful. You also must put in only allowed answers in every condition or the code will break! End of explanation #sort your organisms by their taxonomical classification # This conditional allows us to query a column and if the data within that cell matches, # it will display the corresponding animal(s) key2[(key2['kingdom'] == 'animalia')] #Done?? Insert a image for one of the organisms you found using the dichotomous key. from IPython.display import Image from IPython.core.display import HTML Image(url= 'https://lms.mrc.ac.uk/wp-content/uploads/insert-pretty-picture-here1.jpg') Explanation: Part 3: Scientific Classification of Organisms End of explanation
3,320
Given the following text description, write Python code to implement the functionality described below step by step Description: Fitting Example Step1: Inject into the interpreter the functions. Step2: Construct the histogram containing the input data Step3: Create the function and try to fit it without setting any parameter Step4: Less than optimal. Set parameters and fit again, draw histogram with error bars Step5: Much better. Now time to beautify the plot. Construct a TF1 for the background and Lorentzian functions and draw them in the same canvas. We save the fit results and set the parameters of the functions accordingly Step6: We can now add a legend
Python Code: import ROOT Explanation: Fitting Example End of explanation %%cpp -d //Define functions for fitting // Quadratic background function double background(double *x, double *par) { return par[0] + par[1]*x[0] + par[2]*x[0]*x[0]; } // Lorenzian Peak function double lorentzianPeak(double *x, double *par) { return (0.5*par[0]*par[1]/TMath::Pi()) / TMath::Max(1.e-10,(x[0]-par[2])*(x[0]-par[2]) + .25*par[1]*par[1]); } // Sum of background and peak function double fitFunction(double *x, double *par) { return background(x, par) + lorentzianPeak(x, &par[3]); } Explanation: Inject into the interpreter the functions. End of explanation nbins = 60 data = [ 6,1,10,12,6,13,23,22,15,21, 23,26,36,25,27,35,40,44,66,81, 75,57,48,45,46,41,35,36,53,32, 40,37,38,31,36,44,42,37,32,32, 43,44,35,33,33,39,29,41,32,44, 26,39,29,35,32,21,21,15,25,15 ] xlow = 0 xup = 3 histo = ROOT.TH1F('histo', 'Lorentzian Peak on Quadratic Background', nbins, xlow, xup) for i in range(nbins): histo.SetBinContent(i+1, data[i]) Explanation: Construct the histogram containing the input data End of explanation %jsroot on c = ROOT.TCanvas() nparams = 6 fitFcn = ROOT.TF1('fitFcn', ROOT.fitFunction, xlow, xup, nparams) histo.Fit(fitFcn) c.Draw() Explanation: Create the function and try to fit it without setting any parameter End of explanation fitFcn.SetParameter(4, 0.2); # width fitFcn.SetParameter(5, 1); # peak histo.Fit(fitFcn) histo.Draw('E') c.Draw() Explanation: Less than optimal. Set parameters and fit again, draw histogram with error bars End of explanation pars = fitFcn.GetParameters() backFcn = ROOT.TF1('backFcn', ROOT.background, xlow, xup, 3) backFcn.SetLineColor(ROOT.kGreen) backFcn.Draw('Same') backFcn.SetParameters(pars[0], pars[1], pars[2]) c.Draw() signalFcn = ROOT.TF1('signalFcn', ROOT.lorentzianPeak, xlow, xup, 3) signalFcn.SetLineColor(ROOT.kBlue) signalFcn.SetParameters(pars[3], pars[4], pars[5]) signalFcn.Draw('Same') c.Draw() Explanation: Much better. Now time to beautify the plot. Construct a TF1 for the background and Lorentzian functions and draw them in the same canvas. We save the fit results and set the parameters of the functions accordingly End of explanation legend = ROOT.TLegend(0.45, 0.65, 0.73, 0.85) legend.SetTextFont(72) legend.SetTextSize(0.04) legend.AddEntry(histo, 'Data', 'LE') legend.AddEntry(backFcn, 'Background fit', 'L') legend.AddEntry(signalFcn, 'Signal fit', 'L') legend.AddEntry(fitFcn, 'Global Fit', 'L') legend.Draw('Same') c.Draw() Explanation: We can now add a legend End of explanation
3,321
Given the following text description, write Python code to implement the functionality described below step by step Description: Embedding a Bokeh server in a Notebook This notebook shows how a Bokeh server application can be embedded inside a Jupyter notebook. Step2: There are various application handlers that can be used to build up Bokeh documents. For example, there is a ScriptHandler that uses the code from a .py file to produce Bokeh documents. This is the handler that is used when we run bokeh serve app.py. In the notebook we can use a function to define a Bokehg application. Here is the function bkapp(doc) that defines our app Step3: Now we can display our application using show, which will automatically create an Application that wraps bkapp using FunctionHandler. The end result is that the Bokeh server will call bkapp to build new documents for every new sessions that is opened. Note
Python Code: import yaml from bokeh.layouts import column from bokeh.models import ColumnDataSource, Slider from bokeh.plotting import figure from bokeh.themes import Theme from bokeh.io import show, output_notebook from bokeh.sampledata.sea_surface_temperature import sea_surface_temperature output_notebook() Explanation: Embedding a Bokeh server in a Notebook This notebook shows how a Bokeh server application can be embedded inside a Jupyter notebook. End of explanation def bkapp(doc): df = sea_surface_temperature.copy() source = ColumnDataSource(data=df) plot = figure(x_axis_type='datetime', y_range=(0, 25), y_axis_label='Temperature (Celsius)', title="Sea Surface Temperature at 43.18, -70.43") plot.line('time', 'temperature', source=source) def callback(attr, old, new): if new == 0: data = df else: data = df.rolling('{0}D'.format(new)).mean() source.data = ColumnDataSource.from_df(data) slider = Slider(start=0, end=30, value=0, step=1, title="Smoothing by N Days") slider.on_change('value', callback) doc.add_root(column(slider, plot)) doc.theme = Theme(json=yaml.load( attrs: Figure: background_fill_color: "#DDDDDD" outline_line_color: white toolbar_location: above height: 500 width: 800 Grid: grid_line_dash: [6, 4] grid_line_color: white , Loader=yaml.FullLoader)) Explanation: There are various application handlers that can be used to build up Bokeh documents. For example, there is a ScriptHandler that uses the code from a .py file to produce Bokeh documents. This is the handler that is used when we run bokeh serve app.py. In the notebook we can use a function to define a Bokehg application. Here is the function bkapp(doc) that defines our app: End of explanation show(bkapp) # notebook_url="http://localhost:8888" Explanation: Now we can display our application using show, which will automatically create an Application that wraps bkapp using FunctionHandler. The end result is that the Bokeh server will call bkapp to build new documents for every new sessions that is opened. Note: If the current notebook is not displayed at the default URL, you must update the notebook_url parameter in the comment below to match, and pass it to show. End of explanation
3,322
Given the following text description, write Python code to implement the functionality described below step by step Description: <a data-flickr-embed="true" href="https Step1: You'll notice the hashing algorithm has already been applied by the time we import this JSON data. I'll be showing you the Python source code for scripts that aren't Jupyter Notebook scripts, for that part of the pipeline. Step2: Remember how the .loc attribute uses enhanced slice notation ("enhanced" in the sense core Python does not support it).
Python Code: import pandas as pd import matplotlib.pyplot as plt dinos = pd.read_json("dino_hash.json") Explanation: <a data-flickr-embed="true" href="https://www.flickr.com/photos/kirbyurner/27963484878/in/album-72157693427665102/" title="Barry at Large"><img src="https://farm1.staticflickr.com/969/27963484878_b38f0db42a_m.jpg" width="240" height="180" alt="Barry at Large"></a><script async src="//embedr.flickr.com/assets/client-code.js" charset="utf-8"></script> PYTHON FOR DATA SCIENCE HASHING THE DINOS This Notebook is admittedly a little bit weird in terms of the topics it mixes. We bring in a large number of dinosuar names, in the sense of species, as discovered from the fossil record, and perhaps from other records. However this set of strings only serves to fuel the purely mathematical process of performing hashlib.sha256 magic on each one. Think of dino names as passwords. We may consider these insecure but lets not assume the game is that serious. For the purposes of today's exercise, they're secure enough. However, just because you've picked a password does not mean a DBA needs to keep it in her database, where it might get stolen. Rather, a hash of your password serves as a deterministic fingerprint. Just save the fingerprint. No one with a wrong password will get through the gate. End of explanation dinos.head() Explanation: You'll notice the hashing algorithm has already been applied by the time we import this JSON data. I'll be showing you the Python source code for scripts that aren't Jupyter Notebook scripts, for that part of the pipeline. End of explanation dinos.loc["Mo":"N"] dinos.dtypes dinos.index.is_unique code = dinos.loc['Mtapaiasaurus'][0] code len(code) dinos.info() int(code, base=16) 0xafe4c2b017ed3996bf5f4f3b937f0ae22e649df2f620787e136ed6bd3ea32e2d Explanation: Remember how the .loc attribute uses enhanced slice notation ("enhanced" in the sense core Python does not support it). End of explanation
3,323
Given the following text description, write Python code to implement the functionality described below step by step Description: Chapter 3 - Learning PySpark Resilient Distributed Datasets Creating RDDs There are two ways to create an RDD in PySpark. You can parallelize a list Step1: or read from a repository (a file or a database) Step2: Note, that to execute the code above you will have to change the path where the data is stored. The dataset can be downloaded from http Step3: You can access the data in the object as you would normally do in Python. Step4: Reading from files When you read from a text file, each row from the file forms an element of an RDD. Step5: User defined functions You can create longer method to transform your data instead of using the lambda expression. Step6: Now, instead of using lambda we will use the extractInformation(...) method to split and convert our dataset. Step7: Transformations .map(...) The method is applied to each element of the RDD Step8: You can combine more columns. Step9: .filter(...) The .filter(...) method allows you to select elements of your dataset that fit specified criteria. Step10: .flatMap(...) The .flatMap(...) method works similarly to .map(...) but returns a flattened results instead of a list. Step11: .distinct() This method returns a list of distinct values in a specified column. Step12: .sample(...) The .sample() method returns a randomized sample from the dataset. Step13: Let's confirm that we really got 10% of all the records. Step14: .leftOuterJoin(...) Left outer join, just like the SQL world, joins two RDDs based on the values found in both datasets, and returns records from the left RDD with records from the right one appended where the two RDDs match. Step15: If we used .join(...) method instead we would have gotten only the values for 'a' and 'b' as these two values intersect between these two RDDs. Step16: Another useful method is the .intersection(...) that returns the records that are equal in both RDDs. Step17: .repartition(...) Repartitioning the dataset changes the number of partitions the dataset is divided into. Step18: Actions .take(...) The method returns n top rows from a single data partition. Step19: If you want somewhat randomized records you can use .takeSample(...) instead. Step20: .reduce(...) Another action that processes your data, the .reduce(...) method reduces the elements of an RDD using a specified method. Step21: If the reducing function is not associative and commutative you will sometimes get wrong results depending how your data is partitioned. Step22: I we were to reduce the data in a manner that we would like to divide the current result by the subsequent one, we would expect a value of 10 Step23: However, if you were to partition the data into 3 partitions, the result will be wrong. Step24: The .reduceByKey(...) method works in a similar way to the .reduce(...) method but performs a reduction on a key-by-key basis. Step25: .count() The .count() method counts the number of elements in the RDD. Step26: It has the same effect as the method below but does not require shifting the data to the driver. Step27: If your dataset is in a form of a key-value you can use the .countByKey() method to get the counts of distinct keys. Step28: .saveAsTextFile(...) As the name suggests, the .saveAsTextFile() the RDD and saves it to text files Step29: To read it back, you need to parse it back as, as before, all the rows are treated as strings. Step30: .foreach(...) A method that applies the same function to each element of the RDD in an iterative way.
Python Code: data = sc.parallelize( [('Amber', 22), ('Alfred', 23), ('Skye',4), ('Albert', 12), ('Amber', 9)]) Explanation: Chapter 3 - Learning PySpark Resilient Distributed Datasets Creating RDDs There are two ways to create an RDD in PySpark. You can parallelize a list End of explanation data_from_file = sc.\ textFile( '/Users/drabast/Documents/PySpark_Data/VS14MORT.txt.gz', 4) Explanation: or read from a repository (a file or a database) End of explanation data_heterogenous = sc.parallelize([('Ferrari', 'fast'), {'Porsche': 100000}, ['Spain','visited', 4504]]).collect() data_heterogenous Explanation: Note, that to execute the code above you will have to change the path where the data is stored. The dataset can be downloaded from http://tomdrabas.com/data/VS14MORT.txt.gz Schema RDDs are schema-less data structures. End of explanation data_heterogenous[1]['Porsche'] Explanation: You can access the data in the object as you would normally do in Python. End of explanation data_from_file.take(1) Explanation: Reading from files When you read from a text file, each row from the file forms an element of an RDD. End of explanation def extractInformation(row): import re import numpy as np selected_indices = [ 2,4,5,6,7,9,10,11,12,13,14,15,16,17,18, 19,21,22,23,24,25,27,28,29,30,32,33,34, 36,37,38,39,40,41,42,43,44,45,46,47,48, 49,50,51,52,53,54,55,56,58,60,61,62,63, 64,65,66,67,68,69,70,71,72,73,74,75,76, 77,78,79,81,82,83,84,85,87,89 ] ''' Input record schema schema: n-m (o) -- xxx n - position from m - position to o - number of characters xxx - description 1. 1-19 (19) -- reserved positions 2. 20 (1) -- resident status 3. 21-60 (40) -- reserved positions 4. 61-62 (2) -- education code (1989 revision) 5. 63 (1) -- education code (2003 revision) 6. 64 (1) -- education reporting flag 7. 65-66 (2) -- month of death 8. 67-68 (2) -- reserved positions 9. 69 (1) -- sex 10. 70 (1) -- age: 1-years, 2-months, 4-days, 5-hours, 6-minutes, 9-not stated 11. 71-73 (3) -- number of units (years, months etc) 12. 74 (1) -- age substitution flag (if the age reported in positions 70-74 is calculated using dates of birth and death) 13. 75-76 (2) -- age recoded into 52 categories 14. 77-78 (2) -- age recoded into 27 categories 15. 79-80 (2) -- age recoded into 12 categories 16. 81-82 (2) -- infant age recoded into 22 categories 17. 83 (1) -- place of death 18. 84 (1) -- marital status 19. 85 (1) -- day of the week of death 20. 86-101 (16) -- reserved positions 21. 102-105 (4) -- current year 22. 106 (1) -- injury at work 23. 107 (1) -- manner of death 24. 108 (1) -- manner of disposition 25. 109 (1) -- autopsy 26. 110-143 (34) -- reserved positions 27. 144 (1) -- activity code 28. 145 (1) -- place of injury 29. 146-149 (4) -- ICD code 30. 150-152 (3) -- 358 cause recode 31. 153 (1) -- reserved position 32. 154-156 (3) -- 113 cause recode 33. 157-159 (3) -- 130 infant cause recode 34. 160-161 (2) -- 39 cause recode 35. 162 (1) -- reserved position 36. 163-164 (2) -- number of entity-axis conditions 37-56. 165-304 (140) -- list of up to 20 conditions 57. 305-340 (36) -- reserved positions 58. 341-342 (2) -- number of record axis conditions 59. 343 (1) -- reserved position 60-79. 344-443 (100) -- record axis conditions 80. 444 (1) -- reserve position 81. 445-446 (2) -- race 82. 447 (1) -- bridged race flag 83. 448 (1) -- race imputation flag 84. 449 (1) -- race recode (3 categories) 85. 450 (1) -- race recode (5 categories) 86. 461-483 (33) -- reserved positions 87. 484-486 (3) -- Hispanic origin 88. 487 (1) -- reserved 89. 488 (1) -- Hispanic origin/race recode ''' record_split = re\ .compile( r'([\s]{19})([0-9]{1})([\s]{40})([0-9\s]{2})([0-9\s]{1})([0-9]{1})([0-9]{2})' + r'([\s]{2})([FM]{1})([0-9]{1})([0-9]{3})([0-9\s]{1})([0-9]{2})([0-9]{2})' + r'([0-9]{2})([0-9\s]{2})([0-9]{1})([SMWDU]{1})([0-9]{1})([\s]{16})([0-9]{4})' + r'([YNU]{1})([0-9\s]{1})([BCOU]{1})([YNU]{1})([\s]{34})([0-9\s]{1})([0-9\s]{1})' + r'([A-Z0-9\s]{4})([0-9]{3})([\s]{1})([0-9\s]{3})([0-9\s]{3})([0-9\s]{2})([\s]{1})' + r'([0-9\s]{2})([A-Z0-9\s]{7})([A-Z0-9\s]{7})([A-Z0-9\s]{7})([A-Z0-9\s]{7})' + r'([A-Z0-9\s]{7})([A-Z0-9\s]{7})([A-Z0-9\s]{7})([A-Z0-9\s]{7})([A-Z0-9\s]{7})' + r'([A-Z0-9\s]{7})([A-Z0-9\s]{7})([A-Z0-9\s]{7})([A-Z0-9\s]{7})([A-Z0-9\s]{7})' + r'([A-Z0-9\s]{7})([A-Z0-9\s]{7})([A-Z0-9\s]{7})([A-Z0-9\s]{7})([A-Z0-9\s]{7})' + r'([A-Z0-9\s]{7})([\s]{36})([A-Z0-9\s]{2})([\s]{1})([A-Z0-9\s]{5})([A-Z0-9\s]{5})' + r'([A-Z0-9\s]{5})([A-Z0-9\s]{5})([A-Z0-9\s]{5})([A-Z0-9\s]{5})([A-Z0-9\s]{5})' + r'([A-Z0-9\s]{5})([A-Z0-9\s]{5})([A-Z0-9\s]{5})([A-Z0-9\s]{5})([A-Z0-9\s]{5})' + r'([A-Z0-9\s]{5})([A-Z0-9\s]{5})([A-Z0-9\s]{5})([A-Z0-9\s]{5})([A-Z0-9\s]{5})' + r'([A-Z0-9\s]{5})([A-Z0-9\s]{5})([A-Z0-9\s]{5})([\s]{1})([0-9\s]{2})([0-9\s]{1})' + r'([0-9\s]{1})([0-9\s]{1})([0-9\s]{1})([\s]{33})([0-9\s]{3})([0-9\s]{1})([0-9\s]{1})') try: rs = np.array(record_split.split(row))[selected_indices] except: rs = np.array(['-99'] * len(selected_indices)) return rs # return record_split.split(row) Explanation: User defined functions You can create longer method to transform your data instead of using the lambda expression. End of explanation data_from_file_conv = data_from_file.map(extractInformation) data_from_file_conv.map(lambda row: row).take(1) Explanation: Now, instead of using lambda we will use the extractInformation(...) method to split and convert our dataset. End of explanation data_2014 = data_from_file_conv.map(lambda row: int(row[16])) data_2014.take(10) Explanation: Transformations .map(...) The method is applied to each element of the RDD: in the case for the data_from_file_conv dataset you can think of this as a transformation of each row. End of explanation data_2014_2 = data_from_file_conv.map(lambda row: (row[16], int(row[16]))) data_2014_2.take(10) Explanation: You can combine more columns. End of explanation data_filtered = data_from_file_conv.filter(lambda row: row[5] == 'F' and row[21] == '0') data_filtered.count() Explanation: .filter(...) The .filter(...) method allows you to select elements of your dataset that fit specified criteria. End of explanation data_2014_flat = data_from_file_conv.flatMap(lambda row: (row[16], int(row[16]) + 1)) data_2014_flat.take(10) Explanation: .flatMap(...) The .flatMap(...) method works similarly to .map(...) but returns a flattened results instead of a list. End of explanation distinct_gender = data_from_file_conv.map(lambda row: row[5]).distinct().collect() distinct_gender Explanation: .distinct() This method returns a list of distinct values in a specified column. End of explanation fraction = 0.1 data_sample = data_from_file_conv.sample(False, fraction, 666) data_sample.take(1) Explanation: .sample(...) The .sample() method returns a randomized sample from the dataset. End of explanation print('Original dataset: {0}, sample: {1}'.format(data_from_file_conv.count(), data_sample.count())) Explanation: Let's confirm that we really got 10% of all the records. End of explanation rdd1 = sc.parallelize([('a', 1), ('b', 4), ('c',10)]) rdd2 = sc.parallelize([('a', 4), ('a', 1), ('b', '6'), ('d', 15)]) rdd3 = rdd1.leftOuterJoin(rdd2) rdd3.take(5) Explanation: .leftOuterJoin(...) Left outer join, just like the SQL world, joins two RDDs based on the values found in both datasets, and returns records from the left RDD with records from the right one appended where the two RDDs match. End of explanation rdd4 = rdd1.join(rdd2) rdd4.collect() Explanation: If we used .join(...) method instead we would have gotten only the values for 'a' and 'b' as these two values intersect between these two RDDs. End of explanation rdd5 = rdd1.intersection(rdd2) rdd5.collect() Explanation: Another useful method is the .intersection(...) that returns the records that are equal in both RDDs. End of explanation rdd1 = rdd1.repartition(4) len(rdd1.glom().collect()) Explanation: .repartition(...) Repartitioning the dataset changes the number of partitions the dataset is divided into. End of explanation data_first = data_from_file_conv.take(1) data_first Explanation: Actions .take(...) The method returns n top rows from a single data partition. End of explanation data_take_sampled = data_from_file_conv.takeSample(False, 1, 667) data_take_sampled Explanation: If you want somewhat randomized records you can use .takeSample(...) instead. End of explanation rdd1.map(lambda row: row[1]).reduce(lambda x, y: x + y) Explanation: .reduce(...) Another action that processes your data, the .reduce(...) method reduces the elements of an RDD using a specified method. End of explanation data_reduce = sc.parallelize([1, 2, .5, .1, 5, .2], 1) Explanation: If the reducing function is not associative and commutative you will sometimes get wrong results depending how your data is partitioned. End of explanation works = data_reduce.reduce(lambda x, y: x / y) works Explanation: I we were to reduce the data in a manner that we would like to divide the current result by the subsequent one, we would expect a value of 10 End of explanation data_reduce = sc.parallelize([1, 2, .5, .1, 5, .2], 3) data_reduce.reduce(lambda x, y: x / y) Explanation: However, if you were to partition the data into 3 partitions, the result will be wrong. End of explanation data_key = sc.parallelize([('a', 4),('b', 3),('c', 2),('a', 8),('d', 2),('b', 1),('d', 3)],4) data_key.reduceByKey(lambda x, y: x + y).collect() Explanation: The .reduceByKey(...) method works in a similar way to the .reduce(...) method but performs a reduction on a key-by-key basis. End of explanation data_reduce.count() Explanation: .count() The .count() method counts the number of elements in the RDD. End of explanation len(data_reduce.collect()) # WRONG -- DON'T DO THIS! Explanation: It has the same effect as the method below but does not require shifting the data to the driver. End of explanation data_key.countByKey().items() Explanation: If your dataset is in a form of a key-value you can use the .countByKey() method to get the counts of distinct keys. End of explanation data_key.saveAsTextFile('/Users/drabast/Documents/PySpark_Data/data_key.txt') Explanation: .saveAsTextFile(...) As the name suggests, the .saveAsTextFile() the RDD and saves it to text files: each partition to a separate file. End of explanation def parseInput(row): import re pattern = re.compile(r'\(\'([a-z])\', ([0-9])\)') row_split = pattern.split(row) return (row_split[1], int(row_split[2])) data_key_reread = sc \ .textFile('/Users/drabast/Documents/PySpark_Data/data_key.txt') \ .map(parseInput) data_key_reread.collect() Explanation: To read it back, you need to parse it back as, as before, all the rows are treated as strings. End of explanation def f(x): print(x) data_key.foreach(f) Explanation: .foreach(...) A method that applies the same function to each element of the RDD in an iterative way. End of explanation
3,324
Given the following text description, write Python code to implement the functionality described below step by step Description: A1 Data Curation The goal is to construct, analyze, and publish a dataset of monthly traffic on English Wikipedia from July 1 2008 - September 30 2017 The section below is to establish shared variables and library among different stages Step1: Stage 1. Data Acquisition Collect all months traffic data using two different Wikimedia REST API endpoints, Pagecounts and Pageviews, for both mobile and desktop (excluding spider bot). Output is 5 JSON files Step2: The first step is to query each Wikipedia Rest API endpoint using $wikipedia_query$ function with different parameter combination. Each response then saved to a json file using $store_to_json$ function. Print statements are used to debug the number of items the response returns with. Two JSON files from two extra queries (all views for each API) are also produced to help with data processing in the next stage. Stage 2. Data Processing Process these data files to prepare them for analysis by combining each JSON file into a single CSV file with these headers Step3: There are two basicways to combine number of views from pageviews and pagecounts API
Python Code: import pprint import requests import json # Global variables pagecounts_url = 'https://wikimedia.org/api/rest_v1/metrics/legacy/{apiname}/aggregate/en.wikipedia.org/{access}/monthly/{start}/{end}' pageviews_url = 'https://wikimedia.org/api/rest_v1/metrics/{apiname}/aggregate/en.wikipedia.org/{access}/{agent}/monthly/{start}/{end}' my_github = 'reyadji' my_email = '[email protected]' default_params = { 'apiname': 'pageviews', 'access': 'mobile-web', 'agent': 'spider', 'start': '2008010100', 'end': '2016060100'} json_files = [] def wikipedia_query(params=default_params): headers = { 'User-Agent': 'https://github.com/{}'.format(my_github), 'From': my_email} url = '' if params['apiname'] is 'pageviews': url = pageviews_url params['start'] = '2015070100' params['end'] = '2017100100' elif params['apiname'] is 'pagecounts': url = pagecounts_url params['start'] = '2008010100' params['end'] = '2016080100' r = requests.get(url.format(**params), headers=headers) # print('URL: {}'.format(r.uri)) print('Response status code: {}'.format(r.status_code)) # print('Response JSON: {}'.format(pprint.pprint(r.json()))) return r def store_to_json(params, r): params['firstmonth'] = params['start'][:-2] params['lastmonth'] = params['end'][:-2] filename = '{apiname}_{access}_{firstmonth}-{lastmonth}.json'.format(**params) with open(filename, 'w+') as f: json.dump(r.json()['items'], f, indent=4) json_files.append(filename) def load_json(file): with open(file, 'r') as f: return json.load(f) Explanation: A1 Data Curation The goal is to construct, analyze, and publish a dataset of monthly traffic on English Wikipedia from July 1 2008 - September 30 2017 The section below is to establish shared variables and library among different stages End of explanation pc_desk_params = { 'apiname': 'pagecounts', 'access': 'desktop-site', 'agent': ''} r = wikipedia_query(pc_desk_params) store_to_json(pc_desk_params, r) print('Number of items: {}'.format(len(r.json()['items']))) pc_mob_params = { 'apiname': 'pagecounts', 'access': 'mobile-site', 'agent': ''} r = wikipedia_query(pc_mob_params) store_to_json(pc_mob_params, r) print('Number of items: {}'.format(len(r.json()['items']))) pv_desk_params = { 'apiname': 'pageviews', 'access': 'desktop', 'agent': 'user'} r = wikipedia_query(pv_desk_params) store_to_json(pv_desk_params, r) print('Number of items: {}'.format(len(r.json()['items']))) pv_mobapp_params = { 'apiname': 'pageviews', 'access': 'mobile-app', 'agent': 'user'} r = wikipedia_query(pv_mobapp_params) store_to_json(pv_mobapp_params, r) print('Number of items: {}'.format(len(r.json()['items']))) pv_mobweb_params = { 'apiname': 'pageviews', 'access': 'mobile-web', 'agent': 'user'} r = wikipedia_query(pv_mobweb_params) store_to_json(pv_mobweb_params, r) print('Number of items: {}'.format(len(r.json()['items']))) print('JSON files: P{}'.format(json_files)) Explanation: Stage 1. Data Acquisition Collect all months traffic data using two different Wikimedia REST API endpoints, Pagecounts and Pageviews, for both mobile and desktop (excluding spider bot). Output is 5 JSON files: 1. pagecounts desktop 2. pagecounts mobile 3. pageview desktop 4. pageview mobile web 5. pageview mobile app End of explanation import csv import pandas as pd csv_file = 'en-wikipedia_traffic_200801-201709.csv' headers = [ 'timestamp', 'year', 'month', 'pagecounts_all_views', 'pagecounts_desktop_views', 'pagecounts_mobile_views', 'pageviews_all_views', 'pageviews_desktop_views', 'pageviews_mobile_views'] def load_df(file): apiname = file.split('_')[0] accesstype = file.split('_')[1].split('-')[0] column = apiname + '_' + accesstype + '_views' with open(file, 'r') as f: views = json.load(f) data = pd.DataFrame.from_dict(views) if apiname == 'pageviews': data = data.drop(['access','agent','granularity','project'], axis=1) data = data.rename(columns = {'views': column}) # if 'mobile' in view['access']: else: data = data.drop(['access-site', 'granularity','project'], axis=1) data = data.rename(columns = {'count': column}) return data df = pd.DataFrame() for i in json_files: # Load json file to pandas dataframe data = load_df(i) if len(df) == 0: df = data.copy(True) else: df = df.merge(data, on='timestamp', how='outer') # Create year and month out of timestamp attribute df = df.assign(year=df.timestamp.str[0:4]) df = df.assign(month=df.timestamp.str[4:6]) df.timestamp = df.timestamp.str[:-2] # Combining two pageviews_mobile_views columns, one from mobile-app, and the other from mobile-web df = df.assign(pageviews_mobile_views= lambda x: x.pageviews_mobile_views_x + x.pageviews_mobile_views_y) df = df.drop(['pageviews_mobile_views_x', 'pageviews_mobile_views_y'], axis=1) # Sum mobile and desktop to get all views df = df.assign(pageviews_all_views= lambda x: x.pageviews_mobile_views + x.pageviews_desktop_views) df = df.assign(pagecounts_all_views= lambda x: x.pagecounts_mobile_views + x.pagecounts_desktop_views) df = df.fillna(value=0) df.to_csv(csv_file, columns=headers, index = False) Explanation: The first step is to query each Wikipedia Rest API endpoint using $wikipedia_query$ function with different parameter combination. Each response then saved to a json file using $store_to_json$ function. Print statements are used to debug the number of items the response returns with. Two JSON files from two extra queries (all views for each API) are also produced to help with data processing in the next stage. Stage 2. Data Processing Process these data files to prepare them for analysis by combining each JSON file into a single CSV file with these headers: - year - month - pagecount_all_views - pagecount_desktop_views - pagecount_mobile_views - pageview_all_views - pageview_desktop_views - pageview_mobile_views End of explanation import matplotlib import matplotlib.pyplot as plt matplotlib.style.use('ggplot') csv_file = 'en-wikipedia_traffic_200801-201709.csv' # Read the CSV file to pandas dataframe in which the 'timestamp' column is the new index df = pd.read_csv(csv_file, index_col=0, parse_dates=[0], infer_datetime_format=True) # Drop year and month columns since it's not needed for plotting df = df.drop(['year','month'], axis=1) plt.figure() df.plot() plt.xlabel('datetime') plt.ylabel('views (in 10 millions)') plt.title('Wikipedia Traffic Data') plt.legend() plt.savefig('en-wikipedia_traffic_200801-201709.png') plt.show() Explanation: There are two basicways to combine number of views from pageviews and pagecounts API: using Pandas library or using Python built-in library. I found out it is very difficult to pivot from the JSON files to year and month using Python built-in basic library. On the other hand, pandas provide a nice way to mung the data. Each JSON file is loaded to a pandas dataframe, all of which is merged on timestamp to a single dataframe. Year and month are derived from the timestamp, and pageviews' mobile app and mobile web numbers are combined. Mobile and desktop views are summed to get pagecounts' and apgeviews' all views. Finally, I replaced all non-existant value with 0 before saving the dataframe to a CSV file. Stage 3. Analysis Visualize the dataset as a time series graph. This will include mobile, desktop, and combined (mobile+desktop) traffic. End of explanation
3,325
Given the following text description, write Python code to implement the functionality described below step by step Description: Notebook arguments sigma (float) Step1: Fitting models Models used to fit the data. 1. Simple Exponential In this model, we define the model function as an exponential transient Step2: 2. Integrated Exponential A more realistic model needs to take into account that each data point is the result of an integration over a time window $w$ Step3: Generative model These are the models used to generate the simulates (noisy) data. 1. Simple Exponential + Noise In this simple model, we simulate random data $Y$ as an exponential decay plus additive Gaussian noise Step4: An ideal transient (no noise, no integration) Step5: A simulated transient (including noise + integration) Step6: Plot the computed curves Step7: Fit data Fit the "Integrated Exponential" model Step8: Fit the "Simple Exponential" model Step9: Print and plot fit results Step10: Monte-Carlo Simulation Here, fixed the model paramenters, we generate and fit several noisy datasets. Then, by plotting the distribution of the fitted parameters, we assess the stability and accuracy of the fit. Parameters The number simulation cycles is defined by num_sim_cycles. Current value is Step11: The fixed kinetic curve parameters are Step12: While tau is varied, taking the following values Step13: <div class="alert alert-info"> **NOTE** Step14: Run Monte-Carlo simulation Run the Monte-Carlo fit for a set of different time-constants (taus) and save results in two DataFrames, one for each model. Step15: <div class="alert alert-danger"> **WARNING** Step16: Results2 - Integrated Exponential
Python Code: %matplotlib inline import numpy as np import lmfit import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import models # custom module Explanation: Notebook arguments sigma (float): standard deviation of additive Gaussian noise to be simulated time_window (float): seconds, integration window duration time_step (float): seconds, time step for the moving integration window time_start (float): seconds, start of time axis (kinetics starts at t = t0). time_stop (float): seconds, stop of time axis (kinetics starts at t = t0). t0_vary (bool): whether models should vary the curve origin (t0) during the fit true_params (dict): parameters used to generate simulated kinetic curves num_sim_cycles (int): number of times fit is repeated (Monte-Carlo) taus (tuple): list of values for time-costant tau simulated during repeated fits (Monte-Carlo). Simulated Kinetic Curve Fit <p class=lead>This notebook fits simulated exponential transients with additive Gaissian noise in order to study time-constant fitting accuracy. In particular we compare a simple exponential model with a more realistic model with integration window, checking the effect on the fit results. <p> You can either run this notebook directly, or run it through the [master notebook](Simulated Kinetic Curve Fit - Run-All.ipynb) for batch processing. ## Imports End of explanation labels = ('tau', 'init_value', 'final_value') model = models.factory_model_exp(t0_vary=True) Explanation: Fitting models Models used to fit the data. 1. Simple Exponential In this model, we define the model function as an exponential transient: $$ y = f(t) = A \cdot e^{-t/\tau} + K$$ The python function implementing it is: models.exp_func(). Next cell defines and initializes the fitting model (lmfit.model.Model) including parameters' constrains: End of explanation modelw = models.factory_model_expwin(t_window=time_window, decimation=decimation, t0_vary=t0_vary) Explanation: 2. Integrated Exponential A more realistic model needs to take into account that each data point is the result of an integration over a time window $w$: $$f(t) = A \cdot e^{-t/\tau} + K$$ $$y(t) = \int_{t}^{t+w} f(t')\;dt'$$ In other words, when we process a measurement in time chunks, we are integrating a non-stationary signal $f(t)$ over a time window $w$. This integration causes a smoothing of $f(t)$, regardless of the fact that time is binned or is swiped-through with a moving windows (overlapping chunks). Numerically, $t$ is discretized with step equal to (time_step / decimation). The python function implementing this model function is: models.expwindec_func(). And, finally, we define and initialize the fitting model parameters' constrains: End of explanation t = np.arange(time_start, time_stop-time_window, time_step).astype(float) t.size Explanation: Generative model These are the models used to generate the simulates (noisy) data. 1. Simple Exponential + Noise In this simple model, we simulate random data $Y$ as an exponential decay plus additive Gaussian noise: $$ Y(t_k) = f(t_k) + N_k $$ $$ {N_k} \sim {\rm Normal}{\mu=0; \sigma}$$ $$ \Delta t = t_k - t_{k-1} = \texttt{time_step}$$ 2. Integrated Exponential + Noise For the "integrating window" model, we first define a finer time axis $\theta_i$ which oversamples $t_k$ by a factor $n$. Then we define the function $Y_f$ adding Gaussian noise $\sqrt{n}\,N_i$, with $n$ times larger variance: $$ Y_f(\theta_i) = f(\theta_i) + \sqrt{n}\,N_i $$ $$ \Delta \theta = \theta_i - \theta_{i-1} = \texttt{time_step} \;/\; n$$ Finally, by averaging each time window, we compute the data on the coarse time axis $t_k$: $$ Y_w(t_k) = \frac{1}{m}\sum_{i} Y_f(\theta_i)$$ Here, for each $t_k$, we compute the mean of $m$ consecutive $Y_f$ values. The number $m$ is chosen so that $m\, \Delta \theta$ is equal to the time window. Noise amplitude The amplitude of the additive noise ($\sigma$) is estimated from the experimental kinetic curves. In particular we take the variance from the POST period (i.e. the steady state period after the transient). The POST period has been chosen because it exhibits higher variance than the PRE period (i.e. the steady state period before the transient). These values have been calculated in 8-spot bubble-bubble kinetics - Summary. In both models we define the noise amplitude as sigma (see first cell): sigma = 0.016 Time axis We also define the parameters for the time axis $t$: time_start = -900 # seconds time_stop = 900 # seconds time_step = 5 # seconds Kinetic curve paramenters The simulated kinetic curve has the following parameters: true_params = dict( tau = 60, # time constant init_value = 0.3, # initial value (for t &lt; t0) final_value = 0.8, # final value (for t -&gt; +inf) t0 = 0) # time origin <div class="alert alert-info"> **NOTE**: All previous parameters are defined in the first notebook cell. </div> Single kinetic curve fit Here we simulate one kinetic curve and fit it with the two models (simple exponential and integrated exponential). Draw simulated data Time axis for simulated data: End of explanation y = models.expwindec_func(t, t_window=time_window, **true_params) y.shape Explanation: An ideal transient (no noise, no integration): End of explanation time_window, time_step yr = models.expwindec_func(t, t_window=time_window, sigma=sigma, **true_params) yr.shape Explanation: A simulated transient (including noise + integration): End of explanation plt.plot(t, y, '-', label='model') plt.plot(t, yr, 'o', label='model + noise') Explanation: Plot the computed curves: End of explanation #%%timeit resw = modelw.fit(yr, t=t, tau=10, init_value=0.1, final_value=0.9, verbose=False) Explanation: Fit data Fit the "Integrated Exponential" model: End of explanation #%%timeit res = model.fit(yr, t=t + 0.5*time_window, tau=10, init_value=0.1, final_value=0.9, verbose=False) Explanation: Fit the "Simple Exponential" model: End of explanation fig = plt.figure(figsize=(14, 8)) res.plot(fig=fig) ci = lmfit.conf_interval(res, res) lmfit.report_fit(res) print(lmfit.ci_report(ci, with_offset=False)) #plt.xlim(-300, 300) fig = plt.figure(figsize=(14, 8)) resw.plot(fig=fig) ci = lmfit.conf_interval(resw, resw) lmfit.report_fit(resw) print(lmfit.ci_report(ci, with_offset=False)) #plt.xlim(-300, 300) Explanation: Print and plot fit results: End of explanation num_sim_cycles Explanation: Monte-Carlo Simulation Here, fixed the model paramenters, we generate and fit several noisy datasets. Then, by plotting the distribution of the fitted parameters, we assess the stability and accuracy of the fit. Parameters The number simulation cycles is defined by num_sim_cycles. Current value is: End of explanation {k: v for k, v in true_params.items() if k is not "tau"} Explanation: The fixed kinetic curve parameters are: End of explanation taus t0_vary Explanation: While tau is varied, taking the following values: End of explanation def draw_samples_and_fit(true_params): # Create the data t = np.arange(time_start, time_stop-time_window, time_step).astype(float) yr = models.expwindec_func(t, t_window=time_window, sigma=sigma, decimation=100, **true_params) # Fit the model tc = t + 0.5*time_window kws = dict(fit_kws=dict(nan_policy='omit'), verbose=False) res = model.fit(yr, t=tc, tau=90, method='nelder', **kws) res = model.fit(yr, t=tc, **kws) resw = modelw.fit(yr, t=t, tau=400, decimation=decimation, method='nelder', **kws) resw = modelw.fit(yr, t=t, decimation=decimation, **kws) return res, resw def monte_carlo_sim(true_params, N): df1 = pd.DataFrame(index=range(N), columns=labels) df2 = df1.copy() for i in range(N): res1, res2 = draw_samples_and_fit(true_params) for var in labels: df1.loc[i, var] = res1.values[var] df2.loc[i, var] = res2.values[var] return df1, df2 Explanation: <div class="alert alert-info"> **NOTE**: All previous parameters are defined in the first notebook cell. </div> Functions Here we define two functions: draw_samples_and_fit() draws a set of data and fits it with both models monte_carlo_sim() run the Monte-Carlo simulation: calls draw_samples_and_fit() many times. NOTE: Global variables are used by previous functions. End of explanation mc_results1, mc_results2 = [], [] %%timeit -n1 -r1 # <-- prints execution time for tau in taus: true_params['tau'] = tau df1, df2 = monte_carlo_sim(true_params, num_sim_cycles) mc_results1.append(df1) mc_results2.append(df2) Explanation: Run Monte-Carlo simulation Run the Monte-Carlo fit for a set of different time-constants (taus) and save results in two DataFrames, one for each model. End of explanation for tau, df in zip(taus, mc_results1): true_params['tau'] = tau fig, ax = plt.subplots(1, 3, figsize=(16, 4)) for i, var in enumerate(labels): std = df[var].std() df[var].hist(bins=30, ax=ax[i]) ax[i].set_title("%s = %.1f (%.3f)" % (var, true_params[var], std), fontsize=18) ax[i].axvline(true_params[var], color='r', ls='--') #print('True parameters: %s' % true_params) Explanation: <div class="alert alert-danger"> **WARNING**: The previous cell can take a long to execute. Execution time scales with **`num_sim_cycles * len(taus)`**. </div> Results1 - Simple Exponential End of explanation for tau, df in zip(taus, mc_results2): true_params['tau'] = tau fig, ax = plt.subplots(1, 3, figsize=(16, 4)) for i, var in enumerate(labels): std = df[var].std() df[var].hist(bins=30, ax=ax[i]) ax[i].set_title("%s = %.1f (%.3f)" % (var, true_params[var], std), fontsize=18) ax[i].axvline(true_params[var], color='r', ls='--') #print('True parameters: %s' % true_params) Explanation: Results2 - Integrated Exponential End of explanation
3,326
Given the following text description, write Python code to implement the functionality described below step by step Description: Introduction to NumPy Topics Basic Synatx creating vectors matrices special Step1: This code sets up Ipython Notebook environments (lines beginning with %), and loads several libraries and functions. The core scientific stack in python consists of a number of free libraries. The ones I have loaded above include Step2: Vectors and Lists The numpy library (we will reference it by np) is the workhorse library for linear algebra in python. To creat a vector simply surround a python list ($[1,2,3]$) with the np.array function Step3: We could have done this by defining a python list and converting it to an array Step4: Matrix Addition and Subtraction Adding or subtracting a scalar value to a matrix To learn the basics, consider a small matrix of dimension $2 \times 2$, where $2 \times 2$ denotes the number of rows $\times$ the number of columns. Let $A$=$\bigl( \begin{smallmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{smallmatrix} \bigr)$. Consider adding a scalar value (e.g. 3) to the A. $$ \begin{equation} A+3=\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}+3 =\begin{bmatrix} a_{11}+3 & a_{12}+3 \ a_{21}+3 & a_{22}+3 \end{bmatrix} \end{equation} $$ The same basic principle holds true for A-3 Step5: Adding or subtracting two matrices Consider two small $2 \times 2$ matrices, where $2 \times 2$ denotes the # of rows $\times$ the # of columns. Let $A$=$\bigl( \begin{smallmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{smallmatrix} \bigr)$ and $B$=$\bigl( \begin{smallmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{smallmatrix} \bigr)$. To find the result of $A-B$, simply subtract each element of A with the corresponding element of B Step6: Matrix Multiplication Multiplying a scalar value times a matrix As before, let $A$=$\bigl( \begin{smallmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{smallmatrix} \bigr)$. Suppose we want to multiply A times a scalar value (e.g. $3 \times A$) $$ \begin{equation} 3 \times A = 3 \times \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 3a_{11} & 3a_{12} \ 3a_{21} & 3a_{22} \end{bmatrix} \end{equation} $$ is of dimension (2,2). Scalar multiplication is commutative, so that $3 \times A$=$A \times 3$. Notice that the product is defined for a matrix A of any dimension. Similar to scalar addition and subtration, the code is simple Step7: Multiplying two matricies Now, consider the $2 \times 1$ vector $C=\bigl( \begin{smallmatrix} c_{11} \ c_{21} \end{smallmatrix} \bigr)$ Consider multiplying matrix $A_{2 \times 2}$ and the vector $C_{2 \times 1}$. Unlike the addition and subtraction case, this product is defined. Here, conformability depends not on the row and column dimensions, but rather on the column dimensions of the first operand and the row dimensions of the second operand. We can write this operation as follows $$ \begin{equation} A_{2 \times 2} \times C_{2 \times 1} = \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}{2 \times 2} \times \begin{bmatrix} c{11} \ c_{21} \end{bmatrix}{2 \times 1} = \begin{bmatrix} a{11}c_{11} + a_{12}c_{21} \ a_{21}c_{11} + a_{22}c_{21} \end{bmatrix}_{2 \times 1} \end{equation} $$ Alternatively, consider a matrix C of dimension $2 \times 3$ and a matrix A of dimension $3 \times 2$ $$ \begin{equation} A_{3 \times 2}=\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix}{3 \times 2} , C{2 \times 3} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \ c_{21} & c_{22} & c_{23} \ \end{bmatrix}_{2 \times 3} \end{equation} $$ Here, A $\times$ C is $$ \begin{align} A_{3 \times 2} \times C_{2 \times 3}=& \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix}{3 \times 2} \times \begin{bmatrix} c{11} & c_{12} & c_{13} \ c_{21} & c_{22} & c_{23} \end{bmatrix}{2 \times 3} \ =& \begin{bmatrix} a{11} c_{11}+a_{12} c_{21} & a_{11} c_{12}+a_{12} c_{22} & a_{11} c_{13}+a_{12} c_{23} \ a_{21} c_{11}+a_{22} c_{21} & a_{21} c_{12}+a_{22} c_{22} & a_{21} c_{13}+a_{22} c_{23} \ a_{31} c_{11}+a_{32} c_{21} & a_{31} c_{12}+a_{32} c_{22} & a_{31} c_{13}+a_{32} c_{23} \end{bmatrix}_{3 \times 3} \end{align} $$ So in general, $X_{r_x \times c_x} \times Y_{r_y \times c_y}$ we have two important things to remember Step8: We will use the numpy dot operator to perform the these multiplications. You can use it two ways to yield the same result Step9: Matrix Division The term matrix division is actually a misnomer. To divide in a matrix algebra world we first need to invert the matrix. It is useful to consider the analog case in a scalar work. Suppose we want to divide the $f$ by $g$. We could do this in two different ways Step10: Check that $C\times C^{-1} = I$ Step11: Transposing a Matrix At times it is useful to pivot a matrix for conformability- that is in order to matrix divide or multiply, we need to switch the rows and column dimensions of matrices. Consider the matrix $$ \begin{equation} A_{3 \times 2}=\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix}{3 \times 2} \end{equation} $$ The transpose of A (denoted as $A^{\prime}$) is $$ \begin{equation} A^{\prime}=\begin{bmatrix} a{11} & a_{21} & a_{31} \ a_{12} & a_{22} & a_{32} \ \end{bmatrix}_{2 \times 3} \end{equation} $$ Step12: One important property of transposing a matrix is the transpose of a product of two matrices. Let matrix A be of dimension $N \times M$ and let B of of dimension $M \times P$. Then $$ \begin{equation} (AB)^{\prime}=B^{\prime}A^{\prime} \end{equation} $$ For more information, see this http Step13: Mechanics Indexing and Slicing examples from https Step14: Logic, Comparison Step15: Concatenate, Reshape Step16: Random Numbers Step17: Numpy load, save data files Step18: Similarity Step19: Example Step20: Let's add the bias, i.e. a column of $1$s to the explanatory variables Step21: Closed-form Linear Regression And compute the parametes $\beta_0$ and $\beta_1$ according to $$ \beta = (X^\prime X)^{-1} X^\prime y $$ Note Step22: Multiple Linear Regression Step23: Evaluation Step24: Regularization, Ridge-Regression Regularization, in mathematics and statistics and particularly in the fields of machine learning and inverse problems, is a process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting. In general, a regularization term $R(f)$ is introduced to a general loss function
Python Code: %matplotlib inline import math import numpy as np import matplotlib.pyplot as plt ##import seaborn as sbn ##from scipy import * Explanation: Introduction to NumPy Topics Basic Synatx creating vectors matrices special: ones, zeros, identity eye add, product, inverse Mechanics: indexing, slicing, concatenating, reshape, zip Numpy load, save data files Random numbers $\rightarrow$ distributions Similarity: Euclidian vs Cosine Example Nearest Neighbor search Example Linear Regression References Quick Start Tutorial https://docs.scipy.org/doc/numpy-dev/user/quickstart.html NumPy Basic https://docs.scipy.org/doc/numpy-dev/user/basics.html NumPy Refernce https://docs.scipy.org/doc/numpy-dev/reference/index.html Basics this section uses content created by Rob Hicks http://rlhick.people.wm.edu/stories/linear-algebra-python-basics.html Loading libraries The python universe has a huge number of libraries that extend the capabilities of python. Nearly all of these are open source, unlike packages like stata or matlab where some key libraries are proprietary (and can cost lots of money). In lots of my code, you will see this at the top: End of explanation x = .5 print x Explanation: This code sets up Ipython Notebook environments (lines beginning with %), and loads several libraries and functions. The core scientific stack in python consists of a number of free libraries. The ones I have loaded above include: sympy: provides for symbolic computation (solving algebra problems) numpy: provides for linear algebra computations matplotlib.pyplot: provides for the ability to graph functions and draw figures scipy: scientific python provides a plethora of capabilities seaborn: makes matplotlib figures even pretties (another library like this is called bokeh). This is entirely optional and is purely for eye candy. Creating arrays, scalars, and matrices in Python Scalars can be created easily like this: End of explanation x_vector = np.array([1,2,3]) print x_vector print type(x_vector) Explanation: Vectors and Lists The numpy library (we will reference it by np) is the workhorse library for linear algebra in python. To creat a vector simply surround a python list ($[1,2,3]$) with the np.array function: End of explanation c_list = [1,2] print "The list:",c_list print "Has length:", len(c_list) c_vector = np.array(c_list) print "The vector:", c_vector print "Has shape:",c_vector.shape z = [5,6] print "This is a list, not an array:",z print type(z) A = np.array([[0, 1, 2], [5, 6, 7]]) print A.shape print type(A) v = np.array([1,2,3,4]) print v.shape print len(v) Explanation: We could have done this by defining a python list and converting it to an array: End of explanation A result = A + 3 #or result = 3 + A print result Explanation: Matrix Addition and Subtraction Adding or subtracting a scalar value to a matrix To learn the basics, consider a small matrix of dimension $2 \times 2$, where $2 \times 2$ denotes the number of rows $\times$ the number of columns. Let $A$=$\bigl( \begin{smallmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{smallmatrix} \bigr)$. Consider adding a scalar value (e.g. 3) to the A. $$ \begin{equation} A+3=\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}+3 =\begin{bmatrix} a_{11}+3 & a_{12}+3 \ a_{21}+3 & a_{22}+3 \end{bmatrix} \end{equation} $$ The same basic principle holds true for A-3: $$ \begin{equation} A-3=\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}-3 =\begin{bmatrix} a_{11}-3 & a_{12}-3 \ a_{21}-3 & a_{22}-3 \end{bmatrix} \end{equation} $$ Notice that we add (or subtract) the scalar value to each element in the matrix A. A can be of any dimension. This is trivial to implement, now that we have defined our matrix A: End of explanation B = np.random.randn(2,2) print B A = np.array([[1,0], [0,1]]) A A*B Explanation: Adding or subtracting two matrices Consider two small $2 \times 2$ matrices, where $2 \times 2$ denotes the # of rows $\times$ the # of columns. Let $A$=$\bigl( \begin{smallmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{smallmatrix} \bigr)$ and $B$=$\bigl( \begin{smallmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{smallmatrix} \bigr)$. To find the result of $A-B$, simply subtract each element of A with the corresponding element of B: $$ \begin{equation} A -B = \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} - \begin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}-b_{11} & a_{12}-b_{12} \ a_{21}-b_{21} & a_{22}-b_{22} \end{bmatrix} \end{equation} $$ Addition works exactly the same way: $$ \begin{equation} A + B = \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}+b_{11} & a_{12}+b_{12} \ a_{21}+b_{21} & a_{22}+b_{22} \end{bmatrix} \end{equation} $$ An important point to know about matrix addition and subtraction is that it is only defined when $A$ and $B$ are of the same size. Here, both are $2 \times 2$. Since operations are performed element by element, these two matrices must be conformable- and for addition and subtraction that means they must have the same numbers of rows and columns. I like to be explicit about the dimensions of matrices for checking conformability as I write the equations, so write $$ A_{2 \times 2} + B_{2 \times 2}= \begin{bmatrix} a_{11}+b_{11} & a_{12}+b_{12} \ a_{21}+b_{21} & a_{22}+b_{22} \end{bmatrix}_{2 \times 2} $$ Notice that the result of a matrix addition or subtraction operation is always of the same dimension as the two operands. Let's define another matrix, B, that is also $2 \times 2$ and add it to A: End of explanation A * 3 Explanation: Matrix Multiplication Multiplying a scalar value times a matrix As before, let $A$=$\bigl( \begin{smallmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{smallmatrix} \bigr)$. Suppose we want to multiply A times a scalar value (e.g. $3 \times A$) $$ \begin{equation} 3 \times A = 3 \times \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 3a_{11} & 3a_{12} \ 3a_{21} & 3a_{22} \end{bmatrix} \end{equation} $$ is of dimension (2,2). Scalar multiplication is commutative, so that $3 \times A$=$A \times 3$. Notice that the product is defined for a matrix A of any dimension. Similar to scalar addition and subtration, the code is simple: End of explanation # Let's redefine A and C to demonstrate matrix multiplication: A = np.arange(6).reshape((3,2)) C = np.random.randn(2,2) print A.shape print C.shape Explanation: Multiplying two matricies Now, consider the $2 \times 1$ vector $C=\bigl( \begin{smallmatrix} c_{11} \ c_{21} \end{smallmatrix} \bigr)$ Consider multiplying matrix $A_{2 \times 2}$ and the vector $C_{2 \times 1}$. Unlike the addition and subtraction case, this product is defined. Here, conformability depends not on the row and column dimensions, but rather on the column dimensions of the first operand and the row dimensions of the second operand. We can write this operation as follows $$ \begin{equation} A_{2 \times 2} \times C_{2 \times 1} = \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}{2 \times 2} \times \begin{bmatrix} c{11} \ c_{21} \end{bmatrix}{2 \times 1} = \begin{bmatrix} a{11}c_{11} + a_{12}c_{21} \ a_{21}c_{11} + a_{22}c_{21} \end{bmatrix}_{2 \times 1} \end{equation} $$ Alternatively, consider a matrix C of dimension $2 \times 3$ and a matrix A of dimension $3 \times 2$ $$ \begin{equation} A_{3 \times 2}=\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix}{3 \times 2} , C{2 \times 3} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \ c_{21} & c_{22} & c_{23} \ \end{bmatrix}_{2 \times 3} \end{equation} $$ Here, A $\times$ C is $$ \begin{align} A_{3 \times 2} \times C_{2 \times 3}=& \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix}{3 \times 2} \times \begin{bmatrix} c{11} & c_{12} & c_{13} \ c_{21} & c_{22} & c_{23} \end{bmatrix}{2 \times 3} \ =& \begin{bmatrix} a{11} c_{11}+a_{12} c_{21} & a_{11} c_{12}+a_{12} c_{22} & a_{11} c_{13}+a_{12} c_{23} \ a_{21} c_{11}+a_{22} c_{21} & a_{21} c_{12}+a_{22} c_{22} & a_{21} c_{13}+a_{22} c_{23} \ a_{31} c_{11}+a_{32} c_{21} & a_{31} c_{12}+a_{32} c_{22} & a_{31} c_{13}+a_{32} c_{23} \end{bmatrix}_{3 \times 3} \end{align} $$ So in general, $X_{r_x \times c_x} \times Y_{r_y \times c_y}$ we have two important things to remember: For conformability in matrix multiplication, $c_x=r_y$, or the columns in the first operand must be equal to the rows of the second operand. The result will be of dimension $r_x \times c_y$, or of dimensions equal to the rows of the first operand and columns equal to columns of the second operand. Given these facts, you should convince yourself that matrix multiplication is not generally commutative, that the relationship $X \times Y = Y \times X$ does not hold in all cases. For this reason, we will always be very explicit about whether we are pre multiplying ($X \times Y$) or post multiplying ($Y \times X$) the vectors/matrices $X$ and $Y$. For more information on this topic, see this http://en.wikipedia.org/wiki/Matrix_multiplication. End of explanation print A.dot(C) print np.dot(A,C) # What would happen to C.dot(A) Explanation: We will use the numpy dot operator to perform the these multiplications. You can use it two ways to yield the same result: End of explanation # note, we need a square matrix (# rows = # cols), use C: C_inverse = np.linalg.inv(C) print C_inverse Explanation: Matrix Division The term matrix division is actually a misnomer. To divide in a matrix algebra world we first need to invert the matrix. It is useful to consider the analog case in a scalar work. Suppose we want to divide the $f$ by $g$. We could do this in two different ways: $$ \begin{equation} \frac{f}{g}=f \times g^{-1}. \end{equation} $$ In a scalar seeting, these are equivalent ways of solving the division problem. The second one requires two steps: first we invert g and then we multiply f times g. In a matrix world, we need to think about this second approach. First we have to invert the matrix g and then we will need to pre or post multiply depending on the exact situation we encounter (this is intended to be vague for now). Inverting a Matrix As before, consider the square $2 \times 2$ matrix $A$=$\bigl( \begin{smallmatrix} a_{11} & a_{12} \ a_{21} & a_{22}\end{smallmatrix} \bigr)$. Let the inverse of matrix A (denoted as $A^{-1}$) be $$ \begin{equation} A^{-1}=\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}^{-1}=\frac{1}{a_{11}a_{22}-a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{bmatrix} \end{equation} $$ The inverted matrix $A^{-1}$ has a useful property: $$ \begin{equation} A \times A^{-1}=A^{-1} \times A=I \end{equation} $$ where I, the identity matrix (the matrix equivalent of the scalar value 1), is $$ \begin{equation} I_{2 \times 2}=\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} \end{equation} $$ furthermore, $A \times I = A$ and $I \times A = A$. An important feature about matrix inversion is that it is undefined if (in the $2 \times 2$ case), $a_{11}a_{22}-a_{12}a_{21}=0$. If this relationship is equal to zero the inverse of A does not exist. If this term is very close to zero, an inverse may exist but $A^{-1}$ may be poorly conditioned meaning it is prone to rounding error and is likely not well identified computationally. The term $a_{11}a_{22}-a_{12}a_{21}$ is the determinant of matrix A, and for square matrices of size greater than $2 \times 2$, if equal to zero indicates that you have a problem with your data matrix (columns are linearly dependent on other columns). The inverse of matrix A exists if A is square and is of full rank (ie. the columns of A are not linear combinations of other columns of A). For more information on this topic, see this http://en.wikipedia.org/wiki/Matrix_inversion, for example, on inverting matrices. End of explanation print C.dot(C_inverse) print "Is identical to:" print C_inverse.dot(C) Explanation: Check that $C\times C^{-1} = I$: End of explanation A = np.arange(6).reshape((6,1)) B = np.arange(6).reshape((1,6)) A.dot(B) B.dot(A) A = np.arange(6).reshape((3,2)) B = np.arange(8).reshape((2,4)) print "A is" print A print "The Transpose of A is" print A.T Explanation: Transposing a Matrix At times it is useful to pivot a matrix for conformability- that is in order to matrix divide or multiply, we need to switch the rows and column dimensions of matrices. Consider the matrix $$ \begin{equation} A_{3 \times 2}=\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix}{3 \times 2} \end{equation} $$ The transpose of A (denoted as $A^{\prime}$) is $$ \begin{equation} A^{\prime}=\begin{bmatrix} a{11} & a_{21} & a_{31} \ a_{12} & a_{22} & a_{32} \ \end{bmatrix}_{2 \times 3} \end{equation} $$ End of explanation print B.T.dot(A.T) print "Is identical to:" print (A.dot(B)).T B.shape B[0, 3] A = np.arange(12).reshape((3,4)) A A[2,:].shape A[:,1].reshape(1,3).shape Explanation: One important property of transposing a matrix is the transpose of a product of two matrices. Let matrix A be of dimension $N \times M$ and let B of of dimension $M \times P$. Then $$ \begin{equation} (AB)^{\prime}=B^{\prime}A^{\prime} \end{equation} $$ For more information, see this http://en.wikipedia.org/wiki/Matrix_transposition on matrix transposition. This is also easy to implement: End of explanation a = np.arange(10) s = slice(2,7,2) print a[s] a = np.arange(10) b = a[2:7:2] print b a = np.arange(10) b = a[5] print b a = np.arange(10) print a print a[2:5] import numpy as np a = np.arange(10) print a[2:5] a = np.array([[1,2,3],[3,4,5],[4,5,6]]) print a # slice items starting from index print 'Now we will slice the array from the index a[1:]' print a[1:] # array to begin with a = np.array([[1,2,3],[3,4,5],[4,5,6]]) print 'Our array is:' print a print '\n' # this returns array of items in the second column print 'The items in the second column are:' print a[...,1] print '\n' # Now we will slice all items from the second row print 'The items in the second row are:' print a[1,...] print '\n' # Now we will slice all items from column 1 onwards print 'The items column 1 onwards are:' print a[...,1:] Explanation: Mechanics Indexing and Slicing examples from https://www.tutorialspoint.com/numpy/numpy_indexing_and_slicing.htm End of explanation A = np.random.rand(5,5)*10 print A print (A < 5) print A[A < 5] A[A<5] = 0 A A[A>=5] = 1 A Explanation: Logic, Comparison End of explanation np.ones((10,5), int) np.zeros((10,5), int) np.eye(5, dtype="int") Explanation: Concatenate, Reshape End of explanation v1 = np.random.rand(100) v2 = np.random.randn(100) plt.plot(range(v1.shape[0]), v1, '.') plt.plot(range(v2.shape[0]), v2, '.') plt.hist(v1) ; v2 = np.random.randn(10000) plt.hist(v2, bins=100) ; v3 = np.random.beta(3,2, 1000) plt.hist(v3, bins=100) ; Explanation: Random Numbers End of explanation ls -l HW03/ %%sh ./HW03/preprocess_data.sh HW03/Camera.csv HW03/Camera_cleaned.csv head HW03/Camera_cleaned.csv DATA = np.genfromtxt('HW03/Camera_cleaned.csv', delimiter=';') DATA. np.max(DATA[1:,2]) np.nanargmin() Explanation: Numpy load, save data files End of explanation ### Pure iterative Python ### points = [[9,2,8],[4,7,2],[3,4,4],[5,6,9],[5,0,7],[8,2,7],[0,3,2],[7,3,0],[6,1,1],[2,9,6]] qPoint = [4,5,3] minIdx = -1 minDist = -1 for idx, point in enumerate(points): # iterate over all points print "index is %d, point is %s" % (idx, point) dist = sum([(dp-dq)**2 for dp,dq in zip(point,qPoint)])**0.5 # compute the euclidean distance for each point to q if dist < minDist or minDist < 0: # if necessary, update minimum distance and index of the corresponding point minDist = dist minIdx = idx print 'Nearest point to q: ', points[minIdx] zip(point, qPoint) # # # Equivalent NumPy vectorization # # # import numpy as np points = np.array([[9,2,8],[4,7,2],[3,4,4],[5,6,9],[5,0,7],[8,2,7],[0,3,2],[7,3,0],[6,1,1],[2,9,6]]) qPoint = np.array([4,5,3]) minIdx = np.argmin(np.linalg.norm(points-qPoint,axis=1)) # compute all euclidean distances at once and return the index of the smallest one print 'Nearest point to q: ', points[minIdx] print points.shape print qPoint.shape print points print qPoint print points-qPoint from numpy.linalg import norm norm(points-qPoint) 1.0-points[0,:].dot(qPoint)/(norm(points[0,:])*norm(qPoint)) Explanation: Similarity: Euclidian vs Cosine Example Nearest Neighbor search Nearest Neighbor search is a common technique in Machine Learning End of explanation n = 100 # numeber of samples Xr = np.random.rand(n)*99.0 y = -7.3 + 2.5*Xr + np.random.randn(n)*27.0 plt.plot(Xr, y, "o", alpha=0.5) Explanation: Example: Linear Regression Linear regression is an approach for modeling the relationship between a scalar dependent variable $y$ and one or more explanatory variables (or independent variables) denoted $X$. The case of one explanatory variable is called simple linear regression. For more than one explanatory variable, the process is called multiple linear regression.$^1$ (This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.$^2$ We assume that the equation $y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ where $\epsilon_i \approx N(0, \sigma^2)$ $^1$ David A. Freedman (2009). Statistical Models: Theory and Practice. Cambridge University Press. p. 26. A simple regression equation has on the right hand side an intercept and an explanatory variable with a slope coefficient. A multiple regression equation has two or more explanatory variables on the right hand side, each with its own slope coefficient $^2$ Rencher, Alvin C.; Christensen, William F. (2012), "Chapter 10, Multivariate regression – Section 10.1, Introduction", Methods of Multivariate Analysis, Wiley Series in Probability and Statistics, 709 (3rd ed.), John Wiley &amp; Sons, p. 19, ISBN 9781118391679. End of explanation X = np.vstack((np.ones(n), Xr)).T print X.shape X[0:10,:] Explanation: Let's add the bias, i.e. a column of $1$s to the explanatory variables End of explanation beta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y) yhat = X.dot(beta) yhat.shape plt.plot(X[:,1], y, "o", alpha=0.5) plt.plot(X[:,1], yhat, "-", alpha=1, color="red") Explanation: Closed-form Linear Regression And compute the parametes $\beta_0$ and $\beta_1$ according to $$ \beta = (X^\prime X)^{-1} X^\prime y $$ Note: This not only looks elegant but can also be written in Julia code. However, matrix inversion $M^{-1}$ requires $O(d^3)$ iterations for a $d\times d$ matrix.<br /> https://www.coursera.org/learn/ml-regression/lecture/jOVX8/discussing-the-closed-form-solution End of explanation n = 100 # numeber of samples X1 = np.random.rand(n)*99.0 X2 = np.random.rand(n)*51.0 - 26.8 X3 = np.random.rand(n)*5.0 + 6.1 X4 = np.random.rand(n)*1.0 - 0.5 X5 = np.random.rand(n)*300.0 y_m = -7.3 + 2.5*X1 + -7.9*X2 + 1.5*X3 + 10.0*X4 + 0.13*X5 + np.random.randn(n)*7.0 plt.hist(y_m, bins=20) ; X_m = np.vstack((np.ones(n), X1, X2, X3, X4, X5)).T X_m.shape beta_m = np.linalg.inv(X_m.T.dot(X_m)).dot(X_m.T).dot(y_m) beta_m yhat_m = X.dot(beta_m) yhat_m.shape Explanation: Multiple Linear Regression End of explanation import math RSMD = math.sqrt(np.square(yhat_m-y_m).sum()/n) print RSMD Explanation: Evaluation: Root-mean-square Deviation The root-mean-square deviation (RMSD) or root-mean-square error (RMSE) is a frequently used measure of the differences between values (sample and population values) predicted by a model or an estimator and the values actually observed. The RMSD represents the sample standard deviation of the differences between predicted values and observed values. These individual differences are called residuals when the calculations are performed over the data sample that was used for estimation, and are called prediction errors when computed out-of-sample. The RMSD serves to aggregate the magnitudes of the errors in predictions for various times into a single measure of predictive power. RMSD is a good measure of accuracy, but only to compare forecasting errors of different models for a particular variable and not between variables, as it is scale-dependent.$^1$ $^1$ Hyndman, Rob J. Koehler, Anne B.; Koehler (2006). "Another look at measures of forecast accuracy". International Journal of Forecasting. 22 (4): 679–688. doi:10.1016/j.ijforecast.2006.03.001. End of explanation p = X.shape[1] ## get number of parameters lam = 10.0 p, lam beta2 = np.linalg.inv(X.T.dot(X) + lam*np.eye(p)).dot(X.T).dot(y) yhat2 = X.dot(beta2) RSMD2 = math.sqrt(np.square(yhat2-y).sum()/n) print RSMD2 ##n = float(X.shape[0]) print " RMSE = ", math.sqrt(np.square(yhat-y).sum()/n) print "Ridge RMSE = ", math.sqrt(np.square(yhat2-y).sum()/n) plt.plot(X[:,1], y, "o", alpha=0.5) plt.plot(X[:,1], yhat, "-", alpha=0.7, color="red") plt.plot(X[:,1], yhat2, "-", alpha=0.7, color="green") Explanation: Regularization, Ridge-Regression Regularization, in mathematics and statistics and particularly in the fields of machine learning and inverse problems, is a process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting. In general, a regularization term $R(f)$ is introduced to a general loss function: for a loss function $V$ that describes the cost of predicting $f(x)$ when the label is $y$, such as the square loss or hinge loss, and for the term $\lambda$ which controls the importance of the regularization term. $R(f)$ is typically a penalty on the complexity of $f$, such as restrictions for smoothness or bounds on the vector space norm.$^1$ A theoretical justification for regularization is that it attempts to impose Occam's razor on the solution, as depicted in the figure. From a Bayesian point of view, many regularization techniques correspond to imposing certain prior distributions on model parameters. Regularization can be used to learn simpler models, induce models to be sparse, introduce group structure into the learning problem, and more. We're going to add the L2 term $\lambda||\beta||_2^2$ to the regression equation, which yields to$^2$ $$ \beta = (X^\prime X + \lambda I)^{-1} X^\prime y $$ $^1$ Bishop, Christopher M. (2007). Pattern recognition and machine learning (Corr. printing. ed.). New York: Springer. ISBN 978-0387310732. $^2$ http://stats.stackexchange.com/questions/69205/how-to-derive-the-ridge-regression-solution End of explanation
3,327
Given the following text description, write Python code to implement the functionality described below step by step Description: Copyright 2019 The TensorFlow Authors. Step1: Image classification with TensorFlow Lite Model Maker <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https Step2: Import the required packages. Step3: Simple End-to-End Example Get the data path Let's get some images to play with this simple end-to-end example. Hundreds of images is a good start for Model Maker while more data could achieve better accuracy. Step4: You could replace image_path with your own image folders. As for uploading data to colab, you could find the upload button in the left sidebar shown in the image below with the red rectangle. Just have a try to upload a zip file and unzip it. The root file path is the current path. <img src="https Step5: Step 2. Customize the TensorFlow model. Step6: Step 3. Evaluate the model. Step7: Step 4. Export to TensorFlow Lite model. Here, we export TensorFlow Lite model with metadata which provides a standard for model descriptions. You could download it in the left sidebar same as the uploading part for your own use. Step8: After this simple 4 steps, we could further use TensorFlow Lite model file and label file in on-device applications like in image classification reference app. Detailed Process Currently, we support several models such as EfficientNet-Lite* models, MobileNetV2, ResNet50 as pre-trained models for image classification. But it is very flexible to add new pre-trained models to this library with just a few lines of code. The following walks through this end-to-end example step by step to show more detail. Step 1 Step9: Use ImageClassifierDataLoader class to load data. As for from_folder() method, it could load data from the folder. It assumes that the image data of the same class are in the same subdirectory and the subfolder name is the class name. Currently, JPEG-encoded images and PNG-encoded images are supported. Step10: Split it to training data (80%), validation data (10%, optional) and testing data (10%). Step11: Show 25 image examples with labels. Step12: Step 2 Step13: Have a look at the detailed model structure. Step14: Step 3 Step15: We could plot the predicted results in 100 test images. Predicted labels with red color are the wrong predicted results while others are correct. Step16: If the accuracy doesn't meet the app requirement, one could refer to Advanced Usage to explore alternatives such as changing to a larger model, adjusting re-training parameters etc. Step 4 Step17: The TensorFlow Lite model file and label file could be used in image classification reference app. As for android reference app as an example, we could add flower_classifier.tflite and flower_label.txt in assets folder. Meanwhile, change label filename in code and TensorFlow Lite file name in code. Thus, we could run the retrained float TensorFlow Lite model on the android app. You can also evalute the tflite model with the evaluate_tflite method. Step18: Advanced Usage The create function is the critical part of this library. It uses transfer learning with a pretrained model similiar to the tutorial. The createfunction contains the following steps Step19: Then we export TensorFlow Lite model with such configuration. Step20: In Colab, you can download the model named model_quant.tflite from the left sidebar, same as the uploading part mentioned above. Change the model Change to the model that's supported in this library. This library supports EfficientNet-Lite models, MobileNetV2, ResNet50 by now. EfficientNet-Lite are a family of image classification models that could achieve state-of-art accuracy and suitable for Edge devices. The default model is EfficientNet-Lite0. We could switch model to MobileNetV2 by just setting parameter model_spec to mobilenet_v2_spec in create method. Step21: Evaluate the newly retrained MobileNetV2 model to see the accuracy and loss in testing data. Step22: Change to the model in TensorFlow Hub Moreover, we could also switch to other new models that inputs an image and outputs a feature vector with TensorFlow Hub format. As Inception V3 model as an example, we could define inception_v3_spec which is an object of ImageModelSpec and contains the specification of the Inception V3 model. We need to specify the model name name, the url of the TensorFlow Hub model uri. Meanwhile, the default value of input_image_shape is [224, 224]. We need to change it to [299, 299] for Inception V3 model. Step23: Then, by setting parameter model_spec to inception_v3_spec in create method, we could retrain the Inception V3 model. The remaining steps are exactly same and we could get a customized InceptionV3 TensorFlow Lite model in the end. Change your own custom model If we'd like to use the custom model that's not in TensorFlow Hub, we should create and export ModelSpec in TensorFlow Hub. Then start to define ImageModelSpec object like the process above. Change the training hyperparameters We could also change the training hyperparameters like epochs, dropout_rate and batch_size that could affect the model accuracy. For instance, epochs Step24: Evaluate the newly retrained model with 10 training epochs.
Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Explanation: Copyright 2019 The TensorFlow Authors. End of explanation !pip install tflite-model-maker Explanation: Image classification with TensorFlow Lite Model Maker <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https://www.tensorflow.org/lite/tutorials/model_maker_image_classification"><img src="https://www.tensorflow.org/images/tf_logo_32px.png" />View on TensorFlow.org</a> </td> <td> <a target="_blank" href="https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" />Run in Google Colab</a> </td> <td> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" />View source on GitHub</a> </td> <td> <a href="https://storage.googleapis.com/tensorflow_docs/tensorflow/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png" />Download notebook</a> </td> </table> Model Maker library simplifies the process of adapting and converting a TensorFlow neural-network model to particular input data when deploying this model for on-device ML applications. This notebook shows an end-to-end example that utilizes this Model Maker library to illustrate the adaption and conversion of a commonly-used image classification model to classify flowers on a mobile device. Prerequisites To run this example, we first need to install serveral required packages, including Model Maker package that in github repo. End of explanation import numpy as np import tensorflow as tf assert tf.__version__.startswith('2') from tflite_model_maker import configs from tflite_model_maker import image_classifier from tflite_model_maker import ImageClassifierDataLoader from tflite_model_maker import model_spec import matplotlib.pyplot as plt Explanation: Import the required packages. End of explanation image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) Explanation: Simple End-to-End Example Get the data path Let's get some images to play with this simple end-to-end example. Hundreds of images is a good start for Model Maker while more data could achieve better accuracy. End of explanation data = ImageClassifierDataLoader.from_folder(image_path) train_data, test_data = data.split(0.9) Explanation: You could replace image_path with your own image folders. As for uploading data to colab, you could find the upload button in the left sidebar shown in the image below with the red rectangle. Just have a try to upload a zip file and unzip it. The root file path is the current path. <img src="https://storage.googleapis.com/download.tensorflow.org/models/tflite/screenshots/model_maker_image_classification.png" alt="Upload File" width="800" hspace="100"> If you prefer not to upload your images to the cloud, you could try to run the library locally following the guide in github. Run the example The example just consists of 4 lines of code as shown below, each of which representing one step of the overall process. Step 1. Load input data specific to an on-device ML app. Split it to training data and testing data. End of explanation model = image_classifier.create(train_data) Explanation: Step 2. Customize the TensorFlow model. End of explanation loss, accuracy = model.evaluate(test_data) Explanation: Step 3. Evaluate the model. End of explanation model.export(export_dir='.') Explanation: Step 4. Export to TensorFlow Lite model. Here, we export TensorFlow Lite model with metadata which provides a standard for model descriptions. You could download it in the left sidebar same as the uploading part for your own use. End of explanation image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) Explanation: After this simple 4 steps, we could further use TensorFlow Lite model file and label file in on-device applications like in image classification reference app. Detailed Process Currently, we support several models such as EfficientNet-Lite* models, MobileNetV2, ResNet50 as pre-trained models for image classification. But it is very flexible to add new pre-trained models to this library with just a few lines of code. The following walks through this end-to-end example step by step to show more detail. Step 1: Load Input Data Specific to an On-device ML App The flower dataset contains 3670 images belonging to 5 classes. Download the archive version of the dataset and untar it. The dataset has the following directory structure: <pre> <b>flower_photos</b> |__ <b>daisy</b> |______ 100080576_f52e8ee070_n.jpg |______ 14167534527_781ceb1b7a_n.jpg |______ ... |__ <b>dandelion</b> |______ 10043234166_e6dd915111_n.jpg |______ 1426682852_e62169221f_m.jpg |______ ... |__ <b>roses</b> |______ 102501987_3cdb8e5394_n.jpg |______ 14982802401_a3dfb22afb.jpg |______ ... |__ <b>sunflowers</b> |______ 12471791574_bb1be83df4.jpg |______ 15122112402_cafa41934f.jpg |______ ... |__ <b>tulips</b> |______ 13976522214_ccec508fe7.jpg |______ 14487943607_651e8062a1_m.jpg |______ ... </pre> End of explanation data = ImageClassifierDataLoader.from_folder(image_path) Explanation: Use ImageClassifierDataLoader class to load data. As for from_folder() method, it could load data from the folder. It assumes that the image data of the same class are in the same subdirectory and the subfolder name is the class name. Currently, JPEG-encoded images and PNG-encoded images are supported. End of explanation train_data, rest_data = data.split(0.8) validation_data, test_data = rest_data.split(0.5) Explanation: Split it to training data (80%), validation data (10%, optional) and testing data (10%). End of explanation plt.figure(figsize=(10,10)) for i, (image, label) in enumerate(data.dataset.take(25)): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) plt.xlabel(data.index_to_label[label.numpy()]) plt.show() Explanation: Show 25 image examples with labels. End of explanation model = image_classifier.create(train_data, validation_data=validation_data) Explanation: Step 2: Customize the TensorFlow Model Create a custom image classifier model based on the loaded data. The default model is EfficientNet-Lite0. End of explanation model.summary() Explanation: Have a look at the detailed model structure. End of explanation loss, accuracy = model.evaluate(test_data) Explanation: Step 3: Evaluate the Customized Model Evaluate the result of the model, get the loss and accuracy of the model. End of explanation # A helper function that returns 'red'/'black' depending on if its two input # parameter matches or not. def get_label_color(val1, val2): if val1 == val2: return 'black' else: return 'red' # Then plot 100 test images and their predicted labels. # If a prediction result is different from the label provided label in "test" # dataset, we will highlight it in red color. plt.figure(figsize=(20, 20)) predicts = model.predict_top_k(test_data) for i, (image, label) in enumerate(test_data.dataset.take(100)): ax = plt.subplot(10, 10, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) predict_label = predicts[i][0][0] color = get_label_color(predict_label, test_data.index_to_label[label.numpy()]) ax.xaxis.label.set_color(color) plt.xlabel('Predicted: %s' % predict_label) plt.show() Explanation: We could plot the predicted results in 100 test images. Predicted labels with red color are the wrong predicted results while others are correct. End of explanation model.export(export_dir='.') Explanation: If the accuracy doesn't meet the app requirement, one could refer to Advanced Usage to explore alternatives such as changing to a larger model, adjusting re-training parameters etc. Step 4: Export to TensorFlow Lite Model Convert the existing model to TensorFlow Lite model format and save the image labels in label file. The default TFLite filename is model.tflite, the default label filename is label.txt. End of explanation model.evaluate_tflite('model.tflite', test_data) Explanation: The TensorFlow Lite model file and label file could be used in image classification reference app. As for android reference app as an example, we could add flower_classifier.tflite and flower_label.txt in assets folder. Meanwhile, change label filename in code and TensorFlow Lite file name in code. Thus, we could run the retrained float TensorFlow Lite model on the android app. You can also evalute the tflite model with the evaluate_tflite method. End of explanation config = configs.QuantizationConfig.create_full_integer_quantization(representative_data=test_data, is_integer_only=True) Explanation: Advanced Usage The create function is the critical part of this library. It uses transfer learning with a pretrained model similiar to the tutorial. The createfunction contains the following steps: Split the data into training, validation, testing data according to parameter validation_ratio and test_ratio. The default value of validation_ratio and test_ratio are 0.1 and 0.1. Download a Image Feature Vector as the base model from TensorFlow Hub. The default pre-trained model is EfficientNet-Lite0. Add a classifier head with a Dropout Layer with dropout_rate between head layer and pre-trained model. The default dropout_rate is the default dropout_rate value from make_image_classifier_lib by TensorFlow Hub. Preprocess the raw input data. Currently, preprocessing steps including normalizing the value of each image pixel to model input scale and resizing it to model input size. EfficientNet-Lite0 have the input scale [0, 1] and the input image size [224, 224, 3]. Feed the data into the classifier model. By default, the training parameters such as training epochs, batch size, learning rate, momentum are the default values from make_image_classifier_lib by TensorFlow Hub. Only the classifier head is trained. In this section, we describe several advanced topics, including switching to a different image classification model, changing the training hyperparameters etc. Post-training quantization on the TensorFLow Lite model Post-training quantization is a conversion technique that can reduce model size and inference latency, while also improving CPU and hardware accelerator latency, with little degradation in model accuracy. Thus, it's widely used to optimize the model. Model Maker supports multiple post-training quantization options. Let's take full integer quantization as an instance. First, define the quantization config to enforce enforce full integer quantization for all ops including the input and output. The input type and output type are uint8 by default. You may also change them to other types like int8 by setting inference_input_type and inference_output_type in config. End of explanation model.export(export_dir='.', tflite_filename='model_quant.tflite', quantization_config=config) Explanation: Then we export TensorFlow Lite model with such configuration. End of explanation model = image_classifier.create(train_data, model_spec=model_spec.mobilenet_v2_spec, validation_data=validation_data) Explanation: In Colab, you can download the model named model_quant.tflite from the left sidebar, same as the uploading part mentioned above. Change the model Change to the model that's supported in this library. This library supports EfficientNet-Lite models, MobileNetV2, ResNet50 by now. EfficientNet-Lite are a family of image classification models that could achieve state-of-art accuracy and suitable for Edge devices. The default model is EfficientNet-Lite0. We could switch model to MobileNetV2 by just setting parameter model_spec to mobilenet_v2_spec in create method. End of explanation loss, accuracy = model.evaluate(test_data) Explanation: Evaluate the newly retrained MobileNetV2 model to see the accuracy and loss in testing data. End of explanation inception_v3_spec = model_spec.ImageModelSpec( uri='https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1') inception_v3_spec.input_image_shape = [299, 299] Explanation: Change to the model in TensorFlow Hub Moreover, we could also switch to other new models that inputs an image and outputs a feature vector with TensorFlow Hub format. As Inception V3 model as an example, we could define inception_v3_spec which is an object of ImageModelSpec and contains the specification of the Inception V3 model. We need to specify the model name name, the url of the TensorFlow Hub model uri. Meanwhile, the default value of input_image_shape is [224, 224]. We need to change it to [299, 299] for Inception V3 model. End of explanation model = image_classifier.create(train_data, validation_data=validation_data, epochs=10) Explanation: Then, by setting parameter model_spec to inception_v3_spec in create method, we could retrain the Inception V3 model. The remaining steps are exactly same and we could get a customized InceptionV3 TensorFlow Lite model in the end. Change your own custom model If we'd like to use the custom model that's not in TensorFlow Hub, we should create and export ModelSpec in TensorFlow Hub. Then start to define ImageModelSpec object like the process above. Change the training hyperparameters We could also change the training hyperparameters like epochs, dropout_rate and batch_size that could affect the model accuracy. For instance, epochs: more epochs could achieve better accuracy until it converges but training for too many epochs may lead to overfitting. dropout_rate: avoid overfitting. batch_size: number of samples to use in one training step. validation_data: number of samples to use in one training step. For example, we could train with more epochs. End of explanation loss, accuracy = model.evaluate(test_data) Explanation: Evaluate the newly retrained model with 10 training epochs. End of explanation
3,328
Given the following text description, write Python code to implement the functionality described below step by step Description: Step1: Session 3 Step2: <a name="assignment-synopsis"></a> Assignment Synopsis In the last session we created our first neural network. We saw that in order to create a neural network, we needed to define a cost function which would allow gradient descent to optimize all the parameters in our network. We also saw how neural networks become much more expressive by introducing series of linearities followed by non-linearities, or activation functions. We then explored a fun application of neural networks using regression to learn to paint color values given x, y positions. This allowed us to build up a sort of painterly like version of an image. In this session, we'll see how to construct a few more types of neural networks. First, we'll explore a generative network called autoencoders. This network can be extended in a variety of ways to include convolution, denoising, or a variational layer. In Part Two, you'll then use a general autoencoder framework to encode your own list of images. In Part three, we'll then explore a discriminative network used for classification, and see how this can be used for audio classification of music or speech. One main difference between these two networks are the data that we'll use to train them. In the first case, we will only work with "unlabeled" data and perform unsupervised learning. An example would be a collection of images, just like the one you created for assignment 1. Contrast this with "labeled" data which allows us to make use of supervised learning. For instance, we're given both images, and some other data about those images such as some text describing what object is in the image. This allows us to optimize a network where we model a distribution over the images given that it should be labeled as something. This is often a much simpler distribution to train, but with the expense of it being much harder to collect. One of the major directions of future research will be in how to better make use of unlabeled data and unsupervised learning methods. <a name="part-one---autoencoders"></a> Part One - Autoencoders <a name="instructions"></a> Instructions Work with a dataset of images and train an autoencoder. You can work with the same dataset from assignment 1, or try a larger dataset. But be careful with the image sizes, and make sure to keep it relatively small (e.g. < 100 x 100 px). Recall from the lecture that autoencoders are great at "compressing" information. The network's construction and cost function are just like what we've done in the last session. The network is composed of a series of matrix multiplications and nonlinearities. The only difference is the output of the network has exactly the same shape as what is input. This allows us to train the network by saying that the output of the network needs to be just like the input to it, so that it tries to "compress" all the information in that video. Autoencoders have some great potential for creative applications, as they allow us to compress a dataset of information and even generate new data from that encoding. We'll see exactly how to do this with a basic autoencoder, and then you'll be asked to explore some of the extensions to produce your own encodings. <a name="code"></a> Code We'll now go through the process of building an autoencoder just like in the lecture. First, let's load some data. You can use the first 100 images of the Celeb Net, your own dataset, or anything else approximately under 1,000 images. Make sure you resize the images so that they are <= 100x100 pixels, otherwise the training will be very slow, and the montages we create will be too large. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step3: We'll now make use of something I've written to help us store this data. It provides some interfaces for generating "batches" of data, as well as splitting the data into training, validation, and testing sets. To use it, we pass in the data and optionally its labels. If we don't have labels, we just pass in the data. In the second half of this notebook, we'll explore using a dataset's labels as well. Step4: It allows us to easily find the mean Step5: Or the deviation Step6: Recall we can calculate the mean of the standard deviation across each color channel Step7: All the input data we gave as input to our Datasets object, previously stored in Xs is now stored in a variable as part of our ds Datasets object, X Step8: It takes a parameter, split at the time of creation, which allows us to create train/valid/test sets. By default, this is set to [1.0, 0.0, 0.0], which means to take all the data in the train set, and nothing in the validation and testing sets. We can access "batch generators" of each of these sets by saying Step9: This returns X and y as a tuple. Since we're not using labels, we'll just ignore this. The next_batch method takes a parameter, batch_size, which we'll set appropriately to our batch size. Notice it runs for exactly 10 iterations to iterate over our 100 examples, then the loop exits. The order in which it iterates over the 100 examples is randomized each time you iterate. Write two functions to preprocess (normalize) any given image, and to unprocess it, i.e. unnormalize it by removing the normalization. The preprocess function should perform exactly the task you learned to do in assignment 1 Step10: We're going to now work on creating an autoencoder. To start, we'll only use linear connections, like in the last assignment. This means, we need a 2-dimensional input Step11: Let's create a list of how many neurons we want in each layer. This should be for just one half of the network, the encoder only. It should start large, then get smaller and smaller. We're also going to try an encode our dataset to an inner layer of just 2 values. So from our number of features, we'll go all the way down to expressing that image by just 2 values. Try a small network to begin with, then explore deeper networks Step12: Now create a placeholder just like in the last session in the tensorflow graph that will be able to get any number (None) of n_features inputs. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step13: Now complete the function encode below. This takes as input our input placeholder, X, our list of dimensions, and an activation function, e.g. tf.nn.relu or tf.nn.tanh, to apply to each layer's output, and creates a series of fully connected layers. This works just like in the last session! We multiply our input, add a bias, then apply a non-linearity. Instead of having 20 neurons in each layer, we're going to use our dimensions list to tell us how many neurons we want in each layer. One important difference is that we're going to also store every weight matrix we create! This is so that we can use the same weight matrices when we go to build our decoder. This is a very powerful concept that creeps up in a few different neural network architectures called weight sharing. Weight sharing isn't necessary to do of course, but can speed up training and offer a different set of features depending on your dataset. Explore trying both. We'll also see how another form of weight sharing works in convolutional networks. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step14: We now have a function for encoding an input X. Take note of which activation function you use as this will be important for the behavior of the latent encoding, z, later on. Step15: Let's take a look at the graph Step16: So we've created a few layers, encoding our input X all the way down to 2 values in the tensor z. We do this by multiplying our input X by a set of matrices shaped as Step17: Resulting in a layer which is shaped as Step18: Building the Decoder Here is a helpful animation on what the matrix "transpose" operation does Step19: Now we'll build the decoder. I've shown you how to do this. Read through the code to fully understand what it is doing Step20: Let's take a look at the new operations we've just added. They will all be prefixed by "decoder" so we can use list comprehension to help us with this Step21: And let's take a look at the output of the autoencoder Step22: Great! So we should have a synthesized version of our input placeholder, X, inside of Y. This Y is the result of many matrix multiplications, first a series of multiplications in our encoder all the way down to 2 dimensions, and then back to the original dimensions through our decoder. Let's now create a pixel-to-pixel measure of error. This should measure the difference in our synthesized output, Y, and our input, X. You can use the $l_1$ or $l_2$ norm, just like in assignment 2. If you don't remember, go back to homework 2 where we calculated the cost function and try the same idea here. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step23: Now for the standard training code. We'll pass our cost to an optimizer, and then use mini batch gradient descent to optimize our network's parameters. We just have to be careful to make sure we're preprocessing our input and feed it in the right shape, a 2-dimensional matrix of [batch_size, n_features] in dimensions. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step24: Below is the training code for our autoencoder. Please go through each line of code to make sure you understand what is happening, and fill in the missing pieces. This will take awhile. On my machine, it takes about 15 minutes. If you're impatient, you can "Interrupt" the kernel by going to the Kernel menu above, and continue with the notebook. Though, the longer you leave this to train, the better the result will be. What I really want you to notice is what the network learns to encode first, based on what it is able to reconstruct. It won't able to reconstruct everything. At first, it will just be the mean image. Then, other major changes in the dataset. For the first 100 images of celeb net, this seems to be the background Step25: Note that if you run into "InternalError" or "ResourceExhaustedError", it is likely that you have run out of memory! Try a smaller network! For instance, restart the notebook's kernel, and then go back to defining encoder_dimensions = [256, 2] instead. If you run into memory problems below, you can also try changing the batch_size to 50. Step26: Let's take a look a the final reconstruction Step27: <a name="visualize-the-embedding"></a> Visualize the Embedding Let's now try visualizing our dataset's inner most layer's activations. Since these are already 2-dimensional, we can use the values of this layer to position any input image in a 2-dimensional space. We hope to find similar looking images closer together. We'll first ask for the inner most layer's activations when given our example images. This will run our images through the network, half way, stopping at the end of the encoder part of the network. Step28: Recall that this layer has 2 neurons Step29: Let's see what the activations look like for our 100 images as a scatter plot. Step30: If you view this plot over time, and let the process train longer, you will see something similar to the visualization here on the right Step31: To do this, we can use scipy and an algorithm for solving this assignment problem known as the hungarian algorithm. With a few points, this algorithm runs pretty fast. But be careful if you have many more points, e.g. > 1000, as it is not a very efficient algorithm! Step32: The result tells us the matching indexes from our autoencoder embedding of 2 dimensions, to our idealized grid Step33: In other words, this algorithm has just found the best arrangement of our previous zs as a grid. We can now plot our images using the order of our assignment problem to see what it looks like Step34: <a name="2d-latent-manifold"></a> 2D Latent Manifold We'll now explore the inner most layer of the network. Recall we go from the number of image features (the number of pixels), down to 2 values using successive matrix multiplications, back to the number of image features through more matrix multiplications. These inner 2 values are enough to represent our entire dataset (+ some loss, depending on how well we did). Let's explore how the decoder, the second half of the network, operates, from just these two values. We'll bypass the input placeholder, X, and the entire encoder network, and start from Z. Let's first get some data which will sample Z in 2 dimensions from -1 to 1. This range may be different for you depending on what your latent space's range of values are. You can try looking at the activations for your z variable for a set of test images, as we've done before, and look at the range of these values. Or try to guess based on what activation function you may have used on the z variable, if any. Then we'll use this range to create a linear interpolation of latent values, and feed these values through the decoder network to have our synthesized images to see what they look like. Step35: Now calculate the reconstructed images using our new zs. You'll want to start from the beginning of the decoder! That is the z variable! Then calculate the Y given our synthetic values for z stored in zs. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step36: And now we can plot the reconstructed montage representing our latent space Step37: <a name="part-two---general-autoencoder-framework"></a> Part Two - General Autoencoder Framework There are a number of extensions we can explore w/ an autoencoder. I've provided a module under the libs folder, vae.py, which you will need to explore for Part Two. It has a function, VAE, to create an autoencoder, optionally with Convolution, Denoising, and/or Variational Layers. Please read through the documentation and try to understand the different parameters. Step38: Included in the vae.py module is the train_vae function. This will take a list of file paths, and train an autoencoder with the provided options. This will spit out a bunch of images of the reconstruction and latent manifold created by the encoder/variational encoder. Feel free to read through the code, as it is documented. Step39: I've also included three examples of how to use the VAE(...) and train_vae(...) functions. First look at the one using MNIST. Then look at the other two Step40: <a name="part-three---deep-audio-classification-network"></a> Part Three - Deep Audio Classification Network <a name="instructions-2"></a> Instructions In this last section, we'll explore using a regression network, one that predicts continuous outputs, to perform classification, a model capable of predicting discrete outputs. We'll explore the use of one-hot encodings and using a softmax layer to convert our regression outputs to a probability which we can use for classification. In the lecture, we saw how this works for the MNIST dataset, a dataset of 28 x 28 pixel handwritten digits labeled from 0 - 9. We converted our 28 x 28 pixels into a vector of 784 values, and used a fully connected network to output 10 values, the one hot encoding of our 0 - 9 labels. In addition to the lecture material, I find these two links very helpful to try to understand classification w/ neural networks Step41: Inside the dst directory, we now have folders for music and speech. Let's get the list of all the wav files for music and speech Step42: We now need to load each file. We can use the scipy.io.wavefile module to load the audio as a signal. Audio can be represented in a few ways, including as floating point or short byte data (16-bit data). This dataset is the latter and so can range from -32768 to +32767. We'll use the function I've provided in the utils module to load and convert an audio signal to a -1.0 to 1.0 floating point datatype by dividing by the maximum absolute value. Let's try this with just one of the files we have Step43: Now, instead of using the raw audio signal, we're going to use the Discrete Fourier Transform to represent our audio as matched filters of different sinuoids. Unfortunately, this is a class on Tensorflow and I can't get into Digital Signal Processing basics. If you want to know more about this topic, I highly encourage you to take this course taught by the legendary Perry Cook and Julius Smith Step44: What we're seeing are the features of the audio (in columns) over time (in rows). We can see this a bit better by taking the logarithm of the magnitudes converting it to a psuedo-decibel scale. This is more similar to the logarithmic perception of loudness we have. Let's visualize this below, and I'll transpose the matrix just for display purposes Step45: We could just take just a single row (or column in the second plot of the magnitudes just above, as we transposed it in that plot) as an input to a neural network. However, that just represents about an 80th of a second of audio data, and is not nearly enough data to say whether something is music or speech. We'll need to use more than a single row to get a decent length of time. One way to do this is to use a sliding 2D window from the top of the image down to the bottom of the image (or left to right). Let's start by specifying how large our sliding window is. Step46: Now we can collect all the sliding windows into a list of Xs and label them based on being music as 0 or speech as 1 into a collection of ys. Step47: The code below will perform this for us, as well as create the inputs and outputs to our classification network by specifying 0s for the music dataset and 1s for the speech dataset. Let's just take a look at the first sliding window, and see it's label Step48: Since this was the first audio file of the music dataset, we've set it to a label of 0. And now the second one, which should have 50% overlap with the previous one, and still a label of 0 Step49: So hopefully you can see that the window is sliding down 250 milliseconds at a time, and since our window is 500 ms long, or half a second, it has 50% new content at the bottom. Let's do this for every audio file now Step50: Just to confirm it's doing the same as above, let's plot the first magnitude matrix Step51: Let's describe the shape of our input to the network Step52: We'll now use the Dataset object I've provided for you under libs/datasets.py. This will accept the Xs, ys, a list defining our dataset split into training, validation, and testing proportions, and a parameter one_hot stating whether we want our ys to be converted to a one hot vector or not. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step53: Let's take a look at the batch generator this object provides. We can all any of the splits, the train, valid, or test splits as properties of the object. And each split provides a next_batch method which gives us a batch generator. We should have specified that we wanted one_hot=True to have our batch generator return our ys with 2 features, one for each possible class. Step54: Let's take a look at the first element of the randomized batch Step55: And the second one Step56: So we have a randomized order in minibatches generated for us, and the ys are represented as a one-hot vector with each class, music and speech, encoded as a 0 or 1. Since the next_batch method is a generator, we can use it in a loop until it is exhausted to run through our entire dataset in mini-batches. <a name="creating-the-network"></a> Creating the Network Let's now create the neural network. Recall our input X is 4-dimensional, with the same shape that we've just seen as returned from our batch generator above. We're going to create a deep convolutional neural network with a few layers of convolution and 2 finals layers which are fully connected. The very last layer must have only 2 neurons corresponding to our one-hot vector of ys, so that we can properly measure the cross-entropy (just like we did with MNIST and our 10 element one-hot encoding of the digit label). First let's create our placeholders Step57: Let's now create our deep convolutional network. Start by first creating the convolutional layers. Try different numbers of layers, different numbers of filters per layer, different activation functions, and varying the parameters to get the best training/validation score when training below. Try first using a kernel size of 3 and a stride of 1. You can use the utils.conv2d function to help you create the convolution. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step58: We'll now connect our last convolutional layer to a fully connected layer of 100 neurons. This is essentially combining the spatial information, thus losing the spatial information. You can use the utils.linear function to do this, which will internally also reshape the 4-d tensor to a 2-d tensor so that it can be connected to a fully-connected layer (i.e. perform a matrix multiplication). <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step59: We'll now create our cost. Unlike the MNIST network, we're going to use a binary cross entropy as we only have 2 possible classes. You can use the utils.binary_cross_entropy function to help you with this. Remember, the final cost measure the average loss of your batches. Step60: Just like in MNIST, we'll now also create a measure of accuracy by finding the prediction of our network. This is just for us to monitor the training and is not used to optimize the weights of the network! Look back to the MNIST network in the lecture if you are unsure of how this works (it is exactly the same) Step61: We'll now create an optimizer and train our network Step62: Now we're ready to train. This is a pretty simple dataset for a deep convolutional network. As a result, I've included code which demonstrates how to monitor validation performance. A validation set is data that the network has never seen, and is not used for optimizing the weights of the network. We use validation to better understand how well the performance of a network "generalizes" to unseen data. You can easily run the risk of overfitting to the training set of this problem. Overfitting simply means that the number of parameters in our model are so high that we are not generalizing our model, and instead trying to model each individual point, rather than the general cause of the data. This is a very common problem that can be addressed by using less parameters, or enforcing regularization techniques which we didn't have a chance to cover (dropout, batch norm, l2, augmenting the dataset, and others). For this dataset, if you notice that your validation set is performing worse than your training set, then you know you have overfit! You should be able to easily get 97+% on the validation set within < 10 epochs. If you've got great training performance, but poor validation performance, then you likely have "overfit" to the training dataset, and are unable to generalize to the validation set. Try varying the network definition, number of filters/layers until you get 97+% on your validation set! <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step63: Let's try to inspect how the network is accomplishing this task, just like we did with the MNIST network. First, let's see what the names of our operations in our network are. Step64: Now let's visualize the W tensor's weights for the first layer using the utils function montage_filters, just like we did for the MNIST dataset during the lecture. Recall from the lecture that this is another great way to inspect the performance of your network. If many of the filters look uniform, then you know the network is either under or overperforming. What you want to see are filters that look like they are responding to information such as edges or corners. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> Step65: We can also look at every layer's filters using a loop Step66: In the next session, we'll learn some much more powerful methods of inspecting such networks. <a name="assignment-submission"></a> Assignment Submission After you've completed the notebook, create a zip file of the current directory using the code below. This code will make sure you have included this completed ipython notebook and the following files named exactly as
Python Code: # First check the Python version import sys if sys.version_info < (3,4): print('You are running an older version of Python!\n\n' \ 'You should consider updating to Python 3.4.0 or ' \ 'higher as the libraries built for this course ' \ 'have only been tested in Python 3.4 and higher.\n') print('Try installing the Python 3.5 version of anaconda ' 'and then restart `jupyter notebook`:\n' \ 'https://www.continuum.io/downloads\n\n') # Now get necessary libraries try: import os import numpy as np import matplotlib.pyplot as plt from skimage.transform import resize from skimage import data from scipy.misc import imresize import IPython.display as ipyd except ImportError: print('You are missing some packages! ' \ 'We will try installing them before continuing!') !pip install "numpy>=1.11.0" "matplotlib>=1.5.1" "scikit-image>=0.11.3" "scikit-learn>=0.17" "scipy>=0.17.0" import os import numpy as np import matplotlib.pyplot as plt from skimage.transform import resize from skimage import data from scipy.misc import imresize import IPython.display as ipyd print('Done!') # Import Tensorflow try: import tensorflow as tf except ImportError: print("You do not have tensorflow installed!") print("Follow the instructions on the following link") print("to install tensorflow before continuing:") print("") print("https://github.com/pkmital/CADL#installation-preliminaries") # This cell includes the provided libraries from the zip file # and a library for displaying images from ipython, which # we will use to display the gif try: from libs import utils, gif, datasets, dataset_utils, vae, dft except ImportError: print("Make sure you have started notebook in the same directory" + " as the provided zip file which includes the 'libs' folder" + " and the file 'utils.py' inside of it. You will NOT be able" " to complete this assignment unless you restart jupyter" " notebook inside the directory created by extracting" " the zip file or cloning the github repo.") # We'll tell matplotlib to inline any drawn figures like so: %matplotlib inline plt.style.use('ggplot') # Bit of formatting because I don't like the default inline code style: from IPython.core.display import HTML HTML(<style> .rendered_html code { padding: 2px 4px; color: #c7254e; background-color: #f9f2f4; border-radius: 4px; } </style>) Explanation: Session 3: Unsupervised and Supervised Learning <p class="lead"> Assignment: Build Unsupervised and Supervised Networks </p> <p class="lead"> Parag K. Mital<br /> <a href="https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow/info">Creative Applications of Deep Learning w/ Tensorflow</a><br /> <a href="https://www.kadenze.com/partners/kadenze-academy">Kadenze Academy</a><br /> <a href="https://twitter.com/hashtag/CADL">#CADL</a> </p> <a name="learning-goals"></a> Learning Goals Learn how to build an autoencoder Learn how to explore latent/hidden representations of an autoencoder. Learn how to build a classification network using softmax and onehot encoding Outline <!-- MarkdownTOC autolink=true autoanchor=true bracket=round --> Assignment Synopsis Part One - Autoencoders Instructions Code Visualize the Embedding Reorganize to Grid 2D Latent Manifold Part Two - General Autoencoder Framework Instructions Part Three - Deep Audio Classification Network Instructions Preparing the Data Creating the Network Assignment Submission Coming Up <!-- /MarkdownTOC --> This next section will just make sure you have the right version of python and the libraries that we'll be using. Don't change the code here but make sure you "run" it (use "shift+enter")! End of explanation # See how this works w/ Celeb Images or try your own dataset instead: imgs = ... # Then convert the list of images to a 4d array (e.g. use np.array to convert a list to a 4d array): Xs = ... print(Xs.shape) assert(Xs.ndim == 4 and Xs.shape[1] <= 100 and Xs.shape[2] <= 100) Explanation: <a name="assignment-synopsis"></a> Assignment Synopsis In the last session we created our first neural network. We saw that in order to create a neural network, we needed to define a cost function which would allow gradient descent to optimize all the parameters in our network. We also saw how neural networks become much more expressive by introducing series of linearities followed by non-linearities, or activation functions. We then explored a fun application of neural networks using regression to learn to paint color values given x, y positions. This allowed us to build up a sort of painterly like version of an image. In this session, we'll see how to construct a few more types of neural networks. First, we'll explore a generative network called autoencoders. This network can be extended in a variety of ways to include convolution, denoising, or a variational layer. In Part Two, you'll then use a general autoencoder framework to encode your own list of images. In Part three, we'll then explore a discriminative network used for classification, and see how this can be used for audio classification of music or speech. One main difference between these two networks are the data that we'll use to train them. In the first case, we will only work with "unlabeled" data and perform unsupervised learning. An example would be a collection of images, just like the one you created for assignment 1. Contrast this with "labeled" data which allows us to make use of supervised learning. For instance, we're given both images, and some other data about those images such as some text describing what object is in the image. This allows us to optimize a network where we model a distribution over the images given that it should be labeled as something. This is often a much simpler distribution to train, but with the expense of it being much harder to collect. One of the major directions of future research will be in how to better make use of unlabeled data and unsupervised learning methods. <a name="part-one---autoencoders"></a> Part One - Autoencoders <a name="instructions"></a> Instructions Work with a dataset of images and train an autoencoder. You can work with the same dataset from assignment 1, or try a larger dataset. But be careful with the image sizes, and make sure to keep it relatively small (e.g. < 100 x 100 px). Recall from the lecture that autoencoders are great at "compressing" information. The network's construction and cost function are just like what we've done in the last session. The network is composed of a series of matrix multiplications and nonlinearities. The only difference is the output of the network has exactly the same shape as what is input. This allows us to train the network by saying that the output of the network needs to be just like the input to it, so that it tries to "compress" all the information in that video. Autoencoders have some great potential for creative applications, as they allow us to compress a dataset of information and even generate new data from that encoding. We'll see exactly how to do this with a basic autoencoder, and then you'll be asked to explore some of the extensions to produce your own encodings. <a name="code"></a> Code We'll now go through the process of building an autoencoder just like in the lecture. First, let's load some data. You can use the first 100 images of the Celeb Net, your own dataset, or anything else approximately under 1,000 images. Make sure you resize the images so that they are <= 100x100 pixels, otherwise the training will be very slow, and the montages we create will be too large. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation ds = datasets.Dataset(Xs) # ds = datasets.CIFAR10(flatten=False) Explanation: We'll now make use of something I've written to help us store this data. It provides some interfaces for generating "batches" of data, as well as splitting the data into training, validation, and testing sets. To use it, we pass in the data and optionally its labels. If we don't have labels, we just pass in the data. In the second half of this notebook, we'll explore using a dataset's labels as well. End of explanation mean_img = ds.mean().astype(np.uint8) plt.imshow(mean_img) # If your image comes out entirely black, try w/o the `astype(np.uint8)` # that means your images are read in as 0-255, rather than 0-1 and # this simply depends on the version of matplotlib you are using. Explanation: It allows us to easily find the mean: End of explanation std_img = ds.std() plt.imshow(std_img) print(std_img.shape) Explanation: Or the deviation: End of explanation std_img = np.mean(std_img, axis=2) plt.imshow(std_img) Explanation: Recall we can calculate the mean of the standard deviation across each color channel: End of explanation plt.imshow(ds.X[0]) print(ds.X.shape) Explanation: All the input data we gave as input to our Datasets object, previously stored in Xs is now stored in a variable as part of our ds Datasets object, X: End of explanation for (X, y) in ds.train.next_batch(batch_size=10): print(X.shape) Explanation: It takes a parameter, split at the time of creation, which allows us to create train/valid/test sets. By default, this is set to [1.0, 0.0, 0.0], which means to take all the data in the train set, and nothing in the validation and testing sets. We can access "batch generators" of each of these sets by saying: ds.train.next_batch. A generator is a really powerful way of handling iteration in Python. If you are unfamiliar with the idea of generators, I recommend reading up a little bit on it, e.g. here: http://intermediatepythonista.com/python-generators - think of it as a for loop, but as a function. It returns one iteration of the loop each time you call it. This generator will automatically handle the randomization of the dataset. Let's try looping over the dataset using the batch generator: End of explanation # Write a function to preprocess/normalize an image, given its dataset object # (which stores the mean and standard deviation!) def preprocess(img, ds): norm_img = (img - ...) / ... return norm_img # Write a function to undo the normalization of an image, given its dataset object # (which stores the mean and standard deviation!) def deprocess(norm_img, ds): img = norm_img * ... + ... return img Explanation: This returns X and y as a tuple. Since we're not using labels, we'll just ignore this. The next_batch method takes a parameter, batch_size, which we'll set appropriately to our batch size. Notice it runs for exactly 10 iterations to iterate over our 100 examples, then the loop exits. The order in which it iterates over the 100 examples is randomized each time you iterate. Write two functions to preprocess (normalize) any given image, and to unprocess it, i.e. unnormalize it by removing the normalization. The preprocess function should perform exactly the task you learned to do in assignment 1: subtract the mean, then divide by the standard deviation. The deprocess function should take the preprocessed image and undo the preprocessing steps. Recall that the ds object contains the mean and std functions for access the mean and standarad deviation. We'll be using the preprocess and deprocess functions on the input and outputs of the network. Note, we could use Tensorflow to do this instead of numpy, but for sake of clarity, I'm keeping this separate from the Tensorflow graph. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation # Calculate the number of features in your image. # This is the total number of pixels, or (height x width x channels). n_features = ... print(n_features) Explanation: We're going to now work on creating an autoencoder. To start, we'll only use linear connections, like in the last assignment. This means, we need a 2-dimensional input: Batch Size x Number of Features. We currently have a 4-dimensional input: Batch Size x Height x Width x Channels. We'll have to calculate the number of features we have to help construct the Tensorflow Graph for our autoencoder neural network. Then, when we are ready to train the network, we'll reshape our 4-dimensional dataset into a 2-dimensional one when feeding the input of the network. Optionally, we could create a tf.reshape as the first operation of the network, so that we can still pass in our 4-dimensional array, and the Tensorflow graph would reshape it for us. We'll try the former method, by reshaping manually, and then you can explore the latter method, of handling 4-dimensional inputs on your own. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation encoder_dimensions = [128, 2] Explanation: Let's create a list of how many neurons we want in each layer. This should be for just one half of the network, the encoder only. It should start large, then get smaller and smaller. We're also going to try an encode our dataset to an inner layer of just 2 values. So from our number of features, we'll go all the way down to expressing that image by just 2 values. Try a small network to begin with, then explore deeper networks: <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation X = tf.placeholder(... assert(X.get_shape().as_list() == [None, n_features]) Explanation: Now create a placeholder just like in the last session in the tensorflow graph that will be able to get any number (None) of n_features inputs. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation def encode(X, dimensions, activation=tf.nn.tanh): # We're going to keep every matrix we create so let's create a list to hold them all Ws = [] # We'll create a for loop to create each layer: for layer_i, n_output in enumerate(dimensions): # TODO: just like in the last session, # we'll use a variable scope to help encapsulate our variables # This will simply prefix all the variables made in this scope # with the name we give it. Make sure it is a unique name # for each layer, e.g., 'encoder/layer1', 'encoder/layer2', or # 'encoder/1', 'encoder/2',... with tf.variable_scope(...) # TODO: Create a weight matrix which will increasingly reduce # down the amount of information in the input by performing # a matrix multiplication. You can use the utils.linear function. h, W = ... # TODO: Apply an activation function (unless you used the parameter # for activation function in the utils.linear call) # Finally we'll store the weight matrix. # We need to keep track of all # the weight matrices we've used in our encoder # so that we can build the decoder using the # same weight matrices. Ws.append(W) # Replace X with the current layer's output, so we can # use it in the next layer. X = h z = X return Ws, z Explanation: Now complete the function encode below. This takes as input our input placeholder, X, our list of dimensions, and an activation function, e.g. tf.nn.relu or tf.nn.tanh, to apply to each layer's output, and creates a series of fully connected layers. This works just like in the last session! We multiply our input, add a bias, then apply a non-linearity. Instead of having 20 neurons in each layer, we're going to use our dimensions list to tell us how many neurons we want in each layer. One important difference is that we're going to also store every weight matrix we create! This is so that we can use the same weight matrices when we go to build our decoder. This is a very powerful concept that creeps up in a few different neural network architectures called weight sharing. Weight sharing isn't necessary to do of course, but can speed up training and offer a different set of features depending on your dataset. Explore trying both. We'll also see how another form of weight sharing works in convolutional networks. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation # Then call the function Ws, z = encode(X, encoder_dimensions) # And just some checks to make sure you've done it right. assert(z.get_shape().as_list() == [None, 2]) assert(len(Ws) == len(encoder_dimensions)) Explanation: We now have a function for encoding an input X. Take note of which activation function you use as this will be important for the behavior of the latent encoding, z, later on. End of explanation [op.name for op in tf.get_default_graph().get_operations()] Explanation: Let's take a look at the graph: End of explanation [W_i.get_shape().as_list() for W_i in Ws] Explanation: So we've created a few layers, encoding our input X all the way down to 2 values in the tensor z. We do this by multiplying our input X by a set of matrices shaped as: End of explanation z.get_shape().as_list() Explanation: Resulting in a layer which is shaped as: End of explanation # We'll first reverse the order of our weight matrices decoder_Ws = Ws[::-1] # then reverse the order of our dimensions # appending the last layers number of inputs. decoder_dimensions = encoder_dimensions[::-1][1:] + [n_features] print(decoder_dimensions) assert(decoder_dimensions[-1] == n_features) Explanation: Building the Decoder Here is a helpful animation on what the matrix "transpose" operation does: Basically what is happening is rows becomes columns, and vice-versa. We're going to use our existing weight matrices but transpose them so that we can go in the opposite direction. In order to build our decoder, we'll have to do the opposite of what we've just done, multiplying z by the transpose of our weight matrices, to get back to a reconstructed version of X. First, we'll reverse the order of our weight matrics, and then append to the list of dimensions the final output layer's shape to match our input: End of explanation def decode(z, dimensions, Ws, activation=tf.nn.tanh): current_input = z for layer_i, n_output in enumerate(dimensions): # we'll use a variable scope again to help encapsulate our variables # This will simply prefix all the variables made in this scope # with the name we give it. with tf.variable_scope("decoder/layer/{}".format(layer_i)): # Now we'll grab the weight matrix we created before and transpose it # So a 3072 x 784 matrix would become 784 x 3072 # or a 256 x 64 matrix, would become 64 x 256 W = tf.transpose(Ws[layer_i]) # Now we'll multiply our input by our transposed W matrix h = tf.matmul(current_input, W) # And then use a relu activation function on its output current_input = activation(h) # We'll also replace n_input with the current n_output, so that on the # next iteration, our new number inputs will be correct. n_input = n_output Y = current_input return Y Y = decode(z, decoder_dimensions, decoder_Ws) Explanation: Now we'll build the decoder. I've shown you how to do this. Read through the code to fully understand what it is doing: End of explanation [op.name for op in tf.get_default_graph().get_operations() if op.name.startswith('decoder')] Explanation: Let's take a look at the new operations we've just added. They will all be prefixed by "decoder" so we can use list comprehension to help us with this: End of explanation Y.get_shape().as_list() Explanation: And let's take a look at the output of the autoencoder: End of explanation # Calculate some measure of loss, e.g. the pixel to pixel absolute difference or squared difference loss = ... # Now sum over every pixel and then calculate the mean over the batch dimension (just like session 2!) # hint, use tf.reduce_mean and tf.reduce_sum cost = ... Explanation: Great! So we should have a synthesized version of our input placeholder, X, inside of Y. This Y is the result of many matrix multiplications, first a series of multiplications in our encoder all the way down to 2 dimensions, and then back to the original dimensions through our decoder. Let's now create a pixel-to-pixel measure of error. This should measure the difference in our synthesized output, Y, and our input, X. You can use the $l_1$ or $l_2$ norm, just like in assignment 2. If you don't remember, go back to homework 2 where we calculated the cost function and try the same idea here. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation learning_rate = ... optimizer = tf.train.AdamOptimizer(...).minimize(...) Explanation: Now for the standard training code. We'll pass our cost to an optimizer, and then use mini batch gradient descent to optimize our network's parameters. We just have to be careful to make sure we're preprocessing our input and feed it in the right shape, a 2-dimensional matrix of [batch_size, n_features] in dimensions. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation # (TODO) Create a tensorflow session and initialize all of our weights: sess = ... sess.run(tf.global_variables_initializer()) Explanation: Below is the training code for our autoencoder. Please go through each line of code to make sure you understand what is happening, and fill in the missing pieces. This will take awhile. On my machine, it takes about 15 minutes. If you're impatient, you can "Interrupt" the kernel by going to the Kernel menu above, and continue with the notebook. Though, the longer you leave this to train, the better the result will be. What I really want you to notice is what the network learns to encode first, based on what it is able to reconstruct. It won't able to reconstruct everything. At first, it will just be the mean image. Then, other major changes in the dataset. For the first 100 images of celeb net, this seems to be the background: white, blue, black backgrounds. From this basic interpretation, you can reason that the autoencoder has learned a representation of the backgrounds, and is able to encode that knowledge of the background in its inner most layer of just two values. It then goes on to represent the major variations in skin tone and hair. Then perhaps some facial features such as lips. So the features it is able to encode tend to be the major things at first, then the smaller things. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation # Some parameters for training batch_size = 100 n_epochs = 31 step = 10 # We'll try to reconstruct the same first 100 images and show how # The network does over the course of training. examples = ds.X[:100] # We have to preprocess the images before feeding them to the network. # I'll do this once here, so we don't have to do it every iteration. test_examples = preprocess(examples, ds).reshape(-1, n_features) # If we want to just visualize them, we can create a montage. test_images = utils.montage(examples).astype(np.uint8) # Store images so we can make a gif gifs = [] # Now for our training: for epoch_i in range(n_epochs): # Keep track of the cost this_cost = 0 # Iterate over the entire dataset in batches for batch_X, _ in ds.train.next_batch(batch_size=batch_size): # (TODO) Preprocess and reshape our current batch, batch_X: this_batch = preprocess(..., ds).reshape(-1, n_features) # Compute the cost, and run the optimizer. this_cost += sess.run([cost, optimizer], feed_dict={X: this_batch})[0] # Average cost of this epoch avg_cost = this_cost / ds.X.shape[0] / batch_size print(epoch_i, avg_cost) # Let's also try to see how the network currently reconstructs the input. # We'll draw the reconstruction every `step` iterations. if epoch_i % step == 0: # (TODO) Ask for the output of the network, Y, and give it our test examples recon = sess.run(... # Resize the 2d to the 4d representation: rsz = recon.reshape(examples.shape) # We have to unprocess the image now, removing the normalization unnorm_img = deprocess(rsz, ds) # Clip to avoid saturation # TODO: Make sure this image is the correct range, e.g. # for float32 0-1, you should clip between 0 and 1 # for uint8 0-255, you should clip between 0 and 255! clipped = np.clip(unnorm_img, 0, 255) # And we can create a montage of the reconstruction recon = utils.montage(clipped) # Store for gif gifs.append(recon) fig, axs = plt.subplots(1, 2, figsize=(10, 10)) axs[0].imshow(test_images) axs[0].set_title('Original') axs[1].imshow(recon) axs[1].set_title('Synthesis') fig.canvas.draw() plt.show() Explanation: Note that if you run into "InternalError" or "ResourceExhaustedError", it is likely that you have run out of memory! Try a smaller network! For instance, restart the notebook's kernel, and then go back to defining encoder_dimensions = [256, 2] instead. If you run into memory problems below, you can also try changing the batch_size to 50. End of explanation fig, axs = plt.subplots(1, 2, figsize=(10, 10)) axs[0].imshow(test_images) axs[0].set_title('Original') axs[1].imshow(recon) axs[1].set_title('Synthesis') fig.canvas.draw() plt.show() plt.imsave(arr=test_images, fname='test.png') plt.imsave(arr=recon, fname='recon.png') Explanation: Let's take a look a the final reconstruction: End of explanation zs = sess.run(z, feed_dict={X:test_examples}) Explanation: <a name="visualize-the-embedding"></a> Visualize the Embedding Let's now try visualizing our dataset's inner most layer's activations. Since these are already 2-dimensional, we can use the values of this layer to position any input image in a 2-dimensional space. We hope to find similar looking images closer together. We'll first ask for the inner most layer's activations when given our example images. This will run our images through the network, half way, stopping at the end of the encoder part of the network. End of explanation zs.shape Explanation: Recall that this layer has 2 neurons: End of explanation plt.scatter(zs[:, 0], zs[:, 1]) Explanation: Let's see what the activations look like for our 100 images as a scatter plot. End of explanation n_images = 100 idxs = np.linspace(np.min(zs) * 2.0, np.max(zs) * 2.0, int(np.ceil(np.sqrt(n_images)))) xs, ys = np.meshgrid(idxs, idxs) grid = np.dstack((ys, xs)).reshape(-1, 2)[:n_images,:] fig, axs = plt.subplots(1,2,figsize=(8,3)) axs[0].scatter(zs[:, 0], zs[:, 1], edgecolors='none', marker='o', s=2) axs[0].set_title('Autoencoder Embedding') axs[1].scatter(grid[:,0], grid[:,1], edgecolors='none', marker='o', s=2) axs[1].set_title('Ideal Grid') Explanation: If you view this plot over time, and let the process train longer, you will see something similar to the visualization here on the right: https://vimeo.com/155061675 - the manifold is able to express more and more possible ideas, or put another way, it is able to encode more data. As it grows more expressive, with more data, and longer training, or deeper networks, it will fill in more of the space, and have different modes expressing different clusters of the data. With just 100 examples of our dataset, this is very small to try to model with such a deep network. In any case, the techniques we've learned up to now apply in exactly the same way, even if we had 1k, 100k, or even many millions of images. Let's try to see how this minimal example, with just 100 images, and just 100 epochs looks when we use this embedding to sort our dataset, just like we tried to do in the 1st assignment, but now with our autoencoders embedding. <a name="reorganize-to-grid"></a> Reorganize to Grid We'll use these points to try to find an assignment to a grid. This is a well-known problem known as the "assignment problem": https://en.wikipedia.org/wiki/Assignment_problem - This is unrelated to the applications we're investigating in this course, but I thought it would be a fun extra to show you how to do. What we're going to do is take our scatter plot above, and find the best way to stretch and scale it so that each point is placed in a grid. We try to do this in a way that keeps nearby points close together when they are reassigned in their grid. End of explanation from scipy.spatial.distance import cdist cost = cdist(grid[:, :], zs[:, :], 'sqeuclidean') from scipy.optimize._hungarian import linear_sum_assignment indexes = linear_sum_assignment(cost) Explanation: To do this, we can use scipy and an algorithm for solving this assignment problem known as the hungarian algorithm. With a few points, this algorithm runs pretty fast. But be careful if you have many more points, e.g. > 1000, as it is not a very efficient algorithm! End of explanation indexes plt.figure(figsize=(5, 5)) for i in range(len(zs)): plt.plot([zs[indexes[1][i], 0], grid[i, 0]], [zs[indexes[1][i], 1], grid[i, 1]], 'r') plt.xlim([-3, 3]) plt.ylim([-3, 3]) Explanation: The result tells us the matching indexes from our autoencoder embedding of 2 dimensions, to our idealized grid: End of explanation examples_sorted = [] for i in indexes[1]: examples_sorted.append(examples[i]) plt.figure(figsize=(15, 15)) img = utils.montage(np.array(examples_sorted)).astype(np.uint8) plt.imshow(img, interpolation='nearest') plt.imsave(arr=img, fname='sorted.png') Explanation: In other words, this algorithm has just found the best arrangement of our previous zs as a grid. We can now plot our images using the order of our assignment problem to see what it looks like: End of explanation # This is a quick way to do what we could have done as # a nested for loop: zs = np.meshgrid(np.linspace(-1, 1, 10), np.linspace(-1, 1, 10)) # Now we have 100 x 2 values of every possible position # in a 2D grid from -1 to 1: zs = np.c_[zs[0].ravel(), zs[1].ravel()] Explanation: <a name="2d-latent-manifold"></a> 2D Latent Manifold We'll now explore the inner most layer of the network. Recall we go from the number of image features (the number of pixels), down to 2 values using successive matrix multiplications, back to the number of image features through more matrix multiplications. These inner 2 values are enough to represent our entire dataset (+ some loss, depending on how well we did). Let's explore how the decoder, the second half of the network, operates, from just these two values. We'll bypass the input placeholder, X, and the entire encoder network, and start from Z. Let's first get some data which will sample Z in 2 dimensions from -1 to 1. This range may be different for you depending on what your latent space's range of values are. You can try looking at the activations for your z variable for a set of test images, as we've done before, and look at the range of these values. Or try to guess based on what activation function you may have used on the z variable, if any. Then we'll use this range to create a linear interpolation of latent values, and feed these values through the decoder network to have our synthesized images to see what they look like. End of explanation recon = sess.run(Y, feed_dict={...}) # reshape the result to an image: rsz = recon.reshape(examples.shape) # Deprocess the result, unnormalizing it unnorm_img = deprocess(rsz, ds) # clip to avoid saturation clipped = np.clip(unnorm_img, 0, 255) # Create a montage img_i = utils.montage(clipped).astype(np.uint8) Explanation: Now calculate the reconstructed images using our new zs. You'll want to start from the beginning of the decoder! That is the z variable! Then calculate the Y given our synthetic values for z stored in zs. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation plt.figure(figsize=(15, 15)) plt.imshow(img_i) plt.imsave(arr=img_i, fname='manifold.png') Explanation: And now we can plot the reconstructed montage representing our latent space: End of explanation help(vae.VAE) Explanation: <a name="part-two---general-autoencoder-framework"></a> Part Two - General Autoencoder Framework There are a number of extensions we can explore w/ an autoencoder. I've provided a module under the libs folder, vae.py, which you will need to explore for Part Two. It has a function, VAE, to create an autoencoder, optionally with Convolution, Denoising, and/or Variational Layers. Please read through the documentation and try to understand the different parameters. End of explanation help(vae.train_vae) Explanation: Included in the vae.py module is the train_vae function. This will take a list of file paths, and train an autoencoder with the provided options. This will spit out a bunch of images of the reconstruction and latent manifold created by the encoder/variational encoder. Feel free to read through the code, as it is documented. End of explanation # Get a list of jpg file (Only JPG works!) files = [os.path.join(some_dir, file_i) for file_i in os.listdir(some_dir) if file_i.endswith('.jpg')] # Ensure that you have the latest TensorFlow version installed, otherwise you may have encountered # 'rsz_shape' error because of the backward incompatible API. # Train it! Change these parameters! vae.train_vae(files, input_shape, learning_rate=0.0001, batch_size=100, n_epochs=50, n_examples=10, crop_shape=[64, 64, 3], crop_factor=0.8, n_filters=[100, 100, 100, 100], n_hidden=256, n_code=50, convolutional=True, variational=True, filter_sizes=[3, 3, 3, 3], dropout=True, keep_prob=0.8, activation=tf.nn.relu, img_step=100, save_step=100, ckpt_name="vae.ckpt") Explanation: I've also included three examples of how to use the VAE(...) and train_vae(...) functions. First look at the one using MNIST. Then look at the other two: one using the Celeb Dataset; and lastly one which will download Sita Sings the Blues, rip the frames, and train a Variational Autoencoder on it. This last one requires ffmpeg be installed (e.g. for OSX users, brew install ffmpeg, Linux users, sudo apt-get ffmpeg-dev, or else: https://ffmpeg.org/download.html). The Celeb and Sita Sings the Blues training require us to use an image pipeline, which I've mentioned briefly during the lecture. This does many things for us: it loads data from disk in batches, decodes the data as an image, resizes/crops the image, and uses a multithreaded graph to handle it all. It is very efficient and is the way to go when handling large image datasets. The MNIST training does not use this. Instead, the entire dataset is loaded into the CPU memory, and then fed in minibatches to the graph using Python/Numpy. This is far less efficient, but will not be an issue for such a small dataset, e.g. 70k examples of 28x28 pixels = ~1.6 MB of data, easily fits into memory (in fact, it would really be better to use a Tensorflow variable with this entire dataset defined). When you consider the Celeb Net, you have 200k examples of 218x178x3 pixels = ~700 MB of data. That's just for the dataset. When you factor in everything required for the network and its weights, then you are pushing it. Basically this image pipeline will handle loading the data from disk, rather than storing it in memory. <a name="instructions-1"></a> Instructions You'll now try to train your own autoencoder using this framework. You'll need to get a directory full of 'jpg' files. You'll then use the VAE framework and the vae.train_vae function to train a variational autoencoder on your own dataset. This accepts a list of files, and will output images of the training in the same directory. These are named "test_xs.png" as well as many images named prefixed by "manifold" and "reconstruction" for each iteration of the training. After you are happy with your training, you will need to create a forum post with the "test_xs.png" and the very last manifold and reconstruction image created to demonstrate how the variational autoencoder worked for your dataset. You'll likely need a lot more than 100 images for this to be successful. Note that this will also create "checkpoints" which save the model! If you change the model, and already have a checkpoint by the same name, it will try to load the previous model and will fail. Be sure to remove the old checkpoint or specify a new name for ckpt_name! The default parameters shown below are what I have used for the celeb net dataset which has over 200k images. You will definitely want to use a smaller model if you do not have this many images! Explore! <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation dst = 'gtzan_music_speech' if not os.path.exists(dst): dataset_utils.gtzan_music_speech_download(dst) Explanation: <a name="part-three---deep-audio-classification-network"></a> Part Three - Deep Audio Classification Network <a name="instructions-2"></a> Instructions In this last section, we'll explore using a regression network, one that predicts continuous outputs, to perform classification, a model capable of predicting discrete outputs. We'll explore the use of one-hot encodings and using a softmax layer to convert our regression outputs to a probability which we can use for classification. In the lecture, we saw how this works for the MNIST dataset, a dataset of 28 x 28 pixel handwritten digits labeled from 0 - 9. We converted our 28 x 28 pixels into a vector of 784 values, and used a fully connected network to output 10 values, the one hot encoding of our 0 - 9 labels. In addition to the lecture material, I find these two links very helpful to try to understand classification w/ neural networks: https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/ https://cs.stanford.edu/people/karpathy/convnetjs//demo/classify2d.html The GTZAN Music and Speech dataset has 64 music and 64 speech files, each 30 seconds long, and each at a sample rate of 22050 Hz, meaning there are 22050 samplings of the audio signal per second. What we're going to do is use all of this data to build a classification network capable of knowing whether something is music or speech. So we will have audio as input, and a probability of 2 possible values, music and speech, as output. This is very similar to the MNIST network. We just have to decide on how to represent our input data, prepare the data and its labels, build batch generators for our data, create the network, and train it. We'll make use of the libs/datasets.py module to help with some of this. <a name="preparing-the-data"></a> Preparing the Data Let's first download the GTZAN music and speech dataset. I've included a helper function to do this. End of explanation # Get the full path to the directory music_dir = os.path.join(os.path.join(dst, 'music_speech'), 'music_wav') # Now use list comprehension to combine the path of the directory with any wave files music = [os.path.join(music_dir, file_i) for file_i in os.listdir(music_dir) if file_i.endswith('.wav')] # Similarly, for the speech folder: speech_dir = os.path.join(os.path.join(dst, 'music_speech'), 'speech_wav') speech = [os.path.join(speech_dir, file_i) for file_i in os.listdir(speech_dir) if file_i.endswith('.wav')] # Let's see all the file names print(music, speech) Explanation: Inside the dst directory, we now have folders for music and speech. Let's get the list of all the wav files for music and speech: End of explanation file_i = music[0] s = utils.load_audio(file_i) plt.plot(s) Explanation: We now need to load each file. We can use the scipy.io.wavefile module to load the audio as a signal. Audio can be represented in a few ways, including as floating point or short byte data (16-bit data). This dataset is the latter and so can range from -32768 to +32767. We'll use the function I've provided in the utils module to load and convert an audio signal to a -1.0 to 1.0 floating point datatype by dividing by the maximum absolute value. Let's try this with just one of the files we have: End of explanation # Parameters for our dft transform. Sorry we can't go into the # details of this in this course. Please look into DSP texts or the # course by Perry Cook linked above if you are unfamiliar with this. fft_size = 512 hop_size = 256 re, im = dft.dft_np(s, hop_size=256, fft_size=512) mag, phs = dft.ztoc(re, im) print(mag.shape) plt.imshow(mag) Explanation: Now, instead of using the raw audio signal, we're going to use the Discrete Fourier Transform to represent our audio as matched filters of different sinuoids. Unfortunately, this is a class on Tensorflow and I can't get into Digital Signal Processing basics. If you want to know more about this topic, I highly encourage you to take this course taught by the legendary Perry Cook and Julius Smith: https://www.kadenze.com/courses/physics-based-sound-synthesis-for-games-and-interactive-systems/info - there is no one better to teach this content, and in fact, I myself learned DSP from Perry Cook almost 10 years ago. After taking the DFT, this will return our signal as real and imaginary components, a polar complex value representation which we will convert to a cartesian representation capable of saying what magnitudes and phases are in our signal. End of explanation plt.figure(figsize=(10, 4)) plt.imshow(np.log(mag.T)) plt.xlabel('Time') plt.ylabel('Frequency Bin') Explanation: What we're seeing are the features of the audio (in columns) over time (in rows). We can see this a bit better by taking the logarithm of the magnitudes converting it to a psuedo-decibel scale. This is more similar to the logarithmic perception of loudness we have. Let's visualize this below, and I'll transpose the matrix just for display purposes: End of explanation # The sample rate from our audio is 22050 Hz. sr = 22050 # We can calculate how many hops there are in a second # which will tell us how many frames of magnitudes # we have per second n_frames_per_second = sr // hop_size # We want 500 milliseconds of audio in our window n_frames = n_frames_per_second // 2 # And we'll move our window by 250 ms at a time frame_hops = n_frames_per_second // 4 # We'll therefore have this many sliding windows: n_hops = (len(mag) - n_frames) // frame_hops Explanation: We could just take just a single row (or column in the second plot of the magnitudes just above, as we transposed it in that plot) as an input to a neural network. However, that just represents about an 80th of a second of audio data, and is not nearly enough data to say whether something is music or speech. We'll need to use more than a single row to get a decent length of time. One way to do this is to use a sliding 2D window from the top of the image down to the bottom of the image (or left to right). Let's start by specifying how large our sliding window is. End of explanation Xs = [] ys = [] for hop_i in range(n_hops): # Creating our sliding window frames = mag[(hop_i * frame_hops):(hop_i * frame_hops + n_frames)] # Store them with a new 3rd axis and as a logarithmic scale # We'll ensure that we aren't taking a log of 0 just by adding # a small value, also known as epsilon. Xs.append(np.log(np.abs(frames[..., np.newaxis]) + 1e-10)) # And then store the label ys.append(0) Explanation: Now we can collect all the sliding windows into a list of Xs and label them based on being music as 0 or speech as 1 into a collection of ys. End of explanation plt.imshow(Xs[0][..., 0]) plt.title('label:{}'.format(ys[1])) Explanation: The code below will perform this for us, as well as create the inputs and outputs to our classification network by specifying 0s for the music dataset and 1s for the speech dataset. Let's just take a look at the first sliding window, and see it's label: End of explanation plt.imshow(Xs[1][..., 0]) plt.title('label:{}'.format(ys[1])) Explanation: Since this was the first audio file of the music dataset, we've set it to a label of 0. And now the second one, which should have 50% overlap with the previous one, and still a label of 0: End of explanation # Store every magnitude frame and its label of being music: 0 or speech: 1 Xs, ys = [], [] # Let's start with the music files for i in music: # Load the ith file: s = utils.load_audio(i) # Now take the dft of it (take a DSP course!): re, im = dft.dft_np(s, fft_size=fft_size, hop_size=hop_size) # And convert the complex representation to magnitudes/phases (take a DSP course!): mag, phs = dft.ztoc(re, im) # This is how many sliding windows we have: n_hops = (len(mag) - n_frames) // frame_hops # Let's extract them all: for hop_i in range(n_hops): # Get the current sliding window frames = mag[(hop_i * frame_hops):(hop_i * frame_hops + n_frames)] # We'll take the log magnitudes, as this is a nicer representation: this_X = np.log(np.abs(frames[..., np.newaxis]) + 1e-10) # And store it: Xs.append(this_X) # And be sure that we store the correct label of this observation: ys.append(0) # Now do the same thing with speech (TODO)! for i in speech: # Load the ith file: s = ... # Now take the dft of it (take a DSP course!): re, im = ... # And convert the complex representation to magnitudes/phases (take a DSP course!): mag, phs = ... # This is how many sliding windows we have: n_hops = (len(mag) - n_frames) // frame_hops # Let's extract them all: for hop_i in range(n_hops): # Get the current sliding window frames = mag[(hop_i * frame_hops):(hop_i * frame_hops + n_frames)] # We'll take the log magnitudes, as this is a nicer representation: this_X = np.log(np.abs(frames[..., np.newaxis]) + 1e-10) # And store it: Xs.append(this_X) # Make sure we use the right label (TODO!)! ys.append... # Convert them to an array: Xs = np.array(Xs) ys = np.array(ys) print(Xs.shape, ys.shape) # Just to make sure you've done it right. If you've changed any of the # parameters of the dft/hop size, then this will fail. If that's what you # wanted to do, then don't worry about this assertion. assert(Xs.shape == (15360, 43, 256, 1) and ys.shape == (15360,)) Explanation: So hopefully you can see that the window is sliding down 250 milliseconds at a time, and since our window is 500 ms long, or half a second, it has 50% new content at the bottom. Let's do this for every audio file now: <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation plt.imshow(Xs[0][..., 0]) plt.title('label:{}'.format(ys[0])) Explanation: Just to confirm it's doing the same as above, let's plot the first magnitude matrix: End of explanation n_observations, n_height, n_width, n_channels = Xs.shape Explanation: Let's describe the shape of our input to the network: End of explanation ds = datasets.Dataset(Xs=..., ys=..., split=[0.8, 0.1, 0.1], one_hot=True) Explanation: We'll now use the Dataset object I've provided for you under libs/datasets.py. This will accept the Xs, ys, a list defining our dataset split into training, validation, and testing proportions, and a parameter one_hot stating whether we want our ys to be converted to a one hot vector or not. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation Xs_i, ys_i = next(ds.train.next_batch()) # Notice the shape this returns. This will become the shape of our input and output of the network: print(Xs_i.shape, ys_i.shape) assert(ys_i.shape == (100, 2)) Explanation: Let's take a look at the batch generator this object provides. We can all any of the splits, the train, valid, or test splits as properties of the object. And each split provides a next_batch method which gives us a batch generator. We should have specified that we wanted one_hot=True to have our batch generator return our ys with 2 features, one for each possible class. End of explanation plt.imshow(Xs_i[0, :, :, 0]) plt.title('label:{}'.format(ys_i[0])) Explanation: Let's take a look at the first element of the randomized batch: End of explanation plt.imshow(Xs_i[1, :, :, 0]) plt.title('label:{}'.format(ys_i[1])) Explanation: And the second one: End of explanation tf.reset_default_graph() # Create the input to the network. This is a 4-dimensional tensor! # Don't forget that we should use None as a shape for the first dimension # Recall that we are using sliding windows of our magnitudes (TODO): X = tf.placeholder(name='X', shape=..., dtype=tf.float32) # Create the output to the network. This is our one hot encoding of 2 possible values (TODO)! Y = tf.placeholder(name='Y', shape=..., dtype=tf.float32) Explanation: So we have a randomized order in minibatches generated for us, and the ys are represented as a one-hot vector with each class, music and speech, encoded as a 0 or 1. Since the next_batch method is a generator, we can use it in a loop until it is exhausted to run through our entire dataset in mini-batches. <a name="creating-the-network"></a> Creating the Network Let's now create the neural network. Recall our input X is 4-dimensional, with the same shape that we've just seen as returned from our batch generator above. We're going to create a deep convolutional neural network with a few layers of convolution and 2 finals layers which are fully connected. The very last layer must have only 2 neurons corresponding to our one-hot vector of ys, so that we can properly measure the cross-entropy (just like we did with MNIST and our 10 element one-hot encoding of the digit label). First let's create our placeholders: <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation # TODO: Explore different numbers of layers, and sizes of the network n_filters = [9, 9, 9, 9] # Now let's loop over our n_filters and create the deep convolutional neural network H = X for layer_i, n_filters_i in enumerate(n_filters): # Let's use the helper function to create our connection to the next layer: # TODO: explore changing the parameters here: H, W = utils.conv2d( H, n_filters_i, k_h=3, k_w=3, d_h=2, d_w=2, name=str(layer_i)) # And use a nonlinearity # TODO: explore changing the activation here: H = tf.nn.relu(H) # Just to check what's happening: print(H.get_shape().as_list()) Explanation: Let's now create our deep convolutional network. Start by first creating the convolutional layers. Try different numbers of layers, different numbers of filters per layer, different activation functions, and varying the parameters to get the best training/validation score when training below. Try first using a kernel size of 3 and a stride of 1. You can use the utils.conv2d function to help you create the convolution. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation # Connect the last convolutional layer to a fully connected network (TODO)! fc, W = utils.linear(H, ... # And another fully connected layer, now with just 2 outputs, the number of outputs that our # one hot encoding has (TODO)! Y_pred, W = utils.linear(fc, ... Explanation: We'll now connect our last convolutional layer to a fully connected layer of 100 neurons. This is essentially combining the spatial information, thus losing the spatial information. You can use the utils.linear function to do this, which will internally also reshape the 4-d tensor to a 2-d tensor so that it can be connected to a fully-connected layer (i.e. perform a matrix multiplication). <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation loss = utils.binary_cross_entropy(Y_pred, Y) cost = tf.reduce_mean(tf.reduce_sum(loss, 1)) Explanation: We'll now create our cost. Unlike the MNIST network, we're going to use a binary cross entropy as we only have 2 possible classes. You can use the utils.binary_cross_entropy function to help you with this. Remember, the final cost measure the average loss of your batches. End of explanation predicted_y = tf.argmax(... actual_y = tf.argmax(... correct_prediction = tf.equal(... accuracy = tf.reduce_mean(... Explanation: Just like in MNIST, we'll now also create a measure of accuracy by finding the prediction of our network. This is just for us to monitor the training and is not used to optimize the weights of the network! Look back to the MNIST network in the lecture if you are unsure of how this works (it is exactly the same): <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation learning_rate = ... optimizer = tf.train.AdamOptimizer(...).minimize(...) Explanation: We'll now create an optimizer and train our network: <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation # Explore these parameters: (TODO) n_epochs = 10 batch_size = 200 # Create a session and init! sess = tf.Session() sess.run(tf.global_variables_initializer()) # Now iterate over our dataset n_epoch times for epoch_i in range(n_epochs): print('Epoch: ', epoch_i) # Train this_accuracy = 0 its = 0 # Do our mini batches: for Xs_i, ys_i in ds.train.next_batch(batch_size): # Note here: we are running the optimizer so # that the network parameters train! this_accuracy += sess.run([accuracy, optimizer], feed_dict={ X:Xs_i, Y:ys_i})[0] its += 1 print(this_accuracy / its) print('Training accuracy: ', this_accuracy / its) # Validation (see how the network does on unseen data). this_accuracy = 0 its = 0 # Do our mini batches: for Xs_i, ys_i in ds.valid.next_batch(batch_size): # Note here: we are NOT running the optimizer! # we only measure the accuracy! this_accuracy += sess.run(accuracy, feed_dict={ X:Xs_i, Y:ys_i}) its += 1 print('Validation accuracy: ', this_accuracy / its) Explanation: Now we're ready to train. This is a pretty simple dataset for a deep convolutional network. As a result, I've included code which demonstrates how to monitor validation performance. A validation set is data that the network has never seen, and is not used for optimizing the weights of the network. We use validation to better understand how well the performance of a network "generalizes" to unseen data. You can easily run the risk of overfitting to the training set of this problem. Overfitting simply means that the number of parameters in our model are so high that we are not generalizing our model, and instead trying to model each individual point, rather than the general cause of the data. This is a very common problem that can be addressed by using less parameters, or enforcing regularization techniques which we didn't have a chance to cover (dropout, batch norm, l2, augmenting the dataset, and others). For this dataset, if you notice that your validation set is performing worse than your training set, then you know you have overfit! You should be able to easily get 97+% on the validation set within < 10 epochs. If you've got great training performance, but poor validation performance, then you likely have "overfit" to the training dataset, and are unable to generalize to the validation set. Try varying the network definition, number of filters/layers until you get 97+% on your validation set! <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation g = tf.get_default_graph() [op.name for op in g.get_operations()] Explanation: Let's try to inspect how the network is accomplishing this task, just like we did with the MNIST network. First, let's see what the names of our operations in our network are. End of explanation g = tf.get_default_graph() W = ... assert(W.dtype == np.float32) m = montage_filters(W) plt.figure(figsize=(5, 5)) plt.imshow(m) plt.imsave(arr=m, fname='audio.png') Explanation: Now let's visualize the W tensor's weights for the first layer using the utils function montage_filters, just like we did for the MNIST dataset during the lecture. Recall from the lecture that this is another great way to inspect the performance of your network. If many of the filters look uniform, then you know the network is either under or overperforming. What you want to see are filters that look like they are responding to information such as edges or corners. <h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3> End of explanation g = tf.get_default_graph() for layer_i in range(len(n_filters)): W = sess.run(g.get_tensor_by_name('{}/W:0'.format(layer_i))) plt.figure(figsize=(5, 5)) plt.imshow(montage_filters(W)) plt.title('Layer {}\'s Learned Convolution Kernels'.format(layer_i)) Explanation: We can also look at every layer's filters using a loop: End of explanation utils.build_submission('session-3.zip', ('test.png', 'recon.png', 'sorted.png', 'manifold.png', 'test_xs.png', 'audio.png', 'session-3.ipynb')) Explanation: In the next session, we'll learn some much more powerful methods of inspecting such networks. <a name="assignment-submission"></a> Assignment Submission After you've completed the notebook, create a zip file of the current directory using the code below. This code will make sure you have included this completed ipython notebook and the following files named exactly as: <pre> session-3/ session-3.ipynb test.png recon.png sorted.png manifold.png test_xs.png audio.png </pre> You'll then submit this zip file for your third assignment on Kadenze for "Assignment 3: Build Unsupervised and Supervised Networks"! Remember to post Part Two to the Forum to receive full credit! If you have any questions, remember to reach out on the forums and connect with your peers or with me. To get assessed, you'll need to be a premium student! This will allow you to build an online portfolio of all of your work and receive grades. If you aren't already enrolled as a student, register now at http://www.kadenze.com/ and join the #CADL community to see what your peers are doing! https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow/info Also, if you share any of the GIFs on Facebook/Twitter/Instagram/etc..., be sure to use the #CADL hashtag so that other students can find your work! End of explanation
3,329
Given the following text description, write Python code to implement the functionality described below step by step Description: In this notebook, we will work through a simulation of psychophysiological interaction Step1: Load the data generated using the DCM forward model. In this model, there should be a significant PPI between roi 0 and rois 2 and 4 (see the B matrix in the DCM notebook) Step2: Set up the PPI model, using ROI 0 as the seed Step3: Let's plot the relation between the ROIs as a function of the task
Python Code: import os,sys import numpy %matplotlib inline import matplotlib.pyplot as plt sys.path.insert(0,'../') from utils.mkdesign import create_design_singlecondition from nipy.modalities.fmri.hemodynamic_models import spm_hrf,compute_regressor from utils.make_data import make_continuous_data from statsmodels.tsa.arima_process import arma_generate_sample import scipy.stats import seaborn as sns sns.set_style("white") results_dir = os.path.abspath("../results") if not os.path.exists(results_dir): os.mkdir(results_dir) Explanation: In this notebook, we will work through a simulation of psychophysiological interaction End of explanation dcmdata=numpy.load(os.path.join(results_dir,'dcmdata.npz')) data_conv=dcmdata['data'] # downsample to 1 second TR data=data_conv[range(0,data_conv.shape[0],100)] ntp=data.shape[0] # create a blocked design d,design=create_design_singlecondition(blockiness=1.0,deslength=ntp,blocklength=20,offset=20) regressor,_=compute_regressor(design,'spm',numpy.arange(0,ntp)) for i in range(data.shape[1]): plt.plot(data[:,i], label="ROI %d"%i) plt.legend(loc="best") plt.xlim([-50,300]) Explanation: Load the data generated using the DCM forward model. In this model, there should be a significant PPI between roi 0 and rois 2 and 4 (see the B matrix in the DCM notebook) End of explanation seed=0 X=numpy.vstack((regressor[:,0],data[:,seed],regressor[:,0]*data[:,seed],numpy.ones(data.shape[0]))).T hat_mtx=numpy.linalg.inv(X.T.dot(X)).dot(X.T) for i in range(data.shape[1]): beta_hat=hat_mtx.dot(data[:,i]) resid=data[:,i] - X.dot(beta_hat) sigma2hat=(resid.dot(resid))/(X.shape[0] - X.shape[1]) c=numpy.array([0,0,1,0]) # contrast for PPI t=c.dot(beta_hat)/numpy.sqrt(c.dot(numpy.linalg.inv(X.T.dot(X)).dot(c))*sigma2hat) print ('ROI %d:'%i, t, 1.0 - scipy.stats.t.cdf(t,X.shape[0] - X.shape[1])) import seaborn as sns sns.heatmap(X, vmin=0, xticklabels=["task", "seed", "task*seed", "mean"], yticklabels=False) Explanation: Set up the PPI model, using ROI 0 as the seed End of explanation on_tp=numpy.where(regressor>0.9)[0] off_tp=numpy.where(regressor<0.01)[0] roinum=4 plt.scatter(data[on_tp,0],data[on_tp,roinum], label="task ON") fit = numpy.polyfit(data[on_tp,0],data[on_tp,roinum],1) plt.plot(data[on_tp,0],data[on_tp,0]*fit[0] +fit[1]) plt.scatter(data[off_tp,0],data[off_tp,roinum],color='red', label="task OFF") fit = numpy.polyfit(data[off_tp,0],data[off_tp,roinum],1) plt.plot(data[off_tp,0],data[off_tp,0]*fit[0] +fit[1],color='red') plt.xlabel("activation in ROI 0") plt.ylabel("activation in ROI %d"%roinum) plt.legend(loc="best") Explanation: Let's plot the relation between the ROIs as a function of the task End of explanation
3,330
Given the following text description, write Python code to implement the functionality described below step by step Description: Time Series Forecasting In this tutorial, we will demonstrate how to build a model for time series forecasting in NumPyro. Specifically, we will replicate the Seasonal, Global Trend (SGT) model from the Rlgt Step1: Data First, lets import and take a look at the dataset. Step2: The time series has a length of 114 (a data point for each year), and by looking at the plot, we can observe seasonality in this dataset, which is the recurrence of similar patterns at specific time periods. e.g. in this dataset, we observe a cyclical pattern every 10 years, but there is also a less obvious but clear spike in the number of trappings every 40 years. Let us see if we can model this effect in NumPyro. In this tutorial, we will use the first 80 values for training and the last 34 values for testing. Step3: Model The model we are going to use is called Seasonal, Global Trend, which when tested on 3003 time series of the M-3 competition, has been known to outperform other models originally participating in the competition Step4: Note that level and s are updated recursively while we collect the expected value at each time step. NumPyro uses JAX in the backend to JIT compile many critical parts of the NUTS algorithm, including the verlet integrator and the tree building process. However, doing so using Python's for loop in the model will result in a long compilation time for the model, so we use scan - which is a wrapper of lax.scan with supports for NumPyro primitives and handlers. A detailed explanation for using this utility can be found in NumPyro documentation. Here we use it to collect y values while the triple (level, s, moving_sum) plays the role of carrying state. Another note is that instead of declaring the observation site y in transition_fn python numpyro.sample("y", dist.StudentT(nu, exp_val, omega), obs=y[t]) , we have used condition handler here. The reason is we also want to use this model for forecasting. In forecasting, future values of y are non-observable, so obs=y[t] does not make sense when t &gt;= len(y) (caution Step5: Now, let us run $4$ MCMC chains (using the No-U-Turn Sampler algorithm) with $5000$ warmup steps and $5000$ sampling steps per each chain. The returned value will be a collection of $20000$ samples. Step6: Forecasting Given samples from mcmc, we want to do forecasting for the testing dataset y_test. NumPyro provides a convenient utility Predictive to get predictive distribution. Let's see how to use it to get forecasting values. Notice that in the sgt model defined above, there is a keyword future which controls the execution of the model - depending on whether future &gt; 0 or future == 0. The following code predicts the last 34 values from the original time-series. Step7: Let's get sMAPE, root mean square error of the prediction, and visualize the result with the mean prediction and the 90% highest posterior density interval (HPDI). Step8: Finally, let's plot the result to verify that we get the expected one.
Python Code: !pip install -q numpyro@git+https://github.com/pyro-ppl/numpyro import os import matplotlib.pyplot as plt import pandas as pd from IPython.display import set_matplotlib_formats import jax.numpy as jnp from jax import random import numpyro import numpyro.distributions as dist from numpyro.contrib.control_flow import scan from numpyro.diagnostics import autocorrelation, hpdi from numpyro.infer import MCMC, NUTS, Predictive if "NUMPYRO_SPHINXBUILD" in os.environ: set_matplotlib_formats("svg") numpyro.set_host_device_count(4) assert numpyro.__version__.startswith("0.9.2") Explanation: Time Series Forecasting In this tutorial, we will demonstrate how to build a model for time series forecasting in NumPyro. Specifically, we will replicate the Seasonal, Global Trend (SGT) model from the Rlgt: Bayesian Exponential Smoothing Models with Trend Modifications package. The time series data that we will use for this tutorial is the lynx dataset, which contains annual numbers of lynx trappings from 1821 to 1934 in Canada. End of explanation URL = "https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/datasets/lynx.csv" lynx = pd.read_csv(URL, index_col=0) data = lynx["value"].values print("Length of time series:", data.shape[0]) plt.figure(figsize=(8, 4)) plt.plot(lynx["time"], data) plt.show() Explanation: Data First, lets import and take a look at the dataset. End of explanation y_train, y_test = jnp.array(data[:80], dtype=jnp.float32), data[80:] Explanation: The time series has a length of 114 (a data point for each year), and by looking at the plot, we can observe seasonality in this dataset, which is the recurrence of similar patterns at specific time periods. e.g. in this dataset, we observe a cyclical pattern every 10 years, but there is also a less obvious but clear spike in the number of trappings every 40 years. Let us see if we can model this effect in NumPyro. In this tutorial, we will use the first 80 values for training and the last 34 values for testing. End of explanation def sgt(y, seasonality, future=0): # heuristically, standard derivation of Cauchy prior depends on # the max value of data cauchy_sd = jnp.max(y) / 150 # NB: priors' parameters are taken from # https://github.com/cbergmeir/Rlgt/blob/master/Rlgt/R/rlgtcontrol.R nu = numpyro.sample("nu", dist.Uniform(2, 20)) powx = numpyro.sample("powx", dist.Uniform(0, 1)) sigma = numpyro.sample("sigma", dist.HalfCauchy(cauchy_sd)) offset_sigma = numpyro.sample( "offset_sigma", dist.TruncatedCauchy(low=1e-10, loc=1e-10, scale=cauchy_sd) ) coef_trend = numpyro.sample("coef_trend", dist.Cauchy(0, cauchy_sd)) pow_trend_beta = numpyro.sample("pow_trend_beta", dist.Beta(1, 1)) # pow_trend takes values from -0.5 to 1 pow_trend = 1.5 * pow_trend_beta - 0.5 pow_season = numpyro.sample("pow_season", dist.Beta(1, 1)) level_sm = numpyro.sample("level_sm", dist.Beta(1, 2)) s_sm = numpyro.sample("s_sm", dist.Uniform(0, 1)) init_s = numpyro.sample("init_s", dist.Cauchy(0, y[:seasonality] * 0.3)) def transition_fn(carry, t): level, s, moving_sum = carry season = s[0] * level**pow_season exp_val = level + coef_trend * level**pow_trend + season exp_val = jnp.clip(exp_val, a_min=0) # use expected vale when forecasting y_t = jnp.where(t >= N, exp_val, y[t]) moving_sum = ( moving_sum + y[t] - jnp.where(t >= seasonality, y[t - seasonality], 0.0) ) level_p = jnp.where(t >= seasonality, moving_sum / seasonality, y_t - season) level = level_sm * level_p + (1 - level_sm) * level level = jnp.clip(level, a_min=0) new_s = (s_sm * (y_t - level) / season + (1 - s_sm)) * s[0] # repeat s when forecasting new_s = jnp.where(t >= N, s[0], new_s) s = jnp.concatenate([s[1:], new_s[None]], axis=0) omega = sigma * exp_val**powx + offset_sigma y_ = numpyro.sample("y", dist.StudentT(nu, exp_val, omega)) return (level, s, moving_sum), y_ N = y.shape[0] level_init = y[0] s_init = jnp.concatenate([init_s[1:], init_s[:1]], axis=0) moving_sum = level_init with numpyro.handlers.condition(data={"y": y[1:]}): _, ys = scan( transition_fn, (level_init, s_init, moving_sum), jnp.arange(1, N + future) ) if future > 0: numpyro.deterministic("y_forecast", ys[-future:]) Explanation: Model The model we are going to use is called Seasonal, Global Trend, which when tested on 3003 time series of the M-3 competition, has been known to outperform other models originally participating in the competition: \begin{align} \text{exp-val}{t} &= \text{level}{t-1} + \text{coef-trend} \times \text{level}{t-1}^{\text{pow-trend}} + \text{s}_t \times \text{level}{t-1}^{\text{pow-season}}, \ \sigma_{t} &= \sigma \times \text{exp-val}{t}^{\text{powx}} + \text{offset}, \ y{t} &\sim \text{StudentT}(\nu, \text{exp-val}{t}, \sigma{t}) \end{align} , where level and s follows the following recursion rules: \begin{align} \text{level-p} &= \begin{cases} y_t - \text{s}t \times \text{level}{t-1}^{\text{pow-season}} & \text{if } t \le \text{seasonality}, \ \text{Average} \left[y(t - \text{seasonality} + 1), \ldots, y(t)\right] & \text{otherwise}, \end{cases} \ \text{level}{t} &= \text{level-sm} \times \text{level-p} + (1 - \text{level-sm}) \times \text{level}{t-1}, \ \text{s}{t + \text{seasonality}} &= \text{s-sm} \times \frac{y{t} - \text{level}{t}}{\text{level}{t-1}^{\text{pow-trend}}} + (1 - \text{s-sm}) \times \text{s}_{t}. \end{align} A more detailed explanation for SGT model can be found in this vignette from the authors of the Rlgt package. Here we summarize the core ideas of this model: Student's t-distribution, which has heavier tails than normal distribution, is used for the likelihood. The expected value exp_val consists of a trending component and a seasonal component: The trend is governed by the map $x \mapsto x + ax^b$, where $x$ is level, $a$ is coef_trend, and $b$ is pow_trend. Note that when $b \sim 0$, the trend is linear with $a$ is the slope, and when $b \sim 1$, the trend is exponential with $a$ is the rate. So that function can cover a large family of trend. When time changes, level and s are updated to new values. Coefficients level_sm and s_sm are used to make the transition smoothly. When powx is near $0$, the error $\sigma_t$ will be nearly constant while when powx is near $1$, the error will be propotional to the expected value. There are several varieties of SGT. In this tutorial, we use generalized seasonality and seasonal average method. We are ready to specify the model using NumPyro primitives. In NumPyro, we use the primitive sample(name, prior) to declare a latent random variable with a corresponding prior. These primitives can have custom interpretations depending on the effect handlers that are used by NumPyro inference algorithms in the backend. e.g. we can condition on specific values using the condition handler, or record values at these sample sites in the execution trace using the trace handler. Note that these details are not important for specifying the model, or running inference, but curious readers are encouraged to read the tutorial on effect handlers in Pyro. End of explanation print("Lag values sorted according to their autocorrelation values:\n") print(jnp.argsort(autocorrelation(y_train))[::-1]) Explanation: Note that level and s are updated recursively while we collect the expected value at each time step. NumPyro uses JAX in the backend to JIT compile many critical parts of the NUTS algorithm, including the verlet integrator and the tree building process. However, doing so using Python's for loop in the model will result in a long compilation time for the model, so we use scan - which is a wrapper of lax.scan with supports for NumPyro primitives and handlers. A detailed explanation for using this utility can be found in NumPyro documentation. Here we use it to collect y values while the triple (level, s, moving_sum) plays the role of carrying state. Another note is that instead of declaring the observation site y in transition_fn python numpyro.sample("y", dist.StudentT(nu, exp_val, omega), obs=y[t]) , we have used condition handler here. The reason is we also want to use this model for forecasting. In forecasting, future values of y are non-observable, so obs=y[t] does not make sense when t &gt;= len(y) (caution: index out-of-bound errors do not get raised in JAX, e.g. jnp.arange(3)[10] == 2). Using condition, when the length of scan is larger than the length of the conditioned/observed site, unobserved values will be sampled from the distribution of that site. Inference First, we want to choose a good value for seasonality. Following the demo in Rlgt, we will set seasonality=38. Indeed, this value can be guessed by looking at the plot of the training data, where the second order seasonality effect has a periodicity around $40$ years. Note that $38$ is also one of the highest-autocorrelation lags. End of explanation %%time kernel = NUTS(sgt) mcmc = MCMC(kernel, num_warmup=5000, num_samples=5000, num_chains=4) mcmc.run(random.PRNGKey(0), y_train, seasonality=38) mcmc.print_summary() samples = mcmc.get_samples() Explanation: Now, let us run $4$ MCMC chains (using the No-U-Turn Sampler algorithm) with $5000$ warmup steps and $5000$ sampling steps per each chain. The returned value will be a collection of $20000$ samples. End of explanation predictive = Predictive(sgt, samples, return_sites=["y_forecast"]) forecast_marginal = predictive(random.PRNGKey(1), y_train, seasonality=38, future=34)[ "y_forecast" ] Explanation: Forecasting Given samples from mcmc, we want to do forecasting for the testing dataset y_test. NumPyro provides a convenient utility Predictive to get predictive distribution. Let's see how to use it to get forecasting values. Notice that in the sgt model defined above, there is a keyword future which controls the execution of the model - depending on whether future &gt; 0 or future == 0. The following code predicts the last 34 values from the original time-series. End of explanation y_pred = jnp.mean(forecast_marginal, axis=0) sMAPE = jnp.mean(jnp.abs(y_pred - y_test) / (y_pred + y_test)) * 200 msqrt = jnp.sqrt(jnp.mean((y_pred - y_test) ** 2)) print("sMAPE: {:.2f}, rmse: {:.2f}".format(sMAPE, msqrt)) Explanation: Let's get sMAPE, root mean square error of the prediction, and visualize the result with the mean prediction and the 90% highest posterior density interval (HPDI). End of explanation plt.figure(figsize=(8, 4)) plt.plot(lynx["time"], data) t_future = lynx["time"][80:] hpd_low, hpd_high = hpdi(forecast_marginal) plt.plot(t_future, y_pred, lw=2) plt.fill_between(t_future, hpd_low, hpd_high, alpha=0.3) plt.title("Forecasting lynx dataset with SGT model (90% HPDI)") plt.show() Explanation: Finally, let's plot the result to verify that we get the expected one. End of explanation
3,331
Given the following text description, write Python code to implement the functionality described below step by step Description: Step4: Passive and active colloidal chemotaxis in a microfluidic channel Step5: Below, we plot the mean-square displacement (MSD) of the dimer in cartesian coordinates. There are thus three components. The z component saturates because of the confinement. The x and y components result from a mixing of the parallel and transverse diffusion coefficients. The fit is for the long-time behaviour of the x-y MSD. Step6: We use the velocity autocorrelation function (VACF) of the transverse and parallel components of the velocity. Integrating those functions yields the transverse and parallel diffusion coefficients. The integration is stopped when it reaches a plateau. This is done by setting a limit in time, that is highlighted by reference lines in the plots. We proceed in the same fashion for the planar angle diffusion coefficient.
Python Code: %matplotlib inline import h5py import matplotlib.pyplot as plt from matplotlib.figure import SubplotParams import numpy as np from scipy.signal import fftconvolve from scipy.optimize import leastsq, curve_fit from scipy.integrate import simps, cumtrapz from glob import glob plt.rcParams['figure.figsize'] = (12, 6) plt.rcParams['figure.subplot.hspace'] = 0.25 plt.rcParams['figure.subplot.wspace'] = 0.25 plt.rcParams['figure.subplot.left'] = 0.17 plt.rcParams['axes.labelsize'] = 16 def expfitfunc(t, f0, tau): Exponential fitting function return f0*np.exp(-t/tau) def fitfunc(p, t): Linear fitting function return p[0] + p[1]*t def errfunc(p, t, y): Error function for `fitfunc` return fitfunc(p, t) - y def get_block_data(group, name, dim=3): Return the time and correlation function for the data read from RMPCDMD output files. block = group[name]['value'][:] count = group[name]['count'][:] block /= count.reshape((-1, 1, 1, 1)) t_data = [np.array([0])] data = [block[0,:1,:,:].reshape((-1,dim))] dt = group[name]['time'][()] for i in range(block.shape[0]): t = dt*np.arange(block.shape[1])*block.shape[1]**i t_data.append(t[1:]) data.append(block[i,1:,:,:].reshape((-1,dim))) return np.concatenate(t_data), np.concatenate(data) # Collect simulation data runs = glob('cceq_*.h5') runs.sort() msd_all = [] vacf_all = [] tvacf_all = [] pvacf_all = [] wacf_all = [] for f in runs: a = h5py.File(f, 'r') group = a['block_correlators'] msd_t, msd_data = get_block_data(group, 'mean_square_displacement') msd_all.append(msd_data) vacf_t, vacf_data = get_block_data(group, 'velocity_autocorrelation') vacf_all.append(vacf_data) do_pvacf = 'parallel_velocity_autocorrelation' in group if do_pvacf: pvacf_t, pvacf_data = get_block_data(group, 'parallel_velocity_autocorrelation') pvacf_all.append(pvacf_data) do_tvacf = 'transverse_velocity_autocorrelation' in group if do_tvacf: tvacf_t, tvacf_data = get_block_data(group, 'transverse_velocity_autocorrelation') tvacf_all.append(tvacf_data) do_wacf = 'planar_angular_velocity_autocorrelation' in group if do_wacf: wacf_t, w_data = get_block_data(group, 'planar_angular_velocity_autocorrelation', dim=1) wacf_all.append(w_data.flatten()) a.close() msd_all = np.array(msd_all) vacf_all = np.array(vacf_all) pvacf_all = np.array(pvacf_all) tvacf_all = np.array(tvacf_all) wacf_all = np.array(wacf_all) Explanation: Passive and active colloidal chemotaxis in a microfluidic channel: mesoscopic and stochastic models Author: Pierre de Buyl Supplemental information to the article by L. Deprez and P. de Buyl This notebook reports the characterization of the diffusion coefficients for a rigid dimer confined between plates. The data originates from the RMPCDMD simulation program. Please read its documentation and the published paper for meaningful use of this notebook. The correlation functions are computed online in RMPCDMD and stored in the H5MD files. They are read here and integrated to obtain the diffusion coefficients. A time limit on the integral is set for all integrals, and displayed in the figures, to obtain the value of the plateau of the running integral for D. End of explanation # Plot and fit the mean-squared displacement plt.ylabel(r'$\langle (\mathbf{r}(\tau) - \mathbf{r}(0))^2 \rangle$') m = msd_all.mean(axis=0) # Plot all three components plt.plot(msd_t, m, marker='o') # Sum only xy components m = m[...,:2].sum(axis=-1) # Fit data to t>100 mask = msd_t>100 solution, ierr = leastsq(errfunc, [0, 0.1], args=(msd_t[mask], m[mask])) intercept, D = solution # MSD = 2 d D t = 4 D t -> The coefficient of the linear fit must be divided by 4 # as the diffusion in z is bounded by the confining plates. D = D/4 plt.plot(msd_t, fitfunc((intercept, 2*D), msd_t)) plt.xlabel(r'$\tau$') plt.loglog() # Via the MSD, we can only access the sum of D_parallel and D_perp print("D_parallel + D_perp = ", 2*D) Explanation: Below, we plot the mean-square displacement (MSD) of the dimer in cartesian coordinates. There are thus three components. The z component saturates because of the confinement. The x and y components result from a mixing of the parallel and transverse diffusion coefficients. The fit is for the long-time behaviour of the x-y MSD. End of explanation # Integrate the VACF limit = 800 params = SubplotParams(hspace=0.08, wspace=0.15) plt.figure(figsize=(14,8), subplotpars=params) # Transverse VACF m = tvacf_all[...,:2].sum(axis=-1).mean(axis=0) ax1 = plt.subplot(221) plt.plot(tvacf_t, m, marker='o') plt.axvline(limit) plt.xscale('log') plt.xticks([]) plt.ylabel(r'Transv. VACF') # Integral of transverse VACF ax1_int = plt.subplot(222) plt.plot(tvacf_t, cumtrapz(m, tvacf_t, initial=0)) plt.axvline(limit) plt.xscale('log') plt.xticks([]) idx = np.searchsorted(tvacf_t, limit) integrated_Dt = simps(m[:idx], tvacf_t[:idx]) plt.axhline(integrated_Dt) ax1_int.yaxis.tick_right() ax1_int.yaxis.set_label_position('right') plt.ylabel(r'Integral of transv. VACF') plt.ylim(-0.0002,0.0025) # Parallel VACF ax2 = plt.subplot(223) m = pvacf_all[...,:2].sum(axis=-1).mean(axis=0) plt.plot(pvacf_t, m, marker='o') plt.axvline(limit) plt.xscale('log') plt.xlabel(r'$\tau$') plt.ylabel(r'Parallel VACF') # Integral of parallel VACF ax2_int = plt.subplot(224) plt.plot(pvacf_t, cumtrapz(m, pvacf_t, initial=0)) plt.axvline(limit) plt.xscale('log') plt.xlabel(r'$\tau$') idx = np.searchsorted(pvacf_t, limit) integrated_Dp = simps(m[:idx], pvacf_t[:idx]) plt.axhline(integrated_Dp) plt.ylim(-0.0002,0.0025) ax2_int.yaxis.tick_right() ax2_int.yaxis.set_label_position('right') plt.ylabel(r'Integral of parallel VACF') print('Transverse D:', integrated_Dt) print('Parallel D:', integrated_Dp) print("Sum of the D's", integrated_Dt+integrated_Dp) plt.figure(figsize=(14,4), subplotpars=params) m = wacf_all.mean(axis=0) s = wacf_all.std(axis=0) ax1 = plt.subplot(121) plt.xscale('log') plt.plot(wacf_t, m, marker='o') plt.axvline(limit) plt.xlim(.5, 1e4) plt.xlabel(r'$\tau$') plt.ylabel(r'Orientational ACF') ax2 = plt.subplot(122) plt.xscale('log') ax2.yaxis.tick_right() ax2.yaxis.set_label_position('right') plt.plot(wacf_t, cumtrapz(m, wacf_t, initial=0)) plt.xlim(.5, 1e4) plt.ylim(-1e-6, 2e-4) plt.xlabel(r'$\tau$') plt.ylabel(r'Integral of orientational ACF') limit = 800 idx = np.searchsorted(wacf_t, limit) plt.axvline(limit) D_integral = simps(m[:idx], wacf_t[:idx]) print('Integrated rotational diffusion coefficient', D_integral) plt.axhline(D_integral) plt.xlabel(r'$\tau$') Explanation: We use the velocity autocorrelation function (VACF) of the transverse and parallel components of the velocity. Integrating those functions yields the transverse and parallel diffusion coefficients. The integration is stopped when it reaches a plateau. This is done by setting a limit in time, that is highlighted by reference lines in the plots. We proceed in the same fashion for the planar angle diffusion coefficient. End of explanation
3,332
Given the following text description, write Python code to implement the functionality described below step by step Description: Pandas and Datetimes Pandas helps ease the pain of timezones, even as it provides many useful tools for generating DateTimeIndex based time Series. Step1: Timestamp type (for individual datetimes) Step2: LAB CHALLENGE What time is it right now in
Python Code: import pandas as pd from pandas import DataFrame, Series import numpy as np rng = pd.date_range('3/9/2012 9:30', periods=6, freq='D') rng type(rng) rng2 = pd.date_range('3/9/2012 9:30', periods=6, freq='M') rng2 ts = Series(np.random.randn(len(rng)), index=rng) type(ts) ts ts.index.tz rng.tz ts_utc = ts.tz_localize('UTC') ts_utc.index.tz ts_utc ts_pacific = ts_utc.tz_convert('US/Pacific') ts_pacific from IPython.display import YouTubeVideo YouTubeVideo("k4EUTMPuvHo") ts_eastern = ts_pacific.tz_convert('US/Eastern') ts_eastern ts_berlin = ts_pacific.tz_convert('Europe/Berlin') ts_berlin Explanation: Pandas and Datetimes Pandas helps ease the pain of timezones, even as it provides many useful tools for generating DateTimeIndex based time Series. End of explanation stamp = pd.Timestamp('2011-03-12 04:00') stamp2 = pd.Timestamp('Wed May 23 11:35:54 2018') # will this work too? type(stamp2) stamp2_pac = stamp2.tz_localize('US/Pacific') stamp2_pac stamp2_pac.tz_convert('Europe/Moscow') stamp2_pac.value # nanoseconds since the UNIX Epoch, Jan 1 1970 stamp2_pac.tz_convert('Europe/Moscow').value stamp3 = pd.Timestamp('Wed May 23 11:35:54 1950') stamp3.value # negative number because before the UNIX Epoch ts ts_sum = ts_eastern + ts_utc.tz_convert("Europe/Moscow") ts_sum.index Explanation: Timestamp type (for individual datetimes) End of explanation pd.Timestamp.now(tz='US/Pacific') # getting you started Explanation: LAB CHALLENGE What time is it right now in: Moscow Berlin Tokyo End of explanation
3,333
Given the following text description, write Python code to implement the functionality described below step by step Description: Ordinary Differential Equations Exercise 3 Imports Step1: Damped, driven nonlinear pendulum The equations of motion for a simple pendulum of mass $m$, length $l$ are Step4: Write a function derivs for usage with scipy.integrate.odeint that computes the derivatives for the damped, driven harmonic oscillator. The solution vector at each time will be $\vec{y}(t) = (\theta(t),\omega(t))$. Step5: Simple pendulum Use the above functions to integrate the simple pendulum for the case where it starts at rest pointing vertically upwards. In this case, it should remain at rest with constant energy. Integrate the equations of motion. Plot $E/m$ versus time. Plot $\theta(t)$ and $\omega(t)$ versus time. Tune the atol and rtol arguments of odeint until $E/m$, $\theta(t)$ and $\omega(t)$ are constant. Anytime you have a differential equation with a a conserved quantity, it is critical to make sure the numerical solutions conserve that quantity as well. This also gives you an opportunity to find other bugs in your code. The default error tolerances (atol and rtol) used by odeint are not sufficiently small for this problem. Start by trying atol=1e-3, rtol=1e-2 and then decrease each by an order of magnitude until your solutions are stable. Step7: Damped pendulum Write a plot_pendulum function that integrates the damped, driven pendulum differential equation for a particular set of parameters $[a,b,\omega_0]$. Use the initial conditions $\theta(0)=-\pi + 0.1$ and $\omega=0$. Decrease your atol and rtol even futher and make sure your solutions have converged. Make a parametric plot of $[\theta(t),\omega(t)]$ versus time. Use the plot limits $\theta \in [-2 \pi,2 \pi]$ and $\theta \in [-10,10]$ Label your axes and customize your plot to make it beautiful and effective. Step8: Here is an example of the output of your plot_pendulum function that should show a decaying spiral. Step9: Use interact to explore the plot_pendulum function with
Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np from scipy.integrate import odeint from IPython.html.widgets import interact, fixed Explanation: Ordinary Differential Equations Exercise 3 Imports End of explanation g = 9.81 # m/s^2 l = 0.5 # length of pendulum, in meters tmax = 50. # seconds t = np.linspace(0, tmax, int(100*tmax)) Explanation: Damped, driven nonlinear pendulum The equations of motion for a simple pendulum of mass $m$, length $l$ are: $$ \frac{d^2\theta}{dt^2} = \frac{-g}{\ell}\sin\theta $$ When a damping and periodic driving force are added the resulting system has much richer and interesting dynamics: $$ \frac{d^2\theta}{dt^2} = \frac{-g}{\ell}\sin\theta - a \omega - b \sin(\omega_0 t) $$ In this equation: $a$ governs the strength of the damping. $b$ governs the strength of the driving force. $\omega_0$ is the angular frequency of the driving force. When $a=0$ and $b=0$, the energy/mass is conserved: $$E/m =g\ell(1-\cos(\theta)) + \frac{1}{2}\ell^2\omega^2$$ Basic setup Here are the basic parameters we are going to use for this exercise: End of explanation def derivs(y, t, a, b, omega0): Compute the derivatives of the damped, driven pendulum. Parameters ---------- y : ndarray The solution vector at the current time t[i]: [theta[i],omega[i]]. t : float The current time t[i]. a, b, omega0: float The parameters in the differential equation. Returns ------- dy : ndarray The vector of derviatives at t[i]: [dtheta[i],domega[i]]. dtheta = y[1] domega = -g/l*np.sin(y[0])-a*y[1]-b*np.sin(omega0*t) return [dtheta, domega] assert np.allclose(derivs(np.array([np.pi,1.0]), 0, 1.0, 1.0, 1.0), [1.,-1.]) def energy(y): Compute the energy for the state array y. The state array y can have two forms: 1. It could be an ndim=1 array of np.array([theta,omega]) at a single time. 2. It could be an ndim=2 array where each row is the [theta,omega] at single time. Parameters ---------- y : ndarray, list, tuple A solution vector Returns ------- E/m : float (ndim=1) or ndarray (ndim=2) The energy per mass. try: if y.shape[1]: return g*l*(1-np.cos(y[:,0]))+.5*l**2*y[:,1]**2 except: Epm = g*l*(1-np.cos(y[0]))+.5*l**2*y[1]**2 return Epm assert np.allclose(energy(np.array([np.pi,0])),g) assert np.allclose(energy(np.ones((10,2))), np.ones(10)*energy(np.array([1,1]))) Explanation: Write a function derivs for usage with scipy.integrate.odeint that computes the derivatives for the damped, driven harmonic oscillator. The solution vector at each time will be $\vec{y}(t) = (\theta(t),\omega(t))$. End of explanation a=0 b=0 omega0=2 pend = odeint(derivs, [0,0], t, args=(a,b,omega0),atol=1e-3, rtol=1e-2) f=plt.figure(figsize=(15,10)) ax = plt.subplot(311) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.plot(t,pend[:,0]); plt.title(r"$\theta$ vs. time") plt.xlabel("Time") plt.ylabel(r"$\theta$") ax = plt.subplot(312) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.plot(t,pend[:,1]); plt.title(r"$\omega$ vs. time") plt.xlabel("Time") plt.ylabel(r"$\omega$") ax = plt.subplot(313) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.plot(t,energy(pend)); plt.title(r"Energy vs. time") plt.xlabel("Time") plt.ylabel("$Energy$") plt.tight_layout() # YOUR CODE HERE raise NotImplementedError() assert True # leave this to grade the two plots and their tuning of atol, rtol. Explanation: Simple pendulum Use the above functions to integrate the simple pendulum for the case where it starts at rest pointing vertically upwards. In this case, it should remain at rest with constant energy. Integrate the equations of motion. Plot $E/m$ versus time. Plot $\theta(t)$ and $\omega(t)$ versus time. Tune the atol and rtol arguments of odeint until $E/m$, $\theta(t)$ and $\omega(t)$ are constant. Anytime you have a differential equation with a a conserved quantity, it is critical to make sure the numerical solutions conserve that quantity as well. This also gives you an opportunity to find other bugs in your code. The default error tolerances (atol and rtol) used by odeint are not sufficiently small for this problem. Start by trying atol=1e-3, rtol=1e-2 and then decrease each by an order of magnitude until your solutions are stable. End of explanation def plot_pendulum(a=0.0, b=0.0, omega0=0.0): Integrate the damped, driven pendulum and make a phase plot of the solution. pend = odeint(derivs, [-np.pi+0.1,0], t, args=(a,b,omega0),atol=1e-11, rtol=1e-10) f=plt.figure(figsize=(15,10)) ax = plt.subplot(111) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.plot(pend[:,0], pend[:,1]); plt.xlim(-2*np.pi, 2*np.pi) plt.ylim(-10, 10) plt.title(r"$\theta$ vs. $\omega$") plt.xlabel(r"$\omega$") plt.ylabel(r"$\theta$") Explanation: Damped pendulum Write a plot_pendulum function that integrates the damped, driven pendulum differential equation for a particular set of parameters $[a,b,\omega_0]$. Use the initial conditions $\theta(0)=-\pi + 0.1$ and $\omega=0$. Decrease your atol and rtol even futher and make sure your solutions have converged. Make a parametric plot of $[\theta(t),\omega(t)]$ versus time. Use the plot limits $\theta \in [-2 \pi,2 \pi]$ and $\theta \in [-10,10]$ Label your axes and customize your plot to make it beautiful and effective. End of explanation plot_pendulum(0.5, 0.0, 0.0) Explanation: Here is an example of the output of your plot_pendulum function that should show a decaying spiral. End of explanation interact(plot_pendulum, a=(0.0,1.0, 0.1), b=(0.0,1.0,0.1), omega0=(0.0,10.0,0.1)) Explanation: Use interact to explore the plot_pendulum function with: a: a float slider over the interval $[0.0,1.0]$ with steps of $0.1$. b: a float slider over the interval $[0.0,10.0]$ with steps of $0.1$. omega0: a float slider over the interval $[0.0,10.0]$ with steps of $0.1$. End of explanation
3,334
Given the following text description, write Python code to implement the functionality described below step by step Description: Data analytics for home appliances identification by Ayush Garg, Gabriel Vizcaino and Pradeep Somi Ganeshbabu Table of content Loading and processing the PLAID dataset Saving or loading the processed dataset Fitting the classifier Testing the accuracy of the chosen classifiers Identifying appliance type per house Conclusions and future work Step1: Loading and processing the PLAID dataset We are analizing the PLAID dataset available in this link. To parse the csv files, we use the following code, which is a snippet of the Copyright (C) 2015 script developed by Jingkun Gao ([email protected]) and available in the same website. Step2: To run this notebook you can either download the PLAID dataset and run the above script to parese the data (this takes some time), or you may directly load the appData.pkl file (available here) which contains the required information using the code below. Step3: To facilitate working with the data, we extract the data contained in the dictionary data and create the following variables Step4: In order to identify identify patterns, it is useful to plot the data first. The following script plots the V-I profile of the last 10 cycles of five randomly picked appliances of each type. Step5: Saving or loading the processed dataset Here you can also directly load or save all of the above variables available in the Data_matrices.pkl file. Step6: Preparing the data From the V-I plots above we can conclude that, especially in the steady state, the combination of linear and non-linear elements within each appliance type produces a similar pattern of voltage vs. current across appliances of the same type. Though not perfectly consistent, we can harness this characteristic in order to build features that help us classify an appliance given its voltage and currents signals. We explored different transformations to extract features from voltage and current signals like directly using the voltage and current values, calculating the Fourier transform of the current to identify harmonics, descriptive statistics (e.g. standard deviations and variation coefficients over a cycle) and printing images of V-I plots in order to extract the pixels’ characteristics. While all of them provide useful information to identify appliances, the latter (i.e. images) is the transformation that yields the highest predicting accuracy. Therefore, we stick with this approach. Assuming that the power consumption of each appliance ends at steady state in the dataset, the following script extracts and produces standard plots of the last cycle of normalized currents and voltages for each appliance, and then saves those graphs as *.png files. The V-I pattern images saved as png files significantly use less memory than the raw data in csv files (~8 MB the whole folder). Step7: To run the notebook hereafter you can either go through the process of printing the images and saving them in a folder, or you may directly load them from the "pics_505_1" folder using the following script. Step8: After printing all the V-I pattern as images, the above script loads, cropes, convert to grayscale, and transforms those images (see examples) in arrays, in order to create a new matrix, temp (1074x32400), which will become the matrix of features. Fitting the classifier To build a well-performing classifier that identifies the appliance type based on its voltage and current signals as inputs, particularly the V-I profile at steady state, we start by evaluating different multi-class classifiers on the features matrix. To prevent overfitting, the dataset is randomly divided into three sub-sets Step9: Eight models are evaluated on the fractionated dataset. The function below fits the assigned model using the input training data and prints both, the score of the predictions on the input validation data and the fitting time. The score of the default classifier (i.e. a random prediction) is also printed for the sake of comparison. Step10: In general, the evaluated classifiers remarkably improve over the default classifier - expect for the Naive Bayes classifier using Bernoulli distributions (as expected given the input data). The one-vs-the-rest model, using a support vector machine estimator, is the one showing the highest accuracy on the validation subset. However, this classier, along with the Gradient Boosting (which also presents a good performance), takes significantly more time to fit than the others. On the contrary, the K-nearest-neighbors and Random Forest classifiers also achieve high accuracy but much faster. For these reasons, we are going to fine tune the main parameters of the latter two classifiers, re-train them, and then test again their performance on the testing subset. Step11: For the KNN classifier, the above graph suggests that the less number of neighbors to consider, the better the accuracy. Therefore, we are going to set this parameter to have only one neighbor in the KNN classifier. Having this new parameters, we re-trained both classifiers using the training and validation sub-sets, and test the fitted model on the testing set. Step12: Although the characteristic of the Random Forest classifier entails that the shape of the above graph changes every time it is run, the general behavior suggests that having more than 10 sub-trees notably improves the performance of the classifier. Progressively increasing the number of trees after this threshold slightly improves the performance further, up to a point, around 70-90, when the accuracy starts decreasing. Therefore, we are going to set this parameter at 80 sub-trees. Step13: Both classifiers improved their performance after the tuning their parameters. KNN even outweighs the performance of the one-vs-the-rest classifier. Although the score of the Random Forest classifier slightly lags behind KNN, this fitting time of this one is 8x times faster than KNN. Testing the accuracy of the chosen classifiers To further test the perfomance of both classifiers, we now perfom a random 10-fold cross-validation process on both models using the whole dataset. Step14: The results from the 10-fold cross-validation are very promising. Both models present more than 92% average accuracy and though KNN scores slightly higher, the Random Forest still shows significantly lesser fitting time. Identifying appliance type per house One last step to test the performance of the KNN and Random Forest classifiers would be to predict or identify the type of appliances in particular house, based on the voltage and current signals, by training the model on the data from the rest of the houses. There are 55 homes surveyed and each appliance has a label indicating its corresponding house; hence, it is possible to split the data in this fashion. This is another kind of cross-validation. Step15: The results of the cross-validation per home show an median accuracy above 80% for both classifiers. Out of the 55 home appliance predictions, 9 scored 100% accuracy and around 20 had scores above 90%. Only 3 and 2 houses had a scored below 50% using KNN and RF respectively. In general, the presented outcome suggests that the chosen classifers work fairly well, although they perfom poorly for certain homes. In order to identify why is this the case, it is worth it to plot the predictions and actual type of a couple of those home appliances. Step16: By running the above script over different wrong predictions we noticed that many of them correspond to signals either in transient or sub-transient state; which means that the shape of the V-I plot is not fully defined, so identifying the appliance type based on such image is very hard even for human eye. Furthermore, in several homes the list of associated appliances contain the same appliance sampled in different times. For example, in home46, in which we get an accuracy of 0%, the only signals correspond to a microwave whose V-I profile is very fuzzy. Therefore, in cases like this one, the classifiers are meant to failed repeatedly in a single house. Conclusions and future work The present notebook presents a data-driven approach to the problem of identifying home appliances type based on their corresponding electrical signals. Different multi-class classifiers are trained and tested on the PLAID dataset in order to identify the most accurate and less computationally expensive models. An image recognition approach of Voltage-Current profiles in steady state is used to model the inputs of the appliance classifiers. Based on the analyses undertaken we are able to identify some common patterns and draw conclusions about the two best performed classifiers identified in terms of time and accuracy, K-nearest-neighbors and Random Forest Decision Tree
Python Code: import numpy as np import matplotlib.pyplot as plt import pickle, time, seaborn, random, json, os %matplotlib inline from sklearn import tree from sklearn.model_selection import cross_val_score, train_test_split from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier, RandomForestClassifier from sklearn.naive_bayes import GaussianNB, BernoulliNB from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import LinearSVC from PIL import Image from sklearn.neighbors import KNeighborsClassifier Explanation: Data analytics for home appliances identification by Ayush Garg, Gabriel Vizcaino and Pradeep Somi Ganeshbabu Table of content Loading and processing the PLAID dataset Saving or loading the processed dataset Fitting the classifier Testing the accuracy of the chosen classifiers Identifying appliance type per house Conclusions and future work End of explanation #Setting up the path in the working directory Data_path = 'PLAID/' csv_path = Data_path + 'CSV/' csv_files = os.listdir(csv_path) #Load meta data with open(Data_path + 'meta1.json') as data_file: meta1 = json.load(data_file) meta = [meta1] #Functions to parse meta data stored in JSON format def clean_meta(ist): '''remove '' elements in Meta Data ''' clean_ist = ist.copy() for k,v in ist.items(): if len(v) == 0: del clean_ist[k] return clean_ist def parse_meta(meta): '''parse meta data for easy access''' M = {} for m in meta: for app in m: M[int(app['id'])] = clean_meta(app['meta']) return M Meta = parse_meta(meta) # Unique appliance types types = list(set([x['type'] for x in Meta.values()])) types.sort() #print(Unq_type) def read_data_given_id_limited(path,ids,val,progress=False,last_offset=0): '''read data given a list of ids and CSV paths''' n = len(ids) if n == 0: return {} else: data = {} for (i,ist_id) in enumerate(ids, start=1): if last_offset==0: data[ist_id] = np.genfromtxt(path+str(ist_id)+'.csv', delimiter=',',names='current,voltage',dtype=(float,float)) else: p=subprocess.Popen(['tail','-'+str(int(offset)),path+ str(ist_id)+'.csv'],stdout=subprocess.PIPE) data[ist_id] = np.genfromtxt(p.stdout,delimiter=',', names='current,voltage',dtype=(float,float)) data[ist_id]=data[ist_id][-val:] return data #get all the data points data={} val=30000 # take only last 30,000 values as they are most likely to be in the steady state ids_to_draw = {} for (ii,t) in enumerate(Unq_type): t_ids = [i for i,j in enumerate(Types,start=1) if j == t] ids_to_draw[t] = t_ids data[t]=read_data_given_id_limited(csv_path, ids_to_draw[t], False,val) Explanation: Loading and processing the PLAID dataset We are analizing the PLAID dataset available in this link. To parse the csv files, we use the following code, which is a snippet of the Copyright (C) 2015 script developed by Jingkun Gao ([email protected]) and available in the same website. End of explanation # Saving or loading the main dictionary pickle file saving = False if saving: pickle_file = open('AppData.pkl','wb') pickle.dump(data,pickle_file,protocol=2) pickle_file.close() else: pkf = open('AppData.pkl','rb') data = pickle.load(pkf) pkf.close() #get house number and ids for each CSV houses=[] org_ids=[] for i in range(0,len(Meta)): houses.append(Meta[i+1].get('location')) org_ids.append(i+1) houses = np.hstack([np.array(houses)[:,None],np.array(org_ids)[:,None]]) Explanation: To run this notebook you can either download the PLAID dataset and run the above script to parese the data (this takes some time), or you may directly load the appData.pkl file (available here) which contains the required information using the code below. End of explanation cycle = 30000; num_cycles = 1; till = -cycle*num_cycles resh = np.int(-till/num_cycles); tot = np.sum([len(data[x]) for x in data]); org_ids,c = [], 0 V = np.empty([resh,tot]); I = np.empty([resh,tot]); y = np.zeros(tot) for ap_num,ap in enumerate(types): for i in data[ap]: V[:,c] = np.mean(np.reshape(data[ap][i]['voltage'][till:],(-1,cycle)),axis=0) I[:,c] = np.mean(np.reshape(data[ap][i]['current'][till:],(-1,cycle)),axis=0) y[c] = ap_num org_ids.append(i) c += 1 pass V_org = V.T; I_org = I.T Explanation: To facilitate working with the data, we extract the data contained in the dictionary data and create the following variables: - V_org: Matrix of orginal voltage signals collected from every appliance (1074x30000) - I_org: Matrix of originla current signals collected from every appliance (1074x30000) - types: List of the types of appliances available in the dataset in alphabetic order - y_org: Array of numerical encoding for each appliance type (1074x1) - org_ids: List of original identification number of each appliance in the dataset - house: Matrix of the identification number of each appliance and the corresponding house name End of explanation # plot V-I of last 10 steady state periods num_figs = 5; fig, ax = plt.subplots(len(types),num_figs,figsize=(10,20)); till = -505*10 for (i,t) in enumerate(types): j = 0; p = random.sample(list(data[t].keys()),num_figs) for (k,v) in data[t].items(): if j > num_figs-1: break if k not in p: continue ax[i,j].plot(v['current'][till:],v['voltage'][till:],linewidth=1) ax[i,j].set_title('Org_id: {}'.format(k),fontsize = 10); ax[i,j].set_xlabel('Current (A)',fontsize = 8) ax[i,j].tick_params(axis='x', labelsize=5); ax[i,j].tick_params(axis='y', labelsize=8) j += 1 ax[i,0].set_ylabel('{} (V)'.format(t), fontsize=10) fig.tight_layout() Explanation: In order to identify identify patterns, it is useful to plot the data first. The following script plots the V-I profile of the last 10 cycles of five randomly picked appliances of each type. End of explanation saving = False if saving: pickle_file = open('Data_matrices.pkl','wb') pickle.dump([V_org,I_org,y_org,org_ids,houses,types],pickle_file,protocol=2) pickle_file.close() else: pkf = open('Data_matrices.pkl','rb') V_org,I_org,y_org,org_ids,houses,types = pickle.load(pkf) pkf.close() Explanation: Saving or loading the processed dataset Here you can also directly load or save all of the above variables available in the Data_matrices.pkl file. End of explanation cycle = 505; num_cycles = 1; till = -cycle*num_cycles V = np.empty((V_org.shape[0],cycle)); I = np.empty((V_org.shape[0],cycle)); y = y_org; c = 0 for i,val in enumerate(V_org): V[i] = np.mean(np.reshape(V_org[i,till:],(-1,cycle)),axis=0) I[i] = np.mean(np.reshape(I_org[i,till:],(-1,cycle)),axis=0) V = (V-np.mean(V,axis=1)[:,None]) / np.std(V,axis=1)[:,None]; I = (I-np.mean(I,axis=1)[:,None]) / np.std(I,axis=1)[:,None] Explanation: Preparing the data From the V-I plots above we can conclude that, especially in the steady state, the combination of linear and non-linear elements within each appliance type produces a similar pattern of voltage vs. current across appliances of the same type. Though not perfectly consistent, we can harness this characteristic in order to build features that help us classify an appliance given its voltage and currents signals. We explored different transformations to extract features from voltage and current signals like directly using the voltage and current values, calculating the Fourier transform of the current to identify harmonics, descriptive statistics (e.g. standard deviations and variation coefficients over a cycle) and printing images of V-I plots in order to extract the pixels’ characteristics. While all of them provide useful information to identify appliances, the latter (i.e. images) is the transformation that yields the highest predicting accuracy. Therefore, we stick with this approach. Assuming that the power consumption of each appliance ends at steady state in the dataset, the following script extracts and produces standard plots of the last cycle of normalized currents and voltages for each appliance, and then saves those graphs as *.png files. The V-I pattern images saved as png files significantly use less memory than the raw data in csv files (~8 MB the whole folder). End of explanation print_images = False; seaborn.reset_orig() m = V.shape[0]; j = 0 temp = np.empty((m,32400)); p = random.sample(range(m),3) for i in range(m): if print_images: fig = plt.figure(figsize=(2,2)) plt.plot(I[i],V[i],linewidth=0.8,color='b'); plt.xlim([-4,4]); plt.ylim([-2,2]); plt.savefig('pics_505_1/Ap_{}.png'.format(i)) plt.close() else: im = Image.open('pics_505_1/Ap_{}.png'.format(i)).crop((20,0,200,200-20)) im = im.convert('L') temp[i] = np.array(im).reshape((-1,)) if i in p: display(im) j += 1 pass seaborn.set() %matplotlib inline Explanation: To run the notebook hereafter you can either go through the process of printing the images and saving them in a folder, or you may directly load them from the "pics_505_1" folder using the following script. End of explanation X = temp; y = y_org X_, X_test, y_, y_test = train_test_split(X,y, test_size=0.2) X_train, X_cv, y_train, y_cv = train_test_split(X_, y_, test_size=0.2) Explanation: After printing all the V-I pattern as images, the above script loads, cropes, convert to grayscale, and transforms those images (see examples) in arrays, in order to create a new matrix, temp (1074x32400), which will become the matrix of features. Fitting the classifier To build a well-performing classifier that identifies the appliance type based on its voltage and current signals as inputs, particularly the V-I profile at steady state, we start by evaluating different multi-class classifiers on the features matrix. To prevent overfitting, the dataset is randomly divided into three sub-sets: training, validation, and test. The models are fitted using the training subset and then the accuracy is tested on the validation subset. After this evaluation the best models are fine tuned and then tested using the testing subset. Since the objective is to accurately identify the type of an appliance based on its electrical signals, the following formula is used to measure accuracy: $$Accurancy\space (Score) = \frac{Number\space of\space positive\space predictions}{Number\space of\space predictions}$$ End of explanation def eval_cfls(models,X,y,X_te,y_te): ss = []; tt = [] for m in models: start = time.time() m.fit(X,y) ss.append(np.round(m.score(X_te,y_te),4)) print(str(m).split('(')[0],': {}'.format(ss[-1]),'...Time: {} s'.format(np.round(time.time()-start,3))) tt.append(np.round(time.time()-start,3)) return ss,tt models = [OneVsRestClassifier(LinearSVC(random_state=0)),tree.ExtraTreeClassifier(),tree.DecisionTreeClassifier(),GaussianNB(), BernoulliNB(),GradientBoostingClassifier(), KNeighborsClassifier(),RandomForestClassifier()] ss,tt = eval_cfls(models,X_train,y_train,X_cv,y_cv) rand_guess = np.random.randint(0,len(set(y_train)),size=y_cv.shape[0]) print('Random Guess: {}'.format(np.round(np.mean(rand_guess == y_cv),4))) Explanation: Eight models are evaluated on the fractionated dataset. The function below fits the assigned model using the input training data and prints both, the score of the predictions on the input validation data and the fitting time. The score of the default classifier (i.e. a random prediction) is also printed for the sake of comparison. End of explanation scores = [] for n in range(1,11,2): clf = KNeighborsClassifier(n_neighbors=n,weights='distance') clf.fit(X_train,y_train) scores.append(clf.score(X_cv, y_cv)) plt.plot(range(1,11,2),scores); plt.xlabel('Number of neighbors'); plt.ylabel('Accuracy'); plt.ylim([0.8,1]); plt.title('K-nearest-neighbors classifier'); Explanation: In general, the evaluated classifiers remarkably improve over the default classifier - expect for the Naive Bayes classifier using Bernoulli distributions (as expected given the input data). The one-vs-the-rest model, using a support vector machine estimator, is the one showing the highest accuracy on the validation subset. However, this classier, along with the Gradient Boosting (which also presents a good performance), takes significantly more time to fit than the others. On the contrary, the K-nearest-neighbors and Random Forest classifiers also achieve high accuracy but much faster. For these reasons, we are going to fine tune the main parameters of the latter two classifiers, re-train them, and then test again their performance on the testing subset. End of explanation scores = [] for n in range(5,120,10): clf = RandomForestClassifier(n_estimators=n) clf.fit(X_train,y_train) scores.append(clf.score(X_cv, y_cv)) plt.plot(range(5,120,10),scores); plt.xlabel('Number of sub-trees'); plt.ylabel('Accuracy'); plt.ylim([0.8,1]); plt.title('Random Forest classifier'); Explanation: For the KNN classifier, the above graph suggests that the less number of neighbors to consider, the better the accuracy. Therefore, we are going to set this parameter to have only one neighbor in the KNN classifier. Having this new parameters, we re-trained both classifiers using the training and validation sub-sets, and test the fitted model on the testing set. End of explanation models = [KNeighborsClassifier(n_neighbors=1,weights='distance'),RandomForestClassifier(n_estimators=80)] eval_cfls(models,np.vstack([X_train,X_cv]),np.hstack([y_train,y_cv]),X_test,y_test); Explanation: Although the characteristic of the Random Forest classifier entails that the shape of the above graph changes every time it is run, the general behavior suggests that having more than 10 sub-trees notably improves the performance of the classifier. Progressively increasing the number of trees after this threshold slightly improves the performance further, up to a point, around 70-90, when the accuracy starts decreasing. Therefore, we are going to set this parameter at 80 sub-trees. End of explanation cv_scores = []; X = temp; y = y_org p = np.random.permutation(X.shape[0]) X = X[p]; y = y[p]; for m in models: start = time.time() cv_scores.append(cross_val_score(m, X, y, cv=10)) print(str(m).split('(')[0],'average score: {}'.format(np.round(np.mean(cv_scores),3)), '...10-fold CV Time: {} s'.format(np.round(time.time()-start,3))) Explanation: Both classifiers improved their performance after the tuning their parameters. KNN even outweighs the performance of the one-vs-the-rest classifier. Although the score of the Random Forest classifier slightly lags behind KNN, this fitting time of this one is 8x times faster than KNN. Testing the accuracy of the chosen classifiers To further test the perfomance of both classifiers, we now perfom a random 10-fold cross-validation process on both models using the whole dataset. End of explanation def held_house(name,houses): ids_te = houses[np.where(houses[:,0] == name),1].astype(int); ids_test,ids_train = [],[] for i,ID in enumerate(org_ids): if ID in ids_te: ids_test.append(i) else: ids_train.append(i) return ids_test,ids_train X = temp; y = y_org; h_names = ['house{}'.format(i+1) for i in range(len(set(houses[:,0])))] scores = np.zeros((len(h_names),2)) for i,m in enumerate(models): ss = [] for h in h_names: ids_test,ids_train = held_house(h,houses) X_train, X_test = X[ids_train], X[ids_test]; y_train,y_test = y[ids_train],y[ids_test]; m.fit(X_train,y_train) ss.append(m.score(X_test,y_test)) scores[:,i] = np.array(ss) plt.figure(figsize = (12,3)) plt.bar(np.arange(len(h_names)),scores[:,i],width=0.8); plt.xlim([0,len(h_names)]); plt.yticks(np.arange(0.1,1.1,0.1)); plt.ylabel('Accuracy'); plt.title('{} cross-validation per home. Median accuracy: {}'.format(str(m).split('(')[0], np.round(np.median(scores[:,i]),3))) plt.xticks(np.arange(len(h_names))+0.4,h_names,rotation='vertical'); plt.show() df = pd.DataFrame(np.array([np.mean(scores,axis=0),np.sum(scores == 1,axis=0), np.sum(scores >= 0.9,axis=0),np.sum(scores < 0.8,axis=0),np.sum(scores < 0.5,axis=0)]),columns=['KNN','RF']) df['Stats'] = ['Avg. accuracy','100% accuracy','Above 90%','Above 80%','Below 50%']; df.set_index('Stats',inplace=True); df.head() Explanation: The results from the 10-fold cross-validation are very promising. Both models present more than 92% average accuracy and though KNN scores slightly higher, the Random Forest still shows significantly lesser fitting time. Identifying appliance type per house One last step to test the performance of the KNN and Random Forest classifiers would be to predict or identify the type of appliances in particular house, based on the voltage and current signals, by training the model on the data from the rest of the houses. There are 55 homes surveyed and each appliance has a label indicating its corresponding house; hence, it is possible to split the data in this fashion. This is another kind of cross-validation. End of explanation X = temp; y = y_org; ids_test, ids_train = held_house('house46',houses) X_train, X_test = X[ids_train], X[ids_test]; y_train,y_test = y[ids_train],y[ids_test]; V_,V_test = V[ids_train],V[ids_test]; I_,I_test = I[ids_train],I[ids_test]; org_ids_test = np.array(org_ids)[ids_test] models[1].fit(X_train,y_train) pred = models[1].predict(X_test) items = np.where(pred != y_test)[0] print('Number of wrong predictions in house13: {}'.format(len(items))) for ids in items[:2]: print('Prediction: '+ types[int(pred[ids])],', Actual: '+types[int(y_test[ids])]) fig,ax = plt.subplots(1,3,figsize=(11,3)) ax[0].plot(I_test[ids],V_test[ids],linewidth=0.5); ax[0].set_title('Actual data. ID: {}'.format(org_ids_test[ids])); ax[1].plot(I_[y_train==y_test[ids]].T,V_[y_train==y_test[ids]].T,linewidth=0.5); ax[1].set_title('Profiles of {}'.format(types[int(y_test[ids])])) ax[2].plot(I_[y_train==pred[ids]].T,V_[y_train==pred[ids]].T,linewidth=0.5); ax[2].set_title('Profiles of {}'.format(types[int(pred[ids])])); Explanation: The results of the cross-validation per home show an median accuracy above 80% for both classifiers. Out of the 55 home appliance predictions, 9 scored 100% accuracy and around 20 had scores above 90%. Only 3 and 2 houses had a scored below 50% using KNN and RF respectively. In general, the presented outcome suggests that the chosen classifers work fairly well, although they perfom poorly for certain homes. In order to identify why is this the case, it is worth it to plot the predictions and actual type of a couple of those home appliances. End of explanation def plot_clf_samples(model,X,X_te,y,y_te,n): model.fit(X[:n], y[:n]) return np.array([model.score(X[:n], y[:n]), model.score(X_te, y_te)]) X = temp; y = y_org; X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) models[1].fit(X_train,y_train) models[1].score(X_test, y_test) nsamples = [int(x) for x in np.linspace(10, X_train.shape[0], 20)] errors = np.array([plot_clf_samples(clf, X_train, X_test, y_train,y_test, n) for n in nsamples]) plt.plot(nsamples, errors[:,0], nsamples, errors[:,1]); plt.xlabel('Number of appliances'); plt.ylabel('Accuracy'); plt.ylim([0.4,1.1]) plt.legend(['Training accuracy','Test accuracy'],loc=4); plt.title('RF accuracy with respect of number of samples'); Explanation: By running the above script over different wrong predictions we noticed that many of them correspond to signals either in transient or sub-transient state; which means that the shape of the V-I plot is not fully defined, so identifying the appliance type based on such image is very hard even for human eye. Furthermore, in several homes the list of associated appliances contain the same appliance sampled in different times. For example, in home46, in which we get an accuracy of 0%, the only signals correspond to a microwave whose V-I profile is very fuzzy. Therefore, in cases like this one, the classifiers are meant to failed repeatedly in a single house. Conclusions and future work The present notebook presents a data-driven approach to the problem of identifying home appliances type based on their corresponding electrical signals. Different multi-class classifiers are trained and tested on the PLAID dataset in order to identify the most accurate and less computationally expensive models. An image recognition approach of Voltage-Current profiles in steady state is used to model the inputs of the appliance classifiers. Based on the analyses undertaken we are able to identify some common patterns and draw conclusions about the two best performed classifiers identified in terms of time and accuracy, K-nearest-neighbors and Random Forest Decision Tree: - After fine tuning their corresponding parameters on a training sub-set, the average accuracy of KNN and RF, applying 10-fold cross-validation, is greater than 91%. - The One-vs-the-rest and Gradient Boosting Decision Trees classifiers also show high accuracy; however, the fitting time is in the order of minutes (almost 15 min. for Gradient Boosting), whereas KNN and RF take seconds to do the job. - Though KNN scores slightly higher than RF, the latter takes significantly shorter fitting time (about 8x time less). - While high accuracy in both classifiers is achieved using traditional cross-validation techniques, when applying cross-validation per individual home, the accuracy decreased to 80% on average. - While debugging the classifers we noticed that many of the input signals of current and voltage do not reach steady state in different appliances. Therefore, their corresponding V-I profile is not well defined which makes the prediction harder even for a human expert eye. We also noticed that in several homes, the list of associated appliances contain the same appliance sampled in different times. Therefore, in those cases the classifiers are meant to failed repeatedly in a single house. The following task are proposed as future work in order to improve the performance of the trained appliance classifiers: - Collect more data: The figure bellow shows the training and test accuracy evolution of the RF classifier with respect to the number of samples. While only slight increments are realized after 700-800 samples, it seems that there is still room for improvement in this sense. End of explanation
3,335
Given the following text description, write Python code to implement the functionality described below step by step Description: Background information on filtering Here we give some background information on filtering in general, and how it is done in MNE-Python in particular. Recommended reading for practical applications of digital filter design can be found in Parks & Burrus (1987) [1] and Ifeachor & Jervis (2002) [2], and for filtering in an M/EEG context we recommend reading Widmann et al. (2015) [7]_. To see how to use the default filters in MNE-Python on actual data, see the tut-filter-resample tutorial. Problem statement Practical issues with filtering electrophysiological data are covered in Widmann et al. (2012) [6]_, where they conclude with this statement Step1: Take for example an ideal low-pass filter, which would give a magnitude response of 1 in the pass-band (up to frequency $f_p$) and a magnitude response of 0 in the stop-band (down to frequency $f_s$) such that $f_p=f_s=40$ Hz here (shown to a lower limit of -60 dB for simplicity) Step2: This filter hypothetically achieves zero ripple in the frequency domain, perfect attenuation, and perfect steepness. However, due to the discontinuity in the frequency response, the filter would require infinite ringing in the time domain (i.e., infinite order) to be realized. Another way to think of this is that a rectangular window in the frequency domain is actually a sinc_ function in the time domain, which requires an infinite number of samples (and thus infinite time) to represent. So although this filter has ideal frequency suppression, it has poor time-domain characteristics. Let's try to naïvely make a brick-wall filter of length 0.1 s, and look at the filter itself in the time domain and the frequency domain Step3: This is not so good! Making the filter 10 times longer (1 s) gets us a slightly better stop-band suppression, but still has a lot of ringing in the time domain. Note the x-axis is an order of magnitude longer here, and the filter has a correspondingly much longer group delay (again equal to half the filter length, or 0.5 seconds) Step4: Let's make the stop-band tighter still with a longer filter (10 s), with a resulting larger x-axis Step5: Now we have very sharp frequency suppression, but our filter rings for the entire 10 seconds. So this naïve method is probably not a good way to build our low-pass filter. Fortunately, there are multiple established methods to design FIR filters based on desired response characteristics. These include Step6: Accepting a shallower roll-off of the filter in the frequency domain makes our time-domain response potentially much better. We end up with a more gradual slope through the transition region, but a much cleaner time domain signal. Here again for the 1 s filter Step7: Since our lowpass is around 40 Hz with a 10 Hz transition, we can actually use a shorter filter (5 cycles at 10 Hz = 0.5 s) and still get acceptable stop-band attenuation Step8: But if we shorten the filter too much (2 cycles of 10 Hz = 0.2 s), our effective stop frequency gets pushed out past 60 Hz Step9: If we want a filter that is only 0.1 seconds long, we should probably use something more like a 25 Hz transition band (0.2 s = 5 cycles @ 25 Hz) Step10: So far, we have only discussed non-causal filtering, which means that each sample at each time point $t$ is filtered using samples that come after ($t + \Delta t$) and before ($t - \Delta t$) the current time point $t$. In this sense, each sample is influenced by samples that come both before and after it. This is useful in many cases, especially because it does not delay the timing of events. However, sometimes it can be beneficial to use causal filtering, whereby each sample $t$ is filtered only using time points that came after it. Note that the delay is variable (whereas for linear/zero-phase filters it is constant) but small in the pass-band. Unlike zero-phase filters, which require time-shifting backward the output of a linear-phase filtering stage (and thus becoming non-causal), minimum-phase filters do not require any compensation to achieve small delays in the pass-band. Note that as an artifact of the minimum phase filter construction step, the filter does not end up being as steep as the linear/zero-phase version. We can construct a minimum-phase filter from our existing linear-phase filter with the Step11: Applying FIR filters Now lets look at some practical effects of these filters by applying them to some data. Let's construct a Gaussian-windowed sinusoid (i.e., Morlet imaginary part) plus noise (random and line). Note that the original clean signal contains frequency content in both the pass band and transition bands of our low-pass filter. Step12: Filter it with a shallow cutoff, linear-phase FIR (which allows us to compensate for the constant filter delay) Step13: Filter it with a different design method fir_design="firwin2", and also compensate for the constant filter delay. This method does not produce quite as sharp a transition compared to fir_design="firwin", despite being twice as long Step14: Let's also filter with the MNE-Python 0.13 default, which is a long-duration, steep cutoff FIR that gets applied twice Step15: Let's also filter it with the MNE-C default, which is a long-duration steep-slope FIR filter designed using frequency-domain techniques Step16: And now an example of a minimum-phase filter Step18: Both the MNE-Python 0.13 and MNE-C filters have excellent frequency attenuation, but it comes at a cost of potential ringing (long-lasting ripples) in the time domain. Ringing can occur with steep filters, especially in signals with frequency content around the transition band. Our Morlet wavelet signal has power in our transition band, and the time-domain ringing is thus more pronounced for the steep-slope, long-duration filter than the shorter, shallower-slope filter Step19: IIR filters MNE-Python also offers IIR filtering functionality that is based on the methods from Step20: The falloff of this filter is not very steep. <div class="alert alert-info"><h4>Note</h4><p>Here we have made use of second-order sections (SOS) by using Step21: There are other types of IIR filters that we can use. For a complete list, check out the documentation for Step22: If we can live with even more ripple, we can get it slightly steeper, but the impulse response begins to ring substantially longer (note the different x-axis scale) Step23: Applying IIR filters Now let's look at how our shallow and steep Butterworth IIR filters perform on our Morlet signal from before Step24: Some pitfalls of filtering Multiple recent papers have noted potential risks of drawing errant inferences due to misapplication of filters. Low-pass problems Filters in general, especially those that are non-causal (zero-phase), can make activity appear to occur earlier or later than it truly did. As mentioned in VanRullen (2011) [3], investigations of commonly (at the time) used low-pass filters created artifacts when they were applied to simulated data. However, such deleterious effects were minimal in many real-world examples in Rousselet (2012) [5]. Perhaps more revealing, it was noted in Widmann & Schröger (2012) [6] that the problematic low-pass filters from VanRullen (2011) [3] Step25: Similarly, in a P300 paradigm reported by Kappenman & Luck (2010) [12]_, they found that applying a 1 Hz high-pass decreased the probability of finding a significant difference in the N100 response, likely because the P300 response was smeared (and inverted) in time by the high-pass filter such that it tended to cancel out the increased N100. However, they nonetheless note that some high-passing can still be useful to deal with drifts in the data. Even though these papers generally advise a 0.1 Hz or lower frequency for a high-pass, it is important to keep in mind (as most authors note) that filtering choices should depend on the frequency content of both the signal(s) of interest and the noise to be suppressed. For example, in some of the MNE-Python examples involving the sample-dataset dataset, high-pass values of around 1 Hz are used when looking at auditory or visual N100 responses, because we analyze standard (not deviant) trials and thus expect that contamination by later or slower components will be limited. Baseline problems (or solutions?) In an evolving discussion, Tanner et al. (2015) [8] suggest using baseline correction to remove slow drifts in data. However, Maess et al. (2016) [9] suggest that baseline correction, which is a form of high-passing, does not offer substantial advantages over standard high-pass filtering. Tanner et al. (2016) [10]_ rebutted that baseline correction can correct for problems with filtering. To see what they mean, consider again our old simulated signal x from before Step26: In response, Maess et al. (2016) [11]_ note that these simulations do not address cases of pre-stimulus activity that is shared across conditions, as applying baseline correction will effectively copy the topology outside the baseline period. We can see this if we give our signal x with some consistent pre-stimulus activity, which makes everything look bad. <div class="alert alert-info"><h4>Note</h4><p>An important thing to keep in mind with these plots is that they are for a single simulated sensor. In multi-electrode recordings the topology (i.e., spatial pattern) of the pre-stimulus activity will leak into the post-stimulus period. This will likely create a spatially varying distortion of the time-domain signals, as the averaged pre-stimulus spatial pattern gets subtracted from the sensor time courses.</p></div> Putting some activity in the baseline period Step27: Both groups seem to acknowledge that the choices of filtering cutoffs, and perhaps even the application of baseline correction, depend on the characteristics of the data being investigated, especially when it comes to
Python Code: import numpy as np from numpy.fft import fft, fftfreq from scipy import signal import matplotlib.pyplot as plt from mne.time_frequency.tfr import morlet from mne.viz import plot_filter, plot_ideal_filter import mne sfreq = 1000. f_p = 40. flim = (1., sfreq / 2.) # limits for plotting Explanation: Background information on filtering Here we give some background information on filtering in general, and how it is done in MNE-Python in particular. Recommended reading for practical applications of digital filter design can be found in Parks & Burrus (1987) [1] and Ifeachor & Jervis (2002) [2], and for filtering in an M/EEG context we recommend reading Widmann et al. (2015) [7]_. To see how to use the default filters in MNE-Python on actual data, see the tut-filter-resample tutorial. Problem statement Practical issues with filtering electrophysiological data are covered in Widmann et al. (2012) [6]_, where they conclude with this statement: Filtering can result in considerable distortions of the time course (and amplitude) of a signal as demonstrated by VanRullen (2011) [[3]_]. Thus, filtering should not be used lightly. However, if effects of filtering are cautiously considered and filter artifacts are minimized, a valid interpretation of the temporal dynamics of filtered electrophysiological data is possible and signals missed otherwise can be detected with filtering. In other words, filtering can increase signal-to-noise ratio (SNR), but if it is not used carefully, it can distort data. Here we hope to cover some filtering basics so users can better understand filtering trade-offs and why MNE-Python has chosen particular defaults. Filtering basics Let's get some of the basic math down. In the frequency domain, digital filters have a transfer function that is given by: \begin{align}H(z) &= \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \ldots + b_M z^{-M}} {1 + a_1 z^{-1} + a_2 z^{-2} + \ldots + a_N z^{-M}} \ &= \frac{\sum_{k=0}^Mb_kz^{-k}}{\sum_{k=1}^Na_kz^{-k}}\end{align} In the time domain, the numerator coefficients $b_k$ and denominator coefficients $a_k$ can be used to obtain our output data $y(n)$ in terms of our input data $x(n)$ as: \begin{align}:label: summations y(n) &amp;= b_0 x(n) + b_1 x(n-1) + \ldots + b_M x(n-M) - a_1 y(n-1) - a_2 y(n - 2) - \ldots - a_N y(n - N)\\ &amp;= \sum_{k=0}^M b_k x(n-k) - \sum_{k=1}^N a_k y(n-k)\end{align} In other words, the output at time $n$ is determined by a sum over 1. the numerator coefficients $b_k$, which get multiplied by the previous input values $x(n-k)$, and 2. the denominator coefficients $a_k$, which get multiplied by the previous output values $y(n-k)$. Note that these summations correspond to (1) a weighted moving average and (2) an autoregression. Filters are broken into two classes: FIR_ (finite impulse response) and IIR_ (infinite impulse response) based on these coefficients. FIR filters use a finite number of numerator coefficients $b_k$ ($\forall k, a_k=0$), and thus each output value of $y(n)$ depends only on the $M$ previous input values. IIR filters depend on the previous input and output values, and thus can have effectively infinite impulse responses. As outlined in Parks & Burrus (1987) [1]_, FIR and IIR have different trade-offs: * A causal FIR filter can be linear-phase -- i.e., the same time delay across all frequencies -- whereas a causal IIR filter cannot. The phase and group delay characteristics are also usually better for FIR filters. * IIR filters can generally have a steeper cutoff than an FIR filter of equivalent order. * IIR filters are generally less numerically stable, in part due to accumulating error (due to its recursive calculations). In MNE-Python we default to using FIR filtering. As noted in Widmann et al. (2015) [7]_: Despite IIR filters often being considered as computationally more efficient, they are recommended only when high throughput and sharp cutoffs are required (Ifeachor and Jervis, 2002 [[2]_], p. 321)... FIR filters are easier to control, are always stable, have a well-defined passband, can be corrected to zero-phase without additional computations, and can be converted to minimum-phase. We therefore recommend FIR filters for most purposes in electrophysiological data analysis. When designing a filter (FIR or IIR), there are always trade-offs that need to be considered, including but not limited to: 1. Ripple in the pass-band 2. Attenuation of the stop-band 3. Steepness of roll-off 4. Filter order (i.e., length for FIR filters) 5. Time-domain ringing In general, the sharper something is in frequency, the broader it is in time, and vice-versa. This is a fundamental time-frequency trade-off, and it will show up below. FIR Filters First, we will focus on FIR filters, which are the default filters used by MNE-Python. Designing FIR filters Here we'll try to design a low-pass filter and look at trade-offs in terms of time- and frequency-domain filter characteristics. Later, in tut_effect_on_signals, we'll look at how such filters can affect signals when they are used. First let's import some useful tools for filtering, and set some default values for our data that are reasonable for M/EEG. End of explanation nyq = sfreq / 2. # the Nyquist frequency is half our sample rate freq = [0, f_p, f_p, nyq] gain = [1, 1, 0, 0] third_height = np.array(plt.rcParams['figure.figsize']) * [1, 1. / 3.] ax = plt.subplots(1, figsize=third_height)[1] plot_ideal_filter(freq, gain, ax, title='Ideal %s Hz lowpass' % f_p, flim=flim) Explanation: Take for example an ideal low-pass filter, which would give a magnitude response of 1 in the pass-band (up to frequency $f_p$) and a magnitude response of 0 in the stop-band (down to frequency $f_s$) such that $f_p=f_s=40$ Hz here (shown to a lower limit of -60 dB for simplicity): End of explanation n = int(round(0.1 * sfreq)) n -= n % 2 - 1 # make it odd t = np.arange(-(n // 2), n // 2 + 1) / sfreq # center our sinc h = np.sinc(2 * f_p * t) / (4 * np.pi) plot_filter(h, sfreq, freq, gain, 'Sinc (0.1 s)', flim=flim, compensate=True) Explanation: This filter hypothetically achieves zero ripple in the frequency domain, perfect attenuation, and perfect steepness. However, due to the discontinuity in the frequency response, the filter would require infinite ringing in the time domain (i.e., infinite order) to be realized. Another way to think of this is that a rectangular window in the frequency domain is actually a sinc_ function in the time domain, which requires an infinite number of samples (and thus infinite time) to represent. So although this filter has ideal frequency suppression, it has poor time-domain characteristics. Let's try to naïvely make a brick-wall filter of length 0.1 s, and look at the filter itself in the time domain and the frequency domain: End of explanation n = int(round(1. * sfreq)) n -= n % 2 - 1 # make it odd t = np.arange(-(n // 2), n // 2 + 1) / sfreq h = np.sinc(2 * f_p * t) / (4 * np.pi) plot_filter(h, sfreq, freq, gain, 'Sinc (1.0 s)', flim=flim, compensate=True) Explanation: This is not so good! Making the filter 10 times longer (1 s) gets us a slightly better stop-band suppression, but still has a lot of ringing in the time domain. Note the x-axis is an order of magnitude longer here, and the filter has a correspondingly much longer group delay (again equal to half the filter length, or 0.5 seconds): End of explanation n = int(round(10. * sfreq)) n -= n % 2 - 1 # make it odd t = np.arange(-(n // 2), n // 2 + 1) / sfreq h = np.sinc(2 * f_p * t) / (4 * np.pi) plot_filter(h, sfreq, freq, gain, 'Sinc (10.0 s)', flim=flim, compensate=True) Explanation: Let's make the stop-band tighter still with a longer filter (10 s), with a resulting larger x-axis: End of explanation trans_bandwidth = 10 # 10 Hz transition band f_s = f_p + trans_bandwidth # = 50 Hz freq = [0., f_p, f_s, nyq] gain = [1., 1., 0., 0.] ax = plt.subplots(1, figsize=third_height)[1] title = '%s Hz lowpass with a %s Hz transition' % (f_p, trans_bandwidth) plot_ideal_filter(freq, gain, ax, title=title, flim=flim) Explanation: Now we have very sharp frequency suppression, but our filter rings for the entire 10 seconds. So this naïve method is probably not a good way to build our low-pass filter. Fortunately, there are multiple established methods to design FIR filters based on desired response characteristics. These include: 1. The Remez_ algorithm (:func:`scipy.signal.remez`, `MATLAB firpm`_) 2. Windowed FIR design (:func:`scipy.signal.firwin2`, :func:`scipy.signal.firwin`, and `MATLAB fir2`_) 3. Least squares designs (:func:`scipy.signal.firls`, `MATLAB firls`_) 4. Frequency-domain design (construct filter in Fourier domain and use an :func:`IFFT &lt;numpy.fft.ifft&gt;` to invert it) <div class="alert alert-info"><h4>Note</h4><p>Remez and least squares designs have advantages when there are "do not care" regions in our frequency response. However, we want well controlled responses in all frequency regions. Frequency-domain construction is good when an arbitrary response is desired, but generally less clean (due to sampling issues) than a windowed approach for more straightforward filter applications. Since our filters (low-pass, high-pass, band-pass, band-stop) are fairly simple and we require precise control of all frequency regions, we will primarily use and explore windowed FIR design.</p></div> If we relax our frequency-domain filter requirements a little bit, we can use these functions to construct a lowpass filter that instead has a transition band, or a region between the pass frequency $f_p$ and stop frequency $f_s$, e.g.: End of explanation h = signal.firwin2(n, freq, gain, nyq=nyq) plot_filter(h, sfreq, freq, gain, 'Windowed 10 Hz transition (1.0 s)', flim=flim, compensate=True) Explanation: Accepting a shallower roll-off of the filter in the frequency domain makes our time-domain response potentially much better. We end up with a more gradual slope through the transition region, but a much cleaner time domain signal. Here again for the 1 s filter: End of explanation n = int(round(sfreq * 0.5)) + 1 h = signal.firwin2(n, freq, gain, nyq=nyq) plot_filter(h, sfreq, freq, gain, 'Windowed 10 Hz transition (0.5 s)', flim=flim, compensate=True) Explanation: Since our lowpass is around 40 Hz with a 10 Hz transition, we can actually use a shorter filter (5 cycles at 10 Hz = 0.5 s) and still get acceptable stop-band attenuation: End of explanation n = int(round(sfreq * 0.2)) + 1 h = signal.firwin2(n, freq, gain, nyq=nyq) plot_filter(h, sfreq, freq, gain, 'Windowed 10 Hz transition (0.2 s)', flim=flim, compensate=True) Explanation: But if we shorten the filter too much (2 cycles of 10 Hz = 0.2 s), our effective stop frequency gets pushed out past 60 Hz: End of explanation trans_bandwidth = 25 f_s = f_p + trans_bandwidth freq = [0, f_p, f_s, nyq] h = signal.firwin2(n, freq, gain, nyq=nyq) plot_filter(h, sfreq, freq, gain, 'Windowed 50 Hz transition (0.2 s)', flim=flim, compensate=True) Explanation: If we want a filter that is only 0.1 seconds long, we should probably use something more like a 25 Hz transition band (0.2 s = 5 cycles @ 25 Hz): End of explanation h_min = signal.minimum_phase(h) plot_filter(h_min, sfreq, freq, gain, 'Minimum-phase', flim=flim) Explanation: So far, we have only discussed non-causal filtering, which means that each sample at each time point $t$ is filtered using samples that come after ($t + \Delta t$) and before ($t - \Delta t$) the current time point $t$. In this sense, each sample is influenced by samples that come both before and after it. This is useful in many cases, especially because it does not delay the timing of events. However, sometimes it can be beneficial to use causal filtering, whereby each sample $t$ is filtered only using time points that came after it. Note that the delay is variable (whereas for linear/zero-phase filters it is constant) but small in the pass-band. Unlike zero-phase filters, which require time-shifting backward the output of a linear-phase filtering stage (and thus becoming non-causal), minimum-phase filters do not require any compensation to achieve small delays in the pass-band. Note that as an artifact of the minimum phase filter construction step, the filter does not end up being as steep as the linear/zero-phase version. We can construct a minimum-phase filter from our existing linear-phase filter with the :func:scipy.signal.minimum_phase function, and note that the falloff is not as steep: End of explanation dur = 10. center = 2. morlet_freq = f_p tlim = [center - 0.2, center + 0.2] tticks = [tlim[0], center, tlim[1]] flim = [20, 70] x = np.zeros(int(sfreq * dur) + 1) blip = morlet(sfreq, [morlet_freq], n_cycles=7)[0].imag / 20. n_onset = int(center * sfreq) - len(blip) // 2 x[n_onset:n_onset + len(blip)] += blip x_orig = x.copy() rng = np.random.RandomState(0) x += rng.randn(len(x)) / 1000. x += np.sin(2. * np.pi * 60. * np.arange(len(x)) / sfreq) / 2000. Explanation: Applying FIR filters Now lets look at some practical effects of these filters by applying them to some data. Let's construct a Gaussian-windowed sinusoid (i.e., Morlet imaginary part) plus noise (random and line). Note that the original clean signal contains frequency content in both the pass band and transition bands of our low-pass filter. End of explanation transition_band = 0.25 * f_p f_s = f_p + transition_band freq = [0., f_p, f_s, sfreq / 2.] gain = [1., 1., 0., 0.] # This would be equivalent: h = mne.filter.create_filter(x, sfreq, l_freq=None, h_freq=f_p, fir_design='firwin', verbose=True) x_v16 = np.convolve(h, x) # this is the linear->zero phase, causal-to-non-causal conversion / shift x_v16 = x_v16[len(h) // 2:] plot_filter(h, sfreq, freq, gain, 'MNE-Python 0.16 default', flim=flim, compensate=True) Explanation: Filter it with a shallow cutoff, linear-phase FIR (which allows us to compensate for the constant filter delay): End of explanation transition_band = 0.25 * f_p f_s = f_p + transition_band freq = [0., f_p, f_s, sfreq / 2.] gain = [1., 1., 0., 0.] # This would be equivalent: # filter_dur = 6.6 / transition_band # sec # n = int(sfreq * filter_dur) # h = signal.firwin2(n, freq, gain, nyq=sfreq / 2.) h = mne.filter.create_filter(x, sfreq, l_freq=None, h_freq=f_p, fir_design='firwin2', verbose=True) x_v14 = np.convolve(h, x)[len(h) // 2:] plot_filter(h, sfreq, freq, gain, 'MNE-Python 0.14 default', flim=flim, compensate=True) Explanation: Filter it with a different design method fir_design="firwin2", and also compensate for the constant filter delay. This method does not produce quite as sharp a transition compared to fir_design="firwin", despite being twice as long: End of explanation transition_band = 0.5 # Hz f_s = f_p + transition_band filter_dur = 10. # sec freq = [0., f_p, f_s, sfreq / 2.] gain = [1., 1., 0., 0.] # This would be equivalent # n = int(sfreq * filter_dur) # h = signal.firwin2(n, freq, gain, nyq=sfreq / 2.) h = mne.filter.create_filter(x, sfreq, l_freq=None, h_freq=f_p, h_trans_bandwidth=transition_band, filter_length='%ss' % filter_dur, fir_design='firwin2', verbose=True) x_v13 = np.convolve(np.convolve(h, x)[::-1], h)[::-1][len(h) - 1:-len(h) - 1] # the effective h is one that is applied to the time-reversed version of itself h_eff = np.convolve(h, h[::-1]) plot_filter(h_eff, sfreq, freq, gain, 'MNE-Python 0.13 default', flim=flim, compensate=True) Explanation: Let's also filter with the MNE-Python 0.13 default, which is a long-duration, steep cutoff FIR that gets applied twice: End of explanation h = mne.filter.design_mne_c_filter(sfreq, l_freq=None, h_freq=f_p + 2.5) x_mne_c = np.convolve(h, x)[len(h) // 2:] transition_band = 5 # Hz (default in MNE-C) f_s = f_p + transition_band freq = [0., f_p, f_s, sfreq / 2.] gain = [1., 1., 0., 0.] plot_filter(h, sfreq, freq, gain, 'MNE-C default', flim=flim, compensate=True) Explanation: Let's also filter it with the MNE-C default, which is a long-duration steep-slope FIR filter designed using frequency-domain techniques: End of explanation h = mne.filter.create_filter(x, sfreq, l_freq=None, h_freq=f_p, phase='minimum', fir_design='firwin', verbose=True) x_min = np.convolve(h, x) transition_band = 0.25 * f_p f_s = f_p + transition_band filter_dur = 6.6 / transition_band # sec n = int(sfreq * filter_dur) freq = [0., f_p, f_s, sfreq / 2.] gain = [1., 1., 0., 0.] plot_filter(h, sfreq, freq, gain, 'Minimum-phase filter', flim=flim) Explanation: And now an example of a minimum-phase filter: End of explanation axes = plt.subplots(1, 2)[1] def plot_signal(x, offset): Plot a signal. t = np.arange(len(x)) / sfreq axes[0].plot(t, x + offset) axes[0].set(xlabel='Time (s)', xlim=t[[0, -1]]) X = fft(x) freqs = fftfreq(len(x), 1. / sfreq) mask = freqs >= 0 X = X[mask] freqs = freqs[mask] axes[1].plot(freqs, 20 * np.log10(np.maximum(np.abs(X), 1e-16))) axes[1].set(xlim=flim) yscale = 30 yticklabels = ['Original', 'Noisy', 'FIR-firwin (0.16)', 'FIR-firwin2 (0.14)', 'FIR-steep (0.13)', 'FIR-steep (MNE-C)', 'Minimum-phase'] yticks = -np.arange(len(yticklabels)) / yscale plot_signal(x_orig, offset=yticks[0]) plot_signal(x, offset=yticks[1]) plot_signal(x_v16, offset=yticks[2]) plot_signal(x_v14, offset=yticks[3]) plot_signal(x_v13, offset=yticks[4]) plot_signal(x_mne_c, offset=yticks[5]) plot_signal(x_min, offset=yticks[6]) axes[0].set(xlim=tlim, title='FIR, Lowpass=%d Hz' % f_p, xticks=tticks, ylim=[-len(yticks) / yscale, 1. / yscale], yticks=yticks, yticklabels=yticklabels) for text in axes[0].get_yticklabels(): text.set(rotation=45, size=8) axes[1].set(xlim=flim, ylim=(-60, 10), xlabel='Frequency (Hz)', ylabel='Magnitude (dB)') mne.viz.tight_layout() plt.show() Explanation: Both the MNE-Python 0.13 and MNE-C filters have excellent frequency attenuation, but it comes at a cost of potential ringing (long-lasting ripples) in the time domain. Ringing can occur with steep filters, especially in signals with frequency content around the transition band. Our Morlet wavelet signal has power in our transition band, and the time-domain ringing is thus more pronounced for the steep-slope, long-duration filter than the shorter, shallower-slope filter: End of explanation sos = signal.iirfilter(2, f_p / nyq, btype='low', ftype='butter', output='sos') plot_filter(dict(sos=sos), sfreq, freq, gain, 'Butterworth order=2', flim=flim, compensate=True) x_shallow = signal.sosfiltfilt(sos, x) del sos Explanation: IIR filters MNE-Python also offers IIR filtering functionality that is based on the methods from :mod:scipy.signal. Specifically, we use the general-purpose functions :func:scipy.signal.iirfilter and :func:scipy.signal.iirdesign, which provide unified interfaces to IIR filter design. Designing IIR filters Let's continue with our design of a 40 Hz low-pass filter and look at some trade-offs of different IIR filters. Often the default IIR filter is a Butterworth filter_, which is designed to have a maximally flat pass-band. Let's look at a few filter orders, i.e., a few different number of coefficients used and therefore steepness of the filter: <div class="alert alert-info"><h4>Note</h4><p>Notice that the group delay (which is related to the phase) of the IIR filters below are not constant. In the FIR case, we can design so-called linear-phase filters that have a constant group delay, and thus compensate for the delay (making the filter non-causal) if necessary. This cannot be done with IIR filters, as they have a non-linear phase (non-constant group delay). As the filter order increases, the phase distortion near and in the transition band worsens. However, if non-causal (forward-backward) filtering can be used, e.g. with :func:`scipy.signal.filtfilt`, these phase issues can theoretically be mitigated.</p></div> End of explanation iir_params = dict(order=8, ftype='butter') filt = mne.filter.create_filter(x, sfreq, l_freq=None, h_freq=f_p, method='iir', iir_params=iir_params, verbose=True) plot_filter(filt, sfreq, freq, gain, 'Butterworth order=8', flim=flim, compensate=True) x_steep = signal.sosfiltfilt(filt['sos'], x) Explanation: The falloff of this filter is not very steep. <div class="alert alert-info"><h4>Note</h4><p>Here we have made use of second-order sections (SOS) by using :func:`scipy.signal.sosfilt` and, under the hood, :func:`scipy.signal.zpk2sos` when passing the ``output='sos'`` keyword argument to :func:`scipy.signal.iirfilter`. The filter definitions given `above <tut_filtering_basics>` use the polynomial numerator/denominator (sometimes called "tf") form ``(b, a)``, which are theoretically equivalent to the SOS form used here. In practice, however, the SOS form can give much better results due to issues with numerical precision (see :func:`scipy.signal.sosfilt` for an example), so SOS should be used whenever possible.</p></div> Let's increase the order, and note that now we have better attenuation, with a longer impulse response. Let's also switch to using the MNE filter design function, which simplifies a few things and gives us some information about the resulting filter: End of explanation iir_params.update(ftype='cheby1', rp=1., # dB of acceptable pass-band ripple ) filt = mne.filter.create_filter(x, sfreq, l_freq=None, h_freq=f_p, method='iir', iir_params=iir_params, verbose=True) plot_filter(filt, sfreq, freq, gain, 'Chebychev-1 order=8, ripple=1 dB', flim=flim, compensate=True) Explanation: There are other types of IIR filters that we can use. For a complete list, check out the documentation for :func:scipy.signal.iirdesign. Let's try a Chebychev (type I) filter, which trades off ripple in the pass-band to get better attenuation in the stop-band: End of explanation iir_params['rp'] = 6. filt = mne.filter.create_filter(x, sfreq, l_freq=None, h_freq=f_p, method='iir', iir_params=iir_params, verbose=True) plot_filter(filt, sfreq, freq, gain, 'Chebychev-1 order=8, ripple=6 dB', flim=flim, compensate=True) Explanation: If we can live with even more ripple, we can get it slightly steeper, but the impulse response begins to ring substantially longer (note the different x-axis scale): End of explanation axes = plt.subplots(1, 2)[1] yticks = np.arange(4) / -30. yticklabels = ['Original', 'Noisy', 'Butterworth-2', 'Butterworth-8'] plot_signal(x_orig, offset=yticks[0]) plot_signal(x, offset=yticks[1]) plot_signal(x_shallow, offset=yticks[2]) plot_signal(x_steep, offset=yticks[3]) axes[0].set(xlim=tlim, title='IIR, Lowpass=%d Hz' % f_p, xticks=tticks, ylim=[-0.125, 0.025], yticks=yticks, yticklabels=yticklabels,) for text in axes[0].get_yticklabels(): text.set(rotation=45, size=8) axes[1].set(xlim=flim, ylim=(-60, 10), xlabel='Frequency (Hz)', ylabel='Magnitude (dB)') mne.viz.adjust_axes(axes) mne.viz.tight_layout() plt.show() Explanation: Applying IIR filters Now let's look at how our shallow and steep Butterworth IIR filters perform on our Morlet signal from before: End of explanation x = np.zeros(int(2 * sfreq)) t = np.arange(0, len(x)) / sfreq - 0.2 onset = np.where(t >= 0.5)[0][0] cos_t = np.arange(0, int(sfreq * 0.8)) / sfreq sig = 2.5 - 2.5 * np.cos(2 * np.pi * (1. / 0.8) * cos_t) x[onset:onset + len(sig)] = sig iir_lp_30 = signal.iirfilter(2, 30. / sfreq, btype='lowpass') iir_hp_p1 = signal.iirfilter(2, 0.1 / sfreq, btype='highpass') iir_lp_2 = signal.iirfilter(2, 2. / sfreq, btype='lowpass') iir_hp_2 = signal.iirfilter(2, 2. / sfreq, btype='highpass') x_lp_30 = signal.filtfilt(iir_lp_30[0], iir_lp_30[1], x, padlen=0) x_hp_p1 = signal.filtfilt(iir_hp_p1[0], iir_hp_p1[1], x, padlen=0) x_lp_2 = signal.filtfilt(iir_lp_2[0], iir_lp_2[1], x, padlen=0) x_hp_2 = signal.filtfilt(iir_hp_2[0], iir_hp_2[1], x, padlen=0) xlim = t[[0, -1]] ylim = [-2, 6] xlabel = 'Time (sec)' ylabel = r'Amplitude ($\mu$V)' tticks = [0, 0.5, 1.3, t[-1]] axes = plt.subplots(2, 2)[1].ravel() for ax, x_f, title in zip(axes, [x_lp_2, x_lp_30, x_hp_2, x_hp_p1], ['LP$_2$', 'LP$_{30}$', 'HP$_2$', 'LP$_{0.1}$']): ax.plot(t, x, color='0.5') ax.plot(t, x_f, color='k', linestyle='--') ax.set(ylim=ylim, xlim=xlim, xticks=tticks, title=title, xlabel=xlabel, ylabel=ylabel) mne.viz.adjust_axes(axes) mne.viz.tight_layout() plt.show() Explanation: Some pitfalls of filtering Multiple recent papers have noted potential risks of drawing errant inferences due to misapplication of filters. Low-pass problems Filters in general, especially those that are non-causal (zero-phase), can make activity appear to occur earlier or later than it truly did. As mentioned in VanRullen (2011) [3], investigations of commonly (at the time) used low-pass filters created artifacts when they were applied to simulated data. However, such deleterious effects were minimal in many real-world examples in Rousselet (2012) [5]. Perhaps more revealing, it was noted in Widmann & Schröger (2012) [6] that the problematic low-pass filters from VanRullen (2011) [3]: Used a least-squares design (like :func:scipy.signal.firls) that included "do-not-care" transition regions, which can lead to uncontrolled behavior. Had a filter length that was independent of the transition bandwidth, which can cause excessive ringing and signal distortion. High-pass problems When it comes to high-pass filtering, using corner frequencies above 0.1 Hz were found in Acunzo et al. (2012) [4]_ to: "... generate a systematic bias easily leading to misinterpretations of neural activity.” In a related paper, Widmann et al. (2015) [7] also came to suggest a 0.1 Hz highpass. More evidence followed in Tanner et al. (2015) [8] of such distortions. Using data from language ERP studies of semantic and syntactic processing (i.e., N400 and P600), using a high-pass above 0.3 Hz caused significant effects to be introduced implausibly early when compared to the unfiltered data. From this, the authors suggested the optimal high-pass value for language processing to be 0.1 Hz. We can recreate a problematic simulation from Tanner et al. (2015) [8]_: "The simulated component is a single-cycle cosine wave with an amplitude of 5µV [sic], onset of 500 ms poststimulus, and duration of 800 ms. The simulated component was embedded in 20 s of zero values to avoid filtering edge effects... Distortions [were] caused by 2 Hz low-pass and high-pass filters... No visible distortion to the original waveform [occurred] with 30 Hz low-pass and 0.01 Hz high-pass filters... Filter frequencies correspond to the half-amplitude (-6 dB) cutoff (12 dB/octave roll-off)." <div class="alert alert-info"><h4>Note</h4><p>This simulated signal contains energy not just within the pass-band, but also within the transition and stop-bands -- perhaps most easily understood because the signal has a non-zero DC value, but also because it is a shifted cosine that has been *windowed* (here multiplied by a rectangular window), which makes the cosine and DC frequencies spread to other frequencies (multiplication in time is convolution in frequency, so multiplying by a rectangular window in the time domain means convolving a sinc function with the impulses at DC and the cosine frequency in the frequency domain).</p></div> End of explanation def baseline_plot(x): all_axes = plt.subplots(3, 2)[1] for ri, (axes, freq) in enumerate(zip(all_axes, [0.1, 0.3, 0.5])): for ci, ax in enumerate(axes): if ci == 0: iir_hp = signal.iirfilter(4, freq / sfreq, btype='highpass', output='sos') x_hp = signal.sosfiltfilt(iir_hp, x, padlen=0) else: x_hp -= x_hp[t < 0].mean() ax.plot(t, x, color='0.5') ax.plot(t, x_hp, color='k', linestyle='--') if ri == 0: ax.set(title=('No ' if ci == 0 else '') + 'Baseline Correction') ax.set(xticks=tticks, ylim=ylim, xlim=xlim, xlabel=xlabel) ax.set_ylabel('%0.1f Hz' % freq, rotation=0, horizontalalignment='right') mne.viz.adjust_axes(axes) mne.viz.tight_layout() plt.suptitle(title) plt.show() baseline_plot(x) Explanation: Similarly, in a P300 paradigm reported by Kappenman & Luck (2010) [12]_, they found that applying a 1 Hz high-pass decreased the probability of finding a significant difference in the N100 response, likely because the P300 response was smeared (and inverted) in time by the high-pass filter such that it tended to cancel out the increased N100. However, they nonetheless note that some high-passing can still be useful to deal with drifts in the data. Even though these papers generally advise a 0.1 Hz or lower frequency for a high-pass, it is important to keep in mind (as most authors note) that filtering choices should depend on the frequency content of both the signal(s) of interest and the noise to be suppressed. For example, in some of the MNE-Python examples involving the sample-dataset dataset, high-pass values of around 1 Hz are used when looking at auditory or visual N100 responses, because we analyze standard (not deviant) trials and thus expect that contamination by later or slower components will be limited. Baseline problems (or solutions?) In an evolving discussion, Tanner et al. (2015) [8] suggest using baseline correction to remove slow drifts in data. However, Maess et al. (2016) [9] suggest that baseline correction, which is a form of high-passing, does not offer substantial advantages over standard high-pass filtering. Tanner et al. (2016) [10]_ rebutted that baseline correction can correct for problems with filtering. To see what they mean, consider again our old simulated signal x from before: End of explanation n_pre = (t < 0).sum() sig_pre = 1 - np.cos(2 * np.pi * np.arange(n_pre) / (0.5 * n_pre)) x[:n_pre] += sig_pre baseline_plot(x) Explanation: In response, Maess et al. (2016) [11]_ note that these simulations do not address cases of pre-stimulus activity that is shared across conditions, as applying baseline correction will effectively copy the topology outside the baseline period. We can see this if we give our signal x with some consistent pre-stimulus activity, which makes everything look bad. <div class="alert alert-info"><h4>Note</h4><p>An important thing to keep in mind with these plots is that they are for a single simulated sensor. In multi-electrode recordings the topology (i.e., spatial pattern) of the pre-stimulus activity will leak into the post-stimulus period. This will likely create a spatially varying distortion of the time-domain signals, as the averaged pre-stimulus spatial pattern gets subtracted from the sensor time courses.</p></div> Putting some activity in the baseline period: End of explanation # Use the same settings as when calling e.g., `raw.filter()` fir_coefs = mne.filter.create_filter( data=None, # data is only used for sanity checking, not strictly needed sfreq=1000., # sfreq of your data in Hz l_freq=None, h_freq=40., # assuming a lowpass of 40 Hz method='fir', fir_window='hamming', fir_design='firwin', verbose=True) # See the printed log for the transition bandwidth and filter length. # Alternatively, get the filter length through: filter_length = fir_coefs.shape[0] Explanation: Both groups seem to acknowledge that the choices of filtering cutoffs, and perhaps even the application of baseline correction, depend on the characteristics of the data being investigated, especially when it comes to: The frequency content of the underlying evoked activity relative to the filtering parameters. The validity of the assumption of no consistent evoked activity in the baseline period. We thus recommend carefully applying baseline correction and/or high-pass values based on the characteristics of the data to be analyzed. Filtering defaults Defaults in MNE-Python Most often, filtering in MNE-Python is done at the :class:mne.io.Raw level, and thus :func:mne.io.Raw.filter is used. This function under the hood (among other things) calls :func:mne.filter.filter_data to actually filter the data, which by default applies a zero-phase FIR filter designed using :func:scipy.signal.firwin. In Widmann et al. (2015) [7]_, they suggest a specific set of parameters to use for high-pass filtering, including: "... providing a transition bandwidth of 25% of the lower passband edge but, where possible, not lower than 2 Hz and otherwise the distance from the passband edge to the critical frequency.” In practice, this means that for each high-pass value l_freq or low-pass value h_freq below, you would get this corresponding l_trans_bandwidth or h_trans_bandwidth, respectively, if the sample rate were 100 Hz (i.e., Nyquist frequency of 50 Hz): +------------------+-------------------+-------------------+ | l_freq or h_freq | l_trans_bandwidth | h_trans_bandwidth | +==================+===================+===================+ | 0.01 | 0.01 | 2.0 | +------------------+-------------------+-------------------+ | 0.1 | 0.1 | 2.0 | +------------------+-------------------+-------------------+ | 1.0 | 1.0 | 2.0 | +------------------+-------------------+-------------------+ | 2.0 | 2.0 | 2.0 | +------------------+-------------------+-------------------+ | 4.0 | 2.0 | 2.0 | +------------------+-------------------+-------------------+ | 8.0 | 2.0 | 2.0 | +------------------+-------------------+-------------------+ | 10.0 | 2.5 | 2.5 | +------------------+-------------------+-------------------+ | 20.0 | 5.0 | 5.0 | +------------------+-------------------+-------------------+ | 40.0 | 10.0 | 10.0 | +------------------+-------------------+-------------------+ | 50.0 | 12.5 | 12.5 | +------------------+-------------------+-------------------+ MNE-Python has adopted this definition for its high-pass (and low-pass) transition bandwidth choices when using l_trans_bandwidth='auto' and h_trans_bandwidth='auto'. To choose the filter length automatically with filter_length='auto', the reciprocal of the shortest transition bandwidth is used to ensure decent attenuation at the stop frequency. Specifically, the reciprocal (in samples) is multiplied by 3.1, 3.3, or 5.0 for the Hann, Hamming, or Blackman windows, respectively, as selected by the fir_window argument for fir_design='firwin', and double these for fir_design='firwin2' mode. <div class="alert alert-info"><h4>Note</h4><p>For ``fir_design='firwin2'``, the multiplicative factors are doubled compared to what is given in Ifeachor & Jervis (2002) [2]_ (p. 357), as :func:`scipy.signal.firwin2` has a smearing effect on the frequency response, which we compensate for by increasing the filter length. This is why ``fir_desgin='firwin'`` is preferred to ``fir_design='firwin2'``.</p></div> In 0.14, we default to using a Hamming window in filter design, as it provides up to 53 dB of stop-band attenuation with small pass-band ripple. <div class="alert alert-info"><h4>Note</h4><p>In band-pass applications, often a low-pass filter can operate effectively with fewer samples than the high-pass filter, so it is advisable to apply the high-pass and low-pass separately when using ``fir_design='firwin2'``. For design mode ``fir_design='firwin'``, there is no need to separate the operations, as the lowpass and highpass elements are constructed separately to meet the transition band requirements.</p></div> For more information on how to use the MNE-Python filtering functions with real data, consult the preprocessing tutorial on tut-filter-resample. Defaults in MNE-C MNE-C by default uses: 5 Hz transition band for low-pass filters. 3-sample transition band for high-pass filters. Filter length of 8197 samples. The filter is designed in the frequency domain, creating a linear-phase filter such that the delay is compensated for as is done with the MNE-Python phase='zero' filtering option. Squared-cosine ramps are used in the transition regions. Because these are used in place of more gradual (e.g., linear) transitions, a given transition width will result in more temporal ringing but also more rapid attenuation than the same transition width in windowed FIR designs. The default filter length will generally have excellent attenuation but long ringing for the sample rates typically encountered in M/EEG data (e.g. 500-2000 Hz). Defaults in other software A good but possibly outdated comparison of filtering in various software packages is available in Widmann et al. (2015) [7]_. Briefly: EEGLAB MNE-Python 0.14 defaults to behavior very similar to that of EEGLAB (see the EEGLAB filtering FAQ_ for more information). FieldTrip By default FieldTrip applies a forward-backward Butterworth IIR filter of order 4 (band-pass and band-stop filters) or 2 (for low-pass and high-pass filters). Similar filters can be achieved in MNE-Python when filtering with :meth:raw.filter(..., method='iir') &lt;mne.io.Raw.filter&gt; (see also :func:mne.filter.construct_iir_filter for options). For more information, see e.g. the FieldTrip band-pass documentation &lt;ftbp_&gt;_. Reporting Filters On page 45 in Widmann et al. (2015) [7]_, there is a convenient list of important filter parameters that should be reported with each publication: Filter type (high-pass, low-pass, band-pass, band-stop, FIR, IIR) Cutoff frequency (including definition) Filter order (or length) Roll-off or transition bandwidth Passband ripple and stopband attenuation Filter delay (zero-phase, linear-phase, non-linear phase) and causality Direction of computation (one-pass forward/reverse, or two-pass forward and reverse) In the following, we will address how to deal with these parameters in MNE: Filter type Depending on the function or method used, the filter type can be specified. To name an example, in :func:mne.filter.create_filter, the relevant arguments would be l_freq, h_freq, method, and if the method is FIR fir_window and fir_design. Cutoff frequency The cutoff of FIR filters in MNE is defined as half-amplitude cutoff in the middle of the transition band. That is, if you construct a lowpass FIR filter with h_freq = 40, the filter function will provide a transition bandwidth that depends on the h_trans_bandwidth argument. The desired half-amplitude cutoff of the lowpass FIR filter is then at h_freq + transition_bandwidth/2.. Filter length (order) and transition bandwidth (roll-off) In the tut_filtering_in_python section, we have already talked about the default filter lengths and transition bandwidths that are used when no custom values are specified using the respective filter function's arguments. If you want to find out about the filter length and transition bandwidth that were used through the 'auto' setting, you can use :func:mne.filter.create_filter to print out the settings once more: End of explanation
3,336
Given the following text description, write Python code to implement the functionality described below step by step Description: Basic read and write operations In this example we will explore how to create and read a simple Lightning Memory-Mapped Database (LMDB) using pyxis. Writing data Step1: Let's start by creating some data that we can store. 2000 images with shape (254, 254, 3) along with 2000 targets are generated. Step2: The tenth image is set to be a completely red image. Step3: In the next step we instantiate a pyxis writer to write the data we created above to a directory called data. Step4: The map_size_limit is the size of the LMDB in MB. For file systems running ext4, there is no big cost associated with making this big. ram_size_limit is the limit on how many GB of data we can push per write operation. When the LMDB writer is set up, we can run the pyxis.put_samples function to write data. Ideally you should send large data blobs at once. Here we will write all the 2000 samples generated above at once. If the size of the data you have is larger than the size of your RAM, then you can perform multiple calls to pyxis.put_samples. Step5: Data can be input in two different ways Step6: Reading data Step7: To read data from a LMDB we instantiate a pyxis reader using the directory of the database. Step8: All addressable keys can be found by calling the pyxis.get_data_keys function Step9: Python list indexing syntax is used to retrieve a whole sample from the LMDB. The pyxis.get_sample function can be used as well. The returned value is a Python dictionary, addressable by the keys used when writing the database. Step10: The code snippet above retrieves the tenth sample, i.e. the one with the red image. Step11: Slice objects are supported by the indexing method outlined above. For example Step12: Python 2.7 tend to favour __getslice__ over __getitem__ when slicing, however __getslice__ has been deprecated since Python 2.0. The functionality may vary when compared with Python 3. See Python 2 Data model documentation for more information. Data within a sample can be retrieved directly by using the pyxis.get_data_value function. Here we ask the LMDB for the hundredth y value. Step13: Use len() to return the number of samples in the LMDB. Step14: Just like when writing, we should make sure to close the LMDB environment after we are done reading.
Python Code: from __future__ import print_function import time import numpy as np import pyxis as px np.random.seed(1234) Explanation: Basic read and write operations In this example we will explore how to create and read a simple Lightning Memory-Mapped Database (LMDB) using pyxis. Writing data End of explanation nb_samples = 2000 X = np.zeros((nb_samples, 254, 254, 3), dtype=np.uint8) y = np.arange(nb_samples, dtype=np.uint8) Explanation: Let's start by creating some data that we can store. 2000 images with shape (254, 254, 3) along with 2000 targets are generated. End of explanation X[10, :, :, 0] = 255 Explanation: The tenth image is set to be a completely red image. End of explanation db = px.Writer(dirpath='data', map_size_limit=500, ram_gb_limit=2) Explanation: In the next step we instantiate a pyxis writer to write the data we created above to a directory called data. End of explanation start = time.time() db.put_samples('X', X, 'y', y) print('Average time per image = {:.4f}s'.format((time.time() - start) / nb_samples)) Explanation: The map_size_limit is the size of the LMDB in MB. For file systems running ext4, there is no big cost associated with making this big. ram_size_limit is the limit on how many GB of data we can push per write operation. When the LMDB writer is set up, we can run the pyxis.put_samples function to write data. Ideally you should send large data blobs at once. Here we will write all the 2000 samples generated above at once. If the size of the data you have is larger than the size of your RAM, then you can perform multiple calls to pyxis.put_samples. End of explanation db.close() Explanation: Data can be input in two different ways: pyxis.put_samples('key1', value1, 'key2', value2, ...) pyxis.put_samples({'key1': value1, 'key2': value2, ...}) The code example above uses the first option with alternating keys and values. The second option is simply a Python dictionary. There are two requirements of data that is put in a pyxis database: All values must have the type numpy.ndarray. The first axis in all values must represent the sample number. Make sure to close the LMDB environment after writing. The close operation makes sure to store the number of samples that has been written. End of explanation try: %matplotlib inline import matplotlib.pyplot as plt except ImportError: raise ImportError('Could not import the matplotlib library required to ' 'plot images. Please refer to http://matplotlib.org/ ' 'for installation instructions.') Explanation: Reading data End of explanation db = px.Reader('data') Explanation: To read data from a LMDB we instantiate a pyxis reader using the directory of the database. End of explanation db.get_data_keys() Explanation: All addressable keys can be found by calling the pyxis.get_data_keys function: End of explanation sample = db[10] print('X: ', sample['X'].shape, sample['X'].dtype) print('y: ', sample['y'].shape, sample['y'].dtype) Explanation: Python list indexing syntax is used to retrieve a whole sample from the LMDB. The pyxis.get_sample function can be used as well. The returned value is a Python dictionary, addressable by the keys used when writing the database. End of explanation plt.figure() plt.imshow(sample['X']) plt.axis('off') plt.show() Explanation: The code snippet above retrieves the tenth sample, i.e. the one with the red image. End of explanation samples = db[0:8:2] for sample in samples: print(sample['y']) Explanation: Slice objects are supported by the indexing method outlined above. For example: End of explanation db.get_data_value(100, 'y') Explanation: Python 2.7 tend to favour __getslice__ over __getitem__ when slicing, however __getslice__ has been deprecated since Python 2.0. The functionality may vary when compared with Python 3. See Python 2 Data model documentation for more information. Data within a sample can be retrieved directly by using the pyxis.get_data_value function. Here we ask the LMDB for the hundredth y value. End of explanation len(db) Explanation: Use len() to return the number of samples in the LMDB. End of explanation db.close() Explanation: Just like when writing, we should make sure to close the LMDB environment after we are done reading. End of explanation
3,337
Given the following text description, write Python code to implement the functionality described below step by step Description: This notebook was created by Sergey Tomin ([email protected]). Source and license info is on GitHub. April 2020. Tutorial N6. Coupler Kick. Second order tracking with coupler kick in TESLA type cavity of the 200k particles. As an example, we will use linac L1 of the European XFEL Injector. The input coupler and the higher order mode couplers of the RF cavities distort the axial symmetry of the electromagnetic (EM) field and affect the electron beam. This effect can be calculated by direct tracking of the particles in the asymmetric (due to the couplers) 3D EM field using a tracking code (e.g. ASTRA). For fast estimation of the coupler effect a discrete coupler model (as described, for example in M. Dohlus et al, Coupler Kick for Very Short Bunches and its Compensation, Proc. of EPAC08, MOPP013 or T.Hellert and M.Dohlus, Detuning related coupler kick variation of a superconducting nine-cell 1.3 GHz cavity) was implemented in OCELOT. Coefficients for 1.3 GHz modules are given in M.Dohlus, Effects of RF coupler kicks in L1 of EXFEL. The 1st order part of the model includes time and offset dependency; the offset dependency has a skew component. To include effect of all couplers, the kicks are applied at the entrance and the exit of each cavity. The zeroth and first order kick $\vec k$ on a bunch induced by a coupler can be expressed as \begin{equation} \vec k(x, y) \approx \frac{eV_0}{E_0} \Re \left{ \left( \begin{matrix} V_{x0}\ V_{y0} \end{matrix} \right) + \left( \begin{matrix} V_{xx} & V_{xy} \ V_{yx} & V_{yy} \end{matrix}\right) \left( \begin{matrix} x\ y \end{matrix} \right) e^{i \phi}\right} \end{equation} with $E_0$ being the beam energy at the corresponding coupler region, $V_0$ and $\phi$ the amplitude and phase of the accelerating field, respectively, $e$ the elementary charge and $x$ and $y$ the transverse beam position at the coupler location. From Maxwell equations it follows that $V_{yy} = −V_{xx}$ and $V_{xy} = V_{yx}$. Thus, coupler kicks are up to first order well described with four normalized coupler kick coefficients $[V_{0x}, V_{0y}, V_{xx}, V_{xy}]$. In OCELOT one can define copler kick coefficients for upstream and downstream coplers. python Cavity(l=0., v=0., phi=0., freq=0., vx_up=0, vy_up=0, vxx_up=0, vxy_up=0, vx_down=0, vy_down=0, vxx_down=0, vxy_down=0, eid=None) This example will cover the following topics Step1: Twiss parameters with and without coupler kick Step2: Trajectories with Coupler Kick Step3: Horizantal and vertical emittances Before start we remove zero order terms (dipole kicks) from coupler kicks coefficients. And check if we have any asymmetry. Step4: Tracking of the particles though lattice with coupler kicks Steps Step5: Eigenemittance As can we see, the projected emittances are not preserved, although all matrices are symplectic. The reason is the coupler kicks inroduce coupling between $X$ and $Y$ planes while the projected emittances are invariants under linear uncoupled (with respect to the laboratory coordinate system) symplectic transport. However, there are invariants under arbitrary (possibly coupled) linear symplectic transformations - eigenemittances. Details can be found here V. Balandin and N. Golubeva "Notes on Linear Theory of Coupled Particle Beams with Equal Eigenemittances" and V.Balandin et al "Twiss Parameters of Coupled Particle Beams with Equal Eigenemittances"
Python Code: # the output of plotting commands is displayed inline within frontends, # directly below the code cell that produced it %matplotlib inline from time import time # this python library provides generic shallow (copy) # and deep copy (deepcopy) operations from copy import deepcopy # import from Ocelot main modules and functions from ocelot import * # extra function to track the Particle though a lattice from ocelot.cpbd.track import lattice_track # import from Ocelot graphical modules from ocelot.gui.accelerator import * # import lattice from xfel_l1 import * tws0 = Twiss() tws0.E = 0.005 tws0.beta_x = 7.03383607232 tws0.beta_y = 4.83025657816 tws0.alpha_x = 0.981680481977 tws0.alpha_y = -0.524776086698 tws0.E = 0.1300000928 lat = MagneticLattice(cell_l1, start=bpmf_103_i1, stop=qd_210_b1) # twiss parameters without coupler kick tws1 = twiss(lat, tws0) # adding coupler coefficients in [1/m] for elem in lat.sequence: if elem.__class__ == Cavity: if not(".AH1." in elem.id): # 1.3 GHz cavities elem.vx_up = (-56.813 + 10.751j) * 1e-6 elem.vy_up = (-41.091 + 0.5739j) * 1e-6 elem.vxx_up = (0.99943 - 0.81401j) * 1e-3 elem.vxy_up = (3.4065 - 0.4146j) * 1e-3 elem.vx_down = (-24.014 + 12.492j) * 1e-6 elem.vy_down = (36.481 + 7.9888j) * 1e-6 elem.vxx_down = (-4.057 - 0.1369j) * 1e-3 elem.vxy_down = (2.9243 - 0.012891j) * 1e-3 else: # AH1 cavity (3.9 GHz) module names are 'C3.AH1.1.1.I1', 'C3.AH1.1.2.I1', ... # Modules with odd and even number X 'C3.AH1.1.X.I1' have different coefficients module_number = float(elem.id.split(".")[-2]) if module_number % 2 == 1: elem.vx_up = -0.00057076 - 1.3166e-05j elem.vy_up = -3.5079e-05 + 0.00012636j elem.vxx_up = -0.026045 - 0.042918j elem.vxy_up = 0.0055553 - 0.023455j elem.vx_down = -8.8766e-05 - 0.00024852j elem.vy_down = 2.9889e-05 + 0.00014486j elem.vxx_down = -0.0050593 - 0.013491j elem.vxy_down = 0.0051488 + 0.024771j else: elem.vx_up = 0.00057076 + 1.3166e-05j elem.vy_up = 3.5079e-05 - 0.00012636j elem.vxx_up = -0.026045 - 0.042918j elem.vxy_up = 0.0055553 - 0.023455j elem.vx_down = 8.8766e-05 + 0.00024852j elem.vy_down = -2.9889e-05 - 0.00014486j elem.vxx_down = -0.0050593 - 0.013491j elem.vxy_down = 0.0051488 + 0.024771j # update transfer maps lat.update_transfer_maps() tws = twiss(lat, tws0) Explanation: This notebook was created by Sergey Tomin ([email protected]). Source and license info is on GitHub. April 2020. Tutorial N6. Coupler Kick. Second order tracking with coupler kick in TESLA type cavity of the 200k particles. As an example, we will use linac L1 of the European XFEL Injector. The input coupler and the higher order mode couplers of the RF cavities distort the axial symmetry of the electromagnetic (EM) field and affect the electron beam. This effect can be calculated by direct tracking of the particles in the asymmetric (due to the couplers) 3D EM field using a tracking code (e.g. ASTRA). For fast estimation of the coupler effect a discrete coupler model (as described, for example in M. Dohlus et al, Coupler Kick for Very Short Bunches and its Compensation, Proc. of EPAC08, MOPP013 or T.Hellert and M.Dohlus, Detuning related coupler kick variation of a superconducting nine-cell 1.3 GHz cavity) was implemented in OCELOT. Coefficients for 1.3 GHz modules are given in M.Dohlus, Effects of RF coupler kicks in L1 of EXFEL. The 1st order part of the model includes time and offset dependency; the offset dependency has a skew component. To include effect of all couplers, the kicks are applied at the entrance and the exit of each cavity. The zeroth and first order kick $\vec k$ on a bunch induced by a coupler can be expressed as \begin{equation} \vec k(x, y) \approx \frac{eV_0}{E_0} \Re \left{ \left( \begin{matrix} V_{x0}\ V_{y0} \end{matrix} \right) + \left( \begin{matrix} V_{xx} & V_{xy} \ V_{yx} & V_{yy} \end{matrix}\right) \left( \begin{matrix} x\ y \end{matrix} \right) e^{i \phi}\right} \end{equation} with $E_0$ being the beam energy at the corresponding coupler region, $V_0$ and $\phi$ the amplitude and phase of the accelerating field, respectively, $e$ the elementary charge and $x$ and $y$ the transverse beam position at the coupler location. From Maxwell equations it follows that $V_{yy} = −V_{xx}$ and $V_{xy} = V_{yx}$. Thus, coupler kicks are up to first order well described with four normalized coupler kick coefficients $[V_{0x}, V_{0y}, V_{xx}, V_{xy}]$. In OCELOT one can define copler kick coefficients for upstream and downstream coplers. python Cavity(l=0., v=0., phi=0., freq=0., vx_up=0, vy_up=0, vxx_up=0, vxy_up=0, vx_down=0, vy_down=0, vxx_down=0, vxy_down=0, eid=None) This example will cover the following topics: Defining the coupler coefficients for Cavity tracking of second order with Coupler Kick effect. Details of implementation in the code New in version 20.04.0 The coupler kicks are implemented in the code the same way as it was done for Edge elements. At the moment of inizialisation of MagneticLattice around Cavity element are created elemnents CouplerKick, the coupler kick before Cavity use coefficents with suffix "_up" (upstream) and after Cavity is placed CouplerKick with coefficent "_down" (downstream). The Coupler Kick elements are created even though coupler kick coefficennts are zeros. End of explanation bx0 = [tw.beta_x for tw in tws1] by0 = [tw.beta_y for tw in tws1] s0 = [tw.s for tw in tws1] bx = [tw.beta_x for tw in tws] by = [tw.beta_y for tw in tws] s = [tw.s for tw in tws] fig, ax = plot_API(lat, legend=False) ax.plot(s0, bx0, "b", lw=1, label=r"$\beta_x$") ax.plot(s, bx, "b--", lw=1, label=r"$\beta_x$, CK") ax.plot(s0, by0, "r", lw=1, label=r"$\beta_y$") ax.plot(s, by, "r--", lw=1, label=r"$\beta_y$, CK") ax.set_ylabel(r"$\beta_{x,y}$, m") ax.legend() plt.show() Explanation: Twiss parameters with and without coupler kick End of explanation def plot_trajectories(lat): f, (ax1, ax2) = plt.subplots(2, 1, sharex=True) for a in np.arange(-0.6, 0.6, 0.1): cix_118_i1.angle = a*0.001 lat.update_transfer_maps() p = Particle(px=0, E=0.130) plist = lattice_track(lat, p) s = [p.s for p in plist] x = [p.x for p in plist] y = [p.y for p in plist] px = [p.px for p in plist] py = [p.py for p in plist] ax1.plot(s, x) ax2.plot(s, y) plt.xlabel("z [m]") plt.show() plot_trajectories(lat) Explanation: Trajectories with Coupler Kick End of explanation for elem in lat.sequence: if elem.__class__ == Cavity: if not(".AH1." in elem.id): # 1.3 GHz cavities elem.vx_up = 0. elem.vy_up = 0. elem.vxx_up = (0.99943 - 0.81401j) * 1e-3 elem.vxy_up = (3.4065 - 0.4146j) * 1e-3 elem.vx_down = 0. elem.vy_down = 0. elem.vxx_down = (-4.057 - 0.1369j) * 1e-3 elem.vxy_down = (2.9243 - 0.012891j) * 1e-3 # update transfer maps lat.update_transfer_maps() # plot the trajectories plot_trajectories(lat) Explanation: Horizantal and vertical emittances Before start we remove zero order terms (dipole kicks) from coupler kicks coefficients. And check if we have any asymmetry. End of explanation # create ParticleArray with "one clice" parray = generate_parray(sigma_tau=0., sigma_p=0.0, chirp=0.0) print(parray) # track the beam though the lattice navi = Navigator(lat) tws_track, _ = track(lat, parray, navi) # plot emittances emit_x = np.array([tw.emit_x for tw in tws_track]) emit_y = np.array([tw.emit_y for tw in tws_track]) gamma = np.array([tw.E for tw in tws_track])/m_e_GeV s = [tw.s for tw in tws_track] fig, ax = plot_API(lat, legend=False) ax.plot(s, emit_x * gamma * 1e6, "b", lw=1, label=r"$\varepsilon_x$ [mm $\cdot$ mrad]") ax.plot(s, emit_y * gamma * 1e6, "r", lw=1, label=r"$\varepsilon_y$ [mm $\cdot$ mrad]") ax.set_ylabel(r"$\varepsilon_{x,y}$ [mm $\cdot$ mrad]") ax.legend() plt.show() Explanation: Tracking of the particles though lattice with coupler kicks Steps: * create ParticleArray with zero length and zero energy spread and chirp * track the Particle array through the lattice * plot the emittances End of explanation # plot emittances emit_x = np.array([tw.eigemit_1 for tw in tws_track]) emit_y = np.array([tw.eigemit_2 for tw in tws_track]) gamma = np.array([tw.E for tw in tws_track])/m_e_GeV s = [tw.s for tw in tws_track] fig, ax = plot_API(lat, legend=False) ax.plot(s, emit_x * gamma * 1e6, "b", lw=1, label=r"$\varepsilon_x$ [mm $\cdot$ mrad]") ax.plot(s, emit_y * gamma * 1e6, "r", lw=1, label=r"$\varepsilon_y$ [mm $\cdot$ mrad]") ax.set_ylabel(r"$\varepsilon_{x,y}$ [mm $\cdot$ mrad]") ax.legend() plt.show() Explanation: Eigenemittance As can we see, the projected emittances are not preserved, although all matrices are symplectic. The reason is the coupler kicks inroduce coupling between $X$ and $Y$ planes while the projected emittances are invariants under linear uncoupled (with respect to the laboratory coordinate system) symplectic transport. However, there are invariants under arbitrary (possibly coupled) linear symplectic transformations - eigenemittances. Details can be found here V. Balandin and N. Golubeva "Notes on Linear Theory of Coupled Particle Beams with Equal Eigenemittances" and V.Balandin et al "Twiss Parameters of Coupled Particle Beams with Equal Eigenemittances" End of explanation
3,338
Given the following text description, write Python code to implement the functionality described below step by step Description: \title{Digital Arithmetic Cells with myHDL} \author{Steven K Armour} \maketitle <h1>Table of Contents<span class="tocSkip"></span></h1> <div class="toc"><ul class="toc-item"><li><span><a href="#Compression-of-Number-System-Values" data-toc-modified-id="Compression-of-Number-System-Values-1"><span class="toc-item-num">1&nbsp;&nbsp;</span>Compression of Number System Values</a></span></li><li><span><a href="#Half-Adder" data-toc-modified-id="Half-Adder-2"><span class="toc-item-num">2&nbsp;&nbsp;</span>Half Adder</a></span></li><li><span><a href="#The-full-adder" data-toc-modified-id="The-full-adder-3"><span class="toc-item-num">3&nbsp;&nbsp;</span>The full adder</a></span></li></ul></div> Step1: Compression of Number System Values Step2: Notice that when we add $1_2+1_2$ we get instead of just a single bit we also get a new bit in the next binary column which we call the carry bit. This yields the following truth table for what is called the Two Bit or Half adder Half Adder Step3: Looking at this truth table we can surmise the following Step6: We can thus generate the following myHDL Step7: Wich, we can then confirm via these results to the expected results via Step9: HalfAdder RTL <img src='HalfAdderRTL.png'> HalfAdder Synthesis <img src='HalfAdderSynth.png'> Step10: Where the above warning can be ignored since we are using testx1 and testx2 as stores for the binay set of inputs to apply to x1 and x2 The full adder If we assume that a carry is an input we can then extend the truth table for the two-bit adder to a three-bit adder yielding Step11: ! need a way to make K-Maps in python whereupon making and reducing the maps from the three-bit adder truth table we get the following equations Step13: yielding the following next myHDL module Step15: FullAdder RTL <img src='FullAdderRTL.png'> FullAdder Synthesis <img src='FullAdderSynth.png'>
Python Code: from myhdl import * from myhdlpeek import Peeker import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sympy import * init_printing() import random #https://github.com/jrjohansson/version_information %load_ext version_information %version_information myhdl, myhdlpeek, numpy, pandas, matplotlib, sympy, random #helper functions to read in the .v and .vhd generated files into python def VerilogTextReader(loc, printresult=True): with open(f'{loc}.v', 'r') as vText: VerilogText=vText.read() if printresult: print(f'***Verilog modual from {loc}.v***\n\n', VerilogText) return VerilogText def VHDLTextReader(loc, printresult=True): with open(f'{loc}.vhd', 'r') as vText: VerilogText=vText.read() if printresult: print(f'***VHDL modual from {loc}.vhd***\n\n', VerilogText) return VerilogText Explanation: \title{Digital Arithmetic Cells with myHDL} \author{Steven K Armour} \maketitle <h1>Table of Contents<span class="tocSkip"></span></h1> <div class="toc"><ul class="toc-item"><li><span><a href="#Compression-of-Number-System-Values" data-toc-modified-id="Compression-of-Number-System-Values-1"><span class="toc-item-num">1&nbsp;&nbsp;</span>Compression of Number System Values</a></span></li><li><span><a href="#Half-Adder" data-toc-modified-id="Half-Adder-2"><span class="toc-item-num">2&nbsp;&nbsp;</span>Half Adder</a></span></li><li><span><a href="#The-full-adder" data-toc-modified-id="The-full-adder-3"><span class="toc-item-num">3&nbsp;&nbsp;</span>The full adder</a></span></li></ul></div> End of explanation ConversionTable=pd.DataFrame() ConversionTable['Decimal']=np.arange(0, 21) ConversionTable['Binary']=[bin(i, 3) for i in np.arange(0, 21)] ConversionTable['hex']=[hex(i) for i in np.arange(0, 21)] ConversionTable['oct']=[oct(i) for i in np.arange(0, 21)] ConversionTable binarySum=lambda a, b, bits=2: np.binary_repr(a+b, bits) for i in [[0,0], [0,1], [1,0], [1,1]]: print(f'{i[0]} + {i[1]} yields {binarySum(*i)}_2, {int(binarySum(*i), 2)}_10') Explanation: Compression of Number System Values End of explanation TwoBitAdderTT=pd.DataFrame() TwoBitAdderTT['x2']=[0,0,1,1] TwoBitAdderTT['x1']=[0,1,0,1] TwoBitAdderTT['Sum']=[0,1,1,0] TwoBitAdderTT['Carry']=[0,0,0,1] TwoBitAdderTT Explanation: Notice that when we add $1_2+1_2$ we get instead of just a single bit we also get a new bit in the next binary column which we call the carry bit. This yields the following truth table for what is called the Two Bit or Half adder Half Adder End of explanation x1, x2=symbols('x_1, x_2') Sum, Carry=symbols(r'\text{Sum}, \text{Carry}') HASumDef=x1^x2; HACarryDef=x1 & x2 HASumEq=Eq(Sum, HASumDef); HACarryDef=Eq(Carry, HACarryDef) HASumEq, HACarryDef Explanation: Looking at this truth table we can surmise the following End of explanation @block def HalfAdder(x1, x2, Sum, Carry): Half adder in myHDL I/O: x1 (bool): x1 input x2 (bool): x2 input Sum (bool): the sum Half Adder ouput Carry (bool): the carry Half Adder ouput @always_comb def logic(): Sum.next=x1^x2 Carry.next=x1 & x2 return logic Peeker.clear() x1=Signal(bool(0)); Peeker(x1, 'x1') x2=Signal(bool(0)); Peeker(x2, 'x2') Sum=Signal(bool(0)); Peeker(Sum, 'Sum') Carry=Signal(bool(0)); Peeker(Carry, 'Carry') DUT=HalfAdder(x1, x2, Sum, Carry) def HalfAdder_TB(): Half Adder Testbench for use in python only @instance def Stimules(): for _, row in TwoBitAdderTT.iterrows(): x1.next=row['x1'] x2.next=row['x2'] yield delay(1) raise StopSimulation() return instances() sim = Simulation(DUT, HalfAdder_TB(), *Peeker.instances()).run() Peeker.to_wavedrom('x2 x1 | Sum Carry', title='Half Adder Wave Form', tock=True) HARes=Peeker.to_dataframe() HARes=HARes[['x2', 'x1','Sum', 'Carry']] HARes Explanation: We can thus generate the following myHDL End of explanation TwoBitAdderTT==HARes DUT.convert() VerilogTextReader('HalfAdder'); Explanation: Wich, we can then confirm via these results to the expected results via End of explanation @block def HalfAdder_TBV(): Half Adder Testbench for use in Verilog x1 = Signal(bool(0)) x2 = Signal(bool(0)) Sum = Signal(bool(0)) Carry = Signal(bool(0)) DUT = HalfAdder(x1, x2, Sum, Carry) testx1=Signal(intbv(int("".join([str(i) for i in TwoBitAdderTT['x1'].tolist()]), 2))[4:]) testx2=Signal(intbv(int("".join([str(i) for i in TwoBitAdderTT['x2'].tolist()]), 2))[4:]) @instance def Stimulus(): for i in range(len(testx1)): x1.next = testx1[i] x2.next = testx2[i] yield delay(1) raise StopSimulation() @always_comb def print_data(): print(x1, x2, Sum, Carry) return instances() # create instaince of TB TB = HalfAdder_TBV() # convert to verilog with reintilzed values TB.convert(hdl="verilog", initial_values=True) VerilogTextReader('HalfAdder_TBV'); Explanation: HalfAdder RTL <img src='HalfAdderRTL.png'> HalfAdder Synthesis <img src='HalfAdderSynth.png'> End of explanation ThreeBitAdderTT=pd.DataFrame() ThreeBitAdderTT['c1']=[0,0,0,0,1,1,1,1] ThreeBitAdderTT['x2']=[0,0,1,1,0,0,1,1] ThreeBitAdderTT['x1']=[0,1,0,1,0,1,0,1] ThreeBitAdderTT['Sum']=[0,1,1,0,1,0,0,1] ThreeBitAdderTT['Carry']=[0,0,0,1,0,1,1,1] ThreeBitAdderTT Explanation: Where the above warning can be ignored since we are using testx1 and testx2 as stores for the binay set of inputs to apply to x1 and x2 The full adder If we assume that a carry is an input we can then extend the truth table for the two-bit adder to a three-bit adder yielding End of explanation c1, x1, x2=symbols('c_1,x_1, x_2') Sum, Carry=symbols(r'\text{Sum}, \text{Carry}') FASumDef=x1^x2^c1; FACarryDef=x1&x2 | x1&c1 | x2&c1 FASumEq=Eq(Sum, FASumDef); FACarryDef=Eq(Carry, FACarryDef) FASumEq, FACarryDef Explanation: ! need a way to make K-Maps in python whereupon making and reducing the maps from the three-bit adder truth table we get the following equations End of explanation @block def FullAdder(x1, x2, c1, Sum, Carry): Full adder in myHDL I/O: x1 (bool): x1 input x2 (bool): x2 input c1 (bool): carry input Sum (bool): the sum Full Adder ouput Carry (bool): the carry Full Adder ouput Note!: There something wrong on the HDL side at the moment @always_comb def logic(): Sum.next=x1 ^ x2 ^c1 Carry.next=(x1 & x2) | (x1 & c1) | (x2 & c1) return logic Peeker.clear() x1=Signal(bool(0)); Peeker(x1, 'x1') x2=Signal(bool(0)); Peeker(x2, 'x2') c1=Signal(bool(0)); Peeker(c1, 'c1') Sum=Signal(bool(0)); Peeker(Sum, 'Sum') Carry=Signal(bool(0)); Peeker(Carry, 'Carry') DUT=FullAdder(x1, x2, c1, Sum, Carry) def FullAdder_TB(): @instance def Stimules(): for _, row in ThreeBitAdderTT.iterrows(): x1.next=row['x1'] x2.next=row['x2'] c1.next=row['c1'] yield delay(1) raise StopSimulation() return instances() sim = Simulation(DUT, HalfAdder_TB(), *Peeker.instances()).run() Peeker.to_wavedrom('c1 x2 x1 | Sum Carry', title='Full Adder Wave Form', tock=True) FARes=Peeker.to_dataframe() FARes=FARes[['c1, x2','x1','Sum', 'Carry']] FARes ThreeBitAdderTT==FARes DUT.convert() VerilogTextReader('FullAdder'); Explanation: yielding the following next myHDL module End of explanation @block def FullAdder_TBV(): Full Adder Testbench for use in Verilog x1=Signal(bool(0)) x2=Signal(bool(0)) c1=Signal(bool(0)) Sum=Signal(bool(0)) Carry=Signal(bool(0)) DUT = FullAdder(x1, x2, c1, Sum, Carry) testx1=Signal(intbv(int("".join([str(i) for i in ThreeBitAdderTT['x1'].tolist()]), 2))[4:]) testx2=Signal(intbv(int("".join([str(i) for i in ThreeBitAdderTT['x2'].tolist()]), 2))[4:]) testc1=Signal(intbv(int("".join([str(i) for i in ThreeBitAdderTT['c1'].tolist()]), 2))[4:]) @instance def Stimulus(): for i in range(len(testx1)): x1.next=testx1[i] x2.next=testx2[i] c1.next=testc1[i] yield delay(1) raise StopSimulation() @always_comb def print_data(): print(x1, x2, c1, Sum, Carry) return instances() # create instaince of TB TB = FullAdder_TBV() # convert to verilog with reintilzed values TB.convert(hdl="verilog", initial_values=True) VerilogTextReader('FullAdder_TBV'); Explanation: FullAdder RTL <img src='FullAdderRTL.png'> FullAdder Synthesis <img src='FullAdderSynth.png'> End of explanation
3,339
Given the following text description, write Python code to implement the functionality described below step by step Description: Title Step1: Create an example dataframe Step2: Rename Column Names
Python Code: # Import modules import pandas as pd # Set ipython's max row display pd.set_option('display.max_row', 1000) # Set iPython's max column width to 50 pd.set_option('display.max_columns', 50) Explanation: Title: Rename Multiple Pandas Dataframe Column Names At Once Slug: pandas_rename_multiple_columns Summary: Rename Multiple Pandas Dataframe Column Names At Once Date: 2016-05-01 12:00 Category: Python Tags: Data Wrangling Authors: Chris Albon Preliminaries End of explanation # Create an example dataframe data = {'Commander': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'Date': ['2012, 02, 08', '2012, 02, 08', '2012, 02, 08', '2012, 02, 08', '2012, 02, 08'], 'Score': [4, 24, 31, 2, 3]} df = pd.DataFrame(data, index = ['Cochice', 'Pima', 'Santa Cruz', 'Maricopa', 'Yuma']) df Explanation: Create an example dataframe End of explanation df.columns = ['Leader', 'Time', 'Score'] df df.rename(columns={'Leader': 'Commander'}, inplace=True) df Explanation: Rename Column Names End of explanation
3,340
Given the following text description, write Python code to implement the functionality described below step by step Description: Step1: wk4.0 Even more OOP Step2: Pure functions Step3: The function creates a new MyTime object and returns a reference to the new object. This is called a pure function because it does not modify any of the objects passed to it as parameters and it has no side effects, such as updating global variables, displaying a value, or getting user input. ``` current_time = MyTime(9, 14, 30) bread_time = MyTime(3, 35, 0) done_time = add_time(current_time, bread_time) # When does this break? print(done_time) 12 Step4: Modifiers There are times when it is useful for a function to modify one or more of the objects it gets as parameters. Usually, the caller keeps a reference to the objects it passes, so any changes the function makes are visible to the caller. Functions that work this way are called modifiers. Step5: # Converting increment to a method Step7: An “Aha!” insight Often a high-level insight into the problem can make the programming much easier. In this case, the insight is that a MyTime object is really a three-digit number in base 60! The second component is the ones column, the minute component is the sixties column, and the hour component is the thirty-six hundreds column. When we wrote add_time and increment, we were effectively doing addition in base 60, which is why we had to carry from one column to the next. Step9: In OOP we’re really trying to wrap together the data and the operations that apply to it. So we’d like to have this logic inside the MyTime class. A good solution is to rewrite the class initializer so that it can cope with initial values of seconds or minutes that are outside the normalized values. (A normalized time would be something like 3 hours 12 minutes and 20 seconds. The same time, but unnormalized could be 2 hours 70 minutes and 140 seconds.) Step11: Generalization vs. Specification Computer scientists vs. mathematicians Often it may help to try to think about the problem from both points of view — “What would happen if I tried to reduce everything to very few primitive types?”, versus “What would happen if this thing had its own specialized type?” Example The after function should compare two times, and tell us whether the first time is strictly after the second, e.g. ``` t1 = MyTime(10, 55, 12) t2 = MyTime(10, 48, 22) after(t1, t2) # Is t1 after t2? True ``` Step12: We invoke this method on one object and pass the other as an argument Step14: The logic of the if statements deserve special attention here. Lines 11-18 will only be reached if the two hour fields are the same. Similarly, the test at line 16 is only executed if both times have the same hours and the same minutes. Could we make this easier? Yes! Step18: Operator overloading Some languages, including Python, make it possible to have different meanings for the same operator when applied to different types. For example, + in Python means quite different things for integers and for strings. This feature is called operator overloading. It is especially useful when programmers can also overload the operators for their own user-defined types. For example, to override the addition operator +, we can provide a method named __add__ Step19: ``` t1 = MyTime(1, 15, 42) t2 = MyTime(3, 50, 30) t3 = t1 + t2 print(t3) 05
Python Code: class MyTime: def __init__(self, hrs=0, mins=0, secs=0): Create a MyTime object initialized to hrs, mins, secs self.hours = hrs self.minutes = mins self.seconds = secs def __str__(self): return "{h}:{m}:{s}".format(h=self.hours, m=self.minutes, s=self.seconds) tim1 = MyTime(11, 59, 30) tim2 = MyTime() print(tim1) print(tim2) Explanation: wk4.0 Even more OOP End of explanation def add_time(t1, t2): h = t1.hours + t2.hours m = t1.minutes + t2.minutes s = t1.seconds + t2.seconds sum_t = MyTime(h, m, s) return sum_t Explanation: Pure functions End of explanation current_time = MyTime(1, 10, 0) bread_time = MyTime(0, 60, 0) done_time = add_time(current_time, bread_time) print(done_time) def add_time(t1, t2): # are we good now? h = t1.hours + t2.hours m = t1.minutes + t2.minutes s = t1.seconds + t2.seconds if s >= 60: s -= 60 m += 1 if m >= 60: m -= 60 h += 1 sum_t = MyTime(h, m, s) return sum_t current_time = MyTime(1, 10, 0) bread_time = MyTime(0, 120, 0) done_time = add_time(current_time, bread_time) print(done_time) Explanation: The function creates a new MyTime object and returns a reference to the new object. This is called a pure function because it does not modify any of the objects passed to it as parameters and it has no side effects, such as updating global variables, displaying a value, or getting user input. ``` current_time = MyTime(9, 14, 30) bread_time = MyTime(3, 35, 0) done_time = add_time(current_time, bread_time) # When does this break? print(done_time) 12:49:30 ``` End of explanation def increment(t, secs): # Is this good? t.seconds += secs if t.seconds >= 60: t.seconds -= 60 t.minutes += 1 if t.minutes >= 60: t.minutes -= 60 t.hours += 1 def increment(t, seconds): # How about now? t.seconds += seconds while t.seconds >= 60: t.seconds -= 60 t.minutes += 1 while t.minutes >= 60: t.minutes -= 60 t.hours += 1 Explanation: Modifiers There are times when it is useful for a function to modify one or more of the objects it gets as parameters. Usually, the caller keeps a reference to the objects it passes, so any changes the function makes are visible to the caller. Functions that work this way are called modifiers. End of explanation class MyTime: # Previous method definitions here... def increment(self, seconds): self.seconds += seconds while self.seconds >= 60: self.seconds -= 60 self.minutes += 1 while self.minutes >= 60: self.minutes -= 60 self.hours += 1 Explanation: # Converting increment to a method End of explanation class MyTime: # ... def to_seconds(self): Return the number of seconds represented by this instance return self.hours * 3600 + self.minutes * 60 + self.seconds ## ---- Core time conversion logic ----- # hrs = tsecs // 3600 leftoversecs = tsecs % 3600 mins = leftoversecs // 60 secs = leftoversecs % 60 Explanation: An “Aha!” insight Often a high-level insight into the problem can make the programming much easier. In this case, the insight is that a MyTime object is really a three-digit number in base 60! The second component is the ones column, the minute component is the sixties column, and the hour component is the thirty-six hundreds column. When we wrote add_time and increment, we were effectively doing addition in base 60, which is why we had to carry from one column to the next. End of explanation class MyTime: # ... def __init__(self, hrs=0, mins=0, secs=0): Create a new MyTime object initialized to hrs, mins, secs. The values of mins and secs may be outside the range 0-59, but the resulting MyTime object will be normalized. # Calculate total seconds to represent totalsecs = hrs*3600 + mins*60 + secs self.hours = totalsecs // 3600 # Split in h, m, s leftoversecs = totalsecs % 3600 self.minutes = leftoversecs // 60 self.seconds = leftoversecs % 60 def add_time(t1, t2): secs = t1.to_seconds() + t2.to_seconds() return MyTime(0, 0, secs) Explanation: In OOP we’re really trying to wrap together the data and the operations that apply to it. So we’d like to have this logic inside the MyTime class. A good solution is to rewrite the class initializer so that it can cope with initial values of seconds or minutes that are outside the normalized values. (A normalized time would be something like 3 hours 12 minutes and 20 seconds. The same time, but unnormalized could be 2 hours 70 minutes and 140 seconds.) End of explanation class MyTime: # Previous method definitions here... def after(self, time2): Return True if I am strictly greater than time2 if self.hours > time2.hours: return True if self.hours < time2.hours: return False if self.minutes > time2.minutes: return True if self.minutes < time2.minutes: return False if self.seconds > time2.seconds: return True return False Explanation: Generalization vs. Specification Computer scientists vs. mathematicians Often it may help to try to think about the problem from both points of view — “What would happen if I tried to reduce everything to very few primitive types?”, versus “What would happen if this thing had its own specialized type?” Example The after function should compare two times, and tell us whether the first time is strictly after the second, e.g. ``` t1 = MyTime(10, 55, 12) t2 = MyTime(10, 48, 22) after(t1, t2) # Is t1 after t2? True ``` End of explanation if current_time.after(done_time): print("The bread will be done before it starts!") Explanation: We invoke this method on one object and pass the other as an argument: End of explanation class MyTime: # Previous method definitions here... def after(self, time2): Return True if I am strictly greater than time2 return self.to_seconds() > time2.to_seconds() Explanation: The logic of the if statements deserve special attention here. Lines 11-18 will only be reached if the two hour fields are the same. Similarly, the test at line 16 is only executed if both times have the same hours and the same minutes. Could we make this easier? Yes! End of explanation class MyTime: This makes the clock. >>> timer = MyTime(5, 4, 3) # Makes a timer with time 5 hr ... def __init__(self, hrs=0, mins=0, secs=0): Create a new MyTime object initialized to hrs, mins, secs. The values of mins and secs may be outside the range 0-59, but the resulting MyTime object will be normalized. # Calculate total seconds to represent totalsecs = hrs*3600 + mins*60 + secs self.hours = totalsecs // 3600 # Split in h, m, s leftoversecs = totalsecs % 3600 self.minutes = leftoversecs // 60 self.seconds = leftoversecs % 60 def __str__(self): return "{h}:{m}:{s}".format(h=self.hours, m=self.minutes, s=self.seconds) def __add__(self, other): return MyTime(0, 0, self.to_seconds() + other.to_seconds()) def to_seconds(self): Return the number of seconds represented by this instance return self.hours * 3600 + self.minutes * 60 + self.seconds t1 = MyTime(0, 0, 42000) t2 = MyTime(3, 50, 30) t3 = t1 + t2 print(t3) help(MyTime()) Explanation: Operator overloading Some languages, including Python, make it possible to have different meanings for the same operator when applied to different types. For example, + in Python means quite different things for integers and for strings. This feature is called operator overloading. It is especially useful when programmers can also overload the operators for their own user-defined types. For example, to override the addition operator +, we can provide a method named __add__: End of explanation def front_and_back(front): import copy back = copy.copy(front) back.reverse() print(str(front) + str(back)) Explanation: ``` t1 = MyTime(1, 15, 42) t2 = MyTime(3, 50, 30) t3 = t1 + t2 print(t3) 05:06:12 ``` Polymorphism End of explanation
3,341
Given the following text problem statement, write Python code to implement the functionality described below in problem statement Problem: I have a data set like below:
Problem: import pandas as pd df = pd.DataFrame({'name': ['matt', 'james', 'adam'], 'status': ['active', 'active', 'inactive'], 'number': [12345, 23456, 34567], 'message': ['[job: , money: none, wife: none]', '[group: band, wife: yes, money: 10000]', '[job: none, money: none, wife: , kids: one, group: jail]']}) import yaml def g(df): df.message = df.message.replace(['\[','\]'],['{','}'], regex=True).apply(yaml.safe_load) df1 = pd.DataFrame(df.pop('message').values.tolist(), index=df.index) result = pd.concat([df, df1], axis=1) result = result.replace('', 'none') result = result.replace(np.nan, 'none') return result result = g(df.copy())
3,342
Given the following text description, write Python code to implement the functionality described below step by step Description: A Shift-Reduce Parser for Arithmetic Expressions In this notebook we implement a generic shift reduce parser. The parse table that we use will implement the following grammar for arithmetic expressions Step1: The function tokenize transforms the string s into a list of tokens. See below for an example. Step2: Assume a grammar $G = \langle V, T, R, S \rangle$ is given. A shift-reduce parser is defined as a 4-Tuple $$P = \langle Q, q_0, \texttt{action}, \texttt{goto} \rangle$$ where - $Q$ is the set of states of the shift-reduce parser. For the purpose of the shift-reduce-parser, states are purely abstract. - $q_0 \in Q$ is the start state. - $\texttt{action}$ is a function taking two arguments. The first argument is a state $q \in Q$ and the second argument is a terminal $t \in T$. The result of this function is an element from the set $$\texttt{Action} Step3: Testing
Python Code: import re Explanation: A Shift-Reduce Parser for Arithmetic Expressions In this notebook we implement a generic shift reduce parser. The parse table that we use will implement the following grammar for arithmetic expressions: $$ \begin{eqnarray} \mathrm{expr} & \rightarrow & \mathrm{expr}\;\;\texttt{'+'}\;\;\mathrm{product} \ & \mid & \mathrm{expr}\;\;\texttt{'-'}\;\;\mathrm{product} \ & \mid & \mathrm{product} \[0.2cm] \mathrm{product} & \rightarrow & \mathrm{product}\;\;\texttt{''}\;\;\mathrm{factor} \ & \mid & \mathrm{product}\;\;\texttt{'/'}\;\;\mathrm{factor} \ & \mid & \mathrm{factor} \[0.2cm] \mathrm{factor} & \rightarrow & \texttt{'('} \;\;\mathrm{expr} \;\;\texttt{')'} \ & \mid & \texttt{NUMBER} \end{eqnarray*} $$ Implementing a Scanner In order to parse, we need a scanner. We will use the same scanner that we have already used for our top down parser that was presented in the notebook Top-Down-Parser.ipynb. End of explanation def tokenize(s): '''Transform the string s into a list of tokens. The string s is supposed to represent an arithmetic expression. ''' lexSpec = r'''([ \t\n]+) | # blanks and tabs ([1-9][0-9]*|0) | # number ([()]) | # parentheses ([-+*/]) | # arithmetical operators (.) # unrecognized character ''' tokenList = re.findall(lexSpec, s, re.VERBOSE) result = [] for ws, number, parenthesis, operator, error in tokenList: if ws: # skip blanks and tabs continue elif number: result += [ 'NUMBER' ] elif parenthesis: result += [ parenthesis ] elif operator: result += [ operator ] else: result += [ f'ERROR({error})'] return result tokenize('1 + 2 * (3 - 4)') Explanation: The function tokenize transforms the string s into a list of tokens. See below for an example. End of explanation class ShiftReduceParser(): def __init__(self, actionTable, gotoTable): self.mActionTable = actionTable self.mGotoTable = gotoTable def parse(self, TL): index = 0 # points to next token Symbols = [] # stack of symbols States = ['s0'] # stack of states, s0 is start state TL += ['EOF'] while True: q = States[-1] t = TL[index] print('Symbols:', ' '.join(Symbols + ['|'] + TL[index:]).strip()) action = self.mActionTable.get((q, t), 'error') # undefined interpreted as error if action == 'error': return False elif action == 'accept': return True elif action[0] == 'shift': # action = ('shift', s) s = action[1] Symbols += [t] States += [s] index += 1 elif action[0] == 'reduce': # action = ('reduce', r) head, body = action[1] n = len(body) Symbols = Symbols[:-n] States = States [:-n] Symbols = Symbols + [head] state = States[-1] States += [ self.mGotoTable[state, head] ] ShiftReduceParser.parse = parse del parse %run Parse-Table.ipynb Explanation: Assume a grammar $G = \langle V, T, R, S \rangle$ is given. A shift-reduce parser is defined as a 4-Tuple $$P = \langle Q, q_0, \texttt{action}, \texttt{goto} \rangle$$ where - $Q$ is the set of states of the shift-reduce parser. For the purpose of the shift-reduce-parser, states are purely abstract. - $q_0 \in Q$ is the start state. - $\texttt{action}$ is a function taking two arguments. The first argument is a state $q \in Q$ and the second argument is a terminal $t \in T$. The result of this function is an element from the set $$\texttt{Action} := \bigl{ \langle\texttt{shift}, q\rangle \mid q \in Q \bigr} \cup \bigl{ \langle\texttt{reduce}, r\rangle \mid r \in R \bigr} \cup \bigl{ \texttt{accept} \bigr} \cup \bigl{ \texttt{error} \bigr}. $$ Here shift, reduce, accept, and error are strings that serve to distinguish the different kinds of result of the function action. Therefore the signature of the function \texttt{action} is given as follows: $$\texttt{action}: Q \times T \rightarrow \texttt{Action}.$$ - goto is a function that takes a state $q \in Q$ and a syntactical variable $v \in V$ and computes a new state. Therefore the signature of goto is as follows: $$\texttt{goto}: Q \times V \rightarrow Q.$$ The class ShiftReduceParser maintains two tables as dictionaries: - mActionTable encodes the function $\texttt{action}: Q \times T \rightarrow \texttt{Action}$. - mGotoTable encodes the function $\texttt{goto}: Q \times V \rightarrow Q$. End of explanation def test(s): parser = ShiftReduceParser(actionTable, gotoTable) TL = tokenize(s) print(f'tokenlist: {TL}\n') if parser.parse(TL): print('Parse successful!') else: print('Parse failed!') test('(1 + 2) * 3') test('1 * 2 + 3 * (4 - 5) / 2') test('11+22*(33-44)/(5-10*5/(4-3))') test('1+2*3-') Explanation: Testing End of explanation
3,343
Given the following text description, write Python code to implement the functionality described below step by step Description: Exploring extracting data from the EPA web service https Step1: Example REST query Step2: I can use this to extract the table data Step3: Before we go further, we'll want to know the size of each table Step4: Someone needs to provide me with a full list of tables, but for now I'm focusing on the ones listed at https Step5: Performance Profiling. Are there limits to how much data we can pull per request? How fast we can retrieve it? Let's try a reasonably big table Step6: So retrieval time seems to go up significantly once we go past 500 rows. So let's write an iterative retrieval function Step7: Let's compare this with our previous method Step8: So we can use this technique to extract a table piecemeal. Let's try it on a bigger table with a larger stride The ERM_ANALYSIS is significantly bigger than ERM_ANALYTE
Python Code: import requests import io import pandas from itertools import chain Explanation: Exploring extracting data from the EPA web service https://www.epa.gov/enviro/web-services I am using the Python Requests http://docs.python-requests.org/en/master/) library to scrape quantitative data from the EPA web service. The REST service is self is reasonably well documented at https://www.epa.gov/enviro/web-services End of explanation url='https://iaspub.epa.gov/enviro/efservice/tri_facility/state_abbr/VA/count/json' requests.get(url).text Explanation: Example REST query: End of explanation def makeurl(tablename,start,end): return "https://iaspub.epa.gov/enviro/efservice/{tablename}/JSON/rows/{start}:{end}".format_map(locals()) url=makeurl( 't_design_for_environment',1,19) out=requests.get(url) pandas.DataFrame(out.json()) Explanation: I can use this to extract the table data: End of explanation def table_count(tablename): url= "https://iaspub.epa.gov/enviro/efservice/{tablename}/COUNT/JSON".format_map(locals()) print(url) return requests.get(url).json()[0]['TOTALQUERYRESULTS'] table_count('erm_project') table_count('t_design_for_environment') Explanation: Before we go further, we'll want to know the size of each table: End of explanation tablenames=[ 'ERM_RESULT', 'ERM_ANALYSIS', 'ERM_COUNT', 'ERM_SAMPLE', 'ERM_MATRIX', 'ERM_LOCATION', 'ERM_PROJECT', 'ERM_STUDY', 'ERM_ANALYTE', 'ERM_ANA_PROC', 'ERM_DET_TYPE' ] # there are many more to be added to this list. # def table_data(tablename,start=0,end=100): url=makeurl(tablename,start,end) print(url) data=requests.get(url).json() return pandas.DataFrame(data) erm_result=table_data('ERM_RESULT') erm_result.head() erm_analyte=table_data('ERM_ANALYTE') erm_analyte.head() Explanation: Someone needs to provide me with a full list of tables, but for now I'm focusing on the ones listed at https://www.epa.gov/enviro/radnet-model We're building a complete list at https://docs.google.com/spreadsheets/d/1LDDH-qxJunBqqkS1EfG2mhwgwFi7PylXtz3GYsGjDzA/edit#gid=52614242 End of explanation table_count('ERM_ANALYSIS') %%time erm_analysis = table_data('ERM_ANALYSIS',0,10) print(len(erm_analysis),"rows retrieved") erm_analysis.head() %%time erm_analysis = table_data('ERM_ANALYSIS',0,100) print(len(erm_analysis),"rows retrieved") %%time erm_analysis = table_data('ERM_ANALYSIS',0,200) print(len(erm_analysis),"rows retrieved") %%time erm_analysis = table_data('ERM_ANALYSIS',0,400) print(len(erm_analysis),"rows retrieved") %%time erm_analysis = table_data('ERM_ANALYSIS',0,800) print(len(erm_analysis),"rows retrieved") %%time erm_analysis = table_data('ERM_ANALYSIS',0,1000) print(len(erm_analysis),"rows retrieved") %%time erm_analysis = table_data('ERM_ANALYSIS',0,500) print(len(erm_analysis),"rows retrieved") %%time erm_analysis = table_data('ERM_ANALYSIS',0,600) print(len(erm_analysis),"rows retrieved") Explanation: Performance Profiling. Are there limits to how much data we can pull per request? How fast we can retrieve it? Let's try a reasonably big table: ERM_ANALYSIS End of explanation def collect(tablename, rowcount=100, limit = 1000): ''' The API understands start/end to be INCLUSIVE ''' count =table_count(tablename) def inner(): start =0 end = rowcount-1 while start <=count: end=min(end,limit-1) url = makeurl(tablename,start,end) print(url) yield requests.get(url).json() start+= rowcount end += rowcount if start>limit-1:return return pandas.DataFrame(list(chain.from_iterable(inner()))) erm_analyte=collect('ERM_ANALYTE',rowcount=20,limit=35) len(erm_analyte) Explanation: So retrieval time seems to go up significantly once we go past 500 rows. So let's write an iterative retrieval function End of explanation erm_analyte_=table_data('ERM_ANALYTE') erm_analyte.head() erm_analyte_.head() Explanation: Let's compare this with our previous method End of explanation table_count('ERM_ANALYSIS') %%time erm_analysis=collect('ERM_ANALYSIS',rowcount=100,limit=1000) Explanation: So we can use this technique to extract a table piecemeal. Let's try it on a bigger table with a larger stride The ERM_ANALYSIS is significantly bigger than ERM_ANALYTE End of explanation
3,344
Given the following text description, write Python code to implement the functionality described below step by step Description: Lecture des données Quand j'explore/analyse des données, la première chose que je fais est toujours Step1: Pour information/rappel, Step2: Pour lire un fichier CSV, nous utilisons la bien nommée fonction... Step3: Ah, oui, j'ai pensé que votre feuille Excel serait exportée avec «;» comme caractère séparateur, car certains champs sont plus susceptibles de contenir des virgules... Step4: Bien. On dirait que les valeurs inconnues/manquantes sont indiquées par «99». Alors spécifions cela dans les options de la merveilleuse fonction read_csv(). Step5: Nous allons donner un nom à ce «data frame» (structure de données très pratique), ce sera enfants. Step6: Nous pouvons accéder aux données de garde avec la syntaxe (intuitive) suivante Step7: ou bien enfants.loc[ Step8: Par défaut, c'est la première entrée qui est conservée (voir la documentation). Nous perdons alors l'information contenue dans les autres entrées. Nous voudrions plutôt les grouper. Step9: Par défaut, sum() concatène. Pour une meilleure lisibilité, nous voulons peut-être appliquer une fonction faite maison. Step10: Ecrivons une fonction (à appliquer au data frame). Step11: Sortie du résultat Step12: Autres manipulations Et si nous voulions continuer...
Python Code: import pandas as pd Explanation: Lecture des données Quand j'explore/analyse des données, la première chose que je fais est toujours : End of explanation pd.__version__ Explanation: Pour information/rappel, End of explanation pd.read_csv('data/enfants.csv') Explanation: Pour lire un fichier CSV, nous utilisons la bien nommée fonction... End of explanation pd.read_csv('data/enfants.csv', sep=';') Explanation: Ah, oui, j'ai pensé que votre feuille Excel serait exportée avec «;» comme caractère séparateur, car certains champs sont plus susceptibles de contenir des virgules... End of explanation pd.read_csv('data/enfants.csv', sep=';', na_values=99) Explanation: Bien. On dirait que les valeurs inconnues/manquantes sont indiquées par «99». Alors spécifions cela dans les options de la merveilleuse fonction read_csv(). End of explanation enfants = pd.read_csv('data/enfants.csv', sep=';', na_values='99') Explanation: Nous allons donner un nom à ce «data frame» (structure de données très pratique), ce sera enfants. End of explanation enfants['garde'] Explanation: Nous pouvons accéder aux données de garde avec la syntaxe (intuitive) suivante : End of explanation enfants.drop_duplicates(subset=['prénom', 'nom']) Explanation: ou bien enfants.loc[:, 'garde']. Retrait des doublons Remarquons que nous avons deux entrées pour Toto Le Magnifique. Si nous ne voulons conserver qu'une entrée (ligne) par enfant, nous pouvons utiliser la méthode drop_duplicates(). End of explanation enfants.groupby(by=['prénom', 'nom'])['garde'].sum() Explanation: Par défaut, c'est la première entrée qui est conservée (voir la documentation). Nous perdons alors l'information contenue dans les autres entrées. Nous voudrions plutôt les grouper. End of explanation enfants.groupby(by=['prénom', 'nom'])['garde'].apply(lambda x: '%s' % ', '.join(x.astype(str))) Explanation: Par défaut, sum() concatène. Pour une meilleure lisibilité, nous voulons peut-être appliquer une fonction faite maison. End of explanation def groupe_garde(x): return pd.Series(dict(age = x['âge'].mean(), garde_complete = '%s' % ', '.join(x['garde'].astype(str)))) enfants.groupby(by=['prénom', 'nom']).apply(groupe_garde) Explanation: Ecrivons une fonction (à appliquer au data frame). End of explanation enfants.groupby(by=['prénom', 'nom']).apply(groupe_garde).to_csv('results/enfants_cleanup.csv', sep=';', na_rep='nan') Explanation: Sortie du résultat End of explanation pd.read_csv('results/enfants_cleanup.csv', sep=';', na_values='nan') Explanation: Autres manipulations Et si nous voulions continuer... End of explanation
3,345
Given the following text description, write Python code to implement the functionality described below step by step Description: Computing dead time 2 source method Techniques for Nuclear and Particle Physics Experiments A How-to Approach Authors Step1: Generate some data Step2: So what are the errors in each measurement?
Python Code: %matplotlib inline from pprint import pprint import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import pymc3 as mc import spacepy.toolbox as tb import spacepy.plot as spp import tqdm from scipy import stats import seaborn as sns sns.set() %matplotlib inline Explanation: Computing dead time 2 source method Techniques for Nuclear and Particle Physics Experiments A How-to Approach Authors: Leo, William R. We measure rate1 rate2 and rate12 $n1 = \frac{R1}{1-R1\tau}, n2 = \frac{R2}{1-R2\tau}$ $n1+n2 = \frac{R12}{1-R12\tau}$ this then smplifies to: $\tau = \frac{R1R2 - [R1R2(R12-R1)(R12-R2)]^{1/2}}{R1R2R12}$ End of explanation np.random.seed(8675309) strength1 = 100 strength2 = 70 n_exp = 10 R1 = np.random.poisson(strength1, size=n_exp) R2 = np.random.poisson(strength2, size=n_exp) R12 = np.random.poisson(strength1+strength2, size=n_exp) Rate = np.vstack((R1, R2, R12)) print(Rate) print(Rate.shape) print(Rate[0]) print(Rate[1]) print(Rate[2]) print(R1, R2, R12) print(R1*R2-np.sqrt(R1*R2*(R12-R1)*(R12-R2))/(R1*R2*R12)) def tau_fn(R1, R2, R12): return R1*R2-np.sqrt(R1*R2*(R12-R1)*(R12-R2))/(R1*R2*R12) print(tau_fn(R1, R2, R12)) matplotlib.pyplot.rc('figure', figsize=(10,10)) matplotlib.pyplot.rc('lines', lw=3) plt.plot(Rate.T) Explanation: Generate some data End of explanation with mc.Model() as model: mu1 = mc.Uniform('mu1', 0, 1000) # true counting rate mu2 = mc.Uniform('mu2', 0, 1000) # true counting rate mu12 = mc.Uniform('mu12', 0, 1000) # true counting rate R1 = mc.Poisson('R1', mu=mu1, observed=Rate[0]) # measured R2 = mc.Poisson('R2', mu=mu2, observed=Rate[1]) # measured R12 = mc.Poisson('R12', mu=mu12, observed=Rate[2]) # measured tau = mc.Deterministic('tau', tau_fn(R1, R2, R12)) start = mc.find_MAP() trace = mc.sample(10000, start=start, njobs=4) mc.summary(trace) mc.traceplot(trace, combined=True) tau_fn(trace['R1'][100:110], trace['R2'][100:110], trace['R12'][100:110]) Explanation: So what are the errors in each measurement? End of explanation
3,346
Given the following text description, write Python code to implement the functionality described below step by step Description: Overview Step1: OCR for reading a volunteer list Step2: Play with Maps
Python Code: from PIL import Image import pytesseract pytesseract.pytesseract.tesseract_cmd = 'c:/Tesseract-OCR/tesseract' path = 'c:/learnPython/tess/mm_address.jpg' path2 = 'mm_address.jpg' img = Image.open(path2) text = pytesseract.image_to_string(img) print(text) name = text.splitlines()[0] street = text.splitlines()[2] city = text.splitlines()[3] customer = street + ', ' + city print('The street is: ', customer) Explanation: Overview: Need a mobile app that will take, as input, pictures of client addresses and output a recommended map to deliver them. Use: OCR (Optical Character Recognition) + Google Maps Use Tesseract Play with OCR End of explanation from PIL import Image import pytesseract import sys pytesseract.pytesseract.tesseract_cmd = 'c:/Tesseract-OCR/tesseract' path = 'c:/Users/ginny/Desktop/running/thtrb.jpg' path2 = 'thtrb.jpg' img = Image.open(path2) text = pytesseract.image_to_string(img) print(text) Explanation: OCR for reading a volunteer list End of explanation import googlemaps from datetime import datetime gmapsC = googlemaps.Client(key='Deleted') myHome = "2403 Englewood Ave, Durham, NC" now = datetime.now() wp=['300 N Roxboro St, Durham, NC 27701','911 W Cornwallis Rd, Durham, NC 27707', '345 W Main Street, Durham, NC 27701' ] directions = gmapsC.directions("2403 Englewood Ave, Durham, NC", "Duke Memorial", mode="driving", waypoints=wp, optimize_waypoints=True, departure_time=now) print(directions[0].keys()) print(directions[0]['summary']) print(directions[0]['waypoint_order']) print(directions[0]['legs']) gmap = gmplot.GoogleMapPlotter(37.428, -122.145, 16) gmap.plot(latitudes, longitudes, 'cornflowerblue', edge_width=10) gmap.scatter(more_lats, more_lngs, '#3B0B39', size=40, marker=False) gmap.scatter(marker_lats, marker_lngs, 'k', marker=True) gmap.heatmap(heat_lats, heat_lngs) gmap.draw("mymap.html") # Needed the Google Maps JavaScript API to run import googlemaps from datetime import datetime import gmaps gmapsC = GoogleMaps.Client(key='deleted') gmaps.configure(api_key='deleted') homeLong = '2403 Englewood Ave, Durham, NC 27705' # lat, lng = gmapsC.address_to_latlng(home) # print(lat, ' + ', lng) home = (36.0160282, -78.9321707) foodLion = (36.0193147,-78.9603636) church = (35.9969749, -78.9091543) m = gmaps.Map() dl = gmaps.directions_layer(home, church, waypoints=[foodLion]) m.add_layer(dl) m # How do you use optimize:true with jupyter gmaps? Explanation: Play with Maps End of explanation
3,347
Given the following text description, write Python code to implement the functionality described below step by step Description: An IPython Introduction to Using TEA for C. elegans researchers All of the code below was written by David Angeles-Albores. Should you find any errors, typos, or just have general comments, please contact Step1: Now let's import our dataset. Here, I will use a dataset I obtained from Engelmann et al, 2011 (PLOS One). Specifically, this is data from an RNA-seq experiment they performed. Briefly, young adult worms were placed in D. coniospora fungus for 24, cleaned and then RNA-seq'ed. Step2: Let's visualize the first five lines of the dataframe to see what's in it Step3: Ok. Clearly we can see the dataframe has a few different columns. Of particular interest to use are the columns 'Infection_upregulated' and 'Infection_downregulated', since these are the genes they identified as significantly altered by the treatment relative to an OP50 control. Let's analyze the genes that are upregulated first and see what they can do. Before we can analyze anything, notice that they don't list WBIDs anywhere. We need to turn the names into WBIDs before we can continue. To do this, I will load another file containing all the WBID-human readable relationships into a new dataframe called names Step4: Let's take a look at it Step5: The Engelmann names look like they are GeneNames. Next, I'm going to generate a lambda function. This function will take a single argument 'x'. 'x' should the be the column containing the names we want to convert into WBIDs. Once we provide 'x', this function will look in the GeneName column of the names dataframe to see whether a particular entry can be found in the GeneName column.\ For every entry it can find, g returns True. Else, it returns False Step6: Let's try our new function out! Step7: Great! Now we can get the WBIDs by simple indexing Step8: Hmmm. We lost quite a few genes. Let's quickly check to make sure those aren't important Step9: A quick search in WormBase shows that these genes have been merged into other genes. Hmmmm.. This could be a problem. To figure out if it really is a problem, let's look at how many of those genes are upregulated during infection. Step10: Great! So there's almost no loss in our gene name conversion. Now we can go ahead and extract all the IDs that we can find to use for our enrichment analysis Step11: See how the list changed from before? Great! Now we can put this into TEA Calling TEA TEA works by comparing your gene-list to a reference tissue expression ''dictionary''. In order for us to run TEA, we first need to fetch the dictionary. That's done easily enough Step12: Quick technical note Step13: Voila! We got our results. Great! But what if we didn't want to show them?' Step14: We could still look at the results by typing df_res.head() Step15: What about the unused genes? Let's see how many of those there are Step16: Ouch! That's a lot! Don't like it? Make GFP reporters and let WormBase know where they are expressed. Seriously. Do it! You'd be helping the whole community a lot! Now let's plot the results Step17: Voila! We've analyzed our data! Yay!
Python Code: import tissue_enrichment_analysis as tea #the main library for this tutorial import pandas as pd import os import importlib as imp import numpy as np import seaborn as sns import matplotlib.pyplot as plt #to make IPython plot inline, not req'd if you're not working with an Ipython notebook %matplotlib inline Explanation: An IPython Introduction to Using TEA for C. elegans researchers All of the code below was written by David Angeles-Albores. Should you find any errors, typos, or just have general comments, please contact: dangeles at caltech dt edu The work here was submitted and accepted for publication on .... Please cite Tissue Enrichment Analysis for C. elegans Genomics if this notebook was useful for you in your research. Please note: I have tried to make this tutorial as complete as possible, with a brief introduction to Pandas dataframes and showing how I typically prepare my dataframes for analysis. Experienced users will want to skip this and go straight to Calling TEA. However, this tutorial is by no means a complete introduction to Python or Pandas - in fact, it's more like a super fast crash course. I apologize for this, and in the future I will consider improving the tutorial. Best of Luck! -- David Angeles-Albores Introduction What is TEA meant for? TEA is meant to provide straightforward analysis of large gene lists for C. elegans researchers. We hope that TEA will function as a hypothesis generator, or alternatively, as a way of understanding the biology behind a dataset. How is TEA different from GO? Great question. GO is primarily a molecular/cellular ontology, whereas TEA works from TO, the C. elegans tissue ontology. I believe tissues are, in some senses, fundamental units in biology. Often, it is the case that tissues, not cells, have been studied for considerably longer time, and as a result we have a better intuition for what the function of a tissue is, as compared to the molecular function of a list of genes. In other words, I think GO analysis and TEA are similar, but my guess is that the results from TEA will be easier to interpret, and as a result easier to use for hypotheiss generation. What TEA is not: TEA is NOT meant to be used as a quantitative tool! At best, TEA is a very good guess about what tissues are being affected in your dataset. At worst, TEA is a guess about what tissues are being affected in your dataset. TEA is working directly from the WormBase-curated expression dataset. As a result, we have the very best, most up to date annotations in the world. On the other hand, please remember these annotations suffer from bias. For example, the ASE, ASK and ASI neurons have been very well studied and are quite well annotated, but the individual intestinal cells have not been generally well studied! Thus, our annotations are significantly biased by the research community's interests. Please use TEA carefully, and always use it as a guiding tool for your research, and never as the final say on anything. What do you need to do to run this tool? The gist of the algorithm is: Get your gene list into WBIDs Call our analysis function Call the plotting function Done. Batch users: This script runs on Python > 3.5. Dependencies: scipy (all), pandas, numpy, matplotlib and seaborn If you have pip, do pip install tissue_enrichment_analysis to install the library in your computer. Import the module. You may find that the numpy and pandas modules are also often very useful. For the purposes of this journal, the file structure I'm working with is the following: src - the folder this file lives in input - a folder that contains all my input files. Also contains Engelmann - folder containing the files i will be using End of explanation dfDcon= pd.read_csv('../input/Engelmann/coniospora_Engelmann_2011.csv') #Don't forget to change the path in your script! dfLum = pd.read_csv('../input/Engelmann/luminescens_Engelmann_2011.csv') dfMarc = pd.read_csv('../input/Engelmann/marcescens_Engelmann_2011.csv') dfFaec = pd.read_csv('../input/Engelmann/faecalis_Engelmann_2011.csv') # dfDcon[dfDcon.GenePublicName =='C41A3.1'] # dfLum[dfLum.GenePublicName =='C41A3.1'] dfMarc[dfMarc.GenePublicName =='C41A3.1'] dfFaec[dfFaec.GenePublicName =='C41A3.1'] Explanation: Now let's import our dataset. Here, I will use a dataset I obtained from Engelmann et al, 2011 (PLOS One). Specifically, this is data from an RNA-seq experiment they performed. Briefly, young adult worms were placed in D. coniospora fungus for 24, cleaned and then RNA-seq'ed. End of explanation print('This dataframe has {0} columns and {1} rows'.format(dfDcon.shape[1], dfLum.shape[0])) dfDcon.head() Explanation: Let's visualize the first five lines of the dataframe to see what's in it End of explanation names= pd.read_csv('../input/Engelmann/c_elegans.PRJNA13758.WS241.livegeneIDs.unmaprm.txt', sep= '\t',comment= '#') Explanation: Ok. Clearly we can see the dataframe has a few different columns. Of particular interest to use are the columns 'Infection_upregulated' and 'Infection_downregulated', since these are the genes they identified as significantly altered by the treatment relative to an OP50 control. Let's analyze the genes that are upregulated first and see what they can do. Before we can analyze anything, notice that they don't list WBIDs anywhere. We need to turn the names into WBIDs before we can continue. To do this, I will load another file containing all the WBID-human readable relationships into a new dataframe called names End of explanation print('The length of this dataframe is:{0}'.format(len(names))) names.head() Explanation: Let's take a look at it: End of explanation g= lambda x: (names.GeneName.isin(x)) Explanation: The Engelmann names look like they are GeneNames. Next, I'm going to generate a lambda function. This function will take a single argument 'x'. 'x' should the be the column containing the names we want to convert into WBIDs. Once we provide 'x', this function will look in the GeneName column of the names dataframe to see whether a particular entry can be found in the GeneName column.\ For every entry it can find, g returns True. Else, it returns False End of explanation #Remember, dfLum is the dataframe. dfLum['SequenceNameGene'] is the column we want.# #We store the result in a variable called 'translate' translate= g(dfDcon['SequenceNameGene']) #I only want to show the first 5 rows, so I'm going to add [0:5] after translate, since 'g' returns a Series object print(translate[0:5]) Explanation: Let's try our new function out! End of explanation wbids= names[translate].WBID # names[translate] gets rows for every gene name that was found by 'translate' #The .WBID after names[] tells the computer to get the WBID colum print('wbids has {} gene IDS. The original dataframe has {} genes'.format(len(wbids), dfLum.shape[0])) wbids.head() #let's see what we found Explanation: Great! Now we can get the WBIDs by simple indexing: End of explanation not_found= dfDcon[~dfDcon.SequenceNameGene.isin(names[translate].GeneName)] not_found.head() Explanation: Hmmm. We lost quite a few genes. Let's quickly check to make sure those aren't important End of explanation print('There are {0} upregulated genes, of which {1} can\'t be found in the names dictionary'.format( dfDcon[dfDcon.Infection_upregulated == 1].shape[0], not_found[not_found.Infection_upregulated == 1].shape[0])) print('{0:.2}% could not be found'.format( not_found[not_found.Infection_upregulated == 1].shape[0]/dfDcon[dfDcon.Infection_upregulated == 1].shape[0])) Explanation: A quick search in WormBase shows that these genes have been merged into other genes. Hmmmm.. This could be a problem. To figure out if it really is a problem, let's look at how many of those genes are upregulated during infection. End of explanation translate= g(dfLum[dfLum.Infection_downregulated == 1]['SequenceNameGene']) wbids= names[translate].WBID print(wbids.head()) Explanation: Great! So there's almost no loss in our gene name conversion. Now we can go ahead and extract all the IDs that we can find to use for our enrichment analysis End of explanation tissue_df= tea.fetch_dictionary() #this downloads the tissue dictionary we want tissue_df.head() Explanation: See how the list changed from before? Great! Now we can put this into TEA Calling TEA TEA works by comparing your gene-list to a reference tissue expression ''dictionary''. In order for us to run TEA, we first need to fetch the dictionary. That's done easily enough: End of explanation df_res, unused= tea.enrichment_analysis(wbids, tissue_df, show= True, save= False) Explanation: Quick technical note: We could have placed the dictionary inside the other functions and call them from the inside, but we want you to be able to access the dictionary. Why? Well, you might imagine that you want to get all the genes that are specifically expressed in a tissue, or you may want to take a look at what tissues are included, etc... In other words, we want you to be able to get your hands on this data! It's up to date, it's easy and it works beautifully. Now that we have the dictionary, we can run the enrichment analysis. Just so you know what's going on when you call it, the function has the following args.: enrichment_analysis(gene_list, tissue_df, alpha= 0.05, aname= '', save= False, show= True) Most of these you can ignore. Mainly, you'll want to assign: gene_list = your gene list tissue_df = the result from fetch_dictionary() alpha= your desired q-value threshold aname= if you want to save the result to your python interpret, give it a name and complete path save= if you want to save your file, you must set this to True This function returns 2 things: df_res -- a dataframe with all the results unused -- a list of all the genes that were discarded from the analysis For now, let's jsut run the analysis and show it here: End of explanation df_res, unused= tea.enrichment_analysis(wbids, tissue_df, show= False, save= False) Explanation: Voila! We got our results. Great! But what if we didn't want to show them?' End of explanation df_res.head() Explanation: We could still look at the results by typing df_res.head(): End of explanation print('{0} were discarded from the analysis'.format(len(unused))) Explanation: What about the unused genes? Let's see how many of those there are: End of explanation tea.plot_enrichment_results(df_res, title= 'Exercise', save= False) Explanation: Ouch! That's a lot! Don't like it? Make GFP reporters and let WormBase know where they are expressed. Seriously. Do it! You'd be helping the whole community a lot! Now let's plot the results End of explanation tea.plot_enrichment_results(df_res, title= 'Exercise', save= True, dirGraphs= 'example_graph_dir/') #This will save the graph in the corresponding directory. If no directory is specified, the graphs will be saved #to the current working directory. Explanation: Voila! We've analyzed our data! Yay! :D If we wanted to save our plot, we would type: End of explanation
3,348
Given the following text description, write Python code to implement the functionality described below step by step Description: TODO Step1: Plot histogram of metabolites at m/z give bin size of x ppm Step2: Repeat at 5ppm Step3: Let's try to plot histogram # of isomers vs. m/z
Python Code: # namespace - at the top of file. fucks with every tag. # very annoying, so name all tags ns + tag ns = '{http://www.hmdb.ca}' nsmap = {None : ns} # If you're within a metabolite tag count = 0 seen_mass = 0 d = {} for event, element in etree.iterparse(xml_file, tag=ns+'metabolite'): tree = etree.ElementTree(element) # Aggregate info into a dictionary of # {HMDB_ID: iso_mass} accession = [] # Get accession number and masses for each metabolite # Could be multiple accessions. Grab all of them, # sort to make unique identifier for elem in tree.iter(): if elem.tag == ns+'accession': accession.append(elem.text) # If you just saw a 'mono_mass' entry, # get the mass value and reset, saying you # havent seen 'mono_mass' in the text of next metabolite if (elem.tag == ns+'value') & (seen_mass == 1): mass = float(elem.text) seen_mass = 0 if elem.text == 'mono_mass': seen_mass = 1 elem.clear() # sort accession numbers and join with '_' accession_key = '_'.join(sorted(accession)) # add to dictionary if mass: d[accession_key] = mass # reset mass - only add feature if mass listed mass = None # reset accession numbers accession = [] element.clear() count += 1 if count % 1000 == 0: print('Made it through ' + str(count) + ' metabolites') #pickle.dump(d, open('serumdb_dict.p', 'wb')) print 'Number of metabolites: %s' % len(d.keys()) # write to file pickle.dump(d, open(pickle_path, 'wb')) hmdb_dict = pickle.load(open(pickle_path, 'rb')) # masses are entries of dict, yes? hmdb_masses = pd.Series(hmdb_dict, dtype='float32') Explanation: TODO: make all this so that it checks if these files are present - Claire sent an email about a fxn that helps do this in the past End of explanation def plot_mz_hist(series, ppm): worst_mz_bin = (ppm * series.max() * 10**-6) #print 'Worst bin size: %s for %s mass' % (worst_mz_bin, # series.max()) median_mz_bin = (ppm*series.median() * 10**-6) #print 'Median bin size: %s for %s mass' % (median_mz_bin, # series.median()) median_bins = np.arange(series.min(), series.max(), median_mz_bin) worst_bins = np.arange(series.min(), series.max(), worst_mz_bin) print 'median bins:', median_bins.shape print 'worst bins:', worst_bins.shape #sns.distplot(series, kde=False) #plt.show() #plt.hist(series, bins=median_mz_bin) sns.distplot(series, kde=False, norm_hist=False, bins=worst_bins) plt.ylim([0,10]) plt.title('mz overlaps at 30ppm, worst possible binsize (deltaX at highest m/z)') plt.show() # norm_hist=False, kde=False) #plt.show() return plt ppm = 30 import copy my_plot = plot_mz_hist(hmdb_masses, 30) 30*hmdb_masses.max() * 10**-6 hmdb_masses[0:5] ppm_matrix = combine_mz.ppm_matrix(hmdb_masses, hmdb_masses) # write to file np_path = local+path+'/hmdb_serumdb_20170813_ppm_matrix.npy' np.save(np_path, ppm_matrix) # reload it ppm_matrix = np.load(np_path) # Convert to upper triangular matrix idx_ppm = np.tril_indices(ppm_matrix.shape[0]) ppm_matrix[idx_ppm] = np.nan # get indices whose ppm falls below cutoff # Ignore runtime warning - means we're ignoring NaN values isomer_indices = np.argwhere(ppm_matrix < ppm) isomer_indices.shape print isomer_indices[0:10] # write isomer indices to file np.save(local+path+'/hmdb_serumdb_20170813_isomer_indices_%s_ppm.npy' % ppm, isomer_indices) isomer_indices = np.load(local+path+'/hmdb_serumdb_20170813_isomer_indices_%s_ppm.npy' % ppm) # TODO - fix this - it takes too long # 7 seconds for 25,000 molecules ends up being # 48 hours of run-time def isomers_from_ppm_matrix(ppm_matrix, ppm): ''' Only tested on square matrices for now INPUT - numpy array of ppm values OUTPUT - list of arrays - position in list is same as row in matrix, values in each list-entry are indices along column of array ''' bool_idx = ppm_matrix < ppm # Get indices where you have an isomer # for each row iso_indices = [np.argwhere(x) for x in bool_idx] return iso_indices toy_ppm = np.array([ [0, 20, 15, 50], [100, 0, 90, 10 ], [15, 90, 0, 10]], ) # not additive ppms print 'Input:\n', toy_ppm isomers_from_ppm_matrix(toy_ppm, 30) ppm = 30 isomers = isomers_from_ppm_matrix(ppm_matrix, ppm) np.save(local+path+'isomer_index_per_feature.npy', isomers) num_isomers = [len(x) for x in isomers] sns.distplot(num_isomers,) plt.title('Overlapping features at 30ppm') plt.xlabel('Number of isomers') plt.show() plt.hist(num_isomers, bins=1000) plt.xlabel('Number of isomers') plt.title('Overlapping features at 30ppm') plt.show() single_isomers = sum([i <= 1 for i in num_isomers]) print ("Number of metabolites from HMDB with no " + 'isomers: {num} out of {hmdb}: {per:.2f} percent'.format( num=single_isomers, hmdb=ppm_matrix.shape[0], per = float(single_isomers) / ppm_matrix.shape[0]*100)) Explanation: Plot histogram of metabolites at m/z give bin size of x ppm End of explanation ppm = 3 isomers = isomers_from_ppm_matrix(ppm_matrix, ppm) np.save(local+path+'isomer_index_per_feature_%s_ppm.npy' % ppm, isomers) num_isomers = [len(x) for x in isomers] sns.distplot(num_isomers,) plt.title('Overlapping features at %sppm' % ppm) plt.xlabel('Number of isomers') plt.show() plt.hist(num_isomers, bins=1000) plt.xlabel('Number of isomers') plt.title('Overlapping features at %sppm' % ppm) plt.show() ppm = 1 isomers = isomers_from_ppm_matrix(ppm_matrix, ppm) np.save(local+path+'isomer_index_per_feature_%s_ppm.npy' % ppm, isomers) num_isomers = [len(x) for x in isomers] sns.distplot(num_isomers,) plt.title('Overlapping features at %sppm' % ppm) plt.xlabel('Number of isomers') plt.show() plt.hist(num_isomers, bins=1000) plt.xlabel('Number of isomers') plt.title('Overlapping features at %sppm' % ppm) plt.show() Explanation: Repeat at 5ppm End of explanation # First make isomer indices as before # Use 30, because it's the worst ppms = [30,3] isomers = isomers_from_ppm_matrix(ppm_matrix, ppm) # get the number of isomers at that position num_isomers = [len(x) for x in isomers] print isomers[0:5] print num_isomers[0:5] # Next get y'values (mz) corresponding to those indices plt.scatter(x=hmdb_masses, y=num_isomers, s=1) plt.ylim([0,400]) plt.show() Explanation: Let's try to plot histogram # of isomers vs. m/z End of explanation
3,349
Given the following text description, write Python code to implement the functionality described below step by step Description: Time series prediction This is a full example of how to do time series prediction with TensorFlow high level APIs. We'll use the weather dataset available at big query and can be generated with the following query Step1: Describing the data set and the model We're using a weather dataset....[DESCRIBE DATA SET, HOW THE DATA WAS GENERATED AND OTHER DETAILS]. The goal is Step2: Separating training, evaluation and a small test data The test data is going to be very small (10 sequences) and is being used just for visualization. Step3: What we want to predict This is the plot of the labels from the test data. Step4: Defining Input functions Step5: RNN Model Step6: Running model Step7: Trainning Step8: Evaluating Step9: Testing Step10: Visualizing predictions
Python Code: # tensorflow import tensorflow as tf # rnn common functions from tensorflow.contrib.learn.python.learn.estimators import rnn_common # visualization import seaborn as sns import matplotlib.pyplot as plt # helpers import numpy as np import pandas as pd import csv # enable tensorflow logs tf.logging.set_verbosity(tf.logging.INFO) Explanation: Time series prediction This is a full example of how to do time series prediction with TensorFlow high level APIs. We'll use the weather dataset available at big query and can be generated with the following query: SELECT year, mo, da, avg(temp) as avg_tmp, avg(dewp) as avg_dewp, avg(slp) as avg_slp FROM `bigquery-public-data.noaa_gsod.gsod*` WHERE temp &lt;&gt; 9999.9 and dewp &lt;&gt; 9999.9 and slp &lt;&gt; 9999.9 GROUP BY year, mo, da ORDER BY year asc, mo asc, da asc You can download the data from here. We'll implement a RNN model using the Estimators API that given the average temperature of 10 days can predict the average temperature of the following day (11th). Dependecies End of explanation df = pd.read_csv('weather.csv') number_of_rows = len(df) print('number of rows in the dataset:', number_of_rows) print('how a row looks like:') print(df.head(11)) print() print("we don't the year mo da columns, so let's forget about them") df = df[['avg_tmp', 'avg_dewp', 'avg_slp']] print(df.head(11)) SEQ_LEN = 10 VALID_ROWS = number_of_rows - SEQ_LEN - 1 NUM_FEATURES = 3 # then we can use indexes to access rows easily df = np.asarray(df) # sequences will have shape: [VALID_ROWS, SEQ_LEN, NUM_FEATURES] sequences = np.zeros((VALID_ROWS, SEQ_LEN, NUM_FEATURES), dtype=np.float32) labels = np.zeros((VALID_ROWS, 1)) # sequences are 10 days # label is the avg_tmp for the following day (11th) for i in range(VALID_ROWS): sequences[i] = df[i: i + SEQ_LEN] labels[i] = df[i + SEQ_LEN][0] print('-' * 20) print('Example') print('-' * 20) print('sequence:') print(sequences[0]) print('prediction:', labels[0]) Explanation: Describing the data set and the model We're using a weather dataset....[DESCRIBE DATA SET, HOW THE DATA WAS GENERATED AND OTHER DETAILS]. The goal is: based on features from the past days predict the avg temperature in the next day. More specifically we'll use the data from 10 days in sequence to predict the avg temperature in the next day. Preparing the data First let's prepare the data for the RNN, the RNN input is: x = sequence of features y = what we want to predict/classify from x, in our casewe want to predict the next avg temperature Then we have to separe trainning data from test data. End of explanation # these values are based on the number of valid rows which is 32083 TRAIN_SIZE = 30000 EVAL_SIZE = 2073 TEST_SIZE = 10 # TODO(@monteirom): suffle train_seq = sequences[:TRAIN_SIZE] train_label = np.asarray(labels[:TRAIN_SIZE], dtype=np.float32) eval_seq = sequences[TRAIN_SIZE: TRAIN_SIZE + EVAL_SIZE] eval_label = np.asarray(labels[TRAIN_SIZE:TRAIN_SIZE + EVAL_SIZE], dtype=np.float32) test_seq = sequences[TRAIN_SIZE + EVAL_SIZE: ] test_label = np.asarray(labels[TRAIN_SIZE + EVAL_SIZE: ], dtype=np.float32) print('train shape:', train_seq.shape) print('eval shape:', eval_seq.shape) print('test shape:', test_seq.shape) Explanation: Separating training, evaluation and a small test data The test data is going to be very small (10 sequences) and is being used just for visualization. End of explanation # getting test labels test_plot_data = [test_label[i][0] for i in range(TEST_SIZE)] # plotting sns.tsplot(test_plot_data) plt.show() Explanation: What we want to predict This is the plot of the labels from the test data. End of explanation BATCH_SIZE = 64 FEATURE_KEY = 'x' SEQ_LEN_KEY = 'sequence_length' def make_dict(x): d = {} d[FEATURE_KEY] = x # [SIZE OF DATA SET, 1] # where the second dimesion contains the sequence of each # sequence in the data set d[SEQ_LEN_KEY] = np.asarray(x.shape[0] * [SEQ_LEN], dtype=np.int32) return d # Make input function for training: # num_epochs=None -> will cycle through input data forever # shuffle=True -> randomize order of input data train_input_fn = tf.estimator.inputs.numpy_input_fn(x=make_dict(train_seq), y=train_label, batch_size=BATCH_SIZE, shuffle=True, num_epochs=None) # Make input function for evaluation: # shuffle=False -> do not randomize input data eval_input_fn = tf.estimator.inputs.numpy_input_fn(x=make_dict(eval_seq), y=eval_label, batch_size=BATCH_SIZE, shuffle=False) # Make input function for testing: # shuffle=False -> do not randomize input data test_input_fn = tf.estimator.inputs.numpy_input_fn(x=make_dict(test_seq), y=test_label, batch_size=1, shuffle=False) Explanation: Defining Input functions End of explanation N_OUTPUTS = 1 # 1 prediction NUM_FEATURES = 3 def get_model_fn(rnn_cell_sizes, label_dimension, dnn_layer_sizes=[], optimizer='SGD', learning_rate=0.01): def model_fn(features, labels, mode, params): x = features[FEATURE_KEY] sequence_length = features[SEQ_LEN_KEY] # 1. configure the RNN # Each RNN layer will consist of a LSTM cell rnn_layers = [tf.nn.rnn_cell.LSTMCell(size) for size in rnn_cell_sizes] # Construct the layers multi_rnn_cell = tf.nn.rnn_cell.MultiRNNCell(rnn_layers) outputs, _ = tf.nn.dynamic_rnn(multi_rnn_cell, x, dtype=tf.float32) # Slice to keep only the last cell of the RNN last_activations = rnn_common.select_last_activations(outputs, sequence_length) # Construct dense layers on top of the last cell of the RNN for units in dnn_layer_sizes: last_activations = tf.layers.dense(last_activations, units, activation=tf.nn.relu) # Final dense layer for prediction predictions = tf.layers.dense(last_activations, label_dimension) # 2. Define the loss function for training/evaluation loss = None eval_metric_ops = None train_op = None # if predicting labels can be None if mode != tf.estimator.ModeKeys.PREDICT: loss = tf.losses.mean_squared_error(labels, predictions) eval_metric_ops = { "rmse": tf.metrics.root_mean_squared_error(labels, predictions) } # 3. Define the training operation/optimizer train_op = tf.contrib.layers.optimize_loss( loss=loss, global_step=tf.contrib.framework.get_global_step(), learning_rate=learning_rate, optimizer=optimizer) # 4. Create predictions predictions_dict = {"predicted": predictions} # 5. return ModelFnOps return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions_dict, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops) return model_fn Explanation: RNN Model End of explanation model_fn = get_model_fn(rnn_cell_sizes=[64], # size of the hidden layers label_dimension=1, # since is just 1 prediction dnn_layer_sizes=[32], # size of units in the dense layers on top of the RNN optimizer='Adam', learning_rate=0.001) estimator = tf.estimator.Estimator(model_fn=model_fn) Explanation: Running model End of explanation estimator.train(input_fn=train_input_fn, steps=10000) Explanation: Trainning End of explanation ev = estimator.evaluate(input_fn=eval_input_fn) print(ev) Explanation: Evaluating End of explanation preds = list(estimator.predict(input_fn=test_input_fn)) predictions = [] for p in preds: print(p) predictions.append(p["predicted"][0]) Explanation: Testing End of explanation # plotting real values in black sns.tsplot(test_plot_data, color="black") # plotting predictions in red sns.tsplot(predictions, color="red") plt.show() Explanation: Visualizing predictions End of explanation
3,350
Given the following text description, write Python code to implement the functionality described below step by step Description: Fast Lomb-Scargle Periodograms in Python The Lomb-Scargle Periodogram is a well-known method of finding periodicity in irregularly-sampled time-series data. The common implementation of the periodogram is relatively slow Step1: To begin, let's make a function which will create $N$ noisy, irregularly-spaced data points containing a periodic signal, and plot one realization of that data Step2: From this, our algorithm should be able to identify any periodicity that is present. Choosing the Frequency Grid The Lomb-Scargle Periodogram works by evaluating a power for a set of candidate frequencies $f$. So the first question is, how many candidate frequencies should we choose? It turns out that this question is very important. If you choose the frequency spacing poorly, it may lead you to miss strong periodic signal in the data! Frequency spacing First, let's think about the frequency spacing we need in our grid. If you're asking about a candidate frequency $f$, then data with range $T$ contains $T \cdot f$ complete cycles. If our error in frequency is $\delta f$, then $T\cdot\delta f$ is the error in number of cycles between the endpoints of the data. If this error is a significant fraction of a cycle, this will cause problems. This givs us the criterion $$ T\cdot\delta f \ll 1 $$ Commonly, we'll choose some oversampling factor around 5 and use $\delta f = (5T)^{-1}$ as our frequency grid spacing. Frequency limits Next, we need to choose the limits of the frequency grid. On the low end, $f=0$ is suitable, but causes some problems – we'll go one step away and use $\delta f$ as our minimum frequency. But on the high end, we need to make a choice Step3: Now let's use the gatspy tools to plot the periodogram Step4: The algorithm finds a strong signal at a period of 2.5. To demonstrate explicitly that the Nyquist rate doesn't apply in irregularly-sampled data, let's use a period below the averaged sampling rate and show that we can find it Step5: With a data sampling rate of approximately $1$ time unit, we easily find a period of $0.3$ time units. The averaged Nyquist limit clearly does not apply for irregularly-spaced data! Nevertheless, short of a full analysis of the temporal window function, it remains a useful milepost in estimating the upper limit of frequency. Scaling with $N$ With these rules in mind, we see that the size of the frequency grid is approximately $$ N_f = \frac{f_{max}}{\delta f} \propto \frac{N/(2T)}{1/T} \propto N $$ So for $N$ data points, we will require some multiple of $N$ frequencies (with a constant of proportionality typically on order 10) to suitably explore the frequency space. This is the source of the $N^2$ scaling of the typical periodogram Step6: Here, to illustrate the different computational scalings, we'll evaluate the computational time for a number of inputs, using LombScargleAstroML (a fast implementation of the $O[N^2]$ algorithm) and LombScargleFast, which is the fast FFT-based implementation
Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt # use seaborn's default plotting styles for matplotlib import seaborn; seaborn.set() Explanation: Fast Lomb-Scargle Periodograms in Python The Lomb-Scargle Periodogram is a well-known method of finding periodicity in irregularly-sampled time-series data. The common implementation of the periodogram is relatively slow: for $N$ data points, a frequency grid of $\sim N$ frequencies is required and the computation scales as $O[N^2]$. In a 1989 paper, Press and Rybicki presented a faster technique which makes use of fast Fourier transforms to reduce this cost to $O[N\log N]$ on a regular frequency grid. The gatspy package implement this in the LombScargleFast object, which we'll explore below. But first, we'll motivate why this algorithm is needed at all. We'll start this notebook with some standard imports: End of explanation def create_data(N, period=2.5, err=0.1, rseed=0): rng = np.random.RandomState(rseed) t = np.arange(N, dtype=float) + 0.3 * rng.randn(N) y = np.sin(2 * np.pi * t / period) + err * rng.randn(N) return t, y, err t, y, dy = create_data(100, period=20) plt.errorbar(t, y, dy, fmt='o'); Explanation: To begin, let's make a function which will create $N$ noisy, irregularly-spaced data points containing a periodic signal, and plot one realization of that data: End of explanation def freq_grid(t, oversampling=5, nyquist_factor=3): T = t.max() - t.min() N = len(t) df = 1. / (oversampling * T) fmax = 0.5 * nyquist_factor * N / T N = int(fmax // df) return df + df * np.arange(N) Explanation: From this, our algorithm should be able to identify any periodicity that is present. Choosing the Frequency Grid The Lomb-Scargle Periodogram works by evaluating a power for a set of candidate frequencies $f$. So the first question is, how many candidate frequencies should we choose? It turns out that this question is very important. If you choose the frequency spacing poorly, it may lead you to miss strong periodic signal in the data! Frequency spacing First, let's think about the frequency spacing we need in our grid. If you're asking about a candidate frequency $f$, then data with range $T$ contains $T \cdot f$ complete cycles. If our error in frequency is $\delta f$, then $T\cdot\delta f$ is the error in number of cycles between the endpoints of the data. If this error is a significant fraction of a cycle, this will cause problems. This givs us the criterion $$ T\cdot\delta f \ll 1 $$ Commonly, we'll choose some oversampling factor around 5 and use $\delta f = (5T)^{-1}$ as our frequency grid spacing. Frequency limits Next, we need to choose the limits of the frequency grid. On the low end, $f=0$ is suitable, but causes some problems – we'll go one step away and use $\delta f$ as our minimum frequency. But on the high end, we need to make a choice: what's the highest frequency we'd trust our data to be sensitive to? At this point, many people are tempted to mis-apply the Nyquist-Shannon sampling theorem, and choose some version of the Nyquist limit for the data. But this is entirely wrong! The Nyquist frequency applies for regularly-sampled data, but irregularly-sampled data can be sensitive to much, much higher frequencies, and the upper limit should be determined based on what kind of signals you are looking for. Still, a common (if dubious) rule-of-thumb is that the high frequency is some multiple of what Press & Rybicki call the "average" Nyquist frequency, $$ \hat{f}_{Ny} = \frac{N}{2T} $$ With this in mind, we'll use the following function to determine a suitable frequency grid: End of explanation t, y, dy = create_data(100, period=2.5) freq = freq_grid(t) print(len(freq)) from gatspy.periodic import LombScargle model = LombScargle().fit(t, y, dy) period = 1. / freq power = model.periodogram(period) plt.plot(period, power) plt.xlim(0, 5); Explanation: Now let's use the gatspy tools to plot the periodogram: End of explanation t, y, dy = create_data(100, period=0.3) period = 1. / freq_grid(t, nyquist_factor=10) model = LombScargle().fit(t, y, dy) power = model.periodogram(period) plt.plot(period, power) plt.xlim(0, 1); Explanation: The algorithm finds a strong signal at a period of 2.5. To demonstrate explicitly that the Nyquist rate doesn't apply in irregularly-sampled data, let's use a period below the averaged sampling rate and show that we can find it: End of explanation from gatspy.periodic import LombScargleFast help(LombScargleFast.periodogram_auto) from gatspy.periodic import LombScargleFast t, y, dy = create_data(100) model = LombScargleFast().fit(t, y, dy) period, power = model.periodogram_auto() plt.plot(period, power) plt.xlim(0, 5); Explanation: With a data sampling rate of approximately $1$ time unit, we easily find a period of $0.3$ time units. The averaged Nyquist limit clearly does not apply for irregularly-spaced data! Nevertheless, short of a full analysis of the temporal window function, it remains a useful milepost in estimating the upper limit of frequency. Scaling with $N$ With these rules in mind, we see that the size of the frequency grid is approximately $$ N_f = \frac{f_{max}}{\delta f} \propto \frac{N/(2T)}{1/T} \propto N $$ So for $N$ data points, we will require some multiple of $N$ frequencies (with a constant of proportionality typically on order 10) to suitably explore the frequency space. This is the source of the $N^2$ scaling of the typical periodogram: finding periods in $N$ datapoints requires a grid of $\sim 10N$ frequencies, and $O[N^2]$ operations. When $N$ gets very, very large, this becomes a problem. Fast Periodograms with LombScargleFast Finally we get to the meat of this discussion. In a 1989 paper, Press and Rybicki proposed a clever method whereby a Fast Fourier Transform is used on a grid extirpolated from the original data, such that this problem can be solved in $O[N\log N]$ time. The gatspy package contains a pure-Python implementation of this algorithm, and we'll explore it here. If you're interested in seeing how the algorithm works in Python, check out the code in the gatspy source. It's far more readible and understandable than the Fortran source presented in Press et al. For convenience, the implementation has a periodogram_auto method which automatically selects a frequency/period range based on an oversampling factor and a nyquist factor: End of explanation from time import time from gatspy.periodic import LombScargleAstroML, LombScargleFast def get_time(N, Model): t, y, dy = create_data(N) model = Model().fit(t, y, dy) t0 = time() model.periodogram_auto() t1 = time() result = t1 - t0 # for fast operations, we should do several and take the median if result < 0.1: N = min(50, 0.5 / result) times = [] for i in range(5): t0 = time() model.periodogram_auto() t1 = time() times.append(t1 - t0) result = np.median(times) return result N_obs = list(map(int, 10 ** np.linspace(1, 4, 5))) times1 = [get_time(N, LombScargleAstroML) for N in N_obs] times2 = [get_time(N, LombScargleFast) for N in N_obs] plt.loglog(N_obs, times1, label='Naive Implmentation') plt.loglog(N_obs, times2, label='FFT Implementation') plt.xlabel('N observations') plt.ylabel('t (sec)') plt.legend(loc='upper left'); Explanation: Here, to illustrate the different computational scalings, we'll evaluate the computational time for a number of inputs, using LombScargleAstroML (a fast implementation of the $O[N^2]$ algorithm) and LombScargleFast, which is the fast FFT-based implementation: End of explanation
3,351
Given the following text description, write Python code to implement the functionality described below step by step Description: <center> <img src="../img/ods_stickers.jpg"> Открытый курс по машинному обучению </center> Автор материала Step1: Посмотрим на Seaborn сразу в действии на данных по моделям месяца по версии журнала Playboy. Step2: Гистограммы. Метод <a href="https Step3: Метод <a href="https Step4: Метод <a href="http Step5: Метод <a href="http Step6: Метод jointplot Step7: Пример визуального анализа данных с Pandas и Seaborn В 1968 году была опубликована статья под названием "Correlation of Performance Test Scores with Tissue Concentration of Lysergic Acid Diethylamide in Human Subjects". К статье приложен небольшой набор данных всего из 7 наблюдений. Step8: Таблица уже отсортирована по колонке Drugs, сделаем сортировку по Score. Step9: Рисунки Step10: Видна тенденция... Step11: Не советуем строить регрессию по 7 наблюдениям
Python Code: %matplotlib inline import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (10, 6) Explanation: <center> <img src="../img/ods_stickers.jpg"> Открытый курс по машинному обучению </center> Автор материала: программист-исследователь Mail.ru Group, старший преподаватель Факультета Компьютерных Наук ВШЭ Юрий Кашницкий <center>Тема 2. Визуальный анализ данных с Python <center>Часть 1. Обзор библиотеки Seaborn Seaborn – дополнение Matplotlib с API как для быстрого построения красивых графиков, так и для детальной кастомизации картинок для презентации. End of explanation girls = pd.read_csv('../data/girls.csv') girls.head(10) girls.describe(include='all') Explanation: Посмотрим на Seaborn сразу в действии на данных по моделям месяца по версии журнала Playboy. End of explanation girls['Waist'].hist(bins=15); sns.distplot(girls['Waist'], kde=True); ax = sns.distplot(girls['Height'], kde=False) ax.set(xlabel='Playboy girls height', ylabel='Frequency') sns.set_style('darkgrid') Explanation: Гистограммы. Метод <a href="https://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.distplot.html">distplot</a> End of explanation def weight_category(weight): return 'heavier' if weight > 54\ else 'lighter' if weight < 49 else 'median' girls['weight_cat'] = girls['Weight'].apply(weight_category) sns.boxplot(x='weight_cat', y='Height', data=girls); Explanation: Метод <a href="https://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.boxplot.html">boxplot</a> В наборе данных все признаки численные, так что создадим категорию "weight_cat" из 3 типов веса. End of explanation sns.set_palette(sns.color_palette("RdBu")) sns.pairplot(girls[['Bust', 'Waist', 'Hips', 'Height', 'Weight']]); girls.corr() girls.head() Explanation: Метод <a href="http://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.pairplot.html">pairplot</a> End of explanation def height_category(height): return 'high' if height > 175\ else 'small' if height < 160 else 'median' girls['height_cat'] = girls['Height'].apply(height_category) sns.countplot(x='height_cat', hue='weight_cat', data=girls); pd.crosstab(girls['weight_cat'], girls['height_cat']) Explanation: Метод <a href="http://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.countplot.html">countplot</a> End of explanation sns.jointplot(x='Weight', y='Height', data=girls, kind='reg'); Explanation: Метод jointplot End of explanation data_types = {'Drugs': float, 'Score': float} df = pd.read_csv('../data/drugs-and-math.csv', index_col=0, sep=',', dtype=data_types) print(df.shape) print(df.columns) print(df.index) df Explanation: Пример визуального анализа данных с Pandas и Seaborn В 1968 году была опубликована статья под названием "Correlation of Performance Test Scores with Tissue Concentration of Lysergic Acid Diethylamide in Human Subjects". К статье приложен небольшой набор данных всего из 7 наблюдений. End of explanation df.sort_values('Score', ascending=False, inplace=True) df.describe().T # Иногда так лучше Explanation: Таблица уже отсортирована по колонке Drugs, сделаем сортировку по Score. End of explanation df.plot(kind='box'); df.plot(x='Drugs', y='Score', kind='bar'); df.plot(x='Drugs', y='Score', kind='scatter'); Explanation: Рисунки End of explanation df.corr(method='pearson') Explanation: Видна тенденция... End of explanation sns.jointplot(x='Drugs', y='Score', data=df, kind='reg'); Explanation: Не советуем строить регрессию по 7 наблюдениям :) End of explanation
3,352
Given the following text description, write Python code to implement the functionality described below step by step Description: INF-482, v0.01, Claudio Torres, [email protected]. DI-UTFSM Textbook Step1: Mairhuber-Curtis Theorem Step2: Halton points vs pseudo-random points in 2D Step3: Interpolation with Distance Matrix from Halton points Step4: Defining a test function Step5: Let's look at $f$ Step6: The interpolation with distance matrix itself Step7: RBF interpolation
Python Code: import numpy as np import ghalton import matplotlib.pyplot as plt %matplotlib inline from ipywidgets import interact from scipy.spatial import distance_matrix from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter from ipywidgets import IntSlider import sympy as sym import matplotlib as mpl mpl.rcParams['font.size'] = 14 mpl.rcParams['axes.labelsize'] = 20 mpl.rcParams['xtick.labelsize'] = 14 mpl.rcParams['ytick.labelsize'] = 14 sym.init_printing() M=8 def plot_matrices_with_values(ax,M): N=M.shape[0] cmap = plt.get_cmap('GnBu') ax.matshow(M, cmap=cmap) for i in np.arange(0, N): for j in np.arange(0, N): ax.text(i, j, '{:.2f}'.format(M[i,j]), va='center', ha='center', color='r') Explanation: INF-482, v0.01, Claudio Torres, [email protected]. DI-UTFSM Textbook: Gregory E. Fasshauer, Meshfree Approximaition Methods with MatLab, Interdisciplinary Mathematical Sciences - Vol. 6, World Scientific Publishers, Singapore, 2007. Link: http://www.math.iit.edu/~fass/ Mairhuber-Curtis Theorem, Halton, Distance Matrix and RBF Interpolation End of explanation # Initializing a R^2 sequencer = ghalton.Halton(2) sequencer.reset() xH=np.array(sequencer.get(9)) print(xH) def show_MC_theorem(s_local=0): i=3 j=4 NC=40 sequencer.reset() xH=np.array(sequencer.get(9)) phi1= lambda s: (s-0.5)*(s-1)/((0-0.5)*(0-1)) phi2= lambda s: (s-0)*(s-1)/((0.5-0)*(0.5-1)) phi3= lambda s: (s-0)*(s-0.5)/((1-0)*(1-0.5)) C1=lambda s: xH[i,:]*phi1(s)+np.array([0.45,0.55])*phi2(s)+xH[j,:]*phi3(s) C2=lambda s: xH[j,:]*phi1(s)+np.array([0.15,0.80])*phi2(s)+xH[i,:]*phi3(s) C1v=np.vectorize(C1,otypes=[np.ndarray]) C2v=np.vectorize(C2,otypes=[np.ndarray]) ss=np.linspace(0,1,NC).reshape((-1, 1)) C1o=np.array(C1v(ss)) C2o=np.array(C2v(ss)) C1plot=np.zeros((NC,2)) C2plot=np.zeros((NC,2)) for k in np.arange(0,NC): C1plot[k,0]=C1o[k][0][0] C1plot[k,1]=C1o[k][0][1] C2plot[k,0]=C2o[k][0][0] C2plot[k,1]=C2o[k][0][1] plt.figure(figsize=(2*M,M)) plt.subplot(121) plt.plot(C1plot[:,0],C1plot[:,1],'r--') plt.plot(C2plot[:,0],C2plot[:,1],'g--') plt.scatter(xH[:,0], xH[:,1], s=300, c="b", alpha=1.0, marker='.', label="Halton") plt.scatter(C1(s_local)[0], C1(s_local)[1], s=300, c="r", alpha=1.0, marker='d') plt.scatter(C2(s_local)[0], C2(s_local)[1], s=300, c="g", alpha=1.0, marker='d') plt.axis([0,1,0,1]) plt.title(r'Quasi-random points (Halton)') plt.grid(True) xHm=np.copy(xH) xHm[i,:]=C1(s_local) xHm[j,:]=C2(s_local) R=distance_matrix(xHm, xH) det_s_local=np.linalg.det(R) plt.subplot(122) plt.title(r'det(R_fixed)='+str(det_s_local)) det_s=np.zeros_like(ss) for k, s in enumerate(ss): xHm[i,:]=C1plot[k,:] xHm[j,:]=C2plot[k,:] R=distance_matrix(xHm, xH) det_s[k]=np.linalg.det(R) plt.plot(ss,det_s,'-') plt.plot(s_local,det_s_local,'dk',markersize=16) plt.grid(True) plt.show() interact(show_MC_theorem,s_local=(0,1,0.1)) Explanation: Mairhuber-Curtis Theorem End of explanation def plot_random_vs_Halton(n=100): # Number of points to be generated # n=1000 # I am reseting the sequence everytime I generated just to get the same points sequencer.reset() xH=np.array(sequencer.get(n)) np.random.seed(0) xR=np.random.rand(n,2) plt.figure(figsize=(2*M,M)) plt.subplot(121) plt.scatter(xR[:,0], xR[:,1], s=100, c="r", alpha=1.0, marker='.', label="Random", edgecolors='None') plt.axis([0,1,0,1]) plt.title(r'Pseudo-random points') plt.grid(True) plt.subplot(122) plt.scatter(xH[:,0], xH[:,1], s=100, c="b", alpha=1.0, marker='.', label="Halton") plt.axis([0,1,0,1]) plt.title(r'Quasi-random points (Halton)') plt.grid(True) plt.show() interact(plot_random_vs_Halton,n=(20,500,20)) Explanation: Halton points vs pseudo-random points in 2D End of explanation def show_R(mH=10): fig= plt.figure(figsize=(2*M*mH/12,M*mH/12)) ax = plt.gca() sequencer.reset() X=np.array(sequencer.get(mH)) R=distance_matrix(X, X) plot_matrices_with_values(ax,R) interact(show_R,mH=(2,20,1)) Explanation: Interpolation with Distance Matrix from Halton points End of explanation # The function to be interpolated f=lambda x,y: 16*x*(1-x)*y*(1-y) def showing_f(n=10, elev=40, azim=230): fig = plt.figure(figsize=(2*M,M)) # Creating regular mesh Xr = np.linspace(0, 1, n) Xm, Ym = np.meshgrid(Xr,Xr) Z = f(Xm,Ym) # Wireframe plt.subplot(221,projection='3d') ax = fig.gca() ax.plot_wireframe(Xm, Ym, Z) ax.view_init(elev,azim) # imshow plt.subplot(222) #plt.imshow(Z,interpolation='none', extent=[0, 1, 0, 1]) plt.contourf(Xm, Ym, Z, 20) plt.ylabel('$y$') plt.xlabel('$x$') plt.axis('equal') plt.xlim(0,1) plt.colorbar() # Contour plot plt.subplot(223) plt.contour(Xm, Ym, Z, 20) plt.axis('equal') plt.colorbar() # Surface plt.subplot(224,projection='3d') ax = fig.gca() surf = ax.plot_surface(Xm, Ym, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) fig.colorbar(surf) ax.view_init(elev,azim) plt.show() Explanation: Defining a test function End of explanation elev_widget = IntSlider(min=0, max=180, step=10, value=40) azim_widget = IntSlider(min=0, max=360, step=10, value=230) interact(showing_f,n=(5,50,5),elev=elev_widget,azim=azim_widget) def eval_interp_distance_matrix(C,X,x,y): R=distance_matrix(X, np.array([[x,y]])) return np.dot(C,R) def showing_f_interpolated(n=10, mH=10, elev=40, azim=230): fig = plt.figure(figsize=(2*M,M)) ## Building distance matrix and solving linear system sequencer.reset() X=np.array(sequencer.get(mH)) R=distance_matrix(X, X) Zs=f(X[:,0],X[:,1]) C=np.linalg.solve(R,Zs) # f interpolated with distance function fIR=np.vectorize(eval_interp_distance_matrix, excluded=[0,1]) # Creating regular mesh Xr = np.linspace(0, 1, n) Xm, Ym = np.meshgrid(Xr,Xr) Z = f(Xm,Ym) # Contour plot - Original Data plt.subplot(221) plt.contour(Xm, Ym, Z, 20) plt.colorbar() plt.axis('equal') plt.title(r'$f(x,y)$') # Surface - Original Data plt.subplot(222,projection='3d') ax = fig.gca() surf = ax.plot_surface(Xm, Ym, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) fig.colorbar(surf) ax.view_init(elev,azim) plt.title(r'$f(x,y)$') # Contour plot - Interpolated Data plt.subplot(223) plt.contour(Xm, Ym, fIR(C,X,Xm,Ym), 20) plt.axis('equal') plt.colorbar() plt.scatter(X[:,0], X[:,1], s=100, c="r", alpha=0.5, marker='.', label="Random", edgecolors='None') plt.title(r'$fIR(x,y)$') # Surface - Interpolated Data plt.subplot(224,projection='3d') ax = fig.gca() surf = ax.plot_surface(Xm, Ym, fIR(C,X,Xm,Ym), rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) fig.colorbar(surf) ax.view_init(elev,azim) ax.set_zlim(0,1) plt.title(r'$fIR(x,y)$') plt.show() Explanation: Let's look at $f$ End of explanation interact(showing_f_interpolated,n=(5,50,5),mH=(5,80,5),elev=elev_widget,azim=azim_widget) Explanation: The interpolation with distance matrix itself End of explanation # Some RBF's linear_rbf = lambda r,eps: r gaussian_rbf = lambda r,eps: np.exp(-(eps*r)**2) MQ_rbf = lambda r,eps: np.sqrt(1+(eps*r)**2) IMQ_rbf = lambda r,eps: 1./np.sqrt(1+(eps*r)**2) # The chosen one! But please try all of them! rbf = lambda r,eps: MQ_rbf(r,eps) def eval_interp_rbf(C,X,x,y,eps): A=rbf(distance_matrix(X, np.array([[x,y]])),eps) return np.dot(C,A) def showing_f_interpolated_rbf(n=10, mH=10, elev=40, azim=230, eps=1): fig = plt.figure(figsize=(2*M,M)) # Creating regular mesh Xr = np.linspace(0, 1, n) Xm, Ym = np.meshgrid(Xr,Xr) Z = f(Xm,Ym) ######################################################## ## Pseudo-random ## Building distance matrix and solving linear system np.random.seed(0) X=np.random.rand(mH,2) R=distance_matrix(X,X) A=rbf(R,eps) Zs=f(X[:,0],X[:,1]) C=np.linalg.solve(A,Zs) # f interpolated with distance function fIR=np.vectorize(eval_interp_rbf, excluded=[0,1,4]) # Contour plot - Original Data plt.subplot(231) plt.contour(Xm, Ym, fIR(C,X,Xm,Ym,eps), 20) plt.colorbar() plt.scatter(X[:,0], X[:,1], s=100, c="r", alpha=0.5, marker='.', label="Random", edgecolors='None') plt.title(r'$f(x,y)_{rbf}$ with Pseudo-random points') # Surface - Original Data plt.subplot(232,projection='3d') ax = fig.gca() surf = ax.plot_surface(Xm, Ym, fIR(C,X,Xm,Ym,eps), rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) fig.colorbar(surf) ax.view_init(elev,azim) ax.set_zlim(0,1) plt.title(r'$f(x,y)_{rbf}$ with Pseudo-random points') # Contour plot - Original Data plt.subplot(233) plt.contourf(Xm, Ym, np.abs(f(Xm,Ym)-fIR(C,X,Xm,Ym,eps)), 20) #plt.imshow(np.abs(f(Xm,Ym)-fIR(C,X,Xm,Ym,eps)),interpolation='none', extent=[0, 1, 0, 1]) plt.axis('equal') plt.xlim(0,1) plt.colorbar() plt.scatter(X[:,0], X[:,1], s=100, c="k", alpha=0.8, marker='.', label="Random", edgecolors='None') plt.title(r'Error with Pseudo-random points') ######################################################## ## HALTON (Quasi-random) ## Building distance matrix and solving linear system sequencer.reset() X=np.array(sequencer.get(mH)) R=distance_matrix(X,X) A=rbf(R,eps) Zs=f(X[:,0],X[:,1]) C=np.linalg.solve(A,Zs) # f interpolated with distance function fIR=np.vectorize(eval_interp_rbf, excluded=[0,1,4]) # Contour plot - Interpolated Data plt.subplot(234) plt.contour(Xm, Ym, fIR(C,X,Xm,Ym,eps), 20) plt.colorbar() plt.scatter(X[:,0], X[:,1], s=100, c="r", alpha=0.5, marker='.', label="Random", edgecolors='None') plt.title(r'$f_{rbf}(x,y)$ with Halton points') # Surface - Interpolated Data plt.subplot(235,projection='3d') ax = fig.gca() surf = ax.plot_surface(Xm, Ym, fIR(C,X,Xm,Ym,eps), rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) fig.colorbar(surf) ax.view_init(elev,azim) ax.set_zlim(0,1) plt.title(r'$f_{rbf}(x,y)$ with Halton points') # Contour plot - Original Data plt.subplot(236) plt.contourf(Xm, Ym, np.abs(f(Xm,Ym)-fIR(C,X,Xm,Ym,eps)), 20) #plt.imshow(np.abs(f(Xm,Ym)-fIR(C,X,Xm,Ym,eps)),interpolation='none', extent=[0, 1, 0, 1]) plt.axis('equal') plt.xlim(0,1) plt.colorbar() plt.scatter(X[:,0], X[:,1], s=100, c="k", alpha=0.8, marker='.', label="Random", edgecolors='None') plt.title(r'Error with Halton points') plt.show() interact(showing_f_interpolated_rbf,n=(5,50,5),mH=(5,80,5),elev=elev_widget,azim=azim_widget,eps=(0.1,50,0.1)) Explanation: RBF interpolation End of explanation
3,353
Given the following text description, write Python code to implement the functionality described below step by step Description: This Notebook implements the TensorFlow advanced tutorial which uses a Multilayer Convolutional Network on the MNIST dataset Step1: Import MNIST Data Step2: Look at sizes of training, validation and test sets Each image is 28 X 28 pixels Labels are in one hot encoding for use with softmax Step3: Declare Variables Step4: Weight Initialization for ReLU nodes Step5: Convolution and Pooling operations Step6: First Convolutional Layer The convolution will compute 32 features for each 5x5 patch. The max_pool_2x2 method will reduce the image size to 14x14. Step7: Second Convolutional Layer The second layer will have 64 features for each 5x5 patch. Step8: Densely Connected Layer The image size has been reduced to 7x7 and we add a fully-connected layer with 1024 neurons to allow processing on the entire image. Step9: Dropout Step10: Readout Layer Step11: Implement Model Step12: Define function that runs the model for given number of batches and returns the training time and accuracy on the validations and test data sets. Step13: Try different number of epochs
Python Code: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import matplotlib.pyplot as plt import time Explanation: This Notebook implements the TensorFlow advanced tutorial which uses a Multilayer Convolutional Network on the MNIST dataset End of explanation mnist = input_data.read_data_sets("../datasets/MNIST/", one_hot=True) Explanation: Import MNIST Data End of explanation print(mnist.train.num_examples) print(mnist.validation.num_examples) print(mnist.test.num_examples) plt.imshow(mnist.train.images[10004].reshape(28,28),cmap="Greys") plt.show() print (mnist.train.labels[10004]) Explanation: Look at sizes of training, validation and test sets Each image is 28 X 28 pixels Labels are in one hot encoding for use with softmax End of explanation x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) Explanation: Declare Variables End of explanation def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) Explanation: Weight Initialization for ReLU nodes End of explanation def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') Explanation: Convolution and Pooling operations End of explanation W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) Explanation: First Convolutional Layer The convolution will compute 32 features for each 5x5 patch. The max_pool_2x2 method will reduce the image size to 14x14. End of explanation W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) Explanation: Second Convolutional Layer The second layer will have 64 features for each 5x5 patch. End of explanation W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) Explanation: Densely Connected Layer The image size has been reduced to 7x7 and we add a fully-connected layer with 1024 neurons to allow processing on the entire image. End of explanation keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) Explanation: Dropout End of explanation W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 Explanation: Readout Layer End of explanation cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) Explanation: Implement Model End of explanation def train_and_test_model(batches,batches_per_epoch,verbose=False): start = time.time() epoch = 1 results = [] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(batches): batch = mnist.train.next_batch(50) if i % 100 == 0 and verbose: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g, elapsedtime %g' % (i, train_accuracy, time.time() - start)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) if (i+1) % batches_per_epoch == 0: test_accuracy = accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}) validation_accuracy = accuracy.eval(feed_dict={ x: mnist.validation.images, y_: mnist.validation.labels, keep_prob: 1.0}) if verbose: print('Done with test/val accuracy elapsed time %g' % (time.time() - start)) train_accuracy = accuracy.eval(feed_dict={ x: mnist.train.images[0:10000], y_: mnist.train.labels[0:10000], keep_prob: 1.0}) if verbose: print('Done with train accuracy elapsed time %g' % (time.time() - start)) time_elapsed = time.time() - start if verbose: print(epoch,i+1, time_elapsed, train_accuracy, validation_accuracy, test_accuracy) results.append((epoch,time_elapsed, train_accuracy, validation_accuracy, test_accuracy)) epoch += 1 return results Explanation: Define function that runs the model for given number of batches and returns the training time and accuracy on the validations and test data sets. End of explanation results=train_and_test_model(7700,1100,verbose=True) for r in results: print(r) Explanation: Try different number of epochs End of explanation
3,354
Given the following text description, write Python code to implement the functionality described below step by step Description: Best practices Let's start with pep8 (https Step1: Pivot Tables w/ pandas http Step2: Keyboard shortcuts Step3: Floating Table of Contents Creates a new button on the toolbar that pops up a table of contents that you can navigate by. In your documentation if you indent by 4 spaces, you get monospaced code-style code so you can embed in a Markdown cell
Python Code: # Best practice for loading libraries? # Couldn't find what to do with 'magic' imports at the top %load_ext autoreload %autoreload 2 %matplotlib inline %config InlineBackend.figure_format='retina' from __future__ import division from itertools import combinations import string from IPython.display import IFrame, HTML, YouTubeVideo import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy as sp import seaborn as sns; sns.set(); plt.rcParams['figure.figsize'] = (12, 8) sns.set_style("darkgrid") sns.set_context("poster", font_scale=1.3) Explanation: Best practices Let's start with pep8 (https://www.python.org/dev/peps/pep-0008/) Imports should be grouped in the following order: standard library imports related third party imports local application/library specific imports You should put a blank line between each group of imports. Put any relevant all specification after the imports. End of explanation YouTubeVideo("ZbrRrXiWBKc", width=800, height=600) !pip install pivottablejs df = pd.read_csv("../data/mps.csv") df.head() from pivottablejs import pivot_ui pivot_ui(df) # Province, Party, Average, Age, Heatmap Explanation: Pivot Tables w/ pandas http://nicolas.kruchten.com/content/2015/09/jupyter_pivottablejs/ End of explanation # in select mode, shift j/k (to select multiple cells at once) # split cell with ctrl shift - first = 1 second = 2 third = 3 Explanation: Keyboard shortcuts End of explanation import rpy2 %load_ext rpy2.ipython X = np.array([0,1,2,3,4]) Y = np.array([3,5,4,6,7]) %%R -i X,Y -o XYcoef XYlm = lm(Y~X) XYcoef = coef(XYlm) print(summary(XYlm)) par(mfrow=c(2,2)) plot(XYlm) Explanation: Floating Table of Contents Creates a new button on the toolbar that pops up a table of contents that you can navigate by. In your documentation if you indent by 4 spaces, you get monospaced code-style code so you can embed in a Markdown cell: $ mkdir toc $ cd toc $ wget https://raw.githubusercontent.com/minrk/ipython_extensions/master/nbextensions/toc.js $ wget https://raw.githubusercontent.com/minrk/ipython_extensions/master/nbextensions/toc.css $ cd .. $ jupyter-nbextension install --user toc $ jupyter-nbextension enable toc/toc You can also get syntax highlighting if you tell it the language that you're including: ```bash mkdir toc cd toc wget https://raw.githubusercontent.com/minrk/ipython_extensions/master/nbextensions/toc.js wget https://raw.githubusercontent.com/minrk/ipython_extensions/master/nbextensions/toc.css cd .. jupyter-nbextension install --user toc jupyter-nbextension enable toc/toc ``` R pyRserve rpy2 End of explanation
3,355
Given the following text description, write Python code to implement the functionality described below step by step Description: Database RDMS(Relational Database Management System Open Sourse - MySQL(php and web application) - PostgreSQl(huge web applications) - SQLITE (android applications) Proprietary - MSSQL - Oracle https Step1: Data base for library management system
Python Code: import sqlite3 #import the driver ##psycopg2 for protsgeSQL # pymysql for MySQL conn = sqlite3.connect('example.sqlite3') #connecting to sqlite 3 and makes a new database file if file not already present cur = conn.cursor() #makes a file cursor we can make multiple cursors as well cur.execute('CREATE TABLE countries (id integer, name text, iso3 text)') #creating a new table cur.execute('SELECT * FROM countries') # cur.fetchall() #fetching the whole cur.execute('INSERT INTO countries (id,name,iso3) VALUES (1, "Nepal", "NEP")') cur.execute('SELECT * FROM countries') cur.fetchall() sql = '''INSERT INTO countries (id,name,iso3) VALUES (?,?,?)''' cur.executemany(sql , [(2, 'India','INA'), (3, 'Bhutan','BHU'), (4, 'Afghanistan','AFG')]) cur.execute('SELECT * FROM countries') cur.fetchall() sql = 'INSERT INTO countries (id,name,iso3) VALUES (4, "PAKISTAN", "PAK")' cur.execute(sql) cur.execute('SELECT * FROM countries') cur.fetchall() sql = 'UPDATE countries SET id = 5 WHERE iso3 = "4"' cur.execute(sql) cur.execute('SELECT * FROM countries') cur.fetchall() sql = 'UPDATE countries ' conn.commit() cur.execute('SELECT * FROM countries WHERE id > 2 ') cur.fetchall() cur.execute('SELECT *FROM countries WHERE name LIKE "%an"') cur.fetchall() cur.execute('SELECT *FROM countries WHERE name LIKE "%an%"') cur.fetchall() cur.execute('SELECT *FROM countries WHERE name LIKE "Pa%"') cur.fetchall() cur.execute('DELETE FROM countries') cur.execute('SELECT *FROM countries') cur.fetchall() conn.commit() import csv sql = 'INSERT INTO countries (id,name,iso3) VALUES(?,?,?)' _id = 1 with open('countries.txt','r') as datafile: csvfile = csv.DictReader(datafile) for row in csvfile: if row ['Common Name'] and row['ISO 3166-1 3 Letter Code']: cur.execute(sql, (_id, row['Common Name'], row['ISO 3166-1 3 Letter Code'])) _id +=1 conn.commit() cur.execute('DELETE FROM country_list') cur.execute('SELECT *FROM country_list') cur.fetchall() sql = '''CREATE TABLE country_list(id integer primary key autoincrement, country_name text not null, iso3 text not null unique)''' cur.execute(sql) sql = 'INSERT INTO country_list (country_name,iso3) VALUES(?,?)' with open('countries.txt','r') as datafile: csvfile = csv.DictReader(datafile) for row in csvfile: if row ['Formal Name'] and row['Formal Name']: cur.execute(sql, (row['Formal Name'], row['Formal Name'])) conn.commit() cur.execute('SELECT *FROM country_list') cur.fetchall() Explanation: Database RDMS(Relational Database Management System Open Sourse - MySQL(php and web application) - PostgreSQl(huge web applications) - SQLITE (android applications) Proprietary - MSSQL - Oracle https://docs.python.org/3.6/library/sqlite3.html End of explanation connn = sqlite3.connect("Library Management System.txt") curs = connn.cursor() sql = '''CREATE TABLE books(book_id text, isbn integer not null unique, book_name text)''' curs.execute(sql) sql2 = '''CREATE TABLE Student( roll number integer not null unique, name text not null, faculty text)''' curs.execute(sql2) sql3 = '''CREATE TABLE Teacher(name text not null, faculty text) ''' curs.execute(sql3) Explanation: Data base for library management system End of explanation
3,356
Given the following text description, write Python code to implement the functionality described below step by step Description: The utils Package As the name says, this package brings some extra functionalities that you might need while using Maybrain. Let's start by importing it and initialising a Brain Step1: Information about Percentages Imagine that you want to know what would be the ratio between the edges on adjMat above a certain threshold value and the total possible edges of adjMat (the ones different from nan). This might be useful for you to decide which threshold you might apply later. In our specific matrix, we can verify that we have 124750 possible edges in adjMat, and if we applied a threshold of 0.6, we would get 3387 edges Step2: While threshold_to_percentage() is based on values from adjMat, we also have another method to calculate a similar ratio from values of the G object. This method is percent_connected(), and it returns the ratio of the current number of edges in our G object and the total number of possible connections. You can see this difference with other aspects. For example, if adjMat has NaNs, they are not counted in the result of threshold_to_percentage(). On the other hand, percent_connected() calculates the number of total possible connections, using the following formula for an unidirected graph Step3: The previous ratio is equals to 1 because we applied a threshold where we included all the possible edges from adjMat, thus everything is connected. We can reach the same ratio value we showed before with threshold_to_percentage() if we apply a threshold of 0.6 Step4: Highlighting Brains Properties of a Brain can be filtered using highlights. A Highlight is simply a list of nodes and/or edges. In order to be easier to see the highlighting features, we will be importing a shorter matrix with just 4 nodes (link here) and properties about colours which we already used before (link here). Step5: The main function to create the highlights is highlight_from_conds(brain, prop, rel, val, mode, label). This function creates an highlight by asking if the property prop is related to val by rel. The highlight is then stored in a dictionary utils.highlights, where the keys are the ones passed previously in the parameter label. If you don't define a label, it will create one automatically. The rel parameter can be Step6: In the next example we use the relation in in different ways. In the first case we want to find the edges whose weights are between 0.6 and 0.8 (exclusive). In the second case we show that it is possible to highlight at the same time nodes and edges, by finding the edges/nodes whose colour property is red or grey. Step7: Just a last detail about this function. If you put the property x/X/y/Y/z/Z, it will look out for the respective value from the property ct.XYZ in the nodes. Finally, if you already have your set of nodes and/or edges as your own highlights, you can just store them using make_highlight()
Python Code: from maybrain import utils from maybrain import resources as rr from maybrain import brain as mbt a = mbt.Brain() a.import_adj_file(rr.DUMMY_ADJ_FILE_500) a.import_spatial_info(rr.MNI_SPACE_COORDINATES_500) a.apply_threshold() Explanation: The utils Package As the name says, this package brings some extra functionalities that you might need while using Maybrain. Let's start by importing it and initialising a Brain: End of explanation print("Ratio:", utils.threshold_to_percentage(a, 0.6)) ## Checking the previous result # Creating all possible edges a.apply_threshold() print("Total possible edges: ", a.G.number_of_edges()) # Getting the edges thresholded with 0.6 a.apply_threshold(threshold_type="tVal", value=0.6) print("Number of edges from a threshold of 0.6: ", a.G.number_of_edges()) print("(3387/124750 = ", 3387/124750, ")") Explanation: Information about Percentages Imagine that you want to know what would be the ratio between the edges on adjMat above a certain threshold value and the total possible edges of adjMat (the ones different from nan). This might be useful for you to decide which threshold you might apply later. In our specific matrix, we can verify that we have 124750 possible edges in adjMat, and if we applied a threshold of 0.6, we would get 3387 edges: End of explanation a.apply_threshold() print("Ratio: ", utils.percent_connected(a)) Explanation: While threshold_to_percentage() is based on values from adjMat, we also have another method to calculate a similar ratio from values of the G object. This method is percent_connected(), and it returns the ratio of the current number of edges in our G object and the total number of possible connections. You can see this difference with other aspects. For example, if adjMat has NaNs, they are not counted in the result of threshold_to_percentage(). On the other hand, percent_connected() calculates the number of total possible connections, using the following formula for an unidirected graph: $$\left (nodes \times \left (nodes - 1 \right ) \right ) / 2$$ This is equivalent to the upper right side of an adjacency matrix, including possible NaNs that it might have. For a directed graph, the formula is: $$nodes \times \left (nodes - 1 \right ) $$ End of explanation a.apply_threshold(threshold_type="tVal", value=0.6) print("Ratio in a.G after thresholding of 0.6: ", utils.percent_connected(a)) ## Checking the previous value nodes = a.G.number_of_nodes() print("Total possible edges from G: ", (nodes * (nodes-1)) / 2) print("Number of edges in G: ", a.G.number_of_edges()) print("(3387/124750 = ", 3387/124750, ")") Explanation: The previous ratio is equals to 1 because we applied a threshold where we included all the possible edges from adjMat, thus everything is connected. We can reach the same ratio value we showed before with threshold_to_percentage() if we apply a threshold of 0.6: End of explanation from maybrain import constants as ct b = mbt.Brain() b.import_adj_file("data/3d_grid_adj.txt") b.apply_threshold() b.import_properties("data/3d_grid_properties.txt") # Checking the properties we have for the nodes and edges, to confirm the next function calls for edge in b.G.edges(data=True): print(edge) for node in b.G.nodes(data=True): print(node) Explanation: Highlighting Brains Properties of a Brain can be filtered using highlights. A Highlight is simply a list of nodes and/or edges. In order to be easier to see the highlighting features, we will be importing a shorter matrix with just 4 nodes (link here) and properties about colours which we already used before (link here). End of explanation utils.highlight_from_conds(b, 'colour', 'eq', 'green', mode='node', label=1) # Getting the highlight with the label 1 highlight = utils.highlights[1] # Printing the results of the highlight print(highlight.edges) # Empty because we chose to highligh just the nodes print(highlight.nodes) # Empty because there is no node with the property `colour` as `green` utils.highlight_from_conds(b, 'colour', 'eq', 'green', mode='edge', label=2) # Getting the highlight with the label 1 highlight = utils.highlights[2] # Printing the results of the highlight print(highlight.edges) # We have edges with the property `colour` as `green` print(highlight.nodes) # Empty again Explanation: The main function to create the highlights is highlight_from_conds(brain, prop, rel, val, mode, label). This function creates an highlight by asking if the property prop is related to val by rel. The highlight is then stored in a dictionary utils.highlights, where the keys are the ones passed previously in the parameter label. If you don't define a label, it will create one automatically. The rel parameter can be: 'geq' - greater than or equal to 'leq' - less than or equal to 'gt' - strictly greater than 'lt' - strictly less than 'eq' - equal to (i.e. exactly) 'in()', 'in[)', 'in(]', 'in[]' - within an interval, in this case `val` is a list of two numbers "[" and "]" means inclusive, "(" and ")" means exclusive 'in' - in `val` In the next example you can see this function in action. In the first case, we filter the brain by getting the nodes which have the property colour equals to green, and we save in the highlights dictionary with the label 1. The second case is the same filtering, but applied to the edges, and saved in the highlights dictionary with the label 2. End of explanation utils.highlight_from_conds(b, ct.WEIGHT, 'in()', (0.6, 0.8), mode='edge', label=3) utils.highlight_from_conds(b, 'colour', 'in', ['red','grey'], mode='node|edge', label=4) # Getting the highlights and printing them high3 = utils.highlights[3] high4 = utils.highlights[4] print(high3.edges) print(high3.nodes) # print(high4.edges) print(high4.nodes) Explanation: In the next example we use the relation in in different ways. In the first case we want to find the edges whose weights are between 0.6 and 0.8 (exclusive). In the second case we show that it is possible to highlight at the same time nodes and edges, by finding the edges/nodes whose colour property is red or grey. End of explanation utils.make_highlight(edge_inds=[(1,2), (2,3)], nodes_inds=[3], label='custom1') print(utils.highlights['custom1'].nodes) print(utils.highlights['custom1'].edges) Explanation: Just a last detail about this function. If you put the property x/X/y/Y/z/Z, it will look out for the respective value from the property ct.XYZ in the nodes. Finally, if you already have your set of nodes and/or edges as your own highlights, you can just store them using make_highlight(): End of explanation
3,357
Given the following text description, write Python code to implement the functionality described below step by step Description: Given the following LP $\begin{gather} \min\quad -x_1 - 4x_2\ \begin{aligned} s.a. 2x_1 - x_2 &\geq 0\ x_1 - 3x_2 &\leq 0 \ x_1 + x_2 &\leq 4 \ \quad x_1, x_2 & \geq 0 \ \end{aligned} \end{gather}$ Step1: LP in standard form $\begin{gather} \min \quad -x_1 - 4x_2\ \begin{aligned} s.a. 2x_1 - x_2 -x_3 &= 0\ x_1 - 3x_2 +x_4 &= 0 \ x_1 + x_2+x_5 &= 4 \ \quad x_1, x_2, x_3, x_4, x_5 & \geq 0 \ \end{aligned} \end{gather}$ We see ($x_1,x_2$)=(1,1) is a interior point so we choose it as initial point x_0 x_0=$\begin{bmatrix}1\1\1\2\2\end{bmatrix}$ A= $\begin{bmatrix}2& -1 & -1 & 0 & 0\ 1& -3 & 0 & 1 & 0\ 1 & 1 & 0 & 0 & 1\ \end{bmatrix}$ Initial Solution z=-5 Step2: Iteration 1 Step3: Iteration 2 Step4: Now lets write a function to run $n$ iterations
Python Code: x = np.linspace(0, 4, 100) y1 = 2*x y2 = x/3 y3 = 4 - x plt.figure(figsize=(8, 6)) plt.plot(x, y1) plt.plot(x, y2) plt.plot(x, y3) plt.xlim((0, 3.5)) plt.ylim((0, 4)) plt.xlabel('x1') plt.ylabel('x2') y5 = np.minimum(y1, y3) plt.fill_between(x[:-25], y2[:-25], y5[:-25], color='red', alpha=0.5) Explanation: Given the following LP $\begin{gather} \min\quad -x_1 - 4x_2\ \begin{aligned} s.a. 2x_1 - x_2 &\geq 0\ x_1 - 3x_2 &\leq 0 \ x_1 + x_2 &\leq 4 \ \quad x_1, x_2 & \geq 0 \ \end{aligned} \end{gather}$ End of explanation x = np.linspace(0, 4, 100) y1 = 2*x y2 = x/3 y3 = 4 - x plt.figure(figsize=(8, 6)) plt.plot(x, y1) plt.plot(x, y2) plt.plot(x, y3) plt.xlim((0, 3.5)) plt.ylim((0, 4)) plt.xlabel('x1') plt.ylabel('x2') y5 = np.minimum(y1, y3) plt.fill_between(x[:-25], y2[:-25], y5[:-25], color='red', alpha=0.5) plt.scatter([1],[1],color='black') plt.annotate('x_0',(1.05,1.05)) Explanation: LP in standard form $\begin{gather} \min \quad -x_1 - 4x_2\ \begin{aligned} s.a. 2x_1 - x_2 -x_3 &= 0\ x_1 - 3x_2 +x_4 &= 0 \ x_1 + x_2+x_5 &= 4 \ \quad x_1, x_2, x_3, x_4, x_5 & \geq 0 \ \end{aligned} \end{gather}$ We see ($x_1,x_2$)=(1,1) is a interior point so we choose it as initial point x_0 x_0=$\begin{bmatrix}1\1\1\2\2\end{bmatrix}$ A= $\begin{bmatrix}2& -1 & -1 & 0 & 0\ 1& -3 & 0 & 1 & 0\ 1 & 1 & 0 & 0 & 1\ \end{bmatrix}$ Initial Solution z=-5 End of explanation mu = 100 gamma = 0.8 A = np.array([[2,-1,-1,0,0],[1,-3,0,1,0],[1,1,0,0,1]]) X = np.array([[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,2,0],[0,0,0,0,2]]) vector_1 = np.ones((5,1)) c = np.array([[-1],[-4],[0],[0],[0]]) x_0 = np.array([[1],[1],[1],[2],[2]]) #Punto inicial #RESOLVER ECUACION 4 #------Lado izquierdo izq_ec_4 = np.matmul( A, np.matmul( np.power(X,2),A.T ) ) #------Lado derecho # -mu*A*X*1 + AX^2c der_ec_4 = -mu*np.matmul( A,np.matmul( X,vector_1 ) ) + np.matmul( A,np.matmul( np.power(X,2),c ) ) #------Determino dy dy = np.linalg.solve(izq_ec_4, der_ec_4) #RESOLVER ECUACION 3 ds = np.matmul(-1*A.T,dy) #ds=-A^T*dy #RESOLVER ECUACION 1 izq_ec_1 = mu*np.power(np.linalg.inv(X),2) #mu*X^-2 der_ec_1 = mu*np.matmul(np.linalg.inv(X),vector_1)-c-ds #mu*X^-1*1-c-ds dx = np.linalg.solve(izq_ec_1,der_ec_1) #ACTUALIZAR x_0 x_1 = x_0 + dx x = np.linspace(0, 4, 100) y1 = 2*x y2 = x/3 y3 = 4 - x plt.figure(figsize=(8, 6)) plt.plot(x, y1) plt.plot(x, y2) plt.plot(x, y3) plt.xlim((0, 3.5)) plt.ylim((0, 4)) plt.xlabel('x1') plt.ylabel('x2') y5 = np.minimum(y1, y3) plt.fill_between(x[:-25], y2[:-25], y5[:-25], color='red', alpha=0.5) plt.scatter([1],[1],color='black') plt.scatter(x_1[0,0],x_1[1,0],color='black') #graficar x_1 plt.annotate('x_0',(1.05,1.05)) plt.annotate('x_1',(x_1[0,0]+0.05,x_1[1,0]+0.05)) #anotar x_1 Explanation: Iteration 1 End of explanation mu = mu*gamma X = np.array([[x_1[0,0],0,0,0,0],[0,x_1[1,0],0,0,0], [0,0,x_1[2,0],0,0],[0,0,0,x_1[3,0],0],[0,0,0,0,x_1[4,0]]]) #RESOLVER ECUACION 4 #------Lado izquierdo izq_ec_4 = np.matmul( A, np.matmul( np.power(X,2),A.T ) ) #------Lado derecho # -mu*A*X*1 + AX^2c der_ec_4 = -mu*np.matmul( A,np.matmul( X,vector_1 ) ) + np.matmul( A,np.matmul( np.power(X,2),c ) ) #------Determino dy dy = np.linalg.solve(izq_ec_4, der_ec_4) #RESOLVER ECUACION 3 ds = np.matmul(-1*A.T,dy) #ds=-A^T*dy #RESOLVER ECUACION 1 izq_ec_1 = mu*np.power(np.linalg.inv(X),2) #mu*X^-2 der_ec_1 = mu*np.matmul(np.linalg.inv(X),vector_1)-c-ds #mu*X^-1*1-c-ds dx = np.linalg.solve(izq_ec_1,der_ec_1) #ACTUALIZAR x_1 x_2 = x_1 + dx x = np.linspace(0, 4, 100) y1 = 2*x y2 = x/3 y3 = 4 - x plt.figure(figsize=(8, 6)) plt.plot(x, y1) plt.plot(x, y2) plt.plot(x, y3) plt.xlim((0, 3.5)) plt.ylim((0, 4)) plt.xlabel('x1') plt.ylabel('x2') y5 = np.minimum(y1, y3) plt.fill_between(x[:-25], y2[:-25], y5[:-25], color='red', alpha=0.5) plt.scatter([1],[1],color='black') plt.scatter(x_1[0,0],x_1[1,0],color='black') #graficar x_1 plt.scatter(x_2[0,0],x_2[1,0],color='black') #graficar x_2 plt.annotate('x_0',(1.05,1.05)) plt.annotate('x_1',(x_1[0,0]+0.05,x_1[1,0]+0.05)) #anotar x_1 plt.annotate('x_2',(x_2[0,0]+0.05,x_2[1,0]+0.05)) #anotar x_2 Explanation: Iteration 2 End of explanation mu = 100 gamma = 0.8 A = np.array([[2,-1,-1,0,0],[1,-3,0,1,0],[1,1,0,0,1]]) vector_1 = np.ones((5,1)) c = np.array([[-1],[-4],[0],[0],[0]]) x = np.array([[1],[1],[1],[2],[2]]) #Punto inicial x1s = [] #Lista vacia para guardar x_1's x2s = [] #Lista vacia para guardar x_2's x1s.append(x[0,0]) x2s.append(x[1,0]) for iteracion in range(100): X = np.array([[x[0,0],0,0,0,0],[0,x[1,0],0,0,0], [0,0,x[2,0],0,0],[0,0,0,x[3,0],0],[0,0,0,0,x[4,0]]]) #RESOLVER ECUACION 4 #------Lado izquierdo izq_ec_4 = np.matmul( A, np.matmul( np.power(X,2),A.T ) ) #------Lado derecho # -mu*A*X*1 + AX^2c der_ec_4 = -mu*np.matmul( A,np.matmul( X,vector_1 ) ) + np.matmul( A,np.matmul( np.power(X,2),c ) ) #------Determino dy dy = np.linalg.solve(izq_ec_4, der_ec_4) #RESOLVER ECUACION 3 ds = np.matmul(-1*A.T,dy) #ds=-A^T*dy #RESOLVER ECUACION 1 izq_ec_1 = mu*np.power(np.linalg.inv(X),2) #mu*X^-2 der_ec_1 = mu*np.matmul(np.linalg.inv(X),vector_1)-c-ds #mu*X^-1*1-c-ds dx = np.linalg.solve(izq_ec_1,der_ec_1) #ACTUALIZAR vector x x = x + dx mu = mu*gamma x1s.append( x[0,0] ) x2s.append( x[1,0] ) x = np.linspace(0, 4, 100) y1 = 2*x y2 = x/3 y3 = 4 - x plt.figure(figsize=(8, 6)) plt.plot(x, y1) plt.plot(x, y2) plt.plot(x, y3) plt.xlim((0, 3.5)) plt.ylim((0, 4)) plt.xlabel('x1') plt.ylabel('x2') y5 = np.minimum(y1, y3) plt.fill_between(x[:-25], y2[:-25], y5[:-25], color='red', alpha=0.5) for iteracion in range(100): plt.scatter(x1s[iteracion],x2s[iteracion],color='black') if iteracion % 10 == 0: nombre = 'x_'+str(iteracion) plt.annotate(nombre,(x1s[iteracion]+0.05,x2s[iteracion]+0.05)) Explanation: Now lets write a function to run $n$ iterations End of explanation
3,358
Given the following text description, write Python code to implement the functionality described below step by step Description: Visualization using matplotlib and seaborn Visualization strategy Step1: Visualization for a single continuous variable Step2: Visualization for single categorical variable - frequency plot Step3: Bar plot using matplotlib visualization Step4: Association plot between two continuous variables Continuous vs continuous Step5: Scatter plot using pandas dataframe plot function Step6: Continuous vs Categorical Step7: Show the boxplot of MPG by year Step8: Association plot between 2 categorical variables Step9: Classificaition plot Step10: QQ Plot for normality test
Python Code: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from matplotlib.mlab import normpdf %matplotlib inline plt.rcParams['figure.figsize'] = 10, 6 df = pd.read_csv("http://www-bcf.usc.edu/~gareth/ISL/Auto.data", sep=r"\s+") df.head(10) df.info() df["year"].unique() df.sample(10) Explanation: Visualization using matplotlib and seaborn Visualization strategy: - Single variable - numeric continuous variable - histogram: distribution of values - boxplot: outlier analysis - Categorical (string or discrete numeric) - frequency plot - Association plot - continuous vs continuous: scatter plot - continuous vs categorical: vertical bar and boxplot (regression problems) - categorical vs continuous: horizontal bar (classification problems) - categorical vs categorical: heapmap End of explanation plt.hist(df["mpg"], bins = 30) plt.title("Histogram plot of mpg") plt.xlabel("mpg") plt.ylabel("Frequency") plt.boxplot(df["mpg"]) plt.title("Boxplot of mpg\n ") plt.ylabel("mpg") #plt.figure(figsize = (10, 6)) plt.subplot(2, 1, 1) n, bins, patches = plt.hist(df["mpg"], bins = 50, normed = True) plt.title("Histogram plot of mpg") plt.xlabel("MPG") pdf = normpdf(bins, df["mpg"].mean(), df["mpg"].std()) plt.plot(bins, pdf, color = "red") plt.subplot(2, 1, 2) plt.boxplot(df["mpg"], vert=False) plt.title("Boxplot of mpg") plt.tight_layout() plt.xlabel("MPG") normpdf(bins, df["mpg"].mean(), df["mpg"].std()) # using pandas plot function plt.figure(figsize = (10, 6)) df.mpg.plot.hist(bins = 50, normed = True) plt.title("Histogram plot of mpg") plt.xlabel("mpg") Explanation: Visualization for a single continuous variable End of explanation counts = df["year"].value_counts().sort_index() plt.figure(figsize = (10, 4)) plt.bar(range(len(counts)), counts, align = "center") plt.xticks(range(len(counts)), counts.index) plt.xlabel("Year") plt.ylabel("Frequency") plt.title("Frequency distribution by year") Explanation: Visualization for single categorical variable - frequency plot End of explanation plt.figure(figsize = (10, 4)) df.year.value_counts().sort_index().plot.bar() Explanation: Bar plot using matplotlib visualization End of explanation corr = np.corrcoef(df["weight"], df["mpg"])[0, 1] plt.scatter(df["weight"], df["mpg"]) plt.xlabel("Weight") plt.ylabel("Mpg") plt.title("Mpg vs Weight, correlation: %.2f" % corr) Explanation: Association plot between two continuous variables Continuous vs continuous End of explanation df.plot.scatter(x= "weight", y = "mpg") plt.title("Mpg vs Weight, correlation: %.2f" % corr) Explanation: Scatter plot using pandas dataframe plot function End of explanation mpg_by_year = df.groupby("year")["mpg"].agg([np.median, np.std]) mpg_by_year.head() mpg_by_year["median"].plot.bar(yerr = mpg_by_year["std"], ecolor = "red") plt.title("MPG by year") plt.xlabel("year") plt.ylabel("MPG") Explanation: Continuous vs Categorical End of explanation plt.figure(figsize=(10, 5)) sns.boxplot("year", "mpg", data = df) Explanation: Show the boxplot of MPG by year End of explanation plt.figure(figsize=(10, 8)) sns.heatmap(df.corr(), cmap=sns.color_palette("RdBu", 10), annot=True) plt.figure(figsize=(10, 8)) aggr = df.groupby(["year", "cylinders"])["mpg"].agg(np.mean).unstack() sns.heatmap(aggr, cmap=sns.color_palette("Blues", n_colors= 10), annot=True) Explanation: Association plot between 2 categorical variables End of explanation iris = pd.read_csv("https://raw.githubusercontent.com/abulbasar/data/master/iris.csv") iris.head() fig, ax = plt.subplots() x1, x2 = "SepalLengthCm", "PetalLengthCm" cmap = sns.color_palette("husl", n_colors=3) for i, c in enumerate(iris.Species.unique()): iris[iris.Species == c].plot.scatter(x1, x2, color = cmap[i], label = c, ax = ax) plt.legend() Explanation: Classificaition plot End of explanation import scipy.stats as stats p = stats.probplot(df["mpg"], dist="norm", plot=plt) Explanation: QQ Plot for normality test End of explanation
3,359
Given the following text description, write Python code to implement the functionality described below step by step Description: Exploring Climate Data Step1: Above Step2: One way to interface with the GDP is with the interactive web interface, shown below. In this interface, you can upload a shapefile or draw on the screen to define a polygon region, then you specify the statistics and datasets you want to use via dropdown menus. Step3: Here we use the python interface to the GDP, called PyGDP, which allows for scripting. You can get the code and documentation at https Step4: Now just to show that we can access more than climate model time series, let's extract precipitation data from a dry winter (1936-1937) and a normal winter (2009-2010) for Texas County and look at the spatial patterns. We'll use the netCDF4-Python library, which allows us to open OPeNDAP datasets just as if they were local NetCDF files.
Python Code: from IPython.core.display import Image Image('http://www-tc.pbs.org/kenburns/dustbowl/media/photos/s2571-lg.jpg') Explanation: Exploring Climate Data: Past and Future Roland Viger, Rich Signell, USGS First presented at the 2012 Unidata Workshop: Navigating Earth System Science Data, 9-13 July. What if you were watching Ken Burns's "The Dust Bowl", saw the striking image below, and wondered: "How much precipitation there really was back in the dustbowl years?" How easy is it to access and manipulate climate data in a scientific analysis? Here we'll show some powerful tools that make it easy. End of explanation import numpy as np import matplotlib.dates as mdates import matplotlib.pyplot as plt import urllib import os from IPython.core.display import HTML import time import datetime import pandas as pd %matplotlib inline import pyGDP import numpy as np import matplotlib.dates as mdates import owslib owslib.__version__ pyGDP.__version__ Explanation: Above:Dust storm hits Hooker, OK, June 4, 1937. To find out how much rainfall was there during the dust bowl years, we can use the USGS/CIDA GeoDataPortal (GDP) which can compute statistics of a gridded field within specified shapes, such as county outlines. Hooker is in Texas County, Oklahoma, so here we use the GDP to compute a historical time series of mean precipitation in Texas County using the PRISM dataset. We then compare to climate forecast projections to see if similar droughts are predicted to occur in the future, and what the impact of different climate scenarios might be. End of explanation HTML('<iframe src=http://screencast.com/t/K7KTcaFrSUc width=800 height=600></iframe>') Explanation: One way to interface with the GDP is with the interactive web interface, shown below. In this interface, you can upload a shapefile or draw on the screen to define a polygon region, then you specify the statistics and datasets you want to use via dropdown menus. End of explanation # Create a pyGDP object myGDP = pyGDP.pyGDPwebProcessing() # Let's see what shapefiles are already available on the GDP server # this changes with time, since uploaded shapefiles are kept for a few days shapefiles = myGDP.getShapefiles() print 'Available Shapefiles:' for s in shapefiles: print s # Is our shapefile there already? # If not, upload it. OKshapeFile = 'upload:OKCNTYD' if not OKshapeFile in shapefiles: shpfile = myGDP.uploadShapeFile('OKCNTYD.zip') # Let's check the attributes of the shapefile attributes = myGDP.getAttributes(OKshapeFile) print "Shapefile attributes:" for a in attributes: print a # In this particular example, we are interested in attribute = 'DESCRIP', # which provides the County names for Oklahoma user_attribute = 'DESCRIP' values = myGDP.getValues(OKshapeFile, user_attribute) print "Shapefile attribute values:" for v in values: print v # we want Texas County, Oklahoma, which is where Hooker is located user_value = 'Texas' # Let's see what gridded datasets are available for the GDP to operate on dataSets = myGDP.getDataSetURI() print "Available gridded datasets:" for d in dataSets: print d[0] dataSets[0][0] df = pd.DataFrame(dataSets[1:],columns=['title','abstract','urls']) df.head() print df['title'] df.ix[20].urls # If you choose a DAP URL, use the "dods:" prefix, even # if the list above has a "http:" prefix. # For example: dods://cida.usgs.gov/qa/thredds/dodsC/prism # Let's see what data variables are in our dataset dataSetURI = 'dods://cida.usgs.gov/thredds/dodsC/prism' dataTypes = myGDP.getDataType(dataSetURI) print "Available variables:" for d in dataTypes: print d # Let's see what the available time range is for our data variable variable = 'ppt' # precip timeRange = myGDP.getTimeRange(dataSetURI, variable) for t in timeRange: print t timeBegin = '1900-01-01T00:00:00Z' timeEnd = '2012-08-01T00:00:00Z' # Once we have our shapefile, attribute, value, dataset, datatype, and timerange as inputs, we can go ahead # and submit our request. name1='gdp_texas_county_prism.csv' if not os.path.exists(name1): url_csv = myGDP.submitFeatureWeightedGridStatistics(OKshapeFile, dataSetURI, variable, timeBegin, timeEnd, user_attribute, user_value, delim='COMMA', stat='MEAN' ) f = urllib.urlretrieve(url_csv,name1) # load historical PRISM precip df1=pd.read_csv(name1,skiprows=3,parse_dates=True,index_col=0, names=['date','observed precip']) df1.plot(figsize=(12,2), title='Average Precip for Texas County, Oklahoma, calculated via GDP using PRISM data '); df1 = pd.stats.moments.rolling_mean(df1,36,center=True) df1.plot(figsize=(12,2), title='Average Precip for Texas County, Oklahoma, calculated via GDP using PRISM data '); HTML('<iframe src=http://www.ipcc.ch/publications_and_data/ar4/wg1/en/spmsspm-projections-of.html width=900 height=350></iframe>') #hayhoe_URI ='dods://cida-eros-thredds1.er.usgs.gov:8082/thredds/dodsC/dcp/conus_grid.w_meta.ncml' dataset ='dods://cida.usgs.gov/thredds/dodsC/maurer/maurer_brekke_w_meta.ncml' variable = 'sresa2_gfdl-cm2-1_1_Prcp' timeRange = myGDP.getTimeRange(dataset, variable) timeRange # retrieve the GFDL model A2 more "Business-as-Usual" scenario: time0=time.time(); name2='sresa2_gfdl-cm2-1_1_Prcp.csv' if not os.path.exists(name2): variable = 'sresa2_gfdl-cm2-1_1_Prcp' result2 = myGDP.submitFeatureWeightedGridStatistics(OKshapeFile, dataset, variable, timeRange[0],timeRange[1],user_attribute,user_value, delim='COMMA', stat='MEAN' ) f = urllib.urlretrieve(result2,name2) print('elapsed time=%d s' % (time.time()-time0)) # now retrieve the GFDL model B1 "Eco-Friendly" scenario: time0=time.time(); name3='sresb1_gfdl-cm2-1_1_Prcp.csv' if not os.path.exists(name3): variable = 'sresb1_gfdl-cm2-1_1_Prcp' result3 = myGDP.submitFeatureWeightedGridStatistics(OKshapeFile, dataset, variable, timeRange[0],timeRange[1],user_attribute,user_value, delim='COMMA', stat='MEAN' ) f = urllib.urlretrieve(result3,name3) print('elapsed time=%d s' % (time.time()-time0)) # Load the GDP result for: "Business-as-Usual" scenario: # load historical PRISM precip df2=pd.read_csv(name2,skiprows=3,parse_dates=True,index_col=0, names=['date','GFDL A2']) # Load the GDP result for: "Eco-Friendly" scenario: df3=pd.read_csv(name3,skiprows=3,parse_dates=True,index_col=0, names=['date','GFDL B1']) # convert mm/day to mm/month (approximate): ts_rng = pd.date_range(start='1/1/1900',end='1/1/2100',freq='30D') ts = pd.DataFrame(index=ts_rng) df2['GFDL B1'] = df3['GFDL B1']*30. df2['GFDL A2'] = df2['GFDL A2']*30. df2 = pd.stats.moments.rolling_mean(df2,36,center=True) df2 = pd.concat([df2,ts],axis=1).interpolate(limit=1) df2['OBS'] = pd.concat([df1,ts],axis=1).interpolate(limit=1)['observed precip'] # interpolate ax=df2.plot(figsize=(12,2),legend=False, title='Average Precip for Texas County, Oklahoma, calculated via GDP using PRISM data '); ax.legend(loc='upper right'); Explanation: Here we use the python interface to the GDP, called PyGDP, which allows for scripting. You can get the code and documentation at https://github.com/USGS-CIDA/pyGDP. End of explanation import netCDF4 url='http://cida.usgs.gov/thredds/dodsC/prism' box = [-102,36.5,-100.95,37] # Bounding box for Texas County, Oklahoma #box = [-104,36.,-100,39.0] # Bounding box for larger dust bowl region # define a mean precipitation function, here hard-wired for the PRISM data def mean_precip(nc,bbox=None,start=None,stop=None): lon=nc.variables['lon'][:] lat=nc.variables['lat'][:] tindex0=netCDF4.date2index(start,nc.variables['time'],select='nearest') tindex1=netCDF4.date2index(stop,nc.variables['time'],select='nearest') bi=(lon>=box[0])&(lon<=box[2]) bj=(lat>=box[1])&(lat<=box[3]) p=nc.variables['ppt'][tindex0:tindex1,bj,bi] latmin=np.min(lat[bj]) p=np.mean(p,axis=0) lon=lon[bi] lat=lat[bj] return p,lon,lat nc = netCDF4.Dataset(url) p,lon,lat = mean_precip(nc,bbox=box,start=datetime.datetime(1936,11,1,0,0), stop=datetime.datetime(1937,4,1,0,0)) p2,lon,lat = mean_precip(nc,bbox=box,start=datetime.datetime(1940,11,1,0,0), stop=datetime.datetime(1941,4,1,0,0)) latmin = np.min(lat) import cartopy.crs as ccrs import cartopy.feature as cfeature states_provinces = cfeature.NaturalEarthFeature( category='cultural', name='admin_1_states_provinces_lines', scale='50m', facecolor='none') fig = plt.figure(figsize=(12,5)) ax = fig.add_axes([0.1, 0.15, 0.3, 0.8],projection=ccrs.PlateCarree()) pc = ax.pcolormesh(lon, lat, p, cmap=plt.cm.jet_r,vmin=0,vmax=40) plt.title('Precip in Dust Bowl Region: Winter 1936-1937') ax.add_feature(states_provinces,edgecolor='gray') ax.text(-101,36.86,'Hooker') ax.plot(-101,36.86,'o') cb = plt.colorbar(pc, orientation='horizontal') cb.set_label('Precip (mm/month)') ax2 = fig.add_axes([0.6, 0.15, 0.3, 0.8],projection=ccrs.PlateCarree()) pc2 = ax2.pcolormesh(lon, lat, p2, cmap=plt.cm.jet_r,vmin=0,vmax=40) plt.title('Precip in Dust Bowl Region: Winter 1940-1941') ax2.add_feature(states_provinces,edgecolor='gray') ax2.text(-101,36.86,'Hooker') ax2.plot(-101,36.86,'o') cb2 = plt.colorbar(pc2, orientation='horizontal') cb2.set_label('Precip (mm/month)') plt.show() Explanation: Now just to show that we can access more than climate model time series, let's extract precipitation data from a dry winter (1936-1937) and a normal winter (2009-2010) for Texas County and look at the spatial patterns. We'll use the netCDF4-Python library, which allows us to open OPeNDAP datasets just as if they were local NetCDF files. End of explanation
3,360
Given the following text description, write Python code to implement the functionality described below step by step Description: 変数名とデータの内容メモ CENSUS Step1: 成約時点別×市区町村別の件数を集計 Step2: 成約時点別×地域ブロック別の件数を集計 Step3: Histogram 価格(真数) Step4: 価格(自然対数) Step5: 建築後年数 Step6: Plot 件数の推移 Step7: Main Analysis OLS part Step8: 青がOLSの誤差、緑がOLSと深層学習を組み合わせた誤差。
Python Code: print(data['CITY_NAME'].value_counts()) Explanation: 変数名とデータの内容メモ CENSUS: 市区町村コード(9桁) P: 成約価格 S: 専有面積 L: 土地面積 R: 部屋数 RW: 前面道路幅員 CY: 建築年 A: 建築後年数(成約時) TS: 最寄駅までの距離 TT: 東京駅までの時間 ACC: ターミナル駅までの時間 WOOD: 木造ダミー SOUTH: 南向きダミー RSD: 住居系地域ダミー CMD: 商業系地域ダミー IDD: 工業系地域ダミー FAR: 建ぺい率 FLR: 容積率 TDQ: 成約時点(四半期) X: 緯度 Y: 経度 CITY_CODE: 市区町村コード(5桁) CITY_NAME: 市区町村名 BLOCK: 地域ブロック名 市区町村別の件数を集計 End of explanation print(data.pivot_table(index=['TDQ'], columns=['CITY_NAME'])) Explanation: 成約時点別×市区町村別の件数を集計 End of explanation print(data.pivot_table(index=['TDQ'], columns=['BLOCK'])) Explanation: 成約時点別×地域ブロック別の件数を集計 End of explanation data['P'].hist() Explanation: Histogram 価格(真数) End of explanation (np.log(data['P'])).hist() Explanation: 価格(自然対数) End of explanation data['A'].hist() plt.figure(figsize=(20,8)) plt.subplot(4, 2, 1) data['P'].hist() plt.title(u"成約価格") plt.subplot(4, 2, 2) data['S'].hist() plt.title("専有面積") plt.subplot(4, 2, 3) data['L'].hist() plt.title("土地面積") plt.subplot(4, 2, 4) data['R'].hist() plt.title("部屋数") plt.subplot(4, 2, 5) data['A'].hist() plt.title("建築後年数") plt.subplot(4, 2, 6) data['RW'].hist() plt.title("前面道路幅員") plt.subplot(4, 2, 7) data['TS'].hist() plt.title("最寄駅までの距離") plt.subplot(4, 2, 8) data['TT'].hist() plt.title(u"東京駅までの時間") Explanation: 建築後年数 End of explanation plt.figure(figsize=(20,8)) data['TDQ'].value_counts().plot(kind='bar') plt.figure(figsize=(20,8)) data['CITY_NAME'].value_counts().plot(kind='bar') #市区町村別の件数 Explanation: Plot 件数の推移 End of explanation vars = ['P', 'S', 'L', 'R', 'RW', 'A', 'TS', 'TT', 'WOOD', 'SOUTH', 'CMD', 'IDD', 'FAR', 'X', 'Y'] eq = fml_build(vars) y, X = dmatrices(eq, data=data, return_type='dataframe') CITY_NAME = pd.get_dummies(data['CITY_NAME']) TDQ = pd.get_dummies(data['TDQ']) X = pd.concat((X, CITY_NAME, TDQ), axis=1) datas = pd.concat((y, X), axis=1) datas = datas[datas['12世田谷区'] == 1][0:5000] datas.head() vars = ['S', 'L', 'R', 'RW', 'A', 'TS', 'TT', 'WOOD', 'SOUTH', 'CMD', 'IDD', 'FAR'] #vars += vars + list(TDQ.columns) class CAR(Chain): def __init__(self, unit1, unit2, unit3, col_num): self.unit1 = unit1 self.unit2 = unit2 self.unit3 = unit3 super(CAR, self).__init__( l1 = L.Linear(col_num, unit1), l2 = L.Linear(self.unit1, self.unit1), l3 = L.Linear(self.unit1, self.unit2), l4 = L.Linear(self.unit2, self.unit3), l5 = L.Linear(self.unit3, self.unit3), l6 = L.Linear(self.unit3, 1), ) def __call__(self, x, y): fv = self.fwd(x, y) loss = F.mean_squared_error(fv, y) return loss def fwd(self, x, y): h1 = F.sigmoid(self.l1(x)) h2 = F.sigmoid(self.l2(h1)) h3 = F.sigmoid(self.l3(h2)) h4 = F.sigmoid(self.l4(h3)) h5 = F.sigmoid(self.l5(h4)) h6 = self.l6(h5) return h6 class OLS_DLmodel(object): def __init__(self, data, vars, bs=200, n=1000): self.vars = vars eq = fml_build(vars) y, X = dmatrices(eq, data=datas, return_type='dataframe') self.y_in = y[:-n] self.X_in = X[:-n] self.y_ex = y[-n:] self.X_ex = X[-n:] self.logy_in = np.log(self.y_in) self.logy_ex = np.log(self.y_ex) self.bs = bs def OLS(self): X_in = self.X_in X_in = X_in.drop(['X', 'Y'], axis=1) model = sm.OLS(self.logy_in, X_in, intercept=False) self.reg = model.fit() print(self.reg.summary()) df = (pd.DataFrame(self.reg.params)).T df['X'] = 0 df['Y'] = 0 self.reg.params = pd.Series((df.T)[0]) def directDL(self, ite=100, bs=200, add=False): logy_in = np.array(self.logy_in, dtype='float32') X_in = np.array(self.X_in, dtype='float32') y = Variable(logy_in) x = Variable(X_in) num, col_num = X_in.shape if add is False: self.model1 = CAR(15, 15, 5, col_num) optimizer = optimizers.SGD() optimizer.setup(self.model1) for j in range(ite): sffindx = np.random.permutation(num) for i in range(0, num, bs): x = Variable(X_in[sffindx[i:(i+bs) if (i+bs) < num else num]]) y = Variable(logy_in[sffindx[i:(i+bs) if (i+bs) < num else num]]) self.model1.zerograds() loss = self.model1(x, y) loss.backward() optimizer.update() if j % 1000 == 0: loss_val = loss.data print('epoch:', j) print('train mean loss={}'.format(loss_val)) print(' - - - - - - - - - ') y_ex = np.array(self.y_ex, dtype='float32').reshape(len(self.y_ex)) X_ex = np.array(self.X_ex, dtype='float32') X_ex = Variable(X_ex) logy_pred = self.model1.fwd(X_ex, X_ex).data y_pred = np.exp(logy_pred) error = y_ex - y_pred.reshape(len(y_pred),) plt.hist(error[:]) def DL(self, ite=100, bs=200, add=False): y_in = np.array(self.y_in, dtype='float32').reshape(len(self.y_in)) resid = y_in - np.exp(self.reg.predict()) resid = np.array(resid, dtype='float32').reshape(len(resid),1) X_in = np.array(self.X_in, dtype='float32') y = Variable(resid) x = Variable(X_in) num, col_num = X_in.shape if add is False: self.model1 = CAR(10, 10, 3, col_num) optimizer = optimizers.Adam() optimizer.setup(self.model1) for j in range(ite): sffindx = np.random.permutation(num) for i in range(0, num, bs): x = Variable(X_in[sffindx[i:(i+bs) if (i+bs) < num else num]]) y = Variable(resid[sffindx[i:(i+bs) if (i+bs) < num else num]]) self.model1.zerograds() loss = self.model1(x, y) loss.backward() optimizer.update() if j % 1000 == 0: loss_val = loss.data print('epoch:', j) print('train mean loss={}'.format(loss_val)) print(' - - - - - - - - - ') def predict(self): y_ex = np.array(self.y_ex, dtype='float32').reshape(len(self.y_ex)) X_ex = np.array(self.X_ex, dtype='float32') X_ex = Variable(X_ex) resid_pred = self.model1.fwd(X_ex, X_ex).data print(resid_pred[:10]) self.logy_pred = np.matrix(self.X_ex)*np.matrix(self.reg.params).T self.error1 = np.array(y_ex - np.exp(self.logy_pred.reshape(len(self.logy_pred),)))[0] self.pred = np.exp(self.logy_pred) + resid_pred self.error2 = np.array(y_ex - self.pred.reshape(len(self.pred),))[0] def compare(self): plt.hist(self.error1) plt.hist(self.error2) vars = ['P', 'S', 'L', 'R', 'RW', 'A', 'TS', 'TT', 'WOOD', 'SOUTH', 'CMD', 'IDD', 'FAR', 'X', 'Y'] #vars += vars + list(TDQ.columns) model = OLS_DLmodel(datas, vars) model.OLS() model.DL(ite=10, bs=200) model.predict() model.DL(ite=20000, bs=200, add=True) model.DL(ite=10000, bs=200, add=True) model.predict() Explanation: Main Analysis OLS part End of explanation model.compare() print(np.mean(model.error1)) print(np.mean(model.error2)) print(np.mean(np.abs(model.error1))) print(np.mean(np.abs(model.error2))) print(max(np.abs(model.error1))) print(max(np.abs(model.error2))) print(np.var(model.error1)) print(np.var(model.error2)) fig = plt.figure() ax = fig.add_subplot(111) errors = [model.error1, model.error2] bp = ax.boxplot(errors) plt.grid() plt.ylim([-5000,5000]) plt.title('分布の箱ひげ図') plt.show() X = model.X_ex['X'].values Y = model.X_ex['Y'].values e = model.error2 import numpy import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.axes3d import Axes3D fig=plt.figure() ax=Axes3D(fig) ax.scatter3D(X, Y, e) plt.show() t plt.hist(Xs) import numpy as np from scipy.stats import gaussian_kde import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np Xs = np.linspace(min(X),max(X),10) Ys = np.linspace(min(Y),max(Y),10) error = model.error1 Xgrid, Ygrid = np.meshgrid(Xs, Ys) Z = LL(X, Y, Xs, Ys, error) fig = plt.figure() ax = Axes3D(fig) ax.plot_wireframe(Xgrid,Ygrid,Z) #<---ここでplot plt.show() fig = plt.figure() ax = Axes3D(fig) ax.set_zlim(-100, 500) ax.plot_surface(Xgrid,Ygrid,Z) #<---ここでplot plt.show() h = 10 (0.9375*(1-((X-1)/h)**2)**2)*(0.9375*(1-((Y-2)/h)**2)**2) def LL(X, Y, Xs, Ys, error): n = len(X) h = 0.1 error = model.error2 mean_of_error = np.zeros((len(Xs), len(Ys))) for i in range(len(Xs)): for j in range(len(Ys)): u1 = ((X-Xs[i])/h)**2 u2 = ((Y-Ys[j])/h)**2 k = (0.9375*(1-((X-Xs[i])/h)**2)**2)*(0.9375*(1-((Y-Ys[j])/h)**2)**2) K = np.diag(k) indep = np.matrix(np.array([np.ones(n), X - Xs[i], Y-Ys[j]]).T) dep = np.matrix(np.array([error]).T) gls_model = sm.GLS(dep, indep, sigma=K) gls_results = gls_model.fit() mean_of_error[i, j] = gls_results.params[0] return mean_of_error h = 200 u1 = ((X-30)/h)**2 u1 u1[u1 < 0] = 0 for x in range(lXs[:2]): print(x) mean_of_error plt.plot(gaussian_kde(Y, 0.1)(Ys)) N = 5 means = np.random.randn(N,2) * 10 + np.array([100, 200]) stdev = np.random.randn(N,2) * 10 + 30 count = np.int64(np.int64(np.random.randn(N,2) * 10000 + 50000)) a = [ np.hstack([ np.random.randn(count[i,j]) * stdev[i,j] + means[i,j] for j in range(2)]) for i in range(N)] for x in Xs: for y in Ys: def loclinearc(points,x,y,h): n = len(points[,1]) const = matrix(1, nrow=length(x), ncol=1) bhat = matrix(0, nrow=3, ncol=n) b1 = matrix(0, n, n) predict = matrix(0, n, 1) for (j in 1:n) { for (i in 1:n) { a <- -.5*sign( abs( (points[i, 1]*const - x[,1])/h ) -1 ) + .5 #get the right data points, (K(x) ~=0) b <- -.5*sign( abs( (points[j, 2]*const - x[,2])/h ) -1 ) + .5 x1andy <- nonzmat(cbind((x[,1]*a*b), (y*a*b))) x2andy <- nonzmat(cbind((x[,2]*a*b), (y*a*b))) ztheta1 <- x1andy[,1] ztheta2 <- x2andy[,1] yuse <- x1andy[,2] q1 <- (ztheta1 - points[i,1]); q2 <- (ztheta2 - points[j,2]); nt1 <- ( (ztheta1- points[i,1])/h ) nt2 <- ( (ztheta2- points[j,2])/h ) #q2 = ((ztheta - points(i,1)).^2)/2; weights <- diag(c((15/16)%*%( 1-(nt1^2))^2*((15/16)%*%( 1-(nt2^2))^2))) #Biweight Kernel tempp3 <- cbind(matrix(1, nrow=length(ztheta1), ncol=1), q1, q2) bhat[,i] <- solve(t(tempp3)%*%weights%*%tempp3)%*%t(tempp3)%*%weights%*%yuse } b1[,j] <- t(bhat[1,]) } return(b1) } nonzmat(x): #This function computes nonzeros of a MATRIX when certain ROWS of the #matrix are zero. This function returns a matrix with the #zero rows deleted m, k = x.shape xtemp = matrix(np.zeros(m, k)) for (i in 1:m) { xtemp[i,] <- ifelse(x[i,] == matrix(0, nrow=1, ncol=k), 99999*matrix(1, nrow=1, ncol=k), x[i,]) } xtemp <- xtemp - 99999 if (length(which(xtemp !=0,arr.ind = T)) == 0) { a <- matrix(-99999, nrow=1, ncol=k) } else { a <- xtemp[which(xtemp !=0,arr.ind = T)] } a <- a + 99999 n1 <- length(a) rowlen <- n1/k collen <- k out = matrix(a, nrow=rowlen, ncol=collen) return(out) } import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.tri as mtri #============ # First plot #============ # Plot the surface. The triangles in parameter space determine which x, y, z # points are connected by an edge. ax = fig.add_subplot(1, 2, 1, projection='3d') ax.plot_trisurf(X, Y, e) ax.set_zlim(-1, 1) plt.show() Explanation: 青がOLSの誤差、緑がOLSと深層学習を組み合わせた誤差。 End of explanation
3,361
Given the following text description, write Python code to implement the functionality described below step by step Description: Pygraphistry Viz Step1: --------------------------- Step2: df.head() Retrieve citations data citations = pd.read_csv('citations.txt', names = ['source', 'target', 'label']) Dedupe Citations citations = citations.drop_duplicates(subset=['source', 'target']) Clean Citations IDs citations['target'] = citations['target'].str.strip('.') citations['source'] = citations['source'].astype(str).str.strip('.') Unique subjects subjects = arxiv_metadata.primary_subject.unique() subject_colors = dict(zip(subjects, range(0, len(subjects)))) arxiv_metadata['color'] = arxiv_metadata.primary_subject.map(lambda x Step3: Visualization 1 Step4: Visualization 2 Step5: Plot Bind color to whether tainted
Python Code: # Imports import graphistry import numpy as np import pandas as pd from py2neo import Graph, Path graphistry.register(key='48a82a78fdd442482cec24fe06051c905e2a382d581852a4ba645927c736acbcfe7256e22873a5c97cff6b8bd37c836b') Explanation: Pygraphistry Viz End of explanation # Static - Connect to the database # graph = Graph('http://neo4j:[email protected]:7474') # tx = graph.cypher.begin() # for name in ["Alice", "Bob", "Carol"]: # tx.append("CREATE (person:Person {name:{name}}) RETURN person", name=name) # alice, bob, carol = [result.one for result in tx.commit()] # friends = Path(alice, "KNOWS", bob, "KNOWS", carol) # graph.create(friends) # graph.data("MATCH (a:address) --> (b:incoming_payment) --> (c:transaction) RETURN LIMIT 25") # rows = pandas.read_csv('transactions.csv')[:1000] # graphistry.hypergraph(rows)['graph'].plot() # Retrieve all the paper metadata # btc_metadata = pd.read_sql_query('SELECT * FROM Papers', conn) # df = pd.DataFrame(graph.data("MATCH (n:transaction) Return n LIMIT 25")) Explanation: --------------------------- End of explanation transactions = pd.read_csv('transactions.csv') transactions['Date'] = pd.to_datetime(transactions['Date'],unit='ms') #coerce date format transactions[:3] print('DataFrame headers: {}' .format(list(transactions.columns))) transactions.columns[-1] # 'taint' is weighted as 5 transactions['isTainted'].unique() # for item in transactions[transactions['isTainted'] == 5].isTainted: # item = 10 # for column in transactions.columns[-1]: # transactions[transactions == 5] = 10 transactions.shape transactions.info() # transaction window print(transactions['Date'].sort_values().head(1), '\n') print(transactions['Date'].sort_values().tail(1)) Explanation: df.head() Retrieve citations data citations = pd.read_csv('citations.txt', names = ['source', 'target', 'label']) Dedupe Citations citations = citations.drop_duplicates(subset=['source', 'target']) Clean Citations IDs citations['target'] = citations['target'].str.strip('.') citations['source'] = citations['source'].astype(str).str.strip('.') Unique subjects subjects = arxiv_metadata.primary_subject.unique() subject_colors = dict(zip(subjects, range(0, len(subjects)))) arxiv_metadata['color'] = arxiv_metadata.primary_subject.map(lambda x: subject_colors[x]) citations.info() metadata_merge = citations.merge(arxiv_metadata, left_on='source', right_on='id').merge(arxiv_metadata, left_on='target', right_on='id', suffixes=('_from', '_to')) metadata_merge.info() citations = pd.read_csv('Projects/ArXiv/data/citations/citations.txt', names = ['source', 'target', 'label']) # links = pd.read_csv('./lesmiserables.csv') citations.head() Set up the plotter plotter = graphistry.bind(source="source", destination="target") plotter.plot(citations) citations["label"] = citations.value.map(lambda v: "#Meetings: %d" % v) plotter = plotter.bind(edge_weight="label") plotter.plot(citations) Set up igraph for easy metadata etc ig = plotter.pandas2igraph(citations) ig = plotter.pandas2igraph(metadata_merge) Add the Arxiv Metadata vertex_metadata = pd.DataFrame(ig.vs['nodeid'], columns=['id']).merge(arxiv_metadata, how='left', on='id') ig.vs['primary_subject'] = vertex_metadata['primary_subject'] ig.vs['color'] = vertex_metadata['color'] ig.vs['title'] = vertex_metadata['title'] ig.vs['year'] = vertex_metadata['year'] ig.vs['month'] = vertex_metadata['month'] ig.vs['category'] = vertex_metadata['category'] ig.vs['pagerank'] = ig.pagerank() ig.vs['community'] = ig.community_infomap().membership ig.vs['in_degree'] = ig.indegree() plotter.bind(point_size='in_degree', point_color='color').plot(ig) plotter.bind(point_color='community', point_size='pagerank').plot(ig) Silk Road Bitcoin Embezzling Visualization End of explanation g = graphistry.edges(transactions).bind(source='Source', destination='Destination') g.plot() Explanation: Visualization 1: Quick Visualization & Analysis Task: Spot the embezzling 1. Use the histogram tool to filter for only tainted transactions 2. Turn on the Setting "Prune Isolated Nodes" to hide wallets with no remaining transactions 3. Use the filters or excludes tool to only show transactions over 1000 or 1000. 4. Verify that money flowed from Ross Ulbricht to Carl Force, and explore where else it flowed. End of explanation # Compute how much wallets received in new df 'wallet_in' wallet_in = transactions\ .groupby('Destination')\ .agg({'isTainted': lambda x: 1 if x.sum() > 0 else 0, 'Amount $': np.sum})\ .reset_index().rename(columns={'Destination': 'wallet', 'isTainted': 'isTaintedWallet'}) # rename destination to wallet # rename isTainted to isTaintedWallet #not all wallets received money, tag these wallet_in['Receivables'] = True wallet_in[:3] wallet_in['isTaintedWallet'].unique() # Compute how much wallets sent in new df 'wallet_out' wallet_out = transactions\ .groupby('Source')\ .agg({'isTainted': np.sum, 'Amount $': np.max})\ .reset_index().rename(columns={'Source': 'wallet', 'isTainted': 'isTaintedWallet'}) # rename source to wallet # rename isTainted to isTaintedWallet #not all wallets received money, tag these wallet_out['Payables'] = True wallet_out[:3] wallet_out['isTaintedWallet'].unique() # Join Data wallets = pd.merge(wallet_in, wallet_out, how='outer') wallets['Receivables'] = wallets['Receivables'].fillna(False) wallets['Payables'] = wallets['Payables'].fillna(False) print('# Wallets only sent or only received', len(wallet_in) + len(wallet_out) - len(wallets)) wallets[:3] tmp = wallets # colors at: http://staging.graphistry.com/docs/legacy/api/0.9.2/palette.html#Paired def convert_to_colors(value): if value == 0: return 36005 # magenta else: return 42005 # orange tmp['isTaintedWallet'] = tmp['isTaintedWallet'].apply(convert_to_colors) tmp['isTaintedWallet'].unique() Explanation: Visualization 2: Summarizing Wallets End of explanation g.nodes(tmp).bind(node='wallet', point_color='isTaintedWallet').plot() Explanation: Plot Bind color to whether tainted End of explanation
3,362
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Seaice MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties --&gt; Model 2. Key Properties --&gt; Variables 3. Key Properties --&gt; Seawater Properties 4. Key Properties --&gt; Resolution 5. Key Properties --&gt; Tuning Applied 6. Key Properties --&gt; Key Parameter Values 7. Key Properties --&gt; Assumptions 8. Key Properties --&gt; Conservation 9. Grid --&gt; Discretisation --&gt; Horizontal 10. Grid --&gt; Discretisation --&gt; Vertical 11. Grid --&gt; Seaice Categories 12. Grid --&gt; Snow On Seaice 13. Dynamics 14. Thermodynamics --&gt; Energy 15. Thermodynamics --&gt; Mass 16. Thermodynamics --&gt; Salt 17. Thermodynamics --&gt; Salt --&gt; Mass Transport 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics 19. Thermodynamics --&gt; Ice Thickness Distribution 20. Thermodynamics --&gt; Ice Floe Size Distribution 21. Thermodynamics --&gt; Melt Ponds 22. Thermodynamics --&gt; Snow Processes 23. Radiative Processes 1. Key Properties --&gt; Model Name of seaice model used. 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 2. Key Properties --&gt; Variables List of prognostic variable in the sea ice model. 2.1. Prognostic Is Required Step7: 3. Key Properties --&gt; Seawater Properties Properties of seawater relevant to sea ice 3.1. Ocean Freezing Point Is Required Step8: 3.2. Ocean Freezing Point Value Is Required Step9: 4. Key Properties --&gt; Resolution Resolution of the sea ice grid 4.1. Name Is Required Step10: 4.2. Canonical Horizontal Resolution Is Required Step11: 4.3. Number Of Horizontal Gridpoints Is Required Step12: 5. Key Properties --&gt; Tuning Applied Tuning applied to sea ice model component 5.1. Description Is Required Step13: 5.2. Target Is Required Step14: 5.3. Simulations Is Required Step15: 5.4. Metrics Used Is Required Step16: 5.5. Variables Is Required Step17: 6. Key Properties --&gt; Key Parameter Values Values of key parameters 6.1. Typical Parameters Is Required Step18: 6.2. Additional Parameters Is Required Step19: 7. Key Properties --&gt; Assumptions Assumptions made in the sea ice model 7.1. Description Is Required Step20: 7.2. On Diagnostic Variables Is Required Step21: 7.3. Missing Processes Is Required Step22: 8. Key Properties --&gt; Conservation Conservation in the sea ice component 8.1. Description Is Required Step23: 8.2. Properties Is Required Step24: 8.3. Budget Is Required Step25: 8.4. Was Flux Correction Used Is Required Step26: 8.5. Corrected Conserved Prognostic Variables Is Required Step27: 9. Grid --&gt; Discretisation --&gt; Horizontal Sea ice discretisation in the horizontal 9.1. Grid Is Required Step28: 9.2. Grid Type Is Required Step29: 9.3. Scheme Is Required Step30: 9.4. Thermodynamics Time Step Is Required Step31: 9.5. Dynamics Time Step Is Required Step32: 9.6. Additional Details Is Required Step33: 10. Grid --&gt; Discretisation --&gt; Vertical Sea ice vertical properties 10.1. Layering Is Required Step34: 10.2. Number Of Layers Is Required Step35: 10.3. Additional Details Is Required Step36: 11. Grid --&gt; Seaice Categories What method is used to represent sea ice categories ? 11.1. Has Mulitple Categories Is Required Step37: 11.2. Number Of Categories Is Required Step38: 11.3. Category Limits Is Required Step39: 11.4. Ice Thickness Distribution Scheme Is Required Step40: 11.5. Other Is Required Step41: 12. Grid --&gt; Snow On Seaice Snow on sea ice details 12.1. Has Snow On Ice Is Required Step42: 12.2. Number Of Snow Levels Is Required Step43: 12.3. Snow Fraction Is Required Step44: 12.4. Additional Details Is Required Step45: 13. Dynamics Sea Ice Dynamics 13.1. Horizontal Transport Is Required Step46: 13.2. Transport In Thickness Space Is Required Step47: 13.3. Ice Strength Formulation Is Required Step48: 13.4. Redistribution Is Required Step49: 13.5. Rheology Is Required Step50: 14. Thermodynamics --&gt; Energy Processes related to energy in sea ice thermodynamics 14.1. Enthalpy Formulation Is Required Step51: 14.2. Thermal Conductivity Is Required Step52: 14.3. Heat Diffusion Is Required Step53: 14.4. Basal Heat Flux Is Required Step54: 14.5. Fixed Salinity Value Is Required Step55: 14.6. Heat Content Of Precipitation Is Required Step56: 14.7. Precipitation Effects On Salinity Is Required Step57: 15. Thermodynamics --&gt; Mass Processes related to mass in sea ice thermodynamics 15.1. New Ice Formation Is Required Step58: 15.2. Ice Vertical Growth And Melt Is Required Step59: 15.3. Ice Lateral Melting Is Required Step60: 15.4. Ice Surface Sublimation Is Required Step61: 15.5. Frazil Ice Is Required Step62: 16. Thermodynamics --&gt; Salt Processes related to salt in sea ice thermodynamics. 16.1. Has Multiple Sea Ice Salinities Is Required Step63: 16.2. Sea Ice Salinity Thermal Impacts Is Required Step64: 17. Thermodynamics --&gt; Salt --&gt; Mass Transport Mass transport of salt 17.1. Salinity Type Is Required Step65: 17.2. Constant Salinity Value Is Required Step66: 17.3. Additional Details Is Required Step67: 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics Salt thermodynamics 18.1. Salinity Type Is Required Step68: 18.2. Constant Salinity Value Is Required Step69: 18.3. Additional Details Is Required Step70: 19. Thermodynamics --&gt; Ice Thickness Distribution Ice thickness distribution details. 19.1. Representation Is Required Step71: 20. Thermodynamics --&gt; Ice Floe Size Distribution Ice floe-size distribution details. 20.1. Representation Is Required Step72: 20.2. Additional Details Is Required Step73: 21. Thermodynamics --&gt; Melt Ponds Characteristics of melt ponds. 21.1. Are Included Is Required Step74: 21.2. Formulation Is Required Step75: 21.3. Impacts Is Required Step76: 22. Thermodynamics --&gt; Snow Processes Thermodynamic processes in snow on sea ice 22.1. Has Snow Aging Is Required Step77: 22.2. Snow Aging Scheme Is Required Step78: 22.3. Has Snow Ice Formation Is Required Step79: 22.4. Snow Ice Formation Scheme Is Required Step80: 22.5. Redistribution Is Required Step81: 22.6. Heat Diffusion Is Required Step82: 23. Radiative Processes Sea Ice Radiative Processes 23.1. Surface Albedo Is Required Step83: 23.2. Ice Radiation Transmission Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'cmcc', 'cmcc-cm2-vhr4', 'seaice') Explanation: ES-DOC CMIP6 Model Properties - Seaice MIP Era: CMIP6 Institute: CMCC Source ID: CMCC-CM2-VHR4 Topic: Seaice Sub-Topics: Dynamics, Thermodynamics, Radiative Processes. Properties: 80 (63 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:53:50 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties --&gt; Model 2. Key Properties --&gt; Variables 3. Key Properties --&gt; Seawater Properties 4. Key Properties --&gt; Resolution 5. Key Properties --&gt; Tuning Applied 6. Key Properties --&gt; Key Parameter Values 7. Key Properties --&gt; Assumptions 8. Key Properties --&gt; Conservation 9. Grid --&gt; Discretisation --&gt; Horizontal 10. Grid --&gt; Discretisation --&gt; Vertical 11. Grid --&gt; Seaice Categories 12. Grid --&gt; Snow On Seaice 13. Dynamics 14. Thermodynamics --&gt; Energy 15. Thermodynamics --&gt; Mass 16. Thermodynamics --&gt; Salt 17. Thermodynamics --&gt; Salt --&gt; Mass Transport 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics 19. Thermodynamics --&gt; Ice Thickness Distribution 20. Thermodynamics --&gt; Ice Floe Size Distribution 21. Thermodynamics --&gt; Melt Ponds 22. Thermodynamics --&gt; Snow Processes 23. Radiative Processes 1. Key Properties --&gt; Model Name of seaice model used. 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of sea ice model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of sea ice model code (e.g. CICE 4.2, LIM 2.1, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.variables.prognostic') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sea ice temperature" # "Sea ice concentration" # "Sea ice thickness" # "Sea ice volume per grid cell area" # "Sea ice u-velocity" # "Sea ice v-velocity" # "Sea ice enthalpy" # "Internal ice stress" # "Salinity" # "Snow temperature" # "Snow depth" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Variables List of prognostic variable in the sea ice model. 2.1. Prognostic Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List of prognostic variables in the sea ice component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS-10" # "Constant" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Seawater Properties Properties of seawater relevant to sea ice 3.1. Ocean Freezing Point Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Equation used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.2. Ocean Freezing Point Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If using a constant seawater freezing point, specify this value. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Resolution Resolution of the sea ice grid 4.1. Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 This is a string usually used by the modelling group to describe the resolution of this grid e.g. N512L180, T512L70, ORCA025 etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.2. Canonical Horizontal Resolution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.3. Number Of Horizontal Gridpoints Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Total number of horizontal (XY) points (or degrees of freedom) on computational grid. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Key Properties --&gt; Tuning Applied Tuning applied to sea ice model component 5.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.target') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.2. Target Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What was the aim of tuning, e.g. correct sea ice minima, correct seasonal cycle. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.simulations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.3. Simulations Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 *Which simulations had tuning applied, e.g. all, not historical, only pi-control? * End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.metrics_used') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.4. Metrics Used Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List any observed metrics used in tuning model/parameters End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.5. Variables Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Which variables were changed during the tuning process? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.typical_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ice strength (P*) in units of N m{-2}" # "Snow conductivity (ks) in units of W m{-1} K{-1} " # "Minimum thickness of ice created in leads (h0) in units of m" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6. Key Properties --&gt; Key Parameter Values Values of key parameters 6.1. Typical Parameters Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N What values were specificed for the following parameters if used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.additional_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.2. Additional Parameters Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If you have any additional paramterised values that you have used (e.g. minimum open water fraction or bare ice albedo), please provide them here as a comma separated list End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.description') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7. Key Properties --&gt; Assumptions Assumptions made in the sea ice model 7.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General overview description of any key assumptions made in this model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.on_diagnostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.2. On Diagnostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Note any assumptions that specifically affect the CMIP6 diagnostic sea ice variables. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.missing_processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.3. Missing Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List any key processes missing in this model configuration? Provide full details where this affects the CMIP6 diagnostic sea ice variables? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Key Properties --&gt; Conservation Conservation in the sea ice component 8.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Provide a general description of conservation methodology. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.properties') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Mass" # "Salt" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 8.2. Properties Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Properties conserved in sea ice by the numerical schemes. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.3. Budget Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 For each conserved property, specify the output variables which close the related budgets. as a comma separated list. For example: Conserved property, variable1, variable2, variable3 End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 8.4. Was Flux Correction Used Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does conservation involved flux correction? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.5. Corrected Conserved Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List any variables which are conserved by more than the numerical scheme alone. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Ocean grid" # "Atmosphere Grid" # "Own Grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9. Grid --&gt; Discretisation --&gt; Horizontal Sea ice discretisation in the horizontal 9.1. Grid Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Grid on which sea ice is horizontal discretised? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Structured grid" # "Unstructured grid" # "Adaptive grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9.2. Grid Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the type of sea ice grid? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite differences" # "Finite elements" # "Finite volumes" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9.3. Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the advection scheme? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.thermodynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 9.4. Thermodynamics Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the time step in the sea ice model thermodynamic component in seconds. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.dynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 9.5. Dynamics Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the time step in the sea ice model dynamic component in seconds. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.6. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify any additional horizontal discretisation details. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.layering') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Zero-layer" # "Two-layers" # "Multi-layers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10. Grid --&gt; Discretisation --&gt; Vertical Sea ice vertical properties 10.1. Layering Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N What type of sea ice vertical layers are implemented for purposes of thermodynamic calculations? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.number_of_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 10.2. Number Of Layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 If using multi-layers specify how many. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 10.3. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify any additional vertical grid details. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.has_mulitple_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 11. Grid --&gt; Seaice Categories What method is used to represent sea ice categories ? 11.1. Has Mulitple Categories Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Set to true if the sea ice model has multiple sea ice categories. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.number_of_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 11.2. Number Of Categories Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 If using sea ice categories specify how many. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.category_limits') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.3. Category Limits Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 If using sea ice categories specify each of the category limits. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.ice_thickness_distribution_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.4. Ice Thickness Distribution Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the sea ice thickness distribution scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.other') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.5. Other Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If the sea ice model does not use sea ice categories specify any additional details. For example models that paramterise the ice thickness distribution ITD (i.e there is no explicit ITD) but there is assumed distribution and fluxes are computed accordingly. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.has_snow_on_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 12. Grid --&gt; Snow On Seaice Snow on sea ice details 12.1. Has Snow On Ice Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is snow on ice represented in this model? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.number_of_snow_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 12.2. Number Of Snow Levels Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Number of vertical levels of snow on ice? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.snow_fraction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.3. Snow Fraction Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how the snow fraction on sea ice is determined End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.4. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify any additional details related to snow on ice. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.horizontal_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13. Dynamics Sea Ice Dynamics 13.1. Horizontal Transport Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of horizontal advection of sea ice? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.transport_in_thickness_space') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.2. Transport In Thickness Space Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of sea ice transport in thickness space (i.e. in thickness categories)? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.ice_strength_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Hibler 1979" # "Rothrock 1975" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.3. Ice Strength Formulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Which method of sea ice strength formulation is used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.redistribution') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Rafting" # "Ridging" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.4. Redistribution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Which processes can redistribute sea ice (including thickness)? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.rheology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Free-drift" # "Mohr-Coloumb" # "Visco-plastic" # "Elastic-visco-plastic" # "Elastic-anisotropic-plastic" # "Granular" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.5. Rheology Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Rheology, what is the ice deformation formulation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.enthalpy_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice latent heat (Semtner 0-layer)" # "Pure ice latent and sensible heat" # "Pure ice latent and sensible heat + brine heat reservoir (Semtner 3-layer)" # "Pure ice latent and sensible heat + explicit brine inclusions (Bitz and Lipscomb)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14. Thermodynamics --&gt; Energy Processes related to energy in sea ice thermodynamics 14.1. Enthalpy Formulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the energy formulation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.thermal_conductivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice" # "Saline ice" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.2. Thermal Conductivity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What type of thermal conductivity is used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Conduction fluxes" # "Conduction and radiation heat fluxes" # "Conduction, radiation and latent heat transport" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.3. Heat Diffusion Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of heat diffusion? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.basal_heat_flux') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heat Reservoir" # "Thermal Fixed Salinity" # "Thermal Varying Salinity" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.4. Basal Heat Flux Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method by which basal ocean heat flux is handled? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.fixed_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 14.5. Fixed Salinity Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If you have selected {Thermal properties depend on S-T (with fixed salinity)}, supply fixed salinity value for each sea ice layer. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_content_of_precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.6. Heat Content Of Precipitation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method by which the heat content of precipitation is handled. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.precipitation_effects_on_salinity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.7. Precipitation Effects On Salinity Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If precipitation (freshwater) that falls on sea ice affects the ocean surface salinity please provide further details. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.new_ice_formation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15. Thermodynamics --&gt; Mass Processes related to mass in sea ice thermodynamics 15.1. New Ice Formation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method by which new sea ice is formed in open water. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_vertical_growth_and_melt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.2. Ice Vertical Growth And Melt Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method that governs the vertical growth and melt of sea ice. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_lateral_melting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Floe-size dependent (Bitz et al 2001)" # "Virtual thin ice melting (for single-category)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.3. Ice Lateral Melting Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of sea ice lateral melting? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_surface_sublimation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.4. Ice Surface Sublimation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method that governs sea ice surface sublimation. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.frazil_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.5. Frazil Ice Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method of frazil ice formation. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.has_multiple_sea_ice_salinities') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 16. Thermodynamics --&gt; Salt Processes related to salt in sea ice thermodynamics. 16.1. Has Multiple Sea Ice Salinities Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the sea ice model use two different salinities: one for thermodynamic calculations; and one for the salt budget? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.sea_ice_salinity_thermal_impacts') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 16.2. Sea Ice Salinity Thermal Impacts Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does sea ice salinity impact the thermal properties of sea ice? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17. Thermodynamics --&gt; Salt --&gt; Mass Transport Mass transport of salt 17.1. Salinity Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is salinity determined in the mass transport of salt calculation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 17.2. Constant Salinity Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If using a constant salinity value specify this value in PSU? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.3. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the salinity profile used. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics Salt thermodynamics 18.1. Salinity Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is salinity determined in the thermodynamic calculation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 18.2. Constant Salinity Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If using a constant salinity value specify this value in PSU? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 18.3. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the salinity profile used. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_thickness_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Virtual (enhancement of thermal conductivity, thin ice melting)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 19. Thermodynamics --&gt; Ice Thickness Distribution Ice thickness distribution details. 19.1. Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is the sea ice thickness distribution represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Parameterised" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 20. Thermodynamics --&gt; Ice Floe Size Distribution Ice floe-size distribution details. 20.1. Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is the sea ice floe-size represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 20.2. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Please provide further details on any parameterisation of floe-size. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.are_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 21. Thermodynamics --&gt; Melt Ponds Characteristics of melt ponds. 21.1. Are Included Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Are melt ponds included in the sea ice model? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flocco and Feltham (2010)" # "Level-ice melt ponds" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 21.2. Formulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What method of melt pond formulation is used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.impacts') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Albedo" # "Freshwater" # "Heat" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 21.3. Impacts Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N What do melt ponds have an impact on? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_aging') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 22. Thermodynamics --&gt; Snow Processes Thermodynamic processes in snow on sea ice 22.1. Has Snow Aging Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Set to True if the sea ice model has a snow aging scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_aging_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.2. Snow Aging Scheme Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the snow aging scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_ice_formation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 22.3. Has Snow Ice Formation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Set to True if the sea ice model has snow ice formation. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_ice_formation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.4. Snow Ice Formation Scheme Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the snow ice formation scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.redistribution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.5. Redistribution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the impact of ridging on snow cover? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Single-layered heat diffusion" # "Multi-layered heat diffusion" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 22.6. Heat Diffusion Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the heat diffusion through snow methodology in sea ice thermodynamics? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.surface_albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Parameterized" # "Multi-band albedo" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23. Radiative Processes Sea Ice Radiative Processes 23.1. Surface Albedo Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method used to handle surface albedo. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.ice_radiation_transmission') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Exponential attenuation" # "Ice radiation transmission per category" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.2. Ice Radiation Transmission Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Method by which solar radiation through sea ice is handled. End of explanation
3,363
Given the following text description, write Python code to implement the functionality described below step by step Description: Stock market analysis project Step1: Plotting the open price Step2: Plotting the volume traded Step3: Finding the timestamp of highest traded volume Step4: Creating 'Total Traded' value Step5: Plotting 'Total Traded' Step6: Finding the timestamp of highest total traded value Step7: Plotting moving average (rolling mean) Step8: Plotting scatter matrix Step9: Plotting candlestick Step10: Daily Percentage Change First we will begin by calculating the daily percentage change. Daily percentage change is defined by the following formula Step11: Plotting histograms Step12: Conclusion Step13: Conclusion Step14: Conclusion Step15: Conclusion Step16: Plotting CDR
Python Code: import numpy as np import pandas as pd from datetime import datetime import matplotlib.pyplot as plt %matplotlib inline tesla = pd.read_csv('Tesla_Stock.csv', parse_dates= True, index_col='Date') tesla.head() ford = pd.read_csv('Ford_Stock.csv', parse_dates= True, index_col='Date') ford.head() gm = pd.read_csv('GM_Stock.csv', parse_dates= True, index_col='Date') gm.head() Explanation: Stock market analysis project End of explanation fig = plt.figure(figsize=(16,8)) tesla['Open'].plot(label = 'Tesla') gm['Open'].plot(label = 'GM') ford['Open'].plot(label = 'Ford') plt.title('Open Price') plt.legend() Explanation: Plotting the open price End of explanation fig = plt.figure(figsize=(16,8)) tesla['Volume'].plot(label = 'Tesla') gm['Volume'].plot(label = 'gm') ford['Volume'].plot(label = 'ford') plt.title('Volume Traded') plt.legend() Explanation: Plotting the volume traded End of explanation # https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.idxmax.html # https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.name.html ford.loc[ford['Volume'].idxmax()].name ford['Volume'].argmax() # https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.name.html ford.loc[ford['Volume'].idxmax()].name Explanation: Finding the timestamp of highest traded volume End of explanation tesla['Total Traded'] = tesla['Open'] * tesla['Volume'] tesla.head() ford['Total Traded'] = ford['Open'] * ford['Volume'] ford.head() gm['Total Traded'] = gm['Open'] * gm['Volume'] gm.head() Explanation: Creating 'Total Traded' value End of explanation fig = plt.figure(figsize=(16,8)) tesla['Total Traded'].plot(label = 'Tesla') gm['Total Traded'].plot(label = 'GM') ford['Total Traded'].plot(label = 'Ford') plt.legend() Explanation: Plotting 'Total Traded' End of explanation tesla.loc[tesla['Total Traded'].idxmax()].name tesla['Total Traded'].argmax() Explanation: Finding the timestamp of highest total traded value End of explanation gm['MA50'] = gm['Open'].rolling(window=50).mean() gm['MA200'] = gm['Open'].rolling(window=200).mean() gm[['Open','MA50', 'MA200']].plot(figsize=(16,8)) Explanation: Plotting moving average (rolling mean) End of explanation from pandas.plotting import scatter_matrix # https://stackoverflow.com/questions/30986989/reindex-a-dataframe-with-duplicate-index-values # https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.rename.html # Either use rename or use below df = pd.concat([tesla['Open'], gm['Open'], ford['Open']], axis = 1) df.columns = ['Tesla Open', 'GM Open', 'Ford Open'] df = pd.DataFrame(pd.concat([tesla['Open'].rename('Tesla Open'), gm['Open'].rename('GM Open'), ford['Open'].rename('Ford Open')], axis = 1)) df.head() # https://stackoverflow.com/questions/43801637/pandas-legend-for-scatter-matrix # hist_kwds = historgram keywords scatter_matrix(df, alpha=0.2, figsize=(8, 8), diagonal='hist', hist_kwds={'bins':50}); Explanation: Plotting scatter matrix End of explanation # https://matplotlib.org/examples/pylab_examples/finance_demo.html from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY, date2num from matplotlib.finance import candlestick_ohlc # Creating a ford dataframe suitable as per our needs ford_reset = ford.loc['2012-01'].reset_index() ford_reset ford_reset.info() ford_reset['date_ax'] = ford_reset['Date'].apply(date2num) ford_reset list_of_cols = ['date_ax', 'Open', 'High', 'Low', 'Close'] ford_values = [tuple(vals) for vals in ford_reset[list_of_cols].values] ford_values mondays = WeekdayLocator(MONDAY) # major ticks on the mondays alldays = DayLocator() # minor ticks on the days weekFormatter = DateFormatter('%b %d') # e.g., Jan 12 dayFormatter = DateFormatter('%d') # e.g., 12 fig, ax = plt.subplots() fig.subplots_adjust(bottom=0.2) ax.xaxis.set_major_locator(mondays) ax.xaxis.set_minor_locator(alldays) ax.xaxis.set_major_formatter(weekFormatter) #plot_day_summary(ax, quotes, ticksize=3) candlestick_ohlc(ax, ford_values, width=0.6, colorup = 'g', colordown='r'); Explanation: Plotting candlestick End of explanation # Using the shift method tesla['returns'] = (tesla['Close'] / tesla['Close'].shift(1)) - 1 # https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.pct_change.html tesla['returns'] = tesla['Close'].pct_change() tesla.head() ford['returns'] = ford['Close'].pct_change() ford.head() gm['returns'] = gm['Close'].pct_change() gm.head() Explanation: Daily Percentage Change First we will begin by calculating the daily percentage change. Daily percentage change is defined by the following formula: $ r_t = \frac{p_t}{p_{t-1}} -1$ This defines r_t (return at time t) as equal to the price at time t divided by the price at time t-1 (the previous day) minus 1. Basically this just informs you of your percent gain (or loss) if you bought the stock on day and then sold it the next day. While this isn't necessarily helpful for attempting to predict future values of the stock, its very helpful in analyzing the volatility of the stock. If daily returns have a wide distribution, the stock is more volatile from one day to the next. Let's calculate the percent returns and then plot them with a histogram, and decide which stock is the most stable! End of explanation ford['returns'].plot.hist(bins=100, grid=True) gm['returns'].plot.hist(bins=100, grid=True) tesla['returns'].plot.hist(bins=100, grid=True) tesla['returns'].hist(bins=100, label='Tesla', figsize=(10,8), alpha=0.4) gm['returns'].hist(bins=100, label='GM', figsize=(10,8), alpha=0.4) ford['returns'].hist(bins=100, label='Ford', figsize=(10,8), alpha=0.4) plt.legend(); Explanation: Plotting histograms End of explanation df = pd.concat([tesla['returns'], gm['returns'],ford['returns']], axis = 1) df.columns = ['Tesla','GM','Ford'] df.plot.kde(figsize=(12,6)) Explanation: Conclusion: Wider distribution = More volatility (Tesla) Plotting KDE (Kernel Density Estimation) End of explanation df.plot.box(figsize=(8,12)) Explanation: Conclusion: Higher peaks = More stable stock (Ford) Plotting Box End of explanation scatter_matrix(df, alpha=0.2, figsize=(8, 8), diagonal='hist', hist_kwds={'bins':50}); df.plot(kind='scatter', x='Ford', y='GM', alpha=0.5, figsize=(11,8)) Explanation: Conclusion: Greater outliers = More volatility (Tesla) Observing correlations between 'GM' and 'Ford' End of explanation # cumprod - cumulative product tesla['Cumulative Return'] = (1 + tesla['returns']).cumprod() tesla.head() ford['Cumulative Return'] = (1 + ford['returns']).cumprod() ford.head() gm['Cumulative Return'] = (1 + gm['returns']).cumprod() gm.head() Explanation: Conclusion: Linear correlation observed Cumulative Daily Returns Great! Now we can see which stock was the most wide ranging in daily returns (you should have realized it was Tesla, our original stock price plot should have also made that obvious). With daily cumulative returns, the question we are trying to answer is the following, if I invested $1 in the company at the beginning of the time series, how much would is be worth today? This is different than just the stock price at the current day, because it will take into account the daily returns. Keep in mind, our simple calculation here won't take into account stocks that give back a dividend. Let's look at some simple examples: Lets us say there is a stock 'ABC' that is being actively traded on an exchange. ABC has the following prices corresponding to the dates given Date Price 01/01/2018 10 01/02/2018 15 01/03/2018 20 01/04/2018 25 Daily Return : Daily return is the profit/loss made by the stock compared to the previous day. (This is what ew just calculated above). A value above one indicates profit, similarly a value below one indicates loss. It is also expressed in percentage to convey the information better. (When expressed as percentage, if the value is above 0, the stock had give you profit else loss). So for the above example the daily returns would be Date Daily Return %Daily Return 01/01/2018 10/10 = 1 - 01/02/2018 15/10 = 3/2 50% 01/03/2018 20/15 = 4/3 33% 01/04/2018 25/20 = 5/4 20% Cumulative Return: While daily returns are useful, it doesn't give the investor a immediate insight into the gains he had made till date, especially if the stock is very volatile. Cumulative return is computed relative to the day investment is made. If cumulative return is above one, you are making profits else you are in loss. So for the above example cumulative gains are as follows Date Cumulative Return %Cumulative Return 01/01/2018 10/10 = 1 100 % 01/02/2018 15/10 = 3/2 150 % 01/03/2018 20/10 = 2 200 % 01/04/2018 25/10 = 5/2 250 % The formula for a cumulative daily return is: $ i_i = (1+r_t) * i_{t-1} $ Here we can see we are just multiplying our previous investment at i at t-1 by 1+our percent returns. Pandas makes this very simple to calculate with its cumprod() method. Using something in the following manner: df[daily_cumulative_return] = ( 1 + df[pct_daily_return] ).cumprod() End of explanation fig = plt.figure(figsize=(16,8)) tesla['Cumulative Return'].plot(label = 'Tesla') gm['Cumulative Return'].plot(label = 'GM') ford['Cumulative Return'].plot(label = 'Ford') plt.title('Cumulative Return') plt.legend() Explanation: Plotting CDR End of explanation
3,364
Given the following text description, write Python code to implement the functionality described below step by step Description: Basic demonstration of creating and using masks for bright sources Author Step1: You may have to set up your $CSCRATCH environment variable so that Python can find it, e.g. Step2: These are some circular regions that could be masked, but let's check the capability also for elliptical regions Step3: Note that the ellipticity components, here, which are defined at the bottom of the page at, e.g., http Step4: Creating a file of targets and masking at the command line Now let's compile a file of targets from the same set of sweeps. Again, I'll dump the targets file in your $CSCRATCH directory. This took just under 4 minutes, for me Step5: Masking targets Our targets will already have DESI_TARGET bits set (indicating whether something is an LRG, ELG, QSO etc.) but we can update those bits to indicate which targets are in or are not in a mask. The IN_BRIGHT_OBJECT bit in DESI_TARGET indicates whether something is in a mask. Step6: Let's plot which objects are in masks and which are not, against the backdrop of the mask (in a small region of the sky) Step7: Note that the BADSKY locations are just outside the perimeter of the masks, and are quite obvious in the plot. Masking points from a random catalog The brightmask.set_target_bits() function wraps the main masking code in brightmask, called is_in_bright_mask(). The is_in_bright_mask() function can be used to compare coordinate locations to a mask and return which objects are in the mask (within the IN_RADIUS of the mask) and which objects are close to the mask (within the NEAR_RADIUS of the mask). Let's create a random catalog over the small area of sky that we've been considering (154.8<sup>o</sup> < RA < 155.1<sup>o</sup>) and (19.7<sup>o</sup> < Dec < 20.0<sup>o</sup>) Step8: Now let's mask that random catalog Step9: and plot the random points that are and are not in the mask, both for the IN_RADIUS and the NEAR_RADIUS
Python Code: %matplotlib inline import matplotlib.pyplot as plt import os import numpy as np import fitsio from desitarget import desi_mask, brightmask Explanation: Basic demonstration of creating and using masks for bright sources Author: Adam D. Myers, University of Wyoming Getting Started Everything should work fine using a DESI kernel loaded from NERSC's jupyter-dev server. See the instuctions under Getting Started at: https://github.com/desihub/tutorials/blob/master/Intro_to_DESI_spectra.ipynb If you're running locally on your own machine, you may also need to set up your own development kernel as described here: https://desi.lbl.gov/trac/wiki/Computing/JupyterAtNERSC under defining your own kernel. Preliminaries Now, retrieve a sample of the sweeps files, say, everything in DR5 that starts sweep-150. I'll assume you put this in your $CSCRATCH directory at NERSC, as follows: mkdir $CSCRATCH/sweep150 cp /global/project/projectdirs/cosmo/data/legacysurvey/dr5/sweep/5.0/sweep-150* $CSCRATCH/sweep150 Creating a mask based on bright sources from a sweep-like file or files at the command line To create a bright source mask by scraping bright sources (of all types) from the sweeps: make_bright_mask $CSCRATCH/sweep150 $CSCRATCH/sourcemask150.fits this mask will use default settings and create masks for everything that is brighter than 10th magnitude in each of the g, r and z bands. This took just under 1.5 minutes, for me, on edison, and returned the following informative message: INFO:make_bright_mask:48:&lt;module&gt;: wrote a file of 1292 masks to $CSCRATCH/sourcemask150.fits You can also customize the limiting magnitude of source to be masked, e.g.: make_bright_mask $CSCRATCH/sweep150 --bands GZ --maglim 9,10 $CSCRATCH/blat.fits will mask any source that is brighter than g < 9 or z < 10. This took about 1.5 minutes for me on edison and returned the following message: INFO:make_bright_mask:48:&lt;module&gt;: wrote a file of 1164 masks to $CSCRATCH/blat.fits Plotting masks Let's examine the mask and plot it. Note that NEAR_RADIUS is a warning that you're near a mask (which could be useful for large-scale structure analyses) whereas IN_RADIUS is the radius to which DESI will certainly not place any fibers (for fear of saturating adjacent sources). End of explanation os.environ["CSCRATCH"] = '/global/cscratch1/sd/adamyers' sourcemask = fitsio.read("$CSCRATCH/sourcemask150.fits") brightmask.plot_mask(sourcemask,limits=[151,150,1,2]) brightmask.plot_mask(sourcemask,limits=[151,150,1,2],radius="NEAR_RADIUS") Explanation: You may have to set up your $CSCRATCH environment variable so that Python can find it, e.g.: End of explanation from desitarget.brightmask import _rexlike from desitarget.cuts import _psflike rex_or_psf = _rexlike(sourcemask["TYPE"]) | _psflike(sourcemask["TYPE"]) wcircle = np.where(rex_or_psf) wellipse = np.where(~rex_or_psf) sourcemask[wcircle][20:25] sourcemask[wellipse][20:25] Explanation: These are some circular regions that could be masked, but let's check the capability also for elliptical regions: End of explanation brightmask.plot_mask(sourcemask,limits=[155.1,154.8,19.7,20.0],radius="NEAR_RADIUS") Explanation: Note that the ellipticity components, here, which are defined at the bottom of the page at, e.g., http://legacysurvey.org/dr5/catalogs/ are 0.0 for circular masks. Let's plot a region that has a mix of circular and elliptical masks: End of explanation targs = fitsio.read("$CSCRATCH/targs150.fits") print(len(targs)) print(len(np.where( (targs["DESI_TARGET"] & desi_mask.BADSKY) != 0 )[0])) targs = brightmask.append_safe_targets(targs,sourcemask) print(len(targs)) print(len(np.where( (targs["DESI_TARGET"] & desi_mask.BADSKY) != 0 )[0])) w = np.where( (targs["DESI_TARGET"] & desi_mask.BADSKY) != 0 ) badskies= targs[w] brightmask.plot_mask(sourcemask,show=False) plt.axis([155.1,154.8,19.7,20.0]) plt.plot(badskies["RA"],badskies["DEC"],'k,') plt.xlabel('RA (o)') plt.ylabel('Dec (o)') plt.show() Explanation: Creating a file of targets and masking at the command line Now let's compile a file of targets from the same set of sweeps. Again, I'll dump the targets file in your $CSCRATCH directory. This took just under 4 minutes, for me: select_targets $CSCRATCH/sweep150 $CSCRATCH/targs150.fits and informed me that: INFO:select_targets:73:&lt;module&gt;: 1741104 targets written to /global/cscratch1/sd/adamyers/targs150.fits Note that at NERSC, the whole masking procedure can be applied to the targets in one line of code via, e.g.: select_targets $CSCRATCH/sweep150 $CSCRATCH/targsblat150.fits --mask $CSCRATCH/sourcemask150.fits Generating BADSKY ("SAFE") locations First, let's generate BADSKY ("SAFE") locations around the periphery of each mask and plot them against the backdrop of the mask. Note that drstring, if set, is used to assign the Data Release (DR) bit to BADSKY targets and to assign BADSKY targets an OBJID that is higher than any target in a given brick of that DR. (That's the part that requires a DR survey-brick file, though). End of explanation desi_mask dt = brightmask.set_target_bits(targs,sourcemask) inmask = np.where( (dt & desi_mask.IN_BRIGHT_OBJECT) != 0) masked = targs[inmask] notinmask = np.where( (dt & desi_mask.IN_BRIGHT_OBJECT) == 0) unmasked = targs[notinmask] Explanation: Masking targets Our targets will already have DESI_TARGET bits set (indicating whether something is an LRG, ELG, QSO etc.) but we can update those bits to indicate which targets are in or are not in a mask. The IN_BRIGHT_OBJECT bit in DESI_TARGET indicates whether something is in a mask. End of explanation brightmask.plot_mask(sourcemask,show=False) plt.axis([155.1,154.8,19.7,20.0]) plt.xlabel('RA (o)') plt.ylabel('Dec (o)') plt.plot(masked["RA"],masked["DEC"],'kx') plt.plot(unmasked["RA"],unmasked["DEC"],'r.') plt.show() Explanation: Let's plot which objects are in masks and which are not, against the backdrop of the mask (in a small region of the sky): End of explanation from numpy.random import random Nran = 100000 rancat = np.zeros(Nran, dtype=[('RA', '>f8'), ('DEC', '>f8')]) rancat["RA"] = 154.8+0.3*(random(Nran)) rancat["DEC"] = np.degrees(np.arcsin(np.sin(np.radians(20))-random(Nran)*0.05)) Explanation: Note that the BADSKY locations are just outside the perimeter of the masks, and are quite obvious in the plot. Masking points from a random catalog The brightmask.set_target_bits() function wraps the main masking code in brightmask, called is_in_bright_mask(). The is_in_bright_mask() function can be used to compare coordinate locations to a mask and return which objects are in the mask (within the IN_RADIUS of the mask) and which objects are close to the mask (within the NEAR_RADIUS of the mask). Let's create a random catalog over the small area of sky that we've been considering (154.8<sup>o</sup> < RA < 155.1<sup>o</sup>) and (19.7<sup>o</sup> < Dec < 20.0<sup>o</sup>): End of explanation inmask, nearmask = brightmask.is_in_bright_mask(rancat,sourcemask) masked = rancat[np.where(inmask)] notmasked = rancat[np.where(~inmask)] near = rancat[np.where(nearmask)] notnear = rancat[np.where(~nearmask)] Explanation: Now let's mask that random catalog: End of explanation brightmask.plot_mask(sourcemask,show=False) plt.axis([155.1,154.8,19.7,20.0]) plt.xlabel('RA (o)') plt.ylabel('Dec (o)') plt.plot(masked["RA"],masked["DEC"],'r.') plt.plot(notmasked["RA"],notmasked["DEC"],'g,') plt.show() brightmask.plot_mask(sourcemask,show=False,radius="NEAR_RADIUS") plt.axis([155.1,154.8,19.7,20.0]) plt.xlabel('RA (o)') plt.ylabel('Dec (o)') plt.plot(near["RA"],near["DEC"],'r.') plt.plot(notnear["RA"],notnear["DEC"],'g,') plt.show() Explanation: and plot the random points that are and are not in the mask, both for the IN_RADIUS and the NEAR_RADIUS: End of explanation
3,365
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Atmos MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties --&gt; Overview 2. Key Properties --&gt; Resolution 3. Key Properties --&gt; Timestepping 4. Key Properties --&gt; Orography 5. Grid --&gt; Discretisation 6. Grid --&gt; Discretisation --&gt; Horizontal 7. Grid --&gt; Discretisation --&gt; Vertical 8. Dynamical Core 9. Dynamical Core --&gt; Top Boundary 10. Dynamical Core --&gt; Lateral Boundary 11. Dynamical Core --&gt; Diffusion Horizontal 12. Dynamical Core --&gt; Advection Tracers 13. Dynamical Core --&gt; Advection Momentum 14. Radiation 15. Radiation --&gt; Shortwave Radiation 16. Radiation --&gt; Shortwave GHG 17. Radiation --&gt; Shortwave Cloud Ice 18. Radiation --&gt; Shortwave Cloud Liquid 19. Radiation --&gt; Shortwave Cloud Inhomogeneity 20. Radiation --&gt; Shortwave Aerosols 21. Radiation --&gt; Shortwave Gases 22. Radiation --&gt; Longwave Radiation 23. Radiation --&gt; Longwave GHG 24. Radiation --&gt; Longwave Cloud Ice 25. Radiation --&gt; Longwave Cloud Liquid 26. Radiation --&gt; Longwave Cloud Inhomogeneity 27. Radiation --&gt; Longwave Aerosols 28. Radiation --&gt; Longwave Gases 29. Turbulence Convection 30. Turbulence Convection --&gt; Boundary Layer Turbulence 31. Turbulence Convection --&gt; Deep Convection 32. Turbulence Convection --&gt; Shallow Convection 33. Microphysics Precipitation 34. Microphysics Precipitation --&gt; Large Scale Precipitation 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics 36. Cloud Scheme 37. Cloud Scheme --&gt; Optical Cloud Properties 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution 40. Observation Simulation 41. Observation Simulation --&gt; Isscp Attributes 42. Observation Simulation --&gt; Cosp Attributes 43. Observation Simulation --&gt; Radar Inputs 44. Observation Simulation --&gt; Lidar Inputs 45. Gravity Waves 46. Gravity Waves --&gt; Orographic Gravity Waves 47. Gravity Waves --&gt; Non Orographic Gravity Waves 48. Solar 49. Solar --&gt; Solar Pathways 50. Solar --&gt; Solar Constant 51. Solar --&gt; Orbital Parameters 52. Solar --&gt; Insolation Ozone 53. Volcanos 54. Volcanos --&gt; Volcanoes Treatment 1. Key Properties --&gt; Overview Top level key properties 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 1.3. Model Family Is Required Step7: 1.4. Basic Approximations Is Required Step8: 2. Key Properties --&gt; Resolution Characteristics of the model resolution 2.1. Horizontal Resolution Name Is Required Step9: 2.2. Canonical Horizontal Resolution Is Required Step10: 2.3. Range Horizontal Resolution Is Required Step11: 2.4. Number Of Vertical Levels Is Required Step12: 2.5. High Top Is Required Step13: 3. Key Properties --&gt; Timestepping Characteristics of the atmosphere model time stepping 3.1. Timestep Dynamics Is Required Step14: 3.2. Timestep Shortwave Radiative Transfer Is Required Step15: 3.3. Timestep Longwave Radiative Transfer Is Required Step16: 4. Key Properties --&gt; Orography Characteristics of the model orography 4.1. Type Is Required Step17: 4.2. Changes Is Required Step18: 5. Grid --&gt; Discretisation Atmosphere grid discretisation 5.1. Overview Is Required Step19: 6. Grid --&gt; Discretisation --&gt; Horizontal Atmosphere discretisation in the horizontal 6.1. Scheme Type Is Required Step20: 6.2. Scheme Method Is Required Step21: 6.3. Scheme Order Is Required Step22: 6.4. Horizontal Pole Is Required Step23: 6.5. Grid Type Is Required Step24: 7. Grid --&gt; Discretisation --&gt; Vertical Atmosphere discretisation in the vertical 7.1. Coordinate Type Is Required Step25: 8. Dynamical Core Characteristics of the dynamical core 8.1. Overview Is Required Step26: 8.2. Name Is Required Step27: 8.3. Timestepping Type Is Required Step28: 8.4. Prognostic Variables Is Required Step29: 9. Dynamical Core --&gt; Top Boundary Type of boundary layer at the top of the model 9.1. Top Boundary Condition Is Required Step30: 9.2. Top Heat Is Required Step31: 9.3. Top Wind Is Required Step32: 10. Dynamical Core --&gt; Lateral Boundary Type of lateral boundary condition (if the model is a regional model) 10.1. Condition Is Required Step33: 11. Dynamical Core --&gt; Diffusion Horizontal Horizontal diffusion scheme 11.1. Scheme Name Is Required Step34: 11.2. Scheme Method Is Required Step35: 12. Dynamical Core --&gt; Advection Tracers Tracer advection scheme 12.1. Scheme Name Is Required Step36: 12.2. Scheme Characteristics Is Required Step37: 12.3. Conserved Quantities Is Required Step38: 12.4. Conservation Method Is Required Step39: 13. Dynamical Core --&gt; Advection Momentum Momentum advection scheme 13.1. Scheme Name Is Required Step40: 13.2. Scheme Characteristics Is Required Step41: 13.3. Scheme Staggering Type Is Required Step42: 13.4. Conserved Quantities Is Required Step43: 13.5. Conservation Method Is Required Step44: 14. Radiation Characteristics of the atmosphere radiation process 14.1. Aerosols Is Required Step45: 15. Radiation --&gt; Shortwave Radiation Properties of the shortwave radiation scheme 15.1. Overview Is Required Step46: 15.2. Name Is Required Step47: 15.3. Spectral Integration Is Required Step48: 15.4. Transport Calculation Is Required Step49: 15.5. Spectral Intervals Is Required Step50: 16. Radiation --&gt; Shortwave GHG Representation of greenhouse gases in the shortwave radiation scheme 16.1. Greenhouse Gas Complexity Is Required Step51: 16.2. ODS Is Required Step52: 16.3. Other Flourinated Gases Is Required Step53: 17. Radiation --&gt; Shortwave Cloud Ice Shortwave radiative properties of ice crystals in clouds 17.1. General Interactions Is Required Step54: 17.2. Physical Representation Is Required Step55: 17.3. Optical Methods Is Required Step56: 18. Radiation --&gt; Shortwave Cloud Liquid Shortwave radiative properties of liquid droplets in clouds 18.1. General Interactions Is Required Step57: 18.2. Physical Representation Is Required Step58: 18.3. Optical Methods Is Required Step59: 19. Radiation --&gt; Shortwave Cloud Inhomogeneity Cloud inhomogeneity in the shortwave radiation scheme 19.1. Cloud Inhomogeneity Is Required Step60: 20. Radiation --&gt; Shortwave Aerosols Shortwave radiative properties of aerosols 20.1. General Interactions Is Required Step61: 20.2. Physical Representation Is Required Step62: 20.3. Optical Methods Is Required Step63: 21. Radiation --&gt; Shortwave Gases Shortwave radiative properties of gases 21.1. General Interactions Is Required Step64: 22. Radiation --&gt; Longwave Radiation Properties of the longwave radiation scheme 22.1. Overview Is Required Step65: 22.2. Name Is Required Step66: 22.3. Spectral Integration Is Required Step67: 22.4. Transport Calculation Is Required Step68: 22.5. Spectral Intervals Is Required Step69: 23. Radiation --&gt; Longwave GHG Representation of greenhouse gases in the longwave radiation scheme 23.1. Greenhouse Gas Complexity Is Required Step70: 23.2. ODS Is Required Step71: 23.3. Other Flourinated Gases Is Required Step72: 24. Radiation --&gt; Longwave Cloud Ice Longwave radiative properties of ice crystals in clouds 24.1. General Interactions Is Required Step73: 24.2. Physical Reprenstation Is Required Step74: 24.3. Optical Methods Is Required Step75: 25. Radiation --&gt; Longwave Cloud Liquid Longwave radiative properties of liquid droplets in clouds 25.1. General Interactions Is Required Step76: 25.2. Physical Representation Is Required Step77: 25.3. Optical Methods Is Required Step78: 26. Radiation --&gt; Longwave Cloud Inhomogeneity Cloud inhomogeneity in the longwave radiation scheme 26.1. Cloud Inhomogeneity Is Required Step79: 27. Radiation --&gt; Longwave Aerosols Longwave radiative properties of aerosols 27.1. General Interactions Is Required Step80: 27.2. Physical Representation Is Required Step81: 27.3. Optical Methods Is Required Step82: 28. Radiation --&gt; Longwave Gases Longwave radiative properties of gases 28.1. General Interactions Is Required Step83: 29. Turbulence Convection Atmosphere Convective Turbulence and Clouds 29.1. Overview Is Required Step84: 30. Turbulence Convection --&gt; Boundary Layer Turbulence Properties of the boundary layer turbulence scheme 30.1. Scheme Name Is Required Step85: 30.2. Scheme Type Is Required Step86: 30.3. Closure Order Is Required Step87: 30.4. Counter Gradient Is Required Step88: 31. Turbulence Convection --&gt; Deep Convection Properties of the deep convection scheme 31.1. Scheme Name Is Required Step89: 31.2. Scheme Type Is Required Step90: 31.3. Scheme Method Is Required Step91: 31.4. Processes Is Required Step92: 31.5. Microphysics Is Required Step93: 32. Turbulence Convection --&gt; Shallow Convection Properties of the shallow convection scheme 32.1. Scheme Name Is Required Step94: 32.2. Scheme Type Is Required Step95: 32.3. Scheme Method Is Required Step96: 32.4. Processes Is Required Step97: 32.5. Microphysics Is Required Step98: 33. Microphysics Precipitation Large Scale Cloud Microphysics and Precipitation 33.1. Overview Is Required Step99: 34. Microphysics Precipitation --&gt; Large Scale Precipitation Properties of the large scale precipitation scheme 34.1. Scheme Name Is Required Step100: 34.2. Hydrometeors Is Required Step101: 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics Properties of the large scale cloud microphysics scheme 35.1. Scheme Name Is Required Step102: 35.2. Processes Is Required Step103: 36. Cloud Scheme Characteristics of the cloud scheme 36.1. Overview Is Required Step104: 36.2. Name Is Required Step105: 36.3. Atmos Coupling Is Required Step106: 36.4. Uses Separate Treatment Is Required Step107: 36.5. Processes Is Required Step108: 36.6. Prognostic Scheme Is Required Step109: 36.7. Diagnostic Scheme Is Required Step110: 36.8. Prognostic Variables Is Required Step111: 37. Cloud Scheme --&gt; Optical Cloud Properties Optical cloud properties 37.1. Cloud Overlap Method Is Required Step112: 37.2. Cloud Inhomogeneity Is Required Step113: 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution Sub-grid scale water distribution 38.1. Type Is Required Step114: 38.2. Function Name Is Required Step115: 38.3. Function Order Is Required Step116: 38.4. Convection Coupling Is Required Step117: 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution Sub-grid scale ice distribution 39.1. Type Is Required Step118: 39.2. Function Name Is Required Step119: 39.3. Function Order Is Required Step120: 39.4. Convection Coupling Is Required Step121: 40. Observation Simulation Characteristics of observation simulation 40.1. Overview Is Required Step122: 41. Observation Simulation --&gt; Isscp Attributes ISSCP Characteristics 41.1. Top Height Estimation Method Is Required Step123: 41.2. Top Height Direction Is Required Step124: 42. Observation Simulation --&gt; Cosp Attributes CFMIP Observational Simulator Package attributes 42.1. Run Configuration Is Required Step125: 42.2. Number Of Grid Points Is Required Step126: 42.3. Number Of Sub Columns Is Required Step127: 42.4. Number Of Levels Is Required Step128: 43. Observation Simulation --&gt; Radar Inputs Characteristics of the cloud radar simulator 43.1. Frequency Is Required Step129: 43.2. Type Is Required Step130: 43.3. Gas Absorption Is Required Step131: 43.4. Effective Radius Is Required Step132: 44. Observation Simulation --&gt; Lidar Inputs Characteristics of the cloud lidar simulator 44.1. Ice Types Is Required Step133: 44.2. Overlap Is Required Step134: 45. Gravity Waves Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources. 45.1. Overview Is Required Step135: 45.2. Sponge Layer Is Required Step136: 45.3. Background Is Required Step137: 45.4. Subgrid Scale Orography Is Required Step138: 46. Gravity Waves --&gt; Orographic Gravity Waves Gravity waves generated due to the presence of orography 46.1. Name Is Required Step139: 46.2. Source Mechanisms Is Required Step140: 46.3. Calculation Method Is Required Step141: 46.4. Propagation Scheme Is Required Step142: 46.5. Dissipation Scheme Is Required Step143: 47. Gravity Waves --&gt; Non Orographic Gravity Waves Gravity waves generated by non-orographic processes. 47.1. Name Is Required Step144: 47.2. Source Mechanisms Is Required Step145: 47.3. Calculation Method Is Required Step146: 47.4. Propagation Scheme Is Required Step147: 47.5. Dissipation Scheme Is Required Step148: 48. Solar Top of atmosphere solar insolation characteristics 48.1. Overview Is Required Step149: 49. Solar --&gt; Solar Pathways Pathways for solar forcing of the atmosphere 49.1. Pathways Is Required Step150: 50. Solar --&gt; Solar Constant Solar constant and top of atmosphere insolation characteristics 50.1. Type Is Required Step151: 50.2. Fixed Value Is Required Step152: 50.3. Transient Characteristics Is Required Step153: 51. Solar --&gt; Orbital Parameters Orbital parameters and top of atmosphere insolation characteristics 51.1. Type Is Required Step154: 51.2. Fixed Reference Date Is Required Step155: 51.3. Transient Method Is Required Step156: 51.4. Computation Method Is Required Step157: 52. Solar --&gt; Insolation Ozone Impact of solar insolation on stratospheric ozone 52.1. Solar Ozone Impact Is Required Step158: 53. Volcanos Characteristics of the implementation of volcanoes 53.1. Overview Is Required Step159: 54. Volcanos --&gt; Volcanoes Treatment Treatment of volcanoes in the atmosphere 54.1. Volcanoes Implementation Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'cccr-iitm', 'iitm-esm', 'atmos') Explanation: ES-DOC CMIP6 Model Properties - Atmos MIP Era: CMIP6 Institute: CCCR-IITM Source ID: IITM-ESM Topic: Atmos Sub-Topics: Dynamical Core, Radiation, Turbulence Convection, Microphysics Precipitation, Cloud Scheme, Observation Simulation, Gravity Waves, Solar, Volcanos. Properties: 156 (127 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:53:48 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties --&gt; Overview 2. Key Properties --&gt; Resolution 3. Key Properties --&gt; Timestepping 4. Key Properties --&gt; Orography 5. Grid --&gt; Discretisation 6. Grid --&gt; Discretisation --&gt; Horizontal 7. Grid --&gt; Discretisation --&gt; Vertical 8. Dynamical Core 9. Dynamical Core --&gt; Top Boundary 10. Dynamical Core --&gt; Lateral Boundary 11. Dynamical Core --&gt; Diffusion Horizontal 12. Dynamical Core --&gt; Advection Tracers 13. Dynamical Core --&gt; Advection Momentum 14. Radiation 15. Radiation --&gt; Shortwave Radiation 16. Radiation --&gt; Shortwave GHG 17. Radiation --&gt; Shortwave Cloud Ice 18. Radiation --&gt; Shortwave Cloud Liquid 19. Radiation --&gt; Shortwave Cloud Inhomogeneity 20. Radiation --&gt; Shortwave Aerosols 21. Radiation --&gt; Shortwave Gases 22. Radiation --&gt; Longwave Radiation 23. Radiation --&gt; Longwave GHG 24. Radiation --&gt; Longwave Cloud Ice 25. Radiation --&gt; Longwave Cloud Liquid 26. Radiation --&gt; Longwave Cloud Inhomogeneity 27. Radiation --&gt; Longwave Aerosols 28. Radiation --&gt; Longwave Gases 29. Turbulence Convection 30. Turbulence Convection --&gt; Boundary Layer Turbulence 31. Turbulence Convection --&gt; Deep Convection 32. Turbulence Convection --&gt; Shallow Convection 33. Microphysics Precipitation 34. Microphysics Precipitation --&gt; Large Scale Precipitation 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics 36. Cloud Scheme 37. Cloud Scheme --&gt; Optical Cloud Properties 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution 40. Observation Simulation 41. Observation Simulation --&gt; Isscp Attributes 42. Observation Simulation --&gt; Cosp Attributes 43. Observation Simulation --&gt; Radar Inputs 44. Observation Simulation --&gt; Lidar Inputs 45. Gravity Waves 46. Gravity Waves --&gt; Orographic Gravity Waves 47. Gravity Waves --&gt; Non Orographic Gravity Waves 48. Solar 49. Solar --&gt; Solar Pathways 50. Solar --&gt; Solar Constant 51. Solar --&gt; Orbital Parameters 52. Solar --&gt; Insolation Ozone 53. Volcanos 54. Volcanos --&gt; Volcanoes Treatment 1. Key Properties --&gt; Overview Top level key properties 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of atmosphere model code (CAM 4.0, ARPEGE 3.2,...) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_family') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "AGCM" # "ARCM" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.3. Model Family Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Type of atmospheric model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.basic_approximations') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "primitive equations" # "non-hydrostatic" # "anelastic" # "Boussinesq" # "hydrostatic" # "quasi-hydrostatic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.4. Basic Approximations Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Basic approximations made in the atmosphere. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.horizontal_resolution_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Resolution Characteristics of the model resolution 2.1. Horizontal Resolution Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.2. Canonical Horizontal Resolution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.range_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.3. Range Horizontal Resolution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 2.4. Number Of Vertical Levels Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Number of vertical levels resolved on the computational grid. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.high_top') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 2.5. High Top Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the atmosphere have a high-top? High-Top atmospheres have a fully resolved stratosphere with a model top above the stratopause. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_dynamics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Timestepping Characteristics of the atmosphere model time stepping 3.1. Timestep Dynamics Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Timestep for the dynamics, e.g. 30 min. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_shortwave_radiative_transfer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.2. Timestep Shortwave Radiative Transfer Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Timestep for the shortwave radiative transfer, e.g. 1.5 hours. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_longwave_radiative_transfer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.3. Timestep Longwave Radiative Transfer Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Timestep for the longwave radiative transfer, e.g. 3 hours. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.orography.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "present day" # "modified" # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Orography Characteristics of the model orography 4.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time adaptation of the orography. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.orography.changes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "related to ice sheets" # "related to tectonics" # "modified mean" # "modified variance if taken into account in model (cf gravity waves)" # TODO - please enter value(s) Explanation: 4.2. Changes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N If the orography type is modified describe the time adaptation changes. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Grid --&gt; Discretisation Atmosphere grid discretisation 5.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of grid discretisation in the atmosphere End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "spectral" # "fixed grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6. Grid --&gt; Discretisation --&gt; Horizontal Atmosphere discretisation in the horizontal 6.1. Scheme Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Horizontal discretisation type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "finite elements" # "finite volumes" # "finite difference" # "centered finite difference" # TODO - please enter value(s) Explanation: 6.2. Scheme Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Horizontal discretisation method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "second" # "third" # "fourth" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6.3. Scheme Order Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Horizontal discretisation function order End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.horizontal_pole') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "filter" # "pole rotation" # "artificial island" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6.4. Horizontal Pole Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Horizontal discretisation pole singularity treatment End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Gaussian" # "Latitude-Longitude" # "Cubed-Sphere" # "Icosahedral" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6.5. Grid Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Horizontal grid type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.vertical.coordinate_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "isobaric" # "sigma" # "hybrid sigma-pressure" # "hybrid pressure" # "vertically lagrangian" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 7. Grid --&gt; Discretisation --&gt; Vertical Atmosphere discretisation in the vertical 7.1. Coordinate Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Type of vertical coordinate system End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Dynamical Core Characteristics of the dynamical core 8.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of atmosphere dynamical core End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.2. Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name for the dynamical core of the model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.timestepping_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Adams-Bashforth" # "explicit" # "implicit" # "semi-implicit" # "leap frog" # "multi-step" # "Runge Kutta fifth order" # "Runge Kutta second order" # "Runge Kutta third order" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 8.3. Timestepping Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Timestepping framework type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "surface pressure" # "wind components" # "divergence/curl" # "temperature" # "potential temperature" # "total water" # "water vapour" # "water liquid" # "water ice" # "total water moments" # "clouds" # "radiation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 8.4. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List of the model prognostic variables End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_boundary_condition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "sponge layer" # "radiation boundary condition" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9. Dynamical Core --&gt; Top Boundary Type of boundary layer at the top of the model 9.1. Top Boundary Condition Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Top boundary condition End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_heat') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.2. Top Heat Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Top boundary heat treatment End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_wind') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.3. Top Wind Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Top boundary wind treatment End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.lateral_boundary.condition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "sponge layer" # "radiation boundary condition" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10. Dynamical Core --&gt; Lateral Boundary Type of lateral boundary condition (if the model is a regional model) 10.1. Condition Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Type of lateral boundary condition End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11. Dynamical Core --&gt; Diffusion Horizontal Horizontal diffusion scheme 11.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Horizontal diffusion scheme name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "iterated Laplacian" # "bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 11.2. Scheme Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Horizontal diffusion scheme method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heun" # "Roe and VanLeer" # "Roe and Superbee" # "Prather" # "UTOPIA" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 12. Dynamical Core --&gt; Advection Tracers Tracer advection scheme 12.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Tracer advection scheme name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_characteristics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Eulerian" # "modified Euler" # "Lagrangian" # "semi-Lagrangian" # "cubic semi-Lagrangian" # "quintic semi-Lagrangian" # "mass-conserving" # "finite volume" # "flux-corrected" # "linear" # "quadratic" # "quartic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 12.2. Scheme Characteristics Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Tracer advection scheme characteristics End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conserved_quantities') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "dry mass" # "tracer mass" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 12.3. Conserved Quantities Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Tracer advection scheme conserved quantities End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conservation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "conservation fixer" # "Priestley algorithm" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 12.4. Conservation Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Tracer advection scheme conservation method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "VanLeer" # "Janjic" # "SUPG (Streamline Upwind Petrov-Galerkin)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13. Dynamical Core --&gt; Advection Momentum Momentum advection scheme 13.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Momentum advection schemes name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_characteristics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "2nd order" # "4th order" # "cell-centred" # "staggered grid" # "semi-staggered grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.2. Scheme Characteristics Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Momentum advection scheme characteristics End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_staggering_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Arakawa B-grid" # "Arakawa C-grid" # "Arakawa D-grid" # "Arakawa E-grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.3. Scheme Staggering Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Momentum advection scheme staggering type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conserved_quantities') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Angular momentum" # "Horizontal momentum" # "Enstrophy" # "Mass" # "Total energy" # "Vorticity" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.4. Conserved Quantities Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Momentum advection scheme conserved quantities End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conservation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "conservation fixer" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.5. Conservation Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Momentum advection scheme conservation method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.aerosols') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "sulphate" # "nitrate" # "sea salt" # "dust" # "ice" # "organic" # "BC (black carbon / soot)" # "SOA (secondary organic aerosols)" # "POM (particulate organic matter)" # "polar stratospheric ice" # "NAT (nitric acid trihydrate)" # "NAD (nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particle)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14. Radiation Characteristics of the atmosphere radiation process 14.1. Aerosols Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Aerosols whose radiative effect is taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15. Radiation --&gt; Shortwave Radiation Properties of the shortwave radiation scheme 15.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of shortwave radiation in the atmosphere End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.2. Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name for the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_integration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "wide-band model" # "correlated-k" # "exponential sum fitting" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.3. Spectral Integration Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Shortwave radiation scheme spectral integration End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.transport_calculation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "two-stream" # "layer interaction" # "bulk" # "adaptive" # "multi-stream" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.4. Transport Calculation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Shortwave radiation transport calculation methods End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_intervals') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 15.5. Spectral Intervals Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Shortwave radiation scheme number of spectral intervals End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.greenhouse_gas_complexity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CO2" # "CH4" # "N2O" # "CFC-11 eq" # "CFC-12 eq" # "HFC-134a eq" # "Explicit ODSs" # "Explicit other fluorinated gases" # "O3" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16. Radiation --&gt; Shortwave GHG Representation of greenhouse gases in the shortwave radiation scheme 16.1. Greenhouse Gas Complexity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Complexity of greenhouse gases whose shortwave radiative effects are taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.ODS') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CFC-12" # "CFC-11" # "CFC-113" # "CFC-114" # "CFC-115" # "HCFC-22" # "HCFC-141b" # "HCFC-142b" # "Halon-1211" # "Halon-1301" # "Halon-2402" # "methyl chloroform" # "carbon tetrachloride" # "methyl chloride" # "methylene chloride" # "chloroform" # "methyl bromide" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16.2. ODS Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Ozone depleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.other_flourinated_gases') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HFC-134a" # "HFC-23" # "HFC-32" # "HFC-125" # "HFC-143a" # "HFC-152a" # "HFC-227ea" # "HFC-236fa" # "HFC-245fa" # "HFC-365mfc" # "HFC-43-10mee" # "CF4" # "C2F6" # "C3F8" # "C4F10" # "C5F12" # "C6F14" # "C7F16" # "C8F18" # "c-C4F8" # "NF3" # "SF6" # "SO2F2" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16.3. Other Flourinated Gases Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Other flourinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17. Radiation --&gt; Shortwave Cloud Ice Shortwave radiative properties of ice crystals in clouds 17.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General shortwave radiative interactions with cloud ice crystals End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bi-modal size distribution" # "ensemble of ice crystals" # "mean projected area" # "ice water path" # "crystal asymmetry" # "crystal aspect ratio" # "effective crystal radius" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.2. Physical Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical representation of cloud ice crystals in the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.3. Optical Methods Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Optical methods applicable to cloud ice crystals in the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18. Radiation --&gt; Shortwave Cloud Liquid Shortwave radiative properties of liquid droplets in clouds 18.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General shortwave radiative interactions with cloud liquid droplets End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud droplet number concentration" # "effective cloud droplet radii" # "droplet size distribution" # "liquid water path" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18.2. Physical Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical representation of cloud liquid droplets in the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "geometric optics" # "Mie theory" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18.3. Optical Methods Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Optical methods applicable to cloud liquid droplets in the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_inhomogeneity.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Monte Carlo Independent Column Approximation" # "Triplecloud" # "analytic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 19. Radiation --&gt; Shortwave Cloud Inhomogeneity Cloud inhomogeneity in the shortwave radiation scheme 19.1. Cloud Inhomogeneity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method for taking into account horizontal cloud inhomogeneity End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 20. Radiation --&gt; Shortwave Aerosols Shortwave radiative properties of aerosols 20.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General shortwave radiative interactions with aerosols End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "number concentration" # "effective radii" # "size distribution" # "asymmetry" # "aspect ratio" # "mixing state" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 20.2. Physical Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical representation of aerosols in the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 20.3. Optical Methods Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Optical methods applicable to aerosols in the shortwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_gases.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 21. Radiation --&gt; Shortwave Gases Shortwave radiative properties of gases 21.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General shortwave radiative interactions with gases End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22. Radiation --&gt; Longwave Radiation Properties of the longwave radiation scheme 22.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of longwave radiation in the atmosphere End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.2. Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name for the longwave radiation scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_integration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "wide-band model" # "correlated-k" # "exponential sum fitting" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 22.3. Spectral Integration Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Longwave radiation scheme spectral integration End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.transport_calculation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "two-stream" # "layer interaction" # "bulk" # "adaptive" # "multi-stream" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 22.4. Transport Calculation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Longwave radiation transport calculation methods End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_intervals') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 22.5. Spectral Intervals Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Longwave radiation scheme number of spectral intervals End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.greenhouse_gas_complexity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CO2" # "CH4" # "N2O" # "CFC-11 eq" # "CFC-12 eq" # "HFC-134a eq" # "Explicit ODSs" # "Explicit other fluorinated gases" # "O3" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23. Radiation --&gt; Longwave GHG Representation of greenhouse gases in the longwave radiation scheme 23.1. Greenhouse Gas Complexity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Complexity of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.ODS') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CFC-12" # "CFC-11" # "CFC-113" # "CFC-114" # "CFC-115" # "HCFC-22" # "HCFC-141b" # "HCFC-142b" # "Halon-1211" # "Halon-1301" # "Halon-2402" # "methyl chloroform" # "carbon tetrachloride" # "methyl chloride" # "methylene chloride" # "chloroform" # "methyl bromide" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.2. ODS Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Ozone depleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.other_flourinated_gases') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HFC-134a" # "HFC-23" # "HFC-32" # "HFC-125" # "HFC-143a" # "HFC-152a" # "HFC-227ea" # "HFC-236fa" # "HFC-245fa" # "HFC-365mfc" # "HFC-43-10mee" # "CF4" # "C2F6" # "C3F8" # "C4F10" # "C5F12" # "C6F14" # "C7F16" # "C8F18" # "c-C4F8" # "NF3" # "SF6" # "SO2F2" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.3. Other Flourinated Gases Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Other flourinated gases whose longwave radiative effects are explicitly taken into account in the atmosphere model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 24. Radiation --&gt; Longwave Cloud Ice Longwave radiative properties of ice crystals in clouds 24.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General longwave radiative interactions with cloud ice crystals End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.physical_reprenstation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bi-modal size distribution" # "ensemble of ice crystals" # "mean projected area" # "ice water path" # "crystal asymmetry" # "crystal aspect ratio" # "effective crystal radius" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 24.2. Physical Reprenstation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical representation of cloud ice crystals in the longwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 24.3. Optical Methods Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Optical methods applicable to cloud ice crystals in the longwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25. Radiation --&gt; Longwave Cloud Liquid Longwave radiative properties of liquid droplets in clouds 25.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General longwave radiative interactions with cloud liquid droplets End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud droplet number concentration" # "effective cloud droplet radii" # "droplet size distribution" # "liquid water path" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25.2. Physical Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical representation of cloud liquid droplets in the longwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "geometric optics" # "Mie theory" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25.3. Optical Methods Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Optical methods applicable to cloud liquid droplets in the longwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_inhomogeneity.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Monte Carlo Independent Column Approximation" # "Triplecloud" # "analytic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 26. Radiation --&gt; Longwave Cloud Inhomogeneity Cloud inhomogeneity in the longwave radiation scheme 26.1. Cloud Inhomogeneity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method for taking into account horizontal cloud inhomogeneity End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 27. Radiation --&gt; Longwave Aerosols Longwave radiative properties of aerosols 27.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General longwave radiative interactions with aerosols End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "number concentration" # "effective radii" # "size distribution" # "asymmetry" # "aspect ratio" # "mixing state" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 27.2. Physical Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical representation of aerosols in the longwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 27.3. Optical Methods Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Optical methods applicable to aerosols in the longwave radiation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_gases.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 28. Radiation --&gt; Longwave Gases Longwave radiative properties of gases 28.1. General Interactions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General longwave radiative interactions with gases End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29. Turbulence Convection Atmosphere Convective Turbulence and Clouds 29.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of atmosphere convection and turbulence End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Mellor-Yamada" # "Holtslag-Boville" # "EDMF" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 30. Turbulence Convection --&gt; Boundary Layer Turbulence Properties of the boundary layer turbulence scheme 30.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Boundary layer turbulence scheme name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "TKE prognostic" # "TKE diagnostic" # "TKE coupled with water" # "vertical profile of Kz" # "non-local diffusion" # "Monin-Obukhov similarity" # "Coastal Buddy Scheme" # "Coupled with convection" # "Coupled with gravity waves" # "Depth capped at cloud base" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 30.2. Scheme Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Boundary layer turbulence scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 30.3. Closure Order Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Boundary layer turbulence scheme closure order End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.counter_gradient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 30.4. Counter Gradient Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Uses boundary layer turbulence scheme counter gradient End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 31. Turbulence Convection --&gt; Deep Convection Properties of the deep convection scheme 31.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Deep convection scheme name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "adjustment" # "plume ensemble" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31.2. Scheme Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Deep convection scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CAPE" # "bulk" # "ensemble" # "CAPE/WFN based" # "TKE/CIN based" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31.3. Scheme Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Deep convection scheme method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vertical momentum transport" # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "updrafts" # "downdrafts" # "radiative effect of anvils" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31.4. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical processes taken into account in the parameterisation of deep convection End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31.5. Microphysics Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Microphysics scheme for deep convection. Microphysical processes directly control the amount of detrainment of cloud hydrometeor and water vapor from updrafts End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 32. Turbulence Convection --&gt; Shallow Convection Properties of the shallow convection scheme 32.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Shallow convection scheme name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "cumulus-capped boundary layer" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 32.2. Scheme Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N shallow convection scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "same as deep (unified)" # "included in boundary layer turbulence" # "separate diagnosis" # TODO - please enter value(s) Explanation: 32.3. Scheme Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 shallow convection scheme method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 32.4. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Physical processes taken into account in the parameterisation of shallow convection End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 32.5. Microphysics Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Microphysics scheme for shallow convection End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 33. Microphysics Precipitation Large Scale Cloud Microphysics and Precipitation 33.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of large scale cloud microphysics and precipitation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 34. Microphysics Precipitation --&gt; Large Scale Precipitation Properties of the large scale precipitation scheme 34.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name of the large scale precipitation parameterisation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.hydrometeors') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "liquid rain" # "snow" # "hail" # "graupel" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 34.2. Hydrometeors Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Precipitating hydrometeors taken into account in the large scale precipitation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics Properties of the large scale cloud microphysics scheme 35.1. Scheme Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name of the microphysics parameterisation scheme used for large scale clouds. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mixed phase" # "cloud droplets" # "cloud ice" # "ice nucleation" # "water vapour deposition" # "effect of raindrops" # "effect of snow" # "effect of graupel" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 35.2. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Large scale cloud microphysics processes End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 36. Cloud Scheme Characteristics of the cloud scheme 36.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of the atmosphere cloud scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 36.2. Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name for the cloud scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.atmos_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "atmosphere_radiation" # "atmosphere_microphysics_precipitation" # "atmosphere_turbulence_convection" # "atmosphere_gravity_waves" # "atmosphere_solar" # "atmosphere_volcano" # "atmosphere_cloud_simulator" # TODO - please enter value(s) Explanation: 36.3. Atmos Coupling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Atmosphere components that are linked to the cloud scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.uses_separate_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 36.4. Uses Separate Treatment Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Different cloud schemes for the different types of clouds (convective, stratiform and boundary layer) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "entrainment" # "detrainment" # "bulk cloud" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 36.5. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Processes included in the cloud scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 36.6. Prognostic Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is the cloud scheme a prognostic scheme? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.diagnostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 36.7. Diagnostic Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is the cloud scheme a diagnostic scheme? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud amount" # "liquid" # "ice" # "rain" # "snow" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 36.8. Prognostic Variables Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List the prognostic variables used by the cloud scheme, if applicable. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_overlap_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "random" # "maximum" # "maximum-random" # "exponential" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 37. Cloud Scheme --&gt; Optical Cloud Properties Optical cloud properties 37.1. Cloud Overlap Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Method for taking into account overlapping of cloud layers End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 37.2. Cloud Inhomogeneity Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Method for taking into account cloud inhomogeneity End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s) Explanation: 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution Sub-grid scale water distribution 38.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sub-grid scale water distribution type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 38.2. Function Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sub-grid scale water distribution function name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 38.3. Function Order Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sub-grid scale water distribution function type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s) Explanation: 38.4. Convection Coupling Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Sub-grid scale water distribution coupling with convection End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s) Explanation: 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution Sub-grid scale ice distribution 39.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sub-grid scale ice distribution type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 39.2. Function Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sub-grid scale ice distribution function name End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 39.3. Function Order Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sub-grid scale ice distribution function type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s) Explanation: 39.4. Convection Coupling Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Sub-grid scale ice distribution coupling with convection End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 40. Observation Simulation Characteristics of observation simulation 40.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of observation simulator characteristics End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_estimation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "no adjustment" # "IR brightness" # "visible optical depth" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 41. Observation Simulation --&gt; Isscp Attributes ISSCP Characteristics 41.1. Top Height Estimation Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Cloud simulator ISSCP top height estimation methodUo End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "lowest altitude level" # "highest altitude level" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 41.2. Top Height Direction Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator ISSCP top height direction End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.run_configuration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Inline" # "Offline" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 42. Observation Simulation --&gt; Cosp Attributes CFMIP Observational Simulator Package attributes 42.1. Run Configuration Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator COSP run configuration End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_grid_points') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 42.2. Number Of Grid Points Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator COSP number of grid points End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_sub_columns') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 42.3. Number Of Sub Columns Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator COSP number of sub-cloumns used to simulate sub-grid variability End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 42.4. Number Of Levels Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator COSP number of levels End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.frequency') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 43. Observation Simulation --&gt; Radar Inputs Characteristics of the cloud radar simulator 43.1. Frequency Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator radar frequency (Hz) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "surface" # "space borne" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 43.2. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator radar type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.gas_absorption') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 43.3. Gas Absorption Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator radar uses gas absorption End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.effective_radius') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 43.4. Effective Radius Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator radar uses effective radius End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.ice_types') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "ice spheres" # "ice non-spherical" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 44. Observation Simulation --&gt; Lidar Inputs Characteristics of the cloud lidar simulator 44.1. Ice Types Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Cloud simulator lidar ice type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.overlap') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "max" # "random" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 44.2. Overlap Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Cloud simulator lidar overlap End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 45. Gravity Waves Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources. 45.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of gravity wave parameterisation in the atmosphere End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.sponge_layer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Rayleigh friction" # "Diffusive sponge layer" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 45.2. Sponge Layer Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Sponge layer in the upper levels in order to avoid gravity wave reflection at the top. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "continuous spectrum" # "discrete spectrum" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 45.3. Background Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Background wave distribution End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.subgrid_scale_orography') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "effect on drag" # "effect on lifting" # "enhanced topography" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 45.4. Subgrid Scale Orography Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Subgrid scale orography effects taken into account. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 46. Gravity Waves --&gt; Orographic Gravity Waves Gravity waves generated due to the presence of orography 46.1. Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name for the orographic gravity wave scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "linear mountain waves" # "hydraulic jump" # "envelope orography" # "low level flow blocking" # "statistical sub-grid scale variance" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 46.2. Source Mechanisms Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Orographic gravity wave source mechanisms End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "non-linear calculation" # "more than two cardinal directions" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 46.3. Calculation Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Orographic gravity wave calculation method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "includes boundary layer ducting" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 46.4. Propagation Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Orographic gravity wave propogation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 46.5. Dissipation Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Orographic gravity wave dissipation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 47. Gravity Waves --&gt; Non Orographic Gravity Waves Gravity waves generated by non-orographic processes. 47.1. Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Commonly used name for the non-orographic gravity wave scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convection" # "precipitation" # "background spectrum" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 47.2. Source Mechanisms Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Non-orographic gravity wave source mechanisms End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "spatially dependent" # "temporally dependent" # TODO - please enter value(s) Explanation: 47.3. Calculation Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Non-orographic gravity wave calculation method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 47.4. Propagation Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Non-orographic gravity wave propogation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 47.5. Dissipation Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Non-orographic gravity wave dissipation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 48. Solar Top of atmosphere solar insolation characteristics 48.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of solar insolation of the atmosphere End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_pathways.pathways') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "SW radiation" # "precipitating energetic particles" # "cosmic rays" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 49. Solar --&gt; Solar Pathways Pathways for solar forcing of the atmosphere 49.1. Pathways Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Pathways for the solar forcing of the atmosphere model domain End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s) Explanation: 50. Solar --&gt; Solar Constant Solar constant and top of atmosphere insolation characteristics 50.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time adaptation of the solar constant. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.fixed_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 50.2. Fixed Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If the solar constant is fixed, enter the value of the solar constant (W m-2). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.transient_characteristics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 50.3. Transient Characteristics Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 solar constant transient characteristics (W m-2) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s) Explanation: 51. Solar --&gt; Orbital Parameters Orbital parameters and top of atmosphere insolation characteristics 51.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time adaptation of orbital parameters End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.fixed_reference_date') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 51.2. Fixed Reference Date Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Reference date for fixed orbital parameters (yyyy) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.transient_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 51.3. Transient Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of transient orbital parameters End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.computation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Berger 1978" # "Laskar 2004" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 51.4. Computation Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method used for computing orbital parameters. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.insolation_ozone.solar_ozone_impact') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 52. Solar --&gt; Insolation Ozone Impact of solar insolation on stratospheric ozone 52.1. Solar Ozone Impact Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does top of atmosphere insolation impact on stratospheric ozone? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 53. Volcanos Characteristics of the implementation of volcanoes 53.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview description of the implementation of volcanic effects in the atmosphere End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.volcanoes_treatment.volcanoes_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "high frequency solar constant anomaly" # "stratospheric aerosols optical thickness" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 54. Volcanos --&gt; Volcanoes Treatment Treatment of volcanoes in the atmosphere 54.1. Volcanoes Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How volcanic effects are modeled in the atmosphere. End of explanation
3,366
Given the following text description, write Python code to implement the functionality described below step by step Description: Assignment CIE 5703 - week 6 Import libraries Step1: Rotterdam rain gauge dataset 10 min data from 2003 - 2013 Read in data Step2: Convert the dates to a readable format... Step3: Plot all data Step4: Resample the 10 min dataset to hourly accumulated data Step5: Resample 10 min dataset to 24 accumulated data Step6: Select summer and winter months as separate datasets Step7: Resample 10 min rain data to monthly accumulated data Step8: Answering the assignments 1. General statistics for 24-hour and 10-min datasets Step9: 24 h dataset Step10: Ignoring zeros Step11: 2. a. Analysis of seasonal cycles Step12: Or per year Step13: 2. b. Analysis of diurnal cycles Step14: Neglecting events <1mm/h Step15: Neglecting events < 3mm/h Step16: 2. c. Variation of diurnal cycles with seasons Step17: Neglecting events <1mm/h Step18: Neglecting events <3mm/h Step19: Repeat with winter Step20: Neglecting events <1mm/h Step21: Neglecting events <3mm/h Step22: 2. d. Diurnal cycles of intense storm events Step23: Amount of events Step24: Events in summer Step25: Amount of events Step26: 3. Fit GEV-distribution for POT values in the time series 3. a. Create plots Step27: 3. c. Compute rainfall amounts associated with return periods of 1 year, 10 years and 100 years Step28: Lower since we're missing out the heavy rainfall events in 2015 and 2016 (only 10 year dataset) Update 10.10.2017 Block maxima & GEV Step29: GEV and block maxima of monthly maxima of 1h data Step30: GPD & POT Step31: GPD and POT of data>10mm/h Step32: Boxplot of POT values
Python Code: import matplotlib.pyplot as plt import pandas as pd import numpy as np %matplotlib inline plt.style.use('ggplot') Explanation: Assignment CIE 5703 - week 6 Import libraries End of explanation data = pd.read_csv('rotterdam_rg_2003-2014.csv', skipinitialspace=True) Explanation: Rotterdam rain gauge dataset 10 min data from 2003 - 2013 Read in data End of explanation dates = data['Datum'] time = data['Tijd'] dates = dates.map(str) date_split = dates.str.extract('(.{4})(.{2})(.{2})', expand=True) time=time.apply(lambda x: '%04d' % x) time_split = time.str.extract('(.{2})(.{2})', expand=True) date_split.loc[:,3] = time_split.loc[:,0] date_split.loc[:,4] = time_split.loc[:,1] data.loc[:,'dt'] = pd.to_datetime(dict(year=date_split[0], month=date_split[1], day=date_split[2], hour=date_split[3], minute=date_split[4])) data.index=data['dt'] data.head() Explanation: Convert the dates to a readable format... End of explanation plt.plot(data['dt'], data["R10m"]) plt.ylabel('mm/10min') plt.gcf().autofmt_xdate() Explanation: Plot all data End of explanation data_1h = pd.DataFrame() data_1h['mean_rain'] = data.R10m.resample('H').mean() data_1h['accum_rain'] = data.R10m.resample('H').sum() data_1h.tail() plt.plot(data_1h["accum_rain"]) plt.ylabel('mm/1h') plt.gcf().autofmt_xdate() plt.plot(data_1h["mean_rain"]) plt.ylabel(r'mm/10min ($\varnothing$ of 1h)') plt.gcf().autofmt_xdate() Explanation: Resample the 10 min dataset to hourly accumulated data End of explanation data_24h = pd.DataFrame() data_24h['mean_rain'] = data.R10m.resample('D').mean() data_24h['accum_rain'] = data.R10m.resample('D').sum() plt.plot(data_24h["accum_rain"]) plt.ylabel('mm/24h') plt.gcf().autofmt_xdate() plt.plot(data_24h["mean_rain"]) plt.ylabel(r'mm/10min ($\varnothing$ of 24h)') plt.gcf().autofmt_xdate() Explanation: Resample 10 min dataset to 24 accumulated data End of explanation data_summer_1h = data_1h.loc[(data_1h.index.month>=4) & (data_1h.index.month<=9)] mask_start = (data_1h.index.month >= 1) & (data_1h.index.month <= 3) mask_end = (data_1h.index.month >= 10) & (data_1h.index.month <= 12) mask = mask_start | mask_end data_winter_1h = data_1h.loc[mask] plt.plot(data_summer_1h["accum_rain"]) plt.ylabel('mm/h') plt.gcf().autofmt_xdate() plt.plot(data_winter_1h["accum_rain"]) plt.ylabel('mm/h') plt.gcf().autofmt_xdate() Explanation: Select summer and winter months as separate datasets End of explanation data_monthly = pd.DataFrame() data_monthly['mean_rain'] = data.R10m.resample('M').mean() data_monthly['accum_rain'] = data.R10m.resample('M').sum() plt.plot(data_monthly["accum_rain"]) plt.ylabel('mm/month') plt.gcf().autofmt_xdate() plt.plot(data_monthly["mean_rain"]) plt.ylabel(r'mm/10min ($\varnothing$ per month)') plt.gcf().autofmt_xdate() Explanation: Resample 10 min rain data to monthly accumulated data End of explanation print('Mean: %s' % str(data.R10m.mean())) print('Std: %s' % str(data.R10m.std())) print('Skew: %s' % str(data.R10m.skew())) data.R10m.hist(bins = 100) plt.xlabel('mm/10min') plt.gca().set_yscale("log") cur_data = data.R10m.loc[data.R10m>0] hist_d = plt.hist(cur_data, bins=100) plt.xlabel('mm/10min') plt.gca().set_yscale("log") Explanation: Answering the assignments 1. General statistics for 24-hour and 10-min datasets: compute mean, standard deviation, skewness; plot histograms 10 min dataset End of explanation print('Mean: %s' % str(data_24h.accum_rain.mean())) print('Std: %s' % str(data_24h.accum_rain.std())) print('Skew: %s' % str(data_24h.accum_rain.skew())) data_24h.accum_rain.hist(bins = 100) plt.gca().set_yscale("log") plt.xlabel('mm/24h') Explanation: 24 h dataset End of explanation cur_data = data_24h.accum_rain.loc[data_24h.accum_rain>0] hist_d = plt.hist(cur_data, bins=100) plt.gca().set_yscale("log") plt.xlabel('mm/24h') data_24h.mean_rain.hist(bins = 100) plt.xlabel(r'mm/10min ($\varnothing$ per 24h)') plt.gca().set_yscale("log") selected_monthly_data = data_monthly #selected_monthly_data = data_monthly[(data_monthly.index >= '2004-01-01')] selected_monthly_data.head() Explanation: Ignoring zeros: End of explanation pd.options.mode.chained_assignment = None # default='warn' selected_monthly_data['mon'] = selected_monthly_data.index.month selected_monthly_data['year'] = selected_monthly_data.index.year selected_monthly_data.boxplot(column=['accum_rain'], by='mon', sym='+') plt.ylabel('mm/month') Explanation: 2. a. Analysis of seasonal cycles: create boxplots for monthly totals across all year End of explanation selected_monthly_data.boxplot(column=['accum_rain'], by='year', sym='+') plt.ylabel('mm/month') plt.gcf().autofmt_xdate() Explanation: Or per year: End of explanation data_1h['hour'] = data_1h.index.hour data_1h.boxplot(column=['accum_rain'], by='hour', sym='+') plt.ylabel('mm/h') Explanation: 2. b. Analysis of diurnal cycles: create boxplots for hourly totals for entire dataseries End of explanation cur_df = data_1h.copy() cur_df.loc[cur_df.accum_rain<1, 'accum_rain'] = np.nan cur_df.boxplot(column=['accum_rain'], by='hour', sym='+') plt.ylabel('mm/h') Explanation: Neglecting events <1mm/h End of explanation cur_df = data_1h.copy() cur_df.loc[cur_df.accum_rain<3, 'accum_rain'] = np.nan cur_df.boxplot(column=['accum_rain'], by='hour', sym='+') plt.ylabel('mm/h') Explanation: Neglecting events < 3mm/h End of explanation data_summer_1h['hour'] = data_summer_1h.index.hour data_summer_1h.boxplot(column=['accum_rain'], by='hour', sym='+') plt.ylabel('mm/h') Explanation: 2. c. Variation of diurnal cycles with seasons: create boxplots for hourly totals for summer season (April – September) and for winter season (October-March) End of explanation cur_df = data_summer_1h.copy() cur_df.loc[cur_df.accum_rain<1, 'accum_rain'] = np.nan cur_df.boxplot(column=['accum_rain'], by='hour', sym='+') plt.ylabel('mm/h') Explanation: Neglecting events <1mm/h End of explanation cur_df = data_summer_1h.copy() cur_df.loc[cur_df.accum_rain<3, 'accum_rain'] = np.nan cur_df.boxplot(column=['accum_rain'], by='hour', sym='+') plt.ylabel('mm/h') Explanation: Neglecting events <3mm/h End of explanation data_winter_1h['hour'] = data_winter_1h.index.hour data_winter_1h.boxplot(column=['accum_rain'], by='hour', sym='+') plt.ylabel('mm/h') Explanation: Repeat with winter End of explanation cur_df = data_winter_1h.copy() cur_df.loc[cur_df.accum_rain<1, 'accum_rain'] = np.nan cur_df.boxplot(column=['accum_rain'], by='hour', sym='+') plt.ylabel('mm/h') Explanation: Neglecting events <1mm/h End of explanation cur_df = data_winter_1h.copy() cur_df.loc[cur_df.accum_rain<3, 'accum_rain'] = np.nan cur_df.boxplot(column=['accum_rain'], by='hour', sym='+') plt.ylabel('mm/h') Explanation: Neglecting events <3mm/h End of explanation rotterdam_1h_exceeds = data_1h.accum_rain[data_1h.accum_rain>5] y = np.array(rotterdam_1h_exceeds) N = len(y) x = range(N) plt.bar(x, y) plt.ylabel('mm/h') Explanation: 2. d. Diurnal cycles of intense storm events: Count nr of exceedances above 10 mm/h threshold for each hour of the day, for entire data series and for summer months only Show rainfall events > 10mm /h over entire 1h accumulated dataset End of explanation print(len(rotterdam_1h_exceeds)) Explanation: Amount of events End of explanation rotterdam_1h_exceeds_summer = data_summer_1h.accum_rain[data_summer_1h.accum_rain>10] y = np.array(rotterdam_1h_exceeds_summer) N = len(y) x = range(N) plt.bar(x, y) plt.ylabel('mm/h') Explanation: Events in summer End of explanation print(len(rotterdam_1h_exceeds_summer)) Explanation: Amount of events End of explanation exceed_hist = plt.hist(rotterdam_1h_exceeds, bins=100) from scipy.stats import genextreme x = np.linspace(5, 30, 1000) y = np.array(rotterdam_1h_exceeds[:]) np.seterr(divide='ignore', invalid='ignore') genextreme.fit(y) np.seterr(divide='ignore', invalid='ignore') pdf = plt.plot(x, genextreme.pdf(x, *genextreme.fit(y))) pdf_hist = plt.hist(y, bins=50, normed=True, histtype='stepfilled', alpha=0.8) Explanation: 3. Fit GEV-distribution for POT values in the time series 3. a. Create plots: histogram and GEV fit and interpret End of explanation genextreme.ppf((1-1/1), *genextreme.fit(y)) genextreme.ppf((1-1/10), *genextreme.fit(y)) genextreme.ppf((1-1/100), *genextreme.fit(y)) Explanation: 3. c. Compute rainfall amounts associated with return periods of 1 year, 10 years and 100 years End of explanation from scipy.stats import genpareto temp_monthly = data_1h.groupby(pd.TimeGrouper(freq='M')) block_max_y = np.array(temp_monthly.accum_rain.max()) print(block_max_y) print(len(block_max_y)) x = np.linspace(0, 30, 1000) pdf_bm = plt.plot(x, genextreme.pdf(x, *genextreme.fit(block_max_y))) pdf_hist_bm = plt.hist(block_max_y, bins=100, normed=True, histtype='stepfilled', alpha=0.8) Explanation: Lower since we're missing out the heavy rainfall events in 2015 and 2016 (only 10 year dataset) Update 10.10.2017 Block maxima & GEV End of explanation genextreme.fit(block_max_y) genextreme.ppf((1-1/10), *genextreme.fit(block_max_y)) Explanation: GEV and block maxima of monthly maxima of 1h data End of explanation pdf_bm = plt.plot(x, genpareto.pdf(x, *genpareto.fit(y))) pdf_hist_bm = plt.hist(y, bins=100, normed=True, histtype='stepfilled', alpha=0.8) Explanation: GPD & POT End of explanation genpareto.fit(y) genpareto.ppf((1-1/10), *genpareto.fit(y)) Explanation: GPD and POT of data>10mm/h End of explanation event_occurences = pd.DataFrame(rotterdam_1h_exceeds) event_occurences['hour'] = event_occurences.index.hour event_occurences.boxplot(column=['accum_rain'], by='hour', sym='+') event_occurences.hour.value_counts(sort=False) cur_hist = plt.hist(event_occurences.hour, bins=24, histtype='stepfilled') plt.xticks(range(24)) plt.xlabel('hour') Explanation: Boxplot of POT values End of explanation
3,367
Given the following text description, write Python code to implement the functionality described below step by step Description: Tricks of the trade Step1: Introducing randomized search We have already built a random forest classifier, tuned using grid search, to predict spam emails (here). Grid search exhaustively searches through some manually prespecified HP values and reports the best option and is quite commonly used. Another way to search through hyperparameter space to find optimums is by using randomized search. In randomized search, we sample HP values a certain number of times from some distribution which we prespecify in advance. There is evidence that randomized search is more efficient than grid search, because not all HPs are as important to tune and grid search effectively wastes time by exhaustively checking each option when it might not be necessary. By contrast, the random experiments utilized by randomized search explore the important dimensions of hyperparameter space with more coverage, while simultaneously not devoting too many trials to dimensions which are not as important. So, randomized search is very useful for high-dimensional feature spaces. To use randomized search to tune random forests, we first specify the distributions we want to sample from. If we were to sample from a uniform distribution and have the same number of n_iter trials, randomized search would be practically equivalent to grid search. Step2: We then run the random search Step3: Either grid search or randomized search is probably fine for tuning random forests. Fancier techniques for hyperparameter optimization include methods based on gradient descent, grad student descent, and Bayesian approaches which update prior beliefs about likely values of hyperparameters based on the data (see Spearmint and hyperopt). Let's look at how to tune our two other predictors. For simplicity, let's revert back to grid search. Tuning a support vector machine Let's train our second algorithm, support vector machines (SVMs) to do the same exact prediction task. A great introduction to the theory behind SVMs can be read here. Briefly, SVMs search for hyperplanes in the feature space which best divide the different classes in your dataset. Crucially, SVMs can find non-linear decision boundaries between classes using a process called kernelling, which projects the data into a higher-dimensional space. This sounds a bit abstract, but if you've ever fit a linear regression to power-transformed variables (e.g. maybe you used x^2, x^3 as features), you're already familiar with the concept. Do have a read of the guide we linked above. SVMs can use different types of kernels, like Gaussian or radial ones, to throw the data into a different space. Let's use the latter. The main hyperparameters we must tune for SVMs are gamma (a kernel parameter, controlling how far we 'throw' the data into the new feature space) and C (which controls the bias-variance tradeoff of the model). Step4: How does this compare an untuned SVM? What about an SVM with especially badly tuned hyperparams? Tuning a logistic regression classifier The last algorithm you'll tune and apply to predict spam emails is a logistic regression classifier. This is a type of regression model which is used for predicting binary outcomes (like spam/non-spam). We fit a straight line through our transformed data, where the x axes remain the same but the dependent variable is the log odds of data points being one of the two classes. So essentialy, logistic regression is just a transformed version of linear regression. Check out Charles' explanation and implementation of logistic regression [here]. One topic you will often encounter in machine learning is regularization, which is a class of techniques to reduce overfitting. The idea is that we often don't just want to maximize model fit, but also penalize the model for e.g. using too many parameters, or assigning coefficients or weights that are too big. Read more about regularized regression here. We can adjust just how much regularization we want by adjusting regularization hyperparameters, and scikit-learn comes with some models that can very efficiently fit data for a range of regulatization hyperparameter values. This is the case for regularized linear regression models like Lasso regression and ridge regression. These classes are shortcuts to doing cross-validated selection of models with different level of regularization. But we can also optimize how much regularization we want ourselves, as well as tuning the values of other hyperparameters, in the same manner as we've been doing.
Python Code: import wget import pandas as pd import numpy as np from sklearn.cross_validation import train_test_split # Import the dataset data_url = 'https://raw.githubusercontent.com/nslatysheva/data_science_blogging/master/datasets/spam/spam_dataset.csv' dataset = wget.download(data_url) dataset = pd.read_csv(dataset, sep=",") # Convert dataframe to numpy array and split # data into input matrix X and class label vector y npArray = np.array(dataset) X = npArray[:,:-1].astype(float) y = npArray[:,-1] # Split into training and test sets XTrain, XTest, yTrain, yTest = train_test_split(X, y, random_state=1) Explanation: Tricks of the trade: expanding your machine learning toolkit Introduction Previously, we learned about the importance tuning our machine learning algorithms in order to improve prediction accuracy. We demonstrated tuning a random forest classifier using grid search, and how cross-validation can help avoid overfitting when tuning hyperparameters (HPs). Here, we introduce a different strategy for traversing hyperparameter space - randomized search. We also demonstrate the process of tuning and training two other algorithms - a support vector machine and a logistic regression classifier. We'll keep working with the spam dataset, which contains features relating to the frequency of words ("money" and "viagra") and symbols (like "!!!") in spam and non-spam emails. Our goal is to tune and apply different algorithms to these features in order to predict whether a given email is spam. Here are the things we'll cover in this blog post: In the next blog post, you will learn how to take different tuned machine learning algorithms and combine them to build different types of ensemble models, which are aggregated models which frequently have higher accuracy and lower overfitting. Loading and train/test splitting the dataset We start off by collecting the dataset. We have covered the data loading, conversion and train/test split previously, so we won't repeat the explanations here. End of explanation from scipy.stats import uniform from scipy.stats import norm from sklearn.grid_search import RandomizedSearchCV from sklearn import metrics # Designate distributions to sample hyperparameters from n_estimators = np.random.uniform(25, 45, 5).astype(int) max_features = np.random.normal(20, 10, 5).astype(int) hyperparameters = {'n_estimators': list(n_estimators), 'max_features': list(max_features)} print hyperparameters Explanation: Introducing randomized search We have already built a random forest classifier, tuned using grid search, to predict spam emails (here). Grid search exhaustively searches through some manually prespecified HP values and reports the best option and is quite commonly used. Another way to search through hyperparameter space to find optimums is by using randomized search. In randomized search, we sample HP values a certain number of times from some distribution which we prespecify in advance. There is evidence that randomized search is more efficient than grid search, because not all HPs are as important to tune and grid search effectively wastes time by exhaustively checking each option when it might not be necessary. By contrast, the random experiments utilized by randomized search explore the important dimensions of hyperparameter space with more coverage, while simultaneously not devoting too many trials to dimensions which are not as important. So, randomized search is very useful for high-dimensional feature spaces. To use randomized search to tune random forests, we first specify the distributions we want to sample from. If we were to sample from a uniform distribution and have the same number of n_iter trials, randomized search would be practically equivalent to grid search. End of explanation from sklearn.ensemble import RandomForestClassifier # Run randomized search randomCV = RandomizedSearchCV(RandomForestClassifier(), param_distributions=hyperparameters, n_iter=10) randomCV.fit(XTrain, yTrain) # Identify optimal hyperparameter values best_n_estim = randomCV.best_params_['n_estimators'] best_max_features = randomCV.best_params_['max_features'] print("The best performing n_estimators value is: {:5.1f}".format(best_n_estim)) print("The best performing max_features value is: {:5.1f}".format(best_max_features)) # Train classifier using optimal hyperparameter values # We could have also gotten this model out from randomCV.best_estimator_ clfRDF = RandomForestClassifier(n_estimators=best_n_estim, max_features=best_max_features) clfRDF.fit(XTrain, yTrain) RF_predictions = clfRDF.predict(XTest) print (metrics.classification_report(yTest, RF_predictions)) print ("Overall Accuracy:", round(metrics.accuracy_score(yTest, RF_predictions),2)) Explanation: We then run the random search: End of explanation from sklearn.svm import SVC # Search for good hyperparameter values # Specify values to grid search over g_range = 2. ** np.arange(-15, 5, step=5) C_range = 2. ** np.arange(-5, 15, step=5) hyperparameters = [{'gamma': g_range, 'C': C_range}] print hyperparameters from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC # Grid search using cross-validation grid = GridSearchCV(SVC(), param_grid=hyperparameters, cv=10) grid.fit(XTrain, yTrain) bestG = grid.best_params_['gamma'] bestC = grid.best_params_['C'] # Train SVM and output predictions rbfSVM = SVC(kernel='rbf', C=bestC, gamma=bestG) rbfSVM.fit(XTrain, yTrain) SVM_predictions = rbfSVM.predict(XTest) print metrics.classification_report(yTest, SVM_predictions) print "Overall Accuracy:", round(metrics.accuracy_score(yTest, SVM_predictions),2) Explanation: Either grid search or randomized search is probably fine for tuning random forests. Fancier techniques for hyperparameter optimization include methods based on gradient descent, grad student descent, and Bayesian approaches which update prior beliefs about likely values of hyperparameters based on the data (see Spearmint and hyperopt). Let's look at how to tune our two other predictors. For simplicity, let's revert back to grid search. Tuning a support vector machine Let's train our second algorithm, support vector machines (SVMs) to do the same exact prediction task. A great introduction to the theory behind SVMs can be read here. Briefly, SVMs search for hyperplanes in the feature space which best divide the different classes in your dataset. Crucially, SVMs can find non-linear decision boundaries between classes using a process called kernelling, which projects the data into a higher-dimensional space. This sounds a bit abstract, but if you've ever fit a linear regression to power-transformed variables (e.g. maybe you used x^2, x^3 as features), you're already familiar with the concept. Do have a read of the guide we linked above. SVMs can use different types of kernels, like Gaussian or radial ones, to throw the data into a different space. Let's use the latter. The main hyperparameters we must tune for SVMs are gamma (a kernel parameter, controlling how far we 'throw' the data into the new feature space) and C (which controls the bias-variance tradeoff of the model). End of explanation from sklearn.linear_model import LogisticRegression # Search for good hyperparameter values # Specify values to grid search over penalty = ["l1", "l2"] C_range = np.arange(0.1, 1.1, 0.1) hyperparameters = [{'penalty': penalty, 'C': C_range}] # Grid search using cross-validation grid = GridSearchCV(LogisticRegression(), param_grid=hyperparameters, cv=10) grid.fit(XTrain, yTrain) bestPenalty = grid.best_params_['penalty'] bestC = grid.best_params_['C'] print bestPenalty print bestC # Train model and output predictions classifier_logistic = LogisticRegression(penalty=bestPenalty, C=bestC) classifier_logistic_fit = classifier_logistic.fit(XTrain, yTrain) logistic_predictions = classifier_logistic_fit.predict(XTest) print metrics.classification_report(yTest, logistic_predictions) print "Overall Accuracy:", round(metrics.accuracy_score(yTest, logistic_predictions),2) Explanation: How does this compare an untuned SVM? What about an SVM with especially badly tuned hyperparams? Tuning a logistic regression classifier The last algorithm you'll tune and apply to predict spam emails is a logistic regression classifier. This is a type of regression model which is used for predicting binary outcomes (like spam/non-spam). We fit a straight line through our transformed data, where the x axes remain the same but the dependent variable is the log odds of data points being one of the two classes. So essentialy, logistic regression is just a transformed version of linear regression. Check out Charles' explanation and implementation of logistic regression [here]. One topic you will often encounter in machine learning is regularization, which is a class of techniques to reduce overfitting. The idea is that we often don't just want to maximize model fit, but also penalize the model for e.g. using too many parameters, or assigning coefficients or weights that are too big. Read more about regularized regression here. We can adjust just how much regularization we want by adjusting regularization hyperparameters, and scikit-learn comes with some models that can very efficiently fit data for a range of regulatization hyperparameter values. This is the case for regularized linear regression models like Lasso regression and ridge regression. These classes are shortcuts to doing cross-validated selection of models with different level of regularization. But we can also optimize how much regularization we want ourselves, as well as tuning the values of other hyperparameters, in the same manner as we've been doing. End of explanation
3,368
Given the following text description, write Python code to implement the functionality described below step by step Description: scikit-learn提 了几种交验方法 1、cross_val_score默认Stratified K Fold方法切分数据 Step1: 设置n_neighbors 不对的取值对应的结果 %matplotlib inline
Python Code: from sklearn.cross_validation import cross_val_score estimator = KNeighborsClassifier()#默认取的是邻近的5个 scores = cross_val_score(estimator, X, Y, scoring='accuracy') average_accuracy = np.mean(scores) * 100 print("The average accuracy is {0:.1f}%".format(average_accuracy)) Explanation: scikit-learn提 了几种交验方法 1、cross_val_score默认Stratified K Fold方法切分数据 End of explanation from matplotlib import pyplot as plt avg_scores = [] all_scores = [] parameter_values = list(range(1, 21)) # Include 20 for n_neighbors in parameter_values: estimator = KNeighborsClassifier(n_neighbors=n_neighbors) scores = cross_val_score(estimator, X, Y, scoring='accuracy') avg_scores.append(np.mean(scores)) all_scores.append(scores) plt.plot(parameter_values,avg_scores, '-o') plt.show() Explanation: 设置n_neighbors 不对的取值对应的结果 %matplotlib inline End of explanation
3,369
Given the following text description, write Python code to implement the functionality described below step by step Description: PyTreeReader Step1: This is to create an histogram and read a tree. Step2: Traditional looping Now we establish the baseline Step3: Enters the PyTreeReader This is how we use for the first time the PyTreeReader and how we benchmark it. The only difference within the loop body consists in invoking functions called as the branches rather than data members called as the branches themselves. Even for this trivial tree, the difference is impressive. Actually, having little read, decompression and deserialisation is better Step4: Caching in memory the entire tree It is possible to instruct the PyTreeReader to cache in memory the content of the tree. We'll see two benchmarks Step5: Loop on the cached values Step6: Selecting only some branches It can be inconvenient to construct methods to access all the branches, even more to cache all of their contents by default. This is the reason why PyTreeReader provides the pattern constructor argument. For example, in order to consider only branches whose names start with "p", one can do Step7: Pattern is indeed the pattern to match the desired branches by name (fnmatch is used). Its default value is simple, "*"; Accessing a vector of cached values Caching values in memory has a price but once this step has been accomplished, more flexibility is available. For example, all the values of a particular branch can be retrieved in bulk Step8: Wondering about the type returned by py_array? A widely adopted C++ data structure contiguous in memory
Python Code: import ROOT from PyTreeReader import PyTreeReader Explanation: PyTreeReader: Looping on TTrees in Python, fast. <hr style="border-top-width: 4px; border-top-color: #34609b;"> The PyTreeReader class solves the problem of looping in a performant way on TTrees in Python. This is achieved just in time compiling a C++ class tailored to the branches the user wants to read and interfacing it conveniently to Python. Usability is a key. The high usability of the old way of looping on trees in Python is preserved, implying for the user as little overhead as possible. Preparation We include ROOT and the PyTreeReader class. Clearly this will have to be provided more conviniently, e.g. as part of the pythonisations PyROOT already provides for TTree. End of explanation h = ROOT.TH1F("h","h",1024,-256,256) fill = h.Fill f = ROOT.TFile(ROOT.gROOT.GetTutorialsDir()+"/hsimple.root") tree = f.ntuple Explanation: This is to create an histogram and read a tree. End of explanation %%timeit -n 1 -r 1 for event in tree: fill(event.px*event.py*event.pz*event.random) Explanation: Traditional looping Now we establish the baseline: banchmark of the old way for looping. End of explanation %%timeit -n 1 -r 1 for event in PyTreeReader(tree): fill(event.px()*event.py()*event.pz()*event.random()) Explanation: Enters the PyTreeReader This is how we use for the first time the PyTreeReader and how we benchmark it. The only difference within the loop body consists in invoking functions called as the branches rather than data members called as the branches themselves. Even for this trivial tree, the difference is impressive. Actually, having little read, decompression and deserialisation is better: the difference in time is really due to the superior performance of the PyTreeReader. End of explanation %%timeit -n 1 -r 1 ptr = PyTreeReader(tree, cache=True) ptr = PyTreeReader(tree, cache=True) Explanation: Caching in memory the entire tree It is possible to instruct the PyTreeReader to cache in memory the content of the tree. We'll see two benchmarks: the time needed to cache and the time needed to loop. Caching benchmark End of explanation %%timeit -n 1 -r 1 for event in ptr: fill(event.px()*event.py()*event.pz()*event.random()) Explanation: Loop on the cached values End of explanation %%timeit -n 1 -r 1 ptr = PyTreeReader(tree, cache=True, pattern="p[*]") Explanation: Selecting only some branches It can be inconvenient to construct methods to access all the branches, even more to cache all of their contents by default. This is the reason why PyTreeReader provides the pattern constructor argument. For example, in order to consider only branches whose names start with "p", one can do: End of explanation for py in ptr.py_array()[:10]: print py # Better stopping after a few of them :) Explanation: Pattern is indeed the pattern to match the desired branches by name (fnmatch is used). Its default value is simple, "*"; Accessing a vector of cached values Caching values in memory has a price but once this step has been accomplished, more flexibility is available. For example, all the values of a particular branch can be retrieved in bulk: End of explanation ptr.py_array() Explanation: Wondering about the type returned by py_array? A widely adopted C++ data structure contiguous in memory: End of explanation
3,370
Given the following text description, write Python code to implement the functionality described below step by step Description: Iris Scatterplot A simple example of using a bl.ock as the basis for a D3 visualization in Jupyter Using this bl.ocks example as a template, we will construct a scatterplot of the canonical Iris dataset. Notebook Config Step1: Data The bl.ocks example uses a tsv file with the iris dataset. If you click on the block number at the top of the bl.ocks post, it will take you to the github gist upon which this bl.ocks entry is based. From there you can navigate to the raw version of the tsv file, and read that into a Pandas dataframe, as below. (Mind you, there are also many many other ways of getting this canonical dataset.) Step2: A trick of the D3 trade is to know that its file readers usually output the data in the form of an array of dictionaries. As such, we will reformat our tabular data that way in preparation for it to be used in the graph below. Step3: CSS and JavaScript based on bl.ocks example Note that in the below css_text, we have removed the 'body' style reference from the original bl.ocks text. This is to avoid this style changing the rest of the notebook. Step4: The javascript below was copied directly from the bl.ocks script text, and then six lines were changed, as noted by // **** (the double-backslash is a comment in javascript, so these lines will not be executed). The first set of changes is to the width and height of the image. The second change is simply to reference a different DOM element as the starting point. The remaining changes are to replace the data-file reading step with a direct infusion of data into the script. (Note that the $ characters denote replacement points in the Template object.) Step5: And finally, the viz
Python Code: from IPython.core.display import display, HTML from string import Template import pandas as pd import json, random HTML('<script src="lib/d3/d3.min.js"></script>') Explanation: Iris Scatterplot A simple example of using a bl.ock as the basis for a D3 visualization in Jupyter Using this bl.ocks example as a template, we will construct a scatterplot of the canonical Iris dataset. Notebook Config End of explanation filename = 'https://gist.githubusercontent.com/mbostock/3887118/raw/2e68ffbeb23fe4dadd9b0f6bca62e9def6ee9e17/data.tsv' iris = pd.read_csv(filename,sep="\t") iris.head() Explanation: Data The bl.ocks example uses a tsv file with the iris dataset. If you click on the block number at the top of the bl.ocks post, it will take you to the github gist upon which this bl.ocks entry is based. From there you can navigate to the raw version of the tsv file, and read that into a Pandas dataframe, as below. (Mind you, there are also many many other ways of getting this canonical dataset.) End of explanation iris_array_of_dicts = iris.to_dict(orient='records') iris_array_of_dicts[:5] Explanation: A trick of the D3 trade is to know that its file readers usually output the data in the form of an array of dictionaries. As such, we will reformat our tabular data that way in preparation for it to be used in the graph below. End of explanation css_text = ''' .axis path, .axis line { fill: none; stroke: #000; shape-rendering: crispEdges; } .dot { stroke: #000; } ''' Explanation: CSS and JavaScript based on bl.ocks example Note that in the below css_text, we have removed the 'body' style reference from the original bl.ocks text. This is to avoid this style changing the rest of the notebook. End of explanation js_text_template = Template(''' var margin = {top: 20, right: 20, bottom: 30, left: 40}, // **** width = 960 - margin.left - margin.right, **** // **** height = 500 - margin.top - margin.bottom; **** width = 720 - margin.left - margin.right, height = 375 - margin.top - margin.bottom; var x = d3.scale.linear() .range([0, width]); var y = d3.scale.linear() .range([height, 0]); var color = d3.scale.category10(); var xAxis = d3.svg.axis() .scale(x) .orient("bottom"); var yAxis = d3.svg.axis() .scale(y) .orient("left"); // **** var svg = d3.select("body").append("svg") **** var svg = d3.select("#$graphdiv").append("svg") .attr("width", width + margin.left + margin.right) .attr("height", height + margin.top + margin.bottom) .append("g") .attr("transform", "translate(" + margin.left + "," + margin.top + ")"); // **** d3.tsv("data.tsv", function(error, data) { **** // **** if (error) throw error; **** var data = $python_data ; data.forEach(function(d) { d.sepalLength = +d.sepalLength; d.sepalWidth = +d.sepalWidth; }); x.domain(d3.extent(data, function(d) { return d.sepalWidth; })).nice(); y.domain(d3.extent(data, function(d) { return d.sepalLength; })).nice(); svg.append("g") .attr("class", "x axis") .attr("transform", "translate(0," + height + ")") .call(xAxis) .append("text") .attr("class", "label") .attr("x", width) .attr("y", -6) .style("text-anchor", "end") .text("Sepal Width (cm)"); svg.append("g") .attr("class", "y axis") .call(yAxis) .append("text") .attr("class", "label") .attr("transform", "rotate(-90)") .attr("y", 6) .attr("dy", ".71em") .style("text-anchor", "end") .text("Sepal Length (cm)") svg.selectAll(".dot") .data(data) .enter().append("circle") .attr("class", "dot") .attr("r", 3.5) .attr("cx", function(d) { return x(d.sepalWidth); }) .attr("cy", function(d) { return y(d.sepalLength); }) .style("fill", function(d) { return color(d.species); }); var legend = svg.selectAll(".legend") .data(color.domain()) .enter().append("g") .attr("class", "legend") .attr("transform", function(d, i) { return "translate(0," + i * 20 + ")"; }); legend.append("rect") .attr("x", width - 18) .attr("width", 18) .attr("height", 18) .style("fill", color); legend.append("text") .attr("x", width - 24) .attr("y", 9) .attr("dy", ".35em") .style("text-anchor", "end") .text(function(d) { return d; }); // **** }); **** ''') Explanation: The javascript below was copied directly from the bl.ocks script text, and then six lines were changed, as noted by // **** (the double-backslash is a comment in javascript, so these lines will not be executed). The first set of changes is to the width and height of the image. The second change is simply to reference a different DOM element as the starting point. The remaining changes are to replace the data-file reading step with a direct infusion of data into the script. (Note that the $ characters denote replacement points in the Template object.) End of explanation html_template = Template(''' <style> $css_text </style> <div id="graph-div"></div> <script> $js_text </script> ''') js_text = js_text_template.substitute({'python_data': json.dumps(iris_array_of_dicts), 'graphdiv': 'graph-div'}) HTML(html_template.substitute({'css_text': css_text, 'js_text': js_text})) Explanation: And finally, the viz End of explanation
3,371
Given the following text description, write Python code to implement the functionality described below step by step Description: 3D Animation This is harder than we would like to do in a workshop. But, just for fun, let's do a 3D animation. We will draw a torus that deforms into a knot. Let try to animate. We start with the parameterization of a circle, of radius 2 Step1: Then, we set up the parameterizations for the torus and the knot, using a meshgrid from u,v. Step2: We need an initialization function, an animation function, and then we call the animator to put it all together. Step3: Finally, we call the HMML code to conver the animation object into a video. (This depends on having a MovieWriter installed on your system. Should be fine on syzygy.ca but it does not work on my Mac unless I install ffmpeg.) Step4: If you click on the image above, you will see there is a button that allows you to download the animation as an mp4 file directly. Or you can use the following command
Python Code: %matplotlib inline from numpy import * from matplotlib.pyplot import * from mpl_toolkits.mplot3d import Axes3D from matplotlib import animation from IPython.display import HTML Explanation: 3D Animation This is harder than we would like to do in a workshop. But, just for fun, let's do a 3D animation. We will draw a torus that deforms into a knot. Let try to animate. We start with the parameterization of a circle, of radius 2: $$x=2\sin u$$ $$y=2\cos u$$ $$z = 0$$ and want to interpolate it to the equation for a knot: $$x=\sin u+2\sin 2u$$ $$y=\cos u-2\cos 2u$$ $$z = -\sin 3u.$$ A linear interpolation between the two would look something like $$x = ax_{torus} + (1-a)x_{knot},$$ and similar for the other components. To get a surface, we draw a little circle around each point on the curve, parameterized by a second variable $v$: $$x_{vec}=\sin u \cos v$$ $$y_{vec}=\cos u \cos v$$ $$z_{vec}=\sin v $$ We can scale this vector by some small parameter $r$ to get the proper thickness for the torus/knot. First, we load in the packages we need. End of explanation # First set up the figure, the axis, and the plot element we want to animate fig = figure() ax = axes(projection='3d') # we need to fix some parameters, describing size of the inner radus of the torus/knot r = .4 # We set the parameterization for the circle and the knot u = linspace(0, 2*pi, 100) v = linspace(0, 2*pi, 100) u,v = meshgrid(u,v) x_torus = 2*sin(u) + r*sin(u)*cos(v) y_torus = 2*cos(u) + r*cos(u)*cos(v) z_torus = r*sin(v) x_knot = sin(u) + 2*sin(2*u) + r*sin(u)*cos(v) y_knot = cos(u) - 2*cos(2*u) + r*cos(u)*cos(v) z_knot = -sin(3*u) + r*sin(v) ax.plot_surface(x_torus, y_torus, z_torus, color='c') ax.set_xlim([-2*(1+r), 2*(1+r)]) ax.set_ylim([-2*(1+r), 2*(1+r)]) ax.set_zlim([-(1+r), (1+r)]) Explanation: Then, we set up the parameterizations for the torus and the knot, using a meshgrid from u,v. End of explanation # initialization function: plot the background of each frame def init(): thingy = ax.plot_surface([0], [0], [0], color='c') return (thingy,) # animation function. This is called sequentially def animate(i): a = sin(pi*i/100)**2 # this is an interpolation parameter. a = 0 is torus, a=1 is knot x = (1-a)*x_torus + a*x_knot y = (1-a)*y_torus + a*y_knot z = (1-a)*z_torus + a*z_knot ax.clear() ax.set_xlim([-2*(1+r), 2*(1+r)]) ax.set_ylim([-2*(1+r), 2*(1+r)]) ax.set_zlim([-(1+r), (1+r)]) thingy = ax.plot_surface(x, y, z, color='c') return (thingy,) # call the animator. blit=True means only re-draw the parts that have changed. anim = animation.FuncAnimation(fig, animate, init_func=init, frames=100, interval=50, blit=True) Explanation: We need an initialization function, an animation function, and then we call the animator to put it all together. End of explanation HTML(anim.to_html5_video()) Explanation: Finally, we call the HMML code to conver the animation object into a video. (This depends on having a MovieWriter installed on your system. Should be fine on syzygy.ca but it does not work on my Mac unless I install ffmpeg.) End of explanation anim.save('knot.mp4') 2+2 Explanation: If you click on the image above, you will see there is a button that allows you to download the animation as an mp4 file directly. Or you can use the following command: End of explanation
3,372
Given the following text description, write Python code to implement the functionality described below step by step Description: Building a Supervised Machine Learning Model The objective of this hands-on activity is to create and evaluate a Real-Bogus classifier using ZTF alert data. We will be using the same data from Day 2's clustering exercise. Load data Examine features Curate a test and training set Train classifiers Compare the performance of different learning algorithms What's Not Covered There are many topics to cover, and due to time constraints, we cannot cover them all. Omitted is a discussion of cross validation and hyperparameter tuning. I encourage you to click through and read those articles by sklearn. 0a. Imports These are all the imports that will be used in this notebook. All should be available in the DSFP conda environment. Step1: 0b. Data Location Please specify paths for the following Step2: 1. Load Data Please note that I have made some adjustments to the data. I have created a dataframe (feats_df) from feats_np I have also dropped columns from feats_df. Some were irrelevant to classification, and some contained a lot of NaNs. Step3: 2. Plot Features Examine each individual feature. You may use the subroutine below, or code of your own devising. Note the features that are continuous vs categorial, and those that have outliers. There are certain features that have sentinel values. You may wish to view some features on a log scale. Question Step4: Answer Step5: 4. Train a Classifier Part 1 Step6: Part 2. Scaling Data With missing values handled, you're closing to training your classifiers. However, because distance metrics can be sensitive to the scale of your data (e.g., some features span large numeric ranges, but others don't), it is important to normalize data within a standard range such as (0, 1) or with z-score normalization (scaling to unit mean and variance). Fortunately, sklearn also makes this quite easy. Please review sklearn's preprocessing module options, specifically StandardScaler which corresponds to z-score normalization and MinMaxScaler. Please implement one. FYI - Neural networks and Support Vector Machines (SVM) are sensitive to the scale of the data. Decision trees (and therefore Random Forests) are not (but it doesn't hurt to use scaled data). Step7: Part 3. Train Classifiers Import a few classifiers and build models on your training data. Some suggestions include a Support Vector Machine, Random Forest, Neural Net, NaiveBayes and K-Nearest Neighbor. Step8: Part 4. Plot Real and Bogus Score Distributions Another way to test performance is to plot a histogram of the test set RB scores, comparing the distributions of the labeled reals vs. boguses. The scores of the reals should be close to 1, while the scores of the boguses should be closer to 0. The more separated the distribution of scores, the better performing your classifier is. Compare the score distributions of the classifiers you've trained. Trying displaying as a cumulative distribution rather than straight histogram. Optional
Python Code: import numpy as np from sklearn.preprocessing import Imputer from sklearn.preprocessing import MinMaxScaler, StandardScaler %matplotlib inline import matplotlib.pyplot as plt import pandas as pd import seaborn as sns Explanation: Building a Supervised Machine Learning Model The objective of this hands-on activity is to create and evaluate a Real-Bogus classifier using ZTF alert data. We will be using the same data from Day 2's clustering exercise. Load data Examine features Curate a test and training set Train classifiers Compare the performance of different learning algorithms What's Not Covered There are many topics to cover, and due to time constraints, we cannot cover them all. Omitted is a discussion of cross validation and hyperparameter tuning. I encourage you to click through and read those articles by sklearn. 0a. Imports These are all the imports that will be used in this notebook. All should be available in the DSFP conda environment. End of explanation F_META = '../Day2/dsfp_ztf_meta.npy' F_FEATS = '../Day2/dsfp_ztf_feats.npy' D_STAMPS = '../Day2/dsfp_ztf_png_stamps' Explanation: 0b. Data Location Please specify paths for the following: End of explanation meta_np = np.load(F_META) feats_np = np.load(F_FEATS) COL_NAMES = ['diffmaglim', 'magpsf', 'sigmapsf', 'chipsf', 'magap', 'sigmagap', 'distnr', 'magnr', 'sigmagnr', 'chinr', 'sharpnr', 'sky', 'magdiff', 'fwhm', 'classtar', 'mindtoedge', 'magfromlim', 'seeratio', 'aimage', 'bimage', 'aimagerat', 'bimagerat', 'elong', 'nneg', 'nbad', 'ssdistnr', 'ssmagnr', 'sumrat', 'magapbig', 'sigmagapbig', 'ndethist', 'ncovhist', 'jdstarthist', 'jdendhist', 'scorr', 'label'] # NOTE FROM Umaa: I've decided to eliminate the following features. Dropping them. # COL_TO_DROP = ['ndethist', 'ncovhist', 'jdstarthist', 'jdendhist', 'distnr', 'magnr', 'sigmagnr', 'chinr', 'sharpnr', 'classtar', 'ssdistnr', 'ssmagnr', 'aimagerat', 'bimagerat', 'magapbig', 'sigmagapbig', 'scorr'] feats_df = pd.DataFrame(data=feats_np, index=meta_np['candid'], columns=COL_NAMES) print("There are {} columns left.".format(len(feats_df.columns))) print("They are: {}".format(list(feats_df.columns))) feats_df.drop(columns=COL_TO_DROP, inplace=True) feats_df.describe() # INSTRUCTION: How many real and bogus examples are in this labeled set # real_mask = feats_df['label'] == 1 bogus_mask = ~real_mask print("Number of Real Examples: {}".format(np.sum(real_mask))) print("Number of Bogus Examples: {}".format(np.sum(bogus_mask))) Explanation: 1. Load Data Please note that I have made some adjustments to the data. I have created a dataframe (feats_df) from feats_np I have also dropped columns from feats_df. Some were irrelevant to classification, and some contained a lot of NaNs. End of explanation # Histogram a Single Feature # def plot_rb_hists(df, colname, bins=100, xscale='linear', yscale='linear'): mask_real = feats_df['label'] == 1 mask_bogus = ~mask_real plt.hist(df[colname][mask_real], bins, color='b', alpha=0.5, density=True) plt.hist(df[colname][mask_bogus], bins, color='r', alpha=0.5, density=True) plt.xscale(xscale) plt.yscale(yscale) plt.title(colname) plt.show() # INSTRUCTION: Plot the individual features. # for col in feats_df.columns: if col in ['chipsf', 'sky', 'fwhm']: plot_rb_hists(feats_df, col, bins=np.logspace(np.log10(0.01),np.log10(10000.0), 50), xscale='log') else: plot_rb_hists(feats_df, col) Explanation: 2. Plot Features Examine each individual feature. You may use the subroutine below, or code of your own devising. Note the features that are continuous vs categorial, and those that have outliers. There are certain features that have sentinel values. You may wish to view some features on a log scale. Question: Which features seem to have pathologies? Which features should we exclude? End of explanation feats_plus_label = np.array(feats_df) nids = meta_np['nid'] # INSTRUCTION: nid.npy contains the nids for this labeled data. # Split the data into separate data structures for train/test data at nid=500. # Verify that you have at least 500 reals in your test set. nid_mask_train = nids <= 550 nid_mask_test = ~nid_mask_train train_plus_label = feats_plus_label[nid_mask_train,:] test_plus_label = feats_plus_label[nid_mask_test,:] nreals_train = np.sum(train_plus_label[:,-1] == 1) nbogus_train = np.sum(train_plus_label[:,-1] == 0) nreals_test = np.sum(test_plus_label[:,-1] == 1) nbogus_test = np.sum(test_plus_label[:,-1] == 0) print("TRAIN Num Real={}, Bogus={}".format(nreals_train, nbogus_train)) print("TEST Num Real={}, Bogus={}".format(nreals_test, nbogus_test)) Explanation: Answer: 'nbad' and 'nneg' are discrete features 'seeratio' has a sentinel value of -999 There are some features that have high ranges than others. For classifiers that are sensitive to scaling, we will need to scale the data There does not appear to be good separability between real and bogus on any individual features. 3. Curate a Test and Training Set We need to reserve some of our labeled data for evaluation. This means we must split up the labeled data we have into the set used for training (training set), and the set used for evaluation (test set). Ideally, the distribution of real and bogus examples in both the training and test sets are roughly identical. One can use sklearn.model_selection.train_test_split and use the stratify option. For ZTF data, we split the training and test data by date. That way repeat observations from the same night (which might be nearly identical) cannot be split into the training and test set, and artificially inflate test performance. Also, due to the change in survey objectives, it's possible that the test set features have drifted away from the training sets. Provided is nid.npy which contains the Night IDs for ZTF. Split on nid=550 (July 5, 2018). This should leave you with roughly 500 examples in your test set. End of explanation # INSTRUCTION: Separate the labels from the features train_feats = train_plus_label[:,:-1] train_labels = train_plus_label[:,-1] test_feats = test_plus_label[:,:-1] test_labels = test_plus_label[:,-1] Explanation: 4. Train a Classifier Part 1: Separate Labels from the Features Now store the labels separately from the features. End of explanation # INSTRUCTION: Re-scale your data using either the MinMaxScaler or StandardScaler from sklearn # scaler = StandardScaler() train_feats = scaler.fit_transform(train_feats) test_feats = scaler.fit_transform(test_feats) Explanation: Part 2. Scaling Data With missing values handled, you're closing to training your classifiers. However, because distance metrics can be sensitive to the scale of your data (e.g., some features span large numeric ranges, but others don't), it is important to normalize data within a standard range such as (0, 1) or with z-score normalization (scaling to unit mean and variance). Fortunately, sklearn also makes this quite easy. Please review sklearn's preprocessing module options, specifically StandardScaler which corresponds to z-score normalization and MinMaxScaler. Please implement one. FYI - Neural networks and Support Vector Machines (SVM) are sensitive to the scale of the data. Decision trees (and therefore Random Forests) are not (but it doesn't hurt to use scaled data). End of explanation from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB knn3 = KNeighborsClassifier(3), svml = SVC(kernel="linear", C=0.025, probability=True) svmr = SVC(gamma=2, C=1, probability=True) dtre = DecisionTreeClassifier() rafo = RandomForestClassifier(n_estimators=100) nnet = MLPClassifier(alpha=1) naiv = GaussianNB() # INSTRUCTION: Train three classifiers and run on your test data. Here's an example to get your started. # Which ones seems to take longer to train? # rafo.fit(train_feats, train_labels) rafo_scores = rafo.predict_proba(test_feats)[:,1] nnet.fit(train_feats, train_labels) nnet_scores = nnet.predict_proba(test_feats)[:,1] svmr.fit(train_feats, train_labels) svmr_scores = svmr.predict_proba(test_feats)[:,1] # INSTRUCTION: Print out the following metrics per classifier into a table: accuracy, auc, f1_score, etc. # Explanation: Part 3. Train Classifiers Import a few classifiers and build models on your training data. Some suggestions include a Support Vector Machine, Random Forest, Neural Net, NaiveBayes and K-Nearest Neighbor. End of explanation # INSTRUCTION: create masks for the real and bogus examples of the test set real_mask_test = test_labels == 1 bogus_mask_test = test_labels == 0 # # INSTRUCTION: First compare the classifiers' scores on the test reals only # # scores_list = [rafo_scores, nnet_scores, svmr_scores] legends = ['Random Forest', 'Neural Net', 'SVM-RBF'] colors = ['g', 'b', 'r'] rbbins = np.arange(0,1,0.001) # Comparison on Reals plt.figure() ax = plt.subplot(111) for i, scores in enumerate(scores_list): ax.hist(scores[real_mask_test], rbbins, histtype='step', cumulative=True, density=False, color=colors[i]) ax.set_xlabel('RB Score') ax.set_ylabel('Count') ax.set_xbound(0, 1) ax.legend(legends, loc=4) plt.show() # Comparison on Bogus # plt.figure() ax = plt.subplot(111) rbbins = np.arange(0,1,0.001) for i, scores in enumerate(scores_list): ax.hist(scores[bogus_mask_test], rbbins, histtype='step', cumulative=True, density=False, color=colors[i]) ax.set_xlabel('RB Score') ax.set_ylabel('Count') ax.set_xbound(0, 1) ax.legend(legends, loc=4) plt.show() Explanation: Part 4. Plot Real and Bogus Score Distributions Another way to test performance is to plot a histogram of the test set RB scores, comparing the distributions of the labeled reals vs. boguses. The scores of the reals should be close to 1, while the scores of the boguses should be closer to 0. The more separated the distribution of scores, the better performing your classifier is. Compare the score distributions of the classifiers you've trained. Trying displaying as a cumulative distribution rather than straight histogram. Optional: What would the decision thresholds be at the 5, 10 and 20% false negative rate (FNR)? What would the decision threshold be at the 1, 10, and 20% false positive rate? End of explanation
3,373
Given the following text description, write Python code to implement the functionality described below step by step Description: Hello world In this unit you will learn how to use Python to implement the first ever program that every programmer starts with. Introduction Here is the traditional first programming exercise, called "Hello world". The task is to print the message Step1: Exercise Now it is your turn. Please create a program in the next cell that would print a message "Hello, world"
Python Code: print("hello") print("bye bye") print("hey", "you") print("one") print("two") Explanation: Hello world In this unit you will learn how to use Python to implement the first ever program that every programmer starts with. Introduction Here is the traditional first programming exercise, called "Hello world". The task is to print the message: "Hello, world". Here are a few examples to get you started. Run the following cells and see how you can print a message. To run a cell, click with mouse inside a cell, then press Ctrl+Enter to execute it. If you want to execute a few cells sequentially, then press Shift+Enter instead, and the focus will be automatically moved to the next cell as soon as one cell finishes execution. End of explanation def hello(x): print("Hello, " + x) Explanation: Exercise Now it is your turn. Please create a program in the next cell that would print a message "Hello, world": End of explanation
3,374
Given the following text description, write Python code to implement the functionality described below step by step Description: Variational Inference Step1: Model specification A neural network is quite simple. The basic unit is a perceptron which is nothing more than logistic regression. We use many of these in parallel and then stack them up to get hidden layers. Here we will use 2 hidden layers with 5 neurons each which is sufficient for such a simple problem. Step2: That's not so bad. The Normal priors help regularize the weights. Usually we would add a constant b to the inputs but I omitted it here to keep the code cleaner. Variational Inference Step3: < 20 seconds on my older laptop. That's pretty good considering that NUTS is having a really hard time. Further below we make this even faster. To make it really fly, we probably want to run the Neural Network on the GPU. As samples are more convenient to work with, we can very quickly draw samples from the variational posterior using sample_vp() (this is just sampling from Normal distributions, so not at all the same like MCMC) Step4: Plotting the objective function (ELBO) we can see that the optimization slowly improves the fit over time. Step5: Now that we trained our model, lets predict on the hold-out set using a posterior predictive check (PPC). We use sample_ppc() to generate new data (in this case class predictions) from the posterior (sampled from the variational estimation). Step6: Hey, our neural network did all right! Lets look at what the classifier has learned For this, we evaluate the class probability predictions on a grid over the whole input space. Step7: Probability surface Step8: Uncertainty in predicted value So far, everything I showed we could have done with a non-Bayesian Neural Network. The mean of the posterior predictive for each class-label should be identical to maximum likelihood predicted values. However, we can also look at the standard deviation of the posterior predictive to get a sense for the uncertainty in our predictions. Here is what that looks like Step9: We can see that very close to the decision boundary, our uncertainty as to which label to predict is highest. You can imagine that associating predictions with uncertainty is a critical property for many applications like health care. To further maximize accuracy, we might want to train the model primarily on samples from that high-uncertainty region. Mini-batch ADVI Step10: While the above might look a bit daunting, I really like the design. Especially the fact that you define a generator allows for great flexibility. In principle, we could just pool from a database there and not have to keep all the data in RAM. Lets pass those to advi_minibatch() Step11: As you can see, mini-batch ADVI's running time is much lower. It also seems to converge faster. For fun, we can also look at the trace. The point is that we also get uncertainty of our Neural Network weights.
Python Code: %matplotlib inline import theano floatX = theano.config.floatX import pymc3 as pm import theano.tensor as T import sklearn import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set_style('white') from sklearn import datasets from sklearn.preprocessing import scale from sklearn.cross_validation import train_test_split from sklearn.datasets import make_moons X, Y = make_moons(noise=0.2, random_state=0, n_samples=1000) X = scale(X) X = X.astype(floatX) Y = Y.astype(floatX) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5) fig, ax = plt.subplots() ax.scatter(X[Y==0, 0], X[Y==0, 1], label='Class 0') ax.scatter(X[Y==1, 0], X[Y==1, 1], color='r', label='Class 1') sns.despine(); ax.legend() ax.set(xlabel='X', ylabel='Y', title='Toy binary classification data set'); Explanation: Variational Inference: Bayesian Neural Networks (c) 2016 by Thomas Wiecki Original blog post: http://twiecki.github.io/blog/2016/06/01/bayesian-deep-learning/ Current trends in Machine Learning There are currently three big trends in machine learning: Probabilistic Programming, Deep Learning and "Big Data". Inside of PP, a lot of innovation is in making things scale using Variational Inference. In this blog post, I will show how to use Variational Inference in PyMC3 to fit a simple Bayesian Neural Network. I will also discuss how bridging Probabilistic Programming and Deep Learning can open up very interesting avenues to explore in future research. Probabilistic Programming at scale Probabilistic Programming allows very flexible creation of custom probabilistic models and is mainly concerned with insight and learning from your data. The approach is inherently Bayesian so we can specify priors to inform and constrain our models and get uncertainty estimation in form of a posterior distribution. Using MCMC sampling algorithms we can draw samples from this posterior to very flexibly estimate these models. PyMC3 and Stan are the current state-of-the-art tools to consruct and estimate these models. One major drawback of sampling, however, is that it's often very slow, especially for high-dimensional models. That's why more recently, variational inference algorithms have been developed that are almost as flexible as MCMC but much faster. Instead of drawing samples from the posterior, these algorithms instead fit a distribution (e.g. normal) to the posterior turning a sampling problem into and optimization problem. ADVI -- Automatic Differentation Variational Inference -- is implemented in PyMC3 and Stan, as well as a new package called Edward which is mainly concerned with Variational Inference. Unfortunately, when it comes to traditional ML problems like classification or (non-linear) regression, Probabilistic Programming often plays second fiddle (in terms of accuracy and scalability) to more algorithmic approaches like ensemble learning (e.g. random forests or gradient boosted regression trees. Deep Learning Now in its third renaissance, deep learning has been making headlines repeatadly by dominating almost any object recognition benchmark, kicking ass at Atari games, and beating the world-champion Lee Sedol at Go. From a statistical point, Neural Networks are extremely good non-linear function approximators and representation learners. While mostly known for classification, they have been extended to unsupervised learning with AutoEncoders and in all sorts of other interesting ways (e.g. Recurrent Networks, or MDNs to estimate multimodal distributions). Why do they work so well? No one really knows as the statistical properties are still not fully understood. A large part of the innoviation in deep learning is the ability to train these extremely complex models. This rests on several pillars: * Speed: facilitating the GPU allowed for much faster processing. * Software: frameworks like Theano and TensorFlow allow flexible creation of abstract models that can then be optimized and compiled to CPU or GPU. * Learning algorithms: training on sub-sets of the data -- stochastic gradient descent -- allows us to train these models on massive amounts of data. Techniques like drop-out avoid overfitting. * Architectural: A lot of innovation comes from changing the input layers, like for convolutional neural nets, or the output layers, like for MDNs. Bridging Deep Learning and Probabilistic Programming On one hand we Probabilistic Programming which allows us to build rather small and focused models in a very principled and well-understood way to gain insight into our data; on the other hand we have deep learning which uses many heuristics to train huge and highly complex models that are amazing at prediction. Recent innovations in variational inference allow probabilistic programming to scale model complexity as well as data size. We are thus at the cusp of being able to combine these two approaches to hopefully unlock new innovations in Machine Learning. For more motivation, see also Dustin Tran's recent blog post. While this would allow Probabilistic Programming to be applied to a much wider set of interesting problems, I believe this bridging also holds great promise for innovations in Deep Learning. Some ideas are: * Uncertainty in predictions: As we will see below, the Bayesian Neural Network informs us about the uncertainty in its predictions. I think uncertainty is an underappreciated concept in Machine Learning as it's clearly important for real-world applications. But it could also be useful in training. For example, we could train the model specifically on samples it is most uncertain about. * Uncertainty in representations: We also get uncertainty estimates of our weights which could inform us about the stability of the learned representations of the network. * Regularization with priors: Weights are often L2-regularized to avoid overfitting, this very naturally becomes a Gaussian prior for the weight coefficients. We could, however, imagine all kinds of other priors, like spike-and-slab to enforce sparsity (this would be more like using the L1-norm). * Transfer learning with informed priors: If we wanted to train a network on a new object recognition data set, we could bootstrap the learning by placing informed priors centered around weights retrieved from other pre-trained networks, like GoogLeNet. * Hierarchical Neural Networks: A very powerful approach in Probabilistic Programming is hierarchical modeling that allows pooling of things that were learned on sub-groups to the overall population (see my tutorial on Hierarchical Linear Regression in PyMC3). Applied to Neural Networks, in hierarchical data sets, we could train individual neural nets to specialize on sub-groups while still being informed about representations of the overall population. For example, imagine a network trained to classify car models from pictures of cars. We could train a hierarchical neural network where a sub-neural network is trained to tell apart models from only a single manufacturer. The intuition being that all cars from a certain manufactures share certain similarities so it would make sense to train individual networks that specialize on brands. However, due to the individual networks being connected at a higher layer, they would still share information with the other specialized sub-networks about features that are useful to all brands. Interestingly, different layers of the network could be informed by various levels of the hierarchy -- e.g. early layers that extract visual lines could be identical in all sub-networks while the higher-order representations would be different. The hierarchical model would learn all that from the data. * Other hybrid architectures: We can more freely build all kinds of neural networks. For example, Bayesian non-parametrics could be used to flexibly adjust the size and shape of the hidden layers to optimally scale the network architecture to the problem at hand during training. Currently, this requires costly hyper-parameter optimization and a lot of tribal knowledge. Bayesian Neural Networks in PyMC3 Generating data First, lets generate some toy data -- a simple binary classification problem that's not linearly separable. End of explanation # Trick: Turn inputs and outputs into shared variables. # It's still the same thing, but we can later change the values of the shared variable # (to switch in the test-data later) and pymc3 will just use the new data. # Kind-of like a pointer we can redirect. # For more info, see: http://deeplearning.net/software/theano/library/compile/shared.html ann_input = theano.shared(X_train) ann_output = theano.shared(Y_train) n_hidden = 5 # Initialize random weights between each layer init_1 = np.random.randn(X.shape[1], n_hidden).astype(floatX) init_2 = np.random.randn(n_hidden, n_hidden).astype(floatX) init_out = np.random.randn(n_hidden).astype(floatX) with pm.Model() as neural_network: # Weights from input to hidden layer weights_in_1 = pm.Normal('w_in_1', 0, sd=1, shape=(X.shape[1], n_hidden), testval=init_1) # Weights from 1st to 2nd layer weights_1_2 = pm.Normal('w_1_2', 0, sd=1, shape=(n_hidden, n_hidden), testval=init_2) # Weights from hidden layer to output weights_2_out = pm.Normal('w_2_out', 0, sd=1, shape=(n_hidden,), testval=init_out) # Build neural-network using tanh activation function act_1 = pm.math.tanh(pm.math.dot(ann_input, weights_in_1)) act_2 = pm.math.tanh(pm.math.dot(act_1, weights_1_2)) act_out = pm.math.sigmoid(pm.math.dot(act_2, weights_2_out)) # Binary classification -> Bernoulli likelihood out = pm.Bernoulli('out', act_out, observed=ann_output) Explanation: Model specification A neural network is quite simple. The basic unit is a perceptron which is nothing more than logistic regression. We use many of these in parallel and then stack them up to get hidden layers. Here we will use 2 hidden layers with 5 neurons each which is sufficient for such a simple problem. End of explanation %%time with neural_network: # Run ADVI which returns posterior means, standard deviations, and the evidence lower bound (ELBO) v_params = pm.variational.advi(n=50000) Explanation: That's not so bad. The Normal priors help regularize the weights. Usually we would add a constant b to the inputs but I omitted it here to keep the code cleaner. Variational Inference: Scaling model complexity We could now just run a MCMC sampler like NUTS which works pretty well in this case but as I already mentioned, this will become very slow as we scale our model up to deeper architectures with more layers. Instead, we will use the brand-new ADVI variational inference algorithm which was recently added to PyMC3. This is much faster and will scale better. Note, that this is a mean-field approximation so we ignore correlations in the posterior. End of explanation with neural_network: trace = pm.variational.sample_vp(v_params, draws=5000) Explanation: < 20 seconds on my older laptop. That's pretty good considering that NUTS is having a really hard time. Further below we make this even faster. To make it really fly, we probably want to run the Neural Network on the GPU. As samples are more convenient to work with, we can very quickly draw samples from the variational posterior using sample_vp() (this is just sampling from Normal distributions, so not at all the same like MCMC): End of explanation plt.plot(v_params.elbo_vals) plt.ylabel('ELBO') plt.xlabel('iteration') Explanation: Plotting the objective function (ELBO) we can see that the optimization slowly improves the fit over time. End of explanation # Replace shared variables with testing set ann_input.set_value(X_test) ann_output.set_value(Y_test) # Creater posterior predictive samples ppc = pm.sample_ppc(trace, model=neural_network, samples=500) # Use probability of > 0.5 to assume prediction of class 1 pred = ppc['out'].mean(axis=0) > 0.5 fig, ax = plt.subplots() ax.scatter(X_test[pred==0, 0], X_test[pred==0, 1]) ax.scatter(X_test[pred==1, 0], X_test[pred==1, 1], color='r') sns.despine() ax.set(title='Predicted labels in testing set', xlabel='X', ylabel='Y'); print('Accuracy = {}%'.format((Y_test == pred).mean() * 100)) Explanation: Now that we trained our model, lets predict on the hold-out set using a posterior predictive check (PPC). We use sample_ppc() to generate new data (in this case class predictions) from the posterior (sampled from the variational estimation). End of explanation grid = np.mgrid[-3:3:100j,-3:3:100j].astype(floatX) grid_2d = grid.reshape(2, -1).T dummy_out = np.ones(grid.shape[1], dtype=np.int8) ann_input.set_value(grid_2d) ann_output.set_value(dummy_out) # Creater posterior predictive samples ppc = pm.sample_ppc(trace, model=neural_network, samples=500) Explanation: Hey, our neural network did all right! Lets look at what the classifier has learned For this, we evaluate the class probability predictions on a grid over the whole input space. End of explanation cmap = sns.diverging_palette(250, 12, s=85, l=25, as_cmap=True) fig, ax = plt.subplots(figsize=(10, 6)) contour = ax.contourf(*grid, ppc['out'].mean(axis=0).reshape(100, 100), cmap=cmap) ax.scatter(X_test[pred==0, 0], X_test[pred==0, 1]) ax.scatter(X_test[pred==1, 0], X_test[pred==1, 1], color='r') cbar = plt.colorbar(contour, ax=ax) _ = ax.set(xlim=(-3, 3), ylim=(-3, 3), xlabel='X', ylabel='Y'); cbar.ax.set_ylabel('Posterior predictive mean probability of class label = 0'); Explanation: Probability surface End of explanation cmap = sns.cubehelix_palette(light=1, as_cmap=True) fig, ax = plt.subplots(figsize=(10, 6)) contour = ax.contourf(*grid, ppc['out'].std(axis=0).reshape(100, 100), cmap=cmap) ax.scatter(X_test[pred==0, 0], X_test[pred==0, 1]) ax.scatter(X_test[pred==1, 0], X_test[pred==1, 1], color='r') cbar = plt.colorbar(contour, ax=ax) _ = ax.set(xlim=(-3, 3), ylim=(-3, 3), xlabel='X', ylabel='Y'); cbar.ax.set_ylabel('Uncertainty (posterior predictive standard deviation)'); Explanation: Uncertainty in predicted value So far, everything I showed we could have done with a non-Bayesian Neural Network. The mean of the posterior predictive for each class-label should be identical to maximum likelihood predicted values. However, we can also look at the standard deviation of the posterior predictive to get a sense for the uncertainty in our predictions. Here is what that looks like: End of explanation from six.moves import zip # Set back to original data to retrain ann_input.set_value(X_train) ann_output.set_value(Y_train) # Tensors and RV that will be using mini-batches minibatch_tensors = [ann_input, ann_output] minibatch_RVs = [out] # Generator that returns mini-batches in each iteration def create_minibatch(data): rng = np.random.RandomState(0) while True: # Return random data samples of set size 100 each iteration ixs = rng.randint(len(data), size=50) yield data[ixs] minibatches = zip( create_minibatch(X_train), create_minibatch(Y_train), ) total_size = len(Y_train) Explanation: We can see that very close to the decision boundary, our uncertainty as to which label to predict is highest. You can imagine that associating predictions with uncertainty is a critical property for many applications like health care. To further maximize accuracy, we might want to train the model primarily on samples from that high-uncertainty region. Mini-batch ADVI: Scaling data size So far, we have trained our model on all data at once. Obviously this won't scale to something like ImageNet. Moreover, training on mini-batches of data (stochastic gradient descent) avoids local minima and can lead to faster convergence. Fortunately, ADVI can be run on mini-batches as well. It just requires some setting up: End of explanation %%time with neural_network: # Run advi_minibatch v_params = pm.variational.advi_minibatch( n=50000, minibatch_tensors=minibatch_tensors, minibatch_RVs=minibatch_RVs, minibatches=minibatches, total_size=total_size, learning_rate=1e-2, epsilon=1.0 ) with neural_network: trace = pm.variational.sample_vp(v_params, draws=5000) plt.plot(v_params.elbo_vals) plt.ylabel('ELBO') plt.xlabel('iteration') sns.despine() Explanation: While the above might look a bit daunting, I really like the design. Especially the fact that you define a generator allows for great flexibility. In principle, we could just pool from a database there and not have to keep all the data in RAM. Lets pass those to advi_minibatch(): End of explanation pm.traceplot(trace); Explanation: As you can see, mini-batch ADVI's running time is much lower. It also seems to converge faster. For fun, we can also look at the trace. The point is that we also get uncertainty of our Neural Network weights. End of explanation
3,375
Given the following text description, write Python code to implement the functionality described below step by step Description: Pattern Matching Experiments Step1: Networks We give two sets of networks. One of them allows for all parameters. The other is identical except it only uses essential parameters. Step2: Full Networks Step3: Essential Networks Step4: Path match analysis We give two functions for path match analysis. One looks at the entire domain graph. The other only checks for path matches in stable Morse sets. Analysis on entire domain graph Step5: Analysis on stable Morse set only Step6: Poset of Extrema We study two poset of extrema. The first poset comes from looking at times [10,60] and assuming SWI4 happens before the other minima at the beginning and thus can be excluded. The other comes from including all extrema. Original Poset of Extrema Step7: Alternative Poset of Extrema Step8: Experiments There are 8 experiements corresponding to 3 binary choices
Python Code: from DSGRN import * Explanation: Pattern Matching Experiments End of explanation network_strings = [ ["SWI4 : (NDD1)(~YOX1)", "HCM1 : SWI4", "NDD1 : HCM1", "YOX1 : SWI4"], ["SWI4 : (NDD1)(~YOX1)", "HCM1 : SWI4", "NDD1 : HCM1", "YOX1 : (SWI4)(HCM1)"], ["SWI4 : (NDD1)(~YOX1)", "HCM1 : SWI4", "NDD1 : HCM1", "YOX1 : (SWI4)(~HCM1)"], ["SWI4 : (NDD1)(~YOX1)", "HCM1 : SWI4", "NDD1 : HCM1", "YOX1 : (SWI4)(NDD1)"], ["SWI4 : (NDD1)(~YOX1)", "HCM1 : SWI4", "NDD1 : HCM1", "YOX1 : (SWI4)(~NDD1)"], ["SWI4 : (NDD1)(~YOX1)", "HCM1 : (SWI4)(YOX1)", "NDD1 : HCM1", "YOX1 : SWI4"], ["SWI4 : (NDD1)(~YOX1)", "HCM1 : (SWI4)(~YOX1)", "NDD1 : HCM1", "YOX1 : SWI4"], ["SWI4 : (NDD1)(~YOX1)", "HCM1 : SWI4", "NDD1 : (HCM1)(YOX1)", "YOX1 : SWI4"], ["SWI4 : (NDD1)(~YOX1)", "HCM1 : SWI4", "NDD1 : (HCM1)(~YOX1)", "YOX1 : SWI4"] ] Explanation: Networks We give two sets of networks. One of them allows for all parameters. The other is identical except it only uses essential parameters. End of explanation networks = [Network() for i in range(0,9)] for i,network in enumerate(networks): network.assign('\n'.join(network_strings[i])) Explanation: Full Networks End of explanation essential_network_strings = [ [ line + " : E" for line in network_string ] for network_string in network_strings] essential_networks = [Network() for i in range(0,9)] for i,network in enumerate(essential_networks): network.assign('\n'.join(essential_network_strings[i])) Explanation: Essential Networks End of explanation def Analyze(network, events, event_ordering): poe = PosetOfExtrema(network, events, event_ordering ) pattern_graph = PatternGraph(poe) parameter_graph = ParameterGraph(network) result = [] for parameter_index in range(0, parameter_graph.size()): parameter = parameter_graph.parameter(parameter_index) search_graph = SearchGraph(DomainGraph(parameter)) matching_graph = MatchingGraph(search_graph, pattern_graph); if PathMatch(matching_graph): result.append(parameter_index) return [result, parameter_graph.size()] Explanation: Path match analysis We give two functions for path match analysis. One looks at the entire domain graph. The other only checks for path matches in stable Morse sets. Analysis on entire domain graph End of explanation def AnalyzeOnStable(network, events, event_ordering): poe = PosetOfExtrema(network, events, event_ordering ) pattern_graph = PatternGraph(poe) parameter_graph = ParameterGraph(network) results = [] for parameter_index in range(0, parameter_graph.size()): parameter = parameter_graph.parameter(parameter_index) domain_graph = DomainGraph(parameter) morse_decomposition = MorseDecomposition(domain_graph.digraph()) morse_graph = MorseGraph() morse_graph.assign(domain_graph, morse_decomposition) MorseNodes = range(0, morse_graph.poset().size()) isStable = lambda node : len(morse_graph.poset().children(node)) == 0 isStableFC = lambda node : morse_graph.annotation(node)[0] == 'FC' and isStable(node) hasStableFC = any( isStableFC(node) for node in MorseNodes) StableNodes = [ node for node in MorseNodes if isStable(node) ] subresult = [] for node in StableNodes: search_graph = SearchGraph(domain_graph, node) matching_graph = MatchingGraph(search_graph, pattern_graph) path_match = PathMatch(matching_graph) if path_match: subresult.append([parameter_index, node]) results.append([subresult, 1 if hasStableFC else 0]) return [results, parameter_graph.size()] Explanation: Analysis on stable Morse set only End of explanation original_events = [("HCM1", "min"), ("NDD1", "min"), ("YOX1", "min"), ("SWI4", "max"), ("HCM1", "max"), ("YOX1", "max"), ("NDD1", "max"), ("SWI4","min")] original_event_ordering = [ (i,j) for i in [0,1,2] for j in [3,4,5] ] + \ [ (i,j) for i in [3,4,5] for j in [6] ] + \ [ (i,j) for i in [6] for j in [7] ] DrawGraph(PosetOfExtrema(networks[0], original_events, original_event_ordering )) Explanation: Poset of Extrema We study two poset of extrema. The first poset comes from looking at times [10,60] and assuming SWI4 happens before the other minima at the beginning and thus can be excluded. The other comes from including all extrema. Original Poset of Extrema End of explanation all_events = [("SWI4", "min"), ("HCM1", "min"), ("NDD1", "min"), ("YOX1", "min"), ("SWI4", "max"), ("HCM1", "max"), ("YOX1", "max"), ("NDD1", "max"), ("SWI4","min"), ("YOX1", "min"), ("HCM1","min"), ("NDD1", "min"), ("SWI4", "max"), ("HCM1", "max"), ("YOX1", "max"), ("NDD1", "max")] all_event_ordering = [ (i,j) for i in [0,1,2,3] for j in [4,5,6] ] + \ [ (i,j) for i in [4,5,6] for j in [7] ] + \ [ (i,j) for i in [7] for j in [8] ] + \ [ (i,j) for i in [8] for j in [9,10] ] + \ [ (i,j) for i in [9,10] for j in [11,12,13,14] ] + \ [ (11,15) ] DrawGraph(PosetOfExtrema(networks[0], all_events, all_event_ordering )) Explanation: Alternative Poset of Extrema End of explanation def DisplayExperiment(results, title): markdown_string = "# " + title + "\n\n" markdown_string += "| network | # parameters | # parameters with path match |\n" markdown_string += "| ------- |------------ | ---------------------------- |\n" for i, item in enumerate(results): [parameters_with_path_match, pgsize] = item markdown_string += ("|" + str(i) + "|" + str(pgsize) + "|" + str(len(parameters_with_path_match)) + "|\n") from IPython.display import display, Markdown, Latex display(Markdown(markdown_string)) def DisplayStableExperiment(results, title): markdown_string = "# " + title + "\n\n" markdown_string += "| network | # parameters | # parameters with stable FC | # parameters with path match |\n" markdown_string += "| ------- |------------ | ---------------------------- | ---------------------------- |\n" for i, item in enumerate(results): [results, pgsize] = item parameters_with_path_match = sum([ 1 if pair[0] else 0 for pair in results]) parameters_with_stable_fc = sum([ 1 if pair[1] else 0 for pair in results]) markdown_string += ("|" + str(i) + "|" + str(pgsize) + "|" +str(parameters_with_stable_fc) +"|"+str(parameters_with_path_match) + "|\n") from IPython.display import display, Markdown, Latex display(Markdown(markdown_string)) %%time experiment = lambda network : Analyze(network, original_events, original_event_ordering) experimental_results_1 = [ experiment(network) for network in networks ] DisplayExperiment(experimental_results_1, "Experiment 1: All parameters, original poset of extrema") %%time experiment = lambda network : Analyze(network, original_events, original_event_ordering) experimental_results_2 = [ experiment(network) for network in essential_networks ] DisplayExperiment(experimental_results_2, "Experiment 2: Essential parameters, original poset of extrema") %%time experiment = lambda network : AnalyzeOnStable(network, original_events, original_event_ordering) experimental_results_3 = [ experiment(network) for network in networks ] DisplayStableExperiment(experimental_results_3, "Experiment 3: All parameters, original poset, stable only") %%time experiment = lambda network : AnalyzeOnStable(network, original_events, original_event_ordering) experimental_results_4 = [ experiment(network) for network in essential_networks ] DisplayStableExperiment(experimental_results_4, "Experiment 4: Essential parameters, original poset, stable only") %%time experiment = lambda network : Analyze(network, all_events, all_event_ordering) experimental_results_5 = [ experiment(network) for network in networks ] DisplayExperiment(experimental_results_5, "Experiment 5: All parameters, alternative poset of extrema") %%time experiment = lambda network : Analyze(network, all_events, all_event_ordering) experimental_results_6 = [ experiment(network) for network in essential_networks ] DisplayExperiment(experimental_results_6, "Experiment 6: Essential parameters, alternative poset of extrema") %%time experiment = lambda network : AnalyzeOnStable(network, all_events, all_event_ordering) experimental_results_7 = [ experiment(network) for network in networks ] DisplayStableExperiment(experimental_results_7, "Experiment 7: All parameters, alternative poset of extrema, stable only") %%time experiment = lambda network : AnalyzeOnStable(network, all_events, all_event_ordering) experimental_results_8 = [ experiment(network) for network in essential_networks ] DisplayStableExperiment(experimental_results_8, "Experiment 8: Essential parameters, alternative poset of extrema, stable only") Explanation: Experiments There are 8 experiements corresponding to 3 binary choices: Full networks vs Essential networks Path matching in entire domain graph vs path matching in stable Morse sets Original poset of extrema vs Alternative poset of extrema End of explanation
3,376
Given the following text description, write Python code to implement the functionality described below step by step Description: <center>Structural Analysis and Visualization of Networks</center> <center>Final Mid-term Assignment</center> <center>Student Step1: <hr/> Step2: The mixing coefficient for a numerical node attribute $X = \big(x_i\big)$ in an undirected graph $G$, with the adjacency matrix $A$, is defined as $$\rho(x) = \frac{\text{cov}}{\text{var}} = \frac{\sum_{ij}A_{ij}(x_i-\bar{x})(x_j-\bar{x})}{\sum_{ij}A_{ij}(x_i-\bar{x})^2} $$ where $\bar{x} = \frac{1}{2m}\sum_i \delta_i x_i$ is the mean value of $X$ weighted by vertex degree. Note that $A$ is necessarily symmetric. This coefficient can be represented in the matrix notation as $$\rho(x) = \frac{X'AX - 2m \bar{x}^2}{X'\text{diag}(D)X - 2m \bar{x}^2} $$ where the diagonal matrix $\text{diag}(D)$ is the matrix of vertex degrees, and the value $\bar{x}$ is the sample mean of the numerical node attribute $X$.
Python Code: import numpy as np import networkx as nx from matplotlib import pyplot as plt %matplotlib inline import warnings warnings.filterwarnings( 'ignore' ) def fw( A, pi = None ) : if pi is None : pi = A.copy( ) pi[ A == 0 ] = np.inf np.fill_diagonal( pi, 0 ) for k in xrange( A.shape[ 0 ] ) : pi = np.minimum( pi, pi[ :, k ] + pi[ k, : ] ) return pi Explanation: <center>Structural Analysis and Visualization of Networks</center> <center>Final Mid-term Assignment</center> <center>Student: Nazarov Ivan</center> <hr/> End of explanation G = nx.gml.read_gml( './data/ha5/huge_100004196072232_2015_03_21_22_33_65c744356ffedcfa83bf49b64a76445a.gml' ) fig = plt.figure( figsize = (16,12) ) axs = fig.add_subplot( 1,1,1, axisbg = 'black' ) nx.draw( G, pos = nx.spring_layout( G ), ax = axs, node) nx.is_connected(G) nx.to_numpy_matrix( G ) A = nx.to_numpy_matrix( G ) def spectral( A, T = 10, _index = None ) : if _index is None : _index = np.arange( A.shape[ 0 ], dtype = np.int ) ## Get the vertex degrees deg = A.sum( axis = 1, dtype = np.float ).getA1( ) ## Check for isolated vertices if np.any( deg == 0 ) : ## Find nonisolated nz = np.where( deg != 0 )[ 0 ] return np.concatenate( ( np.where( deg == 0 )[ 0 ], nz[ spectral( A[:,nz][nz,:], T = T, _index = _index[ nz ] ) ] ) ) ## Assume the matrix A has no isolated vertices D = np.diag( 1.0 / deg ) L = np.eye( *A.shape, dtype = np.float ) - D.dot( A ) l, v = np.linalg.eig( L ) e = v[ :, np.argsort( l )[ 1 ] ].real.getA1() n, p = np.where( e < 0 )[ 0 ], np.where( e >= 0 )[ 0 ] if len( p ) > T : p = p[ spectral( A[:,p][p,:], T = T, _index = _index[ p ] ) ] if len( n ) > T : n = n[ spectral( A[:,n][n,:], T = T, _index = _index[ n ] ) ] if len( p ) > len( n ) : p, n = n, p return np.concatenate( ( n, p ) ) pi = fw( A ) I = nx.spectral_ordering( G ) J = spectral( A ) plt.subplot( 121 ) plt.imshow( pi[:,I][I,:] ) plt.subplot( 122 ) plt.imshow( pi[:,J][J,:] ) nx.spectral_ordering() plt.plot(e[n]) plt.plot(e[p], '-r') i = np.argsort( l )[ :10 ] # print v[ :, i ].real print l[ i ] np.isclose( l[ i ], 0 ) Explanation: <hr/> End of explanation def assortativity( G, X ) : ## represent the graph in an adjacency matrix form A = nx.to_numpy_matrix( G, dtype = np.float, nodelist = G.nodes( ) ) ## Convert x -- dictionary to a numpy vector x = np.array( [ X[ n ] for n in G.nodes( ) ] , dtype = np.float ) ## Compute the x'Ax part xAx = np.dot( x, np.array( A.dot( x ) ).flatten( ) ) ## and the x'\text{diag}(D)x part. Note that left-multiplying a vector ## by a diagonal matrix is equivalent to element-wise multiplication. D = np.array( A.sum( axis = 1 ), dtype = np.float ).flatten( ) xDx = np.dot( x, np.multiply( D, x ) ) ## numpy.average( ) actually normalizes the weights. x_bar = np.average( x, weights = D ) D_sum = np.sum( D, dtype = np.float ) return ( xAx - D_sum * x_bar * x_bar ) / ( xDx - D_sum * x_bar * x_bar ) Explanation: The mixing coefficient for a numerical node attribute $X = \big(x_i\big)$ in an undirected graph $G$, with the adjacency matrix $A$, is defined as $$\rho(x) = \frac{\text{cov}}{\text{var}} = \frac{\sum_{ij}A_{ij}(x_i-\bar{x})(x_j-\bar{x})}{\sum_{ij}A_{ij}(x_i-\bar{x})^2} $$ where $\bar{x} = \frac{1}{2m}\sum_i \delta_i x_i$ is the mean value of $X$ weighted by vertex degree. Note that $A$ is necessarily symmetric. This coefficient can be represented in the matrix notation as $$\rho(x) = \frac{X'AX - 2m \bar{x}^2}{X'\text{diag}(D)X - 2m \bar{x}^2} $$ where the diagonal matrix $\text{diag}(D)$ is the matrix of vertex degrees, and the value $\bar{x}$ is the sample mean of the numerical node attribute $X$. End of explanation
3,377
Given the following text description, write Python code to implement the functionality described below step by step Description: Map of Flights Taken The goal of this post is to visualize flights taken from Google location data using Python * This post utilizes code from Tyler Hartley's visualizing location history blog post Overview Setup download data install modules Data Wrangling data extraction data exploration data manipulation Flight Algorithm Visualize Flights Conclusion Setup Use Google Takout to download your Google location history If you've previously enabled Google location reporting on your smartphone, your GPS data will be periodically uploaded to Google's servers. Use Google Takeout to download your location history. The decisions of when and how to upload this data are entirely obfuscated to the end user, but as you'll see below, Android appears to upload a GPS location every 60 seconds. That's plenty of data to work with. After downloading your data, install the required modules Google Takeout Google Takeout is a Google service that allows users to export any personal Google data. We'll use Takeout to download our raw location history as a one-time snapshot. Since Latitude was retired, no API exists to access location history in real-time. Download location data Step1: Data Wrangling data extraction Step2: Explore Data view data and datatypes Step3: accuracy code "999" may represent missingness find earliest and latest observations in the data save for later Step4: data manipulation Degrees and Radians We're going to convert the degree-based geo data to radians to calculate distance traveled. I'm going to paraphrase an explanation (source below) about why the degree-to-radians conversion is necessary Degrees are arbitrary because they’re based on the sun and backwards because they are from the observer’s perspective. Radians are in terms of the mover allowing equations to “click into place”. Converting rotational to linear speed is easy, and ideas like sin(x)/x make sense. Consult this post for more info about degrees and radians in distance calculation. convert degrees to radians Step5: calculate speed during trips (in km/hr) Step6: Make a new dataframe containing the difference in location between each pair of points. Any one of these pairs is a potential flight Step7: Now flightdata contains a comparison of each adjacent GPS location. All that's left to do is filter out the true flight instances from the rest of them. spherical distance function function to calculate straight-line distance traveled on a sphere Step8: Flight algorithm filter flights remove flights using conservative selection criteria Step9: This algorithm worked 100% of the time for me - no false positives or negatives. But the adjacency-criteria of the algorithm is fairly brittle. The core of it centers around the assumption that inter-flight GPS data will be directly adjacent to one another. That's why the initial screening on line 1 of the previous cell had to be so liberal. Now, the flights DataFrame contains only instances of true flights which facilitates plotting with Matplotlib's Basemap. If we plot on a flat projection like tmerc, the drawgreatcircle function will produce a true path arc just like we see in the in-flight magazines. Visualize Flights Step10: You can draw entertaining conclusions from the flight visualization. For instance, you can see some popular layover locations, all those lines in/out of Seattle, plus a recent trip to Germany. And Basemap has made it so simple for us - no Shapefiles to import because all map information is included in the Basemap module. Calculate all the miles you have traveled in the years observed with a single line of code Step11: Conclusion You've now got the code to go ahead and reproduce these maps. I'm working on creating functions to automate these visualizations Potential future directions Figure out where you usually go on the weekends Calculate your fastest commute route measure the amount of time you spend driving vs. walking. Download this notebook, or see a static view here
Python Code: import json import time import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.collections import PatchCollection from IPython.display import Image import fiona from shapely.prepared import prep from descartes import PolygonPatch from mpl_toolkits.basemap import Basemap from shapely.geometry import Point, Polygon, MultiPoint, MultiPolygon import warnings warnings.filterwarnings('ignore') Explanation: Map of Flights Taken The goal of this post is to visualize flights taken from Google location data using Python * This post utilizes code from Tyler Hartley's visualizing location history blog post Overview Setup download data install modules Data Wrangling data extraction data exploration data manipulation Flight Algorithm Visualize Flights Conclusion Setup Use Google Takout to download your Google location history If you've previously enabled Google location reporting on your smartphone, your GPS data will be periodically uploaded to Google's servers. Use Google Takeout to download your location history. The decisions of when and how to upload this data are entirely obfuscated to the end user, but as you'll see below, Android appears to upload a GPS location every 60 seconds. That's plenty of data to work with. After downloading your data, install the required modules Google Takeout Google Takeout is a Google service that allows users to export any personal Google data. We'll use Takeout to download our raw location history as a one-time snapshot. Since Latitude was retired, no API exists to access location history in real-time. Download location data: * Go to takeout. Uncheck all services except "Location History" * The data will be in a json format, which works great for us. Download it in your favorite compression type. * When Google has finished creating your archive, you'll get an email notification and a link to download. * Download and unzip the file, and you should be looking at a LocationHistory.json file. Working with location data in Pandas. Pandas is an incredibly powerful tool that simplifies working with complex datatypes and performing statistical analysis in the style of R. Chris Albon has great primers on using Pandas here under the "Data Wrangling" section. Install modules If you use Anaconda to manage your Python packages, I recommend creating a virtual environment with anaconda to install the dependencies. Copying the lines below the instruction into the terminal creates the environment, requirements.txt, etc. conda create -n test-env python=3.5 anaconda source activate test-env make a requirements.txt file for dependencies (echo descartes; echo IPython; echo shapely; echo fiona; echo Basemap) >> requirements.txt install requirements.txt conda install --yes --file requirements.txt After completing the setup, we'll read in the LocationHistory.json file from Google Takeout and create a DataFrame. End of explanation with open('LocationHistory.json', 'r') as fh: raw = json.loads(fh.read()) # use location_data as an abbreviation for location data location_data = pd.DataFrame(raw['locations']) del raw #free up some memory # convert to typical units location_data['latitudeE7'] = location_data['latitudeE7']/float(1e7) location_data['longitudeE7'] = location_data['longitudeE7']/float(1e7) location_data['timestampMs'] = location_data['timestampMs'].map(lambda x: float(x)/1000) #to seconds location_data['datetime'] = location_data.timestampMs.map(datetime.datetime.fromtimestamp) # Rename fields based on the conversions we just did location_data.rename(columns={'latitudeE7':'latitude', 'longitudeE7':'longitude', 'timestampMs':'timestamp'}, inplace=True) location_data = location_data[location_data.accuracy < 1000] #Ignore locations with accuracy estimates over 1000m location_data.reset_index(drop=True, inplace=True) Explanation: Data Wrangling data extraction End of explanation location_data.head() location_data.dtypes location_data.describe() Explanation: Explore Data view data and datatypes End of explanation print("earliest observed date: {}".format(min(location_data["datetime"]).strftime('%m-%d-%Y'))) print("latest observed date: {}".format(max(location_data["datetime"]).strftime('%m-%d-%Y'))) earliest_obs = min(location_data["datetime"]).strftime('%m-%d-%Y') latest_obs = max(location_data["datetime"]).strftime('%m-%d-%Y') Explanation: accuracy code "999" may represent missingness find earliest and latest observations in the data save for later End of explanation degrees_to_radians = np.pi/180.0 location_data['phi'] = (90.0 - location_data.latitude) * degrees_to_radians location_data['theta'] = location_data.longitude * degrees_to_radians # Compute distance between two GPS points on a unit sphere location_data['distance'] = np.arccos( np.sin(location_data.phi)*np.sin(location_data.phi.shift(-1)) * np.cos(location_data.theta - location_data.theta.shift(-1)) + np.cos(location_data.phi)*np.cos(location_data.phi.shift(-1))) * 6378.100 # radius of earth in km Explanation: data manipulation Degrees and Radians We're going to convert the degree-based geo data to radians to calculate distance traveled. I'm going to paraphrase an explanation (source below) about why the degree-to-radians conversion is necessary Degrees are arbitrary because they’re based on the sun and backwards because they are from the observer’s perspective. Radians are in terms of the mover allowing equations to “click into place”. Converting rotational to linear speed is easy, and ideas like sin(x)/x make sense. Consult this post for more info about degrees and radians in distance calculation. convert degrees to radians End of explanation location_data['speed'] = location_data.distance/(location_data.timestamp - location_data.timestamp.shift(-1))*3600 #km/hr Explanation: calculate speed during trips (in km/hr) End of explanation flight_data = pd.DataFrame(data={'end_lat':location_data.latitude, 'end_lon':location_data.longitude, 'end_datetime':location_data.datetime, 'distance':location_data.distance, 'speed':location_data.speed, 'start_lat':location_data.shift(-1).latitude, 'start_lon':location_data.shift(-1).longitude, 'start_datetime':location_data.shift(-1).datetime, }).reset_index(drop=True) Explanation: Make a new dataframe containing the difference in location between each pair of points. Any one of these pairs is a potential flight End of explanation def distance_on_unit_sphere(lat1, long1, lat2, long2): # http://www.johndcook.com/python_longitude_latitude.html # Convert latitude and longitude to spherical coordinates in radians. degrees_to_radians = np.pi/180.0 # phi = 90 - latitude phi1 = (90.0 - lat1)*degrees_to_radians phi2 = (90.0 - lat2)*degrees_to_radians # theta = longitude theta1 = long1*degrees_to_radians theta2 = long2*degrees_to_radians cos = (np.sin(phi1)*np.sin(phi2)*np.cos(theta1 - theta2) + np.cos(phi1)*np.cos(phi2)) arc = np.arccos( cos ) # Remember to multiply arc by the radius of the earth # in your favorite set of units to get length. return arc Explanation: Now flightdata contains a comparison of each adjacent GPS location. All that's left to do is filter out the true flight instances from the rest of them. spherical distance function function to calculate straight-line distance traveled on a sphere End of explanation flights = flight_data[(flight_data.speed > 40) & (flight_data.distance > 80)].reset_index() # Combine instances of flight that are directly adjacent # Find the indices of flights that are directly adjacent _f = flights[flights['index'].diff() == 1] adjacent_flight_groups = np.split(_f, (_f['index'].diff() > 1).nonzero()[0]) # Now iterate through the groups of adjacent flights and merge their data into # one flight entry for flight_group in adjacent_flight_groups: idx = flight_group.index[0] - 1 #the index of flight termination flights.loc[idx, ['start_lat', 'start_lon', 'start_datetime']] = [flight_group.iloc[-1].start_lat, flight_group.iloc[-1].start_lon, flight_group.iloc[-1].start_datetime] # Recompute total distance of flight flights.loc[idx, 'distance'] = distance_on_unit_sphere(flights.loc[idx].start_lat, flights.loc[idx].start_lon, flights.loc[idx].end_lat, flights.loc[idx].end_lon)*6378.1 # Now remove the "flight" entries we don't need anymore. flights = flights.drop(_f.index).reset_index(drop=True) # Finally, we can be confident that we've removed instances of flights broken up by # GPS data points during flight. We can now be more liberal in our constraints for what # constitutes flight. Let's remove any instances below 200km as a final measure. flights = flights[flights.distance > 200].reset_index(drop=True) Explanation: Flight algorithm filter flights remove flights using conservative selection criteria End of explanation fig = plt.figure(figsize=(18,12)) # Plotting across the international dateline is tough. One option is to break up flights # by hemisphere. Otherwise, you'd need to plot using a different projection like 'robin' # and potentially center on the Int'l Dateline (lon_0=-180) # flights = flights[(flights.start_lon < 0) & (flights.end_lon < 0)]# Western Hemisphere Flights # flights = flights[(flights.start_lon > 0) & (flights.end_lon > 0)] # Eastern Hemisphere Flights xbuf = 0.2 ybuf = 0.35 min_lat = np.min([flights.end_lat.min(), flights.start_lat.min()]) min_lon = np.min([flights.end_lon.min(), flights.start_lon.min()]) max_lat = np.max([flights.end_lat.max(), flights.start_lat.max()]) max_lon = np.max([flights.end_lon.max(), flights.start_lon.max()]) width = max_lon - min_lon height = max_lat - min_lat m = Basemap(llcrnrlon=min_lon - width* xbuf, llcrnrlat=min_lat - height*ybuf, urcrnrlon=max_lon + width* xbuf, urcrnrlat=max_lat + height*ybuf, projection='merc', resolution='l', lat_0=min_lat + height/2, lon_0=min_lon + width/2,) m.drawmapboundary(fill_color='#EBF4FA') m.drawcoastlines() m.drawstates() m.drawcountries() m.fillcontinents() current_date = time.strftime("printed: %a, %d %b %Y", time.localtime()) for idx, f in flights.iterrows(): m.drawgreatcircle(f.start_lon, f.start_lat, f.end_lon, f.end_lat, linewidth=3, alpha=0.4, color='b' ) m.plot(*m(f.start_lon, f.start_lat), color='g', alpha=0.8, marker='o') m.plot(*m(f.end_lon, f.end_lat), color='r', alpha=0.5, marker='o' ) fig.text(0.125, 0.18, "Data collected from 2013-2017 on Android \nPlotted using Python, Basemap \n%s" % (current_date), ha='left', color='#555555', style='italic') fig.text(0.125, 0.15, "kivanpolimis.com", color='#555555', fontsize=16, ha='left') plt.savefig('flights.png', dpi=150, frameon=False, transparent=False, bbox_inches='tight', pad_inches=0.2) Image(filename='flights.png') Explanation: This algorithm worked 100% of the time for me - no false positives or negatives. But the adjacency-criteria of the algorithm is fairly brittle. The core of it centers around the assumption that inter-flight GPS data will be directly adjacent to one another. That's why the initial screening on line 1 of the previous cell had to be so liberal. Now, the flights DataFrame contains only instances of true flights which facilitates plotting with Matplotlib's Basemap. If we plot on a flat projection like tmerc, the drawgreatcircle function will produce a true path arc just like we see in the in-flight magazines. Visualize Flights End of explanation flights_in_miles = round(flights.distance.sum()*.621371) # distance column is in km, convert to miles flights_in_miles print("{0} miles traveled from {1} to {2}".format(flights_in_miles, earliest_obs, latest_obs)) Explanation: You can draw entertaining conclusions from the flight visualization. For instance, you can see some popular layover locations, all those lines in/out of Seattle, plus a recent trip to Germany. And Basemap has made it so simple for us - no Shapefiles to import because all map information is included in the Basemap module. Calculate all the miles you have traveled in the years observed with a single line of code: End of explanation import time print("last updated: {}".format(time.strftime("%a, %d %b %Y %H:%M", time.localtime()))) Explanation: Conclusion You've now got the code to go ahead and reproduce these maps. I'm working on creating functions to automate these visualizations Potential future directions Figure out where you usually go on the weekends Calculate your fastest commute route measure the amount of time you spend driving vs. walking. Download this notebook, or see a static view here End of explanation
3,378
Given the following text description, write Python code to implement the functionality described below step by step Description: <h2>HW #5</h2> Matt Buchovecky Astro 283 Step1: <h2> Problem 1 </h2> $$p\left(x\mid \alpha,\beta\right) = \left{ \begin{array}{ll} \alpha^{-1}\exp{\left(-\frac{x+\beta}{\alpha}\right)I_0\left(\frac{2\sqrt{x\beta}}{\alpha}\right)} & \quad \quad x\geq 0 \ 0 & \quad \quad x<0 \ \end{array} \right. $$ Step6: <h2> Problem 2 </h2> <h3> Comparing fit of second and third order polynomial models </h3> We wish to find if these data are better fit by a second or third order polynomial model. We use Monte Carlo integration to estimate the ratio \begin{eqnarray} \frac{P\left(M_2\mid{X_k,Y_k,\sigma_k}\right)}{P\left(M_3\mid{X_k,Y_k,\sigma_k}\right)} &=& \frac{\int p\left(M_2,\vec{a}\mid{X_k,Y_k,\sigma_k}\right)d\vec{a}}{\int p\left(M_3,\vec{b}\mid{X_k,Y_k,\sigma_k}\right) d\vec{b}}\ &=& \frac{\int P\left({X_k,Y_k,\sigma_k}\mid M_2,\vec{a}\right)p\left(M_2,\vec{a}\right) d\vec{a}}{\int P\left({X_k,Y_k,\sigma_k}\mid M_3,\vec{b}\right)p\left(M_3,\vec{b}\right) d\vec{b}} \ \end{eqnarray} the first line marginalizes the probability, then the second line applies Baye's theorem, where the probability of the data $P\left({X_k,Y_k,\sigma_k}\right)$ is common to both and cancels. \ If we assume the priors are uniform, they are equal to the inverse of the volume in phase space \begin{eqnarray} \frac{p\left(M_2,\vec{a}\right)}{p\left(M_3,\vec{b}\right)} &=& \frac{\prod_{i=1}^3\frac{1}{a_i^\text{max}-a_i^\text{min}}}{\prod_{i=1}^4\frac{1}{b_i^\text{max}-b_i^\text{min}}} \end{eqnarray} The likelihood functions are those for independent and Gaussian distributed errors \begin{eqnarray} P\left({X_k,Y_k,\sigma_k}\mid M_n,\vec{c}\right) &=& \prod_{i=1}^N\frac{1}{\sqrt{2\pi\sigma^2_i}}\exp\left[-\frac{(y_i-f_n(x_i,\vec{c}))^2}{2\sigma_i^2}\right]\ &=& \left(\prod_{i=1}^N\frac{1}{\sqrt{2\pi\sigma^2_i}}\right)\exp\left(-\frac{\chi_0^2}{2}\right)\exp\left(-\frac{\chi^2-\chi_0^2}{2}\right) \end{eqnarray} where $\vec{c}$ is just a generalized set of parameters, $\vec{a}$ and $\vec{b}$, $n$ is the order of the polynomial model, and $N$ is the number of data points, and the $f$ functions are just the polynomial models Step7: The gaussian function we sample from is centered around the best fit parameters, and is given by Step10: The chi squared term tended to make the computation excessively large, too large for even 128-bit floats to handle. To make the numbers in the exponential smaller, we compare to the best fit parameters, rewriting Step13: It looks like the better fit is quadratic $$ \frac{P\left(M_2\mid{X_k,Y_k,\sigma_k}\right)}{P\left(M_3\mid{X_k,Y_k,\sigma_k}\right)} \sim 10^1 $$ <h4>Other stuff I tried</h4>
Python Code: # import modules import numpy as np from matplotlib import pyplot %matplotlib inline from scipy import optimize, stats, special Explanation: <h2>HW #5</h2> Matt Buchovecky Astro 283 End of explanation # define the pdf for the Rice distribution as a subclass of rv_continuous class Rice_dist(stats.rv_continuous): "Rice distribution class" def _pdf(self, x, alpha, beta): try: iter(x) except TypeError: if x < 0: return 0 x = [ x ] x = np.asarray(x) condlist = [ x>0 ] choicelist = [ (1/alpha)*np.exp((x+beta)/(-alpha))*special.iv(0, 2*np.sqrt(x*beta)/alpha) ] #return np.select(condlist, choicelist, default=0.0) return (1/alpha)*np.exp((x+beta)/(-alpha))*special.iv(0, 2*np.sqrt(x*beta)/alpha) # create an instance of the Rice distribution and create a set of samples from that distribution rice_inst = Rice_dist(a=0.0, name='Rice name') # b=inf alpha, beta = (7., 47.) mean_x = alpha + beta variance_x = alpha**2 + 2*alpha*beta rice_trials_array = rice_inst.rvs(alpha=alpha, beta=beta, size=500) # compare the histogram of samples to the Rice curve x = np.arange(rice_trials_array.min(), rice_trials_array.max(), 0.1) f = rice_inst._pdf(x, alpha, beta) p = pyplot.plot(x, f) h = pyplot.hist(rice_trials_array, normed=True) pyplot.xlabel('x') pyplot.ylabel('pdf') pyplot.title("pdf vs normed histogram of trials") pyplot.xlim(rice_trials_array.min(), rice_trials_array.max()) rice_trials_array.max() # find a nice normal curve similar to this distribution, and find the M factor guess = 45. sigma = 35. center = optimize.fmin(lambda x: -rice_inst._pdf(x,alpha,beta), guess) x_M = optimize.fmin(lambda x: -rice_inst._pdf(x, alpha, beta)/stats.norm.pdf(x, center, sigma), center) M = rice_inst._pdf(x_M, alpha, beta)/stats.norm.pdf(x_M, center, sigma) print(M) # compare f(x) and g(x) curves fp = pyplot.plot(x, f, label='f') gp = pyplot.plot(x, stats.norm.pdf(x, center, sigma), label='g') pyplot.xlabel('x') pyplot.ylabel('pdf') pyplot.title("f(x) vs g(x) for my set parameters") pyplot.xlim(rice_trials_array.min(), rice_trials_array.max()) pyplot.legend(loc='center left', bbox_to_anchor=(1., 0.5)) # sample points the old-fashioned way num_points = 1000 sample_set = [] u_set = [] n = 0 #M=15 while n < num_points: u_rand = np.random.uniform(0, 1) # generate random x from normal distribution, could use Box-Muller method here x_rand = np.random.normal(center, sigma) g_x = stats.norm.pdf(x_rand, center, sigma) f_x = rice_inst._pdf(x_rand, alpha, beta) if u_rand < f_x / (M*g_x): if f_x / (M*g_x) > 1: print(f_x / (g_x)) sample_set.append(x_rand) u_set.append(u_rand) n = n + 1 u_rand = np.random.uniform(0, 1) print(u_rand) # write the file, as the samples look good outfile = open("./buchovecky_matt_hw5_data.txt", 'w') for trial in np.nditer(rice_trials_array): outfile.write(str(trial)+'\n') outfile.close() # compare expectation value and variance to that for Rie distribution print(mean_x) print(rice_inst.expect(args=(alpha,beta))) print(variance_x) print(rice_inst.var(alpha=alpha, beta=beta)) Explanation: <h2> Problem 1 </h2> $$p\left(x\mid \alpha,\beta\right) = \left{ \begin{array}{ll} \alpha^{-1}\exp{\left(-\frac{x+\beta}{\alpha}\right)I_0\left(\frac{2\sqrt{x\beta}}{\alpha}\right)} & \quad \quad x\geq 0 \ 0 & \quad \quad x<0 \ \end{array} \right. $$ End of explanation # read in the data for part 2 infile = open("./hw5-data.txt", 'r') x_arr = [ ] y_arr = [ ] sigma_arr = [ ] for line in iter(infile): line = line.split() try: float(line[0]) and float(line[1]) and float(line[2]) x_arr.append(float(line[0])) y_arr.append(float(line[1])) sigma_arr.append(float(line[2])) except ValueError: continue infile.close() print(x_arr) print(y_arr) print(sigma_arr) # define functions for the models, chi square, and marginal probability def poly_2nd_ord(x, a0, a1, a2): return the value of a second order polynomial return a0 + a1*x + a2*x**2 def poly_3rd_ord(x, a0, a1, a2, a3): return the value of a third order polynomial return a0 + a1*x + a2*x**2 + a3*pow(x,3) def chi_square(function, params, x_vals, data_vals, sig_vals): return the chi square residuals comparing the values of a function with parameters for a set of x values compared to some values for the data and errors #check ndarray type residuals = (data_vals - function(x_vals, *params)) chis = (residuals**2)/np.power(sig_vals,2) chi_sum = np.sum(chis) d_o_f = len(x_vals) - len(params) #return (chi_sum, d_o_f) return chi_sum def gauss_vec_cov(vals, vals_0, cov): the gaussian function for vector argument and a covariace matrix vals is the vector evaluating, vals_0 is the center vector, and cov is the covariance matrix if type(vals) is not np.matrix: vals = np.matrix(vals).T if type(vals_0) is not np.matrix: vals_0 = np.matrix(vals_0).T if type(cov) is not np.matrix: cov = np.matrix(cov) vec = np.matrix(vals - vals_0) return 1/((2*np.pi)*np.sqrt(np.linalg.det(cov)))*np.exp(-0.5*vec.T*cov.I*vec) Explanation: <h2> Problem 2 </h2> <h3> Comparing fit of second and third order polynomial models </h3> We wish to find if these data are better fit by a second or third order polynomial model. We use Monte Carlo integration to estimate the ratio \begin{eqnarray} \frac{P\left(M_2\mid{X_k,Y_k,\sigma_k}\right)}{P\left(M_3\mid{X_k,Y_k,\sigma_k}\right)} &=& \frac{\int p\left(M_2,\vec{a}\mid{X_k,Y_k,\sigma_k}\right)d\vec{a}}{\int p\left(M_3,\vec{b}\mid{X_k,Y_k,\sigma_k}\right) d\vec{b}}\ &=& \frac{\int P\left({X_k,Y_k,\sigma_k}\mid M_2,\vec{a}\right)p\left(M_2,\vec{a}\right) d\vec{a}}{\int P\left({X_k,Y_k,\sigma_k}\mid M_3,\vec{b}\right)p\left(M_3,\vec{b}\right) d\vec{b}} \ \end{eqnarray} the first line marginalizes the probability, then the second line applies Baye's theorem, where the probability of the data $P\left({X_k,Y_k,\sigma_k}\right)$ is common to both and cancels. \ If we assume the priors are uniform, they are equal to the inverse of the volume in phase space \begin{eqnarray} \frac{p\left(M_2,\vec{a}\right)}{p\left(M_3,\vec{b}\right)} &=& \frac{\prod_{i=1}^3\frac{1}{a_i^\text{max}-a_i^\text{min}}}{\prod_{i=1}^4\frac{1}{b_i^\text{max}-b_i^\text{min}}} \end{eqnarray} The likelihood functions are those for independent and Gaussian distributed errors \begin{eqnarray} P\left({X_k,Y_k,\sigma_k}\mid M_n,\vec{c}\right) &=& \prod_{i=1}^N\frac{1}{\sqrt{2\pi\sigma^2_i}}\exp\left[-\frac{(y_i-f_n(x_i,\vec{c}))^2}{2\sigma_i^2}\right]\ &=& \left(\prod_{i=1}^N\frac{1}{\sqrt{2\pi\sigma^2_i}}\right)\exp\left(-\frac{\chi_0^2}{2}\right)\exp\left(-\frac{\chi^2-\chi_0^2}{2}\right) \end{eqnarray} where $\vec{c}$ is just a generalized set of parameters, $\vec{a}$ and $\vec{b}$, $n$ is the order of the polynomial model, and $N$ is the number of data points, and the $f$ functions are just the polynomial models: \begin{eqnarray} f_2(x_i,\vec{a}) &=& a_2x^2_i+a_1x_i+a_0 \ f_3(x_i,\vec{b}) &=& b_3x^3_i+b_2x^2_i+b_1x_i+b_0 \end{eqnarray} End of explanation # find the optimal fits for the models guess_2 = (1, 1, 1) p_opt_2, p_cov_2 = optimize.curve_fit(poly_2nd_ord, x_arr, y_arr, guess_2, sigma_arr) guess_3 = (1, 1, 1, 1) p_opt_3, p_cov_3 = optimize.curve_fit(poly_3rd_ord, x_arr, y_arr, guess_3, sigma_arr) for lst in [p_opt_2, p_cov_2, p_opt_3, p_cov_3]: print(lst) # plot the data against the optimal fits for both models x_arr = np.asarray(x_arr) x_range = np.arange(x_arr.min()-1., x_arr.max()+1., 0.1) pyplot.errorbar(x_arr, y_arr, yerr=sigma_arr, fmt='bo', label='data') pyplot.plot(x_range, poly_2nd_ord(x_range, *p_opt_2), 'r-', label='quad fit') pyplot.plot(x_range, poly_3rd_ord(x_range, *p_opt_3), 'g-', label='cubic fit') pyplot.ylabel('y') pyplot.xlabel('x') pyplot.title("fits comparison") pyplot.legend(loc='center left', bbox_to_anchor=(1., 0.5)) Explanation: The gaussian function we sample from is centered around the best fit parameters, and is given by: \begin{eqnarray} g_2\left(\vec{a},\vec{a}_0,\Sigma_2\right) &=& \frac{1}{\sqrt{(2\pi)^2\det\Sigma_2}}\exp\left[-\frac{1}{2}(\vec{a}-\vec{b}_0)^T\Sigma_2^{-1}(\vec{a}-\vec{a}_0)\right]\ g_3\left(\vec{b},\vec{b}_0,\Sigma_3\right) &=& \frac{1}{\sqrt{(2\pi)^3\det\Sigma_3}}\exp\left[-\frac{1}{2}(\vec{b}-\vec{b}_0)^T\Sigma_3^{-1}(\vec{b}-\vec{b}_0)\right] \end{eqnarray} where $\Sigma$ represents the covariance matrix from the best fit End of explanation # Monte Carlo integration, uniform sampling def MC_int_uni_sampl(func, p_opt, p_cov, N, s=3.0): Monte Carlo integration function uniform sampling integral_sum = 0 V = np.prod([2*s*np.sqrt(p_cov[i][i]) for i in range(0, len(p_opt))]) chisq_0 = chi_square(func, p_opt, x_arr, y_arr, sigma_arr) for n in range(0, N): param_rands = [ np.random.uniform(p_opt[i]-s*np.sqrt(p_cov[i][i]), p_opt[i]+s*np.sqrt(p_cov[i][i])) for i in range(0, len(p_opt)) ] chisq = chi_square(func, param_rands, x_arr, y_arr, sigma_arr) integral_sum += np.exp(-0.5*(chisq-chisq_0)) #return V * integral_sum / N return integral_sum / N # the true integral is above, but for uniform sampling V will cancel with priors, so I leave it out # Monte Carlo integration sampling from a gaussian def MC_int_gaus_sampl(func, p_opt, p_cov, N, s=3.0): Monte Carlo integration function samples from a gaussian distribution center around p_opt s tells the range of standard deviations to integrate over n = 0 int_sum = 0 Mg = gauss_vec_cov(p_opt, p_opt, p_cov) chisq_0 = chi_square(func, p_opt, x_arr, y_arr, sigma_arr) while n < N: u_rand = np.random.rand() param_rands = [ np.random.uniform(p_opt[i]-s*np.sqrt(p_cov[i][i]), p_opt[i]+s*np.sqrt(p_cov[i][i])) for i in range(0, len(p_opt)) ] f_rej = gauss_vec_cov(param_rands, p_opt, p_cov) # f in rejection sampling -> g in mc integral if u_rand < f_rej/Mg: chisq = chi_square(func, param_rands, x_arr, y_arr, sigma_arr) int_sum += np.exp(-0.5*(chisq-chisq_0))/f_rej n += 1 return int_sum / N # compute ratio from uniform sampling, quadratic to cubic mc_int_2 = MC_int_uni_sampl(poly_2nd_ord, p_opt_2, p_cov_2, 10000, s=3.0) mc_int_3 = MC_int_uni_sampl(poly_3rd_ord, p_opt_3, p_cov_3, 10000, s=3.0) chisq_2 = chi_square(poly_2nd_ord, p_opt_2, x_arr, y_arr, sigma_arr) chisq_3 = chi_square(poly_3rd_ord, p_opt_3, x_arr, y_arr, sigma_arr) ratio_uni = mc_int_2 / mc_int_3 * np.exp(-0.5*(chisq_2-chisq_3)) print(ratio_uni) # compute ratio from gaussian mc_int_2 = MC_int_gaus_sampl(poly_2nd_ord, p_opt_2, p_cov_2, 1000, s=1.0) mc_int_3 = MC_int_gaus_sampl(poly_3rd_ord, p_opt_3, p_cov_3, 1000, s=1.0) chisq_2 = chi_square(poly_2nd_ord, p_opt_2, x_arr, y_arr, sigma_arr) chisq_3 = chi_square(poly_3rd_ord, p_opt_3, x_arr, y_arr, sigma_arr) param3_spread = 10 ratio_uni = mc_int_2 / (mc_int_3/param3_spread) * np.exp(-0.5*(chisq_2-chisq_3)) print(ratio_uni) Explanation: The chi squared term tended to make the computation excessively large, too large for even 128-bit floats to handle. To make the numbers in the exponential smaller, we compare to the best fit parameters, rewriting: $$\prod_{i=1}^N\frac{1}{\sqrt{2\pi\sigma^2_i}}\exp\left[-\frac{(y_i-f_n(x_i,\vec{c}))^2}{2\sigma_i^2}\right] = \left(\prod_{i=1}^N\frac{1}{\sqrt{2\pi\sigma^2_i}}\right)\exp\left(-\frac{\chi_0^2}{2}\right)\exp\left(-\frac{\chi^2-\chi_0^2}{2}\right)$$ where the chi squared terms can be written as: \begin{eqnarray} \chi^2 &=& \sum_{i=1}^N\frac{(y_i-f_n(x_i,\vec{c}))^2}{\sigma_i^2}\ \chi^2_0 &=& \sum_{i=1}^N\frac{(y_i-f_n(x_i,\vec{c}_0))^2}{\sigma_i^2} \end{eqnarray} and $A_0$ is the set of best fit parameters For the integration we use the Monte Carlo integration method. The ratio is computed below. Note that for the integral with uniform sampling the priors cancel with the volume of the integral. When the sampling isn't uniform, the priors won't cancel with the volume, but will partially cancel between models, with one parameter leftover for the 3rd order equation End of explanation print(MC_int_uni_sampl(poly_2nd_ord, p_opt_2, p_cov_2, 10000, s=1.0)) print(MC_int_gaus_sampl(poly_2nd_ord, p_opt_2, p_cov_2, 10000, s=1.0)) print(MC_int_uni_sampl(poly_3rd_ord, p_opt_3, p_cov_3, 10000, s=1.0)) print(MC_int_gaus_sampl(poly_3rd_ord, p_opt_3, p_cov_3, 1000, s=1.0)) #print det of cov print(np.linalg.det(p_cov_2)) # general random rejection method def rand_rejection(f, g_rand, a, b): generate a random variable using the rejection method f is the pdf, sample from g_rand, a and b are the upper and lower bounds, respectively u_rand = np.random.uniform(0, 1) M = 5. # define a general polynomial def polynomial_gen(x, params): '''general polynomial function''' order = len(params) + 1 sum = 0 for i in range(0, order): sum = sum + params[i]*np.power(x, i) return sum # define the pdf for the Rice distribution as a subclass of rv_continuous class Rice_dist2(stats.rv_continuous): test def _pdf(self, x, alpha, beta): try: iter(x) r_arr = np.zeros(x.shape()) for i in iter(x): if x > 0: print('hi') except TypeError: return (1/alpha)*np.exp((x+beta)/(-alpha))*special.iv(0, 2*np.sqrt(x*beta)/alpha) from timeit import timeit ar = [ 5, 5, 5 ] ndar = np.asarray(ar) %timeit np.asarray(ar) %timeit np.asarray(ndar) Rice_dist2? Explanation: It looks like the better fit is quadratic $$ \frac{P\left(M_2\mid{X_k,Y_k,\sigma_k}\right)}{P\left(M_3\mid{X_k,Y_k,\sigma_k}\right)} \sim 10^1 $$ <h4>Other stuff I tried</h4> End of explanation
3,379
Given the following text description, write Python code to implement the functionality described below step by step Description: Markov Chains author Step1: Markov chains have log probability, fit, summarize, and from summaries methods implemented. They do not have classification capabilities by themselves, but when combined with a Naive Bayes classifier can be used to do discrimination between multiple models (see the Naive Bayes tutorial notebook). Lets see the log probability of some data. Step2: We can fit the model to sequences which we pass in, and as expected, get better performance on sequences which we train on.
Python Code: from pomegranate import * %pylab inline d1 = DiscreteDistribution({'A': 0.10, 'C': 0.40, 'G': 0.40, 'T': 0.10}) d2 = ConditionalProbabilityTable([['A', 'A', 0.10], ['A', 'C', 0.50], ['A', 'G', 0.30], ['A', 'T', 0.10], ['C', 'A', 0.10], ['C', 'C', 0.40], ['C', 'T', 0.40], ['C', 'G', 0.10], ['G', 'A', 0.05], ['G', 'C', 0.45], ['G', 'G', 0.45], ['G', 'T', 0.05], ['T', 'A', 0.20], ['T', 'C', 0.30], ['T', 'G', 0.30], ['T', 'T', 0.20]], [d1]) clf = MarkovChain([d1, d2]) Explanation: Markov Chains author: Jacob Schreiber <br> contact: [email protected] Markov Chains are a simple model based on conditional probability, where a sequence is modelled as the product of conditional probabilities. A n-th order Markov chain looks back n emissions to base its conditional probability on. For example, a 3rd order Markov chain models $P(X_{t} | X_{t-1}, X_{t-2}, X_{t-3})$. However, a full Markov model needs to model the first observations, and the first n-1 observations. The first observation can't really be modelled well using $P(X_{t} | X_{t-1}, X_{t-2}, X_{t-3})$, but can be modelled by $P(X_{t})$. The second observation has to be modelled by $P(X_{t} | X_{t-1} )$. This means that these distributions have to be passed into the Markov chain as well. We can initialize a Markov chain easily enough by passing in a list of the distributions. End of explanation clf.log_probability( list('CAGCATCAGT') ) clf.log_probability( list('C') ) clf.log_probability( list('CACATCACGACTAATGATAAT') ) Explanation: Markov chains have log probability, fit, summarize, and from summaries methods implemented. They do not have classification capabilities by themselves, but when combined with a Naive Bayes classifier can be used to do discrimination between multiple models (see the Naive Bayes tutorial notebook). Lets see the log probability of some data. End of explanation clf.fit( map( list, ('CAGCATCAGT', 'C', 'ATATAGAGATAAGCT', 'GCGCAAGT', 'GCATTGC', 'CACATCACGACTAATGATAAT') ) ) print clf.log_probability( list('CAGCATCAGT') ) print clf.log_probability( list('C') ) print clf.log_probability( list('CACATCACGACTAATGATAAT') ) print clf.distributions[0] print clf.distributions[1] Explanation: We can fit the model to sequences which we pass in, and as expected, get better performance on sequences which we train on. End of explanation
3,380
Given the following text description, write Python code to implement the functionality described below step by step Description: Deep Learning Assignment 1 The objective of this assignment is to learn about simple data curation practices, and familiarize you with some of the data we'll be reusing later. This notebook uses the notMNIST dataset to be used with python experiments. This dataset is designed to look like the classic MNIST dataset, while looking a little more like real data Step3: First, we'll download the dataset to our local machine. The data consists of characters rendered in a variety of fonts on a 28x28 image. The labels are limited to 'A' through 'J' (10 classes). The training set has about 500k and the testset 19000 labelled examples. Given these sizes, it should be possible to train models quickly on any machine. Step4: Extract the dataset from the compressed .tar.gz file. This should give you a set of directories, labelled A through J. Step6: Problem 1 Let's take a peek at some of the data to make sure it looks sensible. Each exemplar should be an image of a character A through J rendered in a different font. Display a sample of the images that we just downloaded. Hint Step7: Problem 2 Let's verify that the data still looks good. Displaying a sample of the labels and images from the ndarray. Hint Step8: Next, we'll randomize the data. It's important to have the labels well shuffled for the training and test distributions to match. Step9: Problem 4 Convince yourself that the data is still good after shuffling! Finally, let's save the data for later reuse
Python Code: # These are all the modules we'll be using later. Make sure you can import them # before proceeding further. from __future__ import print_function import matplotlib.pyplot as plt import numpy as np import os import sys import tarfile from IPython.display import display, Image from scipy import ndimage from sklearn.linear_model import LogisticRegression from six.moves.urllib.request import urlretrieve from six.moves import cPickle as pickle # Config the matlotlib backend as plotting inline in IPython %matplotlib inline Explanation: Deep Learning Assignment 1 The objective of this assignment is to learn about simple data curation practices, and familiarize you with some of the data we'll be reusing later. This notebook uses the notMNIST dataset to be used with python experiments. This dataset is designed to look like the classic MNIST dataset, while looking a little more like real data: it's a harder task, and the data is a lot less 'clean' than MNIST. End of explanation url = 'http://commondatastorage.googleapis.com/books1000/' last_percent_reported = None def download_progress_hook(count, blockSize, totalSize): A hook to report the progress of a download. This is mostly intended for users with slow internet connections. Reports every 1% change in download progress. global last_percent_reported percent = int(count * blockSize * 100 / totalSize) if last_percent_reported != percent: if percent % 5 == 0: sys.stdout.write("%s%%" % percent) sys.stdout.flush() else: sys.stdout.write(".") sys.stdout.flush() last_percent_reported = percent def maybe_download(filename, expected_bytes, force=False): Download a file if not present, and make sure it's the right size. if force or not os.path.exists(filename): print('Attempting to download:', filename) filename, _ = urlretrieve(url + filename, filename, reporthook=download_progress_hook) print('\nDownload Complete!') statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print('Found and verified', filename) else: raise Exception( 'Failed to verify ' + filename + '. Can you get to it with a browser?') return filename train_filename = maybe_download('notMNIST_large.tar.gz', 247336696) test_filename = maybe_download('notMNIST_small.tar.gz', 8458043) Explanation: First, we'll download the dataset to our local machine. The data consists of characters rendered in a variety of fonts on a 28x28 image. The labels are limited to 'A' through 'J' (10 classes). The training set has about 500k and the testset 19000 labelled examples. Given these sizes, it should be possible to train models quickly on any machine. End of explanation num_classes = 10 np.random.seed(133) def maybe_extract(filename, force=False): root = os.path.splitext(os.path.splitext(filename)[0])[0] # remove .tar.gz if os.path.isdir(root) and not force: # You may override by setting force=True. print('%s already present - Skipping extraction of %s.' % (root, filename)) else: print('Extracting data for %s. This may take a while. Please wait.' % root) tar = tarfile.open(filename) sys.stdout.flush() tar.extractall() tar.close() data_folders = [ os.path.join(root, d) for d in sorted(os.listdir(root)) if os.path.isdir(os.path.join(root, d))] if len(data_folders) != num_classes: raise Exception( 'Expected %d folders, one per class. Found %d instead.' % ( num_classes, len(data_folders))) print(data_folders) return data_folders train_folders = maybe_extract(train_filename) test_folders = maybe_extract(test_filename) Explanation: Extract the dataset from the compressed .tar.gz file. This should give you a set of directories, labelled A through J. End of explanation image_size = 28 # Pixel width and height. pixel_depth = 255.0 # Number of levels per pixel. def load_letter(folder, min_num_images): Load the data for a single letter label. image_files = os.listdir(folder) dataset = np.ndarray(shape=(len(image_files), image_size, image_size), dtype=np.float32) print(folder) for image_index, image in enumerate(image_files): image_file = os.path.join(folder, image) try: image_data = (ndimage.imread(image_file).astype(float) - pixel_depth / 2) / pixel_depth if image_data.shape != (image_size, image_size): raise Exception('Unexpected image shape: %s' % str(image_data.shape)) dataset[image_index, :, :] = image_data except IOError as e: print('Could not read:', image_file, ':', e, '- it\'s ok, skipping.') num_images = image_index + 1 dataset = dataset[0:num_images, :, :] if num_images < min_num_images: raise Exception('Many fewer images than expected: %d < %d' % (num_images, min_num_images)) print('Full dataset tensor:', dataset.shape) print('Mean:', np.mean(dataset)) print('Standard deviation:', np.std(dataset)) return dataset def maybe_pickle(data_folders, min_num_images_per_class, force=False): dataset_names = [] for folder in data_folders: set_filename = folder + '.pickle' dataset_names.append(set_filename) if os.path.exists(set_filename) and not force: # You may override by setting force=True. print('%s already present - Skipping pickling.' % set_filename) else: print('Pickling %s.' % set_filename) dataset = load_letter(folder, min_num_images_per_class) try: with open(set_filename, 'wb') as f: pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL) except Exception as e: print('Unable to save data to', set_filename, ':', e) return dataset_names train_datasets = maybe_pickle(train_folders, 45000) test_datasets = maybe_pickle(test_folders, 1800) Explanation: Problem 1 Let's take a peek at some of the data to make sure it looks sensible. Each exemplar should be an image of a character A through J rendered in a different font. Display a sample of the images that we just downloaded. Hint: you can use the package IPython.display. Now let's load the data in a more manageable format. Since, depending on your computer setup you might not be able to fit it all in memory, we'll load each class into a separate dataset, store them on disk and curate them independently. Later we'll merge them into a single dataset of manageable size. We'll convert the entire dataset into a 3D array (image index, x, y) of floating point values, normalized to have approximately zero mean and standard deviation ~0.5 to make training easier down the road. A few images might not be readable, we'll just skip them. End of explanation def make_arrays(nb_rows, img_size): if nb_rows: dataset = np.ndarray((nb_rows, img_size, img_size), dtype=np.float32) labels = np.ndarray(nb_rows, dtype=np.int32) else: dataset, labels = None, None return dataset, labels def merge_datasets(pickle_files, train_size, valid_size=0): num_classes = len(pickle_files) valid_dataset, valid_labels = make_arrays(valid_size, image_size) train_dataset, train_labels = make_arrays(train_size, image_size) vsize_per_class = valid_size // num_classes tsize_per_class = train_size // num_classes start_v, start_t = 0, 0 end_v, end_t = vsize_per_class, tsize_per_class end_l = vsize_per_class+tsize_per_class for label, pickle_file in enumerate(pickle_files): try: with open(pickle_file, 'rb') as f: letter_set = pickle.load(f) # let's shuffle the letters to have random validation and training set np.random.shuffle(letter_set) if valid_dataset is not None: valid_letter = letter_set[:vsize_per_class, :, :] valid_dataset[start_v:end_v, :, :] = valid_letter valid_labels[start_v:end_v] = label start_v += vsize_per_class end_v += vsize_per_class train_letter = letter_set[vsize_per_class:end_l, :, :] train_dataset[start_t:end_t, :, :] = train_letter train_labels[start_t:end_t] = label start_t += tsize_per_class end_t += tsize_per_class except Exception as e: print('Unable to process data from', pickle_file, ':', e) raise return valid_dataset, valid_labels, train_dataset, train_labels train_size = 200000 valid_size = 10000 test_size = 10000 valid_dataset, valid_labels, train_dataset, train_labels = merge_datasets( train_datasets, train_size, valid_size) _, _, test_dataset, test_labels = merge_datasets(test_datasets, test_size) print('Training:', train_dataset.shape, train_labels.shape) print('Validation:', valid_dataset.shape, valid_labels.shape) print('Testing:', test_dataset.shape, test_labels.shape) Explanation: Problem 2 Let's verify that the data still looks good. Displaying a sample of the labels and images from the ndarray. Hint: you can use matplotlib.pyplot. Problem 3 Another check: we expect the data to be balanced across classes. Verify that. Merge and prune the training data as needed. Depending on your computer setup, you might not be able to fit it all in memory, and you can tune train_size as needed. The labels will be stored into a separate array of integers 0 through 9. Also create a validation dataset for hyperparameter tuning. End of explanation def randomize(dataset, labels): permutation = np.random.permutation(labels.shape[0]) shuffled_dataset = dataset[permutation,:,:] shuffled_labels = labels[permutation] return shuffled_dataset, shuffled_labels train_dataset, train_labels = randomize(train_dataset, train_labels) test_dataset, test_labels = randomize(test_dataset, test_labels) valid_dataset, valid_labels = randomize(valid_dataset, valid_labels) Explanation: Next, we'll randomize the data. It's important to have the labels well shuffled for the training and test distributions to match. End of explanation pickle_file = 'notMNIST.pickle' try: f = open(pickle_file, 'wb') save = { 'train_dataset': train_dataset, 'train_labels': train_labels, 'valid_dataset': valid_dataset, 'valid_labels': valid_labels, 'test_dataset': test_dataset, 'test_labels': test_labels, } pickle.dump(save, f, pickle.HIGHEST_PROTOCOL) f.close() except Exception as e: print('Unable to save data to', pickle_file, ':', e) raise statinfo = os.stat(pickle_file) print('Compressed pickle size:', statinfo.st_size) Explanation: Problem 4 Convince yourself that the data is still good after shuffling! Finally, let's save the data for later reuse: End of explanation
3,381
Given the following text description, write Python code to implement the functionality described below step by step Description: Getting Started This is a simple example of the basic capabilities of aneris. First, model and history data are read in. The model is then harmonized. Finally, output is analyzed. Step1: The driver is used to execute the harmonization. It will handle the data formatting needed to execute the harmonizaiton operation and stores the harmonized results until they are needed. Some logging output is provided. It can be suppressed with aneris.logger().setLevel('WARN') Step2: All data of interest is combined in order to easily view it. We will specifically investigate output for the World in this example. A few operations are performed in order to get the data into a plotting-friendly format.
Python Code: import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import aneris from aneris.tutorial import load_data %matplotlib inline Explanation: Getting Started This is a simple example of the basic capabilities of aneris. First, model and history data are read in. The model is then harmonized. Finally, output is analyzed. End of explanation model, hist, driver = load_data() for scenario in driver.scenarios(): driver.harmonize(scenario) harmonized, metadata, diagnostics = driver.harmonized_results() Explanation: The driver is used to execute the harmonization. It will handle the data formatting needed to execute the harmonizaiton operation and stores the harmonized results until they are needed. Some logging output is provided. It can be suppressed with aneris.logger().setLevel('WARN') End of explanation data = pd.concat([hist, model, harmonized]) df = data[data.Region.isin(['World'])] df = pd.melt(df, id_vars=aneris.iamc_idx, value_vars=aneris.numcols(df), var_name='Year', value_name='Emissions') df['Label'] = df['Model'] + ' ' + df['Variable'] df.head() sns.lineplot(x=df.Year.astype(int), y=df.Emissions, hue=df.Label) plt.legend(bbox_to_anchor=(1.05, 1)) Explanation: All data of interest is combined in order to easily view it. We will specifically investigate output for the World in this example. A few operations are performed in order to get the data into a plotting-friendly format. End of explanation
3,382
Given the following text description, write Python code to implement the functionality described below step by step Description: Solution of Axelrod 1980 Step1: Implement the five strategies Step2: Write a function that accepts the name of two strategies and competes them in a game of iterated prisoner's dilemma for a given number of turns. Step3: Implement a round-robin tournament, in which each strategy is played against every other (including against itself) for 10 rounds of 1000 turns each.
Python Code: import numpy as np Explanation: Solution of Axelrod 1980 End of explanation # We are going to implement five strategies. # Each strategy takes as input the history of the turns played so far # and returns 1 for cooperation and 0 for defection. # 1) Always defect def always_defect(previous_steps): return 0 # 2) Always cooperate def always_cooperate(previous_steps): return 1 # 3) Purely random, with probability of defecting 0.5 def random(previous_steps): if np.random.random(1) > 0.5: return 1 return 0 # 4) Tit for tat def tit_for_tat(previous_steps): if len(previous_steps) == 0: return 1 return previous_steps[-1] # 5) Tit for two tat def tit_for_two_tat(previous_steps): if len(previous_steps) < 2: return 1 # if the other player defected twice if sum(previous_steps[-2:]) == 0: # retaliate return 0 return 1 Explanation: Implement the five strategies End of explanation def play_strategies(strategy_1, strategy_2, nsteps = 200): # The following two lines are a bit complicated: # we want to match a string (strategy_1) with a name of the function # and the call globals()[strategy_1] does just that. Now # pl1 is an "alias" for the same function. pl1 = globals()[strategy_1] pl2 = globals()[strategy_2] # If you prefer, you can deal with this problem by using # a series of if elif. # Now two vectors to store the moves of the players steps_pl1 = [] steps_pl2 = [] # And two variables for keeping the scores. # (because we said these are numbers of years in prison, we # use negative payoffs, with less negative being better) points_pl1 = 0 points_pl2 = 0 # Iterate over the number of steps for i in range(nsteps): # decide strategy: # player 1 chooses using the history of the moves by player 2 last_pl1 = pl1(steps_pl2) # and vice versa last_pl2 = pl2(steps_pl1) # calculate payoff if last_pl1 == 1 and last_pl2 == 1: # both cooperate -> -1 point each points_pl1 = points_pl1 - 1 points_pl2 = points_pl2 - 1 elif last_pl1 == 0 and last_pl2 == 1: # pl2 lose points_pl1 = points_pl1 - 0 points_pl2 = points_pl2 - 3 elif last_pl1 == 1 and last_pl2 == 0: # pl1 lose points_pl1 = points_pl1 - 3 points_pl2 = points_pl2 - 0 else: # both defect points_pl1 = points_pl1 - 2 points_pl2 = points_pl2 - 2 # add the moves to the history steps_pl1.append(last_pl1) steps_pl2.append(last_pl2) # return the final scores return((points_pl1, points_pl2)) play_strategies("random", "always_defect") Explanation: Write a function that accepts the name of two strategies and competes them in a game of iterated prisoner's dilemma for a given number of turns. End of explanation def round_robin(strategies, nround, nstep): nstrategies = len(strategies) # initialize list for results strategies_points = [0] * nstrategies # for each pair for i in range(nstrategies): for j in range(i, nstrategies): print("Playing", strategies[i], "vs.", strategies[j]) for k in range(nround): res = play_strategies(strategies[i], strategies[j], nstep) #print(res) strategies_points[i] = strategies_points[i] + res[0] strategies_points[j] = strategies_points[j] + res[1] print("\nThe final results are:") for i in range(nstrategies): print(strategies[i] + ":", strategies_points[i]) print("\nand the winner is....") print(strategies[strategies_points.index(max(strategies_points))]) my_strategies = ["always_defect", "always_cooperate", "random", "tit_for_tat", "tit_for_two_tat"] round_robin(my_strategies, 10, 1000) Explanation: Implement a round-robin tournament, in which each strategy is played against every other (including against itself) for 10 rounds of 1000 turns each. End of explanation
3,383
Given the following text description, write Python code to implement the functionality described below step by step Description: 数据科学的编程工具 Python使用简介 王成军 [email protected] 计算传播网 http Step1: Variable Type Step2: dir & help 当你想要了解对象的详细信息时使用 Step3: type 当你想要了解变量类型时使用type Step4: Data Structure list, tuple, set, dictionary, array Step5: 定义函数 Step6: For 循环 Step7: map Step8: if elif else Step9: while循环 Step10: try except Step11: Write and Read data Step12: 保存中间步骤产生的字典数据 Step13: 重新读入json 保存中间步骤产生的列表数据 Step14: 使用matplotlib绘图
Python Code: %matplotlib inline import random, datetime import numpy as np import matplotlib.pyplot as plt import matplotlib import statsmodels.api as sm from scipy.stats import norm from scipy.stats.stats import pearsonr Explanation: 数据科学的编程工具 Python使用简介 王成军 [email protected] 计算传播网 http://computational-communication.com 人生苦短,我用Python。 Python(/ˈpaɪθən/)是一种面向对象、解释型计算机程序设计语言 - 由Guido van Rossum于1989年底发明 - 第一个公开发行版发行于1991年 - Python语法简洁而清晰 - 具有强大的标准库和丰富的第三方模块 - 它常被昵称为胶水语言 - TIOBE编程语言排行榜“2010年度编程语言” 特点 免费、功能强大、使用者众多 与R和MATLAB相比,Python是一门更易学、更严谨的程序设计语言。使用Python编写的脚本更易于理解和维护。 如同其它编程语言一样,Python语言的基础知识包括:类型、列表(list)和元组(tuple)、字典(dictionary)、条件、循环、异常处理等。 关于这些,初阶读者可以阅读《Beginning Python》一书(Hetland, 2005)。 Python中包含了丰富的类库。 众多开源的科学计算软件包都提供了Python的调用接口,例如著名的计算机视觉库OpenCV。 Python本身的科学计算类库发展也十分完善,例如NumPy、SciPy和matplotlib等。 就社会网络分析而言,igraph, networkx, graph-tool, Snap.py等类库提供了丰富的网络分析工具 Python软件与IDE 目前最新的Python版本为3.0,更稳定的2.7版本。 编译器是编写程序的重要工具。 免费的Python编译器有Spyder、PyCharm(免费社区版)、Ipython、Vim、 Emacs、 Eclipse(加上PyDev插件)。 Installing Anaconda Python Use the Anaconda Python http://continuum.io/downloads.html 第三方包可以使用pip install的方法安装。 可以点击ToolsOpen command prompt 然后在打开的命令窗口中输入: <del>pip install beautifulsoup4 pip install beautifulsoup4 NumPy /SciPy for scientific computing pandas to make Python usable for data analysis matplotlib to make graphics scikit-learn for machine learning End of explanation # str, int, float str(3) "chengjun wang" # int int('5') # float float('7.1') range(10) # for i in range(1, 10): # print(i) range(1,10) Explanation: Variable Type End of explanation dir dir(str)[-10:] help(str) x = ' Hello WorlD ' dir(x)[-10:] # lower x.lower() # upper x.upper() # rstrip x.rstrip() # strip x.strip() # replace x.replace('lo', '') # split x.split('lo') # join ','.join(['a', 'b']) Explanation: dir & help 当你想要了解对象的详细信息时使用 End of explanation x = 'hello world' type(x) Explanation: type 当你想要了解变量类型时使用type End of explanation l = [1,2,3,3] # list t = (1, 2, 3, 3) # tuple s = {1, 2, 3, 3} # set([1,2,3,3]) # set d = {'a':1,'b':2,'c':3} # dict a = np.array(l) # array print(l, t, s, d, a) l = [1,2,3,3] # list l.append(4) l d = {'a':1,'b':2,'c':3} # dict d.keys() d = {'a':1,'b':2,'c':3} # dict d.values() d = {'a':1,'b':2,'c':3} # dict d['b'] d = {'a':1,'b':2,'c':3} # dict d.items() Explanation: Data Structure list, tuple, set, dictionary, array End of explanation def devidePlus(m, n): # 结尾是冒号 y = m/n + 1 # 注意:空格 return y # 注意:return Explanation: 定义函数 End of explanation range(10) range(1, 10) for i in range(10): print(i, i*10, i**2) for i in range(10): print(i*10) for i in range(10): print(devidePlus(i, 2)) # 列表内部的for循环 r = [devidePlus(i, 2) for i in range(10)] r Explanation: For 循环 End of explanation m1 = map(devidePlus, [4,3,2], [2, 1, 5]) print(*m1) #print(*map(devidePlus, [4,3,2], [2, 1, 5])) # 注意: 将(4, 2)作为一个组合进行计算,将(3, 1)作为一个组合进行计算 m2 = map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10]) print(*m2) m3 = map(lambda x, y, z: x + y - z, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10], [3, 3, 2, 2, 5]) print(*m3) Explanation: map End of explanation j = 5 if j%2 == 1: print(r'余数是1') elif j%2 ==0: print(r'余数是0') else: print(r'余数既不是1也不是0') x = 5 if x < 5: y = -1 z = 5 elif x > 5: y = 1 z = 11 else: y = 0 z = 10 print(x, y, z) Explanation: if elif else End of explanation j = 0 while j <10: print(j) j+=1 # avoid dead loop j = 0 while j <10: if j%2 != 0: print(j**2) j+=1 # avoid dead loop j = 0 while j <50: if j == 30: break if j%2 != 0: print(j**2) j+=1 # avoid dead loop a = 4 while a: # 0, None, False print(a) a -= 1 if a < 0: a = None # [] Explanation: while循环 End of explanation def devidePlus(m, n): # 结尾是冒号 return m/n+ 1 # 注意:空格 for i in [2, 0, 5]: try: print(devidePlus(4, i)) except Exception as e: print(e) pass alist = [[1,1], [0, 0, 1]] for aa in alist: try: for a in aa: print(10 / a) except Exception as e: print(e) pass alist = [[1,1], [0, 0, 1]] for aa in alist: for a in aa: try: print(10 / a) except Exception as e: print(e) pass Explanation: try except End of explanation data =[[i, i**2, i**3] for i in range(10)] data for i in data: print('\t'.join(map(str, i))) type(data) len(data) data[0] help(f.write) # 保存数据 data =[[i, i**2, i**3] for i in range(10000)] f = open("../data/data_write_to_file1.txt", "w") for i in data: f.write('\t'.join(map(str,i)) + '\n') f.close() with open('../data/data_write_to_file.txt','r') as f: data = f.readlines() data[:5] with open('../data/data_write_to_file.txt','r') as f: data = f.readlines(1000) #bytes len(data) with open('../data/data_write_to_file.txt','r') as f: print(f.readline()) f = [1, 2, 3, 4, 5] for k, i in enumerate(f): print(k, i) with open('../data/data_write_to_file.txt','r') as f: for i in f: print(i) with open('../data/data_write_to_file.txt','r') as f: for k, i in enumerate(f): if k%2000 == 0: print(i) data = [] line = '0\t0\t0\n' line = line.replace('\n', '') line = line.split('\t') line = [int(i) for i in line] # convert str to int data.append(line) data # 读取数据 data = [] with open('../data/data_write_to_file1.txt','r') as f: for line in f: line = line.replace('\n', '').split('\t') line = [int(i) for i in line] data.append(line) data # 读取数据 data = [] with open('../data/data_write_to_file.txt','r') as f: for line in f: line = line.replace('\n', '').split('\t') line = [int(i) for i in line] data.append(line) data import pandas as pd help(pd.read_csv) df = pd.read_csv('../data/data_write_to_file.txt', sep = '\t', names = ['a', 'b', 'c']) df[-5:] Explanation: Write and Read data End of explanation import json data_dict = {'a':1, 'b':2, 'c':3} with open('../data/save_dict.json', 'w') as f: json.dump(data_dict, f) dd = json.load(open("../data/save_dict.json")) dd Explanation: 保存中间步骤产生的字典数据 End of explanation data_list = list(range(10)) with open('../data/save_list.json', 'w') as f: json.dump(data_list, f) dl = json.load(open("../data/save_list.json")) dl Explanation: 重新读入json 保存中间步骤产生的列表数据 End of explanation %matplotlib inline import matplotlib.pyplot as plt x = range(1, 100) y = [i**-3 for i in x] plt.plot(x, y, 'b-s') plt.ylabel('$p(k)$', fontsize = 20) plt.xlabel('$k$', fontsize = 20) plt.xscale('log') plt.yscale('log') plt.title('Degree Distribution') plt.show() import numpy as np # red dashes, blue squares and green triangles t = np.arange(0., 5., 0.2) plt.plot(t, t, 'r--') plt.plot(t, t**2, 'bs') plt.plot(t, t**3, 'g^') plt.show() # red dashes, blue squares and green triangles t = np.arange(0., 5., 0.2) plt.plot(t, t**2, 'b-s', label = '1') plt.plot(t, t**2.5, 'r-o', label = '2') plt.plot(t, t**3, 'g-^', label = '3') plt.annotate(r'$\alpha = 3$', xy=(3.5, 40), xytext=(2, 80), arrowprops=dict(facecolor='black', shrink=0.05), fontsize = 20) plt.ylabel('$f(t)$', fontsize = 20) plt.xlabel('$t$', fontsize = 20) plt.legend(loc=2,numpoints=1,fontsize=10) plt.show() # plt.savefig('/Users/chengjun/GitHub/cjc/figure/save_figure.png', # dpi = 300, bbox_inches="tight",transparent = True) plt.figure(1) plt.subplot(221) plt.plot(t, t, 'r--') plt.text(2, 0.8*np.max(t), r'$\alpha = 1$', fontsize = 20) plt.subplot(222) plt.plot(t, t**2, 'bs') plt.text(2, 0.8*np.max(t**2), r'$\alpha = 2$', fontsize = 20) plt.subplot(223) plt.plot(t, t**3, 'g^') plt.text(2, 0.8*np.max(t**3), r'$\alpha = 3$', fontsize = 20) plt.subplot(224) plt.plot(t, t**4, 'r-o') plt.text(2, 0.8*np.max(t**4), r'$\alpha = 4$', fontsize = 20) plt.show() def f(t): return np.exp(-t) * np.cos(2*np.pi*t) t1 = np.arange(0.0, 5.0, 0.1) t2 = np.arange(0.0, 5.0, 0.02) plt.figure(1) plt.subplot(211) plt.plot(t1, f(t1), 'bo') plt.plot(t2, f(t2), 'k') plt.subplot(212) plt.plot(t2, np.cos(2*np.pi*t2), 'r--') plt.show() import matplotlib.gridspec as gridspec import numpy as np t = np.arange(0., 5., 0.2) gs = gridspec.GridSpec(3, 3) ax1 = plt.subplot(gs[0, :]) plt.plot(t, t**2, 'b-s') ax2 = plt.subplot(gs[1,:-1]) plt.plot(t, t**2, 'g-s') ax3 = plt.subplot(gs[1:, -1]) plt.plot(t, t**2, 'r-o') ax4 = plt.subplot(gs[-1,0]) plt.plot(t, t**2, 'g-^') ax5 = plt.subplot(gs[-1,1]) plt.plot(t, t**2, 'b-<') plt.tight_layout() def OLSRegressPlot(x,y,col,xlab,ylab): xx = sm.add_constant(x, prepend=True) res = sm.OLS(y,xx).fit() constant, beta = res.params r2 = res.rsquared lab = r'$\beta = %.2f, \,R^2 = %.2f$' %(beta,r2) plt.scatter(x,y,s=60,facecolors='none', edgecolors=col) plt.plot(x,constant + x*beta,"red",label=lab) plt.legend(loc = 'upper left',fontsize=16) plt.xlabel(xlab,fontsize=26) plt.ylabel(ylab,fontsize=26) x = np.random.randn(50) y = np.random.randn(50) + 3*x pearsonr(x, y) fig = plt.figure(figsize=(10, 4),facecolor='white') OLSRegressPlot(x,y,'RoyalBlue',r'$x$',r'$y$') plt.show() fig = plt.figure(figsize=(7, 4),facecolor='white') data = norm.rvs(10.0, 2.5, size=5000) mu, std = norm.fit(data) plt.hist(data, bins=25, normed=True, alpha=0.6, color='g') xmin, xmax = plt.xlim() x = np.linspace(xmin, xmax, 100) p = norm.pdf(x, mu, std) plt.plot(x, p, 'r', linewidth=2) title = r"$\mu = %.2f, \, \sigma = %.2f$" % (mu, std) plt.title(title,size=16) plt.show() import pandas as pd df = pd.read_csv('../data/data_write_to_file.txt', sep = '\t', names = ['a', 'b', 'c']) df[:5] df.plot.line() plt.yscale('log') plt.ylabel('$values$', fontsize = 20) plt.xlabel('$index$', fontsize = 20) plt.show() df.plot.scatter(x='a', y='b') plt.show() df.plot.hexbin(x='a', y='b', gridsize=25) plt.show() df['a'].plot.kde() plt.show() bp = df.boxplot() plt.yscale('log') plt.show() df['c'].diff().hist() plt.show() df.plot.hist(stacked=True, bins=20) # plt.yscale('log') plt.show() Explanation: 使用matplotlib绘图 End of explanation
3,384
Given the following text description, write Python code to implement the functionality described below step by step Description: Experiments with entropy, information gain, and decision trees. Iris fact of the day Step1: If you do not have pydot library installed, open your terminal and type either conda install pydot or pip install pydot Step2: The plan Step3: When you have time, try it with other bases for the log Step4: Very interesting. The distribution of labels is almost indistinguishable from uniform. A 64-thousand-dollar question Step5: According to the information gain metric, petal length is the most useful feature, followed by petal width. Let's confirm that this agrees with the sklearn decision tree implementation. Actually, sklearn doesn't expose the information gain values. Instead, it stores the distribution of "feature importances", which reflects the value of each feature in the full decision tree. Let's train a decision tree with max_depth=1 so it will only choose a single feature. Let's also get the test accuracy with this "decision stump". When you have time, try it with depths between 1 and 4, observe the Feature Importances. What can you conclude? Step6: We've been using the binarized version of the iris features. Recall that we simply chose thresholds for each feature by inspecting feature histograms. Let's use information gain as a metric to choose a best feature and a best threshold. Step7: It looks like when we binarized our data, we didn't choose the thresholds that maximized information gain for 3 out of 4 features. Let's try training actual decision trees (as opposed to stumps) with the original (non-binarized) data. You may need to install GraphViz before exporting the tree. If the pydot was installed correctly, you will see the image showing the Decistion Tree after running this block of code. Otherwise, you will see error messages, like in my case. In any case, you can uncomment the print 'dot_data value
Python Code: # This tells matplotlib not to try opening a new window for each plot. %matplotlib inline import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_iris from sklearn import tree from sklearn.tree import DecisionTreeClassifier # For producing decision tree diagrams. from IPython.core.display import Image, display from sklearn.externals.six import StringIO import pydot Explanation: Experiments with entropy, information gain, and decision trees. Iris fact of the day: Iris setosa's root contains a toxin that was used by the Aleut tribe in Alaska to make poisonous arrowheads. End of explanation # Load the data, which is included in sklearn. iris = load_iris() print 'Iris target names:', iris.target_names print 'Iris feature names:', iris.feature_names X, Y = iris.data, iris.target # Shuffle the data, but make sure that the features and accompanying labels stay in sync. np.random.seed(0) shuffle = np.random.permutation(np.arange(X.shape[0])) X, Y = X[shuffle], Y[shuffle] # Split into train and test. train_data, train_labels = X[:100], Y[:100] test_data, test_labels = X[100:], Y[100:] # Define a function that applies a threshold to turn real valued iris features into 0/1 features. # 0 will mean "short" and 1 will mean "long". def binarize_iris(data, thresholds=[6.0, 3.0, 2.5, 1.0]): # Initialize a new feature array with the same shape as the original data. binarized_data = np.zeros(data.shape) # Apply a threshold to each feature. for feature in range(data.shape[1]): binarized_data[:,feature] = data[:,feature] > thresholds[feature] return binarized_data # Create new binarized training and test data binarized_train_data = binarize_iris(train_data) binarized_test_data = binarize_iris(test_data) Explanation: If you do not have pydot library installed, open your terminal and type either conda install pydot or pip install pydot End of explanation def entropy(distribution): h = 0.0 for probability in distribution: logprob = -100.0 # log(0) = -inf so let's approximate it with -100 to avoid an error if probability > 0.0: logprob = np.log2(probability) h -= probability * logprob return h # Show a plot of the entropy, H(X), of a Bernoulli random variable X. p_values = np.linspace(0, 1, 50) entropies = [entropy([p, 1-p]) for p in p_values] plt.figure(figsize=(4,4)) plt.plot(p_values, entropies, 'o') plt.xlabel('P(X=1)') plt.ylabel('H(X)') print Explanation: The plan: The goal is to identify the data partitioning scheme that will maximize the information gain. The information gain will be expressed through entropy. Let's start by defining a function that computes the entropy of a distribution. Remember that entropy is a measure of uncertainty. It is maximized when the distribution is uniform. End of explanation def get_label_distribution(labels): # Initialize counters for all labels to zero. label_probs = np.array([0.0 for i in range(len(iris.target_names))]) # Iterate over labels in the training data and update counts. for label in labels: label_probs[label] += 1.0 # Normalize to get a distribution. label_probs /= label_probs.sum() return label_probs label_probs = get_label_distribution(train_labels) print 'Label distribution', label_probs # Compare the label entropy to a uniform distribution. print 'Label entropy:', entropy(label_probs) print 'Uniform entropy:', entropy([1./3, 1./3, 1./3]) Explanation: When you have time, try it with other bases for the log: 10 and "e" We are interested in the entropy of our distribution over labels. End of explanation # A function that computes information gain given these inputs: # data: an array of featurized examples # labels: an array of labels corresponding to the the data # feature: the feature to use to split the data # threshold: the feature value to use to split the data (the default threshold is good for binary features) def information_gain(data, labels, feature, threshold=0): # Get the initial entropy of the label distribution. initial_entropy = entropy(get_label_distribution(labels)) # subset0 will contain the labels for which the feature is 0 and # subset1 will contain the labels for which the feature is 1. subset0, subset1 = [], [] for datum, label in zip(data, labels): if datum[feature] > threshold: subset1.append(label) else: subset0.append(label) # Compute the entropy of each subset. subset0_entropy = entropy(get_label_distribution(subset0)) subset1_entropy = entropy(get_label_distribution(subset1)) # Make it a fair comparison: # Compute the final entropy by weighting each subset's entropy according to its size. subset0_weight = 1.0 * len(subset0) / len(labels) subset1_weight = 1.0 * len(subset1) / len(labels) final_entropy = subset0_weight * subset0_entropy + subset1_weight * subset1_entropy # Finally, compute information gain as the difference between the initial and final entropy. return initial_entropy - final_entropy for feature in range(binarized_train_data.shape[1]): ## We are looking at binarized data; so the threshold = 0 ig = information_gain(binarized_train_data, train_labels, feature) print '%d %.3f %s' %(feature, ig, iris.feature_names[feature]) Explanation: Very interesting. The distribution of labels is almost indistinguishable from uniform. A 64-thousand-dollar question: Can we use entropy as a similarity measure for distributions? Now let's figure out which feature provides the greatest information gain. Philosophically, information gain means reduction of randomness. So we are looking for the feature(s) that reduce entropy the most. To do this, we need to look at the entropy of each subset of the labels after splitting on each feature. In a sense, it is similar to marginalization by feature (like we did last week) End of explanation dt = DecisionTreeClassifier(criterion='entropy', max_depth=1) dt.fit(binarized_train_data, train_labels) print 'Using a decision stump -- a tree with depth 1:' print 'Feature importances:', dt.feature_importances_ print 'Accuracy:', dt.score(binarized_test_data, test_labels) Explanation: According to the information gain metric, petal length is the most useful feature, followed by petal width. Let's confirm that this agrees with the sklearn decision tree implementation. Actually, sklearn doesn't expose the information gain values. Instead, it stores the distribution of "feature importances", which reflects the value of each feature in the full decision tree. Let's train a decision tree with max_depth=1 so it will only choose a single feature. Let's also get the test accuracy with this "decision stump". When you have time, try it with depths between 1 and 4, observe the Feature Importances. What can you conclude? End of explanation def try_features_and_thresholds(data, labels): for feature in range(data.shape[1]): # Choose a set of thresholds between the min- and max-valued feature, ignoring the min and max themselves. thresholds = np.linspace(data[:,feature].min(), data[:,feature].max(), 20)[1:-1] # Try each threshold and keep track of the best one for this feature. best_threshold = 0 best_ig = 0 for threshold in thresholds: ig = information_gain(data, labels, feature, threshold) if ig > best_ig: best_ig = ig best_threshold = threshold # Show the best threshold and information gain for this feature. print '%d %.3f %.3f %s' %(feature, best_threshold, best_ig, iris.feature_names[feature]) try_features_and_thresholds(train_data, train_labels) Explanation: We've been using the binarized version of the iris features. Recall that we simply chose thresholds for each feature by inspecting feature histograms. Let's use information gain as a metric to choose a best feature and a best threshold. End of explanation # Train a decision tree classifier. dt = DecisionTreeClassifier(criterion='entropy', min_samples_split=2) dt.fit(train_data, train_labels) print 'Accuracy:', dt.score(test_data, test_labels) # Export the trained tree so we can look at it. output_name = 'iris-decisiontree.jpg' print output_name dot_data = StringIO() tree.export_graphviz(dt, out_file=dot_data) ## print 'dot_data value:', dot_data.getvalue() graph = pydot.graph_from_dot_data(dot_data.getvalue()) # If the export was successful, show the image. if graph.write_jpg(output_name): print 'Output:', output_name display(Image(filename=output_name)) Explanation: It looks like when we binarized our data, we didn't choose the thresholds that maximized information gain for 3 out of 4 features. Let's try training actual decision trees (as opposed to stumps) with the original (non-binarized) data. You may need to install GraphViz before exporting the tree. If the pydot was installed correctly, you will see the image showing the Decistion Tree after running this block of code. Otherwise, you will see error messages, like in my case. In any case, you can uncomment the print 'dot_data value:', dot_data.getvalue() line, and that will reveal the structure of the tree End of explanation
3,385
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Ocnbgchem MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Time Stepping Framework --&gt; Passive Tracers Transport 3. Key Properties --&gt; Time Stepping Framework --&gt; Biology Sources Sinks 4. Key Properties --&gt; Transport Scheme 5. Key Properties --&gt; Boundary Forcing 6. Key Properties --&gt; Gas Exchange 7. Key Properties --&gt; Carbon Chemistry 8. Tracers 9. Tracers --&gt; Ecosystem 10. Tracers --&gt; Ecosystem --&gt; Phytoplankton 11. Tracers --&gt; Ecosystem --&gt; Zooplankton 12. Tracers --&gt; Disolved Organic Matter 13. Tracers --&gt; Particules 14. Tracers --&gt; Dic Alkalinity 1. Key Properties Ocean Biogeochemistry key properties 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 1.3. Model Type Is Required Step7: 1.4. Elemental Stoichiometry Is Required Step8: 1.5. Elemental Stoichiometry Details Is Required Step9: 1.6. Prognostic Variables Is Required Step10: 1.7. Diagnostic Variables Is Required Step11: 1.8. Damping Is Required Step12: 2. Key Properties --&gt; Time Stepping Framework --&gt; Passive Tracers Transport Time stepping method for passive tracers transport in ocean biogeochemistry 2.1. Method Is Required Step13: 2.2. Timestep If Not From Ocean Is Required Step14: 3. Key Properties --&gt; Time Stepping Framework --&gt; Biology Sources Sinks Time stepping framework for biology sources and sinks in ocean biogeochemistry 3.1. Method Is Required Step15: 3.2. Timestep If Not From Ocean Is Required Step16: 4. Key Properties --&gt; Transport Scheme Transport scheme in ocean biogeochemistry 4.1. Type Is Required Step17: 4.2. Scheme Is Required Step18: 4.3. Use Different Scheme Is Required Step19: 5. Key Properties --&gt; Boundary Forcing Properties of biogeochemistry boundary forcing 5.1. Atmospheric Deposition Is Required Step20: 5.2. River Input Is Required Step21: 5.3. Sediments From Boundary Conditions Is Required Step22: 5.4. Sediments From Explicit Model Is Required Step23: 6. Key Properties --&gt; Gas Exchange *Properties of gas exchange in ocean biogeochemistry * 6.1. CO2 Exchange Present Is Required Step24: 6.2. CO2 Exchange Type Is Required Step25: 6.3. O2 Exchange Present Is Required Step26: 6.4. O2 Exchange Type Is Required Step27: 6.5. DMS Exchange Present Is Required Step28: 6.6. DMS Exchange Type Is Required Step29: 6.7. N2 Exchange Present Is Required Step30: 6.8. N2 Exchange Type Is Required Step31: 6.9. N2O Exchange Present Is Required Step32: 6.10. N2O Exchange Type Is Required Step33: 6.11. CFC11 Exchange Present Is Required Step34: 6.12. CFC11 Exchange Type Is Required Step35: 6.13. CFC12 Exchange Present Is Required Step36: 6.14. CFC12 Exchange Type Is Required Step37: 6.15. SF6 Exchange Present Is Required Step38: 6.16. SF6 Exchange Type Is Required Step39: 6.17. 13CO2 Exchange Present Is Required Step40: 6.18. 13CO2 Exchange Type Is Required Step41: 6.19. 14CO2 Exchange Present Is Required Step42: 6.20. 14CO2 Exchange Type Is Required Step43: 6.21. Other Gases Is Required Step44: 7. Key Properties --&gt; Carbon Chemistry Properties of carbon chemistry biogeochemistry 7.1. Type Is Required Step45: 7.2. PH Scale Is Required Step46: 7.3. Constants If Not OMIP Is Required Step47: 8. Tracers Ocean biogeochemistry tracers 8.1. Overview Is Required Step48: 8.2. Sulfur Cycle Present Is Required Step49: 8.3. Nutrients Present Is Required Step50: 8.4. Nitrous Species If N Is Required Step51: 8.5. Nitrous Processes If N Is Required Step52: 9. Tracers --&gt; Ecosystem Ecosystem properties in ocean biogeochemistry 9.1. Upper Trophic Levels Definition Is Required Step53: 9.2. Upper Trophic Levels Treatment Is Required Step54: 10. Tracers --&gt; Ecosystem --&gt; Phytoplankton Phytoplankton properties in ocean biogeochemistry 10.1. Type Is Required Step55: 10.2. Pft Is Required Step56: 10.3. Size Classes Is Required Step57: 11. Tracers --&gt; Ecosystem --&gt; Zooplankton Zooplankton properties in ocean biogeochemistry 11.1. Type Is Required Step58: 11.2. Size Classes Is Required Step59: 12. Tracers --&gt; Disolved Organic Matter Disolved organic matter properties in ocean biogeochemistry 12.1. Bacteria Present Is Required Step60: 12.2. Lability Is Required Step61: 13. Tracers --&gt; Particules Particulate carbon properties in ocean biogeochemistry 13.1. Method Is Required Step62: 13.2. Types If Prognostic Is Required Step63: 13.3. Size If Prognostic Is Required Step64: 13.4. Size If Discrete Is Required Step65: 13.5. Sinking Speed If Prognostic Is Required Step66: 14. Tracers --&gt; Dic Alkalinity DIC and alkalinity properties in ocean biogeochemistry 14.1. Carbon Isotopes Is Required Step67: 14.2. Abiotic Carbon Is Required Step68: 14.3. Alkalinity Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'awi', 'sandbox-3', 'ocnbgchem') Explanation: ES-DOC CMIP6 Model Properties - Ocnbgchem MIP Era: CMIP6 Institute: AWI Source ID: SANDBOX-3 Topic: Ocnbgchem Sub-Topics: Tracers. Properties: 65 (37 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:53:38 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Time Stepping Framework --&gt; Passive Tracers Transport 3. Key Properties --&gt; Time Stepping Framework --&gt; Biology Sources Sinks 4. Key Properties --&gt; Transport Scheme 5. Key Properties --&gt; Boundary Forcing 6. Key Properties --&gt; Gas Exchange 7. Key Properties --&gt; Carbon Chemistry 8. Tracers 9. Tracers --&gt; Ecosystem 10. Tracers --&gt; Ecosystem --&gt; Phytoplankton 11. Tracers --&gt; Ecosystem --&gt; Zooplankton 12. Tracers --&gt; Disolved Organic Matter 13. Tracers --&gt; Particules 14. Tracers --&gt; Dic Alkalinity 1. Key Properties Ocean Biogeochemistry key properties 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of ocean biogeochemistry model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of ocean biogeochemistry model code (PISCES 2.0,...) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.model_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Geochemical" # "NPZD" # "PFT" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.3. Model Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Type of ocean biogeochemistry model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.elemental_stoichiometry') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Fixed" # "Variable" # "Mix of both" # TODO - please enter value(s) Explanation: 1.4. Elemental Stoichiometry Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe elemental stoichiometry (fixed, variable, mix of the two) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.elemental_stoichiometry_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.5. Elemental Stoichiometry Details Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe which elements have fixed/variable stoichiometry End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.6. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List of all prognostic tracer variables in the ocean biogeochemistry component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.diagnostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.7. Diagnostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List of all diagnotic tracer variables in the ocean biogeochemistry component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.damping') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.8. Damping Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe any tracer damping used (such as artificial correction or relaxation to climatology,...) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.time_stepping_framework.passive_tracers_transport.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "use ocean model transport time step" # "use specific time step" # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Time Stepping Framework --&gt; Passive Tracers Transport Time stepping method for passive tracers transport in ocean biogeochemistry 2.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time stepping framework for passive tracers End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.time_stepping_framework.passive_tracers_transport.timestep_if_not_from_ocean') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 2.2. Timestep If Not From Ocean Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Time step for passive tracers (if different from ocean) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.time_stepping_framework.biology_sources_sinks.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "use ocean model transport time step" # "use specific time step" # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Time Stepping Framework --&gt; Biology Sources Sinks Time stepping framework for biology sources and sinks in ocean biogeochemistry 3.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time stepping framework for biology sources and sinks End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.time_stepping_framework.biology_sources_sinks.timestep_if_not_from_ocean') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.2. Timestep If Not From Ocean Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Time step for biology sources and sinks (if different from ocean) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.transport_scheme.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Offline" # "Online" # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Transport Scheme Transport scheme in ocean biogeochemistry 4.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Type of transport scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.transport_scheme.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Use that of ocean model" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 4.2. Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Transport scheme used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.transport_scheme.use_different_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.3. Use Different Scheme Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Decribe transport scheme if different than that of ocean model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.boundary_forcing.atmospheric_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "from file (climatology)" # "from file (interannual variations)" # "from Atmospheric Chemistry model" # TODO - please enter value(s) Explanation: 5. Key Properties --&gt; Boundary Forcing Properties of biogeochemistry boundary forcing 5.1. Atmospheric Deposition Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how atmospheric deposition is modeled End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.boundary_forcing.river_input') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "from file (climatology)" # "from file (interannual variations)" # "from Land Surface model" # TODO - please enter value(s) Explanation: 5.2. River Input Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how river input is modeled End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.boundary_forcing.sediments_from_boundary_conditions') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.3. Sediments From Boundary Conditions Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List which sediments are speficied from boundary condition End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.boundary_forcing.sediments_from_explicit_model') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.4. Sediments From Explicit Model Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List which sediments are speficied from explicit sediment model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CO2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6. Key Properties --&gt; Gas Exchange *Properties of gas exchange in ocean biogeochemistry * 6.1. CO2 Exchange Present Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is CO2 gas exchange modeled ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CO2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OMIP protocol" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6.2. CO2 Exchange Type Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe CO2 gas exchange End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.O2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6.3. O2 Exchange Present Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is O2 gas exchange modeled ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.O2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OMIP protocol" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6.4. O2 Exchange Type Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe O2 gas exchange End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.DMS_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6.5. DMS Exchange Present Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is DMS gas exchange modeled ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.DMS_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.6. DMS Exchange Type Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify DMS gas exchange scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.N2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6.7. N2 Exchange Present Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is N2 gas exchange modeled ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.N2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.8. N2 Exchange Type Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify N2 gas exchange scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.N2O_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6.9. N2O Exchange Present Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is N2O gas exchange modeled ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.N2O_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.10. N2O Exchange Type Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify N2O gas exchange scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CFC11_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6.11. CFC11 Exchange Present Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is CFC11 gas exchange modeled ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CFC11_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.12. CFC11 Exchange Type Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify CFC11 gas exchange scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CFC12_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6.13. CFC12 Exchange Present Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is CFC12 gas exchange modeled ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CFC12_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.14. CFC12 Exchange Type Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify CFC12 gas exchange scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.SF6_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6.15. SF6 Exchange Present Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is SF6 gas exchange modeled ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.SF6_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.16. SF6 Exchange Type Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify SF6 gas exchange scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.13CO2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6.17. 13CO2 Exchange Present Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is 13CO2 gas exchange modeled ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.13CO2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.18. 13CO2 Exchange Type Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify 13CO2 gas exchange scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.14CO2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6.19. 14CO2 Exchange Present Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is 14CO2 gas exchange modeled ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.14CO2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.20. 14CO2 Exchange Type Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify 14CO2 gas exchange scheme type End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.other_gases') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.21. Other Gases Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify any other gas exchange End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.carbon_chemistry.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OMIP protocol" # "Other protocol" # TODO - please enter value(s) Explanation: 7. Key Properties --&gt; Carbon Chemistry Properties of carbon chemistry biogeochemistry 7.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how carbon chemistry is modeled End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.carbon_chemistry.pH_scale') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Sea water" # "Free" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 7.2. PH Scale Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If NOT OMIP protocol, describe pH scale. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.carbon_chemistry.constants_if_not_OMIP') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.3. Constants If Not OMIP Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If NOT OMIP protocol, list carbon chemistry constants. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Tracers Ocean biogeochemistry tracers 8.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of tracers in ocean biogeochemistry End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.sulfur_cycle_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 8.2. Sulfur Cycle Present Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is sulfur cycle modeled ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.nutrients_present') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Nitrogen (N)" # "Phosphorous (P)" # "Silicium (S)" # "Iron (Fe)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 8.3. Nutrients Present Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List nutrient species present in ocean biogeochemistry model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.nitrous_species_if_N') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Nitrates (NO3)" # "Amonium (NH4)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 8.4. Nitrous Species If N Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If nitrogen present, list nitrous species. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.nitrous_processes_if_N') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Dentrification" # "N fixation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 8.5. Nitrous Processes If N Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If nitrogen present, list nitrous processes. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.upper_trophic_levels_definition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9. Tracers --&gt; Ecosystem Ecosystem properties in ocean biogeochemistry 9.1. Upper Trophic Levels Definition Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Definition of upper trophic level (e.g. based on size) ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.upper_trophic_levels_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.2. Upper Trophic Levels Treatment Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Define how upper trophic level are treated End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.phytoplankton.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Generic" # "PFT including size based (specify both below)" # "Size based only (specify below)" # "PFT only (specify below)" # TODO - please enter value(s) Explanation: 10. Tracers --&gt; Ecosystem --&gt; Phytoplankton Phytoplankton properties in ocean biogeochemistry 10.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Type of phytoplankton End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.phytoplankton.pft') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Diatoms" # "Nfixers" # "Calcifiers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10.2. Pft Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Phytoplankton functional types (PFT) (if applicable) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.phytoplankton.size_classes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Microphytoplankton" # "Nanophytoplankton" # "Picophytoplankton" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10.3. Size Classes Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Phytoplankton size classes (if applicable) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.zooplankton.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Generic" # "Size based (specify below)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 11. Tracers --&gt; Ecosystem --&gt; Zooplankton Zooplankton properties in ocean biogeochemistry 11.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Type of zooplankton End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.zooplankton.size_classes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Microzooplankton" # "Mesozooplankton" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 11.2. Size Classes Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Zooplankton size classes (if applicable) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.disolved_organic_matter.bacteria_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 12. Tracers --&gt; Disolved Organic Matter Disolved organic matter properties in ocean biogeochemistry 12.1. Bacteria Present Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is there bacteria representation ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.disolved_organic_matter.lability') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Labile" # "Semi-labile" # "Refractory" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 12.2. Lability Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe treatment of lability in dissolved organic matter End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Diagnostic" # "Diagnostic (Martin profile)" # "Diagnostic (Balast)" # "Prognostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13. Tracers --&gt; Particules Particulate carbon properties in ocean biogeochemistry 13.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is particulate carbon represented in ocean biogeochemistry? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.types_if_prognostic') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "POC" # "PIC (calcite)" # "PIC (aragonite" # "BSi" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.2. Types If Prognostic Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If prognostic, type(s) of particulate matter taken into account End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.size_if_prognostic') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "No size spectrum used" # "Full size spectrum" # "Discrete size classes (specify which below)" # TODO - please enter value(s) Explanation: 13.3. Size If Prognostic Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If prognostic, describe if a particule size spectrum is used to represent distribution of particules in water volume End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.size_if_discrete') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 13.4. Size If Discrete Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If prognostic and discrete size, describe which size classes are used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.sinking_speed_if_prognostic') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Function of particule size" # "Function of particule type (balast)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.5. Sinking Speed If Prognostic Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If prognostic, method for calculation of sinking speed of particules End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.dic_alkalinity.carbon_isotopes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "C13" # "C14)" # TODO - please enter value(s) Explanation: 14. Tracers --&gt; Dic Alkalinity DIC and alkalinity properties in ocean biogeochemistry 14.1. Carbon Isotopes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Which carbon isotopes are modelled (C13, C14)? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.dic_alkalinity.abiotic_carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 14.2. Abiotic Carbon Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is abiotic carbon modelled ? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.dic_alkalinity.alkalinity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Prognostic" # "Diagnostic)" # TODO - please enter value(s) Explanation: 14.3. Alkalinity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is alkalinity modelled ? End of explanation
3,386
Given the following text description, write Python code to implement the functionality described below step by step Description: Sentiment analysis with TFLearn In this notebook, we'll continue Andrew Trask's work by building a network for sentiment analysis on the movie review data. Instead of a network written with Numpy, we'll be using TFLearn, a high-level library built on top of TensorFlow. TFLearn makes it simpler to build networks just by defining the layers. It takes care of most of the details for you. We'll start off by importing all the modules we'll need, then load and prepare the data. Step1: Preparing the data Following along with Andrew, our goal here is to convert our reviews into word vectors. The word vectors will have elements representing words in the total vocabulary. If the second position represents the word 'the', for each review we'll count up the number of times 'the' appears in the text and set the second position to that count. I'll show you examples as we build the input data from the reviews data. Check out Andrew's notebook and video for more about this. Read the data Use the pandas library to read the reviews and postive/negative labels from comma-separated files. The data we're using has already been preprocessed a bit and we know it uses only lower case characters. If we were working from raw data, where we didn't know it was all lower case, we would want to add a step here to convert it. That's so we treat different variations of the same word, like The, the, and THE, all the same way. Step2: Counting word frequency To start off we'll need to count how often each word appears in the data. We'll use this count to create a vocabulary we'll use to encode the review data. This resulting count is known as a bag of words. We'll use it to select our vocabulary and build the word vectors. You should have seen how to do this in Andrew's lesson. Try to implement it here using the Counter class. Exercise Step3: Let's keep the first 10000 most frequent words. As Andrew noted, most of the words in the vocabulary are rarely used so they will have little effect on our predictions. Below, we'll sort vocab by the count value and keep the 10000 most frequent words. Step4: What's the last word in our vocabulary? We can use this to judge if 10000 is too few. If the last word is pretty common, we probably need to keep more words. Step5: The last word in our vocabulary shows up in 30 reviews out of 25000. I think it's fair to say this is a tiny proportion of reviews. We are probably fine with this number of words. Note Step6: Text to vector function Now we can write a function that converts a some text to a word vector. The function will take a string of words as input and return a vector with the words counted up. Here's the general algorithm to do this Step7: If you do this right, the following code should return ``` text_to_vector('The tea is for a party to celebrate ' 'the movie so she has no time for a cake')[ Step8: Now, run through our entire review data set and convert each review to a word vector. Step9: Train, Validation, Test sets Now that we have the word_vectors, we're ready to split our data into train, validation, and test sets. Remember that we train on the train data, use the validation data to set the hyperparameters, and at the very end measure the network performance on the test data. Here we're using the function to_categorical from TFLearn to reshape the target data so that we'll have two output units and can classify with a softmax activation function. We actually won't be creating the validation set here, TFLearn will do that for us later. Step10: Building the network TFLearn lets you build the network by defining the layers. Input layer For the input layer, you just need to tell it how many units you have. For example, net = tflearn.input_data([None, 100]) would create a network with 100 input units. The first element in the list, None in this case, sets the batch size. Setting it to None here leaves it at the default batch size. The number of inputs to your network needs to match the size of your data. For this example, we're using 10000 element long vectors to encode our input data, so we need 10000 input units. Adding layers To add new hidden layers, you use net = tflearn.fully_connected(net, n_units, activation='ReLU') This adds a fully connected layer where every unit in the previous layer is connected to every unit in this layer. The first argument net is the network you created in the tflearn.input_data call. It's telling the network to use the output of the previous layer as the input to this layer. You can set the number of units in the layer with n_units, and set the activation function with the activation keyword. You can keep adding layers to your network by repeated calling net = tflearn.fully_connected(net, n_units). Output layer The last layer you add is used as the output layer. Therefore, you need to set the number of units to match the target data. In this case we are predicting two classes, positive or negative sentiment. You also need to set the activation function so it's appropriate for your model. Again, we're trying to predict if some input data belongs to one of two classes, so we should use softmax. net = tflearn.fully_connected(net, 2, activation='softmax') Training To set how you train the network, use net = tflearn.regression(net, optimizer='sgd', learning_rate=0.1, loss='categorical_crossentropy') Again, this is passing in the network you've been building. The keywords Step11: Intializing the model Next we need to call the build_model() function to actually build the model. In my solution I haven't included any arguments to the function, but you can add arguments so you can change parameters in the model if you want. Note Step12: Training the network Now that we've constructed the network, saved as the variable model, we can fit it to the data. Here we use the model.fit method. You pass in the training features trainX and the training targets trainY. Below I set validation_set=0.1 which reserves 10% of the data set as the validation set. You can also set the batch size and number of epochs with the batch_size and n_epoch keywords, respectively. Below is the code to fit our the network to our word vectors. You can rerun model.fit to train the network further if you think you can increase the validation accuracy. Remember, all hyperparameter adjustments must be done using the validation set. Only use the test set after you're completely done training the network. Step13: Testing After you're satisified with your hyperparameters, you can run the network on the test set to measure its performance. Remember, only do this after finalizing the hyperparameters. Step14: Try out your own text!
Python Code: import pandas as pd import numpy as np import tensorflow as tf import tflearn from tflearn.data_utils import to_categorical Explanation: Sentiment analysis with TFLearn In this notebook, we'll continue Andrew Trask's work by building a network for sentiment analysis on the movie review data. Instead of a network written with Numpy, we'll be using TFLearn, a high-level library built on top of TensorFlow. TFLearn makes it simpler to build networks just by defining the layers. It takes care of most of the details for you. We'll start off by importing all the modules we'll need, then load and prepare the data. End of explanation reviews = pd.read_csv('reviews.txt', header=None) labels = pd.read_csv('labels.txt', header=None) reviews.head() Explanation: Preparing the data Following along with Andrew, our goal here is to convert our reviews into word vectors. The word vectors will have elements representing words in the total vocabulary. If the second position represents the word 'the', for each review we'll count up the number of times 'the' appears in the text and set the second position to that count. I'll show you examples as we build the input data from the reviews data. Check out Andrew's notebook and video for more about this. Read the data Use the pandas library to read the reviews and postive/negative labels from comma-separated files. The data we're using has already been preprocessed a bit and we know it uses only lower case characters. If we were working from raw data, where we didn't know it was all lower case, we would want to add a step here to convert it. That's so we treat different variations of the same word, like The, the, and THE, all the same way. End of explanation from collections import Counter #Create the counter total_counts = Counter() #iter every row for idx, row in reviews.iterrows(): #Review is contained in 0 position of the row (first column) for word in row[0].split(' '): total_counts[word] += 1 print("Total words in data set: ", len(total_counts)) total_counts.most_common() Explanation: Counting word frequency To start off we'll need to count how often each word appears in the data. We'll use this count to create a vocabulary we'll use to encode the review data. This resulting count is known as a bag of words. We'll use it to select our vocabulary and build the word vectors. You should have seen how to do this in Andrew's lesson. Try to implement it here using the Counter class. Exercise: Create the bag of words from the reviews data and assign it to total_counts. The reviews are stores in the reviews Pandas DataFrame. If you want the reviews as a Numpy array, use reviews.values. You can iterate through the rows in the DataFrame with for idx, row in reviews.iterrows(): (documentation). When you break up the reviews into words, use .split(' ') instead of .split() so your results match ours. End of explanation vocab = sorted(total_counts, key=total_counts.get, reverse=True)[:10000] print(vocab[:60]) Explanation: Let's keep the first 10000 most frequent words. As Andrew noted, most of the words in the vocabulary are rarely used so they will have little effect on our predictions. Below, we'll sort vocab by the count value and keep the 10000 most frequent words. End of explanation print(vocab[-1], ': ', total_counts[vocab[-1]]) Explanation: What's the last word in our vocabulary? We can use this to judge if 10000 is too few. If the last word is pretty common, we probably need to keep more words. End of explanation word2idx = {} ## create the word-to-index dictionary here i = 0 for w in vocab: word2idx[w] = i i += 1 word2idx['the'] Explanation: The last word in our vocabulary shows up in 30 reviews out of 25000. I think it's fair to say this is a tiny proportion of reviews. We are probably fine with this number of words. Note: When you run, you may see a different word from the one shown above, but it will also have the value 30. That's because there are many words tied for that number of counts, and the Counter class does not guarantee which one will be returned in the case of a tie. Now for each review in the data, we'll make a word vector. First we need to make a mapping of word to index, pretty easy to do with a dictionary comprehension. Exercise: Create a dictionary called word2idx that maps each word in the vocabulary to an index. The first word in vocab has index 0, the second word has index 1, and so on. End of explanation def text_to_vector(text): word_vector = np.zeros(len(word2idx)) for word in text.split(' '): index = word2idx.get(word, None) if index != None: word_vector[index] = 1 return word_vector Explanation: Text to vector function Now we can write a function that converts a some text to a word vector. The function will take a string of words as input and return a vector with the words counted up. Here's the general algorithm to do this: Initialize the word vector with np.zeros, it should be the length of the vocabulary. Split the input string of text into a list of words with .split(' '). Again, if you call .split() instead, you'll get slightly different results than what we show here. For each word in that list, increment the element in the index associated with that word, which you get from word2idx. Note: Since all words aren't in the vocab dictionary, you'll get a key error if you run into one of those words. You can use the .get method of the word2idx dictionary to specify a default returned value when you make a key error. For example, word2idx.get(word, None) returns None if word doesn't exist in the dictionary. End of explanation text_to_vector('The tea is for a party to celebrate ' 'the movie so she has no time for a cake')[:65] Explanation: If you do this right, the following code should return ``` text_to_vector('The tea is for a party to celebrate ' 'the movie so she has no time for a cake')[:65] array([0, 1, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]) ``` End of explanation word_vectors = np.zeros((len(reviews), len(vocab)), dtype=np.int_) for ii, (_, text) in enumerate(reviews.iterrows()): word_vectors[ii] = text_to_vector(text[0]) # Printing out the first 5 word vectors word_vectors[:5, :23] Explanation: Now, run through our entire review data set and convert each review to a word vector. End of explanation Y = (labels=='positive').astype(np.int_) records = len(labels) shuffle = np.arange(records) np.random.shuffle(shuffle) test_fraction = 0.9 train_split, test_split = shuffle[:int(records*test_fraction)], shuffle[int(records*test_fraction):] trainX, trainY = word_vectors[train_split,:], to_categorical(Y.values[train_split].reshape((len(Y.values[train_split]),)), 2) testX, testY = word_vectors[test_split,:], to_categorical(Y.values[test_split].reshape((len(Y.values[test_split]),)), 2) trainY Explanation: Train, Validation, Test sets Now that we have the word_vectors, we're ready to split our data into train, validation, and test sets. Remember that we train on the train data, use the validation data to set the hyperparameters, and at the very end measure the network performance on the test data. Here we're using the function to_categorical from TFLearn to reshape the target data so that we'll have two output units and can classify with a softmax activation function. We actually won't be creating the validation set here, TFLearn will do that for us later. End of explanation # Network building def build_model(): # This resets all parameters and variables, leave this here tf.reset_default_graph() #### Your code #### #input layer net = tflearn.input_data([None, len(word2idx)]) #hidden layer net = tflearn.fully_connected(net, n_units=200, activation='ReLU') net = tflearn.fully_connected(net, n_units=25, activation='ReLU') #output layer net = tflearn.fully_connected(net, n_units=2, activation='softmax') #training net = tflearn.regression(net, optimizer='sgd', learning_rate=0.1, loss='categorical_crossentropy') model = tflearn.DNN(net, tensorboard_verbose=3, tensorboard_dir='model_dir') return model Explanation: Building the network TFLearn lets you build the network by defining the layers. Input layer For the input layer, you just need to tell it how many units you have. For example, net = tflearn.input_data([None, 100]) would create a network with 100 input units. The first element in the list, None in this case, sets the batch size. Setting it to None here leaves it at the default batch size. The number of inputs to your network needs to match the size of your data. For this example, we're using 10000 element long vectors to encode our input data, so we need 10000 input units. Adding layers To add new hidden layers, you use net = tflearn.fully_connected(net, n_units, activation='ReLU') This adds a fully connected layer where every unit in the previous layer is connected to every unit in this layer. The first argument net is the network you created in the tflearn.input_data call. It's telling the network to use the output of the previous layer as the input to this layer. You can set the number of units in the layer with n_units, and set the activation function with the activation keyword. You can keep adding layers to your network by repeated calling net = tflearn.fully_connected(net, n_units). Output layer The last layer you add is used as the output layer. Therefore, you need to set the number of units to match the target data. In this case we are predicting two classes, positive or negative sentiment. You also need to set the activation function so it's appropriate for your model. Again, we're trying to predict if some input data belongs to one of two classes, so we should use softmax. net = tflearn.fully_connected(net, 2, activation='softmax') Training To set how you train the network, use net = tflearn.regression(net, optimizer='sgd', learning_rate=0.1, loss='categorical_crossentropy') Again, this is passing in the network you've been building. The keywords: optimizer sets the training method, here stochastic gradient descent learning_rate is the learning rate loss determines how the network error is calculated. In this example, with the categorical cross-entropy. Finally you put all this together to create the model with tflearn.DNN(net). So it ends up looking something like net = tflearn.input_data([None, 10]) # Input net = tflearn.fully_connected(net, 5, activation='ReLU') # Hidden net = tflearn.fully_connected(net, 2, activation='softmax') # Output net = tflearn.regression(net, optimizer='sgd', learning_rate=0.1, loss='categorical_crossentropy') model = tflearn.DNN(net) Exercise: Below in the build_model() function, you'll put together the network using TFLearn. You get to choose how many layers to use, how many hidden units, etc. End of explanation model = build_model() Explanation: Intializing the model Next we need to call the build_model() function to actually build the model. In my solution I haven't included any arguments to the function, but you can add arguments so you can change parameters in the model if you want. Note: You might get a bunch of warnings here. TFLearn uses a lot of deprecated code in TensorFlow. Hopefully it gets updated to the new TensorFlow version soon. End of explanation # Training model.fit(trainX, trainY, validation_set=0.1, show_metric=True, batch_size=128, n_epoch=20) Explanation: Training the network Now that we've constructed the network, saved as the variable model, we can fit it to the data. Here we use the model.fit method. You pass in the training features trainX and the training targets trainY. Below I set validation_set=0.1 which reserves 10% of the data set as the validation set. You can also set the batch size and number of epochs with the batch_size and n_epoch keywords, respectively. Below is the code to fit our the network to our word vectors. You can rerun model.fit to train the network further if you think you can increase the validation accuracy. Remember, all hyperparameter adjustments must be done using the validation set. Only use the test set after you're completely done training the network. End of explanation predictions = (np.array(model.predict(testX))[:,0] >= 0.5).astype(np.int_) test_accuracy = np.mean(predictions == testY[:,0], axis=0) print("Test accuracy: ", test_accuracy) Explanation: Testing After you're satisified with your hyperparameters, you can run the network on the test set to measure its performance. Remember, only do this after finalizing the hyperparameters. End of explanation # Helper function that uses your model to predict sentiment def test_sentence(sentence): positive_prob = model.predict([text_to_vector(sentence.lower())])[0][1] print('Sentence: {}'.format(sentence)) print('P(positive) = {:.3f} :'.format(positive_prob), 'Positive' if positive_prob > 0.5 else 'Negative') sentence = "Moonlight is by far the best movie of 2016." test_sentence(sentence) sentence = "It's amazing anyone could be talented enough to make something this spectacularly awful" test_sentence(sentence) sentence = "Ace Ventura is the best movie ever! I wonder why Jim Carrey didn't won the Oscar" test_sentence(sentence=sentence) Explanation: Try out your own text! End of explanation
3,387
Given the following text description, write Python code to implement the functionality described below step by step Description: Image and feature analysis Let's start by loading the libraries we'll need Step1: Extract Images Included in these workshop materials is a compressed file ("data.tar.gz") containg the images that we'll be classifying today. Once you extract this file, you should have a directory called "data" which contains the following directories Step2: Image Properties One of the really useful things about using OpenCV to manipulate images in Python is that all images are treated as NumPy matrices. This means we can use NumPy's functions to manipulate and understand the data we're working with. To demonstrate this, we'll use use NumPy's "shape" and "dtype" commands to take a closer look at the rectangular tag image we just read in Step3: This tells us that this image is 24x24 pixels in size, and that the datatype of the values it stores are unsigned 8 bit integers. While the explanation of this datatype isn't especially relevant to the lesson, the main point is that it is extremely important to double check the size and structure of your data. Let's do the same thing for the circular tag image too Step4: This holds the same values, which is good. When you're working with your own datasets in the future, it would be highly beneficial to write your own little program to check the values and structure of your data to ensure that subtle bugs don't creep in to your analysis. Cropping One of the things you've probably noticed is that there's a dark area around the edges of the tags. As we're only interested in the pattern in the middle of the tags, we should try to crop this out. Have a little play with the code below and experiment with different pixel slices. Step5: Feature Engineering When people think of machine learning, the first thing that comes to mind tends to be the fancy algorithms that will train the computer to solve your problem. Of course this is important, but the reality of the matter is that the way you process the data you'll eventually feed into the machine learning algorithm is often the thing you'll spend the most time doing and will have the biggest effect on the accuracy of your results. Now, when most people think of features in data, they think that this is what it is Step6: In fact this is not actualy the case. In the case of this dataset, the features are actually the pixel values that make up the images - those are the values we'll be training the machine learning algorithm with Step7: So what can we do to manipulate the features in out dataset? We'll explore three methods to acheive this Step8: Feel free to have a play with the different parameters for these smoothing operations. We'll now write some code to place the original images next to their smoothed counterparts in order to compare them Step9: Brightness and Contrast Modifying the brightness and contrast of our images is a surprisingly simple task, but can have a big impact on the appearance of the image. Here is how you can increase and decrease these characteristics in an image
Python Code: import cv2 import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm %matplotlib inline Explanation: Image and feature analysis Let's start by loading the libraries we'll need: End of explanation rect_image = cv2.imread('data/I/27.png', cv2.IMREAD_GRAYSCALE) circle_image = cv2.imread('data/O/11527.png', cv2.IMREAD_GRAYSCALE) queen_image = cv2.imread('data/Q/18027.png', cv2.IMREAD_GRAYSCALE) plt.figure(figsize = (10, 7)) plt.title('Rectangle Tag') plt.axis('off') plt.imshow(rect_image, cmap = cm.Greys_r) plt.figure(figsize = (10, 7)) plt.title('Circle Tag') plt.axis('off') plt.imshow(circle_image, cmap = cm.Greys_r) plt.figure(figsize = (10, 7)) plt.title('Queen Tag') plt.axis('off') plt.imshow(queen_image, cmap = cm.Greys_r) Explanation: Extract Images Included in these workshop materials is a compressed file ("data.tar.gz") containg the images that we'll be classifying today. Once you extract this file, you should have a directory called "data" which contains the following directories: Directory | Contents :-------------------------:|:-------------------------: I | Contains rectangle tag images O | Contains circle tag images Q | Contains blank tag images Feel free to have a look through these directories, and we'll show you how to load these images into Python using OpenCV next. Reading Images We're now going to be using OpenCV's "imread" command to load one of the images from each type of tag into Python and then use Matplotlib to plot the images: End of explanation print (rect_image.shape) print (rect_image.dtype) Explanation: Image Properties One of the really useful things about using OpenCV to manipulate images in Python is that all images are treated as NumPy matrices. This means we can use NumPy's functions to manipulate and understand the data we're working with. To demonstrate this, we'll use use NumPy's "shape" and "dtype" commands to take a closer look at the rectangular tag image we just read in: End of explanation print (circle_image.shape) print (circle_image.dtype) Explanation: This tells us that this image is 24x24 pixels in size, and that the datatype of the values it stores are unsigned 8 bit integers. While the explanation of this datatype isn't especially relevant to the lesson, the main point is that it is extremely important to double check the size and structure of your data. Let's do the same thing for the circular tag image too: End of explanation cropped_rect_image = rect_image[4:20,4:20] cropped_circle_image = circle_image[4:20,4:20] cropped_queen_image = queen_image[4:20,4:20] plt.figure(figsize = (10, 7)) plt.title('Rectangle Tag ' + str(cropped_rect_image.shape)) plt.axis('off') plt.imshow(cropped_rect_image, cmap = cm.Greys_r) plt.figure(figsize = (10, 7)) plt.title('Circle Tag ' + str(cropped_circle_image.shape)) plt.axis('off') plt.imshow(cropped_circle_image, cmap = cm.Greys_r) plt.figure(figsize = (10, 7)) plt.title('Queen Tag ' + str(cropped_queen_image.shape)) plt.axis('off') plt.imshow(cropped_queen_image, cmap = cm.Greys_r) Explanation: This holds the same values, which is good. When you're working with your own datasets in the future, it would be highly beneficial to write your own little program to check the values and structure of your data to ensure that subtle bugs don't creep in to your analysis. Cropping One of the things you've probably noticed is that there's a dark area around the edges of the tags. As we're only interested in the pattern in the middle of the tags, we should try to crop this out. Have a little play with the code below and experiment with different pixel slices. End of explanation plt.figure(figsize = (10, 7)) plt.title('Rectangle Tag') plt.axis('off') plt.imshow(rect_image, cmap = cm.Greys_r) Explanation: Feature Engineering When people think of machine learning, the first thing that comes to mind tends to be the fancy algorithms that will train the computer to solve your problem. Of course this is important, but the reality of the matter is that the way you process the data you'll eventually feed into the machine learning algorithm is often the thing you'll spend the most time doing and will have the biggest effect on the accuracy of your results. Now, when most people think of features in data, they think that this is what it is: End of explanation print(rect_image) Explanation: In fact this is not actualy the case. In the case of this dataset, the features are actually the pixel values that make up the images - those are the values we'll be training the machine learning algorithm with: End of explanation mean_smoothed = cv2.blur(rect_image, (5, 5)) median_smoothed = cv2.medianBlur(rect_image, 5) gaussian_smoothed = cv2.GaussianBlur(rect_image, (5, 5), 0) Explanation: So what can we do to manipulate the features in out dataset? We'll explore three methods to acheive this: Image smoothing Modifying brightness Modifying contrast Techniques like image smoothing can be useful when improving the features you train the machine learning algorithm on as you can eliminate some of the potential noise in the image that could confuse the program. Smoothing Image smoothing is another name for blurring the image. It involves passing a rectangular box (called a kernel) over the image and modifying pixels in the image based on the surrounding values. As part of this exercise, we'll explore 3 different smoothing techniques: Smoothing Method | Explanation :-------------------------:|:-------------------------: Mean | Replaces pixel with the mean value of the surrounding pixels Median | Replaces pixel with the median value of the surrounding pixels Gaussian | Replaces pixel by placing different weightings on surrrounding pixels according to the gaussian distribution End of explanation mean_compare = np.hstack((rect_image, mean_smoothed)) median_compare = np.hstack((rect_image, median_smoothed)) gaussian_compare = np.hstack((rect_image, gaussian_smoothed)) plt.figure(figsize = (15, 12)) plt.title('Mean') plt.axis('off') plt.imshow(mean_compare, cmap = cm.Greys_r) plt.figure(figsize = (15, 12)) plt.title('Median') plt.axis('off') plt.imshow(median_compare, cmap = cm.Greys_r) plt.figure(figsize = (15, 12)) plt.title('Gaussian') plt.axis('off') plt.imshow(gaussian_compare, cmap = cm.Greys_r) Explanation: Feel free to have a play with the different parameters for these smoothing operations. We'll now write some code to place the original images next to their smoothed counterparts in order to compare them: End of explanation increase_brightness = rect_image + 30 decrease_brightness = rect_image - 30 increase_contrast = rect_image * 1.5 decrease_contrast = rect_image * 0.5 brightness_compare = np.hstack((increase_brightness, decrease_brightness)) constrast_compare = np.hstack((increase_contrast, decrease_contrast)) plt.figure(figsize = (15, 12)) plt.title('Brightness') plt.axis('off') plt.imshow(brightness_compare, cmap = cm.Greys_r) plt.figure(figsize = (15, 12)) plt.title('Contrast') plt.axis('off') plt.imshow(constrast_compare, cmap = cm.Greys_r) Explanation: Brightness and Contrast Modifying the brightness and contrast of our images is a surprisingly simple task, but can have a big impact on the appearance of the image. Here is how you can increase and decrease these characteristics in an image: Characteristic | Increase/Decrease | Action :-------------------------:|:-------------------------:|:------------------------- Brightness | Increase | Add an integer to every pixel Brightness | Decrease | Subtract an integer from every pixel Constrast | Increase | Multiply every pixel by a number greater than 1 Constrast | Decrease | Multiple every pixel by a floating point number less than 1 Now we can see how this affects our rectangular tag image. Again, feel free to experiment with different values in order to see the final effect. End of explanation
3,388
Given the following text description, write Python code to implement the functionality described below step by step Description: 5章 誤差逆伝播法 ニューラルネットワークの学習では重みパラメータの勾配(重みパラメータに関する損失関数の勾配)は数値微分によって求めていた。これは実装は簡単だが、計算に時間がかかる。そこで効率よく勾配計算を行なうために「誤差逆伝播法」を用いる。 ここでは数式ではなく、「計算グラフ(computational graph)」を用いて理解を深める。 5.1 計算グラフ 計算グラフは計算の過程をグラフにしたものである。 5.1.1 計算グラフで解く 問1 1個100円の林檎を2個買った際に支払う金額を求める。消費税は10%とする。 Step1: グラフの左から右へ計算を進めることを「順伝播(forward propergation)」という。逆に右から左に計算を遡ることを「逆伝播(backward propergation)」という。 5.1.2 局所的な計算 各ノードにおける計算は局所的なものであり、それ以前の計算されてくる過程は考慮する必要なく計算が行なうことが出来る。 5.1.3 なぜ計算グラフで解くのか? 計算グラフで解く利点 * 各ノードでは局所的な計算でよい * 途中の計算の結果を全て保持することができる * 玉方向の伝播によって「微分」を効率よく計算できる点 りんごの値段が少し上がった場合に総支払額が同変化するか確認することが出来る。 5.2 連鎖律 局所的な微分を伝達する原理は、「連鎖律(chain rule)」によるものである。 5.2.1 計算グラフの逆伝播 逆伝播の計算手順は信号$E$に対して、ノードの局所的な微分$\frac{\delta y}{\delta x}$を乗算し次のノードへ伝達していく。 Step2: 5.2.2 連鎖律とは 合成関数とは 複数の関数によって構成される関数。 $z=(x+y)^{2}$という式は以下2式のように構成される。 $$ z=t^{2} \ t=x+y $$ 連鎖律は合成関数の微分についての性質である。 合成関数の微分は、合成関数を構成するそれぞれの関数の微分の積によって表すことが出来る 上記例でいうと以下の様に表すことが出来る。 $$\frac{\delta z}{\delta x}= \frac{\delta z}{\delta t}\frac{\delta t}{\delta x}$$ 計算を進めると以下となり、連鎖律をもちいて合成関数の微分が行える。 $$ \frac{\delta z}{\delta t} = 2t \ \frac{\delta t}{\delta x} = 1 \ \frac{\delta z}{\delta x}= \frac{\delta z}{\delta t}\frac{\delta t}{\delta x} = 2t・1 = 2(x + y) $$ 5.2.3 連鎖律と計算グラフ 計算グラフの逆伝播を考えた場合、連鎖律を用いて微分を求めることが出来る。 $$ \frac{\delta z}{\delta z}\frac{\delta z}{\delta t}\frac{\delta t}{\delta x} \ =\frac{\delta z}{\delta t}\frac{\delta t}{\delta x} \ =\frac{\delta z}{\delta x} \ $$ 5.3 逆伝播 加算や乗算を例に逆伝播の仕組みを考える。 5.3.1 加算ノードの逆伝播 $z=x+y$について逆伝播を考える。この式について微分を行なうと以下となる。 $$ \frac{\delta z}{\delta x}=1 \ \frac{\delta z}{\delta y}=1 \ $$ 逆伝播の際には、前の計算から伝わってきた$\frac{\delta L}{\delta z}$を乗算して次のノードに渡す。(この場合はx,yの微分とも1なので$\frac{\delta L}{\delta z}・1$となる) 5.3.2 乗算ノードの逆伝播 $z=xy$について逆伝播を考える。この式について微分を行なうと以下となる。 $$ \frac{\delta z}{\delta x}=y \ \frac{\delta z}{\delta y}=x \ $$ 乗算の逆伝播では入力した値をひっくり返した値が用いられることとなる。 $$ xの逆伝播:\frac{\delta L}{\delta z}\frac{\delta z}{\delta x} = \frac{\delta L}{\delta z}・y\ yの逆伝播:\frac{\delta L}{\delta z}\frac{\delta z}{\delta y} = \frac{\delta L}{\delta z}・x \ $$ 加算の逆伝播では上流の値をただ流すだけ立ったので順伝播の入力信号は不要だったが、乗算の逆伝播では順伝播の入力信号を保持しておかなければならない。 5.3.3 リンゴの例 割愛 5.4 単純なレイヤの実装 計算グラフ乗算ノードを「乗算レイヤ(MulLayer)」、加算ノードを「加算レイヤ(AddLayer)」という名前で実装する。 5.4.1 乗算レイヤの実装 レイヤはforward()とbackward()の共通のインタフェースを持つようにする。 Step3: 5.5 活性化関数レイヤの実装 計算グラフの考え方をニューラルネットワークに適用していく。ここでは、ニューラルネットワークを構成する「層(レイヤ)」をひとつのクラスとして実装する。活性化関数であるReLUとSigmoidレイヤを実装する。 5.5.1 ReLUレイヤ 活性化関数してとして使われるReLU(Rectified Linear Unit)は次式で表される。 $$ y = \begin{cases} & x \; (x>0) \ & 0 \; (x\leq0) \end{cases} $$ xに関するyの微分は以下のようになる。 $$ \frac{\delta y}{\delta x} = \begin{cases} & 1 \; (x>0) \ & 0 \; (x\leq0) \end{cases} $$ 順伝播時入力のxが0より大きければ、逆伝播は上流の値をそのまま下流に流す。逆にxが0以下であれば下流への信号はストップする。 実装は以下となる。 Step4: 5.5.2 Sigmoidレイヤ シグモイド関数は次式で表される。 $$ y=\frac{1}{1+exp(-x)} $$ 計算グラフでは「×」「exp」「+」「/」の順でのノードが連結する。 逆伝播の流れを順に沿って見ていく。 ステップ1 「/」ノードは$y=\frac{1}{x}$を表す(上記式で「1+exp(-x)」を分母にするところから分かる)が、この微分は解析的に次式のようになる。 $$ \frac{\delta y}{\delta x} = -\frac{1}{x^{2}} \ = -y^{2} $$ ステップ2 「+」ノードは上流の値を下流にそのまま流すだけ。 ステップ3 「exp」ノードは$y=exp(x)$であり、微分は以下式で表される。 $$ \frac{\delta y}{\delta x}= exp(x) $$ 計算グラフでは順伝播時の出力を乗算して下流へ伝搬する。($exp(-x)$) ステップ4 「×」ノードは順伝播時の値をひっくり返して乗算する。(-1) 以上によりSigmoidの逆伝播の出力は以下となる。 $$ \frac{\delta L}{\delta y}y^{2}exp(-x) \ =\frac{\delta L}{\delta y}\frac{1}{(1+exp(-x))^{2}}exp(-x) \ =\frac{\delta L}{\delta y}\frac{1}{1+exp(-x)} \frac{exp(-x)}{1+exp(-x)} \ =\frac{\delta L}{\delta y}y(1-y) $$ これによりSigmoidレイヤの逆伝播は順伝播の出力だけから求めることが出来る。 実装は以下となる。 Step5: 5.6 Affine/Softmaxレイヤの実装 5.6.1 Affineレイヤ 行列の内積は幾何学分野で「アフィン変換」と呼ばれる。ここではアフィン変換を行なう処理を「Affineレイヤ」という名前で実装する。 ニューロンの重み付き和$Y = np.dot(X,W)+B$における計算グラフで考えてみる。 この計算グラフではこれまでのような「スカラ値」ではなく「行列」が伝播していく。 逆伝播は以下のように導出される。 $$ \frac{\delta L}{\delta X}=\frac{\delta L}{\delta Y}・W^{T} \ \frac{\delta L}{\delta W}=W^{T}\frac{\delta L}{\delta Y} $$ $W^{T}$のTは転置を表す。行列の内積の逆伝播は対応する次元の要素数を一致させるように内積を組み立てる必要がある。次元数は以下の通りである。 X Step6: 順伝播では各データに対して加算がされていたが、逆伝播においてはそれぞれの逆伝播のデータからバイアスに集約される必要がある。 Step7: 5.6.3 Softmax-with-Lossレイヤ 出力層であるソフトマックス関数について考える。ソフトマックス関数は入力された値を正規化して出力する(出力の和が1になる)。 ニューラルネットワークにおける推論ではソフトマックス関数は不要(Affineレイヤの出力のうち最も高い値(スコア)を推論値とすれば良いので)だが、学習時には必要になる。 ここでは損失関数である交差エントロピー誤差(cross entoropy error)も含めて「Softmax-with-Loss レイヤ」という名前で実装する。 このレイヤはSoftmaxレイヤを通した後にCross Emtropy Errorレイヤを通す構造になっている。 順伝播ではSoftmaxレイヤの出力と教師データのラベルがCross Emtropy Errorレイヤの入力となり、損失Lを出力する。 逆伝播ではSoftmaxレイヤからは$(y_{1}-t_{1}, y_{2}-t_{2}, y_{3}-t_{3})$というシンプルな形で流れてくる。これにより、誤った推論を行った場合は大きな誤差が逆伝播されるが、正解している場合は小さい誤差が伝搬される。 このようにシンプルな形で流せるのはソフトマックス関数の損失関数として交差エントロピー誤差を選んでいるからである。(回帰問題における出力層に恒等関数、損失関数として2乗和誤差を用いることも同様(3.5参照)) Step8: 5.7 誤差逆伝播法の実装 5.7.1 ニューラルネットワークの学習の全体図 ステップ1 ミニバッチ 訓練データからランダムに一部データを選び出す ステップ2 勾配の算出 各重みパラメータに関する損失関数の勾配を求める ステップ3 パラメータの更新 重みパラメータを勾配方向に微小量更新 ステップ4 繰り返す ステップ1~3を繰り返す 5.7.2 誤差逆伝播法に対応したニューラルネットワークの実装 Step9: 5.7.3 誤差逆伝播法の勾配確認 これまでで勾配を求める方法として数値微分と解析的に求める方法が説明された。解析的に求める方法としては誤差逆伝播法をもちいて大量パラメータに対しても効率的に計算出来た。実装においては誤差逆伝播法があれば良いが、実装の正しさを確認するために数値微分が用いられる。実装が簡単なため数値微分による確認は有効であり「勾配確認(gradient check)」と言われる。 Step10: 5.7.4 誤差逆伝播法を使った学習 mnistに対して誤差逆伝播法を用いて学習を行なう。
Python Code: import matplotlib.pyplot as plt from graphviz import Digraph from matplotlib.image import imread f = Digraph(format="png") f.attr(rankdir='LR', size='8,5') f.attr('node', shape='circle') f.edge('apple', '×2', label='100') f.edge('×2', '×1.1', label='200') f.edge('×1.1', 'cash', label='220') f.render("../docs/5_1_1") img = imread('../docs/5_1_1.png') plt.figure(figsize=(10,8)) plt.imshow(img) plt.show() f = Digraph(format="png") f.attr(rankdir='LR', size='8,5') f.attr('node', shape='circle') f.node('apple', 'apple') f.node('apple_num', 'apple_num') f.node('tax', 'tax') f.node('mul1', '×') f.node('mul2', '×') f.node('cash', 'cash') f.body.append('{rank=same; apple; apple_num; tax;}') f.edge('apple', 'mul1', label='100') f.edge('apple_num', 'mul1', label='2') f.edge('mul1', 'mul2', label='200') f.edge('tax', 'mul2', label='1.1') f.edge('mul2', 'cash', label='220') f.render("../docs/5_1_1") img = imread('../docs/5_1_1.png') plt.figure(figsize=(10,8)) plt.imshow(img) plt.show() Explanation: 5章 誤差逆伝播法 ニューラルネットワークの学習では重みパラメータの勾配(重みパラメータに関する損失関数の勾配)は数値微分によって求めていた。これは実装は簡単だが、計算に時間がかかる。そこで効率よく勾配計算を行なうために「誤差逆伝播法」を用いる。 ここでは数式ではなく、「計算グラフ(computational graph)」を用いて理解を深める。 5.1 計算グラフ 計算グラフは計算の過程をグラフにしたものである。 5.1.1 計算グラフで解く 問1 1個100円の林檎を2個買った際に支払う金額を求める。消費税は10%とする。 End of explanation import matplotlib.pyplot as plt from graphviz import Digraph from matplotlib.image import imread f = Digraph(format="png") f.attr(rankdir='LR', size='8,5') f.attr('node', shape='circle') f.edge('start', 'f', label='x') f.edge('f', 'start', label='E*δy/δy') f.edge('f', 'end', label='y') f.edge('end', 'f', label='E') f.render("../docs/5_2_1") img = imread('../docs/5_2_1.png') plt.figure(figsize=(10,8)) plt.imshow(img) plt.show() Explanation: グラフの左から右へ計算を進めることを「順伝播(forward propergation)」という。逆に右から左に計算を遡ることを「逆伝播(backward propergation)」という。 5.1.2 局所的な計算 各ノードにおける計算は局所的なものであり、それ以前の計算されてくる過程は考慮する必要なく計算が行なうことが出来る。 5.1.3 なぜ計算グラフで解くのか? 計算グラフで解く利点 * 各ノードでは局所的な計算でよい * 途中の計算の結果を全て保持することができる * 玉方向の伝播によって「微分」を効率よく計算できる点 りんごの値段が少し上がった場合に総支払額が同変化するか確認することが出来る。 5.2 連鎖律 局所的な微分を伝達する原理は、「連鎖律(chain rule)」によるものである。 5.2.1 計算グラフの逆伝播 逆伝播の計算手順は信号$E$に対して、ノードの局所的な微分$\frac{\delta y}{\delta x}$を乗算し次のノードへ伝達していく。 End of explanation class MulLayer: def __init__(self): self.x = None self.y = None def forward(self, x, y): self.x = x self.y = y out = x * y return out def backward(self, dout): # ひっくり返した値を乗算して返す dx = dout * self.y dy = dout * self.x return dx, dy # リンゴ2個と消費税を計算する実装 apple = 100 apple_num = 2 tax = 1.1 # layer mul_apple_layer = MulLayer() mul_tax_layer = MulLayer() # forward apple_price = mul_apple_layer.forward(apple, apple_num) price = mul_tax_layer.forward(apple_price, tax) print(price) # 各変数に関する微分 dprice = 1 dapple_price, dtax = mul_tax_layer.backward(dprice) dapple, dapple_num = mul_apple_layer.backward(dapple_price) print(dapple, dapple_num, dtax) # 加算レイヤ class AddLayer: def __init__(self): pass def forward(self, x, y): out = x + y return out def backward(self, dout): dx = dout * 1 dy = dout * 1 return dx, dy # りんごとみかんの買い物を実装 apple = 100 apple_num = 2 orange = 150 orange_num = 3 tax = 1.1 # layer mul_apple_layer = MulLayer() mul_orange_layer = MulLayer() add_apple_orange_layer = AddLayer() mul_tax_layer = MulLayer() # forward apple_price = mul_apple_layer.forward(apple, apple_num) # (1) orange_price = mul_orange_layer.forward(orange, orange_num) # (2) all_price = add_apple_orange_layer.forward(apple_price, orange_price) # (3) price = mul_tax_layer.forward(all_price, tax) # (4) # backward dprice = 1 dall_price, dtax = mul_tax_layer.backward(dprice) # (4) dapple_price, dorange_price = add_apple_orange_layer.backward(dall_price) # (3) dorange, dorange_num = mul_orange_layer.backward(dorange_price) # (2) dapple, dapple_num = mul_apple_layer.backward(dapple_price) # (1) print("price:", int(price)) print("dApple:", dapple) print("dApple_num:", int(dapple_num)) print("dOrange:", dorange) print("dOrange_num:", int(dorange_num)) print("dTax:", dtax) Explanation: 5.2.2 連鎖律とは 合成関数とは 複数の関数によって構成される関数。 $z=(x+y)^{2}$という式は以下2式のように構成される。 $$ z=t^{2} \ t=x+y $$ 連鎖律は合成関数の微分についての性質である。 合成関数の微分は、合成関数を構成するそれぞれの関数の微分の積によって表すことが出来る 上記例でいうと以下の様に表すことが出来る。 $$\frac{\delta z}{\delta x}= \frac{\delta z}{\delta t}\frac{\delta t}{\delta x}$$ 計算を進めると以下となり、連鎖律をもちいて合成関数の微分が行える。 $$ \frac{\delta z}{\delta t} = 2t \ \frac{\delta t}{\delta x} = 1 \ \frac{\delta z}{\delta x}= \frac{\delta z}{\delta t}\frac{\delta t}{\delta x} = 2t・1 = 2(x + y) $$ 5.2.3 連鎖律と計算グラフ 計算グラフの逆伝播を考えた場合、連鎖律を用いて微分を求めることが出来る。 $$ \frac{\delta z}{\delta z}\frac{\delta z}{\delta t}\frac{\delta t}{\delta x} \ =\frac{\delta z}{\delta t}\frac{\delta t}{\delta x} \ =\frac{\delta z}{\delta x} \ $$ 5.3 逆伝播 加算や乗算を例に逆伝播の仕組みを考える。 5.3.1 加算ノードの逆伝播 $z=x+y$について逆伝播を考える。この式について微分を行なうと以下となる。 $$ \frac{\delta z}{\delta x}=1 \ \frac{\delta z}{\delta y}=1 \ $$ 逆伝播の際には、前の計算から伝わってきた$\frac{\delta L}{\delta z}$を乗算して次のノードに渡す。(この場合はx,yの微分とも1なので$\frac{\delta L}{\delta z}・1$となる) 5.3.2 乗算ノードの逆伝播 $z=xy$について逆伝播を考える。この式について微分を行なうと以下となる。 $$ \frac{\delta z}{\delta x}=y \ \frac{\delta z}{\delta y}=x \ $$ 乗算の逆伝播では入力した値をひっくり返した値が用いられることとなる。 $$ xの逆伝播:\frac{\delta L}{\delta z}\frac{\delta z}{\delta x} = \frac{\delta L}{\delta z}・y\ yの逆伝播:\frac{\delta L}{\delta z}\frac{\delta z}{\delta y} = \frac{\delta L}{\delta z}・x \ $$ 加算の逆伝播では上流の値をただ流すだけ立ったので順伝播の入力信号は不要だったが、乗算の逆伝播では順伝播の入力信号を保持しておかなければならない。 5.3.3 リンゴの例 割愛 5.4 単純なレイヤの実装 計算グラフ乗算ノードを「乗算レイヤ(MulLayer)」、加算ノードを「加算レイヤ(AddLayer)」という名前で実装する。 5.4.1 乗算レイヤの実装 レイヤはforward()とbackward()の共通のインタフェースを持つようにする。 End of explanation class Relu: def __init__(self): self.mask = None def forward(self, x): # maskはxが0以下の場合false、それ以外はtrueを保持。xの配列の形で保持 self.mask = (x <= 0) out = x.copy() # maskでtrueである要素(xが0以下)は0を代入 out[self.mask] = 0 return out def backward(self, dout): dout[self.mask] = 0 dx = dout return dx Explanation: 5.5 活性化関数レイヤの実装 計算グラフの考え方をニューラルネットワークに適用していく。ここでは、ニューラルネットワークを構成する「層(レイヤ)」をひとつのクラスとして実装する。活性化関数であるReLUとSigmoidレイヤを実装する。 5.5.1 ReLUレイヤ 活性化関数してとして使われるReLU(Rectified Linear Unit)は次式で表される。 $$ y = \begin{cases} & x \; (x>0) \ & 0 \; (x\leq0) \end{cases} $$ xに関するyの微分は以下のようになる。 $$ \frac{\delta y}{\delta x} = \begin{cases} & 1 \; (x>0) \ & 0 \; (x\leq0) \end{cases} $$ 順伝播時入力のxが0より大きければ、逆伝播は上流の値をそのまま下流に流す。逆にxが0以下であれば下流への信号はストップする。 実装は以下となる。 End of explanation class Sigmoid: def __init__(self): self.out = None def forward(self, x): out = 1 / (1 + np.exp(-x)) self.out = out return out def backward(self, dout): dx = dout * (1.0 - self.out) * self.out return dx Explanation: 5.5.2 Sigmoidレイヤ シグモイド関数は次式で表される。 $$ y=\frac{1}{1+exp(-x)} $$ 計算グラフでは「×」「exp」「+」「/」の順でのノードが連結する。 逆伝播の流れを順に沿って見ていく。 ステップ1 「/」ノードは$y=\frac{1}{x}$を表す(上記式で「1+exp(-x)」を分母にするところから分かる)が、この微分は解析的に次式のようになる。 $$ \frac{\delta y}{\delta x} = -\frac{1}{x^{2}} \ = -y^{2} $$ ステップ2 「+」ノードは上流の値を下流にそのまま流すだけ。 ステップ3 「exp」ノードは$y=exp(x)$であり、微分は以下式で表される。 $$ \frac{\delta y}{\delta x}= exp(x) $$ 計算グラフでは順伝播時の出力を乗算して下流へ伝搬する。($exp(-x)$) ステップ4 「×」ノードは順伝播時の値をひっくり返して乗算する。(-1) 以上によりSigmoidの逆伝播の出力は以下となる。 $$ \frac{\delta L}{\delta y}y^{2}exp(-x) \ =\frac{\delta L}{\delta y}\frac{1}{(1+exp(-x))^{2}}exp(-x) \ =\frac{\delta L}{\delta y}\frac{1}{1+exp(-x)} \frac{exp(-x)}{1+exp(-x)} \ =\frac{\delta L}{\delta y}y(1-y) $$ これによりSigmoidレイヤの逆伝播は順伝播の出力だけから求めることが出来る。 実装は以下となる。 End of explanation import numpy as np X_dot_W = np.array([[0, 0, 0], [10, 10, 10]]) B = np.array([1, 2, 3]) print(X_dot_W) print(X_dot_W + B) Explanation: 5.6 Affine/Softmaxレイヤの実装 5.6.1 Affineレイヤ 行列の内積は幾何学分野で「アフィン変換」と呼ばれる。ここではアフィン変換を行なう処理を「Affineレイヤ」という名前で実装する。 ニューロンの重み付き和$Y = np.dot(X,W)+B$における計算グラフで考えてみる。 この計算グラフではこれまでのような「スカラ値」ではなく「行列」が伝播していく。 逆伝播は以下のように導出される。 $$ \frac{\delta L}{\delta X}=\frac{\delta L}{\delta Y}・W^{T} \ \frac{\delta L}{\delta W}=W^{T}\frac{\delta L}{\delta Y} $$ $W^{T}$のTは転置を表す。行列の内積の逆伝播は対応する次元の要素数を一致させるように内積を組み立てる必要がある。次元数は以下の通りである。 X:(2,) W:(2,3) X・W:(3,) B:(3,) Y:(3,) $\frac{\delta L}{\delta Y}:(3,)$ $W^{T}:(3,2)$ $X^{T}:(2,1)$ 5.6.2 バッチ版Affineレイヤ 上記で説明したAffineレイヤは入力であるXは一つのデータを対象としたものだったが、N個のデータをまとめて順伝播する場合のバッチ版のAffineレイヤを考える。 Xの形状は(N,2)で表され、Nはデータ個数となる。 これまで挙げた例の$Y=np.dot(X,W)+B$についてN=2の場合の順伝播の計算は以下となる。 End of explanation dY = np.array([[1, 2, 3], [4, 5, 6]]) print(dY) dB = np.sum(dY, axis=0) print(dB) Explanation: 順伝播では各データに対して加算がされていたが、逆伝播においてはそれぞれの逆伝播のデータからバイアスに集約される必要がある。 End of explanation def softmax(a): exp_a = np.exp(a) sum_exp_a = np.sum(exp_a) y = exp_a / sum_exp_a return y def cross_entropy_error(y, t): delta = 1e-7 return -np.sum(t * np.log(y + delta)) class SoftmaxWithLoss: def __init__(self): self.loss = None self.y = None # softmaxの出力 self.t = None # 教師データ def forward(self, x, t): self.t = t self.y = softmax(x) self.loss = cross_entropy_error(self.y, self.t) return self.loss def backward(self, dout=1): batch_size = self.t.shape[0] # データ1個あたりの誤差を全データに伝播させる dx = (self.y - self.t) / batch_size return dx Explanation: 5.6.3 Softmax-with-Lossレイヤ 出力層であるソフトマックス関数について考える。ソフトマックス関数は入力された値を正規化して出力する(出力の和が1になる)。 ニューラルネットワークにおける推論ではソフトマックス関数は不要(Affineレイヤの出力のうち最も高い値(スコア)を推論値とすれば良いので)だが、学習時には必要になる。 ここでは損失関数である交差エントロピー誤差(cross entoropy error)も含めて「Softmax-with-Loss レイヤ」という名前で実装する。 このレイヤはSoftmaxレイヤを通した後にCross Emtropy Errorレイヤを通す構造になっている。 順伝播ではSoftmaxレイヤの出力と教師データのラベルがCross Emtropy Errorレイヤの入力となり、損失Lを出力する。 逆伝播ではSoftmaxレイヤからは$(y_{1}-t_{1}, y_{2}-t_{2}, y_{3}-t_{3})$というシンプルな形で流れてくる。これにより、誤った推論を行った場合は大きな誤差が逆伝播されるが、正解している場合は小さい誤差が伝搬される。 このようにシンプルな形で流せるのはソフトマックス関数の損失関数として交差エントロピー誤差を選んでいるからである。(回帰問題における出力層に恒等関数、損失関数として2乗和誤差を用いることも同様(3.5参照)) End of explanation import sys, os sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np from src.gradient import numerical_gradient from collections import OrderedDict from src.layer import * class TwoLayerNet: def __init__(self, input_size, hidden_size, output_size, weight_init_std = 0.01): # 重みの初期化 self.params = {} self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size) self.params['b1'] = np.zeros(hidden_size) self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size) self.params['b2'] = np.zeros(output_size) # レイヤの生成 self.layers = OrderedDict() self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1']) self.layers['Relu1'] = Relu() self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2']) self.lastLayer = SoftmaxWithLoss() def predict(self, x): for layer in self.layers.values(): x = layer.forward(x) return x # x:入力データ, t:教師データ def loss(self, x, t): y = self.predict(x) return self.lastLayer.forward(y, t) def accuracy(self, x, t): y = self.predict(x) y = np.argmax(y, axis=1) if t.ndim != 1 : t = np.argmax(t, axis=1) accuracy = np.sum(y == t) / float(x.shape[0]) return accuracy # x:入力データ, t:教師データ def numerical_gradient(self, x, t): loss_W = lambda W: self.loss(x, t) grads = {} grads['W1'] = numerical_gradient(loss_W, self.params['W1']) grads['b1'] = numerical_gradient(loss_W, self.params['b1']) grads['W2'] = numerical_gradient(loss_W, self.params['W2']) grads['b2'] = numerical_gradient(loss_W, self.params['b2']) return grads def gradient(self, x, t): # forward self.loss(x, t) # backward dout = 1 dout = self.lastLayer.backward(dout) layers = list(self.layers.values()) layers.reverse() for layer in layers: dout = layer.backward(dout) # 設定 grads = {} grads['W1'], grads['b1'] = self.layers['Affine1'].dW, self.layers['Affine1'].db grads['W2'], grads['b2'] = self.layers['Affine2'].dW, self.layers['Affine2'].db return grads Explanation: 5.7 誤差逆伝播法の実装 5.7.1 ニューラルネットワークの学習の全体図 ステップ1 ミニバッチ 訓練データからランダムに一部データを選び出す ステップ2 勾配の算出 各重みパラメータに関する損失関数の勾配を求める ステップ3 パラメータの更新 重みパラメータを勾配方向に微小量更新 ステップ4 繰り返す ステップ1~3を繰り返す 5.7.2 誤差逆伝播法に対応したニューラルネットワークの実装 End of explanation # 数値微分と誤差逆伝播法の誤差確認 import sys, os sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np from src.mnist import load_mnist # データの読み込み (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True) network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10) x_batch = x_train[:3] t_batch = t_train[:3] grad_numerical = network.numerical_gradient(x_batch, t_batch) grad_backprop = network.gradient(x_batch, t_batch) for key in grad_numerical.keys(): diff = np.average( np.abs(grad_backprop[key] - grad_numerical[key]) ) print(key + ":" + str(diff)) Explanation: 5.7.3 誤差逆伝播法の勾配確認 これまでで勾配を求める方法として数値微分と解析的に求める方法が説明された。解析的に求める方法としては誤差逆伝播法をもちいて大量パラメータに対しても効率的に計算出来た。実装においては誤差逆伝播法があれば良いが、実装の正しさを確認するために数値微分が用いられる。実装が簡単なため数値微分による確認は有効であり「勾配確認(gradient check)」と言われる。 End of explanation import sys, os sys.path.append(os.pardir) import numpy as np from src.mnist import load_mnist # データの読み込み (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True) network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10) iters_num = 10000 train_size = x_train.shape[0] batch_size = 100 learning_rate = 0.1 train_loss_list = [] train_acc_list = [] test_acc_list = [] iter_per_epoch = max(train_size / batch_size, 1) for i in range(iters_num): batch_mask = np.random.choice(train_size, batch_size) x_batch = x_train[batch_mask] t_batch = t_train[batch_mask] # 勾配 #grad = network.numerical_gradient(x_batch, t_batch) grad = network.gradient(x_batch, t_batch) # 更新 for key in ('W1', 'b1', 'W2', 'b2'): network.params[key] -= learning_rate * grad[key] loss = network.loss(x_batch, t_batch) train_loss_list.append(loss) if i % iter_per_epoch == 0: train_acc = network.accuracy(x_train, t_train) test_acc = network.accuracy(x_test, t_test) train_acc_list.append(train_acc) test_acc_list.append(test_acc) print(train_acc, test_acc) Explanation: 5.7.4 誤差逆伝播法を使った学習 mnistに対して誤差逆伝播法を用いて学習を行なう。 End of explanation
3,389
Given the following text description, write Python code to implement the functionality described below step by step Description: Make an MNE-Report with a Slider In this example, MEG evoked data are plotted in an HTML slider. Step1: Do standard folder parsing (this can take a couple of minutes) Step2: Add a custom section with an evoked slider
Python Code: # Authors: Teon Brooks <[email protected]> # Eric Larson <[email protected]> # # License: BSD (3-clause) from mne.report import Report from mne.datasets import sample from mne import read_evokeds from matplotlib import pyplot as plt data_path = sample.data_path() meg_path = data_path + '/MEG/sample' subjects_dir = data_path + '/subjects' evoked_fname = meg_path + '/sample_audvis-ave.fif' Explanation: Make an MNE-Report with a Slider In this example, MEG evoked data are plotted in an HTML slider. End of explanation report = Report(image_format='png', subjects_dir=subjects_dir, info_fname=evoked_fname, subject='sample', raw_psd=False) # use False for speed here report.parse_folder(meg_path, on_error='ignore', mri_decim=10) Explanation: Do standard folder parsing (this can take a couple of minutes): End of explanation # Load the evoked data evoked = read_evokeds(evoked_fname, condition='Left Auditory', baseline=(None, 0), verbose=False) evoked.crop(0, .2) times = evoked.times[::4] # Create a list of figs for the slider figs = list() for t in times: figs.append(evoked.plot_topomap(t, vmin=-300, vmax=300, res=100, show=False)) plt.close(figs[-1]) report.add_slider_to_section(figs, times, 'Evoked Response', image_format='png') # can also use 'svg' # Save the report report.save('my_report.html', overwrite=True) Explanation: Add a custom section with an evoked slider: End of explanation
3,390
Given the following text description, write Python code to implement the functionality described below step by step Description: Tensor Flow to create a useless images To learn how to encode a simple image and a GIF Import needed for Tensorflow Step1: Import needed for Jupiter Step2: A function to save a picture Step4: A function to draw the cost function in Jupyter Step5: Create some random pictures Encode the input (a number) This example convert the number to a binary representation Step6: To create a GIF
Python Code: import numpy as np import tensorflow as tf Explanation: Tensor Flow to create a useless images To learn how to encode a simple image and a GIF Import needed for Tensorflow End of explanation %matplotlib notebook import matplotlib import matplotlib.pyplot as plt from IPython.display import Image Explanation: Import needed for Jupiter End of explanation def write_png(tensor, name): casted_to_uint8 = tf.cast(tensor, tf.uint8) converted_to_png = tf.image.encode_png(casted_to_uint8) f = open(name, "wb+") f.write(converted_to_png.eval()) f.close() Explanation: A function to save a picture End of explanation class CostTrace: A simple example class def __init__(self): self.cost_array = [] def log(self, cost): self.cost_array.append(cost) def draw(self): plt.figure(figsize=(12,5)) plt.plot(range(len(self.cost_array)), self.cost_array, label='cost') plt.legend() plt.yscale('log') plt.show() Explanation: A function to draw the cost function in Jupyter End of explanation # Init size width = 100 height = 100 RGB = 3 shape = [height,width, RGB] # Create the generated tensor as a variable rand_uniform = tf.random_uniform(shape, minval=0, maxval=255, dtype=tf.float32) generated = tf.Variable(rand_uniform) #define the cost function c_mean = tf.reduce_mean(tf.pow(generated,2)) # we want a low mean c_max = tf.reduce_max(generated) # we want a low max c_min = -tf.reduce_min(generated) # we want a high mix c_diff = 0 for i in range(0,height-1, 1): line1 = tf.gather(generated, i,) line2 = tf.gather(generated, i+1) c_diff += tf.reduce_mean(tf.pow(line1-line2-30, 2)) # to force a gradient cost = c_mean + c_max + c_min + c_diff #cost = c_mean + c_diff print ('cost defined') train_op = tf.train.GradientDescentOptimizer(0.5).minimize(cost, var_list=[generated]) print ('train_op defined') # Initializing the variables init = tf.initialize_all_variables() print ('variables initialiazed defined') # Launch the graph with tf.Session() as sess: sess.run(init) print ('init done') cost_trace = CostTrace() for epoch in range(0,10000): sess.run(train_op) if (epoch % 100 == 0): c = cost.eval() print ('epoch', epoch,'cost' ,c, c_mean.eval(), c_min.eval(), c_max.eval(), c_diff.eval()) cost_trace.log(c) write_png(generated, "generated{:06}.png".format(epoch)) print ('all done') cost_trace.draw() Image("generated000000.png") Explanation: Create some random pictures Encode the input (a number) This example convert the number to a binary representation End of explanation from PIL import Image, ImageSequence import glob, sys, os os.chdir(".") frames = [] for file in glob.glob("gene*.png"): print(file) im = Image.open(file) frames.append(im) from images2gif import writeGif writeGif("generated.gif", frames, duration=0.1) Explanation: To create a GIF End of explanation
3,391
Given the following text description, write Python code to implement the functionality described below step by step Description: Deep Crossentropy method In this section we'll extend your CEM implementation with neural networks! You will train a multi-layer neural network to solve simple continuous state space games. Please make sure you're done with tabular crossentropy method from the previous notebook. Step2: Neural Network Policy For this assignment we'll utilize the simplified neural network implementation from Scikit-learn. Here's what you'll need Step4: CEM steps Deep CEM uses exactly the same strategy as the regular CEM, so you can copy your function code from previous notebook. The only difference is that now each observation is not a number but a float32 vector. Step6: Training loop Generate sessions, select N best and fit to those. Step8: Results Step9: Homework part I Tabular crossentropy method You may have noticed that the taxi problem quickly converges from -100 to a near-optimal score and then descends back into -50/-100. This is in part because the environment has some innate randomness. Namely, the starting points of passenger/driver change from episode to episode. Tasks 1.1 (2 pts) Find out how the algorithm performance changes if you use a different percentile and/or n_sessions. Provide here some figures so we can see how the hyperparameters influence the performance. 1.2 (1 pts) Tune the algorithm to end up with positive average score. It's okay to modify the existing code. &lt;Describe what you did here&gt; Homework part II Deep crossentropy method By this moment, you should have got enough score on CartPole-v0 to consider it solved (see the link). It's time to try something harder. if you have any trouble with CartPole-v0 and feel stuck, feel free to ask us or your peers for help. Tasks 2.1 (3 pts) Pick one of environments
Python Code: import sys, os if 'google.colab' in sys.modules and not os.path.exists('.setup_complete'): !wget -q https://raw.githubusercontent.com/yandexdataschool/Practical_RL/master/setup_colab.sh -O- | bash !touch .setup_complete # This code creates a virtual display to draw game images on. # It will have no effect if your machine has a monitor. if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY")) == 0: !bash ../xvfb start os.environ['DISPLAY'] = ':1' import gym import numpy as np import matplotlib.pyplot as plt %matplotlib inline # if you see "<classname> has no attribute .env", remove .env or update gym env = gym.make("CartPole-v0").env env.reset() n_actions = env.action_space.n state_dim = env.observation_space.shape[0] plt.imshow(env.render("rgb_array")) print("state vector dim =", state_dim) print("n_actions =", n_actions) Explanation: Deep Crossentropy method In this section we'll extend your CEM implementation with neural networks! You will train a multi-layer neural network to solve simple continuous state space games. Please make sure you're done with tabular crossentropy method from the previous notebook. End of explanation from sklearn.neural_network import MLPClassifier agent = MLPClassifier( hidden_layer_sizes=(20, 20), activation='tanh', ) # initialize agent to the dimension of state space and number of actions agent.partial_fit([env.reset()] * n_actions, range(n_actions), range(n_actions)) def generate_session(env, agent, t_max=1000): Play a single game using agent neural network. Terminate when game finishes or after :t_max: steps states, actions = [], [] total_reward = 0 s = env.reset() for t in range(t_max): # use agent to predict a vector of action probabilities for state :s: probs = <YOUR CODE> assert probs.shape == (env.action_space.n,), "make sure probabilities are a vector (hint: np.reshape)" # use the probabilities you predicted to pick an action # sample proportionally to the probabilities, don't just take the most likely action a = <YOUR CODE> # ^-- hint: try np.random.choice new_s, r, done, info = env.step(a) # record sessions like you did before states.append(s) actions.append(a) total_reward += r s = new_s if done: break return states, actions, total_reward dummy_states, dummy_actions, dummy_reward = generate_session(env, agent, t_max=5) print("states:", np.stack(dummy_states)) print("actions:", dummy_actions) print("reward:", dummy_reward) Explanation: Neural Network Policy For this assignment we'll utilize the simplified neural network implementation from Scikit-learn. Here's what you'll need: agent.partial_fit(states, actions) - make a single training pass over the data. Maximize the probability of :actions: from :states: agent.predict_proba(states) - predict probabilities of all actions, a matrix of shape [len(states), n_actions] End of explanation def select_elites(states_batch, actions_batch, rewards_batch, percentile=50): Select states and actions from games that have rewards >= percentile :param states_batch: list of lists of states, states_batch[session_i][t] :param actions_batch: list of lists of actions, actions_batch[session_i][t] :param rewards_batch: list of rewards, rewards_batch[session_i] :returns: elite_states,elite_actions, both 1D lists of states and respective actions from elite sessions Please return elite states and actions in their original order [i.e. sorted by session number and timestep within session] If you are confused, see examples below. Please don't assume that states are integers (they will become different later). <YOUR CODE: copy-paste your implementation from the previous notebook> return elite_states, elite_actions Explanation: CEM steps Deep CEM uses exactly the same strategy as the regular CEM, so you can copy your function code from previous notebook. The only difference is that now each observation is not a number but a float32 vector. End of explanation from IPython.display import clear_output def show_progress(rewards_batch, log, percentile, reward_range=[-990, +10]): A convenience function that displays training progress. No cool math here, just charts. mean_reward = np.mean(rewards_batch) threshold = np.percentile(rewards_batch, percentile) log.append([mean_reward, threshold]) clear_output(True) print("mean reward = %.3f, threshold=%.3f" % (mean_reward, threshold)) plt.figure(figsize=[8, 4]) plt.subplot(1, 2, 1) plt.plot(list(zip(*log))[0], label='Mean rewards') plt.plot(list(zip(*log))[1], label='Reward thresholds') plt.legend() plt.grid() plt.subplot(1, 2, 2) plt.hist(rewards_batch, range=reward_range) plt.vlines([np.percentile(rewards_batch, percentile)], [0], [100], label="percentile", color='red') plt.legend() plt.grid() plt.show() n_sessions = 100 percentile = 70 log = [] for i in range(100): # generate new sessions sessions = [ <YOUR CODE: generate a list of n_sessions new sessions> ] states_batch, actions_batch, rewards_batch = map(np.array, zip(*sessions)) elite_states, elite_actions = <YOUR CODE: select elite actions just like before> <YOUR CODE: partial_fit agent to predict elite_actions(y) from elite_states(X)> show_progress(rewards_batch, log, percentile, reward_range=[0, np.max(rewards_batch)]) if np.mean(rewards_batch) > 190: print("You Win! You may stop training now via KeyboardInterrupt.") Explanation: Training loop Generate sessions, select N best and fit to those. End of explanation # Record sessions import gym.wrappers with gym.wrappers.Monitor(gym.make("CartPole-v0"), directory="videos", force=True) as env_monitor: sessions = [generate_session(env_monitor, agent) for _ in range(100)] # Show video. This may not work in some setups. If it doesn't # work for you, you can download the videos and view them locally. from pathlib import Path from base64 import b64encode from IPython.display import HTML video_paths = sorted([s for s in Path('videos').iterdir() if s.suffix == '.mp4']) video_path = video_paths[-1] # You can also try other indices if 'google.colab' in sys.modules: # https://stackoverflow.com/a/57378660/1214547 with video_path.open('rb') as fp: mp4 = fp.read() data_url = 'data:video/mp4;base64,' + b64encode(mp4).decode() else: data_url = str(video_path) HTML( <video width="640" height="480" controls> <source src="{}" type="video/mp4"> </video> .format(data_url)) Explanation: Results End of explanation def visualize_mountain_car(env, agent): # Compute policy for all possible x and v (with discretization) xs = np.linspace(env.min_position, env.max_position, 100) vs = np.linspace(-env.max_speed, env.max_speed, 100) grid = np.dstack(np.meshgrid(xs, vs[::-1])).transpose(1, 0, 2) grid_flat = grid.reshape(len(xs) * len(vs), 2) probs = agent.predict_proba(grid_flat).reshape(len(xs), len(vs), 3).transpose(1, 0, 2) # # The above code is equivalent to the following: # probs = np.empty((len(vs), len(xs), 3)) # for i, v in enumerate(vs[::-1]): # for j, x in enumerate(xs): # probs[i, j, :] = agent.predict_proba([[x, v]])[0] # Draw policy f, ax = plt.subplots(figsize=(7, 7)) ax.imshow(probs, extent=(env.min_position, env.max_position, -env.max_speed, env.max_speed), aspect='auto') ax.set_title('Learned policy: red=left, green=nothing, blue=right') ax.set_xlabel('position (x)') ax.set_ylabel('velocity (v)') # Sample a trajectory and draw it states, actions, _ = generate_session(env, agent) states = np.array(states) ax.plot(states[:, 0], states[:, 1], color='white') # Draw every 3rd action from the trajectory for (x, v), a in zip(states[::3], actions[::3]): if a == 0: plt.arrow(x, v, -0.1, 0, color='white', head_length=0.02) elif a == 2: plt.arrow(x, v, 0.1, 0, color='white', head_length=0.02) with gym.make('MountainCar-v0').env as env: visualize_mountain_car(env, agent_mountain_car) Explanation: Homework part I Tabular crossentropy method You may have noticed that the taxi problem quickly converges from -100 to a near-optimal score and then descends back into -50/-100. This is in part because the environment has some innate randomness. Namely, the starting points of passenger/driver change from episode to episode. Tasks 1.1 (2 pts) Find out how the algorithm performance changes if you use a different percentile and/or n_sessions. Provide here some figures so we can see how the hyperparameters influence the performance. 1.2 (1 pts) Tune the algorithm to end up with positive average score. It's okay to modify the existing code. &lt;Describe what you did here&gt; Homework part II Deep crossentropy method By this moment, you should have got enough score on CartPole-v0 to consider it solved (see the link). It's time to try something harder. if you have any trouble with CartPole-v0 and feel stuck, feel free to ask us or your peers for help. Tasks 2.1 (3 pts) Pick one of environments: MountainCar-v0 or LunarLander-v2. For MountainCar, get average reward of at least -150 For LunarLander, get average reward of at least +50 See the tips section below, it's kinda important. Note: If your agent is below the target score, you'll still get some of the points depending on the result, so don't be afraid to submit it. 2.2 (up to 6 pts) Devise a way to speed up training against the default version Obvious improvement: use joblib. However, note that you will probably need to spawn a new environment in each of the workers instead of passing it via pickling. (2 pts) Try re-using samples from 3-5 last iterations when computing threshold and training. (2 pts) Obtain -100 at MountainCar-v0 or +200 at LunarLander-v2 (2 pts). Feel free to experiment with hyperparameters, architectures, schedules etc. Please list what you did in Anytask submission form. This reduces probability that somebody misses something. Tips Gym page: MountainCar, LunarLander Sessions for MountainCar may last for 10k+ ticks. Make sure t_max param is at least 10k. Also it may be a good idea to cut rewards via ">" and not ">=". If 90% of your sessions get reward of -10k and 10% are better, than if you use percentile 20% as threshold, R >= threshold fails to cut off bad sessions while R > threshold works alright. issue with gym: Some versions of gym limit game time by 200 ticks. This will prevent cem training in most cases. Make sure your agent is able to play for the specified t_max, and if it isn't, try env = gym.make("MountainCar-v0").env or otherwise get rid of TimeLimit wrapper. If you use old swig lib for LunarLander-v2, you may get an error. See this issue for solution. If it doesn't train, it's a good idea to plot reward distribution and record sessions: they may give you some clue. If they don't, call course staff :) 20-neuron network is probably not enough, feel free to experiment. You may find the following snippet useful: End of explanation
3,392
Given the following text description, write Python code to implement the functionality described below step by step Description: Convergence Description of the UCI protocol Step1: The Speed of Search The number of nodes searched depend linearly on time Step2: So nodes per second is roughly constant Step3: The hashtable usage is at full capacity Step4: Number of nodes needed for the given depth grows exponentially, except for moves that are forced, which require very little nodes to search (those show as a horizontal plateau) Step5: Convergence wrt. Depth Step6: Convergence of the variations
Python Code: %pylab inline ! grep "multipv 1" log2.txt | grep -v lowerbound | grep -v upperbound > log2_g.txt def parse_info(l): D = {} k = l.split() i = 0 assert k[i] == "info" i += 1 while i < len(k): if k[i] == "depth": D[k[i]] = int(k[i+1]) i += 2 elif k[i] == "seldepth": D[k[i]] = int(k[i+1]) i += 2 elif k[i] == "multipv": D[k[i]] = int(k[i+1]) i += 2 elif k[i] == "score": if k[i+1] == "cp": D["score_p"] = int(k[i+2]) / 100. # score in pawns i += 3 elif k[i] == "nodes": D[k[i]] = int(k[i+1]) i += 2 elif k[i] == "nps": D[k[i]] = int(k[i+1]) i += 2 elif k[i] == "hashfull": D[k[i]] = int(k[i+1]) / 1000. # between 0 and 1 i += 2 elif k[i] == "tbhits": D[k[i]] = int(k[i+1]) i += 2 elif k[i] == "time": D[k[i]] = int(k[i+1]) / 1000. # elapsed time in [s] i += 2 elif k[i] == "pv": D[k[i]] = k[i+1:] return D else: raise Exception("Unknown kw") # Convert to an array of lists D = [] for l in open("log2_g.txt").readlines(): D.append(parse_info(l)) # Convert to a list of arrays data = {} for key in D[-1].keys(): d = [] for x in D: if key in x: d.append(x[key]) else: d.append(-1) if key != "pv": d = array(d) data[key] = d Explanation: Convergence Description of the UCI protocol: https://ucichessengine.wordpress.com/2011/03/16/description-of-uci-protocol/ Let us parse the logs first: End of explanation title("Number of nodes searched in time") plot(data["time"] / 60., data["nodes"], "o") xlabel("Time [min]") ylabel("Nodes") grid() show() Explanation: The Speed of Search The number of nodes searched depend linearly on time: End of explanation title("Positions per second in time") plot(data["time"] / 60., data["nps"], "o") xlabel("Time [min]") ylabel("Positions / s") grid() show() Explanation: So nodes per second is roughly constant: End of explanation title("Hashtable usage") hashfull = data["hashfull"] hashfull[hashfull == -1] = 0 plot(data["time"] / 60., hashfull * 100, "o") xlabel("Time [min]") ylabel("Hashtable filled [%]") grid() show() Explanation: The hashtable usage is at full capacity: End of explanation title("Number of nodes vs. depth") semilogy(data["depth"], data["nodes"], "o") xlabel("Depth [half moves]") ylabel("Nodes") grid() show() Explanation: Number of nodes needed for the given depth grows exponentially, except for moves that are forced, which require very little nodes to search (those show as a horizontal plateau): End of explanation title("Score") plot(data["depth"], data["score_p"], "o") xlabel("Depth [half moves]") ylabel("Score [pawns]") grid() show() Explanation: Convergence wrt. Depth End of explanation for i in range(len(data["depth"])): print "%2i %s" % (data["depth"][i], " ".join(data["pv"][i])[:100]) Explanation: Convergence of the variations: End of explanation
3,393
Given the following text description, write Python code to implement the functionality described below step by step Description: Circuitos de Segunda Ordem Gerais (Genéricos) Jupyter Notebook desenvolvido por Gustavo S.S. Dado um circuito de segunda ordem, determinamos sua resposta a um degrau x(t) (que pode ser tensão ou corrente), conforme as quatro etapas descritas a seguir Step1: Problema Prático 8.9 Determine v e i para t > 0 no circuito da Figura 8.28. (Ver comentários sobre fontes de corrente no Problema prático 7.5.) Step2: Exemplo 8.10 Descubra vo(t) para t > 0 no circuito da Figura 8.29. Step3: Problema Prático 8.10 Para t > 0, obtenha vo(t) no circuito da Figura 8.32. (Sugestão
Python Code: print("Exemplo 8.9\n") from sympy import * t = symbols('t') V = 12 C = 1/2 L = 1 #Para t < 0 i0 = 0 v0 = V print("i(0):",i0,"A") print("v(0):",v0,"V") #Para t = oo i_f = V/(4 + 2) vf = V*2/(4 + 2) print("i(oo):",i_f,"A") print("v(oo):",vf,"V") #Para t > 0 #desativar fontes independentes #i = v/2 + C*dv/dt #4i + L*di/dt + v = 0 #4*(v/2 + 1/2*dv/dt) + d(v/2 + 1/2*dv/dt)/dt + v = 0 #2v + 2dv/dt + 1/2*dv/dt + 1/2*d^2v/t^2 + v = 0 #d^2v/dt^2 + 5dv/dt + 6v = 0 #s^2 + 5s + 6 = 0 s1 = -2 s2 = -3 #Raizes reais e negativas: Superamortecido #vn(t) = A1*exp(-2t) + A2*exp(-3t) #vss(t) = v(oo) = 4 #v(t) = 4 + A1*exp(-2t) + A2*exp(-3t) #dv(0)/dt = -2A1 -3A2 = ic(0)/C #ic(0) = -6 #C = 1/2 #-2A1 - 3A2 = -12 #2A1 + 3A2 = 12 #v(0) = 4 + A1 + A2 = 12 #A1 + A2 = 8 #2(8 - A2) + 3A2 = 12 A2 = -4 A1 = 12 v = A1*exp(s1*t) + A2*exp(s2*t) + vf print("Resposta completa v(t):",v,"V") #i = v/2 + C*dv/dt i = v/2 + C*diff(v,t) print("i(t):",i,"A") Explanation: Circuitos de Segunda Ordem Gerais (Genéricos) Jupyter Notebook desenvolvido por Gustavo S.S. Dado um circuito de segunda ordem, determinamos sua resposta a um degrau x(t) (que pode ser tensão ou corrente), conforme as quatro etapas descritas a seguir: Determinamos as condições iniciais x(0) e dx(0)/dt e o valor final x(∞) Desativamos as fontes independentes e obtemos Equação Diferencial de Segunda Ordem Determinamos raízes características e encontramos a forma da resposta transiente xt(t). Dependendo se a resposta for com amortecimento supercrítico, com amortecimento crítico ou com subamortecimento, obtemos xt(t) com duas constantes desconhecidas Obtemos a resposta de estado estável xss(t) = x(∞) A resposta total agora é encontrada como a soma das respostas transiente e de estado estável Finalmente, estabelecer as constantes associadas com a resposta transiente impondo as condições iniciais x(0) e dx(0)/dt, determinadas no item 1. Podemos aplicar esse procedimento geral para encontrar a resposta a um degrau de um circuito de segunda ordem, inclusive aqueles com amplificadores operacionais. Exemplo 8.9 Determine a resposta completa v e, em seguida, i para t > 0 no circuito da Figura 8.25. End of explanation print("Problema Prático 8.9") s = symbols('s') C = 1/20 L = 2 Is = 3 #Para t < 0 v0 = 0 i0 = 0 print("v(0):",v0,"V") print("i(0):",i0,"A") #Para t = oo i_f = Is vf = 4*Is print("i(oo):",i_f,"A") print("v(oo):",vf,"V") #Para t > 0 dv0 = Is/C di0 = 10*Is/L print("dv(0)/dt:",dv0,"V/s") print("di(0)/dt:",di0,"A/s") #desativar fontes indep. #4i + L*di/dt - v + 10i = 0 #i = -C*dv/dt #14(-1/20*dv/dt) + 2(-1/20*d^2v/dt^2) - v = 0 #-1/10*d^2v/dt^2 - 7/10*dv/dt - v = 0 #d^2v/dt^2 + 7*dv/dt + 10v = 0 #s^2 + 7s + 10 = 0 r = solve(s**2 + 7*s + 10,s) s1,s2 = r[0],r[1] print("Raízes s1 e s2: {0} , {1}".format(s1,s2)) #Raizes reais e negativas: Superamortecido #v(t) = vf + A1*exp(-5t) + A2*exp(-2t) #v0 = A1 + A2 = -12 #A1 = -12 - A2 #dv0/dt = -5A1 -2A2 = 60 #-5A1 - 2(-12 - A1) = 60 A1 = (60-24)/(-3) A2 = -12 - A1 print("Constantes A1 e A2: {0} , {1}".format(A1,A2)) v = A1*exp(s1*t) + A2*exp(s2*t) + vf print("Resposta completa v(t):",v,"V") #3 = C*dv/dt + i i = 3 - C*diff(v,t) print("Resposta i(t):",i,"A") Explanation: Problema Prático 8.9 Determine v e i para t > 0 no circuito da Figura 8.28. (Ver comentários sobre fontes de corrente no Problema prático 7.5.) End of explanation print("Exemplo 8.10\n") V = 7 L1 = 1/2 L2 = 1/5 #Para t < 0 i1_0 = 0 i2_0 = 0 print("i1(0):",i1_0,"A") print("i2(0):",i2_0,"A") #Para t = oo i_f = V/3 print("i(oo):",i_f,"A") #Para t > 0 #di1(0)/dt = vl/L1 di1 = V/L1 #di2(0)/dt = vl/L2 di2 = 0/L2 print("di1(0)/dt:",di1,"A/s") print("di2(0)/dt:",di2,"A/s") #desligar fontes indep. #3i1 + 1/2*di1/dt + (i1 - i2) = 0 #4i1 + 1/2*di1/dt - i2 = 0 #1/5*di2/t + i2 - i1 = 0 #4/5*di1/dt + 1/10*d^2i1/dt^2 + 4i1 + 1/2*di1/dt - i1 = 0 #d^2i1/dt^2 + 13di1/dt + 30i1 = 0 #s^2 + 13s + 30 = 0 r = solve(s**2 + 13*s + 30,s) s1,s2 = r[0],r[1] print("Raizes s1 e s2: {0} , {1}".format(s1,s2)) #raizes reais e negativas: Superamortecido #i1(t) = 7/3 + A1*exp(-10t) + A2*exp(-3t) #i1(0) = 7/3 + A1 + A2 = 0 #A1 = -7/3 - A2 #di1(0)/dt = -10A1 -3A2 = 14 #-10(-7/3 - A2) - 3A2 = 14 A2 = (14 - 70/3)/7 A1 = -7/3 - A2 print("Constantes A1 e A2: {0} , {1}".format(A1,A2)) i1 = i_f + A1*exp(s1*t) + A2*exp(s2*t) print("i1(t):",i1,"A") #V = 3i1 + L1*di1/dt + (i1 - i2) i2 = 3*i1 + L1*diff(i1,t) + i1 - V print("i2(t):",i2,"A") vo = i1 - i2 print("V0(t):",vo,"V") Explanation: Exemplo 8.10 Descubra vo(t) para t > 0 no circuito da Figura 8.29. End of explanation print("Problema Prático 8.10") V = 20 C1 = 1/2 C2 = 1/3 #Para t < 0 v1_0 = 0 v2_0 = 0 print("v1(0) e v2(0):",v1_0,"V") #Para t = oo v1_f = V v2_f = V print("v1(oo) e v2(oo):",v1_f,"V") #Para t > 0 #dv1(0)/dt = i1(0)/C1 = (V/1)/(1/2) dv1 = V/C1 #dv2(0)/dt = i2(0)/C2 = 0/C2 dv2 = 0 print("dv1(0)/dt:",dv1,"V/s") print("dv2(0)/dt:",dv2,"V/s") #desligar fontes indep. #v1/1 + C1*dv1/dt + vo/1 = 0 #vo = v1-v2 #v1 + 1/2*dv1/dt + v1-v2 = 0 #dv1/dt + 4v1 - 2v2 = 0 #v1 = 1*C2*dv2/dt + v2 #1/3*d^2v2/dt^2 + dv2/dt + 4/3*dv2/dt + 4v2 - 2v2 = 0 #d^2v2/dt^2 + 7dv2/dt + 6v2 = 0 #s^2 + 7s + 6 = 0 r = solve(s**2 + 7*s + 6,s) s1,s2 = r[0],r[1] print("Raizes para v2:",s1,s2) #raizes reais e negativas: Superamortecido #v2(t) = 20 + A1*exp(-6t) + A2*exp(-t) #v2(0) = 20 + A1 + A2 = 0 #A2 = -20 - A1 #dv2(0)/dt = -6A1 - A2 = 0 #-6A1 - (-20 - A1) = 0 A1 = 20/5 A2 = -20 - A1 print("Constantes A1 e A2:",A1,A2) v2 = v2_f + A1*exp(s1*t) + A2*exp(s2*t) print("v2(t):",v2,"V") v1 = C2*diff(v2,t) + v2 print("v1(t):",v1,"V") vo = v1 - v2 print("Resposta vo(t):",vo,"V") Explanation: Problema Prático 8.10 Para t > 0, obtenha vo(t) no circuito da Figura 8.32. (Sugestão: Determine primeiro v1 e v2.) End of explanation
3,394
Given the following text description, write Python code to implement the functionality described below step by step Description: WebGL problems Drag around canvas is shifted down, cut off at top spilling over bottom. Bad in 0.12.14 and 0.12.15dev3 Good in 0.12.10 Step1: Responsive in notebook Spills a scroll bar. Not a problem in a vanilla save file. Bad in 0.12.6, 0.12.7, 0.12.9, 0.12.10, 0.12.14, 0.12.15dev3 God in 0.12.5
Python Code: N = 10000 x = np.random.normal(0, np.pi, N) y = np.sin(x) + np.random.normal(0, 0.2, N) p = figure(webgl=True) p.scatter(x, y, alpha=0.1) show(p) Explanation: WebGL problems Drag around canvas is shifted down, cut off at top spilling over bottom. Bad in 0.12.14 and 0.12.15dev3 Good in 0.12.10 End of explanation !conda list | egrep "jupyter|notebook" p = figure(plot_height=200, sizing_mode='scale_width') p.scatter(x, y, alpha=0.1) show(p) N = 4000 x = np.random.random(size=N) * 100 y = np.random.random(size=N) * 100 radii = np.random.random(size=N) * 1.5 colors = [ "#%02x%02x%02x" % (int(r), int(g), 150) for r, g in zip(50+2*x, 30+2*y) ] TOOLS="hover,crosshair,pan,wheel_zoom,box_zoom,undo,redo,reset,tap,save,box_select,poly_select,lasso_select," p = figure(tools=TOOLS, sizing_mode='scale_width') p.scatter(x, y, radius=radii, fill_color=colors, fill_alpha=0.6, line_color=None) show(p) save(p, 'color_scatter.html') Explanation: Responsive in notebook Spills a scroll bar. Not a problem in a vanilla save file. Bad in 0.12.6, 0.12.7, 0.12.9, 0.12.10, 0.12.14, 0.12.15dev3 God in 0.12.5 End of explanation
3,395
Given the following text problem statement, write Python code to implement the functionality described below in problem statement Problem: I have a dataframe that looks like this:
Problem: import pandas as pd df = pd.DataFrame({'product': [1179160, 1066490, 1148126, 1069104, 1069105, 1160330, 1069098, 1077784, 1193369, 1179741], 'score': [0.424654, 0.424509, 0.422207, 0.420455, 0.414603, 0.168784, 0.168749, 0.168738, 0.168703, 0.168684]}) products = [[1069104, 1069105], [1066489, 1066491]] for product in products: df.loc[(df['product'] >= product[0]) & (df['product'] <= product[1]), 'score'] *= 10
3,396
Given the following text description, write Python code to implement the functionality described below step by step Description: Experiments with Crop Improvements This notebook experiments advances in image cropping. This performs the following steps determine dimensions of the image determine the center of the image zeroify the borders of the image to get rid of non-black background and edge distortions crop to the new size of the image Step1: Non-Cropped image case Load some image that is not cropped. Step2: The simplest way to detect edges for cropping of a circular image with dark background is to sum up along different axes. Let's see how it works. First we sum up all the color channels, then compute horizontal and vertical borders. Step3: now compute borders of the image Step4: This is simple case, not trimmed image. Let's determine the radius and center of it. We reduce the radius in orger to get rid of the edge distortions Step5: Now we zeroify everything outside the circle determined above. We need to do this as the black background actually not trully black. Step6: and now we are ready to do actual crop of the image. Perform the very same crop operation on the mask for further processing. Step7: Cropped Image Case now let's experiment with cropped image Step8: now compute borders of the image Step9: And radius and the center of the image. If we have at least upper or lower side of the disk non-cropped, use it to determine the vertical center. Otherwise use Pithagoras theorem Step10: and now putting everything together
Python Code: import os import skimage from skimage import io, util from skimage.draw import circle import numpy as np import matplotlib.pyplot as plt %matplotlib inline import math Explanation: Experiments with Crop Improvements This notebook experiments advances in image cropping. This performs the following steps determine dimensions of the image determine the center of the image zeroify the borders of the image to get rid of non-black background and edge distortions crop to the new size of the image End of explanation baseFolder = '/Users/boris/Dropbox/Kaggle/Retina/train/sample' imgFile = '78_left.jpeg' filename = os.path.join(baseFolder, imgFile) img = io.imread(filename) plt.imshow(img) Explanation: Non-Cropped image case Load some image that is not cropped. End of explanation threshold = 20000 s = np.sum(img, axis=2) cols = np.sum(s, axis=0) > threshold rows = np.sum(s, axis=1) > threshold Explanation: The simplest way to detect edges for cropping of a circular image with dark background is to sum up along different axes. Let's see how it works. First we sum up all the color channels, then compute horizontal and vertical borders. End of explanation height = rows.shape[0] width = cols.shape[0] x_min = np.argmax(cols[0:width]) x_max = width/2 + np.argmin(cols[width/2:width-1]) y_min = np.argmax(rows[0:height/2]) y_max = height/2 + np.argmin(cols[height/2:height-1]) Explanation: now compute borders of the image End of explanation radius = (x_max - x_min)/2 center_x = x_min + radius center_y = y_min + radius radius1 = radius - 100 Explanation: This is simple case, not trimmed image. Let's determine the radius and center of it. We reduce the radius in orger to get rid of the edge distortions End of explanation mask = np.zeros(img.shape) rr, cc = circle(center_y, center_x, radius1, img.shape) mask[rr, cc] = 1 img *= mask Explanation: Now we zeroify everything outside the circle determined above. We need to do this as the black background actually not trully black. End of explanation x_borders = (center_x - radius1, img.shape[1] - center_x - radius1) y_borders = (center_y - radius1, img.shape[0] - center_y - radius1) img2 = util.crop(img, (y_borders, x_borders, (0,0))) maskT = util.crop(mask, (y_borders, x_borders, (0,0))) border_pixels = np.sum(1 - maskT) plt.imshow(img2) Explanation: and now we are ready to do actual crop of the image. Perform the very same crop operation on the mask for further processing. End of explanation baseFolder = '/Users/boris/Dropbox/Kaggle/Retina/train/sample' imgFile = '263_right.jpeg' filename = os.path.join(baseFolder, imgFile) img = skimage.io.imread(filename) plt.imshow(img) s = np.sum(img, axis=2) cols = np.sum(s, axis=0) > threshold rows = np.sum(s, axis=1) > threshold Explanation: Cropped Image Case now let's experiment with cropped image End of explanation threshold = 20000 height = rows.shape[0] width = cols.shape[0] x_min = np.argmax(cols[0:width]) x_max = width/2 + np.argmin(cols[width/2:width-1]) y_min = np.argmax(rows[0:height/2]) y_max = np.argmin(cols[height/2:height-1]) y_max = height/2 + y_max if y_max > 0 else height print x_min, x_max, y_min, y_max, height/2 Explanation: now compute borders of the image End of explanation radius = (x_max - x_min)/2 center_x = x_min + radius center_y = y_min + radius # the default case (if y_min != 0) if y_min == 0: # the upper side is cropped if height - y_max > 0: # lower border is not 0 center_y = y_max - radius else: upper_line_width = np.sum(s[0,:] > 100) # threshold for single line center_y = math.sqrt( radius**2 - (upper_line_width/2)**2) radius1 = radius - 200 mask = np.zeros(img.shape[0:2]) rr, cc = circle(center_y, center_x, radius1, img.shape) mask[rr, cc] = 1 img[:,:,0] *= mask img[:,:,1] *= mask img[:,:,2] *= mask x_borders = (center_x - radius1, img.shape[1] - center_x - radius1) y_borders = (max(center_y - radius1,0), max(img.shape[0] - center_y - radius1, 0)) img2 = util.crop(img, (y_borders, x_borders, (0,0))) maskT = util.crop(mask, (y_borders, x_borders)) border_pixels = np.sum(1 - maskT) plt.imshow(img2) Explanation: And radius and the center of the image. If we have at least upper or lower side of the disk non-cropped, use it to determine the vertical center. Otherwise use Pithagoras theorem :-) End of explanation def circularcrop(img, border, threshold, threshold1): s = np.sum(img, axis=2) cols = np.sum(s, axis=0) > threshold rows = np.sum(s, axis=1) > threshold height = rows.shape[0] width = cols.shape[0] x_min = np.argmax(cols[0:width]) x_max = width/2 + np.argmin(cols[width/2:width-1]) y_min = np.argmax(rows[0:height/2]) y_max = np.argmin(cols[height/2:height-1]) y_max = height/2 + y_max if y_max > 0 else height radius = (x_max - x_min)/2 center_x = x_min + radius center_y = y_min + radius # the default case (if y_min != 0) if y_min == 0: # the upper side is cropped if height - y_max > 0: # lower border is not 0 center_y = y_max - radius else: upper_line_width = np.sum(s[0,:] > threshold1) # threshold for single line center_y = math.sqrt( radius**2 - (upper_line_width/2)**2) radius1 = radius - border mask = np.zeros(img.shape[0:2]) rr, cc = circle(center_y, center_x, radius1, img.shape) mask[rr, cc] = 1 img[:,:,0] *= mask img[:,:,1] *= mask img[:,:,2] *= mask x_borders = (center_x - radius1, img.shape[1] - center_x - radius1) y_borders = (max(center_y - radius1,0), max(img.shape[0] - center_y - radius1, 0)) imgres = util.crop(img, (y_borders, x_borders, (0,0))) maskT = util.crop(mask, (y_borders, x_borders)) border_pixels = np.sum(1 - maskT) return imgres, maskT, center_x, center_y, radius baseFolder = '/Users/boris/Dropbox/Shared/Retina' imgFile = 'crop/20677_left.jpeg' filename = os.path.join(baseFolder, imgFile) img = io.imread(filename) plt.imshow(img) (imgA, maskA, x,y,r) = circularcrop(img, 200, 20000, 100) plt.imshow(imgA) img.shape[0:2] Explanation: and now putting everything together End of explanation
3,397
Given the following text description, write Python code to implement the functionality described below step by step Description: Introduction Idea The claim was that the directory structure would be very similar to each other over a period of time. We want to identify this time span by using a time-based analysis on the commits and their corresponding directory structures. We can use some advanced Git repo analysis for this task. Data creation script Iterates over all commits and extracts basic information about the commit like sha, author and commit date (in log.txt) as well as the file's list of a specific version (in files.txt). For each information set, it a new directory with the sha as unique identifier is created. ```bash cd $1 sha_list=git rev-list master for sha in $sha_list Step1: We can then import the data by looping through all the files and read in the corresponding files' content. We further extract the information items we need on the fly from the path as well as the content of log.txt. The result is stored into a Pandas DataFrame for further analysis. Step2: For each file, we have now a row the complete commit information available for both repositories. Step3: Basic statistics Let's take a look at our read-in data. Step4: These are the number of entries for each repository. Step5: The amount of commits for each repository are. Step6: Data preparation We need to adopt the data to the domain analyzed. We want to create a similarity measure between the directory structure of the lerna repository and the rush componente of the web-build-tools repository. The later is a little bit tricky, because there is a shift in the directory renaming.
Python Code: import glob file_list = glob.glob(r'C:/dev/forensic/data/**/*.txt', recursive=True) file_list = [x.replace("\\", "/") for x in file_list] file_list[:5] Explanation: Introduction Idea The claim was that the directory structure would be very similar to each other over a period of time. We want to identify this time span by using a time-based analysis on the commits and their corresponding directory structures. We can use some advanced Git repo analysis for this task. Data creation script Iterates over all commits and extracts basic information about the commit like sha, author and commit date (in log.txt) as well as the file's list of a specific version (in files.txt). For each information set, it a new directory with the sha as unique identifier is created. ```bash cd $1 sha_list=git rev-list master for sha in $sha_list: do data_dir="../data/$1/$sha" mkdir -p $data_dir git checkout $sha git log -n 1 $sha > $data_dir/log.txt git ls-files > $data_dir/files.txt done ``` You can store this script e. g. into extract.sh and execute it for a repository with bash sh execute.sh &lt;path_git_repo&gt; and you'll get a directory / files structure like this . ├── data │   ├── lerna │   │   ├── 001ec5882630cedd895f2c95a56a755617bb036c │   │   │   ├── files.txt │   │   │   └── log.txt │   │   ├── 00242afa1efa43a98dc84815ac8f554ffa58d472 │   │   │   ├── files.txt │   │   │   └── log.txt │   │   ├── 007f20b89ae33721bd08f8bcdd0768923bcc6bc5 │   │   │   ├── files.txt │   │   │   └── log.txt The content is as follows: files.txt .babelrc .editorconfig .eslintrc.yaml .github/ISSUE_TEMPLATE.md .github/PULL_REQUEST_TEMPLATE.md .gitignore .npmignore .travis.yml CHANGELOG.md CODE_OF_CONDUCT.md CONTRIBUTING.md FAQ.md LICENSE README.md appveyor.yml bin/lerna.js doc/hoist.md doc/troubleshooting.md lerna.json package.json src/ChildProcessUtilities.js src/Command.js src/ConventionalCommitUtilities.js src/FileSystemUtilities.js src/GitUtilities.js src/NpmUtilities.js ... log.txt ``` commit 001ec5882630cedd895f2c95a56a755617bb036c Author: Daniel Stockman &#100;&#97;&#110;&#105;&#101;&#108;&#115;&#64;&#122;&#105;&#108;&#108;&#111;&#119;&#103;&#114;&#111;&#117;&#112;&#46;&#99;&#111;&#109; Date: Thu Aug 10 09:56:14 2017 -0700 chore: fs-extra 4.x ``` With this data, we have the base for analysing a probably similar directure structure layout over time. abd83718682d7496426bb35f2f9ca20f10c2468d,2015-12-04 23:29:27 +1100 .gitignore LICENSE README.md bin/lerna.js lib/commands/bootstrap.js lib/commands/index.js lib/commands/publish.js lib/init.js lib/progress-bar.js package.json Load all files with the files listings I've executed the script for lerna as well as the web-build-tools. First, we first get all the files.txt using glob. End of explanation import pandas as pd dfs = [] for files_file in file_list: try: files_df = pd.read_csv(files_file, names=['sha', 'timestamp']) files_df['project'] = files_file.split("/")[-2] files_df['file'] = files_df.sha files_df['sha'] = files_df.sha[0] files_df['timestamp'] = pd.to_datetime(files_df.timestamp[0]) files_df = files_df[1:] files_df dfs.append(files_df) except OSError as e: print((e,files_file)) file_log = pd.concat(dfs, ignore_index=True) file_log.head() file_log.file = pd.Categorical(file_log.file) file_log.info() dir_log = dir_log[ (dir_log.project=='lerna') & (dir_log.file.str.endswith(".js")) | (dir_log.project=='web-build-tools') & (dir_log.file.str.endswith(".ts")) ] dir_log.project.value_counts() dir_log = dir_log[dir_log.file.str.contains("/")].copy() dir_log['last_dir'] = dir_log.file.str.split("/").str[-2] dir_log['last_dir_id'] = pd.factorize(dir_log.last_dir)[0] dir_log.head() dir_log['date'] = dir_log.timestamp.dt.date dir_log.head() grouped = dir_log.groupby(['project', pd.Grouper(level='date', freq="D"),'last_dir_id'])[['sha']].last() grouped.head() grouped['existent'] = 1 grouped.head() test = grouped.pivot_table('existent', ['project', 'date'], 'last_dir_id').fillna(0) test.head() lerna = test.loc['lerna'][0] lerna %maplotlib inline test.plot() timed_log = dir_log.set_index(['timestamp', 'project']) timed_log.head() timed_log.resample("W").first() %matplotlib inline timed.\ pivot_table('last_dir_id', timed.index, 'project')\ .fillna(method='ffill').dropna().plot() Explanation: We can then import the data by looping through all the files and read in the corresponding files' content. We further extract the information items we need on the fly from the path as well as the content of log.txt. The result is stored into a Pandas DataFrame for further analysis. End of explanation file_log[file_log.project == "lerna"].iloc[0] file_log[file_log.project == "web-build-tools"].iloc[0] Explanation: For each file, we have now a row the complete commit information available for both repositories. End of explanation file_log.info() Explanation: Basic statistics Let's take a look at our read-in data. End of explanation file_log.project.value_counts() Explanation: These are the number of entries for each repository. End of explanation file_log.groupby('project').sha.nunique() Explanation: The amount of commits for each repository are. End of explanation file_log[file_log.project=="web-build-tools"].iloc[0] file_log[file_log.project=="web-build-tools"].file.iloc[-10:] lerna = file_log[file_log.project == "lerna"] lerna.info() rush = file_log[file_log.project == "web-build-tools"] rush.info() from scipy.spatial.distance import hamming def calculate_hamming(row): lerna = row.file_list_lerna.split("\n") lerna = [x.rsplit(".", maxsplit=1)[0] for x in lerna] rush = row.file_list_rush.split("\n") rush = [x.rsplit(".", maxsplit=1)[0] for x in rush] count = 0 for i in lerna: if i in rush: count = count + 1 return count comp["amount"] = comp.apply(calculate_hamming, axis=1) comp.head() %matplotlib inline comp.amount.plot() comp.resample("W").amount.mean().plot() comp[comp.amount == comp.amount.max()] Explanation: Data preparation We need to adopt the data to the domain analyzed. We want to create a similarity measure between the directory structure of the lerna repository and the rush componente of the web-build-tools repository. The later is a little bit tricky, because there is a shift in the directory renaming. End of explanation
3,398
Given the following text description, write Python code to implement the functionality described below step by step Description: Clase 9 Step1: 2. Uso de Pandas para descargar datos de precios de cierre Bajar datos en forma de función Step2: Una vez cargados los paquetes, es necesario definir los tickers de las acciones que se usarán, la fuente de descarga (Yahoo en este caso, pero también se puede desde Google) y las fechas de interés. Con esto, la función DataReader del paquete pandas_datareader bajará los precios solicitados. Nota Step3: Nota Step4: 4. Optimización de portafolios
Python Code: #importar los paquetes que se van a usar import pandas as pd import pandas_datareader.data as web import numpy as np import datetime from datetime import datetime import scipy.stats as stats import scipy as sp import scipy.optimize as scopt import matplotlib.pyplot as plt import seaborn as sns import sklearn.covariance as skcov %matplotlib inline #algunas opciones para Python pd.set_option('display.notebook_repr_html', True) pd.set_option('display.max_columns', 6) pd.set_option('display.max_rows', 10) pd.set_option('display.width', 78) pd.set_option('precision', 3) Explanation: Clase 9: Optimización de portafolios usando simulación Montecarlo Juan Diego Sánchez Torres, Profesor, MAF ITESO Departamento de Matemáticas y Física [email protected] Tel. 3669-34-34 Ext. 3069 Oficina: Cubículo 4, Edificio J, 2do piso 1. Motivación En primer lugar, para poder bajar precios y información sobre opciones de Yahoo, es necesario cargar algunos paquetes de Python. En este caso, el paquete principal será Pandas. También, se usarán el Scipy y el Numpy para las matemáticas necesarias y, el Matplotlib y el Seaborn para hacer gráficos de las series de datos. End of explanation def get_historical_closes(ticker, start_date, end_date): p = web.DataReader(ticker, "yahoo", start_date, end_date).sort_index('major_axis') d = p.to_frame()['Adj Close'].reset_index() d.rename(columns={'minor': 'Ticker', 'Adj Close': 'Close'}, inplace=True) pivoted = d.pivot(index='Date', columns='Ticker') pivoted.columns = pivoted.columns.droplevel(0) return pivoted Explanation: 2. Uso de Pandas para descargar datos de precios de cierre Bajar datos en forma de función End of explanation assets = ['AAPL','AMZN','MSFT','KO'] closes=get_historical_closes(assets, '2010-01-01', '2016-12-31') closes closes.plot(figsize=(8,6)); Explanation: Una vez cargados los paquetes, es necesario definir los tickers de las acciones que se usarán, la fuente de descarga (Yahoo en este caso, pero también se puede desde Google) y las fechas de interés. Con esto, la función DataReader del paquete pandas_datareader bajará los precios solicitados. Nota: Usualmente, las distribuciones de Python no cuentan, por defecto, con el paquete pandas_datareader. Por lo que será necesario instalarlo aparte. El siguiente comando instala el paquete en Anaconda: *conda install -c conda-forge pandas-datareader * End of explanation def calc_daily_returns(closes): return np.log(closes/closes.shift(1))[1:] daily_returns=calc_daily_returns(closes) daily_returns.plot(figsize=(8,6)); mean_daily_returns = pd.DataFrame(daily_returns.mean(),columns=['Mean'],index=daily_returns.columns) mean_daily_returns cov_matrix = daily_returns.cov() cov_matrix #robust_cov_matrix= pd.DataFrame(skcov.EmpiricalCovariance().fit(daily_returns).covariance_,columns=daily_returns.columns,index=daily_returns.columns) #robust_cov_matrix= pd.DataFrame(skcov.EllipticEnvelope().fit(daily_returns).covariance_,columns=daily_returns.columns,index=daily_returns.columns) #robust_cov_matrix= pd.DataFrame(skcov.MinCovDet().fit(daily_returns).covariance_,columns=daily_returns.columns,index=daily_returns.columns) robust_cov_matrix= pd.DataFrame(skcov.ShrunkCovariance().fit(daily_returns).covariance_,columns=daily_returns.columns,index=daily_returns.columns) robust_cov_matrix Explanation: Nota: Para descargar datos de la bolsa mexicana de valores (BMV), el ticker debe tener la extensión MX. Por ejemplo: MEXCHEM.MX, LABB.MX, GFINBURO.MX y GFNORTEO.MX. 3. Formulación del riesgo de un portafolio End of explanation num_portfolios = 25000 r=0.0001 results = np.zeros((4+len(assets)-1,num_portfolios)) for i in range(num_portfolios): #Pesos weights = np.array(np.random.random(4)) weights /= np.sum(weights) #Rendimiento y volatilidad portfolio_return = mean_daily_returns.T.dot(weights) * 252 portfolio_std_dev = np.sqrt(np.dot(weights.T,np.dot(robust_cov_matrix, weights))) * np.sqrt(252) #Resultados results[0,i] = portfolio_return results[1,i] = portfolio_std_dev #Sharpe results[2,i] = (results[0,i]-r) / results[1,i] #Iteraciones for j in range(len(weights)): results[j+3,i] = weights[j] results_frame = pd.DataFrame(results.T,columns=(['Rendimiento','SD','Sharpe']+list(daily_returns.columns))) #Sharpe Ratio max_sharpe_port = results_frame.iloc[results_frame['Sharpe'].idxmax()] #Menor SD min_vol_port = results_frame.iloc[results_frame['SD'].idxmin()] plt.scatter(results_frame.SD,results_frame.Rendimiento,c=results_frame.Sharpe,cmap='RdYlBu') plt.xlabel('Volatility') plt.ylabel('Returns') plt.colorbar() #Sharpe Ratio plt.scatter(max_sharpe_port[1],max_sharpe_port[0],marker=(5,1,0),color='r',s=1000); #Menor SD plt.scatter(min_vol_port[1],min_vol_port[0],marker=(5,1,0),color='g',s=1000); pd.DataFrame(max_sharpe_port) pd.DataFrame(min_vol_port) Explanation: 4. Optimización de portafolios End of explanation
3,399
Given the following text description, write Python code to implement the functionality described below step by step Description: Generative Adversarial Network In this notebook, we'll be building a generative adversarial network (GAN) trained on the MNIST dataset. From this, we'll be able to generate new handwritten digits! GANs were first reported on in 2014 from Ian Goodfellow and others in Yoshua Bengio's lab. Since then, GANs have exploded in popularity. Here are a few examples to check out Step1: Model Inputs First we need to create the inputs for our graph. We need two inputs, one for the discriminator and one for the generator. Here we'll call the discriminator input inputs_real and the generator input inputs_z. We'll assign them the appropriate sizes for each of the networks. Exercise Step2: Generator network Here we'll build the generator network. To make this network a universal function approximator, we'll need at least one hidden layer. We should use a leaky ReLU to allow gradients to flow backwards through the layer unimpeded. A leaky ReLU is like a normal ReLU, except that there is a small non-zero output for negative input values. Variable Scope Here we need to use tf.variable_scope for two reasons. Firstly, we're going to make sure all the variable names start with generator. Similarly, we'll prepend discriminator to the discriminator variables. This will help out later when we're training the separate networks. We could just use tf.name_scope to set the names, but we also want to reuse these networks with different inputs. For the generator, we're going to train it, but also sample from it as we're training and after training. The discriminator will need to share variables between the fake and real input images. So, we can use the reuse keyword for tf.variable_scope to tell TensorFlow to reuse the variables instead of creating new ones if we build the graph again. To use tf.variable_scope, you use a with statement Step3: Discriminator The discriminator network is almost exactly the same as the generator network, except that we're using a sigmoid output layer. Exercise Step4: Hyperparameters Step5: Build network Now we're building the network from the functions defined above. First is to get our inputs, input_real, input_z from model_inputs using the sizes of the input and z. Then, we'll create the generator, generator(input_z, input_size). This builds the generator with the appropriate input and output sizes. Then the discriminators. We'll build two of them, one for real data and one for fake data. Since we want the weights to be the same for both real and fake data, we need to reuse the variables. For the fake data, we're getting it from the generator as g_model. So the real data discriminator is discriminator(input_real) while the fake discriminator is discriminator(g_model, reuse=True). Exercise Step6: Discriminator and Generator Losses Now we need to calculate the losses, which is a little tricky. For the discriminator, the total loss is the sum of the losses for real and fake images, d_loss = d_loss_real + d_loss_fake. The losses will by sigmoid cross-entropies, which we can get with tf.nn.sigmoid_cross_entropy_with_logits. We'll also wrap that in tf.reduce_mean to get the mean for all the images in the batch. So the losses will look something like python tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels)) For the real image logits, we'll use d_logits_real which we got from the discriminator in the cell above. For the labels, we want them to be all ones, since these are all real images. To help the discriminator generalize better, the labels are reduced a bit from 1.0 to 0.9, for example, using the parameter smooth. This is known as label smoothing, typically used with classifiers to improve performance. In TensorFlow, it looks something like labels = tf.ones_like(tensor) * (1 - smooth) The discriminator loss for the fake data is similar. The logits are d_logits_fake, which we got from passing the generator output to the discriminator. These fake logits are used with labels of all zeros. Remember that we want the discriminator to output 1 for real images and 0 for fake images, so we need to set up the losses to reflect that. Finally, the generator losses are using d_logits_fake, the fake image logits. But, now the labels are all ones. The generator is trying to fool the discriminator, so it wants to discriminator to output ones for fake images. Exercise Step7: Optimizers We want to update the generator and discriminator variables separately. So we need to get the variables for each part and build optimizers for the two parts. To get all the trainable variables, we use tf.trainable_variables(). This creates a list of all the variables we've defined in our graph. For the generator optimizer, we only want to generator variables. Our past selves were nice and used a variable scope to start all of our generator variable names with generator. So, we just need to iterate through the list from tf.trainable_variables() and keep variables that start with generator. Each variable object has an attribute name which holds the name of the variable as a string (var.name == 'weights_0' for instance). We can do something similar with the discriminator. All the variables in the discriminator start with discriminator. Then, in the optimizer we pass the variable lists to the var_list keyword argument of the minimize method. This tells the optimizer to only update the listed variables. Something like tf.train.AdamOptimizer().minimize(loss, var_list=var_list) will only train the variables in var_list. Exercise Step8: Training Step9: Training loss Here we'll check out the training losses for the generator and discriminator. Step10: Generator samples from training Here we can view samples of images from the generator. First we'll look at images taken while training. Step11: These are samples from the final training epoch. You can see the generator is able to reproduce numbers like 5, 7, 3, 0, 9. Since this is just a sample, it isn't representative of the full range of images this generator can make. Step12: Below I'm showing the generated images as the network was training, every 10 epochs. With bonus optical illusion! Step13: It starts out as all noise. Then it learns to make only the center white and the rest black. You can start to see some number like structures appear out of the noise. Looks like 1, 9, and 8 show up first. Then, it learns 5 and 3. Sampling from the generator We can also get completely new images from the generator by using the checkpoint we saved after training. We just need to pass in a new latent vector $z$ and we'll get new samples!
Python Code: %matplotlib inline import pickle as pkl import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data') Explanation: Generative Adversarial Network In this notebook, we'll be building a generative adversarial network (GAN) trained on the MNIST dataset. From this, we'll be able to generate new handwritten digits! GANs were first reported on in 2014 from Ian Goodfellow and others in Yoshua Bengio's lab. Since then, GANs have exploded in popularity. Here are a few examples to check out: Pix2Pix CycleGAN A whole list The idea behind GANs is that you have two networks, a generator $G$ and a discriminator $D$, competing against each other. The generator makes fake data to pass to the discriminator. The discriminator also sees real data and predicts if the data it's received is real or fake. The generator is trained to fool the discriminator, it wants to output data that looks as close as possible to real data. And the discriminator is trained to figure out which data is real and which is fake. What ends up happening is that the generator learns to make data that is indistiguishable from real data to the discriminator. The general structure of a GAN is shown in the diagram above, using MNIST images as data. The latent sample is a random vector the generator uses to contruct it's fake images. As the generator learns through training, it figures out how to map these random vectors to recognizable images that can fool the discriminator. The output of the discriminator is a sigmoid function, where 0 indicates a fake image and 1 indicates an real image. If you're interested only in generating new images, you can throw out the discriminator after training. Now, let's see how we build this thing in TensorFlow. End of explanation def model_inputs(real_dim, z_dim): inputs_real = tf.placeholder(tf.float32, shape=(None, real_dim), name="input_real") inputs_z = tf.placeholder(tf.float32, shape=(None, z_dim), name="input_z") return inputs_real, inputs_z Explanation: Model Inputs First we need to create the inputs for our graph. We need two inputs, one for the discriminator and one for the generator. Here we'll call the discriminator input inputs_real and the generator input inputs_z. We'll assign them the appropriate sizes for each of the networks. Exercise: Finish the model_inputs function below. Create the placeholders for inputs_real and inputs_z using the input sizes real_dim and z_dim respectively. End of explanation def generator(z, out_dim, n_units=128, reuse=False, alpha=0.01): ''' Build the generator network. Arguments --------- z : Input tensor for the generator out_dim : Shape of the generator output n_units : Number of units in hidden layer reuse : Reuse the variables with tf.variable_scope alpha : leak parameter for leaky ReLU Returns ------- out: ''' with tf.variable_scope('generator', reuse=reuse): # Hidden layer h1 = tf.layers.dense(z, n_units, activation=None) # Leaky ReLU h1 = tf.maximum(alpha * h1, h1) # Logits and tanh output logits = tf.layers.dense(h1, out_dim, activation=None) out = tf.tanh(logits) return out Explanation: Generator network Here we'll build the generator network. To make this network a universal function approximator, we'll need at least one hidden layer. We should use a leaky ReLU to allow gradients to flow backwards through the layer unimpeded. A leaky ReLU is like a normal ReLU, except that there is a small non-zero output for negative input values. Variable Scope Here we need to use tf.variable_scope for two reasons. Firstly, we're going to make sure all the variable names start with generator. Similarly, we'll prepend discriminator to the discriminator variables. This will help out later when we're training the separate networks. We could just use tf.name_scope to set the names, but we also want to reuse these networks with different inputs. For the generator, we're going to train it, but also sample from it as we're training and after training. The discriminator will need to share variables between the fake and real input images. So, we can use the reuse keyword for tf.variable_scope to tell TensorFlow to reuse the variables instead of creating new ones if we build the graph again. To use tf.variable_scope, you use a with statement: python with tf.variable_scope('scope_name', reuse=False): # code here Here's more from the TensorFlow documentation to get another look at using tf.variable_scope. Leaky ReLU TensorFlow doesn't provide an operation for leaky ReLUs, so we'll need to make one . For this you can just take the outputs from a linear fully connected layer and pass them to tf.maximum. Typically, a parameter alpha sets the magnitude of the output for negative values. So, the output for negative input (x) values is alpha*x, and the output for positive x is x: $$ f(x) = max(\alpha * x, x) $$ Tanh Output The generator has been found to perform the best with $tanh$ for the generator output. This means that we'll have to rescale the MNIST images to be between -1 and 1, instead of 0 and 1. Exercise: Implement the generator network in the function below. You'll need to return the tanh output. Make sure to wrap your code in a variable scope, with 'generator' as the scope name, and pass the reuse keyword argument from the function to tf.variable_scope. End of explanation def discriminator(x, n_units=128, reuse=False, alpha=0.01): ''' Build the discriminator network. Arguments --------- x : Input tensor for the discriminator n_units: Number of units in hidden layer reuse : Reuse the variables with tf.variable_scope alpha : leak parameter for leaky ReLU Returns ------- out, logits: ''' with tf.variable_scope('discriminator', reuse=reuse): # finish this # Hidden layer h1 = tf.layers.dense(x, n_units, activation=None) # Leaky ReLU h1 = tf.maximum(alpha * h1, h1) logits = tf.layers.dense(h1, 1, activation=None) out = tf.sigmoid(logits) return out, logits Explanation: Discriminator The discriminator network is almost exactly the same as the generator network, except that we're using a sigmoid output layer. Exercise: Implement the discriminator network in the function below. Same as above, you'll need to return both the logits and the sigmoid output. Make sure to wrap your code in a variable scope, with 'discriminator' as the scope name, and pass the reuse keyword argument from the function arguments to tf.variable_scope. End of explanation # Size of input image to discriminator input_size = 784 # 28x28 MNIST images flattened # Size of latent vector to generator z_size = 100 # Sizes of hidden layers in generator and discriminator g_hidden_size = 128 d_hidden_size = 128 # Leak factor for leaky ReLU alpha = 0.01 # Label smoothing smooth = 0.1 Explanation: Hyperparameters End of explanation tf.reset_default_graph() # Create our input placeholders input_real, input_z = model_inputs(input_size, z_size) # Build the model g_model = generator(input_z, input_size, n_units=g_hidden_size, alpha=alpha) # g_model is the generator output d_model_real, d_logits_real = discriminator(input_real, n_units=d_hidden_size, alpha=alpha) d_model_fake, d_logits_fake = discriminator(g_model, reuse=True, n_units=d_hidden_size, alpha=alpha) Explanation: Build network Now we're building the network from the functions defined above. First is to get our inputs, input_real, input_z from model_inputs using the sizes of the input and z. Then, we'll create the generator, generator(input_z, input_size). This builds the generator with the appropriate input and output sizes. Then the discriminators. We'll build two of them, one for real data and one for fake data. Since we want the weights to be the same for both real and fake data, we need to reuse the variables. For the fake data, we're getting it from the generator as g_model. So the real data discriminator is discriminator(input_real) while the fake discriminator is discriminator(g_model, reuse=True). Exercise: Build the network from the functions you defined earlier. End of explanation # Calculate losses d_loss_real = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_logits_real) * (1 - smooth))) d_loss_fake = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_logits_real))) d_loss = d_loss_real + d_loss_fake g_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_logits_fake))) Explanation: Discriminator and Generator Losses Now we need to calculate the losses, which is a little tricky. For the discriminator, the total loss is the sum of the losses for real and fake images, d_loss = d_loss_real + d_loss_fake. The losses will by sigmoid cross-entropies, which we can get with tf.nn.sigmoid_cross_entropy_with_logits. We'll also wrap that in tf.reduce_mean to get the mean for all the images in the batch. So the losses will look something like python tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels)) For the real image logits, we'll use d_logits_real which we got from the discriminator in the cell above. For the labels, we want them to be all ones, since these are all real images. To help the discriminator generalize better, the labels are reduced a bit from 1.0 to 0.9, for example, using the parameter smooth. This is known as label smoothing, typically used with classifiers to improve performance. In TensorFlow, it looks something like labels = tf.ones_like(tensor) * (1 - smooth) The discriminator loss for the fake data is similar. The logits are d_logits_fake, which we got from passing the generator output to the discriminator. These fake logits are used with labels of all zeros. Remember that we want the discriminator to output 1 for real images and 0 for fake images, so we need to set up the losses to reflect that. Finally, the generator losses are using d_logits_fake, the fake image logits. But, now the labels are all ones. The generator is trying to fool the discriminator, so it wants to discriminator to output ones for fake images. Exercise: Calculate the losses for the discriminator and the generator. There are two discriminator losses, one for real images and one for fake images. For the real image loss, use the real logits and (smoothed) labels of ones. For the fake image loss, use the fake logits with labels of all zeros. The total discriminator loss is the sum of those two losses. Finally, the generator loss again uses the fake logits from the discriminator, but this time the labels are all ones because the generator wants to fool the discriminator. End of explanation # Optimizers learning_rate = 0.002 # Get the trainable_variables, split into G and D parts t_vars = tf.trainable_variables() g_vars = [var for var in t_vars if var.name.startswith('generator')] d_vars = [var for var in t_vars if var.name.startswith('discriminator')] d_train_opt = tf.train.AdamOptimizer().minimize(d_loss, var_list=d_vars) g_train_opt = tf.train.AdamOptimizer().minimize(g_loss, var_list=g_vars) Explanation: Optimizers We want to update the generator and discriminator variables separately. So we need to get the variables for each part and build optimizers for the two parts. To get all the trainable variables, we use tf.trainable_variables(). This creates a list of all the variables we've defined in our graph. For the generator optimizer, we only want to generator variables. Our past selves were nice and used a variable scope to start all of our generator variable names with generator. So, we just need to iterate through the list from tf.trainable_variables() and keep variables that start with generator. Each variable object has an attribute name which holds the name of the variable as a string (var.name == 'weights_0' for instance). We can do something similar with the discriminator. All the variables in the discriminator start with discriminator. Then, in the optimizer we pass the variable lists to the var_list keyword argument of the minimize method. This tells the optimizer to only update the listed variables. Something like tf.train.AdamOptimizer().minimize(loss, var_list=var_list) will only train the variables in var_list. Exercise: Below, implement the optimizers for the generator and discriminator. First you'll need to get a list of trainable variables, then split that list into two lists, one for the generator variables and another for the discriminator variables. Finally, using AdamOptimizer, create an optimizer for each network that update the network variables separately. End of explanation batch_size = 100 epochs = 100 samples = [] losses = [] saver = tf.train.Saver(var_list = g_vars) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for e in range(epochs): for ii in range(mnist.train.num_examples//batch_size): batch = mnist.train.next_batch(batch_size) # Get images, reshape and rescale to pass to D batch_images = batch[0].reshape((batch_size, 784)) batch_images = batch_images*2 - 1 # Sample random noise for G batch_z = np.random.uniform(-1, 1, size=(batch_size, z_size)) # Run optimizers _ = sess.run(d_train_opt, feed_dict={input_real: batch_images, input_z: batch_z}) _ = sess.run(g_train_opt, feed_dict={input_z: batch_z}) # At the end of each epoch, get the losses and print them out train_loss_d = sess.run(d_loss, {input_z: batch_z, input_real: batch_images}) train_loss_g = g_loss.eval({input_z: batch_z}) print("Epoch {}/{}...".format(e+1, epochs), "Discriminator Loss: {:.4f}...".format(train_loss_d), "Generator Loss: {:.4f}".format(train_loss_g)) # Save losses to view after training losses.append((train_loss_d, train_loss_g)) # Sample from generator as we're training for viewing afterwards sample_z = np.random.uniform(-1, 1, size=(16, z_size)) gen_samples = sess.run( generator(input_z, input_size, n_units=g_hidden_size, reuse=True, alpha=alpha), feed_dict={input_z: sample_z}) samples.append(gen_samples) saver.save(sess, './checkpoints/generator.ckpt') # Save training generator samples with open('train_samples.pkl', 'wb') as f: pkl.dump(samples, f) Explanation: Training End of explanation %matplotlib inline import matplotlib.pyplot as plt fig, ax = plt.subplots() losses = np.array(losses) plt.plot(losses.T[0], label='Discriminator') plt.plot(losses.T[1], label='Generator') plt.title("Training Losses") plt.legend() Explanation: Training loss Here we'll check out the training losses for the generator and discriminator. End of explanation def view_samples(epoch, samples): fig, axes = plt.subplots(figsize=(7,7), nrows=4, ncols=4, sharey=True, sharex=True) for ax, img in zip(axes.flatten(), samples[epoch]): ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) im = ax.imshow(img.reshape((28,28)), cmap='Greys_r') return fig, axes # Load samples from generator taken while training with open('train_samples.pkl', 'rb') as f: samples = pkl.load(f) Explanation: Generator samples from training Here we can view samples of images from the generator. First we'll look at images taken while training. End of explanation _ = view_samples(-1, samples) Explanation: These are samples from the final training epoch. You can see the generator is able to reproduce numbers like 5, 7, 3, 0, 9. Since this is just a sample, it isn't representative of the full range of images this generator can make. End of explanation rows, cols = 10, 6 fig, axes = plt.subplots(figsize=(7,12), nrows=rows, ncols=cols, sharex=True, sharey=True) for sample, ax_row in zip(samples[::int(len(samples)/rows)], axes): for img, ax in zip(sample[::int(len(sample)/cols)], ax_row): ax.imshow(img.reshape((28,28)), cmap='Greys_r') ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) Explanation: Below I'm showing the generated images as the network was training, every 10 epochs. With bonus optical illusion! End of explanation saver = tf.train.Saver(var_list=g_vars) with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('checkpoints')) sample_z = np.random.uniform(-1, 1, size=(16, z_size)) gen_samples = sess.run( generator(input_z, input_size, n_units=g_hidden_size, reuse=True, alpha=alpha), feed_dict={input_z: sample_z}) view_samples(0, [gen_samples]) Explanation: It starts out as all noise. Then it learns to make only the center white and the rest black. You can start to see some number like structures appear out of the noise. Looks like 1, 9, and 8 show up first. Then, it learns 5 and 3. Sampling from the generator We can also get completely new images from the generator by using the checkpoint we saved after training. We just need to pass in a new latent vector $z$ and we'll get new samples! End of explanation