File size: 9,332 Bytes
cf5659c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import csv
import json
import re
import subprocess
from argparse import ArgumentParser

import matplotlib.pyplot as plt
from pathlib import Path

import numpy as np

"""
Plot results per (dataset_name, dataset_config_name).
"""


def get_args():
    parser = ArgumentParser()
    parser.add_argument("--json_paths", nargs="+", type=str, help="Json files to plot together", required=True)
    parser.add_argument("--t0_csv_path", type=str, help="T0 eval results path")
    args = parser.parse_args()

    return args

def load_t0_results(csv_path):
    with open(csv_path, "r") as f:
        return list(csv.DictReader(f))

def load_json(json_path):
    with open(json_path, "r") as fi:
        return json.load(fi)

def get_experiment_name(filename: str):
    name = re.sub(r"_([0-9]*)$", r" [\1]", filename)
    name = name.replace("span_corruption", "SC")
    name = re.sub(r"^enc_dec", "ED", name)
    name = re.sub(r"^nc_dec", "NCD", name)
    name = re.sub(r"^c_dec", 'CD', name)
    name = name.replace("full_lm", "FLM")
    name = name.replace("prefix_lm", "PLM")
    name = re.sub(r"t0_adapt_([0-9]+)", r"T0(\1)", name)
    if name[:3] == "CD_":
        name = re.sub(r"lm_adapt_([0-9]+)", r"FLM(\1)", name)
        name = re.sub(r"t0_adapt_nc_([0-9]+)", r"T0 AS NC (\1)", name)
        name = re.sub(r"nc_sc_([0-9]+)", r"SC as NC(\1)", name)
        name = re.sub(r"nc_t0_([0-9]+)", r"T0 as NC(\1)", name)
    elif name[:4] == "NCD_" or name[:3] == "ED_":
        if "flm_adapt" in name:
            name = re.sub(r"flm_adapt_([0-9]+)", r"FLM AS CD(\1)", name)
        else:
            name = re.sub(r"lm_adapt_([0-9]+)", r"PLM(\1)", name)
    else:
        raise NotImplementedError
    name = name.replace("_", " + ")
    return name

TASKS = {
    # T0  evaluation
    "super_glue_copa": ("COPA", 0.5),
    "anli_dev_r1": ("ANLI R1", 1/3),
    "anli_dev_r2": ("ANLI R2", 1/3),
    "anli_dev_r3": ("ANLI R3", 1/3),
    "super_glue_cb": ("CB", 1/3),
    "super_glue_rte": ("RTE", 0.5),
    "super_glue_wsc.fixed": ("WSC", 0.5),
    "winogrande_winogrande_xl": ("Winogrande", 0.5),
    "super_glue_wic": ("WiC", 0.5),
    "hellaswag": ("HellaSwag", 0.25),
    "story_cloze_2016": ("StoryCloze", 0.5),

    # XNLI evaluation
    "xnli_ar": ("XNLI ar (en prompts)", 1/3),
    "xnli_bg": ("XNLI bg (en prompts)", 1/3),
    "xnli_de": ("XNLI de (en prompts)", 1/3),
    "xnli_el": ("XNLI el (en prompts)", 1/3),
    "xnli_en": ("XNLI en (en prompts)", 1/3),
    "xnli_es": ("XNLI es (en prompts)", 1/3),
    "xnli_fr": ("XNLI fr (en prompts)", 1/3),
    "xnli_hi": ("XNLI hi (en prompts)", 1/3),
    "xnli_ru": ("XNLI ru (en prompts)", 1/3),
    "xnli_sw": ("XNLI sw (en prompts)", 1/3),
    "xnli_th": ("XNLI th (en prompts)", 1/3),
    "xnli_tr": ("XNLI tr (en prompts)", 1/3),
    "xnli_ur": ("XNLI ur (en prompts)", 1/3),
    "xnli_vi": ("XNLI vi (en prompts)", 1/3),
    "xnli_zh": ("XNLI zh (en prompts)", 1/3),
}

def plot(mtf_data, t0_data):
    args = get_args()

    assert len(TASKS) == 26
    fig, axs = plt.subplots(3, 9, figsize=(20, 5))
    axs = axs.flatten()

    task_min_score = {}
    task_max_score = {}
    task_median_score = {}
    for n, (task, (task_name, random_baseline)) in enumerate(TASKS.items()):
        # Normalising names
        mtf_task = task
        t0_task = task
        if task.startswith("anli_dev_r"):
            t0_task = re.sub("dev_", "", task)
        elif task == "hellaswag":
            mtf_task = "hellaswag_None"

        t5lm_scores = [float(r["score"]) for r in t0_data
                       if r["runs"] == "xxl-lm-d4-091621"
                       and r["dataset_name"] == t0_task
                       and r["metric_name"] == "accuracy (Rank)"
                       and r["score"]]
        t0_scores = [float(r["score"]) for r in t0_data
                     if r["runs"] == "xxl-lm-d4-091621-512"
                     and r["dataset_name"] == t0_task
                     and r["metric_name"] == "accuracy (Rank)"
                     and r["score"]]

        mtf_scores = [
            (
                name,
                [100 * value["evaluation"]["accuracy"] for prompt, value in data[mtf_task].items()]
                if mtf_task in data else
                []
            )
            for name, data in mtf_data.items()
        ]

        all_experiment_scores_with_name = [("T5 + LM", t5lm_scores), ("T0", t0_scores), *mtf_scores]
        # Plot
        axs[n].axhline(100 * random_baseline, 0, len(all_experiment_scores_with_name), label="Random")
        for i, (exp_name, scores) in enumerate(all_experiment_scores_with_name):
            axs[n].scatter([i] * len(scores), scores, s=50, alpha=0.4, label=exp_name)
        axs[n].set_title(task_name, fontsize=8)

        # # Gather median values
        # task_min_score[task] = [("Random", 100 * random_baseline)] + [(exp_name, np.min(scores)) for (exp_name, scores) in all_experiment_scores_with_name]
        # task_max_score[task] = [("Random", 100 * random_baseline)] + [(exp_name, np.max(scores)) for (exp_name, scores) in all_experiment_scores_with_name]
        # task_median_score[task] = [("Random", 100 * random_baseline)] + [(exp_name, np.median(scores)) for (exp_name, scores) in all_experiment_scores_with_name]

    last_ax_id = len(TASKS) - 1
    axs[last_ax_id].legend(bbox_to_anchor=(1, 1), loc="upper left")
    for ax in axs[last_ax_id + 1:]:
        ax.set_visible(False)

    # if args.aggregated_results:
    #     # ====== Plot agregated values =======
    #     fig, axs = plt.subplots(1, 3, figsize=(20, 8))
    #     axs = axs.flatten()
    #     last_ax_id=0
    #     experiment_names = [elt[0] for elt in next(iter(task_median_score.values()))]
    #
    #     def plot_scores_with_name(median_score_with_name, max_score, min_score, ax, title):
    #         assert len(median_score_with_name) == len(max_score) and len(median_score_with_name) == len(min_score)
    #         ax.axhline(
    #             median_score_with_name[0][1],
    #             0, len(median_score_with_name) - 1,
    #             label=median_score_with_name[0][0]
    #         )
    #         for i, ((name, median_score), max_score, min_score) in enumerate(zip(median_score_with_name[1:], max_score[1:], min_score[1:])):
    #             ax.errorbar(
    #                 i, median_score, ((median_score - min_score,), (max_score - median_score,)),
    #                 fmt="o", elinewidth=1, label=name)
    #         ax.set_title(title)
    #
    #     def get_average_normalised_score(task_scores):
    #         normalised_scores = []
    #         for scores_with_name in task_scores.values():
    #             random_name, random_baseline = scores_with_name[0]
    #             assert random_name == "Random"
    #             normalised_scores_per_task = [(scores - random_baseline) / (100 - random_baseline) for _, scores in
    #                                           scores_with_name]
    #             normalised_scores.append(normalised_scores_per_task)
    #         return np.mean(normalised_scores, axis=0)
    #
    #     def get_average_score(task_scores):
    #         return np.mean(
    #             [[scores for _, scores in scores_with_name] for scores_with_name in task_scores.values()], axis=0)
    #
    #     # Plot average task score
    #     average_task_median_score = get_average_score(task_median_score)
    #     assert len(experiment_names) == len(average_task_median_score)
    #     average_task_media_score_with_name = list(zip(experiment_names, average_task_median_score))
    #     del average_task_median_score
    #     plot_scores_with_name(
    #         median_score_with_name=average_task_media_score_with_name,
    #         max_score=get_average_score(task_max_score),
    #         min_score=get_average_score(task_min_score),
    #         ax=axs[last_ax_id],
    #         title=f"Average of task median scores"
    #     )
    #     last_ax_id += 1
    #
    #     # Plot average of task median normalised scores `normalised_score = (score - random) / (1 - random)`
    #     average_task_normalised_median_score = get_average_normalised_score(task_median_score)
    #     assert len(experiment_names) == len(average_task_normalised_median_score)
    #     average_task_normalised_median_score_with_name = list(
    #         zip(experiment_names, average_task_normalised_median_score))
    #     del average_task_normalised_median_score
    #     plot_scores_with_name(
    #         median_score_with_name=average_task_normalised_median_score_with_name,
    #         max_score=get_average_normalised_score(task_max_score),
    #         min_score=get_average_normalised_score(task_min_score),
    #         ax=axs[last_ax_id],
    #         title=f"Average of task normalised median scores"
    #     )
    #     last_ax_id += 1
    #
    #     axs[last_ax_id -1].legend(bbox_to_anchor=(1, 1), loc="upper left")
    #     for ax in axs[last_ax_id:]:
    #         ax.set_visible(False)


def main():
    args = get_args()

    # Load results
    t0_data = load_t0_results(args.t0_csv_path)
    mtf_data = {
        re.sub(".json", "", json_path): load_json(json_path)
        for json_path in args.json_paths
    }

    plot(mtf_data, t0_data)

    plt.show()
    print("Finished")

if __name__ == "__main__":
    main()