applied-ai-018 commited on
Commit
cf5659c
·
verified ·
1 Parent(s): f9bc5ed

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .editorconfig +21 -0
  2. CONTRIBUTING.md +111 -0
  3. README.md +93 -0
  4. bigscience/__init__.py +5 -0
  5. bigscience/bigscience.py +1 -0
  6. evaluation/README.md +7 -0
  7. evaluation/generation/generate.py +67 -0
  8. evaluation/results/tr1/Tr1-13B-harness-eval.json +165 -0
  9. evaluation/results/tr11/bloom1b3/bslmevalfiles/concat.py +103 -0
  10. evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-13-19-23-37.json +701 -0
  11. evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-14-10-03-25.json +2169 -0
  12. evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-14-12-00-55.json +1255 -0
  13. evaluation/results/tr11/bloom2b5/bslmeval.json +0 -0
  14. evaluation/results/tr11/bloom2b5/bslmevalfiles/concat.py +103 -0
  15. evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-12-23-12-44.json +0 -0
  16. evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-evalharness-results_lm-eval_global_step337250_2022-07-13-09-55-04.json +172 -0
  17. evaluation/results/tr11/bloom2b5/humaneval_temp02.json +1 -0
  18. evaluation/results/tr11/bloom2b5/humaneval_temp06.json +1 -0
  19. evaluation/results/tr11/bloom2b5/humaneval_temp08.json +1 -0
  20. evaluation/results/tr11/bloom2b5/mdmeta.txt +1540 -0
  21. evaluation/results/tr11/bloom2b5/mdtable.txt +143 -0
  22. evaluation/results/tr11/conversion/json_to_markdown.py +307 -0
  23. evaluation/results/tr11/opt/bslmeval.json +0 -0
  24. evaluation/results/tr11/opt/humaneval_temp06.json +1 -0
  25. evaluation/results/tr11/scripts/download_bsevalharness.py +21 -0
  26. evaluation/results/tr11/scripts/run_bsevalharness_generation_6b3.slurm +101 -0
  27. evaluation/results/tr11/scripts/run_bsevalharness_tr11-176b-ml.slurm +122 -0
  28. evaluation/results/tr11/scripts/run_bsevalharness_tr11b-1b3-ml.slurm +122 -0
  29. evaluation/results/tr11/scripts/run_bsevalharness_tr11d-750m-ml.slurm +120 -0
  30. evaluation/results/tr11/scripts/run_trevalharness_176b.slurm +60 -0
  31. evaluation/results/tr12/tr12a-1B3-oscar-en-filtered_agg.json +0 -0
  32. evaluation/results/tr12/tr12b-1B3-oscar-en-filtered-dedup_agg.json +0 -0
  33. evaluation/results/tr13/merge_all_json.py +97 -0
  34. evaluation/results/tr13/plot_results.py +230 -0
  35. evaluation/results/tr13/results_to_csv.py +72 -0
  36. evaluation/results/tr13/tzeroeval/evaluate_t0_v100.slurm +751 -0
  37. evaluation/results/tr3/README.md +1 -0
  38. evaluation/results/tr3/plot_task_solve_graph.py +133 -0
  39. evaluation/results/tr3/switch_tokenizer_to_t5_for_tr3e.sh +6 -0
  40. evaluation/results/tr3/tr3e-1B3-c4-checkpoints_agg.json +3084 -0
  41. evaluation/results/tr3/tr3m-1B3-pile-checkpoints_agg.json +0 -0
  42. evaluation/utilities/convert_results_to_json.py +111 -0
  43. evaluation/utilities/download_all_models.py +47 -0
  44. evaluation/utilities/download_all_models.slurm +26 -0
  45. evaluation/utilities/export_results_through_training_to_wandb.py +86 -0
  46. evaluation/utilities/find_checkpoints_at_token_intervals.py +27 -0
  47. evaluation/utilities/plot_all_eval.py +45 -0
  48. jz/.gitignore +133 -0
  49. jz/.gitmodules +3 -0
  50. jz/README.md +27 -0
.editorconfig ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # http://editorconfig.org
2
+
3
+ root = true
4
+
5
+ [*]
6
+ indent_style = space
7
+ indent_size = 4
8
+ trim_trailing_whitespace = true
9
+ insert_final_newline = true
10
+ charset = utf-8
11
+ end_of_line = lf
12
+
13
+ [*.bat]
14
+ indent_style = tab
15
+ end_of_line = crlf
16
+
17
+ [LICENSE]
18
+ insert_final_newline = false
19
+
20
+ [Makefile]
21
+ indent_style = tab
CONTRIBUTING.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Contributing
2
+
3
+ This is a community project and contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.
4
+
5
+ If you are inspired to contribute please see the following entries:
6
+
7
+ Megatron-DeeepSpeed:
8
+
9
+ - [Megatron-DeepSpeed Issues](https://github.com/bigscience-workshop/Megatron-DeepSpeed/issues)
10
+ - [Good First Issues](https://github.com/bigscience-workshop/Megatron-DeepSpeed/contribute)
11
+
12
+ General BigScience:
13
+
14
+ - [bigscience Issues](https://github.com/bigscience-workshop/bigscience/issues)
15
+ - [Good First Issues](https://github.com/bigscience-workshop/bigscience/contribute)
16
+
17
+
18
+
19
+ ### Report Bugs
20
+
21
+ Report bugs at
22
+ <https://github.com/bigscience-workshop/bigscience/issues>.
23
+
24
+ If you are reporting a bug, please include:
25
+
26
+ - Your operating system name and version.
27
+ - Any details about your local setup that might be helpful in
28
+ troubleshooting.
29
+ - Detailed steps to reproduce the bug.
30
+
31
+ ### Fix Bugs
32
+
33
+ Look through the GitHub issues for bugs. Anything tagged with "bug" and
34
+ "help wanted" is open to whoever wants to implement it.
35
+
36
+ ### Implement Features
37
+
38
+ Look through the GitHub issues for features. Anything tagged with
39
+ "enhancement" and "help wanted" is open to whoever wants to implement
40
+ it.
41
+
42
+ ### Write Documentation
43
+
44
+ Big Science could always use more documentation, whether as part of the
45
+ official Big Science docs, in docstrings, or even on the web in blog
46
+ posts, articles, and such.
47
+
48
+ ### Submit Feedback
49
+
50
+ The best way to send feedback is to file an issue at
51
+ <https://github.com/bigscience-workshop/bigscience/issues>.
52
+
53
+ If you are proposing a feature:
54
+
55
+ - Explain in detail how it would work.
56
+ - Keep the scope as narrow as possible, to make it easier to
57
+ implement.
58
+ - Remember that this is a volunteer-driven project, and that
59
+ contributions are welcome :)
60
+
61
+ Get Started!
62
+ ------------
63
+
64
+ Ready to contribute? Here's how to set up bigscience for local
65
+ development.
66
+
67
+ 1. Fork the bigscience repo on GitHub.
68
+ 2. Clone your fork locally:
69
+
70
+ $ git clone [email protected]:your_name_here/bigscience.git
71
+
72
+ 3. Install your local copy into a virtualenv. Assuming you have
73
+ virtualenvwrapper installed, this is how you set up your fork for
74
+ local development:
75
+ ```
76
+ $ mkvirtualenv bigscience
77
+ $ cd bigscience/
78
+ $ python setup.py develop
79
+ ```
80
+ 4. Create a branch for local development:
81
+ ```
82
+ $ git checkout -b name-of-your-bugfix-or-feature
83
+ ```
84
+ Now you can make your changes locally.
85
+
86
+ 5. When you're done making changes, check that your changes pass flake8
87
+ and the tests, including testing other Python versions with tox:
88
+ ```
89
+ $ flake8 bigscience tests
90
+ $ python setup.py test or pytest
91
+ $ tox
92
+ ```
93
+ To get flake8 and tox, just pip install them into your virtualenv.
94
+
95
+ 6. Commit your changes and push your branch to GitHub:
96
+ ```
97
+ $ git add .
98
+ $ git commit -m "Your detailed description of your changes."
99
+ $ git push origin name-of-your-bugfix-or-feature
100
+ ```
101
+ 7. Submit a pull request through the GitHub website.
102
+
103
+ Pull Request Guidelines
104
+ -----------------------
105
+
106
+ Before you submit a pull request, check that it meets these guidelines:
107
+
108
+ 1. The pull request should include tests.
109
+ 2. If the pull request adds functionality, the docs should be updated.
110
+ Put your new functionality into a function with a docstring, and add
111
+ the feature to the list in README.rst.
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # bigscience
2
+
3
+ [Research workshop on large language models - The Summer of Language Models 21](https://bigscience.huggingface.co/)
4
+
5
+ At the moment we have 2 code repos:
6
+
7
+ 1. https://github.com/bigscience-workshop/Megatron-DeepSpeed - this is our flagship code base
8
+ 2. https://github.com/bigscience-workshop/bigscience - (this repo) for everything else - docs, experiments, etc.
9
+
10
+ Currently, the most active segments of this repo are:
11
+
12
+ - [JZ](./jz/) - Lots of information about our work environment which helps evaluate, plan and get things done
13
+ - [Experiments](./experiments) - many experiments are being done. Documentation, result tables, scripts and logs are all there
14
+ - [Datasets info](./data/)
15
+ - [Train](./train) - all the information about the current trainings (see below for the most important ones)
16
+
17
+ We have READMEs for specific aspects, such as:
18
+ - [hub integration](./tools/README.md)
19
+
20
+
21
+ ## Trainings
22
+
23
+ While we keep detailed chronicles of experiments and findings for some of the main trainings, here is a doc that contains a summary of the most important findings: [Lessons learned](train/lessons-learned.md)
24
+
25
+
26
+ ### Train 1 - 13B - unmodified Megatron gpt2 - baseline
27
+
28
+ * [the full spec and discussions](./train/tr1-13B-base)
29
+ * [the training script](./train/tr1-13B-base/tr1-13B-round1.slurm)
30
+ * checkpoints and logs:
31
+ - [tensorboard](https://huggingface.co/bigscience/tr1-13B-tensorboard/tensorboard)
32
+ - [logs](https://huggingface.co/bigscience/tr1-13B-logs/)
33
+ * [chronicles](./train/tr1-13B-base/chronicles.md)
34
+
35
+ You can watch the training logs live by running this `tail -f` like script over remote log file that gets synced to the hub once an hour:
36
+ ```
37
+ perl -e '$u=shift; $b=0; while(1){($e)=qx[curl -sI $u]=~/content-length: (\d+)/; \
38
+ print qx[curl -sr $b-$e -L $u] if $e>$b; $b=$e; sleep 300}' \
39
+ https://huggingface.co/bigscience/tr1-13B-logs/resolve/main/main_log.txt
40
+
41
+ ```
42
+
43
+ ### Train 3
44
+
45
+ Architecture and scaling baseline runs: no fancy tricks, just GPT2. Here are links to the respective tensorboards:
46
+
47
+ | Size | 1B3 | 760M | 350M | 125M |
48
+ |--------------------- |----- |------ |------ |------ |
49
+ | C4 + low warmup | [a](https://huggingface.co/bigscience/tr3-1B3-modeling-baseline-tensorboard) | [b](https://huggingface.co/bigscience/tr3b-760M-modeling-baseline-tensorboard) | [c](https://huggingface.co/bigscience/tr3c-350M-modeling-baseline-tensorboard) | |
50
+ | OSCAR + low warmup | [f](https://huggingface.co/bigscience/tr3f-1B3-diagnostic2-low-warmup-oscar-tensorboard) | | | |
51
+ | C4 + high warmup | [e](https://huggingface.co/bigscience/tr3e-1B3-diagnostic1-warmup-c4-tensorboard) | | | |
52
+ | OSCAR + high warmup | **[d (current baseline)](https://huggingface.co/bigscience/tr3d-1B3-more-warmup-tensorboard)** | [g](https://huggingface.co/bigscience/tr3g-760M-v2-tensorboard) | [h](https://huggingface.co/bigscience/tr3h-350M-v2-tensorboard) | [i](https://huggingface.co/bigscience/tr3i-125M-v2-tensorboard) |
53
+ | Pile + high warmup | [m](https://huggingface.co/bigscience/tr3m-1B3-pile-tensorboard) | [j](https://huggingface.co/bigscience/tr3j-760M-pile-tensorboard) | [k](https://huggingface.co/bigscience/tr3k-350M-pile-tensorboard) | [l](https://huggingface.co/bigscience/tr3l-125M-pile-tensorboard) |
54
+
55
+
56
+ ### Train 8
57
+
58
+ 104B - unmodified Megatron gpt2 - with extra-wide hidden size to learn how to deal with training instabilities
59
+
60
+ * [the full spec and discussions](./train/tr8-104B-wide)
61
+ * [the training script](./train/tr8-104B-wide/tr8-104B.slurm)
62
+ * checkpoints and logs:
63
+ - [tensorboard](https://huggingface.co/bigscience/tr8-104B-logs/tensorboard)
64
+ - [logs](https://huggingface.co/bigscience/tr8-104B-logs/tree/main/logs)
65
+ * [chronicles](./train/tr8-104B-wide/chronicles.md)
66
+
67
+ You can watch the training logs live by running this `tail -f` like script over remote log file that gets synced to the hub once an hour:
68
+ ```
69
+ perl -e '$u=shift; $b=0; while(1){($e)=qx[curl -sI $u]=~/content-length: (\d+)/; \
70
+ print qx[curl -sr $b-$e -L $u] if $e>$b; $b=$e; sleep 300}' \
71
+ https://cdn-lfs.huggingface.co/bigscience/tr8-104B-logs/b2cc478d5ae7c9ec937ea2db1d2fe09de593fa2ec38c171d6cc5dca094cd79f9
72
+ ```
73
+
74
+ ### Train 11
75
+
76
+ **This is the current main training**
77
+
78
+ tr11-176B-ml
79
+
80
+ * [the full spec and discussions](./train/tr11-176B-ml/)
81
+ * [the training script](./train/tr11-176B-ml/tr11-176B-ml.slurm)
82
+ * checkpoints and logs:
83
+ - [tensorboard](https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard)
84
+ - [logs](https://huggingface.co/bigscience/tr11-176B-ml-logs/tree/main/logs/main)
85
+ * [chronicles-prequel](./train/tr11-176B-ml/chronicles-prequel.md)
86
+ * [chronicles](./train/tr11-176B-ml/chronicles.md)
87
+
88
+ You can watch the training logs live by running this `tail -f` like script over remote log file that gets synced to the hub once an hour:
89
+ ```
90
+ perl -e '$u=shift; $b=0; while(1){($e)=qx[curl -LsI $u]=~/2 200.*?content-length: (\d+)/s; \
91
+ print qx[curl -Lsr $b-$e $u] if $e>$b; $b=$e; sleep 300}' \
92
+ https://huggingface.co/bigscience/tr11-176B-ml-logs/resolve/main/logs/main/main_log.txt
93
+ ```
bigscience/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ """Top-level package for Big Science."""
2
+
3
+ __author__ = """Stas Bekman"""
4
+ __email__ = '[email protected]'
5
+ __version__ = '0.1.0'
bigscience/bigscience.py ADDED
@@ -0,0 +1 @@
 
 
1
+ """Main module."""
evaluation/README.md ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # Evaluation
2
+
3
+ This folder contains scripts and results for intermediate evaluation, mostly based on zero-shot prompting performance. Most are performed with Eleuther AI's [LM eval harness](https://github.com/EleutherAI/lm-evaluation-harness).
4
+
5
+ Evaluated models:
6
+ - BLOOM (tr11 / The `bigscience/bloom` model in 176B / 6B3 / 2B5 / 1B3 / 750M / 350M variants)
7
+ - [13B](https://github.com/bigscience-workshop/bigscience/blob/master/evaluation/Tr1-13B-harness-eval.json)
evaluation/generation/generate.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import datetime
3
+
4
+ import torch
5
+ from transformers import AutoTokenizer, AutoModelForCausalLM
6
+
7
+ def get_args():
8
+ parser = argparse.ArgumentParser()
9
+ parser.add_argument("--checkpoint", type=str, help="Checkpoint path", required=True)
10
+ parser.add_argument("--max-memory-per-gpu", type=str, help="Defines maximum memory allocated to gpu", required=True)
11
+ parser.add_argument("--global-step", type=str, default=None)
12
+ parser.add_argument("--generate-max-length", type=int, default=50, help="max generation length")
13
+ parser.add_argument("--greedy", action="store_true")
14
+ parser.add_argument("--top-k", type=int, default=0)
15
+ parser.add_argument("--top-p", type=float, default=0.)
16
+ parser.add_argument("--offload_folder", type=str, help="offload folder for accelerate", default="./offload")
17
+
18
+ return parser.parse_args()
19
+
20
+ def get_gpus_max_memory(max_memory):
21
+ max_memory = {i: max_memory for i in range(torch.cuda.device_count())}
22
+ return max_memory
23
+
24
+ def generate_from_text(model, text, tokenizer, max_length=200, greedy=False, top_k=0, top_p=0.):
25
+ input_ids = tokenizer.encode(text, return_tensors='pt').to("cuda:0")
26
+ max_length = input_ids.size(-1) + max_length
27
+
28
+ greedy_output = model.generate(
29
+ input_ids.to('cuda:0'),
30
+ max_length=max_length,
31
+ do_sample=not greedy,
32
+ top_k=None if greedy else top_k,
33
+ top_p=None if greedy else top_p
34
+ )
35
+ return tokenizer.decode(greedy_output[0], skip_special_tokens=True)
36
+
37
+ def main():
38
+ args = get_args()
39
+ print("Loading model")
40
+
41
+ tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, padding_side="left")
42
+
43
+ print("Loaded tokenizer!")
44
+ start = datetime.datetime.now()
45
+ model = AutoModelForCausalLM.from_pretrained(
46
+ args.checkpoint,
47
+ device_map="auto",
48
+ max_memory=get_gpus_max_memory(args.max_memory_per_gpu),
49
+ torch_dtype=torch.bfloat16,
50
+ revision="gs{}".format(args.global_step) if args.global_step else None,
51
+ offload_folder=args.offload_folder,
52
+ )
53
+ print(f"Loaded model in {datetime.datetime.now() - start}")
54
+
55
+ texts = []
56
+ while True:
57
+ try:
58
+ dummy = input('''Enter the paragraph (Enter for to validate new input line and Ctrl-c to start generating the prompt):''')
59
+ texts.append(dummy)
60
+ except KeyboardInterrupt:
61
+ text = "\n".join(texts)
62
+ output = generate_from_text(model, text, tokenizer, max_length=args.generate_max_length, greedy=args.greedy, top_k=args.top_k, top_p=args.top_p)
63
+ print(output)
64
+ texts = []
65
+
66
+ if __name__ == "__main__":
67
+ main()
evaluation/results/tr1/Tr1-13B-harness-eval.json ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada": {
4
+ "ppl": 5.020137688328123,
5
+ "ppl_stderr": 0.11575351197990837,
6
+ "acc": 0.634193673588201,
7
+ "acc_stderr": 0.006710403442216892
8
+ },
9
+ "winogrande": {
10
+ "acc": 0.6471981057616417,
11
+ "acc_stderr": 0.013429728101788954
12
+ },
13
+ "hellaswag": {
14
+ "acc": 0.5416251742680741,
15
+ "acc_stderr": 0.004972460206842306,
16
+ "acc_norm": 0.7162915753833897,
17
+ "acc_norm_stderr": 0.004498757194493409
18
+ },
19
+ "piqa": {
20
+ "acc": 0.7769314472252449,
21
+ "acc_stderr": 0.009713057213018522,
22
+ "acc_norm": 0.7878128400435256,
23
+ "acc_norm_stderr": 0.009539299828174046
24
+ },
25
+ "cola": {
26
+ "mcc": 0.05586916675965605,
27
+ "mcc_stderr": 0.034250689348891604
28
+ },
29
+ "mnli": {
30
+ "acc": 0.3959246051961284,
31
+ "acc_stderr": 0.004936609703575665
32
+ },
33
+ "mnli_mismatched": {
34
+ "acc": 0.3984947111472742,
35
+ "acc_stderr": 0.004937784794740595
36
+ },
37
+ "mrpc": {
38
+ "acc": 0.6764705882352942,
39
+ "acc_stderr": 0.023189113109403536,
40
+ "f1": 0.8058823529411765,
41
+ "f1_stderr": 0.016598529068410604
42
+ },
43
+ "rte": {
44
+ "acc": 0.5234657039711191,
45
+ "acc_stderr": 0.03006330041190266
46
+ },
47
+ "qnli": {
48
+ "acc": 0.5171151382024529,
49
+ "acc_stderr": 0.006761445834294947
50
+ },
51
+ "qqp": {
52
+ "acc": 0.36772198862231015,
53
+ "acc_stderr": 0.0023981002797098354,
54
+ "f1": 0.532523819102829,
55
+ "f1_stderr": 0.0025759259415034795
56
+ },
57
+ "sst": {
58
+ "acc": 0.5137614678899083,
59
+ "acc_stderr": 0.01693543564494107
60
+ },
61
+ "wnli": {
62
+ "acc": 0.18309859154929578,
63
+ "acc_stderr": 0.046225147349214284
64
+ },
65
+ "boolq": {
66
+ "acc": 0.5868501529051988,
67
+ "acc_stderr": 0.008612117547803569
68
+ },
69
+ "copa": {
70
+ "acc": 0.88,
71
+ "acc_stderr": 0.03265986323710906
72
+ },
73
+ "multirc": {
74
+ "acc": 0.017838405036726127,
75
+ "acc_stderr": 0.00428993794671089
76
+ },
77
+ "record": {
78
+ "f1": 0.885354285714286,
79
+ "f1_stderr": 0.00314773987203575,
80
+ "em": 0.8783,
81
+ "em_stderr": 0.003269553486028481
82
+ },
83
+ "wic": {
84
+ "acc": 0.49843260188087773,
85
+ "acc_stderr": 0.019810623954060382
86
+ },
87
+ "wsc": {
88
+ "acc": 0.5,
89
+ "acc_stderr": 0.04926646390821466
90
+ },
91
+ "prost": {
92
+ "acc": 0.28047608881298036,
93
+ "acc_stderr": 0.003282038627279345,
94
+ "acc_norm": 0.2830380017079419,
95
+ "acc_norm_stderr": 0.003291119066155946
96
+ },
97
+ "mc_taco": {
98
+ "em": 0.12612612612612611,
99
+ "f1": 0.4965489467730623
100
+ },
101
+ "pubmedqa": {
102
+ "acc": 0.615,
103
+ "acc_stderr": 0.015395194445410805
104
+ },
105
+ "sciq": {
106
+ "acc": 0.895,
107
+ "acc_stderr": 0.009698921026024957,
108
+ "acc_norm": 0.815,
109
+ "acc_norm_stderr": 0.012285191326386693
110
+ },
111
+ "triviaqa": {
112
+ "acc": 0.13294440024750287,
113
+ "acc_stderr": 0.0031921904944669202
114
+ },
115
+ "arc_easy": {
116
+ "acc": 0.6813973063973064,
117
+ "acc_stderr": 0.009560775507673364,
118
+ "acc_norm": 0.6001683501683501,
119
+ "acc_norm_stderr": 0.010051788039412911
120
+ },
121
+ "arc_challenge": {
122
+ "acc": 0.3216723549488055,
123
+ "acc_stderr": 0.013650488084494164,
124
+ "acc_norm": 0.34215017064846415,
125
+ "acc_norm_stderr": 0.013864152159177275
126
+ },
127
+ "logiqa": {
128
+ "acc": 0.23195084485407066,
129
+ "acc_stderr": 0.0165552524979259,
130
+ "acc_norm": 0.2749615975422427,
131
+ "acc_norm_stderr": 0.01751297178222522
132
+ },
133
+ "openbookqa": {
134
+ "acc": 0.294,
135
+ "acc_stderr": 0.020395095484936603,
136
+ "acc_norm": 0.412,
137
+ "acc_norm_stderr": 0.022033677993740865
138
+ },
139
+ "race": {
140
+ "acc": 0.3741626794258373,
141
+ "acc_stderr": 0.014976513181619648
142
+ },
143
+ "headqa": {
144
+ "acc": 0.22283005105762219,
145
+ "acc_stderr": 0.007948594863726302,
146
+ "acc_norm": 0.26258205689277897,
147
+ "acc_norm_stderr": 0.00840494460823324
148
+ },
149
+ "mathqa": {
150
+ "acc": 0.2375209380234506,
151
+ "acc_stderr": 0.0077905030438074,
152
+ "acc_norm": 0.23450586264656617,
153
+ "acc_norm_stderr": 0.007756188894243557
154
+ },
155
+ "webqs": {
156
+ "acc": 0.0265748031496063,
157
+ "acc_stderr": 0.003568875174120304
158
+ },
159
+ "wikitext": {
160
+ "word_perplexity": 12.921754196505068,
161
+ "byte_perplexity": 1.6136995247803747,
162
+ "bits_per_byte": 0.4785293844744369
163
+ }
164
+ }
165
+ }
evaluation/results/tr11/bloom1b3/bslmevalfiles/concat.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import re
4
+ from pathlib import Path
5
+ from re import Pattern
6
+ from typing import List, Dict
7
+
8
+
9
+ def get_args():
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument("--results-dir", required=True, type=Path, help="Path to the list of results")
12
+ parser.add_argument("--concatenate-output-file", required=True, type=Path, help="Path to store the final output file")
13
+ return parser.parse_args()
14
+
15
+ MODEL = "tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500"
16
+ # MODEL = "global_step95000"
17
+ RESULTS_REGEX = re.compile(rf"(eai|bs)_results_lm-eval_{MODEL}_(\d{4}-\d{2}-\d{2}-\d{2}-\d{2}-\d{2})_backup\.json")
18
+ RESULTS_REGEX = re.compile(rf"{MODEL}_*.json")
19
+ #tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-14-10-03-25.json
20
+ def get_all_files_that_match_results_in_folder(root_folder: Path) -> List[Path]:
21
+ json_files = []
22
+ for folder in root_folder.iterdir():
23
+ if folder.is_dir():
24
+ json_files += get_all_files_that_match_results_in_folder(folder)
25
+ else:
26
+ # it's actually a file
27
+ file = folder
28
+
29
+ #match = RESULTS_REGEX.match(file.name)
30
+
31
+ if not str(file.name).endswith("json"):
32
+ continue
33
+ else:
34
+ json_files.append(file)
35
+ return json_files
36
+
37
+ def sort_dict(dictionary: Dict) -> Dict:
38
+ results = {}
39
+
40
+ for key, value in sorted(dictionary.items()):
41
+ new_value = value
42
+
43
+ if isinstance(value, dict):
44
+ new_value = sort_dict(new_value)
45
+ elif isinstance(value, list):
46
+ new_value = sorted(value)
47
+
48
+ results[key] = new_value
49
+
50
+ return results
51
+
52
+ def main():
53
+ args = get_args()
54
+
55
+ # Get all json files
56
+ json_files = get_all_files_that_match_results_in_folder(args.results_dir)
57
+ print("GOT", json_files)
58
+ # Merge all json files
59
+ final_result = {
60
+ "results": {},
61
+ "versions": {}
62
+ }
63
+ for file in json_files:
64
+ with open(file, "r") as fi:
65
+ task_result = json.load(fi)
66
+
67
+ #match = RESULTS_REGEX.match(file.name)
68
+ #assert match is not None
69
+ prefix = "bs" if "bs" in file.name else "eai"#match.group(1)
70
+ datetime_string = file.name[file.name.index("global_step340500_") + len("global_step340500_"):].replace(".json", "")#match.group(2)
71
+
72
+ if prefix == "eai":
73
+ results_key = "results"
74
+ elif prefix == "bs":
75
+ results_key = "table_results"
76
+ else:
77
+ raise ValueError(f"Unsupported key: {prefix}")
78
+
79
+ for key, value in task_result[results_key].items():
80
+ if key not in final_result["results"]:
81
+ final_result["results"][key] = {
82
+ datetime_string: value
83
+ }
84
+ #else:
85
+ # assert datetime_string not in final_result["results"][key]
86
+ # final_result["results"][key][datetime_string] = value
87
+
88
+ for key, value in task_result["versions"].items():
89
+ final_result["versions"][key] = value
90
+
91
+ # We sort dict, better for serialization
92
+ print(final_result)
93
+ final_result = sort_dict(final_result)
94
+
95
+ # Save result
96
+ with open(args.concatenate_output_file, "w") as fo:
97
+ json.dump(final_result, fo, indent=2)
98
+
99
+ pass
100
+
101
+ if __name__ == "__main__":
102
+ main()
103
+
evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-13-19-23-37.json ADDED
@@ -0,0 +1,701 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": [
3
+ {
4
+ "task_name": "qqp",
5
+ "prompt_name": "answer",
6
+ "acc": 0.40558990848379917,
7
+ "fixed_answer_choice_list": [
8
+ "no",
9
+ "yes"
10
+ ],
11
+ "dataset_path": "glue",
12
+ "dataset_name": "qqp",
13
+ "subset": null,
14
+ "prompt_id": "c0182cd1-c7ac-4abe-829f-4651536af951",
15
+ "prompt_jinja": "Can an answer to \"{{question1}}\" also be used to answer \"{{question2}}\"? ||| {{ answer_choices[label] }}",
16
+ "prompt_original_task": false,
17
+ "comment": "",
18
+ "acc_stderr": 0.002441969063495092
19
+ },
20
+ {
21
+ "task_name": "qqp",
22
+ "prompt_name": "answer",
23
+ "acc_norm": 0.36816720257234725,
24
+ "fixed_answer_choice_list": [
25
+ "no",
26
+ "yes"
27
+ ],
28
+ "dataset_path": "glue",
29
+ "dataset_name": "qqp",
30
+ "subset": null,
31
+ "prompt_id": "c0182cd1-c7ac-4abe-829f-4651536af951",
32
+ "prompt_jinja": "Can an answer to \"{{question1}}\" also be used to answer \"{{question2}}\"? ||| {{ answer_choices[label] }}",
33
+ "prompt_original_task": false,
34
+ "comment": "",
35
+ "acc_norm_stderr": 0.002398706610614492
36
+ },
37
+ {
38
+ "task_name": "qqp",
39
+ "prompt_name": "duplicate",
40
+ "acc": 0.3788523373732377,
41
+ "fixed_answer_choice_list": [
42
+ "no",
43
+ "yes"
44
+ ],
45
+ "dataset_path": "glue",
46
+ "dataset_name": "qqp",
47
+ "subset": null,
48
+ "prompt_id": "fd244bd3-ca3b-4e4f-9722-fd006c50e157",
49
+ "prompt_jinja": "I received the questions \"{{question1}}\" and \"{{question2}}\". Are they duplicates? ||| {{ answer_choices[label] }}",
50
+ "prompt_original_task": true,
51
+ "comment": "",
52
+ "acc_stderr": 0.002412603277723025
53
+ },
54
+ {
55
+ "task_name": "qqp",
56
+ "prompt_name": "duplicate",
57
+ "acc_norm": 0.36816720257234725,
58
+ "fixed_answer_choice_list": [
59
+ "no",
60
+ "yes"
61
+ ],
62
+ "dataset_path": "glue",
63
+ "dataset_name": "qqp",
64
+ "subset": null,
65
+ "prompt_id": "fd244bd3-ca3b-4e4f-9722-fd006c50e157",
66
+ "prompt_jinja": "I received the questions \"{{question1}}\" and \"{{question2}}\". Are they duplicates? ||| {{ answer_choices[label] }}",
67
+ "prompt_original_task": true,
68
+ "comment": "",
69
+ "acc_norm_stderr": 0.002398706610614492
70
+ },
71
+ {
72
+ "task_name": "qqp",
73
+ "prompt_name": "duplicate or not",
74
+ "acc": 0.5761315854563444,
75
+ "fixed_answer_choice_list": [
76
+ "not duplicates",
77
+ "duplicates"
78
+ ],
79
+ "dataset_path": "glue",
80
+ "dataset_name": "qqp",
81
+ "subset": null,
82
+ "prompt_id": "94972071-a726-42a3-a726-13f414b65e67",
83
+ "prompt_jinja": "{{question1}}\n{{question2}}\nPick one: These questions are \"{{\"duplicates\"}}\" or \"{{\"not duplicates\"}}\".\n|||\n{{ answer_choices[label] }}",
84
+ "prompt_original_task": true,
85
+ "comment": "",
86
+ "acc_stderr": 0.0024577056660753426
87
+ },
88
+ {
89
+ "task_name": "qqp",
90
+ "prompt_name": "duplicate or not",
91
+ "acc_norm": 0.6318327974276527,
92
+ "fixed_answer_choice_list": [
93
+ "not duplicates",
94
+ "duplicates"
95
+ ],
96
+ "dataset_path": "glue",
97
+ "dataset_name": "qqp",
98
+ "subset": null,
99
+ "prompt_id": "94972071-a726-42a3-a726-13f414b65e67",
100
+ "prompt_jinja": "{{question1}}\n{{question2}}\nPick one: These questions are \"{{\"duplicates\"}}\" or \"{{\"not duplicates\"}}\".\n|||\n{{ answer_choices[label] }}",
101
+ "prompt_original_task": true,
102
+ "comment": "",
103
+ "acc_norm_stderr": 0.002398706610614492
104
+ },
105
+ {
106
+ "task_name": "qqp",
107
+ "prompt_name": "meaning",
108
+ "acc": 0.3681424684640119,
109
+ "fixed_answer_choice_list": [
110
+ "No",
111
+ "Yes"
112
+ ],
113
+ "dataset_path": "glue",
114
+ "dataset_name": "qqp",
115
+ "subset": null,
116
+ "prompt_id": "c0724198-97e7-44a1-89d8-c51e97ce0b04",
117
+ "prompt_jinja": "Question 1: {{question1}}\nQuestion 2: {{question2}}\n\nDo these two questions convey the same meaning? Yes or no? ||| {{answer_choices[label]}}",
118
+ "prompt_original_task": true,
119
+ "comment": "",
120
+ "acc_stderr": 0.0023986729832071916
121
+ },
122
+ {
123
+ "task_name": "qqp",
124
+ "prompt_name": "meaning",
125
+ "acc_norm": 0.36816720257234725,
126
+ "fixed_answer_choice_list": [
127
+ "No",
128
+ "Yes"
129
+ ],
130
+ "dataset_path": "glue",
131
+ "dataset_name": "qqp",
132
+ "subset": null,
133
+ "prompt_id": "c0724198-97e7-44a1-89d8-c51e97ce0b04",
134
+ "prompt_jinja": "Question 1: {{question1}}\nQuestion 2: {{question2}}\n\nDo these two questions convey the same meaning? Yes or no? ||| {{answer_choices[label]}}",
135
+ "prompt_original_task": true,
136
+ "comment": "",
137
+ "acc_norm_stderr": 0.002398706610614492
138
+ },
139
+ {
140
+ "task_name": "qqp",
141
+ "prompt_name": "quora",
142
+ "acc": 0.36821667078901804,
143
+ "fixed_answer_choice_list": [
144
+ "no",
145
+ "yes"
146
+ ],
147
+ "dataset_path": "glue",
148
+ "dataset_name": "qqp",
149
+ "subset": null,
150
+ "prompt_id": "8e711799-a57c-4941-833b-466bedfb80ad",
151
+ "prompt_jinja": "I'm an administrator on the website Quora. There are two posts, one that asks \"{{question1}}\" and another that asks \"{{question2}}\". I can merge questions if they are asking the same thing. Can I merge these two questions? ||| {{ answer_choices[label] }}",
152
+ "prompt_original_task": true,
153
+ "comment": "",
154
+ "acc_stderr": 0.0023987738450886556
155
+ },
156
+ {
157
+ "task_name": "qqp",
158
+ "prompt_name": "quora",
159
+ "acc_norm": 0.36816720257234725,
160
+ "fixed_answer_choice_list": [
161
+ "no",
162
+ "yes"
163
+ ],
164
+ "dataset_path": "glue",
165
+ "dataset_name": "qqp",
166
+ "subset": null,
167
+ "prompt_id": "8e711799-a57c-4941-833b-466bedfb80ad",
168
+ "prompt_jinja": "I'm an administrator on the website Quora. There are two posts, one that asks \"{{question1}}\" and another that asks \"{{question2}}\". I can merge questions if they are asking the same thing. Can I merge these two questions? ||| {{ answer_choices[label] }}",
169
+ "prompt_original_task": true,
170
+ "comment": "",
171
+ "acc_norm_stderr": 0.002398706610614492
172
+ },
173
+ {
174
+ "task_name": "qqp",
175
+ "prompt_name": "same thing",
176
+ "acc": 0.5099431115508286,
177
+ "fixed_answer_choice_list": [
178
+ "no",
179
+ "yes"
180
+ ],
181
+ "dataset_path": "glue",
182
+ "dataset_name": "qqp",
183
+ "subset": null,
184
+ "prompt_id": "a45ad5cd-a3ba-4ab2-a728-a9ea0f27102b",
185
+ "prompt_jinja": "Are the questions \"{{question1}}\" and \"{{question2}}\" asking the same thing? ||| {{ answer_choices[label] }}",
186
+ "prompt_original_task": true,
187
+ "comment": "",
188
+ "acc_stderr": 0.002486208885430481
189
+ },
190
+ {
191
+ "task_name": "qqp",
192
+ "prompt_name": "same thing",
193
+ "acc_norm": 0.36816720257234725,
194
+ "fixed_answer_choice_list": [
195
+ "no",
196
+ "yes"
197
+ ],
198
+ "dataset_path": "glue",
199
+ "dataset_name": "qqp",
200
+ "subset": null,
201
+ "prompt_id": "a45ad5cd-a3ba-4ab2-a728-a9ea0f27102b",
202
+ "prompt_jinja": "Are the questions \"{{question1}}\" and \"{{question2}}\" asking the same thing? ||| {{ answer_choices[label] }}",
203
+ "prompt_original_task": true,
204
+ "comment": "",
205
+ "acc_norm_stderr": 0.002398706610614492
206
+ },
207
+ {
208
+ "task_name": "rte",
209
+ "prompt_name": "does the claim\u2026 follow the fact\u2026",
210
+ "acc": 0.4729241877256318,
211
+ "fixed_answer_choice_list": [
212
+ "yes",
213
+ "no"
214
+ ],
215
+ "dataset_path": "glue",
216
+ "dataset_name": "rte",
217
+ "subset": null,
218
+ "prompt_id": "4ee6ff27-de63-4e7b-a9d4-82a17eba407a",
219
+ "prompt_jinja": "Does the claim \"{{sentence2}}\" follow from the fact that \"{{sentence1}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
220
+ "prompt_original_task": true,
221
+ "comment": "",
222
+ "acc_stderr": 0.030052303463143706
223
+ },
224
+ {
225
+ "task_name": "rte",
226
+ "prompt_name": "does the claim\u2026 follow the fact\u2026",
227
+ "acc_norm": 0.5270758122743683,
228
+ "fixed_answer_choice_list": [
229
+ "yes",
230
+ "no"
231
+ ],
232
+ "dataset_path": "glue",
233
+ "dataset_name": "rte",
234
+ "subset": null,
235
+ "prompt_id": "4ee6ff27-de63-4e7b-a9d4-82a17eba407a",
236
+ "prompt_jinja": "Does the claim \"{{sentence2}}\" follow from the fact that \"{{sentence1}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
237
+ "prompt_original_task": true,
238
+ "comment": "",
239
+ "acc_norm_stderr": 0.0300523034631437
240
+ },
241
+ {
242
+ "task_name": "rte",
243
+ "prompt_name": "entailment explained",
244
+ "acc": 0.49458483754512633,
245
+ "fixed_answer_choice_list": [
246
+ "entailment",
247
+ "not entailment"
248
+ ],
249
+ "dataset_path": "glue",
250
+ "dataset_name": "rte",
251
+ "subset": null,
252
+ "prompt_id": "9e2b4267-ec23-44c8-b82a-107e2c890fec",
253
+ "prompt_jinja": "We say that one sentence \"{{\"entails\"}}\" another sentence when the first sentence implies the second sentence. Consider the following two sentences:\n{{sentence1}}\n{{sentence2}}\nIs the relationship from the first to the second sentence \"{{\"entailment\"}}\" or \"{{\"not entailment\"}}\"?\n|||\n{{answer_choices[label]}}",
254
+ "prompt_original_task": true,
255
+ "comment": "",
256
+ "acc_stderr": 0.030094698123239966
257
+ },
258
+ {
259
+ "task_name": "rte",
260
+ "prompt_name": "entailment explained",
261
+ "acc_norm": 0.4729241877256318,
262
+ "fixed_answer_choice_list": [
263
+ "entailment",
264
+ "not entailment"
265
+ ],
266
+ "dataset_path": "glue",
267
+ "dataset_name": "rte",
268
+ "subset": null,
269
+ "prompt_id": "9e2b4267-ec23-44c8-b82a-107e2c890fec",
270
+ "prompt_jinja": "We say that one sentence \"{{\"entails\"}}\" another sentence when the first sentence implies the second sentence. Consider the following two sentences:\n{{sentence1}}\n{{sentence2}}\nIs the relationship from the first to the second sentence \"{{\"entailment\"}}\" or \"{{\"not entailment\"}}\"?\n|||\n{{answer_choices[label]}}",
271
+ "prompt_original_task": true,
272
+ "comment": "",
273
+ "acc_norm_stderr": 0.0300523034631437
274
+ },
275
+ {
276
+ "task_name": "rte",
277
+ "prompt_name": "imply",
278
+ "acc": 0.48375451263537905,
279
+ "fixed_answer_choice_list": [
280
+ "yes",
281
+ "no"
282
+ ],
283
+ "dataset_path": "glue",
284
+ "dataset_name": "rte",
285
+ "subset": null,
286
+ "prompt_id": "c8dfc879-40f2-412d-be1e-4cd70107f6e6",
287
+ "prompt_jinja": "Does \"{{sentence1}}\" imply that \"{{sentence2}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
288
+ "prompt_original_task": true,
289
+ "comment": "",
290
+ "acc_stderr": 0.030080573208738064
291
+ },
292
+ {
293
+ "task_name": "rte",
294
+ "prompt_name": "imply",
295
+ "acc_norm": 0.5270758122743683,
296
+ "fixed_answer_choice_list": [
297
+ "yes",
298
+ "no"
299
+ ],
300
+ "dataset_path": "glue",
301
+ "dataset_name": "rte",
302
+ "subset": null,
303
+ "prompt_id": "c8dfc879-40f2-412d-be1e-4cd70107f6e6",
304
+ "prompt_jinja": "Does \"{{sentence1}}\" imply that \"{{sentence2}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
305
+ "prompt_original_task": true,
306
+ "comment": "",
307
+ "acc_norm_stderr": 0.0300523034631437
308
+ },
309
+ {
310
+ "task_name": "rte",
311
+ "prompt_name": "imply separated",
312
+ "acc": 0.45126353790613716,
313
+ "fixed_answer_choice_list": [
314
+ "yes",
315
+ "no"
316
+ ],
317
+ "dataset_path": "glue",
318
+ "dataset_name": "rte",
319
+ "subset": null,
320
+ "prompt_id": "f56ffced-9b16-431a-8a17-501e63cddf73",
321
+ "prompt_jinja": "{{sentence1}}\nDoes this imply\n{{sentence2}}\nPlease answer {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
322
+ "prompt_original_task": true,
323
+ "comment": "",
324
+ "acc_stderr": 0.029953149241808943
325
+ },
326
+ {
327
+ "task_name": "rte",
328
+ "prompt_name": "imply separated",
329
+ "acc_norm": 0.5270758122743683,
330
+ "fixed_answer_choice_list": [
331
+ "yes",
332
+ "no"
333
+ ],
334
+ "dataset_path": "glue",
335
+ "dataset_name": "rte",
336
+ "subset": null,
337
+ "prompt_id": "f56ffced-9b16-431a-8a17-501e63cddf73",
338
+ "prompt_jinja": "{{sentence1}}\nDoes this imply\n{{sentence2}}\nPlease answer {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
339
+ "prompt_original_task": true,
340
+ "comment": "",
341
+ "acc_norm_stderr": 0.0300523034631437
342
+ },
343
+ {
344
+ "task_name": "rte",
345
+ "prompt_name": "mean",
346
+ "acc": 0.48014440433212996,
347
+ "fixed_answer_choice_list": [
348
+ "yes",
349
+ "no"
350
+ ],
351
+ "dataset_path": "glue",
352
+ "dataset_name": "rte",
353
+ "subset": null,
354
+ "prompt_id": "03a7ae07-5ddd-46c4-92f3-2152223d44ec",
355
+ "prompt_jinja": "{{sentence1}}\nDoes this mean that \"{{sentence2}}\" is true? {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
356
+ "prompt_original_task": true,
357
+ "comment": "",
358
+ "acc_stderr": 0.030072723167317194
359
+ },
360
+ {
361
+ "task_name": "rte",
362
+ "prompt_name": "mean",
363
+ "acc_norm": 0.5270758122743683,
364
+ "fixed_answer_choice_list": [
365
+ "yes",
366
+ "no"
367
+ ],
368
+ "dataset_path": "glue",
369
+ "dataset_name": "rte",
370
+ "subset": null,
371
+ "prompt_id": "03a7ae07-5ddd-46c4-92f3-2152223d44ec",
372
+ "prompt_jinja": "{{sentence1}}\nDoes this mean that \"{{sentence2}}\" is true? {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
373
+ "prompt_original_task": true,
374
+ "comment": "",
375
+ "acc_norm_stderr": 0.0300523034631437
376
+ },
377
+ {
378
+ "task_name": "sst",
379
+ "prompt_name": "following positive negative",
380
+ "acc": 0.8061926605504587,
381
+ "fixed_answer_choice_list": [
382
+ "negative",
383
+ "positive"
384
+ ],
385
+ "dataset_path": "glue",
386
+ "dataset_name": "sst2",
387
+ "subset": null,
388
+ "prompt_id": "63c6b2be-8ecd-42ad-88c7-0d1dc1a8323a",
389
+ "prompt_jinja": "Does the following sentence have a {{\"positive\"}} or {{\"negative\"}} sentiment?\n{{sentence}}\n|||\n{{ answer_choices[label] }}",
390
+ "prompt_original_task": true,
391
+ "comment": "",
392
+ "acc_stderr": 0.013393542261521812
393
+ },
394
+ {
395
+ "task_name": "sst",
396
+ "prompt_name": "following positive negative",
397
+ "acc_norm": 0.8061926605504587,
398
+ "fixed_answer_choice_list": [
399
+ "negative",
400
+ "positive"
401
+ ],
402
+ "dataset_path": "glue",
403
+ "dataset_name": "sst2",
404
+ "subset": null,
405
+ "prompt_id": "63c6b2be-8ecd-42ad-88c7-0d1dc1a8323a",
406
+ "prompt_jinja": "Does the following sentence have a {{\"positive\"}} or {{\"negative\"}} sentiment?\n{{sentence}}\n|||\n{{ answer_choices[label] }}",
407
+ "prompt_original_task": true,
408
+ "comment": "",
409
+ "acc_norm_stderr": 0.013393542261521812
410
+ },
411
+ {
412
+ "task_name": "sst",
413
+ "prompt_name": "happy or mad",
414
+ "acc": 0.5091743119266054,
415
+ "fixed_answer_choice_list": [
416
+ "bad",
417
+ "good"
418
+ ],
419
+ "dataset_path": "glue",
420
+ "dataset_name": "sst2",
421
+ "subset": null,
422
+ "prompt_id": "6dd74cd5-e074-4612-9e96-c17ca88c3bc4",
423
+ "prompt_jinja": "Someone sent me an email with the sentence \"{{sentence}}\". Do you think they are feeling {{\"good\"}} or {{\"bad\"}}? ||| {{ answer_choices[label] }}",
424
+ "prompt_original_task": true,
425
+ "comment": "",
426
+ "acc_stderr": 0.01693900152535154
427
+ },
428
+ {
429
+ "task_name": "sst",
430
+ "prompt_name": "happy or mad",
431
+ "acc_norm": 0.5091743119266054,
432
+ "fixed_answer_choice_list": [
433
+ "bad",
434
+ "good"
435
+ ],
436
+ "dataset_path": "glue",
437
+ "dataset_name": "sst2",
438
+ "subset": null,
439
+ "prompt_id": "6dd74cd5-e074-4612-9e96-c17ca88c3bc4",
440
+ "prompt_jinja": "Someone sent me an email with the sentence \"{{sentence}}\". Do you think they are feeling {{\"good\"}} or {{\"bad\"}}? ||| {{ answer_choices[label] }}",
441
+ "prompt_original_task": true,
442
+ "comment": "",
443
+ "acc_norm_stderr": 0.01693900152535154
444
+ },
445
+ {
446
+ "task_name": "sst",
447
+ "prompt_name": "positive negative after",
448
+ "acc": 0.6204128440366973,
449
+ "fixed_answer_choice_list": [
450
+ "negative",
451
+ "positive"
452
+ ],
453
+ "dataset_path": "glue",
454
+ "dataset_name": "sst2",
455
+ "subset": null,
456
+ "prompt_id": "11d1c505-9232-4c35-82a4-4c3642843e2e",
457
+ "prompt_jinja": "{{sentence}}\nQuestion: Was that sentence {{\"positive\"}} or {{\"negative\"}}? Answer: ||| {{ answer_choices[label] }}",
458
+ "prompt_original_task": true,
459
+ "comment": "",
460
+ "acc_stderr": 0.016443227556688766
461
+ },
462
+ {
463
+ "task_name": "sst",
464
+ "prompt_name": "positive negative after",
465
+ "acc_norm": 0.6204128440366973,
466
+ "fixed_answer_choice_list": [
467
+ "negative",
468
+ "positive"
469
+ ],
470
+ "dataset_path": "glue",
471
+ "dataset_name": "sst2",
472
+ "subset": null,
473
+ "prompt_id": "11d1c505-9232-4c35-82a4-4c3642843e2e",
474
+ "prompt_jinja": "{{sentence}}\nQuestion: Was that sentence {{\"positive\"}} or {{\"negative\"}}? Answer: ||| {{ answer_choices[label] }}",
475
+ "prompt_original_task": true,
476
+ "comment": "",
477
+ "acc_norm_stderr": 0.016443227556688766
478
+ },
479
+ {
480
+ "task_name": "sst",
481
+ "prompt_name": "review",
482
+ "acc": 0.5091743119266054,
483
+ "fixed_answer_choice_list": [
484
+ "negative",
485
+ "positive"
486
+ ],
487
+ "dataset_path": "glue",
488
+ "dataset_name": "sst2",
489
+ "subset": null,
490
+ "prompt_id": "228fcae7-7f4c-4e3c-9ac4-e49b26bc103d",
491
+ "prompt_jinja": "I'm reading a review that says \"{{sentence}}\".\n\nDo you think the review is {{\"positive\"}} or {{\"negative\"}}? ||| {{ answer_choices[label] }}",
492
+ "prompt_original_task": true,
493
+ "comment": "",
494
+ "acc_stderr": 0.01693900152535154
495
+ },
496
+ {
497
+ "task_name": "sst",
498
+ "prompt_name": "review",
499
+ "acc_norm": 0.5091743119266054,
500
+ "fixed_answer_choice_list": [
501
+ "negative",
502
+ "positive"
503
+ ],
504
+ "dataset_path": "glue",
505
+ "dataset_name": "sst2",
506
+ "subset": null,
507
+ "prompt_id": "228fcae7-7f4c-4e3c-9ac4-e49b26bc103d",
508
+ "prompt_jinja": "I'm reading a review that says \"{{sentence}}\".\n\nDo you think the review is {{\"positive\"}} or {{\"negative\"}}? ||| {{ answer_choices[label] }}",
509
+ "prompt_original_task": true,
510
+ "comment": "",
511
+ "acc_norm_stderr": 0.01693900152535154
512
+ },
513
+ {
514
+ "task_name": "sst",
515
+ "prompt_name": "said",
516
+ "acc": 0.4908256880733945,
517
+ "fixed_answer_choice_list": [
518
+ "sad",
519
+ "happy"
520
+ ],
521
+ "dataset_path": "glue",
522
+ "dataset_name": "sst2",
523
+ "subset": null,
524
+ "prompt_id": "5aa0cea9-0f8d-454d-b25b-b0d4cda273b8",
525
+ "prompt_jinja": "Someone just said to me \"{{sentence}}\".\n\nDo you think they are {{\"sad\"}} or {{\"happy\"}}? ||| {{ answer_choices[label] }}",
526
+ "prompt_original_task": true,
527
+ "comment": "",
528
+ "acc_stderr": 0.01693900152535154
529
+ },
530
+ {
531
+ "task_name": "sst",
532
+ "prompt_name": "said",
533
+ "acc_norm": 0.5091743119266054,
534
+ "fixed_answer_choice_list": [
535
+ "sad",
536
+ "happy"
537
+ ],
538
+ "dataset_path": "glue",
539
+ "dataset_name": "sst2",
540
+ "subset": null,
541
+ "prompt_id": "5aa0cea9-0f8d-454d-b25b-b0d4cda273b8",
542
+ "prompt_jinja": "Someone just said to me \"{{sentence}}\".\n\nDo you think they are {{\"sad\"}} or {{\"happy\"}}? ||| {{ answer_choices[label] }}",
543
+ "prompt_original_task": true,
544
+ "comment": "",
545
+ "acc_norm_stderr": 0.01693900152535154
546
+ }
547
+ ],
548
+ "versions": {
549
+ "qqp+answer": 0,
550
+ "qqp+duplicate": 0,
551
+ "qqp+duplicate or not": 0,
552
+ "qqp+meaning": 0,
553
+ "qqp+quora": 0,
554
+ "qqp+same thing": 0,
555
+ "rte+does the claim\u2026 follow the fact\u2026": 0,
556
+ "rte+entailment explained": 0,
557
+ "rte+imply": 0,
558
+ "rte+imply separated": 0,
559
+ "rte+mean": 0,
560
+ "sst+following positive negative": 0,
561
+ "sst+happy or mad": 0,
562
+ "sst+positive negative after": 0,
563
+ "sst+review": 0,
564
+ "sst+said": 0
565
+ },
566
+ "table_results": {
567
+ "qqp+answer": {
568
+ "task_name": "qqp",
569
+ "prompt_name": "answer",
570
+ "acc": 0.40558990848379917,
571
+ "acc_stderr": 0.002441969063495092,
572
+ "acc_norm": 0.36816720257234725,
573
+ "acc_norm_stderr": 0.002398706610614492
574
+ },
575
+ "qqp+duplicate": {
576
+ "task_name": "qqp",
577
+ "prompt_name": "duplicate",
578
+ "acc": 0.3788523373732377,
579
+ "acc_stderr": 0.002412603277723025,
580
+ "acc_norm": 0.36816720257234725,
581
+ "acc_norm_stderr": 0.002398706610614492
582
+ },
583
+ "qqp+duplicate or not": {
584
+ "task_name": "qqp",
585
+ "prompt_name": "duplicate or not",
586
+ "acc": 0.5761315854563444,
587
+ "acc_stderr": 0.0024577056660753426,
588
+ "acc_norm": 0.6318327974276527,
589
+ "acc_norm_stderr": 0.002398706610614492
590
+ },
591
+ "qqp+meaning": {
592
+ "task_name": "qqp",
593
+ "prompt_name": "meaning",
594
+ "acc": 0.3681424684640119,
595
+ "acc_stderr": 0.0023986729832071916,
596
+ "acc_norm": 0.36816720257234725,
597
+ "acc_norm_stderr": 0.002398706610614492
598
+ },
599
+ "qqp+quora": {
600
+ "task_name": "qqp",
601
+ "prompt_name": "quora",
602
+ "acc": 0.36821667078901804,
603
+ "acc_stderr": 0.0023987738450886556,
604
+ "acc_norm": 0.36816720257234725,
605
+ "acc_norm_stderr": 0.002398706610614492
606
+ },
607
+ "qqp+same thing": {
608
+ "task_name": "qqp",
609
+ "prompt_name": "same thing",
610
+ "acc": 0.5099431115508286,
611
+ "acc_stderr": 0.002486208885430481,
612
+ "acc_norm": 0.36816720257234725,
613
+ "acc_norm_stderr": 0.002398706610614492
614
+ },
615
+ "rte+does the claim\u2026 follow the fact\u2026": {
616
+ "task_name": "rte",
617
+ "prompt_name": "does the claim\u2026 follow the fact\u2026",
618
+ "acc": 0.4729241877256318,
619
+ "acc_stderr": 0.030052303463143706,
620
+ "acc_norm": 0.5270758122743683,
621
+ "acc_norm_stderr": 0.0300523034631437
622
+ },
623
+ "rte+entailment explained": {
624
+ "task_name": "rte",
625
+ "prompt_name": "entailment explained",
626
+ "acc": 0.49458483754512633,
627
+ "acc_stderr": 0.030094698123239966,
628
+ "acc_norm": 0.4729241877256318,
629
+ "acc_norm_stderr": 0.0300523034631437
630
+ },
631
+ "rte+imply": {
632
+ "task_name": "rte",
633
+ "prompt_name": "imply",
634
+ "acc": 0.48375451263537905,
635
+ "acc_stderr": 0.030080573208738064,
636
+ "acc_norm": 0.5270758122743683,
637
+ "acc_norm_stderr": 0.0300523034631437
638
+ },
639
+ "rte+imply separated": {
640
+ "task_name": "rte",
641
+ "prompt_name": "imply separated",
642
+ "acc": 0.45126353790613716,
643
+ "acc_stderr": 0.029953149241808943,
644
+ "acc_norm": 0.5270758122743683,
645
+ "acc_norm_stderr": 0.0300523034631437
646
+ },
647
+ "rte+mean": {
648
+ "task_name": "rte",
649
+ "prompt_name": "mean",
650
+ "acc": 0.48014440433212996,
651
+ "acc_stderr": 0.030072723167317194,
652
+ "acc_norm": 0.5270758122743683,
653
+ "acc_norm_stderr": 0.0300523034631437
654
+ },
655
+ "sst+following positive negative": {
656
+ "task_name": "sst",
657
+ "prompt_name": "following positive negative",
658
+ "acc": 0.8061926605504587,
659
+ "acc_stderr": 0.013393542261521812,
660
+ "acc_norm": 0.8061926605504587,
661
+ "acc_norm_stderr": 0.013393542261521812
662
+ },
663
+ "sst+happy or mad": {
664
+ "task_name": "sst",
665
+ "prompt_name": "happy or mad",
666
+ "acc": 0.5091743119266054,
667
+ "acc_stderr": 0.01693900152535154,
668
+ "acc_norm": 0.5091743119266054,
669
+ "acc_norm_stderr": 0.01693900152535154
670
+ },
671
+ "sst+positive negative after": {
672
+ "task_name": "sst",
673
+ "prompt_name": "positive negative after",
674
+ "acc": 0.6204128440366973,
675
+ "acc_stderr": 0.016443227556688766,
676
+ "acc_norm": 0.6204128440366973,
677
+ "acc_norm_stderr": 0.016443227556688766
678
+ },
679
+ "sst+review": {
680
+ "task_name": "sst",
681
+ "prompt_name": "review",
682
+ "acc": 0.5091743119266054,
683
+ "acc_stderr": 0.01693900152535154,
684
+ "acc_norm": 0.5091743119266054,
685
+ "acc_norm_stderr": 0.01693900152535154
686
+ },
687
+ "sst+said": {
688
+ "task_name": "sst",
689
+ "prompt_name": "said",
690
+ "acc": 0.4908256880733945,
691
+ "acc_stderr": 0.01693900152535154,
692
+ "acc_norm": 0.5091743119266054,
693
+ "acc_norm_stderr": 0.01693900152535154
694
+ }
695
+ },
696
+ "config": {
697
+ "adaptive_seq_len": true,
698
+ "num_fewshot": 0,
699
+ "bootstrap_iters": 100000
700
+ }
701
+ }
evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-14-10-03-25.json ADDED
@@ -0,0 +1,2169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": [
3
+ {
4
+ "task_name": "wic",
5
+ "prompt_name": "GPT-3-prompt",
6
+ "acc": 0.5,
7
+ "fixed_answer_choice_list": [
8
+ "No",
9
+ "Yes"
10
+ ],
11
+ "dataset_path": "super_glue",
12
+ "dataset_name": "wic",
13
+ "subset": null,
14
+ "prompt_id": "c3a0a5d8-cfe9-4a7f-8a3c-3c526e0ad0c6",
15
+ "prompt_jinja": "{{sentence1}}\n{{sentence2}}\nQuestion: Is the word '{{word}}' used in the same sense in the two sentences above?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
16
+ "prompt_original_task": true,
17
+ "comment": "",
18
+ "acc_stderr": 0.01981072129375818
19
+ },
20
+ {
21
+ "task_name": "wic",
22
+ "prompt_name": "GPT-3-prompt",
23
+ "acc_norm": 0.5,
24
+ "fixed_answer_choice_list": [
25
+ "No",
26
+ "Yes"
27
+ ],
28
+ "dataset_path": "super_glue",
29
+ "dataset_name": "wic",
30
+ "subset": null,
31
+ "prompt_id": "c3a0a5d8-cfe9-4a7f-8a3c-3c526e0ad0c6",
32
+ "prompt_jinja": "{{sentence1}}\n{{sentence2}}\nQuestion: Is the word '{{word}}' used in the same sense in the two sentences above?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
33
+ "prompt_original_task": true,
34
+ "comment": "",
35
+ "acc_norm_stderr": 0.01981072129375818
36
+ },
37
+ {
38
+ "task_name": "wic",
39
+ "prompt_name": "GPT-3-prompt-with-label",
40
+ "acc": 0.49216300940438873,
41
+ "fixed_answer_choice_list": [
42
+ "No",
43
+ "Yes"
44
+ ],
45
+ "dataset_path": "super_glue",
46
+ "dataset_name": "wic",
47
+ "subset": null,
48
+ "prompt_id": "d9e1db2a-ab0b-4621-bb41-01d5788d3873",
49
+ "prompt_jinja": "{{sentence1}}\n{{sentence2}}\nQuestion: Is the word '{{word}}' used in the same sense in the two sentences above? Yes, No?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
50
+ "prompt_original_task": true,
51
+ "comment": "",
52
+ "acc_stderr": 0.019808287657813832
53
+ },
54
+ {
55
+ "task_name": "wic",
56
+ "prompt_name": "GPT-3-prompt-with-label",
57
+ "acc_norm": 0.5,
58
+ "fixed_answer_choice_list": [
59
+ "No",
60
+ "Yes"
61
+ ],
62
+ "dataset_path": "super_glue",
63
+ "dataset_name": "wic",
64
+ "subset": null,
65
+ "prompt_id": "d9e1db2a-ab0b-4621-bb41-01d5788d3873",
66
+ "prompt_jinja": "{{sentence1}}\n{{sentence2}}\nQuestion: Is the word '{{word}}' used in the same sense in the two sentences above? Yes, No?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
67
+ "prompt_original_task": true,
68
+ "comment": "",
69
+ "acc_norm_stderr": 0.01981072129375818
70
+ },
71
+ {
72
+ "task_name": "wic",
73
+ "prompt_name": "affirmation_true_or_false",
74
+ "acc": 0.5,
75
+ "fixed_answer_choice_list": [
76
+ "False",
77
+ "True"
78
+ ],
79
+ "dataset_path": "super_glue",
80
+ "dataset_name": "wic",
81
+ "subset": null,
82
+ "prompt_id": "725b5ed0-7728-4890-95a4-a74cb7ae1bb4",
83
+ "prompt_jinja": "Sentence A: {{sentence1}}\nSentence B: {{sentence2}}\n\n\"{{word}}\" has a similar meaning in sentences A and B. True or False?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
84
+ "prompt_original_task": true,
85
+ "comment": "",
86
+ "acc_stderr": 0.01981072129375818
87
+ },
88
+ {
89
+ "task_name": "wic",
90
+ "prompt_name": "affirmation_true_or_false",
91
+ "acc_norm": 0.5078369905956113,
92
+ "fixed_answer_choice_list": [
93
+ "False",
94
+ "True"
95
+ ],
96
+ "dataset_path": "super_glue",
97
+ "dataset_name": "wic",
98
+ "subset": null,
99
+ "prompt_id": "725b5ed0-7728-4890-95a4-a74cb7ae1bb4",
100
+ "prompt_jinja": "Sentence A: {{sentence1}}\nSentence B: {{sentence2}}\n\n\"{{word}}\" has a similar meaning in sentences A and B. True or False?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
101
+ "prompt_original_task": true,
102
+ "comment": "",
103
+ "acc_norm_stderr": 0.019808287657813832
104
+ },
105
+ {
106
+ "task_name": "wic",
107
+ "prompt_name": "grammar_homework",
108
+ "acc": 0.5094043887147336,
109
+ "fixed_answer_choice_list": [
110
+ "No",
111
+ "Yes"
112
+ ],
113
+ "dataset_path": "super_glue",
114
+ "dataset_name": "wic",
115
+ "subset": null,
116
+ "prompt_id": "611d13dc-d414-4b9b-9204-e4f325e859e7",
117
+ "prompt_jinja": "Homework\n\nDecide whether the word \"{{word}}\" is used with the same meaning in the two following sentences. Answer by yes or no.\n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
118
+ "prompt_original_task": true,
119
+ "comment": "",
120
+ "acc_stderr": 0.019807216763271497
121
+ },
122
+ {
123
+ "task_name": "wic",
124
+ "prompt_name": "grammar_homework",
125
+ "acc_norm": 0.49843260188087773,
126
+ "fixed_answer_choice_list": [
127
+ "No",
128
+ "Yes"
129
+ ],
130
+ "dataset_path": "super_glue",
131
+ "dataset_name": "wic",
132
+ "subset": null,
133
+ "prompt_id": "611d13dc-d414-4b9b-9204-e4f325e859e7",
134
+ "prompt_jinja": "Homework\n\nDecide whether the word \"{{word}}\" is used with the same meaning in the two following sentences. Answer by yes or no.\n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
135
+ "prompt_original_task": true,
136
+ "comment": "",
137
+ "acc_norm_stderr": 0.019810623954060382
138
+ },
139
+ {
140
+ "task_name": "wic",
141
+ "prompt_name": "polysemous",
142
+ "acc": 0.512539184952978,
143
+ "fixed_answer_choice_list": [
144
+ "No",
145
+ "Yes"
146
+ ],
147
+ "dataset_path": "super_glue",
148
+ "dataset_name": "wic",
149
+ "subset": null,
150
+ "prompt_id": "dd2080cf-3117-49ba-9aff-c988a21fdb69",
151
+ "prompt_jinja": "The word \"{{word}}\" has multiple meanings. Does it have the same meaning in sentences 1 and 2? Yes or no?\n\nSentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
152
+ "prompt_original_task": true,
153
+ "comment": "",
154
+ "acc_stderr": 0.019804490588592596
155
+ },
156
+ {
157
+ "task_name": "wic",
158
+ "prompt_name": "polysemous",
159
+ "acc_norm": 0.49843260188087773,
160
+ "fixed_answer_choice_list": [
161
+ "No",
162
+ "Yes"
163
+ ],
164
+ "dataset_path": "super_glue",
165
+ "dataset_name": "wic",
166
+ "subset": null,
167
+ "prompt_id": "dd2080cf-3117-49ba-9aff-c988a21fdb69",
168
+ "prompt_jinja": "The word \"{{word}}\" has multiple meanings. Does it have the same meaning in sentences 1 and 2? Yes or no?\n\nSentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
169
+ "prompt_original_task": true,
170
+ "comment": "",
171
+ "acc_norm_stderr": 0.019810623954060382
172
+ },
173
+ {
174
+ "task_name": "wic",
175
+ "prompt_name": "question-context",
176
+ "acc": 0.5266457680250783,
177
+ "fixed_answer_choice_list": [
178
+ "No",
179
+ "Yes"
180
+ ],
181
+ "dataset_path": "super_glue",
182
+ "dataset_name": "wic",
183
+ "subset": null,
184
+ "prompt_id": "cfbc1637-10b8-4f20-a31c-55292f3cebd0",
185
+ "prompt_jinja": "Determine if the word '{{word}}' is used in the same way in the two sentences below. \n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
186
+ "prompt_original_task": true,
187
+ "comment": "",
188
+ "acc_stderr": 0.019782570188812167
189
+ },
190
+ {
191
+ "task_name": "wic",
192
+ "prompt_name": "question-context",
193
+ "acc_norm": 0.5031347962382445,
194
+ "fixed_answer_choice_list": [
195
+ "No",
196
+ "Yes"
197
+ ],
198
+ "dataset_path": "super_glue",
199
+ "dataset_name": "wic",
200
+ "subset": null,
201
+ "prompt_id": "cfbc1637-10b8-4f20-a31c-55292f3cebd0",
202
+ "prompt_jinja": "Determine if the word '{{word}}' is used in the same way in the two sentences below. \n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
203
+ "prompt_original_task": true,
204
+ "comment": "",
205
+ "acc_norm_stderr": 0.019810331932097542
206
+ },
207
+ {
208
+ "task_name": "wic",
209
+ "prompt_name": "question-context-meaning",
210
+ "acc": 0.5438871473354232,
211
+ "fixed_answer_choice_list": [
212
+ "No",
213
+ "Yes"
214
+ ],
215
+ "dataset_path": "super_glue",
216
+ "dataset_name": "wic",
217
+ "subset": null,
218
+ "prompt_id": "3503ead5-4fa5-4f77-95dc-f0c2ed3eecdc",
219
+ "prompt_jinja": "Does the word \"{{word}}\" have the same meaning in these two sentences?\n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
220
+ "prompt_original_task": true,
221
+ "comment": "",
222
+ "acc_stderr": 0.019734259601993404
223
+ },
224
+ {
225
+ "task_name": "wic",
226
+ "prompt_name": "question-context-meaning",
227
+ "acc_norm": 0.5015673981191222,
228
+ "fixed_answer_choice_list": [
229
+ "No",
230
+ "Yes"
231
+ ],
232
+ "dataset_path": "super_glue",
233
+ "dataset_name": "wic",
234
+ "subset": null,
235
+ "prompt_id": "3503ead5-4fa5-4f77-95dc-f0c2ed3eecdc",
236
+ "prompt_jinja": "Does the word \"{{word}}\" have the same meaning in these two sentences?\n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
237
+ "prompt_original_task": true,
238
+ "comment": "",
239
+ "acc_norm_stderr": 0.019810623954060382
240
+ },
241
+ {
242
+ "task_name": "wic",
243
+ "prompt_name": "question-context-meaning-with-label",
244
+ "acc": 0.5156739811912225,
245
+ "fixed_answer_choice_list": [
246
+ "No",
247
+ "Yes"
248
+ ],
249
+ "dataset_path": "super_glue",
250
+ "dataset_name": "wic",
251
+ "subset": null,
252
+ "prompt_id": "14e73f39-a0d1-44c2-b9a4-4e48f9f1608e",
253
+ "prompt_jinja": "Does the word \"{{word}}\" have the same meaning in these two sentences? Yes, No?\n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
254
+ "prompt_original_task": true,
255
+ "comment": "",
256
+ "acc_stderr": 0.019800984955347847
257
+ },
258
+ {
259
+ "task_name": "wic",
260
+ "prompt_name": "question-context-meaning-with-label",
261
+ "acc_norm": 0.5015673981191222,
262
+ "fixed_answer_choice_list": [
263
+ "No",
264
+ "Yes"
265
+ ],
266
+ "dataset_path": "super_glue",
267
+ "dataset_name": "wic",
268
+ "subset": null,
269
+ "prompt_id": "14e73f39-a0d1-44c2-b9a4-4e48f9f1608e",
270
+ "prompt_jinja": "Does the word \"{{word}}\" have the same meaning in these two sentences? Yes, No?\n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
271
+ "prompt_original_task": true,
272
+ "comment": "",
273
+ "acc_norm_stderr": 0.019810623954060382
274
+ },
275
+ {
276
+ "task_name": "wic",
277
+ "prompt_name": "same_sense",
278
+ "acc": 0.5047021943573667,
279
+ "fixed_answer_choice_list": [
280
+ "No",
281
+ "Yes"
282
+ ],
283
+ "dataset_path": "super_glue",
284
+ "dataset_name": "wic",
285
+ "subset": null,
286
+ "prompt_id": "ce8b5a93-1841-4897-84db-b100f1c84f4b",
287
+ "prompt_jinja": "Sentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\n\nDetermine whether the word \"{{word}}\" is used in the same sense in both sentences. Yes or no?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
288
+ "prompt_original_task": true,
289
+ "comment": "",
290
+ "acc_stderr": 0.019809845219259763
291
+ },
292
+ {
293
+ "task_name": "wic",
294
+ "prompt_name": "same_sense",
295
+ "acc_norm": 0.5,
296
+ "fixed_answer_choice_list": [
297
+ "No",
298
+ "Yes"
299
+ ],
300
+ "dataset_path": "super_glue",
301
+ "dataset_name": "wic",
302
+ "subset": null,
303
+ "prompt_id": "ce8b5a93-1841-4897-84db-b100f1c84f4b",
304
+ "prompt_jinja": "Sentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\n\nDetermine whether the word \"{{word}}\" is used in the same sense in both sentences. Yes or no?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
305
+ "prompt_original_task": true,
306
+ "comment": "",
307
+ "acc_norm_stderr": 0.01981072129375818
308
+ },
309
+ {
310
+ "task_name": "wic",
311
+ "prompt_name": "similar-sense",
312
+ "acc": 0.542319749216301,
313
+ "fixed_answer_choice_list": [
314
+ "No",
315
+ "Yes"
316
+ ],
317
+ "dataset_path": "super_glue",
318
+ "dataset_name": "wic",
319
+ "subset": null,
320
+ "prompt_id": "f934a96d-fe4d-4075-aa47-5595b9a604c7",
321
+ "prompt_jinja": "{{sentence1}}\n{{sentence2}}\nSimilar sense of {{word}}?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
322
+ "prompt_original_task": true,
323
+ "comment": "",
324
+ "acc_stderr": 0.01973963328373276
325
+ },
326
+ {
327
+ "task_name": "wic",
328
+ "prompt_name": "similar-sense",
329
+ "acc_norm": 0.5,
330
+ "fixed_answer_choice_list": [
331
+ "No",
332
+ "Yes"
333
+ ],
334
+ "dataset_path": "super_glue",
335
+ "dataset_name": "wic",
336
+ "subset": null,
337
+ "prompt_id": "f934a96d-fe4d-4075-aa47-5595b9a604c7",
338
+ "prompt_jinja": "{{sentence1}}\n{{sentence2}}\nSimilar sense of {{word}}?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
339
+ "prompt_original_task": true,
340
+ "comment": "",
341
+ "acc_norm_stderr": 0.01981072129375818
342
+ },
343
+ {
344
+ "task_name": "wsc",
345
+ "prompt_name": "GPT-3 Style",
346
+ "acc": 0.36538461538461536,
347
+ "fixed_answer_choice_list": [
348
+ "No",
349
+ "Yes"
350
+ ],
351
+ "dataset_path": "super_glue",
352
+ "dataset_name": "wsc.fixed",
353
+ "subset": null,
354
+ "prompt_id": "7d377293-d043-4b6c-8ec1-d61eaf14ec67",
355
+ "prompt_jinja": "Passage: {{ text }} \n\nQuestion: In the passage above, does the pronoun \"{{ span2_text }}\" refer to {{ span1_text }}?\n\nAnswer: ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
356
+ "prompt_original_task": true,
357
+ "comment": "",
358
+ "acc_stderr": 0.0474473339327792
359
+ },
360
+ {
361
+ "task_name": "wsc",
362
+ "prompt_name": "GPT-3 Style",
363
+ "acc_norm": 0.36538461538461536,
364
+ "fixed_answer_choice_list": [
365
+ "No",
366
+ "Yes"
367
+ ],
368
+ "dataset_path": "super_glue",
369
+ "dataset_name": "wsc.fixed",
370
+ "subset": null,
371
+ "prompt_id": "7d377293-d043-4b6c-8ec1-d61eaf14ec67",
372
+ "prompt_jinja": "Passage: {{ text }} \n\nQuestion: In the passage above, does the pronoun \"{{ span2_text }}\" refer to {{ span1_text }}?\n\nAnswer: ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
373
+ "prompt_original_task": true,
374
+ "comment": "",
375
+ "acc_norm_stderr": 0.0474473339327792
376
+ },
377
+ {
378
+ "task_name": "wsc",
379
+ "prompt_name": "I think they mean",
380
+ "acc": 0.36538461538461536,
381
+ "fixed_answer_choice_list": [
382
+ "No",
383
+ "Yes"
384
+ ],
385
+ "dataset_path": "super_glue",
386
+ "dataset_name": "wsc.fixed",
387
+ "subset": null,
388
+ "prompt_id": "4b3e29cc-ccb8-4e4c-a845-4935ca29cf34",
389
+ "prompt_jinja": "{{ text }} I think they mean \"{{ text.split(\" \")[span2_index:] | join(\" \") | replace(span2_text, span1_text) }}\" Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
390
+ "prompt_original_task": true,
391
+ "comment": "",
392
+ "acc_stderr": 0.0474473339327792
393
+ },
394
+ {
395
+ "task_name": "wsc",
396
+ "prompt_name": "I think they mean",
397
+ "acc_norm": 0.36538461538461536,
398
+ "fixed_answer_choice_list": [
399
+ "No",
400
+ "Yes"
401
+ ],
402
+ "dataset_path": "super_glue",
403
+ "dataset_name": "wsc.fixed",
404
+ "subset": null,
405
+ "prompt_id": "4b3e29cc-ccb8-4e4c-a845-4935ca29cf34",
406
+ "prompt_jinja": "{{ text }} I think they mean \"{{ text.split(\" \")[span2_index:] | join(\" \") | replace(span2_text, span1_text) }}\" Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
407
+ "prompt_original_task": true,
408
+ "comment": "",
409
+ "acc_norm_stderr": 0.0474473339327792
410
+ },
411
+ {
412
+ "task_name": "wsc",
413
+ "prompt_name": "Who or what is/are",
414
+ "acc": 0.40384615384615385,
415
+ "fixed_answer_choice_list": [
416
+ "No",
417
+ "Yes"
418
+ ],
419
+ "dataset_path": "super_glue",
420
+ "dataset_name": "wsc.fixed",
421
+ "subset": null,
422
+ "prompt_id": "d88f3e21-42dc-49a5-924d-69b764a14816",
423
+ "prompt_jinja": "{{ text }} \n{% if span2_text.lower() == \"they\" or span2_text.lower() == \"them\" %}\nQuestion: Who or what are \"{{ span2_text.lower() }}\"? {{ span1_text }}?\n{% else %}\nQuestion: Who or what is \"{{ span2_text.lower() }}\"? Is it {{ span1_text }}?\n{% endif %}\nAnswer: ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
424
+ "prompt_original_task": true,
425
+ "comment": "",
426
+ "acc_stderr": 0.048346889526540184
427
+ },
428
+ {
429
+ "task_name": "wsc",
430
+ "prompt_name": "Who or what is/are",
431
+ "acc_norm": 0.36538461538461536,
432
+ "fixed_answer_choice_list": [
433
+ "No",
434
+ "Yes"
435
+ ],
436
+ "dataset_path": "super_glue",
437
+ "dataset_name": "wsc.fixed",
438
+ "subset": null,
439
+ "prompt_id": "d88f3e21-42dc-49a5-924d-69b764a14816",
440
+ "prompt_jinja": "{{ text }} \n{% if span2_text.lower() == \"they\" or span2_text.lower() == \"them\" %}\nQuestion: Who or what are \"{{ span2_text.lower() }}\"? {{ span1_text }}?\n{% else %}\nQuestion: Who or what is \"{{ span2_text.lower() }}\"? Is it {{ span1_text }}?\n{% endif %}\nAnswer: ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
441
+ "prompt_original_task": true,
442
+ "comment": "",
443
+ "acc_norm_stderr": 0.0474473339327792
444
+ },
445
+ {
446
+ "task_name": "wsc",
447
+ "prompt_name": "by p they mean",
448
+ "acc": 0.36538461538461536,
449
+ "fixed_answer_choice_list": [
450
+ "No",
451
+ "Yes"
452
+ ],
453
+ "dataset_path": "super_glue",
454
+ "dataset_name": "wsc.fixed",
455
+ "subset": null,
456
+ "prompt_id": "23361c5d-b67f-4c2a-9da7-16301c55d0e1",
457
+ "prompt_jinja": "{{ text }} Here, by \"{{ span2_text }}\" they mean \"{{ span1_text }}\". Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
458
+ "prompt_original_task": true,
459
+ "comment": "",
460
+ "acc_stderr": 0.0474473339327792
461
+ },
462
+ {
463
+ "task_name": "wsc",
464
+ "prompt_name": "by p they mean",
465
+ "acc_norm": 0.36538461538461536,
466
+ "fixed_answer_choice_list": [
467
+ "No",
468
+ "Yes"
469
+ ],
470
+ "dataset_path": "super_glue",
471
+ "dataset_name": "wsc.fixed",
472
+ "subset": null,
473
+ "prompt_id": "23361c5d-b67f-4c2a-9da7-16301c55d0e1",
474
+ "prompt_jinja": "{{ text }} Here, by \"{{ span2_text }}\" they mean \"{{ span1_text }}\". Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
475
+ "prompt_original_task": true,
476
+ "comment": "",
477
+ "acc_norm_stderr": 0.0474473339327792
478
+ },
479
+ {
480
+ "task_name": "wsc",
481
+ "prompt_name": "does p stand for",
482
+ "acc": 0.375,
483
+ "fixed_answer_choice_list": [
484
+ "No",
485
+ "Yes"
486
+ ],
487
+ "dataset_path": "super_glue",
488
+ "dataset_name": "wsc.fixed",
489
+ "subset": null,
490
+ "prompt_id": "7482d24f-cf45-4013-b82d-369489fc958b",
491
+ "prompt_jinja": "{{ text }} Here, does \"{{ span2_text.lower() }}\" stand for {{ span1_text }}? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
492
+ "prompt_original_task": true,
493
+ "comment": "",
494
+ "acc_stderr": 0.04770204856076104
495
+ },
496
+ {
497
+ "task_name": "wsc",
498
+ "prompt_name": "does p stand for",
499
+ "acc_norm": 0.36538461538461536,
500
+ "fixed_answer_choice_list": [
501
+ "No",
502
+ "Yes"
503
+ ],
504
+ "dataset_path": "super_glue",
505
+ "dataset_name": "wsc.fixed",
506
+ "subset": null,
507
+ "prompt_id": "7482d24f-cf45-4013-b82d-369489fc958b",
508
+ "prompt_jinja": "{{ text }} Here, does \"{{ span2_text.lower() }}\" stand for {{ span1_text }}? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
509
+ "prompt_original_task": true,
510
+ "comment": "",
511
+ "acc_norm_stderr": 0.0474473339327792
512
+ },
513
+ {
514
+ "task_name": "wsc",
515
+ "prompt_name": "does the pronoun refer to",
516
+ "acc": 0.5480769230769231,
517
+ "fixed_answer_choice_list": [
518
+ "No",
519
+ "Yes"
520
+ ],
521
+ "dataset_path": "super_glue",
522
+ "dataset_name": "wsc.fixed",
523
+ "subset": null,
524
+ "prompt_id": "212fb8b1-8436-4f64-8f37-a9094fe029f4",
525
+ "prompt_jinja": "{{ text }} In the previous sentence, does the pronoun \"{{ span2_text.lower() }}\" refer to {{ span1_text }}? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
526
+ "prompt_original_task": true,
527
+ "comment": "",
528
+ "acc_stderr": 0.049038186969314335
529
+ },
530
+ {
531
+ "task_name": "wsc",
532
+ "prompt_name": "does the pronoun refer to",
533
+ "acc_norm": 0.36538461538461536,
534
+ "fixed_answer_choice_list": [
535
+ "No",
536
+ "Yes"
537
+ ],
538
+ "dataset_path": "super_glue",
539
+ "dataset_name": "wsc.fixed",
540
+ "subset": null,
541
+ "prompt_id": "212fb8b1-8436-4f64-8f37-a9094fe029f4",
542
+ "prompt_jinja": "{{ text }} In the previous sentence, does the pronoun \"{{ span2_text.lower() }}\" refer to {{ span1_text }}? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
543
+ "prompt_original_task": true,
544
+ "comment": "",
545
+ "acc_norm_stderr": 0.0474473339327792
546
+ },
547
+ {
548
+ "task_name": "wsc",
549
+ "prompt_name": "in other words",
550
+ "acc": 0.36538461538461536,
551
+ "fixed_answer_choice_list": [
552
+ "False",
553
+ "True"
554
+ ],
555
+ "dataset_path": "super_glue",
556
+ "dataset_name": "wsc.fixed",
557
+ "subset": null,
558
+ "prompt_id": "2f17f18b-6daa-44ef-a2dd-dddaf04aec0e",
559
+ "prompt_jinja": "{{ text }} \n\nIn other words, {{ text.split(\" \")[span2_index:] | join(\" \") | replace(span2_text, span1_text) }} True or false? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
560
+ "prompt_original_task": true,
561
+ "comment": "",
562
+ "acc_stderr": 0.0474473339327792
563
+ },
564
+ {
565
+ "task_name": "wsc",
566
+ "prompt_name": "in other words",
567
+ "acc_norm": 0.5288461538461539,
568
+ "fixed_answer_choice_list": [
569
+ "False",
570
+ "True"
571
+ ],
572
+ "dataset_path": "super_glue",
573
+ "dataset_name": "wsc.fixed",
574
+ "subset": null,
575
+ "prompt_id": "2f17f18b-6daa-44ef-a2dd-dddaf04aec0e",
576
+ "prompt_jinja": "{{ text }} \n\nIn other words, {{ text.split(\" \")[span2_index:] | join(\" \") | replace(span2_text, span1_text) }} True or false? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
577
+ "prompt_original_task": true,
578
+ "comment": "",
579
+ "acc_norm_stderr": 0.04918440626354964
580
+ },
581
+ {
582
+ "task_name": "wsc",
583
+ "prompt_name": "p is/are r",
584
+ "acc": 0.36538461538461536,
585
+ "fixed_answer_choice_list": [
586
+ "False",
587
+ "True"
588
+ ],
589
+ "dataset_path": "super_glue",
590
+ "dataset_name": "wsc.fixed",
591
+ "subset": null,
592
+ "prompt_id": "87f97aa0-1fa9-4f0b-b8e6-89d3c1f19bd6",
593
+ "prompt_jinja": "Context: {{ text }} \n\n{% if span2_text.lower() == \"they\" or span2_text.lower() == \"them\" %}\nQuestion: \"{{ span2_text }}\" are {{ span1_text }}. True or false?\n{% else %}\nQuestion: \"{{ span2_text }}\" is {{ span1_text }}. True or false?\n{% endif %}\n\nAnswer: ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
594
+ "prompt_original_task": true,
595
+ "comment": "",
596
+ "acc_stderr": 0.0474473339327792
597
+ },
598
+ {
599
+ "task_name": "wsc",
600
+ "prompt_name": "p is/are r",
601
+ "acc_norm": 0.34615384615384615,
602
+ "fixed_answer_choice_list": [
603
+ "False",
604
+ "True"
605
+ ],
606
+ "dataset_path": "super_glue",
607
+ "dataset_name": "wsc.fixed",
608
+ "subset": null,
609
+ "prompt_id": "87f97aa0-1fa9-4f0b-b8e6-89d3c1f19bd6",
610
+ "prompt_jinja": "Context: {{ text }} \n\n{% if span2_text.lower() == \"they\" or span2_text.lower() == \"them\" %}\nQuestion: \"{{ span2_text }}\" are {{ span1_text }}. True or false?\n{% else %}\nQuestion: \"{{ span2_text }}\" is {{ span1_text }}. True or false?\n{% endif %}\n\nAnswer: ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
611
+ "prompt_original_task": true,
612
+ "comment": "",
613
+ "acc_norm_stderr": 0.04687634642174987
614
+ },
615
+ {
616
+ "task_name": "wsc",
617
+ "prompt_name": "replaced with",
618
+ "acc": 0.6153846153846154,
619
+ "fixed_answer_choice_list": [
620
+ "No",
621
+ "Yes"
622
+ ],
623
+ "dataset_path": "super_glue",
624
+ "dataset_name": "wsc.fixed",
625
+ "subset": null,
626
+ "prompt_id": "809eacd0-2f6c-4e3a-b52a-57c783879d36",
627
+ "prompt_jinja": "{{ text }} In the previous sentence, can the pronoun \"{{ span2_text }}\" be replaced with \"{{ span1_text }}\"? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
628
+ "prompt_original_task": true,
629
+ "comment": "",
630
+ "acc_stderr": 0.047936688680750406
631
+ },
632
+ {
633
+ "task_name": "wsc",
634
+ "prompt_name": "replaced with",
635
+ "acc_norm": 0.36538461538461536,
636
+ "fixed_answer_choice_list": [
637
+ "No",
638
+ "Yes"
639
+ ],
640
+ "dataset_path": "super_glue",
641
+ "dataset_name": "wsc.fixed",
642
+ "subset": null,
643
+ "prompt_id": "809eacd0-2f6c-4e3a-b52a-57c783879d36",
644
+ "prompt_jinja": "{{ text }} In the previous sentence, can the pronoun \"{{ span2_text }}\" be replaced with \"{{ span1_text }}\"? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
645
+ "prompt_original_task": true,
646
+ "comment": "",
647
+ "acc_norm_stderr": 0.0474473339327792
648
+ },
649
+ {
650
+ "task_name": "wsc",
651
+ "prompt_name": "the pronoun refers to",
652
+ "acc": 0.36538461538461536,
653
+ "fixed_answer_choice_list": [
654
+ "False",
655
+ "True"
656
+ ],
657
+ "dataset_path": "super_glue",
658
+ "dataset_name": "wsc.fixed",
659
+ "subset": null,
660
+ "prompt_id": "aae24b54-c3a7-4f69-8b77-f6dc115988f8",
661
+ "prompt_jinja": "{{ text }} \nIn the passage above, the pronoun \"{{ span2_text }}\" refers to {{ span1_text }}. True or false? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
662
+ "prompt_original_task": true,
663
+ "comment": "",
664
+ "acc_stderr": 0.0474473339327792
665
+ },
666
+ {
667
+ "task_name": "wsc",
668
+ "prompt_name": "the pronoun refers to",
669
+ "acc_norm": 0.5865384615384616,
670
+ "fixed_answer_choice_list": [
671
+ "False",
672
+ "True"
673
+ ],
674
+ "dataset_path": "super_glue",
675
+ "dataset_name": "wsc.fixed",
676
+ "subset": null,
677
+ "prompt_id": "aae24b54-c3a7-4f69-8b77-f6dc115988f8",
678
+ "prompt_jinja": "{{ text }} \nIn the passage above, the pronoun \"{{ span2_text }}\" refers to {{ span1_text }}. True or false? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
679
+ "prompt_original_task": true,
680
+ "comment": "",
681
+ "acc_norm_stderr": 0.04852294969729053
682
+ },
683
+ {
684
+ "task_name": "wnli",
685
+ "prompt_name": "confident",
686
+ "acc": 0.43661971830985913,
687
+ "fixed_answer_choice_list": [
688
+ "not confident",
689
+ "very confident"
690
+ ],
691
+ "dataset_path": "glue",
692
+ "dataset_name": "wnli",
693
+ "subset": null,
694
+ "prompt_id": "10c354ee-6f4e-4b04-91e1-29e999a8f3e7",
695
+ "prompt_jinja": "If it's true that\n{{sentence1}}\nhow {{\"confident\"}} should I be that\n{{sentence2}}\n{{\"very confident or not confident?\"}}\n|||\n{{answer_choices[label]}}",
696
+ "prompt_original_task": true,
697
+ "comment": "",
698
+ "acc_stderr": 0.0592793555841297
699
+ },
700
+ {
701
+ "task_name": "wnli",
702
+ "prompt_name": "confident",
703
+ "acc_norm": 0.43661971830985913,
704
+ "fixed_answer_choice_list": [
705
+ "not confident",
706
+ "very confident"
707
+ ],
708
+ "dataset_path": "glue",
709
+ "dataset_name": "wnli",
710
+ "subset": null,
711
+ "prompt_id": "10c354ee-6f4e-4b04-91e1-29e999a8f3e7",
712
+ "prompt_jinja": "If it's true that\n{{sentence1}}\nhow {{\"confident\"}} should I be that\n{{sentence2}}\n{{\"very confident or not confident?\"}}\n|||\n{{answer_choices[label]}}",
713
+ "prompt_original_task": true,
714
+ "comment": "",
715
+ "acc_norm_stderr": 0.0592793555841297
716
+ },
717
+ {
718
+ "task_name": "wnli",
719
+ "prompt_name": "entailment explained",
720
+ "acc": 0.39436619718309857,
721
+ "fixed_answer_choice_list": [
722
+ "no",
723
+ "yes"
724
+ ],
725
+ "dataset_path": "glue",
726
+ "dataset_name": "wnli",
727
+ "subset": null,
728
+ "prompt_id": "3a0e46cb-0b96-4972-83f6-29a6c6a09ba9",
729
+ "prompt_jinja": "{{\"Entailment\"}} means that the second sentence follows from the first sentence. Are the following two sentences an example of entailment?\n{{sentence1}}\n{{sentence2}}\n|||\n{{answer_choices[label]}}",
730
+ "prompt_original_task": true,
731
+ "comment": "",
732
+ "acc_stderr": 0.058412510854444266
733
+ },
734
+ {
735
+ "task_name": "wnli",
736
+ "prompt_name": "entailment explained",
737
+ "acc_norm": 0.43661971830985913,
738
+ "fixed_answer_choice_list": [
739
+ "no",
740
+ "yes"
741
+ ],
742
+ "dataset_path": "glue",
743
+ "dataset_name": "wnli",
744
+ "subset": null,
745
+ "prompt_id": "3a0e46cb-0b96-4972-83f6-29a6c6a09ba9",
746
+ "prompt_jinja": "{{\"Entailment\"}} means that the second sentence follows from the first sentence. Are the following two sentences an example of entailment?\n{{sentence1}}\n{{sentence2}}\n|||\n{{answer_choices[label]}}",
747
+ "prompt_original_task": true,
748
+ "comment": "",
749
+ "acc_norm_stderr": 0.0592793555841297
750
+ },
751
+ {
752
+ "task_name": "wnli",
753
+ "prompt_name": "imply",
754
+ "acc": 0.4225352112676056,
755
+ "fixed_answer_choice_list": [
756
+ "no",
757
+ "yes"
758
+ ],
759
+ "dataset_path": "glue",
760
+ "dataset_name": "wnli",
761
+ "subset": null,
762
+ "prompt_id": "a2ce492b-dfd0-4f04-bc44-70c7867ba231",
763
+ "prompt_jinja": "{{sentence1}}\n{{sentence2}}\nDoes the first sentence imply the second sentence?\n|||\n{{answer_choices[label]}}",
764
+ "prompt_original_task": true,
765
+ "comment": "",
766
+ "acc_stderr": 0.05903984205682581
767
+ },
768
+ {
769
+ "task_name": "wnli",
770
+ "prompt_name": "imply",
771
+ "acc_norm": 0.43661971830985913,
772
+ "fixed_answer_choice_list": [
773
+ "no",
774
+ "yes"
775
+ ],
776
+ "dataset_path": "glue",
777
+ "dataset_name": "wnli",
778
+ "subset": null,
779
+ "prompt_id": "a2ce492b-dfd0-4f04-bc44-70c7867ba231",
780
+ "prompt_jinja": "{{sentence1}}\n{{sentence2}}\nDoes the first sentence imply the second sentence?\n|||\n{{answer_choices[label]}}",
781
+ "prompt_original_task": true,
782
+ "comment": "",
783
+ "acc_norm_stderr": 0.0592793555841297
784
+ },
785
+ {
786
+ "task_name": "wnli",
787
+ "prompt_name": "justified",
788
+ "acc": 0.43661971830985913,
789
+ "fixed_answer_choice_list": [
790
+ "no",
791
+ "yes"
792
+ ],
793
+ "dataset_path": "glue",
794
+ "dataset_name": "wnli",
795
+ "subset": null,
796
+ "prompt_id": "a244158a-a248-4e34-bef7-66e269dd0815",
797
+ "prompt_jinja": "Someone told me \"{{sentence1}}\" Now, I think that \"{{sentence2}}\" Am I justified in thinking this?\n|||\n{{answer_choices[label]}}",
798
+ "prompt_original_task": true,
799
+ "comment": "",
800
+ "acc_stderr": 0.0592793555841297
801
+ },
802
+ {
803
+ "task_name": "wnli",
804
+ "prompt_name": "justified",
805
+ "acc_norm": 0.43661971830985913,
806
+ "fixed_answer_choice_list": [
807
+ "no",
808
+ "yes"
809
+ ],
810
+ "dataset_path": "glue",
811
+ "dataset_name": "wnli",
812
+ "subset": null,
813
+ "prompt_id": "a244158a-a248-4e34-bef7-66e269dd0815",
814
+ "prompt_jinja": "Someone told me \"{{sentence1}}\" Now, I think that \"{{sentence2}}\" Am I justified in thinking this?\n|||\n{{answer_choices[label]}}",
815
+ "prompt_original_task": true,
816
+ "comment": "",
817
+ "acc_norm_stderr": 0.0592793555841297
818
+ },
819
+ {
820
+ "task_name": "wnli",
821
+ "prompt_name": "mean",
822
+ "acc": 0.6619718309859155,
823
+ "fixed_answer_choice_list": [
824
+ "no",
825
+ "yes"
826
+ ],
827
+ "dataset_path": "glue",
828
+ "dataset_name": "wnli",
829
+ "subset": null,
830
+ "prompt_id": "75f89b05-5a81-401b-8a04-8239211a9a95",
831
+ "prompt_jinja": "Assume that the following is true:\n{{sentence1}}\nDoes this mean that \"{{sentence2}}\"?\n|||\n{{answer_choices[label]}}",
832
+ "prompt_original_task": true,
833
+ "comment": "",
834
+ "acc_stderr": 0.05653887739133513
835
+ },
836
+ {
837
+ "task_name": "wnli",
838
+ "prompt_name": "mean",
839
+ "acc_norm": 0.43661971830985913,
840
+ "fixed_answer_choice_list": [
841
+ "no",
842
+ "yes"
843
+ ],
844
+ "dataset_path": "glue",
845
+ "dataset_name": "wnli",
846
+ "subset": null,
847
+ "prompt_id": "75f89b05-5a81-401b-8a04-8239211a9a95",
848
+ "prompt_jinja": "Assume that the following is true:\n{{sentence1}}\nDoes this mean that \"{{sentence2}}\"?\n|||\n{{answer_choices[label]}}",
849
+ "prompt_original_task": true,
850
+ "comment": "",
851
+ "acc_norm_stderr": 0.0592793555841297
852
+ },
853
+ {
854
+ "task_name": "gsarti/flores_101_afr",
855
+ "prompt_name": null,
856
+ "word_perplexity": 139324.0466654445
857
+ },
858
+ {
859
+ "task_name": "gsarti/flores_101_afr",
860
+ "prompt_name": null,
861
+ "byte_perplexity": 7.049422805555328
862
+ },
863
+ {
864
+ "task_name": "gsarti/flores_101_afr",
865
+ "prompt_name": null,
866
+ "bits_per_byte": 2.8175051369933213
867
+ },
868
+ {
869
+ "task_name": "gsarti/flores_101_amh",
870
+ "prompt_name": null,
871
+ "word_perplexity": 105036774.30501972
872
+ },
873
+ {
874
+ "task_name": "gsarti/flores_101_amh",
875
+ "prompt_name": null,
876
+ "byte_perplexity": 4.172368790188039
877
+ },
878
+ {
879
+ "task_name": "gsarti/flores_101_amh",
880
+ "prompt_name": null,
881
+ "bits_per_byte": 2.0608666814101815
882
+ },
883
+ {
884
+ "task_name": "gsarti/flores_101_ara",
885
+ "prompt_name": null,
886
+ "word_perplexity": 674.8640314665696
887
+ },
888
+ {
889
+ "task_name": "gsarti/flores_101_ara",
890
+ "prompt_name": null,
891
+ "byte_perplexity": 1.8400375612633983
892
+ },
893
+ {
894
+ "task_name": "gsarti/flores_101_ara",
895
+ "prompt_name": null,
896
+ "bits_per_byte": 0.8797352167688847
897
+ },
898
+ {
899
+ "task_name": "gsarti/flores_101_hye",
900
+ "prompt_name": null,
901
+ "word_perplexity": 99262887.01092263
902
+ },
903
+ {
904
+ "task_name": "gsarti/flores_101_hye",
905
+ "prompt_name": null,
906
+ "byte_perplexity": 3.7481249397064547
907
+ },
908
+ {
909
+ "task_name": "gsarti/flores_101_hye",
910
+ "prompt_name": null,
911
+ "bits_per_byte": 1.906169044483402
912
+ },
913
+ {
914
+ "task_name": "gsarti/flores_101_asm",
915
+ "prompt_name": null,
916
+ "word_perplexity": 6763188828222.085
917
+ },
918
+ {
919
+ "task_name": "gsarti/flores_101_asm",
920
+ "prompt_name": null,
921
+ "byte_perplexity": 5.497254736157445
922
+ },
923
+ {
924
+ "task_name": "gsarti/flores_101_asm",
925
+ "prompt_name": null,
926
+ "bits_per_byte": 2.458711333673663
927
+ },
928
+ {
929
+ "task_name": "gsarti/flores_101_ast",
930
+ "prompt_name": null,
931
+ "word_perplexity": 10657.272913539553
932
+ },
933
+ {
934
+ "task_name": "gsarti/flores_101_ast",
935
+ "prompt_name": null,
936
+ "byte_perplexity": 4.260251728273795
937
+ },
938
+ {
939
+ "task_name": "gsarti/flores_101_ast",
940
+ "prompt_name": null,
941
+ "bits_per_byte": 2.0909386784329675
942
+ },
943
+ {
944
+ "task_name": "gsarti/flores_101_azj",
945
+ "prompt_name": null,
946
+ "word_perplexity": 45923924.18878753
947
+ },
948
+ {
949
+ "task_name": "gsarti/flores_101_azj",
950
+ "prompt_name": null,
951
+ "byte_perplexity": 7.691396328945705
952
+ },
953
+ {
954
+ "task_name": "gsarti/flores_101_azj",
955
+ "prompt_name": null,
956
+ "bits_per_byte": 2.9432455349850195
957
+ },
958
+ {
959
+ "task_name": "gsarti/flores_101_bel",
960
+ "prompt_name": null,
961
+ "word_perplexity": 23935692.781315073
962
+ },
963
+ {
964
+ "task_name": "gsarti/flores_101_bel",
965
+ "prompt_name": null,
966
+ "byte_perplexity": 3.7706591215465943
967
+ },
968
+ {
969
+ "task_name": "gsarti/flores_101_bel",
970
+ "prompt_name": null,
971
+ "bits_per_byte": 1.914816732584341
972
+ },
973
+ {
974
+ "task_name": "gsarti/flores_101_ben",
975
+ "prompt_name": null,
976
+ "word_perplexity": 2480418685142.412
977
+ },
978
+ {
979
+ "task_name": "gsarti/flores_101_ben",
980
+ "prompt_name": null,
981
+ "byte_perplexity": 5.074281765515423
982
+ },
983
+ {
984
+ "task_name": "gsarti/flores_101_ben",
985
+ "prompt_name": null,
986
+ "bits_per_byte": 2.3432036318231058
987
+ },
988
+ {
989
+ "task_name": "gsarti/flores_101_bos",
990
+ "prompt_name": null,
991
+ "word_perplexity": 229622.13691086147
992
+ },
993
+ {
994
+ "task_name": "gsarti/flores_101_bos",
995
+ "prompt_name": null,
996
+ "byte_perplexity": 6.343363734045183
997
+ },
998
+ {
999
+ "task_name": "gsarti/flores_101_bos",
1000
+ "prompt_name": null,
1001
+ "bits_per_byte": 2.665248069942796
1002
+ },
1003
+ {
1004
+ "task_name": "gsarti/flores_101_bul",
1005
+ "prompt_name": null,
1006
+ "word_perplexity": 194851.13344620814
1007
+ },
1008
+ {
1009
+ "task_name": "gsarti/flores_101_bul",
1010
+ "prompt_name": null,
1011
+ "byte_perplexity": 2.8553687444403257
1012
+ },
1013
+ {
1014
+ "task_name": "gsarti/flores_101_bul",
1015
+ "prompt_name": null,
1016
+ "bits_per_byte": 1.5136770683283687
1017
+ },
1018
+ {
1019
+ "task_name": "gsarti/flores_101_mya",
1020
+ "prompt_name": null,
1021
+ "word_perplexity": 5.887577237013639e+18
1022
+ },
1023
+ {
1024
+ "task_name": "gsarti/flores_101_mya",
1025
+ "prompt_name": null,
1026
+ "byte_perplexity": 2.657561458464019
1027
+ },
1028
+ {
1029
+ "task_name": "gsarti/flores_101_mya",
1030
+ "prompt_name": null,
1031
+ "bits_per_byte": 1.4101030557435918
1032
+ },
1033
+ {
1034
+ "task_name": "gsarti/flores_101_cat",
1035
+ "prompt_name": null,
1036
+ "word_perplexity": 179.13123174533087
1037
+ },
1038
+ {
1039
+ "task_name": "gsarti/flores_101_cat",
1040
+ "prompt_name": null,
1041
+ "byte_perplexity": 2.358207169698056
1042
+ },
1043
+ {
1044
+ "task_name": "gsarti/flores_101_cat",
1045
+ "prompt_name": null,
1046
+ "bits_per_byte": 1.2376904653775254
1047
+ },
1048
+ {
1049
+ "task_name": "gsarti/flores_101_ceb",
1050
+ "prompt_name": null,
1051
+ "word_perplexity": 113330.67154113152
1052
+ },
1053
+ {
1054
+ "task_name": "gsarti/flores_101_ceb",
1055
+ "prompt_name": null,
1056
+ "byte_perplexity": 6.896481056329736
1057
+ },
1058
+ {
1059
+ "task_name": "gsarti/flores_101_ceb",
1060
+ "prompt_name": null,
1061
+ "bits_per_byte": 2.7858604115174295
1062
+ },
1063
+ {
1064
+ "task_name": "gsarti/flores_101_zho_simpl",
1065
+ "prompt_name": null,
1066
+ "word_perplexity": 1.0554528210220222e+21
1067
+ },
1068
+ {
1069
+ "task_name": "gsarti/flores_101_zho_simpl",
1070
+ "prompt_name": null,
1071
+ "byte_perplexity": 2.322457417595381
1072
+ },
1073
+ {
1074
+ "task_name": "gsarti/flores_101_zho_simpl",
1075
+ "prompt_name": null,
1076
+ "bits_per_byte": 1.2156521449449949
1077
+ },
1078
+ {
1079
+ "task_name": "gsarti/flores_101_zho_trad",
1080
+ "prompt_name": null,
1081
+ "word_perplexity": 4.787781515987923e+24
1082
+ },
1083
+ {
1084
+ "task_name": "gsarti/flores_101_zho_trad",
1085
+ "prompt_name": null,
1086
+ "byte_perplexity": 2.5709177552415134
1087
+ },
1088
+ {
1089
+ "task_name": "gsarti/flores_101_zho_trad",
1090
+ "prompt_name": null,
1091
+ "bits_per_byte": 1.3622834584784203
1092
+ },
1093
+ {
1094
+ "task_name": "gsarti/flores_101_hrv",
1095
+ "prompt_name": null,
1096
+ "word_perplexity": 307789.1462790266
1097
+ },
1098
+ {
1099
+ "task_name": "gsarti/flores_101_hrv",
1100
+ "prompt_name": null,
1101
+ "byte_perplexity": 6.50559790827845
1102
+ },
1103
+ {
1104
+ "task_name": "gsarti/flores_101_hrv",
1105
+ "prompt_name": null,
1106
+ "bits_per_byte": 2.7016816564307984
1107
+ },
1108
+ {
1109
+ "task_name": "gsarti/flores_101_ces",
1110
+ "prompt_name": null,
1111
+ "word_perplexity": 625101.1441414964
1112
+ },
1113
+ {
1114
+ "task_name": "gsarti/flores_101_ces",
1115
+ "prompt_name": null,
1116
+ "byte_perplexity": 6.126526835715164
1117
+ },
1118
+ {
1119
+ "task_name": "gsarti/flores_101_ces",
1120
+ "prompt_name": null,
1121
+ "bits_per_byte": 2.6150694333085327
1122
+ },
1123
+ {
1124
+ "task_name": "gsarti/flores_101_dan",
1125
+ "prompt_name": null,
1126
+ "word_perplexity": 71695.50336412797
1127
+ },
1128
+ {
1129
+ "task_name": "gsarti/flores_101_dan",
1130
+ "prompt_name": null,
1131
+ "byte_perplexity": 5.778786323448377
1132
+ },
1133
+ {
1134
+ "task_name": "gsarti/flores_101_dan",
1135
+ "prompt_name": null,
1136
+ "bits_per_byte": 2.5307665257708245
1137
+ },
1138
+ {
1139
+ "task_name": "gsarti/flores_101_nld",
1140
+ "prompt_name": null,
1141
+ "word_perplexity": 13951.877058430618
1142
+ },
1143
+ {
1144
+ "task_name": "gsarti/flores_101_nld",
1145
+ "prompt_name": null,
1146
+ "byte_perplexity": 4.535651709856251
1147
+ },
1148
+ {
1149
+ "task_name": "gsarti/flores_101_nld",
1150
+ "prompt_name": null,
1151
+ "bits_per_byte": 2.1813098607926804
1152
+ },
1153
+ {
1154
+ "task_name": "gsarti/flores_101_eng",
1155
+ "prompt_name": null,
1156
+ "word_perplexity": 75.56480997823662
1157
+ },
1158
+ {
1159
+ "task_name": "gsarti/flores_101_eng",
1160
+ "prompt_name": null,
1161
+ "byte_perplexity": 2.061283234268159
1162
+ },
1163
+ {
1164
+ "task_name": "gsarti/flores_101_eng",
1165
+ "prompt_name": null,
1166
+ "bits_per_byte": 1.0435427545613876
1167
+ },
1168
+ {
1169
+ "task_name": "gsarti/flores_101_est",
1170
+ "prompt_name": null,
1171
+ "word_perplexity": 92602633.82439691
1172
+ },
1173
+ {
1174
+ "task_name": "gsarti/flores_101_est",
1175
+ "prompt_name": null,
1176
+ "byte_perplexity": 10.131736127467489
1177
+ },
1178
+ {
1179
+ "task_name": "gsarti/flores_101_est",
1180
+ "prompt_name": null,
1181
+ "bits_per_byte": 3.340809503762674
1182
+ },
1183
+ {
1184
+ "task_name": "gsarti/flores_101_tgl",
1185
+ "prompt_name": null,
1186
+ "word_perplexity": 87554.31770184237
1187
+ },
1188
+ {
1189
+ "task_name": "gsarti/flores_101_tgl",
1190
+ "prompt_name": null,
1191
+ "byte_perplexity": 6.256957969905079
1192
+ },
1193
+ {
1194
+ "task_name": "gsarti/flores_101_tgl",
1195
+ "prompt_name": null,
1196
+ "bits_per_byte": 2.645461413001105
1197
+ },
1198
+ {
1199
+ "task_name": "gsarti/flores_101_fin",
1200
+ "prompt_name": null,
1201
+ "word_perplexity": 91621886.60145952
1202
+ },
1203
+ {
1204
+ "task_name": "gsarti/flores_101_fin",
1205
+ "prompt_name": null,
1206
+ "byte_perplexity": 7.5129644427067355
1207
+ },
1208
+ {
1209
+ "task_name": "gsarti/flores_101_fin",
1210
+ "prompt_name": null,
1211
+ "bits_per_byte": 2.9093822743068216
1212
+ },
1213
+ {
1214
+ "task_name": "gsarti/flores_101_fra",
1215
+ "prompt_name": null,
1216
+ "word_perplexity": 89.45884576931464
1217
+ },
1218
+ {
1219
+ "task_name": "gsarti/flores_101_fra",
1220
+ "prompt_name": null,
1221
+ "byte_perplexity": 2.0177390037335385
1222
+ },
1223
+ {
1224
+ "task_name": "gsarti/flores_101_fra",
1225
+ "prompt_name": null,
1226
+ "bits_per_byte": 1.0127395726746855
1227
+ },
1228
+ {
1229
+ "task_name": "gsarti/flores_101_ful",
1230
+ "prompt_name": null,
1231
+ "word_perplexity": 908715.1423017589
1232
+ },
1233
+ {
1234
+ "task_name": "gsarti/flores_101_ful",
1235
+ "prompt_name": null,
1236
+ "byte_perplexity": 11.810263420287875
1237
+ },
1238
+ {
1239
+ "task_name": "gsarti/flores_101_ful",
1240
+ "prompt_name": null,
1241
+ "bits_per_byte": 3.561969238361191
1242
+ },
1243
+ {
1244
+ "task_name": "gsarti/flores_101_glg",
1245
+ "prompt_name": null,
1246
+ "word_perplexity": 1537.3193913761668
1247
+ },
1248
+ {
1249
+ "task_name": "gsarti/flores_101_glg",
1250
+ "prompt_name": null,
1251
+ "byte_perplexity": 3.2214647330840154
1252
+ },
1253
+ {
1254
+ "task_name": "gsarti/flores_101_glg",
1255
+ "prompt_name": null,
1256
+ "bits_per_byte": 1.6877168009728167
1257
+ },
1258
+ {
1259
+ "task_name": "gsarti/flores_101_lug",
1260
+ "prompt_name": null,
1261
+ "word_perplexity": 32046806.791237485
1262
+ },
1263
+ {
1264
+ "task_name": "gsarti/flores_101_lug",
1265
+ "prompt_name": null,
1266
+ "byte_perplexity": 9.285708185212261
1267
+ },
1268
+ {
1269
+ "task_name": "gsarti/flores_101_lug",
1270
+ "prompt_name": null,
1271
+ "bits_per_byte": 3.2150119431528754
1272
+ },
1273
+ {
1274
+ "task_name": "gsarti/flores_101_kat",
1275
+ "prompt_name": null,
1276
+ "word_perplexity": 1133105340.614723
1277
+ },
1278
+ {
1279
+ "task_name": "gsarti/flores_101_kat",
1280
+ "prompt_name": null,
1281
+ "byte_perplexity": 2.5184571084900518
1282
+ },
1283
+ {
1284
+ "task_name": "gsarti/flores_101_kat",
1285
+ "prompt_name": null,
1286
+ "bits_per_byte": 1.3325401608568794
1287
+ },
1288
+ {
1289
+ "task_name": "gsarti/flores_101_deu",
1290
+ "prompt_name": null,
1291
+ "word_perplexity": 5647.282599404732
1292
+ },
1293
+ {
1294
+ "task_name": "gsarti/flores_101_deu",
1295
+ "prompt_name": null,
1296
+ "byte_perplexity": 3.361758059911202
1297
+ },
1298
+ {
1299
+ "task_name": "gsarti/flores_101_deu",
1300
+ "prompt_name": null,
1301
+ "bits_per_byte": 1.7492158999678582
1302
+ },
1303
+ {
1304
+ "task_name": "gsarti/flores_101_ell",
1305
+ "prompt_name": null,
1306
+ "word_perplexity": 102751.5248402687
1307
+ },
1308
+ {
1309
+ "task_name": "gsarti/flores_101_ell",
1310
+ "prompt_name": null,
1311
+ "byte_perplexity": 2.6139607239932805
1312
+ },
1313
+ {
1314
+ "task_name": "gsarti/flores_101_ell",
1315
+ "prompt_name": null,
1316
+ "bits_per_byte": 1.3862374641150543
1317
+ },
1318
+ {
1319
+ "task_name": "gsarti/flores_101_guj",
1320
+ "prompt_name": null,
1321
+ "word_perplexity": 133216198508.6925
1322
+ },
1323
+ {
1324
+ "task_name": "gsarti/flores_101_guj",
1325
+ "prompt_name": null,
1326
+ "byte_perplexity": 5.125904532570054
1327
+ },
1328
+ {
1329
+ "task_name": "gsarti/flores_101_guj",
1330
+ "prompt_name": null,
1331
+ "bits_per_byte": 2.357806609400009
1332
+ },
1333
+ {
1334
+ "task_name": "gsarti/flores_101_hau",
1335
+ "prompt_name": null,
1336
+ "word_perplexity": 730749.6449046461
1337
+ },
1338
+ {
1339
+ "task_name": "gsarti/flores_101_hau",
1340
+ "prompt_name": null,
1341
+ "byte_perplexity": 11.049458818357667
1342
+ },
1343
+ {
1344
+ "task_name": "gsarti/flores_101_hau",
1345
+ "prompt_name": null,
1346
+ "bits_per_byte": 3.4659038057537184
1347
+ },
1348
+ {
1349
+ "task_name": "gsarti/flores_101_heb",
1350
+ "prompt_name": null,
1351
+ "word_perplexity": 880255.4148832298
1352
+ },
1353
+ {
1354
+ "task_name": "gsarti/flores_101_heb",
1355
+ "prompt_name": null,
1356
+ "byte_perplexity": 3.7036842387723694
1357
+ },
1358
+ {
1359
+ "task_name": "gsarti/flores_101_heb",
1360
+ "prompt_name": null,
1361
+ "bits_per_byte": 1.8889611054621571
1362
+ },
1363
+ {
1364
+ "task_name": "gsarti/flores_101_hin",
1365
+ "prompt_name": null,
1366
+ "word_perplexity": 453226793.5348556
1367
+ },
1368
+ {
1369
+ "task_name": "gsarti/flores_101_hin",
1370
+ "prompt_name": null,
1371
+ "byte_perplexity": 4.581311639568996
1372
+ },
1373
+ {
1374
+ "task_name": "gsarti/flores_101_hin",
1375
+ "prompt_name": null,
1376
+ "bits_per_byte": 2.195760704215568
1377
+ },
1378
+ {
1379
+ "task_name": "gsarti/flores_101_hun",
1380
+ "prompt_name": null,
1381
+ "word_perplexity": 8545882.19823639
1382
+ },
1383
+ {
1384
+ "task_name": "gsarti/flores_101_hun",
1385
+ "prompt_name": null,
1386
+ "byte_perplexity": 7.19531655942431
1387
+ },
1388
+ {
1389
+ "task_name": "gsarti/flores_101_hun",
1390
+ "prompt_name": null,
1391
+ "bits_per_byte": 2.8470581600253615
1392
+ },
1393
+ {
1394
+ "task_name": "gsarti/flores_101_isl",
1395
+ "prompt_name": null,
1396
+ "word_perplexity": 3947458.536983725
1397
+ },
1398
+ {
1399
+ "task_name": "gsarti/flores_101_isl",
1400
+ "prompt_name": null,
1401
+ "byte_perplexity": 8.812045732299993
1402
+ },
1403
+ {
1404
+ "task_name": "gsarti/flores_101_isl",
1405
+ "prompt_name": null,
1406
+ "bits_per_byte": 3.1394769822824644
1407
+ },
1408
+ {
1409
+ "task_name": "gsarti/flores_101_ibo",
1410
+ "prompt_name": null,
1411
+ "word_perplexity": 99576.38125028457
1412
+ },
1413
+ {
1414
+ "task_name": "gsarti/flores_101_ibo",
1415
+ "prompt_name": null,
1416
+ "byte_perplexity": 6.06807351892086
1417
+ },
1418
+ {
1419
+ "task_name": "gsarti/flores_101_ibo",
1420
+ "prompt_name": null,
1421
+ "bits_per_byte": 2.6012385649422316
1422
+ },
1423
+ {
1424
+ "task_name": "gsarti/flores_101_ind",
1425
+ "prompt_name": null,
1426
+ "word_perplexity": 299.41864562936706
1427
+ },
1428
+ {
1429
+ "task_name": "gsarti/flores_101_ind",
1430
+ "prompt_name": null,
1431
+ "byte_perplexity": 2.2193428661828962
1432
+ },
1433
+ {
1434
+ "task_name": "gsarti/flores_101_ind",
1435
+ "prompt_name": null,
1436
+ "bits_per_byte": 1.1501325666473412
1437
+ },
1438
+ {
1439
+ "task_name": "gsarti/flores_101_gle",
1440
+ "prompt_name": null,
1441
+ "word_perplexity": 1548851.5929806433
1442
+ },
1443
+ {
1444
+ "task_name": "gsarti/flores_101_gle",
1445
+ "prompt_name": null,
1446
+ "byte_perplexity": 9.712259930753122
1447
+ },
1448
+ {
1449
+ "task_name": "gsarti/flores_101_gle",
1450
+ "prompt_name": null,
1451
+ "bits_per_byte": 3.2798070331865063
1452
+ },
1453
+ {
1454
+ "task_name": "gsarti/flores_101_ita",
1455
+ "prompt_name": null,
1456
+ "word_perplexity": 1951.0663459405935
1457
+ },
1458
+ {
1459
+ "task_name": "gsarti/flores_101_ita",
1460
+ "prompt_name": null,
1461
+ "byte_perplexity": 3.238337491305615
1462
+ },
1463
+ {
1464
+ "task_name": "gsarti/flores_101_ita",
1465
+ "prompt_name": null,
1466
+ "bits_per_byte": 1.695253347487448
1467
+ },
1468
+ {
1469
+ "task_name": "gsarti/flores_101_jpn",
1470
+ "prompt_name": null,
1471
+ "word_perplexity": 6.0024027118732196e+69
1472
+ },
1473
+ {
1474
+ "task_name": "gsarti/flores_101_jpn",
1475
+ "prompt_name": null,
1476
+ "byte_perplexity": 2.907038023970581
1477
+ },
1478
+ {
1479
+ "task_name": "gsarti/flores_101_jpn",
1480
+ "prompt_name": null,
1481
+ "bits_per_byte": 1.539549942005635
1482
+ },
1483
+ {
1484
+ "task_name": "gsarti/flores_101_jav",
1485
+ "prompt_name": null,
1486
+ "word_perplexity": 956961.3940329206
1487
+ },
1488
+ {
1489
+ "task_name": "gsarti/flores_101_jav",
1490
+ "prompt_name": null,
1491
+ "byte_perplexity": 7.460632752007581
1492
+ },
1493
+ {
1494
+ "task_name": "gsarti/flores_101_jav",
1495
+ "prompt_name": null,
1496
+ "bits_per_byte": 2.899297993680408
1497
+ },
1498
+ {
1499
+ "task_name": "gsarti/flores_101_kea",
1500
+ "prompt_name": null,
1501
+ "word_perplexity": 438558.0012817139
1502
+ },
1503
+ {
1504
+ "task_name": "gsarti/flores_101_kea",
1505
+ "prompt_name": null,
1506
+ "byte_perplexity": 9.281572608888562
1507
+ },
1508
+ {
1509
+ "task_name": "gsarti/flores_101_kea",
1510
+ "prompt_name": null,
1511
+ "bits_per_byte": 3.2143692668645976
1512
+ },
1513
+ {
1514
+ "task_name": "gsarti/flores_101_kam",
1515
+ "prompt_name": null,
1516
+ "word_perplexity": 4288601.196402131
1517
+ },
1518
+ {
1519
+ "task_name": "gsarti/flores_101_kam",
1520
+ "prompt_name": null,
1521
+ "byte_perplexity": 11.436917146974627
1522
+ },
1523
+ {
1524
+ "task_name": "gsarti/flores_101_kam",
1525
+ "prompt_name": null,
1526
+ "bits_per_byte": 3.515626316920499
1527
+ },
1528
+ {
1529
+ "task_name": "gsarti/flores_101_kan",
1530
+ "prompt_name": null,
1531
+ "word_perplexity": 5.3861539364992216e+16
1532
+ },
1533
+ {
1534
+ "task_name": "gsarti/flores_101_kan",
1535
+ "prompt_name": null,
1536
+ "byte_perplexity": 5.274956219477929
1537
+ },
1538
+ {
1539
+ "task_name": "gsarti/flores_101_kan",
1540
+ "prompt_name": null,
1541
+ "bits_per_byte": 2.3991591199422513
1542
+ },
1543
+ {
1544
+ "task_name": "gsarti/flores_101_kaz",
1545
+ "prompt_name": null,
1546
+ "word_perplexity": 89537342.10068764
1547
+ },
1548
+ {
1549
+ "task_name": "gsarti/flores_101_kaz",
1550
+ "prompt_name": null,
1551
+ "byte_perplexity": 3.5945005448756477
1552
+ },
1553
+ {
1554
+ "task_name": "gsarti/flores_101_kaz",
1555
+ "prompt_name": null,
1556
+ "bits_per_byte": 1.845791322405974
1557
+ }
1558
+ ],
1559
+ "versions": {
1560
+ "wic+GPT-3-prompt": 0,
1561
+ "wic+GPT-3-prompt-with-label": 0,
1562
+ "wic+affirmation_true_or_false": 0,
1563
+ "wic+grammar_homework": 0,
1564
+ "wic+polysemous": 0,
1565
+ "wic+question-context": 0,
1566
+ "wic+question-context-meaning": 0,
1567
+ "wic+question-context-meaning-with-label": 0,
1568
+ "wic+same_sense": 0,
1569
+ "wic+similar-sense": 0,
1570
+ "wsc+GPT-3 Style": 0,
1571
+ "wsc+I think they mean": 0,
1572
+ "wsc+Who or what is/are": 0,
1573
+ "wsc+by p they mean": 0,
1574
+ "wsc+does p stand for": 0,
1575
+ "wsc+does the pronoun refer to": 0,
1576
+ "wsc+in other words": 0,
1577
+ "wsc+p is/are r": 0,
1578
+ "wsc+replaced with": 0,
1579
+ "wsc+the pronoun refers to": 0,
1580
+ "wnli+confident": 1,
1581
+ "wnli+entailment explained": 1,
1582
+ "wnli+imply": 1,
1583
+ "wnli+justified": 1,
1584
+ "wnli+mean": 1,
1585
+ "gsarti/flores_101_afr+null": 0,
1586
+ "gsarti/flores_101_amh+null": 0,
1587
+ "gsarti/flores_101_ara+null": 0,
1588
+ "gsarti/flores_101_hye+null": 0,
1589
+ "gsarti/flores_101_asm+null": 0,
1590
+ "gsarti/flores_101_ast+null": 0,
1591
+ "gsarti/flores_101_azj+null": 0,
1592
+ "gsarti/flores_101_bel+null": 0,
1593
+ "gsarti/flores_101_ben+null": 0,
1594
+ "gsarti/flores_101_bos+null": 0,
1595
+ "gsarti/flores_101_bul+null": 0,
1596
+ "gsarti/flores_101_mya+null": 0,
1597
+ "gsarti/flores_101_cat+null": 0,
1598
+ "gsarti/flores_101_ceb+null": 0,
1599
+ "gsarti/flores_101_zho_simpl+null": 0,
1600
+ "gsarti/flores_101_zho_trad+null": 0,
1601
+ "gsarti/flores_101_hrv+null": 0,
1602
+ "gsarti/flores_101_ces+null": 0,
1603
+ "gsarti/flores_101_dan+null": 0,
1604
+ "gsarti/flores_101_nld+null": 0,
1605
+ "gsarti/flores_101_eng+null": 0,
1606
+ "gsarti/flores_101_est+null": 0,
1607
+ "gsarti/flores_101_tgl+null": 0,
1608
+ "gsarti/flores_101_fin+null": 0,
1609
+ "gsarti/flores_101_fra+null": 0,
1610
+ "gsarti/flores_101_ful+null": 0,
1611
+ "gsarti/flores_101_glg+null": 0,
1612
+ "gsarti/flores_101_lug+null": 0,
1613
+ "gsarti/flores_101_kat+null": 0,
1614
+ "gsarti/flores_101_deu+null": 0,
1615
+ "gsarti/flores_101_ell+null": 0,
1616
+ "gsarti/flores_101_guj+null": 0,
1617
+ "gsarti/flores_101_hau+null": 0,
1618
+ "gsarti/flores_101_heb+null": 0,
1619
+ "gsarti/flores_101_hin+null": 0,
1620
+ "gsarti/flores_101_hun+null": 0,
1621
+ "gsarti/flores_101_isl+null": 0,
1622
+ "gsarti/flores_101_ibo+null": 0,
1623
+ "gsarti/flores_101_ind+null": 0,
1624
+ "gsarti/flores_101_gle+null": 0,
1625
+ "gsarti/flores_101_ita+null": 0,
1626
+ "gsarti/flores_101_jpn+null": 0,
1627
+ "gsarti/flores_101_jav+null": 0,
1628
+ "gsarti/flores_101_kea+null": 0,
1629
+ "gsarti/flores_101_kam+null": 0,
1630
+ "gsarti/flores_101_kan+null": 0,
1631
+ "gsarti/flores_101_kaz+null": 0
1632
+ },
1633
+ "table_results": {
1634
+ "wic+GPT-3-prompt": {
1635
+ "task_name": "wic",
1636
+ "prompt_name": "GPT-3-prompt",
1637
+ "acc": 0.5,
1638
+ "acc_stderr": 0.01981072129375818,
1639
+ "acc_norm": 0.5,
1640
+ "acc_norm_stderr": 0.01981072129375818
1641
+ },
1642
+ "wic+GPT-3-prompt-with-label": {
1643
+ "task_name": "wic",
1644
+ "prompt_name": "GPT-3-prompt-with-label",
1645
+ "acc": 0.49216300940438873,
1646
+ "acc_stderr": 0.019808287657813832,
1647
+ "acc_norm": 0.5,
1648
+ "acc_norm_stderr": 0.01981072129375818
1649
+ },
1650
+ "wic+affirmation_true_or_false": {
1651
+ "task_name": "wic",
1652
+ "prompt_name": "affirmation_true_or_false",
1653
+ "acc": 0.5,
1654
+ "acc_stderr": 0.01981072129375818,
1655
+ "acc_norm": 0.5078369905956113,
1656
+ "acc_norm_stderr": 0.019808287657813832
1657
+ },
1658
+ "wic+grammar_homework": {
1659
+ "task_name": "wic",
1660
+ "prompt_name": "grammar_homework",
1661
+ "acc": 0.5094043887147336,
1662
+ "acc_stderr": 0.019807216763271497,
1663
+ "acc_norm": 0.49843260188087773,
1664
+ "acc_norm_stderr": 0.019810623954060382
1665
+ },
1666
+ "wic+polysemous": {
1667
+ "task_name": "wic",
1668
+ "prompt_name": "polysemous",
1669
+ "acc": 0.512539184952978,
1670
+ "acc_stderr": 0.019804490588592596,
1671
+ "acc_norm": 0.49843260188087773,
1672
+ "acc_norm_stderr": 0.019810623954060382
1673
+ },
1674
+ "wic+question-context": {
1675
+ "task_name": "wic",
1676
+ "prompt_name": "question-context",
1677
+ "acc": 0.5266457680250783,
1678
+ "acc_stderr": 0.019782570188812167,
1679
+ "acc_norm": 0.5031347962382445,
1680
+ "acc_norm_stderr": 0.019810331932097542
1681
+ },
1682
+ "wic+question-context-meaning": {
1683
+ "task_name": "wic",
1684
+ "prompt_name": "question-context-meaning",
1685
+ "acc": 0.5438871473354232,
1686
+ "acc_stderr": 0.019734259601993404,
1687
+ "acc_norm": 0.5015673981191222,
1688
+ "acc_norm_stderr": 0.019810623954060382
1689
+ },
1690
+ "wic+question-context-meaning-with-label": {
1691
+ "task_name": "wic",
1692
+ "prompt_name": "question-context-meaning-with-label",
1693
+ "acc": 0.5156739811912225,
1694
+ "acc_stderr": 0.019800984955347847,
1695
+ "acc_norm": 0.5015673981191222,
1696
+ "acc_norm_stderr": 0.019810623954060382
1697
+ },
1698
+ "wic+same_sense": {
1699
+ "task_name": "wic",
1700
+ "prompt_name": "same_sense",
1701
+ "acc": 0.5047021943573667,
1702
+ "acc_stderr": 0.019809845219259763,
1703
+ "acc_norm": 0.5,
1704
+ "acc_norm_stderr": 0.01981072129375818
1705
+ },
1706
+ "wic+similar-sense": {
1707
+ "task_name": "wic",
1708
+ "prompt_name": "similar-sense",
1709
+ "acc": 0.542319749216301,
1710
+ "acc_stderr": 0.01973963328373276,
1711
+ "acc_norm": 0.5,
1712
+ "acc_norm_stderr": 0.01981072129375818
1713
+ },
1714
+ "wsc+GPT-3 Style": {
1715
+ "task_name": "wsc",
1716
+ "prompt_name": "GPT-3 Style",
1717
+ "acc": 0.36538461538461536,
1718
+ "acc_stderr": 0.0474473339327792,
1719
+ "acc_norm": 0.36538461538461536,
1720
+ "acc_norm_stderr": 0.0474473339327792
1721
+ },
1722
+ "wsc+I think they mean": {
1723
+ "task_name": "wsc",
1724
+ "prompt_name": "I think they mean",
1725
+ "acc": 0.36538461538461536,
1726
+ "acc_stderr": 0.0474473339327792,
1727
+ "acc_norm": 0.36538461538461536,
1728
+ "acc_norm_stderr": 0.0474473339327792
1729
+ },
1730
+ "wsc+Who or what is/are": {
1731
+ "task_name": "wsc",
1732
+ "prompt_name": "Who or what is/are",
1733
+ "acc": 0.40384615384615385,
1734
+ "acc_stderr": 0.048346889526540184,
1735
+ "acc_norm": 0.36538461538461536,
1736
+ "acc_norm_stderr": 0.0474473339327792
1737
+ },
1738
+ "wsc+by p they mean": {
1739
+ "task_name": "wsc",
1740
+ "prompt_name": "by p they mean",
1741
+ "acc": 0.36538461538461536,
1742
+ "acc_stderr": 0.0474473339327792,
1743
+ "acc_norm": 0.36538461538461536,
1744
+ "acc_norm_stderr": 0.0474473339327792
1745
+ },
1746
+ "wsc+does p stand for": {
1747
+ "task_name": "wsc",
1748
+ "prompt_name": "does p stand for",
1749
+ "acc": 0.375,
1750
+ "acc_stderr": 0.04770204856076104,
1751
+ "acc_norm": 0.36538461538461536,
1752
+ "acc_norm_stderr": 0.0474473339327792
1753
+ },
1754
+ "wsc+does the pronoun refer to": {
1755
+ "task_name": "wsc",
1756
+ "prompt_name": "does the pronoun refer to",
1757
+ "acc": 0.5480769230769231,
1758
+ "acc_stderr": 0.049038186969314335,
1759
+ "acc_norm": 0.36538461538461536,
1760
+ "acc_norm_stderr": 0.0474473339327792
1761
+ },
1762
+ "wsc+in other words": {
1763
+ "task_name": "wsc",
1764
+ "prompt_name": "in other words",
1765
+ "acc": 0.36538461538461536,
1766
+ "acc_stderr": 0.0474473339327792,
1767
+ "acc_norm": 0.5288461538461539,
1768
+ "acc_norm_stderr": 0.04918440626354964
1769
+ },
1770
+ "wsc+p is/are r": {
1771
+ "task_name": "wsc",
1772
+ "prompt_name": "p is/are r",
1773
+ "acc": 0.36538461538461536,
1774
+ "acc_stderr": 0.0474473339327792,
1775
+ "acc_norm": 0.34615384615384615,
1776
+ "acc_norm_stderr": 0.04687634642174987
1777
+ },
1778
+ "wsc+replaced with": {
1779
+ "task_name": "wsc",
1780
+ "prompt_name": "replaced with",
1781
+ "acc": 0.6153846153846154,
1782
+ "acc_stderr": 0.047936688680750406,
1783
+ "acc_norm": 0.36538461538461536,
1784
+ "acc_norm_stderr": 0.0474473339327792
1785
+ },
1786
+ "wsc+the pronoun refers to": {
1787
+ "task_name": "wsc",
1788
+ "prompt_name": "the pronoun refers to",
1789
+ "acc": 0.36538461538461536,
1790
+ "acc_stderr": 0.0474473339327792,
1791
+ "acc_norm": 0.5865384615384616,
1792
+ "acc_norm_stderr": 0.04852294969729053
1793
+ },
1794
+ "wnli+confident": {
1795
+ "task_name": "wnli",
1796
+ "prompt_name": "confident",
1797
+ "acc": 0.43661971830985913,
1798
+ "acc_stderr": 0.0592793555841297,
1799
+ "acc_norm": 0.43661971830985913,
1800
+ "acc_norm_stderr": 0.0592793555841297
1801
+ },
1802
+ "wnli+entailment explained": {
1803
+ "task_name": "wnli",
1804
+ "prompt_name": "entailment explained",
1805
+ "acc": 0.39436619718309857,
1806
+ "acc_stderr": 0.058412510854444266,
1807
+ "acc_norm": 0.43661971830985913,
1808
+ "acc_norm_stderr": 0.0592793555841297
1809
+ },
1810
+ "wnli+imply": {
1811
+ "task_name": "wnli",
1812
+ "prompt_name": "imply",
1813
+ "acc": 0.4225352112676056,
1814
+ "acc_stderr": 0.05903984205682581,
1815
+ "acc_norm": 0.43661971830985913,
1816
+ "acc_norm_stderr": 0.0592793555841297
1817
+ },
1818
+ "wnli+justified": {
1819
+ "task_name": "wnli",
1820
+ "prompt_name": "justified",
1821
+ "acc": 0.43661971830985913,
1822
+ "acc_stderr": 0.0592793555841297,
1823
+ "acc_norm": 0.43661971830985913,
1824
+ "acc_norm_stderr": 0.0592793555841297
1825
+ },
1826
+ "wnli+mean": {
1827
+ "task_name": "wnli",
1828
+ "prompt_name": "mean",
1829
+ "acc": 0.6619718309859155,
1830
+ "acc_stderr": 0.05653887739133513,
1831
+ "acc_norm": 0.43661971830985913,
1832
+ "acc_norm_stderr": 0.0592793555841297
1833
+ },
1834
+ "gsarti/flores_101_afr+null": {
1835
+ "task_name": "gsarti/flores_101_afr",
1836
+ "prompt_name": "null",
1837
+ "word_perplexity": 139324.0466654445,
1838
+ "byte_perplexity": 7.049422805555328,
1839
+ "bits_per_byte": 2.8175051369933213
1840
+ },
1841
+ "gsarti/flores_101_amh+null": {
1842
+ "task_name": "gsarti/flores_101_amh",
1843
+ "prompt_name": "null",
1844
+ "word_perplexity": 105036774.30501972,
1845
+ "byte_perplexity": 4.172368790188039,
1846
+ "bits_per_byte": 2.0608666814101815
1847
+ },
1848
+ "gsarti/flores_101_ara+null": {
1849
+ "task_name": "gsarti/flores_101_ara",
1850
+ "prompt_name": "null",
1851
+ "word_perplexity": 674.8640314665696,
1852
+ "byte_perplexity": 1.8400375612633983,
1853
+ "bits_per_byte": 0.8797352167688847
1854
+ },
1855
+ "gsarti/flores_101_hye+null": {
1856
+ "task_name": "gsarti/flores_101_hye",
1857
+ "prompt_name": "null",
1858
+ "word_perplexity": 99262887.01092263,
1859
+ "byte_perplexity": 3.7481249397064547,
1860
+ "bits_per_byte": 1.906169044483402
1861
+ },
1862
+ "gsarti/flores_101_asm+null": {
1863
+ "task_name": "gsarti/flores_101_asm",
1864
+ "prompt_name": "null",
1865
+ "word_perplexity": 6763188828222.085,
1866
+ "byte_perplexity": 5.497254736157445,
1867
+ "bits_per_byte": 2.458711333673663
1868
+ },
1869
+ "gsarti/flores_101_ast+null": {
1870
+ "task_name": "gsarti/flores_101_ast",
1871
+ "prompt_name": "null",
1872
+ "word_perplexity": 10657.272913539553,
1873
+ "byte_perplexity": 4.260251728273795,
1874
+ "bits_per_byte": 2.0909386784329675
1875
+ },
1876
+ "gsarti/flores_101_azj+null": {
1877
+ "task_name": "gsarti/flores_101_azj",
1878
+ "prompt_name": "null",
1879
+ "word_perplexity": 45923924.18878753,
1880
+ "byte_perplexity": 7.691396328945705,
1881
+ "bits_per_byte": 2.9432455349850195
1882
+ },
1883
+ "gsarti/flores_101_bel+null": {
1884
+ "task_name": "gsarti/flores_101_bel",
1885
+ "prompt_name": "null",
1886
+ "word_perplexity": 23935692.781315073,
1887
+ "byte_perplexity": 3.7706591215465943,
1888
+ "bits_per_byte": 1.914816732584341
1889
+ },
1890
+ "gsarti/flores_101_ben+null": {
1891
+ "task_name": "gsarti/flores_101_ben",
1892
+ "prompt_name": "null",
1893
+ "word_perplexity": 2480418685142.412,
1894
+ "byte_perplexity": 5.074281765515423,
1895
+ "bits_per_byte": 2.3432036318231058
1896
+ },
1897
+ "gsarti/flores_101_bos+null": {
1898
+ "task_name": "gsarti/flores_101_bos",
1899
+ "prompt_name": "null",
1900
+ "word_perplexity": 229622.13691086147,
1901
+ "byte_perplexity": 6.343363734045183,
1902
+ "bits_per_byte": 2.665248069942796
1903
+ },
1904
+ "gsarti/flores_101_bul+null": {
1905
+ "task_name": "gsarti/flores_101_bul",
1906
+ "prompt_name": "null",
1907
+ "word_perplexity": 194851.13344620814,
1908
+ "byte_perplexity": 2.8553687444403257,
1909
+ "bits_per_byte": 1.5136770683283687
1910
+ },
1911
+ "gsarti/flores_101_mya+null": {
1912
+ "task_name": "gsarti/flores_101_mya",
1913
+ "prompt_name": "null",
1914
+ "word_perplexity": 5.887577237013639e+18,
1915
+ "byte_perplexity": 2.657561458464019,
1916
+ "bits_per_byte": 1.4101030557435918
1917
+ },
1918
+ "gsarti/flores_101_cat+null": {
1919
+ "task_name": "gsarti/flores_101_cat",
1920
+ "prompt_name": "null",
1921
+ "word_perplexity": 179.13123174533087,
1922
+ "byte_perplexity": 2.358207169698056,
1923
+ "bits_per_byte": 1.2376904653775254
1924
+ },
1925
+ "gsarti/flores_101_ceb+null": {
1926
+ "task_name": "gsarti/flores_101_ceb",
1927
+ "prompt_name": "null",
1928
+ "word_perplexity": 113330.67154113152,
1929
+ "byte_perplexity": 6.896481056329736,
1930
+ "bits_per_byte": 2.7858604115174295
1931
+ },
1932
+ "gsarti/flores_101_zho_simpl+null": {
1933
+ "task_name": "gsarti/flores_101_zho_simpl",
1934
+ "prompt_name": "null",
1935
+ "word_perplexity": 1.0554528210220222e+21,
1936
+ "byte_perplexity": 2.322457417595381,
1937
+ "bits_per_byte": 1.2156521449449949
1938
+ },
1939
+ "gsarti/flores_101_zho_trad+null": {
1940
+ "task_name": "gsarti/flores_101_zho_trad",
1941
+ "prompt_name": "null",
1942
+ "word_perplexity": 4.787781515987923e+24,
1943
+ "byte_perplexity": 2.5709177552415134,
1944
+ "bits_per_byte": 1.3622834584784203
1945
+ },
1946
+ "gsarti/flores_101_hrv+null": {
1947
+ "task_name": "gsarti/flores_101_hrv",
1948
+ "prompt_name": "null",
1949
+ "word_perplexity": 307789.1462790266,
1950
+ "byte_perplexity": 6.50559790827845,
1951
+ "bits_per_byte": 2.7016816564307984
1952
+ },
1953
+ "gsarti/flores_101_ces+null": {
1954
+ "task_name": "gsarti/flores_101_ces",
1955
+ "prompt_name": "null",
1956
+ "word_perplexity": 625101.1441414964,
1957
+ "byte_perplexity": 6.126526835715164,
1958
+ "bits_per_byte": 2.6150694333085327
1959
+ },
1960
+ "gsarti/flores_101_dan+null": {
1961
+ "task_name": "gsarti/flores_101_dan",
1962
+ "prompt_name": "null",
1963
+ "word_perplexity": 71695.50336412797,
1964
+ "byte_perplexity": 5.778786323448377,
1965
+ "bits_per_byte": 2.5307665257708245
1966
+ },
1967
+ "gsarti/flores_101_nld+null": {
1968
+ "task_name": "gsarti/flores_101_nld",
1969
+ "prompt_name": "null",
1970
+ "word_perplexity": 13951.877058430618,
1971
+ "byte_perplexity": 4.535651709856251,
1972
+ "bits_per_byte": 2.1813098607926804
1973
+ },
1974
+ "gsarti/flores_101_eng+null": {
1975
+ "task_name": "gsarti/flores_101_eng",
1976
+ "prompt_name": "null",
1977
+ "word_perplexity": 75.56480997823662,
1978
+ "byte_perplexity": 2.061283234268159,
1979
+ "bits_per_byte": 1.0435427545613876
1980
+ },
1981
+ "gsarti/flores_101_est+null": {
1982
+ "task_name": "gsarti/flores_101_est",
1983
+ "prompt_name": "null",
1984
+ "word_perplexity": 92602633.82439691,
1985
+ "byte_perplexity": 10.131736127467489,
1986
+ "bits_per_byte": 3.340809503762674
1987
+ },
1988
+ "gsarti/flores_101_tgl+null": {
1989
+ "task_name": "gsarti/flores_101_tgl",
1990
+ "prompt_name": "null",
1991
+ "word_perplexity": 87554.31770184237,
1992
+ "byte_perplexity": 6.256957969905079,
1993
+ "bits_per_byte": 2.645461413001105
1994
+ },
1995
+ "gsarti/flores_101_fin+null": {
1996
+ "task_name": "gsarti/flores_101_fin",
1997
+ "prompt_name": "null",
1998
+ "word_perplexity": 91621886.60145952,
1999
+ "byte_perplexity": 7.5129644427067355,
2000
+ "bits_per_byte": 2.9093822743068216
2001
+ },
2002
+ "gsarti/flores_101_fra+null": {
2003
+ "task_name": "gsarti/flores_101_fra",
2004
+ "prompt_name": "null",
2005
+ "word_perplexity": 89.45884576931464,
2006
+ "byte_perplexity": 2.0177390037335385,
2007
+ "bits_per_byte": 1.0127395726746855
2008
+ },
2009
+ "gsarti/flores_101_ful+null": {
2010
+ "task_name": "gsarti/flores_101_ful",
2011
+ "prompt_name": "null",
2012
+ "word_perplexity": 908715.1423017589,
2013
+ "byte_perplexity": 11.810263420287875,
2014
+ "bits_per_byte": 3.561969238361191
2015
+ },
2016
+ "gsarti/flores_101_glg+null": {
2017
+ "task_name": "gsarti/flores_101_glg",
2018
+ "prompt_name": "null",
2019
+ "word_perplexity": 1537.3193913761668,
2020
+ "byte_perplexity": 3.2214647330840154,
2021
+ "bits_per_byte": 1.6877168009728167
2022
+ },
2023
+ "gsarti/flores_101_lug+null": {
2024
+ "task_name": "gsarti/flores_101_lug",
2025
+ "prompt_name": "null",
2026
+ "word_perplexity": 32046806.791237485,
2027
+ "byte_perplexity": 9.285708185212261,
2028
+ "bits_per_byte": 3.2150119431528754
2029
+ },
2030
+ "gsarti/flores_101_kat+null": {
2031
+ "task_name": "gsarti/flores_101_kat",
2032
+ "prompt_name": "null",
2033
+ "word_perplexity": 1133105340.614723,
2034
+ "byte_perplexity": 2.5184571084900518,
2035
+ "bits_per_byte": 1.3325401608568794
2036
+ },
2037
+ "gsarti/flores_101_deu+null": {
2038
+ "task_name": "gsarti/flores_101_deu",
2039
+ "prompt_name": "null",
2040
+ "word_perplexity": 5647.282599404732,
2041
+ "byte_perplexity": 3.361758059911202,
2042
+ "bits_per_byte": 1.7492158999678582
2043
+ },
2044
+ "gsarti/flores_101_ell+null": {
2045
+ "task_name": "gsarti/flores_101_ell",
2046
+ "prompt_name": "null",
2047
+ "word_perplexity": 102751.5248402687,
2048
+ "byte_perplexity": 2.6139607239932805,
2049
+ "bits_per_byte": 1.3862374641150543
2050
+ },
2051
+ "gsarti/flores_101_guj+null": {
2052
+ "task_name": "gsarti/flores_101_guj",
2053
+ "prompt_name": "null",
2054
+ "word_perplexity": 133216198508.6925,
2055
+ "byte_perplexity": 5.125904532570054,
2056
+ "bits_per_byte": 2.357806609400009
2057
+ },
2058
+ "gsarti/flores_101_hau+null": {
2059
+ "task_name": "gsarti/flores_101_hau",
2060
+ "prompt_name": "null",
2061
+ "word_perplexity": 730749.6449046461,
2062
+ "byte_perplexity": 11.049458818357667,
2063
+ "bits_per_byte": 3.4659038057537184
2064
+ },
2065
+ "gsarti/flores_101_heb+null": {
2066
+ "task_name": "gsarti/flores_101_heb",
2067
+ "prompt_name": "null",
2068
+ "word_perplexity": 880255.4148832298,
2069
+ "byte_perplexity": 3.7036842387723694,
2070
+ "bits_per_byte": 1.8889611054621571
2071
+ },
2072
+ "gsarti/flores_101_hin+null": {
2073
+ "task_name": "gsarti/flores_101_hin",
2074
+ "prompt_name": "null",
2075
+ "word_perplexity": 453226793.5348556,
2076
+ "byte_perplexity": 4.581311639568996,
2077
+ "bits_per_byte": 2.195760704215568
2078
+ },
2079
+ "gsarti/flores_101_hun+null": {
2080
+ "task_name": "gsarti/flores_101_hun",
2081
+ "prompt_name": "null",
2082
+ "word_perplexity": 8545882.19823639,
2083
+ "byte_perplexity": 7.19531655942431,
2084
+ "bits_per_byte": 2.8470581600253615
2085
+ },
2086
+ "gsarti/flores_101_isl+null": {
2087
+ "task_name": "gsarti/flores_101_isl",
2088
+ "prompt_name": "null",
2089
+ "word_perplexity": 3947458.536983725,
2090
+ "byte_perplexity": 8.812045732299993,
2091
+ "bits_per_byte": 3.1394769822824644
2092
+ },
2093
+ "gsarti/flores_101_ibo+null": {
2094
+ "task_name": "gsarti/flores_101_ibo",
2095
+ "prompt_name": "null",
2096
+ "word_perplexity": 99576.38125028457,
2097
+ "byte_perplexity": 6.06807351892086,
2098
+ "bits_per_byte": 2.6012385649422316
2099
+ },
2100
+ "gsarti/flores_101_ind+null": {
2101
+ "task_name": "gsarti/flores_101_ind",
2102
+ "prompt_name": "null",
2103
+ "word_perplexity": 299.41864562936706,
2104
+ "byte_perplexity": 2.2193428661828962,
2105
+ "bits_per_byte": 1.1501325666473412
2106
+ },
2107
+ "gsarti/flores_101_gle+null": {
2108
+ "task_name": "gsarti/flores_101_gle",
2109
+ "prompt_name": "null",
2110
+ "word_perplexity": 1548851.5929806433,
2111
+ "byte_perplexity": 9.712259930753122,
2112
+ "bits_per_byte": 3.2798070331865063
2113
+ },
2114
+ "gsarti/flores_101_ita+null": {
2115
+ "task_name": "gsarti/flores_101_ita",
2116
+ "prompt_name": "null",
2117
+ "word_perplexity": 1951.0663459405935,
2118
+ "byte_perplexity": 3.238337491305615,
2119
+ "bits_per_byte": 1.695253347487448
2120
+ },
2121
+ "gsarti/flores_101_jpn+null": {
2122
+ "task_name": "gsarti/flores_101_jpn",
2123
+ "prompt_name": "null",
2124
+ "word_perplexity": 6.0024027118732196e+69,
2125
+ "byte_perplexity": 2.907038023970581,
2126
+ "bits_per_byte": 1.539549942005635
2127
+ },
2128
+ "gsarti/flores_101_jav+null": {
2129
+ "task_name": "gsarti/flores_101_jav",
2130
+ "prompt_name": "null",
2131
+ "word_perplexity": 956961.3940329206,
2132
+ "byte_perplexity": 7.460632752007581,
2133
+ "bits_per_byte": 2.899297993680408
2134
+ },
2135
+ "gsarti/flores_101_kea+null": {
2136
+ "task_name": "gsarti/flores_101_kea",
2137
+ "prompt_name": "null",
2138
+ "word_perplexity": 438558.0012817139,
2139
+ "byte_perplexity": 9.281572608888562,
2140
+ "bits_per_byte": 3.2143692668645976
2141
+ },
2142
+ "gsarti/flores_101_kam+null": {
2143
+ "task_name": "gsarti/flores_101_kam",
2144
+ "prompt_name": "null",
2145
+ "word_perplexity": 4288601.196402131,
2146
+ "byte_perplexity": 11.436917146974627,
2147
+ "bits_per_byte": 3.515626316920499
2148
+ },
2149
+ "gsarti/flores_101_kan+null": {
2150
+ "task_name": "gsarti/flores_101_kan",
2151
+ "prompt_name": "null",
2152
+ "word_perplexity": 5.3861539364992216e+16,
2153
+ "byte_perplexity": 5.274956219477929,
2154
+ "bits_per_byte": 2.3991591199422513
2155
+ },
2156
+ "gsarti/flores_101_kaz+null": {
2157
+ "task_name": "gsarti/flores_101_kaz",
2158
+ "prompt_name": "null",
2159
+ "word_perplexity": 89537342.10068764,
2160
+ "byte_perplexity": 3.5945005448756477,
2161
+ "bits_per_byte": 1.845791322405974
2162
+ }
2163
+ },
2164
+ "config": {
2165
+ "adaptive_seq_len": true,
2166
+ "num_fewshot": 0,
2167
+ "bootstrap_iters": 100000
2168
+ }
2169
+ }
evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-14-12-00-55.json ADDED
@@ -0,0 +1,1255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": [
3
+ {
4
+ "task_name": "gsarti/flores_101_kor",
5
+ "prompt_name": null,
6
+ "word_perplexity": 1684949.6449262113
7
+ },
8
+ {
9
+ "task_name": "gsarti/flores_101_kor",
10
+ "prompt_name": null,
11
+ "byte_perplexity": 4.065690303705374
12
+ },
13
+ {
14
+ "task_name": "gsarti/flores_101_kor",
15
+ "prompt_name": null,
16
+ "bits_per_byte": 2.023500324792833
17
+ },
18
+ {
19
+ "task_name": "gsarti/flores_101_kir",
20
+ "prompt_name": null,
21
+ "word_perplexity": 235337758.18519488
22
+ },
23
+ {
24
+ "task_name": "gsarti/flores_101_kir",
25
+ "prompt_name": null,
26
+ "byte_perplexity": 3.8667573034119127
27
+ },
28
+ {
29
+ "task_name": "gsarti/flores_101_kir",
30
+ "prompt_name": null,
31
+ "bits_per_byte": 1.9511242166700078
32
+ },
33
+ {
34
+ "task_name": "gsarti/flores_101_lao",
35
+ "prompt_name": null,
36
+ "word_perplexity": 3.0817754157127624e+28
37
+ },
38
+ {
39
+ "task_name": "gsarti/flores_101_lao",
40
+ "prompt_name": null,
41
+ "byte_perplexity": 3.1116396826339545
42
+ },
43
+ {
44
+ "task_name": "gsarti/flores_101_lao",
45
+ "prompt_name": null,
46
+ "bits_per_byte": 1.6376750107826055
47
+ },
48
+ {
49
+ "task_name": "gsarti/flores_101_lav",
50
+ "prompt_name": null,
51
+ "word_perplexity": 20692036.880855087
52
+ },
53
+ {
54
+ "task_name": "gsarti/flores_101_lav",
55
+ "prompt_name": null,
56
+ "byte_perplexity": 8.431943399753028
57
+ },
58
+ {
59
+ "task_name": "gsarti/flores_101_lav",
60
+ "prompt_name": null,
61
+ "bits_per_byte": 3.075865182775687
62
+ },
63
+ {
64
+ "task_name": "gsarti/flores_101_lin",
65
+ "prompt_name": null,
66
+ "word_perplexity": 259077.7174090486
67
+ },
68
+ {
69
+ "task_name": "gsarti/flores_101_lin",
70
+ "prompt_name": null,
71
+ "byte_perplexity": 8.10168498947524
72
+ },
73
+ {
74
+ "task_name": "gsarti/flores_101_lin",
75
+ "prompt_name": null,
76
+ "bits_per_byte": 3.018221991102226
77
+ },
78
+ {
79
+ "task_name": "gsarti/flores_101_lit",
80
+ "prompt_name": null,
81
+ "word_perplexity": 22011900.13997282
82
+ },
83
+ {
84
+ "task_name": "gsarti/flores_101_lit",
85
+ "prompt_name": null,
86
+ "byte_perplexity": 8.297153789252596
87
+ },
88
+ {
89
+ "task_name": "gsarti/flores_101_lit",
90
+ "prompt_name": null,
91
+ "bits_per_byte": 3.0526165270213905
92
+ },
93
+ {
94
+ "task_name": "gsarti/flores_101_luo",
95
+ "prompt_name": null,
96
+ "word_perplexity": 1485111.1306447538
97
+ },
98
+ {
99
+ "task_name": "gsarti/flores_101_luo",
100
+ "prompt_name": null,
101
+ "byte_perplexity": 12.202407052163576
102
+ },
103
+ {
104
+ "task_name": "gsarti/flores_101_luo",
105
+ "prompt_name": null,
106
+ "bits_per_byte": 3.609093857404177
107
+ },
108
+ {
109
+ "task_name": "gsarti/flores_101_ltz",
110
+ "prompt_name": null,
111
+ "word_perplexity": 6731220.931729273
112
+ },
113
+ {
114
+ "task_name": "gsarti/flores_101_ltz",
115
+ "prompt_name": null,
116
+ "byte_perplexity": 9.453152958003827
117
+ },
118
+ {
119
+ "task_name": "gsarti/flores_101_ltz",
120
+ "prompt_name": null,
121
+ "bits_per_byte": 3.2407955989852377
122
+ },
123
+ {
124
+ "task_name": "gsarti/flores_101_mkd",
125
+ "prompt_name": null,
126
+ "word_perplexity": 513306.31562258815
127
+ },
128
+ {
129
+ "task_name": "gsarti/flores_101_mkd",
130
+ "prompt_name": null,
131
+ "byte_perplexity": 3.11420755589491
132
+ },
133
+ {
134
+ "task_name": "gsarti/flores_101_mkd",
135
+ "prompt_name": null,
136
+ "bits_per_byte": 1.6388651004482695
137
+ },
138
+ {
139
+ "task_name": "gsarti/flores_101_msa",
140
+ "prompt_name": null,
141
+ "word_perplexity": 1188.7251531670374
142
+ },
143
+ {
144
+ "task_name": "gsarti/flores_101_msa",
145
+ "prompt_name": null,
146
+ "byte_perplexity": 2.659096901190639
147
+ },
148
+ {
149
+ "task_name": "gsarti/flores_101_msa",
150
+ "prompt_name": null,
151
+ "bits_per_byte": 1.4109363519680242
152
+ },
153
+ {
154
+ "task_name": "gsarti/flores_101_mal",
155
+ "prompt_name": null,
156
+ "word_perplexity": 4.8990954217696134e+17
157
+ },
158
+ {
159
+ "task_name": "gsarti/flores_101_mal",
160
+ "prompt_name": null,
161
+ "byte_perplexity": 4.465506197375413
162
+ },
163
+ {
164
+ "task_name": "gsarti/flores_101_mal",
165
+ "prompt_name": null,
166
+ "bits_per_byte": 2.1588237245178132
167
+ },
168
+ {
169
+ "task_name": "gsarti/flores_101_mlt",
170
+ "prompt_name": null,
171
+ "word_perplexity": 3271065298.9525104
172
+ },
173
+ {
174
+ "task_name": "gsarti/flores_101_mlt",
175
+ "prompt_name": null,
176
+ "byte_perplexity": 16.164200382975334
177
+ },
178
+ {
179
+ "task_name": "gsarti/flores_101_mlt",
180
+ "prompt_name": null,
181
+ "bits_per_byte": 4.014730236310589
182
+ },
183
+ {
184
+ "task_name": "gsarti/flores_101_mri",
185
+ "prompt_name": null,
186
+ "word_perplexity": 42667.84366725716
187
+ },
188
+ {
189
+ "task_name": "gsarti/flores_101_mri",
190
+ "prompt_name": null,
191
+ "byte_perplexity": 8.213330128288407
192
+ },
193
+ {
194
+ "task_name": "gsarti/flores_101_mri",
195
+ "prompt_name": null,
196
+ "bits_per_byte": 3.037967287223778
197
+ },
198
+ {
199
+ "task_name": "gsarti/flores_101_mar",
200
+ "prompt_name": null,
201
+ "word_perplexity": 53348101396468.1
202
+ },
203
+ {
204
+ "task_name": "gsarti/flores_101_mar",
205
+ "prompt_name": null,
206
+ "byte_perplexity": 5.479577601103449
207
+ },
208
+ {
209
+ "task_name": "gsarti/flores_101_mar",
210
+ "prompt_name": null,
211
+ "bits_per_byte": 2.454064685835334
212
+ },
213
+ {
214
+ "task_name": "gsarti/flores_101_mon",
215
+ "prompt_name": null,
216
+ "word_perplexity": 11967156.496346941
217
+ },
218
+ {
219
+ "task_name": "gsarti/flores_101_mon",
220
+ "prompt_name": null,
221
+ "byte_perplexity": 3.5723563966116956
222
+ },
223
+ {
224
+ "task_name": "gsarti/flores_101_mon",
225
+ "prompt_name": null,
226
+ "bits_per_byte": 1.8368760183021453
227
+ },
228
+ {
229
+ "task_name": "gsarti/flores_101_npi",
230
+ "prompt_name": null,
231
+ "word_perplexity": 7452421298650.788
232
+ },
233
+ {
234
+ "task_name": "gsarti/flores_101_npi",
235
+ "prompt_name": null,
236
+ "byte_perplexity": 5.138638996619111
237
+ },
238
+ {
239
+ "task_name": "gsarti/flores_101_npi",
240
+ "prompt_name": null,
241
+ "bits_per_byte": 2.361386302448311
242
+ },
243
+ {
244
+ "task_name": "gsarti/flores_101_nso",
245
+ "prompt_name": null,
246
+ "word_perplexity": 133251.3907730927
247
+ },
248
+ {
249
+ "task_name": "gsarti/flores_101_nso",
250
+ "prompt_name": null,
251
+ "byte_perplexity": 8.876839962509171
252
+ },
253
+ {
254
+ "task_name": "gsarti/flores_101_nso",
255
+ "prompt_name": null,
256
+ "bits_per_byte": 3.150046187635368
257
+ },
258
+ {
259
+ "task_name": "gsarti/flores_101_nob",
260
+ "prompt_name": null,
261
+ "word_perplexity": 64134.3587194621
262
+ },
263
+ {
264
+ "task_name": "gsarti/flores_101_nob",
265
+ "prompt_name": null,
266
+ "byte_perplexity": 5.901843358131797
267
+ },
268
+ {
269
+ "task_name": "gsarti/flores_101_nob",
270
+ "prompt_name": null,
271
+ "bits_per_byte": 2.561165630453858
272
+ },
273
+ {
274
+ "task_name": "gsarti/flores_101_nya",
275
+ "prompt_name": null,
276
+ "word_perplexity": 13237249.320560299
277
+ },
278
+ {
279
+ "task_name": "gsarti/flores_101_nya",
280
+ "prompt_name": null,
281
+ "byte_perplexity": 8.97654874419086
282
+ },
283
+ {
284
+ "task_name": "gsarti/flores_101_nya",
285
+ "prompt_name": null,
286
+ "bits_per_byte": 3.166160871838487
287
+ },
288
+ {
289
+ "task_name": "gsarti/flores_101_oci",
290
+ "prompt_name": null,
291
+ "word_perplexity": 29786.57326210068
292
+ },
293
+ {
294
+ "task_name": "gsarti/flores_101_oci",
295
+ "prompt_name": null,
296
+ "byte_perplexity": 5.114108118049416
297
+ },
298
+ {
299
+ "task_name": "gsarti/flores_101_oci",
300
+ "prompt_name": null,
301
+ "bits_per_byte": 2.3544826611123932
302
+ },
303
+ {
304
+ "task_name": "gsarti/flores_101_ory",
305
+ "prompt_name": null,
306
+ "word_perplexity": 8232620282886.167
307
+ },
308
+ {
309
+ "task_name": "gsarti/flores_101_ory",
310
+ "prompt_name": null,
311
+ "byte_perplexity": 5.086518347981296
312
+ },
313
+ {
314
+ "task_name": "gsarti/flores_101_ory",
315
+ "prompt_name": null,
316
+ "bits_per_byte": 2.3466784891528936
317
+ },
318
+ {
319
+ "task_name": "gsarti/flores_101_orm",
320
+ "prompt_name": null,
321
+ "word_perplexity": 1286222337.8393624
322
+ },
323
+ {
324
+ "task_name": "gsarti/flores_101_orm",
325
+ "prompt_name": null,
326
+ "byte_perplexity": 13.414303089263644
327
+ },
328
+ {
329
+ "task_name": "gsarti/flores_101_orm",
330
+ "prompt_name": null,
331
+ "bits_per_byte": 3.7457001993717243
332
+ },
333
+ {
334
+ "task_name": "gsarti/flores_101_pus",
335
+ "prompt_name": null,
336
+ "word_perplexity": 200303.57214724104
337
+ },
338
+ {
339
+ "task_name": "gsarti/flores_101_pus",
340
+ "prompt_name": null,
341
+ "byte_perplexity": 4.650458574106675
342
+ },
343
+ {
344
+ "task_name": "gsarti/flores_101_pus",
345
+ "prompt_name": null,
346
+ "bits_per_byte": 2.2173729850313615
347
+ },
348
+ {
349
+ "task_name": "gsarti/flores_101_fas",
350
+ "prompt_name": null,
351
+ "word_perplexity": 59965.98383842629
352
+ },
353
+ {
354
+ "task_name": "gsarti/flores_101_fas",
355
+ "prompt_name": null,
356
+ "byte_perplexity": 3.1572599808371367
357
+ },
358
+ {
359
+ "task_name": "gsarti/flores_101_fas",
360
+ "prompt_name": null,
361
+ "bits_per_byte": 1.6586730625582675
362
+ },
363
+ {
364
+ "task_name": "gsarti/flores_101_pol",
365
+ "prompt_name": null,
366
+ "word_perplexity": 239703.75452947227
367
+ },
368
+ {
369
+ "task_name": "gsarti/flores_101_pol",
370
+ "prompt_name": null,
371
+ "byte_perplexity": 5.165261846492578
372
+ },
373
+ {
374
+ "task_name": "gsarti/flores_101_pol",
375
+ "prompt_name": null,
376
+ "bits_per_byte": 2.3688414865658434
377
+ },
378
+ {
379
+ "task_name": "gsarti/flores_101_por",
380
+ "prompt_name": null,
381
+ "word_perplexity": 78.66129921108659
382
+ },
383
+ {
384
+ "task_name": "gsarti/flores_101_por",
385
+ "prompt_name": null,
386
+ "byte_perplexity": 2.012150908931838
387
+ },
388
+ {
389
+ "task_name": "gsarti/flores_101_por",
390
+ "prompt_name": null,
391
+ "bits_per_byte": 1.0087385096181816
392
+ },
393
+ {
394
+ "task_name": "gsarti/flores_101_pan",
395
+ "prompt_name": null,
396
+ "word_perplexity": 2003582065.835696
397
+ },
398
+ {
399
+ "task_name": "gsarti/flores_101_pan",
400
+ "prompt_name": null,
401
+ "byte_perplexity": 5.012603107956229
402
+ },
403
+ {
404
+ "task_name": "gsarti/flores_101_pan",
405
+ "prompt_name": null,
406
+ "bits_per_byte": 2.3255600077385723
407
+ },
408
+ {
409
+ "task_name": "gsarti/flores_101_ron",
410
+ "prompt_name": null,
411
+ "word_perplexity": 80490.92705368399
412
+ },
413
+ {
414
+ "task_name": "gsarti/flores_101_ron",
415
+ "prompt_name": null,
416
+ "byte_perplexity": 5.603607947317877
417
+ },
418
+ {
419
+ "task_name": "gsarti/flores_101_ron",
420
+ "prompt_name": null,
421
+ "bits_per_byte": 2.486356022105963
422
+ },
423
+ {
424
+ "task_name": "gsarti/flores_101_rus",
425
+ "prompt_name": null,
426
+ "word_perplexity": 22038.65288574451
427
+ },
428
+ {
429
+ "task_name": "gsarti/flores_101_rus",
430
+ "prompt_name": null,
431
+ "byte_perplexity": 2.1372096174466697
432
+ },
433
+ {
434
+ "task_name": "gsarti/flores_101_rus",
435
+ "prompt_name": null,
436
+ "bits_per_byte": 1.095728414417906
437
+ },
438
+ {
439
+ "task_name": "gsarti/flores_101_srp",
440
+ "prompt_name": null,
441
+ "word_perplexity": 359037.4163692842
442
+ },
443
+ {
444
+ "task_name": "gsarti/flores_101_srp",
445
+ "prompt_name": null,
446
+ "byte_perplexity": 3.050738229673983
447
+ },
448
+ {
449
+ "task_name": "gsarti/flores_101_srp",
450
+ "prompt_name": null,
451
+ "bits_per_byte": 1.6091583939601046
452
+ },
453
+ {
454
+ "task_name": "gsarti/flores_101_sna",
455
+ "prompt_name": null,
456
+ "word_perplexity": 151658287.08006003
457
+ },
458
+ {
459
+ "task_name": "gsarti/flores_101_sna",
460
+ "prompt_name": null,
461
+ "byte_perplexity": 9.361234419948593
462
+ },
463
+ {
464
+ "task_name": "gsarti/flores_101_sna",
465
+ "prompt_name": null,
466
+ "bits_per_byte": 3.226698783453375
467
+ },
468
+ {
469
+ "task_name": "gsarti/flores_101_snd",
470
+ "prompt_name": null,
471
+ "word_perplexity": 2195879.0537875695
472
+ },
473
+ {
474
+ "task_name": "gsarti/flores_101_snd",
475
+ "prompt_name": null,
476
+ "byte_perplexity": 5.678399375652783
477
+ },
478
+ {
479
+ "task_name": "gsarti/flores_101_snd",
480
+ "prompt_name": null,
481
+ "bits_per_byte": 2.505484320885354
482
+ },
483
+ {
484
+ "task_name": "gsarti/flores_101_slk",
485
+ "prompt_name": null,
486
+ "word_perplexity": 1873211.2703176092
487
+ },
488
+ {
489
+ "task_name": "gsarti/flores_101_slk",
490
+ "prompt_name": null,
491
+ "byte_perplexity": 7.294354718439043
492
+ },
493
+ {
494
+ "task_name": "gsarti/flores_101_slk",
495
+ "prompt_name": null,
496
+ "bits_per_byte": 2.8667803584469502
497
+ },
498
+ {
499
+ "task_name": "gsarti/flores_101_slv",
500
+ "prompt_name": null,
501
+ "word_perplexity": 609965.8362492598
502
+ },
503
+ {
504
+ "task_name": "gsarti/flores_101_slv",
505
+ "prompt_name": null,
506
+ "byte_perplexity": 7.438107250941839
507
+ },
508
+ {
509
+ "task_name": "gsarti/flores_101_slv",
510
+ "prompt_name": null,
511
+ "bits_per_byte": 2.894935550489075
512
+ },
513
+ {
514
+ "task_name": "gsarti/flores_101_som",
515
+ "prompt_name": null,
516
+ "word_perplexity": 12921970.127169678
517
+ },
518
+ {
519
+ "task_name": "gsarti/flores_101_som",
520
+ "prompt_name": null,
521
+ "byte_perplexity": 12.622705630414286
522
+ },
523
+ {
524
+ "task_name": "gsarti/flores_101_som",
525
+ "prompt_name": null,
526
+ "bits_per_byte": 3.6579492747174616
527
+ },
528
+ {
529
+ "task_name": "gsarti/flores_101_ckb",
530
+ "prompt_name": null,
531
+ "word_perplexity": 11104497.438038943
532
+ },
533
+ {
534
+ "task_name": "gsarti/flores_101_ckb",
535
+ "prompt_name": null,
536
+ "byte_perplexity": 3.842852526862475
537
+ },
538
+ {
539
+ "task_name": "gsarti/flores_101_ckb",
540
+ "prompt_name": null,
541
+ "bits_per_byte": 1.9421776126623524
542
+ },
543
+ {
544
+ "task_name": "gsarti/flores_101_spa",
545
+ "prompt_name": null,
546
+ "word_perplexity": 55.14408503293887
547
+ },
548
+ {
549
+ "task_name": "gsarti/flores_101_spa",
550
+ "prompt_name": null,
551
+ "byte_perplexity": 1.9240269109386998
552
+ },
553
+ {
554
+ "task_name": "gsarti/flores_101_spa",
555
+ "prompt_name": null,
556
+ "bits_per_byte": 0.9441289779054047
557
+ },
558
+ {
559
+ "task_name": "gsarti/flores_101_swh",
560
+ "prompt_name": null,
561
+ "word_perplexity": 6985.646204087442
562
+ },
563
+ {
564
+ "task_name": "gsarti/flores_101_swh",
565
+ "prompt_name": null,
566
+ "byte_perplexity": 3.923430589092355
567
+ },
568
+ {
569
+ "task_name": "gsarti/flores_101_swh",
570
+ "prompt_name": null,
571
+ "bits_per_byte": 1.9721156771582438
572
+ },
573
+ {
574
+ "task_name": "gsarti/flores_101_swe",
575
+ "prompt_name": null,
576
+ "word_perplexity": 104567.9891705103
577
+ },
578
+ {
579
+ "task_name": "gsarti/flores_101_swe",
580
+ "prompt_name": null,
581
+ "byte_perplexity": 5.634635291846611
582
+ },
583
+ {
584
+ "task_name": "gsarti/flores_101_swe",
585
+ "prompt_name": null,
586
+ "bits_per_byte": 2.4943222333483153
587
+ },
588
+ {
589
+ "task_name": "gsarti/flores_101_tgk",
590
+ "prompt_name": null,
591
+ "word_perplexity": 10003619.893239152
592
+ },
593
+ {
594
+ "task_name": "gsarti/flores_101_tgk",
595
+ "prompt_name": null,
596
+ "byte_perplexity": 3.836804862794101
597
+ },
598
+ {
599
+ "task_name": "gsarti/flores_101_tgk",
600
+ "prompt_name": null,
601
+ "bits_per_byte": 1.9399053923480125
602
+ },
603
+ {
604
+ "task_name": "gsarti/flores_101_tam",
605
+ "prompt_name": null,
606
+ "word_perplexity": 4220234444737767.0
607
+ },
608
+ {
609
+ "task_name": "gsarti/flores_101_tam",
610
+ "prompt_name": null,
611
+ "byte_perplexity": 4.286894531607389
612
+ },
613
+ {
614
+ "task_name": "gsarti/flores_101_tam",
615
+ "prompt_name": null,
616
+ "bits_per_byte": 2.0999329236632325
617
+ },
618
+ {
619
+ "task_name": "gsarti/flores_101_tel",
620
+ "prompt_name": null,
621
+ "word_perplexity": 7315913985648022.0
622
+ },
623
+ {
624
+ "task_name": "gsarti/flores_101_tel",
625
+ "prompt_name": null,
626
+ "byte_perplexity": 5.852344181819556
627
+ },
628
+ {
629
+ "task_name": "gsarti/flores_101_tel",
630
+ "prompt_name": null,
631
+ "bits_per_byte": 2.549014618212334
632
+ },
633
+ {
634
+ "task_name": "gsarti/flores_101_tha",
635
+ "prompt_name": null,
636
+ "word_perplexity": 6.85384626099906e+32
637
+ },
638
+ {
639
+ "task_name": "gsarti/flores_101_tha",
640
+ "prompt_name": null,
641
+ "byte_perplexity": 2.458737675753546
642
+ },
643
+ {
644
+ "task_name": "gsarti/flores_101_tha",
645
+ "prompt_name": null,
646
+ "bits_per_byte": 1.2979178211163922
647
+ },
648
+ {
649
+ "task_name": "gsarti/flores_101_tur",
650
+ "prompt_name": null,
651
+ "word_perplexity": 1230000.8194755162
652
+ },
653
+ {
654
+ "task_name": "gsarti/flores_101_tur",
655
+ "prompt_name": null,
656
+ "byte_perplexity": 5.323529328304652
657
+ },
658
+ {
659
+ "task_name": "gsarti/flores_101_tur",
660
+ "prompt_name": null,
661
+ "bits_per_byte": 2.4123830232149
662
+ },
663
+ {
664
+ "task_name": "gsarti/flores_101_ukr",
665
+ "prompt_name": null,
666
+ "word_perplexity": 780615.9486315987
667
+ },
668
+ {
669
+ "task_name": "gsarti/flores_101_ukr",
670
+ "prompt_name": null,
671
+ "byte_perplexity": 2.8843863497020608
672
+ },
673
+ {
674
+ "task_name": "gsarti/flores_101_ukr",
675
+ "prompt_name": null,
676
+ "bits_per_byte": 1.5282644195953918
677
+ },
678
+ {
679
+ "task_name": "gsarti/flores_101_umb",
680
+ "prompt_name": null,
681
+ "word_perplexity": 346118506.64866126
682
+ },
683
+ {
684
+ "task_name": "gsarti/flores_101_umb",
685
+ "prompt_name": null,
686
+ "byte_perplexity": 13.088423907901921
687
+ },
688
+ {
689
+ "task_name": "gsarti/flores_101_umb",
690
+ "prompt_name": null,
691
+ "bits_per_byte": 3.710219475046473
692
+ },
693
+ {
694
+ "task_name": "gsarti/flores_101_urd",
695
+ "prompt_name": null,
696
+ "word_perplexity": 335.1943886252716
697
+ },
698
+ {
699
+ "task_name": "gsarti/flores_101_urd",
700
+ "prompt_name": null,
701
+ "byte_perplexity": 2.010562039704537
702
+ },
703
+ {
704
+ "task_name": "gsarti/flores_101_urd",
705
+ "prompt_name": null,
706
+ "bits_per_byte": 1.0075988539165108
707
+ },
708
+ {
709
+ "task_name": "gsarti/flores_101_uzb",
710
+ "prompt_name": null,
711
+ "word_perplexity": 1248263505.2751954
712
+ },
713
+ {
714
+ "task_name": "gsarti/flores_101_uzb",
715
+ "prompt_name": null,
716
+ "byte_perplexity": 12.980834294137205
717
+ },
718
+ {
719
+ "task_name": "gsarti/flores_101_uzb",
720
+ "prompt_name": null,
721
+ "bits_per_byte": 3.69831120498359
722
+ },
723
+ {
724
+ "task_name": "gsarti/flores_101_vie",
725
+ "prompt_name": null,
726
+ "word_perplexity": 33.51752264232948
727
+ },
728
+ {
729
+ "task_name": "gsarti/flores_101_vie",
730
+ "prompt_name": null,
731
+ "byte_perplexity": 1.7976491760484148
732
+ },
733
+ {
734
+ "task_name": "gsarti/flores_101_vie",
735
+ "prompt_name": null,
736
+ "bits_per_byte": 0.8461114961807352
737
+ },
738
+ {
739
+ "task_name": "gsarti/flores_101_cym",
740
+ "prompt_name": null,
741
+ "word_perplexity": 5900331.966242436
742
+ },
743
+ {
744
+ "task_name": "gsarti/flores_101_cym",
745
+ "prompt_name": null,
746
+ "byte_perplexity": 14.390369428021707
747
+ },
748
+ {
749
+ "task_name": "gsarti/flores_101_cym",
750
+ "prompt_name": null,
751
+ "bits_per_byte": 3.8470317241534553
752
+ },
753
+ {
754
+ "task_name": "gsarti/flores_101_wol",
755
+ "prompt_name": null,
756
+ "word_perplexity": 199684.7010180392
757
+ },
758
+ {
759
+ "task_name": "gsarti/flores_101_wol",
760
+ "prompt_name": null,
761
+ "byte_perplexity": 10.072733993132132
762
+ },
763
+ {
764
+ "task_name": "gsarti/flores_101_wol",
765
+ "prompt_name": null,
766
+ "bits_per_byte": 3.332383415073327
767
+ },
768
+ {
769
+ "task_name": "gsarti/flores_101_xho",
770
+ "prompt_name": null,
771
+ "word_perplexity": 141017733.33017766
772
+ },
773
+ {
774
+ "task_name": "gsarti/flores_101_xho",
775
+ "prompt_name": null,
776
+ "byte_perplexity": 8.241450154294917
777
+ },
778
+ {
779
+ "task_name": "gsarti/flores_101_xho",
780
+ "prompt_name": null,
781
+ "bits_per_byte": 3.0428982143908727
782
+ },
783
+ {
784
+ "task_name": "gsarti/flores_101_yor",
785
+ "prompt_name": null,
786
+ "word_perplexity": 171980.641422536
787
+ },
788
+ {
789
+ "task_name": "gsarti/flores_101_yor",
790
+ "prompt_name": null,
791
+ "byte_perplexity": 6.165831615133067
792
+ },
793
+ {
794
+ "task_name": "gsarti/flores_101_yor",
795
+ "prompt_name": null,
796
+ "bits_per_byte": 2.62429549091613
797
+ },
798
+ {
799
+ "task_name": "gsarti/flores_101_zul",
800
+ "prompt_name": null,
801
+ "word_perplexity": 998742068.9481835
802
+ },
803
+ {
804
+ "task_name": "gsarti/flores_101_zul",
805
+ "prompt_name": null,
806
+ "byte_perplexity": 9.202622963132773
807
+ },
808
+ {
809
+ "task_name": "gsarti/flores_101_zul",
810
+ "prompt_name": null,
811
+ "bits_per_byte": 3.2020451216662975
812
+ }
813
+ ],
814
+ "versions": {
815
+ "gsarti/flores_101_kor+null": 0,
816
+ "gsarti/flores_101_kir+null": 0,
817
+ "gsarti/flores_101_lao+null": 0,
818
+ "gsarti/flores_101_lav+null": 0,
819
+ "gsarti/flores_101_lin+null": 0,
820
+ "gsarti/flores_101_lit+null": 0,
821
+ "gsarti/flores_101_luo+null": 0,
822
+ "gsarti/flores_101_ltz+null": 0,
823
+ "gsarti/flores_101_mkd+null": 0,
824
+ "gsarti/flores_101_msa+null": 0,
825
+ "gsarti/flores_101_mal+null": 0,
826
+ "gsarti/flores_101_mlt+null": 0,
827
+ "gsarti/flores_101_mri+null": 0,
828
+ "gsarti/flores_101_mar+null": 0,
829
+ "gsarti/flores_101_mon+null": 0,
830
+ "gsarti/flores_101_npi+null": 0,
831
+ "gsarti/flores_101_nso+null": 0,
832
+ "gsarti/flores_101_nob+null": 0,
833
+ "gsarti/flores_101_nya+null": 0,
834
+ "gsarti/flores_101_oci+null": 0,
835
+ "gsarti/flores_101_ory+null": 0,
836
+ "gsarti/flores_101_orm+null": 0,
837
+ "gsarti/flores_101_pus+null": 0,
838
+ "gsarti/flores_101_fas+null": 0,
839
+ "gsarti/flores_101_pol+null": 0,
840
+ "gsarti/flores_101_por+null": 0,
841
+ "gsarti/flores_101_pan+null": 0,
842
+ "gsarti/flores_101_ron+null": 0,
843
+ "gsarti/flores_101_rus+null": 0,
844
+ "gsarti/flores_101_srp+null": 0,
845
+ "gsarti/flores_101_sna+null": 0,
846
+ "gsarti/flores_101_snd+null": 0,
847
+ "gsarti/flores_101_slk+null": 0,
848
+ "gsarti/flores_101_slv+null": 0,
849
+ "gsarti/flores_101_som+null": 0,
850
+ "gsarti/flores_101_ckb+null": 0,
851
+ "gsarti/flores_101_spa+null": 0,
852
+ "gsarti/flores_101_swh+null": 0,
853
+ "gsarti/flores_101_swe+null": 0,
854
+ "gsarti/flores_101_tgk+null": 0,
855
+ "gsarti/flores_101_tam+null": 0,
856
+ "gsarti/flores_101_tel+null": 0,
857
+ "gsarti/flores_101_tha+null": 0,
858
+ "gsarti/flores_101_tur+null": 0,
859
+ "gsarti/flores_101_ukr+null": 0,
860
+ "gsarti/flores_101_umb+null": 0,
861
+ "gsarti/flores_101_urd+null": 0,
862
+ "gsarti/flores_101_uzb+null": 0,
863
+ "gsarti/flores_101_vie+null": 0,
864
+ "gsarti/flores_101_cym+null": 0,
865
+ "gsarti/flores_101_wol+null": 0,
866
+ "gsarti/flores_101_xho+null": 0,
867
+ "gsarti/flores_101_yor+null": 0,
868
+ "gsarti/flores_101_zul+null": 0
869
+ },
870
+ "table_results": {
871
+ "gsarti/flores_101_kor+null": {
872
+ "task_name": "gsarti/flores_101_kor",
873
+ "prompt_name": "null",
874
+ "word_perplexity": 1684949.6449262113,
875
+ "byte_perplexity": 4.065690303705374,
876
+ "bits_per_byte": 2.023500324792833
877
+ },
878
+ "gsarti/flores_101_kir+null": {
879
+ "task_name": "gsarti/flores_101_kir",
880
+ "prompt_name": "null",
881
+ "word_perplexity": 235337758.18519488,
882
+ "byte_perplexity": 3.8667573034119127,
883
+ "bits_per_byte": 1.9511242166700078
884
+ },
885
+ "gsarti/flores_101_lao+null": {
886
+ "task_name": "gsarti/flores_101_lao",
887
+ "prompt_name": "null",
888
+ "word_perplexity": 3.0817754157127624e+28,
889
+ "byte_perplexity": 3.1116396826339545,
890
+ "bits_per_byte": 1.6376750107826055
891
+ },
892
+ "gsarti/flores_101_lav+null": {
893
+ "task_name": "gsarti/flores_101_lav",
894
+ "prompt_name": "null",
895
+ "word_perplexity": 20692036.880855087,
896
+ "byte_perplexity": 8.431943399753028,
897
+ "bits_per_byte": 3.075865182775687
898
+ },
899
+ "gsarti/flores_101_lin+null": {
900
+ "task_name": "gsarti/flores_101_lin",
901
+ "prompt_name": "null",
902
+ "word_perplexity": 259077.7174090486,
903
+ "byte_perplexity": 8.10168498947524,
904
+ "bits_per_byte": 3.018221991102226
905
+ },
906
+ "gsarti/flores_101_lit+null": {
907
+ "task_name": "gsarti/flores_101_lit",
908
+ "prompt_name": "null",
909
+ "word_perplexity": 22011900.13997282,
910
+ "byte_perplexity": 8.297153789252596,
911
+ "bits_per_byte": 3.0526165270213905
912
+ },
913
+ "gsarti/flores_101_luo+null": {
914
+ "task_name": "gsarti/flores_101_luo",
915
+ "prompt_name": "null",
916
+ "word_perplexity": 1485111.1306447538,
917
+ "byte_perplexity": 12.202407052163576,
918
+ "bits_per_byte": 3.609093857404177
919
+ },
920
+ "gsarti/flores_101_ltz+null": {
921
+ "task_name": "gsarti/flores_101_ltz",
922
+ "prompt_name": "null",
923
+ "word_perplexity": 6731220.931729273,
924
+ "byte_perplexity": 9.453152958003827,
925
+ "bits_per_byte": 3.2407955989852377
926
+ },
927
+ "gsarti/flores_101_mkd+null": {
928
+ "task_name": "gsarti/flores_101_mkd",
929
+ "prompt_name": "null",
930
+ "word_perplexity": 513306.31562258815,
931
+ "byte_perplexity": 3.11420755589491,
932
+ "bits_per_byte": 1.6388651004482695
933
+ },
934
+ "gsarti/flores_101_msa+null": {
935
+ "task_name": "gsarti/flores_101_msa",
936
+ "prompt_name": "null",
937
+ "word_perplexity": 1188.7251531670374,
938
+ "byte_perplexity": 2.659096901190639,
939
+ "bits_per_byte": 1.4109363519680242
940
+ },
941
+ "gsarti/flores_101_mal+null": {
942
+ "task_name": "gsarti/flores_101_mal",
943
+ "prompt_name": "null",
944
+ "word_perplexity": 4.8990954217696134e+17,
945
+ "byte_perplexity": 4.465506197375413,
946
+ "bits_per_byte": 2.1588237245178132
947
+ },
948
+ "gsarti/flores_101_mlt+null": {
949
+ "task_name": "gsarti/flores_101_mlt",
950
+ "prompt_name": "null",
951
+ "word_perplexity": 3271065298.9525104,
952
+ "byte_perplexity": 16.164200382975334,
953
+ "bits_per_byte": 4.014730236310589
954
+ },
955
+ "gsarti/flores_101_mri+null": {
956
+ "task_name": "gsarti/flores_101_mri",
957
+ "prompt_name": "null",
958
+ "word_perplexity": 42667.84366725716,
959
+ "byte_perplexity": 8.213330128288407,
960
+ "bits_per_byte": 3.037967287223778
961
+ },
962
+ "gsarti/flores_101_mar+null": {
963
+ "task_name": "gsarti/flores_101_mar",
964
+ "prompt_name": "null",
965
+ "word_perplexity": 53348101396468.1,
966
+ "byte_perplexity": 5.479577601103449,
967
+ "bits_per_byte": 2.454064685835334
968
+ },
969
+ "gsarti/flores_101_mon+null": {
970
+ "task_name": "gsarti/flores_101_mon",
971
+ "prompt_name": "null",
972
+ "word_perplexity": 11967156.496346941,
973
+ "byte_perplexity": 3.5723563966116956,
974
+ "bits_per_byte": 1.8368760183021453
975
+ },
976
+ "gsarti/flores_101_npi+null": {
977
+ "task_name": "gsarti/flores_101_npi",
978
+ "prompt_name": "null",
979
+ "word_perplexity": 7452421298650.788,
980
+ "byte_perplexity": 5.138638996619111,
981
+ "bits_per_byte": 2.361386302448311
982
+ },
983
+ "gsarti/flores_101_nso+null": {
984
+ "task_name": "gsarti/flores_101_nso",
985
+ "prompt_name": "null",
986
+ "word_perplexity": 133251.3907730927,
987
+ "byte_perplexity": 8.876839962509171,
988
+ "bits_per_byte": 3.150046187635368
989
+ },
990
+ "gsarti/flores_101_nob+null": {
991
+ "task_name": "gsarti/flores_101_nob",
992
+ "prompt_name": "null",
993
+ "word_perplexity": 64134.3587194621,
994
+ "byte_perplexity": 5.901843358131797,
995
+ "bits_per_byte": 2.561165630453858
996
+ },
997
+ "gsarti/flores_101_nya+null": {
998
+ "task_name": "gsarti/flores_101_nya",
999
+ "prompt_name": "null",
1000
+ "word_perplexity": 13237249.320560299,
1001
+ "byte_perplexity": 8.97654874419086,
1002
+ "bits_per_byte": 3.166160871838487
1003
+ },
1004
+ "gsarti/flores_101_oci+null": {
1005
+ "task_name": "gsarti/flores_101_oci",
1006
+ "prompt_name": "null",
1007
+ "word_perplexity": 29786.57326210068,
1008
+ "byte_perplexity": 5.114108118049416,
1009
+ "bits_per_byte": 2.3544826611123932
1010
+ },
1011
+ "gsarti/flores_101_ory+null": {
1012
+ "task_name": "gsarti/flores_101_ory",
1013
+ "prompt_name": "null",
1014
+ "word_perplexity": 8232620282886.167,
1015
+ "byte_perplexity": 5.086518347981296,
1016
+ "bits_per_byte": 2.3466784891528936
1017
+ },
1018
+ "gsarti/flores_101_orm+null": {
1019
+ "task_name": "gsarti/flores_101_orm",
1020
+ "prompt_name": "null",
1021
+ "word_perplexity": 1286222337.8393624,
1022
+ "byte_perplexity": 13.414303089263644,
1023
+ "bits_per_byte": 3.7457001993717243
1024
+ },
1025
+ "gsarti/flores_101_pus+null": {
1026
+ "task_name": "gsarti/flores_101_pus",
1027
+ "prompt_name": "null",
1028
+ "word_perplexity": 200303.57214724104,
1029
+ "byte_perplexity": 4.650458574106675,
1030
+ "bits_per_byte": 2.2173729850313615
1031
+ },
1032
+ "gsarti/flores_101_fas+null": {
1033
+ "task_name": "gsarti/flores_101_fas",
1034
+ "prompt_name": "null",
1035
+ "word_perplexity": 59965.98383842629,
1036
+ "byte_perplexity": 3.1572599808371367,
1037
+ "bits_per_byte": 1.6586730625582675
1038
+ },
1039
+ "gsarti/flores_101_pol+null": {
1040
+ "task_name": "gsarti/flores_101_pol",
1041
+ "prompt_name": "null",
1042
+ "word_perplexity": 239703.75452947227,
1043
+ "byte_perplexity": 5.165261846492578,
1044
+ "bits_per_byte": 2.3688414865658434
1045
+ },
1046
+ "gsarti/flores_101_por+null": {
1047
+ "task_name": "gsarti/flores_101_por",
1048
+ "prompt_name": "null",
1049
+ "word_perplexity": 78.66129921108659,
1050
+ "byte_perplexity": 2.012150908931838,
1051
+ "bits_per_byte": 1.0087385096181816
1052
+ },
1053
+ "gsarti/flores_101_pan+null": {
1054
+ "task_name": "gsarti/flores_101_pan",
1055
+ "prompt_name": "null",
1056
+ "word_perplexity": 2003582065.835696,
1057
+ "byte_perplexity": 5.012603107956229,
1058
+ "bits_per_byte": 2.3255600077385723
1059
+ },
1060
+ "gsarti/flores_101_ron+null": {
1061
+ "task_name": "gsarti/flores_101_ron",
1062
+ "prompt_name": "null",
1063
+ "word_perplexity": 80490.92705368399,
1064
+ "byte_perplexity": 5.603607947317877,
1065
+ "bits_per_byte": 2.486356022105963
1066
+ },
1067
+ "gsarti/flores_101_rus+null": {
1068
+ "task_name": "gsarti/flores_101_rus",
1069
+ "prompt_name": "null",
1070
+ "word_perplexity": 22038.65288574451,
1071
+ "byte_perplexity": 2.1372096174466697,
1072
+ "bits_per_byte": 1.095728414417906
1073
+ },
1074
+ "gsarti/flores_101_srp+null": {
1075
+ "task_name": "gsarti/flores_101_srp",
1076
+ "prompt_name": "null",
1077
+ "word_perplexity": 359037.4163692842,
1078
+ "byte_perplexity": 3.050738229673983,
1079
+ "bits_per_byte": 1.6091583939601046
1080
+ },
1081
+ "gsarti/flores_101_sna+null": {
1082
+ "task_name": "gsarti/flores_101_sna",
1083
+ "prompt_name": "null",
1084
+ "word_perplexity": 151658287.08006003,
1085
+ "byte_perplexity": 9.361234419948593,
1086
+ "bits_per_byte": 3.226698783453375
1087
+ },
1088
+ "gsarti/flores_101_snd+null": {
1089
+ "task_name": "gsarti/flores_101_snd",
1090
+ "prompt_name": "null",
1091
+ "word_perplexity": 2195879.0537875695,
1092
+ "byte_perplexity": 5.678399375652783,
1093
+ "bits_per_byte": 2.505484320885354
1094
+ },
1095
+ "gsarti/flores_101_slk+null": {
1096
+ "task_name": "gsarti/flores_101_slk",
1097
+ "prompt_name": "null",
1098
+ "word_perplexity": 1873211.2703176092,
1099
+ "byte_perplexity": 7.294354718439043,
1100
+ "bits_per_byte": 2.8667803584469502
1101
+ },
1102
+ "gsarti/flores_101_slv+null": {
1103
+ "task_name": "gsarti/flores_101_slv",
1104
+ "prompt_name": "null",
1105
+ "word_perplexity": 609965.8362492598,
1106
+ "byte_perplexity": 7.438107250941839,
1107
+ "bits_per_byte": 2.894935550489075
1108
+ },
1109
+ "gsarti/flores_101_som+null": {
1110
+ "task_name": "gsarti/flores_101_som",
1111
+ "prompt_name": "null",
1112
+ "word_perplexity": 12921970.127169678,
1113
+ "byte_perplexity": 12.622705630414286,
1114
+ "bits_per_byte": 3.6579492747174616
1115
+ },
1116
+ "gsarti/flores_101_ckb+null": {
1117
+ "task_name": "gsarti/flores_101_ckb",
1118
+ "prompt_name": "null",
1119
+ "word_perplexity": 11104497.438038943,
1120
+ "byte_perplexity": 3.842852526862475,
1121
+ "bits_per_byte": 1.9421776126623524
1122
+ },
1123
+ "gsarti/flores_101_spa+null": {
1124
+ "task_name": "gsarti/flores_101_spa",
1125
+ "prompt_name": "null",
1126
+ "word_perplexity": 55.14408503293887,
1127
+ "byte_perplexity": 1.9240269109386998,
1128
+ "bits_per_byte": 0.9441289779054047
1129
+ },
1130
+ "gsarti/flores_101_swh+null": {
1131
+ "task_name": "gsarti/flores_101_swh",
1132
+ "prompt_name": "null",
1133
+ "word_perplexity": 6985.646204087442,
1134
+ "byte_perplexity": 3.923430589092355,
1135
+ "bits_per_byte": 1.9721156771582438
1136
+ },
1137
+ "gsarti/flores_101_swe+null": {
1138
+ "task_name": "gsarti/flores_101_swe",
1139
+ "prompt_name": "null",
1140
+ "word_perplexity": 104567.9891705103,
1141
+ "byte_perplexity": 5.634635291846611,
1142
+ "bits_per_byte": 2.4943222333483153
1143
+ },
1144
+ "gsarti/flores_101_tgk+null": {
1145
+ "task_name": "gsarti/flores_101_tgk",
1146
+ "prompt_name": "null",
1147
+ "word_perplexity": 10003619.893239152,
1148
+ "byte_perplexity": 3.836804862794101,
1149
+ "bits_per_byte": 1.9399053923480125
1150
+ },
1151
+ "gsarti/flores_101_tam+null": {
1152
+ "task_name": "gsarti/flores_101_tam",
1153
+ "prompt_name": "null",
1154
+ "word_perplexity": 4220234444737767.0,
1155
+ "byte_perplexity": 4.286894531607389,
1156
+ "bits_per_byte": 2.0999329236632325
1157
+ },
1158
+ "gsarti/flores_101_tel+null": {
1159
+ "task_name": "gsarti/flores_101_tel",
1160
+ "prompt_name": "null",
1161
+ "word_perplexity": 7315913985648022.0,
1162
+ "byte_perplexity": 5.852344181819556,
1163
+ "bits_per_byte": 2.549014618212334
1164
+ },
1165
+ "gsarti/flores_101_tha+null": {
1166
+ "task_name": "gsarti/flores_101_tha",
1167
+ "prompt_name": "null",
1168
+ "word_perplexity": 6.85384626099906e+32,
1169
+ "byte_perplexity": 2.458737675753546,
1170
+ "bits_per_byte": 1.2979178211163922
1171
+ },
1172
+ "gsarti/flores_101_tur+null": {
1173
+ "task_name": "gsarti/flores_101_tur",
1174
+ "prompt_name": "null",
1175
+ "word_perplexity": 1230000.8194755162,
1176
+ "byte_perplexity": 5.323529328304652,
1177
+ "bits_per_byte": 2.4123830232149
1178
+ },
1179
+ "gsarti/flores_101_ukr+null": {
1180
+ "task_name": "gsarti/flores_101_ukr",
1181
+ "prompt_name": "null",
1182
+ "word_perplexity": 780615.9486315987,
1183
+ "byte_perplexity": 2.8843863497020608,
1184
+ "bits_per_byte": 1.5282644195953918
1185
+ },
1186
+ "gsarti/flores_101_umb+null": {
1187
+ "task_name": "gsarti/flores_101_umb",
1188
+ "prompt_name": "null",
1189
+ "word_perplexity": 346118506.64866126,
1190
+ "byte_perplexity": 13.088423907901921,
1191
+ "bits_per_byte": 3.710219475046473
1192
+ },
1193
+ "gsarti/flores_101_urd+null": {
1194
+ "task_name": "gsarti/flores_101_urd",
1195
+ "prompt_name": "null",
1196
+ "word_perplexity": 335.1943886252716,
1197
+ "byte_perplexity": 2.010562039704537,
1198
+ "bits_per_byte": 1.0075988539165108
1199
+ },
1200
+ "gsarti/flores_101_uzb+null": {
1201
+ "task_name": "gsarti/flores_101_uzb",
1202
+ "prompt_name": "null",
1203
+ "word_perplexity": 1248263505.2751954,
1204
+ "byte_perplexity": 12.980834294137205,
1205
+ "bits_per_byte": 3.69831120498359
1206
+ },
1207
+ "gsarti/flores_101_vie+null": {
1208
+ "task_name": "gsarti/flores_101_vie",
1209
+ "prompt_name": "null",
1210
+ "word_perplexity": 33.51752264232948,
1211
+ "byte_perplexity": 1.7976491760484148,
1212
+ "bits_per_byte": 0.8461114961807352
1213
+ },
1214
+ "gsarti/flores_101_cym+null": {
1215
+ "task_name": "gsarti/flores_101_cym",
1216
+ "prompt_name": "null",
1217
+ "word_perplexity": 5900331.966242436,
1218
+ "byte_perplexity": 14.390369428021707,
1219
+ "bits_per_byte": 3.8470317241534553
1220
+ },
1221
+ "gsarti/flores_101_wol+null": {
1222
+ "task_name": "gsarti/flores_101_wol",
1223
+ "prompt_name": "null",
1224
+ "word_perplexity": 199684.7010180392,
1225
+ "byte_perplexity": 10.072733993132132,
1226
+ "bits_per_byte": 3.332383415073327
1227
+ },
1228
+ "gsarti/flores_101_xho+null": {
1229
+ "task_name": "gsarti/flores_101_xho",
1230
+ "prompt_name": "null",
1231
+ "word_perplexity": 141017733.33017766,
1232
+ "byte_perplexity": 8.241450154294917,
1233
+ "bits_per_byte": 3.0428982143908727
1234
+ },
1235
+ "gsarti/flores_101_yor+null": {
1236
+ "task_name": "gsarti/flores_101_yor",
1237
+ "prompt_name": "null",
1238
+ "word_perplexity": 171980.641422536,
1239
+ "byte_perplexity": 6.165831615133067,
1240
+ "bits_per_byte": 2.62429549091613
1241
+ },
1242
+ "gsarti/flores_101_zul+null": {
1243
+ "task_name": "gsarti/flores_101_zul",
1244
+ "prompt_name": "null",
1245
+ "word_perplexity": 998742068.9481835,
1246
+ "byte_perplexity": 9.202622963132773,
1247
+ "bits_per_byte": 3.2020451216662975
1248
+ }
1249
+ },
1250
+ "config": {
1251
+ "adaptive_seq_len": true,
1252
+ "num_fewshot": 0,
1253
+ "bootstrap_iters": 100000
1254
+ }
1255
+ }
evaluation/results/tr11/bloom2b5/bslmeval.json ADDED
The diff for this file is too large to render. See raw diff
 
evaluation/results/tr11/bloom2b5/bslmevalfiles/concat.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import re
4
+ from pathlib import Path
5
+ from re import Pattern
6
+ from typing import List, Dict
7
+
8
+
9
+ def get_args():
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument("--results-dir", required=True, type=Path, help="Path to the list of results")
12
+ parser.add_argument("--concatenate-output-file", required=True, type=Path, help="Path to store the final output file")
13
+ return parser.parse_args()
14
+
15
+ MODEL = "tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step337250"
16
+ # MODEL = "global_step95000"
17
+ RESULTS_REGEX = re.compile(rf"(eai|bs)_results_lm-eval_{MODEL}_(\d{4}-\d{2}-\d{2}-\d{2}-\d{2}-\d{2})_backup\.json")
18
+ RESULTS_REGEX = re.compile(rf"{MODEL}_*.json")
19
+ #tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-14-10-03-25.json
20
+ def get_all_files_that_match_results_in_folder(root_folder: Path) -> List[Path]:
21
+ json_files = []
22
+ for folder in root_folder.iterdir():
23
+ if folder.is_dir():
24
+ json_files += get_all_files_that_match_results_in_folder(folder)
25
+ else:
26
+ # it's actually a file
27
+ file = folder
28
+
29
+ #match = RESULTS_REGEX.match(file.name)
30
+
31
+ if not str(file.name).endswith("json"):
32
+ continue
33
+ else:
34
+ json_files.append(file)
35
+ return json_files
36
+
37
+ def sort_dict(dictionary: Dict) -> Dict:
38
+ results = {}
39
+
40
+ for key, value in sorted(dictionary.items()):
41
+ new_value = value
42
+
43
+ if isinstance(value, dict):
44
+ new_value = sort_dict(new_value)
45
+ elif isinstance(value, list):
46
+ new_value = sorted(value)
47
+
48
+ results[key] = new_value
49
+
50
+ return results
51
+
52
+ def main():
53
+ args = get_args()
54
+
55
+ # Get all json files
56
+ json_files = get_all_files_that_match_results_in_folder(args.results_dir)
57
+ print("GOT", json_files)
58
+ # Merge all json files
59
+ final_result = {
60
+ "results": {},
61
+ "versions": {}
62
+ }
63
+ for file in json_files:
64
+ with open(file, "r") as fi:
65
+ task_result = json.load(fi)
66
+
67
+ #match = RESULTS_REGEX.match(file.name)
68
+ #assert match is not None
69
+ prefix = "bs" if "bs" in file.name else "eai"#match.group(1)
70
+ datetime_string = file.name[file.name.index("global_step337250_") + len("global_step337250_"):].replace(".json", "")#match.group(2)
71
+
72
+ if prefix == "eai":
73
+ results_key = "results"
74
+ elif prefix == "bs":
75
+ results_key = "table_results"
76
+ else:
77
+ raise ValueError(f"Unsupported key: {prefix}")
78
+
79
+ for key, value in task_result[results_key].items():
80
+ if key not in final_result["results"]:
81
+ final_result["results"][key] = {
82
+ datetime_string: value
83
+ }
84
+ #else:
85
+ # assert datetime_string not in final_result["results"][key]
86
+ # final_result["results"][key][datetime_string] = value
87
+
88
+ for key, value in task_result["versions"].items():
89
+ final_result["versions"][key] = value
90
+
91
+ # We sort dict, better for serialization
92
+ print(final_result)
93
+ final_result = sort_dict(final_result)
94
+
95
+ # Save result
96
+ with open(args.concatenate_output_file, "w") as fo:
97
+ json.dump(final_result, fo, indent=2)
98
+
99
+ pass
100
+
101
+ if __name__ == "__main__":
102
+ main()
103
+
evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-12-23-12-44.json ADDED
The diff for this file is too large to render. See raw diff
 
evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-evalharness-results_lm-eval_global_step337250_2022-07-13-09-55-04.json ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "arc_challenge": {
4
+ "acc": 0.27986348122866894,
5
+ "acc_stderr": 0.013119040897725922,
6
+ "acc_norm": 0.3054607508532423,
7
+ "acc_norm_stderr": 0.013460080478002498
8
+ },
9
+ "arc_easy": {
10
+ "acc": 0.5946969696969697,
11
+ "acc_stderr": 0.010074093589739182,
12
+ "acc_norm": 0.5324074074074074,
13
+ "acc_norm_stderr": 0.010238210368801902
14
+ },
15
+ "boolq": {
16
+ "acc": 0.6165137614678899,
17
+ "acc_stderr": 0.008504304838837027
18
+ },
19
+ "copa": {
20
+ "acc": 0.74,
21
+ "acc_stderr": 0.04408440022768078
22
+ },
23
+ "headqa": {
24
+ "acc": 0.26440554339897887,
25
+ "acc_stderr": 0.008423643607316284,
26
+ "acc_norm": 0.3099927060539752,
27
+ "acc_norm_stderr": 0.008833810133604958
28
+ },
29
+ "hellaswag": {
30
+ "acc": 0.41236805417247563,
31
+ "acc_stderr": 0.004912547040132878,
32
+ "acc_norm": 0.527185819557857,
33
+ "acc_norm_stderr": 0.0049824003689396615
34
+ },
35
+ "lambada": {
36
+ "ppl": 9.094305394880015,
37
+ "ppl_stderr": 0.2651922806718523,
38
+ "acc": 0.5181447700368718,
39
+ "acc_stderr": 0.0069613892910728266
40
+ },
41
+ "logiqa": {
42
+ "acc": 0.2073732718894009,
43
+ "acc_stderr": 0.015902084913876333,
44
+ "acc_norm": 0.29185867895545314,
45
+ "acc_norm_stderr": 0.017831570553971925
46
+ },
47
+ "mathqa": {
48
+ "acc": 0.24958123953098826,
49
+ "acc_stderr": 0.007922429819042544,
50
+ "acc_norm": 0.2492462311557789,
51
+ "acc_norm_stderr": 0.007918877981680667
52
+ },
53
+ "mc_taco": {
54
+ "em": 0.11936936936936937,
55
+ "f1": 0.4957122298258418
56
+ },
57
+ "mrpc": {
58
+ "acc": 0.5857843137254902,
59
+ "acc_stderr": 0.02441658575130785,
60
+ "f1": 0.6998223801065719,
61
+ "f1_stderr": 0.021967079752819446
62
+ },
63
+ "multirc": {
64
+ "acc": 0.012591815320041973,
65
+ "acc_stderr": 0.0036138827653638874
66
+ },
67
+ "openbookqa": {
68
+ "acc": 0.216,
69
+ "acc_stderr": 0.01842190906141194,
70
+ "acc_norm": 0.322,
71
+ "acc_norm_stderr": 0.020916668330019882
72
+ },
73
+ "piqa": {
74
+ "acc": 0.7078346028291621,
75
+ "acc_stderr": 0.010610252174513661,
76
+ "acc_norm": 0.705114254624592,
77
+ "acc_norm_stderr": 0.010639030620156982
78
+ },
79
+ "prost": {
80
+ "acc": 0.22683603757472245,
81
+ "acc_stderr": 0.003059602302050251,
82
+ "acc_norm": 0.26371690862510677,
83
+ "acc_norm_stderr": 0.003219323004106053
84
+ },
85
+ "pubmedqa": {
86
+ "acc": 0.616,
87
+ "acc_stderr": 0.01538768276189707
88
+ },
89
+ "qnli": {
90
+ "acc": 0.5072304594545122,
91
+ "acc_stderr": 0.006764703129634549
92
+ },
93
+ "qqp": {
94
+ "acc": 0.38211723967350975,
95
+ "acc_stderr": 0.0024166004681771985,
96
+ "f1": 0.5301408768597062,
97
+ "f1_stderr": 0.002619199330934276
98
+ },
99
+ "race": {
100
+ "acc": 0.3521531100478469,
101
+ "acc_stderr": 0.014782629897202264
102
+ },
103
+ "rte": {
104
+ "acc": 0.5631768953068592,
105
+ "acc_stderr": 0.029855247390314945
106
+ },
107
+ "sciq": {
108
+ "acc": 0.892,
109
+ "acc_stderr": 0.009820001651345703,
110
+ "acc_norm": 0.817,
111
+ "acc_norm_stderr": 0.012233587399477823
112
+ },
113
+ "sst": {
114
+ "acc": 0.49426605504587157,
115
+ "acc_stderr": 0.01694073961990489
116
+ },
117
+ "triviaqa": {
118
+ "acc": 0.041633518960487934,
119
+ "acc_stderr": 0.0018780954895624524
120
+ },
121
+ "webqs": {
122
+ "acc": 0.01673228346456693,
123
+ "acc_stderr": 0.0028461549169432184
124
+ },
125
+ "wic": {
126
+ "acc": 0.49843260188087773,
127
+ "acc_stderr": 0.019810623954060382
128
+ },
129
+ "winogrande": {
130
+ "acc": 0.5864246250986582,
131
+ "acc_stderr": 0.013840971763195303
132
+ },
133
+ "wnli": {
134
+ "acc": 0.4507042253521127,
135
+ "acc_stderr": 0.05947027187737998
136
+ },
137
+ "wsc": {
138
+ "acc": 0.375,
139
+ "acc_stderr": 0.04770204856076104
140
+ }
141
+ },
142
+ "versions": {
143
+ "arc_challenge": 0,
144
+ "arc_easy": 0,
145
+ "boolq": 1,
146
+ "copa": 0,
147
+ "headqa": 0,
148
+ "hellaswag": 0,
149
+ "lambada": 0,
150
+ "logiqa": 0,
151
+ "mathqa": 0,
152
+ "mc_taco": 0,
153
+ "mrpc": 0,
154
+ "multirc": 1,
155
+ "openbookqa": 0,
156
+ "piqa": 0,
157
+ "prost": 0,
158
+ "pubmedqa": 0,
159
+ "qnli": 0,
160
+ "qqp": 0,
161
+ "race": 1,
162
+ "rte": 0,
163
+ "sciq": 0,
164
+ "sst": 0,
165
+ "triviaqa": 0,
166
+ "webqs": 0,
167
+ "wic": 0,
168
+ "winogrande": 0,
169
+ "wnli": 1,
170
+ "wsc": 0
171
+ }
172
+ }
evaluation/results/tr11/bloom2b5/humaneval_temp02.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"pass@1": 0.06478658536585366, "pass@10": 0.09537740748119838, "pass@100": 0.12348600494571815}
evaluation/results/tr11/bloom2b5/humaneval_temp06.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"pass@1": 0.04460365853658537, "pass@10": 0.11354616672373204, "pass@100": 0.1866822927112951}
evaluation/results/tr11/bloom2b5/humaneval_temp08.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"pass@1": 0.03411585365853658, "pass@10": 0.10355342714569304, "pass@100": 0.20427664212871136}
evaluation/results/tr11/bloom2b5/mdmeta.txt ADDED
@@ -0,0 +1,1540 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model-index:
2
+ - name: bloom
3
+ results:
4
+ - task:
5
+ type: text-generation
6
+ name: text generation
7
+ dataset:
8
+ name: arc_challenge
9
+ type: arc_challenge
10
+ metrics:
11
+ - name: acc
12
+ type: acc
13
+ value: 0.27986348122866894
14
+ verified: false
15
+ - task:
16
+ type: text-generation
17
+ name: text generation
18
+ dataset:
19
+ name: arc_easy
20
+ type: arc_easy
21
+ metrics:
22
+ - name: acc
23
+ type: acc
24
+ value: 0.5946969696969697
25
+ verified: false
26
+ - task:
27
+ type: text-generation
28
+ name: text generation
29
+ dataset:
30
+ name: axb
31
+ type: axb
32
+ metrics:
33
+ - name: acc
34
+ type: acc
35
+ value: 0.4433876811594203
36
+ verified: false
37
+ - task:
38
+ type: text-generation
39
+ name: text generation
40
+ dataset:
41
+ name: axg
42
+ type: axg
43
+ metrics:
44
+ - name: acc
45
+ type: acc
46
+ value: 0.5
47
+ verified: false
48
+ - task:
49
+ type: text-generation
50
+ name: text generation
51
+ dataset:
52
+ name: boolq
53
+ type: boolq
54
+ metrics:
55
+ - name: acc
56
+ type: acc
57
+ value: 0.6165137614678899
58
+ verified: false
59
+ - task:
60
+ type: text-generation
61
+ name: text generation
62
+ dataset:
63
+ name: cb
64
+ type: cb
65
+ metrics:
66
+ - name: acc
67
+ type: acc
68
+ value: 0.30357142857142855
69
+ verified: false
70
+ - task:
71
+ type: text-generation
72
+ name: text generation
73
+ dataset:
74
+ name: cola
75
+ type: cola
76
+ metrics:
77
+ - name: acc
78
+ type: acc
79
+ value: 0.610738255033557
80
+ verified: false
81
+ - task:
82
+ type: text-generation
83
+ name: text generation
84
+ dataset:
85
+ name: copa
86
+ type: copa
87
+ metrics:
88
+ - name: acc
89
+ type: acc
90
+ value: 0.63
91
+ verified: false
92
+ - task:
93
+ type: text-generation
94
+ name: text generation
95
+ dataset:
96
+ name: crows_pairs_english
97
+ type: crows_pairs_english
98
+ metrics:
99
+ - name: acc
100
+ type: acc
101
+ value: 0.4973166368515206
102
+ verified: false
103
+ - task:
104
+ type: text-generation
105
+ name: text generation
106
+ dataset:
107
+ name: crows_pairs_french
108
+ type: crows_pairs_french
109
+ metrics:
110
+ - name: acc
111
+ type: acc
112
+ value: 0.5032796660703638
113
+ verified: false
114
+ - task:
115
+ type: text-generation
116
+ name: text generation
117
+ dataset:
118
+ name: diabla
119
+ type: diabla
120
+ metrics:
121
+ - name: acc
122
+ type: acc
123
+ value: 0.28888308977035493
124
+ verified: false
125
+ - task:
126
+ type: text-generation
127
+ name: text generation
128
+ dataset:
129
+ name: gsarti/flores_101_afr
130
+ type: gsarti/flores_101_afr
131
+ metrics:
132
+ - name: byte_perplexity
133
+ type: byte_perplexity
134
+ value: 6.500798737976343
135
+ verified: false
136
+ - task:
137
+ type: text-generation
138
+ name: text generation
139
+ dataset:
140
+ name: gsarti/flores_101_amh
141
+ type: gsarti/flores_101_amh
142
+ metrics:
143
+ - name: byte_perplexity
144
+ type: byte_perplexity
145
+ value: 3.9726863338897145
146
+ verified: false
147
+ - task:
148
+ type: text-generation
149
+ name: text generation
150
+ dataset:
151
+ name: gsarti/flores_101_ara
152
+ type: gsarti/flores_101_ara
153
+ metrics:
154
+ - name: byte_perplexity
155
+ type: byte_perplexity
156
+ value: 1.8083841089875814
157
+ verified: false
158
+ - task:
159
+ type: text-generation
160
+ name: text generation
161
+ dataset:
162
+ name: gsarti/flores_101_asm
163
+ type: gsarti/flores_101_asm
164
+ metrics:
165
+ - name: byte_perplexity
166
+ type: byte_perplexity
167
+ value: 5.699102962086425
168
+ verified: false
169
+ - task:
170
+ type: text-generation
171
+ name: text generation
172
+ dataset:
173
+ name: gsarti/flores_101_ast
174
+ type: gsarti/flores_101_ast
175
+ metrics:
176
+ - name: byte_perplexity
177
+ type: byte_perplexity
178
+ value: 3.9252047073429384
179
+ verified: false
180
+ - task:
181
+ type: text-generation
182
+ name: text generation
183
+ dataset:
184
+ name: gsarti/flores_101_azj
185
+ type: gsarti/flores_101_azj
186
+ metrics:
187
+ - name: byte_perplexity
188
+ type: byte_perplexity
189
+ value: 6.942805054270002
190
+ verified: false
191
+ - task:
192
+ type: text-generation
193
+ name: text generation
194
+ dataset:
195
+ name: gsarti/flores_101_bel
196
+ type: gsarti/flores_101_bel
197
+ metrics:
198
+ - name: byte_perplexity
199
+ type: byte_perplexity
200
+ value: 3.614136245847082
201
+ verified: false
202
+ - task:
203
+ type: text-generation
204
+ name: text generation
205
+ dataset:
206
+ name: gsarti/flores_101_ben
207
+ type: gsarti/flores_101_ben
208
+ metrics:
209
+ - name: byte_perplexity
210
+ type: byte_perplexity
211
+ value: 5.121491534300969
212
+ verified: false
213
+ - task:
214
+ type: text-generation
215
+ name: text generation
216
+ dataset:
217
+ name: gsarti/flores_101_bos
218
+ type: gsarti/flores_101_bos
219
+ metrics:
220
+ - name: byte_perplexity
221
+ type: byte_perplexity
222
+ value: 5.653353469118798
223
+ verified: false
224
+ - task:
225
+ type: text-generation
226
+ name: text generation
227
+ dataset:
228
+ name: gsarti/flores_101_bul
229
+ type: gsarti/flores_101_bul
230
+ metrics:
231
+ - name: byte_perplexity
232
+ type: byte_perplexity
233
+ value: 2.7014693938055068
234
+ verified: false
235
+ - task:
236
+ type: text-generation
237
+ name: text generation
238
+ dataset:
239
+ name: gsarti/flores_101_cat
240
+ type: gsarti/flores_101_cat
241
+ metrics:
242
+ - name: byte_perplexity
243
+ type: byte_perplexity
244
+ value: 2.305190041967345
245
+ verified: false
246
+ - task:
247
+ type: text-generation
248
+ name: text generation
249
+ dataset:
250
+ name: gsarti/flores_101_ceb
251
+ type: gsarti/flores_101_ceb
252
+ metrics:
253
+ - name: byte_perplexity
254
+ type: byte_perplexity
255
+ value: 6.291000321323428
256
+ verified: false
257
+ - task:
258
+ type: text-generation
259
+ name: text generation
260
+ dataset:
261
+ name: gsarti/flores_101_ces
262
+ type: gsarti/flores_101_ces
263
+ metrics:
264
+ - name: byte_perplexity
265
+ type: byte_perplexity
266
+ value: 5.447322753586386
267
+ verified: false
268
+ - task:
269
+ type: text-generation
270
+ name: text generation
271
+ dataset:
272
+ name: gsarti/flores_101_ckb
273
+ type: gsarti/flores_101_ckb
274
+ metrics:
275
+ - name: byte_perplexity
276
+ type: byte_perplexity
277
+ value: 3.7255124939234765
278
+ verified: false
279
+ - task:
280
+ type: text-generation
281
+ name: text generation
282
+ dataset:
283
+ name: gsarti/flores_101_cym
284
+ type: gsarti/flores_101_cym
285
+ metrics:
286
+ - name: byte_perplexity
287
+ type: byte_perplexity
288
+ value: 12.539424151448149
289
+ verified: false
290
+ - task:
291
+ type: text-generation
292
+ name: text generation
293
+ dataset:
294
+ name: gsarti/flores_101_dan
295
+ type: gsarti/flores_101_dan
296
+ metrics:
297
+ - name: byte_perplexity
298
+ type: byte_perplexity
299
+ value: 5.183309001005672
300
+ verified: false
301
+ - task:
302
+ type: text-generation
303
+ name: text generation
304
+ dataset:
305
+ name: gsarti/flores_101_deu
306
+ type: gsarti/flores_101_deu
307
+ metrics:
308
+ - name: byte_perplexity
309
+ type: byte_perplexity
310
+ value: 3.1180422286591347
311
+ verified: false
312
+ - task:
313
+ type: text-generation
314
+ name: text generation
315
+ dataset:
316
+ name: gsarti/flores_101_ell
317
+ type: gsarti/flores_101_ell
318
+ metrics:
319
+ - name: byte_perplexity
320
+ type: byte_perplexity
321
+ value: 2.467943456164706
322
+ verified: false
323
+ - task:
324
+ type: text-generation
325
+ name: text generation
326
+ dataset:
327
+ name: gsarti/flores_101_eng
328
+ type: gsarti/flores_101_eng
329
+ metrics:
330
+ - name: byte_perplexity
331
+ type: byte_perplexity
332
+ value: 2.018740628193298
333
+ verified: false
334
+ - task:
335
+ type: text-generation
336
+ name: text generation
337
+ dataset:
338
+ name: gsarti/flores_101_est
339
+ type: gsarti/flores_101_est
340
+ metrics:
341
+ - name: byte_perplexity
342
+ type: byte_perplexity
343
+ value: 9.11654425176368
344
+ verified: false
345
+ - task:
346
+ type: text-generation
347
+ name: text generation
348
+ dataset:
349
+ name: gsarti/flores_101_fas
350
+ type: gsarti/flores_101_fas
351
+ metrics:
352
+ - name: byte_perplexity
353
+ type: byte_perplexity
354
+ value: 3.058009097116482
355
+ verified: false
356
+ - task:
357
+ type: text-generation
358
+ name: text generation
359
+ dataset:
360
+ name: gsarti/flores_101_fin
361
+ type: gsarti/flores_101_fin
362
+ metrics:
363
+ - name: byte_perplexity
364
+ type: byte_perplexity
365
+ value: 6.847047959628553
366
+ verified: false
367
+ - task:
368
+ type: text-generation
369
+ name: text generation
370
+ dataset:
371
+ name: gsarti/flores_101_fra
372
+ type: gsarti/flores_101_fra
373
+ metrics:
374
+ - name: byte_perplexity
375
+ type: byte_perplexity
376
+ value: 1.9975177011840075
377
+ verified: false
378
+ - task:
379
+ type: text-generation
380
+ name: text generation
381
+ dataset:
382
+ name: gsarti/flores_101_ful
383
+ type: gsarti/flores_101_ful
384
+ metrics:
385
+ - name: byte_perplexity
386
+ type: byte_perplexity
387
+ value: 11.465912731488828
388
+ verified: false
389
+ - task:
390
+ type: text-generation
391
+ name: text generation
392
+ dataset:
393
+ name: gsarti/flores_101_gle
394
+ type: gsarti/flores_101_gle
395
+ metrics:
396
+ - name: byte_perplexity
397
+ type: byte_perplexity
398
+ value: 8.681491663539422
399
+ verified: false
400
+ - task:
401
+ type: text-generation
402
+ name: text generation
403
+ dataset:
404
+ name: gsarti/flores_101_glg
405
+ type: gsarti/flores_101_glg
406
+ metrics:
407
+ - name: byte_perplexity
408
+ type: byte_perplexity
409
+ value: 3.029991089015508
410
+ verified: false
411
+ - task:
412
+ type: text-generation
413
+ name: text generation
414
+ dataset:
415
+ name: gsarti/flores_101_guj
416
+ type: gsarti/flores_101_guj
417
+ metrics:
418
+ - name: byte_perplexity
419
+ type: byte_perplexity
420
+ value: 4.955224230286231
421
+ verified: false
422
+ - task:
423
+ type: text-generation
424
+ name: text generation
425
+ dataset:
426
+ name: gsarti/flores_101_hau
427
+ type: gsarti/flores_101_hau
428
+ metrics:
429
+ - name: byte_perplexity
430
+ type: byte_perplexity
431
+ value: 10.758347356372159
432
+ verified: false
433
+ - task:
434
+ type: text-generation
435
+ name: text generation
436
+ dataset:
437
+ name: gsarti/flores_101_heb
438
+ type: gsarti/flores_101_heb
439
+ metrics:
440
+ - name: byte_perplexity
441
+ type: byte_perplexity
442
+ value: 3.6004478129801667
443
+ verified: false
444
+ - task:
445
+ type: text-generation
446
+ name: text generation
447
+ dataset:
448
+ name: gsarti/flores_101_hin
449
+ type: gsarti/flores_101_hin
450
+ metrics:
451
+ - name: byte_perplexity
452
+ type: byte_perplexity
453
+ value: 4.712530650588064
454
+ verified: false
455
+ - task:
456
+ type: text-generation
457
+ name: text generation
458
+ dataset:
459
+ name: gsarti/flores_101_hrv
460
+ type: gsarti/flores_101_hrv
461
+ metrics:
462
+ - name: byte_perplexity
463
+ type: byte_perplexity
464
+ value: 5.822418943372185
465
+ verified: false
466
+ - task:
467
+ type: text-generation
468
+ name: text generation
469
+ dataset:
470
+ name: gsarti/flores_101_hun
471
+ type: gsarti/flores_101_hun
472
+ metrics:
473
+ - name: byte_perplexity
474
+ type: byte_perplexity
475
+ value: 6.440482646965992
476
+ verified: false
477
+ - task:
478
+ type: text-generation
479
+ name: text generation
480
+ dataset:
481
+ name: gsarti/flores_101_hye
482
+ type: gsarti/flores_101_hye
483
+ metrics:
484
+ - name: byte_perplexity
485
+ type: byte_perplexity
486
+ value: 3.657718918347166
487
+ verified: false
488
+ - task:
489
+ type: text-generation
490
+ name: text generation
491
+ dataset:
492
+ name: gsarti/flores_101_ibo
493
+ type: gsarti/flores_101_ibo
494
+ metrics:
495
+ - name: byte_perplexity
496
+ type: byte_perplexity
497
+ value: 5.564814003872672
498
+ verified: false
499
+ - task:
500
+ type: text-generation
501
+ name: text generation
502
+ dataset:
503
+ name: gsarti/flores_101_ind
504
+ type: gsarti/flores_101_ind
505
+ metrics:
506
+ - name: byte_perplexity
507
+ type: byte_perplexity
508
+ value: 2.1597101468869373
509
+ verified: false
510
+ - task:
511
+ type: text-generation
512
+ name: text generation
513
+ dataset:
514
+ name: gsarti/flores_101_isl
515
+ type: gsarti/flores_101_isl
516
+ metrics:
517
+ - name: byte_perplexity
518
+ type: byte_perplexity
519
+ value: 8.082349269518136
520
+ verified: false
521
+ - task:
522
+ type: text-generation
523
+ name: text generation
524
+ dataset:
525
+ name: gsarti/flores_101_ita
526
+ type: gsarti/flores_101_ita
527
+ metrics:
528
+ - name: byte_perplexity
529
+ type: byte_perplexity
530
+ value: 2.9687591414176207
531
+ verified: false
532
+ - task:
533
+ type: text-generation
534
+ name: text generation
535
+ dataset:
536
+ name: gsarti/flores_101_jav
537
+ type: gsarti/flores_101_jav
538
+ metrics:
539
+ - name: byte_perplexity
540
+ type: byte_perplexity
541
+ value: 7.0573805415708994
542
+ verified: false
543
+ - task:
544
+ type: text-generation
545
+ name: text generation
546
+ dataset:
547
+ name: gsarti/flores_101_jpn
548
+ type: gsarti/flores_101_jpn
549
+ metrics:
550
+ - name: byte_perplexity
551
+ type: byte_perplexity
552
+ value: 2.7758864197116933
553
+ verified: false
554
+ - task:
555
+ type: text-generation
556
+ name: text generation
557
+ dataset:
558
+ name: gsarti/flores_101_kam
559
+ type: gsarti/flores_101_kam
560
+ metrics:
561
+ - name: byte_perplexity
562
+ type: byte_perplexity
563
+ value: 11.072949642861332
564
+ verified: false
565
+ - task:
566
+ type: text-generation
567
+ name: text generation
568
+ dataset:
569
+ name: gsarti/flores_101_kan
570
+ type: gsarti/flores_101_kan
571
+ metrics:
572
+ - name: byte_perplexity
573
+ type: byte_perplexity
574
+ value: 5.551730651007082
575
+ verified: false
576
+ - task:
577
+ type: text-generation
578
+ name: text generation
579
+ dataset:
580
+ name: gsarti/flores_101_kat
581
+ type: gsarti/flores_101_kat
582
+ metrics:
583
+ - name: byte_perplexity
584
+ type: byte_perplexity
585
+ value: 2.522630524283745
586
+ verified: false
587
+ - task:
588
+ type: text-generation
589
+ name: text generation
590
+ dataset:
591
+ name: gsarti/flores_101_kaz
592
+ type: gsarti/flores_101_kaz
593
+ metrics:
594
+ - name: byte_perplexity
595
+ type: byte_perplexity
596
+ value: 3.3901748516975574
597
+ verified: false
598
+ - task:
599
+ type: text-generation
600
+ name: text generation
601
+ dataset:
602
+ name: gsarti/flores_101_kea
603
+ type: gsarti/flores_101_kea
604
+ metrics:
605
+ - name: byte_perplexity
606
+ type: byte_perplexity
607
+ value: 8.918534182590863
608
+ verified: false
609
+ - task:
610
+ type: text-generation
611
+ name: text generation
612
+ dataset:
613
+ name: gsarti/flores_101_kir
614
+ type: gsarti/flores_101_kir
615
+ metrics:
616
+ - name: byte_perplexity
617
+ type: byte_perplexity
618
+ value: 3.729278369847201
619
+ verified: false
620
+ - task:
621
+ type: text-generation
622
+ name: text generation
623
+ dataset:
624
+ name: gsarti/flores_101_kor
625
+ type: gsarti/flores_101_kor
626
+ metrics:
627
+ - name: byte_perplexity
628
+ type: byte_perplexity
629
+ value: 3.932884847226212
630
+ verified: false
631
+ - task:
632
+ type: text-generation
633
+ name: text generation
634
+ dataset:
635
+ name: gsarti/flores_101_lao
636
+ type: gsarti/flores_101_lao
637
+ metrics:
638
+ - name: byte_perplexity
639
+ type: byte_perplexity
640
+ value: 2.9077314760849924
641
+ verified: false
642
+ - task:
643
+ type: text-generation
644
+ name: text generation
645
+ dataset:
646
+ name: gsarti/flores_101_lav
647
+ type: gsarti/flores_101_lav
648
+ metrics:
649
+ - name: byte_perplexity
650
+ type: byte_perplexity
651
+ value: 7.777221919194806
652
+ verified: false
653
+ - task:
654
+ type: text-generation
655
+ name: text generation
656
+ dataset:
657
+ name: gsarti/flores_101_lin
658
+ type: gsarti/flores_101_lin
659
+ metrics:
660
+ - name: byte_perplexity
661
+ type: byte_perplexity
662
+ value: 7.524842908050988
663
+ verified: false
664
+ - task:
665
+ type: text-generation
666
+ name: text generation
667
+ dataset:
668
+ name: gsarti/flores_101_lit
669
+ type: gsarti/flores_101_lit
670
+ metrics:
671
+ - name: byte_perplexity
672
+ type: byte_perplexity
673
+ value: 7.369179434621725
674
+ verified: false
675
+ - task:
676
+ type: text-generation
677
+ name: text generation
678
+ dataset:
679
+ name: gsarti/flores_101_ltz
680
+ type: gsarti/flores_101_ltz
681
+ metrics:
682
+ - name: byte_perplexity
683
+ type: byte_perplexity
684
+ value: 8.801059747949214
685
+ verified: false
686
+ - task:
687
+ type: text-generation
688
+ name: text generation
689
+ dataset:
690
+ name: gsarti/flores_101_lug
691
+ type: gsarti/flores_101_lug
692
+ metrics:
693
+ - name: byte_perplexity
694
+ type: byte_perplexity
695
+ value: 8.483203026364786
696
+ verified: false
697
+ - task:
698
+ type: text-generation
699
+ name: text generation
700
+ dataset:
701
+ name: gsarti/flores_101_luo
702
+ type: gsarti/flores_101_luo
703
+ metrics:
704
+ - name: byte_perplexity
705
+ type: byte_perplexity
706
+ value: 11.975963093623681
707
+ verified: false
708
+ - task:
709
+ type: text-generation
710
+ name: text generation
711
+ dataset:
712
+ name: gsarti/flores_101_mal
713
+ type: gsarti/flores_101_mal
714
+ metrics:
715
+ - name: byte_perplexity
716
+ type: byte_perplexity
717
+ value: 4.615948455160037
718
+ verified: false
719
+ - task:
720
+ type: text-generation
721
+ name: text generation
722
+ dataset:
723
+ name: gsarti/flores_101_mar
724
+ type: gsarti/flores_101_mar
725
+ metrics:
726
+ - name: byte_perplexity
727
+ type: byte_perplexity
728
+ value: 5.483253482821379
729
+ verified: false
730
+ - task:
731
+ type: text-generation
732
+ name: text generation
733
+ dataset:
734
+ name: gsarti/flores_101_mkd
735
+ type: gsarti/flores_101_mkd
736
+ metrics:
737
+ - name: byte_perplexity
738
+ type: byte_perplexity
739
+ value: 2.9656732291754087
740
+ verified: false
741
+ - task:
742
+ type: text-generation
743
+ name: text generation
744
+ dataset:
745
+ name: gsarti/flores_101_mlt
746
+ type: gsarti/flores_101_mlt
747
+ metrics:
748
+ - name: byte_perplexity
749
+ type: byte_perplexity
750
+ value: 15.004773437665275
751
+ verified: false
752
+ - task:
753
+ type: text-generation
754
+ name: text generation
755
+ dataset:
756
+ name: gsarti/flores_101_mon
757
+ type: gsarti/flores_101_mon
758
+ metrics:
759
+ - name: byte_perplexity
760
+ type: byte_perplexity
761
+ value: 3.410598542315402
762
+ verified: false
763
+ - task:
764
+ type: text-generation
765
+ name: text generation
766
+ dataset:
767
+ name: gsarti/flores_101_mri
768
+ type: gsarti/flores_101_mri
769
+ metrics:
770
+ - name: byte_perplexity
771
+ type: byte_perplexity
772
+ value: 7.474035895661322
773
+ verified: false
774
+ - task:
775
+ type: text-generation
776
+ name: text generation
777
+ dataset:
778
+ name: gsarti/flores_101_msa
779
+ type: gsarti/flores_101_msa
780
+ metrics:
781
+ - name: byte_perplexity
782
+ type: byte_perplexity
783
+ value: 2.5710001772665634
784
+ verified: false
785
+ - task:
786
+ type: text-generation
787
+ name: text generation
788
+ dataset:
789
+ name: gsarti/flores_101_mya
790
+ type: gsarti/flores_101_mya
791
+ metrics:
792
+ - name: byte_perplexity
793
+ type: byte_perplexity
794
+ value: 2.413577969878331
795
+ verified: false
796
+ - task:
797
+ type: text-generation
798
+ name: text generation
799
+ dataset:
800
+ name: gsarti/flores_101_nld
801
+ type: gsarti/flores_101_nld
802
+ metrics:
803
+ - name: byte_perplexity
804
+ type: byte_perplexity
805
+ value: 4.127831721885065
806
+ verified: false
807
+ - task:
808
+ type: text-generation
809
+ name: text generation
810
+ dataset:
811
+ name: gsarti/flores_101_nob
812
+ type: gsarti/flores_101_nob
813
+ metrics:
814
+ - name: byte_perplexity
815
+ type: byte_perplexity
816
+ value: 5.402763169129877
817
+ verified: false
818
+ - task:
819
+ type: text-generation
820
+ name: text generation
821
+ dataset:
822
+ name: gsarti/flores_101_npi
823
+ type: gsarti/flores_101_npi
824
+ metrics:
825
+ - name: byte_perplexity
826
+ type: byte_perplexity
827
+ value: 5.199342701937889
828
+ verified: false
829
+ - task:
830
+ type: text-generation
831
+ name: text generation
832
+ dataset:
833
+ name: gsarti/flores_101_nso
834
+ type: gsarti/flores_101_nso
835
+ metrics:
836
+ - name: byte_perplexity
837
+ type: byte_perplexity
838
+ value: 8.154626800955667
839
+ verified: false
840
+ - task:
841
+ type: text-generation
842
+ name: text generation
843
+ dataset:
844
+ name: gsarti/flores_101_nya
845
+ type: gsarti/flores_101_nya
846
+ metrics:
847
+ - name: byte_perplexity
848
+ type: byte_perplexity
849
+ value: 8.179860208369393
850
+ verified: false
851
+ - task:
852
+ type: text-generation
853
+ name: text generation
854
+ dataset:
855
+ name: gsarti/flores_101_oci
856
+ type: gsarti/flores_101_oci
857
+ metrics:
858
+ - name: byte_perplexity
859
+ type: byte_perplexity
860
+ value: 4.8617357393685845
861
+ verified: false
862
+ - task:
863
+ type: text-generation
864
+ name: text generation
865
+ dataset:
866
+ name: gsarti/flores_101_orm
867
+ type: gsarti/flores_101_orm
868
+ metrics:
869
+ - name: byte_perplexity
870
+ type: byte_perplexity
871
+ value: 12.911595421079408
872
+ verified: false
873
+ - task:
874
+ type: text-generation
875
+ name: text generation
876
+ dataset:
877
+ name: gsarti/flores_101_ory
878
+ type: gsarti/flores_101_ory
879
+ metrics:
880
+ - name: byte_perplexity
881
+ type: byte_perplexity
882
+ value: 5.189421861225964
883
+ verified: false
884
+ - task:
885
+ type: text-generation
886
+ name: text generation
887
+ dataset:
888
+ name: gsarti/flores_101_pan
889
+ type: gsarti/flores_101_pan
890
+ metrics:
891
+ - name: byte_perplexity
892
+ type: byte_perplexity
893
+ value: 4.698477289331806
894
+ verified: false
895
+ - task:
896
+ type: text-generation
897
+ name: text generation
898
+ dataset:
899
+ name: gsarti/flores_101_pol
900
+ type: gsarti/flores_101_pol
901
+ metrics:
902
+ - name: byte_perplexity
903
+ type: byte_perplexity
904
+ value: 4.625550458479643
905
+ verified: false
906
+ - task:
907
+ type: text-generation
908
+ name: text generation
909
+ dataset:
910
+ name: gsarti/flores_101_por
911
+ type: gsarti/flores_101_por
912
+ metrics:
913
+ - name: byte_perplexity
914
+ type: byte_perplexity
915
+ value: 1.9754515986213523
916
+ verified: false
917
+ - task:
918
+ type: text-generation
919
+ name: text generation
920
+ dataset:
921
+ name: gsarti/flores_101_pus
922
+ type: gsarti/flores_101_pus
923
+ metrics:
924
+ - name: byte_perplexity
925
+ type: byte_perplexity
926
+ value: 4.4963371422771585
927
+ verified: false
928
+ - task:
929
+ type: text-generation
930
+ name: text generation
931
+ dataset:
932
+ name: gsarti/flores_101_ron
933
+ type: gsarti/flores_101_ron
934
+ metrics:
935
+ - name: byte_perplexity
936
+ type: byte_perplexity
937
+ value: 4.965456830031304
938
+ verified: false
939
+ - task:
940
+ type: text-generation
941
+ name: text generation
942
+ dataset:
943
+ name: gsarti/flores_101_rus
944
+ type: gsarti/flores_101_rus
945
+ metrics:
946
+ - name: byte_perplexity
947
+ type: byte_perplexity
948
+ value: 2.0498020542445303
949
+ verified: false
950
+ - task:
951
+ type: text-generation
952
+ name: text generation
953
+ dataset:
954
+ name: gsarti/flores_101_slk
955
+ type: gsarti/flores_101_slk
956
+ metrics:
957
+ - name: byte_perplexity
958
+ type: byte_perplexity
959
+ value: 6.450822127057479
960
+ verified: false
961
+ - task:
962
+ type: text-generation
963
+ name: text generation
964
+ dataset:
965
+ name: gsarti/flores_101_slv
966
+ type: gsarti/flores_101_slv
967
+ metrics:
968
+ - name: byte_perplexity
969
+ type: byte_perplexity
970
+ value: 6.620252120186232
971
+ verified: false
972
+ - task:
973
+ type: text-generation
974
+ name: text generation
975
+ dataset:
976
+ name: gsarti/flores_101_sna
977
+ type: gsarti/flores_101_sna
978
+ metrics:
979
+ - name: byte_perplexity
980
+ type: byte_perplexity
981
+ value: 8.462166771382726
982
+ verified: false
983
+ - task:
984
+ type: text-generation
985
+ name: text generation
986
+ dataset:
987
+ name: gsarti/flores_101_snd
988
+ type: gsarti/flores_101_snd
989
+ metrics:
990
+ - name: byte_perplexity
991
+ type: byte_perplexity
992
+ value: 5.466066951221973
993
+ verified: false
994
+ - task:
995
+ type: text-generation
996
+ name: text generation
997
+ dataset:
998
+ name: gsarti/flores_101_som
999
+ type: gsarti/flores_101_som
1000
+ metrics:
1001
+ - name: byte_perplexity
1002
+ type: byte_perplexity
1003
+ value: 11.95918054093392
1004
+ verified: false
1005
+ - task:
1006
+ type: text-generation
1007
+ name: text generation
1008
+ dataset:
1009
+ name: gsarti/flores_101_spa
1010
+ type: gsarti/flores_101_spa
1011
+ metrics:
1012
+ - name: byte_perplexity
1013
+ type: byte_perplexity
1014
+ value: 1.8965140104323535
1015
+ verified: false
1016
+ - task:
1017
+ type: text-generation
1018
+ name: text generation
1019
+ dataset:
1020
+ name: gsarti/flores_101_srp
1021
+ type: gsarti/flores_101_srp
1022
+ metrics:
1023
+ - name: byte_perplexity
1024
+ type: byte_perplexity
1025
+ value: 2.871214785885079
1026
+ verified: false
1027
+ - task:
1028
+ type: text-generation
1029
+ name: text generation
1030
+ dataset:
1031
+ name: gsarti/flores_101_swe
1032
+ type: gsarti/flores_101_swe
1033
+ metrics:
1034
+ - name: byte_perplexity
1035
+ type: byte_perplexity
1036
+ value: 5.054972008155866
1037
+ verified: false
1038
+ - task:
1039
+ type: text-generation
1040
+ name: text generation
1041
+ dataset:
1042
+ name: gsarti/flores_101_swh
1043
+ type: gsarti/flores_101_swh
1044
+ metrics:
1045
+ - name: byte_perplexity
1046
+ type: byte_perplexity
1047
+ value: 3.6973091886730676
1048
+ verified: false
1049
+ - task:
1050
+ type: text-generation
1051
+ name: text generation
1052
+ dataset:
1053
+ name: gsarti/flores_101_tam
1054
+ type: gsarti/flores_101_tam
1055
+ metrics:
1056
+ - name: byte_perplexity
1057
+ type: byte_perplexity
1058
+ value: 4.539493400469833
1059
+ verified: false
1060
+ - task:
1061
+ type: text-generation
1062
+ name: text generation
1063
+ dataset:
1064
+ name: gsarti/flores_101_tel
1065
+ type: gsarti/flores_101_tel
1066
+ metrics:
1067
+ - name: byte_perplexity
1068
+ type: byte_perplexity
1069
+ value: 5.807499987508966
1070
+ verified: false
1071
+ - task:
1072
+ type: text-generation
1073
+ name: text generation
1074
+ dataset:
1075
+ name: gsarti/flores_101_tgk
1076
+ type: gsarti/flores_101_tgk
1077
+ metrics:
1078
+ - name: byte_perplexity
1079
+ type: byte_perplexity
1080
+ value: 3.5994818827380426
1081
+ verified: false
1082
+ - task:
1083
+ type: text-generation
1084
+ name: text generation
1085
+ dataset:
1086
+ name: gsarti/flores_101_tgl
1087
+ type: gsarti/flores_101_tgl
1088
+ metrics:
1089
+ - name: byte_perplexity
1090
+ type: byte_perplexity
1091
+ value: 5.667053833119858
1092
+ verified: false
1093
+ - task:
1094
+ type: text-generation
1095
+ name: text generation
1096
+ dataset:
1097
+ name: gsarti/flores_101_tha
1098
+ type: gsarti/flores_101_tha
1099
+ metrics:
1100
+ - name: byte_perplexity
1101
+ type: byte_perplexity
1102
+ value: 2.365940201944242
1103
+ verified: false
1104
+ - task:
1105
+ type: text-generation
1106
+ name: text generation
1107
+ dataset:
1108
+ name: gsarti/flores_101_tur
1109
+ type: gsarti/flores_101_tur
1110
+ metrics:
1111
+ - name: byte_perplexity
1112
+ type: byte_perplexity
1113
+ value: 4.885014749844601
1114
+ verified: false
1115
+ - task:
1116
+ type: text-generation
1117
+ name: text generation
1118
+ dataset:
1119
+ name: gsarti/flores_101_ukr
1120
+ type: gsarti/flores_101_ukr
1121
+ metrics:
1122
+ - name: byte_perplexity
1123
+ type: byte_perplexity
1124
+ value: 2.7240934990288483
1125
+ verified: false
1126
+ - task:
1127
+ type: text-generation
1128
+ name: text generation
1129
+ dataset:
1130
+ name: gsarti/flores_101_umb
1131
+ type: gsarti/flores_101_umb
1132
+ metrics:
1133
+ - name: byte_perplexity
1134
+ type: byte_perplexity
1135
+ value: 12.766915508610673
1136
+ verified: false
1137
+ - task:
1138
+ type: text-generation
1139
+ name: text generation
1140
+ dataset:
1141
+ name: gsarti/flores_101_urd
1142
+ type: gsarti/flores_101_urd
1143
+ metrics:
1144
+ - name: byte_perplexity
1145
+ type: byte_perplexity
1146
+ value: 1.9797467071381232
1147
+ verified: false
1148
+ - task:
1149
+ type: text-generation
1150
+ name: text generation
1151
+ dataset:
1152
+ name: gsarti/flores_101_uzb
1153
+ type: gsarti/flores_101_uzb
1154
+ metrics:
1155
+ - name: byte_perplexity
1156
+ type: byte_perplexity
1157
+ value: 12.002337637722146
1158
+ verified: false
1159
+ - task:
1160
+ type: text-generation
1161
+ name: text generation
1162
+ dataset:
1163
+ name: gsarti/flores_101_vie
1164
+ type: gsarti/flores_101_vie
1165
+ metrics:
1166
+ - name: byte_perplexity
1167
+ type: byte_perplexity
1168
+ value: 1.76578415476397
1169
+ verified: false
1170
+ - task:
1171
+ type: text-generation
1172
+ name: text generation
1173
+ dataset:
1174
+ name: gsarti/flores_101_wol
1175
+ type: gsarti/flores_101_wol
1176
+ metrics:
1177
+ - name: byte_perplexity
1178
+ type: byte_perplexity
1179
+ value: 9.144285650306488
1180
+ verified: false
1181
+ - task:
1182
+ type: text-generation
1183
+ name: text generation
1184
+ dataset:
1185
+ name: gsarti/flores_101_xho
1186
+ type: gsarti/flores_101_xho
1187
+ metrics:
1188
+ - name: byte_perplexity
1189
+ type: byte_perplexity
1190
+ value: 7.403240538286952
1191
+ verified: false
1192
+ - task:
1193
+ type: text-generation
1194
+ name: text generation
1195
+ dataset:
1196
+ name: gsarti/flores_101_yor
1197
+ type: gsarti/flores_101_yor
1198
+ metrics:
1199
+ - name: byte_perplexity
1200
+ type: byte_perplexity
1201
+ value: 5.91272037551173
1202
+ verified: false
1203
+ - task:
1204
+ type: text-generation
1205
+ name: text generation
1206
+ dataset:
1207
+ name: gsarti/flores_101_zho_simpl
1208
+ type: gsarti/flores_101_zho_simpl
1209
+ metrics:
1210
+ - name: byte_perplexity
1211
+ type: byte_perplexity
1212
+ value: 2.2769070822768533
1213
+ verified: false
1214
+ - task:
1215
+ type: text-generation
1216
+ name: text generation
1217
+ dataset:
1218
+ name: gsarti/flores_101_zho_trad
1219
+ type: gsarti/flores_101_zho_trad
1220
+ metrics:
1221
+ - name: byte_perplexity
1222
+ type: byte_perplexity
1223
+ value: 2.5180582198242383
1224
+ verified: false
1225
+ - task:
1226
+ type: text-generation
1227
+ name: text generation
1228
+ dataset:
1229
+ name: gsarti/flores_101_zul
1230
+ type: gsarti/flores_101_zul
1231
+ metrics:
1232
+ - name: byte_perplexity
1233
+ type: byte_perplexity
1234
+ value: 8.53353320693145
1235
+ verified: false
1236
+ - task:
1237
+ type: text-generation
1238
+ name: text generation
1239
+ dataset:
1240
+ name: headqa
1241
+ type: headqa
1242
+ metrics:
1243
+ - name: acc
1244
+ type: acc
1245
+ value: 0.26440554339897887
1246
+ verified: false
1247
+ - task:
1248
+ type: text-generation
1249
+ name: text generation
1250
+ dataset:
1251
+ name: hellaswag
1252
+ type: hellaswag
1253
+ metrics:
1254
+ - name: acc
1255
+ type: acc
1256
+ value: 0.41236805417247563
1257
+ verified: false
1258
+ - task:
1259
+ type: text-generation
1260
+ name: text generation
1261
+ dataset:
1262
+ name: logiqa
1263
+ type: logiqa
1264
+ metrics:
1265
+ - name: acc
1266
+ type: acc
1267
+ value: 0.2073732718894009
1268
+ verified: false
1269
+ - task:
1270
+ type: text-generation
1271
+ name: text generation
1272
+ dataset:
1273
+ name: mathqa
1274
+ type: mathqa
1275
+ metrics:
1276
+ - name: acc
1277
+ type: acc
1278
+ value: 0.24958123953098826
1279
+ verified: false
1280
+ - task:
1281
+ type: text-generation
1282
+ name: text generation
1283
+ dataset:
1284
+ name: mc_taco
1285
+ type: mc_taco
1286
+ metrics:
1287
+ - name: em
1288
+ type: em
1289
+ value: 0.11936936936936937
1290
+ verified: false
1291
+ - task:
1292
+ type: text-generation
1293
+ name: text generation
1294
+ dataset:
1295
+ name: mnli
1296
+ type: mnli
1297
+ metrics:
1298
+ - name: acc
1299
+ type: acc
1300
+ value: 0.35496688741721855
1301
+ verified: false
1302
+ - task:
1303
+ type: text-generation
1304
+ name: text generation
1305
+ dataset:
1306
+ name: mnli_mismatched
1307
+ type: mnli_mismatched
1308
+ metrics:
1309
+ - name: acc
1310
+ type: acc
1311
+ value: 0.35211554109031734
1312
+ verified: false
1313
+ - task:
1314
+ type: text-generation
1315
+ name: text generation
1316
+ dataset:
1317
+ name: mrpc
1318
+ type: mrpc
1319
+ metrics:
1320
+ - name: acc
1321
+ type: acc
1322
+ value: 0.5857843137254902
1323
+ verified: false
1324
+ - task:
1325
+ type: text-generation
1326
+ name: text generation
1327
+ dataset:
1328
+ name: multirc
1329
+ type: multirc
1330
+ metrics:
1331
+ - name: acc
1332
+ type: acc
1333
+ value: 0.5375412541254125
1334
+ verified: false
1335
+ - task:
1336
+ type: text-generation
1337
+ name: text generation
1338
+ dataset:
1339
+ name: openbookqa
1340
+ type: openbookqa
1341
+ metrics:
1342
+ - name: acc
1343
+ type: acc
1344
+ value: 0.216
1345
+ verified: false
1346
+ - task:
1347
+ type: text-generation
1348
+ name: text generation
1349
+ dataset:
1350
+ name: piqa
1351
+ type: piqa
1352
+ metrics:
1353
+ - name: acc
1354
+ type: acc
1355
+ value: 0.7078346028291621
1356
+ verified: false
1357
+ - task:
1358
+ type: text-generation
1359
+ name: text generation
1360
+ dataset:
1361
+ name: prost
1362
+ type: prost
1363
+ metrics:
1364
+ - name: acc
1365
+ type: acc
1366
+ value: 0.22683603757472245
1367
+ verified: false
1368
+ - task:
1369
+ type: text-generation
1370
+ name: text generation
1371
+ dataset:
1372
+ name: pubmedqa
1373
+ type: pubmedqa
1374
+ metrics:
1375
+ - name: acc
1376
+ type: acc
1377
+ value: 0.616
1378
+ verified: false
1379
+ - task:
1380
+ type: text-generation
1381
+ name: text generation
1382
+ dataset:
1383
+ name: qnli
1384
+ type: qnli
1385
+ metrics:
1386
+ - name: acc
1387
+ type: acc
1388
+ value: 0.5072304594545122
1389
+ verified: false
1390
+ - task:
1391
+ type: text-generation
1392
+ name: text generation
1393
+ dataset:
1394
+ name: qqp
1395
+ type: qqp
1396
+ metrics:
1397
+ - name: acc
1398
+ type: acc
1399
+ value: 0.3842443729903537
1400
+ verified: false
1401
+ - task:
1402
+ type: text-generation
1403
+ name: text generation
1404
+ dataset:
1405
+ name: race
1406
+ type: race
1407
+ metrics:
1408
+ - name: acc
1409
+ type: acc
1410
+ value: 0.3521531100478469
1411
+ verified: false
1412
+ - task:
1413
+ type: text-generation
1414
+ name: text generation
1415
+ dataset:
1416
+ name: rte
1417
+ type: rte
1418
+ metrics:
1419
+ - name: acc
1420
+ type: acc
1421
+ value: 0.47653429602888087
1422
+ verified: false
1423
+ - task:
1424
+ type: text-generation
1425
+ name: text generation
1426
+ dataset:
1427
+ name: sciq
1428
+ type: sciq
1429
+ metrics:
1430
+ - name: acc
1431
+ type: acc
1432
+ value: 0.892
1433
+ verified: false
1434
+ - task:
1435
+ type: text-generation
1436
+ name: text generation
1437
+ dataset:
1438
+ name: sst
1439
+ type: sst
1440
+ metrics:
1441
+ - name: acc
1442
+ type: acc
1443
+ value: 0.5177752293577982
1444
+ verified: false
1445
+ - task:
1446
+ type: text-generation
1447
+ name: text generation
1448
+ dataset:
1449
+ name: triviaqa
1450
+ type: triviaqa
1451
+ metrics:
1452
+ - name: acc
1453
+ type: acc
1454
+ value: 0.041633518960487934
1455
+ verified: false
1456
+ - task:
1457
+ type: text-generation
1458
+ name: text generation
1459
+ dataset:
1460
+ name: tydiqa_primary
1461
+ type: tydiqa_primary
1462
+ metrics:
1463
+ - name: acc
1464
+ type: acc
1465
+ value: 0.3011337608795236
1466
+ verified: false
1467
+ - task:
1468
+ type: text-generation
1469
+ name: text generation
1470
+ dataset:
1471
+ name: webqs
1472
+ type: webqs
1473
+ metrics:
1474
+ - name: acc
1475
+ type: acc
1476
+ value: 0.01673228346456693
1477
+ verified: false
1478
+ - task:
1479
+ type: text-generation
1480
+ name: text generation
1481
+ dataset:
1482
+ name: wic
1483
+ type: wic
1484
+ metrics:
1485
+ - name: acc
1486
+ type: acc
1487
+ value: 0.5015673981191222
1488
+ verified: false
1489
+ - task:
1490
+ type: text-generation
1491
+ name: text generation
1492
+ dataset:
1493
+ name: winogrande
1494
+ type: winogrande
1495
+ metrics:
1496
+ - name: acc
1497
+ type: acc
1498
+ value: 0.5864246250986582
1499
+ verified: false
1500
+ - task:
1501
+ type: text-generation
1502
+ name: text generation
1503
+ dataset:
1504
+ name: wnli
1505
+ type: wnli
1506
+ metrics:
1507
+ - name: acc
1508
+ type: acc
1509
+ value: 0.471830985915493
1510
+ verified: false
1511
+ - task:
1512
+ type: text-generation
1513
+ name: text generation
1514
+ dataset:
1515
+ name: wsc
1516
+ type: wsc
1517
+ metrics:
1518
+ - name: acc
1519
+ type: acc
1520
+ value: 0.4423076923076923
1521
+ verified: false
1522
+ - task:
1523
+ type: text-generation
1524
+ name: text generation
1525
+ dataset:
1526
+ name: humaneval
1527
+ type: humaneval
1528
+ metrics:
1529
+ - name: pass@1
1530
+ type: pass@1
1531
+ value: 0.15524390243902436
1532
+ verified: false
1533
+ - name: pass@10
1534
+ type: pass@10
1535
+ value: 0.3220367632383857
1536
+ verified: false
1537
+ - name: pass@100
1538
+ type: pass@100
1539
+ value: 0.5545431515723145
1540
+ verified: false
evaluation/results/tr11/bloom2b5/mdtable.txt ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ | Task | Language | Metric | BLOOM-2B5 |
2
+ |:----|:----|:----|:----:|
3
+ | arc_challenge | eng | acc ↑ | 0.28 |
4
+ | arc_easy | eng | acc ↑ | 0.595 |
5
+ | axb (Median of 10 prompts) | eng | acc ↑ | 0.443 |
6
+ | axg (Median of 10 prompts) | eng | acc ↑ | 0.5 |
7
+ | boolq (Median of 11 prompts) | eng | acc ↑ | 0.617 |
8
+ | cb (Median of 15 prompts) | eng | acc ↑ | 0.304 |
9
+ | cola (Median of 5 prompts) | eng | acc ↑ | 0.611 |
10
+ | copa (Median of 9 prompts) | eng | acc ↑ | 0.63 |
11
+ | crows_pairs_english (Median of 6 prompts) | eng | acc ↑ | 0.497 |
12
+ | crows_pairs_french (Median of 7 prompts) | fra | acc ↑ | 0.503 |
13
+ | diabla (Median of 2 prompts) | eng | acc ↑ | 0.289 |
14
+ | gsarti/flores_101_afr | afr | byte_perplexity ↓ | 6.501 |
15
+ | gsarti/flores_101_amh | amh | byte_perplexity ↓ | 3.973 |
16
+ | gsarti/flores_101_ara | ara | byte_perplexity ↓ | 1.808 |
17
+ | gsarti/flores_101_asm | asm | byte_perplexity ↓ | 5.699 |
18
+ | gsarti/flores_101_ast | ast | byte_perplexity ↓ | 3.925 |
19
+ | gsarti/flores_101_azj | azj | byte_perplexity ↓ | 6.943 |
20
+ | gsarti/flores_101_bel | bel | byte_perplexity ↓ | 3.614 |
21
+ | gsarti/flores_101_ben | ben | byte_perplexity ↓ | 5.121 |
22
+ | gsarti/flores_101_bos | bos | byte_perplexity ↓ | 5.653 |
23
+ | gsarti/flores_101_bul | bul | byte_perplexity ↓ | 2.701 |
24
+ | gsarti/flores_101_cat | cat | byte_perplexity ↓ | 2.305 |
25
+ | gsarti/flores_101_ceb | ceb | byte_perplexity ↓ | 6.291 |
26
+ | gsarti/flores_101_ces | ces | byte_perplexity ↓ | 5.447 |
27
+ | gsarti/flores_101_ckb | ckb | byte_perplexity ↓ | 3.726 |
28
+ | gsarti/flores_101_cym | cym | byte_perplexity ↓ | 12.539 |
29
+ | gsarti/flores_101_dan | dan | byte_perplexity ↓ | 5.183 |
30
+ | gsarti/flores_101_deu | deu | byte_perplexity ↓ | 3.118 |
31
+ | gsarti/flores_101_ell | ell | byte_perplexity ↓ | 2.468 |
32
+ | gsarti/flores_101_eng | eng | byte_perplexity ↓ | 2.019 |
33
+ | gsarti/flores_101_est | est | byte_perplexity ↓ | 9.117 |
34
+ | gsarti/flores_101_fas | fas | byte_perplexity ↓ | 3.058 |
35
+ | gsarti/flores_101_fin | fin | byte_perplexity ↓ | 6.847 |
36
+ | gsarti/flores_101_fra | fra | byte_perplexity ↓ | 1.998 |
37
+ | gsarti/flores_101_ful | ful | byte_perplexity ↓ | 11.466 |
38
+ | gsarti/flores_101_gle | gle | byte_perplexity ↓ | 8.681 |
39
+ | gsarti/flores_101_glg | glg | byte_perplexity ↓ | 3.03 |
40
+ | gsarti/flores_101_guj | guj | byte_perplexity ↓ | 4.955 |
41
+ | gsarti/flores_101_hau | hau | byte_perplexity ↓ | 10.758 |
42
+ | gsarti/flores_101_heb | heb | byte_perplexity ↓ | 3.6 |
43
+ | gsarti/flores_101_hin | hin | byte_perplexity ↓ | 4.713 |
44
+ | gsarti/flores_101_hrv | hrv | byte_perplexity ↓ | 5.822 |
45
+ | gsarti/flores_101_hun | hun | byte_perplexity ↓ | 6.44 |
46
+ | gsarti/flores_101_hye | hye | byte_perplexity ↓ | 3.658 |
47
+ | gsarti/flores_101_ibo | ibo | byte_perplexity ↓ | 5.565 |
48
+ | gsarti/flores_101_ind | ind | byte_perplexity ↓ | 2.16 |
49
+ | gsarti/flores_101_isl | isl | byte_perplexity ↓ | 8.082 |
50
+ | gsarti/flores_101_ita | ita | byte_perplexity ↓ | 2.969 |
51
+ | gsarti/flores_101_jav | jav | byte_perplexity ↓ | 7.057 |
52
+ | gsarti/flores_101_jpn | jpn | byte_perplexity ↓ | 2.776 |
53
+ | gsarti/flores_101_kam | kam | byte_perplexity ↓ | 11.073 |
54
+ | gsarti/flores_101_kan | kan | byte_perplexity ↓ | 5.552 |
55
+ | gsarti/flores_101_kat | kat | byte_perplexity ↓ | 2.523 |
56
+ | gsarti/flores_101_kaz | kaz | byte_perplexity ↓ | 3.39 |
57
+ | gsarti/flores_101_kea | kea | byte_perplexity ↓ | 8.919 |
58
+ | gsarti/flores_101_kir | kir | byte_perplexity ↓ | 3.729 |
59
+ | gsarti/flores_101_kor | kor | byte_perplexity ↓ | 3.933 |
60
+ | gsarti/flores_101_lao | lao | byte_perplexity ↓ | 2.908 |
61
+ | gsarti/flores_101_lav | lav | byte_perplexity ↓ | 7.777 |
62
+ | gsarti/flores_101_lin | lin | byte_perplexity ↓ | 7.525 |
63
+ | gsarti/flores_101_lit | lit | byte_perplexity ↓ | 7.369 |
64
+ | gsarti/flores_101_ltz | ltz | byte_perplexity ↓ | 8.801 |
65
+ | gsarti/flores_101_lug | lug | byte_perplexity ↓ | 8.483 |
66
+ | gsarti/flores_101_luo | luo | byte_perplexity ↓ | 11.976 |
67
+ | gsarti/flores_101_mal | mal | byte_perplexity ↓ | 4.616 |
68
+ | gsarti/flores_101_mar | mar | byte_perplexity ↓ | 5.483 |
69
+ | gsarti/flores_101_mkd | mkd | byte_perplexity ↓ | 2.966 |
70
+ | gsarti/flores_101_mlt | mlt | byte_perplexity ↓ | 15.005 |
71
+ | gsarti/flores_101_mon | mon | byte_perplexity ↓ | 3.411 |
72
+ | gsarti/flores_101_mri | mri | byte_perplexity ↓ | 7.474 |
73
+ | gsarti/flores_101_msa | msa | byte_perplexity ↓ | 2.571 |
74
+ | gsarti/flores_101_mya | mya | byte_perplexity ↓ | 2.414 |
75
+ | gsarti/flores_101_nld | nld | byte_perplexity ↓ | 4.128 |
76
+ | gsarti/flores_101_nob | nob | byte_perplexity ↓ | 5.403 |
77
+ | gsarti/flores_101_npi | npi | byte_perplexity ↓ | 5.199 |
78
+ | gsarti/flores_101_nso | nso | byte_perplexity ↓ | 8.155 |
79
+ | gsarti/flores_101_nya | nya | byte_perplexity ↓ | 8.18 |
80
+ | gsarti/flores_101_oci | oci | byte_perplexity ↓ | 4.862 |
81
+ | gsarti/flores_101_orm | orm | byte_perplexity ↓ | 12.912 |
82
+ | gsarti/flores_101_ory | ory | byte_perplexity ↓ | 5.189 |
83
+ | gsarti/flores_101_pan | pan | byte_perplexity ↓ | 4.698 |
84
+ | gsarti/flores_101_pol | pol | byte_perplexity ↓ | 4.626 |
85
+ | gsarti/flores_101_por | por | byte_perplexity ↓ | 1.975 |
86
+ | gsarti/flores_101_pus | pus | byte_perplexity ↓ | 4.496 |
87
+ | gsarti/flores_101_ron | ron | byte_perplexity ↓ | 4.965 |
88
+ | gsarti/flores_101_rus | rus | byte_perplexity ↓ | 2.05 |
89
+ | gsarti/flores_101_slk | slk | byte_perplexity ↓ | 6.451 |
90
+ | gsarti/flores_101_slv | slv | byte_perplexity ↓ | 6.62 |
91
+ | gsarti/flores_101_sna | sna | byte_perplexity ↓ | 8.462 |
92
+ | gsarti/flores_101_snd | snd | byte_perplexity ↓ | 5.466 |
93
+ | gsarti/flores_101_som | som | byte_perplexity ↓ | 11.959 |
94
+ | gsarti/flores_101_spa | spa | byte_perplexity ↓ | 1.897 |
95
+ | gsarti/flores_101_srp | srp | byte_perplexity ↓ | 2.871 |
96
+ | gsarti/flores_101_swe | swe | byte_perplexity ↓ | 5.055 |
97
+ | gsarti/flores_101_swh | swh | byte_perplexity ↓ | 3.697 |
98
+ | gsarti/flores_101_tam | tam | byte_perplexity ↓ | 4.539 |
99
+ | gsarti/flores_101_tel | tel | byte_perplexity ↓ | 5.807 |
100
+ | gsarti/flores_101_tgk | tgk | byte_perplexity ↓ | 3.599 |
101
+ | gsarti/flores_101_tgl | tgl | byte_perplexity ↓ | 5.667 |
102
+ | gsarti/flores_101_tha | tha | byte_perplexity ↓ | 2.366 |
103
+ | gsarti/flores_101_tur | tur | byte_perplexity ↓ | 4.885 |
104
+ | gsarti/flores_101_ukr | ukr | byte_perplexity ↓ | 2.724 |
105
+ | gsarti/flores_101_umb | umb | byte_perplexity ↓ | 12.767 |
106
+ | gsarti/flores_101_urd | urd | byte_perplexity ↓ | 1.98 |
107
+ | gsarti/flores_101_uzb | uzb | byte_perplexity ↓ | 12.002 |
108
+ | gsarti/flores_101_vie | vie | byte_perplexity ↓ | 1.766 |
109
+ | gsarti/flores_101_wol | wol | byte_perplexity ↓ | 9.144 |
110
+ | gsarti/flores_101_xho | xho | byte_perplexity ↓ | 7.403 |
111
+ | gsarti/flores_101_yor | yor | byte_perplexity ↓ | 5.913 |
112
+ | gsarti/flores_101_zho_simpl | zho_simpl | byte_perplexity ↓ | 2.277 |
113
+ | gsarti/flores_101_zho_trad | zho_trad | byte_perplexity ↓ | 2.518 |
114
+ | gsarti/flores_101_zul | zul | byte_perplexity ↓ | 8.534 |
115
+ | headqa | esp | acc ↑ | 0.264 |
116
+ | hellaswag | eng | acc ↑ | 0.412 |
117
+ | logiqa | eng | acc ↑ | 0.207 |
118
+ | mathqa | eng | acc ↑ | 0.25 |
119
+ | mc_taco | eng | em ↑ | 0.119 |
120
+ | mnli (Median of 15 prompts) | eng | acc ↑ | 0.355 |
121
+ | mnli_mismatched (Median of 15 prompts) | eng | acc ↑ | 0.352 |
122
+ | mrpc | eng | acc ↑ | 0.586 |
123
+ | multirc (Median of 11 prompts) | eng | acc ↑ | 0.538 |
124
+ | openbookqa | eng | acc ↑ | 0.216 |
125
+ | piqa | eng | acc ↑ | 0.708 |
126
+ | prost | eng | acc ↑ | 0.227 |
127
+ | pubmedqa | eng | acc ↑ | 0.616 |
128
+ | qnli | eng | acc ↑ | 0.507 |
129
+ | qqp (Median of 7 prompts) | eng | acc ↑ | 0.384 |
130
+ | race | eng | acc ↑ | 0.352 |
131
+ | rte (Median of 6 prompts) | eng | acc ↑ | 0.477 |
132
+ | sciq | eng | acc ↑ | 0.892 |
133
+ | sst (Median of 6 prompts) | eng | acc ↑ | 0.518 |
134
+ | triviaqa | eng | acc ↑ | 0.042 |
135
+ | tydiqa_primary (Median of 24 prompts) | eng | acc ↑ | 0.301 |
136
+ | webqs | eng | acc ↑ | 0.017 |
137
+ | wic (Median of 11 prompts) | eng | acc ↑ | 0.502 |
138
+ | winogrande | eng | acc ↑ | 0.586 |
139
+ | wnli (Median of 6 prompts) | eng | acc ↑ | 0.472 |
140
+ | wsc (Median of 11 prompts) | eng | acc ↑ | 0.442 |
141
+ | humaneval | python | pass@1 ↑ | 0.155 |
142
+ | humaneval | python | pass@10 ↑ | 0.322 |
143
+ | humaneval | python | pass@100 ↑ | 0.555 |
evaluation/results/tr11/conversion/json_to_markdown.py ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Table example:
3
+
4
+ | Task | Language | Metric | BLOOM-176B | OPT-176B |
5
+ |:--------|:-----------------|:------------------------|-------------:|------------:|
6
+ | arc_challenge | eng | acc | 0.4112627986348123 | 0.4121160409556314 |
7
+
8
+
9
+ Metadata example:
10
+
11
+ model-index:
12
+ - name: bart-large-cnn-samsum
13
+ results:
14
+ - task:
15
+ type: summarization
16
+ name: Summarization
17
+ dataset:
18
+ name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization'
19
+ type: samsum
20
+ metrics:
21
+ - name: Validation ROGUE-1
22
+ type: rogue-1
23
+ value: 42.621
24
+ - name: Validation ROGUE-2
25
+ type: rogue-2
26
+ value: 21.9825
27
+ - name: Validation ROGUE-L
28
+ type: rogue-l
29
+ value: 33.034
30
+ - name: Test ROGUE-1
31
+ type: rogue-1
32
+ value: 41.3174
33
+ - name: Test ROGUE-2
34
+ type: rogue-2
35
+ value: 20.8716
36
+ - name: Test ROGUE-L
37
+ type: rogue-l
38
+ value: 32.1337
39
+ - task:
40
+ type: summarization
41
+ name: Summarization
42
+ dataset:
43
+ name: samsum
44
+ type: samsum
45
+ config: samsum
46
+ split: test
47
+ metrics:
48
+ - name: ROUGE-1
49
+ type: rouge
50
+ value: 41.3282
51
+ verified: true
52
+ - name: ROUGE-2
53
+ type: rouge
54
+ value: 20.8755
55
+ verified: true
56
+ - name: ROUGE-L
57
+ type: rouge
58
+ value: 32.1353
59
+ verified: true
60
+ - name: ROUGE-LSUM
61
+ type: rouge
62
+ value: 38.401
63
+ verified: true
64
+ - name: loss
65
+ type: loss
66
+ value: 1.4297215938568115
67
+ verified: true
68
+ - name: gen_len
69
+ type: gen_len
70
+ value: 60.0757
71
+ verified: true
72
+ """
73
+
74
+ import json
75
+ import statistics
76
+
77
+ FILE_NAMES = ["bslmeval", "humaneval_temp02", "humaneval_temp06", "humaneval_temp08"]
78
+
79
+ # Optionally subselect tasks
80
+ SELECTED_LIST = [
81
+ "winogrande"
82
+ ]
83
+
84
+ with open("bloom2b5/bslmeval.json", "r") as f:
85
+ bloom_bslmeval = json.load(f)
86
+
87
+ with open("opt/bslmeval.json", "r") as f:
88
+ opt_bslmeval = json.load(f)
89
+
90
+
91
+
92
+ results_formatted = {}
93
+ for task_name in bloom_bslmeval["results"]:
94
+ #if task_name not in SELECTED_LIST:
95
+ # continue
96
+ date_keys = list(bloom_bslmeval["results"][task_name].keys())
97
+ assert len(date_keys) == 1
98
+ metrics = bloom_bslmeval["results"][task_name][date_keys[0]]
99
+
100
+ lang = "eng"
101
+ if "gsarti/flores_101_" in task_name:
102
+ lang = task_name.replace("gsarti/flores_101_", "").replace("+null", "")
103
+ elif "lambada_mt_de" in task_name:
104
+ lang = "deu"
105
+ elif "lambada_mt_en" in task_name:
106
+ lang = "eng"
107
+ elif "lambada_mt_es" in task_name:
108
+ lang = "esp"
109
+ elif "lambada_mt_it" in task_name:
110
+ lang = "ita"
111
+ elif "lambada" == task_name:
112
+ continue
113
+ elif "crows_pairs_french" in task_name:
114
+ lang = "fra"
115
+ elif "headqa" == task_name:
116
+ lang = "esp"
117
+
118
+ if "acc" in metrics:
119
+ main_metric_name = "acc ↑"
120
+ elif "byte_perplexity" in metrics:
121
+ main_metric_name = "byte_perplexity ↓"
122
+ elif "pass@100" in metrics:
123
+ main_metric_name = "pass@100 ↑"
124
+ elif "em" in metrics:
125
+ main_metric_name = "em ↑"
126
+
127
+ date_keys_opt = list(opt_bslmeval["results"][task_name].keys())
128
+ score_opt = opt_bslmeval["results"][task_name][date_keys_opt[0]][main_metric_name[:-2]]
129
+
130
+ fin_task_name = metrics.get("task_name", task_name)
131
+
132
+ results_formatted.setdefault(fin_task_name, {})
133
+ results_formatted[fin_task_name].setdefault("prompts", [])
134
+ results_formatted[fin_task_name].setdefault("all_metrics", [])
135
+ results_formatted[fin_task_name].setdefault("main_metrics", [])
136
+
137
+ if "prompt_name" in metrics:
138
+ results_formatted[fin_task_name]["prompts"].append(metrics["prompt_name"])
139
+ results_formatted[fin_task_name]["name"] = fin_task_name
140
+ results_formatted[fin_task_name]["lang"] = lang
141
+ results_formatted[fin_task_name]["all_metrics"].append(metrics) # [{name: score}]
142
+ results_formatted[fin_task_name]["main_metrics"].append((main_metric_name, metrics[main_metric_name[:-2]], score_opt))
143
+ results_formatted[fin_task_name]["type"] = "text-generation"
144
+
145
+ # Take Median of scores
146
+ for k, v in results_formatted.items():
147
+ if "prompts" in v and len(v["prompts"]) > 1:
148
+ assert len(v["all_metrics"]) == len(v["main_metrics"])
149
+ num_scores = len(v["main_metrics"])
150
+
151
+ bloom_median = statistics.median([triplet[1] for triplet in v["main_metrics"]])
152
+ opt_median = statistics.median([triplet[2] for triplet in v["main_metrics"]])
153
+
154
+ results_formatted[k]["main_metrics"] = [(
155
+ v["main_metrics"][0][0],
156
+ bloom_median,
157
+ opt_median,
158
+ )]
159
+
160
+ results_formatted[k]["name"] = results_formatted[k]["name"] + f" (Median of {num_scores} prompts)"
161
+
162
+
163
+
164
+ def keep_best_score(new_eval, old_eval):
165
+ for k, v in new_eval.items():
166
+ old_eval[k] = max(old_eval[k], v)
167
+ return old_eval
168
+
169
+ for i, temp in enumerate(["02", "06", "08"]):
170
+ with open(f"bloom/humaneval_temp{temp}.json", "r") as f:
171
+ if i > 0:
172
+ keep_best_score(json.load(f), bloom_humaneval)
173
+ else:
174
+ bloom_humaneval = json.load(f)
175
+ with open(f"opt/humaneval_temp{temp}.json", "r") as f:
176
+ if i > 0:
177
+ keep_best_score(json.load(f), opt_humaneval)
178
+ else:
179
+ opt_humaneval = json.load(f)
180
+
181
+ results_formatted["humaneval"] = {
182
+ "name": "humaneval",
183
+ "lang": "python",
184
+ "all_metrics": [bloom_humaneval], # [{name: score}]
185
+ "main_metrics": [(f"{name} ↑", score, opt_humaneval[name]) for name, score in bloom_humaneval.items()],
186
+ "type": "text-generation"
187
+ }
188
+
189
+
190
+
191
+ # Add multilingual average
192
+ for k, v in results_formatted.items():
193
+ if "prompts" in v and len(v["prompts"]) > 1 and len(v["main_metrics"]) > 1:
194
+ assert len(v["all_metrics"]) == len(v["main_metrics"]), f"{k}, {len(v['all_metrics'])}, {len(v['main_metrics'])}"
195
+ num_scores = len(v["main_metrics"])
196
+
197
+ bloom_median = statistics.median([triplet[1] for triplet in v["main_metrics"]])
198
+ opt_median = statistics.median([triplet[2] for triplet in v["main_metrics"]])
199
+
200
+ results_formatted[k]["main_metrics"] = [(
201
+ v["main_metrics"][0][0],
202
+ bloom_median,
203
+ opt_median,
204
+ )]
205
+
206
+ results_formatted[k]["name"] = results_formatted[k]["name"] + f" (Median of {num_scores} prompts)"
207
+
208
+ """Optional aggregated statistics
209
+ bloom_mean = statistics.mean([triplet[1] for k,v in results_formatted.items() for triplet in v["main_metrics"] if v["lang"] == "eng"])
210
+ opt_mean = statistics.mean([triplet[2] for k,v in results_formatted.items() for triplet in v["main_metrics"] if v["lang"] == "eng"])
211
+
212
+ results_formatted["mean_eng"] = {
213
+ "name": "mean_eng ↑",
214
+ "lang": "eng",
215
+ "all_metrics": [{"mean": bloom_mean}], # [{name: score}]
216
+ "main_metrics": [("mean", bloom_mean, opt_mean)],
217
+ "type": "text-generation"
218
+ }
219
+
220
+ bloom_mean = statistics.mean([triplet[1] for k,v in results_formatted.items() for triplet in v["main_metrics"] if "flores" in k])
221
+ opt_mean = statistics.mean([triplet[2] for k,v in results_formatted.items() for triplet in v["main_metrics"] if "flores" in k])
222
+
223
+ results_formatted["mean_multilingual"] = {
224
+ "name": "mean_multilingual (Flores) ↓",
225
+ "lang": "mul",
226
+ "all_metrics": [{"mean": bloom_mean}], # [{name: score}]
227
+ "main_metrics": [("mean", bloom_mean, opt_mean)],
228
+ "type": "text-generation"
229
+ }
230
+
231
+ main_metrics = ([triplet for k,v in results_formatted.items() for triplet in v["main_metrics"]])
232
+
233
+ bloom_best_on, opt_best_on = 0,0
234
+ for (name, bloom, opt) in main_metrics:
235
+ if name[:-2] in ["acc", "em"] or "pass" in name:
236
+ if bloom > opt:
237
+ bloom_best_on += 1
238
+ elif bloom < opt:
239
+ opt_best_on += 1
240
+ elif name[:-2] in ["byte_perplexity"]:
241
+ if bloom < opt:
242
+ bloom_best_on += 1
243
+ elif bloom > opt:
244
+ opt_best_on += 1
245
+ """
246
+ ### Markdown Table ###
247
+
248
+ HEADER = "| Task | Language | Metric | BLOOM-350M | BLOOM-750M | BLOOM-1B3 | BLOOM-2B5 | BLOOM-6B3 | BLOOM-176B |"
249
+ SEP = "|:----|:----|:----|:----:|"
250
+ ONE_LINE = "| {} | {} | {} | {} |"
251
+
252
+ TABLE_STRING = "\n".join([HEADER, SEP])
253
+
254
+ for task_name, res_dict in results_formatted.items():
255
+ for (name, score, score_opt) in res_dict["main_metrics"]:
256
+ TABLE_STRING += "\n" + ONE_LINE.format(
257
+ res_dict["name"],
258
+ res_dict["lang"],
259
+ name,
260
+ round(score, 3),
261
+ round(score_opt, 3),
262
+ )
263
+
264
+ with open("./mdtable.txt", "w") as f:
265
+ f.write(TABLE_STRING)
266
+
267
+
268
+
269
+ ### Metadata ###
270
+
271
+ HEADER = "model-index:"
272
+ MODEL = "- name: bloom"
273
+ RES = " results:"
274
+
275
+ META_STRING = "\n".join([HEADER, MODEL, RES])
276
+
277
+ ONE_TASK = " - task:\n type: {}\n name: {}\n dataset:\n name: {}\n type: {}\n metrics:"
278
+ ONE_METRIC = " - name: {}\n type: {}\n value: {}\n verified: false"
279
+
280
+ for task_name, res_dict in results_formatted.items():
281
+ META_STRING += "\n" + ONE_TASK.format(
282
+ res_dict["type"],
283
+ res_dict["type"].replace("-", " "),
284
+ task_name,
285
+ task_name,
286
+ )
287
+ for (name, score, score_opt) in res_dict["main_metrics"]:
288
+ META_STRING += "\n" + ONE_METRIC.format(
289
+ name.split(" ")[0],
290
+ name.split(" ")[0],
291
+ score
292
+ )
293
+ """
294
+ for metrics in res_dict["all_metrics"]:
295
+ for metric_name, metric in metrics.items():
296
+ if isinstance(metric, str):
297
+ continue
298
+ META_STRING += "\n" + ONE_METRIC.format(
299
+ metric_name,
300
+ metric_name,
301
+ metric
302
+ )
303
+ """
304
+
305
+
306
+ with open("./mdmeta.txt", "w") as f:
307
+ f.write(META_STRING)
evaluation/results/tr11/opt/bslmeval.json ADDED
The diff for this file is too large to render. See raw diff
 
evaluation/results/tr11/opt/humaneval_temp06.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"pass@1": 3.0487804878048808e-05, "pass@10": 0.0003048780487804881, "pass@100": 0.003048780487804878}
evaluation/results/tr11/scripts/download_bsevalharness.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Downloads the specified taks in the evaluation harness
2
+ # This is particularly useful when running in environments where the GPU nodes
3
+ # do not have internet access. This way we can pre-download them and use the cached data-set during evaluation.
4
+
5
+ from lm_eval import tasks
6
+ from lm_eval.tasks import ALL_TASKS
7
+ import argparse
8
+ import os
9
+
10
+
11
+ parser = argparse.ArgumentParser(description='Download evaluation harness', allow_abbrev=False)
12
+ parser.add_argument('--task_list', type=str, default = "all", help='Either "all" or comma separated list of tasks to download.')
13
+ args = parser.parse_args()
14
+
15
+ def main():
16
+ task_list = ALL_TASKS if args.task_list == 'all' else args.task_list.split(',')
17
+ tasks.get_task_dict_promptsource(task_list)
18
+
19
+ if __name__ == '__main__':
20
+ main()
21
+
evaluation/results/tr11/scripts/run_bsevalharness_generation_6b3.slurm ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=evaluate_t0
3
+ #SBATCH --nodes=1
4
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
5
+ #SBATCH --cpus-per-task=8 # number of cores per tasks
6
+ #SBATCH --hint=nomultithread # we get physical cores not logical
7
+ #SBATCH --gres=gpu:1 # number of gpus
8
+ #SBATCH --constraint=a100
9
+ #SBATCH --reservation=hug
10
+ #SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
11
+ #SBATCH --output=%x-%j.out # output file name
12
+ #SBATCH --account=six@a100
13
+
14
+ set -x -e
15
+
16
+ source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
17
+ conda activate muennighofflmevalgen
18
+
19
+ echo "START TIME: $(date)"
20
+
21
+ # defining the right environment variables
22
+ export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
23
+ export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
24
+ export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
25
+ export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
26
+ export HF_DATASETS_OFFLINE=1
27
+ export TRANSFORMERS_OFFLINE=1
28
+ export TOKENIZERS_PARALLELISM=false
29
+
30
+ # Converted transformer checkpoint
31
+ MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3/bloom-7b1
32
+
33
+ cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bslmevalgeneration/lm-evaluation-harness
34
+
35
+ # WMT19 ZH-EN does not work
36
+ DATASETS_AND_CONFIGS=(
37
+ GEM/wiki_lingua_en,en,"article_summary_en"
38
+ GEM/wiki_lingua_en,en,"write_abstract_en"
39
+ GEM/wiki_lingua_en,en,"summarize_above_en"
40
+ GEM/wiki_lingua_en,en,"rephrase_en"
41
+ GEM/wiki_lingua_en,en,"tldr_en"
42
+ GEM/wiki_lingua_es,es,"article_summary_es"
43
+ GEM/wiki_lingua_es,es,"write_abstract_es"
44
+ GEM/wiki_lingua_es,es,"summarize_above_es"
45
+ GEM/wiki_lingua_es,es,"rephrase_es"
46
+ GEM/wiki_lingua_es,es,"tldr_es"
47
+ GEM/wiki_lingua_fr,fr,"article_summary_fr"
48
+ GEM/wiki_lingua_fr,fr,"write_abstract_fr"
49
+ GEM/wiki_lingua_fr,fr,"summarize_above_fr"
50
+ GEM/wiki_lingua_fr,fr,"rephrase_fr"
51
+ GEM/wiki_lingua_fr,fr,"tldr_fr"
52
+ GEM/wiki_lingua_hi,hi,"article_summary_hi"
53
+ GEM/wiki_lingua_hi,hi,"write_abstract_hi"
54
+ GEM/wiki_lingua_hi,hi,"summarize_above_hi"
55
+ GEM/wiki_lingua_hi,hi,"rephrase_hi"
56
+ GEM/wiki_lingua_hi,hi,"tldr_hi"
57
+ GEM/wiki_lingua_id,id,"article_summary_id"
58
+ GEM/wiki_lingua_id,id,"write_abstract_id"
59
+ GEM/wiki_lingua_id,id,"summarize_above_id"
60
+ GEM/wiki_lingua_id,id,"rephrase_id"
61
+ GEM/wiki_lingua_id,id,"tldr_id"
62
+ GEM/wiki_lingua_pt,pt,"article_summary_pt"
63
+ GEM/wiki_lingua_pt,pt,"write_abstract_pt"
64
+ GEM/wiki_lingua_pt,pt,"summarize_above_pt"
65
+ GEM/wiki_lingua_pt,pt,"rephrase_pt"
66
+ GEM/wiki_lingua_pt,pt,"tldr_pt"
67
+ GEM/wiki_lingua_vi,vi,"article_summary_vi"
68
+ GEM/wiki_lingua_vi,vi,"write_abstract_vi"
69
+ GEM/wiki_lingua_vi,vi,"summarize_above_vi"
70
+ GEM/wiki_lingua_vi,vi,"rephrase_vi"
71
+ GEM/wiki_lingua_vi,vi,"tldr_vi"
72
+ )
73
+
74
+ #GEM/wiki_lingua_ar,ar,"article_summary_ar"
75
+ #GEM/wiki_lingua_ar,ar,"write_abstract_ar"
76
+ #GEM/wiki_lingua_ar,ar,"summarize_above_ar"
77
+ #GEM/wiki_lingua_ar,ar,"rephrase_ar"
78
+ #GEM/wiki_lingua_ar,ar,"tldr_ar"
79
+ #GEM/wiki_lingua_zh,zh,"article_summary_zh"
80
+ #GEM/wiki_lingua_zh,zh,"write_abstract_zh"
81
+ #GEM/wiki_lingua_zh,zh,"summarize_above_zh"
82
+ #GEM/wiki_lingua_zh,zh,"rephrase_zh"
83
+ #GEM/wiki_lingua_zh,zh,"tldr_zh"
84
+
85
+ DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
86
+ echo $ARGUMENT
87
+
88
+ IFS=',' read dataset_name lang template_name <<< "${DATASET_AND_CONFIG}"
89
+
90
+ # Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
91
+ python main.py \
92
+ --model_api_name 'hf-causal' \
93
+ --model_args pretrained=$MODEL_CKPT,use_accelerate=True,tokenizer=$MODEL_CKPT,dtype=float16 \
94
+ --device cuda \
95
+ --batch_size 16 \
96
+ --no_tracking \
97
+ --task_name $dataset_name \
98
+ --template_names $template_name \
99
+ --bootstrap_iters 10
100
+
101
+ echo "END TIME: $(date)"
evaluation/results/tr11/scripts/run_bsevalharness_tr11-176b-ml.slurm ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=run_bsevalharness-tr11-176b-ml
3
+ #SBATCH --partition=gpu_p5
4
+ #SBATCH --constraint=a100
5
+ #SBATCH --nodes=1
6
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
7
+ #SBATCH --cpus-per-task=64 # number of cores per tasks
8
+ #SBATCH --hint=nomultithread # we get physical cores not logical
9
+ #SBATCH --gres=gpu:8 # number of gpus
10
+ #SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
11
+ #SBATCH --output=%x-%j.out # output file name
12
+ #SBATCH --account=six@a100
13
+ #SBATCH --reservation=hug
14
+
15
+
16
+ set -x -e
17
+
18
+ source $six_ALL_CCFRWORK/start-muennighofflmeval
19
+
20
+ echo "START TIME: $(date)"
21
+
22
+ # a unique identifier for the current eval ideally correspnding to the modelname
23
+ VARIANT="tr11-176b-ml-bsevalharness"
24
+
25
+
26
+ CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11-176B-ml/checkpoints/main/global_step90000
27
+ MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/megdsbslmeval/Megatron-DeepSpeed
28
+ export HF_DATASETS_OFFLINE=1
29
+ export TRANSFORMERS_OFFLINE=1
30
+
31
+ export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
32
+ export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
33
+ export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
34
+ export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
35
+
36
+ cd $MEGATRON_DEEPSPEED_REPO
37
+
38
+ TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
39
+
40
+ PP_SIZE=8
41
+ TP_SIZE=1
42
+ SEQ_LEN=2048
43
+
44
+ # different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
45
+ # make as big as it can fit into gpu w/o OOM, but not too close to 100%
46
+ EVAL_MICRO_BATCH_SIZE=1
47
+
48
+ #dummy arguments to make megatron happy.
49
+ MEGATRON_REQUIRED_ARGS=" \
50
+ --num-layers -1 \
51
+ --hidden-size -1 \
52
+ --num-attention-heads -1 \
53
+ --seq-length -1 \
54
+ --max-position-embeddings -1 \
55
+ "
56
+
57
+
58
+ ZERO_STAGE=0
59
+
60
+ config_json="./ds_config.json"
61
+
62
+ # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
63
+ cat <<EOT > $config_json
64
+ {
65
+ "train_micro_batch_size_per_gpu": 1,
66
+ "train_batch_size": 1,
67
+ "gradient_clipping": 1.0,
68
+ "zero_optimization": {
69
+ "stage": $ZERO_STAGE
70
+ },
71
+ "bf16": {
72
+ "enabled": true
73
+ },
74
+ "steps_per_print": 2000,
75
+ "wall_clock_breakdown": false
76
+ }
77
+ EOT
78
+
79
+
80
+ CMD="./tasks/eval_harness/evaluate_bsevalharness.py \
81
+ --load $CHECKPOINT_PATH \
82
+ --results_path $VARIANT-results.json \
83
+ --tensor-model-parallel-size $TP_SIZE \
84
+ --pipeline-model-parallel-size $PP_SIZE \
85
+ --tokenizer-type PretrainedFromHF \
86
+ --tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
87
+ --micro-batch-size $EVAL_MICRO_BATCH_SIZE \
88
+ --no-load-optim \
89
+ --no-load-rng \
90
+ --bf16 \
91
+ --inference \
92
+ --seq-length $SEQ_LEN \
93
+ --task_list wnli \
94
+ --deepspeed \
95
+ --deepspeed_config ds_config.json \
96
+ --intermed_results \
97
+ --adaptive_seq_len \
98
+ --micro_bs_multiplier 16 \
99
+ --offloadearly \
100
+ $MEGATRON_REQUIRED_ARGS \
101
+ "
102
+
103
+ GPUS_PER_NODE=8
104
+ NNODES=$SLURM_NNODES
105
+ MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
106
+ MASTER_PORT=6000
107
+ export LAUNCHER="python -u -m torch.distributed.run \
108
+ --nproc_per_node $GPUS_PER_NODE \
109
+ --nnodes $NNODES \
110
+ --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
111
+ --rdzv_backend c10d \
112
+ --max_restarts 0 \
113
+ --tee 3 \
114
+ "
115
+
116
+ export CUDA_LAUNCH_BLOCKING=1
117
+
118
+ echo $LAUNCHER $CMD
119
+
120
+ export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
121
+
122
+ $LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
evaluation/results/tr11/scripts/run_bsevalharness_tr11b-1b3-ml.slurm ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=run_bsevalharness-tr11b-1b3-ml
3
+ #SBATCH --partition=gpu_p5
4
+ #SBATCH --constraint=a100
5
+ #SBATCH --nodes=1
6
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
7
+ #SBATCH --cpus-per-task=8 # number of cores per tasks
8
+ #SBATCH --hint=nomultithread # we get physical cores not logical
9
+ #SBATCH --gres=gpu:1 # number of gpus
10
+ #SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
11
+ #SBATCH --output=%x-%j.out # output file name
12
+ #SBATCH --account=six@a100
13
+ #SBATCH --reservation=hug
14
+
15
+
16
+ set -x -e
17
+
18
+ source $six_ALL_CCFRWORK/start-muennighofflmeval
19
+
20
+ echo "START TIME: $(date)"
21
+
22
+ # a unique identifier for the current eval ideally correspnding to the modelname
23
+ VARIANT="tr11b-1b3-ml-bsevalharness"
24
+
25
+
26
+ CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11b-1B3-ml/checkpoints/main/global_step340500
27
+ MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/megdsbslmeval/Megatron-DeepSpeed
28
+ export HF_DATASETS_OFFLINE=1
29
+ export TRANSFORMERS_OFFLINE=1
30
+
31
+ export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
32
+ export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasetseval
33
+ export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
34
+ export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
35
+ export TOKENIZERS_PARALLELISM=false
36
+
37
+ cd $MEGATRON_DEEPSPEED_REPO
38
+
39
+ TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
40
+
41
+ PP_SIZE=1
42
+ TP_SIZE=1
43
+ SEQ_LEN=2048
44
+
45
+ # different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
46
+ # make as big as it can fit into gpu w/o OOM, but not too close to 100%
47
+ EVAL_MICRO_BATCH_SIZE=1
48
+
49
+ #dummy arguments to make megatron happy.
50
+ MEGATRON_REQUIRED_ARGS=" \
51
+ --num-layers -1 \
52
+ --hidden-size -1 \
53
+ --num-attention-heads -1 \
54
+ --seq-length -1 \
55
+ --max-position-embeddings -1 \
56
+ "
57
+
58
+
59
+ ZERO_STAGE=0
60
+
61
+ config_json="./ds_config.json"
62
+
63
+ # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
64
+ cat <<EOT > $config_json
65
+ {
66
+ "train_micro_batch_size_per_gpu": 1,
67
+ "train_batch_size": 1,
68
+ "gradient_clipping": 1.0,
69
+ "zero_optimization": {
70
+ "stage": $ZERO_STAGE
71
+ },
72
+ "bf16": {
73
+ "enabled": false
74
+ },
75
+ "steps_per_print": 2000,
76
+ "wall_clock_breakdown": false
77
+ }
78
+ EOT
79
+
80
+
81
+ CMD="./tasks/eval_harness/evaluate_bsevalharness.py \
82
+ --load $CHECKPOINT_PATH \
83
+ --results_path $VARIANT-results.json \
84
+ --tensor-model-parallel-size $TP_SIZE \
85
+ --pipeline-model-parallel-size $PP_SIZE \
86
+ --tokenizer-type PretrainedFromHF \
87
+ --tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
88
+ --micro-batch-size $EVAL_MICRO_BATCH_SIZE \
89
+ --no-load-optim \
90
+ --no-load-rng \
91
+ --inference \
92
+ --seq-length $SEQ_LEN \
93
+ --task_list axb,axg,boolq,cb,cola,copa,crows_pairs_english,crows_pairs_french,diabla,e2e_nlg_cleaned,mnli,mnli_mismatched,multirc,piaf,qqp,rte,sst,tydiqa_primary,tydiqa_secondary,wic,wsc,wnli,wino_bias_type1_anti,wino_bias_type1_pro,wino_bias_type2_anti,wino_bias_type2_pro,xquad_ar,xquad_en,gsarti/flores_101_afr,gsarti/flores_101_amh,gsarti/flores_101_ara,gsarti/flores_101_hye,gsarti/flores_101_asm,gsarti/flores_101_ast,gsarti/flores_101_azj,gsarti/flores_101_bel,gsarti/flores_101_ben,gsarti/flores_101_bos,gsarti/flores_101_bul,gsarti/flores_101_mya,gsarti/flores_101_cat,gsarti/flores_101_ceb,gsarti/flores_101_zho_simpl,gsarti/flores_101_zho_trad,gsarti/flores_101_hrv,gsarti/flores_101_ces,gsarti/flores_101_dan,gsarti/flores_101_nld,gsarti/flores_101_eng,gsarti/flores_101_est,gsarti/flores_101_tgl,gsarti/flores_101_fin,gsarti/flores_101_fra,gsarti/flores_101_ful,gsarti/flores_101_glg,gsarti/flores_101_lug,gsarti/flores_101_kat,gsarti/flores_101_deu,gsarti/flores_101_ell,gsarti/flores_101_guj,gsarti/flores_101_hau,gsarti/flores_101_heb,gsarti/flores_101_hin,gsarti/flores_101_hun,gsarti/flores_101_isl,gsarti/flores_101_ibo,gsarti/flores_101_ind,gsarti/flores_101_gle,gsarti/flores_101_ita,gsarti/flores_101_jpn,gsarti/flores_101_jav,gsarti/flores_101_kea,gsarti/flores_101_kam,gsarti/flores_101_kan,gsarti/flores_101_kaz,gsarti/flores_101_khm,gsarti/flores_101_kor,gsarti/flores_101_kir,gsarti/flores_101_lao,gsarti/flores_101_lav,gsarti/flores_101_lin,gsarti/flores_101_lit,gsarti/flores_101_luo,gsarti/flores_101_ltz,gsarti/flores_101_mkd,gsarti/flores_101_msa,gsarti/flores_101_mal,gsarti/flores_101_mlt,gsarti/flores_101_mri,gsarti/flores_101_mar,gsarti/flores_101_mon,gsarti/flores_101_npi,gsarti/flores_101_nso,gsarti/flores_101_nob,gsarti/flores_101_nya,gsarti/flores_101_oci,gsarti/flores_101_ory,gsarti/flores_101_orm,gsarti/flores_101_pus,gsarti/flores_101_fas,gsarti/flores_101_pol,gsarti/flores_101_por,gsarti/flores_101_pan,gsarti/flores_101_ron,gsarti/flores_101_rus,gsarti/flores_101_srp,gsarti/flores_101_sna,gsarti/flores_101_snd,gsarti/flores_101_slk,gsarti/flores_101_slv,gsarti/flores_101_som,gsarti/flores_101_ckb,gsarti/flores_101_spa,gsarti/flores_101_swh,gsarti/flores_101_swe,gsarti/flores_101_tgk,gsarti/flores_101_tam,gsarti/flores_101_tel,gsarti/flores_101_tha,gsarti/flores_101_tur,gsarti/flores_101_ukr,gsarti/flores_101_umb,gsarti/flores_101_urd,gsarti/flores_101_uzb,gsarti/flores_101_vie,gsarti/flores_101_cym,gsarti/flores_101_wol,gsarti/flores_101_xho,gsarti/flores_101_yor,gsarti/flores_101_zul \
94
+ --eval_fp32 \
95
+ --deepspeed \
96
+ --deepspeed_config ds_config.json \
97
+ --intermed_results \
98
+ --adaptive_seq_len \
99
+ --micro_bs_multiplier 8 \
100
+ $MEGATRON_REQUIRED_ARGS \
101
+ "
102
+
103
+ GPUS_PER_NODE=1
104
+ NNODES=$SLURM_NNODES
105
+ MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
106
+ MASTER_PORT=6000
107
+ export LAUNCHER="python -u -m torch.distributed.run \
108
+ --nproc_per_node $GPUS_PER_NODE \
109
+ --nnodes $NNODES \
110
+ --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
111
+ --rdzv_backend c10d \
112
+ --max_restarts 0 \
113
+ --tee 3 \
114
+ "
115
+
116
+ export CUDA_LAUNCH_BLOCKING=1
117
+
118
+ echo $LAUNCHER $CMD
119
+
120
+ export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
121
+
122
+ $LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
evaluation/results/tr11/scripts/run_bsevalharness_tr11d-750m-ml.slurm ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=run_bsevalharness-tr11d-760m-ml
3
+ #SBATCH --constraint=v100-32g
4
+ #SBATCH --nodes=1
5
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
6
+ #SBATCH --cpus-per-task=10 # number of cores per tasks
7
+ #SBATCH --hint=nomultithread # we get physical cores not logical
8
+ #SBATCH --gres=gpu:1 # number of gpus
9
+ #SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
10
+ #SBATCH --output=%x-%j.out # output file name
11
+ #SBATCH --account=six@v100
12
+
13
+
14
+ set -x -e
15
+
16
+ source $six_ALL_CCFRWORK/start-muennighofflmeval
17
+
18
+ echo "START TIME: $(date)"
19
+
20
+ # a unique identifier for the current eval ideally correspnding to the modelname
21
+ VARIANT="tr11d-760m-ml-bsevalharness"
22
+
23
+
24
+ CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11d-760M-ml/checkpoints/main/global_step660750
25
+ MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bslmeval/Megatron-DeepSpeed
26
+ export HF_DATASETS_OFFLINE=1
27
+ export TRANSFORMERS_OFFLINE=1
28
+
29
+ export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
30
+ export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
31
+ export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
32
+ export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
33
+ export TOKENIZERS_PARALLELISM=false
34
+
35
+ cd $MEGATRON_DEEPSPEED_REPO
36
+
37
+ TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
38
+
39
+ PP_SIZE=1
40
+ TP_SIZE=1
41
+ SEQ_LEN=2048
42
+
43
+ # different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
44
+ # make as big as it can fit into gpu w/o OOM, but not too close to 100%
45
+ EVAL_MICRO_BATCH_SIZE=1
46
+
47
+ #dummy arguments to make megatron happy.
48
+ MEGATRON_REQUIRED_ARGS=" \
49
+ --num-layers -1 \
50
+ --hidden-size -1 \
51
+ --num-attention-heads -1 \
52
+ --seq-length -1 \
53
+ --max-position-embeddings -1 \
54
+ "
55
+
56
+
57
+ ZERO_STAGE=0
58
+
59
+ config_json="./ds_config.json"
60
+
61
+ # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
62
+ cat <<EOT > $config_json
63
+ {
64
+ "train_micro_batch_size_per_gpu": 1,
65
+ "train_batch_size": 1,
66
+ "gradient_clipping": 1.0,
67
+ "zero_optimization": {
68
+ "stage": $ZERO_STAGE
69
+ },
70
+ "bf16": {
71
+ "enabled": false
72
+ },
73
+ "steps_per_print": 2000,
74
+ "wall_clock_breakdown": false
75
+ }
76
+ EOT
77
+
78
+
79
+ CMD="./tasks/eval_harness/evaluate_bsevalharness.py \
80
+ --load $CHECKPOINT_PATH \
81
+ --results_path $VARIANT-results.json \
82
+ --tensor-model-parallel-size $TP_SIZE \
83
+ --pipeline-model-parallel-size $PP_SIZE \
84
+ --tokenizer-type PretrainedFromHF \
85
+ --tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
86
+ --micro-batch-size $EVAL_MICRO_BATCH_SIZE \
87
+ --no-load-optim \
88
+ --no-load-rng \
89
+ --inference \
90
+ --seq-length $SEQ_LEN \
91
+ --task_list axb,axg,boolq,cb,cola,copa,crows_pairs_english,crows_pairs_french,diabla,e2e_nlg_cleaned,mnli,mnli_mismatched,multirc,piaf,qqp,rte,sst,tydiqa_primary,tydiqa_secondary,wic,wsc,wnli,wino_bias_type1_anti,wino_bias_type1_pro,wino_bias_type2_anti,wino_bias_type2_pro,xquad_ar,xquad_en,gsarti/flores_101_afr,gsarti/flores_101_amh,gsarti/flores_101_ara,gsarti/flores_101_hye,gsarti/flores_101_asm,gsarti/flores_101_ast,gsarti/flores_101_azj,gsarti/flores_101_bel,gsarti/flores_101_ben,gsarti/flores_101_bos,gsarti/flores_101_bul,gsarti/flores_101_mya,gsarti/flores_101_cat,gsarti/flores_101_ceb,gsarti/flores_101_zho_simpl,gsarti/flores_101_zho_trad,gsarti/flores_101_hrv,gsarti/flores_101_ces,gsarti/flores_101_dan,gsarti/flores_101_nld,gsarti/flores_101_eng,gsarti/flores_101_est,gsarti/flores_101_tgl,gsarti/flores_101_fin,gsarti/flores_101_fra,gsarti/flores_101_ful,gsarti/flores_101_glg,gsarti/flores_101_lug,gsarti/flores_101_kat,gsarti/flores_101_deu,gsarti/flores_101_ell,gsarti/flores_101_guj,gsarti/flores_101_hau,gsarti/flores_101_heb,gsarti/flores_101_hin,gsarti/flores_101_hun,gsarti/flores_101_isl,gsarti/flores_101_ibo,gsarti/flores_101_ind,gsarti/flores_101_gle,gsarti/flores_101_ita,gsarti/flores_101_jpn,gsarti/flores_101_jav,gsarti/flores_101_kea,gsarti/flores_101_kam,gsarti/flores_101_kan,gsarti/flores_101_kaz,gsarti/flores_101_khm,gsarti/flores_101_kor,gsarti/flores_101_kir,gsarti/flores_101_lao,gsarti/flores_101_lav,gsarti/flores_101_lin,gsarti/flores_101_lit,gsarti/flores_101_luo,gsarti/flores_101_ltz,gsarti/flores_101_mkd,gsarti/flores_101_msa,gsarti/flores_101_mal,gsarti/flores_101_mlt,gsarti/flores_101_mri,gsarti/flores_101_mar,gsarti/flores_101_mon,gsarti/flores_101_npi,gsarti/flores_101_nso,gsarti/flores_101_nob,gsarti/flores_101_nya,gsarti/flores_101_oci,gsarti/flores_101_ory,gsarti/flores_101_orm,gsarti/flores_101_pus,gsarti/flores_101_fas,gsarti/flores_101_pol,gsarti/flores_101_por,gsarti/flores_101_pan,gsarti/flores_101_ron,gsarti/flores_101_rus,gsarti/flores_101_srp,gsarti/flores_101_sna,gsarti/flores_101_snd,gsarti/flores_101_slk,gsarti/flores_101_slv,gsarti/flores_101_som,gsarti/flores_101_ckb,gsarti/flores_101_spa,gsarti/flores_101_swh,gsarti/flores_101_swe,gsarti/flores_101_tgk,gsarti/flores_101_tam,gsarti/flores_101_tel,gsarti/flores_101_tha,gsarti/flores_101_tur,gsarti/flores_101_ukr,gsarti/flores_101_umb,gsarti/flores_101_urd,gsarti/flores_101_uzb,gsarti/flores_101_vie,gsarti/flores_101_cym,gsarti/flores_101_wol,gsarti/flores_101_xho,gsarti/flores_101_yor,gsarti/flores_101_zul \
92
+ --eval_fp32 \
93
+ --deepspeed \
94
+ --deepspeed_config ds_config.json \
95
+ --intermed_results \
96
+ --adaptive_seq_len \
97
+ --micro_bs_multiplier 4 \
98
+ $MEGATRON_REQUIRED_ARGS \
99
+ "
100
+
101
+ GPUS_PER_NODE=1
102
+ NNODES=$SLURM_NNODES
103
+ MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
104
+ MASTER_PORT=6002
105
+ export LAUNCHER="python -u -m torch.distributed.run \
106
+ --nproc_per_node $GPUS_PER_NODE \
107
+ --nnodes $NNODES \
108
+ --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
109
+ --rdzv_backend c10d \
110
+ --max_restarts 0 \
111
+ --tee 3 \
112
+ "
113
+
114
+ export CUDA_LAUNCH_BLOCKING=1
115
+
116
+ echo $LAUNCHER $CMD
117
+
118
+ export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
119
+
120
+ $LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
evaluation/results/tr11/scripts/run_trevalharness_176b.slurm ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=run_trevalharness-176b
3
+ #SBATCH --nodes=1
4
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
5
+ #SBATCH --cpus-per-task=64 # number of cores per tasks
6
+ #SBATCH --hint=nomultithread # we get physical cores not logical
7
+ #SBATCH --gres=gpu:8 # number of gpus
8
+ #SBATCH --constraint=a100
9
+ #SBATCH --reservation=hug
10
+ #SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
11
+ #SBATCH --output=%x-%j.out # output file name
12
+ #SBATCH --account=six@a100
13
+
14
+ set -x -e
15
+
16
+ source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
17
+ #conda activate muennighofflmevalgen
18
+ conda activate thomas_t_zero_evaluation
19
+
20
+ echo "START TIME: $(date)"
21
+
22
+ # defining the right environment variables
23
+ export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
24
+ export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
25
+ export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
26
+ export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
27
+ export HF_DATASETS_OFFLINE=1
28
+ export TRANSFORMERS_OFFLINE=1
29
+ export TOKENIZERS_PARALLELISM=false
30
+
31
+ # Converted transformer checkpoint
32
+ MODEL_CKPT=/gpfsscratch/rech/six/commun/uan68tv-model-conversion/bloom
33
+
34
+ cd /gpfsscratch/rech/six/commun/commun/experiments/muennighoff/bslmevaltransformers/lm-evaluation-harness
35
+
36
+
37
+ DATASETS_AND_CONFIGS=(
38
+ arc_challenge
39
+ arc_easy
40
+ )
41
+ #,arc_easy,boolq,copa,headqa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sciq,sst,triviaqa,webqs,wic,winogrande,wnli,wsc
42
+
43
+ DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
44
+ echo $ARGUMENT
45
+ IFS=',' read dataset_name <<< "${DATASET_AND_CONFIG}"
46
+
47
+ # Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
48
+ python main.py \
49
+ --model gpt2 \
50
+ --model_args pretrained=$MODEL_CKPT \
51
+ --use_accelerate \
52
+ --max_memory_per_gpu "50GB" \
53
+ --batch_size 16 \
54
+ --tasks $dataset_name \
55
+ --output_path $dataset_name.json \
56
+ --skip_tokenizer \
57
+ --no_cache \
58
+ --dtype=bfloat16
59
+
60
+ echo "END TIME: $(date)"
evaluation/results/tr12/tr12a-1B3-oscar-en-filtered_agg.json ADDED
The diff for this file is too large to render. See raw diff
 
evaluation/results/tr12/tr12b-1B3-oscar-en-filtered-dedup_agg.json ADDED
The diff for this file is too large to render. See raw diff
 
evaluation/results/tr13/merge_all_json.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Saves a merged.json file in the provided directory
3
+ python merge_all_json.py DIRECTORY
4
+ """
5
+
6
+ import json
7
+ import os
8
+ from pathlib import Path
9
+ import sys
10
+ from typing import Dict
11
+
12
+
13
+ def find_all_json(root_dir: Path):
14
+ if root_dir.is_file():
15
+ if root_dir.name.endswith(".json"):
16
+ return [root_dir]
17
+ else:
18
+ return []
19
+
20
+ all_jsons = []
21
+ for path in root_dir.iterdir():
22
+ all_jsons += find_all_json(path)
23
+ return all_jsons
24
+
25
+ def sort_dict(dictionary: Dict) -> Dict:
26
+ results = {}
27
+
28
+ for key, value in sorted(dictionary.items(), key=lambda item: item[0]):
29
+ new_value = value
30
+
31
+ if isinstance(value, dict):
32
+ new_value = sort_dict(new_value)
33
+ elif isinstance(value, list):
34
+ new_value = sorted(value)
35
+
36
+ results[key] = new_value
37
+
38
+ return results
39
+
40
+ def main():
41
+ # find all json file in directory
42
+ root_dir = Path(sys.argv[1])
43
+ out_path = os.path.join(root_dir, "merged.json")
44
+ if os.path.exists(out_path):
45
+ os.remove(out_path)
46
+
47
+ all_jsons = find_all_json(root_dir)
48
+ # merge
49
+ results = {}
50
+ for json_file in all_jsons:
51
+ with open(json_file, "r") as fi:
52
+ data = json.load(fi)
53
+
54
+ if str(json_file.name).startswith("slim"):
55
+ print(f"Parsing {json_file} as bigscience/lm-eval-harness file.")
56
+ for dic in data["results"]:
57
+ key = dic["task_name"]
58
+ # Same dataset but not really comparable
59
+ if "en-fr" in dic["prompt_name"]:
60
+ key += "_en-fr"
61
+ elif "fr-en" in dic["prompt_name"]:
62
+ key += "_fr-en"
63
+ elif "hi-en" in dic["prompt_name"]:
64
+ key += "_hi-en"
65
+ elif "en-hi" in dic["prompt_name"]:
66
+ key += "_en-hi"
67
+ sub_key = dic["prompt_name"]
68
+ results.setdefault(key, {})
69
+ results[key].setdefault(sub_key, {})
70
+ results[key][sub_key] = {
71
+ **results[key][sub_key],
72
+ **{subk: subv for subk, subv in dic.items() if type(subv) in [int, float]}
73
+ }
74
+ elif str(json_file.name).startswith("agg"):
75
+ print(f"Skipping {json_file} from bigscience/lm-eval-harness.")
76
+ continue
77
+ else:
78
+ print(f"Parsing {json_file} as bigscience/t-zero file.")
79
+ key = f"{data['dataset_name']}_{data['dataset_config_name']}"
80
+ if key in results:
81
+ assert data["template_name"] not in results
82
+ results[key][data["template_name"]] = data
83
+ else:
84
+ results[key] = {
85
+ data["template_name"]: data
86
+ }
87
+
88
+ # sort
89
+ sorted_results = sort_dict(results)
90
+
91
+ # write
92
+ with open(out_path, "w") as fo:
93
+ json.dump(sorted_results, fo)
94
+
95
+
96
+ if __name__ == "__main__":
97
+ main()
evaluation/results/tr13/plot_results.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import json
3
+ import re
4
+ import subprocess
5
+ from argparse import ArgumentParser
6
+
7
+ import matplotlib.pyplot as plt
8
+ from pathlib import Path
9
+
10
+ import numpy as np
11
+
12
+ """
13
+ Plot results per (dataset_name, dataset_config_name).
14
+ """
15
+
16
+
17
+ def get_args():
18
+ parser = ArgumentParser()
19
+ parser.add_argument("--json_paths", nargs="+", type=str, help="Json files to plot together", required=True)
20
+ parser.add_argument("--t0_csv_path", type=str, help="T0 eval results path")
21
+ args = parser.parse_args()
22
+
23
+ return args
24
+
25
+ def load_t0_results(csv_path):
26
+ with open(csv_path, "r") as f:
27
+ return list(csv.DictReader(f))
28
+
29
+ def load_json(json_path):
30
+ with open(json_path, "r") as fi:
31
+ return json.load(fi)
32
+
33
+ def get_experiment_name(filename: str):
34
+ name = re.sub(r"_([0-9]*)$", r" [\1]", filename)
35
+ name = name.replace("span_corruption", "SC")
36
+ name = re.sub(r"^enc_dec", "ED", name)
37
+ name = re.sub(r"^nc_dec", "NCD", name)
38
+ name = re.sub(r"^c_dec", 'CD', name)
39
+ name = name.replace("full_lm", "FLM")
40
+ name = name.replace("prefix_lm", "PLM")
41
+ name = re.sub(r"t0_adapt_([0-9]+)", r"T0(\1)", name)
42
+ if name[:3] == "CD_":
43
+ name = re.sub(r"lm_adapt_([0-9]+)", r"FLM(\1)", name)
44
+ name = re.sub(r"t0_adapt_nc_([0-9]+)", r"T0 AS NC (\1)", name)
45
+ name = re.sub(r"nc_sc_([0-9]+)", r"SC as NC(\1)", name)
46
+ name = re.sub(r"nc_t0_([0-9]+)", r"T0 as NC(\1)", name)
47
+ elif name[:4] == "NCD_" or name[:3] == "ED_":
48
+ if "flm_adapt" in name:
49
+ name = re.sub(r"flm_adapt_([0-9]+)", r"FLM AS CD(\1)", name)
50
+ else:
51
+ name = re.sub(r"lm_adapt_([0-9]+)", r"PLM(\1)", name)
52
+ else:
53
+ raise NotImplementedError
54
+ name = name.replace("_", " + ")
55
+ return name
56
+
57
+ TASKS = {
58
+ # T0 evaluation
59
+ "super_glue_copa": ("COPA", 0.5),
60
+ "anli_dev_r1": ("ANLI R1", 1/3),
61
+ "anli_dev_r2": ("ANLI R2", 1/3),
62
+ "anli_dev_r3": ("ANLI R3", 1/3),
63
+ "super_glue_cb": ("CB", 1/3),
64
+ "super_glue_rte": ("RTE", 0.5),
65
+ "super_glue_wsc.fixed": ("WSC", 0.5),
66
+ "winogrande_winogrande_xl": ("Winogrande", 0.5),
67
+ "super_glue_wic": ("WiC", 0.5),
68
+ "hellaswag": ("HellaSwag", 0.25),
69
+ "story_cloze_2016": ("StoryCloze", 0.5),
70
+
71
+ # XNLI evaluation
72
+ "xnli_ar": ("XNLI ar (en prompts)", 1/3),
73
+ "xnli_bg": ("XNLI bg (en prompts)", 1/3),
74
+ "xnli_de": ("XNLI de (en prompts)", 1/3),
75
+ "xnli_el": ("XNLI el (en prompts)", 1/3),
76
+ "xnli_en": ("XNLI en (en prompts)", 1/3),
77
+ "xnli_es": ("XNLI es (en prompts)", 1/3),
78
+ "xnli_fr": ("XNLI fr (en prompts)", 1/3),
79
+ "xnli_hi": ("XNLI hi (en prompts)", 1/3),
80
+ "xnli_ru": ("XNLI ru (en prompts)", 1/3),
81
+ "xnli_sw": ("XNLI sw (en prompts)", 1/3),
82
+ "xnli_th": ("XNLI th (en prompts)", 1/3),
83
+ "xnli_tr": ("XNLI tr (en prompts)", 1/3),
84
+ "xnli_ur": ("XNLI ur (en prompts)", 1/3),
85
+ "xnli_vi": ("XNLI vi (en prompts)", 1/3),
86
+ "xnli_zh": ("XNLI zh (en prompts)", 1/3),
87
+ }
88
+
89
+ def plot(mtf_data, t0_data):
90
+ args = get_args()
91
+
92
+ assert len(TASKS) == 26
93
+ fig, axs = plt.subplots(3, 9, figsize=(20, 5))
94
+ axs = axs.flatten()
95
+
96
+ task_min_score = {}
97
+ task_max_score = {}
98
+ task_median_score = {}
99
+ for n, (task, (task_name, random_baseline)) in enumerate(TASKS.items()):
100
+ # Normalising names
101
+ mtf_task = task
102
+ t0_task = task
103
+ if task.startswith("anli_dev_r"):
104
+ t0_task = re.sub("dev_", "", task)
105
+ elif task == "hellaswag":
106
+ mtf_task = "hellaswag_None"
107
+
108
+ t5lm_scores = [float(r["score"]) for r in t0_data
109
+ if r["runs"] == "xxl-lm-d4-091621"
110
+ and r["dataset_name"] == t0_task
111
+ and r["metric_name"] == "accuracy (Rank)"
112
+ and r["score"]]
113
+ t0_scores = [float(r["score"]) for r in t0_data
114
+ if r["runs"] == "xxl-lm-d4-091621-512"
115
+ and r["dataset_name"] == t0_task
116
+ and r["metric_name"] == "accuracy (Rank)"
117
+ and r["score"]]
118
+
119
+ mtf_scores = [
120
+ (
121
+ name,
122
+ [100 * value["evaluation"]["accuracy"] for prompt, value in data[mtf_task].items()]
123
+ if mtf_task in data else
124
+ []
125
+ )
126
+ for name, data in mtf_data.items()
127
+ ]
128
+
129
+ all_experiment_scores_with_name = [("T5 + LM", t5lm_scores), ("T0", t0_scores), *mtf_scores]
130
+ # Plot
131
+ axs[n].axhline(100 * random_baseline, 0, len(all_experiment_scores_with_name), label="Random")
132
+ for i, (exp_name, scores) in enumerate(all_experiment_scores_with_name):
133
+ axs[n].scatter([i] * len(scores), scores, s=50, alpha=0.4, label=exp_name)
134
+ axs[n].set_title(task_name, fontsize=8)
135
+
136
+ # # Gather median values
137
+ # task_min_score[task] = [("Random", 100 * random_baseline)] + [(exp_name, np.min(scores)) for (exp_name, scores) in all_experiment_scores_with_name]
138
+ # task_max_score[task] = [("Random", 100 * random_baseline)] + [(exp_name, np.max(scores)) for (exp_name, scores) in all_experiment_scores_with_name]
139
+ # task_median_score[task] = [("Random", 100 * random_baseline)] + [(exp_name, np.median(scores)) for (exp_name, scores) in all_experiment_scores_with_name]
140
+
141
+ last_ax_id = len(TASKS) - 1
142
+ axs[last_ax_id].legend(bbox_to_anchor=(1, 1), loc="upper left")
143
+ for ax in axs[last_ax_id + 1:]:
144
+ ax.set_visible(False)
145
+
146
+ # if args.aggregated_results:
147
+ # # ====== Plot agregated values =======
148
+ # fig, axs = plt.subplots(1, 3, figsize=(20, 8))
149
+ # axs = axs.flatten()
150
+ # last_ax_id=0
151
+ # experiment_names = [elt[0] for elt in next(iter(task_median_score.values()))]
152
+ #
153
+ # def plot_scores_with_name(median_score_with_name, max_score, min_score, ax, title):
154
+ # assert len(median_score_with_name) == len(max_score) and len(median_score_with_name) == len(min_score)
155
+ # ax.axhline(
156
+ # median_score_with_name[0][1],
157
+ # 0, len(median_score_with_name) - 1,
158
+ # label=median_score_with_name[0][0]
159
+ # )
160
+ # for i, ((name, median_score), max_score, min_score) in enumerate(zip(median_score_with_name[1:], max_score[1:], min_score[1:])):
161
+ # ax.errorbar(
162
+ # i, median_score, ((median_score - min_score,), (max_score - median_score,)),
163
+ # fmt="o", elinewidth=1, label=name)
164
+ # ax.set_title(title)
165
+ #
166
+ # def get_average_normalised_score(task_scores):
167
+ # normalised_scores = []
168
+ # for scores_with_name in task_scores.values():
169
+ # random_name, random_baseline = scores_with_name[0]
170
+ # assert random_name == "Random"
171
+ # normalised_scores_per_task = [(scores - random_baseline) / (100 - random_baseline) for _, scores in
172
+ # scores_with_name]
173
+ # normalised_scores.append(normalised_scores_per_task)
174
+ # return np.mean(normalised_scores, axis=0)
175
+ #
176
+ # def get_average_score(task_scores):
177
+ # return np.mean(
178
+ # [[scores for _, scores in scores_with_name] for scores_with_name in task_scores.values()], axis=0)
179
+ #
180
+ # # Plot average task score
181
+ # average_task_median_score = get_average_score(task_median_score)
182
+ # assert len(experiment_names) == len(average_task_median_score)
183
+ # average_task_media_score_with_name = list(zip(experiment_names, average_task_median_score))
184
+ # del average_task_median_score
185
+ # plot_scores_with_name(
186
+ # median_score_with_name=average_task_media_score_with_name,
187
+ # max_score=get_average_score(task_max_score),
188
+ # min_score=get_average_score(task_min_score),
189
+ # ax=axs[last_ax_id],
190
+ # title=f"Average of task median scores"
191
+ # )
192
+ # last_ax_id += 1
193
+ #
194
+ # # Plot average of task median normalised scores `normalised_score = (score - random) / (1 - random)`
195
+ # average_task_normalised_median_score = get_average_normalised_score(task_median_score)
196
+ # assert len(experiment_names) == len(average_task_normalised_median_score)
197
+ # average_task_normalised_median_score_with_name = list(
198
+ # zip(experiment_names, average_task_normalised_median_score))
199
+ # del average_task_normalised_median_score
200
+ # plot_scores_with_name(
201
+ # median_score_with_name=average_task_normalised_median_score_with_name,
202
+ # max_score=get_average_normalised_score(task_max_score),
203
+ # min_score=get_average_normalised_score(task_min_score),
204
+ # ax=axs[last_ax_id],
205
+ # title=f"Average of task normalised median scores"
206
+ # )
207
+ # last_ax_id += 1
208
+ #
209
+ # axs[last_ax_id -1].legend(bbox_to_anchor=(1, 1), loc="upper left")
210
+ # for ax in axs[last_ax_id:]:
211
+ # ax.set_visible(False)
212
+
213
+
214
+ def main():
215
+ args = get_args()
216
+
217
+ # Load results
218
+ t0_data = load_t0_results(args.t0_csv_path)
219
+ mtf_data = {
220
+ re.sub(".json", "", json_path): load_json(json_path)
221
+ for json_path in args.json_paths
222
+ }
223
+
224
+ plot(mtf_data, t0_data)
225
+
226
+ plt.show()
227
+ print("Finished")
228
+
229
+ if __name__ == "__main__":
230
+ main()
evaluation/results/tr13/results_to_csv.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # this script converts results.json:
4
+ #
5
+ # "results": {
6
+ # "arc_challenge": {
7
+ # "acc": 0.24232081911262798,
8
+ # "acc_stderr": 0.01252159329580012,
9
+ # "acc_norm": 0.2764505119453925,
10
+ # "acc_norm_stderr": 0.013069662474252425
11
+ # },
12
+ #
13
+ # into a format expected by a spreadsheet, which is:
14
+ #
15
+ # task metric value err
16
+ # arc_challenge acc xxx yyy
17
+ # arc_challenge acc_norm xxx yyy
18
+ # arc_challenge f1 xxx yyy
19
+ #
20
+ # usage:
21
+ # report-to-csv.py results.json
22
+
23
+
24
+ import sys
25
+ import statistics
26
+ import json
27
+ import io
28
+ import csv
29
+
30
+ results_file = sys.argv[1]
31
+
32
+ csv_file = results_file.replace("json", "csv")
33
+
34
+ print(f"Converting {results_file} to {csv_file}")
35
+
36
+ with io.open(results_file, 'r', encoding='utf-8') as f:
37
+ raw_results = json.load(f)
38
+
39
+ results = {}
40
+ for ds_name, v in sorted(raw_results.items()):
41
+ results[ds_name.split("/")[-1]] = v
42
+
43
+ with io.open(csv_file, 'w', encoding='utf-8') as f:
44
+
45
+ writer = csv.writer(f)
46
+ writer.writerow(["dataset", "prompt", "metric", "value"])
47
+ medians = []
48
+ for ds_name, v in sorted(results.items()):
49
+ acc_scores, bleu_scores, rouge2_fmeasure = [], [], []
50
+ for prompt_name, res in sorted(v.items()):
51
+ # T0 Eval
52
+ if "evaluation" in res:
53
+ for metric, value in sorted(res["evaluation"].items()):
54
+ writer.writerow([ds_name, prompt_name, metric, value])
55
+ if metric == "accuracy":
56
+ acc_scores.append(value)
57
+ # LM Eval Harness Generation
58
+ elif "bleu" in res:
59
+ # Make sure BLEU is 0-1 not 0-100
60
+ writer.writerow([ds_name, prompt_name, "bleu", res["bleu"] / 100])
61
+ bleu_scores.append(res["bleu"] / 100)
62
+
63
+ if acc_scores:
64
+ median = statistics.median(acc_scores)
65
+ medians.append(median)
66
+ writer.writerow([ds_name, "median", "accuracy", median])
67
+ elif bleu_scores:
68
+ median = statistics.median(bleu_scores)
69
+ medians.append(median)
70
+ writer.writerow([ds_name, "median", "bleu", median])
71
+ if medians:
72
+ writer.writerow(["multiple", "average", "multiple", statistics.mean(medians)])
evaluation/results/tr13/tzeroeval/evaluate_t0_v100.slurm ADDED
@@ -0,0 +1,751 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=evaluate_t0
3
+ #SBATCH --constraint=v100-32g
4
+ #SBATCH --nodes=1
5
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
6
+ #SBATCH --cpus-per-task=10 # number of cores per tasks
7
+ #SBATCH --hint=nomultithread # we get physical cores not logical
8
+ #SBATCH --gres=gpu:1 # number of gpus
9
+ #SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
10
+ #SBATCH --output=%x-%j.out # output file name
11
+ #SBATCH --account=six@v100
12
+ #SBATCH --array=0-164
13
+
14
+ # VALIDATION:
15
+ # --array=0-168
16
+
17
+ # L1
18
+ # --array=0-169
19
+
20
+ # L2
21
+ # --array=0-84
22
+
23
+ # MT L1
24
+ # --array=0-69
25
+
26
+ # MT L2
27
+ # --array=0-89
28
+
29
+ # XNLIMTHT:
30
+ # --array=0-79
31
+
32
+ set -x -e
33
+
34
+ source $six_ALL_CCFRWORK/start-py38-pt111
35
+ conda activate thomas_t_zero_evaluation
36
+
37
+ CHECKPOINT_PATH=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/350m/bloom-560m
38
+
39
+ WORKDIR=/gpfswork/rech/six/commun/code/tr13f-6B3-ml-t0
40
+
41
+ pushd $WORKDIR
42
+
43
+ OUTPUT_DIR=$CHECKPOINT_PATH/evaluation
44
+ mkdir -p $OUTPUT_DIR
45
+
46
+ # Validation
47
+ DATASETS_AND_CONFIGS_VAL=(
48
+ head_qa,en,en,"multiple_choice_q_and_a_index_with_context_en",validation
49
+ head_qa,en,en,"multiple_choice_q_and_a_en",validation
50
+ head_qa,en,en,"multiple_choice_q_and_a_index_en",validation
51
+ head_qa,en,en,"multiple_choice_a_and_q_with_context_en",validation
52
+ head_qa,en,en,"multiple_choice_a_and_q_en",validation
53
+ head_qa,es,en,"multiple_choice_q_and_a_index_with_context_en",validation
54
+ head_qa,es,en,"multiple_choice_q_and_a_en",validation
55
+ head_qa,es,en,"multiple_choice_q_and_a_index_en",validation
56
+ head_qa,es,en,"multiple_choice_a_and_q_with_context_en",validation
57
+ head_qa,es,en,"multiple_choice_a_and_q_en",validation
58
+ climate_fever,None,None,"first_evidence_and_claim_itemization",test
59
+ climate_fever,None,None,"claim_and_all_supporting_evidences",test
60
+ climate_fever,None,None,"fifth_evidence_and_claim_itemization",test
61
+ climate_fever,None,None,"third_evidence_claim_pair",test
62
+ climate_fever,None,None,"second_evidence_and_claim_itemization",test
63
+ codah,codah,None,"interrogative_instruction_after_sentence_and_choices",train
64
+ codah,codah,None,"affirmative_instruction_before_sentence_and_choices",train
65
+ codah,codah,None,"affirmative_instruction_after_sentence_and_choices",train
66
+ aqua_rat,raw,None,"select_the_best_option",validation
67
+ aqua_rat,raw,None,"answer_quiz",validation
68
+ aqua_rat,raw,None,"Answer questions from options",validation
69
+ commonsense_qa,None,None,"answer_given_question_without_options",validation
70
+ commonsense_qa,None,None,"question_answering",validation
71
+ commonsense_qa,None,None,"most_suitable_answer",validation
72
+ amazon_reviews_multi,en,en,"prompt_title_to_star",validation
73
+ amazon_reviews_multi,en,en,"prompt_review_to_star",validation
74
+ amazon_reviews_multi,en,en,"prompt_body_title_to_star",validation
75
+ amazon_reviews_multi,zh,en,"prompt_title_to_star",validation
76
+ amazon_reviews_multi,zh,en,"prompt_review_to_star",validation
77
+ amazon_reviews_multi,zh,en,"prompt_body_title_to_star",validation
78
+ amazon_reviews_multi,fr,en,"prompt_title_to_star",validation
79
+ amazon_reviews_multi,fr,en,"prompt_review_to_star",validation
80
+ amazon_reviews_multi,fr,en,"prompt_body_title_to_star",validation
81
+ amazon_reviews_multi,es,en,"prompt_title_to_star",validation
82
+ amazon_reviews_multi,es,en,"prompt_review_to_star",validation
83
+ amazon_reviews_multi,es,en,"prompt_body_title_to_star",validation
84
+ art,None,None,"choose_hypothesis_options",validation
85
+ art,None,None,"choose_hypothesis_believable",validation
86
+ art,None,None,"choose_hypothesis",validation
87
+ art,None,None,"choose_hypothesis_desc",validation
88
+ art,None,None,"choose_hypothesis_likely",validation
89
+ banking77,None,None,"help_page_topic",test
90
+ banking77,None,None,"direct_to_which_department",test
91
+ banking77,None,None,"rephrase_as_banking_term",test
92
+ blbooksgenre,title_genre_classifiction,None,"multi-choice",train
93
+ blbooksgenre,title_genre_classifiction,None,"premise_context_first",train
94
+ blbooksgenre,title_genre_classifiction,None,"classify",train
95
+ blimp,adjunct_island,None,"grammatical_between_1_2",train
96
+ blimp,adjunct_island,None,"grammatical_between_A_B",train
97
+ blimp,adjunct_island,None,"grammatical_which_one_1_2",train
98
+ blimp,adjunct_island,None,"single_sentence_bad_yes_no",train
99
+ blimp,adjunct_island,None,"single_sentence_good_yes_no",train
100
+ conv_ai_3,None,None,"clarification_needed",validation
101
+ conv_ai_3,None,None,"score_give_number",validation
102
+ conv_ai_3,None,None,"ambiguous",validation
103
+ conv_ai_3,None,None,"directly_answer",validation
104
+ conv_ai_3,None,None,"score_how_much",validation
105
+ craigslist_bargains,None,None,"good deal for seller no list price implicit",validation
106
+ craigslist_bargains,None,None,"good deal for seller no list price",validation
107
+ craigslist_bargains,None,None,"good deal for seller",validation
108
+ craigslist_bargains,None,None,"best deal",validation
109
+ ecthr_cases,alleged-violation-prediction,None,"implicit_advice_number",validation
110
+ ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_declaration_at_end",validation
111
+ ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_question_at_start",validation
112
+ ecthr_cases,alleged-violation-prediction,None,"implicit_judgment_paragraph",validation
113
+ ecthr_cases,alleged-violation-prediction,None,"confirm number of violated articles",validation
114
+ emo,None,None,"persons_describe",validation
115
+ emo,None,None,"final_message",validation
116
+ emo,None,None,"what_emotion_do_you_think",validation
117
+ emo,None,None,"emotional_state",validation
118
+ emo,None,None,"dialogue_between",validation
119
+ emotion,None,None,"choose_the_best_emotion_label",test
120
+ emotion,None,None,"reply_with_emoation_label",test
121
+ emotion,None,None,"answer_with_class_label",test
122
+ emotion,None,None,"answer_question_with_emotion_label",test
123
+ financial_phrasebank,sentences_allagree,None,"share_price_option",train
124
+ financial_phrasebank,sentences_allagree,None,"sentiment",train
125
+ financial_phrasebank,sentences_allagree,None,"word_comes_to_mind",train
126
+ financial_phrasebank,sentences_allagree,None,"complementary_industries",train
127
+ financial_phrasebank,sentences_allagree,None,"bullish_neutral_bearish",train
128
+ glue,cola,None,"Make sense yes no",validation
129
+ glue,cola,None,"is_this_correct",validation
130
+ glue,cola,None,"editing",validation
131
+ glue,cola,None,"Following sentence acceptable",validation
132
+ glue,cola,None,"Previous sentence acceptable",validation
133
+ glue,sst2,None,"positive negative after",validation
134
+ glue,sst2,None,"review",validation
135
+ glue,sst2,None,"said",validation
136
+ glue,sst2,None,"following positive negative",validation
137
+ glue,sst2,None,"happy or mad",validation
138
+ health_fact,None,None,"claim_veracity_classification_after_reading_I_believe",validation
139
+ health_fact,None,None,"claim_explanation_classification",validation
140
+ health_fact,None,None,"claim_veracity_classification_tell_me",validation
141
+ hlgd,None,None,"is_same_event_with_time_interrogative_related",validation
142
+ hlgd,None,None,"is_same_event_interrogative_talk",validation
143
+ hlgd,None,None,"is_same_event_with_time_interrogative_talk",validation
144
+ hlgd,None,None,"is_same_event_refer",validation
145
+ hlgd,None,None,"is_same_event_editor_asks",validation
146
+ hyperpartisan_news_detection,byarticle,None,"consider_does_it_follow_a_hyperpartisan_argumentation",train
147
+ hyperpartisan_news_detection,byarticle,None,"follows_hyperpartisan_argumentation",train
148
+ hyperpartisan_news_detection,byarticle,None,"consume_with_caution",train
149
+ hyperpartisan_news_detection,byarticle,None,"extreme_left_wing_or_right_wing",train
150
+ hyperpartisan_news_detection,byarticle,None,"consider_it_exhibits_extreme_one_sidedness",train
151
+ liar,None,None,"Given statement guess category",validation
152
+ lince,sa_spaeng,None,"original poster expressed sentiment",validation
153
+ lince,sa_spaeng,None,"sentiment trying to express",validation
154
+ lince,sa_spaeng,None,"express sentiment",validation
155
+ lince,sa_spaeng,None,"negation template",validation
156
+ lince,sa_spaeng,None,"the author seem",validation
157
+ math_qa,None,None,"choose_correct_og",test
158
+ math_qa,None,None,"pick_the_correct",test
159
+ math_qa,None,None,"first_choice_then_problem",test
160
+ math_qa,None,None,"problem_set_type",test
161
+ math_qa,None,None,"gre_problem",test
162
+ movie_rationales,None,None,"Standard binary sentiment analysis",validation
163
+ movie_rationales,None,None,"Evidences sentiment classification",validation
164
+ movie_rationales,None,None,"Evidences + review",validation
165
+ movie_rationales,None,None,"Generate evidences and sentiment",validation
166
+ mwsc,None,None,"in-the-sentence-question-first",validation
167
+ mwsc,None,None,"what-think",validation
168
+ mwsc,None,None,"in-the-sentence",validation
169
+ mwsc,None,None,"options-or",validation
170
+ mwsc,None,None,"is-correct",validation
171
+ poem_sentiment,None,None,"positive_or_negative_sentiment_variation_2",validation
172
+ poem_sentiment,None,None,"question_answer_format",validation
173
+ poem_sentiment,None,None,"guess_sentiment_without_options_variation_1",validation
174
+ poem_sentiment,None,None,"positive_or_negative_sentiment_variation_1",validation
175
+ poem_sentiment,None,None,"most_appropriate_sentiment",validation
176
+ onestop_english,None,None,"esl_context",train
177
+ onestop_english,None,None,"ara_context",train
178
+ onestop_english,None,None,"determine_reading_level_from_the_first_three_sentences",train
179
+ onestop_english,None,None,"esl_variation",train
180
+ onestop_english,None,None,"assess",train
181
+ pubmed_qa,pqa_labeled,None,"Long Answer to Final Decision",train
182
+ pubmed_qa,pqa_labeled,None,"Question Answering (Short)",train
183
+ riddle_sense,None,None,"most_suitable_answer",validation
184
+ riddle_sense,None,None,"answer_given_question_without_options",validation
185
+ riddle_sense,None,None,"question_to_answer_index",validation
186
+ riddle_sense,None,None,"question_answering",validation
187
+ scicite,None,None,"Classify intent w/section (select choice)",validation
188
+ scicite,None,None,"Classify intent (choices first)",validation
189
+ scicite,None,None,"Classify intent (select choice)",validation
190
+ scicite,None,None,"Classify intent",validation
191
+ scicite,None,None,"can_describe",validation
192
+ selqa,answer_selection_analysis,None,"is-he-talking-about",validation
193
+ selqa,answer_selection_analysis,None,"would-make-sense-qu-rand",validation
194
+ selqa,answer_selection_analysis,None,"make-sense-rand",validation
195
+ selqa,answer_selection_analysis,None,"which-answer-1st-vs-random",validation
196
+ snips_built_in_intents,None,None,"voice_intent",train
197
+ snips_built_in_intents,None,None,"categorize_query",train
198
+ snips_built_in_intents,None,None,"intent_query",train
199
+ snips_built_in_intents,None,None,"categorize_query_brief",train
200
+ snips_built_in_intents,None,None,"query_intent",train
201
+ )
202
+
203
+ DATASETS_AND_CONFIGS_L1=(
204
+ super_glue,copa,None,"best_option",validation
205
+ super_glue,copa,None,"C1 or C2? premise, so/because…",validation
206
+ super_glue,copa,None,"i_am_hesitating",validation
207
+ super_glue,copa,None,"cause_effect",validation
208
+ super_glue,copa,None,"plausible_alternatives",validation
209
+ super_glue,rte,None,"MNLI crowdsource",validation
210
+ super_glue,rte,None,"GPT-3 style",validation
211
+ super_glue,rte,None,"does it follow that",validation
212
+ super_glue,rte,None,"should assume",validation
213
+ super_glue,rte,None,"guaranteed true",validation
214
+ anli,dev_r1,None,"guaranteed/possible/impossible",dev_r1
215
+ anli,dev_r1,None,"MNLI crowdsource",dev_r1
216
+ anli,dev_r1,None,"GPT-3 style",dev_r1
217
+ anli,dev_r1,None,"justified in saying",dev_r1
218
+ anli,dev_r1,None,"can we infer",dev_r1
219
+ anli,dev_r2,None,"guaranteed/possible/impossible",dev_r2
220
+ anli,dev_r2,None,"MNLI crowdsource",dev_r2
221
+ anli,dev_r2,None,"GPT-3 style",dev_r2
222
+ anli,dev_r2,None,"justified in saying",dev_r2
223
+ anli,dev_r2,None,"can we infer",dev_r2
224
+ anli,dev_r3,None,"guaranteed/possible/impossible",dev_r3
225
+ anli,dev_r3,None,"MNLI crowdsource",dev_r3
226
+ anli,dev_r3,None,"GPT-3 style",dev_r3
227
+ anli,dev_r3,None,"justified in saying",dev_r3
228
+ anli,dev_r3,None,"can we infer",dev_r3
229
+ super_glue,cb,None,"guaranteed/possible/impossible",validation
230
+ super_glue,cb,None,"MNLI crowdsource",validation
231
+ super_glue,cb,None,"GPT-3 style",validation
232
+ super_glue,cb,None,"justified in saying",validation
233
+ super_glue,cb,None,"can we infer",validation
234
+ winogrande,winogrande_xl,None,"underscore refer to",validation
235
+ winogrande,winogrande_xl,None,"Replace",validation
236
+ winogrande,winogrande_xl,None,"stand for",validation
237
+ winogrande,winogrande_xl,None,"does underscore refer to",validation
238
+ winogrande,winogrande_xl,None,"True or False",validation
239
+ story_cloze,2016,None,"Story Continuation and Options",validation
240
+ story_cloze,2016,None,"Answer Given options",validation
241
+ story_cloze,2016,None,"Novel Correct Ending",validation
242
+ story_cloze,2016,None,"Generate Ending",validation
243
+ story_cloze,2016,None,"Choose Story Ending",validation
244
+ Muennighoff/xstory_cloze,ar,en,"Story Continuation and Options",validation
245
+ Muennighoff/xstory_cloze,ar,en,"Answer Given options",validation
246
+ Muennighoff/xstory_cloze,ar,en,"Novel Correct Ending",validation
247
+ Muennighoff/xstory_cloze,ar,en,"Generate Ending",validation
248
+ Muennighoff/xstory_cloze,ar,en,"Choose Story Ending",validation
249
+ Muennighoff/xstory_cloze,es,en,"Story Continuation and Options",validation
250
+ Muennighoff/xstory_cloze,es,en,"Answer Given options",validation
251
+ Muennighoff/xstory_cloze,es,en,"Novel Correct Ending",validation
252
+ Muennighoff/xstory_cloze,es,en,"Generate Ending",validation
253
+ Muennighoff/xstory_cloze,es,en,"Choose Story Ending",validation
254
+ Muennighoff/xstory_cloze,eu,en,"Story Continuation and Options",validation
255
+ Muennighoff/xstory_cloze,eu,en,"Answer Given options",validation
256
+ Muennighoff/xstory_cloze,eu,en,"Novel Correct Ending",validation
257
+ Muennighoff/xstory_cloze,eu,en,"Generate Ending",validation
258
+ Muennighoff/xstory_cloze,eu,en,"Choose Story Ending",validation
259
+ Muennighoff/xstory_cloze,id,en,"Story Continuation and Options",validation
260
+ Muennighoff/xstory_cloze,id,en,"Answer Given options",validation
261
+ Muennighoff/xstory_cloze,id,en,"Novel Correct Ending",validation
262
+ Muennighoff/xstory_cloze,id,en,"Generate Ending",validation
263
+ Muennighoff/xstory_cloze,id,en,"Choose Story Ending",validation
264
+ Muennighoff/xstory_cloze,hi,en,"Story Continuation and Options",validation
265
+ Muennighoff/xstory_cloze,hi,en,"Answer Given options",validation
266
+ Muennighoff/xstory_cloze,hi,en,"Novel Correct Ending",validation
267
+ Muennighoff/xstory_cloze,hi,en,"Generate Ending",validation
268
+ Muennighoff/xstory_cloze,hi,en,"Choose Story Ending",validation
269
+ Muennighoff/xstory_cloze,sw,en,"Story Continuation and Options",validation
270
+ Muennighoff/xstory_cloze,sw,en,"Answer Given options",validation
271
+ Muennighoff/xstory_cloze,sw,en,"Novel Correct Ending",validation
272
+ Muennighoff/xstory_cloze,sw,en,"Generate Ending",validation
273
+ Muennighoff/xstory_cloze,sw,en,"Choose Story Ending",validation
274
+ Muennighoff/xstory_cloze,te,en,"Story Continuation and Options",validation
275
+ Muennighoff/xstory_cloze,te,en,"Answer Given options",validation
276
+ Muennighoff/xstory_cloze,te,en,"Novel Correct Ending",validation
277
+ Muennighoff/xstory_cloze,te,en,"Generate Ending",validation
278
+ Muennighoff/xstory_cloze,te,en,"Choose Story Ending",validation
279
+ Muennighoff/xstory_cloze,zh,en,"Story Continuation and Options",validation
280
+ Muennighoff/xstory_cloze,zh,en,"Answer Given options",validation
281
+ Muennighoff/xstory_cloze,zh,en,"Novel Correct Ending",validation
282
+ Muennighoff/xstory_cloze,zh,en,"Generate Ending",validation
283
+ Muennighoff/xstory_cloze,zh,en,"Choose Story Ending",validation
284
+ xnli,ar,en,"guaranteed/possible/impossible",validation
285
+ xnli,ar,en,"MNLI crowdsource",validation
286
+ xnli,ar,en,"GPT-3 style",validation
287
+ xnli,ar,en,"justified in saying",validation
288
+ xnli,ar,en,"can we infer",validation
289
+ xnli,en,en,"guaranteed/possible/impossible",validation
290
+ xnli,en,en,"MNLI crowdsource",validation
291
+ xnli,en,en,"GPT-3 style",validation
292
+ xnli,en,en,"justified in saying",validation
293
+ xnli,en,en,"can we infer",validation
294
+ xnli,es,en,"guaranteed/possible/impossible",validation
295
+ xnli,es,en,"MNLI crowdsource",validation
296
+ xnli,es,en,"GPT-3 style",validation
297
+ xnli,es,en,"justified in saying",validation
298
+ xnli,es,en,"can we infer",validation
299
+ xnli,fr,en,"guaranteed/possible/impossible",validation
300
+ xnli,fr,en,"MNLI crowdsource",validation
301
+ xnli,fr,en,"GPT-3 style",validation
302
+ xnli,fr,en,"justified in saying",validation
303
+ xnli,fr,en,"can we infer",validation
304
+ xnli,hi,en,"guaranteed/possible/impossible",validation
305
+ xnli,hi,en,"MNLI crowdsource",validation
306
+ xnli,hi,en,"GPT-3 style",validation
307
+ xnli,hi,en,"justified in saying",validation
308
+ xnli,hi,en,"can we infer",validation
309
+ xnli,sw,en,"guaranteed/possible/impossible",validation
310
+ xnli,sw,en,"MNLI crowdsource",validation
311
+ xnli,sw,en,"GPT-3 style",validation
312
+ xnli,sw,en,"justified in saying",validation
313
+ xnli,sw,en,"can we infer",validation
314
+ xnli,ur,en,"guaranteed/possible/impossible",validation
315
+ xnli,ur,en,"MNLI crowdsource",validation
316
+ xnli,ur,en,"GPT-3 style",validation
317
+ xnli,ur,en,"justified in saying",validation
318
+ xnli,ur,en,"can we infer",validation
319
+ xnli,vi,en,"guaranteed/possible/impossible",validation
320
+ xnli,vi,en,"MNLI crowdsource",validation
321
+ xnli,vi,en,"GPT-3 style",validation
322
+ xnli,vi,en,"justified in saying",validation
323
+ xnli,vi,en,"can we infer",validation
324
+ xnli,zh,en,"guaranteed/possible/impossible",validation
325
+ xnli,zh,en,"MNLI crowdsource",validation
326
+ xnli,zh,en,"GPT-3 style",validation
327
+ xnli,zh,en,"justified in saying",validation
328
+ xnli,zh,en,"can we infer",validation
329
+ xcopa,id,en,"best_option",validation
330
+ xcopa,id,en,"C1 or C2? premise, so/because…",validation
331
+ xcopa,id,en,"i_am_hesitating",validation
332
+ xcopa,id,en,"cause_effect",validation
333
+ xcopa,id,en,"plausible_alternatives",validation
334
+ xcopa,sw,en,"best_option",validation
335
+ xcopa,sw,en,"C1 or C2? premise, so/because…",validation
336
+ xcopa,sw,en,"i_am_hesitating",validation
337
+ xcopa,sw,en,"cause_effect",validation
338
+ xcopa,sw,en,"plausible_alternatives",validation
339
+ xcopa,ta,en,"best_option",validation
340
+ xcopa,ta,en,"C1 or C2? premise, so/because…",validation
341
+ xcopa,ta,en,"i_am_hesitating",validation
342
+ xcopa,ta,en,"cause_effect",validation
343
+ xcopa,ta,en,"plausible_alternatives",validation
344
+ xcopa,vi,en,"best_option",validation
345
+ xcopa,vi,en,"C1 or C2? premise, so/because…",validation
346
+ xcopa,vi,en,"i_am_hesitating",validation
347
+ xcopa,vi,en,"cause_effect",validation
348
+ xcopa,vi,en,"plausible_alternatives",validation
349
+ xcopa,zh,en,"best_option",validation
350
+ xcopa,zh,en,"C1 or C2? premise, so/because…",validation
351
+ xcopa,zh,en,"i_am_hesitating",validation
352
+ xcopa,zh,en,"cause_effect",validation
353
+ xcopa,zh,en,"plausible_alternatives",validation
354
+ Muennighoff/xwinograd,en,en,"underscore refer to",test
355
+ Muennighoff/xwinograd,en,en,"Replace",test
356
+ Muennighoff/xwinograd,en,en,"stand for",test
357
+ Muennighoff/xwinograd,en,en,"does underscore refer to",test
358
+ Muennighoff/xwinograd,en,en,"True or False",test
359
+ Muennighoff/xwinograd,fr,en,"underscore refer to",test
360
+ Muennighoff/xwinograd,fr,en,"Replace",test
361
+ Muennighoff/xwinograd,fr,en,"stand for",test
362
+ Muennighoff/xwinograd,fr,en,"does underscore refer to",test
363
+ Muennighoff/xwinograd,fr,en,"True or False",test
364
+ Muennighoff/xwinograd,pt,en,"underscore refer to",test
365
+ Muennighoff/xwinograd,pt,en,"Replace",test
366
+ Muennighoff/xwinograd,pt,en,"stand for",test
367
+ Muennighoff/xwinograd,pt,en,"does underscore refer to",test
368
+ Muennighoff/xwinograd,pt,en,"True or False",test
369
+ Muennighoff/xwinograd,zh,en,"underscore refer to",test
370
+ Muennighoff/xwinograd,zh,en,"Replace",test
371
+ Muennighoff/xwinograd,zh,en,"stand for",test
372
+ Muennighoff/xwinograd,zh,en,"does underscore refer to",test
373
+ Muennighoff/xwinograd,zh,en,"True or False",test
374
+ )
375
+
376
+ DATASETS_AND_CONFIGS_L2=(
377
+ Muennighoff/xstory_cloze,ru,en,"Story Continuation and Options",validation
378
+ Muennighoff/xstory_cloze,ru,en,"Answer Given options",validation
379
+ Muennighoff/xstory_cloze,ru,en,"Novel Correct Ending",validation
380
+ Muennighoff/xstory_cloze,ru,en,"Generate Ending",validation
381
+ Muennighoff/xstory_cloze,ru,en,"Choose Story Ending",validation
382
+ Muennighoff/xstory_cloze,my,en,"Story Continuation and Options",validation
383
+ Muennighoff/xstory_cloze,my,en,"Answer Given options",validation
384
+ Muennighoff/xstory_cloze,my,en,"Novel Correct Ending",validation
385
+ Muennighoff/xstory_cloze,my,en,"Generate Ending",validation
386
+ Muennighoff/xstory_cloze,my,en,"Choose Story Ending",validation
387
+ xnli,bg,en,"guaranteed/possible/impossible",validation
388
+ xnli,bg,en,"MNLI crowdsource",validation
389
+ xnli,bg,en,"GPT-3 style",validation
390
+ xnli,bg,en,"justified in saying",validation
391
+ xnli,bg,en,"can we infer",validation
392
+ xnli,de,en,"guaranteed/possible/impossible",validation
393
+ xnli,de,en,"MNLI crowdsource",validation
394
+ xnli,de,en,"GPT-3 style",validation
395
+ xnli,de,en,"justified in saying",validation
396
+ xnli,de,en,"can we infer",validation
397
+ xnli,el,en,"guaranteed/possible/impossible",validation
398
+ xnli,el,en,"MNLI crowdsource",validation
399
+ xnli,el,en,"GPT-3 style",validation
400
+ xnli,el,en,"justified in saying",validation
401
+ xnli,el,en,"can we infer",validation
402
+ xnli,ru,en,"guaranteed/possible/impossible",validation
403
+ xnli,ru,en,"MNLI crowdsource",validation
404
+ xnli,ru,en,"GPT-3 style",validation
405
+ xnli,ru,en,"justified in saying",validation
406
+ xnli,ru,en,"can we infer",validation
407
+ xnli,th,en,"guaranteed/possible/impossible",validation
408
+ xnli,th,en,"MNLI crowdsource",validation
409
+ xnli,th,en,"GPT-3 style",validation
410
+ xnli,th,en,"justified in saying",validation
411
+ xnli,th,en,"can we infer",validation
412
+ xnli,tr,en,"guaranteed/possible/impossible",validation
413
+ xnli,tr,en,"MNLI crowdsource",validation
414
+ xnli,tr,en,"GPT-3 style",validation
415
+ xnli,tr,en,"justified in saying",validation
416
+ xnli,tr,en,"can we infer",validation
417
+ Muennighoff/xwinograd,ru,en,"underscore refer to",test
418
+ Muennighoff/xwinograd,ru,en,"Replace",test
419
+ Muennighoff/xwinograd,ru,en,"stand for",test
420
+ Muennighoff/xwinograd,ru,en,"does underscore refer to",test
421
+ Muennighoff/xwinograd,ru,en,"True or False",test
422
+ Muennighoff/xwinograd,jp,en,"underscore refer to",test
423
+ Muennighoff/xwinograd,jp,en,"Replace",test
424
+ Muennighoff/xwinograd,jp,en,"stand for",test
425
+ Muennighoff/xwinograd,jp,en,"does underscore refer to",test
426
+ Muennighoff/xwinograd,jp,en,"True or False",test
427
+ xcopa,et,en,"best_option",validation
428
+ xcopa,et,en,"C1 or C2? premise, so/because…",validation
429
+ xcopa,et,en,"i_am_hesitating",validation
430
+ xcopa,et,en,"cause_effect",validation
431
+ xcopa,et,en,"plausible_alternatives",validation
432
+ xcopa,ht,en,"best_option",validation
433
+ xcopa,ht,en,"C1 or C2? premise, so/because…",validation
434
+ xcopa,ht,en,"i_am_hesitating",validation
435
+ xcopa,ht,en,"cause_effect",validation
436
+ xcopa,ht,en,"plausible_alternatives",validation
437
+ xcopa,it,en,"best_option",validation
438
+ xcopa,it,en,"C1 or C2? premise, so/because…",validation
439
+ xcopa,it,en,"i_am_hesitating",validation
440
+ xcopa,it,en,"cause_effect",validation
441
+ xcopa,it,en,"plausible_alternatives",validation
442
+ xcopa,qu,en,"best_option",validation
443
+ xcopa,qu,en,"C1 or C2? premise, so/because…",validation
444
+ xcopa,qu,en,"i_am_hesitating",validation
445
+ xcopa,qu,en,"cause_effect",validation
446
+ xcopa,qu,en,"plausible_alternatives",validation
447
+ xcopa,th,en,"best_option",validation
448
+ xcopa,th,en,"C1 or C2? premise, so/because…",validation
449
+ xcopa,th,en,"i_am_hesitating",validation
450
+ xcopa,th,en,"cause_effect",validation
451
+ xcopa,th,en,"plausible_alternatives",validation
452
+ xcopa,tr,en,"best_option",validation
453
+ xcopa,tr,en,"C1 or C2? premise, so/because…",validation
454
+ xcopa,tr,en,"i_am_hesitating",validation
455
+ xcopa,tr,en,"cause_effect",validation
456
+ xcopa,tr,en,"plausible_alternatives",validation
457
+ )
458
+
459
+ DATASETS_AND_CONFIGS_MT_L1=(
460
+ Muennighoff/xstory_cloze,ar,ar,"Story Continuation and Options_armt",validation
461
+ Muennighoff/xstory_cloze,ar,ar,"Answer Given options_armt",validation
462
+ Muennighoff/xstory_cloze,ar,ar,"Novel Correct Ending_armt",validation
463
+ Muennighoff/xstory_cloze,ar,ar,"Generate Ending_armt",validation
464
+ Muennighoff/xstory_cloze,ar,ar,"Choose Story Ending_armt",validation
465
+ Muennighoff/xstory_cloze,es,es,"Story Continuation and Options_esmt",validation
466
+ Muennighoff/xstory_cloze,es,es,"Answer Given options_esmt",validation
467
+ Muennighoff/xstory_cloze,es,es,"Novel Correct Ending_esmt",validation
468
+ Muennighoff/xstory_cloze,es,es,"Generate Ending_esmt",validation
469
+ Muennighoff/xstory_cloze,es,es,"Choose Story Ending_esmt",validation
470
+ Muennighoff/xstory_cloze,eu,eu,"Story Continuation and Options_eumt",validation
471
+ Muennighoff/xstory_cloze,eu,eu,"Answer Given options_eumt",validation
472
+ Muennighoff/xstory_cloze,eu,eu,"Novel Correct Ending_eumt",validation
473
+ Muennighoff/xstory_cloze,eu,eu,"Generate Ending_eumt",validation
474
+ Muennighoff/xstory_cloze,eu,eu,"Choose Story Ending_eumt",validation
475
+ Muennighoff/xstory_cloze,id,id,"Story Continuation and Options_idmt",validation
476
+ Muennighoff/xstory_cloze,id,id,"Answer Given options_idmt",validation
477
+ Muennighoff/xstory_cloze,id,id,"Novel Correct Ending_idmt",validation
478
+ Muennighoff/xstory_cloze,id,id,"Generate Ending_idmt",validation
479
+ Muennighoff/xstory_cloze,id,id,"Choose Story Ending_idmt",validation
480
+ Muennighoff/xstory_cloze,hi,hi,"Story Continuation and Options_himt",validation
481
+ Muennighoff/xstory_cloze,hi,hi,"Answer Given options_himt",validation
482
+ Muennighoff/xstory_cloze,hi,hi,"Novel Correct Ending_himt",validation
483
+ Muennighoff/xstory_cloze,hi,hi,"Generate Ending_himt",validation
484
+ Muennighoff/xstory_cloze,hi,hi,"Choose Story Ending_himt",validation
485
+ Muennighoff/xstory_cloze,sw,sw,"Story Continuation and Options_swmt",validation
486
+ Muennighoff/xstory_cloze,sw,sw,"Answer Given options_swmt",validation
487
+ Muennighoff/xstory_cloze,sw,sw,"Novel Correct Ending_swmt",validation
488
+ Muennighoff/xstory_cloze,sw,sw,"Generate Ending_swmt",validation
489
+ Muennighoff/xstory_cloze,sw,sw,"Choose Story Ending_swmt",validation
490
+ Muennighoff/xstory_cloze,te,te,"Story Continuation and Options_temt",validation
491
+ Muennighoff/xstory_cloze,te,te,"Answer Given options_temt",validation
492
+ Muennighoff/xstory_cloze,te,te,"Novel Correct Ending_temt",validation
493
+ Muennighoff/xstory_cloze,te,te,"Generate Ending_temt",validation
494
+ Muennighoff/xstory_cloze,te,te,"Choose Story Ending_temt",validation
495
+ Muennighoff/xstory_cloze,zh,zh,"Story Continuation and Options_zhmt",validation
496
+ Muennighoff/xstory_cloze,zh,zh,"Answer Given options_zhmt",validation
497
+ Muennighoff/xstory_cloze,zh,zh,"Novel Correct Ending_zhmt",validation
498
+ Muennighoff/xstory_cloze,zh,zh,"Generate Ending_zhmt",validation
499
+ Muennighoff/xstory_cloze,zh,zh,"Choose Story Ending_zhmt",validation
500
+ Muennighoff/xwinograd,fr,fr,"underscore refer to_frmt",test
501
+ Muennighoff/xwinograd,fr,fr,"Replace_frmt",test
502
+ Muennighoff/xwinograd,fr,fr,"stand for_frmt",test
503
+ Muennighoff/xwinograd,fr,fr,"does underscore refer to_frmt",test
504
+ Muennighoff/xwinograd,fr,fr,"True or False_frmt",test
505
+ Muennighoff/xwinograd,pt,pt,"underscore refer to_ptmt",test
506
+ Muennighoff/xwinograd,pt,pt,"Replace_ptmt",test
507
+ Muennighoff/xwinograd,pt,pt,"stand for_ptmt",test
508
+ Muennighoff/xwinograd,pt,pt,"does underscore refer to_ptmt",test
509
+ Muennighoff/xwinograd,pt,pt,"True or False_ptmt",test
510
+ Muennighoff/xwinograd,zh,zh,"underscore refer to_zhmt",test
511
+ Muennighoff/xwinograd,zh,zh,"Replace_zhmt",test
512
+ Muennighoff/xwinograd,zh,zh,"stand for_zhmt",test
513
+ Muennighoff/xwinograd,zh,zh,"does underscore refer to_zhmt",test
514
+ Muennighoff/xwinograd,zh,zh,"True or False_zhmt",test
515
+ xcopa,id,id,"best_option_idmt",validation
516
+ xcopa,id,id,"C1 or C2? premise_idmt",validation
517
+ xcopa,id,id,"i_am_hesitating_idmt",validation
518
+ xcopa,id,id,"cause_effect_idmt",validation
519
+ xcopa,id,id,"plausible_alternatives_idmt",validation
520
+ xcopa,sw,sw,"best_option_swmt",validation
521
+ xcopa,sw,sw,"C1 or C2? premise_swmt",validation
522
+ xcopa,sw,sw,"i_am_hesitating_swmt",validation
523
+ xcopa,sw,sw,"cause_effect_swmt",validation
524
+ xcopa,sw,sw,"plausible_alternatives_swmt",validation
525
+ xcopa,ta,ta,"best_option_tamt",validation
526
+ xcopa,ta,ta,"C1 or C2? premise_tamt",validation
527
+ xcopa,ta,ta,"i_am_hesitating_tamt",validation
528
+ xcopa,ta,ta,"cause_effect_tamt",validation
529
+ xcopa,ta,ta,"plausible_alternatives_tamt",validation
530
+ xcopa,vi,vi,"best_option_vimt",validation
531
+ xcopa,vi,vi,"C1 or C2? premise_vimt",validation
532
+ xcopa,vi,vi,"i_am_hesitating_vimt",validation
533
+ xcopa,vi,vi,"cause_effect_vimt",validation
534
+ xcopa,vi,vi,"plausible_alternatives_vimt",validation
535
+ xcopa,zh,zh,"best_option_zhmt",validation
536
+ xcopa,zh,zh,"C1 or C2? premise_zhmt",validation
537
+ xcopa,zh,zh,"i_am_hesitating_zhmt",validation
538
+ xcopa,zh,zh,"cause_effect_zhmt",validation
539
+ xcopa,zh,zh,"plausible_alternatives_zhmt",validation
540
+ )
541
+
542
+ DATASETS_AND_CONFIGS_ZHHT=(
543
+ Muennighoff/xstory_cloze,zh,zh,"Story Continuation and Options_zhht",validation
544
+ Muennighoff/xstory_cloze,zh,zh,"Answer Given options_zhht",validation
545
+ Muennighoff/xstory_cloze,zh,zh,"Novel Correct Ending_zhht",validation
546
+ Muennighoff/xstory_cloze,zh,zh,"Generate Ending_zhht",validation
547
+ Muennighoff/xstory_cloze,zh,zh,"Choose Story Ending_zhht",validation
548
+ Muennighoff/xwinograd,zh,zh,"underscore refer to_zhht",test
549
+ Muennighoff/xwinograd,zh,zh,"Replace_zhht",test
550
+ Muennighoff/xwinograd,zh,zh,"stand for_zhht",test
551
+ Muennighoff/xwinograd,zh,zh,"does underscore refer to_zhht",test
552
+ Muennighoff/xwinograd,zh,zh,"True or False_zhht",test
553
+ xcopa,zh,zh,"best_option_zhht",validation
554
+ xcopa,zh,zh,"C1 or C2? premise_zhht",validation
555
+ xcopa,zh,zh,"i_am_hesitating_zhht",validation
556
+ xcopa,zh,zh,"cause_effect_zhht",validation
557
+ xcopa,zh,zh,"plausible_alternatives_zhht",validation
558
+ )
559
+
560
+ DATASETS_AND_CONFIGS_XNLIHTMT=(
561
+ xnli,ar,ar,"guaranteed/possible/impossible_arht",validation
562
+ xnli,ar,ar,"MNLI crowdsource_arht",validation
563
+ xnli,ar,ar,"GPT-3 style_arht",validation
564
+ xnli,ar,ar,"justified in saying_arht",validation
565
+ xnli,ar,ar,"can we infer_arht",validation
566
+ xnli,ar,ar,"guaranteed/possible/impossible_armt",validation
567
+ xnli,ar,ar,"MNLI crowdsource_armt",validation
568
+ xnli,ar,ar,"GPT-3 style_armt",validation
569
+ xnli,ar,ar,"justified in saying_armt",validation
570
+ xnli,ar,ar,"can we infer_armt",validation
571
+ xnli,es,es,"guaranteed/possible/impossible_esht",validation
572
+ xnli,es,es,"MNLI crowdsource_esht",validation
573
+ xnli,es,es,"GPT-3 style_esht",validation
574
+ xnli,es,es,"justified in saying_esht",validation
575
+ xnli,es,es,"can we infer_esht",validation
576
+ xnli,es,es,"guaranteed/possible/impossible_esmt",validation
577
+ xnli,es,es,"MNLI crowdsource_esmt",validation
578
+ xnli,es,es,"GPT-3 style_esmt",validation
579
+ xnli,es,es,"justified in saying_esmt",validation
580
+ xnli,es,es,"can we infer_esmt",validation
581
+ xnli,fr,fr,"guaranteed/possible/impossible_frht",validation
582
+ xnli,fr,fr,"MNLI crowdsource_frht",validation
583
+ xnli,fr,fr,"GPT-3 style_frht",validation
584
+ xnli,fr,fr,"justified in saying_frht",validation
585
+ xnli,fr,fr,"can we infer_frht",validation
586
+ xnli,fr,fr,"guaranteed/possible/impossible_frmt",validation
587
+ xnli,fr,fr,"MNLI crowdsource_frmt",validation
588
+ xnli,fr,fr,"GPT-3 style_frmt",validation
589
+ xnli,fr,fr,"justified in saying_frmt",validation
590
+ xnli,fr,fr,"can we infer_frmt",validation
591
+ xnli,hi,hi,"guaranteed/possible/impossible_hiht",validation
592
+ xnli,hi,hi,"MNLI crowdsource_hiht",validation
593
+ xnli,hi,hi,"GPT-3 style_hiht",validation
594
+ xnli,hi,hi,"justified in saying_hiht",validation
595
+ xnli,hi,hi,"can we infer_hiht",validation
596
+ xnli,hi,hi,"guaranteed/possible/impossible_himt",validation
597
+ xnli,hi,hi,"MNLI crowdsource_himt",validation
598
+ xnli,hi,hi,"GPT-3 style_himt",validation
599
+ xnli,hi,hi,"justified in saying_himt",validation
600
+ xnli,hi,hi,"can we infer_himt",validation
601
+ xnli,ur,ur,"guaranteed/possible/impossible_urht",validation
602
+ xnli,ur,ur,"MNLI crowdsource_urht",validation
603
+ xnli,ur,ur,"GPT-3 style_urht",validation
604
+ xnli,ur,ur,"justified in saying_urht",validation
605
+ xnli,ur,ur,"can we infer_urht",validation
606
+ xnli,ur,ur,"guaranteed/possible/impossible_urmt",validation
607
+ xnli,ur,ur,"MNLI crowdsource_urmt",validation
608
+ xnli,ur,ur,"GPT-3 style_urmt",validation
609
+ xnli,ur,ur,"justified in saying_urmt",validation
610
+ xnli,ur,ur,"can we infer_urmt",validation
611
+ xnli,sw,sw,"guaranteed/possible/impossible_swht",validation
612
+ xnli,sw,sw,"MNLI crowdsource_swht",validation
613
+ xnli,sw,sw,"GPT-3 style_swht",validation
614
+ xnli,sw,sw,"justified in saying_swht",validation
615
+ xnli,sw,sw,"can we infer_swht",validation
616
+ xnli,sw,sw,"guaranteed/possible/impossible_swmt",validation
617
+ xnli,sw,sw,"MNLI crowdsource_swmt",validation
618
+ xnli,sw,sw,"GPT-3 style_swmt",validation
619
+ xnli,sw,sw,"justified in saying_swmt",validation
620
+ xnli,sw,sw,"can we infer_swmt",validation
621
+ xnli,vi,vi,"guaranteed/possible/impossible_viht",validation
622
+ xnli,vi,vi,"MNLI crowdsource_viht",validation
623
+ xnli,vi,vi,"GPT-3 style_viht",validation
624
+ xnli,vi,vi,"justified in saying_viht",validation
625
+ xnli,vi,vi,"can we infer_viht",validation
626
+ xnli,vi,vi,"guaranteed/possible/impossible_vimt",validation
627
+ xnli,vi,vi,"MNLI crowdsource_vimt",validation
628
+ xnli,vi,vi,"GPT-3 style_vimt",validation
629
+ xnli,vi,vi,"justified in saying_vimt",validation
630
+ xnli,vi,vi,"can we infer_vimt",validation
631
+ xnli,zh,zh,"guaranteed/possible/impossible_zhht",validation
632
+ xnli,zh,zh,"MNLI crowdsource_zhht",validation
633
+ xnli,zh,zh,"GPT-3 style_zhht",validation
634
+ xnli,zh,zh,"justified in saying_zhht",validation
635
+ xnli,zh,zh,"can we infer_zhht",validation
636
+ xnli,zh,zh,"guaranteed/possible/impossible_zhmt",validation
637
+ xnli,zh,zh,"MNLI crowdsource_zhmt",validation
638
+ xnli,zh,zh,"GPT-3 style_zhmt",validation
639
+ xnli,zh,zh,"justified in saying_zhmt",validation
640
+ xnli,zh,zh,"can we infer_zhmt",validation
641
+ )
642
+
643
+ DATASETS_AND_CONFIGS_MT_L2=(
644
+ Muennighoff/xstory_cloze,my,my,"Story Continuation and Options_mymt",validation
645
+ Muennighoff/xstory_cloze,my,my,"Answer Given options_mymt",validation
646
+ Muennighoff/xstory_cloze,my,my,"Novel Correct Ending_mymt",validation
647
+ Muennighoff/xstory_cloze,my,my,"Generate Ending_mymt",validation
648
+ Muennighoff/xstory_cloze,my,my,"Choose Story Ending_mymt",validation
649
+ Muennighoff/xstory_cloze,ru,ru,"Story Continuation and Options_rumt",validation
650
+ Muennighoff/xstory_cloze,ru,ru,"Answer Given options_rumt",validation
651
+ Muennighoff/xstory_cloze,ru,ru,"Novel Correct Ending_rumt",validation
652
+ Muennighoff/xstory_cloze,ru,ru,"Generate Ending_rumt",validation
653
+ Muennighoff/xstory_cloze,ru,ru,"Choose Story Ending_rumt",validation
654
+ Muennighoff/xstory_cloze,sw,sw,"Story Continuation and Options_swmt",validation
655
+ Muennighoff/xstory_cloze,sw,sw,"Answer Given options_swmt",validation
656
+ Muennighoff/xstory_cloze,sw,sw,"Novel Correct Ending_swmt",validation
657
+ Muennighoff/xstory_cloze,sw,sw,"Generate Ending_swmt",validation
658
+ Muennighoff/xstory_cloze,sw,sw,"Choose Story Ending_swmt",validation
659
+ Muennighoff/xstory_cloze,te,te,"Story Continuation and Options_temt",validation
660
+ Muennighoff/xstory_cloze,te,te,"Answer Given options_temt",validation
661
+ Muennighoff/xstory_cloze,te,te,"Novel Correct Ending_temt",validation
662
+ Muennighoff/xstory_cloze,te,te,"Generate Ending_temt",validation
663
+ Muennighoff/xstory_cloze,te,te,"Choose Story Ending_temt",validation
664
+ Muennighoff/xwinograd,jp,jp,"underscore refer to_jpmt",test
665
+ Muennighoff/xwinograd,jp,jp,"Replace_jpmt",test
666
+ Muennighoff/xwinograd,jp,jp,"stand for_jpmt",test
667
+ Muennighoff/xwinograd,jp,jp,"does underscore refer to_jpmt",test
668
+ Muennighoff/xwinograd,jp,jp,"True or False_jpmt",test
669
+ Muennighoff/xwinograd,ru,ru,"underscore refer to_rumt",test
670
+ Muennighoff/xwinograd,ru,ru,"Replace_rumt",test
671
+ Muennighoff/xwinograd,ru,ru,"stand for_rumt",test
672
+ Muennighoff/xwinograd,ru,ru,"does underscore refer to_rumt",test
673
+ Muennighoff/xwinograd,ru,ru,"True or False_rumt",test
674
+ xcopa,et,et,"best_option_etmt",validation
675
+ xcopa,et,et,"C1 or C2? premise_etmt",validation
676
+ xcopa,et,et,"i_am_hesitating_etmt",validation
677
+ xcopa,et,et,"cause_effect_etmt",validation
678
+ xcopa,et,et,"plausible_alternatives_etmt",validation
679
+ xcopa,ht,ht,"best_option_htmt",validation
680
+ xcopa,ht,ht,"C1 or C2? premise_htmt",validation
681
+ xcopa,ht,ht,"i_am_hesitating_htmt",validation
682
+ xcopa,ht,ht,"cause_effect_htmt",validation
683
+ xcopa,ht,ht,"plausible_alternatives_htmt",validation
684
+ xcopa,it,it,"best_option_itmt",validation
685
+ xcopa,it,it,"C1 or C2? premise_itmt",validation
686
+ xcopa,it,it,"i_am_hesitating_itmt",validation
687
+ xcopa,it,it,"cause_effect_itmt",validation
688
+ xcopa,it,it,"plausible_alternatives_itmt",validation
689
+ xcopa,qu,qu,"best_option_qumt",validation
690
+ xcopa,qu,qu,"C1 or C2? premise_qumt",validation
691
+ xcopa,qu,qu,"i_am_hesitating_qumt",validation
692
+ xcopa,qu,qu,"cause_effect_qumt",validation
693
+ xcopa,qu,qu,"plausible_alternatives_qumt",validation
694
+ xcopa,th,th,"best_option_thmt",validation
695
+ xcopa,th,th,"C1 or C2? premise_thmt",validation
696
+ xcopa,th,th,"i_am_hesitating_thmt",validation
697
+ xcopa,th,th,"cause_effect_thmt",validation
698
+ xcopa,th,th,"plausible_alternatives_thmt",validation
699
+ xcopa,tr,tr,"best_option_trmt",validation
700
+ xcopa,tr,tr,"C1 or C2? premise_trmt",validation
701
+ xcopa,tr,tr,"i_am_hesitating_trmt",validation
702
+ xcopa,tr,tr,"cause_effect_trmt",validation
703
+ xcopa,tr,tr,"plausible_alternatives_trmt",validation
704
+ xnli,bg,bg,"guaranteed/possible/impossible_bgmt",validation
705
+ xnli,bg,bg,"MNLI crowdsource_bgmt",validation
706
+ xnli,bg,bg,"GPT-3 style_bgmt",validation
707
+ xnli,bg,bg,"justified in saying_bgmt",validation
708
+ xnli,bg,bg,"can we infer_bgmt",validation
709
+ xnli,de,de,"guaranteed/possible/impossible_demt",validation
710
+ xnli,de,de,"MNLI crowdsource_demt",validation
711
+ xnli,de,de,"GPT-3 style_demt",validation
712
+ xnli,de,de,"justified in saying_demt",validation
713
+ xnli,de,de,"can we infer_demt",validation
714
+ xnli,el,el,"guaranteed/possible/impossible_elmt",validation
715
+ xnli,el,el,"MNLI crowdsource_elmt",validation
716
+ xnli,el,el,"GPT-3 style_elmt",validation
717
+ xnli,el,el,"justified in saying_elmt",validation
718
+ xnli,el,el,"can we infer_elmt",validation
719
+ xnli,ru,ru,"guaranteed/possible/impossible_rumt",validation
720
+ xnli,ru,ru,"MNLI crowdsource_rumt",validation
721
+ xnli,ru,ru,"GPT-3 style_rumt",validation
722
+ xnli,ru,ru,"justified in saying_rumt",validation
723
+ xnli,ru,ru,"can we infer_rumt",validation
724
+ xnli,th,th,"guaranteed/possible/impossible_thmt",validation
725
+ xnli,th,th,"MNLI crowdsource_thmt",validation
726
+ xnli,th,th,"GPT-3 style_thmt",validation
727
+ xnli,th,th,"justified in saying_thmt",validation
728
+ xnli,th,th,"can we infer_thmt",validation
729
+ xnli,tr,tr,"guaranteed/possible/impossible_trmt",validation
730
+ xnli,tr,tr,"MNLI crowdsource_trmt",validation
731
+ xnli,tr,tr,"GPT-3 style_trmt",validation
732
+ xnli,tr,tr,"justified in saying_trmt",validation
733
+ xnli,tr,tr,"can we infer_trmt",validation
734
+ )
735
+
736
+ DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS_L1[$SLURM_ARRAY_TASK_ID]}
737
+ echo $ARGUMENT
738
+
739
+ # Run T0 evaluation
740
+ # For PrefixLM add --prefixlm
741
+ IFS=',' read dataset_name dataset_config_name template_config_name template_name <<< "${DATASET_AND_CONFIG}"
742
+ python t-zero/evaluation/run_eval.py \
743
+ --dataset_name $dataset_name \
744
+ --dataset_config_name $dataset_config_name \
745
+ --template_config_name $template_config_name \
746
+ --template_name "$template_name" \
747
+ --model_name_or_path $CHECKPOINT_PATH \
748
+ --output_dir $OUTPUT_DIR \
749
+ --per_device_eval_batch_size 8 \
750
+ --max_length 2048 \
751
+ --dtype float16
evaluation/results/tr3/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ We're interested in understanding when zero shot capabilities appear.
evaluation/results/tr3/plot_task_solve_graph.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from argparse import ArgumentParser
4
+
5
+ import numpy as np
6
+ from matplotlib import pyplot as plt
7
+
8
+
9
+ def get_args():
10
+ parser = ArgumentParser()
11
+ parser.add_argument('--input-files', type=lambda s: s.split(','), required=True, help='Input file that hold all evaluation metrics')
12
+ return parser.parse_args()
13
+
14
+ # TODO: fill it up
15
+ RANDOM_BASELINE={
16
+ "arc_challenge_acc": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6
17
+ "arc_easy_acc": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6
18
+ "boolq_acc": 0.5,
19
+ "copa_acc": 0.5,
20
+ "headqa_acc": 0.25, # TODO: That's a pain as some have 4, some have 5 and nobody reports random baseline
21
+ "hellaswag_acc": 0.25,
22
+ "lambada_acc": 0., # Safe to say that random models won't perform well at all.
23
+ "logiqa_acc": 0.25,
24
+ "mathqa_acc": 0.25, # TODO: That's a pain as some have 4, some have 5 and nobody reports random baseline
25
+ "mrpc_acc": 0.5,
26
+ "multirc_acc": 0., # TODO: I couldn't figure it out
27
+ "openbookqa_acc": 0.25,
28
+ "piqa_acc": 0.5,
29
+ "prost_acc": 0.25,
30
+ "pubmedqa_acc": 1/3,
31
+ "qnli_acc": 0.5,
32
+ "qqp_acc": 0.5,
33
+ "race_acc": 0.25, # Source: https://arxiv.org/pdf/1704.04683.pdf table 5
34
+ "rte_acc": 0.5,
35
+ "sciq_acc": 0.25,
36
+ "sst_acc": 0.5,
37
+ "triviaqa_acc": 0.,
38
+ "webqs_acc": 0.,
39
+ "wic_acc": 0.5,
40
+ "winogrande_acc": 0.5,
41
+ "wnli_acc": 0.5,
42
+ "wsc_acc": 0.5
43
+ }
44
+ def normalise_scores(scores_per_task):
45
+ normalised_scores = {}
46
+ for key,value in scores_per_task.items():
47
+ # We assume it exists, otherwise we need to figure out what the random baseline is
48
+ normalised_scores[key] = (value - RANDOM_BASELINE[key]) / (1. - RANDOM_BASELINE[key])
49
+ # TODO: we need to substract the random baseline.
50
+ return scores_per_task
51
+
52
+ def main():
53
+ args = get_args()
54
+
55
+ final = {}
56
+ for input_file in args.input_files:
57
+ assert os.path.basename(input_file).endswith("_agg.json")
58
+ experiment_name = os.path.basename(input_file).split("_agg.json")[0]
59
+ with open(input_file, "r") as fi:
60
+ final[experiment_name] = json.load(fi)
61
+
62
+ # We search for matching tokens
63
+ matching_tokens = set(next(iter(final.values()))["tokens"])
64
+ for experiment_name, experiment in final.items():
65
+ tokens = experiment["tokens"]
66
+ matching_tokens = matching_tokens & set(tokens)
67
+ # Make sure we don't override existing data
68
+ assert "token2checkpoint_step" not in experiment
69
+ experiment["token2checkpoint_step"] = {token: ckpt_step for token, ckpt_step in zip(tokens, experiment["checkpoints"])}
70
+ # Make sure we don't override existing data
71
+ assert "token2id" not in experiment
72
+ experiment["token2id"] = {token: _id for _id, token in enumerate(tokens)}
73
+ matching_tokens = sorted(matching_tokens)
74
+ print(f"Plotting only for tokens in {matching_tokens}")
75
+
76
+ plots_per_keys = {}
77
+
78
+ for token in matching_tokens:
79
+ for experiment_name, experiment in final.items():
80
+ _id = experiment["token2id"][token]
81
+ scores_per_task = {
82
+ "Average_acc": {
83
+ f"{evaluation_name}_{metric_name}": metric[_id]
84
+ for evaluation_name, evaluation in experiment["results"].items()
85
+ for metric_name, metric in evaluation.items()
86
+ if metric_name == "acc"
87
+ },
88
+ # "Average": {
89
+ # metric_name: values[i]
90
+ # for evaluation_name in final["results"][experiment_name]
91
+ # for metric_name, values in final["results"][experiment_name][evaluation_name].items()
92
+ # if metric_name[-7:] != "_stderr"
93
+ # }
94
+ }
95
+
96
+ # Build plot graphs
97
+ for key in scores_per_task:
98
+ if key not in plots_per_keys:
99
+ plots_per_keys[key] = {}
100
+
101
+ plot_per_token = plots_per_keys[key]
102
+ if token in plot_per_token:
103
+ continue
104
+
105
+ plot = plt.figure()
106
+ plot = plot.add_subplot(1, 1, 1)
107
+ plot.set_title(f"{key} - Number of tokens seen: {token}")
108
+ plot_per_token[token] = plot
109
+
110
+ # Plot per steps
111
+ for key in plots_per_keys:
112
+ scores = scores_per_task[key]
113
+ plot = plots_per_keys[key][token]
114
+
115
+ # Normalize score
116
+ normalised_scores = normalise_scores(scores)
117
+
118
+ # Sort scores, we order them from smalles to biggest
119
+ sorted_scores = sorted(normalised_scores.values())
120
+
121
+ # Compute the number of task over that sorted_scores.
122
+ y = np.arange(len(sorted_scores), 0, -1) / len(sorted_scores)
123
+
124
+ plot.step(x=sorted_scores, y=y, label=experiment_name)
125
+
126
+ for plots in plots_per_keys.values():
127
+ assert len(plots) == len(matching_tokens)
128
+ for plot in plots.values():
129
+ plot.legend()
130
+ plt.show()
131
+
132
+ if __name__ == "__main__":
133
+ main()
evaluation/results/tr3/switch_tokenizer_to_t5_for_tr3e.sh ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ export GIT_LFS_SKIP_SMUDGE=1
2
+ git clone https://huggingface.co/bigscience/tr3e-1B3-c4-checkpoints
3
+ cd tr3e-1B3-c4-checkpoints
4
+ $six_ALL_CCFRWORK/code/bigscience/tools/hub-sync.py --repo-path . --patterns '*bogus*'
5
+ git branch -a | sort -V | perl -lne 'm|(global_step\d+)| && print qx[git checkout $1; perl -pi -e "s|\\"tokenizer_class\\": null|\\"tokenizer_class\\": \\"T5Tokenizer\\"|" config.json; git commit -m "Fix tokenizer_class to use T5 tokenizer" .; git push --set-upstream origin $1]'
6
+ export GIT_LFS_SKIP_SMUDGE=0
evaluation/results/tr3/tr3e-1B3-c4-checkpoints_agg.json ADDED
@@ -0,0 +1,3084 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "tokens": [
3
+ 10044178432,
4
+ 11617042432,
5
+ 14762770432,
6
+ 16335634432,
7
+ 17908498432,
8
+ 21054226432,
9
+ 22627090432,
10
+ 25772818432,
11
+ 30491410432,
12
+ 35210002432,
13
+ 36782866432,
14
+ 41501458432,
15
+ 44647186432,
16
+ 46220050432,
17
+ 49365778432,
18
+ 50938642432,
19
+ 54084370432,
20
+ 55657234432,
21
+ 57230098432,
22
+ 65094418432,
23
+ 66667282432,
24
+ 68240146432,
25
+ 77677330432,
26
+ 79250194432,
27
+ 80823058432,
28
+ 82395922432,
29
+ 87114514432,
30
+ 91833106432,
31
+ 98124562432,
32
+ 99697426432,
33
+ 101270290432,
34
+ 105988882432,
35
+ 110707474432,
36
+ 112280338432
37
+ ],
38
+ "checkpoints": [
39
+ 19500,
40
+ 21000,
41
+ 24000,
42
+ 25500,
43
+ 27000,
44
+ 30000,
45
+ 31500,
46
+ 34500,
47
+ 39000,
48
+ 43500,
49
+ 45000,
50
+ 49500,
51
+ 52500,
52
+ 54000,
53
+ 57000,
54
+ 58500,
55
+ 61500,
56
+ 63000,
57
+ 64500,
58
+ 72000,
59
+ 73500,
60
+ 75000,
61
+ 84000,
62
+ 85500,
63
+ 87000,
64
+ 88500,
65
+ 93000,
66
+ 97500,
67
+ 103500,
68
+ 105000,
69
+ 106500,
70
+ 111000,
71
+ 115500,
72
+ 117000
73
+ ],
74
+ "results": {
75
+ "arc_challenge": {
76
+ "acc": [
77
+ 0.19197952218430034,
78
+ 0.19795221843003413,
79
+ 0.20392491467576793,
80
+ 0.2030716723549488,
81
+ 0.21075085324232082,
82
+ 0.2175767918088737,
83
+ 0.2030716723549488,
84
+ 0.2098976109215017,
85
+ 0.22610921501706485,
86
+ 0.22440273037542663,
87
+ 0.22696245733788395,
88
+ 0.2226962457337884,
89
+ 0.22098976109215018,
90
+ 0.22610921501706485,
91
+ 0.23037542662116042,
92
+ 0.22610921501706485,
93
+ 0.22525597269624573,
94
+ 0.22440273037542663,
95
+ 0.23293515358361774,
96
+ 0.23464163822525597,
97
+ 0.23037542662116042,
98
+ 0.23464163822525597,
99
+ 0.23720136518771331,
100
+ 0.2354948805460751,
101
+ 0.2363481228668942,
102
+ 0.22866894197952217,
103
+ 0.23976109215017063,
104
+ 0.25170648464163825,
105
+ 0.23122866894197952,
106
+ 0.2295221843003413,
107
+ 0.23720136518771331,
108
+ 0.23976109215017063,
109
+ 0.2440273037542662,
110
+ 0.2431740614334471
111
+ ],
112
+ "acc_stderr": [
113
+ 0.011509598906598112,
114
+ 0.011643990971573407,
115
+ 0.011774262478702256,
116
+ 0.011755899303705582,
117
+ 0.01191827175485218,
118
+ 0.012057262020972504,
119
+ 0.011755899303705582,
120
+ 0.011900548748047442,
121
+ 0.012224202097063286,
122
+ 0.012191404938603836,
123
+ 0.01224049153613287,
124
+ 0.012158314774829926,
125
+ 0.012124929206818258,
126
+ 0.012224202097063293,
127
+ 0.01230492841874761,
128
+ 0.012224202097063288,
129
+ 0.012207839995407317,
130
+ 0.01219140493860384,
131
+ 0.012352507042617393,
132
+ 0.012383873560768671,
133
+ 0.01230492841874761,
134
+ 0.012383873560768675,
135
+ 0.01243039982926084,
136
+ 0.012399451855004752,
137
+ 0.01241496052430183,
138
+ 0.012272853582540807,
139
+ 0.012476304127453949,
140
+ 0.012682496334042961,
141
+ 0.012320858834772274,
142
+ 0.012288926760890788,
143
+ 0.012430399829260844,
144
+ 0.012476304127453947,
145
+ 0.012551447627856255,
146
+ 0.012536554144587087
147
+ ],
148
+ "acc_norm": [
149
+ 0.24829351535836178,
150
+ 0.24658703071672355,
151
+ 0.25341296928327645,
152
+ 0.2508532423208191,
153
+ 0.2508532423208191,
154
+ 0.25170648464163825,
155
+ 0.2508532423208191,
156
+ 0.2627986348122867,
157
+ 0.2619453924914676,
158
+ 0.24914675767918087,
159
+ 0.257679180887372,
160
+ 0.2627986348122867,
161
+ 0.2696245733788396,
162
+ 0.2636518771331058,
163
+ 0.27047781569965873,
164
+ 0.2713310580204778,
165
+ 0.2619453924914676,
166
+ 0.2619453924914676,
167
+ 0.26535836177474403,
168
+ 0.26706484641638223,
169
+ 0.2687713310580205,
170
+ 0.2713310580204778,
171
+ 0.2773037542662116,
172
+ 0.2858361774744027,
173
+ 0.28754266211604096,
174
+ 0.28071672354948807,
175
+ 0.2790102389078498,
176
+ 0.2841296928327645,
177
+ 0.2713310580204778,
178
+ 0.26535836177474403,
179
+ 0.27559726962457337,
180
+ 0.28242320819112626,
181
+ 0.27474402730375425,
182
+ 0.2738907849829352
183
+ ],
184
+ "acc_norm_stderr": [
185
+ 0.01262491286808976,
186
+ 0.01259572626879013,
187
+ 0.012710896778378607,
188
+ 0.012668198621315433,
189
+ 0.01266819862131543,
190
+ 0.012682496334042967,
191
+ 0.012668198621315433,
192
+ 0.012862523175351335,
193
+ 0.012849054826858112,
194
+ 0.012639407111926433,
195
+ 0.012780770562768402,
196
+ 0.012862523175351333,
197
+ 0.012968040686869154,
198
+ 0.01287592915129705,
199
+ 0.012980954547659554,
200
+ 0.012993807727545792,
201
+ 0.012849054826858114,
202
+ 0.012849054826858114,
203
+ 0.012902554762313966,
204
+ 0.012928933196496345,
205
+ 0.012955065963710686,
206
+ 0.01299380772754579,
207
+ 0.013082095839059376,
208
+ 0.013203196088537369,
209
+ 0.01322671905626613,
210
+ 0.013131238126975584,
211
+ 0.013106784883601338,
212
+ 0.013179442447653886,
213
+ 0.012993807727545789,
214
+ 0.012902554762313967,
215
+ 0.013057169655761838,
216
+ 0.013155456884097225,
217
+ 0.013044617212771227,
218
+ 0.013032004972989505
219
+ ]
220
+ },
221
+ "arc_easy": {
222
+ "acc": [
223
+ 0.4713804713804714,
224
+ 0.48947811447811446,
225
+ 0.4978956228956229,
226
+ 0.4936868686868687,
227
+ 0.4936868686868687,
228
+ 0.5008417508417509,
229
+ 0.49915824915824913,
230
+ 0.494949494949495,
231
+ 0.5105218855218855,
232
+ 0.523989898989899,
233
+ 0.5277777777777778,
234
+ 0.5277777777777778,
235
+ 0.5218855218855218,
236
+ 0.5252525252525253,
237
+ 0.5273569023569024,
238
+ 0.5286195286195287,
239
+ 0.5269360269360269,
240
+ 0.5332491582491582,
241
+ 0.5281986531986532,
242
+ 0.5311447811447811,
243
+ 0.5408249158249159,
244
+ 0.5412457912457912,
245
+ 0.5412457912457912,
246
+ 0.5391414141414141,
247
+ 0.5505050505050505,
248
+ 0.5467171717171717,
249
+ 0.555976430976431,
250
+ 0.5593434343434344,
251
+ 0.5547138047138047,
252
+ 0.5576599326599326,
253
+ 0.5622895622895623,
254
+ 0.553030303030303,
255
+ 0.5652356902356902,
256
+ 0.5614478114478114
257
+ ],
258
+ "acc_stderr": [
259
+ 0.01024296261792719,
260
+ 0.010257511546488227,
261
+ 0.01025969265153704,
262
+ 0.01025896566804443,
263
+ 0.010258965668044432,
264
+ 0.01025976898181524,
265
+ 0.010259768981815234,
266
+ 0.010259260102565861,
267
+ 0.01025751154648823,
268
+ 0.010247967392742686,
269
+ 0.010243938285881118,
270
+ 0.010243938285881118,
271
+ 0.010249950427234157,
272
+ 0.010246690042583852,
273
+ 0.010244415164390527,
274
+ 0.010242962617927197,
275
+ 0.0102448847406201,
276
+ 0.010237073872130738,
277
+ 0.010243454104071783,
278
+ 0.010239860250021741,
279
+ 0.010225526906982602,
280
+ 0.010224815730255816,
281
+ 0.010224815730255818,
282
+ 0.010228298200766128,
283
+ 0.010207308833916032,
284
+ 0.01021490151673162,
285
+ 0.010195285580783956,
286
+ 0.010187264635711984,
287
+ 0.01019817113787387,
288
+ 0.010191334444220856,
289
+ 0.010179856486006902,
290
+ 0.010201914927791671,
291
+ 0.010172083670402787,
292
+ 0.010182010275471116
293
+ ],
294
+ "acc_norm": [
295
+ 0.4297138047138047,
296
+ 0.4356060606060606,
297
+ 0.44065656565656564,
298
+ 0.44612794612794615,
299
+ 0.4541245791245791,
300
+ 0.4494949494949495,
301
+ 0.4452861952861953,
302
+ 0.44654882154882153,
303
+ 0.4642255892255892,
304
+ 0.46675084175084175,
305
+ 0.47095959595959597,
306
+ 0.47264309764309764,
307
+ 0.4701178451178451,
308
+ 0.48653198653198654,
309
+ 0.4781144781144781,
310
+ 0.4713804713804714,
311
+ 0.4722222222222222,
312
+ 0.48947811447811446,
313
+ 0.47853535353535354,
314
+ 0.4831649831649832,
315
+ 0.4797979797979798,
316
+ 0.4819023569023569,
317
+ 0.4819023569023569,
318
+ 0.4831649831649832,
319
+ 0.4962121212121212,
320
+ 0.49537037037037035,
321
+ 0.5,
322
+ 0.49873737373737376,
323
+ 0.502104377104377,
324
+ 0.4978956228956229,
325
+ 0.49537037037037035,
326
+ 0.5012626262626263,
327
+ 0.49873737373737376,
328
+ 0.5033670033670034
329
+ ],
330
+ "acc_norm_stderr": [
331
+ 0.010157908005763676,
332
+ 0.010174341733665219,
333
+ 0.010187264635711978,
334
+ 0.01020005782876501,
335
+ 0.010216507710244096,
336
+ 0.010207308833916046,
337
+ 0.010198171137873857,
338
+ 0.010200990076245326,
339
+ 0.01023348870972655,
340
+ 0.010237073872130745,
341
+ 0.010242463826395626,
342
+ 0.010244415164390541,
343
+ 0.010241444322886427,
344
+ 0.010256060854840748,
345
+ 0.01024995042723415,
346
+ 0.010242962617927181,
347
+ 0.010243938285881118,
348
+ 0.010257511546488228,
349
+ 0.010250325159456663,
350
+ 0.010253966261288898,
351
+ 0.010251405621305368,
352
+ 0.010253060653479177,
353
+ 0.010253060653479177,
354
+ 0.010253966261288898,
355
+ 0.010259489101351842,
356
+ 0.010259343705889734,
357
+ 0.01025978352085154,
358
+ 0.010259750807991153,
359
+ 0.010259692651537032,
360
+ 0.010259692651537042,
361
+ 0.010259343705889733,
362
+ 0.010259750807991061,
363
+ 0.010259750807991155,
364
+ 0.01025955089379893
365
+ ]
366
+ },
367
+ "boolq": {
368
+ "acc": [
369
+ 0.5856269113149847,
370
+ 0.6165137614678899,
371
+ 0.6033639143730887,
372
+ 0.6012232415902141,
373
+ 0.5896024464831804,
374
+ 0.5513761467889908,
375
+ 0.5318042813455658,
376
+ 0.5688073394495413,
377
+ 0.5431192660550459,
378
+ 0.5351681957186545,
379
+ 0.5807339449541284,
380
+ 0.5834862385321101,
381
+ 0.6030581039755352,
382
+ 0.5770642201834862,
383
+ 0.5409785932721712,
384
+ 0.6107033639143731,
385
+ 0.5510703363914373,
386
+ 0.536085626911315,
387
+ 0.6021406727828746,
388
+ 0.5192660550458715,
389
+ 0.5654434250764526,
390
+ 0.5516819571865443,
391
+ 0.5477064220183486,
392
+ 0.5345565749235474,
393
+ 0.5507645259938838,
394
+ 0.5180428134556575,
395
+ 0.5342507645259938,
396
+ 0.5293577981651376,
397
+ 0.5266055045871559,
398
+ 0.5850152905198777,
399
+ 0.5755351681957187,
400
+ 0.5403669724770642,
401
+ 0.5694189602446483,
402
+ 0.554434250764526
403
+ ],
404
+ "acc_stderr": [
405
+ 0.00861586377642113,
406
+ 0.008504304838837027,
407
+ 0.008556148582031997,
408
+ 0.00856397398772991,
409
+ 0.008603488048617523,
410
+ 0.008698767182005268,
411
+ 0.008727345583419184,
412
+ 0.008661853128165595,
413
+ 0.008712475433089477,
414
+ 0.008723396352960192,
415
+ 0.00863030207099909,
416
+ 0.008622288020674003,
417
+ 0.00855727696467513,
418
+ 0.008640558744656426,
419
+ 0.008715635308774413,
420
+ 0.008528016290984541,
421
+ 0.008699318031464162,
422
+ 0.00872225010207808,
423
+ 0.008560641169303369,
424
+ 0.008738560570551961,
425
+ 0.008669824006668013,
426
+ 0.008698213008694267,
427
+ 0.008705158179072315,
428
+ 0.008724144040604813,
429
+ 0.008699865557703648,
430
+ 0.008739359336700274,
431
+ 0.008724512941821092,
432
+ 0.008729967580199222,
433
+ 0.008732665775847746,
434
+ 0.008617716361921567,
435
+ 0.008644688121685503,
436
+ 0.008716508381476017,
437
+ 0.008660360145988744,
438
+ 0.008693075769447138
439
+ ]
440
+ },
441
+ "copa": {
442
+ "acc": [
443
+ 0.71,
444
+ 0.72,
445
+ 0.71,
446
+ 0.69,
447
+ 0.69,
448
+ 0.71,
449
+ 0.73,
450
+ 0.69,
451
+ 0.7,
452
+ 0.7,
453
+ 0.69,
454
+ 0.75,
455
+ 0.69,
456
+ 0.7,
457
+ 0.73,
458
+ 0.74,
459
+ 0.69,
460
+ 0.7,
461
+ 0.69,
462
+ 0.73,
463
+ 0.67,
464
+ 0.71,
465
+ 0.66,
466
+ 0.67,
467
+ 0.68,
468
+ 0.71,
469
+ 0.69,
470
+ 0.7,
471
+ 0.69,
472
+ 0.71,
473
+ 0.67,
474
+ 0.69,
475
+ 0.7,
476
+ 0.7
477
+ ],
478
+ "acc_stderr": [
479
+ 0.04560480215720683,
480
+ 0.04512608598542127,
481
+ 0.04560480215720684,
482
+ 0.04648231987117316,
483
+ 0.04648231987117316,
484
+ 0.045604802157206845,
485
+ 0.044619604333847394,
486
+ 0.04648231987117316,
487
+ 0.046056618647183814,
488
+ 0.046056618647183814,
489
+ 0.04648231987117316,
490
+ 0.04351941398892446,
491
+ 0.04648231987117316,
492
+ 0.046056618647183814,
493
+ 0.04461960433384741,
494
+ 0.0440844002276808,
495
+ 0.04648231987117316,
496
+ 0.046056618647183814,
497
+ 0.04648231987117316,
498
+ 0.044619604333847394,
499
+ 0.047258156262526066,
500
+ 0.04560480215720684,
501
+ 0.04760952285695238,
502
+ 0.04725815626252607,
503
+ 0.046882617226215034,
504
+ 0.04560480215720684,
505
+ 0.04648231987117316,
506
+ 0.046056618647183814,
507
+ 0.04648231987117316,
508
+ 0.04560480215720683,
509
+ 0.047258156262526066,
510
+ 0.04648231987117316,
511
+ 0.046056618647183814,
512
+ 0.046056618647183814
513
+ ]
514
+ },
515
+ "headqa_en": {
516
+ "acc": [
517
+ 0.23085339168490154,
518
+ 0.24106491611962072,
519
+ 0.2323121808898614,
520
+ 0.23304157549234136,
521
+ 0.23413566739606126,
522
+ 0.237417943107221,
523
+ 0.23960612691466082,
524
+ 0.24070021881838075,
525
+ 0.237417943107221,
526
+ 0.2461706783369803,
527
+ 0.24070021881838075,
528
+ 0.24544128373450036,
529
+ 0.24544128373450036,
530
+ 0.24179431072210067,
531
+ 0.24653537563822028,
532
+ 0.23158278628738146,
533
+ 0.23705324580598103,
534
+ 0.2461706783369803,
535
+ 0.24690007293946026,
536
+ 0.2447118891320204,
537
+ 0.25091174325309995,
538
+ 0.24908825674690008,
539
+ 0.2439824945295405,
540
+ 0.24507658643326038,
541
+ 0.24945295404814005,
542
+ 0.2461706783369803,
543
+ 0.24981765134938003,
544
+ 0.25419401896425964,
545
+ 0.24981765134938003,
546
+ 0.25455871626549964,
547
+ 0.2549234135667396,
548
+ 0.24945295404814005,
549
+ 0.25309992706053974,
550
+ 0.24762946754194018
551
+ ],
552
+ "acc_stderr": [
553
+ 0.00804855982758665,
554
+ 0.008169863520957039,
555
+ 0.008066289373760265,
556
+ 0.008075103495030473,
557
+ 0.00808826167279805,
558
+ 0.008127285992179082,
559
+ 0.008152930613263026,
560
+ 0.008165642499601123,
561
+ 0.008127285992179082,
562
+ 0.008228111277828357,
563
+ 0.008165642499601137,
564
+ 0.008219886279844553,
565
+ 0.00821988627984455,
566
+ 0.008178281228165185,
567
+ 0.008232211853559124,
568
+ 0.008057441521692892,
569
+ 0.008122983109676263,
570
+ 0.008228111277828357,
571
+ 0.008236304496286385,
572
+ 0.008211629406841454,
573
+ 0.008280803335771757,
574
+ 0.00826069441827071,
575
+ 0.00820334056257037,
576
+ 0.00821576183371828,
577
+ 0.00826473185835768,
578
+ 0.008228111277828357,
579
+ 0.008268761458717196,
580
+ 0.008316509290190666,
581
+ 0.008268761458717196,
582
+ 0.008320438000609576,
583
+ 0.008324359027712818,
584
+ 0.008264731858357677,
585
+ 0.008304676949891692,
586
+ 0.008244466029964781
587
+ ],
588
+ "acc_norm": [
589
+ 0.2687819110138585,
590
+ 0.2727935813274982,
591
+ 0.27972283005105764,
592
+ 0.27315827862873815,
593
+ 0.2811816192560175,
594
+ 0.27935813274981763,
595
+ 0.2830051057622174,
596
+ 0.28373450036469733,
597
+ 0.2830051057622174,
598
+ 0.29029905178701676,
599
+ 0.2895696571845368,
600
+ 0.2895696571845368,
601
+ 0.29722830051057625,
602
+ 0.2899343544857768,
603
+ 0.2895696571845368,
604
+ 0.29285193289569655,
605
+ 0.29576951130561635,
606
+ 0.29431072210065645,
607
+ 0.2990517870167761,
608
+ 0.29722830051057625,
609
+ 0.2946754194018964,
610
+ 0.29576951130561635,
611
+ 0.29175784099197666,
612
+ 0.2964989059080963,
613
+ 0.2964989059080963,
614
+ 0.29795769511305614,
615
+ 0.2964989059080963,
616
+ 0.300145878920496,
617
+ 0.29832239241429614,
618
+ 0.29978118161925604,
619
+ 0.29832239241429614,
620
+ 0.3012399708242159,
621
+ 0.30306345733041573,
622
+ 0.3012399708242159
623
+ ],
624
+ "acc_norm_stderr": [
625
+ 0.00846776826280965,
626
+ 0.008507293334608307,
627
+ 0.008573521943240946,
628
+ 0.008510843212471874,
629
+ 0.008587139792141176,
630
+ 0.008570099944976721,
631
+ 0.008604004902114399,
632
+ 0.008610702250036304,
633
+ 0.008604004902114396,
634
+ 0.008669738206463492,
635
+ 0.008663288140722399,
636
+ 0.008663288140722397,
637
+ 0.008729667320745451,
638
+ 0.008666516573158855,
639
+ 0.008663288140722392,
640
+ 0.008692099896939174,
641
+ 0.008717251898361419,
642
+ 0.008704729577762882,
643
+ 0.008745036966349153,
644
+ 0.008729667320745456,
645
+ 0.00870787020477325,
646
+ 0.008717251898361426,
647
+ 0.008682556899491154,
648
+ 0.008723472943212272,
649
+ 0.008723472943212273,
650
+ 0.008735835087689374,
651
+ 0.008723472943212272,
652
+ 0.008754179286225806,
653
+ 0.008738909009807233,
654
+ 0.008751138452362178,
655
+ 0.008738909009807234,
656
+ 0.00876326223372493,
657
+ 0.008778269040959834,
658
+ 0.00876326223372493
659
+ ]
660
+ },
661
+ "hellaswag": {
662
+ "acc": [
663
+ 0.328918542123083,
664
+ 0.33320055765783707,
665
+ 0.3405696076478789,
666
+ 0.3445528779127664,
667
+ 0.34485162318263296,
668
+ 0.35022903804023103,
669
+ 0.3567018522206732,
670
+ 0.3577972515435172,
671
+ 0.36347341167098185,
672
+ 0.3730332603067118,
673
+ 0.3736307508464449,
674
+ 0.37711611232822145,
675
+ 0.37880900219079866,
676
+ 0.3798048197570205,
677
+ 0.3867755427205736,
678
+ 0.385381398127863,
679
+ 0.386476797450707,
680
+ 0.38926508663612824,
681
+ 0.3915554670384386,
682
+ 0.3966341366261701,
683
+ 0.3965345548695479,
684
+ 0.3963353913563035,
685
+ 0.40579565823541125,
686
+ 0.4039036048595897,
687
+ 0.40509858593905596,
688
+ 0.40440151364270066,
689
+ 0.40908185620394344,
690
+ 0.4118701453893647,
691
+ 0.4148575980880303,
692
+ 0.4161521609241187,
693
+ 0.4186417048396734,
694
+ 0.41894045010953995,
695
+ 0.42113124875522806,
696
+ 0.4219279028082055
697
+ ],
698
+ "acc_stderr": [
699
+ 0.004688601416815189,
700
+ 0.0047039423467622596,
701
+ 0.004729322613301549,
702
+ 0.004742510354777905,
703
+ 0.0047434845283466625,
704
+ 0.004760666311146298,
705
+ 0.004780467270911765,
706
+ 0.004783723798286501,
707
+ 0.004800164434233259,
708
+ 0.004826224784850442,
709
+ 0.004827786289074841,
710
+ 0.004836738514051329,
711
+ 0.004840990593494684,
712
+ 0.004843462545943492,
713
+ 0.0048601620763309705,
714
+ 0.004856906473719392,
715
+ 0.004859467984155266,
716
+ 0.004865871290143345,
717
+ 0.004871005939407469,
718
+ 0.004881990487628917,
719
+ 0.004881780399499138,
720
+ 0.004881359589149001,
721
+ 0.004900417982582058,
722
+ 0.004896757857022552,
723
+ 0.004899078300184252,
724
+ 0.004897728370737249,
725
+ 0.004906595857916756,
726
+ 0.004911659884506146,
727
+ 0.004916905095810846,
728
+ 0.004919120169394336,
729
+ 0.004923281841828513,
730
+ 0.0049237725818484885,
731
+ 0.004927314729433556,
732
+ 0.004928578106026369
733
+ ],
734
+ "acc_norm": [
735
+ 0.39026090420235016,
736
+ 0.40001991635132444,
737
+ 0.41037641904003186,
738
+ 0.41565425214100776,
739
+ 0.41983668591913964,
740
+ 0.4311890061740689,
741
+ 0.4358693487353117,
742
+ 0.44523003385779725,
743
+ 0.4552877912766381,
744
+ 0.4702250547699661,
745
+ 0.4735112527384983,
746
+ 0.4805815574586736,
747
+ 0.4832702648874726,
748
+ 0.48665604461262696,
749
+ 0.4894443337980482,
750
+ 0.49432383987253536,
751
+ 0.4978092013543119,
752
+ 0.49970125473013344,
753
+ 0.5053774148575981,
754
+ 0.5126468830910177,
755
+ 0.5134435371439953,
756
+ 0.5147380999800837,
757
+ 0.526090420235013,
758
+ 0.5266879107747461,
759
+ 0.5281816371240788,
760
+ 0.5294761999601673,
761
+ 0.536247759410476,
762
+ 0.5393347938657638,
763
+ 0.5451105357498506,
764
+ 0.5438159729137622,
765
+ 0.548496315475005,
766
+ 0.5497908783110934,
767
+ 0.5500896235809599,
768
+ 0.550687114120693
769
+ ],
770
+ "acc_norm_stderr": [
771
+ 0.004868117598481943,
772
+ 0.004889007921214699,
773
+ 0.004908967278222497,
774
+ 0.004918272352137552,
775
+ 0.004925233680511588,
776
+ 0.004942302768002104,
777
+ 0.004948567856373873,
778
+ 0.004959754882055469,
779
+ 0.004969790407117549,
780
+ 0.004980926198798972,
781
+ 0.004982774293927776,
782
+ 0.004986016938678531,
783
+ 0.0049869875089287126,
784
+ 0.004988004122536502,
785
+ 0.004988669343786959,
786
+ 0.004989459871609184,
787
+ 0.004989733513319102,
788
+ 0.004989780520782243,
789
+ 0.004989492828168531,
790
+ 0.0049881849883452855,
791
+ 0.004987977492042154,
792
+ 0.0049876132636781775,
793
+ 0.004982983592459194,
794
+ 0.004982668452118946,
795
+ 0.004981849291299644,
796
+ 0.004981103157940437,
797
+ 0.004976651989757642,
798
+ 0.004974316807920411,
799
+ 0.004969431900874306,
800
+ 0.004970585328297624,
801
+ 0.0049662550892124275,
802
+ 0.004964979120927572,
803
+ 0.004964679845918427,
804
+ 0.004964075870120337
805
+ ]
806
+ },
807
+ "lambada": {
808
+ "ppl": [
809
+ 32.621324227429184,
810
+ 30.639591263041808,
811
+ 27.824475015249064,
812
+ 25.537821610539932,
813
+ 23.497946335169004,
814
+ 23.1004453640144,
815
+ 24.36489982385264,
816
+ 21.443992832210707,
817
+ 21.19387768776711,
818
+ 17.763182400833088,
819
+ 19.773001152615144,
820
+ 17.92660146185445,
821
+ 16.677594695767798,
822
+ 16.65763704756145,
823
+ 16.40772738868533,
824
+ 15.551082895412318,
825
+ 17.14911063173112,
826
+ 16.314018680134257,
827
+ 15.297408445296128,
828
+ 14.193282998851707,
829
+ 14.650645874912932,
830
+ 14.327229571268942,
831
+ 13.514555687409516,
832
+ 13.881934420349538,
833
+ 13.735370217866647,
834
+ 14.06969071816386,
835
+ 12.815627673068203,
836
+ 12.554895986642721,
837
+ 12.97184974584759,
838
+ 12.322450143856624,
839
+ 11.807064551326473,
840
+ 12.648077956981256,
841
+ 11.965421508455707,
842
+ 12.065662868384443
843
+ ],
844
+ "ppl_stderr": [
845
+ 1.1963587903700155,
846
+ 1.0792434257051169,
847
+ 0.9803173395443245,
848
+ 0.8883002174180411,
849
+ 0.8111754484638396,
850
+ 0.7877352894334106,
851
+ 0.8192584690276606,
852
+ 0.7176552509710284,
853
+ 0.7047940272111838,
854
+ 0.5744060989196327,
855
+ 0.6377795946534752,
856
+ 0.5789048479873562,
857
+ 0.5271189458009388,
858
+ 0.5330204917365942,
859
+ 0.5166008147645302,
860
+ 0.4936826799464582,
861
+ 0.5367165367715473,
862
+ 0.5145317352139375,
863
+ 0.4789339173617679,
864
+ 0.4462796491467827,
865
+ 0.4547061383498668,
866
+ 0.4486615578291165,
867
+ 0.4163325695298929,
868
+ 0.42130569367413345,
869
+ 0.4169434900832809,
870
+ 0.42676326043093105,
871
+ 0.3845479402613268,
872
+ 0.377945452172566,
873
+ 0.3829051970997864,
874
+ 0.3633677304997388,
875
+ 0.35032874343527404,
876
+ 0.3774394704766126,
877
+ 0.35372531708658533,
878
+ 0.3559930542996243
879
+ ],
880
+ "acc": [
881
+ 0.32699398408693964,
882
+ 0.3332039588589171,
883
+ 0.3483407723656123,
884
+ 0.35008732777023094,
885
+ 0.37046380749078206,
886
+ 0.37182223947215215,
887
+ 0.3570735493887056,
888
+ 0.3824956336114885,
889
+ 0.3791965845138754,
890
+ 0.4020958664855424,
891
+ 0.3898699786532117,
892
+ 0.4061711624296526,
893
+ 0.4164564331457403,
894
+ 0.42363671647583934,
895
+ 0.42635358043857946,
896
+ 0.4281001358431981,
897
+ 0.41024645837376283,
898
+ 0.42829419755482245,
899
+ 0.43450417232679994,
900
+ 0.4539103434892296,
901
+ 0.4389675916941587,
902
+ 0.44284882592664465,
903
+ 0.4527459732194838,
904
+ 0.44886473898699786,
905
+ 0.4477003687172521,
906
+ 0.43877352998253444,
907
+ 0.4601203182612071,
908
+ 0.4630312439355715,
909
+ 0.4572093925868426,
910
+ 0.4702115272656705,
911
+ 0.4803027362701339,
912
+ 0.46089656510770427,
913
+ 0.47137589753541626,
914
+ 0.4694352804191733
915
+ ],
916
+ "acc_stderr": [
917
+ 0.006535689740487129,
918
+ 0.006566949181820453,
919
+ 0.006637805195772816,
920
+ 0.006645501658657036,
921
+ 0.006728144610304269,
922
+ 0.006733192522297656,
923
+ 0.0066753118561223325,
924
+ 0.0067708833250532535,
925
+ 0.006759605180095818,
926
+ 0.00683113164830145,
927
+ 0.006794901529888733,
928
+ 0.006842223524282646,
929
+ 0.006868050870202006,
930
+ 0.00688425617620753,
931
+ 0.006889999234952311,
932
+ 0.0068935789269446044,
933
+ 0.006852827058720169,
934
+ 0.0068939712541951454,
935
+ 0.006905955107492335,
936
+ 0.006936319475444729,
937
+ 0.006913886988887271,
938
+ 0.0069203227037583125,
939
+ 0.006934798617263737,
940
+ 0.00692945241479083,
941
+ 0.006927765449003239,
942
+ 0.006913553944132543,
943
+ 0.006943785077347287,
944
+ 0.006946910914142773,
945
+ 0.006940420862895478,
946
+ 0.006953604103874042,
947
+ 0.006960570207731852,
948
+ 0.006944641928135856,
949
+ 0.00695455329137302,
950
+ 0.006952950213860608
951
+ ]
952
+ },
953
+ "logiqa": {
954
+ "acc": [
955
+ 0.21351766513056836,
956
+ 0.2073732718894009,
957
+ 0.21812596006144394,
958
+ 0.22119815668202766,
959
+ 0.22580645161290322,
960
+ 0.21812596006144394,
961
+ 0.22119815668202766,
962
+ 0.23809523809523808,
963
+ 0.21658986175115208,
964
+ 0.21812596006144394,
965
+ 0.20890937019969277,
966
+ 0.22887864823348694,
967
+ 0.23348694316436253,
968
+ 0.22119815668202766,
969
+ 0.23655913978494625,
970
+ 0.22119815668202766,
971
+ 0.22119815668202766,
972
+ 0.21812596006144394,
973
+ 0.20890937019969277,
974
+ 0.20430107526881722,
975
+ 0.22580645161290322,
976
+ 0.20583717357910905,
977
+ 0.21505376344086022,
978
+ 0.21658986175115208,
979
+ 0.21044546850998463,
980
+ 0.2119815668202765,
981
+ 0.1966205837173579,
982
+ 0.22119815668202766,
983
+ 0.2073732718894009,
984
+ 0.2012288786482335,
985
+ 0.20890937019969277,
986
+ 0.21044546850998463,
987
+ 0.20430107526881722,
988
+ 0.20583717357910905
989
+ ],
990
+ "acc_stderr": [
991
+ 0.016073287529685204,
992
+ 0.015902084913876336,
993
+ 0.016198149258419323,
994
+ 0.016279743532401667,
995
+ 0.016399713788445076,
996
+ 0.01619814925841932,
997
+ 0.016279743532401664,
998
+ 0.016705867034419633,
999
+ 0.016156860583178303,
1000
+ 0.01619814925841932,
1001
+ 0.015945399396423914,
1002
+ 0.016478107276313273,
1003
+ 0.016593362460570887,
1004
+ 0.016279743532401657,
1005
+ 0.016668667667174196,
1006
+ 0.016279743532401664,
1007
+ 0.01627974353240166,
1008
+ 0.016198149258419316,
1009
+ 0.015945399396423907,
1010
+ 0.015814411436934704,
1011
+ 0.01639971378844507,
1012
+ 0.01585842321932389,
1013
+ 0.01611524086412918,
1014
+ 0.016156860583178306,
1015
+ 0.015988369488888748,
1016
+ 0.016030997960619395,
1017
+ 0.015588996601449462,
1018
+ 0.016279743532401664,
1019
+ 0.015902084913876333,
1020
+ 0.015725325827428208,
1021
+ 0.015945399396423917,
1022
+ 0.015988369488888755,
1023
+ 0.015814411436934704,
1024
+ 0.01585842321932389
1025
+ ],
1026
+ "acc_norm": [
1027
+ 0.26574500768049153,
1028
+ 0.27342549923195086,
1029
+ 0.26574500768049153,
1030
+ 0.27956989247311825,
1031
+ 0.27956989247311825,
1032
+ 0.29339477726574503,
1033
+ 0.29339477726574503,
1034
+ 0.2995391705069124,
1035
+ 0.2749615975422427,
1036
+ 0.2903225806451613,
1037
+ 0.2749615975422427,
1038
+ 0.29339477726574503,
1039
+ 0.29339477726574503,
1040
+ 0.2964669738863287,
1041
+ 0.29185867895545314,
1042
+ 0.2857142857142857,
1043
+ 0.282642089093702,
1044
+ 0.2903225806451613,
1045
+ 0.2903225806451613,
1046
+ 0.29493087557603687,
1047
+ 0.28417818740399386,
1048
+ 0.28110599078341014,
1049
+ 0.2964669738863287,
1050
+ 0.28110599078341014,
1051
+ 0.29185867895545314,
1052
+ 0.27956989247311825,
1053
+ 0.2626728110599078,
1054
+ 0.28110599078341014,
1055
+ 0.2764976958525346,
1056
+ 0.2764976958525346,
1057
+ 0.2780337941628264,
1058
+ 0.27342549923195086,
1059
+ 0.2672811059907834,
1060
+ 0.2672811059907834
1061
+ ],
1062
+ "acc_norm_stderr": [
1063
+ 0.017326040808935694,
1064
+ 0.01748247454768128,
1065
+ 0.017326040808935694,
1066
+ 0.017602909186822453,
1067
+ 0.017602909186822453,
1068
+ 0.017859032704399497,
1069
+ 0.017859032704399497,
1070
+ 0.01796644118858794,
1071
+ 0.01751297178222521,
1072
+ 0.017803862148538005,
1073
+ 0.017512971782225217,
1074
+ 0.017859032704399497,
1075
+ 0.0178590327043995,
1076
+ 0.017913222760382742,
1077
+ 0.01783157055397193,
1078
+ 0.01771924779845829,
1079
+ 0.017661585370360618,
1080
+ 0.017803862148538,
1081
+ 0.017803862148538005,
1082
+ 0.017886249734104378,
1083
+ 0.017690542680190765,
1084
+ 0.017632374626460008,
1085
+ 0.017913222760382742,
1086
+ 0.017632374626460008,
1087
+ 0.017831570553971932,
1088
+ 0.017602909186822453,
1089
+ 0.017261598347857544,
1090
+ 0.017632374626460008,
1091
+ 0.017543209075825204,
1092
+ 0.017543209075825204,
1093
+ 0.017573187770282717,
1094
+ 0.01748247454768128,
1095
+ 0.0173578586224101,
1096
+ 0.017357858622410096
1097
+ ]
1098
+ },
1099
+ "mathqa": {
1100
+ "acc": [
1101
+ 0.21608040201005024,
1102
+ 0.21708542713567838,
1103
+ 0.21708542713567838,
1104
+ 0.2150753768844221,
1105
+ 0.21574539363484088,
1106
+ 0.22144053601340033,
1107
+ 0.2254606365159129,
1108
+ 0.22110552763819097,
1109
+ 0.22948073701842547,
1110
+ 0.22278056951423786,
1111
+ 0.22914572864321608,
1112
+ 0.22646566164154103,
1113
+ 0.2338358458961474,
1114
+ 0.23115577889447236,
1115
+ 0.22680067001675042,
1116
+ 0.2271356783919598,
1117
+ 0.2241206030150754,
1118
+ 0.2234505862646566,
1119
+ 0.2234505862646566,
1120
+ 0.22244556113902847,
1121
+ 0.23082077051926297,
1122
+ 0.23182579564489111,
1123
+ 0.22981574539363483,
1124
+ 0.22914572864321608,
1125
+ 0.2254606365159129,
1126
+ 0.22814070351758794,
1127
+ 0.2284757118927973,
1128
+ 0.2288107202680067,
1129
+ 0.22948073701842547,
1130
+ 0.23886097152428812,
1131
+ 0.23484087102177553,
1132
+ 0.2324958123953099,
1133
+ 0.23618090452261306,
1134
+ 0.23283082077051925
1135
+ ],
1136
+ "acc_stderr": [
1137
+ 0.007534319642738904,
1138
+ 0.007546978526071601,
1139
+ 0.007546978526071604,
1140
+ 0.007521594451353452,
1141
+ 0.007530085296403079,
1142
+ 0.007601075507352047,
1143
+ 0.007649934243740963,
1144
+ 0.0075969575822193375,
1145
+ 0.00769777936094425,
1146
+ 0.007617475572803636,
1147
+ 0.007693830518376545,
1148
+ 0.007661989801224798,
1149
+ 0.007748489498007528,
1150
+ 0.007717420163974325,
1151
+ 0.007665994295006107,
1152
+ 0.007669991794420069,
1153
+ 0.007633761575437846,
1154
+ 0.0076256327861774775,
1155
+ 0.007625632786177477,
1156
+ 0.007613386278535906,
1157
+ 0.007713505756203997,
1158
+ 0.00772522842349705,
1159
+ 0.0077017212954290535,
1160
+ 0.007693830518376543,
1161
+ 0.007649934243740954,
1162
+ 0.007681942435552283,
1163
+ 0.0076859120663839145,
1164
+ 0.007689874757083945,
1165
+ 0.00769777936094425,
1166
+ 0.007805580078648699,
1167
+ 0.007760028457552943,
1168
+ 0.0077330093441520245,
1169
+ 0.0077753193787470495,
1170
+ 0.00773688957819094
1171
+ ],
1172
+ "acc_norm": [
1173
+ 0.21775544388609716,
1174
+ 0.21273031825795644,
1175
+ 0.2201005025125628,
1176
+ 0.21641541038525963,
1177
+ 0.22144053601340033,
1178
+ 0.22914572864321608,
1179
+ 0.22479061976549414,
1180
+ 0.22144053601340033,
1181
+ 0.2321608040201005,
1182
+ 0.22814070351758794,
1183
+ 0.22981574539363483,
1184
+ 0.22780569514237856,
1185
+ 0.23618090452261306,
1186
+ 0.2304857621440536,
1187
+ 0.22445561139028475,
1188
+ 0.22445561139028475,
1189
+ 0.22646566164154103,
1190
+ 0.223785594639866,
1191
+ 0.2221105527638191,
1192
+ 0.2284757118927973,
1193
+ 0.22680067001675042,
1194
+ 0.22948073701842547,
1195
+ 0.22512562814070353,
1196
+ 0.2204355108877722,
1197
+ 0.22110552763819097,
1198
+ 0.2254606365159129,
1199
+ 0.22177554438860972,
1200
+ 0.2254606365159129,
1201
+ 0.2271356783919598,
1202
+ 0.2355108877721943,
1203
+ 0.23082077051926297,
1204
+ 0.2288107202680067,
1205
+ 0.23182579564489111,
1206
+ 0.22747068676716917
1207
+ ],
1208
+ "acc_norm_stderr": [
1209
+ 0.007555381108481066,
1210
+ 0.007491642572152824,
1211
+ 0.007584560639169464,
1212
+ 0.007538546621546404,
1213
+ 0.0076010755073520515,
1214
+ 0.007693830518376545,
1215
+ 0.00764186203129024,
1216
+ 0.007601075507352056,
1217
+ 0.007729122296015981,
1218
+ 0.007681942435552285,
1219
+ 0.00770172129542905,
1220
+ 0.007677965853825286,
1221
+ 0.00777531937874705,
1222
+ 0.007709584482517441,
1223
+ 0.007637815339398026,
1224
+ 0.007637815339398025,
1225
+ 0.007661989801224808,
1226
+ 0.007629700728135998,
1227
+ 0.007609289843903929,
1228
+ 0.00768591206638392,
1229
+ 0.0076659942950061,
1230
+ 0.00769777936094425,
1231
+ 0.007645901662342707,
1232
+ 0.007588700159870971,
1233
+ 0.007596957582219341,
1234
+ 0.007649934243740954,
1235
+ 0.0076051862573707244,
1236
+ 0.007649934243740947,
1237
+ 0.007669991794420072,
1238
+ 0.007767687364650975,
1239
+ 0.00771350575620399,
1240
+ 0.00768987475708395,
1241
+ 0.007725228423497048,
1242
+ 0.007673982310396806
1243
+ ]
1244
+ },
1245
+ "mc_taco": {
1246
+ "em": [
1247
+ 0.12912912912912913,
1248
+ 0.1388888888888889,
1249
+ 0.1493993993993994,
1250
+ 0.11636636636636637,
1251
+ 0.12837837837837837,
1252
+ 0.12987987987987987,
1253
+ 0.1493993993993994,
1254
+ 0.1313813813813814,
1255
+ 0.13063063063063063,
1256
+ 0.12312312312312312,
1257
+ 0.12987987987987987,
1258
+ 0.11411411411411411,
1259
+ 0.11486486486486487,
1260
+ 0.12312312312312312,
1261
+ 0.11936936936936937,
1262
+ 0.11936936936936937,
1263
+ 0.12162162162162163,
1264
+ 0.11786786786786786,
1265
+ 0.11636636636636637,
1266
+ 0.11861861861861862,
1267
+ 0.12162162162162163,
1268
+ 0.12687687687687688,
1269
+ 0.17117117117117117,
1270
+ 0.15090090090090091,
1271
+ 0.13063063063063063,
1272
+ 0.1388888888888889,
1273
+ 0.1478978978978979,
1274
+ 0.14114114114114115,
1275
+ 0.1554054054054054,
1276
+ 0.12237237237237238,
1277
+ 0.1539039039039039,
1278
+ 0.15990990990990991,
1279
+ 0.16891891891891891,
1280
+ 0.1539039039039039
1281
+ ],
1282
+ "f1": [
1283
+ 0.4021729676444149,
1284
+ 0.4022397887099957,
1285
+ 0.37740379193628765,
1286
+ 0.47054069659985776,
1287
+ 0.46284733584753573,
1288
+ 0.41591149221178986,
1289
+ 0.3949692061289406,
1290
+ 0.4086179718515041,
1291
+ 0.4056594213517856,
1292
+ 0.38940661702521023,
1293
+ 0.39943950866019834,
1294
+ 0.4205400663772147,
1295
+ 0.42344749732706344,
1296
+ 0.3896984381226329,
1297
+ 0.4041954945176726,
1298
+ 0.42927400028777213,
1299
+ 0.4382474479710931,
1300
+ 0.43636761307666894,
1301
+ 0.4495246629559176,
1302
+ 0.4008632720310986,
1303
+ 0.4058269917796999,
1304
+ 0.376548661267549,
1305
+ 0.339709364680583,
1306
+ 0.38536103552491885,
1307
+ 0.420145230882812,
1308
+ 0.39474670362737724,
1309
+ 0.3776497674201943,
1310
+ 0.36598753863625705,
1311
+ 0.39653325268030004,
1312
+ 0.4290818848041062,
1313
+ 0.37543526244898084,
1314
+ 0.353530340469302,
1315
+ 0.3416786896638351,
1316
+ 0.360502391792038
1317
+ ]
1318
+ },
1319
+ "mrpc": {
1320
+ "acc": [
1321
+ 0.6666666666666666,
1322
+ 0.6617647058823529,
1323
+ 0.553921568627451,
1324
+ 0.6838235294117647,
1325
+ 0.5980392156862745,
1326
+ 0.6225490196078431,
1327
+ 0.38235294117647056,
1328
+ 0.6642156862745098,
1329
+ 0.6715686274509803,
1330
+ 0.5882352941176471,
1331
+ 0.6568627450980392,
1332
+ 0.6764705882352942,
1333
+ 0.6838235294117647,
1334
+ 0.5637254901960784,
1335
+ 0.6617647058823529,
1336
+ 0.6838235294117647,
1337
+ 0.6862745098039216,
1338
+ 0.6838235294117647,
1339
+ 0.6838235294117647,
1340
+ 0.6838235294117647,
1341
+ 0.6838235294117647,
1342
+ 0.6813725490196079,
1343
+ 0.6838235294117647,
1344
+ 0.6838235294117647,
1345
+ 0.6838235294117647,
1346
+ 0.6838235294117647,
1347
+ 0.6838235294117647,
1348
+ 0.6838235294117647,
1349
+ 0.6838235294117647,
1350
+ 0.6838235294117647,
1351
+ 0.6838235294117647,
1352
+ 0.6838235294117647,
1353
+ 0.6838235294117647,
1354
+ 0.6838235294117647
1355
+ ],
1356
+ "acc_stderr": [
1357
+ 0.023366654574426104,
1358
+ 0.023451145303506664,
1359
+ 0.02463953717560257,
1360
+ 0.023048336668420204,
1361
+ 0.024302976642371545,
1362
+ 0.02402812325398081,
1363
+ 0.024088247338244422,
1364
+ 0.023409253319707175,
1365
+ 0.023279321215449105,
1366
+ 0.024395116363488303,
1367
+ 0.023532824020694145,
1368
+ 0.023189113109403536,
1369
+ 0.023048336668420204,
1370
+ 0.02458196247982223,
1371
+ 0.023451145303506667,
1372
+ 0.023048336668420204,
1373
+ 0.022999936277943434,
1374
+ 0.023048336668420204,
1375
+ 0.023048336668420204,
1376
+ 0.023048336668420204,
1377
+ 0.023048336668420204,
1378
+ 0.023095996571841474,
1379
+ 0.023048336668420204,
1380
+ 0.023048336668420204,
1381
+ 0.023048336668420204,
1382
+ 0.023048336668420204,
1383
+ 0.023048336668420204,
1384
+ 0.023048336668420204,
1385
+ 0.023048336668420204,
1386
+ 0.023048336668420204,
1387
+ 0.023048336668420204,
1388
+ 0.023048336668420204,
1389
+ 0.023048336668420204,
1390
+ 0.023048336668420204
1391
+ ],
1392
+ "f1": [
1393
+ 0.7957957957957957,
1394
+ 0.7934131736526946,
1395
+ 0.662962962962963,
1396
+ 0.8122270742358079,
1397
+ 0.7328990228013029,
1398
+ 0.7450331125827814,
1399
+ 0.3076923076923077,
1400
+ 0.7946026986506746,
1401
+ 0.7987987987987989,
1402
+ 0.7113402061855671,
1403
+ 0.7852760736196319,
1404
+ 0.807017543859649,
1405
+ 0.8122270742358079,
1406
+ 0.6920415224913494,
1407
+ 0.7915407854984895,
1408
+ 0.8122270742358079,
1409
+ 0.8134110787172011,
1410
+ 0.8122270742358079,
1411
+ 0.8122270742358079,
1412
+ 0.8122270742358079,
1413
+ 0.8122270742358079,
1414
+ 0.8104956268221574,
1415
+ 0.8122270742358079,
1416
+ 0.8122270742358079,
1417
+ 0.8122270742358079,
1418
+ 0.8122270742358079,
1419
+ 0.8122270742358079,
1420
+ 0.8122270742358079,
1421
+ 0.8122270742358079,
1422
+ 0.8122270742358079,
1423
+ 0.8122270742358079,
1424
+ 0.8122270742358079,
1425
+ 0.8122270742358079,
1426
+ 0.8122270742358079
1427
+ ],
1428
+ "f1_stderr": [
1429
+ 0.017147631300581046,
1430
+ 0.017229072458670926,
1431
+ 0.02353871767052677,
1432
+ 0.01624762253426993,
1433
+ 0.020166702517416132,
1434
+ 0.019918715933978474,
1435
+ 0.03147922057444835,
1436
+ 0.017207203201259926,
1437
+ 0.017020792687975135,
1438
+ 0.021339308018119365,
1439
+ 0.01776754583831411,
1440
+ 0.016499561526275235,
1441
+ 0.01624762253426993,
1442
+ 0.021920314852868432,
1443
+ 0.017366384073219637,
1444
+ 0.01624762253426993,
1445
+ 0.016223847184253872,
1446
+ 0.01624762253426993,
1447
+ 0.01624762253426993,
1448
+ 0.01624762253426993,
1449
+ 0.01624762253426993,
1450
+ 0.016320294270046228,
1451
+ 0.01624762253426993,
1452
+ 0.01624762253426993,
1453
+ 0.01624762253426993,
1454
+ 0.01624762253426993,
1455
+ 0.01624762253426993,
1456
+ 0.01624762253426993,
1457
+ 0.01624762253426993,
1458
+ 0.01624762253426993,
1459
+ 0.01624762253426993,
1460
+ 0.01624762253426993,
1461
+ 0.01624762253426993,
1462
+ 0.01624762253426993
1463
+ ]
1464
+ },
1465
+ "multirc": {
1466
+ "acc": [
1467
+ 0.02728226652675761,
1468
+ 0.016789087093389297,
1469
+ 0.026232948583420776,
1470
+ 0.023084994753410283,
1471
+ 0.024134312696747113,
1472
+ 0.025183630640083946,
1473
+ 0.022035676810073453,
1474
+ 0.017838405036726127,
1475
+ 0.015739769150052464,
1476
+ 0.022035676810073453,
1477
+ 0.016789087093389297,
1478
+ 0.011542497376705142,
1479
+ 0.016789087093389297,
1480
+ 0.01049317943336831,
1481
+ 0.022035676810073453,
1482
+ 0.015739769150052464,
1483
+ 0.024134312696747113,
1484
+ 0.026232948583420776,
1485
+ 0.023084994753410283,
1486
+ 0.02098635886673662,
1487
+ 0.017838405036726127,
1488
+ 0.025183630640083946,
1489
+ 0.016789087093389297,
1490
+ 0.023084994753410283,
1491
+ 0.025183630640083946,
1492
+ 0.022035676810073453,
1493
+ 0.02728226652675761,
1494
+ 0.02938090241343127,
1495
+ 0.024134312696747113,
1496
+ 0.02098635886673662,
1497
+ 0.022035676810073453,
1498
+ 0.01993704092339979,
1499
+ 0.023084994753410283,
1500
+ 0.017838405036726127
1501
+ ],
1502
+ "acc_stderr": [
1503
+ 0.0052797719723249505,
1504
+ 0.004164073742672125,
1505
+ 0.005180034087040346,
1506
+ 0.004867150842341557,
1507
+ 0.004973865274017642,
1508
+ 0.005078109986764367,
1509
+ 0.004757800511976072,
1510
+ 0.0042899379467109065,
1511
+ 0.004033997956595782,
1512
+ 0.004757800511976068,
1513
+ 0.004164073742672123,
1514
+ 0.0034618673209271646,
1515
+ 0.004164073742672121,
1516
+ 0.0033025125109889778,
1517
+ 0.004757800511976066,
1518
+ 0.0040339979565957845,
1519
+ 0.004973865274017642,
1520
+ 0.005180034087040334,
1521
+ 0.004867150842341551,
1522
+ 0.004645628152687091,
1523
+ 0.0042899379467109195,
1524
+ 0.005078109986764365,
1525
+ 0.004164073742672123,
1526
+ 0.004867150842341575,
1527
+ 0.005078109986764367,
1528
+ 0.004757800511976068,
1529
+ 0.005279771972324952,
1530
+ 0.005473164573473352,
1531
+ 0.004973865274017642,
1532
+ 0.004645628152687106,
1533
+ 0.004757800511976089,
1534
+ 0.0045304241507769785,
1535
+ 0.004867150842341557,
1536
+ 0.0042899379467109065
1537
+ ]
1538
+ },
1539
+ "openbookqa": {
1540
+ "acc": [
1541
+ 0.186,
1542
+ 0.192,
1543
+ 0.186,
1544
+ 0.194,
1545
+ 0.2,
1546
+ 0.182,
1547
+ 0.19,
1548
+ 0.184,
1549
+ 0.19,
1550
+ 0.208,
1551
+ 0.214,
1552
+ 0.19,
1553
+ 0.214,
1554
+ 0.216,
1555
+ 0.2,
1556
+ 0.21,
1557
+ 0.218,
1558
+ 0.212,
1559
+ 0.218,
1560
+ 0.232,
1561
+ 0.214,
1562
+ 0.214,
1563
+ 0.212,
1564
+ 0.226,
1565
+ 0.22,
1566
+ 0.22,
1567
+ 0.212,
1568
+ 0.224,
1569
+ 0.21,
1570
+ 0.214,
1571
+ 0.214,
1572
+ 0.212,
1573
+ 0.206,
1574
+ 0.22
1575
+ ],
1576
+ "acc_stderr": [
1577
+ 0.017418806780583943,
1578
+ 0.017632180454360987,
1579
+ 0.01741880678058395,
1580
+ 0.017701827855304626,
1581
+ 0.017906459241433848,
1582
+ 0.01727277329773045,
1583
+ 0.017561800410758985,
1584
+ 0.01734617478175285,
1585
+ 0.01756180041075898,
1586
+ 0.018169542221229892,
1587
+ 0.018359797502387035,
1588
+ 0.017561800410758985,
1589
+ 0.018359797502387025,
1590
+ 0.018421909061411938,
1591
+ 0.01790645924143384,
1592
+ 0.018233620865305916,
1593
+ 0.018483378223178866,
1594
+ 0.01829703700401389,
1595
+ 0.018483378223178866,
1596
+ 0.018896193591952038,
1597
+ 0.01835979750238703,
1598
+ 0.018359797502387025,
1599
+ 0.018297037004013885,
1600
+ 0.018722956449139933,
1601
+ 0.01854421137582033,
1602
+ 0.01854421137582033,
1603
+ 0.018297037004013885,
1604
+ 0.0186639944647108,
1605
+ 0.018233620865305916,
1606
+ 0.018359797502387025,
1607
+ 0.01835979750238703,
1608
+ 0.018297037004013885,
1609
+ 0.018104794037333564,
1610
+ 0.01854421137582033
1611
+ ],
1612
+ "acc_norm": [
1613
+ 0.296,
1614
+ 0.314,
1615
+ 0.316,
1616
+ 0.298,
1617
+ 0.318,
1618
+ 0.304,
1619
+ 0.31,
1620
+ 0.31,
1621
+ 0.322,
1622
+ 0.324,
1623
+ 0.314,
1624
+ 0.322,
1625
+ 0.314,
1626
+ 0.312,
1627
+ 0.308,
1628
+ 0.318,
1629
+ 0.336,
1630
+ 0.32,
1631
+ 0.33,
1632
+ 0.334,
1633
+ 0.328,
1634
+ 0.33,
1635
+ 0.326,
1636
+ 0.336,
1637
+ 0.328,
1638
+ 0.322,
1639
+ 0.336,
1640
+ 0.332,
1641
+ 0.328,
1642
+ 0.33,
1643
+ 0.342,
1644
+ 0.342,
1645
+ 0.338,
1646
+ 0.336
1647
+ ],
1648
+ "acc_norm_stderr": [
1649
+ 0.020435342091896135,
1650
+ 0.020776701920308997,
1651
+ 0.02081235951585586,
1652
+ 0.02047511809298897,
1653
+ 0.02084757162081401,
1654
+ 0.020591649571224932,
1655
+ 0.020704041021724795,
1656
+ 0.020704041021724802,
1657
+ 0.020916668330019886,
1658
+ 0.020950557312477452,
1659
+ 0.020776701920308997,
1660
+ 0.020916668330019882,
1661
+ 0.020776701920308997,
1662
+ 0.02074059653648807,
1663
+ 0.0206670329874661,
1664
+ 0.02084757162081401,
1665
+ 0.02114479142504885,
1666
+ 0.02088234048876181,
1667
+ 0.021049612166134792,
1668
+ 0.02111349234774374,
1669
+ 0.021017027165175492,
1670
+ 0.021049612166134796,
1671
+ 0.02098400956239357,
1672
+ 0.02114479142504885,
1673
+ 0.02101702716517549,
1674
+ 0.02091666833001988,
1675
+ 0.021144791425048846,
1676
+ 0.021081766571222856,
1677
+ 0.02101702716517549,
1678
+ 0.0210496121661348,
1679
+ 0.021236147199899268,
1680
+ 0.02123614719989926,
1681
+ 0.02117566569520941,
1682
+ 0.021144791425048843
1683
+ ]
1684
+ },
1685
+ "piqa": {
1686
+ "acc": [
1687
+ 0.6681175190424374,
1688
+ 0.676278563656148,
1689
+ 0.6735582154515778,
1690
+ 0.6882480957562568,
1691
+ 0.6964091403699674,
1692
+ 0.6991294885745375,
1693
+ 0.6958650707290533,
1694
+ 0.6926006528835691,
1695
+ 0.7034820457018498,
1696
+ 0.7121871599564744,
1697
+ 0.7105549510337323,
1698
+ 0.6996735582154516,
1699
+ 0.705114254624592,
1700
+ 0.7116430903155604,
1701
+ 0.7176278563656148,
1702
+ 0.719804134929271,
1703
+ 0.7083786724700761,
1704
+ 0.7094668117519043,
1705
+ 0.7149075081610446,
1706
+ 0.7219804134929271,
1707
+ 0.7225244831338411,
1708
+ 0.7181719260065288,
1709
+ 0.7241566920565833,
1710
+ 0.7279651795429815,
1711
+ 0.7181719260065288,
1712
+ 0.7252448313384113,
1713
+ 0.7285092491838956,
1714
+ 0.7247007616974973,
1715
+ 0.7236126224156693,
1716
+ 0.7252448313384113,
1717
+ 0.7257889009793254,
1718
+ 0.7312295973884657,
1719
+ 0.7306855277475517,
1720
+ 0.7323177366702938
1721
+ ],
1722
+ "acc_stderr": [
1723
+ 0.010986617776361595,
1724
+ 0.010916765010708778,
1725
+ 0.010940467046177302,
1726
+ 0.010807431424873674,
1727
+ 0.010728079893076354,
1728
+ 0.010700745724145973,
1729
+ 0.010733493335721319,
1730
+ 0.01076560250693907,
1731
+ 0.01065607892266115,
1732
+ 0.01056325038305919,
1733
+ 0.0105810147406756,
1734
+ 0.010695225308183136,
1735
+ 0.010639030620157003,
1736
+ 0.010569190399220644,
1737
+ 0.010502821668555377,
1738
+ 0.010478122015577086,
1739
+ 0.010604441527428789,
1740
+ 0.010592765034696538,
1741
+ 0.010533270588738937,
1742
+ 0.010453117358332814,
1743
+ 0.01044681828103995,
1744
+ 0.01049667523125817,
1745
+ 0.010427805502729115,
1746
+ 0.010382763786247383,
1747
+ 0.010496675231258159,
1748
+ 0.010415033676676039,
1749
+ 0.010376251176596135,
1750
+ 0.01042142927736953,
1751
+ 0.010434162388275615,
1752
+ 0.010415033676676037,
1753
+ 0.010408618664933382,
1754
+ 0.010343392940090011,
1755
+ 0.01035000407058876,
1756
+ 0.010330111189370429
1757
+ ],
1758
+ "acc_norm": [
1759
+ 0.6692056583242655,
1760
+ 0.6800870511425462,
1761
+ 0.6866158868335147,
1762
+ 0.690968443960827,
1763
+ 0.6953210010881393,
1764
+ 0.705114254624592,
1765
+ 0.6969532100108814,
1766
+ 0.6893362350380848,
1767
+ 0.6964091403699674,
1768
+ 0.70620239390642,
1769
+ 0.7089227421109902,
1770
+ 0.7127312295973884,
1771
+ 0.7132752992383025,
1772
+ 0.7067464635473341,
1773
+ 0.7154515778019587,
1774
+ 0.719804134929271,
1775
+ 0.7083786724700761,
1776
+ 0.7159956474428727,
1777
+ 0.7143634385201306,
1778
+ 0.7187159956474428,
1779
+ 0.7159956474428727,
1780
+ 0.7149075081610446,
1781
+ 0.7268770402611534,
1782
+ 0.7257889009793254,
1783
+ 0.7187159956474428,
1784
+ 0.7225244831338411,
1785
+ 0.721436343852013,
1786
+ 0.7295973884657236,
1787
+ 0.73449401523395,
1788
+ 0.7290533188248096,
1789
+ 0.7290533188248096,
1790
+ 0.7312295973884657,
1791
+ 0.7323177366702938,
1792
+ 0.7301414581066377
1793
+ ],
1794
+ "acc_norm_stderr": [
1795
+ 0.010977520584714432,
1796
+ 0.010882873582092063,
1797
+ 0.010822829929195475,
1798
+ 0.010781419464406979,
1799
+ 0.010738889044325161,
1800
+ 0.010639030620156982,
1801
+ 0.010722648689531501,
1802
+ 0.010797078933727673,
1803
+ 0.01072807989307637,
1804
+ 0.010627574080514821,
1805
+ 0.010598612490942613,
1806
+ 0.010557291761528633,
1807
+ 0.010551314503108084,
1808
+ 0.010621818421101931,
1809
+ 0.010527218464130626,
1810
+ 0.010478122015577091,
1811
+ 0.010604441527428794,
1812
+ 0.01052114754245421,
1813
+ 0.01053930394866191,
1814
+ 0.010490509832327423,
1815
+ 0.010521147542454206,
1816
+ 0.010533270588738944,
1817
+ 0.01039573026445326,
1818
+ 0.010408618664933384,
1819
+ 0.010490509832327423,
1820
+ 0.010446818281039943,
1821
+ 0.01045939723596515,
1822
+ 0.010363167031620778,
1823
+ 0.01030330865302443,
1824
+ 0.010369718937426846,
1825
+ 0.010369718937426846,
1826
+ 0.01034339294009,
1827
+ 0.010330111189370422,
1828
+ 0.010356595421852195
1829
+ ]
1830
+ },
1831
+ "prost": {
1832
+ "acc": [
1833
+ 0.2493061485909479,
1834
+ 0.2504269854824936,
1835
+ 0.2487724167378309,
1836
+ 0.23825789923142612,
1837
+ 0.2410866780529462,
1838
+ 0.254803586678053,
1839
+ 0.22213919726729292,
1840
+ 0.2420473953885568,
1841
+ 0.23687019641332194,
1842
+ 0.2538428693424424,
1843
+ 0.2568317677198975,
1844
+ 0.25491033304867633,
1845
+ 0.24338172502134928,
1846
+ 0.21776259607173357,
1847
+ 0.22833048676345005,
1848
+ 0.23030529461998292,
1849
+ 0.25250853970964987,
1850
+ 0.23921861656703672,
1851
+ 0.2432216054654142,
1852
+ 0.25464346712211783,
1853
+ 0.25453672075149447,
1854
+ 0.24295473953885569,
1855
+ 0.2432216054654142,
1856
+ 0.2475982066609735,
1857
+ 0.24642399658411615,
1858
+ 0.26473099914602904,
1859
+ 0.24263450042698548,
1860
+ 0.24423569598633646,
1861
+ 0.2409265584970111,
1862
+ 0.25816609735269,
1863
+ 0.25117421007685736,
1864
+ 0.2576857386848847,
1865
+ 0.24914602903501282,
1866
+ 0.24343509820666098
1867
+ ],
1868
+ "acc_stderr": [
1869
+ 0.00316061120513981,
1870
+ 0.0031653423305601216,
1871
+ 0.0031583483352019054,
1872
+ 0.003112438544855754,
1873
+ 0.0031250419092430427,
1874
+ 0.0031835472332089883,
1875
+ 0.003036943372805099,
1876
+ 0.0031292797011103143,
1877
+ 0.003106186793355417,
1878
+ 0.0031795875093253087,
1879
+ 0.0031918398325104934,
1880
+ 0.003183985943444664,
1881
+ 0.0031351299519621185,
1882
+ 0.003015324686271857,
1883
+ 0.003066696332961817,
1884
+ 0.0030759860532235048,
1885
+ 0.003174053949219311,
1886
+ 0.0031167400155043606,
1887
+ 0.003134430099234369,
1888
+ 0.0031828886961875777,
1889
+ 0.0031824493569084624,
1890
+ 0.0031332623600737837,
1891
+ 0.0031344300992343687,
1892
+ 0.0031533473322617645,
1893
+ 0.0031483150100985297,
1894
+ 0.0032232847900636728,
1895
+ 0.003131858896197636,
1896
+ 0.0031388525013045987,
1897
+ 0.003124333518746473,
1898
+ 0.003197246309267525,
1899
+ 0.0031684807322240834,
1900
+ 0.0031953044576644046,
1901
+ 0.0031599330195551533,
1902
+ 0.003135363104499404
1903
+ ],
1904
+ "acc_norm": [
1905
+ 0.328298462852263,
1906
+ 0.32557643040136636,
1907
+ 0.3356639624252775,
1908
+ 0.3315542271562767,
1909
+ 0.32392186165670367,
1910
+ 0.32872544833475664,
1911
+ 0.305935098206661,
1912
+ 0.3111656703672075,
1913
+ 0.3116994022203245,
1914
+ 0.3066289496157131,
1915
+ 0.29147096498719044,
1916
+ 0.3125533731853117,
1917
+ 0.3050811272416738,
1918
+ 0.29638129803586677,
1919
+ 0.2951537147736977,
1920
+ 0.2982493595217763,
1921
+ 0.28992314261315116,
1922
+ 0.30721605465414176,
1923
+ 0.29019000853970967,
1924
+ 0.3042805294619983,
1925
+ 0.30433390264731,
1926
+ 0.3023590947907771,
1927
+ 0.2959543125533732,
1928
+ 0.28746797608881297,
1929
+ 0.30187873612297184,
1930
+ 0.29163108454312553,
1931
+ 0.283198121263877,
1932
+ 0.29072374039282667,
1933
+ 0.28133005977796754,
1934
+ 0.29051024765157984,
1935
+ 0.304867634500427,
1936
+ 0.3012916310845431,
1937
+ 0.29803586678052946,
1938
+ 0.2931789069171648
1939
+ ],
1940
+ "acc_norm_stderr": [
1941
+ 0.003430802730181418,
1942
+ 0.003423465847311869,
1943
+ 0.003450002546997551,
1944
+ 0.0034394066494682273,
1945
+ 0.0034189419545341843,
1946
+ 0.003431941734648863,
1947
+ 0.0033665715177206906,
1948
+ 0.003382411025820202,
1949
+ 0.003383998869984893,
1950
+ 0.003368701899628916,
1951
+ 0.00332008824256844,
1952
+ 0.003386528533102034,
1953
+ 0.0033639371705738324,
1954
+ 0.00333631644639685,
1955
+ 0.0033323030120676355,
1956
+ 0.0033423684254697845,
1957
+ 0.003314875885238456,
1958
+ 0.0033704975238698504,
1959
+ 0.003315777903539071,
1960
+ 0.003361455078233852,
1961
+ 0.0033616209246963803,
1962
+ 0.0033554489667174123,
1963
+ 0.0033349237526995677,
1964
+ 0.0033065118306722747,
1965
+ 0.0033539365778799115,
1966
+ 0.0033206247870422095,
1967
+ 0.003291682228120563,
1968
+ 0.0033175777669730644,
1969
+ 0.0032850800782541142,
1970
+ 0.0033168584889086148,
1971
+ 0.0033632764530011133,
1972
+ 0.0033520821863254496,
1973
+ 0.0033416801465602436,
1974
+ 0.003325785707384978
1975
+ ]
1976
+ },
1977
+ "pubmedqa": {
1978
+ "acc": [
1979
+ 0.549,
1980
+ 0.551,
1981
+ 0.553,
1982
+ 0.543,
1983
+ 0.554,
1984
+ 0.551,
1985
+ 0.54,
1986
+ 0.566,
1987
+ 0.532,
1988
+ 0.547,
1989
+ 0.553,
1990
+ 0.553,
1991
+ 0.554,
1992
+ 0.554,
1993
+ 0.551,
1994
+ 0.553,
1995
+ 0.518,
1996
+ 0.569,
1997
+ 0.561,
1998
+ 0.554,
1999
+ 0.571,
2000
+ 0.567,
2001
+ 0.556,
2002
+ 0.554,
2003
+ 0.557,
2004
+ 0.56,
2005
+ 0.567,
2006
+ 0.551,
2007
+ 0.592,
2008
+ 0.568,
2009
+ 0.584,
2010
+ 0.577,
2011
+ 0.572,
2012
+ 0.573
2013
+ ],
2014
+ "acc_stderr": [
2015
+ 0.01574315237958553,
2016
+ 0.01573679276875201,
2017
+ 0.015730176046009084,
2018
+ 0.015760691590136388,
2019
+ 0.015726771166750354,
2020
+ 0.015736792768752013,
2021
+ 0.015768596914394372,
2022
+ 0.015680876566375058,
2023
+ 0.015786868759359023,
2024
+ 0.01574925518997758,
2025
+ 0.015730176046009084,
2026
+ 0.015730176046009084,
2027
+ 0.015726771166750357,
2028
+ 0.015726771166750357,
2029
+ 0.015736792768752016,
2030
+ 0.015730176046009074,
2031
+ 0.015809045699406728,
2032
+ 0.015667944488173498,
2033
+ 0.015701131345400767,
2034
+ 0.015726771166750357,
2035
+ 0.01565899754787024,
2036
+ 0.015676630912181334,
2037
+ 0.01571976816340209,
2038
+ 0.015726771166750357,
2039
+ 0.015716169953204105,
2040
+ 0.01570498795436179,
2041
+ 0.015676630912181334,
2042
+ 0.01573679276875202,
2043
+ 0.015549205052920676,
2044
+ 0.015672320237336206,
2045
+ 0.015594460144140603,
2046
+ 0.015630589090476342,
2047
+ 0.015654426245029267,
2048
+ 0.01564978964446221
2049
+ ]
2050
+ },
2051
+ "qnli": {
2052
+ "acc": [
2053
+ 0.4946000366099213,
2054
+ 0.49130514369394107,
2055
+ 0.49313563975837454,
2056
+ 0.49368478857770454,
2057
+ 0.4995423759838916,
2058
+ 0.49569833424858134,
2059
+ 0.49441698700347797,
2060
+ 0.49807797913234486,
2061
+ 0.4925864909390445,
2062
+ 0.4938678381841479,
2063
+ 0.4865458539264141,
2064
+ 0.49203734211971445,
2065
+ 0.48215266337177376,
2066
+ 0.48416620904265056,
2067
+ 0.4706205381658429,
2068
+ 0.4935017389712612,
2069
+ 0.4962474830679114,
2070
+ 0.4883763499908475,
2071
+ 0.4933186893648179,
2072
+ 0.48416620904265056,
2073
+ 0.4953322350356947,
2074
+ 0.4918542925132711,
2075
+ 0.4805052169137836,
2076
+ 0.4850814570748673,
2077
+ 0.4914881933003844,
2078
+ 0.48288486179754714,
2079
+ 0.4805052169137836,
2080
+ 0.49313563975837454,
2081
+ 0.4894746476295076,
2082
+ 0.4946000366099213,
2083
+ 0.4962474830679114,
2084
+ 0.47537982793336997,
2085
+ 0.4876441515650741,
2086
+ 0.47611202635914335
2087
+ ],
2088
+ "acc_stderr": [
2089
+ 0.006765015986877456,
2090
+ 0.006764387537235329,
2091
+ 0.006764772956998407,
2092
+ 0.006764870895462486,
2093
+ 0.006765407718154766,
2094
+ 0.006765160168388145,
2095
+ 0.006764988782474208,
2096
+ 0.006765360566516982,
2097
+ 0.006764666855395084,
2098
+ 0.00676490172764847,
2099
+ 0.00676296083958267,
2100
+ 0.006764552590269392,
2101
+ 0.006761099240467566,
2102
+ 0.006762017403107074,
2103
+ 0.006753721287612181,
2104
+ 0.006764839156300604,
2105
+ 0.006765220016415222,
2106
+ 0.006763582165762024,
2107
+ 0.006764806510150307,
2108
+ 0.006762017403107078,
2109
+ 0.006765115735419823,
2110
+ 0.006764512687707302,
2111
+ 0.0067602662538435235,
2112
+ 0.006762398422143383,
2113
+ 0.006764430161206517,
2114
+ 0.00676144583429495,
2115
+ 0.0067602662538435235,
2116
+ 0.006764772956998408,
2117
+ 0.006763911400147894,
2118
+ 0.006765015986877456,
2119
+ 0.006765220016415222,
2120
+ 0.006757203828148094,
2121
+ 0.006763344526576797,
2122
+ 0.006757684976820108
2123
+ ]
2124
+ },
2125
+ "qqp": {
2126
+ "acc": [
2127
+ 0.3689586940390799,
2128
+ 0.3707395498392283,
2129
+ 0.37373237694781103,
2130
+ 0.36883502349740294,
2131
+ 0.3706900816225575,
2132
+ 0.3874350729656196,
2133
+ 0.4314370516942864,
2134
+ 0.37447440019787287,
2135
+ 0.4231511254019293,
2136
+ 0.5152114766262677,
2137
+ 0.3971061093247588,
2138
+ 0.37291615137274303,
2139
+ 0.3710116250309176,
2140
+ 0.38560474894880037,
2141
+ 0.39426168686618845,
2142
+ 0.3685134800890428,
2143
+ 0.37229779866435814,
2144
+ 0.3689586940390799,
2145
+ 0.36816720257234725,
2146
+ 0.37264407618105366,
2147
+ 0.3716299777393025,
2148
+ 0.3771209497897601,
2149
+ 0.40591145189215927,
2150
+ 0.3950531783329211,
2151
+ 0.3763047242146921,
2152
+ 0.3961167449913431,
2153
+ 0.38852337373237694,
2154
+ 0.4348008904279001,
2155
+ 0.41214444719267873,
2156
+ 0.37506801879792234,
2157
+ 0.375859510264655,
2158
+ 0.4701953994558496,
2159
+ 0.38933959930744494,
2160
+ 0.39581993569131835
2161
+ ],
2162
+ "acc_stderr": [
2163
+ 0.0023997791094649353,
2164
+ 0.0024021668964538355,
2165
+ 0.0024061009348923077,
2166
+ 0.0023996119887763337,
2167
+ 0.002402101042054807,
2168
+ 0.0024228639636974035,
2169
+ 0.0024632103306330196,
2170
+ 0.0024070610826455647,
2171
+ 0.002457153428253151,
2172
+ 0.002485549574839818,
2173
+ 0.0024334768895015566,
2174
+ 0.0024050377892805078,
2175
+ 0.002402528613044342,
2176
+ 0.002420742596818517,
2177
+ 0.002430459060708425,
2178
+ 0.0023991766825629196,
2179
+ 0.0024042274998397057,
2180
+ 0.0023997791094649353,
2181
+ 0.002398706610614498,
2182
+ 0.002404681780107917,
2183
+ 0.0024033476604236013,
2184
+ 0.002410436482711466,
2185
+ 0.0024422760062499348,
2186
+ 0.002431307445812769,
2187
+ 0.0024094036442049794,
2188
+ 0.002432436966054659,
2189
+ 0.00242410823184199,
2190
+ 0.0024654684380438145,
2191
+ 0.002448011982492277,
2192
+ 0.002407824852792694,
2193
+ 0.0024088372076944186,
2194
+ 0.0024822787571501504,
2195
+ 0.0024250330861270287,
2196
+ 0.0024321229611206923
2197
+ ],
2198
+ "f1": [
2199
+ 0.5381510110244202,
2200
+ 0.5373943085735067,
2201
+ 0.5340277522176009,
2202
+ 0.5371807893209518,
2203
+ 0.5338829348722177,
2204
+ 0.4918126975007181,
2205
+ 0.47788856837849497,
2206
+ 0.530937013131538,
2207
+ 0.48814853831972604,
2208
+ 0.32245575221238937,
2209
+ 0.5310064841359937,
2210
+ 0.5318956444674212,
2211
+ 0.5373335273997526,
2212
+ 0.5208518189884649,
2213
+ 0.5240223898002021,
2214
+ 0.5383099151883398,
2215
+ 0.5369991972560753,
2216
+ 0.5379335325545594,
2217
+ 0.5381903642773208,
2218
+ 0.5390877703071052,
2219
+ 0.5386193995968255,
2220
+ 0.5376806006866038,
2221
+ 0.5229308598327607,
2222
+ 0.5327270643078216,
2223
+ 0.5346227668684482,
2224
+ 0.5334327046188537,
2225
+ 0.5335999698147379,
2226
+ 0.5161249338274219,
2227
+ 0.5257507732215903,
2228
+ 0.5393618960802188,
2229
+ 0.5389534458817511,
2230
+ 0.4056933577492925,
2231
+ 0.5371651388185891,
2232
+ 0.5300240500240501
2233
+ ],
2234
+ "f1_stderr": [
2235
+ 0.0025577823728247986,
2236
+ 0.002563280778519078,
2237
+ 0.0025839608679808037,
2238
+ 0.0025608581105371125,
2239
+ 0.0025785682687840157,
2240
+ 0.0027782843904196664,
2241
+ 0.002938261815444539,
2242
+ 0.002594018333054568,
2243
+ 0.0028704450198037677,
2244
+ 0.003560844348119353,
2245
+ 0.002639996507059888,
2246
+ 0.002590826221790599,
2247
+ 0.0025636708058552485,
2248
+ 0.002658744427925077,
2249
+ 0.002665736396626755,
2250
+ 0.002555361722256689,
2251
+ 0.0025680352075939613,
2252
+ 0.002558651400570049,
2253
+ 0.002555265048161791,
2254
+ 0.0025602698460986846,
2255
+ 0.0025592147389062883,
2256
+ 0.0025739993062683804,
2257
+ 0.0026914961106665495,
2258
+ 0.002632044832508472,
2259
+ 0.0025853740078140013,
2260
+ 0.0026315499753008817,
2261
+ 0.0026137422838319498,
2262
+ 0.002793800310089035,
2263
+ 0.0027021839440523185,
2264
+ 0.0025657758651322906,
2265
+ 0.0025666135054784717,
2266
+ 0.0032483176858197032,
2267
+ 0.002603509335340955,
2268
+ 0.00265136623076688
2269
+ ]
2270
+ },
2271
+ "race": {
2272
+ "acc": [
2273
+ 0.291866028708134,
2274
+ 0.2937799043062201,
2275
+ 0.2966507177033493,
2276
+ 0.2985645933014354,
2277
+ 0.29952153110047847,
2278
+ 0.3062200956937799,
2279
+ 0.3090909090909091,
2280
+ 0.31004784688995213,
2281
+ 0.31100478468899523,
2282
+ 0.3062200956937799,
2283
+ 0.2976076555023923,
2284
+ 0.29569377990430623,
2285
+ 0.3119617224880383,
2286
+ 0.31483253588516746,
2287
+ 0.30239234449760766,
2288
+ 0.3090909090909091,
2289
+ 0.3167464114832536,
2290
+ 0.30526315789473685,
2291
+ 0.31770334928229665,
2292
+ 0.30813397129186604,
2293
+ 0.3282296650717703,
2294
+ 0.30526315789473685,
2295
+ 0.31483253588516746,
2296
+ 0.32727272727272727,
2297
+ 0.31004784688995213,
2298
+ 0.33014354066985646,
2299
+ 0.32057416267942584,
2300
+ 0.3320574162679426,
2301
+ 0.3339712918660287,
2302
+ 0.33588516746411484,
2303
+ 0.3282296650717703,
2304
+ 0.3349282296650718,
2305
+ 0.33588516746411484,
2306
+ 0.33014354066985646
2307
+ ],
2308
+ "acc_stderr": [
2309
+ 0.014070166598769293,
2310
+ 0.01409713403021856,
2311
+ 0.014137023394252782,
2312
+ 0.014163244242725774,
2313
+ 0.01417624366981322,
2314
+ 0.014265186459328803,
2315
+ 0.014302215587018911,
2316
+ 0.01431441479114949,
2317
+ 0.014326542383166063,
2318
+ 0.014265186459328807,
2319
+ 0.014150170885906206,
2320
+ 0.01412380156073491,
2321
+ 0.01433859854477742,
2322
+ 0.014374340239175165,
2323
+ 0.014214800395178306,
2324
+ 0.014302215587018916,
2325
+ 0.014397814139910625,
2326
+ 0.014252698955501603,
2327
+ 0.014409445442050079,
2328
+ 0.014289944587370715,
2329
+ 0.014532792620129664,
2330
+ 0.014252698955501603,
2331
+ 0.014374340239175163,
2332
+ 0.014521924541567924,
2333
+ 0.014314414791149494,
2334
+ 0.014554323633246916,
2335
+ 0.014443918794282801,
2336
+ 0.01457558212954591,
2337
+ 0.01459656929970973,
2338
+ 0.014617286312430693,
2339
+ 0.014532792620129664,
2340
+ 0.014606961503556257,
2341
+ 0.014617286312430684,
2342
+ 0.014554323633246916
2343
+ ]
2344
+ },
2345
+ "rte": {
2346
+ "acc": [
2347
+ 0.5306859205776173,
2348
+ 0.5379061371841155,
2349
+ 0.5487364620938628,
2350
+ 0.5379061371841155,
2351
+ 0.5379061371841155,
2352
+ 0.5306859205776173,
2353
+ 0.5415162454873647,
2354
+ 0.5342960288808665,
2355
+ 0.5740072202166066,
2356
+ 0.4981949458483754,
2357
+ 0.5415162454873647,
2358
+ 0.5126353790613718,
2359
+ 0.5306859205776173,
2360
+ 0.5306859205776173,
2361
+ 0.5306859205776173,
2362
+ 0.5306859205776173,
2363
+ 0.5270758122743683,
2364
+ 0.5018050541516246,
2365
+ 0.5090252707581228,
2366
+ 0.555956678700361,
2367
+ 0.48375451263537905,
2368
+ 0.5342960288808665,
2369
+ 0.51985559566787,
2370
+ 0.4981949458483754,
2371
+ 0.5270758122743683,
2372
+ 0.5270758122743683,
2373
+ 0.5054151624548736,
2374
+ 0.516245487364621,
2375
+ 0.516245487364621,
2376
+ 0.5306859205776173,
2377
+ 0.51985559566787,
2378
+ 0.5306859205776173,
2379
+ 0.4981949458483754,
2380
+ 0.5018050541516246
2381
+ ],
2382
+ "acc_stderr": [
2383
+ 0.030039730592197812,
2384
+ 0.030009848912529113,
2385
+ 0.029953149241808946,
2386
+ 0.030009848912529117,
2387
+ 0.030009848912529113,
2388
+ 0.03003973059219781,
2389
+ 0.029992535385373314,
2390
+ 0.030025579819366422,
2391
+ 0.02976495674177765,
2392
+ 0.030096267148976633,
2393
+ 0.029992535385373314,
2394
+ 0.030086851767188564,
2395
+ 0.03003973059219781,
2396
+ 0.030039730592197812,
2397
+ 0.03003973059219781,
2398
+ 0.030039730592197812,
2399
+ 0.030052303463143706,
2400
+ 0.030096267148976626,
2401
+ 0.030091559826331334,
2402
+ 0.029907396333795987,
2403
+ 0.030080573208738064,
2404
+ 0.030025579819366426,
2405
+ 0.030072723167317184,
2406
+ 0.030096267148976633,
2407
+ 0.030052303463143706,
2408
+ 0.030052303463143706,
2409
+ 0.030094698123239966,
2410
+ 0.030080573208738064,
2411
+ 0.030080573208738064,
2412
+ 0.030039730592197812,
2413
+ 0.030072723167317184,
2414
+ 0.030039730592197812,
2415
+ 0.030096267148976633,
2416
+ 0.030096267148976626
2417
+ ]
2418
+ },
2419
+ "sciq": {
2420
+ "acc": [
2421
+ 0.752,
2422
+ 0.765,
2423
+ 0.761,
2424
+ 0.773,
2425
+ 0.767,
2426
+ 0.768,
2427
+ 0.771,
2428
+ 0.771,
2429
+ 0.789,
2430
+ 0.777,
2431
+ 0.773,
2432
+ 0.79,
2433
+ 0.794,
2434
+ 0.793,
2435
+ 0.803,
2436
+ 0.795,
2437
+ 0.799,
2438
+ 0.806,
2439
+ 0.802,
2440
+ 0.798,
2441
+ 0.791,
2442
+ 0.813,
2443
+ 0.817,
2444
+ 0.822,
2445
+ 0.808,
2446
+ 0.817,
2447
+ 0.814,
2448
+ 0.817,
2449
+ 0.825,
2450
+ 0.825,
2451
+ 0.826,
2452
+ 0.817,
2453
+ 0.812,
2454
+ 0.825
2455
+ ],
2456
+ "acc_stderr": [
2457
+ 0.013663187134877654,
2458
+ 0.013414729030247123,
2459
+ 0.01349300044693759,
2460
+ 0.013253174964763921,
2461
+ 0.013374972519220074,
2462
+ 0.013354937452281564,
2463
+ 0.0132941993266136,
2464
+ 0.013294199326613606,
2465
+ 0.01290913032104209,
2466
+ 0.013169830843425694,
2467
+ 0.013253174964763902,
2468
+ 0.012886662332274545,
2469
+ 0.01279561361278655,
2470
+ 0.012818553557843991,
2471
+ 0.012583693787968118,
2472
+ 0.012772554096113116,
2473
+ 0.012679107214617326,
2474
+ 0.012510816141264357,
2475
+ 0.01260773393417531,
2476
+ 0.012702651587655133,
2477
+ 0.012864077288499339,
2478
+ 0.012336254828074133,
2479
+ 0.012233587399477821,
2480
+ 0.01210216767618359,
2481
+ 0.012461592646659983,
2482
+ 0.012233587399477823,
2483
+ 0.012310790208412789,
2484
+ 0.01223358739947782,
2485
+ 0.012021627157731975,
2486
+ 0.012021627157731975,
2487
+ 0.011994493230973426,
2488
+ 0.012233587399477825,
2489
+ 0.012361586015103756,
2490
+ 0.012021627157731975
2491
+ ],
2492
+ "acc_norm": [
2493
+ 0.656,
2494
+ 0.674,
2495
+ 0.664,
2496
+ 0.679,
2497
+ 0.678,
2498
+ 0.689,
2499
+ 0.684,
2500
+ 0.682,
2501
+ 0.702,
2502
+ 0.692,
2503
+ 0.694,
2504
+ 0.692,
2505
+ 0.706,
2506
+ 0.707,
2507
+ 0.706,
2508
+ 0.712,
2509
+ 0.717,
2510
+ 0.74,
2511
+ 0.717,
2512
+ 0.716,
2513
+ 0.717,
2514
+ 0.72,
2515
+ 0.73,
2516
+ 0.724,
2517
+ 0.707,
2518
+ 0.729,
2519
+ 0.738,
2520
+ 0.73,
2521
+ 0.757,
2522
+ 0.746,
2523
+ 0.747,
2524
+ 0.747,
2525
+ 0.74,
2526
+ 0.747
2527
+ ],
2528
+ "acc_norm_stderr": [
2529
+ 0.015029633724408943,
2530
+ 0.014830507204541049,
2531
+ 0.014944140233795027,
2532
+ 0.014770821817934644,
2533
+ 0.014782913600996655,
2534
+ 0.014645596385722695,
2535
+ 0.014709193056057104,
2536
+ 0.0147340793093119,
2537
+ 0.01447084674113472,
2538
+ 0.014606483127342763,
2539
+ 0.014580006055436967,
2540
+ 0.014606483127342763,
2541
+ 0.014414290540008208,
2542
+ 0.014399942998441275,
2543
+ 0.01441429054000821,
2544
+ 0.014326941797231561,
2545
+ 0.014251810906481737,
2546
+ 0.013877773329774166,
2547
+ 0.014251810906481735,
2548
+ 0.014267009061031313,
2549
+ 0.014251810906481742,
2550
+ 0.014205696104091493,
2551
+ 0.014046255632633913,
2552
+ 0.014142984975740668,
2553
+ 0.014399942998441268,
2554
+ 0.014062601350986186,
2555
+ 0.01391220865102135,
2556
+ 0.014046255632633915,
2557
+ 0.013569640199177446,
2558
+ 0.01377220656516854,
2559
+ 0.01375427861358708,
2560
+ 0.01375427861358708,
2561
+ 0.013877773329774166,
2562
+ 0.01375427861358708
2563
+ ]
2564
+ },
2565
+ "sst": {
2566
+ "acc": [
2567
+ 0.5814220183486238,
2568
+ 0.7098623853211009,
2569
+ 0.5298165137614679,
2570
+ 0.6559633027522935,
2571
+ 0.518348623853211,
2572
+ 0.5711009174311926,
2573
+ 0.555045871559633,
2574
+ 0.5263761467889908,
2575
+ 0.6754587155963303,
2576
+ 0.6444954128440367,
2577
+ 0.6892201834862385,
2578
+ 0.5149082568807339,
2579
+ 0.5080275229357798,
2580
+ 0.6112385321100917,
2581
+ 0.5263761467889908,
2582
+ 0.551605504587156,
2583
+ 0.6788990825688074,
2584
+ 0.5103211009174312,
2585
+ 0.5217889908256881,
2586
+ 0.6662844036697247,
2587
+ 0.6788990825688074,
2588
+ 0.6181192660550459,
2589
+ 0.6938073394495413,
2590
+ 0.5080275229357798,
2591
+ 0.533256880733945,
2592
+ 0.6972477064220184,
2593
+ 0.7247706422018348,
2594
+ 0.588302752293578,
2595
+ 0.6112385321100917,
2596
+ 0.6330275229357798,
2597
+ 0.5126146788990825,
2598
+ 0.661697247706422,
2599
+ 0.6295871559633027,
2600
+ 0.6754587155963303
2601
+ ],
2602
+ "acc_stderr": [
2603
+ 0.016715710826534457,
2604
+ 0.015377297714201989,
2605
+ 0.01691170341531885,
2606
+ 0.01609656024306282,
2607
+ 0.01693044215061337,
2608
+ 0.016769685197040893,
2609
+ 0.016838871437903056,
2610
+ 0.016918264333564144,
2611
+ 0.015864460317721044,
2612
+ 0.01621897641479828,
2613
+ 0.015681814742502808,
2614
+ 0.0169343211533256,
2615
+ 0.016939670044361786,
2616
+ 0.016517255666657737,
2617
+ 0.016918264333564144,
2618
+ 0.016851375435599603,
2619
+ 0.01582028513171376,
2620
+ 0.016938243838576613,
2621
+ 0.016925759411718252,
2622
+ 0.015977506328949537,
2623
+ 0.01582028513171376,
2624
+ 0.016462316115268005,
2625
+ 0.015617364822952463,
2626
+ 0.016939670044361782,
2627
+ 0.01690433608610159,
2628
+ 0.015567833948853487,
2629
+ 0.01513347269702534,
2630
+ 0.016675556815472843,
2631
+ 0.016517255666657737,
2632
+ 0.016331232646350478,
2633
+ 0.016936460912455,
2634
+ 0.016031470201950025,
2635
+ 0.01636296008359423,
2636
+ 0.01586446031772106
2637
+ ]
2638
+ },
2639
+ "triviaqa": {
2640
+ "acc": [
2641
+ 0.010607265977194379,
2642
+ 0.01608768673207814,
2643
+ 0.014319809069212411,
2644
+ 0.013524264120922832,
2645
+ 0.015910898965791568,
2646
+ 0.017767170511800583,
2647
+ 0.01918147264209317,
2648
+ 0.01104923539291081,
2649
+ 0.02015380535666932,
2650
+ 0.02112613807124547,
2651
+ 0.01582250508264828,
2652
+ 0.021921683019535048,
2653
+ 0.023689560682400777,
2654
+ 0.02890479978785468,
2655
+ 0.024485105630690358,
2656
+ 0.022805621850967912,
2657
+ 0.024043136214973924,
2658
+ 0.021037744188102184,
2659
+ 0.02139131972067533,
2660
+ 0.024750287280120215,
2661
+ 0.027313709891275524,
2662
+ 0.022805621850967912,
2663
+ 0.027048528241845664,
2664
+ 0.027048528241845664,
2665
+ 0.026341377176699373,
2666
+ 0.023689560682400777,
2667
+ 0.028639618138424822,
2668
+ 0.028639618138424822,
2669
+ 0.03261734287987271,
2670
+ 0.02970034473614426,
2671
+ 0.030937859100150268,
2672
+ 0.03146822239900999,
2673
+ 0.02916998143728454,
2674
+ 0.02740210377441881
2675
+ ],
2676
+ "acc_stderr": [
2677
+ 0.0009631998128991687,
2678
+ 0.001182919796828757,
2679
+ 0.0011170353826515254,
2680
+ 0.001086001255568268,
2681
+ 0.001176507965063248,
2682
+ 0.0012420716800281026,
2683
+ 0.0012896314201776976,
2684
+ 0.0009828420973063668,
2685
+ 0.0013212584775471477,
2686
+ 0.0013520841592435343,
2687
+ 0.001173288026337696,
2688
+ 0.0013767467634740556,
2689
+ 0.0014298904703392034,
2690
+ 0.0015752380305831285,
2691
+ 0.0014531091754911747,
2692
+ 0.0014035947693080207,
2693
+ 0.0014402609030575888,
2694
+ 0.0013493134847357554,
2695
+ 0.0013603592781843991,
2696
+ 0.001460758221854218,
2697
+ 0.0015325231556834482,
2698
+ 0.0014035947693080207,
2699
+ 0.001525273451547976,
2700
+ 0.0015252734515479667,
2701
+ 0.001505750088713862,
2702
+ 0.0014298904703392223,
2703
+ 0.0015682095939512912,
2704
+ 0.001568209593951297,
2705
+ 0.0016701433163813651,
2706
+ 0.0015961142885210066,
2707
+ 0.001627988166902511,
2708
+ 0.0016414336956661968,
2709
+ 0.0015822313175962376,
2710
+ 0.001534931214542274
2711
+ ]
2712
+ },
2713
+ "webqs": {
2714
+ "acc": [
2715
+ 0.0,
2716
+ 0.006889763779527559,
2717
+ 0.007874015748031496,
2718
+ 0.003937007874015748,
2719
+ 0.004921259842519685,
2720
+ 0.008858267716535433,
2721
+ 0.00984251968503937,
2722
+ 0.0024606299212598425,
2723
+ 0.0034448818897637795,
2724
+ 0.008366141732283465,
2725
+ 0.0014763779527559055,
2726
+ 0.008858267716535433,
2727
+ 0.009350393700787402,
2728
+ 0.009350393700787402,
2729
+ 0.004921259842519685,
2730
+ 0.0024606299212598425,
2731
+ 0.0063976377952755905,
2732
+ 0.0024606299212598425,
2733
+ 0.001968503937007874,
2734
+ 0.004921259842519685,
2735
+ 0.003937007874015748,
2736
+ 0.004921259842519685,
2737
+ 0.009350393700787402,
2738
+ 0.003937007874015748,
2739
+ 0.009350393700787402,
2740
+ 0.005905511811023622,
2741
+ 0.0063976377952755905,
2742
+ 0.011811023622047244,
2743
+ 0.00984251968503937,
2744
+ 0.012303149606299213,
2745
+ 0.008858267716535433,
2746
+ 0.012795275590551181,
2747
+ 0.01033464566929134,
2748
+ 0.011811023622047244
2749
+ ],
2750
+ "acc_stderr": [
2751
+ 0.0,
2752
+ 0.0018354642646372231,
2753
+ 0.001961221248568131,
2754
+ 0.0013895416930409105,
2755
+ 0.00155278708527343,
2756
+ 0.00207915717045096,
2757
+ 0.0021905356257242614,
2758
+ 0.0010993429893341362,
2759
+ 0.0013001182915028248,
2760
+ 0.00202107914449692,
2761
+ 0.0008519674166442085,
2762
+ 0.002079157170450959,
2763
+ 0.0021356005429823527,
2764
+ 0.002135600542982353,
2765
+ 0.0015527870852734501,
2766
+ 0.0010993429893341488,
2767
+ 0.0017691357975492758,
2768
+ 0.0010993429893341395,
2769
+ 0.0009835247781804428,
2770
+ 0.0015527870852734482,
2771
+ 0.0013895416930409096,
2772
+ 0.0015527870852734614,
2773
+ 0.002135600542982358,
2774
+ 0.0013895416930409094,
2775
+ 0.002135600542982355,
2776
+ 0.001700151576246189,
2777
+ 0.0017691357975492708,
2778
+ 0.0023972250639872437,
2779
+ 0.0021905356257242545,
2780
+ 0.002446048282219444,
2781
+ 0.002079157170450964,
2782
+ 0.0024938680596856277,
2783
+ 0.0022440731905576695,
2784
+ 0.0023972250639872545
2785
+ ]
2786
+ },
2787
+ "wic": {
2788
+ "acc": [
2789
+ 0.48119122257053293,
2790
+ 0.5047021943573667,
2791
+ 0.46865203761755486,
2792
+ 0.4952978056426332,
2793
+ 0.5,
2794
+ 0.4843260188087774,
2795
+ 0.4608150470219436,
2796
+ 0.48746081504702193,
2797
+ 0.49686520376175547,
2798
+ 0.47648902821316613,
2799
+ 0.5015673981191222,
2800
+ 0.49843260188087773,
2801
+ 0.48746081504702193,
2802
+ 0.5015673981191222,
2803
+ 0.48589341692789967,
2804
+ 0.5,
2805
+ 0.4890282131661442,
2806
+ 0.5015673981191222,
2807
+ 0.5,
2808
+ 0.493730407523511,
2809
+ 0.5,
2810
+ 0.49059561128526646,
2811
+ 0.4843260188087774,
2812
+ 0.5,
2813
+ 0.49843260188087773,
2814
+ 0.5031347962382445,
2815
+ 0.4952978056426332,
2816
+ 0.4702194357366771,
2817
+ 0.49843260188087773,
2818
+ 0.5,
2819
+ 0.5,
2820
+ 0.49686520376175547,
2821
+ 0.49216300940438873,
2822
+ 0.4952978056426332
2823
+ ],
2824
+ "acc_stderr": [
2825
+ 0.019796699449453867,
2826
+ 0.01980984521925977,
2827
+ 0.019771747172942295,
2828
+ 0.01980984521925977,
2829
+ 0.01981072129375818,
2830
+ 0.019800984955347854,
2831
+ 0.01974979043110035,
2832
+ 0.01980449058859259,
2833
+ 0.01981033193209755,
2834
+ 0.019788807795837516,
2835
+ 0.019810623954060382,
2836
+ 0.019810623954060382,
2837
+ 0.01980449058859259,
2838
+ 0.019810623954060382,
2839
+ 0.01980283522800584,
2840
+ 0.01981072129375818,
2841
+ 0.01980595108597941,
2842
+ 0.019810623954060382,
2843
+ 0.01981072129375818,
2844
+ 0.019809163801196513,
2845
+ 0.01981072129375818,
2846
+ 0.0198072167632715,
2847
+ 0.01980098495534785,
2848
+ 0.01981072129375818,
2849
+ 0.019810623954060382,
2850
+ 0.019810331932097542,
2851
+ 0.01980984521925977,
2852
+ 0.019775550529171206,
2853
+ 0.019810623954060382,
2854
+ 0.01981072129375818,
2855
+ 0.01981072129375818,
2856
+ 0.01981033193209754,
2857
+ 0.01980828765781383,
2858
+ 0.01980984521925977
2859
+ ]
2860
+ },
2861
+ "winogrande": {
2862
+ "acc": [
2863
+ 0.4996053670086819,
2864
+ 0.5138121546961326,
2865
+ 0.5082872928176796,
2866
+ 0.5098658247829518,
2867
+ 0.510655090765588,
2868
+ 0.5090765588003157,
2869
+ 0.5248618784530387,
2870
+ 0.5280189423835833,
2871
+ 0.5288082083662194,
2872
+ 0.5445935280189423,
2873
+ 0.5469613259668509,
2874
+ 0.5327545382794001,
2875
+ 0.5406471981057617,
2876
+ 0.5461720599842147,
2877
+ 0.5359116022099447,
2878
+ 0.5469613259668509,
2879
+ 0.5422257300710339,
2880
+ 0.5461720599842147,
2881
+ 0.5493291239147593,
2882
+ 0.5603788476716653,
2883
+ 0.55327545382794,
2884
+ 0.5509076558800315,
2885
+ 0.5595895816890292,
2886
+ 0.5477505919494869,
2887
+ 0.5485398579321231,
2888
+ 0.5548539857932123,
2889
+ 0.5627466456195738,
2890
+ 0.5572217837411207,
2891
+ 0.5706393054459353,
2892
+ 0.5627466456195738,
2893
+ 0.56353591160221,
2894
+ 0.56353591160221,
2895
+ 0.55327545382794,
2896
+ 0.5643251775848461
2897
+ ],
2898
+ "acc_stderr": [
2899
+ 0.014052481306049516,
2900
+ 0.014047122916440415,
2901
+ 0.014050555322824189,
2902
+ 0.014049749833367596,
2903
+ 0.014049294536290403,
2904
+ 0.014050170094497704,
2905
+ 0.01403510288362775,
2906
+ 0.014030404213405786,
2907
+ 0.014029141615909622,
2908
+ 0.013996485037729794,
2909
+ 0.013990366632148104,
2910
+ 0.014022300570434134,
2911
+ 0.014005973823825131,
2912
+ 0.013992441563707074,
2913
+ 0.01401619343395831,
2914
+ 0.0139903666321481,
2915
+ 0.01400228450442244,
2916
+ 0.013992441563707068,
2917
+ 0.01398392886904024,
2918
+ 0.013949649776015692,
2919
+ 0.0139724883716167,
2920
+ 0.013979459389140844,
2921
+ 0.013952330311915603,
2922
+ 0.013988256216606012,
2923
+ 0.01398611030101776,
2924
+ 0.013967662954355486,
2925
+ 0.01394139331069592,
2926
+ 0.013960157350784985,
2927
+ 0.013911537499969165,
2928
+ 0.013941393310695922,
2929
+ 0.013938569465677024,
2930
+ 0.013938569465677028,
2931
+ 0.013972488371616692,
2932
+ 0.013935709739615713
2933
+ ]
2934
+ },
2935
+ "wnli": {
2936
+ "acc": [
2937
+ 0.4507042253521127,
2938
+ 0.4507042253521127,
2939
+ 0.4647887323943662,
2940
+ 0.4507042253521127,
2941
+ 0.4507042253521127,
2942
+ 0.39436619718309857,
2943
+ 0.4084507042253521,
2944
+ 0.49295774647887325,
2945
+ 0.43661971830985913,
2946
+ 0.4507042253521127,
2947
+ 0.5070422535211268,
2948
+ 0.4507042253521127,
2949
+ 0.5070422535211268,
2950
+ 0.43661971830985913,
2951
+ 0.49295774647887325,
2952
+ 0.4507042253521127,
2953
+ 0.4788732394366197,
2954
+ 0.4647887323943662,
2955
+ 0.4507042253521127,
2956
+ 0.5492957746478874,
2957
+ 0.4647887323943662,
2958
+ 0.4507042253521127,
2959
+ 0.43661971830985913,
2960
+ 0.5492957746478874,
2961
+ 0.49295774647887325,
2962
+ 0.4647887323943662,
2963
+ 0.5492957746478874,
2964
+ 0.49295774647887325,
2965
+ 0.43661971830985913,
2966
+ 0.43661971830985913,
2967
+ 0.4507042253521127,
2968
+ 0.5492957746478874,
2969
+ 0.5352112676056338,
2970
+ 0.5352112676056338
2971
+ ],
2972
+ "acc_stderr": [
2973
+ 0.05947027187737998,
2974
+ 0.05947027187737998,
2975
+ 0.05961305784972239,
2976
+ 0.05947027187737998,
2977
+ 0.05947027187737998,
2978
+ 0.05841251085444427,
2979
+ 0.05875113694257524,
2980
+ 0.059755502635482904,
2981
+ 0.0592793555841297,
2982
+ 0.05947027187737998,
2983
+ 0.05975550263548289,
2984
+ 0.05947027187737998,
2985
+ 0.05975550263548289,
2986
+ 0.0592793555841297,
2987
+ 0.05975550263548289,
2988
+ 0.05947027187737998,
2989
+ 0.05970805879899504,
2990
+ 0.0596130578497224,
2991
+ 0.05947027187737998,
2992
+ 0.05947027187737999,
2993
+ 0.0596130578497224,
2994
+ 0.05947027187737998,
2995
+ 0.0592793555841297,
2996
+ 0.05947027187737999,
2997
+ 0.05975550263548289,
2998
+ 0.0596130578497224,
2999
+ 0.05947027187737999,
3000
+ 0.059755502635482904,
3001
+ 0.0592793555841297,
3002
+ 0.0592793555841297,
3003
+ 0.05947027187737999,
3004
+ 0.05947027187737999,
3005
+ 0.0596130578497224,
3006
+ 0.0596130578497224
3007
+ ]
3008
+ },
3009
+ "wsc": {
3010
+ "acc": [
3011
+ 0.375,
3012
+ 0.375,
3013
+ 0.5,
3014
+ 0.40384615384615385,
3015
+ 0.3557692307692308,
3016
+ 0.5096153846153846,
3017
+ 0.5769230769230769,
3018
+ 0.46153846153846156,
3019
+ 0.6057692307692307,
3020
+ 0.5576923076923077,
3021
+ 0.46153846153846156,
3022
+ 0.36538461538461536,
3023
+ 0.5192307692307693,
3024
+ 0.4519230769230769,
3025
+ 0.5192307692307693,
3026
+ 0.36538461538461536,
3027
+ 0.41346153846153844,
3028
+ 0.375,
3029
+ 0.36538461538461536,
3030
+ 0.36538461538461536,
3031
+ 0.40384615384615385,
3032
+ 0.5192307692307693,
3033
+ 0.5384615384615384,
3034
+ 0.4326923076923077,
3035
+ 0.4519230769230769,
3036
+ 0.3942307692307692,
3037
+ 0.4326923076923077,
3038
+ 0.5769230769230769,
3039
+ 0.4230769230769231,
3040
+ 0.38461538461538464,
3041
+ 0.4423076923076923,
3042
+ 0.5769230769230769,
3043
+ 0.5961538461538461,
3044
+ 0.5384615384615384
3045
+ ],
3046
+ "acc_stderr": [
3047
+ 0.04770204856076104,
3048
+ 0.04770204856076104,
3049
+ 0.04926646390821466,
3050
+ 0.04834688952654018,
3051
+ 0.04717221961050337,
3052
+ 0.04925735314273531,
3053
+ 0.04867993747918684,
3054
+ 0.04912048887947826,
3055
+ 0.04815154775990711,
3056
+ 0.04893740777701,
3057
+ 0.04912048887947827,
3058
+ 0.0474473339327792,
3059
+ 0.049230010729780505,
3060
+ 0.04903818696931432,
3061
+ 0.049230010729780505,
3062
+ 0.0474473339327792,
3063
+ 0.04852294969729053,
3064
+ 0.04770204856076104,
3065
+ 0.0474473339327792,
3066
+ 0.0474473339327792,
3067
+ 0.04834688952654018,
3068
+ 0.049230010729780505,
3069
+ 0.04912048887947826,
3070
+ 0.04881803687006195,
3071
+ 0.049038186969314335,
3072
+ 0.04815154775990711,
3073
+ 0.048818036870061955,
3074
+ 0.04867993747918684,
3075
+ 0.048679937479186836,
3076
+ 0.0479366886807504,
3077
+ 0.04893740777701,
3078
+ 0.04867993747918684,
3079
+ 0.048346889526540184,
3080
+ 0.04912048887947828
3081
+ ]
3082
+ }
3083
+ }
3084
+ }
evaluation/results/tr3/tr3m-1B3-pile-checkpoints_agg.json ADDED
The diff for this file is too large to render. See raw diff
 
evaluation/utilities/convert_results_to_json.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import math
3
+ import os
4
+ from argparse import ArgumentParser
5
+ from os import listdir
6
+ from os.path import isfile
7
+
8
+ def get_args():
9
+ parser = ArgumentParser()
10
+ # --experiments tr3d-1B3-oscar-checkpoints,tr3e-1B3-c4-checkpoints,tr3m-1B3-pile-checkpoints
11
+ parser.add_argument('--experiment', type=str, required=True,
12
+ help='Experiment we want to download.')
13
+ parser.add_argument('--result-dir', type=str, required=True,
14
+ help='Result directory containing all results, and to store aggregated json results.')
15
+ parser.add_argument('--batch-size', type=int, default=512,
16
+ help='Experiment training batch size.')
17
+ parser.add_argument('--sequence_length', type=int, default=2048,
18
+ help='Experiment training sequence length.')
19
+ parser.add_argument('--rampup-batch-size', type=lambda s: tuple(int(item) for item in s.split(',')), default=(32, 32, 2_000_000),
20
+ help='Experiment training batch size rampup.')
21
+ return parser.parse_args()
22
+
23
+ def checkpoint_step_to_tokens(checkpoint_step, args) -> int:
24
+ def fn(checkpoint_step) -> int:
25
+ if not hasattr(checkpoint_step_to_tokens, "CACHE"):
26
+ checkpoint_step_to_tokens.CACHE = {}
27
+
28
+ BATCH_SIZE=args.batch_size
29
+ SEQUENCE_LENGTH=args.sequence_length
30
+ # Linear increase in terms of samples.
31
+ RAMPUP_BATCH_SIZE = args.rampup_batch_size
32
+
33
+ # Compute RAMPUP checkpoint_step
34
+ if not hasattr(checkpoint_step_to_tokens, "RAMPUP_OFFSET"):
35
+ initial_batch_size, increment_batch_size, sample_limit_for_rampup = RAMPUP_BATCH_SIZE
36
+ number_of_increments = (BATCH_SIZE - initial_batch_size) // increment_batch_size
37
+ assert (BATCH_SIZE - initial_batch_size) % increment_batch_size == 0
38
+
39
+ offset_step = 0
40
+ start_sample = 0
41
+ for incr in range(number_of_increments):
42
+ batch_size = initial_batch_size + incr * increment_batch_size
43
+ end_sample = int(math.ceil((incr + 1) * sample_limit_for_rampup / number_of_increments))
44
+ number_of_step_per_increment = int(math.ceil((end_sample - start_sample) / batch_size))
45
+ checkpoint_step_to_tokens.CACHE.update({
46
+ offset_step + i: (start_sample + i * batch_size) * SEQUENCE_LENGTH
47
+ for i in range(number_of_step_per_increment)
48
+ })
49
+ offset_step += number_of_step_per_increment
50
+ start_sample += number_of_step_per_increment * batch_size
51
+
52
+ checkpoint_step_to_tokens.CACHE[offset_step] = start_sample * SEQUENCE_LENGTH
53
+ checkpoint_step_to_tokens.RAMPUP_OFFSET = offset_step
54
+
55
+ if checkpoint_step in checkpoint_step_to_tokens.CACHE:
56
+ return checkpoint_step_to_tokens.CACHE[checkpoint_step]
57
+
58
+ number_steps_after_rampup = checkpoint_step - checkpoint_step_to_tokens.RAMPUP_OFFSET
59
+ assert number_steps_after_rampup >= 0
60
+
61
+ slope = BATCH_SIZE * SEQUENCE_LENGTH
62
+
63
+ checkpoint_step_to_tokens.CACHE[checkpoint_step] = \
64
+ checkpoint_step_to_tokens.CACHE[checkpoint_step_to_tokens.RAMPUP_OFFSET] + \
65
+ slope * number_steps_after_rampup
66
+ return checkpoint_step_to_tokens.CACHE[checkpoint_step]
67
+ return fn(checkpoint_step)
68
+
69
+ def main():
70
+ args = get_args()
71
+ result_dir = args.result_dir
72
+ experiment = args.experiment
73
+
74
+ results_file_per_checkpoint = [
75
+ file
76
+ for file in listdir(result_dir)
77
+ if isfile(os.path.join(result_dir, file)) and file.startswith(experiment)
78
+ ]
79
+ checkpoint_steps = sorted([int(file.split("_")[-1].split(".json")[0]) for file in results_file_per_checkpoint])
80
+ absolute_paths = [f"{result_dir}/{experiment}_{checkpoint_step}.json" for checkpoint_step in checkpoint_steps]
81
+ # format = "{EXPERIMENT_NAME}_{CHECKPOINT_STEP}.json"
82
+ tokens = [checkpoint_step_to_tokens(checkpoint_step, args) for checkpoint_step in checkpoint_steps]
83
+
84
+ result_json = {}
85
+ for absolute_path in absolute_paths:
86
+ with open(absolute_path, 'r') as fi:
87
+ results = json.load(fi)["results"]
88
+
89
+ for task in results:
90
+ if task not in result_json:
91
+ result_json[task] = {}
92
+
93
+ for metric in results[task]:
94
+ if metric not in result_json[task]:
95
+ result_json[task][metric] = []
96
+
97
+ result_json[task][metric].append(results[task][metric])
98
+
99
+ # check
100
+ for task in result_json:
101
+ assert len(tokens) == len(checkpoint_steps)
102
+ for metric in result_json[task]:
103
+ assert len(result_json[task][metric]) == len(checkpoint_steps)
104
+
105
+ output_path = os.path.join(result_dir, f"{experiment}_agg.json")
106
+ print(f"Printing results to {output_path}")
107
+ with open(output_path, 'w') as fo:
108
+ json.dump({"tokens": tokens, "checkpoints": checkpoint_steps, "results": result_json}, fo, indent=2)
109
+
110
+ if __name__ == "__main__":
111
+ main()
evaluation/utilities/download_all_models.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from argparse import ArgumentParser
2
+ from multiprocessing import Pool
3
+
4
+ from requests import HTTPError
5
+ from transformers import AutoModel, AutoTokenizer
6
+
7
+ def get_args():
8
+ parser = ArgumentParser()
9
+ # --experiments bigscience/tr3d-1B3-oscar-checkpoints,bigscience/tr3e-1B3-c4-checkpoints,bigscience/tr3m-1B3-pile-checkpoints
10
+ parser.add_argument('--experiments', type=lambda s: s.split(','), required=True, help='Experiments we want to download.')
11
+ # --steps 19500,28500,37500,48000,57000,66000,76500,85500,94500,105000,114000
12
+ parser.add_argument('--steps', type=lambda s: [int(item) for item in s.split(',')], required=True, help='Steps we should download the model checkpoints')
13
+ return parser.parse_args()
14
+
15
+ def _load_model(pretrain:str, revision: str):
16
+ try:
17
+ AutoModel.from_pretrained(pretrain, revision=revision)
18
+ AutoTokenizer.from_pretrained(pretrain, revision=revision)
19
+ return f"Loaded: {{pretrain:{pretrain}, revision:{revision}}}"
20
+ except HTTPError:
21
+ return f"Failed to load: {{pretrain:{pretrain}, revision:{revision}}}"
22
+
23
+ def load_model(kwargs):
24
+ return _load_model(**kwargs)
25
+
26
+ def main():
27
+ args = get_args()
28
+ pretrains = args.experiments
29
+ steps = args.steps
30
+ revisions = [f"global_step{step}" for step in steps]
31
+
32
+ # with Pool(10) as pool:
33
+ # results = pool.imap(
34
+ # load_model,
35
+ # [{"pretrain": pretrain, "revision": revision} for pretrain in pretrains for revision in revisions],
36
+ # chunksize=1
37
+ # )
38
+ #
39
+ # for result in results:
40
+ # print(result)
41
+
42
+
43
+ for kwargs in [{"pretrain": pretrain, "revision": revision} for pretrain in pretrains for revision in revisions]:
44
+ print(load_model(kwargs))
45
+
46
+ if __name__ == "__main__":
47
+ main()
evaluation/utilities/download_all_models.slurm ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH --job-name=download_all_models
3
+ #SBATCH --nodes=1
4
+ #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
5
+ #SBATCH --cpus-per-task=10 # number of cores per tasks
6
+ #SBATCH --hint=nomultithread # we get physical cores not logical
7
+ #SBATCH --time 10:00:00 # maximum execution time (HH:MM:SS)
8
+ #SBATCH --output=logs/%x.out # output file name
9
+ #SBATCH --account=six@gpu
10
+ #SBATCH --partition=compil
11
+
12
+ set -x -e
13
+
14
+ source $six_ALL_CCFRWORK/start-prod
15
+ conda activate thomas_lm_eval
16
+
17
+ # TODO: replace with local fork of bigscience
18
+ BIGSCIENCE_REPO=$WORK/code/big_science/bigscience/evaluation/results/tr3
19
+
20
+ pushd $BIGSCIENCE_REPO
21
+
22
+ # TODO: replace with experiment / steps
23
+ EXPERIMENTS=bigscience/tr3d-1B3-oscar-checkpoints,bigscience/tr3e-1B3-c4-checkpoints,bigscience/tr3m-1B3-pile-checkpoints
24
+ STEPS=$(python -c "print(\",\".join([str(i) for i in range(19500, 118500, 1500)]))")
25
+
26
+ python download_all_models.py --experiments $EXPERIMENTS --steps $STEPS
evaluation/utilities/export_results_through_training_to_wandb.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import numpy as np
4
+ import wandb
5
+ import json
6
+ import argparse
7
+
8
+ RANDOM_BASELINE={
9
+ "arc_challenge": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6
10
+ "arc_easy": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6
11
+ "boolq": 0.5,
12
+ "copa": 0.5,
13
+ "headqa_en": 0.25,
14
+ "hellaswag": 0.25,
15
+ "lambada": 0., # Safe to say that random models won't perform well at all.
16
+ "logiqa": 0.25,
17
+ "mathqa": (4360 * 1/ 5 - (4475 - 4360) * 1/ 4) / 4475,
18
+ "mrpc": 0.5,
19
+ "multirc": 0., # TODO: I couldn't figure it out
20
+ "openbookqa": 0.25,
21
+ "piqa": 0.5,
22
+ "prost": 0.25,
23
+ "pubmedqa": 1/3,
24
+ "qnli": 0.5,
25
+ "qqp": 0.5,
26
+ "race": 0.25, # Source: https://arxiv.org/pdf/1704.04683.pdf table 5
27
+ "rte": 0.5,
28
+ "sciq": 0.25,
29
+ "sst": 0.5,
30
+ "triviaqa": 0.,
31
+ "webqs": 0.,
32
+ "wic": 0.5,
33
+ "winogrande": 0.5,
34
+ "wnli": 0.5,
35
+ "wsc": 0.5
36
+ }
37
+
38
+ def normalise(score, task):
39
+ return (score - RANDOM_BASELINE[task]) / (1. - RANDOM_BASELINE[task])
40
+
41
+ def parse_args():
42
+ parser = argparse.ArgumentParser()
43
+ parser.add_argument("--input_files", type=lambda s: s.split(','), required=True)
44
+ parser.add_argument("--all_tasks", action="store_true")
45
+ parser.add_argument("--naive_average", action="store_true")
46
+ parser.add_argument("--acc_average", action="store_true")
47
+ parser.add_argument("--normalised_acc_average", action="store_true")
48
+ return parser.parse_args()
49
+
50
+ def main():
51
+ args = parse_args()
52
+ for input_file in args.input_files:
53
+ assert os.path.basename(input_file).endswith("_agg.json")
54
+ experiment_name = os.path.basename(input_file).split("_agg.json")[0]
55
+ with open(input_file, "r") as fi:
56
+ experiment = json.load(fi)
57
+
58
+ results = experiment["results"]
59
+ tokens = experiment["tokens"]
60
+ run = wandb.init(project="bigscience-tr3-evaluation-through-training", entity="timerobber", name=experiment_name,
61
+ reinit=True)
62
+ for i, n_tokens in enumerate(tokens):
63
+ all_values = []
64
+ acc_average = []
65
+ normalised_acc_average = []
66
+ for task, task_results in results.items():
67
+ values = None
68
+ for metric, values in task_results.items():
69
+ if args.all_tasks:
70
+ wandb.log({f"{task}_{metric}": values[i], "tokens": tokens[i]})
71
+ if "stderr" not in metric and "ppl" not in metric:
72
+ all_values.append(values[i])
73
+ if metric == "acc":
74
+ acc_average.append(values[i])
75
+ normalised_acc_average.append(normalise(values[i], task))
76
+ if args.naive_average:
77
+ wandb.log({f"naive_average": np.mean(all_values), "tokens": tokens[i]})
78
+ if args.acc_average:
79
+ wandb.log({f"acc_average": np.mean(acc_average), "tokens": tokens[i]})
80
+ if args.normalised_acc_average:
81
+ wandb.log({f"normalised_acc_average": np.mean(normalised_acc_average), "tokens": tokens[i]})
82
+
83
+ run.finish()
84
+
85
+ if __name__ == "__main__":
86
+ main()
evaluation/utilities/find_checkpoints_at_token_intervals.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import json
3
+
4
+ steps_vs_samples = datasets.load_dataset("csv", data_files="run-.-tag-steps-vs-samples_y=steps,x=samples.csv")["train"]
5
+
6
+ slope = (steps_vs_samples[-1]["Step"] - steps_vs_samples[-2]["Step"]) / (
7
+ steps_vs_samples[-1]["Value"] - steps_vs_samples[-2]["Value"])
8
+ offset = steps_vs_samples[-1]["Step"] - steps_vs_samples[-1]["Value"] * slope
9
+
10
+ token_interval = 1e10
11
+ step_interval = 1500
12
+ tokens_per_sample = 2048
13
+ token_count = token_interval
14
+
15
+ output_checkpoints = []
16
+
17
+ for item in steps_vs_samples:
18
+ if item["Step"] * tokens_per_sample > token_count:
19
+ token_count += token_interval
20
+ step = step_interval * (item['Value'] // step_interval)
21
+ tokens = tokens_per_sample * (slope * (step_interval * (item['Value'] // step_interval)) + offset)
22
+ print(f"step: {step}")
23
+ print(f"tokens at that step: {tokens}")
24
+ output_checkpoints.append({"step": step, "tokens": tokens})
25
+
26
+
27
+ json.dump(output_checkpoints, open("steps_to_evaluate_with_tokens.json", "w"))
evaluation/utilities/plot_all_eval.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from argparse import ArgumentParser
4
+
5
+ from matplotlib import pyplot as plt
6
+
7
+
8
+ def get_args():
9
+ parser = ArgumentParser()
10
+ parser.add_argument('--input-files', type=lambda s: s.split(','), required=True, help='Input files that hold all evaluation metrics')
11
+ return parser.parse_args()
12
+
13
+ def main():
14
+ args = get_args()
15
+
16
+ plots = {} # {"{EVALUATION}_{METRIC}": plt.figure}
17
+ for input_file in args.input_files:
18
+ assert os.path.basename(input_file).endswith("_agg.json")
19
+ experiment_name = os.path.basename(input_file).split("_agg.json")[0]
20
+ with open(input_file, "r") as fi:
21
+ experiment = json.load(fi)
22
+
23
+ tokens = experiment["tokens"]
24
+ for evaluation_name, evaluation in experiment["results"].items():
25
+ for metric_name, metric in evaluation.items():
26
+ key = f"{evaluation_name}_{metric_name}"
27
+ if key[-7:] == "_stderr":
28
+ continue
29
+
30
+ if key not in plots:
31
+ plot = plt.figure(len(plots))
32
+ plot = plot.add_subplot(1,1,1)
33
+ plot.set_title(key)
34
+ plots[key] = plot
35
+
36
+ plot = plots[key]
37
+
38
+ plot.plot(tokens, metric, label=experiment_name)
39
+
40
+ for plot in plots.values():
41
+ plot.legend()
42
+ plt.show()
43
+
44
+ if __name__ == "__main__":
45
+ main()
jz/.gitignore ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ pip-wheel-metadata/
24
+ share/python-wheels/
25
+ *.egg-info/
26
+ .installed.cfg
27
+ *.egg
28
+ MANIFEST
29
+
30
+ # PyInstaller
31
+ # Usually these files are written by a python script from a template
32
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
33
+ *.manifest
34
+ *.spec
35
+
36
+ # Installer logs
37
+ pip-log.txt
38
+ pip-delete-this-directory.txt
39
+
40
+ # Unit test / coverage reports
41
+ htmlcov/
42
+ .tox/
43
+ .nox/
44
+ .coverage
45
+ .coverage.*
46
+ .cache
47
+ nosetests.xml
48
+ coverage.xml
49
+ *.cover
50
+ *.py,cover
51
+ .hypothesis/
52
+ .pytest_cache/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ target/
76
+
77
+ # Jupyter Notebook
78
+ .ipynb_checkpoints
79
+
80
+ # IPython
81
+ profile_default/
82
+ ipython_config.py
83
+
84
+ # pyenv
85
+ .python-version
86
+
87
+ # pipenv
88
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
90
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
91
+ # install all needed dependencies.
92
+ #Pipfile.lock
93
+
94
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95
+ __pypackages__/
96
+
97
+ # Celery stuff
98
+ celerybeat-schedule
99
+ celerybeat.pid
100
+
101
+ # SageMath parsed files
102
+ *.sage.py
103
+
104
+ # Environments
105
+ .env
106
+ .venv
107
+ env/
108
+ venv/
109
+ ENV/
110
+ env.bak/
111
+ venv.bak/
112
+
113
+ # Spyder project settings
114
+ .spyderproject
115
+ .spyproject
116
+
117
+ # Rope project settings
118
+ .ropeproject
119
+
120
+ # mkdocs documentation
121
+ /site
122
+
123
+ # mypy
124
+ .mypy_cache/
125
+ .dmypy.json
126
+ dmypy.json
127
+
128
+ # Pyre type checker
129
+ .pyre/
130
+
131
+ # Slurm job output and error
132
+ *.err
133
+ *.out
jz/.gitmodules ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [submodule "lm-evaluation-harness"]
2
+ path = lm-evaluation-harness
3
+ url = https://github.com/huggingface/lm-evaluation-harness.git
jz/README.md ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # jay-z
2
+
3
+ Jean Zay aka JZ pronounced "Jay-Z"
4
+
5
+ This section of the repo is all about how things are done on JZ.
6
+
7
+ Main documents:
8
+
9
+ - [Compute Resources](./compute-resources.md)
10
+ - [JZ Specs](./hpc-specs.md)
11
+ - [Framework-specific notes](./frameworks/)
12
+ - [Model-specific Instructions](./archs/)
13
+
14
+ Code:
15
+ - [Work Env and Setup](./envs/README.md)
16
+ - [SLURM scripts](./scripts/)
17
+ - [Config files](./configs/)
18
+
19
+ Tools:
20
+ - [SLURM HowTo](./slurm/)
21
+ - [Various Tools](./tools/)
22
+
23
+ General JZ Docs:
24
+
25
+ - HF Internal: https://github.com/huggingface/conf/wiki/JZ
26
+ - Official: http://www.idris.fr/eng/jean-zay/
27
+ - Collaborative doc: https://jean-zay-doc.readthedocs.io/en/latest/