File size: 5,035 Bytes
cf5659c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import json
import math
import os
from argparse import ArgumentParser
from os import listdir
from os.path import isfile

def get_args():
    parser = ArgumentParser()
    # --experiments tr3d-1B3-oscar-checkpoints,tr3e-1B3-c4-checkpoints,tr3m-1B3-pile-checkpoints
    parser.add_argument('--experiment', type=str, required=True,
                        help='Experiment we want to download.')
    parser.add_argument('--result-dir', type=str, required=True,
                        help='Result directory containing all results, and to store aggregated json results.')
    parser.add_argument('--batch-size', type=int, default=512,
                        help='Experiment training batch size.')
    parser.add_argument('--sequence_length', type=int, default=2048,
                        help='Experiment training sequence length.')
    parser.add_argument('--rampup-batch-size', type=lambda s: tuple(int(item) for item in s.split(',')), default=(32, 32, 2_000_000),
                        help='Experiment training batch size rampup.')
    return parser.parse_args()

def checkpoint_step_to_tokens(checkpoint_step, args) -> int:
    def fn(checkpoint_step) -> int:
        if not hasattr(checkpoint_step_to_tokens, "CACHE"):
            checkpoint_step_to_tokens.CACHE = {}

        BATCH_SIZE=args.batch_size
        SEQUENCE_LENGTH=args.sequence_length
        # Linear increase in terms of samples.
        RAMPUP_BATCH_SIZE = args.rampup_batch_size

        # Compute RAMPUP checkpoint_step
        if not hasattr(checkpoint_step_to_tokens, "RAMPUP_OFFSET"):
            initial_batch_size, increment_batch_size, sample_limit_for_rampup = RAMPUP_BATCH_SIZE
            number_of_increments = (BATCH_SIZE - initial_batch_size) // increment_batch_size
            assert (BATCH_SIZE - initial_batch_size) % increment_batch_size == 0

            offset_step = 0
            start_sample = 0
            for incr in range(number_of_increments):
                batch_size = initial_batch_size + incr * increment_batch_size
                end_sample = int(math.ceil((incr + 1) * sample_limit_for_rampup / number_of_increments))
                number_of_step_per_increment = int(math.ceil((end_sample - start_sample) / batch_size))
                checkpoint_step_to_tokens.CACHE.update({
                    offset_step + i: (start_sample + i * batch_size) * SEQUENCE_LENGTH
                    for i in range(number_of_step_per_increment)
                })
                offset_step += number_of_step_per_increment
                start_sample += number_of_step_per_increment * batch_size

            checkpoint_step_to_tokens.CACHE[offset_step] = start_sample * SEQUENCE_LENGTH
            checkpoint_step_to_tokens.RAMPUP_OFFSET = offset_step

        if checkpoint_step in checkpoint_step_to_tokens.CACHE:
            return checkpoint_step_to_tokens.CACHE[checkpoint_step]

        number_steps_after_rampup = checkpoint_step - checkpoint_step_to_tokens.RAMPUP_OFFSET
        assert number_steps_after_rampup >= 0

        slope = BATCH_SIZE * SEQUENCE_LENGTH

        checkpoint_step_to_tokens.CACHE[checkpoint_step] = \
            checkpoint_step_to_tokens.CACHE[checkpoint_step_to_tokens.RAMPUP_OFFSET] + \
            slope * number_steps_after_rampup
        return checkpoint_step_to_tokens.CACHE[checkpoint_step]
    return fn(checkpoint_step)

def main():
    args = get_args()
    result_dir = args.result_dir
    experiment = args.experiment

    results_file_per_checkpoint = [
        file
        for file in listdir(result_dir)
        if isfile(os.path.join(result_dir, file)) and file.startswith(experiment)
    ]
    checkpoint_steps = sorted([int(file.split("_")[-1].split(".json")[0]) for file in results_file_per_checkpoint])
    absolute_paths = [f"{result_dir}/{experiment}_{checkpoint_step}.json" for checkpoint_step in checkpoint_steps]
    # format = "{EXPERIMENT_NAME}_{CHECKPOINT_STEP}.json"
    tokens = [checkpoint_step_to_tokens(checkpoint_step, args) for checkpoint_step in checkpoint_steps]

    result_json = {}
    for absolute_path in absolute_paths:
        with open(absolute_path, 'r') as fi:
            results = json.load(fi)["results"]

        for task in results:
            if task not in result_json:
                result_json[task] = {}

            for metric in results[task]:
                if metric not in result_json[task]:
                    result_json[task][metric] = []

                result_json[task][metric].append(results[task][metric])

    # check
    for task in result_json:
        assert len(tokens) == len(checkpoint_steps)
        for metric in result_json[task]:
            assert len(result_json[task][metric]) == len(checkpoint_steps)

    output_path = os.path.join(result_dir, f"{experiment}_agg.json")
    print(f"Printing results to {output_path}")
    with open(output_path, 'w') as fo:
        json.dump({"tokens": tokens, "checkpoints": checkpoint_steps, "results": result_json}, fo, indent=2)

if __name__ == "__main__":
    main()