applied-ai-018's picture
Add files using upload-large-folder tool
9605203 verified
import os
import math
import json
import argparse
import subprocess
from collections import OrderedDict
from new_to_old_format_data_path import output_sampling_probs_new_format
SPLIT = [0, 0.949, 0.999, 1.0]
def calc_multinomial_sampling_prob_with_penalty(dataset_size, alpha=.5):
"""
Calculate multinomial probability distribution based on https://arxiv.org/pdf/1901.07291.pdf (section 3.1)
:dataset_size: A dictionary contains the size (value) of each of the language (key).
"""
tot_size = 0
probs = OrderedDict()
for lang, size in dataset_size.items():
tot_size += size
for lang, size in dataset_size.items():
probs[lang] = size / tot_size
pen_prob = OrderedDict()
tot_pen_prob = 0.0
for lang, prob in probs.items():
tot_pen_prob += (prob ** alpha)
sum_ = 0.0
for lang, prob in probs.items():
pen_prob[lang] = (prob ** alpha) / tot_pen_prob
sum_ += pen_prob[lang]
assert math.fabs(1 - sum_) < 1e-6
return pen_prob
def get_size_stats(args):
"""
Calculate size for each of the iterator.
It recusively iterate though a directory to find a specific extension file and report their size in preferred format.
"""
lang_size_dict = {}
for (dirpath, dirnames, filenames) in os.walk(args.data_folder_path):
for filename in filenames:
if not (filename.startswith(args.name_prefix) and filename.endswith(args.extension_name)):
continue
full_file_path = os.path.join(dirpath, filename)
lang_size = subprocess.check_output("du -s {}".format(full_file_path), shell=True)
lang_size = int(lang_size.decode("utf-8").split("\t")[0])
if args.size_format == 'KB':
_conv = 1
elif args.size_format == 'MB':
_conv = 1024
elif args.size_format == 'GB':
_conv = 1024 * 1024
elif args.size_format == 'TB':
_conv = 1024 * 1024 * 1024
lang_size_ = round(lang_size / float(_conv), 2)
lang_size_dict[full_file_path] = lang_size_
return lang_size_dict
def print_stat(args, lang_size_dict, value_name='size'):
"""
Print size statistics.
"""
lang_list = sorted([(k, v) for k, v in lang_size_dict.items()], key=lambda tup: tup[1])
total_size = 0
print("\nLanguage : ({})".format(value_name))
print("-" * 20)
for lang, size in lang_list:
print("{} : {}".format(lang, size))
total_size += size
print("-" * 20)
print("Total size : {}".format(total_size))
def removesuffix(string, suffix):
if string.endswith(suffix):
string = string[:-len(suffix)]
return string
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data-folder-path', type=str, required=True,
help='Path to the data folder')
parser.add_argument('--size-format', type=str, required=True,
help='Calculation will be done in byte, mega-byte, giga-byte or tera-byte',
choices=['KB', 'MB', 'GB', 'TB'])
parser.add_argument('--alpha', type=float, required=True,
help='Sampling penalty.')
parser.add_argument('--output-dir', type=str, required=True,
help='Output directory where sampling prob_dict will be saved.')
parser.add_argument('--name-prefix', type=str, required=True,
help='File name prefix to match. Combination of `--name-prefix` and --extension-name will be used to select file.')
parser.add_argument('--extension-name', type=str, required=True,
help='Extension of the file to match. Combination of `--name-prefix` and --extension-name will be used to select file')
parser.add_argument('--old-format', action="store_true",
help='Legacy option')
args = parser.parse_args()
size_dict = get_size_stats(args)
print_stat(args, size_dict, value_name=args.size_format)
sampling_probability = calc_multinomial_sampling_prob_with_penalty(
size_dict, alpha=args.alpha
)
print_stat(args, sampling_probability, 'probability')
total_contrib = 0
print("\nLanguage : Per epoch contribution in {}".format(args.size_format))
print("-" * 50)
for lang, prob in sampling_probability.items():
sampling_probability[lang] = (prob, size_dict[lang])
lang_contrib_size = round(size_dict[lang] * prob, 2)
print("{} : {} ({} -> {})".format(lang, prob, size_dict[lang], lang_contrib_size))
total_contrib += lang_contrib_size
print("-" * 50)
print("Total size : {}".format(total_contrib))
open(os.path.join(args.output_dir, 'iterator_selection_prob.{}.json'.format(args.alpha)), "w").write(
json.dumps(sampling_probability, indent=4)
)
if args.old_format:
with open(os.path.join(args.output_dir, "dataset_probabilities.{}.txt".format(args.alpha)), "w") as fout:
fout.write(
" ".join([f"{prob[0]} {removesuffix(path, '.bin')}" for path, prob in sampling_probability.items()]))
pass
else:
output_sampling_probs_new_format(sampling_probability, args.output_dir, args.alpha)
if __name__ == '__main__':
main()