applied-ai-018's picture
Add files using upload-large-folder tool
d1396f0 verified
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
using world size: 64, data-parallel-size: 1, tensor-model-parallel size: 4, pipeline-model-parallel size: 16
using torch.float16 for parameters ...
------------------------ arguments ------------------------
accumulate_allreduce_grads_in_fp32 .............. False
adam_beta1 ...................................... 0.9
adam_beta2 ...................................... 0.999
adam_eps ........................................ 1e-08
adlr_autoresume ................................. False
adlr_autoresume_interval ........................ 1000
apply_query_key_layer_scaling ................... True
apply_residual_connection_post_layernorm ........ False
attention_dropout ............................... 0.1
attention_softmax_in_fp32 ....................... False
bert_binary_head ................................ True
bert_load ....................................... None
bf16 ............................................ False
bias_dropout_fusion ............................. True
bias_gelu_fusion ................................ True
biencoder_projection_dim ........................ 0
biencoder_shared_query_context_model ............ False
block_data_path ................................. None
checkpoint_activations .......................... True
checkpoint_in_cpu ............................... False
checkpoint_num_layers ........................... 1
clip_grad ....................................... 1.0
consumed_train_samples .......................... 0
consumed_valid_samples .......................... 0
contigious_checkpointing ........................ False
cpu_optimizer ................................... False
data_impl ....................................... mmap
data_parallel_size .............................. 1
data_path ....................................... ['/gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document']
dataloader_type ................................. single
DDP_impl ........................................ local
decoder_seq_length .............................. None
deepscale ....................................... False
deepscale_config ................................ None
deepspeed ....................................... True
deepspeed_activation_checkpointing .............. True
deepspeed_config ................................ ./ds_config.json
deepspeed_mpi ................................... False
distribute_checkpointed_activations ............. False
distributed_backend ............................. nccl
embedding_path .................................. None
encoder_seq_length .............................. 1024
eod_mask_loss ................................... False
eval_interval ................................... 100
eval_iters ...................................... 10
evidence_data_path .............................. None
exit_duration_in_mins ........................... None
exit_interval ................................... None
ffn_hidden_size ................................. 32768
finetune ........................................ False
fp16 ............................................ True
fp16_lm_cross_entropy ........................... False
fp32_residual_connection ........................ False
global_batch_size ............................... 1024
hidden_dropout .................................. 0.1
hidden_size ..................................... 8192
hysteresis ...................................... 2
ict_head_size ................................... None
ict_load ........................................ None
img_dim ......................................... 224
indexer_batch_size .............................. 128
indexer_log_interval ............................ 1000
init_method_std ................................. 0.02
init_method_xavier_uniform ...................... False
initial_loss_scale .............................. 4294967296
kv_channels ..................................... 256
layernorm_epsilon ............................... 1e-05
lazy_mpu_init ................................... None
load ............................................ /gpfsscratch/rech/six/ura81os/checkpoints/gpt2-meg-ds
local_rank ...................................... 0
log_batch_size_to_tensorboard ................... False
log_interval .................................... 1
log_learning_rate_to_tensorboard ................ True
log_loss_scale_to_tensorboard ................... True
log_num_zeros_in_grad ........................... False
log_params_norm ................................. False
log_timers_to_tensorboard ....................... False
log_validation_ppl_to_tensorboard ............... False
loss_scale ...................................... 12.0
loss_scale_window ............................... 1000
lr .............................................. 0.00015
lr_decay_iters .................................. 800
lr_decay_samples ................................ None
lr_decay_style .................................. cosine
lr_warmup_fraction .............................. 0.01
lr_warmup_iters ................................. 0
lr_warmup_samples ............................... 0
make_vocab_size_divisible_by .................... 128
mask_prob ....................................... 0.15
masked_softmax_fusion ........................... True
max_position_embeddings ......................... 1024
merge_file ...................................... /gpfswork/rech/six/commun/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release/gpt2-merges.txt
micro_batch_size ................................ 4
min_loss_scale .................................. 1.0
min_lr .......................................... 1e-05
mmap_warmup ..................................... False
no_load_optim ................................... None
no_load_rng ..................................... None
no_save_optim ................................... None
no_save_rng ..................................... None
num_attention_heads ............................. 32
num_channels .................................... 3
num_classes ..................................... 1000
num_layers ...................................... 64
num_layers_per_virtual_pipeline_stage ........... None
num_workers ..................................... 2
onnx_safe ....................................... None
openai_gelu ..................................... False
optimizer ....................................... adam
override_lr_scheduler ........................... False
params_dtype .................................... torch.float16
partition_activations ........................... False
patch_dim ....................................... 16
pipeline_model_parallel_size .................... 16
profile_backward ................................ False
query_in_block_prob ............................. 0.1
rampup_batch_size ............................... None
rank ............................................ 0
remote_device ................................... none
reset_attention_mask ............................ False
reset_position_ids .............................. False
retriever_report_topk_accuracies ................ []
retriever_score_scaling ......................... False
retriever_seq_length ............................ 256
sample_rate ..................................... 1.0
save ............................................ /gpfsscratch/rech/six/ura81os/checkpoints/gpt2-meg-ds
save_interval ................................... 500
scatter_gather_tensors_in_pipeline .............. True
seed ............................................ 1234
seq_length ...................................... 1024
sgd_momentum .................................... 0.9
short_seq_prob .................................. 0.1
split ........................................... 949,50,1
synchronize_each_layer .......................... False
tensor_model_parallel_size ...................... 4
tensorboard_dir ................................. None
tensorboard_log_interval ........................ 1
tensorboard_queue_size .......................... 1000
titles_data_path ................................ None
tokenizer_type .................................. GPT2BPETokenizer
train_iters ..................................... 1000
train_samples ................................... None
use_checkpoint_lr_scheduler ..................... False
use_contiguous_buffers_in_ddp ................... False
use_cpu_initialization .......................... None
use_one_sent_docs ............................... False
virtual_pipeline_model_parallel_size ............ None
vocab_extra_ids ................................. 0
vocab_file ...................................... /gpfswork/rech/six/commun/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release/gpt2-vocab.json
weight_decay .................................... 0.01
world_size ...................................... 64
zero_stage ...................................... 0
-------------------- end of arguments ---------------------
setting number of micro-batches to constant 256
> building GPT2BPETokenizer tokenizer ...
> padded vocab (size: 50257) with 431 dummy tokens (new size: 50688)
> initializing torch distributed ...
> initializing tensor model parallel with size 4
> initializing pipeline model parallel with size 16
> setting random seeds to 1234 ...
[2021-06-10 20:47:37,205] [INFO] [checkpointing.py:226:model_parallel_cuda_manual_seed] > initializing model parallel cuda seeds on global rank 0, model parallel rank 0, and data parallel rank 0 with model parallel seed: 3952 and data parallel seed: 1234
> compiling dataset index builder ...
make: Entering directory '/gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/data'
make: Nothing to be done for 'default'.
make: Leaving directory '/gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/data'
>>> done with dataset index builder. Compilation time: 0.106 seconds
> compiling and loading fused kernels ...
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
Detected CUDA files, patching ldflags
Emitting ninja build file /gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/fused_kernels/build/build.ninja...
Building extension module scaled_upper_triang_masked_softmax_cuda...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module scaled_upper_triang_masked_softmax_cuda...
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
Detected CUDA files, patching ldflags
Emitting ninja build file /gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/fused_kernels/build/build.ninja...
Building extension module scaled_masked_softmax_cuda...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module scaled_masked_softmax_cuda...
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
Detected CUDA files, patching ldflags
Emitting ninja build file /gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/fused_kernels/build/build.ninja...
Building extension module fused_mix_prec_layer_norm_cuda...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module fused_mix_prec_layer_norm_cuda...
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
>>> done with compiling and loading fused kernels. Compilation time: 12.900 seconds
time to initialize megatron (seconds): -41.720
[after megatron is initialized] datetime: 2021-06-10 20:47:50
building GPT model ...
[2021-06-10 20:47:50,326] [INFO] [utils.py:627:see_memory_usage] Before Building Model
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/cuda/memory.py:373: FutureWarning: torch.cuda.memory_cached has been renamed to torch.cuda.memory_reserved
warnings.warn(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/cuda/memory.py:381: FutureWarning: torch.cuda.max_memory_cached has been renamed to torch.cuda.max_memory_reserved
warnings.warn(
[2021-06-10 20:47:50,329] [INFO] [utils.py:628:see_memory_usage] MA 0.0 GB Max_MA 0.0 GB CA 0.0 GB Max_CA 0 GB
[2021-06-10 20:47:50,329] [INFO] [utils.py:636:see_memory_usage] CPU Virtual Memory: used = 38.96 GB, percent = 20.8%
SEED_LAYERS=False BASE_SEED=1234 SEED_FN=None
Using topology: {ProcessCoord(pipe=0, data=0, model=0): 0, ProcessCoord(pipe=0, data=0, model=1): 1, ProcessCoord(pipe=0, data=0, model=2): 2, ProcessCoord(pipe=0, data=0, model=3): 3, ProcessCoord(pipe=1, data=0, model=0): 4, ProcessCoord(pipe=1, data=0, model=1): 5, ProcessCoord(pipe=1, data=0, model=2): 6, ProcessCoord(pipe=1, data=0, model=3): 7, ProcessCoord(pipe=2, data=0, model=0): 8, ProcessCoord(pipe=2, data=0, model=1): 9, ProcessCoord(pipe=2, data=0, model=2): 10, ProcessCoord(pipe=2, data=0, model=3): 11, ProcessCoord(pipe=3, data=0, model=0): 12, ProcessCoord(pipe=3, data=0, model=1): 13, ProcessCoord(pipe=3, data=0, model=2): 14, ProcessCoord(pipe=3, data=0, model=3): 15, ProcessCoord(pipe=4, data=0, model=0): 16, ProcessCoord(pipe=4, data=0, model=1): 17, ProcessCoord(pipe=4, data=0, model=2): 18, ProcessCoord(pipe=4, data=0, model=3): 19, ProcessCoord(pipe=5, data=0, model=0): 20, ProcessCoord(pipe=5, data=0, model=1): 21, ProcessCoord(pipe=5, data=0, model=2): 22, ProcessCoord(pipe=5, data=0, model=3): 23, ProcessCoord(pipe=6, data=0, model=0): 24, ProcessCoord(pipe=6, data=0, model=1): 25, ProcessCoord(pipe=6, data=0, model=2): 26, ProcessCoord(pipe=6, data=0, model=3): 27, ProcessCoord(pipe=7, data=0, model=0): 28, ProcessCoord(pipe=7, data=0, model=1): 29, ProcessCoord(pipe=7, data=0, model=2): 30, ProcessCoord(pipe=7, data=0, model=3): 31, ProcessCoord(pipe=8, data=0, model=0): 32, ProcessCoord(pipe=8, data=0, model=1): 33, ProcessCoord(pipe=8, data=0, model=2): 34, ProcessCoord(pipe=8, data=0, model=3): 35, ProcessCoord(pipe=9, data=0, model=0): 36, ProcessCoord(pipe=9, data=0, model=1): 37, ProcessCoord(pipe=9, data=0, model=2): 38, ProcessCoord(pipe=9, data=0, model=3): 39, ProcessCoord(pipe=10, data=0, model=0): 40, ProcessCoord(pipe=10, data=0, model=1): 41, ProcessCoord(pipe=10, data=0, model=2): 42, ProcessCoord(pipe=10, data=0, model=3): 43, ProcessCoord(pipe=11, data=0, model=0): 44, ProcessCoord(pipe=11, data=0, model=1): 45, ProcessCoord(pipe=11, data=0, model=2): 46, ProcessCoord(pipe=11, data=0, model=3): 47, ProcessCoord(pipe=12, data=0, model=0): 48, ProcessCoord(pipe=12, data=0, model=1): 49, ProcessCoord(pipe=12, data=0, model=2): 50, ProcessCoord(pipe=12, data=0, model=3): 51, ProcessCoord(pipe=13, data=0, model=0): 52, ProcessCoord(pipe=13, data=0, model=1): 53, ProcessCoord(pipe=13, data=0, model=2): 54, ProcessCoord(pipe=13, data=0, model=3): 55, ProcessCoord(pipe=14, data=0, model=0): 56, ProcessCoord(pipe=14, data=0, model=1): 57, ProcessCoord(pipe=14, data=0, model=2): 58, ProcessCoord(pipe=14, data=0, model=3): 59, ProcessCoord(pipe=15, data=0, model=0): 60, ProcessCoord(pipe=15, data=0, model=1): 61, ProcessCoord(pipe=15, data=0, model=2): 62, ProcessCoord(pipe=15, data=0, model=3): 63}
[2021-06-10 20:47:51,179] [INFO] [module.py:360:_partition_layers] Partitioning pipeline stages with method type:transformer
stage=0 layers=7
0: _to_float16
1: EmbeddingPipe
2: <lambda>
3: ParallelTransformerLayerPipe
4: ParallelTransformerLayerPipe
5: ParallelTransformerLayerPipe
6: ParallelTransformerLayerPipe
stage=1 layers=4
7: ParallelTransformerLayerPipe
8: ParallelTransformerLayerPipe
9: ParallelTransformerLayerPipe
10: ParallelTransformerLayerPipe
stage=2 layers=4
11: ParallelTransformerLayerPipe
12: ParallelTransformerLayerPipe
13: ParallelTransformerLayerPipe
14: ParallelTransformerLayerPipe
stage=3 layers=4
15: ParallelTransformerLayerPipe
16: ParallelTransformerLayerPipe
17: ParallelTransformerLayerPipe
18: ParallelTransformerLayerPipe
stage=4 layers=4
19: ParallelTransformerLayerPipe
20: ParallelTransformerLayerPipe
21: ParallelTransformerLayerPipe
22: ParallelTransformerLayerPipe
stage=5 layers=4
23: ParallelTransformerLayerPipe
24: ParallelTransformerLayerPipe
25: ParallelTransformerLayerPipe
26: ParallelTransformerLayerPipe
stage=6 layers=4
27: ParallelTransformerLayerPipe
28: ParallelTransformerLayerPipe
29: ParallelTransformerLayerPipe
30: ParallelTransformerLayerPipe
stage=7 layers=4
31: ParallelTransformerLayerPipe
32: ParallelTransformerLayerPipe
33: ParallelTransformerLayerPipe
34: ParallelTransformerLayerPipe
stage=8 layers=4
35: ParallelTransformerLayerPipe
36: ParallelTransformerLayerPipe
37: ParallelTransformerLayerPipe
38: ParallelTransformerLayerPipe
stage=9 layers=4
39: ParallelTransformerLayerPipe
40: ParallelTransformerLayerPipe
41: ParallelTransformerLayerPipe
42: ParallelTransformerLayerPipe
stage=10 layers=4
43: ParallelTransformerLayerPipe
44: ParallelTransformerLayerPipe
45: ParallelTransformerLayerPipe
46: ParallelTransformerLayerPipe
stage=11 layers=4
47: ParallelTransformerLayerPipe
48: ParallelTransformerLayerPipe
49: ParallelTransformerLayerPipe
50: ParallelTransformerLayerPipe
stage=12 layers=4
51: ParallelTransformerLayerPipe
52: ParallelTransformerLayerPipe
53: ParallelTransformerLayerPipe
54: ParallelTransformerLayerPipe
stage=13 layers=4
55: ParallelTransformerLayerPipe
56: ParallelTransformerLayerPipe
57: ParallelTransformerLayerPipe
58: ParallelTransformerLayerPipe
stage=14 layers=4
59: ParallelTransformerLayerPipe
60: ParallelTransformerLayerPipe
61: ParallelTransformerLayerPipe
62: ParallelTransformerLayerPipe
stage=15 layers=8
63: ParallelTransformerLayerPipe
64: ParallelTransformerLayerPipe
65: ParallelTransformerLayerPipe
66: ParallelTransformerLayerPipe
67: <lambda>
68: MixedFusedLayerNorm
69: EmbeddingPipe
70: float16_to_fp32
loss: CrossEntropy
> number of parameters on (tensor, pipeline) model parallel rank (2, 12): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 7): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 8): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 8): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 8): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 12): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 12): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 12): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 8): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 7): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 7): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 7): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 9): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 9): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 9): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 1): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 4): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 4): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 4): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 11): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 11): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 11): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 11): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 3): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 3): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 3): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 3): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 9): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 14): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 1): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 1): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 1): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 4): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 6): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 6): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 6): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 14): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 14): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 14): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 6): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 5): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 5): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 5): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 5): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 13): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 13): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 13): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 13): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 2): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 2): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 2): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 2): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 10): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 10): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 10): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 10): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 15): 917774336
> number of parameters on (tensor, pipeline) model parallel rank (0, 15): 917774336
> number of parameters on (tensor, pipeline) model parallel rank (2, 0): 917757952
> number of parameters on (tensor, pipeline) model parallel rank (3, 15): 917774336 > number of parameters on (tensor, pipeline) model parallel rank (1, 15): 917774336
> number of parameters on (tensor, pipeline) model parallel rank (3, 0): 917757952
> number of parameters on (tensor, pipeline) model parallel rank (1, 0): 917757952
[2021-06-10 20:47:51,720] [INFO] [utils.py:627:see_memory_usage] After Building Model
[2021-06-10 20:47:51,721] [INFO] [utils.py:628:see_memory_usage] MA 1.73 GB Max_MA 1.73 GB CA 1.75 GB Max_CA 2 GB
[2021-06-10 20:47:51,721] [INFO] [utils.py:636:see_memory_usage] CPU Virtual Memory: used = 39.14 GB, percent = 20.9%
> number of parameters on (tensor, pipeline) model parallel rank (0, 0): 917757952
> learning rate decay style: cosine
DeepSpeed is enabled.
[2021-06-10 20:47:51,724] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed info: version=0.4.0+407ff0f, git-hash=407ff0f, git-branch=megatron2.4-3d
[2021-06-10 20:47:51,764] [INFO] [engine.py:172:__init__] DeepSpeed Flops Profiler Enabled: False
[2021-06-10 20:47:51,764] [INFO] [engine.py:682:_configure_optimizer] Removing param_group that has no 'params' in the client Optimizer
[2021-06-10 20:47:51,765] [INFO] [engine.py:687:_configure_optimizer] Using client Optimizer as basic optimizer
[2021-06-10 20:47:51,765] [INFO] [engine.py:696:_configure_optimizer] DeepSpeed Basic Optimizer = FusedAdam
[2021-06-10 20:47:51,765] [INFO] [logging.py:60:log_dist] [Rank 0] Creating fp16 unfused optimizer with dynamic loss scale
[2021-06-10 20:47:51,765] [INFO] [unfused_optimizer.py:37:__init__] Fused Lamb Legacy : False
[2021-06-10 20:47:51,885] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed Final Optimizer = FusedAdam
[2021-06-10 20:47:51,885] [INFO] [engine.py:509:_configure_lr_scheduler] DeepSpeed using client LR scheduler
[2021-06-10 20:47:51,885] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed LR Scheduler = <megatron.learning_rates.AnnealingLR object at 0x1533710dffd0>
[2021-06-10 20:47:51,885] [INFO] [logging.py:60:log_dist] [Rank 0] step=0, skipped=0, lr=[0.0, 0.0], mom=[(0.9, 0.999), (0.9, 0.999)]
[2021-06-10 20:47:51,885] [INFO] [config.py:900:print] DeepSpeedEngine configuration:
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] activation_checkpointing_config {
"partition_activations": false,
"contiguous_memory_optimization": false,
"cpu_checkpointing": false,
"number_checkpoints": null,
"synchronize_checkpoint_boundary": false,
"profile": false
}
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True}
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] allreduce_always_fp32 ........ False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] amp_enabled .................. False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] amp_params ................... False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] checkpoint_tag_validation_enabled True
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] checkpoint_tag_validation_fail False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] disable_allgather ............ False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] dump_state ................... False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] dynamic_loss_scale_args ...... {'init_scale': 4096, 'scale_window': 500, 'delayed_shift': 2, 'min_scale': 1}
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] eigenvalue_enabled ........... False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] eigenvalue_gas_boundary_resolution 1
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] eigenvalue_layer_name ........ bert.encoder.layer
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] eigenvalue_layer_num ......... 0
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] eigenvalue_max_iter .......... 100
10 20:47:51,886] [INFO] [config.py:904:print] optimizer_params ............. None
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0}
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] pld_enabled .................. False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] pld_params ................... False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] prescale_gradients ........... True
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_change_rate ......... 0.001
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_groups .............. 1
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_offset .............. 1000
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_period .............. 1000
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_rounding ............ 0
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_start_bits .......... 16
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_target_bits ......... 8
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_training_enabled .... False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_type ................ 0
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_verbose ............. False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] scheduler_name ............... None
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] scheduler_params ............. None
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] sparse_attention ............. None
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] sparse_gradients_enabled ..... False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] steps_per_print .............. 2000
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] tensorboard_enabled .......... False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] tensorboard_job_name ......... DeepSpeedJobName
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] tensorboard_output_path ......
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] train_batch_size ............. 1024
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] train_micro_batch_size_per_gpu 4
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] use_quantizer_kernel ......... False
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] wall_clock_breakdown ......... False
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] world_size ................... 1
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] zero_allow_untested_optimizer False
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] zero_config .................. {
"stage": 0,
"contiguous_gradients": false,
"reduce_scatter": true,
"reduce_bucket_size": 5.000000e+08,
"allgather_partitions": true,
"allgather_bucket_size": 5.000000e+08,
"overlap_comm": false,
"load_from_fp32_weights": true,
"elastic_checkpoint": true,
"offload_param": null,
"offload_optimizer": null,
"sub_group_size": 1.000000e+12,
"prefetch_bucket_size": 5.000000e+07,
"param_persistence_threshold": 1.000000e+05,
"max_live_parameters": 1.000000e+09,
"max_reuse_distance": 1.000000e+09,
"gather_fp16_weights_on_model_save": false,
"ignore_unused_parameters": true,
"legacy_stage1": false
}
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] zero_enabled ................. False
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] zero_optimization_stage ...... 0
[2021-06-10 20:47:51,887] [INFO] [config.py:906:print] json = {
"train_micro_batch_size_per_gpu": 4,
"gradient_accumulation_steps": 256,
"gradient_clipping": 1.0,
"prescale_gradients": true,
"zero_optimization": {
"stage": 0
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1,
"initial_scale_power": 12
},
"steps_per_print": 2.000000e+03,
"wall_clock_breakdown": false
}
[2021-06-10 20:47:51,888] [INFO] [engine.py:76:__init__] CONFIG: micro_batches=256 micro_batch_size=4
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=0 STAGE=0 LAYERS=7 [0, 7) STAGE_PARAMS=917757952 (917.758M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=1 STAGE=0 LAYERS=7 [0, 7) STAGE_PARAMS=917757952 (917.758M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=2 STAGE=0 LAYERS=7 [0, 7) STAGE_PARAMS=917757952 (917.758M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=3 STAGE=0 LAYERS=7 [0, 7) STAGE_PARAMS=917757952 (917.758M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=32 STAGE=8 LAYERS=4 [35, 39) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=34 STAGE=8 LAYERS=4 [35, 39) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=33 STAGE=8 LAYERS=4 [35, 39) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=35 STAGE=8 LAYERS=4 [35, 39) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=17 STAGE=4 LAYERS=4 [19, 23) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=49 STAGE=12 LAYERS=4 [51, 55) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=51 STAGE=12 LAYERS=4 [51, 55) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=48 STAGE=12 LAYERS=4 [51, 55) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=50 STAGE=12 LAYERS=4 [51, 55) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=16 STAGE=4 LAYERS=4 [19, 23) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=19 STAGE=4 LAYERS=4 [19, 23) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=18 STAGE=4 LAYERS=4 [19, 23) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=26 STAGE=6 LAYERS=4 [27, 31) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=24 STAGE=6 LAYERS=4 [27, 31) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=25 STAGE=6 LAYERS=4 [27, 31) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=27 STAGE=6 LAYERS=4 [27, 31) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=43 STAGE=10 LAYERS=4 [43, 47) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=40 STAGE=10 LAYERS=4 [43, 47) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=41 STAGE=10 LAYERS=4 [43, 47) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=42 STAGE=10 LAYERS=4 [43, 47) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=10 STAGE=2 LAYERS=4 [11, 15) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=8 STAGE=2 LAYERS=4 [11, 15) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=11 STAGE=2 LAYERS=4 [11, 15) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=4 STAGE=1 LAYERS=4 [7, 11) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=6 STAGE=1 LAYERS=4 [7, 11) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=7 STAGE=1 LAYERS=4 [7, 11) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=5 STAGE=1 LAYERS=4 [7, 11) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=58 STAGE=14 LAYERS=4 [59, 63) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=57 STAGE=14 LAYERS=4 [59, 63) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=56 STAGE=14 LAYERS=4 [59, 63) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=59 STAGE=14 LAYERS=4 [59, 63) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=61 STAGE=15 LAYERS=8 [63, 71) STAGE_PARAMS=917774336 (917.774M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=60 STAGE=15 LAYERS=8 [63, 71) STAGE_PARAMS=917774336 (917.774M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=63 STAGE=15 LAYERS=8 [63, 71) STAGE_PARAMS=917774336 (917.774M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=37 STAGE=9 LAYERS=4 [39, 43) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=36 STAGE=9 LAYERS=4 [39, 43) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=39 STAGE=9 LAYERS=4 [39, 43) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=38 STAGE=9 LAYERS=4 [39, 43) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=44 STAGE=11 LAYERS=4 [47, 51) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=47 STAGE=11 LAYERS=4 [47, 51) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=46 STAGE=11 LAYERS=4 [47, 51) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=45 STAGE=11 LAYERS=4 [47, 51) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=28 STAGE=7 LAYERS=4 [31, 35) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=30 STAGE=7 LAYERS=4 [31, 35) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=31 STAGE=7 LAYERS=4 [31, 35) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=29 STAGE=7 LAYERS=4 [31, 35) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=54 STAGE=13 LAYERS=4 [55, 59) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=55 STAGE=13 LAYERS=4 [55, 59) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=52 STAGE=13 LAYERS=4 [55, 59) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=12 STAGE=3 LAYERS=4 [15, 19) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=13 STAGE=3 LAYERS=4 [15, 19) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=14 STAGE=3 LAYERS=4 [15, 19) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=9 STAGE=2 LAYERS=4 [11, 15) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=53 STAGE=13 LAYERS=4 [55, 59) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=15 STAGE=3 LAYERS=4 [15, 19) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=62 STAGE=15 LAYERS=8 [63, 71) STAGE_PARAMS=917774336 (917.774M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=20 STAGE=5 LAYERS=4 [23, 27) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=23 STAGE=5 LAYERS=4 [23, 27) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=22 STAGE=5 LAYERS=4 [23, 27) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=21 STAGE=5 LAYERS=4 [23, 27) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
WARNING: could not find the metadata file /gpfsscratch/rech/six/ura81os/checkpoints/gpt2-meg-ds/latest_checkpointed_iteration.txt
will not load any checkpoints and will start from random
time (ms) | load-checkpoint: 11.96
[after model, optimizer, and learning rate scheduler are built] datetime: 2021-06-10 20:47:53
> building train, validation, and test datasets ...
> datasets target sizes (minimum size):
train: 1024000
validation: 112640
test: 10240
> building train, validation, and test datasets for GPT ...
> building dataset index ...
reading sizes...
reading pointers...
reading document index...
creating numpy buffer of mmap...
creating memory view of numpy buffer...
> finished creating indexed dataset in 0.032667 seconds
number of documents: 10000
> dataset split:
train:
document indices in [0, 9490) total of 9490 documents
validation:
document indices in [9490, 9990) total of 500 documents
test:
document indices in [9990, 10000) total of 10 documents
> loading doc-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_train_indexmap_1024000ns_1024sl_1234s_doc_idx.npy
> loading sample-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_train_indexmap_1024000ns_1024sl_1234s_sample_idx.npy
> loading shuffle-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_train_indexmap_1024000ns_1024sl_1234s_shuffle_idx.npy
loaded indexed file in 0.115 seconds
total number of samples: 1024856
total number of epochs: 99
> loading doc-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_valid_indexmap_112640ns_1024sl_1234s_doc_idx.npy
> loading sample-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_valid_indexmap_112640ns_1024sl_1234s_sample_idx.npy
> loading shuffle-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_valid_indexmap_112640ns_1024sl_1234s_shuffle_idx.npy
loaded indexed file in 0.050 seconds
total number of samples: 113200
total number of epochs: 182
> loading doc-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_test_indexmap_10240ns_1024sl_1234s_doc_idx.npy
> loading sample-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_test_indexmap_10240ns_1024sl_1234s_sample_idx.npy
> loading shuffle-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_test_indexmap_10240ns_1024sl_1234s_shuffle_idx.npy
loaded indexed file in 0.023 seconds
total number of samples: 10255
total number of epochs: 672
> finished creating GPT datasets ...
[after dataloaders are built] datetime: 2021-06-10 20:47:54
time (ms) | model-and-optimizer-setup: 2744.35 | train/valid/test-data-iterators-setup: 815.33
done with setup ...
training ...
[before the start of training step] datetime: 2021-06-10 20:47:54
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:408:forward] Activation Checkpointing Information
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:409:forward] ----Partition Activations False, CPU CHECKPOINTING False
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:412:forward] ----contiguous Memory Checkpointing False with 64 total layers
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:415:forward] ----Synchronization False
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:416:forward] ----Profiling time in checkpointing False
[Rank 1] (after 1 iterations) memory (MB) | allocated: 12337.45654296875 | max allocated: 19961.072265625 | reserved: 23288.0 | max reserved: 23288.0
[Rank 61] (after 1 iterations) memory (MB) | allocated: 12923.83251953125 | max allocated: 18175.37841796875 | reserved: 19286.0 | max reserved: 19286.0
[Rank 5] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17461.94775390625 | reserved: 20002.0 | max reserved: 20002.0
[Rank 9] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17189.947265625 | reserved: 19824.0 | max reserved: 19824.0
[Rank 17] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16645.9462890625 | reserved: 19216.0 | max reserved: 19216.0
[Rank 13] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16917.94677734375 | reserved: 19456.0 | max reserved: 19456.0
[Rank 25] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16101.9453125 | reserved: 18640.0 | max reserved: 18640.0
[Rank 29] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15829.94482421875 | reserved: 18384.0 | max reserved: 18384.0
[Rank 21] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16373.94580078125 | reserved: 18882.0 | max reserved: 18882.0
[Rank 33] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15557.9443359375 | reserved: 18654.0 | max reserved: 18654.0
[Rank 62] (after 1 iterations) memory (MB) | allocated: 12923.83251953125 | max allocated: 18175.37841796875 | reserved: 19286.0 | max reserved: 19286.0
[Rank 6] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17461.94775390625 | reserved: 20002.0 | max reserved: 20002.0
[Rank 2] (after 1 iterations) memory (MB) | allocated: 12337.45654296875 | max allocated: 19961.072265625 | reserved: 23204.0 | max reserved: 23204.0
[Rank 10] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17189.947265625 | reserved: 19760.0 | max reserved: 19760.0
[Rank 18] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16645.9462890625 | reserved: 19218.0 | max reserved: 19218.0
[Rank 14] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16917.94677734375 | reserved: 19424.0 | max reserved: 19424.0
[Rank 0] (after 1 iterations) memory (MB) | allocated: 12337.45654296875 | max allocated: 19961.072265625 | reserved: 22892.0 | max reserved: 22892.0
iteration 1/ 1000 | consumed samples: 1024 | elapsed time per iteration (ms): 159778.9 | learning rate: 1.875E-05 | global batch size: 1024 | lm-loss: 1.244238E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
[Rank 22] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16373.94580078125 | reserved: 18882.0 | max reserved: 18882.0
[Rank 26] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16101.9453125 | reserved: 19024.0 | max reserved: 19024.0
[Rank 41] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18064.0 | max reserved: 18064.0
[Rank 4] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17461.94775390625 | reserved: 20018.0 | max reserved: 20018.0
[Rank 8] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17189.947265625 | reserved: 19794.0 | max reserved: 19794.0
[Rank 45] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18302.0 | max reserved: 18302.0
[Rank 30] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15829.94482421875 | reserved: 18384.0 | max reserved: 18384.0
[Rank 16] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16645.9462890625 | reserved: 19200.0 | max reserved: 19200.0
[Rank 34] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15557.9443359375 | reserved: 18622.0 | max reserved: 18622.0
[Rank 12] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16917.94677734375 | reserved: 19504.0 | max reserved: 19504.0
[Rank 53] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 49] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17710.0 | max reserved: 17710.0
[Rank 60] (after 1 iterations) memory (MB) | allocated: 12923.83251953125 | max allocated: 18175.37841796875 | reserved: 19286.0 | max reserved: 19286.0
[Rank 24] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16101.9453125 | reserved: 19040.0 | max reserved: 19040.0
[Rank 37] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18304.0 | max reserved: 18304.0
[Rank 57] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 16926.0 | max reserved: 16926.0
[Rank 28] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15829.94482421875 | reserved: 18368.0 | max reserved: 18368.0
[Rank 32] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15557.9443359375 | reserved: 18606.0 | max reserved: 18606.0
[Rank 3] (after 1 iterations) memory (MB) | allocated: 12337.45654296875 | max allocated: 19961.072265625 | reserved: 23270.0 | max reserved: 23270.0
[Rank 7] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17461.94775390625 | reserved: 20002.0 | max reserved: 20002.0
[Rank 11] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17189.947265625 | reserved: 19744.0 | max reserved: 19744.0
[Rank 63] (after 1 iterations) memory (MB) | allocated: 12923.83251953125 | max allocated: 18175.37841796875 | reserved: 19286.0 | max reserved: 19286.0
[Rank 20] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16373.94580078125 | reserved: 18962.0 | max reserved: 18962.0
[Rank 15] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16917.94677734375 | reserved: 19536.0 | max reserved: 19536.0
[Rank 40] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18480.0 | max reserved: 18480.0
[Rank 44] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17934.0 | max reserved: 17934.0
[Rank 19] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16645.9462890625 | reserved: 19200.0 | max reserved: 19200.0
[Rank 23] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16373.94580078125 | reserved: 18912.0 | max reserved: 18912.0
time (ms)
[Rank 48] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17710.0 | max reserved: 17710.0
[Rank 31] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15829.94482421875 | reserved: 18384.0 | max reserved: 18384.0
[Rank 27] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16101.9453125 | reserved: 18640.0 | max reserved: 18640.0
[Rank 42] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18304.0 | max reserved: 18304.0
[Rank 35] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15557.9443359375 | reserved: 18654.0 | max reserved: 18654.0
[Rank 56] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 52] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 36] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18494.0 | max reserved: 18494.0
[Rank 39] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18304.0 | max reserved: 18304.0[Rank 38] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18304.0 | max reserved: 18304.0
[Rank 54] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 46] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18222.0 | max reserved: 18222.0
[Rank 43] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18224.0 | max reserved: 18224.0
[Rank 50] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17710.0 | max reserved: 17710.0
[Rank 47] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18302.0 | max reserved: 18302.0
[Rank 58] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 55] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 51] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17710.0 | max reserved: 17710.0
[Rank 59] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
iteration 2/ 1000 | consumed samples: 2048 | elapsed time per iteration (ms): 141096.8 | learning rate: 3.750E-05 | global batch size: 1024 | lm-loss: 1.244502E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 3/ 1000 | consumed samples: 3072 | elapsed time per iteration (ms): 137138.4 | learning rate: 5.625E-05 | global batch size: 1024 | lm-loss: 4.103157E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 4/ 1000 | consumed samples: 4096 | elapsed time per iteration (ms): 138928.9 | learning rate: 7.500E-05 | global batch size: 1024 | lm-loss: 4.305696E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 5/ 1000 | consumed samples: 5120 | elapsed time per iteration (ms): 137805.9 | learning rate: 9.375E-05 | global batch size: 1024 | lm-loss: 3.814122E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 6/ 1000 | consumed samples: 6144 | elapsed time per iteration (ms): 139183.6 | learning rate: 1.125E-04 | global batch size: 1024 | lm-loss: 3.368778E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 7/ 1000 | consumed samples: 7168 | elapsed time per iteration (ms): 138604.6 | learning rate: 1.312E-04 | global batch size: 1024 | lm-loss: 3.123441E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 8/ 1000 | consumed samples: 8192 | elapsed time per iteration (ms): 137448.5 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 2.563856E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 9/ 1000 | consumed samples: 9216 | elapsed time per iteration (ms): 134118.7 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 2.213366E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 10/ 1000 | consumed samples: 10240 | elapsed time per iteration (ms): 136533.1 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.981217E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 11/ 1000 | consumed samples: 11264 | elapsed time per iteration (ms): 139544.9 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.872394E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 12/ 1000 | consumed samples: 12288 | elapsed time per iteration (ms): 138324.6 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.740661E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 13/ 1000 | consumed samples: 13312 | elapsed time per iteration (ms): 134446.2 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.575262E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 14/ 1000 | consumed samples: 14336 | elapsed time per iteration (ms): 137764.0 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.397998E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 15/ 1000 | consumed samples: 15360 | elapsed time per iteration (ms): 137041.8 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.245603E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 16/ 1000 | consumed samples: 16384 | elapsed time per iteration (ms): 139143.0 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.082751E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 17/ 1000 | consumed samples: 17408 | elapsed time per iteration (ms): 139118.9 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.204085E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 18/ 1000 | consumed samples: 18432 | elapsed time per iteration (ms): 138928.4 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 1.150506E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 19/ 1000 | consumed samples: 19456 | elapsed time per iteration (ms): 139037.8 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 1.115988E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 20/ 1000 | consumed samples: 20480 | elapsed time per iteration (ms): 138096.1 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 9.714051E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 21/ 1000 | consumed samples: 21504 | elapsed time per iteration (ms): 139033.1 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 9.586049E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 22/ 1000 | consumed samples: 22528 | elapsed time per iteration (ms): 136872.8 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 9.537881E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 23/ 1000 | consumed samples: 23552 | elapsed time per iteration (ms): 137788.2 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 9.239707E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 24/ 1000 | consumed samples: 24576 | elapsed time per iteration (ms): 137068.7 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 8.807950E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 25/ 1000 | consumed samples: 25600 | elapsed time per iteration (ms): 139326.6 | learning rate: 1.498E-04 | global batch size: 1024 | lm-loss: 9.411034E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 26/ 1000 | consumed samples: 26624 | elapsed time per iteration (ms): 138753.7 | learning rate: 1.498E-04 | global batch size: 1024 | lm-loss: 1.019738E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 27/ 1000 | consumed samples: 27648 | elapsed time per iteration (ms): 135832.6 | learning rate: 1.498E-04 | global batch size: 1024 | lm-loss: 8.967265E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 28/ 1000 | consumed samples: 28672 | elapsed time per iteration (ms): 137159.8 | learning rate: 1.498E-04 | global batch size: 1024 | lm-loss: 8.756670E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 29/ 1000 | consumed samples: 29696 | elapsed time per iteration (ms): 135068.0 | learning rate: 1.498E-04 | global batch size: 1024 | lm-loss: 8.835566E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 30/ 1000 | consumed samples: 30720 | elapsed time per iteration (ms): 135619.2 | learning rate: 1.497E-04 | global batch size: 1024 | lm-loss: 8.811040E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 31/ 1000 | consumed samples: 31744 | elapsed time per iteration (ms): 137837.0 | learning rate: 1.497E-04 | global batch size: 1024 | lm-loss: 8.659844E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 32/ 1000 | consumed samples: 32768 | elapsed time per iteration (ms): 135370.3 | learning rate: 1.497E-04 | global batch size: 1024 | lm-loss: 8.494865E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 33/ 1000 | consumed samples: 33792 | elapsed time per iteration (ms): 132840.5 | learning rate: 1.497E-04 | global batch size: 1024 | lm-loss: 8.415603E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 34/ 1000 | consumed samples: 34816 | elapsed time per iteration (ms): 135995.0 | learning rate: 1.496E-04 | global batch size: 1024 | lm-loss: 8.276673E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 35/ 1000 | consumed samples: 35840 | elapsed time per iteration (ms): 130121.0 | learning rate: 1.496E-04 | global batch size: 1024 | lm-loss: 8.076686E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 36/ 1000 | consumed samples: 36864 | elapsed time per iteration (ms): 134088.0 | learning rate: 1.496E-04 | global batch size: 1024 | lm-loss: 7.927558E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 37/ 1000 | consumed samples: 37888 | elapsed time per iteration (ms): 132751.8 | learning rate: 1.495E-04 | global batch size: 1024 | lm-loss: 8.049387E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 38/ 1000 | consumed samples: 38912 | elapsed time per iteration (ms): 137618.8 | learning rate: 1.495E-04 | global batch size: 1024 | lm-loss: 8.101182E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 39/ 1000 | consumed samples: 39936 | elapsed time per iteration (ms): 136129.3 | learning rate: 1.495E-04 | global batch size: 1024 | lm-loss: 8.031030E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 40/ 1000 | consumed samples: 40960 | elapsed time per iteration (ms): 125643.3 | learning rate: 1.494E-04 | global batch size: 1024 | lm-loss: 8.032815E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 41/ 1000 | consumed samples: 41984 | elapsed time per iteration (ms): 137845.6 | learning rate: 1.494E-04 | global batch size: 1024 | lm-loss: 8.030648E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 42/ 1000 | consumed samples: 43008 | elapsed time per iteration (ms): 136653.4 | learning rate: 1.494E-04 | global batch size: 1024 | lm-loss: 7.932028E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 43/ 1000 | consumed samples: 44032 | elapsed time per iteration (ms): 133720.0 | learning rate: 1.493E-04 | global batch size: 1024 | lm-loss: 7.879141E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 44/ 1000 | consumed samples: 45056 | elapsed time per iteration (ms): 134441.1 | learning rate: 1.493E-04 | global batch size: 1024 | lm-loss: 7.791877E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 45/ 1000 | consumed samples: 46080 | elapsed time per iteration (ms): 137502.0 | learning rate: 1.492E-04 | global batch size: 1024 | lm-loss: 7.738390E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 46/ 1000 | consumed samples: 47104 | elapsed time per iteration (ms): 131717.1 | learning rate: 1.492E-04 | global batch size: 1024 | lm-loss: 7.792564E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 47/ 1000 | consumed samples: 48128 | elapsed time per iteration (ms): 134668.9 | learning rate: 1.492E-04 | global batch size: 1024 | lm-loss: 7.803430E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 48/ 1000 | consumed samples: 49152 | elapsed time per iteration (ms): 134516.4 | learning rate: 1.491E-04 | global batch size: 1024 | lm-loss: 7.790527E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 49/ 1000 | consumed samples: 50176 | elapsed time per iteration (ms): 136328.8 | learning rate: 1.491E-04 | global batch size: 1024 | lm-loss: 7.747273E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)