|
# T5 Comparisons |
|
|
|
|
|
|
|
## Data |
|
|
|
Using OpenWebText https://huggingface.co/datasets/openwebtext |
|
|
|
``` |
|
from datasets import load_dataset |
|
dataset = load_dataset("openwebtext", split='train') |
|
dataset = load_dataset("stas/openwebtext-10k", split='train') |
|
``` |
|
|
|
|
|
Megatron-LM t5 uses a subword-tokenized vocab from bert. |
|
|
|
Ready datasets: |
|
|
|
1. HF datasets use: |
|
|
|
* `openwebtext` - 8M records `--dataset_name "openwebtext"` |
|
* `stas/openwebtext-10k` - 10K records `--dataset_name "stas/openwebtext-10k"` |
|
|
|
2. Jsonlines (derived): |
|
|
|
* `$six_ALL_CCFRWORK/datasets-custom/openwebtext/openwebtext.jsonl` |
|
* `$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/openwebtext-10k.jsonl` |
|
|
|
3. Megatron-preprocessed datasets (derived): |
|
|
|
* `$six_ALL_CCFRWORK/datasets-custom/openwebtext/meg-t5_text_document.*` |
|
* `$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-t5_text_document.*` |
|
|
|
4. Vocabs (from HF): |
|
|
|
* `$six_ALL_CCFRWORK/datasets-custom/vocabs/bert-large-uncased-vocab.txt` |
|
|
|
|
|
#### How the above was done |
|
|
|
|
|
For HF datasets and Jsonlines creation details, see [gpt2.md](./gpt2.md). We only need to create the differently pre-processed datasets here. |
|
|
|
t5 uses the same tokenizer/indexer as bert - can use it for either t5 or bert meg-lm trainings |
|
|
|
Get uncased bert vocab: |
|
``` |
|
cd $six_ALL_CCFRWORK/datasets-custom/vocabs |
|
wget https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt -O bert-large-uncased-vocab.txt |
|
``` |
|
|
|
|
|
To prep a 10k-sample for megatron |
|
``` |
|
source $six_ALL_CCFRWORK/start-prod |
|
cd $six_ALL_CCFRWORK/code/megatron-lm |
|
python tools/preprocess_data.py \ |
|
--input $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/openwebtext-10k.jsonl \ |
|
--output-prefix $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-t5 \ |
|
--vocab $six_ALL_CCFRWORK/datasets-custom/vocabs/bert-large-uncased-vocab.txt \ |
|
--dataset-impl mmap \ |
|
--tokenizer-type BertWordPieceLowerCase \ |
|
--split-sentences \ |
|
--workers 8 |
|
``` |
|
|
|
To prep a full dataset for megatron |
|
``` |
|
source $six_ALL_CCFRWORK/start-prod |
|
cd $six_ALL_CCFRWORK/code/megatron-lm |
|
python tools/preprocess_data.py \ |
|
--input $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/openwebtext.jsonl \ |
|
--output-prefix $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-t5 \ |
|
--vocab $six_ALL_CCFRWORK/datasets-custom/vocabs/bert-large-uncased-vocab.txt \ |
|
--dataset-impl mmap \ |
|
--tokenizer-type BertWordPieceLowerCase \ |
|
--split-sentences \ |
|
--workers 8 |
|
|
|
``` |
|
as it should take a few hours to convert, use `slurm/jsonl-to-meg-t5.slurm` job to complete it |
|
``` |
|
sbatch jsonl-to-meg-t5.slurm |
|
``` |
|
|
|
|
|
|
|
|
|
## Training |
|
|
|
### Megatron-LM distributed with MP |
|
|
|
Pipeline Parallelism is not yet support for T5 (in works) |
|
|
|
Setup: 1 node / 4 gpus |
|
``` |
|
srun --pty --nodes=1 --ntasks=1 --cpus-per-task=40 --gres=gpu:4 --hint=nomultithread --time=60 bash --rcfile $six_ALL_CCFRWORK/start-prod |
|
``` |
|
|
|
``` |
|
cd $six_ALL_CCFRWORK/code/megatron-lm |
|
|
|
GPUS_PER_NODE=4 |
|
|
|
# Change for multinode config |
|
MASTER_ADDR=localhost |
|
MASTER_PORT=6000 |
|
NNODES=1 |
|
NODE_RANK=0 |
|
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES)) |
|
|
|
VOCAB_FILE=$six_ALL_CCFRWORK/datasets-custom/vocabs/bert-large-uncased-vocab.txt |
|
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-t5_text_sentence |
|
SAVE_CHECKPOINT_PATH=$six_ALL_CCFRWORK/checkpoints/t5 |
|
|
|
DISTRIBUTED_ARGS=" \ |
|
--nproc_per_node $GPUS_PER_NODE \ |
|
--nnodes $NNODES \ |
|
--node_rank $NODE_RANK \ |
|
--master_addr $MASTER_ADDR \ |
|
--master_port $MASTER_PORT \ |
|
" |
|
|
|
# from t5 training: |
|
# --global-batch-size 2048 \ |
|
GPT_ARGS=" \ |
|
--num-layers 12 \ |
|
--hidden-size 768 \ |
|
--num-attention-heads 12 \ |
|
--kv-channels 64 \ |
|
--ffn-hidden-size 3072 \ |
|
--encoder-seq-length 512 \ |
|
--decoder-seq-length 128 \ |
|
--micro-batch-size 16 \ |
|
--max-position-embeddings 512 \ |
|
--train-iters 1000000 \ |
|
--lr-decay-iters 1000000 \ |
|
--lr 0.0001 \ |
|
--min-lr 0.00001 \ |
|
--lr-decay-style linear \ |
|
--lr-warmup-fraction .01 \ |
|
--weight-decay 1e-2 \ |
|
--clip-grad 1.0 \ |
|
--fp16 \ |
|
" |
|
|
|
OUTPUT_ARGS=" \ |
|
--log-interval 10 \ |
|
--save-interval 500 \ |
|
--eval-interval 100 \ |
|
--eval-iters 10 \ |
|
" |
|
|
|
python -m torch.distributed.launch \ |
|
$DISTRIBUTED_ARGS \ |
|
pretrain_t5.py \ |
|
--tensor-model-parallel-size 2 \ |
|
$GPT_ARGS \ |
|
$OUTPUT_ARGS \ |
|
--save $SAVE_CHECKPOINT_PATH \ |
|
--load $SAVE_CHECKPOINT_PATH \ |
|
--data-path $DATA_PATH \ |
|
--data-impl mmap \ |
|
--vocab-file $VOCAB_FILE \ |
|
--vocab-extra-ids 100 \ |
|
--split 949,50,1 \ |
|
--distributed-backend nccl |
|
|
|
|
|
|
|
``` |
|
|