applied-ai-018's picture
Add files using upload-large-folder tool
f9bc5ed verified
#!/bin/bash
#SBATCH --job-name=deconlyt5
#SBATCH --partition=gpu_p2
#SBATCH --qos=qos_gpu-t4 # t4 enables 100H trainings
#SBATCH --ntasks=1 # number of MP tasks
#SBATCH --gres=gpu:8 # number of GPUs per node
#SBATCH --cpus-per-task=24 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --time=100:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out # output file name
#SBATCH --error=%x-%j.out # error file name (same to watch just one file)
#SBATCH --account=six@gpu
#SBATCH --mail-type=ALL
set -x -e
source $six_ALL_CCFRWORK/start-prod
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
DATASET=openwebtext
LOGG_FREQUENCY=125
SAVE_FREQUENCY=250
EVAL_FREQUENCY=1000
SERIALIZATION_DIR=${eha_ALL_CCFRSCRATCH}/experiments/dec_only_t5-medium
LOGGING_DIR=${eha_ALL_CCFRSCRATCH}/tensorboard/dec_only_t5-medium
deepspeed ${six_ALL_CCFRWORK/code/bigscience/jz/scripts/run_clm.py \
--deepspeed ${SCRATCH}/code/bigscience/jz/configs/deepspeed/ds_zero3.json \
--model_type decoder_only_t5 \
--tokenizer_name t5-small \
--config_name ${six_ALL_CCFRWORK/code/bigscience/jz/configs/dec_only_t5/decoder_only_t5-medium.json \
--dataset_name ${DATASET} --block_size 1024 \
--preprocessing_num_workers 76 \
--do_train --do_eval \
--max_steps 34000 \
--per_device_train_batch_size 4 --gradient_accumulation_steps 8 \
--per_device_eval_batch_size 4 \
--learning_rate 6e-4 \
--adam_beta1 0.9 --adam_beta2 0.95 --weight_decay 0.1 \
--warmup_steps 800 \
--max_grad_norm 1.0 \
--output_dir ${SERIALIZATION_DIR} --overwrite_output_dir \
--report_to tensorboard \
--logging_strategy steps --logging_first_step --logging_dir ${LOGGING_DIR} --logging_steps ${LOGG_FREQUENCY} \
--eval_steps ${EVAL_FREQUENCY} --evaluation_strategy steps --max_val_samples 10000 \
--save_strategy steps --save_steps ${SAVE_FREQUENCY} --save_total_limit 200