applied-ai-018's picture
Add files using upload-large-folder tool
0387b0f verified
#!/bin/bash
#SBATCH --job-name=eval-array # job name
#SBATCH --qos=qos_gpu-t3 # t3 enables 20h jobs but on 512 GPUs
#SBATCH --ntasks=1 # number of MP tasks
#SBATCH --gres=gpu:4 # number of GPUs per node
#SBATCH --cpus-per-task=40 # number of cores per tasks
#SBATCH -C v100-16g
#SBATCH --array=500-17000:1000%26 # array of values
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --time=04:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=std-eval-%A_%a.out # output file name
#SBATCH --error=std-eval-%A_%a.out # error file name
#SBATCH --account=six@gpu
#SBATCH --mail-type=ALL
set -x -e
source $six_ALL_CCFRWORK/start-prod
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
DATASET=openwebtext
SERIALIZATION_DIR=${eha_ALL_CCFRSCRATCH}/experiments/dec_only_t5-tiny
python -m torch.distributed.launch --nproc_per_node 4 ${six_ALL_CCFRWORK/code/bigscience/jz/scripts/run_clm.py \
--model_name_or_path ${SERIALIZATION_DIR}/checkpoint-${SLURM_ARRAY_TASK_ID} \
--tokenizer_name t5-small \
--dataset_name ${DATASET} --block_size 1024 \
--preprocessing_num_workers 76 \
--do_eval \
--per_device_eval_batch_size 16 \
--output_dir ${SERIALIZATION_DIR}/checkpoint-${SLURM_ARRAY_TASK_ID} \
--report_to tensorboard --logging_dir ${SERIALIZATION_DIR}/checkpoint-${SLURM_ARRAY_TASK_ID}