#!/bin/bash | |
#SBATCH --job-name=eval-array # job name | |
#SBATCH --qos=qos_gpu-t3 # t3 enables 20h jobs but on 512 GPUs | |
#SBATCH --ntasks=1 # number of MP tasks | |
#SBATCH --gres=gpu:4 # number of GPUs per node | |
#SBATCH --cpus-per-task=40 # number of cores per tasks | |
#SBATCH -C v100-16g | |
#SBATCH --array=500-17000:1000%26 # array of values | |
#SBATCH --hint=nomultithread # we get physical cores not logical | |
#SBATCH --time=04:00:00 # maximum execution time (HH:MM:SS) | |
#SBATCH --output=std-eval-%A_%a.out # output file name | |
#SBATCH --error=std-eval-%A_%a.out # error file name | |
#SBATCH --account=six@gpu | |
#SBATCH --mail-type=ALL | |
set -x -e | |
source $six_ALL_CCFRWORK/start-prod | |
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models | |
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets | |
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules | |
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics | |
export HF_DATASETS_OFFLINE=1 | |
export TRANSFORMERS_OFFLINE=1 | |
DATASET=openwebtext | |
SERIALIZATION_DIR=${eha_ALL_CCFRSCRATCH}/experiments/dec_only_t5-tiny | |
python -m torch.distributed.launch --nproc_per_node 4 ${six_ALL_CCFRWORK/code/bigscience/jz/scripts/run_clm.py \ | |
--model_name_or_path ${SERIALIZATION_DIR}/checkpoint-${SLURM_ARRAY_TASK_ID} \ | |
--tokenizer_name t5-small \ | |
--dataset_name ${DATASET} --block_size 1024 \ | |
--preprocessing_num_workers 76 \ | |
--do_eval \ | |
--per_device_eval_batch_size 16 \ | |
--output_dir ${SERIALIZATION_DIR}/checkpoint-${SLURM_ARRAY_TASK_ID} \ | |
--report_to tensorboard --logging_dir ${SERIALIZATION_DIR}/checkpoint-${SLURM_ARRAY_TASK_ID} | |