applied-ai-018's picture
Add files using upload-large-folder tool
2024260 verified
#!/bin/bash
#SBATCH --job-name=tr14-2B7-mup
#SBATCH --partition=production-cluster
#SBATCH --nodes=8
#SBATCH --cpus-per-task=12
#SBATCH --ntasks-per-node=1
#SBATCH --gres=gpu:a100:8
#SBATCH --hint=nomultithread
#SBATCH --time 100:00:00
#SBATCH --output=/fsx/teven/mup/tr14-2B7-%j.out
#SBATCH --exclude=ip-26-0-159-215,ip-26-0-153-238
echo "START TIME: $(date)"
mkdir -p $LOGS_PATH
# >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
__conda_setup="$('/admin/home/teven/miniconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
eval "$__conda_setup"
else
if [ -f "/admin/home/teven/miniconda3/etc/profile.d/conda.sh" ]; then
. "/admin/home/teven/miniconda3/etc/profile.d/conda.sh"
else
export PATH="/admin/home/teven/miniconda3/bin:$PATH"
fi
fi
unset __conda_setup
# <<< conda initialize <<<
# Proper env variables
conda activate tvn_dev
export PATH=/usr/local/cuda-11.4/bin:$PATH
export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
#export NCCL_ALGO=ring
#export NCCL_DEBUG=info
#export NCCL_DEBUG_SUBSYS=INIT,ENV,GRAPH,COLL
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=0
export OMPI_MCA_mtl_base_verbose=1
export FI_EFA_ENABLE_SHM_TRANSFER=0
export FI_PROVIDER=efa
export FI_EFA_TX_MIN_CREDITS=64
export NCCL_TREE_THRESHOLD=0
#export TORCH_CPP_LOG_LEVEL=INFO
#export TORCH_DISTRIBUTED_DEBUG=INFO
export NCCL_ASYNC_ERROR_HANDLING=1
#export NCCL_P2P_DISABLE=1
#export NCCL_IBEXT_DISABLE=1
#export NCCL_SOCKET_IFNAME="eth0,en,eth,em,bond"
# testing for potential faulty nodes
srun --jobid $SLURM_JOBID bash -c 'python -c "import torch, socket; print(socket.gethostname(), torch.cuda.is_available())"'
# so processes know who to talk to
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_PORT=12802
MEGATRON_DEEPSPEED_REPO=/fsx/teven/Megatron-DeepSpeed
cd $MEGATRON_DEEPSPEED_REPO
TOKENIZER_NAME_OR_PATH=t5-small
variant=main
DATA_PATH=/fsx/data/gpt2tok_c4_text_document
DATA_OUTPUT_PATH=/fsx/mup_exps/checkpoints/tr14-2B7-lr$1-init0.1-inpm10-outm10-atnm10-mup
CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints/$variant
REPO_PATH=$DATA_OUTPUT_PATH/tr14-2B7-test-lr$1-init0.1-inpm10-outm10-atnm10-mup
TENSORBOARD_PATH=$REPO_PATH/tensorboard/$variant
LOGS_PATH=$REPO_PATH/logs/$variant
GPUS_PER_NODE=8
NNODES=$SLURM_NNODES
PP_SIZE=1
TP_SIZE=2
MICRO_BATCH_SIZE=16
GLOBAL_BATCH_SIZE=512
NLAYERS=32
NHIDDEN=2560
NHEADS=32
SEQ_LEN=2048
SAVE_INTERVAL=250
TRAIN_SAMPLES=1_953_125 # 50B tokens
LR_DECAY_SAMPLES=1_953_125 # Decay in the same amount
LR_WARMUP_SAMPLES=183_105 # 375M tokens
MUP_ARGS=" \
--lr $1 \
--min-lr `bc <<< "scale=3; $1/10"` \
--init-method-std 0.1 \
--mup \
--mup-input-mult 10 \
--mup-output-mult 10 \
--mup-attn-mult 10 \
"
OPTIMIZER_ARGS=" \
--optimizer adam \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--adam-eps 1e-8 \
--lr-decay-style cosine \
--lr-decay-samples $LR_DECAY_SAMPLES \
--lr-warmup-samples $LR_WARMUP_SAMPLES \
--clip-grad 1.0 \
--weight-decay 1e-1 \
"
# for 20h 1190, for 100h 5990
EXIT_OPTS=" \
--exit-duration-in-mins 1190 \
"
GPT_ARGS=" \
--pp-partition-method 'type:transformer' \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--num-attention-heads $NHEADS \
--seq-length $SEQ_LEN \
--max-position-embeddings $SEQ_LEN \
--micro-batch-size $MICRO_BATCH_SIZE \
--global-batch-size $GLOBAL_BATCH_SIZE \
--train-samples $TRAIN_SAMPLES \
--tokenizer-type PretrainedFromHF \
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
--embed-layernorm \
--fp16 \
--seed 42 \
--position-embedding-type alibi \
--checkpoint-activations \
--abort-on-unmet-fused-kernel-constraints \
--pad-vocab-size-to 51200 \
$OPTIMIZER_ARGS \
$EXIT_OPTS \
"
# TODO: decide on efficient eval-interval + eval-iters
OUTPUT_ARGS=" \
--log-interval 1 \
--save-interval $SAVE_INTERVAL \
--eval-interval 1000 \
--eval-iters 1 \
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-queue-size 5 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-validation-ppl-to-tensorboard \
"
ZERO_STAGE=1
config_json="./ds_config.$SLURM_JOBID.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
"train_batch_size": $GLOBAL_BATCH_SIZE,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": $ZERO_STAGE
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1,
"initial_scale_power": 12
},
"steps_per_print": 2000,
"wall_clock_breakdown": false
}
EOT
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${ZERO_STAGE} \
--deepspeed-activation-checkpointing \
"
export LAUNCHER="python -u -m torch.distributed.run \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
--rdzv_backend c10d \
--max_restarts 0 \
--tee 3 \
"
export CMD=" \
`pwd`/pretrain_gpt.py \
--tensor-model-parallel-size $TP_SIZE \
--pipeline-model-parallel-size $PP_SIZE \
$GPT_ARGS \
$OUTPUT_ARGS \
$MUP_ARGS \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH \
--data-impl mmap \
--distributed-backend nccl \
$DEEPSPEED_ARGS \
"
echo $CMD
# do not remove or the training will hang and nodes will be lost w/o this workaround
export CUDA_LAUNCH_BLOCKING=1
# hide duplicated errors using this hack - will be properly fixed in pt-1.12
export TORCHELASTIC_ERROR_FILE=/tmp/torch-elastic-error.json
clear; srun --jobid $SLURM_JOBID bash -c "$LAUNCHER --node_rank \$SLURM_PROCID $CMD" 2>&1 | tee -a $LOGS_PATH/main_log.txt
echo "END TIME: $(date)"