|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
set -x -e |
|
source $six_ALL_CCFRWORK/start-prod |
|
|
|
ROUND=2 |
|
TESTING=0 |
|
|
|
|
|
export HF_DATASETS_OFFLINE=1 |
|
export TRANSFORMERS_OFFLINE=1 |
|
|
|
OUTPUT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr4-1B3-rotary |
|
MEGATRON_DEEPSPEED_REPO=$OUTPUT_PATH/code/Megatron-DeepSpeed |
|
|
|
if [[ ${TESTING} == 1 ]]; then |
|
# testing on 10k |
|
DATA_PATH=$six_ALL_CCFRSCRATCH/datasets-custom/c4_preprocessing/c4_100k_text_document |
|
else |
|
# production on full 304M records |
|
DATA_PATH=$six_ALL_CCFRSCRATCH/datasets-custom/c4_preprocessing/c4_en_train_text_document |
|
|
|
fi |
|
|
|
pushd $MEGATRON_DEEPSPEED_REPO |
|
|
|
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) |
|
MASTER_PORT=6000 |
|
|
|
|
|
|
|
|
|
GPUS_PER_NODE=4 |
|
NNODES=16 |
|
PP_SIZE=4 # NLAYERS must be a multiple of PP_SIZE here |
|
TP_SIZE=4 # always fixed to the size of a single node |
|
DP_SIZE=$((NNODES*GPUS_PER_NODE/(PP_SIZE*TP_SIZE))) # will get derived automatically by trainer |
|
|
|
MICRO_BATCH_SIZE=8 |
|
GLOBAL_BATCH_SIZE=512 |
|
TRAIN_ITER=73_242_187 #150B tokens |
|
|
|
NLAYERS=24 |
|
NHIDDEN=2048 |
|
NHEADS=16 |
|
FFN_HIDDEN_SIZE=8192 |
|
SEQ_LEN=2048 |
|
|
|
if [[ ${ROUND} == 1 ]]; then EXIT_INTERVAL=100 SAVE_INTERVAL=10 |
|
elif [[ ${ROUND} == 2 ]]; then SAVE_INTERVAL=1500 |
|
else echo "invalid ROUND: $ROUND" |
|
fi |
|
|
|
OPTIMIZER_ARGS=" \ |
|
--optimizer adam \ |
|
--adam-beta1 0.9 \ |
|
--adam-beta2 0.999 \ |
|
--adam-eps 1e-8 \ |
|
--lr 2e-4 \ |
|
--min-lr 1e-5 \ |
|
--lr-decay-style cosine \ |
|
--lr-decay-samples 73_242_187 \ |
|
--lr-warmup-samples 183_105 \ |
|
--clip-grad 1.0 \ |
|
--weight-decay 1e-1 \ |
|
" |
|
|
|
EXIT_OPTS=" \ |
|
--exit-duration-in-mins 1190 \ |
|
" |
|
|
|
GPT_ARGS=" \ |
|
--num-layers $NLAYERS \ |
|
--hidden-size $NHIDDEN \ |
|
--num-attention-heads $NHEADS \ |
|
--ffn-hidden-size $FFN_HIDDEN_SIZE \ |
|
--seq-length $SEQ_LEN \ |
|
--micro-batch-size $MICRO_BATCH_SIZE \ |
|
--global-batch-size $GLOBAL_BATCH_SIZE \ |
|
--rampup-batch-size 32 32 2_000_000 \ |
|
--train-samples $TRAIN_ITER \ |
|
--tokenizer-type PretrainedFromHF \ |
|
--tokenizer-name-or-path t5-small \ |
|
--loss-scale 12 \ |
|
--clip-grad 1.0 \ |
|
--fp16 \ |
|
--checkpoint-activations \ |
|
--position-embedding-type rotary \ |
|
$OPTIMIZER_ARGS \ |
|
$EXIT_OPTS \ |
|
" |
|
|
|
OUTPUT_ARGS=" \ |
|
--log-interval 200 \ |
|
--save-interval $SAVE_INTERVAL \ |
|
--eval-interval 1000 \ |
|
--eval-iters 100 \ |
|
--tensorboard-dir $OUTPUT_PATH/tensorboard \ |
|
--tensorboard-queue-size 5 \ |
|
--log-timers-to-tensorboard \ |
|
--log-batch-size-to-tensorboard \ |
|
--log-validation-ppl-to-tensorboard \ |
|
" |
|
|
|
ZERO_STAGE=1 |
|
|
|
config_json="./ds_config.$SLURM_JOBID.json" |
|
|
|
|
|
cat <<EOT > $config_json |
|
{ |
|
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, |
|
"train_batch_size": $GLOBAL_BATCH_SIZE, |
|
"gradient_clipping": 1.0, |
|
"zero_optimization": { |
|
"stage": $ZERO_STAGE |
|
}, |
|
"fp16": { |
|
"enabled": true, |
|
"loss_scale": 0, |
|
"loss_scale_window": 500, |
|
"hysteresis": 2, |
|
"min_loss_scale": 1, |
|
"initial_scale_power": 12 |
|
}, |
|
"steps_per_print": 2000, |
|
"wall_clock_breakdown": false |
|
} |
|
EOT |
|
|
|
|
|
DEEPSPEED_ARGS=" \ |
|
--deepspeed \ |
|
--deepspeed_config ${config_json} \ |
|
--zero-stage ${ZERO_STAGE} \ |
|
--deepspeed-activation-checkpointing \ |
|
" |
|
|
|
export LAUNCHER="python -u -m torch.distributed.launch \ |
|
--nproc_per_node $GPUS_PER_NODE \ |
|
--nnodes $NNODES \ |
|
--master_addr $MASTER_ADDR \ |
|
--master_port $MASTER_PORT \ |
|
" |
|
|
|
export CMD=" \ |
|
`pwd`/pretrain_gpt.py \ |
|
--tensor-model-parallel-size $TP_SIZE \ |
|
--pipeline-model-parallel-size $PP_SIZE \ |
|
$GPT_ARGS \ |
|
$OUTPUT_ARGS \ |
|
--save $OUTPUT_PATH/checkpoints \ |
|
--load $OUTPUT_PATH/checkpoints \ |
|
--data-path $DATA_PATH \ |
|
--data-impl mmap \ |
|
--split 949,50,1 \ |
|
--distributed-backend nccl \ |
|
$DEEPSPEED_ARGS \ |
|
" |
|
|
|
|
|
|
|
|
|
|
|
|
|
echo $CMD |
|
|
|
|
|
srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee $OUTPUT_PATH/logs/tr3-1B3-modeling-baseline.$SLURM_JOBID.out |
|
|