File size: 10,178 Bytes
804c12f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import random
import re
from functools import partial
from collections import Counter

from datasets import load_dataset, Dataset, concatenate_datasets
import numpy as np
import pandas as pd
import tqdm
import yaml

from chat_data_pipeline.pipeline import Pipeline, logger
from chat_data_pipeline import cleaners as cln
from chat_data_pipeline import filters as ftr
from chat_data_pipeline.kenlm_model import KenlmModel


def load_yaml(config_path):
    with open(config_path, "r") as f:
        return yaml.safe_load(f)


def get_cleaners_from_config(config):
    cleaner_funcs = []
    cleaners = {}
    if config.get("cleaners") is not None:
        cleaners = config.get("cleaners", {})
    for cleaner, do_clean in cleaners.items():
        if do_clean:
            cleaner_funcs.append(
                getattr(cln, cleaner)
            )
    return cleaner_funcs


def get_filters_from_config(config):
    filter_funcs = []
    filters = {}
    if config.get("filters") is not None:
        filters = config.get("filters", {})
    for filter, value in filters.items():
        args = {}
        if value is not None:
            args = value.get("args", {})
        filter_func = custom_partial(
            getattr(ftr, filter),
            **args
        )
        filter_funcs.append(filter_func)
    return filter_funcs


def get_output_text_cleaners():
    cleaners = [
        cln.normalize_whitespace,
        cln.normalize_punctuation,
        cln.fix_utf8_encoding,
        cln.remove_empty_lines
    ]
    return cleaners


def get_input_text_cleaners():
    cleaners = [
        cln.normalize_whitespace,
        cln.remove_empty_lines
    ]
    return cleaners


def get_output_text_filters(filter_nsfw, filter_perplexity):
    filters = [
        custom_partial(
            ftr.check_word_number,
            min_word_threshold=5,
            max_word_threshold=128,
        ),
        custom_partial(
            ftr.check_completion,
        ),
        custom_partial(
            ftr.check_char_repetition,
            char_repetition_len=10,
            char_repetition_threshold=0.2,
        ),
        custom_partial(
            ftr.check_lowercase_ratio,
            lowercase_threshold=0.75,
        ),
    ]
    if filter_nsfw:
        filters.append(
            custom_partial(
                ftr.check_nsfw_words,
                flagged_words_threshold=0.025,
            ),
        )
    if filter_perplexity:
        filters.append(
            custom_partial(
                ftr.check_perplexity,
                kenlm_model=_get_kenlm_model(),
                min_perplexity_threshold=300,
                max_perplexity_threshold=10_000
            )
        )
    return filters


def _get_kenlm_model():
    kenlm_model = KenlmModel.from_pretrained(
        model_dataset="wikipedia",
        language="en",
        lower_case=True,
        remove_accents=True,
        normalize_numbers=True,
        punctuation=1,
    )
    return kenlm_model


def get_input_text_filters():
    filters = [
        custom_partial(
            ftr.check_lowercase_ratio,
            lowercase_threshold=0.55,
        ),
    ]
    return filters


def get_truncation_filters(splitter_token):
    filters = [
        custom_partial(
            ftr.check_truncation,
            splitter_token=splitter_token
        ),
    ]
    return filters


def custom_partial(func, **args):
    partial_func = partial(func, **args)
    partial_func.__name__ = func.__name__
    partial_func.__module__ = func.__module__
    return partial_func


def print_sample_dropped_examples(dataset, new_dataset, num_samples=5):
    original_ids = dataset["ids"]
    new_ids = new_dataset["ids"]
    dropped_ids = set(original_ids) - set(new_ids)
    num_samples = min(len(dropped_ids), num_samples)
    ids_to_show = random.sample(list(dropped_ids), num_samples)
    for id in ids_to_show:
        logger.info(f"Dropped sample: {dataset[id]}")


# Pipeline does not add column_name to newly added column with scores
def rename_dry_run_columns(dataset, filter_column_name):
    column_names = set(dataset.column_names)
    column_names = column_names - {"output_text", "input_text", "summary", "user_id"}
    columns_mapping = dict()
    for column_name in column_names:
        # Check if column already renamed by previous call of this function
        if "__" not in column_name:
            columns_mapping[column_name] = filter_column_name + "__" + column_name
    dataset = dataset.rename_columns(columns_mapping)
    return dataset


def get_edit_dataset(dataset_path):
    dataset = load_dataset(dataset_path, split="train", keep_in_memory=False)
    dataset = prepare_edit_dataset(dataset)
    return dataset


def prepare_edit_dataset(dataset):
    columns_mapping = {
        "model_input": "input_text",
        "edited_response": "output_text",
    }
    dataset = dataset.rename_columns(columns_mapping)
    columns_to_keep = list(columns_mapping.values()) + ["user_id", "response"]
    columns_to_remove = set(dataset.column_names) - set(columns_to_keep)
    dataset = dataset.remove_columns(columns_to_remove)
    return dataset


def remove_unused_columns(dataset):
    columns_to_keep = ["user_id", "input_text", "output_text"]
    columns_to_remove = set(dataset.column_names) - set(columns_to_keep)
    dataset = dataset.remove_columns(columns_to_remove)
    return dataset


def post_process_output_text(dataset):
    df = dataset.to_pandas()
    func = lambda x: " " + cln.clean_new_lines(x["output_text"]) + "\n"
    df["output_text"] = df.progress_apply(func, axis=1)
    dataset = Dataset.from_pandas(df)
    return dataset


def sample_datasets(datasets, proportions, target_size):
    target_size = min(
        [target_size] + [len(dataset) / proportion for proportion, dataset in zip(proportions, datasets)]
    )
    sampled_datasets = []
    for proportion, dataset in zip(proportions, datasets):
        sample_proportion = (target_size * proportion) / len(dataset)
        sampled_dataset = sample_dataset(dataset, sample_proportion)
        sampled_datasets.append(sampled_dataset)
    merged_dataset = concatenate_datasets(sampled_datasets)
    return merged_dataset


def sample_dataset(dataset, size):
    df = dataset.to_pandas()
    grouped = df.groupby('user_id')
    sample_groups = []
    for _, sub_group in tqdm.tqdm(grouped):
        sample_groups.append(_get_sample_group(sub_group, size=size))

    df_subset = pd.concat(sample_groups)
    df_subset = df_subset.drop(['__index_level_0__'], axis=1, errors='ignore')
    dataset_subset = Dataset.from_pandas(df_subset)
    return dataset_subset


def _get_sample_group(group, size):
    # helps with sampling superusers and do not touch small groups
    if len(group) >= 5:
        num_samples = int(len(group) * size)
        group = group.sample(num_samples)
    return group


def split_dataset_by_filter(dataset, column_name, filter_func):
    dataset_length = len(dataset)
    ids = range(dataset_length)
    dataset = dataset.add_column("ids", ids)
    filtered_dataset = run_filter(dataset, column_name, filter_func, dry_run=False)

    difference_dataset = _dataset_subtraction(dataset, filtered_dataset)

    filtered_dataset = filtered_dataset.remove_columns("ids")
    difference_dataset = difference_dataset.remove_columns("ids")

    return filtered_dataset, difference_dataset


def run_filter(dataset, column_name, filter_func, dry_run):
    datasources = [
        {
            "dataset": dataset,
            "name": "dataset",
            "columns": [column_name],
            "filters": [filter_func],
            "cleaners": [],
        },
    ]
    pipeline = Pipeline(datasources)
    pipeline.run(dry_run=dry_run)
    filtered_dataset = pipeline.datasources[0]["dataset"]
    return filtered_dataset


def run_cleaner(dataset, column_name, cleaners):
    datasources = [
        {
            "dataset": dataset,
            "name": "dataset",
            "columns": [column_name],
            "filters": [],
            "cleaners": cleaners,
        },
    ]
    pipeline = Pipeline(datasources)
    pipeline.run(dry_run=True)
    dataset = pipeline.datasources[0]["dataset"]
    return dataset


def _dataset_subtraction(minuend_dataset, subtrahend_dataset):
    original_ids = minuend_dataset["ids"]
    filtered_ids = subtrahend_dataset["ids"]
    dropped_ids = set(original_ids) - set(filtered_ids)
    original_df = minuend_dataset.to_pandas()
    difference_df = original_df[original_df.ids.isin(dropped_ids)]
    difference_df = difference_df.drop(['__index_level_0__'], axis=1, errors='ignore')
    difference_dataset = Dataset.from_pandas(difference_df)
    return difference_dataset


def add_concatenated_column(dataset, column_name, special_token):
    dataframe = dataset.to_pandas()
    func = lambda x: x["response"] + special_token + x["output_text"]
    dataframe[column_name] = dataframe.progress_apply(func, axis=1)
    dataset = Dataset.from_pandas(dataframe)
    return dataset


def get_words(text):
    return re.findall(r'\w+', text.lower())


# Adapted from:
# https://github.com/CarperAI/squeakily/blob/ba81f6e11fab424794d46cbf06d398ea2ad4a7f1/squeakily/filter.py#L81
def get_char_repetition_ratio(doc, char_rep_len):
    freq_char_ngrams = _get_frequency_ngrams(
        doc, char_rep_len
    )
    if len(freq_char_ngrams) == 0:
        return 0
    char_rep_ratio = _calculate_char_repetition_ratio(freq_char_ngrams)
    return char_rep_ratio


def _calculate_char_repetition_ratio(freq_char_ngrams):
    freq_char_ngrams = list(freq_char_ngrams.values())
    freq_char_ngrams = sorted(freq_char_ngrams, reverse=True)
    val_one = len([el for el in freq_char_ngrams if el == 1])
    num_rep_char_ngrams = min(
        int(np.sqrt(len(freq_char_ngrams))),
        len(freq_char_ngrams) - val_one,
    )
    char_rep_ratio = sum(
        freq_char_ngrams[:num_rep_char_ngrams]
    ) / sum(freq_char_ngrams)
    return char_rep_ratio


def _get_frequency_ngrams(doc, n):
    char_ngrams = [
        doc[i: i + n] for i in range(len(doc) - n + 1)
    ]
    freq_char_ngrams = Counter(char_ngrams)
    return freq_char_ngrams