File size: 10,178 Bytes
804c12f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import random
import re
from functools import partial
from collections import Counter
from datasets import load_dataset, Dataset, concatenate_datasets
import numpy as np
import pandas as pd
import tqdm
import yaml
from chat_data_pipeline.pipeline import Pipeline, logger
from chat_data_pipeline import cleaners as cln
from chat_data_pipeline import filters as ftr
from chat_data_pipeline.kenlm_model import KenlmModel
def load_yaml(config_path):
with open(config_path, "r") as f:
return yaml.safe_load(f)
def get_cleaners_from_config(config):
cleaner_funcs = []
cleaners = {}
if config.get("cleaners") is not None:
cleaners = config.get("cleaners", {})
for cleaner, do_clean in cleaners.items():
if do_clean:
cleaner_funcs.append(
getattr(cln, cleaner)
)
return cleaner_funcs
def get_filters_from_config(config):
filter_funcs = []
filters = {}
if config.get("filters") is not None:
filters = config.get("filters", {})
for filter, value in filters.items():
args = {}
if value is not None:
args = value.get("args", {})
filter_func = custom_partial(
getattr(ftr, filter),
**args
)
filter_funcs.append(filter_func)
return filter_funcs
def get_output_text_cleaners():
cleaners = [
cln.normalize_whitespace,
cln.normalize_punctuation,
cln.fix_utf8_encoding,
cln.remove_empty_lines
]
return cleaners
def get_input_text_cleaners():
cleaners = [
cln.normalize_whitespace,
cln.remove_empty_lines
]
return cleaners
def get_output_text_filters(filter_nsfw, filter_perplexity):
filters = [
custom_partial(
ftr.check_word_number,
min_word_threshold=5,
max_word_threshold=128,
),
custom_partial(
ftr.check_completion,
),
custom_partial(
ftr.check_char_repetition,
char_repetition_len=10,
char_repetition_threshold=0.2,
),
custom_partial(
ftr.check_lowercase_ratio,
lowercase_threshold=0.75,
),
]
if filter_nsfw:
filters.append(
custom_partial(
ftr.check_nsfw_words,
flagged_words_threshold=0.025,
),
)
if filter_perplexity:
filters.append(
custom_partial(
ftr.check_perplexity,
kenlm_model=_get_kenlm_model(),
min_perplexity_threshold=300,
max_perplexity_threshold=10_000
)
)
return filters
def _get_kenlm_model():
kenlm_model = KenlmModel.from_pretrained(
model_dataset="wikipedia",
language="en",
lower_case=True,
remove_accents=True,
normalize_numbers=True,
punctuation=1,
)
return kenlm_model
def get_input_text_filters():
filters = [
custom_partial(
ftr.check_lowercase_ratio,
lowercase_threshold=0.55,
),
]
return filters
def get_truncation_filters(splitter_token):
filters = [
custom_partial(
ftr.check_truncation,
splitter_token=splitter_token
),
]
return filters
def custom_partial(func, **args):
partial_func = partial(func, **args)
partial_func.__name__ = func.__name__
partial_func.__module__ = func.__module__
return partial_func
def print_sample_dropped_examples(dataset, new_dataset, num_samples=5):
original_ids = dataset["ids"]
new_ids = new_dataset["ids"]
dropped_ids = set(original_ids) - set(new_ids)
num_samples = min(len(dropped_ids), num_samples)
ids_to_show = random.sample(list(dropped_ids), num_samples)
for id in ids_to_show:
logger.info(f"Dropped sample: {dataset[id]}")
# Pipeline does not add column_name to newly added column with scores
def rename_dry_run_columns(dataset, filter_column_name):
column_names = set(dataset.column_names)
column_names = column_names - {"output_text", "input_text", "summary", "user_id"}
columns_mapping = dict()
for column_name in column_names:
# Check if column already renamed by previous call of this function
if "__" not in column_name:
columns_mapping[column_name] = filter_column_name + "__" + column_name
dataset = dataset.rename_columns(columns_mapping)
return dataset
def get_edit_dataset(dataset_path):
dataset = load_dataset(dataset_path, split="train", keep_in_memory=False)
dataset = prepare_edit_dataset(dataset)
return dataset
def prepare_edit_dataset(dataset):
columns_mapping = {
"model_input": "input_text",
"edited_response": "output_text",
}
dataset = dataset.rename_columns(columns_mapping)
columns_to_keep = list(columns_mapping.values()) + ["user_id", "response"]
columns_to_remove = set(dataset.column_names) - set(columns_to_keep)
dataset = dataset.remove_columns(columns_to_remove)
return dataset
def remove_unused_columns(dataset):
columns_to_keep = ["user_id", "input_text", "output_text"]
columns_to_remove = set(dataset.column_names) - set(columns_to_keep)
dataset = dataset.remove_columns(columns_to_remove)
return dataset
def post_process_output_text(dataset):
df = dataset.to_pandas()
func = lambda x: " " + cln.clean_new_lines(x["output_text"]) + "\n"
df["output_text"] = df.progress_apply(func, axis=1)
dataset = Dataset.from_pandas(df)
return dataset
def sample_datasets(datasets, proportions, target_size):
target_size = min(
[target_size] + [len(dataset) / proportion for proportion, dataset in zip(proportions, datasets)]
)
sampled_datasets = []
for proportion, dataset in zip(proportions, datasets):
sample_proportion = (target_size * proportion) / len(dataset)
sampled_dataset = sample_dataset(dataset, sample_proportion)
sampled_datasets.append(sampled_dataset)
merged_dataset = concatenate_datasets(sampled_datasets)
return merged_dataset
def sample_dataset(dataset, size):
df = dataset.to_pandas()
grouped = df.groupby('user_id')
sample_groups = []
for _, sub_group in tqdm.tqdm(grouped):
sample_groups.append(_get_sample_group(sub_group, size=size))
df_subset = pd.concat(sample_groups)
df_subset = df_subset.drop(['__index_level_0__'], axis=1, errors='ignore')
dataset_subset = Dataset.from_pandas(df_subset)
return dataset_subset
def _get_sample_group(group, size):
# helps with sampling superusers and do not touch small groups
if len(group) >= 5:
num_samples = int(len(group) * size)
group = group.sample(num_samples)
return group
def split_dataset_by_filter(dataset, column_name, filter_func):
dataset_length = len(dataset)
ids = range(dataset_length)
dataset = dataset.add_column("ids", ids)
filtered_dataset = run_filter(dataset, column_name, filter_func, dry_run=False)
difference_dataset = _dataset_subtraction(dataset, filtered_dataset)
filtered_dataset = filtered_dataset.remove_columns("ids")
difference_dataset = difference_dataset.remove_columns("ids")
return filtered_dataset, difference_dataset
def run_filter(dataset, column_name, filter_func, dry_run):
datasources = [
{
"dataset": dataset,
"name": "dataset",
"columns": [column_name],
"filters": [filter_func],
"cleaners": [],
},
]
pipeline = Pipeline(datasources)
pipeline.run(dry_run=dry_run)
filtered_dataset = pipeline.datasources[0]["dataset"]
return filtered_dataset
def run_cleaner(dataset, column_name, cleaners):
datasources = [
{
"dataset": dataset,
"name": "dataset",
"columns": [column_name],
"filters": [],
"cleaners": cleaners,
},
]
pipeline = Pipeline(datasources)
pipeline.run(dry_run=True)
dataset = pipeline.datasources[0]["dataset"]
return dataset
def _dataset_subtraction(minuend_dataset, subtrahend_dataset):
original_ids = minuend_dataset["ids"]
filtered_ids = subtrahend_dataset["ids"]
dropped_ids = set(original_ids) - set(filtered_ids)
original_df = minuend_dataset.to_pandas()
difference_df = original_df[original_df.ids.isin(dropped_ids)]
difference_df = difference_df.drop(['__index_level_0__'], axis=1, errors='ignore')
difference_dataset = Dataset.from_pandas(difference_df)
return difference_dataset
def add_concatenated_column(dataset, column_name, special_token):
dataframe = dataset.to_pandas()
func = lambda x: x["response"] + special_token + x["output_text"]
dataframe[column_name] = dataframe.progress_apply(func, axis=1)
dataset = Dataset.from_pandas(dataframe)
return dataset
def get_words(text):
return re.findall(r'\w+', text.lower())
# Adapted from:
# https://github.com/CarperAI/squeakily/blob/ba81f6e11fab424794d46cbf06d398ea2ad4a7f1/squeakily/filter.py#L81
def get_char_repetition_ratio(doc, char_rep_len):
freq_char_ngrams = _get_frequency_ngrams(
doc, char_rep_len
)
if len(freq_char_ngrams) == 0:
return 0
char_rep_ratio = _calculate_char_repetition_ratio(freq_char_ngrams)
return char_rep_ratio
def _calculate_char_repetition_ratio(freq_char_ngrams):
freq_char_ngrams = list(freq_char_ngrams.values())
freq_char_ngrams = sorted(freq_char_ngrams, reverse=True)
val_one = len([el for el in freq_char_ngrams if el == 1])
num_rep_char_ngrams = min(
int(np.sqrt(len(freq_char_ngrams))),
len(freq_char_ngrams) - val_one,
)
char_rep_ratio = sum(
freq_char_ngrams[:num_rep_char_ngrams]
) / sum(freq_char_ngrams)
return char_rep_ratio
def _get_frequency_ngrams(doc, n):
char_ngrams = [
doc[i: i + n] for i in range(len(doc) - n + 1)
]
freq_char_ngrams = Counter(char_ngrams)
return freq_char_ngrams
|