File size: 4,143 Bytes
804c12f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os

import click
from datasets import load_dataset, concatenate_datasets

from chat_data_pipeline.pipeline import logger
from chat_data_pipeline import utils
from chat_data_pipeline.preprocessor import DataPreprocessor

PAD = 32


@click.command()
@click.option('--config_path')
def main(config_path):
    config = utils.load_yaml(config_path)
    dataset_paths = [dataset["dataset_path"] for dataset in config["datasets"]]
    output_dataset_path = config["output_dataset_path"]
    verbose = config.get("verbose", False)

    instruction_config = config["instruction_config"]
    response_config = config["response_config"]

    dataset = combine_datasets(dataset_paths)

    dataset = dataset.map(
        convert_to_input_output,
        batched=True,
        num_proc=os.cpu_count(),
        remove_columns=list(dataset.features),
        desc="Converring to I/O..."
    )

    dataset = dataset.map(
        add_content_columns,
        batched=False,
        num_proc=os.cpu_count(),
        desc="Adding content column..."
    )

    print(utils.get_cleaners_from_config(response_config))
    print(utils.get_filters_from_config(response_config))
    print(response_config.get("deduplication", {}))
    preprocessor = DataPreprocessor(
        dataset=dataset,
        column_name="response",
        cleaners=utils.get_cleaners_from_config(response_config),
        filters=utils.get_filters_from_config(response_config),
        deduplication_config=response_config.get("deduplication", {}),
        verbose=verbose,
    )
    dataset = preprocessor.run()

    cleaners = utils.get_cleaners_from_config(instruction_config)
    if len(cleaners) > 0:
        logger.warning("Cleaner does not work on instructions. Cleaners set to empty list.")
    preprocessor = DataPreprocessor(
        dataset=dataset,
        column_name="instruction",
        cleaners=[],
        filters=utils.get_filters_from_config(instruction_config),
        deduplication_config=instruction_config.get("deduplication", {}),
        verbose=verbose,
    )
    dataset = preprocessor.run()

    prepared_dataset_chatml = dataset.map(
        convert_to_chatml,
        batched=False,
        num_proc=os.cpu_count(),
        remove_columns=list(dataset.features)
    )
    prepared_dataset_chatml = prepared_dataset_chatml.shuffle(seed=42)
    prepared_dataset_chatml.push_to_hub(output_dataset_path)
    logger.info(prepared_dataset_chatml)


def combine_datasets(dataset_paths):
    datasets = []
    for dataset_path in dataset_paths:
        dataset = load_dataset(dataset_path)
        dataset = concatenate_datasets(list(dataset.values()))
        if "source" not in dataset.features:
            dataset = dataset.add_column("source", [dataset_path] * len(dataset))
        datasets.append(dataset)
    dataset = concatenate_datasets(datasets)
    return dataset


def convert_to_input_output(examples):
    sources = []
    inputs = []
    outputs = []
    for conversation, source in zip(examples["conversation"], examples["source"]):
        input = []
        for message in conversation:
            if message["do_train"]:
                inputs.append(input.copy())
                outputs.append(message)
                sources.append(source)
            input.append(message)
    return {
        "input": inputs,
        "output": outputs,
        "source": sources
    }


def add_content_columns(example):
    response = example["output"]["content"].strip()
    instruction = ""
    if len(example["input"]) > 0:
        instruction = example["input"][-1]["content"].strip()
    return {
        "instruction": instruction,
        "response": response,
    }


def convert_to_chatml(example):
    conversation = []
    for message in example["input"]:
        message["do_train"] = False
        conversation.append(message)
    conversation.append(
        {
            "content": example["response"],
            "role": example["output"]["role"],
            "do_train": True,
        }
    )
    return {
        "conversation": conversation,
        "source": example["source"]
    }


if __name__ == "__main__":
    main()