applied-ai-018's picture
Add files using upload-large-folder tool
804c12f verified
"""
Adapted from BigCode project: https://github.com/bigcode-project/bigcode-dataset/tree/main/near_deduplication
"""
from __future__ import annotations
import gc
import hashlib
import multiprocessing as mp
import os
import random
import re
import struct
import time
from collections import defaultdict
from itertools import tee
from typing import Any, Dict, Iterable, List, Tuple
import numpy as np
from scipy.integrate import quad as integrate
from tqdm import tqdm
from chat_data_pipeline.pipeline import logger
SEED = 42
NON_ALPHA = re.compile("[^A-Za-z_0-9]")
RNG = np.random.RandomState(SEED)
MAX_HASH = np.uint64((1 << 32) - 1)
MERSENNE_PRIME = np.uint64((1 << 61) - 1)
def ngrams(sequence: List[str], n: int, min_ngram_size: int) -> Iterable:
"""
Directly taken from nltk package to avoid dependency.
Parameters
----------
sequence : list
The sequence of items to be n-grammed.
n : int
The order of the n-grams to be extracted.
min_ngram_size : int
The minimum size of n-grams.
Returns
-------
Iterable
The n-grams generated from the sequence.
"""
if len(sequence) < min_ngram_size:
return []
iterables = tee(sequence, n)
for i, sub_iterable in enumerate(iterables):
for _ in range(i):
next(sub_iterable, None)
return zip(*iterables)
def sha1_hash32(data):
"""
Directly taken from datasketch package to avoid dependency.
Parameters
----------
data : bytes
Returns
-------
int
"""
return struct.unpack("<I", hashlib.sha1(data).digest()[:4])[0]
def embed_func(
content: str,
idx: int,
*,
num_perm: int,
ngram_size: int,
hashranges: List[Tuple[int, int]],
permutations: np.ndarray,
min_ngram_size: int = 5,
) -> Dict[str, Any]:
"""
Combined with some datasketch code to better parallelize computation.
Parameters
----------
content : str
The content to be embedded.
idx : int
The index of the content.
num_perm : int
The number of permutations.
ngram_size : int
The size of n-grams.
hashranges : List[Tuple[int, int]]
The ranges of hash values.
permutations : np.ndarray
The permutations for the minhash.
min_ngram_size : int
The minimum size of n-grams.
Returns
-------
Dict[str, Any]
The hash values in each range and the index.
"""
hashvalues = np.ones(num_perm, dtype=np.uint64) * MAX_HASH
tokens = {" ".join(t) for t in ngrams(NON_ALPHA.split(content), ngram_size, min_ngram_size)}
hv = np.array([sha1_hash32(token.encode("utf-8")) for token in tokens], dtype=np.uint64) # noqa: E501
a, b = permutations
phv = np.bitwise_and(((hv * np.tile(a, (len(hv), 1)).T).T + b) % MERSENNE_PRIME, MAX_HASH) # noqa: E501
hashvalues = np.vstack([phv, hashvalues]).min(axis=0)
Hs = [bytes(hashvalues[start:end].byteswap().data) for start, end in hashranges]
return {"__signatures__": Hs, "__id__": idx}
def optimal_param(
threshold: float,
num_perm: int,
false_positive_weight: float = 0.5,
false_negative_weight: float = 0.5,
):
"""
Compute the optimal `MinHashLSH` parameter that minimizes the weighted sum
of probabilities of false positive and false negative, taken from datasketch.
Parameters
----------
threshold : float
The threshold for similarity.
num_perm : int
The number of permutations.
false_positive_weight : float
The weight of false positive.
false_negative_weight : float
The weight of false negative.
Returns
-------
Tuple[int, int]
The optimal `b` and `r` parameters.
The number of bands, and the number of rows per band respectively.
"""
def false_positive_probability(threshold: float, b: int, r: int):
"""Source: `datasketch.lsh`"""
def proba(s):
return 1 - (1 - s ** float(r)) ** float(b)
a, _ = integrate(proba, 0.0, threshold)
return a
def false_negative_probability(threshold: float, b: int, r: int):
"""Source: `datasketch.lsh`"""
def proba(s):
return 1 - (1 - (1 - s ** float(r)) ** float(b))
a, _ = integrate(proba, threshold, 1.0)
return a
min_error = float("inf")
opt = (0, 0)
for b in range(1, num_perm + 1):
max_r = int(num_perm / b)
for r in range(1, max_r + 1):
fp = false_positive_probability(threshold, b, r)
fn = false_negative_probability(threshold, b, r)
error = fp * false_positive_weight + fn * false_negative_weight
if error < min_error:
min_error = error
opt = (b, r)
return opt
class UnionFind:
def __init__(self):
self.parent: Dict[int, int] = {}
def find(self, x):
if x not in self.parent:
self.parent[x] = x
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x])
return self.parent[x]
def union(self, x, y):
px = self.find(x)
py = self.find(y)
self.parent[px] = self.parent[py] = min(px, py)
def prepare_dataset(dataset):
def map_func(example):
text = ""
for message in example["conversation"]:
if message["do_train"]:
text += message["content"] + "\n\n"
return {
"text": text.strip()
}
dedup_ready_dataset = dataset.map(
map_func,
num_proc=os.cpu_count(),
desc="Preparing..."
)
return dedup_ready_dataset
def deduplicate(
dataset, # noqa: E501
column="text",
ngram_size=5,
num_perm=256,
threshold=0.7,
min_ngram_size=5,
):
mp.set_start_method("fork", force=True)
uf = UnionFind()
time_measures = {}
start_time = time.time()
B, R = optimal_param(threshold, num_perm)
HASH_RANGES = [(i * R, (i + 1) * R) for i in range(B)]
HASH_TABLES = [defaultdict(set) for _ in range(B)]
time_measures["load_dataset"] = time.time()
time_measures["load_dataset"] = time.time() - time_measures["load_dataset"]
DATA_SIZE = len(dataset)
PERMUTATIONS = np.array(
[
(
RNG.randint(1, MERSENNE_PRIME, dtype=np.uint64),
RNG.randint(0, MERSENNE_PRIME, dtype=np.uint64),
)
for _ in range(num_perm)
],
dtype=np.uint64,
).T
time_measures["minhash"] = time.time()
embedded = dataset.map(
function=embed_func,
fn_kwargs={
"num_perm": num_perm,
"hashranges": HASH_RANGES,
"ngram_size": ngram_size,
"permutations": PERMUTATIONS,
"min_ngram_size": min_ngram_size,
},
input_columns=[column],
remove_columns=dataset.column_names,
num_proc=os.cpu_count(),
with_indices=True,
desc="Fingerprinting...",
)
time_measures["minhash"] = time.time() - time_measures["minhash"]
time_measures["clustering"] = time.time()
batch_size: int = 10000
for i in tqdm(
range(0, len(embedded), batch_size), dynamic_ncols=True, desc="Iterating MinHashes..." # noqa: E501
):
batch = embedded[i: i + batch_size]
for key, Hs in zip(batch["__id__"], batch["__signatures__"]):
for H, hashtable in zip(Hs, HASH_TABLES):
hashtable[H].add(key)
for table in tqdm(HASH_TABLES, dynamic_ncols=True, desc="Clustering..."):
for cluster in table.values():
if len(cluster) <= 1:
continue
idx = min(cluster)
for x in cluster:
uf.union(x, idx)
time_measures["clustering"] = time.time() - time_measures["clustering"]
time_measures["filtering"] = time.time()
gc.freeze()
gc.disable()
dataset = dataset.map(
function=lambda _, idx: {"__cluster__": uf.find(idx)},
with_indices=True,
num_proc=os.cpu_count(),
new_fingerprint=str(random.getrandbits(128)),
desc="Finding clusters...",
)
gc.enable()
gc.collect()
# This is where the deduplication happens
# Since there is no easy groupby in datasets
# I will use this simple filter for now
final_data = dataset.filter(
function=lambda record, idx: record["__cluster__"] == idx,
with_indices=True,
num_proc=os.cpu_count(),
desc="Filtering clusters...",
)
time_measures["filtering"] = time.time() - time_measures["filtering"]
FINAL_DATA_SIZE = len(final_data)
DUP_SIZE = DATA_SIZE - FINAL_DATA_SIZE
PAD = 32
for key, value in time_measures.items():
logger.info(f"{key:<{PAD}}: {value:.2f} seconds")
logger.info(f"{'Data Number (before)':<{PAD}}: {DATA_SIZE}")
logger.info(
f"{'Data Number (after)':<{PAD}}: {FINAL_DATA_SIZE} ({FINAL_DATA_SIZE / DATA_SIZE:.2%})" # noqa: E501
)
logger.info(f"{'Duplicate Number':<{PAD}}: {DUP_SIZE} ({DUP_SIZE / DATA_SIZE:.2%})") # noqa: E501
logger.info(f"{'Total Time':<{PAD}}: {time.time() - start_time:.2f} seconds")
logger.info("🤗 Happy Deduplicating 🤗")
return final_data