File size: 8,767 Bytes
e19ef9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
"""
Copyright NVIDIA/apex
This file is adapted from fused adam in NVIDIA/apex, commit 6bd01c4
"""

import torch
from .multi_tensor_apply import MultiTensorApply

multi_tensor_applier = MultiTensorApply(2048 * 32)
from deepspeed.accelerator import get_accelerator
from deepspeed.ops.op_builder import FusedAdamBuilder


class FusedAdam(torch.optim.Optimizer):
    """Implements Adam algorithm.

    Currently GPU-only.  Requires Apex to be installed via
    ``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``.

    This version of fused Adam implements 2 fusions.

      * Fusion of the Adam update's elementwise operations
      * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.

    :class:`apex.optimizers.FusedAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
    or ``torch.optim.Adam`` with ``adam_w_mode=False``::

        opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....)
        ...
        opt.step()

    :class:`apex.optimizers.FusedAdam` may be used with or without Amp.  If you wish to use :class:`FusedAdam` with Amp,
    you may choose any ``opt_level``::

        opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....)
        model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2")
        ...
        opt.step()

    In general, ``opt_level="O1"`` is recommended.


    .. warning::
        A previous version of :class:`FusedAdam` allowed a number of additional arguments to ``step``.  These additional arguments
        are now deprecated and unnecessary.

    Adam was been proposed in `Adam: A Method for Stochastic Optimization`_.

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups.
        lr (float, optional): learning rate. (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square. (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability. (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        amsgrad (boolean, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            (default: False) NOT SUPPORTED in FusedAdam!
        adam_w_mode (boolean, optional): Apply L2 regularization or weight decay
            True for decoupled weight decay(also known as AdamW) (default: True)
        set_grad_none (bool, optional): whether set grad to None when zero_grad()
            method is called. (default: True)

    .. _Adam - A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ
    """

    def __init__(self,
                 params,
                 lr=1e-3,
                 bias_correction=True,
                 betas=(0.9, 0.999),
                 eps=1e-8,
                 adam_w_mode=True,
                 weight_decay=0.,
                 amsgrad=False,
                 set_grad_none=True):

        if amsgrad:
            raise RuntimeError('FusedAdam does not support the AMSGrad variant.')
        defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay)
        super(FusedAdam, self).__init__(params, defaults)
        self.adam_w_mode = 1 if adam_w_mode else 0
        self.set_grad_none = set_grad_none

        fused_adam_cuda = FusedAdamBuilder().load()
        # Skip buffer
        self._dummy_overflow_buf = get_accelerator().IntTensor([0])
        self.multi_tensor_adam = fused_adam_cuda.multi_tensor_adam

    def zero_grad(self):
        if self.set_grad_none:
            for group in self.param_groups:
                for p in group['params']:
                    p.grad = None
        else:
            super(FusedAdam, self).zero_grad()

    def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, grad_scaler=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.

        The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes.
        """
        if any(p is not None for p in [grads, output_params, scale, grad_norms]):
            raise RuntimeError(
                'FusedAdam has been updated.  Simply initialize it identically to torch.optim.Adam, and call step() with no arguments.'
            )
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            if len(group['params']) == 0:
                continue
            bias_correction = 1 if group['bias_correction'] else 0
            beta1, beta2 = group['betas']

            # assume same step across group now to simplify things
            # per parameter step can be easily support by making it tensor, or pass list into kernel
            if 'step' not in group:
                group['step'] = 0

            # create lists for multi-tensor apply
            g_16, p_16, m_16, v_16 = [], [], [], []
            g_bf, p_bf, m_bf, v_bf = [], [], [], []
            g_32, p_32, m_32, v_32 = [], [], [], []

            for p in group['params']:
                if p.grad is None:
                    continue
                if p.grad.data.is_sparse:
                    raise RuntimeError(
                        'FusedAdam does not support sparse gradients, please consider SparseAdam instead')

                state = self.state[p]
                # State initialization
                if len(state) == 0:
                    # DeepSpeed ZeRO 3 processes each subgroup a time, so we need to keep tracking step count for each tensor separately.
                    # While this is not an issue for ZeRO 1 & 2, since they apply a single optimization step to the whole param group at the same time.
                    # In order to keep backward compatibility for the existing checkpoints, we use group['state'] to initialize state['step'] if it exists.
                    state['step'] = group.get('step', 0)
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)

                if p.dtype == torch.float16:
                    g_16.append(p.grad.data)
                    p_16.append(p.data)
                    m_16.append(state['exp_avg'])
                    v_16.append(state['exp_avg_sq'])
                elif p.dtype == torch.bfloat16:
                    g_bf.append(p.grad)
                    p_bf.append(p)
                    m_bf.append(state['exp_avg'])
                    v_bf.append(state['exp_avg_sq'])
                elif p.dtype == torch.float32:
                    g_32.append(p.grad.data)
                    p_32.append(p.data)
                    m_32.append(state['exp_avg'])
                    v_32.append(state['exp_avg_sq'])
                else:
                    raise RuntimeError('FusedAdam only support fp16, bf16 and fp32.')

            if len(g_16) > 0:
                state['step'] += 1
                multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16],
                                     group['lr'], beta1, beta2, group['eps'], state['step'], self.adam_w_mode,
                                     bias_correction, group['weight_decay'])

            if len(g_bf) > 0:
                state['step'] += 1
                multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_bf, p_bf, m_bf, v_bf],
                                     group['lr'], beta1, beta2, group['eps'], state['step'], self.adam_w_mode,
                                     bias_correction, group['weight_decay'])

            if len(g_32) > 0:
                state['step'] += 1
                multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32],
                                     group['lr'], beta1, beta2, group['eps'], state['step'], self.adam_w_mode,
                                     bias_correction, group['weight_decay'])

        return loss