Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- venv/lib/python3.10/site-packages/deepspeed/ops/adam/__init__.py +7 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/adam/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/adam/__pycache__/cpu_adam.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/adam/__pycache__/fused_adam.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/adam/__pycache__/multi_tensor_apply.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/adam/cpu_adam.py +181 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/adam/fused_adam.py +195 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/adam/multi_tensor_apply.py +17 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/deepspeed4science/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/deepspeed4science/__pycache__/evoformer_attn.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/deepspeed4science/evoformer_attn.py +106 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__init__.py +53 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/all_ops.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/async_io.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/builder.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/cpu_adagrad.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/cpu_adam.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/cpu_lion.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/evoformer_attn.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/fp_quantizer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/fused_adam.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/fused_lamb.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/fused_lion.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/inference_core_ops.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/inference_cutlass_builder.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/quantizer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/ragged_ops.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/ragged_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/random_ltd.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/sparse_attn.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/spatial_inference.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/stochastic_transformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/transformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/transformer_inference.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/async_io.py +99 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/builder.py +775 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__init__.py +10 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__pycache__/builder.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__pycache__/comm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__pycache__/cpu_adam.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__pycache__/fused_adam.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__pycache__/no_impl.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/builder.py +36 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/comm.py +71 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/cpu_adam.py +27 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/fused_adam.py +23 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/no_impl.py +24 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu_lion.py +48 -0
venv/lib/python3.10/site-packages/deepspeed/ops/adam/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .cpu_adam import DeepSpeedCPUAdam
|
7 |
+
from .fused_adam import FusedAdam
|
venv/lib/python3.10/site-packages/deepspeed/ops/adam/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (279 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/adam/__pycache__/cpu_adam.cpython-310.pyc
ADDED
Binary file (6.5 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/adam/__pycache__/fused_adam.cpython-310.pyc
ADDED
Binary file (6.39 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/adam/__pycache__/multi_tensor_apply.cpython-310.pyc
ADDED
Binary file (795 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/adam/cpu_adam.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from cpuinfo import get_cpu_info
|
8 |
+
from deepspeed.utils import logger
|
9 |
+
from deepspeed.utils.logging import should_log_le
|
10 |
+
from deepspeed.ops.op_builder import CPUAdamBuilder
|
11 |
+
|
12 |
+
|
13 |
+
class DeepSpeedCPUAdam(torch.optim.Optimizer):
|
14 |
+
optimizer_id = 0
|
15 |
+
|
16 |
+
def __init__(self,
|
17 |
+
model_params,
|
18 |
+
lr=1e-3,
|
19 |
+
bias_correction=True,
|
20 |
+
betas=(0.9, 0.999),
|
21 |
+
eps=1e-8,
|
22 |
+
weight_decay=0,
|
23 |
+
amsgrad=False,
|
24 |
+
adamw_mode=True,
|
25 |
+
fp32_optimizer_states=True):
|
26 |
+
"""Fast vectorized implementation of two variations of Adam optimizer on CPU:
|
27 |
+
|
28 |
+
* Adam: A Method for Stochastic Optimization: (https://arxiv.org/abs/1412.6980);
|
29 |
+
* AdamW: Fixing Weight Decay Regularization in Adam (https://arxiv.org/abs/1711.05101)
|
30 |
+
|
31 |
+
DeepSpeed CPU Adam(W) provides between 5x to 7x speedup over torch.optim.adam(W).
|
32 |
+
In order to apply this optimizer, the model requires to have its master parameter (in FP32)
|
33 |
+
reside on the CPU memory.
|
34 |
+
|
35 |
+
To train on a heterogeneous system, such as coordinating CPU and GPU, DeepSpeed offers
|
36 |
+
the ZeRO-Offload technology which efficiently offloads the optimizer states into CPU memory,
|
37 |
+
with minimal impact on training throughput. DeepSpeedCPUAdam plays an important role to minimize
|
38 |
+
the overhead of the optimizer's latency on CPU. Please refer to ZeRO-Offload tutorial
|
39 |
+
(https://www.deepspeed.ai/tutorials/zero-offload/) for more information on how to enable this technology.
|
40 |
+
|
41 |
+
For calling step function, there are two options available: (1) update optimizer's states and (2) update
|
42 |
+
optimizer's states and copy the parameters back to GPU at the same time. We have seen that the second
|
43 |
+
option can bring 30% higher throughput than the doing the copy separately using option one.
|
44 |
+
|
45 |
+
|
46 |
+
.. note::
|
47 |
+
We recommend using our `config
|
48 |
+
<https://www.deepspeed.ai/docs/config-json/#optimizer-parameters>`_
|
49 |
+
to allow :meth:`deepspeed.initialize` to build this optimizer
|
50 |
+
for you.
|
51 |
+
|
52 |
+
|
53 |
+
Arguments:
|
54 |
+
model_params (iterable): iterable of parameters to optimize or dicts defining
|
55 |
+
parameter groups.
|
56 |
+
lr (float, optional): learning rate. (default: 1e-3)
|
57 |
+
betas (Tuple[float, float], optional): coefficients used for computing
|
58 |
+
running averages of gradient and its square. (default: (0.9, 0.999))
|
59 |
+
eps (float, optional): term added to the denominator to improve
|
60 |
+
numerical stability. (default: 1e-8)
|
61 |
+
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
62 |
+
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
|
63 |
+
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
64 |
+
(default: False) NOT SUPPORTED in DeepSpeed CPUAdam!
|
65 |
+
adamw_mode: select between Adam and AdamW implementations (default: AdamW)
|
66 |
+
fp32_optimizer_states: creates momentum and variance in full precision regardless of
|
67 |
+
the precision of the parameters (default: True)
|
68 |
+
"""
|
69 |
+
|
70 |
+
default_args = dict(lr=lr,
|
71 |
+
betas=betas,
|
72 |
+
eps=eps,
|
73 |
+
weight_decay=weight_decay,
|
74 |
+
bias_correction=bias_correction,
|
75 |
+
amsgrad=amsgrad)
|
76 |
+
super(DeepSpeedCPUAdam, self).__init__(model_params, default_args)
|
77 |
+
|
78 |
+
cpu_info = get_cpu_info()
|
79 |
+
self.cpu_vendor = cpu_info["vendor_id_raw"].lower() if "vendor_id_raw" in cpu_info else "unknown"
|
80 |
+
if "amd" in self.cpu_vendor:
|
81 |
+
for group_id, group in enumerate(self.param_groups):
|
82 |
+
for param_id, p in enumerate(group['params']):
|
83 |
+
if p.dtype == torch.half:
|
84 |
+
logger.warning("FP16 params for CPUAdam may not work on AMD CPUs")
|
85 |
+
break
|
86 |
+
else:
|
87 |
+
continue
|
88 |
+
break
|
89 |
+
|
90 |
+
self.opt_id = DeepSpeedCPUAdam.optimizer_id
|
91 |
+
DeepSpeedCPUAdam.optimizer_id = DeepSpeedCPUAdam.optimizer_id + 1
|
92 |
+
self.adam_w_mode = adamw_mode
|
93 |
+
self.fp32_optimizer_states = fp32_optimizer_states
|
94 |
+
self.ds_opt_adam = CPUAdamBuilder().load()
|
95 |
+
|
96 |
+
self.ds_opt_adam.create_adam(self.opt_id, lr, betas[0], betas[1], eps, weight_decay, adamw_mode,
|
97 |
+
should_log_le("info"))
|
98 |
+
|
99 |
+
def __del__(self):
|
100 |
+
# need to destroy the C++ object explicitly to avoid a memory leak when deepspeed.initialize
|
101 |
+
# is used multiple times in the same process (notebook or pytest worker)
|
102 |
+
self.ds_opt_adam.destroy_adam(self.opt_id)
|
103 |
+
|
104 |
+
def __setstate__(self, state):
|
105 |
+
super(DeepSpeedCPUAdam, self).__setstate__(state)
|
106 |
+
for group in self.param_groups:
|
107 |
+
group.setdefault('amsgrad', False)
|
108 |
+
|
109 |
+
@torch.no_grad()
|
110 |
+
def step(self, closure=None, fp16_param_groups=None):
|
111 |
+
"""Update the model parameters.
|
112 |
+
|
113 |
+
.. note::
|
114 |
+
This method will be called internally by ZeRO-Offload. DeepSpeed
|
115 |
+
users should still use ``engine.step()`` as shown in the
|
116 |
+
`Getting Started
|
117 |
+
<https://www.deepspeed.ai/getting-started/#training>`_ guide.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
closure (callable, optional): closure to compute the loss.
|
121 |
+
Defaults to ``None``.
|
122 |
+
fp16_param_groups: FP16 GPU parameters to update. Performing the
|
123 |
+
copy here reduces communication time. Defaults to ``None``.
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
loss: if ``closure`` is provided. Otherwise ``None``.
|
127 |
+
"""
|
128 |
+
|
129 |
+
loss = None
|
130 |
+
if closure is not None:
|
131 |
+
with torch.enable_grad():
|
132 |
+
loss = closure()
|
133 |
+
|
134 |
+
# intended device for step
|
135 |
+
device = torch.device('cpu')
|
136 |
+
|
137 |
+
# converting the fp16 params to a group of parameter
|
138 |
+
if type(fp16_param_groups) is list:
|
139 |
+
if type(fp16_param_groups[0]) is not list:
|
140 |
+
fp16_param_groups = [fp16_param_groups]
|
141 |
+
elif fp16_param_groups is not None:
|
142 |
+
fp16_param_groups = [[fp16_param_groups]]
|
143 |
+
|
144 |
+
for group_id, group in enumerate(self.param_groups):
|
145 |
+
for param_id, p in enumerate(group['params']):
|
146 |
+
|
147 |
+
if p.grad is None:
|
148 |
+
continue
|
149 |
+
|
150 |
+
assert p.device == device, f"CPUAdam param is on {p.device} and must be 'cpu', make " \
|
151 |
+
"sure you enabled 'offload_optimizer': 'cpu' in your ZeRO config."
|
152 |
+
|
153 |
+
state = self.state[p]
|
154 |
+
# State initialization
|
155 |
+
if len(state) == 0:
|
156 |
+
#print(f'group {group_id} param {param_id} = {p.numel()}')
|
157 |
+
state['step'] = 0
|
158 |
+
|
159 |
+
#use full precision by default unless self.fp32_optimizer_states is off
|
160 |
+
state_dtype = torch.float if self.fp32_optimizer_states else p.dtype
|
161 |
+
|
162 |
+
# gradient momentums
|
163 |
+
state['exp_avg'] = torch.zeros_like(p.data, dtype=state_dtype, device=device)
|
164 |
+
#memory_format=torch.preserve_format)
|
165 |
+
# gradient variances
|
166 |
+
state['exp_avg_sq'] = torch.zeros_like(p.data, dtype=state_dtype, device=device)
|
167 |
+
#memory_format=torch.preserve_format)
|
168 |
+
|
169 |
+
state['step'] += 1
|
170 |
+
beta1, beta2 = group['betas']
|
171 |
+
|
172 |
+
if fp16_param_groups is not None:
|
173 |
+
self.ds_opt_adam.adam_update_copy(self.opt_id, state['step'], group['lr'], beta1, beta2,
|
174 |
+
group['eps'], group['weight_decay'], group['bias_correction'],
|
175 |
+
p.data, p.grad.data, state['exp_avg'], state['exp_avg_sq'],
|
176 |
+
fp16_param_groups[group_id][param_id].data)
|
177 |
+
else:
|
178 |
+
self.ds_opt_adam.adam_update(self.opt_id, state['step'], group['lr'], beta1, beta2, group['eps'],
|
179 |
+
group['weight_decay'], group['bias_correction'], p.data, p.grad.data,
|
180 |
+
state['exp_avg'], state['exp_avg_sq'])
|
181 |
+
return loss
|
venv/lib/python3.10/site-packages/deepspeed/ops/adam/fused_adam.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
"""
|
6 |
+
Copyright NVIDIA/apex
|
7 |
+
This file is adapted from fused adam in NVIDIA/apex, commit 6bd01c4
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from .multi_tensor_apply import MultiTensorApply
|
12 |
+
|
13 |
+
multi_tensor_applier = MultiTensorApply(2048 * 32)
|
14 |
+
from deepspeed.accelerator import get_accelerator
|
15 |
+
from deepspeed.ops.op_builder import FusedAdamBuilder
|
16 |
+
|
17 |
+
|
18 |
+
class FusedAdam(torch.optim.Optimizer):
|
19 |
+
"""Implements Adam algorithm.
|
20 |
+
|
21 |
+
Currently GPU-only. Requires Apex to be installed via
|
22 |
+
``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``.
|
23 |
+
|
24 |
+
This version of fused Adam implements 2 fusions.
|
25 |
+
|
26 |
+
* Fusion of the Adam update's elementwise operations
|
27 |
+
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.
|
28 |
+
|
29 |
+
:class:`apex.optimizers.FusedAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
|
30 |
+
or ``torch.optim.Adam`` with ``adam_w_mode=False``::
|
31 |
+
|
32 |
+
opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....)
|
33 |
+
...
|
34 |
+
opt.step()
|
35 |
+
|
36 |
+
:class:`apex.optimizers.FusedAdam` may be used with or without Amp. If you wish to use :class:`FusedAdam` with Amp,
|
37 |
+
you may choose any ``opt_level``::
|
38 |
+
|
39 |
+
opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....)
|
40 |
+
model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2")
|
41 |
+
...
|
42 |
+
opt.step()
|
43 |
+
|
44 |
+
In general, ``opt_level="O1"`` is recommended.
|
45 |
+
|
46 |
+
|
47 |
+
.. warning::
|
48 |
+
A previous version of :class:`FusedAdam` allowed a number of additional arguments to ``step``. These additional arguments
|
49 |
+
are now deprecated and unnecessary.
|
50 |
+
|
51 |
+
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_.
|
52 |
+
|
53 |
+
Arguments:
|
54 |
+
params (iterable): iterable of parameters to optimize or dicts defining
|
55 |
+
parameter groups.
|
56 |
+
lr (float, optional): learning rate. (default: 1e-3)
|
57 |
+
betas (Tuple[float, float], optional): coefficients used for computing
|
58 |
+
running averages of gradient and its square. (default: (0.9, 0.999))
|
59 |
+
eps (float, optional): term added to the denominator to improve
|
60 |
+
numerical stability. (default: 1e-8)
|
61 |
+
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
62 |
+
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
|
63 |
+
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
64 |
+
(default: False) NOT SUPPORTED in FusedAdam!
|
65 |
+
adam_w_mode (boolean, optional): Apply L2 regularization or weight decay
|
66 |
+
True for decoupled weight decay(also known as AdamW) (default: True)
|
67 |
+
set_grad_none (bool, optional): whether set grad to None when zero_grad()
|
68 |
+
method is called. (default: True)
|
69 |
+
|
70 |
+
.. _Adam - A Method for Stochastic Optimization:
|
71 |
+
https://arxiv.org/abs/1412.6980
|
72 |
+
.. _On the Convergence of Adam and Beyond:
|
73 |
+
https://openreview.net/forum?id=ryQu7f-RZ
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(self,
|
77 |
+
params,
|
78 |
+
lr=1e-3,
|
79 |
+
bias_correction=True,
|
80 |
+
betas=(0.9, 0.999),
|
81 |
+
eps=1e-8,
|
82 |
+
adam_w_mode=True,
|
83 |
+
weight_decay=0.,
|
84 |
+
amsgrad=False,
|
85 |
+
set_grad_none=True):
|
86 |
+
|
87 |
+
if amsgrad:
|
88 |
+
raise RuntimeError('FusedAdam does not support the AMSGrad variant.')
|
89 |
+
defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay)
|
90 |
+
super(FusedAdam, self).__init__(params, defaults)
|
91 |
+
self.adam_w_mode = 1 if adam_w_mode else 0
|
92 |
+
self.set_grad_none = set_grad_none
|
93 |
+
|
94 |
+
fused_adam_cuda = FusedAdamBuilder().load()
|
95 |
+
# Skip buffer
|
96 |
+
self._dummy_overflow_buf = get_accelerator().IntTensor([0])
|
97 |
+
self.multi_tensor_adam = fused_adam_cuda.multi_tensor_adam
|
98 |
+
|
99 |
+
def zero_grad(self):
|
100 |
+
if self.set_grad_none:
|
101 |
+
for group in self.param_groups:
|
102 |
+
for p in group['params']:
|
103 |
+
p.grad = None
|
104 |
+
else:
|
105 |
+
super(FusedAdam, self).zero_grad()
|
106 |
+
|
107 |
+
def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, grad_scaler=None):
|
108 |
+
"""Performs a single optimization step.
|
109 |
+
|
110 |
+
Arguments:
|
111 |
+
closure (callable, optional): A closure that reevaluates the model
|
112 |
+
and returns the loss.
|
113 |
+
|
114 |
+
The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes.
|
115 |
+
"""
|
116 |
+
if any(p is not None for p in [grads, output_params, scale, grad_norms]):
|
117 |
+
raise RuntimeError(
|
118 |
+
'FusedAdam has been updated. Simply initialize it identically to torch.optim.Adam, and call step() with no arguments.'
|
119 |
+
)
|
120 |
+
loss = None
|
121 |
+
if closure is not None:
|
122 |
+
loss = closure()
|
123 |
+
|
124 |
+
for group in self.param_groups:
|
125 |
+
if len(group['params']) == 0:
|
126 |
+
continue
|
127 |
+
bias_correction = 1 if group['bias_correction'] else 0
|
128 |
+
beta1, beta2 = group['betas']
|
129 |
+
|
130 |
+
# assume same step across group now to simplify things
|
131 |
+
# per parameter step can be easily support by making it tensor, or pass list into kernel
|
132 |
+
if 'step' not in group:
|
133 |
+
group['step'] = 0
|
134 |
+
|
135 |
+
# create lists for multi-tensor apply
|
136 |
+
g_16, p_16, m_16, v_16 = [], [], [], []
|
137 |
+
g_bf, p_bf, m_bf, v_bf = [], [], [], []
|
138 |
+
g_32, p_32, m_32, v_32 = [], [], [], []
|
139 |
+
|
140 |
+
for p in group['params']:
|
141 |
+
if p.grad is None:
|
142 |
+
continue
|
143 |
+
if p.grad.data.is_sparse:
|
144 |
+
raise RuntimeError(
|
145 |
+
'FusedAdam does not support sparse gradients, please consider SparseAdam instead')
|
146 |
+
|
147 |
+
state = self.state[p]
|
148 |
+
# State initialization
|
149 |
+
if len(state) == 0:
|
150 |
+
# DeepSpeed ZeRO 3 processes each subgroup a time, so we need to keep tracking step count for each tensor separately.
|
151 |
+
# While this is not an issue for ZeRO 1 & 2, since they apply a single optimization step to the whole param group at the same time.
|
152 |
+
# In order to keep backward compatibility for the existing checkpoints, we use group['state'] to initialize state['step'] if it exists.
|
153 |
+
state['step'] = group.get('step', 0)
|
154 |
+
# Exponential moving average of gradient values
|
155 |
+
state['exp_avg'] = torch.zeros_like(p.data)
|
156 |
+
# Exponential moving average of squared gradient values
|
157 |
+
state['exp_avg_sq'] = torch.zeros_like(p.data)
|
158 |
+
|
159 |
+
if p.dtype == torch.float16:
|
160 |
+
g_16.append(p.grad.data)
|
161 |
+
p_16.append(p.data)
|
162 |
+
m_16.append(state['exp_avg'])
|
163 |
+
v_16.append(state['exp_avg_sq'])
|
164 |
+
elif p.dtype == torch.bfloat16:
|
165 |
+
g_bf.append(p.grad)
|
166 |
+
p_bf.append(p)
|
167 |
+
m_bf.append(state['exp_avg'])
|
168 |
+
v_bf.append(state['exp_avg_sq'])
|
169 |
+
elif p.dtype == torch.float32:
|
170 |
+
g_32.append(p.grad.data)
|
171 |
+
p_32.append(p.data)
|
172 |
+
m_32.append(state['exp_avg'])
|
173 |
+
v_32.append(state['exp_avg_sq'])
|
174 |
+
else:
|
175 |
+
raise RuntimeError('FusedAdam only support fp16, bf16 and fp32.')
|
176 |
+
|
177 |
+
if len(g_16) > 0:
|
178 |
+
state['step'] += 1
|
179 |
+
multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16],
|
180 |
+
group['lr'], beta1, beta2, group['eps'], state['step'], self.adam_w_mode,
|
181 |
+
bias_correction, group['weight_decay'])
|
182 |
+
|
183 |
+
if len(g_bf) > 0:
|
184 |
+
state['step'] += 1
|
185 |
+
multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_bf, p_bf, m_bf, v_bf],
|
186 |
+
group['lr'], beta1, beta2, group['eps'], state['step'], self.adam_w_mode,
|
187 |
+
bias_correction, group['weight_decay'])
|
188 |
+
|
189 |
+
if len(g_32) > 0:
|
190 |
+
state['step'] += 1
|
191 |
+
multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32],
|
192 |
+
group['lr'], beta1, beta2, group['eps'], state['step'], self.adam_w_mode,
|
193 |
+
bias_correction, group['weight_decay'])
|
194 |
+
|
195 |
+
return loss
|
venv/lib/python3.10/site-packages/deepspeed/ops/adam/multi_tensor_apply.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
"""
|
6 |
+
Copyright NVIDIA/apex
|
7 |
+
This file is adapted from NVIDIA/apex, commit a109f85
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
class MultiTensorApply(object):
|
12 |
+
|
13 |
+
def __init__(self, chunk_size):
|
14 |
+
self.chunk_size = chunk_size
|
15 |
+
|
16 |
+
def __call__(self, op, noop_flag_buffer, tensor_lists, *args):
|
17 |
+
return op(self.chunk_size, noop_flag_buffer, tensor_lists, *args)
|
venv/lib/python3.10/site-packages/deepspeed/ops/deepspeed4science/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (297 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/deepspeed4science/__pycache__/evoformer_attn.cpython-310.pyc
ADDED
Binary file (3.79 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/deepspeed4science/evoformer_attn.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from deepspeed.ops.op_builder import EvoformerAttnBuilder
|
9 |
+
from deepspeed.accelerator import get_accelerator
|
10 |
+
|
11 |
+
kernel_ = None
|
12 |
+
|
13 |
+
|
14 |
+
def _attention(Q, K, V, bias1, bias2):
|
15 |
+
assert Q.shape[-3] > 16, "seq_len must be greater than 16"
|
16 |
+
O = torch.empty_like(Q, dtype=Q.dtype)
|
17 |
+
assert get_accelerator().on_accelerator(Q), "Q must be on cuda"
|
18 |
+
assert get_accelerator().on_accelerator(K), "K must be on cuda"
|
19 |
+
assert get_accelerator().on_accelerator(V), "V must be on cuda"
|
20 |
+
assert get_accelerator().on_accelerator(bias1), "bias1 must be on cuda"
|
21 |
+
assert get_accelerator().on_accelerator(bias2), "bias2 must be on cuda"
|
22 |
+
global kernel_
|
23 |
+
if kernel_ is None:
|
24 |
+
kernel_ = EvoformerAttnBuilder().load()
|
25 |
+
nheads = Q.shape[-2]
|
26 |
+
nq = (Q.shape[-3] + 31) // 32 * 32
|
27 |
+
nb = np.prod(Q.shape[:-3])
|
28 |
+
lse = torch.empty((nb, nheads, nq), dtype=torch.float32, device=Q.device)
|
29 |
+
kernel_.attention(Q, K, V, bias1, bias2, O, lse)
|
30 |
+
return O, lse
|
31 |
+
|
32 |
+
|
33 |
+
def attention_bwd(dO, Q, K, V, O, lse, bias1, bias2, bias1_grad, bias2_grad):
|
34 |
+
assert max(Q.shape[-1], V.shape[-1]) <= 64, "Hidden size is too large. Need to change kMax to a larger value"
|
35 |
+
dQ = torch.empty_like(Q, dtype=Q.dtype)
|
36 |
+
dK = torch.empty_like(K, dtype=K.dtype)
|
37 |
+
dV = torch.empty_like(V, dtype=V.dtype)
|
38 |
+
assert get_accelerator().on_accelerator(dO), "dO must be on cuda"
|
39 |
+
assert get_accelerator().on_accelerator(Q), "Q must be on cuda"
|
40 |
+
assert get_accelerator().on_accelerator(K), "K must be on cuda"
|
41 |
+
assert get_accelerator().on_accelerator(V), "V must be on cuda"
|
42 |
+
assert get_accelerator().on_accelerator(O), "O must be on cuda"
|
43 |
+
global kernel_
|
44 |
+
if kernel_ is None:
|
45 |
+
kernel_ = EvoformerAttnBuilder().load()
|
46 |
+
delta = torch.empty_like(lse)
|
47 |
+
if bias1_grad:
|
48 |
+
dB1 = torch.zeros_like(bias1, dtype=torch.float32)
|
49 |
+
else:
|
50 |
+
dB1 = torch.tensor([], dtype=torch.float32, device=bias1.device)
|
51 |
+
if bias2_grad:
|
52 |
+
dB2 = torch.zeros_like(bias2, dtype=torch.float32)
|
53 |
+
else:
|
54 |
+
dB2 = torch.tensor([], dtype=torch.float32, device=bias2.device)
|
55 |
+
kernel_.attention_bwd(dO, Q, K, V, O, lse, delta, bias1, bias2, dQ, dK, dV, dB1, dB2)
|
56 |
+
return dQ, dK, dV, dB1.to(dO.dtype), dB2.to(dO.dtype)
|
57 |
+
|
58 |
+
|
59 |
+
class EvoformerFusedAttention(torch.autograd.Function):
|
60 |
+
|
61 |
+
@staticmethod
|
62 |
+
def forward(ctx, q, k, v, bias1=None, bias2=None):
|
63 |
+
"""
|
64 |
+
q, k, v: are in shape [*, L, H, D]
|
65 |
+
"""
|
66 |
+
bias1_ = bias1.contiguous() if bias1 is not None else torch.tensor([], dtype=q.dtype, device=q.device)
|
67 |
+
bias2_ = bias2.contiguous() if bias2 is not None else torch.tensor([], dtype=q.dtype, device=q.device)
|
68 |
+
q = q.contiguous()
|
69 |
+
k = k.contiguous()
|
70 |
+
v = v.contiguous()
|
71 |
+
o, lse = _attention(q, k, v, bias1_, bias2_)
|
72 |
+
ctx.save_for_backward(q, k, v, o, lse, bias1_, bias2_)
|
73 |
+
return o
|
74 |
+
|
75 |
+
@staticmethod
|
76 |
+
def backward(ctx, grad_output):
|
77 |
+
q, k, v, o, lse, bias1, bias2 = ctx.saved_tensors
|
78 |
+
is_b1_grad = bias1.numel() != 0 and ctx.needs_input_grad[3]
|
79 |
+
is_b2_grad = bias2.numel() != 0 and ctx.needs_input_grad[4]
|
80 |
+
dQ, dK, dV, dB1, dB2 = attention_bwd(grad_output, q, k, v, o, lse, bias1, bias2, is_b1_grad, is_b2_grad)
|
81 |
+
if not is_b1_grad:
|
82 |
+
dB1 = None
|
83 |
+
if not is_b2_grad:
|
84 |
+
dB2 = None
|
85 |
+
return dQ, dK, dV, dB1, dB2
|
86 |
+
|
87 |
+
|
88 |
+
def DS4Sci_EvoformerAttention(Q, K, V, biases):
|
89 |
+
assert len(biases) <= 2
|
90 |
+
|
91 |
+
if (len(biases) == 0):
|
92 |
+
biases.append(None)
|
93 |
+
|
94 |
+
if (len(biases) == 1):
|
95 |
+
biases.append(None)
|
96 |
+
|
97 |
+
bias_1_shape = lambda x: (x.shape[0], x.shape[1], 1, 1, x.shape[2])
|
98 |
+
bias_2_shape = lambda x: (x.shape[0], 1, x.shape[3], x.shape[2], x.shape[2])
|
99 |
+
|
100 |
+
if biases[0] is not None:
|
101 |
+
assert biases[0].shape == bias_1_shape(Q), "bias1 shape is incorrect"
|
102 |
+
|
103 |
+
if biases[1] is not None:
|
104 |
+
assert biases[1].shape == bias_2_shape(Q), "bias2 shape is incorrect"
|
105 |
+
|
106 |
+
return EvoformerFusedAttention.apply(Q, K, V, biases[0], biases[1])
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__init__.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import sys
|
7 |
+
import os
|
8 |
+
import pkgutil
|
9 |
+
import importlib
|
10 |
+
|
11 |
+
from .builder import get_default_compute_capabilities, OpBuilder
|
12 |
+
|
13 |
+
# Do not remove, required for abstract accelerator to detect if we have a deepspeed or 3p op_builder
|
14 |
+
__deepspeed__ = True
|
15 |
+
|
16 |
+
# List of all available op builders from deepspeed op_builder
|
17 |
+
try:
|
18 |
+
import deepspeed.ops.op_builder # noqa: F401 # type: ignore
|
19 |
+
op_builder_dir = "deepspeed.ops.op_builder"
|
20 |
+
except ImportError:
|
21 |
+
op_builder_dir = "op_builder"
|
22 |
+
|
23 |
+
__op_builders__ = []
|
24 |
+
|
25 |
+
this_module = sys.modules[__name__]
|
26 |
+
|
27 |
+
|
28 |
+
def builder_closure(member_name):
|
29 |
+
if op_builder_dir == "op_builder":
|
30 |
+
# during installation time cannot get builder due to torch not installed,
|
31 |
+
# return closure instead
|
32 |
+
def _builder():
|
33 |
+
from deepspeed.accelerator import get_accelerator
|
34 |
+
builder = get_accelerator().create_op_builder(member_name)
|
35 |
+
return builder
|
36 |
+
|
37 |
+
return _builder
|
38 |
+
else:
|
39 |
+
# during runtime, return op builder class directly
|
40 |
+
from deepspeed.accelerator import get_accelerator
|
41 |
+
builder = get_accelerator().get_op_builder(member_name)
|
42 |
+
return builder
|
43 |
+
|
44 |
+
|
45 |
+
# reflect builder names and add builder closure, such as 'TransformerBuilder()' creates op builder wrt current accelerator
|
46 |
+
for _, module_name, _ in pkgutil.iter_modules([os.path.dirname(this_module.__file__)]):
|
47 |
+
if module_name != 'all_ops' and module_name != 'builder':
|
48 |
+
module = importlib.import_module(f".{module_name}", package=op_builder_dir)
|
49 |
+
for member_name in module.__dir__():
|
50 |
+
if member_name.endswith('Builder') and member_name != "OpBuilder" and member_name != "CUDAOpBuilder":
|
51 |
+
# assign builder name to variable with same name
|
52 |
+
# the following is equivalent to i.e. TransformerBuilder = "TransformerBuilder"
|
53 |
+
this_module.__dict__[member_name] = builder_closure(member_name)
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.36 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/all_ops.cpython-310.pyc
ADDED
Binary file (954 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/async_io.cpython-310.pyc
ADDED
Binary file (3.35 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/builder.cpython-310.pyc
ADDED
Binary file (23.5 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/cpu_adagrad.cpython-310.pyc
ADDED
Binary file (1.65 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/cpu_adam.cpython-310.pyc
ADDED
Binary file (1.65 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/cpu_lion.cpython-310.pyc
ADDED
Binary file (1.75 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/evoformer_attn.cpython-310.pyc
ADDED
Binary file (3.01 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/fp_quantizer.cpython-310.pyc
ADDED
Binary file (2.56 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/fused_adam.cpython-310.pyc
ADDED
Binary file (1.75 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/fused_lamb.cpython-310.pyc
ADDED
Binary file (1.89 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/fused_lion.cpython-310.pyc
ADDED
Binary file (1.75 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/inference_core_ops.cpython-310.pyc
ADDED
Binary file (4.11 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/inference_cutlass_builder.cpython-310.pyc
ADDED
Binary file (3.68 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/quantizer.cpython-310.pyc
ADDED
Binary file (1.57 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/ragged_ops.cpython-310.pyc
ADDED
Binary file (4.82 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/ragged_utils.cpython-310.pyc
ADDED
Binary file (3.26 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/random_ltd.cpython-310.pyc
ADDED
Binary file (1.47 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/sparse_attn.cpython-310.pyc
ADDED
Binary file (2.52 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/spatial_inference.cpython-310.pyc
ADDED
Binary file (2.02 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/stochastic_transformer.cpython-310.pyc
ADDED
Binary file (1.14 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/transformer.cpython-310.pyc
ADDED
Binary file (1.67 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/__pycache__/transformer_inference.cpython-310.pyc
ADDED
Binary file (3.02 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/async_io.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import distutils.spawn
|
7 |
+
import subprocess
|
8 |
+
|
9 |
+
from .builder import OpBuilder
|
10 |
+
|
11 |
+
|
12 |
+
class AsyncIOBuilder(OpBuilder):
|
13 |
+
BUILD_VAR = "DS_BUILD_AIO"
|
14 |
+
NAME = "async_io"
|
15 |
+
|
16 |
+
def __init__(self):
|
17 |
+
super().__init__(name=self.NAME)
|
18 |
+
|
19 |
+
def absolute_name(self):
|
20 |
+
return f'deepspeed.ops.aio.{self.NAME}_op'
|
21 |
+
|
22 |
+
def sources(self):
|
23 |
+
return [
|
24 |
+
'csrc/aio/py_lib/deepspeed_py_copy.cpp', 'csrc/aio/py_lib/py_ds_aio.cpp',
|
25 |
+
'csrc/aio/py_lib/deepspeed_py_aio.cpp', 'csrc/aio/py_lib/deepspeed_py_aio_handle.cpp',
|
26 |
+
'csrc/aio/py_lib/deepspeed_aio_thread.cpp', 'csrc/aio/common/deepspeed_aio_utils.cpp',
|
27 |
+
'csrc/aio/common/deepspeed_aio_common.cpp', 'csrc/aio/common/deepspeed_aio_types.cpp',
|
28 |
+
'csrc/aio/py_lib/deepspeed_pin_tensor.cpp'
|
29 |
+
]
|
30 |
+
|
31 |
+
def include_paths(self):
|
32 |
+
return ['csrc/aio/py_lib', 'csrc/aio/common']
|
33 |
+
|
34 |
+
def cxx_args(self):
|
35 |
+
# -O0 for improved debugging, since performance is bound by I/O
|
36 |
+
CPU_ARCH = self.cpu_arch()
|
37 |
+
SIMD_WIDTH = self.simd_width()
|
38 |
+
import torch # Keep this import here to avoid errors when building DeepSpeed wheel without torch installed
|
39 |
+
TORCH_MAJOR, TORCH_MINOR = map(int, torch.__version__.split('.')[0:2])
|
40 |
+
if TORCH_MAJOR >= 2 and TORCH_MINOR >= 1:
|
41 |
+
CPP_STD = '-std=c++17'
|
42 |
+
else:
|
43 |
+
CPP_STD = '-std=c++14'
|
44 |
+
return [
|
45 |
+
'-g',
|
46 |
+
'-Wall',
|
47 |
+
'-O0',
|
48 |
+
CPP_STD,
|
49 |
+
'-shared',
|
50 |
+
'-fPIC',
|
51 |
+
'-Wno-reorder',
|
52 |
+
CPU_ARCH,
|
53 |
+
'-fopenmp',
|
54 |
+
SIMD_WIDTH,
|
55 |
+
'-laio',
|
56 |
+
]
|
57 |
+
|
58 |
+
def extra_ldflags(self):
|
59 |
+
return ['-laio']
|
60 |
+
|
61 |
+
def check_for_libaio_pkg(self):
|
62 |
+
libs = dict(
|
63 |
+
dpkg=["-l", "libaio-dev", "apt"],
|
64 |
+
pacman=["-Q", "libaio", "pacman"],
|
65 |
+
rpm=["-q", "libaio-devel", "yum"],
|
66 |
+
)
|
67 |
+
|
68 |
+
found = False
|
69 |
+
for pkgmgr, data in libs.items():
|
70 |
+
flag, lib, tool = data
|
71 |
+
path = distutils.spawn.find_executable(pkgmgr)
|
72 |
+
if path is not None:
|
73 |
+
cmd = f"{pkgmgr} {flag} {lib}"
|
74 |
+
result = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
75 |
+
if result.wait() == 0:
|
76 |
+
found = True
|
77 |
+
else:
|
78 |
+
self.warning(f"{self.NAME}: please install the {lib} package with {tool}")
|
79 |
+
break
|
80 |
+
return found
|
81 |
+
|
82 |
+
def is_compatible(self, verbose=True):
|
83 |
+
# Check for the existence of libaio by using distutils
|
84 |
+
# to compile and link a test program that calls io_submit,
|
85 |
+
# which is a function provided by libaio that is used in the async_io op.
|
86 |
+
# If needed, one can define -I and -L entries in CFLAGS and LDFLAGS
|
87 |
+
# respectively to specify the directories for libaio.h and libaio.so.
|
88 |
+
aio_compatible = self.has_function('io_pgetevents', ('aio', ))
|
89 |
+
if verbose and not aio_compatible:
|
90 |
+
self.warning(f"{self.NAME} requires the dev libaio .so object and headers but these were not found.")
|
91 |
+
|
92 |
+
# Check for the libaio package via known package managers
|
93 |
+
# to print suggestions on which package to install.
|
94 |
+
self.check_for_libaio_pkg()
|
95 |
+
|
96 |
+
self.warning(
|
97 |
+
"If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found."
|
98 |
+
)
|
99 |
+
return super().is_compatible(verbose) and aio_compatible
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/builder.py
ADDED
@@ -0,0 +1,775 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
import importlib
|
10 |
+
from pathlib import Path
|
11 |
+
import subprocess
|
12 |
+
import shlex
|
13 |
+
import shutil
|
14 |
+
import tempfile
|
15 |
+
import distutils.ccompiler
|
16 |
+
import distutils.log
|
17 |
+
import distutils.sysconfig
|
18 |
+
from distutils.errors import CompileError, LinkError
|
19 |
+
from abc import ABC, abstractmethod
|
20 |
+
from typing import List
|
21 |
+
|
22 |
+
YELLOW = '\033[93m'
|
23 |
+
END = '\033[0m'
|
24 |
+
WARNING = f"{YELLOW} [WARNING] {END}"
|
25 |
+
|
26 |
+
DEFAULT_TORCH_EXTENSION_PATH = "/tmp/torch_extensions"
|
27 |
+
DEFAULT_COMPUTE_CAPABILITIES = "6.0;6.1;7.0"
|
28 |
+
|
29 |
+
try:
|
30 |
+
import torch
|
31 |
+
except ImportError:
|
32 |
+
print(f"{WARNING} unable to import torch, please install it if you want to pre-compile any deepspeed ops.")
|
33 |
+
else:
|
34 |
+
TORCH_MAJOR = int(torch.__version__.split('.')[0])
|
35 |
+
TORCH_MINOR = int(torch.__version__.split('.')[1])
|
36 |
+
|
37 |
+
|
38 |
+
class MissingCUDAException(Exception):
|
39 |
+
pass
|
40 |
+
|
41 |
+
|
42 |
+
class CUDAMismatchException(Exception):
|
43 |
+
pass
|
44 |
+
|
45 |
+
|
46 |
+
def installed_cuda_version(name=""):
|
47 |
+
import torch.utils.cpp_extension
|
48 |
+
cuda_home = torch.utils.cpp_extension.CUDA_HOME
|
49 |
+
if cuda_home is None:
|
50 |
+
raise MissingCUDAException("CUDA_HOME does not exist, unable to compile CUDA op(s)")
|
51 |
+
# Ensure there is not a cuda version mismatch between torch and nvcc compiler
|
52 |
+
output = subprocess.check_output([cuda_home + "/bin/nvcc", "-V"], universal_newlines=True)
|
53 |
+
output_split = output.split()
|
54 |
+
release_idx = output_split.index("release")
|
55 |
+
release = output_split[release_idx + 1].replace(',', '').split(".")
|
56 |
+
# Ignore patch versions, only look at major + minor
|
57 |
+
cuda_major, cuda_minor = release[:2]
|
58 |
+
return int(cuda_major), int(cuda_minor)
|
59 |
+
|
60 |
+
|
61 |
+
def get_default_compute_capabilities():
|
62 |
+
compute_caps = DEFAULT_COMPUTE_CAPABILITIES
|
63 |
+
import torch.utils.cpp_extension
|
64 |
+
if torch.utils.cpp_extension.CUDA_HOME is not None and installed_cuda_version()[0] >= 11:
|
65 |
+
if installed_cuda_version()[0] == 11 and installed_cuda_version()[1] == 0:
|
66 |
+
# Special treatment of CUDA 11.0 because compute_86 is not supported.
|
67 |
+
compute_caps += ";8.0"
|
68 |
+
else:
|
69 |
+
compute_caps += ";8.0;8.6"
|
70 |
+
return compute_caps
|
71 |
+
|
72 |
+
|
73 |
+
# list compatible minor CUDA versions - so that for example pytorch built with cuda-11.0 can be used
|
74 |
+
# to build deepspeed and system-wide installed cuda 11.2
|
75 |
+
cuda_minor_mismatch_ok = {
|
76 |
+
10: ["10.0", "10.1", "10.2"],
|
77 |
+
11: ["11.0", "11.1", "11.2", "11.3", "11.4", "11.5", "11.6", "11.7", "11.8"],
|
78 |
+
12: ["12.0", "12.1", "12.2", "12.3"],
|
79 |
+
}
|
80 |
+
|
81 |
+
|
82 |
+
def assert_no_cuda_mismatch(name=""):
|
83 |
+
cuda_major, cuda_minor = installed_cuda_version(name)
|
84 |
+
sys_cuda_version = f'{cuda_major}.{cuda_minor}'
|
85 |
+
torch_cuda_version = ".".join(torch.version.cuda.split('.')[:2])
|
86 |
+
# This is a show-stopping error, should probably not proceed past this
|
87 |
+
if sys_cuda_version != torch_cuda_version:
|
88 |
+
if (cuda_major in cuda_minor_mismatch_ok and sys_cuda_version in cuda_minor_mismatch_ok[cuda_major]
|
89 |
+
and torch_cuda_version in cuda_minor_mismatch_ok[cuda_major]):
|
90 |
+
print(f"Installed CUDA version {sys_cuda_version} does not match the "
|
91 |
+
f"version torch was compiled with {torch.version.cuda} "
|
92 |
+
"but since the APIs are compatible, accepting this combination")
|
93 |
+
return True
|
94 |
+
elif os.getenv("DS_SKIP_CUDA_CHECK", "0") == "1":
|
95 |
+
print(
|
96 |
+
f"{WARNING} DeepSpeed Op Builder: Installed CUDA version {sys_cuda_version} does not match the "
|
97 |
+
f"version torch was compiled with {torch.version.cuda}."
|
98 |
+
"Detected `DS_SKIP_CUDA_CHECK=1`: Allowing this combination of CUDA, but it may result in unexpected behavior."
|
99 |
+
)
|
100 |
+
return True
|
101 |
+
raise CUDAMismatchException(
|
102 |
+
f">- DeepSpeed Op Builder: Installed CUDA version {sys_cuda_version} does not match the "
|
103 |
+
f"version torch was compiled with {torch.version.cuda}, unable to compile "
|
104 |
+
"cuda/cpp extensions without a matching cuda version.")
|
105 |
+
return True
|
106 |
+
|
107 |
+
|
108 |
+
class OpBuilder(ABC):
|
109 |
+
_rocm_version = None
|
110 |
+
_is_rocm_pytorch = None
|
111 |
+
_is_sycl_enabled = None
|
112 |
+
_loaded_ops = {}
|
113 |
+
|
114 |
+
def __init__(self, name):
|
115 |
+
self.name = name
|
116 |
+
self.jit_mode = False
|
117 |
+
self.build_for_cpu = False
|
118 |
+
self.enable_bf16 = False
|
119 |
+
self.error_log = None
|
120 |
+
|
121 |
+
@abstractmethod
|
122 |
+
def absolute_name(self):
|
123 |
+
'''
|
124 |
+
Returns absolute build path for cases where the op is pre-installed, e.g., deepspeed.ops.adam.cpu_adam
|
125 |
+
will be installed as something like: deepspeed/ops/adam/cpu_adam.so
|
126 |
+
'''
|
127 |
+
pass
|
128 |
+
|
129 |
+
@abstractmethod
|
130 |
+
def sources(self):
|
131 |
+
'''
|
132 |
+
Returns list of source files for your op, relative to root of deepspeed package (i.e., DeepSpeed/deepspeed)
|
133 |
+
'''
|
134 |
+
pass
|
135 |
+
|
136 |
+
def hipify_extension(self):
|
137 |
+
pass
|
138 |
+
|
139 |
+
def sycl_extension(self):
|
140 |
+
pass
|
141 |
+
|
142 |
+
@staticmethod
|
143 |
+
def validate_torch_version(torch_info):
|
144 |
+
install_torch_version = torch_info['version']
|
145 |
+
current_torch_version = ".".join(torch.__version__.split('.')[:2])
|
146 |
+
if install_torch_version != current_torch_version:
|
147 |
+
raise RuntimeError("PyTorch version mismatch! DeepSpeed ops were compiled and installed "
|
148 |
+
"with a different version than what is being used at runtime. "
|
149 |
+
f"Please re-install DeepSpeed or switch torch versions. "
|
150 |
+
f"Install torch version={install_torch_version}, "
|
151 |
+
f"Runtime torch version={current_torch_version}")
|
152 |
+
|
153 |
+
@staticmethod
|
154 |
+
def validate_torch_op_version(torch_info):
|
155 |
+
if not OpBuilder.is_rocm_pytorch():
|
156 |
+
current_cuda_version = ".".join(torch.version.cuda.split('.')[:2])
|
157 |
+
install_cuda_version = torch_info['cuda_version']
|
158 |
+
if install_cuda_version != current_cuda_version:
|
159 |
+
raise RuntimeError("CUDA version mismatch! DeepSpeed ops were compiled and installed "
|
160 |
+
"with a different version than what is being used at runtime. "
|
161 |
+
f"Please re-install DeepSpeed or switch torch versions. "
|
162 |
+
f"Install CUDA version={install_cuda_version}, "
|
163 |
+
f"Runtime CUDA version={current_cuda_version}")
|
164 |
+
else:
|
165 |
+
current_hip_version = ".".join(torch.version.hip.split('.')[:2])
|
166 |
+
install_hip_version = torch_info['hip_version']
|
167 |
+
if install_hip_version != current_hip_version:
|
168 |
+
raise RuntimeError("HIP version mismatch! DeepSpeed ops were compiled and installed "
|
169 |
+
"with a different version than what is being used at runtime. "
|
170 |
+
f"Please re-install DeepSpeed or switch torch versions. "
|
171 |
+
f"Install HIP version={install_hip_version}, "
|
172 |
+
f"Runtime HIP version={current_hip_version}")
|
173 |
+
|
174 |
+
@staticmethod
|
175 |
+
def is_rocm_pytorch():
|
176 |
+
if OpBuilder._is_rocm_pytorch is not None:
|
177 |
+
return OpBuilder._is_rocm_pytorch
|
178 |
+
|
179 |
+
_is_rocm_pytorch = False
|
180 |
+
try:
|
181 |
+
import torch
|
182 |
+
except ImportError:
|
183 |
+
pass
|
184 |
+
else:
|
185 |
+
if TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 5):
|
186 |
+
_is_rocm_pytorch = hasattr(torch.version, 'hip') and torch.version.hip is not None
|
187 |
+
if _is_rocm_pytorch:
|
188 |
+
from torch.utils.cpp_extension import ROCM_HOME
|
189 |
+
_is_rocm_pytorch = ROCM_HOME is not None
|
190 |
+
OpBuilder._is_rocm_pytorch = _is_rocm_pytorch
|
191 |
+
return OpBuilder._is_rocm_pytorch
|
192 |
+
|
193 |
+
@staticmethod
|
194 |
+
def is_sycl_enabled():
|
195 |
+
if OpBuilder._is_sycl_enabled is not None:
|
196 |
+
return OpBuilder._is_sycl_enabled
|
197 |
+
|
198 |
+
_is_sycl_enabled = False
|
199 |
+
try:
|
200 |
+
result = subprocess.run(["c2s", "--version"], capture_output=True)
|
201 |
+
except:
|
202 |
+
pass
|
203 |
+
else:
|
204 |
+
_is_sycl_enabled = True
|
205 |
+
|
206 |
+
OpBuilder._is_sycl_enabled = _is_sycl_enabled
|
207 |
+
return OpBuilder._is_sycl_enabled
|
208 |
+
|
209 |
+
@staticmethod
|
210 |
+
def installed_rocm_version():
|
211 |
+
if OpBuilder._rocm_version:
|
212 |
+
return OpBuilder._rocm_version
|
213 |
+
|
214 |
+
ROCM_MAJOR = '0'
|
215 |
+
ROCM_MINOR = '0'
|
216 |
+
if OpBuilder.is_rocm_pytorch():
|
217 |
+
from torch.utils.cpp_extension import ROCM_HOME
|
218 |
+
rocm_ver_file = Path(ROCM_HOME).joinpath(".info/version-dev")
|
219 |
+
if rocm_ver_file.is_file():
|
220 |
+
with open(rocm_ver_file, 'r') as file:
|
221 |
+
ROCM_VERSION_DEV_RAW = file.read()
|
222 |
+
elif "rocm" in torch.__version__:
|
223 |
+
ROCM_VERSION_DEV_RAW = torch.__version__.split("rocm")[1]
|
224 |
+
else:
|
225 |
+
assert False, "Could not detect ROCm version"
|
226 |
+
assert ROCM_VERSION_DEV_RAW != "", "Could not detect ROCm version"
|
227 |
+
ROCM_MAJOR = ROCM_VERSION_DEV_RAW.split('.')[0]
|
228 |
+
ROCM_MINOR = ROCM_VERSION_DEV_RAW.split('.')[1]
|
229 |
+
OpBuilder._rocm_version = (int(ROCM_MAJOR), int(ROCM_MINOR))
|
230 |
+
return OpBuilder._rocm_version
|
231 |
+
|
232 |
+
def include_paths(self):
|
233 |
+
'''
|
234 |
+
Returns list of include paths, relative to root of deepspeed package (i.e., DeepSpeed/deepspeed)
|
235 |
+
'''
|
236 |
+
return []
|
237 |
+
|
238 |
+
def nvcc_args(self):
|
239 |
+
'''
|
240 |
+
Returns optional list of compiler flags to forward to nvcc when building CUDA sources
|
241 |
+
'''
|
242 |
+
return []
|
243 |
+
|
244 |
+
def cxx_args(self):
|
245 |
+
'''
|
246 |
+
Returns optional list of compiler flags to forward to the build
|
247 |
+
'''
|
248 |
+
return []
|
249 |
+
|
250 |
+
def is_compatible(self, verbose=True):
|
251 |
+
'''
|
252 |
+
Check if all non-python dependencies are satisfied to build this op
|
253 |
+
'''
|
254 |
+
return True
|
255 |
+
|
256 |
+
def extra_ldflags(self):
|
257 |
+
return []
|
258 |
+
|
259 |
+
def has_function(self, funcname, libraries, verbose=False):
|
260 |
+
'''
|
261 |
+
Test for existence of a function within a tuple of libraries.
|
262 |
+
|
263 |
+
This is used as a smoke test to check whether a certain library is available.
|
264 |
+
As a test, this creates a simple C program that calls the specified function,
|
265 |
+
and then distutils is used to compile that program and link it with the specified libraries.
|
266 |
+
Returns True if both the compile and link are successful, False otherwise.
|
267 |
+
'''
|
268 |
+
tempdir = None # we create a temporary directory to hold various files
|
269 |
+
filestderr = None # handle to open file to which we redirect stderr
|
270 |
+
oldstderr = None # file descriptor for stderr
|
271 |
+
try:
|
272 |
+
# Echo compile and link commands that are used.
|
273 |
+
if verbose:
|
274 |
+
distutils.log.set_verbosity(1)
|
275 |
+
|
276 |
+
# Create a compiler object.
|
277 |
+
compiler = distutils.ccompiler.new_compiler(verbose=verbose)
|
278 |
+
|
279 |
+
# Configure compiler and linker to build according to Python install.
|
280 |
+
distutils.sysconfig.customize_compiler(compiler)
|
281 |
+
|
282 |
+
# Create a temporary directory to hold test files.
|
283 |
+
tempdir = tempfile.mkdtemp()
|
284 |
+
|
285 |
+
# Define a simple C program that calls the function in question
|
286 |
+
prog = "void %s(void); int main(int argc, char** argv) { %s(); return 0; }" % (funcname, funcname)
|
287 |
+
|
288 |
+
# Write the test program to a file.
|
289 |
+
filename = os.path.join(tempdir, 'test.c')
|
290 |
+
with open(filename, 'w') as f:
|
291 |
+
f.write(prog)
|
292 |
+
|
293 |
+
# Redirect stderr file descriptor to a file to silence compile/link warnings.
|
294 |
+
if not verbose:
|
295 |
+
filestderr = open(os.path.join(tempdir, 'stderr.txt'), 'w')
|
296 |
+
oldstderr = os.dup(sys.stderr.fileno())
|
297 |
+
os.dup2(filestderr.fileno(), sys.stderr.fileno())
|
298 |
+
|
299 |
+
# Workaround for behavior in distutils.ccompiler.CCompiler.object_filenames()
|
300 |
+
# Otherwise, a local directory will be used instead of tempdir
|
301 |
+
drive, driveless_filename = os.path.splitdrive(filename)
|
302 |
+
root_dir = driveless_filename[0] if os.path.isabs(driveless_filename) else ''
|
303 |
+
output_dir = os.path.join(drive, root_dir)
|
304 |
+
|
305 |
+
# Attempt to compile the C program into an object file.
|
306 |
+
cflags = shlex.split(os.environ.get('CFLAGS', ""))
|
307 |
+
objs = compiler.compile([filename], output_dir=output_dir, extra_preargs=self.strip_empty_entries(cflags))
|
308 |
+
|
309 |
+
# Attempt to link the object file into an executable.
|
310 |
+
# Be sure to tack on any libraries that have been specified.
|
311 |
+
ldflags = shlex.split(os.environ.get('LDFLAGS', ""))
|
312 |
+
compiler.link_executable(objs,
|
313 |
+
os.path.join(tempdir, 'a.out'),
|
314 |
+
extra_preargs=self.strip_empty_entries(ldflags),
|
315 |
+
libraries=libraries)
|
316 |
+
|
317 |
+
# Compile and link succeeded
|
318 |
+
return True
|
319 |
+
|
320 |
+
except CompileError:
|
321 |
+
return False
|
322 |
+
|
323 |
+
except LinkError:
|
324 |
+
return False
|
325 |
+
|
326 |
+
except:
|
327 |
+
return False
|
328 |
+
|
329 |
+
finally:
|
330 |
+
# Restore stderr file descriptor and close the stderr redirect file.
|
331 |
+
if oldstderr is not None:
|
332 |
+
os.dup2(oldstderr, sys.stderr.fileno())
|
333 |
+
if filestderr is not None:
|
334 |
+
filestderr.close()
|
335 |
+
|
336 |
+
# Delete the temporary directory holding the test program and stderr files.
|
337 |
+
if tempdir is not None:
|
338 |
+
shutil.rmtree(tempdir)
|
339 |
+
|
340 |
+
def strip_empty_entries(self, args):
|
341 |
+
'''
|
342 |
+
Drop any empty strings from the list of compile and link flags
|
343 |
+
'''
|
344 |
+
return [x for x in args if len(x) > 0]
|
345 |
+
|
346 |
+
def cpu_arch(self):
|
347 |
+
try:
|
348 |
+
from cpuinfo import get_cpu_info
|
349 |
+
except ImportError as e:
|
350 |
+
cpu_info = self._backup_cpuinfo()
|
351 |
+
if cpu_info is None:
|
352 |
+
return "-march=native"
|
353 |
+
|
354 |
+
try:
|
355 |
+
cpu_info = get_cpu_info()
|
356 |
+
except Exception as e:
|
357 |
+
self.warning(f"{self.name} attempted to use `py-cpuinfo` but failed (exception type: {type(e)}, {e}), "
|
358 |
+
"falling back to `lscpu` to get this information.")
|
359 |
+
cpu_info = self._backup_cpuinfo()
|
360 |
+
if cpu_info is None:
|
361 |
+
return "-march=native"
|
362 |
+
|
363 |
+
if cpu_info['arch'].startswith('PPC_'):
|
364 |
+
# gcc does not provide -march on PowerPC, use -mcpu instead
|
365 |
+
return '-mcpu=native'
|
366 |
+
return '-march=native'
|
367 |
+
|
368 |
+
def is_cuda_enable(self):
|
369 |
+
try:
|
370 |
+
assert_no_cuda_mismatch(self.name)
|
371 |
+
return '-D__ENABLE_CUDA__'
|
372 |
+
except MissingCUDAException:
|
373 |
+
print(f"{WARNING} {self.name} cuda is missing or is incompatible with installed torch, "
|
374 |
+
"only cpu ops can be compiled!")
|
375 |
+
return '-D__DISABLE_CUDA__'
|
376 |
+
return '-D__DISABLE_CUDA__'
|
377 |
+
|
378 |
+
def _backup_cpuinfo(self):
|
379 |
+
# Construct cpu_info dict from lscpu that is similar to what py-cpuinfo provides
|
380 |
+
if not self.command_exists('lscpu'):
|
381 |
+
self.warning(f"{self.name} attempted to query 'lscpu' after failing to use py-cpuinfo "
|
382 |
+
"to detect the CPU architecture. 'lscpu' does not appear to exist on "
|
383 |
+
"your system, will fall back to use -march=native and non-vectorized execution.")
|
384 |
+
return None
|
385 |
+
result = subprocess.check_output('lscpu', shell=True)
|
386 |
+
result = result.decode('utf-8').strip().lower()
|
387 |
+
|
388 |
+
cpu_info = {}
|
389 |
+
cpu_info['arch'] = None
|
390 |
+
cpu_info['flags'] = ""
|
391 |
+
if 'genuineintel' in result or 'authenticamd' in result:
|
392 |
+
cpu_info['arch'] = 'X86_64'
|
393 |
+
if 'avx512' in result:
|
394 |
+
cpu_info['flags'] += 'avx512,'
|
395 |
+
elif 'avx512f' in result:
|
396 |
+
cpu_info['flags'] += 'avx512f,'
|
397 |
+
if 'avx2' in result:
|
398 |
+
cpu_info['flags'] += 'avx2'
|
399 |
+
elif 'ppc64le' in result:
|
400 |
+
cpu_info['arch'] = "PPC_"
|
401 |
+
|
402 |
+
return cpu_info
|
403 |
+
|
404 |
+
def simd_width(self):
|
405 |
+
try:
|
406 |
+
from cpuinfo import get_cpu_info
|
407 |
+
except ImportError as e:
|
408 |
+
cpu_info = self._backup_cpuinfo()
|
409 |
+
if cpu_info is None:
|
410 |
+
return '-D__SCALAR__'
|
411 |
+
|
412 |
+
try:
|
413 |
+
cpu_info = get_cpu_info()
|
414 |
+
except Exception as e:
|
415 |
+
self.warning(f"{self.name} attempted to use `py-cpuinfo` but failed (exception type: {type(e)}, {e}), "
|
416 |
+
"falling back to `lscpu` to get this information.")
|
417 |
+
cpu_info = self._backup_cpuinfo()
|
418 |
+
if cpu_info is None:
|
419 |
+
return '-D__SCALAR__'
|
420 |
+
|
421 |
+
if cpu_info['arch'] == 'X86_64':
|
422 |
+
if 'avx512' in cpu_info['flags'] or 'avx512f' in cpu_info['flags']:
|
423 |
+
return '-D__AVX512__'
|
424 |
+
elif 'avx2' in cpu_info['flags']:
|
425 |
+
return '-D__AVX256__'
|
426 |
+
return '-D__SCALAR__'
|
427 |
+
|
428 |
+
def command_exists(self, cmd):
|
429 |
+
if '|' in cmd:
|
430 |
+
cmds = cmd.split("|")
|
431 |
+
else:
|
432 |
+
cmds = [cmd]
|
433 |
+
valid = False
|
434 |
+
for cmd in cmds:
|
435 |
+
result = subprocess.Popen(f'type {cmd}', stdout=subprocess.PIPE, shell=True)
|
436 |
+
valid = valid or result.wait() == 0
|
437 |
+
|
438 |
+
if not valid and len(cmds) > 1:
|
439 |
+
print(f"{WARNING} {self.name} requires one of the following commands '{cmds}', but it does not exist!")
|
440 |
+
elif not valid and len(cmds) == 1:
|
441 |
+
print(f"{WARNING} {self.name} requires the '{cmd}' command, but it does not exist!")
|
442 |
+
return valid
|
443 |
+
|
444 |
+
def warning(self, msg):
|
445 |
+
self.error_log = f"{msg}"
|
446 |
+
print(f"{WARNING} {msg}")
|
447 |
+
|
448 |
+
def deepspeed_src_path(self, code_path):
|
449 |
+
if os.path.isabs(code_path):
|
450 |
+
return code_path
|
451 |
+
else:
|
452 |
+
return os.path.join(Path(__file__).parent.parent.absolute(), code_path)
|
453 |
+
|
454 |
+
def builder(self):
|
455 |
+
from torch.utils.cpp_extension import CppExtension
|
456 |
+
include_dirs = [os.path.abspath(x) for x in self.strip_empty_entries(self.include_paths())]
|
457 |
+
return CppExtension(name=self.absolute_name(),
|
458 |
+
sources=self.strip_empty_entries(self.sources()),
|
459 |
+
include_dirs=include_dirs,
|
460 |
+
extra_compile_args={'cxx': self.strip_empty_entries(self.cxx_args())},
|
461 |
+
extra_link_args=self.strip_empty_entries(self.extra_ldflags()))
|
462 |
+
|
463 |
+
def load(self, verbose=True):
|
464 |
+
if self.name in __class__._loaded_ops:
|
465 |
+
return __class__._loaded_ops[self.name]
|
466 |
+
|
467 |
+
from deepspeed.git_version_info import installed_ops, torch_info, accelerator_name
|
468 |
+
from deepspeed.accelerator import get_accelerator
|
469 |
+
if installed_ops.get(self.name, False) and accelerator_name == get_accelerator()._name:
|
470 |
+
# Ensure the op we're about to load was compiled with the same
|
471 |
+
# torch/cuda versions we are currently using at runtime.
|
472 |
+
self.validate_torch_version(torch_info)
|
473 |
+
if torch.cuda.is_available() and isinstance(self, CUDAOpBuilder):
|
474 |
+
self.validate_torch_op_version(torch_info)
|
475 |
+
|
476 |
+
op_module = importlib.import_module(self.absolute_name())
|
477 |
+
__class__._loaded_ops[self.name] = op_module
|
478 |
+
return op_module
|
479 |
+
else:
|
480 |
+
return self.jit_load(verbose)
|
481 |
+
|
482 |
+
def jit_load(self, verbose=True):
|
483 |
+
if not self.is_compatible(verbose):
|
484 |
+
raise RuntimeError(
|
485 |
+
f"Unable to JIT load the {self.name} op due to it not being compatible due to hardware/software issue. {self.error_log}"
|
486 |
+
)
|
487 |
+
try:
|
488 |
+
import ninja # noqa: F401 # type: ignore
|
489 |
+
except ImportError:
|
490 |
+
raise RuntimeError(f"Unable to JIT load the {self.name} op due to ninja not being installed.")
|
491 |
+
|
492 |
+
if isinstance(self, CUDAOpBuilder) and not self.is_rocm_pytorch():
|
493 |
+
self.build_for_cpu = not torch.cuda.is_available()
|
494 |
+
|
495 |
+
self.jit_mode = True
|
496 |
+
from torch.utils.cpp_extension import load
|
497 |
+
|
498 |
+
start_build = time.time()
|
499 |
+
sources = [os.path.abspath(self.deepspeed_src_path(path)) for path in self.sources()]
|
500 |
+
extra_include_paths = [os.path.abspath(self.deepspeed_src_path(path)) for path in self.include_paths()]
|
501 |
+
|
502 |
+
# Torch will try and apply whatever CCs are in the arch list at compile time,
|
503 |
+
# we have already set the intended targets ourselves we know that will be
|
504 |
+
# needed at runtime. This prevents CC collisions such as multiple __half
|
505 |
+
# implementations. Stash arch list to reset after build.
|
506 |
+
torch_arch_list = None
|
507 |
+
if "TORCH_CUDA_ARCH_LIST" in os.environ:
|
508 |
+
torch_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST")
|
509 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
|
510 |
+
|
511 |
+
nvcc_args = self.strip_empty_entries(self.nvcc_args())
|
512 |
+
cxx_args = self.strip_empty_entries(self.cxx_args())
|
513 |
+
|
514 |
+
if isinstance(self, CUDAOpBuilder):
|
515 |
+
if not self.build_for_cpu and self.enable_bf16:
|
516 |
+
cxx_args.append("-DBF16_AVAILABLE")
|
517 |
+
nvcc_args.append("-DBF16_AVAILABLE")
|
518 |
+
nvcc_args.append("-U__CUDA_NO_BFLOAT16_OPERATORS__")
|
519 |
+
nvcc_args.append("-U__CUDA_NO_BFLOAT162_OPERATORS__")
|
520 |
+
|
521 |
+
if self.is_rocm_pytorch():
|
522 |
+
cxx_args.append("-D__HIP_PLATFORM_AMD__=1")
|
523 |
+
|
524 |
+
op_module = load(name=self.name,
|
525 |
+
sources=self.strip_empty_entries(sources),
|
526 |
+
extra_include_paths=self.strip_empty_entries(extra_include_paths),
|
527 |
+
extra_cflags=cxx_args,
|
528 |
+
extra_cuda_cflags=nvcc_args,
|
529 |
+
extra_ldflags=self.strip_empty_entries(self.extra_ldflags()),
|
530 |
+
verbose=verbose)
|
531 |
+
|
532 |
+
build_duration = time.time() - start_build
|
533 |
+
if verbose:
|
534 |
+
print(f"Time to load {self.name} op: {build_duration} seconds")
|
535 |
+
|
536 |
+
# Reset arch list so we are not silently removing it for other possible use cases
|
537 |
+
if torch_arch_list:
|
538 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = torch_arch_list
|
539 |
+
|
540 |
+
__class__._loaded_ops[self.name] = op_module
|
541 |
+
|
542 |
+
return op_module
|
543 |
+
|
544 |
+
|
545 |
+
class CUDAOpBuilder(OpBuilder):
|
546 |
+
|
547 |
+
def compute_capability_args(self, cross_compile_archs=None):
|
548 |
+
"""
|
549 |
+
Returns nvcc compute capability compile flags.
|
550 |
+
|
551 |
+
1. `TORCH_CUDA_ARCH_LIST` takes priority over `cross_compile_archs`.
|
552 |
+
2. If neither is set default compute capabilities will be used
|
553 |
+
3. Under `jit_mode` compute capabilities of all visible cards will be used plus PTX
|
554 |
+
|
555 |
+
Format:
|
556 |
+
|
557 |
+
- `TORCH_CUDA_ARCH_LIST` may use ; or whitespace separators. Examples:
|
558 |
+
|
559 |
+
TORCH_CUDA_ARCH_LIST="6.1;7.5;8.6" pip install ...
|
560 |
+
TORCH_CUDA_ARCH_LIST="6.0 6.1 7.0 7.5 8.0 8.6+PTX" pip install ...
|
561 |
+
|
562 |
+
- `cross_compile_archs` uses ; separator.
|
563 |
+
|
564 |
+
"""
|
565 |
+
ccs = []
|
566 |
+
if self.jit_mode:
|
567 |
+
# Compile for underlying architectures since we know those at runtime
|
568 |
+
for i in range(torch.cuda.device_count()):
|
569 |
+
CC_MAJOR, CC_MINOR = torch.cuda.get_device_capability(i)
|
570 |
+
cc = f"{CC_MAJOR}.{CC_MINOR}"
|
571 |
+
if cc not in ccs:
|
572 |
+
ccs.append(cc)
|
573 |
+
ccs = sorted(ccs)
|
574 |
+
ccs[-1] += '+PTX'
|
575 |
+
else:
|
576 |
+
# Cross-compile mode, compile for various architectures
|
577 |
+
# env override takes priority
|
578 |
+
cross_compile_archs_env = os.environ.get('TORCH_CUDA_ARCH_LIST', None)
|
579 |
+
if cross_compile_archs_env is not None:
|
580 |
+
if cross_compile_archs is not None:
|
581 |
+
print(
|
582 |
+
f"{WARNING} env var `TORCH_CUDA_ARCH_LIST={cross_compile_archs_env}` overrides `cross_compile_archs={cross_compile_archs}`"
|
583 |
+
)
|
584 |
+
cross_compile_archs = cross_compile_archs_env.replace(' ', ';')
|
585 |
+
else:
|
586 |
+
if cross_compile_archs is None:
|
587 |
+
cross_compile_archs = get_default_compute_capabilities()
|
588 |
+
ccs = cross_compile_archs.split(';')
|
589 |
+
|
590 |
+
ccs = self.filter_ccs(ccs)
|
591 |
+
if len(ccs) == 0:
|
592 |
+
raise RuntimeError(
|
593 |
+
f"Unable to load {self.name} op due to no compute capabilities remaining after filtering")
|
594 |
+
|
595 |
+
args = []
|
596 |
+
self.enable_bf16 = True
|
597 |
+
for cc in ccs:
|
598 |
+
num = cc[0] + cc[2]
|
599 |
+
args.append(f'-gencode=arch=compute_{num},code=sm_{num}')
|
600 |
+
if cc.endswith('+PTX'):
|
601 |
+
args.append(f'-gencode=arch=compute_{num},code=compute_{num}')
|
602 |
+
|
603 |
+
if int(cc[0]) <= 7:
|
604 |
+
self.enable_bf16 = False
|
605 |
+
|
606 |
+
return args
|
607 |
+
|
608 |
+
def filter_ccs(self, ccs: List[str]):
|
609 |
+
"""
|
610 |
+
Prune any compute capabilities that are not compatible with the builder. Should log
|
611 |
+
which CCs have been pruned.
|
612 |
+
"""
|
613 |
+
return ccs
|
614 |
+
|
615 |
+
def version_dependent_macros(self):
|
616 |
+
# Fix from apex that might be relevant for us as well, related to https://github.com/NVIDIA/apex/issues/456
|
617 |
+
version_ge_1_1 = []
|
618 |
+
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 0):
|
619 |
+
version_ge_1_1 = ['-DVERSION_GE_1_1']
|
620 |
+
version_ge_1_3 = []
|
621 |
+
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 2):
|
622 |
+
version_ge_1_3 = ['-DVERSION_GE_1_3']
|
623 |
+
version_ge_1_5 = []
|
624 |
+
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 4):
|
625 |
+
version_ge_1_5 = ['-DVERSION_GE_1_5']
|
626 |
+
return version_ge_1_1 + version_ge_1_3 + version_ge_1_5
|
627 |
+
|
628 |
+
def is_compatible(self, verbose=True):
|
629 |
+
return super().is_compatible(verbose)
|
630 |
+
|
631 |
+
def builder(self):
|
632 |
+
try:
|
633 |
+
if not self.is_rocm_pytorch():
|
634 |
+
assert_no_cuda_mismatch(self.name)
|
635 |
+
self.build_for_cpu = False
|
636 |
+
except MissingCUDAException:
|
637 |
+
self.build_for_cpu = True
|
638 |
+
|
639 |
+
if self.build_for_cpu:
|
640 |
+
from torch.utils.cpp_extension import CppExtension as ExtensionBuilder
|
641 |
+
else:
|
642 |
+
from torch.utils.cpp_extension import CUDAExtension as ExtensionBuilder
|
643 |
+
include_dirs = [os.path.abspath(x) for x in self.strip_empty_entries(self.include_paths())]
|
644 |
+
compile_args = {'cxx': self.strip_empty_entries(self.cxx_args())} if self.build_for_cpu else \
|
645 |
+
{'cxx': self.strip_empty_entries(self.cxx_args()), \
|
646 |
+
'nvcc': self.strip_empty_entries(self.nvcc_args())}
|
647 |
+
|
648 |
+
if not self.build_for_cpu and self.enable_bf16:
|
649 |
+
compile_args['cxx'].append("-DBF16_AVAILABLE")
|
650 |
+
|
651 |
+
if self.is_rocm_pytorch():
|
652 |
+
compile_args['cxx'].append("-D__HIP_PLATFORM_AMD__=1")
|
653 |
+
|
654 |
+
cuda_ext = ExtensionBuilder(name=self.absolute_name(),
|
655 |
+
sources=self.strip_empty_entries(self.sources()),
|
656 |
+
include_dirs=include_dirs,
|
657 |
+
libraries=self.strip_empty_entries(self.libraries_args()),
|
658 |
+
extra_compile_args=compile_args,
|
659 |
+
extra_link_args=self.strip_empty_entries(self.extra_ldflags()))
|
660 |
+
|
661 |
+
if self.is_rocm_pytorch():
|
662 |
+
# hip converts paths to absolute, this converts back to relative
|
663 |
+
sources = cuda_ext.sources
|
664 |
+
curr_file = Path(__file__).parent.parent # ds root
|
665 |
+
for i in range(len(sources)):
|
666 |
+
src = Path(sources[i])
|
667 |
+
if src.is_absolute():
|
668 |
+
sources[i] = str(src.relative_to(curr_file))
|
669 |
+
else:
|
670 |
+
sources[i] = str(src)
|
671 |
+
cuda_ext.sources = sources
|
672 |
+
return cuda_ext
|
673 |
+
|
674 |
+
def hipify_extension(self):
|
675 |
+
if self.is_rocm_pytorch():
|
676 |
+
from torch.utils.hipify import hipify_python
|
677 |
+
hipify_python.hipify(
|
678 |
+
project_directory=os.getcwd(),
|
679 |
+
output_directory=os.getcwd(),
|
680 |
+
header_include_dirs=self.include_paths(),
|
681 |
+
includes=[os.path.join(os.getcwd(), '*')],
|
682 |
+
extra_files=[os.path.abspath(s) for s in self.sources()],
|
683 |
+
show_detailed=True,
|
684 |
+
is_pytorch_extension=True,
|
685 |
+
hipify_extra_files_only=True,
|
686 |
+
)
|
687 |
+
|
688 |
+
def cxx_args(self):
|
689 |
+
if sys.platform == "win32":
|
690 |
+
return ['-O2']
|
691 |
+
else:
|
692 |
+
return ['-O3', '-std=c++17', '-g', '-Wno-reorder']
|
693 |
+
|
694 |
+
def nvcc_args(self):
|
695 |
+
if self.build_for_cpu:
|
696 |
+
return []
|
697 |
+
args = ['-O3']
|
698 |
+
if self.is_rocm_pytorch():
|
699 |
+
ROCM_MAJOR, ROCM_MINOR = self.installed_rocm_version()
|
700 |
+
args += [
|
701 |
+
'-std=c++17', '-U__HIP_NO_HALF_OPERATORS__', '-U__HIP_NO_HALF_CONVERSIONS__',
|
702 |
+
'-U__HIP_NO_HALF2_OPERATORS__',
|
703 |
+
'-DROCM_VERSION_MAJOR=%s' % ROCM_MAJOR,
|
704 |
+
'-DROCM_VERSION_MINOR=%s' % ROCM_MINOR
|
705 |
+
]
|
706 |
+
else:
|
707 |
+
try:
|
708 |
+
nvcc_threads = int(os.getenv("DS_NVCC_THREADS", ""))
|
709 |
+
if nvcc_threads <= 0:
|
710 |
+
raise ValueError("")
|
711 |
+
except ValueError:
|
712 |
+
nvcc_threads = min(os.cpu_count(), 8)
|
713 |
+
|
714 |
+
cuda_major, _ = installed_cuda_version()
|
715 |
+
args += [
|
716 |
+
'-allow-unsupported-compiler' if sys.platform == "win32" else '', '--use_fast_math',
|
717 |
+
'-std=c++17' if cuda_major > 10 else '-std=c++14', '-U__CUDA_NO_HALF_OPERATORS__',
|
718 |
+
'-U__CUDA_NO_HALF_CONVERSIONS__', '-U__CUDA_NO_HALF2_OPERATORS__', f'--threads={nvcc_threads}'
|
719 |
+
]
|
720 |
+
if os.environ.get('DS_DEBUG_CUDA_BUILD', '0') == '1':
|
721 |
+
args.append('--ptxas-options=-v')
|
722 |
+
args += self.compute_capability_args()
|
723 |
+
return args
|
724 |
+
|
725 |
+
def libraries_args(self):
|
726 |
+
if self.build_for_cpu:
|
727 |
+
return []
|
728 |
+
|
729 |
+
if sys.platform == "win32":
|
730 |
+
return ['cublas', 'curand']
|
731 |
+
else:
|
732 |
+
return []
|
733 |
+
|
734 |
+
|
735 |
+
class TorchCPUOpBuilder(CUDAOpBuilder):
|
736 |
+
|
737 |
+
def extra_ldflags(self):
|
738 |
+
if self.build_for_cpu:
|
739 |
+
return ['-fopenmp']
|
740 |
+
|
741 |
+
if not self.is_rocm_pytorch():
|
742 |
+
return ['-lcurand']
|
743 |
+
|
744 |
+
return []
|
745 |
+
|
746 |
+
def cxx_args(self):
|
747 |
+
import torch
|
748 |
+
args = []
|
749 |
+
if not self.build_for_cpu:
|
750 |
+
if not self.is_rocm_pytorch():
|
751 |
+
CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.CUDA_HOME, "lib64")
|
752 |
+
if not os.path.exists(CUDA_LIB64):
|
753 |
+
CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.CUDA_HOME, "lib")
|
754 |
+
else:
|
755 |
+
CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.ROCM_HOME, "lib")
|
756 |
+
|
757 |
+
args += super().cxx_args()
|
758 |
+
args += [
|
759 |
+
f'-L{CUDA_LIB64}',
|
760 |
+
'-lcudart',
|
761 |
+
'-lcublas',
|
762 |
+
'-g',
|
763 |
+
]
|
764 |
+
|
765 |
+
CPU_ARCH = self.cpu_arch()
|
766 |
+
SIMD_WIDTH = self.simd_width()
|
767 |
+
CUDA_ENABLE = self.is_cuda_enable()
|
768 |
+
args += [
|
769 |
+
CPU_ARCH,
|
770 |
+
'-fopenmp',
|
771 |
+
SIMD_WIDTH,
|
772 |
+
CUDA_ENABLE,
|
773 |
+
]
|
774 |
+
|
775 |
+
return args
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
'''Copyright The Microsoft DeepSpeed Team'''
|
6 |
+
|
7 |
+
from .comm import CCLCommBuilder, ShareMemCommBuilder
|
8 |
+
from .fused_adam import FusedAdamBuilder
|
9 |
+
from .cpu_adam import CPUAdamBuilder
|
10 |
+
from .no_impl import NotImplementedBuilder
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (475 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__pycache__/builder.cpython-310.pyc
ADDED
Binary file (1.48 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__pycache__/comm.cpython-310.pyc
ADDED
Binary file (2.9 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__pycache__/cpu_adam.cpython-310.pyc
ADDED
Binary file (1.32 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__pycache__/fused_adam.cpython-310.pyc
ADDED
Binary file (1.18 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/__pycache__/no_impl.cpython-310.pyc
ADDED
Binary file (1.23 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/builder.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import os
|
7 |
+
|
8 |
+
try:
|
9 |
+
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
|
10 |
+
# if successful this also means we're doing a local install and not JIT compile path
|
11 |
+
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
|
12 |
+
from op_builder.builder import OpBuilder
|
13 |
+
except ImportError:
|
14 |
+
from deepspeed.ops.op_builder.builder import OpBuilder
|
15 |
+
|
16 |
+
|
17 |
+
class CPUOpBuilder(OpBuilder):
|
18 |
+
|
19 |
+
def builder(self):
|
20 |
+
from torch.utils.cpp_extension import CppExtension as ExtensionBuilder
|
21 |
+
include_dirs = [os.path.abspath(x) for x in self.strip_empty_entries(self.include_paths())]
|
22 |
+
compile_args = {'cxx': self.strip_empty_entries(self.cxx_args())}
|
23 |
+
|
24 |
+
cpp_ext = ExtensionBuilder(name=self.absolute_name(),
|
25 |
+
sources=self.strip_empty_entries(self.sources()),
|
26 |
+
include_dirs=include_dirs,
|
27 |
+
libraries=self.strip_empty_entries(self.libraries_args()),
|
28 |
+
extra_compile_args=compile_args)
|
29 |
+
|
30 |
+
return cpp_ext
|
31 |
+
|
32 |
+
def cxx_args(self):
|
33 |
+
return ['-O3', '-g', '-Wno-reorder']
|
34 |
+
|
35 |
+
def libraries_args(self):
|
36 |
+
return []
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/comm.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import os
|
7 |
+
from .builder import CPUOpBuilder
|
8 |
+
|
9 |
+
|
10 |
+
class CCLCommBuilder(CPUOpBuilder):
|
11 |
+
BUILD_VAR = "DS_BUILD_CCL_COMM"
|
12 |
+
NAME = "deepspeed_ccl_comm"
|
13 |
+
|
14 |
+
def __init__(self, name=None):
|
15 |
+
name = self.NAME if name is None else name
|
16 |
+
super().__init__(name=name)
|
17 |
+
|
18 |
+
def absolute_name(self):
|
19 |
+
return f'deepspeed.ops.comm.{self.NAME}_op'
|
20 |
+
|
21 |
+
def sources(self):
|
22 |
+
return ['csrc/cpu/comm/ccl.cpp', 'csrc/cpu/comm/shm.cpp']
|
23 |
+
|
24 |
+
def include_paths(self):
|
25 |
+
includes = ['csrc/cpu/includes']
|
26 |
+
return includes
|
27 |
+
|
28 |
+
def cxx_args(self):
|
29 |
+
return ['-O2', '-fopenmp']
|
30 |
+
|
31 |
+
def is_compatible(self, verbose=True):
|
32 |
+
# TODO: add soft compatibility check for private binary release.
|
33 |
+
# a soft check, as in we know it can be trivially changed.
|
34 |
+
return super().is_compatible(verbose)
|
35 |
+
|
36 |
+
def extra_ldflags(self):
|
37 |
+
ccl_root_path = os.environ.get("CCL_ROOT")
|
38 |
+
if ccl_root_path is None:
|
39 |
+
raise ValueError(
|
40 |
+
"Didn't find CCL_ROOT, install oneCCL from https://github.com/oneapi-src/oneCCL and source its environment variable"
|
41 |
+
)
|
42 |
+
return []
|
43 |
+
else:
|
44 |
+
return ['-lccl', f'-L{ccl_root_path}/lib']
|
45 |
+
|
46 |
+
|
47 |
+
class ShareMemCommBuilder(CPUOpBuilder):
|
48 |
+
BUILD_VAR = "DS_BUILD_SHM_COMM"
|
49 |
+
NAME = "deepspeed_shm_comm"
|
50 |
+
|
51 |
+
def __init__(self, name=None):
|
52 |
+
name = self.NAME if name is None else name
|
53 |
+
super().__init__(name=name)
|
54 |
+
|
55 |
+
def absolute_name(self):
|
56 |
+
return f'deepspeed.ops.comm.{self.NAME}_op'
|
57 |
+
|
58 |
+
def sources(self):
|
59 |
+
return ['csrc/cpu/comm/shm_interface.cpp', 'csrc/cpu/comm/shm.cpp']
|
60 |
+
|
61 |
+
def include_paths(self):
|
62 |
+
includes = ['csrc/cpu/includes']
|
63 |
+
return includes
|
64 |
+
|
65 |
+
def cxx_args(self):
|
66 |
+
return ['-O2', '-fopenmp']
|
67 |
+
|
68 |
+
def is_compatible(self, verbose=True):
|
69 |
+
# TODO: add soft compatibility check for private binary release.
|
70 |
+
# a soft check, as in we know it can be trivially changed.
|
71 |
+
return super().is_compatible(verbose)
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/cpu_adam.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .builder import CPUOpBuilder
|
7 |
+
|
8 |
+
|
9 |
+
class CPUAdamBuilder(CPUOpBuilder):
|
10 |
+
BUILD_VAR = "DS_BUILD_CPU_ADAM"
|
11 |
+
NAME = "cpu_adam"
|
12 |
+
|
13 |
+
def __init__(self):
|
14 |
+
super().__init__(name=self.NAME)
|
15 |
+
|
16 |
+
def absolute_name(self):
|
17 |
+
return f'deepspeed.ops.adam.{self.NAME}_op'
|
18 |
+
|
19 |
+
def sources(self):
|
20 |
+
return ['csrc/adam/cpu_adam.cpp', 'csrc/adam/cpu_adam_impl.cpp']
|
21 |
+
|
22 |
+
def libraries_args(self):
|
23 |
+
args = super().libraries_args()
|
24 |
+
return args
|
25 |
+
|
26 |
+
def include_paths(self):
|
27 |
+
return ['csrc/includes']
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/fused_adam.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .builder import CPUOpBuilder
|
7 |
+
|
8 |
+
|
9 |
+
class FusedAdamBuilder(CPUOpBuilder):
|
10 |
+
BUILD_VAR = "DS_BUILD_FUSED_ADAM"
|
11 |
+
NAME = "fused_adam"
|
12 |
+
|
13 |
+
def __init__(self):
|
14 |
+
super().__init__(name=self.NAME)
|
15 |
+
|
16 |
+
def absolute_name(self):
|
17 |
+
return f'deepspeed.ops.adam.{self.NAME}_op'
|
18 |
+
|
19 |
+
def sources(self):
|
20 |
+
return ['csrc/cpu/adam/fused_adam.cpp', 'csrc/adam/cpu_adam_impl.cpp']
|
21 |
+
|
22 |
+
def include_paths(self):
|
23 |
+
return ['csrc/includes']
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu/no_impl.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .builder import CPUOpBuilder
|
7 |
+
|
8 |
+
|
9 |
+
class NotImplementedBuilder(CPUOpBuilder):
|
10 |
+
BUILD_VAR = "DS_BUILD_NOT_IMPLEMENTED"
|
11 |
+
NAME = "deepspeed_not_implemented"
|
12 |
+
|
13 |
+
def __init__(self, name=None):
|
14 |
+
name = self.NAME if name is None else name
|
15 |
+
super().__init__(name=name)
|
16 |
+
|
17 |
+
def absolute_name(self):
|
18 |
+
return f'deepspeed.ops.comm.{self.NAME}_op'
|
19 |
+
|
20 |
+
def load(self, verbose=True):
|
21 |
+
raise ValueError("This op had not been implemented on CPU backend.")
|
22 |
+
|
23 |
+
def sources(self):
|
24 |
+
return []
|
venv/lib/python3.10/site-packages/deepspeed/ops/op_builder/cpu_lion.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import os
|
7 |
+
from .builder import TorchCPUOpBuilder
|
8 |
+
|
9 |
+
|
10 |
+
class CPULionBuilder(TorchCPUOpBuilder):
|
11 |
+
BUILD_VAR = "DS_BUILD_CPU_LION"
|
12 |
+
NAME = "cpu_lion"
|
13 |
+
|
14 |
+
def __init__(self):
|
15 |
+
super().__init__(name=self.NAME)
|
16 |
+
|
17 |
+
def absolute_name(self):
|
18 |
+
return f'deepspeed.ops.lion.{self.NAME}_op'
|
19 |
+
|
20 |
+
def sources(self):
|
21 |
+
if self.build_for_cpu:
|
22 |
+
return ['csrc/lion/cpu_lion.cpp', 'csrc/lion/cpu_lion_impl.cpp']
|
23 |
+
|
24 |
+
return ['csrc/lion/cpu_lion.cpp', 'csrc/lion/cpu_lion_impl.cpp', 'csrc/common/custom_cuda_kernel.cu']
|
25 |
+
|
26 |
+
def libraries_args(self):
|
27 |
+
args = super().libraries_args()
|
28 |
+
if self.build_for_cpu:
|
29 |
+
return args
|
30 |
+
|
31 |
+
if not self.is_rocm_pytorch():
|
32 |
+
args += ['curand']
|
33 |
+
|
34 |
+
return args
|
35 |
+
|
36 |
+
def include_paths(self):
|
37 |
+
import torch
|
38 |
+
if self.build_for_cpu:
|
39 |
+
CUDA_INCLUDE = []
|
40 |
+
elif not self.is_rocm_pytorch():
|
41 |
+
CUDA_INCLUDE = [os.path.join(torch.utils.cpp_extension.CUDA_HOME, "include")]
|
42 |
+
else:
|
43 |
+
CUDA_INCLUDE = [
|
44 |
+
os.path.join(torch.utils.cpp_extension.ROCM_HOME, "include"),
|
45 |
+
os.path.join(torch.utils.cpp_extension.ROCM_HOME, "include", "rocrand"),
|
46 |
+
os.path.join(torch.utils.cpp_extension.ROCM_HOME, "include", "hiprand"),
|
47 |
+
]
|
48 |
+
return ['csrc/includes'] + CUDA_INCLUDE
|