Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/common/custom_cuda_kernel.cu +44 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/StopWatch.h +103 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/Timer.h +51 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/activation_type.h +17 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/compat.h +19 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/context.h +180 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/conversion_utils.h +640 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/cpu_adagrad.h +210 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/cpu_adam.h +327 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/cpu_lion.h +269 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/cublas_wrappers.h +95 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/custom_cuda_layers.h +327 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/dequantization_utils.h +177 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/dropout.h +81 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/ds_kernel_utils.h +58 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/ds_transformer_cuda.h +189 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/feed_forward.h +110 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/gelu.h +41 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/gemm_test.h +334 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/general_kernels.h +56 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/memory_access_utils.h +1144 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/normalize_layer.h +207 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/quantization.h +108 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/quantization_utils.h +468 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/quantizer.h +19 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/reduction_utils.h +826 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/simd.h +198 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/softmax.h +65 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/strided_batch_gemm.h +200 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/type_shim.h +124 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/lamb/fused_lamb_cuda.cpp +113 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/lamb/fused_lamb_cuda_kernel.cu +478 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/dequantize.cu +72 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/fake_quantizer.cu +1028 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/pt_binding.cpp +298 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/quant_reduce.cu +263 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/quantize.cu +151 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/quantize_intX.cu +281 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/swizzled_quantize.cu +196 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/random_ltd/gather_scatter.cu +186 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/random_ltd/pt_binding.cpp +216 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/random_ltd/slice_attn_masks.cu +128 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/random_ltd/token_sort.cu +194 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/sparse_attention/utils.cpp +127 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/transformer/inference/csrc/gelu.cu +710 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/transformer/inference/csrc/pointwise_ops.cu +74 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/transformer/inference/csrc/rms_norm.cu +263 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/transformer/inference/csrc/transform.cu +727 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/utils/flatten_unflatten.cpp +29 -0
- venv/lib/python3.10/site-packages/deepspeed/ops/csrc/xpu/adagrad/cpu_adagrad.cpp +196 -0
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/common/custom_cuda_kernel.cu
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "custom_cuda_layers.h"
|
7 |
+
|
8 |
+
__global__ void param_update_kernel(const float* input, __half* output, int size)
|
9 |
+
{
|
10 |
+
int id = blockIdx.x * blockDim.x + threadIdx.x;
|
11 |
+
|
12 |
+
if (id < size) { output[id] = (__half)input[id]; }
|
13 |
+
}
|
14 |
+
|
15 |
+
void launch_param_update(const float* input, __half* output, int size, cudaStream_t stream)
|
16 |
+
{
|
17 |
+
int threads = 1024;
|
18 |
+
|
19 |
+
dim3 grid_dim((size - 1) / threads + 1);
|
20 |
+
dim3 block_dim(threads);
|
21 |
+
|
22 |
+
param_update_kernel<<<grid_dim, block_dim, 0, stream>>>(input, output, size);
|
23 |
+
}
|
24 |
+
|
25 |
+
__global__ void param_update_kernel_half(const float* input, __half* output, int size)
|
26 |
+
{
|
27 |
+
int id = blockIdx.x * blockDim.x + threadIdx.x;
|
28 |
+
__half2* output_cast = reinterpret_cast<__half2*>(output);
|
29 |
+
if (id < size) {
|
30 |
+
float input_f = input[id];
|
31 |
+
__half2* input_h = reinterpret_cast<__half2*>(&input_f);
|
32 |
+
output_cast[id] = *input_h;
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
void launch_param_update_half(const float* input, __half* output, int size, cudaStream_t stream)
|
37 |
+
{
|
38 |
+
int threads = 1024;
|
39 |
+
size /= 2;
|
40 |
+
dim3 grid_dim((size - 1) / threads + 1);
|
41 |
+
dim3 block_dim(threads);
|
42 |
+
|
43 |
+
param_update_kernel_half<<<grid_dim, block_dim, 0, stream>>>(input, output, size);
|
44 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/StopWatch.h
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
#ifdef _WIN32
|
8 |
+
#include <windows.h>
|
9 |
+
#else
|
10 |
+
#include <time.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
#ifdef _WIN32
|
14 |
+
|
15 |
+
class Stopwatch {
|
16 |
+
private:
|
17 |
+
double m_total_time;
|
18 |
+
LARGE_INTEGER m_start_time;
|
19 |
+
|
20 |
+
public:
|
21 |
+
Stopwatch() { m_total_time = 0.0; }
|
22 |
+
|
23 |
+
~Stopwatch() {}
|
24 |
+
|
25 |
+
void Reset() { m_total_time = 0.0; }
|
26 |
+
|
27 |
+
void Start() { QueryPerformanceCounter(&m_start_time); }
|
28 |
+
|
29 |
+
void Restart()
|
30 |
+
{
|
31 |
+
m_total_time = 0.0;
|
32 |
+
QueryPerformanceCounter(&m_start_time);
|
33 |
+
}
|
34 |
+
|
35 |
+
void Stop()
|
36 |
+
{
|
37 |
+
LARGE_INTEGER frequency;
|
38 |
+
LARGE_INTEGER stop_time;
|
39 |
+
QueryPerformanceFrequency(&frequency);
|
40 |
+
QueryPerformanceCounter(&stop_time);
|
41 |
+
m_total_time +=
|
42 |
+
((double)(stop_time.QuadPart - m_start_time.QuadPart) / (double)frequency.QuadPart);
|
43 |
+
}
|
44 |
+
|
45 |
+
double GetTimeInSeconds() { return m_total_time; }
|
46 |
+
};
|
47 |
+
|
48 |
+
#else
|
49 |
+
|
50 |
+
class Stopwatch {
|
51 |
+
private:
|
52 |
+
double m_total_time;
|
53 |
+
struct timespec m_start_time;
|
54 |
+
bool m_is_started;
|
55 |
+
|
56 |
+
public:
|
57 |
+
Stopwatch()
|
58 |
+
{
|
59 |
+
m_total_time = 0.0;
|
60 |
+
m_is_started = false;
|
61 |
+
}
|
62 |
+
|
63 |
+
~Stopwatch() {}
|
64 |
+
|
65 |
+
void Reset() { m_total_time = 0.0; }
|
66 |
+
|
67 |
+
void Start()
|
68 |
+
{
|
69 |
+
clock_gettime(CLOCK_MONOTONIC, &m_start_time);
|
70 |
+
m_is_started = true;
|
71 |
+
}
|
72 |
+
|
73 |
+
void Restart()
|
74 |
+
{
|
75 |
+
m_total_time = 0.0;
|
76 |
+
clock_gettime(CLOCK_MONOTONIC, &m_start_time);
|
77 |
+
m_is_started = true;
|
78 |
+
}
|
79 |
+
|
80 |
+
void Stop()
|
81 |
+
{
|
82 |
+
if (m_is_started) {
|
83 |
+
m_is_started = false;
|
84 |
+
|
85 |
+
struct timespec end_time;
|
86 |
+
clock_gettime(CLOCK_MONOTONIC, &end_time);
|
87 |
+
|
88 |
+
m_total_time += (double)(end_time.tv_sec - m_start_time.tv_sec) +
|
89 |
+
(double)(end_time.tv_nsec - m_start_time.tv_nsec) / 1e9;
|
90 |
+
}
|
91 |
+
}
|
92 |
+
|
93 |
+
double GetTimeInSeconds()
|
94 |
+
{
|
95 |
+
if (m_is_started) {
|
96 |
+
Stop();
|
97 |
+
Start();
|
98 |
+
}
|
99 |
+
return m_total_time;
|
100 |
+
}
|
101 |
+
};
|
102 |
+
|
103 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/Timer.h
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#ifndef __TIMER_H__
|
7 |
+
#define __TIMER_H__
|
8 |
+
|
9 |
+
#include <cuda_runtime.h>
|
10 |
+
#include <chrono>
|
11 |
+
#include "cuda.h"
|
12 |
+
|
13 |
+
class GPUTimer {
|
14 |
+
cudaEvent_t start, stop;
|
15 |
+
|
16 |
+
public:
|
17 |
+
GPUTimer()
|
18 |
+
{
|
19 |
+
cudaEventCreate(&start);
|
20 |
+
cudaEventCreate(&stop);
|
21 |
+
}
|
22 |
+
~GPUTimer()
|
23 |
+
{
|
24 |
+
cudaEventDestroy(start);
|
25 |
+
cudaEventDestroy(stop);
|
26 |
+
}
|
27 |
+
inline void Record() { cudaEventRecord(start); }
|
28 |
+
inline void Elapsed(float& time_elapsed)
|
29 |
+
{
|
30 |
+
cudaEventRecord(stop);
|
31 |
+
cudaEventSynchronize(stop);
|
32 |
+
cudaEventElapsedTime(&time_elapsed, start, stop);
|
33 |
+
}
|
34 |
+
};
|
35 |
+
|
36 |
+
class CPUTimer {
|
37 |
+
std::chrono::high_resolution_clock::time_point start;
|
38 |
+
|
39 |
+
public:
|
40 |
+
CPUTimer() : start(std::chrono::high_resolution_clock::now()) {}
|
41 |
+
inline void Reset() { start = std::chrono::high_resolution_clock::now(); }
|
42 |
+
inline float Elapsed()
|
43 |
+
{
|
44 |
+
auto temp = start;
|
45 |
+
start = std::chrono::high_resolution_clock::now();
|
46 |
+
return (float)(std::chrono::duration_cast<std::chrono::microseconds>(start - temp).count() /
|
47 |
+
1e3);
|
48 |
+
}
|
49 |
+
};
|
50 |
+
|
51 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/activation_type.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
enum ActivationType {
|
9 |
+
GELU = 0,
|
10 |
+
RELU = 1,
|
11 |
+
SILU = 2,
|
12 |
+
GEGLU = 3,
|
13 |
+
ReGLU = 4,
|
14 |
+
SiGLU = 5,
|
15 |
+
IDENTITY = 6,
|
16 |
+
InvalidType = -1
|
17 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/compat.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Copyright NVIDIA/apex
|
8 |
+
This file is adapted from fused adam in NVIDIA/apex, commit a109f85
|
9 |
+
*/
|
10 |
+
|
11 |
+
#ifndef TORCH_CHECK
|
12 |
+
#define TORCH_CHECK AT_CHECK
|
13 |
+
#endif
|
14 |
+
|
15 |
+
#ifdef VERSION_GE_1_3
|
16 |
+
#define DATA_PTR data_ptr
|
17 |
+
#else
|
18 |
+
#define DATA_PTR data
|
19 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/context.h
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <ATen/cuda/CUDAContext.h>
|
9 |
+
#include <cuda_runtime_api.h>
|
10 |
+
#include <cassert>
|
11 |
+
#include <iostream>
|
12 |
+
#include <vector>
|
13 |
+
#include "cublas_v2.h"
|
14 |
+
#include "cuda.h"
|
15 |
+
#include "curand.h"
|
16 |
+
#include "gemm_test.h"
|
17 |
+
|
18 |
+
#define WARP_SIZE 32
|
19 |
+
|
20 |
+
#define CUDA_CHECK(callstr) \
|
21 |
+
{ \
|
22 |
+
cudaError_t error_code = callstr; \
|
23 |
+
if (error_code != cudaSuccess) { \
|
24 |
+
std::cerr << "CUDA error " << error_code << " at " << __FILE__ << ":" << __LINE__; \
|
25 |
+
assert(0); \
|
26 |
+
} \
|
27 |
+
}
|
28 |
+
|
29 |
+
#define CUDA_1D_KERNEL_LOOP(i, n) \
|
30 |
+
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); i += blockDim.x * gridDim.x)
|
31 |
+
|
32 |
+
#define CUDA_2D_KERNEL_LOOP(i, n, j, m) \
|
33 |
+
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); i += blockDim.x * gridDim.x) \
|
34 |
+
for (size_t j = blockIdx.y * blockDim.y + threadIdx.y; j < (m); j += blockDim.y * gridDim.y)
|
35 |
+
|
36 |
+
#define DS_CUDA_NUM_THREADS 512
|
37 |
+
#define DS_MAXIMUM_NUM_BLOCKS 262144
|
38 |
+
|
39 |
+
inline int DS_GET_BLOCKS(const int N)
|
40 |
+
{
|
41 |
+
return (std::max)(
|
42 |
+
(std::min)((N + DS_CUDA_NUM_THREADS - 1) / DS_CUDA_NUM_THREADS, DS_MAXIMUM_NUM_BLOCKS),
|
43 |
+
// Use at least 1 block, since CUDA does not allow empty block
|
44 |
+
1);
|
45 |
+
}
|
46 |
+
|
47 |
+
class TrainingContext {
|
48 |
+
public:
|
49 |
+
TrainingContext() : _workspace(nullptr), _seed(42), _curr_offset(0)
|
50 |
+
{
|
51 |
+
curandCreateGenerator(&_gen, CURAND_RNG_PSEUDO_DEFAULT);
|
52 |
+
curandSetPseudoRandomGeneratorSeed(_gen, 123);
|
53 |
+
cublasStatus_t stat = cublasCreate(&_cublasHandle);
|
54 |
+
if (stat != CUBLAS_STATUS_SUCCESS) {
|
55 |
+
// It would be nice to use cublasGetStatusName and
|
56 |
+
// cublasGetStatusString, but they were only added in CUDA 11.4.2.
|
57 |
+
auto message = std::string("Failed to create cublas handle: cublasStatus_t was ") +
|
58 |
+
std::to_string(stat);
|
59 |
+
std::cerr << message << std::endl;
|
60 |
+
throw std::runtime_error(message);
|
61 |
+
}
|
62 |
+
}
|
63 |
+
|
64 |
+
virtual ~TrainingContext()
|
65 |
+
{
|
66 |
+
cublasDestroy(_cublasHandle);
|
67 |
+
cudaFree(_workspace);
|
68 |
+
}
|
69 |
+
|
70 |
+
static TrainingContext& Instance()
|
71 |
+
{
|
72 |
+
static TrainingContext _ctx;
|
73 |
+
return _ctx;
|
74 |
+
}
|
75 |
+
|
76 |
+
void SetWorkSpace(void* workspace)
|
77 |
+
{
|
78 |
+
if (!workspace) { throw std::runtime_error("Workspace is null."); }
|
79 |
+
_workspace = workspace;
|
80 |
+
}
|
81 |
+
|
82 |
+
void* GetWorkSpace() { return _workspace; }
|
83 |
+
|
84 |
+
curandGenerator_t& GetRandGenerator() { return _gen; }
|
85 |
+
|
86 |
+
cudaStream_t GetCurrentStream()
|
87 |
+
{
|
88 |
+
// get current pytorch stream.
|
89 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
90 |
+
return stream;
|
91 |
+
}
|
92 |
+
|
93 |
+
cudaStream_t GetNewStream() { return at::cuda::getStreamFromPool(); }
|
94 |
+
|
95 |
+
cublasHandle_t GetCublasHandle() { return _cublasHandle; }
|
96 |
+
|
97 |
+
std::pair<uint64_t, uint64_t> IncrementOffset(uint64_t offset_inc)
|
98 |
+
{
|
99 |
+
uint64_t offset = _curr_offset;
|
100 |
+
_curr_offset += offset_inc;
|
101 |
+
return std::pair<uint64_t, uint64_t>(_seed, offset);
|
102 |
+
}
|
103 |
+
|
104 |
+
void SetSeed(uint64_t new_seed) { _seed = new_seed; }
|
105 |
+
|
106 |
+
void TestGemmFP16(bool test_gemm, int batch_size, int seq_len, int head_num, int size_per_head)
|
107 |
+
{
|
108 |
+
// avoid rerun.
|
109 |
+
if (_gemm_algos.size() > 0) return;
|
110 |
+
|
111 |
+
if (test_gemm) {
|
112 |
+
cublasHandle_t handle = GetCublasHandle();
|
113 |
+
|
114 |
+
std::unique_ptr<GemmTest<__half>> test_qkv_fw(
|
115 |
+
new GemmTest<__half>(batch_size * seq_len, // M
|
116 |
+
head_num * size_per_head, // N
|
117 |
+
head_num * size_per_head, // K
|
118 |
+
CUBLAS_OP_T,
|
119 |
+
CUBLAS_OP_N,
|
120 |
+
handle));
|
121 |
+
|
122 |
+
std::unique_ptr<GemmTest<__half>> test_inter(
|
123 |
+
new GemmTest<__half>(batch_size * seq_len, // M
|
124 |
+
4 * head_num * size_per_head, // N
|
125 |
+
head_num * size_per_head, // K
|
126 |
+
CUBLAS_OP_T,
|
127 |
+
CUBLAS_OP_N,
|
128 |
+
handle));
|
129 |
+
|
130 |
+
std::unique_ptr<GemmTest<__half>> test_output(
|
131 |
+
new GemmTest<__half>(batch_size * seq_len, // M
|
132 |
+
head_num * size_per_head, // N
|
133 |
+
4 * head_num * size_per_head, // K
|
134 |
+
CUBLAS_OP_T,
|
135 |
+
CUBLAS_OP_N,
|
136 |
+
handle));
|
137 |
+
|
138 |
+
std::unique_ptr<StridedGemmTest<__half>> test_attn_scores(
|
139 |
+
new StridedGemmTest<__half>(batch_size * head_num, // batch
|
140 |
+
seq_len, // M
|
141 |
+
seq_len, // N
|
142 |
+
size_per_head, // K
|
143 |
+
CUBLAS_OP_T,
|
144 |
+
CUBLAS_OP_N,
|
145 |
+
handle));
|
146 |
+
|
147 |
+
std::unique_ptr<StridedGemmTest<__half>> test_attn_context(
|
148 |
+
new StridedGemmTest<__half>(batch_size * head_num, // batch
|
149 |
+
size_per_head, // M
|
150 |
+
seq_len, // N
|
151 |
+
seq_len, // K
|
152 |
+
CUBLAS_OP_N,
|
153 |
+
CUBLAS_OP_N,
|
154 |
+
handle));
|
155 |
+
|
156 |
+
_gemm_algos.push_back(test_qkv_fw->TestAlgo(100));
|
157 |
+
_gemm_algos.push_back(test_inter->TestAlgo(100));
|
158 |
+
_gemm_algos.push_back(test_output->TestAlgo(100));
|
159 |
+
_gemm_algos.push_back(test_attn_scores->TestAlgo(100));
|
160 |
+
_gemm_algos.push_back(test_attn_context->TestAlgo(100));
|
161 |
+
} else {
|
162 |
+
// Use default algo.
|
163 |
+
_gemm_algos.push_back(std::array<int, 3>({99, 99, 99}));
|
164 |
+
_gemm_algos.push_back(std::array<int, 3>({99, 99, 99}));
|
165 |
+
_gemm_algos.push_back(std::array<int, 3>({99, 99, 99}));
|
166 |
+
_gemm_algos.push_back(std::array<int, 3>({99, 99, 99}));
|
167 |
+
_gemm_algos.push_back(std::array<int, 3>({99, 99, 99}));
|
168 |
+
}
|
169 |
+
}
|
170 |
+
|
171 |
+
const std::vector<std::array<int, 3>>& GetGemmAlgos() const { return _gemm_algos; }
|
172 |
+
|
173 |
+
private:
|
174 |
+
curandGenerator_t _gen;
|
175 |
+
cublasHandle_t _cublasHandle;
|
176 |
+
void* _workspace;
|
177 |
+
uint64_t _seed;
|
178 |
+
uint64_t _curr_offset;
|
179 |
+
std::vector<std::array<int, 3>> _gemm_algos;
|
180 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/conversion_utils.h
ADDED
@@ -0,0 +1,640 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include "ds_kernel_utils.h"
|
9 |
+
|
10 |
+
#include <stdint.h>
|
11 |
+
|
12 |
+
#ifdef BF16_AVAILABLE
|
13 |
+
#include <cuda_bf16.h>
|
14 |
+
#endif
|
15 |
+
|
16 |
+
namespace conversion {
|
17 |
+
|
18 |
+
// Basic primitive for constructing conversions
|
19 |
+
template <typename TO, typename FROM>
|
20 |
+
DS_D_INLINE TO to(FROM val)
|
21 |
+
{
|
22 |
+
return to(val);
|
23 |
+
}
|
24 |
+
|
25 |
+
// Specializations
|
26 |
+
|
27 |
+
/********************* Identity Conversions *********************/
|
28 |
+
/*
|
29 |
+
Identity conversions are useful in templated functions where we might have
|
30 |
+
a fixed destination type. For example, I might have a kernel that accepts
|
31 |
+
__half, __nv_bfloat16, and float but always want to do the core computation
|
32 |
+
at floating point:
|
33 |
+
|
34 |
+
T mem_value = input[idx];
|
35 |
+
float compute_value = conversion::to<float, T>(mem_value);
|
36 |
+
|
37 |
+
In practice, we should be able to elide the second template parameter:
|
38 |
+
float compute_val = conversion::to<float>(mem_value);
|
39 |
+
|
40 |
+
In this case, we need an implementation to handle the T = float case
|
41 |
+
|
42 |
+
NOTE: The type inferencing system appears to be unable to handle inferring the first
|
43 |
+
template parameter, even in the trivial case.
|
44 |
+
*/
|
45 |
+
|
46 |
+
// Floating point types
|
47 |
+
template <>
|
48 |
+
DS_D_INLINE double to(double val)
|
49 |
+
{
|
50 |
+
return val;
|
51 |
+
}
|
52 |
+
template <>
|
53 |
+
DS_D_INLINE float to(float val)
|
54 |
+
{
|
55 |
+
return val;
|
56 |
+
}
|
57 |
+
template <>
|
58 |
+
DS_D_INLINE __half to(__half val)
|
59 |
+
{
|
60 |
+
return val;
|
61 |
+
}
|
62 |
+
#ifdef BF16_AVAILABLE
|
63 |
+
template <>
|
64 |
+
DS_D_INLINE __nv_bfloat16 to(__nv_bfloat16 val)
|
65 |
+
{
|
66 |
+
return val;
|
67 |
+
}
|
68 |
+
#endif
|
69 |
+
|
70 |
+
// Integer types
|
71 |
+
template <>
|
72 |
+
DS_D_INLINE int8_t to(int8_t val)
|
73 |
+
{
|
74 |
+
return val;
|
75 |
+
}
|
76 |
+
template <>
|
77 |
+
DS_D_INLINE uint8_t to(uint8_t val)
|
78 |
+
{
|
79 |
+
return val;
|
80 |
+
}
|
81 |
+
template <>
|
82 |
+
DS_D_INLINE int16_t to(int16_t val)
|
83 |
+
{
|
84 |
+
return val;
|
85 |
+
}
|
86 |
+
template <>
|
87 |
+
DS_D_INLINE uint16_t to(uint16_t val)
|
88 |
+
{
|
89 |
+
return val;
|
90 |
+
}
|
91 |
+
template <>
|
92 |
+
DS_D_INLINE int32_t to(int32_t val)
|
93 |
+
{
|
94 |
+
return val;
|
95 |
+
}
|
96 |
+
template <>
|
97 |
+
DS_D_INLINE uint32_t to(uint32_t val)
|
98 |
+
{
|
99 |
+
return val;
|
100 |
+
}
|
101 |
+
template <>
|
102 |
+
DS_D_INLINE int64_t to(int64_t val)
|
103 |
+
{
|
104 |
+
return val;
|
105 |
+
}
|
106 |
+
template <>
|
107 |
+
DS_D_INLINE uint64_t to(uint64_t val)
|
108 |
+
{
|
109 |
+
return val;
|
110 |
+
}
|
111 |
+
|
112 |
+
// TODO: evaluate if we want bools
|
113 |
+
|
114 |
+
/********************* To Double Conversions *********************/
|
115 |
+
|
116 |
+
// * to double variants
|
117 |
+
|
118 |
+
// Would normally like to not use C cast, but this is an important enough conversion
|
119 |
+
// to keep
|
120 |
+
template <>
|
121 |
+
DS_D_INLINE double to(float val)
|
122 |
+
{
|
123 |
+
#ifdef PTX_AVAILABLE
|
124 |
+
double ret_val;
|
125 |
+
asm("ctv.rn.f64.f32 %0, %1;\n" : "=d"(ret_val) : "f"(val));
|
126 |
+
return ret_val;
|
127 |
+
#else
|
128 |
+
return double(val);
|
129 |
+
#endif
|
130 |
+
}
|
131 |
+
// Note: there is a CVT instruction for __half -> double, but there's no inline interface
|
132 |
+
// for passing a single half value
|
133 |
+
template <>
|
134 |
+
DS_D_INLINE double to(__half val)
|
135 |
+
{
|
136 |
+
return to<double>(__half2float(val));
|
137 |
+
}
|
138 |
+
template <>
|
139 |
+
DS_D_INLINE double to(int64_t val)
|
140 |
+
{
|
141 |
+
return __ll2double_rn(val);
|
142 |
+
}
|
143 |
+
template <>
|
144 |
+
DS_D_INLINE double to(int32_t val)
|
145 |
+
{
|
146 |
+
return __int2double_rn(val);
|
147 |
+
}
|
148 |
+
template <>
|
149 |
+
DS_D_INLINE double to(int16_t val)
|
150 |
+
{
|
151 |
+
return __int2double_rn(val);
|
152 |
+
}
|
153 |
+
template <>
|
154 |
+
DS_D_INLINE double to(int8_t val)
|
155 |
+
{
|
156 |
+
return __int2double_rn(val);
|
157 |
+
}
|
158 |
+
template <>
|
159 |
+
DS_D_INLINE double to(uint64_t val)
|
160 |
+
{
|
161 |
+
return __ull2double_rn(val);
|
162 |
+
}
|
163 |
+
template <>
|
164 |
+
DS_D_INLINE double to(uint32_t val)
|
165 |
+
{
|
166 |
+
return __uint2double_rn(val);
|
167 |
+
}
|
168 |
+
template <>
|
169 |
+
DS_D_INLINE double to(uint16_t val)
|
170 |
+
{
|
171 |
+
return __uint2double_rn(val);
|
172 |
+
}
|
173 |
+
template <>
|
174 |
+
DS_D_INLINE double to(uint8_t val)
|
175 |
+
{
|
176 |
+
return __uint2double_rn(val);
|
177 |
+
}
|
178 |
+
|
179 |
+
// Same applies here
|
180 |
+
#ifdef BF16_AVAILABLE
|
181 |
+
template <>
|
182 |
+
DS_D_INLINE double to(__nv_bfloat16 val)
|
183 |
+
{
|
184 |
+
return to<double>(__bfloat162float(val));
|
185 |
+
}
|
186 |
+
#endif
|
187 |
+
|
188 |
+
/********************* To Float Conversions *********************/
|
189 |
+
|
190 |
+
template <>
|
191 |
+
DS_D_INLINE float to(double val)
|
192 |
+
{
|
193 |
+
return __double2float_rn(val);
|
194 |
+
}
|
195 |
+
template <>
|
196 |
+
DS_D_INLINE float to(__half val)
|
197 |
+
{
|
198 |
+
return __half2float(val);
|
199 |
+
}
|
200 |
+
template <>
|
201 |
+
DS_D_INLINE float to(int64_t val)
|
202 |
+
{
|
203 |
+
return __ll2float_rn(val);
|
204 |
+
}
|
205 |
+
template <>
|
206 |
+
DS_D_INLINE float to(int32_t val)
|
207 |
+
{
|
208 |
+
return __int2float_rn(val);
|
209 |
+
}
|
210 |
+
template <>
|
211 |
+
DS_D_INLINE float to(int16_t val)
|
212 |
+
{
|
213 |
+
return __int2float_rn(val);
|
214 |
+
}
|
215 |
+
template <>
|
216 |
+
DS_D_INLINE float to(int8_t val)
|
217 |
+
{
|
218 |
+
return __int2float_rn(val);
|
219 |
+
}
|
220 |
+
template <>
|
221 |
+
DS_D_INLINE float to(uint64_t val)
|
222 |
+
{
|
223 |
+
return __ull2float_rn(val);
|
224 |
+
}
|
225 |
+
template <>
|
226 |
+
DS_D_INLINE float to(uint32_t val)
|
227 |
+
{
|
228 |
+
return __uint2float_rn(val);
|
229 |
+
}
|
230 |
+
template <>
|
231 |
+
DS_D_INLINE float to(uint16_t val)
|
232 |
+
{
|
233 |
+
return __uint2float_rn(val);
|
234 |
+
}
|
235 |
+
template <>
|
236 |
+
DS_D_INLINE float to(uint8_t val)
|
237 |
+
{
|
238 |
+
return __uint2float_rn(val);
|
239 |
+
}
|
240 |
+
|
241 |
+
#ifdef BF16_AVAILABLE
|
242 |
+
template <>
|
243 |
+
DS_D_INLINE float to(__nv_bfloat16 val)
|
244 |
+
{
|
245 |
+
return __bfloat162float(val);
|
246 |
+
}
|
247 |
+
#endif
|
248 |
+
|
249 |
+
/********************* To Float2 Conversions *********************/
|
250 |
+
template <>
|
251 |
+
DS_D_INLINE float2 to(__half2 val)
|
252 |
+
{
|
253 |
+
return __half22float2(val);
|
254 |
+
}
|
255 |
+
|
256 |
+
#ifdef BF16_AVAILABLE
|
257 |
+
template <>
|
258 |
+
DS_D_INLINE float2 to(__nv_bfloat162 val)
|
259 |
+
{
|
260 |
+
return __bfloat1622float2(val);
|
261 |
+
}
|
262 |
+
#endif
|
263 |
+
|
264 |
+
/********************* To Half Conversions *********************/
|
265 |
+
template <>
|
266 |
+
DS_D_INLINE __half to(double val)
|
267 |
+
{
|
268 |
+
#ifdef __HIP_PLATFORM_AMD__
|
269 |
+
float val_f = __double2float_rn(val);
|
270 |
+
return __float2half(val_f);
|
271 |
+
#else
|
272 |
+
return __double2half(val);
|
273 |
+
#endif
|
274 |
+
}
|
275 |
+
template <>
|
276 |
+
DS_D_INLINE __half to(float val)
|
277 |
+
{
|
278 |
+
return __float2half(val);
|
279 |
+
}
|
280 |
+
template <>
|
281 |
+
DS_D_INLINE __half to(int64_t val)
|
282 |
+
{
|
283 |
+
return __ll2half_rn(val);
|
284 |
+
}
|
285 |
+
template <>
|
286 |
+
DS_D_INLINE __half to(int32_t val)
|
287 |
+
{
|
288 |
+
return __int2half_rn(val);
|
289 |
+
}
|
290 |
+
template <>
|
291 |
+
DS_D_INLINE __half to(int16_t val)
|
292 |
+
{
|
293 |
+
return __short2half_rn(val);
|
294 |
+
}
|
295 |
+
template <>
|
296 |
+
DS_D_INLINE __half to(int8_t val)
|
297 |
+
{
|
298 |
+
return __int2half_rn(val);
|
299 |
+
}
|
300 |
+
template <>
|
301 |
+
DS_D_INLINE __half to(uint64_t val)
|
302 |
+
{
|
303 |
+
return __ull2half_rn(val);
|
304 |
+
}
|
305 |
+
template <>
|
306 |
+
DS_D_INLINE __half to(uint32_t val)
|
307 |
+
{
|
308 |
+
return __uint2half_rn(val);
|
309 |
+
}
|
310 |
+
template <>
|
311 |
+
DS_D_INLINE __half to(uint16_t val)
|
312 |
+
{
|
313 |
+
return __ushort2half_rn(val);
|
314 |
+
}
|
315 |
+
template <>
|
316 |
+
DS_D_INLINE __half to(uint8_t val)
|
317 |
+
{
|
318 |
+
return __uint2half_rn(val);
|
319 |
+
}
|
320 |
+
|
321 |
+
#ifdef BF16_AVAILABLE
|
322 |
+
// No direct conversion
|
323 |
+
template <>
|
324 |
+
DS_D_INLINE __half to(__nv_bfloat16 val)
|
325 |
+
{
|
326 |
+
return to<__half>(to<float>(val));
|
327 |
+
}
|
328 |
+
#endif
|
329 |
+
|
330 |
+
/********************* To Half2 Conversions *********************/
|
331 |
+
template <>
|
332 |
+
DS_D_INLINE __half2 to(float2 val)
|
333 |
+
{
|
334 |
+
return __float22half2_rn(val);
|
335 |
+
}
|
336 |
+
template <>
|
337 |
+
DS_D_INLINE __half2 to(float val)
|
338 |
+
{
|
339 |
+
return __float2half2_rn(val);
|
340 |
+
}
|
341 |
+
|
342 |
+
#ifdef BF16_AVAILABLE
|
343 |
+
// No direct conversion
|
344 |
+
template <>
|
345 |
+
DS_D_INLINE __half2 to(__nv_bfloat162 val)
|
346 |
+
{
|
347 |
+
return to<__half2>(to<float2>(val));
|
348 |
+
}
|
349 |
+
#endif
|
350 |
+
|
351 |
+
/********************* To BF16 Conversions *********************/
|
352 |
+
#ifdef BF16_AVAILABLE
|
353 |
+
template <>
|
354 |
+
DS_D_INLINE __nv_bfloat16 to(double val)
|
355 |
+
{
|
356 |
+
return __double2bfloat16(val);
|
357 |
+
}
|
358 |
+
template <>
|
359 |
+
DS_D_INLINE __nv_bfloat16 to(float val)
|
360 |
+
{
|
361 |
+
return __float2bfloat16(val);
|
362 |
+
}
|
363 |
+
template <>
|
364 |
+
DS_D_INLINE __nv_bfloat16 to(int64_t val)
|
365 |
+
{
|
366 |
+
return __ll2bfloat16_rn(val);
|
367 |
+
}
|
368 |
+
template <>
|
369 |
+
DS_D_INLINE __nv_bfloat16 to(int32_t val)
|
370 |
+
{
|
371 |
+
return __int2bfloat16_rn(val);
|
372 |
+
}
|
373 |
+
template <>
|
374 |
+
DS_D_INLINE __nv_bfloat16 to(int16_t val)
|
375 |
+
{
|
376 |
+
return __short2bfloat16_rn(val);
|
377 |
+
}
|
378 |
+
template <>
|
379 |
+
DS_D_INLINE __nv_bfloat16 to(int8_t val)
|
380 |
+
{
|
381 |
+
return __int2bfloat16_rn(val);
|
382 |
+
}
|
383 |
+
template <>
|
384 |
+
DS_D_INLINE __nv_bfloat16 to(uint64_t val)
|
385 |
+
{
|
386 |
+
return __ull2bfloat16_rn(val);
|
387 |
+
}
|
388 |
+
template <>
|
389 |
+
DS_D_INLINE __nv_bfloat16 to(uint32_t val)
|
390 |
+
{
|
391 |
+
return __uint2bfloat16_rn(val);
|
392 |
+
}
|
393 |
+
template <>
|
394 |
+
DS_D_INLINE __nv_bfloat16 to(uint16_t val)
|
395 |
+
{
|
396 |
+
return __ushort2bfloat16_rn(val);
|
397 |
+
}
|
398 |
+
template <>
|
399 |
+
DS_D_INLINE __nv_bfloat16 to(uint8_t val)
|
400 |
+
{
|
401 |
+
return __uint2bfloat16_rn(val);
|
402 |
+
}
|
403 |
+
#endif
|
404 |
+
|
405 |
+
/********************* To BF162 Conversions *********************/
|
406 |
+
#ifdef BF16_AVAILABLE
|
407 |
+
template <>
|
408 |
+
DS_D_INLINE __nv_bfloat162 to(float2 val)
|
409 |
+
{
|
410 |
+
return __float22bfloat162_rn(val);
|
411 |
+
}
|
412 |
+
template <>
|
413 |
+
DS_D_INLINE __nv_bfloat162 to(float val)
|
414 |
+
{
|
415 |
+
return __float2bfloat162_rn(val);
|
416 |
+
}
|
417 |
+
template <>
|
418 |
+
DS_D_INLINE __nv_bfloat162 to(__half2 val)
|
419 |
+
{
|
420 |
+
return to<__nv_bfloat162>(to<float2>(val));
|
421 |
+
}
|
422 |
+
#endif
|
423 |
+
|
424 |
+
/********************* To INT64_T Conversions *********************/
|
425 |
+
template <>
|
426 |
+
DS_D_INLINE int64_t to(double val)
|
427 |
+
{
|
428 |
+
return __double2ll_rn(val);
|
429 |
+
}
|
430 |
+
template <>
|
431 |
+
DS_D_INLINE int64_t to(float val)
|
432 |
+
{
|
433 |
+
return __float2ll_rn(val);
|
434 |
+
}
|
435 |
+
template <>
|
436 |
+
DS_D_INLINE int64_t to(__half val)
|
437 |
+
{
|
438 |
+
return __half2ll_rn(val);
|
439 |
+
}
|
440 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
441 |
+
// to demand an PTX at this time
|
442 |
+
|
443 |
+
#ifdef BF16_AVAILABLE
|
444 |
+
template <>
|
445 |
+
DS_D_INLINE int64_t to(__nv_bfloat16 val)
|
446 |
+
{
|
447 |
+
return __bfloat162ll_rn(val);
|
448 |
+
}
|
449 |
+
#endif
|
450 |
+
|
451 |
+
/********************* To INT32_T Conversions *********************/
|
452 |
+
template <>
|
453 |
+
DS_D_INLINE int32_t to(double val)
|
454 |
+
{
|
455 |
+
return __double2int_rn(val);
|
456 |
+
}
|
457 |
+
template <>
|
458 |
+
DS_D_INLINE int32_t to(float val)
|
459 |
+
{
|
460 |
+
return __float2int_rn(val);
|
461 |
+
}
|
462 |
+
template <>
|
463 |
+
DS_D_INLINE int32_t to(__half val)
|
464 |
+
{
|
465 |
+
return __half2int_rn(val);
|
466 |
+
}
|
467 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
468 |
+
// to demand an PTX at this time
|
469 |
+
|
470 |
+
#ifdef BF16_AVAILABLE
|
471 |
+
template <>
|
472 |
+
DS_D_INLINE int32_t to(__nv_bfloat16 val)
|
473 |
+
{
|
474 |
+
return __bfloat162int_rn(val);
|
475 |
+
}
|
476 |
+
#endif
|
477 |
+
|
478 |
+
/********************* To INT16_T Conversions *********************/
|
479 |
+
template <>
|
480 |
+
DS_D_INLINE int16_t to(double val)
|
481 |
+
{
|
482 |
+
return __double2int_rn(val);
|
483 |
+
}
|
484 |
+
template <>
|
485 |
+
DS_D_INLINE int16_t to(float val)
|
486 |
+
{
|
487 |
+
return __float2int_rn(val);
|
488 |
+
}
|
489 |
+
template <>
|
490 |
+
DS_D_INLINE int16_t to(__half val)
|
491 |
+
{
|
492 |
+
return __half2int_rn(val);
|
493 |
+
}
|
494 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
495 |
+
// to demand an PTX at this time
|
496 |
+
|
497 |
+
#ifdef BF16_AVAILABLE
|
498 |
+
template <>
|
499 |
+
DS_D_INLINE int16_t to(__nv_bfloat16 val)
|
500 |
+
{
|
501 |
+
return __bfloat162int_rn(val);
|
502 |
+
}
|
503 |
+
#endif
|
504 |
+
|
505 |
+
/********************* To INT8_T Conversions *********************/
|
506 |
+
template <>
|
507 |
+
DS_D_INLINE int8_t to(double val)
|
508 |
+
{
|
509 |
+
return __double2int_rn(val);
|
510 |
+
}
|
511 |
+
template <>
|
512 |
+
DS_D_INLINE int8_t to(float val)
|
513 |
+
{
|
514 |
+
return __float2int_rn(val);
|
515 |
+
}
|
516 |
+
template <>
|
517 |
+
DS_D_INLINE int8_t to(__half val)
|
518 |
+
{
|
519 |
+
return __half2int_rn(val);
|
520 |
+
}
|
521 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
522 |
+
// to demand an PTX at this time
|
523 |
+
|
524 |
+
#ifdef BF16_AVAILABLE
|
525 |
+
template <>
|
526 |
+
DS_D_INLINE int8_t to(__nv_bfloat16 val)
|
527 |
+
{
|
528 |
+
return __bfloat162int_rn(val);
|
529 |
+
}
|
530 |
+
#endif
|
531 |
+
|
532 |
+
/********************* To UINT64_T Conversions *********************/
|
533 |
+
template <>
|
534 |
+
DS_D_INLINE uint64_t to(double val)
|
535 |
+
{
|
536 |
+
return __double2ull_rn(val);
|
537 |
+
}
|
538 |
+
template <>
|
539 |
+
DS_D_INLINE uint64_t to(float val)
|
540 |
+
{
|
541 |
+
return __float2ull_rn(val);
|
542 |
+
}
|
543 |
+
template <>
|
544 |
+
DS_D_INLINE uint64_t to(__half val)
|
545 |
+
{
|
546 |
+
return __half2ull_rn(val);
|
547 |
+
}
|
548 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
549 |
+
// to demand an PTX at this time
|
550 |
+
|
551 |
+
#ifdef BF16_AVAILABLE
|
552 |
+
template <>
|
553 |
+
DS_D_INLINE uint64_t to(__nv_bfloat16 val)
|
554 |
+
{
|
555 |
+
return __bfloat162ull_rn(val);
|
556 |
+
}
|
557 |
+
#endif
|
558 |
+
|
559 |
+
/********************* To UINT32_T Conversions *********************/
|
560 |
+
template <>
|
561 |
+
DS_D_INLINE uint32_t to(double val)
|
562 |
+
{
|
563 |
+
return __double2uint_rn(val);
|
564 |
+
}
|
565 |
+
template <>
|
566 |
+
DS_D_INLINE uint32_t to(float val)
|
567 |
+
{
|
568 |
+
return __float2uint_rn(val);
|
569 |
+
}
|
570 |
+
template <>
|
571 |
+
DS_D_INLINE uint32_t to(__half val)
|
572 |
+
{
|
573 |
+
return __half2uint_rn(val);
|
574 |
+
}
|
575 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
576 |
+
// to demand an PTX at this time
|
577 |
+
|
578 |
+
#ifdef BF16_AVAILABLE
|
579 |
+
template <>
|
580 |
+
DS_D_INLINE uint32_t to(__nv_bfloat16 val)
|
581 |
+
{
|
582 |
+
return __bfloat162uint_rn(val);
|
583 |
+
}
|
584 |
+
#endif
|
585 |
+
|
586 |
+
/********************* To UINT16_T Conversions *********************/
|
587 |
+
template <>
|
588 |
+
DS_D_INLINE uint16_t to(double val)
|
589 |
+
{
|
590 |
+
return __double2uint_rn(val);
|
591 |
+
}
|
592 |
+
template <>
|
593 |
+
DS_D_INLINE uint16_t to(float val)
|
594 |
+
{
|
595 |
+
return __float2uint_rn(val);
|
596 |
+
}
|
597 |
+
template <>
|
598 |
+
DS_D_INLINE uint16_t to(__half val)
|
599 |
+
{
|
600 |
+
return __half2uint_rn(val);
|
601 |
+
}
|
602 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
603 |
+
// to demand an PTX at this time
|
604 |
+
|
605 |
+
#ifdef BF16_AVAILABLE
|
606 |
+
template <>
|
607 |
+
DS_D_INLINE uint16_t to(__nv_bfloat16 val)
|
608 |
+
{
|
609 |
+
return __bfloat162uint_rn(val);
|
610 |
+
}
|
611 |
+
#endif
|
612 |
+
|
613 |
+
/********************* To UINT8_T Conversions *********************/
|
614 |
+
template <>
|
615 |
+
DS_D_INLINE uint8_t to(double val)
|
616 |
+
{
|
617 |
+
return __double2uint_rn(val);
|
618 |
+
}
|
619 |
+
template <>
|
620 |
+
DS_D_INLINE uint8_t to(float val)
|
621 |
+
{
|
622 |
+
return __float2uint_rn(val);
|
623 |
+
}
|
624 |
+
template <>
|
625 |
+
DS_D_INLINE uint8_t to(__half val)
|
626 |
+
{
|
627 |
+
return __half2uint_rn(val);
|
628 |
+
}
|
629 |
+
// No direct support for integer casts at the C++ level and I don't feel they're so important
|
630 |
+
// to demand an PTX at this time
|
631 |
+
|
632 |
+
#ifdef BF16_AVAILABLE
|
633 |
+
template <>
|
634 |
+
DS_D_INLINE uint8_t to(__nv_bfloat16 val)
|
635 |
+
{
|
636 |
+
return __bfloat162uint_rn(val);
|
637 |
+
}
|
638 |
+
#endif
|
639 |
+
|
640 |
+
} // namespace conversion
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/cpu_adagrad.h
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#define NOMINMAX // Windows idiosyncrasy
|
9 |
+
// https://stackoverflow.com/questions/4913922/possible-problems-with-nominmax-on-visual-c
|
10 |
+
|
11 |
+
#include <stdio.h>
|
12 |
+
#include <cassert>
|
13 |
+
#include "simd.h"
|
14 |
+
|
15 |
+
#if defined(__ENABLE_CUDA__)
|
16 |
+
#include <cuda_fp16.h>
|
17 |
+
#include <cuda_runtime_api.h>
|
18 |
+
#include "cuda.h"
|
19 |
+
#include "custom_cuda_layers.h"
|
20 |
+
typedef __half ds_half_precision_t;
|
21 |
+
#elif defined(__ENABLE_CANN__)
|
22 |
+
#include "acl/acl.h"
|
23 |
+
#include "torch_npu/csrc/core/npu/NPUStream.h"
|
24 |
+
typedef c10::Half ds_half_precision_t;
|
25 |
+
#else
|
26 |
+
typedef unsigned short ds_half_precision_t;
|
27 |
+
#endif
|
28 |
+
|
29 |
+
#define STEP(SPAN) \
|
30 |
+
void Step_##SPAN(float* _params, \
|
31 |
+
float* grads, \
|
32 |
+
float* _exp_avg_sq, \
|
33 |
+
size_t _param_size, \
|
34 |
+
ds_half_precision_t* dev_param = nullptr, \
|
35 |
+
bool half_precision = false);
|
36 |
+
|
37 |
+
class Adagrad_Optimizer {
|
38 |
+
public:
|
39 |
+
Adagrad_Optimizer(float alpha = 1e-2, float eps = 1e-8, float weight_decay = 0)
|
40 |
+
: _alpha(alpha), _eps(eps), _weight_decay(weight_decay)
|
41 |
+
{
|
42 |
+
#if defined(__ENABLE_CUDA__)
|
43 |
+
cudaMallocHost((void**)_doubled_buffer, TILE * sizeof(float));
|
44 |
+
cudaMallocHost((void**)(_doubled_buffer + 1), TILE * sizeof(float));
|
45 |
+
|
46 |
+
_streams[0] = TrainingContext::Instance().GetCurrentStream();
|
47 |
+
_streams[1] = TrainingContext::Instance().GetNewStream();
|
48 |
+
_buf_index = false;
|
49 |
+
#elif defined(__ENABLE_CANN__)
|
50 |
+
aclrtMallocHost((void**)_doubled_buffer, TILE * sizeof(float));
|
51 |
+
aclrtMallocHost((void**)(_doubled_buffer + 1), TILE * sizeof(float));
|
52 |
+
|
53 |
+
_buf_index = false;
|
54 |
+
#endif
|
55 |
+
}
|
56 |
+
~Adagrad_Optimizer()
|
57 |
+
{
|
58 |
+
#if defined(__ENABLE_CUDA__)
|
59 |
+
cudaFreeHost(_doubled_buffer[0]);
|
60 |
+
cudaFreeHost(_doubled_buffer[1]);
|
61 |
+
#elif defined(__ENABLE_CANN__)
|
62 |
+
aclrtFreeHost(_doubled_buffer[0]);
|
63 |
+
aclrtFreeHost(_doubled_buffer[1]);
|
64 |
+
#endif
|
65 |
+
}
|
66 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
67 |
+
template <int span>
|
68 |
+
void Step_AVX(size_t* rounded_size,
|
69 |
+
float* _params,
|
70 |
+
float* grads,
|
71 |
+
float* _exp_avg_sq,
|
72 |
+
size_t param_size,
|
73 |
+
ds_half_precision_t* dev_param = nullptr,
|
74 |
+
bool half_precision = false);
|
75 |
+
#endif
|
76 |
+
STEP(1)
|
77 |
+
STEP(4)
|
78 |
+
STEP(8)
|
79 |
+
#if defined(__ENABLE_CUDA__)
|
80 |
+
inline void SynchronizeStreams()
|
81 |
+
{
|
82 |
+
for (int i = 0; i < 2; i++) cudaStreamSynchronize(_streams[i]);
|
83 |
+
}
|
84 |
+
#elif defined(__ENABLE_CANN__)
|
85 |
+
inline void SynchronizeStreams()
|
86 |
+
{
|
87 |
+
for (int i = 0; i < 2; i++) aclrtSynchronizeStream(_streams[i].stream());
|
88 |
+
}
|
89 |
+
#endif
|
90 |
+
inline void IncrementStep(size_t step)
|
91 |
+
{
|
92 |
+
_step++;
|
93 |
+
if (_step != step) { _step = step; }
|
94 |
+
}
|
95 |
+
inline void update_state(float lr, float epsilon, float weight_decay)
|
96 |
+
{
|
97 |
+
_alpha = lr;
|
98 |
+
_eps = epsilon;
|
99 |
+
_weight_decay = weight_decay;
|
100 |
+
}
|
101 |
+
|
102 |
+
private:
|
103 |
+
float _alpha;
|
104 |
+
float _eps;
|
105 |
+
float _weight_decay;
|
106 |
+
|
107 |
+
float _betta1_t;
|
108 |
+
float _betta2_t;
|
109 |
+
size_t _step;
|
110 |
+
|
111 |
+
#if defined(__ENABLE_CUDA__)
|
112 |
+
bool _buf_index;
|
113 |
+
float* _doubled_buffer[2];
|
114 |
+
cudaStream_t _streams[2];
|
115 |
+
#elif defined(__ENABLE_CANN__)
|
116 |
+
float* _doubled_buffer[2];
|
117 |
+
c10_npu::NPUStream _streams[2] = {c10_npu::getCurrentNPUStream(),
|
118 |
+
c10_npu::getNPUStreamFromPool()};
|
119 |
+
bool _buf_index;
|
120 |
+
#endif
|
121 |
+
};
|
122 |
+
|
123 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
124 |
+
template <int span>
|
125 |
+
void Adagrad_Optimizer::Step_AVX(size_t* rounded_size,
|
126 |
+
float* _params,
|
127 |
+
float* grads,
|
128 |
+
float* _exp_avg_sq,
|
129 |
+
size_t _param_size,
|
130 |
+
ds_half_precision_t* dev_params,
|
131 |
+
bool half_precision)
|
132 |
+
{
|
133 |
+
size_t new_rounded_size = 0;
|
134 |
+
AVX_Data eps_4;
|
135 |
+
eps_4.data = SIMD_SET(_eps);
|
136 |
+
|
137 |
+
float step_size = -1 * _alpha;
|
138 |
+
AVX_Data step_size_4;
|
139 |
+
step_size_4.data = SIMD_SET(step_size);
|
140 |
+
|
141 |
+
AVX_Data weight_decay4;
|
142 |
+
if (_weight_decay > 0) weight_decay4.data = SIMD_SET(_weight_decay);
|
143 |
+
new_rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * span);
|
144 |
+
for (size_t t = 0; t < new_rounded_size; t += TILE) {
|
145 |
+
size_t copy_size = TILE;
|
146 |
+
if ((t + TILE) > new_rounded_size) copy_size = new_rounded_size - t;
|
147 |
+
size_t offset = copy_size + t;
|
148 |
+
#if defined(__ENABLE_CUDA__)
|
149 |
+
if ((t / TILE) >= 2) { cudaStreamSynchronize(_streams[_buf_index]); }
|
150 |
+
#elif defined(__ENABLE_CANN__)
|
151 |
+
if ((t / TILE) >= 2) { aclrtSynchronizeStream(_streams[_buf_index].stream()); }
|
152 |
+
#endif
|
153 |
+
#pragma omp parallel for
|
154 |
+
for (size_t i = t; i < offset; i += SIMD_WIDTH * span) {
|
155 |
+
AVX_Data grad_4[span];
|
156 |
+
simd_load<span>(grad_4, grads + i, half_precision);
|
157 |
+
|
158 |
+
AVX_Data momentum_4[span];
|
159 |
+
simd_load<span>(momentum_4, grads + i, false);
|
160 |
+
|
161 |
+
AVX_Data variance_4[span];
|
162 |
+
simd_load<span>(variance_4, _exp_avg_sq + i, false);
|
163 |
+
|
164 |
+
AVX_Data param_4[span];
|
165 |
+
simd_load<span>(param_4, _params + i, half_precision);
|
166 |
+
|
167 |
+
if (_weight_decay > 0) { simd_fma<span>(grad_4, param_4, weight_decay4, grad_4); }
|
168 |
+
|
169 |
+
simd_fma<span>(variance_4, grad_4, grad_4, variance_4);
|
170 |
+
simd_sqrt<span>(grad_4, variance_4);
|
171 |
+
simd_add<span>(grad_4, grad_4, eps_4);
|
172 |
+
simd_div<span>(grad_4, momentum_4, grad_4);
|
173 |
+
simd_fma<span>(param_4, grad_4, step_size_4, param_4);
|
174 |
+
|
175 |
+
simd_store<span>(_params + i, param_4, half_precision);
|
176 |
+
#if defined(__ENABLE_CUDA__) or defined(__ENABLE_CANN__)
|
177 |
+
if (dev_params) {
|
178 |
+
simd_store<span>(_doubled_buffer[_buf_index] + (i - t), param_4, half_precision);
|
179 |
+
}
|
180 |
+
#endif
|
181 |
+
simd_store<span>(_exp_avg_sq + i, variance_4, false);
|
182 |
+
}
|
183 |
+
#if defined(__ENABLE_CUDA__)
|
184 |
+
if (dev_params) {
|
185 |
+
if (half_precision)
|
186 |
+
launch_param_update_half(
|
187 |
+
_doubled_buffer[_buf_index], dev_params + t, copy_size, _streams[_buf_index]);
|
188 |
+
else
|
189 |
+
launch_param_update(
|
190 |
+
_doubled_buffer[_buf_index], dev_params + t, copy_size, _streams[_buf_index]);
|
191 |
+
|
192 |
+
_buf_index = !_buf_index;
|
193 |
+
}
|
194 |
+
#elif defined(__ENABLE_CANN__)
|
195 |
+
if (dev_params) {
|
196 |
+
size_t memcpy_size = copy_size * sizeof(_doubled_buffer[_buf_index][0]);
|
197 |
+
if (half_precision) memcpy_size /= 2;
|
198 |
+
aclrtMemcpy(dev_params + t,
|
199 |
+
memcpy_size,
|
200 |
+
_doubled_buffer[_buf_index],
|
201 |
+
memcpy_size,
|
202 |
+
aclrtMemcpyKind::ACL_MEMCPY_HOST_TO_DEVICE);
|
203 |
+
|
204 |
+
_buf_index = !_buf_index;
|
205 |
+
}
|
206 |
+
#endif
|
207 |
+
}
|
208 |
+
*rounded_size = new_rounded_size;
|
209 |
+
}
|
210 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/cpu_adam.h
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#define NOMINMAX // Windows idiosyncrasy
|
9 |
+
// https://stackoverflow.com/questions/4913922/possible-problems-with-nominmax-on-visual-c
|
10 |
+
|
11 |
+
#include <stdio.h>
|
12 |
+
#include <torch/extension.h>
|
13 |
+
#include <cassert>
|
14 |
+
#include "simd.h"
|
15 |
+
|
16 |
+
#if defined(__ENABLE_CUDA__)
|
17 |
+
#include <cuda_fp16.h>
|
18 |
+
#include <cuda_runtime_api.h>
|
19 |
+
#include "cuda.h"
|
20 |
+
#include "custom_cuda_layers.h"
|
21 |
+
typedef __half ds_half_precision_t;
|
22 |
+
#elif defined(__ENABLE_CANN__)
|
23 |
+
#include "acl/acl.h"
|
24 |
+
#include "torch_npu/csrc/core/npu/NPUStream.h"
|
25 |
+
typedef c10::Half ds_half_precision_t;
|
26 |
+
#else
|
27 |
+
#include <cmath>
|
28 |
+
typedef unsigned short ds_half_precision_t;
|
29 |
+
#endif
|
30 |
+
|
31 |
+
#define STEP(SPAN) \
|
32 |
+
void Step_##SPAN(float* _params, \
|
33 |
+
float* grads, \
|
34 |
+
float* _exp_avg, \
|
35 |
+
float* _exp_avg_sq, \
|
36 |
+
size_t _param_size, \
|
37 |
+
ds_half_precision_t* dev_param = nullptr, \
|
38 |
+
bool half_precision = false);
|
39 |
+
|
40 |
+
class Adam_Optimizer {
|
41 |
+
public:
|
42 |
+
Adam_Optimizer(float alpha = 1e-3,
|
43 |
+
float betta1 = 0.9,
|
44 |
+
float betta2 = 0.999,
|
45 |
+
float eps = 1e-8,
|
46 |
+
float weight_decay = 0,
|
47 |
+
bool adamw_mode = true)
|
48 |
+
: _alpha(alpha),
|
49 |
+
_betta1(betta1),
|
50 |
+
_betta2(betta2),
|
51 |
+
_eps(eps),
|
52 |
+
_weight_decay(weight_decay),
|
53 |
+
_betta1_t(1.0),
|
54 |
+
_betta2_t(1.0),
|
55 |
+
_step(0),
|
56 |
+
_adamw_mode(adamw_mode)
|
57 |
+
{
|
58 |
+
#if defined(__ENABLE_CUDA__)
|
59 |
+
cudaMallocHost((void**)_doubled_buffer, TILE * sizeof(float));
|
60 |
+
cudaMallocHost((void**)(_doubled_buffer + 1), TILE * sizeof(float));
|
61 |
+
|
62 |
+
_streams[0] = TrainingContext::Instance().GetCurrentStream();
|
63 |
+
_streams[1] = TrainingContext::Instance().GetNewStream();
|
64 |
+
_buf_index = false;
|
65 |
+
#elif defined(__ENABLE_CANN__)
|
66 |
+
aclrtMallocHost((void**)_doubled_buffer, TILE * sizeof(float));
|
67 |
+
aclrtMallocHost((void**)(_doubled_buffer + 1), TILE * sizeof(float));
|
68 |
+
|
69 |
+
_buf_index = false;
|
70 |
+
#endif
|
71 |
+
}
|
72 |
+
~Adam_Optimizer()
|
73 |
+
{
|
74 |
+
#if defined(__ENABLE_CUDA__)
|
75 |
+
cudaFreeHost(_doubled_buffer[0]);
|
76 |
+
cudaFreeHost(_doubled_buffer[1]);
|
77 |
+
#elif defined(__ENABLE_CANN__)
|
78 |
+
aclrtFreeHost(_doubled_buffer[0]);
|
79 |
+
aclrtFreeHost(_doubled_buffer[1]);
|
80 |
+
#endif
|
81 |
+
}
|
82 |
+
|
83 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
84 |
+
template <int span>
|
85 |
+
void Step_AVX(size_t* rounded_size,
|
86 |
+
float* _params,
|
87 |
+
float* grads,
|
88 |
+
float* _exp_avg,
|
89 |
+
float* _exp_avg_sq,
|
90 |
+
size_t param_size,
|
91 |
+
ds_half_precision_t* dev_param = nullptr,
|
92 |
+
bool half_precision = false);
|
93 |
+
#endif
|
94 |
+
STEP(1)
|
95 |
+
STEP(4)
|
96 |
+
STEP(8)
|
97 |
+
#if defined(__ENABLE_CUDA__)
|
98 |
+
inline void SynchronizeStreams()
|
99 |
+
{
|
100 |
+
for (int i = 0; i < 2; i++) cudaStreamSynchronize(_streams[i]);
|
101 |
+
}
|
102 |
+
#elif defined(__ENABLE_CANN__)
|
103 |
+
inline void SynchronizeStreams()
|
104 |
+
{
|
105 |
+
for (int i = 0; i < 2; i++) aclrtSynchronizeStream(_streams[i].stream());
|
106 |
+
}
|
107 |
+
#endif
|
108 |
+
inline void IncrementStep(size_t step, float beta1, float beta2)
|
109 |
+
{
|
110 |
+
if (beta1 != _betta1 || beta2 != _betta2) {
|
111 |
+
_step = step;
|
112 |
+
_betta1 = beta1;
|
113 |
+
_betta2 = beta2;
|
114 |
+
_betta1_t = std::pow(_betta1, step);
|
115 |
+
_betta2_t = std::pow(_betta2, step);
|
116 |
+
} else {
|
117 |
+
_step++;
|
118 |
+
if (_step != step) {
|
119 |
+
_betta1_t = std::pow(_betta1, step);
|
120 |
+
_betta2_t = std::pow(_betta2, step);
|
121 |
+
_step = step;
|
122 |
+
} else {
|
123 |
+
_betta1_t *= _betta1;
|
124 |
+
_betta2_t *= _betta2;
|
125 |
+
}
|
126 |
+
}
|
127 |
+
}
|
128 |
+
inline void update_state(float lr, float epsilon, float weight_decay, bool bias_correction)
|
129 |
+
{
|
130 |
+
_alpha = lr;
|
131 |
+
_eps = epsilon;
|
132 |
+
_weight_decay = weight_decay;
|
133 |
+
|
134 |
+
_bias_correction1 = 1.0f;
|
135 |
+
_bias_correction2 = 1.0f;
|
136 |
+
if (bias_correction == 1) {
|
137 |
+
_bias_correction1 = 1 - _betta1_t;
|
138 |
+
_bias_correction2 = 1 / sqrt(1 - _betta2_t);
|
139 |
+
}
|
140 |
+
}
|
141 |
+
|
142 |
+
private:
|
143 |
+
float _alpha;
|
144 |
+
float _betta1;
|
145 |
+
float _betta2;
|
146 |
+
float _eps;
|
147 |
+
float _weight_decay;
|
148 |
+
|
149 |
+
float _betta1_t;
|
150 |
+
float _betta2_t;
|
151 |
+
size_t _step;
|
152 |
+
|
153 |
+
float _bias_correction1;
|
154 |
+
float _bias_correction2;
|
155 |
+
|
156 |
+
bool _adamw_mode;
|
157 |
+
|
158 |
+
#if defined(__ENABLE_CUDA__)
|
159 |
+
float* _doubled_buffer[2];
|
160 |
+
cudaStream_t _streams[2];
|
161 |
+
bool _buf_index;
|
162 |
+
#elif defined(__ENABLE_CANN__)
|
163 |
+
float* _doubled_buffer[2];
|
164 |
+
c10_npu::NPUStream _streams[2] = {c10_npu::getCurrentNPUStream(),
|
165 |
+
c10_npu::getNPUStreamFromPool()};
|
166 |
+
bool _buf_index;
|
167 |
+
#endif
|
168 |
+
};
|
169 |
+
|
170 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
171 |
+
template <int span>
|
172 |
+
void Adam_Optimizer::Step_AVX(size_t* rounded_size,
|
173 |
+
float* _params,
|
174 |
+
float* grads,
|
175 |
+
float* _exp_avg,
|
176 |
+
float* _exp_avg_sq,
|
177 |
+
size_t _param_size,
|
178 |
+
ds_half_precision_t* dev_params,
|
179 |
+
bool half_precision)
|
180 |
+
{
|
181 |
+
size_t new_rounded_size = 0;
|
182 |
+
int rshft = half_precision ? 1 : 0;
|
183 |
+
|
184 |
+
AVX_Data betta1_4;
|
185 |
+
betta1_4.data = SIMD_SET(_betta1);
|
186 |
+
AVX_Data betta2_4;
|
187 |
+
betta2_4.data = SIMD_SET(_betta2);
|
188 |
+
|
189 |
+
float betta1_minus1 = 1 - _betta1;
|
190 |
+
float betta2_minus1 = 1 - _betta2;
|
191 |
+
AVX_Data betta1_minus1_4;
|
192 |
+
betta1_minus1_4.data = SIMD_SET(betta1_minus1);
|
193 |
+
AVX_Data betta2_minus1_4;
|
194 |
+
betta2_minus1_4.data = SIMD_SET(betta2_minus1);
|
195 |
+
|
196 |
+
AVX_Data bias2_sqrt;
|
197 |
+
bias2_sqrt.data = SIMD_SET(_bias_correction2);
|
198 |
+
|
199 |
+
AVX_Data eps_4;
|
200 |
+
eps_4.data = SIMD_SET(_eps);
|
201 |
+
|
202 |
+
float step_size = -1 * _alpha / _bias_correction1;
|
203 |
+
AVX_Data step_size_4;
|
204 |
+
step_size_4.data = SIMD_SET(step_size);
|
205 |
+
|
206 |
+
float w_decay = -1 * _alpha * _weight_decay;
|
207 |
+
AVX_Data weight_decay4;
|
208 |
+
if (_weight_decay > 0)
|
209 |
+
weight_decay4.data = (_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
|
210 |
+
new_rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * span);
|
211 |
+
for (size_t t = 0; t < new_rounded_size; t += TILE) {
|
212 |
+
size_t copy_size = TILE;
|
213 |
+
if ((t + TILE) > new_rounded_size) copy_size = new_rounded_size - t;
|
214 |
+
size_t offset = copy_size + t;
|
215 |
+
#if defined(__ENABLE_CUDA__)
|
216 |
+
if ((t / TILE) >= 2) { cudaStreamSynchronize(_streams[_buf_index]); }
|
217 |
+
#elif defined(__ENABLE_CANN__)
|
218 |
+
if ((t / TILE) >= 2) { aclrtSynchronizeStream(_streams[_buf_index].stream()); }
|
219 |
+
#endif
|
220 |
+
#pragma omp parallel for
|
221 |
+
for (size_t i = t; i < offset; i += SIMD_WIDTH * span) {
|
222 |
+
AVX_Data grad_4[span];
|
223 |
+
simd_load<span>(grad_4, grads + (i >> rshft), half_precision);
|
224 |
+
|
225 |
+
AVX_Data momentum_4[span];
|
226 |
+
simd_load<span>(momentum_4, _exp_avg + i, false);
|
227 |
+
|
228 |
+
AVX_Data variance_4[span];
|
229 |
+
simd_load<span>(variance_4, _exp_avg_sq + i, false);
|
230 |
+
|
231 |
+
AVX_Data param_4[span];
|
232 |
+
simd_load<span>(param_4, _params + (i >> rshft), half_precision);
|
233 |
+
|
234 |
+
if (_weight_decay > 0 && !_adamw_mode) {
|
235 |
+
simd_fma<span>(grad_4, param_4, weight_decay4, grad_4);
|
236 |
+
}
|
237 |
+
|
238 |
+
simd_mul<span>(momentum_4, momentum_4, betta1_4);
|
239 |
+
simd_fma<span>(momentum_4, grad_4, betta1_minus1_4, momentum_4);
|
240 |
+
simd_mul<span>(variance_4, variance_4, betta2_4);
|
241 |
+
simd_mul<span>(grad_4, grad_4, grad_4);
|
242 |
+
simd_fma<span>(variance_4, grad_4, betta2_minus1_4, variance_4);
|
243 |
+
simd_sqrt<span>(grad_4, variance_4);
|
244 |
+
simd_fma<span>(grad_4, grad_4, bias2_sqrt, eps_4);
|
245 |
+
simd_div<span>(grad_4, momentum_4, grad_4);
|
246 |
+
|
247 |
+
if (_weight_decay > 0 && _adamw_mode) {
|
248 |
+
simd_fma<span>(param_4, param_4, weight_decay4, param_4);
|
249 |
+
}
|
250 |
+
|
251 |
+
simd_fma<span>(param_4, grad_4, step_size_4, param_4);
|
252 |
+
|
253 |
+
simd_store<span>(_params + (i >> rshft), param_4, half_precision);
|
254 |
+
#if defined(__ENABLE_CUDA__) or defined(__ENABLE_CANN__)
|
255 |
+
if (dev_params) {
|
256 |
+
simd_store<span>(_doubled_buffer[_buf_index] + (i - t), param_4, half_precision);
|
257 |
+
}
|
258 |
+
#endif
|
259 |
+
simd_store<span>(_exp_avg + i, momentum_4, false);
|
260 |
+
simd_store<span>(_exp_avg_sq + i, variance_4, false);
|
261 |
+
}
|
262 |
+
#if defined(__ENABLE_CUDA__)
|
263 |
+
if (dev_params) {
|
264 |
+
if (half_precision)
|
265 |
+
launch_param_update_half(
|
266 |
+
_doubled_buffer[_buf_index], dev_params + t, copy_size, _streams[_buf_index]);
|
267 |
+
else
|
268 |
+
launch_param_update(
|
269 |
+
_doubled_buffer[_buf_index], dev_params + t, copy_size, _streams[_buf_index]);
|
270 |
+
|
271 |
+
_buf_index = !_buf_index;
|
272 |
+
}
|
273 |
+
#elif defined(__ENABLE_CANN__)
|
274 |
+
if (dev_params) {
|
275 |
+
size_t memcpy_size = copy_size * sizeof(_doubled_buffer[_buf_index][0]);
|
276 |
+
if (half_precision) memcpy_size /= 2;
|
277 |
+
aclrtMemcpy(dev_params + t,
|
278 |
+
memcpy_size,
|
279 |
+
_doubled_buffer[_buf_index],
|
280 |
+
memcpy_size,
|
281 |
+
aclrtMemcpyKind::ACL_MEMCPY_HOST_TO_DEVICE);
|
282 |
+
|
283 |
+
_buf_index = !_buf_index;
|
284 |
+
}
|
285 |
+
#endif
|
286 |
+
}
|
287 |
+
*rounded_size = new_rounded_size;
|
288 |
+
}
|
289 |
+
#endif
|
290 |
+
|
291 |
+
int create_adam_optimizer(int optimizer_id,
|
292 |
+
float alpha = 1e-3,
|
293 |
+
float betta1 = 0.9,
|
294 |
+
float betta2 = 0.999,
|
295 |
+
float eps = 1e-8,
|
296 |
+
float weight_decay = 0,
|
297 |
+
bool adamw_mode = true,
|
298 |
+
bool should_log = false);
|
299 |
+
|
300 |
+
int ds_adam_step(int optimizer_id,
|
301 |
+
size_t step,
|
302 |
+
float lr,
|
303 |
+
float beta1,
|
304 |
+
float beta2,
|
305 |
+
float epsilon,
|
306 |
+
float weight_decay,
|
307 |
+
bool bias_correction,
|
308 |
+
torch::Tensor& params,
|
309 |
+
torch::Tensor& grads,
|
310 |
+
torch::Tensor& exp_avg,
|
311 |
+
torch::Tensor& exp_avg_sq);
|
312 |
+
|
313 |
+
int ds_adam_step_plus_copy(int optimizer_id,
|
314 |
+
size_t step,
|
315 |
+
float lr,
|
316 |
+
float beta1,
|
317 |
+
float beta2,
|
318 |
+
float epsilon,
|
319 |
+
float weight_decay,
|
320 |
+
bool bias_correction,
|
321 |
+
torch::Tensor& params,
|
322 |
+
torch::Tensor& grads,
|
323 |
+
torch::Tensor& exp_avg,
|
324 |
+
torch::Tensor& exp_avg_sq,
|
325 |
+
torch::Tensor& gpu_params);
|
326 |
+
|
327 |
+
int destroy_adam_optimizer(int optimizer_id);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/cpu_lion.h
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#define NOMINMAX // Windows idiosyncrasy
|
9 |
+
// https://stackoverflow.com/questions/4913922/possible-problems-with-nominmax-on-visual-c
|
10 |
+
|
11 |
+
#include <stdio.h>
|
12 |
+
#include <torch/extension.h>
|
13 |
+
#include <cassert>
|
14 |
+
#include "simd.h"
|
15 |
+
|
16 |
+
#if defined(__ENABLE_CUDA__)
|
17 |
+
#include <cuda_fp16.h>
|
18 |
+
#include <cuda_runtime_api.h>
|
19 |
+
#include "cuda.h"
|
20 |
+
#include "custom_cuda_layers.h"
|
21 |
+
typedef __half ds_half_precision_t;
|
22 |
+
#elif defined(__ENABLE_CANN__)
|
23 |
+
#include "acl/acl.h"
|
24 |
+
#include "torch_npu/csrc/core/npu/NPUStream.h"
|
25 |
+
typedef c10::Half ds_half_precision_t;
|
26 |
+
#else
|
27 |
+
#include <cmath>
|
28 |
+
typedef unsigned short ds_half_precision_t;
|
29 |
+
#endif
|
30 |
+
|
31 |
+
#define STEP(SPAN) \
|
32 |
+
void Step_##SPAN(float* _params, \
|
33 |
+
float* grads, \
|
34 |
+
float* _exp_avg, \
|
35 |
+
size_t _param_size, \
|
36 |
+
ds_half_precision_t* dev_param = nullptr, \
|
37 |
+
bool half_precision = false);
|
38 |
+
|
39 |
+
class Lion_Optimizer {
|
40 |
+
public:
|
41 |
+
Lion_Optimizer(float alpha = 1e-3,
|
42 |
+
float betta1 = 0.9,
|
43 |
+
float betta2 = 0.999,
|
44 |
+
float weight_decay = 0)
|
45 |
+
: _alpha(alpha), _betta1(betta1), _betta2(betta2), _weight_decay(weight_decay), _step(0)
|
46 |
+
{
|
47 |
+
#if defined(__ENABLE_CUDA__)
|
48 |
+
cudaMallocHost((void**)_doubled_buffer, TILE * sizeof(float));
|
49 |
+
cudaMallocHost((void**)(_doubled_buffer + 1), TILE * sizeof(float));
|
50 |
+
|
51 |
+
_streams[0] = TrainingContext::Instance().GetCurrentStream();
|
52 |
+
_streams[1] = TrainingContext::Instance().GetNewStream();
|
53 |
+
_buf_index = false;
|
54 |
+
#elif defined(__ENABLE_CANN__)
|
55 |
+
aclrtMallocHost((void**)_doubled_buffer, TILE * sizeof(float));
|
56 |
+
aclrtMallocHost((void**)(_doubled_buffer + 1), TILE * sizeof(float));
|
57 |
+
|
58 |
+
_buf_index = false;
|
59 |
+
#endif
|
60 |
+
}
|
61 |
+
~Lion_Optimizer()
|
62 |
+
{
|
63 |
+
#if defined(__ENABLE_CUDA__)
|
64 |
+
cudaFreeHost(_doubled_buffer[0]);
|
65 |
+
cudaFreeHost(_doubled_buffer[1]);
|
66 |
+
#elif defined(__ENABLE_CANN__)
|
67 |
+
aclrtFreeHost(_doubled_buffer[0]);
|
68 |
+
aclrtFreeHost(_doubled_buffer[1]);
|
69 |
+
#endif
|
70 |
+
}
|
71 |
+
|
72 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
73 |
+
template <int span>
|
74 |
+
void Step_AVX(size_t* rounded_size,
|
75 |
+
float* _params,
|
76 |
+
float* grads,
|
77 |
+
float* _exp_avg,
|
78 |
+
size_t param_size,
|
79 |
+
ds_half_precision_t* dev_param = nullptr,
|
80 |
+
bool half_precision = false);
|
81 |
+
#endif
|
82 |
+
STEP(1)
|
83 |
+
STEP(4)
|
84 |
+
STEP(8)
|
85 |
+
#if defined(__ENABLE_CUDA__)
|
86 |
+
inline void SynchronizeStreams()
|
87 |
+
{
|
88 |
+
for (int i = 0; i < 2; i++) cudaStreamSynchronize(_streams[i]);
|
89 |
+
}
|
90 |
+
#elif defined(__ENABLE_CANN__)
|
91 |
+
inline void SynchronizeStreams()
|
92 |
+
{
|
93 |
+
for (int i = 0; i < 2; i++) aclrtSynchronizeStream(_streams[i].stream());
|
94 |
+
}
|
95 |
+
#endif
|
96 |
+
inline void IncrementStep(size_t step, float beta1, float beta2)
|
97 |
+
{
|
98 |
+
_step++;
|
99 |
+
if (_step != step || beta1 != _betta1 || beta2 != _betta2) {
|
100 |
+
_step = step;
|
101 |
+
_betta1 = beta1;
|
102 |
+
_betta2 = beta2;
|
103 |
+
}
|
104 |
+
}
|
105 |
+
inline void update_state(float lr, float weight_decay)
|
106 |
+
{
|
107 |
+
_alpha = lr;
|
108 |
+
_weight_decay = weight_decay;
|
109 |
+
}
|
110 |
+
|
111 |
+
private:
|
112 |
+
float _alpha;
|
113 |
+
float _betta1;
|
114 |
+
float _betta2;
|
115 |
+
float _weight_decay;
|
116 |
+
size_t _step;
|
117 |
+
|
118 |
+
#if defined(__ENABLE_CUDA__)
|
119 |
+
float* _doubled_buffer[2];
|
120 |
+
cudaStream_t _streams[2];
|
121 |
+
bool _buf_index;
|
122 |
+
#elif defined(__ENABLE_CANN__)
|
123 |
+
float* _doubled_buffer[2];
|
124 |
+
c10_npu::NPUStream _streams[2] = {c10_npu::getCurrentNPUStream(),
|
125 |
+
c10_npu::getNPUStreamFromPool()};
|
126 |
+
bool _buf_index;
|
127 |
+
#endif
|
128 |
+
};
|
129 |
+
|
130 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
131 |
+
template <int span>
|
132 |
+
void Lion_Optimizer::Step_AVX(size_t* rounded_size,
|
133 |
+
float* _params,
|
134 |
+
float* grads,
|
135 |
+
float* _exp_avg,
|
136 |
+
size_t _param_size,
|
137 |
+
ds_half_precision_t* dev_params,
|
138 |
+
bool half_precision)
|
139 |
+
{
|
140 |
+
size_t new_rounded_size = 0;
|
141 |
+
int rshft = half_precision ? 1 : 0;
|
142 |
+
|
143 |
+
constexpr float neg1 = -1.0f;
|
144 |
+
AVX_Data neg1_4;
|
145 |
+
neg1_4.data = SIMD_SET(neg1);
|
146 |
+
|
147 |
+
AVX_Data betta1_4;
|
148 |
+
betta1_4.data = SIMD_SET(_betta1);
|
149 |
+
AVX_Data betta2_4;
|
150 |
+
betta2_4.data = SIMD_SET(_betta2);
|
151 |
+
|
152 |
+
float betta1_minus1 = 1 - _betta1;
|
153 |
+
float betta2_minus1 = 1 - _betta2;
|
154 |
+
AVX_Data betta1_minus1_4;
|
155 |
+
betta1_minus1_4.data = SIMD_SET(betta1_minus1);
|
156 |
+
AVX_Data betta2_minus1_4;
|
157 |
+
betta2_minus1_4.data = SIMD_SET(betta2_minus1);
|
158 |
+
|
159 |
+
float step_size = -_alpha;
|
160 |
+
AVX_Data step_size_4;
|
161 |
+
step_size_4.data = SIMD_SET(step_size);
|
162 |
+
|
163 |
+
float after_decay = 1.0f - _alpha * _weight_decay;
|
164 |
+
AVX_Data after_decay_4;
|
165 |
+
if (_weight_decay > 0) after_decay_4.data = SIMD_SET(after_decay);
|
166 |
+
|
167 |
+
new_rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * span);
|
168 |
+
for (size_t t = 0; t < new_rounded_size; t += TILE) {
|
169 |
+
size_t copy_size = TILE;
|
170 |
+
if ((t + TILE) > new_rounded_size) copy_size = new_rounded_size - t;
|
171 |
+
size_t offset = copy_size + t;
|
172 |
+
#if defined(__ENABLE_CUDA__)
|
173 |
+
if ((t / TILE) >= 2) { cudaStreamSynchronize(_streams[_buf_index]); }
|
174 |
+
#elif defined(__ENABLE_CANN__)
|
175 |
+
if ((t / TILE) >= 2) { aclrtSynchronizeStream(_streams[_buf_index].stream()); }
|
176 |
+
#endif
|
177 |
+
#pragma omp parallel for
|
178 |
+
for (size_t i = t; i < offset; i += SIMD_WIDTH * span) {
|
179 |
+
AVX_Data grad_4[span];
|
180 |
+
simd_load<span>(grad_4, grads + (i >> rshft), half_precision);
|
181 |
+
|
182 |
+
AVX_Data momentum_4[span];
|
183 |
+
simd_load<span>(momentum_4, _exp_avg + i, false);
|
184 |
+
|
185 |
+
AVX_Data param_4[span];
|
186 |
+
simd_load<span>(param_4, _params + (i >> rshft), half_precision);
|
187 |
+
|
188 |
+
AVX_Data tmp_4[span];
|
189 |
+
|
190 |
+
simd_mul<span>(tmp_4, momentum_4, betta1_4);
|
191 |
+
simd_fma<span>(tmp_4, grad_4, betta1_minus1_4, tmp_4);
|
192 |
+
// We already used intrinsics, so consider the machine representation fixed.
|
193 |
+
simd_and<span>(tmp_4, tmp_4, neg1_4);
|
194 |
+
simd_xor<span>(tmp_4, tmp_4, step_size_4);
|
195 |
+
if (_weight_decay > 0) {
|
196 |
+
simd_fma<span>(param_4, param_4, after_decay_4, tmp_4);
|
197 |
+
} else {
|
198 |
+
simd_add<span>(param_4, param_4, tmp_4);
|
199 |
+
}
|
200 |
+
|
201 |
+
simd_mul<span>(momentum_4, momentum_4, betta2_4);
|
202 |
+
simd_fma<span>(momentum_4, grad_4, betta2_minus1_4, momentum_4);
|
203 |
+
|
204 |
+
simd_store<span>(_params + (i >> rshft), param_4, half_precision);
|
205 |
+
#if defined(__ENABLE_CUDA__) or defined(__ENABLE_CANN__)
|
206 |
+
if (dev_params) {
|
207 |
+
simd_store<span>(_doubled_buffer[_buf_index] + (i - t), param_4, half_precision);
|
208 |
+
}
|
209 |
+
#endif
|
210 |
+
simd_store<span>(_exp_avg + i, momentum_4, false);
|
211 |
+
}
|
212 |
+
#if defined(__ENABLE_CUDA__)
|
213 |
+
if (dev_params) {
|
214 |
+
if (half_precision)
|
215 |
+
launch_param_update_half(
|
216 |
+
_doubled_buffer[_buf_index], dev_params + t, copy_size, _streams[_buf_index]);
|
217 |
+
else
|
218 |
+
launch_param_update(
|
219 |
+
_doubled_buffer[_buf_index], dev_params + t, copy_size, _streams[_buf_index]);
|
220 |
+
|
221 |
+
_buf_index = !_buf_index;
|
222 |
+
}
|
223 |
+
#elif defined(__ENABLE_CANN__)
|
224 |
+
if (dev_params) {
|
225 |
+
size_t memcpy_size = copy_size * sizeof(_doubled_buffer[_buf_index][0]);
|
226 |
+
if (half_precision) memcpy_size /= 2;
|
227 |
+
aclrtMemcpy(dev_params + t,
|
228 |
+
memcpy_size,
|
229 |
+
_doubled_buffer[_buf_index],
|
230 |
+
memcpy_size,
|
231 |
+
aclrtMemcpyKind::ACL_MEMCPY_HOST_TO_DEVICE);
|
232 |
+
|
233 |
+
_buf_index = !_buf_index;
|
234 |
+
}
|
235 |
+
#endif
|
236 |
+
}
|
237 |
+
*rounded_size = new_rounded_size;
|
238 |
+
}
|
239 |
+
#endif
|
240 |
+
|
241 |
+
int create_lion_optimizer(int optimizer_id,
|
242 |
+
float alpha = 1e-3,
|
243 |
+
float betta1 = 0.9,
|
244 |
+
float betta2 = 0.999,
|
245 |
+
float weight_decay = 0,
|
246 |
+
bool should_log = false);
|
247 |
+
|
248 |
+
int ds_lion_step(int optimizer_id,
|
249 |
+
size_t step,
|
250 |
+
float lr,
|
251 |
+
float beta1,
|
252 |
+
float beta2,
|
253 |
+
float weight_decay,
|
254 |
+
torch::Tensor& params,
|
255 |
+
torch::Tensor& grads,
|
256 |
+
torch::Tensor& exp_avg);
|
257 |
+
|
258 |
+
int ds_lion_step_plus_copy(int optimizer_id,
|
259 |
+
size_t step,
|
260 |
+
float lr,
|
261 |
+
float beta1,
|
262 |
+
float beta2,
|
263 |
+
float weight_decay,
|
264 |
+
torch::Tensor& params,
|
265 |
+
torch::Tensor& grads,
|
266 |
+
torch::Tensor& exp_avg,
|
267 |
+
torch::Tensor& gpu_params);
|
268 |
+
|
269 |
+
int destroy_lion_optimizer(int optimizer_id);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/cublas_wrappers.h
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <assert.h>
|
9 |
+
#include <cublas_v2.h>
|
10 |
+
#include <cuda.h>
|
11 |
+
#include <cuda_fp16.h>
|
12 |
+
#include <cuda_runtime.h>
|
13 |
+
#ifndef __HIP_PLATFORM_AMD__
|
14 |
+
#include <mma.h>
|
15 |
+
#endif
|
16 |
+
#ifdef __HIP_PLATFORM_AMD__
|
17 |
+
#include <rocblas/rocblas.h>
|
18 |
+
#endif
|
19 |
+
#include <stdio.h>
|
20 |
+
|
21 |
+
int cublas_gemm_ex(cublasHandle_t handle,
|
22 |
+
cublasOperation_t transa,
|
23 |
+
cublasOperation_t transb,
|
24 |
+
int m,
|
25 |
+
int n,
|
26 |
+
int k,
|
27 |
+
const float* alpha,
|
28 |
+
const float* beta,
|
29 |
+
const float* A,
|
30 |
+
const float* B,
|
31 |
+
float* C,
|
32 |
+
#ifdef __HIP_PLATFORM_AMD__
|
33 |
+
rocblas_gemm_algo algo = rocblas_gemm_algo_standard);
|
34 |
+
#else
|
35 |
+
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT);
|
36 |
+
#endif
|
37 |
+
|
38 |
+
int cublas_gemm_ex(cublasHandle_t handle,
|
39 |
+
cublasOperation_t transa,
|
40 |
+
cublasOperation_t transb,
|
41 |
+
int m,
|
42 |
+
int n,
|
43 |
+
int k,
|
44 |
+
const float* alpha,
|
45 |
+
const float* beta,
|
46 |
+
const __half* A,
|
47 |
+
const __half* B,
|
48 |
+
__half* C,
|
49 |
+
#ifdef __HIP_PLATFORM_AMD__
|
50 |
+
rocblas_gemm_algo algo = rocblas_gemm_algo_standard);
|
51 |
+
#else
|
52 |
+
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT_TENSOR_OP);
|
53 |
+
#endif
|
54 |
+
|
55 |
+
int cublas_strided_batched_gemm(cublasHandle_t handle,
|
56 |
+
int m,
|
57 |
+
int n,
|
58 |
+
int k,
|
59 |
+
const float* alpha,
|
60 |
+
const float* beta,
|
61 |
+
const float* A,
|
62 |
+
const float* B,
|
63 |
+
float* C,
|
64 |
+
cublasOperation_t op_A,
|
65 |
+
cublasOperation_t op_B,
|
66 |
+
int stride_A,
|
67 |
+
int stride_B,
|
68 |
+
int stride_C,
|
69 |
+
int batch,
|
70 |
+
#ifdef __HIP_PLATFORM_AMD__
|
71 |
+
rocblas_gemm_algo algo = rocblas_gemm_algo_standard);
|
72 |
+
#else
|
73 |
+
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT);
|
74 |
+
#endif
|
75 |
+
|
76 |
+
int cublas_strided_batched_gemm(cublasHandle_t handle,
|
77 |
+
int m,
|
78 |
+
int n,
|
79 |
+
int k,
|
80 |
+
const float* alpha,
|
81 |
+
const float* beta,
|
82 |
+
const __half* A,
|
83 |
+
const __half* B,
|
84 |
+
__half* C,
|
85 |
+
cublasOperation_t op_A,
|
86 |
+
cublasOperation_t op_B,
|
87 |
+
int stride_A,
|
88 |
+
int stride_B,
|
89 |
+
int stride_C,
|
90 |
+
int batch,
|
91 |
+
#ifdef __HIP_PLATFORM_AMD__
|
92 |
+
rocblas_gemm_algo algo = rocblas_gemm_algo_standard);
|
93 |
+
#else
|
94 |
+
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT_TENSOR_OP);
|
95 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/custom_cuda_layers.h
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include "ds_kernel_utils.h"
|
9 |
+
|
10 |
+
#include <cuda.h>
|
11 |
+
#include <cuda_fp16.h>
|
12 |
+
#include <curand_kernel.h>
|
13 |
+
#include <stdio.h>
|
14 |
+
#include <stdlib.h>
|
15 |
+
|
16 |
+
#include "context.h"
|
17 |
+
#include "cublas_wrappers.h"
|
18 |
+
|
19 |
+
#define CUDA_CHECK(callstr) \
|
20 |
+
{ \
|
21 |
+
cudaError_t error_code = callstr; \
|
22 |
+
if (error_code != cudaSuccess) { \
|
23 |
+
std::cerr << "CUDA error " << error_code << " at " << __FILE__ << ":" << __LINE__; \
|
24 |
+
assert(0); \
|
25 |
+
} \
|
26 |
+
}
|
27 |
+
|
28 |
+
#define MAX_THREADS 1024
|
29 |
+
#define THREADS 256
|
30 |
+
|
31 |
+
#define MAX_THREAD_STRIDE 32
|
32 |
+
#define TILE_DIM 32
|
33 |
+
|
34 |
+
// Maximum sequence-length support based on the number of threads (2048) allowed in each block and
|
35 |
+
// this MAX is 8K For higher sequence length we need to use higher Max, like for 64K : 32
|
36 |
+
#define MAX_THREAD_ITERATIONS 8 // Maximum 8K
|
37 |
+
#define MAX_WARP_NUM 32
|
38 |
+
|
39 |
+
#define MAX_REGISTERS 256
|
40 |
+
|
41 |
+
#define MAX_REG 256
|
42 |
+
|
43 |
+
#define WARP_SIZE_BITS 5
|
44 |
+
|
45 |
+
// Fused bias add with gelu activation
|
46 |
+
template <typename T>
|
47 |
+
void launch_bias_gelu(const T* input,
|
48 |
+
const T* bias,
|
49 |
+
T* output,
|
50 |
+
int intermediate_size,
|
51 |
+
int batch_size,
|
52 |
+
cudaStream_t stream);
|
53 |
+
|
54 |
+
template <typename T>
|
55 |
+
void launch_gelu(const T* input,
|
56 |
+
T* output,
|
57 |
+
int intermediate_size,
|
58 |
+
int batch_size,
|
59 |
+
cudaStream_t stream);
|
60 |
+
|
61 |
+
template <typename T>
|
62 |
+
void launch_d_gelu(T* d_output,
|
63 |
+
const T* input,
|
64 |
+
const T* bias,
|
65 |
+
int intermediate_size,
|
66 |
+
int batch_size,
|
67 |
+
cudaStream_t stream);
|
68 |
+
|
69 |
+
// Custom fused bias add with layer normalization
|
70 |
+
template <typename T>
|
71 |
+
void launch_bias_residual_layer_norm(T* vals,
|
72 |
+
const T* residual,
|
73 |
+
const T* gamma,
|
74 |
+
const T* beta,
|
75 |
+
float epsilon,
|
76 |
+
int batch_size,
|
77 |
+
int hidden_dim,
|
78 |
+
cudaStream_t stream,
|
79 |
+
bool preLayerNorm,
|
80 |
+
bool training,
|
81 |
+
T* vars,
|
82 |
+
T* means);
|
83 |
+
|
84 |
+
template <typename T>
|
85 |
+
void launch_bias_residual_layer_norm(T* vals,
|
86 |
+
const T* residual,
|
87 |
+
const T* gamma,
|
88 |
+
const T* beta,
|
89 |
+
float epsilon,
|
90 |
+
int batch_size,
|
91 |
+
int hidden_dim,
|
92 |
+
cudaStream_t stream,
|
93 |
+
bool preLayerNorm,
|
94 |
+
bool training,
|
95 |
+
T* vars);
|
96 |
+
|
97 |
+
template <typename T>
|
98 |
+
void launch_layerNorm_backward_fused_add(const T* out_grad1,
|
99 |
+
const T* out_grad2,
|
100 |
+
const T* X_data,
|
101 |
+
const T* vars,
|
102 |
+
const T* means,
|
103 |
+
const T* gamma,
|
104 |
+
T* gamma_grad,
|
105 |
+
T* betta_grad,
|
106 |
+
T* inp_grad,
|
107 |
+
int batch_size,
|
108 |
+
int hidden_dim,
|
109 |
+
cudaStream_t stream[2]);
|
110 |
+
template <typename T>
|
111 |
+
void launch_layerNorm_backward_fused_add(const T* out_grad1,
|
112 |
+
const T* out_grad2,
|
113 |
+
const T* vals_hat,
|
114 |
+
const T* vars,
|
115 |
+
const T* gamma,
|
116 |
+
T* gamma_grad,
|
117 |
+
T* betta_grad,
|
118 |
+
T* inp_grad,
|
119 |
+
int batch_size,
|
120 |
+
int hidden_dim,
|
121 |
+
cudaStream_t stream[2],
|
122 |
+
bool invertible = false,
|
123 |
+
const T* betta = nullptr);
|
124 |
+
|
125 |
+
template <typename T>
|
126 |
+
void launch_layerNorm_backward(const T* out_grad,
|
127 |
+
const T* X_data,
|
128 |
+
const T* vars,
|
129 |
+
const T* means,
|
130 |
+
const T* gamma,
|
131 |
+
T* gamma_grad,
|
132 |
+
T* betta_grad,
|
133 |
+
T* inp_grad,
|
134 |
+
int batch_size,
|
135 |
+
int hidden_dim,
|
136 |
+
cudaStream_t stream[2]);
|
137 |
+
|
138 |
+
template <typename T>
|
139 |
+
void launch_layerNorm_backward(const T* out_grad,
|
140 |
+
const T* vals_hat,
|
141 |
+
const T* vars,
|
142 |
+
const T* gamma,
|
143 |
+
T* gamma_grad,
|
144 |
+
T* betta_grad,
|
145 |
+
T* inp_grad,
|
146 |
+
int batch_size,
|
147 |
+
int hidden_dim,
|
148 |
+
cudaStream_t stream[2],
|
149 |
+
bool invertible = false,
|
150 |
+
const T* betta = nullptr);
|
151 |
+
|
152 |
+
template <typename T>
|
153 |
+
void launch_layerNorm_backward_nreversible(const T* out_grad,
|
154 |
+
const T* vals,
|
155 |
+
const T* out_grad_trans,
|
156 |
+
const T* vals_trans,
|
157 |
+
const T* means,
|
158 |
+
const T* vars,
|
159 |
+
const T* gamma,
|
160 |
+
T* gamma_grad,
|
161 |
+
T* betta_grad,
|
162 |
+
T* inp_grad,
|
163 |
+
int batch_size,
|
164 |
+
int hidden_dim,
|
165 |
+
cudaStream_t stream[2]);
|
166 |
+
|
167 |
+
template <typename T>
|
168 |
+
void Transpose(const T* inp_mat, T* out_mat, int rows, int cols, cudaStream_t stream);
|
169 |
+
|
170 |
+
template <typename T>
|
171 |
+
void launch_attn_softmax_backward(T* out_grad,
|
172 |
+
const T* soft_inp,
|
173 |
+
int batch_size,
|
174 |
+
int heads,
|
175 |
+
int seq_length,
|
176 |
+
cudaStream_t stream);
|
177 |
+
|
178 |
+
template <typename T>
|
179 |
+
void launch_attn_softmax_backward_v2(T* out_grad,
|
180 |
+
const T* soft_inp,
|
181 |
+
int batch_size,
|
182 |
+
int heads,
|
183 |
+
int seq_length,
|
184 |
+
cudaStream_t stream);
|
185 |
+
|
186 |
+
// Custom softmax with scaling and attention mask addition
|
187 |
+
template <typename T>
|
188 |
+
void launch_attn_softmax(T* vals,
|
189 |
+
const T* attn_mask,
|
190 |
+
int batch_size,
|
191 |
+
int heads,
|
192 |
+
int sequence_length,
|
193 |
+
cudaStream_t stream);
|
194 |
+
|
195 |
+
template <typename T>
|
196 |
+
void launch_transform_0213(T* output,
|
197 |
+
const T* vals,
|
198 |
+
int batch_size,
|
199 |
+
int seq_length,
|
200 |
+
int hidden_dim,
|
201 |
+
int heads,
|
202 |
+
cudaStream_t stream);
|
203 |
+
|
204 |
+
// Custom bias add
|
205 |
+
template <typename T>
|
206 |
+
void launch_bias_add_transform_0213(T* outputs,
|
207 |
+
const T* vals,
|
208 |
+
const T* bias,
|
209 |
+
int batch_size,
|
210 |
+
int seq_length,
|
211 |
+
int hidden_dim,
|
212 |
+
int heads,
|
213 |
+
cudaStream_t stream,
|
214 |
+
int trans_count);
|
215 |
+
|
216 |
+
// 4D transform [0, 1, 2, 3] -> [0, 2, 1, 3]
|
217 |
+
template <typename T>
|
218 |
+
void launch_transform4d_0213(T* out,
|
219 |
+
const T* in,
|
220 |
+
int batch_size,
|
221 |
+
int heads,
|
222 |
+
int seq_length,
|
223 |
+
int hidden_dim,
|
224 |
+
cudaStream_t stream,
|
225 |
+
int trans_count);
|
226 |
+
|
227 |
+
template <typename T>
|
228 |
+
void launch_dropout(T* vals,
|
229 |
+
const T* bias,
|
230 |
+
uint8_t* mask,
|
231 |
+
int batch,
|
232 |
+
int dim,
|
233 |
+
float ratio,
|
234 |
+
cudaStream_t stream);
|
235 |
+
|
236 |
+
template <typename T>
|
237 |
+
void launch_dropout(T* vals_out,
|
238 |
+
const T* vals,
|
239 |
+
uint8_t* mask,
|
240 |
+
int total_count,
|
241 |
+
int dim,
|
242 |
+
float ratio,
|
243 |
+
cudaStream_t stream,
|
244 |
+
bool bwd = false);
|
245 |
+
|
246 |
+
template <typename T>
|
247 |
+
void launch_dropout(T* out,
|
248 |
+
const T* vals,
|
249 |
+
const T* residual,
|
250 |
+
const T* bias,
|
251 |
+
uint8_t* mask,
|
252 |
+
int batch,
|
253 |
+
int dim,
|
254 |
+
float ratio,
|
255 |
+
cudaStream_t stream);
|
256 |
+
|
257 |
+
template <typename T>
|
258 |
+
void launch_dropout_grad(T* vals, uint8_t* mask, int total_count, float ratio, cudaStream_t stream);
|
259 |
+
|
260 |
+
template <typename T>
|
261 |
+
void launch_dropout_grad(T* vals_out,
|
262 |
+
const T* vals,
|
263 |
+
uint8_t* mask,
|
264 |
+
int total_count,
|
265 |
+
float ratio,
|
266 |
+
cudaStream_t stream);
|
267 |
+
|
268 |
+
template <typename T>
|
269 |
+
void launch_fuse_transpose_bias_kernel(const T* inp,
|
270 |
+
T* out,
|
271 |
+
int rows,
|
272 |
+
int cols,
|
273 |
+
cudaStream_t stream);
|
274 |
+
|
275 |
+
void launch_param_update(const float* input, __half* output, int size, cudaStream_t stream);
|
276 |
+
void launch_param_update_half(const float* input, __half* output, int size, cudaStream_t stream);
|
277 |
+
|
278 |
+
void launch_token_sort(int32_t* indices,
|
279 |
+
int layers,
|
280 |
+
int batch_size,
|
281 |
+
int reserved_size,
|
282 |
+
int original_tokens,
|
283 |
+
cudaStream_t stream);
|
284 |
+
|
285 |
+
template <typename T>
|
286 |
+
void launch_gather_tokens(T* retained_tokens,
|
287 |
+
T* activations,
|
288 |
+
int32_t* gather_indices,
|
289 |
+
int32_t batch_size,
|
290 |
+
int32_t sampled_tokens,
|
291 |
+
int32_t channels,
|
292 |
+
int32_t read_batch_stride,
|
293 |
+
int32_t read_seq_stride,
|
294 |
+
int32_t write_batch_stride,
|
295 |
+
int32_t write_seq_stride,
|
296 |
+
cudaStream_t stream);
|
297 |
+
|
298 |
+
template <typename T>
|
299 |
+
void launch_scatter_tokens(T* all_activations,
|
300 |
+
T* layer_activations,
|
301 |
+
int32_t* gather_indices,
|
302 |
+
int32_t batch_size,
|
303 |
+
int32_t sampled_tokens,
|
304 |
+
int32_t channels,
|
305 |
+
int32_t read_batch_stride,
|
306 |
+
int32_t read_seq_stride,
|
307 |
+
int32_t write_batch_stride,
|
308 |
+
int32_t write_seq_stride,
|
309 |
+
cudaStream_t stream);
|
310 |
+
|
311 |
+
template <typename T>
|
312 |
+
void launch_slice_gpt_mask(T* output_mask,
|
313 |
+
const T* input_mask,
|
314 |
+
int batch_size,
|
315 |
+
int truncated_seq_len,
|
316 |
+
int orig_seq_len,
|
317 |
+
cudaStream_t stream);
|
318 |
+
|
319 |
+
template <typename T>
|
320 |
+
void launch_slice_bert_mask(T* output_mask,
|
321 |
+
const T* input_mask,
|
322 |
+
const int32_t* retained_indices,
|
323 |
+
int32_t layers,
|
324 |
+
int32_t batch_size,
|
325 |
+
int32_t truncated_seq_len,
|
326 |
+
int32_t orig_seq_len,
|
327 |
+
cudaStream_t stream);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/dequantization_utils.h
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "conversion_utils.h"
|
7 |
+
#include "ds_kernel_utils.h"
|
8 |
+
#include "quantization.h"
|
9 |
+
#include "quantization_utils.h"
|
10 |
+
|
11 |
+
namespace cg = cooperative_groups;
|
12 |
+
|
13 |
+
#pragma once
|
14 |
+
|
15 |
+
namespace dequantize {
|
16 |
+
using Type = quantize::Type;
|
17 |
+
|
18 |
+
template <Type qType, int numBits>
|
19 |
+
using Params = quantize::Params<qType, numBits>;
|
20 |
+
|
21 |
+
constexpr int granularity = quantize::granularity;
|
22 |
+
using PackedInt4 = quantize::PackedInt4;
|
23 |
+
|
24 |
+
constexpr int h_per_chunk = granularity / sizeof(__half);
|
25 |
+
constexpr int h2_per_chunk = granularity / sizeof(__half2);
|
26 |
+
|
27 |
+
/*
|
28 |
+
Device function that reads quantized data from global memory, dequantizes
|
29 |
+
it, and stores it to global memory.
|
30 |
+
Template Arguments :
|
31 |
+
numBits - Number of bits in quantized element. int: 4, 8
|
32 |
+
qType - Type of quantization to perform. Type::Symmetric or Type::Asymmetric
|
33 |
+
unroll - Number of load steps to internally unroll int
|
34 |
+
threads - Number of threads to perform dequant int
|
35 |
+
Function arguments:
|
36 |
+
global_output - __half pointer in global memory
|
37 |
+
data - Quantized data in global memory
|
38 |
+
global_params - Quantization parameters in global memory
|
39 |
+
elems_per_group - Number of elements in each quantization group
|
40 |
+
total_elems - Tensor size (note, does not need to be multiple of elems_per_group)
|
41 |
+
*/
|
42 |
+
template <int numBits, Type qType, int unroll, int threads>
|
43 |
+
DS_D_INLINE void to_global(__half* global_output,
|
44 |
+
const int8_t* data,
|
45 |
+
const float* global_params,
|
46 |
+
const int elems_per_group,
|
47 |
+
const int total_elems);
|
48 |
+
|
49 |
+
/*
|
50 |
+
Device function that quantizes 16 bytes of __half type input data.
|
51 |
+
Template Arguments :
|
52 |
+
numBits - Number of bits in quantized element. int : 8 or 4
|
53 |
+
qType - Type of quantization to perform. Type::Symmetric or Type::Asymmetric
|
54 |
+
Function Arguments :
|
55 |
+
local_output - Local array to store dequantized data __half* or __half2*
|
56 |
+
data - Pointer to quantized input data. int8_t*
|
57 |
+
Params - Parameters for quantization. Params<qType, numBits>
|
58 |
+
*/
|
59 |
+
template <int numBits, Type qType>
|
60 |
+
DS_D_INLINE void chunk(__half2* local_output, const int8_t* data, Params<qType, numBits> q_params);
|
61 |
+
|
62 |
+
template <typename T, int numBits, Type qType>
|
63 |
+
DS_D_INLINE void chunk(T* local_output, const int8_t* data, Params<qType, numBits> q_params);
|
64 |
+
|
65 |
+
/**************** Implementations ******************/
|
66 |
+
|
67 |
+
template <typename T, int numBits, Type qType>
|
68 |
+
DS_D_INLINE void chunk(T* local_output, const int8_t* data, Params<qType, numBits> q_params)
|
69 |
+
{
|
70 |
+
constexpr int32_t num_elems_packed = 8 / numBits;
|
71 |
+
constexpr int32_t iters = h_per_chunk / num_elems_packed;
|
72 |
+
|
73 |
+
#pragma unroll
|
74 |
+
for (int i = 0; i < iters; i++) {
|
75 |
+
if constexpr (num_elems_packed == 1) {
|
76 |
+
local_output[i] = q_params.template dequantize<T>(data[i]);
|
77 |
+
} else {
|
78 |
+
auto accessible_data = *(PackedInt4*)(&data[i]);
|
79 |
+
local_output[2 * i] = q_params.template dequantize<T>(accessible_data.low);
|
80 |
+
local_output[2 * i + 1] = q_params.template dequantize<T>(accessible_data.high);
|
81 |
+
}
|
82 |
+
}
|
83 |
+
}
|
84 |
+
|
85 |
+
template <int numBits, Type qType>
|
86 |
+
DS_D_INLINE void chunk(__half2* local_output, const int8_t* data, Params<qType, numBits> q_params)
|
87 |
+
{
|
88 |
+
__half* local_output_cast = reinterpret_cast<__half*>(local_output);
|
89 |
+
chunk<__half, numBits>(local_output_cast, data, q_params);
|
90 |
+
}
|
91 |
+
|
92 |
+
template <typename T, int numBits, Type qType, int unroll, int threads>
|
93 |
+
DS_D_INLINE void _to_global(T* global_output,
|
94 |
+
const int8_t* data,
|
95 |
+
const float* global_params,
|
96 |
+
const int elems_per_group,
|
97 |
+
const int total_elems)
|
98 |
+
{
|
99 |
+
cg::thread_block tb = cg::this_thread_block();
|
100 |
+
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
|
101 |
+
|
102 |
+
// Load constants
|
103 |
+
// TODO(cmikeh2): Refactor into functions?
|
104 |
+
constexpr int load_granularity = (granularity / (sizeof(T))) / (numBits == 8 ? 1 : 2);
|
105 |
+
constexpr int load_step_stride = load_granularity * threads;
|
106 |
+
constexpr int load_block_stride = load_step_stride * unroll;
|
107 |
+
|
108 |
+
// Store constants
|
109 |
+
constexpr int T_per_chunk = granularity / sizeof(T);
|
110 |
+
constexpr int store_step_stride = T_per_chunk * threads;
|
111 |
+
constexpr int store_block_stride = store_step_stride * unroll;
|
112 |
+
|
113 |
+
// Load offsets
|
114 |
+
const int load_block_offset = tb.group_index().x * load_block_stride;
|
115 |
+
// Note: we can use `load_granularity` since the dtype is `int8_t`.
|
116 |
+
const int load_thread_offset = tb.thread_index().x * load_granularity;
|
117 |
+
const int8_t* load_base = data + load_block_offset + load_thread_offset;
|
118 |
+
|
119 |
+
// Store offsets
|
120 |
+
const int store_block_offset = tb.group_index().x * store_block_stride;
|
121 |
+
const int store_thread_offset = tb.thread_index().x * T_per_chunk;
|
122 |
+
const int elem_id_base = store_block_offset + store_thread_offset;
|
123 |
+
|
124 |
+
int8_t local_load_buffer[load_granularity * unroll];
|
125 |
+
T local_dequant_buffer[T_per_chunk * unroll];
|
126 |
+
|
127 |
+
/*
|
128 |
+
Note: Splitting this loop in half gave about 3-5% performance increase for reasons that aren't
|
129 |
+
totally clear to me, so this is a deliberately weird code structure.
|
130 |
+
*/
|
131 |
+
#pragma unroll
|
132 |
+
for (int i = 0; i < unroll; i++) {
|
133 |
+
const int elem_id_iter = elem_id_base + i * store_step_stride;
|
134 |
+
|
135 |
+
if (elem_id_iter < total_elems) {
|
136 |
+
mem_access::load_global<load_granularity>(local_load_buffer + i * load_granularity,
|
137 |
+
load_base + i * load_step_stride);
|
138 |
+
}
|
139 |
+
}
|
140 |
+
|
141 |
+
#pragma unroll
|
142 |
+
for (int i = 0; i < unroll; i++) {
|
143 |
+
const int elem_id_iter = elem_id_base + i * store_step_stride;
|
144 |
+
if (elem_id_iter < total_elems) {
|
145 |
+
// TODO(cmikeh2): Can we amortize this division? Perform once on the first iteration and
|
146 |
+
// use indexing math to do division free interpolation of the successive groups?
|
147 |
+
const int group_index = elem_id_iter / elems_per_group;
|
148 |
+
Params<qType, numBits> q_params(global_params, group_index);
|
149 |
+
|
150 |
+
chunk<T, numBits, qType>(local_dequant_buffer + i * T_per_chunk,
|
151 |
+
local_load_buffer + i * load_granularity,
|
152 |
+
q_params);
|
153 |
+
mem_access::store_global<granularity>(global_output + elem_id_iter,
|
154 |
+
local_dequant_buffer + i * T_per_chunk);
|
155 |
+
}
|
156 |
+
}
|
157 |
+
}
|
158 |
+
|
159 |
+
template <typename T, int numBits, Type qType, int unroll, int threads>
|
160 |
+
DS_D_INLINE void to_global(T* global_output,
|
161 |
+
const int8_t* data,
|
162 |
+
const float* global_params,
|
163 |
+
const int elems_per_group,
|
164 |
+
const int total_elems)
|
165 |
+
{
|
166 |
+
if constexpr (numBits == 4 || numBits == 8) {
|
167 |
+
_to_global<T, numBits, qType, unroll, threads>(
|
168 |
+
global_output, data, global_params, elems_per_group, total_elems);
|
169 |
+
} else if constexpr (numBits == 3) {
|
170 |
+
// TODO(cmikeh2): Need this implementation
|
171 |
+
assert(false);
|
172 |
+
} else {
|
173 |
+
assert(false);
|
174 |
+
}
|
175 |
+
}
|
176 |
+
|
177 |
+
} // namespace dequantize
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/dropout.h
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <cuda.h>
|
9 |
+
#include <cuda_fp16.h>
|
10 |
+
#include <stdio.h>
|
11 |
+
|
12 |
+
template <typename T>
|
13 |
+
class Dropout {
|
14 |
+
public:
|
15 |
+
struct Config {
|
16 |
+
float ratio;
|
17 |
+
uint32_t dim;
|
18 |
+
bool training;
|
19 |
+
|
20 |
+
Config(float r, uint32_t d) : ratio(r), dim(d), training(true) {}
|
21 |
+
|
22 |
+
float RATIO() const { return training ? ratio : 0.0; }
|
23 |
+
inline void SetDim(uint32_t d) { dim = d; }
|
24 |
+
};
|
25 |
+
|
26 |
+
Dropout(const Config& config) : _config(config), _mask(nullptr) {}
|
27 |
+
|
28 |
+
virtual ~Dropout() {}
|
29 |
+
|
30 |
+
void Forward(int bsz, T* out, const T* vals, cudaStream_t stream, bool bwd = false)
|
31 |
+
{
|
32 |
+
launch_dropout<T>(
|
33 |
+
out, vals, _mask, bsz * _config.dim, _config.dim, _config.RATIO(), stream, bwd);
|
34 |
+
}
|
35 |
+
|
36 |
+
void ForwardWithBias(int bsz, T* vals, const T* bias, cudaStream_t stream)
|
37 |
+
{
|
38 |
+
launch_dropout<T>(vals, bias, _mask, bsz, _config.dim, _config.RATIO(), stream);
|
39 |
+
}
|
40 |
+
|
41 |
+
void ForwardWithBias(int bsz,
|
42 |
+
T* out,
|
43 |
+
const T* vals,
|
44 |
+
const T* residual,
|
45 |
+
const T* bias,
|
46 |
+
cudaStream_t stream)
|
47 |
+
{
|
48 |
+
launch_dropout<T>(
|
49 |
+
out, vals, residual, bias, _mask, bsz, _config.dim, _config.RATIO(), stream);
|
50 |
+
}
|
51 |
+
|
52 |
+
void Backward(int bsz, T* d_vals, cudaStream_t stream)
|
53 |
+
{
|
54 |
+
launch_dropout_grad<T>(d_vals, _mask, bsz * _config.dim, _config.RATIO(), stream);
|
55 |
+
}
|
56 |
+
|
57 |
+
void Backward(int bsz, T* d_vals_out, const T* d_vals, cudaStream_t stream)
|
58 |
+
{
|
59 |
+
launch_dropout_grad<T>(
|
60 |
+
d_vals_out, d_vals, _mask, bsz * _config.dim, _config.RATIO(), stream);
|
61 |
+
}
|
62 |
+
|
63 |
+
bool HasDropout() const { return _config.RATIO() > 0.0; }
|
64 |
+
|
65 |
+
void SetTrainingMode(bool training) { _config.training = training; }
|
66 |
+
|
67 |
+
void SetMask(uint8_t* mask)
|
68 |
+
{
|
69 |
+
if (!mask) { throw std::runtime_error("Dropout mask is null."); }
|
70 |
+
|
71 |
+
_mask = mask;
|
72 |
+
}
|
73 |
+
|
74 |
+
Config GetConfig() const { return _config; }
|
75 |
+
|
76 |
+
inline void SetDimension(uint32_t dim) { _config.SetDim(dim); }
|
77 |
+
|
78 |
+
private:
|
79 |
+
uint8_t* _mask;
|
80 |
+
Config _config;
|
81 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/ds_kernel_utils.h
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Centralized header file for preprocessor macros and constants
|
8 |
+
used throughout the codebase.
|
9 |
+
*/
|
10 |
+
|
11 |
+
#pragma once
|
12 |
+
|
13 |
+
#include <cuda.h>
|
14 |
+
#include <cuda_fp16.h>
|
15 |
+
|
16 |
+
#ifdef BF16_AVAILABLE
|
17 |
+
#include <cuda_bf16.h>
|
18 |
+
#endif
|
19 |
+
|
20 |
+
#define DS_HD_INLINE __host__ __device__ __forceinline__
|
21 |
+
#define DS_D_INLINE __device__ __forceinline__
|
22 |
+
|
23 |
+
#ifdef __HIP_PLATFORM_AMD__
|
24 |
+
|
25 |
+
// constexpr variant of warpSize for templating
|
26 |
+
constexpr int hw_warp_size = 64;
|
27 |
+
#define HALF_PRECISION_AVAILABLE = 1
|
28 |
+
#include <hip/hip_cooperative_groups.h>
|
29 |
+
#include <hip/hip_fp16.h>
|
30 |
+
|
31 |
+
#else // !__HIP_PLATFORM_AMD__
|
32 |
+
|
33 |
+
// constexpr variant of warpSize for templating
|
34 |
+
constexpr int hw_warp_size = 32;
|
35 |
+
|
36 |
+
#if __CUDA_ARCH__ >= 530
|
37 |
+
#define HALF_PRECISION_AVAILABLE = 1
|
38 |
+
#define PTX_AVAILABLE
|
39 |
+
#endif // __CUDA_ARCH__ >= 530
|
40 |
+
|
41 |
+
#if __CUDA_ARCH__ >= 800
|
42 |
+
#define ASYNC_COPY_AVAILABLE
|
43 |
+
#endif // __CUDA_ARCH__ >= 800
|
44 |
+
|
45 |
+
#include <cooperative_groups.h>
|
46 |
+
#include <cuda_fp16.h>
|
47 |
+
|
48 |
+
#endif //__HIP_PLATFORM_AMD__
|
49 |
+
|
50 |
+
inline int next_pow2(const int val)
|
51 |
+
{
|
52 |
+
int rounded_val = val - 1;
|
53 |
+
rounded_val |= rounded_val >> 1;
|
54 |
+
rounded_val |= rounded_val >> 2;
|
55 |
+
rounded_val |= rounded_val >> 4;
|
56 |
+
rounded_val |= rounded_val >> 8;
|
57 |
+
return rounded_val + 1;
|
58 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/ds_transformer_cuda.h
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <cuda_runtime_api.h>
|
9 |
+
#include <curand.h>
|
10 |
+
#include <memory>
|
11 |
+
#include <vector>
|
12 |
+
#include "cublas_v2.h"
|
13 |
+
#include "cuda.h"
|
14 |
+
#include "dropout.h"
|
15 |
+
#include "feed_forward.h"
|
16 |
+
#include "gelu.h"
|
17 |
+
#include "general_kernels.h"
|
18 |
+
#include "normalize_layer.h"
|
19 |
+
#include "softmax.h"
|
20 |
+
#include "strided_batch_gemm.h"
|
21 |
+
|
22 |
+
struct BertGemmAlgos {
|
23 |
+
int m_gemm_qkv_algo;
|
24 |
+
int m_gemm_inter_algo;
|
25 |
+
int m_gemm_output_algo;
|
26 |
+
int m_gemm_batch1_algo;
|
27 |
+
int m_gemm_batch2_algo;
|
28 |
+
|
29 |
+
BertGemmAlgos()
|
30 |
+
: m_gemm_qkv_algo(-1),
|
31 |
+
m_gemm_inter_algo(-1),
|
32 |
+
m_gemm_output_algo(-1),
|
33 |
+
m_gemm_batch1_algo(-1),
|
34 |
+
m_gemm_batch2_algo(-1)
|
35 |
+
{
|
36 |
+
}
|
37 |
+
};
|
38 |
+
|
39 |
+
template <typename T>
|
40 |
+
class BertTransformerLayer {
|
41 |
+
public:
|
42 |
+
BertTransformerLayer(unsigned layer_id,
|
43 |
+
unsigned batch_size,
|
44 |
+
unsigned hidden_size,
|
45 |
+
unsigned num_heads,
|
46 |
+
unsigned intermediate_size,
|
47 |
+
unsigned seq_length,
|
48 |
+
float attn_dropout_ratio,
|
49 |
+
float hidden_output_dropout_ratio,
|
50 |
+
float layer_norm_eps,
|
51 |
+
bool pre_or_postLayerNorm,
|
52 |
+
const std::vector<std::array<int, 3>>& gemm_algos,
|
53 |
+
bool attn_dropout_checkpoint,
|
54 |
+
bool normalize_invertible,
|
55 |
+
bool gelu_checkpoint,
|
56 |
+
bool stochastic_mode);
|
57 |
+
|
58 |
+
virtual ~BertTransformerLayer();
|
59 |
+
|
60 |
+
void Forward(unsigned bsz,
|
61 |
+
const T* input_ptr,
|
62 |
+
const T* input_mask_ptr,
|
63 |
+
const T* attn_qkvw_ptr,
|
64 |
+
const T* attn_qkvb_ptr,
|
65 |
+
const T* attn_ow_ptr,
|
66 |
+
const T* attn_ob_ptr,
|
67 |
+
const T* attn_nw_ptr,
|
68 |
+
const T* attn_nb_ptr,
|
69 |
+
const T* inter_w_ptr,
|
70 |
+
const T* inter_b_ptr,
|
71 |
+
const T* output_w_ptr,
|
72 |
+
const T* output_b_ptr,
|
73 |
+
const T* norm_w_ptr,
|
74 |
+
const T* norm_b_ptr,
|
75 |
+
T* out_ptr,
|
76 |
+
T* inp_norm_ptr,
|
77 |
+
T* q_tf_ptr,
|
78 |
+
T* k_tf_ptr,
|
79 |
+
T* v_tf_ptr,
|
80 |
+
T* softmax_output_ptr,
|
81 |
+
T* ctx_bufB_ptr,
|
82 |
+
T* attn_o_inp_ptr,
|
83 |
+
T* add_res_ptr,
|
84 |
+
T* ff1_inp_ptr,
|
85 |
+
T* gelu_inp_ptr,
|
86 |
+
T* ff2_inp_ptr);
|
87 |
+
|
88 |
+
void Backward(unsigned bsz,
|
89 |
+
const T* grad_output_ptr,
|
90 |
+
const T* input_ptr,
|
91 |
+
const T* output_ptr,
|
92 |
+
const T* inp_norm_ptr,
|
93 |
+
const T* q_tf_ptr,
|
94 |
+
const T* k_tf_ptr,
|
95 |
+
const T* v_tf_ptr,
|
96 |
+
const T* softmax_output_ptr,
|
97 |
+
const T* ctx_bufB_ptr,
|
98 |
+
const T* attn_o_inp_ptr,
|
99 |
+
const T* add_res_ptr,
|
100 |
+
const T* ff1_inp_ptr,
|
101 |
+
const T* gelu_inp_ptr,
|
102 |
+
const T* ff2_inp_ptr,
|
103 |
+
const T* input_mask_ptr,
|
104 |
+
const T* attn_qkvw_ptr,
|
105 |
+
const T* attn_ow_ptr,
|
106 |
+
const T* attn_nw_ptr,
|
107 |
+
const T* attn_nb_ptr,
|
108 |
+
const T* inter_w_ptr,
|
109 |
+
const T* inter_b_ptr,
|
110 |
+
const T* output_w_ptr,
|
111 |
+
const T* norm_w_ptr,
|
112 |
+
const T* norm_b_ptr,
|
113 |
+
|
114 |
+
T* grad_input_ptr,
|
115 |
+
T* grad_attn_qkvw_ptr,
|
116 |
+
T* grad_attn_qkvb_ptr,
|
117 |
+
T* grad_attn_ow_ptr,
|
118 |
+
T* grad_attn_ob_ptr,
|
119 |
+
T* grad_attn_nw_ptr,
|
120 |
+
T* grad_attn_nb_ptr,
|
121 |
+
T* grad_inter_w_ptr,
|
122 |
+
T* grad_inter_b_ptr,
|
123 |
+
T* grad_output_w_ptr,
|
124 |
+
T* grad_output_b_ptr,
|
125 |
+
T* grad_norm_w_ptr,
|
126 |
+
T* grad_norm_b_ptr);
|
127 |
+
|
128 |
+
void SetIntermediateBuffers(uint8_t* attn_prob_dropout_mask_ptr,
|
129 |
+
uint8_t* attn_output_dropout_mask_ptr,
|
130 |
+
uint8_t* layer_output_dropout_mask_ptr,
|
131 |
+
T* layer_norm_var,
|
132 |
+
T* layer_norm_mean,
|
133 |
+
T* attn_layer_norm_var,
|
134 |
+
T* attn_layer_norm_mean);
|
135 |
+
|
136 |
+
inline unsigned GetBatchSize() const { return _batch_size; }
|
137 |
+
inline unsigned GetNumHeads() const { return _heads; }
|
138 |
+
inline unsigned GetSeqLength() const { return _seq_length; }
|
139 |
+
inline unsigned GetIntermediateSize() const { return _intermediate_size; }
|
140 |
+
|
141 |
+
void SetSeqLength(unsigned seq_len);
|
142 |
+
inline unsigned GetHiddenSize() const { return _hidden_size; }
|
143 |
+
void SetTrainingMode(bool training);
|
144 |
+
inline bool IsTrainingMode() const { return _training; }
|
145 |
+
inline bool GeluCheckpoint() const { return _gelu_checkpoint; }
|
146 |
+
|
147 |
+
private:
|
148 |
+
void Initialize();
|
149 |
+
size_t getWorkspaceSize(int maxBatchSize) const;
|
150 |
+
|
151 |
+
// Params
|
152 |
+
unsigned _layer_id;
|
153 |
+
unsigned _batch_size;
|
154 |
+
unsigned _hidden_size;
|
155 |
+
unsigned _heads;
|
156 |
+
unsigned _size_per_head;
|
157 |
+
unsigned _intermediate_size;
|
158 |
+
unsigned _seq_length;
|
159 |
+
|
160 |
+
bool _pre_or_postLayerNorm;
|
161 |
+
|
162 |
+
cublasHandle_t _cublasHandle;
|
163 |
+
cudaStream_t _stream;
|
164 |
+
|
165 |
+
// layers
|
166 |
+
FeedForward<T> _qkv_linear;
|
167 |
+
FeedForward<T> _attn_out_linear;
|
168 |
+
Normalize_Layer<T> _attn_layer_norm;
|
169 |
+
Normalize_Layer<T> _layer_norm;
|
170 |
+
Normalize_Layer<T>* _last_normalize;
|
171 |
+
FeedForward<T> _ff1, _ff2;
|
172 |
+
Softmax<T> _softmax;
|
173 |
+
Gelu<T> _gelu;
|
174 |
+
Dropout<T> _attn_prob_dropout;
|
175 |
+
Dropout<T> _attn_output_dropout;
|
176 |
+
Dropout<T> _layer_output_dropout;
|
177 |
+
StridedBatchGemm<T> _attn_scores;
|
178 |
+
StridedBatchGemm<T> _attn_context;
|
179 |
+
|
180 |
+
bool _training;
|
181 |
+
|
182 |
+
// Memory saving flags
|
183 |
+
bool _attn_dropout_checkpoint;
|
184 |
+
bool _normalize_invertible;
|
185 |
+
bool _gelu_checkpoint;
|
186 |
+
|
187 |
+
// High Performance flags
|
188 |
+
bool _stochastic_mode;
|
189 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/feed_forward.h
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#ifndef __FEEDFORWARD_H__
|
7 |
+
#define __FEEDFORWARD_H__
|
8 |
+
|
9 |
+
#include <cuda.h>
|
10 |
+
#include <cuda_fp16.h>
|
11 |
+
#include <stdio.h>
|
12 |
+
#include "custom_cuda_layers.h"
|
13 |
+
|
14 |
+
template <typename T>
|
15 |
+
class FeedForward {
|
16 |
+
public:
|
17 |
+
struct Config {
|
18 |
+
int batchSize, outputSize;
|
19 |
+
int inputSize;
|
20 |
+
std::array<int, 3> gemm_algos;
|
21 |
+
Config(int batch, int outputs, int inputs, const std::array<int, 3>& algos)
|
22 |
+
: batchSize(batch), outputSize(outputs), inputSize(inputs), gemm_algos(algos)
|
23 |
+
{
|
24 |
+
}
|
25 |
+
};
|
26 |
+
|
27 |
+
FeedForward(Config config) : config_(config) {}
|
28 |
+
|
29 |
+
~FeedForward() {}
|
30 |
+
|
31 |
+
void Forward(int bsz,
|
32 |
+
const T* input_ptr,
|
33 |
+
const T* weights,
|
34 |
+
T* out,
|
35 |
+
cublasHandle_t& _cublasHandle)
|
36 |
+
{
|
37 |
+
float alpha = T(1.);
|
38 |
+
float beta = T(0.);
|
39 |
+
|
40 |
+
cublas_gemm_ex(_cublasHandle,
|
41 |
+
CUBLAS_OP_T,
|
42 |
+
CUBLAS_OP_N,
|
43 |
+
config_.outputSize,
|
44 |
+
bsz,
|
45 |
+
config_.inputSize,
|
46 |
+
&alpha,
|
47 |
+
&beta,
|
48 |
+
weights,
|
49 |
+
input_ptr,
|
50 |
+
out,
|
51 |
+
#ifdef __HIP_PLATFORM_AMD__
|
52 |
+
rocblas_gemm_algo(config_.gemm_algos[0]));
|
53 |
+
#else
|
54 |
+
cublasGemmAlgo_t(config_.gemm_algos[0]));
|
55 |
+
#endif
|
56 |
+
}
|
57 |
+
void Backward(int bsz,
|
58 |
+
const T* out_grad,
|
59 |
+
const T* input_ptr,
|
60 |
+
const T* weights,
|
61 |
+
T* weights_grad,
|
62 |
+
T* bias_grad,
|
63 |
+
cublasHandle_t& _cublasHandle,
|
64 |
+
cudaStream_t& stream,
|
65 |
+
T* inp_grad_out = nullptr,
|
66 |
+
T* out_grad_trans_out = nullptr)
|
67 |
+
{
|
68 |
+
float alpha = (T)1.0, beta = (T)0.0;
|
69 |
+
cublas_gemm_ex(_cublasHandle,
|
70 |
+
CUBLAS_OP_N,
|
71 |
+
CUBLAS_OP_T,
|
72 |
+
config_.inputSize,
|
73 |
+
config_.outputSize,
|
74 |
+
bsz,
|
75 |
+
&alpha,
|
76 |
+
&beta,
|
77 |
+
input_ptr,
|
78 |
+
out_grad,
|
79 |
+
weights_grad,
|
80 |
+
#ifdef __HIP_PLATFORM_AMD__
|
81 |
+
rocblas_gemm_algo(config_.gemm_algos[1]));
|
82 |
+
#else
|
83 |
+
cublasGemmAlgo_t(config_.gemm_algos[1]));
|
84 |
+
#endif
|
85 |
+
|
86 |
+
cublas_gemm_ex(_cublasHandle,
|
87 |
+
CUBLAS_OP_N,
|
88 |
+
CUBLAS_OP_N,
|
89 |
+
config_.inputSize,
|
90 |
+
bsz,
|
91 |
+
config_.outputSize,
|
92 |
+
&alpha,
|
93 |
+
&beta,
|
94 |
+
weights,
|
95 |
+
out_grad,
|
96 |
+
inp_grad_out,
|
97 |
+
#ifdef __HIP_PLATFORM_AMD__
|
98 |
+
rocblas_gemm_algo(config_.gemm_algos[2]));
|
99 |
+
#else
|
100 |
+
cublasGemmAlgo_t(config_.gemm_algos[2]));
|
101 |
+
#endif
|
102 |
+
|
103 |
+
launch_fuse_transpose_bias_kernel<T>(out_grad, bias_grad, bsz, config_.outputSize, stream);
|
104 |
+
}
|
105 |
+
|
106 |
+
private:
|
107 |
+
Config config_;
|
108 |
+
};
|
109 |
+
|
110 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/gelu.h
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <cuda.h>
|
9 |
+
#include <cuda_fp16.h>
|
10 |
+
#include <stdio.h>
|
11 |
+
#include "custom_cuda_layers.h"
|
12 |
+
|
13 |
+
template <typename T>
|
14 |
+
class Gelu {
|
15 |
+
public:
|
16 |
+
struct Config {
|
17 |
+
uint32_t intermediate_size;
|
18 |
+
Config(uint32_t inter_size) : intermediate_size(inter_size) {}
|
19 |
+
};
|
20 |
+
|
21 |
+
Gelu(const Config& config) : _config(config) {}
|
22 |
+
|
23 |
+
virtual ~Gelu() {}
|
24 |
+
|
25 |
+
void ForwardWithBiasAdd(int bsz,
|
26 |
+
const T* input_buf,
|
27 |
+
const T* bias,
|
28 |
+
T* output,
|
29 |
+
cudaStream_t stream)
|
30 |
+
{
|
31 |
+
launch_bias_gelu<T>(input_buf, bias, output, _config.intermediate_size, bsz, stream);
|
32 |
+
}
|
33 |
+
|
34 |
+
void Backward(int bsz, T* d_output, const T* input_buf, const T* bias, cudaStream_t stream)
|
35 |
+
{
|
36 |
+
launch_d_gelu<T>(d_output, input_buf, bias, _config.intermediate_size, bsz, stream);
|
37 |
+
}
|
38 |
+
|
39 |
+
private:
|
40 |
+
Config _config;
|
41 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/gemm_test.h
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <cuda_fp16.h>
|
9 |
+
#ifndef __HIP_PLATFORM_AMD__
|
10 |
+
#include <cuda_profiler_api.h>
|
11 |
+
#endif
|
12 |
+
#ifdef __HIP_PLATFORM_AMD__
|
13 |
+
#include <rocblas/rocblas.h>
|
14 |
+
#endif
|
15 |
+
#include <array>
|
16 |
+
#include <cstdio>
|
17 |
+
#include <cstdlib>
|
18 |
+
#include <ctime>
|
19 |
+
#include <limits>
|
20 |
+
#include <memory>
|
21 |
+
#include "StopWatch.h"
|
22 |
+
#include "cublas_wrappers.h"
|
23 |
+
|
24 |
+
template <typename T>
|
25 |
+
void check(T result, char const* const func, const char* const file, int const line)
|
26 |
+
{
|
27 |
+
if (result) {
|
28 |
+
std::cout << (std::string("CUDA runtime error: ") + +file + ":" + std::to_string(line) +
|
29 |
+
" \n");
|
30 |
+
}
|
31 |
+
}
|
32 |
+
|
33 |
+
#define check_cuda_error(val) check((val), #val, __FILE__, __LINE__)
|
34 |
+
|
35 |
+
template <typename T>
|
36 |
+
class GemmTest {
|
37 |
+
public:
|
38 |
+
GemmTest(int m, int n, int k, cublasOperation_t ta, cublasOperation_t tb, cublasHandle_t h)
|
39 |
+
: M(m), N(n), K(k), transa(ta), transb(tb), handle(h)
|
40 |
+
{
|
41 |
+
check_cuda_error(cudaMalloc((void**)&A, sizeof(T) * M * K));
|
42 |
+
check_cuda_error(cudaMalloc((void**)&B, sizeof(T) * K * N));
|
43 |
+
check_cuda_error(cudaMalloc((void**)&C, sizeof(T) * M * N));
|
44 |
+
}
|
45 |
+
|
46 |
+
~GemmTest()
|
47 |
+
{
|
48 |
+
check_cuda_error(cudaFree(A));
|
49 |
+
check_cuda_error(cudaFree(B));
|
50 |
+
check_cuda_error(cudaFree(C));
|
51 |
+
}
|
52 |
+
|
53 |
+
std::array<int, 3> TestAlgo(int loops)
|
54 |
+
{
|
55 |
+
float alpha = (T)1.0f;
|
56 |
+
float beta = (T)0.0f;
|
57 |
+
|
58 |
+
int algo_fw = Run(loops, [=](int algo) {
|
59 |
+
cublas_gemm_ex(handle,
|
60 |
+
CUBLAS_OP_T,
|
61 |
+
CUBLAS_OP_N,
|
62 |
+
N,
|
63 |
+
M,
|
64 |
+
K,
|
65 |
+
&alpha,
|
66 |
+
&beta,
|
67 |
+
B,
|
68 |
+
A,
|
69 |
+
C,
|
70 |
+
#ifdef __HIP_PLATFORM_AMD__
|
71 |
+
static_cast<rocblas_gemm_algo>(algo));
|
72 |
+
#else
|
73 |
+
static_cast<cublasGemmAlgo_t>(algo));
|
74 |
+
#endif
|
75 |
+
});
|
76 |
+
|
77 |
+
int algo_bw1 = Run(loops, [=](int algo) {
|
78 |
+
cublas_gemm_ex(handle,
|
79 |
+
CUBLAS_OP_N,
|
80 |
+
CUBLAS_OP_T,
|
81 |
+
K,
|
82 |
+
N,
|
83 |
+
M,
|
84 |
+
&alpha,
|
85 |
+
&beta,
|
86 |
+
A,
|
87 |
+
C,
|
88 |
+
B,
|
89 |
+
#ifdef __HIP_PLATFORM_AMD__
|
90 |
+
static_cast<rocblas_gemm_algo>(algo));
|
91 |
+
#else
|
92 |
+
static_cast<cublasGemmAlgo_t>(algo));
|
93 |
+
#endif
|
94 |
+
});
|
95 |
+
|
96 |
+
int algo_bw2 = Run(loops, [=](int algo) {
|
97 |
+
cublas_gemm_ex(handle,
|
98 |
+
CUBLAS_OP_N,
|
99 |
+
CUBLAS_OP_N,
|
100 |
+
K,
|
101 |
+
M,
|
102 |
+
N,
|
103 |
+
&alpha,
|
104 |
+
&beta,
|
105 |
+
B,
|
106 |
+
C,
|
107 |
+
A,
|
108 |
+
#ifdef __HIP_PLATFORM_AMD__
|
109 |
+
static_cast<rocblas_gemm_algo>(algo));
|
110 |
+
#else
|
111 |
+
static_cast<cublasGemmAlgo_t>(algo));
|
112 |
+
#endif
|
113 |
+
});
|
114 |
+
|
115 |
+
return std::array<int, 3>({algo_fw, algo_bw1, algo_bw2});
|
116 |
+
}
|
117 |
+
|
118 |
+
template <typename Func>
|
119 |
+
int Run(int loops, Func f)
|
120 |
+
{
|
121 |
+
float fast_latency = (std::numeric_limits<float>::max)();
|
122 |
+
int fast_algo = 0;
|
123 |
+
|
124 |
+
#ifdef __HIP_PLATFORM_AMD__
|
125 |
+
for (int algo = (int)rocblas_gemm_algo_standard; algo <= (int)rocblas_gemm_algo_standard;
|
126 |
+
#else
|
127 |
+
for (int algo = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP;
|
128 |
+
algo <= (int)CUBLAS_GEMM_ALGO15_TENSOR_OP;
|
129 |
+
#endif
|
130 |
+
algo++) {
|
131 |
+
int warm_up = 5;
|
132 |
+
for (int i = 0; i < warm_up; ++i) f(algo);
|
133 |
+
|
134 |
+
cudaDeviceSynchronize();
|
135 |
+
Stopwatch timer;
|
136 |
+
timer.Restart();
|
137 |
+
|
138 |
+
for (int i = 0; i < loops; ++i) f(algo);
|
139 |
+
|
140 |
+
cudaDeviceSynchronize();
|
141 |
+
timer.Stop();
|
142 |
+
|
143 |
+
float avg_latency = (float)timer.GetTimeInSeconds() * 1000 / loops;
|
144 |
+
|
145 |
+
printf("algo-%d: %.3fms\n", algo, avg_latency);
|
146 |
+
|
147 |
+
if (avg_latency < fast_latency) {
|
148 |
+
fast_latency = avg_latency;
|
149 |
+
fast_algo = algo;
|
150 |
+
}
|
151 |
+
}
|
152 |
+
|
153 |
+
printf("fast_algo %d: %.3f ms\n", fast_algo, fast_latency);
|
154 |
+
|
155 |
+
return fast_algo;
|
156 |
+
}
|
157 |
+
|
158 |
+
private:
|
159 |
+
int M, N, K;
|
160 |
+
cublasHandle_t handle;
|
161 |
+
cublasOperation_t transa, transb;
|
162 |
+
T *A, *B, *C;
|
163 |
+
};
|
164 |
+
|
165 |
+
template <typename T>
|
166 |
+
class StridedGemmTest {
|
167 |
+
public:
|
168 |
+
StridedGemmTest(int b,
|
169 |
+
int m,
|
170 |
+
int n,
|
171 |
+
int k,
|
172 |
+
cublasOperation_t ta,
|
173 |
+
cublasOperation_t tb,
|
174 |
+
cublasHandle_t h)
|
175 |
+
: bsz(b), M(m), N(n), K(k), transa(ta), transb(tb), handle(h)
|
176 |
+
{
|
177 |
+
check_cuda_error(cudaMalloc((void**)&A, sizeof(T) * M * K * bsz));
|
178 |
+
check_cuda_error(cudaMalloc((void**)&B, sizeof(T) * K * N * bsz));
|
179 |
+
check_cuda_error(cudaMalloc((void**)&C, sizeof(T) * M * N * bsz));
|
180 |
+
}
|
181 |
+
|
182 |
+
~StridedGemmTest()
|
183 |
+
{
|
184 |
+
check_cuda_error(cudaFree(A));
|
185 |
+
check_cuda_error(cudaFree(B));
|
186 |
+
check_cuda_error(cudaFree(C));
|
187 |
+
}
|
188 |
+
|
189 |
+
std::array<int, 3> TestAlgo(int loops)
|
190 |
+
{
|
191 |
+
float alpha = (T)1.0f;
|
192 |
+
float beta = (T)0.0f;
|
193 |
+
|
194 |
+
int algo_fw = Run(loops, [=](int algo) {
|
195 |
+
int stride_a = M * K;
|
196 |
+
int stride_b = N * K;
|
197 |
+
int stride_c = M * N;
|
198 |
+
|
199 |
+
cublas_strided_batched_gemm(handle,
|
200 |
+
M,
|
201 |
+
N,
|
202 |
+
K,
|
203 |
+
&alpha,
|
204 |
+
&beta,
|
205 |
+
A,
|
206 |
+
B,
|
207 |
+
C,
|
208 |
+
transa,
|
209 |
+
transb,
|
210 |
+
stride_a,
|
211 |
+
stride_b,
|
212 |
+
stride_c,
|
213 |
+
bsz,
|
214 |
+
#ifdef __HIP_PLATFORM_AMD__
|
215 |
+
static_cast<rocblas_gemm_algo>(algo));
|
216 |
+
#else
|
217 |
+
static_cast<cublasGemmAlgo_t>(algo));
|
218 |
+
#endif
|
219 |
+
});
|
220 |
+
|
221 |
+
int algo_bw1 = Run(loops, [=](int algo) {
|
222 |
+
int mb = (transa == CUBLAS_OP_T ? K : M);
|
223 |
+
int kb = (transa == CUBLAS_OP_T ? M : K);
|
224 |
+
|
225 |
+
int stride_a = mb * N;
|
226 |
+
int stride_b = N * kb;
|
227 |
+
int stride_c = M * K;
|
228 |
+
|
229 |
+
// B need to transpose.
|
230 |
+
cublasOperation_t op_b = (transb == CUBLAS_OP_T ? CUBLAS_OP_N : CUBLAS_OP_T);
|
231 |
+
|
232 |
+
// Calculate d_A.
|
233 |
+
cublas_strided_batched_gemm(handle,
|
234 |
+
mb,
|
235 |
+
kb,
|
236 |
+
N,
|
237 |
+
&alpha,
|
238 |
+
&beta,
|
239 |
+
(transa == CUBLAS_OP_T ? B : C),
|
240 |
+
(transa == CUBLAS_OP_T ? C : B),
|
241 |
+
A,
|
242 |
+
CUBLAS_OP_N,
|
243 |
+
op_b,
|
244 |
+
stride_a,
|
245 |
+
stride_b,
|
246 |
+
stride_c,
|
247 |
+
bsz,
|
248 |
+
#ifdef __HIP_PLATFORM_AMD__
|
249 |
+
static_cast<rocblas_gemm_algo>(algo));
|
250 |
+
#else
|
251 |
+
static_cast<cublasGemmAlgo_t>(algo));
|
252 |
+
#endif
|
253 |
+
});
|
254 |
+
|
255 |
+
int algo_bw2 = Run(loops, [=](int algo) {
|
256 |
+
// A need to transpose.
|
257 |
+
cublasOperation_t op_a = (transa == CUBLAS_OP_T ? CUBLAS_OP_N : CUBLAS_OP_T);
|
258 |
+
|
259 |
+
int stride_a = M * K;
|
260 |
+
int stride_b = M * N;
|
261 |
+
int stride_c = N * K;
|
262 |
+
|
263 |
+
// Calculate d_B.
|
264 |
+
cublas_strided_batched_gemm(handle,
|
265 |
+
K,
|
266 |
+
N,
|
267 |
+
M,
|
268 |
+
&alpha,
|
269 |
+
&beta,
|
270 |
+
A,
|
271 |
+
C,
|
272 |
+
B,
|
273 |
+
op_a,
|
274 |
+
CUBLAS_OP_N,
|
275 |
+
stride_a,
|
276 |
+
stride_b,
|
277 |
+
stride_c,
|
278 |
+
bsz,
|
279 |
+
#ifdef __HIP_PLATFORM_AMD__
|
280 |
+
static_cast<rocblas_gemm_algo>(algo));
|
281 |
+
#else
|
282 |
+
static_cast<cublasGemmAlgo_t>(algo));
|
283 |
+
#endif
|
284 |
+
});
|
285 |
+
|
286 |
+
return std::array<int, 3>({algo_fw, algo_bw1, algo_bw2});
|
287 |
+
}
|
288 |
+
|
289 |
+
template <typename Func>
|
290 |
+
int Run(int loops, Func f)
|
291 |
+
{
|
292 |
+
float fast_latency = (std::numeric_limits<float>::max)();
|
293 |
+
int fast_algo = 0;
|
294 |
+
|
295 |
+
#ifdef __HIP_PLATFORM_AMD__
|
296 |
+
for (int algo = (int)rocblas_gemm_algo_standard; algo <= (int)rocblas_gemm_algo_standard;
|
297 |
+
#else
|
298 |
+
for (int algo = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP;
|
299 |
+
algo <= (int)CUBLAS_GEMM_ALGO15_TENSOR_OP;
|
300 |
+
#endif
|
301 |
+
algo++) {
|
302 |
+
int warm_up = 5;
|
303 |
+
for (int i = 0; i < warm_up; ++i) f(algo);
|
304 |
+
|
305 |
+
cudaDeviceSynchronize();
|
306 |
+
Stopwatch timer;
|
307 |
+
timer.Restart();
|
308 |
+
|
309 |
+
for (int i = 0; i < loops; ++i) f(algo);
|
310 |
+
|
311 |
+
cudaDeviceSynchronize();
|
312 |
+
timer.Stop();
|
313 |
+
|
314 |
+
float avg_latency = (float)timer.GetTimeInSeconds() * 1000 / loops;
|
315 |
+
|
316 |
+
printf("algo-%d: %.3fms\n", algo, avg_latency);
|
317 |
+
|
318 |
+
if (avg_latency < fast_latency) {
|
319 |
+
fast_latency = avg_latency;
|
320 |
+
fast_algo = algo;
|
321 |
+
}
|
322 |
+
}
|
323 |
+
|
324 |
+
printf("fast_algo %d: %.3f ms\n", fast_algo, fast_latency);
|
325 |
+
|
326 |
+
return fast_algo;
|
327 |
+
}
|
328 |
+
|
329 |
+
private:
|
330 |
+
int bsz, M, N, K;
|
331 |
+
cublasHandle_t handle;
|
332 |
+
cublasOperation_t transa, transb;
|
333 |
+
T *A, *B, *C;
|
334 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/general_kernels.h
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <cuda.h>
|
7 |
+
#include <cuda_fp16.h>
|
8 |
+
#include <stdio.h>
|
9 |
+
#include <stdlib.h>
|
10 |
+
|
11 |
+
#ifdef __HIP_PLATFORM_AMD__
|
12 |
+
#include <hip/hip_cooperative_groups.h>
|
13 |
+
#else
|
14 |
+
#include <cooperative_groups.h>
|
15 |
+
#endif
|
16 |
+
#include <curand_kernel.h>
|
17 |
+
|
18 |
+
#include "context.h"
|
19 |
+
#include "cublas_wrappers.h"
|
20 |
+
|
21 |
+
#define THREADS 256
|
22 |
+
#define TILE_DIM 32
|
23 |
+
|
24 |
+
#define minus_infinity -1 * std::numeric_limits<float>::infinity()
|
25 |
+
|
26 |
+
#define FINAL_MASK 0xffffffff
|
27 |
+
|
28 |
+
template <typename T>
|
29 |
+
void launch_fused_add2(T* out,
|
30 |
+
const T* inp1,
|
31 |
+
const T* inp2,
|
32 |
+
int batch_size,
|
33 |
+
int seq_length,
|
34 |
+
int hidden_size,
|
35 |
+
cudaStream_t& stream);
|
36 |
+
|
37 |
+
template <typename T>
|
38 |
+
void launch_fused_add4(T* out,
|
39 |
+
const T* inp1,
|
40 |
+
const T* inp2,
|
41 |
+
const T* inp3,
|
42 |
+
const T* inp4,
|
43 |
+
int batch_size,
|
44 |
+
int seq_length,
|
45 |
+
int hidden_size,
|
46 |
+
cudaStream_t& stream);
|
47 |
+
|
48 |
+
template <typename T>
|
49 |
+
void launch_fused_add3(T* out,
|
50 |
+
const T* inp1,
|
51 |
+
const T* inp2,
|
52 |
+
const T* inp3,
|
53 |
+
int batch_size,
|
54 |
+
int seq_length,
|
55 |
+
int hidden_size,
|
56 |
+
cudaStream_t& stream);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/memory_access_utils.h
ADDED
@@ -0,0 +1,1144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <cuda.h>
|
9 |
+
#include "ds_kernel_utils.h"
|
10 |
+
|
11 |
+
/////////////////////////////// Memory Access Utils ///////////////////////////////
|
12 |
+
namespace mem_access {
|
13 |
+
|
14 |
+
enum class LoadPolicy {
|
15 |
+
CacheAll, // Cache at all levels
|
16 |
+
CacheGlobal, // Cache at L2 only
|
17 |
+
CacheStreaming // Cache with evict first policy
|
18 |
+
};
|
19 |
+
|
20 |
+
enum class StorePolicy {
|
21 |
+
Writeback, // Cache in L1, write-back on eviction
|
22 |
+
CacheGlobal, // Bypass L1, write-back on eviction
|
23 |
+
CacheStreaming // Allocate cache line with evict first policy
|
24 |
+
};
|
25 |
+
|
26 |
+
template <int AccessSize, LoadPolicy policy = LoadPolicy::CacheAll>
|
27 |
+
__device__ __forceinline__ void load_global(void* dst, const void* src);
|
28 |
+
|
29 |
+
template <int AccessSize, LoadPolicy policy = LoadPolicy::CacheAll>
|
30 |
+
__device__ __forceinline__ void load_global(void* dst, const void* src, bool do_access);
|
31 |
+
|
32 |
+
// Shared accesses have no cache policy
|
33 |
+
template <int AccessSize>
|
34 |
+
__device__ __forceinline__ void load_shared(void* dst, const void* src);
|
35 |
+
|
36 |
+
template <int AccessSize>
|
37 |
+
__device__ __forceinline__ void load_shared(void* dst, const void* src, bool do_access);
|
38 |
+
|
39 |
+
template <int AccessSize, StorePolicy policy = StorePolicy::Writeback>
|
40 |
+
__device__ __forceinline__ void store_global(void* dst, const void* src);
|
41 |
+
|
42 |
+
// Shared accesses have no cache policy
|
43 |
+
template <int AccessSize>
|
44 |
+
__device__ __forceinline__ void store_shared(void* dst, const void* src);
|
45 |
+
|
46 |
+
#ifdef ASYNC_COPY_AVAILABLE
|
47 |
+
template <int AccessSize>
|
48 |
+
__device__ __forceinline__ void memcpy_async(void* shr, const void* gbl);
|
49 |
+
|
50 |
+
template <int AccessSize>
|
51 |
+
__device__ __forceinline__ void memcpy_async_nop(void* shr, const void* gbl, bool predicate);
|
52 |
+
|
53 |
+
template <int AccessSize>
|
54 |
+
__device__ __forceinline__ void memcpy_async_zero(void* shr, const void* gbl, bool predicate);
|
55 |
+
|
56 |
+
__device__ __forceinline__ void memcpy_async_fence();
|
57 |
+
|
58 |
+
template <int stages>
|
59 |
+
__device__ __forceinline__ void memcpy_async_wait();
|
60 |
+
|
61 |
+
template <int stages>
|
62 |
+
__device__ __forceinline__ void tail_complete_wait(int remaining_stages);
|
63 |
+
#endif
|
64 |
+
|
65 |
+
// Util for tracking pipeline buffers
|
66 |
+
// TODO: Evaluate whether this should also be guarded by ASYNC_COPY_AVAILABLE
|
67 |
+
template <int max>
|
68 |
+
class BufferTracker {
|
69 |
+
public:
|
70 |
+
int current_state;
|
71 |
+
|
72 |
+
__device__ __forceinline__ BufferTracker() : current_state(0) {}
|
73 |
+
|
74 |
+
__device__ __forceinline__ int get()
|
75 |
+
{
|
76 |
+
int return_val = current_state++;
|
77 |
+
current_state = (current_state == max ? 0 : current_state);
|
78 |
+
return return_val;
|
79 |
+
}
|
80 |
+
};
|
81 |
+
|
82 |
+
__device__ __forceinline__ uint32_t lane_id()
|
83 |
+
{
|
84 |
+
#ifdef PTX_AVAILABLE
|
85 |
+
unsigned int lane_id;
|
86 |
+
asm volatile("mov.u32 %0, %%laneid;" : "=r"(lane_id));
|
87 |
+
return lane_id;
|
88 |
+
#else
|
89 |
+
return threadIdx.x & (warpSize - 1); // Portable
|
90 |
+
#endif
|
91 |
+
}
|
92 |
+
|
93 |
+
/////////// Load Global ///////////
|
94 |
+
template <>
|
95 |
+
__device__ __forceinline__ void load_global<16>(void* dst, const void* src)
|
96 |
+
{
|
97 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
98 |
+
#ifdef PTX_AVAILABLE
|
99 |
+
asm volatile("ld.global.ca.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
100 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
101 |
+
: "l"(src));
|
102 |
+
#else
|
103 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
104 |
+
data[0] = src_cast[0];
|
105 |
+
#endif
|
106 |
+
}
|
107 |
+
|
108 |
+
template <>
|
109 |
+
__device__ __forceinline__ void load_global<16>(void* dst, const void* src, bool do_access)
|
110 |
+
{
|
111 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
112 |
+
#ifdef PTX_AVAILABLE
|
113 |
+
asm volatile(
|
114 |
+
"{\n"
|
115 |
+
"\t.reg .pred p;\n"
|
116 |
+
"\tsetp.ne.b32 p, %5, 0;\n"
|
117 |
+
"\tmov.b32 %0, 0;\n"
|
118 |
+
"\tmov.b32 %1, 0;\n"
|
119 |
+
"\tmov.b32 %2, 0;\n"
|
120 |
+
"\tmov.b32 %3, 0;\n"
|
121 |
+
"\t@p ld.global.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
122 |
+
"}\n"
|
123 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
124 |
+
: "l"(src), "r"((int)do_access));
|
125 |
+
#else
|
126 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
127 |
+
if (do_access) {
|
128 |
+
data[0] = src_cast[0];
|
129 |
+
} else {
|
130 |
+
data[0].x = 0;
|
131 |
+
data[0].y = 0;
|
132 |
+
data[0].z = 0;
|
133 |
+
data[0].w = 0;
|
134 |
+
}
|
135 |
+
#endif
|
136 |
+
}
|
137 |
+
|
138 |
+
template <>
|
139 |
+
__device__ __forceinline__ void load_global<16, LoadPolicy::CacheGlobal>(void* dst, const void* src)
|
140 |
+
{
|
141 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
142 |
+
#ifdef PTX_AVAILABLE
|
143 |
+
asm volatile("ld.global.cg.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
144 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
145 |
+
: "l"(src));
|
146 |
+
#else
|
147 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
148 |
+
data[0] = src_cast[0];
|
149 |
+
#endif
|
150 |
+
}
|
151 |
+
|
152 |
+
template <>
|
153 |
+
__device__ __forceinline__ void load_global<16, LoadPolicy::CacheGlobal>(void* dst,
|
154 |
+
const void* src,
|
155 |
+
bool do_access)
|
156 |
+
{
|
157 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
158 |
+
#ifdef PTX_AVAILABLE
|
159 |
+
asm volatile(
|
160 |
+
"{\n"
|
161 |
+
"\t.reg .pred p;\n"
|
162 |
+
"\tsetp.ne.b32 p, %5, 0;\n"
|
163 |
+
"\tmov.b32 %0, 0;\n"
|
164 |
+
"\tmov.b32 %1, 0;\n"
|
165 |
+
"\tmov.b32 %2, 0;\n"
|
166 |
+
"\tmov.b32 %3, 0;\n"
|
167 |
+
"\t@p ld.global.cg.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
168 |
+
"}\n"
|
169 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
170 |
+
: "l"(src), "r"((int)do_access));
|
171 |
+
#else
|
172 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
173 |
+
if (do_access) {
|
174 |
+
data[0] = src_cast[0];
|
175 |
+
} else {
|
176 |
+
data[0].x = 0;
|
177 |
+
data[0].y = 0;
|
178 |
+
data[0].z = 0;
|
179 |
+
data[0].w = 0;
|
180 |
+
}
|
181 |
+
#endif
|
182 |
+
}
|
183 |
+
|
184 |
+
template <>
|
185 |
+
__device__ __forceinline__ void load_global<16, LoadPolicy::CacheStreaming>(void* dst,
|
186 |
+
const void* src)
|
187 |
+
{
|
188 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
189 |
+
#ifdef PTX_AVAILABLE
|
190 |
+
asm volatile("ld.global.cs.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
191 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
192 |
+
: "l"(src));
|
193 |
+
#else
|
194 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
195 |
+
data[0] = src_cast[0];
|
196 |
+
#endif
|
197 |
+
}
|
198 |
+
|
199 |
+
template <>
|
200 |
+
__device__ __forceinline__ void load_global<16, LoadPolicy::CacheStreaming>(void* dst,
|
201 |
+
const void* src,
|
202 |
+
bool do_access)
|
203 |
+
{
|
204 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
205 |
+
#ifdef PTX_AVAILABLE
|
206 |
+
asm volatile(
|
207 |
+
"{\n"
|
208 |
+
"\t.reg .pred p;\n"
|
209 |
+
"\tsetp.ne.b32 p, %5, 0;\n"
|
210 |
+
"\tmov.b32 %0, 0;\n"
|
211 |
+
"\tmov.b32 %1, 0;\n"
|
212 |
+
"\tmov.b32 %2, 0;\n"
|
213 |
+
"\tmov.b32 %3, 0;\n"
|
214 |
+
"\t@p ld.global.cg.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
215 |
+
"}\n"
|
216 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
217 |
+
: "l"(src), "r"((int)do_access));
|
218 |
+
#else
|
219 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
220 |
+
if (do_access) {
|
221 |
+
data[0] = src_cast[0];
|
222 |
+
} else {
|
223 |
+
data[0].x = 0;
|
224 |
+
data[0].y = 0;
|
225 |
+
data[0].z = 0;
|
226 |
+
data[0].w = 0;
|
227 |
+
}
|
228 |
+
#endif
|
229 |
+
}
|
230 |
+
|
231 |
+
template <>
|
232 |
+
__device__ __forceinline__ void load_global<8>(void* dst, const void* src)
|
233 |
+
{
|
234 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
235 |
+
#ifdef PTX_AVAILABLE
|
236 |
+
asm volatile("ld.global.ca.v2.u32 {%0, %1}, [%2];\n"
|
237 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
238 |
+
: "l"(src));
|
239 |
+
#else
|
240 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
241 |
+
data[0] = src_cast[0];
|
242 |
+
#endif
|
243 |
+
}
|
244 |
+
|
245 |
+
template <>
|
246 |
+
__device__ __forceinline__ void load_global<8>(void* dst, const void* src, bool do_access)
|
247 |
+
{
|
248 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
249 |
+
#ifdef PTX_AVAILABLE
|
250 |
+
asm volatile(
|
251 |
+
"{\n"
|
252 |
+
"\t.reg .pred p;\n"
|
253 |
+
"\tsetp.ne.b32 p, %3, 0;\n"
|
254 |
+
"\tmov.b32 %0, 0;\n"
|
255 |
+
"\tmov.b32 %1, 0;\n"
|
256 |
+
"\t@p ld.global.v2.u32 {%0, %1}, [%2];\n"
|
257 |
+
"}\n"
|
258 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
259 |
+
: "l"(src), "r"((int)do_access));
|
260 |
+
#else
|
261 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
262 |
+
if (do_access) {
|
263 |
+
data[0] = src_cast[0];
|
264 |
+
} else {
|
265 |
+
data[0].x = 0;
|
266 |
+
data[0].y = 0;
|
267 |
+
}
|
268 |
+
#endif
|
269 |
+
}
|
270 |
+
|
271 |
+
template <>
|
272 |
+
__device__ __forceinline__ void load_global<8, LoadPolicy::CacheGlobal>(void* dst, const void* src)
|
273 |
+
{
|
274 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
275 |
+
#ifdef PTX_AVAILABLE
|
276 |
+
asm volatile("ld.global.cg.v2.u32 {%0, %1}, [%2];\n"
|
277 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
278 |
+
: "l"(src));
|
279 |
+
#else
|
280 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
281 |
+
data[0] = src_cast[0];
|
282 |
+
#endif
|
283 |
+
}
|
284 |
+
|
285 |
+
template <>
|
286 |
+
__device__ __forceinline__ void load_global<8, LoadPolicy::CacheGlobal>(void* dst,
|
287 |
+
const void* src,
|
288 |
+
bool do_access)
|
289 |
+
{
|
290 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
291 |
+
#ifdef PTX_AVAILABLE
|
292 |
+
asm volatile(
|
293 |
+
"{\n"
|
294 |
+
"\t.reg .pred p;\n"
|
295 |
+
"\tsetp.ne.b32 p, %3, 0;\n"
|
296 |
+
"\tmov.b32 %0, 0;\n"
|
297 |
+
"\tmov.b32 %1, 0;\n"
|
298 |
+
"\t@p ld.global.cg.v2.u32 {%0, %1}, [%2];\n"
|
299 |
+
"}\n"
|
300 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
301 |
+
: "l"(src), "r"((int)do_access));
|
302 |
+
#else
|
303 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
304 |
+
if (do_access) {
|
305 |
+
data[0] = src_cast[0];
|
306 |
+
} else {
|
307 |
+
data[0].x = 0;
|
308 |
+
data[0].y = 0;
|
309 |
+
}
|
310 |
+
#endif
|
311 |
+
}
|
312 |
+
|
313 |
+
template <>
|
314 |
+
__device__ __forceinline__ void load_global<8, LoadPolicy::CacheStreaming>(void* dst,
|
315 |
+
const void* src)
|
316 |
+
{
|
317 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
318 |
+
#ifdef PTX_AVAILABLE
|
319 |
+
asm volatile("ld.global.cs.v2.u32 {%0, %1}, [%2];\n"
|
320 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
321 |
+
: "l"(src));
|
322 |
+
#else
|
323 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
324 |
+
data[0] = src_cast[0];
|
325 |
+
#endif
|
326 |
+
}
|
327 |
+
|
328 |
+
template <>
|
329 |
+
__device__ __forceinline__ void load_global<8, LoadPolicy::CacheStreaming>(void* dst,
|
330 |
+
const void* src,
|
331 |
+
bool do_access)
|
332 |
+
{
|
333 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
334 |
+
#ifdef PTX_AVAILABLE
|
335 |
+
asm volatile(
|
336 |
+
"{\n"
|
337 |
+
"\t.reg .pred p;\n"
|
338 |
+
"\tsetp.ne.b32 p, %3, 0;\n"
|
339 |
+
"\tmov.b32 %0, 0;\n"
|
340 |
+
"\tmov.b32 %1, 0;\n"
|
341 |
+
"\t@p ld.global.cs.v2.u32 {%0, %1}, [%2];\n"
|
342 |
+
"}\n"
|
343 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
344 |
+
: "l"(src), "r"((int)do_access));
|
345 |
+
#else
|
346 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
347 |
+
if (do_access) {
|
348 |
+
data[0] = src_cast[0];
|
349 |
+
} else {
|
350 |
+
data[0].x = 0;
|
351 |
+
data[0].y = 0;
|
352 |
+
}
|
353 |
+
#endif
|
354 |
+
}
|
355 |
+
|
356 |
+
template <>
|
357 |
+
__device__ __forceinline__ void load_global<4>(void* dst, const void* src)
|
358 |
+
{
|
359 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
360 |
+
#ifdef PTX_AVAILABLE
|
361 |
+
asm volatile("ld.global.ca.u32 {%0}, [%1];\n" : "=r"(*data) : "l"(src));
|
362 |
+
#else
|
363 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
364 |
+
data[0] = src_cast[0];
|
365 |
+
#endif
|
366 |
+
}
|
367 |
+
|
368 |
+
template <>
|
369 |
+
__device__ __forceinline__ void load_global<4>(void* dst, const void* src, bool do_access)
|
370 |
+
{
|
371 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
372 |
+
#ifdef PTX_AVAILABLE
|
373 |
+
asm volatile(
|
374 |
+
"{\n"
|
375 |
+
"\t.reg .pred p;\n"
|
376 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
377 |
+
"\tmov.b32 %0, 0;\n"
|
378 |
+
"\t@p ld.global.u32 {%0}, [%1];\n"
|
379 |
+
"}\n"
|
380 |
+
: "=r"(data[0])
|
381 |
+
: "l"(src), "r"((int)do_access));
|
382 |
+
#else
|
383 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
384 |
+
if (do_access) {
|
385 |
+
data[0] = src_cast[0];
|
386 |
+
} else {
|
387 |
+
data[0] = 0;
|
388 |
+
}
|
389 |
+
#endif
|
390 |
+
}
|
391 |
+
|
392 |
+
template <>
|
393 |
+
__device__ __forceinline__ void load_global<4, LoadPolicy::CacheGlobal>(void* dst, const void* src)
|
394 |
+
{
|
395 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
396 |
+
#ifdef PTX_AVAILABLE
|
397 |
+
asm volatile("ld.global.cg.u32 {%0}, [%1];\n" : "=r"(*data) : "l"(src));
|
398 |
+
#else
|
399 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
400 |
+
data[0] = src_cast[0];
|
401 |
+
#endif
|
402 |
+
}
|
403 |
+
|
404 |
+
template <>
|
405 |
+
__device__ __forceinline__ void load_global<4, LoadPolicy::CacheGlobal>(void* dst,
|
406 |
+
const void* src,
|
407 |
+
bool do_access)
|
408 |
+
{
|
409 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
410 |
+
#ifdef PTX_AVAILABLE
|
411 |
+
asm volatile(
|
412 |
+
"{\n"
|
413 |
+
"\t.reg .pred p;\n"
|
414 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
415 |
+
"\tmov.b32 %0, 0;\n"
|
416 |
+
"\t@p ld.global.cg.u32 {%0}, [%1];\n"
|
417 |
+
"}\n"
|
418 |
+
: "=r"(data[0])
|
419 |
+
: "l"(src), "r"((int)do_access));
|
420 |
+
#else
|
421 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
422 |
+
if (do_access) {
|
423 |
+
data[0] = src_cast[0];
|
424 |
+
} else {
|
425 |
+
data[0] = 0;
|
426 |
+
}
|
427 |
+
#endif
|
428 |
+
}
|
429 |
+
|
430 |
+
template <>
|
431 |
+
__device__ __forceinline__ void load_global<4, LoadPolicy::CacheStreaming>(void* dst,
|
432 |
+
const void* src)
|
433 |
+
{
|
434 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
435 |
+
#ifdef PTX_AVAILABLE
|
436 |
+
asm volatile("ld.global.cs.u32 {%0}, [%1];\n" : "=r"(*data) : "l"(src));
|
437 |
+
#else
|
438 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
439 |
+
data[0] = src_cast[0];
|
440 |
+
#endif
|
441 |
+
}
|
442 |
+
|
443 |
+
template <>
|
444 |
+
__device__ __forceinline__ void load_global<4, LoadPolicy::CacheStreaming>(void* dst,
|
445 |
+
const void* src,
|
446 |
+
bool do_access)
|
447 |
+
{
|
448 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
449 |
+
#ifdef PTX_AVAILABLE
|
450 |
+
asm volatile(
|
451 |
+
"{\n"
|
452 |
+
"\t.reg .pred p;\n"
|
453 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
454 |
+
"\tmov.b32 %0, 0;\n"
|
455 |
+
"\t@p ld.global.cs.u32 {%0}, [%1];\n"
|
456 |
+
"}\n"
|
457 |
+
: "=r"(data[0])
|
458 |
+
: "l"(src), "r"((int)do_access));
|
459 |
+
#else
|
460 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
461 |
+
if (do_access) {
|
462 |
+
data[0] = src_cast[0];
|
463 |
+
} else {
|
464 |
+
data[0] = 0;
|
465 |
+
}
|
466 |
+
#endif
|
467 |
+
}
|
468 |
+
|
469 |
+
template <>
|
470 |
+
__device__ __forceinline__ void load_global<2>(void* dst, const void* src)
|
471 |
+
{
|
472 |
+
int16_t* data = reinterpret_cast<int16_t*>(dst);
|
473 |
+
#ifdef PTX_AVAILABLE
|
474 |
+
asm volatile("ld.global.ca.u16 {%0}, [%1];\n" : "=h"(*data) : "l"(src));
|
475 |
+
#else
|
476 |
+
const int16_t* src_cast = reinterpret_cast<const int16_t*>(src);
|
477 |
+
data[0] = src_cast[0];
|
478 |
+
#endif
|
479 |
+
}
|
480 |
+
|
481 |
+
template <>
|
482 |
+
__device__ __forceinline__ void load_global<2>(void* dst, const void* src, bool do_access)
|
483 |
+
{
|
484 |
+
int16_t* data = reinterpret_cast<int16_t*>(dst);
|
485 |
+
#ifdef PTX_AVAILABLE
|
486 |
+
asm volatile(
|
487 |
+
"{\n"
|
488 |
+
"\t.reg .pred p;\n"
|
489 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
490 |
+
"\tmov.u16 %0, 0;\n"
|
491 |
+
"\t@p ld.global.u16 {%0}, [%1];\n"
|
492 |
+
"}\n"
|
493 |
+
: "=h"(*data)
|
494 |
+
: "l"(src), "r"((int)do_access));
|
495 |
+
#else
|
496 |
+
const int16_t* src_cast = reinterpret_cast<const int16_t*>(src);
|
497 |
+
if (do_access) {
|
498 |
+
data[0] = src_cast[0];
|
499 |
+
} else {
|
500 |
+
data[0] = 0;
|
501 |
+
}
|
502 |
+
#endif
|
503 |
+
}
|
504 |
+
|
505 |
+
template <>
|
506 |
+
__device__ __forceinline__ void load_global<2, LoadPolicy::CacheGlobal>(void* dst, const void* src)
|
507 |
+
{
|
508 |
+
int16_t* data = reinterpret_cast<int16_t*>(dst);
|
509 |
+
#ifdef PTX_AVAILABLE
|
510 |
+
asm volatile("ld.global.cg.u16 {%0}, [%1];\n" : "=h"(*data) : "l"(src));
|
511 |
+
#else
|
512 |
+
const int16_t* src_cast = reinterpret_cast<const int16_t*>(src);
|
513 |
+
data[0] = src_cast[0];
|
514 |
+
#endif
|
515 |
+
}
|
516 |
+
|
517 |
+
template <>
|
518 |
+
__device__ __forceinline__ void load_global<2, LoadPolicy::CacheGlobal>(void* dst,
|
519 |
+
const void* src,
|
520 |
+
bool do_access)
|
521 |
+
{
|
522 |
+
int16_t* data = reinterpret_cast<int16_t*>(dst);
|
523 |
+
#ifdef PTX_AVAILABLE
|
524 |
+
asm volatile(
|
525 |
+
"{\n"
|
526 |
+
"\t.reg .pred p;\n"
|
527 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
528 |
+
"\tmov.u16 %0, 0;\n"
|
529 |
+
"\t@p ld.global.cg.u16 {%0}, [%1];\n"
|
530 |
+
"}\n"
|
531 |
+
: "=h"(*data)
|
532 |
+
: "l"(src), "r"((int)do_access));
|
533 |
+
#else
|
534 |
+
const int16_t* src_cast = reinterpret_cast<const int16_t*>(src);
|
535 |
+
if (do_access) {
|
536 |
+
data[0] = src_cast[0];
|
537 |
+
} else {
|
538 |
+
data[0] = 0;
|
539 |
+
}
|
540 |
+
#endif
|
541 |
+
}
|
542 |
+
|
543 |
+
template <>
|
544 |
+
__device__ __forceinline__ void load_global<2, LoadPolicy::CacheStreaming>(void* dst,
|
545 |
+
const void* src)
|
546 |
+
{
|
547 |
+
int16_t* data = reinterpret_cast<int16_t*>(dst);
|
548 |
+
#ifdef PTX_AVAILABLE
|
549 |
+
asm volatile("ld.global.cs.u16 {%0}, [%1];\n" : "=h"(*data) : "l"(src));
|
550 |
+
#else
|
551 |
+
const int16_t* src_cast = reinterpret_cast<const int16_t*>(src);
|
552 |
+
data[0] = src_cast[0];
|
553 |
+
#endif
|
554 |
+
}
|
555 |
+
|
556 |
+
template <>
|
557 |
+
__device__ __forceinline__ void load_global<2, LoadPolicy::CacheStreaming>(void* dst,
|
558 |
+
const void* src,
|
559 |
+
bool do_access)
|
560 |
+
{
|
561 |
+
int16_t* data = reinterpret_cast<int16_t*>(dst);
|
562 |
+
#ifdef PTX_AVAILABLE
|
563 |
+
asm volatile(
|
564 |
+
"{\n"
|
565 |
+
"\t.reg .pred p;\n"
|
566 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
567 |
+
"\tmov.u16 %0, 0;\n"
|
568 |
+
"\t@p ld.global.cs.u16 {%0}, [%1];\n"
|
569 |
+
"}\n"
|
570 |
+
: "=h"(*data)
|
571 |
+
: "l"(src), "r"((int)do_access));
|
572 |
+
#else
|
573 |
+
const int16_t* src_cast = reinterpret_cast<const int16_t*>(src);
|
574 |
+
if (do_access) {
|
575 |
+
data[0] = src_cast[0];
|
576 |
+
} else {
|
577 |
+
data[0] = 0;
|
578 |
+
}
|
579 |
+
#endif
|
580 |
+
}
|
581 |
+
|
582 |
+
/////////// Load Shared ///////////
|
583 |
+
namespace internal {
|
584 |
+
|
585 |
+
#ifdef PTX_AVAILABLE
|
586 |
+
__device__ __forceinline__ unsigned convert_to_shared(const void* ptr)
|
587 |
+
{
|
588 |
+
#if __CUDACC_VER_MAJOR__ >= 11
|
589 |
+
// In CUDA 11 we have a builtin intrinsic
|
590 |
+
return __cvta_generic_to_shared(ptr);
|
591 |
+
#else
|
592 |
+
unsigned ret_val;
|
593 |
+
asm volatile(
|
594 |
+
"{\n"
|
595 |
+
"\t.reg .u64 p1;\n"
|
596 |
+
"\tcvta.to.shared.u64 p1, %1\n"
|
597 |
+
"\tcvt.u32.u64 %0, p1;\n"
|
598 |
+
"}\n"
|
599 |
+
: "=r"(ret_val)
|
600 |
+
: "l"(ptr));
|
601 |
+
return ret_val;
|
602 |
+
#endif
|
603 |
+
}
|
604 |
+
#endif
|
605 |
+
|
606 |
+
} // namespace internal
|
607 |
+
|
608 |
+
template <>
|
609 |
+
__device__ __forceinline__ void load_shared<16>(void* dst, const void* src)
|
610 |
+
{
|
611 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
612 |
+
#ifdef PTX_AVAILABLE
|
613 |
+
unsigned src_shr = internal::convert_to_shared(src);
|
614 |
+
|
615 |
+
asm volatile("ld.shared.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
616 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
617 |
+
: "r"(src_shr));
|
618 |
+
#else
|
619 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
620 |
+
data[0] = src_cast[0];
|
621 |
+
#endif
|
622 |
+
}
|
623 |
+
|
624 |
+
template <>
|
625 |
+
__device__ __forceinline__ void load_shared<16>(void* dst, const void* src, bool do_access)
|
626 |
+
{
|
627 |
+
uint4* data = reinterpret_cast<uint4*>(dst);
|
628 |
+
#ifdef PTX_AVAILABLE
|
629 |
+
unsigned src_shr = internal::convert_to_shared(src);
|
630 |
+
|
631 |
+
asm volatile(
|
632 |
+
"{\n"
|
633 |
+
"\t.reg .pred p;\n"
|
634 |
+
"\tsetp.ne.b32 p, %5, 0;\n"
|
635 |
+
"\tmov.b32 %0, 0;\n"
|
636 |
+
"\tmov.b32 %1, 0;\n"
|
637 |
+
"\tmov.b32 %2, 0;\n"
|
638 |
+
"\tmov.b32 %3, 0;\n"
|
639 |
+
"\t@p ld.shared.v4.u32 {%0, %1, %2, %3}, [%4];\n"
|
640 |
+
"}\n"
|
641 |
+
: "=r"(data[0].x), "=r"(data[0].y), "=r"(data[0].z), "=r"(data[0].w)
|
642 |
+
: "r"(src_shr), "r"((int)do_access));
|
643 |
+
#else
|
644 |
+
const uint4* src_cast = reinterpret_cast<const uint4*>(src);
|
645 |
+
if (do_access) {
|
646 |
+
data[0] = src_cast[0];
|
647 |
+
} else {
|
648 |
+
data[0].x = 0;
|
649 |
+
data[0].y = 0;
|
650 |
+
data[0].z = 0;
|
651 |
+
data[0].w = 0;
|
652 |
+
}
|
653 |
+
#endif
|
654 |
+
}
|
655 |
+
|
656 |
+
template <>
|
657 |
+
__device__ __forceinline__ void load_shared<8>(void* dst, const void* src)
|
658 |
+
{
|
659 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
660 |
+
#ifdef PTX_AVAILABLE
|
661 |
+
unsigned src_shr = internal::convert_to_shared(src);
|
662 |
+
|
663 |
+
asm volatile("ld.shared.v2.u32 {%0, %1}, [%2];\n"
|
664 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
665 |
+
: "r"(src_shr));
|
666 |
+
#else
|
667 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
668 |
+
data[0] = src_cast[0];
|
669 |
+
#endif
|
670 |
+
}
|
671 |
+
|
672 |
+
template <>
|
673 |
+
__device__ __forceinline__ void load_shared<8>(void* dst, const void* src, bool do_access)
|
674 |
+
{
|
675 |
+
uint2* data = reinterpret_cast<uint2*>(dst);
|
676 |
+
#ifdef PTX_AVAILABLE
|
677 |
+
unsigned src_shr = internal::convert_to_shared(src);
|
678 |
+
|
679 |
+
asm volatile(
|
680 |
+
"{\n"
|
681 |
+
"\t.reg .pred p;\n"
|
682 |
+
"\tsetp.ne.b32 p, %3, 0;\n"
|
683 |
+
"\tmov.b32 %0, 0;\n"
|
684 |
+
"\tmov.b32 %1, 0;\n"
|
685 |
+
"\t@p ld.shared.v2.u32 {%0, %1}, [%2];\n"
|
686 |
+
"}\n"
|
687 |
+
: "=r"(data[0].x), "=r"(data[0].y)
|
688 |
+
: "r"(src_shr), "r"((int)do_access));
|
689 |
+
#else
|
690 |
+
const uint2* src_cast = reinterpret_cast<const uint2*>(src);
|
691 |
+
if (do_access) {
|
692 |
+
data[0] = src_cast[0];
|
693 |
+
} else {
|
694 |
+
data[0].x = 0;
|
695 |
+
data[0].y = 0;
|
696 |
+
}
|
697 |
+
#endif
|
698 |
+
}
|
699 |
+
|
700 |
+
template <>
|
701 |
+
__device__ __forceinline__ void load_shared<4>(void* dst, const void* src)
|
702 |
+
{
|
703 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
704 |
+
#ifdef PTX_AVAILABLE
|
705 |
+
unsigned src_shr = internal::convert_to_shared(src);
|
706 |
+
|
707 |
+
asm volatile("ld.shared.u32 {%0}, [%1];\n" : "=r"(*data) : "r"(src_shr));
|
708 |
+
#else
|
709 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
710 |
+
data[0] = src_cast[0];
|
711 |
+
#endif
|
712 |
+
}
|
713 |
+
|
714 |
+
template <>
|
715 |
+
__device__ __forceinline__ void load_shared<4>(void* dst, const void* src, bool do_access)
|
716 |
+
{
|
717 |
+
int32_t* data = reinterpret_cast<int32_t*>(dst);
|
718 |
+
#ifdef PTX_AVAILABLE
|
719 |
+
unsigned src_shr = internal::convert_to_shared(src);
|
720 |
+
|
721 |
+
asm volatile(
|
722 |
+
"{\n"
|
723 |
+
"\t.reg .pred p;\n"
|
724 |
+
"\tsetp.ne.b32 p, %2, 0;\n"
|
725 |
+
"\tmov.b32 %0, 0;\n"
|
726 |
+
"\t@p ld.shared.u32 %0, [%1];\n"
|
727 |
+
"}\n"
|
728 |
+
: "=r"(data[0])
|
729 |
+
: "r"(src_shr), "r"((int)do_access));
|
730 |
+
#else
|
731 |
+
const int32_t* src_cast = reinterpret_cast<const int32_t*>(src);
|
732 |
+
if (do_access) {
|
733 |
+
data[0] = src_cast[0];
|
734 |
+
} else {
|
735 |
+
data[0] = 0;
|
736 |
+
}
|
737 |
+
#endif
|
738 |
+
}
|
739 |
+
|
740 |
+
/////////// Store Global ///////////
|
741 |
+
|
742 |
+
template <>
|
743 |
+
__device__ __forceinline__ void store_global<16>(void* dst, const void* src)
|
744 |
+
{
|
745 |
+
const uint4* data = reinterpret_cast<const uint4*>(src);
|
746 |
+
#ifdef PTX_AVAILABLE
|
747 |
+
asm volatile("st.global.wb.v4.u32 [%0], {%1, %2, %3, %4};\n"
|
748 |
+
:
|
749 |
+
: "l"(dst), "r"(data[0].x), "r"(data[0].y), "r"(data[0].z), "r"(data[0].w)
|
750 |
+
: "memory");
|
751 |
+
#else
|
752 |
+
uint4* dst_cast = reinterpret_cast<uint4*>(dst);
|
753 |
+
dst_cast[0] = data[0];
|
754 |
+
#endif
|
755 |
+
}
|
756 |
+
|
757 |
+
template <>
|
758 |
+
__device__ __forceinline__ void store_global<16, StorePolicy::CacheGlobal>(void* dst,
|
759 |
+
const void* src)
|
760 |
+
{
|
761 |
+
const uint4* data = reinterpret_cast<const uint4*>(src);
|
762 |
+
#ifdef PTX_AVAILABLE
|
763 |
+
asm volatile("st.global.cg.v4.u32 [%0], {%1, %2, %3, %4};\n"
|
764 |
+
:
|
765 |
+
: "l"(dst), "r"(data[0].x), "r"(data[0].y), "r"(data[0].z), "r"(data[0].w)
|
766 |
+
: "memory");
|
767 |
+
#else
|
768 |
+
uint4* dst_cast = reinterpret_cast<uint4*>(dst);
|
769 |
+
dst_cast[0] = data[0];
|
770 |
+
#endif
|
771 |
+
}
|
772 |
+
|
773 |
+
template <>
|
774 |
+
__device__ __forceinline__ void store_global<16, StorePolicy::CacheStreaming>(void* dst,
|
775 |
+
const void* src)
|
776 |
+
{
|
777 |
+
const uint4* data = reinterpret_cast<const uint4*>(src);
|
778 |
+
#ifdef PTX_AVAILABLE
|
779 |
+
asm volatile("st.global.cs.v4.u32 [%0], {%1, %2, %3, %4};\n"
|
780 |
+
:
|
781 |
+
: "l"(dst), "r"(data[0].x), "r"(data[0].y), "r"(data[0].z), "r"(data[0].w)
|
782 |
+
: "memory");
|
783 |
+
#else
|
784 |
+
uint4* dst_cast = reinterpret_cast<uint4*>(dst);
|
785 |
+
dst_cast[0] = data[0];
|
786 |
+
#endif
|
787 |
+
}
|
788 |
+
|
789 |
+
template <>
|
790 |
+
__device__ __forceinline__ void store_global<8>(void* dst, const void* src)
|
791 |
+
{
|
792 |
+
const uint2* data = reinterpret_cast<const uint2*>(src);
|
793 |
+
#ifdef PTX_AVAILABLE
|
794 |
+
asm volatile("st.global.wb.v2.u32 [%0], {%1, %2};\n"
|
795 |
+
:
|
796 |
+
: "l"(dst), "r"(data[0].x), "r"(data[0].y));
|
797 |
+
#else
|
798 |
+
uint2* dst_cast = reinterpret_cast<uint2*>(dst);
|
799 |
+
dst_cast[0] = data[0];
|
800 |
+
#endif
|
801 |
+
}
|
802 |
+
|
803 |
+
template <>
|
804 |
+
__device__ __forceinline__ void store_global<8, StorePolicy::CacheGlobal>(void* dst,
|
805 |
+
const void* src)
|
806 |
+
{
|
807 |
+
const uint2* data = reinterpret_cast<const uint2*>(src);
|
808 |
+
#ifdef PTX_AVAILABLE
|
809 |
+
asm volatile("st.global.cg.v2.u32 [%0], {%1, %2};\n"
|
810 |
+
:
|
811 |
+
: "l"(dst), "r"(data[0].x), "r"(data[0].y));
|
812 |
+
#else
|
813 |
+
uint2* dst_cast = reinterpret_cast<uint2*>(dst);
|
814 |
+
dst_cast[0] = data[0];
|
815 |
+
#endif
|
816 |
+
}
|
817 |
+
|
818 |
+
template <>
|
819 |
+
__device__ __forceinline__ void store_global<8, StorePolicy::CacheStreaming>(void* dst,
|
820 |
+
const void* src)
|
821 |
+
{
|
822 |
+
const uint2* data = reinterpret_cast<const uint2*>(src);
|
823 |
+
#ifdef PTX_AVAILABLE
|
824 |
+
asm volatile("st.global.cs.v2.u32 [%0], {%1, %2};\n"
|
825 |
+
:
|
826 |
+
: "l"(dst), "r"(data[0].x), "r"(data[0].y));
|
827 |
+
#else
|
828 |
+
uint2* dst_cast = reinterpret_cast<uint2*>(dst);
|
829 |
+
dst_cast[0] = data[0];
|
830 |
+
#endif
|
831 |
+
}
|
832 |
+
|
833 |
+
template <>
|
834 |
+
__device__ __forceinline__ void store_global<4>(void* dst, const void* src)
|
835 |
+
{
|
836 |
+
const int32_t* data = reinterpret_cast<const int32_t*>(src);
|
837 |
+
#ifdef PTX_AVAILABLE
|
838 |
+
asm volatile("st.global.wb.u32 [%0], %1;\n" : : "l"(dst), "r"(*data));
|
839 |
+
#else
|
840 |
+
int32_t* dst_cast = reinterpret_cast<int32_t*>(dst);
|
841 |
+
dst_cast[0] = data[0];
|
842 |
+
#endif
|
843 |
+
}
|
844 |
+
|
845 |
+
template <>
|
846 |
+
__device__ __forceinline__ void store_global<4, StorePolicy::CacheGlobal>(void* dst,
|
847 |
+
const void* src)
|
848 |
+
{
|
849 |
+
const int32_t* data = reinterpret_cast<const int32_t*>(src);
|
850 |
+
#ifdef PTX_AVAILABLE
|
851 |
+
asm volatile("st.global.cg.u32 [%0], %1;\n" : : "l"(dst), "r"(*data));
|
852 |
+
#else
|
853 |
+
int32_t* dst_cast = reinterpret_cast<int32_t*>(dst);
|
854 |
+
dst_cast[0] = data[0];
|
855 |
+
#endif
|
856 |
+
}
|
857 |
+
|
858 |
+
template <>
|
859 |
+
__device__ __forceinline__ void store_global<4, StorePolicy::CacheStreaming>(void* dst,
|
860 |
+
const void* src)
|
861 |
+
{
|
862 |
+
const int32_t* data = reinterpret_cast<const int32_t*>(src);
|
863 |
+
#ifdef PTX_AVAILABLE
|
864 |
+
asm volatile("st.global.cs.u32 [%0], %1;\n" : : "l"(dst), "r"(*data));
|
865 |
+
#else
|
866 |
+
int32_t* dst_cast = reinterpret_cast<int32_t*>(dst);
|
867 |
+
dst_cast[0] = data[0];
|
868 |
+
#endif
|
869 |
+
}
|
870 |
+
|
871 |
+
template <>
|
872 |
+
__device__ __forceinline__ void store_global<2>(void* dst, const void* src)
|
873 |
+
{
|
874 |
+
const int16_t* data = reinterpret_cast<const int16_t*>(src);
|
875 |
+
|
876 |
+
int16_t* dst_cast = reinterpret_cast<int16_t*>(dst);
|
877 |
+
dst_cast[0] = data[0];
|
878 |
+
}
|
879 |
+
|
880 |
+
template <>
|
881 |
+
__device__ __forceinline__ void store_global<2, StorePolicy::CacheGlobal>(void* dst,
|
882 |
+
const void* src)
|
883 |
+
{
|
884 |
+
const int16_t* data = reinterpret_cast<const int16_t*>(src);
|
885 |
+
|
886 |
+
int16_t* dst_cast = reinterpret_cast<int16_t*>(dst);
|
887 |
+
dst_cast[0] = data[0];
|
888 |
+
}
|
889 |
+
|
890 |
+
template <>
|
891 |
+
__device__ __forceinline__ void store_global<2, StorePolicy::CacheStreaming>(void* dst,
|
892 |
+
const void* src)
|
893 |
+
{
|
894 |
+
const int16_t* data = reinterpret_cast<const int16_t*>(src);
|
895 |
+
|
896 |
+
int16_t* dst_cast = reinterpret_cast<int16_t*>(dst);
|
897 |
+
dst_cast[0] = data[0];
|
898 |
+
}
|
899 |
+
|
900 |
+
/////////// Store Shared ///////////
|
901 |
+
|
902 |
+
template <>
|
903 |
+
__device__ __forceinline__ void store_shared<16>(void* dst, const void* src)
|
904 |
+
{
|
905 |
+
const uint4* data = reinterpret_cast<const uint4*>(src);
|
906 |
+
#ifdef PTX_AVAILABLE
|
907 |
+
unsigned dst_int = internal::convert_to_shared(dst);
|
908 |
+
|
909 |
+
asm volatile("st.shared.v4.u32 [%0], {%1, %2, %3, %4};\n"
|
910 |
+
:
|
911 |
+
: "r"(dst_int), "r"(data[0].x), "r"(data[0].y), "r"(data[0].z), "r"(data[0].w));
|
912 |
+
#else
|
913 |
+
uint4* dst_cast = reinterpret_cast<uint4*>(dst);
|
914 |
+
dst_cast[0] = data[0];
|
915 |
+
#endif
|
916 |
+
}
|
917 |
+
|
918 |
+
template <>
|
919 |
+
__device__ __forceinline__ void store_shared<8>(void* dst, const void* src)
|
920 |
+
{
|
921 |
+
const uint2* data = reinterpret_cast<const uint2*>(src);
|
922 |
+
#ifdef PTX_AVAILABLE
|
923 |
+
unsigned dst_int = internal::convert_to_shared(dst);
|
924 |
+
|
925 |
+
asm volatile("st.shared.v2.u32 [%0], {%1, %2};\n"
|
926 |
+
:
|
927 |
+
: "r"(dst_int), "r"(data[0].x), "r"(data[0].y));
|
928 |
+
#else
|
929 |
+
uint2* dst_cast = reinterpret_cast<uint2*>(dst);
|
930 |
+
dst_cast[0] = data[0];
|
931 |
+
#endif
|
932 |
+
}
|
933 |
+
|
934 |
+
template <>
|
935 |
+
__device__ __forceinline__ void store_shared<4>(void* dst, const void* src)
|
936 |
+
{
|
937 |
+
const int32_t* data = reinterpret_cast<const int32_t*>(src);
|
938 |
+
#ifdef PTX_AVAILABLE
|
939 |
+
unsigned dst_int = internal::convert_to_shared(dst);
|
940 |
+
|
941 |
+
asm volatile("st.shared.u32 [%0], %1;\n" : : "r"(dst_int), "r"(*data));
|
942 |
+
#else
|
943 |
+
int32_t* dst_cast = reinterpret_cast<int32_t*>(dst);
|
944 |
+
dst_cast[0] = data[0];
|
945 |
+
#endif
|
946 |
+
}
|
947 |
+
|
948 |
+
/////////// Asynchronous Memory Copy ///////////
|
949 |
+
|
950 |
+
#ifdef ASYNC_COPY_AVAILABLE
|
951 |
+
template <int AccessSize>
|
952 |
+
__device__ __forceinline__ void memcpy_async(void* shr, const void* gbl)
|
953 |
+
{
|
954 |
+
static_assert((AccessSize == 4 || AccessSize == 8 || AccessSize == 16));
|
955 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
956 |
+
|
957 |
+
asm volatile("cp.async.ca.shared.global [%0], [%1], %2;\n"
|
958 |
+
:
|
959 |
+
: "r"(shr_int), "l"(gbl), "n"(AccessSize));
|
960 |
+
}
|
961 |
+
|
962 |
+
template <int AccessSize>
|
963 |
+
__device__ __forceinline__ void memcpy_async_nop(void* shr, const void* gbl, bool predicate)
|
964 |
+
{
|
965 |
+
static_assert((AccessSize == 4 || AccessSize == 8 || AccessSize == 16));
|
966 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
967 |
+
|
968 |
+
asm volatile(
|
969 |
+
"{\n"
|
970 |
+
" .reg .pred p;\n"
|
971 |
+
" setp.ne.b32 p, %0, 0;\n"
|
972 |
+
" @p cp.async.ca.shared.global [%1], [%2], %3;\n"
|
973 |
+
"}\n"
|
974 |
+
:
|
975 |
+
: "r"((int)predicate), "r"(shr_int), "l"(gbl), "n"(AccessSize));
|
976 |
+
}
|
977 |
+
|
978 |
+
template <int AccessSize>
|
979 |
+
__device__ __forceinline__ void memcpy_async_zero(void* shr, const void* gbl, bool predicate)
|
980 |
+
{
|
981 |
+
static_assert((AccessSize == 4 || AccessSize == 8 || AccessSize == 16));
|
982 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
983 |
+
int bytes_to_copy = (predicate ? AccessSize : 0);
|
984 |
+
|
985 |
+
asm volatile("cp.async.ca.shared.global [%0], [%1], %2, %3;\n"
|
986 |
+
:
|
987 |
+
: "r"(shr_int), "l"(gbl), "n"(AccessSize), "r"(bytes_to_copy));
|
988 |
+
}
|
989 |
+
|
990 |
+
template <int AccessSize>
|
991 |
+
__device__ __forceinline__ void memcpy_async_zero_nop(void* shr,
|
992 |
+
const void* gbl,
|
993 |
+
bool zero_predicate,
|
994 |
+
bool nop_predicate)
|
995 |
+
{
|
996 |
+
static_assert((AccessSize == 4 || AccessSize == 8 || AccessSize == 16));
|
997 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
998 |
+
int bytes_to_copy = (zero_predicate ? AccessSize : 0);
|
999 |
+
|
1000 |
+
asm volatile(
|
1001 |
+
"{\n"
|
1002 |
+
" .reg .pred p;\n"
|
1003 |
+
" setp.ne.b32 p, %0, 0;\n"
|
1004 |
+
" @p cp.async.ca.shared.global [%1], [%2], %3, %4;\n"
|
1005 |
+
"}\n"
|
1006 |
+
:
|
1007 |
+
: "r"((int)nop_predicate), "r"(shr_int), "l"(gbl), "n"(AccessSize), "r"(bytes_to_copy));
|
1008 |
+
}
|
1009 |
+
|
1010 |
+
// Cache global variants. Separate interface to require deliberate use of them.
|
1011 |
+
__device__ __forceinline__ void memcpy_async_cg(void* shr, const void* gbl)
|
1012 |
+
{
|
1013 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
1014 |
+
|
1015 |
+
asm volatile("cp.async.cg.shared.global [%0], [%1], 16;\n" : : "r"(shr_int), "l"(gbl));
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
__device__ __forceinline__ void memcpy_async_nop_cg(void* shr, const void* gbl, bool predicate)
|
1019 |
+
{
|
1020 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
1021 |
+
|
1022 |
+
asm volatile(
|
1023 |
+
"{\n"
|
1024 |
+
" .reg .pred p;\n"
|
1025 |
+
" setp.ne.b32 p, %0, 0;\n"
|
1026 |
+
" @p cp.async.cg.shared.global [%1], [%2], 16;\n"
|
1027 |
+
"}\n"
|
1028 |
+
:
|
1029 |
+
: "r"((int)predicate), "r"(shr_int), "l"(gbl));
|
1030 |
+
}
|
1031 |
+
|
1032 |
+
__device__ __forceinline__ void memcpy_async_zero_cg(void* shr, const void* gbl, bool predicate)
|
1033 |
+
{
|
1034 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
1035 |
+
int bytes_to_copy = (predicate ? 16 : 0);
|
1036 |
+
|
1037 |
+
asm volatile("cp.async.cg.shared.global [%0], [%1], 16, %2;\n"
|
1038 |
+
:
|
1039 |
+
: "r"(shr_int), "l"(gbl), "r"(bytes_to_copy));
|
1040 |
+
}
|
1041 |
+
|
1042 |
+
__device__ __forceinline__ void memcpy_async_zero_nop_cg(void* shr,
|
1043 |
+
const void* gbl,
|
1044 |
+
bool zero_predicate,
|
1045 |
+
bool nop_predicate)
|
1046 |
+
{
|
1047 |
+
unsigned shr_int = internal::convert_to_shared(shr);
|
1048 |
+
int bytes_to_copy = (zero_predicate ? 16 : 0);
|
1049 |
+
|
1050 |
+
asm volatile(
|
1051 |
+
"{\n"
|
1052 |
+
" .reg .pred p;\n"
|
1053 |
+
" setp.ne.b32 p, %0, 0;\n"
|
1054 |
+
" @p cp.async.cg.shared.global [%1], [%2], 16, %3;\n"
|
1055 |
+
"}\n"
|
1056 |
+
:
|
1057 |
+
: "r"((int)nop_predicate), "r"(shr_int), "l"(gbl), "r"(bytes_to_copy));
|
1058 |
+
}
|
1059 |
+
|
1060 |
+
__device__ __forceinline__ void memcpy_async_fence() { asm volatile("cp.async.commit_group;\n"); }
|
1061 |
+
|
1062 |
+
template <int stages>
|
1063 |
+
__device__ __forceinline__ void memcpy_async_wait()
|
1064 |
+
{
|
1065 |
+
static_assert(stages <= 8);
|
1066 |
+
|
1067 |
+
asm volatile("cp.async.wait_group %0;\n" : : "n"(stages));
|
1068 |
+
}
|
1069 |
+
|
1070 |
+
// TODO: The tail complete should be a known compile time artifact, should try and induce this
|
1071 |
+
// without all of the branches from the call-site. This is a hacky solution.
|
1072 |
+
template <>
|
1073 |
+
__device__ __forceinline__ void tail_complete_wait<1>(int remaining_stages)
|
1074 |
+
{
|
1075 |
+
if (remaining_stages == 0) memcpy_async_wait<0>();
|
1076 |
+
}
|
1077 |
+
|
1078 |
+
template <>
|
1079 |
+
__device__ __forceinline__ void tail_complete_wait<2>(int remaining_stages)
|
1080 |
+
{
|
1081 |
+
if (remaining_stages == 1)
|
1082 |
+
memcpy_async_wait<1>();
|
1083 |
+
else if (remaining_stages == 0)
|
1084 |
+
memcpy_async_wait<0>();
|
1085 |
+
}
|
1086 |
+
|
1087 |
+
template <>
|
1088 |
+
__device__ __forceinline__ void tail_complete_wait<3>(int remaining_stages)
|
1089 |
+
{
|
1090 |
+
if (remaining_stages == 2)
|
1091 |
+
memcpy_async_wait<2>();
|
1092 |
+
else if (remaining_stages == 1)
|
1093 |
+
memcpy_async_wait<1>();
|
1094 |
+
else if (remaining_stages == 0)
|
1095 |
+
memcpy_async_wait<0>();
|
1096 |
+
}
|
1097 |
+
|
1098 |
+
template <>
|
1099 |
+
__device__ __forceinline__ void tail_complete_wait<4>(int remaining_stages)
|
1100 |
+
{
|
1101 |
+
if (remaining_stages == 3)
|
1102 |
+
memcpy_async_wait<3>();
|
1103 |
+
else if (remaining_stages == 2)
|
1104 |
+
memcpy_async_wait<2>();
|
1105 |
+
else if (remaining_stages == 1)
|
1106 |
+
memcpy_async_wait<1>();
|
1107 |
+
else if (remaining_stages == 0)
|
1108 |
+
memcpy_async_wait<0>();
|
1109 |
+
}
|
1110 |
+
|
1111 |
+
template <>
|
1112 |
+
__device__ __forceinline__ void tail_complete_wait<5>(int remaining_stages)
|
1113 |
+
{
|
1114 |
+
if (remaining_stages == 4)
|
1115 |
+
memcpy_async_wait<4>();
|
1116 |
+
else if (remaining_stages == 3)
|
1117 |
+
memcpy_async_wait<3>();
|
1118 |
+
else if (remaining_stages == 2)
|
1119 |
+
memcpy_async_wait<2>();
|
1120 |
+
else if (remaining_stages == 1)
|
1121 |
+
memcpy_async_wait<1>();
|
1122 |
+
else if (remaining_stages == 0)
|
1123 |
+
memcpy_async_wait<0>();
|
1124 |
+
}
|
1125 |
+
|
1126 |
+
template <>
|
1127 |
+
__device__ __forceinline__ void tail_complete_wait<6>(int remaining_stages)
|
1128 |
+
{
|
1129 |
+
if (remaining_stages == 5)
|
1130 |
+
memcpy_async_wait<5>();
|
1131 |
+
else if (remaining_stages == 4)
|
1132 |
+
memcpy_async_wait<4>();
|
1133 |
+
else if (remaining_stages == 3)
|
1134 |
+
memcpy_async_wait<3>();
|
1135 |
+
else if (remaining_stages == 2)
|
1136 |
+
memcpy_async_wait<2>();
|
1137 |
+
else if (remaining_stages == 1)
|
1138 |
+
memcpy_async_wait<1>();
|
1139 |
+
else if (remaining_stages == 0)
|
1140 |
+
memcpy_async_wait<0>();
|
1141 |
+
}
|
1142 |
+
#endif
|
1143 |
+
|
1144 |
+
} // namespace mem_access
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/normalize_layer.h
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <cuda.h>
|
9 |
+
#include <cuda_fp16.h>
|
10 |
+
#include <stdio.h>
|
11 |
+
#include <fstream>
|
12 |
+
#include "custom_cuda_layers.h"
|
13 |
+
|
14 |
+
using namespace std;
|
15 |
+
|
16 |
+
template <typename T>
|
17 |
+
class Normalize_Layer {
|
18 |
+
public:
|
19 |
+
struct Config {
|
20 |
+
uint32_t batchSize;
|
21 |
+
uint32_t seqLength;
|
22 |
+
uint32_t hiddenDim;
|
23 |
+
float epsilon;
|
24 |
+
bool training;
|
25 |
+
bool useMean;
|
26 |
+
Config(uint32_t batch,
|
27 |
+
uint32_t seq,
|
28 |
+
uint32_t h,
|
29 |
+
float epsilon = 1e-12,
|
30 |
+
bool training = true,
|
31 |
+
bool useMean = true)
|
32 |
+
: batchSize(batch),
|
33 |
+
seqLength(seq),
|
34 |
+
hiddenDim(h),
|
35 |
+
epsilon(epsilon),
|
36 |
+
training(training),
|
37 |
+
useMean(useMean)
|
38 |
+
{
|
39 |
+
}
|
40 |
+
};
|
41 |
+
|
42 |
+
Normalize_Layer(Config config)
|
43 |
+
: config_(config), vars(nullptr), means(nullptr), vals_hat(nullptr)
|
44 |
+
{
|
45 |
+
}
|
46 |
+
|
47 |
+
~Normalize_Layer() {}
|
48 |
+
|
49 |
+
void ForwardCheckpoint(int bsz, // batch * seq
|
50 |
+
T* vals,
|
51 |
+
const T* residual,
|
52 |
+
const T* gamma,
|
53 |
+
const T* betta,
|
54 |
+
cudaStream_t& stream,
|
55 |
+
bool preLayerNorm = false)
|
56 |
+
{
|
57 |
+
launch_bias_residual_layer_norm(vals,
|
58 |
+
residual,
|
59 |
+
gamma,
|
60 |
+
betta,
|
61 |
+
config_.epsilon,
|
62 |
+
bsz,
|
63 |
+
config_.hiddenDim,
|
64 |
+
stream,
|
65 |
+
preLayerNorm,
|
66 |
+
config_.training,
|
67 |
+
vars,
|
68 |
+
means);
|
69 |
+
}
|
70 |
+
|
71 |
+
void Forward(int bsz,
|
72 |
+
T* vals,
|
73 |
+
const T* residual,
|
74 |
+
const T* gamma,
|
75 |
+
const T* betta,
|
76 |
+
cudaStream_t& stream,
|
77 |
+
bool preLayerNorm = false)
|
78 |
+
{
|
79 |
+
launch_bias_residual_layer_norm(vals,
|
80 |
+
residual,
|
81 |
+
gamma,
|
82 |
+
betta,
|
83 |
+
config_.epsilon,
|
84 |
+
bsz,
|
85 |
+
config_.hiddenDim,
|
86 |
+
stream,
|
87 |
+
preLayerNorm,
|
88 |
+
config_.training,
|
89 |
+
vars);
|
90 |
+
}
|
91 |
+
|
92 |
+
void Backward(int bsz,
|
93 |
+
const T* out_grad,
|
94 |
+
const T* gamma,
|
95 |
+
T* gamma_grad,
|
96 |
+
T* betta_grad,
|
97 |
+
cudaStream_t stream[2],
|
98 |
+
T* inp_grad_out,
|
99 |
+
const T* norm_in = nullptr)
|
100 |
+
{
|
101 |
+
launch_layerNorm_backward(out_grad,
|
102 |
+
norm_in,
|
103 |
+
vars,
|
104 |
+
means,
|
105 |
+
gamma,
|
106 |
+
gamma_grad,
|
107 |
+
betta_grad,
|
108 |
+
inp_grad_out,
|
109 |
+
bsz,
|
110 |
+
config_.hiddenDim,
|
111 |
+
stream);
|
112 |
+
}
|
113 |
+
|
114 |
+
void Backward(int bsz,
|
115 |
+
const T* out_grad,
|
116 |
+
const T* gamma,
|
117 |
+
const T* betta,
|
118 |
+
T* gamma_grad,
|
119 |
+
T* betta_grad,
|
120 |
+
cudaStream_t stream[2],
|
121 |
+
T* inp_grad_out,
|
122 |
+
const T* norm_out)
|
123 |
+
{
|
124 |
+
launch_layerNorm_backward(out_grad,
|
125 |
+
norm_out,
|
126 |
+
vars,
|
127 |
+
gamma,
|
128 |
+
gamma_grad,
|
129 |
+
betta_grad,
|
130 |
+
inp_grad_out,
|
131 |
+
bsz,
|
132 |
+
config_.hiddenDim,
|
133 |
+
stream,
|
134 |
+
!config_.useMean,
|
135 |
+
betta);
|
136 |
+
}
|
137 |
+
|
138 |
+
void BackwardFusedAdd(int bsz,
|
139 |
+
const T* out_grad1,
|
140 |
+
const T* out_grad2,
|
141 |
+
const T* gamma,
|
142 |
+
T* gamma_grad,
|
143 |
+
T* betta_grad,
|
144 |
+
cudaStream_t stream[2],
|
145 |
+
T* inp_grad_out,
|
146 |
+
const T* norm_in = nullptr)
|
147 |
+
{
|
148 |
+
launch_layerNorm_backward_fused_add(out_grad1,
|
149 |
+
out_grad2,
|
150 |
+
norm_in,
|
151 |
+
vars,
|
152 |
+
means,
|
153 |
+
gamma,
|
154 |
+
gamma_grad,
|
155 |
+
betta_grad,
|
156 |
+
inp_grad_out,
|
157 |
+
bsz,
|
158 |
+
config_.hiddenDim,
|
159 |
+
stream);
|
160 |
+
}
|
161 |
+
|
162 |
+
void BackwardFusedAdd(int bsz,
|
163 |
+
const T* out_grad1,
|
164 |
+
const T* out_grad2,
|
165 |
+
const T* gamma,
|
166 |
+
const T* betta,
|
167 |
+
T* gamma_grad,
|
168 |
+
T* betta_grad,
|
169 |
+
cudaStream_t stream[2],
|
170 |
+
T* inp_grad_out,
|
171 |
+
const T* norm_out)
|
172 |
+
{
|
173 |
+
launch_layerNorm_backward_fused_add(out_grad1,
|
174 |
+
out_grad2,
|
175 |
+
norm_out,
|
176 |
+
vars,
|
177 |
+
gamma,
|
178 |
+
gamma_grad,
|
179 |
+
betta_grad,
|
180 |
+
inp_grad_out,
|
181 |
+
bsz,
|
182 |
+
config_.hiddenDim,
|
183 |
+
stream,
|
184 |
+
!config_.useMean,
|
185 |
+
betta);
|
186 |
+
}
|
187 |
+
|
188 |
+
inline bool UseMean() const { return config_.useMean; }
|
189 |
+
|
190 |
+
inline void SetVar(T* variance)
|
191 |
+
{
|
192 |
+
if (!variance) { throw std::runtime_error("Normalize variance is null."); }
|
193 |
+
vars = variance;
|
194 |
+
}
|
195 |
+
|
196 |
+
inline void SetMean(T* mean)
|
197 |
+
{
|
198 |
+
if (!mean) { throw std::runtime_error("Normalize mean is null."); }
|
199 |
+
means = mean;
|
200 |
+
}
|
201 |
+
|
202 |
+
private:
|
203 |
+
Config config_;
|
204 |
+
T* vars;
|
205 |
+
T* means;
|
206 |
+
T* vals_hat;
|
207 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/quantization.h
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <cuda_fp16.h>
|
9 |
+
#include "ds_kernel_utils.h"
|
10 |
+
|
11 |
+
namespace quantize {
|
12 |
+
|
13 |
+
enum class Type { Symmetric, Asymmetric };
|
14 |
+
|
15 |
+
struct PackedInt4 {
|
16 |
+
int8_t high : 4;
|
17 |
+
int8_t low : 4;
|
18 |
+
};
|
19 |
+
|
20 |
+
DS_HD_INLINE bool requires_offset(Type qType) { return qType == Type::Asymmetric; }
|
21 |
+
|
22 |
+
} // namespace quantize
|
23 |
+
|
24 |
+
void launch_quant(int8_t* output_data,
|
25 |
+
float* params,
|
26 |
+
const __half* input_data,
|
27 |
+
const int groups,
|
28 |
+
const int elems_per_group,
|
29 |
+
const int num_bits,
|
30 |
+
const quantize::Type quant_type,
|
31 |
+
cudaStream_t stream);
|
32 |
+
|
33 |
+
template <typename T>
|
34 |
+
void launch_dequantize_kernel(T* dequant_data,
|
35 |
+
const int8_t* q_data,
|
36 |
+
const float* q_params,
|
37 |
+
quantize::Type q_type,
|
38 |
+
int num_bits,
|
39 |
+
int elems_per_group,
|
40 |
+
int total_elems,
|
41 |
+
cudaStream_t stream);
|
42 |
+
|
43 |
+
void launch_swizzled_quant(int8_t* q_data,
|
44 |
+
float* q_scales,
|
45 |
+
const __half* input_data,
|
46 |
+
int num_bits,
|
47 |
+
quantize::Type q_type,
|
48 |
+
int groups,
|
49 |
+
int elems_per_group,
|
50 |
+
int pipelining,
|
51 |
+
int nodes,
|
52 |
+
int devices_per_node,
|
53 |
+
cudaStream_t stream);
|
54 |
+
|
55 |
+
void launch_dequant_reduce(int8_t* reduced_data,
|
56 |
+
float* reduced_scales,
|
57 |
+
const int8_t* input_data,
|
58 |
+
const float* input_scales,
|
59 |
+
int num_gpus,
|
60 |
+
int num_bits,
|
61 |
+
quantize::Type quant_type,
|
62 |
+
int out_groups,
|
63 |
+
int elems_per_out_group,
|
64 |
+
int elems_per_in_tensor,
|
65 |
+
int groups_per_in_tensor,
|
66 |
+
int elems_per_in_group,
|
67 |
+
cudaStream_t stream);
|
68 |
+
|
69 |
+
template <typename T>
|
70 |
+
void launch_fake_quantize_kernel(T* vals,
|
71 |
+
int total_count,
|
72 |
+
int group_num,
|
73 |
+
int num_bits,
|
74 |
+
cudaStream_t stream);
|
75 |
+
template <typename T>
|
76 |
+
void launch_sr_fake_quantize_kernel(T* vals,
|
77 |
+
int total_count,
|
78 |
+
int group_num,
|
79 |
+
int num_bits,
|
80 |
+
cudaStream_t stream);
|
81 |
+
template <typename T>
|
82 |
+
void launch_fake_quantize_kernel_asym(T* vals,
|
83 |
+
int total_count,
|
84 |
+
int group_num,
|
85 |
+
int num_bits,
|
86 |
+
cudaStream_t stream);
|
87 |
+
template <typename T>
|
88 |
+
void launch_sr_fake_quantize_kernel_asym(T* vals,
|
89 |
+
int total_count,
|
90 |
+
int group_num,
|
91 |
+
int num_bits,
|
92 |
+
cudaStream_t stream);
|
93 |
+
|
94 |
+
void launch_dequantize_int4_to_half_experimental(uint8_t* data_in,
|
95 |
+
half* data_out,
|
96 |
+
half* scale_buffer,
|
97 |
+
half* min_val_buffer,
|
98 |
+
int num_group,
|
99 |
+
int group_size,
|
100 |
+
cudaStream_t stream);
|
101 |
+
|
102 |
+
void launch_dequantize_int8_to_half_experimental(uint8_t* data_in,
|
103 |
+
half* data_out,
|
104 |
+
half* scale_buffer,
|
105 |
+
half* min_val_buffer,
|
106 |
+
int num_group,
|
107 |
+
int group_size,
|
108 |
+
cudaStream_t stream);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/quantization_utils.h
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <cassert>
|
7 |
+
#include "conversion_utils.h"
|
8 |
+
#include "ds_kernel_utils.h"
|
9 |
+
#include "memory_access_utils.h"
|
10 |
+
#include "quantization.h"
|
11 |
+
#include "reduction_utils.h"
|
12 |
+
|
13 |
+
#pragma once
|
14 |
+
|
15 |
+
using rop = reduce::ROpType;
|
16 |
+
|
17 |
+
namespace quantize {
|
18 |
+
constexpr int granularity = 16;
|
19 |
+
constexpr int h_per_load = granularity / sizeof(__half);
|
20 |
+
constexpr int h2_per_load = granularity / sizeof(__half2);
|
21 |
+
constexpr int max_threads = 1024;
|
22 |
+
|
23 |
+
/*
|
24 |
+
Class to hold the quantization parameters for a given tensor.
|
25 |
+
Holds the implementation of the quantization operation.
|
26 |
+
*/
|
27 |
+
template <Type qType, int numBits>
|
28 |
+
class Params {
|
29 |
+
public:
|
30 |
+
/*
|
31 |
+
Quantization implementation, supports
|
32 |
+
1) 4 Bit
|
33 |
+
2) 8 Bit
|
34 |
+
3) Symmetric
|
35 |
+
4) Asymmetric
|
36 |
+
Function Arguments :
|
37 |
+
val : The __half value to quantize.
|
38 |
+
*/
|
39 |
+
DS_D_INLINE int8_t quantize(__half val);
|
40 |
+
|
41 |
+
template <typename T>
|
42 |
+
DS_D_INLINE T dequantize(int8_t val);
|
43 |
+
|
44 |
+
DS_D_INLINE void store(float* params, int group_index);
|
45 |
+
|
46 |
+
// Initialize from memory
|
47 |
+
DS_D_INLINE Params(const float* params, int group_index);
|
48 |
+
};
|
49 |
+
|
50 |
+
template <int numBits>
|
51 |
+
class Params<Type::Symmetric, numBits> {
|
52 |
+
public:
|
53 |
+
float scale;
|
54 |
+
|
55 |
+
DS_D_INLINE Params(float max)
|
56 |
+
{
|
57 |
+
if (max == 0) {
|
58 |
+
scale = 1.0;
|
59 |
+
} else {
|
60 |
+
scale = (1 << numBits) / (2 * max);
|
61 |
+
}
|
62 |
+
}
|
63 |
+
|
64 |
+
DS_D_INLINE int8_t quantize(__half val)
|
65 |
+
{
|
66 |
+
constexpr int32_t q_min = -(1 << (numBits - 1));
|
67 |
+
constexpr int32_t q_max = (1 << (numBits - 1)) - 1;
|
68 |
+
|
69 |
+
float val_f = conversion::to<float>(val) * scale;
|
70 |
+
int32_t data_i32 = conversion::to<int32_t>(val_f);
|
71 |
+
data_i32 = min(max(data_i32, q_min), q_max);
|
72 |
+
return (int8_t)data_i32;
|
73 |
+
}
|
74 |
+
|
75 |
+
template <typename T>
|
76 |
+
DS_D_INLINE T dequantize(int8_t val)
|
77 |
+
{
|
78 |
+
const float val_deq_f = conversion::to<float>(val) * scale;
|
79 |
+
return conversion::to<T>(val_deq_f);
|
80 |
+
}
|
81 |
+
|
82 |
+
DS_D_INLINE void store(float* params, int group_index)
|
83 |
+
{
|
84 |
+
const float store_scale = 1 / scale;
|
85 |
+
mem_access::store_global<sizeof(float)>(params + group_index, &store_scale);
|
86 |
+
}
|
87 |
+
|
88 |
+
DS_D_INLINE Params(const float* params, int group_index)
|
89 |
+
{
|
90 |
+
mem_access::load_global<sizeof(float)>(&scale, params + group_index);
|
91 |
+
}
|
92 |
+
};
|
93 |
+
|
94 |
+
template <int numBits>
|
95 |
+
class Params<Type::Asymmetric, numBits> {
|
96 |
+
public:
|
97 |
+
float scale;
|
98 |
+
float offset;
|
99 |
+
|
100 |
+
DS_D_INLINE Params(float max, float min)
|
101 |
+
{
|
102 |
+
if (max == min) {
|
103 |
+
scale = 1.0;
|
104 |
+
} else {
|
105 |
+
scale = ((1 << numBits)) / (max - min);
|
106 |
+
}
|
107 |
+
offset = (max + min) / 2;
|
108 |
+
}
|
109 |
+
|
110 |
+
DS_D_INLINE int8_t quantize(__half val)
|
111 |
+
{
|
112 |
+
constexpr int32_t q_min = -(1 << (numBits - 1));
|
113 |
+
constexpr int32_t q_max = (1 << (numBits - 1)) - 1;
|
114 |
+
|
115 |
+
float val_f = (conversion::to<float>(val) - offset) * scale;
|
116 |
+
int32_t data_i32 = conversion::to<int32_t>(val_f);
|
117 |
+
data_i32 = min(max(data_i32, q_min), q_max);
|
118 |
+
return (int8_t)data_i32;
|
119 |
+
}
|
120 |
+
|
121 |
+
template <typename T>
|
122 |
+
DS_D_INLINE T dequantize(int8_t val)
|
123 |
+
{
|
124 |
+
const float val_deq_f = ((conversion::to<float>(val)) * scale) + offset;
|
125 |
+
return conversion::to<__half>(val_deq_f);
|
126 |
+
}
|
127 |
+
|
128 |
+
DS_D_INLINE void store(float* params, int group_index)
|
129 |
+
{
|
130 |
+
// Codegen should turn this into stg.64
|
131 |
+
const float store_scale = 1 / scale;
|
132 |
+
mem_access::store_global<sizeof(float)>(params + 2 * group_index, &store_scale);
|
133 |
+
mem_access::store_global<sizeof(float)>(params + 2 * group_index + 1, &offset);
|
134 |
+
}
|
135 |
+
|
136 |
+
DS_D_INLINE Params(const float* params, int group_index)
|
137 |
+
{
|
138 |
+
// Codegen should turn this into ldg.64
|
139 |
+
mem_access::load_global<sizeof(float)>(&scale, params + 2 * group_index);
|
140 |
+
mem_access::load_global<sizeof(float)>(&offset, params + 2 * group_index + 1);
|
141 |
+
}
|
142 |
+
};
|
143 |
+
|
144 |
+
/*
|
145 |
+
Group stats tracks the necessary statistics about the quantized group
|
146 |
+
to abstract the particulars for the main loop.
|
147 |
+
*/
|
148 |
+
template <Type qType>
|
149 |
+
class GroupStats {
|
150 |
+
public:
|
151 |
+
DS_D_INLINE void update(__half2 val);
|
152 |
+
|
153 |
+
DS_D_INLINE void reduce(cg::thread_block& tb, cg::thread_block_tile<hw_warp_size>& warp);
|
154 |
+
};
|
155 |
+
|
156 |
+
template <>
|
157 |
+
class GroupStats<Type::Symmetric> {
|
158 |
+
public:
|
159 |
+
// Symmetric quantization only tracks the maximum absolute value
|
160 |
+
__half2 cur_max;
|
161 |
+
float max;
|
162 |
+
|
163 |
+
/*
|
164 |
+
Technically, this would give bad results if there
|
165 |
+
are 0 values to process since the reduction would
|
166 |
+
give -inf instead of 0. We do not consider this
|
167 |
+
to be a reasonable edge case.
|
168 |
+
*/
|
169 |
+
DS_D_INLINE GroupStats() { cur_max = reduce::init<rop::Max, __half2>(); }
|
170 |
+
|
171 |
+
/*
|
172 |
+
Updated the running absmax used to calculate params.
|
173 |
+
Function Arguments :
|
174 |
+
val : The __half2 value to update the running min and max with.
|
175 |
+
*/
|
176 |
+
DS_D_INLINE void update(__half2 val)
|
177 |
+
{
|
178 |
+
cur_max = reduce::element<rop::Max>(cur_max, __habs2(val));
|
179 |
+
}
|
180 |
+
|
181 |
+
/*
|
182 |
+
Function to return calculated quantization params.
|
183 |
+
Template Arguments :
|
184 |
+
numBits - Number of bits in quantized element. int : 8 or 4
|
185 |
+
Function Arguments :
|
186 |
+
tb - Threadblock object. cg::thread_block
|
187 |
+
warp - Warp object. cg::thread_block_tile<hw_warp_size>
|
188 |
+
*/
|
189 |
+
template <int numBits, int threads_per_group>
|
190 |
+
DS_D_INLINE Params<Type::Symmetric, numBits> get_params(
|
191 |
+
cg::thread_block& tb,
|
192 |
+
cg::thread_block_tile<hw_warp_size>& warp)
|
193 |
+
{
|
194 |
+
const float2 partial_max = conversion::to<float2>(cur_max);
|
195 |
+
float max = reduce::element<rop::Max>(partial_max.x, partial_max.y);
|
196 |
+
|
197 |
+
reduce::partitioned_block<rop::Max, threads_per_group>(tb, warp, max);
|
198 |
+
Params<Type::Symmetric, numBits> params(max);
|
199 |
+
|
200 |
+
return params;
|
201 |
+
}
|
202 |
+
};
|
203 |
+
|
204 |
+
template <>
|
205 |
+
class GroupStats<Type::Asymmetric> {
|
206 |
+
public:
|
207 |
+
__half2 cur_max;
|
208 |
+
__half2 cur_min;
|
209 |
+
|
210 |
+
/*
|
211 |
+
Initialize cur_max to -inf, cur_min to inf since
|
212 |
+
we are doing a true range analysis.
|
213 |
+
*/
|
214 |
+
DS_D_INLINE GroupStats()
|
215 |
+
{
|
216 |
+
cur_max = reduce::init<rop::Max, __half2>();
|
217 |
+
cur_min = reduce::init<rop::Min, __half2>();
|
218 |
+
}
|
219 |
+
|
220 |
+
/*
|
221 |
+
Updated the running min and max used to calculate params.
|
222 |
+
Function Arguments :
|
223 |
+
val : The __half2 value to update the running min and max with.
|
224 |
+
*/
|
225 |
+
DS_D_INLINE void update(__half2 val)
|
226 |
+
{
|
227 |
+
cur_max = reduce::element<rop::Max>(cur_max, val);
|
228 |
+
cur_min = reduce::element<rop::Min>(cur_min, val);
|
229 |
+
}
|
230 |
+
|
231 |
+
/*
|
232 |
+
Function to return calculated quantization params.
|
233 |
+
Template Arguments :
|
234 |
+
numBits - Number of bits in quantized element. int : 8 or 4
|
235 |
+
Function Arguments :
|
236 |
+
tb - Threadblock object. cg::thread_block
|
237 |
+
warp - Warp object. cg::thread_block_tile<hw_warp_size>
|
238 |
+
*/
|
239 |
+
template <int numBits, int threads_per_group>
|
240 |
+
DS_D_INLINE Params<Type::Asymmetric, numBits> get_params(
|
241 |
+
cg::thread_block& tb,
|
242 |
+
cg::thread_block_tile<hw_warp_size>& warp)
|
243 |
+
{
|
244 |
+
const float2 partial_max = conversion::to<float2>(cur_max);
|
245 |
+
float max = reduce::element<rop::Max>(partial_max.x, partial_max.y);
|
246 |
+
|
247 |
+
const float2 partial_min = conversion::to<float2>(cur_min);
|
248 |
+
float min = reduce::element<rop::Min>(partial_min.x, partial_min.y);
|
249 |
+
|
250 |
+
reduce::partitioned_block<rop::Max, rop::Min, threads_per_group>(tb, warp, max, min);
|
251 |
+
|
252 |
+
Params<Type::Asymmetric, numBits> params(max, min);
|
253 |
+
|
254 |
+
return params;
|
255 |
+
}
|
256 |
+
};
|
257 |
+
|
258 |
+
/*
|
259 |
+
Device function that quantizes 16 bytes of __half type input data.
|
260 |
+
Template Arguments :
|
261 |
+
numBits - Number of bits in quantized element. int : 8 or 4
|
262 |
+
qType - Type of quantization to perform. Type::Symmetric or Type::Asymmetric
|
263 |
+
Function Arguments :
|
264 |
+
local_output - Pointer to local memory to store quantized data. int8_t*
|
265 |
+
data - Pointer to input data. __half*
|
266 |
+
Params - Parameters for quantization. Params<qType, numBits>
|
267 |
+
*/
|
268 |
+
template <int numBits, Type qType>
|
269 |
+
DS_D_INLINE void _chunk(int8_t* local_output, const __half* data, Params<qType, numBits> q_params);
|
270 |
+
|
271 |
+
/*
|
272 |
+
Device function that quantizes 16 bytes of __half2 type input data.
|
273 |
+
Template Arguments :
|
274 |
+
numBits - Number of bits in quantized element. int : 8 or 4
|
275 |
+
qType - Type of quantization to perform. Type::Symmetric or Type::Asymmetric
|
276 |
+
Function Arguments :
|
277 |
+
local_output - Pointer to local memory to store quantized data. int8_t*
|
278 |
+
data - Pointer to input data. __half2*
|
279 |
+
Params - Parameters for quantization. Params<qType, numBits>
|
280 |
+
*/
|
281 |
+
template <int numBits, Type qType>
|
282 |
+
DS_D_INLINE void _chunk(int8_t* local_output, const __half2* data, Params<qType, numBits> q_params);
|
283 |
+
|
284 |
+
/*
|
285 |
+
Helper function to do serial reduction on register-file arrays.
|
286 |
+
Template Arguments :
|
287 |
+
qType - Type of quantization to perform. Type::Symmetric or Type::Asymmetric
|
288 |
+
numChunks - Number of bits in quantized element. int : 8 or 4
|
289 |
+
Function Arguments :
|
290 |
+
local_buffer - Pointer memory with input half2 data to be quantized.
|
291 |
+
*/
|
292 |
+
template <Type qType, int numChunks>
|
293 |
+
DS_D_INLINE GroupStats<qType> _local_serial_reduce(__half2* local_buffer);
|
294 |
+
|
295 |
+
/*
|
296 |
+
The main loop of the kernel that quantizes array in local memory of __half2 type input data, when
|
297 |
+
Quantization parameters are pre-computed.
|
298 |
+
Template Arguments :
|
299 |
+
qType - Type of quantization to perform. Type::Symmetric or Type::Asymmetric
|
300 |
+
numBits - Number of bits in quantized element. int : 8 or 4
|
301 |
+
numChunks - Number of chunks(16 bytes of Input data). int : 8 or 4
|
302 |
+
Function Arguments :
|
303 |
+
local_buffer - Pointer memory with input half2 data to be quantized.
|
304 |
+
scales - Pointer to output scales.
|
305 |
+
offsets - Pointer to output offsets.
|
306 |
+
output_data - Pointer to output data.
|
307 |
+
elems_per_group - Number of elements to quantize in a group.
|
308 |
+
q_params - Quantization parameters.
|
309 |
+
*/
|
310 |
+
template <int numBits, Type qType, int numChunks, int threads_per_group, int max_threads>
|
311 |
+
DS_D_INLINE void local_array(cg::thread_block& tb,
|
312 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
313 |
+
__half2* local_buffer,
|
314 |
+
float* __restrict__ scales,
|
315 |
+
float* __restrict__ offsets,
|
316 |
+
int8_t* __restrict__ output_data,
|
317 |
+
const int& elems_per_group,
|
318 |
+
const int& groups,
|
319 |
+
Params<qType, numBits> q_params);
|
320 |
+
|
321 |
+
/*
|
322 |
+
The main loop of the kernel that quantizes array in local memory of __half2 type input data.
|
323 |
+
This function computes quantization parameters for each group.
|
324 |
+
Template Arguments :
|
325 |
+
qType - Type of quantization to perform. Type::Symmetric or Type::Asymmetric
|
326 |
+
numBits - Number of bits in quantized element. int : 8 or 4
|
327 |
+
numChunks - Number of chunks(16 bytes of Input data). int : 8 or 4
|
328 |
+
Function Arguments :
|
329 |
+
local_buffer - Pointer memory with input half2 data to be quantized.
|
330 |
+
scales - Pointer to output scales.
|
331 |
+
offsets - Pointer to output offsets.
|
332 |
+
output_data - Pointer to output data.
|
333 |
+
elems_per_group - Number of elements to quantize in a group.
|
334 |
+
*/
|
335 |
+
template <Type qType, int numBits, int numChunks, int threads_per_group, int max_threads>
|
336 |
+
__device__ void local_array(__half2* local_buffer,
|
337 |
+
float* __restrict__ scales,
|
338 |
+
float* __restrict__ offsets,
|
339 |
+
int8_t* __restrict__ output_data,
|
340 |
+
const int& elems_per_group,
|
341 |
+
const int& groups);
|
342 |
+
|
343 |
+
template <int numBits, Type qType>
|
344 |
+
DS_D_INLINE void _chunk(int8_t* local_output, const __half* data, Params<qType, numBits> q_params)
|
345 |
+
{
|
346 |
+
constexpr int32_t elems = 16 / sizeof(__half);
|
347 |
+
constexpr int32_t num_elems_packed = 8 / numBits;
|
348 |
+
|
349 |
+
#pragma unroll
|
350 |
+
for (int i = 0, oi = 0; i < elems; i += num_elems_packed, oi++) {
|
351 |
+
if (num_elems_packed == 1) {
|
352 |
+
// TODO(cmikeh2): refactor to use conversion utils
|
353 |
+
local_output[i] = q_params.quantize(data[i]);
|
354 |
+
} else if (num_elems_packed == 2) {
|
355 |
+
int8_t data_i8_1 = q_params.quantize(data[i]);
|
356 |
+
int8_t data_i8_2 = q_params.quantize(data[i + 1]);
|
357 |
+
auto data_i8 = PackedInt4{data_i8_2, data_i8_1};
|
358 |
+
local_output[oi] = *((int8_t*)(&data_i8));
|
359 |
+
}
|
360 |
+
}
|
361 |
+
}
|
362 |
+
|
363 |
+
template <int numBits, Type qType>
|
364 |
+
DS_D_INLINE void _chunk(int8_t* local_output, const __half2* data, Params<qType, numBits> q_params)
|
365 |
+
{
|
366 |
+
const __half* data_cast = reinterpret_cast<const __half*>(data);
|
367 |
+
_chunk<numBits>(local_output, data_cast, q_params);
|
368 |
+
}
|
369 |
+
|
370 |
+
template <Type qType, int numChunks>
|
371 |
+
DS_D_INLINE GroupStats<qType> _local_serial_reduce(__half2* local_buffer)
|
372 |
+
{
|
373 |
+
GroupStats<qType> stats;
|
374 |
+
#pragma unroll
|
375 |
+
for (int i = 0; i < numChunks * h2_per_load; i++) { stats.update(local_buffer[i]); }
|
376 |
+
|
377 |
+
return stats;
|
378 |
+
}
|
379 |
+
|
380 |
+
template <Type qType, int numBits, int numChunks, int threads_per_group, int max_threads>
|
381 |
+
DS_D_INLINE void local_array(cg::thread_block& tb,
|
382 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
383 |
+
__half2* local_buffer,
|
384 |
+
float* __restrict__ global_params,
|
385 |
+
int8_t* __restrict__ output_data,
|
386 |
+
const int& elems_per_group,
|
387 |
+
const int& groups,
|
388 |
+
Params<qType, numBits> q_params)
|
389 |
+
{
|
390 |
+
constexpr int num_ele_int8 = 8 / numBits;
|
391 |
+
constexpr int num_int8_out = quantize::h_per_load / num_ele_int8;
|
392 |
+
|
393 |
+
// Indexing offsets
|
394 |
+
const int block_num =
|
395 |
+
(tb.group_index().x * max_threads / threads_per_group) + tb.thread_index().y;
|
396 |
+
const int block_offset = block_num * elems_per_group;
|
397 |
+
const int elem_offset = tb.thread_index().x * quantize::h_per_load;
|
398 |
+
const int base_offset = (block_offset + elem_offset) / num_ele_int8;
|
399 |
+
const int stride = tb.size() * quantize::h_per_load / num_ele_int8;
|
400 |
+
|
401 |
+
int8_t local_output[num_int8_out];
|
402 |
+
|
403 |
+
if (tb.thread_index().x == 0 && block_num < groups) {
|
404 |
+
q_params.store(
|
405 |
+
global_params,
|
406 |
+
(tb.group_index().x * max_threads / threads_per_group) + tb.thread_index().y);
|
407 |
+
}
|
408 |
+
#pragma unroll
|
409 |
+
for (int i = 0; i < numChunks; i++) {
|
410 |
+
if (elem_offset + i * stride * num_ele_int8 < elems_per_group && block_num < groups) {
|
411 |
+
quantize::_chunk<numBits, qType>(
|
412 |
+
local_output, local_buffer + i * quantize::h2_per_load, q_params);
|
413 |
+
mem_access::store_global<num_int8_out>(output_data + (base_offset + i * stride),
|
414 |
+
local_output);
|
415 |
+
}
|
416 |
+
}
|
417 |
+
}
|
418 |
+
|
419 |
+
template <Type qType, int numBits, int numChunks, int threads_per_group, int max_threads>
|
420 |
+
DS_D_INLINE void local_array(cg::thread_block& tb,
|
421 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
422 |
+
__half* local_buffer,
|
423 |
+
float* __restrict__ global_params,
|
424 |
+
int8_t* __restrict__ output_data,
|
425 |
+
const int& elems_per_group,
|
426 |
+
const int& groups,
|
427 |
+
Params<qType, numBits> q_params)
|
428 |
+
{
|
429 |
+
__half2* local_buffer_h2 = reinterpret_cast<__half2*>(local_buffer);
|
430 |
+
|
431 |
+
quantize::local_array<qType, numBits, numChunks, threads_per_group, max_threads>(
|
432 |
+
tb, warp, local_buffer, global_params, output_data, elems_per_group, groups, q_params);
|
433 |
+
}
|
434 |
+
|
435 |
+
template <Type qType,
|
436 |
+
int numBits,
|
437 |
+
int numChunks,
|
438 |
+
int threads_per_group = max_threads,
|
439 |
+
int max_threads = 256>
|
440 |
+
__device__ void local_array(__half2* local_buffer,
|
441 |
+
float* __restrict__ global_params,
|
442 |
+
int8_t* __restrict__ output_data,
|
443 |
+
const int& elems_per_group,
|
444 |
+
const int& groups)
|
445 |
+
{
|
446 |
+
cg::thread_block tb = cg::this_thread_block();
|
447 |
+
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
|
448 |
+
|
449 |
+
auto group_stats = _local_serial_reduce<qType, numChunks>(local_buffer);
|
450 |
+
auto params = group_stats.template get_params<numBits, threads_per_group>(tb, warp);
|
451 |
+
|
452 |
+
quantize::local_array<qType, numBits, numChunks, threads_per_group, max_threads>(
|
453 |
+
tb, warp, local_buffer, global_params, output_data, elems_per_group, groups, params);
|
454 |
+
}
|
455 |
+
|
456 |
+
template <Type qType, int numBits, int numChunks, int threads_per_group, int max_threads>
|
457 |
+
__device__ void local_array(__half* local_buffer,
|
458 |
+
float* __restrict__ global_params,
|
459 |
+
int8_t* __restrict__ output_data,
|
460 |
+
const int& elems_per_group,
|
461 |
+
const int& groups)
|
462 |
+
{
|
463 |
+
__half2* local_buffer_h2 = reinterpret_cast<__half2*>(local_buffer);
|
464 |
+
quantize::local_array<qType, numBits, numChunks, threads_per_group, max_threads>(
|
465 |
+
local_buffer_h2, global_params, output_data, elems_per_group, groups);
|
466 |
+
}
|
467 |
+
|
468 |
+
} // namespace quantize
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/quantizer.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#ifdef __HIP_PLATFORM_AMD__
|
9 |
+
#include <hip/hip_cooperative_groups.h>
|
10 |
+
#else
|
11 |
+
#include <cooperative_groups.h>
|
12 |
+
#endif
|
13 |
+
|
14 |
+
#include <cuda.h>
|
15 |
+
#include <cuda_fp16.h>
|
16 |
+
#include <stdio.h>
|
17 |
+
#include <stdlib.h>
|
18 |
+
#include <cassert>
|
19 |
+
#include <iostream>
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/reduction_utils.h
ADDED
@@ -0,0 +1,826 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include "conversion_utils.h"
|
9 |
+
#include "ds_kernel_utils.h"
|
10 |
+
#include "memory_access_utils.h"
|
11 |
+
|
12 |
+
namespace cg = cooperative_groups;
|
13 |
+
|
14 |
+
namespace reduce {
|
15 |
+
|
16 |
+
enum class ROpType {
|
17 |
+
// Addition
|
18 |
+
Add,
|
19 |
+
|
20 |
+
// Maximum reduction
|
21 |
+
Max,
|
22 |
+
|
23 |
+
// Minimum reduction
|
24 |
+
Min,
|
25 |
+
};
|
26 |
+
|
27 |
+
constexpr int max_threads = 1024;
|
28 |
+
constexpr int max_warps = max_threads / hw_warp_size;
|
29 |
+
|
30 |
+
/*
|
31 |
+
High level API. The API takes in a set of operations and variables
|
32 |
+
and performs that reduction operation on that variable. The reductions
|
33 |
+
of each of the arguments are completely independent of each other (
|
34 |
+
i.e., the val1-op1 combination has no impact on val2-op2).
|
35 |
+
|
36 |
+
Example usage:
|
37 |
+
``` cpp
|
38 |
+
float max_val;
|
39 |
+
float min_val;
|
40 |
+
reduce::block<rop::Max, rop::Min>(tb, warp, max_val, min_val);
|
41 |
+
```
|
42 |
+
|
43 |
+
TODO(cmikeh2): In theory, we might be able to do this sequentially with
|
44 |
+
device functions and rely on the assembler correctly behaving. My initial
|
45 |
+
instinct is this won't work, but if it does it would reduce implementation
|
46 |
+
cost significantly.
|
47 |
+
|
48 |
+
TODO(cmikeh2): We need to support sub-block reductions. The warp intrinsic
|
49 |
+
currently supports this (more incidentally than anything else). It is not
|
50 |
+
uncommon in something like softmax or a fused attention kernel to map multiple
|
51 |
+
reductions to a thread block, but each reduction itself is only scoped
|
52 |
+
to part of the threads (i.e block size = 512, 128 threads per reduction).
|
53 |
+
*/
|
54 |
+
template <ROpType Op, int warp_bound = max_warps>
|
55 |
+
DS_D_INLINE void block(cg::thread_block& tb, cg::thread_block_tile<hw_warp_size>& warp, float& val);
|
56 |
+
|
57 |
+
template <ROpType Op1, ROpType Op2, int warp_bound = max_warps>
|
58 |
+
DS_D_INLINE void block(cg::thread_block& tb,
|
59 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
60 |
+
float& val1,
|
61 |
+
float& val2);
|
62 |
+
|
63 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, int warp_bound = max_warps>
|
64 |
+
DS_D_INLINE void block(cg::thread_block& tb,
|
65 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
66 |
+
float& val1,
|
67 |
+
float& val2,
|
68 |
+
float& val3);
|
69 |
+
|
70 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, ROpType Op4, int warp_bound = max_warps>
|
71 |
+
DS_D_INLINE void block(cg::thread_block& tb,
|
72 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
73 |
+
float& val1,
|
74 |
+
float& val2,
|
75 |
+
float& val3,
|
76 |
+
float& val4);
|
77 |
+
|
78 |
+
/*
|
79 |
+
The partitioned block is a special case of the above where in the warps of a threadblock are
|
80 |
+
partitioned into separate independent reductions. For example, I might have an 8 warp thread block
|
81 |
+
in which each pair of warps is processing an independent piece of data. I would then reduce that
|
82 |
+
data with the something like the following:
|
83 |
+
``` cpp
|
84 |
+
float max_val;
|
85 |
+
reduce::partitioned_block<rop::Max, 2>(tb, warp, max_val);
|
86 |
+
```
|
87 |
+
After which, each pair of warps would have coherent data with each other. Note, this API will not
|
88 |
+
provide correct results if the number of warps per partition is not a power of 2.
|
89 |
+
*/
|
90 |
+
template <ROpType Op, int num_threads>
|
91 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
92 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
93 |
+
float& val);
|
94 |
+
|
95 |
+
template <ROpType Op1, ROpType Op2, int num_threads>
|
96 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
97 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
98 |
+
float& val1,
|
99 |
+
float& val2);
|
100 |
+
|
101 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, int num_threads>
|
102 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
103 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
104 |
+
float& val1,
|
105 |
+
float& val2,
|
106 |
+
float& val3);
|
107 |
+
|
108 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, ROpType Op4, int num_threads>
|
109 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
110 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
111 |
+
float& val1,
|
112 |
+
float& val2,
|
113 |
+
float& val3,
|
114 |
+
float& val4);
|
115 |
+
|
116 |
+
/*
|
117 |
+
Single element reduction primitives. Used inside serial collection
|
118 |
+
loops.
|
119 |
+
|
120 |
+
Example usage:
|
121 |
+
using rop = reduce::OpType;
|
122 |
+
float min = init<rop::Min>();
|
123 |
+
for (int i = 0; i < 4; i++) {
|
124 |
+
min = reduce::element<rop::Min>(min, data[i]);
|
125 |
+
}
|
126 |
+
*/
|
127 |
+
|
128 |
+
template <ROpType Op, typename T>
|
129 |
+
DS_D_INLINE T element(const T lhs, const T rhs);
|
130 |
+
|
131 |
+
template <ROpType OType, typename T = float>
|
132 |
+
DS_D_INLINE T init();
|
133 |
+
|
134 |
+
/********************** Internal reduction APIs **********************/
|
135 |
+
|
136 |
+
/*
|
137 |
+
Single element "reductions". TODO(cmikeh2): this sort of "op" concept
|
138 |
+
should be refactored into its own implementation at some point. This interface
|
139 |
+
may be easily expanded for new types/operations, but the typical reductions
|
140 |
+
we need are covered with min/max/add on float.
|
141 |
+
|
142 |
+
NOTE: there is no mean reduction because that relies on knowledge of how
|
143 |
+
many values were already reduced into each scalar. Implementing this on top
|
144 |
+
of reduce should be straightforward (can just wrap the sum reduction) and
|
145 |
+
would be a good extension of the header.
|
146 |
+
*/
|
147 |
+
|
148 |
+
DS_D_INLINE int _warp_rank()
|
149 |
+
{
|
150 |
+
const int thread_rank =
|
151 |
+
threadIdx.x + threadIdx.y * blockDim.x + threadIdx.z * blockDim.x * blockDim.y;
|
152 |
+
return thread_rank / hw_warp_size;
|
153 |
+
}
|
154 |
+
|
155 |
+
/* Float element reduce implementations */
|
156 |
+
template <>
|
157 |
+
DS_D_INLINE float element<ROpType::Add>(const float lhs, const float rhs)
|
158 |
+
{
|
159 |
+
return lhs + rhs;
|
160 |
+
}
|
161 |
+
|
162 |
+
template <>
|
163 |
+
DS_D_INLINE double element<ROpType::Add>(const double lhs, const double rhs)
|
164 |
+
{
|
165 |
+
return lhs + rhs;
|
166 |
+
}
|
167 |
+
|
168 |
+
template <>
|
169 |
+
DS_D_INLINE float element<ROpType::Max>(const float lhs, const float rhs)
|
170 |
+
{
|
171 |
+
return fmaxf(lhs, rhs);
|
172 |
+
}
|
173 |
+
|
174 |
+
template <>
|
175 |
+
DS_D_INLINE float element<ROpType::Min>(const float lhs, const float rhs)
|
176 |
+
{
|
177 |
+
return fminf(lhs, rhs);
|
178 |
+
}
|
179 |
+
|
180 |
+
/* __half element reduce implementation */
|
181 |
+
template <>
|
182 |
+
DS_D_INLINE __half element<ROpType::Add>(const __half lhs, const __half rhs)
|
183 |
+
{
|
184 |
+
return lhs + rhs;
|
185 |
+
}
|
186 |
+
|
187 |
+
template <>
|
188 |
+
DS_D_INLINE __half element<ROpType::Max>(const __half lhs, const __half rhs)
|
189 |
+
{
|
190 |
+
#if __CUDA_ARCH__ >= 800
|
191 |
+
// Intrinsic limited to Ampere + newer
|
192 |
+
return __hmax(lhs, rhs);
|
193 |
+
#else
|
194 |
+
return (lhs > rhs) ? lhs : rhs;
|
195 |
+
#endif
|
196 |
+
}
|
197 |
+
|
198 |
+
#ifdef BF16_AVAILABLE
|
199 |
+
template <>
|
200 |
+
DS_D_INLINE __nv_bfloat16 element<ROpType::Max>(const __nv_bfloat16 lhs, const __nv_bfloat16 rhs)
|
201 |
+
{
|
202 |
+
#if __CUDA_ARCH__ >= 800
|
203 |
+
// Intrinsic limited to Ampere + newer
|
204 |
+
return __hmax(lhs, rhs);
|
205 |
+
#else
|
206 |
+
return (lhs > rhs) ? lhs : rhs;
|
207 |
+
#endif
|
208 |
+
}
|
209 |
+
#endif
|
210 |
+
|
211 |
+
template <>
|
212 |
+
DS_D_INLINE __half element<ROpType::Min>(const __half lhs, const __half rhs)
|
213 |
+
{
|
214 |
+
#if __CUDA_ARCH__ >= 800
|
215 |
+
// Intrinsic limited to Ampere + newer
|
216 |
+
return __hmin(lhs, rhs);
|
217 |
+
#else
|
218 |
+
return (lhs < rhs) ? lhs : rhs;
|
219 |
+
#endif
|
220 |
+
}
|
221 |
+
|
222 |
+
/* __half2 element reduce implementation */
|
223 |
+
template <>
|
224 |
+
DS_D_INLINE __half2 element<ROpType::Add>(const __half2 lhs, const __half2 rhs)
|
225 |
+
{
|
226 |
+
return lhs + rhs;
|
227 |
+
}
|
228 |
+
|
229 |
+
template <>
|
230 |
+
DS_D_INLINE __half2 element<ROpType::Max>(const __half2 lhs, const __half2 rhs)
|
231 |
+
{
|
232 |
+
#if __CUDA_ARCH__ >= 800
|
233 |
+
return __hmax2(lhs, rhs);
|
234 |
+
#else
|
235 |
+
__half2 ret_val;
|
236 |
+
ret_val.x = (lhs.x > rhs.x) ? lhs.x : rhs.x;
|
237 |
+
ret_val.y = (lhs.y > rhs.y) ? lhs.y : rhs.y;
|
238 |
+
return ret_val;
|
239 |
+
#endif
|
240 |
+
}
|
241 |
+
|
242 |
+
#ifdef BF16_AVAILABLE
|
243 |
+
template <>
|
244 |
+
DS_D_INLINE __nv_bfloat162 element<ROpType::Max>(const __nv_bfloat162 lhs, const __nv_bfloat162 rhs)
|
245 |
+
{
|
246 |
+
#if __CUDA_ARCH__ >= 800
|
247 |
+
return __hmax2(lhs, rhs);
|
248 |
+
#else
|
249 |
+
__nv_bfloat162 ret_val;
|
250 |
+
ret_val.x = (lhs.x > rhs.x) ? lhs.x : rhs.x;
|
251 |
+
ret_val.y = (lhs.y > rhs.y) ? lhs.y : rhs.y;
|
252 |
+
return ret_val;
|
253 |
+
#endif
|
254 |
+
}
|
255 |
+
#endif
|
256 |
+
|
257 |
+
template <>
|
258 |
+
DS_D_INLINE __half2 element<ROpType::Min>(const __half2 lhs, const __half2 rhs)
|
259 |
+
{
|
260 |
+
#if __CUDA_ARCH__ >= 800
|
261 |
+
return __hmin2(lhs, rhs);
|
262 |
+
#else
|
263 |
+
__half2 ret_val;
|
264 |
+
ret_val.x = (lhs.x < rhs.x) ? lhs.x : rhs.x;
|
265 |
+
ret_val.y = (lhs.y < rhs.y) ? lhs.y : rhs.y;
|
266 |
+
return ret_val;
|
267 |
+
#endif
|
268 |
+
}
|
269 |
+
|
270 |
+
template <>
|
271 |
+
DS_D_INLINE int32_t element<ROpType::Add>(const int32_t lhs, const int32_t rhs)
|
272 |
+
{
|
273 |
+
return lhs + rhs;
|
274 |
+
}
|
275 |
+
|
276 |
+
template <>
|
277 |
+
DS_D_INLINE int32_t element<ROpType::Max>(const int32_t lhs, const int32_t rhs)
|
278 |
+
{
|
279 |
+
return (lhs > rhs) ? lhs : rhs;
|
280 |
+
}
|
281 |
+
|
282 |
+
template <>
|
283 |
+
DS_D_INLINE int32_t element<ROpType::Min>(const int32_t lhs, const int32_t rhs)
|
284 |
+
{
|
285 |
+
return (lhs < rhs) ? lhs : rhs;
|
286 |
+
}
|
287 |
+
|
288 |
+
template <>
|
289 |
+
DS_D_INLINE uint32_t element<ROpType::Add>(const uint32_t lhs, const uint32_t rhs)
|
290 |
+
{
|
291 |
+
return lhs + rhs;
|
292 |
+
}
|
293 |
+
|
294 |
+
template <>
|
295 |
+
DS_D_INLINE uint32_t element<ROpType::Max>(const uint32_t lhs, const uint32_t rhs)
|
296 |
+
{
|
297 |
+
return (lhs > rhs) ? lhs : rhs;
|
298 |
+
}
|
299 |
+
|
300 |
+
template <>
|
301 |
+
DS_D_INLINE uint32_t element<ROpType::Min>(const uint32_t lhs, const uint32_t rhs)
|
302 |
+
{
|
303 |
+
return (lhs < rhs) ? lhs : rhs;
|
304 |
+
}
|
305 |
+
|
306 |
+
template <>
|
307 |
+
DS_D_INLINE int64_t element<ROpType::Add>(const int64_t lhs, const int64_t rhs)
|
308 |
+
{
|
309 |
+
return lhs + rhs;
|
310 |
+
}
|
311 |
+
|
312 |
+
template <>
|
313 |
+
DS_D_INLINE int64_t element<ROpType::Max>(const int64_t lhs, const int64_t rhs)
|
314 |
+
{
|
315 |
+
return (lhs > rhs) ? lhs : rhs;
|
316 |
+
}
|
317 |
+
|
318 |
+
template <>
|
319 |
+
DS_D_INLINE int64_t element<ROpType::Min>(const int64_t lhs, const int64_t rhs)
|
320 |
+
{
|
321 |
+
return (lhs < rhs) ? lhs : rhs;
|
322 |
+
}
|
323 |
+
|
324 |
+
/*
|
325 |
+
Reduction initialization primitives
|
326 |
+
*/
|
327 |
+
template <>
|
328 |
+
DS_D_INLINE float init<ROpType::Add>()
|
329 |
+
{
|
330 |
+
return 0.0f;
|
331 |
+
}
|
332 |
+
template <>
|
333 |
+
DS_D_INLINE double init<ROpType::Add>()
|
334 |
+
{
|
335 |
+
return (double)0.0f;
|
336 |
+
}
|
337 |
+
|
338 |
+
template <>
|
339 |
+
DS_D_INLINE float init<ROpType::Min>()
|
340 |
+
{
|
341 |
+
// Positive infinity
|
342 |
+
return INFINITY;
|
343 |
+
}
|
344 |
+
|
345 |
+
template <>
|
346 |
+
DS_D_INLINE float init<ROpType::Max>()
|
347 |
+
{
|
348 |
+
// Negative infinity
|
349 |
+
return -INFINITY;
|
350 |
+
}
|
351 |
+
|
352 |
+
template <>
|
353 |
+
DS_D_INLINE __half init<ROpType::Add>()
|
354 |
+
{
|
355 |
+
constexpr __half_raw zero = {0x0000};
|
356 |
+
return __half(zero);
|
357 |
+
}
|
358 |
+
|
359 |
+
template <>
|
360 |
+
DS_D_INLINE __half init<ROpType::Min>()
|
361 |
+
{
|
362 |
+
constexpr __half_raw inf = {0x7C00};
|
363 |
+
return __half(inf);
|
364 |
+
}
|
365 |
+
|
366 |
+
template <>
|
367 |
+
DS_D_INLINE __half init<ROpType::Max>()
|
368 |
+
{
|
369 |
+
constexpr __half_raw neg_inf = {0xFC00};
|
370 |
+
return __half(neg_inf);
|
371 |
+
}
|
372 |
+
|
373 |
+
#ifdef BF16_AVAILABLE
|
374 |
+
template <>
|
375 |
+
DS_D_INLINE __nv_bfloat16 init<ROpType::Max>()
|
376 |
+
{
|
377 |
+
constexpr __nv_bfloat16_raw neg_inf = {0xFF80};
|
378 |
+
return __nv_bfloat16(neg_inf);
|
379 |
+
}
|
380 |
+
#endif
|
381 |
+
|
382 |
+
template <>
|
383 |
+
DS_D_INLINE __half2 init<ROpType::Add>()
|
384 |
+
{
|
385 |
+
#ifdef __HIP_PLATFORM_AMD__
|
386 |
+
return __half2{_Float16_2{0x0000, 0x0000}};
|
387 |
+
#else
|
388 |
+
constexpr __half2_raw zero = {0x0000, 0x0000};
|
389 |
+
return __half2(zero);
|
390 |
+
#endif
|
391 |
+
}
|
392 |
+
|
393 |
+
template <>
|
394 |
+
DS_D_INLINE __half2 init<ROpType::Min>()
|
395 |
+
{
|
396 |
+
#ifdef __HIP_PLATFORM_AMD__
|
397 |
+
return __half2{_Float16_2{0x7C00, 0x7C00}};
|
398 |
+
#else
|
399 |
+
constexpr __half2_raw inf = {0x7C00, 0x7C00};
|
400 |
+
return __half2(inf);
|
401 |
+
#endif
|
402 |
+
}
|
403 |
+
|
404 |
+
template <>
|
405 |
+
DS_D_INLINE __half2 init<ROpType::Max>()
|
406 |
+
{
|
407 |
+
#ifdef __HIP_PLATFORM_AMD__
|
408 |
+
return __half2{_Float16_2{0xFC00, 0xFC00}};
|
409 |
+
#else
|
410 |
+
constexpr __half2_raw neg_inf = {0xFC00, 0xFC00};
|
411 |
+
return __half2(neg_inf);
|
412 |
+
#endif
|
413 |
+
}
|
414 |
+
|
415 |
+
template <>
|
416 |
+
DS_D_INLINE int32_t init<ROpType::Add>()
|
417 |
+
{
|
418 |
+
return 0;
|
419 |
+
}
|
420 |
+
|
421 |
+
template <>
|
422 |
+
DS_D_INLINE int32_t init<ROpType::Min>()
|
423 |
+
{
|
424 |
+
return 0x7FFFFFFF;
|
425 |
+
}
|
426 |
+
|
427 |
+
template <>
|
428 |
+
DS_D_INLINE int32_t init<ROpType::Max>()
|
429 |
+
{
|
430 |
+
return 0x80000000;
|
431 |
+
}
|
432 |
+
|
433 |
+
template <>
|
434 |
+
DS_D_INLINE uint32_t init<ROpType::Add>()
|
435 |
+
{
|
436 |
+
return 0;
|
437 |
+
}
|
438 |
+
|
439 |
+
template <>
|
440 |
+
DS_D_INLINE uint32_t init<ROpType::Min>()
|
441 |
+
{
|
442 |
+
return 0xFFFFFFFF;
|
443 |
+
}
|
444 |
+
|
445 |
+
template <>
|
446 |
+
DS_D_INLINE uint32_t init<ROpType::Max>()
|
447 |
+
{
|
448 |
+
return 0;
|
449 |
+
}
|
450 |
+
|
451 |
+
template <>
|
452 |
+
DS_D_INLINE int64_t init<ROpType::Add>()
|
453 |
+
{
|
454 |
+
return 0;
|
455 |
+
}
|
456 |
+
|
457 |
+
template <>
|
458 |
+
DS_D_INLINE int64_t init<ROpType::Min>()
|
459 |
+
{
|
460 |
+
return 0x7FFFFFFFFFFFFFFF;
|
461 |
+
}
|
462 |
+
|
463 |
+
template <>
|
464 |
+
DS_D_INLINE int64_t init<ROpType::Max>()
|
465 |
+
{
|
466 |
+
return 0x8000000000000000;
|
467 |
+
}
|
468 |
+
|
469 |
+
template <>
|
470 |
+
DS_D_INLINE uint64_t init<ROpType::Add>()
|
471 |
+
{
|
472 |
+
return 0;
|
473 |
+
}
|
474 |
+
|
475 |
+
template <>
|
476 |
+
DS_D_INLINE uint64_t init<ROpType::Min>()
|
477 |
+
{
|
478 |
+
return 0xFFFFFFFFFFFFFFFF;
|
479 |
+
}
|
480 |
+
|
481 |
+
template <>
|
482 |
+
DS_D_INLINE uint64_t init<ROpType::Max>()
|
483 |
+
{
|
484 |
+
return 0;
|
485 |
+
}
|
486 |
+
|
487 |
+
template <ROpType Op, typename T>
|
488 |
+
DS_D_INLINE void init(T* data)
|
489 |
+
{
|
490 |
+
data[0] = init<Op, T>();
|
491 |
+
}
|
492 |
+
|
493 |
+
template <ROpType Op1, ROpType Op2, typename T>
|
494 |
+
DS_D_INLINE void init(T* data)
|
495 |
+
{
|
496 |
+
data[0] = init<Op1, T>();
|
497 |
+
data[1] = init<Op2, T>();
|
498 |
+
}
|
499 |
+
|
500 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, typename T>
|
501 |
+
DS_D_INLINE void init(T* data)
|
502 |
+
{
|
503 |
+
data[0] = init<Op1, T>();
|
504 |
+
data[1] = init<Op2, T>();
|
505 |
+
data[2] = init<Op3, T>();
|
506 |
+
}
|
507 |
+
|
508 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, ROpType Op4, typename T>
|
509 |
+
DS_D_INLINE void init(T* data)
|
510 |
+
{
|
511 |
+
data[0] = init<Op1, T>();
|
512 |
+
data[1] = init<Op2, T>();
|
513 |
+
data[2] = init<Op3, T>();
|
514 |
+
data[3] = init<Op4, T>();
|
515 |
+
}
|
516 |
+
|
517 |
+
/*
|
518 |
+
Warp reduction primitives
|
519 |
+
|
520 |
+
`reduction_width` is an unsafe template parameter, that is that
|
521 |
+
when using `reduction_width` < hw_warp_size the warp is partitioned
|
522 |
+
into `hw_warp_size` / `reduction_width` groups of partial sums.
|
523 |
+
|
524 |
+
If someone can figure out how to use variadic templates in a reasonable way
|
525 |
+
here (fold is C++17 only and I don't think helps and recursion feels like
|
526 |
+
huge overkill that harms readability) that would be wonderful.
|
527 |
+
*/
|
528 |
+
|
529 |
+
template <typename T, ROpType Op, int reduce_width = hw_warp_size>
|
530 |
+
DS_D_INLINE void _warp(cg::thread_block_tile<hw_warp_size>& warp, T* data)
|
531 |
+
{
|
532 |
+
#pragma unroll
|
533 |
+
for (int i = 1; i < reduce_width; i *= 2) {
|
534 |
+
data[0] = element<Op>(data[0], warp.shfl_xor(data[0], i));
|
535 |
+
}
|
536 |
+
}
|
537 |
+
|
538 |
+
template <typename T, ROpType Op1, ROpType Op2, int reduce_width = hw_warp_size>
|
539 |
+
DS_D_INLINE void _warp(cg::thread_block_tile<hw_warp_size>& warp, T* data)
|
540 |
+
{
|
541 |
+
#pragma unroll
|
542 |
+
for (int i = 1; i < reduce_width; i *= 2) {
|
543 |
+
data[0] = element<Op1>(data[0], warp.shfl_xor(data[0], i));
|
544 |
+
data[1] = element<Op2>(data[1], warp.shfl_xor(data[1], i));
|
545 |
+
}
|
546 |
+
}
|
547 |
+
|
548 |
+
template <typename T, ROpType Op1, ROpType Op2, ROpType Op3, int reduce_width = hw_warp_size>
|
549 |
+
DS_D_INLINE void _warp(cg::thread_block_tile<hw_warp_size>& warp, T* data)
|
550 |
+
{
|
551 |
+
#pragma unroll
|
552 |
+
for (int i = 1; i < reduce_width; i *= 2) {
|
553 |
+
data[0] = element<Op1>(data[0], warp.shfl_xor(data[0], i));
|
554 |
+
data[1] = element<Op2>(data[1], warp.shfl_xor(data[1], i));
|
555 |
+
data[2] = element<Op3>(data[2], warp.shfl_xor(data[2], i));
|
556 |
+
}
|
557 |
+
}
|
558 |
+
|
559 |
+
template <typename T,
|
560 |
+
ROpType Op1,
|
561 |
+
ROpType Op2,
|
562 |
+
ROpType Op3,
|
563 |
+
ROpType Op4,
|
564 |
+
int reduce_width = hw_warp_size>
|
565 |
+
DS_D_INLINE void _warp(cg::thread_block_tile<hw_warp_size>& warp, T* data)
|
566 |
+
{
|
567 |
+
#pragma unroll
|
568 |
+
for (int i = 1; i < reduce_width; i *= 2) {
|
569 |
+
data[0] = element<Op1>(data[0], warp.shfl_xor(data[0], i));
|
570 |
+
data[1] = element<Op2>(data[1], warp.shfl_xor(data[1], i));
|
571 |
+
data[2] = element<Op3>(data[2], warp.shfl_xor(data[2], i));
|
572 |
+
data[3] = element<Op4>(data[3], warp.shfl_xor(data[3], i));
|
573 |
+
}
|
574 |
+
}
|
575 |
+
|
576 |
+
/*
|
577 |
+
Implementation for primary block reduction that serves both `block` and
|
578 |
+
`partitioned_block`.
|
579 |
+
|
580 |
+
Total warps refers to the reduction width of the reduction, not
|
581 |
+
the number of warps in the block (which may exceed that
|
582 |
+
if the block is partitioned or if we do a conservative bound at
|
583 |
+
compile time).
|
584 |
+
*/
|
585 |
+
template <typename T, int total_warps, ROpType... Ops>
|
586 |
+
DS_D_INLINE void _block(cg::thread_block& tb,
|
587 |
+
cg::thread_block_tile<hw_warp_size>& warp_arg,
|
588 |
+
T* data)
|
589 |
+
{
|
590 |
+
constexpr int elems = sizeof...(Ops);
|
591 |
+
constexpr int bytes = sizeof(T);
|
592 |
+
// Unused when `partition_size == 1` or total_warps == 1
|
593 |
+
__shared__ T reduce_buffer[max_warps * elems];
|
594 |
+
|
595 |
+
#ifdef __HIP_PLATFORM_AMD__
|
596 |
+
const int total_threads = blockDim.x * blockDim.y * blockDim.z;
|
597 |
+
const int running_warps = total_threads / hw_warp_size;
|
598 |
+
#else
|
599 |
+
const int running_warps = warp_arg.meta_group_size();
|
600 |
+
#endif
|
601 |
+
|
602 |
+
// Always perform warp-scope reduction
|
603 |
+
_warp<T, Ops...>(warp_arg, data);
|
604 |
+
|
605 |
+
// If max_warps == 1 let's skip the runtime check
|
606 |
+
if (total_warps != 1) {
|
607 |
+
if (warp_arg.thread_rank() == 0) {
|
608 |
+
#pragma unroll
|
609 |
+
for (int i = 0; i < elems; i++) {
|
610 |
+
mem_access::store_shared<bytes>(reduce_buffer + elems * _warp_rank() + i, data + i);
|
611 |
+
}
|
612 |
+
}
|
613 |
+
|
614 |
+
// Synchronization inside block-uniform conditional is safe
|
615 |
+
tb.sync();
|
616 |
+
|
617 |
+
if (_warp_rank() == 0) {
|
618 |
+
if (warp_arg.thread_rank() < running_warps) {
|
619 |
+
#pragma unroll
|
620 |
+
for (int i = 0; i < elems; i++) {
|
621 |
+
mem_access::load_shared<bytes>(
|
622 |
+
data + i, reduce_buffer + elems * warp_arg.thread_rank() + i);
|
623 |
+
}
|
624 |
+
} else {
|
625 |
+
init<Ops...>(data);
|
626 |
+
}
|
627 |
+
|
628 |
+
_warp<T, Ops..., total_warps>(warp_arg, data);
|
629 |
+
|
630 |
+
#pragma unroll
|
631 |
+
for (int i = 0; i < elems; i++) {
|
632 |
+
mem_access::store_shared<bytes>(reduce_buffer + elems * warp_arg.thread_rank() + i,
|
633 |
+
data + i);
|
634 |
+
}
|
635 |
+
}
|
636 |
+
|
637 |
+
// Synchronization inside block-uniform conditional is safe
|
638 |
+
tb.sync();
|
639 |
+
|
640 |
+
#pragma unroll
|
641 |
+
for (int i = 0; i < elems; i++) {
|
642 |
+
mem_access::load_shared<bytes>(data + i, reduce_buffer + _warp_rank() * elems + i);
|
643 |
+
}
|
644 |
+
}
|
645 |
+
}
|
646 |
+
|
647 |
+
/*
|
648 |
+
Main API implementations. For the most part, they just convert the individual
|
649 |
+
variables into arrays, which makes working with them easier with a single
|
650 |
+
implementation. In theory, we could use the `_block` implementation as another
|
651 |
+
option, but the nature of using a pointer is a little less safe and this allows
|
652 |
+
us to obfuscate the details of the partitioned implementation.
|
653 |
+
*/
|
654 |
+
template <ROpType Op, int warp_bound>
|
655 |
+
DS_D_INLINE void block(cg::thread_block& tb, cg::thread_block_tile<hw_warp_size>& warp, float& val)
|
656 |
+
{
|
657 |
+
_block<float, warp_bound, Op>(tb, warp, &val);
|
658 |
+
}
|
659 |
+
|
660 |
+
template <ROpType Op1, ROpType Op2, int warp_bound>
|
661 |
+
DS_D_INLINE void block(cg::thread_block& tb,
|
662 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
663 |
+
float& val1,
|
664 |
+
float& val2)
|
665 |
+
{
|
666 |
+
float data[2] = {val1, val2};
|
667 |
+
_block<float, warp_bound, Op1, Op2>(tb, warp, data);
|
668 |
+
val1 = data[0];
|
669 |
+
val2 = data[1];
|
670 |
+
}
|
671 |
+
|
672 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, int warp_bound>
|
673 |
+
DS_D_INLINE void block(cg::thread_block& tb,
|
674 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
675 |
+
float& val1,
|
676 |
+
float& val2,
|
677 |
+
float& val3)
|
678 |
+
{
|
679 |
+
float data[3] = {val1, val2, val3};
|
680 |
+
_block<float, warp_bound, Op1, Op2, Op3>(tb, warp, data);
|
681 |
+
val1 = data[0];
|
682 |
+
val2 = data[1];
|
683 |
+
val3 = data[2];
|
684 |
+
}
|
685 |
+
|
686 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, ROpType Op4, int warp_bound>
|
687 |
+
DS_D_INLINE void block(cg::thread_block& tb,
|
688 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
689 |
+
float& val1,
|
690 |
+
float& val2,
|
691 |
+
float& val3,
|
692 |
+
float& val4)
|
693 |
+
{
|
694 |
+
float data[4] = {val1, val2, val3, val4};
|
695 |
+
_block<float, warp_bound, Op1, Op2, Op3, Op4>(tb, warp, data);
|
696 |
+
val1 = data[0];
|
697 |
+
val2 = data[1];
|
698 |
+
val3 = data[2];
|
699 |
+
val4 = data[3];
|
700 |
+
}
|
701 |
+
|
702 |
+
/*
|
703 |
+
Note: for the partitioned blocks, the implementation does not support non-power of 2 blocks in order
|
704 |
+
to shorten block scale reduction length.
|
705 |
+
*/
|
706 |
+
template <ROpType Op, int num_threads>
|
707 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
708 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
709 |
+
float& val)
|
710 |
+
{
|
711 |
+
if (num_threads <= hw_warp_size) {
|
712 |
+
_warp<float, Op, num_threads>(warp, &val);
|
713 |
+
} else {
|
714 |
+
constexpr int num_warps = num_threads / hw_warp_size;
|
715 |
+
_block<float, num_warps, Op>(tb, warp, &val);
|
716 |
+
}
|
717 |
+
}
|
718 |
+
|
719 |
+
template <ROpType Op1, ROpType Op2, int num_threads>
|
720 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
721 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
722 |
+
float& val1,
|
723 |
+
float& val2)
|
724 |
+
{
|
725 |
+
float data[2] = {val1, val2};
|
726 |
+
|
727 |
+
if (num_threads <= hw_warp_size) {
|
728 |
+
_warp<float, Op1, Op2, num_threads>(warp, data);
|
729 |
+
} else {
|
730 |
+
constexpr int num_warps = num_threads / hw_warp_size;
|
731 |
+
_block<float, num_warps, Op1, Op2>(tb, warp, data);
|
732 |
+
}
|
733 |
+
|
734 |
+
val1 = data[0];
|
735 |
+
val2 = data[1];
|
736 |
+
}
|
737 |
+
|
738 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, int num_threads>
|
739 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
740 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
741 |
+
float& val1,
|
742 |
+
float& val2,
|
743 |
+
float& val3)
|
744 |
+
{
|
745 |
+
float data[3] = {val1, val2, val3};
|
746 |
+
|
747 |
+
if (num_threads <= hw_warp_size) {
|
748 |
+
_warp<float, Op1, Op2, Op3, num_threads>(warp, data);
|
749 |
+
} else {
|
750 |
+
constexpr int num_warps = num_threads / hw_warp_size;
|
751 |
+
_block<float, num_warps, Op1, Op2, Op3>(tb, warp, data);
|
752 |
+
}
|
753 |
+
|
754 |
+
val1 = data[0];
|
755 |
+
val2 = data[1];
|
756 |
+
val3 = data[2];
|
757 |
+
}
|
758 |
+
|
759 |
+
template <ROpType Op1, ROpType Op2, ROpType Op3, ROpType Op4, int num_threads>
|
760 |
+
DS_D_INLINE void partitioned_block(cg::thread_block& tb,
|
761 |
+
cg::thread_block_tile<hw_warp_size>& warp,
|
762 |
+
float& val1,
|
763 |
+
float& val2,
|
764 |
+
float& val3,
|
765 |
+
float& val4)
|
766 |
+
{
|
767 |
+
float data[4] = {val1, val2, val3, val4};
|
768 |
+
|
769 |
+
if (num_threads <= hw_warp_size) {
|
770 |
+
_warp<float, Op1, Op2, Op3, Op4, num_threads>(warp, data);
|
771 |
+
} else {
|
772 |
+
constexpr int num_warps = num_threads / hw_warp_size;
|
773 |
+
_block<float, num_warps, Op1, Op2, Op3, Op4>(tb, warp, data);
|
774 |
+
}
|
775 |
+
|
776 |
+
val1 = data[0];
|
777 |
+
val2 = data[1];
|
778 |
+
val3 = data[2];
|
779 |
+
val4 = data[3];
|
780 |
+
}
|
781 |
+
|
782 |
+
/*
|
783 |
+
Arg-reduce is a specialization of the above. We only support this with a single reduction
|
784 |
+
parameter. This only works for max/min reductions.
|
785 |
+
*/
|
786 |
+
|
787 |
+
__align__(8) struct IdxReduceResult {
|
788 |
+
/*
|
789 |
+
NOTE: ORDERING MATTERS HERE! The idx is the least significant set of bits
|
790 |
+
and the val is the most significant. Changing the order of this declaration
|
791 |
+
will break the code.
|
792 |
+
*/
|
793 |
+
int idx;
|
794 |
+
float val;
|
795 |
+
};
|
796 |
+
|
797 |
+
template <ROpType Op, int warpBound>
|
798 |
+
DS_D_INLINE IdxReduceResult
|
799 |
+
idx_reduce(cg::thread_block& tb, cg::thread_block_tile<hw_warp_size>& warp, float val, int idx)
|
800 |
+
{
|
801 |
+
IdxReduceResult res = {idx, val};
|
802 |
+
|
803 |
+
// Clear out the nan. This shouldn't be an issue for our initial applications
|
804 |
+
if (isnan(val)) res.val = init<Op>();
|
805 |
+
|
806 |
+
// Can do float compares as integers. By packing the index into the lower bits
|
807 |
+
// we can just do a single int64 rather than a branch, compare, and select.
|
808 |
+
// One side benefit of this is that it is by nature a stable algorithm and
|
809 |
+
// will always bias ties to the higher index.
|
810 |
+
int64_t* res_as_int = reinterpret_cast<int64_t*>(&res);
|
811 |
+
|
812 |
+
// The way floating point compare works is normally to perform a sign comparison
|
813 |
+
// and if they match, then do a comparison of the rest of the bits as unsigned
|
814 |
+
// integers. Since we are bundling these, that means for negative values we need
|
815 |
+
// to reverse the sort order, which we can do with an XOR.
|
816 |
+
if (val < 0) { *res_as_int ^= 0x7fffffff00000000; }
|
817 |
+
|
818 |
+
_block<int64_t, warpBound, Op>(tb, warp, res_as_int);
|
819 |
+
|
820 |
+
// Sign bit is preserved, so we can check if we need to invert the mantissa back
|
821 |
+
if (res.val < 0) { *res_as_int ^= 0x7fffffff00000000; }
|
822 |
+
|
823 |
+
return res;
|
824 |
+
}
|
825 |
+
|
826 |
+
} // namespace reduce
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/simd.h
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#if (__x86_64__ || __i386__)
|
9 |
+
#include <cpuid.h>
|
10 |
+
#include <x86intrin.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
#define TILE (128 * 1024 * 1024)
|
14 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
15 |
+
|
16 |
+
#define ROUND_DOWN(size, step) ((size) & ~((step)-1))
|
17 |
+
|
18 |
+
#if defined(__AVX512__)
|
19 |
+
#define SIMD_STORE(a, d) _mm512_storeu_ps(a, d)
|
20 |
+
#define SIMD_LOAD(x) _mm512_loadu_ps(x)
|
21 |
+
#define SIMD_SET(x) _mm512_set1_ps(x)
|
22 |
+
#define SIMD_ADD(x, y) _mm512_add_ps(x, y)
|
23 |
+
#define SIMD_MUL(x, y) _mm512_mul_ps(x, y)
|
24 |
+
#define SIMD_FMA(x, y, c) _mm512_fmadd_ps(x, y, c)
|
25 |
+
#define SIMD_SQRT(x) _mm512_sqrt_ps(x)
|
26 |
+
#define SIMD_DIV(x, y) _mm512_div_ps(x, y)
|
27 |
+
#define SIMD_AND(x, y) _mm512_and_ps(x, y)
|
28 |
+
#define SIMD_ANDNOT(x, y) _mm512_andnot_ps(x, y)
|
29 |
+
#define SIMD_OR(x, y) _mm512_or_ps(x, y)
|
30 |
+
#define SIMD_XOR(x, y) _mm512_xor_ps(x, y)
|
31 |
+
#define SIMD_WIDTH 16
|
32 |
+
|
33 |
+
#define SIMD_LOAD2(x, h) \
|
34 |
+
((h) ? _mm512_cvtph_ps(_mm256_castps_si256(_mm256_loadu_ps(x))) : _mm512_loadu_ps(x))
|
35 |
+
#define SIMD_STORE2(x, d, h) \
|
36 |
+
((h) ? _mm256_store_ps(x, _mm256_castsi256_ps(_mm512_cvtps_ph(d, _MM_FROUND_TO_NEAREST_INT))) \
|
37 |
+
: _mm512_storeu_ps(x, d))
|
38 |
+
|
39 |
+
#define INTV __m256i
|
40 |
+
#elif defined(__AVX256__)
|
41 |
+
#define SIMD_STORE(a, d) _mm256_storeu_ps(a, d)
|
42 |
+
#define SIMD_LOAD(x) _mm256_loadu_ps(x)
|
43 |
+
#define SIMD_SET(x) _mm256_set1_ps(x)
|
44 |
+
#define SIMD_ADD(x, y) _mm256_add_ps(x, y)
|
45 |
+
#define SIMD_MUL(x, y) _mm256_mul_ps(x, y)
|
46 |
+
#define SIMD_FMA(x, y, c) _mm256_fmadd_ps(x, y, c)
|
47 |
+
#define SIMD_SQRT(x) _mm256_sqrt_ps(x)
|
48 |
+
#define SIMD_DIV(x, y) _mm256_div_ps(x, y)
|
49 |
+
#define SIMD_AND(x, y) _mm256_and_ps(x, y)
|
50 |
+
#define SIMD_ANDNOT(x, y) _mm256_andnot_ps(x, y)
|
51 |
+
#define SIMD_OR(x, y) _mm256_or_ps(x, y)
|
52 |
+
#define SIMD_XOR(x, y) _mm256_xor_ps(x, y)
|
53 |
+
#define SIMD_WIDTH 8
|
54 |
+
|
55 |
+
#define SIMD_LOAD2(x, h) \
|
56 |
+
((h) ? _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*)(x))) : _mm256_loadu_ps(x))
|
57 |
+
#define SIMD_STORE2(x, d, h) \
|
58 |
+
((h) ? _mm_store_ps(x, _mm_castsi128_ps(_mm256_cvtps_ph(d, _MM_FROUND_TO_NEAREST_INT))) \
|
59 |
+
: _mm256_storeu_ps(x, d))
|
60 |
+
|
61 |
+
#define INTV __m128i
|
62 |
+
#endif
|
63 |
+
|
64 |
+
union AVX_Data {
|
65 |
+
#if defined(__AVX512__)
|
66 |
+
__m512 data;
|
67 |
+
#elif defined(__AVX256__)
|
68 |
+
__m256 data;
|
69 |
+
#endif
|
70 |
+
// float data_f[16];
|
71 |
+
};
|
72 |
+
|
73 |
+
template <int span>
|
74 |
+
inline void simd_store(float* dst, AVX_Data* src, bool half_precision)
|
75 |
+
{
|
76 |
+
size_t width = (half_precision ? SIMD_WIDTH / 2 : SIMD_WIDTH);
|
77 |
+
#pragma unroll
|
78 |
+
for (size_t i = 0; i < span; ++i) { SIMD_STORE2(dst + width * i, src[i].data, half_precision); }
|
79 |
+
}
|
80 |
+
template <int span>
|
81 |
+
inline void simd_load(AVX_Data* dst, float* src, bool half_precision)
|
82 |
+
{
|
83 |
+
size_t width = (half_precision ? SIMD_WIDTH / 2 : SIMD_WIDTH);
|
84 |
+
#pragma unroll
|
85 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_LOAD2(src + width * i, half_precision); }
|
86 |
+
}
|
87 |
+
template <int span>
|
88 |
+
inline void simd_fma(AVX_Data* dst, AVX_Data* src_m_l, AVX_Data src_m_r, AVX_Data* src_a)
|
89 |
+
{
|
90 |
+
#pragma unroll
|
91 |
+
for (size_t i = 0; i < span; ++i) {
|
92 |
+
dst[i].data = SIMD_FMA(src_m_l[i].data, src_m_r.data, src_a[i].data);
|
93 |
+
}
|
94 |
+
}
|
95 |
+
template <int span>
|
96 |
+
inline void simd_fma(AVX_Data* dst, AVX_Data* src_m_l, AVX_Data src_m_r, AVX_Data src_a)
|
97 |
+
{
|
98 |
+
#pragma unroll
|
99 |
+
for (size_t i = 0; i < span; ++i) {
|
100 |
+
dst[i].data = SIMD_FMA(src_m_l[i].data, src_m_r.data, src_a.data);
|
101 |
+
}
|
102 |
+
}
|
103 |
+
template <int span>
|
104 |
+
inline void simd_fma(AVX_Data* dst, AVX_Data* src_m_l, AVX_Data* src_m_r, AVX_Data* src_a)
|
105 |
+
{
|
106 |
+
#pragma unroll
|
107 |
+
for (size_t i = 0; i < span; ++i) {
|
108 |
+
dst[i].data = SIMD_FMA(src_m_l[i].data, src_m_r[i].data, src_a[i].data);
|
109 |
+
}
|
110 |
+
}
|
111 |
+
template <int span>
|
112 |
+
inline void simd_sqrt(AVX_Data* dst, AVX_Data* src)
|
113 |
+
{
|
114 |
+
#pragma unroll
|
115 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_SQRT(src[i].data); }
|
116 |
+
}
|
117 |
+
template <int span>
|
118 |
+
inline void simd_add(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data src_a_r)
|
119 |
+
{
|
120 |
+
#pragma unroll
|
121 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_ADD(src_a_l[i].data, src_a_r.data); }
|
122 |
+
}
|
123 |
+
template <int span>
|
124 |
+
inline void simd_add(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
|
125 |
+
{
|
126 |
+
#pragma unroll
|
127 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_ADD(src_a_l[i].data, src_a_r[i].data); }
|
128 |
+
}
|
129 |
+
template <int span>
|
130 |
+
inline void simd_mul(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data src_a_r)
|
131 |
+
{
|
132 |
+
#pragma unroll
|
133 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_MUL(src_a_l[i].data, src_a_r.data); }
|
134 |
+
}
|
135 |
+
template <int span>
|
136 |
+
inline void simd_mul(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
|
137 |
+
{
|
138 |
+
#pragma unroll
|
139 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_MUL(src_a_l[i].data, src_a_r[i].data); }
|
140 |
+
}
|
141 |
+
template <int span>
|
142 |
+
inline void simd_div(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
|
143 |
+
{
|
144 |
+
#pragma unroll
|
145 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_DIV(src_a_l[i].data, src_a_r[i].data); }
|
146 |
+
}
|
147 |
+
template <int span>
|
148 |
+
inline void simd_and(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data src_a_r)
|
149 |
+
{
|
150 |
+
#pragma unroll
|
151 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_AND(src_a_l[i].data, src_a_r.data); }
|
152 |
+
}
|
153 |
+
template <int span>
|
154 |
+
inline void simd_and(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
|
155 |
+
{
|
156 |
+
#pragma unroll
|
157 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_AND(src_a_l[i].data, src_a_r[i].data); }
|
158 |
+
}
|
159 |
+
template <int span>
|
160 |
+
inline void simd_andnot(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data src_a_r)
|
161 |
+
{
|
162 |
+
#pragma unroll
|
163 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_ANDNOT(src_a_l[i].data, src_a_r.data); }
|
164 |
+
}
|
165 |
+
template <int span>
|
166 |
+
inline void simd_andnot(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
|
167 |
+
{
|
168 |
+
#pragma unroll
|
169 |
+
for (size_t i = 0; i < span; ++i) {
|
170 |
+
dst[i].data = SIMD_ANDNOT(src_a_l[i].data, src_a_r[i].data);
|
171 |
+
}
|
172 |
+
}
|
173 |
+
template <int span>
|
174 |
+
inline void simd_or(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data src_a_r)
|
175 |
+
{
|
176 |
+
#pragma unroll
|
177 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_OR(src_a_l[i].data, src_a_r.data); }
|
178 |
+
}
|
179 |
+
template <int span>
|
180 |
+
inline void simd_or(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
|
181 |
+
{
|
182 |
+
#pragma unroll
|
183 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_OR(src_a_l[i].data, src_a_r[i].data); }
|
184 |
+
}
|
185 |
+
template <int span>
|
186 |
+
inline void simd_xor(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data src_a_r)
|
187 |
+
{
|
188 |
+
#pragma unroll
|
189 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_XOR(src_a_l[i].data, src_a_r.data); }
|
190 |
+
}
|
191 |
+
template <int span>
|
192 |
+
inline void simd_xor(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
|
193 |
+
{
|
194 |
+
#pragma unroll
|
195 |
+
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_XOR(src_a_l[i].data, src_a_r[i].data); }
|
196 |
+
}
|
197 |
+
|
198 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/softmax.h
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <cuda.h>
|
9 |
+
#include <cuda_fp16.h>
|
10 |
+
#include <stdio.h>
|
11 |
+
#include "custom_cuda_layers.h"
|
12 |
+
|
13 |
+
#include <fstream>
|
14 |
+
|
15 |
+
using namespace std;
|
16 |
+
|
17 |
+
template <typename T>
|
18 |
+
class Softmax {
|
19 |
+
public:
|
20 |
+
struct Config {
|
21 |
+
size_t batchSize;
|
22 |
+
size_t heads;
|
23 |
+
size_t seq_length;
|
24 |
+
size_t prob_depth;
|
25 |
+
float temperature;
|
26 |
+
bool mem_alloc;
|
27 |
+
Config(size_t batch, size_t h, size_t seq, int prob_size = 0, bool mem_alloc = false)
|
28 |
+
: batchSize(batch),
|
29 |
+
heads(h),
|
30 |
+
seq_length(seq),
|
31 |
+
prob_depth(prob_size),
|
32 |
+
temperature(1.0),
|
33 |
+
mem_alloc(mem_alloc)
|
34 |
+
{
|
35 |
+
}
|
36 |
+
};
|
37 |
+
|
38 |
+
Softmax(Config config) : config_(config) {}
|
39 |
+
|
40 |
+
~Softmax() {}
|
41 |
+
|
42 |
+
void Forward(int bsz, T* vals, const T* attn_mask, cudaStream_t& stream)
|
43 |
+
{
|
44 |
+
launch_attn_softmax<T>(vals, attn_mask, bsz, config_.heads, config_.seq_length, stream);
|
45 |
+
}
|
46 |
+
|
47 |
+
void Backward(int bsz, T* out_grad, const T* soft_out, cudaStream_t stream)
|
48 |
+
{
|
49 |
+
launch_attn_softmax_backward_v2<T>(
|
50 |
+
out_grad, soft_out, bsz, config_.heads, config_.seq_length, stream);
|
51 |
+
}
|
52 |
+
|
53 |
+
inline size_t GetProbDepth() const { return config_.prob_depth; }
|
54 |
+
|
55 |
+
inline size_t GetBatchSize() const { return config_.batchSize; }
|
56 |
+
|
57 |
+
inline size_t GetNumHeads() const { return config_.heads; }
|
58 |
+
|
59 |
+
inline size_t GetSeqLength() const { return config_.seq_length; }
|
60 |
+
|
61 |
+
inline void SetSeqLength(size_t seq_len) { config_.seq_length = seq_len; }
|
62 |
+
|
63 |
+
private:
|
64 |
+
Config config_;
|
65 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/strided_batch_gemm.h
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <cuda.h>
|
9 |
+
#include <cuda_fp16.h>
|
10 |
+
#include <stdio.h>
|
11 |
+
#include "context.h"
|
12 |
+
|
13 |
+
template <typename T>
|
14 |
+
class StridedBatchGemm {
|
15 |
+
public:
|
16 |
+
struct Config {
|
17 |
+
int batch_size;
|
18 |
+
int m;
|
19 |
+
int n;
|
20 |
+
int k;
|
21 |
+
float alpha;
|
22 |
+
float beta;
|
23 |
+
cublasOperation_t op_A;
|
24 |
+
cublasOperation_t op_B;
|
25 |
+
std::array<int, 3> gemm_algos;
|
26 |
+
|
27 |
+
Config(int batch,
|
28 |
+
int mm,
|
29 |
+
int nn,
|
30 |
+
int kk,
|
31 |
+
float param_alpha,
|
32 |
+
float param_beta,
|
33 |
+
cublasOperation_t opA,
|
34 |
+
cublasOperation_t opB,
|
35 |
+
const std::array<int, 3>& algos)
|
36 |
+
: batch_size(batch),
|
37 |
+
m(mm),
|
38 |
+
n(nn),
|
39 |
+
k(kk),
|
40 |
+
alpha(param_alpha),
|
41 |
+
beta(param_beta),
|
42 |
+
op_A(opA),
|
43 |
+
op_B(opB),
|
44 |
+
gemm_algos(algos)
|
45 |
+
{
|
46 |
+
}
|
47 |
+
void SetConfig(int mm, int nn, int kk)
|
48 |
+
{
|
49 |
+
m = mm;
|
50 |
+
n = nn;
|
51 |
+
k = kk;
|
52 |
+
}
|
53 |
+
};
|
54 |
+
|
55 |
+
StridedBatchGemm(const Config& config) : _config(config) {}
|
56 |
+
|
57 |
+
virtual ~StridedBatchGemm() {}
|
58 |
+
|
59 |
+
void Forward(int bsz, T* output, const T* _buffer_a, const T* _buffer_b, cublasHandle_t handle)
|
60 |
+
{
|
61 |
+
int stride_a = _config.m * _config.k;
|
62 |
+
int stride_b = _config.n * _config.k;
|
63 |
+
int stride_c = _config.m * _config.n;
|
64 |
+
|
65 |
+
cublas_strided_batched_gemm(handle,
|
66 |
+
_config.m,
|
67 |
+
_config.n,
|
68 |
+
_config.k,
|
69 |
+
&_config.alpha,
|
70 |
+
&_config.beta,
|
71 |
+
_buffer_a,
|
72 |
+
_buffer_b,
|
73 |
+
output,
|
74 |
+
_config.op_A,
|
75 |
+
_config.op_B,
|
76 |
+
stride_a,
|
77 |
+
stride_b,
|
78 |
+
stride_c,
|
79 |
+
bsz,
|
80 |
+
#ifdef __HIP_PLATFORM_AMD__
|
81 |
+
rocblas_gemm_algo(_config.gemm_algos[0]));
|
82 |
+
#else
|
83 |
+
cublasGemmAlgo_t(_config.gemm_algos[0]));
|
84 |
+
#endif
|
85 |
+
}
|
86 |
+
|
87 |
+
void ForwardPlusSave(T* output, const T* _buffer_a, const T* _buffer_b, cublasHandle_t handle)
|
88 |
+
{
|
89 |
+
int stride_a = _config.m * _config.k;
|
90 |
+
int stride_b = _config.n * _config.k;
|
91 |
+
int stride_c = _config.m * _config.n;
|
92 |
+
|
93 |
+
cublas_strided_batched_gemm(handle,
|
94 |
+
_config.m,
|
95 |
+
_config.n,
|
96 |
+
_config.k,
|
97 |
+
&_config.alpha,
|
98 |
+
&_config.beta,
|
99 |
+
_buffer_a,
|
100 |
+
_buffer_b,
|
101 |
+
output,
|
102 |
+
_config.op_A,
|
103 |
+
_config.op_B,
|
104 |
+
stride_a,
|
105 |
+
stride_b,
|
106 |
+
stride_c,
|
107 |
+
_config.batch_size,
|
108 |
+
#ifdef __HIP_PLATFORM_AMD__
|
109 |
+
rocblas_gemm_algo(_config.gemm_algos[0]));
|
110 |
+
#else
|
111 |
+
cublasGemmAlgo_t(_config.gemm_algos[0]));
|
112 |
+
#endif
|
113 |
+
|
114 |
+
k_buf = _buffer_a;
|
115 |
+
q_buf = _buffer_b;
|
116 |
+
}
|
117 |
+
|
118 |
+
void Backward(int bsz,
|
119 |
+
const T* d_output,
|
120 |
+
const T* _buffer_a,
|
121 |
+
const T* _buffer_b,
|
122 |
+
cublasHandle_t handle,
|
123 |
+
T* inpGradA = nullptr,
|
124 |
+
T* inpGradB = nullptr)
|
125 |
+
{
|
126 |
+
int mb = (_config.op_A == CUBLAS_OP_T ? _config.k : _config.m);
|
127 |
+
int kb = (_config.op_A == CUBLAS_OP_T ? _config.m : _config.k);
|
128 |
+
|
129 |
+
int stride_a = mb * _config.n;
|
130 |
+
int stride_b = _config.n * kb;
|
131 |
+
int stride_c = _config.m * _config.k;
|
132 |
+
|
133 |
+
// B need to transpose.
|
134 |
+
cublasOperation_t op_b = (_config.op_B == CUBLAS_OP_T ? CUBLAS_OP_N : CUBLAS_OP_T);
|
135 |
+
|
136 |
+
// Calculate d_A.
|
137 |
+
cublas_strided_batched_gemm(handle,
|
138 |
+
mb,
|
139 |
+
kb,
|
140 |
+
_config.n,
|
141 |
+
&_config.alpha,
|
142 |
+
&_config.beta,
|
143 |
+
(_config.op_A == CUBLAS_OP_T ? _buffer_b : d_output),
|
144 |
+
(_config.op_A == CUBLAS_OP_T ? d_output : _buffer_b),
|
145 |
+
inpGradA,
|
146 |
+
CUBLAS_OP_N,
|
147 |
+
op_b,
|
148 |
+
stride_a,
|
149 |
+
stride_b,
|
150 |
+
stride_c,
|
151 |
+
bsz,
|
152 |
+
#ifdef __HIP_PLATFORM_AMD__
|
153 |
+
rocblas_gemm_algo(_config.gemm_algos[1]));
|
154 |
+
#else
|
155 |
+
cublasGemmAlgo_t(_config.gemm_algos[1]));
|
156 |
+
#endif
|
157 |
+
|
158 |
+
// A need to transpose.
|
159 |
+
cublasOperation_t op_a = (_config.op_A == CUBLAS_OP_T ? CUBLAS_OP_N : CUBLAS_OP_T);
|
160 |
+
|
161 |
+
stride_a = _config.m * _config.k;
|
162 |
+
stride_b = _config.m * _config.n;
|
163 |
+
stride_c = _config.n * _config.k;
|
164 |
+
|
165 |
+
// Calculate d_B.
|
166 |
+
cublas_strided_batched_gemm(handle,
|
167 |
+
_config.k,
|
168 |
+
_config.n,
|
169 |
+
_config.m,
|
170 |
+
&_config.alpha,
|
171 |
+
&_config.beta,
|
172 |
+
_buffer_a,
|
173 |
+
d_output,
|
174 |
+
inpGradB,
|
175 |
+
op_a,
|
176 |
+
CUBLAS_OP_N,
|
177 |
+
stride_a,
|
178 |
+
stride_b,
|
179 |
+
stride_c,
|
180 |
+
bsz,
|
181 |
+
#ifdef __HIP_PLATFORM_AMD__
|
182 |
+
rocblas_gemm_algo(_config.gemm_algos[2]));
|
183 |
+
#else
|
184 |
+
cublasGemmAlgo_t(_config.gemm_algos[2]));
|
185 |
+
#endif
|
186 |
+
}
|
187 |
+
|
188 |
+
inline int GetN() const { return _config.k; }
|
189 |
+
|
190 |
+
inline const T* GetBufferA() const { return k_buf; }
|
191 |
+
|
192 |
+
inline const T* GetBufferB() const { return q_buf; }
|
193 |
+
|
194 |
+
inline void SetConfig(int m, int n, int k) { _config.SetConfig(m, n, k); }
|
195 |
+
|
196 |
+
private:
|
197 |
+
Config _config;
|
198 |
+
const T* q_buf;
|
199 |
+
const T* k_buf;
|
200 |
+
};
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/includes/type_shim.h
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/* Taken from NVIDIA/apex commit 855808f3fc268e9715d613f3c2e56469d8c986d8 */
|
7 |
+
#include <ATen/ATen.h>
|
8 |
+
|
9 |
+
// Forward/backward compatibility hack around
|
10 |
+
// https://github.com/pytorch/pytorch/commit/3aeb78079bcd68282fe9117088e138b77318e288
|
11 |
+
// pending more future-proof guidance from upstream.
|
12 |
+
// struct TypeShim
|
13 |
+
// {
|
14 |
+
// const at::Type& payload;
|
15 |
+
// TypeShim(const at::Type& type) : payload(type) {}
|
16 |
+
// // Enable trivial conversion to a const at::Type& for pre-3aeb78
|
17 |
+
// operator const at::Type&(){ return payload; };
|
18 |
+
// // Enable dispatch switch statements to take *this directly for post-3aeb78
|
19 |
+
// //operator at::ScalarType(){ return payload.; };
|
20 |
+
// };
|
21 |
+
|
22 |
+
#define DISPATCH_FLOAT_AND_HALF(TYPE, LEVEL, NAME, ...) \
|
23 |
+
switch (TYPE) { \
|
24 |
+
case at::ScalarType::Float: { \
|
25 |
+
using scalar_t_##LEVEL = float; \
|
26 |
+
__VA_ARGS__; \
|
27 |
+
break; \
|
28 |
+
} \
|
29 |
+
case at::ScalarType::Half: { \
|
30 |
+
using scalar_t_##LEVEL = at::Half; \
|
31 |
+
__VA_ARGS__; \
|
32 |
+
break; \
|
33 |
+
} \
|
34 |
+
case at::ScalarType::BFloat16: { \
|
35 |
+
using scalar_t_##LEVEL = at::BFloat16; \
|
36 |
+
__VA_ARGS__; \
|
37 |
+
break; \
|
38 |
+
} \
|
39 |
+
default: AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
40 |
+
}
|
41 |
+
|
42 |
+
#define DISPATCH_DOUBLE_FLOAT_AND_HALF(TYPE, LEVEL, NAME, ...) \
|
43 |
+
switch (TYPE) { \
|
44 |
+
case at::ScalarType::Double: { \
|
45 |
+
using scalar_t_##LEVEL = double; \
|
46 |
+
__VA_ARGS__; \
|
47 |
+
break; \
|
48 |
+
} \
|
49 |
+
case at::ScalarType::Float: { \
|
50 |
+
using scalar_t_##LEVEL = float; \
|
51 |
+
__VA_ARGS__; \
|
52 |
+
break; \
|
53 |
+
} \
|
54 |
+
case at::ScalarType::Half: { \
|
55 |
+
using scalar_t_##LEVEL = at::Half; \
|
56 |
+
__VA_ARGS__; \
|
57 |
+
break; \
|
58 |
+
} \
|
59 |
+
case at::ScalarType::BFloat16: { \
|
60 |
+
using scalar_t_##LEVEL = at::BFloat16; \
|
61 |
+
__VA_ARGS__; \
|
62 |
+
break; \
|
63 |
+
} \
|
64 |
+
default: AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
65 |
+
}
|
66 |
+
|
67 |
+
#define DISPATCH_DOUBLE_AND_FLOAT(TYPE, LEVEL, NAME, ...) \
|
68 |
+
switch (TYPE) { \
|
69 |
+
case at::ScalarType::Double: { \
|
70 |
+
using scalar_t_##LEVEL = double; \
|
71 |
+
__VA_ARGS__; \
|
72 |
+
break; \
|
73 |
+
} \
|
74 |
+
case at::ScalarType::Float: { \
|
75 |
+
using scalar_t_##LEVEL = float; \
|
76 |
+
__VA_ARGS__; \
|
77 |
+
break; \
|
78 |
+
} \
|
79 |
+
default: AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
80 |
+
}
|
81 |
+
|
82 |
+
template <typename T>
|
83 |
+
__device__ __forceinline__ T
|
84 |
+
reduce_block_into_lanes(T* x,
|
85 |
+
T val,
|
86 |
+
int lanes = 1,
|
87 |
+
bool share_result = false) // lanes is intended to be <= 32.
|
88 |
+
{
|
89 |
+
int tid = threadIdx.x + threadIdx.y * blockDim.x;
|
90 |
+
int blockSize = blockDim.x * blockDim.y; // blockSize is intended to be a multiple of 32.
|
91 |
+
|
92 |
+
if (blockSize >= 64) {
|
93 |
+
x[tid] = val;
|
94 |
+
__syncthreads();
|
95 |
+
}
|
96 |
+
|
97 |
+
#pragma unroll
|
98 |
+
for (int i = (blockSize >> 1); i >= 64; i >>= 1) {
|
99 |
+
if (tid < i) x[tid] = x[tid] + x[tid + i];
|
100 |
+
__syncthreads();
|
101 |
+
}
|
102 |
+
|
103 |
+
T final;
|
104 |
+
|
105 |
+
if (tid < 32) {
|
106 |
+
if (blockSize >= 64)
|
107 |
+
final = x[tid] + x[tid + 32];
|
108 |
+
else
|
109 |
+
final = val;
|
110 |
+
// __SYNCWARP();
|
111 |
+
|
112 |
+
#pragma unroll
|
113 |
+
for (int i = 16; i >= lanes; i >>= 1)
|
114 |
+
final = final + __shfl_down_sync(0xffffffff, final, i);
|
115 |
+
}
|
116 |
+
|
117 |
+
if (share_result) {
|
118 |
+
if (tid < lanes) x[tid] = final; // EpilogueOp
|
119 |
+
// Make sure the smem result is visible to all warps.
|
120 |
+
__syncthreads();
|
121 |
+
}
|
122 |
+
|
123 |
+
return final;
|
124 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/lamb/fused_lamb_cuda.cpp
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <torch/extension.h>
|
7 |
+
|
8 |
+
// CUDA forward declaration
|
9 |
+
void fused_lamb_cuda(at::Tensor& p,
|
10 |
+
at::Tensor& p_copy,
|
11 |
+
at::Tensor& m,
|
12 |
+
at::Tensor& v,
|
13 |
+
at::Tensor& g,
|
14 |
+
float lr,
|
15 |
+
float beta1,
|
16 |
+
float beta2,
|
17 |
+
float max_coeff,
|
18 |
+
float min_coeff,
|
19 |
+
float eps,
|
20 |
+
float grad_scale,
|
21 |
+
int step,
|
22 |
+
int mode,
|
23 |
+
int bias_correction,
|
24 |
+
float decay,
|
25 |
+
at::Tensor& w_l2_i,
|
26 |
+
at::Tensor& u_l2_i,
|
27 |
+
at::Tensor& lamb_coeff_val);
|
28 |
+
|
29 |
+
#define CHECK_CUDA(x) AT_ASSERTM(x.is_cuda(), #x " must be a CUDA tensor")
|
30 |
+
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
|
31 |
+
#define CHECK_INPUT(x) \
|
32 |
+
CHECK_CUDA(x); \
|
33 |
+
CHECK_CONTIGUOUS(x)
|
34 |
+
|
35 |
+
// C++ interface
|
36 |
+
at::Tensor lamb(at::Tensor& p,
|
37 |
+
at::Tensor& p_copy,
|
38 |
+
at::Tensor& m,
|
39 |
+
at::Tensor& v,
|
40 |
+
at::Tensor& g,
|
41 |
+
float lr,
|
42 |
+
float beta1,
|
43 |
+
float beta2,
|
44 |
+
float max_coeff,
|
45 |
+
float min_coeff,
|
46 |
+
float eps,
|
47 |
+
float grad_scale,
|
48 |
+
int step,
|
49 |
+
int mode,
|
50 |
+
int bias_correction,
|
51 |
+
float decay)
|
52 |
+
{
|
53 |
+
CHECK_INPUT(p);
|
54 |
+
if (p_copy.numel() > 0) CHECK_INPUT(p_copy);
|
55 |
+
CHECK_INPUT(m);
|
56 |
+
CHECK_INPUT(v);
|
57 |
+
CHECK_INPUT(g);
|
58 |
+
int64_t num_elem = p.numel();
|
59 |
+
AT_ASSERTM(m.numel() == num_elem, "number of elements in m and p tensors should be equal");
|
60 |
+
AT_ASSERTM(v.numel() == num_elem, "number of elements in v and p tensors should be equal");
|
61 |
+
AT_ASSERTM(g.numel() == num_elem, "number of elements in g and p tensors should be equal");
|
62 |
+
AT_ASSERTM(
|
63 |
+
p_copy.numel() == num_elem || p_copy.numel() == 0,
|
64 |
+
"number of elements in p_copy and p tensors should be equal, or p_copy should be empty");
|
65 |
+
|
66 |
+
// intermediate for weight L2 reduction
|
67 |
+
// make sure that the threads per block is at least 512 during the kernel launch otherwise the
|
68 |
+
// behaviour is unexpected
|
69 |
+
at::Tensor w_l2_i = at::empty(
|
70 |
+
{512},
|
71 |
+
p.options().dtype(p.type().scalarType() == at::ScalarType::Half ? at::ScalarType::Float
|
72 |
+
: p.type().scalarType()));
|
73 |
+
|
74 |
+
// intermediate for update L2 reduction
|
75 |
+
// make sure that the threads per block is at least 512 during the kernel launch otherwise the
|
76 |
+
// behaviour is unexpected
|
77 |
+
at::Tensor u_l2_i = at::empty(
|
78 |
+
{512},
|
79 |
+
p.options().dtype(p.type().scalarType() == at::ScalarType::Half ? at::ScalarType::Float
|
80 |
+
: p.type().scalarType()));
|
81 |
+
|
82 |
+
at::Tensor lamb_coeff_val = at::empty(
|
83 |
+
{1},
|
84 |
+
p.options().dtype(p.type().scalarType() == at::ScalarType::Half ? at::ScalarType::Float
|
85 |
+
: p.type().scalarType()));
|
86 |
+
|
87 |
+
fused_lamb_cuda(p,
|
88 |
+
p_copy,
|
89 |
+
m,
|
90 |
+
v,
|
91 |
+
g,
|
92 |
+
lr,
|
93 |
+
beta1,
|
94 |
+
beta2,
|
95 |
+
max_coeff,
|
96 |
+
min_coeff,
|
97 |
+
eps,
|
98 |
+
grad_scale,
|
99 |
+
step,
|
100 |
+
mode,
|
101 |
+
bias_correction,
|
102 |
+
decay,
|
103 |
+
w_l2_i,
|
104 |
+
u_l2_i,
|
105 |
+
lamb_coeff_val);
|
106 |
+
|
107 |
+
return lamb_coeff_val;
|
108 |
+
}
|
109 |
+
|
110 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
111 |
+
{
|
112 |
+
m.def("lamb", &lamb, "Adam optimized CUDA implementation with LAMB.");
|
113 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/lamb/fused_lamb_cuda_kernel.cu
ADDED
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <cuda.h>
|
7 |
+
#include <cuda_runtime.h>
|
8 |
+
#include <stdio.h>
|
9 |
+
#include <cmath>
|
10 |
+
#include "ATen/ATen.h"
|
11 |
+
#include "ATen/TensorUtils.h"
|
12 |
+
#include "ATen/cuda/CUDAContext.h"
|
13 |
+
#include "ATen/cuda/detail/IndexUtils.cuh"
|
14 |
+
// #include "ATen/Type.h"
|
15 |
+
#include "ATen/AccumulateType.h"
|
16 |
+
|
17 |
+
#include <iostream>
|
18 |
+
|
19 |
+
// #include <helper_functions.h>
|
20 |
+
#if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION > 305
|
21 |
+
#include <hip/hip_cooperative_groups.h>
|
22 |
+
#else
|
23 |
+
#include <cooperative_groups.h>
|
24 |
+
#endif
|
25 |
+
#include <cuda_runtime_api.h>
|
26 |
+
#include <stdio.h>
|
27 |
+
|
28 |
+
namespace cg = cooperative_groups;
|
29 |
+
|
30 |
+
// Utility class used to avoid linker errors with extern
|
31 |
+
// unsized shared memory arrays with templated type
|
32 |
+
namespace {
|
33 |
+
// This is the un-specialized struct. Note that we prevent instantiation of this
|
34 |
+
// struct by putting an undefined symbol in the function body so it won't compile.
|
35 |
+
template <typename T>
|
36 |
+
struct SharedMemory {
|
37 |
+
// Ensure that we won't compile any un-specialized types
|
38 |
+
__device__ inline operator T*()
|
39 |
+
{
|
40 |
+
#ifndef _WIN32
|
41 |
+
extern __device__ void error(void);
|
42 |
+
error();
|
43 |
+
#endif
|
44 |
+
return NULL;
|
45 |
+
}
|
46 |
+
};
|
47 |
+
|
48 |
+
template <>
|
49 |
+
struct SharedMemory<float> {
|
50 |
+
__device__ inline operator float*()
|
51 |
+
{
|
52 |
+
extern __shared__ float s_float[];
|
53 |
+
return s_float;
|
54 |
+
}
|
55 |
+
};
|
56 |
+
|
57 |
+
template <>
|
58 |
+
struct SharedMemory<double> {
|
59 |
+
__device__ inline operator double*()
|
60 |
+
{
|
61 |
+
extern __shared__ double s_double[];
|
62 |
+
return s_double;
|
63 |
+
}
|
64 |
+
};
|
65 |
+
} // namespace
|
66 |
+
|
67 |
+
#include "type_shim.h"
|
68 |
+
|
69 |
+
typedef enum {
|
70 |
+
ADAM_MODE_0 = 0, // eps under square root
|
71 |
+
ADAM_MODE_1 = 1 // eps outside square root
|
72 |
+
} adamMode_t;
|
73 |
+
|
74 |
+
// s_a and s_b are in shared memory
|
75 |
+
// g_a and g_b are in shared memory
|
76 |
+
template <typename T, int blockSize>
|
77 |
+
__device__ void reduce_block_in_shared_memory(T* s_a, T* s_b, T* g_a, T* g_b)
|
78 |
+
{
|
79 |
+
// Handle to thread block group
|
80 |
+
cg::thread_block cta = cg::this_thread_block();
|
81 |
+
|
82 |
+
// perform block reduction in shared memory,
|
83 |
+
unsigned int tid = cta.thread_rank();
|
84 |
+
|
85 |
+
T a_sum = s_a[tid];
|
86 |
+
T b_sum = s_b[tid];
|
87 |
+
|
88 |
+
cg::sync(cta);
|
89 |
+
|
90 |
+
// do reduction in shared mem
|
91 |
+
if ((blockSize >= 512) && (tid < 256)) {
|
92 |
+
s_a[tid] = a_sum = a_sum + s_a[tid + 256];
|
93 |
+
s_b[tid] = b_sum = b_sum + s_b[tid + 256];
|
94 |
+
}
|
95 |
+
|
96 |
+
cg::sync(cta);
|
97 |
+
|
98 |
+
if ((blockSize >= 256) && (tid < 128)) {
|
99 |
+
s_a[tid] = a_sum = a_sum + s_a[tid + 128];
|
100 |
+
s_b[tid] = b_sum = b_sum + s_b[tid + 128];
|
101 |
+
}
|
102 |
+
|
103 |
+
cg::sync(cta);
|
104 |
+
|
105 |
+
if ((blockSize >= 128) && (tid < 64)) {
|
106 |
+
s_a[tid] = a_sum = a_sum + s_a[tid + 64];
|
107 |
+
s_b[tid] = b_sum = b_sum + s_b[tid + 64];
|
108 |
+
}
|
109 |
+
|
110 |
+
cg::sync(cta);
|
111 |
+
|
112 |
+
#if (__CUDA_ARCH__ >= 300) || (defined(__HIP_PLATFORM_AMD__) && HIP_VERSION >= 502)
|
113 |
+
if (tid < 32) {
|
114 |
+
cg::coalesced_group active = cg::coalesced_threads();
|
115 |
+
|
116 |
+
// Fetch final intermediate sum from 2nd warp
|
117 |
+
if (blockSize >= 64) {
|
118 |
+
a_sum = a_sum + s_a[tid + 32];
|
119 |
+
b_sum = b_sum + s_b[tid + 32];
|
120 |
+
}
|
121 |
+
|
122 |
+
// Reduce final warp using shuffle
|
123 |
+
for (int offset = warpSize / 2; offset > 0; offset /= 2) {
|
124 |
+
a_sum += active.shfl_down(a_sum, offset);
|
125 |
+
b_sum += active.shfl_down(b_sum, offset);
|
126 |
+
}
|
127 |
+
}
|
128 |
+
#else
|
129 |
+
if ((blockSize >= 64) && (tid < 32)) {
|
130 |
+
s_a[tid] = a_sum = a_sum + s_a[tid + 32];
|
131 |
+
s_b[tid] = b_sum = b_sum + s_b[tid + 32];
|
132 |
+
}
|
133 |
+
|
134 |
+
cg::sync(cta);
|
135 |
+
|
136 |
+
if ((blockSize >= 32) && (tid < 16)) {
|
137 |
+
s_a[tid] = a_sum = a_sum + s_a[tid + 16];
|
138 |
+
s_b[tid] = b_sum = b_sum + s_b[tid + 16];
|
139 |
+
}
|
140 |
+
|
141 |
+
cg::sync(cta);
|
142 |
+
|
143 |
+
if ((blockSize >= 16) && (tid < 8)) {
|
144 |
+
s_a[tid] = a_sum = a_sum + s_a[tid + 8];
|
145 |
+
s_b[tid] = b_sum = b_sum + s_b[tid + 8];
|
146 |
+
}
|
147 |
+
|
148 |
+
cg::sync(cta);
|
149 |
+
|
150 |
+
if ((blockSize >= 8) && (tid < 4)) {
|
151 |
+
s_a[tid] = a_sum = a_sum + s_a[tid + 4];
|
152 |
+
s_b[tid] = b_sum = b_sum + s_b[tid + 4];
|
153 |
+
}
|
154 |
+
|
155 |
+
cg::sync(cta);
|
156 |
+
|
157 |
+
if ((blockSize >= 4) && (tid < 2)) {
|
158 |
+
s_a[tid] = a_sum = a_sum + s_a[tid + 2];
|
159 |
+
s_b[tid] = b_sum = b_sum + s_b[tid + 2];
|
160 |
+
}
|
161 |
+
|
162 |
+
cg::sync(cta);
|
163 |
+
|
164 |
+
if ((blockSize >= 2) && (tid < 1)) {
|
165 |
+
s_a[tid] = a_sum = a_sum + s_a[tid + 1];
|
166 |
+
s_b[tid] = b_sum = b_sum + s_b[tid + 1];
|
167 |
+
}
|
168 |
+
|
169 |
+
cg::sync(cta);
|
170 |
+
|
171 |
+
#endif
|
172 |
+
|
173 |
+
// write result for this block to global mem
|
174 |
+
if (tid == 0) {
|
175 |
+
g_a[blockIdx.x] = (T)a_sum;
|
176 |
+
g_b[blockIdx.x] = (T)b_sum;
|
177 |
+
}
|
178 |
+
}
|
179 |
+
|
180 |
+
template <typename T, int blockSize>
|
181 |
+
__device__ void reduce_two_vectors_in_register(T a, T b, T* g_a, T* g_b)
|
182 |
+
{
|
183 |
+
const int threadIdInBlock = cg::this_thread_block().thread_rank();
|
184 |
+
|
185 |
+
T* s_a = SharedMemory<T>();
|
186 |
+
T* s_b = SharedMemory<T>() + cg::this_thread_block().size();
|
187 |
+
|
188 |
+
s_a[threadIdInBlock] = a;
|
189 |
+
s_b[threadIdInBlock] = b;
|
190 |
+
|
191 |
+
reduce_block_in_shared_memory<T, blockSize>(s_a, s_b, g_a, g_b);
|
192 |
+
}
|
193 |
+
|
194 |
+
template <typename T, typename GRAD_T, int blockSize>
|
195 |
+
__global__ void lamb_cuda_kernel_part1(
|
196 |
+
T* __restrict__ p,
|
197 |
+
GRAD_T* __restrict__ p_copy, // For mixed precision training, pass NULL if not needed
|
198 |
+
T* __restrict__ m,
|
199 |
+
T* __restrict__ v,
|
200 |
+
const GRAD_T* __restrict__ g,
|
201 |
+
const float b1,
|
202 |
+
const float b2,
|
203 |
+
const float eps,
|
204 |
+
const float grad_scale,
|
205 |
+
const float step_size,
|
206 |
+
const size_t tsize,
|
207 |
+
adamMode_t mode,
|
208 |
+
const float decay,
|
209 |
+
T* __restrict__ w_l2_i,
|
210 |
+
T* __restrict__ u_l2_i)
|
211 |
+
{
|
212 |
+
// Assuming 2D grids and 2D blocks
|
213 |
+
const int blockId = gridDim.x * blockIdx.y + blockIdx.x;
|
214 |
+
const int threadsPerBlock = blockDim.x * blockDim.y;
|
215 |
+
const int threadIdInBlock = cg::this_thread_block().thread_rank();
|
216 |
+
const int i = (blockId * threadsPerBlock + threadIdInBlock);
|
217 |
+
const int totThreads = gridDim.x * gridDim.y * threadsPerBlock;
|
218 |
+
|
219 |
+
T reg_w = 0;
|
220 |
+
T reg_u = 0;
|
221 |
+
|
222 |
+
for (int j = i; j < tsize; j += totThreads) {
|
223 |
+
T scaled_grad = g[j] / grad_scale;
|
224 |
+
T pj = p[j];
|
225 |
+
m[j] = b1 * m[j] + (1 - b1) * scaled_grad;
|
226 |
+
v[j] = b2 * v[j] + (1 - b2) * scaled_grad * scaled_grad;
|
227 |
+
float denom;
|
228 |
+
if (mode == ADAM_MODE_0)
|
229 |
+
denom = sqrtf(v[j] + eps);
|
230 |
+
else // Mode 1
|
231 |
+
denom = sqrtf(v[j]) + eps;
|
232 |
+
T update = (m[j] / denom) + (decay * p[j]);
|
233 |
+
|
234 |
+
reg_u += update * update;
|
235 |
+
reg_w += pj * pj;
|
236 |
+
}
|
237 |
+
|
238 |
+
reduce_two_vectors_in_register<T, blockSize>(reg_w, reg_u, w_l2_i, u_l2_i);
|
239 |
+
}
|
240 |
+
|
241 |
+
template <typename T, typename GRAD_T, int blockSize>
|
242 |
+
__global__ void lamb_cuda_kernel_part2(const size_t tsize, T* __restrict__ g_a, T* __restrict__ g_b)
|
243 |
+
{
|
244 |
+
T* s_a = SharedMemory<T>();
|
245 |
+
T* s_b = SharedMemory<T>() + cg::this_thread_block().size();
|
246 |
+
|
247 |
+
const int threadIdInBlock = cg::this_thread_block().thread_rank();
|
248 |
+
|
249 |
+
s_a[threadIdInBlock] = g_a[threadIdInBlock];
|
250 |
+
s_b[threadIdInBlock] = g_b[threadIdInBlock];
|
251 |
+
|
252 |
+
if (threadIdInBlock >= tsize) {
|
253 |
+
s_a[threadIdInBlock] = 0.0;
|
254 |
+
s_b[threadIdInBlock] = 0.0;
|
255 |
+
}
|
256 |
+
|
257 |
+
reduce_block_in_shared_memory<T, blockSize>(s_a, s_b, g_a, g_b);
|
258 |
+
}
|
259 |
+
|
260 |
+
template <typename T, typename GRAD_T>
|
261 |
+
__global__ void lamb_cuda_kernel_part3(
|
262 |
+
T* __restrict__ p,
|
263 |
+
GRAD_T* __restrict__ p_copy, // For mixed precision training, pass NULL if not needed
|
264 |
+
T* __restrict__ m,
|
265 |
+
T* __restrict__ v,
|
266 |
+
const GRAD_T* __restrict__ g,
|
267 |
+
const float b1,
|
268 |
+
const float b2,
|
269 |
+
const float max_coeff,
|
270 |
+
const float min_coeff,
|
271 |
+
const float eps,
|
272 |
+
const float grad_scale,
|
273 |
+
const float step_size,
|
274 |
+
const size_t tsize,
|
275 |
+
adamMode_t mode,
|
276 |
+
const float decay,
|
277 |
+
T* __restrict__ w_l2_i,
|
278 |
+
T* __restrict__ u_l2_i,
|
279 |
+
T* __restrict__ lamb_coeff_val)
|
280 |
+
{
|
281 |
+
// Assuming 2D grids and 2D blocks
|
282 |
+
const int blockId = gridDim.x * blockIdx.y + blockIdx.x;
|
283 |
+
const int threadsPerBlock = blockDim.x * blockDim.y;
|
284 |
+
const int threadIdInBlock = cg::this_thread_block().thread_rank();
|
285 |
+
const int i = (blockId * threadsPerBlock + threadIdInBlock);
|
286 |
+
const int totThreads = gridDim.x * gridDim.y * threadsPerBlock;
|
287 |
+
|
288 |
+
T reg_w = sqrtf(w_l2_i[0]);
|
289 |
+
T reg_u = sqrtf(u_l2_i[0]);
|
290 |
+
|
291 |
+
float lamb_coeff = 1.0;
|
292 |
+
|
293 |
+
if (reg_w != 0 && reg_u != 0) {
|
294 |
+
lamb_coeff = reg_w / reg_u;
|
295 |
+
if (lamb_coeff > max_coeff) { lamb_coeff = max_coeff; }
|
296 |
+
if (lamb_coeff < min_coeff) { lamb_coeff = min_coeff; }
|
297 |
+
}
|
298 |
+
|
299 |
+
if (blockId == 0 && threadIdInBlock == 0) {
|
300 |
+
lamb_coeff_val[0] = lamb_coeff;
|
301 |
+
// printf("Cuda Lamb Coeff is %.6f \n",lamb_coeff);
|
302 |
+
}
|
303 |
+
|
304 |
+
for (int j = i; j < tsize; j += totThreads) {
|
305 |
+
T pj = (float)p[j];
|
306 |
+
T mj = m[j];
|
307 |
+
T vj = v[j];
|
308 |
+
float denom;
|
309 |
+
if (mode == ADAM_MODE_0)
|
310 |
+
denom = sqrtf(vj + eps);
|
311 |
+
else // Mode 1
|
312 |
+
denom = sqrtf(vj) + eps;
|
313 |
+
T update = (mj / denom) + (decay * pj);
|
314 |
+
|
315 |
+
pj = pj - (step_size * lamb_coeff * update);
|
316 |
+
p[j] = pj;
|
317 |
+
if (p_copy != NULL) p_copy[j] = (GRAD_T)pj;
|
318 |
+
}
|
319 |
+
}
|
320 |
+
|
321 |
+
void fused_lamb_cuda(at::Tensor& p,
|
322 |
+
at::Tensor& p_copy,
|
323 |
+
at::Tensor& m,
|
324 |
+
at::Tensor& v,
|
325 |
+
at::Tensor& g,
|
326 |
+
float lr,
|
327 |
+
float beta1,
|
328 |
+
float beta2,
|
329 |
+
float max_coeff,
|
330 |
+
float min_coeff,
|
331 |
+
float eps,
|
332 |
+
float grad_scale,
|
333 |
+
int step,
|
334 |
+
int mode,
|
335 |
+
int bias_correction,
|
336 |
+
float decay,
|
337 |
+
at::Tensor& w_l2_i,
|
338 |
+
at::Tensor& u_l2_i,
|
339 |
+
at::Tensor& lamb_coeff)
|
340 |
+
{
|
341 |
+
// using namespace at;
|
342 |
+
|
343 |
+
// Get tensor size
|
344 |
+
int tsize = p.numel();
|
345 |
+
// Determine #threads and #blocks
|
346 |
+
const int threadsPerBlock = 512;
|
347 |
+
int num_blocks = (tsize + threadsPerBlock - 1) / threadsPerBlock;
|
348 |
+
if (num_blocks > 512) num_blocks = 512;
|
349 |
+
|
350 |
+
int smemsize = 0;
|
351 |
+
|
352 |
+
if (p.type().scalarType() == at::ScalarType::Double)
|
353 |
+
smemsize = 2 * threadsPerBlock * sizeof(double);
|
354 |
+
else
|
355 |
+
smemsize = 2 * threadsPerBlock * sizeof(float);
|
356 |
+
|
357 |
+
const dim3 blocks(num_blocks);
|
358 |
+
const dim3 threads(threadsPerBlock);
|
359 |
+
|
360 |
+
AT_ASSERTM(at::cuda::detail::canUse32BitIndexMath(p),
|
361 |
+
"parameter tensor is too large to be indexed with int32");
|
362 |
+
// Constants
|
363 |
+
float step_size = 0;
|
364 |
+
if (bias_correction == 1) {
|
365 |
+
const float bias_correction1 = 1 - std::pow(beta1, step);
|
366 |
+
const float bias_correction2 = 1 - std::pow(beta2, step);
|
367 |
+
step_size = lr * std::sqrt(bias_correction2) / bias_correction1;
|
368 |
+
} else {
|
369 |
+
step_size = lr;
|
370 |
+
}
|
371 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
372 |
+
|
373 |
+
if (g.type().scalarType() == at::ScalarType::Half) {
|
374 |
+
// all other values should be fp32 for half gradients
|
375 |
+
AT_ASSERTM(p.type().scalarType() == at::ScalarType::Float,
|
376 |
+
"expected parameter to be of float type");
|
377 |
+
// dispatch is done on the gradient type
|
378 |
+
using namespace at; // prevents "toString is undefined" errors
|
379 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
380 |
+
g.scalar_type(), "lamb_cuda_kernel", ([&] {
|
381 |
+
using accscalar_t = at::acc_type<scalar_t, true>;
|
382 |
+
|
383 |
+
lamb_cuda_kernel_part1<accscalar_t, scalar_t, threadsPerBlock>
|
384 |
+
<<<blocks, threadsPerBlock, smemsize, stream>>>(
|
385 |
+
p.data<accscalar_t>(),
|
386 |
+
p_copy.numel() ? p_copy.data<scalar_t>() : NULL,
|
387 |
+
m.data<accscalar_t>(),
|
388 |
+
v.data<accscalar_t>(),
|
389 |
+
g.data<scalar_t>(),
|
390 |
+
beta1,
|
391 |
+
beta2,
|
392 |
+
eps,
|
393 |
+
grad_scale,
|
394 |
+
step_size,
|
395 |
+
tsize,
|
396 |
+
(adamMode_t)mode,
|
397 |
+
decay,
|
398 |
+
w_l2_i.data<accscalar_t>(),
|
399 |
+
u_l2_i.data<accscalar_t>());
|
400 |
+
|
401 |
+
lamb_cuda_kernel_part2<accscalar_t, scalar_t, threadsPerBlock>
|
402 |
+
<<<1, threadsPerBlock, smemsize, stream>>>(
|
403 |
+
num_blocks, w_l2_i.data<accscalar_t>(), u_l2_i.data<accscalar_t>());
|
404 |
+
|
405 |
+
lamb_cuda_kernel_part3<accscalar_t, scalar_t>
|
406 |
+
<<<blocks, threadsPerBlock, smemsize, stream>>>(
|
407 |
+
p.data<accscalar_t>(),
|
408 |
+
p_copy.numel() ? p_copy.data<scalar_t>() : NULL,
|
409 |
+
m.data<accscalar_t>(),
|
410 |
+
v.data<accscalar_t>(),
|
411 |
+
g.data<scalar_t>(),
|
412 |
+
beta1,
|
413 |
+
beta2,
|
414 |
+
max_coeff,
|
415 |
+
min_coeff,
|
416 |
+
eps,
|
417 |
+
grad_scale,
|
418 |
+
step_size,
|
419 |
+
tsize,
|
420 |
+
(adamMode_t)mode,
|
421 |
+
decay,
|
422 |
+
w_l2_i.data<accscalar_t>(),
|
423 |
+
u_l2_i.data<accscalar_t>(),
|
424 |
+
lamb_coeff.data<accscalar_t>());
|
425 |
+
}));
|
426 |
+
} else {
|
427 |
+
using namespace at;
|
428 |
+
AT_DISPATCH_FLOATING_TYPES(
|
429 |
+
g.scalar_type(), "lamb_cuda_kernel", ([&] {
|
430 |
+
lamb_cuda_kernel_part1<scalar_t, scalar_t, threadsPerBlock>
|
431 |
+
<<<blocks, threadsPerBlock, smemsize, stream>>>(
|
432 |
+
p.data<scalar_t>(),
|
433 |
+
NULL, // don't output p_copy for fp32, it's wasted write
|
434 |
+
m.data<scalar_t>(),
|
435 |
+
v.data<scalar_t>(),
|
436 |
+
g.data<scalar_t>(),
|
437 |
+
beta1,
|
438 |
+
beta2,
|
439 |
+
eps,
|
440 |
+
grad_scale,
|
441 |
+
step_size,
|
442 |
+
tsize,
|
443 |
+
(adamMode_t)mode,
|
444 |
+
decay,
|
445 |
+
w_l2_i.data<scalar_t>(),
|
446 |
+
u_l2_i.data<scalar_t>());
|
447 |
+
|
448 |
+
lamb_cuda_kernel_part2<scalar_t, scalar_t, threadsPerBlock>
|
449 |
+
<<<1, threadsPerBlock, smemsize, stream>>>(
|
450 |
+
num_blocks, w_l2_i.data<scalar_t>(), u_l2_i.data<scalar_t>());
|
451 |
+
|
452 |
+
lamb_cuda_kernel_part3<scalar_t, scalar_t>
|
453 |
+
<<<blocks, threadsPerBlock, smemsize, stream>>>(
|
454 |
+
p.data<scalar_t>(),
|
455 |
+
NULL, // don't output p_copy for fp32, it's wasted write
|
456 |
+
m.data<scalar_t>(),
|
457 |
+
v.data<scalar_t>(),
|
458 |
+
g.data<scalar_t>(),
|
459 |
+
beta1,
|
460 |
+
beta2,
|
461 |
+
max_coeff,
|
462 |
+
min_coeff,
|
463 |
+
eps,
|
464 |
+
grad_scale,
|
465 |
+
step_size,
|
466 |
+
tsize,
|
467 |
+
(adamMode_t)mode,
|
468 |
+
decay,
|
469 |
+
w_l2_i.data<scalar_t>(),
|
470 |
+
u_l2_i.data<scalar_t>(),
|
471 |
+
lamb_coeff.data<scalar_t>());
|
472 |
+
}));
|
473 |
+
}
|
474 |
+
C10_CUDA_CHECK(cudaGetLastError());
|
475 |
+
}
|
476 |
+
|
477 |
+
// template __device__ void reduce_two_vectors_in_register<float,512>(float a, float b, float* g_a,
|
478 |
+
// float* g_b, cg::grid_group &cgg);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/dequantize.cu
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "dequantization_utils.h"
|
7 |
+
#include "memory_access_utils.h"
|
8 |
+
|
9 |
+
namespace cg = cooperative_groups;
|
10 |
+
|
11 |
+
template <typename T, int numBits, dequantize::Type qType, int unroll, int threads>
|
12 |
+
__global__ void dequantize_kernel(T* __restrict__ dequant_data,
|
13 |
+
const int8_t* __restrict__ q_data,
|
14 |
+
const float* __restrict__ q_params,
|
15 |
+
int elems_per_group,
|
16 |
+
int total_elems)
|
17 |
+
{
|
18 |
+
dequantize::to_global<T, numBits, qType, unroll, threads>(
|
19 |
+
dequant_data, q_data, q_params, elems_per_group, total_elems);
|
20 |
+
}
|
21 |
+
|
22 |
+
#define LAUNCH_DEQUANT_KERNEL(num_bits, q_type) \
|
23 |
+
dequantize_kernel<T, num_bits, q_type, unroll, threads><<<grid, block, 0, stream>>>( \
|
24 |
+
dequant_data, q_data, q_params, elems_per_group, total_elems);
|
25 |
+
|
26 |
+
template <typename T>
|
27 |
+
void launch_dequantize_kernel(T* dequant_data,
|
28 |
+
const int8_t* q_data,
|
29 |
+
const float* q_params,
|
30 |
+
quantize::Type q_type,
|
31 |
+
int num_bits,
|
32 |
+
int elems_per_group,
|
33 |
+
int total_elems,
|
34 |
+
cudaStream_t stream)
|
35 |
+
{
|
36 |
+
constexpr int unroll = 8;
|
37 |
+
constexpr int threads = 512;
|
38 |
+
constexpr int elems_per_block = unroll * threads * dequantize::granularity / (sizeof(T));
|
39 |
+
|
40 |
+
const dim3 block(threads);
|
41 |
+
const dim3 grid((total_elems + elems_per_block - 1) / elems_per_block);
|
42 |
+
|
43 |
+
// TODO(cmikeh2): It may make sense to tune unroll, there is perf benefit for large
|
44 |
+
// problem sizes with this large unroll value.
|
45 |
+
if (num_bits == 8 && q_type == quantize::Type::Symmetric) {
|
46 |
+
LAUNCH_DEQUANT_KERNEL(8, quantize::Type::Symmetric);
|
47 |
+
} else if (num_bits == 8 && q_type == quantize::Type::Asymmetric) {
|
48 |
+
LAUNCH_DEQUANT_KERNEL(8, quantize::Type::Asymmetric);
|
49 |
+
} else if (num_bits == 4 && q_type == quantize::Type::Symmetric) {
|
50 |
+
LAUNCH_DEQUANT_KERNEL(4, quantize::Type::Symmetric);
|
51 |
+
} else if (num_bits == 4 && q_type == quantize::Type::Asymmetric) {
|
52 |
+
LAUNCH_DEQUANT_KERNEL(4, quantize::Type::Asymmetric);
|
53 |
+
}
|
54 |
+
}
|
55 |
+
|
56 |
+
template void launch_dequantize_kernel(__half* dequant_data,
|
57 |
+
const int8_t* q_data,
|
58 |
+
const float* q_params,
|
59 |
+
quantize::Type q_type,
|
60 |
+
int num_bits,
|
61 |
+
int elems_per_group,
|
62 |
+
int total_elems,
|
63 |
+
cudaStream_t stream);
|
64 |
+
|
65 |
+
template void launch_dequantize_kernel(float* dequant_data,
|
66 |
+
const int8_t* q_data,
|
67 |
+
const float* q_params,
|
68 |
+
quantize::Type q_type,
|
69 |
+
int num_bits,
|
70 |
+
int elems_per_group,
|
71 |
+
int total_elems,
|
72 |
+
cudaStream_t stream);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/fake_quantizer.cu
ADDED
@@ -0,0 +1,1028 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <math.h>
|
7 |
+
#include "custom_cuda_layers.h"
|
8 |
+
#include "memory_access_utils.h"
|
9 |
+
|
10 |
+
namespace cg = cooperative_groups;
|
11 |
+
|
12 |
+
__global__ void fake_quantize_kernel(__half* vals, int group_size, int num_bits)
|
13 |
+
{
|
14 |
+
#if __CUDA_ARCH__ >= 700 || defined(__HIP_PLATFORM_AMD__)
|
15 |
+
|
16 |
+
cg::thread_block b = cg::this_thread_block(); // tb
|
17 |
+
cg::thread_block_tile<32> g =
|
18 |
+
cg::tiled_partition<32>(b); // warp, 32 not optimal for AMD which should be 64.
|
19 |
+
|
20 |
+
int gid = threadIdx.x >> 5;
|
21 |
+
int lane = threadIdx.x & 0x1f;
|
22 |
+
int warp_num = blockDim.x >> 5;
|
23 |
+
int id = threadIdx.x;
|
24 |
+
|
25 |
+
constexpr int granularity = 16;
|
26 |
+
constexpr int vals_per_access = granularity / sizeof(__half);
|
27 |
+
|
28 |
+
__half data[vals_per_access];
|
29 |
+
|
30 |
+
int group_id = blockIdx.x;
|
31 |
+
|
32 |
+
int thread_index = id * vals_per_access;
|
33 |
+
int reg_count = 0;
|
34 |
+
int offset = group_id * group_size;
|
35 |
+
float max = -10000.0;
|
36 |
+
for (int thread_index = id * vals_per_access; thread_index < group_size;
|
37 |
+
thread_index += blockDim.x * vals_per_access) {
|
38 |
+
mem_access::load_global<granularity>(data, vals + offset + thread_index);
|
39 |
+
|
40 |
+
#pragma unroll
|
41 |
+
for (int i = 0; i < vals_per_access; i++) {
|
42 |
+
if (abs((float)data[i]) > max) max = abs((float)data[i]);
|
43 |
+
}
|
44 |
+
}
|
45 |
+
|
46 |
+
#pragma unroll
|
47 |
+
for (int i = 1; i < WARP_SIZE; i <<= 1) {
|
48 |
+
auto temp = g.shfl_xor(max, i);
|
49 |
+
if (max < temp) max = temp;
|
50 |
+
}
|
51 |
+
__shared__ float partialMax[WARP_SIZE];
|
52 |
+
|
53 |
+
if (lane == 0) partialMax[gid] = max;
|
54 |
+
|
55 |
+
b.sync();
|
56 |
+
|
57 |
+
if (lane < warp_num) max = partialMax[lane];
|
58 |
+
|
59 |
+
#pragma unroll
|
60 |
+
for (int i = 1; i < WARP_SIZE; i <<= 1) {
|
61 |
+
auto temp = g.shfl_down(max, i);
|
62 |
+
if (max < temp) max = temp;
|
63 |
+
}
|
64 |
+
|
65 |
+
max = g.shfl(max, 0);
|
66 |
+
|
67 |
+
float q_scale = (float)(1 << num_bits) / (2 * max + 1e-5);
|
68 |
+
float q_scale_inv = 1 / q_scale;
|
69 |
+
int q_range_max = (1 << (num_bits - 1)) - 1;
|
70 |
+
int q_range_min = -(1 << (num_bits - 1));
|
71 |
+
|
72 |
+
for (int thread_index = id * vals_per_access; thread_index < group_size;
|
73 |
+
thread_index += blockDim.x * vals_per_access) {
|
74 |
+
mem_access::load_global<granularity>(data, vals + offset + thread_index);
|
75 |
+
#pragma unroll
|
76 |
+
for (int j = 0; j < vals_per_access; j++) {
|
77 |
+
float q_data;
|
78 |
+
q_data = __half2float(data[j]);
|
79 |
+
q_data = __float2int_rn(q_data * q_scale);
|
80 |
+
q_data = q_data > (q_range_max) ? (q_range_max)
|
81 |
+
: (q_data < (q_range_min) ? (q_range_min) : q_data);
|
82 |
+
data[j] = __float2half_rn(q_data * q_scale_inv);
|
83 |
+
}
|
84 |
+
mem_access::store_global<granularity>(vals + offset + thread_index, data);
|
85 |
+
}
|
86 |
+
|
87 |
+
#endif
|
88 |
+
}
|
89 |
+
|
90 |
+
__global__ void fake_quantize_kernel(float* vals, int group_size, int num_bits)
|
91 |
+
{
|
92 |
+
cg::thread_block b = cg::this_thread_block();
|
93 |
+
cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);
|
94 |
+
|
95 |
+
int gid = threadIdx.x >> 5;
|
96 |
+
int lane = threadIdx.x & 0x1f;
|
97 |
+
int warp_num = blockDim.x >> 5;
|
98 |
+
int id = threadIdx.x;
|
99 |
+
|
100 |
+
constexpr int granularity = 16;
|
101 |
+
constexpr int vals_per_access = granularity / sizeof(float);
|
102 |
+
|
103 |
+
float data[vals_per_access];
|
104 |
+
|
105 |
+
int bid = blockIdx.x;
|
106 |
+
|
107 |
+
int thread_index = id * vals_per_access;
|
108 |
+
|
109 |
+
int reg_count = 0;
|
110 |
+
|
111 |
+
int offset = bid * group_size;
|
112 |
+
|
113 |
+
float max = -10000.0;
|
114 |
+
|
115 |
+
for (int thread_index = id * vals_per_access; thread_index < group_size;
|
116 |
+
thread_index += blockDim.x * vals_per_access) {
|
117 |
+
mem_access::load_global<granularity>(data, vals + offset + thread_index);
|
118 |
+
|
119 |
+
#pragma unroll
|
120 |
+
for (int i = 0; i < vals_per_access; i++) {
|
121 |
+
if (abs(data[i]) > max) max = abs(data[i]);
|
122 |
+
}
|
123 |
+
}
|
124 |
+
|
125 |
+
#pragma unroll
|
126 |
+
for (int i = 1; i < WARP_SIZE; i <<= 1) {
|
127 |
+
auto temp = g.shfl_xor(max, i);
|
128 |
+
if (max < temp) max = temp;
|
129 |
+
}
|
130 |
+
__shared__ float partialMax[WARP_SIZE];
|
131 |
+
|
132 |
+
if (lane == 0) partialMax[gid] = max;
|
133 |
+
|
134 |
+
b.sync();
|
135 |
+
|
136 |
+
if (lane < warp_num) max = partialMax[lane];
|
137 |
+
|
138 |
+
b.sync();
|
139 |
+
|
140 |
+
#pragma unroll
|
141 |
+
for (int i = 1; i < warp_num; i <<= 1) {
|
142 |
+
auto temp = g.shfl_down(max, i);
|
143 |
+
if (max < temp) max = temp;
|
144 |
+
}
|
145 |
+
|
146 |
+
max = g.shfl(max, 0);
|
147 |
+
|
148 |
+
float q_scale = (1 << num_bits) / (2 * max + 1e-5);
|
149 |
+
float q_scale_inv = 1 / q_scale;
|
150 |
+
|
151 |
+
int q_range_max = (1 << (num_bits - 1)) - 1;
|
152 |
+
int q_range_min = -(1 << (num_bits - 1));
|
153 |
+
|
154 |
+
for (int thread_index = id * vals_per_access; thread_index < group_size;
|
155 |
+
thread_index += blockDim.x * vals_per_access) {
|
156 |
+
mem_access::load_global<granularity>(data, vals + offset + thread_index);
|
157 |
+
#pragma unroll
|
158 |
+
for (int j = 0; j < vals_per_access; j++) {
|
159 |
+
float q_data;
|
160 |
+
q_data = __float2int_rn(data[j] * q_scale);
|
161 |
+
q_data = q_data > (q_range_max) ? (q_range_max)
|
162 |
+
: (q_data < (q_range_min) ? (q_range_min) : q_data);
|
163 |
+
data[j] = roundf(q_data * q_scale_inv);
|
164 |
+
}
|
165 |
+
mem_access::store_global<granularity>(vals + offset + thread_index, data);
|
166 |
+
}
|
167 |
+
}
|
168 |
+
|
169 |
+
template <typename T>
|
170 |
+
void launch_fake_quantize_kernel(T* vals,
|
171 |
+
int total_count,
|
172 |
+
int group_num,
|
173 |
+
int num_bits,
|
174 |
+
cudaStream_t stream)
|
175 |
+
{
|
176 |
+
dim3 grid_dim(group_num);
|
177 |
+
dim3 block_dim(1024);
|
178 |
+
|
179 |
+
fake_quantize_kernel<<<grid_dim, block_dim, 0, stream>>>(
|
180 |
+
vals, total_count / group_num, num_bits);
|
181 |
+
}
|
182 |
+
|
183 |
+
template void launch_fake_quantize_kernel(float* vals,
|
184 |
+
int total_count,
|
185 |
+
int group_num,
|
186 |
+
int num_bits,
|
187 |
+
cudaStream_t stream);
|
188 |
+
template void launch_fake_quantize_kernel(__half* vals,
|
189 |
+
int total_count,
|
190 |
+
int group_num,
|
191 |
+
int num_bits,
|
192 |
+
cudaStream_t stream);
|
193 |
+
|
194 |
+
__global__ void sr_fake_quantize_kernel(__half* vals,
|
195 |
+
int token_size,
|
196 |
+
int token_num,
|
197 |
+
int num_bits,
|
198 |
+
std::pair<uint64_t, uint64_t> seed)
|
199 |
+
{
|
200 |
+
#if __CUDA_ARCH__ >= 700 || defined(__HIP_PLATFORM_AMD__)
|
201 |
+
|
202 |
+
cg::thread_block b = cg::this_thread_block();
|
203 |
+
cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);
|
204 |
+
|
205 |
+
int gid = threadIdx.x >> 5;
|
206 |
+
int lane = threadIdx.x & 0x1f;
|
207 |
+
int warp_num = blockDim.x >> 5;
|
208 |
+
|
209 |
+
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
210 |
+
|
211 |
+
float2* vals_cast = reinterpret_cast<float2*>(vals);
|
212 |
+
|
213 |
+
__half2 data_low[128];
|
214 |
+
__half2 data_high[128];
|
215 |
+
|
216 |
+
int bid = blockIdx.x;
|
217 |
+
|
218 |
+
curandStatePhilox4_32_10_t state;
|
219 |
+
curand_init(seed.first, idx, seed.second, &state);
|
220 |
+
unsigned int tid = threadIdx.x;
|
221 |
+
int reg_count = 0;
|
222 |
+
int offset = bid * token_size;
|
223 |
+
int group_index = bid * token_size + tid;
|
224 |
+
|
225 |
+
int total_count = token_size * token_num;
|
226 |
+
if (group_index < total_count) {
|
227 |
+
// float min = 10000.0;
|
228 |
+
float max = -10000.0;
|
229 |
+
while (tid < token_size) {
|
230 |
+
float2 data = vals_cast[offset + tid];
|
231 |
+
__half2* data_h = reinterpret_cast<__half2*>(&data);
|
232 |
+
data_low[reg_count] = data_h[0];
|
233 |
+
data_high[reg_count] = data_h[1];
|
234 |
+
|
235 |
+
float2 data_f[2];
|
236 |
+
data_f[0] = __half22float2(data_h[0]);
|
237 |
+
data_f[1] = __half22float2(data_h[1]);
|
238 |
+
|
239 |
+
if (abs((float)data_f[0].x) > max) max = abs((float)data_f[0].x);
|
240 |
+
if (abs((float)data_f[0].y) > max) max = abs((float)data_f[0].y);
|
241 |
+
if (abs((float)data_f[1].x) > max) max = abs((float)data_f[1].x);
|
242 |
+
if (abs((float)data_f[1].y) > max) max = abs((float)data_f[1].y);
|
243 |
+
|
244 |
+
tid += blockDim.x;
|
245 |
+
reg_count++;
|
246 |
+
}
|
247 |
+
|
248 |
+
#pragma unroll
|
249 |
+
for (int i = 1; i < WARP_SIZE; i <<= 1) {
|
250 |
+
auto temp = g.shfl_xor(max, i);
|
251 |
+
if (max < temp) max = temp;
|
252 |
+
}
|
253 |
+
|
254 |
+
__shared__ float partialMax[WARP_SIZE];
|
255 |
+
|
256 |
+
if (lane == 0) partialMax[gid] = max;
|
257 |
+
|
258 |
+
b.sync();
|
259 |
+
|
260 |
+
if (lane < warp_num) max = partialMax[lane];
|
261 |
+
|
262 |
+
#pragma unroll
|
263 |
+
for (int i = 1; i < warp_num; i <<= 1) {
|
264 |
+
auto temp = g.shfl_down(max, i);
|
265 |
+
if (max < temp) max = temp;
|
266 |
+
}
|
267 |
+
|
268 |
+
max = g.shfl(max, 0);
|
269 |
+
|
270 |
+
float q_scale_val = (float)(1 << num_bits) / (max * 2 + 1e-5);
|
271 |
+
float high_q = (float)((1 << (num_bits - 1)) - 1);
|
272 |
+
float low_q = (float)(-((1 << (num_bits - 1))));
|
273 |
+
|
274 |
+
for (int i = 0; i < reg_count; i++) {
|
275 |
+
int token_index = i * blockDim.x + threadIdx.x;
|
276 |
+
if (token_index < token_size) {
|
277 |
+
float2 data_f[2];
|
278 |
+
data_f[0] = __half22float2(data_low[i]);
|
279 |
+
data_f[1] = __half22float2(data_high[i]);
|
280 |
+
|
281 |
+
float2 q_data_int[2];
|
282 |
+
q_data_int[0].x = (float)((int)(data_f[0].x * q_scale_val));
|
283 |
+
q_data_int[0].y = (float)((int)(data_f[0].y * q_scale_val));
|
284 |
+
q_data_int[1].x = (float)((int)(data_f[1].x * q_scale_val));
|
285 |
+
q_data_int[1].y = (float)((int)(data_f[1].y * q_scale_val));
|
286 |
+
|
287 |
+
// Stochastic rounding
|
288 |
+
float4 rand = curand_uniform4(&state);
|
289 |
+
|
290 |
+
float q_error[4];
|
291 |
+
q_error[0] = abs(data_f[0].x - (q_data_int[0].x / q_scale_val)) * q_scale_val;
|
292 |
+
q_error[1] = abs(data_f[0].y - (q_data_int[0].y / q_scale_val)) * q_scale_val;
|
293 |
+
q_error[2] = abs(data_f[1].x - (q_data_int[1].x / q_scale_val)) * q_scale_val;
|
294 |
+
q_error[3] = abs(data_f[1].y - (q_data_int[1].y / q_scale_val)) * q_scale_val;
|
295 |
+
|
296 |
+
q_data_int[0].x =
|
297 |
+
(rand.x < q_error[0] && q_data_int[0].x > low_q && q_data_int[0].x < high_q)
|
298 |
+
? (q_data_int[0].x + (data_f[0].x > 0 ? 1 : -1))
|
299 |
+
: q_data_int[0].x;
|
300 |
+
q_data_int[0].y =
|
301 |
+
(rand.y < q_error[1] && q_data_int[0].y > low_q && q_data_int[0].y < high_q)
|
302 |
+
? (q_data_int[0].y + (data_f[0].y > 0 ? 1 : -1))
|
303 |
+
: q_data_int[0].y;
|
304 |
+
q_data_int[1].x =
|
305 |
+
(rand.w < q_error[2] && q_data_int[1].x > low_q && q_data_int[1].x < high_q)
|
306 |
+
? (q_data_int[1].x + (data_f[1].x > 0 ? 1 : -1))
|
307 |
+
: q_data_int[1].x;
|
308 |
+
q_data_int[1].y =
|
309 |
+
(rand.z < q_error[3] && q_data_int[1].y > low_q && q_data_int[1].y < high_q)
|
310 |
+
? (q_data_int[1].y + (data_f[1].y > 0 ? 1 : -1))
|
311 |
+
: q_data_int[1].y;
|
312 |
+
|
313 |
+
data_f[0].x = q_data_int[0].x / q_scale_val;
|
314 |
+
data_f[0].y = q_data_int[0].y / q_scale_val;
|
315 |
+
data_f[1].x = q_data_int[1].x / q_scale_val;
|
316 |
+
data_f[1].y = q_data_int[1].y / q_scale_val;
|
317 |
+
|
318 |
+
float2 result;
|
319 |
+
__half2* result_h = reinterpret_cast<__half2*>(&result);
|
320 |
+
result_h[0] = __float22half2_rn(data_f[0]);
|
321 |
+
result_h[1] = __float22half2_rn(data_f[1]);
|
322 |
+
|
323 |
+
vals_cast[offset + token_index] = result;
|
324 |
+
}
|
325 |
+
}
|
326 |
+
}
|
327 |
+
#endif
|
328 |
+
}
|
329 |
+
|
330 |
+
__global__ void sr_fake_quantize_kernel(float* vals,
|
331 |
+
int token_size,
|
332 |
+
int token_num,
|
333 |
+
int num_bits,
|
334 |
+
std::pair<uint64_t, uint64_t> seed)
|
335 |
+
{
|
336 |
+
cg::thread_block b = cg::this_thread_block();
|
337 |
+
cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);
|
338 |
+
|
339 |
+
int gid = threadIdx.x >> 5;
|
340 |
+
int lane = threadIdx.x & 0x1f;
|
341 |
+
int warp_num = blockDim.x >> 5;
|
342 |
+
int id = threadIdx.x;
|
343 |
+
|
344 |
+
int idx = blockIdx.x * blockDim.x + id;
|
345 |
+
|
346 |
+
float4* vals_cast = reinterpret_cast<float4*>(vals);
|
347 |
+
|
348 |
+
float4 data[128];
|
349 |
+
|
350 |
+
int bid = blockIdx.x;
|
351 |
+
int tid = threadIdx.x;
|
352 |
+
curandStatePhilox4_32_10_t state;
|
353 |
+
curand_init(seed.first, idx, seed.second, &state);
|
354 |
+
|
355 |
+
int group_index = bid * token_size + threadIdx.x;
|
356 |
+
int reg_count = 0;
|
357 |
+
int total_count = token_size * token_num;
|
358 |
+
if (group_index < total_count) {
|
359 |
+
// float min = 10000.0;
|
360 |
+
float max = -10000.0;
|
361 |
+
|
362 |
+
while (tid < token_size) {
|
363 |
+
data[reg_count] = vals_cast[group_index];
|
364 |
+
|
365 |
+
if (abs(data[reg_count].x) > max) max = abs(data[reg_count].x);
|
366 |
+
if (abs(data[reg_count].y) > max) max = abs(data[reg_count].y);
|
367 |
+
if (abs(data[reg_count].z) > max) max = abs(data[reg_count].z);
|
368 |
+
if (abs(data[reg_count].w) > max) max = abs(data[reg_count].w);
|
369 |
+
|
370 |
+
group_index += blockDim.x;
|
371 |
+
tid += blockDim.x;
|
372 |
+
reg_count++;
|
373 |
+
}
|
374 |
+
|
375 |
+
#pragma unroll
|
376 |
+
for (int i = 1; i < WARP_SIZE; i <<= 1) {
|
377 |
+
auto temp = g.shfl_xor(max, i);
|
378 |
+
if (max < temp) max = temp;
|
379 |
+
}
|
380 |
+
__shared__ float partialMax[WARP_SIZE];
|
381 |
+
|
382 |
+
if (lane == 0) partialMax[gid] = max;
|
383 |
+
|
384 |
+
b.sync();
|
385 |
+
|
386 |
+
if (lane < warp_num) max = partialMax[lane];
|
387 |
+
|
388 |
+
#pragma unroll
|
389 |
+
for (int i = 1; i < warp_num; i <<= 1) {
|
390 |
+
auto temp = g.shfl_down(max, i);
|
391 |
+
if (max < temp) max = temp;
|
392 |
+
}
|
393 |
+
|
394 |
+
max = g.shfl(max, 0);
|
395 |
+
|
396 |
+
float q_scale_val = (float)(1 << num_bits) / (max * 2 + 1e-5);
|
397 |
+
float high_q = (float)((1 << (num_bits - 1)) - 1);
|
398 |
+
float low_q = (float)(-((1 << (num_bits - 1))));
|
399 |
+
|
400 |
+
int offset = (bid)*token_size;
|
401 |
+
for (int i = 0; i < reg_count; i++) {
|
402 |
+
group_index = i * blockDim.x + threadIdx.x;
|
403 |
+
if (group_index < token_size) {
|
404 |
+
float4 q_data = data[i];
|
405 |
+
|
406 |
+
float4 q_data_int;
|
407 |
+
q_data_int.x = (float)((int)(q_data.x * q_scale_val));
|
408 |
+
q_data_int.y = (float)((int)(q_data.y * q_scale_val));
|
409 |
+
q_data_int.w = (float)((int)(q_data.w * q_scale_val));
|
410 |
+
q_data_int.z = (float)((int)(q_data.z * q_scale_val));
|
411 |
+
|
412 |
+
// Stochastic rounding
|
413 |
+
float4 rand = curand_uniform4(&state);
|
414 |
+
|
415 |
+
float q_error[4];
|
416 |
+
q_error[0] = abs(q_data.x - (q_data_int.x / q_scale_val)) * q_scale_val;
|
417 |
+
q_error[1] = abs(q_data.y - (q_data_int.y / q_scale_val)) * q_scale_val;
|
418 |
+
q_error[2] = abs(q_data.w - (q_data_int.w / q_scale_val)) * q_scale_val;
|
419 |
+
q_error[3] = abs(q_data.z - (q_data_int.z / q_scale_val)) * q_scale_val;
|
420 |
+
|
421 |
+
q_data_int.x =
|
422 |
+
(rand.x < q_error[0] && q_data_int.x > low_q && q_data_int.x < high_q)
|
423 |
+
? (q_data_int.x + (q_data.x > 0 ? 1 : -1))
|
424 |
+
: q_data_int.x;
|
425 |
+
q_data_int.y =
|
426 |
+
(rand.y < q_error[1] && q_data_int.y > low_q && q_data_int.y < high_q)
|
427 |
+
? (q_data_int.y + (q_data.y > 0 ? 1 : -1))
|
428 |
+
: q_data_int.y;
|
429 |
+
q_data_int.w =
|
430 |
+
(rand.w < q_error[2] && q_data_int.w > low_q && q_data_int.w < high_q)
|
431 |
+
? (q_data_int.w + (q_data.w > 0 ? 1 : -1))
|
432 |
+
: q_data_int.w;
|
433 |
+
q_data_int.z =
|
434 |
+
(rand.z < q_error[3] && q_data_int.z > low_q && q_data_int.z < high_q)
|
435 |
+
? (q_data_int.z + (q_data.z > 0 ? 1 : -1))
|
436 |
+
: q_data_int.z;
|
437 |
+
|
438 |
+
q_data_int.x /= q_scale_val;
|
439 |
+
q_data_int.y /= q_scale_val;
|
440 |
+
q_data_int.w /= q_scale_val;
|
441 |
+
q_data_int.z /= q_scale_val;
|
442 |
+
|
443 |
+
vals_cast[group_index + offset] = q_data_int;
|
444 |
+
}
|
445 |
+
}
|
446 |
+
}
|
447 |
+
}
|
448 |
+
|
449 |
+
template <typename T>
|
450 |
+
void launch_sr_fake_quantize_kernel(T* vals,
|
451 |
+
int total_count,
|
452 |
+
int group_num,
|
453 |
+
int num_bits,
|
454 |
+
cudaStream_t stream)
|
455 |
+
{
|
456 |
+
dim3 block_dim(1024);
|
457 |
+
dim3 grid_dim(group_num);
|
458 |
+
|
459 |
+
uint64_t inc = total_count / grid_dim.x / block_dim.x;
|
460 |
+
std::pair<uint64_t, uint64_t> seed = TrainingContext::Instance().IncrementOffset(inc);
|
461 |
+
|
462 |
+
sr_fake_quantize_kernel<<<grid_dim, block_dim, 0, stream>>>(
|
463 |
+
vals, (total_count / group_num) / 4, group_num, num_bits, seed);
|
464 |
+
}
|
465 |
+
template void launch_sr_fake_quantize_kernel(float* vals,
|
466 |
+
int total_count,
|
467 |
+
int group_num,
|
468 |
+
int num_bits,
|
469 |
+
cudaStream_t stream);
|
470 |
+
template void launch_sr_fake_quantize_kernel(__half* vals,
|
471 |
+
int total_count,
|
472 |
+
int group_num,
|
473 |
+
int num_bits,
|
474 |
+
cudaStream_t stream);
|
475 |
+
|
476 |
+
__global__ void fake_quantize_kernel_asym(__half* vals, int group_size, int num_bits)
|
477 |
+
{
|
478 |
+
#if __CUDA_ARCH__ >= 700 || defined(__HIP_PLATFORM_AMD__)
|
479 |
+
|
480 |
+
cg::thread_block b = cg::this_thread_block();
|
481 |
+
cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);
|
482 |
+
|
483 |
+
int gid = threadIdx.x >> 5;
|
484 |
+
int lane = threadIdx.x & 0x1f;
|
485 |
+
int warp_num = blockDim.x >> 5;
|
486 |
+
int id = threadIdx.x;
|
487 |
+
|
488 |
+
float2* vals_cast = reinterpret_cast<float2*>(vals);
|
489 |
+
|
490 |
+
float2 data[MAX_REG];
|
491 |
+
|
492 |
+
int group_id = blockIdx.x;
|
493 |
+
|
494 |
+
{
|
495 |
+
int group_index = id;
|
496 |
+
int reg_count = 0;
|
497 |
+
int offset = group_id * group_size;
|
498 |
+
float max = -10000.0;
|
499 |
+
float min = 10000.0;
|
500 |
+
|
501 |
+
while (group_index < group_size && reg_count < MAX_REG) {
|
502 |
+
data[reg_count] = vals_cast[offset + group_index];
|
503 |
+
__half* data_h = reinterpret_cast<__half*>(&data[reg_count]);
|
504 |
+
|
505 |
+
if (((float)data_h[0]) > max) max = (float)data_h[0];
|
506 |
+
if (((float)data_h[1]) > max) max = (float)data_h[1];
|
507 |
+
if (((float)data_h[2]) > max) max = (float)data_h[2];
|
508 |
+
if (((float)data_h[3]) > max) max = (float)data_h[3];
|
509 |
+
|
510 |
+
if (((float)data_h[0]) < min) min = (float)data_h[0];
|
511 |
+
if (((float)data_h[1]) < min) min = (float)data_h[1];
|
512 |
+
if (((float)data_h[2]) < min) min = (float)data_h[2];
|
513 |
+
if (((float)data_h[3]) < min) min = (float)data_h[3];
|
514 |
+
|
515 |
+
group_index += blockDim.x;
|
516 |
+
reg_count++;
|
517 |
+
}
|
518 |
+
|
519 |
+
#pragma unroll
|
520 |
+
for (int i = 1; i < WARP_SIZE; i <<= 1) {
|
521 |
+
auto temp = g.shfl_xor(max, i);
|
522 |
+
if (max < temp) max = temp;
|
523 |
+
}
|
524 |
+
|
525 |
+
#pragma unroll
|
526 |
+
for (int i = 1; i < WARP_SIZE; i <<= 1) {
|
527 |
+
auto temp = g.shfl_xor(min, i);
|
528 |
+
if (min > temp) min = temp;
|
529 |
+
}
|
530 |
+
|
531 |
+
__shared__ float partialMax[WARP_SIZE];
|
532 |
+
__shared__ float partialMin[WARP_SIZE];
|
533 |
+
|
534 |
+
if (lane == 0) partialMax[gid] = max;
|
535 |
+
if (lane == 0) partialMin[gid] = min;
|
536 |
+
|
537 |
+
b.sync();
|
538 |
+
|
539 |
+
if (lane < warp_num) max = partialMax[lane];
|
540 |
+
if (lane < warp_num) min = partialMin[lane];
|
541 |
+
|
542 |
+
#pragma unroll
|
543 |
+
for (int i = 1; i < warp_num; i <<= 1) {
|
544 |
+
auto temp = g.shfl_down(max, i);
|
545 |
+
if (max < temp) max = temp;
|
546 |
+
}
|
547 |
+
#pragma unroll
|
548 |
+
for (int i = 1; i < warp_num; i <<= 1) {
|
549 |
+
auto temp = g.shfl_down(min, i);
|
550 |
+
if (min > temp) min = temp;
|
551 |
+
}
|
552 |
+
|
553 |
+
max = g.shfl(max, 0);
|
554 |
+
min = g.shfl(min, 0);
|
555 |
+
|
556 |
+
float q_scale = ((max - min) + 1e-5) / (float)(1 << num_bits);
|
557 |
+
float q_scale_inv = 1 / q_scale;
|
558 |
+
|
559 |
+
for (int i = 0; i < reg_count; i++) {
|
560 |
+
group_index = i * blockDim.x + id;
|
561 |
+
if (group_index < group_size) {
|
562 |
+
__half2* data_h = reinterpret_cast<__half2*>(&data[i]);
|
563 |
+
float2 q_data[2];
|
564 |
+
q_data[0] = __half22float2(data_h[0]);
|
565 |
+
q_data[1] = __half22float2(data_h[1]);
|
566 |
+
|
567 |
+
float2 q_data_int[2];
|
568 |
+
|
569 |
+
q_data_int[0].x = roundf((q_data[0].x - min) * q_scale_inv);
|
570 |
+
q_data_int[0].y = roundf((q_data[0].y - min) * q_scale_inv);
|
571 |
+
q_data_int[1].x = roundf((q_data[1].x - min) * q_scale_inv);
|
572 |
+
q_data_int[1].y = roundf((q_data[1].y - min) * q_scale_inv);
|
573 |
+
|
574 |
+
q_data_int[0].x = q_data_int[0].x * q_scale + min;
|
575 |
+
q_data_int[0].y = q_data_int[0].y * q_scale + min;
|
576 |
+
q_data_int[1].x = q_data_int[1].x * q_scale + min;
|
577 |
+
q_data_int[1].y = q_data_int[1].y * q_scale + min;
|
578 |
+
|
579 |
+
data_h[0] = __float22half2_rn(q_data_int[0]);
|
580 |
+
data_h[1] = __float22half2_rn(q_data_int[1]);
|
581 |
+
|
582 |
+
vals_cast[offset + group_index] = data[i];
|
583 |
+
}
|
584 |
+
}
|
585 |
+
}
|
586 |
+
#endif
|
587 |
+
}
|
588 |
+
|
589 |
+
__global__ void fake_quantize_kernel_asym(float* vals, int group_size, int num_bits)
|
590 |
+
{
|
591 |
+
cg::thread_block b = cg::this_thread_block();
|
592 |
+
cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);
|
593 |
+
|
594 |
+
int gid = threadIdx.x >> 5;
|
595 |
+
int lane = threadIdx.x & 0x1f;
|
596 |
+
int warp_num = blockDim.x >> 5;
|
597 |
+
int id = threadIdx.x;
|
598 |
+
|
599 |
+
float4* vals_cast = reinterpret_cast<float4*>(vals);
|
600 |
+
|
601 |
+
float4 data[MAX_REG];
|
602 |
+
|
603 |
+
int bid = blockIdx.x;
|
604 |
+
|
605 |
+
int group_index = bid * group_size + id;
|
606 |
+
int reg_count = 0;
|
607 |
+
|
608 |
+
float max = -10000.0;
|
609 |
+
float min = 10000.0;
|
610 |
+
|
611 |
+
while (id < group_size && reg_count < MAX_REG) {
|
612 |
+
float4 data_reg = vals_cast[group_index];
|
613 |
+
data[reg_count] = data_reg;
|
614 |
+
|
615 |
+
if (data_reg.x > max) max = data_reg.x;
|
616 |
+
if (data_reg.y > max) max = data_reg.y;
|
617 |
+
if (data_reg.w > max) max = data_reg.w;
|
618 |
+
if (data_reg.z > max) max = data_reg.z;
|
619 |
+
|
620 |
+
if (data_reg.x < min) min = data_reg.x;
|
621 |
+
if (data_reg.y < min) min = data_reg.y;
|
622 |
+
if (data_reg.w < min) min = data_reg.w;
|
623 |
+
if (data_reg.z < min) min = data_reg.z;
|
624 |
+
|
625 |
+
group_index += blockDim.x;
|
626 |
+
id += blockDim.x;
|
627 |
+
reg_count++;
|
628 |
+
}
|
629 |
+
id = threadIdx.x;
|
630 |
+
|
631 |
+
#pragma unroll
|
632 |
+
for (int i = 1; i < WARP_SIZE; i <<= 1) {
|
633 |
+
auto temp = g.shfl_xor(max, i);
|
634 |
+
if (max < temp) max = temp;
|
635 |
+
}
|
636 |
+
|
637 |
+
#pragma unroll
|
638 |
+
for (int i = 1; i < WARP_SIZE; i <<= 1) {
|
639 |
+
auto temp = g.shfl_xor(min, i);
|
640 |
+
if (min > temp) min = temp;
|
641 |
+
}
|
642 |
+
|
643 |
+
__shared__ float partialMax[WARP_SIZE];
|
644 |
+
__shared__ float partialMin[WARP_SIZE];
|
645 |
+
|
646 |
+
if (lane == 0) partialMax[gid] = max;
|
647 |
+
if (lane == 0) partialMin[gid] = min;
|
648 |
+
|
649 |
+
b.sync();
|
650 |
+
|
651 |
+
if (lane < warp_num) max = partialMax[lane];
|
652 |
+
if (lane < warp_num) min = partialMin[lane];
|
653 |
+
|
654 |
+
#pragma unroll
|
655 |
+
for (int i = 1; i < warp_num; i <<= 1) {
|
656 |
+
auto temp = g.shfl_down(max, i);
|
657 |
+
if (max < temp) max = temp;
|
658 |
+
}
|
659 |
+
#pragma unroll
|
660 |
+
for (int i = 1; i < warp_num; i <<= 1) {
|
661 |
+
auto temp = g.shfl_down(min, i);
|
662 |
+
if (min > temp) min = temp;
|
663 |
+
}
|
664 |
+
|
665 |
+
max = g.shfl(max, 0);
|
666 |
+
min = g.shfl(min, 0);
|
667 |
+
|
668 |
+
float q_scale = ((max - min) + 1e-5) / (float)(1 << num_bits);
|
669 |
+
float q_scale_inv = 1 / q_scale;
|
670 |
+
for (int i = 0; i < reg_count; i++) {
|
671 |
+
group_index = i * blockDim.x + id;
|
672 |
+
if (group_index < group_size) {
|
673 |
+
float4 q_data;
|
674 |
+
q_data = data[i];
|
675 |
+
|
676 |
+
float4 q_data_int;
|
677 |
+
q_data_int.x = roundf((q_data.x - min) * q_scale_inv);
|
678 |
+
q_data_int.y = roundf((q_data.y - min) * q_scale_inv);
|
679 |
+
q_data_int.w = roundf((q_data.w - min) * q_scale_inv);
|
680 |
+
q_data_int.z = roundf((q_data.z - min) * q_scale_inv);
|
681 |
+
|
682 |
+
q_data.x = q_data_int.x * q_scale + min;
|
683 |
+
q_data.y = q_data_int.y * q_scale + min;
|
684 |
+
q_data.w = q_data_int.w * q_scale + min;
|
685 |
+
q_data.z = q_data_int.z * q_scale + min;
|
686 |
+
|
687 |
+
vals_cast[group_index + bid * group_size] = q_data;
|
688 |
+
}
|
689 |
+
}
|
690 |
+
}
|
691 |
+
|
692 |
+
template <typename T>
|
693 |
+
void launch_fake_quantize_kernel_asym(T* vals,
|
694 |
+
int total_count,
|
695 |
+
int group_num,
|
696 |
+
int num_bits,
|
697 |
+
cudaStream_t stream)
|
698 |
+
{
|
699 |
+
dim3 grid_dim(group_num);
|
700 |
+
dim3 block_dim(1024);
|
701 |
+
|
702 |
+
fake_quantize_kernel_asym<<<grid_dim, block_dim, 0, stream>>>(
|
703 |
+
vals, (total_count / group_num) / 4, num_bits);
|
704 |
+
}
|
705 |
+
|
706 |
+
template void launch_fake_quantize_kernel_asym(float* vals,
|
707 |
+
int total_count,
|
708 |
+
int group_num,
|
709 |
+
int num_bits,
|
710 |
+
cudaStream_t stream);
|
711 |
+
template void launch_fake_quantize_kernel_asym(__half* vals,
|
712 |
+
int total_count,
|
713 |
+
int group_num,
|
714 |
+
int num_bits,
|
715 |
+
cudaStream_t stream);
|
716 |
+
|
717 |
+
__global__ void sr_fake_quantize_kernel_asym(__half* vals,
|
718 |
+
int token_size,
|
719 |
+
int token_num,
|
720 |
+
int num_bits,
|
721 |
+
std::pair<uint64_t, uint64_t> seed)
|
722 |
+
{
|
723 |
+
#if __CUDA_ARCH__ >= 700 || defined(__HIP_PLATFORM_AMD__)
|
724 |
+
|
725 |
+
cg::thread_block b = cg::this_thread_block();
|
726 |
+
cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);
|
727 |
+
|
728 |
+
int gid = threadIdx.x >> 5;
|
729 |
+
int lane = threadIdx.x & 0x1f;
|
730 |
+
int warp_num = blockDim.x >> 5;
|
731 |
+
|
732 |
+
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
733 |
+
|
734 |
+
float2* vals_cast = reinterpret_cast<float2*>(vals);
|
735 |
+
|
736 |
+
__half2 data_low[128];
|
737 |
+
__half2 data_high[128];
|
738 |
+
|
739 |
+
int bid = blockIdx.x;
|
740 |
+
|
741 |
+
curandStatePhilox4_32_10_t state;
|
742 |
+
curand_init(seed.first, idx, seed.second, &state);
|
743 |
+
unsigned int tid = threadIdx.x;
|
744 |
+
int reg_count = 0;
|
745 |
+
int offset = bid * token_size;
|
746 |
+
int group_index = bid * token_size + tid;
|
747 |
+
|
748 |
+
int total_count = token_size * token_num;
|
749 |
+
if (group_index < total_count) {
|
750 |
+
float min = 10000.0;
|
751 |
+
float max = -10000.0;
|
752 |
+
while (tid < token_size) {
|
753 |
+
float2 data = vals_cast[offset + tid];
|
754 |
+
__half2* data_h = reinterpret_cast<__half2*>(&data);
|
755 |
+
data_low[reg_count] = data_h[0];
|
756 |
+
data_high[reg_count] = data_h[1];
|
757 |
+
|
758 |
+
float2 data_f[2];
|
759 |
+
data_f[0] = __half22float2(data_h[0]);
|
760 |
+
data_f[1] = __half22float2(data_h[1]);
|
761 |
+
|
762 |
+
if (((float)data_f[0].x) > max) max = (float)data_f[0].x;
|
763 |
+
if (((float)data_f[0].y) > max) max = (float)data_f[0].y;
|
764 |
+
if (((float)data_f[1].x) > max) max = (float)data_f[1].x;
|
765 |
+
if (((float)data_f[1].y) > max) max = (float)data_f[1].y;
|
766 |
+
|
767 |
+
if (((float)data_f[0].x) < min) min = (float)data_f[0].x;
|
768 |
+
if (((float)data_f[0].y) < min) min = (float)data_f[0].y;
|
769 |
+
if (((float)data_f[1].x) < min) min = (float)data_f[1].x;
|
770 |
+
if (((float)data_f[1].y) < min) min = (float)data_f[1].y;
|
771 |
+
|
772 |
+
tid += blockDim.x;
|
773 |
+
reg_count++;
|
774 |
+
}
|
775 |
+
|
776 |
+
#pragma unroll
|
777 |
+
for (int i = 1; i < WARP_SIZE; i <<= 1) {
|
778 |
+
auto temp = g.shfl_xor(max, i);
|
779 |
+
if (max < temp) max = temp;
|
780 |
+
}
|
781 |
+
|
782 |
+
#pragma unroll
|
783 |
+
for (int i = 1; i < WARP_SIZE; i <<= 1) {
|
784 |
+
auto temp = g.shfl_xor(min, i);
|
785 |
+
if (min > temp) min = temp;
|
786 |
+
}
|
787 |
+
|
788 |
+
__shared__ float partialMax[WARP_SIZE];
|
789 |
+
__shared__ float partialMin[WARP_SIZE];
|
790 |
+
|
791 |
+
if (lane == 0) partialMax[gid] = max;
|
792 |
+
if (lane == 0) partialMin[gid] = min;
|
793 |
+
|
794 |
+
b.sync();
|
795 |
+
|
796 |
+
if (lane < warp_num) max = partialMax[lane];
|
797 |
+
if (lane < warp_num) min = partialMin[lane];
|
798 |
+
|
799 |
+
#pragma unroll
|
800 |
+
for (int i = 1; i < warp_num; i <<= 1) {
|
801 |
+
auto temp = g.shfl_down(max, i);
|
802 |
+
if (max < temp) max = temp;
|
803 |
+
}
|
804 |
+
#pragma unroll
|
805 |
+
for (int i = 1; i < warp_num; i <<= 1) {
|
806 |
+
auto temp = g.shfl_down(min, i);
|
807 |
+
if (min > temp) min = temp;
|
808 |
+
}
|
809 |
+
|
810 |
+
max = g.shfl(max, 0);
|
811 |
+
min = g.shfl(min, 0);
|
812 |
+
|
813 |
+
float q_scale_val = ((max - min) + 1e-5) / (float)(1 << num_bits);
|
814 |
+
float q_scale_val_inv = 1 / q_scale_val;
|
815 |
+
float high_q = (float)((1 << num_bits) - 1);
|
816 |
+
|
817 |
+
for (int i = 0; i < reg_count; i++) {
|
818 |
+
int token_index = i * blockDim.x + threadIdx.x;
|
819 |
+
if (token_index < token_size) {
|
820 |
+
float2 data_f[2];
|
821 |
+
data_f[0] = __half22float2(data_low[i]);
|
822 |
+
data_f[1] = __half22float2(data_high[i]);
|
823 |
+
|
824 |
+
float2 q_data_int[2];
|
825 |
+
q_data_int[0].x = (float)((unsigned int)((data_f[0].x - min) * q_scale_val_inv));
|
826 |
+
q_data_int[0].y = (float)((unsigned int)((data_f[0].y - min) * q_scale_val_inv));
|
827 |
+
q_data_int[1].x = (float)((unsigned int)((data_f[1].x - min) * q_scale_val_inv));
|
828 |
+
q_data_int[1].y = (float)((unsigned int)((data_f[1].y - min) * q_scale_val_inv));
|
829 |
+
|
830 |
+
// Stochastic rounding
|
831 |
+
float4 rand = curand_uniform4(&state);
|
832 |
+
|
833 |
+
float q_error[4];
|
834 |
+
q_error[0] =
|
835 |
+
abs(data_f[0].x - ((q_data_int[0].x * q_scale_val) + min)) * q_scale_val_inv;
|
836 |
+
q_error[1] =
|
837 |
+
abs(data_f[0].y - ((q_data_int[0].y * q_scale_val) + min)) * q_scale_val_inv;
|
838 |
+
q_error[2] =
|
839 |
+
abs(data_f[1].x - ((q_data_int[1].x * q_scale_val) + min)) * q_scale_val_inv;
|
840 |
+
q_error[3] =
|
841 |
+
abs(data_f[1].y - ((q_data_int[1].y * q_scale_val) + min)) * q_scale_val_inv;
|
842 |
+
|
843 |
+
q_data_int[0].x = (rand.x < q_error[0] && q_data_int[0].x < high_q)
|
844 |
+
? (q_data_int[0].x + 1)
|
845 |
+
: q_data_int[0].x;
|
846 |
+
q_data_int[0].y = (rand.y < q_error[1] && q_data_int[0].y < high_q)
|
847 |
+
? (q_data_int[0].y + 1)
|
848 |
+
: q_data_int[0].y;
|
849 |
+
q_data_int[1].x = (rand.w < q_error[2] && q_data_int[1].x < high_q)
|
850 |
+
? (q_data_int[1].x + 1)
|
851 |
+
: q_data_int[1].x;
|
852 |
+
q_data_int[1].y = (rand.z < q_error[3] && q_data_int[1].y < high_q)
|
853 |
+
? (q_data_int[1].y + 1)
|
854 |
+
: q_data_int[1].y;
|
855 |
+
|
856 |
+
data_f[0].x = q_data_int[0].x * q_scale_val + min;
|
857 |
+
data_f[0].y = q_data_int[0].y * q_scale_val + min;
|
858 |
+
data_f[1].x = q_data_int[1].x * q_scale_val + min;
|
859 |
+
data_f[1].y = q_data_int[1].y * q_scale_val + min;
|
860 |
+
|
861 |
+
float2 result;
|
862 |
+
__half2* result_h = reinterpret_cast<__half2*>(&result);
|
863 |
+
result_h[0] = __float22half2_rn(data_f[0]);
|
864 |
+
result_h[1] = __float22half2_rn(data_f[1]);
|
865 |
+
|
866 |
+
vals_cast[offset + token_index] = result;
|
867 |
+
}
|
868 |
+
}
|
869 |
+
}
|
870 |
+
#endif
|
871 |
+
}
|
872 |
+
|
873 |
+
__global__ void sr_fake_quantize_kernel_asym(float* vals,
|
874 |
+
int token_size,
|
875 |
+
int token_num,
|
876 |
+
int num_bits,
|
877 |
+
std::pair<uint64_t, uint64_t> seed)
|
878 |
+
{
|
879 |
+
cg::thread_block b = cg::this_thread_block();
|
880 |
+
cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);
|
881 |
+
|
882 |
+
int gid = threadIdx.x >> 5;
|
883 |
+
int lane = threadIdx.x & 0x1f;
|
884 |
+
int warp_num = blockDim.x >> 5;
|
885 |
+
int id = threadIdx.x;
|
886 |
+
|
887 |
+
int idx = blockIdx.x * blockDim.x + id;
|
888 |
+
|
889 |
+
float4* vals_cast = reinterpret_cast<float4*>(vals);
|
890 |
+
|
891 |
+
float4 data[128];
|
892 |
+
|
893 |
+
int bid = blockIdx.x;
|
894 |
+
int tid = threadIdx.x;
|
895 |
+
curandStatePhilox4_32_10_t state;
|
896 |
+
curand_init(seed.first, idx, seed.second, &state);
|
897 |
+
|
898 |
+
int group_index = bid * token_size + threadIdx.x;
|
899 |
+
int reg_count = 0;
|
900 |
+
int total_count = token_size * token_num;
|
901 |
+
if (group_index < total_count) {
|
902 |
+
float min = 10000.0;
|
903 |
+
float max = -10000.0;
|
904 |
+
|
905 |
+
while (tid < token_size) {
|
906 |
+
float4 data_reg = vals_cast[group_index];
|
907 |
+
data[reg_count] = data_reg;
|
908 |
+
if (data_reg.x > max) max = data_reg.x;
|
909 |
+
if (data_reg.y > max) max = data_reg.y;
|
910 |
+
if (data_reg.w > max) max = data_reg.w;
|
911 |
+
if (data_reg.z > max) max = data_reg.z;
|
912 |
+
|
913 |
+
if (data_reg.x < min) min = data_reg.x;
|
914 |
+
if (data_reg.y < min) min = data_reg.y;
|
915 |
+
if (data_reg.w < min) min = data_reg.w;
|
916 |
+
if (data_reg.z < min) min = data_reg.z;
|
917 |
+
|
918 |
+
group_index += blockDim.x;
|
919 |
+
tid += blockDim.x;
|
920 |
+
reg_count++;
|
921 |
+
}
|
922 |
+
|
923 |
+
#pragma unroll
|
924 |
+
for (int i = 1; i < WARP_SIZE; i <<= 1) {
|
925 |
+
auto temp = g.shfl_xor(max, i);
|
926 |
+
if (max < temp) max = temp;
|
927 |
+
}
|
928 |
+
|
929 |
+
#pragma unroll
|
930 |
+
for (int i = 1; i < WARP_SIZE; i <<= 1) {
|
931 |
+
auto temp = g.shfl_xor(min, i);
|
932 |
+
if (min > temp) min = temp;
|
933 |
+
}
|
934 |
+
|
935 |
+
__shared__ float partialMax[WARP_SIZE];
|
936 |
+
__shared__ float partialMin[WARP_SIZE];
|
937 |
+
|
938 |
+
if (lane == 0) partialMax[gid] = max;
|
939 |
+
if (lane == 0) partialMin[gid] = min;
|
940 |
+
|
941 |
+
b.sync();
|
942 |
+
|
943 |
+
if (lane < warp_num) max = partialMax[lane];
|
944 |
+
if (lane < warp_num) min = partialMin[lane];
|
945 |
+
|
946 |
+
#pragma unroll
|
947 |
+
for (int i = 1; i < warp_num; i <<= 1) {
|
948 |
+
auto temp = g.shfl_down(max, i);
|
949 |
+
if (max < temp) max = temp;
|
950 |
+
}
|
951 |
+
#pragma unroll
|
952 |
+
for (int i = 1; i < warp_num; i <<= 1) {
|
953 |
+
auto temp = g.shfl_down(min, i);
|
954 |
+
if (min > temp) min = temp;
|
955 |
+
}
|
956 |
+
|
957 |
+
max = g.shfl(max, 0);
|
958 |
+
min = g.shfl(min, 0);
|
959 |
+
|
960 |
+
float q_scale_val = ((max - min) + 1e-5) / (float)(1 << num_bits);
|
961 |
+
float high_q = (float)((1 << num_bits) - 1);
|
962 |
+
|
963 |
+
int offset = (bid)*token_size;
|
964 |
+
for (int i = 0; i < reg_count; i++) {
|
965 |
+
group_index = i * blockDim.x + threadIdx.x;
|
966 |
+
if (group_index < token_size) {
|
967 |
+
float4 q_data = data[i];
|
968 |
+
|
969 |
+
float4 q_data_int;
|
970 |
+
q_data_int.x = (float)((int)((q_data.x - min) / q_scale_val));
|
971 |
+
q_data_int.y = (float)((int)((q_data.y - min) / q_scale_val));
|
972 |
+
q_data_int.w = (float)((int)((q_data.w - min) / q_scale_val));
|
973 |
+
q_data_int.z = (float)((int)((q_data.z - min) / q_scale_val));
|
974 |
+
|
975 |
+
// Stochastic rounding
|
976 |
+
float4 rand = curand_uniform4(&state);
|
977 |
+
|
978 |
+
float q_error[4];
|
979 |
+
q_error[0] = abs(q_data.x - ((q_data_int.x * q_scale_val) + min)) / q_scale_val;
|
980 |
+
q_error[1] = abs(q_data.y - ((q_data_int.y * q_scale_val) + min)) / q_scale_val;
|
981 |
+
q_error[2] = abs(q_data.w - ((q_data_int.w * q_scale_val) + min)) / q_scale_val;
|
982 |
+
q_error[3] = abs(q_data.z - ((q_data_int.z * q_scale_val) + min)) / q_scale_val;
|
983 |
+
|
984 |
+
q_data_int.x = (rand.x < q_error[0] && q_data_int.x < high_q) ? (q_data_int.x + 1)
|
985 |
+
: q_data_int.x;
|
986 |
+
q_data_int.y = (rand.y < q_error[1] && q_data_int.y < high_q) ? (q_data_int.y + 1)
|
987 |
+
: q_data_int.y;
|
988 |
+
q_data_int.w = (rand.w < q_error[2] && q_data_int.w < high_q) ? (q_data_int.w + 1)
|
989 |
+
: q_data_int.w;
|
990 |
+
q_data_int.z = (rand.z < q_error[3] && q_data_int.z < high_q) ? (q_data_int.z + 1)
|
991 |
+
: q_data_int.z;
|
992 |
+
|
993 |
+
q_data_int.x = q_data_int.x * q_scale_val + min;
|
994 |
+
q_data_int.y = q_data_int.y * q_scale_val + min;
|
995 |
+
q_data_int.w = q_data_int.w * q_scale_val + min;
|
996 |
+
q_data_int.z = q_data_int.z * q_scale_val + min;
|
997 |
+
|
998 |
+
vals_cast[group_index + offset] = q_data_int;
|
999 |
+
}
|
1000 |
+
}
|
1001 |
+
}
|
1002 |
+
}
|
1003 |
+
template <typename T>
|
1004 |
+
void launch_sr_fake_quantize_kernel_asym(T* vals,
|
1005 |
+
int total_count,
|
1006 |
+
int group_num,
|
1007 |
+
int num_bits,
|
1008 |
+
cudaStream_t stream)
|
1009 |
+
{
|
1010 |
+
dim3 block_dim(1024);
|
1011 |
+
dim3 grid_dim(group_num);
|
1012 |
+
|
1013 |
+
uint64_t inc = total_count / grid_dim.x / block_dim.x;
|
1014 |
+
std::pair<uint64_t, uint64_t> seed = TrainingContext::Instance().IncrementOffset(inc);
|
1015 |
+
|
1016 |
+
sr_fake_quantize_kernel<<<grid_dim, block_dim, 0, stream>>>(
|
1017 |
+
vals, (total_count / group_num) / 4, group_num, num_bits, seed);
|
1018 |
+
}
|
1019 |
+
template void launch_sr_fake_quantize_kernel_asym(float* vals,
|
1020 |
+
int total_count,
|
1021 |
+
int group_num,
|
1022 |
+
int num_bits,
|
1023 |
+
cudaStream_t stream);
|
1024 |
+
template void launch_sr_fake_quantize_kernel_asym(__half* vals,
|
1025 |
+
int total_count,
|
1026 |
+
int group_num,
|
1027 |
+
int num_bits,
|
1028 |
+
cudaStream_t stream);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/pt_binding.cpp
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <ATen/cuda/CUDAContext.h>
|
7 |
+
#include <torch/extension.h>
|
8 |
+
#include <cassert>
|
9 |
+
#include <vector>
|
10 |
+
#include "quantization.h"
|
11 |
+
|
12 |
+
template <typename T>
|
13 |
+
at::Tensor ds_quantize(at::Tensor& vals, int groups, int bits)
|
14 |
+
{
|
15 |
+
auto t_size = vals.sizes();
|
16 |
+
int size = 1;
|
17 |
+
for (auto dim : t_size) size *= dim;
|
18 |
+
|
19 |
+
if ((((size / groups) - 1) / 4096 + 1) <= 256) {
|
20 |
+
launch_fake_quantize_kernel(
|
21 |
+
(T*)vals.data_ptr(), size, groups, bits, at::cuda::getCurrentCUDAStream());
|
22 |
+
}
|
23 |
+
return vals;
|
24 |
+
}
|
25 |
+
|
26 |
+
template <typename T>
|
27 |
+
at::Tensor ds_sr_quantize(at::Tensor& vals, int groups, int bits)
|
28 |
+
{
|
29 |
+
auto t_size = vals.sizes();
|
30 |
+
int size = 1;
|
31 |
+
for (auto dim : t_size) size *= dim;
|
32 |
+
|
33 |
+
if (((size / groups) / 4 / 1024) <= 256) {
|
34 |
+
launch_sr_fake_quantize_kernel(
|
35 |
+
(T*)vals.data_ptr(), size, groups, bits, at::cuda::getCurrentCUDAStream());
|
36 |
+
}
|
37 |
+
return vals;
|
38 |
+
}
|
39 |
+
|
40 |
+
template <typename T>
|
41 |
+
at::Tensor ds_quantize_asym(at::Tensor& vals, int groups, int bits)
|
42 |
+
{
|
43 |
+
auto t_size = vals.sizes();
|
44 |
+
int size = 1;
|
45 |
+
for (auto dim : t_size) size *= dim;
|
46 |
+
|
47 |
+
if ((((size / groups) - 1) / 4096 + 1) <= 256) {
|
48 |
+
launch_fake_quantize_kernel_asym(
|
49 |
+
(T*)vals.data_ptr(), size, groups, bits, at::cuda::getCurrentCUDAStream());
|
50 |
+
}
|
51 |
+
return vals;
|
52 |
+
}
|
53 |
+
|
54 |
+
template <typename T>
|
55 |
+
at::Tensor ds_sr_quantize_asym(at::Tensor& vals, int groups, int bits)
|
56 |
+
{
|
57 |
+
auto t_size = vals.sizes();
|
58 |
+
int size = 1;
|
59 |
+
for (auto dim : t_size) size *= dim;
|
60 |
+
|
61 |
+
if (((size / groups) / 4 / 1024) <= 256) {
|
62 |
+
launch_sr_fake_quantize_kernel_asym(
|
63 |
+
(T*)vals.data_ptr(), size, groups, bits, at::cuda::getCurrentCUDAStream());
|
64 |
+
}
|
65 |
+
return vals;
|
66 |
+
}
|
67 |
+
|
68 |
+
std::vector<at::Tensor> quantize_kernel(at::Tensor& input_vals,
|
69 |
+
int groups,
|
70 |
+
int numBits,
|
71 |
+
quantize::Type quantType)
|
72 |
+
{
|
73 |
+
auto dtype = at::kFloat;
|
74 |
+
auto params_options = at::TensorOptions()
|
75 |
+
.dtype(dtype)
|
76 |
+
.layout(at::kStrided)
|
77 |
+
.device(at::kCUDA)
|
78 |
+
.requires_grad(false);
|
79 |
+
const int param_elems = (quantize::requires_offset(quantType)) ? 2 : 1;
|
80 |
+
auto params = torch::empty({groups, param_elems}, params_options);
|
81 |
+
|
82 |
+
auto output_options = at::TensorOptions()
|
83 |
+
.dtype(at::kChar)
|
84 |
+
.layout(at::kStrided)
|
85 |
+
.device(at::kCUDA)
|
86 |
+
.requires_grad(false);
|
87 |
+
|
88 |
+
auto output_sizes = input_vals.sizes().vec();
|
89 |
+
output_sizes[output_sizes.size() - 1] /= numBits == 8 ? 1 : 2;
|
90 |
+
auto output = torch::empty(output_sizes, output_options);
|
91 |
+
|
92 |
+
const int elems_per_group = at::numel(input_vals) / groups;
|
93 |
+
|
94 |
+
launch_quant((int8_t*)output.data_ptr(),
|
95 |
+
(float*)params.data_ptr(),
|
96 |
+
(__half*)input_vals.data_ptr(),
|
97 |
+
groups,
|
98 |
+
elems_per_group,
|
99 |
+
numBits,
|
100 |
+
quantType,
|
101 |
+
at::cuda::getCurrentCUDAStream());
|
102 |
+
|
103 |
+
return {output, params};
|
104 |
+
}
|
105 |
+
|
106 |
+
template <typename T>
|
107 |
+
at::Tensor dequantize(at::Tensor& quantized_data,
|
108 |
+
at::Tensor& params,
|
109 |
+
int groups,
|
110 |
+
int num_bits,
|
111 |
+
quantize::Type quant_type)
|
112 |
+
{
|
113 |
+
auto dtype = (std::is_same<T, float>::value) ? torch::kFloat32 : torch::kFloat16;
|
114 |
+
auto output_options = at::TensorOptions()
|
115 |
+
.dtype(dtype)
|
116 |
+
.layout(at::kStrided)
|
117 |
+
.device(at::kCUDA)
|
118 |
+
.requires_grad(false);
|
119 |
+
|
120 |
+
auto output_sizes = quantized_data.sizes().vec();
|
121 |
+
output_sizes[output_sizes.size() - 1] *= num_bits == 8 ? 1 : 2;
|
122 |
+
auto output = torch::empty(output_sizes, output_options);
|
123 |
+
|
124 |
+
const int total_elems = at::numel(output);
|
125 |
+
const int elems_per_group = total_elems / groups;
|
126 |
+
|
127 |
+
launch_dequantize_kernel((T*)output.data_ptr(),
|
128 |
+
(const int8_t*)quantized_data.data_ptr(),
|
129 |
+
(const float*)params.data_ptr(),
|
130 |
+
quant_type,
|
131 |
+
num_bits,
|
132 |
+
elems_per_group,
|
133 |
+
total_elems,
|
134 |
+
at::cuda::getCurrentCUDAStream());
|
135 |
+
|
136 |
+
return output;
|
137 |
+
}
|
138 |
+
|
139 |
+
at::Tensor dequantize_int4_to_half_experimental(at::Tensor& data_in,
|
140 |
+
at::Tensor& scale_buffer,
|
141 |
+
at::Tensor& min_val_buffer,
|
142 |
+
int num_group,
|
143 |
+
int group_size)
|
144 |
+
{
|
145 |
+
auto output_options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA);
|
146 |
+
auto output = torch::empty({num_group, group_size}, output_options);
|
147 |
+
|
148 |
+
launch_dequantize_int4_to_half_experimental((uint8_t*)data_in.data_ptr(),
|
149 |
+
(half*)output.data_ptr(),
|
150 |
+
(half*)scale_buffer.data_ptr(),
|
151 |
+
(half*)min_val_buffer.data_ptr(),
|
152 |
+
num_group,
|
153 |
+
group_size,
|
154 |
+
at::cuda::getCurrentCUDAStream());
|
155 |
+
|
156 |
+
return output;
|
157 |
+
}
|
158 |
+
|
159 |
+
at::Tensor dequantize_int8_to_half_experimental(at::Tensor& data_in,
|
160 |
+
at::Tensor& scale_buffer,
|
161 |
+
at::Tensor& min_val_buffer,
|
162 |
+
int num_group,
|
163 |
+
int group_size)
|
164 |
+
{
|
165 |
+
auto output_options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA);
|
166 |
+
auto output = torch::empty({num_group, group_size}, output_options);
|
167 |
+
|
168 |
+
launch_dequantize_int8_to_half_experimental((uint8_t*)data_in.data_ptr(),
|
169 |
+
(half*)output.data_ptr(),
|
170 |
+
(half*)scale_buffer.data_ptr(),
|
171 |
+
(half*)min_val_buffer.data_ptr(),
|
172 |
+
num_group,
|
173 |
+
group_size,
|
174 |
+
at::cuda::getCurrentCUDAStream());
|
175 |
+
|
176 |
+
return output;
|
177 |
+
}
|
178 |
+
|
179 |
+
std::vector<at::Tensor> ds_swizzle_quant(at::Tensor& input_vals,
|
180 |
+
int groups,
|
181 |
+
int num_bits,
|
182 |
+
quantize::Type quant_type,
|
183 |
+
int pipeline_size,
|
184 |
+
int nodes,
|
185 |
+
int devices_per_node)
|
186 |
+
{
|
187 |
+
auto scales_options = at::TensorOptions()
|
188 |
+
.dtype(at::kFloat)
|
189 |
+
.layout(at::kStrided)
|
190 |
+
.device(at::kCUDA)
|
191 |
+
.requires_grad(false);
|
192 |
+
const int scales_elems = (quantize::requires_offset(quant_type)) ? 2 : 1;
|
193 |
+
auto scales = torch::empty({groups, scales_elems}, scales_options);
|
194 |
+
|
195 |
+
auto output_options = at::TensorOptions()
|
196 |
+
.dtype(at::kChar)
|
197 |
+
.layout(at::kStrided)
|
198 |
+
.device(at::kCUDA)
|
199 |
+
.requires_grad(false);
|
200 |
+
|
201 |
+
const int quantization_scalar = 8 / num_bits;
|
202 |
+
const int compressed_vals = at::numel(input_vals) / quantization_scalar;
|
203 |
+
|
204 |
+
auto output = torch::empty({compressed_vals}, output_options);
|
205 |
+
const int elems_per_group = at::numel(input_vals) / groups;
|
206 |
+
|
207 |
+
launch_swizzled_quant((int8_t*)output.data_ptr(),
|
208 |
+
(float*)scales.data_ptr(),
|
209 |
+
(__half*)input_vals.data_ptr(),
|
210 |
+
num_bits,
|
211 |
+
quant_type,
|
212 |
+
groups,
|
213 |
+
elems_per_group,
|
214 |
+
pipeline_size,
|
215 |
+
nodes,
|
216 |
+
devices_per_node,
|
217 |
+
at::cuda::getCurrentCUDAStream());
|
218 |
+
|
219 |
+
return {output, scales};
|
220 |
+
}
|
221 |
+
|
222 |
+
std::vector<at::Tensor> quantized_reduction(at::Tensor& input_vals,
|
223 |
+
at::Tensor& input_scales,
|
224 |
+
int in_groups,
|
225 |
+
int out_groups,
|
226 |
+
int num_bits,
|
227 |
+
quantize::Type quant_type,
|
228 |
+
int devices_per_node)
|
229 |
+
{
|
230 |
+
auto scales_options = at::TensorOptions()
|
231 |
+
.dtype(at::kFloat)
|
232 |
+
.layout(at::kStrided)
|
233 |
+
.device(at::kCUDA)
|
234 |
+
.requires_grad(false);
|
235 |
+
const int scales_elems = (quantize::requires_offset(quant_type)) ? 2 : 1;
|
236 |
+
auto scales = torch::empty({out_groups, scales_elems}, scales_options);
|
237 |
+
|
238 |
+
auto output_options = at::TensorOptions()
|
239 |
+
.dtype(at::kChar)
|
240 |
+
.layout(at::kStrided)
|
241 |
+
.device(at::kCUDA)
|
242 |
+
.requires_grad(false);
|
243 |
+
|
244 |
+
std::vector<long int> sz(input_vals.sizes().begin(), input_vals.sizes().end());
|
245 |
+
sz[sz.size() - 1] = sz.back() / devices_per_node; // num of GPU per nodes
|
246 |
+
const int elems_per_in_tensor = at::numel(input_vals) / devices_per_node;
|
247 |
+
auto output = torch::empty(sz, output_options);
|
248 |
+
|
249 |
+
const int elems_per_in_group = elems_per_in_tensor / (in_groups / devices_per_node);
|
250 |
+
const int elems_per_out_group = elems_per_in_tensor / out_groups;
|
251 |
+
|
252 |
+
launch_dequant_reduce((int8_t*)output.data_ptr(),
|
253 |
+
(float*)scales.data_ptr(),
|
254 |
+
(const int8_t*)input_vals.data_ptr(),
|
255 |
+
(const float*)input_scales.data_ptr(),
|
256 |
+
devices_per_node,
|
257 |
+
num_bits,
|
258 |
+
quant_type,
|
259 |
+
out_groups,
|
260 |
+
elems_per_out_group,
|
261 |
+
elems_per_in_tensor,
|
262 |
+
in_groups / devices_per_node,
|
263 |
+
elems_per_in_group,
|
264 |
+
at::cuda::getCurrentCUDAStream());
|
265 |
+
return {output, scales};
|
266 |
+
}
|
267 |
+
|
268 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
269 |
+
{
|
270 |
+
m.def("ds_quantize_fp32", &ds_quantize<float>, "DeepSpeed Quantize with fp32 (CUDA)");
|
271 |
+
m.def("ds_quantize_fp16", &ds_quantize<__half>, "DeepSpeed Quantize with fp16 (CUDA)");
|
272 |
+
m.def("ds_sr_quantize_fp32", &ds_sr_quantize<float>, "DeepSpeed Quantize with fp32 (CUDA)");
|
273 |
+
m.def("ds_sr_quantize_fp16", &ds_sr_quantize<__half>, "DeepSpeed Quantize with fp16 (CUDA)");
|
274 |
+
m.def("ds_quantize_asym_fp32", &ds_quantize_asym<float>, "DeepSpeed Quantize with fp32 (CUDA)");
|
275 |
+
m.def(
|
276 |
+
"ds_quantize_asym_fp16", &ds_quantize_asym<__half>, "DeepSpeed Quantize with fp16 (CUDA)");
|
277 |
+
m.def("ds_sr_quantize_asym_fp32",
|
278 |
+
&ds_sr_quantize_asym<float>,
|
279 |
+
"DeepSpeed Quantize with fp32 (CUDA)");
|
280 |
+
m.def("ds_sr_quantize_asym_fp16",
|
281 |
+
&ds_sr_quantize_asym<__half>,
|
282 |
+
"DeepSpeed Quantize with fp16 (CUDA)");
|
283 |
+
pybind11::enum_<quantize::Type>(m, "QuantizationType")
|
284 |
+
.value("Symmetric", quantize::Type::Symmetric)
|
285 |
+
.value("Asymmetric", quantize::Type::Asymmetric)
|
286 |
+
.export_values();
|
287 |
+
m.def("quantize", &quantize_kernel);
|
288 |
+
m.def("dequantize", &dequantize<__half>);
|
289 |
+
m.def("dequantize_fp32", &dequantize<float>);
|
290 |
+
m.def("dequantize_int4_to_half_experimental",
|
291 |
+
&dequantize_int4_to_half_experimental,
|
292 |
+
"Dequantize int4 to half (experimental)");
|
293 |
+
m.def("dequantize_int8_to_half_experimental",
|
294 |
+
&dequantize_int8_to_half_experimental,
|
295 |
+
"Dequantize int8 to half (experimental)");
|
296 |
+
m.def("swizzle_quant", &ds_swizzle_quant);
|
297 |
+
m.def("quantized_reduction", &quantized_reduction);
|
298 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/quant_reduce.cu
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <cstdio>
|
7 |
+
#include "dequantization_utils.h"
|
8 |
+
#include "ds_kernel_utils.h"
|
9 |
+
#include "memory_access_utils.h"
|
10 |
+
#include "quantization_utils.h"
|
11 |
+
#include "reduction_utils.h"
|
12 |
+
|
13 |
+
using rop = reduce::ROpType;
|
14 |
+
|
15 |
+
/*
|
16 |
+
TODO(cmikeh2): Add implementation that better handles larger nodes. It would like make sense
|
17 |
+
to leverage some parallel reductions here to improve performance.
|
18 |
+
*/
|
19 |
+
|
20 |
+
template <int numBits, int numTensors, int totalChunks, quantize::Type quantType>
|
21 |
+
__global__ void __launch_bounds__(1024) dequant_reduce(int8_t* reduced_data,
|
22 |
+
float* reduced_scales,
|
23 |
+
const int8_t* input_data,
|
24 |
+
const float* input_scales,
|
25 |
+
int elems_per_out_group,
|
26 |
+
int elems_per_in_tensor,
|
27 |
+
int groups_per_in_tensor,
|
28 |
+
int elems_per_in_group,
|
29 |
+
int num_tensors)
|
30 |
+
{
|
31 |
+
cg::thread_block tb = cg::this_thread_block();
|
32 |
+
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
|
33 |
+
|
34 |
+
// NOTE(cmikeh2): This probably could be hardcoded to a larger number,
|
35 |
+
// but that means even stronger restrictions on the number of elements per group
|
36 |
+
// A performance analysis here might be beneficial
|
37 |
+
constexpr int mem_granularity = (numBits == 8) ? 8 : 4;
|
38 |
+
constexpr int elems_per_load = mem_granularity / sizeof(int8_t); // div by 1
|
39 |
+
constexpr int storage_values = 16 / sizeof(__half2);
|
40 |
+
|
41 |
+
const int block_offset = tb.group_index().x * elems_per_out_group;
|
42 |
+
const int elem_offset = tb.thread_index().x * elems_per_load;
|
43 |
+
const int base_offset = block_offset + elem_offset;
|
44 |
+
const int stride = tb.group_dim().x * elems_per_load;
|
45 |
+
|
46 |
+
__half2 local_buffer[totalChunks * storage_values];
|
47 |
+
|
48 |
+
quantize::GroupStats<quantType> stats;
|
49 |
+
|
50 |
+
#pragma unroll
|
51 |
+
for (int i = 0; i < totalChunks; i++) {
|
52 |
+
__half2* iteration_buffer = local_buffer + i * storage_values;
|
53 |
+
|
54 |
+
#pragma unroll
|
55 |
+
for (int j = 0; j < storage_values; j++) {
|
56 |
+
iteration_buffer[j] = reduce::init<rop::Add, __half2>();
|
57 |
+
}
|
58 |
+
|
59 |
+
const int iter_offset = i * stride + base_offset;
|
60 |
+
const int iter_scale_idx = iter_offset / elems_per_in_group;
|
61 |
+
bool do_loads = i * stride + elem_offset < elems_per_out_group;
|
62 |
+
|
63 |
+
if (numTensors > 0) {
|
64 |
+
#pragma unroll
|
65 |
+
for (int j = 0; j < numTensors; j++) {
|
66 |
+
if (do_loads) {
|
67 |
+
int8_t load_buffer[elems_per_load];
|
68 |
+
|
69 |
+
mem_access::load_global<mem_granularity>(
|
70 |
+
load_buffer, input_data + j * elems_per_in_tensor + iter_offset);
|
71 |
+
|
72 |
+
quantize::Params<quantType, numBits> params(
|
73 |
+
input_scales + j * groups_per_in_tensor, iter_scale_idx);
|
74 |
+
|
75 |
+
__half2 dequant_buffer[storage_values];
|
76 |
+
dequantize::chunk<numBits, quantType>(dequant_buffer, load_buffer, params);
|
77 |
+
|
78 |
+
#pragma unroll
|
79 |
+
for (int k = 0; k < storage_values; k++) {
|
80 |
+
iteration_buffer[k] =
|
81 |
+
reduce::element<rop::Add>(iteration_buffer[k], dequant_buffer[k]);
|
82 |
+
}
|
83 |
+
}
|
84 |
+
}
|
85 |
+
} else {
|
86 |
+
#pragma unroll 4
|
87 |
+
for (int j = 0; j < num_tensors; j++) {
|
88 |
+
if (do_loads) {
|
89 |
+
int8_t load_buffer[elems_per_load];
|
90 |
+
|
91 |
+
mem_access::load_global<mem_granularity>(
|
92 |
+
load_buffer, input_data + j * elems_per_in_tensor + iter_offset);
|
93 |
+
|
94 |
+
quantize::Params<quantType, numBits> params(
|
95 |
+
input_scales + j * groups_per_in_tensor, iter_scale_idx);
|
96 |
+
|
97 |
+
__half2 dequant_buffer[storage_values];
|
98 |
+
dequantize::chunk<numBits, quantType>(dequant_buffer, load_buffer, params);
|
99 |
+
|
100 |
+
#pragma unroll
|
101 |
+
for (int k = 0; k < storage_values; k++) {
|
102 |
+
iteration_buffer[k] =
|
103 |
+
reduce::element<rop::Add>(iteration_buffer[k], dequant_buffer[k]);
|
104 |
+
}
|
105 |
+
}
|
106 |
+
}
|
107 |
+
}
|
108 |
+
|
109 |
+
#pragma unroll
|
110 |
+
for (int j = 0; j < storage_values; j++) { stats.update(iteration_buffer[j]); }
|
111 |
+
}
|
112 |
+
|
113 |
+
auto params = stats.template get_params<numBits, 1024>(tb, warp);
|
114 |
+
|
115 |
+
if (tb.thread_index().x == 0) { params.store(reduced_scales, tb.group_index().x); }
|
116 |
+
|
117 |
+
#pragma unroll
|
118 |
+
for (int i = 0; i < totalChunks; i++) {
|
119 |
+
const int iter_offset = i * stride + base_offset;
|
120 |
+
if (i * stride + elem_offset < elems_per_out_group) {
|
121 |
+
int8_t local_output[elems_per_load];
|
122 |
+
quantize::_chunk<numBits, quantType>(
|
123 |
+
local_output, local_buffer + i * storage_values, params);
|
124 |
+
mem_access::store_global<mem_granularity>(reduced_data + iter_offset, local_output);
|
125 |
+
}
|
126 |
+
}
|
127 |
+
}
|
128 |
+
|
129 |
+
template <int Power>
|
130 |
+
int32_t pow2_round(int32_t raw_value)
|
131 |
+
{
|
132 |
+
return (((raw_value - 1) >> Power) + 1) << Power;
|
133 |
+
}
|
134 |
+
|
135 |
+
#define LAUNCH_DEQUANT_REDUCE(num_chunks) \
|
136 |
+
dequant_reduce<numBits, numTensors, num_chunks, quantType> \
|
137 |
+
<<<grid, block, 0, stream>>>(reduced_data, \
|
138 |
+
reduced_scales, \
|
139 |
+
input_data, \
|
140 |
+
input_scales, \
|
141 |
+
elems_per_out_group, \
|
142 |
+
elems_per_in_tensor, \
|
143 |
+
groups_per_in_tensor, \
|
144 |
+
elems_per_in_group, \
|
145 |
+
num_tensors);
|
146 |
+
|
147 |
+
template <int numBits, int numTensors, quantize::Type quantType>
|
148 |
+
void launch_dequant_reduce_impl(int8_t* reduced_data,
|
149 |
+
float* reduced_scales,
|
150 |
+
const int8_t* input_data,
|
151 |
+
const float* input_scales,
|
152 |
+
int out_groups,
|
153 |
+
int elems_per_out_group,
|
154 |
+
int elems_per_in_tensor,
|
155 |
+
int groups_per_in_tensor,
|
156 |
+
int elems_per_in_group,
|
157 |
+
int num_tensors,
|
158 |
+
cudaStream_t stream)
|
159 |
+
{
|
160 |
+
// This is a coincidence. This is derived by 8 halves per 16 bytes with 2-way packing for int4
|
161 |
+
constexpr int elems_per_thread = numBits;
|
162 |
+
const int one_step_threads =
|
163 |
+
next_pow2((elems_per_out_group + elems_per_thread - 1) / (elems_per_thread));
|
164 |
+
// TODO(cmikeh2): Tune this
|
165 |
+
const int threads = (one_step_threads < 1024) ? one_step_threads : 1024;
|
166 |
+
|
167 |
+
dim3 block(threads);
|
168 |
+
dim3 grid(out_groups);
|
169 |
+
|
170 |
+
const int elems_per_step = threads * elems_per_thread;
|
171 |
+
const int unroll_raw = (elems_per_out_group + elems_per_step - 1) / elems_per_step;
|
172 |
+
|
173 |
+
const int unroll = (unroll_raw >= 4) ? pow2_round<1>(unroll_raw) : unroll_raw;
|
174 |
+
|
175 |
+
if (unroll == 1) {
|
176 |
+
// 0-4096 elems
|
177 |
+
LAUNCH_DEQUANT_REDUCE(1);
|
178 |
+
} else if (unroll == 2) {
|
179 |
+
// 4097-8192 etc...
|
180 |
+
LAUNCH_DEQUANT_REDUCE(2);
|
181 |
+
} else if (unroll == 3) {
|
182 |
+
LAUNCH_DEQUANT_REDUCE(3);
|
183 |
+
} else if (unroll == 4) {
|
184 |
+
LAUNCH_DEQUANT_REDUCE(4);
|
185 |
+
} else if (unroll == 6) {
|
186 |
+
LAUNCH_DEQUANT_REDUCE(6);
|
187 |
+
} else if (unroll == 8) {
|
188 |
+
LAUNCH_DEQUANT_REDUCE(8);
|
189 |
+
} else if (unroll == 10) {
|
190 |
+
LAUNCH_DEQUANT_REDUCE(10);
|
191 |
+
} else if (unroll == 12) {
|
192 |
+
// 48k limit
|
193 |
+
LAUNCH_DEQUANT_REDUCE(12);
|
194 |
+
} else {
|
195 |
+
assert(false);
|
196 |
+
}
|
197 |
+
}
|
198 |
+
|
199 |
+
#define LAUNCH_DEQUANT_REDUCE_IMPL(NUM_BITS, NUM_GPUS, QUANT_TYPE) \
|
200 |
+
launch_dequant_reduce_impl<NUM_BITS, NUM_GPUS, QUANT_TYPE>(reduced_data, \
|
201 |
+
reduced_scales, \
|
202 |
+
input_data, \
|
203 |
+
input_scales, \
|
204 |
+
out_groups, \
|
205 |
+
elems_per_out_group, \
|
206 |
+
elems_per_in_tensor, \
|
207 |
+
groups_per_in_tensor, \
|
208 |
+
elems_per_in_group, \
|
209 |
+
num_gpus, \
|
210 |
+
stream);
|
211 |
+
|
212 |
+
void launch_dequant_reduce(int8_t* reduced_data,
|
213 |
+
float* reduced_scales,
|
214 |
+
const int8_t* input_data,
|
215 |
+
const float* input_scales,
|
216 |
+
int num_gpus,
|
217 |
+
int num_bits,
|
218 |
+
quantize::Type quant_type,
|
219 |
+
int out_groups,
|
220 |
+
int elems_per_out_group,
|
221 |
+
int elems_per_in_tensor,
|
222 |
+
int groups_per_in_tensor,
|
223 |
+
int elems_per_in_group,
|
224 |
+
cudaStream_t stream)
|
225 |
+
{
|
226 |
+
if (quant_type == quantize::Type::Symmetric) {
|
227 |
+
if (num_bits == 4) {
|
228 |
+
if (num_gpus == 8) {
|
229 |
+
LAUNCH_DEQUANT_REDUCE_IMPL(4, 8, quantize::Type::Symmetric);
|
230 |
+
} else if (num_gpus == 16) {
|
231 |
+
LAUNCH_DEQUANT_REDUCE_IMPL(4, 16, quantize::Type::Symmetric);
|
232 |
+
} else {
|
233 |
+
LAUNCH_DEQUANT_REDUCE_IMPL(4, -1, quantize::Type::Symmetric);
|
234 |
+
}
|
235 |
+
} else if (num_bits == 8) {
|
236 |
+
if (num_gpus == 8) {
|
237 |
+
LAUNCH_DEQUANT_REDUCE_IMPL(8, 8, quantize::Type::Symmetric);
|
238 |
+
} else if (num_gpus == 16) {
|
239 |
+
LAUNCH_DEQUANT_REDUCE_IMPL(8, 16, quantize::Type::Symmetric);
|
240 |
+
} else {
|
241 |
+
LAUNCH_DEQUANT_REDUCE_IMPL(8, -1, quantize::Type::Symmetric);
|
242 |
+
}
|
243 |
+
}
|
244 |
+
} else if (quant_type == quantize::Type::Asymmetric) {
|
245 |
+
if (num_bits == 4) {
|
246 |
+
if (num_gpus == 8) {
|
247 |
+
LAUNCH_DEQUANT_REDUCE_IMPL(4, 8, quantize::Type::Asymmetric);
|
248 |
+
} else if (num_gpus == 16) {
|
249 |
+
LAUNCH_DEQUANT_REDUCE_IMPL(4, 16, quantize::Type::Asymmetric);
|
250 |
+
} else {
|
251 |
+
LAUNCH_DEQUANT_REDUCE_IMPL(4, -1, quantize::Type::Asymmetric);
|
252 |
+
}
|
253 |
+
} else if (num_bits == 8) {
|
254 |
+
if (num_gpus == 8) {
|
255 |
+
LAUNCH_DEQUANT_REDUCE_IMPL(8, 8, quantize::Type::Asymmetric);
|
256 |
+
} else if (num_gpus == 16) {
|
257 |
+
LAUNCH_DEQUANT_REDUCE_IMPL(8, 16, quantize::Type::Asymmetric);
|
258 |
+
} else {
|
259 |
+
LAUNCH_DEQUANT_REDUCE_IMPL(8, -1, quantize::Type::Asymmetric);
|
260 |
+
}
|
261 |
+
}
|
262 |
+
}
|
263 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/quantize.cu
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "ds_kernel_utils.h"
|
7 |
+
#include "memory_access_utils.h"
|
8 |
+
#include "quantization.h"
|
9 |
+
#include "quantization_utils.h"
|
10 |
+
#include "reduction_utils.h"
|
11 |
+
|
12 |
+
namespace cg = cooperative_groups;
|
13 |
+
|
14 |
+
/*
|
15 |
+
Pure quantization kernel with no fusion.
|
16 |
+
*/
|
17 |
+
template <int q_bits,
|
18 |
+
quantize::Type quant_type,
|
19 |
+
int UNROLL,
|
20 |
+
int internal_unroll,
|
21 |
+
int threads_per_group,
|
22 |
+
int max_threads>
|
23 |
+
__global__ void cached_quantization(int8_t* __restrict__ output_data,
|
24 |
+
float* __restrict__ params,
|
25 |
+
const __half* __restrict__ input_data,
|
26 |
+
int groups,
|
27 |
+
int elems_per_group)
|
28 |
+
{
|
29 |
+
cg::thread_block tb = cg::this_thread_block();
|
30 |
+
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
|
31 |
+
|
32 |
+
// Indexing offsets
|
33 |
+
const int block_offset =
|
34 |
+
(tb.group_index().x * (max_threads / threads_per_group) * elems_per_group) +
|
35 |
+
(tb.thread_index().y * elems_per_group);
|
36 |
+
const int elem_offset = tb.thread_index().x * quantize::h_per_load;
|
37 |
+
const int base_offset = block_offset + elem_offset;
|
38 |
+
const int stride = tb.size() * quantize::h_per_load;
|
39 |
+
|
40 |
+
const __half* input_base = input_data + base_offset; //..
|
41 |
+
|
42 |
+
__half2 local_buffer[UNROLL * internal_unroll * quantize::h2_per_load];
|
43 |
+
|
44 |
+
#pragma unroll
|
45 |
+
for (int i = 0; i < UNROLL; i++) {
|
46 |
+
// Convenience helper, should resolve to register indices and not realize.
|
47 |
+
__half2* iteration_buffer = local_buffer + i * internal_unroll * quantize::h2_per_load;
|
48 |
+
#pragma unroll
|
49 |
+
for (int j = 0; j < internal_unroll; j++) {
|
50 |
+
const int iteration = i * internal_unroll + j;
|
51 |
+
mem_access::load_global<quantize::granularity>(
|
52 |
+
iteration_buffer + j * quantize::h2_per_load,
|
53 |
+
input_base + iteration * stride,
|
54 |
+
elem_offset + iteration * stride < elems_per_group);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
quantize::
|
59 |
+
local_array<quant_type, q_bits, UNROLL * internal_unroll, threads_per_group, max_threads>(
|
60 |
+
local_buffer, params, output_data, elems_per_group, groups);
|
61 |
+
}
|
62 |
+
|
63 |
+
/********* Launcher methods ***********/
|
64 |
+
#define LAUNCH_CACHED_QUANT_CALL(q_bits, quant_type) \
|
65 |
+
cached_quantization<q_bits, \
|
66 |
+
quant_type, \
|
67 |
+
unroll_factor, \
|
68 |
+
internal_unroll_l, \
|
69 |
+
threads_per_group, \
|
70 |
+
max_threads> \
|
71 |
+
<<<grid, block, 0, stream>>>(output_data, params, input_data, groups, elems_per_group);
|
72 |
+
|
73 |
+
#define LAUNCH_CACHED_QUANT( \
|
74 |
+
q_bits, quant_type, unroll_factor_in, internal_unroll_in, threads_per_group_in) \
|
75 |
+
const int unroll_factor = unroll_factor_in; \
|
76 |
+
const int internal_unroll_l = internal_unroll_in; \
|
77 |
+
const int threads_per_group = threads_per_group_in; \
|
78 |
+
if (q_bits == 4) { \
|
79 |
+
if (quant_type == quantize::Type::Asymmetric) { \
|
80 |
+
LAUNCH_CACHED_QUANT_CALL(4, quantize::Type::Asymmetric) \
|
81 |
+
} else { \
|
82 |
+
LAUNCH_CACHED_QUANT_CALL(4, quantize::Type::Symmetric) \
|
83 |
+
} \
|
84 |
+
} else { \
|
85 |
+
if (quant_type == quantize::Type::Asymmetric) { \
|
86 |
+
LAUNCH_CACHED_QUANT_CALL(8, quantize::Type::Asymmetric) \
|
87 |
+
} else { \
|
88 |
+
LAUNCH_CACHED_QUANT_CALL(8, quantize::Type::Symmetric) \
|
89 |
+
} \
|
90 |
+
}
|
91 |
+
|
92 |
+
void launch_quant(int8_t* output_data,
|
93 |
+
float* params,
|
94 |
+
const __half* input_data,
|
95 |
+
const int groups,
|
96 |
+
const int elems_per_group,
|
97 |
+
const int num_bits,
|
98 |
+
const quantize::Type quant_type,
|
99 |
+
cudaStream_t stream)
|
100 |
+
{
|
101 |
+
constexpr int max_threads = 256;
|
102 |
+
|
103 |
+
constexpr int internal_unroll = 2;
|
104 |
+
|
105 |
+
const bool is_subblock_schedule = (elems_per_group <= 128) ? true : false;
|
106 |
+
const int h_per_step = is_subblock_schedule ? quantize::h_per_load
|
107 |
+
: quantize::h_per_load * internal_unroll;
|
108 |
+
|
109 |
+
// Scheduling concern: may be slightly faster for some inputs to assign multiple stages of
|
110 |
+
// warp-sized blocks rather than stepping up to 64/96 threads
|
111 |
+
const int one_step_threads = next_pow2((elems_per_group + h_per_step - 1) / h_per_step);
|
112 |
+
const int threads_per_group = (one_step_threads < max_threads) ? one_step_threads : max_threads;
|
113 |
+
|
114 |
+
const int groups_per_block =
|
115 |
+
is_subblock_schedule ? (max_threads + threads_per_group - 1) / threads_per_group : 1;
|
116 |
+
const int groups_launch = (groups_per_block + groups - 1) / groups_per_block;
|
117 |
+
|
118 |
+
dim3 block(threads_per_group, groups_per_block);
|
119 |
+
dim3 grid(groups_launch);
|
120 |
+
|
121 |
+
const int elems_per_step = threads_per_group * h_per_step;
|
122 |
+
const int external_unroll = (elems_per_group + elems_per_step - 1) / elems_per_step;
|
123 |
+
|
124 |
+
if (is_subblock_schedule) {
|
125 |
+
// <=128
|
126 |
+
if (threads_per_group == 1) {
|
127 |
+
LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 1);
|
128 |
+
} else if (threads_per_group == 2) {
|
129 |
+
LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 2);
|
130 |
+
} else if (threads_per_group == 4) {
|
131 |
+
LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 4);
|
132 |
+
} else if (threads_per_group == 8) {
|
133 |
+
LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 8);
|
134 |
+
} else if (threads_per_group == 16) {
|
135 |
+
LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 16);
|
136 |
+
}
|
137 |
+
} else if (external_unroll == 1) {
|
138 |
+
// 129 - 4096 elems
|
139 |
+
// (this can launch with 1-7 warps as well)
|
140 |
+
LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, internal_unroll, max_threads);
|
141 |
+
} else if (external_unroll == 2) {
|
142 |
+
// 4097 - 8192 elems
|
143 |
+
LAUNCH_CACHED_QUANT(num_bits, quant_type, 2, internal_unroll, max_threads);
|
144 |
+
} else if (external_unroll == 3) {
|
145 |
+
// 8193 - 12288 elems
|
146 |
+
LAUNCH_CACHED_QUANT(num_bits, quant_type, 3, internal_unroll, max_threads);
|
147 |
+
} else if (external_unroll == 4) {
|
148 |
+
// 12289 - 16384 elems
|
149 |
+
LAUNCH_CACHED_QUANT(num_bits, quant_type, 4, internal_unroll, max_threads);
|
150 |
+
}
|
151 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/quantize_intX.cu
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <assert.h>
|
7 |
+
#include <cuda_fp16.h>
|
8 |
+
#include <cuda_runtime.h>
|
9 |
+
#include "memory_access_utils.h"
|
10 |
+
|
11 |
+
template <typename T, int N>
|
12 |
+
struct alignas(sizeof(T) * N) AlignedArray {
|
13 |
+
using Element = T;
|
14 |
+
static const int kElements = N;
|
15 |
+
|
16 |
+
__device__ __host__ AlignedArray() {}
|
17 |
+
|
18 |
+
__device__ __host__ AlignedArray(const T& rhs)
|
19 |
+
{
|
20 |
+
#pragma unroll
|
21 |
+
for (int idx = 0; idx < kElements; ++idx) { this->at(idx) = rhs; }
|
22 |
+
}
|
23 |
+
|
24 |
+
__device__ __host__ T& operator[](int offset)
|
25 |
+
{
|
26 |
+
return reinterpret_cast<T&>(this->buffer[offset]);
|
27 |
+
}
|
28 |
+
|
29 |
+
__device__ __host__ const T& operator[](int offset) const
|
30 |
+
{
|
31 |
+
return reinterpret_cast<const T&>(this->buffer[offset]);
|
32 |
+
}
|
33 |
+
|
34 |
+
__device__ __host__ T& at(int offset) { return reinterpret_cast<T&>(this->buffer[offset]); }
|
35 |
+
|
36 |
+
__device__ __host__ const T& at(int offset) const
|
37 |
+
{
|
38 |
+
return reinterpret_cast<const T&>(this->buffer[offset]);
|
39 |
+
}
|
40 |
+
|
41 |
+
__device__ __host__ AlignedArray<T, N> operator+(const AlignedArray<T, N>& rhs) const
|
42 |
+
{
|
43 |
+
AlignedArray<T, N> ret;
|
44 |
+
|
45 |
+
#pragma unroll
|
46 |
+
for (int idx = 0; idx < kElements; ++idx) { ret[idx] = this->at(idx) + rhs.at(idx); }
|
47 |
+
|
48 |
+
return ret;
|
49 |
+
}
|
50 |
+
|
51 |
+
__device__ __forceinline__ void clear()
|
52 |
+
{
|
53 |
+
#pragma unroll
|
54 |
+
for (int idx = 0; idx < kElements; ++idx) { this->at(idx) = Element(0); }
|
55 |
+
}
|
56 |
+
|
57 |
+
Element buffer[N];
|
58 |
+
};
|
59 |
+
|
60 |
+
template <typename T>
|
61 |
+
struct reduce_max {
|
62 |
+
__device__ __forceinline__ T operator()(const T& lhs, const T& rhs)
|
63 |
+
{
|
64 |
+
return lhs > rhs ? lhs : rhs;
|
65 |
+
}
|
66 |
+
};
|
67 |
+
|
68 |
+
template <typename T>
|
69 |
+
struct reduce_min {
|
70 |
+
__device__ __forceinline__ T operator()(const T& lhs, const T& rhs)
|
71 |
+
{
|
72 |
+
return lhs < rhs ? lhs : rhs;
|
73 |
+
}
|
74 |
+
};
|
75 |
+
|
76 |
+
template <typename T, int N>
|
77 |
+
struct subtract {
|
78 |
+
__device__ __forceinline__ AlignedArray<T, N> operator()(const AlignedArray<T, N>& lhs,
|
79 |
+
const T& rhs)
|
80 |
+
{
|
81 |
+
AlignedArray<T, N> ret;
|
82 |
+
|
83 |
+
#pragma unroll
|
84 |
+
for (int idx = 0; idx < N; ++idx) { ret[idx] = lhs[idx] - rhs; }
|
85 |
+
|
86 |
+
return ret;
|
87 |
+
}
|
88 |
+
};
|
89 |
+
|
90 |
+
template <typename T, int N>
|
91 |
+
struct plus {
|
92 |
+
__device__ __forceinline__ AlignedArray<T, N> operator()(const AlignedArray<T, N>& lhs,
|
93 |
+
const T& rhs)
|
94 |
+
{
|
95 |
+
AlignedArray<T, N> ret;
|
96 |
+
|
97 |
+
#pragma unroll
|
98 |
+
for (int idx = 0; idx < N; ++idx) { ret[idx] = lhs[idx] + rhs; }
|
99 |
+
|
100 |
+
return ret;
|
101 |
+
}
|
102 |
+
};
|
103 |
+
|
104 |
+
template <typename T, int N>
|
105 |
+
struct multiply {
|
106 |
+
__device__ __forceinline__ AlignedArray<T, N> operator()(const AlignedArray<T, N>& lhs,
|
107 |
+
const T& rhs)
|
108 |
+
{
|
109 |
+
AlignedArray<T, N> ret;
|
110 |
+
|
111 |
+
#pragma unroll
|
112 |
+
for (int idx = 0; idx < N; ++idx) { ret[idx] = lhs[idx] * rhs; }
|
113 |
+
|
114 |
+
return ret;
|
115 |
+
}
|
116 |
+
};
|
117 |
+
|
118 |
+
template <typename T, int N>
|
119 |
+
struct clamp {
|
120 |
+
__device__ __forceinline__ AlignedArray<T, N> operator()(const AlignedArray<T, N>& lhs,
|
121 |
+
const T& min_val,
|
122 |
+
const T& max_val)
|
123 |
+
{
|
124 |
+
AlignedArray<T, N> ret;
|
125 |
+
|
126 |
+
#pragma unroll
|
127 |
+
for (int idx = 0; idx < N; ++idx) {
|
128 |
+
ret[idx] = reduce_max<T>()(reduce_min<T>()(lhs[idx], max_val), min_val);
|
129 |
+
}
|
130 |
+
|
131 |
+
return ret;
|
132 |
+
}
|
133 |
+
};
|
134 |
+
|
135 |
+
template <typename T, int N>
|
136 |
+
struct round_int;
|
137 |
+
|
138 |
+
template <int N>
|
139 |
+
struct round_int<half, N> {
|
140 |
+
__device__ __forceinline__ AlignedArray<half, N> operator()(const AlignedArray<half, N>& lhs)
|
141 |
+
{
|
142 |
+
AlignedArray<half, N> ret;
|
143 |
+
|
144 |
+
#pragma unroll
|
145 |
+
for (int idx = 0; idx < N; ++idx) { ret[idx] = hrint(lhs[idx]); }
|
146 |
+
|
147 |
+
return ret;
|
148 |
+
}
|
149 |
+
};
|
150 |
+
|
151 |
+
template <typename T, int N>
|
152 |
+
struct divide {
|
153 |
+
__device__ __forceinline__ AlignedArray<T, N> operator()(const AlignedArray<T, N>& lhs,
|
154 |
+
const T& rhs)
|
155 |
+
{
|
156 |
+
AlignedArray<T, N> ret;
|
157 |
+
|
158 |
+
#pragma unroll
|
159 |
+
for (int idx = 0; idx < N; ++idx) { ret[idx] = lhs[idx] / rhs; }
|
160 |
+
|
161 |
+
return ret;
|
162 |
+
}
|
163 |
+
};
|
164 |
+
|
165 |
+
template <typename T, int N, typename Reducer>
|
166 |
+
__device__ __forceinline__ T to_scalar(const AlignedArray<T, N>& data)
|
167 |
+
{
|
168 |
+
Reducer re;
|
169 |
+
T res = data[0];
|
170 |
+
|
171 |
+
#pragma unroll
|
172 |
+
for (int idx = 1; idx < N; ++idx) { res = re(res, data[idx]); }
|
173 |
+
|
174 |
+
return res;
|
175 |
+
}
|
176 |
+
|
177 |
+
template <int N>
|
178 |
+
__device__ __forceinline__ AlignedArray<half, N * 2> int4_to_half(
|
179 |
+
const AlignedArray<uint8_t, N>& data)
|
180 |
+
{
|
181 |
+
AlignedArray<half, N * 2> ret;
|
182 |
+
|
183 |
+
#pragma unroll
|
184 |
+
for (int idx = 0; idx < N * 2; idx += 2) {
|
185 |
+
ret[idx] = half(int(data[idx / 2] >> 4));
|
186 |
+
ret[idx + 1] = half(int(data[idx / 2] & 0xf));
|
187 |
+
}
|
188 |
+
|
189 |
+
return ret;
|
190 |
+
}
|
191 |
+
|
192 |
+
__global__ void dequantize_int4_to_half(uint8_t* data_in,
|
193 |
+
half* data_out,
|
194 |
+
half* scale_buffer,
|
195 |
+
half* min_val_buffer,
|
196 |
+
int num_group,
|
197 |
+
int group_size)
|
198 |
+
{
|
199 |
+
using AccessType = AlignedArray<uint8_t, 4>;
|
200 |
+
using AccessTypeOut = AlignedArray<half, 8>;
|
201 |
+
|
202 |
+
for (int idx = threadIdx.x + blockIdx.x * blockDim.x; idx < num_group * group_size / 8;
|
203 |
+
idx += blockDim.x * gridDim.x) {
|
204 |
+
int id_group = idx / (group_size / 8);
|
205 |
+
AccessType value = reinterpret_cast<AccessType*>(data_in)[idx];
|
206 |
+
half scale = scale_buffer[id_group];
|
207 |
+
half min_value = min_val_buffer[id_group];
|
208 |
+
|
209 |
+
AccessTypeOut output = int4_to_half(value);
|
210 |
+
output = divide<half, 8>()(output, scale);
|
211 |
+
output = plus<half, 8>()(output, min_value);
|
212 |
+
|
213 |
+
reinterpret_cast<AccessTypeOut*>(data_out)[idx] = output;
|
214 |
+
}
|
215 |
+
}
|
216 |
+
|
217 |
+
void launch_dequantize_int4_to_half_experimental(uint8_t* data_in,
|
218 |
+
half* data_out,
|
219 |
+
half* scale_buffer,
|
220 |
+
half* min_val_buffer,
|
221 |
+
int num_group,
|
222 |
+
int group_size,
|
223 |
+
cudaStream_t stream)
|
224 |
+
{
|
225 |
+
int num_warp = num_group / 4;
|
226 |
+
int num_block = num_warp / 8; // 256 trd / block
|
227 |
+
|
228 |
+
dequantize_int4_to_half<<<num_block, 256, 0, stream>>>(
|
229 |
+
data_in, data_out, scale_buffer, min_val_buffer, num_group, group_size);
|
230 |
+
}
|
231 |
+
|
232 |
+
template <int N>
|
233 |
+
__device__ __forceinline__ AlignedArray<half, N> int8_to_half(const AlignedArray<uint8_t, N>& data)
|
234 |
+
{
|
235 |
+
AlignedArray<half, N> ret;
|
236 |
+
|
237 |
+
#pragma unroll
|
238 |
+
for (int idx = 0; idx < N; idx += 1) { ret[idx] = half(int(data[idx])); }
|
239 |
+
|
240 |
+
return ret;
|
241 |
+
}
|
242 |
+
|
243 |
+
__global__ void dequantize_int8_to_half(uint8_t* data_in,
|
244 |
+
half* data_out,
|
245 |
+
half* scale_buffer,
|
246 |
+
half* min_val_buffer,
|
247 |
+
int num_group,
|
248 |
+
int group_size)
|
249 |
+
{
|
250 |
+
using AccessType = AlignedArray<uint8_t, 8>;
|
251 |
+
using AccessTypeOut = AlignedArray<half, 8>;
|
252 |
+
|
253 |
+
for (int idx = threadIdx.x + blockIdx.x * blockDim.x; idx < num_group * group_size / 8;
|
254 |
+
idx += blockDim.x * gridDim.x) {
|
255 |
+
int id_group = idx / (group_size / 8);
|
256 |
+
AccessType value = reinterpret_cast<AccessType*>(data_in)[idx];
|
257 |
+
half scale = scale_buffer[id_group];
|
258 |
+
half min_value = min_val_buffer[id_group];
|
259 |
+
|
260 |
+
AccessTypeOut output = int8_to_half(value);
|
261 |
+
output = divide<half, 8>()(output, scale);
|
262 |
+
output = plus<half, 8>()(output, min_value);
|
263 |
+
|
264 |
+
reinterpret_cast<AccessTypeOut*>(data_out)[idx] = output;
|
265 |
+
}
|
266 |
+
}
|
267 |
+
|
268 |
+
void launch_dequantize_int8_to_half_experimental(uint8_t* data_in,
|
269 |
+
half* data_out,
|
270 |
+
half* scale_buffer,
|
271 |
+
half* min_val_buffer,
|
272 |
+
int num_group,
|
273 |
+
int group_size,
|
274 |
+
cudaStream_t stream)
|
275 |
+
{
|
276 |
+
int num_warp = num_group / 4;
|
277 |
+
int num_block = num_warp / 8; // 256 trd / block
|
278 |
+
|
279 |
+
dequantize_int8_to_half<<<num_block, 256, 0, stream>>>(
|
280 |
+
data_in, data_out, scale_buffer, min_val_buffer, num_group, group_size);
|
281 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/quantization/swizzled_quantize.cu
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "memory_access_utils.h"
|
7 |
+
#include "quantization_utils.h"
|
8 |
+
#include "reduction_utils.h"
|
9 |
+
|
10 |
+
using rop = reduce::ROpType;
|
11 |
+
|
12 |
+
namespace swiz_quant {
|
13 |
+
constexpr int max_threads = 512;
|
14 |
+
constexpr int min_threads = 32;
|
15 |
+
|
16 |
+
constexpr int step_granularity = 2;
|
17 |
+
constexpr int h_per_step = step_granularity * quantize::h_per_load;
|
18 |
+
} // namespace swiz_quant
|
19 |
+
|
20 |
+
template <int numBits, int totalChunks, int threads, quantize::Type quantType>
|
21 |
+
__global__ void swizzled_quant_kernel(int8_t* quantized_data,
|
22 |
+
float* quantized_scales,
|
23 |
+
const __half* uncompressed_data,
|
24 |
+
int elems_per_group,
|
25 |
+
int nodes,
|
26 |
+
int devices_per_node)
|
27 |
+
{
|
28 |
+
cg::thread_block tb = cg::this_thread_block();
|
29 |
+
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
|
30 |
+
|
31 |
+
// Indexing offsets, same as normal quantization for in-case
|
32 |
+
const int block_rank = blockIdx.x + blockIdx.y * gridDim.x + blockIdx.z * gridDim.x * gridDim.y;
|
33 |
+
const int block_offset = block_rank * elems_per_group;
|
34 |
+
const int elem_offset = tb.thread_index().x * quantize::h_per_load;
|
35 |
+
const int base_offset = block_offset + elem_offset;
|
36 |
+
const int stride = tb.size() * quantize::h_per_load;
|
37 |
+
const __half* input_base = uncompressed_data + base_offset;
|
38 |
+
|
39 |
+
// Local buffer
|
40 |
+
__half2 local_buffer[totalChunks * quantize::h2_per_load];
|
41 |
+
|
42 |
+
quantize::GroupStats<quantType> stats;
|
43 |
+
#pragma unroll
|
44 |
+
for (int i = 0; i < totalChunks; i++) {
|
45 |
+
__half2* iteration_buffer = local_buffer + i * quantize::h2_per_load;
|
46 |
+
|
47 |
+
mem_access::load_global<quantize::granularity>(
|
48 |
+
iteration_buffer, input_base + i * stride, elem_offset + i * stride < elems_per_group);
|
49 |
+
|
50 |
+
#pragma unroll
|
51 |
+
for (int j = 0; j < quantize::h2_per_load; j++) { stats.update(iteration_buffer[j]); }
|
52 |
+
}
|
53 |
+
|
54 |
+
auto params = stats.template get_params<numBits, threads>(tb, warp);
|
55 |
+
|
56 |
+
const int partition_id = blockIdx.z;
|
57 |
+
const int partition_offset = partition_id / devices_per_node;
|
58 |
+
const int partition_base = (partition_id % devices_per_node) * nodes;
|
59 |
+
const int pipelining_offset = blockIdx.y * (devices_per_node * nodes);
|
60 |
+
const int output_partition = (pipelining_offset + partition_base + partition_offset);
|
61 |
+
|
62 |
+
constexpr int out_scalar_effect = 8 / numBits;
|
63 |
+
const int out_block_rank = output_partition * gridDim.x + blockIdx.x;
|
64 |
+
const int out_block_offset = out_block_rank * elems_per_group / out_scalar_effect;
|
65 |
+
const int out_base_offset = out_block_offset + elem_offset / out_scalar_effect;
|
66 |
+
int8_t* out_base = quantized_data + out_base_offset;
|
67 |
+
|
68 |
+
const int out_stride = stride / out_scalar_effect;
|
69 |
+
constexpr int num_int8_out = quantize::h_per_load / out_scalar_effect;
|
70 |
+
|
71 |
+
if (tb.thread_index().x == 0) { params.store(quantized_scales, out_block_rank); }
|
72 |
+
|
73 |
+
#pragma unroll
|
74 |
+
for (int i = 0; i < totalChunks; i++) {
|
75 |
+
if (i * stride + elem_offset < elems_per_group) {
|
76 |
+
int8_t local_output[quantize::h_per_load / out_scalar_effect];
|
77 |
+
quantize::_chunk<numBits, quantType>(
|
78 |
+
local_output, local_buffer + i * quantize::h2_per_load, params);
|
79 |
+
mem_access::store_global<num_int8_out>(out_base + i * out_stride, local_output);
|
80 |
+
}
|
81 |
+
}
|
82 |
+
}
|
83 |
+
|
84 |
+
#define LAUNCH_SWIZZLE_QUANT(total_chunks, threads) \
|
85 |
+
swizzled_quant_kernel<numBits, total_chunks, threads, qType><<<grid, block, 0, stream>>>( \
|
86 |
+
q_data, q_scales, input_data, elems_per_group, nodes, devices_per_node);
|
87 |
+
|
88 |
+
/*
|
89 |
+
Swizzled quantization reorganizes the quantized groups in order to better facilitate
|
90 |
+
communication. As an example of the partitioning scheme we have the following example
|
91 |
+
of 2 node, 4 device swizzling:
|
92 |
+
|
93 |
+
--- --- --- --- --- --- --- ---
|
94 |
+
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|
95 |
+
--- --- --- --- --- --- --- ---
|
96 |
+
becomes
|
97 |
+
--- --- --- --- --- --- --- ---
|
98 |
+
| 0 | 4 | 1 | 5 | 2 | 6 | 3 | 7 |
|
99 |
+
--- --- --- --- --- --- --- ---
|
100 |
+
|
101 |
+
Multiple quantization groups may be mapped into a single partition. In order to better support
|
102 |
+
later pipelining, we may also perform an additional slicing. In two-way slicing, for instance,
|
103 |
+
the first halves of each partition are concatenated.
|
104 |
+
*/
|
105 |
+
|
106 |
+
template <int numBits, quantize::Type qType>
|
107 |
+
void launch_swizzled_quant_impl(int8_t* q_data,
|
108 |
+
float* q_scales,
|
109 |
+
const __half* input_data,
|
110 |
+
int groups,
|
111 |
+
int elems_per_group,
|
112 |
+
int pipelining,
|
113 |
+
int nodes,
|
114 |
+
int devices_per_node,
|
115 |
+
cudaStream_t stream)
|
116 |
+
{
|
117 |
+
const int one_step_threads =
|
118 |
+
next_pow2((elems_per_group + swiz_quant::h_per_step - 1) / swiz_quant::h_per_step);
|
119 |
+
const int max_threads = (one_step_threads < swiz_quant::max_threads) ? one_step_threads
|
120 |
+
: swiz_quant::max_threads;
|
121 |
+
const int threads = (max_threads < swiz_quant::min_threads) ? swiz_quant::min_threads
|
122 |
+
: max_threads;
|
123 |
+
|
124 |
+
dim3 block(threads);
|
125 |
+
const int groups_per_partition = groups / (nodes * devices_per_node);
|
126 |
+
assert(groups_per_partition % pipelining == 0);
|
127 |
+
const int contiguous_groups = groups_per_partition / pipelining;
|
128 |
+
const int partitions = nodes * devices_per_node;
|
129 |
+
dim3 grid(contiguous_groups, pipelining, partitions);
|
130 |
+
|
131 |
+
const int elems_per_step = threads * swiz_quant::h_per_step;
|
132 |
+
const int external_unroll = ((elems_per_group + elems_per_step - 1) / elems_per_step);
|
133 |
+
const int total_unroll = external_unroll * swiz_quant::step_granularity;
|
134 |
+
|
135 |
+
assert(total_unroll % 2 == 0);
|
136 |
+
|
137 |
+
if (threads == 32) {
|
138 |
+
LAUNCH_SWIZZLE_QUANT(2, 32);
|
139 |
+
} else if (threads == 64) {
|
140 |
+
LAUNCH_SWIZZLE_QUANT(2, 64);
|
141 |
+
} else if (threads == 128) {
|
142 |
+
LAUNCH_SWIZZLE_QUANT(2, 128);
|
143 |
+
} else if (threads == 256) {
|
144 |
+
LAUNCH_SWIZZLE_QUANT(2, 256);
|
145 |
+
} else if (threads == 512) {
|
146 |
+
if (total_unroll == 2) {
|
147 |
+
LAUNCH_SWIZZLE_QUANT(2, 512);
|
148 |
+
} else if (total_unroll == 4) {
|
149 |
+
LAUNCH_SWIZZLE_QUANT(4, 512);
|
150 |
+
} else if (total_unroll == 6) {
|
151 |
+
LAUNCH_SWIZZLE_QUANT(6, 512);
|
152 |
+
} else if (total_unroll == 8) {
|
153 |
+
LAUNCH_SWIZZLE_QUANT(8, 512);
|
154 |
+
} else if (total_unroll == 10) {
|
155 |
+
LAUNCH_SWIZZLE_QUANT(10, 512);
|
156 |
+
}
|
157 |
+
}
|
158 |
+
}
|
159 |
+
|
160 |
+
#define DISPATCH_SWIZZLE_QUANT(num_bits, qtype) \
|
161 |
+
launch_swizzled_quant_impl<num_bits, qtype>(q_data, \
|
162 |
+
q_scales, \
|
163 |
+
input_data, \
|
164 |
+
groups, \
|
165 |
+
elems_per_group, \
|
166 |
+
pipelining, \
|
167 |
+
nodes, \
|
168 |
+
devices_per_node, \
|
169 |
+
stream);
|
170 |
+
|
171 |
+
void launch_swizzled_quant(int8_t* q_data,
|
172 |
+
float* q_scales,
|
173 |
+
const __half* input_data,
|
174 |
+
int num_bits,
|
175 |
+
quantize::Type q_type,
|
176 |
+
int groups,
|
177 |
+
int elems_per_group,
|
178 |
+
int pipelining,
|
179 |
+
int nodes,
|
180 |
+
int devices_per_node,
|
181 |
+
cudaStream_t stream)
|
182 |
+
{
|
183 |
+
if (num_bits == 4) {
|
184 |
+
if (q_type == quantize::Type::Asymmetric) {
|
185 |
+
DISPATCH_SWIZZLE_QUANT(4, quantize::Type::Asymmetric);
|
186 |
+
} else if (q_type == quantize::Type::Symmetric) {
|
187 |
+
DISPATCH_SWIZZLE_QUANT(4, quantize::Type::Symmetric);
|
188 |
+
}
|
189 |
+
} else if (num_bits == 8) {
|
190 |
+
if (q_type == quantize::Type::Asymmetric) {
|
191 |
+
DISPATCH_SWIZZLE_QUANT(8, quantize::Type::Asymmetric);
|
192 |
+
} else if (q_type == quantize::Type::Symmetric) {
|
193 |
+
DISPATCH_SWIZZLE_QUANT(8, quantize::Type::Symmetric);
|
194 |
+
}
|
195 |
+
}
|
196 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/random_ltd/gather_scatter.cu
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "custom_cuda_layers.h"
|
7 |
+
#include "memory_access_utils.h"
|
8 |
+
|
9 |
+
namespace cg = cooperative_groups;
|
10 |
+
|
11 |
+
namespace td_data {
|
12 |
+
constexpr int granularity = 16;
|
13 |
+
}
|
14 |
+
|
15 |
+
template <typename T>
|
16 |
+
__global__ void gather_tokens_impl(T* retained_tokens,
|
17 |
+
const T* activations,
|
18 |
+
int32_t* gather_indices,
|
19 |
+
int32_t sampled_tokens,
|
20 |
+
int32_t channels,
|
21 |
+
int32_t read_batch_stride,
|
22 |
+
int32_t read_seq_stride,
|
23 |
+
int32_t write_batch_stride,
|
24 |
+
int32_t write_seq_stride)
|
25 |
+
{
|
26 |
+
constexpr int mem_vals_t = td_data::granularity / sizeof(T);
|
27 |
+
|
28 |
+
cg::thread_block tb = cg::this_thread_block();
|
29 |
+
|
30 |
+
const int gather_idx = gather_indices[tb.group_index().x * sampled_tokens + tb.group_index().y];
|
31 |
+
|
32 |
+
const int read_offset = read_batch_stride * tb.group_index().x + read_seq_stride * gather_idx;
|
33 |
+
const int write_offset =
|
34 |
+
write_batch_stride * tb.group_index().x + write_seq_stride * tb.group_index().y;
|
35 |
+
|
36 |
+
for (int i = tb.thread_index().x * mem_vals_t; i < channels; i += blockDim.x * mem_vals_t) {
|
37 |
+
T local_data[mem_vals_t];
|
38 |
+
mem_access::load_global<td_data::granularity>(local_data, activations + read_offset + i);
|
39 |
+
mem_access::store_global<td_data::granularity>(retained_tokens + write_offset + i,
|
40 |
+
local_data);
|
41 |
+
}
|
42 |
+
}
|
43 |
+
|
44 |
+
template <typename T>
|
45 |
+
void launch_gather_tokens(T* retained_tokens,
|
46 |
+
T* activations,
|
47 |
+
int32_t* gather_indices,
|
48 |
+
int32_t batch_size,
|
49 |
+
int32_t sampled_tokens,
|
50 |
+
int32_t channels,
|
51 |
+
int32_t read_batch_stride,
|
52 |
+
int32_t read_seq_stride,
|
53 |
+
int32_t write_batch_stride,
|
54 |
+
int32_t write_seq_stride,
|
55 |
+
cudaStream_t stream)
|
56 |
+
{
|
57 |
+
constexpr int mem_vals_t = td_data::granularity / sizeof(T);
|
58 |
+
|
59 |
+
const int load_steps = (channels + mem_vals_t - 1) / mem_vals_t;
|
60 |
+
const int threads = (load_steps >= 1024) ? 1024 : load_steps;
|
61 |
+
|
62 |
+
dim3 block(threads);
|
63 |
+
dim3 grid(batch_size, sampled_tokens);
|
64 |
+
|
65 |
+
gather_tokens_impl<T><<<grid, block, 0, stream>>>(retained_tokens,
|
66 |
+
activations,
|
67 |
+
gather_indices,
|
68 |
+
sampled_tokens,
|
69 |
+
channels,
|
70 |
+
read_batch_stride,
|
71 |
+
read_seq_stride,
|
72 |
+
write_batch_stride,
|
73 |
+
write_seq_stride);
|
74 |
+
}
|
75 |
+
|
76 |
+
template void launch_gather_tokens<float>(float*,
|
77 |
+
float*,
|
78 |
+
int32_t*,
|
79 |
+
int32_t,
|
80 |
+
int32_t,
|
81 |
+
int32_t,
|
82 |
+
int32_t,
|
83 |
+
int32_t,
|
84 |
+
int32_t,
|
85 |
+
int32_t,
|
86 |
+
cudaStream_t);
|
87 |
+
|
88 |
+
template void launch_gather_tokens<__half>(__half*,
|
89 |
+
__half*,
|
90 |
+
int32_t*,
|
91 |
+
int32_t,
|
92 |
+
int32_t,
|
93 |
+
int32_t,
|
94 |
+
int32_t,
|
95 |
+
int32_t,
|
96 |
+
int32_t,
|
97 |
+
int32_t,
|
98 |
+
cudaStream_t);
|
99 |
+
|
100 |
+
template <typename T>
|
101 |
+
__global__ void scatter_tokens_impl(T* all_activations,
|
102 |
+
const T* layer_activations,
|
103 |
+
int32_t* gather_indices,
|
104 |
+
int32_t retained_tokens,
|
105 |
+
int32_t channels,
|
106 |
+
int32_t read_batch_stride,
|
107 |
+
int32_t read_seq_stride,
|
108 |
+
int32_t write_batch_stride,
|
109 |
+
int32_t write_seq_stride)
|
110 |
+
{
|
111 |
+
constexpr int mem_vals_t = td_data::granularity / sizeof(T);
|
112 |
+
|
113 |
+
cg::thread_block tb = cg::this_thread_block();
|
114 |
+
|
115 |
+
const int gather_idx =
|
116 |
+
gather_indices[tb.group_index().x * retained_tokens + tb.group_index().y];
|
117 |
+
|
118 |
+
const int read_offset =
|
119 |
+
read_batch_stride * tb.group_index().x + read_seq_stride * tb.group_index().y;
|
120 |
+
const int write_offset =
|
121 |
+
write_batch_stride * tb.group_index().x + write_seq_stride * gather_idx;
|
122 |
+
|
123 |
+
for (int i = tb.thread_index().x * mem_vals_t; i < channels; i += mem_vals_t * blockDim.x) {
|
124 |
+
T local_data[mem_vals_t];
|
125 |
+
mem_access::load_global<td_data::granularity>(local_data,
|
126 |
+
layer_activations + read_offset + i);
|
127 |
+
mem_access::store_global<td_data::granularity>(all_activations + write_offset + i,
|
128 |
+
local_data);
|
129 |
+
}
|
130 |
+
}
|
131 |
+
|
132 |
+
template <typename T>
|
133 |
+
void launch_scatter_tokens(T* all_activations,
|
134 |
+
T* layer_activations,
|
135 |
+
int32_t* gather_indices,
|
136 |
+
int32_t batch_size,
|
137 |
+
int32_t sampled_tokens,
|
138 |
+
int32_t channels,
|
139 |
+
int32_t read_batch_stride,
|
140 |
+
int32_t read_seq_stride,
|
141 |
+
int32_t write_batch_stride,
|
142 |
+
int32_t write_seq_stride,
|
143 |
+
cudaStream_t stream)
|
144 |
+
{
|
145 |
+
constexpr int mem_vals_t = td_data::granularity / sizeof(T);
|
146 |
+
|
147 |
+
const int load_steps = (channels + mem_vals_t - 1) / mem_vals_t;
|
148 |
+
const int threads = (load_steps >= 1024) ? 1024 : load_steps;
|
149 |
+
|
150 |
+
dim3 block(threads);
|
151 |
+
dim3 grid(batch_size, sampled_tokens);
|
152 |
+
|
153 |
+
scatter_tokens_impl<T><<<grid, block, 0, stream>>>(all_activations,
|
154 |
+
layer_activations,
|
155 |
+
gather_indices,
|
156 |
+
sampled_tokens,
|
157 |
+
channels,
|
158 |
+
read_batch_stride,
|
159 |
+
read_seq_stride,
|
160 |
+
write_batch_stride,
|
161 |
+
write_seq_stride);
|
162 |
+
}
|
163 |
+
|
164 |
+
template void launch_scatter_tokens<float>(float*,
|
165 |
+
float*,
|
166 |
+
int32_t*,
|
167 |
+
int32_t,
|
168 |
+
int32_t,
|
169 |
+
int32_t,
|
170 |
+
int32_t,
|
171 |
+
int32_t,
|
172 |
+
int32_t,
|
173 |
+
int32_t,
|
174 |
+
cudaStream_t);
|
175 |
+
|
176 |
+
template void launch_scatter_tokens<__half>(__half*,
|
177 |
+
__half*,
|
178 |
+
int32_t*,
|
179 |
+
int32_t,
|
180 |
+
int32_t,
|
181 |
+
int32_t,
|
182 |
+
int32_t,
|
183 |
+
int32_t,
|
184 |
+
int32_t,
|
185 |
+
int32_t,
|
186 |
+
cudaStream_t);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/random_ltd/pt_binding.cpp
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <torch/extension.h>
|
7 |
+
#include <vector>
|
8 |
+
#include "custom_cuda_layers.h"
|
9 |
+
|
10 |
+
torch::Tensor token_sort_(torch::Tensor& unsorted_token_ids, int64_t original_tokens)
|
11 |
+
{
|
12 |
+
const int layers = unsorted_token_ids.size(0);
|
13 |
+
const int batch_size = unsorted_token_ids.size(1);
|
14 |
+
const int reserved_tokens = unsorted_token_ids.size(2);
|
15 |
+
|
16 |
+
launch_token_sort(unsorted_token_ids.data_ptr<int32_t>(),
|
17 |
+
layers,
|
18 |
+
batch_size,
|
19 |
+
reserved_tokens,
|
20 |
+
original_tokens,
|
21 |
+
c10::cuda::getCurrentCUDAStream());
|
22 |
+
|
23 |
+
return unsorted_token_ids;
|
24 |
+
}
|
25 |
+
|
26 |
+
torch::Tensor token_gather(torch::Tensor& activations,
|
27 |
+
torch::Tensor& sorted_indices,
|
28 |
+
bool batch_first)
|
29 |
+
{
|
30 |
+
// Activations may be in either [N, S, C] or [S, N, C] while sorted_indices is
|
31 |
+
// always in [N, retained]
|
32 |
+
/*
|
33 |
+
TORCH_CHECK(sorted_indices.size(0) == activations.size(0) ||
|
34 |
+
sorted_indices.size(0) == activations.size(1),
|
35 |
+
"Unable to match the batch size of the sorted indices to the activation
|
36 |
+
shape."); TORCH_CHECK(activations.size(2) % 8 == 0, "Channels must be divisible by 8 to align
|
37 |
+
with vectorized loads.");
|
38 |
+
*/
|
39 |
+
// bool batch_first = sorted_indices.size(0) == activations.size(0);
|
40 |
+
|
41 |
+
const int64_t dim_0 = (batch_first) ? sorted_indices.size(0) : sorted_indices.size(1);
|
42 |
+
const int64_t dim_1 = (batch_first) ? sorted_indices.size(1) : sorted_indices.size(0);
|
43 |
+
const int64_t dim_2 = activations.size(2);
|
44 |
+
|
45 |
+
auto output = torch::empty({dim_0, dim_1, dim_2}, activations.options());
|
46 |
+
|
47 |
+
const int batch_size = sorted_indices.size(0);
|
48 |
+
const int channels = dim_2;
|
49 |
+
const int retained_tokens = sorted_indices.size(1);
|
50 |
+
const int read_batch_stride = (batch_first) ? activations.stride(0) : activations.stride(1);
|
51 |
+
const int read_seq_stride = (batch_first) ? activations.stride(1) : activations.stride(0);
|
52 |
+
const int write_batch_stride = (batch_first) ? output.stride(0) : output.stride(1);
|
53 |
+
const int write_seq_stride = (batch_first) ? output.stride(1) : output.stride(0);
|
54 |
+
|
55 |
+
if (activations.options().dtype() == torch::kFloat) {
|
56 |
+
launch_gather_tokens((float*)output.data_ptr(),
|
57 |
+
(float*)activations.data_ptr(),
|
58 |
+
(int32_t*)sorted_indices.data_ptr(),
|
59 |
+
batch_size,
|
60 |
+
retained_tokens,
|
61 |
+
channels,
|
62 |
+
read_batch_stride,
|
63 |
+
read_seq_stride,
|
64 |
+
write_batch_stride,
|
65 |
+
write_seq_stride,
|
66 |
+
c10::cuda::getCurrentCUDAStream());
|
67 |
+
} else {
|
68 |
+
launch_gather_tokens((__half*)output.data_ptr(),
|
69 |
+
(__half*)activations.data_ptr(),
|
70 |
+
(int32_t*)sorted_indices.data_ptr(),
|
71 |
+
batch_size,
|
72 |
+
retained_tokens,
|
73 |
+
channels,
|
74 |
+
read_batch_stride,
|
75 |
+
read_seq_stride,
|
76 |
+
write_batch_stride,
|
77 |
+
write_seq_stride,
|
78 |
+
c10::cuda::getCurrentCUDAStream());
|
79 |
+
}
|
80 |
+
|
81 |
+
return output;
|
82 |
+
}
|
83 |
+
|
84 |
+
torch::Tensor token_scatter_(torch::Tensor& all_activations,
|
85 |
+
torch::Tensor& layer_activations,
|
86 |
+
torch::Tensor& sorted_indices,
|
87 |
+
bool batch_first)
|
88 |
+
{
|
89 |
+
// Activations may be in either [N, S, C] or [S, N, C] while sorted_indices is
|
90 |
+
// always in [N, retained]
|
91 |
+
/*
|
92 |
+
TORCH_CHECK(sorted_indices.size(0) == all_activations.size(0) ||
|
93 |
+
sorted_indices.size(0) == all_activations.size(1),
|
94 |
+
"Unable to match the batch size of the sorted indices to the activation
|
95 |
+
shape."); TORCH_CHECK(all_activations.size(2) % 8 != 0, "Channels must be divisible by 8 to
|
96 |
+
align with vectorized loads.");
|
97 |
+
*/
|
98 |
+
// bool batch_first = sorted_indices.size(0) == all_activations.size(0);
|
99 |
+
|
100 |
+
const int batch_size = sorted_indices.size(0);
|
101 |
+
const int channels = all_activations.size(2);
|
102 |
+
const int retained_tokens = sorted_indices.size(1);
|
103 |
+
const int read_batch_stride = (batch_first) ? layer_activations.stride(0)
|
104 |
+
: layer_activations.stride(1);
|
105 |
+
const int read_seq_stride = (batch_first) ? layer_activations.stride(1)
|
106 |
+
: layer_activations.stride(0);
|
107 |
+
const int write_batch_stride = (batch_first) ? all_activations.stride(0)
|
108 |
+
: all_activations.stride(1);
|
109 |
+
const int write_seq_stride = (batch_first) ? all_activations.stride(1)
|
110 |
+
: all_activations.stride(0);
|
111 |
+
|
112 |
+
if (all_activations.options().dtype() == torch::kFloat) {
|
113 |
+
launch_scatter_tokens((float*)all_activations.data_ptr(),
|
114 |
+
(float*)layer_activations.data_ptr(),
|
115 |
+
(int32_t*)sorted_indices.data_ptr(),
|
116 |
+
batch_size,
|
117 |
+
retained_tokens,
|
118 |
+
channels,
|
119 |
+
read_batch_stride,
|
120 |
+
read_seq_stride,
|
121 |
+
write_batch_stride,
|
122 |
+
write_seq_stride,
|
123 |
+
c10::cuda::getCurrentCUDAStream());
|
124 |
+
} else {
|
125 |
+
launch_scatter_tokens((__half*)all_activations.data_ptr(),
|
126 |
+
(__half*)layer_activations.data_ptr(),
|
127 |
+
(int32_t*)sorted_indices.data_ptr(),
|
128 |
+
batch_size,
|
129 |
+
retained_tokens,
|
130 |
+
channels,
|
131 |
+
read_batch_stride,
|
132 |
+
read_seq_stride,
|
133 |
+
write_batch_stride,
|
134 |
+
write_seq_stride,
|
135 |
+
c10::cuda::getCurrentCUDAStream());
|
136 |
+
}
|
137 |
+
|
138 |
+
return all_activations;
|
139 |
+
}
|
140 |
+
|
141 |
+
torch::Tensor mask_gather_bert(torch::Tensor& dense_mask, torch::Tensor& sorted_indices)
|
142 |
+
{
|
143 |
+
// TORCH_CHECK(dense_mask.dim() == 4)
|
144 |
+
|
145 |
+
const int batch_size = dense_mask.size(0);
|
146 |
+
const int layers = sorted_indices.size(0);
|
147 |
+
/*
|
148 |
+
TORCH_CHECK(layers * batch_size == sorted_indices.size(0),
|
149 |
+
"Mismatch between the indices and the mask");
|
150 |
+
*/
|
151 |
+
const int orig_seq_len = dense_mask.size(3);
|
152 |
+
const int truncated_seq_len = sorted_indices.size(2);
|
153 |
+
|
154 |
+
auto output = torch::empty({layers, batch_size, 1, truncated_seq_len, truncated_seq_len},
|
155 |
+
dense_mask.options());
|
156 |
+
|
157 |
+
if (dense_mask.options().dtype() == torch::kFloat) {
|
158 |
+
launch_slice_bert_mask((float*)output.data_ptr(),
|
159 |
+
(const float*)dense_mask.data_ptr(),
|
160 |
+
(const int32_t*)sorted_indices.data_ptr(),
|
161 |
+
layers,
|
162 |
+
batch_size,
|
163 |
+
truncated_seq_len,
|
164 |
+
orig_seq_len,
|
165 |
+
c10::cuda::getCurrentCUDAStream());
|
166 |
+
} else {
|
167 |
+
launch_slice_bert_mask((__half*)output.data_ptr(),
|
168 |
+
(const __half*)dense_mask.data_ptr(),
|
169 |
+
(const int32_t*)sorted_indices.data_ptr(),
|
170 |
+
layers,
|
171 |
+
batch_size,
|
172 |
+
truncated_seq_len,
|
173 |
+
orig_seq_len,
|
174 |
+
c10::cuda::getCurrentCUDAStream());
|
175 |
+
}
|
176 |
+
|
177 |
+
return output;
|
178 |
+
}
|
179 |
+
|
180 |
+
torch::Tensor mask_gather_gpt(torch::Tensor dense_mask, int truncated_seq_len)
|
181 |
+
{
|
182 |
+
// TORCH_CHECK(dense_mask.dim() == 4)
|
183 |
+
|
184 |
+
const int batch_size = dense_mask.size(0);
|
185 |
+
const int orig_seq_len = dense_mask.size(3);
|
186 |
+
|
187 |
+
auto output =
|
188 |
+
torch::empty({batch_size, 1, truncated_seq_len, truncated_seq_len}, dense_mask.options());
|
189 |
+
|
190 |
+
if (dense_mask.options().dtype() == torch::kFloat) {
|
191 |
+
launch_slice_gpt_mask((float*)output.data_ptr(),
|
192 |
+
(const float*)dense_mask.data_ptr(),
|
193 |
+
batch_size,
|
194 |
+
truncated_seq_len,
|
195 |
+
orig_seq_len,
|
196 |
+
c10::cuda::getCurrentCUDAStream());
|
197 |
+
} else {
|
198 |
+
launch_slice_gpt_mask((__half*)output.data_ptr(),
|
199 |
+
(const __half*)dense_mask.data_ptr(),
|
200 |
+
batch_size,
|
201 |
+
truncated_seq_len,
|
202 |
+
orig_seq_len,
|
203 |
+
c10::cuda::getCurrentCUDAStream());
|
204 |
+
}
|
205 |
+
|
206 |
+
return output;
|
207 |
+
}
|
208 |
+
|
209 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
210 |
+
{
|
211 |
+
m.def("token_sort_", &token_sort_, "Comparison free sorting algorithm (CUDA)");
|
212 |
+
m.def("token_gather", &token_gather, "Parallel gather of tokens (CUDA)");
|
213 |
+
m.def("token_scatter_", &token_scatter_, "Parallel scatter of tokens (CUDA)");
|
214 |
+
m.def("mask_gather_bert", &mask_gather_bert, "Token-based mask gather for BERT masking (CUDA)");
|
215 |
+
m.def("mask_gather_gpt", &mask_gather_gpt, "Token-based mask gather for GPT masking (CUDA)");
|
216 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/random_ltd/slice_attn_masks.cu
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "custom_cuda_layers.h"
|
7 |
+
#include "memory_access_utils.h"
|
8 |
+
|
9 |
+
namespace cg = cooperative_groups;
|
10 |
+
|
11 |
+
template <typename T>
|
12 |
+
__global__ void slice_gpt_mask_impl(T* output_mask,
|
13 |
+
const T* input_mask,
|
14 |
+
int truncated_seq_len,
|
15 |
+
int orig_seq_len)
|
16 |
+
{
|
17 |
+
const int in_batch_stride = orig_seq_len * orig_seq_len;
|
18 |
+
const int out_batch_stride = truncated_seq_len * truncated_seq_len;
|
19 |
+
|
20 |
+
cg::thread_block tb = cg::this_thread_block();
|
21 |
+
|
22 |
+
const T* input_mask_block =
|
23 |
+
input_mask + blockIdx.x * in_batch_stride + blockIdx.y * orig_seq_len;
|
24 |
+
T* output_mask_block =
|
25 |
+
output_mask + blockIdx.x * out_batch_stride + blockIdx.y * truncated_seq_len;
|
26 |
+
|
27 |
+
for (int i = tb.thread_index().x; i < truncated_seq_len; i += blockDim.x) {
|
28 |
+
output_mask_block[i] = input_mask_block[i];
|
29 |
+
}
|
30 |
+
}
|
31 |
+
|
32 |
+
template <typename T>
|
33 |
+
void launch_slice_gpt_mask(T* output_mask,
|
34 |
+
const T* input_mask,
|
35 |
+
int batch_size,
|
36 |
+
int truncated_seq_len,
|
37 |
+
int orig_seq_len,
|
38 |
+
cudaStream_t stream)
|
39 |
+
{
|
40 |
+
const int threads = (truncated_seq_len >= 1024) ? 1024 : truncated_seq_len;
|
41 |
+
|
42 |
+
dim3 block(threads);
|
43 |
+
dim3 grid(batch_size, truncated_seq_len);
|
44 |
+
|
45 |
+
slice_gpt_mask_impl<T>
|
46 |
+
<<<grid, block, 0, stream>>>(output_mask, input_mask, truncated_seq_len, orig_seq_len);
|
47 |
+
}
|
48 |
+
|
49 |
+
template void launch_slice_gpt_mask<float>(float*, const float*, int, int, int, cudaStream_t);
|
50 |
+
|
51 |
+
template void launch_slice_gpt_mask<__half>(__half*, const __half*, int, int, int, cudaStream_t);
|
52 |
+
|
53 |
+
template <typename T>
|
54 |
+
__global__ void slice_bert_mask_impl(T* output_mask,
|
55 |
+
const T* input_mask,
|
56 |
+
const int32_t* retained_indices,
|
57 |
+
int32_t truncated_seq_len,
|
58 |
+
int32_t orig_seq_len)
|
59 |
+
{
|
60 |
+
const int in_batch_stride = orig_seq_len * orig_seq_len;
|
61 |
+
const int out_batch_stride = truncated_seq_len * truncated_seq_len;
|
62 |
+
const int out_layer_stride = out_batch_stride * gridDim.y;
|
63 |
+
|
64 |
+
cg::thread_block tb = cg::this_thread_block();
|
65 |
+
|
66 |
+
const int out_layer_offset = tb.group_index().x * out_layer_stride;
|
67 |
+
|
68 |
+
const int in_batch_offset = tb.group_index().y * in_batch_stride;
|
69 |
+
const int out_batch_offset = tb.group_index().y * out_batch_stride;
|
70 |
+
|
71 |
+
const int32_t gather_row =
|
72 |
+
retained_indices[tb.group_index().y * truncated_seq_len + tb.group_index().z];
|
73 |
+
const int in_seq_offset = gather_row * orig_seq_len;
|
74 |
+
const int out_seq_offset = tb.group_index().z * truncated_seq_len;
|
75 |
+
|
76 |
+
const T* in_sequence = input_mask + in_batch_offset + in_seq_offset;
|
77 |
+
T* out_sequence = output_mask + out_layer_offset + out_batch_offset + out_seq_offset;
|
78 |
+
const int32_t* gather_data = retained_indices + tb.group_index().y * truncated_seq_len;
|
79 |
+
|
80 |
+
for (int i = tb.thread_index().x; i < truncated_seq_len; i += blockDim.x) {
|
81 |
+
out_sequence[i] = in_sequence[gather_data[i]];
|
82 |
+
}
|
83 |
+
}
|
84 |
+
|
85 |
+
/*
|
86 |
+
Since the Bert mask is not causal like GPT, we can't just generate a set of
|
87 |
+
masks for the entire model based off a single layer sample.
|
88 |
+
|
89 |
+
We map the kernel as follows:
|
90 |
+
z-dimension: layer
|
91 |
+
y-dimension: batch
|
92 |
+
x-dimension: sequence_offset
|
93 |
+
*/
|
94 |
+
template <typename T>
|
95 |
+
void launch_slice_bert_mask(T* output_mask,
|
96 |
+
const T* input_mask,
|
97 |
+
const int32_t* retained_indices,
|
98 |
+
int32_t layers,
|
99 |
+
int32_t batch_size,
|
100 |
+
int32_t truncated_seq_len,
|
101 |
+
int32_t orig_seq_len,
|
102 |
+
cudaStream_t stream)
|
103 |
+
{
|
104 |
+
const int threads = (truncated_seq_len >= 1024) ? 1024 : truncated_seq_len;
|
105 |
+
dim3 block(threads);
|
106 |
+
dim3 grid(layers, batch_size, truncated_seq_len);
|
107 |
+
|
108 |
+
slice_bert_mask_impl<T><<<grid, block, 0, stream>>>(
|
109 |
+
output_mask, input_mask, retained_indices, truncated_seq_len, orig_seq_len);
|
110 |
+
}
|
111 |
+
|
112 |
+
template void launch_slice_bert_mask<float>(float*,
|
113 |
+
const float*,
|
114 |
+
const int32_t*,
|
115 |
+
int32_t,
|
116 |
+
int32_t,
|
117 |
+
int32_t,
|
118 |
+
int32_t,
|
119 |
+
cudaStream_t);
|
120 |
+
|
121 |
+
template void launch_slice_bert_mask<__half>(__half*,
|
122 |
+
const __half*,
|
123 |
+
const int32_t*,
|
124 |
+
int32_t,
|
125 |
+
int32_t,
|
126 |
+
int32_t,
|
127 |
+
int32_t,
|
128 |
+
cudaStream_t);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/random_ltd/token_sort.cu
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <cassert>
|
7 |
+
#include "custom_cuda_layers.h"
|
8 |
+
#include "memory_access_utils.h"
|
9 |
+
|
10 |
+
namespace cg = cooperative_groups;
|
11 |
+
|
12 |
+
namespace td_sort {
|
13 |
+
constexpr int threads = 512;
|
14 |
+
constexpr int granularity = 16;
|
15 |
+
constexpr int mem_vals = granularity / sizeof(int32_t);
|
16 |
+
constexpr int max_buffer_size = (threads + 1) * mem_vals;
|
17 |
+
|
18 |
+
#ifdef __HIP_PLATFORM_AMD__
|
19 |
+
constexpr int warp_size = 64;
|
20 |
+
#else
|
21 |
+
constexpr int warp_size = 32;
|
22 |
+
#endif
|
23 |
+
|
24 |
+
constexpr int max_warps = threads / warp_size;
|
25 |
+
} // namespace td_sort
|
26 |
+
|
27 |
+
template <int VALS_PER_THREAD>
|
28 |
+
__global__ void scan_sort(int32_t* data, int reserved_tokens, int original_tokens)
|
29 |
+
{
|
30 |
+
cg::thread_block tb = cg::this_thread_block();
|
31 |
+
cg::thread_block_tile<td_sort::warp_size> warp = cg::tiled_partition<td_sort::warp_size>(tb);
|
32 |
+
|
33 |
+
__shared__ int32_t indices_buffer[td_sort::max_buffer_size];
|
34 |
+
__shared__ int32_t intermediate_buffer[td_sort::max_warps];
|
35 |
+
__shared__ int32_t sorted_indices_buffer[td_sort::max_buffer_size];
|
36 |
+
|
37 |
+
for (int i = tb.thread_index().x * td_sort::mem_vals; i < original_tokens + 1;
|
38 |
+
i += tb.group_dim().x * td_sort::mem_vals) {
|
39 |
+
uint32_t zeros[td_sort::mem_vals] = {0, 0, 0, 0};
|
40 |
+
mem_access::store_shared<td_sort::granularity>(indices_buffer + i, zeros);
|
41 |
+
}
|
42 |
+
|
43 |
+
int32_t local_vals[VALS_PER_THREAD];
|
44 |
+
|
45 |
+
// We flatten layers/batch into a single indexing dimension
|
46 |
+
int32_t* data_block = data + tb.group_index().x * reserved_tokens;
|
47 |
+
|
48 |
+
// The next two loops really could be fused for a more logical code layout, but don't want to
|
49 |
+
// move the barrier forward
|
50 |
+
#pragma unroll
|
51 |
+
for (int i = 0; i < VALS_PER_THREAD; i++) {
|
52 |
+
const int iter_idx = i * td_sort::threads + tb.thread_index().x;
|
53 |
+
if (iter_idx < reserved_tokens) {
|
54 |
+
mem_access::load_global<sizeof(int32_t)>(local_vals + i, data_block + iter_idx);
|
55 |
+
} else {
|
56 |
+
local_vals[i] = 0;
|
57 |
+
}
|
58 |
+
}
|
59 |
+
|
60 |
+
tb.sync();
|
61 |
+
|
62 |
+
#pragma unroll
|
63 |
+
for (int i = 0; i < VALS_PER_THREAD; i++) {
|
64 |
+
const int iter_idx = i * td_sort::threads + tb.thread_index().x;
|
65 |
+
if (iter_idx < reserved_tokens) {
|
66 |
+
const int32_t one = 1;
|
67 |
+
mem_access::store_shared<sizeof(int32_t)>(indices_buffer + local_vals[i], &one);
|
68 |
+
}
|
69 |
+
}
|
70 |
+
|
71 |
+
tb.sync();
|
72 |
+
|
73 |
+
int32_t local_input[td_sort::mem_vals];
|
74 |
+
mem_access::load_shared<td_sort::granularity>(
|
75 |
+
local_input, indices_buffer + tb.thread_index().x * td_sort::mem_vals);
|
76 |
+
|
77 |
+
int32_t reduce_vals[td_sort::mem_vals];
|
78 |
+
reduce_vals[0] = local_input[0];
|
79 |
+
|
80 |
+
#pragma unroll
|
81 |
+
for (int i = 1; i < td_sort::mem_vals; i++) {
|
82 |
+
reduce_vals[i] = local_input[i] + reduce_vals[i - 1];
|
83 |
+
}
|
84 |
+
|
85 |
+
int32_t step_1_val = reduce_vals[td_sort::mem_vals - 1];
|
86 |
+
// Short span exclusive scan algorithm (less work efficient)
|
87 |
+
#pragma unroll
|
88 |
+
for (int i = 1; i < td_sort::warp_size; i *= 2) {
|
89 |
+
int32_t step_val = warp.shfl_up(step_1_val, i);
|
90 |
+
step_1_val = (warp.thread_rank() < i) ? step_1_val : step_1_val + step_val;
|
91 |
+
}
|
92 |
+
|
93 |
+
if (warp.thread_rank() == td_sort::warp_size - 1) {
|
94 |
+
mem_access::store_shared<sizeof(int32_t)>(intermediate_buffer + warp.meta_group_rank(),
|
95 |
+
&step_1_val);
|
96 |
+
}
|
97 |
+
|
98 |
+
tb.sync();
|
99 |
+
|
100 |
+
if (warp.meta_group_rank() == 0) {
|
101 |
+
int32_t step_2_val = 0;
|
102 |
+
if (warp.thread_rank() < td_sort::max_warps) {
|
103 |
+
mem_access::load_shared<sizeof(int32_t)>(&step_2_val,
|
104 |
+
intermediate_buffer + warp.thread_rank());
|
105 |
+
}
|
106 |
+
|
107 |
+
#pragma unroll
|
108 |
+
for (int i = 1; i < td_sort::warp_size; i *= 2) {
|
109 |
+
int32_t step_val = warp.shfl_up(step_2_val, i);
|
110 |
+
step_2_val = (warp.thread_rank() < i) ? step_2_val : step_2_val + step_val;
|
111 |
+
}
|
112 |
+
|
113 |
+
if (warp.thread_rank() < td_sort::max_warps) {
|
114 |
+
mem_access::store_shared<sizeof(int32_t)>(intermediate_buffer + warp.thread_rank(),
|
115 |
+
&step_2_val);
|
116 |
+
}
|
117 |
+
}
|
118 |
+
|
119 |
+
tb.sync();
|
120 |
+
|
121 |
+
int step_2_val = 0;
|
122 |
+
if (warp.meta_group_rank() > 0) {
|
123 |
+
mem_access::load_shared<sizeof(int32_t)>(&step_2_val,
|
124 |
+
intermediate_buffer + warp.meta_group_rank() - 1);
|
125 |
+
}
|
126 |
+
|
127 |
+
const int thread_offset = reduce_vals[td_sort::mem_vals - 1];
|
128 |
+
|
129 |
+
#pragma unroll
|
130 |
+
for (int i = 0; i < td_sort::mem_vals; i++) {
|
131 |
+
reduce_vals[i] += step_1_val + step_2_val - thread_offset;
|
132 |
+
}
|
133 |
+
mem_access::store_shared<td_sort::granularity>(
|
134 |
+
indices_buffer + tb.thread_index().x * td_sort::mem_vals, reduce_vals);
|
135 |
+
|
136 |
+
if (tb.thread_index().x == 0) {
|
137 |
+
indices_buffer[original_tokens] = original_tokens - indices_buffer[original_tokens];
|
138 |
+
}
|
139 |
+
tb.sync();
|
140 |
+
|
141 |
+
for (int i = 0; i < VALS_PER_THREAD; i++) {
|
142 |
+
const int iter_idx = i * td_sort::threads + tb.thread_index().x;
|
143 |
+
if (iter_idx < reserved_tokens) {
|
144 |
+
if (local_vals[i] == 0) {
|
145 |
+
int zero = 0;
|
146 |
+
mem_access::store_shared<sizeof(int32_t)>(sorted_indices_buffer, &zero);
|
147 |
+
} else {
|
148 |
+
int sorted_idx;
|
149 |
+
mem_access::load_shared<sizeof(int32_t)>(&sorted_idx,
|
150 |
+
indices_buffer + local_vals[i] - 1);
|
151 |
+
mem_access::store_shared<sizeof(int32_t)>(sorted_indices_buffer + sorted_idx,
|
152 |
+
local_vals + i);
|
153 |
+
}
|
154 |
+
}
|
155 |
+
}
|
156 |
+
|
157 |
+
tb.sync();
|
158 |
+
|
159 |
+
#pragma unroll
|
160 |
+
for (int i = 0; i < VALS_PER_THREAD; i++) {
|
161 |
+
const int iter_idx = i * td_sort::threads + tb.thread_index().x;
|
162 |
+
if (iter_idx < reserved_tokens) {
|
163 |
+
int32_t store_val;
|
164 |
+
mem_access::load_shared<sizeof(int32_t)>(&store_val, sorted_indices_buffer + iter_idx);
|
165 |
+
mem_access::store_global<sizeof(int32_t)>(data_block + iter_idx, &store_val);
|
166 |
+
}
|
167 |
+
}
|
168 |
+
}
|
169 |
+
|
170 |
+
void launch_token_sort(int32_t* indices,
|
171 |
+
int layers,
|
172 |
+
int batch_size,
|
173 |
+
int reserved_size,
|
174 |
+
int original_tokens,
|
175 |
+
cudaStream_t stream)
|
176 |
+
{
|
177 |
+
// Each sort is completely independent, can flatten this dimension
|
178 |
+
dim3 grid(layers * batch_size);
|
179 |
+
dim3 block(td_sort::threads);
|
180 |
+
|
181 |
+
const int vals_per_thread = (reserved_size + td_sort::threads - 1) / td_sort::threads;
|
182 |
+
|
183 |
+
if (vals_per_thread == 1) {
|
184 |
+
scan_sort<1><<<grid, block, 0, stream>>>(indices, reserved_size, original_tokens);
|
185 |
+
} else if (vals_per_thread == 2) {
|
186 |
+
scan_sort<2><<<grid, block, 0, stream>>>(indices, reserved_size, original_tokens);
|
187 |
+
} else if (vals_per_thread == 3) {
|
188 |
+
scan_sort<3><<<grid, block, 0, stream>>>(indices, reserved_size, original_tokens);
|
189 |
+
} else if (vals_per_thread == 4) {
|
190 |
+
scan_sort<4><<<grid, block, 0, stream>>>(indices, reserved_size, original_tokens);
|
191 |
+
} else {
|
192 |
+
assert(false);
|
193 |
+
}
|
194 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/sparse_attention/utils.cpp
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
DeepSpeed note, code taken & adapted from commit 9aa94789f13ada713af36cfd8cca2fc9a7f6b79a
|
8 |
+
https:github.com/ptillet/torch-blocksparse/blob/master/csrc/utils.cpp
|
9 |
+
*/
|
10 |
+
|
11 |
+
#include <torch/extension.h>
|
12 |
+
#include <string>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#ifdef _OPENMP
|
16 |
+
#include <omp.h>
|
17 |
+
#endif
|
18 |
+
|
19 |
+
typedef std::vector<std::tuple<int, torch::Tensor>> ret_t;
|
20 |
+
|
21 |
+
void segment_blocks(torch::Tensor layout,
|
22 |
+
torch::Tensor idx,
|
23 |
+
torch::Tensor scratch,
|
24 |
+
int max_width,
|
25 |
+
ret_t& ret)
|
26 |
+
{
|
27 |
+
size_t H = layout.size(0);
|
28 |
+
size_t M = layout.size(1);
|
29 |
+
size_t N = layout.size(2);
|
30 |
+
torch::Tensor tmp = torch::zeros_like(layout);
|
31 |
+
|
32 |
+
auto _tmp = tmp.accessor<int, 3>();
|
33 |
+
auto _layout = layout.accessor<int, 3>();
|
34 |
+
auto _idx = idx.accessor<int, 3>();
|
35 |
+
auto _scratch = scratch.accessor<int, 3>();
|
36 |
+
std::vector<int> current(H, 0);
|
37 |
+
|
38 |
+
#ifdef _OPENMP
|
39 |
+
#pragma omp parallel for
|
40 |
+
#endif
|
41 |
+
for (size_t h = 0; h < H; h++) {
|
42 |
+
// surrounding indices
|
43 |
+
std::vector<int> ii_left(max_width, -1);
|
44 |
+
std::vector<std::vector<int>> ii_top(max_width, std::vector<int>(N, -1));
|
45 |
+
|
46 |
+
for (size_t m = 0; m < M; m++) {
|
47 |
+
for (size_t n = 0; n < N; n++) {
|
48 |
+
int v = _layout[h][m][n];
|
49 |
+
if (v == 0) continue;
|
50 |
+
int n_left = ii_left[max_width - 1];
|
51 |
+
int m_top = ii_top[max_width - 1][n];
|
52 |
+
int top = (m_top >= 0) ? _tmp[h][m_top][n] : 0;
|
53 |
+
int left = (n_left >= 0) ? _tmp[h][m][n_left] : 0;
|
54 |
+
int topleft = (m_top >= 0 && n_left >= 0) ? _tmp[h][m_top][n_left] : 0;
|
55 |
+
int width = std::min(left, std::min(top, topleft)) + 1;
|
56 |
+
|
57 |
+
// reset width if blocks cannot be
|
58 |
+
// packed together (i.e., there's a 1 "in the middle")
|
59 |
+
for (int nn = n_left + 1; nn < n; nn++)
|
60 |
+
if (ii_top[max_width - 1][nn] > ii_top[max_width - 1][n]) width = 1;
|
61 |
+
_tmp[h][m][n] = width;
|
62 |
+
|
63 |
+
// update n_left ring buffer
|
64 |
+
for (int k = 0; k < max_width - 1; k++) ii_left[k] = ii_left[k + 1];
|
65 |
+
ii_left[max_width - 1] = n;
|
66 |
+
|
67 |
+
// update ii_top ring buffer
|
68 |
+
for (int k = 0; k < max_width - 1; k++) ii_top[k][n] = ii_top[k + 1][n];
|
69 |
+
ii_top[max_width - 1][n] = m;
|
70 |
+
|
71 |
+
// block is too small -- skip
|
72 |
+
if (width != max_width) continue;
|
73 |
+
|
74 |
+
// retained blocks are set to zeros
|
75 |
+
for (size_t km = 0; km < max_width; km++)
|
76 |
+
for (size_t kn = 0; kn < max_width; kn++) {
|
77 |
+
int mm = ii_top[km][n];
|
78 |
+
int nn = ii_left[kn];
|
79 |
+
if (mm < 0 || nn < 0) continue;
|
80 |
+
_layout[h][mm][nn] = 0;
|
81 |
+
_tmp[h][mm][nn] = 0;
|
82 |
+
_scratch[h][current[h]][0] = (int)h;
|
83 |
+
_scratch[h][current[h]][1] = (int)mm;
|
84 |
+
_scratch[h][current[h]][2] = (int)nn;
|
85 |
+
_scratch[h][current[h]][3] = _idx[h][mm][nn];
|
86 |
+
current[h]++;
|
87 |
+
}
|
88 |
+
}
|
89 |
+
}
|
90 |
+
}
|
91 |
+
std::vector<torch::Tensor> to_cat;
|
92 |
+
for (size_t h = 0; h < H; h++)
|
93 |
+
if (current[h] > 0) to_cat.push_back(scratch[h].slice(0, 0, current[h]));
|
94 |
+
if (!to_cat.empty()) ret.push_back({max_width, torch::cat(to_cat)});
|
95 |
+
}
|
96 |
+
|
97 |
+
ret_t sdd_segment(torch::Tensor layout, int start_width)
|
98 |
+
{
|
99 |
+
ret_t ret;
|
100 |
+
|
101 |
+
// block index
|
102 |
+
torch::Tensor idx = torch::zeros_like(layout);
|
103 |
+
int current = 0;
|
104 |
+
int64_t H = layout.size(0);
|
105 |
+
int64_t M = layout.size(1);
|
106 |
+
int64_t N = layout.size(2);
|
107 |
+
auto _layout = layout.accessor<int, 3>();
|
108 |
+
auto _idx = idx.accessor<int, 3>();
|
109 |
+
for (int64_t h = 0; h < H; h++)
|
110 |
+
for (int64_t m = 0; m < M; m++)
|
111 |
+
for (int64_t n = 0; n < N; n++) {
|
112 |
+
if (_layout[h][m][n] == 0) continue;
|
113 |
+
_idx[h][m][n] = current++;
|
114 |
+
}
|
115 |
+
|
116 |
+
// scratch memory
|
117 |
+
torch::Tensor scratch = torch::empty({H, layout.sum().item<int>(), 4}, layout.dtype());
|
118 |
+
|
119 |
+
for (int max_width = start_width; max_width > 0; max_width /= 2)
|
120 |
+
segment_blocks(layout, idx, scratch, max_width, ret);
|
121 |
+
return ret;
|
122 |
+
}
|
123 |
+
|
124 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
125 |
+
{
|
126 |
+
m.def("sdd_segment", &sdd_segment, "SDD segmentation handler");
|
127 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/transformer/inference/csrc/gelu.cu
ADDED
@@ -0,0 +1,710 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "conversion_utils.h"
|
7 |
+
#include "inference_cuda_layers.h"
|
8 |
+
#include "memory_access_utils.h"
|
9 |
+
|
10 |
+
namespace cg = cooperative_groups;
|
11 |
+
#define MAX_CAP 4
|
12 |
+
#define MAX_SEQ 2048
|
13 |
+
|
14 |
+
// only used to avoid compilation error due to lack of definition.
|
15 |
+
#ifndef BF16_AVAILABLE
|
16 |
+
using __nv_bfloat162 = __half2;
|
17 |
+
#endif
|
18 |
+
|
19 |
+
inline __device__ float gelu(const float x)
|
20 |
+
{
|
21 |
+
constexpr float sqrt_param = 0.79788456080286535587989211986876f;
|
22 |
+
constexpr float mul_param = 0.044715;
|
23 |
+
return x * 0.5f * (1.0f + tanhf(sqrt_param * (x + mul_param * x * x * x)));
|
24 |
+
}
|
25 |
+
|
26 |
+
/*
|
27 |
+
In-place gelu(biasAdd(x)) for channels last
|
28 |
+
*/
|
29 |
+
template <typename T>
|
30 |
+
__global__ void fused_bias_gelu(T* input, const T* bias, int total_count, int intermediate_size)
|
31 |
+
{
|
32 |
+
// Input restriction: intermediate_size % vals_per_access == 0
|
33 |
+
constexpr int granularity = 16;
|
34 |
+
constexpr int values_per_access = granularity / sizeof(T);
|
35 |
+
const int offset = (blockIdx.x * blockDim.x + threadIdx.x) * values_per_access;
|
36 |
+
|
37 |
+
if (offset < total_count) {
|
38 |
+
T data[values_per_access];
|
39 |
+
T data_bias[values_per_access];
|
40 |
+
mem_access::load_global<granularity>(data, input + offset);
|
41 |
+
mem_access::load_global<granularity>(
|
42 |
+
data_bias, bias + (offset % intermediate_size), bias != nullptr);
|
43 |
+
|
44 |
+
#pragma unroll
|
45 |
+
for (int i = 0; i < values_per_access; i++) {
|
46 |
+
float data_f = conversion::to<float>(data[i]);
|
47 |
+
float bias_f = conversion::to<float>(data_bias[i]);
|
48 |
+
data[i] = conversion::to<T>(gelu(data_f + bias_f));
|
49 |
+
}
|
50 |
+
|
51 |
+
mem_access::store_global<granularity>(input + offset, data);
|
52 |
+
}
|
53 |
+
}
|
54 |
+
|
55 |
+
template <typename T>
|
56 |
+
void launch_bias_gelu(T* input,
|
57 |
+
const T* bias,
|
58 |
+
int intermediate_size,
|
59 |
+
int batch_size,
|
60 |
+
cudaStream_t stream)
|
61 |
+
{
|
62 |
+
constexpr int threads = 1024;
|
63 |
+
constexpr int granularity = 16;
|
64 |
+
|
65 |
+
const int total_count = batch_size * intermediate_size;
|
66 |
+
const int elems_per_block = threads * (granularity / sizeof(T));
|
67 |
+
dim3 block_dims(threads);
|
68 |
+
dim3 grid_dims((total_count + elems_per_block - 1) / elems_per_block);
|
69 |
+
|
70 |
+
fused_bias_gelu<<<grid_dims, block_dims, 0, stream>>>(
|
71 |
+
input, bias, total_count, intermediate_size);
|
72 |
+
}
|
73 |
+
|
74 |
+
#define INSTANTIATE_LAUNCH_BIAS_GELU(T) \
|
75 |
+
template void launch_bias_gelu<T>(T*, const T*, int, int, cudaStream_t);
|
76 |
+
|
77 |
+
INSTANTIATE_LAUNCH_BIAS_GELU(float)
|
78 |
+
#ifdef BF16_AVAILABLE
|
79 |
+
INSTANTIATE_LAUNCH_BIAS_GELU(__nv_bfloat16)
|
80 |
+
#endif
|
81 |
+
INSTANTIATE_LAUNCH_BIAS_GELU(__half)
|
82 |
+
|
83 |
+
/*
|
84 |
+
In-place channels-last bias add
|
85 |
+
*/
|
86 |
+
template <typename T>
|
87 |
+
__global__ void fused_bias_add(T* input, const T* bias, int total_count, int intermediate_size)
|
88 |
+
{
|
89 |
+
// Input restriction: intermediate_size % vals_per_access == 0
|
90 |
+
constexpr int granularity = 16;
|
91 |
+
constexpr int values_per_access = granularity / sizeof(T);
|
92 |
+
const int offset = (blockIdx.x * blockDim.x + threadIdx.x) * values_per_access;
|
93 |
+
|
94 |
+
if (offset < total_count) {
|
95 |
+
T data[values_per_access];
|
96 |
+
T data_bias[values_per_access];
|
97 |
+
mem_access::load_global<granularity>(data, input + offset);
|
98 |
+
mem_access::load_global<granularity>(
|
99 |
+
data_bias, bias + (offset % intermediate_size), bias != nullptr);
|
100 |
+
|
101 |
+
#pragma unroll
|
102 |
+
for (int i = 0; i < values_per_access; i++) {
|
103 |
+
float data_f = conversion::to<float>(data[i]);
|
104 |
+
float bias_f = conversion::to<float>(data_bias[i]);
|
105 |
+
data[i] = conversion::to<T>(data_f + bias_f);
|
106 |
+
}
|
107 |
+
|
108 |
+
mem_access::store_global<granularity>(input + offset, data);
|
109 |
+
}
|
110 |
+
}
|
111 |
+
|
112 |
+
template <typename T>
|
113 |
+
void launch_bias_add(T* input,
|
114 |
+
const T* bias,
|
115 |
+
int intermediate_size,
|
116 |
+
int batch_size,
|
117 |
+
cudaStream_t stream)
|
118 |
+
{
|
119 |
+
constexpr int threads = 1024;
|
120 |
+
constexpr int granularity = 16;
|
121 |
+
|
122 |
+
const int total_count = batch_size * intermediate_size;
|
123 |
+
const int elems_per_block = threads * (granularity / sizeof(T));
|
124 |
+
dim3 block_dims(threads);
|
125 |
+
dim3 grid_dims((total_count + elems_per_block - 1) / elems_per_block);
|
126 |
+
|
127 |
+
fused_bias_add<<<grid_dims, block_dims, 0, stream>>>(
|
128 |
+
input, bias, total_count, intermediate_size);
|
129 |
+
}
|
130 |
+
|
131 |
+
#define INSTANTIATE_LAUNCH_BIAS_ADD(T) \
|
132 |
+
template void launch_bias_add<T>(T*, const T*, int, int, cudaStream_t);
|
133 |
+
|
134 |
+
INSTANTIATE_LAUNCH_BIAS_ADD(float)
|
135 |
+
#ifdef BF16_AVAILABLE
|
136 |
+
INSTANTIATE_LAUNCH_BIAS_ADD(__nv_bfloat16)
|
137 |
+
#endif
|
138 |
+
INSTANTIATE_LAUNCH_BIAS_ADD(__half)
|
139 |
+
|
140 |
+
__global__ void fused_bias_residual(float* residual,
|
141 |
+
const float* hidden_state,
|
142 |
+
const float* attn,
|
143 |
+
const float* bias,
|
144 |
+
const float* attn_bias,
|
145 |
+
const int total_count,
|
146 |
+
const int intermediate_size,
|
147 |
+
const float mp_scale,
|
148 |
+
const bool preln)
|
149 |
+
{
|
150 |
+
float4* res_fl4_ptr = reinterpret_cast<float4*>(residual);
|
151 |
+
const float4* hs_fl4_ptr = reinterpret_cast<const float4*>(hidden_state);
|
152 |
+
const float4* attn_fl4_ptr = reinterpret_cast<const float4*>(attn);
|
153 |
+
const float4* bias_fl4_ptr = reinterpret_cast<const float4*>(bias);
|
154 |
+
const float4* attn_bias_fl4_ptr = reinterpret_cast<const float4*>(attn_bias);
|
155 |
+
const int offset = blockIdx.x * blockDim.x + threadIdx.x;
|
156 |
+
|
157 |
+
if (offset < total_count) {
|
158 |
+
float4 res_fl4 = res_fl4_ptr[offset];
|
159 |
+
const float4 hs_fl4 = hs_fl4_ptr[offset];
|
160 |
+
const float4 attn_fl4 = attn_fl4_ptr[offset];
|
161 |
+
const float4 bias_fl4 = bias_fl4_ptr[offset % intermediate_size];
|
162 |
+
const float4 attn_bias_fl4 = attn_bias_fl4_ptr[offset % intermediate_size];
|
163 |
+
if (preln) {
|
164 |
+
// residual = (residual + attention + bias + attention_bias) *
|
165 |
+
// mp_scale + hidden_state
|
166 |
+
res_fl4.x =
|
167 |
+
(res_fl4.x + attn_fl4.x + bias_fl4.x + attn_bias_fl4.x) * mp_scale + (hs_fl4.x);
|
168 |
+
res_fl4.y =
|
169 |
+
(res_fl4.y + attn_fl4.y + bias_fl4.y + attn_bias_fl4.y) * mp_scale + (hs_fl4.y);
|
170 |
+
res_fl4.z =
|
171 |
+
(res_fl4.z + attn_fl4.z + bias_fl4.z + attn_bias_fl4.z) * mp_scale + (hs_fl4.z);
|
172 |
+
res_fl4.w =
|
173 |
+
(res_fl4.w + attn_fl4.w + bias_fl4.w + attn_bias_fl4.w) * mp_scale + (hs_fl4.w);
|
174 |
+
} else {
|
175 |
+
// residual += hidden_state + bias
|
176 |
+
res_fl4.x = res_fl4.x + hs_fl4.x + bias_fl4.x;
|
177 |
+
res_fl4.y = res_fl4.y + hs_fl4.y + bias_fl4.y;
|
178 |
+
res_fl4.z = res_fl4.z + hs_fl4.z + bias_fl4.z;
|
179 |
+
res_fl4.w = res_fl4.w + hs_fl4.w + bias_fl4.w;
|
180 |
+
}
|
181 |
+
res_fl4_ptr[offset] = res_fl4;
|
182 |
+
}
|
183 |
+
}
|
184 |
+
|
185 |
+
template <typename T>
|
186 |
+
__global__ void fused_bias_residual(T* residual,
|
187 |
+
const T* hidden_state,
|
188 |
+
const T* attn,
|
189 |
+
const T* bias,
|
190 |
+
const T* attn_bias,
|
191 |
+
const int total_count,
|
192 |
+
const int intermediate_size,
|
193 |
+
const float mp_scale,
|
194 |
+
const bool preln)
|
195 |
+
{
|
196 |
+
using T2 =
|
197 |
+
typename std::conditional<std::is_same<T, __half>::value, __half2, __nv_bfloat162>::type;
|
198 |
+
float2* res_fl2_ptr = reinterpret_cast<float2*>(residual);
|
199 |
+
const float2* hs_fl2_ptr = reinterpret_cast<const float2*>(hidden_state);
|
200 |
+
const float2* attn_fl2_ptr = reinterpret_cast<const float2*>(attn);
|
201 |
+
const float2* bias_fl2_ptr = reinterpret_cast<const float2*>(bias);
|
202 |
+
const float2* attn_bias_fl2_ptr = reinterpret_cast<const float2*>(attn_bias);
|
203 |
+
const int offset = blockIdx.x * blockDim.x + threadIdx.x;
|
204 |
+
|
205 |
+
if (offset < total_count) {
|
206 |
+
float2 res_fl2 = res_fl2_ptr[offset];
|
207 |
+
const float2 hs_fl2 = hs_fl2_ptr[offset];
|
208 |
+
const float2 attn_fl2 = attn_fl2_ptr[offset];
|
209 |
+
const float2 bias_fl2 = bias_fl2_ptr[offset % intermediate_size];
|
210 |
+
const float2 attn_bias_fl2 = attn_bias_fl2_ptr[offset % intermediate_size];
|
211 |
+
|
212 |
+
T2* res_half2 = reinterpret_cast<T2*>(&res_fl2);
|
213 |
+
const T2* hs_half2 = reinterpret_cast<const T2*>(&hs_fl2);
|
214 |
+
const T2* attn_half2 = reinterpret_cast<const T2*>(&attn_fl2);
|
215 |
+
const T2* bias_half2 = reinterpret_cast<const T2*>(&bias_fl2);
|
216 |
+
const T2* attn_bias_half2 = reinterpret_cast<const T2*>(&attn_bias_fl2);
|
217 |
+
|
218 |
+
float2 res_low = conversion::to<float2>(res_half2[0]);
|
219 |
+
float2 res_high = conversion::to<float2>(res_half2[1]);
|
220 |
+
|
221 |
+
const float2 hs_low = conversion::to<float2>(hs_half2[0]);
|
222 |
+
const float2 hs_high = conversion::to<float2>(hs_half2[1]);
|
223 |
+
|
224 |
+
const float2 attn_low = conversion::to<float2>(attn_half2[0]);
|
225 |
+
const float2 attn_high = conversion::to<float2>(attn_half2[1]);
|
226 |
+
|
227 |
+
const float2 bias_low = conversion::to<float2>(bias_half2[0]);
|
228 |
+
const float2 bias_high = conversion::to<float2>(bias_half2[1]);
|
229 |
+
|
230 |
+
const float2 attn_bias_low = conversion::to<float2>(attn_bias_half2[0]);
|
231 |
+
const float2 attn_bias_high = conversion::to<float2>(attn_bias_half2[1]);
|
232 |
+
|
233 |
+
if (preln) {
|
234 |
+
// residual = (residual + attention + bias + attention_bias) *
|
235 |
+
// mp_scale + hidden_state
|
236 |
+
res_low.x =
|
237 |
+
(res_low.x + attn_low.x + bias_low.x + attn_bias_low.x) * mp_scale + hs_low.x;
|
238 |
+
res_low.y =
|
239 |
+
(res_low.y + attn_low.y + bias_low.y + attn_bias_low.y) * mp_scale + hs_low.y;
|
240 |
+
res_high.x =
|
241 |
+
(res_high.x + attn_high.x + bias_high.x + attn_bias_high.x) * mp_scale + hs_high.x;
|
242 |
+
res_high.y =
|
243 |
+
(res_high.y + attn_high.y + bias_high.y + attn_bias_high.y) * mp_scale + hs_high.y;
|
244 |
+
} else {
|
245 |
+
// residual += hidden_state + bias
|
246 |
+
res_low.x = (res_low.x + hs_low.x + bias_low.x);
|
247 |
+
res_low.y = (res_low.y + hs_low.y + bias_low.y);
|
248 |
+
res_high.x = (res_high.x + hs_high.x + bias_high.x);
|
249 |
+
res_high.y = (res_high.y + hs_high.y + bias_high.y);
|
250 |
+
}
|
251 |
+
res_half2[0] = conversion::to<T2>(res_low);
|
252 |
+
res_half2[1] = conversion::to<T2>(res_high);
|
253 |
+
|
254 |
+
res_fl2_ptr[offset] = res_fl2;
|
255 |
+
}
|
256 |
+
}
|
257 |
+
|
258 |
+
template <typename T>
|
259 |
+
void launch_bias_residual(T* residual,
|
260 |
+
T* hidden_state,
|
261 |
+
T* attn,
|
262 |
+
T* bias,
|
263 |
+
T* attn_bias,
|
264 |
+
int batch,
|
265 |
+
int hidden_dim,
|
266 |
+
int mp_size,
|
267 |
+
bool preln,
|
268 |
+
cudaStream_t stream)
|
269 |
+
{
|
270 |
+
int total_count = batch * hidden_dim / 4;
|
271 |
+
dim3 block_dims(1024);
|
272 |
+
dim3 grid_dims((total_count - 1) / 1024 + 1); // (batch_size);
|
273 |
+
|
274 |
+
fused_bias_residual<<<grid_dims, block_dims, 0, stream>>>(residual,
|
275 |
+
hidden_state,
|
276 |
+
attn,
|
277 |
+
bias,
|
278 |
+
attn_bias,
|
279 |
+
total_count,
|
280 |
+
hidden_dim / 4,
|
281 |
+
1.0 / mp_size,
|
282 |
+
preln);
|
283 |
+
}
|
284 |
+
|
285 |
+
#define INSTANTIATE_LAUNCH_BIAS_RESIDUAL(T) \
|
286 |
+
template void launch_bias_residual<T>(T*, T*, T*, T*, T*, int, int, int, bool, cudaStream_t);
|
287 |
+
|
288 |
+
INSTANTIATE_LAUNCH_BIAS_RESIDUAL(float);
|
289 |
+
#ifdef BF16_AVAILABLE
|
290 |
+
INSTANTIATE_LAUNCH_BIAS_RESIDUAL(__nv_bfloat16);
|
291 |
+
#endif
|
292 |
+
INSTANTIATE_LAUNCH_BIAS_RESIDUAL(__half);
|
293 |
+
|
294 |
+
__global__ void gptj_residual_add(float* residual,
|
295 |
+
const float* hidden_state,
|
296 |
+
const float* attn,
|
297 |
+
const float* bias,
|
298 |
+
const float* attn_bias,
|
299 |
+
const int total_count,
|
300 |
+
const int intermediate_size,
|
301 |
+
const float mp_scale)
|
302 |
+
{
|
303 |
+
float4* res_fl4_ptr = reinterpret_cast<float4*>(residual);
|
304 |
+
const float4* hs_fl4_ptr = reinterpret_cast<const float4*>(hidden_state);
|
305 |
+
const float4* attn_fl4_ptr = reinterpret_cast<const float4*>(attn);
|
306 |
+
const float4* bias_fl4_ptr = reinterpret_cast<const float4*>(bias);
|
307 |
+
const float4* attn_bias_fl4_ptr = reinterpret_cast<const float4*>(attn_bias);
|
308 |
+
const int offset = blockIdx.x * blockDim.x + threadIdx.x;
|
309 |
+
|
310 |
+
if (offset < total_count) {
|
311 |
+
float4 res_fl4 = res_fl4_ptr[offset];
|
312 |
+
const float4 hs_fl4 = hs_fl4_ptr[offset];
|
313 |
+
const float4 attn_fl4 = attn_fl4_ptr[offset];
|
314 |
+
const float4 bias_fl4 = bias_fl4_ptr[offset % intermediate_size];
|
315 |
+
|
316 |
+
if (attn_bias) {
|
317 |
+
float4 attn_bias_fl4 = attn_bias_fl4_ptr[offset % intermediate_size];
|
318 |
+
// residual += attention_bias
|
319 |
+
res_fl4.x += attn_bias_fl4.x;
|
320 |
+
res_fl4.y += attn_bias_fl4.y;
|
321 |
+
res_fl4.z += attn_bias_fl4.z;
|
322 |
+
res_fl4.w += attn_bias_fl4.w;
|
323 |
+
}
|
324 |
+
// residual = hidden_state + attention + (residual + bias) * mp_scale
|
325 |
+
res_fl4.x = hs_fl4.x + attn_fl4.x + (res_fl4.x + bias_fl4.x) * mp_scale;
|
326 |
+
res_fl4.y = hs_fl4.y + attn_fl4.y + (res_fl4.y + bias_fl4.y) * mp_scale;
|
327 |
+
res_fl4.z = hs_fl4.z + attn_fl4.z + (res_fl4.z + bias_fl4.z) * mp_scale;
|
328 |
+
res_fl4.w = hs_fl4.w + attn_fl4.w + (res_fl4.w + bias_fl4.w) * mp_scale;
|
329 |
+
|
330 |
+
res_fl4_ptr[offset] = res_fl4;
|
331 |
+
}
|
332 |
+
}
|
333 |
+
|
334 |
+
template <typename T>
|
335 |
+
__global__ void gptj_residual_add(T* residual,
|
336 |
+
const T* hidden_state,
|
337 |
+
const T* attn,
|
338 |
+
const T* bias,
|
339 |
+
const T* attn_bias,
|
340 |
+
const int total_count,
|
341 |
+
const int intermediate_size,
|
342 |
+
const float mp_scale)
|
343 |
+
{
|
344 |
+
using T2 =
|
345 |
+
typename std::conditional<std::is_same<T, __half>::value, __half2, __nv_bfloat162>::type;
|
346 |
+
float2* res_fl2_ptr = reinterpret_cast<float2*>(residual);
|
347 |
+
const float2* hs_fl2_ptr = reinterpret_cast<const float2*>(hidden_state);
|
348 |
+
const float2* attn_fl2_ptr = reinterpret_cast<const float2*>(attn);
|
349 |
+
const float2* bias_fl2_ptr = reinterpret_cast<const float2*>(bias);
|
350 |
+
const float2* attn_bias_fl2_ptr = reinterpret_cast<const float2*>(attn_bias);
|
351 |
+
const int offset = blockIdx.x * blockDim.x + threadIdx.x;
|
352 |
+
|
353 |
+
if (offset < total_count) {
|
354 |
+
float2 res_fl2 = res_fl2_ptr[offset];
|
355 |
+
const float2 hs_fl2 = hs_fl2_ptr[offset];
|
356 |
+
const float2 attn_fl2 = attn_fl2_ptr[offset];
|
357 |
+
const float2 bias_fl2 = bias_fl2_ptr[offset % intermediate_size];
|
358 |
+
|
359 |
+
T2* res_half2 = reinterpret_cast<T2*>(&res_fl2);
|
360 |
+
const T2* hs_half2 = reinterpret_cast<const T2*>(&hs_fl2);
|
361 |
+
const T2* attn_half2 = reinterpret_cast<const T2*>(&attn_fl2);
|
362 |
+
const T2* bias_half2 = reinterpret_cast<const T2*>(&bias_fl2);
|
363 |
+
|
364 |
+
float2 res_low = conversion::to<float2>(res_half2[0]);
|
365 |
+
float2 res_high = conversion::to<float2>(res_half2[1]);
|
366 |
+
|
367 |
+
const float2 hs_low = conversion::to<float2>(hs_half2[0]);
|
368 |
+
const float2 hs_high = conversion::to<float2>(hs_half2[1]);
|
369 |
+
|
370 |
+
const float2 attn_low = conversion::to<float2>(attn_half2[0]);
|
371 |
+
const float2 attn_high = conversion::to<float2>(attn_half2[1]);
|
372 |
+
|
373 |
+
const float2 bias_low = conversion::to<float2>(bias_half2[0]);
|
374 |
+
const float2 bias_high = conversion::to<float2>(bias_half2[1]);
|
375 |
+
|
376 |
+
if (attn_bias) {
|
377 |
+
const float2 attn_bias_fl2 = attn_bias_fl2_ptr[offset % intermediate_size];
|
378 |
+
const T2* attn_bias_half2 = reinterpret_cast<const T2*>(&attn_bias_fl2);
|
379 |
+
const float2 attn_bias_low = conversion::to<float2>(attn_bias_half2[0]);
|
380 |
+
const float2 attn_bias_high = conversion::to<float2>(attn_bias_half2[1]);
|
381 |
+
// residual += attention_bias
|
382 |
+
res_low.x += attn_bias_low.x;
|
383 |
+
res_low.y += attn_bias_low.y;
|
384 |
+
res_high.x += attn_bias_high.x;
|
385 |
+
res_high.y += attn_bias_high.y;
|
386 |
+
}
|
387 |
+
// residual = hidden_state + attention + (residual + bias) * mp_scale
|
388 |
+
res_low.x = attn_low.x + hs_low.x + (res_low.x + bias_low.x) * mp_scale;
|
389 |
+
res_low.y = attn_low.y + hs_low.y + (res_low.y + bias_low.y) * mp_scale;
|
390 |
+
res_high.x = attn_high.x + hs_high.x + (res_high.x + bias_high.x) * mp_scale;
|
391 |
+
res_high.y = attn_high.y + hs_high.y + (res_high.y + bias_high.y) * mp_scale;
|
392 |
+
|
393 |
+
res_half2[0] = conversion::to<T2>(res_low);
|
394 |
+
res_half2[1] = conversion::to<T2>(res_high);
|
395 |
+
|
396 |
+
res_fl2_ptr[offset] = res_fl2;
|
397 |
+
}
|
398 |
+
}
|
399 |
+
|
400 |
+
template <typename T>
|
401 |
+
void launch_gptj_residual_add(T* residual,
|
402 |
+
T* hidden_state,
|
403 |
+
T* attn,
|
404 |
+
T* bias,
|
405 |
+
T* attn_bias,
|
406 |
+
int hidden_dim,
|
407 |
+
int batch,
|
408 |
+
int mp_size,
|
409 |
+
cudaStream_t stream)
|
410 |
+
{
|
411 |
+
int total_count = batch * hidden_dim / 4;
|
412 |
+
dim3 block_dims(1024);
|
413 |
+
dim3 grid_dims((total_count - 1) / 1024 + 1); // (batch_size);
|
414 |
+
|
415 |
+
gptj_residual_add<<<grid_dims, block_dims, 0, stream>>>(
|
416 |
+
residual, hidden_state, attn, bias, attn_bias, total_count, hidden_dim / 4, 1.0 / mp_size);
|
417 |
+
}
|
418 |
+
|
419 |
+
#define INSTANTIATE_GPT_RES_ADD(T) \
|
420 |
+
template void launch_gptj_residual_add<T>(T*, T*, T*, T*, T*, int, int, int, cudaStream_t);
|
421 |
+
|
422 |
+
INSTANTIATE_GPT_RES_ADD(float);
|
423 |
+
INSTANTIATE_GPT_RES_ADD(__half);
|
424 |
+
#ifdef BF16_AVAILABLE
|
425 |
+
INSTANTIATE_GPT_RES_ADD(__nv_bfloat16);
|
426 |
+
#endif
|
427 |
+
|
428 |
+
template <typename T>
|
429 |
+
__global__ void moe_res_matmul(T* residual, T* coef, T* mlp_out, int seq_len, int hidden_dim)
|
430 |
+
{
|
431 |
+
constexpr int granularity = 16;
|
432 |
+
constexpr int vals_per_access = granularity / sizeof(T);
|
433 |
+
|
434 |
+
T* residual_seq = residual + blockIdx.x * hidden_dim;
|
435 |
+
T* mlp_out_seq = mlp_out + blockIdx.x * hidden_dim;
|
436 |
+
|
437 |
+
for (unsigned tid = threadIdx.x * vals_per_access; tid < hidden_dim;
|
438 |
+
tid += blockDim.x * vals_per_access) {
|
439 |
+
T mlp[vals_per_access];
|
440 |
+
T res[vals_per_access];
|
441 |
+
T coef1[vals_per_access];
|
442 |
+
T coef2[vals_per_access];
|
443 |
+
|
444 |
+
mem_access::load_global<granularity>(mlp, mlp_out_seq + tid);
|
445 |
+
mem_access::load_global<granularity>(res, residual_seq + tid);
|
446 |
+
mem_access::load_global<granularity>(coef1, coef + tid);
|
447 |
+
mem_access::load_global<granularity>(coef2, coef + tid + hidden_dim);
|
448 |
+
|
449 |
+
#pragma unroll
|
450 |
+
for (int idx = 0; idx < vals_per_access; idx++) {
|
451 |
+
mlp[idx] = mlp[idx] * coef2[idx] + res[idx] * coef1[idx];
|
452 |
+
}
|
453 |
+
|
454 |
+
mem_access::store_global<granularity>(mlp_out_seq + tid, mlp);
|
455 |
+
}
|
456 |
+
}
|
457 |
+
|
458 |
+
template <typename T>
|
459 |
+
void launch_moe_res_matmul(T* residual,
|
460 |
+
T* coef,
|
461 |
+
T* mlp_out,
|
462 |
+
int seq_len,
|
463 |
+
int hidden_dim,
|
464 |
+
cudaStream_t stream)
|
465 |
+
{
|
466 |
+
dim3 grid_dim(seq_len);
|
467 |
+
dim3 block_dim(1024);
|
468 |
+
moe_res_matmul<<<grid_dim, block_dim, 0, stream>>>(
|
469 |
+
residual, coef, mlp_out, seq_len, hidden_dim);
|
470 |
+
}
|
471 |
+
|
472 |
+
#define INSTANTIATE_LAUNCH_MOE_RES_MATMUL(T) \
|
473 |
+
template void launch_moe_res_matmul<T>(T*, T*, T*, int, int, cudaStream_t);
|
474 |
+
|
475 |
+
INSTANTIATE_LAUNCH_MOE_RES_MATMUL(float);
|
476 |
+
#ifdef BF16_AVAILABLE
|
477 |
+
INSTANTIATE_LAUNCH_MOE_RES_MATMUL(__nv_bfloat16);
|
478 |
+
#endif
|
479 |
+
INSTANTIATE_LAUNCH_MOE_RES_MATMUL(__half);
|
480 |
+
|
481 |
+
template <typename T>
|
482 |
+
__global__ void pad_data_kernel(T* padded_output, T* output, int head_size, int padded_head_size)
|
483 |
+
{
|
484 |
+
using T2 =
|
485 |
+
typename std::conditional<std::is_same<T, __half>::value, __half2, __nv_bfloat162>::type;
|
486 |
+
float4* padded_output_cast = reinterpret_cast<float4*>(padded_output);
|
487 |
+
float4* output_cast = reinterpret_cast<float4*>(output);
|
488 |
+
int bid = blockIdx.x * (blockDim.y) + threadIdx.y;
|
489 |
+
int idx = threadIdx.x;
|
490 |
+
padded_output_cast += (bid * padded_head_size);
|
491 |
+
output_cast += (bid * head_size);
|
492 |
+
float4 ZERO;
|
493 |
+
const T2 zero_h = conversion::to<T2>(0.f);
|
494 |
+
T2* ZERO_h = reinterpret_cast<T2*>(&ZERO);
|
495 |
+
#pragma unroll
|
496 |
+
for (int i = 0; i < 4; i++) ZERO_h[i] = zero_h;
|
497 |
+
if (idx < head_size)
|
498 |
+
padded_output_cast[idx] = output_cast[idx];
|
499 |
+
else
|
500 |
+
padded_output_cast[idx] = ZERO;
|
501 |
+
}
|
502 |
+
|
503 |
+
__global__ void pad_data_kernel(float* padded_output,
|
504 |
+
float* output,
|
505 |
+
int head_size,
|
506 |
+
int padded_head_size)
|
507 |
+
{
|
508 |
+
}
|
509 |
+
|
510 |
+
template <typename T>
|
511 |
+
void pad_data(T* padded_output,
|
512 |
+
T* output,
|
513 |
+
int bsz,
|
514 |
+
int head_size,
|
515 |
+
int padded_head_size,
|
516 |
+
cudaStream_t stream)
|
517 |
+
{
|
518 |
+
dim3 grid_dim((bsz - 1) / 16 + 1);
|
519 |
+
dim3 block_dim(padded_head_size / 8, 16);
|
520 |
+
pad_data_kernel<<<grid_dim, block_dim, 0, stream>>>(
|
521 |
+
padded_output, output, head_size / 8, padded_head_size / 8);
|
522 |
+
}
|
523 |
+
|
524 |
+
#define INSTANTIATE_PAD_DATA(T) template void pad_data(T*, T*, int, int, int, cudaStream_t stream);
|
525 |
+
|
526 |
+
INSTANTIATE_PAD_DATA(float);
|
527 |
+
INSTANTIATE_PAD_DATA(__half);
|
528 |
+
#ifdef BF16_AVAILABLE
|
529 |
+
INSTANTIATE_PAD_DATA(__nv_bfloat16);
|
530 |
+
#endif
|
531 |
+
|
532 |
+
template <typename T>
|
533 |
+
__global__ void pad_head_seq_kernel(T* padded_output,
|
534 |
+
T* output,
|
535 |
+
int seq_len,
|
536 |
+
int padded_seq_len,
|
537 |
+
int head_size,
|
538 |
+
int padded_head_size)
|
539 |
+
{
|
540 |
+
using T2 =
|
541 |
+
typename std::conditional<std::is_same<T, __half>::value, __half2, __nv_bfloat162>::type;
|
542 |
+
float4* padded_output_cast = reinterpret_cast<float4*>(padded_output);
|
543 |
+
float4* output_cast = reinterpret_cast<float4*>(output);
|
544 |
+
int bsz = blockIdx.x;
|
545 |
+
int bid = blockIdx.y * (blockDim.y) + threadIdx.y;
|
546 |
+
int idx = threadIdx.x;
|
547 |
+
padded_output_cast += (bsz * padded_seq_len + bid) * padded_head_size;
|
548 |
+
output_cast += (bsz * seq_len + bid) * head_size;
|
549 |
+
float4 ZERO;
|
550 |
+
const T2 zero_h = conversion::to<T2>(0.f);
|
551 |
+
T2* ZERO_h = reinterpret_cast<T2*>(&ZERO);
|
552 |
+
#pragma unroll
|
553 |
+
for (int i = 0; i < 4; i++) ZERO_h[i] = zero_h;
|
554 |
+
|
555 |
+
if (idx < head_size && bid < seq_len)
|
556 |
+
padded_output_cast[idx] = output_cast[idx];
|
557 |
+
else
|
558 |
+
padded_output_cast[idx] = ZERO;
|
559 |
+
}
|
560 |
+
|
561 |
+
__global__ void pad_head_seq_kernel(float* padded_output,
|
562 |
+
float* output,
|
563 |
+
int seq_len,
|
564 |
+
int padded_seq_len,
|
565 |
+
int head_size,
|
566 |
+
int padded_head_size)
|
567 |
+
{
|
568 |
+
}
|
569 |
+
|
570 |
+
template <typename T>
|
571 |
+
void pad_head_seq(T* padded_output,
|
572 |
+
T* output,
|
573 |
+
int bsz,
|
574 |
+
int seq_len,
|
575 |
+
int padded_seq_len,
|
576 |
+
int head_size,
|
577 |
+
int padded_head_size,
|
578 |
+
cudaStream_t stream)
|
579 |
+
{
|
580 |
+
dim3 grid_dim(bsz, padded_seq_len / 16);
|
581 |
+
dim3 block_dim(padded_head_size / 8, 16);
|
582 |
+
pad_head_seq_kernel<<<grid_dim, block_dim, 0, stream>>>(
|
583 |
+
padded_output, output, seq_len, padded_seq_len, head_size / 8, padded_head_size / 8);
|
584 |
+
}
|
585 |
+
|
586 |
+
#define INSTANTIATE_PAD_HEAD_SEQ(T) \
|
587 |
+
template void pad_head_seq<T>(T*, T*, int, int, int, int, int, cudaStream_t);
|
588 |
+
|
589 |
+
INSTANTIATE_PAD_HEAD_SEQ(__half);
|
590 |
+
#ifdef BF16_AVAILABLE
|
591 |
+
INSTANTIATE_PAD_HEAD_SEQ(__nv_bfloat16);
|
592 |
+
#endif
|
593 |
+
INSTANTIATE_PAD_HEAD_SEQ(float);
|
594 |
+
|
595 |
+
// TODO(cmikeh2): evaluate different GeLU performance
|
596 |
+
__device__ __forceinline__ float old_gelu(float val)
|
597 |
+
{
|
598 |
+
// 1 / sqrt(2)
|
599 |
+
constexpr float rsqrt_2 = 0.707106769084930419922;
|
600 |
+
return val * 0.5f * (1.0f + erff(val * rsqrt_2));
|
601 |
+
}
|
602 |
+
|
603 |
+
namespace fused_geglu {
|
604 |
+
constexpr int threads = 256;
|
605 |
+
constexpr int steps = 2;
|
606 |
+
constexpr int granularity = 16;
|
607 |
+
} // namespace fused_geglu
|
608 |
+
|
609 |
+
__device__ __forceinline__ float silu(float val) { return val / (1.0f + expf(-val)); }
|
610 |
+
|
611 |
+
template <typename T, bool useGelu>
|
612 |
+
__global__ void fused_gate_activation(T* output,
|
613 |
+
const T* activation,
|
614 |
+
const T* bias,
|
615 |
+
int base_channels,
|
616 |
+
int output_stride,
|
617 |
+
int total_elems)
|
618 |
+
{
|
619 |
+
constexpr int T_per_access = fused_geglu::granularity / sizeof(T);
|
620 |
+
constexpr int T_per_step = T_per_access * fused_geglu::threads;
|
621 |
+
constexpr int T_per_block = T_per_step * fused_geglu::steps;
|
622 |
+
|
623 |
+
const int id = blockIdx.x * T_per_block + threadIdx.x * T_per_access;
|
624 |
+
|
625 |
+
#pragma unroll
|
626 |
+
for (int i = 0; i < fused_geglu::steps; i++) {
|
627 |
+
T activation_buffer_1[T_per_access];
|
628 |
+
T activation_buffer_2[T_per_access];
|
629 |
+
T bias_buffer_1[T_per_access];
|
630 |
+
T bias_buffer_2[T_per_access];
|
631 |
+
|
632 |
+
const int iter_id = id + T_per_step * i;
|
633 |
+
if (iter_id < total_elems) {
|
634 |
+
const int channel_id = iter_id % base_channels;
|
635 |
+
const int seq_id = iter_id / base_channels;
|
636 |
+
const int seq_offset = seq_id * base_channels * 2;
|
637 |
+
|
638 |
+
mem_access::load_global<fused_geglu::granularity>(activation_buffer_1,
|
639 |
+
activation + seq_offset + channel_id);
|
640 |
+
mem_access::load_global<fused_geglu::granularity>(
|
641 |
+
activation_buffer_2, activation + seq_offset + channel_id + base_channels);
|
642 |
+
mem_access::load_global<fused_geglu::granularity>(
|
643 |
+
bias_buffer_1, bias + channel_id, bias != nullptr);
|
644 |
+
mem_access::load_global<fused_geglu::granularity>(
|
645 |
+
bias_buffer_2, bias + channel_id + base_channels, bias != nullptr);
|
646 |
+
|
647 |
+
// Since the GeLU is going to happen at float, might as well
|
648 |
+
// convert
|
649 |
+
#pragma unroll
|
650 |
+
for (int v = 0; v < T_per_access; v++) {
|
651 |
+
T hidden_state = activation_buffer_1[v] + bias_buffer_1[v];
|
652 |
+
T pre_gate = activation_buffer_2[v] + bias_buffer_2[v];
|
653 |
+
float pre_gate_f = conversion::to<float>(pre_gate);
|
654 |
+
float gate_f = (useGelu) ? old_gelu(pre_gate_f) : silu(pre_gate_f);
|
655 |
+
T gate = conversion::to<T>(gate_f);
|
656 |
+
activation_buffer_1[v] = hidden_state * gate;
|
657 |
+
}
|
658 |
+
|
659 |
+
mem_access::store_global<fused_geglu::granularity>(
|
660 |
+
output + seq_id * output_stride + channel_id, activation_buffer_1);
|
661 |
+
}
|
662 |
+
}
|
663 |
+
}
|
664 |
+
|
665 |
+
template <typename T>
|
666 |
+
void launch_gated_activation(T* output,
|
667 |
+
const T* activation,
|
668 |
+
const T* bias,
|
669 |
+
int rows,
|
670 |
+
int output_stride,
|
671 |
+
int elems_per_row,
|
672 |
+
bool use_gelu,
|
673 |
+
cudaStream_t stream)
|
674 |
+
{
|
675 |
+
/*
|
676 |
+
Fused bias GEGLU is a variant of the gated activation functions.
|
677 |
+
The input here is a matrix of [batch, seq_len, 2 * intermediate_dim]
|
678 |
+
where the second half of the channels act as GeLU gates for the first
|
679 |
+
half.
|
680 |
+
*/
|
681 |
+
|
682 |
+
// Re-derive the above figures
|
683 |
+
constexpr int T_per_access = fused_geglu::granularity / sizeof(T);
|
684 |
+
constexpr int T_per_step = T_per_access * fused_geglu::threads;
|
685 |
+
constexpr int T_per_block = T_per_step * fused_geglu::steps;
|
686 |
+
|
687 |
+
const int base_channels = elems_per_row / 2;
|
688 |
+
const int total_elems = base_channels * rows;
|
689 |
+
|
690 |
+
dim3 block(fused_geglu::threads);
|
691 |
+
dim3 grid((total_elems + T_per_block - 1) / T_per_block);
|
692 |
+
|
693 |
+
if (use_gelu) {
|
694 |
+
fused_gate_activation<T, true><<<grid, block, 0, stream>>>(
|
695 |
+
output, activation, bias, base_channels, output_stride, total_elems);
|
696 |
+
} else {
|
697 |
+
fused_gate_activation<T, false><<<grid, block, 0, stream>>>(
|
698 |
+
output, activation, bias, base_channels, output_stride, total_elems);
|
699 |
+
}
|
700 |
+
}
|
701 |
+
|
702 |
+
#define INSTANTIATE_LAUNCH_GATED_ACTIVATION(T) \
|
703 |
+
template void launch_gated_activation( \
|
704 |
+
T*, const T*, const T*, int, int, int, bool, cudaStream_t);
|
705 |
+
|
706 |
+
INSTANTIATE_LAUNCH_GATED_ACTIVATION(__half);
|
707 |
+
#ifdef BF16_AVAILABLE
|
708 |
+
INSTANTIATE_LAUNCH_GATED_ACTIVATION(__nv_bfloat16);
|
709 |
+
#endif
|
710 |
+
INSTANTIATE_LAUNCH_GATED_ACTIVATION(float);
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/transformer/inference/csrc/pointwise_ops.cu
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <cuda_fp16.h>
|
7 |
+
#include "conversion_utils.h"
|
8 |
+
#include "ds_kernel_utils.h"
|
9 |
+
#include "memory_access_utils.h"
|
10 |
+
|
11 |
+
namespace pwise {
|
12 |
+
constexpr int granularity = 16;
|
13 |
+
constexpr int unroll = 4;
|
14 |
+
constexpr int threads = 256;
|
15 |
+
} // namespace pwise
|
16 |
+
|
17 |
+
template <typename T>
|
18 |
+
__global__ void vector_add_kernel(T* out, const T* a, const T* b, float gamma, int num_elems)
|
19 |
+
{
|
20 |
+
constexpr int T_per_access = pwise::granularity / sizeof(T);
|
21 |
+
|
22 |
+
const int block_offset = blockIdx.x * pwise::threads * pwise::unroll * T_per_access;
|
23 |
+
const int thread_offset = threadIdx.x * T_per_access;
|
24 |
+
const int total_offset = block_offset + thread_offset;
|
25 |
+
constexpr int stride = pwise::threads * T_per_access;
|
26 |
+
|
27 |
+
#pragma unroll
|
28 |
+
for (int i = 0; i < pwise::unroll; i++) {
|
29 |
+
T temp_buf_a[T_per_access], temp_buf_b[T_per_access];
|
30 |
+
|
31 |
+
const int iter_idx = total_offset + i * stride;
|
32 |
+
|
33 |
+
mem_access::load_global<pwise::granularity>(temp_buf_a, a + iter_idx, iter_idx < num_elems);
|
34 |
+
mem_access::load_global<pwise::granularity>(temp_buf_b, b + iter_idx, iter_idx < num_elems);
|
35 |
+
|
36 |
+
#pragma unroll
|
37 |
+
for (int j = 0; j < T_per_access; j++) {
|
38 |
+
float up_cast_a = conversion::to<float>(temp_buf_a[j]);
|
39 |
+
float up_cast_b = conversion::to<float>(temp_buf_b[j]);
|
40 |
+
temp_buf_a[j] = conversion::to<T>((gamma * up_cast_a) + up_cast_b);
|
41 |
+
}
|
42 |
+
|
43 |
+
if (iter_idx < num_elems) {
|
44 |
+
mem_access::store_global<pwise::granularity>(out + iter_idx, temp_buf_a);
|
45 |
+
}
|
46 |
+
}
|
47 |
+
}
|
48 |
+
|
49 |
+
template <typename T>
|
50 |
+
void launch_vector_add(T* out,
|
51 |
+
const T* a,
|
52 |
+
const T* b,
|
53 |
+
float gamma,
|
54 |
+
int num_elems,
|
55 |
+
cudaStream_t stream)
|
56 |
+
{
|
57 |
+
constexpr int T_per_access = pwise::granularity / sizeof(T);
|
58 |
+
constexpr int T_per_block = pwise::threads * T_per_access * pwise::unroll;
|
59 |
+
|
60 |
+
dim3 block(pwise::threads);
|
61 |
+
dim3 grid((num_elems + T_per_block - 1) / T_per_block);
|
62 |
+
|
63 |
+
vector_add_kernel<<<grid, block, 0, stream>>>(out, a, b, gamma, num_elems);
|
64 |
+
}
|
65 |
+
|
66 |
+
#define INSTANTIATE_VECTOR_ADD(T) \
|
67 |
+
template void launch_vector_add<T>( \
|
68 |
+
T * out, const T* a, const T* b, float gamma, int num_elems, cudaStream_t stream);
|
69 |
+
|
70 |
+
INSTANTIATE_VECTOR_ADD(float)
|
71 |
+
INSTANTIATE_VECTOR_ADD(__half)
|
72 |
+
#ifdef BF16_AVAILABLE
|
73 |
+
INSTANTIATE_VECTOR_ADD(__nv_bfloat16)
|
74 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/transformer/inference/csrc/rms_norm.cu
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "conversion_utils.h"
|
7 |
+
#include "ds_kernel_utils.h"
|
8 |
+
#include "inference_cuda_layers.h"
|
9 |
+
#include "memory_access_utils.h"
|
10 |
+
#include "reduction_utils.h"
|
11 |
+
|
12 |
+
namespace cg = cooperative_groups;
|
13 |
+
using rop = reduce::ROpType;
|
14 |
+
|
15 |
+
namespace rms {
|
16 |
+
constexpr int granularity = 16;
|
17 |
+
} // namespace rms
|
18 |
+
|
19 |
+
template <typename T, int UNROLL, int threadsPerGroup, int maxThreads>
|
20 |
+
__global__ void rms_norm(T* output, const T* vals, const T* gamma, float epsilon, int elems_per_row)
|
21 |
+
{
|
22 |
+
constexpr int T_per_load = rms::granularity / sizeof(T);
|
23 |
+
|
24 |
+
cg::thread_block tb = cg::this_thread_block();
|
25 |
+
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
|
26 |
+
|
27 |
+
// X-dimension of the block
|
28 |
+
const int block_offset = (tb.group_index().x * (maxThreads / threadsPerGroup) * elems_per_row) +
|
29 |
+
(tb.thread_index().y * elems_per_row);
|
30 |
+
const int thread_offset = tb.thread_index().x * T_per_load;
|
31 |
+
const int base_offset = block_offset + thread_offset;
|
32 |
+
const int stride = blockDim.x * T_per_load;
|
33 |
+
|
34 |
+
float var_sum = reduce::init<rop::Add, float>();
|
35 |
+
|
36 |
+
const T* input_base = vals + base_offset;
|
37 |
+
|
38 |
+
T local_buffer[UNROLL * T_per_load];
|
39 |
+
|
40 |
+
#pragma unroll
|
41 |
+
for (int i = 0; i < UNROLL; i++) {
|
42 |
+
T* iteration_buffer = local_buffer + (i * T_per_load);
|
43 |
+
|
44 |
+
mem_access::load_global<rms::granularity>(iteration_buffer,
|
45 |
+
input_base + (i * stride),
|
46 |
+
thread_offset + (i * stride) < elems_per_row);
|
47 |
+
|
48 |
+
#pragma unroll
|
49 |
+
for (int j = 0; j < T_per_load; j++) {
|
50 |
+
float up_cast = conversion::to<float>(iteration_buffer[j]);
|
51 |
+
float sq_val = up_cast * up_cast;
|
52 |
+
var_sum = reduce::element<rop::Add, float>(var_sum, sq_val);
|
53 |
+
}
|
54 |
+
}
|
55 |
+
|
56 |
+
reduce::partitioned_block<rop::Add, threadsPerGroup>(tb, warp, var_sum);
|
57 |
+
const float var = var_sum / elems_per_row;
|
58 |
+
const T denom = conversion::to<T>(__frsqrt_rn(var + epsilon));
|
59 |
+
|
60 |
+
T* block_output = output + block_offset;
|
61 |
+
|
62 |
+
#pragma unroll
|
63 |
+
for (int i = 0; i < UNROLL; i++) {
|
64 |
+
T* iteration_buffer = local_buffer + (i * T_per_load);
|
65 |
+
const int iter_idx = i * stride + thread_offset;
|
66 |
+
const bool do_loads = (iter_idx < elems_per_row);
|
67 |
+
|
68 |
+
T gamma_local[T_per_load];
|
69 |
+
|
70 |
+
mem_access::load_global<rms::granularity>(gamma_local, gamma + iter_idx, do_loads);
|
71 |
+
|
72 |
+
#pragma unroll
|
73 |
+
for (int j = 0; j < T_per_load; j++) {
|
74 |
+
iteration_buffer[j] *= denom;
|
75 |
+
iteration_buffer[j] *= gamma_local[j];
|
76 |
+
}
|
77 |
+
|
78 |
+
if (do_loads) {
|
79 |
+
mem_access::store_global<rms::granularity>(block_output + iter_idx, iteration_buffer);
|
80 |
+
}
|
81 |
+
}
|
82 |
+
}
|
83 |
+
|
84 |
+
template <typename T, int UNROLL, int threadsPerGroup, int maxThreads>
|
85 |
+
__global__ void pre_rms_norm(T* output,
|
86 |
+
T* res_out,
|
87 |
+
const T* vals,
|
88 |
+
const T* residual,
|
89 |
+
const T* gamma,
|
90 |
+
float epsilon,
|
91 |
+
int elems_per_row)
|
92 |
+
{
|
93 |
+
constexpr int T_per_load = rms::granularity / sizeof(T);
|
94 |
+
|
95 |
+
cg::thread_block tb = cg::this_thread_block();
|
96 |
+
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
|
97 |
+
|
98 |
+
// X-dimension of the block
|
99 |
+
const int block_offset = (tb.group_index().x * (maxThreads / threadsPerGroup) * elems_per_row) +
|
100 |
+
(tb.thread_index().y * elems_per_row);
|
101 |
+
const int thread_offset = tb.thread_index().x * T_per_load;
|
102 |
+
const int base_offset = block_offset + thread_offset;
|
103 |
+
const int stride = blockDim.x * T_per_load;
|
104 |
+
|
105 |
+
float var_sum = reduce::init<rop::Add, float>();
|
106 |
+
|
107 |
+
const T* input_base = vals + base_offset;
|
108 |
+
const T* residual_base = residual + base_offset;
|
109 |
+
T* res_output = res_out + base_offset;
|
110 |
+
|
111 |
+
T local_buffer[UNROLL * T_per_load];
|
112 |
+
|
113 |
+
#pragma unroll
|
114 |
+
for (int i = 0; i < UNROLL; i++) {
|
115 |
+
T* iteration_buffer = local_buffer + (i * T_per_load);
|
116 |
+
T residual_buffer[T_per_load];
|
117 |
+
|
118 |
+
const int iter_offset = i * stride + thread_offset;
|
119 |
+
const bool do_loads = (iter_offset < elems_per_row);
|
120 |
+
|
121 |
+
mem_access::load_global<rms::granularity>(
|
122 |
+
iteration_buffer, input_base + (i * stride), do_loads);
|
123 |
+
mem_access::load_global<rms::granularity>(
|
124 |
+
residual_buffer, residual_base + (i * stride), do_loads);
|
125 |
+
|
126 |
+
#pragma unroll
|
127 |
+
for (int j = 0; j < T_per_load; j++) {
|
128 |
+
iteration_buffer[j] += residual_buffer[j];
|
129 |
+
float vals_up_cast = conversion::to<float>(iteration_buffer[j]);
|
130 |
+
|
131 |
+
var_sum = reduce::element<rop::Add, float>(var_sum, vals_up_cast * vals_up_cast);
|
132 |
+
}
|
133 |
+
|
134 |
+
if (do_loads) {
|
135 |
+
mem_access::store_global<rms::granularity>(res_output + i * stride, iteration_buffer);
|
136 |
+
}
|
137 |
+
}
|
138 |
+
|
139 |
+
reduce::partitioned_block<rop::Add, threadsPerGroup>(tb, warp, var_sum);
|
140 |
+
const float var = var_sum / elems_per_row;
|
141 |
+
const T denom = conversion::to<T>(__frsqrt_rn(var + epsilon));
|
142 |
+
|
143 |
+
T* block_output = output + block_offset;
|
144 |
+
|
145 |
+
#pragma unroll
|
146 |
+
for (int i = 0; i < UNROLL; i++) {
|
147 |
+
T* iteration_buffer = local_buffer + (i * T_per_load);
|
148 |
+
const int iter_idx = i * stride + thread_offset;
|
149 |
+
const bool do_loads = (iter_idx < elems_per_row);
|
150 |
+
|
151 |
+
T gamma_local[T_per_load];
|
152 |
+
|
153 |
+
mem_access::load_global<rms::granularity>(gamma_local, gamma + iter_idx, do_loads);
|
154 |
+
|
155 |
+
#pragma unroll
|
156 |
+
for (int j = 0; j < T_per_load; j++) {
|
157 |
+
iteration_buffer[j] *= denom;
|
158 |
+
iteration_buffer[j] *= gamma_local[j];
|
159 |
+
}
|
160 |
+
|
161 |
+
if (do_loads) {
|
162 |
+
mem_access::store_global<rms::granularity>(block_output + iter_idx, iteration_buffer);
|
163 |
+
}
|
164 |
+
}
|
165 |
+
}
|
166 |
+
|
167 |
+
#define LAUNCH_RMS_NORM(UNROLL, threadsPerGroup, maxThreads) \
|
168 |
+
rms_norm<T, UNROLL, threadsPerGroup, maxThreads> \
|
169 |
+
<<<grid, block, 0, stream>>>(norm_output, vals, gamma, epsilon, elems_per_row);
|
170 |
+
|
171 |
+
#define LAUNCH_PRE_RMS_NORM(UNROLL, threadsPerGroup, maxThreads) \
|
172 |
+
pre_rms_norm<T, UNROLL, threadsPerGroup, maxThreads><<<grid, block, 0, stream>>>( \
|
173 |
+
norm_output, res_output, vals, residual, gamma, epsilon, elems_per_row);
|
174 |
+
|
175 |
+
#define LAUNCH_ALL_RMS_NORM(UNROLL, threadsPerGroup, maxThreads) \
|
176 |
+
if (pre_norm) { \
|
177 |
+
LAUNCH_PRE_RMS_NORM(UNROLL, threadsPerGroup, maxThreads) \
|
178 |
+
} else { \
|
179 |
+
LAUNCH_RMS_NORM(UNROLL, threadsPerGroup, maxThreads) \
|
180 |
+
}
|
181 |
+
|
182 |
+
template <typename T>
|
183 |
+
void launch_rms_norm(T* norm_output,
|
184 |
+
T* res_output,
|
185 |
+
const T* vals,
|
186 |
+
const T* residual,
|
187 |
+
const T* gamma,
|
188 |
+
float epsilon,
|
189 |
+
int rows,
|
190 |
+
int elems_per_row,
|
191 |
+
cudaStream_t stream)
|
192 |
+
{
|
193 |
+
// 8 for __half, 4 for float
|
194 |
+
constexpr int T_per_load = rms::granularity / sizeof(T);
|
195 |
+
constexpr int maxThreads = 256;
|
196 |
+
constexpr int internalUnroll = sizeof(T) == 4 ? 4 : 2;
|
197 |
+
|
198 |
+
const bool is_subblock_schedule = (elems_per_row <= 128) ? true : false;
|
199 |
+
const int h_per_step = is_subblock_schedule ? T_per_load : T_per_load * internalUnroll;
|
200 |
+
|
201 |
+
// Scheduling concern: may be slightly faster for some inputs to assign multiple stages of
|
202 |
+
// warp-sized blocks rather than stepping up to 64/96 threads
|
203 |
+
const int one_step_threads = next_pow2((elems_per_row + h_per_step - 1) / h_per_step);
|
204 |
+
const int threads_per_group = (one_step_threads < maxThreads) ? one_step_threads : maxThreads;
|
205 |
+
|
206 |
+
const int groups_per_block_max =
|
207 |
+
is_subblock_schedule ? (maxThreads + threads_per_group - 1) / threads_per_group : 1;
|
208 |
+
const int groups_per_block = (rows < groups_per_block_max) ? rows : groups_per_block_max;
|
209 |
+
const int groups_launch = (groups_per_block + rows - 1) / groups_per_block;
|
210 |
+
|
211 |
+
dim3 block(threads_per_group, groups_per_block);
|
212 |
+
dim3 grid(groups_launch);
|
213 |
+
|
214 |
+
const int elems_per_step = threads_per_group * h_per_step;
|
215 |
+
const int external_unRoll = (elems_per_row + elems_per_step - 1) / elems_per_step;
|
216 |
+
|
217 |
+
bool pre_norm = (residual == nullptr) ? false : true;
|
218 |
+
|
219 |
+
if (is_subblock_schedule) {
|
220 |
+
// <=128
|
221 |
+
if (threads_per_group == 1) {
|
222 |
+
LAUNCH_ALL_RMS_NORM(1, 1, maxThreads);
|
223 |
+
} else if (threads_per_group == 2) {
|
224 |
+
LAUNCH_ALL_RMS_NORM(1, 2, maxThreads);
|
225 |
+
} else if (threads_per_group == 4) {
|
226 |
+
LAUNCH_ALL_RMS_NORM(1, 4, maxThreads);
|
227 |
+
} else if (threads_per_group == 8) {
|
228 |
+
LAUNCH_ALL_RMS_NORM(1, 8, maxThreads);
|
229 |
+
} else if (threads_per_group == 16) {
|
230 |
+
LAUNCH_ALL_RMS_NORM(1, 16, maxThreads);
|
231 |
+
}
|
232 |
+
} else if (external_unRoll == 1) {
|
233 |
+
// 129 - 4096 elems
|
234 |
+
// (this can launch with 1-7 warps as well)
|
235 |
+
LAUNCH_ALL_RMS_NORM(1 * internalUnroll, maxThreads, maxThreads);
|
236 |
+
} else if (external_unRoll == 2) {
|
237 |
+
// 4097 - 8192 elems
|
238 |
+
LAUNCH_ALL_RMS_NORM(2 * internalUnroll, maxThreads, maxThreads);
|
239 |
+
} else if (external_unRoll == 3) {
|
240 |
+
// 8193 - 12288 elems
|
241 |
+
LAUNCH_ALL_RMS_NORM(3 * internalUnroll, maxThreads, maxThreads);
|
242 |
+
} else if (external_unRoll == 4) {
|
243 |
+
// 12289 - 16384 elems
|
244 |
+
LAUNCH_ALL_RMS_NORM(4 * internalUnroll, maxThreads, maxThreads);
|
245 |
+
}
|
246 |
+
}
|
247 |
+
|
248 |
+
#define INSTANTIATE_LAUNCH_RMS_NORM(T) \
|
249 |
+
template void launch_rms_norm<T>(T * norm_output, \
|
250 |
+
T * res_output, \
|
251 |
+
const T* vals, \
|
252 |
+
const T* residual, \
|
253 |
+
const T* gamma, \
|
254 |
+
float epsilon, \
|
255 |
+
int rows, \
|
256 |
+
int elems_per_row, \
|
257 |
+
cudaStream_t stream);
|
258 |
+
|
259 |
+
INSTANTIATE_LAUNCH_RMS_NORM(float)
|
260 |
+
INSTANTIATE_LAUNCH_RMS_NORM(__half)
|
261 |
+
#ifdef BF16_AVAILABLE
|
262 |
+
INSTANTIATE_LAUNCH_RMS_NORM(__nv_bfloat16)
|
263 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/transformer/inference/csrc/transform.cu
ADDED
@@ -0,0 +1,727 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#ifndef __HIP_PLATFORM_AMD__
|
7 |
+
#include <cuda_profiler_api.h>
|
8 |
+
#endif
|
9 |
+
#include "conversion_utils.h"
|
10 |
+
#include "inference_cuda_layers.h"
|
11 |
+
namespace cg = cooperative_groups;
|
12 |
+
|
13 |
+
// only used to avoid compilation error due to lack of definition.
|
14 |
+
#ifndef BF16_AVAILABLE
|
15 |
+
using __nv_bfloat162 = __half2;
|
16 |
+
#endif
|
17 |
+
|
18 |
+
// Bias add
|
19 |
+
|
20 |
+
__global__ void bias_add_transform_0213(float* output,
|
21 |
+
float* k_cache,
|
22 |
+
float* v_cache,
|
23 |
+
const float* vals,
|
24 |
+
const float* bias,
|
25 |
+
int hidden_dim,
|
26 |
+
int seq_length,
|
27 |
+
unsigned seq_offset,
|
28 |
+
int heads,
|
29 |
+
int head_stride,
|
30 |
+
int num_kv,
|
31 |
+
int rotary_dim,
|
32 |
+
bool rotate_half,
|
33 |
+
bool rotate_every_two,
|
34 |
+
int head_ext,
|
35 |
+
int max_out_tokens,
|
36 |
+
float rope_theta)
|
37 |
+
{
|
38 |
+
int d0_stride = hidden_dim * seq_length;
|
39 |
+
int d1_stride = hidden_dim;
|
40 |
+
int d2_stride = hidden_dim / heads;
|
41 |
+
|
42 |
+
int d0 = blockIdx.x; // Batch
|
43 |
+
int d1 = blockIdx.y; // Sequence ID (0-127)
|
44 |
+
int cnt = blockIdx.z / head_ext; // Hidden count
|
45 |
+
int d2 = threadIdx.y + (blockIdx.z % head_ext) * (heads / head_ext); // Head (0-11)
|
46 |
+
int d3 = threadIdx.x; // Values (groups of 4)
|
47 |
+
|
48 |
+
int d2_out_stride = d2_stride * (cnt == 0 ? seq_length : max_out_tokens);
|
49 |
+
int d0_out_stride = hidden_dim * (cnt == 0 ? seq_length : max_out_tokens);
|
50 |
+
|
51 |
+
const float4* vals_vec = reinterpret_cast<const float4*>(vals);
|
52 |
+
float4* output_vec =
|
53 |
+
reinterpret_cast<float4*>(cnt == 0 ? output : (cnt == 1 ? k_cache : v_cache));
|
54 |
+
|
55 |
+
vals_vec += (d0 * (d1_stride + num_kv * 2 * d2_stride) * seq_length);
|
56 |
+
vals_vec += d1 * (d1_stride + num_kv * 2 * d2_stride);
|
57 |
+
vals_vec += (cnt == 0 ? 0 : d1_stride) + (cnt == 0 ? 0 : (cnt - 1) * num_kv * d2_stride);
|
58 |
+
vals_vec += ((cnt == 0 ? d2 : (d2 / head_stride)) * d2_stride);
|
59 |
+
|
60 |
+
output_vec += (d1 * d2_stride);
|
61 |
+
output_vec += (d0 * d0_out_stride);
|
62 |
+
output_vec += (d2 * d2_out_stride);
|
63 |
+
|
64 |
+
unsigned seq_id = d1 + seq_offset;
|
65 |
+
float4 inputs = vals_vec[d3];
|
66 |
+
int lane = d3 & 0x1f;
|
67 |
+
if (cnt < 2 && rotary_dim > 0 && d3 < rotary_dim) {
|
68 |
+
float4 q = vals_vec[d3];
|
69 |
+
float2* q_f = reinterpret_cast<float2*>(&q);
|
70 |
+
if (rotate_every_two) {
|
71 |
+
#pragma unroll
|
72 |
+
for (int o = 0; o < 2; o++) {
|
73 |
+
float inv_freq = (float)(((d3 << 1) + o) * 2) / (float)(rotary_dim << 2);
|
74 |
+
inv_freq = 1.0 / powf(rope_theta, inv_freq) * (float)seq_id;
|
75 |
+
q_f[o].x = (-1.0 * q_f[o].y * sinf(inv_freq) + q_f[o].x * cosf(inv_freq));
|
76 |
+
q_f[o].y = (q_f[o].x * sinf(inv_freq) + q_f[o].y * cosf(inv_freq));
|
77 |
+
}
|
78 |
+
}
|
79 |
+
output_vec[d3] = q;
|
80 |
+
} else
|
81 |
+
output_vec[d3] = inputs;
|
82 |
+
}
|
83 |
+
|
84 |
+
#define ATTN_H 3
|
85 |
+
#define MAX_SEQ_LINE 10
|
86 |
+
|
87 |
+
template <typename T>
|
88 |
+
__global__ void bias_add_transform_0213(T* output, // q
|
89 |
+
T* k_cache,
|
90 |
+
T* v_cache,
|
91 |
+
const T* vals, // qkv
|
92 |
+
const T* bias,
|
93 |
+
int hidden_dim,
|
94 |
+
int seq_length,
|
95 |
+
unsigned seq_offset,
|
96 |
+
int all_tokens,
|
97 |
+
int heads,
|
98 |
+
int head_stride,
|
99 |
+
int num_kv,
|
100 |
+
int rotary_dim,
|
101 |
+
bool rotate_half,
|
102 |
+
bool rotate_every_two,
|
103 |
+
int head_ext,
|
104 |
+
int max_out_tokens,
|
105 |
+
float rope_theta)
|
106 |
+
{
|
107 |
+
using T2 =
|
108 |
+
typename std::conditional<std::is_same<T, __half>::value, __half2, __nv_bfloat162>::type;
|
109 |
+
unsigned half_dim = (rotary_dim << 3) >> 1;
|
110 |
+
int d0_stride = hidden_dim * seq_length;
|
111 |
+
int d1_stride = hidden_dim;
|
112 |
+
int d2_stride = hidden_dim / heads;
|
113 |
+
|
114 |
+
int d0 = blockIdx.x; // Batch
|
115 |
+
int d1 = blockIdx.y; // Sequence ID (0-127)
|
116 |
+
int cnt = blockIdx.z / head_ext; // Hidden count
|
117 |
+
int d2 = threadIdx.y + (blockIdx.z % head_ext) * (heads / head_ext); // Head (0-11)
|
118 |
+
int d3 = threadIdx.x; // Values (groups of 4)
|
119 |
+
|
120 |
+
int d2_out_stride = d2_stride * (cnt == 0 ? seq_length : max_out_tokens);
|
121 |
+
int d0_out_stride = hidden_dim * (cnt == 0 ? seq_length : max_out_tokens);
|
122 |
+
|
123 |
+
float4 vals_arr;
|
124 |
+
float4 output_arr;
|
125 |
+
|
126 |
+
T2* vals_half = reinterpret_cast<T2*>(&vals_arr);
|
127 |
+
T2* output_half = reinterpret_cast<T2*>(&output_arr);
|
128 |
+
|
129 |
+
const float4* vals_vec = reinterpret_cast<const float4*>(vals);
|
130 |
+
float4* output_vec =
|
131 |
+
reinterpret_cast<float4*>(cnt == 0 ? output : (cnt == 1 ? k_cache : v_cache));
|
132 |
+
|
133 |
+
vals_vec += (d0 * (d1_stride + num_kv * 2 * d2_stride) * seq_length);
|
134 |
+
vals_vec += (d1 * (d1_stride + num_kv * 2 * d2_stride));
|
135 |
+
vals_vec += (cnt == 0 ? 0 : d1_stride) + (cnt == 0 ? 0 : (cnt - 1) * num_kv * d2_stride);
|
136 |
+
vals_vec += ((cnt == 0 ? d2 : (d2 / head_stride)) * d2_stride);
|
137 |
+
|
138 |
+
output_vec += (d1 * d2_stride);
|
139 |
+
output_vec += (d0 * d0_out_stride);
|
140 |
+
output_vec += (d2 * d2_out_stride);
|
141 |
+
|
142 |
+
unsigned seq_id = d1 + seq_offset;
|
143 |
+
|
144 |
+
int lane = d3 & 0x1f;
|
145 |
+
if (cnt < 2 && rotary_dim > 0 && d3 < rotary_dim) {
|
146 |
+
float4 q = vals_vec[d3];
|
147 |
+
T2* q_h = reinterpret_cast<T2*>(&q);
|
148 |
+
if (rotate_every_two) {
|
149 |
+
#pragma unroll
|
150 |
+
for (int o = 0; o < 4; o++) {
|
151 |
+
float inv_freq = (float)(((d3 << 2) + o) * 2) / (float)(rotary_dim << 3);
|
152 |
+
inv_freq = 1.0 / powf(rope_theta, inv_freq) * (float)seq_id;
|
153 |
+
float q_data[2];
|
154 |
+
q_data[0] = conversion::to<float>(q_h[o].x);
|
155 |
+
q_data[1] = conversion::to<float>(q_h[o].y);
|
156 |
+
q_h[o].x = conversion::to<T>(-1.0 * q_data[1] * sinf(inv_freq) +
|
157 |
+
q_data[0] * cosf(inv_freq));
|
158 |
+
q_h[o].y =
|
159 |
+
conversion::to<T>(q_data[0] * sinf(inv_freq) + q_data[1] * cosf(inv_freq));
|
160 |
+
}
|
161 |
+
}
|
162 |
+
output_vec[d3] = q;
|
163 |
+
} else
|
164 |
+
output_vec[d3] = vals_vec[d3];
|
165 |
+
}
|
166 |
+
|
167 |
+
// [B S C*H] - > C * [B A S N]
|
168 |
+
template <>
|
169 |
+
void launch_bias_add_transform_0213<float>(float* output,
|
170 |
+
float* k_cache,
|
171 |
+
float* v_cache,
|
172 |
+
const float* vals,
|
173 |
+
const float* bias,
|
174 |
+
int batch_size,
|
175 |
+
int seq_length,
|
176 |
+
unsigned seq_offset,
|
177 |
+
int all_tokens,
|
178 |
+
int hidden_dim,
|
179 |
+
int heads,
|
180 |
+
int num_kv,
|
181 |
+
int rotary_dim,
|
182 |
+
bool rotate_half,
|
183 |
+
bool rotate_every_two,
|
184 |
+
cudaStream_t stream,
|
185 |
+
int trans_count,
|
186 |
+
int max_out_tokens,
|
187 |
+
float rope_theta)
|
188 |
+
{
|
189 |
+
hidden_dim >>= 2;
|
190 |
+
int head_ext = (hidden_dim - 1) / MAX_THREADS + 1;
|
191 |
+
|
192 |
+
dim3 block_dim(hidden_dim / heads, (heads / head_ext));
|
193 |
+
dim3 grid_dim(batch_size, seq_length, (trans_count * head_ext));
|
194 |
+
|
195 |
+
bias_add_transform_0213<<<grid_dim, block_dim, 0, stream>>>(output,
|
196 |
+
k_cache,
|
197 |
+
v_cache,
|
198 |
+
vals,
|
199 |
+
bias,
|
200 |
+
hidden_dim,
|
201 |
+
seq_length,
|
202 |
+
seq_offset,
|
203 |
+
heads,
|
204 |
+
num_kv > 0 ? (heads / num_kv) : 1,
|
205 |
+
num_kv > 0 ? num_kv : heads,
|
206 |
+
rotary_dim >> 2,
|
207 |
+
rotate_half,
|
208 |
+
rotate_every_two,
|
209 |
+
head_ext,
|
210 |
+
max_out_tokens,
|
211 |
+
rope_theta);
|
212 |
+
}
|
213 |
+
|
214 |
+
template <typename T>
|
215 |
+
void launch_bias_add_transform_0213(T* output,
|
216 |
+
T* k_cache,
|
217 |
+
T* v_cache,
|
218 |
+
const T* vals,
|
219 |
+
const T* bias,
|
220 |
+
int batch_size,
|
221 |
+
int seq_length,
|
222 |
+
unsigned seq_offset,
|
223 |
+
int all_tokens,
|
224 |
+
int hidden_dim,
|
225 |
+
int heads,
|
226 |
+
int num_kv,
|
227 |
+
int rotary_dim,
|
228 |
+
bool rotate_half,
|
229 |
+
bool rotate_every_two,
|
230 |
+
cudaStream_t stream,
|
231 |
+
int trans_count,
|
232 |
+
int max_out_tokens,
|
233 |
+
float rope_theta)
|
234 |
+
{
|
235 |
+
hidden_dim >>= 3;
|
236 |
+
int head_ext = 1; // (hidden_dim - 1) / MAX_THREADS + 1;
|
237 |
+
dim3 block_dim(hidden_dim / heads, (heads / head_ext));
|
238 |
+
dim3 grid_dim(batch_size, seq_length, (trans_count * head_ext));
|
239 |
+
bias_add_transform_0213<<<grid_dim, block_dim, 0, stream>>>(output,
|
240 |
+
k_cache,
|
241 |
+
v_cache,
|
242 |
+
vals,
|
243 |
+
bias,
|
244 |
+
hidden_dim,
|
245 |
+
seq_length,
|
246 |
+
seq_offset,
|
247 |
+
all_tokens,
|
248 |
+
heads,
|
249 |
+
num_kv > 0 ? (heads / num_kv) : 1,
|
250 |
+
num_kv > 0 ? num_kv : heads,
|
251 |
+
rotary_dim >> 3,
|
252 |
+
rotate_half,
|
253 |
+
rotate_every_two,
|
254 |
+
head_ext,
|
255 |
+
max_out_tokens,
|
256 |
+
rope_theta);
|
257 |
+
}
|
258 |
+
|
259 |
+
#define INSTANTIATE_LAUNCH_BIAS_ADD_TRANSFORM_0213(T) \
|
260 |
+
template void launch_bias_add_transform_0213<T>(T*, \
|
261 |
+
T*, \
|
262 |
+
T*, \
|
263 |
+
const T*, \
|
264 |
+
const T*, \
|
265 |
+
int, \
|
266 |
+
int, \
|
267 |
+
unsigned, \
|
268 |
+
int, \
|
269 |
+
int, \
|
270 |
+
int, \
|
271 |
+
int, \
|
272 |
+
int, \
|
273 |
+
bool, \
|
274 |
+
bool, \
|
275 |
+
cudaStream_t, \
|
276 |
+
int, \
|
277 |
+
int, \
|
278 |
+
float)
|
279 |
+
|
280 |
+
#ifdef BF16_AVAILABLE
|
281 |
+
INSTANTIATE_LAUNCH_BIAS_ADD_TRANSFORM_0213(__nv_bfloat16);
|
282 |
+
#endif
|
283 |
+
INSTANTIATE_LAUNCH_BIAS_ADD_TRANSFORM_0213(__half);
|
284 |
+
|
285 |
+
// Bias add
|
286 |
+
|
287 |
+
__global__ void pad_add_transform_0213(float* output,
|
288 |
+
const float* vals,
|
289 |
+
int hidden_dim,
|
290 |
+
int seq_length,
|
291 |
+
int padded_seq_len,
|
292 |
+
int heads,
|
293 |
+
int padded_head_size)
|
294 |
+
{
|
295 |
+
}
|
296 |
+
|
297 |
+
template <typename T>
|
298 |
+
__global__ void pad_add_transform_0213(T* output,
|
299 |
+
const T* vals,
|
300 |
+
int hidden_dim,
|
301 |
+
int seq_length,
|
302 |
+
int padded_seq_len,
|
303 |
+
int heads,
|
304 |
+
int padded_head_size)
|
305 |
+
{
|
306 |
+
using T2 =
|
307 |
+
typename std::conditional<std::is_same<T, __half>::value, __half2, __nv_bfloat162>::type;
|
308 |
+
float4 ZERO;
|
309 |
+
const T2 zero_h = conversion::to<T2>(0.f);
|
310 |
+
T2* ZERO_h = reinterpret_cast<T2*>(&ZERO);
|
311 |
+
#pragma unroll
|
312 |
+
for (int i = 0; i < 4; i++) ZERO_h[i] = zero_h;
|
313 |
+
|
314 |
+
int d0_stride = hidden_dim * seq_length;
|
315 |
+
int d1_stride = hidden_dim;
|
316 |
+
int d2_stride = hidden_dim / heads;
|
317 |
+
|
318 |
+
int d0 = blockIdx.x; // Batch
|
319 |
+
int d1 = blockIdx.y * blockDim.z + threadIdx.z; // Sequence ID (0-127)
|
320 |
+
int d2 = threadIdx.y; // Head (0-11)
|
321 |
+
int d3 = threadIdx.x; // Values (groups of 4)
|
322 |
+
|
323 |
+
int d2_out_stride = padded_head_size * padded_seq_len;
|
324 |
+
int d0_out_stride = heads * d2_out_stride;
|
325 |
+
|
326 |
+
const float4* vals_vec = reinterpret_cast<const float4*>(vals);
|
327 |
+
float4* output_vec = reinterpret_cast<float4*>(output);
|
328 |
+
|
329 |
+
vals_vec += (d0 * d0_stride);
|
330 |
+
vals_vec += (d1 * d1_stride);
|
331 |
+
vals_vec += (d2 * d2_stride);
|
332 |
+
|
333 |
+
output_vec += (d1 * padded_head_size);
|
334 |
+
output_vec += (d0 * d0_out_stride);
|
335 |
+
output_vec += (d2 * d2_out_stride);
|
336 |
+
|
337 |
+
if (d3 < d2_stride && d1 < seq_length)
|
338 |
+
output_vec[d3] = vals_vec[d3];
|
339 |
+
else
|
340 |
+
output_vec[d3] = ZERO;
|
341 |
+
}
|
342 |
+
|
343 |
+
// [B S C*H] - > C * [B A S N]
|
344 |
+
template <>
|
345 |
+
void launch_pad_add_transform_0213<float>(float* output,
|
346 |
+
const float* vals,
|
347 |
+
int batch_size,
|
348 |
+
int hidden_dim,
|
349 |
+
int seq_length,
|
350 |
+
int padded_seq_len,
|
351 |
+
int heads,
|
352 |
+
int padded_head_size,
|
353 |
+
cudaStream_t stream)
|
354 |
+
{
|
355 |
+
}
|
356 |
+
|
357 |
+
template <typename T>
|
358 |
+
void launch_pad_add_transform_0213(T* output,
|
359 |
+
const T* vals,
|
360 |
+
int batch_size,
|
361 |
+
int hidden_dim,
|
362 |
+
int seq_length,
|
363 |
+
int padded_seq_len,
|
364 |
+
int heads,
|
365 |
+
int padded_head_size,
|
366 |
+
cudaStream_t stream)
|
367 |
+
{
|
368 |
+
hidden_dim >>= 3;
|
369 |
+
dim3 block_dim((padded_head_size >> 3), heads, 2);
|
370 |
+
dim3 grid_dim(batch_size, padded_seq_len / 2);
|
371 |
+
pad_add_transform_0213<<<grid_dim, block_dim, 0, stream>>>(
|
372 |
+
output, vals, hidden_dim, seq_length, padded_seq_len, heads, padded_head_size >> 3);
|
373 |
+
}
|
374 |
+
|
375 |
+
#define INSTANTIATE_LAUNCH_PAD_ADD_TRANSFORM_0213_SIMPLE(T) \
|
376 |
+
template void launch_pad_add_transform_0213<T>( \
|
377 |
+
T*, const T*, int, int, int, int, int, int, cudaStream_t);
|
378 |
+
|
379 |
+
INSTANTIATE_LAUNCH_PAD_ADD_TRANSFORM_0213_SIMPLE(__half);
|
380 |
+
#ifdef BF16_AVAILABLE
|
381 |
+
INSTANTIATE_LAUNCH_PAD_ADD_TRANSFORM_0213_SIMPLE(__nv_bfloat16);
|
382 |
+
#endif
|
383 |
+
|
384 |
+
// Bias add
|
385 |
+
template <typename T>
|
386 |
+
__global__ void bias_add_transform_0213(T* output,
|
387 |
+
const T* vals,
|
388 |
+
const T* bias,
|
389 |
+
int hidden_dim,
|
390 |
+
int seq_length,
|
391 |
+
int heads,
|
392 |
+
int head_ext);
|
393 |
+
|
394 |
+
template <>
|
395 |
+
__global__ void bias_add_transform_0213<float>(float* output,
|
396 |
+
const float* vals,
|
397 |
+
const float* bias,
|
398 |
+
int hidden_dim,
|
399 |
+
int seq_length,
|
400 |
+
int heads,
|
401 |
+
int head_ext)
|
402 |
+
{
|
403 |
+
int d0_stride = hidden_dim * seq_length;
|
404 |
+
int d1_stride = hidden_dim;
|
405 |
+
int d2_stride = hidden_dim / heads;
|
406 |
+
|
407 |
+
int d0_out_stride = d0_stride;
|
408 |
+
int d1_out_stride = d2_stride;
|
409 |
+
int d2_out_stride = d2_stride * seq_length;
|
410 |
+
|
411 |
+
int d0 = blockIdx.x; // Batch
|
412 |
+
int d1 = blockIdx.y; // Sequence ID (0-127)
|
413 |
+
int cnt = blockIdx.z / head_ext; // Hidden count
|
414 |
+
int d2 = threadIdx.y + (blockIdx.z % head_ext) * (heads / head_ext); // Head (0-11)
|
415 |
+
int d3 = threadIdx.x; // Values (groups of 4)
|
416 |
+
|
417 |
+
const float4* vals_vec = reinterpret_cast<const float4*>(vals);
|
418 |
+
const float4* bias_vec = reinterpret_cast<const float4*>(bias);
|
419 |
+
float4* output_vec = reinterpret_cast<float4*>(output);
|
420 |
+
|
421 |
+
float4 inputs = vals_vec[d0 * d0_stride * (gridDim.z / head_ext) + cnt * d1_stride +
|
422 |
+
d1 * d1_stride * (gridDim.z / head_ext) + d2 * d2_stride + d3];
|
423 |
+
float4 biases = bias_vec[cnt * d1_stride + d2 * d2_stride + d3];
|
424 |
+
|
425 |
+
float4 outputs;
|
426 |
+
outputs.x = inputs.x + biases.x;
|
427 |
+
outputs.y = inputs.y + biases.y;
|
428 |
+
outputs.z = inputs.z + biases.z;
|
429 |
+
outputs.w = inputs.w + biases.w;
|
430 |
+
|
431 |
+
output_vec[cnt * d0_out_stride * gridDim.x + d0 * d0_out_stride + d1 * d1_out_stride +
|
432 |
+
d2 * d2_out_stride + d3] = outputs;
|
433 |
+
}
|
434 |
+
|
435 |
+
template <typename T>
|
436 |
+
__global__ void bias_add_transform_0213(T* output,
|
437 |
+
const T* vals,
|
438 |
+
const T* bias,
|
439 |
+
int hidden_dim,
|
440 |
+
int seq_length,
|
441 |
+
int heads,
|
442 |
+
int head_ext)
|
443 |
+
{
|
444 |
+
using T2 =
|
445 |
+
typename std::conditional<std::is_same<T, __half>::value, __half2, __nv_bfloat162>::type;
|
446 |
+
int d0_stride = hidden_dim * seq_length;
|
447 |
+
int d1_stride = hidden_dim;
|
448 |
+
int d2_stride = hidden_dim / heads;
|
449 |
+
|
450 |
+
int d2_out_stride = d2_stride * seq_length;
|
451 |
+
|
452 |
+
int d0 = blockIdx.x; // Batch
|
453 |
+
int d1 = blockIdx.y; // Sequence ID (0-127)
|
454 |
+
int cnt = blockIdx.z / head_ext; // Hidden count
|
455 |
+
int d2 = threadIdx.y + (blockIdx.z % head_ext) * (heads / head_ext); // Head (0-11)
|
456 |
+
int d3 = threadIdx.x; // Values (groups of 4)
|
457 |
+
|
458 |
+
float4 vals_arr;
|
459 |
+
float4 bias_arr;
|
460 |
+
float4 output_arr;
|
461 |
+
T2* vals_half = reinterpret_cast<T2*>(&vals_arr);
|
462 |
+
T2* bias_half = reinterpret_cast<T2*>(&bias_arr);
|
463 |
+
T2* output_half = reinterpret_cast<T2*>(&output_arr);
|
464 |
+
|
465 |
+
const float4* vals_vec = reinterpret_cast<const float4*>(vals);
|
466 |
+
const float4* bias_vec = reinterpret_cast<const float4*>(bias);
|
467 |
+
float4* output_vec = reinterpret_cast<float4*>(output);
|
468 |
+
|
469 |
+
vals_vec += (d0 * d0_stride * (gridDim.z / head_ext));
|
470 |
+
vals_vec += (d1 * d1_stride * (gridDim.z / head_ext));
|
471 |
+
vals_vec += (cnt * d1_stride);
|
472 |
+
vals_vec += (d2 * d2_stride);
|
473 |
+
|
474 |
+
bias_vec += (cnt * d1_stride);
|
475 |
+
bias_vec += (d2 * d2_stride);
|
476 |
+
|
477 |
+
output_vec += (cnt * d0_stride * gridDim.x);
|
478 |
+
output_vec += (d1 * d2_stride);
|
479 |
+
output_vec += (d0 * d0_stride);
|
480 |
+
output_vec += (d2 * d2_out_stride);
|
481 |
+
|
482 |
+
bias_arr = bias_vec[d3];
|
483 |
+
vals_arr = vals_vec[d3];
|
484 |
+
|
485 |
+
output_half[0] = vals_half[0] + bias_half[0];
|
486 |
+
output_half[1] = vals_half[1] + bias_half[1];
|
487 |
+
output_half[2] = vals_half[2] + bias_half[2];
|
488 |
+
output_half[3] = vals_half[3] + bias_half[3];
|
489 |
+
output_vec[d3] = output_arr;
|
490 |
+
}
|
491 |
+
|
492 |
+
template <typename T>
|
493 |
+
__global__ void bias_add_transform_0213_v2(T* output,
|
494 |
+
const T* vals,
|
495 |
+
const T* bias,
|
496 |
+
int hidden_dim,
|
497 |
+
int seq_length,
|
498 |
+
int heads)
|
499 |
+
{
|
500 |
+
using T2 =
|
501 |
+
typename std::conditional<std::is_same<T, __half>::value, __half2, __nv_bfloat162>::type;
|
502 |
+
__shared__ float4 in_data[3072];
|
503 |
+
|
504 |
+
int d0_stride = hidden_dim * seq_length;
|
505 |
+
int d1_stride = hidden_dim;
|
506 |
+
int d2_stride = hidden_dim / heads;
|
507 |
+
int iteration_stride = d1_stride * blockDim.z; // Hidden * 3 / 8
|
508 |
+
int batch_stride = d0_stride * blockDim.z; // Hidden * S * 3 / 8
|
509 |
+
|
510 |
+
int d0_out_stride = d0_stride;
|
511 |
+
int d1_out_stride = d2_stride;
|
512 |
+
int d2_out_stride = d2_stride * seq_length;
|
513 |
+
|
514 |
+
int d0 = blockIdx.x; // Batch
|
515 |
+
int d1 = blockIdx.y; // Sequence ID (0-127)
|
516 |
+
int cnt = threadIdx.z; // blockIdx.z; // Hidden count
|
517 |
+
int d2 = threadIdx.y; // Head (0-11)
|
518 |
+
int d3 = threadIdx.x; // Values (groups of 4)
|
519 |
+
|
520 |
+
float4 vals_arr[1];
|
521 |
+
float4 bias_arr[1];
|
522 |
+
float4 output_arr[1];
|
523 |
+
T2* vals_half = reinterpret_cast<T2*>(vals_arr);
|
524 |
+
T2* bias_half = reinterpret_cast<T2*>(bias_arr);
|
525 |
+
T2* output_half = reinterpret_cast<T2*>(output_arr);
|
526 |
+
|
527 |
+
const float4* vals_vec = reinterpret_cast<const float4*>(vals);
|
528 |
+
const float4* bias_vec = reinterpret_cast<const float4*>(bias);
|
529 |
+
float4* output_vec = reinterpret_cast<float4*>(output);
|
530 |
+
|
531 |
+
int iter_index = cnt * d1_stride + d2 * d2_stride + d3;
|
532 |
+
int input_offset = d0 * batch_stride + d1 * (iteration_stride << 1);
|
533 |
+
bias_arr[0] = bias_vec[iter_index];
|
534 |
+
|
535 |
+
#pragma unroll
|
536 |
+
for (int iter = 0; iter < 2; iter++) {
|
537 |
+
int iter_id = iter * iteration_stride + iter_index;
|
538 |
+
vals_arr[0] = vals_vec[input_offset + iter_id];
|
539 |
+
|
540 |
+
output_half[0] = vals_half[0] + bias_half[0];
|
541 |
+
output_half[1] = vals_half[1] + bias_half[1];
|
542 |
+
output_half[2] = vals_half[2] + bias_half[2];
|
543 |
+
output_half[3] = vals_half[3] + bias_half[3];
|
544 |
+
|
545 |
+
in_data[iter_id] = output_arr[0];
|
546 |
+
}
|
547 |
+
__syncthreads();
|
548 |
+
|
549 |
+
iteration_stride = blockDim.z * (blockDim.y >> 1);
|
550 |
+
int matrix_stride = (d0_out_stride * gridDim.x);
|
551 |
+
int head_count = (d2 >> 1) + cnt * (blockDim.y >> 1);
|
552 |
+
|
553 |
+
int out_index = d0 * d0_out_stride + d1 * (d1_out_stride << 1) + d3 + (d2 % 2) * d2_stride;
|
554 |
+
|
555 |
+
#pragma unroll
|
556 |
+
for (int iter = 0; iter < 2; iter++) {
|
557 |
+
int iter_row = (iter * iteration_stride) + head_count;
|
558 |
+
int iter_offset =
|
559 |
+
(iter_row % blockDim.y) * d2_out_stride + (iter_row / blockDim.y) * matrix_stride;
|
560 |
+
output_vec[out_index + iter_offset] =
|
561 |
+
in_data[iter_row * d2_stride + d3 + (d2 % 2) * (d1_stride * blockDim.z)];
|
562 |
+
}
|
563 |
+
}
|
564 |
+
|
565 |
+
template <typename T>
|
566 |
+
__global__ void transform4d_0213(T* out,
|
567 |
+
const T* in,
|
568 |
+
int heads,
|
569 |
+
int seq_length,
|
570 |
+
int hidden_dim,
|
571 |
+
int head_ext);
|
572 |
+
|
573 |
+
template <>
|
574 |
+
__global__ void transform4d_0213<float>(float* out,
|
575 |
+
const float* in,
|
576 |
+
int heads,
|
577 |
+
int seq_length,
|
578 |
+
int hidden_dim,
|
579 |
+
int head_ext)
|
580 |
+
{
|
581 |
+
int d0_stride = hidden_dim * seq_length;
|
582 |
+
int d1_stride = d0_stride / heads;
|
583 |
+
int d2_stride = hidden_dim / heads;
|
584 |
+
|
585 |
+
int d0_out_stride = d0_stride;
|
586 |
+
int d1_out_stride = d2_stride;
|
587 |
+
int d2_out_stride = hidden_dim;
|
588 |
+
|
589 |
+
int d0 = blockIdx.x; // Batch
|
590 |
+
int d1 = blockIdx.y / ((seq_length - 1) / blockDim.y + 1); // Head
|
591 |
+
int d2 = (threadIdx.y + blockDim.y * blockIdx.y) % seq_length;
|
592 |
+
int cnt = blockIdx.z;
|
593 |
+
int d3 = threadIdx.x; // Values (groups of 8)
|
594 |
+
|
595 |
+
if (d2 < seq_length) {
|
596 |
+
const float4* in_vec = reinterpret_cast<const float4*>(in);
|
597 |
+
float4* out_vec = reinterpret_cast<float4*>(out);
|
598 |
+
|
599 |
+
float4 vals_vec = in_vec[cnt * d0_stride * gridDim.x + d0 * d0_stride + d1 * d1_stride +
|
600 |
+
d2 * d2_stride + d3];
|
601 |
+
out_vec[d0 * d0_out_stride * gridDim.z + cnt * d2_out_stride + d1 * d1_out_stride +
|
602 |
+
d2 * d2_out_stride * gridDim.z + d3] = vals_vec;
|
603 |
+
}
|
604 |
+
}
|
605 |
+
|
606 |
+
template <typename T>
|
607 |
+
__global__ void transform4d_0213(T* out,
|
608 |
+
const T* in,
|
609 |
+
int heads,
|
610 |
+
int seq_length,
|
611 |
+
int hidden_dim,
|
612 |
+
int head_ext)
|
613 |
+
{
|
614 |
+
int d0_stride = hidden_dim * (seq_length / head_ext);
|
615 |
+
int d1_stride = hidden_dim;
|
616 |
+
int d2_stride = hidden_dim / heads;
|
617 |
+
|
618 |
+
int d0 = blockIdx.x; // Batch
|
619 |
+
int d1 = threadIdx.y + (blockIdx.z % head_ext) * (heads / head_ext); // Head
|
620 |
+
int d2 = blockIdx.z / head_ext; // Sequence
|
621 |
+
int cnt = blockIdx.y; // Hidden count
|
622 |
+
int d3 = threadIdx.x; // Values (groups of 8)
|
623 |
+
|
624 |
+
const float4* in_vec = reinterpret_cast<const float4*>(in);
|
625 |
+
float4* out_vec = reinterpret_cast<float4*>(out);
|
626 |
+
|
627 |
+
in_vec += (cnt * d0_stride * gridDim.x);
|
628 |
+
in_vec += (d0 * d0_stride);
|
629 |
+
in_vec += (d2 * d2_stride);
|
630 |
+
in_vec += (d1 * d2_stride * seq_length);
|
631 |
+
|
632 |
+
out_vec += (cnt * d1_stride);
|
633 |
+
out_vec += (d1 * d2_stride);
|
634 |
+
out_vec += (d0 * d0_stride * gridDim.y);
|
635 |
+
out_vec += (d2 * d1_stride * gridDim.y);
|
636 |
+
|
637 |
+
out_vec[d3] = in_vec[d3];
|
638 |
+
}
|
639 |
+
|
640 |
+
template <typename T>
|
641 |
+
__global__ void transform4d_0213_v2(T* out, const T* in, int heads, int seq_length, int hidden_dim)
|
642 |
+
{
|
643 |
+
__shared__ float4 in_data[3072];
|
644 |
+
|
645 |
+
int d0_stride = hidden_dim * seq_length;
|
646 |
+
int d1_stride = hidden_dim;
|
647 |
+
int d2_stride = hidden_dim / heads;
|
648 |
+
|
649 |
+
int d0 = blockIdx.x; // Batch
|
650 |
+
int d1 = threadIdx.y; // Head
|
651 |
+
int d2 = blockIdx.y; // Sequence
|
652 |
+
int cnt = threadIdx.z; // Hidden count
|
653 |
+
int d3 = threadIdx.x; // Values (groups of 8)
|
654 |
+
|
655 |
+
const float4* in_vec = reinterpret_cast<const float4*>(in);
|
656 |
+
float4* out_vec = reinterpret_cast<float4*>(out);
|
657 |
+
|
658 |
+
int input_offset = d0 * d0_stride + d2 * (d2_stride << 1) + d3 + (d1 % 2) * d2_stride;
|
659 |
+
int head_count = (d1 >> 1) + cnt * (blockDim.y >> 1);
|
660 |
+
int iteration_stride = blockDim.z * (blockDim.y >> 1);
|
661 |
+
int matrix_stride = (d0_stride * gridDim.x);
|
662 |
+
|
663 |
+
#pragma unroll
|
664 |
+
for (int iter = 0; iter < 2; iter++) {
|
665 |
+
int iter_row = iter * iteration_stride + head_count;
|
666 |
+
int iter_offset = (iter_row % blockDim.y) * d2_stride;
|
667 |
+
|
668 |
+
in_data[d3 + iter_offset + (iter_row / blockDim.y + (d1 % 2) * blockDim.z) * d1_stride] =
|
669 |
+
in_vec[input_offset + iter_offset * seq_length +
|
670 |
+
(iter_row / blockDim.y) * matrix_stride];
|
671 |
+
}
|
672 |
+
__syncthreads();
|
673 |
+
|
674 |
+
iteration_stride = d1_stride * blockDim.z;
|
675 |
+
int iter_index = cnt * d1_stride + d1 * d2_stride + d3;
|
676 |
+
int output_offset = d0 * d0_stride * blockDim.z + d2 * (iteration_stride << 1);
|
677 |
+
|
678 |
+
#pragma unroll
|
679 |
+
for (int iter = 0; iter < 2; iter++) {
|
680 |
+
int iter_id = iter * iteration_stride + iter_index;
|
681 |
+
out_vec[output_offset + iter_id] = in_data[iter_id];
|
682 |
+
}
|
683 |
+
}
|
684 |
+
|
685 |
+
// 3 * [B A S N] - > [B S C*H]
|
686 |
+
template <>
|
687 |
+
void launch_transform4d_0213<float>(float* out,
|
688 |
+
const float* in,
|
689 |
+
int batch_size,
|
690 |
+
int heads,
|
691 |
+
int seq_length,
|
692 |
+
int hidden_dim,
|
693 |
+
cudaStream_t stream,
|
694 |
+
int trans_count)
|
695 |
+
{
|
696 |
+
hidden_dim >>= 2;
|
697 |
+
dim3 grid_dims(batch_size, heads * ((seq_length - 1) / 8 + 1), trans_count);
|
698 |
+
dim3 block_dims(hidden_dim / heads, 8);
|
699 |
+
transform4d_0213<float>
|
700 |
+
<<<grid_dims, block_dims, 0, stream>>>(out, in, heads, seq_length, hidden_dim, 1);
|
701 |
+
}
|
702 |
+
|
703 |
+
template <typename T>
|
704 |
+
void launch_transform4d_0213(T* out,
|
705 |
+
const T* in,
|
706 |
+
int batch_size,
|
707 |
+
int heads,
|
708 |
+
int seq_length,
|
709 |
+
int hidden_dim,
|
710 |
+
cudaStream_t stream,
|
711 |
+
int trans_count)
|
712 |
+
{
|
713 |
+
hidden_dim >>= 3;
|
714 |
+
int head_ext = (hidden_dim - 1) / MAX_THREADS + 1;
|
715 |
+
dim3 grid_dims(batch_size, trans_count, (seq_length * head_ext));
|
716 |
+
dim3 block_dims(hidden_dim / heads, (heads / head_ext));
|
717 |
+
transform4d_0213<<<grid_dims, block_dims, 0, stream>>>(
|
718 |
+
out, in, heads, seq_length, hidden_dim, head_ext);
|
719 |
+
}
|
720 |
+
|
721 |
+
#define INSTANTIATE_2B_LAUNCH_TRANSFORM4D(T) \
|
722 |
+
template void launch_transform4d_0213<T>(T*, const T*, int, int, int, int, cudaStream_t, int);
|
723 |
+
|
724 |
+
INSTANTIATE_2B_LAUNCH_TRANSFORM4D(__half)
|
725 |
+
#ifdef BF16_AVAILABLE
|
726 |
+
INSTANTIATE_2B_LAUNCH_TRANSFORM4D(__nv_bfloat16)
|
727 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/utils/flatten_unflatten.cpp
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
/*
|
7 |
+
Copyright NVIDIA/apex
|
8 |
+
This file is adapted from fused adam in NVIDIA/apex, commit a109f85
|
9 |
+
*/
|
10 |
+
|
11 |
+
#include <torch/csrc/utils/tensor_flatten.h>
|
12 |
+
#include <torch/extension.h>
|
13 |
+
// https://github.com/pytorch/pytorch/blob/master/torch/csrc/utils/tensor_flatten.h
|
14 |
+
|
15 |
+
at::Tensor flatten(std::vector<at::Tensor> tensors)
|
16 |
+
{
|
17 |
+
return torch::utils::flatten_dense_tensors(tensors);
|
18 |
+
}
|
19 |
+
|
20 |
+
std::vector<at::Tensor> unflatten(at::Tensor flat, std::vector<at::Tensor> tensors)
|
21 |
+
{
|
22 |
+
return torch::utils::unflatten_dense_tensors(flat, tensors);
|
23 |
+
}
|
24 |
+
|
25 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
26 |
+
{
|
27 |
+
m.def("flatten", &flatten, "Flatten dense tensors");
|
28 |
+
m.def("unflatten", &unflatten, "Unflatten dense tensors");
|
29 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/ops/csrc/xpu/adagrad/cpu_adagrad.cpp
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "cpu_adagrad.h"
|
7 |
+
#include <torch/extension.h>
|
8 |
+
#include <cmath>
|
9 |
+
#include <iostream>
|
10 |
+
#include <memory>
|
11 |
+
#include <type_traits>
|
12 |
+
#include <unordered_map>
|
13 |
+
|
14 |
+
static std::unordered_map<int, std::shared_ptr<void>> s_optimizers;
|
15 |
+
|
16 |
+
// C++ interface
|
17 |
+
|
18 |
+
void Adagrad_Optimizer::Step_1(float* _params,
|
19 |
+
float* grads,
|
20 |
+
float* _exp_avg_sq,
|
21 |
+
size_t _param_size,
|
22 |
+
ds_half_precision_t* dev_params,
|
23 |
+
bool half_precision)
|
24 |
+
{
|
25 |
+
size_t rounded_size = 0;
|
26 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
27 |
+
Step_AVX<1>(
|
28 |
+
&rounded_size, _params, grads, _exp_avg_sq, _param_size, dev_params, half_precision);
|
29 |
+
#endif
|
30 |
+
if (_param_size > rounded_size) {
|
31 |
+
float step_size = -1 * _alpha;
|
32 |
+
ds_half_precision_t* grads_cast_h;
|
33 |
+
ds_half_precision_t* params_cast_h;
|
34 |
+
if (half_precision) {
|
35 |
+
grads_cast_h = reinterpret_cast<ds_half_precision_t*>(grads);
|
36 |
+
params_cast_h = reinterpret_cast<ds_half_precision_t*>(_params);
|
37 |
+
}
|
38 |
+
for (size_t t = rounded_size; t < _param_size; t += TILE) {
|
39 |
+
size_t copy_size = TILE;
|
40 |
+
if ((t + TILE) > _param_size) copy_size = _param_size - t;
|
41 |
+
size_t offset = copy_size + t;
|
42 |
+
#pragma omp parallel for
|
43 |
+
for (size_t k = t; k < offset; k++) {
|
44 |
+
float grad = half_precision ? (float)grads_cast_h[k] : grads[k];
|
45 |
+
float param = half_precision ? (float)params_cast_h[k] : _params[k];
|
46 |
+
float momentum = grads[k];
|
47 |
+
float variance = _exp_avg_sq[k];
|
48 |
+
if (_weight_decay > 0) { grad = param * _weight_decay + grad; }
|
49 |
+
|
50 |
+
variance += grad * grad;
|
51 |
+
|
52 |
+
grad = sqrt(variance);
|
53 |
+
grad += _eps;
|
54 |
+
grad = momentum / grad;
|
55 |
+
param = grad * step_size + param;
|
56 |
+
if (half_precision)
|
57 |
+
params_cast_h[k] = (ds_half_precision_t)param;
|
58 |
+
else
|
59 |
+
_params[k] = param;
|
60 |
+
// STORE UPDATE TERM TO GRAD'S MEMORY
|
61 |
+
grads[k] = grad * step_size;
|
62 |
+
_exp_avg_sq[k] = variance;
|
63 |
+
}
|
64 |
+
}
|
65 |
+
}
|
66 |
+
}
|
67 |
+
|
68 |
+
void Adagrad_Optimizer::Step_4(float* _params,
|
69 |
+
float* grads,
|
70 |
+
float* _exp_avg_sq,
|
71 |
+
size_t _param_size,
|
72 |
+
ds_half_precision_t* dev_params,
|
73 |
+
bool half_precision)
|
74 |
+
{
|
75 |
+
size_t rounded_size = 0;
|
76 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
77 |
+
Step_AVX<4>(
|
78 |
+
&rounded_size, _params, grads, _exp_avg_sq, _param_size, dev_params, half_precision);
|
79 |
+
#endif
|
80 |
+
if (_param_size > rounded_size)
|
81 |
+
Step_1((_params + rounded_size),
|
82 |
+
(grads + rounded_size),
|
83 |
+
(_exp_avg_sq + rounded_size),
|
84 |
+
(_param_size - rounded_size),
|
85 |
+
(dev_params != nullptr ? (dev_params + rounded_size) : dev_params),
|
86 |
+
half_precision);
|
87 |
+
}
|
88 |
+
|
89 |
+
int create_adagrad_optimizer(int optimizer_id,
|
90 |
+
float alpha = 1e-2,
|
91 |
+
float eps = 1e-8,
|
92 |
+
float weight_decay = 0,
|
93 |
+
bool should_log = false)
|
94 |
+
{
|
95 |
+
auto opt = std::make_shared<Adagrad_Optimizer>(alpha, eps, weight_decay);
|
96 |
+
|
97 |
+
s_optimizers[optimizer_id] = opt;
|
98 |
+
|
99 |
+
if (should_log) {
|
100 |
+
std::string avx_type = "";
|
101 |
+
#if defined(__AVX512__)
|
102 |
+
avx_type = "AVX512";
|
103 |
+
#else
|
104 |
+
#if defined(__AVX256__)
|
105 |
+
avx_type = "AVX2";
|
106 |
+
#else
|
107 |
+
avx_type = "scalar";
|
108 |
+
#endif
|
109 |
+
#endif
|
110 |
+
|
111 |
+
printf("Adagrad Optimizer #%d is created with %s arithmetic capability.\n",
|
112 |
+
optimizer_id,
|
113 |
+
avx_type.c_str());
|
114 |
+
printf("Config: alpha=%f, weight_decay=%f\n", alpha, weight_decay);
|
115 |
+
}
|
116 |
+
|
117 |
+
return 0;
|
118 |
+
}
|
119 |
+
|
120 |
+
void Adagrad_Optimizer::Step_8(float* _params,
|
121 |
+
float* grads,
|
122 |
+
float* _exp_avg_sq,
|
123 |
+
size_t _param_size,
|
124 |
+
ds_half_precision_t* dev_params,
|
125 |
+
bool half_precision)
|
126 |
+
{
|
127 |
+
size_t rounded_size = 0;
|
128 |
+
#if defined(__AVX512__) or defined(__AVX256__)
|
129 |
+
Step_AVX<8>(
|
130 |
+
&rounded_size, _params, grads, _exp_avg_sq, _param_size, dev_params, half_precision);
|
131 |
+
#endif
|
132 |
+
if (_param_size > rounded_size)
|
133 |
+
Step_4((_params + rounded_size),
|
134 |
+
(grads + rounded_size),
|
135 |
+
(_exp_avg_sq + rounded_size),
|
136 |
+
(_param_size - rounded_size),
|
137 |
+
(dev_params != nullptr ? (dev_params + rounded_size) : dev_params),
|
138 |
+
half_precision);
|
139 |
+
}
|
140 |
+
|
141 |
+
int ds_adagrad_step(int optimizer_id,
|
142 |
+
size_t step,
|
143 |
+
float lr,
|
144 |
+
float epsilon,
|
145 |
+
float weight_decay,
|
146 |
+
torch::Tensor& params,
|
147 |
+
torch::Tensor& grads,
|
148 |
+
torch::Tensor& exp_avg_sq)
|
149 |
+
{
|
150 |
+
auto params_c = params.contiguous();
|
151 |
+
auto grads_c = grads.contiguous();
|
152 |
+
auto exp_avg_sq_c = exp_avg_sq.contiguous();
|
153 |
+
|
154 |
+
float* params_ptr = (float*)params_c.data_ptr();
|
155 |
+
float* grads_ptr = (float*)grads_c.data_ptr();
|
156 |
+
float* exp_avg_sq_ptr = (float*)exp_avg_sq_c.data_ptr();
|
157 |
+
|
158 |
+
std::shared_ptr<Adagrad_Optimizer> opt =
|
159 |
+
std::static_pointer_cast<Adagrad_Optimizer>(s_optimizers[optimizer_id]);
|
160 |
+
opt->IncrementStep(step);
|
161 |
+
opt->update_state(lr, epsilon, weight_decay);
|
162 |
+
opt->Step_8(params_ptr, grads_ptr, exp_avg_sq_ptr, params_c.numel());
|
163 |
+
|
164 |
+
return 0;
|
165 |
+
}
|
166 |
+
|
167 |
+
int ds_adagrad_step_plus_copy(int optimizer_id,
|
168 |
+
size_t step,
|
169 |
+
float lr,
|
170 |
+
float epsilon,
|
171 |
+
float weight_decay,
|
172 |
+
torch::Tensor& params,
|
173 |
+
torch::Tensor& grads,
|
174 |
+
torch::Tensor& exp_avg_sq,
|
175 |
+
torch::Tensor& gpu_params)
|
176 |
+
{
|
177 |
+
assert(false);
|
178 |
+
return 0;
|
179 |
+
}
|
180 |
+
|
181 |
+
int destroy_adagrad_optimizer(int optimizer_id)
|
182 |
+
{
|
183 |
+
s_optimizers.erase(optimizer_id);
|
184 |
+
|
185 |
+
return 0;
|
186 |
+
}
|
187 |
+
|
188 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
189 |
+
{
|
190 |
+
m.def("adagrad_update", &ds_adagrad_step, "DeepSpeed CPU Adagrad update (C++)");
|
191 |
+
m.def("adagrad_update_copy",
|
192 |
+
&ds_adagrad_step_plus_copy,
|
193 |
+
"DeepSpeed CPU Adagrad update and param copy (C++)");
|
194 |
+
m.def("create_adagrad", &create_adagrad_optimizer, "DeepSpeed CPU Adagrad (C++)");
|
195 |
+
m.def("destroy_adagrad", &destroy_adagrad_optimizer, "DeepSpeed CPU Adagrad destroy (C++)");
|
196 |
+
}
|