File size: 6,601 Bytes
359a939 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0
// DeepSpeed Team
#pragma once
#if (__x86_64__ || __i386__)
#include <cpuid.h>
#include <x86intrin.h>
#endif
#define TILE (128 * 1024 * 1024)
#if defined(__AVX512__) or defined(__AVX256__)
#define ROUND_DOWN(size, step) ((size) & ~((step)-1))
#if defined(__AVX512__)
#define SIMD_STORE(a, d) _mm512_storeu_ps(a, d)
#define SIMD_LOAD(x) _mm512_loadu_ps(x)
#define SIMD_SET(x) _mm512_set1_ps(x)
#define SIMD_ADD(x, y) _mm512_add_ps(x, y)
#define SIMD_MUL(x, y) _mm512_mul_ps(x, y)
#define SIMD_FMA(x, y, c) _mm512_fmadd_ps(x, y, c)
#define SIMD_SQRT(x) _mm512_sqrt_ps(x)
#define SIMD_DIV(x, y) _mm512_div_ps(x, y)
#define SIMD_AND(x, y) _mm512_and_ps(x, y)
#define SIMD_ANDNOT(x, y) _mm512_andnot_ps(x, y)
#define SIMD_OR(x, y) _mm512_or_ps(x, y)
#define SIMD_XOR(x, y) _mm512_xor_ps(x, y)
#define SIMD_WIDTH 16
#define SIMD_LOAD2(x, h) \
((h) ? _mm512_cvtph_ps(_mm256_castps_si256(_mm256_loadu_ps(x))) : _mm512_loadu_ps(x))
#define SIMD_STORE2(x, d, h) \
((h) ? _mm256_store_ps(x, _mm256_castsi256_ps(_mm512_cvtps_ph(d, _MM_FROUND_TO_NEAREST_INT))) \
: _mm512_storeu_ps(x, d))
#define INTV __m256i
#elif defined(__AVX256__)
#define SIMD_STORE(a, d) _mm256_storeu_ps(a, d)
#define SIMD_LOAD(x) _mm256_loadu_ps(x)
#define SIMD_SET(x) _mm256_set1_ps(x)
#define SIMD_ADD(x, y) _mm256_add_ps(x, y)
#define SIMD_MUL(x, y) _mm256_mul_ps(x, y)
#define SIMD_FMA(x, y, c) _mm256_fmadd_ps(x, y, c)
#define SIMD_SQRT(x) _mm256_sqrt_ps(x)
#define SIMD_DIV(x, y) _mm256_div_ps(x, y)
#define SIMD_AND(x, y) _mm256_and_ps(x, y)
#define SIMD_ANDNOT(x, y) _mm256_andnot_ps(x, y)
#define SIMD_OR(x, y) _mm256_or_ps(x, y)
#define SIMD_XOR(x, y) _mm256_xor_ps(x, y)
#define SIMD_WIDTH 8
#define SIMD_LOAD2(x, h) \
((h) ? _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*)(x))) : _mm256_loadu_ps(x))
#define SIMD_STORE2(x, d, h) \
((h) ? _mm_store_ps(x, _mm_castsi128_ps(_mm256_cvtps_ph(d, _MM_FROUND_TO_NEAREST_INT))) \
: _mm256_storeu_ps(x, d))
#define INTV __m128i
#endif
union AVX_Data {
#if defined(__AVX512__)
__m512 data;
#elif defined(__AVX256__)
__m256 data;
#endif
// float data_f[16];
};
template <int span>
inline void simd_store(float* dst, AVX_Data* src, bool half_precision)
{
size_t width = (half_precision ? SIMD_WIDTH / 2 : SIMD_WIDTH);
#pragma unroll
for (size_t i = 0; i < span; ++i) { SIMD_STORE2(dst + width * i, src[i].data, half_precision); }
}
template <int span>
inline void simd_load(AVX_Data* dst, float* src, bool half_precision)
{
size_t width = (half_precision ? SIMD_WIDTH / 2 : SIMD_WIDTH);
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_LOAD2(src + width * i, half_precision); }
}
template <int span>
inline void simd_fma(AVX_Data* dst, AVX_Data* src_m_l, AVX_Data src_m_r, AVX_Data* src_a)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) {
dst[i].data = SIMD_FMA(src_m_l[i].data, src_m_r.data, src_a[i].data);
}
}
template <int span>
inline void simd_fma(AVX_Data* dst, AVX_Data* src_m_l, AVX_Data src_m_r, AVX_Data src_a)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) {
dst[i].data = SIMD_FMA(src_m_l[i].data, src_m_r.data, src_a.data);
}
}
template <int span>
inline void simd_fma(AVX_Data* dst, AVX_Data* src_m_l, AVX_Data* src_m_r, AVX_Data* src_a)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) {
dst[i].data = SIMD_FMA(src_m_l[i].data, src_m_r[i].data, src_a[i].data);
}
}
template <int span>
inline void simd_sqrt(AVX_Data* dst, AVX_Data* src)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_SQRT(src[i].data); }
}
template <int span>
inline void simd_add(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data src_a_r)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_ADD(src_a_l[i].data, src_a_r.data); }
}
template <int span>
inline void simd_add(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_ADD(src_a_l[i].data, src_a_r[i].data); }
}
template <int span>
inline void simd_mul(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data src_a_r)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_MUL(src_a_l[i].data, src_a_r.data); }
}
template <int span>
inline void simd_mul(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_MUL(src_a_l[i].data, src_a_r[i].data); }
}
template <int span>
inline void simd_div(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_DIV(src_a_l[i].data, src_a_r[i].data); }
}
template <int span>
inline void simd_and(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data src_a_r)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_AND(src_a_l[i].data, src_a_r.data); }
}
template <int span>
inline void simd_and(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_AND(src_a_l[i].data, src_a_r[i].data); }
}
template <int span>
inline void simd_andnot(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data src_a_r)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_ANDNOT(src_a_l[i].data, src_a_r.data); }
}
template <int span>
inline void simd_andnot(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) {
dst[i].data = SIMD_ANDNOT(src_a_l[i].data, src_a_r[i].data);
}
}
template <int span>
inline void simd_or(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data src_a_r)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_OR(src_a_l[i].data, src_a_r.data); }
}
template <int span>
inline void simd_or(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_OR(src_a_l[i].data, src_a_r[i].data); }
}
template <int span>
inline void simd_xor(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data src_a_r)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_XOR(src_a_l[i].data, src_a_r.data); }
}
template <int span>
inline void simd_xor(AVX_Data* dst, AVX_Data* src_a_l, AVX_Data* src_a_r)
{
#pragma unroll
for (size_t i = 0; i < span; ++i) { dst[i].data = SIMD_XOR(src_a_l[i].data, src_a_r[i].data); }
}
#endif
|