File size: 15,530 Bytes
7f43ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import pytest

import numpy as np
from numpy.testing import assert_array_less, assert_allclose, assert_equal

import scipy._lib._elementwise_iterative_method as eim
from scipy import stats
from scipy.optimize._differentiate import (_differentiate as differentiate,
                                           _EERRORINCREASE)

class TestDifferentiate:

    def f(self, x):
        return stats.norm().cdf(x)

    @pytest.mark.parametrize('x', [0.6, np.linspace(-0.05, 1.05, 10)])
    def test_basic(self, x):
        # Invert distribution CDF and compare against distribution `ppf`
        res = differentiate(self.f, x)
        ref = stats.norm().pdf(x)
        np.testing.assert_allclose(res.df, ref)
        # This would be nice, but doesn't always work out. `error` is an
        # estimate, not a bound.
        assert_array_less(abs(res.df - ref), res.error)
        assert res.x.shape == ref.shape

    @pytest.mark.parametrize('case', stats._distr_params.distcont)
    def test_accuracy(self, case):
        distname, params = case
        dist = getattr(stats, distname)(*params)
        x = dist.median() + 0.1
        res = differentiate(dist.cdf, x)
        ref = dist.pdf(x)
        assert_allclose(res.df, ref, atol=1e-10)

    @pytest.mark.parametrize('order', [1, 6])
    @pytest.mark.parametrize('shape', [tuple(), (12,), (3, 4), (3, 2, 2)])
    def test_vectorization(self, order, shape):
        # Test for correct functionality, output shapes, and dtypes for various
        # input shapes.
        x = np.linspace(-0.05, 1.05, 12).reshape(shape) if shape else 0.6
        n = np.size(x)

        @np.vectorize
        def _differentiate_single(x):
            return differentiate(self.f, x, order=order)

        def f(x, *args, **kwargs):
            f.nit += 1
            f.feval += 1 if (x.size == n or x.ndim <=1) else x.shape[-1]
            return self.f(x, *args, **kwargs)
        f.nit = -1
        f.feval = 0

        res = differentiate(f, x, order=order)
        refs = _differentiate_single(x).ravel()

        ref_x = [ref.x for ref in refs]
        assert_allclose(res.x.ravel(), ref_x)
        assert_equal(res.x.shape, shape)

        ref_df = [ref.df for ref in refs]
        assert_allclose(res.df.ravel(), ref_df)
        assert_equal(res.df.shape, shape)

        ref_error = [ref.error for ref in refs]
        assert_allclose(res.error.ravel(), ref_error, atol=5e-15)
        assert_equal(res.error.shape, shape)

        ref_success = [ref.success for ref in refs]
        assert_equal(res.success.ravel(), ref_success)
        assert_equal(res.success.shape, shape)
        assert np.issubdtype(res.success.dtype, np.bool_)

        ref_flag = [ref.status for ref in refs]
        assert_equal(res.status.ravel(), ref_flag)
        assert_equal(res.status.shape, shape)
        assert np.issubdtype(res.status.dtype, np.integer)

        ref_nfev = [ref.nfev for ref in refs]
        assert_equal(res.nfev.ravel(), ref_nfev)
        assert_equal(np.max(res.nfev), f.feval)
        assert_equal(res.nfev.shape, res.x.shape)
        assert np.issubdtype(res.nfev.dtype, np.integer)

        ref_nit = [ref.nit for ref in refs]
        assert_equal(res.nit.ravel(), ref_nit)
        assert_equal(np.max(res.nit), f.nit)
        assert_equal(res.nit.shape, res.x.shape)
        assert np.issubdtype(res.nit.dtype, np.integer)

    def test_flags(self):
        # Test cases that should produce different status flags; show that all
        # can be produced simultaneously.
        rng = np.random.default_rng(5651219684984213)
        def f(xs, js):
            f.nit += 1
            funcs = [lambda x: x - 2.5,  # converges
                     lambda x: np.exp(x)*rng.random(),  # error increases
                     lambda x: np.exp(x),  # reaches maxiter due to order=2
                     lambda x: np.full_like(x, np.nan)[()]]  # stops due to NaN
            res = [funcs[j](x) for x, j in zip(xs, js.ravel())]
            return res
        f.nit = 0

        args = (np.arange(4, dtype=np.int64),)
        res = differentiate(f, [1]*4, rtol=1e-14, order=2, args=args)

        ref_flags = np.array([eim._ECONVERGED,
                              _EERRORINCREASE,
                              eim._ECONVERR,
                              eim._EVALUEERR])
        assert_equal(res.status, ref_flags)

    def test_flags_preserve_shape(self):
        # Same test as above but using `preserve_shape` option to simplify.
        rng = np.random.default_rng(5651219684984213)
        def f(x):
            return [x - 2.5,  # converges
                    np.exp(x)*rng.random(),  # error increases
                    np.exp(x),  # reaches maxiter due to order=2
                    np.full_like(x, np.nan)[()]]  # stops due to NaN

        res = differentiate(f, 1, rtol=1e-14, order=2, preserve_shape=True)

        ref_flags = np.array([eim._ECONVERGED,
                              _EERRORINCREASE,
                              eim._ECONVERR,
                              eim._EVALUEERR])
        assert_equal(res.status, ref_flags)

    def test_preserve_shape(self):
        # Test `preserve_shape` option
        def f(x):
            return [x, np.sin(3*x), x+np.sin(10*x), np.sin(20*x)*(x-1)**2]

        x = 0
        ref = [1, 3*np.cos(3*x), 1+10*np.cos(10*x),
               20*np.cos(20*x)*(x-1)**2 + 2*np.sin(20*x)*(x-1)]
        res = differentiate(f, x, preserve_shape=True)
        assert_allclose(res.df, ref)

    def test_convergence(self):
        # Test that the convergence tolerances behave as expected
        dist = stats.norm()
        x = 1
        f = dist.cdf
        ref = dist.pdf(x)
        kwargs0 = dict(atol=0, rtol=0, order=4)

        kwargs = kwargs0.copy()
        kwargs['atol'] = 1e-3
        res1 = differentiate(f, x, **kwargs)
        assert_array_less(abs(res1.df - ref), 1e-3)
        kwargs['atol'] = 1e-6
        res2 = differentiate(f, x, **kwargs)
        assert_array_less(abs(res2.df - ref), 1e-6)
        assert_array_less(abs(res2.df - ref), abs(res1.df - ref))

        kwargs = kwargs0.copy()
        kwargs['rtol'] = 1e-3
        res1 = differentiate(f, x, **kwargs)
        assert_array_less(abs(res1.df - ref), 1e-3 * np.abs(ref))
        kwargs['rtol'] = 1e-6
        res2 = differentiate(f, x, **kwargs)
        assert_array_less(abs(res2.df - ref), 1e-6 * np.abs(ref))
        assert_array_less(abs(res2.df - ref), abs(res1.df - ref))

    def test_step_parameters(self):
        # Test that step factors have the expected effect on accuracy
        dist = stats.norm()
        x = 1
        f = dist.cdf
        ref = dist.pdf(x)

        res1 = differentiate(f, x, initial_step=0.5, maxiter=1)
        res2 = differentiate(f, x, initial_step=0.05, maxiter=1)
        assert abs(res2.df - ref) < abs(res1.df - ref)

        res1 = differentiate(f, x, step_factor=2, maxiter=1)
        res2 = differentiate(f, x, step_factor=20, maxiter=1)
        assert abs(res2.df - ref) < abs(res1.df - ref)

        # `step_factor` can be less than 1: `initial_step` is the minimum step
        kwargs = dict(order=4, maxiter=1, step_direction=0)
        res = differentiate(f, x, initial_step=0.5, step_factor=0.5, **kwargs)
        ref = differentiate(f, x, initial_step=1, step_factor=2, **kwargs)
        assert_allclose(res.df, ref.df, rtol=5e-15)

        # This is a similar test for one-sided difference
        kwargs = dict(order=2, maxiter=1, step_direction=1)
        res = differentiate(f, x, initial_step=1, step_factor=2, **kwargs)
        ref = differentiate(f, x, initial_step=1/np.sqrt(2), step_factor=0.5,
                                   **kwargs)
        assert_allclose(res.df, ref.df, rtol=5e-15)

        kwargs['step_direction'] = -1
        res = differentiate(f, x, initial_step=1, step_factor=2, **kwargs)
        ref = differentiate(f, x, initial_step=1/np.sqrt(2), step_factor=0.5,
                                   **kwargs)
        assert_allclose(res.df, ref.df, rtol=5e-15)

    def test_step_direction(self):
        # test that `step_direction` works as expected
        def f(x):
            y = np.exp(x)
            y[(x < 0) + (x > 2)] = np.nan
            return y

        x = np.linspace(0, 2, 10)
        step_direction = np.zeros_like(x)
        step_direction[x < 0.6], step_direction[x > 1.4] = 1, -1
        res = differentiate(f, x, step_direction=step_direction)
        assert_allclose(res.df, np.exp(x))
        assert np.all(res.success)

    def test_vectorized_step_direction_args(self):
        # test that `step_direction` and `args` are vectorized properly
        def f(x, p):
            return x ** p

        def df(x, p):
            return p * x ** (p - 1)

        x = np.array([1, 2, 3, 4]).reshape(-1, 1, 1)
        hdir = np.array([-1, 0, 1]).reshape(1, -1, 1)
        p = np.array([2, 3]).reshape(1, 1, -1)
        res = differentiate(f, x, step_direction=hdir, args=(p,))
        ref = np.broadcast_to(df(x, p), res.df.shape)
        assert_allclose(res.df, ref)

    def test_maxiter_callback(self):
        # Test behavior of `maxiter` parameter and `callback` interface
        x = 0.612814
        dist = stats.norm()
        maxiter = 3

        def f(x):
            res = dist.cdf(x)
            return res

        default_order = 8
        res = differentiate(f, x, maxiter=maxiter, rtol=1e-15)
        assert not np.any(res.success)
        assert np.all(res.nfev == default_order + 1 + (maxiter - 1)*2)
        assert np.all(res.nit == maxiter)

        def callback(res):
            callback.iter += 1
            callback.res = res
            assert hasattr(res, 'x')
            assert res.df not in callback.dfs
            callback.dfs.add(res.df)
            assert res.status == eim._EINPROGRESS
            if callback.iter == maxiter:
                raise StopIteration
        callback.iter = -1  # callback called once before first iteration
        callback.res = None
        callback.dfs = set()

        res2 = differentiate(f, x, callback=callback, rtol=1e-15)
        # terminating with callback is identical to terminating due to maxiter
        # (except for `status`)
        for key in res.keys():
            if key == 'status':
                assert res[key] == eim._ECONVERR
                assert callback.res[key] == eim._EINPROGRESS
                assert res2[key] == eim._ECALLBACK
            else:
                assert res2[key] == callback.res[key] == res[key]

    @pytest.mark.parametrize("hdir", (-1, 0, 1))
    @pytest.mark.parametrize("x", (0.65, [0.65, 0.7]))
    @pytest.mark.parametrize("dtype", (np.float16, np.float32, np.float64))
    def test_dtype(self, hdir, x, dtype):
        # Test that dtypes are preserved
        x = np.asarray(x, dtype=dtype)[()]

        def f(x):
            assert x.dtype == dtype
            return np.exp(x)

        def callback(res):
            assert res.x.dtype == dtype
            assert res.df.dtype == dtype
            assert res.error.dtype == dtype

        res = differentiate(f, x, order=4, step_direction=hdir,
                                   callback=callback)
        assert res.x.dtype == dtype
        assert res.df.dtype == dtype
        assert res.error.dtype == dtype
        eps = np.finfo(dtype).eps
        assert_allclose(res.df, np.exp(res.x), rtol=np.sqrt(eps))

    def test_input_validation(self):
        # Test input validation for appropriate error messages

        message = '`func` must be callable.'
        with pytest.raises(ValueError, match=message):
            differentiate(None, 1)

        message = 'Abscissae and function output must be real numbers.'
        with pytest.raises(ValueError, match=message):
            differentiate(lambda x: x, -4+1j)

        message = "When `preserve_shape=False`, the shape of the array..."
        with pytest.raises(ValueError, match=message):
            differentiate(lambda x: [1, 2, 3], [-2, -3])

        message = 'Tolerances and step parameters must be non-negative...'
        with pytest.raises(ValueError, match=message):
            differentiate(lambda x: x, 1, atol=-1)
        with pytest.raises(ValueError, match=message):
            differentiate(lambda x: x, 1, rtol='ekki')
        with pytest.raises(ValueError, match=message):
            differentiate(lambda x: x, 1, initial_step=None)
        with pytest.raises(ValueError, match=message):
            differentiate(lambda x: x, 1, step_factor=object())

        message = '`maxiter` must be a positive integer.'
        with pytest.raises(ValueError, match=message):
            differentiate(lambda x: x, 1, maxiter=1.5)
        with pytest.raises(ValueError, match=message):
            differentiate(lambda x: x, 1, maxiter=0)

        message = '`order` must be a positive integer'
        with pytest.raises(ValueError, match=message):
            differentiate(lambda x: x, 1, order=1.5)
        with pytest.raises(ValueError, match=message):
            differentiate(lambda x: x, 1, order=0)

        message = '`preserve_shape` must be True or False.'
        with pytest.raises(ValueError, match=message):
            differentiate(lambda x: x, 1, preserve_shape='herring')

        message = '`callback` must be callable.'
        with pytest.raises(ValueError, match=message):
            differentiate(lambda x: x, 1, callback='shrubbery')

    def test_special_cases(self):
        # Test edge cases and other special cases

        # Test that integers are not passed to `f`
        # (otherwise this would overflow)
        def f(x):
            assert np.issubdtype(x.dtype, np.floating)
            return x ** 99 - 1

        res = differentiate(f, 7, rtol=1e-10)
        assert res.success
        assert_allclose(res.df, 99*7.**98)

        # Test that if success is achieved in the correct number
        # of iterations if function is a polynomial. Ideally, all polynomials
        # of order 0-2 would get exact result with 0 refinement iterations,
        # all polynomials of order 3-4 would be differentiated exactly after
        # 1 iteration, etc. However, it seems that _differentiate needs an
        # extra iteration to detect convergence based on the error estimate.

        for n in range(6):
            x = 1.5
            def f(x):
                return 2*x**n

            ref = 2*n*x**(n-1)

            res = differentiate(f, x, maxiter=1, order=max(1, n))
            assert_allclose(res.df, ref, rtol=1e-15)
            assert_equal(res.error, np.nan)

            res = differentiate(f, x, order=max(1, n))
            assert res.success
            assert res.nit == 2
            assert_allclose(res.df, ref, rtol=1e-15)

        # Test scalar `args` (not in tuple)
        def f(x, c):
            return c*x - 1

        res = differentiate(f, 2, args=3)
        assert_allclose(res.df, 3)

    @pytest.mark.xfail
    @pytest.mark.parametrize("case", (  # function, evaluation point
        (lambda x: (x - 1) ** 3, 1),
        (lambda x: np.where(x > 1, (x - 1) ** 5, (x - 1) ** 3), 1)
    ))
    def test_saddle_gh18811(self, case):
        # With default settings, _differentiate will not always converge when
        # the true derivative is exactly zero. This tests that specifying a
        # (tight) `atol` alleviates the problem. See discussion in gh-18811.
        atol = 1e-16
        res = differentiate(*case, step_direction=[-1, 0, 1], atol=atol)
        assert np.all(res.success)
        assert_allclose(res.df, 0, atol=atol)