applied-ai-018 commited on
Commit
7f43ade
·
verified ·
1 Parent(s): fe85c47

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/12.input_layernorm.weight/fp32.pt +3 -0
  2. ckpts/universal/global_step40/zero/20.attention.dense.weight/exp_avg.pt +3 -0
  3. ckpts/universal/global_step40/zero/20.attention.dense.weight/exp_avg_sq.pt +3 -0
  4. ckpts/universal/global_step40/zero/20.attention.dense.weight/fp32.pt +3 -0
  5. ckpts/universal/global_step40/zero/5.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
  6. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/__init__.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_bracket.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_chandrupatla.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_constraints.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentiable_functions.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentialevolution.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentiate.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_direct_py.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_dual_annealing.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_hessian_update_strategy.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_isotonic.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linesearch.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_highs.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_ip.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_minpack_py.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_nonlin.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_qap.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_remove_redundancy.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_root_scalar.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_shgo.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_spectral.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_krylov.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_ncg.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/cobyla.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/linesearch.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/minpack.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/nonlin.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/optimize.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/slsqp.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/tnc.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/scipy/optimize/tests/__init__.py +0 -0
  39. venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__numdiff.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_chandrupatla.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_cython_optimize.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_differentiable_functions.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_isotonic_regression.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_linear_assignment.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_lsq_common.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_minimize_constrained.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_optimize.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/scipy/optimize/tests/test__dual_annealing.py +379 -0
  49. venv/lib/python3.10/site-packages/scipy/optimize/tests/test__linprog_clean_inputs.py +310 -0
  50. venv/lib/python3.10/site-packages/scipy/optimize/tests/test__numdiff.py +815 -0
ckpts/universal/global_step40/zero/12.input_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8523dc545e41fb0b6435f525322994f037664ec33efa489269a66de79422e5c4
3
+ size 9293
ckpts/universal/global_step40/zero/20.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:614aa7f29fa06123715521ffaa2f43b6826e36acf19d40084407078c7829ac07
3
+ size 16778396
ckpts/universal/global_step40/zero/20.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:658c7a26f3763b13aecbef97dd2036f89fd50678f5de2a2dbab2fae752216530
3
+ size 16778411
ckpts/universal/global_step40/zero/20.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f4c31ad044e554f78ebbff7c1d7485ddab94dcd2f67e220d2c88116c0566e64
3
+ size 16778317
ckpts/universal/global_step40/zero/5.mlp.dense_4h_to_h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df575a3954914370f0a4b80e38c072cf179dc97ea665d8a62dbb38b15f5c82a5
3
+ size 33555533
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (13.6 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_bracket.cpython-310.pyc ADDED
Binary file (18.8 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_chandrupatla.cpython-310.pyc ADDED
Binary file (17.7 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_constraints.cpython-310.pyc ADDED
Binary file (21.5 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentiable_functions.cpython-310.pyc ADDED
Binary file (19.6 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentialevolution.cpython-310.pyc ADDED
Binary file (62.9 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentiate.cpython-310.pyc ADDED
Binary file (21.6 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_direct_py.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_dual_annealing.cpython-310.pyc ADDED
Binary file (22.4 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_hessian_update_strategy.cpython-310.pyc ADDED
Binary file (12.8 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_isotonic.cpython-310.pyc ADDED
Binary file (5.77 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linesearch.cpython-310.pyc ADDED
Binary file (21 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog.cpython-310.pyc ADDED
Binary file (27.8 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_highs.cpython-310.pyc ADDED
Binary file (14.5 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_ip.cpython-310.pyc ADDED
Binary file (37.6 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_minpack_py.cpython-310.pyc ADDED
Binary file (38.1 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_nonlin.cpython-310.pyc ADDED
Binary file (46.5 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_qap.cpython-310.pyc ADDED
Binary file (23.4 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_remove_redundancy.cpython-310.pyc ADDED
Binary file (10.3 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_root_scalar.cpython-310.pyc ADDED
Binary file (15.9 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_shgo.cpython-310.pyc ADDED
Binary file (44.4 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_spectral.cpython-310.pyc ADDED
Binary file (7.33 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion.cpython-310.pyc ADDED
Binary file (7.89 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_krylov.cpython-310.pyc ADDED
Binary file (1.4 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/_trustregion_ncg.cpython-310.pyc ADDED
Binary file (3.25 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/cobyla.cpython-310.pyc ADDED
Binary file (666 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/linesearch.cpython-310.pyc ADDED
Binary file (800 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/minpack.cpython-310.pyc ADDED
Binary file (938 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/nonlin.cpython-310.pyc ADDED
Binary file (1.05 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/optimize.cpython-310.pyc ADDED
Binary file (1.07 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/slsqp.cpython-310.pyc ADDED
Binary file (779 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/__pycache__/tnc.cpython-310.pyc ADDED
Binary file (848 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test__numdiff.cpython-310.pyc ADDED
Binary file (24.4 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_chandrupatla.cpython-310.pyc ADDED
Binary file (26.6 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_cython_optimize.cpython-310.pyc ADDED
Binary file (2.34 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_differentiable_functions.cpython-310.pyc ADDED
Binary file (16.8 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_isotonic_regression.cpython-310.pyc ADDED
Binary file (5.71 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_linear_assignment.cpython-310.pyc ADDED
Binary file (4.19 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_lsq_common.cpython-310.pyc ADDED
Binary file (8.29 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_minimize_constrained.cpython-310.pyc ADDED
Binary file (27.2 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/tests/__pycache__/test_optimize.cpython-310.pyc ADDED
Binary file (95.5 kB). View file
 
venv/lib/python3.10/site-packages/scipy/optimize/tests/test__dual_annealing.py ADDED
@@ -0,0 +1,379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Dual annealing unit tests implementation.
2
+ # Copyright (c) 2018 Sylvain Gubian <[email protected]>,
3
+ # Yang Xiang <[email protected]>
4
+ # Author: Sylvain Gubian, PMP S.A.
5
+ """
6
+ Unit tests for the dual annealing global optimizer
7
+ """
8
+ from scipy.optimize import dual_annealing, Bounds
9
+
10
+ from scipy.optimize._dual_annealing import EnergyState
11
+ from scipy.optimize._dual_annealing import LocalSearchWrapper
12
+ from scipy.optimize._dual_annealing import ObjectiveFunWrapper
13
+ from scipy.optimize._dual_annealing import StrategyChain
14
+ from scipy.optimize._dual_annealing import VisitingDistribution
15
+ from scipy.optimize import rosen, rosen_der
16
+ import pytest
17
+ import numpy as np
18
+ from numpy.testing import assert_equal, assert_allclose, assert_array_less
19
+ from pytest import raises as assert_raises
20
+ from scipy._lib._util import check_random_state
21
+
22
+
23
+ class TestDualAnnealing:
24
+
25
+ def setup_method(self):
26
+ # A function that returns always infinity for initialization tests
27
+ self.weirdfunc = lambda x: np.inf
28
+ # 2-D bounds for testing function
29
+ self.ld_bounds = [(-5.12, 5.12)] * 2
30
+ # 4-D bounds for testing function
31
+ self.hd_bounds = self.ld_bounds * 4
32
+ # Number of values to be generated for testing visit function
33
+ self.nbtestvalues = 5000
34
+ self.high_temperature = 5230
35
+ self.low_temperature = 0.1
36
+ self.qv = 2.62
37
+ self.seed = 1234
38
+ self.rs = check_random_state(self.seed)
39
+ self.nb_fun_call = 0
40
+ self.ngev = 0
41
+
42
+ def callback(self, x, f, context):
43
+ # For testing callback mechanism. Should stop for e <= 1 as
44
+ # the callback function returns True
45
+ if f <= 1.0:
46
+ return True
47
+
48
+ def func(self, x, args=()):
49
+ # Using Rastrigin function for performing tests
50
+ if args:
51
+ shift = args
52
+ else:
53
+ shift = 0
54
+ y = np.sum((x - shift) ** 2 - 10 * np.cos(2 * np.pi * (
55
+ x - shift))) + 10 * np.size(x) + shift
56
+ self.nb_fun_call += 1
57
+ return y
58
+
59
+ def rosen_der_wrapper(self, x, args=()):
60
+ self.ngev += 1
61
+ return rosen_der(x, *args)
62
+
63
+ # FIXME: there are some discontinuities in behaviour as a function of `qv`,
64
+ # this needs investigating - see gh-12384
65
+ @pytest.mark.parametrize('qv', [1.1, 1.41, 2, 2.62, 2.9])
66
+ def test_visiting_stepping(self, qv):
67
+ lu = list(zip(*self.ld_bounds))
68
+ lower = np.array(lu[0])
69
+ upper = np.array(lu[1])
70
+ dim = lower.size
71
+ vd = VisitingDistribution(lower, upper, qv, self.rs)
72
+ values = np.zeros(dim)
73
+ x_step_low = vd.visiting(values, 0, self.high_temperature)
74
+ # Make sure that only the first component is changed
75
+ assert_equal(np.not_equal(x_step_low, 0), True)
76
+ values = np.zeros(dim)
77
+ x_step_high = vd.visiting(values, dim, self.high_temperature)
78
+ # Make sure that component other than at dim has changed
79
+ assert_equal(np.not_equal(x_step_high[0], 0), True)
80
+
81
+ @pytest.mark.parametrize('qv', [2.25, 2.62, 2.9])
82
+ def test_visiting_dist_high_temperature(self, qv):
83
+ lu = list(zip(*self.ld_bounds))
84
+ lower = np.array(lu[0])
85
+ upper = np.array(lu[1])
86
+ vd = VisitingDistribution(lower, upper, qv, self.rs)
87
+ # values = np.zeros(self.nbtestvalues)
88
+ # for i in np.arange(self.nbtestvalues):
89
+ # values[i] = vd.visit_fn(self.high_temperature)
90
+ values = vd.visit_fn(self.high_temperature, self.nbtestvalues)
91
+
92
+ # Visiting distribution is a distorted version of Cauchy-Lorentz
93
+ # distribution, and as no 1st and higher moments (no mean defined,
94
+ # no variance defined).
95
+ # Check that big tails values are generated
96
+ assert_array_less(np.min(values), 1e-10)
97
+ assert_array_less(1e+10, np.max(values))
98
+
99
+ def test_reset(self):
100
+ owf = ObjectiveFunWrapper(self.weirdfunc)
101
+ lu = list(zip(*self.ld_bounds))
102
+ lower = np.array(lu[0])
103
+ upper = np.array(lu[1])
104
+ es = EnergyState(lower, upper)
105
+ assert_raises(ValueError, es.reset, owf, check_random_state(None))
106
+
107
+ def test_low_dim(self):
108
+ ret = dual_annealing(
109
+ self.func, self.ld_bounds, seed=self.seed)
110
+ assert_allclose(ret.fun, 0., atol=1e-12)
111
+ assert ret.success
112
+
113
+ def test_high_dim(self):
114
+ ret = dual_annealing(self.func, self.hd_bounds, seed=self.seed)
115
+ assert_allclose(ret.fun, 0., atol=1e-12)
116
+ assert ret.success
117
+
118
+ def test_low_dim_no_ls(self):
119
+ ret = dual_annealing(self.func, self.ld_bounds,
120
+ no_local_search=True, seed=self.seed)
121
+ assert_allclose(ret.fun, 0., atol=1e-4)
122
+
123
+ def test_high_dim_no_ls(self):
124
+ ret = dual_annealing(self.func, self.hd_bounds,
125
+ no_local_search=True, seed=self.seed)
126
+ assert_allclose(ret.fun, 0., atol=1e-4)
127
+
128
+ def test_nb_fun_call(self):
129
+ ret = dual_annealing(self.func, self.ld_bounds, seed=self.seed)
130
+ assert_equal(self.nb_fun_call, ret.nfev)
131
+
132
+ def test_nb_fun_call_no_ls(self):
133
+ ret = dual_annealing(self.func, self.ld_bounds,
134
+ no_local_search=True, seed=self.seed)
135
+ assert_equal(self.nb_fun_call, ret.nfev)
136
+
137
+ def test_max_reinit(self):
138
+ assert_raises(ValueError, dual_annealing, self.weirdfunc,
139
+ self.ld_bounds)
140
+
141
+ def test_reproduce(self):
142
+ res1 = dual_annealing(self.func, self.ld_bounds, seed=self.seed)
143
+ res2 = dual_annealing(self.func, self.ld_bounds, seed=self.seed)
144
+ res3 = dual_annealing(self.func, self.ld_bounds, seed=self.seed)
145
+ # If we have reproducible results, x components found has to
146
+ # be exactly the same, which is not the case with no seeding
147
+ assert_equal(res1.x, res2.x)
148
+ assert_equal(res1.x, res3.x)
149
+
150
+ def test_rand_gen(self):
151
+ # check that np.random.Generator can be used (numpy >= 1.17)
152
+ # obtain a np.random.Generator object
153
+ rng = np.random.default_rng(1)
154
+
155
+ res1 = dual_annealing(self.func, self.ld_bounds, seed=rng)
156
+ # seed again
157
+ rng = np.random.default_rng(1)
158
+ res2 = dual_annealing(self.func, self.ld_bounds, seed=rng)
159
+ # If we have reproducible results, x components found has to
160
+ # be exactly the same, which is not the case with no seeding
161
+ assert_equal(res1.x, res2.x)
162
+
163
+ def test_bounds_integrity(self):
164
+ wrong_bounds = [(-5.12, 5.12), (1, 0), (5.12, 5.12)]
165
+ assert_raises(ValueError, dual_annealing, self.func,
166
+ wrong_bounds)
167
+
168
+ def test_bound_validity(self):
169
+ invalid_bounds = [(-5, 5), (-np.inf, 0), (-5, 5)]
170
+ assert_raises(ValueError, dual_annealing, self.func,
171
+ invalid_bounds)
172
+ invalid_bounds = [(-5, 5), (0, np.inf), (-5, 5)]
173
+ assert_raises(ValueError, dual_annealing, self.func,
174
+ invalid_bounds)
175
+ invalid_bounds = [(-5, 5), (0, np.nan), (-5, 5)]
176
+ assert_raises(ValueError, dual_annealing, self.func,
177
+ invalid_bounds)
178
+
179
+ def test_deprecated_local_search_options_bounds(self):
180
+ def func(x):
181
+ return np.sum((x - 5) * (x - 1))
182
+ bounds = list(zip([-6, -5], [6, 5]))
183
+ # Test bounds can be passed (see gh-10831)
184
+
185
+ with pytest.warns(RuntimeWarning, match=r"Method CG cannot handle "):
186
+ dual_annealing(
187
+ func,
188
+ bounds=bounds,
189
+ minimizer_kwargs={"method": "CG", "bounds": bounds})
190
+
191
+ def test_minimizer_kwargs_bounds(self):
192
+ def func(x):
193
+ return np.sum((x - 5) * (x - 1))
194
+ bounds = list(zip([-6, -5], [6, 5]))
195
+ # Test bounds can be passed (see gh-10831)
196
+ dual_annealing(
197
+ func,
198
+ bounds=bounds,
199
+ minimizer_kwargs={"method": "SLSQP", "bounds": bounds})
200
+
201
+ with pytest.warns(RuntimeWarning, match=r"Method CG cannot handle "):
202
+ dual_annealing(
203
+ func,
204
+ bounds=bounds,
205
+ minimizer_kwargs={"method": "CG", "bounds": bounds})
206
+
207
+ def test_max_fun_ls(self):
208
+ ret = dual_annealing(self.func, self.ld_bounds, maxfun=100,
209
+ seed=self.seed)
210
+
211
+ ls_max_iter = min(max(
212
+ len(self.ld_bounds) * LocalSearchWrapper.LS_MAXITER_RATIO,
213
+ LocalSearchWrapper.LS_MAXITER_MIN),
214
+ LocalSearchWrapper.LS_MAXITER_MAX)
215
+ assert ret.nfev <= 100 + ls_max_iter
216
+ assert not ret.success
217
+
218
+ def test_max_fun_no_ls(self):
219
+ ret = dual_annealing(self.func, self.ld_bounds,
220
+ no_local_search=True, maxfun=500, seed=self.seed)
221
+ assert ret.nfev <= 500
222
+ assert not ret.success
223
+
224
+ def test_maxiter(self):
225
+ ret = dual_annealing(self.func, self.ld_bounds, maxiter=700,
226
+ seed=self.seed)
227
+ assert ret.nit <= 700
228
+
229
+ # Testing that args are passed correctly for dual_annealing
230
+ def test_fun_args_ls(self):
231
+ ret = dual_annealing(self.func, self.ld_bounds,
232
+ args=((3.14159,)), seed=self.seed)
233
+ assert_allclose(ret.fun, 3.14159, atol=1e-6)
234
+
235
+ # Testing that args are passed correctly for pure simulated annealing
236
+ def test_fun_args_no_ls(self):
237
+ ret = dual_annealing(self.func, self.ld_bounds,
238
+ args=((3.14159, )), no_local_search=True,
239
+ seed=self.seed)
240
+ assert_allclose(ret.fun, 3.14159, atol=1e-4)
241
+
242
+ def test_callback_stop(self):
243
+ # Testing that callback make the algorithm stop for
244
+ # fun value <= 1.0 (see callback method)
245
+ ret = dual_annealing(self.func, self.ld_bounds,
246
+ callback=self.callback, seed=self.seed)
247
+ assert ret.fun <= 1.0
248
+ assert 'stop early' in ret.message[0]
249
+ assert not ret.success
250
+
251
+ @pytest.mark.parametrize('method, atol', [
252
+ ('Nelder-Mead', 2e-5),
253
+ ('COBYLA', 1e-5),
254
+ ('Powell', 1e-8),
255
+ ('CG', 1e-8),
256
+ ('BFGS', 1e-8),
257
+ ('TNC', 1e-8),
258
+ ('SLSQP', 2e-7),
259
+ ])
260
+ def test_multi_ls_minimizer(self, method, atol):
261
+ ret = dual_annealing(self.func, self.ld_bounds,
262
+ minimizer_kwargs=dict(method=method),
263
+ seed=self.seed)
264
+ assert_allclose(ret.fun, 0., atol=atol)
265
+
266
+ def test_wrong_restart_temp(self):
267
+ assert_raises(ValueError, dual_annealing, self.func,
268
+ self.ld_bounds, restart_temp_ratio=1)
269
+ assert_raises(ValueError, dual_annealing, self.func,
270
+ self.ld_bounds, restart_temp_ratio=0)
271
+
272
+ def test_gradient_gnev(self):
273
+ minimizer_opts = {
274
+ 'jac': self.rosen_der_wrapper,
275
+ }
276
+ ret = dual_annealing(rosen, self.ld_bounds,
277
+ minimizer_kwargs=minimizer_opts,
278
+ seed=self.seed)
279
+ assert ret.njev == self.ngev
280
+
281
+ def test_from_docstring(self):
282
+ def func(x):
283
+ return np.sum(x * x - 10 * np.cos(2 * np.pi * x)) + 10 * np.size(x)
284
+ lw = [-5.12] * 10
285
+ up = [5.12] * 10
286
+ ret = dual_annealing(func, bounds=list(zip(lw, up)), seed=1234)
287
+ assert_allclose(ret.x,
288
+ [-4.26437714e-09, -3.91699361e-09, -1.86149218e-09,
289
+ -3.97165720e-09, -6.29151648e-09, -6.53145322e-09,
290
+ -3.93616815e-09, -6.55623025e-09, -6.05775280e-09,
291
+ -5.00668935e-09], atol=4e-8)
292
+ assert_allclose(ret.fun, 0.000000, atol=5e-13)
293
+
294
+ @pytest.mark.parametrize('new_e, temp_step, accepted, accept_rate', [
295
+ (0, 100, 1000, 1.0097587941791923),
296
+ (0, 2, 1000, 1.2599210498948732),
297
+ (10, 100, 878, 0.8786035869128718),
298
+ (10, 60, 695, 0.6812920690579612),
299
+ (2, 100, 990, 0.9897404249173424),
300
+ ])
301
+ def test_accept_reject_probabilistic(
302
+ self, new_e, temp_step, accepted, accept_rate):
303
+ # Test accepts unconditionally with e < current_energy and
304
+ # probabilistically with e > current_energy
305
+
306
+ rs = check_random_state(123)
307
+
308
+ count_accepted = 0
309
+ iterations = 1000
310
+
311
+ accept_param = -5
312
+ current_energy = 1
313
+ for _ in range(iterations):
314
+ energy_state = EnergyState(lower=None, upper=None)
315
+ # Set energy state with current_energy, any location.
316
+ energy_state.update_current(current_energy, [0])
317
+
318
+ chain = StrategyChain(
319
+ accept_param, None, None, None, rs, energy_state)
320
+ # Normally this is set in run()
321
+ chain.temperature_step = temp_step
322
+
323
+ # Check if update is accepted.
324
+ chain.accept_reject(j=1, e=new_e, x_visit=[2])
325
+ if energy_state.current_energy == new_e:
326
+ count_accepted += 1
327
+
328
+ assert count_accepted == accepted
329
+
330
+ # Check accept rate
331
+ pqv = 1 - (1 - accept_param) * (new_e - current_energy) / temp_step
332
+ rate = 0 if pqv <= 0 else np.exp(np.log(pqv) / (1 - accept_param))
333
+
334
+ assert_allclose(rate, accept_rate)
335
+
336
+ def test_bounds_class(self):
337
+ # test that result does not depend on the bounds type
338
+ def func(x):
339
+ f = np.sum(x * x - 10 * np.cos(2 * np.pi * x)) + 10 * np.size(x)
340
+ return f
341
+ lw = [-5.12] * 5
342
+ up = [5.12] * 5
343
+
344
+ # Unbounded global minimum is all zeros. Most bounds below will force
345
+ # a DV away from unbounded minimum and be active at solution.
346
+ up[0] = -2.0
347
+ up[1] = -1.0
348
+ lw[3] = 1.0
349
+ lw[4] = 2.0
350
+
351
+ # run optimizations
352
+ bounds = Bounds(lw, up)
353
+ ret_bounds_class = dual_annealing(func, bounds=bounds, seed=1234)
354
+
355
+ bounds_old = list(zip(lw, up))
356
+ ret_bounds_list = dual_annealing(func, bounds=bounds_old, seed=1234)
357
+
358
+ # test that found minima, function evaluations and iterations match
359
+ assert_allclose(ret_bounds_class.x, ret_bounds_list.x, atol=1e-8)
360
+ assert_allclose(ret_bounds_class.x, np.arange(-2, 3), atol=1e-7)
361
+ assert_allclose(ret_bounds_list.fun, ret_bounds_class.fun, atol=1e-9)
362
+ assert ret_bounds_list.nfev == ret_bounds_class.nfev
363
+
364
+ def test_callable_jac_with_args_gh11052(self):
365
+ # dual_annealing used to fail when `jac` was callable and `args` were
366
+ # used; check that this is resolved. Example is from gh-11052.
367
+ rng = np.random.default_rng(94253637693657847462)
368
+ def f(x, power):
369
+ return np.sum(np.exp(x ** power))
370
+
371
+ def jac(x, power):
372
+ return np.exp(x ** power) * power * x ** (power - 1)
373
+
374
+ res1 = dual_annealing(f, args=(2, ), bounds=[[0, 1], [0, 1]], seed=rng,
375
+ minimizer_kwargs=dict(method='L-BFGS-B'))
376
+ res2 = dual_annealing(f, args=(2, ), bounds=[[0, 1], [0, 1]], seed=rng,
377
+ minimizer_kwargs=dict(method='L-BFGS-B',
378
+ jac=jac))
379
+ assert_allclose(res1.fun, res2.fun, rtol=1e-6)
venv/lib/python3.10/site-packages/scipy/optimize/tests/test__linprog_clean_inputs.py ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Unit test for Linear Programming via Simplex Algorithm.
3
+ """
4
+ import numpy as np
5
+ from numpy.testing import assert_, assert_allclose, assert_equal
6
+ from pytest import raises as assert_raises
7
+ from scipy.optimize._linprog_util import _clean_inputs, _LPProblem
8
+ from scipy._lib._util import VisibleDeprecationWarning
9
+ from copy import deepcopy
10
+ from datetime import date
11
+
12
+
13
+ def test_aliasing():
14
+ """
15
+ Test for ensuring that no objects referred to by `lp` attributes,
16
+ `c`, `A_ub`, `b_ub`, `A_eq`, `b_eq`, `bounds`, have been modified
17
+ by `_clean_inputs` as a side effect.
18
+ """
19
+ lp = _LPProblem(
20
+ c=1,
21
+ A_ub=[[1]],
22
+ b_ub=[1],
23
+ A_eq=[[1]],
24
+ b_eq=[1],
25
+ bounds=(-np.inf, np.inf)
26
+ )
27
+ lp_copy = deepcopy(lp)
28
+
29
+ _clean_inputs(lp)
30
+
31
+ assert_(lp.c == lp_copy.c, "c modified by _clean_inputs")
32
+ assert_(lp.A_ub == lp_copy.A_ub, "A_ub modified by _clean_inputs")
33
+ assert_(lp.b_ub == lp_copy.b_ub, "b_ub modified by _clean_inputs")
34
+ assert_(lp.A_eq == lp_copy.A_eq, "A_eq modified by _clean_inputs")
35
+ assert_(lp.b_eq == lp_copy.b_eq, "b_eq modified by _clean_inputs")
36
+ assert_(lp.bounds == lp_copy.bounds, "bounds modified by _clean_inputs")
37
+
38
+
39
+ def test_aliasing2():
40
+ """
41
+ Similar purpose as `test_aliasing` above.
42
+ """
43
+ lp = _LPProblem(
44
+ c=np.array([1, 1]),
45
+ A_ub=np.array([[1, 1], [2, 2]]),
46
+ b_ub=np.array([[1], [1]]),
47
+ A_eq=np.array([[1, 1]]),
48
+ b_eq=np.array([1]),
49
+ bounds=[(-np.inf, np.inf), (None, 1)]
50
+ )
51
+ lp_copy = deepcopy(lp)
52
+
53
+ _clean_inputs(lp)
54
+
55
+ assert_allclose(lp.c, lp_copy.c, err_msg="c modified by _clean_inputs")
56
+ assert_allclose(lp.A_ub, lp_copy.A_ub, err_msg="A_ub modified by _clean_inputs")
57
+ assert_allclose(lp.b_ub, lp_copy.b_ub, err_msg="b_ub modified by _clean_inputs")
58
+ assert_allclose(lp.A_eq, lp_copy.A_eq, err_msg="A_eq modified by _clean_inputs")
59
+ assert_allclose(lp.b_eq, lp_copy.b_eq, err_msg="b_eq modified by _clean_inputs")
60
+ assert_(lp.bounds == lp_copy.bounds, "bounds modified by _clean_inputs")
61
+
62
+
63
+ def test_missing_inputs():
64
+ c = [1, 2]
65
+ A_ub = np.array([[1, 1], [2, 2]])
66
+ b_ub = np.array([1, 1])
67
+ A_eq = np.array([[1, 1], [2, 2]])
68
+ b_eq = np.array([1, 1])
69
+
70
+ assert_raises(TypeError, _clean_inputs)
71
+ assert_raises(TypeError, _clean_inputs, _LPProblem(c=None))
72
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=A_ub))
73
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=A_ub, b_ub=None))
74
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, b_ub=b_ub))
75
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=None, b_ub=b_ub))
76
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=A_eq))
77
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=A_eq, b_eq=None))
78
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, b_eq=b_eq))
79
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=None, b_eq=b_eq))
80
+
81
+
82
+ def test_too_many_dimensions():
83
+ cb = [1, 2, 3, 4]
84
+ A = np.random.rand(4, 4)
85
+ bad2D = [[1, 2], [3, 4]]
86
+ bad3D = np.random.rand(4, 4, 4)
87
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=bad2D, A_ub=A, b_ub=cb))
88
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_ub=bad3D, b_ub=cb))
89
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_ub=A, b_ub=bad2D))
90
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_eq=bad3D, b_eq=cb))
91
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_eq=A, b_eq=bad2D))
92
+
93
+
94
+ def test_too_few_dimensions():
95
+ bad = np.random.rand(4, 4).ravel()
96
+ cb = np.random.rand(4)
97
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_ub=bad, b_ub=cb))
98
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_eq=bad, b_eq=cb))
99
+
100
+
101
+ def test_inconsistent_dimensions():
102
+ m = 2
103
+ n = 4
104
+ c = [1, 2, 3, 4]
105
+
106
+ Agood = np.random.rand(m, n)
107
+ Abad = np.random.rand(m, n + 1)
108
+ bgood = np.random.rand(m)
109
+ bbad = np.random.rand(m + 1)
110
+ boundsbad = [(0, 1)] * (n + 1)
111
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=Abad, b_ub=bgood))
112
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=Agood, b_ub=bbad))
113
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=Abad, b_eq=bgood))
114
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=Agood, b_eq=bbad))
115
+ assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, bounds=boundsbad))
116
+ with np.testing.suppress_warnings() as sup:
117
+ sup.filter(VisibleDeprecationWarning, "Creating an ndarray from ragged")
118
+ assert_raises(ValueError, _clean_inputs,
119
+ _LPProblem(c=c, bounds=[[1, 2], [2, 3], [3, 4], [4, 5, 6]]))
120
+
121
+
122
+ def test_type_errors():
123
+ lp = _LPProblem(
124
+ c=[1, 2],
125
+ A_ub=np.array([[1, 1], [2, 2]]),
126
+ b_ub=np.array([1, 1]),
127
+ A_eq=np.array([[1, 1], [2, 2]]),
128
+ b_eq=np.array([1, 1]),
129
+ bounds=[(0, 1)]
130
+ )
131
+ bad = "hello"
132
+
133
+ assert_raises(TypeError, _clean_inputs, lp._replace(c=bad))
134
+ assert_raises(TypeError, _clean_inputs, lp._replace(A_ub=bad))
135
+ assert_raises(TypeError, _clean_inputs, lp._replace(b_ub=bad))
136
+ assert_raises(TypeError, _clean_inputs, lp._replace(A_eq=bad))
137
+ assert_raises(TypeError, _clean_inputs, lp._replace(b_eq=bad))
138
+
139
+ assert_raises(ValueError, _clean_inputs, lp._replace(bounds=bad))
140
+ assert_raises(ValueError, _clean_inputs, lp._replace(bounds="hi"))
141
+ assert_raises(ValueError, _clean_inputs, lp._replace(bounds=["hi"]))
142
+ assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[("hi")]))
143
+ assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, "")]))
144
+ assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, 2), (1, "")]))
145
+ assert_raises(TypeError, _clean_inputs,
146
+ lp._replace(bounds=[(1, date(2020, 2, 29))]))
147
+ assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[[[1, 2]]]))
148
+
149
+
150
+ def test_non_finite_errors():
151
+ lp = _LPProblem(
152
+ c=[1, 2],
153
+ A_ub=np.array([[1, 1], [2, 2]]),
154
+ b_ub=np.array([1, 1]),
155
+ A_eq=np.array([[1, 1], [2, 2]]),
156
+ b_eq=np.array([1, 1]),
157
+ bounds=[(0, 1)]
158
+ )
159
+ assert_raises(ValueError, _clean_inputs, lp._replace(c=[0, None]))
160
+ assert_raises(ValueError, _clean_inputs, lp._replace(c=[np.inf, 0]))
161
+ assert_raises(ValueError, _clean_inputs, lp._replace(c=[0, -np.inf]))
162
+ assert_raises(ValueError, _clean_inputs, lp._replace(c=[np.nan, 0]))
163
+
164
+ assert_raises(ValueError, _clean_inputs, lp._replace(A_ub=[[1, 2], [None, 1]]))
165
+ assert_raises(ValueError, _clean_inputs, lp._replace(b_ub=[np.inf, 1]))
166
+ assert_raises(ValueError, _clean_inputs, lp._replace(A_eq=[[1, 2], [1, -np.inf]]))
167
+ assert_raises(ValueError, _clean_inputs, lp._replace(b_eq=[1, np.nan]))
168
+
169
+
170
+ def test__clean_inputs1():
171
+ lp = _LPProblem(
172
+ c=[1, 2],
173
+ A_ub=[[1, 1], [2, 2]],
174
+ b_ub=[1, 1],
175
+ A_eq=[[1, 1], [2, 2]],
176
+ b_eq=[1, 1],
177
+ bounds=None
178
+ )
179
+
180
+ lp_cleaned = _clean_inputs(lp)
181
+
182
+ assert_allclose(lp_cleaned.c, np.array(lp.c))
183
+ assert_allclose(lp_cleaned.A_ub, np.array(lp.A_ub))
184
+ assert_allclose(lp_cleaned.b_ub, np.array(lp.b_ub))
185
+ assert_allclose(lp_cleaned.A_eq, np.array(lp.A_eq))
186
+ assert_allclose(lp_cleaned.b_eq, np.array(lp.b_eq))
187
+ assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
188
+
189
+ assert_(lp_cleaned.c.shape == (2,), "")
190
+ assert_(lp_cleaned.A_ub.shape == (2, 2), "")
191
+ assert_(lp_cleaned.b_ub.shape == (2,), "")
192
+ assert_(lp_cleaned.A_eq.shape == (2, 2), "")
193
+ assert_(lp_cleaned.b_eq.shape == (2,), "")
194
+
195
+
196
+ def test__clean_inputs2():
197
+ lp = _LPProblem(
198
+ c=1,
199
+ A_ub=[[1]],
200
+ b_ub=1,
201
+ A_eq=[[1]],
202
+ b_eq=1,
203
+ bounds=(0, 1)
204
+ )
205
+
206
+ lp_cleaned = _clean_inputs(lp)
207
+
208
+ assert_allclose(lp_cleaned.c, np.array(lp.c))
209
+ assert_allclose(lp_cleaned.A_ub, np.array(lp.A_ub))
210
+ assert_allclose(lp_cleaned.b_ub, np.array(lp.b_ub))
211
+ assert_allclose(lp_cleaned.A_eq, np.array(lp.A_eq))
212
+ assert_allclose(lp_cleaned.b_eq, np.array(lp.b_eq))
213
+ assert_equal(lp_cleaned.bounds, [(0, 1)])
214
+
215
+ assert_(lp_cleaned.c.shape == (1,), "")
216
+ assert_(lp_cleaned.A_ub.shape == (1, 1), "")
217
+ assert_(lp_cleaned.b_ub.shape == (1,), "")
218
+ assert_(lp_cleaned.A_eq.shape == (1, 1), "")
219
+ assert_(lp_cleaned.b_eq.shape == (1,), "")
220
+
221
+
222
+ def test__clean_inputs3():
223
+ lp = _LPProblem(
224
+ c=[[1, 2]],
225
+ A_ub=np.random.rand(2, 2),
226
+ b_ub=[[1], [2]],
227
+ A_eq=np.random.rand(2, 2),
228
+ b_eq=[[1], [2]],
229
+ bounds=[(0, 1)]
230
+ )
231
+
232
+ lp_cleaned = _clean_inputs(lp)
233
+
234
+ assert_allclose(lp_cleaned.c, np.array([1, 2]))
235
+ assert_allclose(lp_cleaned.b_ub, np.array([1, 2]))
236
+ assert_allclose(lp_cleaned.b_eq, np.array([1, 2]))
237
+ assert_equal(lp_cleaned.bounds, [(0, 1)] * 2)
238
+
239
+ assert_(lp_cleaned.c.shape == (2,), "")
240
+ assert_(lp_cleaned.b_ub.shape == (2,), "")
241
+ assert_(lp_cleaned.b_eq.shape == (2,), "")
242
+
243
+
244
+ def test_bad_bounds():
245
+ lp = _LPProblem(c=[1, 2])
246
+
247
+ assert_raises(ValueError, _clean_inputs, lp._replace(bounds=(1, 2, 2)))
248
+ assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, 2, 2)]))
249
+ with np.testing.suppress_warnings() as sup:
250
+ sup.filter(VisibleDeprecationWarning, "Creating an ndarray from ragged")
251
+ assert_raises(ValueError, _clean_inputs,
252
+ lp._replace(bounds=[(1, 2), (1, 2, 2)]))
253
+ assert_raises(ValueError, _clean_inputs,
254
+ lp._replace(bounds=[(1, 2), (1, 2), (1, 2)]))
255
+
256
+ lp = _LPProblem(c=[1, 2, 3, 4])
257
+
258
+ assert_raises(ValueError, _clean_inputs,
259
+ lp._replace(bounds=[(1, 2, 3, 4), (1, 2, 3, 4)]))
260
+
261
+
262
+ def test_good_bounds():
263
+ lp = _LPProblem(c=[1, 2])
264
+
265
+ lp_cleaned = _clean_inputs(lp) # lp.bounds is None by default
266
+ assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
267
+
268
+ lp_cleaned = _clean_inputs(lp._replace(bounds=[]))
269
+ assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
270
+
271
+ lp_cleaned = _clean_inputs(lp._replace(bounds=[[]]))
272
+ assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
273
+
274
+ lp_cleaned = _clean_inputs(lp._replace(bounds=(1, 2)))
275
+ assert_equal(lp_cleaned.bounds, [(1, 2)] * 2)
276
+
277
+ lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, 2)]))
278
+ assert_equal(lp_cleaned.bounds, [(1, 2)] * 2)
279
+
280
+ lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, None)]))
281
+ assert_equal(lp_cleaned.bounds, [(1, np.inf)] * 2)
282
+
283
+ lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, 1)]))
284
+ assert_equal(lp_cleaned.bounds, [(-np.inf, 1)] * 2)
285
+
286
+ lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, None), (-np.inf, None)]))
287
+ assert_equal(lp_cleaned.bounds, [(-np.inf, np.inf)] * 2)
288
+
289
+ lp = _LPProblem(c=[1, 2, 3, 4])
290
+
291
+ lp_cleaned = _clean_inputs(lp) # lp.bounds is None by default
292
+ assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 4)
293
+
294
+ lp_cleaned = _clean_inputs(lp._replace(bounds=(1, 2)))
295
+ assert_equal(lp_cleaned.bounds, [(1, 2)] * 4)
296
+
297
+ lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, 2)]))
298
+ assert_equal(lp_cleaned.bounds, [(1, 2)] * 4)
299
+
300
+ lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, None)]))
301
+ assert_equal(lp_cleaned.bounds, [(1, np.inf)] * 4)
302
+
303
+ lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, 1)]))
304
+ assert_equal(lp_cleaned.bounds, [(-np.inf, 1)] * 4)
305
+
306
+ lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, None),
307
+ (-np.inf, None),
308
+ (None, np.inf),
309
+ (-np.inf, np.inf)]))
310
+ assert_equal(lp_cleaned.bounds, [(-np.inf, np.inf)] * 4)
venv/lib/python3.10/site-packages/scipy/optimize/tests/test__numdiff.py ADDED
@@ -0,0 +1,815 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from itertools import product
3
+
4
+ import numpy as np
5
+ from numpy.testing import assert_allclose, assert_equal, assert_
6
+ from pytest import raises as assert_raises
7
+
8
+ from scipy.sparse import csr_matrix, csc_matrix, lil_matrix
9
+
10
+ from scipy.optimize._numdiff import (
11
+ _adjust_scheme_to_bounds, approx_derivative, check_derivative,
12
+ group_columns, _eps_for_method, _compute_absolute_step)
13
+
14
+
15
+ def test_group_columns():
16
+ structure = [
17
+ [1, 1, 0, 0, 0, 0],
18
+ [1, 1, 1, 0, 0, 0],
19
+ [0, 1, 1, 1, 0, 0],
20
+ [0, 0, 1, 1, 1, 0],
21
+ [0, 0, 0, 1, 1, 1],
22
+ [0, 0, 0, 0, 1, 1],
23
+ [0, 0, 0, 0, 0, 0]
24
+ ]
25
+ for transform in [np.asarray, csr_matrix, csc_matrix, lil_matrix]:
26
+ A = transform(structure)
27
+ order = np.arange(6)
28
+ groups_true = np.array([0, 1, 2, 0, 1, 2])
29
+ groups = group_columns(A, order)
30
+ assert_equal(groups, groups_true)
31
+
32
+ order = [1, 2, 4, 3, 5, 0]
33
+ groups_true = np.array([2, 0, 1, 2, 0, 1])
34
+ groups = group_columns(A, order)
35
+ assert_equal(groups, groups_true)
36
+
37
+ # Test repeatability.
38
+ groups_1 = group_columns(A)
39
+ groups_2 = group_columns(A)
40
+ assert_equal(groups_1, groups_2)
41
+
42
+
43
+ def test_correct_fp_eps():
44
+ # check that relative step size is correct for FP size
45
+ EPS = np.finfo(np.float64).eps
46
+ relative_step = {"2-point": EPS**0.5,
47
+ "3-point": EPS**(1/3),
48
+ "cs": EPS**0.5}
49
+ for method in ['2-point', '3-point', 'cs']:
50
+ assert_allclose(
51
+ _eps_for_method(np.float64, np.float64, method),
52
+ relative_step[method])
53
+ assert_allclose(
54
+ _eps_for_method(np.complex128, np.complex128, method),
55
+ relative_step[method]
56
+ )
57
+
58
+ # check another FP size
59
+ EPS = np.finfo(np.float32).eps
60
+ relative_step = {"2-point": EPS**0.5,
61
+ "3-point": EPS**(1/3),
62
+ "cs": EPS**0.5}
63
+
64
+ for method in ['2-point', '3-point', 'cs']:
65
+ assert_allclose(
66
+ _eps_for_method(np.float64, np.float32, method),
67
+ relative_step[method]
68
+ )
69
+ assert_allclose(
70
+ _eps_for_method(np.float32, np.float64, method),
71
+ relative_step[method]
72
+ )
73
+ assert_allclose(
74
+ _eps_for_method(np.float32, np.float32, method),
75
+ relative_step[method]
76
+ )
77
+
78
+
79
+ class TestAdjustSchemeToBounds:
80
+ def test_no_bounds(self):
81
+ x0 = np.zeros(3)
82
+ h = np.full(3, 1e-2)
83
+ inf_lower = np.empty_like(x0)
84
+ inf_upper = np.empty_like(x0)
85
+ inf_lower.fill(-np.inf)
86
+ inf_upper.fill(np.inf)
87
+
88
+ h_adjusted, one_sided = _adjust_scheme_to_bounds(
89
+ x0, h, 1, '1-sided', inf_lower, inf_upper)
90
+ assert_allclose(h_adjusted, h)
91
+ assert_(np.all(one_sided))
92
+
93
+ h_adjusted, one_sided = _adjust_scheme_to_bounds(
94
+ x0, h, 2, '1-sided', inf_lower, inf_upper)
95
+ assert_allclose(h_adjusted, h)
96
+ assert_(np.all(one_sided))
97
+
98
+ h_adjusted, one_sided = _adjust_scheme_to_bounds(
99
+ x0, h, 1, '2-sided', inf_lower, inf_upper)
100
+ assert_allclose(h_adjusted, h)
101
+ assert_(np.all(~one_sided))
102
+
103
+ h_adjusted, one_sided = _adjust_scheme_to_bounds(
104
+ x0, h, 2, '2-sided', inf_lower, inf_upper)
105
+ assert_allclose(h_adjusted, h)
106
+ assert_(np.all(~one_sided))
107
+
108
+ def test_with_bound(self):
109
+ x0 = np.array([0.0, 0.85, -0.85])
110
+ lb = -np.ones(3)
111
+ ub = np.ones(3)
112
+ h = np.array([1, 1, -1]) * 1e-1
113
+
114
+ h_adjusted, _ = _adjust_scheme_to_bounds(x0, h, 1, '1-sided', lb, ub)
115
+ assert_allclose(h_adjusted, h)
116
+
117
+ h_adjusted, _ = _adjust_scheme_to_bounds(x0, h, 2, '1-sided', lb, ub)
118
+ assert_allclose(h_adjusted, np.array([1, -1, 1]) * 1e-1)
119
+
120
+ h_adjusted, one_sided = _adjust_scheme_to_bounds(
121
+ x0, h, 1, '2-sided', lb, ub)
122
+ assert_allclose(h_adjusted, np.abs(h))
123
+ assert_(np.all(~one_sided))
124
+
125
+ h_adjusted, one_sided = _adjust_scheme_to_bounds(
126
+ x0, h, 2, '2-sided', lb, ub)
127
+ assert_allclose(h_adjusted, np.array([1, -1, 1]) * 1e-1)
128
+ assert_equal(one_sided, np.array([False, True, True]))
129
+
130
+ def test_tight_bounds(self):
131
+ lb = np.array([-0.03, -0.03])
132
+ ub = np.array([0.05, 0.05])
133
+ x0 = np.array([0.0, 0.03])
134
+ h = np.array([-0.1, -0.1])
135
+
136
+ h_adjusted, _ = _adjust_scheme_to_bounds(x0, h, 1, '1-sided', lb, ub)
137
+ assert_allclose(h_adjusted, np.array([0.05, -0.06]))
138
+
139
+ h_adjusted, _ = _adjust_scheme_to_bounds(x0, h, 2, '1-sided', lb, ub)
140
+ assert_allclose(h_adjusted, np.array([0.025, -0.03]))
141
+
142
+ h_adjusted, one_sided = _adjust_scheme_to_bounds(
143
+ x0, h, 1, '2-sided', lb, ub)
144
+ assert_allclose(h_adjusted, np.array([0.03, -0.03]))
145
+ assert_equal(one_sided, np.array([False, True]))
146
+
147
+ h_adjusted, one_sided = _adjust_scheme_to_bounds(
148
+ x0, h, 2, '2-sided', lb, ub)
149
+ assert_allclose(h_adjusted, np.array([0.015, -0.015]))
150
+ assert_equal(one_sided, np.array([False, True]))
151
+
152
+
153
+ class TestApproxDerivativesDense:
154
+ def fun_scalar_scalar(self, x):
155
+ return np.sinh(x)
156
+
157
+ def jac_scalar_scalar(self, x):
158
+ return np.cosh(x)
159
+
160
+ def fun_scalar_vector(self, x):
161
+ return np.array([x[0]**2, np.tan(x[0]), np.exp(x[0])])
162
+
163
+ def jac_scalar_vector(self, x):
164
+ return np.array(
165
+ [2 * x[0], np.cos(x[0]) ** -2, np.exp(x[0])]).reshape(-1, 1)
166
+
167
+ def fun_vector_scalar(self, x):
168
+ return np.sin(x[0] * x[1]) * np.log(x[0])
169
+
170
+ def wrong_dimensions_fun(self, x):
171
+ return np.array([x**2, np.tan(x), np.exp(x)])
172
+
173
+ def jac_vector_scalar(self, x):
174
+ return np.array([
175
+ x[1] * np.cos(x[0] * x[1]) * np.log(x[0]) +
176
+ np.sin(x[0] * x[1]) / x[0],
177
+ x[0] * np.cos(x[0] * x[1]) * np.log(x[0])
178
+ ])
179
+
180
+ def fun_vector_vector(self, x):
181
+ return np.array([
182
+ x[0] * np.sin(x[1]),
183
+ x[1] * np.cos(x[0]),
184
+ x[0] ** 3 * x[1] ** -0.5
185
+ ])
186
+
187
+ def jac_vector_vector(self, x):
188
+ return np.array([
189
+ [np.sin(x[1]), x[0] * np.cos(x[1])],
190
+ [-x[1] * np.sin(x[0]), np.cos(x[0])],
191
+ [3 * x[0] ** 2 * x[1] ** -0.5, -0.5 * x[0] ** 3 * x[1] ** -1.5]
192
+ ])
193
+
194
+ def fun_parametrized(self, x, c0, c1=1.0):
195
+ return np.array([np.exp(c0 * x[0]), np.exp(c1 * x[1])])
196
+
197
+ def jac_parametrized(self, x, c0, c1=0.1):
198
+ return np.array([
199
+ [c0 * np.exp(c0 * x[0]), 0],
200
+ [0, c1 * np.exp(c1 * x[1])]
201
+ ])
202
+
203
+ def fun_with_nan(self, x):
204
+ return x if np.abs(x) <= 1e-8 else np.nan
205
+
206
+ def jac_with_nan(self, x):
207
+ return 1.0 if np.abs(x) <= 1e-8 else np.nan
208
+
209
+ def fun_zero_jacobian(self, x):
210
+ return np.array([x[0] * x[1], np.cos(x[0] * x[1])])
211
+
212
+ def jac_zero_jacobian(self, x):
213
+ return np.array([
214
+ [x[1], x[0]],
215
+ [-x[1] * np.sin(x[0] * x[1]), -x[0] * np.sin(x[0] * x[1])]
216
+ ])
217
+
218
+ def jac_non_numpy(self, x):
219
+ # x can be a scalar or an array [val].
220
+ # Cast to true scalar before handing over to math.exp
221
+ xp = np.asarray(x).item()
222
+ return math.exp(xp)
223
+
224
+ def test_scalar_scalar(self):
225
+ x0 = 1.0
226
+ jac_diff_2 = approx_derivative(self.fun_scalar_scalar, x0,
227
+ method='2-point')
228
+ jac_diff_3 = approx_derivative(self.fun_scalar_scalar, x0)
229
+ jac_diff_4 = approx_derivative(self.fun_scalar_scalar, x0,
230
+ method='cs')
231
+ jac_true = self.jac_scalar_scalar(x0)
232
+ assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
233
+ assert_allclose(jac_diff_3, jac_true, rtol=1e-9)
234
+ assert_allclose(jac_diff_4, jac_true, rtol=1e-12)
235
+
236
+ def test_scalar_scalar_abs_step(self):
237
+ # can approx_derivative use abs_step?
238
+ x0 = 1.0
239
+ jac_diff_2 = approx_derivative(self.fun_scalar_scalar, x0,
240
+ method='2-point', abs_step=1.49e-8)
241
+ jac_diff_3 = approx_derivative(self.fun_scalar_scalar, x0,
242
+ abs_step=1.49e-8)
243
+ jac_diff_4 = approx_derivative(self.fun_scalar_scalar, x0,
244
+ method='cs', abs_step=1.49e-8)
245
+ jac_true = self.jac_scalar_scalar(x0)
246
+ assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
247
+ assert_allclose(jac_diff_3, jac_true, rtol=1e-9)
248
+ assert_allclose(jac_diff_4, jac_true, rtol=1e-12)
249
+
250
+ def test_scalar_vector(self):
251
+ x0 = 0.5
252
+ jac_diff_2 = approx_derivative(self.fun_scalar_vector, x0,
253
+ method='2-point')
254
+ jac_diff_3 = approx_derivative(self.fun_scalar_vector, x0)
255
+ jac_diff_4 = approx_derivative(self.fun_scalar_vector, x0,
256
+ method='cs')
257
+ jac_true = self.jac_scalar_vector(np.atleast_1d(x0))
258
+ assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
259
+ assert_allclose(jac_diff_3, jac_true, rtol=1e-9)
260
+ assert_allclose(jac_diff_4, jac_true, rtol=1e-12)
261
+
262
+ def test_vector_scalar(self):
263
+ x0 = np.array([100.0, -0.5])
264
+ jac_diff_2 = approx_derivative(self.fun_vector_scalar, x0,
265
+ method='2-point')
266
+ jac_diff_3 = approx_derivative(self.fun_vector_scalar, x0)
267
+ jac_diff_4 = approx_derivative(self.fun_vector_scalar, x0,
268
+ method='cs')
269
+ jac_true = self.jac_vector_scalar(x0)
270
+ assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
271
+ assert_allclose(jac_diff_3, jac_true, rtol=1e-7)
272
+ assert_allclose(jac_diff_4, jac_true, rtol=1e-12)
273
+
274
+ def test_vector_scalar_abs_step(self):
275
+ # can approx_derivative use abs_step?
276
+ x0 = np.array([100.0, -0.5])
277
+ jac_diff_2 = approx_derivative(self.fun_vector_scalar, x0,
278
+ method='2-point', abs_step=1.49e-8)
279
+ jac_diff_3 = approx_derivative(self.fun_vector_scalar, x0,
280
+ abs_step=1.49e-8, rel_step=np.inf)
281
+ jac_diff_4 = approx_derivative(self.fun_vector_scalar, x0,
282
+ method='cs', abs_step=1.49e-8)
283
+ jac_true = self.jac_vector_scalar(x0)
284
+ assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
285
+ assert_allclose(jac_diff_3, jac_true, rtol=3e-9)
286
+ assert_allclose(jac_diff_4, jac_true, rtol=1e-12)
287
+
288
+ def test_vector_vector(self):
289
+ x0 = np.array([-100.0, 0.2])
290
+ jac_diff_2 = approx_derivative(self.fun_vector_vector, x0,
291
+ method='2-point')
292
+ jac_diff_3 = approx_derivative(self.fun_vector_vector, x0)
293
+ jac_diff_4 = approx_derivative(self.fun_vector_vector, x0,
294
+ method='cs')
295
+ jac_true = self.jac_vector_vector(x0)
296
+ assert_allclose(jac_diff_2, jac_true, rtol=1e-5)
297
+ assert_allclose(jac_diff_3, jac_true, rtol=1e-6)
298
+ assert_allclose(jac_diff_4, jac_true, rtol=1e-12)
299
+
300
+ def test_wrong_dimensions(self):
301
+ x0 = 1.0
302
+ assert_raises(RuntimeError, approx_derivative,
303
+ self.wrong_dimensions_fun, x0)
304
+ f0 = self.wrong_dimensions_fun(np.atleast_1d(x0))
305
+ assert_raises(ValueError, approx_derivative,
306
+ self.wrong_dimensions_fun, x0, f0=f0)
307
+
308
+ def test_custom_rel_step(self):
309
+ x0 = np.array([-0.1, 0.1])
310
+ jac_diff_2 = approx_derivative(self.fun_vector_vector, x0,
311
+ method='2-point', rel_step=1e-4)
312
+ jac_diff_3 = approx_derivative(self.fun_vector_vector, x0,
313
+ rel_step=1e-4)
314
+ jac_true = self.jac_vector_vector(x0)
315
+ assert_allclose(jac_diff_2, jac_true, rtol=1e-2)
316
+ assert_allclose(jac_diff_3, jac_true, rtol=1e-4)
317
+
318
+ def test_options(self):
319
+ x0 = np.array([1.0, 1.0])
320
+ c0 = -1.0
321
+ c1 = 1.0
322
+ lb = 0.0
323
+ ub = 2.0
324
+ f0 = self.fun_parametrized(x0, c0, c1=c1)
325
+ rel_step = np.array([-1e-6, 1e-7])
326
+ jac_true = self.jac_parametrized(x0, c0, c1)
327
+ jac_diff_2 = approx_derivative(
328
+ self.fun_parametrized, x0, method='2-point', rel_step=rel_step,
329
+ f0=f0, args=(c0,), kwargs=dict(c1=c1), bounds=(lb, ub))
330
+ jac_diff_3 = approx_derivative(
331
+ self.fun_parametrized, x0, rel_step=rel_step,
332
+ f0=f0, args=(c0,), kwargs=dict(c1=c1), bounds=(lb, ub))
333
+ assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
334
+ assert_allclose(jac_diff_3, jac_true, rtol=1e-9)
335
+
336
+ def test_with_bounds_2_point(self):
337
+ lb = -np.ones(2)
338
+ ub = np.ones(2)
339
+
340
+ x0 = np.array([-2.0, 0.2])
341
+ assert_raises(ValueError, approx_derivative,
342
+ self.fun_vector_vector, x0, bounds=(lb, ub))
343
+
344
+ x0 = np.array([-1.0, 1.0])
345
+ jac_diff = approx_derivative(self.fun_vector_vector, x0,
346
+ method='2-point', bounds=(lb, ub))
347
+ jac_true = self.jac_vector_vector(x0)
348
+ assert_allclose(jac_diff, jac_true, rtol=1e-6)
349
+
350
+ def test_with_bounds_3_point(self):
351
+ lb = np.array([1.0, 1.0])
352
+ ub = np.array([2.0, 2.0])
353
+
354
+ x0 = np.array([1.0, 2.0])
355
+ jac_true = self.jac_vector_vector(x0)
356
+
357
+ jac_diff = approx_derivative(self.fun_vector_vector, x0)
358
+ assert_allclose(jac_diff, jac_true, rtol=1e-9)
359
+
360
+ jac_diff = approx_derivative(self.fun_vector_vector, x0,
361
+ bounds=(lb, np.inf))
362
+ assert_allclose(jac_diff, jac_true, rtol=1e-9)
363
+
364
+ jac_diff = approx_derivative(self.fun_vector_vector, x0,
365
+ bounds=(-np.inf, ub))
366
+ assert_allclose(jac_diff, jac_true, rtol=1e-9)
367
+
368
+ jac_diff = approx_derivative(self.fun_vector_vector, x0,
369
+ bounds=(lb, ub))
370
+ assert_allclose(jac_diff, jac_true, rtol=1e-9)
371
+
372
+ def test_tight_bounds(self):
373
+ x0 = np.array([10.0, 10.0])
374
+ lb = x0 - 3e-9
375
+ ub = x0 + 2e-9
376
+ jac_true = self.jac_vector_vector(x0)
377
+ jac_diff = approx_derivative(
378
+ self.fun_vector_vector, x0, method='2-point', bounds=(lb, ub))
379
+ assert_allclose(jac_diff, jac_true, rtol=1e-6)
380
+ jac_diff = approx_derivative(
381
+ self.fun_vector_vector, x0, method='2-point',
382
+ rel_step=1e-6, bounds=(lb, ub))
383
+ assert_allclose(jac_diff, jac_true, rtol=1e-6)
384
+
385
+ jac_diff = approx_derivative(
386
+ self.fun_vector_vector, x0, bounds=(lb, ub))
387
+ assert_allclose(jac_diff, jac_true, rtol=1e-6)
388
+ jac_diff = approx_derivative(
389
+ self.fun_vector_vector, x0, rel_step=1e-6, bounds=(lb, ub))
390
+ assert_allclose(jac_true, jac_diff, rtol=1e-6)
391
+
392
+ def test_bound_switches(self):
393
+ lb = -1e-8
394
+ ub = 1e-8
395
+ x0 = 0.0
396
+ jac_true = self.jac_with_nan(x0)
397
+ jac_diff_2 = approx_derivative(
398
+ self.fun_with_nan, x0, method='2-point', rel_step=1e-6,
399
+ bounds=(lb, ub))
400
+ jac_diff_3 = approx_derivative(
401
+ self.fun_with_nan, x0, rel_step=1e-6, bounds=(lb, ub))
402
+ assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
403
+ assert_allclose(jac_diff_3, jac_true, rtol=1e-9)
404
+
405
+ x0 = 1e-8
406
+ jac_true = self.jac_with_nan(x0)
407
+ jac_diff_2 = approx_derivative(
408
+ self.fun_with_nan, x0, method='2-point', rel_step=1e-6,
409
+ bounds=(lb, ub))
410
+ jac_diff_3 = approx_derivative(
411
+ self.fun_with_nan, x0, rel_step=1e-6, bounds=(lb, ub))
412
+ assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
413
+ assert_allclose(jac_diff_3, jac_true, rtol=1e-9)
414
+
415
+ def test_non_numpy(self):
416
+ x0 = 1.0
417
+ jac_true = self.jac_non_numpy(x0)
418
+ jac_diff_2 = approx_derivative(self.jac_non_numpy, x0,
419
+ method='2-point')
420
+ jac_diff_3 = approx_derivative(self.jac_non_numpy, x0)
421
+ assert_allclose(jac_diff_2, jac_true, rtol=1e-6)
422
+ assert_allclose(jac_diff_3, jac_true, rtol=1e-8)
423
+
424
+ # math.exp cannot handle complex arguments, hence this raises
425
+ assert_raises(TypeError, approx_derivative, self.jac_non_numpy, x0,
426
+ **dict(method='cs'))
427
+
428
+ def test_fp(self):
429
+ # checks that approx_derivative works for FP size other than 64.
430
+ # Example is derived from the minimal working example in gh12991.
431
+ np.random.seed(1)
432
+
433
+ def func(p, x):
434
+ return p[0] + p[1] * x
435
+
436
+ def err(p, x, y):
437
+ return func(p, x) - y
438
+
439
+ x = np.linspace(0, 1, 100, dtype=np.float64)
440
+ y = np.random.random(100).astype(np.float64)
441
+ p0 = np.array([-1.0, -1.0])
442
+
443
+ jac_fp64 = approx_derivative(err, p0, method='2-point', args=(x, y))
444
+
445
+ # parameter vector is float32, func output is float64
446
+ jac_fp = approx_derivative(err, p0.astype(np.float32),
447
+ method='2-point', args=(x, y))
448
+ assert err(p0, x, y).dtype == np.float64
449
+ assert_allclose(jac_fp, jac_fp64, atol=1e-3)
450
+
451
+ # parameter vector is float64, func output is float32
452
+ def err_fp32(p):
453
+ assert p.dtype == np.float32
454
+ return err(p, x, y).astype(np.float32)
455
+
456
+ jac_fp = approx_derivative(err_fp32, p0.astype(np.float32),
457
+ method='2-point')
458
+ assert_allclose(jac_fp, jac_fp64, atol=1e-3)
459
+
460
+ # check upper bound of error on the derivative for 2-point
461
+ def f(x):
462
+ return np.sin(x)
463
+ def g(x):
464
+ return np.cos(x)
465
+ def hess(x):
466
+ return -np.sin(x)
467
+
468
+ def calc_atol(h, x0, f, hess, EPS):
469
+ # truncation error
470
+ t0 = h / 2 * max(np.abs(hess(x0)), np.abs(hess(x0 + h)))
471
+ # roundoff error. There may be a divisor (>1) missing from
472
+ # the following line, so this contribution is possibly
473
+ # overestimated
474
+ t1 = EPS / h * max(np.abs(f(x0)), np.abs(f(x0 + h)))
475
+ return t0 + t1
476
+
477
+ for dtype in [np.float16, np.float32, np.float64]:
478
+ EPS = np.finfo(dtype).eps
479
+ x0 = np.array(1.0).astype(dtype)
480
+ h = _compute_absolute_step(None, x0, f(x0), '2-point')
481
+ atol = calc_atol(h, x0, f, hess, EPS)
482
+ err = approx_derivative(f, x0, method='2-point',
483
+ abs_step=h) - g(x0)
484
+ assert abs(err) < atol
485
+
486
+ def test_check_derivative(self):
487
+ x0 = np.array([-10.0, 10])
488
+ accuracy = check_derivative(self.fun_vector_vector,
489
+ self.jac_vector_vector, x0)
490
+ assert_(accuracy < 1e-9)
491
+ accuracy = check_derivative(self.fun_vector_vector,
492
+ self.jac_vector_vector, x0)
493
+ assert_(accuracy < 1e-6)
494
+
495
+ x0 = np.array([0.0, 0.0])
496
+ accuracy = check_derivative(self.fun_zero_jacobian,
497
+ self.jac_zero_jacobian, x0)
498
+ assert_(accuracy == 0)
499
+ accuracy = check_derivative(self.fun_zero_jacobian,
500
+ self.jac_zero_jacobian, x0)
501
+ assert_(accuracy == 0)
502
+
503
+
504
+ class TestApproxDerivativeSparse:
505
+ # Example from Numerical Optimization 2nd edition, p. 198.
506
+ def setup_method(self):
507
+ np.random.seed(0)
508
+ self.n = 50
509
+ self.lb = -0.1 * (1 + np.arange(self.n))
510
+ self.ub = 0.1 * (1 + np.arange(self.n))
511
+ self.x0 = np.empty(self.n)
512
+ self.x0[::2] = (1 - 1e-7) * self.lb[::2]
513
+ self.x0[1::2] = (1 - 1e-7) * self.ub[1::2]
514
+
515
+ self.J_true = self.jac(self.x0)
516
+
517
+ def fun(self, x):
518
+ e = x[1:]**3 - x[:-1]**2
519
+ return np.hstack((0, 3 * e)) + np.hstack((2 * e, 0))
520
+
521
+ def jac(self, x):
522
+ n = x.size
523
+ J = np.zeros((n, n))
524
+ J[0, 0] = -4 * x[0]
525
+ J[0, 1] = 6 * x[1]**2
526
+ for i in range(1, n - 1):
527
+ J[i, i - 1] = -6 * x[i-1]
528
+ J[i, i] = 9 * x[i]**2 - 4 * x[i]
529
+ J[i, i + 1] = 6 * x[i+1]**2
530
+ J[-1, -1] = 9 * x[-1]**2
531
+ J[-1, -2] = -6 * x[-2]
532
+
533
+ return J
534
+
535
+ def structure(self, n):
536
+ A = np.zeros((n, n), dtype=int)
537
+ A[0, 0] = 1
538
+ A[0, 1] = 1
539
+ for i in range(1, n - 1):
540
+ A[i, i - 1: i + 2] = 1
541
+ A[-1, -1] = 1
542
+ A[-1, -2] = 1
543
+
544
+ return A
545
+
546
+ def test_all(self):
547
+ A = self.structure(self.n)
548
+ order = np.arange(self.n)
549
+ groups_1 = group_columns(A, order)
550
+ np.random.shuffle(order)
551
+ groups_2 = group_columns(A, order)
552
+
553
+ for method, groups, l, u in product(
554
+ ['2-point', '3-point', 'cs'], [groups_1, groups_2],
555
+ [-np.inf, self.lb], [np.inf, self.ub]):
556
+ J = approx_derivative(self.fun, self.x0, method=method,
557
+ bounds=(l, u), sparsity=(A, groups))
558
+ assert_(isinstance(J, csr_matrix))
559
+ assert_allclose(J.toarray(), self.J_true, rtol=1e-6)
560
+
561
+ rel_step = np.full_like(self.x0, 1e-8)
562
+ rel_step[::2] *= -1
563
+ J = approx_derivative(self.fun, self.x0, method=method,
564
+ rel_step=rel_step, sparsity=(A, groups))
565
+ assert_allclose(J.toarray(), self.J_true, rtol=1e-5)
566
+
567
+ def test_no_precomputed_groups(self):
568
+ A = self.structure(self.n)
569
+ J = approx_derivative(self.fun, self.x0, sparsity=A)
570
+ assert_allclose(J.toarray(), self.J_true, rtol=1e-6)
571
+
572
+ def test_equivalence(self):
573
+ structure = np.ones((self.n, self.n), dtype=int)
574
+ groups = np.arange(self.n)
575
+ for method in ['2-point', '3-point', 'cs']:
576
+ J_dense = approx_derivative(self.fun, self.x0, method=method)
577
+ J_sparse = approx_derivative(
578
+ self.fun, self.x0, sparsity=(structure, groups), method=method)
579
+ assert_allclose(J_dense, J_sparse.toarray(),
580
+ rtol=5e-16, atol=7e-15)
581
+
582
+ def test_check_derivative(self):
583
+ def jac(x):
584
+ return csr_matrix(self.jac(x))
585
+
586
+ accuracy = check_derivative(self.fun, jac, self.x0,
587
+ bounds=(self.lb, self.ub))
588
+ assert_(accuracy < 1e-9)
589
+
590
+ accuracy = check_derivative(self.fun, jac, self.x0,
591
+ bounds=(self.lb, self.ub))
592
+ assert_(accuracy < 1e-9)
593
+
594
+
595
+ class TestApproxDerivativeLinearOperator:
596
+
597
+ def fun_scalar_scalar(self, x):
598
+ return np.sinh(x)
599
+
600
+ def jac_scalar_scalar(self, x):
601
+ return np.cosh(x)
602
+
603
+ def fun_scalar_vector(self, x):
604
+ return np.array([x[0]**2, np.tan(x[0]), np.exp(x[0])])
605
+
606
+ def jac_scalar_vector(self, x):
607
+ return np.array(
608
+ [2 * x[0], np.cos(x[0]) ** -2, np.exp(x[0])]).reshape(-1, 1)
609
+
610
+ def fun_vector_scalar(self, x):
611
+ return np.sin(x[0] * x[1]) * np.log(x[0])
612
+
613
+ def jac_vector_scalar(self, x):
614
+ return np.array([
615
+ x[1] * np.cos(x[0] * x[1]) * np.log(x[0]) +
616
+ np.sin(x[0] * x[1]) / x[0],
617
+ x[0] * np.cos(x[0] * x[1]) * np.log(x[0])
618
+ ])
619
+
620
+ def fun_vector_vector(self, x):
621
+ return np.array([
622
+ x[0] * np.sin(x[1]),
623
+ x[1] * np.cos(x[0]),
624
+ x[0] ** 3 * x[1] ** -0.5
625
+ ])
626
+
627
+ def jac_vector_vector(self, x):
628
+ return np.array([
629
+ [np.sin(x[1]), x[0] * np.cos(x[1])],
630
+ [-x[1] * np.sin(x[0]), np.cos(x[0])],
631
+ [3 * x[0] ** 2 * x[1] ** -0.5, -0.5 * x[0] ** 3 * x[1] ** -1.5]
632
+ ])
633
+
634
+ def test_scalar_scalar(self):
635
+ x0 = 1.0
636
+ jac_diff_2 = approx_derivative(self.fun_scalar_scalar, x0,
637
+ method='2-point',
638
+ as_linear_operator=True)
639
+ jac_diff_3 = approx_derivative(self.fun_scalar_scalar, x0,
640
+ as_linear_operator=True)
641
+ jac_diff_4 = approx_derivative(self.fun_scalar_scalar, x0,
642
+ method='cs',
643
+ as_linear_operator=True)
644
+ jac_true = self.jac_scalar_scalar(x0)
645
+ np.random.seed(1)
646
+ for i in range(10):
647
+ p = np.random.uniform(-10, 10, size=(1,))
648
+ assert_allclose(jac_diff_2.dot(p), jac_true*p,
649
+ rtol=1e-5)
650
+ assert_allclose(jac_diff_3.dot(p), jac_true*p,
651
+ rtol=5e-6)
652
+ assert_allclose(jac_diff_4.dot(p), jac_true*p,
653
+ rtol=5e-6)
654
+
655
+ def test_scalar_vector(self):
656
+ x0 = 0.5
657
+ jac_diff_2 = approx_derivative(self.fun_scalar_vector, x0,
658
+ method='2-point',
659
+ as_linear_operator=True)
660
+ jac_diff_3 = approx_derivative(self.fun_scalar_vector, x0,
661
+ as_linear_operator=True)
662
+ jac_diff_4 = approx_derivative(self.fun_scalar_vector, x0,
663
+ method='cs',
664
+ as_linear_operator=True)
665
+ jac_true = self.jac_scalar_vector(np.atleast_1d(x0))
666
+ np.random.seed(1)
667
+ for i in range(10):
668
+ p = np.random.uniform(-10, 10, size=(1,))
669
+ assert_allclose(jac_diff_2.dot(p), jac_true.dot(p),
670
+ rtol=1e-5)
671
+ assert_allclose(jac_diff_3.dot(p), jac_true.dot(p),
672
+ rtol=5e-6)
673
+ assert_allclose(jac_diff_4.dot(p), jac_true.dot(p),
674
+ rtol=5e-6)
675
+
676
+ def test_vector_scalar(self):
677
+ x0 = np.array([100.0, -0.5])
678
+ jac_diff_2 = approx_derivative(self.fun_vector_scalar, x0,
679
+ method='2-point',
680
+ as_linear_operator=True)
681
+ jac_diff_3 = approx_derivative(self.fun_vector_scalar, x0,
682
+ as_linear_operator=True)
683
+ jac_diff_4 = approx_derivative(self.fun_vector_scalar, x0,
684
+ method='cs',
685
+ as_linear_operator=True)
686
+ jac_true = self.jac_vector_scalar(x0)
687
+ np.random.seed(1)
688
+ for i in range(10):
689
+ p = np.random.uniform(-10, 10, size=x0.shape)
690
+ assert_allclose(jac_diff_2.dot(p), np.atleast_1d(jac_true.dot(p)),
691
+ rtol=1e-5)
692
+ assert_allclose(jac_diff_3.dot(p), np.atleast_1d(jac_true.dot(p)),
693
+ rtol=5e-6)
694
+ assert_allclose(jac_diff_4.dot(p), np.atleast_1d(jac_true.dot(p)),
695
+ rtol=1e-7)
696
+
697
+ def test_vector_vector(self):
698
+ x0 = np.array([-100.0, 0.2])
699
+ jac_diff_2 = approx_derivative(self.fun_vector_vector, x0,
700
+ method='2-point',
701
+ as_linear_operator=True)
702
+ jac_diff_3 = approx_derivative(self.fun_vector_vector, x0,
703
+ as_linear_operator=True)
704
+ jac_diff_4 = approx_derivative(self.fun_vector_vector, x0,
705
+ method='cs',
706
+ as_linear_operator=True)
707
+ jac_true = self.jac_vector_vector(x0)
708
+ np.random.seed(1)
709
+ for i in range(10):
710
+ p = np.random.uniform(-10, 10, size=x0.shape)
711
+ assert_allclose(jac_diff_2.dot(p), jac_true.dot(p), rtol=1e-5)
712
+ assert_allclose(jac_diff_3.dot(p), jac_true.dot(p), rtol=1e-6)
713
+ assert_allclose(jac_diff_4.dot(p), jac_true.dot(p), rtol=1e-7)
714
+
715
+ def test_exception(self):
716
+ x0 = np.array([-100.0, 0.2])
717
+ assert_raises(ValueError, approx_derivative,
718
+ self.fun_vector_vector, x0,
719
+ method='2-point', bounds=(1, np.inf))
720
+
721
+
722
+ def test_absolute_step_sign():
723
+ # test for gh12487
724
+ # if an absolute step is specified for 2-point differences make sure that
725
+ # the side corresponds to the step. i.e. if step is positive then forward
726
+ # differences should be used, if step is negative then backwards
727
+ # differences should be used.
728
+
729
+ # function has double discontinuity at x = [-1, -1]
730
+ # first component is \/, second component is /\
731
+ def f(x):
732
+ return -np.abs(x[0] + 1) + np.abs(x[1] + 1)
733
+
734
+ # check that the forward difference is used
735
+ grad = approx_derivative(f, [-1, -1], method='2-point', abs_step=1e-8)
736
+ assert_allclose(grad, [-1.0, 1.0])
737
+
738
+ # check that the backwards difference is used
739
+ grad = approx_derivative(f, [-1, -1], method='2-point', abs_step=-1e-8)
740
+ assert_allclose(grad, [1.0, -1.0])
741
+
742
+ # check that the forwards difference is used with a step for both
743
+ # parameters
744
+ grad = approx_derivative(
745
+ f, [-1, -1], method='2-point', abs_step=[1e-8, 1e-8]
746
+ )
747
+ assert_allclose(grad, [-1.0, 1.0])
748
+
749
+ # check that we can mix forward/backwards steps.
750
+ grad = approx_derivative(
751
+ f, [-1, -1], method='2-point', abs_step=[1e-8, -1e-8]
752
+ )
753
+ assert_allclose(grad, [-1.0, -1.0])
754
+ grad = approx_derivative(
755
+ f, [-1, -1], method='2-point', abs_step=[-1e-8, 1e-8]
756
+ )
757
+ assert_allclose(grad, [1.0, 1.0])
758
+
759
+ # the forward step should reverse to a backwards step if it runs into a
760
+ # bound
761
+ # This is kind of tested in TestAdjustSchemeToBounds, but only for a lower level
762
+ # function.
763
+ grad = approx_derivative(
764
+ f, [-1, -1], method='2-point', abs_step=1e-8,
765
+ bounds=(-np.inf, -1)
766
+ )
767
+ assert_allclose(grad, [1.0, -1.0])
768
+
769
+ grad = approx_derivative(
770
+ f, [-1, -1], method='2-point', abs_step=-1e-8, bounds=(-1, np.inf)
771
+ )
772
+ assert_allclose(grad, [-1.0, 1.0])
773
+
774
+
775
+ def test__compute_absolute_step():
776
+ # tests calculation of absolute step from rel_step
777
+ methods = ['2-point', '3-point', 'cs']
778
+
779
+ x0 = np.array([1e-5, 0, 1, 1e5])
780
+
781
+ EPS = np.finfo(np.float64).eps
782
+ relative_step = {
783
+ "2-point": EPS**0.5,
784
+ "3-point": EPS**(1/3),
785
+ "cs": EPS**0.5
786
+ }
787
+ f0 = np.array(1.0)
788
+
789
+ for method in methods:
790
+ rel_step = relative_step[method]
791
+ correct_step = np.array([rel_step,
792
+ rel_step * 1.,
793
+ rel_step * 1.,
794
+ rel_step * np.abs(x0[3])])
795
+
796
+ abs_step = _compute_absolute_step(None, x0, f0, method)
797
+ assert_allclose(abs_step, correct_step)
798
+
799
+ sign_x0 = (-x0 >= 0).astype(float) * 2 - 1
800
+ abs_step = _compute_absolute_step(None, -x0, f0, method)
801
+ assert_allclose(abs_step, sign_x0 * correct_step)
802
+
803
+ # if a relative step is provided it should be used
804
+ rel_step = np.array([0.1, 1, 10, 100])
805
+ correct_step = np.array([rel_step[0] * x0[0],
806
+ relative_step['2-point'],
807
+ rel_step[2] * 1.,
808
+ rel_step[3] * np.abs(x0[3])])
809
+
810
+ abs_step = _compute_absolute_step(rel_step, x0, f0, '2-point')
811
+ assert_allclose(abs_step, correct_step)
812
+
813
+ sign_x0 = (-x0 >= 0).astype(float) * 2 - 1
814
+ abs_step = _compute_absolute_step(rel_step, -x0, f0, '2-point')
815
+ assert_allclose(abs_step, sign_x0 * correct_step)