File size: 7,936 Bytes
12c2131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import warnings
import numpy as np

from scipy import stats
from ._stats_py import _get_pvalue, _rankdata
from . import _morestats
from ._axis_nan_policy import _broadcast_arrays
from ._hypotests import _get_wilcoxon_distr
from scipy._lib._util import _lazywhere, _get_nan


class WilcoxonDistribution:

    def __init__(self, n):
        n = np.asarray(n).astype(int, copy=False)
        self.n = n
        self._dists = {ni: _get_wilcoxon_distr(ni) for ni in np.unique(n)}

    def _cdf1(self, k, n):
        pmfs = self._dists[n]
        return pmfs[:k + 1].sum()

    def _cdf(self, k, n):
        return np.vectorize(self._cdf1, otypes=[float])(k, n)

    def _sf1(self, k, n):
        pmfs = self._dists[n]
        return pmfs[k:].sum()

    def _sf(self, k, n):
        return np.vectorize(self._sf1, otypes=[float])(k, n)

    def mean(self):
        return self.n * (self.n + 1) / 4

    def _prep(self, k):
        k = np.asarray(k).astype(int, copy=False)
        mn = self.mean()
        out = np.empty(k.shape, dtype=np.float64)
        return k, mn, out

    def cdf(self, k):
        k, mn, out = self._prep(k)
        return _lazywhere(k <= mn, (k, self.n), self._cdf,
                          f2=lambda k, n: 1 - self._sf(k+1, n))[()]

    def sf(self, k):
        k, mn, out = self._prep(k)
        return _lazywhere(k <= mn, (k, self.n), self._sf,
                          f2=lambda k, n: 1 - self._cdf(k-1, n))[()]


def _wilcoxon_iv(x, y, zero_method, correction, alternative, method, axis):

    axis = np.asarray(axis)[()]
    message = "`axis` must be an integer."
    if not np.issubdtype(axis.dtype, np.integer) or axis.ndim != 0:
        raise ValueError(message)

    message = '`axis` must be compatible with the shape(s) of `x` (and `y`)'
    try:
        if y is None:
            x = np.asarray(x)
            d = x
        else:
            x, y = _broadcast_arrays((x, y), axis=axis)
            d = x - y
        d = np.moveaxis(d, axis, -1)
    except np.AxisError as e:
        raise ValueError(message) from e

    message = "`x` and `y` must have the same length along `axis`."
    if y is not None and x.shape[axis] != y.shape[axis]:
        raise ValueError(message)

    message = "`x` (and `y`, if provided) must be an array of real numbers."
    if np.issubdtype(d.dtype, np.integer):
        d = d.astype(np.float64)
    if not np.issubdtype(d.dtype, np.floating):
        raise ValueError(message)

    zero_method = str(zero_method).lower()
    zero_methods = {"wilcox", "pratt", "zsplit"}
    message = f"`zero_method` must be one of {zero_methods}."
    if zero_method not in zero_methods:
        raise ValueError(message)

    corrections = {True, False}
    message = f"`correction` must be one of {corrections}."
    if correction not in corrections:
        raise ValueError(message)

    alternative = str(alternative).lower()
    alternatives = {"two-sided", "less", "greater"}
    message = f"`alternative` must be one of {alternatives}."
    if alternative not in alternatives:
        raise ValueError(message)

    if not isinstance(method, stats.PermutationMethod):
        methods = {"auto", "approx", "exact"}
        message = (f"`method` must be one of {methods} or "
                   "an instance of `stats.PermutationMethod`.")
        if method not in methods:
            raise ValueError(message)

    # logic unchanged here for backward compatibility
    n_zero = np.sum(d == 0, axis=-1)
    has_zeros = np.any(n_zero > 0)
    if method == "auto":
        if d.shape[-1] <= 50 and not has_zeros:
            method = "exact"
        else:
            method = "approx"

    n_zero = np.sum(d == 0)
    if n_zero > 0 and method == "exact":
        method = "approx"
        warnings.warn("Exact p-value calculation does not work if there are "
                      "zeros. Switching to normal approximation.",
                      stacklevel=2)

    if (method == "approx" and zero_method in ["wilcox", "pratt"]
            and n_zero == d.size and d.size > 0 and d.ndim == 1):
        raise ValueError("zero_method 'wilcox' and 'pratt' do not "
                         "work if x - y is zero for all elements.")

    if 0 < d.shape[-1] < 10 and method == "approx":
        warnings.warn("Sample size too small for normal approximation.", stacklevel=2)

    return d, zero_method, correction, alternative, method, axis


def _wilcoxon_statistic(d, zero_method='wilcox'):

    i_zeros = (d == 0)

    if zero_method == 'wilcox':
        # Wilcoxon's method for treating zeros was to remove them from
        # the calculation. We do this by replacing 0s with NaNs, which
        # are ignored anyway.
        if not d.flags['WRITEABLE']:
            d = d.copy()
        d[i_zeros] = np.nan

    i_nan = np.isnan(d)
    n_nan = np.sum(i_nan, axis=-1)
    count = d.shape[-1] - n_nan

    r, t = _rankdata(abs(d), 'average', return_ties=True)

    r_plus = np.sum((d > 0) * r, axis=-1)
    r_minus = np.sum((d < 0) * r, axis=-1)

    if zero_method == "zsplit":
        # The "zero-split" method for treating zeros is to add half their contribution
        # to r_plus and half to r_minus.
        # See gh-2263 for the origin of this method.
        r_zero_2 = np.sum(i_zeros * r, axis=-1) / 2
        r_plus += r_zero_2
        r_minus += r_zero_2

    mn = count * (count + 1.) * 0.25
    se = count * (count + 1.) * (2. * count + 1.)

    if zero_method == "pratt":
        # Pratt's method for treating zeros was just to modify the z-statistic.

        # normal approximation needs to be adjusted, see Cureton (1967)
        n_zero = i_zeros.sum(axis=-1)
        mn -= n_zero * (n_zero + 1.) * 0.25
        se -= n_zero * (n_zero + 1.) * (2. * n_zero + 1.)

        # zeros are not to be included in tie-correction.
        # any tie counts corresponding with zeros are in the 0th column
        t[i_zeros.any(axis=-1), 0] = 0

    tie_correct = (t**3 - t).sum(axis=-1)
    se -= tie_correct/2
    se = np.sqrt(se / 24)

    z = (r_plus - mn) / se

    return r_plus, r_minus, se, z, count


def _correction_sign(z, alternative):
    if alternative == 'greater':
        return 1
    elif alternative == 'less':
        return -1
    else:
        return np.sign(z)


def _wilcoxon_nd(x, y=None, zero_method='wilcox', correction=True,
                 alternative='two-sided', method='auto', axis=0):

    temp = _wilcoxon_iv(x, y, zero_method, correction, alternative, method, axis)
    d, zero_method, correction, alternative, method, axis = temp

    if d.size == 0:
        NaN = _get_nan(d)
        res = _morestats.WilcoxonResult(statistic=NaN, pvalue=NaN)
        if method == 'approx':
            res.zstatistic = NaN
        return res

    r_plus, r_minus, se, z, count = _wilcoxon_statistic(d, zero_method)

    if method == 'approx':
        if correction:
            sign = _correction_sign(z, alternative)
            z -= sign * 0.5 / se
        p = _get_pvalue(z, stats.norm, alternative)
    elif method == 'exact':
        dist = WilcoxonDistribution(count)
        if alternative == 'less':
            p = dist.cdf(r_plus)
        elif alternative == 'greater':
            p = dist.sf(r_plus)
        else:
            p = 2 * np.minimum(dist.sf(r_plus), dist.cdf(r_plus))
            p = np.clip(p, 0, 1)
    else:  # `PermutationMethod` instance (already validated)
        p = stats.permutation_test(
            (d,), lambda d: _wilcoxon_statistic(d, zero_method)[0],
            permutation_type='samples', **method._asdict(),
            alternative=alternative, axis=-1).pvalue

    # for backward compatibility...
    statistic = np.minimum(r_plus, r_minus) if alternative=='two-sided' else r_plus
    z = -np.abs(z) if (alternative == 'two-sided' and method == 'approx') else z

    res = _morestats.WilcoxonResult(statistic=statistic, pvalue=p[()])
    if method == 'approx':
        res.zstatistic = z[()]
    return res