applied-ai-018 commited on
Commit
12c2131
·
verified ·
1 Parent(s): 025c9d8

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/16.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
  2. ckpts/universal/global_step40/zero/17.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  3. ckpts/universal/global_step40/zero/17.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
  4. ckpts/universal/global_step40/zero/17.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
  5. ckpts/universal/global_step40/zero/6.post_attention_layernorm.weight/fp32.pt +3 -0
  6. venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/__init__.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_filters.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_fourier.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_interpolation.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_measurements.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_morphology.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_ni_docstrings.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_ni_support.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/filters.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/fourier.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/interpolation.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/measurements.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/morphology.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/scipy/ndimage/tests/__init__.py +13 -0
  20. venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_c_api.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_datatypes.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_filters.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_fourier.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_interpolation.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_measurements.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_morphology.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_ni_support.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_splines.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_inputs.txt +21 -0
  31. venv/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_results.txt +294 -0
  32. venv/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_strels.txt +42 -0
  33. venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_c_api.py +102 -0
  34. venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_datatypes.py +66 -0
  35. venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_filters.py +2189 -0
  36. venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_fourier.py +151 -0
  37. venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_interpolation.py +1327 -0
  38. venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_measurements.py +1409 -0
  39. venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_morphology.py +0 -0
  40. venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_ni_support.py +77 -0
  41. venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_splines.py +65 -0
  42. venv/lib/python3.10/site-packages/scipy/stats/__init__.py +643 -0
  43. venv/lib/python3.10/site-packages/scipy/stats/_ansari_swilk_statistics.cpython-310-x86_64-linux-gnu.so +0 -0
  44. venv/lib/python3.10/site-packages/scipy/stats/_axis_nan_policy.py +642 -0
  45. venv/lib/python3.10/site-packages/scipy/stats/_biasedurn.cpython-310-x86_64-linux-gnu.so +0 -0
  46. venv/lib/python3.10/site-packages/scipy/stats/_bws_test.py +177 -0
  47. venv/lib/python3.10/site-packages/scipy/stats/_censored_data.py +459 -0
  48. venv/lib/python3.10/site-packages/scipy/stats/_common.py +5 -0
  49. venv/lib/python3.10/site-packages/scipy/stats/_constants.py +39 -0
  50. venv/lib/python3.10/site-packages/scipy/stats/_continuous_distns.py +0 -0
ckpts/universal/global_step40/zero/16.attention.query_key_value.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac468ceabd93f514aa7d003d1dbab05b8e68035900d5d25ef6938c4616ea959c
3
+ size 50332843
ckpts/universal/global_step40/zero/17.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4da93b9372f8c88f63165119a244af2e9becd0ac17f694915d6905196348d603
3
+ size 33555612
ckpts/universal/global_step40/zero/17.mlp.dense_4h_to_h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4313de6920348f98073a99238c9a87ab3cb78baba2bd66d265f5e6b76c80a5b5
3
+ size 33555627
ckpts/universal/global_step40/zero/17.mlp.dense_4h_to_h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3089e77b53620c3658b64c419e0ef3fc307e45c68fdaff018ade8e4c68bd36d
3
+ size 33555533
ckpts/universal/global_step40/zero/6.post_attention_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66912cee30aeef84c558b59578dbd7376a05e35377acd70a85a2d8e02035c4ce
3
+ size 9293
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.82 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_filters.cpython-310.pyc ADDED
Binary file (52.3 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_fourier.cpython-310.pyc ADDED
Binary file (8.73 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_interpolation.cpython-310.pyc ADDED
Binary file (28.6 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_measurements.cpython-310.pyc ADDED
Binary file (47.6 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_morphology.cpython-310.pyc ADDED
Binary file (83.2 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_ni_docstrings.cpython-310.pyc ADDED
Binary file (8.33 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_ni_support.cpython-310.pyc ADDED
Binary file (2.84 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/filters.cpython-310.pyc ADDED
Binary file (979 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/fourier.cpython-310.pyc ADDED
Binary file (666 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/interpolation.cpython-310.pyc ADDED
Binary file (735 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/measurements.cpython-310.pyc ADDED
Binary file (822 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/morphology.cpython-310.pyc ADDED
Binary file (979 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__init__.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ import numpy
3
+
4
+ # list of numarray data types
5
+ integer_types: list[type] = [
6
+ numpy.int8, numpy.uint8, numpy.int16, numpy.uint16,
7
+ numpy.int32, numpy.uint32, numpy.int64, numpy.uint64]
8
+
9
+ float_types: list[type] = [numpy.float32, numpy.float64]
10
+
11
+ complex_types: list[type] = [numpy.complex64, numpy.complex128]
12
+
13
+ types: list[type] = integer_types + float_types
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (562 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_c_api.cpython-310.pyc ADDED
Binary file (4.14 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_datatypes.cpython-310.pyc ADDED
Binary file (1.9 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_filters.cpython-310.pyc ADDED
Binary file (63.9 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_fourier.cpython-310.pyc ADDED
Binary file (5.23 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_interpolation.cpython-310.pyc ADDED
Binary file (46.8 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_measurements.cpython-310.pyc ADDED
Binary file (36.2 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_morphology.cpython-310.pyc ADDED
Binary file (60 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_ni_support.cpython-310.pyc ADDED
Binary file (1.88 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_splines.cpython-310.pyc ADDED
Binary file (2.01 kB). View file
 
venv/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_inputs.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1 1 1 1 1 1 1
2
+ 1 1 1 1 1 1 1
3
+ 1 1 1 1 1 1 1
4
+ 1 1 1 1 1 1 1
5
+ 1 1 1 1 1 1 1
6
+ 1 1 1 1 1 1 1
7
+ 1 1 1 1 1 1 1
8
+ 1 1 1 0 1 1 1
9
+ 1 1 0 0 0 1 1
10
+ 1 0 1 0 1 0 1
11
+ 0 0 0 1 0 0 0
12
+ 1 0 1 0 1 0 1
13
+ 1 1 0 0 0 1 1
14
+ 1 1 1 0 1 1 1
15
+ 1 0 1 1 1 0 1
16
+ 0 0 0 1 0 0 0
17
+ 1 0 0 1 0 0 1
18
+ 1 1 1 1 1 1 1
19
+ 1 0 0 1 0 0 1
20
+ 0 0 0 1 0 0 0
21
+ 1 0 1 1 1 0 1
venv/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_results.txt ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1 1 1 1 1 1 1
2
+ 1 1 1 1 1 1 1
3
+ 1 1 1 1 1 1 1
4
+ 1 1 1 1 1 1 1
5
+ 1 1 1 1 1 1 1
6
+ 1 1 1 1 1 1 1
7
+ 1 1 1 1 1 1 1
8
+ 1 1 1 1 1 1 1
9
+ 1 1 1 1 1 1 1
10
+ 1 1 1 1 1 1 1
11
+ 1 1 1 1 1 1 1
12
+ 1 1 1 1 1 1 1
13
+ 1 1 1 1 1 1 1
14
+ 1 1 1 1 1 1 1
15
+ 1 1 1 1 1 1 1
16
+ 2 2 2 2 2 2 2
17
+ 3 3 3 3 3 3 3
18
+ 4 4 4 4 4 4 4
19
+ 5 5 5 5 5 5 5
20
+ 6 6 6 6 6 6 6
21
+ 7 7 7 7 7 7 7
22
+ 1 1 1 1 1 1 1
23
+ 1 1 1 1 1 1 1
24
+ 1 1 1 1 1 1 1
25
+ 1 1 1 1 1 1 1
26
+ 1 1 1 1 1 1 1
27
+ 1 1 1 1 1 1 1
28
+ 1 1 1 1 1 1 1
29
+ 1 2 3 4 5 6 7
30
+ 8 9 10 11 12 13 14
31
+ 15 16 17 18 19 20 21
32
+ 22 23 24 25 26 27 28
33
+ 29 30 31 32 33 34 35
34
+ 36 37 38 39 40 41 42
35
+ 43 44 45 46 47 48 49
36
+ 1 1 1 1 1 1 1
37
+ 1 1 1 1 1 1 1
38
+ 1 1 1 1 1 1 1
39
+ 1 1 1 1 1 1 1
40
+ 1 1 1 1 1 1 1
41
+ 1 1 1 1 1 1 1
42
+ 1 1 1 1 1 1 1
43
+ 1 1 1 1 1 1 1
44
+ 1 1 1 1 1 1 1
45
+ 1 1 1 1 1 1 1
46
+ 1 1 1 1 1 1 1
47
+ 1 1 1 1 1 1 1
48
+ 1 1 1 1 1 1 1
49
+ 1 1 1 1 1 1 1
50
+ 1 2 3 4 5 6 7
51
+ 8 1 2 3 4 5 6
52
+ 9 8 1 2 3 4 5
53
+ 10 9 8 1 2 3 4
54
+ 11 10 9 8 1 2 3
55
+ 12 11 10 9 8 1 2
56
+ 13 12 11 10 9 8 1
57
+ 1 2 3 4 5 6 7
58
+ 1 2 3 4 5 6 7
59
+ 1 2 3 4 5 6 7
60
+ 1 2 3 4 5 6 7
61
+ 1 2 3 4 5 6 7
62
+ 1 2 3 4 5 6 7
63
+ 1 2 3 4 5 6 7
64
+ 1 1 1 1 1 1 1
65
+ 1 1 1 1 1 1 1
66
+ 1 1 1 1 1 1 1
67
+ 1 1 1 1 1 1 1
68
+ 1 1 1 1 1 1 1
69
+ 1 1 1 1 1 1 1
70
+ 1 1 1 1 1 1 1
71
+ 1 1 1 1 1 1 1
72
+ 1 1 1 1 1 1 1
73
+ 1 1 1 1 1 1 1
74
+ 1 1 1 1 1 1 1
75
+ 1 1 1 1 1 1 1
76
+ 1 1 1 1 1 1 1
77
+ 1 1 1 1 1 1 1
78
+ 1 2 1 2 1 2 1
79
+ 2 1 2 1 2 1 2
80
+ 1 2 1 2 1 2 1
81
+ 2 1 2 1 2 1 2
82
+ 1 2 1 2 1 2 1
83
+ 2 1 2 1 2 1 2
84
+ 1 2 1 2 1 2 1
85
+ 1 2 3 4 5 6 7
86
+ 2 3 4 5 6 7 8
87
+ 3 4 5 6 7 8 9
88
+ 4 5 6 7 8 9 10
89
+ 5 6 7 8 9 10 11
90
+ 6 7 8 9 10 11 12
91
+ 7 8 9 10 11 12 13
92
+ 1 1 1 1 1 1 1
93
+ 1 1 1 1 1 1 1
94
+ 1 1 1 1 1 1 1
95
+ 1 1 1 1 1 1 1
96
+ 1 1 1 1 1 1 1
97
+ 1 1 1 1 1 1 1
98
+ 1 1 1 1 1 1 1
99
+ 1 1 1 0 2 2 2
100
+ 1 1 0 0 0 2 2
101
+ 1 0 3 0 2 0 4
102
+ 0 0 0 2 0 0 0
103
+ 5 0 2 0 6 0 7
104
+ 2 2 0 0 0 7 7
105
+ 2 2 2 0 7 7 7
106
+ 1 1 1 0 2 2 2
107
+ 1 1 0 0 0 2 2
108
+ 3 0 1 0 4 0 2
109
+ 0 0 0 1 0 0 0
110
+ 5 0 6 0 1 0 7
111
+ 5 5 0 0 0 1 1
112
+ 5 5 5 0 1 1 1
113
+ 1 1 1 0 2 2 2
114
+ 3 3 0 0 0 4 4
115
+ 5 0 6 0 7 0 8
116
+ 0 0 0 9 0 0 0
117
+ 10 0 11 0 12 0 13
118
+ 14 14 0 0 0 15 15
119
+ 16 16 16 0 17 17 17
120
+ 1 1 1 0 2 3 3
121
+ 1 1 0 0 0 3 3
122
+ 1 0 4 0 3 0 3
123
+ 0 0 0 3 0 0 0
124
+ 3 0 3 0 5 0 6
125
+ 3 3 0 0 0 6 6
126
+ 3 3 7 0 6 6 6
127
+ 1 2 3 0 4 5 6
128
+ 7 8 0 0 0 9 10
129
+ 11 0 12 0 13 0 14
130
+ 0 0 0 15 0 0 0
131
+ 16 0 17 0 18 0 19
132
+ 20 21 0 0 0 22 23
133
+ 24 25 26 0 27 28 29
134
+ 1 1 1 0 2 2 2
135
+ 1 1 0 0 0 2 2
136
+ 1 0 3 0 2 0 2
137
+ 0 0 0 2 0 0 0
138
+ 2 0 2 0 4 0 5
139
+ 2 2 0 0 0 5 5
140
+ 2 2 2 0 5 5 5
141
+ 1 1 1 0 2 2 2
142
+ 1 1 0 0 0 2 2
143
+ 1 0 3 0 4 0 2
144
+ 0 0 0 5 0 0 0
145
+ 6 0 7 0 8 0 9
146
+ 6 6 0 0 0 9 9
147
+ 6 6 6 0 9 9 9
148
+ 1 2 3 0 4 5 6
149
+ 7 1 0 0 0 4 5
150
+ 8 0 1 0 9 0 4
151
+ 0 0 0 1 0 0 0
152
+ 10 0 11 0 1 0 12
153
+ 13 10 0 0 0 1 14
154
+ 15 13 10 0 16 17 1
155
+ 1 2 3 0 4 5 6
156
+ 1 2 0 0 0 5 6
157
+ 1 0 7 0 8 0 6
158
+ 0 0 0 9 0 0 0
159
+ 10 0 11 0 12 0 13
160
+ 10 14 0 0 0 15 13
161
+ 10 14 16 0 17 15 13
162
+ 1 1 1 0 1 1 1
163
+ 1 1 0 0 0 1 1
164
+ 1 0 1 0 1 0 1
165
+ 0 0 0 1 0 0 0
166
+ 1 0 1 0 1 0 1
167
+ 1 1 0 0 0 1 1
168
+ 1 1 1 0 1 1 1
169
+ 1 1 2 0 3 3 3
170
+ 1 1 0 0 0 3 3
171
+ 1 0 1 0 4 0 3
172
+ 0 0 0 1 0 0 0
173
+ 5 0 6 0 1 0 1
174
+ 5 5 0 0 0 1 1
175
+ 5 5 5 0 7 1 1
176
+ 1 2 1 0 1 3 1
177
+ 2 1 0 0 0 1 3
178
+ 1 0 1 0 1 0 1
179
+ 0 0 0 1 0 0 0
180
+ 1 0 1 0 1 0 1
181
+ 4 1 0 0 0 1 5
182
+ 1 4 1 0 1 5 1
183
+ 1 2 3 0 4 5 6
184
+ 2 3 0 0 0 6 7
185
+ 3 0 8 0 6 0 9
186
+ 0 0 0 6 0 0 0
187
+ 10 0 6 0 11 0 12
188
+ 13 6 0 0 0 12 14
189
+ 6 15 16 0 12 14 17
190
+ 1 1 1 0 2 2 2
191
+ 1 1 0 0 0 2 2
192
+ 1 0 1 0 3 0 2
193
+ 0 0 0 1 0 0 0
194
+ 4 0 5 0 1 0 1
195
+ 4 4 0 0 0 1 1
196
+ 4 4 4 0 1 1 1
197
+ 1 0 2 2 2 0 3
198
+ 0 0 0 2 0 0 0
199
+ 4 0 0 5 0 0 5
200
+ 5 5 5 5 5 5 5
201
+ 5 0 0 5 0 0 6
202
+ 0 0 0 7 0 0 0
203
+ 8 0 7 7 7 0 9
204
+ 1 0 2 2 2 0 3
205
+ 0 0 0 2 0 0 0
206
+ 4 0 0 4 0 0 5
207
+ 4 4 4 4 4 4 4
208
+ 6 0 0 4 0 0 4
209
+ 0 0 0 7 0 0 0
210
+ 8 0 7 7 7 0 9
211
+ 1 0 2 2 2 0 3
212
+ 0 0 0 4 0 0 0
213
+ 5 0 0 6 0 0 7
214
+ 8 8 8 8 8 8 8
215
+ 9 0 0 10 0 0 11
216
+ 0 0 0 12 0 0 0
217
+ 13 0 14 14 14 0 15
218
+ 1 0 2 3 3 0 4
219
+ 0 0 0 3 0 0 0
220
+ 5 0 0 3 0 0 6
221
+ 5 5 3 3 3 6 6
222
+ 5 0 0 3 0 0 6
223
+ 0 0 0 3 0 0 0
224
+ 7 0 3 3 8 0 9
225
+ 1 0 2 3 4 0 5
226
+ 0 0 0 6 0 0 0
227
+ 7 0 0 8 0 0 9
228
+ 10 11 12 13 14 15 16
229
+ 17 0 0 18 0 0 19
230
+ 0 0 0 20 0 0 0
231
+ 21 0 22 23 24 0 25
232
+ 1 0 2 2 2 0 3
233
+ 0 0 0 2 0 0 0
234
+ 2 0 0 2 0 0 2
235
+ 2 2 2 2 2 2 2
236
+ 2 0 0 2 0 0 2
237
+ 0 0 0 2 0 0 0
238
+ 4 0 2 2 2 0 5
239
+ 1 0 2 2 2 0 3
240
+ 0 0 0 2 0 0 0
241
+ 2 0 0 2 0 0 2
242
+ 2 2 2 2 2 2 2
243
+ 2 0 0 2 0 0 2
244
+ 0 0 0 2 0 0 0
245
+ 4 0 2 2 2 0 5
246
+ 1 0 2 3 4 0 5
247
+ 0 0 0 2 0 0 0
248
+ 6 0 0 7 0 0 8
249
+ 9 6 10 11 7 12 13
250
+ 14 0 0 10 0 0 12
251
+ 0 0 0 15 0 0 0
252
+ 16 0 17 18 15 0 19
253
+ 1 0 2 3 4 0 5
254
+ 0 0 0 3 0 0 0
255
+ 6 0 0 3 0 0 7
256
+ 6 8 9 3 10 11 7
257
+ 6 0 0 3 0 0 7
258
+ 0 0 0 3 0 0 0
259
+ 12 0 13 3 14 0 15
260
+ 1 0 2 2 2 0 3
261
+ 0 0 0 2 0 0 0
262
+ 2 0 0 2 0 0 2
263
+ 2 2 2 2 2 2 2
264
+ 2 0 0 2 0 0 2
265
+ 0 0 0 2 0 0 0
266
+ 4 0 2 2 2 0 5
267
+ 1 0 2 2 3 0 4
268
+ 0 0 0 2 0 0 0
269
+ 5 0 0 2 0 0 6
270
+ 5 5 2 2 2 6 6
271
+ 5 0 0 2 0 0 6
272
+ 0 0 0 2 0 0 0
273
+ 7 0 8 2 2 0 9
274
+ 1 0 2 3 2 0 4
275
+ 0 0 0 2 0 0 0
276
+ 5 0 0 6 0 0 7
277
+ 8 5 6 9 6 7 10
278
+ 5 0 0 6 0 0 7
279
+ 0 0 0 11 0 0 0
280
+ 12 0 11 13 11 0 14
281
+ 1 0 2 3 4 0 5
282
+ 0 0 0 4 0 0 0
283
+ 6 0 0 7 0 0 8
284
+ 9 10 7 11 12 8 13
285
+ 10 0 0 12 0 0 14
286
+ 0 0 0 15 0 0 0
287
+ 16 0 15 17 18 0 19
288
+ 1 0 2 2 2 0 3
289
+ 0 0 0 2 0 0 0
290
+ 2 0 0 2 0 0 2
291
+ 2 2 2 2 2 2 2
292
+ 2 0 0 2 0 0 2
293
+ 0 0 0 2 0 0 0
294
+ 4 0 2 2 2 0 5
venv/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_strels.txt ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 0 0 1
2
+ 1 1 1
3
+ 1 0 0
4
+ 1 0 0
5
+ 1 1 1
6
+ 0 0 1
7
+ 0 0 0
8
+ 1 1 1
9
+ 0 0 0
10
+ 0 1 1
11
+ 0 1 0
12
+ 1 1 0
13
+ 0 0 0
14
+ 0 0 0
15
+ 0 0 0
16
+ 0 1 1
17
+ 1 1 1
18
+ 1 1 0
19
+ 0 1 0
20
+ 1 1 1
21
+ 0 1 0
22
+ 1 0 0
23
+ 0 1 0
24
+ 0 0 1
25
+ 0 1 0
26
+ 0 1 0
27
+ 0 1 0
28
+ 1 1 1
29
+ 1 1 1
30
+ 1 1 1
31
+ 1 1 0
32
+ 0 1 0
33
+ 0 1 1
34
+ 1 0 1
35
+ 0 1 0
36
+ 1 0 1
37
+ 0 0 1
38
+ 0 1 0
39
+ 1 0 0
40
+ 1 1 0
41
+ 1 1 1
42
+ 0 1 1
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_c_api.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from numpy.testing import assert_allclose
3
+
4
+ from scipy import ndimage
5
+ from scipy.ndimage import _ctest
6
+ from scipy.ndimage import _cytest
7
+ from scipy._lib._ccallback import LowLevelCallable
8
+
9
+ FILTER1D_FUNCTIONS = [
10
+ lambda filter_size: _ctest.filter1d(filter_size),
11
+ lambda filter_size: _cytest.filter1d(filter_size, with_signature=False),
12
+ lambda filter_size: LowLevelCallable(
13
+ _cytest.filter1d(filter_size, with_signature=True)
14
+ ),
15
+ lambda filter_size: LowLevelCallable.from_cython(
16
+ _cytest, "_filter1d",
17
+ _cytest.filter1d_capsule(filter_size),
18
+ ),
19
+ ]
20
+
21
+ FILTER2D_FUNCTIONS = [
22
+ lambda weights: _ctest.filter2d(weights),
23
+ lambda weights: _cytest.filter2d(weights, with_signature=False),
24
+ lambda weights: LowLevelCallable(_cytest.filter2d(weights, with_signature=True)),
25
+ lambda weights: LowLevelCallable.from_cython(_cytest,
26
+ "_filter2d",
27
+ _cytest.filter2d_capsule(weights),),
28
+ ]
29
+
30
+ TRANSFORM_FUNCTIONS = [
31
+ lambda shift: _ctest.transform(shift),
32
+ lambda shift: _cytest.transform(shift, with_signature=False),
33
+ lambda shift: LowLevelCallable(_cytest.transform(shift, with_signature=True)),
34
+ lambda shift: LowLevelCallable.from_cython(_cytest,
35
+ "_transform",
36
+ _cytest.transform_capsule(shift),),
37
+ ]
38
+
39
+
40
+ def test_generic_filter():
41
+ def filter2d(footprint_elements, weights):
42
+ return (weights*footprint_elements).sum()
43
+
44
+ def check(j):
45
+ func = FILTER2D_FUNCTIONS[j]
46
+
47
+ im = np.ones((20, 20))
48
+ im[:10,:10] = 0
49
+ footprint = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
50
+ footprint_size = np.count_nonzero(footprint)
51
+ weights = np.ones(footprint_size)/footprint_size
52
+
53
+ res = ndimage.generic_filter(im, func(weights),
54
+ footprint=footprint)
55
+ std = ndimage.generic_filter(im, filter2d, footprint=footprint,
56
+ extra_arguments=(weights,))
57
+ assert_allclose(res, std, err_msg=f"#{j} failed")
58
+
59
+ for j, func in enumerate(FILTER2D_FUNCTIONS):
60
+ check(j)
61
+
62
+
63
+ def test_generic_filter1d():
64
+ def filter1d(input_line, output_line, filter_size):
65
+ for i in range(output_line.size):
66
+ output_line[i] = 0
67
+ for j in range(filter_size):
68
+ output_line[i] += input_line[i+j]
69
+ output_line /= filter_size
70
+
71
+ def check(j):
72
+ func = FILTER1D_FUNCTIONS[j]
73
+
74
+ im = np.tile(np.hstack((np.zeros(10), np.ones(10))), (10, 1))
75
+ filter_size = 3
76
+
77
+ res = ndimage.generic_filter1d(im, func(filter_size),
78
+ filter_size)
79
+ std = ndimage.generic_filter1d(im, filter1d, filter_size,
80
+ extra_arguments=(filter_size,))
81
+ assert_allclose(res, std, err_msg=f"#{j} failed")
82
+
83
+ for j, func in enumerate(FILTER1D_FUNCTIONS):
84
+ check(j)
85
+
86
+
87
+ def test_geometric_transform():
88
+ def transform(output_coordinates, shift):
89
+ return output_coordinates[0] - shift, output_coordinates[1] - shift
90
+
91
+ def check(j):
92
+ func = TRANSFORM_FUNCTIONS[j]
93
+
94
+ im = np.arange(12).reshape(4, 3).astype(np.float64)
95
+ shift = 0.5
96
+
97
+ res = ndimage.geometric_transform(im, func(shift))
98
+ std = ndimage.geometric_transform(im, transform, extra_arguments=(shift,))
99
+ assert_allclose(res, std, err_msg=f"#{j} failed")
100
+
101
+ for j, func in enumerate(TRANSFORM_FUNCTIONS):
102
+ check(j)
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_datatypes.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Testing data types for ndimage calls
2
+ """
3
+ import numpy as np
4
+ from numpy.testing import assert_array_almost_equal, assert_
5
+ import pytest
6
+
7
+ from scipy import ndimage
8
+
9
+
10
+ def test_map_coordinates_dts():
11
+ # check that ndimage accepts different data types for interpolation
12
+ data = np.array([[4, 1, 3, 2],
13
+ [7, 6, 8, 5],
14
+ [3, 5, 3, 6]])
15
+ shifted_data = np.array([[0, 0, 0, 0],
16
+ [0, 4, 1, 3],
17
+ [0, 7, 6, 8]])
18
+ idx = np.indices(data.shape)
19
+ dts = (np.uint8, np.uint16, np.uint32, np.uint64,
20
+ np.int8, np.int16, np.int32, np.int64,
21
+ np.intp, np.uintp, np.float32, np.float64)
22
+ for order in range(0, 6):
23
+ for data_dt in dts:
24
+ these_data = data.astype(data_dt)
25
+ for coord_dt in dts:
26
+ # affine mapping
27
+ mat = np.eye(2, dtype=coord_dt)
28
+ off = np.zeros((2,), dtype=coord_dt)
29
+ out = ndimage.affine_transform(these_data, mat, off)
30
+ assert_array_almost_equal(these_data, out)
31
+ # map coordinates
32
+ coords_m1 = idx.astype(coord_dt) - 1
33
+ coords_p10 = idx.astype(coord_dt) + 10
34
+ out = ndimage.map_coordinates(these_data, coords_m1, order=order)
35
+ assert_array_almost_equal(out, shifted_data)
36
+ # check constant fill works
37
+ out = ndimage.map_coordinates(these_data, coords_p10, order=order)
38
+ assert_array_almost_equal(out, np.zeros((3,4)))
39
+ # check shift and zoom
40
+ out = ndimage.shift(these_data, 1)
41
+ assert_array_almost_equal(out, shifted_data)
42
+ out = ndimage.zoom(these_data, 1)
43
+ assert_array_almost_equal(these_data, out)
44
+
45
+
46
+ @pytest.mark.xfail(True, reason="Broken on many platforms")
47
+ def test_uint64_max():
48
+ # Test interpolation respects uint64 max. Reported to fail at least on
49
+ # win32 (due to the 32 bit visual C compiler using signed int64 when
50
+ # converting between uint64 to double) and Debian on s390x.
51
+ # Interpolation is always done in double precision floating point, so
52
+ # we use the largest uint64 value for which int(float(big)) still fits
53
+ # in a uint64.
54
+ # This test was last enabled on macOS only, and there it started failing
55
+ # on arm64 as well (see gh-19117).
56
+ big = 2**64 - 1025
57
+ arr = np.array([big, big, big], dtype=np.uint64)
58
+ # Tests geometric transform (map_coordinates, affine_transform)
59
+ inds = np.indices(arr.shape) - 0.1
60
+ x = ndimage.map_coordinates(arr, inds)
61
+ assert_(x[1] == int(float(big)))
62
+ assert_(x[2] == int(float(big)))
63
+ # Tests zoom / shift
64
+ x = ndimage.shift(arr, 0.1)
65
+ assert_(x[1] == int(float(big)))
66
+ assert_(x[2] == int(float(big)))
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_filters.py ADDED
@@ -0,0 +1,2189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ''' Some tests for filters '''
2
+ import functools
3
+ import itertools
4
+ import math
5
+ import numpy
6
+
7
+ from numpy.testing import (assert_equal, assert_allclose,
8
+ assert_array_almost_equal,
9
+ assert_array_equal, assert_almost_equal,
10
+ suppress_warnings, assert_)
11
+ import pytest
12
+ from pytest import raises as assert_raises
13
+
14
+ from scipy import ndimage
15
+ from scipy.ndimage._filters import _gaussian_kernel1d
16
+
17
+ from . import types, float_types, complex_types
18
+
19
+
20
+ def sumsq(a, b):
21
+ return math.sqrt(((a - b)**2).sum())
22
+
23
+
24
+ def _complex_correlate(array, kernel, real_dtype, convolve=False,
25
+ mode="reflect", cval=0, ):
26
+ """Utility to perform a reference complex-valued convolutions.
27
+
28
+ When convolve==False, correlation is performed instead
29
+ """
30
+ array = numpy.asarray(array)
31
+ kernel = numpy.asarray(kernel)
32
+ complex_array = array.dtype.kind == 'c'
33
+ complex_kernel = kernel.dtype.kind == 'c'
34
+ if array.ndim == 1:
35
+ func = ndimage.convolve1d if convolve else ndimage.correlate1d
36
+ else:
37
+ func = ndimage.convolve if convolve else ndimage.correlate
38
+ if not convolve:
39
+ kernel = kernel.conj()
40
+ if complex_array and complex_kernel:
41
+ # use: real(cval) for array.real component
42
+ # imag(cval) for array.imag component
43
+ output = (
44
+ func(array.real, kernel.real, output=real_dtype,
45
+ mode=mode, cval=numpy.real(cval)) -
46
+ func(array.imag, kernel.imag, output=real_dtype,
47
+ mode=mode, cval=numpy.imag(cval)) +
48
+ 1j * func(array.imag, kernel.real, output=real_dtype,
49
+ mode=mode, cval=numpy.imag(cval)) +
50
+ 1j * func(array.real, kernel.imag, output=real_dtype,
51
+ mode=mode, cval=numpy.real(cval))
52
+ )
53
+ elif complex_array:
54
+ output = (
55
+ func(array.real, kernel, output=real_dtype, mode=mode,
56
+ cval=numpy.real(cval)) +
57
+ 1j * func(array.imag, kernel, output=real_dtype, mode=mode,
58
+ cval=numpy.imag(cval))
59
+ )
60
+ elif complex_kernel:
61
+ # real array so cval is real too
62
+ output = (
63
+ func(array, kernel.real, output=real_dtype, mode=mode, cval=cval) +
64
+ 1j * func(array, kernel.imag, output=real_dtype, mode=mode,
65
+ cval=cval)
66
+ )
67
+ return output
68
+
69
+
70
+ def _cases_axes_tuple_length_mismatch():
71
+ # Generate combinations of filter function, valid kwargs, and
72
+ # keyword-value pairs for which the value will become with mismatched
73
+ # (invalid) size
74
+ filter_func = ndimage.gaussian_filter
75
+ kwargs = dict(radius=3, mode='constant', sigma=1.0, order=0)
76
+ for key, val in kwargs.items():
77
+ yield filter_func, kwargs, key, val
78
+
79
+ filter_funcs = [ndimage.uniform_filter, ndimage.minimum_filter,
80
+ ndimage.maximum_filter]
81
+ kwargs = dict(size=3, mode='constant', origin=0)
82
+ for filter_func in filter_funcs:
83
+ for key, val in kwargs.items():
84
+ yield filter_func, kwargs, key, val
85
+
86
+
87
+ class TestNdimageFilters:
88
+
89
+ def _validate_complex(self, array, kernel, type2, mode='reflect', cval=0):
90
+ # utility for validating complex-valued correlations
91
+ real_dtype = numpy.asarray([], dtype=type2).real.dtype
92
+ expected = _complex_correlate(
93
+ array, kernel, real_dtype, convolve=False, mode=mode, cval=cval
94
+ )
95
+
96
+ if array.ndim == 1:
97
+ correlate = functools.partial(ndimage.correlate1d, axis=-1,
98
+ mode=mode, cval=cval)
99
+ convolve = functools.partial(ndimage.convolve1d, axis=-1,
100
+ mode=mode, cval=cval)
101
+ else:
102
+ correlate = functools.partial(ndimage.correlate, mode=mode,
103
+ cval=cval)
104
+ convolve = functools.partial(ndimage.convolve, mode=mode,
105
+ cval=cval)
106
+
107
+ # test correlate output dtype
108
+ output = correlate(array, kernel, output=type2)
109
+ assert_array_almost_equal(expected, output)
110
+ assert_equal(output.dtype.type, type2)
111
+
112
+ # test correlate with pre-allocated output
113
+ output = numpy.zeros_like(array, dtype=type2)
114
+ correlate(array, kernel, output=output)
115
+ assert_array_almost_equal(expected, output)
116
+
117
+ # test convolve output dtype
118
+ output = convolve(array, kernel, output=type2)
119
+ expected = _complex_correlate(
120
+ array, kernel, real_dtype, convolve=True, mode=mode, cval=cval,
121
+ )
122
+ assert_array_almost_equal(expected, output)
123
+ assert_equal(output.dtype.type, type2)
124
+
125
+ # convolve with pre-allocated output
126
+ convolve(array, kernel, output=output)
127
+ assert_array_almost_equal(expected, output)
128
+ assert_equal(output.dtype.type, type2)
129
+
130
+ # warns if the output is not a complex dtype
131
+ with pytest.warns(UserWarning,
132
+ match="promoting specified output dtype to complex"):
133
+ correlate(array, kernel, output=real_dtype)
134
+
135
+ with pytest.warns(UserWarning,
136
+ match="promoting specified output dtype to complex"):
137
+ convolve(array, kernel, output=real_dtype)
138
+
139
+ # raises if output array is provided, but is not complex-valued
140
+ output_real = numpy.zeros_like(array, dtype=real_dtype)
141
+ with assert_raises(RuntimeError):
142
+ correlate(array, kernel, output=output_real)
143
+
144
+ with assert_raises(RuntimeError):
145
+ convolve(array, kernel, output=output_real)
146
+
147
+ def test_correlate01(self):
148
+ array = numpy.array([1, 2])
149
+ weights = numpy.array([2])
150
+ expected = [2, 4]
151
+
152
+ output = ndimage.correlate(array, weights)
153
+ assert_array_almost_equal(output, expected)
154
+
155
+ output = ndimage.convolve(array, weights)
156
+ assert_array_almost_equal(output, expected)
157
+
158
+ output = ndimage.correlate1d(array, weights)
159
+ assert_array_almost_equal(output, expected)
160
+
161
+ output = ndimage.convolve1d(array, weights)
162
+ assert_array_almost_equal(output, expected)
163
+
164
+ def test_correlate01_overlap(self):
165
+ array = numpy.arange(256).reshape(16, 16)
166
+ weights = numpy.array([2])
167
+ expected = 2 * array
168
+
169
+ ndimage.correlate1d(array, weights, output=array)
170
+ assert_array_almost_equal(array, expected)
171
+
172
+ def test_correlate02(self):
173
+ array = numpy.array([1, 2, 3])
174
+ kernel = numpy.array([1])
175
+
176
+ output = ndimage.correlate(array, kernel)
177
+ assert_array_almost_equal(array, output)
178
+
179
+ output = ndimage.convolve(array, kernel)
180
+ assert_array_almost_equal(array, output)
181
+
182
+ output = ndimage.correlate1d(array, kernel)
183
+ assert_array_almost_equal(array, output)
184
+
185
+ output = ndimage.convolve1d(array, kernel)
186
+ assert_array_almost_equal(array, output)
187
+
188
+ def test_correlate03(self):
189
+ array = numpy.array([1])
190
+ weights = numpy.array([1, 1])
191
+ expected = [2]
192
+
193
+ output = ndimage.correlate(array, weights)
194
+ assert_array_almost_equal(output, expected)
195
+
196
+ output = ndimage.convolve(array, weights)
197
+ assert_array_almost_equal(output, expected)
198
+
199
+ output = ndimage.correlate1d(array, weights)
200
+ assert_array_almost_equal(output, expected)
201
+
202
+ output = ndimage.convolve1d(array, weights)
203
+ assert_array_almost_equal(output, expected)
204
+
205
+ def test_correlate04(self):
206
+ array = numpy.array([1, 2])
207
+ tcor = [2, 3]
208
+ tcov = [3, 4]
209
+ weights = numpy.array([1, 1])
210
+ output = ndimage.correlate(array, weights)
211
+ assert_array_almost_equal(output, tcor)
212
+ output = ndimage.convolve(array, weights)
213
+ assert_array_almost_equal(output, tcov)
214
+ output = ndimage.correlate1d(array, weights)
215
+ assert_array_almost_equal(output, tcor)
216
+ output = ndimage.convolve1d(array, weights)
217
+ assert_array_almost_equal(output, tcov)
218
+
219
+ def test_correlate05(self):
220
+ array = numpy.array([1, 2, 3])
221
+ tcor = [2, 3, 5]
222
+ tcov = [3, 5, 6]
223
+ kernel = numpy.array([1, 1])
224
+ output = ndimage.correlate(array, kernel)
225
+ assert_array_almost_equal(tcor, output)
226
+ output = ndimage.convolve(array, kernel)
227
+ assert_array_almost_equal(tcov, output)
228
+ output = ndimage.correlate1d(array, kernel)
229
+ assert_array_almost_equal(tcor, output)
230
+ output = ndimage.convolve1d(array, kernel)
231
+ assert_array_almost_equal(tcov, output)
232
+
233
+ def test_correlate06(self):
234
+ array = numpy.array([1, 2, 3])
235
+ tcor = [9, 14, 17]
236
+ tcov = [7, 10, 15]
237
+ weights = numpy.array([1, 2, 3])
238
+ output = ndimage.correlate(array, weights)
239
+ assert_array_almost_equal(output, tcor)
240
+ output = ndimage.convolve(array, weights)
241
+ assert_array_almost_equal(output, tcov)
242
+ output = ndimage.correlate1d(array, weights)
243
+ assert_array_almost_equal(output, tcor)
244
+ output = ndimage.convolve1d(array, weights)
245
+ assert_array_almost_equal(output, tcov)
246
+
247
+ def test_correlate07(self):
248
+ array = numpy.array([1, 2, 3])
249
+ expected = [5, 8, 11]
250
+ weights = numpy.array([1, 2, 1])
251
+ output = ndimage.correlate(array, weights)
252
+ assert_array_almost_equal(output, expected)
253
+ output = ndimage.convolve(array, weights)
254
+ assert_array_almost_equal(output, expected)
255
+ output = ndimage.correlate1d(array, weights)
256
+ assert_array_almost_equal(output, expected)
257
+ output = ndimage.convolve1d(array, weights)
258
+ assert_array_almost_equal(output, expected)
259
+
260
+ def test_correlate08(self):
261
+ array = numpy.array([1, 2, 3])
262
+ tcor = [1, 2, 5]
263
+ tcov = [3, 6, 7]
264
+ weights = numpy.array([1, 2, -1])
265
+ output = ndimage.correlate(array, weights)
266
+ assert_array_almost_equal(output, tcor)
267
+ output = ndimage.convolve(array, weights)
268
+ assert_array_almost_equal(output, tcov)
269
+ output = ndimage.correlate1d(array, weights)
270
+ assert_array_almost_equal(output, tcor)
271
+ output = ndimage.convolve1d(array, weights)
272
+ assert_array_almost_equal(output, tcov)
273
+
274
+ def test_correlate09(self):
275
+ array = []
276
+ kernel = numpy.array([1, 1])
277
+ output = ndimage.correlate(array, kernel)
278
+ assert_array_almost_equal(array, output)
279
+ output = ndimage.convolve(array, kernel)
280
+ assert_array_almost_equal(array, output)
281
+ output = ndimage.correlate1d(array, kernel)
282
+ assert_array_almost_equal(array, output)
283
+ output = ndimage.convolve1d(array, kernel)
284
+ assert_array_almost_equal(array, output)
285
+
286
+ def test_correlate10(self):
287
+ array = [[]]
288
+ kernel = numpy.array([[1, 1]])
289
+ output = ndimage.correlate(array, kernel)
290
+ assert_array_almost_equal(array, output)
291
+ output = ndimage.convolve(array, kernel)
292
+ assert_array_almost_equal(array, output)
293
+
294
+ def test_correlate11(self):
295
+ array = numpy.array([[1, 2, 3],
296
+ [4, 5, 6]])
297
+ kernel = numpy.array([[1, 1],
298
+ [1, 1]])
299
+ output = ndimage.correlate(array, kernel)
300
+ assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output)
301
+ output = ndimage.convolve(array, kernel)
302
+ assert_array_almost_equal([[12, 16, 18], [18, 22, 24]], output)
303
+
304
+ def test_correlate12(self):
305
+ array = numpy.array([[1, 2, 3],
306
+ [4, 5, 6]])
307
+ kernel = numpy.array([[1, 0],
308
+ [0, 1]])
309
+ output = ndimage.correlate(array, kernel)
310
+ assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
311
+ output = ndimage.convolve(array, kernel)
312
+ assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
313
+
314
+ @pytest.mark.parametrize('dtype_array', types)
315
+ @pytest.mark.parametrize('dtype_kernel', types)
316
+ def test_correlate13(self, dtype_array, dtype_kernel):
317
+ kernel = numpy.array([[1, 0],
318
+ [0, 1]])
319
+ array = numpy.array([[1, 2, 3],
320
+ [4, 5, 6]], dtype_array)
321
+ output = ndimage.correlate(array, kernel, output=dtype_kernel)
322
+ assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
323
+ assert_equal(output.dtype.type, dtype_kernel)
324
+
325
+ output = ndimage.convolve(array, kernel,
326
+ output=dtype_kernel)
327
+ assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
328
+ assert_equal(output.dtype.type, dtype_kernel)
329
+
330
+ @pytest.mark.parametrize('dtype_array', types)
331
+ @pytest.mark.parametrize('dtype_output', types)
332
+ def test_correlate14(self, dtype_array, dtype_output):
333
+ kernel = numpy.array([[1, 0],
334
+ [0, 1]])
335
+ array = numpy.array([[1, 2, 3],
336
+ [4, 5, 6]], dtype_array)
337
+ output = numpy.zeros(array.shape, dtype_output)
338
+ ndimage.correlate(array, kernel, output=output)
339
+ assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
340
+ assert_equal(output.dtype.type, dtype_output)
341
+
342
+ ndimage.convolve(array, kernel, output=output)
343
+ assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
344
+ assert_equal(output.dtype.type, dtype_output)
345
+
346
+ @pytest.mark.parametrize('dtype_array', types)
347
+ def test_correlate15(self, dtype_array):
348
+ kernel = numpy.array([[1, 0],
349
+ [0, 1]])
350
+ array = numpy.array([[1, 2, 3],
351
+ [4, 5, 6]], dtype_array)
352
+ output = ndimage.correlate(array, kernel, output=numpy.float32)
353
+ assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
354
+ assert_equal(output.dtype.type, numpy.float32)
355
+
356
+ output = ndimage.convolve(array, kernel, output=numpy.float32)
357
+ assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
358
+ assert_equal(output.dtype.type, numpy.float32)
359
+
360
+ @pytest.mark.parametrize('dtype_array', types)
361
+ def test_correlate16(self, dtype_array):
362
+ kernel = numpy.array([[0.5, 0],
363
+ [0, 0.5]])
364
+ array = numpy.array([[1, 2, 3], [4, 5, 6]], dtype_array)
365
+ output = ndimage.correlate(array, kernel, output=numpy.float32)
366
+ assert_array_almost_equal([[1, 1.5, 2.5], [2.5, 3, 4]], output)
367
+ assert_equal(output.dtype.type, numpy.float32)
368
+
369
+ output = ndimage.convolve(array, kernel, output=numpy.float32)
370
+ assert_array_almost_equal([[3, 4, 4.5], [4.5, 5.5, 6]], output)
371
+ assert_equal(output.dtype.type, numpy.float32)
372
+
373
+ def test_correlate17(self):
374
+ array = numpy.array([1, 2, 3])
375
+ tcor = [3, 5, 6]
376
+ tcov = [2, 3, 5]
377
+ kernel = numpy.array([1, 1])
378
+ output = ndimage.correlate(array, kernel, origin=-1)
379
+ assert_array_almost_equal(tcor, output)
380
+ output = ndimage.convolve(array, kernel, origin=-1)
381
+ assert_array_almost_equal(tcov, output)
382
+ output = ndimage.correlate1d(array, kernel, origin=-1)
383
+ assert_array_almost_equal(tcor, output)
384
+ output = ndimage.convolve1d(array, kernel, origin=-1)
385
+ assert_array_almost_equal(tcov, output)
386
+
387
+ @pytest.mark.parametrize('dtype_array', types)
388
+ def test_correlate18(self, dtype_array):
389
+ kernel = numpy.array([[1, 0],
390
+ [0, 1]])
391
+ array = numpy.array([[1, 2, 3],
392
+ [4, 5, 6]], dtype_array)
393
+ output = ndimage.correlate(array, kernel,
394
+ output=numpy.float32,
395
+ mode='nearest', origin=-1)
396
+ assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
397
+ assert_equal(output.dtype.type, numpy.float32)
398
+
399
+ output = ndimage.convolve(array, kernel,
400
+ output=numpy.float32,
401
+ mode='nearest', origin=-1)
402
+ assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
403
+ assert_equal(output.dtype.type, numpy.float32)
404
+
405
+ def test_correlate_mode_sequence(self):
406
+ kernel = numpy.ones((2, 2))
407
+ array = numpy.ones((3, 3), float)
408
+ with assert_raises(RuntimeError):
409
+ ndimage.correlate(array, kernel, mode=['nearest', 'reflect'])
410
+ with assert_raises(RuntimeError):
411
+ ndimage.convolve(array, kernel, mode=['nearest', 'reflect'])
412
+
413
+ @pytest.mark.parametrize('dtype_array', types)
414
+ def test_correlate19(self, dtype_array):
415
+ kernel = numpy.array([[1, 0],
416
+ [0, 1]])
417
+ array = numpy.array([[1, 2, 3],
418
+ [4, 5, 6]], dtype_array)
419
+ output = ndimage.correlate(array, kernel,
420
+ output=numpy.float32,
421
+ mode='nearest', origin=[-1, 0])
422
+ assert_array_almost_equal([[5, 6, 8], [8, 9, 11]], output)
423
+ assert_equal(output.dtype.type, numpy.float32)
424
+
425
+ output = ndimage.convolve(array, kernel,
426
+ output=numpy.float32,
427
+ mode='nearest', origin=[-1, 0])
428
+ assert_array_almost_equal([[3, 5, 6], [6, 8, 9]], output)
429
+ assert_equal(output.dtype.type, numpy.float32)
430
+
431
+ @pytest.mark.parametrize('dtype_array', types)
432
+ @pytest.mark.parametrize('dtype_output', types)
433
+ def test_correlate20(self, dtype_array, dtype_output):
434
+ weights = numpy.array([1, 2, 1])
435
+ expected = [[5, 10, 15], [7, 14, 21]]
436
+ array = numpy.array([[1, 2, 3],
437
+ [2, 4, 6]], dtype_array)
438
+ output = numpy.zeros((2, 3), dtype_output)
439
+ ndimage.correlate1d(array, weights, axis=0, output=output)
440
+ assert_array_almost_equal(output, expected)
441
+ ndimage.convolve1d(array, weights, axis=0, output=output)
442
+ assert_array_almost_equal(output, expected)
443
+
444
+ def test_correlate21(self):
445
+ array = numpy.array([[1, 2, 3],
446
+ [2, 4, 6]])
447
+ expected = [[5, 10, 15], [7, 14, 21]]
448
+ weights = numpy.array([1, 2, 1])
449
+ output = ndimage.correlate1d(array, weights, axis=0)
450
+ assert_array_almost_equal(output, expected)
451
+ output = ndimage.convolve1d(array, weights, axis=0)
452
+ assert_array_almost_equal(output, expected)
453
+
454
+ @pytest.mark.parametrize('dtype_array', types)
455
+ @pytest.mark.parametrize('dtype_output', types)
456
+ def test_correlate22(self, dtype_array, dtype_output):
457
+ weights = numpy.array([1, 2, 1])
458
+ expected = [[6, 12, 18], [6, 12, 18]]
459
+ array = numpy.array([[1, 2, 3],
460
+ [2, 4, 6]], dtype_array)
461
+ output = numpy.zeros((2, 3), dtype_output)
462
+ ndimage.correlate1d(array, weights, axis=0,
463
+ mode='wrap', output=output)
464
+ assert_array_almost_equal(output, expected)
465
+ ndimage.convolve1d(array, weights, axis=0,
466
+ mode='wrap', output=output)
467
+ assert_array_almost_equal(output, expected)
468
+
469
+ @pytest.mark.parametrize('dtype_array', types)
470
+ @pytest.mark.parametrize('dtype_output', types)
471
+ def test_correlate23(self, dtype_array, dtype_output):
472
+ weights = numpy.array([1, 2, 1])
473
+ expected = [[5, 10, 15], [7, 14, 21]]
474
+ array = numpy.array([[1, 2, 3],
475
+ [2, 4, 6]], dtype_array)
476
+ output = numpy.zeros((2, 3), dtype_output)
477
+ ndimage.correlate1d(array, weights, axis=0,
478
+ mode='nearest', output=output)
479
+ assert_array_almost_equal(output, expected)
480
+ ndimage.convolve1d(array, weights, axis=0,
481
+ mode='nearest', output=output)
482
+ assert_array_almost_equal(output, expected)
483
+
484
+ @pytest.mark.parametrize('dtype_array', types)
485
+ @pytest.mark.parametrize('dtype_output', types)
486
+ def test_correlate24(self, dtype_array, dtype_output):
487
+ weights = numpy.array([1, 2, 1])
488
+ tcor = [[7, 14, 21], [8, 16, 24]]
489
+ tcov = [[4, 8, 12], [5, 10, 15]]
490
+ array = numpy.array([[1, 2, 3],
491
+ [2, 4, 6]], dtype_array)
492
+ output = numpy.zeros((2, 3), dtype_output)
493
+ ndimage.correlate1d(array, weights, axis=0,
494
+ mode='nearest', output=output, origin=-1)
495
+ assert_array_almost_equal(output, tcor)
496
+ ndimage.convolve1d(array, weights, axis=0,
497
+ mode='nearest', output=output, origin=-1)
498
+ assert_array_almost_equal(output, tcov)
499
+
500
+ @pytest.mark.parametrize('dtype_array', types)
501
+ @pytest.mark.parametrize('dtype_output', types)
502
+ def test_correlate25(self, dtype_array, dtype_output):
503
+ weights = numpy.array([1, 2, 1])
504
+ tcor = [[4, 8, 12], [5, 10, 15]]
505
+ tcov = [[7, 14, 21], [8, 16, 24]]
506
+ array = numpy.array([[1, 2, 3],
507
+ [2, 4, 6]], dtype_array)
508
+ output = numpy.zeros((2, 3), dtype_output)
509
+ ndimage.correlate1d(array, weights, axis=0,
510
+ mode='nearest', output=output, origin=1)
511
+ assert_array_almost_equal(output, tcor)
512
+ ndimage.convolve1d(array, weights, axis=0,
513
+ mode='nearest', output=output, origin=1)
514
+ assert_array_almost_equal(output, tcov)
515
+
516
+ def test_correlate26(self):
517
+ # test fix for gh-11661 (mirror extension of a length 1 signal)
518
+ y = ndimage.convolve1d(numpy.ones(1), numpy.ones(5), mode='mirror')
519
+ assert_array_equal(y, numpy.array(5.))
520
+
521
+ y = ndimage.correlate1d(numpy.ones(1), numpy.ones(5), mode='mirror')
522
+ assert_array_equal(y, numpy.array(5.))
523
+
524
+ @pytest.mark.parametrize('dtype_kernel', complex_types)
525
+ @pytest.mark.parametrize('dtype_input', types)
526
+ @pytest.mark.parametrize('dtype_output', complex_types)
527
+ def test_correlate_complex_kernel(self, dtype_input, dtype_kernel,
528
+ dtype_output):
529
+ kernel = numpy.array([[1, 0],
530
+ [0, 1 + 1j]], dtype_kernel)
531
+ array = numpy.array([[1, 2, 3],
532
+ [4, 5, 6]], dtype_input)
533
+ self._validate_complex(array, kernel, dtype_output)
534
+
535
+ @pytest.mark.parametrize('dtype_kernel', complex_types)
536
+ @pytest.mark.parametrize('dtype_input', types)
537
+ @pytest.mark.parametrize('dtype_output', complex_types)
538
+ @pytest.mark.parametrize('mode', ['grid-constant', 'constant'])
539
+ def test_correlate_complex_kernel_cval(self, dtype_input, dtype_kernel,
540
+ dtype_output, mode):
541
+ # test use of non-zero cval with complex inputs
542
+ # also verifies that mode 'grid-constant' does not segfault
543
+ kernel = numpy.array([[1, 0],
544
+ [0, 1 + 1j]], dtype_kernel)
545
+ array = numpy.array([[1, 2, 3],
546
+ [4, 5, 6]], dtype_input)
547
+ self._validate_complex(array, kernel, dtype_output, mode=mode,
548
+ cval=5.0)
549
+
550
+ @pytest.mark.parametrize('dtype_kernel', complex_types)
551
+ @pytest.mark.parametrize('dtype_input', types)
552
+ def test_correlate_complex_kernel_invalid_cval(self, dtype_input,
553
+ dtype_kernel):
554
+ # cannot give complex cval with a real image
555
+ kernel = numpy.array([[1, 0],
556
+ [0, 1 + 1j]], dtype_kernel)
557
+ array = numpy.array([[1, 2, 3],
558
+ [4, 5, 6]], dtype_input)
559
+ for func in [ndimage.convolve, ndimage.correlate, ndimage.convolve1d,
560
+ ndimage.correlate1d]:
561
+ with pytest.raises(ValueError):
562
+ func(array, kernel, mode='constant', cval=5.0 + 1.0j,
563
+ output=numpy.complex64)
564
+
565
+ @pytest.mark.parametrize('dtype_kernel', complex_types)
566
+ @pytest.mark.parametrize('dtype_input', types)
567
+ @pytest.mark.parametrize('dtype_output', complex_types)
568
+ def test_correlate1d_complex_kernel(self, dtype_input, dtype_kernel,
569
+ dtype_output):
570
+ kernel = numpy.array([1, 1 + 1j], dtype_kernel)
571
+ array = numpy.array([1, 2, 3, 4, 5, 6], dtype_input)
572
+ self._validate_complex(array, kernel, dtype_output)
573
+
574
+ @pytest.mark.parametrize('dtype_kernel', complex_types)
575
+ @pytest.mark.parametrize('dtype_input', types)
576
+ @pytest.mark.parametrize('dtype_output', complex_types)
577
+ def test_correlate1d_complex_kernel_cval(self, dtype_input, dtype_kernel,
578
+ dtype_output):
579
+ kernel = numpy.array([1, 1 + 1j], dtype_kernel)
580
+ array = numpy.array([1, 2, 3, 4, 5, 6], dtype_input)
581
+ self._validate_complex(array, kernel, dtype_output, mode='constant',
582
+ cval=5.0)
583
+
584
+ @pytest.mark.parametrize('dtype_kernel', types)
585
+ @pytest.mark.parametrize('dtype_input', complex_types)
586
+ @pytest.mark.parametrize('dtype_output', complex_types)
587
+ def test_correlate_complex_input(self, dtype_input, dtype_kernel,
588
+ dtype_output):
589
+ kernel = numpy.array([[1, 0],
590
+ [0, 1]], dtype_kernel)
591
+ array = numpy.array([[1, 2j, 3],
592
+ [1 + 4j, 5, 6j]], dtype_input)
593
+ self._validate_complex(array, kernel, dtype_output)
594
+
595
+ @pytest.mark.parametrize('dtype_kernel', types)
596
+ @pytest.mark.parametrize('dtype_input', complex_types)
597
+ @pytest.mark.parametrize('dtype_output', complex_types)
598
+ def test_correlate1d_complex_input(self, dtype_input, dtype_kernel,
599
+ dtype_output):
600
+ kernel = numpy.array([1, 0, 1], dtype_kernel)
601
+ array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype_input)
602
+ self._validate_complex(array, kernel, dtype_output)
603
+
604
+ @pytest.mark.parametrize('dtype_kernel', types)
605
+ @pytest.mark.parametrize('dtype_input', complex_types)
606
+ @pytest.mark.parametrize('dtype_output', complex_types)
607
+ def test_correlate1d_complex_input_cval(self, dtype_input, dtype_kernel,
608
+ dtype_output):
609
+ kernel = numpy.array([1, 0, 1], dtype_kernel)
610
+ array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype_input)
611
+ self._validate_complex(array, kernel, dtype_output, mode='constant',
612
+ cval=5 - 3j)
613
+
614
+ @pytest.mark.parametrize('dtype', complex_types)
615
+ @pytest.mark.parametrize('dtype_output', complex_types)
616
+ def test_correlate_complex_input_and_kernel(self, dtype, dtype_output):
617
+ kernel = numpy.array([[1, 0],
618
+ [0, 1 + 1j]], dtype)
619
+ array = numpy.array([[1, 2j, 3],
620
+ [1 + 4j, 5, 6j]], dtype)
621
+ self._validate_complex(array, kernel, dtype_output)
622
+
623
+ @pytest.mark.parametrize('dtype', complex_types)
624
+ @pytest.mark.parametrize('dtype_output', complex_types)
625
+ def test_correlate_complex_input_and_kernel_cval(self, dtype,
626
+ dtype_output):
627
+ kernel = numpy.array([[1, 0],
628
+ [0, 1 + 1j]], dtype)
629
+ array = numpy.array([[1, 2, 3],
630
+ [4, 5, 6]], dtype)
631
+ self._validate_complex(array, kernel, dtype_output, mode='constant',
632
+ cval=5.0 + 2.0j)
633
+
634
+ @pytest.mark.parametrize('dtype', complex_types)
635
+ @pytest.mark.parametrize('dtype_output', complex_types)
636
+ def test_correlate1d_complex_input_and_kernel(self, dtype, dtype_output):
637
+ kernel = numpy.array([1, 1 + 1j], dtype)
638
+ array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype)
639
+ self._validate_complex(array, kernel, dtype_output)
640
+
641
+ @pytest.mark.parametrize('dtype', complex_types)
642
+ @pytest.mark.parametrize('dtype_output', complex_types)
643
+ def test_correlate1d_complex_input_and_kernel_cval(self, dtype,
644
+ dtype_output):
645
+ kernel = numpy.array([1, 1 + 1j], dtype)
646
+ array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype)
647
+ self._validate_complex(array, kernel, dtype_output, mode='constant',
648
+ cval=5.0 + 2.0j)
649
+
650
+ def test_gauss01(self):
651
+ input = numpy.array([[1, 2, 3],
652
+ [2, 4, 6]], numpy.float32)
653
+ output = ndimage.gaussian_filter(input, 0)
654
+ assert_array_almost_equal(output, input)
655
+
656
+ def test_gauss02(self):
657
+ input = numpy.array([[1, 2, 3],
658
+ [2, 4, 6]], numpy.float32)
659
+ output = ndimage.gaussian_filter(input, 1.0)
660
+ assert_equal(input.dtype, output.dtype)
661
+ assert_equal(input.shape, output.shape)
662
+
663
+ def test_gauss03(self):
664
+ # single precision data
665
+ input = numpy.arange(100 * 100).astype(numpy.float32)
666
+ input.shape = (100, 100)
667
+ output = ndimage.gaussian_filter(input, [1.0, 1.0])
668
+
669
+ assert_equal(input.dtype, output.dtype)
670
+ assert_equal(input.shape, output.shape)
671
+
672
+ # input.sum() is 49995000.0. With single precision floats, we can't
673
+ # expect more than 8 digits of accuracy, so use decimal=0 in this test.
674
+ assert_almost_equal(output.sum(dtype='d'), input.sum(dtype='d'),
675
+ decimal=0)
676
+ assert_(sumsq(input, output) > 1.0)
677
+
678
+ def test_gauss04(self):
679
+ input = numpy.arange(100 * 100).astype(numpy.float32)
680
+ input.shape = (100, 100)
681
+ otype = numpy.float64
682
+ output = ndimage.gaussian_filter(input, [1.0, 1.0], output=otype)
683
+ assert_equal(output.dtype.type, numpy.float64)
684
+ assert_equal(input.shape, output.shape)
685
+ assert_(sumsq(input, output) > 1.0)
686
+
687
+ def test_gauss05(self):
688
+ input = numpy.arange(100 * 100).astype(numpy.float32)
689
+ input.shape = (100, 100)
690
+ otype = numpy.float64
691
+ output = ndimage.gaussian_filter(input, [1.0, 1.0],
692
+ order=1, output=otype)
693
+ assert_equal(output.dtype.type, numpy.float64)
694
+ assert_equal(input.shape, output.shape)
695
+ assert_(sumsq(input, output) > 1.0)
696
+
697
+ def test_gauss06(self):
698
+ input = numpy.arange(100 * 100).astype(numpy.float32)
699
+ input.shape = (100, 100)
700
+ otype = numpy.float64
701
+ output1 = ndimage.gaussian_filter(input, [1.0, 1.0], output=otype)
702
+ output2 = ndimage.gaussian_filter(input, 1.0, output=otype)
703
+ assert_array_almost_equal(output1, output2)
704
+
705
+ def test_gauss_memory_overlap(self):
706
+ input = numpy.arange(100 * 100).astype(numpy.float32)
707
+ input.shape = (100, 100)
708
+ output1 = ndimage.gaussian_filter(input, 1.0)
709
+ ndimage.gaussian_filter(input, 1.0, output=input)
710
+ assert_array_almost_equal(output1, input)
711
+
712
+ @pytest.mark.parametrize(('filter_func', 'extra_args', 'size0', 'size'),
713
+ [(ndimage.gaussian_filter, (), 0, 1.0),
714
+ (ndimage.uniform_filter, (), 1, 3),
715
+ (ndimage.minimum_filter, (), 1, 3),
716
+ (ndimage.maximum_filter, (), 1, 3),
717
+ (ndimage.median_filter, (), 1, 3),
718
+ (ndimage.rank_filter, (1,), 1, 3),
719
+ (ndimage.percentile_filter, (40,), 1, 3)])
720
+ @pytest.mark.parametrize(
721
+ 'axes',
722
+ tuple(itertools.combinations(range(-3, 3), 1))
723
+ + tuple(itertools.combinations(range(-3, 3), 2))
724
+ + ((0, 1, 2),))
725
+ def test_filter_axes(self, filter_func, extra_args, size0, size, axes):
726
+ # Note: `size` is called `sigma` in `gaussian_filter`
727
+ array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
728
+ axes = numpy.array(axes)
729
+
730
+ if len(set(axes % array.ndim)) != len(axes):
731
+ # parametrized cases with duplicate axes raise an error
732
+ with pytest.raises(ValueError, match="axes must be unique"):
733
+ filter_func(array, *extra_args, size, axes=axes)
734
+ return
735
+ output = filter_func(array, *extra_args, size, axes=axes)
736
+
737
+ # result should be equivalent to sigma=0.0/size=1 on unfiltered axes
738
+ all_sizes = (size if ax in (axes % array.ndim) else size0
739
+ for ax in range(array.ndim))
740
+ expected = filter_func(array, *extra_args, all_sizes)
741
+ assert_allclose(output, expected)
742
+
743
+ kwargs_gauss = dict(radius=[4, 2, 3], order=[0, 1, 2],
744
+ mode=['reflect', 'nearest', 'constant'])
745
+ kwargs_other = dict(origin=(-1, 0, 1),
746
+ mode=['reflect', 'nearest', 'constant'])
747
+ kwargs_rank = dict(origin=(-1, 0, 1))
748
+
749
+ @pytest.mark.parametrize("filter_func, size0, size, kwargs",
750
+ [(ndimage.gaussian_filter, 0, 1.0, kwargs_gauss),
751
+ (ndimage.uniform_filter, 1, 3, kwargs_other),
752
+ (ndimage.maximum_filter, 1, 3, kwargs_other),
753
+ (ndimage.minimum_filter, 1, 3, kwargs_other),
754
+ (ndimage.median_filter, 1, 3, kwargs_rank),
755
+ (ndimage.rank_filter, 1, 3, kwargs_rank),
756
+ (ndimage.percentile_filter, 1, 3, kwargs_rank)])
757
+ @pytest.mark.parametrize('axes', itertools.combinations(range(-3, 3), 2))
758
+ def test_filter_axes_kwargs(self, filter_func, size0, size, kwargs, axes):
759
+ array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
760
+
761
+ kwargs = {key: numpy.array(val) for key, val in kwargs.items()}
762
+ axes = numpy.array(axes)
763
+ n_axes = axes.size
764
+
765
+ if filter_func == ndimage.rank_filter:
766
+ args = (2,) # (rank,)
767
+ elif filter_func == ndimage.percentile_filter:
768
+ args = (30,) # (percentile,)
769
+ else:
770
+ args = ()
771
+
772
+ # form kwargs that specify only the axes in `axes`
773
+ reduced_kwargs = {key: val[axes] for key, val in kwargs.items()}
774
+ if len(set(axes % array.ndim)) != len(axes):
775
+ # parametrized cases with duplicate axes raise an error
776
+ with pytest.raises(ValueError, match="axes must be unique"):
777
+ filter_func(array, *args, [size]*n_axes, axes=axes,
778
+ **reduced_kwargs)
779
+ return
780
+
781
+ output = filter_func(array, *args, [size]*n_axes, axes=axes,
782
+ **reduced_kwargs)
783
+
784
+ # result should be equivalent to sigma=0.0/size=1 on unfiltered axes
785
+ size_3d = numpy.full(array.ndim, fill_value=size0)
786
+ size_3d[axes] = size
787
+ if 'origin' in kwargs:
788
+ # origin should be zero on the axis that has size 0
789
+ origin = numpy.array([0, 0, 0])
790
+ origin[axes] = reduced_kwargs['origin']
791
+ kwargs['origin'] = origin
792
+ expected = filter_func(array, *args, size_3d, **kwargs)
793
+ assert_allclose(output, expected)
794
+
795
+ @pytest.mark.parametrize(
796
+ 'filter_func, args',
797
+ [(ndimage.gaussian_filter, (1.0,)), # args = (sigma,)
798
+ (ndimage.uniform_filter, (3,)), # args = (size,)
799
+ (ndimage.minimum_filter, (3,)), # args = (size,)
800
+ (ndimage.maximum_filter, (3,)), # args = (size,)
801
+ (ndimage.median_filter, (3,)), # args = (size,)
802
+ (ndimage.rank_filter, (2, 3)), # args = (rank, size)
803
+ (ndimage.percentile_filter, (30, 3))]) # args = (percentile, size)
804
+ @pytest.mark.parametrize(
805
+ 'axes', [(1.5,), (0, 1, 2, 3), (3,), (-4,)]
806
+ )
807
+ def test_filter_invalid_axes(self, filter_func, args, axes):
808
+ array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
809
+ if any(isinstance(ax, float) for ax in axes):
810
+ error_class = TypeError
811
+ match = "cannot be interpreted as an integer"
812
+ else:
813
+ error_class = ValueError
814
+ match = "out of range"
815
+ with pytest.raises(error_class, match=match):
816
+ filter_func(array, *args, axes=axes)
817
+
818
+ @pytest.mark.parametrize(
819
+ 'filter_func, kwargs',
820
+ [(ndimage.minimum_filter, {}),
821
+ (ndimage.maximum_filter, {}),
822
+ (ndimage.median_filter, {}),
823
+ (ndimage.rank_filter, dict(rank=3)),
824
+ (ndimage.percentile_filter, dict(percentile=30))])
825
+ @pytest.mark.parametrize(
826
+ 'axes', [(0, ), (1, 2), (0, 1, 2)]
827
+ )
828
+ @pytest.mark.parametrize('separable_footprint', [False, True])
829
+ def test_filter_invalid_footprint_ndim(self, filter_func, kwargs, axes,
830
+ separable_footprint):
831
+ array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
832
+ # create a footprint with one too many dimensions
833
+ footprint = numpy.ones((3,) * (len(axes) + 1))
834
+ if not separable_footprint:
835
+ footprint[(0,) * footprint.ndim] = 0
836
+ if (filter_func in [ndimage.minimum_filter, ndimage.maximum_filter]
837
+ and separable_footprint):
838
+ match = "sequence argument must have length equal to input rank"
839
+ else:
840
+ match = "footprint array has incorrect shape"
841
+ with pytest.raises(RuntimeError, match=match):
842
+ filter_func(array, **kwargs, footprint=footprint, axes=axes)
843
+
844
+ @pytest.mark.parametrize('n_mismatch', [1, 3])
845
+ @pytest.mark.parametrize('filter_func, kwargs, key, val',
846
+ _cases_axes_tuple_length_mismatch())
847
+ def test_filter_tuple_length_mismatch(self, n_mismatch, filter_func,
848
+ kwargs, key, val):
849
+ # Test for the intended RuntimeError when a kwargs has an invalid size
850
+ array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
851
+ kwargs = dict(**kwargs, axes=(0, 1))
852
+ kwargs[key] = (val,) * n_mismatch
853
+ err_msg = "sequence argument must have length equal to input rank"
854
+ with pytest.raises(RuntimeError, match=err_msg):
855
+ filter_func(array, **kwargs)
856
+
857
+ @pytest.mark.parametrize('dtype', types + complex_types)
858
+ def test_prewitt01(self, dtype):
859
+ array = numpy.array([[3, 2, 5, 1, 4],
860
+ [5, 8, 3, 7, 1],
861
+ [5, 6, 9, 3, 5]], dtype)
862
+ t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
863
+ t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 1)
864
+ output = ndimage.prewitt(array, 0)
865
+ assert_array_almost_equal(t, output)
866
+
867
+ @pytest.mark.parametrize('dtype', types + complex_types)
868
+ def test_prewitt02(self, dtype):
869
+ array = numpy.array([[3, 2, 5, 1, 4],
870
+ [5, 8, 3, 7, 1],
871
+ [5, 6, 9, 3, 5]], dtype)
872
+ t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
873
+ t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 1)
874
+ output = numpy.zeros(array.shape, dtype)
875
+ ndimage.prewitt(array, 0, output)
876
+ assert_array_almost_equal(t, output)
877
+
878
+ @pytest.mark.parametrize('dtype', types + complex_types)
879
+ def test_prewitt03(self, dtype):
880
+ array = numpy.array([[3, 2, 5, 1, 4],
881
+ [5, 8, 3, 7, 1],
882
+ [5, 6, 9, 3, 5]], dtype)
883
+ t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 1)
884
+ t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 0)
885
+ output = ndimage.prewitt(array, 1)
886
+ assert_array_almost_equal(t, output)
887
+
888
+ @pytest.mark.parametrize('dtype', types + complex_types)
889
+ def test_prewitt04(self, dtype):
890
+ array = numpy.array([[3, 2, 5, 1, 4],
891
+ [5, 8, 3, 7, 1],
892
+ [5, 6, 9, 3, 5]], dtype)
893
+ t = ndimage.prewitt(array, -1)
894
+ output = ndimage.prewitt(array, 1)
895
+ assert_array_almost_equal(t, output)
896
+
897
+ @pytest.mark.parametrize('dtype', types + complex_types)
898
+ def test_sobel01(self, dtype):
899
+ array = numpy.array([[3, 2, 5, 1, 4],
900
+ [5, 8, 3, 7, 1],
901
+ [5, 6, 9, 3, 5]], dtype)
902
+ t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
903
+ t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 1)
904
+ output = ndimage.sobel(array, 0)
905
+ assert_array_almost_equal(t, output)
906
+
907
+ @pytest.mark.parametrize('dtype', types + complex_types)
908
+ def test_sobel02(self, dtype):
909
+ array = numpy.array([[3, 2, 5, 1, 4],
910
+ [5, 8, 3, 7, 1],
911
+ [5, 6, 9, 3, 5]], dtype)
912
+ t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
913
+ t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 1)
914
+ output = numpy.zeros(array.shape, dtype)
915
+ ndimage.sobel(array, 0, output)
916
+ assert_array_almost_equal(t, output)
917
+
918
+ @pytest.mark.parametrize('dtype', types + complex_types)
919
+ def test_sobel03(self, dtype):
920
+ array = numpy.array([[3, 2, 5, 1, 4],
921
+ [5, 8, 3, 7, 1],
922
+ [5, 6, 9, 3, 5]], dtype)
923
+ t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 1)
924
+ t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 0)
925
+ output = numpy.zeros(array.shape, dtype)
926
+ output = ndimage.sobel(array, 1)
927
+ assert_array_almost_equal(t, output)
928
+
929
+ @pytest.mark.parametrize('dtype', types + complex_types)
930
+ def test_sobel04(self, dtype):
931
+ array = numpy.array([[3, 2, 5, 1, 4],
932
+ [5, 8, 3, 7, 1],
933
+ [5, 6, 9, 3, 5]], dtype)
934
+ t = ndimage.sobel(array, -1)
935
+ output = ndimage.sobel(array, 1)
936
+ assert_array_almost_equal(t, output)
937
+
938
+ @pytest.mark.parametrize('dtype',
939
+ [numpy.int32, numpy.float32, numpy.float64,
940
+ numpy.complex64, numpy.complex128])
941
+ def test_laplace01(self, dtype):
942
+ array = numpy.array([[3, 2, 5, 1, 4],
943
+ [5, 8, 3, 7, 1],
944
+ [5, 6, 9, 3, 5]], dtype) * 100
945
+ tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0)
946
+ tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1)
947
+ output = ndimage.laplace(array)
948
+ assert_array_almost_equal(tmp1 + tmp2, output)
949
+
950
+ @pytest.mark.parametrize('dtype',
951
+ [numpy.int32, numpy.float32, numpy.float64,
952
+ numpy.complex64, numpy.complex128])
953
+ def test_laplace02(self, dtype):
954
+ array = numpy.array([[3, 2, 5, 1, 4],
955
+ [5, 8, 3, 7, 1],
956
+ [5, 6, 9, 3, 5]], dtype) * 100
957
+ tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0)
958
+ tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1)
959
+ output = numpy.zeros(array.shape, dtype)
960
+ ndimage.laplace(array, output=output)
961
+ assert_array_almost_equal(tmp1 + tmp2, output)
962
+
963
+ @pytest.mark.parametrize('dtype',
964
+ [numpy.int32, numpy.float32, numpy.float64,
965
+ numpy.complex64, numpy.complex128])
966
+ def test_gaussian_laplace01(self, dtype):
967
+ array = numpy.array([[3, 2, 5, 1, 4],
968
+ [5, 8, 3, 7, 1],
969
+ [5, 6, 9, 3, 5]], dtype) * 100
970
+ tmp1 = ndimage.gaussian_filter(array, 1.0, [2, 0])
971
+ tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 2])
972
+ output = ndimage.gaussian_laplace(array, 1.0)
973
+ assert_array_almost_equal(tmp1 + tmp2, output)
974
+
975
+ @pytest.mark.parametrize('dtype',
976
+ [numpy.int32, numpy.float32, numpy.float64,
977
+ numpy.complex64, numpy.complex128])
978
+ def test_gaussian_laplace02(self, dtype):
979
+ array = numpy.array([[3, 2, 5, 1, 4],
980
+ [5, 8, 3, 7, 1],
981
+ [5, 6, 9, 3, 5]], dtype) * 100
982
+ tmp1 = ndimage.gaussian_filter(array, 1.0, [2, 0])
983
+ tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 2])
984
+ output = numpy.zeros(array.shape, dtype)
985
+ ndimage.gaussian_laplace(array, 1.0, output)
986
+ assert_array_almost_equal(tmp1 + tmp2, output)
987
+
988
+ @pytest.mark.parametrize('dtype', types + complex_types)
989
+ def test_generic_laplace01(self, dtype):
990
+ def derivative2(input, axis, output, mode, cval, a, b):
991
+ sigma = [a, b / 2.0]
992
+ input = numpy.asarray(input)
993
+ order = [0] * input.ndim
994
+ order[axis] = 2
995
+ return ndimage.gaussian_filter(input, sigma, order,
996
+ output, mode, cval)
997
+ array = numpy.array([[3, 2, 5, 1, 4],
998
+ [5, 8, 3, 7, 1],
999
+ [5, 6, 9, 3, 5]], dtype)
1000
+ output = numpy.zeros(array.shape, dtype)
1001
+ tmp = ndimage.generic_laplace(array, derivative2,
1002
+ extra_arguments=(1.0,),
1003
+ extra_keywords={'b': 2.0})
1004
+ ndimage.gaussian_laplace(array, 1.0, output)
1005
+ assert_array_almost_equal(tmp, output)
1006
+
1007
+ @pytest.mark.parametrize('dtype',
1008
+ [numpy.int32, numpy.float32, numpy.float64,
1009
+ numpy.complex64, numpy.complex128])
1010
+ def test_gaussian_gradient_magnitude01(self, dtype):
1011
+ array = numpy.array([[3, 2, 5, 1, 4],
1012
+ [5, 8, 3, 7, 1],
1013
+ [5, 6, 9, 3, 5]], dtype) * 100
1014
+ tmp1 = ndimage.gaussian_filter(array, 1.0, [1, 0])
1015
+ tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 1])
1016
+ output = ndimage.gaussian_gradient_magnitude(array, 1.0)
1017
+ expected = tmp1 * tmp1 + tmp2 * tmp2
1018
+ expected = numpy.sqrt(expected).astype(dtype)
1019
+ assert_array_almost_equal(expected, output)
1020
+
1021
+ @pytest.mark.parametrize('dtype',
1022
+ [numpy.int32, numpy.float32, numpy.float64,
1023
+ numpy.complex64, numpy.complex128])
1024
+ def test_gaussian_gradient_magnitude02(self, dtype):
1025
+ array = numpy.array([[3, 2, 5, 1, 4],
1026
+ [5, 8, 3, 7, 1],
1027
+ [5, 6, 9, 3, 5]], dtype) * 100
1028
+ tmp1 = ndimage.gaussian_filter(array, 1.0, [1, 0])
1029
+ tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 1])
1030
+ output = numpy.zeros(array.shape, dtype)
1031
+ ndimage.gaussian_gradient_magnitude(array, 1.0, output)
1032
+ expected = tmp1 * tmp1 + tmp2 * tmp2
1033
+ expected = numpy.sqrt(expected).astype(dtype)
1034
+ assert_array_almost_equal(expected, output)
1035
+
1036
+ def test_generic_gradient_magnitude01(self):
1037
+ array = numpy.array([[3, 2, 5, 1, 4],
1038
+ [5, 8, 3, 7, 1],
1039
+ [5, 6, 9, 3, 5]], numpy.float64)
1040
+
1041
+ def derivative(input, axis, output, mode, cval, a, b):
1042
+ sigma = [a, b / 2.0]
1043
+ input = numpy.asarray(input)
1044
+ order = [0] * input.ndim
1045
+ order[axis] = 1
1046
+ return ndimage.gaussian_filter(input, sigma, order,
1047
+ output, mode, cval)
1048
+ tmp1 = ndimage.gaussian_gradient_magnitude(array, 1.0)
1049
+ tmp2 = ndimage.generic_gradient_magnitude(
1050
+ array, derivative, extra_arguments=(1.0,),
1051
+ extra_keywords={'b': 2.0})
1052
+ assert_array_almost_equal(tmp1, tmp2)
1053
+
1054
+ def test_uniform01(self):
1055
+ array = numpy.array([2, 4, 6])
1056
+ size = 2
1057
+ output = ndimage.uniform_filter1d(array, size, origin=-1)
1058
+ assert_array_almost_equal([3, 5, 6], output)
1059
+
1060
+ def test_uniform01_complex(self):
1061
+ array = numpy.array([2 + 1j, 4 + 2j, 6 + 3j], dtype=numpy.complex128)
1062
+ size = 2
1063
+ output = ndimage.uniform_filter1d(array, size, origin=-1)
1064
+ assert_array_almost_equal([3, 5, 6], output.real)
1065
+ assert_array_almost_equal([1.5, 2.5, 3], output.imag)
1066
+
1067
+ def test_uniform02(self):
1068
+ array = numpy.array([1, 2, 3])
1069
+ filter_shape = [0]
1070
+ output = ndimage.uniform_filter(array, filter_shape)
1071
+ assert_array_almost_equal(array, output)
1072
+
1073
+ def test_uniform03(self):
1074
+ array = numpy.array([1, 2, 3])
1075
+ filter_shape = [1]
1076
+ output = ndimage.uniform_filter(array, filter_shape)
1077
+ assert_array_almost_equal(array, output)
1078
+
1079
+ def test_uniform04(self):
1080
+ array = numpy.array([2, 4, 6])
1081
+ filter_shape = [2]
1082
+ output = ndimage.uniform_filter(array, filter_shape)
1083
+ assert_array_almost_equal([2, 3, 5], output)
1084
+
1085
+ def test_uniform05(self):
1086
+ array = []
1087
+ filter_shape = [1]
1088
+ output = ndimage.uniform_filter(array, filter_shape)
1089
+ assert_array_almost_equal([], output)
1090
+
1091
+ @pytest.mark.parametrize('dtype_array', types)
1092
+ @pytest.mark.parametrize('dtype_output', types)
1093
+ def test_uniform06(self, dtype_array, dtype_output):
1094
+ filter_shape = [2, 2]
1095
+ array = numpy.array([[4, 8, 12],
1096
+ [16, 20, 24]], dtype_array)
1097
+ output = ndimage.uniform_filter(
1098
+ array, filter_shape, output=dtype_output)
1099
+ assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output)
1100
+ assert_equal(output.dtype.type, dtype_output)
1101
+
1102
+ @pytest.mark.parametrize('dtype_array', complex_types)
1103
+ @pytest.mark.parametrize('dtype_output', complex_types)
1104
+ def test_uniform06_complex(self, dtype_array, dtype_output):
1105
+ filter_shape = [2, 2]
1106
+ array = numpy.array([[4, 8 + 5j, 12],
1107
+ [16, 20, 24]], dtype_array)
1108
+ output = ndimage.uniform_filter(
1109
+ array, filter_shape, output=dtype_output)
1110
+ assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output.real)
1111
+ assert_equal(output.dtype.type, dtype_output)
1112
+
1113
+ def test_minimum_filter01(self):
1114
+ array = numpy.array([1, 2, 3, 4, 5])
1115
+ filter_shape = numpy.array([2])
1116
+ output = ndimage.minimum_filter(array, filter_shape)
1117
+ assert_array_almost_equal([1, 1, 2, 3, 4], output)
1118
+
1119
+ def test_minimum_filter02(self):
1120
+ array = numpy.array([1, 2, 3, 4, 5])
1121
+ filter_shape = numpy.array([3])
1122
+ output = ndimage.minimum_filter(array, filter_shape)
1123
+ assert_array_almost_equal([1, 1, 2, 3, 4], output)
1124
+
1125
+ def test_minimum_filter03(self):
1126
+ array = numpy.array([3, 2, 5, 1, 4])
1127
+ filter_shape = numpy.array([2])
1128
+ output = ndimage.minimum_filter(array, filter_shape)
1129
+ assert_array_almost_equal([3, 2, 2, 1, 1], output)
1130
+
1131
+ def test_minimum_filter04(self):
1132
+ array = numpy.array([3, 2, 5, 1, 4])
1133
+ filter_shape = numpy.array([3])
1134
+ output = ndimage.minimum_filter(array, filter_shape)
1135
+ assert_array_almost_equal([2, 2, 1, 1, 1], output)
1136
+
1137
+ def test_minimum_filter05(self):
1138
+ array = numpy.array([[3, 2, 5, 1, 4],
1139
+ [7, 6, 9, 3, 5],
1140
+ [5, 8, 3, 7, 1]])
1141
+ filter_shape = numpy.array([2, 3])
1142
+ output = ndimage.minimum_filter(array, filter_shape)
1143
+ assert_array_almost_equal([[2, 2, 1, 1, 1],
1144
+ [2, 2, 1, 1, 1],
1145
+ [5, 3, 3, 1, 1]], output)
1146
+
1147
+ def test_minimum_filter05_overlap(self):
1148
+ array = numpy.array([[3, 2, 5, 1, 4],
1149
+ [7, 6, 9, 3, 5],
1150
+ [5, 8, 3, 7, 1]])
1151
+ filter_shape = numpy.array([2, 3])
1152
+ ndimage.minimum_filter(array, filter_shape, output=array)
1153
+ assert_array_almost_equal([[2, 2, 1, 1, 1],
1154
+ [2, 2, 1, 1, 1],
1155
+ [5, 3, 3, 1, 1]], array)
1156
+
1157
+ def test_minimum_filter06(self):
1158
+ array = numpy.array([[3, 2, 5, 1, 4],
1159
+ [7, 6, 9, 3, 5],
1160
+ [5, 8, 3, 7, 1]])
1161
+ footprint = [[1, 1, 1], [1, 1, 1]]
1162
+ output = ndimage.minimum_filter(array, footprint=footprint)
1163
+ assert_array_almost_equal([[2, 2, 1, 1, 1],
1164
+ [2, 2, 1, 1, 1],
1165
+ [5, 3, 3, 1, 1]], output)
1166
+ # separable footprint should allow mode sequence
1167
+ output2 = ndimage.minimum_filter(array, footprint=footprint,
1168
+ mode=['reflect', 'reflect'])
1169
+ assert_array_almost_equal(output2, output)
1170
+
1171
+ def test_minimum_filter07(self):
1172
+ array = numpy.array([[3, 2, 5, 1, 4],
1173
+ [7, 6, 9, 3, 5],
1174
+ [5, 8, 3, 7, 1]])
1175
+ footprint = [[1, 0, 1], [1, 1, 0]]
1176
+ output = ndimage.minimum_filter(array, footprint=footprint)
1177
+ assert_array_almost_equal([[2, 2, 1, 1, 1],
1178
+ [2, 3, 1, 3, 1],
1179
+ [5, 5, 3, 3, 1]], output)
1180
+ with assert_raises(RuntimeError):
1181
+ ndimage.minimum_filter(array, footprint=footprint,
1182
+ mode=['reflect', 'constant'])
1183
+
1184
+ def test_minimum_filter08(self):
1185
+ array = numpy.array([[3, 2, 5, 1, 4],
1186
+ [7, 6, 9, 3, 5],
1187
+ [5, 8, 3, 7, 1]])
1188
+ footprint = [[1, 0, 1], [1, 1, 0]]
1189
+ output = ndimage.minimum_filter(array, footprint=footprint, origin=-1)
1190
+ assert_array_almost_equal([[3, 1, 3, 1, 1],
1191
+ [5, 3, 3, 1, 1],
1192
+ [3, 3, 1, 1, 1]], output)
1193
+
1194
+ def test_minimum_filter09(self):
1195
+ array = numpy.array([[3, 2, 5, 1, 4],
1196
+ [7, 6, 9, 3, 5],
1197
+ [5, 8, 3, 7, 1]])
1198
+ footprint = [[1, 0, 1], [1, 1, 0]]
1199
+ output = ndimage.minimum_filter(array, footprint=footprint,
1200
+ origin=[-1, 0])
1201
+ assert_array_almost_equal([[2, 3, 1, 3, 1],
1202
+ [5, 5, 3, 3, 1],
1203
+ [5, 3, 3, 1, 1]], output)
1204
+
1205
+ def test_maximum_filter01(self):
1206
+ array = numpy.array([1, 2, 3, 4, 5])
1207
+ filter_shape = numpy.array([2])
1208
+ output = ndimage.maximum_filter(array, filter_shape)
1209
+ assert_array_almost_equal([1, 2, 3, 4, 5], output)
1210
+
1211
+ def test_maximum_filter02(self):
1212
+ array = numpy.array([1, 2, 3, 4, 5])
1213
+ filter_shape = numpy.array([3])
1214
+ output = ndimage.maximum_filter(array, filter_shape)
1215
+ assert_array_almost_equal([2, 3, 4, 5, 5], output)
1216
+
1217
+ def test_maximum_filter03(self):
1218
+ array = numpy.array([3, 2, 5, 1, 4])
1219
+ filter_shape = numpy.array([2])
1220
+ output = ndimage.maximum_filter(array, filter_shape)
1221
+ assert_array_almost_equal([3, 3, 5, 5, 4], output)
1222
+
1223
+ def test_maximum_filter04(self):
1224
+ array = numpy.array([3, 2, 5, 1, 4])
1225
+ filter_shape = numpy.array([3])
1226
+ output = ndimage.maximum_filter(array, filter_shape)
1227
+ assert_array_almost_equal([3, 5, 5, 5, 4], output)
1228
+
1229
+ def test_maximum_filter05(self):
1230
+ array = numpy.array([[3, 2, 5, 1, 4],
1231
+ [7, 6, 9, 3, 5],
1232
+ [5, 8, 3, 7, 1]])
1233
+ filter_shape = numpy.array([2, 3])
1234
+ output = ndimage.maximum_filter(array, filter_shape)
1235
+ assert_array_almost_equal([[3, 5, 5, 5, 4],
1236
+ [7, 9, 9, 9, 5],
1237
+ [8, 9, 9, 9, 7]], output)
1238
+
1239
+ def test_maximum_filter06(self):
1240
+ array = numpy.array([[3, 2, 5, 1, 4],
1241
+ [7, 6, 9, 3, 5],
1242
+ [5, 8, 3, 7, 1]])
1243
+ footprint = [[1, 1, 1], [1, 1, 1]]
1244
+ output = ndimage.maximum_filter(array, footprint=footprint)
1245
+ assert_array_almost_equal([[3, 5, 5, 5, 4],
1246
+ [7, 9, 9, 9, 5],
1247
+ [8, 9, 9, 9, 7]], output)
1248
+ # separable footprint should allow mode sequence
1249
+ output2 = ndimage.maximum_filter(array, footprint=footprint,
1250
+ mode=['reflect', 'reflect'])
1251
+ assert_array_almost_equal(output2, output)
1252
+
1253
+ def test_maximum_filter07(self):
1254
+ array = numpy.array([[3, 2, 5, 1, 4],
1255
+ [7, 6, 9, 3, 5],
1256
+ [5, 8, 3, 7, 1]])
1257
+ footprint = [[1, 0, 1], [1, 1, 0]]
1258
+ output = ndimage.maximum_filter(array, footprint=footprint)
1259
+ assert_array_almost_equal([[3, 5, 5, 5, 4],
1260
+ [7, 7, 9, 9, 5],
1261
+ [7, 9, 8, 9, 7]], output)
1262
+ # non-separable footprint should not allow mode sequence
1263
+ with assert_raises(RuntimeError):
1264
+ ndimage.maximum_filter(array, footprint=footprint,
1265
+ mode=['reflect', 'reflect'])
1266
+
1267
+ def test_maximum_filter08(self):
1268
+ array = numpy.array([[3, 2, 5, 1, 4],
1269
+ [7, 6, 9, 3, 5],
1270
+ [5, 8, 3, 7, 1]])
1271
+ footprint = [[1, 0, 1], [1, 1, 0]]
1272
+ output = ndimage.maximum_filter(array, footprint=footprint, origin=-1)
1273
+ assert_array_almost_equal([[7, 9, 9, 5, 5],
1274
+ [9, 8, 9, 7, 5],
1275
+ [8, 8, 7, 7, 7]], output)
1276
+
1277
+ def test_maximum_filter09(self):
1278
+ array = numpy.array([[3, 2, 5, 1, 4],
1279
+ [7, 6, 9, 3, 5],
1280
+ [5, 8, 3, 7, 1]])
1281
+ footprint = [[1, 0, 1], [1, 1, 0]]
1282
+ output = ndimage.maximum_filter(array, footprint=footprint,
1283
+ origin=[-1, 0])
1284
+ assert_array_almost_equal([[7, 7, 9, 9, 5],
1285
+ [7, 9, 8, 9, 7],
1286
+ [8, 8, 8, 7, 7]], output)
1287
+
1288
+ @pytest.mark.parametrize(
1289
+ 'axes', tuple(itertools.combinations(range(-3, 3), 2))
1290
+ )
1291
+ @pytest.mark.parametrize(
1292
+ 'filter_func, kwargs',
1293
+ [(ndimage.minimum_filter, {}),
1294
+ (ndimage.maximum_filter, {}),
1295
+ (ndimage.median_filter, {}),
1296
+ (ndimage.rank_filter, dict(rank=3)),
1297
+ (ndimage.percentile_filter, dict(percentile=60))]
1298
+ )
1299
+ def test_minmax_nonseparable_axes(self, filter_func, axes, kwargs):
1300
+ array = numpy.arange(6 * 8 * 12, dtype=numpy.float32).reshape(6, 8, 12)
1301
+ # use 2D triangular footprint because it is non-separable
1302
+ footprint = numpy.tri(5)
1303
+ axes = numpy.array(axes)
1304
+
1305
+ if len(set(axes % array.ndim)) != len(axes):
1306
+ # parametrized cases with duplicate axes raise an error
1307
+ with pytest.raises(ValueError):
1308
+ filter_func(array, footprint=footprint, axes=axes, **kwargs)
1309
+ return
1310
+ output = filter_func(array, footprint=footprint, axes=axes, **kwargs)
1311
+
1312
+ missing_axis = tuple(set(range(3)) - set(axes % array.ndim))[0]
1313
+ footprint_3d = numpy.expand_dims(footprint, missing_axis)
1314
+ expected = filter_func(array, footprint=footprint_3d, **kwargs)
1315
+ assert_allclose(output, expected)
1316
+
1317
+ def test_rank01(self):
1318
+ array = numpy.array([1, 2, 3, 4, 5])
1319
+ output = ndimage.rank_filter(array, 1, size=2)
1320
+ assert_array_almost_equal(array, output)
1321
+ output = ndimage.percentile_filter(array, 100, size=2)
1322
+ assert_array_almost_equal(array, output)
1323
+ output = ndimage.median_filter(array, 2)
1324
+ assert_array_almost_equal(array, output)
1325
+
1326
+ def test_rank02(self):
1327
+ array = numpy.array([1, 2, 3, 4, 5])
1328
+ output = ndimage.rank_filter(array, 1, size=[3])
1329
+ assert_array_almost_equal(array, output)
1330
+ output = ndimage.percentile_filter(array, 50, size=3)
1331
+ assert_array_almost_equal(array, output)
1332
+ output = ndimage.median_filter(array, (3,))
1333
+ assert_array_almost_equal(array, output)
1334
+
1335
+ def test_rank03(self):
1336
+ array = numpy.array([3, 2, 5, 1, 4])
1337
+ output = ndimage.rank_filter(array, 1, size=[2])
1338
+ assert_array_almost_equal([3, 3, 5, 5, 4], output)
1339
+ output = ndimage.percentile_filter(array, 100, size=2)
1340
+ assert_array_almost_equal([3, 3, 5, 5, 4], output)
1341
+
1342
+ def test_rank04(self):
1343
+ array = numpy.array([3, 2, 5, 1, 4])
1344
+ expected = [3, 3, 2, 4, 4]
1345
+ output = ndimage.rank_filter(array, 1, size=3)
1346
+ assert_array_almost_equal(expected, output)
1347
+ output = ndimage.percentile_filter(array, 50, size=3)
1348
+ assert_array_almost_equal(expected, output)
1349
+ output = ndimage.median_filter(array, size=3)
1350
+ assert_array_almost_equal(expected, output)
1351
+
1352
+ def test_rank05(self):
1353
+ array = numpy.array([3, 2, 5, 1, 4])
1354
+ expected = [3, 3, 2, 4, 4]
1355
+ output = ndimage.rank_filter(array, -2, size=3)
1356
+ assert_array_almost_equal(expected, output)
1357
+
1358
+ def test_rank06(self):
1359
+ array = numpy.array([[3, 2, 5, 1, 4],
1360
+ [5, 8, 3, 7, 1],
1361
+ [5, 6, 9, 3, 5]])
1362
+ expected = [[2, 2, 1, 1, 1],
1363
+ [3, 3, 2, 1, 1],
1364
+ [5, 5, 3, 3, 1]]
1365
+ output = ndimage.rank_filter(array, 1, size=[2, 3])
1366
+ assert_array_almost_equal(expected, output)
1367
+ output = ndimage.percentile_filter(array, 17, size=(2, 3))
1368
+ assert_array_almost_equal(expected, output)
1369
+
1370
+ def test_rank06_overlap(self):
1371
+ array = numpy.array([[3, 2, 5, 1, 4],
1372
+ [5, 8, 3, 7, 1],
1373
+ [5, 6, 9, 3, 5]])
1374
+ array_copy = array.copy()
1375
+ expected = [[2, 2, 1, 1, 1],
1376
+ [3, 3, 2, 1, 1],
1377
+ [5, 5, 3, 3, 1]]
1378
+ ndimage.rank_filter(array, 1, size=[2, 3], output=array)
1379
+ assert_array_almost_equal(expected, array)
1380
+
1381
+ ndimage.percentile_filter(array_copy, 17, size=(2, 3),
1382
+ output=array_copy)
1383
+ assert_array_almost_equal(expected, array_copy)
1384
+
1385
+ def test_rank07(self):
1386
+ array = numpy.array([[3, 2, 5, 1, 4],
1387
+ [5, 8, 3, 7, 1],
1388
+ [5, 6, 9, 3, 5]])
1389
+ expected = [[3, 5, 5, 5, 4],
1390
+ [5, 5, 7, 5, 4],
1391
+ [6, 8, 8, 7, 5]]
1392
+ output = ndimage.rank_filter(array, -2, size=[2, 3])
1393
+ assert_array_almost_equal(expected, output)
1394
+
1395
+ def test_rank08(self):
1396
+ array = numpy.array([[3, 2, 5, 1, 4],
1397
+ [5, 8, 3, 7, 1],
1398
+ [5, 6, 9, 3, 5]])
1399
+ expected = [[3, 3, 2, 4, 4],
1400
+ [5, 5, 5, 4, 4],
1401
+ [5, 6, 7, 5, 5]]
1402
+ output = ndimage.percentile_filter(array, 50.0, size=(2, 3))
1403
+ assert_array_almost_equal(expected, output)
1404
+ output = ndimage.rank_filter(array, 3, size=(2, 3))
1405
+ assert_array_almost_equal(expected, output)
1406
+ output = ndimage.median_filter(array, size=(2, 3))
1407
+ assert_array_almost_equal(expected, output)
1408
+
1409
+ # non-separable: does not allow mode sequence
1410
+ with assert_raises(RuntimeError):
1411
+ ndimage.percentile_filter(array, 50.0, size=(2, 3),
1412
+ mode=['reflect', 'constant'])
1413
+ with assert_raises(RuntimeError):
1414
+ ndimage.rank_filter(array, 3, size=(2, 3), mode=['reflect']*2)
1415
+ with assert_raises(RuntimeError):
1416
+ ndimage.median_filter(array, size=(2, 3), mode=['reflect']*2)
1417
+
1418
+ @pytest.mark.parametrize('dtype', types)
1419
+ def test_rank09(self, dtype):
1420
+ expected = [[3, 3, 2, 4, 4],
1421
+ [3, 5, 2, 5, 1],
1422
+ [5, 5, 8, 3, 5]]
1423
+ footprint = [[1, 0, 1], [0, 1, 0]]
1424
+ array = numpy.array([[3, 2, 5, 1, 4],
1425
+ [5, 8, 3, 7, 1],
1426
+ [5, 6, 9, 3, 5]], dtype)
1427
+ output = ndimage.rank_filter(array, 1, footprint=footprint)
1428
+ assert_array_almost_equal(expected, output)
1429
+ output = ndimage.percentile_filter(array, 35, footprint=footprint)
1430
+ assert_array_almost_equal(expected, output)
1431
+
1432
+ def test_rank10(self):
1433
+ array = numpy.array([[3, 2, 5, 1, 4],
1434
+ [7, 6, 9, 3, 5],
1435
+ [5, 8, 3, 7, 1]])
1436
+ expected = [[2, 2, 1, 1, 1],
1437
+ [2, 3, 1, 3, 1],
1438
+ [5, 5, 3, 3, 1]]
1439
+ footprint = [[1, 0, 1], [1, 1, 0]]
1440
+ output = ndimage.rank_filter(array, 0, footprint=footprint)
1441
+ assert_array_almost_equal(expected, output)
1442
+ output = ndimage.percentile_filter(array, 0.0, footprint=footprint)
1443
+ assert_array_almost_equal(expected, output)
1444
+
1445
+ def test_rank11(self):
1446
+ array = numpy.array([[3, 2, 5, 1, 4],
1447
+ [7, 6, 9, 3, 5],
1448
+ [5, 8, 3, 7, 1]])
1449
+ expected = [[3, 5, 5, 5, 4],
1450
+ [7, 7, 9, 9, 5],
1451
+ [7, 9, 8, 9, 7]]
1452
+ footprint = [[1, 0, 1], [1, 1, 0]]
1453
+ output = ndimage.rank_filter(array, -1, footprint=footprint)
1454
+ assert_array_almost_equal(expected, output)
1455
+ output = ndimage.percentile_filter(array, 100.0, footprint=footprint)
1456
+ assert_array_almost_equal(expected, output)
1457
+
1458
+ @pytest.mark.parametrize('dtype', types)
1459
+ def test_rank12(self, dtype):
1460
+ expected = [[3, 3, 2, 4, 4],
1461
+ [3, 5, 2, 5, 1],
1462
+ [5, 5, 8, 3, 5]]
1463
+ footprint = [[1, 0, 1], [0, 1, 0]]
1464
+ array = numpy.array([[3, 2, 5, 1, 4],
1465
+ [5, 8, 3, 7, 1],
1466
+ [5, 6, 9, 3, 5]], dtype)
1467
+ output = ndimage.rank_filter(array, 1, footprint=footprint)
1468
+ assert_array_almost_equal(expected, output)
1469
+ output = ndimage.percentile_filter(array, 50.0,
1470
+ footprint=footprint)
1471
+ assert_array_almost_equal(expected, output)
1472
+ output = ndimage.median_filter(array, footprint=footprint)
1473
+ assert_array_almost_equal(expected, output)
1474
+
1475
+ @pytest.mark.parametrize('dtype', types)
1476
+ def test_rank13(self, dtype):
1477
+ expected = [[5, 2, 5, 1, 1],
1478
+ [5, 8, 3, 5, 5],
1479
+ [6, 6, 5, 5, 5]]
1480
+ footprint = [[1, 0, 1], [0, 1, 0]]
1481
+ array = numpy.array([[3, 2, 5, 1, 4],
1482
+ [5, 8, 3, 7, 1],
1483
+ [5, 6, 9, 3, 5]], dtype)
1484
+ output = ndimage.rank_filter(array, 1, footprint=footprint,
1485
+ origin=-1)
1486
+ assert_array_almost_equal(expected, output)
1487
+
1488
+ @pytest.mark.parametrize('dtype', types)
1489
+ def test_rank14(self, dtype):
1490
+ expected = [[3, 5, 2, 5, 1],
1491
+ [5, 5, 8, 3, 5],
1492
+ [5, 6, 6, 5, 5]]
1493
+ footprint = [[1, 0, 1], [0, 1, 0]]
1494
+ array = numpy.array([[3, 2, 5, 1, 4],
1495
+ [5, 8, 3, 7, 1],
1496
+ [5, 6, 9, 3, 5]], dtype)
1497
+ output = ndimage.rank_filter(array, 1, footprint=footprint,
1498
+ origin=[-1, 0])
1499
+ assert_array_almost_equal(expected, output)
1500
+
1501
+ @pytest.mark.parametrize('dtype', types)
1502
+ def test_rank15(self, dtype):
1503
+ expected = [[2, 3, 1, 4, 1],
1504
+ [5, 3, 7, 1, 1],
1505
+ [5, 5, 3, 3, 3]]
1506
+ footprint = [[1, 0, 1], [0, 1, 0]]
1507
+ array = numpy.array([[3, 2, 5, 1, 4],
1508
+ [5, 8, 3, 7, 1],
1509
+ [5, 6, 9, 3, 5]], dtype)
1510
+ output = ndimage.rank_filter(array, 0, footprint=footprint,
1511
+ origin=[-1, 0])
1512
+ assert_array_almost_equal(expected, output)
1513
+
1514
+ @pytest.mark.parametrize('dtype', types)
1515
+ def test_generic_filter1d01(self, dtype):
1516
+ weights = numpy.array([1.1, 2.2, 3.3])
1517
+
1518
+ def _filter_func(input, output, fltr, total):
1519
+ fltr = fltr / total
1520
+ for ii in range(input.shape[0] - 2):
1521
+ output[ii] = input[ii] * fltr[0]
1522
+ output[ii] += input[ii + 1] * fltr[1]
1523
+ output[ii] += input[ii + 2] * fltr[2]
1524
+ a = numpy.arange(12, dtype=dtype)
1525
+ a.shape = (3, 4)
1526
+ r1 = ndimage.correlate1d(a, weights / weights.sum(), 0, origin=-1)
1527
+ r2 = ndimage.generic_filter1d(
1528
+ a, _filter_func, 3, axis=0, origin=-1,
1529
+ extra_arguments=(weights,),
1530
+ extra_keywords={'total': weights.sum()})
1531
+ assert_array_almost_equal(r1, r2)
1532
+
1533
+ @pytest.mark.parametrize('dtype', types)
1534
+ def test_generic_filter01(self, dtype):
1535
+ filter_ = numpy.array([[1.0, 2.0], [3.0, 4.0]])
1536
+ footprint = numpy.array([[1, 0], [0, 1]])
1537
+ cf = numpy.array([1., 4.])
1538
+
1539
+ def _filter_func(buffer, weights, total=1.0):
1540
+ weights = cf / total
1541
+ return (buffer * weights).sum()
1542
+
1543
+ a = numpy.arange(12, dtype=dtype)
1544
+ a.shape = (3, 4)
1545
+ r1 = ndimage.correlate(a, filter_ * footprint)
1546
+ if dtype in float_types:
1547
+ r1 /= 5
1548
+ else:
1549
+ r1 //= 5
1550
+ r2 = ndimage.generic_filter(
1551
+ a, _filter_func, footprint=footprint, extra_arguments=(cf,),
1552
+ extra_keywords={'total': cf.sum()})
1553
+ assert_array_almost_equal(r1, r2)
1554
+
1555
+ # generic_filter doesn't allow mode sequence
1556
+ with assert_raises(RuntimeError):
1557
+ r2 = ndimage.generic_filter(
1558
+ a, _filter_func, mode=['reflect', 'reflect'],
1559
+ footprint=footprint, extra_arguments=(cf,),
1560
+ extra_keywords={'total': cf.sum()})
1561
+
1562
+ @pytest.mark.parametrize(
1563
+ 'mode, expected_value',
1564
+ [('nearest', [1, 1, 2]),
1565
+ ('wrap', [3, 1, 2]),
1566
+ ('reflect', [1, 1, 2]),
1567
+ ('mirror', [2, 1, 2]),
1568
+ ('constant', [0, 1, 2])]
1569
+ )
1570
+ def test_extend01(self, mode, expected_value):
1571
+ array = numpy.array([1, 2, 3])
1572
+ weights = numpy.array([1, 0])
1573
+ output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
1574
+ assert_array_equal(output, expected_value)
1575
+
1576
+ @pytest.mark.parametrize(
1577
+ 'mode, expected_value',
1578
+ [('nearest', [1, 1, 1]),
1579
+ ('wrap', [3, 1, 2]),
1580
+ ('reflect', [3, 3, 2]),
1581
+ ('mirror', [1, 2, 3]),
1582
+ ('constant', [0, 0, 0])]
1583
+ )
1584
+ def test_extend02(self, mode, expected_value):
1585
+ array = numpy.array([1, 2, 3])
1586
+ weights = numpy.array([1, 0, 0, 0, 0, 0, 0, 0])
1587
+ output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
1588
+ assert_array_equal(output, expected_value)
1589
+
1590
+ @pytest.mark.parametrize(
1591
+ 'mode, expected_value',
1592
+ [('nearest', [2, 3, 3]),
1593
+ ('wrap', [2, 3, 1]),
1594
+ ('reflect', [2, 3, 3]),
1595
+ ('mirror', [2, 3, 2]),
1596
+ ('constant', [2, 3, 0])]
1597
+ )
1598
+ def test_extend03(self, mode, expected_value):
1599
+ array = numpy.array([1, 2, 3])
1600
+ weights = numpy.array([0, 0, 1])
1601
+ output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
1602
+ assert_array_equal(output, expected_value)
1603
+
1604
+ @pytest.mark.parametrize(
1605
+ 'mode, expected_value',
1606
+ [('nearest', [3, 3, 3]),
1607
+ ('wrap', [2, 3, 1]),
1608
+ ('reflect', [2, 1, 1]),
1609
+ ('mirror', [1, 2, 3]),
1610
+ ('constant', [0, 0, 0])]
1611
+ )
1612
+ def test_extend04(self, mode, expected_value):
1613
+ array = numpy.array([1, 2, 3])
1614
+ weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1])
1615
+ output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
1616
+ assert_array_equal(output, expected_value)
1617
+
1618
+ @pytest.mark.parametrize(
1619
+ 'mode, expected_value',
1620
+ [('nearest', [[1, 1, 2], [1, 1, 2], [4, 4, 5]]),
1621
+ ('wrap', [[9, 7, 8], [3, 1, 2], [6, 4, 5]]),
1622
+ ('reflect', [[1, 1, 2], [1, 1, 2], [4, 4, 5]]),
1623
+ ('mirror', [[5, 4, 5], [2, 1, 2], [5, 4, 5]]),
1624
+ ('constant', [[0, 0, 0], [0, 1, 2], [0, 4, 5]])]
1625
+ )
1626
+ def test_extend05(self, mode, expected_value):
1627
+ array = numpy.array([[1, 2, 3],
1628
+ [4, 5, 6],
1629
+ [7, 8, 9]])
1630
+ weights = numpy.array([[1, 0], [0, 0]])
1631
+ output = ndimage.correlate(array, weights, mode=mode, cval=0)
1632
+ assert_array_equal(output, expected_value)
1633
+
1634
+ @pytest.mark.parametrize(
1635
+ 'mode, expected_value',
1636
+ [('nearest', [[5, 6, 6], [8, 9, 9], [8, 9, 9]]),
1637
+ ('wrap', [[5, 6, 4], [8, 9, 7], [2, 3, 1]]),
1638
+ ('reflect', [[5, 6, 6], [8, 9, 9], [8, 9, 9]]),
1639
+ ('mirror', [[5, 6, 5], [8, 9, 8], [5, 6, 5]]),
1640
+ ('constant', [[5, 6, 0], [8, 9, 0], [0, 0, 0]])]
1641
+ )
1642
+ def test_extend06(self, mode, expected_value):
1643
+ array = numpy.array([[1, 2, 3],
1644
+ [4, 5, 6],
1645
+ [7, 8, 9]])
1646
+ weights = numpy.array([[0, 0, 0], [0, 0, 0], [0, 0, 1]])
1647
+ output = ndimage.correlate(array, weights, mode=mode, cval=0)
1648
+ assert_array_equal(output, expected_value)
1649
+
1650
+ @pytest.mark.parametrize(
1651
+ 'mode, expected_value',
1652
+ [('nearest', [3, 3, 3]),
1653
+ ('wrap', [2, 3, 1]),
1654
+ ('reflect', [2, 1, 1]),
1655
+ ('mirror', [1, 2, 3]),
1656
+ ('constant', [0, 0, 0])]
1657
+ )
1658
+ def test_extend07(self, mode, expected_value):
1659
+ array = numpy.array([1, 2, 3])
1660
+ weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1])
1661
+ output = ndimage.correlate(array, weights, mode=mode, cval=0)
1662
+ assert_array_equal(output, expected_value)
1663
+
1664
+ @pytest.mark.parametrize(
1665
+ 'mode, expected_value',
1666
+ [('nearest', [[3], [3], [3]]),
1667
+ ('wrap', [[2], [3], [1]]),
1668
+ ('reflect', [[2], [1], [1]]),
1669
+ ('mirror', [[1], [2], [3]]),
1670
+ ('constant', [[0], [0], [0]])]
1671
+ )
1672
+ def test_extend08(self, mode, expected_value):
1673
+ array = numpy.array([[1], [2], [3]])
1674
+ weights = numpy.array([[0], [0], [0], [0], [0], [0], [0], [0], [1]])
1675
+ output = ndimage.correlate(array, weights, mode=mode, cval=0)
1676
+ assert_array_equal(output, expected_value)
1677
+
1678
+ @pytest.mark.parametrize(
1679
+ 'mode, expected_value',
1680
+ [('nearest', [3, 3, 3]),
1681
+ ('wrap', [2, 3, 1]),
1682
+ ('reflect', [2, 1, 1]),
1683
+ ('mirror', [1, 2, 3]),
1684
+ ('constant', [0, 0, 0])]
1685
+ )
1686
+ def test_extend09(self, mode, expected_value):
1687
+ array = numpy.array([1, 2, 3])
1688
+ weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1])
1689
+ output = ndimage.correlate(array, weights, mode=mode, cval=0)
1690
+ assert_array_equal(output, expected_value)
1691
+
1692
+ @pytest.mark.parametrize(
1693
+ 'mode, expected_value',
1694
+ [('nearest', [[3], [3], [3]]),
1695
+ ('wrap', [[2], [3], [1]]),
1696
+ ('reflect', [[2], [1], [1]]),
1697
+ ('mirror', [[1], [2], [3]]),
1698
+ ('constant', [[0], [0], [0]])]
1699
+ )
1700
+ def test_extend10(self, mode, expected_value):
1701
+ array = numpy.array([[1], [2], [3]])
1702
+ weights = numpy.array([[0], [0], [0], [0], [0], [0], [0], [0], [1]])
1703
+ output = ndimage.correlate(array, weights, mode=mode, cval=0)
1704
+ assert_array_equal(output, expected_value)
1705
+
1706
+
1707
+ def test_ticket_701():
1708
+ # Test generic filter sizes
1709
+ arr = numpy.arange(4).reshape((2, 2))
1710
+ def func(x):
1711
+ return numpy.min(x)
1712
+ res = ndimage.generic_filter(arr, func, size=(1, 1))
1713
+ # The following raises an error unless ticket 701 is fixed
1714
+ res2 = ndimage.generic_filter(arr, func, size=1)
1715
+ assert_equal(res, res2)
1716
+
1717
+
1718
+ def test_gh_5430():
1719
+ # At least one of these raises an error unless gh-5430 is
1720
+ # fixed. In py2k an int is implemented using a C long, so
1721
+ # which one fails depends on your system. In py3k there is only
1722
+ # one arbitrary precision integer type, so both should fail.
1723
+ sigma = numpy.int32(1)
1724
+ out = ndimage._ni_support._normalize_sequence(sigma, 1)
1725
+ assert_equal(out, [sigma])
1726
+ sigma = numpy.int64(1)
1727
+ out = ndimage._ni_support._normalize_sequence(sigma, 1)
1728
+ assert_equal(out, [sigma])
1729
+ # This worked before; make sure it still works
1730
+ sigma = 1
1731
+ out = ndimage._ni_support._normalize_sequence(sigma, 1)
1732
+ assert_equal(out, [sigma])
1733
+ # This worked before; make sure it still works
1734
+ sigma = [1, 1]
1735
+ out = ndimage._ni_support._normalize_sequence(sigma, 2)
1736
+ assert_equal(out, sigma)
1737
+ # Also include the OPs original example to make sure we fixed the issue
1738
+ x = numpy.random.normal(size=(256, 256))
1739
+ perlin = numpy.zeros_like(x)
1740
+ for i in 2**numpy.arange(6):
1741
+ perlin += ndimage.gaussian_filter(x, i, mode="wrap") * i**2
1742
+ # This also fixes gh-4106, show that the OPs example now runs.
1743
+ x = numpy.int64(21)
1744
+ ndimage._ni_support._normalize_sequence(x, 0)
1745
+
1746
+
1747
+ def test_gaussian_kernel1d():
1748
+ radius = 10
1749
+ sigma = 2
1750
+ sigma2 = sigma * sigma
1751
+ x = numpy.arange(-radius, radius + 1, dtype=numpy.double)
1752
+ phi_x = numpy.exp(-0.5 * x * x / sigma2)
1753
+ phi_x /= phi_x.sum()
1754
+ assert_allclose(phi_x, _gaussian_kernel1d(sigma, 0, radius))
1755
+ assert_allclose(-phi_x * x / sigma2, _gaussian_kernel1d(sigma, 1, radius))
1756
+ assert_allclose(phi_x * (x * x / sigma2 - 1) / sigma2,
1757
+ _gaussian_kernel1d(sigma, 2, radius))
1758
+ assert_allclose(phi_x * (3 - x * x / sigma2) * x / (sigma2 * sigma2),
1759
+ _gaussian_kernel1d(sigma, 3, radius))
1760
+
1761
+
1762
+ def test_orders_gauss():
1763
+ # Check order inputs to Gaussians
1764
+ arr = numpy.zeros((1,))
1765
+ assert_equal(0, ndimage.gaussian_filter(arr, 1, order=0))
1766
+ assert_equal(0, ndimage.gaussian_filter(arr, 1, order=3))
1767
+ assert_raises(ValueError, ndimage.gaussian_filter, arr, 1, -1)
1768
+ assert_equal(0, ndimage.gaussian_filter1d(arr, 1, axis=-1, order=0))
1769
+ assert_equal(0, ndimage.gaussian_filter1d(arr, 1, axis=-1, order=3))
1770
+ assert_raises(ValueError, ndimage.gaussian_filter1d, arr, 1, -1, -1)
1771
+
1772
+
1773
+ def test_valid_origins():
1774
+ """Regression test for #1311."""
1775
+ def func(x):
1776
+ return numpy.mean(x)
1777
+ data = numpy.array([1, 2, 3, 4, 5], dtype=numpy.float64)
1778
+ assert_raises(ValueError, ndimage.generic_filter, data, func, size=3,
1779
+ origin=2)
1780
+ assert_raises(ValueError, ndimage.generic_filter1d, data, func,
1781
+ filter_size=3, origin=2)
1782
+ assert_raises(ValueError, ndimage.percentile_filter, data, 0.2, size=3,
1783
+ origin=2)
1784
+
1785
+ for filter in [ndimage.uniform_filter, ndimage.minimum_filter,
1786
+ ndimage.maximum_filter, ndimage.maximum_filter1d,
1787
+ ndimage.median_filter, ndimage.minimum_filter1d]:
1788
+ # This should work, since for size == 3, the valid range for origin is
1789
+ # -1 to 1.
1790
+ list(filter(data, 3, origin=-1))
1791
+ list(filter(data, 3, origin=1))
1792
+ # Just check this raises an error instead of silently accepting or
1793
+ # segfaulting.
1794
+ assert_raises(ValueError, filter, data, 3, origin=2)
1795
+
1796
+
1797
+ def test_bad_convolve_and_correlate_origins():
1798
+ """Regression test for gh-822."""
1799
+ # Before gh-822 was fixed, these would generate seg. faults or
1800
+ # other crashes on many system.
1801
+ assert_raises(ValueError, ndimage.correlate1d,
1802
+ [0, 1, 2, 3, 4, 5], [1, 1, 2, 0], origin=2)
1803
+ assert_raises(ValueError, ndimage.correlate,
1804
+ [0, 1, 2, 3, 4, 5], [0, 1, 2], origin=[2])
1805
+ assert_raises(ValueError, ndimage.correlate,
1806
+ numpy.ones((3, 5)), numpy.ones((2, 2)), origin=[0, 1])
1807
+
1808
+ assert_raises(ValueError, ndimage.convolve1d,
1809
+ numpy.arange(10), numpy.ones(3), origin=-2)
1810
+ assert_raises(ValueError, ndimage.convolve,
1811
+ numpy.arange(10), numpy.ones(3), origin=[-2])
1812
+ assert_raises(ValueError, ndimage.convolve,
1813
+ numpy.ones((3, 5)), numpy.ones((2, 2)), origin=[0, -2])
1814
+
1815
+
1816
+ def test_multiple_modes():
1817
+ # Test that the filters with multiple mode cababilities for different
1818
+ # dimensions give the same result as applying a single mode.
1819
+ arr = numpy.array([[1., 0., 0.],
1820
+ [1., 1., 0.],
1821
+ [0., 0., 0.]])
1822
+
1823
+ mode1 = 'reflect'
1824
+ mode2 = ['reflect', 'reflect']
1825
+
1826
+ assert_equal(ndimage.gaussian_filter(arr, 1, mode=mode1),
1827
+ ndimage.gaussian_filter(arr, 1, mode=mode2))
1828
+ assert_equal(ndimage.prewitt(arr, mode=mode1),
1829
+ ndimage.prewitt(arr, mode=mode2))
1830
+ assert_equal(ndimage.sobel(arr, mode=mode1),
1831
+ ndimage.sobel(arr, mode=mode2))
1832
+ assert_equal(ndimage.laplace(arr, mode=mode1),
1833
+ ndimage.laplace(arr, mode=mode2))
1834
+ assert_equal(ndimage.gaussian_laplace(arr, 1, mode=mode1),
1835
+ ndimage.gaussian_laplace(arr, 1, mode=mode2))
1836
+ assert_equal(ndimage.maximum_filter(arr, size=5, mode=mode1),
1837
+ ndimage.maximum_filter(arr, size=5, mode=mode2))
1838
+ assert_equal(ndimage.minimum_filter(arr, size=5, mode=mode1),
1839
+ ndimage.minimum_filter(arr, size=5, mode=mode2))
1840
+ assert_equal(ndimage.gaussian_gradient_magnitude(arr, 1, mode=mode1),
1841
+ ndimage.gaussian_gradient_magnitude(arr, 1, mode=mode2))
1842
+ assert_equal(ndimage.uniform_filter(arr, 5, mode=mode1),
1843
+ ndimage.uniform_filter(arr, 5, mode=mode2))
1844
+
1845
+
1846
+ def test_multiple_modes_sequentially():
1847
+ # Test that the filters with multiple mode cababilities for different
1848
+ # dimensions give the same result as applying the filters with
1849
+ # different modes sequentially
1850
+ arr = numpy.array([[1., 0., 0.],
1851
+ [1., 1., 0.],
1852
+ [0., 0., 0.]])
1853
+
1854
+ modes = ['reflect', 'wrap']
1855
+
1856
+ expected = ndimage.gaussian_filter1d(arr, 1, axis=0, mode=modes[0])
1857
+ expected = ndimage.gaussian_filter1d(expected, 1, axis=1, mode=modes[1])
1858
+ assert_equal(expected,
1859
+ ndimage.gaussian_filter(arr, 1, mode=modes))
1860
+
1861
+ expected = ndimage.uniform_filter1d(arr, 5, axis=0, mode=modes[0])
1862
+ expected = ndimage.uniform_filter1d(expected, 5, axis=1, mode=modes[1])
1863
+ assert_equal(expected,
1864
+ ndimage.uniform_filter(arr, 5, mode=modes))
1865
+
1866
+ expected = ndimage.maximum_filter1d(arr, size=5, axis=0, mode=modes[0])
1867
+ expected = ndimage.maximum_filter1d(expected, size=5, axis=1,
1868
+ mode=modes[1])
1869
+ assert_equal(expected,
1870
+ ndimage.maximum_filter(arr, size=5, mode=modes))
1871
+
1872
+ expected = ndimage.minimum_filter1d(arr, size=5, axis=0, mode=modes[0])
1873
+ expected = ndimage.minimum_filter1d(expected, size=5, axis=1,
1874
+ mode=modes[1])
1875
+ assert_equal(expected,
1876
+ ndimage.minimum_filter(arr, size=5, mode=modes))
1877
+
1878
+
1879
+ def test_multiple_modes_prewitt():
1880
+ # Test prewitt filter for multiple extrapolation modes
1881
+ arr = numpy.array([[1., 0., 0.],
1882
+ [1., 1., 0.],
1883
+ [0., 0., 0.]])
1884
+
1885
+ expected = numpy.array([[1., -3., 2.],
1886
+ [1., -2., 1.],
1887
+ [1., -1., 0.]])
1888
+
1889
+ modes = ['reflect', 'wrap']
1890
+
1891
+ assert_equal(expected,
1892
+ ndimage.prewitt(arr, mode=modes))
1893
+
1894
+
1895
+ def test_multiple_modes_sobel():
1896
+ # Test sobel filter for multiple extrapolation modes
1897
+ arr = numpy.array([[1., 0., 0.],
1898
+ [1., 1., 0.],
1899
+ [0., 0., 0.]])
1900
+
1901
+ expected = numpy.array([[1., -4., 3.],
1902
+ [2., -3., 1.],
1903
+ [1., -1., 0.]])
1904
+
1905
+ modes = ['reflect', 'wrap']
1906
+
1907
+ assert_equal(expected,
1908
+ ndimage.sobel(arr, mode=modes))
1909
+
1910
+
1911
+ def test_multiple_modes_laplace():
1912
+ # Test laplace filter for multiple extrapolation modes
1913
+ arr = numpy.array([[1., 0., 0.],
1914
+ [1., 1., 0.],
1915
+ [0., 0., 0.]])
1916
+
1917
+ expected = numpy.array([[-2., 2., 1.],
1918
+ [-2., -3., 2.],
1919
+ [1., 1., 0.]])
1920
+
1921
+ modes = ['reflect', 'wrap']
1922
+
1923
+ assert_equal(expected,
1924
+ ndimage.laplace(arr, mode=modes))
1925
+
1926
+
1927
+ def test_multiple_modes_gaussian_laplace():
1928
+ # Test gaussian_laplace filter for multiple extrapolation modes
1929
+ arr = numpy.array([[1., 0., 0.],
1930
+ [1., 1., 0.],
1931
+ [0., 0., 0.]])
1932
+
1933
+ expected = numpy.array([[-0.28438687, 0.01559809, 0.19773499],
1934
+ [-0.36630503, -0.20069774, 0.07483620],
1935
+ [0.15849176, 0.18495566, 0.21934094]])
1936
+
1937
+ modes = ['reflect', 'wrap']
1938
+
1939
+ assert_almost_equal(expected,
1940
+ ndimage.gaussian_laplace(arr, 1, mode=modes))
1941
+
1942
+
1943
+ def test_multiple_modes_gaussian_gradient_magnitude():
1944
+ # Test gaussian_gradient_magnitude filter for multiple
1945
+ # extrapolation modes
1946
+ arr = numpy.array([[1., 0., 0.],
1947
+ [1., 1., 0.],
1948
+ [0., 0., 0.]])
1949
+
1950
+ expected = numpy.array([[0.04928965, 0.09745625, 0.06405368],
1951
+ [0.23056905, 0.14025305, 0.04550846],
1952
+ [0.19894369, 0.14950060, 0.06796850]])
1953
+
1954
+ modes = ['reflect', 'wrap']
1955
+
1956
+ calculated = ndimage.gaussian_gradient_magnitude(arr, 1, mode=modes)
1957
+
1958
+ assert_almost_equal(expected, calculated)
1959
+
1960
+
1961
+ def test_multiple_modes_uniform():
1962
+ # Test uniform filter for multiple extrapolation modes
1963
+ arr = numpy.array([[1., 0., 0.],
1964
+ [1., 1., 0.],
1965
+ [0., 0., 0.]])
1966
+
1967
+ expected = numpy.array([[0.32, 0.40, 0.48],
1968
+ [0.20, 0.28, 0.32],
1969
+ [0.28, 0.32, 0.40]])
1970
+
1971
+ modes = ['reflect', 'wrap']
1972
+
1973
+ assert_almost_equal(expected,
1974
+ ndimage.uniform_filter(arr, 5, mode=modes))
1975
+
1976
+
1977
+ def test_gaussian_truncate():
1978
+ # Test that Gaussian filters can be truncated at different widths.
1979
+ # These tests only check that the result has the expected number
1980
+ # of nonzero elements.
1981
+ arr = numpy.zeros((100, 100), float)
1982
+ arr[50, 50] = 1
1983
+ num_nonzeros_2 = (ndimage.gaussian_filter(arr, 5, truncate=2) > 0).sum()
1984
+ assert_equal(num_nonzeros_2, 21**2)
1985
+ num_nonzeros_5 = (ndimage.gaussian_filter(arr, 5, truncate=5) > 0).sum()
1986
+ assert_equal(num_nonzeros_5, 51**2)
1987
+
1988
+ # Test truncate when sigma is a sequence.
1989
+ f = ndimage.gaussian_filter(arr, [0.5, 2.5], truncate=3.5)
1990
+ fpos = f > 0
1991
+ n0 = fpos.any(axis=0).sum()
1992
+ # n0 should be 2*int(2.5*3.5 + 0.5) + 1
1993
+ assert_equal(n0, 19)
1994
+ n1 = fpos.any(axis=1).sum()
1995
+ # n1 should be 2*int(0.5*3.5 + 0.5) + 1
1996
+ assert_equal(n1, 5)
1997
+
1998
+ # Test gaussian_filter1d.
1999
+ x = numpy.zeros(51)
2000
+ x[25] = 1
2001
+ f = ndimage.gaussian_filter1d(x, sigma=2, truncate=3.5)
2002
+ n = (f > 0).sum()
2003
+ assert_equal(n, 15)
2004
+
2005
+ # Test gaussian_laplace
2006
+ y = ndimage.gaussian_laplace(x, sigma=2, truncate=3.5)
2007
+ nonzero_indices = numpy.nonzero(y != 0)[0]
2008
+ n = numpy.ptp(nonzero_indices) + 1
2009
+ assert_equal(n, 15)
2010
+
2011
+ # Test gaussian_gradient_magnitude
2012
+ y = ndimage.gaussian_gradient_magnitude(x, sigma=2, truncate=3.5)
2013
+ nonzero_indices = numpy.nonzero(y != 0)[0]
2014
+ n = numpy.ptp(nonzero_indices) + 1
2015
+ assert_equal(n, 15)
2016
+
2017
+
2018
+ def test_gaussian_radius():
2019
+ # Test that Gaussian filters with radius argument produce the same
2020
+ # results as the filters with corresponding truncate argument.
2021
+ # radius = int(truncate * sigma + 0.5)
2022
+ # Test gaussian_filter1d
2023
+ x = numpy.zeros(7)
2024
+ x[3] = 1
2025
+ f1 = ndimage.gaussian_filter1d(x, sigma=2, truncate=1.5)
2026
+ f2 = ndimage.gaussian_filter1d(x, sigma=2, radius=3)
2027
+ assert_equal(f1, f2)
2028
+
2029
+ # Test gaussian_filter when sigma is a number.
2030
+ a = numpy.zeros((9, 9))
2031
+ a[4, 4] = 1
2032
+ f1 = ndimage.gaussian_filter(a, sigma=0.5, truncate=3.5)
2033
+ f2 = ndimage.gaussian_filter(a, sigma=0.5, radius=2)
2034
+ assert_equal(f1, f2)
2035
+
2036
+ # Test gaussian_filter when sigma is a sequence.
2037
+ a = numpy.zeros((50, 50))
2038
+ a[25, 25] = 1
2039
+ f1 = ndimage.gaussian_filter(a, sigma=[0.5, 2.5], truncate=3.5)
2040
+ f2 = ndimage.gaussian_filter(a, sigma=[0.5, 2.5], radius=[2, 9])
2041
+ assert_equal(f1, f2)
2042
+
2043
+
2044
+ def test_gaussian_radius_invalid():
2045
+ # radius must be a nonnegative integer
2046
+ with assert_raises(ValueError):
2047
+ ndimage.gaussian_filter1d(numpy.zeros(8), sigma=1, radius=-1)
2048
+ with assert_raises(ValueError):
2049
+ ndimage.gaussian_filter1d(numpy.zeros(8), sigma=1, radius=1.1)
2050
+
2051
+
2052
+ class TestThreading:
2053
+ def check_func_thread(self, n, fun, args, out):
2054
+ from threading import Thread
2055
+ thrds = [Thread(target=fun, args=args, kwargs={'output': out[x]})
2056
+ for x in range(n)]
2057
+ [t.start() for t in thrds]
2058
+ [t.join() for t in thrds]
2059
+
2060
+ def check_func_serial(self, n, fun, args, out):
2061
+ for i in range(n):
2062
+ fun(*args, output=out[i])
2063
+
2064
+ def test_correlate1d(self):
2065
+ d = numpy.random.randn(5000)
2066
+ os = numpy.empty((4, d.size))
2067
+ ot = numpy.empty_like(os)
2068
+ k = numpy.arange(5)
2069
+ self.check_func_serial(4, ndimage.correlate1d, (d, k), os)
2070
+ self.check_func_thread(4, ndimage.correlate1d, (d, k), ot)
2071
+ assert_array_equal(os, ot)
2072
+
2073
+ def test_correlate(self):
2074
+ d = numpy.random.randn(500, 500)
2075
+ k = numpy.random.randn(10, 10)
2076
+ os = numpy.empty([4] + list(d.shape))
2077
+ ot = numpy.empty_like(os)
2078
+ self.check_func_serial(4, ndimage.correlate, (d, k), os)
2079
+ self.check_func_thread(4, ndimage.correlate, (d, k), ot)
2080
+ assert_array_equal(os, ot)
2081
+
2082
+ def test_median_filter(self):
2083
+ d = numpy.random.randn(500, 500)
2084
+ os = numpy.empty([4] + list(d.shape))
2085
+ ot = numpy.empty_like(os)
2086
+ self.check_func_serial(4, ndimage.median_filter, (d, 3), os)
2087
+ self.check_func_thread(4, ndimage.median_filter, (d, 3), ot)
2088
+ assert_array_equal(os, ot)
2089
+
2090
+ def test_uniform_filter1d(self):
2091
+ d = numpy.random.randn(5000)
2092
+ os = numpy.empty((4, d.size))
2093
+ ot = numpy.empty_like(os)
2094
+ self.check_func_serial(4, ndimage.uniform_filter1d, (d, 5), os)
2095
+ self.check_func_thread(4, ndimage.uniform_filter1d, (d, 5), ot)
2096
+ assert_array_equal(os, ot)
2097
+
2098
+ def test_minmax_filter(self):
2099
+ d = numpy.random.randn(500, 500)
2100
+ os = numpy.empty([4] + list(d.shape))
2101
+ ot = numpy.empty_like(os)
2102
+ self.check_func_serial(4, ndimage.maximum_filter, (d, 3), os)
2103
+ self.check_func_thread(4, ndimage.maximum_filter, (d, 3), ot)
2104
+ assert_array_equal(os, ot)
2105
+ self.check_func_serial(4, ndimage.minimum_filter, (d, 3), os)
2106
+ self.check_func_thread(4, ndimage.minimum_filter, (d, 3), ot)
2107
+ assert_array_equal(os, ot)
2108
+
2109
+
2110
+ def test_minmaximum_filter1d():
2111
+ # Regression gh-3898
2112
+ in_ = numpy.arange(10)
2113
+ out = ndimage.minimum_filter1d(in_, 1)
2114
+ assert_equal(in_, out)
2115
+ out = ndimage.maximum_filter1d(in_, 1)
2116
+ assert_equal(in_, out)
2117
+ # Test reflect
2118
+ out = ndimage.minimum_filter1d(in_, 5, mode='reflect')
2119
+ assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 6, 7], out)
2120
+ out = ndimage.maximum_filter1d(in_, 5, mode='reflect')
2121
+ assert_equal([2, 3, 4, 5, 6, 7, 8, 9, 9, 9], out)
2122
+ # Test constant
2123
+ out = ndimage.minimum_filter1d(in_, 5, mode='constant', cval=-1)
2124
+ assert_equal([-1, -1, 0, 1, 2, 3, 4, 5, -1, -1], out)
2125
+ out = ndimage.maximum_filter1d(in_, 5, mode='constant', cval=10)
2126
+ assert_equal([10, 10, 4, 5, 6, 7, 8, 9, 10, 10], out)
2127
+ # Test nearest
2128
+ out = ndimage.minimum_filter1d(in_, 5, mode='nearest')
2129
+ assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 6, 7], out)
2130
+ out = ndimage.maximum_filter1d(in_, 5, mode='nearest')
2131
+ assert_equal([2, 3, 4, 5, 6, 7, 8, 9, 9, 9], out)
2132
+ # Test wrap
2133
+ out = ndimage.minimum_filter1d(in_, 5, mode='wrap')
2134
+ assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 0, 0], out)
2135
+ out = ndimage.maximum_filter1d(in_, 5, mode='wrap')
2136
+ assert_equal([9, 9, 4, 5, 6, 7, 8, 9, 9, 9], out)
2137
+
2138
+
2139
+ def test_uniform_filter1d_roundoff_errors():
2140
+ # gh-6930
2141
+ in_ = numpy.repeat([0, 1, 0], [9, 9, 9])
2142
+ for filter_size in range(3, 10):
2143
+ out = ndimage.uniform_filter1d(in_, filter_size)
2144
+ assert_equal(out.sum(), 10 - filter_size)
2145
+
2146
+
2147
+ def test_footprint_all_zeros():
2148
+ # regression test for gh-6876: footprint of all zeros segfaults
2149
+ arr = numpy.random.randint(0, 100, (100, 100))
2150
+ kernel = numpy.zeros((3, 3), bool)
2151
+ with assert_raises(ValueError):
2152
+ ndimage.maximum_filter(arr, footprint=kernel)
2153
+
2154
+
2155
+ def test_gaussian_filter():
2156
+ # Test gaussian filter with numpy.float16
2157
+ # gh-8207
2158
+ data = numpy.array([1], dtype=numpy.float16)
2159
+ sigma = 1.0
2160
+ with assert_raises(RuntimeError):
2161
+ ndimage.gaussian_filter(data, sigma)
2162
+
2163
+
2164
+ def test_rank_filter_noninteger_rank():
2165
+ # regression test for issue 9388: ValueError for
2166
+ # non integer rank when performing rank_filter
2167
+ arr = numpy.random.random((10, 20, 30))
2168
+ assert_raises(TypeError, ndimage.rank_filter, arr, 0.5,
2169
+ footprint=numpy.ones((1, 1, 10), dtype=bool))
2170
+
2171
+
2172
+ def test_size_footprint_both_set():
2173
+ # test for input validation, expect user warning when
2174
+ # size and footprint is set
2175
+ with suppress_warnings() as sup:
2176
+ sup.filter(UserWarning,
2177
+ "ignoring size because footprint is set")
2178
+ arr = numpy.random.random((10, 20, 30))
2179
+ ndimage.rank_filter(arr, 5, size=2, footprint=numpy.ones((1, 1, 10),
2180
+ dtype=bool))
2181
+
2182
+
2183
+ def test_byte_order_median():
2184
+ """Regression test for #413: median_filter does not handle bytes orders."""
2185
+ a = numpy.arange(9, dtype='<f4').reshape(3, 3)
2186
+ ref = ndimage.median_filter(a, (3, 3))
2187
+ b = numpy.arange(9, dtype='>f4').reshape(3, 3)
2188
+ t = ndimage.median_filter(b, (3, 3))
2189
+ assert_array_almost_equal(ref, t)
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_fourier.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy
2
+ from numpy import fft
3
+ from numpy.testing import (assert_almost_equal, assert_array_almost_equal,
4
+ assert_equal)
5
+
6
+ import pytest
7
+
8
+ from scipy import ndimage
9
+
10
+
11
+ class TestNdimageFourier:
12
+
13
+ @pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
14
+ @pytest.mark.parametrize('dtype, dec',
15
+ [(numpy.float32, 6), (numpy.float64, 14)])
16
+ def test_fourier_gaussian_real01(self, shape, dtype, dec):
17
+ a = numpy.zeros(shape, dtype)
18
+ a[0, 0] = 1.0
19
+ a = fft.rfft(a, shape[0], 0)
20
+ a = fft.fft(a, shape[1], 1)
21
+ a = ndimage.fourier_gaussian(a, [5.0, 2.5], shape[0], 0)
22
+ a = fft.ifft(a, shape[1], 1)
23
+ a = fft.irfft(a, shape[0], 0)
24
+ assert_almost_equal(ndimage.sum(a), 1, decimal=dec)
25
+
26
+ @pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
27
+ @pytest.mark.parametrize('dtype, dec',
28
+ [(numpy.complex64, 6), (numpy.complex128, 14)])
29
+ def test_fourier_gaussian_complex01(self, shape, dtype, dec):
30
+ a = numpy.zeros(shape, dtype)
31
+ a[0, 0] = 1.0
32
+ a = fft.fft(a, shape[0], 0)
33
+ a = fft.fft(a, shape[1], 1)
34
+ a = ndimage.fourier_gaussian(a, [5.0, 2.5], -1, 0)
35
+ a = fft.ifft(a, shape[1], 1)
36
+ a = fft.ifft(a, shape[0], 0)
37
+ assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
38
+
39
+ @pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
40
+ @pytest.mark.parametrize('dtype, dec',
41
+ [(numpy.float32, 6), (numpy.float64, 14)])
42
+ def test_fourier_uniform_real01(self, shape, dtype, dec):
43
+ a = numpy.zeros(shape, dtype)
44
+ a[0, 0] = 1.0
45
+ a = fft.rfft(a, shape[0], 0)
46
+ a = fft.fft(a, shape[1], 1)
47
+ a = ndimage.fourier_uniform(a, [5.0, 2.5], shape[0], 0)
48
+ a = fft.ifft(a, shape[1], 1)
49
+ a = fft.irfft(a, shape[0], 0)
50
+ assert_almost_equal(ndimage.sum(a), 1.0, decimal=dec)
51
+
52
+ @pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
53
+ @pytest.mark.parametrize('dtype, dec',
54
+ [(numpy.complex64, 6), (numpy.complex128, 14)])
55
+ def test_fourier_uniform_complex01(self, shape, dtype, dec):
56
+ a = numpy.zeros(shape, dtype)
57
+ a[0, 0] = 1.0
58
+ a = fft.fft(a, shape[0], 0)
59
+ a = fft.fft(a, shape[1], 1)
60
+ a = ndimage.fourier_uniform(a, [5.0, 2.5], -1, 0)
61
+ a = fft.ifft(a, shape[1], 1)
62
+ a = fft.ifft(a, shape[0], 0)
63
+ assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
64
+
65
+ @pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
66
+ @pytest.mark.parametrize('dtype, dec',
67
+ [(numpy.float32, 4), (numpy.float64, 11)])
68
+ def test_fourier_shift_real01(self, shape, dtype, dec):
69
+ expected = numpy.arange(shape[0] * shape[1], dtype=dtype)
70
+ expected.shape = shape
71
+ a = fft.rfft(expected, shape[0], 0)
72
+ a = fft.fft(a, shape[1], 1)
73
+ a = ndimage.fourier_shift(a, [1, 1], shape[0], 0)
74
+ a = fft.ifft(a, shape[1], 1)
75
+ a = fft.irfft(a, shape[0], 0)
76
+ assert_array_almost_equal(a[1:, 1:], expected[:-1, :-1],
77
+ decimal=dec)
78
+ assert_array_almost_equal(a.imag, numpy.zeros(shape),
79
+ decimal=dec)
80
+
81
+ @pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
82
+ @pytest.mark.parametrize('dtype, dec',
83
+ [(numpy.complex64, 4), (numpy.complex128, 11)])
84
+ def test_fourier_shift_complex01(self, shape, dtype, dec):
85
+ expected = numpy.arange(shape[0] * shape[1], dtype=dtype)
86
+ expected.shape = shape
87
+ a = fft.fft(expected, shape[0], 0)
88
+ a = fft.fft(a, shape[1], 1)
89
+ a = ndimage.fourier_shift(a, [1, 1], -1, 0)
90
+ a = fft.ifft(a, shape[1], 1)
91
+ a = fft.ifft(a, shape[0], 0)
92
+ assert_array_almost_equal(a.real[1:, 1:], expected[:-1, :-1],
93
+ decimal=dec)
94
+ assert_array_almost_equal(a.imag, numpy.zeros(shape),
95
+ decimal=dec)
96
+
97
+ @pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
98
+ @pytest.mark.parametrize('dtype, dec',
99
+ [(numpy.float32, 5), (numpy.float64, 14)])
100
+ def test_fourier_ellipsoid_real01(self, shape, dtype, dec):
101
+ a = numpy.zeros(shape, dtype)
102
+ a[0, 0] = 1.0
103
+ a = fft.rfft(a, shape[0], 0)
104
+ a = fft.fft(a, shape[1], 1)
105
+ a = ndimage.fourier_ellipsoid(a, [5.0, 2.5],
106
+ shape[0], 0)
107
+ a = fft.ifft(a, shape[1], 1)
108
+ a = fft.irfft(a, shape[0], 0)
109
+ assert_almost_equal(ndimage.sum(a), 1.0, decimal=dec)
110
+
111
+ @pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
112
+ @pytest.mark.parametrize('dtype, dec',
113
+ [(numpy.complex64, 5), (numpy.complex128, 14)])
114
+ def test_fourier_ellipsoid_complex01(self, shape, dtype, dec):
115
+ a = numpy.zeros(shape, dtype)
116
+ a[0, 0] = 1.0
117
+ a = fft.fft(a, shape[0], 0)
118
+ a = fft.fft(a, shape[1], 1)
119
+ a = ndimage.fourier_ellipsoid(a, [5.0, 2.5], -1, 0)
120
+ a = fft.ifft(a, shape[1], 1)
121
+ a = fft.ifft(a, shape[0], 0)
122
+ assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
123
+
124
+ def test_fourier_ellipsoid_unimplemented_ndim(self):
125
+ # arrays with ndim > 3 raise NotImplementedError
126
+ x = numpy.ones((4, 6, 8, 10), dtype=numpy.complex128)
127
+ with pytest.raises(NotImplementedError):
128
+ ndimage.fourier_ellipsoid(x, 3)
129
+
130
+ def test_fourier_ellipsoid_1d_complex(self):
131
+ # expected result of 1d ellipsoid is the same as for fourier_uniform
132
+ for shape in [(32, ), (31, )]:
133
+ for type_, dec in zip([numpy.complex64, numpy.complex128],
134
+ [5, 14]):
135
+ x = numpy.ones(shape, dtype=type_)
136
+ a = ndimage.fourier_ellipsoid(x, 5, -1, 0)
137
+ b = ndimage.fourier_uniform(x, 5, -1, 0)
138
+ assert_array_almost_equal(a, b, decimal=dec)
139
+
140
+ @pytest.mark.parametrize('shape', [(0, ), (0, 10), (10, 0)])
141
+ @pytest.mark.parametrize('dtype',
142
+ [numpy.float32, numpy.float64,
143
+ numpy.complex64, numpy.complex128])
144
+ @pytest.mark.parametrize('test_func',
145
+ [ndimage.fourier_ellipsoid,
146
+ ndimage.fourier_gaussian,
147
+ ndimage.fourier_uniform])
148
+ def test_fourier_zero_length_dims(self, shape, dtype, test_func):
149
+ a = numpy.ones(shape, dtype)
150
+ b = test_func(a, 3)
151
+ assert_equal(a, b)
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_interpolation.py ADDED
@@ -0,0 +1,1327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+
3
+ import numpy
4
+ from numpy.testing import (assert_, assert_equal, assert_array_equal,
5
+ assert_array_almost_equal, assert_allclose,
6
+ suppress_warnings)
7
+ import pytest
8
+ from pytest import raises as assert_raises
9
+ import scipy.ndimage as ndimage
10
+
11
+ from . import types
12
+
13
+ eps = 1e-12
14
+
15
+ ndimage_to_numpy_mode = {
16
+ 'mirror': 'reflect',
17
+ 'reflect': 'symmetric',
18
+ 'grid-mirror': 'symmetric',
19
+ 'grid-wrap': 'wrap',
20
+ 'nearest': 'edge',
21
+ 'grid-constant': 'constant',
22
+ }
23
+
24
+
25
+ class TestNdimageInterpolation:
26
+
27
+ @pytest.mark.parametrize(
28
+ 'mode, expected_value',
29
+ [('nearest', [1.5, 2.5, 3.5, 4, 4, 4, 4]),
30
+ ('wrap', [1.5, 2.5, 3.5, 1.5, 2.5, 3.5, 1.5]),
31
+ ('grid-wrap', [1.5, 2.5, 3.5, 2.5, 1.5, 2.5, 3.5]),
32
+ ('mirror', [1.5, 2.5, 3.5, 3.5, 2.5, 1.5, 1.5]),
33
+ ('reflect', [1.5, 2.5, 3.5, 4, 3.5, 2.5, 1.5]),
34
+ ('constant', [1.5, 2.5, 3.5, -1, -1, -1, -1]),
35
+ ('grid-constant', [1.5, 2.5, 3.5, 1.5, -1, -1, -1])]
36
+ )
37
+ def test_boundaries(self, mode, expected_value):
38
+ def shift(x):
39
+ return (x[0] + 0.5,)
40
+
41
+ data = numpy.array([1, 2, 3, 4.])
42
+ assert_array_equal(
43
+ expected_value,
44
+ ndimage.geometric_transform(data, shift, cval=-1, mode=mode,
45
+ output_shape=(7,), order=1))
46
+
47
+ @pytest.mark.parametrize(
48
+ 'mode, expected_value',
49
+ [('nearest', [1, 1, 2, 3]),
50
+ ('wrap', [3, 1, 2, 3]),
51
+ ('grid-wrap', [4, 1, 2, 3]),
52
+ ('mirror', [2, 1, 2, 3]),
53
+ ('reflect', [1, 1, 2, 3]),
54
+ ('constant', [-1, 1, 2, 3]),
55
+ ('grid-constant', [-1, 1, 2, 3])]
56
+ )
57
+ def test_boundaries2(self, mode, expected_value):
58
+ def shift(x):
59
+ return (x[0] - 0.9,)
60
+
61
+ data = numpy.array([1, 2, 3, 4])
62
+ assert_array_equal(
63
+ expected_value,
64
+ ndimage.geometric_transform(data, shift, cval=-1, mode=mode,
65
+ output_shape=(4,)))
66
+
67
+ @pytest.mark.parametrize('mode', ['mirror', 'reflect', 'grid-mirror',
68
+ 'grid-wrap', 'grid-constant',
69
+ 'nearest'])
70
+ @pytest.mark.parametrize('order', range(6))
71
+ def test_boundary_spline_accuracy(self, mode, order):
72
+ """Tests based on examples from gh-2640"""
73
+ data = numpy.arange(-6, 7, dtype=float)
74
+ x = numpy.linspace(-8, 15, num=1000)
75
+ y = ndimage.map_coordinates(data, [x], order=order, mode=mode)
76
+
77
+ # compute expected value using explicit padding via numpy.pad
78
+ npad = 32
79
+ pad_mode = ndimage_to_numpy_mode.get(mode)
80
+ padded = numpy.pad(data, npad, mode=pad_mode)
81
+ expected = ndimage.map_coordinates(padded, [npad + x], order=order,
82
+ mode=mode)
83
+
84
+ atol = 1e-5 if mode == 'grid-constant' else 1e-12
85
+ assert_allclose(y, expected, rtol=1e-7, atol=atol)
86
+
87
+ @pytest.mark.parametrize('order', range(2, 6))
88
+ @pytest.mark.parametrize('dtype', types)
89
+ def test_spline01(self, dtype, order):
90
+ data = numpy.ones([], dtype)
91
+ out = ndimage.spline_filter(data, order=order)
92
+ assert_array_almost_equal(out, 1)
93
+
94
+ @pytest.mark.parametrize('order', range(2, 6))
95
+ @pytest.mark.parametrize('dtype', types)
96
+ def test_spline02(self, dtype, order):
97
+ data = numpy.array([1], dtype)
98
+ out = ndimage.spline_filter(data, order=order)
99
+ assert_array_almost_equal(out, [1])
100
+
101
+ @pytest.mark.parametrize('order', range(2, 6))
102
+ @pytest.mark.parametrize('dtype', types)
103
+ def test_spline03(self, dtype, order):
104
+ data = numpy.ones([], dtype)
105
+ out = ndimage.spline_filter(data, order, output=dtype)
106
+ assert_array_almost_equal(out, 1)
107
+
108
+ @pytest.mark.parametrize('order', range(2, 6))
109
+ @pytest.mark.parametrize('dtype', types)
110
+ def test_spline04(self, dtype, order):
111
+ data = numpy.ones([4], dtype)
112
+ out = ndimage.spline_filter(data, order)
113
+ assert_array_almost_equal(out, [1, 1, 1, 1])
114
+
115
+ @pytest.mark.parametrize('order', range(2, 6))
116
+ @pytest.mark.parametrize('dtype', types)
117
+ def test_spline05(self, dtype, order):
118
+ data = numpy.ones([4, 4], dtype)
119
+ out = ndimage.spline_filter(data, order=order)
120
+ assert_array_almost_equal(out, [[1, 1, 1, 1],
121
+ [1, 1, 1, 1],
122
+ [1, 1, 1, 1],
123
+ [1, 1, 1, 1]])
124
+
125
+ @pytest.mark.parametrize('order', range(0, 6))
126
+ def test_geometric_transform01(self, order):
127
+ data = numpy.array([1])
128
+
129
+ def mapping(x):
130
+ return x
131
+
132
+ out = ndimage.geometric_transform(data, mapping, data.shape,
133
+ order=order)
134
+ assert_array_almost_equal(out, [1])
135
+
136
+ @pytest.mark.parametrize('order', range(0, 6))
137
+ def test_geometric_transform02(self, order):
138
+ data = numpy.ones([4])
139
+
140
+ def mapping(x):
141
+ return x
142
+
143
+ out = ndimage.geometric_transform(data, mapping, data.shape,
144
+ order=order)
145
+ assert_array_almost_equal(out, [1, 1, 1, 1])
146
+
147
+ @pytest.mark.parametrize('order', range(0, 6))
148
+ def test_geometric_transform03(self, order):
149
+ data = numpy.ones([4])
150
+
151
+ def mapping(x):
152
+ return (x[0] - 1,)
153
+
154
+ out = ndimage.geometric_transform(data, mapping, data.shape,
155
+ order=order)
156
+ assert_array_almost_equal(out, [0, 1, 1, 1])
157
+
158
+ @pytest.mark.parametrize('order', range(0, 6))
159
+ def test_geometric_transform04(self, order):
160
+ data = numpy.array([4, 1, 3, 2])
161
+
162
+ def mapping(x):
163
+ return (x[0] - 1,)
164
+
165
+ out = ndimage.geometric_transform(data, mapping, data.shape,
166
+ order=order)
167
+ assert_array_almost_equal(out, [0, 4, 1, 3])
168
+
169
+ @pytest.mark.parametrize('order', range(0, 6))
170
+ @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
171
+ def test_geometric_transform05(self, order, dtype):
172
+ data = numpy.array([[1, 1, 1, 1],
173
+ [1, 1, 1, 1],
174
+ [1, 1, 1, 1]], dtype=dtype)
175
+ expected = numpy.array([[0, 1, 1, 1],
176
+ [0, 1, 1, 1],
177
+ [0, 1, 1, 1]], dtype=dtype)
178
+ if data.dtype.kind == 'c':
179
+ data -= 1j * data
180
+ expected -= 1j * expected
181
+
182
+ def mapping(x):
183
+ return (x[0], x[1] - 1)
184
+
185
+ out = ndimage.geometric_transform(data, mapping, data.shape,
186
+ order=order)
187
+ assert_array_almost_equal(out, expected)
188
+
189
+ @pytest.mark.parametrize('order', range(0, 6))
190
+ def test_geometric_transform06(self, order):
191
+ data = numpy.array([[4, 1, 3, 2],
192
+ [7, 6, 8, 5],
193
+ [3, 5, 3, 6]])
194
+
195
+ def mapping(x):
196
+ return (x[0], x[1] - 1)
197
+
198
+ out = ndimage.geometric_transform(data, mapping, data.shape,
199
+ order=order)
200
+ assert_array_almost_equal(out, [[0, 4, 1, 3],
201
+ [0, 7, 6, 8],
202
+ [0, 3, 5, 3]])
203
+
204
+ @pytest.mark.parametrize('order', range(0, 6))
205
+ def test_geometric_transform07(self, order):
206
+ data = numpy.array([[4, 1, 3, 2],
207
+ [7, 6, 8, 5],
208
+ [3, 5, 3, 6]])
209
+
210
+ def mapping(x):
211
+ return (x[0] - 1, x[1])
212
+
213
+ out = ndimage.geometric_transform(data, mapping, data.shape,
214
+ order=order)
215
+ assert_array_almost_equal(out, [[0, 0, 0, 0],
216
+ [4, 1, 3, 2],
217
+ [7, 6, 8, 5]])
218
+
219
+ @pytest.mark.parametrize('order', range(0, 6))
220
+ def test_geometric_transform08(self, order):
221
+ data = numpy.array([[4, 1, 3, 2],
222
+ [7, 6, 8, 5],
223
+ [3, 5, 3, 6]])
224
+
225
+ def mapping(x):
226
+ return (x[0] - 1, x[1] - 1)
227
+
228
+ out = ndimage.geometric_transform(data, mapping, data.shape,
229
+ order=order)
230
+ assert_array_almost_equal(out, [[0, 0, 0, 0],
231
+ [0, 4, 1, 3],
232
+ [0, 7, 6, 8]])
233
+
234
+ @pytest.mark.parametrize('order', range(0, 6))
235
+ def test_geometric_transform10(self, order):
236
+ data = numpy.array([[4, 1, 3, 2],
237
+ [7, 6, 8, 5],
238
+ [3, 5, 3, 6]])
239
+
240
+ def mapping(x):
241
+ return (x[0] - 1, x[1] - 1)
242
+
243
+ if (order > 1):
244
+ filtered = ndimage.spline_filter(data, order=order)
245
+ else:
246
+ filtered = data
247
+ out = ndimage.geometric_transform(filtered, mapping, data.shape,
248
+ order=order, prefilter=False)
249
+ assert_array_almost_equal(out, [[0, 0, 0, 0],
250
+ [0, 4, 1, 3],
251
+ [0, 7, 6, 8]])
252
+
253
+ @pytest.mark.parametrize('order', range(0, 6))
254
+ def test_geometric_transform13(self, order):
255
+ data = numpy.ones([2], numpy.float64)
256
+
257
+ def mapping(x):
258
+ return (x[0] // 2,)
259
+
260
+ out = ndimage.geometric_transform(data, mapping, [4], order=order)
261
+ assert_array_almost_equal(out, [1, 1, 1, 1])
262
+
263
+ @pytest.mark.parametrize('order', range(0, 6))
264
+ def test_geometric_transform14(self, order):
265
+ data = [1, 5, 2, 6, 3, 7, 4, 4]
266
+
267
+ def mapping(x):
268
+ return (2 * x[0],)
269
+
270
+ out = ndimage.geometric_transform(data, mapping, [4], order=order)
271
+ assert_array_almost_equal(out, [1, 2, 3, 4])
272
+
273
+ @pytest.mark.parametrize('order', range(0, 6))
274
+ def test_geometric_transform15(self, order):
275
+ data = [1, 2, 3, 4]
276
+
277
+ def mapping(x):
278
+ return (x[0] / 2,)
279
+
280
+ out = ndimage.geometric_transform(data, mapping, [8], order=order)
281
+ assert_array_almost_equal(out[::2], [1, 2, 3, 4])
282
+
283
+ @pytest.mark.parametrize('order', range(0, 6))
284
+ def test_geometric_transform16(self, order):
285
+ data = [[1, 2, 3, 4],
286
+ [5, 6, 7, 8],
287
+ [9.0, 10, 11, 12]]
288
+
289
+ def mapping(x):
290
+ return (x[0], x[1] * 2)
291
+
292
+ out = ndimage.geometric_transform(data, mapping, (3, 2),
293
+ order=order)
294
+ assert_array_almost_equal(out, [[1, 3], [5, 7], [9, 11]])
295
+
296
+ @pytest.mark.parametrize('order', range(0, 6))
297
+ def test_geometric_transform17(self, order):
298
+ data = [[1, 2, 3, 4],
299
+ [5, 6, 7, 8],
300
+ [9, 10, 11, 12]]
301
+
302
+ def mapping(x):
303
+ return (x[0] * 2, x[1])
304
+
305
+ out = ndimage.geometric_transform(data, mapping, (1, 4),
306
+ order=order)
307
+ assert_array_almost_equal(out, [[1, 2, 3, 4]])
308
+
309
+ @pytest.mark.parametrize('order', range(0, 6))
310
+ def test_geometric_transform18(self, order):
311
+ data = [[1, 2, 3, 4],
312
+ [5, 6, 7, 8],
313
+ [9, 10, 11, 12]]
314
+
315
+ def mapping(x):
316
+ return (x[0] * 2, x[1] * 2)
317
+
318
+ out = ndimage.geometric_transform(data, mapping, (1, 2),
319
+ order=order)
320
+ assert_array_almost_equal(out, [[1, 3]])
321
+
322
+ @pytest.mark.parametrize('order', range(0, 6))
323
+ def test_geometric_transform19(self, order):
324
+ data = [[1, 2, 3, 4],
325
+ [5, 6, 7, 8],
326
+ [9, 10, 11, 12]]
327
+
328
+ def mapping(x):
329
+ return (x[0], x[1] / 2)
330
+
331
+ out = ndimage.geometric_transform(data, mapping, (3, 8),
332
+ order=order)
333
+ assert_array_almost_equal(out[..., ::2], data)
334
+
335
+ @pytest.mark.parametrize('order', range(0, 6))
336
+ def test_geometric_transform20(self, order):
337
+ data = [[1, 2, 3, 4],
338
+ [5, 6, 7, 8],
339
+ [9, 10, 11, 12]]
340
+
341
+ def mapping(x):
342
+ return (x[0] / 2, x[1])
343
+
344
+ out = ndimage.geometric_transform(data, mapping, (6, 4),
345
+ order=order)
346
+ assert_array_almost_equal(out[::2, ...], data)
347
+
348
+ @pytest.mark.parametrize('order', range(0, 6))
349
+ def test_geometric_transform21(self, order):
350
+ data = [[1, 2, 3, 4],
351
+ [5, 6, 7, 8],
352
+ [9, 10, 11, 12]]
353
+
354
+ def mapping(x):
355
+ return (x[0] / 2, x[1] / 2)
356
+
357
+ out = ndimage.geometric_transform(data, mapping, (6, 8),
358
+ order=order)
359
+ assert_array_almost_equal(out[::2, ::2], data)
360
+
361
+ @pytest.mark.parametrize('order', range(0, 6))
362
+ def test_geometric_transform22(self, order):
363
+ data = numpy.array([[1, 2, 3, 4],
364
+ [5, 6, 7, 8],
365
+ [9, 10, 11, 12]], numpy.float64)
366
+
367
+ def mapping1(x):
368
+ return (x[0] / 2, x[1] / 2)
369
+
370
+ def mapping2(x):
371
+ return (x[0] * 2, x[1] * 2)
372
+
373
+ out = ndimage.geometric_transform(data, mapping1,
374
+ (6, 8), order=order)
375
+ out = ndimage.geometric_transform(out, mapping2,
376
+ (3, 4), order=order)
377
+ assert_array_almost_equal(out, data)
378
+
379
+ @pytest.mark.parametrize('order', range(0, 6))
380
+ def test_geometric_transform23(self, order):
381
+ data = [[1, 2, 3, 4],
382
+ [5, 6, 7, 8],
383
+ [9, 10, 11, 12]]
384
+
385
+ def mapping(x):
386
+ return (1, x[0] * 2)
387
+
388
+ out = ndimage.geometric_transform(data, mapping, (2,), order=order)
389
+ out = out.astype(numpy.int32)
390
+ assert_array_almost_equal(out, [5, 7])
391
+
392
+ @pytest.mark.parametrize('order', range(0, 6))
393
+ def test_geometric_transform24(self, order):
394
+ data = [[1, 2, 3, 4],
395
+ [5, 6, 7, 8],
396
+ [9, 10, 11, 12]]
397
+
398
+ def mapping(x, a, b):
399
+ return (a, x[0] * b)
400
+
401
+ out = ndimage.geometric_transform(
402
+ data, mapping, (2,), order=order, extra_arguments=(1,),
403
+ extra_keywords={'b': 2})
404
+ assert_array_almost_equal(out, [5, 7])
405
+
406
+ def test_geometric_transform_grid_constant_order1(self):
407
+ # verify interpolation outside the original bounds
408
+ x = numpy.array([[1, 2, 3],
409
+ [4, 5, 6]], dtype=float)
410
+
411
+ def mapping(x):
412
+ return (x[0] - 0.5), (x[1] - 0.5)
413
+
414
+ expected_result = numpy.array([[0.25, 0.75, 1.25],
415
+ [1.25, 3.00, 4.00]])
416
+ assert_array_almost_equal(
417
+ ndimage.geometric_transform(x, mapping, mode='grid-constant',
418
+ order=1),
419
+ expected_result,
420
+ )
421
+
422
+ @pytest.mark.parametrize('mode', ['grid-constant', 'grid-wrap', 'nearest',
423
+ 'mirror', 'reflect'])
424
+ @pytest.mark.parametrize('order', range(6))
425
+ def test_geometric_transform_vs_padded(self, order, mode):
426
+ x = numpy.arange(144, dtype=float).reshape(12, 12)
427
+
428
+ def mapping(x):
429
+ return (x[0] - 0.4), (x[1] + 2.3)
430
+
431
+ # Manually pad and then extract center after the transform to get the
432
+ # expected result.
433
+ npad = 24
434
+ pad_mode = ndimage_to_numpy_mode.get(mode)
435
+ xp = numpy.pad(x, npad, mode=pad_mode)
436
+ center_slice = tuple([slice(npad, -npad)] * x.ndim)
437
+ expected_result = ndimage.geometric_transform(
438
+ xp, mapping, mode=mode, order=order)[center_slice]
439
+
440
+ assert_allclose(
441
+ ndimage.geometric_transform(x, mapping, mode=mode,
442
+ order=order),
443
+ expected_result,
444
+ rtol=1e-7,
445
+ )
446
+
447
+ def test_geometric_transform_endianness_with_output_parameter(self):
448
+ # geometric transform given output ndarray or dtype with
449
+ # non-native endianness. see issue #4127
450
+ data = numpy.array([1])
451
+
452
+ def mapping(x):
453
+ return x
454
+
455
+ for out in [data.dtype, data.dtype.newbyteorder(),
456
+ numpy.empty_like(data),
457
+ numpy.empty_like(data).astype(data.dtype.newbyteorder())]:
458
+ returned = ndimage.geometric_transform(data, mapping, data.shape,
459
+ output=out)
460
+ result = out if returned is None else returned
461
+ assert_array_almost_equal(result, [1])
462
+
463
+ def test_geometric_transform_with_string_output(self):
464
+ data = numpy.array([1])
465
+
466
+ def mapping(x):
467
+ return x
468
+
469
+ out = ndimage.geometric_transform(data, mapping, output='f')
470
+ assert_(out.dtype is numpy.dtype('f'))
471
+ assert_array_almost_equal(out, [1])
472
+
473
+ @pytest.mark.parametrize('order', range(0, 6))
474
+ @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
475
+ def test_map_coordinates01(self, order, dtype):
476
+ data = numpy.array([[4, 1, 3, 2],
477
+ [7, 6, 8, 5],
478
+ [3, 5, 3, 6]])
479
+ expected = numpy.array([[0, 0, 0, 0],
480
+ [0, 4, 1, 3],
481
+ [0, 7, 6, 8]])
482
+ if data.dtype.kind == 'c':
483
+ data = data - 1j * data
484
+ expected = expected - 1j * expected
485
+
486
+ idx = numpy.indices(data.shape)
487
+ idx -= 1
488
+
489
+ out = ndimage.map_coordinates(data, idx, order=order)
490
+ assert_array_almost_equal(out, expected)
491
+
492
+ @pytest.mark.parametrize('order', range(0, 6))
493
+ def test_map_coordinates02(self, order):
494
+ data = numpy.array([[4, 1, 3, 2],
495
+ [7, 6, 8, 5],
496
+ [3, 5, 3, 6]])
497
+ idx = numpy.indices(data.shape, numpy.float64)
498
+ idx -= 0.5
499
+
500
+ out1 = ndimage.shift(data, 0.5, order=order)
501
+ out2 = ndimage.map_coordinates(data, idx, order=order)
502
+ assert_array_almost_equal(out1, out2)
503
+
504
+ def test_map_coordinates03(self):
505
+ data = numpy.array([[4, 1, 3, 2],
506
+ [7, 6, 8, 5],
507
+ [3, 5, 3, 6]], order='F')
508
+ idx = numpy.indices(data.shape) - 1
509
+ out = ndimage.map_coordinates(data, idx)
510
+ assert_array_almost_equal(out, [[0, 0, 0, 0],
511
+ [0, 4, 1, 3],
512
+ [0, 7, 6, 8]])
513
+ assert_array_almost_equal(out, ndimage.shift(data, (1, 1)))
514
+ idx = numpy.indices(data[::2].shape) - 1
515
+ out = ndimage.map_coordinates(data[::2], idx)
516
+ assert_array_almost_equal(out, [[0, 0, 0, 0],
517
+ [0, 4, 1, 3]])
518
+ assert_array_almost_equal(out, ndimage.shift(data[::2], (1, 1)))
519
+ idx = numpy.indices(data[:, ::2].shape) - 1
520
+ out = ndimage.map_coordinates(data[:, ::2], idx)
521
+ assert_array_almost_equal(out, [[0, 0], [0, 4], [0, 7]])
522
+ assert_array_almost_equal(out, ndimage.shift(data[:, ::2], (1, 1)))
523
+
524
+ def test_map_coordinates_endianness_with_output_parameter(self):
525
+ # output parameter given as array or dtype with either endianness
526
+ # see issue #4127
527
+ data = numpy.array([[1, 2], [7, 6]])
528
+ expected = numpy.array([[0, 0], [0, 1]])
529
+ idx = numpy.indices(data.shape)
530
+ idx -= 1
531
+ for out in [
532
+ data.dtype,
533
+ data.dtype.newbyteorder(),
534
+ numpy.empty_like(expected),
535
+ numpy.empty_like(expected).astype(expected.dtype.newbyteorder())
536
+ ]:
537
+ returned = ndimage.map_coordinates(data, idx, output=out)
538
+ result = out if returned is None else returned
539
+ assert_array_almost_equal(result, expected)
540
+
541
+ def test_map_coordinates_with_string_output(self):
542
+ data = numpy.array([[1]])
543
+ idx = numpy.indices(data.shape)
544
+ out = ndimage.map_coordinates(data, idx, output='f')
545
+ assert_(out.dtype is numpy.dtype('f'))
546
+ assert_array_almost_equal(out, [[1]])
547
+
548
+ @pytest.mark.skipif('win32' in sys.platform or numpy.intp(0).itemsize < 8,
549
+ reason='do not run on 32 bit or windows '
550
+ '(no sparse memory)')
551
+ def test_map_coordinates_large_data(self):
552
+ # check crash on large data
553
+ try:
554
+ n = 30000
555
+ a = numpy.empty(n**2, dtype=numpy.float32).reshape(n, n)
556
+ # fill the part we might read
557
+ a[n - 3:, n - 3:] = 0
558
+ ndimage.map_coordinates(a, [[n - 1.5], [n - 1.5]], order=1)
559
+ except MemoryError as e:
560
+ raise pytest.skip('Not enough memory available') from e
561
+
562
+ @pytest.mark.parametrize('order', range(0, 6))
563
+ def test_affine_transform01(self, order):
564
+ data = numpy.array([1])
565
+ out = ndimage.affine_transform(data, [[1]], order=order)
566
+ assert_array_almost_equal(out, [1])
567
+
568
+ @pytest.mark.parametrize('order', range(0, 6))
569
+ def test_affine_transform02(self, order):
570
+ data = numpy.ones([4])
571
+ out = ndimage.affine_transform(data, [[1]], order=order)
572
+ assert_array_almost_equal(out, [1, 1, 1, 1])
573
+
574
+ @pytest.mark.parametrize('order', range(0, 6))
575
+ def test_affine_transform03(self, order):
576
+ data = numpy.ones([4])
577
+ out = ndimage.affine_transform(data, [[1]], -1, order=order)
578
+ assert_array_almost_equal(out, [0, 1, 1, 1])
579
+
580
+ @pytest.mark.parametrize('order', range(0, 6))
581
+ def test_affine_transform04(self, order):
582
+ data = numpy.array([4, 1, 3, 2])
583
+ out = ndimage.affine_transform(data, [[1]], -1, order=order)
584
+ assert_array_almost_equal(out, [0, 4, 1, 3])
585
+
586
+ @pytest.mark.parametrize('order', range(0, 6))
587
+ @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
588
+ def test_affine_transform05(self, order, dtype):
589
+ data = numpy.array([[1, 1, 1, 1],
590
+ [1, 1, 1, 1],
591
+ [1, 1, 1, 1]], dtype=dtype)
592
+ expected = numpy.array([[0, 1, 1, 1],
593
+ [0, 1, 1, 1],
594
+ [0, 1, 1, 1]], dtype=dtype)
595
+ if data.dtype.kind == 'c':
596
+ data -= 1j * data
597
+ expected -= 1j * expected
598
+ out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
599
+ [0, -1], order=order)
600
+ assert_array_almost_equal(out, expected)
601
+
602
+ @pytest.mark.parametrize('order', range(0, 6))
603
+ def test_affine_transform06(self, order):
604
+ data = numpy.array([[4, 1, 3, 2],
605
+ [7, 6, 8, 5],
606
+ [3, 5, 3, 6]])
607
+ out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
608
+ [0, -1], order=order)
609
+ assert_array_almost_equal(out, [[0, 4, 1, 3],
610
+ [0, 7, 6, 8],
611
+ [0, 3, 5, 3]])
612
+
613
+ @pytest.mark.parametrize('order', range(0, 6))
614
+ def test_affine_transform07(self, order):
615
+ data = numpy.array([[4, 1, 3, 2],
616
+ [7, 6, 8, 5],
617
+ [3, 5, 3, 6]])
618
+ out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
619
+ [-1, 0], order=order)
620
+ assert_array_almost_equal(out, [[0, 0, 0, 0],
621
+ [4, 1, 3, 2],
622
+ [7, 6, 8, 5]])
623
+
624
+ @pytest.mark.parametrize('order', range(0, 6))
625
+ def test_affine_transform08(self, order):
626
+ data = numpy.array([[4, 1, 3, 2],
627
+ [7, 6, 8, 5],
628
+ [3, 5, 3, 6]])
629
+ out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
630
+ [-1, -1], order=order)
631
+ assert_array_almost_equal(out, [[0, 0, 0, 0],
632
+ [0, 4, 1, 3],
633
+ [0, 7, 6, 8]])
634
+
635
+ @pytest.mark.parametrize('order', range(0, 6))
636
+ def test_affine_transform09(self, order):
637
+ data = numpy.array([[4, 1, 3, 2],
638
+ [7, 6, 8, 5],
639
+ [3, 5, 3, 6]])
640
+ if (order > 1):
641
+ filtered = ndimage.spline_filter(data, order=order)
642
+ else:
643
+ filtered = data
644
+ out = ndimage.affine_transform(filtered, [[1, 0], [0, 1]],
645
+ [-1, -1], order=order,
646
+ prefilter=False)
647
+ assert_array_almost_equal(out, [[0, 0, 0, 0],
648
+ [0, 4, 1, 3],
649
+ [0, 7, 6, 8]])
650
+
651
+ @pytest.mark.parametrize('order', range(0, 6))
652
+ def test_affine_transform10(self, order):
653
+ data = numpy.ones([2], numpy.float64)
654
+ out = ndimage.affine_transform(data, [[0.5]], output_shape=(4,),
655
+ order=order)
656
+ assert_array_almost_equal(out, [1, 1, 1, 0])
657
+
658
+ @pytest.mark.parametrize('order', range(0, 6))
659
+ def test_affine_transform11(self, order):
660
+ data = [1, 5, 2, 6, 3, 7, 4, 4]
661
+ out = ndimage.affine_transform(data, [[2]], 0, (4,), order=order)
662
+ assert_array_almost_equal(out, [1, 2, 3, 4])
663
+
664
+ @pytest.mark.parametrize('order', range(0, 6))
665
+ def test_affine_transform12(self, order):
666
+ data = [1, 2, 3, 4]
667
+ out = ndimage.affine_transform(data, [[0.5]], 0, (8,), order=order)
668
+ assert_array_almost_equal(out[::2], [1, 2, 3, 4])
669
+
670
+ @pytest.mark.parametrize('order', range(0, 6))
671
+ def test_affine_transform13(self, order):
672
+ data = [[1, 2, 3, 4],
673
+ [5, 6, 7, 8],
674
+ [9.0, 10, 11, 12]]
675
+ out = ndimage.affine_transform(data, [[1, 0], [0, 2]], 0, (3, 2),
676
+ order=order)
677
+ assert_array_almost_equal(out, [[1, 3], [5, 7], [9, 11]])
678
+
679
+ @pytest.mark.parametrize('order', range(0, 6))
680
+ def test_affine_transform14(self, order):
681
+ data = [[1, 2, 3, 4],
682
+ [5, 6, 7, 8],
683
+ [9, 10, 11, 12]]
684
+ out = ndimage.affine_transform(data, [[2, 0], [0, 1]], 0, (1, 4),
685
+ order=order)
686
+ assert_array_almost_equal(out, [[1, 2, 3, 4]])
687
+
688
+ @pytest.mark.parametrize('order', range(0, 6))
689
+ def test_affine_transform15(self, order):
690
+ data = [[1, 2, 3, 4],
691
+ [5, 6, 7, 8],
692
+ [9, 10, 11, 12]]
693
+ out = ndimage.affine_transform(data, [[2, 0], [0, 2]], 0, (1, 2),
694
+ order=order)
695
+ assert_array_almost_equal(out, [[1, 3]])
696
+
697
+ @pytest.mark.parametrize('order', range(0, 6))
698
+ def test_affine_transform16(self, order):
699
+ data = [[1, 2, 3, 4],
700
+ [5, 6, 7, 8],
701
+ [9, 10, 11, 12]]
702
+ out = ndimage.affine_transform(data, [[1, 0.0], [0, 0.5]], 0,
703
+ (3, 8), order=order)
704
+ assert_array_almost_equal(out[..., ::2], data)
705
+
706
+ @pytest.mark.parametrize('order', range(0, 6))
707
+ def test_affine_transform17(self, order):
708
+ data = [[1, 2, 3, 4],
709
+ [5, 6, 7, 8],
710
+ [9, 10, 11, 12]]
711
+ out = ndimage.affine_transform(data, [[0.5, 0], [0, 1]], 0,
712
+ (6, 4), order=order)
713
+ assert_array_almost_equal(out[::2, ...], data)
714
+
715
+ @pytest.mark.parametrize('order', range(0, 6))
716
+ def test_affine_transform18(self, order):
717
+ data = [[1, 2, 3, 4],
718
+ [5, 6, 7, 8],
719
+ [9, 10, 11, 12]]
720
+ out = ndimage.affine_transform(data, [[0.5, 0], [0, 0.5]], 0,
721
+ (6, 8), order=order)
722
+ assert_array_almost_equal(out[::2, ::2], data)
723
+
724
+ @pytest.mark.parametrize('order', range(0, 6))
725
+ def test_affine_transform19(self, order):
726
+ data = numpy.array([[1, 2, 3, 4],
727
+ [5, 6, 7, 8],
728
+ [9, 10, 11, 12]], numpy.float64)
729
+ out = ndimage.affine_transform(data, [[0.5, 0], [0, 0.5]], 0,
730
+ (6, 8), order=order)
731
+ out = ndimage.affine_transform(out, [[2.0, 0], [0, 2.0]], 0,
732
+ (3, 4), order=order)
733
+ assert_array_almost_equal(out, data)
734
+
735
+ @pytest.mark.parametrize('order', range(0, 6))
736
+ def test_affine_transform20(self, order):
737
+ data = [[1, 2, 3, 4],
738
+ [5, 6, 7, 8],
739
+ [9, 10, 11, 12]]
740
+ out = ndimage.affine_transform(data, [[0], [2]], 0, (2,),
741
+ order=order)
742
+ assert_array_almost_equal(out, [1, 3])
743
+
744
+ @pytest.mark.parametrize('order', range(0, 6))
745
+ def test_affine_transform21(self, order):
746
+ data = [[1, 2, 3, 4],
747
+ [5, 6, 7, 8],
748
+ [9, 10, 11, 12]]
749
+ out = ndimage.affine_transform(data, [[2], [0]], 0, (2,),
750
+ order=order)
751
+ assert_array_almost_equal(out, [1, 9])
752
+
753
+ @pytest.mark.parametrize('order', range(0, 6))
754
+ def test_affine_transform22(self, order):
755
+ # shift and offset interaction; see issue #1547
756
+ data = numpy.array([4, 1, 3, 2])
757
+ out = ndimage.affine_transform(data, [[2]], [-1], (3,),
758
+ order=order)
759
+ assert_array_almost_equal(out, [0, 1, 2])
760
+
761
+ @pytest.mark.parametrize('order', range(0, 6))
762
+ def test_affine_transform23(self, order):
763
+ # shift and offset interaction; see issue #1547
764
+ data = numpy.array([4, 1, 3, 2])
765
+ out = ndimage.affine_transform(data, [[0.5]], [-1], (8,),
766
+ order=order)
767
+ assert_array_almost_equal(out[::2], [0, 4, 1, 3])
768
+
769
+ @pytest.mark.parametrize('order', range(0, 6))
770
+ def test_affine_transform24(self, order):
771
+ # consistency between diagonal and non-diagonal case; see issue #1547
772
+ data = numpy.array([4, 1, 3, 2])
773
+ with suppress_warnings() as sup:
774
+ sup.filter(UserWarning,
775
+ 'The behavior of affine_transform with a 1-D array .* '
776
+ 'has changed')
777
+ out1 = ndimage.affine_transform(data, [2], -1, order=order)
778
+ out2 = ndimage.affine_transform(data, [[2]], -1, order=order)
779
+ assert_array_almost_equal(out1, out2)
780
+
781
+ @pytest.mark.parametrize('order', range(0, 6))
782
+ def test_affine_transform25(self, order):
783
+ # consistency between diagonal and non-diagonal case; see issue #1547
784
+ data = numpy.array([4, 1, 3, 2])
785
+ with suppress_warnings() as sup:
786
+ sup.filter(UserWarning,
787
+ 'The behavior of affine_transform with a 1-D array .* '
788
+ 'has changed')
789
+ out1 = ndimage.affine_transform(data, [0.5], -1, order=order)
790
+ out2 = ndimage.affine_transform(data, [[0.5]], -1, order=order)
791
+ assert_array_almost_equal(out1, out2)
792
+
793
+ @pytest.mark.parametrize('order', range(0, 6))
794
+ def test_affine_transform26(self, order):
795
+ # test homogeneous coordinates
796
+ data = numpy.array([[4, 1, 3, 2],
797
+ [7, 6, 8, 5],
798
+ [3, 5, 3, 6]])
799
+ if (order > 1):
800
+ filtered = ndimage.spline_filter(data, order=order)
801
+ else:
802
+ filtered = data
803
+ tform_original = numpy.eye(2)
804
+ offset_original = -numpy.ones((2, 1))
805
+ tform_h1 = numpy.hstack((tform_original, offset_original))
806
+ tform_h2 = numpy.vstack((tform_h1, [[0, 0, 1]]))
807
+ out1 = ndimage.affine_transform(filtered, tform_original,
808
+ offset_original.ravel(),
809
+ order=order, prefilter=False)
810
+ out2 = ndimage.affine_transform(filtered, tform_h1, order=order,
811
+ prefilter=False)
812
+ out3 = ndimage.affine_transform(filtered, tform_h2, order=order,
813
+ prefilter=False)
814
+ for out in [out1, out2, out3]:
815
+ assert_array_almost_equal(out, [[0, 0, 0, 0],
816
+ [0, 4, 1, 3],
817
+ [0, 7, 6, 8]])
818
+
819
+ def test_affine_transform27(self):
820
+ # test valid homogeneous transformation matrix
821
+ data = numpy.array([[4, 1, 3, 2],
822
+ [7, 6, 8, 5],
823
+ [3, 5, 3, 6]])
824
+ tform_h1 = numpy.hstack((numpy.eye(2), -numpy.ones((2, 1))))
825
+ tform_h2 = numpy.vstack((tform_h1, [[5, 2, 1]]))
826
+ assert_raises(ValueError, ndimage.affine_transform, data, tform_h2)
827
+
828
+ def test_affine_transform_1d_endianness_with_output_parameter(self):
829
+ # 1d affine transform given output ndarray or dtype with
830
+ # either endianness. see issue #7388
831
+ data = numpy.ones((2, 2))
832
+ for out in [numpy.empty_like(data),
833
+ numpy.empty_like(data).astype(data.dtype.newbyteorder()),
834
+ data.dtype, data.dtype.newbyteorder()]:
835
+ with suppress_warnings() as sup:
836
+ sup.filter(UserWarning,
837
+ 'The behavior of affine_transform with a 1-D array '
838
+ '.* has changed')
839
+ returned = ndimage.affine_transform(data, [1, 1], output=out)
840
+ result = out if returned is None else returned
841
+ assert_array_almost_equal(result, [[1, 1], [1, 1]])
842
+
843
+ def test_affine_transform_multi_d_endianness_with_output_parameter(self):
844
+ # affine transform given output ndarray or dtype with either endianness
845
+ # see issue #4127
846
+ data = numpy.array([1])
847
+ for out in [data.dtype, data.dtype.newbyteorder(),
848
+ numpy.empty_like(data),
849
+ numpy.empty_like(data).astype(data.dtype.newbyteorder())]:
850
+ returned = ndimage.affine_transform(data, [[1]], output=out)
851
+ result = out if returned is None else returned
852
+ assert_array_almost_equal(result, [1])
853
+
854
+ def test_affine_transform_output_shape(self):
855
+ # don't require output_shape when out of a different size is given
856
+ data = numpy.arange(8, dtype=numpy.float64)
857
+ out = numpy.ones((16,))
858
+
859
+ ndimage.affine_transform(data, [[1]], output=out)
860
+ assert_array_almost_equal(out[:8], data)
861
+
862
+ # mismatched output shape raises an error
863
+ with pytest.raises(RuntimeError):
864
+ ndimage.affine_transform(
865
+ data, [[1]], output=out, output_shape=(12,))
866
+
867
+ def test_affine_transform_with_string_output(self):
868
+ data = numpy.array([1])
869
+ out = ndimage.affine_transform(data, [[1]], output='f')
870
+ assert_(out.dtype is numpy.dtype('f'))
871
+ assert_array_almost_equal(out, [1])
872
+
873
+ @pytest.mark.parametrize('shift',
874
+ [(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)])
875
+ @pytest.mark.parametrize('order', range(0, 6))
876
+ def test_affine_transform_shift_via_grid_wrap(self, shift, order):
877
+ # For mode 'grid-wrap', integer shifts should match numpy.roll
878
+ x = numpy.array([[0, 1],
879
+ [2, 3]])
880
+ affine = numpy.zeros((2, 3))
881
+ affine[:2, :2] = numpy.eye(2)
882
+ affine[:, 2] = shift
883
+ assert_array_almost_equal(
884
+ ndimage.affine_transform(x, affine, mode='grid-wrap', order=order),
885
+ numpy.roll(x, shift, axis=(0, 1)),
886
+ )
887
+
888
+ @pytest.mark.parametrize('order', range(0, 6))
889
+ def test_affine_transform_shift_reflect(self, order):
890
+ # shift by x.shape results in reflection
891
+ x = numpy.array([[0, 1, 2],
892
+ [3, 4, 5]])
893
+ affine = numpy.zeros((2, 3))
894
+ affine[:2, :2] = numpy.eye(2)
895
+ affine[:, 2] = x.shape
896
+ assert_array_almost_equal(
897
+ ndimage.affine_transform(x, affine, mode='reflect', order=order),
898
+ x[::-1, ::-1],
899
+ )
900
+
901
+ @pytest.mark.parametrize('order', range(0, 6))
902
+ def test_shift01(self, order):
903
+ data = numpy.array([1])
904
+ out = ndimage.shift(data, [1], order=order)
905
+ assert_array_almost_equal(out, [0])
906
+
907
+ @pytest.mark.parametrize('order', range(0, 6))
908
+ def test_shift02(self, order):
909
+ data = numpy.ones([4])
910
+ out = ndimage.shift(data, [1], order=order)
911
+ assert_array_almost_equal(out, [0, 1, 1, 1])
912
+
913
+ @pytest.mark.parametrize('order', range(0, 6))
914
+ def test_shift03(self, order):
915
+ data = numpy.ones([4])
916
+ out = ndimage.shift(data, -1, order=order)
917
+ assert_array_almost_equal(out, [1, 1, 1, 0])
918
+
919
+ @pytest.mark.parametrize('order', range(0, 6))
920
+ def test_shift04(self, order):
921
+ data = numpy.array([4, 1, 3, 2])
922
+ out = ndimage.shift(data, 1, order=order)
923
+ assert_array_almost_equal(out, [0, 4, 1, 3])
924
+
925
+ @pytest.mark.parametrize('order', range(0, 6))
926
+ @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
927
+ def test_shift05(self, order, dtype):
928
+ data = numpy.array([[1, 1, 1, 1],
929
+ [1, 1, 1, 1],
930
+ [1, 1, 1, 1]], dtype=dtype)
931
+ expected = numpy.array([[0, 1, 1, 1],
932
+ [0, 1, 1, 1],
933
+ [0, 1, 1, 1]], dtype=dtype)
934
+ if data.dtype.kind == 'c':
935
+ data -= 1j * data
936
+ expected -= 1j * expected
937
+ out = ndimage.shift(data, [0, 1], order=order)
938
+ assert_array_almost_equal(out, expected)
939
+
940
+ @pytest.mark.parametrize('order', range(0, 6))
941
+ @pytest.mark.parametrize('mode', ['constant', 'grid-constant'])
942
+ @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
943
+ def test_shift_with_nonzero_cval(self, order, mode, dtype):
944
+ data = numpy.array([[1, 1, 1, 1],
945
+ [1, 1, 1, 1],
946
+ [1, 1, 1, 1]], dtype=dtype)
947
+
948
+ expected = numpy.array([[0, 1, 1, 1],
949
+ [0, 1, 1, 1],
950
+ [0, 1, 1, 1]], dtype=dtype)
951
+
952
+ if data.dtype.kind == 'c':
953
+ data -= 1j * data
954
+ expected -= 1j * expected
955
+ cval = 5.0
956
+ expected[:, 0] = cval # specific to shift of [0, 1] used below
957
+ out = ndimage.shift(data, [0, 1], order=order, mode=mode, cval=cval)
958
+ assert_array_almost_equal(out, expected)
959
+
960
+ @pytest.mark.parametrize('order', range(0, 6))
961
+ def test_shift06(self, order):
962
+ data = numpy.array([[4, 1, 3, 2],
963
+ [7, 6, 8, 5],
964
+ [3, 5, 3, 6]])
965
+ out = ndimage.shift(data, [0, 1], order=order)
966
+ assert_array_almost_equal(out, [[0, 4, 1, 3],
967
+ [0, 7, 6, 8],
968
+ [0, 3, 5, 3]])
969
+
970
+ @pytest.mark.parametrize('order', range(0, 6))
971
+ def test_shift07(self, order):
972
+ data = numpy.array([[4, 1, 3, 2],
973
+ [7, 6, 8, 5],
974
+ [3, 5, 3, 6]])
975
+ out = ndimage.shift(data, [1, 0], order=order)
976
+ assert_array_almost_equal(out, [[0, 0, 0, 0],
977
+ [4, 1, 3, 2],
978
+ [7, 6, 8, 5]])
979
+
980
+ @pytest.mark.parametrize('order', range(0, 6))
981
+ def test_shift08(self, order):
982
+ data = numpy.array([[4, 1, 3, 2],
983
+ [7, 6, 8, 5],
984
+ [3, 5, 3, 6]])
985
+ out = ndimage.shift(data, [1, 1], order=order)
986
+ assert_array_almost_equal(out, [[0, 0, 0, 0],
987
+ [0, 4, 1, 3],
988
+ [0, 7, 6, 8]])
989
+
990
+ @pytest.mark.parametrize('order', range(0, 6))
991
+ def test_shift09(self, order):
992
+ data = numpy.array([[4, 1, 3, 2],
993
+ [7, 6, 8, 5],
994
+ [3, 5, 3, 6]])
995
+ if (order > 1):
996
+ filtered = ndimage.spline_filter(data, order=order)
997
+ else:
998
+ filtered = data
999
+ out = ndimage.shift(filtered, [1, 1], order=order, prefilter=False)
1000
+ assert_array_almost_equal(out, [[0, 0, 0, 0],
1001
+ [0, 4, 1, 3],
1002
+ [0, 7, 6, 8]])
1003
+
1004
+ @pytest.mark.parametrize('shift',
1005
+ [(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)])
1006
+ @pytest.mark.parametrize('order', range(0, 6))
1007
+ def test_shift_grid_wrap(self, shift, order):
1008
+ # For mode 'grid-wrap', integer shifts should match numpy.roll
1009
+ x = numpy.array([[0, 1],
1010
+ [2, 3]])
1011
+ assert_array_almost_equal(
1012
+ ndimage.shift(x, shift, mode='grid-wrap', order=order),
1013
+ numpy.roll(x, shift, axis=(0, 1)),
1014
+ )
1015
+
1016
+ @pytest.mark.parametrize('shift',
1017
+ [(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)])
1018
+ @pytest.mark.parametrize('order', range(0, 6))
1019
+ def test_shift_grid_constant1(self, shift, order):
1020
+ # For integer shifts, 'constant' and 'grid-constant' should be equal
1021
+ x = numpy.arange(20).reshape((5, 4))
1022
+ assert_array_almost_equal(
1023
+ ndimage.shift(x, shift, mode='grid-constant', order=order),
1024
+ ndimage.shift(x, shift, mode='constant', order=order),
1025
+ )
1026
+
1027
+ def test_shift_grid_constant_order1(self):
1028
+ x = numpy.array([[1, 2, 3],
1029
+ [4, 5, 6]], dtype=float)
1030
+ expected_result = numpy.array([[0.25, 0.75, 1.25],
1031
+ [1.25, 3.00, 4.00]])
1032
+ assert_array_almost_equal(
1033
+ ndimage.shift(x, (0.5, 0.5), mode='grid-constant', order=1),
1034
+ expected_result,
1035
+ )
1036
+
1037
+ @pytest.mark.parametrize('order', range(0, 6))
1038
+ def test_shift_reflect(self, order):
1039
+ # shift by x.shape results in reflection
1040
+ x = numpy.array([[0, 1, 2],
1041
+ [3, 4, 5]])
1042
+ assert_array_almost_equal(
1043
+ ndimage.shift(x, x.shape, mode='reflect', order=order),
1044
+ x[::-1, ::-1],
1045
+ )
1046
+
1047
+ @pytest.mark.parametrize('order', range(0, 6))
1048
+ @pytest.mark.parametrize('prefilter', [False, True])
1049
+ def test_shift_nearest_boundary(self, order, prefilter):
1050
+ # verify that shifting at least order // 2 beyond the end of the array
1051
+ # gives a value equal to the edge value.
1052
+ x = numpy.arange(16)
1053
+ kwargs = dict(mode='nearest', order=order, prefilter=prefilter)
1054
+ assert_array_almost_equal(
1055
+ ndimage.shift(x, order // 2 + 1, **kwargs)[0], x[0],
1056
+ )
1057
+ assert_array_almost_equal(
1058
+ ndimage.shift(x, -order // 2 - 1, **kwargs)[-1], x[-1],
1059
+ )
1060
+
1061
+ @pytest.mark.parametrize('mode', ['grid-constant', 'grid-wrap', 'nearest',
1062
+ 'mirror', 'reflect'])
1063
+ @pytest.mark.parametrize('order', range(6))
1064
+ def test_shift_vs_padded(self, order, mode):
1065
+ x = numpy.arange(144, dtype=float).reshape(12, 12)
1066
+ shift = (0.4, -2.3)
1067
+
1068
+ # manually pad and then extract center to get expected result
1069
+ npad = 32
1070
+ pad_mode = ndimage_to_numpy_mode.get(mode)
1071
+ xp = numpy.pad(x, npad, mode=pad_mode)
1072
+ center_slice = tuple([slice(npad, -npad)] * x.ndim)
1073
+ expected_result = ndimage.shift(
1074
+ xp, shift, mode=mode, order=order)[center_slice]
1075
+
1076
+ assert_allclose(
1077
+ ndimage.shift(x, shift, mode=mode, order=order),
1078
+ expected_result,
1079
+ rtol=1e-7,
1080
+ )
1081
+
1082
+ @pytest.mark.parametrize('order', range(0, 6))
1083
+ def test_zoom1(self, order):
1084
+ for z in [2, [2, 2]]:
1085
+ arr = numpy.array(list(range(25))).reshape((5, 5)).astype(float)
1086
+ arr = ndimage.zoom(arr, z, order=order)
1087
+ assert_equal(arr.shape, (10, 10))
1088
+ assert_(numpy.all(arr[-1, :] != 0))
1089
+ assert_(numpy.all(arr[-1, :] >= (20 - eps)))
1090
+ assert_(numpy.all(arr[0, :] <= (5 + eps)))
1091
+ assert_(numpy.all(arr >= (0 - eps)))
1092
+ assert_(numpy.all(arr <= (24 + eps)))
1093
+
1094
+ def test_zoom2(self):
1095
+ arr = numpy.arange(12).reshape((3, 4))
1096
+ out = ndimage.zoom(ndimage.zoom(arr, 2), 0.5)
1097
+ assert_array_equal(out, arr)
1098
+
1099
+ def test_zoom3(self):
1100
+ arr = numpy.array([[1, 2]])
1101
+ out1 = ndimage.zoom(arr, (2, 1))
1102
+ out2 = ndimage.zoom(arr, (1, 2))
1103
+
1104
+ assert_array_almost_equal(out1, numpy.array([[1, 2], [1, 2]]))
1105
+ assert_array_almost_equal(out2, numpy.array([[1, 1, 2, 2]]))
1106
+
1107
+ @pytest.mark.parametrize('order', range(0, 6))
1108
+ @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
1109
+ def test_zoom_affine01(self, order, dtype):
1110
+ data = numpy.asarray([[1, 2, 3, 4],
1111
+ [5, 6, 7, 8],
1112
+ [9, 10, 11, 12]], dtype=dtype)
1113
+ if data.dtype.kind == 'c':
1114
+ data -= 1j * data
1115
+ with suppress_warnings() as sup:
1116
+ sup.filter(UserWarning,
1117
+ 'The behavior of affine_transform with a 1-D array .* '
1118
+ 'has changed')
1119
+ out = ndimage.affine_transform(data, [0.5, 0.5], 0,
1120
+ (6, 8), order=order)
1121
+ assert_array_almost_equal(out[::2, ::2], data)
1122
+
1123
+ def test_zoom_infinity(self):
1124
+ # Ticket #1419 regression test
1125
+ dim = 8
1126
+ ndimage.zoom(numpy.zeros((dim, dim)), 1. / dim, mode='nearest')
1127
+
1128
+ def test_zoom_zoomfactor_one(self):
1129
+ # Ticket #1122 regression test
1130
+ arr = numpy.zeros((1, 5, 5))
1131
+ zoom = (1.0, 2.0, 2.0)
1132
+
1133
+ out = ndimage.zoom(arr, zoom, cval=7)
1134
+ ref = numpy.zeros((1, 10, 10))
1135
+ assert_array_almost_equal(out, ref)
1136
+
1137
+ def test_zoom_output_shape_roundoff(self):
1138
+ arr = numpy.zeros((3, 11, 25))
1139
+ zoom = (4.0 / 3, 15.0 / 11, 29.0 / 25)
1140
+ out = ndimage.zoom(arr, zoom)
1141
+ assert_array_equal(out.shape, (4, 15, 29))
1142
+
1143
+ @pytest.mark.parametrize('zoom', [(1, 1), (3, 5), (8, 2), (8, 8)])
1144
+ @pytest.mark.parametrize('mode', ['nearest', 'constant', 'wrap', 'reflect',
1145
+ 'mirror', 'grid-wrap', 'grid-mirror',
1146
+ 'grid-constant'])
1147
+ def test_zoom_by_int_order0(self, zoom, mode):
1148
+ # order 0 zoom should be the same as replication via numpy.kron
1149
+ # Note: This is not True for general x shapes when grid_mode is False,
1150
+ # but works here for all modes because the size ratio happens to
1151
+ # always be an integer when x.shape = (2, 2).
1152
+ x = numpy.array([[0, 1],
1153
+ [2, 3]], dtype=float)
1154
+ # x = numpy.arange(16, dtype=float).reshape(4, 4)
1155
+ assert_array_almost_equal(
1156
+ ndimage.zoom(x, zoom, order=0, mode=mode),
1157
+ numpy.kron(x, numpy.ones(zoom))
1158
+ )
1159
+
1160
+ @pytest.mark.parametrize('shape', [(2, 3), (4, 4)])
1161
+ @pytest.mark.parametrize('zoom', [(1, 1), (3, 5), (8, 2), (8, 8)])
1162
+ @pytest.mark.parametrize('mode', ['nearest', 'reflect', 'mirror',
1163
+ 'grid-wrap', 'grid-constant'])
1164
+ def test_zoom_grid_by_int_order0(self, shape, zoom, mode):
1165
+ # When grid_mode is True, order 0 zoom should be the same as
1166
+ # replication via numpy.kron. The only exceptions to this are the
1167
+ # non-grid modes 'constant' and 'wrap'.
1168
+ x = numpy.arange(numpy.prod(shape), dtype=float).reshape(shape)
1169
+ assert_array_almost_equal(
1170
+ ndimage.zoom(x, zoom, order=0, mode=mode, grid_mode=True),
1171
+ numpy.kron(x, numpy.ones(zoom))
1172
+ )
1173
+
1174
+ @pytest.mark.parametrize('mode', ['constant', 'wrap'])
1175
+ def test_zoom_grid_mode_warnings(self, mode):
1176
+ # Warn on use of non-grid modes when grid_mode is True
1177
+ x = numpy.arange(9, dtype=float).reshape((3, 3))
1178
+ with pytest.warns(UserWarning,
1179
+ match="It is recommended to use mode"):
1180
+ ndimage.zoom(x, 2, mode=mode, grid_mode=True),
1181
+
1182
+ @pytest.mark.parametrize('order', range(0, 6))
1183
+ def test_rotate01(self, order):
1184
+ data = numpy.array([[0, 0, 0, 0],
1185
+ [0, 1, 1, 0],
1186
+ [0, 0, 0, 0]], dtype=numpy.float64)
1187
+ out = ndimage.rotate(data, 0, order=order)
1188
+ assert_array_almost_equal(out, data)
1189
+
1190
+ @pytest.mark.parametrize('order', range(0, 6))
1191
+ def test_rotate02(self, order):
1192
+ data = numpy.array([[0, 0, 0, 0],
1193
+ [0, 1, 0, 0],
1194
+ [0, 0, 0, 0]], dtype=numpy.float64)
1195
+ expected = numpy.array([[0, 0, 0],
1196
+ [0, 0, 0],
1197
+ [0, 1, 0],
1198
+ [0, 0, 0]], dtype=numpy.float64)
1199
+ out = ndimage.rotate(data, 90, order=order)
1200
+ assert_array_almost_equal(out, expected)
1201
+
1202
+ @pytest.mark.parametrize('order', range(0, 6))
1203
+ @pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
1204
+ def test_rotate03(self, order, dtype):
1205
+ data = numpy.array([[0, 0, 0, 0, 0],
1206
+ [0, 1, 1, 0, 0],
1207
+ [0, 0, 0, 0, 0]], dtype=dtype)
1208
+ expected = numpy.array([[0, 0, 0],
1209
+ [0, 0, 0],
1210
+ [0, 1, 0],
1211
+ [0, 1, 0],
1212
+ [0, 0, 0]], dtype=dtype)
1213
+ if data.dtype.kind == 'c':
1214
+ data -= 1j * data
1215
+ expected -= 1j * expected
1216
+ out = ndimage.rotate(data, 90, order=order)
1217
+ assert_array_almost_equal(out, expected)
1218
+
1219
+ @pytest.mark.parametrize('order', range(0, 6))
1220
+ def test_rotate04(self, order):
1221
+ data = numpy.array([[0, 0, 0, 0, 0],
1222
+ [0, 1, 1, 0, 0],
1223
+ [0, 0, 0, 0, 0]], dtype=numpy.float64)
1224
+ expected = numpy.array([[0, 0, 0, 0, 0],
1225
+ [0, 0, 1, 0, 0],
1226
+ [0, 0, 1, 0, 0]], dtype=numpy.float64)
1227
+ out = ndimage.rotate(data, 90, reshape=False, order=order)
1228
+ assert_array_almost_equal(out, expected)
1229
+
1230
+ @pytest.mark.parametrize('order', range(0, 6))
1231
+ def test_rotate05(self, order):
1232
+ data = numpy.empty((4, 3, 3))
1233
+ for i in range(3):
1234
+ data[:, :, i] = numpy.array([[0, 0, 0],
1235
+ [0, 1, 0],
1236
+ [0, 1, 0],
1237
+ [0, 0, 0]], dtype=numpy.float64)
1238
+ expected = numpy.array([[0, 0, 0, 0],
1239
+ [0, 1, 1, 0],
1240
+ [0, 0, 0, 0]], dtype=numpy.float64)
1241
+ out = ndimage.rotate(data, 90, order=order)
1242
+ for i in range(3):
1243
+ assert_array_almost_equal(out[:, :, i], expected)
1244
+
1245
+ @pytest.mark.parametrize('order', range(0, 6))
1246
+ def test_rotate06(self, order):
1247
+ data = numpy.empty((3, 4, 3))
1248
+ for i in range(3):
1249
+ data[:, :, i] = numpy.array([[0, 0, 0, 0],
1250
+ [0, 1, 1, 0],
1251
+ [0, 0, 0, 0]], dtype=numpy.float64)
1252
+ expected = numpy.array([[0, 0, 0],
1253
+ [0, 1, 0],
1254
+ [0, 1, 0],
1255
+ [0, 0, 0]], dtype=numpy.float64)
1256
+ out = ndimage.rotate(data, 90, order=order)
1257
+ for i in range(3):
1258
+ assert_array_almost_equal(out[:, :, i], expected)
1259
+
1260
+ @pytest.mark.parametrize('order', range(0, 6))
1261
+ def test_rotate07(self, order):
1262
+ data = numpy.array([[[0, 0, 0, 0, 0],
1263
+ [0, 1, 1, 0, 0],
1264
+ [0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64)
1265
+ data = data.transpose()
1266
+ expected = numpy.array([[[0, 0, 0],
1267
+ [0, 1, 0],
1268
+ [0, 1, 0],
1269
+ [0, 0, 0],
1270
+ [0, 0, 0]]] * 2, dtype=numpy.float64)
1271
+ expected = expected.transpose([2, 1, 0])
1272
+ out = ndimage.rotate(data, 90, axes=(0, 1), order=order)
1273
+ assert_array_almost_equal(out, expected)
1274
+
1275
+ @pytest.mark.parametrize('order', range(0, 6))
1276
+ def test_rotate08(self, order):
1277
+ data = numpy.array([[[0, 0, 0, 0, 0],
1278
+ [0, 1, 1, 0, 0],
1279
+ [0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64)
1280
+ data = data.transpose()
1281
+ expected = numpy.array([[[0, 0, 1, 0, 0],
1282
+ [0, 0, 1, 0, 0],
1283
+ [0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64)
1284
+ expected = expected.transpose()
1285
+ out = ndimage.rotate(data, 90, axes=(0, 1), reshape=False, order=order)
1286
+ assert_array_almost_equal(out, expected)
1287
+
1288
+ def test_rotate09(self):
1289
+ data = numpy.array([[0, 0, 0, 0, 0],
1290
+ [0, 1, 1, 0, 0],
1291
+ [0, 0, 0, 0, 0]] * 2, dtype=numpy.float64)
1292
+ with assert_raises(ValueError):
1293
+ ndimage.rotate(data, 90, axes=(0, data.ndim))
1294
+
1295
+ def test_rotate10(self):
1296
+ data = numpy.arange(45, dtype=numpy.float64).reshape((3, 5, 3))
1297
+
1298
+ # The output of ndimage.rotate before refactoring
1299
+ expected = numpy.array([[[0.0, 0.0, 0.0],
1300
+ [0.0, 0.0, 0.0],
1301
+ [6.54914793, 7.54914793, 8.54914793],
1302
+ [10.84520162, 11.84520162, 12.84520162],
1303
+ [0.0, 0.0, 0.0]],
1304
+ [[6.19286575, 7.19286575, 8.19286575],
1305
+ [13.4730712, 14.4730712, 15.4730712],
1306
+ [21.0, 22.0, 23.0],
1307
+ [28.5269288, 29.5269288, 30.5269288],
1308
+ [35.80713425, 36.80713425, 37.80713425]],
1309
+ [[0.0, 0.0, 0.0],
1310
+ [31.15479838, 32.15479838, 33.15479838],
1311
+ [35.45085207, 36.45085207, 37.45085207],
1312
+ [0.0, 0.0, 0.0],
1313
+ [0.0, 0.0, 0.0]]])
1314
+
1315
+ out = ndimage.rotate(data, angle=12, reshape=False)
1316
+ assert_array_almost_equal(out, expected)
1317
+
1318
+ def test_rotate_exact_180(self):
1319
+ a = numpy.tile(numpy.arange(5), (5, 1))
1320
+ b = ndimage.rotate(ndimage.rotate(a, 180), -180)
1321
+ assert_equal(a, b)
1322
+
1323
+
1324
+ def test_zoom_output_shape():
1325
+ """Ticket #643"""
1326
+ x = numpy.arange(12).reshape((3, 4))
1327
+ ndimage.zoom(x, 2, output=numpy.zeros((6, 8)))
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_measurements.py ADDED
@@ -0,0 +1,1409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os.path
2
+
3
+ import numpy as np
4
+ from numpy.testing import (
5
+ assert_,
6
+ assert_allclose,
7
+ assert_almost_equal,
8
+ assert_array_almost_equal,
9
+ assert_array_equal,
10
+ assert_equal,
11
+ suppress_warnings,
12
+ )
13
+ from pytest import raises as assert_raises
14
+
15
+ import scipy.ndimage as ndimage
16
+
17
+
18
+ from . import types
19
+
20
+
21
+ class Test_measurements_stats:
22
+ """ndimage._measurements._stats() is a utility used by other functions."""
23
+
24
+ def test_a(self):
25
+ x = [0, 1, 2, 6]
26
+ labels = [0, 0, 1, 1]
27
+ index = [0, 1]
28
+ for shp in [(4,), (2, 2)]:
29
+ x = np.array(x).reshape(shp)
30
+ labels = np.array(labels).reshape(shp)
31
+ counts, sums = ndimage._measurements._stats(
32
+ x, labels=labels, index=index)
33
+ assert_array_equal(counts, [2, 2])
34
+ assert_array_equal(sums, [1.0, 8.0])
35
+
36
+ def test_b(self):
37
+ # Same data as test_a, but different labels. The label 9 exceeds the
38
+ # length of 'labels', so this test will follow a different code path.
39
+ x = [0, 1, 2, 6]
40
+ labels = [0, 0, 9, 9]
41
+ index = [0, 9]
42
+ for shp in [(4,), (2, 2)]:
43
+ x = np.array(x).reshape(shp)
44
+ labels = np.array(labels).reshape(shp)
45
+ counts, sums = ndimage._measurements._stats(
46
+ x, labels=labels, index=index)
47
+ assert_array_equal(counts, [2, 2])
48
+ assert_array_equal(sums, [1.0, 8.0])
49
+
50
+ def test_a_centered(self):
51
+ x = [0, 1, 2, 6]
52
+ labels = [0, 0, 1, 1]
53
+ index = [0, 1]
54
+ for shp in [(4,), (2, 2)]:
55
+ x = np.array(x).reshape(shp)
56
+ labels = np.array(labels).reshape(shp)
57
+ counts, sums, centers = ndimage._measurements._stats(
58
+ x, labels=labels, index=index, centered=True)
59
+ assert_array_equal(counts, [2, 2])
60
+ assert_array_equal(sums, [1.0, 8.0])
61
+ assert_array_equal(centers, [0.5, 8.0])
62
+
63
+ def test_b_centered(self):
64
+ x = [0, 1, 2, 6]
65
+ labels = [0, 0, 9, 9]
66
+ index = [0, 9]
67
+ for shp in [(4,), (2, 2)]:
68
+ x = np.array(x).reshape(shp)
69
+ labels = np.array(labels).reshape(shp)
70
+ counts, sums, centers = ndimage._measurements._stats(
71
+ x, labels=labels, index=index, centered=True)
72
+ assert_array_equal(counts, [2, 2])
73
+ assert_array_equal(sums, [1.0, 8.0])
74
+ assert_array_equal(centers, [0.5, 8.0])
75
+
76
+ def test_nonint_labels(self):
77
+ x = [0, 1, 2, 6]
78
+ labels = [0.0, 0.0, 9.0, 9.0]
79
+ index = [0.0, 9.0]
80
+ for shp in [(4,), (2, 2)]:
81
+ x = np.array(x).reshape(shp)
82
+ labels = np.array(labels).reshape(shp)
83
+ counts, sums, centers = ndimage._measurements._stats(
84
+ x, labels=labels, index=index, centered=True)
85
+ assert_array_equal(counts, [2, 2])
86
+ assert_array_equal(sums, [1.0, 8.0])
87
+ assert_array_equal(centers, [0.5, 8.0])
88
+
89
+
90
+ class Test_measurements_select:
91
+ """ndimage._measurements._select() is a utility used by other functions."""
92
+
93
+ def test_basic(self):
94
+ x = [0, 1, 6, 2]
95
+ cases = [
96
+ ([0, 0, 1, 1], [0, 1]), # "Small" integer labels
97
+ ([0, 0, 9, 9], [0, 9]), # A label larger than len(labels)
98
+ ([0.0, 0.0, 7.0, 7.0], [0.0, 7.0]), # Non-integer labels
99
+ ]
100
+ for labels, index in cases:
101
+ result = ndimage._measurements._select(
102
+ x, labels=labels, index=index)
103
+ assert_(len(result) == 0)
104
+ result = ndimage._measurements._select(
105
+ x, labels=labels, index=index, find_max=True)
106
+ assert_(len(result) == 1)
107
+ assert_array_equal(result[0], [1, 6])
108
+ result = ndimage._measurements._select(
109
+ x, labels=labels, index=index, find_min=True)
110
+ assert_(len(result) == 1)
111
+ assert_array_equal(result[0], [0, 2])
112
+ result = ndimage._measurements._select(
113
+ x, labels=labels, index=index, find_min=True,
114
+ find_min_positions=True)
115
+ assert_(len(result) == 2)
116
+ assert_array_equal(result[0], [0, 2])
117
+ assert_array_equal(result[1], [0, 3])
118
+ assert_equal(result[1].dtype.kind, 'i')
119
+ result = ndimage._measurements._select(
120
+ x, labels=labels, index=index, find_max=True,
121
+ find_max_positions=True)
122
+ assert_(len(result) == 2)
123
+ assert_array_equal(result[0], [1, 6])
124
+ assert_array_equal(result[1], [1, 2])
125
+ assert_equal(result[1].dtype.kind, 'i')
126
+
127
+
128
+ def test_label01():
129
+ data = np.ones([])
130
+ out, n = ndimage.label(data)
131
+ assert_array_almost_equal(out, 1)
132
+ assert_equal(n, 1)
133
+
134
+
135
+ def test_label02():
136
+ data = np.zeros([])
137
+ out, n = ndimage.label(data)
138
+ assert_array_almost_equal(out, 0)
139
+ assert_equal(n, 0)
140
+
141
+
142
+ def test_label03():
143
+ data = np.ones([1])
144
+ out, n = ndimage.label(data)
145
+ assert_array_almost_equal(out, [1])
146
+ assert_equal(n, 1)
147
+
148
+
149
+ def test_label04():
150
+ data = np.zeros([1])
151
+ out, n = ndimage.label(data)
152
+ assert_array_almost_equal(out, [0])
153
+ assert_equal(n, 0)
154
+
155
+
156
+ def test_label05():
157
+ data = np.ones([5])
158
+ out, n = ndimage.label(data)
159
+ assert_array_almost_equal(out, [1, 1, 1, 1, 1])
160
+ assert_equal(n, 1)
161
+
162
+
163
+ def test_label06():
164
+ data = np.array([1, 0, 1, 1, 0, 1])
165
+ out, n = ndimage.label(data)
166
+ assert_array_almost_equal(out, [1, 0, 2, 2, 0, 3])
167
+ assert_equal(n, 3)
168
+
169
+
170
+ def test_label07():
171
+ data = np.array([[0, 0, 0, 0, 0, 0],
172
+ [0, 0, 0, 0, 0, 0],
173
+ [0, 0, 0, 0, 0, 0],
174
+ [0, 0, 0, 0, 0, 0],
175
+ [0, 0, 0, 0, 0, 0],
176
+ [0, 0, 0, 0, 0, 0]])
177
+ out, n = ndimage.label(data)
178
+ assert_array_almost_equal(out, [[0, 0, 0, 0, 0, 0],
179
+ [0, 0, 0, 0, 0, 0],
180
+ [0, 0, 0, 0, 0, 0],
181
+ [0, 0, 0, 0, 0, 0],
182
+ [0, 0, 0, 0, 0, 0],
183
+ [0, 0, 0, 0, 0, 0]])
184
+ assert_equal(n, 0)
185
+
186
+
187
+ def test_label08():
188
+ data = np.array([[1, 0, 0, 0, 0, 0],
189
+ [0, 0, 1, 1, 0, 0],
190
+ [0, 0, 1, 1, 1, 0],
191
+ [1, 1, 0, 0, 0, 0],
192
+ [1, 1, 0, 0, 0, 0],
193
+ [0, 0, 0, 1, 1, 0]])
194
+ out, n = ndimage.label(data)
195
+ assert_array_almost_equal(out, [[1, 0, 0, 0, 0, 0],
196
+ [0, 0, 2, 2, 0, 0],
197
+ [0, 0, 2, 2, 2, 0],
198
+ [3, 3, 0, 0, 0, 0],
199
+ [3, 3, 0, 0, 0, 0],
200
+ [0, 0, 0, 4, 4, 0]])
201
+ assert_equal(n, 4)
202
+
203
+
204
+ def test_label09():
205
+ data = np.array([[1, 0, 0, 0, 0, 0],
206
+ [0, 0, 1, 1, 0, 0],
207
+ [0, 0, 1, 1, 1, 0],
208
+ [1, 1, 0, 0, 0, 0],
209
+ [1, 1, 0, 0, 0, 0],
210
+ [0, 0, 0, 1, 1, 0]])
211
+ struct = ndimage.generate_binary_structure(2, 2)
212
+ out, n = ndimage.label(data, struct)
213
+ assert_array_almost_equal(out, [[1, 0, 0, 0, 0, 0],
214
+ [0, 0, 2, 2, 0, 0],
215
+ [0, 0, 2, 2, 2, 0],
216
+ [2, 2, 0, 0, 0, 0],
217
+ [2, 2, 0, 0, 0, 0],
218
+ [0, 0, 0, 3, 3, 0]])
219
+ assert_equal(n, 3)
220
+
221
+
222
+ def test_label10():
223
+ data = np.array([[0, 0, 0, 0, 0, 0],
224
+ [0, 1, 1, 0, 1, 0],
225
+ [0, 1, 1, 1, 1, 0],
226
+ [0, 0, 0, 0, 0, 0]])
227
+ struct = ndimage.generate_binary_structure(2, 2)
228
+ out, n = ndimage.label(data, struct)
229
+ assert_array_almost_equal(out, [[0, 0, 0, 0, 0, 0],
230
+ [0, 1, 1, 0, 1, 0],
231
+ [0, 1, 1, 1, 1, 0],
232
+ [0, 0, 0, 0, 0, 0]])
233
+ assert_equal(n, 1)
234
+
235
+
236
+ def test_label11():
237
+ for type in types:
238
+ data = np.array([[1, 0, 0, 0, 0, 0],
239
+ [0, 0, 1, 1, 0, 0],
240
+ [0, 0, 1, 1, 1, 0],
241
+ [1, 1, 0, 0, 0, 0],
242
+ [1, 1, 0, 0, 0, 0],
243
+ [0, 0, 0, 1, 1, 0]], type)
244
+ out, n = ndimage.label(data)
245
+ expected = [[1, 0, 0, 0, 0, 0],
246
+ [0, 0, 2, 2, 0, 0],
247
+ [0, 0, 2, 2, 2, 0],
248
+ [3, 3, 0, 0, 0, 0],
249
+ [3, 3, 0, 0, 0, 0],
250
+ [0, 0, 0, 4, 4, 0]]
251
+ assert_array_almost_equal(out, expected)
252
+ assert_equal(n, 4)
253
+
254
+
255
+ def test_label11_inplace():
256
+ for type in types:
257
+ data = np.array([[1, 0, 0, 0, 0, 0],
258
+ [0, 0, 1, 1, 0, 0],
259
+ [0, 0, 1, 1, 1, 0],
260
+ [1, 1, 0, 0, 0, 0],
261
+ [1, 1, 0, 0, 0, 0],
262
+ [0, 0, 0, 1, 1, 0]], type)
263
+ n = ndimage.label(data, output=data)
264
+ expected = [[1, 0, 0, 0, 0, 0],
265
+ [0, 0, 2, 2, 0, 0],
266
+ [0, 0, 2, 2, 2, 0],
267
+ [3, 3, 0, 0, 0, 0],
268
+ [3, 3, 0, 0, 0, 0],
269
+ [0, 0, 0, 4, 4, 0]]
270
+ assert_array_almost_equal(data, expected)
271
+ assert_equal(n, 4)
272
+
273
+
274
+ def test_label12():
275
+ for type in types:
276
+ data = np.array([[0, 0, 0, 0, 1, 1],
277
+ [0, 0, 0, 0, 0, 1],
278
+ [0, 0, 1, 0, 1, 1],
279
+ [0, 0, 1, 1, 1, 1],
280
+ [0, 0, 0, 1, 1, 0]], type)
281
+ out, n = ndimage.label(data)
282
+ expected = [[0, 0, 0, 0, 1, 1],
283
+ [0, 0, 0, 0, 0, 1],
284
+ [0, 0, 1, 0, 1, 1],
285
+ [0, 0, 1, 1, 1, 1],
286
+ [0, 0, 0, 1, 1, 0]]
287
+ assert_array_almost_equal(out, expected)
288
+ assert_equal(n, 1)
289
+
290
+
291
+ def test_label13():
292
+ for type in types:
293
+ data = np.array([[1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1],
294
+ [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1],
295
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
296
+ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
297
+ type)
298
+ out, n = ndimage.label(data)
299
+ expected = [[1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1],
300
+ [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1],
301
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
302
+ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
303
+ assert_array_almost_equal(out, expected)
304
+ assert_equal(n, 1)
305
+
306
+
307
+ def test_label_output_typed():
308
+ data = np.ones([5])
309
+ for t in types:
310
+ output = np.zeros([5], dtype=t)
311
+ n = ndimage.label(data, output=output)
312
+ assert_array_almost_equal(output, 1)
313
+ assert_equal(n, 1)
314
+
315
+
316
+ def test_label_output_dtype():
317
+ data = np.ones([5])
318
+ for t in types:
319
+ output, n = ndimage.label(data, output=t)
320
+ assert_array_almost_equal(output, 1)
321
+ assert output.dtype == t
322
+
323
+
324
+ def test_label_output_wrong_size():
325
+ data = np.ones([5])
326
+ for t in types:
327
+ output = np.zeros([10], t)
328
+ assert_raises((RuntimeError, ValueError),
329
+ ndimage.label, data, output=output)
330
+
331
+
332
+ def test_label_structuring_elements():
333
+ data = np.loadtxt(os.path.join(os.path.dirname(
334
+ __file__), "data", "label_inputs.txt"))
335
+ strels = np.loadtxt(os.path.join(
336
+ os.path.dirname(__file__), "data", "label_strels.txt"))
337
+ results = np.loadtxt(os.path.join(
338
+ os.path.dirname(__file__), "data", "label_results.txt"))
339
+ data = data.reshape((-1, 7, 7))
340
+ strels = strels.reshape((-1, 3, 3))
341
+ results = results.reshape((-1, 7, 7))
342
+ r = 0
343
+ for i in range(data.shape[0]):
344
+ d = data[i, :, :]
345
+ for j in range(strels.shape[0]):
346
+ s = strels[j, :, :]
347
+ assert_equal(ndimage.label(d, s)[0], results[r, :, :])
348
+ r += 1
349
+
350
+
351
+ def test_ticket_742():
352
+ def SE(img, thresh=.7, size=4):
353
+ mask = img > thresh
354
+ rank = len(mask.shape)
355
+ la, co = ndimage.label(mask,
356
+ ndimage.generate_binary_structure(rank, rank))
357
+ _ = ndimage.find_objects(la)
358
+
359
+ if np.dtype(np.intp) != np.dtype('i'):
360
+ shape = (3, 1240, 1240)
361
+ a = np.random.rand(np.prod(shape)).reshape(shape)
362
+ # shouldn't crash
363
+ SE(a)
364
+
365
+
366
+ def test_gh_issue_3025():
367
+ """Github issue #3025 - improper merging of labels"""
368
+ d = np.zeros((60, 320))
369
+ d[:, :257] = 1
370
+ d[:, 260:] = 1
371
+ d[36, 257] = 1
372
+ d[35, 258] = 1
373
+ d[35, 259] = 1
374
+ assert ndimage.label(d, np.ones((3, 3)))[1] == 1
375
+
376
+
377
+ def test_label_default_dtype():
378
+ test_array = np.random.rand(10, 10)
379
+ label, no_features = ndimage.label(test_array > 0.5)
380
+ assert_(label.dtype in (np.int32, np.int64))
381
+ # Shouldn't raise an exception
382
+ ndimage.find_objects(label)
383
+
384
+
385
+ def test_find_objects01():
386
+ data = np.ones([], dtype=int)
387
+ out = ndimage.find_objects(data)
388
+ assert_(out == [()])
389
+
390
+
391
+ def test_find_objects02():
392
+ data = np.zeros([], dtype=int)
393
+ out = ndimage.find_objects(data)
394
+ assert_(out == [])
395
+
396
+
397
+ def test_find_objects03():
398
+ data = np.ones([1], dtype=int)
399
+ out = ndimage.find_objects(data)
400
+ assert_equal(out, [(slice(0, 1, None),)])
401
+
402
+
403
+ def test_find_objects04():
404
+ data = np.zeros([1], dtype=int)
405
+ out = ndimage.find_objects(data)
406
+ assert_equal(out, [])
407
+
408
+
409
+ def test_find_objects05():
410
+ data = np.ones([5], dtype=int)
411
+ out = ndimage.find_objects(data)
412
+ assert_equal(out, [(slice(0, 5, None),)])
413
+
414
+
415
+ def test_find_objects06():
416
+ data = np.array([1, 0, 2, 2, 0, 3])
417
+ out = ndimage.find_objects(data)
418
+ assert_equal(out, [(slice(0, 1, None),),
419
+ (slice(2, 4, None),),
420
+ (slice(5, 6, None),)])
421
+
422
+
423
+ def test_find_objects07():
424
+ data = np.array([[0, 0, 0, 0, 0, 0],
425
+ [0, 0, 0, 0, 0, 0],
426
+ [0, 0, 0, 0, 0, 0],
427
+ [0, 0, 0, 0, 0, 0],
428
+ [0, 0, 0, 0, 0, 0],
429
+ [0, 0, 0, 0, 0, 0]])
430
+ out = ndimage.find_objects(data)
431
+ assert_equal(out, [])
432
+
433
+
434
+ def test_find_objects08():
435
+ data = np.array([[1, 0, 0, 0, 0, 0],
436
+ [0, 0, 2, 2, 0, 0],
437
+ [0, 0, 2, 2, 2, 0],
438
+ [3, 3, 0, 0, 0, 0],
439
+ [3, 3, 0, 0, 0, 0],
440
+ [0, 0, 0, 4, 4, 0]])
441
+ out = ndimage.find_objects(data)
442
+ assert_equal(out, [(slice(0, 1, None), slice(0, 1, None)),
443
+ (slice(1, 3, None), slice(2, 5, None)),
444
+ (slice(3, 5, None), slice(0, 2, None)),
445
+ (slice(5, 6, None), slice(3, 5, None))])
446
+
447
+
448
+ def test_find_objects09():
449
+ data = np.array([[1, 0, 0, 0, 0, 0],
450
+ [0, 0, 2, 2, 0, 0],
451
+ [0, 0, 2, 2, 2, 0],
452
+ [0, 0, 0, 0, 0, 0],
453
+ [0, 0, 0, 0, 0, 0],
454
+ [0, 0, 0, 4, 4, 0]])
455
+ out = ndimage.find_objects(data)
456
+ assert_equal(out, [(slice(0, 1, None), slice(0, 1, None)),
457
+ (slice(1, 3, None), slice(2, 5, None)),
458
+ None,
459
+ (slice(5, 6, None), slice(3, 5, None))])
460
+
461
+
462
+ def test_value_indices01():
463
+ "Test dictionary keys and entries"
464
+ data = np.array([[1, 0, 0, 0, 0, 0],
465
+ [0, 0, 2, 2, 0, 0],
466
+ [0, 0, 2, 2, 2, 0],
467
+ [0, 0, 0, 0, 0, 0],
468
+ [0, 0, 0, 0, 0, 0],
469
+ [0, 0, 0, 4, 4, 0]])
470
+ vi = ndimage.value_indices(data, ignore_value=0)
471
+ true_keys = [1, 2, 4]
472
+ assert_equal(list(vi.keys()), true_keys)
473
+
474
+ truevi = {}
475
+ for k in true_keys:
476
+ truevi[k] = np.where(data == k)
477
+
478
+ vi = ndimage.value_indices(data, ignore_value=0)
479
+ assert_equal(vi, truevi)
480
+
481
+
482
+ def test_value_indices02():
483
+ "Test input checking"
484
+ data = np.zeros((5, 4), dtype=np.float32)
485
+ msg = "Parameter 'arr' must be an integer array"
486
+ with assert_raises(ValueError, match=msg):
487
+ ndimage.value_indices(data)
488
+
489
+
490
+ def test_value_indices03():
491
+ "Test different input array shapes, from 1-D to 4-D"
492
+ for shape in [(36,), (18, 2), (3, 3, 4), (3, 3, 2, 2)]:
493
+ a = np.array((12*[1]+12*[2]+12*[3]), dtype=np.int32).reshape(shape)
494
+ trueKeys = np.unique(a)
495
+ vi = ndimage.value_indices(a)
496
+ assert_equal(list(vi.keys()), list(trueKeys))
497
+ for k in trueKeys:
498
+ trueNdx = np.where(a == k)
499
+ assert_equal(vi[k], trueNdx)
500
+
501
+
502
+ def test_sum01():
503
+ for type in types:
504
+ input = np.array([], type)
505
+ output = ndimage.sum(input)
506
+ assert_equal(output, 0.0)
507
+
508
+
509
+ def test_sum02():
510
+ for type in types:
511
+ input = np.zeros([0, 4], type)
512
+ output = ndimage.sum(input)
513
+ assert_equal(output, 0.0)
514
+
515
+
516
+ def test_sum03():
517
+ for type in types:
518
+ input = np.ones([], type)
519
+ output = ndimage.sum(input)
520
+ assert_almost_equal(output, 1.0)
521
+
522
+
523
+ def test_sum04():
524
+ for type in types:
525
+ input = np.array([1, 2], type)
526
+ output = ndimage.sum(input)
527
+ assert_almost_equal(output, 3.0)
528
+
529
+
530
+ def test_sum05():
531
+ for type in types:
532
+ input = np.array([[1, 2], [3, 4]], type)
533
+ output = ndimage.sum(input)
534
+ assert_almost_equal(output, 10.0)
535
+
536
+
537
+ def test_sum06():
538
+ labels = np.array([], bool)
539
+ for type in types:
540
+ input = np.array([], type)
541
+ output = ndimage.sum(input, labels=labels)
542
+ assert_equal(output, 0.0)
543
+
544
+
545
+ def test_sum07():
546
+ labels = np.ones([0, 4], bool)
547
+ for type in types:
548
+ input = np.zeros([0, 4], type)
549
+ output = ndimage.sum(input, labels=labels)
550
+ assert_equal(output, 0.0)
551
+
552
+
553
+ def test_sum08():
554
+ labels = np.array([1, 0], bool)
555
+ for type in types:
556
+ input = np.array([1, 2], type)
557
+ output = ndimage.sum(input, labels=labels)
558
+ assert_equal(output, 1.0)
559
+
560
+
561
+ def test_sum09():
562
+ labels = np.array([1, 0], bool)
563
+ for type in types:
564
+ input = np.array([[1, 2], [3, 4]], type)
565
+ output = ndimage.sum(input, labels=labels)
566
+ assert_almost_equal(output, 4.0)
567
+
568
+
569
+ def test_sum10():
570
+ labels = np.array([1, 0], bool)
571
+ input = np.array([[1, 2], [3, 4]], bool)
572
+ output = ndimage.sum(input, labels=labels)
573
+ assert_almost_equal(output, 2.0)
574
+
575
+
576
+ def test_sum11():
577
+ labels = np.array([1, 2], np.int8)
578
+ for type in types:
579
+ input = np.array([[1, 2], [3, 4]], type)
580
+ output = ndimage.sum(input, labels=labels,
581
+ index=2)
582
+ assert_almost_equal(output, 6.0)
583
+
584
+
585
+ def test_sum12():
586
+ labels = np.array([[1, 2], [2, 4]], np.int8)
587
+ for type in types:
588
+ input = np.array([[1, 2], [3, 4]], type)
589
+ output = ndimage.sum(input, labels=labels, index=[4, 8, 2])
590
+ assert_array_almost_equal(output, [4.0, 0.0, 5.0])
591
+
592
+
593
+ def test_sum_labels():
594
+ labels = np.array([[1, 2], [2, 4]], np.int8)
595
+ for type in types:
596
+ input = np.array([[1, 2], [3, 4]], type)
597
+ output_sum = ndimage.sum(input, labels=labels, index=[4, 8, 2])
598
+ output_labels = ndimage.sum_labels(
599
+ input, labels=labels, index=[4, 8, 2])
600
+
601
+ assert (output_sum == output_labels).all()
602
+ assert_array_almost_equal(output_labels, [4.0, 0.0, 5.0])
603
+
604
+
605
+ def test_mean01():
606
+ labels = np.array([1, 0], bool)
607
+ for type in types:
608
+ input = np.array([[1, 2], [3, 4]], type)
609
+ output = ndimage.mean(input, labels=labels)
610
+ assert_almost_equal(output, 2.0)
611
+
612
+
613
+ def test_mean02():
614
+ labels = np.array([1, 0], bool)
615
+ input = np.array([[1, 2], [3, 4]], bool)
616
+ output = ndimage.mean(input, labels=labels)
617
+ assert_almost_equal(output, 1.0)
618
+
619
+
620
+ def test_mean03():
621
+ labels = np.array([1, 2])
622
+ for type in types:
623
+ input = np.array([[1, 2], [3, 4]], type)
624
+ output = ndimage.mean(input, labels=labels,
625
+ index=2)
626
+ assert_almost_equal(output, 3.0)
627
+
628
+
629
+ def test_mean04():
630
+ labels = np.array([[1, 2], [2, 4]], np.int8)
631
+ with np.errstate(all='ignore'):
632
+ for type in types:
633
+ input = np.array([[1, 2], [3, 4]], type)
634
+ output = ndimage.mean(input, labels=labels,
635
+ index=[4, 8, 2])
636
+ assert_array_almost_equal(output[[0, 2]], [4.0, 2.5])
637
+ assert_(np.isnan(output[1]))
638
+
639
+
640
+ def test_minimum01():
641
+ labels = np.array([1, 0], bool)
642
+ for type in types:
643
+ input = np.array([[1, 2], [3, 4]], type)
644
+ output = ndimage.minimum(input, labels=labels)
645
+ assert_almost_equal(output, 1.0)
646
+
647
+
648
+ def test_minimum02():
649
+ labels = np.array([1, 0], bool)
650
+ input = np.array([[2, 2], [2, 4]], bool)
651
+ output = ndimage.minimum(input, labels=labels)
652
+ assert_almost_equal(output, 1.0)
653
+
654
+
655
+ def test_minimum03():
656
+ labels = np.array([1, 2])
657
+ for type in types:
658
+ input = np.array([[1, 2], [3, 4]], type)
659
+ output = ndimage.minimum(input, labels=labels,
660
+ index=2)
661
+ assert_almost_equal(output, 2.0)
662
+
663
+
664
+ def test_minimum04():
665
+ labels = np.array([[1, 2], [2, 3]])
666
+ for type in types:
667
+ input = np.array([[1, 2], [3, 4]], type)
668
+ output = ndimage.minimum(input, labels=labels,
669
+ index=[2, 3, 8])
670
+ assert_array_almost_equal(output, [2.0, 4.0, 0.0])
671
+
672
+
673
+ def test_maximum01():
674
+ labels = np.array([1, 0], bool)
675
+ for type in types:
676
+ input = np.array([[1, 2], [3, 4]], type)
677
+ output = ndimage.maximum(input, labels=labels)
678
+ assert_almost_equal(output, 3.0)
679
+
680
+
681
+ def test_maximum02():
682
+ labels = np.array([1, 0], bool)
683
+ input = np.array([[2, 2], [2, 4]], bool)
684
+ output = ndimage.maximum(input, labels=labels)
685
+ assert_almost_equal(output, 1.0)
686
+
687
+
688
+ def test_maximum03():
689
+ labels = np.array([1, 2])
690
+ for type in types:
691
+ input = np.array([[1, 2], [3, 4]], type)
692
+ output = ndimage.maximum(input, labels=labels,
693
+ index=2)
694
+ assert_almost_equal(output, 4.0)
695
+
696
+
697
+ def test_maximum04():
698
+ labels = np.array([[1, 2], [2, 3]])
699
+ for type in types:
700
+ input = np.array([[1, 2], [3, 4]], type)
701
+ output = ndimage.maximum(input, labels=labels,
702
+ index=[2, 3, 8])
703
+ assert_array_almost_equal(output, [3.0, 4.0, 0.0])
704
+
705
+
706
+ def test_maximum05():
707
+ # Regression test for ticket #501 (Trac)
708
+ x = np.array([-3, -2, -1])
709
+ assert_equal(ndimage.maximum(x), -1)
710
+
711
+
712
+ def test_median01():
713
+ a = np.array([[1, 2, 0, 1],
714
+ [5, 3, 0, 4],
715
+ [0, 0, 0, 7],
716
+ [9, 3, 0, 0]])
717
+ labels = np.array([[1, 1, 0, 2],
718
+ [1, 1, 0, 2],
719
+ [0, 0, 0, 2],
720
+ [3, 3, 0, 0]])
721
+ output = ndimage.median(a, labels=labels, index=[1, 2, 3])
722
+ assert_array_almost_equal(output, [2.5, 4.0, 6.0])
723
+
724
+
725
+ def test_median02():
726
+ a = np.array([[1, 2, 0, 1],
727
+ [5, 3, 0, 4],
728
+ [0, 0, 0, 7],
729
+ [9, 3, 0, 0]])
730
+ output = ndimage.median(a)
731
+ assert_almost_equal(output, 1.0)
732
+
733
+
734
+ def test_median03():
735
+ a = np.array([[1, 2, 0, 1],
736
+ [5, 3, 0, 4],
737
+ [0, 0, 0, 7],
738
+ [9, 3, 0, 0]])
739
+ labels = np.array([[1, 1, 0, 2],
740
+ [1, 1, 0, 2],
741
+ [0, 0, 0, 2],
742
+ [3, 3, 0, 0]])
743
+ output = ndimage.median(a, labels=labels)
744
+ assert_almost_equal(output, 3.0)
745
+
746
+
747
+ def test_median_gh12836_bool():
748
+ # test boolean addition fix on example from gh-12836
749
+ a = np.asarray([1, 1], dtype=bool)
750
+ output = ndimage.median(a, labels=np.ones((2,)), index=[1])
751
+ assert_array_almost_equal(output, [1.0])
752
+
753
+
754
+ def test_median_no_int_overflow():
755
+ # test integer overflow fix on example from gh-12836
756
+ a = np.asarray([65, 70], dtype=np.int8)
757
+ output = ndimage.median(a, labels=np.ones((2,)), index=[1])
758
+ assert_array_almost_equal(output, [67.5])
759
+
760
+
761
+ def test_variance01():
762
+ with np.errstate(all='ignore'):
763
+ for type in types:
764
+ input = np.array([], type)
765
+ with suppress_warnings() as sup:
766
+ sup.filter(RuntimeWarning, "Mean of empty slice")
767
+ output = ndimage.variance(input)
768
+ assert_(np.isnan(output))
769
+
770
+
771
+ def test_variance02():
772
+ for type in types:
773
+ input = np.array([1], type)
774
+ output = ndimage.variance(input)
775
+ assert_almost_equal(output, 0.0)
776
+
777
+
778
+ def test_variance03():
779
+ for type in types:
780
+ input = np.array([1, 3], type)
781
+ output = ndimage.variance(input)
782
+ assert_almost_equal(output, 1.0)
783
+
784
+
785
+ def test_variance04():
786
+ input = np.array([1, 0], bool)
787
+ output = ndimage.variance(input)
788
+ assert_almost_equal(output, 0.25)
789
+
790
+
791
+ def test_variance05():
792
+ labels = [2, 2, 3]
793
+ for type in types:
794
+ input = np.array([1, 3, 8], type)
795
+ output = ndimage.variance(input, labels, 2)
796
+ assert_almost_equal(output, 1.0)
797
+
798
+
799
+ def test_variance06():
800
+ labels = [2, 2, 3, 3, 4]
801
+ with np.errstate(all='ignore'):
802
+ for type in types:
803
+ input = np.array([1, 3, 8, 10, 8], type)
804
+ output = ndimage.variance(input, labels, [2, 3, 4])
805
+ assert_array_almost_equal(output, [1.0, 1.0, 0.0])
806
+
807
+
808
+ def test_standard_deviation01():
809
+ with np.errstate(all='ignore'):
810
+ for type in types:
811
+ input = np.array([], type)
812
+ with suppress_warnings() as sup:
813
+ sup.filter(RuntimeWarning, "Mean of empty slice")
814
+ output = ndimage.standard_deviation(input)
815
+ assert_(np.isnan(output))
816
+
817
+
818
+ def test_standard_deviation02():
819
+ for type in types:
820
+ input = np.array([1], type)
821
+ output = ndimage.standard_deviation(input)
822
+ assert_almost_equal(output, 0.0)
823
+
824
+
825
+ def test_standard_deviation03():
826
+ for type in types:
827
+ input = np.array([1, 3], type)
828
+ output = ndimage.standard_deviation(input)
829
+ assert_almost_equal(output, np.sqrt(1.0))
830
+
831
+
832
+ def test_standard_deviation04():
833
+ input = np.array([1, 0], bool)
834
+ output = ndimage.standard_deviation(input)
835
+ assert_almost_equal(output, 0.5)
836
+
837
+
838
+ def test_standard_deviation05():
839
+ labels = [2, 2, 3]
840
+ for type in types:
841
+ input = np.array([1, 3, 8], type)
842
+ output = ndimage.standard_deviation(input, labels, 2)
843
+ assert_almost_equal(output, 1.0)
844
+
845
+
846
+ def test_standard_deviation06():
847
+ labels = [2, 2, 3, 3, 4]
848
+ with np.errstate(all='ignore'):
849
+ for type in types:
850
+ input = np.array([1, 3, 8, 10, 8], type)
851
+ output = ndimage.standard_deviation(input, labels, [2, 3, 4])
852
+ assert_array_almost_equal(output, [1.0, 1.0, 0.0])
853
+
854
+
855
+ def test_standard_deviation07():
856
+ labels = [1]
857
+ with np.errstate(all='ignore'):
858
+ for type in types:
859
+ input = np.array([-0.00619519], type)
860
+ output = ndimage.standard_deviation(input, labels, [1])
861
+ assert_array_almost_equal(output, [0])
862
+
863
+
864
+ def test_minimum_position01():
865
+ labels = np.array([1, 0], bool)
866
+ for type in types:
867
+ input = np.array([[1, 2], [3, 4]], type)
868
+ output = ndimage.minimum_position(input, labels=labels)
869
+ assert_equal(output, (0, 0))
870
+
871
+
872
+ def test_minimum_position02():
873
+ for type in types:
874
+ input = np.array([[5, 4, 2, 5],
875
+ [3, 7, 0, 2],
876
+ [1, 5, 1, 1]], type)
877
+ output = ndimage.minimum_position(input)
878
+ assert_equal(output, (1, 2))
879
+
880
+
881
+ def test_minimum_position03():
882
+ input = np.array([[5, 4, 2, 5],
883
+ [3, 7, 0, 2],
884
+ [1, 5, 1, 1]], bool)
885
+ output = ndimage.minimum_position(input)
886
+ assert_equal(output, (1, 2))
887
+
888
+
889
+ def test_minimum_position04():
890
+ input = np.array([[5, 4, 2, 5],
891
+ [3, 7, 1, 2],
892
+ [1, 5, 1, 1]], bool)
893
+ output = ndimage.minimum_position(input)
894
+ assert_equal(output, (0, 0))
895
+
896
+
897
+ def test_minimum_position05():
898
+ labels = [1, 2, 0, 4]
899
+ for type in types:
900
+ input = np.array([[5, 4, 2, 5],
901
+ [3, 7, 0, 2],
902
+ [1, 5, 2, 3]], type)
903
+ output = ndimage.minimum_position(input, labels)
904
+ assert_equal(output, (2, 0))
905
+
906
+
907
+ def test_minimum_position06():
908
+ labels = [1, 2, 3, 4]
909
+ for type in types:
910
+ input = np.array([[5, 4, 2, 5],
911
+ [3, 7, 0, 2],
912
+ [1, 5, 1, 1]], type)
913
+ output = ndimage.minimum_position(input, labels, 2)
914
+ assert_equal(output, (0, 1))
915
+
916
+
917
+ def test_minimum_position07():
918
+ labels = [1, 2, 3, 4]
919
+ for type in types:
920
+ input = np.array([[5, 4, 2, 5],
921
+ [3, 7, 0, 2],
922
+ [1, 5, 1, 1]], type)
923
+ output = ndimage.minimum_position(input, labels,
924
+ [2, 3])
925
+ assert_equal(output[0], (0, 1))
926
+ assert_equal(output[1], (1, 2))
927
+
928
+
929
+ def test_maximum_position01():
930
+ labels = np.array([1, 0], bool)
931
+ for type in types:
932
+ input = np.array([[1, 2], [3, 4]], type)
933
+ output = ndimage.maximum_position(input,
934
+ labels=labels)
935
+ assert_equal(output, (1, 0))
936
+
937
+
938
+ def test_maximum_position02():
939
+ for type in types:
940
+ input = np.array([[5, 4, 2, 5],
941
+ [3, 7, 8, 2],
942
+ [1, 5, 1, 1]], type)
943
+ output = ndimage.maximum_position(input)
944
+ assert_equal(output, (1, 2))
945
+
946
+
947
+ def test_maximum_position03():
948
+ input = np.array([[5, 4, 2, 5],
949
+ [3, 7, 8, 2],
950
+ [1, 5, 1, 1]], bool)
951
+ output = ndimage.maximum_position(input)
952
+ assert_equal(output, (0, 0))
953
+
954
+
955
+ def test_maximum_position04():
956
+ labels = [1, 2, 0, 4]
957
+ for type in types:
958
+ input = np.array([[5, 4, 2, 5],
959
+ [3, 7, 8, 2],
960
+ [1, 5, 1, 1]], type)
961
+ output = ndimage.maximum_position(input, labels)
962
+ assert_equal(output, (1, 1))
963
+
964
+
965
+ def test_maximum_position05():
966
+ labels = [1, 2, 0, 4]
967
+ for type in types:
968
+ input = np.array([[5, 4, 2, 5],
969
+ [3, 7, 8, 2],
970
+ [1, 5, 1, 1]], type)
971
+ output = ndimage.maximum_position(input, labels, 1)
972
+ assert_equal(output, (0, 0))
973
+
974
+
975
+ def test_maximum_position06():
976
+ labels = [1, 2, 0, 4]
977
+ for type in types:
978
+ input = np.array([[5, 4, 2, 5],
979
+ [3, 7, 8, 2],
980
+ [1, 5, 1, 1]], type)
981
+ output = ndimage.maximum_position(input, labels,
982
+ [1, 2])
983
+ assert_equal(output[0], (0, 0))
984
+ assert_equal(output[1], (1, 1))
985
+
986
+
987
+ def test_maximum_position07():
988
+ # Test float labels
989
+ labels = np.array([1.0, 2.5, 0.0, 4.5])
990
+ for type in types:
991
+ input = np.array([[5, 4, 2, 5],
992
+ [3, 7, 8, 2],
993
+ [1, 5, 1, 1]], type)
994
+ output = ndimage.maximum_position(input, labels,
995
+ [1.0, 4.5])
996
+ assert_equal(output[0], (0, 0))
997
+ assert_equal(output[1], (0, 3))
998
+
999
+
1000
+ def test_extrema01():
1001
+ labels = np.array([1, 0], bool)
1002
+ for type in types:
1003
+ input = np.array([[1, 2], [3, 4]], type)
1004
+ output1 = ndimage.extrema(input, labels=labels)
1005
+ output2 = ndimage.minimum(input, labels=labels)
1006
+ output3 = ndimage.maximum(input, labels=labels)
1007
+ output4 = ndimage.minimum_position(input,
1008
+ labels=labels)
1009
+ output5 = ndimage.maximum_position(input,
1010
+ labels=labels)
1011
+ assert_equal(output1, (output2, output3, output4, output5))
1012
+
1013
+
1014
+ def test_extrema02():
1015
+ labels = np.array([1, 2])
1016
+ for type in types:
1017
+ input = np.array([[1, 2], [3, 4]], type)
1018
+ output1 = ndimage.extrema(input, labels=labels,
1019
+ index=2)
1020
+ output2 = ndimage.minimum(input, labels=labels,
1021
+ index=2)
1022
+ output3 = ndimage.maximum(input, labels=labels,
1023
+ index=2)
1024
+ output4 = ndimage.minimum_position(input,
1025
+ labels=labels, index=2)
1026
+ output5 = ndimage.maximum_position(input,
1027
+ labels=labels, index=2)
1028
+ assert_equal(output1, (output2, output3, output4, output5))
1029
+
1030
+
1031
+ def test_extrema03():
1032
+ labels = np.array([[1, 2], [2, 3]])
1033
+ for type in types:
1034
+ input = np.array([[1, 2], [3, 4]], type)
1035
+ output1 = ndimage.extrema(input, labels=labels,
1036
+ index=[2, 3, 8])
1037
+ output2 = ndimage.minimum(input, labels=labels,
1038
+ index=[2, 3, 8])
1039
+ output3 = ndimage.maximum(input, labels=labels,
1040
+ index=[2, 3, 8])
1041
+ output4 = ndimage.minimum_position(input,
1042
+ labels=labels, index=[2, 3, 8])
1043
+ output5 = ndimage.maximum_position(input,
1044
+ labels=labels, index=[2, 3, 8])
1045
+ assert_array_almost_equal(output1[0], output2)
1046
+ assert_array_almost_equal(output1[1], output3)
1047
+ assert_array_almost_equal(output1[2], output4)
1048
+ assert_array_almost_equal(output1[3], output5)
1049
+
1050
+
1051
+ def test_extrema04():
1052
+ labels = [1, 2, 0, 4]
1053
+ for type in types:
1054
+ input = np.array([[5, 4, 2, 5],
1055
+ [3, 7, 8, 2],
1056
+ [1, 5, 1, 1]], type)
1057
+ output1 = ndimage.extrema(input, labels, [1, 2])
1058
+ output2 = ndimage.minimum(input, labels, [1, 2])
1059
+ output3 = ndimage.maximum(input, labels, [1, 2])
1060
+ output4 = ndimage.minimum_position(input, labels,
1061
+ [1, 2])
1062
+ output5 = ndimage.maximum_position(input, labels,
1063
+ [1, 2])
1064
+ assert_array_almost_equal(output1[0], output2)
1065
+ assert_array_almost_equal(output1[1], output3)
1066
+ assert_array_almost_equal(output1[2], output4)
1067
+ assert_array_almost_equal(output1[3], output5)
1068
+
1069
+
1070
+ def test_center_of_mass01():
1071
+ expected = [0.0, 0.0]
1072
+ for type in types:
1073
+ input = np.array([[1, 0], [0, 0]], type)
1074
+ output = ndimage.center_of_mass(input)
1075
+ assert_array_almost_equal(output, expected)
1076
+
1077
+
1078
+ def test_center_of_mass02():
1079
+ expected = [1, 0]
1080
+ for type in types:
1081
+ input = np.array([[0, 0], [1, 0]], type)
1082
+ output = ndimage.center_of_mass(input)
1083
+ assert_array_almost_equal(output, expected)
1084
+
1085
+
1086
+ def test_center_of_mass03():
1087
+ expected = [0, 1]
1088
+ for type in types:
1089
+ input = np.array([[0, 1], [0, 0]], type)
1090
+ output = ndimage.center_of_mass(input)
1091
+ assert_array_almost_equal(output, expected)
1092
+
1093
+
1094
+ def test_center_of_mass04():
1095
+ expected = [1, 1]
1096
+ for type in types:
1097
+ input = np.array([[0, 0], [0, 1]], type)
1098
+ output = ndimage.center_of_mass(input)
1099
+ assert_array_almost_equal(output, expected)
1100
+
1101
+
1102
+ def test_center_of_mass05():
1103
+ expected = [0.5, 0.5]
1104
+ for type in types:
1105
+ input = np.array([[1, 1], [1, 1]], type)
1106
+ output = ndimage.center_of_mass(input)
1107
+ assert_array_almost_equal(output, expected)
1108
+
1109
+
1110
+ def test_center_of_mass06():
1111
+ expected = [0.5, 0.5]
1112
+ input = np.array([[1, 2], [3, 1]], bool)
1113
+ output = ndimage.center_of_mass(input)
1114
+ assert_array_almost_equal(output, expected)
1115
+
1116
+
1117
+ def test_center_of_mass07():
1118
+ labels = [1, 0]
1119
+ expected = [0.5, 0.0]
1120
+ input = np.array([[1, 2], [3, 1]], bool)
1121
+ output = ndimage.center_of_mass(input, labels)
1122
+ assert_array_almost_equal(output, expected)
1123
+
1124
+
1125
+ def test_center_of_mass08():
1126
+ labels = [1, 2]
1127
+ expected = [0.5, 1.0]
1128
+ input = np.array([[5, 2], [3, 1]], bool)
1129
+ output = ndimage.center_of_mass(input, labels, 2)
1130
+ assert_array_almost_equal(output, expected)
1131
+
1132
+
1133
+ def test_center_of_mass09():
1134
+ labels = [1, 2]
1135
+ expected = [(0.5, 0.0), (0.5, 1.0)]
1136
+ input = np.array([[1, 2], [1, 1]], bool)
1137
+ output = ndimage.center_of_mass(input, labels, [1, 2])
1138
+ assert_array_almost_equal(output, expected)
1139
+
1140
+
1141
+ def test_histogram01():
1142
+ expected = np.ones(10)
1143
+ input = np.arange(10)
1144
+ output = ndimage.histogram(input, 0, 10, 10)
1145
+ assert_array_almost_equal(output, expected)
1146
+
1147
+
1148
+ def test_histogram02():
1149
+ labels = [1, 1, 1, 1, 2, 2, 2, 2]
1150
+ expected = [0, 2, 0, 1, 1]
1151
+ input = np.array([1, 1, 3, 4, 3, 3, 3, 3])
1152
+ output = ndimage.histogram(input, 0, 4, 5, labels, 1)
1153
+ assert_array_almost_equal(output, expected)
1154
+
1155
+
1156
+ def test_histogram03():
1157
+ labels = [1, 0, 1, 1, 2, 2, 2, 2]
1158
+ expected1 = [0, 1, 0, 1, 1]
1159
+ expected2 = [0, 0, 0, 3, 0]
1160
+ input = np.array([1, 1, 3, 4, 3, 5, 3, 3])
1161
+ output = ndimage.histogram(input, 0, 4, 5, labels, (1, 2))
1162
+
1163
+ assert_array_almost_equal(output[0], expected1)
1164
+ assert_array_almost_equal(output[1], expected2)
1165
+
1166
+
1167
+ def test_stat_funcs_2d():
1168
+ a = np.array([[5, 6, 0, 0, 0], [8, 9, 0, 0, 0], [0, 0, 0, 3, 5]])
1169
+ lbl = np.array([[1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 0, 2, 2]])
1170
+
1171
+ mean = ndimage.mean(a, labels=lbl, index=[1, 2])
1172
+ assert_array_equal(mean, [7.0, 4.0])
1173
+
1174
+ var = ndimage.variance(a, labels=lbl, index=[1, 2])
1175
+ assert_array_equal(var, [2.5, 1.0])
1176
+
1177
+ std = ndimage.standard_deviation(a, labels=lbl, index=[1, 2])
1178
+ assert_array_almost_equal(std, np.sqrt([2.5, 1.0]))
1179
+
1180
+ med = ndimage.median(a, labels=lbl, index=[1, 2])
1181
+ assert_array_equal(med, [7.0, 4.0])
1182
+
1183
+ min = ndimage.minimum(a, labels=lbl, index=[1, 2])
1184
+ assert_array_equal(min, [5, 3])
1185
+
1186
+ max = ndimage.maximum(a, labels=lbl, index=[1, 2])
1187
+ assert_array_equal(max, [9, 5])
1188
+
1189
+
1190
+ class TestWatershedIft:
1191
+
1192
+ def test_watershed_ift01(self):
1193
+ data = np.array([[0, 0, 0, 0, 0, 0, 0],
1194
+ [0, 1, 1, 1, 1, 1, 0],
1195
+ [0, 1, 0, 0, 0, 1, 0],
1196
+ [0, 1, 0, 0, 0, 1, 0],
1197
+ [0, 1, 0, 0, 0, 1, 0],
1198
+ [0, 1, 1, 1, 1, 1, 0],
1199
+ [0, 0, 0, 0, 0, 0, 0],
1200
+ [0, 0, 0, 0, 0, 0, 0]], np.uint8)
1201
+ markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
1202
+ [0, 0, 0, 0, 0, 0, 0],
1203
+ [0, 0, 0, 0, 0, 0, 0],
1204
+ [0, 0, 0, 1, 0, 0, 0],
1205
+ [0, 0, 0, 0, 0, 0, 0],
1206
+ [0, 0, 0, 0, 0, 0, 0],
1207
+ [0, 0, 0, 0, 0, 0, 0],
1208
+ [0, 0, 0, 0, 0, 0, 0]], np.int8)
1209
+ out = ndimage.watershed_ift(data, markers, structure=[[1, 1, 1],
1210
+ [1, 1, 1],
1211
+ [1, 1, 1]])
1212
+ expected = [[-1, -1, -1, -1, -1, -1, -1],
1213
+ [-1, 1, 1, 1, 1, 1, -1],
1214
+ [-1, 1, 1, 1, 1, 1, -1],
1215
+ [-1, 1, 1, 1, 1, 1, -1],
1216
+ [-1, 1, 1, 1, 1, 1, -1],
1217
+ [-1, 1, 1, 1, 1, 1, -1],
1218
+ [-1, -1, -1, -1, -1, -1, -1],
1219
+ [-1, -1, -1, -1, -1, -1, -1]]
1220
+ assert_array_almost_equal(out, expected)
1221
+
1222
+ def test_watershed_ift02(self):
1223
+ data = np.array([[0, 0, 0, 0, 0, 0, 0],
1224
+ [0, 1, 1, 1, 1, 1, 0],
1225
+ [0, 1, 0, 0, 0, 1, 0],
1226
+ [0, 1, 0, 0, 0, 1, 0],
1227
+ [0, 1, 0, 0, 0, 1, 0],
1228
+ [0, 1, 1, 1, 1, 1, 0],
1229
+ [0, 0, 0, 0, 0, 0, 0],
1230
+ [0, 0, 0, 0, 0, 0, 0]], np.uint8)
1231
+ markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
1232
+ [0, 0, 0, 0, 0, 0, 0],
1233
+ [0, 0, 0, 0, 0, 0, 0],
1234
+ [0, 0, 0, 1, 0, 0, 0],
1235
+ [0, 0, 0, 0, 0, 0, 0],
1236
+ [0, 0, 0, 0, 0, 0, 0],
1237
+ [0, 0, 0, 0, 0, 0, 0],
1238
+ [0, 0, 0, 0, 0, 0, 0]], np.int8)
1239
+ out = ndimage.watershed_ift(data, markers)
1240
+ expected = [[-1, -1, -1, -1, -1, -1, -1],
1241
+ [-1, -1, 1, 1, 1, -1, -1],
1242
+ [-1, 1, 1, 1, 1, 1, -1],
1243
+ [-1, 1, 1, 1, 1, 1, -1],
1244
+ [-1, 1, 1, 1, 1, 1, -1],
1245
+ [-1, -1, 1, 1, 1, -1, -1],
1246
+ [-1, -1, -1, -1, -1, -1, -1],
1247
+ [-1, -1, -1, -1, -1, -1, -1]]
1248
+ assert_array_almost_equal(out, expected)
1249
+
1250
+ def test_watershed_ift03(self):
1251
+ data = np.array([[0, 0, 0, 0, 0, 0, 0],
1252
+ [0, 1, 1, 1, 1, 1, 0],
1253
+ [0, 1, 0, 1, 0, 1, 0],
1254
+ [0, 1, 0, 1, 0, 1, 0],
1255
+ [0, 1, 0, 1, 0, 1, 0],
1256
+ [0, 1, 1, 1, 1, 1, 0],
1257
+ [0, 0, 0, 0, 0, 0, 0]], np.uint8)
1258
+ markers = np.array([[0, 0, 0, 0, 0, 0, 0],
1259
+ [0, 0, 0, 0, 0, 0, 0],
1260
+ [0, 0, 0, 0, 0, 0, 0],
1261
+ [0, 0, 2, 0, 3, 0, 0],
1262
+ [0, 0, 0, 0, 0, 0, 0],
1263
+ [0, 0, 0, 0, 0, 0, 0],
1264
+ [0, 0, 0, 0, 0, 0, -1]], np.int8)
1265
+ out = ndimage.watershed_ift(data, markers)
1266
+ expected = [[-1, -1, -1, -1, -1, -1, -1],
1267
+ [-1, -1, 2, -1, 3, -1, -1],
1268
+ [-1, 2, 2, 3, 3, 3, -1],
1269
+ [-1, 2, 2, 3, 3, 3, -1],
1270
+ [-1, 2, 2, 3, 3, 3, -1],
1271
+ [-1, -1, 2, -1, 3, -1, -1],
1272
+ [-1, -1, -1, -1, -1, -1, -1]]
1273
+ assert_array_almost_equal(out, expected)
1274
+
1275
+ def test_watershed_ift04(self):
1276
+ data = np.array([[0, 0, 0, 0, 0, 0, 0],
1277
+ [0, 1, 1, 1, 1, 1, 0],
1278
+ [0, 1, 0, 1, 0, 1, 0],
1279
+ [0, 1, 0, 1, 0, 1, 0],
1280
+ [0, 1, 0, 1, 0, 1, 0],
1281
+ [0, 1, 1, 1, 1, 1, 0],
1282
+ [0, 0, 0, 0, 0, 0, 0]], np.uint8)
1283
+ markers = np.array([[0, 0, 0, 0, 0, 0, 0],
1284
+ [0, 0, 0, 0, 0, 0, 0],
1285
+ [0, 0, 0, 0, 0, 0, 0],
1286
+ [0, 0, 2, 0, 3, 0, 0],
1287
+ [0, 0, 0, 0, 0, 0, 0],
1288
+ [0, 0, 0, 0, 0, 0, 0],
1289
+ [0, 0, 0, 0, 0, 0, -1]],
1290
+ np.int8)
1291
+ out = ndimage.watershed_ift(data, markers,
1292
+ structure=[[1, 1, 1],
1293
+ [1, 1, 1],
1294
+ [1, 1, 1]])
1295
+ expected = [[-1, -1, -1, -1, -1, -1, -1],
1296
+ [-1, 2, 2, 3, 3, 3, -1],
1297
+ [-1, 2, 2, 3, 3, 3, -1],
1298
+ [-1, 2, 2, 3, 3, 3, -1],
1299
+ [-1, 2, 2, 3, 3, 3, -1],
1300
+ [-1, 2, 2, 3, 3, 3, -1],
1301
+ [-1, -1, -1, -1, -1, -1, -1]]
1302
+ assert_array_almost_equal(out, expected)
1303
+
1304
+ def test_watershed_ift05(self):
1305
+ data = np.array([[0, 0, 0, 0, 0, 0, 0],
1306
+ [0, 1, 1, 1, 1, 1, 0],
1307
+ [0, 1, 0, 1, 0, 1, 0],
1308
+ [0, 1, 0, 1, 0, 1, 0],
1309
+ [0, 1, 0, 1, 0, 1, 0],
1310
+ [0, 1, 1, 1, 1, 1, 0],
1311
+ [0, 0, 0, 0, 0, 0, 0]], np.uint8)
1312
+ markers = np.array([[0, 0, 0, 0, 0, 0, 0],
1313
+ [0, 0, 0, 0, 0, 0, 0],
1314
+ [0, 0, 0, 0, 0, 0, 0],
1315
+ [0, 0, 3, 0, 2, 0, 0],
1316
+ [0, 0, 0, 0, 0, 0, 0],
1317
+ [0, 0, 0, 0, 0, 0, 0],
1318
+ [0, 0, 0, 0, 0, 0, -1]],
1319
+ np.int8)
1320
+ out = ndimage.watershed_ift(data, markers,
1321
+ structure=[[1, 1, 1],
1322
+ [1, 1, 1],
1323
+ [1, 1, 1]])
1324
+ expected = [[-1, -1, -1, -1, -1, -1, -1],
1325
+ [-1, 3, 3, 2, 2, 2, -1],
1326
+ [-1, 3, 3, 2, 2, 2, -1],
1327
+ [-1, 3, 3, 2, 2, 2, -1],
1328
+ [-1, 3, 3, 2, 2, 2, -1],
1329
+ [-1, 3, 3, 2, 2, 2, -1],
1330
+ [-1, -1, -1, -1, -1, -1, -1]]
1331
+ assert_array_almost_equal(out, expected)
1332
+
1333
+ def test_watershed_ift06(self):
1334
+ data = np.array([[0, 1, 0, 0, 0, 1, 0],
1335
+ [0, 1, 0, 0, 0, 1, 0],
1336
+ [0, 1, 0, 0, 0, 1, 0],
1337
+ [0, 1, 1, 1, 1, 1, 0],
1338
+ [0, 0, 0, 0, 0, 0, 0],
1339
+ [0, 0, 0, 0, 0, 0, 0]], np.uint8)
1340
+ markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
1341
+ [0, 0, 0, 1, 0, 0, 0],
1342
+ [0, 0, 0, 0, 0, 0, 0],
1343
+ [0, 0, 0, 0, 0, 0, 0],
1344
+ [0, 0, 0, 0, 0, 0, 0],
1345
+ [0, 0, 0, 0, 0, 0, 0]], np.int8)
1346
+ out = ndimage.watershed_ift(data, markers,
1347
+ structure=[[1, 1, 1],
1348
+ [1, 1, 1],
1349
+ [1, 1, 1]])
1350
+ expected = [[-1, 1, 1, 1, 1, 1, -1],
1351
+ [-1, 1, 1, 1, 1, 1, -1],
1352
+ [-1, 1, 1, 1, 1, 1, -1],
1353
+ [-1, 1, 1, 1, 1, 1, -1],
1354
+ [-1, -1, -1, -1, -1, -1, -1],
1355
+ [-1, -1, -1, -1, -1, -1, -1]]
1356
+ assert_array_almost_equal(out, expected)
1357
+
1358
+ def test_watershed_ift07(self):
1359
+ shape = (7, 6)
1360
+ data = np.zeros(shape, dtype=np.uint8)
1361
+ data = data.transpose()
1362
+ data[...] = np.array([[0, 1, 0, 0, 0, 1, 0],
1363
+ [0, 1, 0, 0, 0, 1, 0],
1364
+ [0, 1, 0, 0, 0, 1, 0],
1365
+ [0, 1, 1, 1, 1, 1, 0],
1366
+ [0, 0, 0, 0, 0, 0, 0],
1367
+ [0, 0, 0, 0, 0, 0, 0]], np.uint8)
1368
+ markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
1369
+ [0, 0, 0, 1, 0, 0, 0],
1370
+ [0, 0, 0, 0, 0, 0, 0],
1371
+ [0, 0, 0, 0, 0, 0, 0],
1372
+ [0, 0, 0, 0, 0, 0, 0],
1373
+ [0, 0, 0, 0, 0, 0, 0]], np.int8)
1374
+ out = np.zeros(shape, dtype=np.int16)
1375
+ out = out.transpose()
1376
+ ndimage.watershed_ift(data, markers,
1377
+ structure=[[1, 1, 1],
1378
+ [1, 1, 1],
1379
+ [1, 1, 1]],
1380
+ output=out)
1381
+ expected = [[-1, 1, 1, 1, 1, 1, -1],
1382
+ [-1, 1, 1, 1, 1, 1, -1],
1383
+ [-1, 1, 1, 1, 1, 1, -1],
1384
+ [-1, 1, 1, 1, 1, 1, -1],
1385
+ [-1, -1, -1, -1, -1, -1, -1],
1386
+ [-1, -1, -1, -1, -1, -1, -1]]
1387
+ assert_array_almost_equal(out, expected)
1388
+
1389
+ def test_watershed_ift08(self):
1390
+ # Test cost larger than uint8. See gh-10069.
1391
+ data = np.array([[256, 0],
1392
+ [0, 0]], np.uint16)
1393
+ markers = np.array([[1, 0],
1394
+ [0, 0]], np.int8)
1395
+ out = ndimage.watershed_ift(data, markers)
1396
+ expected = [[1, 1],
1397
+ [1, 1]]
1398
+ assert_array_almost_equal(out, expected)
1399
+
1400
+ def test_watershed_ift09(self):
1401
+ # Test large cost. See gh-19575
1402
+ data = np.array([[np.iinfo(np.uint16).max, 0],
1403
+ [0, 0]], np.uint16)
1404
+ markers = np.array([[1, 0],
1405
+ [0, 0]], np.int8)
1406
+ out = ndimage.watershed_ift(data, markers)
1407
+ expected = [[1, 1],
1408
+ [1, 1]]
1409
+ assert_allclose(out, expected)
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_morphology.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_ni_support.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import numpy as np
4
+ from .._ni_support import _get_output
5
+
6
+
7
+ @pytest.mark.parametrize(
8
+ 'dtype',
9
+ [
10
+ # String specifiers
11
+ 'f4', 'float32', 'complex64', 'complex128',
12
+ # Type and dtype specifiers
13
+ np.float32, float, np.dtype('f4'),
14
+ # Derive from input
15
+ None,
16
+ ],
17
+ )
18
+ def test_get_output_basic(dtype):
19
+ shape = (2, 3)
20
+
21
+ input_ = np.zeros(shape, 'float32')
22
+
23
+ # For None, derive dtype from input
24
+ expected_dtype = 'float32' if dtype is None else dtype
25
+
26
+ # Output is dtype-specifier, retrieve shape from input
27
+ result = _get_output(dtype, input_)
28
+ assert result.shape == shape
29
+ assert result.dtype == np.dtype(expected_dtype)
30
+
31
+ # Output is dtype specifier, with explicit shape, overriding input
32
+ result = _get_output(dtype, input_, shape=(3, 2))
33
+ assert result.shape == (3, 2)
34
+ assert result.dtype == np.dtype(expected_dtype)
35
+
36
+ # Output is pre-allocated array, return directly
37
+ output = np.zeros(shape, dtype)
38
+ result = _get_output(output, input_)
39
+ assert result is output
40
+
41
+
42
+ def test_get_output_complex():
43
+ shape = (2, 3)
44
+
45
+ input_ = np.zeros(shape)
46
+
47
+ # None, promote input type to complex
48
+ result = _get_output(None, input_, complex_output=True)
49
+ assert result.shape == shape
50
+ assert result.dtype == np.dtype('complex128')
51
+
52
+ # Explicit type, promote type to complex
53
+ with pytest.warns(UserWarning, match='promoting specified output dtype to complex'):
54
+ result = _get_output(float, input_, complex_output=True)
55
+ assert result.shape == shape
56
+ assert result.dtype == np.dtype('complex128')
57
+
58
+ # String specifier, simply verify complex output
59
+ result = _get_output('complex64', input_, complex_output=True)
60
+ assert result.shape == shape
61
+ assert result.dtype == np.dtype('complex64')
62
+
63
+
64
+ def test_get_output_error_cases():
65
+ input_ = np.zeros((2, 3), 'float32')
66
+
67
+ # Two separate paths can raise the same error
68
+ with pytest.raises(RuntimeError, match='output must have complex dtype'):
69
+ _get_output('float32', input_, complex_output=True)
70
+ with pytest.raises(RuntimeError, match='output must have complex dtype'):
71
+ _get_output(np.zeros((2, 3)), input_, complex_output=True)
72
+
73
+ with pytest.raises(RuntimeError, match='output must have numeric dtype'):
74
+ _get_output('void', input_)
75
+
76
+ with pytest.raises(RuntimeError, match='shape not correct'):
77
+ _get_output(np.zeros((3, 2)), input_)
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_splines.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for spline filtering."""
2
+ import numpy as np
3
+ import pytest
4
+
5
+ from numpy.testing import assert_almost_equal
6
+
7
+ from scipy import ndimage
8
+
9
+
10
+ def get_spline_knot_values(order):
11
+ """Knot values to the right of a B-spline's center."""
12
+ knot_values = {0: [1],
13
+ 1: [1],
14
+ 2: [6, 1],
15
+ 3: [4, 1],
16
+ 4: [230, 76, 1],
17
+ 5: [66, 26, 1]}
18
+
19
+ return knot_values[order]
20
+
21
+
22
+ def make_spline_knot_matrix(n, order, mode='mirror'):
23
+ """Matrix to invert to find the spline coefficients."""
24
+ knot_values = get_spline_knot_values(order)
25
+
26
+ matrix = np.zeros((n, n))
27
+ for diag, knot_value in enumerate(knot_values):
28
+ indices = np.arange(diag, n)
29
+ if diag == 0:
30
+ matrix[indices, indices] = knot_value
31
+ else:
32
+ matrix[indices, indices - diag] = knot_value
33
+ matrix[indices - diag, indices] = knot_value
34
+
35
+ knot_values_sum = knot_values[0] + 2 * sum(knot_values[1:])
36
+
37
+ if mode == 'mirror':
38
+ start, step = 1, 1
39
+ elif mode == 'reflect':
40
+ start, step = 0, 1
41
+ elif mode == 'grid-wrap':
42
+ start, step = -1, -1
43
+ else:
44
+ raise ValueError(f'unsupported mode {mode}')
45
+
46
+ for row in range(len(knot_values) - 1):
47
+ for idx, knot_value in enumerate(knot_values[row + 1:]):
48
+ matrix[row, start + step*idx] += knot_value
49
+ matrix[-row - 1, -start - 1 - step*idx] += knot_value
50
+
51
+ return matrix / knot_values_sum
52
+
53
+
54
+ @pytest.mark.parametrize('order', [0, 1, 2, 3, 4, 5])
55
+ @pytest.mark.parametrize('mode', ['mirror', 'grid-wrap', 'reflect'])
56
+ def test_spline_filter_vs_matrix_solution(order, mode):
57
+ n = 100
58
+ eye = np.eye(n, dtype=float)
59
+ spline_filter_axis_0 = ndimage.spline_filter1d(eye, axis=0, order=order,
60
+ mode=mode)
61
+ spline_filter_axis_1 = ndimage.spline_filter1d(eye, axis=1, order=order,
62
+ mode=mode)
63
+ matrix = make_spline_knot_matrix(n, order, mode=mode)
64
+ assert_almost_equal(eye, np.dot(spline_filter_axis_0, matrix))
65
+ assert_almost_equal(eye, np.dot(spline_filter_axis_1, matrix.T))
venv/lib/python3.10/site-packages/scipy/stats/__init__.py ADDED
@@ -0,0 +1,643 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ .. _statsrefmanual:
3
+
4
+ ==========================================
5
+ Statistical functions (:mod:`scipy.stats`)
6
+ ==========================================
7
+
8
+ .. currentmodule:: scipy.stats
9
+
10
+ This module contains a large number of probability distributions,
11
+ summary and frequency statistics, correlation functions and statistical
12
+ tests, masked statistics, kernel density estimation, quasi-Monte Carlo
13
+ functionality, and more.
14
+
15
+ Statistics is a very large area, and there are topics that are out of scope
16
+ for SciPy and are covered by other packages. Some of the most important ones
17
+ are:
18
+
19
+ - `statsmodels <https://www.statsmodels.org/stable/index.html>`__:
20
+ regression, linear models, time series analysis, extensions to topics
21
+ also covered by ``scipy.stats``.
22
+ - `Pandas <https://pandas.pydata.org/>`__: tabular data, time series
23
+ functionality, interfaces to other statistical languages.
24
+ - `PyMC <https://docs.pymc.io/>`__: Bayesian statistical
25
+ modeling, probabilistic machine learning.
26
+ - `scikit-learn <https://scikit-learn.org/>`__: classification, regression,
27
+ model selection.
28
+ - `Seaborn <https://seaborn.pydata.org/>`__: statistical data visualization.
29
+ - `rpy2 <https://rpy2.github.io/>`__: Python to R bridge.
30
+
31
+
32
+ Probability distributions
33
+ =========================
34
+
35
+ Each univariate distribution is an instance of a subclass of `rv_continuous`
36
+ (`rv_discrete` for discrete distributions):
37
+
38
+ .. autosummary::
39
+ :toctree: generated/
40
+
41
+ rv_continuous
42
+ rv_discrete
43
+ rv_histogram
44
+
45
+ Continuous distributions
46
+ ------------------------
47
+
48
+ .. autosummary::
49
+ :toctree: generated/
50
+
51
+ alpha -- Alpha
52
+ anglit -- Anglit
53
+ arcsine -- Arcsine
54
+ argus -- Argus
55
+ beta -- Beta
56
+ betaprime -- Beta Prime
57
+ bradford -- Bradford
58
+ burr -- Burr (Type III)
59
+ burr12 -- Burr (Type XII)
60
+ cauchy -- Cauchy
61
+ chi -- Chi
62
+ chi2 -- Chi-squared
63
+ cosine -- Cosine
64
+ crystalball -- Crystalball
65
+ dgamma -- Double Gamma
66
+ dweibull -- Double Weibull
67
+ erlang -- Erlang
68
+ expon -- Exponential
69
+ exponnorm -- Exponentially Modified Normal
70
+ exponweib -- Exponentiated Weibull
71
+ exponpow -- Exponential Power
72
+ f -- F (Snecdor F)
73
+ fatiguelife -- Fatigue Life (Birnbaum-Saunders)
74
+ fisk -- Fisk
75
+ foldcauchy -- Folded Cauchy
76
+ foldnorm -- Folded Normal
77
+ genlogistic -- Generalized Logistic
78
+ gennorm -- Generalized normal
79
+ genpareto -- Generalized Pareto
80
+ genexpon -- Generalized Exponential
81
+ genextreme -- Generalized Extreme Value
82
+ gausshyper -- Gauss Hypergeometric
83
+ gamma -- Gamma
84
+ gengamma -- Generalized gamma
85
+ genhalflogistic -- Generalized Half Logistic
86
+ genhyperbolic -- Generalized Hyperbolic
87
+ geninvgauss -- Generalized Inverse Gaussian
88
+ gibrat -- Gibrat
89
+ gompertz -- Gompertz (Truncated Gumbel)
90
+ gumbel_r -- Right Sided Gumbel, Log-Weibull, Fisher-Tippett, Extreme Value Type I
91
+ gumbel_l -- Left Sided Gumbel, etc.
92
+ halfcauchy -- Half Cauchy
93
+ halflogistic -- Half Logistic
94
+ halfnorm -- Half Normal
95
+ halfgennorm -- Generalized Half Normal
96
+ hypsecant -- Hyperbolic Secant
97
+ invgamma -- Inverse Gamma
98
+ invgauss -- Inverse Gaussian
99
+ invweibull -- Inverse Weibull
100
+ jf_skew_t -- Jones and Faddy Skew-T
101
+ johnsonsb -- Johnson SB
102
+ johnsonsu -- Johnson SU
103
+ kappa4 -- Kappa 4 parameter
104
+ kappa3 -- Kappa 3 parameter
105
+ ksone -- Distribution of Kolmogorov-Smirnov one-sided test statistic
106
+ kstwo -- Distribution of Kolmogorov-Smirnov two-sided test statistic
107
+ kstwobign -- Limiting Distribution of scaled Kolmogorov-Smirnov two-sided test statistic.
108
+ laplace -- Laplace
109
+ laplace_asymmetric -- Asymmetric Laplace
110
+ levy -- Levy
111
+ levy_l
112
+ levy_stable
113
+ logistic -- Logistic
114
+ loggamma -- Log-Gamma
115
+ loglaplace -- Log-Laplace (Log Double Exponential)
116
+ lognorm -- Log-Normal
117
+ loguniform -- Log-Uniform
118
+ lomax -- Lomax (Pareto of the second kind)
119
+ maxwell -- Maxwell
120
+ mielke -- Mielke's Beta-Kappa
121
+ moyal -- Moyal
122
+ nakagami -- Nakagami
123
+ ncx2 -- Non-central chi-squared
124
+ ncf -- Non-central F
125
+ nct -- Non-central Student's T
126
+ norm -- Normal (Gaussian)
127
+ norminvgauss -- Normal Inverse Gaussian
128
+ pareto -- Pareto
129
+ pearson3 -- Pearson type III
130
+ powerlaw -- Power-function
131
+ powerlognorm -- Power log normal
132
+ powernorm -- Power normal
133
+ rdist -- R-distribution
134
+ rayleigh -- Rayleigh
135
+ rel_breitwigner -- Relativistic Breit-Wigner
136
+ rice -- Rice
137
+ recipinvgauss -- Reciprocal Inverse Gaussian
138
+ semicircular -- Semicircular
139
+ skewcauchy -- Skew Cauchy
140
+ skewnorm -- Skew normal
141
+ studentized_range -- Studentized Range
142
+ t -- Student's T
143
+ trapezoid -- Trapezoidal
144
+ triang -- Triangular
145
+ truncexpon -- Truncated Exponential
146
+ truncnorm -- Truncated Normal
147
+ truncpareto -- Truncated Pareto
148
+ truncweibull_min -- Truncated minimum Weibull distribution
149
+ tukeylambda -- Tukey-Lambda
150
+ uniform -- Uniform
151
+ vonmises -- Von-Mises (Circular)
152
+ vonmises_line -- Von-Mises (Line)
153
+ wald -- Wald
154
+ weibull_min -- Minimum Weibull (see Frechet)
155
+ weibull_max -- Maximum Weibull (see Frechet)
156
+ wrapcauchy -- Wrapped Cauchy
157
+
158
+ The ``fit`` method of the univariate continuous distributions uses
159
+ maximum likelihood estimation to fit the distribution to a data set.
160
+ The ``fit`` method can accept regular data or *censored data*.
161
+ Censored data is represented with instances of the `CensoredData`
162
+ class.
163
+
164
+ .. autosummary::
165
+ :toctree: generated/
166
+
167
+ CensoredData
168
+
169
+
170
+ Multivariate distributions
171
+ --------------------------
172
+
173
+ .. autosummary::
174
+ :toctree: generated/
175
+
176
+ multivariate_normal -- Multivariate normal distribution
177
+ matrix_normal -- Matrix normal distribution
178
+ dirichlet -- Dirichlet
179
+ dirichlet_multinomial -- Dirichlet multinomial distribution
180
+ wishart -- Wishart
181
+ invwishart -- Inverse Wishart
182
+ multinomial -- Multinomial distribution
183
+ special_ortho_group -- SO(N) group
184
+ ortho_group -- O(N) group
185
+ unitary_group -- U(N) group
186
+ random_correlation -- random correlation matrices
187
+ multivariate_t -- Multivariate t-distribution
188
+ multivariate_hypergeom -- Multivariate hypergeometric distribution
189
+ random_table -- Distribution of random tables with given marginals
190
+ uniform_direction -- Uniform distribution on S(N-1)
191
+ vonmises_fisher -- Von Mises-Fisher distribution
192
+
193
+ `scipy.stats.multivariate_normal` methods accept instances
194
+ of the following class to represent the covariance.
195
+
196
+ .. autosummary::
197
+ :toctree: generated/
198
+
199
+ Covariance -- Representation of a covariance matrix
200
+
201
+
202
+ Discrete distributions
203
+ ----------------------
204
+
205
+ .. autosummary::
206
+ :toctree: generated/
207
+
208
+ bernoulli -- Bernoulli
209
+ betabinom -- Beta-Binomial
210
+ betanbinom -- Beta-Negative Binomial
211
+ binom -- Binomial
212
+ boltzmann -- Boltzmann (Truncated Discrete Exponential)
213
+ dlaplace -- Discrete Laplacian
214
+ geom -- Geometric
215
+ hypergeom -- Hypergeometric
216
+ logser -- Logarithmic (Log-Series, Series)
217
+ nbinom -- Negative Binomial
218
+ nchypergeom_fisher -- Fisher's Noncentral Hypergeometric
219
+ nchypergeom_wallenius -- Wallenius's Noncentral Hypergeometric
220
+ nhypergeom -- Negative Hypergeometric
221
+ planck -- Planck (Discrete Exponential)
222
+ poisson -- Poisson
223
+ randint -- Discrete Uniform
224
+ skellam -- Skellam
225
+ yulesimon -- Yule-Simon
226
+ zipf -- Zipf (Zeta)
227
+ zipfian -- Zipfian
228
+
229
+
230
+ An overview of statistical functions is given below. Many of these functions
231
+ have a similar version in `scipy.stats.mstats` which work for masked arrays.
232
+
233
+ Summary statistics
234
+ ==================
235
+
236
+ .. autosummary::
237
+ :toctree: generated/
238
+
239
+ describe -- Descriptive statistics
240
+ gmean -- Geometric mean
241
+ hmean -- Harmonic mean
242
+ pmean -- Power mean
243
+ kurtosis -- Fisher or Pearson kurtosis
244
+ mode -- Modal value
245
+ moment -- Central moment
246
+ expectile -- Expectile
247
+ skew -- Skewness
248
+ kstat --
249
+ kstatvar --
250
+ tmean -- Truncated arithmetic mean
251
+ tvar -- Truncated variance
252
+ tmin --
253
+ tmax --
254
+ tstd --
255
+ tsem --
256
+ variation -- Coefficient of variation
257
+ find_repeats
258
+ rankdata
259
+ tiecorrect
260
+ trim_mean
261
+ gstd -- Geometric Standard Deviation
262
+ iqr
263
+ sem
264
+ bayes_mvs
265
+ mvsdist
266
+ entropy
267
+ differential_entropy
268
+ median_abs_deviation
269
+
270
+ Frequency statistics
271
+ ====================
272
+
273
+ .. autosummary::
274
+ :toctree: generated/
275
+
276
+ cumfreq
277
+ percentileofscore
278
+ scoreatpercentile
279
+ relfreq
280
+
281
+ .. autosummary::
282
+ :toctree: generated/
283
+
284
+ binned_statistic -- Compute a binned statistic for a set of data.
285
+ binned_statistic_2d -- Compute a 2-D binned statistic for a set of data.
286
+ binned_statistic_dd -- Compute a d-D binned statistic for a set of data.
287
+
288
+ Hypothesis Tests and related functions
289
+ ======================================
290
+ SciPy has many functions for performing hypothesis tests that return a
291
+ test statistic and a p-value, and several of them return confidence intervals
292
+ and/or other related information.
293
+
294
+ The headings below are based on common uses of the functions within, but due to
295
+ the wide variety of statistical procedures, any attempt at coarse-grained
296
+ categorization will be imperfect. Also, note that tests within the same heading
297
+ are not interchangeable in general (e.g. many have different distributional
298
+ assumptions).
299
+
300
+ One Sample Tests / Paired Sample Tests
301
+ --------------------------------------
302
+ One sample tests are typically used to assess whether a single sample was
303
+ drawn from a specified distribution or a distribution with specified properties
304
+ (e.g. zero mean).
305
+
306
+ .. autosummary::
307
+ :toctree: generated/
308
+
309
+ ttest_1samp
310
+ binomtest
311
+ quantile_test
312
+ skewtest
313
+ kurtosistest
314
+ normaltest
315
+ jarque_bera
316
+ shapiro
317
+ anderson
318
+ cramervonmises
319
+ ks_1samp
320
+ goodness_of_fit
321
+ chisquare
322
+ power_divergence
323
+
324
+ Paired sample tests are often used to assess whether two samples were drawn
325
+ from the same distribution; they differ from the independent sample tests below
326
+ in that each observation in one sample is treated as paired with a
327
+ closely-related observation in the other sample (e.g. when environmental
328
+ factors are controlled between observations within a pair but not among pairs).
329
+ They can also be interpreted or used as one-sample tests (e.g. tests on the
330
+ mean or median of *differences* between paired observations).
331
+
332
+ .. autosummary::
333
+ :toctree: generated/
334
+
335
+ ttest_rel
336
+ wilcoxon
337
+
338
+ Association/Correlation Tests
339
+ -----------------------------
340
+
341
+ These tests are often used to assess whether there is a relationship (e.g.
342
+ linear) between paired observations in multiple samples or among the
343
+ coordinates of multivariate observations.
344
+
345
+ .. autosummary::
346
+ :toctree: generated/
347
+
348
+ linregress
349
+ pearsonr
350
+ spearmanr
351
+ pointbiserialr
352
+ kendalltau
353
+ weightedtau
354
+ somersd
355
+ siegelslopes
356
+ theilslopes
357
+ page_trend_test
358
+ multiscale_graphcorr
359
+
360
+ These association tests and are to work with samples in the form of contingency
361
+ tables. Supporting functions are available in `scipy.stats.contingency`.
362
+
363
+ .. autosummary::
364
+ :toctree: generated/
365
+
366
+ chi2_contingency
367
+ fisher_exact
368
+ barnard_exact
369
+ boschloo_exact
370
+
371
+ Independent Sample Tests
372
+ ------------------------
373
+ Independent sample tests are typically used to assess whether multiple samples
374
+ were independently drawn from the same distribution or different distributions
375
+ with a shared property (e.g. equal means).
376
+
377
+ Some tests are specifically for comparing two samples.
378
+
379
+ .. autosummary::
380
+ :toctree: generated/
381
+
382
+ ttest_ind_from_stats
383
+ poisson_means_test
384
+ ttest_ind
385
+ mannwhitneyu
386
+ bws_test
387
+ ranksums
388
+ brunnermunzel
389
+ mood
390
+ ansari
391
+ cramervonmises_2samp
392
+ epps_singleton_2samp
393
+ ks_2samp
394
+ kstest
395
+
396
+ Others are generalized to multiple samples.
397
+
398
+ .. autosummary::
399
+ :toctree: generated/
400
+
401
+ f_oneway
402
+ tukey_hsd
403
+ dunnett
404
+ kruskal
405
+ alexandergovern
406
+ fligner
407
+ levene
408
+ bartlett
409
+ median_test
410
+ friedmanchisquare
411
+ anderson_ksamp
412
+
413
+ Resampling and Monte Carlo Methods
414
+ ----------------------------------
415
+ The following functions can reproduce the p-value and confidence interval
416
+ results of most of the functions above, and often produce accurate results in a
417
+ wider variety of conditions. They can also be used to perform hypothesis tests
418
+ and generate confidence intervals for custom statistics. This flexibility comes
419
+ at the cost of greater computational requirements and stochastic results.
420
+
421
+ .. autosummary::
422
+ :toctree: generated/
423
+
424
+ monte_carlo_test
425
+ permutation_test
426
+ bootstrap
427
+
428
+ Instances of the following object can be passed into some hypothesis test
429
+ functions to perform a resampling or Monte Carlo version of the hypothesis
430
+ test.
431
+
432
+ .. autosummary::
433
+ :toctree: generated/
434
+
435
+ MonteCarloMethod
436
+ PermutationMethod
437
+ BootstrapMethod
438
+
439
+ Multiple Hypothesis Testing and Meta-Analysis
440
+ ---------------------------------------------
441
+ These functions are for assessing the results of individual tests as a whole.
442
+ Functions for performing specific multiple hypothesis tests (e.g. post hoc
443
+ tests) are listed above.
444
+
445
+ .. autosummary::
446
+ :toctree: generated/
447
+
448
+ combine_pvalues
449
+ false_discovery_control
450
+
451
+
452
+ The following functions are related to the tests above but do not belong in the
453
+ above categories.
454
+
455
+ Quasi-Monte Carlo
456
+ =================
457
+
458
+ .. toctree::
459
+ :maxdepth: 4
460
+
461
+ stats.qmc
462
+
463
+ Contingency Tables
464
+ ==================
465
+
466
+ .. toctree::
467
+ :maxdepth: 4
468
+
469
+ stats.contingency
470
+
471
+ Masked statistics functions
472
+ ===========================
473
+
474
+ .. toctree::
475
+
476
+ stats.mstats
477
+
478
+
479
+ Other statistical functionality
480
+ ===============================
481
+
482
+ Transformations
483
+ ---------------
484
+
485
+ .. autosummary::
486
+ :toctree: generated/
487
+
488
+ boxcox
489
+ boxcox_normmax
490
+ boxcox_llf
491
+ yeojohnson
492
+ yeojohnson_normmax
493
+ yeojohnson_llf
494
+ obrientransform
495
+ sigmaclip
496
+ trimboth
497
+ trim1
498
+ zmap
499
+ zscore
500
+ gzscore
501
+
502
+ Statistical distances
503
+ ---------------------
504
+
505
+ .. autosummary::
506
+ :toctree: generated/
507
+
508
+ wasserstein_distance
509
+ wasserstein_distance_nd
510
+ energy_distance
511
+
512
+ Sampling
513
+ --------
514
+
515
+ .. toctree::
516
+ :maxdepth: 4
517
+
518
+ stats.sampling
519
+
520
+ Random variate generation / CDF Inversion
521
+ -----------------------------------------
522
+
523
+ .. autosummary::
524
+ :toctree: generated/
525
+
526
+ rvs_ratio_uniforms
527
+
528
+ Fitting / Survival Analysis
529
+ ---------------------------
530
+
531
+ .. autosummary::
532
+ :toctree: generated/
533
+
534
+ fit
535
+ ecdf
536
+ logrank
537
+
538
+ Directional statistical functions
539
+ ---------------------------------
540
+
541
+ .. autosummary::
542
+ :toctree: generated/
543
+
544
+ directional_stats
545
+ circmean
546
+ circvar
547
+ circstd
548
+
549
+ Sensitivity Analysis
550
+ --------------------
551
+
552
+ .. autosummary::
553
+ :toctree: generated/
554
+
555
+ sobol_indices
556
+
557
+ Plot-tests
558
+ ----------
559
+
560
+ .. autosummary::
561
+ :toctree: generated/
562
+
563
+ ppcc_max
564
+ ppcc_plot
565
+ probplot
566
+ boxcox_normplot
567
+ yeojohnson_normplot
568
+
569
+ Univariate and multivariate kernel density estimation
570
+ -----------------------------------------------------
571
+
572
+ .. autosummary::
573
+ :toctree: generated/
574
+
575
+ gaussian_kde
576
+
577
+ Warnings / Errors used in :mod:`scipy.stats`
578
+ --------------------------------------------
579
+
580
+ .. autosummary::
581
+ :toctree: generated/
582
+
583
+ DegenerateDataWarning
584
+ ConstantInputWarning
585
+ NearConstantInputWarning
586
+ FitError
587
+
588
+ Result classes used in :mod:`scipy.stats`
589
+ -----------------------------------------
590
+
591
+ .. warning::
592
+
593
+ These classes are private, but they are included here because instances
594
+ of them are returned by other statistical functions. User import and
595
+ instantiation is not supported.
596
+
597
+ .. toctree::
598
+ :maxdepth: 2
599
+
600
+ stats._result_classes
601
+
602
+ """ # noqa: E501
603
+
604
+ from ._warnings_errors import (ConstantInputWarning, NearConstantInputWarning,
605
+ DegenerateDataWarning, FitError)
606
+ from ._stats_py import *
607
+ from ._variation import variation
608
+ from .distributions import *
609
+ from ._morestats import *
610
+ from ._multicomp import *
611
+ from ._binomtest import binomtest
612
+ from ._binned_statistic import *
613
+ from ._kde import gaussian_kde
614
+ from . import mstats
615
+ from . import qmc
616
+ from ._multivariate import *
617
+ from . import contingency
618
+ from .contingency import chi2_contingency
619
+ from ._censored_data import CensoredData
620
+ from ._resampling import (bootstrap, monte_carlo_test, permutation_test,
621
+ MonteCarloMethod, PermutationMethod, BootstrapMethod)
622
+ from ._entropy import *
623
+ from ._hypotests import *
624
+ from ._rvs_sampling import rvs_ratio_uniforms
625
+ from ._page_trend_test import page_trend_test
626
+ from ._mannwhitneyu import mannwhitneyu
627
+ from ._bws_test import bws_test
628
+ from ._fit import fit, goodness_of_fit
629
+ from ._covariance import Covariance
630
+ from ._sensitivity_analysis import *
631
+ from ._survival import *
632
+
633
+ # Deprecated namespaces, to be removed in v2.0.0
634
+ from . import (
635
+ biasedurn, kde, morestats, mstats_basic, mstats_extras, mvn, stats
636
+ )
637
+
638
+
639
+ __all__ = [s for s in dir() if not s.startswith("_")] # Remove dunders.
640
+
641
+ from scipy._lib._testutils import PytestTester
642
+ test = PytestTester(__name__)
643
+ del PytestTester
venv/lib/python3.10/site-packages/scipy/stats/_ansari_swilk_statistics.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (278 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_axis_nan_policy.py ADDED
@@ -0,0 +1,642 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Many scipy.stats functions support `axis` and `nan_policy` parameters.
2
+ # When the two are combined, it can be tricky to get all the behavior just
3
+ # right. This file contains utility functions useful for scipy.stats functions
4
+ # that support `axis` and `nan_policy`, including a decorator that
5
+ # automatically adds `axis` and `nan_policy` arguments to a function.
6
+
7
+ import numpy as np
8
+ from functools import wraps
9
+ from scipy._lib._docscrape import FunctionDoc, Parameter
10
+ from scipy._lib._util import _contains_nan, AxisError, _get_nan
11
+ import inspect
12
+
13
+
14
+ def _broadcast_arrays(arrays, axis=None):
15
+ """
16
+ Broadcast shapes of arrays, ignoring incompatibility of specified axes
17
+ """
18
+ new_shapes = _broadcast_array_shapes(arrays, axis=axis)
19
+ if axis is None:
20
+ new_shapes = [new_shapes]*len(arrays)
21
+ return [np.broadcast_to(array, new_shape)
22
+ for array, new_shape in zip(arrays, new_shapes)]
23
+
24
+
25
+ def _broadcast_array_shapes(arrays, axis=None):
26
+ """
27
+ Broadcast shapes of arrays, ignoring incompatibility of specified axes
28
+ """
29
+ shapes = [np.asarray(arr).shape for arr in arrays]
30
+ return _broadcast_shapes(shapes, axis)
31
+
32
+
33
+ def _broadcast_shapes(shapes, axis=None):
34
+ """
35
+ Broadcast shapes, ignoring incompatibility of specified axes
36
+ """
37
+ if not shapes:
38
+ return shapes
39
+
40
+ # input validation
41
+ if axis is not None:
42
+ axis = np.atleast_1d(axis)
43
+ axis_int = axis.astype(int)
44
+ if not np.array_equal(axis_int, axis):
45
+ raise AxisError('`axis` must be an integer, a '
46
+ 'tuple of integers, or `None`.')
47
+ axis = axis_int
48
+
49
+ # First, ensure all shapes have same number of dimensions by prepending 1s.
50
+ n_dims = max([len(shape) for shape in shapes])
51
+ new_shapes = np.ones((len(shapes), n_dims), dtype=int)
52
+ for row, shape in zip(new_shapes, shapes):
53
+ row[len(row)-len(shape):] = shape # can't use negative indices (-0:)
54
+
55
+ # Remove the shape elements of the axes to be ignored, but remember them.
56
+ if axis is not None:
57
+ axis[axis < 0] = n_dims + axis[axis < 0]
58
+ axis = np.sort(axis)
59
+ if axis[-1] >= n_dims or axis[0] < 0:
60
+ message = (f"`axis` is out of bounds "
61
+ f"for array of dimension {n_dims}")
62
+ raise AxisError(message)
63
+
64
+ if len(np.unique(axis)) != len(axis):
65
+ raise AxisError("`axis` must contain only distinct elements")
66
+
67
+ removed_shapes = new_shapes[:, axis]
68
+ new_shapes = np.delete(new_shapes, axis, axis=1)
69
+
70
+ # If arrays are broadcastable, shape elements that are 1 may be replaced
71
+ # with a corresponding non-1 shape element. Assuming arrays are
72
+ # broadcastable, that final shape element can be found with:
73
+ new_shape = np.max(new_shapes, axis=0)
74
+ # except in case of an empty array:
75
+ new_shape *= new_shapes.all(axis=0)
76
+
77
+ # Among all arrays, there can only be one unique non-1 shape element.
78
+ # Therefore, if any non-1 shape element does not match what we found
79
+ # above, the arrays must not be broadcastable after all.
80
+ if np.any(~((new_shapes == 1) | (new_shapes == new_shape))):
81
+ raise ValueError("Array shapes are incompatible for broadcasting.")
82
+
83
+ if axis is not None:
84
+ # Add back the shape elements that were ignored
85
+ new_axis = axis - np.arange(len(axis))
86
+ new_shapes = [tuple(np.insert(new_shape, new_axis, removed_shape))
87
+ for removed_shape in removed_shapes]
88
+ return new_shapes
89
+ else:
90
+ return tuple(new_shape)
91
+
92
+
93
+ def _broadcast_array_shapes_remove_axis(arrays, axis=None):
94
+ """
95
+ Broadcast shapes of arrays, dropping specified axes
96
+
97
+ Given a sequence of arrays `arrays` and an integer or tuple `axis`, find
98
+ the shape of the broadcast result after consuming/dropping `axis`.
99
+ In other words, return output shape of a typical hypothesis test on
100
+ `arrays` vectorized along `axis`.
101
+
102
+ Examples
103
+ --------
104
+ >>> import numpy as np
105
+ >>> from scipy.stats._axis_nan_policy import _broadcast_array_shapes
106
+ >>> a = np.zeros((5, 2, 1))
107
+ >>> b = np.zeros((9, 3))
108
+ >>> _broadcast_array_shapes((a, b), 1)
109
+ (5, 3)
110
+ """
111
+ # Note that here, `axis=None` means do not consume/drop any axes - _not_
112
+ # ravel arrays before broadcasting.
113
+ shapes = [arr.shape for arr in arrays]
114
+ return _broadcast_shapes_remove_axis(shapes, axis)
115
+
116
+
117
+ def _broadcast_shapes_remove_axis(shapes, axis=None):
118
+ """
119
+ Broadcast shapes, dropping specified axes
120
+
121
+ Same as _broadcast_array_shapes, but given a sequence
122
+ of array shapes `shapes` instead of the arrays themselves.
123
+ """
124
+ shapes = _broadcast_shapes(shapes, axis)
125
+ shape = shapes[0]
126
+ if axis is not None:
127
+ shape = np.delete(shape, axis)
128
+ return tuple(shape)
129
+
130
+
131
+ def _broadcast_concatenate(arrays, axis, paired=False):
132
+ """Concatenate arrays along an axis with broadcasting."""
133
+ arrays = _broadcast_arrays(arrays, axis if not paired else None)
134
+ res = np.concatenate(arrays, axis=axis)
135
+ return res
136
+
137
+
138
+ # TODO: add support for `axis` tuples
139
+ def _remove_nans(samples, paired):
140
+ "Remove nans from paired or unpaired 1D samples"
141
+ # potential optimization: don't copy arrays that don't contain nans
142
+ if not paired:
143
+ return [sample[~np.isnan(sample)] for sample in samples]
144
+
145
+ # for paired samples, we need to remove the whole pair when any part
146
+ # has a nan
147
+ nans = np.isnan(samples[0])
148
+ for sample in samples[1:]:
149
+ nans = nans | np.isnan(sample)
150
+ not_nans = ~nans
151
+ return [sample[not_nans] for sample in samples]
152
+
153
+
154
+ def _remove_sentinel(samples, paired, sentinel):
155
+ "Remove sentinel values from paired or unpaired 1D samples"
156
+ # could consolidate with `_remove_nans`, but it's not quite as simple as
157
+ # passing `sentinel=np.nan` because `(np.nan == np.nan) is False`
158
+
159
+ # potential optimization: don't copy arrays that don't contain sentinel
160
+ if not paired:
161
+ return [sample[sample != sentinel] for sample in samples]
162
+
163
+ # for paired samples, we need to remove the whole pair when any part
164
+ # has a nan
165
+ sentinels = (samples[0] == sentinel)
166
+ for sample in samples[1:]:
167
+ sentinels = sentinels | (sample == sentinel)
168
+ not_sentinels = ~sentinels
169
+ return [sample[not_sentinels] for sample in samples]
170
+
171
+
172
+ def _masked_arrays_2_sentinel_arrays(samples):
173
+ # masked arrays in `samples` are converted to regular arrays, and values
174
+ # corresponding with masked elements are replaced with a sentinel value
175
+
176
+ # return without modifying arrays if none have a mask
177
+ has_mask = False
178
+ for sample in samples:
179
+ mask = getattr(sample, 'mask', False)
180
+ has_mask = has_mask or np.any(mask)
181
+ if not has_mask:
182
+ return samples, None # None means there is no sentinel value
183
+
184
+ # Choose a sentinel value. We can't use `np.nan`, because sentinel (masked)
185
+ # values are always omitted, but there are different nan policies.
186
+ dtype = np.result_type(*samples)
187
+ dtype = dtype if np.issubdtype(dtype, np.number) else np.float64
188
+ for i in range(len(samples)):
189
+ # Things get more complicated if the arrays are of different types.
190
+ # We could have different sentinel values for each array, but
191
+ # the purpose of this code is convenience, not efficiency.
192
+ samples[i] = samples[i].astype(dtype, copy=False)
193
+
194
+ inexact = np.issubdtype(dtype, np.inexact)
195
+ info = np.finfo if inexact else np.iinfo
196
+ max_possible, min_possible = info(dtype).max, info(dtype).min
197
+ nextafter = np.nextafter if inexact else (lambda x, _: x - 1)
198
+
199
+ sentinel = max_possible
200
+ # For simplicity, min_possible/np.infs are not candidate sentinel values
201
+ while sentinel > min_possible:
202
+ for sample in samples:
203
+ if np.any(sample == sentinel): # choose a new sentinel value
204
+ sentinel = nextafter(sentinel, -np.inf)
205
+ break
206
+ else: # when sentinel value is OK, break the while loop
207
+ break
208
+ else:
209
+ message = ("This function replaces masked elements with sentinel "
210
+ "values, but the data contains all distinct values of this "
211
+ "data type. Consider promoting the dtype to `np.float64`.")
212
+ raise ValueError(message)
213
+
214
+ # replace masked elements with sentinel value
215
+ out_samples = []
216
+ for sample in samples:
217
+ mask = getattr(sample, 'mask', None)
218
+ if mask is not None: # turn all masked arrays into sentinel arrays
219
+ mask = np.broadcast_to(mask, sample.shape)
220
+ sample = sample.data.copy() if np.any(mask) else sample.data
221
+ sample = np.asarray(sample) # `sample.data` could be a memoryview?
222
+ sample[mask] = sentinel
223
+ out_samples.append(sample)
224
+
225
+ return out_samples, sentinel
226
+
227
+
228
+ def _check_empty_inputs(samples, axis):
229
+ """
230
+ Check for empty sample; return appropriate output for a vectorized hypotest
231
+ """
232
+ # if none of the samples are empty, we need to perform the test
233
+ if not any(sample.size == 0 for sample in samples):
234
+ return None
235
+ # otherwise, the statistic and p-value will be either empty arrays or
236
+ # arrays with NaNs. Produce the appropriate array and return it.
237
+ output_shape = _broadcast_array_shapes_remove_axis(samples, axis)
238
+ output = np.ones(output_shape) * _get_nan(*samples)
239
+ return output
240
+
241
+
242
+ def _add_reduced_axes(res, reduced_axes, keepdims):
243
+ """
244
+ Add reduced axes back to all the arrays in the result object
245
+ if keepdims = True.
246
+ """
247
+ return ([np.expand_dims(output, reduced_axes) for output in res]
248
+ if keepdims else res)
249
+
250
+
251
+ # Standard docstring / signature entries for `axis`, `nan_policy`, `keepdims`
252
+ _name = 'axis'
253
+ _desc = (
254
+ """If an int, the axis of the input along which to compute the statistic.
255
+ The statistic of each axis-slice (e.g. row) of the input will appear in a
256
+ corresponding element of the output.
257
+ If ``None``, the input will be raveled before computing the statistic."""
258
+ .split('\n'))
259
+
260
+
261
+ def _get_axis_params(default_axis=0, _name=_name, _desc=_desc): # bind NOW
262
+ _type = f"int or None, default: {default_axis}"
263
+ _axis_parameter_doc = Parameter(_name, _type, _desc)
264
+ _axis_parameter = inspect.Parameter(_name,
265
+ inspect.Parameter.KEYWORD_ONLY,
266
+ default=default_axis)
267
+ return _axis_parameter_doc, _axis_parameter
268
+
269
+
270
+ _name = 'nan_policy'
271
+ _type = "{'propagate', 'omit', 'raise'}"
272
+ _desc = (
273
+ """Defines how to handle input NaNs.
274
+
275
+ - ``propagate``: if a NaN is present in the axis slice (e.g. row) along
276
+ which the statistic is computed, the corresponding entry of the output
277
+ will be NaN.
278
+ - ``omit``: NaNs will be omitted when performing the calculation.
279
+ If insufficient data remains in the axis slice along which the
280
+ statistic is computed, the corresponding entry of the output will be
281
+ NaN.
282
+ - ``raise``: if a NaN is present, a ``ValueError`` will be raised."""
283
+ .split('\n'))
284
+ _nan_policy_parameter_doc = Parameter(_name, _type, _desc)
285
+ _nan_policy_parameter = inspect.Parameter(_name,
286
+ inspect.Parameter.KEYWORD_ONLY,
287
+ default='propagate')
288
+
289
+ _name = 'keepdims'
290
+ _type = "bool, default: False"
291
+ _desc = (
292
+ """If this is set to True, the axes which are reduced are left
293
+ in the result as dimensions with size one. With this option,
294
+ the result will broadcast correctly against the input array."""
295
+ .split('\n'))
296
+ _keepdims_parameter_doc = Parameter(_name, _type, _desc)
297
+ _keepdims_parameter = inspect.Parameter(_name,
298
+ inspect.Parameter.KEYWORD_ONLY,
299
+ default=False)
300
+
301
+ _standard_note_addition = (
302
+ """\nBeginning in SciPy 1.9, ``np.matrix`` inputs (not recommended for new
303
+ code) are converted to ``np.ndarray`` before the calculation is performed. In
304
+ this case, the output will be a scalar or ``np.ndarray`` of appropriate shape
305
+ rather than a 2D ``np.matrix``. Similarly, while masked elements of masked
306
+ arrays are ignored, the output will be a scalar or ``np.ndarray`` rather than a
307
+ masked array with ``mask=False``.""").split('\n')
308
+
309
+
310
+ def _axis_nan_policy_factory(tuple_to_result, default_axis=0,
311
+ n_samples=1, paired=False,
312
+ result_to_tuple=None, too_small=0,
313
+ n_outputs=2, kwd_samples=[], override=None):
314
+ """Factory for a wrapper that adds axis/nan_policy params to a function.
315
+
316
+ Parameters
317
+ ----------
318
+ tuple_to_result : callable
319
+ Callable that returns an object of the type returned by the function
320
+ being wrapped (e.g. the namedtuple or dataclass returned by a
321
+ statistical test) provided the separate components (e.g. statistic,
322
+ pvalue).
323
+ default_axis : int, default: 0
324
+ The default value of the axis argument. Standard is 0 except when
325
+ backwards compatibility demands otherwise (e.g. `None`).
326
+ n_samples : int or callable, default: 1
327
+ The number of data samples accepted by the function
328
+ (e.g. `mannwhitneyu`), a callable that accepts a dictionary of
329
+ parameters passed into the function and returns the number of data
330
+ samples (e.g. `wilcoxon`), or `None` to indicate an arbitrary number
331
+ of samples (e.g. `kruskal`).
332
+ paired : {False, True}
333
+ Whether the function being wrapped treats the samples as paired (i.e.
334
+ corresponding elements of each sample should be considered as different
335
+ components of the same sample.)
336
+ result_to_tuple : callable, optional
337
+ Function that unpacks the results of the function being wrapped into
338
+ a tuple. This is essentially the inverse of `tuple_to_result`. Default
339
+ is `None`, which is appropriate for statistical tests that return a
340
+ statistic, pvalue tuple (rather than, e.g., a non-iterable datalass).
341
+ too_small : int or callable, default: 0
342
+ The largest unnacceptably small sample for the function being wrapped.
343
+ For example, some functions require samples of size two or more or they
344
+ raise an error. This argument prevents the error from being raised when
345
+ input is not 1D and instead places a NaN in the corresponding element
346
+ of the result. If callable, it must accept a list of samples, axis,
347
+ and a dictionary of keyword arguments passed to the wrapper function as
348
+ arguments and return a bool indicating weather the samples passed are
349
+ too small.
350
+ n_outputs : int or callable, default: 2
351
+ The number of outputs produced by the function given 1d sample(s). For
352
+ example, hypothesis tests that return a namedtuple or result object
353
+ with attributes ``statistic`` and ``pvalue`` use the default
354
+ ``n_outputs=2``; summary statistics with scalar output use
355
+ ``n_outputs=1``. Alternatively, may be a callable that accepts a
356
+ dictionary of arguments passed into the wrapped function and returns
357
+ the number of outputs corresponding with those arguments.
358
+ kwd_samples : sequence, default: []
359
+ The names of keyword parameters that should be treated as samples. For
360
+ example, `gmean` accepts as its first argument a sample `a` but
361
+ also `weights` as a fourth, optional keyword argument. In this case, we
362
+ use `n_samples=1` and kwd_samples=['weights'].
363
+ override : dict, default: {'vectorization': False, 'nan_propagation': True}
364
+ Pass a dictionary with ``'vectorization': True`` to ensure that the
365
+ decorator overrides the function's behavior for multimensional input.
366
+ Use ``'nan_propagation': False`` to ensure that the decorator does not
367
+ override the function's behavior for ``nan_policy='propagate'``.
368
+ (See `scipy.stats.mode`, for example.)
369
+ """
370
+ # Specify which existing behaviors the decorator must override
371
+ temp = override or {}
372
+ override = {'vectorization': False,
373
+ 'nan_propagation': True}
374
+ override.update(temp)
375
+
376
+ if result_to_tuple is None:
377
+ def result_to_tuple(res):
378
+ return res
379
+
380
+ if not callable(too_small):
381
+ def is_too_small(samples, *ts_args, axis=-1, **ts_kwargs):
382
+ for sample in samples:
383
+ if sample.shape[axis] <= too_small:
384
+ return True
385
+ return False
386
+ else:
387
+ is_too_small = too_small
388
+
389
+ def axis_nan_policy_decorator(hypotest_fun_in):
390
+ @wraps(hypotest_fun_in)
391
+ def axis_nan_policy_wrapper(*args, _no_deco=False, **kwds):
392
+
393
+ if _no_deco: # for testing, decorator does nothing
394
+ return hypotest_fun_in(*args, **kwds)
395
+
396
+ # We need to be flexible about whether position or keyword
397
+ # arguments are used, but we need to make sure users don't pass
398
+ # both for the same parameter. To complicate matters, some
399
+ # functions accept samples with *args, and some functions already
400
+ # accept `axis` and `nan_policy` as positional arguments.
401
+ # The strategy is to make sure that there is no duplication
402
+ # between `args` and `kwds`, combine the two into `kwds`, then
403
+ # the samples, `nan_policy`, and `axis` from `kwds`, as they are
404
+ # dealt with separately.
405
+
406
+ # Check for intersection between positional and keyword args
407
+ params = list(inspect.signature(hypotest_fun_in).parameters)
408
+ if n_samples is None:
409
+ # Give unique names to each positional sample argument
410
+ # Note that *args can't be provided as a keyword argument
411
+ params = [f"arg{i}" for i in range(len(args))] + params[1:]
412
+
413
+ # raise if there are too many positional args
414
+ maxarg = (np.inf if inspect.getfullargspec(hypotest_fun_in).varargs
415
+ else len(inspect.getfullargspec(hypotest_fun_in).args))
416
+ if len(args) > maxarg: # let the function raise the right error
417
+ hypotest_fun_in(*args, **kwds)
418
+
419
+ # raise if multiple values passed for same parameter
420
+ d_args = dict(zip(params, args))
421
+ intersection = set(d_args) & set(kwds)
422
+ if intersection: # let the function raise the right error
423
+ hypotest_fun_in(*args, **kwds)
424
+
425
+ # Consolidate other positional and keyword args into `kwds`
426
+ kwds.update(d_args)
427
+
428
+ # rename avoids UnboundLocalError
429
+ if callable(n_samples):
430
+ # Future refactoring idea: no need for callable n_samples.
431
+ # Just replace `n_samples` and `kwd_samples` with a single
432
+ # list of the names of all samples, and treat all of them
433
+ # as `kwd_samples` are treated below.
434
+ n_samp = n_samples(kwds)
435
+ else:
436
+ n_samp = n_samples or len(args)
437
+
438
+ # get the number of outputs
439
+ n_out = n_outputs # rename to avoid UnboundLocalError
440
+ if callable(n_out):
441
+ n_out = n_out(kwds)
442
+
443
+ # If necessary, rearrange function signature: accept other samples
444
+ # as positional args right after the first n_samp args
445
+ kwd_samp = [name for name in kwd_samples
446
+ if kwds.get(name, None) is not None]
447
+ n_kwd_samp = len(kwd_samp)
448
+ if not kwd_samp:
449
+ hypotest_fun_out = hypotest_fun_in
450
+ else:
451
+ def hypotest_fun_out(*samples, **kwds):
452
+ new_kwds = dict(zip(kwd_samp, samples[n_samp:]))
453
+ kwds.update(new_kwds)
454
+ return hypotest_fun_in(*samples[:n_samp], **kwds)
455
+
456
+ # Extract the things we need here
457
+ try: # if something is missing
458
+ samples = [np.atleast_1d(kwds.pop(param))
459
+ for param in (params[:n_samp] + kwd_samp)]
460
+ except KeyError: # let the function raise the right error
461
+ # might need to revisit this if required arg is not a "sample"
462
+ hypotest_fun_in(*args, **kwds)
463
+ vectorized = True if 'axis' in params else False
464
+ vectorized = vectorized and not override['vectorization']
465
+ axis = kwds.pop('axis', default_axis)
466
+ nan_policy = kwds.pop('nan_policy', 'propagate')
467
+ keepdims = kwds.pop("keepdims", False)
468
+ del args # avoid the possibility of passing both `args` and `kwds`
469
+
470
+ # convert masked arrays to regular arrays with sentinel values
471
+ samples, sentinel = _masked_arrays_2_sentinel_arrays(samples)
472
+
473
+ # standardize to always work along last axis
474
+ reduced_axes = axis
475
+ if axis is None:
476
+ if samples:
477
+ # when axis=None, take the maximum of all dimensions since
478
+ # all the dimensions are reduced.
479
+ n_dims = np.max([sample.ndim for sample in samples])
480
+ reduced_axes = tuple(range(n_dims))
481
+ samples = [np.asarray(sample.ravel()) for sample in samples]
482
+ else:
483
+ samples = _broadcast_arrays(samples, axis=axis)
484
+ axis = np.atleast_1d(axis)
485
+ n_axes = len(axis)
486
+ # move all axes in `axis` to the end to be raveled
487
+ samples = [np.moveaxis(sample, axis, range(-len(axis), 0))
488
+ for sample in samples]
489
+ shapes = [sample.shape for sample in samples]
490
+ # New shape is unchanged for all axes _not_ in `axis`
491
+ # At the end, we append the product of the shapes of the axes
492
+ # in `axis`. Appending -1 doesn't work for zero-size arrays!
493
+ new_shapes = [shape[:-n_axes] + (np.prod(shape[-n_axes:]),)
494
+ for shape in shapes]
495
+ samples = [sample.reshape(new_shape)
496
+ for sample, new_shape in zip(samples, new_shapes)]
497
+ axis = -1 # work over the last axis
498
+ NaN = _get_nan(*samples)
499
+
500
+ # if axis is not needed, just handle nan_policy and return
501
+ ndims = np.array([sample.ndim for sample in samples])
502
+ if np.all(ndims <= 1):
503
+ # Addresses nan_policy == "raise"
504
+ if nan_policy != 'propagate' or override['nan_propagation']:
505
+ contains_nan = [_contains_nan(sample, nan_policy)[0]
506
+ for sample in samples]
507
+ else:
508
+ # Behave as though there are no NaNs (even if there are)
509
+ contains_nan = [False]*len(samples)
510
+
511
+ # Addresses nan_policy == "propagate"
512
+ if any(contains_nan) and (nan_policy == 'propagate'
513
+ and override['nan_propagation']):
514
+ res = np.full(n_out, NaN)
515
+ res = _add_reduced_axes(res, reduced_axes, keepdims)
516
+ return tuple_to_result(*res)
517
+
518
+ # Addresses nan_policy == "omit"
519
+ if any(contains_nan) and nan_policy == 'omit':
520
+ # consider passing in contains_nan
521
+ samples = _remove_nans(samples, paired)
522
+
523
+ # ideally, this is what the behavior would be:
524
+ # if is_too_small(samples):
525
+ # return tuple_to_result(NaN, NaN)
526
+ # but some existing functions raise exceptions, and changing
527
+ # behavior of those would break backward compatibility.
528
+
529
+ if sentinel:
530
+ samples = _remove_sentinel(samples, paired, sentinel)
531
+ res = hypotest_fun_out(*samples, **kwds)
532
+ res = result_to_tuple(res)
533
+ res = _add_reduced_axes(res, reduced_axes, keepdims)
534
+ return tuple_to_result(*res)
535
+
536
+ # check for empty input
537
+ # ideally, move this to the top, but some existing functions raise
538
+ # exceptions for empty input, so overriding it would break
539
+ # backward compatibility.
540
+ empty_output = _check_empty_inputs(samples, axis)
541
+ # only return empty output if zero sized input is too small.
542
+ if (
543
+ empty_output is not None
544
+ and (is_too_small(samples, kwds) or empty_output.size == 0)
545
+ ):
546
+ res = [empty_output.copy() for i in range(n_out)]
547
+ res = _add_reduced_axes(res, reduced_axes, keepdims)
548
+ return tuple_to_result(*res)
549
+
550
+ # otherwise, concatenate all samples along axis, remembering where
551
+ # each separate sample begins
552
+ lengths = np.array([sample.shape[axis] for sample in samples])
553
+ split_indices = np.cumsum(lengths)
554
+ x = _broadcast_concatenate(samples, axis)
555
+
556
+ # Addresses nan_policy == "raise"
557
+ if nan_policy != 'propagate' or override['nan_propagation']:
558
+ contains_nan, _ = _contains_nan(x, nan_policy)
559
+ else:
560
+ contains_nan = False # behave like there are no NaNs
561
+
562
+ if vectorized and not contains_nan and not sentinel:
563
+ res = hypotest_fun_out(*samples, axis=axis, **kwds)
564
+ res = result_to_tuple(res)
565
+ res = _add_reduced_axes(res, reduced_axes, keepdims)
566
+ return tuple_to_result(*res)
567
+
568
+ # Addresses nan_policy == "omit"
569
+ if contains_nan and nan_policy == 'omit':
570
+ def hypotest_fun(x):
571
+ samples = np.split(x, split_indices)[:n_samp+n_kwd_samp]
572
+ samples = _remove_nans(samples, paired)
573
+ if sentinel:
574
+ samples = _remove_sentinel(samples, paired, sentinel)
575
+ if is_too_small(samples, kwds):
576
+ return np.full(n_out, NaN)
577
+ return result_to_tuple(hypotest_fun_out(*samples, **kwds))
578
+
579
+ # Addresses nan_policy == "propagate"
580
+ elif (contains_nan and nan_policy == 'propagate'
581
+ and override['nan_propagation']):
582
+ def hypotest_fun(x):
583
+ if np.isnan(x).any():
584
+ return np.full(n_out, NaN)
585
+
586
+ samples = np.split(x, split_indices)[:n_samp+n_kwd_samp]
587
+ if sentinel:
588
+ samples = _remove_sentinel(samples, paired, sentinel)
589
+ if is_too_small(samples, kwds):
590
+ return np.full(n_out, NaN)
591
+ return result_to_tuple(hypotest_fun_out(*samples, **kwds))
592
+
593
+ else:
594
+ def hypotest_fun(x):
595
+ samples = np.split(x, split_indices)[:n_samp+n_kwd_samp]
596
+ if sentinel:
597
+ samples = _remove_sentinel(samples, paired, sentinel)
598
+ if is_too_small(samples, kwds):
599
+ return np.full(n_out, NaN)
600
+ return result_to_tuple(hypotest_fun_out(*samples, **kwds))
601
+
602
+ x = np.moveaxis(x, axis, 0)
603
+ res = np.apply_along_axis(hypotest_fun, axis=0, arr=x)
604
+ res = _add_reduced_axes(res, reduced_axes, keepdims)
605
+ return tuple_to_result(*res)
606
+
607
+ _axis_parameter_doc, _axis_parameter = _get_axis_params(default_axis)
608
+ doc = FunctionDoc(axis_nan_policy_wrapper)
609
+ parameter_names = [param.name for param in doc['Parameters']]
610
+ if 'axis' in parameter_names:
611
+ doc['Parameters'][parameter_names.index('axis')] = (
612
+ _axis_parameter_doc)
613
+ else:
614
+ doc['Parameters'].append(_axis_parameter_doc)
615
+ if 'nan_policy' in parameter_names:
616
+ doc['Parameters'][parameter_names.index('nan_policy')] = (
617
+ _nan_policy_parameter_doc)
618
+ else:
619
+ doc['Parameters'].append(_nan_policy_parameter_doc)
620
+ if 'keepdims' in parameter_names:
621
+ doc['Parameters'][parameter_names.index('keepdims')] = (
622
+ _keepdims_parameter_doc)
623
+ else:
624
+ doc['Parameters'].append(_keepdims_parameter_doc)
625
+ doc['Notes'] += _standard_note_addition
626
+ doc = str(doc).split("\n", 1)[1] # remove signature
627
+ axis_nan_policy_wrapper.__doc__ = str(doc)
628
+
629
+ sig = inspect.signature(axis_nan_policy_wrapper)
630
+ parameters = sig.parameters
631
+ parameter_list = list(parameters.values())
632
+ if 'axis' not in parameters:
633
+ parameter_list.append(_axis_parameter)
634
+ if 'nan_policy' not in parameters:
635
+ parameter_list.append(_nan_policy_parameter)
636
+ if 'keepdims' not in parameters:
637
+ parameter_list.append(_keepdims_parameter)
638
+ sig = sig.replace(parameters=parameter_list)
639
+ axis_nan_policy_wrapper.__signature__ = sig
640
+
641
+ return axis_nan_policy_wrapper
642
+ return axis_nan_policy_decorator
venv/lib/python3.10/site-packages/scipy/stats/_biasedurn.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (360 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_bws_test.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from functools import partial
3
+ from scipy import stats
4
+
5
+
6
+ def _bws_input_validation(x, y, alternative, method):
7
+ ''' Input validation and standardization for bws test'''
8
+ x, y = np.atleast_1d(x, y)
9
+ if x.ndim > 1 or y.ndim > 1:
10
+ raise ValueError('`x` and `y` must be exactly one-dimensional.')
11
+ if np.isnan(x).any() or np.isnan(y).any():
12
+ raise ValueError('`x` and `y` must not contain NaNs.')
13
+ if np.size(x) == 0 or np.size(y) == 0:
14
+ raise ValueError('`x` and `y` must be of nonzero size.')
15
+
16
+ z = stats.rankdata(np.concatenate((x, y)))
17
+ x, y = z[:len(x)], z[len(x):]
18
+
19
+ alternatives = {'two-sided', 'less', 'greater'}
20
+ alternative = alternative.lower()
21
+ if alternative not in alternatives:
22
+ raise ValueError(f'`alternative` must be one of {alternatives}.')
23
+
24
+ method = stats.PermutationMethod() if method is None else method
25
+ if not isinstance(method, stats.PermutationMethod):
26
+ raise ValueError('`method` must be an instance of '
27
+ '`scipy.stats.PermutationMethod`')
28
+
29
+ return x, y, alternative, method
30
+
31
+
32
+ def _bws_statistic(x, y, alternative, axis):
33
+ '''Compute the BWS test statistic for two independent samples'''
34
+ # Public function currently does not accept `axis`, but `permutation_test`
35
+ # uses `axis` to make vectorized call.
36
+
37
+ Ri, Hj = np.sort(x, axis=axis), np.sort(y, axis=axis)
38
+ n, m = Ri.shape[axis], Hj.shape[axis]
39
+ i, j = np.arange(1, n+1), np.arange(1, m+1)
40
+
41
+ Bx_num = Ri - (m + n)/n * i
42
+ By_num = Hj - (m + n)/m * j
43
+
44
+ if alternative == 'two-sided':
45
+ Bx_num *= Bx_num
46
+ By_num *= By_num
47
+ else:
48
+ Bx_num *= np.abs(Bx_num)
49
+ By_num *= np.abs(By_num)
50
+
51
+ Bx_den = i/(n+1) * (1 - i/(n+1)) * m*(m+n)/n
52
+ By_den = j/(m+1) * (1 - j/(m+1)) * n*(m+n)/m
53
+
54
+ Bx = 1/n * np.sum(Bx_num/Bx_den, axis=axis)
55
+ By = 1/m * np.sum(By_num/By_den, axis=axis)
56
+
57
+ B = (Bx + By) / 2 if alternative == 'two-sided' else (Bx - By) / 2
58
+
59
+ return B
60
+
61
+
62
+ def bws_test(x, y, *, alternative="two-sided", method=None):
63
+ r'''Perform the Baumgartner-Weiss-Schindler test on two independent samples.
64
+
65
+ The Baumgartner-Weiss-Schindler (BWS) test is a nonparametric test of
66
+ the null hypothesis that the distribution underlying sample `x`
67
+ is the same as the distribution underlying sample `y`. Unlike
68
+ the Kolmogorov-Smirnov, Wilcoxon, and Cramer-Von Mises tests,
69
+ the BWS test weights the integral by the variance of the difference
70
+ in cumulative distribution functions (CDFs), emphasizing the tails of the
71
+ distributions, which increases the power of the test in many applications.
72
+
73
+ Parameters
74
+ ----------
75
+ x, y : array-like
76
+ 1-d arrays of samples.
77
+ alternative : {'two-sided', 'less', 'greater'}, optional
78
+ Defines the alternative hypothesis. Default is 'two-sided'.
79
+ Let *F(u)* and *G(u)* be the cumulative distribution functions of the
80
+ distributions underlying `x` and `y`, respectively. Then the following
81
+ alternative hypotheses are available:
82
+
83
+ * 'two-sided': the distributions are not equal, i.e. *F(u) ≠ G(u)* for
84
+ at least one *u*.
85
+ * 'less': the distribution underlying `x` is stochastically less than
86
+ the distribution underlying `y`, i.e. *F(u) >= G(u)* for all *u*.
87
+ * 'greater': the distribution underlying `x` is stochastically greater
88
+ than the distribution underlying `y`, i.e. *F(u) <= G(u)* for all
89
+ *u*.
90
+
91
+ Under a more restrictive set of assumptions, the alternative hypotheses
92
+ can be expressed in terms of the locations of the distributions;
93
+ see [2] section 5.1.
94
+ method : PermutationMethod, optional
95
+ Configures the method used to compute the p-value. The default is
96
+ the default `PermutationMethod` object.
97
+
98
+ Returns
99
+ -------
100
+ res : PermutationTestResult
101
+ An object with attributes:
102
+
103
+ statistic : float
104
+ The observed test statistic of the data.
105
+ pvalue : float
106
+ The p-value for the given alternative.
107
+ null_distribution : ndarray
108
+ The values of the test statistic generated under the null hypothesis.
109
+
110
+ See also
111
+ --------
112
+ scipy.stats.wilcoxon, scipy.stats.mannwhitneyu, scipy.stats.ttest_ind
113
+
114
+ Notes
115
+ -----
116
+ When ``alternative=='two-sided'``, the statistic is defined by the
117
+ equations given in [1]_ Section 2. This statistic is not appropriate for
118
+ one-sided alternatives; in that case, the statistic is the *negative* of
119
+ that given by the equations in [1]_ Section 2. Consequently, when the
120
+ distribution of the first sample is stochastically greater than that of the
121
+ second sample, the statistic will tend to be positive.
122
+
123
+ References
124
+ ----------
125
+ .. [1] Neuhäuser, M. (2005). Exact Tests Based on the
126
+ Baumgartner-Weiss-Schindler Statistic: A Survey. Statistical Papers,
127
+ 46(1), 1-29.
128
+ .. [2] Fay, M. P., & Proschan, M. A. (2010). Wilcoxon-Mann-Whitney or t-test?
129
+ On assumptions for hypothesis tests and multiple interpretations of
130
+ decision rules. Statistics surveys, 4, 1.
131
+
132
+ Examples
133
+ --------
134
+ We follow the example of table 3 in [1]_: Fourteen children were divided
135
+ randomly into two groups. Their ranks at performing a specific tests are
136
+ as follows.
137
+
138
+ >>> import numpy as np
139
+ >>> x = [1, 2, 3, 4, 6, 7, 8]
140
+ >>> y = [5, 9, 10, 11, 12, 13, 14]
141
+
142
+ We use the BWS test to assess whether there is a statistically significant
143
+ difference between the two groups.
144
+ The null hypothesis is that there is no difference in the distributions of
145
+ performance between the two groups. We decide that a significance level of
146
+ 1% is required to reject the null hypothesis in favor of the alternative
147
+ that the distributions are different.
148
+ Since the number of samples is very small, we can compare the observed test
149
+ statistic against the *exact* distribution of the test statistic under the
150
+ null hypothesis.
151
+
152
+ >>> from scipy.stats import bws_test
153
+ >>> res = bws_test(x, y)
154
+ >>> print(res.statistic)
155
+ 5.132167152575315
156
+
157
+ This agrees with :math:`B = 5.132` reported in [1]_. The *p*-value produced
158
+ by `bws_test` also agrees with :math:`p = 0.0029` reported in [1]_.
159
+
160
+ >>> print(res.pvalue)
161
+ 0.002913752913752914
162
+
163
+ Because the p-value is below our threshold of 1%, we take this as evidence
164
+ against the null hypothesis in favor of the alternative that there is a
165
+ difference in performance between the two groups.
166
+ '''
167
+
168
+ x, y, alternative, method = _bws_input_validation(x, y, alternative,
169
+ method)
170
+ bws_statistic = partial(_bws_statistic, alternative=alternative)
171
+
172
+ permutation_alternative = 'less' if alternative == 'less' else 'greater'
173
+ res = stats.permutation_test((x, y), bws_statistic,
174
+ alternative=permutation_alternative,
175
+ **method._asdict())
176
+
177
+ return res
venv/lib/python3.10/site-packages/scipy/stats/_censored_data.py ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ def _validate_1d(a, name, allow_inf=False):
5
+ if np.ndim(a) != 1:
6
+ raise ValueError(f'`{name}` must be a one-dimensional sequence.')
7
+ if np.isnan(a).any():
8
+ raise ValueError(f'`{name}` must not contain nan.')
9
+ if not allow_inf and np.isinf(a).any():
10
+ raise ValueError(f'`{name}` must contain only finite values.')
11
+
12
+
13
+ def _validate_interval(interval):
14
+ interval = np.asarray(interval)
15
+ if interval.shape == (0,):
16
+ # The input was a sequence with length 0.
17
+ interval = interval.reshape((0, 2))
18
+ if interval.ndim != 2 or interval.shape[-1] != 2:
19
+ raise ValueError('`interval` must be a two-dimensional array with '
20
+ 'shape (m, 2), where m is the number of '
21
+ 'interval-censored values, but got shape '
22
+ f'{interval.shape}')
23
+
24
+ if np.isnan(interval).any():
25
+ raise ValueError('`interval` must not contain nan.')
26
+ if np.isinf(interval).all(axis=1).any():
27
+ raise ValueError('In each row in `interval`, both values must not'
28
+ ' be infinite.')
29
+ if (interval[:, 0] > interval[:, 1]).any():
30
+ raise ValueError('In each row of `interval`, the left value must not'
31
+ ' exceed the right value.')
32
+
33
+ uncensored_mask = interval[:, 0] == interval[:, 1]
34
+ left_mask = np.isinf(interval[:, 0])
35
+ right_mask = np.isinf(interval[:, 1])
36
+ interval_mask = np.isfinite(interval).all(axis=1) & ~uncensored_mask
37
+
38
+ uncensored2 = interval[uncensored_mask, 0]
39
+ left2 = interval[left_mask, 1]
40
+ right2 = interval[right_mask, 0]
41
+ interval2 = interval[interval_mask]
42
+
43
+ return uncensored2, left2, right2, interval2
44
+
45
+
46
+ def _validate_x_censored(x, censored):
47
+ x = np.asarray(x)
48
+ if x.ndim != 1:
49
+ raise ValueError('`x` must be one-dimensional.')
50
+ censored = np.asarray(censored)
51
+ if censored.ndim != 1:
52
+ raise ValueError('`censored` must be one-dimensional.')
53
+ if (~np.isfinite(x)).any():
54
+ raise ValueError('`x` must not contain nan or inf.')
55
+ if censored.size != x.size:
56
+ raise ValueError('`x` and `censored` must have the same length.')
57
+ return x, censored.astype(bool)
58
+
59
+
60
+ class CensoredData:
61
+ """
62
+ Instances of this class represent censored data.
63
+
64
+ Instances may be passed to the ``fit`` method of continuous
65
+ univariate SciPy distributions for maximum likelihood estimation.
66
+ The *only* method of the univariate continuous distributions that
67
+ understands `CensoredData` is the ``fit`` method. An instance of
68
+ `CensoredData` can not be passed to methods such as ``pdf`` and
69
+ ``cdf``.
70
+
71
+ An observation is said to be *censored* when the precise value is unknown,
72
+ but it has a known upper and/or lower bound. The conventional terminology
73
+ is:
74
+
75
+ * left-censored: an observation is below a certain value but it is
76
+ unknown by how much.
77
+ * right-censored: an observation is above a certain value but it is
78
+ unknown by how much.
79
+ * interval-censored: an observation lies somewhere on an interval between
80
+ two values.
81
+
82
+ Left-, right-, and interval-censored data can be represented by
83
+ `CensoredData`.
84
+
85
+ For convenience, the class methods ``left_censored`` and
86
+ ``right_censored`` are provided to create a `CensoredData`
87
+ instance from a single one-dimensional array of measurements
88
+ and a corresponding boolean array to indicate which measurements
89
+ are censored. The class method ``interval_censored`` accepts two
90
+ one-dimensional arrays that hold the lower and upper bounds of the
91
+ intervals.
92
+
93
+ Parameters
94
+ ----------
95
+ uncensored : array_like, 1D
96
+ Uncensored observations.
97
+ left : array_like, 1D
98
+ Left-censored observations.
99
+ right : array_like, 1D
100
+ Right-censored observations.
101
+ interval : array_like, 2D, with shape (m, 2)
102
+ Interval-censored observations. Each row ``interval[k, :]``
103
+ represents the interval for the kth interval-censored observation.
104
+
105
+ Notes
106
+ -----
107
+ In the input array `interval`, the lower bound of the interval may
108
+ be ``-inf``, and the upper bound may be ``inf``, but at least one must be
109
+ finite. When the lower bound is ``-inf``, the row represents a left-
110
+ censored observation, and when the upper bound is ``inf``, the row
111
+ represents a right-censored observation. If the length of an interval
112
+ is 0 (i.e. ``interval[k, 0] == interval[k, 1]``, the observation is
113
+ treated as uncensored. So one can represent all the types of censored
114
+ and uncensored data in ``interval``, but it is generally more convenient
115
+ to use `uncensored`, `left` and `right` for uncensored, left-censored and
116
+ right-censored observations, respectively.
117
+
118
+ Examples
119
+ --------
120
+ In the most general case, a censored data set may contain values that
121
+ are left-censored, right-censored, interval-censored, and uncensored.
122
+ For example, here we create a data set with five observations. Two
123
+ are uncensored (values 1 and 1.5), one is a left-censored observation
124
+ of 0, one is a right-censored observation of 10 and one is
125
+ interval-censored in the interval [2, 3].
126
+
127
+ >>> import numpy as np
128
+ >>> from scipy.stats import CensoredData
129
+ >>> data = CensoredData(uncensored=[1, 1.5], left=[0], right=[10],
130
+ ... interval=[[2, 3]])
131
+ >>> print(data)
132
+ CensoredData(5 values: 2 not censored, 1 left-censored,
133
+ 1 right-censored, 1 interval-censored)
134
+
135
+ Equivalently,
136
+
137
+ >>> data = CensoredData(interval=[[1, 1],
138
+ ... [1.5, 1.5],
139
+ ... [-np.inf, 0],
140
+ ... [10, np.inf],
141
+ ... [2, 3]])
142
+ >>> print(data)
143
+ CensoredData(5 values: 2 not censored, 1 left-censored,
144
+ 1 right-censored, 1 interval-censored)
145
+
146
+ A common case is to have a mix of uncensored observations and censored
147
+ observations that are all right-censored (or all left-censored). For
148
+ example, consider an experiment in which six devices are started at
149
+ various times and left running until they fail. Assume that time is
150
+ measured in hours, and the experiment is stopped after 30 hours, even
151
+ if all the devices have not failed by that time. We might end up with
152
+ data such as this::
153
+
154
+ Device Start-time Fail-time Time-to-failure
155
+ 1 0 13 13
156
+ 2 2 24 22
157
+ 3 5 22 17
158
+ 4 8 23 15
159
+ 5 10 *** >20
160
+ 6 12 *** >18
161
+
162
+ Two of the devices had not failed when the experiment was stopped;
163
+ the observations of the time-to-failure for these two devices are
164
+ right-censored. We can represent this data with
165
+
166
+ >>> data = CensoredData(uncensored=[13, 22, 17, 15], right=[20, 18])
167
+ >>> print(data)
168
+ CensoredData(6 values: 4 not censored, 2 right-censored)
169
+
170
+ Alternatively, we can use the method `CensoredData.right_censored` to
171
+ create a representation of this data. The time-to-failure observations
172
+ are put the list ``ttf``. The ``censored`` list indicates which values
173
+ in ``ttf`` are censored.
174
+
175
+ >>> ttf = [13, 22, 17, 15, 20, 18]
176
+ >>> censored = [False, False, False, False, True, True]
177
+
178
+ Pass these lists to `CensoredData.right_censored` to create an
179
+ instance of `CensoredData`.
180
+
181
+ >>> data = CensoredData.right_censored(ttf, censored)
182
+ >>> print(data)
183
+ CensoredData(6 values: 4 not censored, 2 right-censored)
184
+
185
+ If the input data is interval censored and already stored in two
186
+ arrays, one holding the low end of the intervals and another
187
+ holding the high ends, the class method ``interval_censored`` can
188
+ be used to create the `CensoredData` instance.
189
+
190
+ This example creates an instance with four interval-censored values.
191
+ The intervals are [10, 11], [0.5, 1], [2, 3], and [12.5, 13.5].
192
+
193
+ >>> a = [10, 0.5, 2, 12.5] # Low ends of the intervals
194
+ >>> b = [11, 1.0, 3, 13.5] # High ends of the intervals
195
+ >>> data = CensoredData.interval_censored(low=a, high=b)
196
+ >>> print(data)
197
+ CensoredData(4 values: 0 not censored, 4 interval-censored)
198
+
199
+ Finally, we create and censor some data from the `weibull_min`
200
+ distribution, and then fit `weibull_min` to that data. We'll assume
201
+ that the location parameter is known to be 0.
202
+
203
+ >>> from scipy.stats import weibull_min
204
+ >>> rng = np.random.default_rng()
205
+
206
+ Create the random data set.
207
+
208
+ >>> x = weibull_min.rvs(2.5, loc=0, scale=30, size=250, random_state=rng)
209
+ >>> x[x > 40] = 40 # Right-censor values greater or equal to 40.
210
+
211
+ Create the `CensoredData` instance with the `right_censored` method.
212
+ The censored values are those where the value is 40.
213
+
214
+ >>> data = CensoredData.right_censored(x, x == 40)
215
+ >>> print(data)
216
+ CensoredData(250 values: 215 not censored, 35 right-censored)
217
+
218
+ 35 values have been right-censored.
219
+
220
+ Fit `weibull_min` to the censored data. We expect to shape and scale
221
+ to be approximately 2.5 and 30, respectively.
222
+
223
+ >>> weibull_min.fit(data, floc=0)
224
+ (2.3575922823897315, 0, 30.40650074451254)
225
+
226
+ """
227
+
228
+ def __init__(self, uncensored=None, *, left=None, right=None,
229
+ interval=None):
230
+ if uncensored is None:
231
+ uncensored = []
232
+ if left is None:
233
+ left = []
234
+ if right is None:
235
+ right = []
236
+ if interval is None:
237
+ interval = np.empty((0, 2))
238
+
239
+ _validate_1d(uncensored, 'uncensored')
240
+ _validate_1d(left, 'left')
241
+ _validate_1d(right, 'right')
242
+ uncensored2, left2, right2, interval2 = _validate_interval(interval)
243
+
244
+ self._uncensored = np.concatenate((uncensored, uncensored2))
245
+ self._left = np.concatenate((left, left2))
246
+ self._right = np.concatenate((right, right2))
247
+ # Note that by construction, the private attribute _interval
248
+ # will be a 2D array that contains only finite values representing
249
+ # intervals with nonzero but finite length.
250
+ self._interval = interval2
251
+
252
+ def __repr__(self):
253
+ uncensored_str = " ".join(np.array_repr(self._uncensored).split())
254
+ left_str = " ".join(np.array_repr(self._left).split())
255
+ right_str = " ".join(np.array_repr(self._right).split())
256
+ interval_str = " ".join(np.array_repr(self._interval).split())
257
+ return (f"CensoredData(uncensored={uncensored_str}, left={left_str}, "
258
+ f"right={right_str}, interval={interval_str})")
259
+
260
+ def __str__(self):
261
+ num_nc = len(self._uncensored)
262
+ num_lc = len(self._left)
263
+ num_rc = len(self._right)
264
+ num_ic = len(self._interval)
265
+ n = num_nc + num_lc + num_rc + num_ic
266
+ parts = [f'{num_nc} not censored']
267
+ if num_lc > 0:
268
+ parts.append(f'{num_lc} left-censored')
269
+ if num_rc > 0:
270
+ parts.append(f'{num_rc} right-censored')
271
+ if num_ic > 0:
272
+ parts.append(f'{num_ic} interval-censored')
273
+ return f'CensoredData({n} values: ' + ', '.join(parts) + ')'
274
+
275
+ # This is not a complete implementation of the arithmetic operators.
276
+ # All we need is subtracting a scalar and dividing by a scalar.
277
+
278
+ def __sub__(self, other):
279
+ return CensoredData(uncensored=self._uncensored - other,
280
+ left=self._left - other,
281
+ right=self._right - other,
282
+ interval=self._interval - other)
283
+
284
+ def __truediv__(self, other):
285
+ return CensoredData(uncensored=self._uncensored / other,
286
+ left=self._left / other,
287
+ right=self._right / other,
288
+ interval=self._interval / other)
289
+
290
+ def __len__(self):
291
+ """
292
+ The number of values (censored and not censored).
293
+ """
294
+ return (len(self._uncensored) + len(self._left) + len(self._right)
295
+ + len(self._interval))
296
+
297
+ def num_censored(self):
298
+ """
299
+ Number of censored values.
300
+ """
301
+ return len(self._left) + len(self._right) + len(self._interval)
302
+
303
+ @classmethod
304
+ def right_censored(cls, x, censored):
305
+ """
306
+ Create a `CensoredData` instance of right-censored data.
307
+
308
+ Parameters
309
+ ----------
310
+ x : array_like
311
+ `x` is the array of observed data or measurements.
312
+ `x` must be a one-dimensional sequence of finite numbers.
313
+ censored : array_like of bool
314
+ `censored` must be a one-dimensional sequence of boolean
315
+ values. If ``censored[k]`` is True, the corresponding value
316
+ in `x` is right-censored. That is, the value ``x[k]``
317
+ is the lower bound of the true (but unknown) value.
318
+
319
+ Returns
320
+ -------
321
+ data : `CensoredData`
322
+ An instance of `CensoredData` that represents the
323
+ collection of uncensored and right-censored values.
324
+
325
+ Examples
326
+ --------
327
+ >>> from scipy.stats import CensoredData
328
+
329
+ Two uncensored values (4 and 10) and two right-censored values
330
+ (24 and 25).
331
+
332
+ >>> data = CensoredData.right_censored([4, 10, 24, 25],
333
+ ... [False, False, True, True])
334
+ >>> data
335
+ CensoredData(uncensored=array([ 4., 10.]),
336
+ left=array([], dtype=float64), right=array([24., 25.]),
337
+ interval=array([], shape=(0, 2), dtype=float64))
338
+ >>> print(data)
339
+ CensoredData(4 values: 2 not censored, 2 right-censored)
340
+ """
341
+ x, censored = _validate_x_censored(x, censored)
342
+ return cls(uncensored=x[~censored], right=x[censored])
343
+
344
+ @classmethod
345
+ def left_censored(cls, x, censored):
346
+ """
347
+ Create a `CensoredData` instance of left-censored data.
348
+
349
+ Parameters
350
+ ----------
351
+ x : array_like
352
+ `x` is the array of observed data or measurements.
353
+ `x` must be a one-dimensional sequence of finite numbers.
354
+ censored : array_like of bool
355
+ `censored` must be a one-dimensional sequence of boolean
356
+ values. If ``censored[k]`` is True, the corresponding value
357
+ in `x` is left-censored. That is, the value ``x[k]``
358
+ is the upper bound of the true (but unknown) value.
359
+
360
+ Returns
361
+ -------
362
+ data : `CensoredData`
363
+ An instance of `CensoredData` that represents the
364
+ collection of uncensored and left-censored values.
365
+
366
+ Examples
367
+ --------
368
+ >>> from scipy.stats import CensoredData
369
+
370
+ Two uncensored values (0.12 and 0.033) and two left-censored values
371
+ (both 1e-3).
372
+
373
+ >>> data = CensoredData.left_censored([0.12, 0.033, 1e-3, 1e-3],
374
+ ... [False, False, True, True])
375
+ >>> data
376
+ CensoredData(uncensored=array([0.12 , 0.033]),
377
+ left=array([0.001, 0.001]), right=array([], dtype=float64),
378
+ interval=array([], shape=(0, 2), dtype=float64))
379
+ >>> print(data)
380
+ CensoredData(4 values: 2 not censored, 2 left-censored)
381
+ """
382
+ x, censored = _validate_x_censored(x, censored)
383
+ return cls(uncensored=x[~censored], left=x[censored])
384
+
385
+ @classmethod
386
+ def interval_censored(cls, low, high):
387
+ """
388
+ Create a `CensoredData` instance of interval-censored data.
389
+
390
+ This method is useful when all the data is interval-censored, and
391
+ the low and high ends of the intervals are already stored in
392
+ separate one-dimensional arrays.
393
+
394
+ Parameters
395
+ ----------
396
+ low : array_like
397
+ The one-dimensional array containing the low ends of the
398
+ intervals.
399
+ high : array_like
400
+ The one-dimensional array containing the high ends of the
401
+ intervals.
402
+
403
+ Returns
404
+ -------
405
+ data : `CensoredData`
406
+ An instance of `CensoredData` that represents the
407
+ collection of censored values.
408
+
409
+ Examples
410
+ --------
411
+ >>> import numpy as np
412
+ >>> from scipy.stats import CensoredData
413
+
414
+ ``a`` and ``b`` are the low and high ends of a collection of
415
+ interval-censored values.
416
+
417
+ >>> a = [0.5, 2.0, 3.0, 5.5]
418
+ >>> b = [1.0, 2.5, 3.5, 7.0]
419
+ >>> data = CensoredData.interval_censored(low=a, high=b)
420
+ >>> print(data)
421
+ CensoredData(4 values: 0 not censored, 4 interval-censored)
422
+ """
423
+ _validate_1d(low, 'low', allow_inf=True)
424
+ _validate_1d(high, 'high', allow_inf=True)
425
+ if len(low) != len(high):
426
+ raise ValueError('`low` and `high` must have the same length.')
427
+ interval = np.column_stack((low, high))
428
+ uncensored, left, right, interval = _validate_interval(interval)
429
+ return cls(uncensored=uncensored, left=left, right=right,
430
+ interval=interval)
431
+
432
+ def _uncensor(self):
433
+ """
434
+ This function is used when a non-censored version of the data
435
+ is needed to create a rough estimate of the parameters of a
436
+ distribution via the method of moments or some similar method.
437
+ The data is "uncensored" by taking the given endpoints as the
438
+ data for the left- or right-censored data, and the mean for the
439
+ interval-censored data.
440
+ """
441
+ data = np.concatenate((self._uncensored, self._left, self._right,
442
+ self._interval.mean(axis=1)))
443
+ return data
444
+
445
+ def _supported(self, a, b):
446
+ """
447
+ Return a subset of self containing the values that are in
448
+ (or overlap with) the interval (a, b).
449
+ """
450
+ uncensored = self._uncensored
451
+ uncensored = uncensored[(a < uncensored) & (uncensored < b)]
452
+ left = self._left
453
+ left = left[a < left]
454
+ right = self._right
455
+ right = right[right < b]
456
+ interval = self._interval
457
+ interval = interval[(a < interval[:, 1]) & (interval[:, 0] < b)]
458
+ return CensoredData(uncensored, left=left, right=right,
459
+ interval=interval)
venv/lib/python3.10/site-packages/scipy/stats/_common.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from collections import namedtuple
2
+
3
+
4
+ ConfidenceInterval = namedtuple("ConfidenceInterval", ["low", "high"])
5
+ ConfidenceInterval. __doc__ = "Class for confidence intervals."
venv/lib/python3.10/site-packages/scipy/stats/_constants.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Statistics-related constants.
3
+
4
+ """
5
+ import numpy as np
6
+
7
+
8
+ # The smallest representable positive number such that 1.0 + _EPS != 1.0.
9
+ _EPS = np.finfo(float).eps
10
+
11
+ # The largest [in magnitude] usable floating value.
12
+ _XMAX = np.finfo(float).max
13
+
14
+ # The log of the largest usable floating value; useful for knowing
15
+ # when exp(something) will overflow
16
+ _LOGXMAX = np.log(_XMAX)
17
+
18
+ # The smallest [in magnitude] usable (i.e. not subnormal) double precision
19
+ # floating value.
20
+ _XMIN = np.finfo(float).tiny
21
+
22
+ # The log of the smallest [in magnitude] usable (i.e not subnormal)
23
+ # double precision floating value.
24
+ _LOGXMIN = np.log(_XMIN)
25
+
26
+ # -special.psi(1)
27
+ _EULER = 0.577215664901532860606512090082402431042
28
+
29
+ # special.zeta(3, 1) Apery's constant
30
+ _ZETA3 = 1.202056903159594285399738161511449990765
31
+
32
+ # sqrt(pi)
33
+ _SQRT_PI = 1.772453850905516027298167483341145182798
34
+
35
+ # sqrt(2/pi)
36
+ _SQRT_2_OVER_PI = 0.7978845608028654
37
+
38
+ # log(sqrt(2/pi))
39
+ _LOG_SQRT_2_OVER_PI = -0.22579135264472744
venv/lib/python3.10/site-packages/scipy/stats/_continuous_distns.py ADDED
The diff for this file is too large to render. See raw diff