Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/16.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/17.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/17.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/17.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/6.post_attention_layernorm.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_filters.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_fourier.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_interpolation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_measurements.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_morphology.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_ni_docstrings.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_ni_support.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/filters.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/fourier.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/interpolation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/measurements.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/morphology.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/__init__.py +13 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_c_api.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_datatypes.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_filters.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_fourier.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_interpolation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_measurements.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_morphology.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_ni_support.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_splines.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_inputs.txt +21 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_results.txt +294 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_strels.txt +42 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_c_api.py +102 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_datatypes.py +66 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_filters.py +2189 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_fourier.py +151 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_interpolation.py +1327 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_measurements.py +1409 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_morphology.py +0 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_ni_support.py +77 -0
- venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_splines.py +65 -0
- venv/lib/python3.10/site-packages/scipy/stats/__init__.py +643 -0
- venv/lib/python3.10/site-packages/scipy/stats/_ansari_swilk_statistics.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/stats/_axis_nan_policy.py +642 -0
- venv/lib/python3.10/site-packages/scipy/stats/_biasedurn.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/stats/_bws_test.py +177 -0
- venv/lib/python3.10/site-packages/scipy/stats/_censored_data.py +459 -0
- venv/lib/python3.10/site-packages/scipy/stats/_common.py +5 -0
- venv/lib/python3.10/site-packages/scipy/stats/_constants.py +39 -0
- venv/lib/python3.10/site-packages/scipy/stats/_continuous_distns.py +0 -0
ckpts/universal/global_step40/zero/16.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac468ceabd93f514aa7d003d1dbab05b8e68035900d5d25ef6938c4616ea959c
|
| 3 |
+
size 50332843
|
ckpts/universal/global_step40/zero/17.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4da93b9372f8c88f63165119a244af2e9becd0ac17f694915d6905196348d603
|
| 3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/17.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4313de6920348f98073a99238c9a87ab3cb78baba2bd66d265f5e6b76c80a5b5
|
| 3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/17.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b3089e77b53620c3658b64c419e0ef3fc307e45c68fdaff018ade8e4c68bd36d
|
| 3 |
+
size 33555533
|
ckpts/universal/global_step40/zero/6.post_attention_layernorm.weight/fp32.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:66912cee30aeef84c558b59578dbd7376a05e35377acd70a85a2d8e02035c4ce
|
| 3 |
+
size 9293
|
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (3.82 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_filters.cpython-310.pyc
ADDED
|
Binary file (52.3 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_fourier.cpython-310.pyc
ADDED
|
Binary file (8.73 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_interpolation.cpython-310.pyc
ADDED
|
Binary file (28.6 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_measurements.cpython-310.pyc
ADDED
|
Binary file (47.6 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_morphology.cpython-310.pyc
ADDED
|
Binary file (83.2 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_ni_docstrings.cpython-310.pyc
ADDED
|
Binary file (8.33 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/_ni_support.cpython-310.pyc
ADDED
|
Binary file (2.84 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/filters.cpython-310.pyc
ADDED
|
Binary file (979 Bytes). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/fourier.cpython-310.pyc
ADDED
|
Binary file (666 Bytes). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/interpolation.cpython-310.pyc
ADDED
|
Binary file (735 Bytes). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/measurements.cpython-310.pyc
ADDED
|
Binary file (822 Bytes). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/__pycache__/morphology.cpython-310.pyc
ADDED
|
Binary file (979 Bytes). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__init__.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import numpy
|
| 3 |
+
|
| 4 |
+
# list of numarray data types
|
| 5 |
+
integer_types: list[type] = [
|
| 6 |
+
numpy.int8, numpy.uint8, numpy.int16, numpy.uint16,
|
| 7 |
+
numpy.int32, numpy.uint32, numpy.int64, numpy.uint64]
|
| 8 |
+
|
| 9 |
+
float_types: list[type] = [numpy.float32, numpy.float64]
|
| 10 |
+
|
| 11 |
+
complex_types: list[type] = [numpy.complex64, numpy.complex128]
|
| 12 |
+
|
| 13 |
+
types: list[type] = integer_types + float_types
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (562 Bytes). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_c_api.cpython-310.pyc
ADDED
|
Binary file (4.14 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_datatypes.cpython-310.pyc
ADDED
|
Binary file (1.9 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_filters.cpython-310.pyc
ADDED
|
Binary file (63.9 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_fourier.cpython-310.pyc
ADDED
|
Binary file (5.23 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_interpolation.cpython-310.pyc
ADDED
|
Binary file (46.8 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_measurements.cpython-310.pyc
ADDED
|
Binary file (36.2 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_morphology.cpython-310.pyc
ADDED
|
Binary file (60 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_ni_support.cpython-310.pyc
ADDED
|
Binary file (1.88 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_splines.cpython-310.pyc
ADDED
|
Binary file (2.01 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_inputs.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
1 1 1 1 1 1 1
|
| 2 |
+
1 1 1 1 1 1 1
|
| 3 |
+
1 1 1 1 1 1 1
|
| 4 |
+
1 1 1 1 1 1 1
|
| 5 |
+
1 1 1 1 1 1 1
|
| 6 |
+
1 1 1 1 1 1 1
|
| 7 |
+
1 1 1 1 1 1 1
|
| 8 |
+
1 1 1 0 1 1 1
|
| 9 |
+
1 1 0 0 0 1 1
|
| 10 |
+
1 0 1 0 1 0 1
|
| 11 |
+
0 0 0 1 0 0 0
|
| 12 |
+
1 0 1 0 1 0 1
|
| 13 |
+
1 1 0 0 0 1 1
|
| 14 |
+
1 1 1 0 1 1 1
|
| 15 |
+
1 0 1 1 1 0 1
|
| 16 |
+
0 0 0 1 0 0 0
|
| 17 |
+
1 0 0 1 0 0 1
|
| 18 |
+
1 1 1 1 1 1 1
|
| 19 |
+
1 0 0 1 0 0 1
|
| 20 |
+
0 0 0 1 0 0 0
|
| 21 |
+
1 0 1 1 1 0 1
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_results.txt
ADDED
|
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
1 1 1 1 1 1 1
|
| 2 |
+
1 1 1 1 1 1 1
|
| 3 |
+
1 1 1 1 1 1 1
|
| 4 |
+
1 1 1 1 1 1 1
|
| 5 |
+
1 1 1 1 1 1 1
|
| 6 |
+
1 1 1 1 1 1 1
|
| 7 |
+
1 1 1 1 1 1 1
|
| 8 |
+
1 1 1 1 1 1 1
|
| 9 |
+
1 1 1 1 1 1 1
|
| 10 |
+
1 1 1 1 1 1 1
|
| 11 |
+
1 1 1 1 1 1 1
|
| 12 |
+
1 1 1 1 1 1 1
|
| 13 |
+
1 1 1 1 1 1 1
|
| 14 |
+
1 1 1 1 1 1 1
|
| 15 |
+
1 1 1 1 1 1 1
|
| 16 |
+
2 2 2 2 2 2 2
|
| 17 |
+
3 3 3 3 3 3 3
|
| 18 |
+
4 4 4 4 4 4 4
|
| 19 |
+
5 5 5 5 5 5 5
|
| 20 |
+
6 6 6 6 6 6 6
|
| 21 |
+
7 7 7 7 7 7 7
|
| 22 |
+
1 1 1 1 1 1 1
|
| 23 |
+
1 1 1 1 1 1 1
|
| 24 |
+
1 1 1 1 1 1 1
|
| 25 |
+
1 1 1 1 1 1 1
|
| 26 |
+
1 1 1 1 1 1 1
|
| 27 |
+
1 1 1 1 1 1 1
|
| 28 |
+
1 1 1 1 1 1 1
|
| 29 |
+
1 2 3 4 5 6 7
|
| 30 |
+
8 9 10 11 12 13 14
|
| 31 |
+
15 16 17 18 19 20 21
|
| 32 |
+
22 23 24 25 26 27 28
|
| 33 |
+
29 30 31 32 33 34 35
|
| 34 |
+
36 37 38 39 40 41 42
|
| 35 |
+
43 44 45 46 47 48 49
|
| 36 |
+
1 1 1 1 1 1 1
|
| 37 |
+
1 1 1 1 1 1 1
|
| 38 |
+
1 1 1 1 1 1 1
|
| 39 |
+
1 1 1 1 1 1 1
|
| 40 |
+
1 1 1 1 1 1 1
|
| 41 |
+
1 1 1 1 1 1 1
|
| 42 |
+
1 1 1 1 1 1 1
|
| 43 |
+
1 1 1 1 1 1 1
|
| 44 |
+
1 1 1 1 1 1 1
|
| 45 |
+
1 1 1 1 1 1 1
|
| 46 |
+
1 1 1 1 1 1 1
|
| 47 |
+
1 1 1 1 1 1 1
|
| 48 |
+
1 1 1 1 1 1 1
|
| 49 |
+
1 1 1 1 1 1 1
|
| 50 |
+
1 2 3 4 5 6 7
|
| 51 |
+
8 1 2 3 4 5 6
|
| 52 |
+
9 8 1 2 3 4 5
|
| 53 |
+
10 9 8 1 2 3 4
|
| 54 |
+
11 10 9 8 1 2 3
|
| 55 |
+
12 11 10 9 8 1 2
|
| 56 |
+
13 12 11 10 9 8 1
|
| 57 |
+
1 2 3 4 5 6 7
|
| 58 |
+
1 2 3 4 5 6 7
|
| 59 |
+
1 2 3 4 5 6 7
|
| 60 |
+
1 2 3 4 5 6 7
|
| 61 |
+
1 2 3 4 5 6 7
|
| 62 |
+
1 2 3 4 5 6 7
|
| 63 |
+
1 2 3 4 5 6 7
|
| 64 |
+
1 1 1 1 1 1 1
|
| 65 |
+
1 1 1 1 1 1 1
|
| 66 |
+
1 1 1 1 1 1 1
|
| 67 |
+
1 1 1 1 1 1 1
|
| 68 |
+
1 1 1 1 1 1 1
|
| 69 |
+
1 1 1 1 1 1 1
|
| 70 |
+
1 1 1 1 1 1 1
|
| 71 |
+
1 1 1 1 1 1 1
|
| 72 |
+
1 1 1 1 1 1 1
|
| 73 |
+
1 1 1 1 1 1 1
|
| 74 |
+
1 1 1 1 1 1 1
|
| 75 |
+
1 1 1 1 1 1 1
|
| 76 |
+
1 1 1 1 1 1 1
|
| 77 |
+
1 1 1 1 1 1 1
|
| 78 |
+
1 2 1 2 1 2 1
|
| 79 |
+
2 1 2 1 2 1 2
|
| 80 |
+
1 2 1 2 1 2 1
|
| 81 |
+
2 1 2 1 2 1 2
|
| 82 |
+
1 2 1 2 1 2 1
|
| 83 |
+
2 1 2 1 2 1 2
|
| 84 |
+
1 2 1 2 1 2 1
|
| 85 |
+
1 2 3 4 5 6 7
|
| 86 |
+
2 3 4 5 6 7 8
|
| 87 |
+
3 4 5 6 7 8 9
|
| 88 |
+
4 5 6 7 8 9 10
|
| 89 |
+
5 6 7 8 9 10 11
|
| 90 |
+
6 7 8 9 10 11 12
|
| 91 |
+
7 8 9 10 11 12 13
|
| 92 |
+
1 1 1 1 1 1 1
|
| 93 |
+
1 1 1 1 1 1 1
|
| 94 |
+
1 1 1 1 1 1 1
|
| 95 |
+
1 1 1 1 1 1 1
|
| 96 |
+
1 1 1 1 1 1 1
|
| 97 |
+
1 1 1 1 1 1 1
|
| 98 |
+
1 1 1 1 1 1 1
|
| 99 |
+
1 1 1 0 2 2 2
|
| 100 |
+
1 1 0 0 0 2 2
|
| 101 |
+
1 0 3 0 2 0 4
|
| 102 |
+
0 0 0 2 0 0 0
|
| 103 |
+
5 0 2 0 6 0 7
|
| 104 |
+
2 2 0 0 0 7 7
|
| 105 |
+
2 2 2 0 7 7 7
|
| 106 |
+
1 1 1 0 2 2 2
|
| 107 |
+
1 1 0 0 0 2 2
|
| 108 |
+
3 0 1 0 4 0 2
|
| 109 |
+
0 0 0 1 0 0 0
|
| 110 |
+
5 0 6 0 1 0 7
|
| 111 |
+
5 5 0 0 0 1 1
|
| 112 |
+
5 5 5 0 1 1 1
|
| 113 |
+
1 1 1 0 2 2 2
|
| 114 |
+
3 3 0 0 0 4 4
|
| 115 |
+
5 0 6 0 7 0 8
|
| 116 |
+
0 0 0 9 0 0 0
|
| 117 |
+
10 0 11 0 12 0 13
|
| 118 |
+
14 14 0 0 0 15 15
|
| 119 |
+
16 16 16 0 17 17 17
|
| 120 |
+
1 1 1 0 2 3 3
|
| 121 |
+
1 1 0 0 0 3 3
|
| 122 |
+
1 0 4 0 3 0 3
|
| 123 |
+
0 0 0 3 0 0 0
|
| 124 |
+
3 0 3 0 5 0 6
|
| 125 |
+
3 3 0 0 0 6 6
|
| 126 |
+
3 3 7 0 6 6 6
|
| 127 |
+
1 2 3 0 4 5 6
|
| 128 |
+
7 8 0 0 0 9 10
|
| 129 |
+
11 0 12 0 13 0 14
|
| 130 |
+
0 0 0 15 0 0 0
|
| 131 |
+
16 0 17 0 18 0 19
|
| 132 |
+
20 21 0 0 0 22 23
|
| 133 |
+
24 25 26 0 27 28 29
|
| 134 |
+
1 1 1 0 2 2 2
|
| 135 |
+
1 1 0 0 0 2 2
|
| 136 |
+
1 0 3 0 2 0 2
|
| 137 |
+
0 0 0 2 0 0 0
|
| 138 |
+
2 0 2 0 4 0 5
|
| 139 |
+
2 2 0 0 0 5 5
|
| 140 |
+
2 2 2 0 5 5 5
|
| 141 |
+
1 1 1 0 2 2 2
|
| 142 |
+
1 1 0 0 0 2 2
|
| 143 |
+
1 0 3 0 4 0 2
|
| 144 |
+
0 0 0 5 0 0 0
|
| 145 |
+
6 0 7 0 8 0 9
|
| 146 |
+
6 6 0 0 0 9 9
|
| 147 |
+
6 6 6 0 9 9 9
|
| 148 |
+
1 2 3 0 4 5 6
|
| 149 |
+
7 1 0 0 0 4 5
|
| 150 |
+
8 0 1 0 9 0 4
|
| 151 |
+
0 0 0 1 0 0 0
|
| 152 |
+
10 0 11 0 1 0 12
|
| 153 |
+
13 10 0 0 0 1 14
|
| 154 |
+
15 13 10 0 16 17 1
|
| 155 |
+
1 2 3 0 4 5 6
|
| 156 |
+
1 2 0 0 0 5 6
|
| 157 |
+
1 0 7 0 8 0 6
|
| 158 |
+
0 0 0 9 0 0 0
|
| 159 |
+
10 0 11 0 12 0 13
|
| 160 |
+
10 14 0 0 0 15 13
|
| 161 |
+
10 14 16 0 17 15 13
|
| 162 |
+
1 1 1 0 1 1 1
|
| 163 |
+
1 1 0 0 0 1 1
|
| 164 |
+
1 0 1 0 1 0 1
|
| 165 |
+
0 0 0 1 0 0 0
|
| 166 |
+
1 0 1 0 1 0 1
|
| 167 |
+
1 1 0 0 0 1 1
|
| 168 |
+
1 1 1 0 1 1 1
|
| 169 |
+
1 1 2 0 3 3 3
|
| 170 |
+
1 1 0 0 0 3 3
|
| 171 |
+
1 0 1 0 4 0 3
|
| 172 |
+
0 0 0 1 0 0 0
|
| 173 |
+
5 0 6 0 1 0 1
|
| 174 |
+
5 5 0 0 0 1 1
|
| 175 |
+
5 5 5 0 7 1 1
|
| 176 |
+
1 2 1 0 1 3 1
|
| 177 |
+
2 1 0 0 0 1 3
|
| 178 |
+
1 0 1 0 1 0 1
|
| 179 |
+
0 0 0 1 0 0 0
|
| 180 |
+
1 0 1 0 1 0 1
|
| 181 |
+
4 1 0 0 0 1 5
|
| 182 |
+
1 4 1 0 1 5 1
|
| 183 |
+
1 2 3 0 4 5 6
|
| 184 |
+
2 3 0 0 0 6 7
|
| 185 |
+
3 0 8 0 6 0 9
|
| 186 |
+
0 0 0 6 0 0 0
|
| 187 |
+
10 0 6 0 11 0 12
|
| 188 |
+
13 6 0 0 0 12 14
|
| 189 |
+
6 15 16 0 12 14 17
|
| 190 |
+
1 1 1 0 2 2 2
|
| 191 |
+
1 1 0 0 0 2 2
|
| 192 |
+
1 0 1 0 3 0 2
|
| 193 |
+
0 0 0 1 0 0 0
|
| 194 |
+
4 0 5 0 1 0 1
|
| 195 |
+
4 4 0 0 0 1 1
|
| 196 |
+
4 4 4 0 1 1 1
|
| 197 |
+
1 0 2 2 2 0 3
|
| 198 |
+
0 0 0 2 0 0 0
|
| 199 |
+
4 0 0 5 0 0 5
|
| 200 |
+
5 5 5 5 5 5 5
|
| 201 |
+
5 0 0 5 0 0 6
|
| 202 |
+
0 0 0 7 0 0 0
|
| 203 |
+
8 0 7 7 7 0 9
|
| 204 |
+
1 0 2 2 2 0 3
|
| 205 |
+
0 0 0 2 0 0 0
|
| 206 |
+
4 0 0 4 0 0 5
|
| 207 |
+
4 4 4 4 4 4 4
|
| 208 |
+
6 0 0 4 0 0 4
|
| 209 |
+
0 0 0 7 0 0 0
|
| 210 |
+
8 0 7 7 7 0 9
|
| 211 |
+
1 0 2 2 2 0 3
|
| 212 |
+
0 0 0 4 0 0 0
|
| 213 |
+
5 0 0 6 0 0 7
|
| 214 |
+
8 8 8 8 8 8 8
|
| 215 |
+
9 0 0 10 0 0 11
|
| 216 |
+
0 0 0 12 0 0 0
|
| 217 |
+
13 0 14 14 14 0 15
|
| 218 |
+
1 0 2 3 3 0 4
|
| 219 |
+
0 0 0 3 0 0 0
|
| 220 |
+
5 0 0 3 0 0 6
|
| 221 |
+
5 5 3 3 3 6 6
|
| 222 |
+
5 0 0 3 0 0 6
|
| 223 |
+
0 0 0 3 0 0 0
|
| 224 |
+
7 0 3 3 8 0 9
|
| 225 |
+
1 0 2 3 4 0 5
|
| 226 |
+
0 0 0 6 0 0 0
|
| 227 |
+
7 0 0 8 0 0 9
|
| 228 |
+
10 11 12 13 14 15 16
|
| 229 |
+
17 0 0 18 0 0 19
|
| 230 |
+
0 0 0 20 0 0 0
|
| 231 |
+
21 0 22 23 24 0 25
|
| 232 |
+
1 0 2 2 2 0 3
|
| 233 |
+
0 0 0 2 0 0 0
|
| 234 |
+
2 0 0 2 0 0 2
|
| 235 |
+
2 2 2 2 2 2 2
|
| 236 |
+
2 0 0 2 0 0 2
|
| 237 |
+
0 0 0 2 0 0 0
|
| 238 |
+
4 0 2 2 2 0 5
|
| 239 |
+
1 0 2 2 2 0 3
|
| 240 |
+
0 0 0 2 0 0 0
|
| 241 |
+
2 0 0 2 0 0 2
|
| 242 |
+
2 2 2 2 2 2 2
|
| 243 |
+
2 0 0 2 0 0 2
|
| 244 |
+
0 0 0 2 0 0 0
|
| 245 |
+
4 0 2 2 2 0 5
|
| 246 |
+
1 0 2 3 4 0 5
|
| 247 |
+
0 0 0 2 0 0 0
|
| 248 |
+
6 0 0 7 0 0 8
|
| 249 |
+
9 6 10 11 7 12 13
|
| 250 |
+
14 0 0 10 0 0 12
|
| 251 |
+
0 0 0 15 0 0 0
|
| 252 |
+
16 0 17 18 15 0 19
|
| 253 |
+
1 0 2 3 4 0 5
|
| 254 |
+
0 0 0 3 0 0 0
|
| 255 |
+
6 0 0 3 0 0 7
|
| 256 |
+
6 8 9 3 10 11 7
|
| 257 |
+
6 0 0 3 0 0 7
|
| 258 |
+
0 0 0 3 0 0 0
|
| 259 |
+
12 0 13 3 14 0 15
|
| 260 |
+
1 0 2 2 2 0 3
|
| 261 |
+
0 0 0 2 0 0 0
|
| 262 |
+
2 0 0 2 0 0 2
|
| 263 |
+
2 2 2 2 2 2 2
|
| 264 |
+
2 0 0 2 0 0 2
|
| 265 |
+
0 0 0 2 0 0 0
|
| 266 |
+
4 0 2 2 2 0 5
|
| 267 |
+
1 0 2 2 3 0 4
|
| 268 |
+
0 0 0 2 0 0 0
|
| 269 |
+
5 0 0 2 0 0 6
|
| 270 |
+
5 5 2 2 2 6 6
|
| 271 |
+
5 0 0 2 0 0 6
|
| 272 |
+
0 0 0 2 0 0 0
|
| 273 |
+
7 0 8 2 2 0 9
|
| 274 |
+
1 0 2 3 2 0 4
|
| 275 |
+
0 0 0 2 0 0 0
|
| 276 |
+
5 0 0 6 0 0 7
|
| 277 |
+
8 5 6 9 6 7 10
|
| 278 |
+
5 0 0 6 0 0 7
|
| 279 |
+
0 0 0 11 0 0 0
|
| 280 |
+
12 0 11 13 11 0 14
|
| 281 |
+
1 0 2 3 4 0 5
|
| 282 |
+
0 0 0 4 0 0 0
|
| 283 |
+
6 0 0 7 0 0 8
|
| 284 |
+
9 10 7 11 12 8 13
|
| 285 |
+
10 0 0 12 0 0 14
|
| 286 |
+
0 0 0 15 0 0 0
|
| 287 |
+
16 0 15 17 18 0 19
|
| 288 |
+
1 0 2 2 2 0 3
|
| 289 |
+
0 0 0 2 0 0 0
|
| 290 |
+
2 0 0 2 0 0 2
|
| 291 |
+
2 2 2 2 2 2 2
|
| 292 |
+
2 0 0 2 0 0 2
|
| 293 |
+
0 0 0 2 0 0 0
|
| 294 |
+
4 0 2 2 2 0 5
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/data/label_strels.txt
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
0 0 1
|
| 2 |
+
1 1 1
|
| 3 |
+
1 0 0
|
| 4 |
+
1 0 0
|
| 5 |
+
1 1 1
|
| 6 |
+
0 0 1
|
| 7 |
+
0 0 0
|
| 8 |
+
1 1 1
|
| 9 |
+
0 0 0
|
| 10 |
+
0 1 1
|
| 11 |
+
0 1 0
|
| 12 |
+
1 1 0
|
| 13 |
+
0 0 0
|
| 14 |
+
0 0 0
|
| 15 |
+
0 0 0
|
| 16 |
+
0 1 1
|
| 17 |
+
1 1 1
|
| 18 |
+
1 1 0
|
| 19 |
+
0 1 0
|
| 20 |
+
1 1 1
|
| 21 |
+
0 1 0
|
| 22 |
+
1 0 0
|
| 23 |
+
0 1 0
|
| 24 |
+
0 0 1
|
| 25 |
+
0 1 0
|
| 26 |
+
0 1 0
|
| 27 |
+
0 1 0
|
| 28 |
+
1 1 1
|
| 29 |
+
1 1 1
|
| 30 |
+
1 1 1
|
| 31 |
+
1 1 0
|
| 32 |
+
0 1 0
|
| 33 |
+
0 1 1
|
| 34 |
+
1 0 1
|
| 35 |
+
0 1 0
|
| 36 |
+
1 0 1
|
| 37 |
+
0 0 1
|
| 38 |
+
0 1 0
|
| 39 |
+
1 0 0
|
| 40 |
+
1 1 0
|
| 41 |
+
1 1 1
|
| 42 |
+
0 1 1
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_c_api.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from numpy.testing import assert_allclose
|
| 3 |
+
|
| 4 |
+
from scipy import ndimage
|
| 5 |
+
from scipy.ndimage import _ctest
|
| 6 |
+
from scipy.ndimage import _cytest
|
| 7 |
+
from scipy._lib._ccallback import LowLevelCallable
|
| 8 |
+
|
| 9 |
+
FILTER1D_FUNCTIONS = [
|
| 10 |
+
lambda filter_size: _ctest.filter1d(filter_size),
|
| 11 |
+
lambda filter_size: _cytest.filter1d(filter_size, with_signature=False),
|
| 12 |
+
lambda filter_size: LowLevelCallable(
|
| 13 |
+
_cytest.filter1d(filter_size, with_signature=True)
|
| 14 |
+
),
|
| 15 |
+
lambda filter_size: LowLevelCallable.from_cython(
|
| 16 |
+
_cytest, "_filter1d",
|
| 17 |
+
_cytest.filter1d_capsule(filter_size),
|
| 18 |
+
),
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
FILTER2D_FUNCTIONS = [
|
| 22 |
+
lambda weights: _ctest.filter2d(weights),
|
| 23 |
+
lambda weights: _cytest.filter2d(weights, with_signature=False),
|
| 24 |
+
lambda weights: LowLevelCallable(_cytest.filter2d(weights, with_signature=True)),
|
| 25 |
+
lambda weights: LowLevelCallable.from_cython(_cytest,
|
| 26 |
+
"_filter2d",
|
| 27 |
+
_cytest.filter2d_capsule(weights),),
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
TRANSFORM_FUNCTIONS = [
|
| 31 |
+
lambda shift: _ctest.transform(shift),
|
| 32 |
+
lambda shift: _cytest.transform(shift, with_signature=False),
|
| 33 |
+
lambda shift: LowLevelCallable(_cytest.transform(shift, with_signature=True)),
|
| 34 |
+
lambda shift: LowLevelCallable.from_cython(_cytest,
|
| 35 |
+
"_transform",
|
| 36 |
+
_cytest.transform_capsule(shift),),
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def test_generic_filter():
|
| 41 |
+
def filter2d(footprint_elements, weights):
|
| 42 |
+
return (weights*footprint_elements).sum()
|
| 43 |
+
|
| 44 |
+
def check(j):
|
| 45 |
+
func = FILTER2D_FUNCTIONS[j]
|
| 46 |
+
|
| 47 |
+
im = np.ones((20, 20))
|
| 48 |
+
im[:10,:10] = 0
|
| 49 |
+
footprint = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
|
| 50 |
+
footprint_size = np.count_nonzero(footprint)
|
| 51 |
+
weights = np.ones(footprint_size)/footprint_size
|
| 52 |
+
|
| 53 |
+
res = ndimage.generic_filter(im, func(weights),
|
| 54 |
+
footprint=footprint)
|
| 55 |
+
std = ndimage.generic_filter(im, filter2d, footprint=footprint,
|
| 56 |
+
extra_arguments=(weights,))
|
| 57 |
+
assert_allclose(res, std, err_msg=f"#{j} failed")
|
| 58 |
+
|
| 59 |
+
for j, func in enumerate(FILTER2D_FUNCTIONS):
|
| 60 |
+
check(j)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def test_generic_filter1d():
|
| 64 |
+
def filter1d(input_line, output_line, filter_size):
|
| 65 |
+
for i in range(output_line.size):
|
| 66 |
+
output_line[i] = 0
|
| 67 |
+
for j in range(filter_size):
|
| 68 |
+
output_line[i] += input_line[i+j]
|
| 69 |
+
output_line /= filter_size
|
| 70 |
+
|
| 71 |
+
def check(j):
|
| 72 |
+
func = FILTER1D_FUNCTIONS[j]
|
| 73 |
+
|
| 74 |
+
im = np.tile(np.hstack((np.zeros(10), np.ones(10))), (10, 1))
|
| 75 |
+
filter_size = 3
|
| 76 |
+
|
| 77 |
+
res = ndimage.generic_filter1d(im, func(filter_size),
|
| 78 |
+
filter_size)
|
| 79 |
+
std = ndimage.generic_filter1d(im, filter1d, filter_size,
|
| 80 |
+
extra_arguments=(filter_size,))
|
| 81 |
+
assert_allclose(res, std, err_msg=f"#{j} failed")
|
| 82 |
+
|
| 83 |
+
for j, func in enumerate(FILTER1D_FUNCTIONS):
|
| 84 |
+
check(j)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def test_geometric_transform():
|
| 88 |
+
def transform(output_coordinates, shift):
|
| 89 |
+
return output_coordinates[0] - shift, output_coordinates[1] - shift
|
| 90 |
+
|
| 91 |
+
def check(j):
|
| 92 |
+
func = TRANSFORM_FUNCTIONS[j]
|
| 93 |
+
|
| 94 |
+
im = np.arange(12).reshape(4, 3).astype(np.float64)
|
| 95 |
+
shift = 0.5
|
| 96 |
+
|
| 97 |
+
res = ndimage.geometric_transform(im, func(shift))
|
| 98 |
+
std = ndimage.geometric_transform(im, transform, extra_arguments=(shift,))
|
| 99 |
+
assert_allclose(res, std, err_msg=f"#{j} failed")
|
| 100 |
+
|
| 101 |
+
for j, func in enumerate(TRANSFORM_FUNCTIONS):
|
| 102 |
+
check(j)
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_datatypes.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" Testing data types for ndimage calls
|
| 2 |
+
"""
|
| 3 |
+
import numpy as np
|
| 4 |
+
from numpy.testing import assert_array_almost_equal, assert_
|
| 5 |
+
import pytest
|
| 6 |
+
|
| 7 |
+
from scipy import ndimage
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def test_map_coordinates_dts():
|
| 11 |
+
# check that ndimage accepts different data types for interpolation
|
| 12 |
+
data = np.array([[4, 1, 3, 2],
|
| 13 |
+
[7, 6, 8, 5],
|
| 14 |
+
[3, 5, 3, 6]])
|
| 15 |
+
shifted_data = np.array([[0, 0, 0, 0],
|
| 16 |
+
[0, 4, 1, 3],
|
| 17 |
+
[0, 7, 6, 8]])
|
| 18 |
+
idx = np.indices(data.shape)
|
| 19 |
+
dts = (np.uint8, np.uint16, np.uint32, np.uint64,
|
| 20 |
+
np.int8, np.int16, np.int32, np.int64,
|
| 21 |
+
np.intp, np.uintp, np.float32, np.float64)
|
| 22 |
+
for order in range(0, 6):
|
| 23 |
+
for data_dt in dts:
|
| 24 |
+
these_data = data.astype(data_dt)
|
| 25 |
+
for coord_dt in dts:
|
| 26 |
+
# affine mapping
|
| 27 |
+
mat = np.eye(2, dtype=coord_dt)
|
| 28 |
+
off = np.zeros((2,), dtype=coord_dt)
|
| 29 |
+
out = ndimage.affine_transform(these_data, mat, off)
|
| 30 |
+
assert_array_almost_equal(these_data, out)
|
| 31 |
+
# map coordinates
|
| 32 |
+
coords_m1 = idx.astype(coord_dt) - 1
|
| 33 |
+
coords_p10 = idx.astype(coord_dt) + 10
|
| 34 |
+
out = ndimage.map_coordinates(these_data, coords_m1, order=order)
|
| 35 |
+
assert_array_almost_equal(out, shifted_data)
|
| 36 |
+
# check constant fill works
|
| 37 |
+
out = ndimage.map_coordinates(these_data, coords_p10, order=order)
|
| 38 |
+
assert_array_almost_equal(out, np.zeros((3,4)))
|
| 39 |
+
# check shift and zoom
|
| 40 |
+
out = ndimage.shift(these_data, 1)
|
| 41 |
+
assert_array_almost_equal(out, shifted_data)
|
| 42 |
+
out = ndimage.zoom(these_data, 1)
|
| 43 |
+
assert_array_almost_equal(these_data, out)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
@pytest.mark.xfail(True, reason="Broken on many platforms")
|
| 47 |
+
def test_uint64_max():
|
| 48 |
+
# Test interpolation respects uint64 max. Reported to fail at least on
|
| 49 |
+
# win32 (due to the 32 bit visual C compiler using signed int64 when
|
| 50 |
+
# converting between uint64 to double) and Debian on s390x.
|
| 51 |
+
# Interpolation is always done in double precision floating point, so
|
| 52 |
+
# we use the largest uint64 value for which int(float(big)) still fits
|
| 53 |
+
# in a uint64.
|
| 54 |
+
# This test was last enabled on macOS only, and there it started failing
|
| 55 |
+
# on arm64 as well (see gh-19117).
|
| 56 |
+
big = 2**64 - 1025
|
| 57 |
+
arr = np.array([big, big, big], dtype=np.uint64)
|
| 58 |
+
# Tests geometric transform (map_coordinates, affine_transform)
|
| 59 |
+
inds = np.indices(arr.shape) - 0.1
|
| 60 |
+
x = ndimage.map_coordinates(arr, inds)
|
| 61 |
+
assert_(x[1] == int(float(big)))
|
| 62 |
+
assert_(x[2] == int(float(big)))
|
| 63 |
+
# Tests zoom / shift
|
| 64 |
+
x = ndimage.shift(arr, 0.1)
|
| 65 |
+
assert_(x[1] == int(float(big)))
|
| 66 |
+
assert_(x[2] == int(float(big)))
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_filters.py
ADDED
|
@@ -0,0 +1,2189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
''' Some tests for filters '''
|
| 2 |
+
import functools
|
| 3 |
+
import itertools
|
| 4 |
+
import math
|
| 5 |
+
import numpy
|
| 6 |
+
|
| 7 |
+
from numpy.testing import (assert_equal, assert_allclose,
|
| 8 |
+
assert_array_almost_equal,
|
| 9 |
+
assert_array_equal, assert_almost_equal,
|
| 10 |
+
suppress_warnings, assert_)
|
| 11 |
+
import pytest
|
| 12 |
+
from pytest import raises as assert_raises
|
| 13 |
+
|
| 14 |
+
from scipy import ndimage
|
| 15 |
+
from scipy.ndimage._filters import _gaussian_kernel1d
|
| 16 |
+
|
| 17 |
+
from . import types, float_types, complex_types
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def sumsq(a, b):
|
| 21 |
+
return math.sqrt(((a - b)**2).sum())
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def _complex_correlate(array, kernel, real_dtype, convolve=False,
|
| 25 |
+
mode="reflect", cval=0, ):
|
| 26 |
+
"""Utility to perform a reference complex-valued convolutions.
|
| 27 |
+
|
| 28 |
+
When convolve==False, correlation is performed instead
|
| 29 |
+
"""
|
| 30 |
+
array = numpy.asarray(array)
|
| 31 |
+
kernel = numpy.asarray(kernel)
|
| 32 |
+
complex_array = array.dtype.kind == 'c'
|
| 33 |
+
complex_kernel = kernel.dtype.kind == 'c'
|
| 34 |
+
if array.ndim == 1:
|
| 35 |
+
func = ndimage.convolve1d if convolve else ndimage.correlate1d
|
| 36 |
+
else:
|
| 37 |
+
func = ndimage.convolve if convolve else ndimage.correlate
|
| 38 |
+
if not convolve:
|
| 39 |
+
kernel = kernel.conj()
|
| 40 |
+
if complex_array and complex_kernel:
|
| 41 |
+
# use: real(cval) for array.real component
|
| 42 |
+
# imag(cval) for array.imag component
|
| 43 |
+
output = (
|
| 44 |
+
func(array.real, kernel.real, output=real_dtype,
|
| 45 |
+
mode=mode, cval=numpy.real(cval)) -
|
| 46 |
+
func(array.imag, kernel.imag, output=real_dtype,
|
| 47 |
+
mode=mode, cval=numpy.imag(cval)) +
|
| 48 |
+
1j * func(array.imag, kernel.real, output=real_dtype,
|
| 49 |
+
mode=mode, cval=numpy.imag(cval)) +
|
| 50 |
+
1j * func(array.real, kernel.imag, output=real_dtype,
|
| 51 |
+
mode=mode, cval=numpy.real(cval))
|
| 52 |
+
)
|
| 53 |
+
elif complex_array:
|
| 54 |
+
output = (
|
| 55 |
+
func(array.real, kernel, output=real_dtype, mode=mode,
|
| 56 |
+
cval=numpy.real(cval)) +
|
| 57 |
+
1j * func(array.imag, kernel, output=real_dtype, mode=mode,
|
| 58 |
+
cval=numpy.imag(cval))
|
| 59 |
+
)
|
| 60 |
+
elif complex_kernel:
|
| 61 |
+
# real array so cval is real too
|
| 62 |
+
output = (
|
| 63 |
+
func(array, kernel.real, output=real_dtype, mode=mode, cval=cval) +
|
| 64 |
+
1j * func(array, kernel.imag, output=real_dtype, mode=mode,
|
| 65 |
+
cval=cval)
|
| 66 |
+
)
|
| 67 |
+
return output
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def _cases_axes_tuple_length_mismatch():
|
| 71 |
+
# Generate combinations of filter function, valid kwargs, and
|
| 72 |
+
# keyword-value pairs for which the value will become with mismatched
|
| 73 |
+
# (invalid) size
|
| 74 |
+
filter_func = ndimage.gaussian_filter
|
| 75 |
+
kwargs = dict(radius=3, mode='constant', sigma=1.0, order=0)
|
| 76 |
+
for key, val in kwargs.items():
|
| 77 |
+
yield filter_func, kwargs, key, val
|
| 78 |
+
|
| 79 |
+
filter_funcs = [ndimage.uniform_filter, ndimage.minimum_filter,
|
| 80 |
+
ndimage.maximum_filter]
|
| 81 |
+
kwargs = dict(size=3, mode='constant', origin=0)
|
| 82 |
+
for filter_func in filter_funcs:
|
| 83 |
+
for key, val in kwargs.items():
|
| 84 |
+
yield filter_func, kwargs, key, val
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class TestNdimageFilters:
|
| 88 |
+
|
| 89 |
+
def _validate_complex(self, array, kernel, type2, mode='reflect', cval=0):
|
| 90 |
+
# utility for validating complex-valued correlations
|
| 91 |
+
real_dtype = numpy.asarray([], dtype=type2).real.dtype
|
| 92 |
+
expected = _complex_correlate(
|
| 93 |
+
array, kernel, real_dtype, convolve=False, mode=mode, cval=cval
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
if array.ndim == 1:
|
| 97 |
+
correlate = functools.partial(ndimage.correlate1d, axis=-1,
|
| 98 |
+
mode=mode, cval=cval)
|
| 99 |
+
convolve = functools.partial(ndimage.convolve1d, axis=-1,
|
| 100 |
+
mode=mode, cval=cval)
|
| 101 |
+
else:
|
| 102 |
+
correlate = functools.partial(ndimage.correlate, mode=mode,
|
| 103 |
+
cval=cval)
|
| 104 |
+
convolve = functools.partial(ndimage.convolve, mode=mode,
|
| 105 |
+
cval=cval)
|
| 106 |
+
|
| 107 |
+
# test correlate output dtype
|
| 108 |
+
output = correlate(array, kernel, output=type2)
|
| 109 |
+
assert_array_almost_equal(expected, output)
|
| 110 |
+
assert_equal(output.dtype.type, type2)
|
| 111 |
+
|
| 112 |
+
# test correlate with pre-allocated output
|
| 113 |
+
output = numpy.zeros_like(array, dtype=type2)
|
| 114 |
+
correlate(array, kernel, output=output)
|
| 115 |
+
assert_array_almost_equal(expected, output)
|
| 116 |
+
|
| 117 |
+
# test convolve output dtype
|
| 118 |
+
output = convolve(array, kernel, output=type2)
|
| 119 |
+
expected = _complex_correlate(
|
| 120 |
+
array, kernel, real_dtype, convolve=True, mode=mode, cval=cval,
|
| 121 |
+
)
|
| 122 |
+
assert_array_almost_equal(expected, output)
|
| 123 |
+
assert_equal(output.dtype.type, type2)
|
| 124 |
+
|
| 125 |
+
# convolve with pre-allocated output
|
| 126 |
+
convolve(array, kernel, output=output)
|
| 127 |
+
assert_array_almost_equal(expected, output)
|
| 128 |
+
assert_equal(output.dtype.type, type2)
|
| 129 |
+
|
| 130 |
+
# warns if the output is not a complex dtype
|
| 131 |
+
with pytest.warns(UserWarning,
|
| 132 |
+
match="promoting specified output dtype to complex"):
|
| 133 |
+
correlate(array, kernel, output=real_dtype)
|
| 134 |
+
|
| 135 |
+
with pytest.warns(UserWarning,
|
| 136 |
+
match="promoting specified output dtype to complex"):
|
| 137 |
+
convolve(array, kernel, output=real_dtype)
|
| 138 |
+
|
| 139 |
+
# raises if output array is provided, but is not complex-valued
|
| 140 |
+
output_real = numpy.zeros_like(array, dtype=real_dtype)
|
| 141 |
+
with assert_raises(RuntimeError):
|
| 142 |
+
correlate(array, kernel, output=output_real)
|
| 143 |
+
|
| 144 |
+
with assert_raises(RuntimeError):
|
| 145 |
+
convolve(array, kernel, output=output_real)
|
| 146 |
+
|
| 147 |
+
def test_correlate01(self):
|
| 148 |
+
array = numpy.array([1, 2])
|
| 149 |
+
weights = numpy.array([2])
|
| 150 |
+
expected = [2, 4]
|
| 151 |
+
|
| 152 |
+
output = ndimage.correlate(array, weights)
|
| 153 |
+
assert_array_almost_equal(output, expected)
|
| 154 |
+
|
| 155 |
+
output = ndimage.convolve(array, weights)
|
| 156 |
+
assert_array_almost_equal(output, expected)
|
| 157 |
+
|
| 158 |
+
output = ndimage.correlate1d(array, weights)
|
| 159 |
+
assert_array_almost_equal(output, expected)
|
| 160 |
+
|
| 161 |
+
output = ndimage.convolve1d(array, weights)
|
| 162 |
+
assert_array_almost_equal(output, expected)
|
| 163 |
+
|
| 164 |
+
def test_correlate01_overlap(self):
|
| 165 |
+
array = numpy.arange(256).reshape(16, 16)
|
| 166 |
+
weights = numpy.array([2])
|
| 167 |
+
expected = 2 * array
|
| 168 |
+
|
| 169 |
+
ndimage.correlate1d(array, weights, output=array)
|
| 170 |
+
assert_array_almost_equal(array, expected)
|
| 171 |
+
|
| 172 |
+
def test_correlate02(self):
|
| 173 |
+
array = numpy.array([1, 2, 3])
|
| 174 |
+
kernel = numpy.array([1])
|
| 175 |
+
|
| 176 |
+
output = ndimage.correlate(array, kernel)
|
| 177 |
+
assert_array_almost_equal(array, output)
|
| 178 |
+
|
| 179 |
+
output = ndimage.convolve(array, kernel)
|
| 180 |
+
assert_array_almost_equal(array, output)
|
| 181 |
+
|
| 182 |
+
output = ndimage.correlate1d(array, kernel)
|
| 183 |
+
assert_array_almost_equal(array, output)
|
| 184 |
+
|
| 185 |
+
output = ndimage.convolve1d(array, kernel)
|
| 186 |
+
assert_array_almost_equal(array, output)
|
| 187 |
+
|
| 188 |
+
def test_correlate03(self):
|
| 189 |
+
array = numpy.array([1])
|
| 190 |
+
weights = numpy.array([1, 1])
|
| 191 |
+
expected = [2]
|
| 192 |
+
|
| 193 |
+
output = ndimage.correlate(array, weights)
|
| 194 |
+
assert_array_almost_equal(output, expected)
|
| 195 |
+
|
| 196 |
+
output = ndimage.convolve(array, weights)
|
| 197 |
+
assert_array_almost_equal(output, expected)
|
| 198 |
+
|
| 199 |
+
output = ndimage.correlate1d(array, weights)
|
| 200 |
+
assert_array_almost_equal(output, expected)
|
| 201 |
+
|
| 202 |
+
output = ndimage.convolve1d(array, weights)
|
| 203 |
+
assert_array_almost_equal(output, expected)
|
| 204 |
+
|
| 205 |
+
def test_correlate04(self):
|
| 206 |
+
array = numpy.array([1, 2])
|
| 207 |
+
tcor = [2, 3]
|
| 208 |
+
tcov = [3, 4]
|
| 209 |
+
weights = numpy.array([1, 1])
|
| 210 |
+
output = ndimage.correlate(array, weights)
|
| 211 |
+
assert_array_almost_equal(output, tcor)
|
| 212 |
+
output = ndimage.convolve(array, weights)
|
| 213 |
+
assert_array_almost_equal(output, tcov)
|
| 214 |
+
output = ndimage.correlate1d(array, weights)
|
| 215 |
+
assert_array_almost_equal(output, tcor)
|
| 216 |
+
output = ndimage.convolve1d(array, weights)
|
| 217 |
+
assert_array_almost_equal(output, tcov)
|
| 218 |
+
|
| 219 |
+
def test_correlate05(self):
|
| 220 |
+
array = numpy.array([1, 2, 3])
|
| 221 |
+
tcor = [2, 3, 5]
|
| 222 |
+
tcov = [3, 5, 6]
|
| 223 |
+
kernel = numpy.array([1, 1])
|
| 224 |
+
output = ndimage.correlate(array, kernel)
|
| 225 |
+
assert_array_almost_equal(tcor, output)
|
| 226 |
+
output = ndimage.convolve(array, kernel)
|
| 227 |
+
assert_array_almost_equal(tcov, output)
|
| 228 |
+
output = ndimage.correlate1d(array, kernel)
|
| 229 |
+
assert_array_almost_equal(tcor, output)
|
| 230 |
+
output = ndimage.convolve1d(array, kernel)
|
| 231 |
+
assert_array_almost_equal(tcov, output)
|
| 232 |
+
|
| 233 |
+
def test_correlate06(self):
|
| 234 |
+
array = numpy.array([1, 2, 3])
|
| 235 |
+
tcor = [9, 14, 17]
|
| 236 |
+
tcov = [7, 10, 15]
|
| 237 |
+
weights = numpy.array([1, 2, 3])
|
| 238 |
+
output = ndimage.correlate(array, weights)
|
| 239 |
+
assert_array_almost_equal(output, tcor)
|
| 240 |
+
output = ndimage.convolve(array, weights)
|
| 241 |
+
assert_array_almost_equal(output, tcov)
|
| 242 |
+
output = ndimage.correlate1d(array, weights)
|
| 243 |
+
assert_array_almost_equal(output, tcor)
|
| 244 |
+
output = ndimage.convolve1d(array, weights)
|
| 245 |
+
assert_array_almost_equal(output, tcov)
|
| 246 |
+
|
| 247 |
+
def test_correlate07(self):
|
| 248 |
+
array = numpy.array([1, 2, 3])
|
| 249 |
+
expected = [5, 8, 11]
|
| 250 |
+
weights = numpy.array([1, 2, 1])
|
| 251 |
+
output = ndimage.correlate(array, weights)
|
| 252 |
+
assert_array_almost_equal(output, expected)
|
| 253 |
+
output = ndimage.convolve(array, weights)
|
| 254 |
+
assert_array_almost_equal(output, expected)
|
| 255 |
+
output = ndimage.correlate1d(array, weights)
|
| 256 |
+
assert_array_almost_equal(output, expected)
|
| 257 |
+
output = ndimage.convolve1d(array, weights)
|
| 258 |
+
assert_array_almost_equal(output, expected)
|
| 259 |
+
|
| 260 |
+
def test_correlate08(self):
|
| 261 |
+
array = numpy.array([1, 2, 3])
|
| 262 |
+
tcor = [1, 2, 5]
|
| 263 |
+
tcov = [3, 6, 7]
|
| 264 |
+
weights = numpy.array([1, 2, -1])
|
| 265 |
+
output = ndimage.correlate(array, weights)
|
| 266 |
+
assert_array_almost_equal(output, tcor)
|
| 267 |
+
output = ndimage.convolve(array, weights)
|
| 268 |
+
assert_array_almost_equal(output, tcov)
|
| 269 |
+
output = ndimage.correlate1d(array, weights)
|
| 270 |
+
assert_array_almost_equal(output, tcor)
|
| 271 |
+
output = ndimage.convolve1d(array, weights)
|
| 272 |
+
assert_array_almost_equal(output, tcov)
|
| 273 |
+
|
| 274 |
+
def test_correlate09(self):
|
| 275 |
+
array = []
|
| 276 |
+
kernel = numpy.array([1, 1])
|
| 277 |
+
output = ndimage.correlate(array, kernel)
|
| 278 |
+
assert_array_almost_equal(array, output)
|
| 279 |
+
output = ndimage.convolve(array, kernel)
|
| 280 |
+
assert_array_almost_equal(array, output)
|
| 281 |
+
output = ndimage.correlate1d(array, kernel)
|
| 282 |
+
assert_array_almost_equal(array, output)
|
| 283 |
+
output = ndimage.convolve1d(array, kernel)
|
| 284 |
+
assert_array_almost_equal(array, output)
|
| 285 |
+
|
| 286 |
+
def test_correlate10(self):
|
| 287 |
+
array = [[]]
|
| 288 |
+
kernel = numpy.array([[1, 1]])
|
| 289 |
+
output = ndimage.correlate(array, kernel)
|
| 290 |
+
assert_array_almost_equal(array, output)
|
| 291 |
+
output = ndimage.convolve(array, kernel)
|
| 292 |
+
assert_array_almost_equal(array, output)
|
| 293 |
+
|
| 294 |
+
def test_correlate11(self):
|
| 295 |
+
array = numpy.array([[1, 2, 3],
|
| 296 |
+
[4, 5, 6]])
|
| 297 |
+
kernel = numpy.array([[1, 1],
|
| 298 |
+
[1, 1]])
|
| 299 |
+
output = ndimage.correlate(array, kernel)
|
| 300 |
+
assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output)
|
| 301 |
+
output = ndimage.convolve(array, kernel)
|
| 302 |
+
assert_array_almost_equal([[12, 16, 18], [18, 22, 24]], output)
|
| 303 |
+
|
| 304 |
+
def test_correlate12(self):
|
| 305 |
+
array = numpy.array([[1, 2, 3],
|
| 306 |
+
[4, 5, 6]])
|
| 307 |
+
kernel = numpy.array([[1, 0],
|
| 308 |
+
[0, 1]])
|
| 309 |
+
output = ndimage.correlate(array, kernel)
|
| 310 |
+
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
|
| 311 |
+
output = ndimage.convolve(array, kernel)
|
| 312 |
+
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
|
| 313 |
+
|
| 314 |
+
@pytest.mark.parametrize('dtype_array', types)
|
| 315 |
+
@pytest.mark.parametrize('dtype_kernel', types)
|
| 316 |
+
def test_correlate13(self, dtype_array, dtype_kernel):
|
| 317 |
+
kernel = numpy.array([[1, 0],
|
| 318 |
+
[0, 1]])
|
| 319 |
+
array = numpy.array([[1, 2, 3],
|
| 320 |
+
[4, 5, 6]], dtype_array)
|
| 321 |
+
output = ndimage.correlate(array, kernel, output=dtype_kernel)
|
| 322 |
+
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
|
| 323 |
+
assert_equal(output.dtype.type, dtype_kernel)
|
| 324 |
+
|
| 325 |
+
output = ndimage.convolve(array, kernel,
|
| 326 |
+
output=dtype_kernel)
|
| 327 |
+
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
|
| 328 |
+
assert_equal(output.dtype.type, dtype_kernel)
|
| 329 |
+
|
| 330 |
+
@pytest.mark.parametrize('dtype_array', types)
|
| 331 |
+
@pytest.mark.parametrize('dtype_output', types)
|
| 332 |
+
def test_correlate14(self, dtype_array, dtype_output):
|
| 333 |
+
kernel = numpy.array([[1, 0],
|
| 334 |
+
[0, 1]])
|
| 335 |
+
array = numpy.array([[1, 2, 3],
|
| 336 |
+
[4, 5, 6]], dtype_array)
|
| 337 |
+
output = numpy.zeros(array.shape, dtype_output)
|
| 338 |
+
ndimage.correlate(array, kernel, output=output)
|
| 339 |
+
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
|
| 340 |
+
assert_equal(output.dtype.type, dtype_output)
|
| 341 |
+
|
| 342 |
+
ndimage.convolve(array, kernel, output=output)
|
| 343 |
+
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
|
| 344 |
+
assert_equal(output.dtype.type, dtype_output)
|
| 345 |
+
|
| 346 |
+
@pytest.mark.parametrize('dtype_array', types)
|
| 347 |
+
def test_correlate15(self, dtype_array):
|
| 348 |
+
kernel = numpy.array([[1, 0],
|
| 349 |
+
[0, 1]])
|
| 350 |
+
array = numpy.array([[1, 2, 3],
|
| 351 |
+
[4, 5, 6]], dtype_array)
|
| 352 |
+
output = ndimage.correlate(array, kernel, output=numpy.float32)
|
| 353 |
+
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
|
| 354 |
+
assert_equal(output.dtype.type, numpy.float32)
|
| 355 |
+
|
| 356 |
+
output = ndimage.convolve(array, kernel, output=numpy.float32)
|
| 357 |
+
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
|
| 358 |
+
assert_equal(output.dtype.type, numpy.float32)
|
| 359 |
+
|
| 360 |
+
@pytest.mark.parametrize('dtype_array', types)
|
| 361 |
+
def test_correlate16(self, dtype_array):
|
| 362 |
+
kernel = numpy.array([[0.5, 0],
|
| 363 |
+
[0, 0.5]])
|
| 364 |
+
array = numpy.array([[1, 2, 3], [4, 5, 6]], dtype_array)
|
| 365 |
+
output = ndimage.correlate(array, kernel, output=numpy.float32)
|
| 366 |
+
assert_array_almost_equal([[1, 1.5, 2.5], [2.5, 3, 4]], output)
|
| 367 |
+
assert_equal(output.dtype.type, numpy.float32)
|
| 368 |
+
|
| 369 |
+
output = ndimage.convolve(array, kernel, output=numpy.float32)
|
| 370 |
+
assert_array_almost_equal([[3, 4, 4.5], [4.5, 5.5, 6]], output)
|
| 371 |
+
assert_equal(output.dtype.type, numpy.float32)
|
| 372 |
+
|
| 373 |
+
def test_correlate17(self):
|
| 374 |
+
array = numpy.array([1, 2, 3])
|
| 375 |
+
tcor = [3, 5, 6]
|
| 376 |
+
tcov = [2, 3, 5]
|
| 377 |
+
kernel = numpy.array([1, 1])
|
| 378 |
+
output = ndimage.correlate(array, kernel, origin=-1)
|
| 379 |
+
assert_array_almost_equal(tcor, output)
|
| 380 |
+
output = ndimage.convolve(array, kernel, origin=-1)
|
| 381 |
+
assert_array_almost_equal(tcov, output)
|
| 382 |
+
output = ndimage.correlate1d(array, kernel, origin=-1)
|
| 383 |
+
assert_array_almost_equal(tcor, output)
|
| 384 |
+
output = ndimage.convolve1d(array, kernel, origin=-1)
|
| 385 |
+
assert_array_almost_equal(tcov, output)
|
| 386 |
+
|
| 387 |
+
@pytest.mark.parametrize('dtype_array', types)
|
| 388 |
+
def test_correlate18(self, dtype_array):
|
| 389 |
+
kernel = numpy.array([[1, 0],
|
| 390 |
+
[0, 1]])
|
| 391 |
+
array = numpy.array([[1, 2, 3],
|
| 392 |
+
[4, 5, 6]], dtype_array)
|
| 393 |
+
output = ndimage.correlate(array, kernel,
|
| 394 |
+
output=numpy.float32,
|
| 395 |
+
mode='nearest', origin=-1)
|
| 396 |
+
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
|
| 397 |
+
assert_equal(output.dtype.type, numpy.float32)
|
| 398 |
+
|
| 399 |
+
output = ndimage.convolve(array, kernel,
|
| 400 |
+
output=numpy.float32,
|
| 401 |
+
mode='nearest', origin=-1)
|
| 402 |
+
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
|
| 403 |
+
assert_equal(output.dtype.type, numpy.float32)
|
| 404 |
+
|
| 405 |
+
def test_correlate_mode_sequence(self):
|
| 406 |
+
kernel = numpy.ones((2, 2))
|
| 407 |
+
array = numpy.ones((3, 3), float)
|
| 408 |
+
with assert_raises(RuntimeError):
|
| 409 |
+
ndimage.correlate(array, kernel, mode=['nearest', 'reflect'])
|
| 410 |
+
with assert_raises(RuntimeError):
|
| 411 |
+
ndimage.convolve(array, kernel, mode=['nearest', 'reflect'])
|
| 412 |
+
|
| 413 |
+
@pytest.mark.parametrize('dtype_array', types)
|
| 414 |
+
def test_correlate19(self, dtype_array):
|
| 415 |
+
kernel = numpy.array([[1, 0],
|
| 416 |
+
[0, 1]])
|
| 417 |
+
array = numpy.array([[1, 2, 3],
|
| 418 |
+
[4, 5, 6]], dtype_array)
|
| 419 |
+
output = ndimage.correlate(array, kernel,
|
| 420 |
+
output=numpy.float32,
|
| 421 |
+
mode='nearest', origin=[-1, 0])
|
| 422 |
+
assert_array_almost_equal([[5, 6, 8], [8, 9, 11]], output)
|
| 423 |
+
assert_equal(output.dtype.type, numpy.float32)
|
| 424 |
+
|
| 425 |
+
output = ndimage.convolve(array, kernel,
|
| 426 |
+
output=numpy.float32,
|
| 427 |
+
mode='nearest', origin=[-1, 0])
|
| 428 |
+
assert_array_almost_equal([[3, 5, 6], [6, 8, 9]], output)
|
| 429 |
+
assert_equal(output.dtype.type, numpy.float32)
|
| 430 |
+
|
| 431 |
+
@pytest.mark.parametrize('dtype_array', types)
|
| 432 |
+
@pytest.mark.parametrize('dtype_output', types)
|
| 433 |
+
def test_correlate20(self, dtype_array, dtype_output):
|
| 434 |
+
weights = numpy.array([1, 2, 1])
|
| 435 |
+
expected = [[5, 10, 15], [7, 14, 21]]
|
| 436 |
+
array = numpy.array([[1, 2, 3],
|
| 437 |
+
[2, 4, 6]], dtype_array)
|
| 438 |
+
output = numpy.zeros((2, 3), dtype_output)
|
| 439 |
+
ndimage.correlate1d(array, weights, axis=0, output=output)
|
| 440 |
+
assert_array_almost_equal(output, expected)
|
| 441 |
+
ndimage.convolve1d(array, weights, axis=0, output=output)
|
| 442 |
+
assert_array_almost_equal(output, expected)
|
| 443 |
+
|
| 444 |
+
def test_correlate21(self):
|
| 445 |
+
array = numpy.array([[1, 2, 3],
|
| 446 |
+
[2, 4, 6]])
|
| 447 |
+
expected = [[5, 10, 15], [7, 14, 21]]
|
| 448 |
+
weights = numpy.array([1, 2, 1])
|
| 449 |
+
output = ndimage.correlate1d(array, weights, axis=0)
|
| 450 |
+
assert_array_almost_equal(output, expected)
|
| 451 |
+
output = ndimage.convolve1d(array, weights, axis=0)
|
| 452 |
+
assert_array_almost_equal(output, expected)
|
| 453 |
+
|
| 454 |
+
@pytest.mark.parametrize('dtype_array', types)
|
| 455 |
+
@pytest.mark.parametrize('dtype_output', types)
|
| 456 |
+
def test_correlate22(self, dtype_array, dtype_output):
|
| 457 |
+
weights = numpy.array([1, 2, 1])
|
| 458 |
+
expected = [[6, 12, 18], [6, 12, 18]]
|
| 459 |
+
array = numpy.array([[1, 2, 3],
|
| 460 |
+
[2, 4, 6]], dtype_array)
|
| 461 |
+
output = numpy.zeros((2, 3), dtype_output)
|
| 462 |
+
ndimage.correlate1d(array, weights, axis=0,
|
| 463 |
+
mode='wrap', output=output)
|
| 464 |
+
assert_array_almost_equal(output, expected)
|
| 465 |
+
ndimage.convolve1d(array, weights, axis=0,
|
| 466 |
+
mode='wrap', output=output)
|
| 467 |
+
assert_array_almost_equal(output, expected)
|
| 468 |
+
|
| 469 |
+
@pytest.mark.parametrize('dtype_array', types)
|
| 470 |
+
@pytest.mark.parametrize('dtype_output', types)
|
| 471 |
+
def test_correlate23(self, dtype_array, dtype_output):
|
| 472 |
+
weights = numpy.array([1, 2, 1])
|
| 473 |
+
expected = [[5, 10, 15], [7, 14, 21]]
|
| 474 |
+
array = numpy.array([[1, 2, 3],
|
| 475 |
+
[2, 4, 6]], dtype_array)
|
| 476 |
+
output = numpy.zeros((2, 3), dtype_output)
|
| 477 |
+
ndimage.correlate1d(array, weights, axis=0,
|
| 478 |
+
mode='nearest', output=output)
|
| 479 |
+
assert_array_almost_equal(output, expected)
|
| 480 |
+
ndimage.convolve1d(array, weights, axis=0,
|
| 481 |
+
mode='nearest', output=output)
|
| 482 |
+
assert_array_almost_equal(output, expected)
|
| 483 |
+
|
| 484 |
+
@pytest.mark.parametrize('dtype_array', types)
|
| 485 |
+
@pytest.mark.parametrize('dtype_output', types)
|
| 486 |
+
def test_correlate24(self, dtype_array, dtype_output):
|
| 487 |
+
weights = numpy.array([1, 2, 1])
|
| 488 |
+
tcor = [[7, 14, 21], [8, 16, 24]]
|
| 489 |
+
tcov = [[4, 8, 12], [5, 10, 15]]
|
| 490 |
+
array = numpy.array([[1, 2, 3],
|
| 491 |
+
[2, 4, 6]], dtype_array)
|
| 492 |
+
output = numpy.zeros((2, 3), dtype_output)
|
| 493 |
+
ndimage.correlate1d(array, weights, axis=0,
|
| 494 |
+
mode='nearest', output=output, origin=-1)
|
| 495 |
+
assert_array_almost_equal(output, tcor)
|
| 496 |
+
ndimage.convolve1d(array, weights, axis=0,
|
| 497 |
+
mode='nearest', output=output, origin=-1)
|
| 498 |
+
assert_array_almost_equal(output, tcov)
|
| 499 |
+
|
| 500 |
+
@pytest.mark.parametrize('dtype_array', types)
|
| 501 |
+
@pytest.mark.parametrize('dtype_output', types)
|
| 502 |
+
def test_correlate25(self, dtype_array, dtype_output):
|
| 503 |
+
weights = numpy.array([1, 2, 1])
|
| 504 |
+
tcor = [[4, 8, 12], [5, 10, 15]]
|
| 505 |
+
tcov = [[7, 14, 21], [8, 16, 24]]
|
| 506 |
+
array = numpy.array([[1, 2, 3],
|
| 507 |
+
[2, 4, 6]], dtype_array)
|
| 508 |
+
output = numpy.zeros((2, 3), dtype_output)
|
| 509 |
+
ndimage.correlate1d(array, weights, axis=0,
|
| 510 |
+
mode='nearest', output=output, origin=1)
|
| 511 |
+
assert_array_almost_equal(output, tcor)
|
| 512 |
+
ndimage.convolve1d(array, weights, axis=0,
|
| 513 |
+
mode='nearest', output=output, origin=1)
|
| 514 |
+
assert_array_almost_equal(output, tcov)
|
| 515 |
+
|
| 516 |
+
def test_correlate26(self):
|
| 517 |
+
# test fix for gh-11661 (mirror extension of a length 1 signal)
|
| 518 |
+
y = ndimage.convolve1d(numpy.ones(1), numpy.ones(5), mode='mirror')
|
| 519 |
+
assert_array_equal(y, numpy.array(5.))
|
| 520 |
+
|
| 521 |
+
y = ndimage.correlate1d(numpy.ones(1), numpy.ones(5), mode='mirror')
|
| 522 |
+
assert_array_equal(y, numpy.array(5.))
|
| 523 |
+
|
| 524 |
+
@pytest.mark.parametrize('dtype_kernel', complex_types)
|
| 525 |
+
@pytest.mark.parametrize('dtype_input', types)
|
| 526 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
| 527 |
+
def test_correlate_complex_kernel(self, dtype_input, dtype_kernel,
|
| 528 |
+
dtype_output):
|
| 529 |
+
kernel = numpy.array([[1, 0],
|
| 530 |
+
[0, 1 + 1j]], dtype_kernel)
|
| 531 |
+
array = numpy.array([[1, 2, 3],
|
| 532 |
+
[4, 5, 6]], dtype_input)
|
| 533 |
+
self._validate_complex(array, kernel, dtype_output)
|
| 534 |
+
|
| 535 |
+
@pytest.mark.parametrize('dtype_kernel', complex_types)
|
| 536 |
+
@pytest.mark.parametrize('dtype_input', types)
|
| 537 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
| 538 |
+
@pytest.mark.parametrize('mode', ['grid-constant', 'constant'])
|
| 539 |
+
def test_correlate_complex_kernel_cval(self, dtype_input, dtype_kernel,
|
| 540 |
+
dtype_output, mode):
|
| 541 |
+
# test use of non-zero cval with complex inputs
|
| 542 |
+
# also verifies that mode 'grid-constant' does not segfault
|
| 543 |
+
kernel = numpy.array([[1, 0],
|
| 544 |
+
[0, 1 + 1j]], dtype_kernel)
|
| 545 |
+
array = numpy.array([[1, 2, 3],
|
| 546 |
+
[4, 5, 6]], dtype_input)
|
| 547 |
+
self._validate_complex(array, kernel, dtype_output, mode=mode,
|
| 548 |
+
cval=5.0)
|
| 549 |
+
|
| 550 |
+
@pytest.mark.parametrize('dtype_kernel', complex_types)
|
| 551 |
+
@pytest.mark.parametrize('dtype_input', types)
|
| 552 |
+
def test_correlate_complex_kernel_invalid_cval(self, dtype_input,
|
| 553 |
+
dtype_kernel):
|
| 554 |
+
# cannot give complex cval with a real image
|
| 555 |
+
kernel = numpy.array([[1, 0],
|
| 556 |
+
[0, 1 + 1j]], dtype_kernel)
|
| 557 |
+
array = numpy.array([[1, 2, 3],
|
| 558 |
+
[4, 5, 6]], dtype_input)
|
| 559 |
+
for func in [ndimage.convolve, ndimage.correlate, ndimage.convolve1d,
|
| 560 |
+
ndimage.correlate1d]:
|
| 561 |
+
with pytest.raises(ValueError):
|
| 562 |
+
func(array, kernel, mode='constant', cval=5.0 + 1.0j,
|
| 563 |
+
output=numpy.complex64)
|
| 564 |
+
|
| 565 |
+
@pytest.mark.parametrize('dtype_kernel', complex_types)
|
| 566 |
+
@pytest.mark.parametrize('dtype_input', types)
|
| 567 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
| 568 |
+
def test_correlate1d_complex_kernel(self, dtype_input, dtype_kernel,
|
| 569 |
+
dtype_output):
|
| 570 |
+
kernel = numpy.array([1, 1 + 1j], dtype_kernel)
|
| 571 |
+
array = numpy.array([1, 2, 3, 4, 5, 6], dtype_input)
|
| 572 |
+
self._validate_complex(array, kernel, dtype_output)
|
| 573 |
+
|
| 574 |
+
@pytest.mark.parametrize('dtype_kernel', complex_types)
|
| 575 |
+
@pytest.mark.parametrize('dtype_input', types)
|
| 576 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
| 577 |
+
def test_correlate1d_complex_kernel_cval(self, dtype_input, dtype_kernel,
|
| 578 |
+
dtype_output):
|
| 579 |
+
kernel = numpy.array([1, 1 + 1j], dtype_kernel)
|
| 580 |
+
array = numpy.array([1, 2, 3, 4, 5, 6], dtype_input)
|
| 581 |
+
self._validate_complex(array, kernel, dtype_output, mode='constant',
|
| 582 |
+
cval=5.0)
|
| 583 |
+
|
| 584 |
+
@pytest.mark.parametrize('dtype_kernel', types)
|
| 585 |
+
@pytest.mark.parametrize('dtype_input', complex_types)
|
| 586 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
| 587 |
+
def test_correlate_complex_input(self, dtype_input, dtype_kernel,
|
| 588 |
+
dtype_output):
|
| 589 |
+
kernel = numpy.array([[1, 0],
|
| 590 |
+
[0, 1]], dtype_kernel)
|
| 591 |
+
array = numpy.array([[1, 2j, 3],
|
| 592 |
+
[1 + 4j, 5, 6j]], dtype_input)
|
| 593 |
+
self._validate_complex(array, kernel, dtype_output)
|
| 594 |
+
|
| 595 |
+
@pytest.mark.parametrize('dtype_kernel', types)
|
| 596 |
+
@pytest.mark.parametrize('dtype_input', complex_types)
|
| 597 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
| 598 |
+
def test_correlate1d_complex_input(self, dtype_input, dtype_kernel,
|
| 599 |
+
dtype_output):
|
| 600 |
+
kernel = numpy.array([1, 0, 1], dtype_kernel)
|
| 601 |
+
array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype_input)
|
| 602 |
+
self._validate_complex(array, kernel, dtype_output)
|
| 603 |
+
|
| 604 |
+
@pytest.mark.parametrize('dtype_kernel', types)
|
| 605 |
+
@pytest.mark.parametrize('dtype_input', complex_types)
|
| 606 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
| 607 |
+
def test_correlate1d_complex_input_cval(self, dtype_input, dtype_kernel,
|
| 608 |
+
dtype_output):
|
| 609 |
+
kernel = numpy.array([1, 0, 1], dtype_kernel)
|
| 610 |
+
array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype_input)
|
| 611 |
+
self._validate_complex(array, kernel, dtype_output, mode='constant',
|
| 612 |
+
cval=5 - 3j)
|
| 613 |
+
|
| 614 |
+
@pytest.mark.parametrize('dtype', complex_types)
|
| 615 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
| 616 |
+
def test_correlate_complex_input_and_kernel(self, dtype, dtype_output):
|
| 617 |
+
kernel = numpy.array([[1, 0],
|
| 618 |
+
[0, 1 + 1j]], dtype)
|
| 619 |
+
array = numpy.array([[1, 2j, 3],
|
| 620 |
+
[1 + 4j, 5, 6j]], dtype)
|
| 621 |
+
self._validate_complex(array, kernel, dtype_output)
|
| 622 |
+
|
| 623 |
+
@pytest.mark.parametrize('dtype', complex_types)
|
| 624 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
| 625 |
+
def test_correlate_complex_input_and_kernel_cval(self, dtype,
|
| 626 |
+
dtype_output):
|
| 627 |
+
kernel = numpy.array([[1, 0],
|
| 628 |
+
[0, 1 + 1j]], dtype)
|
| 629 |
+
array = numpy.array([[1, 2, 3],
|
| 630 |
+
[4, 5, 6]], dtype)
|
| 631 |
+
self._validate_complex(array, kernel, dtype_output, mode='constant',
|
| 632 |
+
cval=5.0 + 2.0j)
|
| 633 |
+
|
| 634 |
+
@pytest.mark.parametrize('dtype', complex_types)
|
| 635 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
| 636 |
+
def test_correlate1d_complex_input_and_kernel(self, dtype, dtype_output):
|
| 637 |
+
kernel = numpy.array([1, 1 + 1j], dtype)
|
| 638 |
+
array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype)
|
| 639 |
+
self._validate_complex(array, kernel, dtype_output)
|
| 640 |
+
|
| 641 |
+
@pytest.mark.parametrize('dtype', complex_types)
|
| 642 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
| 643 |
+
def test_correlate1d_complex_input_and_kernel_cval(self, dtype,
|
| 644 |
+
dtype_output):
|
| 645 |
+
kernel = numpy.array([1, 1 + 1j], dtype)
|
| 646 |
+
array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype)
|
| 647 |
+
self._validate_complex(array, kernel, dtype_output, mode='constant',
|
| 648 |
+
cval=5.0 + 2.0j)
|
| 649 |
+
|
| 650 |
+
def test_gauss01(self):
|
| 651 |
+
input = numpy.array([[1, 2, 3],
|
| 652 |
+
[2, 4, 6]], numpy.float32)
|
| 653 |
+
output = ndimage.gaussian_filter(input, 0)
|
| 654 |
+
assert_array_almost_equal(output, input)
|
| 655 |
+
|
| 656 |
+
def test_gauss02(self):
|
| 657 |
+
input = numpy.array([[1, 2, 3],
|
| 658 |
+
[2, 4, 6]], numpy.float32)
|
| 659 |
+
output = ndimage.gaussian_filter(input, 1.0)
|
| 660 |
+
assert_equal(input.dtype, output.dtype)
|
| 661 |
+
assert_equal(input.shape, output.shape)
|
| 662 |
+
|
| 663 |
+
def test_gauss03(self):
|
| 664 |
+
# single precision data
|
| 665 |
+
input = numpy.arange(100 * 100).astype(numpy.float32)
|
| 666 |
+
input.shape = (100, 100)
|
| 667 |
+
output = ndimage.gaussian_filter(input, [1.0, 1.0])
|
| 668 |
+
|
| 669 |
+
assert_equal(input.dtype, output.dtype)
|
| 670 |
+
assert_equal(input.shape, output.shape)
|
| 671 |
+
|
| 672 |
+
# input.sum() is 49995000.0. With single precision floats, we can't
|
| 673 |
+
# expect more than 8 digits of accuracy, so use decimal=0 in this test.
|
| 674 |
+
assert_almost_equal(output.sum(dtype='d'), input.sum(dtype='d'),
|
| 675 |
+
decimal=0)
|
| 676 |
+
assert_(sumsq(input, output) > 1.0)
|
| 677 |
+
|
| 678 |
+
def test_gauss04(self):
|
| 679 |
+
input = numpy.arange(100 * 100).astype(numpy.float32)
|
| 680 |
+
input.shape = (100, 100)
|
| 681 |
+
otype = numpy.float64
|
| 682 |
+
output = ndimage.gaussian_filter(input, [1.0, 1.0], output=otype)
|
| 683 |
+
assert_equal(output.dtype.type, numpy.float64)
|
| 684 |
+
assert_equal(input.shape, output.shape)
|
| 685 |
+
assert_(sumsq(input, output) > 1.0)
|
| 686 |
+
|
| 687 |
+
def test_gauss05(self):
|
| 688 |
+
input = numpy.arange(100 * 100).astype(numpy.float32)
|
| 689 |
+
input.shape = (100, 100)
|
| 690 |
+
otype = numpy.float64
|
| 691 |
+
output = ndimage.gaussian_filter(input, [1.0, 1.0],
|
| 692 |
+
order=1, output=otype)
|
| 693 |
+
assert_equal(output.dtype.type, numpy.float64)
|
| 694 |
+
assert_equal(input.shape, output.shape)
|
| 695 |
+
assert_(sumsq(input, output) > 1.0)
|
| 696 |
+
|
| 697 |
+
def test_gauss06(self):
|
| 698 |
+
input = numpy.arange(100 * 100).astype(numpy.float32)
|
| 699 |
+
input.shape = (100, 100)
|
| 700 |
+
otype = numpy.float64
|
| 701 |
+
output1 = ndimage.gaussian_filter(input, [1.0, 1.0], output=otype)
|
| 702 |
+
output2 = ndimage.gaussian_filter(input, 1.0, output=otype)
|
| 703 |
+
assert_array_almost_equal(output1, output2)
|
| 704 |
+
|
| 705 |
+
def test_gauss_memory_overlap(self):
|
| 706 |
+
input = numpy.arange(100 * 100).astype(numpy.float32)
|
| 707 |
+
input.shape = (100, 100)
|
| 708 |
+
output1 = ndimage.gaussian_filter(input, 1.0)
|
| 709 |
+
ndimage.gaussian_filter(input, 1.0, output=input)
|
| 710 |
+
assert_array_almost_equal(output1, input)
|
| 711 |
+
|
| 712 |
+
@pytest.mark.parametrize(('filter_func', 'extra_args', 'size0', 'size'),
|
| 713 |
+
[(ndimage.gaussian_filter, (), 0, 1.0),
|
| 714 |
+
(ndimage.uniform_filter, (), 1, 3),
|
| 715 |
+
(ndimage.minimum_filter, (), 1, 3),
|
| 716 |
+
(ndimage.maximum_filter, (), 1, 3),
|
| 717 |
+
(ndimage.median_filter, (), 1, 3),
|
| 718 |
+
(ndimage.rank_filter, (1,), 1, 3),
|
| 719 |
+
(ndimage.percentile_filter, (40,), 1, 3)])
|
| 720 |
+
@pytest.mark.parametrize(
|
| 721 |
+
'axes',
|
| 722 |
+
tuple(itertools.combinations(range(-3, 3), 1))
|
| 723 |
+
+ tuple(itertools.combinations(range(-3, 3), 2))
|
| 724 |
+
+ ((0, 1, 2),))
|
| 725 |
+
def test_filter_axes(self, filter_func, extra_args, size0, size, axes):
|
| 726 |
+
# Note: `size` is called `sigma` in `gaussian_filter`
|
| 727 |
+
array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
|
| 728 |
+
axes = numpy.array(axes)
|
| 729 |
+
|
| 730 |
+
if len(set(axes % array.ndim)) != len(axes):
|
| 731 |
+
# parametrized cases with duplicate axes raise an error
|
| 732 |
+
with pytest.raises(ValueError, match="axes must be unique"):
|
| 733 |
+
filter_func(array, *extra_args, size, axes=axes)
|
| 734 |
+
return
|
| 735 |
+
output = filter_func(array, *extra_args, size, axes=axes)
|
| 736 |
+
|
| 737 |
+
# result should be equivalent to sigma=0.0/size=1 on unfiltered axes
|
| 738 |
+
all_sizes = (size if ax in (axes % array.ndim) else size0
|
| 739 |
+
for ax in range(array.ndim))
|
| 740 |
+
expected = filter_func(array, *extra_args, all_sizes)
|
| 741 |
+
assert_allclose(output, expected)
|
| 742 |
+
|
| 743 |
+
kwargs_gauss = dict(radius=[4, 2, 3], order=[0, 1, 2],
|
| 744 |
+
mode=['reflect', 'nearest', 'constant'])
|
| 745 |
+
kwargs_other = dict(origin=(-1, 0, 1),
|
| 746 |
+
mode=['reflect', 'nearest', 'constant'])
|
| 747 |
+
kwargs_rank = dict(origin=(-1, 0, 1))
|
| 748 |
+
|
| 749 |
+
@pytest.mark.parametrize("filter_func, size0, size, kwargs",
|
| 750 |
+
[(ndimage.gaussian_filter, 0, 1.0, kwargs_gauss),
|
| 751 |
+
(ndimage.uniform_filter, 1, 3, kwargs_other),
|
| 752 |
+
(ndimage.maximum_filter, 1, 3, kwargs_other),
|
| 753 |
+
(ndimage.minimum_filter, 1, 3, kwargs_other),
|
| 754 |
+
(ndimage.median_filter, 1, 3, kwargs_rank),
|
| 755 |
+
(ndimage.rank_filter, 1, 3, kwargs_rank),
|
| 756 |
+
(ndimage.percentile_filter, 1, 3, kwargs_rank)])
|
| 757 |
+
@pytest.mark.parametrize('axes', itertools.combinations(range(-3, 3), 2))
|
| 758 |
+
def test_filter_axes_kwargs(self, filter_func, size0, size, kwargs, axes):
|
| 759 |
+
array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
|
| 760 |
+
|
| 761 |
+
kwargs = {key: numpy.array(val) for key, val in kwargs.items()}
|
| 762 |
+
axes = numpy.array(axes)
|
| 763 |
+
n_axes = axes.size
|
| 764 |
+
|
| 765 |
+
if filter_func == ndimage.rank_filter:
|
| 766 |
+
args = (2,) # (rank,)
|
| 767 |
+
elif filter_func == ndimage.percentile_filter:
|
| 768 |
+
args = (30,) # (percentile,)
|
| 769 |
+
else:
|
| 770 |
+
args = ()
|
| 771 |
+
|
| 772 |
+
# form kwargs that specify only the axes in `axes`
|
| 773 |
+
reduced_kwargs = {key: val[axes] for key, val in kwargs.items()}
|
| 774 |
+
if len(set(axes % array.ndim)) != len(axes):
|
| 775 |
+
# parametrized cases with duplicate axes raise an error
|
| 776 |
+
with pytest.raises(ValueError, match="axes must be unique"):
|
| 777 |
+
filter_func(array, *args, [size]*n_axes, axes=axes,
|
| 778 |
+
**reduced_kwargs)
|
| 779 |
+
return
|
| 780 |
+
|
| 781 |
+
output = filter_func(array, *args, [size]*n_axes, axes=axes,
|
| 782 |
+
**reduced_kwargs)
|
| 783 |
+
|
| 784 |
+
# result should be equivalent to sigma=0.0/size=1 on unfiltered axes
|
| 785 |
+
size_3d = numpy.full(array.ndim, fill_value=size0)
|
| 786 |
+
size_3d[axes] = size
|
| 787 |
+
if 'origin' in kwargs:
|
| 788 |
+
# origin should be zero on the axis that has size 0
|
| 789 |
+
origin = numpy.array([0, 0, 0])
|
| 790 |
+
origin[axes] = reduced_kwargs['origin']
|
| 791 |
+
kwargs['origin'] = origin
|
| 792 |
+
expected = filter_func(array, *args, size_3d, **kwargs)
|
| 793 |
+
assert_allclose(output, expected)
|
| 794 |
+
|
| 795 |
+
@pytest.mark.parametrize(
|
| 796 |
+
'filter_func, args',
|
| 797 |
+
[(ndimage.gaussian_filter, (1.0,)), # args = (sigma,)
|
| 798 |
+
(ndimage.uniform_filter, (3,)), # args = (size,)
|
| 799 |
+
(ndimage.minimum_filter, (3,)), # args = (size,)
|
| 800 |
+
(ndimage.maximum_filter, (3,)), # args = (size,)
|
| 801 |
+
(ndimage.median_filter, (3,)), # args = (size,)
|
| 802 |
+
(ndimage.rank_filter, (2, 3)), # args = (rank, size)
|
| 803 |
+
(ndimage.percentile_filter, (30, 3))]) # args = (percentile, size)
|
| 804 |
+
@pytest.mark.parametrize(
|
| 805 |
+
'axes', [(1.5,), (0, 1, 2, 3), (3,), (-4,)]
|
| 806 |
+
)
|
| 807 |
+
def test_filter_invalid_axes(self, filter_func, args, axes):
|
| 808 |
+
array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
|
| 809 |
+
if any(isinstance(ax, float) for ax in axes):
|
| 810 |
+
error_class = TypeError
|
| 811 |
+
match = "cannot be interpreted as an integer"
|
| 812 |
+
else:
|
| 813 |
+
error_class = ValueError
|
| 814 |
+
match = "out of range"
|
| 815 |
+
with pytest.raises(error_class, match=match):
|
| 816 |
+
filter_func(array, *args, axes=axes)
|
| 817 |
+
|
| 818 |
+
@pytest.mark.parametrize(
|
| 819 |
+
'filter_func, kwargs',
|
| 820 |
+
[(ndimage.minimum_filter, {}),
|
| 821 |
+
(ndimage.maximum_filter, {}),
|
| 822 |
+
(ndimage.median_filter, {}),
|
| 823 |
+
(ndimage.rank_filter, dict(rank=3)),
|
| 824 |
+
(ndimage.percentile_filter, dict(percentile=30))])
|
| 825 |
+
@pytest.mark.parametrize(
|
| 826 |
+
'axes', [(0, ), (1, 2), (0, 1, 2)]
|
| 827 |
+
)
|
| 828 |
+
@pytest.mark.parametrize('separable_footprint', [False, True])
|
| 829 |
+
def test_filter_invalid_footprint_ndim(self, filter_func, kwargs, axes,
|
| 830 |
+
separable_footprint):
|
| 831 |
+
array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
|
| 832 |
+
# create a footprint with one too many dimensions
|
| 833 |
+
footprint = numpy.ones((3,) * (len(axes) + 1))
|
| 834 |
+
if not separable_footprint:
|
| 835 |
+
footprint[(0,) * footprint.ndim] = 0
|
| 836 |
+
if (filter_func in [ndimage.minimum_filter, ndimage.maximum_filter]
|
| 837 |
+
and separable_footprint):
|
| 838 |
+
match = "sequence argument must have length equal to input rank"
|
| 839 |
+
else:
|
| 840 |
+
match = "footprint array has incorrect shape"
|
| 841 |
+
with pytest.raises(RuntimeError, match=match):
|
| 842 |
+
filter_func(array, **kwargs, footprint=footprint, axes=axes)
|
| 843 |
+
|
| 844 |
+
@pytest.mark.parametrize('n_mismatch', [1, 3])
|
| 845 |
+
@pytest.mark.parametrize('filter_func, kwargs, key, val',
|
| 846 |
+
_cases_axes_tuple_length_mismatch())
|
| 847 |
+
def test_filter_tuple_length_mismatch(self, n_mismatch, filter_func,
|
| 848 |
+
kwargs, key, val):
|
| 849 |
+
# Test for the intended RuntimeError when a kwargs has an invalid size
|
| 850 |
+
array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
|
| 851 |
+
kwargs = dict(**kwargs, axes=(0, 1))
|
| 852 |
+
kwargs[key] = (val,) * n_mismatch
|
| 853 |
+
err_msg = "sequence argument must have length equal to input rank"
|
| 854 |
+
with pytest.raises(RuntimeError, match=err_msg):
|
| 855 |
+
filter_func(array, **kwargs)
|
| 856 |
+
|
| 857 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
| 858 |
+
def test_prewitt01(self, dtype):
|
| 859 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 860 |
+
[5, 8, 3, 7, 1],
|
| 861 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 862 |
+
t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
|
| 863 |
+
t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 1)
|
| 864 |
+
output = ndimage.prewitt(array, 0)
|
| 865 |
+
assert_array_almost_equal(t, output)
|
| 866 |
+
|
| 867 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
| 868 |
+
def test_prewitt02(self, dtype):
|
| 869 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 870 |
+
[5, 8, 3, 7, 1],
|
| 871 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 872 |
+
t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
|
| 873 |
+
t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 1)
|
| 874 |
+
output = numpy.zeros(array.shape, dtype)
|
| 875 |
+
ndimage.prewitt(array, 0, output)
|
| 876 |
+
assert_array_almost_equal(t, output)
|
| 877 |
+
|
| 878 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
| 879 |
+
def test_prewitt03(self, dtype):
|
| 880 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 881 |
+
[5, 8, 3, 7, 1],
|
| 882 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 883 |
+
t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 1)
|
| 884 |
+
t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 0)
|
| 885 |
+
output = ndimage.prewitt(array, 1)
|
| 886 |
+
assert_array_almost_equal(t, output)
|
| 887 |
+
|
| 888 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
| 889 |
+
def test_prewitt04(self, dtype):
|
| 890 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 891 |
+
[5, 8, 3, 7, 1],
|
| 892 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 893 |
+
t = ndimage.prewitt(array, -1)
|
| 894 |
+
output = ndimage.prewitt(array, 1)
|
| 895 |
+
assert_array_almost_equal(t, output)
|
| 896 |
+
|
| 897 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
| 898 |
+
def test_sobel01(self, dtype):
|
| 899 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 900 |
+
[5, 8, 3, 7, 1],
|
| 901 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 902 |
+
t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
|
| 903 |
+
t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 1)
|
| 904 |
+
output = ndimage.sobel(array, 0)
|
| 905 |
+
assert_array_almost_equal(t, output)
|
| 906 |
+
|
| 907 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
| 908 |
+
def test_sobel02(self, dtype):
|
| 909 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 910 |
+
[5, 8, 3, 7, 1],
|
| 911 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 912 |
+
t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
|
| 913 |
+
t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 1)
|
| 914 |
+
output = numpy.zeros(array.shape, dtype)
|
| 915 |
+
ndimage.sobel(array, 0, output)
|
| 916 |
+
assert_array_almost_equal(t, output)
|
| 917 |
+
|
| 918 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
| 919 |
+
def test_sobel03(self, dtype):
|
| 920 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 921 |
+
[5, 8, 3, 7, 1],
|
| 922 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 923 |
+
t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 1)
|
| 924 |
+
t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 0)
|
| 925 |
+
output = numpy.zeros(array.shape, dtype)
|
| 926 |
+
output = ndimage.sobel(array, 1)
|
| 927 |
+
assert_array_almost_equal(t, output)
|
| 928 |
+
|
| 929 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
| 930 |
+
def test_sobel04(self, dtype):
|
| 931 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 932 |
+
[5, 8, 3, 7, 1],
|
| 933 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 934 |
+
t = ndimage.sobel(array, -1)
|
| 935 |
+
output = ndimage.sobel(array, 1)
|
| 936 |
+
assert_array_almost_equal(t, output)
|
| 937 |
+
|
| 938 |
+
@pytest.mark.parametrize('dtype',
|
| 939 |
+
[numpy.int32, numpy.float32, numpy.float64,
|
| 940 |
+
numpy.complex64, numpy.complex128])
|
| 941 |
+
def test_laplace01(self, dtype):
|
| 942 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 943 |
+
[5, 8, 3, 7, 1],
|
| 944 |
+
[5, 6, 9, 3, 5]], dtype) * 100
|
| 945 |
+
tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0)
|
| 946 |
+
tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1)
|
| 947 |
+
output = ndimage.laplace(array)
|
| 948 |
+
assert_array_almost_equal(tmp1 + tmp2, output)
|
| 949 |
+
|
| 950 |
+
@pytest.mark.parametrize('dtype',
|
| 951 |
+
[numpy.int32, numpy.float32, numpy.float64,
|
| 952 |
+
numpy.complex64, numpy.complex128])
|
| 953 |
+
def test_laplace02(self, dtype):
|
| 954 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 955 |
+
[5, 8, 3, 7, 1],
|
| 956 |
+
[5, 6, 9, 3, 5]], dtype) * 100
|
| 957 |
+
tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0)
|
| 958 |
+
tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1)
|
| 959 |
+
output = numpy.zeros(array.shape, dtype)
|
| 960 |
+
ndimage.laplace(array, output=output)
|
| 961 |
+
assert_array_almost_equal(tmp1 + tmp2, output)
|
| 962 |
+
|
| 963 |
+
@pytest.mark.parametrize('dtype',
|
| 964 |
+
[numpy.int32, numpy.float32, numpy.float64,
|
| 965 |
+
numpy.complex64, numpy.complex128])
|
| 966 |
+
def test_gaussian_laplace01(self, dtype):
|
| 967 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 968 |
+
[5, 8, 3, 7, 1],
|
| 969 |
+
[5, 6, 9, 3, 5]], dtype) * 100
|
| 970 |
+
tmp1 = ndimage.gaussian_filter(array, 1.0, [2, 0])
|
| 971 |
+
tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 2])
|
| 972 |
+
output = ndimage.gaussian_laplace(array, 1.0)
|
| 973 |
+
assert_array_almost_equal(tmp1 + tmp2, output)
|
| 974 |
+
|
| 975 |
+
@pytest.mark.parametrize('dtype',
|
| 976 |
+
[numpy.int32, numpy.float32, numpy.float64,
|
| 977 |
+
numpy.complex64, numpy.complex128])
|
| 978 |
+
def test_gaussian_laplace02(self, dtype):
|
| 979 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 980 |
+
[5, 8, 3, 7, 1],
|
| 981 |
+
[5, 6, 9, 3, 5]], dtype) * 100
|
| 982 |
+
tmp1 = ndimage.gaussian_filter(array, 1.0, [2, 0])
|
| 983 |
+
tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 2])
|
| 984 |
+
output = numpy.zeros(array.shape, dtype)
|
| 985 |
+
ndimage.gaussian_laplace(array, 1.0, output)
|
| 986 |
+
assert_array_almost_equal(tmp1 + tmp2, output)
|
| 987 |
+
|
| 988 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
| 989 |
+
def test_generic_laplace01(self, dtype):
|
| 990 |
+
def derivative2(input, axis, output, mode, cval, a, b):
|
| 991 |
+
sigma = [a, b / 2.0]
|
| 992 |
+
input = numpy.asarray(input)
|
| 993 |
+
order = [0] * input.ndim
|
| 994 |
+
order[axis] = 2
|
| 995 |
+
return ndimage.gaussian_filter(input, sigma, order,
|
| 996 |
+
output, mode, cval)
|
| 997 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 998 |
+
[5, 8, 3, 7, 1],
|
| 999 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 1000 |
+
output = numpy.zeros(array.shape, dtype)
|
| 1001 |
+
tmp = ndimage.generic_laplace(array, derivative2,
|
| 1002 |
+
extra_arguments=(1.0,),
|
| 1003 |
+
extra_keywords={'b': 2.0})
|
| 1004 |
+
ndimage.gaussian_laplace(array, 1.0, output)
|
| 1005 |
+
assert_array_almost_equal(tmp, output)
|
| 1006 |
+
|
| 1007 |
+
@pytest.mark.parametrize('dtype',
|
| 1008 |
+
[numpy.int32, numpy.float32, numpy.float64,
|
| 1009 |
+
numpy.complex64, numpy.complex128])
|
| 1010 |
+
def test_gaussian_gradient_magnitude01(self, dtype):
|
| 1011 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1012 |
+
[5, 8, 3, 7, 1],
|
| 1013 |
+
[5, 6, 9, 3, 5]], dtype) * 100
|
| 1014 |
+
tmp1 = ndimage.gaussian_filter(array, 1.0, [1, 0])
|
| 1015 |
+
tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 1])
|
| 1016 |
+
output = ndimage.gaussian_gradient_magnitude(array, 1.0)
|
| 1017 |
+
expected = tmp1 * tmp1 + tmp2 * tmp2
|
| 1018 |
+
expected = numpy.sqrt(expected).astype(dtype)
|
| 1019 |
+
assert_array_almost_equal(expected, output)
|
| 1020 |
+
|
| 1021 |
+
@pytest.mark.parametrize('dtype',
|
| 1022 |
+
[numpy.int32, numpy.float32, numpy.float64,
|
| 1023 |
+
numpy.complex64, numpy.complex128])
|
| 1024 |
+
def test_gaussian_gradient_magnitude02(self, dtype):
|
| 1025 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1026 |
+
[5, 8, 3, 7, 1],
|
| 1027 |
+
[5, 6, 9, 3, 5]], dtype) * 100
|
| 1028 |
+
tmp1 = ndimage.gaussian_filter(array, 1.0, [1, 0])
|
| 1029 |
+
tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 1])
|
| 1030 |
+
output = numpy.zeros(array.shape, dtype)
|
| 1031 |
+
ndimage.gaussian_gradient_magnitude(array, 1.0, output)
|
| 1032 |
+
expected = tmp1 * tmp1 + tmp2 * tmp2
|
| 1033 |
+
expected = numpy.sqrt(expected).astype(dtype)
|
| 1034 |
+
assert_array_almost_equal(expected, output)
|
| 1035 |
+
|
| 1036 |
+
def test_generic_gradient_magnitude01(self):
|
| 1037 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1038 |
+
[5, 8, 3, 7, 1],
|
| 1039 |
+
[5, 6, 9, 3, 5]], numpy.float64)
|
| 1040 |
+
|
| 1041 |
+
def derivative(input, axis, output, mode, cval, a, b):
|
| 1042 |
+
sigma = [a, b / 2.0]
|
| 1043 |
+
input = numpy.asarray(input)
|
| 1044 |
+
order = [0] * input.ndim
|
| 1045 |
+
order[axis] = 1
|
| 1046 |
+
return ndimage.gaussian_filter(input, sigma, order,
|
| 1047 |
+
output, mode, cval)
|
| 1048 |
+
tmp1 = ndimage.gaussian_gradient_magnitude(array, 1.0)
|
| 1049 |
+
tmp2 = ndimage.generic_gradient_magnitude(
|
| 1050 |
+
array, derivative, extra_arguments=(1.0,),
|
| 1051 |
+
extra_keywords={'b': 2.0})
|
| 1052 |
+
assert_array_almost_equal(tmp1, tmp2)
|
| 1053 |
+
|
| 1054 |
+
def test_uniform01(self):
|
| 1055 |
+
array = numpy.array([2, 4, 6])
|
| 1056 |
+
size = 2
|
| 1057 |
+
output = ndimage.uniform_filter1d(array, size, origin=-1)
|
| 1058 |
+
assert_array_almost_equal([3, 5, 6], output)
|
| 1059 |
+
|
| 1060 |
+
def test_uniform01_complex(self):
|
| 1061 |
+
array = numpy.array([2 + 1j, 4 + 2j, 6 + 3j], dtype=numpy.complex128)
|
| 1062 |
+
size = 2
|
| 1063 |
+
output = ndimage.uniform_filter1d(array, size, origin=-1)
|
| 1064 |
+
assert_array_almost_equal([3, 5, 6], output.real)
|
| 1065 |
+
assert_array_almost_equal([1.5, 2.5, 3], output.imag)
|
| 1066 |
+
|
| 1067 |
+
def test_uniform02(self):
|
| 1068 |
+
array = numpy.array([1, 2, 3])
|
| 1069 |
+
filter_shape = [0]
|
| 1070 |
+
output = ndimage.uniform_filter(array, filter_shape)
|
| 1071 |
+
assert_array_almost_equal(array, output)
|
| 1072 |
+
|
| 1073 |
+
def test_uniform03(self):
|
| 1074 |
+
array = numpy.array([1, 2, 3])
|
| 1075 |
+
filter_shape = [1]
|
| 1076 |
+
output = ndimage.uniform_filter(array, filter_shape)
|
| 1077 |
+
assert_array_almost_equal(array, output)
|
| 1078 |
+
|
| 1079 |
+
def test_uniform04(self):
|
| 1080 |
+
array = numpy.array([2, 4, 6])
|
| 1081 |
+
filter_shape = [2]
|
| 1082 |
+
output = ndimage.uniform_filter(array, filter_shape)
|
| 1083 |
+
assert_array_almost_equal([2, 3, 5], output)
|
| 1084 |
+
|
| 1085 |
+
def test_uniform05(self):
|
| 1086 |
+
array = []
|
| 1087 |
+
filter_shape = [1]
|
| 1088 |
+
output = ndimage.uniform_filter(array, filter_shape)
|
| 1089 |
+
assert_array_almost_equal([], output)
|
| 1090 |
+
|
| 1091 |
+
@pytest.mark.parametrize('dtype_array', types)
|
| 1092 |
+
@pytest.mark.parametrize('dtype_output', types)
|
| 1093 |
+
def test_uniform06(self, dtype_array, dtype_output):
|
| 1094 |
+
filter_shape = [2, 2]
|
| 1095 |
+
array = numpy.array([[4, 8, 12],
|
| 1096 |
+
[16, 20, 24]], dtype_array)
|
| 1097 |
+
output = ndimage.uniform_filter(
|
| 1098 |
+
array, filter_shape, output=dtype_output)
|
| 1099 |
+
assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output)
|
| 1100 |
+
assert_equal(output.dtype.type, dtype_output)
|
| 1101 |
+
|
| 1102 |
+
@pytest.mark.parametrize('dtype_array', complex_types)
|
| 1103 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
| 1104 |
+
def test_uniform06_complex(self, dtype_array, dtype_output):
|
| 1105 |
+
filter_shape = [2, 2]
|
| 1106 |
+
array = numpy.array([[4, 8 + 5j, 12],
|
| 1107 |
+
[16, 20, 24]], dtype_array)
|
| 1108 |
+
output = ndimage.uniform_filter(
|
| 1109 |
+
array, filter_shape, output=dtype_output)
|
| 1110 |
+
assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output.real)
|
| 1111 |
+
assert_equal(output.dtype.type, dtype_output)
|
| 1112 |
+
|
| 1113 |
+
def test_minimum_filter01(self):
|
| 1114 |
+
array = numpy.array([1, 2, 3, 4, 5])
|
| 1115 |
+
filter_shape = numpy.array([2])
|
| 1116 |
+
output = ndimage.minimum_filter(array, filter_shape)
|
| 1117 |
+
assert_array_almost_equal([1, 1, 2, 3, 4], output)
|
| 1118 |
+
|
| 1119 |
+
def test_minimum_filter02(self):
|
| 1120 |
+
array = numpy.array([1, 2, 3, 4, 5])
|
| 1121 |
+
filter_shape = numpy.array([3])
|
| 1122 |
+
output = ndimage.minimum_filter(array, filter_shape)
|
| 1123 |
+
assert_array_almost_equal([1, 1, 2, 3, 4], output)
|
| 1124 |
+
|
| 1125 |
+
def test_minimum_filter03(self):
|
| 1126 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
| 1127 |
+
filter_shape = numpy.array([2])
|
| 1128 |
+
output = ndimage.minimum_filter(array, filter_shape)
|
| 1129 |
+
assert_array_almost_equal([3, 2, 2, 1, 1], output)
|
| 1130 |
+
|
| 1131 |
+
def test_minimum_filter04(self):
|
| 1132 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
| 1133 |
+
filter_shape = numpy.array([3])
|
| 1134 |
+
output = ndimage.minimum_filter(array, filter_shape)
|
| 1135 |
+
assert_array_almost_equal([2, 2, 1, 1, 1], output)
|
| 1136 |
+
|
| 1137 |
+
def test_minimum_filter05(self):
|
| 1138 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1139 |
+
[7, 6, 9, 3, 5],
|
| 1140 |
+
[5, 8, 3, 7, 1]])
|
| 1141 |
+
filter_shape = numpy.array([2, 3])
|
| 1142 |
+
output = ndimage.minimum_filter(array, filter_shape)
|
| 1143 |
+
assert_array_almost_equal([[2, 2, 1, 1, 1],
|
| 1144 |
+
[2, 2, 1, 1, 1],
|
| 1145 |
+
[5, 3, 3, 1, 1]], output)
|
| 1146 |
+
|
| 1147 |
+
def test_minimum_filter05_overlap(self):
|
| 1148 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1149 |
+
[7, 6, 9, 3, 5],
|
| 1150 |
+
[5, 8, 3, 7, 1]])
|
| 1151 |
+
filter_shape = numpy.array([2, 3])
|
| 1152 |
+
ndimage.minimum_filter(array, filter_shape, output=array)
|
| 1153 |
+
assert_array_almost_equal([[2, 2, 1, 1, 1],
|
| 1154 |
+
[2, 2, 1, 1, 1],
|
| 1155 |
+
[5, 3, 3, 1, 1]], array)
|
| 1156 |
+
|
| 1157 |
+
def test_minimum_filter06(self):
|
| 1158 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1159 |
+
[7, 6, 9, 3, 5],
|
| 1160 |
+
[5, 8, 3, 7, 1]])
|
| 1161 |
+
footprint = [[1, 1, 1], [1, 1, 1]]
|
| 1162 |
+
output = ndimage.minimum_filter(array, footprint=footprint)
|
| 1163 |
+
assert_array_almost_equal([[2, 2, 1, 1, 1],
|
| 1164 |
+
[2, 2, 1, 1, 1],
|
| 1165 |
+
[5, 3, 3, 1, 1]], output)
|
| 1166 |
+
# separable footprint should allow mode sequence
|
| 1167 |
+
output2 = ndimage.minimum_filter(array, footprint=footprint,
|
| 1168 |
+
mode=['reflect', 'reflect'])
|
| 1169 |
+
assert_array_almost_equal(output2, output)
|
| 1170 |
+
|
| 1171 |
+
def test_minimum_filter07(self):
|
| 1172 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1173 |
+
[7, 6, 9, 3, 5],
|
| 1174 |
+
[5, 8, 3, 7, 1]])
|
| 1175 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
| 1176 |
+
output = ndimage.minimum_filter(array, footprint=footprint)
|
| 1177 |
+
assert_array_almost_equal([[2, 2, 1, 1, 1],
|
| 1178 |
+
[2, 3, 1, 3, 1],
|
| 1179 |
+
[5, 5, 3, 3, 1]], output)
|
| 1180 |
+
with assert_raises(RuntimeError):
|
| 1181 |
+
ndimage.minimum_filter(array, footprint=footprint,
|
| 1182 |
+
mode=['reflect', 'constant'])
|
| 1183 |
+
|
| 1184 |
+
def test_minimum_filter08(self):
|
| 1185 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1186 |
+
[7, 6, 9, 3, 5],
|
| 1187 |
+
[5, 8, 3, 7, 1]])
|
| 1188 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
| 1189 |
+
output = ndimage.minimum_filter(array, footprint=footprint, origin=-1)
|
| 1190 |
+
assert_array_almost_equal([[3, 1, 3, 1, 1],
|
| 1191 |
+
[5, 3, 3, 1, 1],
|
| 1192 |
+
[3, 3, 1, 1, 1]], output)
|
| 1193 |
+
|
| 1194 |
+
def test_minimum_filter09(self):
|
| 1195 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1196 |
+
[7, 6, 9, 3, 5],
|
| 1197 |
+
[5, 8, 3, 7, 1]])
|
| 1198 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
| 1199 |
+
output = ndimage.minimum_filter(array, footprint=footprint,
|
| 1200 |
+
origin=[-1, 0])
|
| 1201 |
+
assert_array_almost_equal([[2, 3, 1, 3, 1],
|
| 1202 |
+
[5, 5, 3, 3, 1],
|
| 1203 |
+
[5, 3, 3, 1, 1]], output)
|
| 1204 |
+
|
| 1205 |
+
def test_maximum_filter01(self):
|
| 1206 |
+
array = numpy.array([1, 2, 3, 4, 5])
|
| 1207 |
+
filter_shape = numpy.array([2])
|
| 1208 |
+
output = ndimage.maximum_filter(array, filter_shape)
|
| 1209 |
+
assert_array_almost_equal([1, 2, 3, 4, 5], output)
|
| 1210 |
+
|
| 1211 |
+
def test_maximum_filter02(self):
|
| 1212 |
+
array = numpy.array([1, 2, 3, 4, 5])
|
| 1213 |
+
filter_shape = numpy.array([3])
|
| 1214 |
+
output = ndimage.maximum_filter(array, filter_shape)
|
| 1215 |
+
assert_array_almost_equal([2, 3, 4, 5, 5], output)
|
| 1216 |
+
|
| 1217 |
+
def test_maximum_filter03(self):
|
| 1218 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
| 1219 |
+
filter_shape = numpy.array([2])
|
| 1220 |
+
output = ndimage.maximum_filter(array, filter_shape)
|
| 1221 |
+
assert_array_almost_equal([3, 3, 5, 5, 4], output)
|
| 1222 |
+
|
| 1223 |
+
def test_maximum_filter04(self):
|
| 1224 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
| 1225 |
+
filter_shape = numpy.array([3])
|
| 1226 |
+
output = ndimage.maximum_filter(array, filter_shape)
|
| 1227 |
+
assert_array_almost_equal([3, 5, 5, 5, 4], output)
|
| 1228 |
+
|
| 1229 |
+
def test_maximum_filter05(self):
|
| 1230 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1231 |
+
[7, 6, 9, 3, 5],
|
| 1232 |
+
[5, 8, 3, 7, 1]])
|
| 1233 |
+
filter_shape = numpy.array([2, 3])
|
| 1234 |
+
output = ndimage.maximum_filter(array, filter_shape)
|
| 1235 |
+
assert_array_almost_equal([[3, 5, 5, 5, 4],
|
| 1236 |
+
[7, 9, 9, 9, 5],
|
| 1237 |
+
[8, 9, 9, 9, 7]], output)
|
| 1238 |
+
|
| 1239 |
+
def test_maximum_filter06(self):
|
| 1240 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1241 |
+
[7, 6, 9, 3, 5],
|
| 1242 |
+
[5, 8, 3, 7, 1]])
|
| 1243 |
+
footprint = [[1, 1, 1], [1, 1, 1]]
|
| 1244 |
+
output = ndimage.maximum_filter(array, footprint=footprint)
|
| 1245 |
+
assert_array_almost_equal([[3, 5, 5, 5, 4],
|
| 1246 |
+
[7, 9, 9, 9, 5],
|
| 1247 |
+
[8, 9, 9, 9, 7]], output)
|
| 1248 |
+
# separable footprint should allow mode sequence
|
| 1249 |
+
output2 = ndimage.maximum_filter(array, footprint=footprint,
|
| 1250 |
+
mode=['reflect', 'reflect'])
|
| 1251 |
+
assert_array_almost_equal(output2, output)
|
| 1252 |
+
|
| 1253 |
+
def test_maximum_filter07(self):
|
| 1254 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1255 |
+
[7, 6, 9, 3, 5],
|
| 1256 |
+
[5, 8, 3, 7, 1]])
|
| 1257 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
| 1258 |
+
output = ndimage.maximum_filter(array, footprint=footprint)
|
| 1259 |
+
assert_array_almost_equal([[3, 5, 5, 5, 4],
|
| 1260 |
+
[7, 7, 9, 9, 5],
|
| 1261 |
+
[7, 9, 8, 9, 7]], output)
|
| 1262 |
+
# non-separable footprint should not allow mode sequence
|
| 1263 |
+
with assert_raises(RuntimeError):
|
| 1264 |
+
ndimage.maximum_filter(array, footprint=footprint,
|
| 1265 |
+
mode=['reflect', 'reflect'])
|
| 1266 |
+
|
| 1267 |
+
def test_maximum_filter08(self):
|
| 1268 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1269 |
+
[7, 6, 9, 3, 5],
|
| 1270 |
+
[5, 8, 3, 7, 1]])
|
| 1271 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
| 1272 |
+
output = ndimage.maximum_filter(array, footprint=footprint, origin=-1)
|
| 1273 |
+
assert_array_almost_equal([[7, 9, 9, 5, 5],
|
| 1274 |
+
[9, 8, 9, 7, 5],
|
| 1275 |
+
[8, 8, 7, 7, 7]], output)
|
| 1276 |
+
|
| 1277 |
+
def test_maximum_filter09(self):
|
| 1278 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1279 |
+
[7, 6, 9, 3, 5],
|
| 1280 |
+
[5, 8, 3, 7, 1]])
|
| 1281 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
| 1282 |
+
output = ndimage.maximum_filter(array, footprint=footprint,
|
| 1283 |
+
origin=[-1, 0])
|
| 1284 |
+
assert_array_almost_equal([[7, 7, 9, 9, 5],
|
| 1285 |
+
[7, 9, 8, 9, 7],
|
| 1286 |
+
[8, 8, 8, 7, 7]], output)
|
| 1287 |
+
|
| 1288 |
+
@pytest.mark.parametrize(
|
| 1289 |
+
'axes', tuple(itertools.combinations(range(-3, 3), 2))
|
| 1290 |
+
)
|
| 1291 |
+
@pytest.mark.parametrize(
|
| 1292 |
+
'filter_func, kwargs',
|
| 1293 |
+
[(ndimage.minimum_filter, {}),
|
| 1294 |
+
(ndimage.maximum_filter, {}),
|
| 1295 |
+
(ndimage.median_filter, {}),
|
| 1296 |
+
(ndimage.rank_filter, dict(rank=3)),
|
| 1297 |
+
(ndimage.percentile_filter, dict(percentile=60))]
|
| 1298 |
+
)
|
| 1299 |
+
def test_minmax_nonseparable_axes(self, filter_func, axes, kwargs):
|
| 1300 |
+
array = numpy.arange(6 * 8 * 12, dtype=numpy.float32).reshape(6, 8, 12)
|
| 1301 |
+
# use 2D triangular footprint because it is non-separable
|
| 1302 |
+
footprint = numpy.tri(5)
|
| 1303 |
+
axes = numpy.array(axes)
|
| 1304 |
+
|
| 1305 |
+
if len(set(axes % array.ndim)) != len(axes):
|
| 1306 |
+
# parametrized cases with duplicate axes raise an error
|
| 1307 |
+
with pytest.raises(ValueError):
|
| 1308 |
+
filter_func(array, footprint=footprint, axes=axes, **kwargs)
|
| 1309 |
+
return
|
| 1310 |
+
output = filter_func(array, footprint=footprint, axes=axes, **kwargs)
|
| 1311 |
+
|
| 1312 |
+
missing_axis = tuple(set(range(3)) - set(axes % array.ndim))[0]
|
| 1313 |
+
footprint_3d = numpy.expand_dims(footprint, missing_axis)
|
| 1314 |
+
expected = filter_func(array, footprint=footprint_3d, **kwargs)
|
| 1315 |
+
assert_allclose(output, expected)
|
| 1316 |
+
|
| 1317 |
+
def test_rank01(self):
|
| 1318 |
+
array = numpy.array([1, 2, 3, 4, 5])
|
| 1319 |
+
output = ndimage.rank_filter(array, 1, size=2)
|
| 1320 |
+
assert_array_almost_equal(array, output)
|
| 1321 |
+
output = ndimage.percentile_filter(array, 100, size=2)
|
| 1322 |
+
assert_array_almost_equal(array, output)
|
| 1323 |
+
output = ndimage.median_filter(array, 2)
|
| 1324 |
+
assert_array_almost_equal(array, output)
|
| 1325 |
+
|
| 1326 |
+
def test_rank02(self):
|
| 1327 |
+
array = numpy.array([1, 2, 3, 4, 5])
|
| 1328 |
+
output = ndimage.rank_filter(array, 1, size=[3])
|
| 1329 |
+
assert_array_almost_equal(array, output)
|
| 1330 |
+
output = ndimage.percentile_filter(array, 50, size=3)
|
| 1331 |
+
assert_array_almost_equal(array, output)
|
| 1332 |
+
output = ndimage.median_filter(array, (3,))
|
| 1333 |
+
assert_array_almost_equal(array, output)
|
| 1334 |
+
|
| 1335 |
+
def test_rank03(self):
|
| 1336 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
| 1337 |
+
output = ndimage.rank_filter(array, 1, size=[2])
|
| 1338 |
+
assert_array_almost_equal([3, 3, 5, 5, 4], output)
|
| 1339 |
+
output = ndimage.percentile_filter(array, 100, size=2)
|
| 1340 |
+
assert_array_almost_equal([3, 3, 5, 5, 4], output)
|
| 1341 |
+
|
| 1342 |
+
def test_rank04(self):
|
| 1343 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
| 1344 |
+
expected = [3, 3, 2, 4, 4]
|
| 1345 |
+
output = ndimage.rank_filter(array, 1, size=3)
|
| 1346 |
+
assert_array_almost_equal(expected, output)
|
| 1347 |
+
output = ndimage.percentile_filter(array, 50, size=3)
|
| 1348 |
+
assert_array_almost_equal(expected, output)
|
| 1349 |
+
output = ndimage.median_filter(array, size=3)
|
| 1350 |
+
assert_array_almost_equal(expected, output)
|
| 1351 |
+
|
| 1352 |
+
def test_rank05(self):
|
| 1353 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
| 1354 |
+
expected = [3, 3, 2, 4, 4]
|
| 1355 |
+
output = ndimage.rank_filter(array, -2, size=3)
|
| 1356 |
+
assert_array_almost_equal(expected, output)
|
| 1357 |
+
|
| 1358 |
+
def test_rank06(self):
|
| 1359 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1360 |
+
[5, 8, 3, 7, 1],
|
| 1361 |
+
[5, 6, 9, 3, 5]])
|
| 1362 |
+
expected = [[2, 2, 1, 1, 1],
|
| 1363 |
+
[3, 3, 2, 1, 1],
|
| 1364 |
+
[5, 5, 3, 3, 1]]
|
| 1365 |
+
output = ndimage.rank_filter(array, 1, size=[2, 3])
|
| 1366 |
+
assert_array_almost_equal(expected, output)
|
| 1367 |
+
output = ndimage.percentile_filter(array, 17, size=(2, 3))
|
| 1368 |
+
assert_array_almost_equal(expected, output)
|
| 1369 |
+
|
| 1370 |
+
def test_rank06_overlap(self):
|
| 1371 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1372 |
+
[5, 8, 3, 7, 1],
|
| 1373 |
+
[5, 6, 9, 3, 5]])
|
| 1374 |
+
array_copy = array.copy()
|
| 1375 |
+
expected = [[2, 2, 1, 1, 1],
|
| 1376 |
+
[3, 3, 2, 1, 1],
|
| 1377 |
+
[5, 5, 3, 3, 1]]
|
| 1378 |
+
ndimage.rank_filter(array, 1, size=[2, 3], output=array)
|
| 1379 |
+
assert_array_almost_equal(expected, array)
|
| 1380 |
+
|
| 1381 |
+
ndimage.percentile_filter(array_copy, 17, size=(2, 3),
|
| 1382 |
+
output=array_copy)
|
| 1383 |
+
assert_array_almost_equal(expected, array_copy)
|
| 1384 |
+
|
| 1385 |
+
def test_rank07(self):
|
| 1386 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1387 |
+
[5, 8, 3, 7, 1],
|
| 1388 |
+
[5, 6, 9, 3, 5]])
|
| 1389 |
+
expected = [[3, 5, 5, 5, 4],
|
| 1390 |
+
[5, 5, 7, 5, 4],
|
| 1391 |
+
[6, 8, 8, 7, 5]]
|
| 1392 |
+
output = ndimage.rank_filter(array, -2, size=[2, 3])
|
| 1393 |
+
assert_array_almost_equal(expected, output)
|
| 1394 |
+
|
| 1395 |
+
def test_rank08(self):
|
| 1396 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1397 |
+
[5, 8, 3, 7, 1],
|
| 1398 |
+
[5, 6, 9, 3, 5]])
|
| 1399 |
+
expected = [[3, 3, 2, 4, 4],
|
| 1400 |
+
[5, 5, 5, 4, 4],
|
| 1401 |
+
[5, 6, 7, 5, 5]]
|
| 1402 |
+
output = ndimage.percentile_filter(array, 50.0, size=(2, 3))
|
| 1403 |
+
assert_array_almost_equal(expected, output)
|
| 1404 |
+
output = ndimage.rank_filter(array, 3, size=(2, 3))
|
| 1405 |
+
assert_array_almost_equal(expected, output)
|
| 1406 |
+
output = ndimage.median_filter(array, size=(2, 3))
|
| 1407 |
+
assert_array_almost_equal(expected, output)
|
| 1408 |
+
|
| 1409 |
+
# non-separable: does not allow mode sequence
|
| 1410 |
+
with assert_raises(RuntimeError):
|
| 1411 |
+
ndimage.percentile_filter(array, 50.0, size=(2, 3),
|
| 1412 |
+
mode=['reflect', 'constant'])
|
| 1413 |
+
with assert_raises(RuntimeError):
|
| 1414 |
+
ndimage.rank_filter(array, 3, size=(2, 3), mode=['reflect']*2)
|
| 1415 |
+
with assert_raises(RuntimeError):
|
| 1416 |
+
ndimage.median_filter(array, size=(2, 3), mode=['reflect']*2)
|
| 1417 |
+
|
| 1418 |
+
@pytest.mark.parametrize('dtype', types)
|
| 1419 |
+
def test_rank09(self, dtype):
|
| 1420 |
+
expected = [[3, 3, 2, 4, 4],
|
| 1421 |
+
[3, 5, 2, 5, 1],
|
| 1422 |
+
[5, 5, 8, 3, 5]]
|
| 1423 |
+
footprint = [[1, 0, 1], [0, 1, 0]]
|
| 1424 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1425 |
+
[5, 8, 3, 7, 1],
|
| 1426 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 1427 |
+
output = ndimage.rank_filter(array, 1, footprint=footprint)
|
| 1428 |
+
assert_array_almost_equal(expected, output)
|
| 1429 |
+
output = ndimage.percentile_filter(array, 35, footprint=footprint)
|
| 1430 |
+
assert_array_almost_equal(expected, output)
|
| 1431 |
+
|
| 1432 |
+
def test_rank10(self):
|
| 1433 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1434 |
+
[7, 6, 9, 3, 5],
|
| 1435 |
+
[5, 8, 3, 7, 1]])
|
| 1436 |
+
expected = [[2, 2, 1, 1, 1],
|
| 1437 |
+
[2, 3, 1, 3, 1],
|
| 1438 |
+
[5, 5, 3, 3, 1]]
|
| 1439 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
| 1440 |
+
output = ndimage.rank_filter(array, 0, footprint=footprint)
|
| 1441 |
+
assert_array_almost_equal(expected, output)
|
| 1442 |
+
output = ndimage.percentile_filter(array, 0.0, footprint=footprint)
|
| 1443 |
+
assert_array_almost_equal(expected, output)
|
| 1444 |
+
|
| 1445 |
+
def test_rank11(self):
|
| 1446 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1447 |
+
[7, 6, 9, 3, 5],
|
| 1448 |
+
[5, 8, 3, 7, 1]])
|
| 1449 |
+
expected = [[3, 5, 5, 5, 4],
|
| 1450 |
+
[7, 7, 9, 9, 5],
|
| 1451 |
+
[7, 9, 8, 9, 7]]
|
| 1452 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
| 1453 |
+
output = ndimage.rank_filter(array, -1, footprint=footprint)
|
| 1454 |
+
assert_array_almost_equal(expected, output)
|
| 1455 |
+
output = ndimage.percentile_filter(array, 100.0, footprint=footprint)
|
| 1456 |
+
assert_array_almost_equal(expected, output)
|
| 1457 |
+
|
| 1458 |
+
@pytest.mark.parametrize('dtype', types)
|
| 1459 |
+
def test_rank12(self, dtype):
|
| 1460 |
+
expected = [[3, 3, 2, 4, 4],
|
| 1461 |
+
[3, 5, 2, 5, 1],
|
| 1462 |
+
[5, 5, 8, 3, 5]]
|
| 1463 |
+
footprint = [[1, 0, 1], [0, 1, 0]]
|
| 1464 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1465 |
+
[5, 8, 3, 7, 1],
|
| 1466 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 1467 |
+
output = ndimage.rank_filter(array, 1, footprint=footprint)
|
| 1468 |
+
assert_array_almost_equal(expected, output)
|
| 1469 |
+
output = ndimage.percentile_filter(array, 50.0,
|
| 1470 |
+
footprint=footprint)
|
| 1471 |
+
assert_array_almost_equal(expected, output)
|
| 1472 |
+
output = ndimage.median_filter(array, footprint=footprint)
|
| 1473 |
+
assert_array_almost_equal(expected, output)
|
| 1474 |
+
|
| 1475 |
+
@pytest.mark.parametrize('dtype', types)
|
| 1476 |
+
def test_rank13(self, dtype):
|
| 1477 |
+
expected = [[5, 2, 5, 1, 1],
|
| 1478 |
+
[5, 8, 3, 5, 5],
|
| 1479 |
+
[6, 6, 5, 5, 5]]
|
| 1480 |
+
footprint = [[1, 0, 1], [0, 1, 0]]
|
| 1481 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1482 |
+
[5, 8, 3, 7, 1],
|
| 1483 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 1484 |
+
output = ndimage.rank_filter(array, 1, footprint=footprint,
|
| 1485 |
+
origin=-1)
|
| 1486 |
+
assert_array_almost_equal(expected, output)
|
| 1487 |
+
|
| 1488 |
+
@pytest.mark.parametrize('dtype', types)
|
| 1489 |
+
def test_rank14(self, dtype):
|
| 1490 |
+
expected = [[3, 5, 2, 5, 1],
|
| 1491 |
+
[5, 5, 8, 3, 5],
|
| 1492 |
+
[5, 6, 6, 5, 5]]
|
| 1493 |
+
footprint = [[1, 0, 1], [0, 1, 0]]
|
| 1494 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1495 |
+
[5, 8, 3, 7, 1],
|
| 1496 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 1497 |
+
output = ndimage.rank_filter(array, 1, footprint=footprint,
|
| 1498 |
+
origin=[-1, 0])
|
| 1499 |
+
assert_array_almost_equal(expected, output)
|
| 1500 |
+
|
| 1501 |
+
@pytest.mark.parametrize('dtype', types)
|
| 1502 |
+
def test_rank15(self, dtype):
|
| 1503 |
+
expected = [[2, 3, 1, 4, 1],
|
| 1504 |
+
[5, 3, 7, 1, 1],
|
| 1505 |
+
[5, 5, 3, 3, 3]]
|
| 1506 |
+
footprint = [[1, 0, 1], [0, 1, 0]]
|
| 1507 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
| 1508 |
+
[5, 8, 3, 7, 1],
|
| 1509 |
+
[5, 6, 9, 3, 5]], dtype)
|
| 1510 |
+
output = ndimage.rank_filter(array, 0, footprint=footprint,
|
| 1511 |
+
origin=[-1, 0])
|
| 1512 |
+
assert_array_almost_equal(expected, output)
|
| 1513 |
+
|
| 1514 |
+
@pytest.mark.parametrize('dtype', types)
|
| 1515 |
+
def test_generic_filter1d01(self, dtype):
|
| 1516 |
+
weights = numpy.array([1.1, 2.2, 3.3])
|
| 1517 |
+
|
| 1518 |
+
def _filter_func(input, output, fltr, total):
|
| 1519 |
+
fltr = fltr / total
|
| 1520 |
+
for ii in range(input.shape[0] - 2):
|
| 1521 |
+
output[ii] = input[ii] * fltr[0]
|
| 1522 |
+
output[ii] += input[ii + 1] * fltr[1]
|
| 1523 |
+
output[ii] += input[ii + 2] * fltr[2]
|
| 1524 |
+
a = numpy.arange(12, dtype=dtype)
|
| 1525 |
+
a.shape = (3, 4)
|
| 1526 |
+
r1 = ndimage.correlate1d(a, weights / weights.sum(), 0, origin=-1)
|
| 1527 |
+
r2 = ndimage.generic_filter1d(
|
| 1528 |
+
a, _filter_func, 3, axis=0, origin=-1,
|
| 1529 |
+
extra_arguments=(weights,),
|
| 1530 |
+
extra_keywords={'total': weights.sum()})
|
| 1531 |
+
assert_array_almost_equal(r1, r2)
|
| 1532 |
+
|
| 1533 |
+
@pytest.mark.parametrize('dtype', types)
|
| 1534 |
+
def test_generic_filter01(self, dtype):
|
| 1535 |
+
filter_ = numpy.array([[1.0, 2.0], [3.0, 4.0]])
|
| 1536 |
+
footprint = numpy.array([[1, 0], [0, 1]])
|
| 1537 |
+
cf = numpy.array([1., 4.])
|
| 1538 |
+
|
| 1539 |
+
def _filter_func(buffer, weights, total=1.0):
|
| 1540 |
+
weights = cf / total
|
| 1541 |
+
return (buffer * weights).sum()
|
| 1542 |
+
|
| 1543 |
+
a = numpy.arange(12, dtype=dtype)
|
| 1544 |
+
a.shape = (3, 4)
|
| 1545 |
+
r1 = ndimage.correlate(a, filter_ * footprint)
|
| 1546 |
+
if dtype in float_types:
|
| 1547 |
+
r1 /= 5
|
| 1548 |
+
else:
|
| 1549 |
+
r1 //= 5
|
| 1550 |
+
r2 = ndimage.generic_filter(
|
| 1551 |
+
a, _filter_func, footprint=footprint, extra_arguments=(cf,),
|
| 1552 |
+
extra_keywords={'total': cf.sum()})
|
| 1553 |
+
assert_array_almost_equal(r1, r2)
|
| 1554 |
+
|
| 1555 |
+
# generic_filter doesn't allow mode sequence
|
| 1556 |
+
with assert_raises(RuntimeError):
|
| 1557 |
+
r2 = ndimage.generic_filter(
|
| 1558 |
+
a, _filter_func, mode=['reflect', 'reflect'],
|
| 1559 |
+
footprint=footprint, extra_arguments=(cf,),
|
| 1560 |
+
extra_keywords={'total': cf.sum()})
|
| 1561 |
+
|
| 1562 |
+
@pytest.mark.parametrize(
|
| 1563 |
+
'mode, expected_value',
|
| 1564 |
+
[('nearest', [1, 1, 2]),
|
| 1565 |
+
('wrap', [3, 1, 2]),
|
| 1566 |
+
('reflect', [1, 1, 2]),
|
| 1567 |
+
('mirror', [2, 1, 2]),
|
| 1568 |
+
('constant', [0, 1, 2])]
|
| 1569 |
+
)
|
| 1570 |
+
def test_extend01(self, mode, expected_value):
|
| 1571 |
+
array = numpy.array([1, 2, 3])
|
| 1572 |
+
weights = numpy.array([1, 0])
|
| 1573 |
+
output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
|
| 1574 |
+
assert_array_equal(output, expected_value)
|
| 1575 |
+
|
| 1576 |
+
@pytest.mark.parametrize(
|
| 1577 |
+
'mode, expected_value',
|
| 1578 |
+
[('nearest', [1, 1, 1]),
|
| 1579 |
+
('wrap', [3, 1, 2]),
|
| 1580 |
+
('reflect', [3, 3, 2]),
|
| 1581 |
+
('mirror', [1, 2, 3]),
|
| 1582 |
+
('constant', [0, 0, 0])]
|
| 1583 |
+
)
|
| 1584 |
+
def test_extend02(self, mode, expected_value):
|
| 1585 |
+
array = numpy.array([1, 2, 3])
|
| 1586 |
+
weights = numpy.array([1, 0, 0, 0, 0, 0, 0, 0])
|
| 1587 |
+
output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
|
| 1588 |
+
assert_array_equal(output, expected_value)
|
| 1589 |
+
|
| 1590 |
+
@pytest.mark.parametrize(
|
| 1591 |
+
'mode, expected_value',
|
| 1592 |
+
[('nearest', [2, 3, 3]),
|
| 1593 |
+
('wrap', [2, 3, 1]),
|
| 1594 |
+
('reflect', [2, 3, 3]),
|
| 1595 |
+
('mirror', [2, 3, 2]),
|
| 1596 |
+
('constant', [2, 3, 0])]
|
| 1597 |
+
)
|
| 1598 |
+
def test_extend03(self, mode, expected_value):
|
| 1599 |
+
array = numpy.array([1, 2, 3])
|
| 1600 |
+
weights = numpy.array([0, 0, 1])
|
| 1601 |
+
output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
|
| 1602 |
+
assert_array_equal(output, expected_value)
|
| 1603 |
+
|
| 1604 |
+
@pytest.mark.parametrize(
|
| 1605 |
+
'mode, expected_value',
|
| 1606 |
+
[('nearest', [3, 3, 3]),
|
| 1607 |
+
('wrap', [2, 3, 1]),
|
| 1608 |
+
('reflect', [2, 1, 1]),
|
| 1609 |
+
('mirror', [1, 2, 3]),
|
| 1610 |
+
('constant', [0, 0, 0])]
|
| 1611 |
+
)
|
| 1612 |
+
def test_extend04(self, mode, expected_value):
|
| 1613 |
+
array = numpy.array([1, 2, 3])
|
| 1614 |
+
weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1])
|
| 1615 |
+
output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
|
| 1616 |
+
assert_array_equal(output, expected_value)
|
| 1617 |
+
|
| 1618 |
+
@pytest.mark.parametrize(
|
| 1619 |
+
'mode, expected_value',
|
| 1620 |
+
[('nearest', [[1, 1, 2], [1, 1, 2], [4, 4, 5]]),
|
| 1621 |
+
('wrap', [[9, 7, 8], [3, 1, 2], [6, 4, 5]]),
|
| 1622 |
+
('reflect', [[1, 1, 2], [1, 1, 2], [4, 4, 5]]),
|
| 1623 |
+
('mirror', [[5, 4, 5], [2, 1, 2], [5, 4, 5]]),
|
| 1624 |
+
('constant', [[0, 0, 0], [0, 1, 2], [0, 4, 5]])]
|
| 1625 |
+
)
|
| 1626 |
+
def test_extend05(self, mode, expected_value):
|
| 1627 |
+
array = numpy.array([[1, 2, 3],
|
| 1628 |
+
[4, 5, 6],
|
| 1629 |
+
[7, 8, 9]])
|
| 1630 |
+
weights = numpy.array([[1, 0], [0, 0]])
|
| 1631 |
+
output = ndimage.correlate(array, weights, mode=mode, cval=0)
|
| 1632 |
+
assert_array_equal(output, expected_value)
|
| 1633 |
+
|
| 1634 |
+
@pytest.mark.parametrize(
|
| 1635 |
+
'mode, expected_value',
|
| 1636 |
+
[('nearest', [[5, 6, 6], [8, 9, 9], [8, 9, 9]]),
|
| 1637 |
+
('wrap', [[5, 6, 4], [8, 9, 7], [2, 3, 1]]),
|
| 1638 |
+
('reflect', [[5, 6, 6], [8, 9, 9], [8, 9, 9]]),
|
| 1639 |
+
('mirror', [[5, 6, 5], [8, 9, 8], [5, 6, 5]]),
|
| 1640 |
+
('constant', [[5, 6, 0], [8, 9, 0], [0, 0, 0]])]
|
| 1641 |
+
)
|
| 1642 |
+
def test_extend06(self, mode, expected_value):
|
| 1643 |
+
array = numpy.array([[1, 2, 3],
|
| 1644 |
+
[4, 5, 6],
|
| 1645 |
+
[7, 8, 9]])
|
| 1646 |
+
weights = numpy.array([[0, 0, 0], [0, 0, 0], [0, 0, 1]])
|
| 1647 |
+
output = ndimage.correlate(array, weights, mode=mode, cval=0)
|
| 1648 |
+
assert_array_equal(output, expected_value)
|
| 1649 |
+
|
| 1650 |
+
@pytest.mark.parametrize(
|
| 1651 |
+
'mode, expected_value',
|
| 1652 |
+
[('nearest', [3, 3, 3]),
|
| 1653 |
+
('wrap', [2, 3, 1]),
|
| 1654 |
+
('reflect', [2, 1, 1]),
|
| 1655 |
+
('mirror', [1, 2, 3]),
|
| 1656 |
+
('constant', [0, 0, 0])]
|
| 1657 |
+
)
|
| 1658 |
+
def test_extend07(self, mode, expected_value):
|
| 1659 |
+
array = numpy.array([1, 2, 3])
|
| 1660 |
+
weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1])
|
| 1661 |
+
output = ndimage.correlate(array, weights, mode=mode, cval=0)
|
| 1662 |
+
assert_array_equal(output, expected_value)
|
| 1663 |
+
|
| 1664 |
+
@pytest.mark.parametrize(
|
| 1665 |
+
'mode, expected_value',
|
| 1666 |
+
[('nearest', [[3], [3], [3]]),
|
| 1667 |
+
('wrap', [[2], [3], [1]]),
|
| 1668 |
+
('reflect', [[2], [1], [1]]),
|
| 1669 |
+
('mirror', [[1], [2], [3]]),
|
| 1670 |
+
('constant', [[0], [0], [0]])]
|
| 1671 |
+
)
|
| 1672 |
+
def test_extend08(self, mode, expected_value):
|
| 1673 |
+
array = numpy.array([[1], [2], [3]])
|
| 1674 |
+
weights = numpy.array([[0], [0], [0], [0], [0], [0], [0], [0], [1]])
|
| 1675 |
+
output = ndimage.correlate(array, weights, mode=mode, cval=0)
|
| 1676 |
+
assert_array_equal(output, expected_value)
|
| 1677 |
+
|
| 1678 |
+
@pytest.mark.parametrize(
|
| 1679 |
+
'mode, expected_value',
|
| 1680 |
+
[('nearest', [3, 3, 3]),
|
| 1681 |
+
('wrap', [2, 3, 1]),
|
| 1682 |
+
('reflect', [2, 1, 1]),
|
| 1683 |
+
('mirror', [1, 2, 3]),
|
| 1684 |
+
('constant', [0, 0, 0])]
|
| 1685 |
+
)
|
| 1686 |
+
def test_extend09(self, mode, expected_value):
|
| 1687 |
+
array = numpy.array([1, 2, 3])
|
| 1688 |
+
weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1])
|
| 1689 |
+
output = ndimage.correlate(array, weights, mode=mode, cval=0)
|
| 1690 |
+
assert_array_equal(output, expected_value)
|
| 1691 |
+
|
| 1692 |
+
@pytest.mark.parametrize(
|
| 1693 |
+
'mode, expected_value',
|
| 1694 |
+
[('nearest', [[3], [3], [3]]),
|
| 1695 |
+
('wrap', [[2], [3], [1]]),
|
| 1696 |
+
('reflect', [[2], [1], [1]]),
|
| 1697 |
+
('mirror', [[1], [2], [3]]),
|
| 1698 |
+
('constant', [[0], [0], [0]])]
|
| 1699 |
+
)
|
| 1700 |
+
def test_extend10(self, mode, expected_value):
|
| 1701 |
+
array = numpy.array([[1], [2], [3]])
|
| 1702 |
+
weights = numpy.array([[0], [0], [0], [0], [0], [0], [0], [0], [1]])
|
| 1703 |
+
output = ndimage.correlate(array, weights, mode=mode, cval=0)
|
| 1704 |
+
assert_array_equal(output, expected_value)
|
| 1705 |
+
|
| 1706 |
+
|
| 1707 |
+
def test_ticket_701():
|
| 1708 |
+
# Test generic filter sizes
|
| 1709 |
+
arr = numpy.arange(4).reshape((2, 2))
|
| 1710 |
+
def func(x):
|
| 1711 |
+
return numpy.min(x)
|
| 1712 |
+
res = ndimage.generic_filter(arr, func, size=(1, 1))
|
| 1713 |
+
# The following raises an error unless ticket 701 is fixed
|
| 1714 |
+
res2 = ndimage.generic_filter(arr, func, size=1)
|
| 1715 |
+
assert_equal(res, res2)
|
| 1716 |
+
|
| 1717 |
+
|
| 1718 |
+
def test_gh_5430():
|
| 1719 |
+
# At least one of these raises an error unless gh-5430 is
|
| 1720 |
+
# fixed. In py2k an int is implemented using a C long, so
|
| 1721 |
+
# which one fails depends on your system. In py3k there is only
|
| 1722 |
+
# one arbitrary precision integer type, so both should fail.
|
| 1723 |
+
sigma = numpy.int32(1)
|
| 1724 |
+
out = ndimage._ni_support._normalize_sequence(sigma, 1)
|
| 1725 |
+
assert_equal(out, [sigma])
|
| 1726 |
+
sigma = numpy.int64(1)
|
| 1727 |
+
out = ndimage._ni_support._normalize_sequence(sigma, 1)
|
| 1728 |
+
assert_equal(out, [sigma])
|
| 1729 |
+
# This worked before; make sure it still works
|
| 1730 |
+
sigma = 1
|
| 1731 |
+
out = ndimage._ni_support._normalize_sequence(sigma, 1)
|
| 1732 |
+
assert_equal(out, [sigma])
|
| 1733 |
+
# This worked before; make sure it still works
|
| 1734 |
+
sigma = [1, 1]
|
| 1735 |
+
out = ndimage._ni_support._normalize_sequence(sigma, 2)
|
| 1736 |
+
assert_equal(out, sigma)
|
| 1737 |
+
# Also include the OPs original example to make sure we fixed the issue
|
| 1738 |
+
x = numpy.random.normal(size=(256, 256))
|
| 1739 |
+
perlin = numpy.zeros_like(x)
|
| 1740 |
+
for i in 2**numpy.arange(6):
|
| 1741 |
+
perlin += ndimage.gaussian_filter(x, i, mode="wrap") * i**2
|
| 1742 |
+
# This also fixes gh-4106, show that the OPs example now runs.
|
| 1743 |
+
x = numpy.int64(21)
|
| 1744 |
+
ndimage._ni_support._normalize_sequence(x, 0)
|
| 1745 |
+
|
| 1746 |
+
|
| 1747 |
+
def test_gaussian_kernel1d():
|
| 1748 |
+
radius = 10
|
| 1749 |
+
sigma = 2
|
| 1750 |
+
sigma2 = sigma * sigma
|
| 1751 |
+
x = numpy.arange(-radius, radius + 1, dtype=numpy.double)
|
| 1752 |
+
phi_x = numpy.exp(-0.5 * x * x / sigma2)
|
| 1753 |
+
phi_x /= phi_x.sum()
|
| 1754 |
+
assert_allclose(phi_x, _gaussian_kernel1d(sigma, 0, radius))
|
| 1755 |
+
assert_allclose(-phi_x * x / sigma2, _gaussian_kernel1d(sigma, 1, radius))
|
| 1756 |
+
assert_allclose(phi_x * (x * x / sigma2 - 1) / sigma2,
|
| 1757 |
+
_gaussian_kernel1d(sigma, 2, radius))
|
| 1758 |
+
assert_allclose(phi_x * (3 - x * x / sigma2) * x / (sigma2 * sigma2),
|
| 1759 |
+
_gaussian_kernel1d(sigma, 3, radius))
|
| 1760 |
+
|
| 1761 |
+
|
| 1762 |
+
def test_orders_gauss():
|
| 1763 |
+
# Check order inputs to Gaussians
|
| 1764 |
+
arr = numpy.zeros((1,))
|
| 1765 |
+
assert_equal(0, ndimage.gaussian_filter(arr, 1, order=0))
|
| 1766 |
+
assert_equal(0, ndimage.gaussian_filter(arr, 1, order=3))
|
| 1767 |
+
assert_raises(ValueError, ndimage.gaussian_filter, arr, 1, -1)
|
| 1768 |
+
assert_equal(0, ndimage.gaussian_filter1d(arr, 1, axis=-1, order=0))
|
| 1769 |
+
assert_equal(0, ndimage.gaussian_filter1d(arr, 1, axis=-1, order=3))
|
| 1770 |
+
assert_raises(ValueError, ndimage.gaussian_filter1d, arr, 1, -1, -1)
|
| 1771 |
+
|
| 1772 |
+
|
| 1773 |
+
def test_valid_origins():
|
| 1774 |
+
"""Regression test for #1311."""
|
| 1775 |
+
def func(x):
|
| 1776 |
+
return numpy.mean(x)
|
| 1777 |
+
data = numpy.array([1, 2, 3, 4, 5], dtype=numpy.float64)
|
| 1778 |
+
assert_raises(ValueError, ndimage.generic_filter, data, func, size=3,
|
| 1779 |
+
origin=2)
|
| 1780 |
+
assert_raises(ValueError, ndimage.generic_filter1d, data, func,
|
| 1781 |
+
filter_size=3, origin=2)
|
| 1782 |
+
assert_raises(ValueError, ndimage.percentile_filter, data, 0.2, size=3,
|
| 1783 |
+
origin=2)
|
| 1784 |
+
|
| 1785 |
+
for filter in [ndimage.uniform_filter, ndimage.minimum_filter,
|
| 1786 |
+
ndimage.maximum_filter, ndimage.maximum_filter1d,
|
| 1787 |
+
ndimage.median_filter, ndimage.minimum_filter1d]:
|
| 1788 |
+
# This should work, since for size == 3, the valid range for origin is
|
| 1789 |
+
# -1 to 1.
|
| 1790 |
+
list(filter(data, 3, origin=-1))
|
| 1791 |
+
list(filter(data, 3, origin=1))
|
| 1792 |
+
# Just check this raises an error instead of silently accepting or
|
| 1793 |
+
# segfaulting.
|
| 1794 |
+
assert_raises(ValueError, filter, data, 3, origin=2)
|
| 1795 |
+
|
| 1796 |
+
|
| 1797 |
+
def test_bad_convolve_and_correlate_origins():
|
| 1798 |
+
"""Regression test for gh-822."""
|
| 1799 |
+
# Before gh-822 was fixed, these would generate seg. faults or
|
| 1800 |
+
# other crashes on many system.
|
| 1801 |
+
assert_raises(ValueError, ndimage.correlate1d,
|
| 1802 |
+
[0, 1, 2, 3, 4, 5], [1, 1, 2, 0], origin=2)
|
| 1803 |
+
assert_raises(ValueError, ndimage.correlate,
|
| 1804 |
+
[0, 1, 2, 3, 4, 5], [0, 1, 2], origin=[2])
|
| 1805 |
+
assert_raises(ValueError, ndimage.correlate,
|
| 1806 |
+
numpy.ones((3, 5)), numpy.ones((2, 2)), origin=[0, 1])
|
| 1807 |
+
|
| 1808 |
+
assert_raises(ValueError, ndimage.convolve1d,
|
| 1809 |
+
numpy.arange(10), numpy.ones(3), origin=-2)
|
| 1810 |
+
assert_raises(ValueError, ndimage.convolve,
|
| 1811 |
+
numpy.arange(10), numpy.ones(3), origin=[-2])
|
| 1812 |
+
assert_raises(ValueError, ndimage.convolve,
|
| 1813 |
+
numpy.ones((3, 5)), numpy.ones((2, 2)), origin=[0, -2])
|
| 1814 |
+
|
| 1815 |
+
|
| 1816 |
+
def test_multiple_modes():
|
| 1817 |
+
# Test that the filters with multiple mode cababilities for different
|
| 1818 |
+
# dimensions give the same result as applying a single mode.
|
| 1819 |
+
arr = numpy.array([[1., 0., 0.],
|
| 1820 |
+
[1., 1., 0.],
|
| 1821 |
+
[0., 0., 0.]])
|
| 1822 |
+
|
| 1823 |
+
mode1 = 'reflect'
|
| 1824 |
+
mode2 = ['reflect', 'reflect']
|
| 1825 |
+
|
| 1826 |
+
assert_equal(ndimage.gaussian_filter(arr, 1, mode=mode1),
|
| 1827 |
+
ndimage.gaussian_filter(arr, 1, mode=mode2))
|
| 1828 |
+
assert_equal(ndimage.prewitt(arr, mode=mode1),
|
| 1829 |
+
ndimage.prewitt(arr, mode=mode2))
|
| 1830 |
+
assert_equal(ndimage.sobel(arr, mode=mode1),
|
| 1831 |
+
ndimage.sobel(arr, mode=mode2))
|
| 1832 |
+
assert_equal(ndimage.laplace(arr, mode=mode1),
|
| 1833 |
+
ndimage.laplace(arr, mode=mode2))
|
| 1834 |
+
assert_equal(ndimage.gaussian_laplace(arr, 1, mode=mode1),
|
| 1835 |
+
ndimage.gaussian_laplace(arr, 1, mode=mode2))
|
| 1836 |
+
assert_equal(ndimage.maximum_filter(arr, size=5, mode=mode1),
|
| 1837 |
+
ndimage.maximum_filter(arr, size=5, mode=mode2))
|
| 1838 |
+
assert_equal(ndimage.minimum_filter(arr, size=5, mode=mode1),
|
| 1839 |
+
ndimage.minimum_filter(arr, size=5, mode=mode2))
|
| 1840 |
+
assert_equal(ndimage.gaussian_gradient_magnitude(arr, 1, mode=mode1),
|
| 1841 |
+
ndimage.gaussian_gradient_magnitude(arr, 1, mode=mode2))
|
| 1842 |
+
assert_equal(ndimage.uniform_filter(arr, 5, mode=mode1),
|
| 1843 |
+
ndimage.uniform_filter(arr, 5, mode=mode2))
|
| 1844 |
+
|
| 1845 |
+
|
| 1846 |
+
def test_multiple_modes_sequentially():
|
| 1847 |
+
# Test that the filters with multiple mode cababilities for different
|
| 1848 |
+
# dimensions give the same result as applying the filters with
|
| 1849 |
+
# different modes sequentially
|
| 1850 |
+
arr = numpy.array([[1., 0., 0.],
|
| 1851 |
+
[1., 1., 0.],
|
| 1852 |
+
[0., 0., 0.]])
|
| 1853 |
+
|
| 1854 |
+
modes = ['reflect', 'wrap']
|
| 1855 |
+
|
| 1856 |
+
expected = ndimage.gaussian_filter1d(arr, 1, axis=0, mode=modes[0])
|
| 1857 |
+
expected = ndimage.gaussian_filter1d(expected, 1, axis=1, mode=modes[1])
|
| 1858 |
+
assert_equal(expected,
|
| 1859 |
+
ndimage.gaussian_filter(arr, 1, mode=modes))
|
| 1860 |
+
|
| 1861 |
+
expected = ndimage.uniform_filter1d(arr, 5, axis=0, mode=modes[0])
|
| 1862 |
+
expected = ndimage.uniform_filter1d(expected, 5, axis=1, mode=modes[1])
|
| 1863 |
+
assert_equal(expected,
|
| 1864 |
+
ndimage.uniform_filter(arr, 5, mode=modes))
|
| 1865 |
+
|
| 1866 |
+
expected = ndimage.maximum_filter1d(arr, size=5, axis=0, mode=modes[0])
|
| 1867 |
+
expected = ndimage.maximum_filter1d(expected, size=5, axis=1,
|
| 1868 |
+
mode=modes[1])
|
| 1869 |
+
assert_equal(expected,
|
| 1870 |
+
ndimage.maximum_filter(arr, size=5, mode=modes))
|
| 1871 |
+
|
| 1872 |
+
expected = ndimage.minimum_filter1d(arr, size=5, axis=0, mode=modes[0])
|
| 1873 |
+
expected = ndimage.minimum_filter1d(expected, size=5, axis=1,
|
| 1874 |
+
mode=modes[1])
|
| 1875 |
+
assert_equal(expected,
|
| 1876 |
+
ndimage.minimum_filter(arr, size=5, mode=modes))
|
| 1877 |
+
|
| 1878 |
+
|
| 1879 |
+
def test_multiple_modes_prewitt():
|
| 1880 |
+
# Test prewitt filter for multiple extrapolation modes
|
| 1881 |
+
arr = numpy.array([[1., 0., 0.],
|
| 1882 |
+
[1., 1., 0.],
|
| 1883 |
+
[0., 0., 0.]])
|
| 1884 |
+
|
| 1885 |
+
expected = numpy.array([[1., -3., 2.],
|
| 1886 |
+
[1., -2., 1.],
|
| 1887 |
+
[1., -1., 0.]])
|
| 1888 |
+
|
| 1889 |
+
modes = ['reflect', 'wrap']
|
| 1890 |
+
|
| 1891 |
+
assert_equal(expected,
|
| 1892 |
+
ndimage.prewitt(arr, mode=modes))
|
| 1893 |
+
|
| 1894 |
+
|
| 1895 |
+
def test_multiple_modes_sobel():
|
| 1896 |
+
# Test sobel filter for multiple extrapolation modes
|
| 1897 |
+
arr = numpy.array([[1., 0., 0.],
|
| 1898 |
+
[1., 1., 0.],
|
| 1899 |
+
[0., 0., 0.]])
|
| 1900 |
+
|
| 1901 |
+
expected = numpy.array([[1., -4., 3.],
|
| 1902 |
+
[2., -3., 1.],
|
| 1903 |
+
[1., -1., 0.]])
|
| 1904 |
+
|
| 1905 |
+
modes = ['reflect', 'wrap']
|
| 1906 |
+
|
| 1907 |
+
assert_equal(expected,
|
| 1908 |
+
ndimage.sobel(arr, mode=modes))
|
| 1909 |
+
|
| 1910 |
+
|
| 1911 |
+
def test_multiple_modes_laplace():
|
| 1912 |
+
# Test laplace filter for multiple extrapolation modes
|
| 1913 |
+
arr = numpy.array([[1., 0., 0.],
|
| 1914 |
+
[1., 1., 0.],
|
| 1915 |
+
[0., 0., 0.]])
|
| 1916 |
+
|
| 1917 |
+
expected = numpy.array([[-2., 2., 1.],
|
| 1918 |
+
[-2., -3., 2.],
|
| 1919 |
+
[1., 1., 0.]])
|
| 1920 |
+
|
| 1921 |
+
modes = ['reflect', 'wrap']
|
| 1922 |
+
|
| 1923 |
+
assert_equal(expected,
|
| 1924 |
+
ndimage.laplace(arr, mode=modes))
|
| 1925 |
+
|
| 1926 |
+
|
| 1927 |
+
def test_multiple_modes_gaussian_laplace():
|
| 1928 |
+
# Test gaussian_laplace filter for multiple extrapolation modes
|
| 1929 |
+
arr = numpy.array([[1., 0., 0.],
|
| 1930 |
+
[1., 1., 0.],
|
| 1931 |
+
[0., 0., 0.]])
|
| 1932 |
+
|
| 1933 |
+
expected = numpy.array([[-0.28438687, 0.01559809, 0.19773499],
|
| 1934 |
+
[-0.36630503, -0.20069774, 0.07483620],
|
| 1935 |
+
[0.15849176, 0.18495566, 0.21934094]])
|
| 1936 |
+
|
| 1937 |
+
modes = ['reflect', 'wrap']
|
| 1938 |
+
|
| 1939 |
+
assert_almost_equal(expected,
|
| 1940 |
+
ndimage.gaussian_laplace(arr, 1, mode=modes))
|
| 1941 |
+
|
| 1942 |
+
|
| 1943 |
+
def test_multiple_modes_gaussian_gradient_magnitude():
|
| 1944 |
+
# Test gaussian_gradient_magnitude filter for multiple
|
| 1945 |
+
# extrapolation modes
|
| 1946 |
+
arr = numpy.array([[1., 0., 0.],
|
| 1947 |
+
[1., 1., 0.],
|
| 1948 |
+
[0., 0., 0.]])
|
| 1949 |
+
|
| 1950 |
+
expected = numpy.array([[0.04928965, 0.09745625, 0.06405368],
|
| 1951 |
+
[0.23056905, 0.14025305, 0.04550846],
|
| 1952 |
+
[0.19894369, 0.14950060, 0.06796850]])
|
| 1953 |
+
|
| 1954 |
+
modes = ['reflect', 'wrap']
|
| 1955 |
+
|
| 1956 |
+
calculated = ndimage.gaussian_gradient_magnitude(arr, 1, mode=modes)
|
| 1957 |
+
|
| 1958 |
+
assert_almost_equal(expected, calculated)
|
| 1959 |
+
|
| 1960 |
+
|
| 1961 |
+
def test_multiple_modes_uniform():
|
| 1962 |
+
# Test uniform filter for multiple extrapolation modes
|
| 1963 |
+
arr = numpy.array([[1., 0., 0.],
|
| 1964 |
+
[1., 1., 0.],
|
| 1965 |
+
[0., 0., 0.]])
|
| 1966 |
+
|
| 1967 |
+
expected = numpy.array([[0.32, 0.40, 0.48],
|
| 1968 |
+
[0.20, 0.28, 0.32],
|
| 1969 |
+
[0.28, 0.32, 0.40]])
|
| 1970 |
+
|
| 1971 |
+
modes = ['reflect', 'wrap']
|
| 1972 |
+
|
| 1973 |
+
assert_almost_equal(expected,
|
| 1974 |
+
ndimage.uniform_filter(arr, 5, mode=modes))
|
| 1975 |
+
|
| 1976 |
+
|
| 1977 |
+
def test_gaussian_truncate():
|
| 1978 |
+
# Test that Gaussian filters can be truncated at different widths.
|
| 1979 |
+
# These tests only check that the result has the expected number
|
| 1980 |
+
# of nonzero elements.
|
| 1981 |
+
arr = numpy.zeros((100, 100), float)
|
| 1982 |
+
arr[50, 50] = 1
|
| 1983 |
+
num_nonzeros_2 = (ndimage.gaussian_filter(arr, 5, truncate=2) > 0).sum()
|
| 1984 |
+
assert_equal(num_nonzeros_2, 21**2)
|
| 1985 |
+
num_nonzeros_5 = (ndimage.gaussian_filter(arr, 5, truncate=5) > 0).sum()
|
| 1986 |
+
assert_equal(num_nonzeros_5, 51**2)
|
| 1987 |
+
|
| 1988 |
+
# Test truncate when sigma is a sequence.
|
| 1989 |
+
f = ndimage.gaussian_filter(arr, [0.5, 2.5], truncate=3.5)
|
| 1990 |
+
fpos = f > 0
|
| 1991 |
+
n0 = fpos.any(axis=0).sum()
|
| 1992 |
+
# n0 should be 2*int(2.5*3.5 + 0.5) + 1
|
| 1993 |
+
assert_equal(n0, 19)
|
| 1994 |
+
n1 = fpos.any(axis=1).sum()
|
| 1995 |
+
# n1 should be 2*int(0.5*3.5 + 0.5) + 1
|
| 1996 |
+
assert_equal(n1, 5)
|
| 1997 |
+
|
| 1998 |
+
# Test gaussian_filter1d.
|
| 1999 |
+
x = numpy.zeros(51)
|
| 2000 |
+
x[25] = 1
|
| 2001 |
+
f = ndimage.gaussian_filter1d(x, sigma=2, truncate=3.5)
|
| 2002 |
+
n = (f > 0).sum()
|
| 2003 |
+
assert_equal(n, 15)
|
| 2004 |
+
|
| 2005 |
+
# Test gaussian_laplace
|
| 2006 |
+
y = ndimage.gaussian_laplace(x, sigma=2, truncate=3.5)
|
| 2007 |
+
nonzero_indices = numpy.nonzero(y != 0)[0]
|
| 2008 |
+
n = numpy.ptp(nonzero_indices) + 1
|
| 2009 |
+
assert_equal(n, 15)
|
| 2010 |
+
|
| 2011 |
+
# Test gaussian_gradient_magnitude
|
| 2012 |
+
y = ndimage.gaussian_gradient_magnitude(x, sigma=2, truncate=3.5)
|
| 2013 |
+
nonzero_indices = numpy.nonzero(y != 0)[0]
|
| 2014 |
+
n = numpy.ptp(nonzero_indices) + 1
|
| 2015 |
+
assert_equal(n, 15)
|
| 2016 |
+
|
| 2017 |
+
|
| 2018 |
+
def test_gaussian_radius():
|
| 2019 |
+
# Test that Gaussian filters with radius argument produce the same
|
| 2020 |
+
# results as the filters with corresponding truncate argument.
|
| 2021 |
+
# radius = int(truncate * sigma + 0.5)
|
| 2022 |
+
# Test gaussian_filter1d
|
| 2023 |
+
x = numpy.zeros(7)
|
| 2024 |
+
x[3] = 1
|
| 2025 |
+
f1 = ndimage.gaussian_filter1d(x, sigma=2, truncate=1.5)
|
| 2026 |
+
f2 = ndimage.gaussian_filter1d(x, sigma=2, radius=3)
|
| 2027 |
+
assert_equal(f1, f2)
|
| 2028 |
+
|
| 2029 |
+
# Test gaussian_filter when sigma is a number.
|
| 2030 |
+
a = numpy.zeros((9, 9))
|
| 2031 |
+
a[4, 4] = 1
|
| 2032 |
+
f1 = ndimage.gaussian_filter(a, sigma=0.5, truncate=3.5)
|
| 2033 |
+
f2 = ndimage.gaussian_filter(a, sigma=0.5, radius=2)
|
| 2034 |
+
assert_equal(f1, f2)
|
| 2035 |
+
|
| 2036 |
+
# Test gaussian_filter when sigma is a sequence.
|
| 2037 |
+
a = numpy.zeros((50, 50))
|
| 2038 |
+
a[25, 25] = 1
|
| 2039 |
+
f1 = ndimage.gaussian_filter(a, sigma=[0.5, 2.5], truncate=3.5)
|
| 2040 |
+
f2 = ndimage.gaussian_filter(a, sigma=[0.5, 2.5], radius=[2, 9])
|
| 2041 |
+
assert_equal(f1, f2)
|
| 2042 |
+
|
| 2043 |
+
|
| 2044 |
+
def test_gaussian_radius_invalid():
|
| 2045 |
+
# radius must be a nonnegative integer
|
| 2046 |
+
with assert_raises(ValueError):
|
| 2047 |
+
ndimage.gaussian_filter1d(numpy.zeros(8), sigma=1, radius=-1)
|
| 2048 |
+
with assert_raises(ValueError):
|
| 2049 |
+
ndimage.gaussian_filter1d(numpy.zeros(8), sigma=1, radius=1.1)
|
| 2050 |
+
|
| 2051 |
+
|
| 2052 |
+
class TestThreading:
|
| 2053 |
+
def check_func_thread(self, n, fun, args, out):
|
| 2054 |
+
from threading import Thread
|
| 2055 |
+
thrds = [Thread(target=fun, args=args, kwargs={'output': out[x]})
|
| 2056 |
+
for x in range(n)]
|
| 2057 |
+
[t.start() for t in thrds]
|
| 2058 |
+
[t.join() for t in thrds]
|
| 2059 |
+
|
| 2060 |
+
def check_func_serial(self, n, fun, args, out):
|
| 2061 |
+
for i in range(n):
|
| 2062 |
+
fun(*args, output=out[i])
|
| 2063 |
+
|
| 2064 |
+
def test_correlate1d(self):
|
| 2065 |
+
d = numpy.random.randn(5000)
|
| 2066 |
+
os = numpy.empty((4, d.size))
|
| 2067 |
+
ot = numpy.empty_like(os)
|
| 2068 |
+
k = numpy.arange(5)
|
| 2069 |
+
self.check_func_serial(4, ndimage.correlate1d, (d, k), os)
|
| 2070 |
+
self.check_func_thread(4, ndimage.correlate1d, (d, k), ot)
|
| 2071 |
+
assert_array_equal(os, ot)
|
| 2072 |
+
|
| 2073 |
+
def test_correlate(self):
|
| 2074 |
+
d = numpy.random.randn(500, 500)
|
| 2075 |
+
k = numpy.random.randn(10, 10)
|
| 2076 |
+
os = numpy.empty([4] + list(d.shape))
|
| 2077 |
+
ot = numpy.empty_like(os)
|
| 2078 |
+
self.check_func_serial(4, ndimage.correlate, (d, k), os)
|
| 2079 |
+
self.check_func_thread(4, ndimage.correlate, (d, k), ot)
|
| 2080 |
+
assert_array_equal(os, ot)
|
| 2081 |
+
|
| 2082 |
+
def test_median_filter(self):
|
| 2083 |
+
d = numpy.random.randn(500, 500)
|
| 2084 |
+
os = numpy.empty([4] + list(d.shape))
|
| 2085 |
+
ot = numpy.empty_like(os)
|
| 2086 |
+
self.check_func_serial(4, ndimage.median_filter, (d, 3), os)
|
| 2087 |
+
self.check_func_thread(4, ndimage.median_filter, (d, 3), ot)
|
| 2088 |
+
assert_array_equal(os, ot)
|
| 2089 |
+
|
| 2090 |
+
def test_uniform_filter1d(self):
|
| 2091 |
+
d = numpy.random.randn(5000)
|
| 2092 |
+
os = numpy.empty((4, d.size))
|
| 2093 |
+
ot = numpy.empty_like(os)
|
| 2094 |
+
self.check_func_serial(4, ndimage.uniform_filter1d, (d, 5), os)
|
| 2095 |
+
self.check_func_thread(4, ndimage.uniform_filter1d, (d, 5), ot)
|
| 2096 |
+
assert_array_equal(os, ot)
|
| 2097 |
+
|
| 2098 |
+
def test_minmax_filter(self):
|
| 2099 |
+
d = numpy.random.randn(500, 500)
|
| 2100 |
+
os = numpy.empty([4] + list(d.shape))
|
| 2101 |
+
ot = numpy.empty_like(os)
|
| 2102 |
+
self.check_func_serial(4, ndimage.maximum_filter, (d, 3), os)
|
| 2103 |
+
self.check_func_thread(4, ndimage.maximum_filter, (d, 3), ot)
|
| 2104 |
+
assert_array_equal(os, ot)
|
| 2105 |
+
self.check_func_serial(4, ndimage.minimum_filter, (d, 3), os)
|
| 2106 |
+
self.check_func_thread(4, ndimage.minimum_filter, (d, 3), ot)
|
| 2107 |
+
assert_array_equal(os, ot)
|
| 2108 |
+
|
| 2109 |
+
|
| 2110 |
+
def test_minmaximum_filter1d():
|
| 2111 |
+
# Regression gh-3898
|
| 2112 |
+
in_ = numpy.arange(10)
|
| 2113 |
+
out = ndimage.minimum_filter1d(in_, 1)
|
| 2114 |
+
assert_equal(in_, out)
|
| 2115 |
+
out = ndimage.maximum_filter1d(in_, 1)
|
| 2116 |
+
assert_equal(in_, out)
|
| 2117 |
+
# Test reflect
|
| 2118 |
+
out = ndimage.minimum_filter1d(in_, 5, mode='reflect')
|
| 2119 |
+
assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 6, 7], out)
|
| 2120 |
+
out = ndimage.maximum_filter1d(in_, 5, mode='reflect')
|
| 2121 |
+
assert_equal([2, 3, 4, 5, 6, 7, 8, 9, 9, 9], out)
|
| 2122 |
+
# Test constant
|
| 2123 |
+
out = ndimage.minimum_filter1d(in_, 5, mode='constant', cval=-1)
|
| 2124 |
+
assert_equal([-1, -1, 0, 1, 2, 3, 4, 5, -1, -1], out)
|
| 2125 |
+
out = ndimage.maximum_filter1d(in_, 5, mode='constant', cval=10)
|
| 2126 |
+
assert_equal([10, 10, 4, 5, 6, 7, 8, 9, 10, 10], out)
|
| 2127 |
+
# Test nearest
|
| 2128 |
+
out = ndimage.minimum_filter1d(in_, 5, mode='nearest')
|
| 2129 |
+
assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 6, 7], out)
|
| 2130 |
+
out = ndimage.maximum_filter1d(in_, 5, mode='nearest')
|
| 2131 |
+
assert_equal([2, 3, 4, 5, 6, 7, 8, 9, 9, 9], out)
|
| 2132 |
+
# Test wrap
|
| 2133 |
+
out = ndimage.minimum_filter1d(in_, 5, mode='wrap')
|
| 2134 |
+
assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 0, 0], out)
|
| 2135 |
+
out = ndimage.maximum_filter1d(in_, 5, mode='wrap')
|
| 2136 |
+
assert_equal([9, 9, 4, 5, 6, 7, 8, 9, 9, 9], out)
|
| 2137 |
+
|
| 2138 |
+
|
| 2139 |
+
def test_uniform_filter1d_roundoff_errors():
|
| 2140 |
+
# gh-6930
|
| 2141 |
+
in_ = numpy.repeat([0, 1, 0], [9, 9, 9])
|
| 2142 |
+
for filter_size in range(3, 10):
|
| 2143 |
+
out = ndimage.uniform_filter1d(in_, filter_size)
|
| 2144 |
+
assert_equal(out.sum(), 10 - filter_size)
|
| 2145 |
+
|
| 2146 |
+
|
| 2147 |
+
def test_footprint_all_zeros():
|
| 2148 |
+
# regression test for gh-6876: footprint of all zeros segfaults
|
| 2149 |
+
arr = numpy.random.randint(0, 100, (100, 100))
|
| 2150 |
+
kernel = numpy.zeros((3, 3), bool)
|
| 2151 |
+
with assert_raises(ValueError):
|
| 2152 |
+
ndimage.maximum_filter(arr, footprint=kernel)
|
| 2153 |
+
|
| 2154 |
+
|
| 2155 |
+
def test_gaussian_filter():
|
| 2156 |
+
# Test gaussian filter with numpy.float16
|
| 2157 |
+
# gh-8207
|
| 2158 |
+
data = numpy.array([1], dtype=numpy.float16)
|
| 2159 |
+
sigma = 1.0
|
| 2160 |
+
with assert_raises(RuntimeError):
|
| 2161 |
+
ndimage.gaussian_filter(data, sigma)
|
| 2162 |
+
|
| 2163 |
+
|
| 2164 |
+
def test_rank_filter_noninteger_rank():
|
| 2165 |
+
# regression test for issue 9388: ValueError for
|
| 2166 |
+
# non integer rank when performing rank_filter
|
| 2167 |
+
arr = numpy.random.random((10, 20, 30))
|
| 2168 |
+
assert_raises(TypeError, ndimage.rank_filter, arr, 0.5,
|
| 2169 |
+
footprint=numpy.ones((1, 1, 10), dtype=bool))
|
| 2170 |
+
|
| 2171 |
+
|
| 2172 |
+
def test_size_footprint_both_set():
|
| 2173 |
+
# test for input validation, expect user warning when
|
| 2174 |
+
# size and footprint is set
|
| 2175 |
+
with suppress_warnings() as sup:
|
| 2176 |
+
sup.filter(UserWarning,
|
| 2177 |
+
"ignoring size because footprint is set")
|
| 2178 |
+
arr = numpy.random.random((10, 20, 30))
|
| 2179 |
+
ndimage.rank_filter(arr, 5, size=2, footprint=numpy.ones((1, 1, 10),
|
| 2180 |
+
dtype=bool))
|
| 2181 |
+
|
| 2182 |
+
|
| 2183 |
+
def test_byte_order_median():
|
| 2184 |
+
"""Regression test for #413: median_filter does not handle bytes orders."""
|
| 2185 |
+
a = numpy.arange(9, dtype='<f4').reshape(3, 3)
|
| 2186 |
+
ref = ndimage.median_filter(a, (3, 3))
|
| 2187 |
+
b = numpy.arange(9, dtype='>f4').reshape(3, 3)
|
| 2188 |
+
t = ndimage.median_filter(b, (3, 3))
|
| 2189 |
+
assert_array_almost_equal(ref, t)
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_fourier.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy
|
| 2 |
+
from numpy import fft
|
| 3 |
+
from numpy.testing import (assert_almost_equal, assert_array_almost_equal,
|
| 4 |
+
assert_equal)
|
| 5 |
+
|
| 6 |
+
import pytest
|
| 7 |
+
|
| 8 |
+
from scipy import ndimage
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class TestNdimageFourier:
|
| 12 |
+
|
| 13 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
|
| 14 |
+
@pytest.mark.parametrize('dtype, dec',
|
| 15 |
+
[(numpy.float32, 6), (numpy.float64, 14)])
|
| 16 |
+
def test_fourier_gaussian_real01(self, shape, dtype, dec):
|
| 17 |
+
a = numpy.zeros(shape, dtype)
|
| 18 |
+
a[0, 0] = 1.0
|
| 19 |
+
a = fft.rfft(a, shape[0], 0)
|
| 20 |
+
a = fft.fft(a, shape[1], 1)
|
| 21 |
+
a = ndimage.fourier_gaussian(a, [5.0, 2.5], shape[0], 0)
|
| 22 |
+
a = fft.ifft(a, shape[1], 1)
|
| 23 |
+
a = fft.irfft(a, shape[0], 0)
|
| 24 |
+
assert_almost_equal(ndimage.sum(a), 1, decimal=dec)
|
| 25 |
+
|
| 26 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
| 27 |
+
@pytest.mark.parametrize('dtype, dec',
|
| 28 |
+
[(numpy.complex64, 6), (numpy.complex128, 14)])
|
| 29 |
+
def test_fourier_gaussian_complex01(self, shape, dtype, dec):
|
| 30 |
+
a = numpy.zeros(shape, dtype)
|
| 31 |
+
a[0, 0] = 1.0
|
| 32 |
+
a = fft.fft(a, shape[0], 0)
|
| 33 |
+
a = fft.fft(a, shape[1], 1)
|
| 34 |
+
a = ndimage.fourier_gaussian(a, [5.0, 2.5], -1, 0)
|
| 35 |
+
a = fft.ifft(a, shape[1], 1)
|
| 36 |
+
a = fft.ifft(a, shape[0], 0)
|
| 37 |
+
assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
|
| 38 |
+
|
| 39 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
|
| 40 |
+
@pytest.mark.parametrize('dtype, dec',
|
| 41 |
+
[(numpy.float32, 6), (numpy.float64, 14)])
|
| 42 |
+
def test_fourier_uniform_real01(self, shape, dtype, dec):
|
| 43 |
+
a = numpy.zeros(shape, dtype)
|
| 44 |
+
a[0, 0] = 1.0
|
| 45 |
+
a = fft.rfft(a, shape[0], 0)
|
| 46 |
+
a = fft.fft(a, shape[1], 1)
|
| 47 |
+
a = ndimage.fourier_uniform(a, [5.0, 2.5], shape[0], 0)
|
| 48 |
+
a = fft.ifft(a, shape[1], 1)
|
| 49 |
+
a = fft.irfft(a, shape[0], 0)
|
| 50 |
+
assert_almost_equal(ndimage.sum(a), 1.0, decimal=dec)
|
| 51 |
+
|
| 52 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
| 53 |
+
@pytest.mark.parametrize('dtype, dec',
|
| 54 |
+
[(numpy.complex64, 6), (numpy.complex128, 14)])
|
| 55 |
+
def test_fourier_uniform_complex01(self, shape, dtype, dec):
|
| 56 |
+
a = numpy.zeros(shape, dtype)
|
| 57 |
+
a[0, 0] = 1.0
|
| 58 |
+
a = fft.fft(a, shape[0], 0)
|
| 59 |
+
a = fft.fft(a, shape[1], 1)
|
| 60 |
+
a = ndimage.fourier_uniform(a, [5.0, 2.5], -1, 0)
|
| 61 |
+
a = fft.ifft(a, shape[1], 1)
|
| 62 |
+
a = fft.ifft(a, shape[0], 0)
|
| 63 |
+
assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
|
| 64 |
+
|
| 65 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
| 66 |
+
@pytest.mark.parametrize('dtype, dec',
|
| 67 |
+
[(numpy.float32, 4), (numpy.float64, 11)])
|
| 68 |
+
def test_fourier_shift_real01(self, shape, dtype, dec):
|
| 69 |
+
expected = numpy.arange(shape[0] * shape[1], dtype=dtype)
|
| 70 |
+
expected.shape = shape
|
| 71 |
+
a = fft.rfft(expected, shape[0], 0)
|
| 72 |
+
a = fft.fft(a, shape[1], 1)
|
| 73 |
+
a = ndimage.fourier_shift(a, [1, 1], shape[0], 0)
|
| 74 |
+
a = fft.ifft(a, shape[1], 1)
|
| 75 |
+
a = fft.irfft(a, shape[0], 0)
|
| 76 |
+
assert_array_almost_equal(a[1:, 1:], expected[:-1, :-1],
|
| 77 |
+
decimal=dec)
|
| 78 |
+
assert_array_almost_equal(a.imag, numpy.zeros(shape),
|
| 79 |
+
decimal=dec)
|
| 80 |
+
|
| 81 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
| 82 |
+
@pytest.mark.parametrize('dtype, dec',
|
| 83 |
+
[(numpy.complex64, 4), (numpy.complex128, 11)])
|
| 84 |
+
def test_fourier_shift_complex01(self, shape, dtype, dec):
|
| 85 |
+
expected = numpy.arange(shape[0] * shape[1], dtype=dtype)
|
| 86 |
+
expected.shape = shape
|
| 87 |
+
a = fft.fft(expected, shape[0], 0)
|
| 88 |
+
a = fft.fft(a, shape[1], 1)
|
| 89 |
+
a = ndimage.fourier_shift(a, [1, 1], -1, 0)
|
| 90 |
+
a = fft.ifft(a, shape[1], 1)
|
| 91 |
+
a = fft.ifft(a, shape[0], 0)
|
| 92 |
+
assert_array_almost_equal(a.real[1:, 1:], expected[:-1, :-1],
|
| 93 |
+
decimal=dec)
|
| 94 |
+
assert_array_almost_equal(a.imag, numpy.zeros(shape),
|
| 95 |
+
decimal=dec)
|
| 96 |
+
|
| 97 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
|
| 98 |
+
@pytest.mark.parametrize('dtype, dec',
|
| 99 |
+
[(numpy.float32, 5), (numpy.float64, 14)])
|
| 100 |
+
def test_fourier_ellipsoid_real01(self, shape, dtype, dec):
|
| 101 |
+
a = numpy.zeros(shape, dtype)
|
| 102 |
+
a[0, 0] = 1.0
|
| 103 |
+
a = fft.rfft(a, shape[0], 0)
|
| 104 |
+
a = fft.fft(a, shape[1], 1)
|
| 105 |
+
a = ndimage.fourier_ellipsoid(a, [5.0, 2.5],
|
| 106 |
+
shape[0], 0)
|
| 107 |
+
a = fft.ifft(a, shape[1], 1)
|
| 108 |
+
a = fft.irfft(a, shape[0], 0)
|
| 109 |
+
assert_almost_equal(ndimage.sum(a), 1.0, decimal=dec)
|
| 110 |
+
|
| 111 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
| 112 |
+
@pytest.mark.parametrize('dtype, dec',
|
| 113 |
+
[(numpy.complex64, 5), (numpy.complex128, 14)])
|
| 114 |
+
def test_fourier_ellipsoid_complex01(self, shape, dtype, dec):
|
| 115 |
+
a = numpy.zeros(shape, dtype)
|
| 116 |
+
a[0, 0] = 1.0
|
| 117 |
+
a = fft.fft(a, shape[0], 0)
|
| 118 |
+
a = fft.fft(a, shape[1], 1)
|
| 119 |
+
a = ndimage.fourier_ellipsoid(a, [5.0, 2.5], -1, 0)
|
| 120 |
+
a = fft.ifft(a, shape[1], 1)
|
| 121 |
+
a = fft.ifft(a, shape[0], 0)
|
| 122 |
+
assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
|
| 123 |
+
|
| 124 |
+
def test_fourier_ellipsoid_unimplemented_ndim(self):
|
| 125 |
+
# arrays with ndim > 3 raise NotImplementedError
|
| 126 |
+
x = numpy.ones((4, 6, 8, 10), dtype=numpy.complex128)
|
| 127 |
+
with pytest.raises(NotImplementedError):
|
| 128 |
+
ndimage.fourier_ellipsoid(x, 3)
|
| 129 |
+
|
| 130 |
+
def test_fourier_ellipsoid_1d_complex(self):
|
| 131 |
+
# expected result of 1d ellipsoid is the same as for fourier_uniform
|
| 132 |
+
for shape in [(32, ), (31, )]:
|
| 133 |
+
for type_, dec in zip([numpy.complex64, numpy.complex128],
|
| 134 |
+
[5, 14]):
|
| 135 |
+
x = numpy.ones(shape, dtype=type_)
|
| 136 |
+
a = ndimage.fourier_ellipsoid(x, 5, -1, 0)
|
| 137 |
+
b = ndimage.fourier_uniform(x, 5, -1, 0)
|
| 138 |
+
assert_array_almost_equal(a, b, decimal=dec)
|
| 139 |
+
|
| 140 |
+
@pytest.mark.parametrize('shape', [(0, ), (0, 10), (10, 0)])
|
| 141 |
+
@pytest.mark.parametrize('dtype',
|
| 142 |
+
[numpy.float32, numpy.float64,
|
| 143 |
+
numpy.complex64, numpy.complex128])
|
| 144 |
+
@pytest.mark.parametrize('test_func',
|
| 145 |
+
[ndimage.fourier_ellipsoid,
|
| 146 |
+
ndimage.fourier_gaussian,
|
| 147 |
+
ndimage.fourier_uniform])
|
| 148 |
+
def test_fourier_zero_length_dims(self, shape, dtype, test_func):
|
| 149 |
+
a = numpy.ones(shape, dtype)
|
| 150 |
+
b = test_func(a, 3)
|
| 151 |
+
assert_equal(a, b)
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_interpolation.py
ADDED
|
@@ -0,0 +1,1327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
|
| 3 |
+
import numpy
|
| 4 |
+
from numpy.testing import (assert_, assert_equal, assert_array_equal,
|
| 5 |
+
assert_array_almost_equal, assert_allclose,
|
| 6 |
+
suppress_warnings)
|
| 7 |
+
import pytest
|
| 8 |
+
from pytest import raises as assert_raises
|
| 9 |
+
import scipy.ndimage as ndimage
|
| 10 |
+
|
| 11 |
+
from . import types
|
| 12 |
+
|
| 13 |
+
eps = 1e-12
|
| 14 |
+
|
| 15 |
+
ndimage_to_numpy_mode = {
|
| 16 |
+
'mirror': 'reflect',
|
| 17 |
+
'reflect': 'symmetric',
|
| 18 |
+
'grid-mirror': 'symmetric',
|
| 19 |
+
'grid-wrap': 'wrap',
|
| 20 |
+
'nearest': 'edge',
|
| 21 |
+
'grid-constant': 'constant',
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class TestNdimageInterpolation:
|
| 26 |
+
|
| 27 |
+
@pytest.mark.parametrize(
|
| 28 |
+
'mode, expected_value',
|
| 29 |
+
[('nearest', [1.5, 2.5, 3.5, 4, 4, 4, 4]),
|
| 30 |
+
('wrap', [1.5, 2.5, 3.5, 1.5, 2.5, 3.5, 1.5]),
|
| 31 |
+
('grid-wrap', [1.5, 2.5, 3.5, 2.5, 1.5, 2.5, 3.5]),
|
| 32 |
+
('mirror', [1.5, 2.5, 3.5, 3.5, 2.5, 1.5, 1.5]),
|
| 33 |
+
('reflect', [1.5, 2.5, 3.5, 4, 3.5, 2.5, 1.5]),
|
| 34 |
+
('constant', [1.5, 2.5, 3.5, -1, -1, -1, -1]),
|
| 35 |
+
('grid-constant', [1.5, 2.5, 3.5, 1.5, -1, -1, -1])]
|
| 36 |
+
)
|
| 37 |
+
def test_boundaries(self, mode, expected_value):
|
| 38 |
+
def shift(x):
|
| 39 |
+
return (x[0] + 0.5,)
|
| 40 |
+
|
| 41 |
+
data = numpy.array([1, 2, 3, 4.])
|
| 42 |
+
assert_array_equal(
|
| 43 |
+
expected_value,
|
| 44 |
+
ndimage.geometric_transform(data, shift, cval=-1, mode=mode,
|
| 45 |
+
output_shape=(7,), order=1))
|
| 46 |
+
|
| 47 |
+
@pytest.mark.parametrize(
|
| 48 |
+
'mode, expected_value',
|
| 49 |
+
[('nearest', [1, 1, 2, 3]),
|
| 50 |
+
('wrap', [3, 1, 2, 3]),
|
| 51 |
+
('grid-wrap', [4, 1, 2, 3]),
|
| 52 |
+
('mirror', [2, 1, 2, 3]),
|
| 53 |
+
('reflect', [1, 1, 2, 3]),
|
| 54 |
+
('constant', [-1, 1, 2, 3]),
|
| 55 |
+
('grid-constant', [-1, 1, 2, 3])]
|
| 56 |
+
)
|
| 57 |
+
def test_boundaries2(self, mode, expected_value):
|
| 58 |
+
def shift(x):
|
| 59 |
+
return (x[0] - 0.9,)
|
| 60 |
+
|
| 61 |
+
data = numpy.array([1, 2, 3, 4])
|
| 62 |
+
assert_array_equal(
|
| 63 |
+
expected_value,
|
| 64 |
+
ndimage.geometric_transform(data, shift, cval=-1, mode=mode,
|
| 65 |
+
output_shape=(4,)))
|
| 66 |
+
|
| 67 |
+
@pytest.mark.parametrize('mode', ['mirror', 'reflect', 'grid-mirror',
|
| 68 |
+
'grid-wrap', 'grid-constant',
|
| 69 |
+
'nearest'])
|
| 70 |
+
@pytest.mark.parametrize('order', range(6))
|
| 71 |
+
def test_boundary_spline_accuracy(self, mode, order):
|
| 72 |
+
"""Tests based on examples from gh-2640"""
|
| 73 |
+
data = numpy.arange(-6, 7, dtype=float)
|
| 74 |
+
x = numpy.linspace(-8, 15, num=1000)
|
| 75 |
+
y = ndimage.map_coordinates(data, [x], order=order, mode=mode)
|
| 76 |
+
|
| 77 |
+
# compute expected value using explicit padding via numpy.pad
|
| 78 |
+
npad = 32
|
| 79 |
+
pad_mode = ndimage_to_numpy_mode.get(mode)
|
| 80 |
+
padded = numpy.pad(data, npad, mode=pad_mode)
|
| 81 |
+
expected = ndimage.map_coordinates(padded, [npad + x], order=order,
|
| 82 |
+
mode=mode)
|
| 83 |
+
|
| 84 |
+
atol = 1e-5 if mode == 'grid-constant' else 1e-12
|
| 85 |
+
assert_allclose(y, expected, rtol=1e-7, atol=atol)
|
| 86 |
+
|
| 87 |
+
@pytest.mark.parametrize('order', range(2, 6))
|
| 88 |
+
@pytest.mark.parametrize('dtype', types)
|
| 89 |
+
def test_spline01(self, dtype, order):
|
| 90 |
+
data = numpy.ones([], dtype)
|
| 91 |
+
out = ndimage.spline_filter(data, order=order)
|
| 92 |
+
assert_array_almost_equal(out, 1)
|
| 93 |
+
|
| 94 |
+
@pytest.mark.parametrize('order', range(2, 6))
|
| 95 |
+
@pytest.mark.parametrize('dtype', types)
|
| 96 |
+
def test_spline02(self, dtype, order):
|
| 97 |
+
data = numpy.array([1], dtype)
|
| 98 |
+
out = ndimage.spline_filter(data, order=order)
|
| 99 |
+
assert_array_almost_equal(out, [1])
|
| 100 |
+
|
| 101 |
+
@pytest.mark.parametrize('order', range(2, 6))
|
| 102 |
+
@pytest.mark.parametrize('dtype', types)
|
| 103 |
+
def test_spline03(self, dtype, order):
|
| 104 |
+
data = numpy.ones([], dtype)
|
| 105 |
+
out = ndimage.spline_filter(data, order, output=dtype)
|
| 106 |
+
assert_array_almost_equal(out, 1)
|
| 107 |
+
|
| 108 |
+
@pytest.mark.parametrize('order', range(2, 6))
|
| 109 |
+
@pytest.mark.parametrize('dtype', types)
|
| 110 |
+
def test_spline04(self, dtype, order):
|
| 111 |
+
data = numpy.ones([4], dtype)
|
| 112 |
+
out = ndimage.spline_filter(data, order)
|
| 113 |
+
assert_array_almost_equal(out, [1, 1, 1, 1])
|
| 114 |
+
|
| 115 |
+
@pytest.mark.parametrize('order', range(2, 6))
|
| 116 |
+
@pytest.mark.parametrize('dtype', types)
|
| 117 |
+
def test_spline05(self, dtype, order):
|
| 118 |
+
data = numpy.ones([4, 4], dtype)
|
| 119 |
+
out = ndimage.spline_filter(data, order=order)
|
| 120 |
+
assert_array_almost_equal(out, [[1, 1, 1, 1],
|
| 121 |
+
[1, 1, 1, 1],
|
| 122 |
+
[1, 1, 1, 1],
|
| 123 |
+
[1, 1, 1, 1]])
|
| 124 |
+
|
| 125 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 126 |
+
def test_geometric_transform01(self, order):
|
| 127 |
+
data = numpy.array([1])
|
| 128 |
+
|
| 129 |
+
def mapping(x):
|
| 130 |
+
return x
|
| 131 |
+
|
| 132 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
| 133 |
+
order=order)
|
| 134 |
+
assert_array_almost_equal(out, [1])
|
| 135 |
+
|
| 136 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 137 |
+
def test_geometric_transform02(self, order):
|
| 138 |
+
data = numpy.ones([4])
|
| 139 |
+
|
| 140 |
+
def mapping(x):
|
| 141 |
+
return x
|
| 142 |
+
|
| 143 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
| 144 |
+
order=order)
|
| 145 |
+
assert_array_almost_equal(out, [1, 1, 1, 1])
|
| 146 |
+
|
| 147 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 148 |
+
def test_geometric_transform03(self, order):
|
| 149 |
+
data = numpy.ones([4])
|
| 150 |
+
|
| 151 |
+
def mapping(x):
|
| 152 |
+
return (x[0] - 1,)
|
| 153 |
+
|
| 154 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
| 155 |
+
order=order)
|
| 156 |
+
assert_array_almost_equal(out, [0, 1, 1, 1])
|
| 157 |
+
|
| 158 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 159 |
+
def test_geometric_transform04(self, order):
|
| 160 |
+
data = numpy.array([4, 1, 3, 2])
|
| 161 |
+
|
| 162 |
+
def mapping(x):
|
| 163 |
+
return (x[0] - 1,)
|
| 164 |
+
|
| 165 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
| 166 |
+
order=order)
|
| 167 |
+
assert_array_almost_equal(out, [0, 4, 1, 3])
|
| 168 |
+
|
| 169 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 170 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
| 171 |
+
def test_geometric_transform05(self, order, dtype):
|
| 172 |
+
data = numpy.array([[1, 1, 1, 1],
|
| 173 |
+
[1, 1, 1, 1],
|
| 174 |
+
[1, 1, 1, 1]], dtype=dtype)
|
| 175 |
+
expected = numpy.array([[0, 1, 1, 1],
|
| 176 |
+
[0, 1, 1, 1],
|
| 177 |
+
[0, 1, 1, 1]], dtype=dtype)
|
| 178 |
+
if data.dtype.kind == 'c':
|
| 179 |
+
data -= 1j * data
|
| 180 |
+
expected -= 1j * expected
|
| 181 |
+
|
| 182 |
+
def mapping(x):
|
| 183 |
+
return (x[0], x[1] - 1)
|
| 184 |
+
|
| 185 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
| 186 |
+
order=order)
|
| 187 |
+
assert_array_almost_equal(out, expected)
|
| 188 |
+
|
| 189 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 190 |
+
def test_geometric_transform06(self, order):
|
| 191 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 192 |
+
[7, 6, 8, 5],
|
| 193 |
+
[3, 5, 3, 6]])
|
| 194 |
+
|
| 195 |
+
def mapping(x):
|
| 196 |
+
return (x[0], x[1] - 1)
|
| 197 |
+
|
| 198 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
| 199 |
+
order=order)
|
| 200 |
+
assert_array_almost_equal(out, [[0, 4, 1, 3],
|
| 201 |
+
[0, 7, 6, 8],
|
| 202 |
+
[0, 3, 5, 3]])
|
| 203 |
+
|
| 204 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 205 |
+
def test_geometric_transform07(self, order):
|
| 206 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 207 |
+
[7, 6, 8, 5],
|
| 208 |
+
[3, 5, 3, 6]])
|
| 209 |
+
|
| 210 |
+
def mapping(x):
|
| 211 |
+
return (x[0] - 1, x[1])
|
| 212 |
+
|
| 213 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
| 214 |
+
order=order)
|
| 215 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
| 216 |
+
[4, 1, 3, 2],
|
| 217 |
+
[7, 6, 8, 5]])
|
| 218 |
+
|
| 219 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 220 |
+
def test_geometric_transform08(self, order):
|
| 221 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 222 |
+
[7, 6, 8, 5],
|
| 223 |
+
[3, 5, 3, 6]])
|
| 224 |
+
|
| 225 |
+
def mapping(x):
|
| 226 |
+
return (x[0] - 1, x[1] - 1)
|
| 227 |
+
|
| 228 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
| 229 |
+
order=order)
|
| 230 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
| 231 |
+
[0, 4, 1, 3],
|
| 232 |
+
[0, 7, 6, 8]])
|
| 233 |
+
|
| 234 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 235 |
+
def test_geometric_transform10(self, order):
|
| 236 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 237 |
+
[7, 6, 8, 5],
|
| 238 |
+
[3, 5, 3, 6]])
|
| 239 |
+
|
| 240 |
+
def mapping(x):
|
| 241 |
+
return (x[0] - 1, x[1] - 1)
|
| 242 |
+
|
| 243 |
+
if (order > 1):
|
| 244 |
+
filtered = ndimage.spline_filter(data, order=order)
|
| 245 |
+
else:
|
| 246 |
+
filtered = data
|
| 247 |
+
out = ndimage.geometric_transform(filtered, mapping, data.shape,
|
| 248 |
+
order=order, prefilter=False)
|
| 249 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
| 250 |
+
[0, 4, 1, 3],
|
| 251 |
+
[0, 7, 6, 8]])
|
| 252 |
+
|
| 253 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 254 |
+
def test_geometric_transform13(self, order):
|
| 255 |
+
data = numpy.ones([2], numpy.float64)
|
| 256 |
+
|
| 257 |
+
def mapping(x):
|
| 258 |
+
return (x[0] // 2,)
|
| 259 |
+
|
| 260 |
+
out = ndimage.geometric_transform(data, mapping, [4], order=order)
|
| 261 |
+
assert_array_almost_equal(out, [1, 1, 1, 1])
|
| 262 |
+
|
| 263 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 264 |
+
def test_geometric_transform14(self, order):
|
| 265 |
+
data = [1, 5, 2, 6, 3, 7, 4, 4]
|
| 266 |
+
|
| 267 |
+
def mapping(x):
|
| 268 |
+
return (2 * x[0],)
|
| 269 |
+
|
| 270 |
+
out = ndimage.geometric_transform(data, mapping, [4], order=order)
|
| 271 |
+
assert_array_almost_equal(out, [1, 2, 3, 4])
|
| 272 |
+
|
| 273 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 274 |
+
def test_geometric_transform15(self, order):
|
| 275 |
+
data = [1, 2, 3, 4]
|
| 276 |
+
|
| 277 |
+
def mapping(x):
|
| 278 |
+
return (x[0] / 2,)
|
| 279 |
+
|
| 280 |
+
out = ndimage.geometric_transform(data, mapping, [8], order=order)
|
| 281 |
+
assert_array_almost_equal(out[::2], [1, 2, 3, 4])
|
| 282 |
+
|
| 283 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 284 |
+
def test_geometric_transform16(self, order):
|
| 285 |
+
data = [[1, 2, 3, 4],
|
| 286 |
+
[5, 6, 7, 8],
|
| 287 |
+
[9.0, 10, 11, 12]]
|
| 288 |
+
|
| 289 |
+
def mapping(x):
|
| 290 |
+
return (x[0], x[1] * 2)
|
| 291 |
+
|
| 292 |
+
out = ndimage.geometric_transform(data, mapping, (3, 2),
|
| 293 |
+
order=order)
|
| 294 |
+
assert_array_almost_equal(out, [[1, 3], [5, 7], [9, 11]])
|
| 295 |
+
|
| 296 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 297 |
+
def test_geometric_transform17(self, order):
|
| 298 |
+
data = [[1, 2, 3, 4],
|
| 299 |
+
[5, 6, 7, 8],
|
| 300 |
+
[9, 10, 11, 12]]
|
| 301 |
+
|
| 302 |
+
def mapping(x):
|
| 303 |
+
return (x[0] * 2, x[1])
|
| 304 |
+
|
| 305 |
+
out = ndimage.geometric_transform(data, mapping, (1, 4),
|
| 306 |
+
order=order)
|
| 307 |
+
assert_array_almost_equal(out, [[1, 2, 3, 4]])
|
| 308 |
+
|
| 309 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 310 |
+
def test_geometric_transform18(self, order):
|
| 311 |
+
data = [[1, 2, 3, 4],
|
| 312 |
+
[5, 6, 7, 8],
|
| 313 |
+
[9, 10, 11, 12]]
|
| 314 |
+
|
| 315 |
+
def mapping(x):
|
| 316 |
+
return (x[0] * 2, x[1] * 2)
|
| 317 |
+
|
| 318 |
+
out = ndimage.geometric_transform(data, mapping, (1, 2),
|
| 319 |
+
order=order)
|
| 320 |
+
assert_array_almost_equal(out, [[1, 3]])
|
| 321 |
+
|
| 322 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 323 |
+
def test_geometric_transform19(self, order):
|
| 324 |
+
data = [[1, 2, 3, 4],
|
| 325 |
+
[5, 6, 7, 8],
|
| 326 |
+
[9, 10, 11, 12]]
|
| 327 |
+
|
| 328 |
+
def mapping(x):
|
| 329 |
+
return (x[0], x[1] / 2)
|
| 330 |
+
|
| 331 |
+
out = ndimage.geometric_transform(data, mapping, (3, 8),
|
| 332 |
+
order=order)
|
| 333 |
+
assert_array_almost_equal(out[..., ::2], data)
|
| 334 |
+
|
| 335 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 336 |
+
def test_geometric_transform20(self, order):
|
| 337 |
+
data = [[1, 2, 3, 4],
|
| 338 |
+
[5, 6, 7, 8],
|
| 339 |
+
[9, 10, 11, 12]]
|
| 340 |
+
|
| 341 |
+
def mapping(x):
|
| 342 |
+
return (x[0] / 2, x[1])
|
| 343 |
+
|
| 344 |
+
out = ndimage.geometric_transform(data, mapping, (6, 4),
|
| 345 |
+
order=order)
|
| 346 |
+
assert_array_almost_equal(out[::2, ...], data)
|
| 347 |
+
|
| 348 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 349 |
+
def test_geometric_transform21(self, order):
|
| 350 |
+
data = [[1, 2, 3, 4],
|
| 351 |
+
[5, 6, 7, 8],
|
| 352 |
+
[9, 10, 11, 12]]
|
| 353 |
+
|
| 354 |
+
def mapping(x):
|
| 355 |
+
return (x[0] / 2, x[1] / 2)
|
| 356 |
+
|
| 357 |
+
out = ndimage.geometric_transform(data, mapping, (6, 8),
|
| 358 |
+
order=order)
|
| 359 |
+
assert_array_almost_equal(out[::2, ::2], data)
|
| 360 |
+
|
| 361 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 362 |
+
def test_geometric_transform22(self, order):
|
| 363 |
+
data = numpy.array([[1, 2, 3, 4],
|
| 364 |
+
[5, 6, 7, 8],
|
| 365 |
+
[9, 10, 11, 12]], numpy.float64)
|
| 366 |
+
|
| 367 |
+
def mapping1(x):
|
| 368 |
+
return (x[0] / 2, x[1] / 2)
|
| 369 |
+
|
| 370 |
+
def mapping2(x):
|
| 371 |
+
return (x[0] * 2, x[1] * 2)
|
| 372 |
+
|
| 373 |
+
out = ndimage.geometric_transform(data, mapping1,
|
| 374 |
+
(6, 8), order=order)
|
| 375 |
+
out = ndimage.geometric_transform(out, mapping2,
|
| 376 |
+
(3, 4), order=order)
|
| 377 |
+
assert_array_almost_equal(out, data)
|
| 378 |
+
|
| 379 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 380 |
+
def test_geometric_transform23(self, order):
|
| 381 |
+
data = [[1, 2, 3, 4],
|
| 382 |
+
[5, 6, 7, 8],
|
| 383 |
+
[9, 10, 11, 12]]
|
| 384 |
+
|
| 385 |
+
def mapping(x):
|
| 386 |
+
return (1, x[0] * 2)
|
| 387 |
+
|
| 388 |
+
out = ndimage.geometric_transform(data, mapping, (2,), order=order)
|
| 389 |
+
out = out.astype(numpy.int32)
|
| 390 |
+
assert_array_almost_equal(out, [5, 7])
|
| 391 |
+
|
| 392 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 393 |
+
def test_geometric_transform24(self, order):
|
| 394 |
+
data = [[1, 2, 3, 4],
|
| 395 |
+
[5, 6, 7, 8],
|
| 396 |
+
[9, 10, 11, 12]]
|
| 397 |
+
|
| 398 |
+
def mapping(x, a, b):
|
| 399 |
+
return (a, x[0] * b)
|
| 400 |
+
|
| 401 |
+
out = ndimage.geometric_transform(
|
| 402 |
+
data, mapping, (2,), order=order, extra_arguments=(1,),
|
| 403 |
+
extra_keywords={'b': 2})
|
| 404 |
+
assert_array_almost_equal(out, [5, 7])
|
| 405 |
+
|
| 406 |
+
def test_geometric_transform_grid_constant_order1(self):
|
| 407 |
+
# verify interpolation outside the original bounds
|
| 408 |
+
x = numpy.array([[1, 2, 3],
|
| 409 |
+
[4, 5, 6]], dtype=float)
|
| 410 |
+
|
| 411 |
+
def mapping(x):
|
| 412 |
+
return (x[0] - 0.5), (x[1] - 0.5)
|
| 413 |
+
|
| 414 |
+
expected_result = numpy.array([[0.25, 0.75, 1.25],
|
| 415 |
+
[1.25, 3.00, 4.00]])
|
| 416 |
+
assert_array_almost_equal(
|
| 417 |
+
ndimage.geometric_transform(x, mapping, mode='grid-constant',
|
| 418 |
+
order=1),
|
| 419 |
+
expected_result,
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
@pytest.mark.parametrize('mode', ['grid-constant', 'grid-wrap', 'nearest',
|
| 423 |
+
'mirror', 'reflect'])
|
| 424 |
+
@pytest.mark.parametrize('order', range(6))
|
| 425 |
+
def test_geometric_transform_vs_padded(self, order, mode):
|
| 426 |
+
x = numpy.arange(144, dtype=float).reshape(12, 12)
|
| 427 |
+
|
| 428 |
+
def mapping(x):
|
| 429 |
+
return (x[0] - 0.4), (x[1] + 2.3)
|
| 430 |
+
|
| 431 |
+
# Manually pad and then extract center after the transform to get the
|
| 432 |
+
# expected result.
|
| 433 |
+
npad = 24
|
| 434 |
+
pad_mode = ndimage_to_numpy_mode.get(mode)
|
| 435 |
+
xp = numpy.pad(x, npad, mode=pad_mode)
|
| 436 |
+
center_slice = tuple([slice(npad, -npad)] * x.ndim)
|
| 437 |
+
expected_result = ndimage.geometric_transform(
|
| 438 |
+
xp, mapping, mode=mode, order=order)[center_slice]
|
| 439 |
+
|
| 440 |
+
assert_allclose(
|
| 441 |
+
ndimage.geometric_transform(x, mapping, mode=mode,
|
| 442 |
+
order=order),
|
| 443 |
+
expected_result,
|
| 444 |
+
rtol=1e-7,
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
def test_geometric_transform_endianness_with_output_parameter(self):
|
| 448 |
+
# geometric transform given output ndarray or dtype with
|
| 449 |
+
# non-native endianness. see issue #4127
|
| 450 |
+
data = numpy.array([1])
|
| 451 |
+
|
| 452 |
+
def mapping(x):
|
| 453 |
+
return x
|
| 454 |
+
|
| 455 |
+
for out in [data.dtype, data.dtype.newbyteorder(),
|
| 456 |
+
numpy.empty_like(data),
|
| 457 |
+
numpy.empty_like(data).astype(data.dtype.newbyteorder())]:
|
| 458 |
+
returned = ndimage.geometric_transform(data, mapping, data.shape,
|
| 459 |
+
output=out)
|
| 460 |
+
result = out if returned is None else returned
|
| 461 |
+
assert_array_almost_equal(result, [1])
|
| 462 |
+
|
| 463 |
+
def test_geometric_transform_with_string_output(self):
|
| 464 |
+
data = numpy.array([1])
|
| 465 |
+
|
| 466 |
+
def mapping(x):
|
| 467 |
+
return x
|
| 468 |
+
|
| 469 |
+
out = ndimage.geometric_transform(data, mapping, output='f')
|
| 470 |
+
assert_(out.dtype is numpy.dtype('f'))
|
| 471 |
+
assert_array_almost_equal(out, [1])
|
| 472 |
+
|
| 473 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 474 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
| 475 |
+
def test_map_coordinates01(self, order, dtype):
|
| 476 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 477 |
+
[7, 6, 8, 5],
|
| 478 |
+
[3, 5, 3, 6]])
|
| 479 |
+
expected = numpy.array([[0, 0, 0, 0],
|
| 480 |
+
[0, 4, 1, 3],
|
| 481 |
+
[0, 7, 6, 8]])
|
| 482 |
+
if data.dtype.kind == 'c':
|
| 483 |
+
data = data - 1j * data
|
| 484 |
+
expected = expected - 1j * expected
|
| 485 |
+
|
| 486 |
+
idx = numpy.indices(data.shape)
|
| 487 |
+
idx -= 1
|
| 488 |
+
|
| 489 |
+
out = ndimage.map_coordinates(data, idx, order=order)
|
| 490 |
+
assert_array_almost_equal(out, expected)
|
| 491 |
+
|
| 492 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 493 |
+
def test_map_coordinates02(self, order):
|
| 494 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 495 |
+
[7, 6, 8, 5],
|
| 496 |
+
[3, 5, 3, 6]])
|
| 497 |
+
idx = numpy.indices(data.shape, numpy.float64)
|
| 498 |
+
idx -= 0.5
|
| 499 |
+
|
| 500 |
+
out1 = ndimage.shift(data, 0.5, order=order)
|
| 501 |
+
out2 = ndimage.map_coordinates(data, idx, order=order)
|
| 502 |
+
assert_array_almost_equal(out1, out2)
|
| 503 |
+
|
| 504 |
+
def test_map_coordinates03(self):
|
| 505 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 506 |
+
[7, 6, 8, 5],
|
| 507 |
+
[3, 5, 3, 6]], order='F')
|
| 508 |
+
idx = numpy.indices(data.shape) - 1
|
| 509 |
+
out = ndimage.map_coordinates(data, idx)
|
| 510 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
| 511 |
+
[0, 4, 1, 3],
|
| 512 |
+
[0, 7, 6, 8]])
|
| 513 |
+
assert_array_almost_equal(out, ndimage.shift(data, (1, 1)))
|
| 514 |
+
idx = numpy.indices(data[::2].shape) - 1
|
| 515 |
+
out = ndimage.map_coordinates(data[::2], idx)
|
| 516 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
| 517 |
+
[0, 4, 1, 3]])
|
| 518 |
+
assert_array_almost_equal(out, ndimage.shift(data[::2], (1, 1)))
|
| 519 |
+
idx = numpy.indices(data[:, ::2].shape) - 1
|
| 520 |
+
out = ndimage.map_coordinates(data[:, ::2], idx)
|
| 521 |
+
assert_array_almost_equal(out, [[0, 0], [0, 4], [0, 7]])
|
| 522 |
+
assert_array_almost_equal(out, ndimage.shift(data[:, ::2], (1, 1)))
|
| 523 |
+
|
| 524 |
+
def test_map_coordinates_endianness_with_output_parameter(self):
|
| 525 |
+
# output parameter given as array or dtype with either endianness
|
| 526 |
+
# see issue #4127
|
| 527 |
+
data = numpy.array([[1, 2], [7, 6]])
|
| 528 |
+
expected = numpy.array([[0, 0], [0, 1]])
|
| 529 |
+
idx = numpy.indices(data.shape)
|
| 530 |
+
idx -= 1
|
| 531 |
+
for out in [
|
| 532 |
+
data.dtype,
|
| 533 |
+
data.dtype.newbyteorder(),
|
| 534 |
+
numpy.empty_like(expected),
|
| 535 |
+
numpy.empty_like(expected).astype(expected.dtype.newbyteorder())
|
| 536 |
+
]:
|
| 537 |
+
returned = ndimage.map_coordinates(data, idx, output=out)
|
| 538 |
+
result = out if returned is None else returned
|
| 539 |
+
assert_array_almost_equal(result, expected)
|
| 540 |
+
|
| 541 |
+
def test_map_coordinates_with_string_output(self):
|
| 542 |
+
data = numpy.array([[1]])
|
| 543 |
+
idx = numpy.indices(data.shape)
|
| 544 |
+
out = ndimage.map_coordinates(data, idx, output='f')
|
| 545 |
+
assert_(out.dtype is numpy.dtype('f'))
|
| 546 |
+
assert_array_almost_equal(out, [[1]])
|
| 547 |
+
|
| 548 |
+
@pytest.mark.skipif('win32' in sys.platform or numpy.intp(0).itemsize < 8,
|
| 549 |
+
reason='do not run on 32 bit or windows '
|
| 550 |
+
'(no sparse memory)')
|
| 551 |
+
def test_map_coordinates_large_data(self):
|
| 552 |
+
# check crash on large data
|
| 553 |
+
try:
|
| 554 |
+
n = 30000
|
| 555 |
+
a = numpy.empty(n**2, dtype=numpy.float32).reshape(n, n)
|
| 556 |
+
# fill the part we might read
|
| 557 |
+
a[n - 3:, n - 3:] = 0
|
| 558 |
+
ndimage.map_coordinates(a, [[n - 1.5], [n - 1.5]], order=1)
|
| 559 |
+
except MemoryError as e:
|
| 560 |
+
raise pytest.skip('Not enough memory available') from e
|
| 561 |
+
|
| 562 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 563 |
+
def test_affine_transform01(self, order):
|
| 564 |
+
data = numpy.array([1])
|
| 565 |
+
out = ndimage.affine_transform(data, [[1]], order=order)
|
| 566 |
+
assert_array_almost_equal(out, [1])
|
| 567 |
+
|
| 568 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 569 |
+
def test_affine_transform02(self, order):
|
| 570 |
+
data = numpy.ones([4])
|
| 571 |
+
out = ndimage.affine_transform(data, [[1]], order=order)
|
| 572 |
+
assert_array_almost_equal(out, [1, 1, 1, 1])
|
| 573 |
+
|
| 574 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 575 |
+
def test_affine_transform03(self, order):
|
| 576 |
+
data = numpy.ones([4])
|
| 577 |
+
out = ndimage.affine_transform(data, [[1]], -1, order=order)
|
| 578 |
+
assert_array_almost_equal(out, [0, 1, 1, 1])
|
| 579 |
+
|
| 580 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 581 |
+
def test_affine_transform04(self, order):
|
| 582 |
+
data = numpy.array([4, 1, 3, 2])
|
| 583 |
+
out = ndimage.affine_transform(data, [[1]], -1, order=order)
|
| 584 |
+
assert_array_almost_equal(out, [0, 4, 1, 3])
|
| 585 |
+
|
| 586 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 587 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
| 588 |
+
def test_affine_transform05(self, order, dtype):
|
| 589 |
+
data = numpy.array([[1, 1, 1, 1],
|
| 590 |
+
[1, 1, 1, 1],
|
| 591 |
+
[1, 1, 1, 1]], dtype=dtype)
|
| 592 |
+
expected = numpy.array([[0, 1, 1, 1],
|
| 593 |
+
[0, 1, 1, 1],
|
| 594 |
+
[0, 1, 1, 1]], dtype=dtype)
|
| 595 |
+
if data.dtype.kind == 'c':
|
| 596 |
+
data -= 1j * data
|
| 597 |
+
expected -= 1j * expected
|
| 598 |
+
out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
|
| 599 |
+
[0, -1], order=order)
|
| 600 |
+
assert_array_almost_equal(out, expected)
|
| 601 |
+
|
| 602 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 603 |
+
def test_affine_transform06(self, order):
|
| 604 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 605 |
+
[7, 6, 8, 5],
|
| 606 |
+
[3, 5, 3, 6]])
|
| 607 |
+
out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
|
| 608 |
+
[0, -1], order=order)
|
| 609 |
+
assert_array_almost_equal(out, [[0, 4, 1, 3],
|
| 610 |
+
[0, 7, 6, 8],
|
| 611 |
+
[0, 3, 5, 3]])
|
| 612 |
+
|
| 613 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 614 |
+
def test_affine_transform07(self, order):
|
| 615 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 616 |
+
[7, 6, 8, 5],
|
| 617 |
+
[3, 5, 3, 6]])
|
| 618 |
+
out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
|
| 619 |
+
[-1, 0], order=order)
|
| 620 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
| 621 |
+
[4, 1, 3, 2],
|
| 622 |
+
[7, 6, 8, 5]])
|
| 623 |
+
|
| 624 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 625 |
+
def test_affine_transform08(self, order):
|
| 626 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 627 |
+
[7, 6, 8, 5],
|
| 628 |
+
[3, 5, 3, 6]])
|
| 629 |
+
out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
|
| 630 |
+
[-1, -1], order=order)
|
| 631 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
| 632 |
+
[0, 4, 1, 3],
|
| 633 |
+
[0, 7, 6, 8]])
|
| 634 |
+
|
| 635 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 636 |
+
def test_affine_transform09(self, order):
|
| 637 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 638 |
+
[7, 6, 8, 5],
|
| 639 |
+
[3, 5, 3, 6]])
|
| 640 |
+
if (order > 1):
|
| 641 |
+
filtered = ndimage.spline_filter(data, order=order)
|
| 642 |
+
else:
|
| 643 |
+
filtered = data
|
| 644 |
+
out = ndimage.affine_transform(filtered, [[1, 0], [0, 1]],
|
| 645 |
+
[-1, -1], order=order,
|
| 646 |
+
prefilter=False)
|
| 647 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
| 648 |
+
[0, 4, 1, 3],
|
| 649 |
+
[0, 7, 6, 8]])
|
| 650 |
+
|
| 651 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 652 |
+
def test_affine_transform10(self, order):
|
| 653 |
+
data = numpy.ones([2], numpy.float64)
|
| 654 |
+
out = ndimage.affine_transform(data, [[0.5]], output_shape=(4,),
|
| 655 |
+
order=order)
|
| 656 |
+
assert_array_almost_equal(out, [1, 1, 1, 0])
|
| 657 |
+
|
| 658 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 659 |
+
def test_affine_transform11(self, order):
|
| 660 |
+
data = [1, 5, 2, 6, 3, 7, 4, 4]
|
| 661 |
+
out = ndimage.affine_transform(data, [[2]], 0, (4,), order=order)
|
| 662 |
+
assert_array_almost_equal(out, [1, 2, 3, 4])
|
| 663 |
+
|
| 664 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 665 |
+
def test_affine_transform12(self, order):
|
| 666 |
+
data = [1, 2, 3, 4]
|
| 667 |
+
out = ndimage.affine_transform(data, [[0.5]], 0, (8,), order=order)
|
| 668 |
+
assert_array_almost_equal(out[::2], [1, 2, 3, 4])
|
| 669 |
+
|
| 670 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 671 |
+
def test_affine_transform13(self, order):
|
| 672 |
+
data = [[1, 2, 3, 4],
|
| 673 |
+
[5, 6, 7, 8],
|
| 674 |
+
[9.0, 10, 11, 12]]
|
| 675 |
+
out = ndimage.affine_transform(data, [[1, 0], [0, 2]], 0, (3, 2),
|
| 676 |
+
order=order)
|
| 677 |
+
assert_array_almost_equal(out, [[1, 3], [5, 7], [9, 11]])
|
| 678 |
+
|
| 679 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 680 |
+
def test_affine_transform14(self, order):
|
| 681 |
+
data = [[1, 2, 3, 4],
|
| 682 |
+
[5, 6, 7, 8],
|
| 683 |
+
[9, 10, 11, 12]]
|
| 684 |
+
out = ndimage.affine_transform(data, [[2, 0], [0, 1]], 0, (1, 4),
|
| 685 |
+
order=order)
|
| 686 |
+
assert_array_almost_equal(out, [[1, 2, 3, 4]])
|
| 687 |
+
|
| 688 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 689 |
+
def test_affine_transform15(self, order):
|
| 690 |
+
data = [[1, 2, 3, 4],
|
| 691 |
+
[5, 6, 7, 8],
|
| 692 |
+
[9, 10, 11, 12]]
|
| 693 |
+
out = ndimage.affine_transform(data, [[2, 0], [0, 2]], 0, (1, 2),
|
| 694 |
+
order=order)
|
| 695 |
+
assert_array_almost_equal(out, [[1, 3]])
|
| 696 |
+
|
| 697 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 698 |
+
def test_affine_transform16(self, order):
|
| 699 |
+
data = [[1, 2, 3, 4],
|
| 700 |
+
[5, 6, 7, 8],
|
| 701 |
+
[9, 10, 11, 12]]
|
| 702 |
+
out = ndimage.affine_transform(data, [[1, 0.0], [0, 0.5]], 0,
|
| 703 |
+
(3, 8), order=order)
|
| 704 |
+
assert_array_almost_equal(out[..., ::2], data)
|
| 705 |
+
|
| 706 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 707 |
+
def test_affine_transform17(self, order):
|
| 708 |
+
data = [[1, 2, 3, 4],
|
| 709 |
+
[5, 6, 7, 8],
|
| 710 |
+
[9, 10, 11, 12]]
|
| 711 |
+
out = ndimage.affine_transform(data, [[0.5, 0], [0, 1]], 0,
|
| 712 |
+
(6, 4), order=order)
|
| 713 |
+
assert_array_almost_equal(out[::2, ...], data)
|
| 714 |
+
|
| 715 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 716 |
+
def test_affine_transform18(self, order):
|
| 717 |
+
data = [[1, 2, 3, 4],
|
| 718 |
+
[5, 6, 7, 8],
|
| 719 |
+
[9, 10, 11, 12]]
|
| 720 |
+
out = ndimage.affine_transform(data, [[0.5, 0], [0, 0.5]], 0,
|
| 721 |
+
(6, 8), order=order)
|
| 722 |
+
assert_array_almost_equal(out[::2, ::2], data)
|
| 723 |
+
|
| 724 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 725 |
+
def test_affine_transform19(self, order):
|
| 726 |
+
data = numpy.array([[1, 2, 3, 4],
|
| 727 |
+
[5, 6, 7, 8],
|
| 728 |
+
[9, 10, 11, 12]], numpy.float64)
|
| 729 |
+
out = ndimage.affine_transform(data, [[0.5, 0], [0, 0.5]], 0,
|
| 730 |
+
(6, 8), order=order)
|
| 731 |
+
out = ndimage.affine_transform(out, [[2.0, 0], [0, 2.0]], 0,
|
| 732 |
+
(3, 4), order=order)
|
| 733 |
+
assert_array_almost_equal(out, data)
|
| 734 |
+
|
| 735 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 736 |
+
def test_affine_transform20(self, order):
|
| 737 |
+
data = [[1, 2, 3, 4],
|
| 738 |
+
[5, 6, 7, 8],
|
| 739 |
+
[9, 10, 11, 12]]
|
| 740 |
+
out = ndimage.affine_transform(data, [[0], [2]], 0, (2,),
|
| 741 |
+
order=order)
|
| 742 |
+
assert_array_almost_equal(out, [1, 3])
|
| 743 |
+
|
| 744 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 745 |
+
def test_affine_transform21(self, order):
|
| 746 |
+
data = [[1, 2, 3, 4],
|
| 747 |
+
[5, 6, 7, 8],
|
| 748 |
+
[9, 10, 11, 12]]
|
| 749 |
+
out = ndimage.affine_transform(data, [[2], [0]], 0, (2,),
|
| 750 |
+
order=order)
|
| 751 |
+
assert_array_almost_equal(out, [1, 9])
|
| 752 |
+
|
| 753 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 754 |
+
def test_affine_transform22(self, order):
|
| 755 |
+
# shift and offset interaction; see issue #1547
|
| 756 |
+
data = numpy.array([4, 1, 3, 2])
|
| 757 |
+
out = ndimage.affine_transform(data, [[2]], [-1], (3,),
|
| 758 |
+
order=order)
|
| 759 |
+
assert_array_almost_equal(out, [0, 1, 2])
|
| 760 |
+
|
| 761 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 762 |
+
def test_affine_transform23(self, order):
|
| 763 |
+
# shift and offset interaction; see issue #1547
|
| 764 |
+
data = numpy.array([4, 1, 3, 2])
|
| 765 |
+
out = ndimage.affine_transform(data, [[0.5]], [-1], (8,),
|
| 766 |
+
order=order)
|
| 767 |
+
assert_array_almost_equal(out[::2], [0, 4, 1, 3])
|
| 768 |
+
|
| 769 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 770 |
+
def test_affine_transform24(self, order):
|
| 771 |
+
# consistency between diagonal and non-diagonal case; see issue #1547
|
| 772 |
+
data = numpy.array([4, 1, 3, 2])
|
| 773 |
+
with suppress_warnings() as sup:
|
| 774 |
+
sup.filter(UserWarning,
|
| 775 |
+
'The behavior of affine_transform with a 1-D array .* '
|
| 776 |
+
'has changed')
|
| 777 |
+
out1 = ndimage.affine_transform(data, [2], -1, order=order)
|
| 778 |
+
out2 = ndimage.affine_transform(data, [[2]], -1, order=order)
|
| 779 |
+
assert_array_almost_equal(out1, out2)
|
| 780 |
+
|
| 781 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 782 |
+
def test_affine_transform25(self, order):
|
| 783 |
+
# consistency between diagonal and non-diagonal case; see issue #1547
|
| 784 |
+
data = numpy.array([4, 1, 3, 2])
|
| 785 |
+
with suppress_warnings() as sup:
|
| 786 |
+
sup.filter(UserWarning,
|
| 787 |
+
'The behavior of affine_transform with a 1-D array .* '
|
| 788 |
+
'has changed')
|
| 789 |
+
out1 = ndimage.affine_transform(data, [0.5], -1, order=order)
|
| 790 |
+
out2 = ndimage.affine_transform(data, [[0.5]], -1, order=order)
|
| 791 |
+
assert_array_almost_equal(out1, out2)
|
| 792 |
+
|
| 793 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 794 |
+
def test_affine_transform26(self, order):
|
| 795 |
+
# test homogeneous coordinates
|
| 796 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 797 |
+
[7, 6, 8, 5],
|
| 798 |
+
[3, 5, 3, 6]])
|
| 799 |
+
if (order > 1):
|
| 800 |
+
filtered = ndimage.spline_filter(data, order=order)
|
| 801 |
+
else:
|
| 802 |
+
filtered = data
|
| 803 |
+
tform_original = numpy.eye(2)
|
| 804 |
+
offset_original = -numpy.ones((2, 1))
|
| 805 |
+
tform_h1 = numpy.hstack((tform_original, offset_original))
|
| 806 |
+
tform_h2 = numpy.vstack((tform_h1, [[0, 0, 1]]))
|
| 807 |
+
out1 = ndimage.affine_transform(filtered, tform_original,
|
| 808 |
+
offset_original.ravel(),
|
| 809 |
+
order=order, prefilter=False)
|
| 810 |
+
out2 = ndimage.affine_transform(filtered, tform_h1, order=order,
|
| 811 |
+
prefilter=False)
|
| 812 |
+
out3 = ndimage.affine_transform(filtered, tform_h2, order=order,
|
| 813 |
+
prefilter=False)
|
| 814 |
+
for out in [out1, out2, out3]:
|
| 815 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
| 816 |
+
[0, 4, 1, 3],
|
| 817 |
+
[0, 7, 6, 8]])
|
| 818 |
+
|
| 819 |
+
def test_affine_transform27(self):
|
| 820 |
+
# test valid homogeneous transformation matrix
|
| 821 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 822 |
+
[7, 6, 8, 5],
|
| 823 |
+
[3, 5, 3, 6]])
|
| 824 |
+
tform_h1 = numpy.hstack((numpy.eye(2), -numpy.ones((2, 1))))
|
| 825 |
+
tform_h2 = numpy.vstack((tform_h1, [[5, 2, 1]]))
|
| 826 |
+
assert_raises(ValueError, ndimage.affine_transform, data, tform_h2)
|
| 827 |
+
|
| 828 |
+
def test_affine_transform_1d_endianness_with_output_parameter(self):
|
| 829 |
+
# 1d affine transform given output ndarray or dtype with
|
| 830 |
+
# either endianness. see issue #7388
|
| 831 |
+
data = numpy.ones((2, 2))
|
| 832 |
+
for out in [numpy.empty_like(data),
|
| 833 |
+
numpy.empty_like(data).astype(data.dtype.newbyteorder()),
|
| 834 |
+
data.dtype, data.dtype.newbyteorder()]:
|
| 835 |
+
with suppress_warnings() as sup:
|
| 836 |
+
sup.filter(UserWarning,
|
| 837 |
+
'The behavior of affine_transform with a 1-D array '
|
| 838 |
+
'.* has changed')
|
| 839 |
+
returned = ndimage.affine_transform(data, [1, 1], output=out)
|
| 840 |
+
result = out if returned is None else returned
|
| 841 |
+
assert_array_almost_equal(result, [[1, 1], [1, 1]])
|
| 842 |
+
|
| 843 |
+
def test_affine_transform_multi_d_endianness_with_output_parameter(self):
|
| 844 |
+
# affine transform given output ndarray or dtype with either endianness
|
| 845 |
+
# see issue #4127
|
| 846 |
+
data = numpy.array([1])
|
| 847 |
+
for out in [data.dtype, data.dtype.newbyteorder(),
|
| 848 |
+
numpy.empty_like(data),
|
| 849 |
+
numpy.empty_like(data).astype(data.dtype.newbyteorder())]:
|
| 850 |
+
returned = ndimage.affine_transform(data, [[1]], output=out)
|
| 851 |
+
result = out if returned is None else returned
|
| 852 |
+
assert_array_almost_equal(result, [1])
|
| 853 |
+
|
| 854 |
+
def test_affine_transform_output_shape(self):
|
| 855 |
+
# don't require output_shape when out of a different size is given
|
| 856 |
+
data = numpy.arange(8, dtype=numpy.float64)
|
| 857 |
+
out = numpy.ones((16,))
|
| 858 |
+
|
| 859 |
+
ndimage.affine_transform(data, [[1]], output=out)
|
| 860 |
+
assert_array_almost_equal(out[:8], data)
|
| 861 |
+
|
| 862 |
+
# mismatched output shape raises an error
|
| 863 |
+
with pytest.raises(RuntimeError):
|
| 864 |
+
ndimage.affine_transform(
|
| 865 |
+
data, [[1]], output=out, output_shape=(12,))
|
| 866 |
+
|
| 867 |
+
def test_affine_transform_with_string_output(self):
|
| 868 |
+
data = numpy.array([1])
|
| 869 |
+
out = ndimage.affine_transform(data, [[1]], output='f')
|
| 870 |
+
assert_(out.dtype is numpy.dtype('f'))
|
| 871 |
+
assert_array_almost_equal(out, [1])
|
| 872 |
+
|
| 873 |
+
@pytest.mark.parametrize('shift',
|
| 874 |
+
[(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)])
|
| 875 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 876 |
+
def test_affine_transform_shift_via_grid_wrap(self, shift, order):
|
| 877 |
+
# For mode 'grid-wrap', integer shifts should match numpy.roll
|
| 878 |
+
x = numpy.array([[0, 1],
|
| 879 |
+
[2, 3]])
|
| 880 |
+
affine = numpy.zeros((2, 3))
|
| 881 |
+
affine[:2, :2] = numpy.eye(2)
|
| 882 |
+
affine[:, 2] = shift
|
| 883 |
+
assert_array_almost_equal(
|
| 884 |
+
ndimage.affine_transform(x, affine, mode='grid-wrap', order=order),
|
| 885 |
+
numpy.roll(x, shift, axis=(0, 1)),
|
| 886 |
+
)
|
| 887 |
+
|
| 888 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 889 |
+
def test_affine_transform_shift_reflect(self, order):
|
| 890 |
+
# shift by x.shape results in reflection
|
| 891 |
+
x = numpy.array([[0, 1, 2],
|
| 892 |
+
[3, 4, 5]])
|
| 893 |
+
affine = numpy.zeros((2, 3))
|
| 894 |
+
affine[:2, :2] = numpy.eye(2)
|
| 895 |
+
affine[:, 2] = x.shape
|
| 896 |
+
assert_array_almost_equal(
|
| 897 |
+
ndimage.affine_transform(x, affine, mode='reflect', order=order),
|
| 898 |
+
x[::-1, ::-1],
|
| 899 |
+
)
|
| 900 |
+
|
| 901 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 902 |
+
def test_shift01(self, order):
|
| 903 |
+
data = numpy.array([1])
|
| 904 |
+
out = ndimage.shift(data, [1], order=order)
|
| 905 |
+
assert_array_almost_equal(out, [0])
|
| 906 |
+
|
| 907 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 908 |
+
def test_shift02(self, order):
|
| 909 |
+
data = numpy.ones([4])
|
| 910 |
+
out = ndimage.shift(data, [1], order=order)
|
| 911 |
+
assert_array_almost_equal(out, [0, 1, 1, 1])
|
| 912 |
+
|
| 913 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 914 |
+
def test_shift03(self, order):
|
| 915 |
+
data = numpy.ones([4])
|
| 916 |
+
out = ndimage.shift(data, -1, order=order)
|
| 917 |
+
assert_array_almost_equal(out, [1, 1, 1, 0])
|
| 918 |
+
|
| 919 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 920 |
+
def test_shift04(self, order):
|
| 921 |
+
data = numpy.array([4, 1, 3, 2])
|
| 922 |
+
out = ndimage.shift(data, 1, order=order)
|
| 923 |
+
assert_array_almost_equal(out, [0, 4, 1, 3])
|
| 924 |
+
|
| 925 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 926 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
| 927 |
+
def test_shift05(self, order, dtype):
|
| 928 |
+
data = numpy.array([[1, 1, 1, 1],
|
| 929 |
+
[1, 1, 1, 1],
|
| 930 |
+
[1, 1, 1, 1]], dtype=dtype)
|
| 931 |
+
expected = numpy.array([[0, 1, 1, 1],
|
| 932 |
+
[0, 1, 1, 1],
|
| 933 |
+
[0, 1, 1, 1]], dtype=dtype)
|
| 934 |
+
if data.dtype.kind == 'c':
|
| 935 |
+
data -= 1j * data
|
| 936 |
+
expected -= 1j * expected
|
| 937 |
+
out = ndimage.shift(data, [0, 1], order=order)
|
| 938 |
+
assert_array_almost_equal(out, expected)
|
| 939 |
+
|
| 940 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 941 |
+
@pytest.mark.parametrize('mode', ['constant', 'grid-constant'])
|
| 942 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
| 943 |
+
def test_shift_with_nonzero_cval(self, order, mode, dtype):
|
| 944 |
+
data = numpy.array([[1, 1, 1, 1],
|
| 945 |
+
[1, 1, 1, 1],
|
| 946 |
+
[1, 1, 1, 1]], dtype=dtype)
|
| 947 |
+
|
| 948 |
+
expected = numpy.array([[0, 1, 1, 1],
|
| 949 |
+
[0, 1, 1, 1],
|
| 950 |
+
[0, 1, 1, 1]], dtype=dtype)
|
| 951 |
+
|
| 952 |
+
if data.dtype.kind == 'c':
|
| 953 |
+
data -= 1j * data
|
| 954 |
+
expected -= 1j * expected
|
| 955 |
+
cval = 5.0
|
| 956 |
+
expected[:, 0] = cval # specific to shift of [0, 1] used below
|
| 957 |
+
out = ndimage.shift(data, [0, 1], order=order, mode=mode, cval=cval)
|
| 958 |
+
assert_array_almost_equal(out, expected)
|
| 959 |
+
|
| 960 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 961 |
+
def test_shift06(self, order):
|
| 962 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 963 |
+
[7, 6, 8, 5],
|
| 964 |
+
[3, 5, 3, 6]])
|
| 965 |
+
out = ndimage.shift(data, [0, 1], order=order)
|
| 966 |
+
assert_array_almost_equal(out, [[0, 4, 1, 3],
|
| 967 |
+
[0, 7, 6, 8],
|
| 968 |
+
[0, 3, 5, 3]])
|
| 969 |
+
|
| 970 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 971 |
+
def test_shift07(self, order):
|
| 972 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 973 |
+
[7, 6, 8, 5],
|
| 974 |
+
[3, 5, 3, 6]])
|
| 975 |
+
out = ndimage.shift(data, [1, 0], order=order)
|
| 976 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
| 977 |
+
[4, 1, 3, 2],
|
| 978 |
+
[7, 6, 8, 5]])
|
| 979 |
+
|
| 980 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 981 |
+
def test_shift08(self, order):
|
| 982 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 983 |
+
[7, 6, 8, 5],
|
| 984 |
+
[3, 5, 3, 6]])
|
| 985 |
+
out = ndimage.shift(data, [1, 1], order=order)
|
| 986 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
| 987 |
+
[0, 4, 1, 3],
|
| 988 |
+
[0, 7, 6, 8]])
|
| 989 |
+
|
| 990 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 991 |
+
def test_shift09(self, order):
|
| 992 |
+
data = numpy.array([[4, 1, 3, 2],
|
| 993 |
+
[7, 6, 8, 5],
|
| 994 |
+
[3, 5, 3, 6]])
|
| 995 |
+
if (order > 1):
|
| 996 |
+
filtered = ndimage.spline_filter(data, order=order)
|
| 997 |
+
else:
|
| 998 |
+
filtered = data
|
| 999 |
+
out = ndimage.shift(filtered, [1, 1], order=order, prefilter=False)
|
| 1000 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
| 1001 |
+
[0, 4, 1, 3],
|
| 1002 |
+
[0, 7, 6, 8]])
|
| 1003 |
+
|
| 1004 |
+
@pytest.mark.parametrize('shift',
|
| 1005 |
+
[(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)])
|
| 1006 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1007 |
+
def test_shift_grid_wrap(self, shift, order):
|
| 1008 |
+
# For mode 'grid-wrap', integer shifts should match numpy.roll
|
| 1009 |
+
x = numpy.array([[0, 1],
|
| 1010 |
+
[2, 3]])
|
| 1011 |
+
assert_array_almost_equal(
|
| 1012 |
+
ndimage.shift(x, shift, mode='grid-wrap', order=order),
|
| 1013 |
+
numpy.roll(x, shift, axis=(0, 1)),
|
| 1014 |
+
)
|
| 1015 |
+
|
| 1016 |
+
@pytest.mark.parametrize('shift',
|
| 1017 |
+
[(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)])
|
| 1018 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1019 |
+
def test_shift_grid_constant1(self, shift, order):
|
| 1020 |
+
# For integer shifts, 'constant' and 'grid-constant' should be equal
|
| 1021 |
+
x = numpy.arange(20).reshape((5, 4))
|
| 1022 |
+
assert_array_almost_equal(
|
| 1023 |
+
ndimage.shift(x, shift, mode='grid-constant', order=order),
|
| 1024 |
+
ndimage.shift(x, shift, mode='constant', order=order),
|
| 1025 |
+
)
|
| 1026 |
+
|
| 1027 |
+
def test_shift_grid_constant_order1(self):
|
| 1028 |
+
x = numpy.array([[1, 2, 3],
|
| 1029 |
+
[4, 5, 6]], dtype=float)
|
| 1030 |
+
expected_result = numpy.array([[0.25, 0.75, 1.25],
|
| 1031 |
+
[1.25, 3.00, 4.00]])
|
| 1032 |
+
assert_array_almost_equal(
|
| 1033 |
+
ndimage.shift(x, (0.5, 0.5), mode='grid-constant', order=1),
|
| 1034 |
+
expected_result,
|
| 1035 |
+
)
|
| 1036 |
+
|
| 1037 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1038 |
+
def test_shift_reflect(self, order):
|
| 1039 |
+
# shift by x.shape results in reflection
|
| 1040 |
+
x = numpy.array([[0, 1, 2],
|
| 1041 |
+
[3, 4, 5]])
|
| 1042 |
+
assert_array_almost_equal(
|
| 1043 |
+
ndimage.shift(x, x.shape, mode='reflect', order=order),
|
| 1044 |
+
x[::-1, ::-1],
|
| 1045 |
+
)
|
| 1046 |
+
|
| 1047 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1048 |
+
@pytest.mark.parametrize('prefilter', [False, True])
|
| 1049 |
+
def test_shift_nearest_boundary(self, order, prefilter):
|
| 1050 |
+
# verify that shifting at least order // 2 beyond the end of the array
|
| 1051 |
+
# gives a value equal to the edge value.
|
| 1052 |
+
x = numpy.arange(16)
|
| 1053 |
+
kwargs = dict(mode='nearest', order=order, prefilter=prefilter)
|
| 1054 |
+
assert_array_almost_equal(
|
| 1055 |
+
ndimage.shift(x, order // 2 + 1, **kwargs)[0], x[0],
|
| 1056 |
+
)
|
| 1057 |
+
assert_array_almost_equal(
|
| 1058 |
+
ndimage.shift(x, -order // 2 - 1, **kwargs)[-1], x[-1],
|
| 1059 |
+
)
|
| 1060 |
+
|
| 1061 |
+
@pytest.mark.parametrize('mode', ['grid-constant', 'grid-wrap', 'nearest',
|
| 1062 |
+
'mirror', 'reflect'])
|
| 1063 |
+
@pytest.mark.parametrize('order', range(6))
|
| 1064 |
+
def test_shift_vs_padded(self, order, mode):
|
| 1065 |
+
x = numpy.arange(144, dtype=float).reshape(12, 12)
|
| 1066 |
+
shift = (0.4, -2.3)
|
| 1067 |
+
|
| 1068 |
+
# manually pad and then extract center to get expected result
|
| 1069 |
+
npad = 32
|
| 1070 |
+
pad_mode = ndimage_to_numpy_mode.get(mode)
|
| 1071 |
+
xp = numpy.pad(x, npad, mode=pad_mode)
|
| 1072 |
+
center_slice = tuple([slice(npad, -npad)] * x.ndim)
|
| 1073 |
+
expected_result = ndimage.shift(
|
| 1074 |
+
xp, shift, mode=mode, order=order)[center_slice]
|
| 1075 |
+
|
| 1076 |
+
assert_allclose(
|
| 1077 |
+
ndimage.shift(x, shift, mode=mode, order=order),
|
| 1078 |
+
expected_result,
|
| 1079 |
+
rtol=1e-7,
|
| 1080 |
+
)
|
| 1081 |
+
|
| 1082 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1083 |
+
def test_zoom1(self, order):
|
| 1084 |
+
for z in [2, [2, 2]]:
|
| 1085 |
+
arr = numpy.array(list(range(25))).reshape((5, 5)).astype(float)
|
| 1086 |
+
arr = ndimage.zoom(arr, z, order=order)
|
| 1087 |
+
assert_equal(arr.shape, (10, 10))
|
| 1088 |
+
assert_(numpy.all(arr[-1, :] != 0))
|
| 1089 |
+
assert_(numpy.all(arr[-1, :] >= (20 - eps)))
|
| 1090 |
+
assert_(numpy.all(arr[0, :] <= (5 + eps)))
|
| 1091 |
+
assert_(numpy.all(arr >= (0 - eps)))
|
| 1092 |
+
assert_(numpy.all(arr <= (24 + eps)))
|
| 1093 |
+
|
| 1094 |
+
def test_zoom2(self):
|
| 1095 |
+
arr = numpy.arange(12).reshape((3, 4))
|
| 1096 |
+
out = ndimage.zoom(ndimage.zoom(arr, 2), 0.5)
|
| 1097 |
+
assert_array_equal(out, arr)
|
| 1098 |
+
|
| 1099 |
+
def test_zoom3(self):
|
| 1100 |
+
arr = numpy.array([[1, 2]])
|
| 1101 |
+
out1 = ndimage.zoom(arr, (2, 1))
|
| 1102 |
+
out2 = ndimage.zoom(arr, (1, 2))
|
| 1103 |
+
|
| 1104 |
+
assert_array_almost_equal(out1, numpy.array([[1, 2], [1, 2]]))
|
| 1105 |
+
assert_array_almost_equal(out2, numpy.array([[1, 1, 2, 2]]))
|
| 1106 |
+
|
| 1107 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1108 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
| 1109 |
+
def test_zoom_affine01(self, order, dtype):
|
| 1110 |
+
data = numpy.asarray([[1, 2, 3, 4],
|
| 1111 |
+
[5, 6, 7, 8],
|
| 1112 |
+
[9, 10, 11, 12]], dtype=dtype)
|
| 1113 |
+
if data.dtype.kind == 'c':
|
| 1114 |
+
data -= 1j * data
|
| 1115 |
+
with suppress_warnings() as sup:
|
| 1116 |
+
sup.filter(UserWarning,
|
| 1117 |
+
'The behavior of affine_transform with a 1-D array .* '
|
| 1118 |
+
'has changed')
|
| 1119 |
+
out = ndimage.affine_transform(data, [0.5, 0.5], 0,
|
| 1120 |
+
(6, 8), order=order)
|
| 1121 |
+
assert_array_almost_equal(out[::2, ::2], data)
|
| 1122 |
+
|
| 1123 |
+
def test_zoom_infinity(self):
|
| 1124 |
+
# Ticket #1419 regression test
|
| 1125 |
+
dim = 8
|
| 1126 |
+
ndimage.zoom(numpy.zeros((dim, dim)), 1. / dim, mode='nearest')
|
| 1127 |
+
|
| 1128 |
+
def test_zoom_zoomfactor_one(self):
|
| 1129 |
+
# Ticket #1122 regression test
|
| 1130 |
+
arr = numpy.zeros((1, 5, 5))
|
| 1131 |
+
zoom = (1.0, 2.0, 2.0)
|
| 1132 |
+
|
| 1133 |
+
out = ndimage.zoom(arr, zoom, cval=7)
|
| 1134 |
+
ref = numpy.zeros((1, 10, 10))
|
| 1135 |
+
assert_array_almost_equal(out, ref)
|
| 1136 |
+
|
| 1137 |
+
def test_zoom_output_shape_roundoff(self):
|
| 1138 |
+
arr = numpy.zeros((3, 11, 25))
|
| 1139 |
+
zoom = (4.0 / 3, 15.0 / 11, 29.0 / 25)
|
| 1140 |
+
out = ndimage.zoom(arr, zoom)
|
| 1141 |
+
assert_array_equal(out.shape, (4, 15, 29))
|
| 1142 |
+
|
| 1143 |
+
@pytest.mark.parametrize('zoom', [(1, 1), (3, 5), (8, 2), (8, 8)])
|
| 1144 |
+
@pytest.mark.parametrize('mode', ['nearest', 'constant', 'wrap', 'reflect',
|
| 1145 |
+
'mirror', 'grid-wrap', 'grid-mirror',
|
| 1146 |
+
'grid-constant'])
|
| 1147 |
+
def test_zoom_by_int_order0(self, zoom, mode):
|
| 1148 |
+
# order 0 zoom should be the same as replication via numpy.kron
|
| 1149 |
+
# Note: This is not True for general x shapes when grid_mode is False,
|
| 1150 |
+
# but works here for all modes because the size ratio happens to
|
| 1151 |
+
# always be an integer when x.shape = (2, 2).
|
| 1152 |
+
x = numpy.array([[0, 1],
|
| 1153 |
+
[2, 3]], dtype=float)
|
| 1154 |
+
# x = numpy.arange(16, dtype=float).reshape(4, 4)
|
| 1155 |
+
assert_array_almost_equal(
|
| 1156 |
+
ndimage.zoom(x, zoom, order=0, mode=mode),
|
| 1157 |
+
numpy.kron(x, numpy.ones(zoom))
|
| 1158 |
+
)
|
| 1159 |
+
|
| 1160 |
+
@pytest.mark.parametrize('shape', [(2, 3), (4, 4)])
|
| 1161 |
+
@pytest.mark.parametrize('zoom', [(1, 1), (3, 5), (8, 2), (8, 8)])
|
| 1162 |
+
@pytest.mark.parametrize('mode', ['nearest', 'reflect', 'mirror',
|
| 1163 |
+
'grid-wrap', 'grid-constant'])
|
| 1164 |
+
def test_zoom_grid_by_int_order0(self, shape, zoom, mode):
|
| 1165 |
+
# When grid_mode is True, order 0 zoom should be the same as
|
| 1166 |
+
# replication via numpy.kron. The only exceptions to this are the
|
| 1167 |
+
# non-grid modes 'constant' and 'wrap'.
|
| 1168 |
+
x = numpy.arange(numpy.prod(shape), dtype=float).reshape(shape)
|
| 1169 |
+
assert_array_almost_equal(
|
| 1170 |
+
ndimage.zoom(x, zoom, order=0, mode=mode, grid_mode=True),
|
| 1171 |
+
numpy.kron(x, numpy.ones(zoom))
|
| 1172 |
+
)
|
| 1173 |
+
|
| 1174 |
+
@pytest.mark.parametrize('mode', ['constant', 'wrap'])
|
| 1175 |
+
def test_zoom_grid_mode_warnings(self, mode):
|
| 1176 |
+
# Warn on use of non-grid modes when grid_mode is True
|
| 1177 |
+
x = numpy.arange(9, dtype=float).reshape((3, 3))
|
| 1178 |
+
with pytest.warns(UserWarning,
|
| 1179 |
+
match="It is recommended to use mode"):
|
| 1180 |
+
ndimage.zoom(x, 2, mode=mode, grid_mode=True),
|
| 1181 |
+
|
| 1182 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1183 |
+
def test_rotate01(self, order):
|
| 1184 |
+
data = numpy.array([[0, 0, 0, 0],
|
| 1185 |
+
[0, 1, 1, 0],
|
| 1186 |
+
[0, 0, 0, 0]], dtype=numpy.float64)
|
| 1187 |
+
out = ndimage.rotate(data, 0, order=order)
|
| 1188 |
+
assert_array_almost_equal(out, data)
|
| 1189 |
+
|
| 1190 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1191 |
+
def test_rotate02(self, order):
|
| 1192 |
+
data = numpy.array([[0, 0, 0, 0],
|
| 1193 |
+
[0, 1, 0, 0],
|
| 1194 |
+
[0, 0, 0, 0]], dtype=numpy.float64)
|
| 1195 |
+
expected = numpy.array([[0, 0, 0],
|
| 1196 |
+
[0, 0, 0],
|
| 1197 |
+
[0, 1, 0],
|
| 1198 |
+
[0, 0, 0]], dtype=numpy.float64)
|
| 1199 |
+
out = ndimage.rotate(data, 90, order=order)
|
| 1200 |
+
assert_array_almost_equal(out, expected)
|
| 1201 |
+
|
| 1202 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1203 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
| 1204 |
+
def test_rotate03(self, order, dtype):
|
| 1205 |
+
data = numpy.array([[0, 0, 0, 0, 0],
|
| 1206 |
+
[0, 1, 1, 0, 0],
|
| 1207 |
+
[0, 0, 0, 0, 0]], dtype=dtype)
|
| 1208 |
+
expected = numpy.array([[0, 0, 0],
|
| 1209 |
+
[0, 0, 0],
|
| 1210 |
+
[0, 1, 0],
|
| 1211 |
+
[0, 1, 0],
|
| 1212 |
+
[0, 0, 0]], dtype=dtype)
|
| 1213 |
+
if data.dtype.kind == 'c':
|
| 1214 |
+
data -= 1j * data
|
| 1215 |
+
expected -= 1j * expected
|
| 1216 |
+
out = ndimage.rotate(data, 90, order=order)
|
| 1217 |
+
assert_array_almost_equal(out, expected)
|
| 1218 |
+
|
| 1219 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1220 |
+
def test_rotate04(self, order):
|
| 1221 |
+
data = numpy.array([[0, 0, 0, 0, 0],
|
| 1222 |
+
[0, 1, 1, 0, 0],
|
| 1223 |
+
[0, 0, 0, 0, 0]], dtype=numpy.float64)
|
| 1224 |
+
expected = numpy.array([[0, 0, 0, 0, 0],
|
| 1225 |
+
[0, 0, 1, 0, 0],
|
| 1226 |
+
[0, 0, 1, 0, 0]], dtype=numpy.float64)
|
| 1227 |
+
out = ndimage.rotate(data, 90, reshape=False, order=order)
|
| 1228 |
+
assert_array_almost_equal(out, expected)
|
| 1229 |
+
|
| 1230 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1231 |
+
def test_rotate05(self, order):
|
| 1232 |
+
data = numpy.empty((4, 3, 3))
|
| 1233 |
+
for i in range(3):
|
| 1234 |
+
data[:, :, i] = numpy.array([[0, 0, 0],
|
| 1235 |
+
[0, 1, 0],
|
| 1236 |
+
[0, 1, 0],
|
| 1237 |
+
[0, 0, 0]], dtype=numpy.float64)
|
| 1238 |
+
expected = numpy.array([[0, 0, 0, 0],
|
| 1239 |
+
[0, 1, 1, 0],
|
| 1240 |
+
[0, 0, 0, 0]], dtype=numpy.float64)
|
| 1241 |
+
out = ndimage.rotate(data, 90, order=order)
|
| 1242 |
+
for i in range(3):
|
| 1243 |
+
assert_array_almost_equal(out[:, :, i], expected)
|
| 1244 |
+
|
| 1245 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1246 |
+
def test_rotate06(self, order):
|
| 1247 |
+
data = numpy.empty((3, 4, 3))
|
| 1248 |
+
for i in range(3):
|
| 1249 |
+
data[:, :, i] = numpy.array([[0, 0, 0, 0],
|
| 1250 |
+
[0, 1, 1, 0],
|
| 1251 |
+
[0, 0, 0, 0]], dtype=numpy.float64)
|
| 1252 |
+
expected = numpy.array([[0, 0, 0],
|
| 1253 |
+
[0, 1, 0],
|
| 1254 |
+
[0, 1, 0],
|
| 1255 |
+
[0, 0, 0]], dtype=numpy.float64)
|
| 1256 |
+
out = ndimage.rotate(data, 90, order=order)
|
| 1257 |
+
for i in range(3):
|
| 1258 |
+
assert_array_almost_equal(out[:, :, i], expected)
|
| 1259 |
+
|
| 1260 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1261 |
+
def test_rotate07(self, order):
|
| 1262 |
+
data = numpy.array([[[0, 0, 0, 0, 0],
|
| 1263 |
+
[0, 1, 1, 0, 0],
|
| 1264 |
+
[0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64)
|
| 1265 |
+
data = data.transpose()
|
| 1266 |
+
expected = numpy.array([[[0, 0, 0],
|
| 1267 |
+
[0, 1, 0],
|
| 1268 |
+
[0, 1, 0],
|
| 1269 |
+
[0, 0, 0],
|
| 1270 |
+
[0, 0, 0]]] * 2, dtype=numpy.float64)
|
| 1271 |
+
expected = expected.transpose([2, 1, 0])
|
| 1272 |
+
out = ndimage.rotate(data, 90, axes=(0, 1), order=order)
|
| 1273 |
+
assert_array_almost_equal(out, expected)
|
| 1274 |
+
|
| 1275 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
| 1276 |
+
def test_rotate08(self, order):
|
| 1277 |
+
data = numpy.array([[[0, 0, 0, 0, 0],
|
| 1278 |
+
[0, 1, 1, 0, 0],
|
| 1279 |
+
[0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64)
|
| 1280 |
+
data = data.transpose()
|
| 1281 |
+
expected = numpy.array([[[0, 0, 1, 0, 0],
|
| 1282 |
+
[0, 0, 1, 0, 0],
|
| 1283 |
+
[0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64)
|
| 1284 |
+
expected = expected.transpose()
|
| 1285 |
+
out = ndimage.rotate(data, 90, axes=(0, 1), reshape=False, order=order)
|
| 1286 |
+
assert_array_almost_equal(out, expected)
|
| 1287 |
+
|
| 1288 |
+
def test_rotate09(self):
|
| 1289 |
+
data = numpy.array([[0, 0, 0, 0, 0],
|
| 1290 |
+
[0, 1, 1, 0, 0],
|
| 1291 |
+
[0, 0, 0, 0, 0]] * 2, dtype=numpy.float64)
|
| 1292 |
+
with assert_raises(ValueError):
|
| 1293 |
+
ndimage.rotate(data, 90, axes=(0, data.ndim))
|
| 1294 |
+
|
| 1295 |
+
def test_rotate10(self):
|
| 1296 |
+
data = numpy.arange(45, dtype=numpy.float64).reshape((3, 5, 3))
|
| 1297 |
+
|
| 1298 |
+
# The output of ndimage.rotate before refactoring
|
| 1299 |
+
expected = numpy.array([[[0.0, 0.0, 0.0],
|
| 1300 |
+
[0.0, 0.0, 0.0],
|
| 1301 |
+
[6.54914793, 7.54914793, 8.54914793],
|
| 1302 |
+
[10.84520162, 11.84520162, 12.84520162],
|
| 1303 |
+
[0.0, 0.0, 0.0]],
|
| 1304 |
+
[[6.19286575, 7.19286575, 8.19286575],
|
| 1305 |
+
[13.4730712, 14.4730712, 15.4730712],
|
| 1306 |
+
[21.0, 22.0, 23.0],
|
| 1307 |
+
[28.5269288, 29.5269288, 30.5269288],
|
| 1308 |
+
[35.80713425, 36.80713425, 37.80713425]],
|
| 1309 |
+
[[0.0, 0.0, 0.0],
|
| 1310 |
+
[31.15479838, 32.15479838, 33.15479838],
|
| 1311 |
+
[35.45085207, 36.45085207, 37.45085207],
|
| 1312 |
+
[0.0, 0.0, 0.0],
|
| 1313 |
+
[0.0, 0.0, 0.0]]])
|
| 1314 |
+
|
| 1315 |
+
out = ndimage.rotate(data, angle=12, reshape=False)
|
| 1316 |
+
assert_array_almost_equal(out, expected)
|
| 1317 |
+
|
| 1318 |
+
def test_rotate_exact_180(self):
|
| 1319 |
+
a = numpy.tile(numpy.arange(5), (5, 1))
|
| 1320 |
+
b = ndimage.rotate(ndimage.rotate(a, 180), -180)
|
| 1321 |
+
assert_equal(a, b)
|
| 1322 |
+
|
| 1323 |
+
|
| 1324 |
+
def test_zoom_output_shape():
|
| 1325 |
+
"""Ticket #643"""
|
| 1326 |
+
x = numpy.arange(12).reshape((3, 4))
|
| 1327 |
+
ndimage.zoom(x, 2, output=numpy.zeros((6, 8)))
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_measurements.py
ADDED
|
@@ -0,0 +1,1409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os.path
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
from numpy.testing import (
|
| 5 |
+
assert_,
|
| 6 |
+
assert_allclose,
|
| 7 |
+
assert_almost_equal,
|
| 8 |
+
assert_array_almost_equal,
|
| 9 |
+
assert_array_equal,
|
| 10 |
+
assert_equal,
|
| 11 |
+
suppress_warnings,
|
| 12 |
+
)
|
| 13 |
+
from pytest import raises as assert_raises
|
| 14 |
+
|
| 15 |
+
import scipy.ndimage as ndimage
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
from . import types
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class Test_measurements_stats:
|
| 22 |
+
"""ndimage._measurements._stats() is a utility used by other functions."""
|
| 23 |
+
|
| 24 |
+
def test_a(self):
|
| 25 |
+
x = [0, 1, 2, 6]
|
| 26 |
+
labels = [0, 0, 1, 1]
|
| 27 |
+
index = [0, 1]
|
| 28 |
+
for shp in [(4,), (2, 2)]:
|
| 29 |
+
x = np.array(x).reshape(shp)
|
| 30 |
+
labels = np.array(labels).reshape(shp)
|
| 31 |
+
counts, sums = ndimage._measurements._stats(
|
| 32 |
+
x, labels=labels, index=index)
|
| 33 |
+
assert_array_equal(counts, [2, 2])
|
| 34 |
+
assert_array_equal(sums, [1.0, 8.0])
|
| 35 |
+
|
| 36 |
+
def test_b(self):
|
| 37 |
+
# Same data as test_a, but different labels. The label 9 exceeds the
|
| 38 |
+
# length of 'labels', so this test will follow a different code path.
|
| 39 |
+
x = [0, 1, 2, 6]
|
| 40 |
+
labels = [0, 0, 9, 9]
|
| 41 |
+
index = [0, 9]
|
| 42 |
+
for shp in [(4,), (2, 2)]:
|
| 43 |
+
x = np.array(x).reshape(shp)
|
| 44 |
+
labels = np.array(labels).reshape(shp)
|
| 45 |
+
counts, sums = ndimage._measurements._stats(
|
| 46 |
+
x, labels=labels, index=index)
|
| 47 |
+
assert_array_equal(counts, [2, 2])
|
| 48 |
+
assert_array_equal(sums, [1.0, 8.0])
|
| 49 |
+
|
| 50 |
+
def test_a_centered(self):
|
| 51 |
+
x = [0, 1, 2, 6]
|
| 52 |
+
labels = [0, 0, 1, 1]
|
| 53 |
+
index = [0, 1]
|
| 54 |
+
for shp in [(4,), (2, 2)]:
|
| 55 |
+
x = np.array(x).reshape(shp)
|
| 56 |
+
labels = np.array(labels).reshape(shp)
|
| 57 |
+
counts, sums, centers = ndimage._measurements._stats(
|
| 58 |
+
x, labels=labels, index=index, centered=True)
|
| 59 |
+
assert_array_equal(counts, [2, 2])
|
| 60 |
+
assert_array_equal(sums, [1.0, 8.0])
|
| 61 |
+
assert_array_equal(centers, [0.5, 8.0])
|
| 62 |
+
|
| 63 |
+
def test_b_centered(self):
|
| 64 |
+
x = [0, 1, 2, 6]
|
| 65 |
+
labels = [0, 0, 9, 9]
|
| 66 |
+
index = [0, 9]
|
| 67 |
+
for shp in [(4,), (2, 2)]:
|
| 68 |
+
x = np.array(x).reshape(shp)
|
| 69 |
+
labels = np.array(labels).reshape(shp)
|
| 70 |
+
counts, sums, centers = ndimage._measurements._stats(
|
| 71 |
+
x, labels=labels, index=index, centered=True)
|
| 72 |
+
assert_array_equal(counts, [2, 2])
|
| 73 |
+
assert_array_equal(sums, [1.0, 8.0])
|
| 74 |
+
assert_array_equal(centers, [0.5, 8.0])
|
| 75 |
+
|
| 76 |
+
def test_nonint_labels(self):
|
| 77 |
+
x = [0, 1, 2, 6]
|
| 78 |
+
labels = [0.0, 0.0, 9.0, 9.0]
|
| 79 |
+
index = [0.0, 9.0]
|
| 80 |
+
for shp in [(4,), (2, 2)]:
|
| 81 |
+
x = np.array(x).reshape(shp)
|
| 82 |
+
labels = np.array(labels).reshape(shp)
|
| 83 |
+
counts, sums, centers = ndimage._measurements._stats(
|
| 84 |
+
x, labels=labels, index=index, centered=True)
|
| 85 |
+
assert_array_equal(counts, [2, 2])
|
| 86 |
+
assert_array_equal(sums, [1.0, 8.0])
|
| 87 |
+
assert_array_equal(centers, [0.5, 8.0])
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class Test_measurements_select:
|
| 91 |
+
"""ndimage._measurements._select() is a utility used by other functions."""
|
| 92 |
+
|
| 93 |
+
def test_basic(self):
|
| 94 |
+
x = [0, 1, 6, 2]
|
| 95 |
+
cases = [
|
| 96 |
+
([0, 0, 1, 1], [0, 1]), # "Small" integer labels
|
| 97 |
+
([0, 0, 9, 9], [0, 9]), # A label larger than len(labels)
|
| 98 |
+
([0.0, 0.0, 7.0, 7.0], [0.0, 7.0]), # Non-integer labels
|
| 99 |
+
]
|
| 100 |
+
for labels, index in cases:
|
| 101 |
+
result = ndimage._measurements._select(
|
| 102 |
+
x, labels=labels, index=index)
|
| 103 |
+
assert_(len(result) == 0)
|
| 104 |
+
result = ndimage._measurements._select(
|
| 105 |
+
x, labels=labels, index=index, find_max=True)
|
| 106 |
+
assert_(len(result) == 1)
|
| 107 |
+
assert_array_equal(result[0], [1, 6])
|
| 108 |
+
result = ndimage._measurements._select(
|
| 109 |
+
x, labels=labels, index=index, find_min=True)
|
| 110 |
+
assert_(len(result) == 1)
|
| 111 |
+
assert_array_equal(result[0], [0, 2])
|
| 112 |
+
result = ndimage._measurements._select(
|
| 113 |
+
x, labels=labels, index=index, find_min=True,
|
| 114 |
+
find_min_positions=True)
|
| 115 |
+
assert_(len(result) == 2)
|
| 116 |
+
assert_array_equal(result[0], [0, 2])
|
| 117 |
+
assert_array_equal(result[1], [0, 3])
|
| 118 |
+
assert_equal(result[1].dtype.kind, 'i')
|
| 119 |
+
result = ndimage._measurements._select(
|
| 120 |
+
x, labels=labels, index=index, find_max=True,
|
| 121 |
+
find_max_positions=True)
|
| 122 |
+
assert_(len(result) == 2)
|
| 123 |
+
assert_array_equal(result[0], [1, 6])
|
| 124 |
+
assert_array_equal(result[1], [1, 2])
|
| 125 |
+
assert_equal(result[1].dtype.kind, 'i')
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def test_label01():
|
| 129 |
+
data = np.ones([])
|
| 130 |
+
out, n = ndimage.label(data)
|
| 131 |
+
assert_array_almost_equal(out, 1)
|
| 132 |
+
assert_equal(n, 1)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def test_label02():
|
| 136 |
+
data = np.zeros([])
|
| 137 |
+
out, n = ndimage.label(data)
|
| 138 |
+
assert_array_almost_equal(out, 0)
|
| 139 |
+
assert_equal(n, 0)
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def test_label03():
|
| 143 |
+
data = np.ones([1])
|
| 144 |
+
out, n = ndimage.label(data)
|
| 145 |
+
assert_array_almost_equal(out, [1])
|
| 146 |
+
assert_equal(n, 1)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def test_label04():
|
| 150 |
+
data = np.zeros([1])
|
| 151 |
+
out, n = ndimage.label(data)
|
| 152 |
+
assert_array_almost_equal(out, [0])
|
| 153 |
+
assert_equal(n, 0)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def test_label05():
|
| 157 |
+
data = np.ones([5])
|
| 158 |
+
out, n = ndimage.label(data)
|
| 159 |
+
assert_array_almost_equal(out, [1, 1, 1, 1, 1])
|
| 160 |
+
assert_equal(n, 1)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def test_label06():
|
| 164 |
+
data = np.array([1, 0, 1, 1, 0, 1])
|
| 165 |
+
out, n = ndimage.label(data)
|
| 166 |
+
assert_array_almost_equal(out, [1, 0, 2, 2, 0, 3])
|
| 167 |
+
assert_equal(n, 3)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def test_label07():
|
| 171 |
+
data = np.array([[0, 0, 0, 0, 0, 0],
|
| 172 |
+
[0, 0, 0, 0, 0, 0],
|
| 173 |
+
[0, 0, 0, 0, 0, 0],
|
| 174 |
+
[0, 0, 0, 0, 0, 0],
|
| 175 |
+
[0, 0, 0, 0, 0, 0],
|
| 176 |
+
[0, 0, 0, 0, 0, 0]])
|
| 177 |
+
out, n = ndimage.label(data)
|
| 178 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0, 0, 0],
|
| 179 |
+
[0, 0, 0, 0, 0, 0],
|
| 180 |
+
[0, 0, 0, 0, 0, 0],
|
| 181 |
+
[0, 0, 0, 0, 0, 0],
|
| 182 |
+
[0, 0, 0, 0, 0, 0],
|
| 183 |
+
[0, 0, 0, 0, 0, 0]])
|
| 184 |
+
assert_equal(n, 0)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def test_label08():
|
| 188 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
| 189 |
+
[0, 0, 1, 1, 0, 0],
|
| 190 |
+
[0, 0, 1, 1, 1, 0],
|
| 191 |
+
[1, 1, 0, 0, 0, 0],
|
| 192 |
+
[1, 1, 0, 0, 0, 0],
|
| 193 |
+
[0, 0, 0, 1, 1, 0]])
|
| 194 |
+
out, n = ndimage.label(data)
|
| 195 |
+
assert_array_almost_equal(out, [[1, 0, 0, 0, 0, 0],
|
| 196 |
+
[0, 0, 2, 2, 0, 0],
|
| 197 |
+
[0, 0, 2, 2, 2, 0],
|
| 198 |
+
[3, 3, 0, 0, 0, 0],
|
| 199 |
+
[3, 3, 0, 0, 0, 0],
|
| 200 |
+
[0, 0, 0, 4, 4, 0]])
|
| 201 |
+
assert_equal(n, 4)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def test_label09():
|
| 205 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
| 206 |
+
[0, 0, 1, 1, 0, 0],
|
| 207 |
+
[0, 0, 1, 1, 1, 0],
|
| 208 |
+
[1, 1, 0, 0, 0, 0],
|
| 209 |
+
[1, 1, 0, 0, 0, 0],
|
| 210 |
+
[0, 0, 0, 1, 1, 0]])
|
| 211 |
+
struct = ndimage.generate_binary_structure(2, 2)
|
| 212 |
+
out, n = ndimage.label(data, struct)
|
| 213 |
+
assert_array_almost_equal(out, [[1, 0, 0, 0, 0, 0],
|
| 214 |
+
[0, 0, 2, 2, 0, 0],
|
| 215 |
+
[0, 0, 2, 2, 2, 0],
|
| 216 |
+
[2, 2, 0, 0, 0, 0],
|
| 217 |
+
[2, 2, 0, 0, 0, 0],
|
| 218 |
+
[0, 0, 0, 3, 3, 0]])
|
| 219 |
+
assert_equal(n, 3)
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
def test_label10():
|
| 223 |
+
data = np.array([[0, 0, 0, 0, 0, 0],
|
| 224 |
+
[0, 1, 1, 0, 1, 0],
|
| 225 |
+
[0, 1, 1, 1, 1, 0],
|
| 226 |
+
[0, 0, 0, 0, 0, 0]])
|
| 227 |
+
struct = ndimage.generate_binary_structure(2, 2)
|
| 228 |
+
out, n = ndimage.label(data, struct)
|
| 229 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0, 0, 0],
|
| 230 |
+
[0, 1, 1, 0, 1, 0],
|
| 231 |
+
[0, 1, 1, 1, 1, 0],
|
| 232 |
+
[0, 0, 0, 0, 0, 0]])
|
| 233 |
+
assert_equal(n, 1)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def test_label11():
|
| 237 |
+
for type in types:
|
| 238 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
| 239 |
+
[0, 0, 1, 1, 0, 0],
|
| 240 |
+
[0, 0, 1, 1, 1, 0],
|
| 241 |
+
[1, 1, 0, 0, 0, 0],
|
| 242 |
+
[1, 1, 0, 0, 0, 0],
|
| 243 |
+
[0, 0, 0, 1, 1, 0]], type)
|
| 244 |
+
out, n = ndimage.label(data)
|
| 245 |
+
expected = [[1, 0, 0, 0, 0, 0],
|
| 246 |
+
[0, 0, 2, 2, 0, 0],
|
| 247 |
+
[0, 0, 2, 2, 2, 0],
|
| 248 |
+
[3, 3, 0, 0, 0, 0],
|
| 249 |
+
[3, 3, 0, 0, 0, 0],
|
| 250 |
+
[0, 0, 0, 4, 4, 0]]
|
| 251 |
+
assert_array_almost_equal(out, expected)
|
| 252 |
+
assert_equal(n, 4)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def test_label11_inplace():
|
| 256 |
+
for type in types:
|
| 257 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
| 258 |
+
[0, 0, 1, 1, 0, 0],
|
| 259 |
+
[0, 0, 1, 1, 1, 0],
|
| 260 |
+
[1, 1, 0, 0, 0, 0],
|
| 261 |
+
[1, 1, 0, 0, 0, 0],
|
| 262 |
+
[0, 0, 0, 1, 1, 0]], type)
|
| 263 |
+
n = ndimage.label(data, output=data)
|
| 264 |
+
expected = [[1, 0, 0, 0, 0, 0],
|
| 265 |
+
[0, 0, 2, 2, 0, 0],
|
| 266 |
+
[0, 0, 2, 2, 2, 0],
|
| 267 |
+
[3, 3, 0, 0, 0, 0],
|
| 268 |
+
[3, 3, 0, 0, 0, 0],
|
| 269 |
+
[0, 0, 0, 4, 4, 0]]
|
| 270 |
+
assert_array_almost_equal(data, expected)
|
| 271 |
+
assert_equal(n, 4)
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
def test_label12():
|
| 275 |
+
for type in types:
|
| 276 |
+
data = np.array([[0, 0, 0, 0, 1, 1],
|
| 277 |
+
[0, 0, 0, 0, 0, 1],
|
| 278 |
+
[0, 0, 1, 0, 1, 1],
|
| 279 |
+
[0, 0, 1, 1, 1, 1],
|
| 280 |
+
[0, 0, 0, 1, 1, 0]], type)
|
| 281 |
+
out, n = ndimage.label(data)
|
| 282 |
+
expected = [[0, 0, 0, 0, 1, 1],
|
| 283 |
+
[0, 0, 0, 0, 0, 1],
|
| 284 |
+
[0, 0, 1, 0, 1, 1],
|
| 285 |
+
[0, 0, 1, 1, 1, 1],
|
| 286 |
+
[0, 0, 0, 1, 1, 0]]
|
| 287 |
+
assert_array_almost_equal(out, expected)
|
| 288 |
+
assert_equal(n, 1)
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
def test_label13():
|
| 292 |
+
for type in types:
|
| 293 |
+
data = np.array([[1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1],
|
| 294 |
+
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1],
|
| 295 |
+
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
|
| 296 |
+
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
|
| 297 |
+
type)
|
| 298 |
+
out, n = ndimage.label(data)
|
| 299 |
+
expected = [[1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1],
|
| 300 |
+
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1],
|
| 301 |
+
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
|
| 302 |
+
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
|
| 303 |
+
assert_array_almost_equal(out, expected)
|
| 304 |
+
assert_equal(n, 1)
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def test_label_output_typed():
|
| 308 |
+
data = np.ones([5])
|
| 309 |
+
for t in types:
|
| 310 |
+
output = np.zeros([5], dtype=t)
|
| 311 |
+
n = ndimage.label(data, output=output)
|
| 312 |
+
assert_array_almost_equal(output, 1)
|
| 313 |
+
assert_equal(n, 1)
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def test_label_output_dtype():
|
| 317 |
+
data = np.ones([5])
|
| 318 |
+
for t in types:
|
| 319 |
+
output, n = ndimage.label(data, output=t)
|
| 320 |
+
assert_array_almost_equal(output, 1)
|
| 321 |
+
assert output.dtype == t
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def test_label_output_wrong_size():
|
| 325 |
+
data = np.ones([5])
|
| 326 |
+
for t in types:
|
| 327 |
+
output = np.zeros([10], t)
|
| 328 |
+
assert_raises((RuntimeError, ValueError),
|
| 329 |
+
ndimage.label, data, output=output)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
def test_label_structuring_elements():
|
| 333 |
+
data = np.loadtxt(os.path.join(os.path.dirname(
|
| 334 |
+
__file__), "data", "label_inputs.txt"))
|
| 335 |
+
strels = np.loadtxt(os.path.join(
|
| 336 |
+
os.path.dirname(__file__), "data", "label_strels.txt"))
|
| 337 |
+
results = np.loadtxt(os.path.join(
|
| 338 |
+
os.path.dirname(__file__), "data", "label_results.txt"))
|
| 339 |
+
data = data.reshape((-1, 7, 7))
|
| 340 |
+
strels = strels.reshape((-1, 3, 3))
|
| 341 |
+
results = results.reshape((-1, 7, 7))
|
| 342 |
+
r = 0
|
| 343 |
+
for i in range(data.shape[0]):
|
| 344 |
+
d = data[i, :, :]
|
| 345 |
+
for j in range(strels.shape[0]):
|
| 346 |
+
s = strels[j, :, :]
|
| 347 |
+
assert_equal(ndimage.label(d, s)[0], results[r, :, :])
|
| 348 |
+
r += 1
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
def test_ticket_742():
|
| 352 |
+
def SE(img, thresh=.7, size=4):
|
| 353 |
+
mask = img > thresh
|
| 354 |
+
rank = len(mask.shape)
|
| 355 |
+
la, co = ndimage.label(mask,
|
| 356 |
+
ndimage.generate_binary_structure(rank, rank))
|
| 357 |
+
_ = ndimage.find_objects(la)
|
| 358 |
+
|
| 359 |
+
if np.dtype(np.intp) != np.dtype('i'):
|
| 360 |
+
shape = (3, 1240, 1240)
|
| 361 |
+
a = np.random.rand(np.prod(shape)).reshape(shape)
|
| 362 |
+
# shouldn't crash
|
| 363 |
+
SE(a)
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
def test_gh_issue_3025():
|
| 367 |
+
"""Github issue #3025 - improper merging of labels"""
|
| 368 |
+
d = np.zeros((60, 320))
|
| 369 |
+
d[:, :257] = 1
|
| 370 |
+
d[:, 260:] = 1
|
| 371 |
+
d[36, 257] = 1
|
| 372 |
+
d[35, 258] = 1
|
| 373 |
+
d[35, 259] = 1
|
| 374 |
+
assert ndimage.label(d, np.ones((3, 3)))[1] == 1
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
def test_label_default_dtype():
|
| 378 |
+
test_array = np.random.rand(10, 10)
|
| 379 |
+
label, no_features = ndimage.label(test_array > 0.5)
|
| 380 |
+
assert_(label.dtype in (np.int32, np.int64))
|
| 381 |
+
# Shouldn't raise an exception
|
| 382 |
+
ndimage.find_objects(label)
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
def test_find_objects01():
|
| 386 |
+
data = np.ones([], dtype=int)
|
| 387 |
+
out = ndimage.find_objects(data)
|
| 388 |
+
assert_(out == [()])
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def test_find_objects02():
|
| 392 |
+
data = np.zeros([], dtype=int)
|
| 393 |
+
out = ndimage.find_objects(data)
|
| 394 |
+
assert_(out == [])
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def test_find_objects03():
|
| 398 |
+
data = np.ones([1], dtype=int)
|
| 399 |
+
out = ndimage.find_objects(data)
|
| 400 |
+
assert_equal(out, [(slice(0, 1, None),)])
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
def test_find_objects04():
|
| 404 |
+
data = np.zeros([1], dtype=int)
|
| 405 |
+
out = ndimage.find_objects(data)
|
| 406 |
+
assert_equal(out, [])
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
def test_find_objects05():
|
| 410 |
+
data = np.ones([5], dtype=int)
|
| 411 |
+
out = ndimage.find_objects(data)
|
| 412 |
+
assert_equal(out, [(slice(0, 5, None),)])
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
def test_find_objects06():
|
| 416 |
+
data = np.array([1, 0, 2, 2, 0, 3])
|
| 417 |
+
out = ndimage.find_objects(data)
|
| 418 |
+
assert_equal(out, [(slice(0, 1, None),),
|
| 419 |
+
(slice(2, 4, None),),
|
| 420 |
+
(slice(5, 6, None),)])
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
def test_find_objects07():
|
| 424 |
+
data = np.array([[0, 0, 0, 0, 0, 0],
|
| 425 |
+
[0, 0, 0, 0, 0, 0],
|
| 426 |
+
[0, 0, 0, 0, 0, 0],
|
| 427 |
+
[0, 0, 0, 0, 0, 0],
|
| 428 |
+
[0, 0, 0, 0, 0, 0],
|
| 429 |
+
[0, 0, 0, 0, 0, 0]])
|
| 430 |
+
out = ndimage.find_objects(data)
|
| 431 |
+
assert_equal(out, [])
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
def test_find_objects08():
|
| 435 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
| 436 |
+
[0, 0, 2, 2, 0, 0],
|
| 437 |
+
[0, 0, 2, 2, 2, 0],
|
| 438 |
+
[3, 3, 0, 0, 0, 0],
|
| 439 |
+
[3, 3, 0, 0, 0, 0],
|
| 440 |
+
[0, 0, 0, 4, 4, 0]])
|
| 441 |
+
out = ndimage.find_objects(data)
|
| 442 |
+
assert_equal(out, [(slice(0, 1, None), slice(0, 1, None)),
|
| 443 |
+
(slice(1, 3, None), slice(2, 5, None)),
|
| 444 |
+
(slice(3, 5, None), slice(0, 2, None)),
|
| 445 |
+
(slice(5, 6, None), slice(3, 5, None))])
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
def test_find_objects09():
|
| 449 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
| 450 |
+
[0, 0, 2, 2, 0, 0],
|
| 451 |
+
[0, 0, 2, 2, 2, 0],
|
| 452 |
+
[0, 0, 0, 0, 0, 0],
|
| 453 |
+
[0, 0, 0, 0, 0, 0],
|
| 454 |
+
[0, 0, 0, 4, 4, 0]])
|
| 455 |
+
out = ndimage.find_objects(data)
|
| 456 |
+
assert_equal(out, [(slice(0, 1, None), slice(0, 1, None)),
|
| 457 |
+
(slice(1, 3, None), slice(2, 5, None)),
|
| 458 |
+
None,
|
| 459 |
+
(slice(5, 6, None), slice(3, 5, None))])
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
def test_value_indices01():
|
| 463 |
+
"Test dictionary keys and entries"
|
| 464 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
| 465 |
+
[0, 0, 2, 2, 0, 0],
|
| 466 |
+
[0, 0, 2, 2, 2, 0],
|
| 467 |
+
[0, 0, 0, 0, 0, 0],
|
| 468 |
+
[0, 0, 0, 0, 0, 0],
|
| 469 |
+
[0, 0, 0, 4, 4, 0]])
|
| 470 |
+
vi = ndimage.value_indices(data, ignore_value=0)
|
| 471 |
+
true_keys = [1, 2, 4]
|
| 472 |
+
assert_equal(list(vi.keys()), true_keys)
|
| 473 |
+
|
| 474 |
+
truevi = {}
|
| 475 |
+
for k in true_keys:
|
| 476 |
+
truevi[k] = np.where(data == k)
|
| 477 |
+
|
| 478 |
+
vi = ndimage.value_indices(data, ignore_value=0)
|
| 479 |
+
assert_equal(vi, truevi)
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
def test_value_indices02():
|
| 483 |
+
"Test input checking"
|
| 484 |
+
data = np.zeros((5, 4), dtype=np.float32)
|
| 485 |
+
msg = "Parameter 'arr' must be an integer array"
|
| 486 |
+
with assert_raises(ValueError, match=msg):
|
| 487 |
+
ndimage.value_indices(data)
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def test_value_indices03():
|
| 491 |
+
"Test different input array shapes, from 1-D to 4-D"
|
| 492 |
+
for shape in [(36,), (18, 2), (3, 3, 4), (3, 3, 2, 2)]:
|
| 493 |
+
a = np.array((12*[1]+12*[2]+12*[3]), dtype=np.int32).reshape(shape)
|
| 494 |
+
trueKeys = np.unique(a)
|
| 495 |
+
vi = ndimage.value_indices(a)
|
| 496 |
+
assert_equal(list(vi.keys()), list(trueKeys))
|
| 497 |
+
for k in trueKeys:
|
| 498 |
+
trueNdx = np.where(a == k)
|
| 499 |
+
assert_equal(vi[k], trueNdx)
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
def test_sum01():
|
| 503 |
+
for type in types:
|
| 504 |
+
input = np.array([], type)
|
| 505 |
+
output = ndimage.sum(input)
|
| 506 |
+
assert_equal(output, 0.0)
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
def test_sum02():
|
| 510 |
+
for type in types:
|
| 511 |
+
input = np.zeros([0, 4], type)
|
| 512 |
+
output = ndimage.sum(input)
|
| 513 |
+
assert_equal(output, 0.0)
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
def test_sum03():
|
| 517 |
+
for type in types:
|
| 518 |
+
input = np.ones([], type)
|
| 519 |
+
output = ndimage.sum(input)
|
| 520 |
+
assert_almost_equal(output, 1.0)
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
def test_sum04():
|
| 524 |
+
for type in types:
|
| 525 |
+
input = np.array([1, 2], type)
|
| 526 |
+
output = ndimage.sum(input)
|
| 527 |
+
assert_almost_equal(output, 3.0)
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
def test_sum05():
|
| 531 |
+
for type in types:
|
| 532 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 533 |
+
output = ndimage.sum(input)
|
| 534 |
+
assert_almost_equal(output, 10.0)
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
def test_sum06():
|
| 538 |
+
labels = np.array([], bool)
|
| 539 |
+
for type in types:
|
| 540 |
+
input = np.array([], type)
|
| 541 |
+
output = ndimage.sum(input, labels=labels)
|
| 542 |
+
assert_equal(output, 0.0)
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
def test_sum07():
|
| 546 |
+
labels = np.ones([0, 4], bool)
|
| 547 |
+
for type in types:
|
| 548 |
+
input = np.zeros([0, 4], type)
|
| 549 |
+
output = ndimage.sum(input, labels=labels)
|
| 550 |
+
assert_equal(output, 0.0)
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
def test_sum08():
|
| 554 |
+
labels = np.array([1, 0], bool)
|
| 555 |
+
for type in types:
|
| 556 |
+
input = np.array([1, 2], type)
|
| 557 |
+
output = ndimage.sum(input, labels=labels)
|
| 558 |
+
assert_equal(output, 1.0)
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
def test_sum09():
|
| 562 |
+
labels = np.array([1, 0], bool)
|
| 563 |
+
for type in types:
|
| 564 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 565 |
+
output = ndimage.sum(input, labels=labels)
|
| 566 |
+
assert_almost_equal(output, 4.0)
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
def test_sum10():
|
| 570 |
+
labels = np.array([1, 0], bool)
|
| 571 |
+
input = np.array([[1, 2], [3, 4]], bool)
|
| 572 |
+
output = ndimage.sum(input, labels=labels)
|
| 573 |
+
assert_almost_equal(output, 2.0)
|
| 574 |
+
|
| 575 |
+
|
| 576 |
+
def test_sum11():
|
| 577 |
+
labels = np.array([1, 2], np.int8)
|
| 578 |
+
for type in types:
|
| 579 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 580 |
+
output = ndimage.sum(input, labels=labels,
|
| 581 |
+
index=2)
|
| 582 |
+
assert_almost_equal(output, 6.0)
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
def test_sum12():
|
| 586 |
+
labels = np.array([[1, 2], [2, 4]], np.int8)
|
| 587 |
+
for type in types:
|
| 588 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 589 |
+
output = ndimage.sum(input, labels=labels, index=[4, 8, 2])
|
| 590 |
+
assert_array_almost_equal(output, [4.0, 0.0, 5.0])
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
def test_sum_labels():
|
| 594 |
+
labels = np.array([[1, 2], [2, 4]], np.int8)
|
| 595 |
+
for type in types:
|
| 596 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 597 |
+
output_sum = ndimage.sum(input, labels=labels, index=[4, 8, 2])
|
| 598 |
+
output_labels = ndimage.sum_labels(
|
| 599 |
+
input, labels=labels, index=[4, 8, 2])
|
| 600 |
+
|
| 601 |
+
assert (output_sum == output_labels).all()
|
| 602 |
+
assert_array_almost_equal(output_labels, [4.0, 0.0, 5.0])
|
| 603 |
+
|
| 604 |
+
|
| 605 |
+
def test_mean01():
|
| 606 |
+
labels = np.array([1, 0], bool)
|
| 607 |
+
for type in types:
|
| 608 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 609 |
+
output = ndimage.mean(input, labels=labels)
|
| 610 |
+
assert_almost_equal(output, 2.0)
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
def test_mean02():
|
| 614 |
+
labels = np.array([1, 0], bool)
|
| 615 |
+
input = np.array([[1, 2], [3, 4]], bool)
|
| 616 |
+
output = ndimage.mean(input, labels=labels)
|
| 617 |
+
assert_almost_equal(output, 1.0)
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
def test_mean03():
|
| 621 |
+
labels = np.array([1, 2])
|
| 622 |
+
for type in types:
|
| 623 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 624 |
+
output = ndimage.mean(input, labels=labels,
|
| 625 |
+
index=2)
|
| 626 |
+
assert_almost_equal(output, 3.0)
|
| 627 |
+
|
| 628 |
+
|
| 629 |
+
def test_mean04():
|
| 630 |
+
labels = np.array([[1, 2], [2, 4]], np.int8)
|
| 631 |
+
with np.errstate(all='ignore'):
|
| 632 |
+
for type in types:
|
| 633 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 634 |
+
output = ndimage.mean(input, labels=labels,
|
| 635 |
+
index=[4, 8, 2])
|
| 636 |
+
assert_array_almost_equal(output[[0, 2]], [4.0, 2.5])
|
| 637 |
+
assert_(np.isnan(output[1]))
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
def test_minimum01():
|
| 641 |
+
labels = np.array([1, 0], bool)
|
| 642 |
+
for type in types:
|
| 643 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 644 |
+
output = ndimage.minimum(input, labels=labels)
|
| 645 |
+
assert_almost_equal(output, 1.0)
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
def test_minimum02():
|
| 649 |
+
labels = np.array([1, 0], bool)
|
| 650 |
+
input = np.array([[2, 2], [2, 4]], bool)
|
| 651 |
+
output = ndimage.minimum(input, labels=labels)
|
| 652 |
+
assert_almost_equal(output, 1.0)
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
def test_minimum03():
|
| 656 |
+
labels = np.array([1, 2])
|
| 657 |
+
for type in types:
|
| 658 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 659 |
+
output = ndimage.minimum(input, labels=labels,
|
| 660 |
+
index=2)
|
| 661 |
+
assert_almost_equal(output, 2.0)
|
| 662 |
+
|
| 663 |
+
|
| 664 |
+
def test_minimum04():
|
| 665 |
+
labels = np.array([[1, 2], [2, 3]])
|
| 666 |
+
for type in types:
|
| 667 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 668 |
+
output = ndimage.minimum(input, labels=labels,
|
| 669 |
+
index=[2, 3, 8])
|
| 670 |
+
assert_array_almost_equal(output, [2.0, 4.0, 0.0])
|
| 671 |
+
|
| 672 |
+
|
| 673 |
+
def test_maximum01():
|
| 674 |
+
labels = np.array([1, 0], bool)
|
| 675 |
+
for type in types:
|
| 676 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 677 |
+
output = ndimage.maximum(input, labels=labels)
|
| 678 |
+
assert_almost_equal(output, 3.0)
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
def test_maximum02():
|
| 682 |
+
labels = np.array([1, 0], bool)
|
| 683 |
+
input = np.array([[2, 2], [2, 4]], bool)
|
| 684 |
+
output = ndimage.maximum(input, labels=labels)
|
| 685 |
+
assert_almost_equal(output, 1.0)
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
def test_maximum03():
|
| 689 |
+
labels = np.array([1, 2])
|
| 690 |
+
for type in types:
|
| 691 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 692 |
+
output = ndimage.maximum(input, labels=labels,
|
| 693 |
+
index=2)
|
| 694 |
+
assert_almost_equal(output, 4.0)
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
def test_maximum04():
|
| 698 |
+
labels = np.array([[1, 2], [2, 3]])
|
| 699 |
+
for type in types:
|
| 700 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 701 |
+
output = ndimage.maximum(input, labels=labels,
|
| 702 |
+
index=[2, 3, 8])
|
| 703 |
+
assert_array_almost_equal(output, [3.0, 4.0, 0.0])
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
def test_maximum05():
|
| 707 |
+
# Regression test for ticket #501 (Trac)
|
| 708 |
+
x = np.array([-3, -2, -1])
|
| 709 |
+
assert_equal(ndimage.maximum(x), -1)
|
| 710 |
+
|
| 711 |
+
|
| 712 |
+
def test_median01():
|
| 713 |
+
a = np.array([[1, 2, 0, 1],
|
| 714 |
+
[5, 3, 0, 4],
|
| 715 |
+
[0, 0, 0, 7],
|
| 716 |
+
[9, 3, 0, 0]])
|
| 717 |
+
labels = np.array([[1, 1, 0, 2],
|
| 718 |
+
[1, 1, 0, 2],
|
| 719 |
+
[0, 0, 0, 2],
|
| 720 |
+
[3, 3, 0, 0]])
|
| 721 |
+
output = ndimage.median(a, labels=labels, index=[1, 2, 3])
|
| 722 |
+
assert_array_almost_equal(output, [2.5, 4.0, 6.0])
|
| 723 |
+
|
| 724 |
+
|
| 725 |
+
def test_median02():
|
| 726 |
+
a = np.array([[1, 2, 0, 1],
|
| 727 |
+
[5, 3, 0, 4],
|
| 728 |
+
[0, 0, 0, 7],
|
| 729 |
+
[9, 3, 0, 0]])
|
| 730 |
+
output = ndimage.median(a)
|
| 731 |
+
assert_almost_equal(output, 1.0)
|
| 732 |
+
|
| 733 |
+
|
| 734 |
+
def test_median03():
|
| 735 |
+
a = np.array([[1, 2, 0, 1],
|
| 736 |
+
[5, 3, 0, 4],
|
| 737 |
+
[0, 0, 0, 7],
|
| 738 |
+
[9, 3, 0, 0]])
|
| 739 |
+
labels = np.array([[1, 1, 0, 2],
|
| 740 |
+
[1, 1, 0, 2],
|
| 741 |
+
[0, 0, 0, 2],
|
| 742 |
+
[3, 3, 0, 0]])
|
| 743 |
+
output = ndimage.median(a, labels=labels)
|
| 744 |
+
assert_almost_equal(output, 3.0)
|
| 745 |
+
|
| 746 |
+
|
| 747 |
+
def test_median_gh12836_bool():
|
| 748 |
+
# test boolean addition fix on example from gh-12836
|
| 749 |
+
a = np.asarray([1, 1], dtype=bool)
|
| 750 |
+
output = ndimage.median(a, labels=np.ones((2,)), index=[1])
|
| 751 |
+
assert_array_almost_equal(output, [1.0])
|
| 752 |
+
|
| 753 |
+
|
| 754 |
+
def test_median_no_int_overflow():
|
| 755 |
+
# test integer overflow fix on example from gh-12836
|
| 756 |
+
a = np.asarray([65, 70], dtype=np.int8)
|
| 757 |
+
output = ndimage.median(a, labels=np.ones((2,)), index=[1])
|
| 758 |
+
assert_array_almost_equal(output, [67.5])
|
| 759 |
+
|
| 760 |
+
|
| 761 |
+
def test_variance01():
|
| 762 |
+
with np.errstate(all='ignore'):
|
| 763 |
+
for type in types:
|
| 764 |
+
input = np.array([], type)
|
| 765 |
+
with suppress_warnings() as sup:
|
| 766 |
+
sup.filter(RuntimeWarning, "Mean of empty slice")
|
| 767 |
+
output = ndimage.variance(input)
|
| 768 |
+
assert_(np.isnan(output))
|
| 769 |
+
|
| 770 |
+
|
| 771 |
+
def test_variance02():
|
| 772 |
+
for type in types:
|
| 773 |
+
input = np.array([1], type)
|
| 774 |
+
output = ndimage.variance(input)
|
| 775 |
+
assert_almost_equal(output, 0.0)
|
| 776 |
+
|
| 777 |
+
|
| 778 |
+
def test_variance03():
|
| 779 |
+
for type in types:
|
| 780 |
+
input = np.array([1, 3], type)
|
| 781 |
+
output = ndimage.variance(input)
|
| 782 |
+
assert_almost_equal(output, 1.0)
|
| 783 |
+
|
| 784 |
+
|
| 785 |
+
def test_variance04():
|
| 786 |
+
input = np.array([1, 0], bool)
|
| 787 |
+
output = ndimage.variance(input)
|
| 788 |
+
assert_almost_equal(output, 0.25)
|
| 789 |
+
|
| 790 |
+
|
| 791 |
+
def test_variance05():
|
| 792 |
+
labels = [2, 2, 3]
|
| 793 |
+
for type in types:
|
| 794 |
+
input = np.array([1, 3, 8], type)
|
| 795 |
+
output = ndimage.variance(input, labels, 2)
|
| 796 |
+
assert_almost_equal(output, 1.0)
|
| 797 |
+
|
| 798 |
+
|
| 799 |
+
def test_variance06():
|
| 800 |
+
labels = [2, 2, 3, 3, 4]
|
| 801 |
+
with np.errstate(all='ignore'):
|
| 802 |
+
for type in types:
|
| 803 |
+
input = np.array([1, 3, 8, 10, 8], type)
|
| 804 |
+
output = ndimage.variance(input, labels, [2, 3, 4])
|
| 805 |
+
assert_array_almost_equal(output, [1.0, 1.0, 0.0])
|
| 806 |
+
|
| 807 |
+
|
| 808 |
+
def test_standard_deviation01():
|
| 809 |
+
with np.errstate(all='ignore'):
|
| 810 |
+
for type in types:
|
| 811 |
+
input = np.array([], type)
|
| 812 |
+
with suppress_warnings() as sup:
|
| 813 |
+
sup.filter(RuntimeWarning, "Mean of empty slice")
|
| 814 |
+
output = ndimage.standard_deviation(input)
|
| 815 |
+
assert_(np.isnan(output))
|
| 816 |
+
|
| 817 |
+
|
| 818 |
+
def test_standard_deviation02():
|
| 819 |
+
for type in types:
|
| 820 |
+
input = np.array([1], type)
|
| 821 |
+
output = ndimage.standard_deviation(input)
|
| 822 |
+
assert_almost_equal(output, 0.0)
|
| 823 |
+
|
| 824 |
+
|
| 825 |
+
def test_standard_deviation03():
|
| 826 |
+
for type in types:
|
| 827 |
+
input = np.array([1, 3], type)
|
| 828 |
+
output = ndimage.standard_deviation(input)
|
| 829 |
+
assert_almost_equal(output, np.sqrt(1.0))
|
| 830 |
+
|
| 831 |
+
|
| 832 |
+
def test_standard_deviation04():
|
| 833 |
+
input = np.array([1, 0], bool)
|
| 834 |
+
output = ndimage.standard_deviation(input)
|
| 835 |
+
assert_almost_equal(output, 0.5)
|
| 836 |
+
|
| 837 |
+
|
| 838 |
+
def test_standard_deviation05():
|
| 839 |
+
labels = [2, 2, 3]
|
| 840 |
+
for type in types:
|
| 841 |
+
input = np.array([1, 3, 8], type)
|
| 842 |
+
output = ndimage.standard_deviation(input, labels, 2)
|
| 843 |
+
assert_almost_equal(output, 1.0)
|
| 844 |
+
|
| 845 |
+
|
| 846 |
+
def test_standard_deviation06():
|
| 847 |
+
labels = [2, 2, 3, 3, 4]
|
| 848 |
+
with np.errstate(all='ignore'):
|
| 849 |
+
for type in types:
|
| 850 |
+
input = np.array([1, 3, 8, 10, 8], type)
|
| 851 |
+
output = ndimage.standard_deviation(input, labels, [2, 3, 4])
|
| 852 |
+
assert_array_almost_equal(output, [1.0, 1.0, 0.0])
|
| 853 |
+
|
| 854 |
+
|
| 855 |
+
def test_standard_deviation07():
|
| 856 |
+
labels = [1]
|
| 857 |
+
with np.errstate(all='ignore'):
|
| 858 |
+
for type in types:
|
| 859 |
+
input = np.array([-0.00619519], type)
|
| 860 |
+
output = ndimage.standard_deviation(input, labels, [1])
|
| 861 |
+
assert_array_almost_equal(output, [0])
|
| 862 |
+
|
| 863 |
+
|
| 864 |
+
def test_minimum_position01():
|
| 865 |
+
labels = np.array([1, 0], bool)
|
| 866 |
+
for type in types:
|
| 867 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 868 |
+
output = ndimage.minimum_position(input, labels=labels)
|
| 869 |
+
assert_equal(output, (0, 0))
|
| 870 |
+
|
| 871 |
+
|
| 872 |
+
def test_minimum_position02():
|
| 873 |
+
for type in types:
|
| 874 |
+
input = np.array([[5, 4, 2, 5],
|
| 875 |
+
[3, 7, 0, 2],
|
| 876 |
+
[1, 5, 1, 1]], type)
|
| 877 |
+
output = ndimage.minimum_position(input)
|
| 878 |
+
assert_equal(output, (1, 2))
|
| 879 |
+
|
| 880 |
+
|
| 881 |
+
def test_minimum_position03():
|
| 882 |
+
input = np.array([[5, 4, 2, 5],
|
| 883 |
+
[3, 7, 0, 2],
|
| 884 |
+
[1, 5, 1, 1]], bool)
|
| 885 |
+
output = ndimage.minimum_position(input)
|
| 886 |
+
assert_equal(output, (1, 2))
|
| 887 |
+
|
| 888 |
+
|
| 889 |
+
def test_minimum_position04():
|
| 890 |
+
input = np.array([[5, 4, 2, 5],
|
| 891 |
+
[3, 7, 1, 2],
|
| 892 |
+
[1, 5, 1, 1]], bool)
|
| 893 |
+
output = ndimage.minimum_position(input)
|
| 894 |
+
assert_equal(output, (0, 0))
|
| 895 |
+
|
| 896 |
+
|
| 897 |
+
def test_minimum_position05():
|
| 898 |
+
labels = [1, 2, 0, 4]
|
| 899 |
+
for type in types:
|
| 900 |
+
input = np.array([[5, 4, 2, 5],
|
| 901 |
+
[3, 7, 0, 2],
|
| 902 |
+
[1, 5, 2, 3]], type)
|
| 903 |
+
output = ndimage.minimum_position(input, labels)
|
| 904 |
+
assert_equal(output, (2, 0))
|
| 905 |
+
|
| 906 |
+
|
| 907 |
+
def test_minimum_position06():
|
| 908 |
+
labels = [1, 2, 3, 4]
|
| 909 |
+
for type in types:
|
| 910 |
+
input = np.array([[5, 4, 2, 5],
|
| 911 |
+
[3, 7, 0, 2],
|
| 912 |
+
[1, 5, 1, 1]], type)
|
| 913 |
+
output = ndimage.minimum_position(input, labels, 2)
|
| 914 |
+
assert_equal(output, (0, 1))
|
| 915 |
+
|
| 916 |
+
|
| 917 |
+
def test_minimum_position07():
|
| 918 |
+
labels = [1, 2, 3, 4]
|
| 919 |
+
for type in types:
|
| 920 |
+
input = np.array([[5, 4, 2, 5],
|
| 921 |
+
[3, 7, 0, 2],
|
| 922 |
+
[1, 5, 1, 1]], type)
|
| 923 |
+
output = ndimage.minimum_position(input, labels,
|
| 924 |
+
[2, 3])
|
| 925 |
+
assert_equal(output[0], (0, 1))
|
| 926 |
+
assert_equal(output[1], (1, 2))
|
| 927 |
+
|
| 928 |
+
|
| 929 |
+
def test_maximum_position01():
|
| 930 |
+
labels = np.array([1, 0], bool)
|
| 931 |
+
for type in types:
|
| 932 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 933 |
+
output = ndimage.maximum_position(input,
|
| 934 |
+
labels=labels)
|
| 935 |
+
assert_equal(output, (1, 0))
|
| 936 |
+
|
| 937 |
+
|
| 938 |
+
def test_maximum_position02():
|
| 939 |
+
for type in types:
|
| 940 |
+
input = np.array([[5, 4, 2, 5],
|
| 941 |
+
[3, 7, 8, 2],
|
| 942 |
+
[1, 5, 1, 1]], type)
|
| 943 |
+
output = ndimage.maximum_position(input)
|
| 944 |
+
assert_equal(output, (1, 2))
|
| 945 |
+
|
| 946 |
+
|
| 947 |
+
def test_maximum_position03():
|
| 948 |
+
input = np.array([[5, 4, 2, 5],
|
| 949 |
+
[3, 7, 8, 2],
|
| 950 |
+
[1, 5, 1, 1]], bool)
|
| 951 |
+
output = ndimage.maximum_position(input)
|
| 952 |
+
assert_equal(output, (0, 0))
|
| 953 |
+
|
| 954 |
+
|
| 955 |
+
def test_maximum_position04():
|
| 956 |
+
labels = [1, 2, 0, 4]
|
| 957 |
+
for type in types:
|
| 958 |
+
input = np.array([[5, 4, 2, 5],
|
| 959 |
+
[3, 7, 8, 2],
|
| 960 |
+
[1, 5, 1, 1]], type)
|
| 961 |
+
output = ndimage.maximum_position(input, labels)
|
| 962 |
+
assert_equal(output, (1, 1))
|
| 963 |
+
|
| 964 |
+
|
| 965 |
+
def test_maximum_position05():
|
| 966 |
+
labels = [1, 2, 0, 4]
|
| 967 |
+
for type in types:
|
| 968 |
+
input = np.array([[5, 4, 2, 5],
|
| 969 |
+
[3, 7, 8, 2],
|
| 970 |
+
[1, 5, 1, 1]], type)
|
| 971 |
+
output = ndimage.maximum_position(input, labels, 1)
|
| 972 |
+
assert_equal(output, (0, 0))
|
| 973 |
+
|
| 974 |
+
|
| 975 |
+
def test_maximum_position06():
|
| 976 |
+
labels = [1, 2, 0, 4]
|
| 977 |
+
for type in types:
|
| 978 |
+
input = np.array([[5, 4, 2, 5],
|
| 979 |
+
[3, 7, 8, 2],
|
| 980 |
+
[1, 5, 1, 1]], type)
|
| 981 |
+
output = ndimage.maximum_position(input, labels,
|
| 982 |
+
[1, 2])
|
| 983 |
+
assert_equal(output[0], (0, 0))
|
| 984 |
+
assert_equal(output[1], (1, 1))
|
| 985 |
+
|
| 986 |
+
|
| 987 |
+
def test_maximum_position07():
|
| 988 |
+
# Test float labels
|
| 989 |
+
labels = np.array([1.0, 2.5, 0.0, 4.5])
|
| 990 |
+
for type in types:
|
| 991 |
+
input = np.array([[5, 4, 2, 5],
|
| 992 |
+
[3, 7, 8, 2],
|
| 993 |
+
[1, 5, 1, 1]], type)
|
| 994 |
+
output = ndimage.maximum_position(input, labels,
|
| 995 |
+
[1.0, 4.5])
|
| 996 |
+
assert_equal(output[0], (0, 0))
|
| 997 |
+
assert_equal(output[1], (0, 3))
|
| 998 |
+
|
| 999 |
+
|
| 1000 |
+
def test_extrema01():
|
| 1001 |
+
labels = np.array([1, 0], bool)
|
| 1002 |
+
for type in types:
|
| 1003 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 1004 |
+
output1 = ndimage.extrema(input, labels=labels)
|
| 1005 |
+
output2 = ndimage.minimum(input, labels=labels)
|
| 1006 |
+
output3 = ndimage.maximum(input, labels=labels)
|
| 1007 |
+
output4 = ndimage.minimum_position(input,
|
| 1008 |
+
labels=labels)
|
| 1009 |
+
output5 = ndimage.maximum_position(input,
|
| 1010 |
+
labels=labels)
|
| 1011 |
+
assert_equal(output1, (output2, output3, output4, output5))
|
| 1012 |
+
|
| 1013 |
+
|
| 1014 |
+
def test_extrema02():
|
| 1015 |
+
labels = np.array([1, 2])
|
| 1016 |
+
for type in types:
|
| 1017 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 1018 |
+
output1 = ndimage.extrema(input, labels=labels,
|
| 1019 |
+
index=2)
|
| 1020 |
+
output2 = ndimage.minimum(input, labels=labels,
|
| 1021 |
+
index=2)
|
| 1022 |
+
output3 = ndimage.maximum(input, labels=labels,
|
| 1023 |
+
index=2)
|
| 1024 |
+
output4 = ndimage.minimum_position(input,
|
| 1025 |
+
labels=labels, index=2)
|
| 1026 |
+
output5 = ndimage.maximum_position(input,
|
| 1027 |
+
labels=labels, index=2)
|
| 1028 |
+
assert_equal(output1, (output2, output3, output4, output5))
|
| 1029 |
+
|
| 1030 |
+
|
| 1031 |
+
def test_extrema03():
|
| 1032 |
+
labels = np.array([[1, 2], [2, 3]])
|
| 1033 |
+
for type in types:
|
| 1034 |
+
input = np.array([[1, 2], [3, 4]], type)
|
| 1035 |
+
output1 = ndimage.extrema(input, labels=labels,
|
| 1036 |
+
index=[2, 3, 8])
|
| 1037 |
+
output2 = ndimage.minimum(input, labels=labels,
|
| 1038 |
+
index=[2, 3, 8])
|
| 1039 |
+
output3 = ndimage.maximum(input, labels=labels,
|
| 1040 |
+
index=[2, 3, 8])
|
| 1041 |
+
output4 = ndimage.minimum_position(input,
|
| 1042 |
+
labels=labels, index=[2, 3, 8])
|
| 1043 |
+
output5 = ndimage.maximum_position(input,
|
| 1044 |
+
labels=labels, index=[2, 3, 8])
|
| 1045 |
+
assert_array_almost_equal(output1[0], output2)
|
| 1046 |
+
assert_array_almost_equal(output1[1], output3)
|
| 1047 |
+
assert_array_almost_equal(output1[2], output4)
|
| 1048 |
+
assert_array_almost_equal(output1[3], output5)
|
| 1049 |
+
|
| 1050 |
+
|
| 1051 |
+
def test_extrema04():
|
| 1052 |
+
labels = [1, 2, 0, 4]
|
| 1053 |
+
for type in types:
|
| 1054 |
+
input = np.array([[5, 4, 2, 5],
|
| 1055 |
+
[3, 7, 8, 2],
|
| 1056 |
+
[1, 5, 1, 1]], type)
|
| 1057 |
+
output1 = ndimage.extrema(input, labels, [1, 2])
|
| 1058 |
+
output2 = ndimage.minimum(input, labels, [1, 2])
|
| 1059 |
+
output3 = ndimage.maximum(input, labels, [1, 2])
|
| 1060 |
+
output4 = ndimage.minimum_position(input, labels,
|
| 1061 |
+
[1, 2])
|
| 1062 |
+
output5 = ndimage.maximum_position(input, labels,
|
| 1063 |
+
[1, 2])
|
| 1064 |
+
assert_array_almost_equal(output1[0], output2)
|
| 1065 |
+
assert_array_almost_equal(output1[1], output3)
|
| 1066 |
+
assert_array_almost_equal(output1[2], output4)
|
| 1067 |
+
assert_array_almost_equal(output1[3], output5)
|
| 1068 |
+
|
| 1069 |
+
|
| 1070 |
+
def test_center_of_mass01():
|
| 1071 |
+
expected = [0.0, 0.0]
|
| 1072 |
+
for type in types:
|
| 1073 |
+
input = np.array([[1, 0], [0, 0]], type)
|
| 1074 |
+
output = ndimage.center_of_mass(input)
|
| 1075 |
+
assert_array_almost_equal(output, expected)
|
| 1076 |
+
|
| 1077 |
+
|
| 1078 |
+
def test_center_of_mass02():
|
| 1079 |
+
expected = [1, 0]
|
| 1080 |
+
for type in types:
|
| 1081 |
+
input = np.array([[0, 0], [1, 0]], type)
|
| 1082 |
+
output = ndimage.center_of_mass(input)
|
| 1083 |
+
assert_array_almost_equal(output, expected)
|
| 1084 |
+
|
| 1085 |
+
|
| 1086 |
+
def test_center_of_mass03():
|
| 1087 |
+
expected = [0, 1]
|
| 1088 |
+
for type in types:
|
| 1089 |
+
input = np.array([[0, 1], [0, 0]], type)
|
| 1090 |
+
output = ndimage.center_of_mass(input)
|
| 1091 |
+
assert_array_almost_equal(output, expected)
|
| 1092 |
+
|
| 1093 |
+
|
| 1094 |
+
def test_center_of_mass04():
|
| 1095 |
+
expected = [1, 1]
|
| 1096 |
+
for type in types:
|
| 1097 |
+
input = np.array([[0, 0], [0, 1]], type)
|
| 1098 |
+
output = ndimage.center_of_mass(input)
|
| 1099 |
+
assert_array_almost_equal(output, expected)
|
| 1100 |
+
|
| 1101 |
+
|
| 1102 |
+
def test_center_of_mass05():
|
| 1103 |
+
expected = [0.5, 0.5]
|
| 1104 |
+
for type in types:
|
| 1105 |
+
input = np.array([[1, 1], [1, 1]], type)
|
| 1106 |
+
output = ndimage.center_of_mass(input)
|
| 1107 |
+
assert_array_almost_equal(output, expected)
|
| 1108 |
+
|
| 1109 |
+
|
| 1110 |
+
def test_center_of_mass06():
|
| 1111 |
+
expected = [0.5, 0.5]
|
| 1112 |
+
input = np.array([[1, 2], [3, 1]], bool)
|
| 1113 |
+
output = ndimage.center_of_mass(input)
|
| 1114 |
+
assert_array_almost_equal(output, expected)
|
| 1115 |
+
|
| 1116 |
+
|
| 1117 |
+
def test_center_of_mass07():
|
| 1118 |
+
labels = [1, 0]
|
| 1119 |
+
expected = [0.5, 0.0]
|
| 1120 |
+
input = np.array([[1, 2], [3, 1]], bool)
|
| 1121 |
+
output = ndimage.center_of_mass(input, labels)
|
| 1122 |
+
assert_array_almost_equal(output, expected)
|
| 1123 |
+
|
| 1124 |
+
|
| 1125 |
+
def test_center_of_mass08():
|
| 1126 |
+
labels = [1, 2]
|
| 1127 |
+
expected = [0.5, 1.0]
|
| 1128 |
+
input = np.array([[5, 2], [3, 1]], bool)
|
| 1129 |
+
output = ndimage.center_of_mass(input, labels, 2)
|
| 1130 |
+
assert_array_almost_equal(output, expected)
|
| 1131 |
+
|
| 1132 |
+
|
| 1133 |
+
def test_center_of_mass09():
|
| 1134 |
+
labels = [1, 2]
|
| 1135 |
+
expected = [(0.5, 0.0), (0.5, 1.0)]
|
| 1136 |
+
input = np.array([[1, 2], [1, 1]], bool)
|
| 1137 |
+
output = ndimage.center_of_mass(input, labels, [1, 2])
|
| 1138 |
+
assert_array_almost_equal(output, expected)
|
| 1139 |
+
|
| 1140 |
+
|
| 1141 |
+
def test_histogram01():
|
| 1142 |
+
expected = np.ones(10)
|
| 1143 |
+
input = np.arange(10)
|
| 1144 |
+
output = ndimage.histogram(input, 0, 10, 10)
|
| 1145 |
+
assert_array_almost_equal(output, expected)
|
| 1146 |
+
|
| 1147 |
+
|
| 1148 |
+
def test_histogram02():
|
| 1149 |
+
labels = [1, 1, 1, 1, 2, 2, 2, 2]
|
| 1150 |
+
expected = [0, 2, 0, 1, 1]
|
| 1151 |
+
input = np.array([1, 1, 3, 4, 3, 3, 3, 3])
|
| 1152 |
+
output = ndimage.histogram(input, 0, 4, 5, labels, 1)
|
| 1153 |
+
assert_array_almost_equal(output, expected)
|
| 1154 |
+
|
| 1155 |
+
|
| 1156 |
+
def test_histogram03():
|
| 1157 |
+
labels = [1, 0, 1, 1, 2, 2, 2, 2]
|
| 1158 |
+
expected1 = [0, 1, 0, 1, 1]
|
| 1159 |
+
expected2 = [0, 0, 0, 3, 0]
|
| 1160 |
+
input = np.array([1, 1, 3, 4, 3, 5, 3, 3])
|
| 1161 |
+
output = ndimage.histogram(input, 0, 4, 5, labels, (1, 2))
|
| 1162 |
+
|
| 1163 |
+
assert_array_almost_equal(output[0], expected1)
|
| 1164 |
+
assert_array_almost_equal(output[1], expected2)
|
| 1165 |
+
|
| 1166 |
+
|
| 1167 |
+
def test_stat_funcs_2d():
|
| 1168 |
+
a = np.array([[5, 6, 0, 0, 0], [8, 9, 0, 0, 0], [0, 0, 0, 3, 5]])
|
| 1169 |
+
lbl = np.array([[1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 0, 2, 2]])
|
| 1170 |
+
|
| 1171 |
+
mean = ndimage.mean(a, labels=lbl, index=[1, 2])
|
| 1172 |
+
assert_array_equal(mean, [7.0, 4.0])
|
| 1173 |
+
|
| 1174 |
+
var = ndimage.variance(a, labels=lbl, index=[1, 2])
|
| 1175 |
+
assert_array_equal(var, [2.5, 1.0])
|
| 1176 |
+
|
| 1177 |
+
std = ndimage.standard_deviation(a, labels=lbl, index=[1, 2])
|
| 1178 |
+
assert_array_almost_equal(std, np.sqrt([2.5, 1.0]))
|
| 1179 |
+
|
| 1180 |
+
med = ndimage.median(a, labels=lbl, index=[1, 2])
|
| 1181 |
+
assert_array_equal(med, [7.0, 4.0])
|
| 1182 |
+
|
| 1183 |
+
min = ndimage.minimum(a, labels=lbl, index=[1, 2])
|
| 1184 |
+
assert_array_equal(min, [5, 3])
|
| 1185 |
+
|
| 1186 |
+
max = ndimage.maximum(a, labels=lbl, index=[1, 2])
|
| 1187 |
+
assert_array_equal(max, [9, 5])
|
| 1188 |
+
|
| 1189 |
+
|
| 1190 |
+
class TestWatershedIft:
|
| 1191 |
+
|
| 1192 |
+
def test_watershed_ift01(self):
|
| 1193 |
+
data = np.array([[0, 0, 0, 0, 0, 0, 0],
|
| 1194 |
+
[0, 1, 1, 1, 1, 1, 0],
|
| 1195 |
+
[0, 1, 0, 0, 0, 1, 0],
|
| 1196 |
+
[0, 1, 0, 0, 0, 1, 0],
|
| 1197 |
+
[0, 1, 0, 0, 0, 1, 0],
|
| 1198 |
+
[0, 1, 1, 1, 1, 1, 0],
|
| 1199 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1200 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
| 1201 |
+
markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
|
| 1202 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1203 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1204 |
+
[0, 0, 0, 1, 0, 0, 0],
|
| 1205 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1206 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1207 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1208 |
+
[0, 0, 0, 0, 0, 0, 0]], np.int8)
|
| 1209 |
+
out = ndimage.watershed_ift(data, markers, structure=[[1, 1, 1],
|
| 1210 |
+
[1, 1, 1],
|
| 1211 |
+
[1, 1, 1]])
|
| 1212 |
+
expected = [[-1, -1, -1, -1, -1, -1, -1],
|
| 1213 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1214 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1215 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1216 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1217 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1218 |
+
[-1, -1, -1, -1, -1, -1, -1],
|
| 1219 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
| 1220 |
+
assert_array_almost_equal(out, expected)
|
| 1221 |
+
|
| 1222 |
+
def test_watershed_ift02(self):
|
| 1223 |
+
data = np.array([[0, 0, 0, 0, 0, 0, 0],
|
| 1224 |
+
[0, 1, 1, 1, 1, 1, 0],
|
| 1225 |
+
[0, 1, 0, 0, 0, 1, 0],
|
| 1226 |
+
[0, 1, 0, 0, 0, 1, 0],
|
| 1227 |
+
[0, 1, 0, 0, 0, 1, 0],
|
| 1228 |
+
[0, 1, 1, 1, 1, 1, 0],
|
| 1229 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1230 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
| 1231 |
+
markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
|
| 1232 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1233 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1234 |
+
[0, 0, 0, 1, 0, 0, 0],
|
| 1235 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1236 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1237 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1238 |
+
[0, 0, 0, 0, 0, 0, 0]], np.int8)
|
| 1239 |
+
out = ndimage.watershed_ift(data, markers)
|
| 1240 |
+
expected = [[-1, -1, -1, -1, -1, -1, -1],
|
| 1241 |
+
[-1, -1, 1, 1, 1, -1, -1],
|
| 1242 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1243 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1244 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1245 |
+
[-1, -1, 1, 1, 1, -1, -1],
|
| 1246 |
+
[-1, -1, -1, -1, -1, -1, -1],
|
| 1247 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
| 1248 |
+
assert_array_almost_equal(out, expected)
|
| 1249 |
+
|
| 1250 |
+
def test_watershed_ift03(self):
|
| 1251 |
+
data = np.array([[0, 0, 0, 0, 0, 0, 0],
|
| 1252 |
+
[0, 1, 1, 1, 1, 1, 0],
|
| 1253 |
+
[0, 1, 0, 1, 0, 1, 0],
|
| 1254 |
+
[0, 1, 0, 1, 0, 1, 0],
|
| 1255 |
+
[0, 1, 0, 1, 0, 1, 0],
|
| 1256 |
+
[0, 1, 1, 1, 1, 1, 0],
|
| 1257 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
| 1258 |
+
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
|
| 1259 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1260 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1261 |
+
[0, 0, 2, 0, 3, 0, 0],
|
| 1262 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1263 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1264 |
+
[0, 0, 0, 0, 0, 0, -1]], np.int8)
|
| 1265 |
+
out = ndimage.watershed_ift(data, markers)
|
| 1266 |
+
expected = [[-1, -1, -1, -1, -1, -1, -1],
|
| 1267 |
+
[-1, -1, 2, -1, 3, -1, -1],
|
| 1268 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
| 1269 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
| 1270 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
| 1271 |
+
[-1, -1, 2, -1, 3, -1, -1],
|
| 1272 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
| 1273 |
+
assert_array_almost_equal(out, expected)
|
| 1274 |
+
|
| 1275 |
+
def test_watershed_ift04(self):
|
| 1276 |
+
data = np.array([[0, 0, 0, 0, 0, 0, 0],
|
| 1277 |
+
[0, 1, 1, 1, 1, 1, 0],
|
| 1278 |
+
[0, 1, 0, 1, 0, 1, 0],
|
| 1279 |
+
[0, 1, 0, 1, 0, 1, 0],
|
| 1280 |
+
[0, 1, 0, 1, 0, 1, 0],
|
| 1281 |
+
[0, 1, 1, 1, 1, 1, 0],
|
| 1282 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
| 1283 |
+
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
|
| 1284 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1285 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1286 |
+
[0, 0, 2, 0, 3, 0, 0],
|
| 1287 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1288 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1289 |
+
[0, 0, 0, 0, 0, 0, -1]],
|
| 1290 |
+
np.int8)
|
| 1291 |
+
out = ndimage.watershed_ift(data, markers,
|
| 1292 |
+
structure=[[1, 1, 1],
|
| 1293 |
+
[1, 1, 1],
|
| 1294 |
+
[1, 1, 1]])
|
| 1295 |
+
expected = [[-1, -1, -1, -1, -1, -1, -1],
|
| 1296 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
| 1297 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
| 1298 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
| 1299 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
| 1300 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
| 1301 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
| 1302 |
+
assert_array_almost_equal(out, expected)
|
| 1303 |
+
|
| 1304 |
+
def test_watershed_ift05(self):
|
| 1305 |
+
data = np.array([[0, 0, 0, 0, 0, 0, 0],
|
| 1306 |
+
[0, 1, 1, 1, 1, 1, 0],
|
| 1307 |
+
[0, 1, 0, 1, 0, 1, 0],
|
| 1308 |
+
[0, 1, 0, 1, 0, 1, 0],
|
| 1309 |
+
[0, 1, 0, 1, 0, 1, 0],
|
| 1310 |
+
[0, 1, 1, 1, 1, 1, 0],
|
| 1311 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
| 1312 |
+
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
|
| 1313 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1314 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1315 |
+
[0, 0, 3, 0, 2, 0, 0],
|
| 1316 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1317 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1318 |
+
[0, 0, 0, 0, 0, 0, -1]],
|
| 1319 |
+
np.int8)
|
| 1320 |
+
out = ndimage.watershed_ift(data, markers,
|
| 1321 |
+
structure=[[1, 1, 1],
|
| 1322 |
+
[1, 1, 1],
|
| 1323 |
+
[1, 1, 1]])
|
| 1324 |
+
expected = [[-1, -1, -1, -1, -1, -1, -1],
|
| 1325 |
+
[-1, 3, 3, 2, 2, 2, -1],
|
| 1326 |
+
[-1, 3, 3, 2, 2, 2, -1],
|
| 1327 |
+
[-1, 3, 3, 2, 2, 2, -1],
|
| 1328 |
+
[-1, 3, 3, 2, 2, 2, -1],
|
| 1329 |
+
[-1, 3, 3, 2, 2, 2, -1],
|
| 1330 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
| 1331 |
+
assert_array_almost_equal(out, expected)
|
| 1332 |
+
|
| 1333 |
+
def test_watershed_ift06(self):
|
| 1334 |
+
data = np.array([[0, 1, 0, 0, 0, 1, 0],
|
| 1335 |
+
[0, 1, 0, 0, 0, 1, 0],
|
| 1336 |
+
[0, 1, 0, 0, 0, 1, 0],
|
| 1337 |
+
[0, 1, 1, 1, 1, 1, 0],
|
| 1338 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1339 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
| 1340 |
+
markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
|
| 1341 |
+
[0, 0, 0, 1, 0, 0, 0],
|
| 1342 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1343 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1344 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1345 |
+
[0, 0, 0, 0, 0, 0, 0]], np.int8)
|
| 1346 |
+
out = ndimage.watershed_ift(data, markers,
|
| 1347 |
+
structure=[[1, 1, 1],
|
| 1348 |
+
[1, 1, 1],
|
| 1349 |
+
[1, 1, 1]])
|
| 1350 |
+
expected = [[-1, 1, 1, 1, 1, 1, -1],
|
| 1351 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1352 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1353 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1354 |
+
[-1, -1, -1, -1, -1, -1, -1],
|
| 1355 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
| 1356 |
+
assert_array_almost_equal(out, expected)
|
| 1357 |
+
|
| 1358 |
+
def test_watershed_ift07(self):
|
| 1359 |
+
shape = (7, 6)
|
| 1360 |
+
data = np.zeros(shape, dtype=np.uint8)
|
| 1361 |
+
data = data.transpose()
|
| 1362 |
+
data[...] = np.array([[0, 1, 0, 0, 0, 1, 0],
|
| 1363 |
+
[0, 1, 0, 0, 0, 1, 0],
|
| 1364 |
+
[0, 1, 0, 0, 0, 1, 0],
|
| 1365 |
+
[0, 1, 1, 1, 1, 1, 0],
|
| 1366 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1367 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
| 1368 |
+
markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
|
| 1369 |
+
[0, 0, 0, 1, 0, 0, 0],
|
| 1370 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1371 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1372 |
+
[0, 0, 0, 0, 0, 0, 0],
|
| 1373 |
+
[0, 0, 0, 0, 0, 0, 0]], np.int8)
|
| 1374 |
+
out = np.zeros(shape, dtype=np.int16)
|
| 1375 |
+
out = out.transpose()
|
| 1376 |
+
ndimage.watershed_ift(data, markers,
|
| 1377 |
+
structure=[[1, 1, 1],
|
| 1378 |
+
[1, 1, 1],
|
| 1379 |
+
[1, 1, 1]],
|
| 1380 |
+
output=out)
|
| 1381 |
+
expected = [[-1, 1, 1, 1, 1, 1, -1],
|
| 1382 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1383 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1384 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
| 1385 |
+
[-1, -1, -1, -1, -1, -1, -1],
|
| 1386 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
| 1387 |
+
assert_array_almost_equal(out, expected)
|
| 1388 |
+
|
| 1389 |
+
def test_watershed_ift08(self):
|
| 1390 |
+
# Test cost larger than uint8. See gh-10069.
|
| 1391 |
+
data = np.array([[256, 0],
|
| 1392 |
+
[0, 0]], np.uint16)
|
| 1393 |
+
markers = np.array([[1, 0],
|
| 1394 |
+
[0, 0]], np.int8)
|
| 1395 |
+
out = ndimage.watershed_ift(data, markers)
|
| 1396 |
+
expected = [[1, 1],
|
| 1397 |
+
[1, 1]]
|
| 1398 |
+
assert_array_almost_equal(out, expected)
|
| 1399 |
+
|
| 1400 |
+
def test_watershed_ift09(self):
|
| 1401 |
+
# Test large cost. See gh-19575
|
| 1402 |
+
data = np.array([[np.iinfo(np.uint16).max, 0],
|
| 1403 |
+
[0, 0]], np.uint16)
|
| 1404 |
+
markers = np.array([[1, 0],
|
| 1405 |
+
[0, 0]], np.int8)
|
| 1406 |
+
out = ndimage.watershed_ift(data, markers)
|
| 1407 |
+
expected = [[1, 1],
|
| 1408 |
+
[1, 1]]
|
| 1409 |
+
assert_allclose(out, expected)
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_morphology.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_ni_support.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
from .._ni_support import _get_output
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
@pytest.mark.parametrize(
|
| 8 |
+
'dtype',
|
| 9 |
+
[
|
| 10 |
+
# String specifiers
|
| 11 |
+
'f4', 'float32', 'complex64', 'complex128',
|
| 12 |
+
# Type and dtype specifiers
|
| 13 |
+
np.float32, float, np.dtype('f4'),
|
| 14 |
+
# Derive from input
|
| 15 |
+
None,
|
| 16 |
+
],
|
| 17 |
+
)
|
| 18 |
+
def test_get_output_basic(dtype):
|
| 19 |
+
shape = (2, 3)
|
| 20 |
+
|
| 21 |
+
input_ = np.zeros(shape, 'float32')
|
| 22 |
+
|
| 23 |
+
# For None, derive dtype from input
|
| 24 |
+
expected_dtype = 'float32' if dtype is None else dtype
|
| 25 |
+
|
| 26 |
+
# Output is dtype-specifier, retrieve shape from input
|
| 27 |
+
result = _get_output(dtype, input_)
|
| 28 |
+
assert result.shape == shape
|
| 29 |
+
assert result.dtype == np.dtype(expected_dtype)
|
| 30 |
+
|
| 31 |
+
# Output is dtype specifier, with explicit shape, overriding input
|
| 32 |
+
result = _get_output(dtype, input_, shape=(3, 2))
|
| 33 |
+
assert result.shape == (3, 2)
|
| 34 |
+
assert result.dtype == np.dtype(expected_dtype)
|
| 35 |
+
|
| 36 |
+
# Output is pre-allocated array, return directly
|
| 37 |
+
output = np.zeros(shape, dtype)
|
| 38 |
+
result = _get_output(output, input_)
|
| 39 |
+
assert result is output
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def test_get_output_complex():
|
| 43 |
+
shape = (2, 3)
|
| 44 |
+
|
| 45 |
+
input_ = np.zeros(shape)
|
| 46 |
+
|
| 47 |
+
# None, promote input type to complex
|
| 48 |
+
result = _get_output(None, input_, complex_output=True)
|
| 49 |
+
assert result.shape == shape
|
| 50 |
+
assert result.dtype == np.dtype('complex128')
|
| 51 |
+
|
| 52 |
+
# Explicit type, promote type to complex
|
| 53 |
+
with pytest.warns(UserWarning, match='promoting specified output dtype to complex'):
|
| 54 |
+
result = _get_output(float, input_, complex_output=True)
|
| 55 |
+
assert result.shape == shape
|
| 56 |
+
assert result.dtype == np.dtype('complex128')
|
| 57 |
+
|
| 58 |
+
# String specifier, simply verify complex output
|
| 59 |
+
result = _get_output('complex64', input_, complex_output=True)
|
| 60 |
+
assert result.shape == shape
|
| 61 |
+
assert result.dtype == np.dtype('complex64')
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def test_get_output_error_cases():
|
| 65 |
+
input_ = np.zeros((2, 3), 'float32')
|
| 66 |
+
|
| 67 |
+
# Two separate paths can raise the same error
|
| 68 |
+
with pytest.raises(RuntimeError, match='output must have complex dtype'):
|
| 69 |
+
_get_output('float32', input_, complex_output=True)
|
| 70 |
+
with pytest.raises(RuntimeError, match='output must have complex dtype'):
|
| 71 |
+
_get_output(np.zeros((2, 3)), input_, complex_output=True)
|
| 72 |
+
|
| 73 |
+
with pytest.raises(RuntimeError, match='output must have numeric dtype'):
|
| 74 |
+
_get_output('void', input_)
|
| 75 |
+
|
| 76 |
+
with pytest.raises(RuntimeError, match='shape not correct'):
|
| 77 |
+
_get_output(np.zeros((3, 2)), input_)
|
venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_splines.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Tests for spline filtering."""
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pytest
|
| 4 |
+
|
| 5 |
+
from numpy.testing import assert_almost_equal
|
| 6 |
+
|
| 7 |
+
from scipy import ndimage
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def get_spline_knot_values(order):
|
| 11 |
+
"""Knot values to the right of a B-spline's center."""
|
| 12 |
+
knot_values = {0: [1],
|
| 13 |
+
1: [1],
|
| 14 |
+
2: [6, 1],
|
| 15 |
+
3: [4, 1],
|
| 16 |
+
4: [230, 76, 1],
|
| 17 |
+
5: [66, 26, 1]}
|
| 18 |
+
|
| 19 |
+
return knot_values[order]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def make_spline_knot_matrix(n, order, mode='mirror'):
|
| 23 |
+
"""Matrix to invert to find the spline coefficients."""
|
| 24 |
+
knot_values = get_spline_knot_values(order)
|
| 25 |
+
|
| 26 |
+
matrix = np.zeros((n, n))
|
| 27 |
+
for diag, knot_value in enumerate(knot_values):
|
| 28 |
+
indices = np.arange(diag, n)
|
| 29 |
+
if diag == 0:
|
| 30 |
+
matrix[indices, indices] = knot_value
|
| 31 |
+
else:
|
| 32 |
+
matrix[indices, indices - diag] = knot_value
|
| 33 |
+
matrix[indices - diag, indices] = knot_value
|
| 34 |
+
|
| 35 |
+
knot_values_sum = knot_values[0] + 2 * sum(knot_values[1:])
|
| 36 |
+
|
| 37 |
+
if mode == 'mirror':
|
| 38 |
+
start, step = 1, 1
|
| 39 |
+
elif mode == 'reflect':
|
| 40 |
+
start, step = 0, 1
|
| 41 |
+
elif mode == 'grid-wrap':
|
| 42 |
+
start, step = -1, -1
|
| 43 |
+
else:
|
| 44 |
+
raise ValueError(f'unsupported mode {mode}')
|
| 45 |
+
|
| 46 |
+
for row in range(len(knot_values) - 1):
|
| 47 |
+
for idx, knot_value in enumerate(knot_values[row + 1:]):
|
| 48 |
+
matrix[row, start + step*idx] += knot_value
|
| 49 |
+
matrix[-row - 1, -start - 1 - step*idx] += knot_value
|
| 50 |
+
|
| 51 |
+
return matrix / knot_values_sum
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
@pytest.mark.parametrize('order', [0, 1, 2, 3, 4, 5])
|
| 55 |
+
@pytest.mark.parametrize('mode', ['mirror', 'grid-wrap', 'reflect'])
|
| 56 |
+
def test_spline_filter_vs_matrix_solution(order, mode):
|
| 57 |
+
n = 100
|
| 58 |
+
eye = np.eye(n, dtype=float)
|
| 59 |
+
spline_filter_axis_0 = ndimage.spline_filter1d(eye, axis=0, order=order,
|
| 60 |
+
mode=mode)
|
| 61 |
+
spline_filter_axis_1 = ndimage.spline_filter1d(eye, axis=1, order=order,
|
| 62 |
+
mode=mode)
|
| 63 |
+
matrix = make_spline_knot_matrix(n, order, mode=mode)
|
| 64 |
+
assert_almost_equal(eye, np.dot(spline_filter_axis_0, matrix))
|
| 65 |
+
assert_almost_equal(eye, np.dot(spline_filter_axis_1, matrix.T))
|
venv/lib/python3.10/site-packages/scipy/stats/__init__.py
ADDED
|
@@ -0,0 +1,643 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
.. _statsrefmanual:
|
| 3 |
+
|
| 4 |
+
==========================================
|
| 5 |
+
Statistical functions (:mod:`scipy.stats`)
|
| 6 |
+
==========================================
|
| 7 |
+
|
| 8 |
+
.. currentmodule:: scipy.stats
|
| 9 |
+
|
| 10 |
+
This module contains a large number of probability distributions,
|
| 11 |
+
summary and frequency statistics, correlation functions and statistical
|
| 12 |
+
tests, masked statistics, kernel density estimation, quasi-Monte Carlo
|
| 13 |
+
functionality, and more.
|
| 14 |
+
|
| 15 |
+
Statistics is a very large area, and there are topics that are out of scope
|
| 16 |
+
for SciPy and are covered by other packages. Some of the most important ones
|
| 17 |
+
are:
|
| 18 |
+
|
| 19 |
+
- `statsmodels <https://www.statsmodels.org/stable/index.html>`__:
|
| 20 |
+
regression, linear models, time series analysis, extensions to topics
|
| 21 |
+
also covered by ``scipy.stats``.
|
| 22 |
+
- `Pandas <https://pandas.pydata.org/>`__: tabular data, time series
|
| 23 |
+
functionality, interfaces to other statistical languages.
|
| 24 |
+
- `PyMC <https://docs.pymc.io/>`__: Bayesian statistical
|
| 25 |
+
modeling, probabilistic machine learning.
|
| 26 |
+
- `scikit-learn <https://scikit-learn.org/>`__: classification, regression,
|
| 27 |
+
model selection.
|
| 28 |
+
- `Seaborn <https://seaborn.pydata.org/>`__: statistical data visualization.
|
| 29 |
+
- `rpy2 <https://rpy2.github.io/>`__: Python to R bridge.
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
Probability distributions
|
| 33 |
+
=========================
|
| 34 |
+
|
| 35 |
+
Each univariate distribution is an instance of a subclass of `rv_continuous`
|
| 36 |
+
(`rv_discrete` for discrete distributions):
|
| 37 |
+
|
| 38 |
+
.. autosummary::
|
| 39 |
+
:toctree: generated/
|
| 40 |
+
|
| 41 |
+
rv_continuous
|
| 42 |
+
rv_discrete
|
| 43 |
+
rv_histogram
|
| 44 |
+
|
| 45 |
+
Continuous distributions
|
| 46 |
+
------------------------
|
| 47 |
+
|
| 48 |
+
.. autosummary::
|
| 49 |
+
:toctree: generated/
|
| 50 |
+
|
| 51 |
+
alpha -- Alpha
|
| 52 |
+
anglit -- Anglit
|
| 53 |
+
arcsine -- Arcsine
|
| 54 |
+
argus -- Argus
|
| 55 |
+
beta -- Beta
|
| 56 |
+
betaprime -- Beta Prime
|
| 57 |
+
bradford -- Bradford
|
| 58 |
+
burr -- Burr (Type III)
|
| 59 |
+
burr12 -- Burr (Type XII)
|
| 60 |
+
cauchy -- Cauchy
|
| 61 |
+
chi -- Chi
|
| 62 |
+
chi2 -- Chi-squared
|
| 63 |
+
cosine -- Cosine
|
| 64 |
+
crystalball -- Crystalball
|
| 65 |
+
dgamma -- Double Gamma
|
| 66 |
+
dweibull -- Double Weibull
|
| 67 |
+
erlang -- Erlang
|
| 68 |
+
expon -- Exponential
|
| 69 |
+
exponnorm -- Exponentially Modified Normal
|
| 70 |
+
exponweib -- Exponentiated Weibull
|
| 71 |
+
exponpow -- Exponential Power
|
| 72 |
+
f -- F (Snecdor F)
|
| 73 |
+
fatiguelife -- Fatigue Life (Birnbaum-Saunders)
|
| 74 |
+
fisk -- Fisk
|
| 75 |
+
foldcauchy -- Folded Cauchy
|
| 76 |
+
foldnorm -- Folded Normal
|
| 77 |
+
genlogistic -- Generalized Logistic
|
| 78 |
+
gennorm -- Generalized normal
|
| 79 |
+
genpareto -- Generalized Pareto
|
| 80 |
+
genexpon -- Generalized Exponential
|
| 81 |
+
genextreme -- Generalized Extreme Value
|
| 82 |
+
gausshyper -- Gauss Hypergeometric
|
| 83 |
+
gamma -- Gamma
|
| 84 |
+
gengamma -- Generalized gamma
|
| 85 |
+
genhalflogistic -- Generalized Half Logistic
|
| 86 |
+
genhyperbolic -- Generalized Hyperbolic
|
| 87 |
+
geninvgauss -- Generalized Inverse Gaussian
|
| 88 |
+
gibrat -- Gibrat
|
| 89 |
+
gompertz -- Gompertz (Truncated Gumbel)
|
| 90 |
+
gumbel_r -- Right Sided Gumbel, Log-Weibull, Fisher-Tippett, Extreme Value Type I
|
| 91 |
+
gumbel_l -- Left Sided Gumbel, etc.
|
| 92 |
+
halfcauchy -- Half Cauchy
|
| 93 |
+
halflogistic -- Half Logistic
|
| 94 |
+
halfnorm -- Half Normal
|
| 95 |
+
halfgennorm -- Generalized Half Normal
|
| 96 |
+
hypsecant -- Hyperbolic Secant
|
| 97 |
+
invgamma -- Inverse Gamma
|
| 98 |
+
invgauss -- Inverse Gaussian
|
| 99 |
+
invweibull -- Inverse Weibull
|
| 100 |
+
jf_skew_t -- Jones and Faddy Skew-T
|
| 101 |
+
johnsonsb -- Johnson SB
|
| 102 |
+
johnsonsu -- Johnson SU
|
| 103 |
+
kappa4 -- Kappa 4 parameter
|
| 104 |
+
kappa3 -- Kappa 3 parameter
|
| 105 |
+
ksone -- Distribution of Kolmogorov-Smirnov one-sided test statistic
|
| 106 |
+
kstwo -- Distribution of Kolmogorov-Smirnov two-sided test statistic
|
| 107 |
+
kstwobign -- Limiting Distribution of scaled Kolmogorov-Smirnov two-sided test statistic.
|
| 108 |
+
laplace -- Laplace
|
| 109 |
+
laplace_asymmetric -- Asymmetric Laplace
|
| 110 |
+
levy -- Levy
|
| 111 |
+
levy_l
|
| 112 |
+
levy_stable
|
| 113 |
+
logistic -- Logistic
|
| 114 |
+
loggamma -- Log-Gamma
|
| 115 |
+
loglaplace -- Log-Laplace (Log Double Exponential)
|
| 116 |
+
lognorm -- Log-Normal
|
| 117 |
+
loguniform -- Log-Uniform
|
| 118 |
+
lomax -- Lomax (Pareto of the second kind)
|
| 119 |
+
maxwell -- Maxwell
|
| 120 |
+
mielke -- Mielke's Beta-Kappa
|
| 121 |
+
moyal -- Moyal
|
| 122 |
+
nakagami -- Nakagami
|
| 123 |
+
ncx2 -- Non-central chi-squared
|
| 124 |
+
ncf -- Non-central F
|
| 125 |
+
nct -- Non-central Student's T
|
| 126 |
+
norm -- Normal (Gaussian)
|
| 127 |
+
norminvgauss -- Normal Inverse Gaussian
|
| 128 |
+
pareto -- Pareto
|
| 129 |
+
pearson3 -- Pearson type III
|
| 130 |
+
powerlaw -- Power-function
|
| 131 |
+
powerlognorm -- Power log normal
|
| 132 |
+
powernorm -- Power normal
|
| 133 |
+
rdist -- R-distribution
|
| 134 |
+
rayleigh -- Rayleigh
|
| 135 |
+
rel_breitwigner -- Relativistic Breit-Wigner
|
| 136 |
+
rice -- Rice
|
| 137 |
+
recipinvgauss -- Reciprocal Inverse Gaussian
|
| 138 |
+
semicircular -- Semicircular
|
| 139 |
+
skewcauchy -- Skew Cauchy
|
| 140 |
+
skewnorm -- Skew normal
|
| 141 |
+
studentized_range -- Studentized Range
|
| 142 |
+
t -- Student's T
|
| 143 |
+
trapezoid -- Trapezoidal
|
| 144 |
+
triang -- Triangular
|
| 145 |
+
truncexpon -- Truncated Exponential
|
| 146 |
+
truncnorm -- Truncated Normal
|
| 147 |
+
truncpareto -- Truncated Pareto
|
| 148 |
+
truncweibull_min -- Truncated minimum Weibull distribution
|
| 149 |
+
tukeylambda -- Tukey-Lambda
|
| 150 |
+
uniform -- Uniform
|
| 151 |
+
vonmises -- Von-Mises (Circular)
|
| 152 |
+
vonmises_line -- Von-Mises (Line)
|
| 153 |
+
wald -- Wald
|
| 154 |
+
weibull_min -- Minimum Weibull (see Frechet)
|
| 155 |
+
weibull_max -- Maximum Weibull (see Frechet)
|
| 156 |
+
wrapcauchy -- Wrapped Cauchy
|
| 157 |
+
|
| 158 |
+
The ``fit`` method of the univariate continuous distributions uses
|
| 159 |
+
maximum likelihood estimation to fit the distribution to a data set.
|
| 160 |
+
The ``fit`` method can accept regular data or *censored data*.
|
| 161 |
+
Censored data is represented with instances of the `CensoredData`
|
| 162 |
+
class.
|
| 163 |
+
|
| 164 |
+
.. autosummary::
|
| 165 |
+
:toctree: generated/
|
| 166 |
+
|
| 167 |
+
CensoredData
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
Multivariate distributions
|
| 171 |
+
--------------------------
|
| 172 |
+
|
| 173 |
+
.. autosummary::
|
| 174 |
+
:toctree: generated/
|
| 175 |
+
|
| 176 |
+
multivariate_normal -- Multivariate normal distribution
|
| 177 |
+
matrix_normal -- Matrix normal distribution
|
| 178 |
+
dirichlet -- Dirichlet
|
| 179 |
+
dirichlet_multinomial -- Dirichlet multinomial distribution
|
| 180 |
+
wishart -- Wishart
|
| 181 |
+
invwishart -- Inverse Wishart
|
| 182 |
+
multinomial -- Multinomial distribution
|
| 183 |
+
special_ortho_group -- SO(N) group
|
| 184 |
+
ortho_group -- O(N) group
|
| 185 |
+
unitary_group -- U(N) group
|
| 186 |
+
random_correlation -- random correlation matrices
|
| 187 |
+
multivariate_t -- Multivariate t-distribution
|
| 188 |
+
multivariate_hypergeom -- Multivariate hypergeometric distribution
|
| 189 |
+
random_table -- Distribution of random tables with given marginals
|
| 190 |
+
uniform_direction -- Uniform distribution on S(N-1)
|
| 191 |
+
vonmises_fisher -- Von Mises-Fisher distribution
|
| 192 |
+
|
| 193 |
+
`scipy.stats.multivariate_normal` methods accept instances
|
| 194 |
+
of the following class to represent the covariance.
|
| 195 |
+
|
| 196 |
+
.. autosummary::
|
| 197 |
+
:toctree: generated/
|
| 198 |
+
|
| 199 |
+
Covariance -- Representation of a covariance matrix
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
Discrete distributions
|
| 203 |
+
----------------------
|
| 204 |
+
|
| 205 |
+
.. autosummary::
|
| 206 |
+
:toctree: generated/
|
| 207 |
+
|
| 208 |
+
bernoulli -- Bernoulli
|
| 209 |
+
betabinom -- Beta-Binomial
|
| 210 |
+
betanbinom -- Beta-Negative Binomial
|
| 211 |
+
binom -- Binomial
|
| 212 |
+
boltzmann -- Boltzmann (Truncated Discrete Exponential)
|
| 213 |
+
dlaplace -- Discrete Laplacian
|
| 214 |
+
geom -- Geometric
|
| 215 |
+
hypergeom -- Hypergeometric
|
| 216 |
+
logser -- Logarithmic (Log-Series, Series)
|
| 217 |
+
nbinom -- Negative Binomial
|
| 218 |
+
nchypergeom_fisher -- Fisher's Noncentral Hypergeometric
|
| 219 |
+
nchypergeom_wallenius -- Wallenius's Noncentral Hypergeometric
|
| 220 |
+
nhypergeom -- Negative Hypergeometric
|
| 221 |
+
planck -- Planck (Discrete Exponential)
|
| 222 |
+
poisson -- Poisson
|
| 223 |
+
randint -- Discrete Uniform
|
| 224 |
+
skellam -- Skellam
|
| 225 |
+
yulesimon -- Yule-Simon
|
| 226 |
+
zipf -- Zipf (Zeta)
|
| 227 |
+
zipfian -- Zipfian
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
An overview of statistical functions is given below. Many of these functions
|
| 231 |
+
have a similar version in `scipy.stats.mstats` which work for masked arrays.
|
| 232 |
+
|
| 233 |
+
Summary statistics
|
| 234 |
+
==================
|
| 235 |
+
|
| 236 |
+
.. autosummary::
|
| 237 |
+
:toctree: generated/
|
| 238 |
+
|
| 239 |
+
describe -- Descriptive statistics
|
| 240 |
+
gmean -- Geometric mean
|
| 241 |
+
hmean -- Harmonic mean
|
| 242 |
+
pmean -- Power mean
|
| 243 |
+
kurtosis -- Fisher or Pearson kurtosis
|
| 244 |
+
mode -- Modal value
|
| 245 |
+
moment -- Central moment
|
| 246 |
+
expectile -- Expectile
|
| 247 |
+
skew -- Skewness
|
| 248 |
+
kstat --
|
| 249 |
+
kstatvar --
|
| 250 |
+
tmean -- Truncated arithmetic mean
|
| 251 |
+
tvar -- Truncated variance
|
| 252 |
+
tmin --
|
| 253 |
+
tmax --
|
| 254 |
+
tstd --
|
| 255 |
+
tsem --
|
| 256 |
+
variation -- Coefficient of variation
|
| 257 |
+
find_repeats
|
| 258 |
+
rankdata
|
| 259 |
+
tiecorrect
|
| 260 |
+
trim_mean
|
| 261 |
+
gstd -- Geometric Standard Deviation
|
| 262 |
+
iqr
|
| 263 |
+
sem
|
| 264 |
+
bayes_mvs
|
| 265 |
+
mvsdist
|
| 266 |
+
entropy
|
| 267 |
+
differential_entropy
|
| 268 |
+
median_abs_deviation
|
| 269 |
+
|
| 270 |
+
Frequency statistics
|
| 271 |
+
====================
|
| 272 |
+
|
| 273 |
+
.. autosummary::
|
| 274 |
+
:toctree: generated/
|
| 275 |
+
|
| 276 |
+
cumfreq
|
| 277 |
+
percentileofscore
|
| 278 |
+
scoreatpercentile
|
| 279 |
+
relfreq
|
| 280 |
+
|
| 281 |
+
.. autosummary::
|
| 282 |
+
:toctree: generated/
|
| 283 |
+
|
| 284 |
+
binned_statistic -- Compute a binned statistic for a set of data.
|
| 285 |
+
binned_statistic_2d -- Compute a 2-D binned statistic for a set of data.
|
| 286 |
+
binned_statistic_dd -- Compute a d-D binned statistic for a set of data.
|
| 287 |
+
|
| 288 |
+
Hypothesis Tests and related functions
|
| 289 |
+
======================================
|
| 290 |
+
SciPy has many functions for performing hypothesis tests that return a
|
| 291 |
+
test statistic and a p-value, and several of them return confidence intervals
|
| 292 |
+
and/or other related information.
|
| 293 |
+
|
| 294 |
+
The headings below are based on common uses of the functions within, but due to
|
| 295 |
+
the wide variety of statistical procedures, any attempt at coarse-grained
|
| 296 |
+
categorization will be imperfect. Also, note that tests within the same heading
|
| 297 |
+
are not interchangeable in general (e.g. many have different distributional
|
| 298 |
+
assumptions).
|
| 299 |
+
|
| 300 |
+
One Sample Tests / Paired Sample Tests
|
| 301 |
+
--------------------------------------
|
| 302 |
+
One sample tests are typically used to assess whether a single sample was
|
| 303 |
+
drawn from a specified distribution or a distribution with specified properties
|
| 304 |
+
(e.g. zero mean).
|
| 305 |
+
|
| 306 |
+
.. autosummary::
|
| 307 |
+
:toctree: generated/
|
| 308 |
+
|
| 309 |
+
ttest_1samp
|
| 310 |
+
binomtest
|
| 311 |
+
quantile_test
|
| 312 |
+
skewtest
|
| 313 |
+
kurtosistest
|
| 314 |
+
normaltest
|
| 315 |
+
jarque_bera
|
| 316 |
+
shapiro
|
| 317 |
+
anderson
|
| 318 |
+
cramervonmises
|
| 319 |
+
ks_1samp
|
| 320 |
+
goodness_of_fit
|
| 321 |
+
chisquare
|
| 322 |
+
power_divergence
|
| 323 |
+
|
| 324 |
+
Paired sample tests are often used to assess whether two samples were drawn
|
| 325 |
+
from the same distribution; they differ from the independent sample tests below
|
| 326 |
+
in that each observation in one sample is treated as paired with a
|
| 327 |
+
closely-related observation in the other sample (e.g. when environmental
|
| 328 |
+
factors are controlled between observations within a pair but not among pairs).
|
| 329 |
+
They can also be interpreted or used as one-sample tests (e.g. tests on the
|
| 330 |
+
mean or median of *differences* between paired observations).
|
| 331 |
+
|
| 332 |
+
.. autosummary::
|
| 333 |
+
:toctree: generated/
|
| 334 |
+
|
| 335 |
+
ttest_rel
|
| 336 |
+
wilcoxon
|
| 337 |
+
|
| 338 |
+
Association/Correlation Tests
|
| 339 |
+
-----------------------------
|
| 340 |
+
|
| 341 |
+
These tests are often used to assess whether there is a relationship (e.g.
|
| 342 |
+
linear) between paired observations in multiple samples or among the
|
| 343 |
+
coordinates of multivariate observations.
|
| 344 |
+
|
| 345 |
+
.. autosummary::
|
| 346 |
+
:toctree: generated/
|
| 347 |
+
|
| 348 |
+
linregress
|
| 349 |
+
pearsonr
|
| 350 |
+
spearmanr
|
| 351 |
+
pointbiserialr
|
| 352 |
+
kendalltau
|
| 353 |
+
weightedtau
|
| 354 |
+
somersd
|
| 355 |
+
siegelslopes
|
| 356 |
+
theilslopes
|
| 357 |
+
page_trend_test
|
| 358 |
+
multiscale_graphcorr
|
| 359 |
+
|
| 360 |
+
These association tests and are to work with samples in the form of contingency
|
| 361 |
+
tables. Supporting functions are available in `scipy.stats.contingency`.
|
| 362 |
+
|
| 363 |
+
.. autosummary::
|
| 364 |
+
:toctree: generated/
|
| 365 |
+
|
| 366 |
+
chi2_contingency
|
| 367 |
+
fisher_exact
|
| 368 |
+
barnard_exact
|
| 369 |
+
boschloo_exact
|
| 370 |
+
|
| 371 |
+
Independent Sample Tests
|
| 372 |
+
------------------------
|
| 373 |
+
Independent sample tests are typically used to assess whether multiple samples
|
| 374 |
+
were independently drawn from the same distribution or different distributions
|
| 375 |
+
with a shared property (e.g. equal means).
|
| 376 |
+
|
| 377 |
+
Some tests are specifically for comparing two samples.
|
| 378 |
+
|
| 379 |
+
.. autosummary::
|
| 380 |
+
:toctree: generated/
|
| 381 |
+
|
| 382 |
+
ttest_ind_from_stats
|
| 383 |
+
poisson_means_test
|
| 384 |
+
ttest_ind
|
| 385 |
+
mannwhitneyu
|
| 386 |
+
bws_test
|
| 387 |
+
ranksums
|
| 388 |
+
brunnermunzel
|
| 389 |
+
mood
|
| 390 |
+
ansari
|
| 391 |
+
cramervonmises_2samp
|
| 392 |
+
epps_singleton_2samp
|
| 393 |
+
ks_2samp
|
| 394 |
+
kstest
|
| 395 |
+
|
| 396 |
+
Others are generalized to multiple samples.
|
| 397 |
+
|
| 398 |
+
.. autosummary::
|
| 399 |
+
:toctree: generated/
|
| 400 |
+
|
| 401 |
+
f_oneway
|
| 402 |
+
tukey_hsd
|
| 403 |
+
dunnett
|
| 404 |
+
kruskal
|
| 405 |
+
alexandergovern
|
| 406 |
+
fligner
|
| 407 |
+
levene
|
| 408 |
+
bartlett
|
| 409 |
+
median_test
|
| 410 |
+
friedmanchisquare
|
| 411 |
+
anderson_ksamp
|
| 412 |
+
|
| 413 |
+
Resampling and Monte Carlo Methods
|
| 414 |
+
----------------------------------
|
| 415 |
+
The following functions can reproduce the p-value and confidence interval
|
| 416 |
+
results of most of the functions above, and often produce accurate results in a
|
| 417 |
+
wider variety of conditions. They can also be used to perform hypothesis tests
|
| 418 |
+
and generate confidence intervals for custom statistics. This flexibility comes
|
| 419 |
+
at the cost of greater computational requirements and stochastic results.
|
| 420 |
+
|
| 421 |
+
.. autosummary::
|
| 422 |
+
:toctree: generated/
|
| 423 |
+
|
| 424 |
+
monte_carlo_test
|
| 425 |
+
permutation_test
|
| 426 |
+
bootstrap
|
| 427 |
+
|
| 428 |
+
Instances of the following object can be passed into some hypothesis test
|
| 429 |
+
functions to perform a resampling or Monte Carlo version of the hypothesis
|
| 430 |
+
test.
|
| 431 |
+
|
| 432 |
+
.. autosummary::
|
| 433 |
+
:toctree: generated/
|
| 434 |
+
|
| 435 |
+
MonteCarloMethod
|
| 436 |
+
PermutationMethod
|
| 437 |
+
BootstrapMethod
|
| 438 |
+
|
| 439 |
+
Multiple Hypothesis Testing and Meta-Analysis
|
| 440 |
+
---------------------------------------------
|
| 441 |
+
These functions are for assessing the results of individual tests as a whole.
|
| 442 |
+
Functions for performing specific multiple hypothesis tests (e.g. post hoc
|
| 443 |
+
tests) are listed above.
|
| 444 |
+
|
| 445 |
+
.. autosummary::
|
| 446 |
+
:toctree: generated/
|
| 447 |
+
|
| 448 |
+
combine_pvalues
|
| 449 |
+
false_discovery_control
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
The following functions are related to the tests above but do not belong in the
|
| 453 |
+
above categories.
|
| 454 |
+
|
| 455 |
+
Quasi-Monte Carlo
|
| 456 |
+
=================
|
| 457 |
+
|
| 458 |
+
.. toctree::
|
| 459 |
+
:maxdepth: 4
|
| 460 |
+
|
| 461 |
+
stats.qmc
|
| 462 |
+
|
| 463 |
+
Contingency Tables
|
| 464 |
+
==================
|
| 465 |
+
|
| 466 |
+
.. toctree::
|
| 467 |
+
:maxdepth: 4
|
| 468 |
+
|
| 469 |
+
stats.contingency
|
| 470 |
+
|
| 471 |
+
Masked statistics functions
|
| 472 |
+
===========================
|
| 473 |
+
|
| 474 |
+
.. toctree::
|
| 475 |
+
|
| 476 |
+
stats.mstats
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
Other statistical functionality
|
| 480 |
+
===============================
|
| 481 |
+
|
| 482 |
+
Transformations
|
| 483 |
+
---------------
|
| 484 |
+
|
| 485 |
+
.. autosummary::
|
| 486 |
+
:toctree: generated/
|
| 487 |
+
|
| 488 |
+
boxcox
|
| 489 |
+
boxcox_normmax
|
| 490 |
+
boxcox_llf
|
| 491 |
+
yeojohnson
|
| 492 |
+
yeojohnson_normmax
|
| 493 |
+
yeojohnson_llf
|
| 494 |
+
obrientransform
|
| 495 |
+
sigmaclip
|
| 496 |
+
trimboth
|
| 497 |
+
trim1
|
| 498 |
+
zmap
|
| 499 |
+
zscore
|
| 500 |
+
gzscore
|
| 501 |
+
|
| 502 |
+
Statistical distances
|
| 503 |
+
---------------------
|
| 504 |
+
|
| 505 |
+
.. autosummary::
|
| 506 |
+
:toctree: generated/
|
| 507 |
+
|
| 508 |
+
wasserstein_distance
|
| 509 |
+
wasserstein_distance_nd
|
| 510 |
+
energy_distance
|
| 511 |
+
|
| 512 |
+
Sampling
|
| 513 |
+
--------
|
| 514 |
+
|
| 515 |
+
.. toctree::
|
| 516 |
+
:maxdepth: 4
|
| 517 |
+
|
| 518 |
+
stats.sampling
|
| 519 |
+
|
| 520 |
+
Random variate generation / CDF Inversion
|
| 521 |
+
-----------------------------------------
|
| 522 |
+
|
| 523 |
+
.. autosummary::
|
| 524 |
+
:toctree: generated/
|
| 525 |
+
|
| 526 |
+
rvs_ratio_uniforms
|
| 527 |
+
|
| 528 |
+
Fitting / Survival Analysis
|
| 529 |
+
---------------------------
|
| 530 |
+
|
| 531 |
+
.. autosummary::
|
| 532 |
+
:toctree: generated/
|
| 533 |
+
|
| 534 |
+
fit
|
| 535 |
+
ecdf
|
| 536 |
+
logrank
|
| 537 |
+
|
| 538 |
+
Directional statistical functions
|
| 539 |
+
---------------------------------
|
| 540 |
+
|
| 541 |
+
.. autosummary::
|
| 542 |
+
:toctree: generated/
|
| 543 |
+
|
| 544 |
+
directional_stats
|
| 545 |
+
circmean
|
| 546 |
+
circvar
|
| 547 |
+
circstd
|
| 548 |
+
|
| 549 |
+
Sensitivity Analysis
|
| 550 |
+
--------------------
|
| 551 |
+
|
| 552 |
+
.. autosummary::
|
| 553 |
+
:toctree: generated/
|
| 554 |
+
|
| 555 |
+
sobol_indices
|
| 556 |
+
|
| 557 |
+
Plot-tests
|
| 558 |
+
----------
|
| 559 |
+
|
| 560 |
+
.. autosummary::
|
| 561 |
+
:toctree: generated/
|
| 562 |
+
|
| 563 |
+
ppcc_max
|
| 564 |
+
ppcc_plot
|
| 565 |
+
probplot
|
| 566 |
+
boxcox_normplot
|
| 567 |
+
yeojohnson_normplot
|
| 568 |
+
|
| 569 |
+
Univariate and multivariate kernel density estimation
|
| 570 |
+
-----------------------------------------------------
|
| 571 |
+
|
| 572 |
+
.. autosummary::
|
| 573 |
+
:toctree: generated/
|
| 574 |
+
|
| 575 |
+
gaussian_kde
|
| 576 |
+
|
| 577 |
+
Warnings / Errors used in :mod:`scipy.stats`
|
| 578 |
+
--------------------------------------------
|
| 579 |
+
|
| 580 |
+
.. autosummary::
|
| 581 |
+
:toctree: generated/
|
| 582 |
+
|
| 583 |
+
DegenerateDataWarning
|
| 584 |
+
ConstantInputWarning
|
| 585 |
+
NearConstantInputWarning
|
| 586 |
+
FitError
|
| 587 |
+
|
| 588 |
+
Result classes used in :mod:`scipy.stats`
|
| 589 |
+
-----------------------------------------
|
| 590 |
+
|
| 591 |
+
.. warning::
|
| 592 |
+
|
| 593 |
+
These classes are private, but they are included here because instances
|
| 594 |
+
of them are returned by other statistical functions. User import and
|
| 595 |
+
instantiation is not supported.
|
| 596 |
+
|
| 597 |
+
.. toctree::
|
| 598 |
+
:maxdepth: 2
|
| 599 |
+
|
| 600 |
+
stats._result_classes
|
| 601 |
+
|
| 602 |
+
""" # noqa: E501
|
| 603 |
+
|
| 604 |
+
from ._warnings_errors import (ConstantInputWarning, NearConstantInputWarning,
|
| 605 |
+
DegenerateDataWarning, FitError)
|
| 606 |
+
from ._stats_py import *
|
| 607 |
+
from ._variation import variation
|
| 608 |
+
from .distributions import *
|
| 609 |
+
from ._morestats import *
|
| 610 |
+
from ._multicomp import *
|
| 611 |
+
from ._binomtest import binomtest
|
| 612 |
+
from ._binned_statistic import *
|
| 613 |
+
from ._kde import gaussian_kde
|
| 614 |
+
from . import mstats
|
| 615 |
+
from . import qmc
|
| 616 |
+
from ._multivariate import *
|
| 617 |
+
from . import contingency
|
| 618 |
+
from .contingency import chi2_contingency
|
| 619 |
+
from ._censored_data import CensoredData
|
| 620 |
+
from ._resampling import (bootstrap, monte_carlo_test, permutation_test,
|
| 621 |
+
MonteCarloMethod, PermutationMethod, BootstrapMethod)
|
| 622 |
+
from ._entropy import *
|
| 623 |
+
from ._hypotests import *
|
| 624 |
+
from ._rvs_sampling import rvs_ratio_uniforms
|
| 625 |
+
from ._page_trend_test import page_trend_test
|
| 626 |
+
from ._mannwhitneyu import mannwhitneyu
|
| 627 |
+
from ._bws_test import bws_test
|
| 628 |
+
from ._fit import fit, goodness_of_fit
|
| 629 |
+
from ._covariance import Covariance
|
| 630 |
+
from ._sensitivity_analysis import *
|
| 631 |
+
from ._survival import *
|
| 632 |
+
|
| 633 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
| 634 |
+
from . import (
|
| 635 |
+
biasedurn, kde, morestats, mstats_basic, mstats_extras, mvn, stats
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
__all__ = [s for s in dir() if not s.startswith("_")] # Remove dunders.
|
| 640 |
+
|
| 641 |
+
from scipy._lib._testutils import PytestTester
|
| 642 |
+
test = PytestTester(__name__)
|
| 643 |
+
del PytestTester
|
venv/lib/python3.10/site-packages/scipy/stats/_ansari_swilk_statistics.cpython-310-x86_64-linux-gnu.so
ADDED
|
Binary file (278 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/stats/_axis_nan_policy.py
ADDED
|
@@ -0,0 +1,642 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Many scipy.stats functions support `axis` and `nan_policy` parameters.
|
| 2 |
+
# When the two are combined, it can be tricky to get all the behavior just
|
| 3 |
+
# right. This file contains utility functions useful for scipy.stats functions
|
| 4 |
+
# that support `axis` and `nan_policy`, including a decorator that
|
| 5 |
+
# automatically adds `axis` and `nan_policy` arguments to a function.
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
from functools import wraps
|
| 9 |
+
from scipy._lib._docscrape import FunctionDoc, Parameter
|
| 10 |
+
from scipy._lib._util import _contains_nan, AxisError, _get_nan
|
| 11 |
+
import inspect
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def _broadcast_arrays(arrays, axis=None):
|
| 15 |
+
"""
|
| 16 |
+
Broadcast shapes of arrays, ignoring incompatibility of specified axes
|
| 17 |
+
"""
|
| 18 |
+
new_shapes = _broadcast_array_shapes(arrays, axis=axis)
|
| 19 |
+
if axis is None:
|
| 20 |
+
new_shapes = [new_shapes]*len(arrays)
|
| 21 |
+
return [np.broadcast_to(array, new_shape)
|
| 22 |
+
for array, new_shape in zip(arrays, new_shapes)]
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def _broadcast_array_shapes(arrays, axis=None):
|
| 26 |
+
"""
|
| 27 |
+
Broadcast shapes of arrays, ignoring incompatibility of specified axes
|
| 28 |
+
"""
|
| 29 |
+
shapes = [np.asarray(arr).shape for arr in arrays]
|
| 30 |
+
return _broadcast_shapes(shapes, axis)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def _broadcast_shapes(shapes, axis=None):
|
| 34 |
+
"""
|
| 35 |
+
Broadcast shapes, ignoring incompatibility of specified axes
|
| 36 |
+
"""
|
| 37 |
+
if not shapes:
|
| 38 |
+
return shapes
|
| 39 |
+
|
| 40 |
+
# input validation
|
| 41 |
+
if axis is not None:
|
| 42 |
+
axis = np.atleast_1d(axis)
|
| 43 |
+
axis_int = axis.astype(int)
|
| 44 |
+
if not np.array_equal(axis_int, axis):
|
| 45 |
+
raise AxisError('`axis` must be an integer, a '
|
| 46 |
+
'tuple of integers, or `None`.')
|
| 47 |
+
axis = axis_int
|
| 48 |
+
|
| 49 |
+
# First, ensure all shapes have same number of dimensions by prepending 1s.
|
| 50 |
+
n_dims = max([len(shape) for shape in shapes])
|
| 51 |
+
new_shapes = np.ones((len(shapes), n_dims), dtype=int)
|
| 52 |
+
for row, shape in zip(new_shapes, shapes):
|
| 53 |
+
row[len(row)-len(shape):] = shape # can't use negative indices (-0:)
|
| 54 |
+
|
| 55 |
+
# Remove the shape elements of the axes to be ignored, but remember them.
|
| 56 |
+
if axis is not None:
|
| 57 |
+
axis[axis < 0] = n_dims + axis[axis < 0]
|
| 58 |
+
axis = np.sort(axis)
|
| 59 |
+
if axis[-1] >= n_dims or axis[0] < 0:
|
| 60 |
+
message = (f"`axis` is out of bounds "
|
| 61 |
+
f"for array of dimension {n_dims}")
|
| 62 |
+
raise AxisError(message)
|
| 63 |
+
|
| 64 |
+
if len(np.unique(axis)) != len(axis):
|
| 65 |
+
raise AxisError("`axis` must contain only distinct elements")
|
| 66 |
+
|
| 67 |
+
removed_shapes = new_shapes[:, axis]
|
| 68 |
+
new_shapes = np.delete(new_shapes, axis, axis=1)
|
| 69 |
+
|
| 70 |
+
# If arrays are broadcastable, shape elements that are 1 may be replaced
|
| 71 |
+
# with a corresponding non-1 shape element. Assuming arrays are
|
| 72 |
+
# broadcastable, that final shape element can be found with:
|
| 73 |
+
new_shape = np.max(new_shapes, axis=0)
|
| 74 |
+
# except in case of an empty array:
|
| 75 |
+
new_shape *= new_shapes.all(axis=0)
|
| 76 |
+
|
| 77 |
+
# Among all arrays, there can only be one unique non-1 shape element.
|
| 78 |
+
# Therefore, if any non-1 shape element does not match what we found
|
| 79 |
+
# above, the arrays must not be broadcastable after all.
|
| 80 |
+
if np.any(~((new_shapes == 1) | (new_shapes == new_shape))):
|
| 81 |
+
raise ValueError("Array shapes are incompatible for broadcasting.")
|
| 82 |
+
|
| 83 |
+
if axis is not None:
|
| 84 |
+
# Add back the shape elements that were ignored
|
| 85 |
+
new_axis = axis - np.arange(len(axis))
|
| 86 |
+
new_shapes = [tuple(np.insert(new_shape, new_axis, removed_shape))
|
| 87 |
+
for removed_shape in removed_shapes]
|
| 88 |
+
return new_shapes
|
| 89 |
+
else:
|
| 90 |
+
return tuple(new_shape)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def _broadcast_array_shapes_remove_axis(arrays, axis=None):
|
| 94 |
+
"""
|
| 95 |
+
Broadcast shapes of arrays, dropping specified axes
|
| 96 |
+
|
| 97 |
+
Given a sequence of arrays `arrays` and an integer or tuple `axis`, find
|
| 98 |
+
the shape of the broadcast result after consuming/dropping `axis`.
|
| 99 |
+
In other words, return output shape of a typical hypothesis test on
|
| 100 |
+
`arrays` vectorized along `axis`.
|
| 101 |
+
|
| 102 |
+
Examples
|
| 103 |
+
--------
|
| 104 |
+
>>> import numpy as np
|
| 105 |
+
>>> from scipy.stats._axis_nan_policy import _broadcast_array_shapes
|
| 106 |
+
>>> a = np.zeros((5, 2, 1))
|
| 107 |
+
>>> b = np.zeros((9, 3))
|
| 108 |
+
>>> _broadcast_array_shapes((a, b), 1)
|
| 109 |
+
(5, 3)
|
| 110 |
+
"""
|
| 111 |
+
# Note that here, `axis=None` means do not consume/drop any axes - _not_
|
| 112 |
+
# ravel arrays before broadcasting.
|
| 113 |
+
shapes = [arr.shape for arr in arrays]
|
| 114 |
+
return _broadcast_shapes_remove_axis(shapes, axis)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def _broadcast_shapes_remove_axis(shapes, axis=None):
|
| 118 |
+
"""
|
| 119 |
+
Broadcast shapes, dropping specified axes
|
| 120 |
+
|
| 121 |
+
Same as _broadcast_array_shapes, but given a sequence
|
| 122 |
+
of array shapes `shapes` instead of the arrays themselves.
|
| 123 |
+
"""
|
| 124 |
+
shapes = _broadcast_shapes(shapes, axis)
|
| 125 |
+
shape = shapes[0]
|
| 126 |
+
if axis is not None:
|
| 127 |
+
shape = np.delete(shape, axis)
|
| 128 |
+
return tuple(shape)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def _broadcast_concatenate(arrays, axis, paired=False):
|
| 132 |
+
"""Concatenate arrays along an axis with broadcasting."""
|
| 133 |
+
arrays = _broadcast_arrays(arrays, axis if not paired else None)
|
| 134 |
+
res = np.concatenate(arrays, axis=axis)
|
| 135 |
+
return res
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# TODO: add support for `axis` tuples
|
| 139 |
+
def _remove_nans(samples, paired):
|
| 140 |
+
"Remove nans from paired or unpaired 1D samples"
|
| 141 |
+
# potential optimization: don't copy arrays that don't contain nans
|
| 142 |
+
if not paired:
|
| 143 |
+
return [sample[~np.isnan(sample)] for sample in samples]
|
| 144 |
+
|
| 145 |
+
# for paired samples, we need to remove the whole pair when any part
|
| 146 |
+
# has a nan
|
| 147 |
+
nans = np.isnan(samples[0])
|
| 148 |
+
for sample in samples[1:]:
|
| 149 |
+
nans = nans | np.isnan(sample)
|
| 150 |
+
not_nans = ~nans
|
| 151 |
+
return [sample[not_nans] for sample in samples]
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def _remove_sentinel(samples, paired, sentinel):
|
| 155 |
+
"Remove sentinel values from paired or unpaired 1D samples"
|
| 156 |
+
# could consolidate with `_remove_nans`, but it's not quite as simple as
|
| 157 |
+
# passing `sentinel=np.nan` because `(np.nan == np.nan) is False`
|
| 158 |
+
|
| 159 |
+
# potential optimization: don't copy arrays that don't contain sentinel
|
| 160 |
+
if not paired:
|
| 161 |
+
return [sample[sample != sentinel] for sample in samples]
|
| 162 |
+
|
| 163 |
+
# for paired samples, we need to remove the whole pair when any part
|
| 164 |
+
# has a nan
|
| 165 |
+
sentinels = (samples[0] == sentinel)
|
| 166 |
+
for sample in samples[1:]:
|
| 167 |
+
sentinels = sentinels | (sample == sentinel)
|
| 168 |
+
not_sentinels = ~sentinels
|
| 169 |
+
return [sample[not_sentinels] for sample in samples]
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def _masked_arrays_2_sentinel_arrays(samples):
|
| 173 |
+
# masked arrays in `samples` are converted to regular arrays, and values
|
| 174 |
+
# corresponding with masked elements are replaced with a sentinel value
|
| 175 |
+
|
| 176 |
+
# return without modifying arrays if none have a mask
|
| 177 |
+
has_mask = False
|
| 178 |
+
for sample in samples:
|
| 179 |
+
mask = getattr(sample, 'mask', False)
|
| 180 |
+
has_mask = has_mask or np.any(mask)
|
| 181 |
+
if not has_mask:
|
| 182 |
+
return samples, None # None means there is no sentinel value
|
| 183 |
+
|
| 184 |
+
# Choose a sentinel value. We can't use `np.nan`, because sentinel (masked)
|
| 185 |
+
# values are always omitted, but there are different nan policies.
|
| 186 |
+
dtype = np.result_type(*samples)
|
| 187 |
+
dtype = dtype if np.issubdtype(dtype, np.number) else np.float64
|
| 188 |
+
for i in range(len(samples)):
|
| 189 |
+
# Things get more complicated if the arrays are of different types.
|
| 190 |
+
# We could have different sentinel values for each array, but
|
| 191 |
+
# the purpose of this code is convenience, not efficiency.
|
| 192 |
+
samples[i] = samples[i].astype(dtype, copy=False)
|
| 193 |
+
|
| 194 |
+
inexact = np.issubdtype(dtype, np.inexact)
|
| 195 |
+
info = np.finfo if inexact else np.iinfo
|
| 196 |
+
max_possible, min_possible = info(dtype).max, info(dtype).min
|
| 197 |
+
nextafter = np.nextafter if inexact else (lambda x, _: x - 1)
|
| 198 |
+
|
| 199 |
+
sentinel = max_possible
|
| 200 |
+
# For simplicity, min_possible/np.infs are not candidate sentinel values
|
| 201 |
+
while sentinel > min_possible:
|
| 202 |
+
for sample in samples:
|
| 203 |
+
if np.any(sample == sentinel): # choose a new sentinel value
|
| 204 |
+
sentinel = nextafter(sentinel, -np.inf)
|
| 205 |
+
break
|
| 206 |
+
else: # when sentinel value is OK, break the while loop
|
| 207 |
+
break
|
| 208 |
+
else:
|
| 209 |
+
message = ("This function replaces masked elements with sentinel "
|
| 210 |
+
"values, but the data contains all distinct values of this "
|
| 211 |
+
"data type. Consider promoting the dtype to `np.float64`.")
|
| 212 |
+
raise ValueError(message)
|
| 213 |
+
|
| 214 |
+
# replace masked elements with sentinel value
|
| 215 |
+
out_samples = []
|
| 216 |
+
for sample in samples:
|
| 217 |
+
mask = getattr(sample, 'mask', None)
|
| 218 |
+
if mask is not None: # turn all masked arrays into sentinel arrays
|
| 219 |
+
mask = np.broadcast_to(mask, sample.shape)
|
| 220 |
+
sample = sample.data.copy() if np.any(mask) else sample.data
|
| 221 |
+
sample = np.asarray(sample) # `sample.data` could be a memoryview?
|
| 222 |
+
sample[mask] = sentinel
|
| 223 |
+
out_samples.append(sample)
|
| 224 |
+
|
| 225 |
+
return out_samples, sentinel
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def _check_empty_inputs(samples, axis):
|
| 229 |
+
"""
|
| 230 |
+
Check for empty sample; return appropriate output for a vectorized hypotest
|
| 231 |
+
"""
|
| 232 |
+
# if none of the samples are empty, we need to perform the test
|
| 233 |
+
if not any(sample.size == 0 for sample in samples):
|
| 234 |
+
return None
|
| 235 |
+
# otherwise, the statistic and p-value will be either empty arrays or
|
| 236 |
+
# arrays with NaNs. Produce the appropriate array and return it.
|
| 237 |
+
output_shape = _broadcast_array_shapes_remove_axis(samples, axis)
|
| 238 |
+
output = np.ones(output_shape) * _get_nan(*samples)
|
| 239 |
+
return output
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def _add_reduced_axes(res, reduced_axes, keepdims):
|
| 243 |
+
"""
|
| 244 |
+
Add reduced axes back to all the arrays in the result object
|
| 245 |
+
if keepdims = True.
|
| 246 |
+
"""
|
| 247 |
+
return ([np.expand_dims(output, reduced_axes) for output in res]
|
| 248 |
+
if keepdims else res)
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
# Standard docstring / signature entries for `axis`, `nan_policy`, `keepdims`
|
| 252 |
+
_name = 'axis'
|
| 253 |
+
_desc = (
|
| 254 |
+
"""If an int, the axis of the input along which to compute the statistic.
|
| 255 |
+
The statistic of each axis-slice (e.g. row) of the input will appear in a
|
| 256 |
+
corresponding element of the output.
|
| 257 |
+
If ``None``, the input will be raveled before computing the statistic."""
|
| 258 |
+
.split('\n'))
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def _get_axis_params(default_axis=0, _name=_name, _desc=_desc): # bind NOW
|
| 262 |
+
_type = f"int or None, default: {default_axis}"
|
| 263 |
+
_axis_parameter_doc = Parameter(_name, _type, _desc)
|
| 264 |
+
_axis_parameter = inspect.Parameter(_name,
|
| 265 |
+
inspect.Parameter.KEYWORD_ONLY,
|
| 266 |
+
default=default_axis)
|
| 267 |
+
return _axis_parameter_doc, _axis_parameter
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
_name = 'nan_policy'
|
| 271 |
+
_type = "{'propagate', 'omit', 'raise'}"
|
| 272 |
+
_desc = (
|
| 273 |
+
"""Defines how to handle input NaNs.
|
| 274 |
+
|
| 275 |
+
- ``propagate``: if a NaN is present in the axis slice (e.g. row) along
|
| 276 |
+
which the statistic is computed, the corresponding entry of the output
|
| 277 |
+
will be NaN.
|
| 278 |
+
- ``omit``: NaNs will be omitted when performing the calculation.
|
| 279 |
+
If insufficient data remains in the axis slice along which the
|
| 280 |
+
statistic is computed, the corresponding entry of the output will be
|
| 281 |
+
NaN.
|
| 282 |
+
- ``raise``: if a NaN is present, a ``ValueError`` will be raised."""
|
| 283 |
+
.split('\n'))
|
| 284 |
+
_nan_policy_parameter_doc = Parameter(_name, _type, _desc)
|
| 285 |
+
_nan_policy_parameter = inspect.Parameter(_name,
|
| 286 |
+
inspect.Parameter.KEYWORD_ONLY,
|
| 287 |
+
default='propagate')
|
| 288 |
+
|
| 289 |
+
_name = 'keepdims'
|
| 290 |
+
_type = "bool, default: False"
|
| 291 |
+
_desc = (
|
| 292 |
+
"""If this is set to True, the axes which are reduced are left
|
| 293 |
+
in the result as dimensions with size one. With this option,
|
| 294 |
+
the result will broadcast correctly against the input array."""
|
| 295 |
+
.split('\n'))
|
| 296 |
+
_keepdims_parameter_doc = Parameter(_name, _type, _desc)
|
| 297 |
+
_keepdims_parameter = inspect.Parameter(_name,
|
| 298 |
+
inspect.Parameter.KEYWORD_ONLY,
|
| 299 |
+
default=False)
|
| 300 |
+
|
| 301 |
+
_standard_note_addition = (
|
| 302 |
+
"""\nBeginning in SciPy 1.9, ``np.matrix`` inputs (not recommended for new
|
| 303 |
+
code) are converted to ``np.ndarray`` before the calculation is performed. In
|
| 304 |
+
this case, the output will be a scalar or ``np.ndarray`` of appropriate shape
|
| 305 |
+
rather than a 2D ``np.matrix``. Similarly, while masked elements of masked
|
| 306 |
+
arrays are ignored, the output will be a scalar or ``np.ndarray`` rather than a
|
| 307 |
+
masked array with ``mask=False``.""").split('\n')
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def _axis_nan_policy_factory(tuple_to_result, default_axis=0,
|
| 311 |
+
n_samples=1, paired=False,
|
| 312 |
+
result_to_tuple=None, too_small=0,
|
| 313 |
+
n_outputs=2, kwd_samples=[], override=None):
|
| 314 |
+
"""Factory for a wrapper that adds axis/nan_policy params to a function.
|
| 315 |
+
|
| 316 |
+
Parameters
|
| 317 |
+
----------
|
| 318 |
+
tuple_to_result : callable
|
| 319 |
+
Callable that returns an object of the type returned by the function
|
| 320 |
+
being wrapped (e.g. the namedtuple or dataclass returned by a
|
| 321 |
+
statistical test) provided the separate components (e.g. statistic,
|
| 322 |
+
pvalue).
|
| 323 |
+
default_axis : int, default: 0
|
| 324 |
+
The default value of the axis argument. Standard is 0 except when
|
| 325 |
+
backwards compatibility demands otherwise (e.g. `None`).
|
| 326 |
+
n_samples : int or callable, default: 1
|
| 327 |
+
The number of data samples accepted by the function
|
| 328 |
+
(e.g. `mannwhitneyu`), a callable that accepts a dictionary of
|
| 329 |
+
parameters passed into the function and returns the number of data
|
| 330 |
+
samples (e.g. `wilcoxon`), or `None` to indicate an arbitrary number
|
| 331 |
+
of samples (e.g. `kruskal`).
|
| 332 |
+
paired : {False, True}
|
| 333 |
+
Whether the function being wrapped treats the samples as paired (i.e.
|
| 334 |
+
corresponding elements of each sample should be considered as different
|
| 335 |
+
components of the same sample.)
|
| 336 |
+
result_to_tuple : callable, optional
|
| 337 |
+
Function that unpacks the results of the function being wrapped into
|
| 338 |
+
a tuple. This is essentially the inverse of `tuple_to_result`. Default
|
| 339 |
+
is `None`, which is appropriate for statistical tests that return a
|
| 340 |
+
statistic, pvalue tuple (rather than, e.g., a non-iterable datalass).
|
| 341 |
+
too_small : int or callable, default: 0
|
| 342 |
+
The largest unnacceptably small sample for the function being wrapped.
|
| 343 |
+
For example, some functions require samples of size two or more or they
|
| 344 |
+
raise an error. This argument prevents the error from being raised when
|
| 345 |
+
input is not 1D and instead places a NaN in the corresponding element
|
| 346 |
+
of the result. If callable, it must accept a list of samples, axis,
|
| 347 |
+
and a dictionary of keyword arguments passed to the wrapper function as
|
| 348 |
+
arguments and return a bool indicating weather the samples passed are
|
| 349 |
+
too small.
|
| 350 |
+
n_outputs : int or callable, default: 2
|
| 351 |
+
The number of outputs produced by the function given 1d sample(s). For
|
| 352 |
+
example, hypothesis tests that return a namedtuple or result object
|
| 353 |
+
with attributes ``statistic`` and ``pvalue`` use the default
|
| 354 |
+
``n_outputs=2``; summary statistics with scalar output use
|
| 355 |
+
``n_outputs=1``. Alternatively, may be a callable that accepts a
|
| 356 |
+
dictionary of arguments passed into the wrapped function and returns
|
| 357 |
+
the number of outputs corresponding with those arguments.
|
| 358 |
+
kwd_samples : sequence, default: []
|
| 359 |
+
The names of keyword parameters that should be treated as samples. For
|
| 360 |
+
example, `gmean` accepts as its first argument a sample `a` but
|
| 361 |
+
also `weights` as a fourth, optional keyword argument. In this case, we
|
| 362 |
+
use `n_samples=1` and kwd_samples=['weights'].
|
| 363 |
+
override : dict, default: {'vectorization': False, 'nan_propagation': True}
|
| 364 |
+
Pass a dictionary with ``'vectorization': True`` to ensure that the
|
| 365 |
+
decorator overrides the function's behavior for multimensional input.
|
| 366 |
+
Use ``'nan_propagation': False`` to ensure that the decorator does not
|
| 367 |
+
override the function's behavior for ``nan_policy='propagate'``.
|
| 368 |
+
(See `scipy.stats.mode`, for example.)
|
| 369 |
+
"""
|
| 370 |
+
# Specify which existing behaviors the decorator must override
|
| 371 |
+
temp = override or {}
|
| 372 |
+
override = {'vectorization': False,
|
| 373 |
+
'nan_propagation': True}
|
| 374 |
+
override.update(temp)
|
| 375 |
+
|
| 376 |
+
if result_to_tuple is None:
|
| 377 |
+
def result_to_tuple(res):
|
| 378 |
+
return res
|
| 379 |
+
|
| 380 |
+
if not callable(too_small):
|
| 381 |
+
def is_too_small(samples, *ts_args, axis=-1, **ts_kwargs):
|
| 382 |
+
for sample in samples:
|
| 383 |
+
if sample.shape[axis] <= too_small:
|
| 384 |
+
return True
|
| 385 |
+
return False
|
| 386 |
+
else:
|
| 387 |
+
is_too_small = too_small
|
| 388 |
+
|
| 389 |
+
def axis_nan_policy_decorator(hypotest_fun_in):
|
| 390 |
+
@wraps(hypotest_fun_in)
|
| 391 |
+
def axis_nan_policy_wrapper(*args, _no_deco=False, **kwds):
|
| 392 |
+
|
| 393 |
+
if _no_deco: # for testing, decorator does nothing
|
| 394 |
+
return hypotest_fun_in(*args, **kwds)
|
| 395 |
+
|
| 396 |
+
# We need to be flexible about whether position or keyword
|
| 397 |
+
# arguments are used, but we need to make sure users don't pass
|
| 398 |
+
# both for the same parameter. To complicate matters, some
|
| 399 |
+
# functions accept samples with *args, and some functions already
|
| 400 |
+
# accept `axis` and `nan_policy` as positional arguments.
|
| 401 |
+
# The strategy is to make sure that there is no duplication
|
| 402 |
+
# between `args` and `kwds`, combine the two into `kwds`, then
|
| 403 |
+
# the samples, `nan_policy`, and `axis` from `kwds`, as they are
|
| 404 |
+
# dealt with separately.
|
| 405 |
+
|
| 406 |
+
# Check for intersection between positional and keyword args
|
| 407 |
+
params = list(inspect.signature(hypotest_fun_in).parameters)
|
| 408 |
+
if n_samples is None:
|
| 409 |
+
# Give unique names to each positional sample argument
|
| 410 |
+
# Note that *args can't be provided as a keyword argument
|
| 411 |
+
params = [f"arg{i}" for i in range(len(args))] + params[1:]
|
| 412 |
+
|
| 413 |
+
# raise if there are too many positional args
|
| 414 |
+
maxarg = (np.inf if inspect.getfullargspec(hypotest_fun_in).varargs
|
| 415 |
+
else len(inspect.getfullargspec(hypotest_fun_in).args))
|
| 416 |
+
if len(args) > maxarg: # let the function raise the right error
|
| 417 |
+
hypotest_fun_in(*args, **kwds)
|
| 418 |
+
|
| 419 |
+
# raise if multiple values passed for same parameter
|
| 420 |
+
d_args = dict(zip(params, args))
|
| 421 |
+
intersection = set(d_args) & set(kwds)
|
| 422 |
+
if intersection: # let the function raise the right error
|
| 423 |
+
hypotest_fun_in(*args, **kwds)
|
| 424 |
+
|
| 425 |
+
# Consolidate other positional and keyword args into `kwds`
|
| 426 |
+
kwds.update(d_args)
|
| 427 |
+
|
| 428 |
+
# rename avoids UnboundLocalError
|
| 429 |
+
if callable(n_samples):
|
| 430 |
+
# Future refactoring idea: no need for callable n_samples.
|
| 431 |
+
# Just replace `n_samples` and `kwd_samples` with a single
|
| 432 |
+
# list of the names of all samples, and treat all of them
|
| 433 |
+
# as `kwd_samples` are treated below.
|
| 434 |
+
n_samp = n_samples(kwds)
|
| 435 |
+
else:
|
| 436 |
+
n_samp = n_samples or len(args)
|
| 437 |
+
|
| 438 |
+
# get the number of outputs
|
| 439 |
+
n_out = n_outputs # rename to avoid UnboundLocalError
|
| 440 |
+
if callable(n_out):
|
| 441 |
+
n_out = n_out(kwds)
|
| 442 |
+
|
| 443 |
+
# If necessary, rearrange function signature: accept other samples
|
| 444 |
+
# as positional args right after the first n_samp args
|
| 445 |
+
kwd_samp = [name for name in kwd_samples
|
| 446 |
+
if kwds.get(name, None) is not None]
|
| 447 |
+
n_kwd_samp = len(kwd_samp)
|
| 448 |
+
if not kwd_samp:
|
| 449 |
+
hypotest_fun_out = hypotest_fun_in
|
| 450 |
+
else:
|
| 451 |
+
def hypotest_fun_out(*samples, **kwds):
|
| 452 |
+
new_kwds = dict(zip(kwd_samp, samples[n_samp:]))
|
| 453 |
+
kwds.update(new_kwds)
|
| 454 |
+
return hypotest_fun_in(*samples[:n_samp], **kwds)
|
| 455 |
+
|
| 456 |
+
# Extract the things we need here
|
| 457 |
+
try: # if something is missing
|
| 458 |
+
samples = [np.atleast_1d(kwds.pop(param))
|
| 459 |
+
for param in (params[:n_samp] + kwd_samp)]
|
| 460 |
+
except KeyError: # let the function raise the right error
|
| 461 |
+
# might need to revisit this if required arg is not a "sample"
|
| 462 |
+
hypotest_fun_in(*args, **kwds)
|
| 463 |
+
vectorized = True if 'axis' in params else False
|
| 464 |
+
vectorized = vectorized and not override['vectorization']
|
| 465 |
+
axis = kwds.pop('axis', default_axis)
|
| 466 |
+
nan_policy = kwds.pop('nan_policy', 'propagate')
|
| 467 |
+
keepdims = kwds.pop("keepdims", False)
|
| 468 |
+
del args # avoid the possibility of passing both `args` and `kwds`
|
| 469 |
+
|
| 470 |
+
# convert masked arrays to regular arrays with sentinel values
|
| 471 |
+
samples, sentinel = _masked_arrays_2_sentinel_arrays(samples)
|
| 472 |
+
|
| 473 |
+
# standardize to always work along last axis
|
| 474 |
+
reduced_axes = axis
|
| 475 |
+
if axis is None:
|
| 476 |
+
if samples:
|
| 477 |
+
# when axis=None, take the maximum of all dimensions since
|
| 478 |
+
# all the dimensions are reduced.
|
| 479 |
+
n_dims = np.max([sample.ndim for sample in samples])
|
| 480 |
+
reduced_axes = tuple(range(n_dims))
|
| 481 |
+
samples = [np.asarray(sample.ravel()) for sample in samples]
|
| 482 |
+
else:
|
| 483 |
+
samples = _broadcast_arrays(samples, axis=axis)
|
| 484 |
+
axis = np.atleast_1d(axis)
|
| 485 |
+
n_axes = len(axis)
|
| 486 |
+
# move all axes in `axis` to the end to be raveled
|
| 487 |
+
samples = [np.moveaxis(sample, axis, range(-len(axis), 0))
|
| 488 |
+
for sample in samples]
|
| 489 |
+
shapes = [sample.shape for sample in samples]
|
| 490 |
+
# New shape is unchanged for all axes _not_ in `axis`
|
| 491 |
+
# At the end, we append the product of the shapes of the axes
|
| 492 |
+
# in `axis`. Appending -1 doesn't work for zero-size arrays!
|
| 493 |
+
new_shapes = [shape[:-n_axes] + (np.prod(shape[-n_axes:]),)
|
| 494 |
+
for shape in shapes]
|
| 495 |
+
samples = [sample.reshape(new_shape)
|
| 496 |
+
for sample, new_shape in zip(samples, new_shapes)]
|
| 497 |
+
axis = -1 # work over the last axis
|
| 498 |
+
NaN = _get_nan(*samples)
|
| 499 |
+
|
| 500 |
+
# if axis is not needed, just handle nan_policy and return
|
| 501 |
+
ndims = np.array([sample.ndim for sample in samples])
|
| 502 |
+
if np.all(ndims <= 1):
|
| 503 |
+
# Addresses nan_policy == "raise"
|
| 504 |
+
if nan_policy != 'propagate' or override['nan_propagation']:
|
| 505 |
+
contains_nan = [_contains_nan(sample, nan_policy)[0]
|
| 506 |
+
for sample in samples]
|
| 507 |
+
else:
|
| 508 |
+
# Behave as though there are no NaNs (even if there are)
|
| 509 |
+
contains_nan = [False]*len(samples)
|
| 510 |
+
|
| 511 |
+
# Addresses nan_policy == "propagate"
|
| 512 |
+
if any(contains_nan) and (nan_policy == 'propagate'
|
| 513 |
+
and override['nan_propagation']):
|
| 514 |
+
res = np.full(n_out, NaN)
|
| 515 |
+
res = _add_reduced_axes(res, reduced_axes, keepdims)
|
| 516 |
+
return tuple_to_result(*res)
|
| 517 |
+
|
| 518 |
+
# Addresses nan_policy == "omit"
|
| 519 |
+
if any(contains_nan) and nan_policy == 'omit':
|
| 520 |
+
# consider passing in contains_nan
|
| 521 |
+
samples = _remove_nans(samples, paired)
|
| 522 |
+
|
| 523 |
+
# ideally, this is what the behavior would be:
|
| 524 |
+
# if is_too_small(samples):
|
| 525 |
+
# return tuple_to_result(NaN, NaN)
|
| 526 |
+
# but some existing functions raise exceptions, and changing
|
| 527 |
+
# behavior of those would break backward compatibility.
|
| 528 |
+
|
| 529 |
+
if sentinel:
|
| 530 |
+
samples = _remove_sentinel(samples, paired, sentinel)
|
| 531 |
+
res = hypotest_fun_out(*samples, **kwds)
|
| 532 |
+
res = result_to_tuple(res)
|
| 533 |
+
res = _add_reduced_axes(res, reduced_axes, keepdims)
|
| 534 |
+
return tuple_to_result(*res)
|
| 535 |
+
|
| 536 |
+
# check for empty input
|
| 537 |
+
# ideally, move this to the top, but some existing functions raise
|
| 538 |
+
# exceptions for empty input, so overriding it would break
|
| 539 |
+
# backward compatibility.
|
| 540 |
+
empty_output = _check_empty_inputs(samples, axis)
|
| 541 |
+
# only return empty output if zero sized input is too small.
|
| 542 |
+
if (
|
| 543 |
+
empty_output is not None
|
| 544 |
+
and (is_too_small(samples, kwds) or empty_output.size == 0)
|
| 545 |
+
):
|
| 546 |
+
res = [empty_output.copy() for i in range(n_out)]
|
| 547 |
+
res = _add_reduced_axes(res, reduced_axes, keepdims)
|
| 548 |
+
return tuple_to_result(*res)
|
| 549 |
+
|
| 550 |
+
# otherwise, concatenate all samples along axis, remembering where
|
| 551 |
+
# each separate sample begins
|
| 552 |
+
lengths = np.array([sample.shape[axis] for sample in samples])
|
| 553 |
+
split_indices = np.cumsum(lengths)
|
| 554 |
+
x = _broadcast_concatenate(samples, axis)
|
| 555 |
+
|
| 556 |
+
# Addresses nan_policy == "raise"
|
| 557 |
+
if nan_policy != 'propagate' or override['nan_propagation']:
|
| 558 |
+
contains_nan, _ = _contains_nan(x, nan_policy)
|
| 559 |
+
else:
|
| 560 |
+
contains_nan = False # behave like there are no NaNs
|
| 561 |
+
|
| 562 |
+
if vectorized and not contains_nan and not sentinel:
|
| 563 |
+
res = hypotest_fun_out(*samples, axis=axis, **kwds)
|
| 564 |
+
res = result_to_tuple(res)
|
| 565 |
+
res = _add_reduced_axes(res, reduced_axes, keepdims)
|
| 566 |
+
return tuple_to_result(*res)
|
| 567 |
+
|
| 568 |
+
# Addresses nan_policy == "omit"
|
| 569 |
+
if contains_nan and nan_policy == 'omit':
|
| 570 |
+
def hypotest_fun(x):
|
| 571 |
+
samples = np.split(x, split_indices)[:n_samp+n_kwd_samp]
|
| 572 |
+
samples = _remove_nans(samples, paired)
|
| 573 |
+
if sentinel:
|
| 574 |
+
samples = _remove_sentinel(samples, paired, sentinel)
|
| 575 |
+
if is_too_small(samples, kwds):
|
| 576 |
+
return np.full(n_out, NaN)
|
| 577 |
+
return result_to_tuple(hypotest_fun_out(*samples, **kwds))
|
| 578 |
+
|
| 579 |
+
# Addresses nan_policy == "propagate"
|
| 580 |
+
elif (contains_nan and nan_policy == 'propagate'
|
| 581 |
+
and override['nan_propagation']):
|
| 582 |
+
def hypotest_fun(x):
|
| 583 |
+
if np.isnan(x).any():
|
| 584 |
+
return np.full(n_out, NaN)
|
| 585 |
+
|
| 586 |
+
samples = np.split(x, split_indices)[:n_samp+n_kwd_samp]
|
| 587 |
+
if sentinel:
|
| 588 |
+
samples = _remove_sentinel(samples, paired, sentinel)
|
| 589 |
+
if is_too_small(samples, kwds):
|
| 590 |
+
return np.full(n_out, NaN)
|
| 591 |
+
return result_to_tuple(hypotest_fun_out(*samples, **kwds))
|
| 592 |
+
|
| 593 |
+
else:
|
| 594 |
+
def hypotest_fun(x):
|
| 595 |
+
samples = np.split(x, split_indices)[:n_samp+n_kwd_samp]
|
| 596 |
+
if sentinel:
|
| 597 |
+
samples = _remove_sentinel(samples, paired, sentinel)
|
| 598 |
+
if is_too_small(samples, kwds):
|
| 599 |
+
return np.full(n_out, NaN)
|
| 600 |
+
return result_to_tuple(hypotest_fun_out(*samples, **kwds))
|
| 601 |
+
|
| 602 |
+
x = np.moveaxis(x, axis, 0)
|
| 603 |
+
res = np.apply_along_axis(hypotest_fun, axis=0, arr=x)
|
| 604 |
+
res = _add_reduced_axes(res, reduced_axes, keepdims)
|
| 605 |
+
return tuple_to_result(*res)
|
| 606 |
+
|
| 607 |
+
_axis_parameter_doc, _axis_parameter = _get_axis_params(default_axis)
|
| 608 |
+
doc = FunctionDoc(axis_nan_policy_wrapper)
|
| 609 |
+
parameter_names = [param.name for param in doc['Parameters']]
|
| 610 |
+
if 'axis' in parameter_names:
|
| 611 |
+
doc['Parameters'][parameter_names.index('axis')] = (
|
| 612 |
+
_axis_parameter_doc)
|
| 613 |
+
else:
|
| 614 |
+
doc['Parameters'].append(_axis_parameter_doc)
|
| 615 |
+
if 'nan_policy' in parameter_names:
|
| 616 |
+
doc['Parameters'][parameter_names.index('nan_policy')] = (
|
| 617 |
+
_nan_policy_parameter_doc)
|
| 618 |
+
else:
|
| 619 |
+
doc['Parameters'].append(_nan_policy_parameter_doc)
|
| 620 |
+
if 'keepdims' in parameter_names:
|
| 621 |
+
doc['Parameters'][parameter_names.index('keepdims')] = (
|
| 622 |
+
_keepdims_parameter_doc)
|
| 623 |
+
else:
|
| 624 |
+
doc['Parameters'].append(_keepdims_parameter_doc)
|
| 625 |
+
doc['Notes'] += _standard_note_addition
|
| 626 |
+
doc = str(doc).split("\n", 1)[1] # remove signature
|
| 627 |
+
axis_nan_policy_wrapper.__doc__ = str(doc)
|
| 628 |
+
|
| 629 |
+
sig = inspect.signature(axis_nan_policy_wrapper)
|
| 630 |
+
parameters = sig.parameters
|
| 631 |
+
parameter_list = list(parameters.values())
|
| 632 |
+
if 'axis' not in parameters:
|
| 633 |
+
parameter_list.append(_axis_parameter)
|
| 634 |
+
if 'nan_policy' not in parameters:
|
| 635 |
+
parameter_list.append(_nan_policy_parameter)
|
| 636 |
+
if 'keepdims' not in parameters:
|
| 637 |
+
parameter_list.append(_keepdims_parameter)
|
| 638 |
+
sig = sig.replace(parameters=parameter_list)
|
| 639 |
+
axis_nan_policy_wrapper.__signature__ = sig
|
| 640 |
+
|
| 641 |
+
return axis_nan_policy_wrapper
|
| 642 |
+
return axis_nan_policy_decorator
|
venv/lib/python3.10/site-packages/scipy/stats/_biasedurn.cpython-310-x86_64-linux-gnu.so
ADDED
|
Binary file (360 kB). View file
|
|
|
venv/lib/python3.10/site-packages/scipy/stats/_bws_test.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from functools import partial
|
| 3 |
+
from scipy import stats
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def _bws_input_validation(x, y, alternative, method):
|
| 7 |
+
''' Input validation and standardization for bws test'''
|
| 8 |
+
x, y = np.atleast_1d(x, y)
|
| 9 |
+
if x.ndim > 1 or y.ndim > 1:
|
| 10 |
+
raise ValueError('`x` and `y` must be exactly one-dimensional.')
|
| 11 |
+
if np.isnan(x).any() or np.isnan(y).any():
|
| 12 |
+
raise ValueError('`x` and `y` must not contain NaNs.')
|
| 13 |
+
if np.size(x) == 0 or np.size(y) == 0:
|
| 14 |
+
raise ValueError('`x` and `y` must be of nonzero size.')
|
| 15 |
+
|
| 16 |
+
z = stats.rankdata(np.concatenate((x, y)))
|
| 17 |
+
x, y = z[:len(x)], z[len(x):]
|
| 18 |
+
|
| 19 |
+
alternatives = {'two-sided', 'less', 'greater'}
|
| 20 |
+
alternative = alternative.lower()
|
| 21 |
+
if alternative not in alternatives:
|
| 22 |
+
raise ValueError(f'`alternative` must be one of {alternatives}.')
|
| 23 |
+
|
| 24 |
+
method = stats.PermutationMethod() if method is None else method
|
| 25 |
+
if not isinstance(method, stats.PermutationMethod):
|
| 26 |
+
raise ValueError('`method` must be an instance of '
|
| 27 |
+
'`scipy.stats.PermutationMethod`')
|
| 28 |
+
|
| 29 |
+
return x, y, alternative, method
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def _bws_statistic(x, y, alternative, axis):
|
| 33 |
+
'''Compute the BWS test statistic for two independent samples'''
|
| 34 |
+
# Public function currently does not accept `axis`, but `permutation_test`
|
| 35 |
+
# uses `axis` to make vectorized call.
|
| 36 |
+
|
| 37 |
+
Ri, Hj = np.sort(x, axis=axis), np.sort(y, axis=axis)
|
| 38 |
+
n, m = Ri.shape[axis], Hj.shape[axis]
|
| 39 |
+
i, j = np.arange(1, n+1), np.arange(1, m+1)
|
| 40 |
+
|
| 41 |
+
Bx_num = Ri - (m + n)/n * i
|
| 42 |
+
By_num = Hj - (m + n)/m * j
|
| 43 |
+
|
| 44 |
+
if alternative == 'two-sided':
|
| 45 |
+
Bx_num *= Bx_num
|
| 46 |
+
By_num *= By_num
|
| 47 |
+
else:
|
| 48 |
+
Bx_num *= np.abs(Bx_num)
|
| 49 |
+
By_num *= np.abs(By_num)
|
| 50 |
+
|
| 51 |
+
Bx_den = i/(n+1) * (1 - i/(n+1)) * m*(m+n)/n
|
| 52 |
+
By_den = j/(m+1) * (1 - j/(m+1)) * n*(m+n)/m
|
| 53 |
+
|
| 54 |
+
Bx = 1/n * np.sum(Bx_num/Bx_den, axis=axis)
|
| 55 |
+
By = 1/m * np.sum(By_num/By_den, axis=axis)
|
| 56 |
+
|
| 57 |
+
B = (Bx + By) / 2 if alternative == 'two-sided' else (Bx - By) / 2
|
| 58 |
+
|
| 59 |
+
return B
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def bws_test(x, y, *, alternative="two-sided", method=None):
|
| 63 |
+
r'''Perform the Baumgartner-Weiss-Schindler test on two independent samples.
|
| 64 |
+
|
| 65 |
+
The Baumgartner-Weiss-Schindler (BWS) test is a nonparametric test of
|
| 66 |
+
the null hypothesis that the distribution underlying sample `x`
|
| 67 |
+
is the same as the distribution underlying sample `y`. Unlike
|
| 68 |
+
the Kolmogorov-Smirnov, Wilcoxon, and Cramer-Von Mises tests,
|
| 69 |
+
the BWS test weights the integral by the variance of the difference
|
| 70 |
+
in cumulative distribution functions (CDFs), emphasizing the tails of the
|
| 71 |
+
distributions, which increases the power of the test in many applications.
|
| 72 |
+
|
| 73 |
+
Parameters
|
| 74 |
+
----------
|
| 75 |
+
x, y : array-like
|
| 76 |
+
1-d arrays of samples.
|
| 77 |
+
alternative : {'two-sided', 'less', 'greater'}, optional
|
| 78 |
+
Defines the alternative hypothesis. Default is 'two-sided'.
|
| 79 |
+
Let *F(u)* and *G(u)* be the cumulative distribution functions of the
|
| 80 |
+
distributions underlying `x` and `y`, respectively. Then the following
|
| 81 |
+
alternative hypotheses are available:
|
| 82 |
+
|
| 83 |
+
* 'two-sided': the distributions are not equal, i.e. *F(u) ≠ G(u)* for
|
| 84 |
+
at least one *u*.
|
| 85 |
+
* 'less': the distribution underlying `x` is stochastically less than
|
| 86 |
+
the distribution underlying `y`, i.e. *F(u) >= G(u)* for all *u*.
|
| 87 |
+
* 'greater': the distribution underlying `x` is stochastically greater
|
| 88 |
+
than the distribution underlying `y`, i.e. *F(u) <= G(u)* for all
|
| 89 |
+
*u*.
|
| 90 |
+
|
| 91 |
+
Under a more restrictive set of assumptions, the alternative hypotheses
|
| 92 |
+
can be expressed in terms of the locations of the distributions;
|
| 93 |
+
see [2] section 5.1.
|
| 94 |
+
method : PermutationMethod, optional
|
| 95 |
+
Configures the method used to compute the p-value. The default is
|
| 96 |
+
the default `PermutationMethod` object.
|
| 97 |
+
|
| 98 |
+
Returns
|
| 99 |
+
-------
|
| 100 |
+
res : PermutationTestResult
|
| 101 |
+
An object with attributes:
|
| 102 |
+
|
| 103 |
+
statistic : float
|
| 104 |
+
The observed test statistic of the data.
|
| 105 |
+
pvalue : float
|
| 106 |
+
The p-value for the given alternative.
|
| 107 |
+
null_distribution : ndarray
|
| 108 |
+
The values of the test statistic generated under the null hypothesis.
|
| 109 |
+
|
| 110 |
+
See also
|
| 111 |
+
--------
|
| 112 |
+
scipy.stats.wilcoxon, scipy.stats.mannwhitneyu, scipy.stats.ttest_ind
|
| 113 |
+
|
| 114 |
+
Notes
|
| 115 |
+
-----
|
| 116 |
+
When ``alternative=='two-sided'``, the statistic is defined by the
|
| 117 |
+
equations given in [1]_ Section 2. This statistic is not appropriate for
|
| 118 |
+
one-sided alternatives; in that case, the statistic is the *negative* of
|
| 119 |
+
that given by the equations in [1]_ Section 2. Consequently, when the
|
| 120 |
+
distribution of the first sample is stochastically greater than that of the
|
| 121 |
+
second sample, the statistic will tend to be positive.
|
| 122 |
+
|
| 123 |
+
References
|
| 124 |
+
----------
|
| 125 |
+
.. [1] Neuhäuser, M. (2005). Exact Tests Based on the
|
| 126 |
+
Baumgartner-Weiss-Schindler Statistic: A Survey. Statistical Papers,
|
| 127 |
+
46(1), 1-29.
|
| 128 |
+
.. [2] Fay, M. P., & Proschan, M. A. (2010). Wilcoxon-Mann-Whitney or t-test?
|
| 129 |
+
On assumptions for hypothesis tests and multiple interpretations of
|
| 130 |
+
decision rules. Statistics surveys, 4, 1.
|
| 131 |
+
|
| 132 |
+
Examples
|
| 133 |
+
--------
|
| 134 |
+
We follow the example of table 3 in [1]_: Fourteen children were divided
|
| 135 |
+
randomly into two groups. Their ranks at performing a specific tests are
|
| 136 |
+
as follows.
|
| 137 |
+
|
| 138 |
+
>>> import numpy as np
|
| 139 |
+
>>> x = [1, 2, 3, 4, 6, 7, 8]
|
| 140 |
+
>>> y = [5, 9, 10, 11, 12, 13, 14]
|
| 141 |
+
|
| 142 |
+
We use the BWS test to assess whether there is a statistically significant
|
| 143 |
+
difference between the two groups.
|
| 144 |
+
The null hypothesis is that there is no difference in the distributions of
|
| 145 |
+
performance between the two groups. We decide that a significance level of
|
| 146 |
+
1% is required to reject the null hypothesis in favor of the alternative
|
| 147 |
+
that the distributions are different.
|
| 148 |
+
Since the number of samples is very small, we can compare the observed test
|
| 149 |
+
statistic against the *exact* distribution of the test statistic under the
|
| 150 |
+
null hypothesis.
|
| 151 |
+
|
| 152 |
+
>>> from scipy.stats import bws_test
|
| 153 |
+
>>> res = bws_test(x, y)
|
| 154 |
+
>>> print(res.statistic)
|
| 155 |
+
5.132167152575315
|
| 156 |
+
|
| 157 |
+
This agrees with :math:`B = 5.132` reported in [1]_. The *p*-value produced
|
| 158 |
+
by `bws_test` also agrees with :math:`p = 0.0029` reported in [1]_.
|
| 159 |
+
|
| 160 |
+
>>> print(res.pvalue)
|
| 161 |
+
0.002913752913752914
|
| 162 |
+
|
| 163 |
+
Because the p-value is below our threshold of 1%, we take this as evidence
|
| 164 |
+
against the null hypothesis in favor of the alternative that there is a
|
| 165 |
+
difference in performance between the two groups.
|
| 166 |
+
'''
|
| 167 |
+
|
| 168 |
+
x, y, alternative, method = _bws_input_validation(x, y, alternative,
|
| 169 |
+
method)
|
| 170 |
+
bws_statistic = partial(_bws_statistic, alternative=alternative)
|
| 171 |
+
|
| 172 |
+
permutation_alternative = 'less' if alternative == 'less' else 'greater'
|
| 173 |
+
res = stats.permutation_test((x, y), bws_statistic,
|
| 174 |
+
alternative=permutation_alternative,
|
| 175 |
+
**method._asdict())
|
| 176 |
+
|
| 177 |
+
return res
|
venv/lib/python3.10/site-packages/scipy/stats/_censored_data.py
ADDED
|
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def _validate_1d(a, name, allow_inf=False):
|
| 5 |
+
if np.ndim(a) != 1:
|
| 6 |
+
raise ValueError(f'`{name}` must be a one-dimensional sequence.')
|
| 7 |
+
if np.isnan(a).any():
|
| 8 |
+
raise ValueError(f'`{name}` must not contain nan.')
|
| 9 |
+
if not allow_inf and np.isinf(a).any():
|
| 10 |
+
raise ValueError(f'`{name}` must contain only finite values.')
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def _validate_interval(interval):
|
| 14 |
+
interval = np.asarray(interval)
|
| 15 |
+
if interval.shape == (0,):
|
| 16 |
+
# The input was a sequence with length 0.
|
| 17 |
+
interval = interval.reshape((0, 2))
|
| 18 |
+
if interval.ndim != 2 or interval.shape[-1] != 2:
|
| 19 |
+
raise ValueError('`interval` must be a two-dimensional array with '
|
| 20 |
+
'shape (m, 2), where m is the number of '
|
| 21 |
+
'interval-censored values, but got shape '
|
| 22 |
+
f'{interval.shape}')
|
| 23 |
+
|
| 24 |
+
if np.isnan(interval).any():
|
| 25 |
+
raise ValueError('`interval` must not contain nan.')
|
| 26 |
+
if np.isinf(interval).all(axis=1).any():
|
| 27 |
+
raise ValueError('In each row in `interval`, both values must not'
|
| 28 |
+
' be infinite.')
|
| 29 |
+
if (interval[:, 0] > interval[:, 1]).any():
|
| 30 |
+
raise ValueError('In each row of `interval`, the left value must not'
|
| 31 |
+
' exceed the right value.')
|
| 32 |
+
|
| 33 |
+
uncensored_mask = interval[:, 0] == interval[:, 1]
|
| 34 |
+
left_mask = np.isinf(interval[:, 0])
|
| 35 |
+
right_mask = np.isinf(interval[:, 1])
|
| 36 |
+
interval_mask = np.isfinite(interval).all(axis=1) & ~uncensored_mask
|
| 37 |
+
|
| 38 |
+
uncensored2 = interval[uncensored_mask, 0]
|
| 39 |
+
left2 = interval[left_mask, 1]
|
| 40 |
+
right2 = interval[right_mask, 0]
|
| 41 |
+
interval2 = interval[interval_mask]
|
| 42 |
+
|
| 43 |
+
return uncensored2, left2, right2, interval2
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def _validate_x_censored(x, censored):
|
| 47 |
+
x = np.asarray(x)
|
| 48 |
+
if x.ndim != 1:
|
| 49 |
+
raise ValueError('`x` must be one-dimensional.')
|
| 50 |
+
censored = np.asarray(censored)
|
| 51 |
+
if censored.ndim != 1:
|
| 52 |
+
raise ValueError('`censored` must be one-dimensional.')
|
| 53 |
+
if (~np.isfinite(x)).any():
|
| 54 |
+
raise ValueError('`x` must not contain nan or inf.')
|
| 55 |
+
if censored.size != x.size:
|
| 56 |
+
raise ValueError('`x` and `censored` must have the same length.')
|
| 57 |
+
return x, censored.astype(bool)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class CensoredData:
|
| 61 |
+
"""
|
| 62 |
+
Instances of this class represent censored data.
|
| 63 |
+
|
| 64 |
+
Instances may be passed to the ``fit`` method of continuous
|
| 65 |
+
univariate SciPy distributions for maximum likelihood estimation.
|
| 66 |
+
The *only* method of the univariate continuous distributions that
|
| 67 |
+
understands `CensoredData` is the ``fit`` method. An instance of
|
| 68 |
+
`CensoredData` can not be passed to methods such as ``pdf`` and
|
| 69 |
+
``cdf``.
|
| 70 |
+
|
| 71 |
+
An observation is said to be *censored* when the precise value is unknown,
|
| 72 |
+
but it has a known upper and/or lower bound. The conventional terminology
|
| 73 |
+
is:
|
| 74 |
+
|
| 75 |
+
* left-censored: an observation is below a certain value but it is
|
| 76 |
+
unknown by how much.
|
| 77 |
+
* right-censored: an observation is above a certain value but it is
|
| 78 |
+
unknown by how much.
|
| 79 |
+
* interval-censored: an observation lies somewhere on an interval between
|
| 80 |
+
two values.
|
| 81 |
+
|
| 82 |
+
Left-, right-, and interval-censored data can be represented by
|
| 83 |
+
`CensoredData`.
|
| 84 |
+
|
| 85 |
+
For convenience, the class methods ``left_censored`` and
|
| 86 |
+
``right_censored`` are provided to create a `CensoredData`
|
| 87 |
+
instance from a single one-dimensional array of measurements
|
| 88 |
+
and a corresponding boolean array to indicate which measurements
|
| 89 |
+
are censored. The class method ``interval_censored`` accepts two
|
| 90 |
+
one-dimensional arrays that hold the lower and upper bounds of the
|
| 91 |
+
intervals.
|
| 92 |
+
|
| 93 |
+
Parameters
|
| 94 |
+
----------
|
| 95 |
+
uncensored : array_like, 1D
|
| 96 |
+
Uncensored observations.
|
| 97 |
+
left : array_like, 1D
|
| 98 |
+
Left-censored observations.
|
| 99 |
+
right : array_like, 1D
|
| 100 |
+
Right-censored observations.
|
| 101 |
+
interval : array_like, 2D, with shape (m, 2)
|
| 102 |
+
Interval-censored observations. Each row ``interval[k, :]``
|
| 103 |
+
represents the interval for the kth interval-censored observation.
|
| 104 |
+
|
| 105 |
+
Notes
|
| 106 |
+
-----
|
| 107 |
+
In the input array `interval`, the lower bound of the interval may
|
| 108 |
+
be ``-inf``, and the upper bound may be ``inf``, but at least one must be
|
| 109 |
+
finite. When the lower bound is ``-inf``, the row represents a left-
|
| 110 |
+
censored observation, and when the upper bound is ``inf``, the row
|
| 111 |
+
represents a right-censored observation. If the length of an interval
|
| 112 |
+
is 0 (i.e. ``interval[k, 0] == interval[k, 1]``, the observation is
|
| 113 |
+
treated as uncensored. So one can represent all the types of censored
|
| 114 |
+
and uncensored data in ``interval``, but it is generally more convenient
|
| 115 |
+
to use `uncensored`, `left` and `right` for uncensored, left-censored and
|
| 116 |
+
right-censored observations, respectively.
|
| 117 |
+
|
| 118 |
+
Examples
|
| 119 |
+
--------
|
| 120 |
+
In the most general case, a censored data set may contain values that
|
| 121 |
+
are left-censored, right-censored, interval-censored, and uncensored.
|
| 122 |
+
For example, here we create a data set with five observations. Two
|
| 123 |
+
are uncensored (values 1 and 1.5), one is a left-censored observation
|
| 124 |
+
of 0, one is a right-censored observation of 10 and one is
|
| 125 |
+
interval-censored in the interval [2, 3].
|
| 126 |
+
|
| 127 |
+
>>> import numpy as np
|
| 128 |
+
>>> from scipy.stats import CensoredData
|
| 129 |
+
>>> data = CensoredData(uncensored=[1, 1.5], left=[0], right=[10],
|
| 130 |
+
... interval=[[2, 3]])
|
| 131 |
+
>>> print(data)
|
| 132 |
+
CensoredData(5 values: 2 not censored, 1 left-censored,
|
| 133 |
+
1 right-censored, 1 interval-censored)
|
| 134 |
+
|
| 135 |
+
Equivalently,
|
| 136 |
+
|
| 137 |
+
>>> data = CensoredData(interval=[[1, 1],
|
| 138 |
+
... [1.5, 1.5],
|
| 139 |
+
... [-np.inf, 0],
|
| 140 |
+
... [10, np.inf],
|
| 141 |
+
... [2, 3]])
|
| 142 |
+
>>> print(data)
|
| 143 |
+
CensoredData(5 values: 2 not censored, 1 left-censored,
|
| 144 |
+
1 right-censored, 1 interval-censored)
|
| 145 |
+
|
| 146 |
+
A common case is to have a mix of uncensored observations and censored
|
| 147 |
+
observations that are all right-censored (or all left-censored). For
|
| 148 |
+
example, consider an experiment in which six devices are started at
|
| 149 |
+
various times and left running until they fail. Assume that time is
|
| 150 |
+
measured in hours, and the experiment is stopped after 30 hours, even
|
| 151 |
+
if all the devices have not failed by that time. We might end up with
|
| 152 |
+
data such as this::
|
| 153 |
+
|
| 154 |
+
Device Start-time Fail-time Time-to-failure
|
| 155 |
+
1 0 13 13
|
| 156 |
+
2 2 24 22
|
| 157 |
+
3 5 22 17
|
| 158 |
+
4 8 23 15
|
| 159 |
+
5 10 *** >20
|
| 160 |
+
6 12 *** >18
|
| 161 |
+
|
| 162 |
+
Two of the devices had not failed when the experiment was stopped;
|
| 163 |
+
the observations of the time-to-failure for these two devices are
|
| 164 |
+
right-censored. We can represent this data with
|
| 165 |
+
|
| 166 |
+
>>> data = CensoredData(uncensored=[13, 22, 17, 15], right=[20, 18])
|
| 167 |
+
>>> print(data)
|
| 168 |
+
CensoredData(6 values: 4 not censored, 2 right-censored)
|
| 169 |
+
|
| 170 |
+
Alternatively, we can use the method `CensoredData.right_censored` to
|
| 171 |
+
create a representation of this data. The time-to-failure observations
|
| 172 |
+
are put the list ``ttf``. The ``censored`` list indicates which values
|
| 173 |
+
in ``ttf`` are censored.
|
| 174 |
+
|
| 175 |
+
>>> ttf = [13, 22, 17, 15, 20, 18]
|
| 176 |
+
>>> censored = [False, False, False, False, True, True]
|
| 177 |
+
|
| 178 |
+
Pass these lists to `CensoredData.right_censored` to create an
|
| 179 |
+
instance of `CensoredData`.
|
| 180 |
+
|
| 181 |
+
>>> data = CensoredData.right_censored(ttf, censored)
|
| 182 |
+
>>> print(data)
|
| 183 |
+
CensoredData(6 values: 4 not censored, 2 right-censored)
|
| 184 |
+
|
| 185 |
+
If the input data is interval censored and already stored in two
|
| 186 |
+
arrays, one holding the low end of the intervals and another
|
| 187 |
+
holding the high ends, the class method ``interval_censored`` can
|
| 188 |
+
be used to create the `CensoredData` instance.
|
| 189 |
+
|
| 190 |
+
This example creates an instance with four interval-censored values.
|
| 191 |
+
The intervals are [10, 11], [0.5, 1], [2, 3], and [12.5, 13.5].
|
| 192 |
+
|
| 193 |
+
>>> a = [10, 0.5, 2, 12.5] # Low ends of the intervals
|
| 194 |
+
>>> b = [11, 1.0, 3, 13.5] # High ends of the intervals
|
| 195 |
+
>>> data = CensoredData.interval_censored(low=a, high=b)
|
| 196 |
+
>>> print(data)
|
| 197 |
+
CensoredData(4 values: 0 not censored, 4 interval-censored)
|
| 198 |
+
|
| 199 |
+
Finally, we create and censor some data from the `weibull_min`
|
| 200 |
+
distribution, and then fit `weibull_min` to that data. We'll assume
|
| 201 |
+
that the location parameter is known to be 0.
|
| 202 |
+
|
| 203 |
+
>>> from scipy.stats import weibull_min
|
| 204 |
+
>>> rng = np.random.default_rng()
|
| 205 |
+
|
| 206 |
+
Create the random data set.
|
| 207 |
+
|
| 208 |
+
>>> x = weibull_min.rvs(2.5, loc=0, scale=30, size=250, random_state=rng)
|
| 209 |
+
>>> x[x > 40] = 40 # Right-censor values greater or equal to 40.
|
| 210 |
+
|
| 211 |
+
Create the `CensoredData` instance with the `right_censored` method.
|
| 212 |
+
The censored values are those where the value is 40.
|
| 213 |
+
|
| 214 |
+
>>> data = CensoredData.right_censored(x, x == 40)
|
| 215 |
+
>>> print(data)
|
| 216 |
+
CensoredData(250 values: 215 not censored, 35 right-censored)
|
| 217 |
+
|
| 218 |
+
35 values have been right-censored.
|
| 219 |
+
|
| 220 |
+
Fit `weibull_min` to the censored data. We expect to shape and scale
|
| 221 |
+
to be approximately 2.5 and 30, respectively.
|
| 222 |
+
|
| 223 |
+
>>> weibull_min.fit(data, floc=0)
|
| 224 |
+
(2.3575922823897315, 0, 30.40650074451254)
|
| 225 |
+
|
| 226 |
+
"""
|
| 227 |
+
|
| 228 |
+
def __init__(self, uncensored=None, *, left=None, right=None,
|
| 229 |
+
interval=None):
|
| 230 |
+
if uncensored is None:
|
| 231 |
+
uncensored = []
|
| 232 |
+
if left is None:
|
| 233 |
+
left = []
|
| 234 |
+
if right is None:
|
| 235 |
+
right = []
|
| 236 |
+
if interval is None:
|
| 237 |
+
interval = np.empty((0, 2))
|
| 238 |
+
|
| 239 |
+
_validate_1d(uncensored, 'uncensored')
|
| 240 |
+
_validate_1d(left, 'left')
|
| 241 |
+
_validate_1d(right, 'right')
|
| 242 |
+
uncensored2, left2, right2, interval2 = _validate_interval(interval)
|
| 243 |
+
|
| 244 |
+
self._uncensored = np.concatenate((uncensored, uncensored2))
|
| 245 |
+
self._left = np.concatenate((left, left2))
|
| 246 |
+
self._right = np.concatenate((right, right2))
|
| 247 |
+
# Note that by construction, the private attribute _interval
|
| 248 |
+
# will be a 2D array that contains only finite values representing
|
| 249 |
+
# intervals with nonzero but finite length.
|
| 250 |
+
self._interval = interval2
|
| 251 |
+
|
| 252 |
+
def __repr__(self):
|
| 253 |
+
uncensored_str = " ".join(np.array_repr(self._uncensored).split())
|
| 254 |
+
left_str = " ".join(np.array_repr(self._left).split())
|
| 255 |
+
right_str = " ".join(np.array_repr(self._right).split())
|
| 256 |
+
interval_str = " ".join(np.array_repr(self._interval).split())
|
| 257 |
+
return (f"CensoredData(uncensored={uncensored_str}, left={left_str}, "
|
| 258 |
+
f"right={right_str}, interval={interval_str})")
|
| 259 |
+
|
| 260 |
+
def __str__(self):
|
| 261 |
+
num_nc = len(self._uncensored)
|
| 262 |
+
num_lc = len(self._left)
|
| 263 |
+
num_rc = len(self._right)
|
| 264 |
+
num_ic = len(self._interval)
|
| 265 |
+
n = num_nc + num_lc + num_rc + num_ic
|
| 266 |
+
parts = [f'{num_nc} not censored']
|
| 267 |
+
if num_lc > 0:
|
| 268 |
+
parts.append(f'{num_lc} left-censored')
|
| 269 |
+
if num_rc > 0:
|
| 270 |
+
parts.append(f'{num_rc} right-censored')
|
| 271 |
+
if num_ic > 0:
|
| 272 |
+
parts.append(f'{num_ic} interval-censored')
|
| 273 |
+
return f'CensoredData({n} values: ' + ', '.join(parts) + ')'
|
| 274 |
+
|
| 275 |
+
# This is not a complete implementation of the arithmetic operators.
|
| 276 |
+
# All we need is subtracting a scalar and dividing by a scalar.
|
| 277 |
+
|
| 278 |
+
def __sub__(self, other):
|
| 279 |
+
return CensoredData(uncensored=self._uncensored - other,
|
| 280 |
+
left=self._left - other,
|
| 281 |
+
right=self._right - other,
|
| 282 |
+
interval=self._interval - other)
|
| 283 |
+
|
| 284 |
+
def __truediv__(self, other):
|
| 285 |
+
return CensoredData(uncensored=self._uncensored / other,
|
| 286 |
+
left=self._left / other,
|
| 287 |
+
right=self._right / other,
|
| 288 |
+
interval=self._interval / other)
|
| 289 |
+
|
| 290 |
+
def __len__(self):
|
| 291 |
+
"""
|
| 292 |
+
The number of values (censored and not censored).
|
| 293 |
+
"""
|
| 294 |
+
return (len(self._uncensored) + len(self._left) + len(self._right)
|
| 295 |
+
+ len(self._interval))
|
| 296 |
+
|
| 297 |
+
def num_censored(self):
|
| 298 |
+
"""
|
| 299 |
+
Number of censored values.
|
| 300 |
+
"""
|
| 301 |
+
return len(self._left) + len(self._right) + len(self._interval)
|
| 302 |
+
|
| 303 |
+
@classmethod
|
| 304 |
+
def right_censored(cls, x, censored):
|
| 305 |
+
"""
|
| 306 |
+
Create a `CensoredData` instance of right-censored data.
|
| 307 |
+
|
| 308 |
+
Parameters
|
| 309 |
+
----------
|
| 310 |
+
x : array_like
|
| 311 |
+
`x` is the array of observed data or measurements.
|
| 312 |
+
`x` must be a one-dimensional sequence of finite numbers.
|
| 313 |
+
censored : array_like of bool
|
| 314 |
+
`censored` must be a one-dimensional sequence of boolean
|
| 315 |
+
values. If ``censored[k]`` is True, the corresponding value
|
| 316 |
+
in `x` is right-censored. That is, the value ``x[k]``
|
| 317 |
+
is the lower bound of the true (but unknown) value.
|
| 318 |
+
|
| 319 |
+
Returns
|
| 320 |
+
-------
|
| 321 |
+
data : `CensoredData`
|
| 322 |
+
An instance of `CensoredData` that represents the
|
| 323 |
+
collection of uncensored and right-censored values.
|
| 324 |
+
|
| 325 |
+
Examples
|
| 326 |
+
--------
|
| 327 |
+
>>> from scipy.stats import CensoredData
|
| 328 |
+
|
| 329 |
+
Two uncensored values (4 and 10) and two right-censored values
|
| 330 |
+
(24 and 25).
|
| 331 |
+
|
| 332 |
+
>>> data = CensoredData.right_censored([4, 10, 24, 25],
|
| 333 |
+
... [False, False, True, True])
|
| 334 |
+
>>> data
|
| 335 |
+
CensoredData(uncensored=array([ 4., 10.]),
|
| 336 |
+
left=array([], dtype=float64), right=array([24., 25.]),
|
| 337 |
+
interval=array([], shape=(0, 2), dtype=float64))
|
| 338 |
+
>>> print(data)
|
| 339 |
+
CensoredData(4 values: 2 not censored, 2 right-censored)
|
| 340 |
+
"""
|
| 341 |
+
x, censored = _validate_x_censored(x, censored)
|
| 342 |
+
return cls(uncensored=x[~censored], right=x[censored])
|
| 343 |
+
|
| 344 |
+
@classmethod
|
| 345 |
+
def left_censored(cls, x, censored):
|
| 346 |
+
"""
|
| 347 |
+
Create a `CensoredData` instance of left-censored data.
|
| 348 |
+
|
| 349 |
+
Parameters
|
| 350 |
+
----------
|
| 351 |
+
x : array_like
|
| 352 |
+
`x` is the array of observed data or measurements.
|
| 353 |
+
`x` must be a one-dimensional sequence of finite numbers.
|
| 354 |
+
censored : array_like of bool
|
| 355 |
+
`censored` must be a one-dimensional sequence of boolean
|
| 356 |
+
values. If ``censored[k]`` is True, the corresponding value
|
| 357 |
+
in `x` is left-censored. That is, the value ``x[k]``
|
| 358 |
+
is the upper bound of the true (but unknown) value.
|
| 359 |
+
|
| 360 |
+
Returns
|
| 361 |
+
-------
|
| 362 |
+
data : `CensoredData`
|
| 363 |
+
An instance of `CensoredData` that represents the
|
| 364 |
+
collection of uncensored and left-censored values.
|
| 365 |
+
|
| 366 |
+
Examples
|
| 367 |
+
--------
|
| 368 |
+
>>> from scipy.stats import CensoredData
|
| 369 |
+
|
| 370 |
+
Two uncensored values (0.12 and 0.033) and two left-censored values
|
| 371 |
+
(both 1e-3).
|
| 372 |
+
|
| 373 |
+
>>> data = CensoredData.left_censored([0.12, 0.033, 1e-3, 1e-3],
|
| 374 |
+
... [False, False, True, True])
|
| 375 |
+
>>> data
|
| 376 |
+
CensoredData(uncensored=array([0.12 , 0.033]),
|
| 377 |
+
left=array([0.001, 0.001]), right=array([], dtype=float64),
|
| 378 |
+
interval=array([], shape=(0, 2), dtype=float64))
|
| 379 |
+
>>> print(data)
|
| 380 |
+
CensoredData(4 values: 2 not censored, 2 left-censored)
|
| 381 |
+
"""
|
| 382 |
+
x, censored = _validate_x_censored(x, censored)
|
| 383 |
+
return cls(uncensored=x[~censored], left=x[censored])
|
| 384 |
+
|
| 385 |
+
@classmethod
|
| 386 |
+
def interval_censored(cls, low, high):
|
| 387 |
+
"""
|
| 388 |
+
Create a `CensoredData` instance of interval-censored data.
|
| 389 |
+
|
| 390 |
+
This method is useful when all the data is interval-censored, and
|
| 391 |
+
the low and high ends of the intervals are already stored in
|
| 392 |
+
separate one-dimensional arrays.
|
| 393 |
+
|
| 394 |
+
Parameters
|
| 395 |
+
----------
|
| 396 |
+
low : array_like
|
| 397 |
+
The one-dimensional array containing the low ends of the
|
| 398 |
+
intervals.
|
| 399 |
+
high : array_like
|
| 400 |
+
The one-dimensional array containing the high ends of the
|
| 401 |
+
intervals.
|
| 402 |
+
|
| 403 |
+
Returns
|
| 404 |
+
-------
|
| 405 |
+
data : `CensoredData`
|
| 406 |
+
An instance of `CensoredData` that represents the
|
| 407 |
+
collection of censored values.
|
| 408 |
+
|
| 409 |
+
Examples
|
| 410 |
+
--------
|
| 411 |
+
>>> import numpy as np
|
| 412 |
+
>>> from scipy.stats import CensoredData
|
| 413 |
+
|
| 414 |
+
``a`` and ``b`` are the low and high ends of a collection of
|
| 415 |
+
interval-censored values.
|
| 416 |
+
|
| 417 |
+
>>> a = [0.5, 2.0, 3.0, 5.5]
|
| 418 |
+
>>> b = [1.0, 2.5, 3.5, 7.0]
|
| 419 |
+
>>> data = CensoredData.interval_censored(low=a, high=b)
|
| 420 |
+
>>> print(data)
|
| 421 |
+
CensoredData(4 values: 0 not censored, 4 interval-censored)
|
| 422 |
+
"""
|
| 423 |
+
_validate_1d(low, 'low', allow_inf=True)
|
| 424 |
+
_validate_1d(high, 'high', allow_inf=True)
|
| 425 |
+
if len(low) != len(high):
|
| 426 |
+
raise ValueError('`low` and `high` must have the same length.')
|
| 427 |
+
interval = np.column_stack((low, high))
|
| 428 |
+
uncensored, left, right, interval = _validate_interval(interval)
|
| 429 |
+
return cls(uncensored=uncensored, left=left, right=right,
|
| 430 |
+
interval=interval)
|
| 431 |
+
|
| 432 |
+
def _uncensor(self):
|
| 433 |
+
"""
|
| 434 |
+
This function is used when a non-censored version of the data
|
| 435 |
+
is needed to create a rough estimate of the parameters of a
|
| 436 |
+
distribution via the method of moments or some similar method.
|
| 437 |
+
The data is "uncensored" by taking the given endpoints as the
|
| 438 |
+
data for the left- or right-censored data, and the mean for the
|
| 439 |
+
interval-censored data.
|
| 440 |
+
"""
|
| 441 |
+
data = np.concatenate((self._uncensored, self._left, self._right,
|
| 442 |
+
self._interval.mean(axis=1)))
|
| 443 |
+
return data
|
| 444 |
+
|
| 445 |
+
def _supported(self, a, b):
|
| 446 |
+
"""
|
| 447 |
+
Return a subset of self containing the values that are in
|
| 448 |
+
(or overlap with) the interval (a, b).
|
| 449 |
+
"""
|
| 450 |
+
uncensored = self._uncensored
|
| 451 |
+
uncensored = uncensored[(a < uncensored) & (uncensored < b)]
|
| 452 |
+
left = self._left
|
| 453 |
+
left = left[a < left]
|
| 454 |
+
right = self._right
|
| 455 |
+
right = right[right < b]
|
| 456 |
+
interval = self._interval
|
| 457 |
+
interval = interval[(a < interval[:, 1]) & (interval[:, 0] < b)]
|
| 458 |
+
return CensoredData(uncensored, left=left, right=right,
|
| 459 |
+
interval=interval)
|
venv/lib/python3.10/site-packages/scipy/stats/_common.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import namedtuple
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
ConfidenceInterval = namedtuple("ConfidenceInterval", ["low", "high"])
|
| 5 |
+
ConfidenceInterval. __doc__ = "Class for confidence intervals."
|
venv/lib/python3.10/site-packages/scipy/stats/_constants.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Statistics-related constants.
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# The smallest representable positive number such that 1.0 + _EPS != 1.0.
|
| 9 |
+
_EPS = np.finfo(float).eps
|
| 10 |
+
|
| 11 |
+
# The largest [in magnitude] usable floating value.
|
| 12 |
+
_XMAX = np.finfo(float).max
|
| 13 |
+
|
| 14 |
+
# The log of the largest usable floating value; useful for knowing
|
| 15 |
+
# when exp(something) will overflow
|
| 16 |
+
_LOGXMAX = np.log(_XMAX)
|
| 17 |
+
|
| 18 |
+
# The smallest [in magnitude] usable (i.e. not subnormal) double precision
|
| 19 |
+
# floating value.
|
| 20 |
+
_XMIN = np.finfo(float).tiny
|
| 21 |
+
|
| 22 |
+
# The log of the smallest [in magnitude] usable (i.e not subnormal)
|
| 23 |
+
# double precision floating value.
|
| 24 |
+
_LOGXMIN = np.log(_XMIN)
|
| 25 |
+
|
| 26 |
+
# -special.psi(1)
|
| 27 |
+
_EULER = 0.577215664901532860606512090082402431042
|
| 28 |
+
|
| 29 |
+
# special.zeta(3, 1) Apery's constant
|
| 30 |
+
_ZETA3 = 1.202056903159594285399738161511449990765
|
| 31 |
+
|
| 32 |
+
# sqrt(pi)
|
| 33 |
+
_SQRT_PI = 1.772453850905516027298167483341145182798
|
| 34 |
+
|
| 35 |
+
# sqrt(2/pi)
|
| 36 |
+
_SQRT_2_OVER_PI = 0.7978845608028654
|
| 37 |
+
|
| 38 |
+
# log(sqrt(2/pi))
|
| 39 |
+
_LOG_SQRT_2_OVER_PI = -0.22579135264472744
|
venv/lib/python3.10/site-packages/scipy/stats/_continuous_distns.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|