applied-ai-018 commited on
Commit
025c9d8
·
verified ·
1 Parent(s): cac1c29

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/6.post_attention_layernorm.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step40/zero/6.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step40/zero/7.attention.dense.weight/exp_avg_sq.pt +3 -0
  4. venv/lib/python3.10/site-packages/scipy/_lib/_uarray/LICENSE +29 -0
  5. venv/lib/python3.10/site-packages/scipy/_lib/_uarray/__init__.py +116 -0
  6. venv/lib/python3.10/site-packages/scipy/_lib/_uarray/__pycache__/__init__.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/scipy/_lib/_uarray/__pycache__/_backend.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/scipy/_lib/_uarray/_backend.py +704 -0
  9. venv/lib/python3.10/site-packages/scipy/_lib/_uarray/_uarray.cpython-310-x86_64-linux-gnu.so +0 -0
  10. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/__init__.py +22 -0
  11. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/__pycache__/__init__.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/__pycache__/_internal.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/_internal.py +43 -0
  14. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/__init__.py +1 -0
  15. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/__pycache__/__init__.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/__pycache__/_aliases.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/__pycache__/_helpers.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/__pycache__/_linalg.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/__pycache__/_typing.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/_aliases.py +536 -0
  21. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/_helpers.py +232 -0
  22. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/_linalg.py +158 -0
  23. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/_typing.py +20 -0
  24. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/__init__.py +16 -0
  25. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/__pycache__/__init__.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/__pycache__/_aliases.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/__pycache__/_typing.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/__pycache__/linalg.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/_aliases.py +79 -0
  30. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/_typing.py +46 -0
  31. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/linalg.py +47 -0
  32. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/__init__.py +22 -0
  33. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/__pycache__/__init__.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/__pycache__/_aliases.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/__pycache__/_typing.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/__pycache__/linalg.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/_aliases.py +79 -0
  38. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/_typing.py +46 -0
  39. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/linalg.py +40 -0
  40. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/torch/__init__.py +22 -0
  41. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/torch/__pycache__/__init__.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/torch/__pycache__/_aliases.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/torch/__pycache__/linalg.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/torch/_aliases.py +707 -0
  45. venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/torch/linalg.py +62 -0
  46. venv/lib/python3.10/site-packages/scipy/constants/__init__.py +347 -0
  47. venv/lib/python3.10/site-packages/scipy/constants/__pycache__/__init__.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/scipy/constants/__pycache__/_codata.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/scipy/constants/__pycache__/_constants.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/scipy/constants/__pycache__/codata.cpython-310.pyc +0 -0
ckpts/universal/global_step40/zero/6.post_attention_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb13ebab68cba0a7509fa628d7990d44d14ef15c0b32b25714a9350d1ecd507a
3
+ size 9372
ckpts/universal/global_step40/zero/6.post_attention_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2859762b5b059963806e36692d5907386cfd22ed71d4f8e4ccaf8e5e0e8f7ca8
3
+ size 9387
ckpts/universal/global_step40/zero/7.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad175c6c25f46ed73ac689c66406d96a30a211304a349044cc6a1fa571deadde
3
+ size 16778411
venv/lib/python3.10/site-packages/scipy/_lib/_uarray/LICENSE ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ BSD 3-Clause License
2
+
3
+ Copyright (c) 2018, Quansight-Labs
4
+ All rights reserved.
5
+
6
+ Redistribution and use in source and binary forms, with or without
7
+ modification, are permitted provided that the following conditions are met:
8
+
9
+ * Redistributions of source code must retain the above copyright notice, this
10
+ list of conditions and the following disclaimer.
11
+
12
+ * Redistributions in binary form must reproduce the above copyright notice,
13
+ this list of conditions and the following disclaimer in the documentation
14
+ and/or other materials provided with the distribution.
15
+
16
+ * Neither the name of the copyright holder nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
venv/lib/python3.10/site-packages/scipy/_lib/_uarray/__init__.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ .. note:
3
+ If you are looking for overrides for NumPy-specific methods, see the
4
+ documentation for :obj:`unumpy`. This page explains how to write
5
+ back-ends and multimethods.
6
+
7
+ ``uarray`` is built around a back-end protocol, and overridable multimethods.
8
+ It is necessary to define multimethods for back-ends to be able to override them.
9
+ See the documentation of :obj:`generate_multimethod` on how to write multimethods.
10
+
11
+
12
+
13
+ Let's start with the simplest:
14
+
15
+ ``__ua_domain__`` defines the back-end *domain*. The domain consists of period-
16
+ separated string consisting of the modules you extend plus the submodule. For
17
+ example, if a submodule ``module2.submodule`` extends ``module1``
18
+ (i.e., it exposes dispatchables marked as types available in ``module1``),
19
+ then the domain string should be ``"module1.module2.submodule"``.
20
+
21
+
22
+ For the purpose of this demonstration, we'll be creating an object and setting
23
+ its attributes directly. However, note that you can use a module or your own type
24
+ as a backend as well.
25
+
26
+ >>> class Backend: pass
27
+ >>> be = Backend()
28
+ >>> be.__ua_domain__ = "ua_examples"
29
+
30
+ It might be useful at this point to sidetrack to the documentation of
31
+ :obj:`generate_multimethod` to find out how to generate a multimethod
32
+ overridable by :obj:`uarray`. Needless to say, writing a backend and
33
+ creating multimethods are mostly orthogonal activities, and knowing
34
+ one doesn't necessarily require knowledge of the other, although it
35
+ is certainly helpful. We expect core API designers/specifiers to write the
36
+ multimethods, and implementors to override them. But, as is often the case,
37
+ similar people write both.
38
+
39
+ Without further ado, here's an example multimethod:
40
+
41
+ >>> import uarray as ua
42
+ >>> from uarray import Dispatchable
43
+ >>> def override_me(a, b):
44
+ ... return Dispatchable(a, int),
45
+ >>> def override_replacer(args, kwargs, dispatchables):
46
+ ... return (dispatchables[0], args[1]), {}
47
+ >>> overridden_me = ua.generate_multimethod(
48
+ ... override_me, override_replacer, "ua_examples"
49
+ ... )
50
+
51
+ Next comes the part about overriding the multimethod. This requires
52
+ the ``__ua_function__`` protocol, and the ``__ua_convert__``
53
+ protocol. The ``__ua_function__`` protocol has the signature
54
+ ``(method, args, kwargs)`` where ``method`` is the passed
55
+ multimethod, ``args``/``kwargs`` specify the arguments and ``dispatchables``
56
+ is the list of converted dispatchables passed in.
57
+
58
+ >>> def __ua_function__(method, args, kwargs):
59
+ ... return method.__name__, args, kwargs
60
+ >>> be.__ua_function__ = __ua_function__
61
+
62
+ The other protocol of interest is the ``__ua_convert__`` protocol. It has the
63
+ signature ``(dispatchables, coerce)``. When ``coerce`` is ``False``, conversion
64
+ between the formats should ideally be an ``O(1)`` operation, but it means that
65
+ no memory copying should be involved, only views of the existing data.
66
+
67
+ >>> def __ua_convert__(dispatchables, coerce):
68
+ ... for d in dispatchables:
69
+ ... if d.type is int:
70
+ ... if coerce and d.coercible:
71
+ ... yield str(d.value)
72
+ ... else:
73
+ ... yield d.value
74
+ >>> be.__ua_convert__ = __ua_convert__
75
+
76
+ Now that we have defined the backend, the next thing to do is to call the multimethod.
77
+
78
+ >>> with ua.set_backend(be):
79
+ ... overridden_me(1, "2")
80
+ ('override_me', (1, '2'), {})
81
+
82
+ Note that the marked type has no effect on the actual type of the passed object.
83
+ We can also coerce the type of the input.
84
+
85
+ >>> with ua.set_backend(be, coerce=True):
86
+ ... overridden_me(1, "2")
87
+ ... overridden_me(1.0, "2")
88
+ ('override_me', ('1', '2'), {})
89
+ ('override_me', ('1.0', '2'), {})
90
+
91
+ Another feature is that if you remove ``__ua_convert__``, the arguments are not
92
+ converted at all and it's up to the backend to handle that.
93
+
94
+ >>> del be.__ua_convert__
95
+ >>> with ua.set_backend(be):
96
+ ... overridden_me(1, "2")
97
+ ('override_me', (1, '2'), {})
98
+
99
+ You also have the option to return ``NotImplemented``, in which case processing moves on
100
+ to the next back-end, which in this case, doesn't exist. The same applies to
101
+ ``__ua_convert__``.
102
+
103
+ >>> be.__ua_function__ = lambda *a, **kw: NotImplemented
104
+ >>> with ua.set_backend(be):
105
+ ... overridden_me(1, "2")
106
+ Traceback (most recent call last):
107
+ ...
108
+ uarray.BackendNotImplementedError: ...
109
+
110
+ The last possibility is if we don't have ``__ua_convert__``, in which case the job is
111
+ left up to ``__ua_function__``, but putting things back into arrays after conversion
112
+ will not be possible.
113
+ """
114
+
115
+ from ._backend import *
116
+ __version__ = '0.8.8.dev0+aa94c5a4.scipy'
venv/lib/python3.10/site-packages/scipy/_lib/_uarray/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (4.7 kB). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/_uarray/__pycache__/_backend.cpython-310.pyc ADDED
Binary file (20.4 kB). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/_uarray/_backend.py ADDED
@@ -0,0 +1,704 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import typing
2
+ import types
3
+ import inspect
4
+ import functools
5
+ from . import _uarray
6
+ import copyreg
7
+ import pickle
8
+ import contextlib
9
+
10
+ from ._uarray import ( # type: ignore
11
+ BackendNotImplementedError,
12
+ _Function,
13
+ _SkipBackendContext,
14
+ _SetBackendContext,
15
+ _BackendState,
16
+ )
17
+
18
+ __all__ = [
19
+ "set_backend",
20
+ "set_global_backend",
21
+ "skip_backend",
22
+ "register_backend",
23
+ "determine_backend",
24
+ "determine_backend_multi",
25
+ "clear_backends",
26
+ "create_multimethod",
27
+ "generate_multimethod",
28
+ "_Function",
29
+ "BackendNotImplementedError",
30
+ "Dispatchable",
31
+ "wrap_single_convertor",
32
+ "wrap_single_convertor_instance",
33
+ "all_of_type",
34
+ "mark_as",
35
+ "set_state",
36
+ "get_state",
37
+ "reset_state",
38
+ "_BackendState",
39
+ "_SkipBackendContext",
40
+ "_SetBackendContext",
41
+ ]
42
+
43
+ ArgumentExtractorType = typing.Callable[..., tuple["Dispatchable", ...]]
44
+ ArgumentReplacerType = typing.Callable[
45
+ [tuple, dict, tuple], tuple[tuple, dict]
46
+ ]
47
+
48
+ def unpickle_function(mod_name, qname, self_):
49
+ import importlib
50
+
51
+ try:
52
+ module = importlib.import_module(mod_name)
53
+ qname = qname.split(".")
54
+ func = module
55
+ for q in qname:
56
+ func = getattr(func, q)
57
+
58
+ if self_ is not None:
59
+ func = types.MethodType(func, self_)
60
+
61
+ return func
62
+ except (ImportError, AttributeError) as e:
63
+ from pickle import UnpicklingError
64
+
65
+ raise UnpicklingError from e
66
+
67
+
68
+ def pickle_function(func):
69
+ mod_name = getattr(func, "__module__", None)
70
+ qname = getattr(func, "__qualname__", None)
71
+ self_ = getattr(func, "__self__", None)
72
+
73
+ try:
74
+ test = unpickle_function(mod_name, qname, self_)
75
+ except pickle.UnpicklingError:
76
+ test = None
77
+
78
+ if test is not func:
79
+ raise pickle.PicklingError(
80
+ f"Can't pickle {func}: it's not the same object as {test}"
81
+ )
82
+
83
+ return unpickle_function, (mod_name, qname, self_)
84
+
85
+
86
+ def pickle_state(state):
87
+ return _uarray._BackendState._unpickle, state._pickle()
88
+
89
+
90
+ def pickle_set_backend_context(ctx):
91
+ return _SetBackendContext, ctx._pickle()
92
+
93
+
94
+ def pickle_skip_backend_context(ctx):
95
+ return _SkipBackendContext, ctx._pickle()
96
+
97
+
98
+ copyreg.pickle(_Function, pickle_function)
99
+ copyreg.pickle(_uarray._BackendState, pickle_state)
100
+ copyreg.pickle(_SetBackendContext, pickle_set_backend_context)
101
+ copyreg.pickle(_SkipBackendContext, pickle_skip_backend_context)
102
+
103
+
104
+ def get_state():
105
+ """
106
+ Returns an opaque object containing the current state of all the backends.
107
+
108
+ Can be used for synchronization between threads/processes.
109
+
110
+ See Also
111
+ --------
112
+ set_state
113
+ Sets the state returned by this function.
114
+ """
115
+ return _uarray.get_state()
116
+
117
+
118
+ @contextlib.contextmanager
119
+ def reset_state():
120
+ """
121
+ Returns a context manager that resets all state once exited.
122
+
123
+ See Also
124
+ --------
125
+ set_state
126
+ Context manager that sets the backend state.
127
+ get_state
128
+ Gets a state to be set by this context manager.
129
+ """
130
+ with set_state(get_state()):
131
+ yield
132
+
133
+
134
+ @contextlib.contextmanager
135
+ def set_state(state):
136
+ """
137
+ A context manager that sets the state of the backends to one returned by :obj:`get_state`.
138
+
139
+ See Also
140
+ --------
141
+ get_state
142
+ Gets a state to be set by this context manager.
143
+ """ # noqa: E501
144
+ old_state = get_state()
145
+ _uarray.set_state(state)
146
+ try:
147
+ yield
148
+ finally:
149
+ _uarray.set_state(old_state, True)
150
+
151
+
152
+ def create_multimethod(*args, **kwargs):
153
+ """
154
+ Creates a decorator for generating multimethods.
155
+
156
+ This function creates a decorator that can be used with an argument
157
+ extractor in order to generate a multimethod. Other than for the
158
+ argument extractor, all arguments are passed on to
159
+ :obj:`generate_multimethod`.
160
+
161
+ See Also
162
+ --------
163
+ generate_multimethod
164
+ Generates a multimethod.
165
+ """
166
+
167
+ def wrapper(a):
168
+ return generate_multimethod(a, *args, **kwargs)
169
+
170
+ return wrapper
171
+
172
+
173
+ def generate_multimethod(
174
+ argument_extractor: ArgumentExtractorType,
175
+ argument_replacer: ArgumentReplacerType,
176
+ domain: str,
177
+ default: typing.Optional[typing.Callable] = None,
178
+ ):
179
+ """
180
+ Generates a multimethod.
181
+
182
+ Parameters
183
+ ----------
184
+ argument_extractor : ArgumentExtractorType
185
+ A callable which extracts the dispatchable arguments. Extracted arguments
186
+ should be marked by the :obj:`Dispatchable` class. It has the same signature
187
+ as the desired multimethod.
188
+ argument_replacer : ArgumentReplacerType
189
+ A callable with the signature (args, kwargs, dispatchables), which should also
190
+ return an (args, kwargs) pair with the dispatchables replaced inside the
191
+ args/kwargs.
192
+ domain : str
193
+ A string value indicating the domain of this multimethod.
194
+ default: Optional[Callable], optional
195
+ The default implementation of this multimethod, where ``None`` (the default)
196
+ specifies there is no default implementation.
197
+
198
+ Examples
199
+ --------
200
+ In this example, ``a`` is to be dispatched over, so we return it, while marking it
201
+ as an ``int``.
202
+ The trailing comma is needed because the args have to be returned as an iterable.
203
+
204
+ >>> def override_me(a, b):
205
+ ... return Dispatchable(a, int),
206
+
207
+ Next, we define the argument replacer that replaces the dispatchables inside
208
+ args/kwargs with the supplied ones.
209
+
210
+ >>> def override_replacer(args, kwargs, dispatchables):
211
+ ... return (dispatchables[0], args[1]), {}
212
+
213
+ Next, we define the multimethod.
214
+
215
+ >>> overridden_me = generate_multimethod(
216
+ ... override_me, override_replacer, "ua_examples"
217
+ ... )
218
+
219
+ Notice that there's no default implementation, unless you supply one.
220
+
221
+ >>> overridden_me(1, "a")
222
+ Traceback (most recent call last):
223
+ ...
224
+ uarray.BackendNotImplementedError: ...
225
+
226
+ >>> overridden_me2 = generate_multimethod(
227
+ ... override_me, override_replacer, "ua_examples", default=lambda x, y: (x, y)
228
+ ... )
229
+ >>> overridden_me2(1, "a")
230
+ (1, 'a')
231
+
232
+ See Also
233
+ --------
234
+ uarray
235
+ See the module documentation for how to override the method by creating
236
+ backends.
237
+ """
238
+ kw_defaults, arg_defaults, opts = get_defaults(argument_extractor)
239
+ ua_func = _Function(
240
+ argument_extractor,
241
+ argument_replacer,
242
+ domain,
243
+ arg_defaults,
244
+ kw_defaults,
245
+ default,
246
+ )
247
+
248
+ return functools.update_wrapper(ua_func, argument_extractor)
249
+
250
+
251
+ def set_backend(backend, coerce=False, only=False):
252
+ """
253
+ A context manager that sets the preferred backend.
254
+
255
+ Parameters
256
+ ----------
257
+ backend
258
+ The backend to set.
259
+ coerce
260
+ Whether or not to coerce to a specific backend's types. Implies ``only``.
261
+ only
262
+ Whether or not this should be the last backend to try.
263
+
264
+ See Also
265
+ --------
266
+ skip_backend: A context manager that allows skipping of backends.
267
+ set_global_backend: Set a single, global backend for a domain.
268
+ """
269
+ try:
270
+ return backend.__ua_cache__["set", coerce, only]
271
+ except AttributeError:
272
+ backend.__ua_cache__ = {}
273
+ except KeyError:
274
+ pass
275
+
276
+ ctx = _SetBackendContext(backend, coerce, only)
277
+ backend.__ua_cache__["set", coerce, only] = ctx
278
+ return ctx
279
+
280
+
281
+ def skip_backend(backend):
282
+ """
283
+ A context manager that allows one to skip a given backend from processing
284
+ entirely. This allows one to use another backend's code in a library that
285
+ is also a consumer of the same backend.
286
+
287
+ Parameters
288
+ ----------
289
+ backend
290
+ The backend to skip.
291
+
292
+ See Also
293
+ --------
294
+ set_backend: A context manager that allows setting of backends.
295
+ set_global_backend: Set a single, global backend for a domain.
296
+ """
297
+ try:
298
+ return backend.__ua_cache__["skip"]
299
+ except AttributeError:
300
+ backend.__ua_cache__ = {}
301
+ except KeyError:
302
+ pass
303
+
304
+ ctx = _SkipBackendContext(backend)
305
+ backend.__ua_cache__["skip"] = ctx
306
+ return ctx
307
+
308
+
309
+ def get_defaults(f):
310
+ sig = inspect.signature(f)
311
+ kw_defaults = {}
312
+ arg_defaults = []
313
+ opts = set()
314
+ for k, v in sig.parameters.items():
315
+ if v.default is not inspect.Parameter.empty:
316
+ kw_defaults[k] = v.default
317
+ if v.kind in (
318
+ inspect.Parameter.POSITIONAL_ONLY,
319
+ inspect.Parameter.POSITIONAL_OR_KEYWORD,
320
+ ):
321
+ arg_defaults.append(v.default)
322
+ opts.add(k)
323
+
324
+ return kw_defaults, tuple(arg_defaults), opts
325
+
326
+
327
+ def set_global_backend(backend, coerce=False, only=False, *, try_last=False):
328
+ """
329
+ This utility method replaces the default backend for permanent use. It
330
+ will be tried in the list of backends automatically, unless the
331
+ ``only`` flag is set on a backend. This will be the first tried
332
+ backend outside the :obj:`set_backend` context manager.
333
+
334
+ Note that this method is not thread-safe.
335
+
336
+ .. warning::
337
+ We caution library authors against using this function in
338
+ their code. We do *not* support this use-case. This function
339
+ is meant to be used only by users themselves, or by a reference
340
+ implementation, if one exists.
341
+
342
+ Parameters
343
+ ----------
344
+ backend
345
+ The backend to register.
346
+ coerce : bool
347
+ Whether to coerce input types when trying this backend.
348
+ only : bool
349
+ If ``True``, no more backends will be tried if this fails.
350
+ Implied by ``coerce=True``.
351
+ try_last : bool
352
+ If ``True``, the global backend is tried after registered backends.
353
+
354
+ See Also
355
+ --------
356
+ set_backend: A context manager that allows setting of backends.
357
+ skip_backend: A context manager that allows skipping of backends.
358
+ """
359
+ _uarray.set_global_backend(backend, coerce, only, try_last)
360
+
361
+
362
+ def register_backend(backend):
363
+ """
364
+ This utility method sets registers backend for permanent use. It
365
+ will be tried in the list of backends automatically, unless the
366
+ ``only`` flag is set on a backend.
367
+
368
+ Note that this method is not thread-safe.
369
+
370
+ Parameters
371
+ ----------
372
+ backend
373
+ The backend to register.
374
+ """
375
+ _uarray.register_backend(backend)
376
+
377
+
378
+ def clear_backends(domain, registered=True, globals=False):
379
+ """
380
+ This utility method clears registered backends.
381
+
382
+ .. warning::
383
+ We caution library authors against using this function in
384
+ their code. We do *not* support this use-case. This function
385
+ is meant to be used only by users themselves.
386
+
387
+ .. warning::
388
+ Do NOT use this method inside a multimethod call, or the
389
+ program is likely to crash.
390
+
391
+ Parameters
392
+ ----------
393
+ domain : Optional[str]
394
+ The domain for which to de-register backends. ``None`` means
395
+ de-register for all domains.
396
+ registered : bool
397
+ Whether or not to clear registered backends. See :obj:`register_backend`.
398
+ globals : bool
399
+ Whether or not to clear global backends. See :obj:`set_global_backend`.
400
+
401
+ See Also
402
+ --------
403
+ register_backend : Register a backend globally.
404
+ set_global_backend : Set a global backend.
405
+ """
406
+ _uarray.clear_backends(domain, registered, globals)
407
+
408
+
409
+ class Dispatchable:
410
+ """
411
+ A utility class which marks an argument with a specific dispatch type.
412
+
413
+
414
+ Attributes
415
+ ----------
416
+ value
417
+ The value of the Dispatchable.
418
+
419
+ type
420
+ The type of the Dispatchable.
421
+
422
+ Examples
423
+ --------
424
+ >>> x = Dispatchable(1, str)
425
+ >>> x
426
+ <Dispatchable: type=<class 'str'>, value=1>
427
+
428
+ See Also
429
+ --------
430
+ all_of_type
431
+ Marks all unmarked parameters of a function.
432
+
433
+ mark_as
434
+ Allows one to create a utility function to mark as a given type.
435
+ """
436
+
437
+ def __init__(self, value, dispatch_type, coercible=True):
438
+ self.value = value
439
+ self.type = dispatch_type
440
+ self.coercible = coercible
441
+
442
+ def __getitem__(self, index):
443
+ return (self.type, self.value)[index]
444
+
445
+ def __str__(self):
446
+ return f"<{type(self).__name__}: type={self.type!r}, value={self.value!r}>"
447
+
448
+ __repr__ = __str__
449
+
450
+
451
+ def mark_as(dispatch_type):
452
+ """
453
+ Creates a utility function to mark something as a specific type.
454
+
455
+ Examples
456
+ --------
457
+ >>> mark_int = mark_as(int)
458
+ >>> mark_int(1)
459
+ <Dispatchable: type=<class 'int'>, value=1>
460
+ """
461
+ return functools.partial(Dispatchable, dispatch_type=dispatch_type)
462
+
463
+
464
+ def all_of_type(arg_type):
465
+ """
466
+ Marks all unmarked arguments as a given type.
467
+
468
+ Examples
469
+ --------
470
+ >>> @all_of_type(str)
471
+ ... def f(a, b):
472
+ ... return a, Dispatchable(b, int)
473
+ >>> f('a', 1)
474
+ (<Dispatchable: type=<class 'str'>, value='a'>,
475
+ <Dispatchable: type=<class 'int'>, value=1>)
476
+ """
477
+
478
+ def outer(func):
479
+ @functools.wraps(func)
480
+ def inner(*args, **kwargs):
481
+ extracted_args = func(*args, **kwargs)
482
+ return tuple(
483
+ Dispatchable(arg, arg_type)
484
+ if not isinstance(arg, Dispatchable)
485
+ else arg
486
+ for arg in extracted_args
487
+ )
488
+
489
+ return inner
490
+
491
+ return outer
492
+
493
+
494
+ def wrap_single_convertor(convert_single):
495
+ """
496
+ Wraps a ``__ua_convert__`` defined for a single element to all elements.
497
+ If any of them return ``NotImplemented``, the operation is assumed to be
498
+ undefined.
499
+
500
+ Accepts a signature of (value, type, coerce).
501
+ """
502
+
503
+ @functools.wraps(convert_single)
504
+ def __ua_convert__(dispatchables, coerce):
505
+ converted = []
506
+ for d in dispatchables:
507
+ c = convert_single(d.value, d.type, coerce and d.coercible)
508
+
509
+ if c is NotImplemented:
510
+ return NotImplemented
511
+
512
+ converted.append(c)
513
+
514
+ return converted
515
+
516
+ return __ua_convert__
517
+
518
+
519
+ def wrap_single_convertor_instance(convert_single):
520
+ """
521
+ Wraps a ``__ua_convert__`` defined for a single element to all elements.
522
+ If any of them return ``NotImplemented``, the operation is assumed to be
523
+ undefined.
524
+
525
+ Accepts a signature of (value, type, coerce).
526
+ """
527
+
528
+ @functools.wraps(convert_single)
529
+ def __ua_convert__(self, dispatchables, coerce):
530
+ converted = []
531
+ for d in dispatchables:
532
+ c = convert_single(self, d.value, d.type, coerce and d.coercible)
533
+
534
+ if c is NotImplemented:
535
+ return NotImplemented
536
+
537
+ converted.append(c)
538
+
539
+ return converted
540
+
541
+ return __ua_convert__
542
+
543
+
544
+ def determine_backend(value, dispatch_type, *, domain, only=True, coerce=False):
545
+ """Set the backend to the first active backend that supports ``value``
546
+
547
+ This is useful for functions that call multimethods without any dispatchable
548
+ arguments. You can use :func:`determine_backend` to ensure the same backend
549
+ is used everywhere in a block of multimethod calls.
550
+
551
+ Parameters
552
+ ----------
553
+ value
554
+ The value being tested
555
+ dispatch_type
556
+ The dispatch type associated with ``value``, aka
557
+ ":ref:`marking <MarkingGlossary>`".
558
+ domain: string
559
+ The domain to query for backends and set.
560
+ coerce: bool
561
+ Whether or not to allow coercion to the backend's types. Implies ``only``.
562
+ only: bool
563
+ Whether or not this should be the last backend to try.
564
+
565
+ See Also
566
+ --------
567
+ set_backend: For when you know which backend to set
568
+
569
+ Notes
570
+ -----
571
+
572
+ Support is determined by the ``__ua_convert__`` protocol. Backends not
573
+ supporting the type must return ``NotImplemented`` from their
574
+ ``__ua_convert__`` if they don't support input of that type.
575
+
576
+ Examples
577
+ --------
578
+
579
+ Suppose we have two backends ``BackendA`` and ``BackendB`` each supporting
580
+ different types, ``TypeA`` and ``TypeB``. Neither supporting the other type:
581
+
582
+ >>> with ua.set_backend(ex.BackendA):
583
+ ... ex.call_multimethod(ex.TypeB(), ex.TypeB())
584
+ Traceback (most recent call last):
585
+ ...
586
+ uarray.BackendNotImplementedError: ...
587
+
588
+ Now consider a multimethod that creates a new object of ``TypeA``, or
589
+ ``TypeB`` depending on the active backend.
590
+
591
+ >>> with ua.set_backend(ex.BackendA), ua.set_backend(ex.BackendB):
592
+ ... res = ex.creation_multimethod()
593
+ ... ex.call_multimethod(res, ex.TypeA())
594
+ Traceback (most recent call last):
595
+ ...
596
+ uarray.BackendNotImplementedError: ...
597
+
598
+ ``res`` is an object of ``TypeB`` because ``BackendB`` is set in the
599
+ innermost with statement. So, ``call_multimethod`` fails since the types
600
+ don't match.
601
+
602
+ Instead, we need to first find a backend suitable for all of our objects.
603
+
604
+ >>> with ua.set_backend(ex.BackendA), ua.set_backend(ex.BackendB):
605
+ ... x = ex.TypeA()
606
+ ... with ua.determine_backend(x, "mark", domain="ua_examples"):
607
+ ... res = ex.creation_multimethod()
608
+ ... ex.call_multimethod(res, x)
609
+ TypeA
610
+
611
+ """
612
+ dispatchables = (Dispatchable(value, dispatch_type, coerce),)
613
+ backend = _uarray.determine_backend(domain, dispatchables, coerce)
614
+
615
+ return set_backend(backend, coerce=coerce, only=only)
616
+
617
+
618
+ def determine_backend_multi(
619
+ dispatchables, *, domain, only=True, coerce=False, **kwargs
620
+ ):
621
+ """Set a backend supporting all ``dispatchables``
622
+
623
+ This is useful for functions that call multimethods without any dispatchable
624
+ arguments. You can use :func:`determine_backend_multi` to ensure the same
625
+ backend is used everywhere in a block of multimethod calls involving
626
+ multiple arrays.
627
+
628
+ Parameters
629
+ ----------
630
+ dispatchables: Sequence[Union[uarray.Dispatchable, Any]]
631
+ The dispatchables that must be supported
632
+ domain: string
633
+ The domain to query for backends and set.
634
+ coerce: bool
635
+ Whether or not to allow coercion to the backend's types. Implies ``only``.
636
+ only: bool
637
+ Whether or not this should be the last backend to try.
638
+ dispatch_type: Optional[Any]
639
+ The default dispatch type associated with ``dispatchables``, aka
640
+ ":ref:`marking <MarkingGlossary>`".
641
+
642
+ See Also
643
+ --------
644
+ determine_backend: For a single dispatch value
645
+ set_backend: For when you know which backend to set
646
+
647
+ Notes
648
+ -----
649
+
650
+ Support is determined by the ``__ua_convert__`` protocol. Backends not
651
+ supporting the type must return ``NotImplemented`` from their
652
+ ``__ua_convert__`` if they don't support input of that type.
653
+
654
+ Examples
655
+ --------
656
+
657
+ :func:`determine_backend` allows the backend to be set from a single
658
+ object. :func:`determine_backend_multi` allows multiple objects to be
659
+ checked simultaneously for support in the backend. Suppose we have a
660
+ ``BackendAB`` which supports ``TypeA`` and ``TypeB`` in the same call,
661
+ and a ``BackendBC`` that doesn't support ``TypeA``.
662
+
663
+ >>> with ua.set_backend(ex.BackendAB), ua.set_backend(ex.BackendBC):
664
+ ... a, b = ex.TypeA(), ex.TypeB()
665
+ ... with ua.determine_backend_multi(
666
+ ... [ua.Dispatchable(a, "mark"), ua.Dispatchable(b, "mark")],
667
+ ... domain="ua_examples"
668
+ ... ):
669
+ ... res = ex.creation_multimethod()
670
+ ... ex.call_multimethod(res, a, b)
671
+ TypeA
672
+
673
+ This won't call ``BackendBC`` because it doesn't support ``TypeA``.
674
+
675
+ We can also use leave out the ``ua.Dispatchable`` if we specify the
676
+ default ``dispatch_type`` for the ``dispatchables`` argument.
677
+
678
+ >>> with ua.set_backend(ex.BackendAB), ua.set_backend(ex.BackendBC):
679
+ ... a, b = ex.TypeA(), ex.TypeB()
680
+ ... with ua.determine_backend_multi(
681
+ ... [a, b], dispatch_type="mark", domain="ua_examples"
682
+ ... ):
683
+ ... res = ex.creation_multimethod()
684
+ ... ex.call_multimethod(res, a, b)
685
+ TypeA
686
+
687
+ """
688
+ if "dispatch_type" in kwargs:
689
+ disp_type = kwargs.pop("dispatch_type")
690
+ dispatchables = tuple(
691
+ d if isinstance(d, Dispatchable) else Dispatchable(d, disp_type)
692
+ for d in dispatchables
693
+ )
694
+ else:
695
+ dispatchables = tuple(dispatchables)
696
+ if not all(isinstance(d, Dispatchable) for d in dispatchables):
697
+ raise TypeError("dispatchables must be instances of uarray.Dispatchable")
698
+
699
+ if len(kwargs) != 0:
700
+ raise TypeError(f"Received unexpected keyword arguments: {kwargs}")
701
+
702
+ backend = _uarray.determine_backend(domain, dispatchables, coerce)
703
+
704
+ return set_backend(backend, coerce=coerce, only=only)
venv/lib/python3.10/site-packages/scipy/_lib/_uarray/_uarray.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (174 kB). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/__init__.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ NumPy Array API compatibility library
3
+
4
+ This is a small wrapper around NumPy and CuPy that is compatible with the
5
+ Array API standard https://data-apis.org/array-api/latest/. See also NEP 47
6
+ https://numpy.org/neps/nep-0047-array-api-standard.html.
7
+
8
+ Unlike numpy.array_api, this is not a strict minimal implementation of the
9
+ Array API, but rather just an extension of the main NumPy namespace with
10
+ changes needed to be compliant with the Array API. See
11
+ https://numpy.org/doc/stable/reference/array_api.html for a full list of
12
+ changes. In particular, unlike numpy.array_api, this package does not use a
13
+ separate Array object, but rather just uses numpy.ndarray directly.
14
+
15
+ Library authors using the Array API may wish to test against numpy.array_api
16
+ to ensure they are not using functionality outside of the standard, but prefer
17
+ this implementation for the default when working with NumPy arrays.
18
+
19
+ """
20
+ __version__ = '1.4.1'
21
+
22
+ from .common import *
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.16 kB). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/__pycache__/_internal.cpython-310.pyc ADDED
Binary file (1.51 kB). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/_internal.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Internal helpers
3
+ """
4
+
5
+ from functools import wraps
6
+ from inspect import signature
7
+
8
+ def get_xp(xp):
9
+ """
10
+ Decorator to automatically replace xp with the corresponding array module.
11
+
12
+ Use like
13
+
14
+ import numpy as np
15
+
16
+ @get_xp(np)
17
+ def func(x, /, xp, kwarg=None):
18
+ return xp.func(x, kwarg=kwarg)
19
+
20
+ Note that xp must be a keyword argument and come after all non-keyword
21
+ arguments.
22
+
23
+ """
24
+ def inner(f):
25
+ @wraps(f)
26
+ def wrapped_f(*args, **kwargs):
27
+ return f(*args, xp=xp, **kwargs)
28
+
29
+ sig = signature(f)
30
+ new_sig = sig.replace(parameters=[sig.parameters[i] for i in sig.parameters if i != 'xp'])
31
+
32
+ if wrapped_f.__doc__ is None:
33
+ wrapped_f.__doc__ = f"""\
34
+ Array API compatibility wrapper for {f.__name__}.
35
+
36
+ See the corresponding documentation in NumPy/CuPy and/or the array API
37
+ specification for more details.
38
+
39
+ """
40
+ wrapped_f.__signature__ = new_sig
41
+ return wrapped_f
42
+
43
+ return inner
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from ._helpers import *
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (227 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/__pycache__/_aliases.cpython-310.pyc ADDED
Binary file (12.1 kB). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/__pycache__/_helpers.cpython-310.pyc ADDED
Binary file (6.47 kB). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/__pycache__/_linalg.cpython-310.pyc ADDED
Binary file (5.96 kB). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/__pycache__/_typing.cpython-310.pyc ADDED
Binary file (926 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/_aliases.py ADDED
@@ -0,0 +1,536 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ These are functions that are just aliases of existing functions in NumPy.
3
+ """
4
+
5
+ from __future__ import annotations
6
+
7
+ from typing import TYPE_CHECKING
8
+ if TYPE_CHECKING:
9
+ from typing import Optional, Sequence, Tuple, Union, List
10
+ from ._typing import ndarray, Device, Dtype, NestedSequence, SupportsBufferProtocol
11
+
12
+ from typing import NamedTuple
13
+ from types import ModuleType
14
+ import inspect
15
+
16
+ from ._helpers import _check_device, _is_numpy_array, array_namespace
17
+
18
+ # These functions are modified from the NumPy versions.
19
+
20
+ def arange(
21
+ start: Union[int, float],
22
+ /,
23
+ stop: Optional[Union[int, float]] = None,
24
+ step: Union[int, float] = 1,
25
+ *,
26
+ xp,
27
+ dtype: Optional[Dtype] = None,
28
+ device: Optional[Device] = None,
29
+ **kwargs
30
+ ) -> ndarray:
31
+ _check_device(xp, device)
32
+ return xp.arange(start, stop=stop, step=step, dtype=dtype, **kwargs)
33
+
34
+ def empty(
35
+ shape: Union[int, Tuple[int, ...]],
36
+ xp,
37
+ *,
38
+ dtype: Optional[Dtype] = None,
39
+ device: Optional[Device] = None,
40
+ **kwargs
41
+ ) -> ndarray:
42
+ _check_device(xp, device)
43
+ return xp.empty(shape, dtype=dtype, **kwargs)
44
+
45
+ def empty_like(
46
+ x: ndarray, /, xp, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None,
47
+ **kwargs
48
+ ) -> ndarray:
49
+ _check_device(xp, device)
50
+ return xp.empty_like(x, dtype=dtype, **kwargs)
51
+
52
+ def eye(
53
+ n_rows: int,
54
+ n_cols: Optional[int] = None,
55
+ /,
56
+ *,
57
+ xp,
58
+ k: int = 0,
59
+ dtype: Optional[Dtype] = None,
60
+ device: Optional[Device] = None,
61
+ **kwargs,
62
+ ) -> ndarray:
63
+ _check_device(xp, device)
64
+ return xp.eye(n_rows, M=n_cols, k=k, dtype=dtype, **kwargs)
65
+
66
+ def full(
67
+ shape: Union[int, Tuple[int, ...]],
68
+ fill_value: Union[int, float],
69
+ xp,
70
+ *,
71
+ dtype: Optional[Dtype] = None,
72
+ device: Optional[Device] = None,
73
+ **kwargs,
74
+ ) -> ndarray:
75
+ _check_device(xp, device)
76
+ return xp.full(shape, fill_value, dtype=dtype, **kwargs)
77
+
78
+ def full_like(
79
+ x: ndarray,
80
+ /,
81
+ fill_value: Union[int, float],
82
+ *,
83
+ xp,
84
+ dtype: Optional[Dtype] = None,
85
+ device: Optional[Device] = None,
86
+ **kwargs,
87
+ ) -> ndarray:
88
+ _check_device(xp, device)
89
+ return xp.full_like(x, fill_value, dtype=dtype, **kwargs)
90
+
91
+ def linspace(
92
+ start: Union[int, float],
93
+ stop: Union[int, float],
94
+ /,
95
+ num: int,
96
+ *,
97
+ xp,
98
+ dtype: Optional[Dtype] = None,
99
+ device: Optional[Device] = None,
100
+ endpoint: bool = True,
101
+ **kwargs,
102
+ ) -> ndarray:
103
+ _check_device(xp, device)
104
+ return xp.linspace(start, stop, num, dtype=dtype, endpoint=endpoint, **kwargs)
105
+
106
+ def ones(
107
+ shape: Union[int, Tuple[int, ...]],
108
+ xp,
109
+ *,
110
+ dtype: Optional[Dtype] = None,
111
+ device: Optional[Device] = None,
112
+ **kwargs,
113
+ ) -> ndarray:
114
+ _check_device(xp, device)
115
+ return xp.ones(shape, dtype=dtype, **kwargs)
116
+
117
+ def ones_like(
118
+ x: ndarray, /, xp, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None,
119
+ **kwargs,
120
+ ) -> ndarray:
121
+ _check_device(xp, device)
122
+ return xp.ones_like(x, dtype=dtype, **kwargs)
123
+
124
+ def zeros(
125
+ shape: Union[int, Tuple[int, ...]],
126
+ xp,
127
+ *,
128
+ dtype: Optional[Dtype] = None,
129
+ device: Optional[Device] = None,
130
+ **kwargs,
131
+ ) -> ndarray:
132
+ _check_device(xp, device)
133
+ return xp.zeros(shape, dtype=dtype, **kwargs)
134
+
135
+ def zeros_like(
136
+ x: ndarray, /, xp, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None,
137
+ **kwargs,
138
+ ) -> ndarray:
139
+ _check_device(xp, device)
140
+ return xp.zeros_like(x, dtype=dtype, **kwargs)
141
+
142
+ # np.unique() is split into four functions in the array API:
143
+ # unique_all, unique_counts, unique_inverse, and unique_values (this is done
144
+ # to remove polymorphic return types).
145
+
146
+ # The functions here return namedtuples (np.unique() returns a normal
147
+ # tuple).
148
+ class UniqueAllResult(NamedTuple):
149
+ values: ndarray
150
+ indices: ndarray
151
+ inverse_indices: ndarray
152
+ counts: ndarray
153
+
154
+
155
+ class UniqueCountsResult(NamedTuple):
156
+ values: ndarray
157
+ counts: ndarray
158
+
159
+
160
+ class UniqueInverseResult(NamedTuple):
161
+ values: ndarray
162
+ inverse_indices: ndarray
163
+
164
+
165
+ def _unique_kwargs(xp):
166
+ # Older versions of NumPy and CuPy do not have equal_nan. Rather than
167
+ # trying to parse version numbers, just check if equal_nan is in the
168
+ # signature.
169
+ s = inspect.signature(xp.unique)
170
+ if 'equal_nan' in s.parameters:
171
+ return {'equal_nan': False}
172
+ return {}
173
+
174
+ def unique_all(x: ndarray, /, xp) -> UniqueAllResult:
175
+ kwargs = _unique_kwargs(xp)
176
+ values, indices, inverse_indices, counts = xp.unique(
177
+ x,
178
+ return_counts=True,
179
+ return_index=True,
180
+ return_inverse=True,
181
+ **kwargs,
182
+ )
183
+ # np.unique() flattens inverse indices, but they need to share x's shape
184
+ # See https://github.com/numpy/numpy/issues/20638
185
+ inverse_indices = inverse_indices.reshape(x.shape)
186
+ return UniqueAllResult(
187
+ values,
188
+ indices,
189
+ inverse_indices,
190
+ counts,
191
+ )
192
+
193
+
194
+ def unique_counts(x: ndarray, /, xp) -> UniqueCountsResult:
195
+ kwargs = _unique_kwargs(xp)
196
+ res = xp.unique(
197
+ x,
198
+ return_counts=True,
199
+ return_index=False,
200
+ return_inverse=False,
201
+ **kwargs
202
+ )
203
+
204
+ return UniqueCountsResult(*res)
205
+
206
+
207
+ def unique_inverse(x: ndarray, /, xp) -> UniqueInverseResult:
208
+ kwargs = _unique_kwargs(xp)
209
+ values, inverse_indices = xp.unique(
210
+ x,
211
+ return_counts=False,
212
+ return_index=False,
213
+ return_inverse=True,
214
+ **kwargs,
215
+ )
216
+ # xp.unique() flattens inverse indices, but they need to share x's shape
217
+ # See https://github.com/numpy/numpy/issues/20638
218
+ inverse_indices = inverse_indices.reshape(x.shape)
219
+ return UniqueInverseResult(values, inverse_indices)
220
+
221
+
222
+ def unique_values(x: ndarray, /, xp) -> ndarray:
223
+ kwargs = _unique_kwargs(xp)
224
+ return xp.unique(
225
+ x,
226
+ return_counts=False,
227
+ return_index=False,
228
+ return_inverse=False,
229
+ **kwargs,
230
+ )
231
+
232
+ def astype(x: ndarray, dtype: Dtype, /, *, copy: bool = True) -> ndarray:
233
+ if not copy and dtype == x.dtype:
234
+ return x
235
+ return x.astype(dtype=dtype, copy=copy)
236
+
237
+ # These functions have different keyword argument names
238
+
239
+ def std(
240
+ x: ndarray,
241
+ /,
242
+ xp,
243
+ *,
244
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
245
+ correction: Union[int, float] = 0.0, # correction instead of ddof
246
+ keepdims: bool = False,
247
+ **kwargs,
248
+ ) -> ndarray:
249
+ return xp.std(x, axis=axis, ddof=correction, keepdims=keepdims, **kwargs)
250
+
251
+ def var(
252
+ x: ndarray,
253
+ /,
254
+ xp,
255
+ *,
256
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
257
+ correction: Union[int, float] = 0.0, # correction instead of ddof
258
+ keepdims: bool = False,
259
+ **kwargs,
260
+ ) -> ndarray:
261
+ return xp.var(x, axis=axis, ddof=correction, keepdims=keepdims, **kwargs)
262
+
263
+ # Unlike transpose(), the axes argument to permute_dims() is required.
264
+ def permute_dims(x: ndarray, /, axes: Tuple[int, ...], xp) -> ndarray:
265
+ return xp.transpose(x, axes)
266
+
267
+ # Creation functions add the device keyword (which does nothing for NumPy)
268
+
269
+ # asarray also adds the copy keyword
270
+ def _asarray(
271
+ obj: Union[
272
+ ndarray,
273
+ bool,
274
+ int,
275
+ float,
276
+ NestedSequence[bool | int | float],
277
+ SupportsBufferProtocol,
278
+ ],
279
+ /,
280
+ *,
281
+ dtype: Optional[Dtype] = None,
282
+ device: Optional[Device] = None,
283
+ copy: "Optional[Union[bool, np._CopyMode]]" = None,
284
+ namespace = None,
285
+ **kwargs,
286
+ ) -> ndarray:
287
+ """
288
+ Array API compatibility wrapper for asarray().
289
+
290
+ See the corresponding documentation in NumPy/CuPy and/or the array API
291
+ specification for more details.
292
+
293
+ """
294
+ if namespace is None:
295
+ try:
296
+ xp = array_namespace(obj, _use_compat=False)
297
+ except ValueError:
298
+ # TODO: What about lists of arrays?
299
+ raise ValueError("A namespace must be specified for asarray() with non-array input")
300
+ elif isinstance(namespace, ModuleType):
301
+ xp = namespace
302
+ elif namespace == 'numpy':
303
+ import numpy as xp
304
+ elif namespace == 'cupy':
305
+ import cupy as xp
306
+ else:
307
+ raise ValueError("Unrecognized namespace argument to asarray()")
308
+
309
+ _check_device(xp, device)
310
+ if _is_numpy_array(obj):
311
+ import numpy as np
312
+ if hasattr(np, '_CopyMode'):
313
+ # Not present in older NumPys
314
+ COPY_FALSE = (False, np._CopyMode.IF_NEEDED)
315
+ COPY_TRUE = (True, np._CopyMode.ALWAYS)
316
+ else:
317
+ COPY_FALSE = (False,)
318
+ COPY_TRUE = (True,)
319
+ else:
320
+ COPY_FALSE = (False,)
321
+ COPY_TRUE = (True,)
322
+ if copy in COPY_FALSE:
323
+ # copy=False is not yet implemented in xp.asarray
324
+ raise NotImplementedError("copy=False is not yet implemented")
325
+ if isinstance(obj, xp.ndarray):
326
+ if dtype is not None and obj.dtype != dtype:
327
+ copy = True
328
+ if copy in COPY_TRUE:
329
+ return xp.array(obj, copy=True, dtype=dtype)
330
+ return obj
331
+
332
+ return xp.asarray(obj, dtype=dtype, **kwargs)
333
+
334
+ # np.reshape calls the keyword argument 'newshape' instead of 'shape'
335
+ def reshape(x: ndarray,
336
+ /,
337
+ shape: Tuple[int, ...],
338
+ xp, copy: Optional[bool] = None,
339
+ **kwargs) -> ndarray:
340
+ if copy is True:
341
+ x = x.copy()
342
+ elif copy is False:
343
+ y = x.view()
344
+ y.shape = shape
345
+ return y
346
+ return xp.reshape(x, shape, **kwargs)
347
+
348
+ # The descending keyword is new in sort and argsort, and 'kind' replaced with
349
+ # 'stable'
350
+ def argsort(
351
+ x: ndarray, /, xp, *, axis: int = -1, descending: bool = False, stable: bool = True,
352
+ **kwargs,
353
+ ) -> ndarray:
354
+ # Note: this keyword argument is different, and the default is different.
355
+ # We set it in kwargs like this because numpy.sort uses kind='quicksort'
356
+ # as the default whereas cupy.sort uses kind=None.
357
+ if stable:
358
+ kwargs['kind'] = "stable"
359
+ if not descending:
360
+ res = xp.argsort(x, axis=axis, **kwargs)
361
+ else:
362
+ # As NumPy has no native descending sort, we imitate it here. Note that
363
+ # simply flipping the results of xp.argsort(x, ...) would not
364
+ # respect the relative order like it would in native descending sorts.
365
+ res = xp.flip(
366
+ xp.argsort(xp.flip(x, axis=axis), axis=axis, **kwargs),
367
+ axis=axis,
368
+ )
369
+ # Rely on flip()/argsort() to validate axis
370
+ normalised_axis = axis if axis >= 0 else x.ndim + axis
371
+ max_i = x.shape[normalised_axis] - 1
372
+ res = max_i - res
373
+ return res
374
+
375
+ def sort(
376
+ x: ndarray, /, xp, *, axis: int = -1, descending: bool = False, stable: bool = True,
377
+ **kwargs,
378
+ ) -> ndarray:
379
+ # Note: this keyword argument is different, and the default is different.
380
+ # We set it in kwargs like this because numpy.sort uses kind='quicksort'
381
+ # as the default whereas cupy.sort uses kind=None.
382
+ if stable:
383
+ kwargs['kind'] = "stable"
384
+ res = xp.sort(x, axis=axis, **kwargs)
385
+ if descending:
386
+ res = xp.flip(res, axis=axis)
387
+ return res
388
+
389
+ # nonzero should error for zero-dimensional arrays
390
+ def nonzero(x: ndarray, /, xp, **kwargs) -> Tuple[ndarray, ...]:
391
+ if x.ndim == 0:
392
+ raise ValueError("nonzero() does not support zero-dimensional arrays")
393
+ return xp.nonzero(x, **kwargs)
394
+
395
+ # sum() and prod() should always upcast when dtype=None
396
+ def sum(
397
+ x: ndarray,
398
+ /,
399
+ xp,
400
+ *,
401
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
402
+ dtype: Optional[Dtype] = None,
403
+ keepdims: bool = False,
404
+ **kwargs,
405
+ ) -> ndarray:
406
+ # `xp.sum` already upcasts integers, but not floats or complexes
407
+ if dtype is None:
408
+ if x.dtype == xp.float32:
409
+ dtype = xp.float64
410
+ elif x.dtype == xp.complex64:
411
+ dtype = xp.complex128
412
+ return xp.sum(x, axis=axis, dtype=dtype, keepdims=keepdims, **kwargs)
413
+
414
+ def prod(
415
+ x: ndarray,
416
+ /,
417
+ xp,
418
+ *,
419
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
420
+ dtype: Optional[Dtype] = None,
421
+ keepdims: bool = False,
422
+ **kwargs,
423
+ ) -> ndarray:
424
+ if dtype is None:
425
+ if x.dtype == xp.float32:
426
+ dtype = xp.float64
427
+ elif x.dtype == xp.complex64:
428
+ dtype = xp.complex128
429
+ return xp.prod(x, dtype=dtype, axis=axis, keepdims=keepdims, **kwargs)
430
+
431
+ # ceil, floor, and trunc return integers for integer inputs
432
+
433
+ def ceil(x: ndarray, /, xp, **kwargs) -> ndarray:
434
+ if xp.issubdtype(x.dtype, xp.integer):
435
+ return x
436
+ return xp.ceil(x, **kwargs)
437
+
438
+ def floor(x: ndarray, /, xp, **kwargs) -> ndarray:
439
+ if xp.issubdtype(x.dtype, xp.integer):
440
+ return x
441
+ return xp.floor(x, **kwargs)
442
+
443
+ def trunc(x: ndarray, /, xp, **kwargs) -> ndarray:
444
+ if xp.issubdtype(x.dtype, xp.integer):
445
+ return x
446
+ return xp.trunc(x, **kwargs)
447
+
448
+ # linear algebra functions
449
+
450
+ def matmul(x1: ndarray, x2: ndarray, /, xp, **kwargs) -> ndarray:
451
+ return xp.matmul(x1, x2, **kwargs)
452
+
453
+ # Unlike transpose, matrix_transpose only transposes the last two axes.
454
+ def matrix_transpose(x: ndarray, /, xp) -> ndarray:
455
+ if x.ndim < 2:
456
+ raise ValueError("x must be at least 2-dimensional for matrix_transpose")
457
+ return xp.swapaxes(x, -1, -2)
458
+
459
+ def tensordot(x1: ndarray,
460
+ x2: ndarray,
461
+ /,
462
+ xp,
463
+ *,
464
+ axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2,
465
+ **kwargs,
466
+ ) -> ndarray:
467
+ return xp.tensordot(x1, x2, axes=axes, **kwargs)
468
+
469
+ def vecdot(x1: ndarray, x2: ndarray, /, xp, *, axis: int = -1) -> ndarray:
470
+ ndim = max(x1.ndim, x2.ndim)
471
+ x1_shape = (1,)*(ndim - x1.ndim) + tuple(x1.shape)
472
+ x2_shape = (1,)*(ndim - x2.ndim) + tuple(x2.shape)
473
+ if x1_shape[axis] != x2_shape[axis]:
474
+ raise ValueError("x1 and x2 must have the same size along the given axis")
475
+
476
+ if hasattr(xp, 'broadcast_tensors'):
477
+ _broadcast = xp.broadcast_tensors
478
+ else:
479
+ _broadcast = xp.broadcast_arrays
480
+
481
+ x1_, x2_ = _broadcast(x1, x2)
482
+ x1_ = xp.moveaxis(x1_, axis, -1)
483
+ x2_ = xp.moveaxis(x2_, axis, -1)
484
+
485
+ res = x1_[..., None, :] @ x2_[..., None]
486
+ return res[..., 0, 0]
487
+
488
+ # isdtype is a new function in the 2022.12 array API specification.
489
+
490
+ def isdtype(
491
+ dtype: Dtype, kind: Union[Dtype, str, Tuple[Union[Dtype, str], ...]], xp,
492
+ *, _tuple=True, # Disallow nested tuples
493
+ ) -> bool:
494
+ """
495
+ Returns a boolean indicating whether a provided dtype is of a specified data type ``kind``.
496
+
497
+ Note that outside of this function, this compat library does not yet fully
498
+ support complex numbers.
499
+
500
+ See
501
+ https://data-apis.org/array-api/latest/API_specification/generated/array_api.isdtype.html
502
+ for more details
503
+ """
504
+ if isinstance(kind, tuple) and _tuple:
505
+ return any(isdtype(dtype, k, xp, _tuple=False) for k in kind)
506
+ elif isinstance(kind, str):
507
+ if kind == 'bool':
508
+ return dtype == xp.bool_
509
+ elif kind == 'signed integer':
510
+ return xp.issubdtype(dtype, xp.signedinteger)
511
+ elif kind == 'unsigned integer':
512
+ return xp.issubdtype(dtype, xp.unsignedinteger)
513
+ elif kind == 'integral':
514
+ return xp.issubdtype(dtype, xp.integer)
515
+ elif kind == 'real floating':
516
+ return xp.issubdtype(dtype, xp.floating)
517
+ elif kind == 'complex floating':
518
+ return xp.issubdtype(dtype, xp.complexfloating)
519
+ elif kind == 'numeric':
520
+ return xp.issubdtype(dtype, xp.number)
521
+ else:
522
+ raise ValueError(f"Unrecognized data type kind: {kind!r}")
523
+ else:
524
+ # This will allow things that aren't required by the spec, like
525
+ # isdtype(np.float64, float) or isdtype(np.int64, 'l'). Should we be
526
+ # more strict here to match the type annotation? Note that the
527
+ # numpy.array_api implementation will be very strict.
528
+ return dtype == kind
529
+
530
+ __all__ = ['arange', 'empty', 'empty_like', 'eye', 'full', 'full_like',
531
+ 'linspace', 'ones', 'ones_like', 'zeros', 'zeros_like',
532
+ 'UniqueAllResult', 'UniqueCountsResult', 'UniqueInverseResult',
533
+ 'unique_all', 'unique_counts', 'unique_inverse', 'unique_values',
534
+ 'astype', 'std', 'var', 'permute_dims', 'reshape', 'argsort',
535
+ 'sort', 'nonzero', 'sum', 'prod', 'ceil', 'floor', 'trunc',
536
+ 'matmul', 'matrix_transpose', 'tensordot', 'vecdot', 'isdtype']
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/_helpers.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Various helper functions which are not part of the spec.
3
+
4
+ Functions which start with an underscore are for internal use only but helpers
5
+ that are in __all__ are intended as additional helper functions for use by end
6
+ users of the compat library.
7
+ """
8
+ from __future__ import annotations
9
+
10
+ import sys
11
+ import math
12
+
13
+ def _is_numpy_array(x):
14
+ # Avoid importing NumPy if it isn't already
15
+ if 'numpy' not in sys.modules:
16
+ return False
17
+
18
+ import numpy as np
19
+
20
+ # TODO: Should we reject ndarray subclasses?
21
+ return isinstance(x, (np.ndarray, np.generic))
22
+
23
+ def _is_cupy_array(x):
24
+ # Avoid importing NumPy if it isn't already
25
+ if 'cupy' not in sys.modules:
26
+ return False
27
+
28
+ import cupy as cp
29
+
30
+ # TODO: Should we reject ndarray subclasses?
31
+ return isinstance(x, (cp.ndarray, cp.generic))
32
+
33
+ def _is_torch_array(x):
34
+ # Avoid importing torch if it isn't already
35
+ if 'torch' not in sys.modules:
36
+ return False
37
+
38
+ import torch
39
+
40
+ # TODO: Should we reject ndarray subclasses?
41
+ return isinstance(x, torch.Tensor)
42
+
43
+ def is_array_api_obj(x):
44
+ """
45
+ Check if x is an array API compatible array object.
46
+ """
47
+ return _is_numpy_array(x) \
48
+ or _is_cupy_array(x) \
49
+ or _is_torch_array(x) \
50
+ or hasattr(x, '__array_namespace__')
51
+
52
+ def _check_api_version(api_version):
53
+ if api_version is not None and api_version != '2021.12':
54
+ raise ValueError("Only the 2021.12 version of the array API specification is currently supported")
55
+
56
+ def array_namespace(*xs, api_version=None, _use_compat=True):
57
+ """
58
+ Get the array API compatible namespace for the arrays `xs`.
59
+
60
+ `xs` should contain one or more arrays.
61
+
62
+ Typical usage is
63
+
64
+ def your_function(x, y):
65
+ xp = array_api_compat.array_namespace(x, y)
66
+ # Now use xp as the array library namespace
67
+ return xp.mean(x, axis=0) + 2*xp.std(y, axis=0)
68
+
69
+ api_version should be the newest version of the spec that you need support
70
+ for (currently the compat library wrapped APIs only support v2021.12).
71
+ """
72
+ namespaces = set()
73
+ for x in xs:
74
+ if _is_numpy_array(x):
75
+ _check_api_version(api_version)
76
+ if _use_compat:
77
+ from .. import numpy as numpy_namespace
78
+ namespaces.add(numpy_namespace)
79
+ else:
80
+ import numpy as np
81
+ namespaces.add(np)
82
+ elif _is_cupy_array(x):
83
+ _check_api_version(api_version)
84
+ if _use_compat:
85
+ from .. import cupy as cupy_namespace
86
+ namespaces.add(cupy_namespace)
87
+ else:
88
+ import cupy as cp
89
+ namespaces.add(cp)
90
+ elif _is_torch_array(x):
91
+ _check_api_version(api_version)
92
+ if _use_compat:
93
+ from .. import torch as torch_namespace
94
+ namespaces.add(torch_namespace)
95
+ else:
96
+ import torch
97
+ namespaces.add(torch)
98
+ elif hasattr(x, '__array_namespace__'):
99
+ namespaces.add(x.__array_namespace__(api_version=api_version))
100
+ else:
101
+ # TODO: Support Python scalars?
102
+ raise TypeError(f"{type(x).__name__} is not a supported array type")
103
+
104
+ if not namespaces:
105
+ raise TypeError("Unrecognized array input")
106
+
107
+ if len(namespaces) != 1:
108
+ raise TypeError(f"Multiple namespaces for array inputs: {namespaces}")
109
+
110
+ xp, = namespaces
111
+
112
+ return xp
113
+
114
+ # backwards compatibility alias
115
+ get_namespace = array_namespace
116
+
117
+ def _check_device(xp, device):
118
+ if xp == sys.modules.get('numpy'):
119
+ if device not in ["cpu", None]:
120
+ raise ValueError(f"Unsupported device for NumPy: {device!r}")
121
+
122
+ # device() is not on numpy.ndarray and and to_device() is not on numpy.ndarray
123
+ # or cupy.ndarray. They are not included in array objects of this library
124
+ # because this library just reuses the respective ndarray classes without
125
+ # wrapping or subclassing them. These helper functions can be used instead of
126
+ # the wrapper functions for libraries that need to support both NumPy/CuPy and
127
+ # other libraries that use devices.
128
+ def device(x: "Array", /) -> "Device":
129
+ """
130
+ Hardware device the array data resides on.
131
+
132
+ Parameters
133
+ ----------
134
+ x: array
135
+ array instance from NumPy or an array API compatible library.
136
+
137
+ Returns
138
+ -------
139
+ out: device
140
+ a ``device`` object (see the "Device Support" section of the array API specification).
141
+ """
142
+ if _is_numpy_array(x):
143
+ return "cpu"
144
+ return x.device
145
+
146
+ # Based on cupy.array_api.Array.to_device
147
+ def _cupy_to_device(x, device, /, stream=None):
148
+ import cupy as cp
149
+ from cupy.cuda import Device as _Device
150
+ from cupy.cuda import stream as stream_module
151
+ from cupy_backends.cuda.api import runtime
152
+
153
+ if device == x.device:
154
+ return x
155
+ elif device == "cpu":
156
+ # allowing us to use `to_device(x, "cpu")`
157
+ # is useful for portable test swapping between
158
+ # host and device backends
159
+ return x.get()
160
+ elif not isinstance(device, _Device):
161
+ raise ValueError(f"Unsupported device {device!r}")
162
+ else:
163
+ # see cupy/cupy#5985 for the reason how we handle device/stream here
164
+ prev_device = runtime.getDevice()
165
+ prev_stream: stream_module.Stream = None
166
+ if stream is not None:
167
+ prev_stream = stream_module.get_current_stream()
168
+ # stream can be an int as specified in __dlpack__, or a CuPy stream
169
+ if isinstance(stream, int):
170
+ stream = cp.cuda.ExternalStream(stream)
171
+ elif isinstance(stream, cp.cuda.Stream):
172
+ pass
173
+ else:
174
+ raise ValueError('the input stream is not recognized')
175
+ stream.use()
176
+ try:
177
+ runtime.setDevice(device.id)
178
+ arr = x.copy()
179
+ finally:
180
+ runtime.setDevice(prev_device)
181
+ if stream is not None:
182
+ prev_stream.use()
183
+ return arr
184
+
185
+ def _torch_to_device(x, device, /, stream=None):
186
+ if stream is not None:
187
+ raise NotImplementedError
188
+ return x.to(device)
189
+
190
+ def to_device(x: "Array", device: "Device", /, *, stream: "Optional[Union[int, Any]]" = None) -> "Array":
191
+ """
192
+ Copy the array from the device on which it currently resides to the specified ``device``.
193
+
194
+ Parameters
195
+ ----------
196
+ x: array
197
+ array instance from NumPy or an array API compatible library.
198
+ device: device
199
+ a ``device`` object (see the "Device Support" section of the array API specification).
200
+ stream: Optional[Union[int, Any]]
201
+ stream object to use during copy. In addition to the types supported in ``array.__dlpack__``, implementations may choose to support any library-specific stream object with the caveat that any code using such an object would not be portable.
202
+
203
+ Returns
204
+ -------
205
+ out: array
206
+ an array with the same data and data type as ``x`` and located on the specified ``device``.
207
+
208
+ .. note::
209
+ If ``stream`` is given, the copy operation should be enqueued on the provided ``stream``; otherwise, the copy operation should be enqueued on the default stream/queue. Whether the copy is performed synchronously or asynchronously is implementation-dependent. Accordingly, if synchronization is required to guarantee data safety, this must be clearly explained in a conforming library's documentation.
210
+ """
211
+ if _is_numpy_array(x):
212
+ if stream is not None:
213
+ raise ValueError("The stream argument to to_device() is not supported")
214
+ if device == 'cpu':
215
+ return x
216
+ raise ValueError(f"Unsupported device {device!r}")
217
+ elif _is_cupy_array(x):
218
+ # cupy does not yet have to_device
219
+ return _cupy_to_device(x, device, stream=stream)
220
+ elif _is_torch_array(x):
221
+ return _torch_to_device(x, device, stream=stream)
222
+ return x.to_device(device, stream=stream)
223
+
224
+ def size(x):
225
+ """
226
+ Return the total number of elements of x
227
+ """
228
+ if None in x.shape:
229
+ return None
230
+ return math.prod(x.shape)
231
+
232
+ __all__ = ['is_array_api_obj', 'array_namespace', 'get_namespace', 'device', 'to_device', 'size']
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/_linalg.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING, NamedTuple
4
+ if TYPE_CHECKING:
5
+ from typing import Literal, Optional, Sequence, Tuple, Union
6
+ from ._typing import ndarray
7
+
8
+ import numpy as np
9
+ if np.__version__[0] == "2":
10
+ from numpy.lib.array_utils import normalize_axis_tuple
11
+ else:
12
+ from numpy.core.numeric import normalize_axis_tuple
13
+
14
+ from ._aliases import matmul, matrix_transpose, tensordot, vecdot, isdtype
15
+ from .._internal import get_xp
16
+
17
+ # These are in the main NumPy namespace but not in numpy.linalg
18
+ def cross(x1: ndarray, x2: ndarray, /, xp, *, axis: int = -1, **kwargs) -> ndarray:
19
+ return xp.cross(x1, x2, axis=axis, **kwargs)
20
+
21
+ def outer(x1: ndarray, x2: ndarray, /, xp, **kwargs) -> ndarray:
22
+ return xp.outer(x1, x2, **kwargs)
23
+
24
+ class EighResult(NamedTuple):
25
+ eigenvalues: ndarray
26
+ eigenvectors: ndarray
27
+
28
+ class QRResult(NamedTuple):
29
+ Q: ndarray
30
+ R: ndarray
31
+
32
+ class SlogdetResult(NamedTuple):
33
+ sign: ndarray
34
+ logabsdet: ndarray
35
+
36
+ class SVDResult(NamedTuple):
37
+ U: ndarray
38
+ S: ndarray
39
+ Vh: ndarray
40
+
41
+ # These functions are the same as their NumPy counterparts except they return
42
+ # a namedtuple.
43
+ def eigh(x: ndarray, /, xp, **kwargs) -> EighResult:
44
+ return EighResult(*xp.linalg.eigh(x, **kwargs))
45
+
46
+ def qr(x: ndarray, /, xp, *, mode: Literal['reduced', 'complete'] = 'reduced',
47
+ **kwargs) -> QRResult:
48
+ return QRResult(*xp.linalg.qr(x, mode=mode, **kwargs))
49
+
50
+ def slogdet(x: ndarray, /, xp, **kwargs) -> SlogdetResult:
51
+ return SlogdetResult(*xp.linalg.slogdet(x, **kwargs))
52
+
53
+ def svd(x: ndarray, /, xp, *, full_matrices: bool = True, **kwargs) -> SVDResult:
54
+ return SVDResult(*xp.linalg.svd(x, full_matrices=full_matrices, **kwargs))
55
+
56
+ # These functions have additional keyword arguments
57
+
58
+ # The upper keyword argument is new from NumPy
59
+ def cholesky(x: ndarray, /, xp, *, upper: bool = False, **kwargs) -> ndarray:
60
+ L = xp.linalg.cholesky(x, **kwargs)
61
+ if upper:
62
+ U = get_xp(xp)(matrix_transpose)(L)
63
+ if get_xp(xp)(isdtype)(U.dtype, 'complex floating'):
64
+ U = xp.conj(U)
65
+ return U
66
+ return L
67
+
68
+ # The rtol keyword argument of matrix_rank() and pinv() is new from NumPy.
69
+ # Note that it has a different semantic meaning from tol and rcond.
70
+ def matrix_rank(x: ndarray,
71
+ /,
72
+ xp,
73
+ *,
74
+ rtol: Optional[Union[float, ndarray]] = None,
75
+ **kwargs) -> ndarray:
76
+ # this is different from xp.linalg.matrix_rank, which supports 1
77
+ # dimensional arrays.
78
+ if x.ndim < 2:
79
+ raise xp.linalg.LinAlgError("1-dimensional array given. Array must be at least two-dimensional")
80
+ S = xp.linalg.svd(x, compute_uv=False, **kwargs)
81
+ if rtol is None:
82
+ tol = S.max(axis=-1, keepdims=True) * max(x.shape[-2:]) * xp.finfo(S.dtype).eps
83
+ else:
84
+ # this is different from xp.linalg.matrix_rank, which does not
85
+ # multiply the tolerance by the largest singular value.
86
+ tol = S.max(axis=-1, keepdims=True)*xp.asarray(rtol)[..., xp.newaxis]
87
+ return xp.count_nonzero(S > tol, axis=-1)
88
+
89
+ def pinv(x: ndarray, /, xp, *, rtol: Optional[Union[float, ndarray]] = None, **kwargs) -> ndarray:
90
+ # this is different from xp.linalg.pinv, which does not multiply the
91
+ # default tolerance by max(M, N).
92
+ if rtol is None:
93
+ rtol = max(x.shape[-2:]) * xp.finfo(x.dtype).eps
94
+ return xp.linalg.pinv(x, rcond=rtol, **kwargs)
95
+
96
+ # These functions are new in the array API spec
97
+
98
+ def matrix_norm(x: ndarray, /, xp, *, keepdims: bool = False, ord: Optional[Union[int, float, Literal['fro', 'nuc']]] = 'fro') -> ndarray:
99
+ return xp.linalg.norm(x, axis=(-2, -1), keepdims=keepdims, ord=ord)
100
+
101
+ # svdvals is not in NumPy (but it is in SciPy). It is equivalent to
102
+ # xp.linalg.svd(compute_uv=False).
103
+ def svdvals(x: ndarray, /, xp) -> Union[ndarray, Tuple[ndarray, ...]]:
104
+ return xp.linalg.svd(x, compute_uv=False)
105
+
106
+ def vector_norm(x: ndarray, /, xp, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ord: Optional[Union[int, float]] = 2) -> ndarray:
107
+ # xp.linalg.norm tries to do a matrix norm whenever axis is a 2-tuple or
108
+ # when axis=None and the input is 2-D, so to force a vector norm, we make
109
+ # it so the input is 1-D (for axis=None), or reshape so that norm is done
110
+ # on a single dimension.
111
+ if axis is None:
112
+ # Note: xp.linalg.norm() doesn't handle 0-D arrays
113
+ x = x.ravel()
114
+ _axis = 0
115
+ elif isinstance(axis, tuple):
116
+ # Note: The axis argument supports any number of axes, whereas
117
+ # xp.linalg.norm() only supports a single axis for vector norm.
118
+ normalized_axis = normalize_axis_tuple(axis, x.ndim)
119
+ rest = tuple(i for i in range(x.ndim) if i not in normalized_axis)
120
+ newshape = axis + rest
121
+ x = xp.transpose(x, newshape).reshape(
122
+ (xp.prod([x.shape[i] for i in axis], dtype=int), *[x.shape[i] for i in rest]))
123
+ _axis = 0
124
+ else:
125
+ _axis = axis
126
+
127
+ res = xp.linalg.norm(x, axis=_axis, ord=ord)
128
+
129
+ if keepdims:
130
+ # We can't reuse xp.linalg.norm(keepdims) because of the reshape hacks
131
+ # above to avoid matrix norm logic.
132
+ shape = list(x.shape)
133
+ _axis = normalize_axis_tuple(range(x.ndim) if axis is None else axis, x.ndim)
134
+ for i in _axis:
135
+ shape[i] = 1
136
+ res = xp.reshape(res, tuple(shape))
137
+
138
+ return res
139
+
140
+ # xp.diagonal and xp.trace operate on the first two axes whereas these
141
+ # operates on the last two
142
+
143
+ def diagonal(x: ndarray, /, xp, *, offset: int = 0, **kwargs) -> ndarray:
144
+ return xp.diagonal(x, offset=offset, axis1=-2, axis2=-1, **kwargs)
145
+
146
+ def trace(x: ndarray, /, xp, *, offset: int = 0, dtype=None, **kwargs) -> ndarray:
147
+ if dtype is None:
148
+ if x.dtype == xp.float32:
149
+ dtype = xp.float64
150
+ elif x.dtype == xp.complex64:
151
+ dtype = xp.complex128
152
+ return xp.asarray(xp.trace(x, offset=offset, dtype=dtype, axis1=-2, axis2=-1, **kwargs))
153
+
154
+ __all__ = ['cross', 'matmul', 'outer', 'tensordot', 'EighResult',
155
+ 'QRResult', 'SlogdetResult', 'SVDResult', 'eigh', 'qr', 'slogdet',
156
+ 'svd', 'cholesky', 'matrix_rank', 'pinv', 'matrix_norm',
157
+ 'matrix_transpose', 'svdvals', 'vecdot', 'vector_norm', 'diagonal',
158
+ 'trace']
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/common/_typing.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ __all__ = [
4
+ "NestedSequence",
5
+ "SupportsBufferProtocol",
6
+ ]
7
+
8
+ from typing import (
9
+ Any,
10
+ TypeVar,
11
+ Protocol,
12
+ )
13
+
14
+ _T_co = TypeVar("_T_co", covariant=True)
15
+
16
+ class NestedSequence(Protocol[_T_co]):
17
+ def __getitem__(self, key: int, /) -> _T_co | NestedSequence[_T_co]: ...
18
+ def __len__(self, /) -> int: ...
19
+
20
+ SupportsBufferProtocol = Any
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/__init__.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from cupy import *
2
+
3
+ # from cupy import * doesn't overwrite these builtin names
4
+ from cupy import abs, max, min, round
5
+
6
+ # These imports may overwrite names from the import * above.
7
+ from ._aliases import *
8
+
9
+ # See the comment in the numpy __init__.py
10
+ __import__(__package__ + '.linalg')
11
+
12
+ from .linalg import matrix_transpose, vecdot
13
+
14
+ from ..common._helpers import *
15
+
16
+ __array_api_version__ = '2022.12'
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (498 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/__pycache__/_aliases.cpython-310.pyc ADDED
Binary file (1.93 kB). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/__pycache__/_typing.cpython-310.pyc ADDED
Binary file (738 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/__pycache__/linalg.cpython-310.pyc ADDED
Binary file (1.05 kB). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/_aliases.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from functools import partial
4
+
5
+ from ..common import _aliases
6
+
7
+ from .._internal import get_xp
8
+
9
+ asarray = asarray_cupy = partial(_aliases._asarray, namespace='cupy')
10
+ asarray.__doc__ = _aliases._asarray.__doc__
11
+ del partial
12
+
13
+ import cupy as cp
14
+ bool = cp.bool_
15
+
16
+ # Basic renames
17
+ acos = cp.arccos
18
+ acosh = cp.arccosh
19
+ asin = cp.arcsin
20
+ asinh = cp.arcsinh
21
+ atan = cp.arctan
22
+ atan2 = cp.arctan2
23
+ atanh = cp.arctanh
24
+ bitwise_left_shift = cp.left_shift
25
+ bitwise_invert = cp.invert
26
+ bitwise_right_shift = cp.right_shift
27
+ concat = cp.concatenate
28
+ pow = cp.power
29
+
30
+ arange = get_xp(cp)(_aliases.arange)
31
+ empty = get_xp(cp)(_aliases.empty)
32
+ empty_like = get_xp(cp)(_aliases.empty_like)
33
+ eye = get_xp(cp)(_aliases.eye)
34
+ full = get_xp(cp)(_aliases.full)
35
+ full_like = get_xp(cp)(_aliases.full_like)
36
+ linspace = get_xp(cp)(_aliases.linspace)
37
+ ones = get_xp(cp)(_aliases.ones)
38
+ ones_like = get_xp(cp)(_aliases.ones_like)
39
+ zeros = get_xp(cp)(_aliases.zeros)
40
+ zeros_like = get_xp(cp)(_aliases.zeros_like)
41
+ UniqueAllResult = get_xp(cp)(_aliases.UniqueAllResult)
42
+ UniqueCountsResult = get_xp(cp)(_aliases.UniqueCountsResult)
43
+ UniqueInverseResult = get_xp(cp)(_aliases.UniqueInverseResult)
44
+ unique_all = get_xp(cp)(_aliases.unique_all)
45
+ unique_counts = get_xp(cp)(_aliases.unique_counts)
46
+ unique_inverse = get_xp(cp)(_aliases.unique_inverse)
47
+ unique_values = get_xp(cp)(_aliases.unique_values)
48
+ astype = _aliases.astype
49
+ std = get_xp(cp)(_aliases.std)
50
+ var = get_xp(cp)(_aliases.var)
51
+ permute_dims = get_xp(cp)(_aliases.permute_dims)
52
+ reshape = get_xp(cp)(_aliases.reshape)
53
+ argsort = get_xp(cp)(_aliases.argsort)
54
+ sort = get_xp(cp)(_aliases.sort)
55
+ nonzero = get_xp(cp)(_aliases.nonzero)
56
+ sum = get_xp(cp)(_aliases.sum)
57
+ prod = get_xp(cp)(_aliases.prod)
58
+ ceil = get_xp(cp)(_aliases.ceil)
59
+ floor = get_xp(cp)(_aliases.floor)
60
+ trunc = get_xp(cp)(_aliases.trunc)
61
+ matmul = get_xp(cp)(_aliases.matmul)
62
+ matrix_transpose = get_xp(cp)(_aliases.matrix_transpose)
63
+ tensordot = get_xp(cp)(_aliases.tensordot)
64
+
65
+ # These functions are completely new here. If the library already has them
66
+ # (i.e., numpy 2.0), use the library version instead of our wrapper.
67
+ if hasattr(cp, 'vecdot'):
68
+ vecdot = cp.vecdot
69
+ else:
70
+ vecdot = get_xp(cp)(_aliases.vecdot)
71
+ if hasattr(cp, 'isdtype'):
72
+ isdtype = cp.isdtype
73
+ else:
74
+ isdtype = get_xp(cp)(_aliases.isdtype)
75
+
76
+ __all__ = _aliases.__all__ + ['asarray', 'asarray_cupy', 'bool', 'acos',
77
+ 'acosh', 'asin', 'asinh', 'atan', 'atan2',
78
+ 'atanh', 'bitwise_left_shift', 'bitwise_invert',
79
+ 'bitwise_right_shift', 'concat', 'pow']
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/_typing.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ __all__ = [
4
+ "ndarray",
5
+ "Device",
6
+ "Dtype",
7
+ ]
8
+
9
+ import sys
10
+ from typing import (
11
+ Union,
12
+ TYPE_CHECKING,
13
+ )
14
+
15
+ from cupy import (
16
+ ndarray,
17
+ dtype,
18
+ int8,
19
+ int16,
20
+ int32,
21
+ int64,
22
+ uint8,
23
+ uint16,
24
+ uint32,
25
+ uint64,
26
+ float32,
27
+ float64,
28
+ )
29
+
30
+ from cupy.cuda.device import Device
31
+
32
+ if TYPE_CHECKING or sys.version_info >= (3, 9):
33
+ Dtype = dtype[Union[
34
+ int8,
35
+ int16,
36
+ int32,
37
+ int64,
38
+ uint8,
39
+ uint16,
40
+ uint32,
41
+ uint64,
42
+ float32,
43
+ float64,
44
+ ]]
45
+ else:
46
+ Dtype = dtype
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/cupy/linalg.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from cupy.linalg import *
2
+ # cupy.linalg doesn't have __all__. If it is added, replace this with
3
+ #
4
+ # from cupy.linalg import __all__ as linalg_all
5
+ _n = {}
6
+ exec('from cupy.linalg import *', _n)
7
+ del _n['__builtins__']
8
+ linalg_all = list(_n)
9
+ del _n
10
+
11
+ from ..common import _linalg
12
+ from .._internal import get_xp
13
+ from ._aliases import (matmul, matrix_transpose, tensordot, vecdot)
14
+
15
+ import cupy as cp
16
+
17
+ cross = get_xp(cp)(_linalg.cross)
18
+ outer = get_xp(cp)(_linalg.outer)
19
+ EighResult = _linalg.EighResult
20
+ QRResult = _linalg.QRResult
21
+ SlogdetResult = _linalg.SlogdetResult
22
+ SVDResult = _linalg.SVDResult
23
+ eigh = get_xp(cp)(_linalg.eigh)
24
+ qr = get_xp(cp)(_linalg.qr)
25
+ slogdet = get_xp(cp)(_linalg.slogdet)
26
+ svd = get_xp(cp)(_linalg.svd)
27
+ cholesky = get_xp(cp)(_linalg.cholesky)
28
+ matrix_rank = get_xp(cp)(_linalg.matrix_rank)
29
+ pinv = get_xp(cp)(_linalg.pinv)
30
+ matrix_norm = get_xp(cp)(_linalg.matrix_norm)
31
+ svdvals = get_xp(cp)(_linalg.svdvals)
32
+ diagonal = get_xp(cp)(_linalg.diagonal)
33
+ trace = get_xp(cp)(_linalg.trace)
34
+
35
+ # These functions are completely new here. If the library already has them
36
+ # (i.e., numpy 2.0), use the library version instead of our wrapper.
37
+ if hasattr(cp.linalg, 'vector_norm'):
38
+ vector_norm = cp.linalg.vector_norm
39
+ else:
40
+ vector_norm = get_xp(cp)(_linalg.vector_norm)
41
+
42
+ __all__ = linalg_all + _linalg.__all__
43
+
44
+ del get_xp
45
+ del cp
46
+ del linalg_all
47
+ del _linalg
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/__init__.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy import *
2
+
3
+ # from numpy import * doesn't overwrite these builtin names
4
+ from numpy import abs, max, min, round
5
+
6
+ # These imports may overwrite names from the import * above.
7
+ from ._aliases import *
8
+
9
+ # Don't know why, but we have to do an absolute import to import linalg. If we
10
+ # instead do
11
+ #
12
+ # from . import linalg
13
+ #
14
+ # It doesn't overwrite np.linalg from above. The import is generated
15
+ # dynamically so that the library can be vendored.
16
+ __import__(__package__ + '.linalg')
17
+
18
+ from .linalg import matrix_transpose, vecdot
19
+
20
+ from ..common._helpers import *
21
+
22
+ __array_api_version__ = '2022.12'
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (500 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/__pycache__/_aliases.cpython-310.pyc ADDED
Binary file (1.93 kB). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/__pycache__/_typing.cpython-310.pyc ADDED
Binary file (734 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/__pycache__/linalg.cpython-310.pyc ADDED
Binary file (981 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/_aliases.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from functools import partial
4
+
5
+ from ..common import _aliases
6
+
7
+ from .._internal import get_xp
8
+
9
+ asarray = asarray_numpy = partial(_aliases._asarray, namespace='numpy')
10
+ asarray.__doc__ = _aliases._asarray.__doc__
11
+ del partial
12
+
13
+ import numpy as np
14
+ bool = np.bool_
15
+
16
+ # Basic renames
17
+ acos = np.arccos
18
+ acosh = np.arccosh
19
+ asin = np.arcsin
20
+ asinh = np.arcsinh
21
+ atan = np.arctan
22
+ atan2 = np.arctan2
23
+ atanh = np.arctanh
24
+ bitwise_left_shift = np.left_shift
25
+ bitwise_invert = np.invert
26
+ bitwise_right_shift = np.right_shift
27
+ concat = np.concatenate
28
+ pow = np.power
29
+
30
+ arange = get_xp(np)(_aliases.arange)
31
+ empty = get_xp(np)(_aliases.empty)
32
+ empty_like = get_xp(np)(_aliases.empty_like)
33
+ eye = get_xp(np)(_aliases.eye)
34
+ full = get_xp(np)(_aliases.full)
35
+ full_like = get_xp(np)(_aliases.full_like)
36
+ linspace = get_xp(np)(_aliases.linspace)
37
+ ones = get_xp(np)(_aliases.ones)
38
+ ones_like = get_xp(np)(_aliases.ones_like)
39
+ zeros = get_xp(np)(_aliases.zeros)
40
+ zeros_like = get_xp(np)(_aliases.zeros_like)
41
+ UniqueAllResult = get_xp(np)(_aliases.UniqueAllResult)
42
+ UniqueCountsResult = get_xp(np)(_aliases.UniqueCountsResult)
43
+ UniqueInverseResult = get_xp(np)(_aliases.UniqueInverseResult)
44
+ unique_all = get_xp(np)(_aliases.unique_all)
45
+ unique_counts = get_xp(np)(_aliases.unique_counts)
46
+ unique_inverse = get_xp(np)(_aliases.unique_inverse)
47
+ unique_values = get_xp(np)(_aliases.unique_values)
48
+ astype = _aliases.astype
49
+ std = get_xp(np)(_aliases.std)
50
+ var = get_xp(np)(_aliases.var)
51
+ permute_dims = get_xp(np)(_aliases.permute_dims)
52
+ reshape = get_xp(np)(_aliases.reshape)
53
+ argsort = get_xp(np)(_aliases.argsort)
54
+ sort = get_xp(np)(_aliases.sort)
55
+ nonzero = get_xp(np)(_aliases.nonzero)
56
+ sum = get_xp(np)(_aliases.sum)
57
+ prod = get_xp(np)(_aliases.prod)
58
+ ceil = get_xp(np)(_aliases.ceil)
59
+ floor = get_xp(np)(_aliases.floor)
60
+ trunc = get_xp(np)(_aliases.trunc)
61
+ matmul = get_xp(np)(_aliases.matmul)
62
+ matrix_transpose = get_xp(np)(_aliases.matrix_transpose)
63
+ tensordot = get_xp(np)(_aliases.tensordot)
64
+
65
+ # These functions are completely new here. If the library already has them
66
+ # (i.e., numpy 2.0), use the library version instead of our wrapper.
67
+ if hasattr(np, 'vecdot'):
68
+ vecdot = np.vecdot
69
+ else:
70
+ vecdot = get_xp(np)(_aliases.vecdot)
71
+ if hasattr(np, 'isdtype'):
72
+ isdtype = np.isdtype
73
+ else:
74
+ isdtype = get_xp(np)(_aliases.isdtype)
75
+
76
+ __all__ = _aliases.__all__ + ['asarray', 'asarray_numpy', 'bool', 'acos',
77
+ 'acosh', 'asin', 'asinh', 'atan', 'atan2',
78
+ 'atanh', 'bitwise_left_shift', 'bitwise_invert',
79
+ 'bitwise_right_shift', 'concat', 'pow']
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/_typing.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ __all__ = [
4
+ "ndarray",
5
+ "Device",
6
+ "Dtype",
7
+ ]
8
+
9
+ import sys
10
+ from typing import (
11
+ Literal,
12
+ Union,
13
+ TYPE_CHECKING,
14
+ )
15
+
16
+ from numpy import (
17
+ ndarray,
18
+ dtype,
19
+ int8,
20
+ int16,
21
+ int32,
22
+ int64,
23
+ uint8,
24
+ uint16,
25
+ uint32,
26
+ uint64,
27
+ float32,
28
+ float64,
29
+ )
30
+
31
+ Device = Literal["cpu"]
32
+ if TYPE_CHECKING or sys.version_info >= (3, 9):
33
+ Dtype = dtype[Union[
34
+ int8,
35
+ int16,
36
+ int32,
37
+ int64,
38
+ uint8,
39
+ uint16,
40
+ uint32,
41
+ uint64,
42
+ float32,
43
+ float64,
44
+ ]]
45
+ else:
46
+ Dtype = dtype
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/numpy/linalg.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy.linalg import *
2
+ from numpy.linalg import __all__ as linalg_all
3
+
4
+ from ..common import _linalg
5
+ from .._internal import get_xp
6
+ from ._aliases import (matmul, matrix_transpose, tensordot, vecdot)
7
+
8
+ import numpy as np
9
+
10
+ cross = get_xp(np)(_linalg.cross)
11
+ outer = get_xp(np)(_linalg.outer)
12
+ EighResult = _linalg.EighResult
13
+ QRResult = _linalg.QRResult
14
+ SlogdetResult = _linalg.SlogdetResult
15
+ SVDResult = _linalg.SVDResult
16
+ eigh = get_xp(np)(_linalg.eigh)
17
+ qr = get_xp(np)(_linalg.qr)
18
+ slogdet = get_xp(np)(_linalg.slogdet)
19
+ svd = get_xp(np)(_linalg.svd)
20
+ cholesky = get_xp(np)(_linalg.cholesky)
21
+ matrix_rank = get_xp(np)(_linalg.matrix_rank)
22
+ pinv = get_xp(np)(_linalg.pinv)
23
+ matrix_norm = get_xp(np)(_linalg.matrix_norm)
24
+ svdvals = get_xp(np)(_linalg.svdvals)
25
+ diagonal = get_xp(np)(_linalg.diagonal)
26
+ trace = get_xp(np)(_linalg.trace)
27
+
28
+ # These functions are completely new here. If the library already has them
29
+ # (i.e., numpy 2.0), use the library version instead of our wrapper.
30
+ if hasattr(np.linalg, 'vector_norm'):
31
+ vector_norm = np.linalg.vector_norm
32
+ else:
33
+ vector_norm = get_xp(np)(_linalg.vector_norm)
34
+
35
+ __all__ = linalg_all + _linalg.__all__
36
+
37
+ del get_xp
38
+ del np
39
+ del linalg_all
40
+ del _linalg
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/torch/__init__.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import *
2
+
3
+ # Several names are not included in the above import *
4
+ import torch
5
+ for n in dir(torch):
6
+ if (n.startswith('_')
7
+ or n.endswith('_')
8
+ or 'cuda' in n
9
+ or 'cpu' in n
10
+ or 'backward' in n):
11
+ continue
12
+ exec(n + ' = torch.' + n)
13
+
14
+ # These imports may overwrite names from the import * above.
15
+ from ._aliases import *
16
+
17
+ # See the comment in the numpy __init__.py
18
+ __import__(__package__ + '.linalg')
19
+
20
+ from ..common._helpers import *
21
+
22
+ __array_api_version__ = '2022.12'
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/torch/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (541 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/torch/__pycache__/_aliases.cpython-310.pyc ADDED
Binary file (17.5 kB). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/torch/__pycache__/linalg.cpython-310.pyc ADDED
Binary file (2.35 kB). View file
 
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/torch/_aliases.py ADDED
@@ -0,0 +1,707 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from functools import wraps
4
+ from builtins import all as builtin_all, any as builtin_any
5
+
6
+ from ..common._aliases import (UniqueAllResult, UniqueCountsResult,
7
+ UniqueInverseResult,
8
+ matrix_transpose as _aliases_matrix_transpose,
9
+ vecdot as _aliases_vecdot)
10
+ from .._internal import get_xp
11
+
12
+ import torch
13
+
14
+ from typing import TYPE_CHECKING
15
+ if TYPE_CHECKING:
16
+ from typing import List, Optional, Sequence, Tuple, Union
17
+ from ..common._typing import Device
18
+ from torch import dtype as Dtype
19
+
20
+ array = torch.Tensor
21
+
22
+ _int_dtypes = {
23
+ torch.uint8,
24
+ torch.int8,
25
+ torch.int16,
26
+ torch.int32,
27
+ torch.int64,
28
+ }
29
+
30
+ _array_api_dtypes = {
31
+ torch.bool,
32
+ *_int_dtypes,
33
+ torch.float32,
34
+ torch.float64,
35
+ torch.complex64,
36
+ torch.complex128,
37
+ }
38
+
39
+ _promotion_table = {
40
+ # bool
41
+ (torch.bool, torch.bool): torch.bool,
42
+ # ints
43
+ (torch.int8, torch.int8): torch.int8,
44
+ (torch.int8, torch.int16): torch.int16,
45
+ (torch.int8, torch.int32): torch.int32,
46
+ (torch.int8, torch.int64): torch.int64,
47
+ (torch.int16, torch.int8): torch.int16,
48
+ (torch.int16, torch.int16): torch.int16,
49
+ (torch.int16, torch.int32): torch.int32,
50
+ (torch.int16, torch.int64): torch.int64,
51
+ (torch.int32, torch.int8): torch.int32,
52
+ (torch.int32, torch.int16): torch.int32,
53
+ (torch.int32, torch.int32): torch.int32,
54
+ (torch.int32, torch.int64): torch.int64,
55
+ (torch.int64, torch.int8): torch.int64,
56
+ (torch.int64, torch.int16): torch.int64,
57
+ (torch.int64, torch.int32): torch.int64,
58
+ (torch.int64, torch.int64): torch.int64,
59
+ # uints
60
+ (torch.uint8, torch.uint8): torch.uint8,
61
+ # ints and uints (mixed sign)
62
+ (torch.int8, torch.uint8): torch.int16,
63
+ (torch.int16, torch.uint8): torch.int16,
64
+ (torch.int32, torch.uint8): torch.int32,
65
+ (torch.int64, torch.uint8): torch.int64,
66
+ (torch.uint8, torch.int8): torch.int16,
67
+ (torch.uint8, torch.int16): torch.int16,
68
+ (torch.uint8, torch.int32): torch.int32,
69
+ (torch.uint8, torch.int64): torch.int64,
70
+ # floats
71
+ (torch.float32, torch.float32): torch.float32,
72
+ (torch.float32, torch.float64): torch.float64,
73
+ (torch.float64, torch.float32): torch.float64,
74
+ (torch.float64, torch.float64): torch.float64,
75
+ # complexes
76
+ (torch.complex64, torch.complex64): torch.complex64,
77
+ (torch.complex64, torch.complex128): torch.complex128,
78
+ (torch.complex128, torch.complex64): torch.complex128,
79
+ (torch.complex128, torch.complex128): torch.complex128,
80
+ # Mixed float and complex
81
+ (torch.float32, torch.complex64): torch.complex64,
82
+ (torch.float32, torch.complex128): torch.complex128,
83
+ (torch.float64, torch.complex64): torch.complex128,
84
+ (torch.float64, torch.complex128): torch.complex128,
85
+ }
86
+
87
+
88
+ def _two_arg(f):
89
+ @wraps(f)
90
+ def _f(x1, x2, /, **kwargs):
91
+ x1, x2 = _fix_promotion(x1, x2)
92
+ return f(x1, x2, **kwargs)
93
+ if _f.__doc__ is None:
94
+ _f.__doc__ = f"""\
95
+ Array API compatibility wrapper for torch.{f.__name__}.
96
+
97
+ See the corresponding PyTorch documentation and/or the array API specification
98
+ for more details.
99
+
100
+ """
101
+ return _f
102
+
103
+ def _fix_promotion(x1, x2, only_scalar=True):
104
+ if x1.dtype not in _array_api_dtypes or x2.dtype not in _array_api_dtypes:
105
+ return x1, x2
106
+ # If an argument is 0-D pytorch downcasts the other argument
107
+ if not only_scalar or x1.shape == ():
108
+ dtype = result_type(x1, x2)
109
+ x2 = x2.to(dtype)
110
+ if not only_scalar or x2.shape == ():
111
+ dtype = result_type(x1, x2)
112
+ x1 = x1.to(dtype)
113
+ return x1, x2
114
+
115
+ def result_type(*arrays_and_dtypes: Union[array, Dtype]) -> Dtype:
116
+ if len(arrays_and_dtypes) == 0:
117
+ raise TypeError("At least one array or dtype must be provided")
118
+ if len(arrays_and_dtypes) == 1:
119
+ x = arrays_and_dtypes[0]
120
+ if isinstance(x, torch.dtype):
121
+ return x
122
+ return x.dtype
123
+ if len(arrays_and_dtypes) > 2:
124
+ return result_type(arrays_and_dtypes[0], result_type(*arrays_and_dtypes[1:]))
125
+
126
+ x, y = arrays_and_dtypes
127
+ xdt = x.dtype if not isinstance(x, torch.dtype) else x
128
+ ydt = y.dtype if not isinstance(y, torch.dtype) else y
129
+
130
+ if (xdt, ydt) in _promotion_table:
131
+ return _promotion_table[xdt, ydt]
132
+
133
+ # This doesn't result_type(dtype, dtype) for non-array API dtypes
134
+ # because torch.result_type only accepts tensors. This does however, allow
135
+ # cross-kind promotion.
136
+ x = torch.tensor([], dtype=x) if isinstance(x, torch.dtype) else x
137
+ y = torch.tensor([], dtype=y) if isinstance(y, torch.dtype) else y
138
+ return torch.result_type(x, y)
139
+
140
+ def can_cast(from_: Union[Dtype, array], to: Dtype, /) -> bool:
141
+ if not isinstance(from_, torch.dtype):
142
+ from_ = from_.dtype
143
+ return torch.can_cast(from_, to)
144
+
145
+ # Basic renames
146
+ bitwise_invert = torch.bitwise_not
147
+ newaxis = None
148
+
149
+ # Two-arg elementwise functions
150
+ # These require a wrapper to do the correct type promotion on 0-D tensors
151
+ add = _two_arg(torch.add)
152
+ atan2 = _two_arg(torch.atan2)
153
+ bitwise_and = _two_arg(torch.bitwise_and)
154
+ bitwise_left_shift = _two_arg(torch.bitwise_left_shift)
155
+ bitwise_or = _two_arg(torch.bitwise_or)
156
+ bitwise_right_shift = _two_arg(torch.bitwise_right_shift)
157
+ bitwise_xor = _two_arg(torch.bitwise_xor)
158
+ divide = _two_arg(torch.divide)
159
+ # Also a rename. torch.equal does not broadcast
160
+ equal = _two_arg(torch.eq)
161
+ floor_divide = _two_arg(torch.floor_divide)
162
+ greater = _two_arg(torch.greater)
163
+ greater_equal = _two_arg(torch.greater_equal)
164
+ less = _two_arg(torch.less)
165
+ less_equal = _two_arg(torch.less_equal)
166
+ logaddexp = _two_arg(torch.logaddexp)
167
+ # logical functions are not included here because they only accept bool in the
168
+ # spec, so type promotion is irrelevant.
169
+ multiply = _two_arg(torch.multiply)
170
+ not_equal = _two_arg(torch.not_equal)
171
+ pow = _two_arg(torch.pow)
172
+ remainder = _two_arg(torch.remainder)
173
+ subtract = _two_arg(torch.subtract)
174
+
175
+ # These wrappers are mostly based on the fact that pytorch uses 'dim' instead
176
+ # of 'axis'.
177
+
178
+ # torch.min and torch.max return a tuple and don't support multiple axes https://github.com/pytorch/pytorch/issues/58745
179
+ def max(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
180
+ # https://github.com/pytorch/pytorch/issues/29137
181
+ if axis == ():
182
+ return torch.clone(x)
183
+ return torch.amax(x, axis, keepdims=keepdims)
184
+
185
+ def min(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
186
+ # https://github.com/pytorch/pytorch/issues/29137
187
+ if axis == ():
188
+ return torch.clone(x)
189
+ return torch.amin(x, axis, keepdims=keepdims)
190
+
191
+ # torch.sort also returns a tuple
192
+ # https://github.com/pytorch/pytorch/issues/70921
193
+ def sort(x: array, /, *, axis: int = -1, descending: bool = False, stable: bool = True, **kwargs) -> array:
194
+ return torch.sort(x, dim=axis, descending=descending, stable=stable, **kwargs).values
195
+
196
+ def _normalize_axes(axis, ndim):
197
+ axes = []
198
+ if ndim == 0 and axis:
199
+ # Better error message in this case
200
+ raise IndexError(f"Dimension out of range: {axis[0]}")
201
+ lower, upper = -ndim, ndim - 1
202
+ for a in axis:
203
+ if a < lower or a > upper:
204
+ # Match torch error message (e.g., from sum())
205
+ raise IndexError(f"Dimension out of range (expected to be in range of [{lower}, {upper}], but got {a}")
206
+ if a < 0:
207
+ a = a + ndim
208
+ if a in axes:
209
+ # Use IndexError instead of RuntimeError, and "axis" instead of "dim"
210
+ raise IndexError(f"Axis {a} appears multiple times in the list of axes")
211
+ axes.append(a)
212
+ return sorted(axes)
213
+
214
+ def _axis_none_keepdims(x, ndim, keepdims):
215
+ # Apply keepdims when axis=None
216
+ # (https://github.com/pytorch/pytorch/issues/71209)
217
+ # Note that this is only valid for the axis=None case.
218
+ if keepdims:
219
+ for i in range(ndim):
220
+ x = torch.unsqueeze(x, 0)
221
+ return x
222
+
223
+ def _reduce_multiple_axes(f, x, axis, keepdims=False, **kwargs):
224
+ # Some reductions don't support multiple axes
225
+ # (https://github.com/pytorch/pytorch/issues/56586).
226
+ axes = _normalize_axes(axis, x.ndim)
227
+ for a in reversed(axes):
228
+ x = torch.movedim(x, a, -1)
229
+ x = torch.flatten(x, -len(axes))
230
+
231
+ out = f(x, -1, **kwargs)
232
+
233
+ if keepdims:
234
+ for a in axes:
235
+ out = torch.unsqueeze(out, a)
236
+ return out
237
+
238
+ def prod(x: array,
239
+ /,
240
+ *,
241
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
242
+ dtype: Optional[Dtype] = None,
243
+ keepdims: bool = False,
244
+ **kwargs) -> array:
245
+ x = torch.asarray(x)
246
+ ndim = x.ndim
247
+
248
+ # https://github.com/pytorch/pytorch/issues/29137. Separate from the logic
249
+ # below because it still needs to upcast.
250
+ if axis == ():
251
+ if dtype is None:
252
+ # We can't upcast uint8 according to the spec because there is no
253
+ # torch.uint64, so at least upcast to int64 which is what sum does
254
+ # when axis=None.
255
+ if x.dtype in [torch.int8, torch.int16, torch.int32, torch.uint8]:
256
+ return x.to(torch.int64)
257
+ return x.clone()
258
+ return x.to(dtype)
259
+
260
+ # torch.prod doesn't support multiple axes
261
+ # (https://github.com/pytorch/pytorch/issues/56586).
262
+ if isinstance(axis, tuple):
263
+ return _reduce_multiple_axes(torch.prod, x, axis, keepdims=keepdims, dtype=dtype, **kwargs)
264
+ if axis is None:
265
+ # torch doesn't support keepdims with axis=None
266
+ # (https://github.com/pytorch/pytorch/issues/71209)
267
+ res = torch.prod(x, dtype=dtype, **kwargs)
268
+ res = _axis_none_keepdims(res, ndim, keepdims)
269
+ return res
270
+
271
+ return torch.prod(x, axis, dtype=dtype, keepdims=keepdims, **kwargs)
272
+
273
+
274
+ def sum(x: array,
275
+ /,
276
+ *,
277
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
278
+ dtype: Optional[Dtype] = None,
279
+ keepdims: bool = False,
280
+ **kwargs) -> array:
281
+ x = torch.asarray(x)
282
+ ndim = x.ndim
283
+
284
+ # https://github.com/pytorch/pytorch/issues/29137.
285
+ # Make sure it upcasts.
286
+ if axis == ():
287
+ if dtype is None:
288
+ # We can't upcast uint8 according to the spec because there is no
289
+ # torch.uint64, so at least upcast to int64 which is what sum does
290
+ # when axis=None.
291
+ if x.dtype in [torch.int8, torch.int16, torch.int32, torch.uint8]:
292
+ return x.to(torch.int64)
293
+ return x.clone()
294
+ return x.to(dtype)
295
+
296
+ if axis is None:
297
+ # torch doesn't support keepdims with axis=None
298
+ # (https://github.com/pytorch/pytorch/issues/71209)
299
+ res = torch.sum(x, dtype=dtype, **kwargs)
300
+ res = _axis_none_keepdims(res, ndim, keepdims)
301
+ return res
302
+
303
+ return torch.sum(x, axis, dtype=dtype, keepdims=keepdims, **kwargs)
304
+
305
+ def any(x: array,
306
+ /,
307
+ *,
308
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
309
+ keepdims: bool = False,
310
+ **kwargs) -> array:
311
+ x = torch.asarray(x)
312
+ ndim = x.ndim
313
+ if axis == ():
314
+ return x.to(torch.bool)
315
+ # torch.any doesn't support multiple axes
316
+ # (https://github.com/pytorch/pytorch/issues/56586).
317
+ if isinstance(axis, tuple):
318
+ res = _reduce_multiple_axes(torch.any, x, axis, keepdims=keepdims, **kwargs)
319
+ return res.to(torch.bool)
320
+ if axis is None:
321
+ # torch doesn't support keepdims with axis=None
322
+ # (https://github.com/pytorch/pytorch/issues/71209)
323
+ res = torch.any(x, **kwargs)
324
+ res = _axis_none_keepdims(res, ndim, keepdims)
325
+ return res.to(torch.bool)
326
+
327
+ # torch.any doesn't return bool for uint8
328
+ return torch.any(x, axis, keepdims=keepdims).to(torch.bool)
329
+
330
+ def all(x: array,
331
+ /,
332
+ *,
333
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
334
+ keepdims: bool = False,
335
+ **kwargs) -> array:
336
+ x = torch.asarray(x)
337
+ ndim = x.ndim
338
+ if axis == ():
339
+ return x.to(torch.bool)
340
+ # torch.all doesn't support multiple axes
341
+ # (https://github.com/pytorch/pytorch/issues/56586).
342
+ if isinstance(axis, tuple):
343
+ res = _reduce_multiple_axes(torch.all, x, axis, keepdims=keepdims, **kwargs)
344
+ return res.to(torch.bool)
345
+ if axis is None:
346
+ # torch doesn't support keepdims with axis=None
347
+ # (https://github.com/pytorch/pytorch/issues/71209)
348
+ res = torch.all(x, **kwargs)
349
+ res = _axis_none_keepdims(res, ndim, keepdims)
350
+ return res.to(torch.bool)
351
+
352
+ # torch.all doesn't return bool for uint8
353
+ return torch.all(x, axis, keepdims=keepdims).to(torch.bool)
354
+
355
+ def mean(x: array,
356
+ /,
357
+ *,
358
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
359
+ keepdims: bool = False,
360
+ **kwargs) -> array:
361
+ # https://github.com/pytorch/pytorch/issues/29137
362
+ if axis == ():
363
+ return torch.clone(x)
364
+ if axis is None:
365
+ # torch doesn't support keepdims with axis=None
366
+ # (https://github.com/pytorch/pytorch/issues/71209)
367
+ res = torch.mean(x, **kwargs)
368
+ res = _axis_none_keepdims(res, x.ndim, keepdims)
369
+ return res
370
+ return torch.mean(x, axis, keepdims=keepdims, **kwargs)
371
+
372
+ def std(x: array,
373
+ /,
374
+ *,
375
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
376
+ correction: Union[int, float] = 0.0,
377
+ keepdims: bool = False,
378
+ **kwargs) -> array:
379
+ # Note, float correction is not supported
380
+ # https://github.com/pytorch/pytorch/issues/61492. We don't try to
381
+ # implement it here for now.
382
+
383
+ if isinstance(correction, float):
384
+ _correction = int(correction)
385
+ if correction != _correction:
386
+ raise NotImplementedError("float correction in torch std() is not yet supported")
387
+
388
+ # https://github.com/pytorch/pytorch/issues/29137
389
+ if axis == ():
390
+ return torch.zeros_like(x)
391
+ if isinstance(axis, int):
392
+ axis = (axis,)
393
+ if axis is None:
394
+ # torch doesn't support keepdims with axis=None
395
+ # (https://github.com/pytorch/pytorch/issues/71209)
396
+ res = torch.std(x, tuple(range(x.ndim)), correction=_correction, **kwargs)
397
+ res = _axis_none_keepdims(res, x.ndim, keepdims)
398
+ return res
399
+ return torch.std(x, axis, correction=_correction, keepdims=keepdims, **kwargs)
400
+
401
+ def var(x: array,
402
+ /,
403
+ *,
404
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
405
+ correction: Union[int, float] = 0.0,
406
+ keepdims: bool = False,
407
+ **kwargs) -> array:
408
+ # Note, float correction is not supported
409
+ # https://github.com/pytorch/pytorch/issues/61492. We don't try to
410
+ # implement it here for now.
411
+
412
+ # if isinstance(correction, float):
413
+ # correction = int(correction)
414
+
415
+ # https://github.com/pytorch/pytorch/issues/29137
416
+ if axis == ():
417
+ return torch.zeros_like(x)
418
+ if isinstance(axis, int):
419
+ axis = (axis,)
420
+ if axis is None:
421
+ # torch doesn't support keepdims with axis=None
422
+ # (https://github.com/pytorch/pytorch/issues/71209)
423
+ res = torch.var(x, tuple(range(x.ndim)), correction=correction, **kwargs)
424
+ res = _axis_none_keepdims(res, x.ndim, keepdims)
425
+ return res
426
+ return torch.var(x, axis, correction=correction, keepdims=keepdims, **kwargs)
427
+
428
+ # torch.concat doesn't support dim=None
429
+ # https://github.com/pytorch/pytorch/issues/70925
430
+ def concat(arrays: Union[Tuple[array, ...], List[array]],
431
+ /,
432
+ *,
433
+ axis: Optional[int] = 0,
434
+ **kwargs) -> array:
435
+ if axis is None:
436
+ arrays = tuple(ar.flatten() for ar in arrays)
437
+ axis = 0
438
+ return torch.concat(arrays, axis, **kwargs)
439
+
440
+ # torch.squeeze only accepts int dim and doesn't require it
441
+ # https://github.com/pytorch/pytorch/issues/70924. Support for tuple dim was
442
+ # added at https://github.com/pytorch/pytorch/pull/89017.
443
+ def squeeze(x: array, /, axis: Union[int, Tuple[int, ...]]) -> array:
444
+ if isinstance(axis, int):
445
+ axis = (axis,)
446
+ for a in axis:
447
+ if x.shape[a] != 1:
448
+ raise ValueError("squeezed dimensions must be equal to 1")
449
+ axes = _normalize_axes(axis, x.ndim)
450
+ # Remove this once pytorch 1.14 is released with the above PR #89017.
451
+ sequence = [a - i for i, a in enumerate(axes)]
452
+ for a in sequence:
453
+ x = torch.squeeze(x, a)
454
+ return x
455
+
456
+ # torch.broadcast_to uses size instead of shape
457
+ def broadcast_to(x: array, /, shape: Tuple[int, ...], **kwargs) -> array:
458
+ return torch.broadcast_to(x, shape, **kwargs)
459
+
460
+ # torch.permute uses dims instead of axes
461
+ def permute_dims(x: array, /, axes: Tuple[int, ...]) -> array:
462
+ return torch.permute(x, axes)
463
+
464
+ # The axis parameter doesn't work for flip() and roll()
465
+ # https://github.com/pytorch/pytorch/issues/71210. Also torch.flip() doesn't
466
+ # accept axis=None
467
+ def flip(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, **kwargs) -> array:
468
+ if axis is None:
469
+ axis = tuple(range(x.ndim))
470
+ # torch.flip doesn't accept dim as an int but the method does
471
+ # https://github.com/pytorch/pytorch/issues/18095
472
+ return x.flip(axis, **kwargs)
473
+
474
+ def roll(x: array, /, shift: Union[int, Tuple[int, ...]], *, axis: Optional[Union[int, Tuple[int, ...]]] = None, **kwargs) -> array:
475
+ return torch.roll(x, shift, axis, **kwargs)
476
+
477
+ def nonzero(x: array, /, **kwargs) -> Tuple[array, ...]:
478
+ if x.ndim == 0:
479
+ raise ValueError("nonzero() does not support zero-dimensional arrays")
480
+ return torch.nonzero(x, as_tuple=True, **kwargs)
481
+
482
+ def where(condition: array, x1: array, x2: array, /) -> array:
483
+ x1, x2 = _fix_promotion(x1, x2)
484
+ return torch.where(condition, x1, x2)
485
+
486
+ # torch.reshape doesn't have the copy keyword
487
+ def reshape(x: array,
488
+ /,
489
+ shape: Tuple[int, ...],
490
+ copy: Optional[bool] = None,
491
+ **kwargs) -> array:
492
+ if copy is not None:
493
+ raise NotImplementedError("torch.reshape doesn't yet support the copy keyword")
494
+ return torch.reshape(x, shape, **kwargs)
495
+
496
+ # torch.arange doesn't support returning empty arrays
497
+ # (https://github.com/pytorch/pytorch/issues/70915), and doesn't support some
498
+ # keyword argument combinations
499
+ # (https://github.com/pytorch/pytorch/issues/70914)
500
+ def arange(start: Union[int, float],
501
+ /,
502
+ stop: Optional[Union[int, float]] = None,
503
+ step: Union[int, float] = 1,
504
+ *,
505
+ dtype: Optional[Dtype] = None,
506
+ device: Optional[Device] = None,
507
+ **kwargs) -> array:
508
+ if stop is None:
509
+ start, stop = 0, start
510
+ if step > 0 and stop <= start or step < 0 and stop >= start:
511
+ if dtype is None:
512
+ if builtin_all(isinstance(i, int) for i in [start, stop, step]):
513
+ dtype = torch.int64
514
+ else:
515
+ dtype = torch.float32
516
+ return torch.empty(0, dtype=dtype, device=device, **kwargs)
517
+ return torch.arange(start, stop, step, dtype=dtype, device=device, **kwargs)
518
+
519
+ # torch.eye does not accept None as a default for the second argument and
520
+ # doesn't support off-diagonals (https://github.com/pytorch/pytorch/issues/70910)
521
+ def eye(n_rows: int,
522
+ n_cols: Optional[int] = None,
523
+ /,
524
+ *,
525
+ k: int = 0,
526
+ dtype: Optional[Dtype] = None,
527
+ device: Optional[Device] = None,
528
+ **kwargs) -> array:
529
+ if n_cols is None:
530
+ n_cols = n_rows
531
+ z = torch.zeros(n_rows, n_cols, dtype=dtype, device=device, **kwargs)
532
+ if abs(k) <= n_rows + n_cols:
533
+ z.diagonal(k).fill_(1)
534
+ return z
535
+
536
+ # torch.linspace doesn't have the endpoint parameter
537
+ def linspace(start: Union[int, float],
538
+ stop: Union[int, float],
539
+ /,
540
+ num: int,
541
+ *,
542
+ dtype: Optional[Dtype] = None,
543
+ device: Optional[Device] = None,
544
+ endpoint: bool = True,
545
+ **kwargs) -> array:
546
+ if not endpoint:
547
+ return torch.linspace(start, stop, num+1, dtype=dtype, device=device, **kwargs)[:-1]
548
+ return torch.linspace(start, stop, num, dtype=dtype, device=device, **kwargs)
549
+
550
+ # torch.full does not accept an int size
551
+ # https://github.com/pytorch/pytorch/issues/70906
552
+ def full(shape: Union[int, Tuple[int, ...]],
553
+ fill_value: Union[bool, int, float, complex],
554
+ *,
555
+ dtype: Optional[Dtype] = None,
556
+ device: Optional[Device] = None,
557
+ **kwargs) -> array:
558
+ if isinstance(shape, int):
559
+ shape = (shape,)
560
+
561
+ return torch.full(shape, fill_value, dtype=dtype, device=device, **kwargs)
562
+
563
+ # ones, zeros, and empty do not accept shape as a keyword argument
564
+ def ones(shape: Union[int, Tuple[int, ...]],
565
+ *,
566
+ dtype: Optional[Dtype] = None,
567
+ device: Optional[Device] = None,
568
+ **kwargs) -> array:
569
+ return torch.ones(shape, dtype=dtype, device=device, **kwargs)
570
+
571
+ def zeros(shape: Union[int, Tuple[int, ...]],
572
+ *,
573
+ dtype: Optional[Dtype] = None,
574
+ device: Optional[Device] = None,
575
+ **kwargs) -> array:
576
+ return torch.zeros(shape, dtype=dtype, device=device, **kwargs)
577
+
578
+ def empty(shape: Union[int, Tuple[int, ...]],
579
+ *,
580
+ dtype: Optional[Dtype] = None,
581
+ device: Optional[Device] = None,
582
+ **kwargs) -> array:
583
+ return torch.empty(shape, dtype=dtype, device=device, **kwargs)
584
+
585
+ # tril and triu do not call the keyword argument k
586
+
587
+ def tril(x: array, /, *, k: int = 0) -> array:
588
+ return torch.tril(x, k)
589
+
590
+ def triu(x: array, /, *, k: int = 0) -> array:
591
+ return torch.triu(x, k)
592
+
593
+ # Functions that aren't in torch https://github.com/pytorch/pytorch/issues/58742
594
+ def expand_dims(x: array, /, *, axis: int = 0) -> array:
595
+ return torch.unsqueeze(x, axis)
596
+
597
+ def astype(x: array, dtype: Dtype, /, *, copy: bool = True) -> array:
598
+ return x.to(dtype, copy=copy)
599
+
600
+ def broadcast_arrays(*arrays: array) -> List[array]:
601
+ shape = torch.broadcast_shapes(*[a.shape for a in arrays])
602
+ return [torch.broadcast_to(a, shape) for a in arrays]
603
+
604
+ # https://github.com/pytorch/pytorch/issues/70920
605
+ def unique_all(x: array) -> UniqueAllResult:
606
+ # torch.unique doesn't support returning indices.
607
+ # https://github.com/pytorch/pytorch/issues/36748. The workaround
608
+ # suggested in that issue doesn't actually function correctly (it relies
609
+ # on non-deterministic behavior of scatter()).
610
+ raise NotImplementedError("unique_all() not yet implemented for pytorch (see https://github.com/pytorch/pytorch/issues/36748)")
611
+
612
+ # values, inverse_indices, counts = torch.unique(x, return_counts=True, return_inverse=True)
613
+ # # torch.unique incorrectly gives a 0 count for nan values.
614
+ # # https://github.com/pytorch/pytorch/issues/94106
615
+ # counts[torch.isnan(values)] = 1
616
+ # return UniqueAllResult(values, indices, inverse_indices, counts)
617
+
618
+ def unique_counts(x: array) -> UniqueCountsResult:
619
+ values, counts = torch.unique(x, return_counts=True)
620
+
621
+ # torch.unique incorrectly gives a 0 count for nan values.
622
+ # https://github.com/pytorch/pytorch/issues/94106
623
+ counts[torch.isnan(values)] = 1
624
+ return UniqueCountsResult(values, counts)
625
+
626
+ def unique_inverse(x: array) -> UniqueInverseResult:
627
+ values, inverse = torch.unique(x, return_inverse=True)
628
+ return UniqueInverseResult(values, inverse)
629
+
630
+ def unique_values(x: array) -> array:
631
+ return torch.unique(x)
632
+
633
+ def matmul(x1: array, x2: array, /, **kwargs) -> array:
634
+ # torch.matmul doesn't type promote (but differently from _fix_promotion)
635
+ x1, x2 = _fix_promotion(x1, x2, only_scalar=False)
636
+ return torch.matmul(x1, x2, **kwargs)
637
+
638
+ matrix_transpose = get_xp(torch)(_aliases_matrix_transpose)
639
+ _vecdot = get_xp(torch)(_aliases_vecdot)
640
+
641
+ def vecdot(x1: array, x2: array, /, *, axis: int = -1) -> array:
642
+ x1, x2 = _fix_promotion(x1, x2, only_scalar=False)
643
+ return _vecdot(x1, x2, axis=axis)
644
+
645
+ # torch.tensordot uses dims instead of axes
646
+ def tensordot(x1: array, x2: array, /, *, axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2, **kwargs) -> array:
647
+ # Note: torch.tensordot fails with integer dtypes when there is only 1
648
+ # element in the axis (https://github.com/pytorch/pytorch/issues/84530).
649
+ x1, x2 = _fix_promotion(x1, x2, only_scalar=False)
650
+ return torch.tensordot(x1, x2, dims=axes, **kwargs)
651
+
652
+
653
+ def isdtype(
654
+ dtype: Dtype, kind: Union[Dtype, str, Tuple[Union[Dtype, str], ...]],
655
+ *, _tuple=True, # Disallow nested tuples
656
+ ) -> bool:
657
+ """
658
+ Returns a boolean indicating whether a provided dtype is of a specified data type ``kind``.
659
+
660
+ Note that outside of this function, this compat library does not yet fully
661
+ support complex numbers.
662
+
663
+ See
664
+ https://data-apis.org/array-api/latest/API_specification/generated/array_api.isdtype.html
665
+ for more details
666
+ """
667
+ if isinstance(kind, tuple) and _tuple:
668
+ return builtin_any(isdtype(dtype, k, _tuple=False) for k in kind)
669
+ elif isinstance(kind, str):
670
+ if kind == 'bool':
671
+ return dtype == torch.bool
672
+ elif kind == 'signed integer':
673
+ return dtype in _int_dtypes and dtype.is_signed
674
+ elif kind == 'unsigned integer':
675
+ return dtype in _int_dtypes and not dtype.is_signed
676
+ elif kind == 'integral':
677
+ return dtype in _int_dtypes
678
+ elif kind == 'real floating':
679
+ return dtype.is_floating_point
680
+ elif kind == 'complex floating':
681
+ return dtype.is_complex
682
+ elif kind == 'numeric':
683
+ return isdtype(dtype, ('integral', 'real floating', 'complex floating'))
684
+ else:
685
+ raise ValueError(f"Unrecognized data type kind: {kind!r}")
686
+ else:
687
+ return dtype == kind
688
+
689
+ def take(x: array, indices: array, /, *, axis: Optional[int] = None, **kwargs) -> array:
690
+ if axis is None:
691
+ if x.ndim != 1:
692
+ raise ValueError("axis must be specified when ndim > 1")
693
+ axis = 0
694
+ return torch.index_select(x, axis, indices, **kwargs)
695
+
696
+ __all__ = ['result_type', 'can_cast', 'permute_dims', 'bitwise_invert', 'newaxis',
697
+ 'add', 'atan2', 'bitwise_and', 'bitwise_left_shift', 'bitwise_or',
698
+ 'bitwise_right_shift', 'bitwise_xor', 'divide', 'equal',
699
+ 'floor_divide', 'greater', 'greater_equal', 'less', 'less_equal',
700
+ 'logaddexp', 'multiply', 'not_equal', 'pow', 'remainder',
701
+ 'subtract', 'max', 'min', 'sort', 'prod', 'sum', 'any', 'all',
702
+ 'mean', 'std', 'var', 'concat', 'squeeze', 'broadcast_to', 'flip', 'roll',
703
+ 'nonzero', 'where', 'reshape', 'arange', 'eye', 'linspace', 'full',
704
+ 'ones', 'zeros', 'empty', 'tril', 'triu', 'expand_dims', 'astype',
705
+ 'broadcast_arrays', 'unique_all', 'unique_counts',
706
+ 'unique_inverse', 'unique_values', 'matmul', 'matrix_transpose',
707
+ 'vecdot', 'tensordot', 'isdtype', 'take']
venv/lib/python3.10/site-packages/scipy/_lib/array_api_compat/torch/linalg.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING
4
+ if TYPE_CHECKING:
5
+ import torch
6
+ array = torch.Tensor
7
+ from torch import dtype as Dtype
8
+ from typing import Optional
9
+
10
+ from torch.linalg import *
11
+
12
+ # torch.linalg doesn't define __all__
13
+ # from torch.linalg import __all__ as linalg_all
14
+ from torch import linalg as torch_linalg
15
+ linalg_all = [i for i in dir(torch_linalg) if not i.startswith('_')]
16
+
17
+ # outer is implemented in torch but aren't in the linalg namespace
18
+ from torch import outer
19
+ from ._aliases import _fix_promotion, matrix_transpose, tensordot, sum
20
+
21
+ # Note: torch.linalg.cross does not default to axis=-1 (it defaults to the
22
+ # first axis with size 3), see https://github.com/pytorch/pytorch/issues/58743
23
+ def cross(x1: array, x2: array, /, *, axis: int = -1) -> array:
24
+ x1, x2 = _fix_promotion(x1, x2, only_scalar=False)
25
+ return torch_linalg.cross(x1, x2, dim=axis)
26
+
27
+ def vecdot(x1: array, x2: array, /, *, axis: int = -1, **kwargs) -> array:
28
+ from ._aliases import isdtype
29
+
30
+ x1, x2 = _fix_promotion(x1, x2, only_scalar=False)
31
+
32
+ # torch.linalg.vecdot doesn't support integer dtypes
33
+ if isdtype(x1.dtype, 'integral') or isdtype(x2.dtype, 'integral'):
34
+ if kwargs:
35
+ raise RuntimeError("vecdot kwargs not supported for integral dtypes")
36
+ ndim = max(x1.ndim, x2.ndim)
37
+ x1_shape = (1,)*(ndim - x1.ndim) + tuple(x1.shape)
38
+ x2_shape = (1,)*(ndim - x2.ndim) + tuple(x2.shape)
39
+ if x1_shape[axis] != x2_shape[axis]:
40
+ raise ValueError("x1 and x2 must have the same size along the given axis")
41
+
42
+ x1_, x2_ = torch.broadcast_tensors(x1, x2)
43
+ x1_ = torch.moveaxis(x1_, axis, -1)
44
+ x2_ = torch.moveaxis(x2_, axis, -1)
45
+
46
+ res = x1_[..., None, :] @ x2_[..., None]
47
+ return res[..., 0, 0]
48
+ return torch.linalg.vecdot(x1, x2, dim=axis, **kwargs)
49
+
50
+ def solve(x1: array, x2: array, /, **kwargs) -> array:
51
+ x1, x2 = _fix_promotion(x1, x2, only_scalar=False)
52
+ return torch.linalg.solve(x1, x2, **kwargs)
53
+
54
+ # torch.trace doesn't support the offset argument and doesn't support stacking
55
+ def trace(x: array, /, *, offset: int = 0, dtype: Optional[Dtype] = None) -> array:
56
+ # Use our wrapped sum to make sure it does upcasting correctly
57
+ return sum(torch.diagonal(x, offset=offset, dim1=-2, dim2=-1), axis=-1, dtype=dtype)
58
+
59
+ __all__ = linalg_all + ['outer', 'trace', 'matrix_transpose', 'tensordot',
60
+ 'vecdot', 'solve']
61
+
62
+ del linalg_all
venv/lib/python3.10/site-packages/scipy/constants/__init__.py ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""
2
+ ==================================
3
+ Constants (:mod:`scipy.constants`)
4
+ ==================================
5
+
6
+ .. currentmodule:: scipy.constants
7
+
8
+ Physical and mathematical constants and units.
9
+
10
+
11
+ Mathematical constants
12
+ ======================
13
+
14
+ ================ =================================================================
15
+ ``pi`` Pi
16
+ ``golden`` Golden ratio
17
+ ``golden_ratio`` Golden ratio
18
+ ================ =================================================================
19
+
20
+
21
+ Physical constants
22
+ ==================
23
+
24
+ =========================== =================================================================
25
+ ``c`` speed of light in vacuum
26
+ ``speed_of_light`` speed of light in vacuum
27
+ ``mu_0`` the magnetic constant :math:`\mu_0`
28
+ ``epsilon_0`` the electric constant (vacuum permittivity), :math:`\epsilon_0`
29
+ ``h`` the Planck constant :math:`h`
30
+ ``Planck`` the Planck constant :math:`h`
31
+ ``hbar`` :math:`\hbar = h/(2\pi)`
32
+ ``G`` Newtonian constant of gravitation
33
+ ``gravitational_constant`` Newtonian constant of gravitation
34
+ ``g`` standard acceleration of gravity
35
+ ``e`` elementary charge
36
+ ``elementary_charge`` elementary charge
37
+ ``R`` molar gas constant
38
+ ``gas_constant`` molar gas constant
39
+ ``alpha`` fine-structure constant
40
+ ``fine_structure`` fine-structure constant
41
+ ``N_A`` Avogadro constant
42
+ ``Avogadro`` Avogadro constant
43
+ ``k`` Boltzmann constant
44
+ ``Boltzmann`` Boltzmann constant
45
+ ``sigma`` Stefan-Boltzmann constant :math:`\sigma`
46
+ ``Stefan_Boltzmann`` Stefan-Boltzmann constant :math:`\sigma`
47
+ ``Wien`` Wien displacement law constant
48
+ ``Rydberg`` Rydberg constant
49
+ ``m_e`` electron mass
50
+ ``electron_mass`` electron mass
51
+ ``m_p`` proton mass
52
+ ``proton_mass`` proton mass
53
+ ``m_n`` neutron mass
54
+ ``neutron_mass`` neutron mass
55
+ =========================== =================================================================
56
+
57
+
58
+ Constants database
59
+ ------------------
60
+
61
+ In addition to the above variables, :mod:`scipy.constants` also contains the
62
+ 2018 CODATA recommended values [CODATA2018]_ database containing more physical
63
+ constants.
64
+
65
+ .. autosummary::
66
+ :toctree: generated/
67
+
68
+ value -- Value in physical_constants indexed by key
69
+ unit -- Unit in physical_constants indexed by key
70
+ precision -- Relative precision in physical_constants indexed by key
71
+ find -- Return list of physical_constant keys with a given string
72
+ ConstantWarning -- Constant sought not in newest CODATA data set
73
+
74
+ .. data:: physical_constants
75
+
76
+ Dictionary of physical constants, of the format
77
+ ``physical_constants[name] = (value, unit, uncertainty)``.
78
+
79
+ Available constants:
80
+
81
+ ====================================================================== ====
82
+ %(constant_names)s
83
+ ====================================================================== ====
84
+
85
+
86
+ Units
87
+ =====
88
+
89
+ SI prefixes
90
+ -----------
91
+
92
+ ============ =================================================================
93
+ ``quetta`` :math:`10^{30}`
94
+ ``ronna`` :math:`10^{27}`
95
+ ``yotta`` :math:`10^{24}`
96
+ ``zetta`` :math:`10^{21}`
97
+ ``exa`` :math:`10^{18}`
98
+ ``peta`` :math:`10^{15}`
99
+ ``tera`` :math:`10^{12}`
100
+ ``giga`` :math:`10^{9}`
101
+ ``mega`` :math:`10^{6}`
102
+ ``kilo`` :math:`10^{3}`
103
+ ``hecto`` :math:`10^{2}`
104
+ ``deka`` :math:`10^{1}`
105
+ ``deci`` :math:`10^{-1}`
106
+ ``centi`` :math:`10^{-2}`
107
+ ``milli`` :math:`10^{-3}`
108
+ ``micro`` :math:`10^{-6}`
109
+ ``nano`` :math:`10^{-9}`
110
+ ``pico`` :math:`10^{-12}`
111
+ ``femto`` :math:`10^{-15}`
112
+ ``atto`` :math:`10^{-18}`
113
+ ``zepto`` :math:`10^{-21}`
114
+ ``yocto`` :math:`10^{-24}`
115
+ ``ronto`` :math:`10^{-27}`
116
+ ``quecto`` :math:`10^{-30}`
117
+ ============ =================================================================
118
+
119
+ Binary prefixes
120
+ ---------------
121
+
122
+ ============ =================================================================
123
+ ``kibi`` :math:`2^{10}`
124
+ ``mebi`` :math:`2^{20}`
125
+ ``gibi`` :math:`2^{30}`
126
+ ``tebi`` :math:`2^{40}`
127
+ ``pebi`` :math:`2^{50}`
128
+ ``exbi`` :math:`2^{60}`
129
+ ``zebi`` :math:`2^{70}`
130
+ ``yobi`` :math:`2^{80}`
131
+ ============ =================================================================
132
+
133
+ Mass
134
+ ----
135
+
136
+ ================= ============================================================
137
+ ``gram`` :math:`10^{-3}` kg
138
+ ``metric_ton`` :math:`10^{3}` kg
139
+ ``grain`` one grain in kg
140
+ ``lb`` one pound (avoirdupous) in kg
141
+ ``pound`` one pound (avoirdupous) in kg
142
+ ``blob`` one inch version of a slug in kg (added in 1.0.0)
143
+ ``slinch`` one inch version of a slug in kg (added in 1.0.0)
144
+ ``slug`` one slug in kg (added in 1.0.0)
145
+ ``oz`` one ounce in kg
146
+ ``ounce`` one ounce in kg
147
+ ``stone`` one stone in kg
148
+ ``grain`` one grain in kg
149
+ ``long_ton`` one long ton in kg
150
+ ``short_ton`` one short ton in kg
151
+ ``troy_ounce`` one Troy ounce in kg
152
+ ``troy_pound`` one Troy pound in kg
153
+ ``carat`` one carat in kg
154
+ ``m_u`` atomic mass constant (in kg)
155
+ ``u`` atomic mass constant (in kg)
156
+ ``atomic_mass`` atomic mass constant (in kg)
157
+ ================= ============================================================
158
+
159
+ Angle
160
+ -----
161
+
162
+ ================= ============================================================
163
+ ``degree`` degree in radians
164
+ ``arcmin`` arc minute in radians
165
+ ``arcminute`` arc minute in radians
166
+ ``arcsec`` arc second in radians
167
+ ``arcsecond`` arc second in radians
168
+ ================= ============================================================
169
+
170
+
171
+ Time
172
+ ----
173
+
174
+ ================= ============================================================
175
+ ``minute`` one minute in seconds
176
+ ``hour`` one hour in seconds
177
+ ``day`` one day in seconds
178
+ ``week`` one week in seconds
179
+ ``year`` one year (365 days) in seconds
180
+ ``Julian_year`` one Julian year (365.25 days) in seconds
181
+ ================= ============================================================
182
+
183
+
184
+ Length
185
+ ------
186
+
187
+ ===================== ============================================================
188
+ ``inch`` one inch in meters
189
+ ``foot`` one foot in meters
190
+ ``yard`` one yard in meters
191
+ ``mile`` one mile in meters
192
+ ``mil`` one mil in meters
193
+ ``pt`` one point in meters
194
+ ``point`` one point in meters
195
+ ``survey_foot`` one survey foot in meters
196
+ ``survey_mile`` one survey mile in meters
197
+ ``nautical_mile`` one nautical mile in meters
198
+ ``fermi`` one Fermi in meters
199
+ ``angstrom`` one Angstrom in meters
200
+ ``micron`` one micron in meters
201
+ ``au`` one astronomical unit in meters
202
+ ``astronomical_unit`` one astronomical unit in meters
203
+ ``light_year`` one light year in meters
204
+ ``parsec`` one parsec in meters
205
+ ===================== ============================================================
206
+
207
+ Pressure
208
+ --------
209
+
210
+ ================= ============================================================
211
+ ``atm`` standard atmosphere in pascals
212
+ ``atmosphere`` standard atmosphere in pascals
213
+ ``bar`` one bar in pascals
214
+ ``torr`` one torr (mmHg) in pascals
215
+ ``mmHg`` one torr (mmHg) in pascals
216
+ ``psi`` one psi in pascals
217
+ ================= ============================================================
218
+
219
+ Area
220
+ ----
221
+
222
+ ================= ============================================================
223
+ ``hectare`` one hectare in square meters
224
+ ``acre`` one acre in square meters
225
+ ================= ============================================================
226
+
227
+
228
+ Volume
229
+ ------
230
+
231
+ =================== ========================================================
232
+ ``liter`` one liter in cubic meters
233
+ ``litre`` one liter in cubic meters
234
+ ``gallon`` one gallon (US) in cubic meters
235
+ ``gallon_US`` one gallon (US) in cubic meters
236
+ ``gallon_imp`` one gallon (UK) in cubic meters
237
+ ``fluid_ounce`` one fluid ounce (US) in cubic meters
238
+ ``fluid_ounce_US`` one fluid ounce (US) in cubic meters
239
+ ``fluid_ounce_imp`` one fluid ounce (UK) in cubic meters
240
+ ``bbl`` one barrel in cubic meters
241
+ ``barrel`` one barrel in cubic meters
242
+ =================== ========================================================
243
+
244
+ Speed
245
+ -----
246
+
247
+ ================== ==========================================================
248
+ ``kmh`` kilometers per hour in meters per second
249
+ ``mph`` miles per hour in meters per second
250
+ ``mach`` one Mach (approx., at 15 C, 1 atm) in meters per second
251
+ ``speed_of_sound`` one Mach (approx., at 15 C, 1 atm) in meters per second
252
+ ``knot`` one knot in meters per second
253
+ ================== ==========================================================
254
+
255
+
256
+ Temperature
257
+ -----------
258
+
259
+ ===================== =======================================================
260
+ ``zero_Celsius`` zero of Celsius scale in Kelvin
261
+ ``degree_Fahrenheit`` one Fahrenheit (only differences) in Kelvins
262
+ ===================== =======================================================
263
+
264
+ .. autosummary::
265
+ :toctree: generated/
266
+
267
+ convert_temperature
268
+
269
+ Energy
270
+ ------
271
+
272
+ ==================== =======================================================
273
+ ``eV`` one electron volt in Joules
274
+ ``electron_volt`` one electron volt in Joules
275
+ ``calorie`` one calorie (thermochemical) in Joules
276
+ ``calorie_th`` one calorie (thermochemical) in Joules
277
+ ``calorie_IT`` one calorie (International Steam Table calorie, 1956) in Joules
278
+ ``erg`` one erg in Joules
279
+ ``Btu`` one British thermal unit (International Steam Table) in Joules
280
+ ``Btu_IT`` one British thermal unit (International Steam Table) in Joules
281
+ ``Btu_th`` one British thermal unit (thermochemical) in Joules
282
+ ``ton_TNT`` one ton of TNT in Joules
283
+ ==================== =======================================================
284
+
285
+ Power
286
+ -----
287
+
288
+ ==================== =======================================================
289
+ ``hp`` one horsepower in watts
290
+ ``horsepower`` one horsepower in watts
291
+ ==================== =======================================================
292
+
293
+ Force
294
+ -----
295
+
296
+ ==================== =======================================================
297
+ ``dyn`` one dyne in newtons
298
+ ``dyne`` one dyne in newtons
299
+ ``lbf`` one pound force in newtons
300
+ ``pound_force`` one pound force in newtons
301
+ ``kgf`` one kilogram force in newtons
302
+ ``kilogram_force`` one kilogram force in newtons
303
+ ==================== =======================================================
304
+
305
+ Optics
306
+ ------
307
+
308
+ .. autosummary::
309
+ :toctree: generated/
310
+
311
+ lambda2nu
312
+ nu2lambda
313
+
314
+ References
315
+ ==========
316
+
317
+ .. [CODATA2018] CODATA Recommended Values of the Fundamental
318
+ Physical Constants 2018.
319
+
320
+ https://physics.nist.gov/cuu/Constants/
321
+
322
+ """ # noqa: E501
323
+ # Modules contributed by BasSw ([email protected])
324
+ from ._codata import *
325
+ from ._constants import *
326
+ from ._codata import _obsolete_constants, physical_constants
327
+
328
+ # Deprecated namespaces, to be removed in v2.0.0
329
+ from . import codata, constants
330
+
331
+ _constant_names_list = [(_k.lower(), _k, _v)
332
+ for _k, _v in physical_constants.items()
333
+ if _k not in _obsolete_constants]
334
+ _constant_names = "\n".join(["``{}``{} {} {}".format(_x[1], " "*(66-len(_x[1])),
335
+ _x[2][0], _x[2][1])
336
+ for _x in sorted(_constant_names_list)])
337
+ if __doc__:
338
+ __doc__ = __doc__ % dict(constant_names=_constant_names)
339
+
340
+ del _constant_names
341
+ del _constant_names_list
342
+
343
+ __all__ = [s for s in dir() if not s.startswith('_')]
344
+
345
+ from scipy._lib._testutils import PytestTester
346
+ test = PytestTester(__name__)
347
+ del PytestTester
venv/lib/python3.10/site-packages/scipy/constants/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (12.7 kB). View file
 
venv/lib/python3.10/site-packages/scipy/constants/__pycache__/_codata.cpython-310.pyc ADDED
Binary file (154 kB). View file
 
venv/lib/python3.10/site-packages/scipy/constants/__pycache__/_constants.cpython-310.pyc ADDED
Binary file (8.71 kB). View file
 
venv/lib/python3.10/site-packages/scipy/constants/__pycache__/codata.cpython-310.pyc ADDED
Binary file (814 Bytes). View file