File size: 1,116 Bytes
d24f382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
"""
The :mod:`sklearn.covariance` module includes methods and algorithms to
robustly estimate the covariance of features given a set of points. The
precision matrix defined as the inverse of the covariance is also estimated.
Covariance estimation is closely related to the theory of Gaussian Graphical
Models.
"""
from ._elliptic_envelope import EllipticEnvelope
from ._empirical_covariance import (
EmpiricalCovariance,
empirical_covariance,
log_likelihood,
)
from ._graph_lasso import GraphicalLasso, GraphicalLassoCV, graphical_lasso
from ._robust_covariance import MinCovDet, fast_mcd
from ._shrunk_covariance import (
OAS,
LedoitWolf,
ShrunkCovariance,
ledoit_wolf,
ledoit_wolf_shrinkage,
oas,
shrunk_covariance,
)
__all__ = [
"EllipticEnvelope",
"EmpiricalCovariance",
"GraphicalLasso",
"GraphicalLassoCV",
"LedoitWolf",
"MinCovDet",
"OAS",
"ShrunkCovariance",
"empirical_covariance",
"fast_mcd",
"graphical_lasso",
"ledoit_wolf",
"ledoit_wolf_shrinkage",
"log_likelihood",
"oas",
"shrunk_covariance",
]
|