applied-ai-018 commited on
Commit
d24f382
·
verified ·
1 Parent(s): 68c2db5

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/11.attention.dense.weight/exp_avg_sq.pt +3 -0
  2. ckpts/universal/global_step40/zero/11.attention.dense.weight/fp32.pt +3 -0
  3. ckpts/universal/global_step40/zero/11.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  4. venv/lib/python3.10/site-packages/annotated_types-0.6.0.dist-info/INSTALLER +1 -0
  5. venv/lib/python3.10/site-packages/annotated_types-0.6.0.dist-info/METADATA +242 -0
  6. venv/lib/python3.10/site-packages/annotated_types-0.6.0.dist-info/RECORD +10 -0
  7. venv/lib/python3.10/site-packages/annotated_types-0.6.0.dist-info/WHEEL +4 -0
  8. venv/lib/python3.10/site-packages/annotated_types-0.6.0.dist-info/licenses/LICENSE +21 -0
  9. venv/lib/python3.10/site-packages/chardet/__init__.py +115 -0
  10. venv/lib/python3.10/site-packages/chardet/big5freq.py +386 -0
  11. venv/lib/python3.10/site-packages/chardet/big5prober.py +47 -0
  12. venv/lib/python3.10/site-packages/chardet/chardistribution.py +261 -0
  13. venv/lib/python3.10/site-packages/chardet/charsetgroupprober.py +106 -0
  14. venv/lib/python3.10/site-packages/chardet/codingstatemachine.py +90 -0
  15. venv/lib/python3.10/site-packages/chardet/codingstatemachinedict.py +19 -0
  16. venv/lib/python3.10/site-packages/chardet/enums.py +85 -0
  17. venv/lib/python3.10/site-packages/chardet/escprober.py +102 -0
  18. venv/lib/python3.10/site-packages/chardet/escsm.py +261 -0
  19. venv/lib/python3.10/site-packages/chardet/eucjpprober.py +102 -0
  20. venv/lib/python3.10/site-packages/chardet/euckrfreq.py +196 -0
  21. venv/lib/python3.10/site-packages/chardet/gb2312freq.py +284 -0
  22. venv/lib/python3.10/site-packages/chardet/gb2312prober.py +47 -0
  23. venv/lib/python3.10/site-packages/chardet/hebrewprober.py +316 -0
  24. venv/lib/python3.10/site-packages/chardet/jisfreq.py +325 -0
  25. venv/lib/python3.10/site-packages/chardet/langbulgarianmodel.py +0 -0
  26. venv/lib/python3.10/site-packages/chardet/langhungarianmodel.py +0 -0
  27. venv/lib/python3.10/site-packages/chardet/langrussianmodel.py +0 -0
  28. venv/lib/python3.10/site-packages/chardet/langthaimodel.py +0 -0
  29. venv/lib/python3.10/site-packages/chardet/macromanprober.py +162 -0
  30. venv/lib/python3.10/site-packages/chardet/mbcharsetprober.py +95 -0
  31. venv/lib/python3.10/site-packages/chardet/mbcsgroupprober.py +57 -0
  32. venv/lib/python3.10/site-packages/chardet/mbcssm.py +661 -0
  33. venv/lib/python3.10/site-packages/chardet/py.typed +0 -0
  34. venv/lib/python3.10/site-packages/chardet/resultdict.py +16 -0
  35. venv/lib/python3.10/site-packages/chardet/sbcharsetprober.py +162 -0
  36. venv/lib/python3.10/site-packages/chardet/utf1632prober.py +225 -0
  37. venv/lib/python3.10/site-packages/chardet/utf8prober.py +82 -0
  38. venv/lib/python3.10/site-packages/safetensors-0.4.3.dist-info/INSTALLER +1 -0
  39. venv/lib/python3.10/site-packages/safetensors-0.4.3.dist-info/METADATA +127 -0
  40. venv/lib/python3.10/site-packages/safetensors-0.4.3.dist-info/RECORD +21 -0
  41. venv/lib/python3.10/site-packages/safetensors-0.4.3.dist-info/WHEEL +4 -0
  42. venv/lib/python3.10/site-packages/sklearn/covariance/__init__.py +44 -0
  43. venv/lib/python3.10/site-packages/sklearn/covariance/__pycache__/__init__.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/sklearn/covariance/__pycache__/_elliptic_envelope.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/sklearn/covariance/__pycache__/_empirical_covariance.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/sklearn/covariance/__pycache__/_graph_lasso.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/sklearn/covariance/__pycache__/_robust_covariance.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/sklearn/covariance/__pycache__/_shrunk_covariance.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/sklearn/covariance/_elliptic_envelope.py +267 -0
  50. venv/lib/python3.10/site-packages/sklearn/covariance/_empirical_covariance.py +364 -0
ckpts/universal/global_step40/zero/11.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdcca03be094aa3bab46127679c7cab281a4c52284570ae3922ce1fa03665c8f
3
+ size 16778411
ckpts/universal/global_step40/zero/11.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f629e604f127ba633c6d5c8975ba28a80aa2096fc11e767b6dc8de7ce548d94
3
+ size 16778317
ckpts/universal/global_step40/zero/11.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e12c152189d73a6366dc9d5155c8a7c9140f4fc7b01ec8cd9ada1c675bcd02fc
3
+ size 33555533
venv/lib/python3.10/site-packages/annotated_types-0.6.0.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
venv/lib/python3.10/site-packages/annotated_types-0.6.0.dist-info/METADATA ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: annotated-types
3
+ Version: 0.6.0
4
+ Summary: Reusable constraint types to use with typing.Annotated
5
+ Author-email: Samuel Colvin <[email protected]>, Adrian Garcia Badaracco <[email protected]>, Zac Hatfield-Dodds <[email protected]>
6
+ License-File: LICENSE
7
+ Classifier: Development Status :: 4 - Beta
8
+ Classifier: Environment :: Console
9
+ Classifier: Environment :: MacOS X
10
+ Classifier: Intended Audience :: Developers
11
+ Classifier: Intended Audience :: Information Technology
12
+ Classifier: License :: OSI Approved :: MIT License
13
+ Classifier: Operating System :: POSIX :: Linux
14
+ Classifier: Operating System :: Unix
15
+ Classifier: Programming Language :: Python :: 3 :: Only
16
+ Classifier: Programming Language :: Python :: 3.8
17
+ Classifier: Programming Language :: Python :: 3.9
18
+ Classifier: Programming Language :: Python :: 3.10
19
+ Classifier: Programming Language :: Python :: 3.11
20
+ Classifier: Programming Language :: Python :: 3.12
21
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
22
+ Classifier: Typing :: Typed
23
+ Requires-Python: >=3.8
24
+ Requires-Dist: typing-extensions>=4.0.0; python_version < '3.9'
25
+ Description-Content-Type: text/markdown
26
+
27
+ # annotated-types
28
+
29
+ [![CI](https://github.com/annotated-types/annotated-types/workflows/CI/badge.svg?event=push)](https://github.com/annotated-types/annotated-types/actions?query=event%3Apush+branch%3Amain+workflow%3ACI)
30
+ [![pypi](https://img.shields.io/pypi/v/annotated-types.svg)](https://pypi.python.org/pypi/annotated-types)
31
+ [![versions](https://img.shields.io/pypi/pyversions/annotated-types.svg)](https://github.com/annotated-types/annotated-types)
32
+ [![license](https://img.shields.io/github/license/annotated-types/annotated-types.svg)](https://github.com/annotated-types/annotated-types/blob/main/LICENSE)
33
+
34
+ [PEP-593](https://peps.python.org/pep-0593/) added `typing.Annotated` as a way of
35
+ adding context-specific metadata to existing types, and specifies that
36
+ `Annotated[T, x]` _should_ be treated as `T` by any tool or library without special
37
+ logic for `x`.
38
+
39
+ This package provides metadata objects which can be used to represent common
40
+ constraints such as upper and lower bounds on scalar values and collection sizes,
41
+ a `Predicate` marker for runtime checks, and
42
+ descriptions of how we intend these metadata to be interpreted. In some cases,
43
+ we also note alternative representations which do not require this package.
44
+
45
+ ## Install
46
+
47
+ ```bash
48
+ pip install annotated-types
49
+ ```
50
+
51
+ ## Examples
52
+
53
+ ```python
54
+ from typing import Annotated
55
+ from annotated_types import Gt, Len, Predicate
56
+
57
+ class MyClass:
58
+ age: Annotated[int, Gt(18)] # Valid: 19, 20, ...
59
+ # Invalid: 17, 18, "19", 19.0, ...
60
+ factors: list[Annotated[int, Predicate(is_prime)]] # Valid: 2, 3, 5, 7, 11, ...
61
+ # Invalid: 4, 8, -2, 5.0, "prime", ...
62
+
63
+ my_list: Annotated[list[int], Len(0, 10)] # Valid: [], [10, 20, 30, 40, 50]
64
+ # Invalid: (1, 2), ["abc"], [0] * 20
65
+ ```
66
+
67
+ ## Documentation
68
+
69
+ _While `annotated-types` avoids runtime checks for performance, users should not
70
+ construct invalid combinations such as `MultipleOf("non-numeric")` or `Annotated[int, Len(3)]`.
71
+ Downstream implementors may choose to raise an error, emit a warning, silently ignore
72
+ a metadata item, etc., if the metadata objects described below are used with an
73
+ incompatible type - or for any other reason!_
74
+
75
+ ### Gt, Ge, Lt, Le
76
+
77
+ Express inclusive and/or exclusive bounds on orderable values - which may be numbers,
78
+ dates, times, strings, sets, etc. Note that the boundary value need not be of the
79
+ same type that was annotated, so long as they can be compared: `Annotated[int, Gt(1.5)]`
80
+ is fine, for example, and implies that the value is an integer x such that `x > 1.5`.
81
+
82
+ We suggest that implementors may also interpret `functools.partial(operator.le, 1.5)`
83
+ as being equivalent to `Gt(1.5)`, for users who wish to avoid a runtime dependency on
84
+ the `annotated-types` package.
85
+
86
+ To be explicit, these types have the following meanings:
87
+
88
+ * `Gt(x)` - value must be "Greater Than" `x` - equivalent to exclusive minimum
89
+ * `Ge(x)` - value must be "Greater than or Equal" to `x` - equivalent to inclusive minimum
90
+ * `Lt(x)` - value must be "Less Than" `x` - equivalent to exclusive maximum
91
+ * `Le(x)` - value must be "Less than or Equal" to `x` - equivalent to inclusive maximum
92
+
93
+ ### Interval
94
+
95
+ `Interval(gt, ge, lt, le)` allows you to specify an upper and lower bound with a single
96
+ metadata object. `None` attributes should be ignored, and non-`None` attributes
97
+ treated as per the single bounds above.
98
+
99
+ ### MultipleOf
100
+
101
+ `MultipleOf(multiple_of=x)` might be interpreted in two ways:
102
+
103
+ 1. Python semantics, implying `value % multiple_of == 0`, or
104
+ 2. [JSONschema semantics](https://json-schema.org/draft/2020-12/json-schema-validation.html#rfc.section.6.2.1),
105
+ where `int(value / multiple_of) == value / multiple_of`.
106
+
107
+ We encourage users to be aware of these two common interpretations and their
108
+ distinct behaviours, especially since very large or non-integer numbers make
109
+ it easy to cause silent data corruption due to floating-point imprecision.
110
+
111
+ We encourage libraries to carefully document which interpretation they implement.
112
+
113
+ ### MinLen, MaxLen, Len
114
+
115
+ `Len()` implies that `min_length <= len(value) <= max_length` - lower and upper bounds are inclusive.
116
+
117
+ As well as `Len()` which can optionally include upper and lower bounds, we also
118
+ provide `MinLen(x)` and `MaxLen(y)` which are equivalent to `Len(min_length=x)`
119
+ and `Len(max_length=y)` respectively.
120
+
121
+ `Len`, `MinLen`, and `MaxLen` may be used with any type which supports `len(value)`.
122
+
123
+ Examples of usage:
124
+
125
+ * `Annotated[list, MaxLen(10)]` (or `Annotated[list, Len(max_length=10))`) - list must have a length of 10 or less
126
+ * `Annotated[str, MaxLen(10)]` - string must have a length of 10 or less
127
+ * `Annotated[list, MinLen(3))` (or `Annotated[list, Len(min_length=3))`) - list must have a length of 3 or more
128
+ * `Annotated[list, Len(4, 6)]` - list must have a length of 4, 5, or 6
129
+ * `Annotated[list, Len(8, 8)]` - list must have a length of exactly 8
130
+
131
+ #### Changed in v0.4.0
132
+
133
+ * `min_inclusive` has been renamed to `min_length`, no change in meaning
134
+ * `max_exclusive` has been renamed to `max_length`, upper bound is now **inclusive** instead of **exclusive**
135
+ * The recommendation that slices are interpreted as `Len` has been removed due to ambiguity and different semantic
136
+ meaning of the upper bound in slices vs. `Len`
137
+
138
+ See [issue #23](https://github.com/annotated-types/annotated-types/issues/23) for discussion.
139
+
140
+ ### Timezone
141
+
142
+ `Timezone` can be used with a `datetime` or a `time` to express which timezones
143
+ are allowed. `Annotated[datetime, Timezone(None)]` must be a naive datetime.
144
+ `Timezone[...]` ([literal ellipsis](https://docs.python.org/3/library/constants.html#Ellipsis))
145
+ expresses that any timezone-aware datetime is allowed. You may also pass a specific
146
+ timezone string or `timezone` object such as `Timezone(timezone.utc)` or
147
+ `Timezone("Africa/Abidjan")` to express that you only allow a specific timezone,
148
+ though we note that this is often a symptom of fragile design.
149
+
150
+ ### Predicate
151
+
152
+ `Predicate(func: Callable)` expresses that `func(value)` is truthy for valid values.
153
+ Users should prefer the statically inspectable metadata above, but if you need
154
+ the full power and flexibility of arbitrary runtime predicates... here it is.
155
+
156
+ We provide a few predefined predicates for common string constraints:
157
+
158
+ * `IsLower = Predicate(str.islower)`
159
+ * `IsUpper = Predicate(str.isupper)`
160
+ * `IsDigit = Predicate(str.isdigit)`
161
+ * `IsFinite = Predicate(math.isfinite)`
162
+ * `IsNotFinite = Predicate(Not(math.isfinite))`
163
+ * `IsNan = Predicate(math.isnan)`
164
+ * `IsNotNan = Predicate(Not(math.isnan))`
165
+ * `IsInfinite = Predicate(math.isinf)`
166
+ * `IsNotInfinite = Predicate(Not(math.isinf))`
167
+
168
+ Some libraries might have special logic to handle known or understandable predicates,
169
+ for example by checking for `str.isdigit` and using its presence to both call custom
170
+ logic to enforce digit-only strings, and customise some generated external schema.
171
+ Users are therefore encouraged to avoid indirection like `lambda s: s.lower()`, in
172
+ favor of introspectable methods such as `str.lower` or `re.compile("pattern").search`.
173
+
174
+ To enable basic negation of commonly used predicates like `math.isnan` without introducing introspection that makes it impossible for implementers to introspect the predicate we provide a `Not` wrapper that simply negates the predicate in an introspectable manner. Several of the predicates listed above are created in this manner.
175
+
176
+ We do not specify what behaviour should be expected for predicates that raise
177
+ an exception. For example `Annotated[int, Predicate(str.isdigit)]` might silently
178
+ skip invalid constraints, or statically raise an error; or it might try calling it
179
+ and then propogate or discard the resulting
180
+ `TypeError: descriptor 'isdigit' for 'str' objects doesn't apply to a 'int' object`
181
+ exception. We encourage libraries to document the behaviour they choose.
182
+
183
+ ### Doc
184
+
185
+ `doc()` can be used to add documentation information in `Annotated`, for function and method parameters, variables, class attributes, return types, and any place where `Annotated` can be used.
186
+
187
+ It expects a value that can be statically analyzed, as the main use case is for static analysis, editors, documentation generators, and similar tools.
188
+
189
+ It returns a `DocInfo` class with a single attribute `documentation` containing the value passed to `doc()`.
190
+
191
+ This is the early adopter's alternative form of the [`typing-doc` proposal](https://github.com/tiangolo/fastapi/blob/typing-doc/typing_doc.md).
192
+
193
+ ### Integrating downstream types with `GroupedMetadata`
194
+
195
+ Implementers may choose to provide a convenience wrapper that groups multiple pieces of metadata.
196
+ This can help reduce verbosity and cognitive overhead for users.
197
+ For example, an implementer like Pydantic might provide a `Field` or `Meta` type that accepts keyword arguments and transforms these into low-level metadata:
198
+
199
+ ```python
200
+ from dataclasses import dataclass
201
+ from typing import Iterator
202
+ from annotated_types import GroupedMetadata, Ge
203
+
204
+ @dataclass
205
+ class Field(GroupedMetadata):
206
+ ge: int | None = None
207
+ description: str | None = None
208
+
209
+ def __iter__(self) -> Iterator[object]:
210
+ # Iterating over a GroupedMetadata object should yield annotated-types
211
+ # constraint metadata objects which describe it as fully as possible,
212
+ # and may include other unknown objects too.
213
+ if self.ge is not None:
214
+ yield Ge(self.ge)
215
+ if self.description is not None:
216
+ yield Description(self.description)
217
+ ```
218
+
219
+ Libraries consuming annotated-types constraints should check for `GroupedMetadata` and unpack it by iterating over the object and treating the results as if they had been "unpacked" in the `Annotated` type. The same logic should be applied to the [PEP 646 `Unpack` type](https://peps.python.org/pep-0646/), so that `Annotated[T, Field(...)]`, `Annotated[T, Unpack[Field(...)]]` and `Annotated[T, *Field(...)]` are all treated consistently.
220
+
221
+ Libraries consuming annotated-types should also ignore any metadata they do not recongize that came from unpacking a `GroupedMetadata`, just like they ignore unrecognized metadata in `Annotated` itself.
222
+
223
+ Our own `annotated_types.Interval` class is a `GroupedMetadata` which unpacks itself into `Gt`, `Lt`, etc., so this is not an abstract concern. Similarly, `annotated_types.Len` is a `GroupedMetadata` which unpacks itself into `MinLen` (optionally) and `MaxLen`.
224
+
225
+ ### Consuming metadata
226
+
227
+ We intend to not be prescriptive as to _how_ the metadata and constraints are used, but as an example of how one might parse constraints from types annotations see our [implementation in `test_main.py`](https://github.com/annotated-types/annotated-types/blob/f59cf6d1b5255a0fe359b93896759a180bec30ae/tests/test_main.py#L94-L103).
228
+
229
+ It is up to the implementer to determine how this metadata is used.
230
+ You could use the metadata for runtime type checking, for generating schemas or to generate example data, amongst other use cases.
231
+
232
+ ## Design & History
233
+
234
+ This package was designed at the PyCon 2022 sprints by the maintainers of Pydantic
235
+ and Hypothesis, with the goal of making it as easy as possible for end-users to
236
+ provide more informative annotations for use by runtime libraries.
237
+
238
+ It is deliberately minimal, and following PEP-593 allows considerable downstream
239
+ discretion in what (if anything!) they choose to support. Nonetheless, we expect
240
+ that staying simple and covering _only_ the most common use-cases will give users
241
+ and maintainers the best experience we can. If you'd like more constraints for your
242
+ types - follow our lead, by defining them and documenting them downstream!
venv/lib/python3.10/site-packages/annotated_types-0.6.0.dist-info/RECORD ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ annotated_types-0.6.0.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
2
+ annotated_types-0.6.0.dist-info/METADATA,sha256=78YeruT3b_doh8TbsK7qcbqY4cvCMz_QQRCGUbyAo6M,12879
3
+ annotated_types-0.6.0.dist-info/RECORD,,
4
+ annotated_types-0.6.0.dist-info/WHEEL,sha256=9QBuHhg6FNW7lppboF2vKVbCGTVzsFykgRQjjlajrhA,87
5
+ annotated_types-0.6.0.dist-info/licenses/LICENSE,sha256=_hBJiEsaDZNCkB6I4H8ykl0ksxIdmXK2poBfuYJLCV0,1083
6
+ annotated_types/__init__.py,sha256=txLoRt8iSiAc-Su37esWpMI0wFjN92V7gE5HdFIeeKI,12151
7
+ annotated_types/__pycache__/__init__.cpython-310.pyc,,
8
+ annotated_types/__pycache__/test_cases.cpython-310.pyc,,
9
+ annotated_types/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
+ annotated_types/test_cases.py,sha256=LfFyURZwr7X3NVfoCrSXSMMxTxJD4o8Xz-Y8qbmY7JU,6327
venv/lib/python3.10/site-packages/annotated_types-0.6.0.dist-info/WHEEL ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: hatchling 1.18.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
venv/lib/python3.10/site-packages/annotated_types-0.6.0.dist-info/licenses/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The MIT License (MIT)
2
+
3
+ Copyright (c) 2022 the contributors
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
venv/lib/python3.10/site-packages/chardet/__init__.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # This library is free software; you can redistribute it and/or
3
+ # modify it under the terms of the GNU Lesser General Public
4
+ # License as published by the Free Software Foundation; either
5
+ # version 2.1 of the License, or (at your option) any later version.
6
+ #
7
+ # This library is distributed in the hope that it will be useful,
8
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
9
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10
+ # Lesser General Public License for more details.
11
+ #
12
+ # You should have received a copy of the GNU Lesser General Public
13
+ # License along with this library; if not, write to the Free Software
14
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
15
+ # 02110-1301 USA
16
+ ######################### END LICENSE BLOCK #########################
17
+
18
+ from typing import List, Union
19
+
20
+ from .charsetgroupprober import CharSetGroupProber
21
+ from .charsetprober import CharSetProber
22
+ from .enums import InputState
23
+ from .resultdict import ResultDict
24
+ from .universaldetector import UniversalDetector
25
+ from .version import VERSION, __version__
26
+
27
+ __all__ = ["UniversalDetector", "detect", "detect_all", "__version__", "VERSION"]
28
+
29
+
30
+ def detect(
31
+ byte_str: Union[bytes, bytearray], should_rename_legacy: bool = False
32
+ ) -> ResultDict:
33
+ """
34
+ Detect the encoding of the given byte string.
35
+
36
+ :param byte_str: The byte sequence to examine.
37
+ :type byte_str: ``bytes`` or ``bytearray``
38
+ :param should_rename_legacy: Should we rename legacy encodings
39
+ to their more modern equivalents?
40
+ :type should_rename_legacy: ``bool``
41
+ """
42
+ if not isinstance(byte_str, bytearray):
43
+ if not isinstance(byte_str, bytes):
44
+ raise TypeError(
45
+ f"Expected object of type bytes or bytearray, got: {type(byte_str)}"
46
+ )
47
+ byte_str = bytearray(byte_str)
48
+ detector = UniversalDetector(should_rename_legacy=should_rename_legacy)
49
+ detector.feed(byte_str)
50
+ return detector.close()
51
+
52
+
53
+ def detect_all(
54
+ byte_str: Union[bytes, bytearray],
55
+ ignore_threshold: bool = False,
56
+ should_rename_legacy: bool = False,
57
+ ) -> List[ResultDict]:
58
+ """
59
+ Detect all the possible encodings of the given byte string.
60
+
61
+ :param byte_str: The byte sequence to examine.
62
+ :type byte_str: ``bytes`` or ``bytearray``
63
+ :param ignore_threshold: Include encodings that are below
64
+ ``UniversalDetector.MINIMUM_THRESHOLD``
65
+ in results.
66
+ :type ignore_threshold: ``bool``
67
+ :param should_rename_legacy: Should we rename legacy encodings
68
+ to their more modern equivalents?
69
+ :type should_rename_legacy: ``bool``
70
+ """
71
+ if not isinstance(byte_str, bytearray):
72
+ if not isinstance(byte_str, bytes):
73
+ raise TypeError(
74
+ f"Expected object of type bytes or bytearray, got: {type(byte_str)}"
75
+ )
76
+ byte_str = bytearray(byte_str)
77
+
78
+ detector = UniversalDetector(should_rename_legacy=should_rename_legacy)
79
+ detector.feed(byte_str)
80
+ detector.close()
81
+
82
+ if detector.input_state == InputState.HIGH_BYTE:
83
+ results: List[ResultDict] = []
84
+ probers: List[CharSetProber] = []
85
+ for prober in detector.charset_probers:
86
+ if isinstance(prober, CharSetGroupProber):
87
+ probers.extend(p for p in prober.probers)
88
+ else:
89
+ probers.append(prober)
90
+ for prober in probers:
91
+ if ignore_threshold or prober.get_confidence() > detector.MINIMUM_THRESHOLD:
92
+ charset_name = prober.charset_name or ""
93
+ lower_charset_name = charset_name.lower()
94
+ # Use Windows encoding name instead of ISO-8859 if we saw any
95
+ # extra Windows-specific bytes
96
+ if lower_charset_name.startswith("iso-8859") and detector.has_win_bytes:
97
+ charset_name = detector.ISO_WIN_MAP.get(
98
+ lower_charset_name, charset_name
99
+ )
100
+ # Rename legacy encodings with superset encodings if asked
101
+ if should_rename_legacy:
102
+ charset_name = detector.LEGACY_MAP.get(
103
+ charset_name.lower(), charset_name
104
+ )
105
+ results.append(
106
+ {
107
+ "encoding": charset_name,
108
+ "confidence": prober.get_confidence(),
109
+ "language": prober.language,
110
+ }
111
+ )
112
+ if len(results) > 0:
113
+ return sorted(results, key=lambda result: -result["confidence"])
114
+
115
+ return [detector.result]
venv/lib/python3.10/site-packages/chardet/big5freq.py ADDED
@@ -0,0 +1,386 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is Mozilla Communicator client code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ # Big5 frequency table
29
+ # by Taiwan's Mandarin Promotion Council
30
+ # <http://www.edu.tw:81/mandr/>
31
+ #
32
+ # 128 --> 0.42261
33
+ # 256 --> 0.57851
34
+ # 512 --> 0.74851
35
+ # 1024 --> 0.89384
36
+ # 2048 --> 0.97583
37
+ #
38
+ # Ideal Distribution Ratio = 0.74851/(1-0.74851) =2.98
39
+ # Random Distribution Ration = 512/(5401-512)=0.105
40
+ #
41
+ # Typical Distribution Ratio about 25% of Ideal one, still much higher than RDR
42
+
43
+ BIG5_TYPICAL_DISTRIBUTION_RATIO = 0.75
44
+
45
+ # Char to FreqOrder table
46
+ BIG5_TABLE_SIZE = 5376
47
+ # fmt: off
48
+ BIG5_CHAR_TO_FREQ_ORDER = (
49
+ 1,1801,1506, 255,1431, 198, 9, 82, 6,5008, 177, 202,3681,1256,2821, 110, # 16
50
+ 3814, 33,3274, 261, 76, 44,2114, 16,2946,2187,1176, 659,3971, 26,3451,2653, # 32
51
+ 1198,3972,3350,4202, 410,2215, 302, 590, 361,1964, 8, 204, 58,4510,5009,1932, # 48
52
+ 63,5010,5011, 317,1614, 75, 222, 159,4203,2417,1480,5012,3555,3091, 224,2822, # 64
53
+ 3682, 3, 10,3973,1471, 29,2787,1135,2866,1940, 873, 130,3275,1123, 312,5013, # 80
54
+ 4511,2052, 507, 252, 682,5014, 142,1915, 124, 206,2947, 34,3556,3204, 64, 604, # 96
55
+ 5015,2501,1977,1978, 155,1991, 645, 641,1606,5016,3452, 337, 72, 406,5017, 80, # 112
56
+ 630, 238,3205,1509, 263, 939,1092,2654, 756,1440,1094,3453, 449, 69,2987, 591, # 128
57
+ 179,2096, 471, 115,2035,1844, 60, 50,2988, 134, 806,1869, 734,2036,3454, 180, # 144
58
+ 995,1607, 156, 537,2907, 688,5018, 319,1305, 779,2145, 514,2379, 298,4512, 359, # 160
59
+ 2502, 90,2716,1338, 663, 11, 906,1099,2553, 20,2441, 182, 532,1716,5019, 732, # 176
60
+ 1376,4204,1311,1420,3206, 25,2317,1056, 113, 399, 382,1950, 242,3455,2474, 529, # 192
61
+ 3276, 475,1447,3683,5020, 117, 21, 656, 810,1297,2300,2334,3557,5021, 126,4205, # 208
62
+ 706, 456, 150, 613,4513, 71,1118,2037,4206, 145,3092, 85, 835, 486,2115,1246, # 224
63
+ 1426, 428, 727,1285,1015, 800, 106, 623, 303,1281,5022,2128,2359, 347,3815, 221, # 240
64
+ 3558,3135,5023,1956,1153,4207, 83, 296,1199,3093, 192, 624, 93,5024, 822,1898, # 256
65
+ 2823,3136, 795,2065, 991,1554,1542,1592, 27, 43,2867, 859, 139,1456, 860,4514, # 272
66
+ 437, 712,3974, 164,2397,3137, 695, 211,3037,2097, 195,3975,1608,3559,3560,3684, # 288
67
+ 3976, 234, 811,2989,2098,3977,2233,1441,3561,1615,2380, 668,2077,1638, 305, 228, # 304
68
+ 1664,4515, 467, 415,5025, 262,2099,1593, 239, 108, 300, 200,1033, 512,1247,2078, # 320
69
+ 5026,5027,2176,3207,3685,2682, 593, 845,1062,3277, 88,1723,2038,3978,1951, 212, # 336
70
+ 266, 152, 149, 468,1899,4208,4516, 77, 187,5028,3038, 37, 5,2990,5029,3979, # 352
71
+ 5030,5031, 39,2524,4517,2908,3208,2079, 55, 148, 74,4518, 545, 483,1474,1029, # 368
72
+ 1665, 217,1870,1531,3138,1104,2655,4209, 24, 172,3562, 900,3980,3563,3564,4519, # 384
73
+ 32,1408,2824,1312, 329, 487,2360,2251,2717, 784,2683, 4,3039,3351,1427,1789, # 400
74
+ 188, 109, 499,5032,3686,1717,1790, 888,1217,3040,4520,5033,3565,5034,3352,1520, # 416
75
+ 3687,3981, 196,1034, 775,5035,5036, 929,1816, 249, 439, 38,5037,1063,5038, 794, # 432
76
+ 3982,1435,2301, 46, 178,3278,2066,5039,2381,5040, 214,1709,4521, 804, 35, 707, # 448
77
+ 324,3688,1601,2554, 140, 459,4210,5041,5042,1365, 839, 272, 978,2262,2580,3456, # 464
78
+ 2129,1363,3689,1423, 697, 100,3094, 48, 70,1231, 495,3139,2196,5043,1294,5044, # 480
79
+ 2080, 462, 586,1042,3279, 853, 256, 988, 185,2382,3457,1698, 434,1084,5045,3458, # 496
80
+ 314,2625,2788,4522,2335,2336, 569,2285, 637,1817,2525, 757,1162,1879,1616,3459, # 512
81
+ 287,1577,2116, 768,4523,1671,2868,3566,2526,1321,3816, 909,2418,5046,4211, 933, # 528
82
+ 3817,4212,2053,2361,1222,4524, 765,2419,1322, 786,4525,5047,1920,1462,1677,2909, # 544
83
+ 1699,5048,4526,1424,2442,3140,3690,2600,3353,1775,1941,3460,3983,4213, 309,1369, # 560
84
+ 1130,2825, 364,2234,1653,1299,3984,3567,3985,3986,2656, 525,1085,3041, 902,2001, # 576
85
+ 1475, 964,4527, 421,1845,1415,1057,2286, 940,1364,3141, 376,4528,4529,1381, 7, # 592
86
+ 2527, 983,2383, 336,1710,2684,1846, 321,3461, 559,1131,3042,2752,1809,1132,1313, # 608
87
+ 265,1481,1858,5049, 352,1203,2826,3280, 167,1089, 420,2827, 776, 792,1724,3568, # 624
88
+ 4214,2443,3281,5050,4215,5051, 446, 229, 333,2753, 901,3818,1200,1557,4530,2657, # 640
89
+ 1921, 395,2754,2685,3819,4216,1836, 125, 916,3209,2626,4531,5052,5053,3820,5054, # 656
90
+ 5055,5056,4532,3142,3691,1133,2555,1757,3462,1510,2318,1409,3569,5057,2146, 438, # 672
91
+ 2601,2910,2384,3354,1068, 958,3043, 461, 311,2869,2686,4217,1916,3210,4218,1979, # 688
92
+ 383, 750,2755,2627,4219, 274, 539, 385,1278,1442,5058,1154,1965, 384, 561, 210, # 704
93
+ 98,1295,2556,3570,5059,1711,2420,1482,3463,3987,2911,1257, 129,5060,3821, 642, # 720
94
+ 523,2789,2790,2658,5061, 141,2235,1333, 68, 176, 441, 876, 907,4220, 603,2602, # 736
95
+ 710, 171,3464, 404, 549, 18,3143,2398,1410,3692,1666,5062,3571,4533,2912,4534, # 752
96
+ 5063,2991, 368,5064, 146, 366, 99, 871,3693,1543, 748, 807,1586,1185, 22,2263, # 768
97
+ 379,3822,3211,5065,3212, 505,1942,2628,1992,1382,2319,5066, 380,2362, 218, 702, # 784
98
+ 1818,1248,3465,3044,3572,3355,3282,5067,2992,3694, 930,3283,3823,5068, 59,5069, # 800
99
+ 585, 601,4221, 497,3466,1112,1314,4535,1802,5070,1223,1472,2177,5071, 749,1837, # 816
100
+ 690,1900,3824,1773,3988,1476, 429,1043,1791,2236,2117, 917,4222, 447,1086,1629, # 832
101
+ 5072, 556,5073,5074,2021,1654, 844,1090, 105, 550, 966,1758,2828,1008,1783, 686, # 848
102
+ 1095,5075,2287, 793,1602,5076,3573,2603,4536,4223,2948,2302,4537,3825, 980,2503, # 864
103
+ 544, 353, 527,4538, 908,2687,2913,5077, 381,2629,1943,1348,5078,1341,1252, 560, # 880
104
+ 3095,5079,3467,2870,5080,2054, 973, 886,2081, 143,4539,5081,5082, 157,3989, 496, # 896
105
+ 4224, 57, 840, 540,2039,4540,4541,3468,2118,1445, 970,2264,1748,1966,2082,4225, # 912
106
+ 3144,1234,1776,3284,2829,3695, 773,1206,2130,1066,2040,1326,3990,1738,1725,4226, # 928
107
+ 279,3145, 51,1544,2604, 423,1578,2131,2067, 173,4542,1880,5083,5084,1583, 264, # 944
108
+ 610,3696,4543,2444, 280, 154,5085,5086,5087,1739, 338,1282,3096, 693,2871,1411, # 960
109
+ 1074,3826,2445,5088,4544,5089,5090,1240, 952,2399,5091,2914,1538,2688, 685,1483, # 976
110
+ 4227,2475,1436, 953,4228,2055,4545, 671,2400, 79,4229,2446,3285, 608, 567,2689, # 992
111
+ 3469,4230,4231,1691, 393,1261,1792,2401,5092,4546,5093,5094,5095,5096,1383,1672, # 1008
112
+ 3827,3213,1464, 522,1119, 661,1150, 216, 675,4547,3991,1432,3574, 609,4548,2690, # 1024
113
+ 2402,5097,5098,5099,4232,3045, 0,5100,2476, 315, 231,2447, 301,3356,4549,2385, # 1040
114
+ 5101, 233,4233,3697,1819,4550,4551,5102, 96,1777,1315,2083,5103, 257,5104,1810, # 1056
115
+ 3698,2718,1139,1820,4234,2022,1124,2164,2791,1778,2659,5105,3097, 363,1655,3214, # 1072
116
+ 5106,2993,5107,5108,5109,3992,1567,3993, 718, 103,3215, 849,1443, 341,3357,2949, # 1088
117
+ 1484,5110,1712, 127, 67, 339,4235,2403, 679,1412, 821,5111,5112, 834, 738, 351, # 1104
118
+ 2994,2147, 846, 235,1497,1881, 418,1993,3828,2719, 186,1100,2148,2756,3575,1545, # 1120
119
+ 1355,2950,2872,1377, 583,3994,4236,2581,2995,5113,1298,3699,1078,2557,3700,2363, # 1136
120
+ 78,3829,3830, 267,1289,2100,2002,1594,4237, 348, 369,1274,2197,2178,1838,4552, # 1152
121
+ 1821,2830,3701,2757,2288,2003,4553,2951,2758, 144,3358, 882,4554,3995,2759,3470, # 1168
122
+ 4555,2915,5114,4238,1726, 320,5115,3996,3046, 788,2996,5116,2831,1774,1327,2873, # 1184
123
+ 3997,2832,5117,1306,4556,2004,1700,3831,3576,2364,2660, 787,2023, 506, 824,3702, # 1200
124
+ 534, 323,4557,1044,3359,2024,1901, 946,3471,5118,1779,1500,1678,5119,1882,4558, # 1216
125
+ 165, 243,4559,3703,2528, 123, 683,4239, 764,4560, 36,3998,1793, 589,2916, 816, # 1232
126
+ 626,1667,3047,2237,1639,1555,1622,3832,3999,5120,4000,2874,1370,1228,1933, 891, # 1248
127
+ 2084,2917, 304,4240,5121, 292,2997,2720,3577, 691,2101,4241,1115,4561, 118, 662, # 1264
128
+ 5122, 611,1156, 854,2386,1316,2875, 2, 386, 515,2918,5123,5124,3286, 868,2238, # 1280
129
+ 1486, 855,2661, 785,2216,3048,5125,1040,3216,3578,5126,3146, 448,5127,1525,5128, # 1296
130
+ 2165,4562,5129,3833,5130,4242,2833,3579,3147, 503, 818,4001,3148,1568, 814, 676, # 1312
131
+ 1444, 306,1749,5131,3834,1416,1030, 197,1428, 805,2834,1501,4563,5132,5133,5134, # 1328
132
+ 1994,5135,4564,5136,5137,2198, 13,2792,3704,2998,3149,1229,1917,5138,3835,2132, # 1344
133
+ 5139,4243,4565,2404,3580,5140,2217,1511,1727,1120,5141,5142, 646,3836,2448, 307, # 1360
134
+ 5143,5144,1595,3217,5145,5146,5147,3705,1113,1356,4002,1465,2529,2530,5148, 519, # 1376
135
+ 5149, 128,2133, 92,2289,1980,5150,4003,1512, 342,3150,2199,5151,2793,2218,1981, # 1392
136
+ 3360,4244, 290,1656,1317, 789, 827,2365,5152,3837,4566, 562, 581,4004,5153, 401, # 1408
137
+ 4567,2252, 94,4568,5154,1399,2794,5155,1463,2025,4569,3218,1944,5156, 828,1105, # 1424
138
+ 4245,1262,1394,5157,4246, 605,4570,5158,1784,2876,5159,2835, 819,2102, 578,2200, # 1440
139
+ 2952,5160,1502, 436,3287,4247,3288,2836,4005,2919,3472,3473,5161,2721,2320,5162, # 1456
140
+ 5163,2337,2068, 23,4571, 193, 826,3838,2103, 699,1630,4248,3098, 390,1794,1064, # 1472
141
+ 3581,5164,1579,3099,3100,1400,5165,4249,1839,1640,2877,5166,4572,4573, 137,4250, # 1488
142
+ 598,3101,1967, 780, 104, 974,2953,5167, 278, 899, 253, 402, 572, 504, 493,1339, # 1504
143
+ 5168,4006,1275,4574,2582,2558,5169,3706,3049,3102,2253, 565,1334,2722, 863, 41, # 1520
144
+ 5170,5171,4575,5172,1657,2338, 19, 463,2760,4251, 606,5173,2999,3289,1087,2085, # 1536
145
+ 1323,2662,3000,5174,1631,1623,1750,4252,2691,5175,2878, 791,2723,2663,2339, 232, # 1552
146
+ 2421,5176,3001,1498,5177,2664,2630, 755,1366,3707,3290,3151,2026,1609, 119,1918, # 1568
147
+ 3474, 862,1026,4253,5178,4007,3839,4576,4008,4577,2265,1952,2477,5179,1125, 817, # 1584
148
+ 4254,4255,4009,1513,1766,2041,1487,4256,3050,3291,2837,3840,3152,5180,5181,1507, # 1600
149
+ 5182,2692, 733, 40,1632,1106,2879, 345,4257, 841,2531, 230,4578,3002,1847,3292, # 1616
150
+ 3475,5183,1263, 986,3476,5184, 735, 879, 254,1137, 857, 622,1300,1180,1388,1562, # 1632
151
+ 4010,4011,2954, 967,2761,2665,1349, 592,2134,1692,3361,3003,1995,4258,1679,4012, # 1648
152
+ 1902,2188,5185, 739,3708,2724,1296,1290,5186,4259,2201,2202,1922,1563,2605,2559, # 1664
153
+ 1871,2762,3004,5187, 435,5188, 343,1108, 596, 17,1751,4579,2239,3477,3709,5189, # 1680
154
+ 4580, 294,3582,2955,1693, 477, 979, 281,2042,3583, 643,2043,3710,2631,2795,2266, # 1696
155
+ 1031,2340,2135,2303,3584,4581, 367,1249,2560,5190,3585,5191,4582,1283,3362,2005, # 1712
156
+ 240,1762,3363,4583,4584, 836,1069,3153, 474,5192,2149,2532, 268,3586,5193,3219, # 1728
157
+ 1521,1284,5194,1658,1546,4260,5195,3587,3588,5196,4261,3364,2693,1685,4262, 961, # 1744
158
+ 1673,2632, 190,2006,2203,3841,4585,4586,5197, 570,2504,3711,1490,5198,4587,2633, # 1760
159
+ 3293,1957,4588, 584,1514, 396,1045,1945,5199,4589,1968,2449,5200,5201,4590,4013, # 1776
160
+ 619,5202,3154,3294, 215,2007,2796,2561,3220,4591,3221,4592, 763,4263,3842,4593, # 1792
161
+ 5203,5204,1958,1767,2956,3365,3712,1174, 452,1477,4594,3366,3155,5205,2838,1253, # 1808
162
+ 2387,2189,1091,2290,4264, 492,5206, 638,1169,1825,2136,1752,4014, 648, 926,1021, # 1824
163
+ 1324,4595, 520,4596, 997, 847,1007, 892,4597,3843,2267,1872,3713,2405,1785,4598, # 1840
164
+ 1953,2957,3103,3222,1728,4265,2044,3714,4599,2008,1701,3156,1551, 30,2268,4266, # 1856
165
+ 5207,2027,4600,3589,5208, 501,5209,4267, 594,3478,2166,1822,3590,3479,3591,3223, # 1872
166
+ 829,2839,4268,5210,1680,3157,1225,4269,5211,3295,4601,4270,3158,2341,5212,4602, # 1888
167
+ 4271,5213,4015,4016,5214,1848,2388,2606,3367,5215,4603, 374,4017, 652,4272,4273, # 1904
168
+ 375,1140, 798,5216,5217,5218,2366,4604,2269, 546,1659, 138,3051,2450,4605,5219, # 1920
169
+ 2254, 612,1849, 910, 796,3844,1740,1371, 825,3845,3846,5220,2920,2562,5221, 692, # 1936
170
+ 444,3052,2634, 801,4606,4274,5222,1491, 244,1053,3053,4275,4276, 340,5223,4018, # 1952
171
+ 1041,3005, 293,1168, 87,1357,5224,1539, 959,5225,2240, 721, 694,4277,3847, 219, # 1968
172
+ 1478, 644,1417,3368,2666,1413,1401,1335,1389,4019,5226,5227,3006,2367,3159,1826, # 1984
173
+ 730,1515, 184,2840, 66,4607,5228,1660,2958, 246,3369, 378,1457, 226,3480, 975, # 2000
174
+ 4020,2959,1264,3592, 674, 696,5229, 163,5230,1141,2422,2167, 713,3593,3370,4608, # 2016
175
+ 4021,5231,5232,1186, 15,5233,1079,1070,5234,1522,3224,3594, 276,1050,2725, 758, # 2032
176
+ 1126, 653,2960,3296,5235,2342, 889,3595,4022,3104,3007, 903,1250,4609,4023,3481, # 2048
177
+ 3596,1342,1681,1718, 766,3297, 286, 89,2961,3715,5236,1713,5237,2607,3371,3008, # 2064
178
+ 5238,2962,2219,3225,2880,5239,4610,2505,2533, 181, 387,1075,4024, 731,2190,3372, # 2080
179
+ 5240,3298, 310, 313,3482,2304, 770,4278, 54,3054, 189,4611,3105,3848,4025,5241, # 2096
180
+ 1230,1617,1850, 355,3597,4279,4612,3373, 111,4280,3716,1350,3160,3483,3055,4281, # 2112
181
+ 2150,3299,3598,5242,2797,4026,4027,3009, 722,2009,5243,1071, 247,1207,2343,2478, # 2128
182
+ 1378,4613,2010, 864,1437,1214,4614, 373,3849,1142,2220, 667,4615, 442,2763,2563, # 2144
183
+ 3850,4028,1969,4282,3300,1840, 837, 170,1107, 934,1336,1883,5244,5245,2119,4283, # 2160
184
+ 2841, 743,1569,5246,4616,4284, 582,2389,1418,3484,5247,1803,5248, 357,1395,1729, # 2176
185
+ 3717,3301,2423,1564,2241,5249,3106,3851,1633,4617,1114,2086,4285,1532,5250, 482, # 2192
186
+ 2451,4618,5251,5252,1492, 833,1466,5253,2726,3599,1641,2842,5254,1526,1272,3718, # 2208
187
+ 4286,1686,1795, 416,2564,1903,1954,1804,5255,3852,2798,3853,1159,2321,5256,2881, # 2224
188
+ 4619,1610,1584,3056,2424,2764, 443,3302,1163,3161,5257,5258,4029,5259,4287,2506, # 2240
189
+ 3057,4620,4030,3162,2104,1647,3600,2011,1873,4288,5260,4289, 431,3485,5261, 250, # 2256
190
+ 97, 81,4290,5262,1648,1851,1558, 160, 848,5263, 866, 740,1694,5264,2204,2843, # 2272
191
+ 3226,4291,4621,3719,1687, 950,2479, 426, 469,3227,3720,3721,4031,5265,5266,1188, # 2288
192
+ 424,1996, 861,3601,4292,3854,2205,2694, 168,1235,3602,4293,5267,2087,1674,4622, # 2304
193
+ 3374,3303, 220,2565,1009,5268,3855, 670,3010, 332,1208, 717,5269,5270,3603,2452, # 2320
194
+ 4032,3375,5271, 513,5272,1209,2882,3376,3163,4623,1080,5273,5274,5275,5276,2534, # 2336
195
+ 3722,3604, 815,1587,4033,4034,5277,3605,3486,3856,1254,4624,1328,3058,1390,4035, # 2352
196
+ 1741,4036,3857,4037,5278, 236,3858,2453,3304,5279,5280,3723,3859,1273,3860,4625, # 2368
197
+ 5281, 308,5282,4626, 245,4627,1852,2480,1307,2583, 430, 715,2137,2454,5283, 270, # 2384
198
+ 199,2883,4038,5284,3606,2727,1753, 761,1754, 725,1661,1841,4628,3487,3724,5285, # 2400
199
+ 5286, 587, 14,3305, 227,2608, 326, 480,2270, 943,2765,3607, 291, 650,1884,5287, # 2416
200
+ 1702,1226, 102,1547, 62,3488, 904,4629,3489,1164,4294,5288,5289,1224,1548,2766, # 2432
201
+ 391, 498,1493,5290,1386,1419,5291,2056,1177,4630, 813, 880,1081,2368, 566,1145, # 2448
202
+ 4631,2291,1001,1035,2566,2609,2242, 394,1286,5292,5293,2069,5294, 86,1494,1730, # 2464
203
+ 4039, 491,1588, 745, 897,2963, 843,3377,4040,2767,2884,3306,1768, 998,2221,2070, # 2480
204
+ 397,1827,1195,1970,3725,3011,3378, 284,5295,3861,2507,2138,2120,1904,5296,4041, # 2496
205
+ 2151,4042,4295,1036,3490,1905, 114,2567,4296, 209,1527,5297,5298,2964,2844,2635, # 2512
206
+ 2390,2728,3164, 812,2568,5299,3307,5300,1559, 737,1885,3726,1210, 885, 28,2695, # 2528
207
+ 3608,3862,5301,4297,1004,1780,4632,5302, 346,1982,2222,2696,4633,3863,1742, 797, # 2544
208
+ 1642,4043,1934,1072,1384,2152, 896,4044,3308,3727,3228,2885,3609,5303,2569,1959, # 2560
209
+ 4634,2455,1786,5304,5305,5306,4045,4298,1005,1308,3728,4299,2729,4635,4636,1528, # 2576
210
+ 2610, 161,1178,4300,1983, 987,4637,1101,4301, 631,4046,1157,3229,2425,1343,1241, # 2592
211
+ 1016,2243,2570, 372, 877,2344,2508,1160, 555,1935, 911,4047,5307, 466,1170, 169, # 2608
212
+ 1051,2921,2697,3729,2481,3012,1182,2012,2571,1251,2636,5308, 992,2345,3491,1540, # 2624
213
+ 2730,1201,2071,2406,1997,2482,5309,4638, 528,1923,2191,1503,1874,1570,2369,3379, # 2640
214
+ 3309,5310, 557,1073,5311,1828,3492,2088,2271,3165,3059,3107, 767,3108,2799,4639, # 2656
215
+ 1006,4302,4640,2346,1267,2179,3730,3230, 778,4048,3231,2731,1597,2667,5312,4641, # 2672
216
+ 5313,3493,5314,5315,5316,3310,2698,1433,3311, 131, 95,1504,4049, 723,4303,3166, # 2688
217
+ 1842,3610,2768,2192,4050,2028,2105,3731,5317,3013,4051,1218,5318,3380,3232,4052, # 2704
218
+ 4304,2584, 248,1634,3864, 912,5319,2845,3732,3060,3865, 654, 53,5320,3014,5321, # 2720
219
+ 1688,4642, 777,3494,1032,4053,1425,5322, 191, 820,2121,2846, 971,4643, 931,3233, # 2736
220
+ 135, 664, 783,3866,1998, 772,2922,1936,4054,3867,4644,2923,3234, 282,2732, 640, # 2752
221
+ 1372,3495,1127, 922, 325,3381,5323,5324, 711,2045,5325,5326,4055,2223,2800,1937, # 2768
222
+ 4056,3382,2224,2255,3868,2305,5327,4645,3869,1258,3312,4057,3235,2139,2965,4058, # 2784
223
+ 4059,5328,2225, 258,3236,4646, 101,1227,5329,3313,1755,5330,1391,3314,5331,2924, # 2800
224
+ 2057, 893,5332,5333,5334,1402,4305,2347,5335,5336,3237,3611,5337,5338, 878,1325, # 2816
225
+ 1781,2801,4647, 259,1385,2585, 744,1183,2272,4648,5339,4060,2509,5340, 684,1024, # 2832
226
+ 4306,5341, 472,3612,3496,1165,3315,4061,4062, 322,2153, 881, 455,1695,1152,1340, # 2848
227
+ 660, 554,2154,4649,1058,4650,4307, 830,1065,3383,4063,4651,1924,5342,1703,1919, # 2864
228
+ 5343, 932,2273, 122,5344,4652, 947, 677,5345,3870,2637, 297,1906,1925,2274,4653, # 2880
229
+ 2322,3316,5346,5347,4308,5348,4309, 84,4310, 112, 989,5349, 547,1059,4064, 701, # 2896
230
+ 3613,1019,5350,4311,5351,3497, 942, 639, 457,2306,2456, 993,2966, 407, 851, 494, # 2912
231
+ 4654,3384, 927,5352,1237,5353,2426,3385, 573,4312, 680, 921,2925,1279,1875, 285, # 2928
232
+ 790,1448,1984, 719,2168,5354,5355,4655,4065,4066,1649,5356,1541, 563,5357,1077, # 2944
233
+ 5358,3386,3061,3498, 511,3015,4067,4068,3733,4069,1268,2572,3387,3238,4656,4657, # 2960
234
+ 5359, 535,1048,1276,1189,2926,2029,3167,1438,1373,2847,2967,1134,2013,5360,4313, # 2976
235
+ 1238,2586,3109,1259,5361, 700,5362,2968,3168,3734,4314,5363,4315,1146,1876,1907, # 2992
236
+ 4658,2611,4070, 781,2427, 132,1589, 203, 147, 273,2802,2407, 898,1787,2155,4071, # 3008
237
+ 4072,5364,3871,2803,5365,5366,4659,4660,5367,3239,5368,1635,3872, 965,5369,1805, # 3024
238
+ 2699,1516,3614,1121,1082,1329,3317,4073,1449,3873, 65,1128,2848,2927,2769,1590, # 3040
239
+ 3874,5370,5371, 12,2668, 45, 976,2587,3169,4661, 517,2535,1013,1037,3240,5372, # 3056
240
+ 3875,2849,5373,3876,5374,3499,5375,2612, 614,1999,2323,3877,3110,2733,2638,5376, # 3072
241
+ 2588,4316, 599,1269,5377,1811,3735,5378,2700,3111, 759,1060, 489,1806,3388,3318, # 3088
242
+ 1358,5379,5380,2391,1387,1215,2639,2256, 490,5381,5382,4317,1759,2392,2348,5383, # 3104
243
+ 4662,3878,1908,4074,2640,1807,3241,4663,3500,3319,2770,2349, 874,5384,5385,3501, # 3120
244
+ 3736,1859, 91,2928,3737,3062,3879,4664,5386,3170,4075,2669,5387,3502,1202,1403, # 3136
245
+ 3880,2969,2536,1517,2510,4665,3503,2511,5388,4666,5389,2701,1886,1495,1731,4076, # 3152
246
+ 2370,4667,5390,2030,5391,5392,4077,2702,1216, 237,2589,4318,2324,4078,3881,4668, # 3168
247
+ 4669,2703,3615,3504, 445,4670,5393,5394,5395,5396,2771, 61,4079,3738,1823,4080, # 3184
248
+ 5397, 687,2046, 935, 925, 405,2670, 703,1096,1860,2734,4671,4081,1877,1367,2704, # 3200
249
+ 3389, 918,2106,1782,2483, 334,3320,1611,1093,4672, 564,3171,3505,3739,3390, 945, # 3216
250
+ 2641,2058,4673,5398,1926, 872,4319,5399,3506,2705,3112, 349,4320,3740,4082,4674, # 3232
251
+ 3882,4321,3741,2156,4083,4675,4676,4322,4677,2408,2047, 782,4084, 400, 251,4323, # 3248
252
+ 1624,5400,5401, 277,3742, 299,1265, 476,1191,3883,2122,4324,4325,1109, 205,5402, # 3264
253
+ 2590,1000,2157,3616,1861,5403,5404,5405,4678,5406,4679,2573, 107,2484,2158,4085, # 3280
254
+ 3507,3172,5407,1533, 541,1301, 158, 753,4326,2886,3617,5408,1696, 370,1088,4327, # 3296
255
+ 4680,3618, 579, 327, 440, 162,2244, 269,1938,1374,3508, 968,3063, 56,1396,3113, # 3312
256
+ 2107,3321,3391,5409,1927,2159,4681,3016,5410,3619,5411,5412,3743,4682,2485,5413, # 3328
257
+ 2804,5414,1650,4683,5415,2613,5416,5417,4086,2671,3392,1149,3393,4087,3884,4088, # 3344
258
+ 5418,1076, 49,5419, 951,3242,3322,3323, 450,2850, 920,5420,1812,2805,2371,4328, # 3360
259
+ 1909,1138,2372,3885,3509,5421,3243,4684,1910,1147,1518,2428,4685,3886,5422,4686, # 3376
260
+ 2393,2614, 260,1796,3244,5423,5424,3887,3324, 708,5425,3620,1704,5426,3621,1351, # 3392
261
+ 1618,3394,3017,1887, 944,4329,3395,4330,3064,3396,4331,5427,3744, 422, 413,1714, # 3408
262
+ 3325, 500,2059,2350,4332,2486,5428,1344,1911, 954,5429,1668,5430,5431,4089,2409, # 3424
263
+ 4333,3622,3888,4334,5432,2307,1318,2512,3114, 133,3115,2887,4687, 629, 31,2851, # 3440
264
+ 2706,3889,4688, 850, 949,4689,4090,2970,1732,2089,4335,1496,1853,5433,4091, 620, # 3456
265
+ 3245, 981,1242,3745,3397,1619,3746,1643,3326,2140,2457,1971,1719,3510,2169,5434, # 3472
266
+ 3246,5435,5436,3398,1829,5437,1277,4690,1565,2048,5438,1636,3623,3116,5439, 869, # 3488
267
+ 2852, 655,3890,3891,3117,4092,3018,3892,1310,3624,4691,5440,5441,5442,1733, 558, # 3504
268
+ 4692,3747, 335,1549,3065,1756,4336,3748,1946,3511,1830,1291,1192, 470,2735,2108, # 3520
269
+ 2806, 913,1054,4093,5443,1027,5444,3066,4094,4693, 982,2672,3399,3173,3512,3247, # 3536
270
+ 3248,1947,2807,5445, 571,4694,5446,1831,5447,3625,2591,1523,2429,5448,2090, 984, # 3552
271
+ 4695,3749,1960,5449,3750, 852, 923,2808,3513,3751, 969,1519, 999,2049,2325,1705, # 3568
272
+ 5450,3118, 615,1662, 151, 597,4095,2410,2326,1049, 275,4696,3752,4337, 568,3753, # 3584
273
+ 3626,2487,4338,3754,5451,2430,2275, 409,3249,5452,1566,2888,3514,1002, 769,2853, # 3600
274
+ 194,2091,3174,3755,2226,3327,4339, 628,1505,5453,5454,1763,2180,3019,4096, 521, # 3616
275
+ 1161,2592,1788,2206,2411,4697,4097,1625,4340,4341, 412, 42,3119, 464,5455,2642, # 3632
276
+ 4698,3400,1760,1571,2889,3515,2537,1219,2207,3893,2643,2141,2373,4699,4700,3328, # 3648
277
+ 1651,3401,3627,5456,5457,3628,2488,3516,5458,3756,5459,5460,2276,2092, 460,5461, # 3664
278
+ 4701,5462,3020, 962, 588,3629, 289,3250,2644,1116, 52,5463,3067,1797,5464,5465, # 3680
279
+ 5466,1467,5467,1598,1143,3757,4342,1985,1734,1067,4702,1280,3402, 465,4703,1572, # 3696
280
+ 510,5468,1928,2245,1813,1644,3630,5469,4704,3758,5470,5471,2673,1573,1534,5472, # 3712
281
+ 5473, 536,1808,1761,3517,3894,3175,2645,5474,5475,5476,4705,3518,2929,1912,2809, # 3728
282
+ 5477,3329,1122, 377,3251,5478, 360,5479,5480,4343,1529, 551,5481,2060,3759,1769, # 3744
283
+ 2431,5482,2930,4344,3330,3120,2327,2109,2031,4706,1404, 136,1468,1479, 672,1171, # 3760
284
+ 3252,2308, 271,3176,5483,2772,5484,2050, 678,2736, 865,1948,4707,5485,2014,4098, # 3776
285
+ 2971,5486,2737,2227,1397,3068,3760,4708,4709,1735,2931,3403,3631,5487,3895, 509, # 3792
286
+ 2854,2458,2890,3896,5488,5489,3177,3178,4710,4345,2538,4711,2309,1166,1010, 552, # 3808
287
+ 681,1888,5490,5491,2972,2973,4099,1287,1596,1862,3179, 358, 453, 736, 175, 478, # 3824
288
+ 1117, 905,1167,1097,5492,1854,1530,5493,1706,5494,2181,3519,2292,3761,3520,3632, # 3840
289
+ 4346,2093,4347,5495,3404,1193,2489,4348,1458,2193,2208,1863,1889,1421,3331,2932, # 3856
290
+ 3069,2182,3521, 595,2123,5496,4100,5497,5498,4349,1707,2646, 223,3762,1359, 751, # 3872
291
+ 3121, 183,3522,5499,2810,3021, 419,2374, 633, 704,3897,2394, 241,5500,5501,5502, # 3888
292
+ 838,3022,3763,2277,2773,2459,3898,1939,2051,4101,1309,3122,2246,1181,5503,1136, # 3904
293
+ 2209,3899,2375,1446,4350,2310,4712,5504,5505,4351,1055,2615, 484,3764,5506,4102, # 3920
294
+ 625,4352,2278,3405,1499,4353,4103,5507,4104,4354,3253,2279,2280,3523,5508,5509, # 3936
295
+ 2774, 808,2616,3765,3406,4105,4355,3123,2539, 526,3407,3900,4356, 955,5510,1620, # 3952
296
+ 4357,2647,2432,5511,1429,3766,1669,1832, 994, 928,5512,3633,1260,5513,5514,5515, # 3968
297
+ 1949,2293, 741,2933,1626,4358,2738,2460, 867,1184, 362,3408,1392,5516,5517,4106, # 3984
298
+ 4359,1770,1736,3254,2934,4713,4714,1929,2707,1459,1158,5518,3070,3409,2891,1292, # 4000
299
+ 1930,2513,2855,3767,1986,1187,2072,2015,2617,4360,5519,2574,2514,2170,3768,2490, # 4016
300
+ 3332,5520,3769,4715,5521,5522, 666,1003,3023,1022,3634,4361,5523,4716,1814,2257, # 4032
301
+ 574,3901,1603, 295,1535, 705,3902,4362, 283, 858, 417,5524,5525,3255,4717,4718, # 4048
302
+ 3071,1220,1890,1046,2281,2461,4107,1393,1599, 689,2575, 388,4363,5526,2491, 802, # 4064
303
+ 5527,2811,3903,2061,1405,2258,5528,4719,3904,2110,1052,1345,3256,1585,5529, 809, # 4080
304
+ 5530,5531,5532, 575,2739,3524, 956,1552,1469,1144,2328,5533,2329,1560,2462,3635, # 4096
305
+ 3257,4108, 616,2210,4364,3180,2183,2294,5534,1833,5535,3525,4720,5536,1319,3770, # 4112
306
+ 3771,1211,3636,1023,3258,1293,2812,5537,5538,5539,3905, 607,2311,3906, 762,2892, # 4128
307
+ 1439,4365,1360,4721,1485,3072,5540,4722,1038,4366,1450,2062,2648,4367,1379,4723, # 4144
308
+ 2593,5541,5542,4368,1352,1414,2330,2935,1172,5543,5544,3907,3908,4724,1798,1451, # 4160
309
+ 5545,5546,5547,5548,2936,4109,4110,2492,2351, 411,4111,4112,3637,3333,3124,4725, # 4176
310
+ 1561,2674,1452,4113,1375,5549,5550, 47,2974, 316,5551,1406,1591,2937,3181,5552, # 4192
311
+ 1025,2142,3125,3182, 354,2740, 884,2228,4369,2412, 508,3772, 726,3638, 996,2433, # 4208
312
+ 3639, 729,5553, 392,2194,1453,4114,4726,3773,5554,5555,2463,3640,2618,1675,2813, # 4224
313
+ 919,2352,2975,2353,1270,4727,4115, 73,5556,5557, 647,5558,3259,2856,2259,1550, # 4240
314
+ 1346,3024,5559,1332, 883,3526,5560,5561,5562,5563,3334,2775,5564,1212, 831,1347, # 4256
315
+ 4370,4728,2331,3909,1864,3073, 720,3910,4729,4730,3911,5565,4371,5566,5567,4731, # 4272
316
+ 5568,5569,1799,4732,3774,2619,4733,3641,1645,2376,4734,5570,2938, 669,2211,2675, # 4288
317
+ 2434,5571,2893,5572,5573,1028,3260,5574,4372,2413,5575,2260,1353,5576,5577,4735, # 4304
318
+ 3183, 518,5578,4116,5579,4373,1961,5580,2143,4374,5581,5582,3025,2354,2355,3912, # 4320
319
+ 516,1834,1454,4117,2708,4375,4736,2229,2620,1972,1129,3642,5583,2776,5584,2976, # 4336
320
+ 1422, 577,1470,3026,1524,3410,5585,5586, 432,4376,3074,3527,5587,2594,1455,2515, # 4352
321
+ 2230,1973,1175,5588,1020,2741,4118,3528,4737,5589,2742,5590,1743,1361,3075,3529, # 4368
322
+ 2649,4119,4377,4738,2295, 895, 924,4378,2171, 331,2247,3076, 166,1627,3077,1098, # 4384
323
+ 5591,1232,2894,2231,3411,4739, 657, 403,1196,2377, 542,3775,3412,1600,4379,3530, # 4400
324
+ 5592,4740,2777,3261, 576, 530,1362,4741,4742,2540,2676,3776,4120,5593, 842,3913, # 4416
325
+ 5594,2814,2032,1014,4121, 213,2709,3413, 665, 621,4380,5595,3777,2939,2435,5596, # 4432
326
+ 2436,3335,3643,3414,4743,4381,2541,4382,4744,3644,1682,4383,3531,1380,5597, 724, # 4448
327
+ 2282, 600,1670,5598,1337,1233,4745,3126,2248,5599,1621,4746,5600, 651,4384,5601, # 4464
328
+ 1612,4385,2621,5602,2857,5603,2743,2312,3078,5604, 716,2464,3079, 174,1255,2710, # 4480
329
+ 4122,3645, 548,1320,1398, 728,4123,1574,5605,1891,1197,3080,4124,5606,3081,3082, # 4496
330
+ 3778,3646,3779, 747,5607, 635,4386,4747,5608,5609,5610,4387,5611,5612,4748,5613, # 4512
331
+ 3415,4749,2437, 451,5614,3780,2542,2073,4388,2744,4389,4125,5615,1764,4750,5616, # 4528
332
+ 4390, 350,4751,2283,2395,2493,5617,4391,4126,2249,1434,4127, 488,4752, 458,4392, # 4544
333
+ 4128,3781, 771,1330,2396,3914,2576,3184,2160,2414,1553,2677,3185,4393,5618,2494, # 4560
334
+ 2895,2622,1720,2711,4394,3416,4753,5619,2543,4395,5620,3262,4396,2778,5621,2016, # 4576
335
+ 2745,5622,1155,1017,3782,3915,5623,3336,2313, 201,1865,4397,1430,5624,4129,5625, # 4592
336
+ 5626,5627,5628,5629,4398,1604,5630, 414,1866, 371,2595,4754,4755,3532,2017,3127, # 4608
337
+ 4756,1708, 960,4399, 887, 389,2172,1536,1663,1721,5631,2232,4130,2356,2940,1580, # 4624
338
+ 5632,5633,1744,4757,2544,4758,4759,5634,4760,5635,2074,5636,4761,3647,3417,2896, # 4640
339
+ 4400,5637,4401,2650,3418,2815, 673,2712,2465, 709,3533,4131,3648,4402,5638,1148, # 4656
340
+ 502, 634,5639,5640,1204,4762,3649,1575,4763,2623,3783,5641,3784,3128, 948,3263, # 4672
341
+ 121,1745,3916,1110,5642,4403,3083,2516,3027,4132,3785,1151,1771,3917,1488,4133, # 4688
342
+ 1987,5643,2438,3534,5644,5645,2094,5646,4404,3918,1213,1407,2816, 531,2746,2545, # 4704
343
+ 3264,1011,1537,4764,2779,4405,3129,1061,5647,3786,3787,1867,2897,5648,2018, 120, # 4720
344
+ 4406,4407,2063,3650,3265,2314,3919,2678,3419,1955,4765,4134,5649,3535,1047,2713, # 4736
345
+ 1266,5650,1368,4766,2858, 649,3420,3920,2546,2747,1102,2859,2679,5651,5652,2000, # 4752
346
+ 5653,1111,3651,2977,5654,2495,3921,3652,2817,1855,3421,3788,5655,5656,3422,2415, # 4768
347
+ 2898,3337,3266,3653,5657,2577,5658,3654,2818,4135,1460, 856,5659,3655,5660,2899, # 4784
348
+ 2978,5661,2900,3922,5662,4408, 632,2517, 875,3923,1697,3924,2296,5663,5664,4767, # 4800
349
+ 3028,1239, 580,4768,4409,5665, 914, 936,2075,1190,4136,1039,2124,5666,5667,5668, # 4816
350
+ 5669,3423,1473,5670,1354,4410,3925,4769,2173,3084,4137, 915,3338,4411,4412,3339, # 4832
351
+ 1605,1835,5671,2748, 398,3656,4413,3926,4138, 328,1913,2860,4139,3927,1331,4414, # 4848
352
+ 3029, 937,4415,5672,3657,4140,4141,3424,2161,4770,3425, 524, 742, 538,3085,1012, # 4864
353
+ 5673,5674,3928,2466,5675, 658,1103, 225,3929,5676,5677,4771,5678,4772,5679,3267, # 4880
354
+ 1243,5680,4142, 963,2250,4773,5681,2714,3658,3186,5682,5683,2596,2332,5684,4774, # 4896
355
+ 5685,5686,5687,3536, 957,3426,2547,2033,1931,2941,2467, 870,2019,3659,1746,2780, # 4912
356
+ 2781,2439,2468,5688,3930,5689,3789,3130,3790,3537,3427,3791,5690,1179,3086,5691, # 4928
357
+ 3187,2378,4416,3792,2548,3188,3131,2749,4143,5692,3428,1556,2549,2297, 977,2901, # 4944
358
+ 2034,4144,1205,3429,5693,1765,3430,3189,2125,1271, 714,1689,4775,3538,5694,2333, # 4960
359
+ 3931, 533,4417,3660,2184, 617,5695,2469,3340,3539,2315,5696,5697,3190,5698,5699, # 4976
360
+ 3932,1988, 618, 427,2651,3540,3431,5700,5701,1244,1690,5702,2819,4418,4776,5703, # 4992
361
+ 3541,4777,5704,2284,1576, 473,3661,4419,3432, 972,5705,3662,5706,3087,5707,5708, # 5008
362
+ 4778,4779,5709,3793,4145,4146,5710, 153,4780, 356,5711,1892,2902,4420,2144, 408, # 5024
363
+ 803,2357,5712,3933,5713,4421,1646,2578,2518,4781,4782,3934,5714,3935,4422,5715, # 5040
364
+ 2416,3433, 752,5716,5717,1962,3341,2979,5718, 746,3030,2470,4783,4423,3794, 698, # 5056
365
+ 4784,1893,4424,3663,2550,4785,3664,3936,5719,3191,3434,5720,1824,1302,4147,2715, # 5072
366
+ 3937,1974,4425,5721,4426,3192, 823,1303,1288,1236,2861,3542,4148,3435, 774,3938, # 5088
367
+ 5722,1581,4786,1304,2862,3939,4787,5723,2440,2162,1083,3268,4427,4149,4428, 344, # 5104
368
+ 1173, 288,2316, 454,1683,5724,5725,1461,4788,4150,2597,5726,5727,4789, 985, 894, # 5120
369
+ 5728,3436,3193,5729,1914,2942,3795,1989,5730,2111,1975,5731,4151,5732,2579,1194, # 5136
370
+ 425,5733,4790,3194,1245,3796,4429,5734,5735,2863,5736, 636,4791,1856,3940, 760, # 5152
371
+ 1800,5737,4430,2212,1508,4792,4152,1894,1684,2298,5738,5739,4793,4431,4432,2213, # 5168
372
+ 479,5740,5741, 832,5742,4153,2496,5743,2980,2497,3797, 990,3132, 627,1815,2652, # 5184
373
+ 4433,1582,4434,2126,2112,3543,4794,5744, 799,4435,3195,5745,4795,2113,1737,3031, # 5200
374
+ 1018, 543, 754,4436,3342,1676,4796,4797,4154,4798,1489,5746,3544,5747,2624,2903, # 5216
375
+ 4155,5748,5749,2981,5750,5751,5752,5753,3196,4799,4800,2185,1722,5754,3269,3270, # 5232
376
+ 1843,3665,1715, 481, 365,1976,1857,5755,5756,1963,2498,4801,5757,2127,3666,3271, # 5248
377
+ 433,1895,2064,2076,5758, 602,2750,5759,5760,5761,5762,5763,3032,1628,3437,5764, # 5264
378
+ 3197,4802,4156,2904,4803,2519,5765,2551,2782,5766,5767,5768,3343,4804,2905,5769, # 5280
379
+ 4805,5770,2864,4806,4807,1221,2982,4157,2520,5771,5772,5773,1868,1990,5774,5775, # 5296
380
+ 5776,1896,5777,5778,4808,1897,4158, 318,5779,2095,4159,4437,5780,5781, 485,5782, # 5312
381
+ 938,3941, 553,2680, 116,5783,3942,3667,5784,3545,2681,2783,3438,3344,2820,5785, # 5328
382
+ 3668,2943,4160,1747,2944,2983,5786,5787, 207,5788,4809,5789,4810,2521,5790,3033, # 5344
383
+ 890,3669,3943,5791,1878,3798,3439,5792,2186,2358,3440,1652,5793,5794,5795, 941, # 5360
384
+ 2299, 208,3546,4161,2020, 330,4438,3944,2906,2499,3799,4439,4811,5796,5797,5798, # 5376
385
+ )
386
+ # fmt: on
venv/lib/python3.10/site-packages/chardet/big5prober.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is Mozilla Communicator client code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ from .chardistribution import Big5DistributionAnalysis
29
+ from .codingstatemachine import CodingStateMachine
30
+ from .mbcharsetprober import MultiByteCharSetProber
31
+ from .mbcssm import BIG5_SM_MODEL
32
+
33
+
34
+ class Big5Prober(MultiByteCharSetProber):
35
+ def __init__(self) -> None:
36
+ super().__init__()
37
+ self.coding_sm = CodingStateMachine(BIG5_SM_MODEL)
38
+ self.distribution_analyzer = Big5DistributionAnalysis()
39
+ self.reset()
40
+
41
+ @property
42
+ def charset_name(self) -> str:
43
+ return "Big5"
44
+
45
+ @property
46
+ def language(self) -> str:
47
+ return "Chinese"
venv/lib/python3.10/site-packages/chardet/chardistribution.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is Mozilla Communicator client code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ from typing import Tuple, Union
29
+
30
+ from .big5freq import (
31
+ BIG5_CHAR_TO_FREQ_ORDER,
32
+ BIG5_TABLE_SIZE,
33
+ BIG5_TYPICAL_DISTRIBUTION_RATIO,
34
+ )
35
+ from .euckrfreq import (
36
+ EUCKR_CHAR_TO_FREQ_ORDER,
37
+ EUCKR_TABLE_SIZE,
38
+ EUCKR_TYPICAL_DISTRIBUTION_RATIO,
39
+ )
40
+ from .euctwfreq import (
41
+ EUCTW_CHAR_TO_FREQ_ORDER,
42
+ EUCTW_TABLE_SIZE,
43
+ EUCTW_TYPICAL_DISTRIBUTION_RATIO,
44
+ )
45
+ from .gb2312freq import (
46
+ GB2312_CHAR_TO_FREQ_ORDER,
47
+ GB2312_TABLE_SIZE,
48
+ GB2312_TYPICAL_DISTRIBUTION_RATIO,
49
+ )
50
+ from .jisfreq import (
51
+ JIS_CHAR_TO_FREQ_ORDER,
52
+ JIS_TABLE_SIZE,
53
+ JIS_TYPICAL_DISTRIBUTION_RATIO,
54
+ )
55
+ from .johabfreq import JOHAB_TO_EUCKR_ORDER_TABLE
56
+
57
+
58
+ class CharDistributionAnalysis:
59
+ ENOUGH_DATA_THRESHOLD = 1024
60
+ SURE_YES = 0.99
61
+ SURE_NO = 0.01
62
+ MINIMUM_DATA_THRESHOLD = 3
63
+
64
+ def __init__(self) -> None:
65
+ # Mapping table to get frequency order from char order (get from
66
+ # GetOrder())
67
+ self._char_to_freq_order: Tuple[int, ...] = tuple()
68
+ self._table_size = 0 # Size of above table
69
+ # This is a constant value which varies from language to language,
70
+ # used in calculating confidence. See
71
+ # http://www.mozilla.org/projects/intl/UniversalCharsetDetection.html
72
+ # for further detail.
73
+ self.typical_distribution_ratio = 0.0
74
+ self._done = False
75
+ self._total_chars = 0
76
+ self._freq_chars = 0
77
+ self.reset()
78
+
79
+ def reset(self) -> None:
80
+ """reset analyser, clear any state"""
81
+ # If this flag is set to True, detection is done and conclusion has
82
+ # been made
83
+ self._done = False
84
+ self._total_chars = 0 # Total characters encountered
85
+ # The number of characters whose frequency order is less than 512
86
+ self._freq_chars = 0
87
+
88
+ def feed(self, char: Union[bytes, bytearray], char_len: int) -> None:
89
+ """feed a character with known length"""
90
+ if char_len == 2:
91
+ # we only care about 2-bytes character in our distribution analysis
92
+ order = self.get_order(char)
93
+ else:
94
+ order = -1
95
+ if order >= 0:
96
+ self._total_chars += 1
97
+ # order is valid
98
+ if order < self._table_size:
99
+ if 512 > self._char_to_freq_order[order]:
100
+ self._freq_chars += 1
101
+
102
+ def get_confidence(self) -> float:
103
+ """return confidence based on existing data"""
104
+ # if we didn't receive any character in our consideration range,
105
+ # return negative answer
106
+ if self._total_chars <= 0 or self._freq_chars <= self.MINIMUM_DATA_THRESHOLD:
107
+ return self.SURE_NO
108
+
109
+ if self._total_chars != self._freq_chars:
110
+ r = self._freq_chars / (
111
+ (self._total_chars - self._freq_chars) * self.typical_distribution_ratio
112
+ )
113
+ if r < self.SURE_YES:
114
+ return r
115
+
116
+ # normalize confidence (we don't want to be 100% sure)
117
+ return self.SURE_YES
118
+
119
+ def got_enough_data(self) -> bool:
120
+ # It is not necessary to receive all data to draw conclusion.
121
+ # For charset detection, certain amount of data is enough
122
+ return self._total_chars > self.ENOUGH_DATA_THRESHOLD
123
+
124
+ def get_order(self, _: Union[bytes, bytearray]) -> int:
125
+ # We do not handle characters based on the original encoding string,
126
+ # but convert this encoding string to a number, here called order.
127
+ # This allows multiple encodings of a language to share one frequency
128
+ # table.
129
+ return -1
130
+
131
+
132
+ class EUCTWDistributionAnalysis(CharDistributionAnalysis):
133
+ def __init__(self) -> None:
134
+ super().__init__()
135
+ self._char_to_freq_order = EUCTW_CHAR_TO_FREQ_ORDER
136
+ self._table_size = EUCTW_TABLE_SIZE
137
+ self.typical_distribution_ratio = EUCTW_TYPICAL_DISTRIBUTION_RATIO
138
+
139
+ def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
140
+ # for euc-TW encoding, we are interested
141
+ # first byte range: 0xc4 -- 0xfe
142
+ # second byte range: 0xa1 -- 0xfe
143
+ # no validation needed here. State machine has done that
144
+ first_char = byte_str[0]
145
+ if first_char >= 0xC4:
146
+ return 94 * (first_char - 0xC4) + byte_str[1] - 0xA1
147
+ return -1
148
+
149
+
150
+ class EUCKRDistributionAnalysis(CharDistributionAnalysis):
151
+ def __init__(self) -> None:
152
+ super().__init__()
153
+ self._char_to_freq_order = EUCKR_CHAR_TO_FREQ_ORDER
154
+ self._table_size = EUCKR_TABLE_SIZE
155
+ self.typical_distribution_ratio = EUCKR_TYPICAL_DISTRIBUTION_RATIO
156
+
157
+ def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
158
+ # for euc-KR encoding, we are interested
159
+ # first byte range: 0xb0 -- 0xfe
160
+ # second byte range: 0xa1 -- 0xfe
161
+ # no validation needed here. State machine has done that
162
+ first_char = byte_str[0]
163
+ if first_char >= 0xB0:
164
+ return 94 * (first_char - 0xB0) + byte_str[1] - 0xA1
165
+ return -1
166
+
167
+
168
+ class JOHABDistributionAnalysis(CharDistributionAnalysis):
169
+ def __init__(self) -> None:
170
+ super().__init__()
171
+ self._char_to_freq_order = EUCKR_CHAR_TO_FREQ_ORDER
172
+ self._table_size = EUCKR_TABLE_SIZE
173
+ self.typical_distribution_ratio = EUCKR_TYPICAL_DISTRIBUTION_RATIO
174
+
175
+ def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
176
+ first_char = byte_str[0]
177
+ if 0x88 <= first_char < 0xD4:
178
+ code = first_char * 256 + byte_str[1]
179
+ return JOHAB_TO_EUCKR_ORDER_TABLE.get(code, -1)
180
+ return -1
181
+
182
+
183
+ class GB2312DistributionAnalysis(CharDistributionAnalysis):
184
+ def __init__(self) -> None:
185
+ super().__init__()
186
+ self._char_to_freq_order = GB2312_CHAR_TO_FREQ_ORDER
187
+ self._table_size = GB2312_TABLE_SIZE
188
+ self.typical_distribution_ratio = GB2312_TYPICAL_DISTRIBUTION_RATIO
189
+
190
+ def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
191
+ # for GB2312 encoding, we are interested
192
+ # first byte range: 0xb0 -- 0xfe
193
+ # second byte range: 0xa1 -- 0xfe
194
+ # no validation needed here. State machine has done that
195
+ first_char, second_char = byte_str[0], byte_str[1]
196
+ if (first_char >= 0xB0) and (second_char >= 0xA1):
197
+ return 94 * (first_char - 0xB0) + second_char - 0xA1
198
+ return -1
199
+
200
+
201
+ class Big5DistributionAnalysis(CharDistributionAnalysis):
202
+ def __init__(self) -> None:
203
+ super().__init__()
204
+ self._char_to_freq_order = BIG5_CHAR_TO_FREQ_ORDER
205
+ self._table_size = BIG5_TABLE_SIZE
206
+ self.typical_distribution_ratio = BIG5_TYPICAL_DISTRIBUTION_RATIO
207
+
208
+ def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
209
+ # for big5 encoding, we are interested
210
+ # first byte range: 0xa4 -- 0xfe
211
+ # second byte range: 0x40 -- 0x7e , 0xa1 -- 0xfe
212
+ # no validation needed here. State machine has done that
213
+ first_char, second_char = byte_str[0], byte_str[1]
214
+ if first_char >= 0xA4:
215
+ if second_char >= 0xA1:
216
+ return 157 * (first_char - 0xA4) + second_char - 0xA1 + 63
217
+ return 157 * (first_char - 0xA4) + second_char - 0x40
218
+ return -1
219
+
220
+
221
+ class SJISDistributionAnalysis(CharDistributionAnalysis):
222
+ def __init__(self) -> None:
223
+ super().__init__()
224
+ self._char_to_freq_order = JIS_CHAR_TO_FREQ_ORDER
225
+ self._table_size = JIS_TABLE_SIZE
226
+ self.typical_distribution_ratio = JIS_TYPICAL_DISTRIBUTION_RATIO
227
+
228
+ def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
229
+ # for sjis encoding, we are interested
230
+ # first byte range: 0x81 -- 0x9f , 0xe0 -- 0xfe
231
+ # second byte range: 0x40 -- 0x7e, 0x81 -- oxfe
232
+ # no validation needed here. State machine has done that
233
+ first_char, second_char = byte_str[0], byte_str[1]
234
+ if 0x81 <= first_char <= 0x9F:
235
+ order = 188 * (first_char - 0x81)
236
+ elif 0xE0 <= first_char <= 0xEF:
237
+ order = 188 * (first_char - 0xE0 + 31)
238
+ else:
239
+ return -1
240
+ order = order + second_char - 0x40
241
+ if second_char > 0x7F:
242
+ order = -1
243
+ return order
244
+
245
+
246
+ class EUCJPDistributionAnalysis(CharDistributionAnalysis):
247
+ def __init__(self) -> None:
248
+ super().__init__()
249
+ self._char_to_freq_order = JIS_CHAR_TO_FREQ_ORDER
250
+ self._table_size = JIS_TABLE_SIZE
251
+ self.typical_distribution_ratio = JIS_TYPICAL_DISTRIBUTION_RATIO
252
+
253
+ def get_order(self, byte_str: Union[bytes, bytearray]) -> int:
254
+ # for euc-JP encoding, we are interested
255
+ # first byte range: 0xa0 -- 0xfe
256
+ # second byte range: 0xa1 -- 0xfe
257
+ # no validation needed here. State machine has done that
258
+ char = byte_str[0]
259
+ if char >= 0xA0:
260
+ return 94 * (char - 0xA1) + byte_str[1] - 0xA1
261
+ return -1
venv/lib/python3.10/site-packages/chardet/charsetgroupprober.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is Mozilla Communicator client code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ from typing import List, Optional, Union
29
+
30
+ from .charsetprober import CharSetProber
31
+ from .enums import LanguageFilter, ProbingState
32
+
33
+
34
+ class CharSetGroupProber(CharSetProber):
35
+ def __init__(self, lang_filter: LanguageFilter = LanguageFilter.NONE) -> None:
36
+ super().__init__(lang_filter=lang_filter)
37
+ self._active_num = 0
38
+ self.probers: List[CharSetProber] = []
39
+ self._best_guess_prober: Optional[CharSetProber] = None
40
+
41
+ def reset(self) -> None:
42
+ super().reset()
43
+ self._active_num = 0
44
+ for prober in self.probers:
45
+ prober.reset()
46
+ prober.active = True
47
+ self._active_num += 1
48
+ self._best_guess_prober = None
49
+
50
+ @property
51
+ def charset_name(self) -> Optional[str]:
52
+ if not self._best_guess_prober:
53
+ self.get_confidence()
54
+ if not self._best_guess_prober:
55
+ return None
56
+ return self._best_guess_prober.charset_name
57
+
58
+ @property
59
+ def language(self) -> Optional[str]:
60
+ if not self._best_guess_prober:
61
+ self.get_confidence()
62
+ if not self._best_guess_prober:
63
+ return None
64
+ return self._best_guess_prober.language
65
+
66
+ def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
67
+ for prober in self.probers:
68
+ if not prober.active:
69
+ continue
70
+ state = prober.feed(byte_str)
71
+ if not state:
72
+ continue
73
+ if state == ProbingState.FOUND_IT:
74
+ self._best_guess_prober = prober
75
+ self._state = ProbingState.FOUND_IT
76
+ return self.state
77
+ if state == ProbingState.NOT_ME:
78
+ prober.active = False
79
+ self._active_num -= 1
80
+ if self._active_num <= 0:
81
+ self._state = ProbingState.NOT_ME
82
+ return self.state
83
+ return self.state
84
+
85
+ def get_confidence(self) -> float:
86
+ state = self.state
87
+ if state == ProbingState.FOUND_IT:
88
+ return 0.99
89
+ if state == ProbingState.NOT_ME:
90
+ return 0.01
91
+ best_conf = 0.0
92
+ self._best_guess_prober = None
93
+ for prober in self.probers:
94
+ if not prober.active:
95
+ self.logger.debug("%s not active", prober.charset_name)
96
+ continue
97
+ conf = prober.get_confidence()
98
+ self.logger.debug(
99
+ "%s %s confidence = %s", prober.charset_name, prober.language, conf
100
+ )
101
+ if best_conf < conf:
102
+ best_conf = conf
103
+ self._best_guess_prober = prober
104
+ if not self._best_guess_prober:
105
+ return 0.0
106
+ return best_conf
venv/lib/python3.10/site-packages/chardet/codingstatemachine.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is mozilla.org code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ import logging
29
+
30
+ from .codingstatemachinedict import CodingStateMachineDict
31
+ from .enums import MachineState
32
+
33
+
34
+ class CodingStateMachine:
35
+ """
36
+ A state machine to verify a byte sequence for a particular encoding. For
37
+ each byte the detector receives, it will feed that byte to every active
38
+ state machine available, one byte at a time. The state machine changes its
39
+ state based on its previous state and the byte it receives. There are 3
40
+ states in a state machine that are of interest to an auto-detector:
41
+
42
+ START state: This is the state to start with, or a legal byte sequence
43
+ (i.e. a valid code point) for character has been identified.
44
+
45
+ ME state: This indicates that the state machine identified a byte sequence
46
+ that is specific to the charset it is designed for and that
47
+ there is no other possible encoding which can contain this byte
48
+ sequence. This will to lead to an immediate positive answer for
49
+ the detector.
50
+
51
+ ERROR state: This indicates the state machine identified an illegal byte
52
+ sequence for that encoding. This will lead to an immediate
53
+ negative answer for this encoding. Detector will exclude this
54
+ encoding from consideration from here on.
55
+ """
56
+
57
+ def __init__(self, sm: CodingStateMachineDict) -> None:
58
+ self._model = sm
59
+ self._curr_byte_pos = 0
60
+ self._curr_char_len = 0
61
+ self._curr_state = MachineState.START
62
+ self.active = True
63
+ self.logger = logging.getLogger(__name__)
64
+ self.reset()
65
+
66
+ def reset(self) -> None:
67
+ self._curr_state = MachineState.START
68
+
69
+ def next_state(self, c: int) -> int:
70
+ # for each byte we get its class
71
+ # if it is first byte, we also get byte length
72
+ byte_class = self._model["class_table"][c]
73
+ if self._curr_state == MachineState.START:
74
+ self._curr_byte_pos = 0
75
+ self._curr_char_len = self._model["char_len_table"][byte_class]
76
+ # from byte's class and state_table, we get its next state
77
+ curr_state = self._curr_state * self._model["class_factor"] + byte_class
78
+ self._curr_state = self._model["state_table"][curr_state]
79
+ self._curr_byte_pos += 1
80
+ return self._curr_state
81
+
82
+ def get_current_charlen(self) -> int:
83
+ return self._curr_char_len
84
+
85
+ def get_coding_state_machine(self) -> str:
86
+ return self._model["name"]
87
+
88
+ @property
89
+ def language(self) -> str:
90
+ return self._model["language"]
venv/lib/python3.10/site-packages/chardet/codingstatemachinedict.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import TYPE_CHECKING, Tuple
2
+
3
+ if TYPE_CHECKING:
4
+ # TypedDict was introduced in Python 3.8.
5
+ #
6
+ # TODO: Remove the else block and TYPE_CHECKING check when dropping support
7
+ # for Python 3.7.
8
+ from typing import TypedDict
9
+
10
+ class CodingStateMachineDict(TypedDict, total=False):
11
+ class_table: Tuple[int, ...]
12
+ class_factor: int
13
+ state_table: Tuple[int, ...]
14
+ char_len_table: Tuple[int, ...]
15
+ name: str
16
+ language: str # Optional key
17
+
18
+ else:
19
+ CodingStateMachineDict = dict
venv/lib/python3.10/site-packages/chardet/enums.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ All of the Enums that are used throughout the chardet package.
3
+
4
+ :author: Dan Blanchard ([email protected])
5
+ """
6
+
7
+ from enum import Enum, Flag
8
+
9
+
10
+ class InputState:
11
+ """
12
+ This enum represents the different states a universal detector can be in.
13
+ """
14
+
15
+ PURE_ASCII = 0
16
+ ESC_ASCII = 1
17
+ HIGH_BYTE = 2
18
+
19
+
20
+ class LanguageFilter(Flag):
21
+ """
22
+ This enum represents the different language filters we can apply to a
23
+ ``UniversalDetector``.
24
+ """
25
+
26
+ NONE = 0x00
27
+ CHINESE_SIMPLIFIED = 0x01
28
+ CHINESE_TRADITIONAL = 0x02
29
+ JAPANESE = 0x04
30
+ KOREAN = 0x08
31
+ NON_CJK = 0x10
32
+ ALL = 0x1F
33
+ CHINESE = CHINESE_SIMPLIFIED | CHINESE_TRADITIONAL
34
+ CJK = CHINESE | JAPANESE | KOREAN
35
+
36
+
37
+ class ProbingState(Enum):
38
+ """
39
+ This enum represents the different states a prober can be in.
40
+ """
41
+
42
+ DETECTING = 0
43
+ FOUND_IT = 1
44
+ NOT_ME = 2
45
+
46
+
47
+ class MachineState:
48
+ """
49
+ This enum represents the different states a state machine can be in.
50
+ """
51
+
52
+ START = 0
53
+ ERROR = 1
54
+ ITS_ME = 2
55
+
56
+
57
+ class SequenceLikelihood:
58
+ """
59
+ This enum represents the likelihood of a character following the previous one.
60
+ """
61
+
62
+ NEGATIVE = 0
63
+ UNLIKELY = 1
64
+ LIKELY = 2
65
+ POSITIVE = 3
66
+
67
+ @classmethod
68
+ def get_num_categories(cls) -> int:
69
+ """:returns: The number of likelihood categories in the enum."""
70
+ return 4
71
+
72
+
73
+ class CharacterCategory:
74
+ """
75
+ This enum represents the different categories language models for
76
+ ``SingleByteCharsetProber`` put characters into.
77
+
78
+ Anything less than CONTROL is considered a letter.
79
+ """
80
+
81
+ UNDEFINED = 255
82
+ LINE_BREAK = 254
83
+ SYMBOL = 253
84
+ DIGIT = 252
85
+ CONTROL = 251
venv/lib/python3.10/site-packages/chardet/escprober.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is mozilla.org code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ from typing import Optional, Union
29
+
30
+ from .charsetprober import CharSetProber
31
+ from .codingstatemachine import CodingStateMachine
32
+ from .enums import LanguageFilter, MachineState, ProbingState
33
+ from .escsm import (
34
+ HZ_SM_MODEL,
35
+ ISO2022CN_SM_MODEL,
36
+ ISO2022JP_SM_MODEL,
37
+ ISO2022KR_SM_MODEL,
38
+ )
39
+
40
+
41
+ class EscCharSetProber(CharSetProber):
42
+ """
43
+ This CharSetProber uses a "code scheme" approach for detecting encodings,
44
+ whereby easily recognizable escape or shift sequences are relied on to
45
+ identify these encodings.
46
+ """
47
+
48
+ def __init__(self, lang_filter: LanguageFilter = LanguageFilter.NONE) -> None:
49
+ super().__init__(lang_filter=lang_filter)
50
+ self.coding_sm = []
51
+ if self.lang_filter & LanguageFilter.CHINESE_SIMPLIFIED:
52
+ self.coding_sm.append(CodingStateMachine(HZ_SM_MODEL))
53
+ self.coding_sm.append(CodingStateMachine(ISO2022CN_SM_MODEL))
54
+ if self.lang_filter & LanguageFilter.JAPANESE:
55
+ self.coding_sm.append(CodingStateMachine(ISO2022JP_SM_MODEL))
56
+ if self.lang_filter & LanguageFilter.KOREAN:
57
+ self.coding_sm.append(CodingStateMachine(ISO2022KR_SM_MODEL))
58
+ self.active_sm_count = 0
59
+ self._detected_charset: Optional[str] = None
60
+ self._detected_language: Optional[str] = None
61
+ self._state = ProbingState.DETECTING
62
+ self.reset()
63
+
64
+ def reset(self) -> None:
65
+ super().reset()
66
+ for coding_sm in self.coding_sm:
67
+ coding_sm.active = True
68
+ coding_sm.reset()
69
+ self.active_sm_count = len(self.coding_sm)
70
+ self._detected_charset = None
71
+ self._detected_language = None
72
+
73
+ @property
74
+ def charset_name(self) -> Optional[str]:
75
+ return self._detected_charset
76
+
77
+ @property
78
+ def language(self) -> Optional[str]:
79
+ return self._detected_language
80
+
81
+ def get_confidence(self) -> float:
82
+ return 0.99 if self._detected_charset else 0.00
83
+
84
+ def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
85
+ for c in byte_str:
86
+ for coding_sm in self.coding_sm:
87
+ if not coding_sm.active:
88
+ continue
89
+ coding_state = coding_sm.next_state(c)
90
+ if coding_state == MachineState.ERROR:
91
+ coding_sm.active = False
92
+ self.active_sm_count -= 1
93
+ if self.active_sm_count <= 0:
94
+ self._state = ProbingState.NOT_ME
95
+ return self.state
96
+ elif coding_state == MachineState.ITS_ME:
97
+ self._state = ProbingState.FOUND_IT
98
+ self._detected_charset = coding_sm.get_coding_state_machine()
99
+ self._detected_language = coding_sm.language
100
+ return self.state
101
+
102
+ return self.state
venv/lib/python3.10/site-packages/chardet/escsm.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is mozilla.org code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ from .codingstatemachinedict import CodingStateMachineDict
29
+ from .enums import MachineState
30
+
31
+ # fmt: off
32
+ HZ_CLS = (
33
+ 1, 0, 0, 0, 0, 0, 0, 0, # 00 - 07
34
+ 0, 0, 0, 0, 0, 0, 0, 0, # 08 - 0f
35
+ 0, 0, 0, 0, 0, 0, 0, 0, # 10 - 17
36
+ 0, 0, 0, 1, 0, 0, 0, 0, # 18 - 1f
37
+ 0, 0, 0, 0, 0, 0, 0, 0, # 20 - 27
38
+ 0, 0, 0, 0, 0, 0, 0, 0, # 28 - 2f
39
+ 0, 0, 0, 0, 0, 0, 0, 0, # 30 - 37
40
+ 0, 0, 0, 0, 0, 0, 0, 0, # 38 - 3f
41
+ 0, 0, 0, 0, 0, 0, 0, 0, # 40 - 47
42
+ 0, 0, 0, 0, 0, 0, 0, 0, # 48 - 4f
43
+ 0, 0, 0, 0, 0, 0, 0, 0, # 50 - 57
44
+ 0, 0, 0, 0, 0, 0, 0, 0, # 58 - 5f
45
+ 0, 0, 0, 0, 0, 0, 0, 0, # 60 - 67
46
+ 0, 0, 0, 0, 0, 0, 0, 0, # 68 - 6f
47
+ 0, 0, 0, 0, 0, 0, 0, 0, # 70 - 77
48
+ 0, 0, 0, 4, 0, 5, 2, 0, # 78 - 7f
49
+ 1, 1, 1, 1, 1, 1, 1, 1, # 80 - 87
50
+ 1, 1, 1, 1, 1, 1, 1, 1, # 88 - 8f
51
+ 1, 1, 1, 1, 1, 1, 1, 1, # 90 - 97
52
+ 1, 1, 1, 1, 1, 1, 1, 1, # 98 - 9f
53
+ 1, 1, 1, 1, 1, 1, 1, 1, # a0 - a7
54
+ 1, 1, 1, 1, 1, 1, 1, 1, # a8 - af
55
+ 1, 1, 1, 1, 1, 1, 1, 1, # b0 - b7
56
+ 1, 1, 1, 1, 1, 1, 1, 1, # b8 - bf
57
+ 1, 1, 1, 1, 1, 1, 1, 1, # c0 - c7
58
+ 1, 1, 1, 1, 1, 1, 1, 1, # c8 - cf
59
+ 1, 1, 1, 1, 1, 1, 1, 1, # d0 - d7
60
+ 1, 1, 1, 1, 1, 1, 1, 1, # d8 - df
61
+ 1, 1, 1, 1, 1, 1, 1, 1, # e0 - e7
62
+ 1, 1, 1, 1, 1, 1, 1, 1, # e8 - ef
63
+ 1, 1, 1, 1, 1, 1, 1, 1, # f0 - f7
64
+ 1, 1, 1, 1, 1, 1, 1, 1, # f8 - ff
65
+ )
66
+
67
+ HZ_ST = (
68
+ MachineState.START, MachineState.ERROR, 3, MachineState.START, MachineState.START, MachineState.START, MachineState.ERROR, MachineState.ERROR, # 00-07
69
+ MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, # 08-0f
70
+ MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ERROR, MachineState.ERROR, MachineState.START, MachineState.START, 4, MachineState.ERROR, # 10-17
71
+ 5, MachineState.ERROR, 6, MachineState.ERROR, 5, 5, 4, MachineState.ERROR, # 18-1f
72
+ 4, MachineState.ERROR, 4, 4, 4, MachineState.ERROR, 4, MachineState.ERROR, # 20-27
73
+ 4, MachineState.ITS_ME, MachineState.START, MachineState.START, MachineState.START, MachineState.START, MachineState.START, MachineState.START, # 28-2f
74
+ )
75
+ # fmt: on
76
+
77
+ HZ_CHAR_LEN_TABLE = (0, 0, 0, 0, 0, 0)
78
+
79
+ HZ_SM_MODEL: CodingStateMachineDict = {
80
+ "class_table": HZ_CLS,
81
+ "class_factor": 6,
82
+ "state_table": HZ_ST,
83
+ "char_len_table": HZ_CHAR_LEN_TABLE,
84
+ "name": "HZ-GB-2312",
85
+ "language": "Chinese",
86
+ }
87
+
88
+ # fmt: off
89
+ ISO2022CN_CLS = (
90
+ 2, 0, 0, 0, 0, 0, 0, 0, # 00 - 07
91
+ 0, 0, 0, 0, 0, 0, 0, 0, # 08 - 0f
92
+ 0, 0, 0, 0, 0, 0, 0, 0, # 10 - 17
93
+ 0, 0, 0, 1, 0, 0, 0, 0, # 18 - 1f
94
+ 0, 0, 0, 0, 0, 0, 0, 0, # 20 - 27
95
+ 0, 3, 0, 0, 0, 0, 0, 0, # 28 - 2f
96
+ 0, 0, 0, 0, 0, 0, 0, 0, # 30 - 37
97
+ 0, 0, 0, 0, 0, 0, 0, 0, # 38 - 3f
98
+ 0, 0, 0, 4, 0, 0, 0, 0, # 40 - 47
99
+ 0, 0, 0, 0, 0, 0, 0, 0, # 48 - 4f
100
+ 0, 0, 0, 0, 0, 0, 0, 0, # 50 - 57
101
+ 0, 0, 0, 0, 0, 0, 0, 0, # 58 - 5f
102
+ 0, 0, 0, 0, 0, 0, 0, 0, # 60 - 67
103
+ 0, 0, 0, 0, 0, 0, 0, 0, # 68 - 6f
104
+ 0, 0, 0, 0, 0, 0, 0, 0, # 70 - 77
105
+ 0, 0, 0, 0, 0, 0, 0, 0, # 78 - 7f
106
+ 2, 2, 2, 2, 2, 2, 2, 2, # 80 - 87
107
+ 2, 2, 2, 2, 2, 2, 2, 2, # 88 - 8f
108
+ 2, 2, 2, 2, 2, 2, 2, 2, # 90 - 97
109
+ 2, 2, 2, 2, 2, 2, 2, 2, # 98 - 9f
110
+ 2, 2, 2, 2, 2, 2, 2, 2, # a0 - a7
111
+ 2, 2, 2, 2, 2, 2, 2, 2, # a8 - af
112
+ 2, 2, 2, 2, 2, 2, 2, 2, # b0 - b7
113
+ 2, 2, 2, 2, 2, 2, 2, 2, # b8 - bf
114
+ 2, 2, 2, 2, 2, 2, 2, 2, # c0 - c7
115
+ 2, 2, 2, 2, 2, 2, 2, 2, # c8 - cf
116
+ 2, 2, 2, 2, 2, 2, 2, 2, # d0 - d7
117
+ 2, 2, 2, 2, 2, 2, 2, 2, # d8 - df
118
+ 2, 2, 2, 2, 2, 2, 2, 2, # e0 - e7
119
+ 2, 2, 2, 2, 2, 2, 2, 2, # e8 - ef
120
+ 2, 2, 2, 2, 2, 2, 2, 2, # f0 - f7
121
+ 2, 2, 2, 2, 2, 2, 2, 2, # f8 - ff
122
+ )
123
+
124
+ ISO2022CN_ST = (
125
+ MachineState.START, 3, MachineState.ERROR, MachineState.START, MachineState.START, MachineState.START, MachineState.START, MachineState.START, # 00-07
126
+ MachineState.START, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, # 08-0f
127
+ MachineState.ERROR, MachineState.ERROR, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, # 10-17
128
+ MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, 4, MachineState.ERROR, # 18-1f
129
+ MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ITS_ME, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, # 20-27
130
+ 5, 6, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, # 28-2f
131
+ MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ITS_ME, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, # 30-37
132
+ MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ITS_ME, MachineState.ERROR, MachineState.START, # 38-3f
133
+ )
134
+ # fmt: on
135
+
136
+ ISO2022CN_CHAR_LEN_TABLE = (0, 0, 0, 0, 0, 0, 0, 0, 0)
137
+
138
+ ISO2022CN_SM_MODEL: CodingStateMachineDict = {
139
+ "class_table": ISO2022CN_CLS,
140
+ "class_factor": 9,
141
+ "state_table": ISO2022CN_ST,
142
+ "char_len_table": ISO2022CN_CHAR_LEN_TABLE,
143
+ "name": "ISO-2022-CN",
144
+ "language": "Chinese",
145
+ }
146
+
147
+ # fmt: off
148
+ ISO2022JP_CLS = (
149
+ 2, 0, 0, 0, 0, 0, 0, 0, # 00 - 07
150
+ 0, 0, 0, 0, 0, 0, 2, 2, # 08 - 0f
151
+ 0, 0, 0, 0, 0, 0, 0, 0, # 10 - 17
152
+ 0, 0, 0, 1, 0, 0, 0, 0, # 18 - 1f
153
+ 0, 0, 0, 0, 7, 0, 0, 0, # 20 - 27
154
+ 3, 0, 0, 0, 0, 0, 0, 0, # 28 - 2f
155
+ 0, 0, 0, 0, 0, 0, 0, 0, # 30 - 37
156
+ 0, 0, 0, 0, 0, 0, 0, 0, # 38 - 3f
157
+ 6, 0, 4, 0, 8, 0, 0, 0, # 40 - 47
158
+ 0, 9, 5, 0, 0, 0, 0, 0, # 48 - 4f
159
+ 0, 0, 0, 0, 0, 0, 0, 0, # 50 - 57
160
+ 0, 0, 0, 0, 0, 0, 0, 0, # 58 - 5f
161
+ 0, 0, 0, 0, 0, 0, 0, 0, # 60 - 67
162
+ 0, 0, 0, 0, 0, 0, 0, 0, # 68 - 6f
163
+ 0, 0, 0, 0, 0, 0, 0, 0, # 70 - 77
164
+ 0, 0, 0, 0, 0, 0, 0, 0, # 78 - 7f
165
+ 2, 2, 2, 2, 2, 2, 2, 2, # 80 - 87
166
+ 2, 2, 2, 2, 2, 2, 2, 2, # 88 - 8f
167
+ 2, 2, 2, 2, 2, 2, 2, 2, # 90 - 97
168
+ 2, 2, 2, 2, 2, 2, 2, 2, # 98 - 9f
169
+ 2, 2, 2, 2, 2, 2, 2, 2, # a0 - a7
170
+ 2, 2, 2, 2, 2, 2, 2, 2, # a8 - af
171
+ 2, 2, 2, 2, 2, 2, 2, 2, # b0 - b7
172
+ 2, 2, 2, 2, 2, 2, 2, 2, # b8 - bf
173
+ 2, 2, 2, 2, 2, 2, 2, 2, # c0 - c7
174
+ 2, 2, 2, 2, 2, 2, 2, 2, # c8 - cf
175
+ 2, 2, 2, 2, 2, 2, 2, 2, # d0 - d7
176
+ 2, 2, 2, 2, 2, 2, 2, 2, # d8 - df
177
+ 2, 2, 2, 2, 2, 2, 2, 2, # e0 - e7
178
+ 2, 2, 2, 2, 2, 2, 2, 2, # e8 - ef
179
+ 2, 2, 2, 2, 2, 2, 2, 2, # f0 - f7
180
+ 2, 2, 2, 2, 2, 2, 2, 2, # f8 - ff
181
+ )
182
+
183
+ ISO2022JP_ST = (
184
+ MachineState.START, 3, MachineState.ERROR, MachineState.START, MachineState.START, MachineState.START, MachineState.START, MachineState.START, # 00-07
185
+ MachineState.START, MachineState.START, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, # 08-0f
186
+ MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, # 10-17
187
+ MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ERROR, MachineState.ERROR, # 18-1f
188
+ MachineState.ERROR, 5, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, 4, MachineState.ERROR, MachineState.ERROR, # 20-27
189
+ MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, 6, MachineState.ITS_ME, MachineState.ERROR, MachineState.ITS_ME, MachineState.ERROR, # 28-2f
190
+ MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ITS_ME, MachineState.ITS_ME, # 30-37
191
+ MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ITS_ME, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, # 38-3f
192
+ MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ITS_ME, MachineState.ERROR, MachineState.START, MachineState.START, # 40-47
193
+ )
194
+ # fmt: on
195
+
196
+ ISO2022JP_CHAR_LEN_TABLE = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
197
+
198
+ ISO2022JP_SM_MODEL: CodingStateMachineDict = {
199
+ "class_table": ISO2022JP_CLS,
200
+ "class_factor": 10,
201
+ "state_table": ISO2022JP_ST,
202
+ "char_len_table": ISO2022JP_CHAR_LEN_TABLE,
203
+ "name": "ISO-2022-JP",
204
+ "language": "Japanese",
205
+ }
206
+
207
+ # fmt: off
208
+ ISO2022KR_CLS = (
209
+ 2, 0, 0, 0, 0, 0, 0, 0, # 00 - 07
210
+ 0, 0, 0, 0, 0, 0, 0, 0, # 08 - 0f
211
+ 0, 0, 0, 0, 0, 0, 0, 0, # 10 - 17
212
+ 0, 0, 0, 1, 0, 0, 0, 0, # 18 - 1f
213
+ 0, 0, 0, 0, 3, 0, 0, 0, # 20 - 27
214
+ 0, 4, 0, 0, 0, 0, 0, 0, # 28 - 2f
215
+ 0, 0, 0, 0, 0, 0, 0, 0, # 30 - 37
216
+ 0, 0, 0, 0, 0, 0, 0, 0, # 38 - 3f
217
+ 0, 0, 0, 5, 0, 0, 0, 0, # 40 - 47
218
+ 0, 0, 0, 0, 0, 0, 0, 0, # 48 - 4f
219
+ 0, 0, 0, 0, 0, 0, 0, 0, # 50 - 57
220
+ 0, 0, 0, 0, 0, 0, 0, 0, # 58 - 5f
221
+ 0, 0, 0, 0, 0, 0, 0, 0, # 60 - 67
222
+ 0, 0, 0, 0, 0, 0, 0, 0, # 68 - 6f
223
+ 0, 0, 0, 0, 0, 0, 0, 0, # 70 - 77
224
+ 0, 0, 0, 0, 0, 0, 0, 0, # 78 - 7f
225
+ 2, 2, 2, 2, 2, 2, 2, 2, # 80 - 87
226
+ 2, 2, 2, 2, 2, 2, 2, 2, # 88 - 8f
227
+ 2, 2, 2, 2, 2, 2, 2, 2, # 90 - 97
228
+ 2, 2, 2, 2, 2, 2, 2, 2, # 98 - 9f
229
+ 2, 2, 2, 2, 2, 2, 2, 2, # a0 - a7
230
+ 2, 2, 2, 2, 2, 2, 2, 2, # a8 - af
231
+ 2, 2, 2, 2, 2, 2, 2, 2, # b0 - b7
232
+ 2, 2, 2, 2, 2, 2, 2, 2, # b8 - bf
233
+ 2, 2, 2, 2, 2, 2, 2, 2, # c0 - c7
234
+ 2, 2, 2, 2, 2, 2, 2, 2, # c8 - cf
235
+ 2, 2, 2, 2, 2, 2, 2, 2, # d0 - d7
236
+ 2, 2, 2, 2, 2, 2, 2, 2, # d8 - df
237
+ 2, 2, 2, 2, 2, 2, 2, 2, # e0 - e7
238
+ 2, 2, 2, 2, 2, 2, 2, 2, # e8 - ef
239
+ 2, 2, 2, 2, 2, 2, 2, 2, # f0 - f7
240
+ 2, 2, 2, 2, 2, 2, 2, 2, # f8 - ff
241
+ )
242
+
243
+ ISO2022KR_ST = (
244
+ MachineState.START, 3, MachineState.ERROR, MachineState.START, MachineState.START, MachineState.START, MachineState.ERROR, MachineState.ERROR, # 00-07
245
+ MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ITS_ME, # 08-0f
246
+ MachineState.ITS_ME, MachineState.ITS_ME, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, 4, MachineState.ERROR, MachineState.ERROR, # 10-17
247
+ MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, 5, MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, # 18-1f
248
+ MachineState.ERROR, MachineState.ERROR, MachineState.ERROR, MachineState.ITS_ME, MachineState.START, MachineState.START, MachineState.START, MachineState.START, # 20-27
249
+ )
250
+ # fmt: on
251
+
252
+ ISO2022KR_CHAR_LEN_TABLE = (0, 0, 0, 0, 0, 0)
253
+
254
+ ISO2022KR_SM_MODEL: CodingStateMachineDict = {
255
+ "class_table": ISO2022KR_CLS,
256
+ "class_factor": 6,
257
+ "state_table": ISO2022KR_ST,
258
+ "char_len_table": ISO2022KR_CHAR_LEN_TABLE,
259
+ "name": "ISO-2022-KR",
260
+ "language": "Korean",
261
+ }
venv/lib/python3.10/site-packages/chardet/eucjpprober.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is mozilla.org code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ from typing import Union
29
+
30
+ from .chardistribution import EUCJPDistributionAnalysis
31
+ from .codingstatemachine import CodingStateMachine
32
+ from .enums import MachineState, ProbingState
33
+ from .jpcntx import EUCJPContextAnalysis
34
+ from .mbcharsetprober import MultiByteCharSetProber
35
+ from .mbcssm import EUCJP_SM_MODEL
36
+
37
+
38
+ class EUCJPProber(MultiByteCharSetProber):
39
+ def __init__(self) -> None:
40
+ super().__init__()
41
+ self.coding_sm = CodingStateMachine(EUCJP_SM_MODEL)
42
+ self.distribution_analyzer = EUCJPDistributionAnalysis()
43
+ self.context_analyzer = EUCJPContextAnalysis()
44
+ self.reset()
45
+
46
+ def reset(self) -> None:
47
+ super().reset()
48
+ self.context_analyzer.reset()
49
+
50
+ @property
51
+ def charset_name(self) -> str:
52
+ return "EUC-JP"
53
+
54
+ @property
55
+ def language(self) -> str:
56
+ return "Japanese"
57
+
58
+ def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
59
+ assert self.coding_sm is not None
60
+ assert self.distribution_analyzer is not None
61
+
62
+ for i, byte in enumerate(byte_str):
63
+ # PY3K: byte_str is a byte array, so byte is an int, not a byte
64
+ coding_state = self.coding_sm.next_state(byte)
65
+ if coding_state == MachineState.ERROR:
66
+ self.logger.debug(
67
+ "%s %s prober hit error at byte %s",
68
+ self.charset_name,
69
+ self.language,
70
+ i,
71
+ )
72
+ self._state = ProbingState.NOT_ME
73
+ break
74
+ if coding_state == MachineState.ITS_ME:
75
+ self._state = ProbingState.FOUND_IT
76
+ break
77
+ if coding_state == MachineState.START:
78
+ char_len = self.coding_sm.get_current_charlen()
79
+ if i == 0:
80
+ self._last_char[1] = byte
81
+ self.context_analyzer.feed(self._last_char, char_len)
82
+ self.distribution_analyzer.feed(self._last_char, char_len)
83
+ else:
84
+ self.context_analyzer.feed(byte_str[i - 1 : i + 1], char_len)
85
+ self.distribution_analyzer.feed(byte_str[i - 1 : i + 1], char_len)
86
+
87
+ self._last_char[0] = byte_str[-1]
88
+
89
+ if self.state == ProbingState.DETECTING:
90
+ if self.context_analyzer.got_enough_data() and (
91
+ self.get_confidence() > self.SHORTCUT_THRESHOLD
92
+ ):
93
+ self._state = ProbingState.FOUND_IT
94
+
95
+ return self.state
96
+
97
+ def get_confidence(self) -> float:
98
+ assert self.distribution_analyzer is not None
99
+
100
+ context_conf = self.context_analyzer.get_confidence()
101
+ distrib_conf = self.distribution_analyzer.get_confidence()
102
+ return max(context_conf, distrib_conf)
venv/lib/python3.10/site-packages/chardet/euckrfreq.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is Mozilla Communicator client code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ # Sampling from about 20M text materials include literature and computer technology
29
+
30
+ # 128 --> 0.79
31
+ # 256 --> 0.92
32
+ # 512 --> 0.986
33
+ # 1024 --> 0.99944
34
+ # 2048 --> 0.99999
35
+ #
36
+ # Idea Distribution Ratio = 0.98653 / (1-0.98653) = 73.24
37
+ # Random Distribution Ration = 512 / (2350-512) = 0.279.
38
+ #
39
+ # Typical Distribution Ratio
40
+
41
+ EUCKR_TYPICAL_DISTRIBUTION_RATIO = 6.0
42
+
43
+ EUCKR_TABLE_SIZE = 2352
44
+
45
+ # Char to FreqOrder table ,
46
+ # fmt: off
47
+ EUCKR_CHAR_TO_FREQ_ORDER = (
48
+ 13, 130, 120,1396, 481,1719,1720, 328, 609, 212,1721, 707, 400, 299,1722, 87,
49
+ 1397,1723, 104, 536,1117,1203,1724,1267, 685,1268, 508,1725,1726,1727,1728,1398,
50
+ 1399,1729,1730,1731, 141, 621, 326,1057, 368,1732, 267, 488, 20,1733,1269,1734,
51
+ 945,1400,1735, 47, 904,1270,1736,1737, 773, 248,1738, 409, 313, 786, 429,1739,
52
+ 116, 987, 813,1401, 683, 75,1204, 145,1740,1741,1742,1743, 16, 847, 667, 622,
53
+ 708,1744,1745,1746, 966, 787, 304, 129,1747, 60, 820, 123, 676,1748,1749,1750,
54
+ 1751, 617,1752, 626,1753,1754,1755,1756, 653,1757,1758,1759,1760,1761,1762, 856,
55
+ 344,1763,1764,1765,1766, 89, 401, 418, 806, 905, 848,1767,1768,1769, 946,1205,
56
+ 709,1770,1118,1771, 241,1772,1773,1774,1271,1775, 569,1776, 999,1777,1778,1779,
57
+ 1780, 337, 751,1058, 28, 628, 254,1781, 177, 906, 270, 349, 891,1079,1782, 19,
58
+ 1783, 379,1784, 315,1785, 629, 754,1402, 559,1786, 636, 203,1206,1787, 710, 567,
59
+ 1788, 935, 814,1789,1790,1207, 766, 528,1791,1792,1208,1793,1794,1795,1796,1797,
60
+ 1403,1798,1799, 533,1059,1404,1405,1156,1406, 936, 884,1080,1800, 351,1801,1802,
61
+ 1803,1804,1805, 801,1806,1807,1808,1119,1809,1157, 714, 474,1407,1810, 298, 899,
62
+ 885,1811,1120, 802,1158,1812, 892,1813,1814,1408, 659,1815,1816,1121,1817,1818,
63
+ 1819,1820,1821,1822, 319,1823, 594, 545,1824, 815, 937,1209,1825,1826, 573,1409,
64
+ 1022,1827,1210,1828,1829,1830,1831,1832,1833, 556, 722, 807,1122,1060,1834, 697,
65
+ 1835, 900, 557, 715,1836,1410, 540,1411, 752,1159, 294, 597,1211, 976, 803, 770,
66
+ 1412,1837,1838, 39, 794,1413, 358,1839, 371, 925,1840, 453, 661, 788, 531, 723,
67
+ 544,1023,1081, 869, 91,1841, 392, 430, 790, 602,1414, 677,1082, 457,1415,1416,
68
+ 1842,1843, 475, 327,1024,1417, 795, 121,1844, 733, 403,1418,1845,1846,1847, 300,
69
+ 119, 711,1212, 627,1848,1272, 207,1849,1850, 796,1213, 382,1851, 519,1852,1083,
70
+ 893,1853,1854,1855, 367, 809, 487, 671,1856, 663,1857,1858, 956, 471, 306, 857,
71
+ 1859,1860,1160,1084,1861,1862,1863,1864,1865,1061,1866,1867,1868,1869,1870,1871,
72
+ 282, 96, 574,1872, 502,1085,1873,1214,1874, 907,1875,1876, 827, 977,1419,1420,
73
+ 1421, 268,1877,1422,1878,1879,1880, 308,1881, 2, 537,1882,1883,1215,1884,1885,
74
+ 127, 791,1886,1273,1423,1887, 34, 336, 404, 643,1888, 571, 654, 894, 840,1889,
75
+ 0, 886,1274, 122, 575, 260, 908, 938,1890,1275, 410, 316,1891,1892, 100,1893,
76
+ 1894,1123, 48,1161,1124,1025,1895, 633, 901,1276,1896,1897, 115, 816,1898, 317,
77
+ 1899, 694,1900, 909, 734,1424, 572, 866,1425, 691, 85, 524,1010, 543, 394, 841,
78
+ 1901,1902,1903,1026,1904,1905,1906,1907,1908,1909, 30, 451, 651, 988, 310,1910,
79
+ 1911,1426, 810,1216, 93,1912,1913,1277,1217,1914, 858, 759, 45, 58, 181, 610,
80
+ 269,1915,1916, 131,1062, 551, 443,1000, 821,1427, 957, 895,1086,1917,1918, 375,
81
+ 1919, 359,1920, 687,1921, 822,1922, 293,1923,1924, 40, 662, 118, 692, 29, 939,
82
+ 887, 640, 482, 174,1925, 69,1162, 728,1428, 910,1926,1278,1218,1279, 386, 870,
83
+ 217, 854,1163, 823,1927,1928,1929,1930, 834,1931, 78,1932, 859,1933,1063,1934,
84
+ 1935,1936,1937, 438,1164, 208, 595,1938,1939,1940,1941,1219,1125,1942, 280, 888,
85
+ 1429,1430,1220,1431,1943,1944,1945,1946,1947,1280, 150, 510,1432,1948,1949,1950,
86
+ 1951,1952,1953,1954,1011,1087,1955,1433,1043,1956, 881,1957, 614, 958,1064,1065,
87
+ 1221,1958, 638,1001, 860, 967, 896,1434, 989, 492, 553,1281,1165,1959,1282,1002,
88
+ 1283,1222,1960,1961,1962,1963, 36, 383, 228, 753, 247, 454,1964, 876, 678,1965,
89
+ 1966,1284, 126, 464, 490, 835, 136, 672, 529, 940,1088,1435, 473,1967,1968, 467,
90
+ 50, 390, 227, 587, 279, 378, 598, 792, 968, 240, 151, 160, 849, 882,1126,1285,
91
+ 639,1044, 133, 140, 288, 360, 811, 563,1027, 561, 142, 523,1969,1970,1971, 7,
92
+ 103, 296, 439, 407, 506, 634, 990,1972,1973,1974,1975, 645,1976,1977,1978,1979,
93
+ 1980,1981, 236,1982,1436,1983,1984,1089, 192, 828, 618, 518,1166, 333,1127,1985,
94
+ 818,1223,1986,1987,1988,1989,1990,1991,1992,1993, 342,1128,1286, 746, 842,1994,
95
+ 1995, 560, 223,1287, 98, 8, 189, 650, 978,1288,1996,1437,1997, 17, 345, 250,
96
+ 423, 277, 234, 512, 226, 97, 289, 42, 167,1998, 201,1999,2000, 843, 836, 824,
97
+ 532, 338, 783,1090, 182, 576, 436,1438,1439, 527, 500,2001, 947, 889,2002,2003,
98
+ 2004,2005, 262, 600, 314, 447,2006, 547,2007, 693, 738,1129,2008, 71,1440, 745,
99
+ 619, 688,2009, 829,2010,2011, 147,2012, 33, 948,2013,2014, 74, 224,2015, 61,
100
+ 191, 918, 399, 637,2016,1028,1130, 257, 902,2017,2018,2019,2020,2021,2022,2023,
101
+ 2024,2025,2026, 837,2027,2028,2029,2030, 179, 874, 591, 52, 724, 246,2031,2032,
102
+ 2033,2034,1167, 969,2035,1289, 630, 605, 911,1091,1168,2036,2037,2038,1441, 912,
103
+ 2039, 623,2040,2041, 253,1169,1290,2042,1442, 146, 620, 611, 577, 433,2043,1224,
104
+ 719,1170, 959, 440, 437, 534, 84, 388, 480,1131, 159, 220, 198, 679,2044,1012,
105
+ 819,1066,1443, 113,1225, 194, 318,1003,1029,2045,2046,2047,2048,1067,2049,2050,
106
+ 2051,2052,2053, 59, 913, 112,2054, 632,2055, 455, 144, 739,1291,2056, 273, 681,
107
+ 499,2057, 448,2058,2059, 760,2060,2061, 970, 384, 169, 245,1132,2062,2063, 414,
108
+ 1444,2064,2065, 41, 235,2066, 157, 252, 877, 568, 919, 789, 580,2067, 725,2068,
109
+ 2069,1292,2070,2071,1445,2072,1446,2073,2074, 55, 588, 66,1447, 271,1092,2075,
110
+ 1226,2076, 960,1013, 372,2077,2078,2079,2080,2081,1293,2082,2083,2084,2085, 850,
111
+ 2086,2087,2088,2089,2090, 186,2091,1068, 180,2092,2093,2094, 109,1227, 522, 606,
112
+ 2095, 867,1448,1093, 991,1171, 926, 353,1133,2096, 581,2097,2098,2099,1294,1449,
113
+ 1450,2100, 596,1172,1014,1228,2101,1451,1295,1173,1229,2102,2103,1296,1134,1452,
114
+ 949,1135,2104,2105,1094,1453,1454,1455,2106,1095,2107,2108,2109,2110,2111,2112,
115
+ 2113,2114,2115,2116,2117, 804,2118,2119,1230,1231, 805,1456, 405,1136,2120,2121,
116
+ 2122,2123,2124, 720, 701,1297, 992,1457, 927,1004,2125,2126,2127,2128,2129,2130,
117
+ 22, 417,2131, 303,2132, 385,2133, 971, 520, 513,2134,1174, 73,1096, 231, 274,
118
+ 962,1458, 673,2135,1459,2136, 152,1137,2137,2138,2139,2140,1005,1138,1460,1139,
119
+ 2141,2142,2143,2144, 11, 374, 844,2145, 154,1232, 46,1461,2146, 838, 830, 721,
120
+ 1233, 106,2147, 90, 428, 462, 578, 566,1175, 352,2148,2149, 538,1234, 124,1298,
121
+ 2150,1462, 761, 565,2151, 686,2152, 649,2153, 72, 173,2154, 460, 415,2155,1463,
122
+ 2156,1235, 305,2157,2158,2159,2160,2161,2162, 579,2163,2164,2165,2166,2167, 747,
123
+ 2168,2169,2170,2171,1464, 669,2172,2173,2174,2175,2176,1465,2177, 23, 530, 285,
124
+ 2178, 335, 729,2179, 397,2180,2181,2182,1030,2183,2184, 698,2185,2186, 325,2187,
125
+ 2188, 369,2189, 799,1097,1015, 348,2190,1069, 680,2191, 851,1466,2192,2193, 10,
126
+ 2194, 613, 424,2195, 979, 108, 449, 589, 27, 172, 81,1031, 80, 774, 281, 350,
127
+ 1032, 525, 301, 582,1176,2196, 674,1045,2197,2198,1467, 730, 762,2199,2200,2201,
128
+ 2202,1468,2203, 993,2204,2205, 266,1070, 963,1140,2206,2207,2208, 664,1098, 972,
129
+ 2209,2210,2211,1177,1469,1470, 871,2212,2213,2214,2215,2216,1471,2217,2218,2219,
130
+ 2220,2221,2222,2223,2224,2225,2226,2227,1472,1236,2228,2229,2230,2231,2232,2233,
131
+ 2234,2235,1299,2236,2237, 200,2238, 477, 373,2239,2240, 731, 825, 777,2241,2242,
132
+ 2243, 521, 486, 548,2244,2245,2246,1473,1300, 53, 549, 137, 875, 76, 158,2247,
133
+ 1301,1474, 469, 396,1016, 278, 712,2248, 321, 442, 503, 767, 744, 941,1237,1178,
134
+ 1475,2249, 82, 178,1141,1179, 973,2250,1302,2251, 297,2252,2253, 570,2254,2255,
135
+ 2256, 18, 450, 206,2257, 290, 292,1142,2258, 511, 162, 99, 346, 164, 735,2259,
136
+ 1476,1477, 4, 554, 343, 798,1099,2260,1100,2261, 43, 171,1303, 139, 215,2262,
137
+ 2263, 717, 775,2264,1033, 322, 216,2265, 831,2266, 149,2267,1304,2268,2269, 702,
138
+ 1238, 135, 845, 347, 309,2270, 484,2271, 878, 655, 238,1006,1478,2272, 67,2273,
139
+ 295,2274,2275, 461,2276, 478, 942, 412,2277,1034,2278,2279,2280, 265,2281, 541,
140
+ 2282,2283,2284,2285,2286, 70, 852,1071,2287,2288,2289,2290, 21, 56, 509, 117,
141
+ 432,2291,2292, 331, 980, 552,1101, 148, 284, 105, 393,1180,1239, 755,2293, 187,
142
+ 2294,1046,1479,2295, 340,2296, 63,1047, 230,2297,2298,1305, 763,1306, 101, 800,
143
+ 808, 494,2299,2300,2301, 903,2302, 37,1072, 14, 5,2303, 79, 675,2304, 312,
144
+ 2305,2306,2307,2308,2309,1480, 6,1307,2310,2311,2312, 1, 470, 35, 24, 229,
145
+ 2313, 695, 210, 86, 778, 15, 784, 592, 779, 32, 77, 855, 964,2314, 259,2315,
146
+ 501, 380,2316,2317, 83, 981, 153, 689,1308,1481,1482,1483,2318,2319, 716,1484,
147
+ 2320,2321,2322,2323,2324,2325,1485,2326,2327, 128, 57, 68, 261,1048, 211, 170,
148
+ 1240, 31,2328, 51, 435, 742,2329,2330,2331, 635,2332, 264, 456,2333,2334,2335,
149
+ 425,2336,1486, 143, 507, 263, 943,2337, 363, 920,1487, 256,1488,1102, 243, 601,
150
+ 1489,2338,2339,2340,2341,2342,2343,2344, 861,2345,2346,2347,2348,2349,2350, 395,
151
+ 2351,1490,1491, 62, 535, 166, 225,2352,2353, 668, 419,1241, 138, 604, 928,2354,
152
+ 1181,2355,1492,1493,2356,2357,2358,1143,2359, 696,2360, 387, 307,1309, 682, 476,
153
+ 2361,2362, 332, 12, 222, 156,2363, 232,2364, 641, 276, 656, 517,1494,1495,1035,
154
+ 416, 736,1496,2365,1017, 586,2366,2367,2368,1497,2369, 242,2370,2371,2372,1498,
155
+ 2373, 965, 713,2374,2375,2376,2377, 740, 982,1499, 944,1500,1007,2378,2379,1310,
156
+ 1501,2380,2381,2382, 785, 329,2383,2384,1502,2385,2386,2387, 932,2388,1503,2389,
157
+ 2390,2391,2392,1242,2393,2394,2395,2396,2397, 994, 950,2398,2399,2400,2401,1504,
158
+ 1311,2402,2403,2404,2405,1049, 749,2406,2407, 853, 718,1144,1312,2408,1182,1505,
159
+ 2409,2410, 255, 516, 479, 564, 550, 214,1506,1507,1313, 413, 239, 444, 339,1145,
160
+ 1036,1508,1509,1314,1037,1510,1315,2411,1511,2412,2413,2414, 176, 703, 497, 624,
161
+ 593, 921, 302,2415, 341, 165,1103,1512,2416,1513,2417,2418,2419, 376,2420, 700,
162
+ 2421,2422,2423, 258, 768,1316,2424,1183,2425, 995, 608,2426,2427,2428,2429, 221,
163
+ 2430,2431,2432,2433,2434,2435,2436,2437, 195, 323, 726, 188, 897, 983,1317, 377,
164
+ 644,1050, 879,2438, 452,2439,2440,2441,2442,2443,2444, 914,2445,2446,2447,2448,
165
+ 915, 489,2449,1514,1184,2450,2451, 515, 64, 427, 495,2452, 583,2453, 483, 485,
166
+ 1038, 562, 213,1515, 748, 666,2454,2455,2456,2457, 334,2458, 780, 996,1008, 705,
167
+ 1243,2459,2460,2461,2462,2463, 114,2464, 493,1146, 366, 163,1516, 961,1104,2465,
168
+ 291,2466,1318,1105,2467,1517, 365,2468, 355, 951,1244,2469,1319,2470, 631,2471,
169
+ 2472, 218,1320, 364, 320, 756,1518,1519,1321,1520,1322,2473,2474,2475,2476, 997,
170
+ 2477,2478,2479,2480, 665,1185,2481, 916,1521,2482,2483,2484, 584, 684,2485,2486,
171
+ 797,2487,1051,1186,2488,2489,2490,1522,2491,2492, 370,2493,1039,1187, 65,2494,
172
+ 434, 205, 463,1188,2495, 125, 812, 391, 402, 826, 699, 286, 398, 155, 781, 771,
173
+ 585,2496, 590, 505,1073,2497, 599, 244, 219, 917,1018, 952, 646,1523,2498,1323,
174
+ 2499,2500, 49, 984, 354, 741,2501, 625,2502,1324,2503,1019, 190, 357, 757, 491,
175
+ 95, 782, 868,2504,2505,2506,2507,2508,2509, 134,1524,1074, 422,1525, 898,2510,
176
+ 161,2511,2512,2513,2514, 769,2515,1526,2516,2517, 411,1325,2518, 472,1527,2519,
177
+ 2520,2521,2522,2523,2524, 985,2525,2526,2527,2528,2529,2530, 764,2531,1245,2532,
178
+ 2533, 25, 204, 311,2534, 496,2535,1052,2536,2537,2538,2539,2540,2541,2542, 199,
179
+ 704, 504, 468, 758, 657,1528, 196, 44, 839,1246, 272, 750,2543, 765, 862,2544,
180
+ 2545,1326,2546, 132, 615, 933,2547, 732,2548,2549,2550,1189,1529,2551, 283,1247,
181
+ 1053, 607, 929,2552,2553,2554, 930, 183, 872, 616,1040,1147,2555,1148,1020, 441,
182
+ 249,1075,2556,2557,2558, 466, 743,2559,2560,2561, 92, 514, 426, 420, 526,2562,
183
+ 2563,2564,2565,2566,2567,2568, 185,2569,2570,2571,2572, 776,1530, 658,2573, 362,
184
+ 2574, 361, 922,1076, 793,2575,2576,2577,2578,2579,2580,1531, 251,2581,2582,2583,
185
+ 2584,1532, 54, 612, 237,1327,2585,2586, 275, 408, 647, 111,2587,1533,1106, 465,
186
+ 3, 458, 9, 38,2588, 107, 110, 890, 209, 26, 737, 498,2589,1534,2590, 431,
187
+ 202, 88,1535, 356, 287,1107, 660,1149,2591, 381,1536, 986,1150, 445,1248,1151,
188
+ 974,2592,2593, 846,2594, 446, 953, 184,1249,1250, 727,2595, 923, 193, 883,2596,
189
+ 2597,2598, 102, 324, 539, 817,2599, 421,1041,2600, 832,2601, 94, 175, 197, 406,
190
+ 2602, 459,2603,2604,2605,2606,2607, 330, 555,2608,2609,2610, 706,1108, 389,2611,
191
+ 2612,2613,2614, 233,2615, 833, 558, 931, 954,1251,2616,2617,1537, 546,2618,2619,
192
+ 1009,2620,2621,2622,1538, 690,1328,2623, 955,2624,1539,2625,2626, 772,2627,2628,
193
+ 2629,2630,2631, 924, 648, 863, 603,2632,2633, 934,1540, 864, 865,2634, 642,1042,
194
+ 670,1190,2635,2636,2637,2638, 168,2639, 652, 873, 542,1054,1541,2640,2641,2642, # 512, 256
195
+ )
196
+ # fmt: on
venv/lib/python3.10/site-packages/chardet/gb2312freq.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is Mozilla Communicator client code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ # GB2312 most frequently used character table
29
+ #
30
+ # Char to FreqOrder table , from hz6763
31
+
32
+ # 512 --> 0.79 -- 0.79
33
+ # 1024 --> 0.92 -- 0.13
34
+ # 2048 --> 0.98 -- 0.06
35
+ # 6768 --> 1.00 -- 0.02
36
+ #
37
+ # Ideal Distribution Ratio = 0.79135/(1-0.79135) = 3.79
38
+ # Random Distribution Ration = 512 / (3755 - 512) = 0.157
39
+ #
40
+ # Typical Distribution Ratio about 25% of Ideal one, still much higher that RDR
41
+
42
+ GB2312_TYPICAL_DISTRIBUTION_RATIO = 0.9
43
+
44
+ GB2312_TABLE_SIZE = 3760
45
+
46
+ # fmt: off
47
+ GB2312_CHAR_TO_FREQ_ORDER = (
48
+ 1671, 749,1443,2364,3924,3807,2330,3921,1704,3463,2691,1511,1515, 572,3191,2205,
49
+ 2361, 224,2558, 479,1711, 963,3162, 440,4060,1905,2966,2947,3580,2647,3961,3842,
50
+ 2204, 869,4207, 970,2678,5626,2944,2956,1479,4048, 514,3595, 588,1346,2820,3409,
51
+ 249,4088,1746,1873,2047,1774, 581,1813, 358,1174,3590,1014,1561,4844,2245, 670,
52
+ 1636,3112, 889,1286, 953, 556,2327,3060,1290,3141, 613, 185,3477,1367, 850,3820,
53
+ 1715,2428,2642,2303,2732,3041,2562,2648,3566,3946,1349, 388,3098,2091,1360,3585,
54
+ 152,1687,1539, 738,1559, 59,1232,2925,2267,1388,1249,1741,1679,2960, 151,1566,
55
+ 1125,1352,4271, 924,4296, 385,3166,4459, 310,1245,2850, 70,3285,2729,3534,3575,
56
+ 2398,3298,3466,1960,2265, 217,3647, 864,1909,2084,4401,2773,1010,3269,5152, 853,
57
+ 3051,3121,1244,4251,1895, 364,1499,1540,2313,1180,3655,2268, 562, 715,2417,3061,
58
+ 544, 336,3768,2380,1752,4075, 950, 280,2425,4382, 183,2759,3272, 333,4297,2155,
59
+ 1688,2356,1444,1039,4540, 736,1177,3349,2443,2368,2144,2225, 565, 196,1482,3406,
60
+ 927,1335,4147, 692, 878,1311,1653,3911,3622,1378,4200,1840,2969,3149,2126,1816,
61
+ 2534,1546,2393,2760, 737,2494, 13, 447, 245,2747, 38,2765,2129,2589,1079, 606,
62
+ 360, 471,3755,2890, 404, 848, 699,1785,1236, 370,2221,1023,3746,2074,2026,2023,
63
+ 2388,1581,2119, 812,1141,3091,2536,1519, 804,2053, 406,1596,1090, 784, 548,4414,
64
+ 1806,2264,2936,1100, 343,4114,5096, 622,3358, 743,3668,1510,1626,5020,3567,2513,
65
+ 3195,4115,5627,2489,2991, 24,2065,2697,1087,2719, 48,1634, 315, 68, 985,2052,
66
+ 198,2239,1347,1107,1439, 597,2366,2172, 871,3307, 919,2487,2790,1867, 236,2570,
67
+ 1413,3794, 906,3365,3381,1701,1982,1818,1524,2924,1205, 616,2586,2072,2004, 575,
68
+ 253,3099, 32,1365,1182, 197,1714,2454,1201, 554,3388,3224,2748, 756,2587, 250,
69
+ 2567,1507,1517,3529,1922,2761,2337,3416,1961,1677,2452,2238,3153, 615, 911,1506,
70
+ 1474,2495,1265,1906,2749,3756,3280,2161, 898,2714,1759,3450,2243,2444, 563, 26,
71
+ 3286,2266,3769,3344,2707,3677, 611,1402, 531,1028,2871,4548,1375, 261,2948, 835,
72
+ 1190,4134, 353, 840,2684,1900,3082,1435,2109,1207,1674, 329,1872,2781,4055,2686,
73
+ 2104, 608,3318,2423,2957,2768,1108,3739,3512,3271,3985,2203,1771,3520,1418,2054,
74
+ 1681,1153, 225,1627,2929, 162,2050,2511,3687,1954, 124,1859,2431,1684,3032,2894,
75
+ 585,4805,3969,2869,2704,2088,2032,2095,3656,2635,4362,2209, 256, 518,2042,2105,
76
+ 3777,3657, 643,2298,1148,1779, 190, 989,3544, 414, 11,2135,2063,2979,1471, 403,
77
+ 3678, 126, 770,1563, 671,2499,3216,2877, 600,1179, 307,2805,4937,1268,1297,2694,
78
+ 252,4032,1448,1494,1331,1394, 127,2256, 222,1647,1035,1481,3056,1915,1048, 873,
79
+ 3651, 210, 33,1608,2516, 200,1520, 415, 102, 0,3389,1287, 817, 91,3299,2940,
80
+ 836,1814, 549,2197,1396,1669,2987,3582,2297,2848,4528,1070, 687, 20,1819, 121,
81
+ 1552,1364,1461,1968,2617,3540,2824,2083, 177, 948,4938,2291, 110,4549,2066, 648,
82
+ 3359,1755,2110,2114,4642,4845,1693,3937,3308,1257,1869,2123, 208,1804,3159,2992,
83
+ 2531,2549,3361,2418,1350,2347,2800,2568,1291,2036,2680, 72, 842,1990, 212,1233,
84
+ 1154,1586, 75,2027,3410,4900,1823,1337,2710,2676, 728,2810,1522,3026,4995, 157,
85
+ 755,1050,4022, 710, 785,1936,2194,2085,1406,2777,2400, 150,1250,4049,1206, 807,
86
+ 1910, 534, 529,3309,1721,1660, 274, 39,2827, 661,2670,1578, 925,3248,3815,1094,
87
+ 4278,4901,4252, 41,1150,3747,2572,2227,4501,3658,4902,3813,3357,3617,2884,2258,
88
+ 887, 538,4187,3199,1294,2439,3042,2329,2343,2497,1255, 107, 543,1527, 521,3478,
89
+ 3568, 194,5062, 15, 961,3870,1241,1192,2664, 66,5215,3260,2111,1295,1127,2152,
90
+ 3805,4135, 901,1164,1976, 398,1278, 530,1460, 748, 904,1054,1966,1426, 53,2909,
91
+ 509, 523,2279,1534, 536,1019, 239,1685, 460,2353, 673,1065,2401,3600,4298,2272,
92
+ 1272,2363, 284,1753,3679,4064,1695, 81, 815,2677,2757,2731,1386, 859, 500,4221,
93
+ 2190,2566, 757,1006,2519,2068,1166,1455, 337,2654,3203,1863,1682,1914,3025,1252,
94
+ 1409,1366, 847, 714,2834,2038,3209, 964,2970,1901, 885,2553,1078,1756,3049, 301,
95
+ 1572,3326, 688,2130,1996,2429,1805,1648,2930,3421,2750,3652,3088, 262,1158,1254,
96
+ 389,1641,1812, 526,1719, 923,2073,1073,1902, 468, 489,4625,1140, 857,2375,3070,
97
+ 3319,2863, 380, 116,1328,2693,1161,2244, 273,1212,1884,2769,3011,1775,1142, 461,
98
+ 3066,1200,2147,2212, 790, 702,2695,4222,1601,1058, 434,2338,5153,3640, 67,2360,
99
+ 4099,2502, 618,3472,1329, 416,1132, 830,2782,1807,2653,3211,3510,1662, 192,2124,
100
+ 296,3979,1739,1611,3684, 23, 118, 324, 446,1239,1225, 293,2520,3814,3795,2535,
101
+ 3116, 17,1074, 467,2692,2201, 387,2922, 45,1326,3055,1645,3659,2817, 958, 243,
102
+ 1903,2320,1339,2825,1784,3289, 356, 576, 865,2315,2381,3377,3916,1088,3122,1713,
103
+ 1655, 935, 628,4689,1034,1327, 441, 800, 720, 894,1979,2183,1528,5289,2702,1071,
104
+ 4046,3572,2399,1571,3281, 79, 761,1103, 327, 134, 758,1899,1371,1615, 879, 442,
105
+ 215,2605,2579, 173,2048,2485,1057,2975,3317,1097,2253,3801,4263,1403,1650,2946,
106
+ 814,4968,3487,1548,2644,1567,1285, 2, 295,2636, 97, 946,3576, 832, 141,4257,
107
+ 3273, 760,3821,3521,3156,2607, 949,1024,1733,1516,1803,1920,2125,2283,2665,3180,
108
+ 1501,2064,3560,2171,1592, 803,3518,1416, 732,3897,4258,1363,1362,2458, 119,1427,
109
+ 602,1525,2608,1605,1639,3175, 694,3064, 10, 465, 76,2000,4846,4208, 444,3781,
110
+ 1619,3353,2206,1273,3796, 740,2483, 320,1723,2377,3660,2619,1359,1137,1762,1724,
111
+ 2345,2842,1850,1862, 912, 821,1866, 612,2625,1735,2573,3369,1093, 844, 89, 937,
112
+ 930,1424,3564,2413,2972,1004,3046,3019,2011, 711,3171,1452,4178, 428, 801,1943,
113
+ 432, 445,2811, 206,4136,1472, 730, 349, 73, 397,2802,2547, 998,1637,1167, 789,
114
+ 396,3217, 154,1218, 716,1120,1780,2819,4826,1931,3334,3762,2139,1215,2627, 552,
115
+ 3664,3628,3232,1405,2383,3111,1356,2652,3577,3320,3101,1703, 640,1045,1370,1246,
116
+ 4996, 371,1575,2436,1621,2210, 984,4033,1734,2638, 16,4529, 663,2755,3255,1451,
117
+ 3917,2257,1253,1955,2234,1263,2951, 214,1229, 617, 485, 359,1831,1969, 473,2310,
118
+ 750,2058, 165, 80,2864,2419, 361,4344,2416,2479,1134, 796,3726,1266,2943, 860,
119
+ 2715, 938, 390,2734,1313,1384, 248, 202, 877,1064,2854, 522,3907, 279,1602, 297,
120
+ 2357, 395,3740, 137,2075, 944,4089,2584,1267,3802, 62,1533,2285, 178, 176, 780,
121
+ 2440, 201,3707, 590, 478,1560,4354,2117,1075, 30, 74,4643,4004,1635,1441,2745,
122
+ 776,2596, 238,1077,1692,1912,2844, 605, 499,1742,3947, 241,3053, 980,1749, 936,
123
+ 2640,4511,2582, 515,1543,2162,5322,2892,2993, 890,2148,1924, 665,1827,3581,1032,
124
+ 968,3163, 339,1044,1896, 270, 583,1791,1720,4367,1194,3488,3669, 43,2523,1657,
125
+ 163,2167, 290,1209,1622,3378, 550, 634,2508,2510, 695,2634,2384,2512,1476,1414,
126
+ 220,1469,2341,2138,2852,3183,2900,4939,2865,3502,1211,3680, 854,3227,1299,2976,
127
+ 3172, 186,2998,1459, 443,1067,3251,1495, 321,1932,3054, 909, 753,1410,1828, 436,
128
+ 2441,1119,1587,3164,2186,1258, 227, 231,1425,1890,3200,3942, 247, 959, 725,5254,
129
+ 2741, 577,2158,2079, 929, 120, 174, 838,2813, 591,1115, 417,2024, 40,3240,1536,
130
+ 1037, 291,4151,2354, 632,1298,2406,2500,3535,1825,1846,3451, 205,1171, 345,4238,
131
+ 18,1163, 811, 685,2208,1217, 425,1312,1508,1175,4308,2552,1033, 587,1381,3059,
132
+ 2984,3482, 340,1316,4023,3972, 792,3176, 519, 777,4690, 918, 933,4130,2981,3741,
133
+ 90,3360,2911,2200,5184,4550, 609,3079,2030, 272,3379,2736, 363,3881,1130,1447,
134
+ 286, 779, 357,1169,3350,3137,1630,1220,2687,2391, 747,1277,3688,2618,2682,2601,
135
+ 1156,3196,5290,4034,3102,1689,3596,3128, 874, 219,2783, 798, 508,1843,2461, 269,
136
+ 1658,1776,1392,1913,2983,3287,2866,2159,2372, 829,4076, 46,4253,2873,1889,1894,
137
+ 915,1834,1631,2181,2318, 298, 664,2818,3555,2735, 954,3228,3117, 527,3511,2173,
138
+ 681,2712,3033,2247,2346,3467,1652, 155,2164,3382, 113,1994, 450, 899, 494, 994,
139
+ 1237,2958,1875,2336,1926,3727, 545,1577,1550, 633,3473, 204,1305,3072,2410,1956,
140
+ 2471, 707,2134, 841,2195,2196,2663,3843,1026,4940, 990,3252,4997, 368,1092, 437,
141
+ 3212,3258,1933,1829, 675,2977,2893, 412, 943,3723,4644,3294,3283,2230,2373,5154,
142
+ 2389,2241,2661,2323,1404,2524, 593, 787, 677,3008,1275,2059, 438,2709,2609,2240,
143
+ 2269,2246,1446, 36,1568,1373,3892,1574,2301,1456,3962, 693,2276,5216,2035,1143,
144
+ 2720,1919,1797,1811,2763,4137,2597,1830,1699,1488,1198,2090, 424,1694, 312,3634,
145
+ 3390,4179,3335,2252,1214, 561,1059,3243,2295,2561, 975,5155,2321,2751,3772, 472,
146
+ 1537,3282,3398,1047,2077,2348,2878,1323,3340,3076, 690,2906, 51, 369, 170,3541,
147
+ 1060,2187,2688,3670,2541,1083,1683, 928,3918, 459, 109,4427, 599,3744,4286, 143,
148
+ 2101,2730,2490, 82,1588,3036,2121, 281,1860, 477,4035,1238,2812,3020,2716,3312,
149
+ 1530,2188,2055,1317, 843, 636,1808,1173,3495, 649, 181,1002, 147,3641,1159,2414,
150
+ 3750,2289,2795, 813,3123,2610,1136,4368, 5,3391,4541,2174, 420, 429,1728, 754,
151
+ 1228,2115,2219, 347,2223,2733, 735,1518,3003,2355,3134,1764,3948,3329,1888,2424,
152
+ 1001,1234,1972,3321,3363,1672,1021,1450,1584, 226, 765, 655,2526,3404,3244,2302,
153
+ 3665, 731, 594,2184, 319,1576, 621, 658,2656,4299,2099,3864,1279,2071,2598,2739,
154
+ 795,3086,3699,3908,1707,2352,2402,1382,3136,2475,1465,4847,3496,3865,1085,3004,
155
+ 2591,1084, 213,2287,1963,3565,2250, 822, 793,4574,3187,1772,1789,3050, 595,1484,
156
+ 1959,2770,1080,2650, 456, 422,2996, 940,3322,4328,4345,3092,2742, 965,2784, 739,
157
+ 4124, 952,1358,2498,2949,2565, 332,2698,2378, 660,2260,2473,4194,3856,2919, 535,
158
+ 1260,2651,1208,1428,1300,1949,1303,2942, 433,2455,2450,1251,1946, 614,1269, 641,
159
+ 1306,1810,2737,3078,2912, 564,2365,1419,1415,1497,4460,2367,2185,1379,3005,1307,
160
+ 3218,2175,1897,3063, 682,1157,4040,4005,1712,1160,1941,1399, 394, 402,2952,1573,
161
+ 1151,2986,2404, 862, 299,2033,1489,3006, 346, 171,2886,3401,1726,2932, 168,2533,
162
+ 47,2507,1030,3735,1145,3370,1395,1318,1579,3609,4560,2857,4116,1457,2529,1965,
163
+ 504,1036,2690,2988,2405, 745,5871, 849,2397,2056,3081, 863,2359,3857,2096, 99,
164
+ 1397,1769,2300,4428,1643,3455,1978,1757,3718,1440, 35,4879,3742,1296,4228,2280,
165
+ 160,5063,1599,2013, 166, 520,3479,1646,3345,3012, 490,1937,1545,1264,2182,2505,
166
+ 1096,1188,1369,1436,2421,1667,2792,2460,1270,2122, 727,3167,2143, 806,1706,1012,
167
+ 1800,3037, 960,2218,1882, 805, 139,2456,1139,1521, 851,1052,3093,3089, 342,2039,
168
+ 744,5097,1468,1502,1585,2087, 223, 939, 326,2140,2577, 892,2481,1623,4077, 982,
169
+ 3708, 135,2131, 87,2503,3114,2326,1106, 876,1616, 547,2997,2831,2093,3441,4530,
170
+ 4314, 9,3256,4229,4148, 659,1462,1986,1710,2046,2913,2231,4090,4880,5255,3392,
171
+ 3274,1368,3689,4645,1477, 705,3384,3635,1068,1529,2941,1458,3782,1509, 100,1656,
172
+ 2548, 718,2339, 408,1590,2780,3548,1838,4117,3719,1345,3530, 717,3442,2778,3220,
173
+ 2898,1892,4590,3614,3371,2043,1998,1224,3483, 891, 635, 584,2559,3355, 733,1766,
174
+ 1729,1172,3789,1891,2307, 781,2982,2271,1957,1580,5773,2633,2005,4195,3097,1535,
175
+ 3213,1189,1934,5693,3262, 586,3118,1324,1598, 517,1564,2217,1868,1893,4445,3728,
176
+ 2703,3139,1526,1787,1992,3882,2875,1549,1199,1056,2224,1904,2711,5098,4287, 338,
177
+ 1993,3129,3489,2689,1809,2815,1997, 957,1855,3898,2550,3275,3057,1105,1319, 627,
178
+ 1505,1911,1883,3526, 698,3629,3456,1833,1431, 746, 77,1261,2017,2296,1977,1885,
179
+ 125,1334,1600, 525,1798,1109,2222,1470,1945, 559,2236,1186,3443,2476,1929,1411,
180
+ 2411,3135,1777,3372,2621,1841,1613,3229, 668,1430,1839,2643,2916, 195,1989,2671,
181
+ 2358,1387, 629,3205,2293,5256,4439, 123,1310, 888,1879,4300,3021,3605,1003,1162,
182
+ 3192,2910,2010, 140,2395,2859, 55,1082,2012,2901, 662, 419,2081,1438, 680,2774,
183
+ 4654,3912,1620,1731,1625,5035,4065,2328, 512,1344, 802,5443,2163,2311,2537, 524,
184
+ 3399, 98,1155,2103,1918,2606,3925,2816,1393,2465,1504,3773,2177,3963,1478,4346,
185
+ 180,1113,4655,3461,2028,1698, 833,2696,1235,1322,1594,4408,3623,3013,3225,2040,
186
+ 3022, 541,2881, 607,3632,2029,1665,1219, 639,1385,1686,1099,2803,3231,1938,3188,
187
+ 2858, 427, 676,2772,1168,2025, 454,3253,2486,3556, 230,1950, 580, 791,1991,1280,
188
+ 1086,1974,2034, 630, 257,3338,2788,4903,1017, 86,4790, 966,2789,1995,1696,1131,
189
+ 259,3095,4188,1308, 179,1463,5257, 289,4107,1248, 42,3413,1725,2288, 896,1947,
190
+ 774,4474,4254, 604,3430,4264, 392,2514,2588, 452, 237,1408,3018, 988,4531,1970,
191
+ 3034,3310, 540,2370,1562,1288,2990, 502,4765,1147, 4,1853,2708, 207, 294,2814,
192
+ 4078,2902,2509, 684, 34,3105,3532,2551, 644, 709,2801,2344, 573,1727,3573,3557,
193
+ 2021,1081,3100,4315,2100,3681, 199,2263,1837,2385, 146,3484,1195,2776,3949, 997,
194
+ 1939,3973,1008,1091,1202,1962,1847,1149,4209,5444,1076, 493, 117,5400,2521, 972,
195
+ 1490,2934,1796,4542,2374,1512,2933,2657, 413,2888,1135,2762,2314,2156,1355,2369,
196
+ 766,2007,2527,2170,3124,2491,2593,2632,4757,2437, 234,3125,3591,1898,1750,1376,
197
+ 1942,3468,3138, 570,2127,2145,3276,4131, 962, 132,1445,4196, 19, 941,3624,3480,
198
+ 3366,1973,1374,4461,3431,2629, 283,2415,2275, 808,2887,3620,2112,2563,1353,3610,
199
+ 955,1089,3103,1053, 96, 88,4097, 823,3808,1583, 399, 292,4091,3313, 421,1128,
200
+ 642,4006, 903,2539,1877,2082, 596, 29,4066,1790, 722,2157, 130, 995,1569, 769,
201
+ 1485, 464, 513,2213, 288,1923,1101,2453,4316, 133, 486,2445, 50, 625, 487,2207,
202
+ 57, 423, 481,2962, 159,3729,1558, 491, 303, 482, 501, 240,2837, 112,3648,2392,
203
+ 1783, 362, 8,3433,3422, 610,2793,3277,1390,1284,1654, 21,3823, 734, 367, 623,
204
+ 193, 287, 374,1009,1483, 816, 476, 313,2255,2340,1262,2150,2899,1146,2581, 782,
205
+ 2116,1659,2018,1880, 255,3586,3314,1110,2867,2137,2564, 986,2767,5185,2006, 650,
206
+ 158, 926, 762, 881,3157,2717,2362,3587, 306,3690,3245,1542,3077,2427,1691,2478,
207
+ 2118,2985,3490,2438, 539,2305, 983, 129,1754, 355,4201,2386, 827,2923, 104,1773,
208
+ 2838,2771, 411,2905,3919, 376, 767, 122,1114, 828,2422,1817,3506, 266,3460,1007,
209
+ 1609,4998, 945,2612,4429,2274, 726,1247,1964,2914,2199,2070,4002,4108, 657,3323,
210
+ 1422, 579, 455,2764,4737,1222,2895,1670, 824,1223,1487,2525, 558, 861,3080, 598,
211
+ 2659,2515,1967, 752,2583,2376,2214,4180, 977, 704,2464,4999,2622,4109,1210,2961,
212
+ 819,1541, 142,2284, 44, 418, 457,1126,3730,4347,4626,1644,1876,3671,1864, 302,
213
+ 1063,5694, 624, 723,1984,3745,1314,1676,2488,1610,1449,3558,3569,2166,2098, 409,
214
+ 1011,2325,3704,2306, 818,1732,1383,1824,1844,3757, 999,2705,3497,1216,1423,2683,
215
+ 2426,2954,2501,2726,2229,1475,2554,5064,1971,1794,1666,2014,1343, 783, 724, 191,
216
+ 2434,1354,2220,5065,1763,2752,2472,4152, 131, 175,2885,3434, 92,1466,4920,2616,
217
+ 3871,3872,3866, 128,1551,1632, 669,1854,3682,4691,4125,1230, 188,2973,3290,1302,
218
+ 1213, 560,3266, 917, 763,3909,3249,1760, 868,1958, 764,1782,2097, 145,2277,3774,
219
+ 4462, 64,1491,3062, 971,2132,3606,2442, 221,1226,1617, 218, 323,1185,3207,3147,
220
+ 571, 619,1473,1005,1744,2281, 449,1887,2396,3685, 275, 375,3816,1743,3844,3731,
221
+ 845,1983,2350,4210,1377, 773, 967,3499,3052,3743,2725,4007,1697,1022,3943,1464,
222
+ 3264,2855,2722,1952,1029,2839,2467, 84,4383,2215, 820,1391,2015,2448,3672, 377,
223
+ 1948,2168, 797,2545,3536,2578,2645, 94,2874,1678, 405,1259,3071, 771, 546,1315,
224
+ 470,1243,3083, 895,2468, 981, 969,2037, 846,4181, 653,1276,2928, 14,2594, 557,
225
+ 3007,2474, 156, 902,1338,1740,2574, 537,2518, 973,2282,2216,2433,1928, 138,2903,
226
+ 1293,2631,1612, 646,3457, 839,2935, 111, 496,2191,2847, 589,3186, 149,3994,2060,
227
+ 4031,2641,4067,3145,1870, 37,3597,2136,1025,2051,3009,3383,3549,1121,1016,3261,
228
+ 1301, 251,2446,2599,2153, 872,3246, 637, 334,3705, 831, 884, 921,3065,3140,4092,
229
+ 2198,1944, 246,2964, 108,2045,1152,1921,2308,1031, 203,3173,4170,1907,3890, 810,
230
+ 1401,2003,1690, 506, 647,1242,2828,1761,1649,3208,2249,1589,3709,2931,5156,1708,
231
+ 498, 666,2613, 834,3817,1231, 184,2851,1124, 883,3197,2261,3710,1765,1553,2658,
232
+ 1178,2639,2351, 93,1193, 942,2538,2141,4402, 235,1821, 870,1591,2192,1709,1871,
233
+ 3341,1618,4126,2595,2334, 603, 651, 69, 701, 268,2662,3411,2555,1380,1606, 503,
234
+ 448, 254,2371,2646, 574,1187,2309,1770, 322,2235,1292,1801, 305, 566,1133, 229,
235
+ 2067,2057, 706, 167, 483,2002,2672,3295,1820,3561,3067, 316, 378,2746,3452,1112,
236
+ 136,1981, 507,1651,2917,1117, 285,4591, 182,2580,3522,1304, 335,3303,1835,2504,
237
+ 1795,1792,2248, 674,1018,2106,2449,1857,2292,2845, 976,3047,1781,2600,2727,1389,
238
+ 1281, 52,3152, 153, 265,3950, 672,3485,3951,4463, 430,1183, 365, 278,2169, 27,
239
+ 1407,1336,2304, 209,1340,1730,2202,1852,2403,2883, 979,1737,1062, 631,2829,2542,
240
+ 3876,2592, 825,2086,2226,3048,3625, 352,1417,3724, 542, 991, 431,1351,3938,1861,
241
+ 2294, 826,1361,2927,3142,3503,1738, 463,2462,2723, 582,1916,1595,2808, 400,3845,
242
+ 3891,2868,3621,2254, 58,2492,1123, 910,2160,2614,1372,1603,1196,1072,3385,1700,
243
+ 3267,1980, 696, 480,2430, 920, 799,1570,2920,1951,2041,4047,2540,1321,4223,2469,
244
+ 3562,2228,1271,2602, 401,2833,3351,2575,5157, 907,2312,1256, 410, 263,3507,1582,
245
+ 996, 678,1849,2316,1480, 908,3545,2237, 703,2322, 667,1826,2849,1531,2604,2999,
246
+ 2407,3146,2151,2630,1786,3711, 469,3542, 497,3899,2409, 858, 837,4446,3393,1274,
247
+ 786, 620,1845,2001,3311, 484, 308,3367,1204,1815,3691,2332,1532,2557,1842,2020,
248
+ 2724,1927,2333,4440, 567, 22,1673,2728,4475,1987,1858,1144,1597, 101,1832,3601,
249
+ 12, 974,3783,4391, 951,1412, 1,3720, 453,4608,4041, 528,1041,1027,3230,2628,
250
+ 1129, 875,1051,3291,1203,2262,1069,2860,2799,2149,2615,3278, 144,1758,3040, 31,
251
+ 475,1680, 366,2685,3184, 311,1642,4008,2466,5036,1593,1493,2809, 216,1420,1668,
252
+ 233, 304,2128,3284, 232,1429,1768,1040,2008,3407,2740,2967,2543, 242,2133, 778,
253
+ 1565,2022,2620, 505,2189,2756,1098,2273, 372,1614, 708, 553,2846,2094,2278, 169,
254
+ 3626,2835,4161, 228,2674,3165, 809,1454,1309, 466,1705,1095, 900,3423, 880,2667,
255
+ 3751,5258,2317,3109,2571,4317,2766,1503,1342, 866,4447,1118, 63,2076, 314,1881,
256
+ 1348,1061, 172, 978,3515,1747, 532, 511,3970, 6, 601, 905,2699,3300,1751, 276,
257
+ 1467,3725,2668, 65,4239,2544,2779,2556,1604, 578,2451,1802, 992,2331,2624,1320,
258
+ 3446, 713,1513,1013, 103,2786,2447,1661, 886,1702, 916, 654,3574,2031,1556, 751,
259
+ 2178,2821,2179,1498,1538,2176, 271, 914,2251,2080,1325, 638,1953,2937,3877,2432,
260
+ 2754, 95,3265,1716, 260,1227,4083, 775, 106,1357,3254, 426,1607, 555,2480, 772,
261
+ 1985, 244,2546, 474, 495,1046,2611,1851,2061, 71,2089,1675,2590, 742,3758,2843,
262
+ 3222,1433, 267,2180,2576,2826,2233,2092,3913,2435, 956,1745,3075, 856,2113,1116,
263
+ 451, 3,1988,2896,1398, 993,2463,1878,2049,1341,2718,2721,2870,2108, 712,2904,
264
+ 4363,2753,2324, 277,2872,2349,2649, 384, 987, 435, 691,3000, 922, 164,3939, 652,
265
+ 1500,1184,4153,2482,3373,2165,4848,2335,3775,3508,3154,2806,2830,1554,2102,1664,
266
+ 2530,1434,2408, 893,1547,2623,3447,2832,2242,2532,3169,2856,3223,2078, 49,3770,
267
+ 3469, 462, 318, 656,2259,3250,3069, 679,1629,2758, 344,1138,1104,3120,1836,1283,
268
+ 3115,2154,1437,4448, 934, 759,1999, 794,2862,1038, 533,2560,1722,2342, 855,2626,
269
+ 1197,1663,4476,3127, 85,4240,2528, 25,1111,1181,3673, 407,3470,4561,2679,2713,
270
+ 768,1925,2841,3986,1544,1165, 932, 373,1240,2146,1930,2673, 721,4766, 354,4333,
271
+ 391,2963, 187, 61,3364,1442,1102, 330,1940,1767, 341,3809,4118, 393,2496,2062,
272
+ 2211, 105, 331, 300, 439, 913,1332, 626, 379,3304,1557, 328, 689,3952, 309,1555,
273
+ 931, 317,2517,3027, 325, 569, 686,2107,3084, 60,1042,1333,2794, 264,3177,4014,
274
+ 1628, 258,3712, 7,4464,1176,1043,1778, 683, 114,1975, 78,1492, 383,1886, 510,
275
+ 386, 645,5291,2891,2069,3305,4138,3867,2939,2603,2493,1935,1066,1848,3588,1015,
276
+ 1282,1289,4609, 697,1453,3044,2666,3611,1856,2412, 54, 719,1330, 568,3778,2459,
277
+ 1748, 788, 492, 551,1191,1000, 488,3394,3763, 282,1799, 348,2016,1523,3155,2390,
278
+ 1049, 382,2019,1788,1170, 729,2968,3523, 897,3926,2785,2938,3292, 350,2319,3238,
279
+ 1718,1717,2655,3453,3143,4465, 161,2889,2980,2009,1421, 56,1908,1640,2387,2232,
280
+ 1917,1874,2477,4921, 148, 83,3438, 592,4245,2882,1822,1055, 741, 115,1496,1624,
281
+ 381,1638,4592,1020, 516,3214, 458, 947,4575,1432, 211,1514,2926,1865,2142, 189,
282
+ 852,1221,1400,1486, 882,2299,4036, 351, 28,1122, 700,6479,6480,6481,6482,6483, #last 512
283
+ )
284
+ # fmt: on
venv/lib/python3.10/site-packages/chardet/gb2312prober.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is mozilla.org code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ from .chardistribution import GB2312DistributionAnalysis
29
+ from .codingstatemachine import CodingStateMachine
30
+ from .mbcharsetprober import MultiByteCharSetProber
31
+ from .mbcssm import GB2312_SM_MODEL
32
+
33
+
34
+ class GB2312Prober(MultiByteCharSetProber):
35
+ def __init__(self) -> None:
36
+ super().__init__()
37
+ self.coding_sm = CodingStateMachine(GB2312_SM_MODEL)
38
+ self.distribution_analyzer = GB2312DistributionAnalysis()
39
+ self.reset()
40
+
41
+ @property
42
+ def charset_name(self) -> str:
43
+ return "GB2312"
44
+
45
+ @property
46
+ def language(self) -> str:
47
+ return "Chinese"
venv/lib/python3.10/site-packages/chardet/hebrewprober.py ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is Mozilla Universal charset detector code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Shy Shalom
6
+ # Portions created by the Initial Developer are Copyright (C) 2005
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ from typing import Optional, Union
29
+
30
+ from .charsetprober import CharSetProber
31
+ from .enums import ProbingState
32
+ from .sbcharsetprober import SingleByteCharSetProber
33
+
34
+ # This prober doesn't actually recognize a language or a charset.
35
+ # It is a helper prober for the use of the Hebrew model probers
36
+
37
+ ### General ideas of the Hebrew charset recognition ###
38
+ #
39
+ # Four main charsets exist in Hebrew:
40
+ # "ISO-8859-8" - Visual Hebrew
41
+ # "windows-1255" - Logical Hebrew
42
+ # "ISO-8859-8-I" - Logical Hebrew
43
+ # "x-mac-hebrew" - ?? Logical Hebrew ??
44
+ #
45
+ # Both "ISO" charsets use a completely identical set of code points, whereas
46
+ # "windows-1255" and "x-mac-hebrew" are two different proper supersets of
47
+ # these code points. windows-1255 defines additional characters in the range
48
+ # 0x80-0x9F as some misc punctuation marks as well as some Hebrew-specific
49
+ # diacritics and additional 'Yiddish' ligature letters in the range 0xc0-0xd6.
50
+ # x-mac-hebrew defines similar additional code points but with a different
51
+ # mapping.
52
+ #
53
+ # As far as an average Hebrew text with no diacritics is concerned, all four
54
+ # charsets are identical with respect to code points. Meaning that for the
55
+ # main Hebrew alphabet, all four map the same values to all 27 Hebrew letters
56
+ # (including final letters).
57
+ #
58
+ # The dominant difference between these charsets is their directionality.
59
+ # "Visual" directionality means that the text is ordered as if the renderer is
60
+ # not aware of a BIDI rendering algorithm. The renderer sees the text and
61
+ # draws it from left to right. The text itself when ordered naturally is read
62
+ # backwards. A buffer of Visual Hebrew generally looks like so:
63
+ # "[last word of first line spelled backwards] [whole line ordered backwards
64
+ # and spelled backwards] [first word of first line spelled backwards]
65
+ # [end of line] [last word of second line] ... etc' "
66
+ # adding punctuation marks, numbers and English text to visual text is
67
+ # naturally also "visual" and from left to right.
68
+ #
69
+ # "Logical" directionality means the text is ordered "naturally" according to
70
+ # the order it is read. It is the responsibility of the renderer to display
71
+ # the text from right to left. A BIDI algorithm is used to place general
72
+ # punctuation marks, numbers and English text in the text.
73
+ #
74
+ # Texts in x-mac-hebrew are almost impossible to find on the Internet. From
75
+ # what little evidence I could find, it seems that its general directionality
76
+ # is Logical.
77
+ #
78
+ # To sum up all of the above, the Hebrew probing mechanism knows about two
79
+ # charsets:
80
+ # Visual Hebrew - "ISO-8859-8" - backwards text - Words and sentences are
81
+ # backwards while line order is natural. For charset recognition purposes
82
+ # the line order is unimportant (In fact, for this implementation, even
83
+ # word order is unimportant).
84
+ # Logical Hebrew - "windows-1255" - normal, naturally ordered text.
85
+ #
86
+ # "ISO-8859-8-I" is a subset of windows-1255 and doesn't need to be
87
+ # specifically identified.
88
+ # "x-mac-hebrew" is also identified as windows-1255. A text in x-mac-hebrew
89
+ # that contain special punctuation marks or diacritics is displayed with
90
+ # some unconverted characters showing as question marks. This problem might
91
+ # be corrected using another model prober for x-mac-hebrew. Due to the fact
92
+ # that x-mac-hebrew texts are so rare, writing another model prober isn't
93
+ # worth the effort and performance hit.
94
+ #
95
+ #### The Prober ####
96
+ #
97
+ # The prober is divided between two SBCharSetProbers and a HebrewProber,
98
+ # all of which are managed, created, fed data, inquired and deleted by the
99
+ # SBCSGroupProber. The two SBCharSetProbers identify that the text is in
100
+ # fact some kind of Hebrew, Logical or Visual. The final decision about which
101
+ # one is it is made by the HebrewProber by combining final-letter scores
102
+ # with the scores of the two SBCharSetProbers to produce a final answer.
103
+ #
104
+ # The SBCSGroupProber is responsible for stripping the original text of HTML
105
+ # tags, English characters, numbers, low-ASCII punctuation characters, spaces
106
+ # and new lines. It reduces any sequence of such characters to a single space.
107
+ # The buffer fed to each prober in the SBCS group prober is pure text in
108
+ # high-ASCII.
109
+ # The two SBCharSetProbers (model probers) share the same language model:
110
+ # Win1255Model.
111
+ # The first SBCharSetProber uses the model normally as any other
112
+ # SBCharSetProber does, to recognize windows-1255, upon which this model was
113
+ # built. The second SBCharSetProber is told to make the pair-of-letter
114
+ # lookup in the language model backwards. This in practice exactly simulates
115
+ # a visual Hebrew model using the windows-1255 logical Hebrew model.
116
+ #
117
+ # The HebrewProber is not using any language model. All it does is look for
118
+ # final-letter evidence suggesting the text is either logical Hebrew or visual
119
+ # Hebrew. Disjointed from the model probers, the results of the HebrewProber
120
+ # alone are meaningless. HebrewProber always returns 0.00 as confidence
121
+ # since it never identifies a charset by itself. Instead, the pointer to the
122
+ # HebrewProber is passed to the model probers as a helper "Name Prober".
123
+ # When the Group prober receives a positive identification from any prober,
124
+ # it asks for the name of the charset identified. If the prober queried is a
125
+ # Hebrew model prober, the model prober forwards the call to the
126
+ # HebrewProber to make the final decision. In the HebrewProber, the
127
+ # decision is made according to the final-letters scores maintained and Both
128
+ # model probers scores. The answer is returned in the form of the name of the
129
+ # charset identified, either "windows-1255" or "ISO-8859-8".
130
+
131
+
132
+ class HebrewProber(CharSetProber):
133
+ SPACE = 0x20
134
+ # windows-1255 / ISO-8859-8 code points of interest
135
+ FINAL_KAF = 0xEA
136
+ NORMAL_KAF = 0xEB
137
+ FINAL_MEM = 0xED
138
+ NORMAL_MEM = 0xEE
139
+ FINAL_NUN = 0xEF
140
+ NORMAL_NUN = 0xF0
141
+ FINAL_PE = 0xF3
142
+ NORMAL_PE = 0xF4
143
+ FINAL_TSADI = 0xF5
144
+ NORMAL_TSADI = 0xF6
145
+
146
+ # Minimum Visual vs Logical final letter score difference.
147
+ # If the difference is below this, don't rely solely on the final letter score
148
+ # distance.
149
+ MIN_FINAL_CHAR_DISTANCE = 5
150
+
151
+ # Minimum Visual vs Logical model score difference.
152
+ # If the difference is below this, don't rely at all on the model score
153
+ # distance.
154
+ MIN_MODEL_DISTANCE = 0.01
155
+
156
+ VISUAL_HEBREW_NAME = "ISO-8859-8"
157
+ LOGICAL_HEBREW_NAME = "windows-1255"
158
+
159
+ def __init__(self) -> None:
160
+ super().__init__()
161
+ self._final_char_logical_score = 0
162
+ self._final_char_visual_score = 0
163
+ self._prev = self.SPACE
164
+ self._before_prev = self.SPACE
165
+ self._logical_prober: Optional[SingleByteCharSetProber] = None
166
+ self._visual_prober: Optional[SingleByteCharSetProber] = None
167
+ self.reset()
168
+
169
+ def reset(self) -> None:
170
+ self._final_char_logical_score = 0
171
+ self._final_char_visual_score = 0
172
+ # The two last characters seen in the previous buffer,
173
+ # mPrev and mBeforePrev are initialized to space in order to simulate
174
+ # a word delimiter at the beginning of the data
175
+ self._prev = self.SPACE
176
+ self._before_prev = self.SPACE
177
+ # These probers are owned by the group prober.
178
+
179
+ def set_model_probers(
180
+ self,
181
+ logical_prober: SingleByteCharSetProber,
182
+ visual_prober: SingleByteCharSetProber,
183
+ ) -> None:
184
+ self._logical_prober = logical_prober
185
+ self._visual_prober = visual_prober
186
+
187
+ def is_final(self, c: int) -> bool:
188
+ return c in [
189
+ self.FINAL_KAF,
190
+ self.FINAL_MEM,
191
+ self.FINAL_NUN,
192
+ self.FINAL_PE,
193
+ self.FINAL_TSADI,
194
+ ]
195
+
196
+ def is_non_final(self, c: int) -> bool:
197
+ # The normal Tsadi is not a good Non-Final letter due to words like
198
+ # 'lechotet' (to chat) containing an apostrophe after the tsadi. This
199
+ # apostrophe is converted to a space in FilterWithoutEnglishLetters
200
+ # causing the Non-Final tsadi to appear at an end of a word even
201
+ # though this is not the case in the original text.
202
+ # The letters Pe and Kaf rarely display a related behavior of not being
203
+ # a good Non-Final letter. Words like 'Pop', 'Winamp' and 'Mubarak'
204
+ # for example legally end with a Non-Final Pe or Kaf. However, the
205
+ # benefit of these letters as Non-Final letters outweighs the damage
206
+ # since these words are quite rare.
207
+ return c in [self.NORMAL_KAF, self.NORMAL_MEM, self.NORMAL_NUN, self.NORMAL_PE]
208
+
209
+ def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
210
+ # Final letter analysis for logical-visual decision.
211
+ # Look for evidence that the received buffer is either logical Hebrew
212
+ # or visual Hebrew.
213
+ # The following cases are checked:
214
+ # 1) A word longer than 1 letter, ending with a final letter. This is
215
+ # an indication that the text is laid out "naturally" since the
216
+ # final letter really appears at the end. +1 for logical score.
217
+ # 2) A word longer than 1 letter, ending with a Non-Final letter. In
218
+ # normal Hebrew, words ending with Kaf, Mem, Nun, Pe or Tsadi,
219
+ # should not end with the Non-Final form of that letter. Exceptions
220
+ # to this rule are mentioned above in isNonFinal(). This is an
221
+ # indication that the text is laid out backwards. +1 for visual
222
+ # score
223
+ # 3) A word longer than 1 letter, starting with a final letter. Final
224
+ # letters should not appear at the beginning of a word. This is an
225
+ # indication that the text is laid out backwards. +1 for visual
226
+ # score.
227
+ #
228
+ # The visual score and logical score are accumulated throughout the
229
+ # text and are finally checked against each other in GetCharSetName().
230
+ # No checking for final letters in the middle of words is done since
231
+ # that case is not an indication for either Logical or Visual text.
232
+ #
233
+ # We automatically filter out all 7-bit characters (replace them with
234
+ # spaces) so the word boundary detection works properly. [MAP]
235
+
236
+ if self.state == ProbingState.NOT_ME:
237
+ # Both model probers say it's not them. No reason to continue.
238
+ return ProbingState.NOT_ME
239
+
240
+ byte_str = self.filter_high_byte_only(byte_str)
241
+
242
+ for cur in byte_str:
243
+ if cur == self.SPACE:
244
+ # We stand on a space - a word just ended
245
+ if self._before_prev != self.SPACE:
246
+ # next-to-last char was not a space so self._prev is not a
247
+ # 1 letter word
248
+ if self.is_final(self._prev):
249
+ # case (1) [-2:not space][-1:final letter][cur:space]
250
+ self._final_char_logical_score += 1
251
+ elif self.is_non_final(self._prev):
252
+ # case (2) [-2:not space][-1:Non-Final letter][
253
+ # cur:space]
254
+ self._final_char_visual_score += 1
255
+ else:
256
+ # Not standing on a space
257
+ if (
258
+ (self._before_prev == self.SPACE)
259
+ and (self.is_final(self._prev))
260
+ and (cur != self.SPACE)
261
+ ):
262
+ # case (3) [-2:space][-1:final letter][cur:not space]
263
+ self._final_char_visual_score += 1
264
+ self._before_prev = self._prev
265
+ self._prev = cur
266
+
267
+ # Forever detecting, till the end or until both model probers return
268
+ # ProbingState.NOT_ME (handled above)
269
+ return ProbingState.DETECTING
270
+
271
+ @property
272
+ def charset_name(self) -> str:
273
+ assert self._logical_prober is not None
274
+ assert self._visual_prober is not None
275
+
276
+ # Make the decision: is it Logical or Visual?
277
+ # If the final letter score distance is dominant enough, rely on it.
278
+ finalsub = self._final_char_logical_score - self._final_char_visual_score
279
+ if finalsub >= self.MIN_FINAL_CHAR_DISTANCE:
280
+ return self.LOGICAL_HEBREW_NAME
281
+ if finalsub <= -self.MIN_FINAL_CHAR_DISTANCE:
282
+ return self.VISUAL_HEBREW_NAME
283
+
284
+ # It's not dominant enough, try to rely on the model scores instead.
285
+ modelsub = (
286
+ self._logical_prober.get_confidence() - self._visual_prober.get_confidence()
287
+ )
288
+ if modelsub > self.MIN_MODEL_DISTANCE:
289
+ return self.LOGICAL_HEBREW_NAME
290
+ if modelsub < -self.MIN_MODEL_DISTANCE:
291
+ return self.VISUAL_HEBREW_NAME
292
+
293
+ # Still no good, back to final letter distance, maybe it'll save the
294
+ # day.
295
+ if finalsub < 0.0:
296
+ return self.VISUAL_HEBREW_NAME
297
+
298
+ # (finalsub > 0 - Logical) or (don't know what to do) default to
299
+ # Logical.
300
+ return self.LOGICAL_HEBREW_NAME
301
+
302
+ @property
303
+ def language(self) -> str:
304
+ return "Hebrew"
305
+
306
+ @property
307
+ def state(self) -> ProbingState:
308
+ assert self._logical_prober is not None
309
+ assert self._visual_prober is not None
310
+
311
+ # Remain active as long as any of the model probers are active.
312
+ if (self._logical_prober.state == ProbingState.NOT_ME) and (
313
+ self._visual_prober.state == ProbingState.NOT_ME
314
+ ):
315
+ return ProbingState.NOT_ME
316
+ return ProbingState.DETECTING
venv/lib/python3.10/site-packages/chardet/jisfreq.py ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is Mozilla Communicator client code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ # Sampling from about 20M text materials include literature and computer technology
29
+ #
30
+ # Japanese frequency table, applied to both S-JIS and EUC-JP
31
+ # They are sorted in order.
32
+
33
+ # 128 --> 0.77094
34
+ # 256 --> 0.85710
35
+ # 512 --> 0.92635
36
+ # 1024 --> 0.97130
37
+ # 2048 --> 0.99431
38
+ #
39
+ # Ideal Distribution Ratio = 0.92635 / (1-0.92635) = 12.58
40
+ # Random Distribution Ration = 512 / (2965+62+83+86-512) = 0.191
41
+ #
42
+ # Typical Distribution Ratio, 25% of IDR
43
+
44
+ JIS_TYPICAL_DISTRIBUTION_RATIO = 3.0
45
+
46
+ # Char to FreqOrder table ,
47
+ JIS_TABLE_SIZE = 4368
48
+
49
+ # fmt: off
50
+ JIS_CHAR_TO_FREQ_ORDER = (
51
+ 40, 1, 6, 182, 152, 180, 295,2127, 285, 381,3295,4304,3068,4606,3165,3510, # 16
52
+ 3511,1822,2785,4607,1193,2226,5070,4608, 171,2996,1247, 18, 179,5071, 856,1661, # 32
53
+ 1262,5072, 619, 127,3431,3512,3230,1899,1700, 232, 228,1294,1298, 284, 283,2041, # 48
54
+ 2042,1061,1062, 48, 49, 44, 45, 433, 434,1040,1041, 996, 787,2997,1255,4305, # 64
55
+ 2108,4609,1684,1648,5073,5074,5075,5076,5077,5078,3687,5079,4610,5080,3927,3928, # 80
56
+ 5081,3296,3432, 290,2285,1471,2187,5082,2580,2825,1303,2140,1739,1445,2691,3375, # 96
57
+ 1691,3297,4306,4307,4611, 452,3376,1182,2713,3688,3069,4308,5083,5084,5085,5086, # 112
58
+ 5087,5088,5089,5090,5091,5092,5093,5094,5095,5096,5097,5098,5099,5100,5101,5102, # 128
59
+ 5103,5104,5105,5106,5107,5108,5109,5110,5111,5112,4097,5113,5114,5115,5116,5117, # 144
60
+ 5118,5119,5120,5121,5122,5123,5124,5125,5126,5127,5128,5129,5130,5131,5132,5133, # 160
61
+ 5134,5135,5136,5137,5138,5139,5140,5141,5142,5143,5144,5145,5146,5147,5148,5149, # 176
62
+ 5150,5151,5152,4612,5153,5154,5155,5156,5157,5158,5159,5160,5161,5162,5163,5164, # 192
63
+ 5165,5166,5167,5168,5169,5170,5171,5172,5173,5174,5175,1472, 598, 618, 820,1205, # 208
64
+ 1309,1412,1858,1307,1692,5176,5177,5178,5179,5180,5181,5182,1142,1452,1234,1172, # 224
65
+ 1875,2043,2149,1793,1382,2973, 925,2404,1067,1241, 960,1377,2935,1491, 919,1217, # 240
66
+ 1865,2030,1406,1499,2749,4098,5183,5184,5185,5186,5187,5188,2561,4099,3117,1804, # 256
67
+ 2049,3689,4309,3513,1663,5189,3166,3118,3298,1587,1561,3433,5190,3119,1625,2998, # 272
68
+ 3299,4613,1766,3690,2786,4614,5191,5192,5193,5194,2161, 26,3377, 2,3929, 20, # 288
69
+ 3691, 47,4100, 50, 17, 16, 35, 268, 27, 243, 42, 155, 24, 154, 29, 184, # 304
70
+ 4, 91, 14, 92, 53, 396, 33, 289, 9, 37, 64, 620, 21, 39, 321, 5, # 320
71
+ 12, 11, 52, 13, 3, 208, 138, 0, 7, 60, 526, 141, 151,1069, 181, 275, # 336
72
+ 1591, 83, 132,1475, 126, 331, 829, 15, 69, 160, 59, 22, 157, 55,1079, 312, # 352
73
+ 109, 38, 23, 25, 10, 19, 79,5195, 61, 382,1124, 8, 30,5196,5197,5198, # 368
74
+ 5199,5200,5201,5202,5203,5204,5205,5206, 89, 62, 74, 34,2416, 112, 139, 196, # 384
75
+ 271, 149, 84, 607, 131, 765, 46, 88, 153, 683, 76, 874, 101, 258, 57, 80, # 400
76
+ 32, 364, 121,1508, 169,1547, 68, 235, 145,2999, 41, 360,3027, 70, 63, 31, # 416
77
+ 43, 259, 262,1383, 99, 533, 194, 66, 93, 846, 217, 192, 56, 106, 58, 565, # 432
78
+ 280, 272, 311, 256, 146, 82, 308, 71, 100, 128, 214, 655, 110, 261, 104,1140, # 448
79
+ 54, 51, 36, 87, 67,3070, 185,2618,2936,2020, 28,1066,2390,2059,5207,5208, # 464
80
+ 5209,5210,5211,5212,5213,5214,5215,5216,4615,5217,5218,5219,5220,5221,5222,5223, # 480
81
+ 5224,5225,5226,5227,5228,5229,5230,5231,5232,5233,5234,5235,5236,3514,5237,5238, # 496
82
+ 5239,5240,5241,5242,5243,5244,2297,2031,4616,4310,3692,5245,3071,5246,3598,5247, # 512
83
+ 4617,3231,3515,5248,4101,4311,4618,3808,4312,4102,5249,4103,4104,3599,5250,5251, # 528
84
+ 5252,5253,5254,5255,5256,5257,5258,5259,5260,5261,5262,5263,5264,5265,5266,5267, # 544
85
+ 5268,5269,5270,5271,5272,5273,5274,5275,5276,5277,5278,5279,5280,5281,5282,5283, # 560
86
+ 5284,5285,5286,5287,5288,5289,5290,5291,5292,5293,5294,5295,5296,5297,5298,5299, # 576
87
+ 5300,5301,5302,5303,5304,5305,5306,5307,5308,5309,5310,5311,5312,5313,5314,5315, # 592
88
+ 5316,5317,5318,5319,5320,5321,5322,5323,5324,5325,5326,5327,5328,5329,5330,5331, # 608
89
+ 5332,5333,5334,5335,5336,5337,5338,5339,5340,5341,5342,5343,5344,5345,5346,5347, # 624
90
+ 5348,5349,5350,5351,5352,5353,5354,5355,5356,5357,5358,5359,5360,5361,5362,5363, # 640
91
+ 5364,5365,5366,5367,5368,5369,5370,5371,5372,5373,5374,5375,5376,5377,5378,5379, # 656
92
+ 5380,5381, 363, 642,2787,2878,2788,2789,2316,3232,2317,3434,2011, 165,1942,3930, # 672
93
+ 3931,3932,3933,5382,4619,5383,4620,5384,5385,5386,5387,5388,5389,5390,5391,5392, # 688
94
+ 5393,5394,5395,5396,5397,5398,5399,5400,5401,5402,5403,5404,5405,5406,5407,5408, # 704
95
+ 5409,5410,5411,5412,5413,5414,5415,5416,5417,5418,5419,5420,5421,5422,5423,5424, # 720
96
+ 5425,5426,5427,5428,5429,5430,5431,5432,5433,5434,5435,5436,5437,5438,5439,5440, # 736
97
+ 5441,5442,5443,5444,5445,5446,5447,5448,5449,5450,5451,5452,5453,5454,5455,5456, # 752
98
+ 5457,5458,5459,5460,5461,5462,5463,5464,5465,5466,5467,5468,5469,5470,5471,5472, # 768
99
+ 5473,5474,5475,5476,5477,5478,5479,5480,5481,5482,5483,5484,5485,5486,5487,5488, # 784
100
+ 5489,5490,5491,5492,5493,5494,5495,5496,5497,5498,5499,5500,5501,5502,5503,5504, # 800
101
+ 5505,5506,5507,5508,5509,5510,5511,5512,5513,5514,5515,5516,5517,5518,5519,5520, # 816
102
+ 5521,5522,5523,5524,5525,5526,5527,5528,5529,5530,5531,5532,5533,5534,5535,5536, # 832
103
+ 5537,5538,5539,5540,5541,5542,5543,5544,5545,5546,5547,5548,5549,5550,5551,5552, # 848
104
+ 5553,5554,5555,5556,5557,5558,5559,5560,5561,5562,5563,5564,5565,5566,5567,5568, # 864
105
+ 5569,5570,5571,5572,5573,5574,5575,5576,5577,5578,5579,5580,5581,5582,5583,5584, # 880
106
+ 5585,5586,5587,5588,5589,5590,5591,5592,5593,5594,5595,5596,5597,5598,5599,5600, # 896
107
+ 5601,5602,5603,5604,5605,5606,5607,5608,5609,5610,5611,5612,5613,5614,5615,5616, # 912
108
+ 5617,5618,5619,5620,5621,5622,5623,5624,5625,5626,5627,5628,5629,5630,5631,5632, # 928
109
+ 5633,5634,5635,5636,5637,5638,5639,5640,5641,5642,5643,5644,5645,5646,5647,5648, # 944
110
+ 5649,5650,5651,5652,5653,5654,5655,5656,5657,5658,5659,5660,5661,5662,5663,5664, # 960
111
+ 5665,5666,5667,5668,5669,5670,5671,5672,5673,5674,5675,5676,5677,5678,5679,5680, # 976
112
+ 5681,5682,5683,5684,5685,5686,5687,5688,5689,5690,5691,5692,5693,5694,5695,5696, # 992
113
+ 5697,5698,5699,5700,5701,5702,5703,5704,5705,5706,5707,5708,5709,5710,5711,5712, # 1008
114
+ 5713,5714,5715,5716,5717,5718,5719,5720,5721,5722,5723,5724,5725,5726,5727,5728, # 1024
115
+ 5729,5730,5731,5732,5733,5734,5735,5736,5737,5738,5739,5740,5741,5742,5743,5744, # 1040
116
+ 5745,5746,5747,5748,5749,5750,5751,5752,5753,5754,5755,5756,5757,5758,5759,5760, # 1056
117
+ 5761,5762,5763,5764,5765,5766,5767,5768,5769,5770,5771,5772,5773,5774,5775,5776, # 1072
118
+ 5777,5778,5779,5780,5781,5782,5783,5784,5785,5786,5787,5788,5789,5790,5791,5792, # 1088
119
+ 5793,5794,5795,5796,5797,5798,5799,5800,5801,5802,5803,5804,5805,5806,5807,5808, # 1104
120
+ 5809,5810,5811,5812,5813,5814,5815,5816,5817,5818,5819,5820,5821,5822,5823,5824, # 1120
121
+ 5825,5826,5827,5828,5829,5830,5831,5832,5833,5834,5835,5836,5837,5838,5839,5840, # 1136
122
+ 5841,5842,5843,5844,5845,5846,5847,5848,5849,5850,5851,5852,5853,5854,5855,5856, # 1152
123
+ 5857,5858,5859,5860,5861,5862,5863,5864,5865,5866,5867,5868,5869,5870,5871,5872, # 1168
124
+ 5873,5874,5875,5876,5877,5878,5879,5880,5881,5882,5883,5884,5885,5886,5887,5888, # 1184
125
+ 5889,5890,5891,5892,5893,5894,5895,5896,5897,5898,5899,5900,5901,5902,5903,5904, # 1200
126
+ 5905,5906,5907,5908,5909,5910,5911,5912,5913,5914,5915,5916,5917,5918,5919,5920, # 1216
127
+ 5921,5922,5923,5924,5925,5926,5927,5928,5929,5930,5931,5932,5933,5934,5935,5936, # 1232
128
+ 5937,5938,5939,5940,5941,5942,5943,5944,5945,5946,5947,5948,5949,5950,5951,5952, # 1248
129
+ 5953,5954,5955,5956,5957,5958,5959,5960,5961,5962,5963,5964,5965,5966,5967,5968, # 1264
130
+ 5969,5970,5971,5972,5973,5974,5975,5976,5977,5978,5979,5980,5981,5982,5983,5984, # 1280
131
+ 5985,5986,5987,5988,5989,5990,5991,5992,5993,5994,5995,5996,5997,5998,5999,6000, # 1296
132
+ 6001,6002,6003,6004,6005,6006,6007,6008,6009,6010,6011,6012,6013,6014,6015,6016, # 1312
133
+ 6017,6018,6019,6020,6021,6022,6023,6024,6025,6026,6027,6028,6029,6030,6031,6032, # 1328
134
+ 6033,6034,6035,6036,6037,6038,6039,6040,6041,6042,6043,6044,6045,6046,6047,6048, # 1344
135
+ 6049,6050,6051,6052,6053,6054,6055,6056,6057,6058,6059,6060,6061,6062,6063,6064, # 1360
136
+ 6065,6066,6067,6068,6069,6070,6071,6072,6073,6074,6075,6076,6077,6078,6079,6080, # 1376
137
+ 6081,6082,6083,6084,6085,6086,6087,6088,6089,6090,6091,6092,6093,6094,6095,6096, # 1392
138
+ 6097,6098,6099,6100,6101,6102,6103,6104,6105,6106,6107,6108,6109,6110,6111,6112, # 1408
139
+ 6113,6114,2044,2060,4621, 997,1235, 473,1186,4622, 920,3378,6115,6116, 379,1108, # 1424
140
+ 4313,2657,2735,3934,6117,3809, 636,3233, 573,1026,3693,3435,2974,3300,2298,4105, # 1440
141
+ 854,2937,2463, 393,2581,2417, 539, 752,1280,2750,2480, 140,1161, 440, 708,1569, # 1456
142
+ 665,2497,1746,1291,1523,3000, 164,1603, 847,1331, 537,1997, 486, 508,1693,2418, # 1472
143
+ 1970,2227, 878,1220, 299,1030, 969, 652,2751, 624,1137,3301,2619, 65,3302,2045, # 1488
144
+ 1761,1859,3120,1930,3694,3516, 663,1767, 852, 835,3695, 269, 767,2826,2339,1305, # 1504
145
+ 896,1150, 770,1616,6118, 506,1502,2075,1012,2519, 775,2520,2975,2340,2938,4314, # 1520
146
+ 3028,2086,1224,1943,2286,6119,3072,4315,2240,1273,1987,3935,1557, 175, 597, 985, # 1536
147
+ 3517,2419,2521,1416,3029, 585, 938,1931,1007,1052,1932,1685,6120,3379,4316,4623, # 1552
148
+ 804, 599,3121,1333,2128,2539,1159,1554,2032,3810, 687,2033,2904, 952, 675,1467, # 1568
149
+ 3436,6121,2241,1096,1786,2440,1543,1924, 980,1813,2228, 781,2692,1879, 728,1918, # 1584
150
+ 3696,4624, 548,1950,4625,1809,1088,1356,3303,2522,1944, 502, 972, 373, 513,2827, # 1600
151
+ 586,2377,2391,1003,1976,1631,6122,2464,1084, 648,1776,4626,2141, 324, 962,2012, # 1616
152
+ 2177,2076,1384, 742,2178,1448,1173,1810, 222, 102, 301, 445, 125,2420, 662,2498, # 1632
153
+ 277, 200,1476,1165,1068, 224,2562,1378,1446, 450,1880, 659, 791, 582,4627,2939, # 1648
154
+ 3936,1516,1274, 555,2099,3697,1020,1389,1526,3380,1762,1723,1787,2229, 412,2114, # 1664
155
+ 1900,2392,3518, 512,2597, 427,1925,2341,3122,1653,1686,2465,2499, 697, 330, 273, # 1680
156
+ 380,2162, 951, 832, 780, 991,1301,3073, 965,2270,3519, 668,2523,2636,1286, 535, # 1696
157
+ 1407, 518, 671, 957,2658,2378, 267, 611,2197,3030,6123, 248,2299, 967,1799,2356, # 1712
158
+ 850,1418,3437,1876,1256,1480,2828,1718,6124,6125,1755,1664,2405,6126,4628,2879, # 1728
159
+ 2829, 499,2179, 676,4629, 557,2329,2214,2090, 325,3234, 464, 811,3001, 992,2342, # 1744
160
+ 2481,1232,1469, 303,2242, 466,1070,2163, 603,1777,2091,4630,2752,4631,2714, 322, # 1760
161
+ 2659,1964,1768, 481,2188,1463,2330,2857,3600,2092,3031,2421,4632,2318,2070,1849, # 1776
162
+ 2598,4633,1302,2254,1668,1701,2422,3811,2905,3032,3123,2046,4106,1763,1694,4634, # 1792
163
+ 1604, 943,1724,1454, 917, 868,2215,1169,2940, 552,1145,1800,1228,1823,1955, 316, # 1808
164
+ 1080,2510, 361,1807,2830,4107,2660,3381,1346,1423,1134,4108,6127, 541,1263,1229, # 1824
165
+ 1148,2540, 545, 465,1833,2880,3438,1901,3074,2482, 816,3937, 713,1788,2500, 122, # 1840
166
+ 1575, 195,1451,2501,1111,6128, 859, 374,1225,2243,2483,4317, 390,1033,3439,3075, # 1856
167
+ 2524,1687, 266, 793,1440,2599, 946, 779, 802, 507, 897,1081, 528,2189,1292, 711, # 1872
168
+ 1866,1725,1167,1640, 753, 398,2661,1053, 246, 348,4318, 137,1024,3440,1600,2077, # 1888
169
+ 2129, 825,4319, 698, 238, 521, 187,2300,1157,2423,1641,1605,1464,1610,1097,2541, # 1904
170
+ 1260,1436, 759,2255,1814,2150, 705,3235, 409,2563,3304, 561,3033,2005,2564, 726, # 1920
171
+ 1956,2343,3698,4109, 949,3812,3813,3520,1669, 653,1379,2525, 881,2198, 632,2256, # 1936
172
+ 1027, 778,1074, 733,1957, 514,1481,2466, 554,2180, 702,3938,1606,1017,1398,6129, # 1952
173
+ 1380,3521, 921, 993,1313, 594, 449,1489,1617,1166, 768,1426,1360, 495,1794,3601, # 1968
174
+ 1177,3602,1170,4320,2344, 476, 425,3167,4635,3168,1424, 401,2662,1171,3382,1998, # 1984
175
+ 1089,4110, 477,3169, 474,6130,1909, 596,2831,1842, 494, 693,1051,1028,1207,3076, # 2000
176
+ 606,2115, 727,2790,1473,1115, 743,3522, 630, 805,1532,4321,2021, 366,1057, 838, # 2016
177
+ 684,1114,2142,4322,2050,1492,1892,1808,2271,3814,2424,1971,1447,1373,3305,1090, # 2032
178
+ 1536,3939,3523,3306,1455,2199, 336, 369,2331,1035, 584,2393, 902, 718,2600,6131, # 2048
179
+ 2753, 463,2151,1149,1611,2467, 715,1308,3124,1268, 343,1413,3236,1517,1347,2663, # 2064
180
+ 2093,3940,2022,1131,1553,2100,2941,1427,3441,2942,1323,2484,6132,1980, 872,2368, # 2080
181
+ 2441,2943, 320,2369,2116,1082, 679,1933,3941,2791,3815, 625,1143,2023, 422,2200, # 2096
182
+ 3816,6133, 730,1695, 356,2257,1626,2301,2858,2637,1627,1778, 937, 883,2906,2693, # 2112
183
+ 3002,1769,1086, 400,1063,1325,3307,2792,4111,3077, 456,2345,1046, 747,6134,1524, # 2128
184
+ 884,1094,3383,1474,2164,1059, 974,1688,2181,2258,1047, 345,1665,1187, 358, 875, # 2144
185
+ 3170, 305, 660,3524,2190,1334,1135,3171,1540,1649,2542,1527, 927, 968,2793, 885, # 2160
186
+ 1972,1850, 482, 500,2638,1218,1109,1085,2543,1654,2034, 876, 78,2287,1482,1277, # 2176
187
+ 861,1675,1083,1779, 724,2754, 454, 397,1132,1612,2332, 893, 672,1237, 257,2259, # 2192
188
+ 2370, 135,3384, 337,2244, 547, 352, 340, 709,2485,1400, 788,1138,2511, 540, 772, # 2208
189
+ 1682,2260,2272,2544,2013,1843,1902,4636,1999,1562,2288,4637,2201,1403,1533, 407, # 2224
190
+ 576,3308,1254,2071, 978,3385, 170, 136,1201,3125,2664,3172,2394, 213, 912, 873, # 2240
191
+ 3603,1713,2202, 699,3604,3699, 813,3442, 493, 531,1054, 468,2907,1483, 304, 281, # 2256
192
+ 4112,1726,1252,2094, 339,2319,2130,2639, 756,1563,2944, 748, 571,2976,1588,2425, # 2272
193
+ 2715,1851,1460,2426,1528,1392,1973,3237, 288,3309, 685,3386, 296, 892,2716,2216, # 2288
194
+ 1570,2245, 722,1747,2217, 905,3238,1103,6135,1893,1441,1965, 251,1805,2371,3700, # 2304
195
+ 2601,1919,1078, 75,2182,1509,1592,1270,2640,4638,2152,6136,3310,3817, 524, 706, # 2320
196
+ 1075, 292,3818,1756,2602, 317, 98,3173,3605,3525,1844,2218,3819,2502, 814, 567, # 2336
197
+ 385,2908,1534,6137, 534,1642,3239, 797,6138,1670,1529, 953,4323, 188,1071, 538, # 2352
198
+ 178, 729,3240,2109,1226,1374,2000,2357,2977, 731,2468,1116,2014,2051,6139,1261, # 2368
199
+ 1593, 803,2859,2736,3443, 556, 682, 823,1541,6140,1369,2289,1706,2794, 845, 462, # 2384
200
+ 2603,2665,1361, 387, 162,2358,1740, 739,1770,1720,1304,1401,3241,1049, 627,1571, # 2400
201
+ 2427,3526,1877,3942,1852,1500, 431,1910,1503, 677, 297,2795, 286,1433,1038,1198, # 2416
202
+ 2290,1133,1596,4113,4639,2469,1510,1484,3943,6141,2442, 108, 712,4640,2372, 866, # 2432
203
+ 3701,2755,3242,1348, 834,1945,1408,3527,2395,3243,1811, 824, 994,1179,2110,1548, # 2448
204
+ 1453, 790,3003, 690,4324,4325,2832,2909,3820,1860,3821, 225,1748, 310, 346,1780, # 2464
205
+ 2470, 821,1993,2717,2796, 828, 877,3528,2860,2471,1702,2165,2910,2486,1789, 453, # 2480
206
+ 359,2291,1676, 73,1164,1461,1127,3311, 421, 604, 314,1037, 589, 116,2487, 737, # 2496
207
+ 837,1180, 111, 244, 735,6142,2261,1861,1362, 986, 523, 418, 581,2666,3822, 103, # 2512
208
+ 855, 503,1414,1867,2488,1091, 657,1597, 979, 605,1316,4641,1021,2443,2078,2001, # 2528
209
+ 1209, 96, 587,2166,1032, 260,1072,2153, 173, 94, 226,3244, 819,2006,4642,4114, # 2544
210
+ 2203, 231,1744, 782, 97,2667, 786,3387, 887, 391, 442,2219,4326,1425,6143,2694, # 2560
211
+ 633,1544,1202, 483,2015, 592,2052,1958,2472,1655, 419, 129,4327,3444,3312,1714, # 2576
212
+ 1257,3078,4328,1518,1098, 865,1310,1019,1885,1512,1734, 469,2444, 148, 773, 436, # 2592
213
+ 1815,1868,1128,1055,4329,1245,2756,3445,2154,1934,1039,4643, 579,1238, 932,2320, # 2608
214
+ 353, 205, 801, 115,2428, 944,2321,1881, 399,2565,1211, 678, 766,3944, 335,2101, # 2624
215
+ 1459,1781,1402,3945,2737,2131,1010, 844, 981,1326,1013, 550,1816,1545,2620,1335, # 2640
216
+ 1008, 371,2881, 936,1419,1613,3529,1456,1395,2273,1834,2604,1317,2738,2503, 416, # 2656
217
+ 1643,4330, 806,1126, 229, 591,3946,1314,1981,1576,1837,1666, 347,1790, 977,3313, # 2672
218
+ 764,2861,1853, 688,2429,1920,1462, 77, 595, 415,2002,3034, 798,1192,4115,6144, # 2688
219
+ 2978,4331,3035,2695,2582,2072,2566, 430,2430,1727, 842,1396,3947,3702, 613, 377, # 2704
220
+ 278, 236,1417,3388,3314,3174, 757,1869, 107,3530,6145,1194, 623,2262, 207,1253, # 2720
221
+ 2167,3446,3948, 492,1117,1935, 536,1838,2757,1246,4332, 696,2095,2406,1393,1572, # 2736
222
+ 3175,1782, 583, 190, 253,1390,2230, 830,3126,3389, 934,3245,1703,1749,2979,1870, # 2752
223
+ 2545,1656,2204, 869,2346,4116,3176,1817, 496,1764,4644, 942,1504, 404,1903,1122, # 2768
224
+ 1580,3606,2945,1022, 515, 372,1735, 955,2431,3036,6146,2797,1110,2302,2798, 617, # 2784
225
+ 6147, 441, 762,1771,3447,3607,3608,1904, 840,3037, 86, 939,1385, 572,1370,2445, # 2800
226
+ 1336, 114,3703, 898, 294, 203,3315, 703,1583,2274, 429, 961,4333,1854,1951,3390, # 2816
227
+ 2373,3704,4334,1318,1381, 966,1911,2322,1006,1155, 309, 989, 458,2718,1795,1372, # 2832
228
+ 1203, 252,1689,1363,3177, 517,1936, 168,1490, 562, 193,3823,1042,4117,1835, 551, # 2848
229
+ 470,4645, 395, 489,3448,1871,1465,2583,2641, 417,1493, 279,1295, 511,1236,1119, # 2864
230
+ 72,1231,1982,1812,3004, 871,1564, 984,3449,1667,2696,2096,4646,2347,2833,1673, # 2880
231
+ 3609, 695,3246,2668, 807,1183,4647, 890, 388,2333,1801,1457,2911,1765,1477,1031, # 2896
232
+ 3316,3317,1278,3391,2799,2292,2526, 163,3450,4335,2669,1404,1802,6148,2323,2407, # 2912
233
+ 1584,1728,1494,1824,1269, 298, 909,3318,1034,1632, 375, 776,1683,2061, 291, 210, # 2928
234
+ 1123, 809,1249,1002,2642,3038, 206,1011,2132, 144, 975, 882,1565, 342, 667, 754, # 2944
235
+ 1442,2143,1299,2303,2062, 447, 626,2205,1221,2739,2912,1144,1214,2206,2584, 760, # 2960
236
+ 1715, 614, 950,1281,2670,2621, 810, 577,1287,2546,4648, 242,2168, 250,2643, 691, # 2976
237
+ 123,2644, 647, 313,1029, 689,1357,2946,1650, 216, 771,1339,1306, 808,2063, 549, # 2992
238
+ 913,1371,2913,2914,6149,1466,1092,1174,1196,1311,2605,2396,1783,1796,3079, 406, # 3008
239
+ 2671,2117,3949,4649, 487,1825,2220,6150,2915, 448,2348,1073,6151,2397,1707, 130, # 3024
240
+ 900,1598, 329, 176,1959,2527,1620,6152,2275,4336,3319,1983,2191,3705,3610,2155, # 3040
241
+ 3706,1912,1513,1614,6153,1988, 646, 392,2304,1589,3320,3039,1826,1239,1352,1340, # 3056
242
+ 2916, 505,2567,1709,1437,2408,2547, 906,6154,2672, 384,1458,1594,1100,1329, 710, # 3072
243
+ 423,3531,2064,2231,2622,1989,2673,1087,1882, 333, 841,3005,1296,2882,2379, 580, # 3088
244
+ 1937,1827,1293,2585, 601, 574, 249,1772,4118,2079,1120, 645, 901,1176,1690, 795, # 3104
245
+ 2207, 478,1434, 516,1190,1530, 761,2080, 930,1264, 355, 435,1552, 644,1791, 987, # 3120
246
+ 220,1364,1163,1121,1538, 306,2169,1327,1222, 546,2645, 218, 241, 610,1704,3321, # 3136
247
+ 1984,1839,1966,2528, 451,6155,2586,3707,2568, 907,3178, 254,2947, 186,1845,4650, # 3152
248
+ 745, 432,1757, 428,1633, 888,2246,2221,2489,3611,2118,1258,1265, 956,3127,1784, # 3168
249
+ 4337,2490, 319, 510, 119, 457,3612, 274,2035,2007,4651,1409,3128, 970,2758, 590, # 3184
250
+ 2800, 661,2247,4652,2008,3950,1420,1549,3080,3322,3951,1651,1375,2111, 485,2491, # 3200
251
+ 1429,1156,6156,2548,2183,1495, 831,1840,2529,2446, 501,1657, 307,1894,3247,1341, # 3216
252
+ 666, 899,2156,1539,2549,1559, 886, 349,2208,3081,2305,1736,3824,2170,2759,1014, # 3232
253
+ 1913,1386, 542,1397,2948, 490, 368, 716, 362, 159, 282,2569,1129,1658,1288,1750, # 3248
254
+ 2674, 276, 649,2016, 751,1496, 658,1818,1284,1862,2209,2087,2512,3451, 622,2834, # 3264
255
+ 376, 117,1060,2053,1208,1721,1101,1443, 247,1250,3179,1792,3952,2760,2398,3953, # 3280
256
+ 6157,2144,3708, 446,2432,1151,2570,3452,2447,2761,2835,1210,2448,3082, 424,2222, # 3296
257
+ 1251,2449,2119,2836, 504,1581,4338, 602, 817, 857,3825,2349,2306, 357,3826,1470, # 3312
258
+ 1883,2883, 255, 958, 929,2917,3248, 302,4653,1050,1271,1751,2307,1952,1430,2697, # 3328
259
+ 2719,2359, 354,3180, 777, 158,2036,4339,1659,4340,4654,2308,2949,2248,1146,2232, # 3344
260
+ 3532,2720,1696,2623,3827,6158,3129,1550,2698,1485,1297,1428, 637, 931,2721,2145, # 3360
261
+ 914,2550,2587, 81,2450, 612, 827,2646,1242,4655,1118,2884, 472,1855,3181,3533, # 3376
262
+ 3534, 569,1353,2699,1244,1758,2588,4119,2009,2762,2171,3709,1312,1531,6159,1152, # 3392
263
+ 1938, 134,1830, 471,3710,2276,1112,1535,3323,3453,3535, 982,1337,2950, 488, 826, # 3408
264
+ 674,1058,1628,4120,2017, 522,2399, 211, 568,1367,3454, 350, 293,1872,1139,3249, # 3424
265
+ 1399,1946,3006,1300,2360,3324, 588, 736,6160,2606, 744, 669,3536,3828,6161,1358, # 3440
266
+ 199, 723, 848, 933, 851,1939,1505,1514,1338,1618,1831,4656,1634,3613, 443,2740, # 3456
267
+ 3829, 717,1947, 491,1914,6162,2551,1542,4121,1025,6163,1099,1223, 198,3040,2722, # 3472
268
+ 370, 410,1905,2589, 998,1248,3182,2380, 519,1449,4122,1710, 947, 928,1153,4341, # 3488
269
+ 2277, 344,2624,1511, 615, 105, 161,1212,1076,1960,3130,2054,1926,1175,1906,2473, # 3504
270
+ 414,1873,2801,6164,2309, 315,1319,3325, 318,2018,2146,2157, 963, 631, 223,4342, # 3520
271
+ 4343,2675, 479,3711,1197,2625,3712,2676,2361,6165,4344,4123,6166,2451,3183,1886, # 3536
272
+ 2184,1674,1330,1711,1635,1506, 799, 219,3250,3083,3954,1677,3713,3326,2081,3614, # 3552
273
+ 1652,2073,4657,1147,3041,1752, 643,1961, 147,1974,3955,6167,1716,2037, 918,3007, # 3568
274
+ 1994, 120,1537, 118, 609,3184,4345, 740,3455,1219, 332,1615,3830,6168,1621,2980, # 3584
275
+ 1582, 783, 212, 553,2350,3714,1349,2433,2082,4124, 889,6169,2310,1275,1410, 973, # 3600
276
+ 166,1320,3456,1797,1215,3185,2885,1846,2590,2763,4658, 629, 822,3008, 763, 940, # 3616
277
+ 1990,2862, 439,2409,1566,1240,1622, 926,1282,1907,2764, 654,2210,1607, 327,1130, # 3632
278
+ 3956,1678,1623,6170,2434,2192, 686, 608,3831,3715, 903,3957,3042,6171,2741,1522, # 3648
279
+ 1915,1105,1555,2552,1359, 323,3251,4346,3457, 738,1354,2553,2311,2334,1828,2003, # 3664
280
+ 3832,1753,2351,1227,6172,1887,4125,1478,6173,2410,1874,1712,1847, 520,1204,2607, # 3680
281
+ 264,4659, 836,2677,2102, 600,4660,3833,2278,3084,6174,4347,3615,1342, 640, 532, # 3696
282
+ 543,2608,1888,2400,2591,1009,4348,1497, 341,1737,3616,2723,1394, 529,3252,1321, # 3712
283
+ 983,4661,1515,2120, 971,2592, 924, 287,1662,3186,4349,2700,4350,1519, 908,1948, # 3728
284
+ 2452, 156, 796,1629,1486,2223,2055, 694,4126,1259,1036,3392,1213,2249,2742,1889, # 3744
285
+ 1230,3958,1015, 910, 408, 559,3617,4662, 746, 725, 935,4663,3959,3009,1289, 563, # 3760
286
+ 867,4664,3960,1567,2981,2038,2626, 988,2263,2381,4351, 143,2374, 704,1895,6175, # 3776
287
+ 1188,3716,2088, 673,3085,2362,4352, 484,1608,1921,2765,2918, 215, 904,3618,3537, # 3792
288
+ 894, 509, 976,3043,2701,3961,4353,2837,2982, 498,6176,6177,1102,3538,1332,3393, # 3808
289
+ 1487,1636,1637, 233, 245,3962, 383, 650, 995,3044, 460,1520,1206,2352, 749,3327, # 3824
290
+ 530, 700, 389,1438,1560,1773,3963,2264, 719,2951,2724,3834, 870,1832,1644,1000, # 3840
291
+ 839,2474,3717, 197,1630,3394, 365,2886,3964,1285,2133, 734, 922, 818,1106, 732, # 3856
292
+ 480,2083,1774,3458, 923,2279,1350, 221,3086, 85,2233,2234,3835,1585,3010,2147, # 3872
293
+ 1387,1705,2382,1619,2475, 133, 239,2802,1991,1016,2084,2383, 411,2838,1113, 651, # 3888
294
+ 1985,1160,3328, 990,1863,3087,1048,1276,2647, 265,2627,1599,3253,2056, 150, 638, # 3904
295
+ 2019, 656, 853, 326,1479, 680,1439,4354,1001,1759, 413,3459,3395,2492,1431, 459, # 3920
296
+ 4355,1125,3329,2265,1953,1450,2065,2863, 849, 351,2678,3131,3254,3255,1104,1577, # 3936
297
+ 227,1351,1645,2453,2193,1421,2887, 812,2121, 634, 95,2435, 201,2312,4665,1646, # 3952
298
+ 1671,2743,1601,2554,2702,2648,2280,1315,1366,2089,3132,1573,3718,3965,1729,1189, # 3968
299
+ 328,2679,1077,1940,1136, 558,1283, 964,1195, 621,2074,1199,1743,3460,3619,1896, # 3984
300
+ 1916,1890,3836,2952,1154,2112,1064, 862, 378,3011,2066,2113,2803,1568,2839,6178, # 4000
301
+ 3088,2919,1941,1660,2004,1992,2194, 142, 707,1590,1708,1624,1922,1023,1836,1233, # 4016
302
+ 1004,2313, 789, 741,3620,6179,1609,2411,1200,4127,3719,3720,4666,2057,3721, 593, # 4032
303
+ 2840, 367,2920,1878,6180,3461,1521, 628,1168, 692,2211,2649, 300, 720,2067,2571, # 4048
304
+ 2953,3396, 959,2504,3966,3539,3462,1977, 701,6181, 954,1043, 800, 681, 183,3722, # 4064
305
+ 1803,1730,3540,4128,2103, 815,2314, 174, 467, 230,2454,1093,2134, 755,3541,3397, # 4080
306
+ 1141,1162,6182,1738,2039, 270,3256,2513,1005,1647,2185,3837, 858,1679,1897,1719, # 4096
307
+ 2954,2324,1806, 402, 670, 167,4129,1498,2158,2104, 750,6183, 915, 189,1680,1551, # 4112
308
+ 455,4356,1501,2455, 405,1095,2955, 338,1586,1266,1819, 570, 641,1324, 237,1556, # 4128
309
+ 2650,1388,3723,6184,1368,2384,1343,1978,3089,2436, 879,3724, 792,1191, 758,3012, # 4144
310
+ 1411,2135,1322,4357, 240,4667,1848,3725,1574,6185, 420,3045,1546,1391, 714,4358, # 4160
311
+ 1967, 941,1864, 863, 664, 426, 560,1731,2680,1785,2864,1949,2363, 403,3330,1415, # 4176
312
+ 1279,2136,1697,2335, 204, 721,2097,3838, 90,6186,2085,2505, 191,3967, 124,2148, # 4192
313
+ 1376,1798,1178,1107,1898,1405, 860,4359,1243,1272,2375,2983,1558,2456,1638, 113, # 4208
314
+ 3621, 578,1923,2609, 880, 386,4130, 784,2186,2266,1422,2956,2172,1722, 497, 263, # 4224
315
+ 2514,1267,2412,2610, 177,2703,3542, 774,1927,1344, 616,1432,1595,1018, 172,4360, # 4240
316
+ 2325, 911,4361, 438,1468,3622, 794,3968,2024,2173,1681,1829,2957, 945, 895,3090, # 4256
317
+ 575,2212,2476, 475,2401,2681, 785,2744,1745,2293,2555,1975,3133,2865, 394,4668, # 4272
318
+ 3839, 635,4131, 639, 202,1507,2195,2766,1345,1435,2572,3726,1908,1184,1181,2457, # 4288
319
+ 3727,3134,4362, 843,2611, 437, 916,4669, 234, 769,1884,3046,3047,3623, 833,6187, # 4304
320
+ 1639,2250,2402,1355,1185,2010,2047, 999, 525,1732,1290,1488,2612, 948,1578,3728, # 4320
321
+ 2413,2477,1216,2725,2159, 334,3840,1328,3624,2921,1525,4132, 564,1056, 891,4363, # 4336
322
+ 1444,1698,2385,2251,3729,1365,2281,2235,1717,6188, 864,3841,2515, 444, 527,2767, # 4352
323
+ 2922,3625, 544, 461,6189, 566, 209,2437,3398,2098,1065,2068,3331,3626,3257,2137, # 4368 #last 512
324
+ )
325
+ # fmt: on
venv/lib/python3.10/site-packages/chardet/langbulgarianmodel.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/chardet/langhungarianmodel.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/chardet/langrussianmodel.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/chardet/langthaimodel.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/chardet/macromanprober.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # This code was modified from latin1prober.py by Rob Speer <[email protected]>.
3
+ # The Original Code is Mozilla Universal charset detector code.
4
+ #
5
+ # The Initial Developer of the Original Code is
6
+ # Netscape Communications Corporation.
7
+ # Portions created by the Initial Developer are Copyright (C) 2001
8
+ # the Initial Developer. All Rights Reserved.
9
+ #
10
+ # Contributor(s):
11
+ # Rob Speer - adapt to MacRoman encoding
12
+ # Mark Pilgrim - port to Python
13
+ # Shy Shalom - original C code
14
+ #
15
+ # This library is free software; you can redistribute it and/or
16
+ # modify it under the terms of the GNU Lesser General Public
17
+ # License as published by the Free Software Foundation; either
18
+ # version 2.1 of the License, or (at your option) any later version.
19
+ #
20
+ # This library is distributed in the hope that it will be useful,
21
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
22
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23
+ # Lesser General Public License for more details.
24
+ #
25
+ # You should have received a copy of the GNU Lesser General Public
26
+ # License along with this library; if not, write to the Free Software
27
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
28
+ # 02110-1301 USA
29
+ ######################### END LICENSE BLOCK #########################
30
+
31
+ from typing import List, Union
32
+
33
+ from .charsetprober import CharSetProber
34
+ from .enums import ProbingState
35
+
36
+ FREQ_CAT_NUM = 4
37
+
38
+ UDF = 0 # undefined
39
+ OTH = 1 # other
40
+ ASC = 2 # ascii capital letter
41
+ ASS = 3 # ascii small letter
42
+ ACV = 4 # accent capital vowel
43
+ ACO = 5 # accent capital other
44
+ ASV = 6 # accent small vowel
45
+ ASO = 7 # accent small other
46
+ ODD = 8 # character that is unlikely to appear
47
+ CLASS_NUM = 9 # total classes
48
+
49
+ # The change from Latin1 is that we explicitly look for extended characters
50
+ # that are infrequently-occurring symbols, and consider them to always be
51
+ # improbable. This should let MacRoman get out of the way of more likely
52
+ # encodings in most situations.
53
+
54
+ # fmt: off
55
+ MacRoman_CharToClass = (
56
+ OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 00 - 07
57
+ OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 08 - 0F
58
+ OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 10 - 17
59
+ OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 18 - 1F
60
+ OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 20 - 27
61
+ OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 28 - 2F
62
+ OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 30 - 37
63
+ OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 38 - 3F
64
+ OTH, ASC, ASC, ASC, ASC, ASC, ASC, ASC, # 40 - 47
65
+ ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC, # 48 - 4F
66
+ ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC, # 50 - 57
67
+ ASC, ASC, ASC, OTH, OTH, OTH, OTH, OTH, # 58 - 5F
68
+ OTH, ASS, ASS, ASS, ASS, ASS, ASS, ASS, # 60 - 67
69
+ ASS, ASS, ASS, ASS, ASS, ASS, ASS, ASS, # 68 - 6F
70
+ ASS, ASS, ASS, ASS, ASS, ASS, ASS, ASS, # 70 - 77
71
+ ASS, ASS, ASS, OTH, OTH, OTH, OTH, OTH, # 78 - 7F
72
+ ACV, ACV, ACO, ACV, ACO, ACV, ACV, ASV, # 80 - 87
73
+ ASV, ASV, ASV, ASV, ASV, ASO, ASV, ASV, # 88 - 8F
74
+ ASV, ASV, ASV, ASV, ASV, ASV, ASO, ASV, # 90 - 97
75
+ ASV, ASV, ASV, ASV, ASV, ASV, ASV, ASV, # 98 - 9F
76
+ OTH, OTH, OTH, OTH, OTH, OTH, OTH, ASO, # A0 - A7
77
+ OTH, OTH, ODD, ODD, OTH, OTH, ACV, ACV, # A8 - AF
78
+ OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # B0 - B7
79
+ OTH, OTH, OTH, OTH, OTH, OTH, ASV, ASV, # B8 - BF
80
+ OTH, OTH, ODD, OTH, ODD, OTH, OTH, OTH, # C0 - C7
81
+ OTH, OTH, OTH, ACV, ACV, ACV, ACV, ASV, # C8 - CF
82
+ OTH, OTH, OTH, OTH, OTH, OTH, OTH, ODD, # D0 - D7
83
+ ASV, ACV, ODD, OTH, OTH, OTH, OTH, OTH, # D8 - DF
84
+ OTH, OTH, OTH, OTH, OTH, ACV, ACV, ACV, # E0 - E7
85
+ ACV, ACV, ACV, ACV, ACV, ACV, ACV, ACV, # E8 - EF
86
+ ODD, ACV, ACV, ACV, ACV, ASV, ODD, ODD, # F0 - F7
87
+ ODD, ODD, ODD, ODD, ODD, ODD, ODD, ODD, # F8 - FF
88
+ )
89
+
90
+ # 0 : illegal
91
+ # 1 : very unlikely
92
+ # 2 : normal
93
+ # 3 : very likely
94
+ MacRomanClassModel = (
95
+ # UDF OTH ASC ASS ACV ACO ASV ASO ODD
96
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, # UDF
97
+ 0, 3, 3, 3, 3, 3, 3, 3, 1, # OTH
98
+ 0, 3, 3, 3, 3, 3, 3, 3, 1, # ASC
99
+ 0, 3, 3, 3, 1, 1, 3, 3, 1, # ASS
100
+ 0, 3, 3, 3, 1, 2, 1, 2, 1, # ACV
101
+ 0, 3, 3, 3, 3, 3, 3, 3, 1, # ACO
102
+ 0, 3, 1, 3, 1, 1, 1, 3, 1, # ASV
103
+ 0, 3, 1, 3, 1, 1, 3, 3, 1, # ASO
104
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, # ODD
105
+ )
106
+ # fmt: on
107
+
108
+
109
+ class MacRomanProber(CharSetProber):
110
+ def __init__(self) -> None:
111
+ super().__init__()
112
+ self._last_char_class = OTH
113
+ self._freq_counter: List[int] = []
114
+ self.reset()
115
+
116
+ def reset(self) -> None:
117
+ self._last_char_class = OTH
118
+ self._freq_counter = [0] * FREQ_CAT_NUM
119
+
120
+ # express the prior that MacRoman is a somewhat rare encoding;
121
+ # this can be done by starting out in a slightly improbable state
122
+ # that must be overcome
123
+ self._freq_counter[2] = 10
124
+
125
+ super().reset()
126
+
127
+ @property
128
+ def charset_name(self) -> str:
129
+ return "MacRoman"
130
+
131
+ @property
132
+ def language(self) -> str:
133
+ return ""
134
+
135
+ def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
136
+ byte_str = self.remove_xml_tags(byte_str)
137
+ for c in byte_str:
138
+ char_class = MacRoman_CharToClass[c]
139
+ freq = MacRomanClassModel[(self._last_char_class * CLASS_NUM) + char_class]
140
+ if freq == 0:
141
+ self._state = ProbingState.NOT_ME
142
+ break
143
+ self._freq_counter[freq] += 1
144
+ self._last_char_class = char_class
145
+
146
+ return self.state
147
+
148
+ def get_confidence(self) -> float:
149
+ if self.state == ProbingState.NOT_ME:
150
+ return 0.01
151
+
152
+ total = sum(self._freq_counter)
153
+ confidence = (
154
+ 0.0
155
+ if total < 0.01
156
+ else (self._freq_counter[3] - self._freq_counter[1] * 20.0) / total
157
+ )
158
+ confidence = max(confidence, 0.0)
159
+ # lower the confidence of MacRoman so that other more accurate
160
+ # detector can take priority.
161
+ confidence *= 0.73
162
+ return confidence
venv/lib/python3.10/site-packages/chardet/mbcharsetprober.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is Mozilla Universal charset detector code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 2001
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ # Shy Shalom - original C code
12
+ # Proofpoint, Inc.
13
+ #
14
+ # This library is free software; you can redistribute it and/or
15
+ # modify it under the terms of the GNU Lesser General Public
16
+ # License as published by the Free Software Foundation; either
17
+ # version 2.1 of the License, or (at your option) any later version.
18
+ #
19
+ # This library is distributed in the hope that it will be useful,
20
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
21
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22
+ # Lesser General Public License for more details.
23
+ #
24
+ # You should have received a copy of the GNU Lesser General Public
25
+ # License along with this library; if not, write to the Free Software
26
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
27
+ # 02110-1301 USA
28
+ ######################### END LICENSE BLOCK #########################
29
+
30
+ from typing import Optional, Union
31
+
32
+ from .chardistribution import CharDistributionAnalysis
33
+ from .charsetprober import CharSetProber
34
+ from .codingstatemachine import CodingStateMachine
35
+ from .enums import LanguageFilter, MachineState, ProbingState
36
+
37
+
38
+ class MultiByteCharSetProber(CharSetProber):
39
+ """
40
+ MultiByteCharSetProber
41
+ """
42
+
43
+ def __init__(self, lang_filter: LanguageFilter = LanguageFilter.NONE) -> None:
44
+ super().__init__(lang_filter=lang_filter)
45
+ self.distribution_analyzer: Optional[CharDistributionAnalysis] = None
46
+ self.coding_sm: Optional[CodingStateMachine] = None
47
+ self._last_char = bytearray(b"\0\0")
48
+
49
+ def reset(self) -> None:
50
+ super().reset()
51
+ if self.coding_sm:
52
+ self.coding_sm.reset()
53
+ if self.distribution_analyzer:
54
+ self.distribution_analyzer.reset()
55
+ self._last_char = bytearray(b"\0\0")
56
+
57
+ def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
58
+ assert self.coding_sm is not None
59
+ assert self.distribution_analyzer is not None
60
+
61
+ for i, byte in enumerate(byte_str):
62
+ coding_state = self.coding_sm.next_state(byte)
63
+ if coding_state == MachineState.ERROR:
64
+ self.logger.debug(
65
+ "%s %s prober hit error at byte %s",
66
+ self.charset_name,
67
+ self.language,
68
+ i,
69
+ )
70
+ self._state = ProbingState.NOT_ME
71
+ break
72
+ if coding_state == MachineState.ITS_ME:
73
+ self._state = ProbingState.FOUND_IT
74
+ break
75
+ if coding_state == MachineState.START:
76
+ char_len = self.coding_sm.get_current_charlen()
77
+ if i == 0:
78
+ self._last_char[1] = byte
79
+ self.distribution_analyzer.feed(self._last_char, char_len)
80
+ else:
81
+ self.distribution_analyzer.feed(byte_str[i - 1 : i + 1], char_len)
82
+
83
+ self._last_char[0] = byte_str[-1]
84
+
85
+ if self.state == ProbingState.DETECTING:
86
+ if self.distribution_analyzer.got_enough_data() and (
87
+ self.get_confidence() > self.SHORTCUT_THRESHOLD
88
+ ):
89
+ self._state = ProbingState.FOUND_IT
90
+
91
+ return self.state
92
+
93
+ def get_confidence(self) -> float:
94
+ assert self.distribution_analyzer is not None
95
+ return self.distribution_analyzer.get_confidence()
venv/lib/python3.10/site-packages/chardet/mbcsgroupprober.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is Mozilla Universal charset detector code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 2001
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ # Shy Shalom - original C code
12
+ # Proofpoint, Inc.
13
+ #
14
+ # This library is free software; you can redistribute it and/or
15
+ # modify it under the terms of the GNU Lesser General Public
16
+ # License as published by the Free Software Foundation; either
17
+ # version 2.1 of the License, or (at your option) any later version.
18
+ #
19
+ # This library is distributed in the hope that it will be useful,
20
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
21
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22
+ # Lesser General Public License for more details.
23
+ #
24
+ # You should have received a copy of the GNU Lesser General Public
25
+ # License along with this library; if not, write to the Free Software
26
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
27
+ # 02110-1301 USA
28
+ ######################### END LICENSE BLOCK #########################
29
+
30
+ from .big5prober import Big5Prober
31
+ from .charsetgroupprober import CharSetGroupProber
32
+ from .cp949prober import CP949Prober
33
+ from .enums import LanguageFilter
34
+ from .eucjpprober import EUCJPProber
35
+ from .euckrprober import EUCKRProber
36
+ from .euctwprober import EUCTWProber
37
+ from .gb2312prober import GB2312Prober
38
+ from .johabprober import JOHABProber
39
+ from .sjisprober import SJISProber
40
+ from .utf8prober import UTF8Prober
41
+
42
+
43
+ class MBCSGroupProber(CharSetGroupProber):
44
+ def __init__(self, lang_filter: LanguageFilter = LanguageFilter.NONE) -> None:
45
+ super().__init__(lang_filter=lang_filter)
46
+ self.probers = [
47
+ UTF8Prober(),
48
+ SJISProber(),
49
+ EUCJPProber(),
50
+ GB2312Prober(),
51
+ EUCKRProber(),
52
+ CP949Prober(),
53
+ Big5Prober(),
54
+ EUCTWProber(),
55
+ JOHABProber(),
56
+ ]
57
+ self.reset()
venv/lib/python3.10/site-packages/chardet/mbcssm.py ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is mozilla.org code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ from .codingstatemachinedict import CodingStateMachineDict
29
+ from .enums import MachineState
30
+
31
+ # BIG5
32
+
33
+ # fmt: off
34
+ BIG5_CLS = (
35
+ 1, 1, 1, 1, 1, 1, 1, 1, # 00 - 07 #allow 0x00 as legal value
36
+ 1, 1, 1, 1, 1, 1, 0, 0, # 08 - 0f
37
+ 1, 1, 1, 1, 1, 1, 1, 1, # 10 - 17
38
+ 1, 1, 1, 0, 1, 1, 1, 1, # 18 - 1f
39
+ 1, 1, 1, 1, 1, 1, 1, 1, # 20 - 27
40
+ 1, 1, 1, 1, 1, 1, 1, 1, # 28 - 2f
41
+ 1, 1, 1, 1, 1, 1, 1, 1, # 30 - 37
42
+ 1, 1, 1, 1, 1, 1, 1, 1, # 38 - 3f
43
+ 2, 2, 2, 2, 2, 2, 2, 2, # 40 - 47
44
+ 2, 2, 2, 2, 2, 2, 2, 2, # 48 - 4f
45
+ 2, 2, 2, 2, 2, 2, 2, 2, # 50 - 57
46
+ 2, 2, 2, 2, 2, 2, 2, 2, # 58 - 5f
47
+ 2, 2, 2, 2, 2, 2, 2, 2, # 60 - 67
48
+ 2, 2, 2, 2, 2, 2, 2, 2, # 68 - 6f
49
+ 2, 2, 2, 2, 2, 2, 2, 2, # 70 - 77
50
+ 2, 2, 2, 2, 2, 2, 2, 1, # 78 - 7f
51
+ 4, 4, 4, 4, 4, 4, 4, 4, # 80 - 87
52
+ 4, 4, 4, 4, 4, 4, 4, 4, # 88 - 8f
53
+ 4, 4, 4, 4, 4, 4, 4, 4, # 90 - 97
54
+ 4, 4, 4, 4, 4, 4, 4, 4, # 98 - 9f
55
+ 4, 3, 3, 3, 3, 3, 3, 3, # a0 - a7
56
+ 3, 3, 3, 3, 3, 3, 3, 3, # a8 - af
57
+ 3, 3, 3, 3, 3, 3, 3, 3, # b0 - b7
58
+ 3, 3, 3, 3, 3, 3, 3, 3, # b8 - bf
59
+ 3, 3, 3, 3, 3, 3, 3, 3, # c0 - c7
60
+ 3, 3, 3, 3, 3, 3, 3, 3, # c8 - cf
61
+ 3, 3, 3, 3, 3, 3, 3, 3, # d0 - d7
62
+ 3, 3, 3, 3, 3, 3, 3, 3, # d8 - df
63
+ 3, 3, 3, 3, 3, 3, 3, 3, # e0 - e7
64
+ 3, 3, 3, 3, 3, 3, 3, 3, # e8 - ef
65
+ 3, 3, 3, 3, 3, 3, 3, 3, # f0 - f7
66
+ 3, 3, 3, 3, 3, 3, 3, 0 # f8 - ff
67
+ )
68
+
69
+ BIG5_ST = (
70
+ MachineState.ERROR,MachineState.START,MachineState.START, 3,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#00-07
71
+ MachineState.ERROR,MachineState.ERROR,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ERROR,#08-0f
72
+ MachineState.ERROR,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START#10-17
73
+ )
74
+ # fmt: on
75
+
76
+ BIG5_CHAR_LEN_TABLE = (0, 1, 1, 2, 0)
77
+
78
+ BIG5_SM_MODEL: CodingStateMachineDict = {
79
+ "class_table": BIG5_CLS,
80
+ "class_factor": 5,
81
+ "state_table": BIG5_ST,
82
+ "char_len_table": BIG5_CHAR_LEN_TABLE,
83
+ "name": "Big5",
84
+ }
85
+
86
+ # CP949
87
+ # fmt: off
88
+ CP949_CLS = (
89
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, # 00 - 0f
90
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, # 10 - 1f
91
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 20 - 2f
92
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 30 - 3f
93
+ 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, # 40 - 4f
94
+ 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, # 50 - 5f
95
+ 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, # 60 - 6f
96
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, # 70 - 7f
97
+ 0, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, # 80 - 8f
98
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, # 90 - 9f
99
+ 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, # a0 - af
100
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, # b0 - bf
101
+ 7, 7, 7, 7, 7, 7, 9, 2, 2, 3, 2, 2, 2, 2, 2, 2, # c0 - cf
102
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, # d0 - df
103
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, # e0 - ef
104
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, # f0 - ff
105
+ )
106
+
107
+ CP949_ST = (
108
+ #cls= 0 1 2 3 4 5 6 7 8 9 # previous state =
109
+ MachineState.ERROR,MachineState.START, 3,MachineState.ERROR,MachineState.START,MachineState.START, 4, 5,MachineState.ERROR, 6, # MachineState.START
110
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR, # MachineState.ERROR
111
+ MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME, # MachineState.ITS_ME
112
+ MachineState.ERROR,MachineState.ERROR,MachineState.START,MachineState.START,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.START,MachineState.START,MachineState.START, # 3
113
+ MachineState.ERROR,MachineState.ERROR,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START, # 4
114
+ MachineState.ERROR,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START, # 5
115
+ MachineState.ERROR,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.ERROR,MachineState.ERROR,MachineState.START,MachineState.START,MachineState.START, # 6
116
+ )
117
+ # fmt: on
118
+
119
+ CP949_CHAR_LEN_TABLE = (0, 1, 2, 0, 1, 1, 2, 2, 0, 2)
120
+
121
+ CP949_SM_MODEL: CodingStateMachineDict = {
122
+ "class_table": CP949_CLS,
123
+ "class_factor": 10,
124
+ "state_table": CP949_ST,
125
+ "char_len_table": CP949_CHAR_LEN_TABLE,
126
+ "name": "CP949",
127
+ }
128
+
129
+ # EUC-JP
130
+ # fmt: off
131
+ EUCJP_CLS = (
132
+ 4, 4, 4, 4, 4, 4, 4, 4, # 00 - 07
133
+ 4, 4, 4, 4, 4, 4, 5, 5, # 08 - 0f
134
+ 4, 4, 4, 4, 4, 4, 4, 4, # 10 - 17
135
+ 4, 4, 4, 5, 4, 4, 4, 4, # 18 - 1f
136
+ 4, 4, 4, 4, 4, 4, 4, 4, # 20 - 27
137
+ 4, 4, 4, 4, 4, 4, 4, 4, # 28 - 2f
138
+ 4, 4, 4, 4, 4, 4, 4, 4, # 30 - 37
139
+ 4, 4, 4, 4, 4, 4, 4, 4, # 38 - 3f
140
+ 4, 4, 4, 4, 4, 4, 4, 4, # 40 - 47
141
+ 4, 4, 4, 4, 4, 4, 4, 4, # 48 - 4f
142
+ 4, 4, 4, 4, 4, 4, 4, 4, # 50 - 57
143
+ 4, 4, 4, 4, 4, 4, 4, 4, # 58 - 5f
144
+ 4, 4, 4, 4, 4, 4, 4, 4, # 60 - 67
145
+ 4, 4, 4, 4, 4, 4, 4, 4, # 68 - 6f
146
+ 4, 4, 4, 4, 4, 4, 4, 4, # 70 - 77
147
+ 4, 4, 4, 4, 4, 4, 4, 4, # 78 - 7f
148
+ 5, 5, 5, 5, 5, 5, 5, 5, # 80 - 87
149
+ 5, 5, 5, 5, 5, 5, 1, 3, # 88 - 8f
150
+ 5, 5, 5, 5, 5, 5, 5, 5, # 90 - 97
151
+ 5, 5, 5, 5, 5, 5, 5, 5, # 98 - 9f
152
+ 5, 2, 2, 2, 2, 2, 2, 2, # a0 - a7
153
+ 2, 2, 2, 2, 2, 2, 2, 2, # a8 - af
154
+ 2, 2, 2, 2, 2, 2, 2, 2, # b0 - b7
155
+ 2, 2, 2, 2, 2, 2, 2, 2, # b8 - bf
156
+ 2, 2, 2, 2, 2, 2, 2, 2, # c0 - c7
157
+ 2, 2, 2, 2, 2, 2, 2, 2, # c8 - cf
158
+ 2, 2, 2, 2, 2, 2, 2, 2, # d0 - d7
159
+ 2, 2, 2, 2, 2, 2, 2, 2, # d8 - df
160
+ 0, 0, 0, 0, 0, 0, 0, 0, # e0 - e7
161
+ 0, 0, 0, 0, 0, 0, 0, 0, # e8 - ef
162
+ 0, 0, 0, 0, 0, 0, 0, 0, # f0 - f7
163
+ 0, 0, 0, 0, 0, 0, 0, 5 # f8 - ff
164
+ )
165
+
166
+ EUCJP_ST = (
167
+ 3, 4, 3, 5,MachineState.START,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#00-07
168
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,#08-0f
169
+ MachineState.ITS_ME,MachineState.ITS_ME,MachineState.START,MachineState.ERROR,MachineState.START,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#10-17
170
+ MachineState.ERROR,MachineState.ERROR,MachineState.START,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR, 3,MachineState.ERROR,#18-1f
171
+ 3,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.START,MachineState.START,MachineState.START,MachineState.START#20-27
172
+ )
173
+ # fmt: on
174
+
175
+ EUCJP_CHAR_LEN_TABLE = (2, 2, 2, 3, 1, 0)
176
+
177
+ EUCJP_SM_MODEL: CodingStateMachineDict = {
178
+ "class_table": EUCJP_CLS,
179
+ "class_factor": 6,
180
+ "state_table": EUCJP_ST,
181
+ "char_len_table": EUCJP_CHAR_LEN_TABLE,
182
+ "name": "EUC-JP",
183
+ }
184
+
185
+ # EUC-KR
186
+ # fmt: off
187
+ EUCKR_CLS = (
188
+ 1, 1, 1, 1, 1, 1, 1, 1, # 00 - 07
189
+ 1, 1, 1, 1, 1, 1, 0, 0, # 08 - 0f
190
+ 1, 1, 1, 1, 1, 1, 1, 1, # 10 - 17
191
+ 1, 1, 1, 0, 1, 1, 1, 1, # 18 - 1f
192
+ 1, 1, 1, 1, 1, 1, 1, 1, # 20 - 27
193
+ 1, 1, 1, 1, 1, 1, 1, 1, # 28 - 2f
194
+ 1, 1, 1, 1, 1, 1, 1, 1, # 30 - 37
195
+ 1, 1, 1, 1, 1, 1, 1, 1, # 38 - 3f
196
+ 1, 1, 1, 1, 1, 1, 1, 1, # 40 - 47
197
+ 1, 1, 1, 1, 1, 1, 1, 1, # 48 - 4f
198
+ 1, 1, 1, 1, 1, 1, 1, 1, # 50 - 57
199
+ 1, 1, 1, 1, 1, 1, 1, 1, # 58 - 5f
200
+ 1, 1, 1, 1, 1, 1, 1, 1, # 60 - 67
201
+ 1, 1, 1, 1, 1, 1, 1, 1, # 68 - 6f
202
+ 1, 1, 1, 1, 1, 1, 1, 1, # 70 - 77
203
+ 1, 1, 1, 1, 1, 1, 1, 1, # 78 - 7f
204
+ 0, 0, 0, 0, 0, 0, 0, 0, # 80 - 87
205
+ 0, 0, 0, 0, 0, 0, 0, 0, # 88 - 8f
206
+ 0, 0, 0, 0, 0, 0, 0, 0, # 90 - 97
207
+ 0, 0, 0, 0, 0, 0, 0, 0, # 98 - 9f
208
+ 0, 2, 2, 2, 2, 2, 2, 2, # a0 - a7
209
+ 2, 2, 2, 2, 2, 3, 3, 3, # a8 - af
210
+ 2, 2, 2, 2, 2, 2, 2, 2, # b0 - b7
211
+ 2, 2, 2, 2, 2, 2, 2, 2, # b8 - bf
212
+ 2, 2, 2, 2, 2, 2, 2, 2, # c0 - c7
213
+ 2, 3, 2, 2, 2, 2, 2, 2, # c8 - cf
214
+ 2, 2, 2, 2, 2, 2, 2, 2, # d0 - d7
215
+ 2, 2, 2, 2, 2, 2, 2, 2, # d8 - df
216
+ 2, 2, 2, 2, 2, 2, 2, 2, # e0 - e7
217
+ 2, 2, 2, 2, 2, 2, 2, 2, # e8 - ef
218
+ 2, 2, 2, 2, 2, 2, 2, 2, # f0 - f7
219
+ 2, 2, 2, 2, 2, 2, 2, 0 # f8 - ff
220
+ )
221
+
222
+ EUCKR_ST = (
223
+ MachineState.ERROR,MachineState.START, 3,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#00-07
224
+ MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ERROR,MachineState.ERROR,MachineState.START,MachineState.START #08-0f
225
+ )
226
+ # fmt: on
227
+
228
+ EUCKR_CHAR_LEN_TABLE = (0, 1, 2, 0)
229
+
230
+ EUCKR_SM_MODEL: CodingStateMachineDict = {
231
+ "class_table": EUCKR_CLS,
232
+ "class_factor": 4,
233
+ "state_table": EUCKR_ST,
234
+ "char_len_table": EUCKR_CHAR_LEN_TABLE,
235
+ "name": "EUC-KR",
236
+ }
237
+
238
+ # JOHAB
239
+ # fmt: off
240
+ JOHAB_CLS = (
241
+ 4,4,4,4,4,4,4,4, # 00 - 07
242
+ 4,4,4,4,4,4,0,0, # 08 - 0f
243
+ 4,4,4,4,4,4,4,4, # 10 - 17
244
+ 4,4,4,0,4,4,4,4, # 18 - 1f
245
+ 4,4,4,4,4,4,4,4, # 20 - 27
246
+ 4,4,4,4,4,4,4,4, # 28 - 2f
247
+ 4,3,3,3,3,3,3,3, # 30 - 37
248
+ 3,3,3,3,3,3,3,3, # 38 - 3f
249
+ 3,1,1,1,1,1,1,1, # 40 - 47
250
+ 1,1,1,1,1,1,1,1, # 48 - 4f
251
+ 1,1,1,1,1,1,1,1, # 50 - 57
252
+ 1,1,1,1,1,1,1,1, # 58 - 5f
253
+ 1,1,1,1,1,1,1,1, # 60 - 67
254
+ 1,1,1,1,1,1,1,1, # 68 - 6f
255
+ 1,1,1,1,1,1,1,1, # 70 - 77
256
+ 1,1,1,1,1,1,1,2, # 78 - 7f
257
+ 6,6,6,6,8,8,8,8, # 80 - 87
258
+ 8,8,8,8,8,8,8,8, # 88 - 8f
259
+ 8,7,7,7,7,7,7,7, # 90 - 97
260
+ 7,7,7,7,7,7,7,7, # 98 - 9f
261
+ 7,7,7,7,7,7,7,7, # a0 - a7
262
+ 7,7,7,7,7,7,7,7, # a8 - af
263
+ 7,7,7,7,7,7,7,7, # b0 - b7
264
+ 7,7,7,7,7,7,7,7, # b8 - bf
265
+ 7,7,7,7,7,7,7,7, # c0 - c7
266
+ 7,7,7,7,7,7,7,7, # c8 - cf
267
+ 7,7,7,7,5,5,5,5, # d0 - d7
268
+ 5,9,9,9,9,9,9,5, # d8 - df
269
+ 9,9,9,9,9,9,9,9, # e0 - e7
270
+ 9,9,9,9,9,9,9,9, # e8 - ef
271
+ 9,9,9,9,9,9,9,9, # f0 - f7
272
+ 9,9,5,5,5,5,5,0 # f8 - ff
273
+ )
274
+
275
+ JOHAB_ST = (
276
+ # cls = 0 1 2 3 4 5 6 7 8 9
277
+ MachineState.ERROR ,MachineState.START ,MachineState.START ,MachineState.START ,MachineState.START ,MachineState.ERROR ,MachineState.ERROR ,3 ,3 ,4 , # MachineState.START
278
+ MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME, # MachineState.ITS_ME
279
+ MachineState.ERROR ,MachineState.ERROR ,MachineState.ERROR ,MachineState.ERROR ,MachineState.ERROR ,MachineState.ERROR ,MachineState.ERROR ,MachineState.ERROR ,MachineState.ERROR ,MachineState.ERROR , # MachineState.ERROR
280
+ MachineState.ERROR ,MachineState.START ,MachineState.START ,MachineState.ERROR ,MachineState.ERROR ,MachineState.START ,MachineState.START ,MachineState.START ,MachineState.START ,MachineState.START , # 3
281
+ MachineState.ERROR ,MachineState.START ,MachineState.ERROR ,MachineState.START ,MachineState.ERROR ,MachineState.START ,MachineState.ERROR ,MachineState.START ,MachineState.ERROR ,MachineState.START , # 4
282
+ )
283
+ # fmt: on
284
+
285
+ JOHAB_CHAR_LEN_TABLE = (0, 1, 1, 1, 1, 0, 0, 2, 2, 2)
286
+
287
+ JOHAB_SM_MODEL: CodingStateMachineDict = {
288
+ "class_table": JOHAB_CLS,
289
+ "class_factor": 10,
290
+ "state_table": JOHAB_ST,
291
+ "char_len_table": JOHAB_CHAR_LEN_TABLE,
292
+ "name": "Johab",
293
+ }
294
+
295
+ # EUC-TW
296
+ # fmt: off
297
+ EUCTW_CLS = (
298
+ 2, 2, 2, 2, 2, 2, 2, 2, # 00 - 07
299
+ 2, 2, 2, 2, 2, 2, 0, 0, # 08 - 0f
300
+ 2, 2, 2, 2, 2, 2, 2, 2, # 10 - 17
301
+ 2, 2, 2, 0, 2, 2, 2, 2, # 18 - 1f
302
+ 2, 2, 2, 2, 2, 2, 2, 2, # 20 - 27
303
+ 2, 2, 2, 2, 2, 2, 2, 2, # 28 - 2f
304
+ 2, 2, 2, 2, 2, 2, 2, 2, # 30 - 37
305
+ 2, 2, 2, 2, 2, 2, 2, 2, # 38 - 3f
306
+ 2, 2, 2, 2, 2, 2, 2, 2, # 40 - 47
307
+ 2, 2, 2, 2, 2, 2, 2, 2, # 48 - 4f
308
+ 2, 2, 2, 2, 2, 2, 2, 2, # 50 - 57
309
+ 2, 2, 2, 2, 2, 2, 2, 2, # 58 - 5f
310
+ 2, 2, 2, 2, 2, 2, 2, 2, # 60 - 67
311
+ 2, 2, 2, 2, 2, 2, 2, 2, # 68 - 6f
312
+ 2, 2, 2, 2, 2, 2, 2, 2, # 70 - 77
313
+ 2, 2, 2, 2, 2, 2, 2, 2, # 78 - 7f
314
+ 0, 0, 0, 0, 0, 0, 0, 0, # 80 - 87
315
+ 0, 0, 0, 0, 0, 0, 6, 0, # 88 - 8f
316
+ 0, 0, 0, 0, 0, 0, 0, 0, # 90 - 97
317
+ 0, 0, 0, 0, 0, 0, 0, 0, # 98 - 9f
318
+ 0, 3, 4, 4, 4, 4, 4, 4, # a0 - a7
319
+ 5, 5, 1, 1, 1, 1, 1, 1, # a8 - af
320
+ 1, 1, 1, 1, 1, 1, 1, 1, # b0 - b7
321
+ 1, 1, 1, 1, 1, 1, 1, 1, # b8 - bf
322
+ 1, 1, 3, 1, 3, 3, 3, 3, # c0 - c7
323
+ 3, 3, 3, 3, 3, 3, 3, 3, # c8 - cf
324
+ 3, 3, 3, 3, 3, 3, 3, 3, # d0 - d7
325
+ 3, 3, 3, 3, 3, 3, 3, 3, # d8 - df
326
+ 3, 3, 3, 3, 3, 3, 3, 3, # e0 - e7
327
+ 3, 3, 3, 3, 3, 3, 3, 3, # e8 - ef
328
+ 3, 3, 3, 3, 3, 3, 3, 3, # f0 - f7
329
+ 3, 3, 3, 3, 3, 3, 3, 0 # f8 - ff
330
+ )
331
+
332
+ EUCTW_ST = (
333
+ MachineState.ERROR,MachineState.ERROR,MachineState.START, 3, 3, 3, 4,MachineState.ERROR,#00-07
334
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ITS_ME,MachineState.ITS_ME,#08-0f
335
+ MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ERROR,MachineState.START,MachineState.ERROR,#10-17
336
+ MachineState.START,MachineState.START,MachineState.START,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#18-1f
337
+ 5,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.START,MachineState.ERROR,MachineState.START,MachineState.START,#20-27
338
+ MachineState.START,MachineState.ERROR,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START #28-2f
339
+ )
340
+ # fmt: on
341
+
342
+ EUCTW_CHAR_LEN_TABLE = (0, 0, 1, 2, 2, 2, 3)
343
+
344
+ EUCTW_SM_MODEL: CodingStateMachineDict = {
345
+ "class_table": EUCTW_CLS,
346
+ "class_factor": 7,
347
+ "state_table": EUCTW_ST,
348
+ "char_len_table": EUCTW_CHAR_LEN_TABLE,
349
+ "name": "x-euc-tw",
350
+ }
351
+
352
+ # GB2312
353
+ # fmt: off
354
+ GB2312_CLS = (
355
+ 1, 1, 1, 1, 1, 1, 1, 1, # 00 - 07
356
+ 1, 1, 1, 1, 1, 1, 0, 0, # 08 - 0f
357
+ 1, 1, 1, 1, 1, 1, 1, 1, # 10 - 17
358
+ 1, 1, 1, 0, 1, 1, 1, 1, # 18 - 1f
359
+ 1, 1, 1, 1, 1, 1, 1, 1, # 20 - 27
360
+ 1, 1, 1, 1, 1, 1, 1, 1, # 28 - 2f
361
+ 3, 3, 3, 3, 3, 3, 3, 3, # 30 - 37
362
+ 3, 3, 1, 1, 1, 1, 1, 1, # 38 - 3f
363
+ 2, 2, 2, 2, 2, 2, 2, 2, # 40 - 47
364
+ 2, 2, 2, 2, 2, 2, 2, 2, # 48 - 4f
365
+ 2, 2, 2, 2, 2, 2, 2, 2, # 50 - 57
366
+ 2, 2, 2, 2, 2, 2, 2, 2, # 58 - 5f
367
+ 2, 2, 2, 2, 2, 2, 2, 2, # 60 - 67
368
+ 2, 2, 2, 2, 2, 2, 2, 2, # 68 - 6f
369
+ 2, 2, 2, 2, 2, 2, 2, 2, # 70 - 77
370
+ 2, 2, 2, 2, 2, 2, 2, 4, # 78 - 7f
371
+ 5, 6, 6, 6, 6, 6, 6, 6, # 80 - 87
372
+ 6, 6, 6, 6, 6, 6, 6, 6, # 88 - 8f
373
+ 6, 6, 6, 6, 6, 6, 6, 6, # 90 - 97
374
+ 6, 6, 6, 6, 6, 6, 6, 6, # 98 - 9f
375
+ 6, 6, 6, 6, 6, 6, 6, 6, # a0 - a7
376
+ 6, 6, 6, 6, 6, 6, 6, 6, # a8 - af
377
+ 6, 6, 6, 6, 6, 6, 6, 6, # b0 - b7
378
+ 6, 6, 6, 6, 6, 6, 6, 6, # b8 - bf
379
+ 6, 6, 6, 6, 6, 6, 6, 6, # c0 - c7
380
+ 6, 6, 6, 6, 6, 6, 6, 6, # c8 - cf
381
+ 6, 6, 6, 6, 6, 6, 6, 6, # d0 - d7
382
+ 6, 6, 6, 6, 6, 6, 6, 6, # d8 - df
383
+ 6, 6, 6, 6, 6, 6, 6, 6, # e0 - e7
384
+ 6, 6, 6, 6, 6, 6, 6, 6, # e8 - ef
385
+ 6, 6, 6, 6, 6, 6, 6, 6, # f0 - f7
386
+ 6, 6, 6, 6, 6, 6, 6, 0 # f8 - ff
387
+ )
388
+
389
+ GB2312_ST = (
390
+ MachineState.ERROR,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START, 3,MachineState.ERROR,#00-07
391
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ITS_ME,MachineState.ITS_ME,#08-0f
392
+ MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ERROR,MachineState.ERROR,MachineState.START,#10-17
393
+ 4,MachineState.ERROR,MachineState.START,MachineState.START,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#18-1f
394
+ MachineState.ERROR,MachineState.ERROR, 5,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ITS_ME,MachineState.ERROR,#20-27
395
+ MachineState.ERROR,MachineState.ERROR,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.START #28-2f
396
+ )
397
+ # fmt: on
398
+
399
+ # To be accurate, the length of class 6 can be either 2 or 4.
400
+ # But it is not necessary to discriminate between the two since
401
+ # it is used for frequency analysis only, and we are validating
402
+ # each code range there as well. So it is safe to set it to be
403
+ # 2 here.
404
+ GB2312_CHAR_LEN_TABLE = (0, 1, 1, 1, 1, 1, 2)
405
+
406
+ GB2312_SM_MODEL: CodingStateMachineDict = {
407
+ "class_table": GB2312_CLS,
408
+ "class_factor": 7,
409
+ "state_table": GB2312_ST,
410
+ "char_len_table": GB2312_CHAR_LEN_TABLE,
411
+ "name": "GB2312",
412
+ }
413
+
414
+ # Shift_JIS
415
+ # fmt: off
416
+ SJIS_CLS = (
417
+ 1, 1, 1, 1, 1, 1, 1, 1, # 00 - 07
418
+ 1, 1, 1, 1, 1, 1, 0, 0, # 08 - 0f
419
+ 1, 1, 1, 1, 1, 1, 1, 1, # 10 - 17
420
+ 1, 1, 1, 0, 1, 1, 1, 1, # 18 - 1f
421
+ 1, 1, 1, 1, 1, 1, 1, 1, # 20 - 27
422
+ 1, 1, 1, 1, 1, 1, 1, 1, # 28 - 2f
423
+ 1, 1, 1, 1, 1, 1, 1, 1, # 30 - 37
424
+ 1, 1, 1, 1, 1, 1, 1, 1, # 38 - 3f
425
+ 2, 2, 2, 2, 2, 2, 2, 2, # 40 - 47
426
+ 2, 2, 2, 2, 2, 2, 2, 2, # 48 - 4f
427
+ 2, 2, 2, 2, 2, 2, 2, 2, # 50 - 57
428
+ 2, 2, 2, 2, 2, 2, 2, 2, # 58 - 5f
429
+ 2, 2, 2, 2, 2, 2, 2, 2, # 60 - 67
430
+ 2, 2, 2, 2, 2, 2, 2, 2, # 68 - 6f
431
+ 2, 2, 2, 2, 2, 2, 2, 2, # 70 - 77
432
+ 2, 2, 2, 2, 2, 2, 2, 1, # 78 - 7f
433
+ 3, 3, 3, 3, 3, 2, 2, 3, # 80 - 87
434
+ 3, 3, 3, 3, 3, 3, 3, 3, # 88 - 8f
435
+ 3, 3, 3, 3, 3, 3, 3, 3, # 90 - 97
436
+ 3, 3, 3, 3, 3, 3, 3, 3, # 98 - 9f
437
+ #0xa0 is illegal in sjis encoding, but some pages does
438
+ #contain such byte. We need to be more error forgiven.
439
+ 2, 2, 2, 2, 2, 2, 2, 2, # a0 - a7
440
+ 2, 2, 2, 2, 2, 2, 2, 2, # a8 - af
441
+ 2, 2, 2, 2, 2, 2, 2, 2, # b0 - b7
442
+ 2, 2, 2, 2, 2, 2, 2, 2, # b8 - bf
443
+ 2, 2, 2, 2, 2, 2, 2, 2, # c0 - c7
444
+ 2, 2, 2, 2, 2, 2, 2, 2, # c8 - cf
445
+ 2, 2, 2, 2, 2, 2, 2, 2, # d0 - d7
446
+ 2, 2, 2, 2, 2, 2, 2, 2, # d8 - df
447
+ 3, 3, 3, 3, 3, 3, 3, 3, # e0 - e7
448
+ 3, 3, 3, 3, 3, 4, 4, 4, # e8 - ef
449
+ 3, 3, 3, 3, 3, 3, 3, 3, # f0 - f7
450
+ 3, 3, 3, 3, 3, 0, 0, 0, # f8 - ff
451
+ )
452
+
453
+ SJIS_ST = (
454
+ MachineState.ERROR,MachineState.START,MachineState.START, 3,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#00-07
455
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,#08-0f
456
+ MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ERROR,MachineState.ERROR,MachineState.START,MachineState.START,MachineState.START,MachineState.START #10-17
457
+ )
458
+ # fmt: on
459
+
460
+ SJIS_CHAR_LEN_TABLE = (0, 1, 1, 2, 0, 0)
461
+
462
+ SJIS_SM_MODEL: CodingStateMachineDict = {
463
+ "class_table": SJIS_CLS,
464
+ "class_factor": 6,
465
+ "state_table": SJIS_ST,
466
+ "char_len_table": SJIS_CHAR_LEN_TABLE,
467
+ "name": "Shift_JIS",
468
+ }
469
+
470
+ # UCS2-BE
471
+ # fmt: off
472
+ UCS2BE_CLS = (
473
+ 0, 0, 0, 0, 0, 0, 0, 0, # 00 - 07
474
+ 0, 0, 1, 0, 0, 2, 0, 0, # 08 - 0f
475
+ 0, 0, 0, 0, 0, 0, 0, 0, # 10 - 17
476
+ 0, 0, 0, 3, 0, 0, 0, 0, # 18 - 1f
477
+ 0, 0, 0, 0, 0, 0, 0, 0, # 20 - 27
478
+ 0, 3, 3, 3, 3, 3, 0, 0, # 28 - 2f
479
+ 0, 0, 0, 0, 0, 0, 0, 0, # 30 - 37
480
+ 0, 0, 0, 0, 0, 0, 0, 0, # 38 - 3f
481
+ 0, 0, 0, 0, 0, 0, 0, 0, # 40 - 47
482
+ 0, 0, 0, 0, 0, 0, 0, 0, # 48 - 4f
483
+ 0, 0, 0, 0, 0, 0, 0, 0, # 50 - 57
484
+ 0, 0, 0, 0, 0, 0, 0, 0, # 58 - 5f
485
+ 0, 0, 0, 0, 0, 0, 0, 0, # 60 - 67
486
+ 0, 0, 0, 0, 0, 0, 0, 0, # 68 - 6f
487
+ 0, 0, 0, 0, 0, 0, 0, 0, # 70 - 77
488
+ 0, 0, 0, 0, 0, 0, 0, 0, # 78 - 7f
489
+ 0, 0, 0, 0, 0, 0, 0, 0, # 80 - 87
490
+ 0, 0, 0, 0, 0, 0, 0, 0, # 88 - 8f
491
+ 0, 0, 0, 0, 0, 0, 0, 0, # 90 - 97
492
+ 0, 0, 0, 0, 0, 0, 0, 0, # 98 - 9f
493
+ 0, 0, 0, 0, 0, 0, 0, 0, # a0 - a7
494
+ 0, 0, 0, 0, 0, 0, 0, 0, # a8 - af
495
+ 0, 0, 0, 0, 0, 0, 0, 0, # b0 - b7
496
+ 0, 0, 0, 0, 0, 0, 0, 0, # b8 - bf
497
+ 0, 0, 0, 0, 0, 0, 0, 0, # c0 - c7
498
+ 0, 0, 0, 0, 0, 0, 0, 0, # c8 - cf
499
+ 0, 0, 0, 0, 0, 0, 0, 0, # d0 - d7
500
+ 0, 0, 0, 0, 0, 0, 0, 0, # d8 - df
501
+ 0, 0, 0, 0, 0, 0, 0, 0, # e0 - e7
502
+ 0, 0, 0, 0, 0, 0, 0, 0, # e8 - ef
503
+ 0, 0, 0, 0, 0, 0, 0, 0, # f0 - f7
504
+ 0, 0, 0, 0, 0, 0, 4, 5 # f8 - ff
505
+ )
506
+
507
+ UCS2BE_ST = (
508
+ 5, 7, 7,MachineState.ERROR, 4, 3,MachineState.ERROR,MachineState.ERROR,#00-07
509
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,#08-0f
510
+ MachineState.ITS_ME,MachineState.ITS_ME, 6, 6, 6, 6,MachineState.ERROR,MachineState.ERROR,#10-17
511
+ 6, 6, 6, 6, 6,MachineState.ITS_ME, 6, 6,#18-1f
512
+ 6, 6, 6, 6, 5, 7, 7,MachineState.ERROR,#20-27
513
+ 5, 8, 6, 6,MachineState.ERROR, 6, 6, 6,#28-2f
514
+ 6, 6, 6, 6,MachineState.ERROR,MachineState.ERROR,MachineState.START,MachineState.START #30-37
515
+ )
516
+ # fmt: on
517
+
518
+ UCS2BE_CHAR_LEN_TABLE = (2, 2, 2, 0, 2, 2)
519
+
520
+ UCS2BE_SM_MODEL: CodingStateMachineDict = {
521
+ "class_table": UCS2BE_CLS,
522
+ "class_factor": 6,
523
+ "state_table": UCS2BE_ST,
524
+ "char_len_table": UCS2BE_CHAR_LEN_TABLE,
525
+ "name": "UTF-16BE",
526
+ }
527
+
528
+ # UCS2-LE
529
+ # fmt: off
530
+ UCS2LE_CLS = (
531
+ 0, 0, 0, 0, 0, 0, 0, 0, # 00 - 07
532
+ 0, 0, 1, 0, 0, 2, 0, 0, # 08 - 0f
533
+ 0, 0, 0, 0, 0, 0, 0, 0, # 10 - 17
534
+ 0, 0, 0, 3, 0, 0, 0, 0, # 18 - 1f
535
+ 0, 0, 0, 0, 0, 0, 0, 0, # 20 - 27
536
+ 0, 3, 3, 3, 3, 3, 0, 0, # 28 - 2f
537
+ 0, 0, 0, 0, 0, 0, 0, 0, # 30 - 37
538
+ 0, 0, 0, 0, 0, 0, 0, 0, # 38 - 3f
539
+ 0, 0, 0, 0, 0, 0, 0, 0, # 40 - 47
540
+ 0, 0, 0, 0, 0, 0, 0, 0, # 48 - 4f
541
+ 0, 0, 0, 0, 0, 0, 0, 0, # 50 - 57
542
+ 0, 0, 0, 0, 0, 0, 0, 0, # 58 - 5f
543
+ 0, 0, 0, 0, 0, 0, 0, 0, # 60 - 67
544
+ 0, 0, 0, 0, 0, 0, 0, 0, # 68 - 6f
545
+ 0, 0, 0, 0, 0, 0, 0, 0, # 70 - 77
546
+ 0, 0, 0, 0, 0, 0, 0, 0, # 78 - 7f
547
+ 0, 0, 0, 0, 0, 0, 0, 0, # 80 - 87
548
+ 0, 0, 0, 0, 0, 0, 0, 0, # 88 - 8f
549
+ 0, 0, 0, 0, 0, 0, 0, 0, # 90 - 97
550
+ 0, 0, 0, 0, 0, 0, 0, 0, # 98 - 9f
551
+ 0, 0, 0, 0, 0, 0, 0, 0, # a0 - a7
552
+ 0, 0, 0, 0, 0, 0, 0, 0, # a8 - af
553
+ 0, 0, 0, 0, 0, 0, 0, 0, # b0 - b7
554
+ 0, 0, 0, 0, 0, 0, 0, 0, # b8 - bf
555
+ 0, 0, 0, 0, 0, 0, 0, 0, # c0 - c7
556
+ 0, 0, 0, 0, 0, 0, 0, 0, # c8 - cf
557
+ 0, 0, 0, 0, 0, 0, 0, 0, # d0 - d7
558
+ 0, 0, 0, 0, 0, 0, 0, 0, # d8 - df
559
+ 0, 0, 0, 0, 0, 0, 0, 0, # e0 - e7
560
+ 0, 0, 0, 0, 0, 0, 0, 0, # e8 - ef
561
+ 0, 0, 0, 0, 0, 0, 0, 0, # f0 - f7
562
+ 0, 0, 0, 0, 0, 0, 4, 5 # f8 - ff
563
+ )
564
+
565
+ UCS2LE_ST = (
566
+ 6, 6, 7, 6, 4, 3,MachineState.ERROR,MachineState.ERROR,#00-07
567
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,#08-0f
568
+ MachineState.ITS_ME,MachineState.ITS_ME, 5, 5, 5,MachineState.ERROR,MachineState.ITS_ME,MachineState.ERROR,#10-17
569
+ 5, 5, 5,MachineState.ERROR, 5,MachineState.ERROR, 6, 6,#18-1f
570
+ 7, 6, 8, 8, 5, 5, 5,MachineState.ERROR,#20-27
571
+ 5, 5, 5,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR, 5, 5,#28-2f
572
+ 5, 5, 5,MachineState.ERROR, 5,MachineState.ERROR,MachineState.START,MachineState.START #30-37
573
+ )
574
+ # fmt: on
575
+
576
+ UCS2LE_CHAR_LEN_TABLE = (2, 2, 2, 2, 2, 2)
577
+
578
+ UCS2LE_SM_MODEL: CodingStateMachineDict = {
579
+ "class_table": UCS2LE_CLS,
580
+ "class_factor": 6,
581
+ "state_table": UCS2LE_ST,
582
+ "char_len_table": UCS2LE_CHAR_LEN_TABLE,
583
+ "name": "UTF-16LE",
584
+ }
585
+
586
+ # UTF-8
587
+ # fmt: off
588
+ UTF8_CLS = (
589
+ 1, 1, 1, 1, 1, 1, 1, 1, # 00 - 07 #allow 0x00 as a legal value
590
+ 1, 1, 1, 1, 1, 1, 0, 0, # 08 - 0f
591
+ 1, 1, 1, 1, 1, 1, 1, 1, # 10 - 17
592
+ 1, 1, 1, 0, 1, 1, 1, 1, # 18 - 1f
593
+ 1, 1, 1, 1, 1, 1, 1, 1, # 20 - 27
594
+ 1, 1, 1, 1, 1, 1, 1, 1, # 28 - 2f
595
+ 1, 1, 1, 1, 1, 1, 1, 1, # 30 - 37
596
+ 1, 1, 1, 1, 1, 1, 1, 1, # 38 - 3f
597
+ 1, 1, 1, 1, 1, 1, 1, 1, # 40 - 47
598
+ 1, 1, 1, 1, 1, 1, 1, 1, # 48 - 4f
599
+ 1, 1, 1, 1, 1, 1, 1, 1, # 50 - 57
600
+ 1, 1, 1, 1, 1, 1, 1, 1, # 58 - 5f
601
+ 1, 1, 1, 1, 1, 1, 1, 1, # 60 - 67
602
+ 1, 1, 1, 1, 1, 1, 1, 1, # 68 - 6f
603
+ 1, 1, 1, 1, 1, 1, 1, 1, # 70 - 77
604
+ 1, 1, 1, 1, 1, 1, 1, 1, # 78 - 7f
605
+ 2, 2, 2, 2, 3, 3, 3, 3, # 80 - 87
606
+ 4, 4, 4, 4, 4, 4, 4, 4, # 88 - 8f
607
+ 4, 4, 4, 4, 4, 4, 4, 4, # 90 - 97
608
+ 4, 4, 4, 4, 4, 4, 4, 4, # 98 - 9f
609
+ 5, 5, 5, 5, 5, 5, 5, 5, # a0 - a7
610
+ 5, 5, 5, 5, 5, 5, 5, 5, # a8 - af
611
+ 5, 5, 5, 5, 5, 5, 5, 5, # b0 - b7
612
+ 5, 5, 5, 5, 5, 5, 5, 5, # b8 - bf
613
+ 0, 0, 6, 6, 6, 6, 6, 6, # c0 - c7
614
+ 6, 6, 6, 6, 6, 6, 6, 6, # c8 - cf
615
+ 6, 6, 6, 6, 6, 6, 6, 6, # d0 - d7
616
+ 6, 6, 6, 6, 6, 6, 6, 6, # d8 - df
617
+ 7, 8, 8, 8, 8, 8, 8, 8, # e0 - e7
618
+ 8, 8, 8, 8, 8, 9, 8, 8, # e8 - ef
619
+ 10, 11, 11, 11, 11, 11, 11, 11, # f0 - f7
620
+ 12, 13, 13, 13, 14, 15, 0, 0 # f8 - ff
621
+ )
622
+
623
+ UTF8_ST = (
624
+ MachineState.ERROR,MachineState.START,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR, 12, 10,#00-07
625
+ 9, 11, 8, 7, 6, 5, 4, 3,#08-0f
626
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#10-17
627
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#18-1f
628
+ MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,#20-27
629
+ MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,MachineState.ITS_ME,#28-2f
630
+ MachineState.ERROR,MachineState.ERROR, 5, 5, 5, 5,MachineState.ERROR,MachineState.ERROR,#30-37
631
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#38-3f
632
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR, 5, 5, 5,MachineState.ERROR,MachineState.ERROR,#40-47
633
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#48-4f
634
+ MachineState.ERROR,MachineState.ERROR, 7, 7, 7, 7,MachineState.ERROR,MachineState.ERROR,#50-57
635
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#58-5f
636
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR, 7, 7,MachineState.ERROR,MachineState.ERROR,#60-67
637
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#68-6f
638
+ MachineState.ERROR,MachineState.ERROR, 9, 9, 9, 9,MachineState.ERROR,MachineState.ERROR,#70-77
639
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#78-7f
640
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR, 9,MachineState.ERROR,MachineState.ERROR,#80-87
641
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#88-8f
642
+ MachineState.ERROR,MachineState.ERROR, 12, 12, 12, 12,MachineState.ERROR,MachineState.ERROR,#90-97
643
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#98-9f
644
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR, 12,MachineState.ERROR,MachineState.ERROR,#a0-a7
645
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#a8-af
646
+ MachineState.ERROR,MachineState.ERROR, 12, 12, 12,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#b0-b7
647
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,#b8-bf
648
+ MachineState.ERROR,MachineState.ERROR,MachineState.START,MachineState.START,MachineState.START,MachineState.START,MachineState.ERROR,MachineState.ERROR,#c0-c7
649
+ MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR,MachineState.ERROR #c8-cf
650
+ )
651
+ # fmt: on
652
+
653
+ UTF8_CHAR_LEN_TABLE = (0, 1, 0, 0, 0, 0, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6)
654
+
655
+ UTF8_SM_MODEL: CodingStateMachineDict = {
656
+ "class_table": UTF8_CLS,
657
+ "class_factor": 16,
658
+ "state_table": UTF8_ST,
659
+ "char_len_table": UTF8_CHAR_LEN_TABLE,
660
+ "name": "UTF-8",
661
+ }
venv/lib/python3.10/site-packages/chardet/py.typed ADDED
File without changes
venv/lib/python3.10/site-packages/chardet/resultdict.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import TYPE_CHECKING, Optional
2
+
3
+ if TYPE_CHECKING:
4
+ # TypedDict was introduced in Python 3.8.
5
+ #
6
+ # TODO: Remove the else block and TYPE_CHECKING check when dropping support
7
+ # for Python 3.7.
8
+ from typing import TypedDict
9
+
10
+ class ResultDict(TypedDict):
11
+ encoding: Optional[str]
12
+ confidence: float
13
+ language: Optional[str]
14
+
15
+ else:
16
+ ResultDict = dict
venv/lib/python3.10/site-packages/chardet/sbcharsetprober.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is Mozilla Universal charset detector code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 2001
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ # Shy Shalom - original C code
12
+ #
13
+ # This library is free software; you can redistribute it and/or
14
+ # modify it under the terms of the GNU Lesser General Public
15
+ # License as published by the Free Software Foundation; either
16
+ # version 2.1 of the License, or (at your option) any later version.
17
+ #
18
+ # This library is distributed in the hope that it will be useful,
19
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
20
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21
+ # Lesser General Public License for more details.
22
+ #
23
+ # You should have received a copy of the GNU Lesser General Public
24
+ # License along with this library; if not, write to the Free Software
25
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
26
+ # 02110-1301 USA
27
+ ######################### END LICENSE BLOCK #########################
28
+
29
+ from typing import Dict, List, NamedTuple, Optional, Union
30
+
31
+ from .charsetprober import CharSetProber
32
+ from .enums import CharacterCategory, ProbingState, SequenceLikelihood
33
+
34
+
35
+ class SingleByteCharSetModel(NamedTuple):
36
+ charset_name: str
37
+ language: str
38
+ char_to_order_map: Dict[int, int]
39
+ language_model: Dict[int, Dict[int, int]]
40
+ typical_positive_ratio: float
41
+ keep_ascii_letters: bool
42
+ alphabet: str
43
+
44
+
45
+ class SingleByteCharSetProber(CharSetProber):
46
+ SAMPLE_SIZE = 64
47
+ SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2
48
+ POSITIVE_SHORTCUT_THRESHOLD = 0.95
49
+ NEGATIVE_SHORTCUT_THRESHOLD = 0.05
50
+
51
+ def __init__(
52
+ self,
53
+ model: SingleByteCharSetModel,
54
+ is_reversed: bool = False,
55
+ name_prober: Optional[CharSetProber] = None,
56
+ ) -> None:
57
+ super().__init__()
58
+ self._model = model
59
+ # TRUE if we need to reverse every pair in the model lookup
60
+ self._reversed = is_reversed
61
+ # Optional auxiliary prober for name decision
62
+ self._name_prober = name_prober
63
+ self._last_order = 255
64
+ self._seq_counters: List[int] = []
65
+ self._total_seqs = 0
66
+ self._total_char = 0
67
+ self._control_char = 0
68
+ self._freq_char = 0
69
+ self.reset()
70
+
71
+ def reset(self) -> None:
72
+ super().reset()
73
+ # char order of last character
74
+ self._last_order = 255
75
+ self._seq_counters = [0] * SequenceLikelihood.get_num_categories()
76
+ self._total_seqs = 0
77
+ self._total_char = 0
78
+ self._control_char = 0
79
+ # characters that fall in our sampling range
80
+ self._freq_char = 0
81
+
82
+ @property
83
+ def charset_name(self) -> Optional[str]:
84
+ if self._name_prober:
85
+ return self._name_prober.charset_name
86
+ return self._model.charset_name
87
+
88
+ @property
89
+ def language(self) -> Optional[str]:
90
+ if self._name_prober:
91
+ return self._name_prober.language
92
+ return self._model.language
93
+
94
+ def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
95
+ # TODO: Make filter_international_words keep things in self.alphabet
96
+ if not self._model.keep_ascii_letters:
97
+ byte_str = self.filter_international_words(byte_str)
98
+ else:
99
+ byte_str = self.remove_xml_tags(byte_str)
100
+ if not byte_str:
101
+ return self.state
102
+ char_to_order_map = self._model.char_to_order_map
103
+ language_model = self._model.language_model
104
+ for char in byte_str:
105
+ order = char_to_order_map.get(char, CharacterCategory.UNDEFINED)
106
+ # XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but
107
+ # CharacterCategory.SYMBOL is actually 253, so we use CONTROL
108
+ # to make it closer to the original intent. The only difference
109
+ # is whether or not we count digits and control characters for
110
+ # _total_char purposes.
111
+ if order < CharacterCategory.CONTROL:
112
+ self._total_char += 1
113
+ if order < self.SAMPLE_SIZE:
114
+ self._freq_char += 1
115
+ if self._last_order < self.SAMPLE_SIZE:
116
+ self._total_seqs += 1
117
+ if not self._reversed:
118
+ lm_cat = language_model[self._last_order][order]
119
+ else:
120
+ lm_cat = language_model[order][self._last_order]
121
+ self._seq_counters[lm_cat] += 1
122
+ self._last_order = order
123
+
124
+ charset_name = self._model.charset_name
125
+ if self.state == ProbingState.DETECTING:
126
+ if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD:
127
+ confidence = self.get_confidence()
128
+ if confidence > self.POSITIVE_SHORTCUT_THRESHOLD:
129
+ self.logger.debug(
130
+ "%s confidence = %s, we have a winner", charset_name, confidence
131
+ )
132
+ self._state = ProbingState.FOUND_IT
133
+ elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD:
134
+ self.logger.debug(
135
+ "%s confidence = %s, below negative shortcut threshold %s",
136
+ charset_name,
137
+ confidence,
138
+ self.NEGATIVE_SHORTCUT_THRESHOLD,
139
+ )
140
+ self._state = ProbingState.NOT_ME
141
+
142
+ return self.state
143
+
144
+ def get_confidence(self) -> float:
145
+ r = 0.01
146
+ if self._total_seqs > 0:
147
+ r = (
148
+ (
149
+ self._seq_counters[SequenceLikelihood.POSITIVE]
150
+ + 0.25 * self._seq_counters[SequenceLikelihood.LIKELY]
151
+ )
152
+ / self._total_seqs
153
+ / self._model.typical_positive_ratio
154
+ )
155
+ # The more control characters (proportionnaly to the size
156
+ # of the text), the less confident we become in the current
157
+ # charset.
158
+ r = r * (self._total_char - self._control_char) / self._total_char
159
+ r = r * self._freq_char / self._total_char
160
+ if r >= 1.0:
161
+ r = 0.99
162
+ return r
venv/lib/python3.10/site-packages/chardet/utf1632prober.py ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ #
3
+ # Contributor(s):
4
+ # Jason Zavaglia
5
+ #
6
+ # This library is free software; you can redistribute it and/or
7
+ # modify it under the terms of the GNU Lesser General Public
8
+ # License as published by the Free Software Foundation; either
9
+ # version 2.1 of the License, or (at your option) any later version.
10
+ #
11
+ # This library is distributed in the hope that it will be useful,
12
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
13
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14
+ # Lesser General Public License for more details.
15
+ #
16
+ # You should have received a copy of the GNU Lesser General Public
17
+ # License along with this library; if not, write to the Free Software
18
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
19
+ # 02110-1301 USA
20
+ ######################### END LICENSE BLOCK #########################
21
+ from typing import List, Union
22
+
23
+ from .charsetprober import CharSetProber
24
+ from .enums import ProbingState
25
+
26
+
27
+ class UTF1632Prober(CharSetProber):
28
+ """
29
+ This class simply looks for occurrences of zero bytes, and infers
30
+ whether the file is UTF16 or UTF32 (low-endian or big-endian)
31
+ For instance, files looking like ( \0 \0 \0 [nonzero] )+
32
+ have a good probability to be UTF32BE. Files looking like ( \0 [nonzero] )+
33
+ may be guessed to be UTF16BE, and inversely for little-endian varieties.
34
+ """
35
+
36
+ # how many logical characters to scan before feeling confident of prediction
37
+ MIN_CHARS_FOR_DETECTION = 20
38
+ # a fixed constant ratio of expected zeros or non-zeros in modulo-position.
39
+ EXPECTED_RATIO = 0.94
40
+
41
+ def __init__(self) -> None:
42
+ super().__init__()
43
+ self.position = 0
44
+ self.zeros_at_mod = [0] * 4
45
+ self.nonzeros_at_mod = [0] * 4
46
+ self._state = ProbingState.DETECTING
47
+ self.quad = [0, 0, 0, 0]
48
+ self.invalid_utf16be = False
49
+ self.invalid_utf16le = False
50
+ self.invalid_utf32be = False
51
+ self.invalid_utf32le = False
52
+ self.first_half_surrogate_pair_detected_16be = False
53
+ self.first_half_surrogate_pair_detected_16le = False
54
+ self.reset()
55
+
56
+ def reset(self) -> None:
57
+ super().reset()
58
+ self.position = 0
59
+ self.zeros_at_mod = [0] * 4
60
+ self.nonzeros_at_mod = [0] * 4
61
+ self._state = ProbingState.DETECTING
62
+ self.invalid_utf16be = False
63
+ self.invalid_utf16le = False
64
+ self.invalid_utf32be = False
65
+ self.invalid_utf32le = False
66
+ self.first_half_surrogate_pair_detected_16be = False
67
+ self.first_half_surrogate_pair_detected_16le = False
68
+ self.quad = [0, 0, 0, 0]
69
+
70
+ @property
71
+ def charset_name(self) -> str:
72
+ if self.is_likely_utf32be():
73
+ return "utf-32be"
74
+ if self.is_likely_utf32le():
75
+ return "utf-32le"
76
+ if self.is_likely_utf16be():
77
+ return "utf-16be"
78
+ if self.is_likely_utf16le():
79
+ return "utf-16le"
80
+ # default to something valid
81
+ return "utf-16"
82
+
83
+ @property
84
+ def language(self) -> str:
85
+ return ""
86
+
87
+ def approx_32bit_chars(self) -> float:
88
+ return max(1.0, self.position / 4.0)
89
+
90
+ def approx_16bit_chars(self) -> float:
91
+ return max(1.0, self.position / 2.0)
92
+
93
+ def is_likely_utf32be(self) -> bool:
94
+ approx_chars = self.approx_32bit_chars()
95
+ return approx_chars >= self.MIN_CHARS_FOR_DETECTION and (
96
+ self.zeros_at_mod[0] / approx_chars > self.EXPECTED_RATIO
97
+ and self.zeros_at_mod[1] / approx_chars > self.EXPECTED_RATIO
98
+ and self.zeros_at_mod[2] / approx_chars > self.EXPECTED_RATIO
99
+ and self.nonzeros_at_mod[3] / approx_chars > self.EXPECTED_RATIO
100
+ and not self.invalid_utf32be
101
+ )
102
+
103
+ def is_likely_utf32le(self) -> bool:
104
+ approx_chars = self.approx_32bit_chars()
105
+ return approx_chars >= self.MIN_CHARS_FOR_DETECTION and (
106
+ self.nonzeros_at_mod[0] / approx_chars > self.EXPECTED_RATIO
107
+ and self.zeros_at_mod[1] / approx_chars > self.EXPECTED_RATIO
108
+ and self.zeros_at_mod[2] / approx_chars > self.EXPECTED_RATIO
109
+ and self.zeros_at_mod[3] / approx_chars > self.EXPECTED_RATIO
110
+ and not self.invalid_utf32le
111
+ )
112
+
113
+ def is_likely_utf16be(self) -> bool:
114
+ approx_chars = self.approx_16bit_chars()
115
+ return approx_chars >= self.MIN_CHARS_FOR_DETECTION and (
116
+ (self.nonzeros_at_mod[1] + self.nonzeros_at_mod[3]) / approx_chars
117
+ > self.EXPECTED_RATIO
118
+ and (self.zeros_at_mod[0] + self.zeros_at_mod[2]) / approx_chars
119
+ > self.EXPECTED_RATIO
120
+ and not self.invalid_utf16be
121
+ )
122
+
123
+ def is_likely_utf16le(self) -> bool:
124
+ approx_chars = self.approx_16bit_chars()
125
+ return approx_chars >= self.MIN_CHARS_FOR_DETECTION and (
126
+ (self.nonzeros_at_mod[0] + self.nonzeros_at_mod[2]) / approx_chars
127
+ > self.EXPECTED_RATIO
128
+ and (self.zeros_at_mod[1] + self.zeros_at_mod[3]) / approx_chars
129
+ > self.EXPECTED_RATIO
130
+ and not self.invalid_utf16le
131
+ )
132
+
133
+ def validate_utf32_characters(self, quad: List[int]) -> None:
134
+ """
135
+ Validate if the quad of bytes is valid UTF-32.
136
+
137
+ UTF-32 is valid in the range 0x00000000 - 0x0010FFFF
138
+ excluding 0x0000D800 - 0x0000DFFF
139
+
140
+ https://en.wikipedia.org/wiki/UTF-32
141
+ """
142
+ if (
143
+ quad[0] != 0
144
+ or quad[1] > 0x10
145
+ or (quad[0] == 0 and quad[1] == 0 and 0xD8 <= quad[2] <= 0xDF)
146
+ ):
147
+ self.invalid_utf32be = True
148
+ if (
149
+ quad[3] != 0
150
+ or quad[2] > 0x10
151
+ or (quad[3] == 0 and quad[2] == 0 and 0xD8 <= quad[1] <= 0xDF)
152
+ ):
153
+ self.invalid_utf32le = True
154
+
155
+ def validate_utf16_characters(self, pair: List[int]) -> None:
156
+ """
157
+ Validate if the pair of bytes is valid UTF-16.
158
+
159
+ UTF-16 is valid in the range 0x0000 - 0xFFFF excluding 0xD800 - 0xFFFF
160
+ with an exception for surrogate pairs, which must be in the range
161
+ 0xD800-0xDBFF followed by 0xDC00-0xDFFF
162
+
163
+ https://en.wikipedia.org/wiki/UTF-16
164
+ """
165
+ if not self.first_half_surrogate_pair_detected_16be:
166
+ if 0xD8 <= pair[0] <= 0xDB:
167
+ self.first_half_surrogate_pair_detected_16be = True
168
+ elif 0xDC <= pair[0] <= 0xDF:
169
+ self.invalid_utf16be = True
170
+ else:
171
+ if 0xDC <= pair[0] <= 0xDF:
172
+ self.first_half_surrogate_pair_detected_16be = False
173
+ else:
174
+ self.invalid_utf16be = True
175
+
176
+ if not self.first_half_surrogate_pair_detected_16le:
177
+ if 0xD8 <= pair[1] <= 0xDB:
178
+ self.first_half_surrogate_pair_detected_16le = True
179
+ elif 0xDC <= pair[1] <= 0xDF:
180
+ self.invalid_utf16le = True
181
+ else:
182
+ if 0xDC <= pair[1] <= 0xDF:
183
+ self.first_half_surrogate_pair_detected_16le = False
184
+ else:
185
+ self.invalid_utf16le = True
186
+
187
+ def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
188
+ for c in byte_str:
189
+ mod4 = self.position % 4
190
+ self.quad[mod4] = c
191
+ if mod4 == 3:
192
+ self.validate_utf32_characters(self.quad)
193
+ self.validate_utf16_characters(self.quad[0:2])
194
+ self.validate_utf16_characters(self.quad[2:4])
195
+ if c == 0:
196
+ self.zeros_at_mod[mod4] += 1
197
+ else:
198
+ self.nonzeros_at_mod[mod4] += 1
199
+ self.position += 1
200
+ return self.state
201
+
202
+ @property
203
+ def state(self) -> ProbingState:
204
+ if self._state in {ProbingState.NOT_ME, ProbingState.FOUND_IT}:
205
+ # terminal, decided states
206
+ return self._state
207
+ if self.get_confidence() > 0.80:
208
+ self._state = ProbingState.FOUND_IT
209
+ elif self.position > 4 * 1024:
210
+ # if we get to 4kb into the file, and we can't conclude it's UTF,
211
+ # let's give up
212
+ self._state = ProbingState.NOT_ME
213
+ return self._state
214
+
215
+ def get_confidence(self) -> float:
216
+ return (
217
+ 0.85
218
+ if (
219
+ self.is_likely_utf16le()
220
+ or self.is_likely_utf16be()
221
+ or self.is_likely_utf32le()
222
+ or self.is_likely_utf32be()
223
+ )
224
+ else 0.00
225
+ )
venv/lib/python3.10/site-packages/chardet/utf8prober.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################## BEGIN LICENSE BLOCK ########################
2
+ # The Original Code is mozilla.org code.
3
+ #
4
+ # The Initial Developer of the Original Code is
5
+ # Netscape Communications Corporation.
6
+ # Portions created by the Initial Developer are Copyright (C) 1998
7
+ # the Initial Developer. All Rights Reserved.
8
+ #
9
+ # Contributor(s):
10
+ # Mark Pilgrim - port to Python
11
+ #
12
+ # This library is free software; you can redistribute it and/or
13
+ # modify it under the terms of the GNU Lesser General Public
14
+ # License as published by the Free Software Foundation; either
15
+ # version 2.1 of the License, or (at your option) any later version.
16
+ #
17
+ # This library is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # Lesser General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public
23
+ # License along with this library; if not, write to the Free Software
24
+ # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
+ # 02110-1301 USA
26
+ ######################### END LICENSE BLOCK #########################
27
+
28
+ from typing import Union
29
+
30
+ from .charsetprober import CharSetProber
31
+ from .codingstatemachine import CodingStateMachine
32
+ from .enums import MachineState, ProbingState
33
+ from .mbcssm import UTF8_SM_MODEL
34
+
35
+
36
+ class UTF8Prober(CharSetProber):
37
+ ONE_CHAR_PROB = 0.5
38
+
39
+ def __init__(self) -> None:
40
+ super().__init__()
41
+ self.coding_sm = CodingStateMachine(UTF8_SM_MODEL)
42
+ self._num_mb_chars = 0
43
+ self.reset()
44
+
45
+ def reset(self) -> None:
46
+ super().reset()
47
+ self.coding_sm.reset()
48
+ self._num_mb_chars = 0
49
+
50
+ @property
51
+ def charset_name(self) -> str:
52
+ return "utf-8"
53
+
54
+ @property
55
+ def language(self) -> str:
56
+ return ""
57
+
58
+ def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
59
+ for c in byte_str:
60
+ coding_state = self.coding_sm.next_state(c)
61
+ if coding_state == MachineState.ERROR:
62
+ self._state = ProbingState.NOT_ME
63
+ break
64
+ if coding_state == MachineState.ITS_ME:
65
+ self._state = ProbingState.FOUND_IT
66
+ break
67
+ if coding_state == MachineState.START:
68
+ if self.coding_sm.get_current_charlen() >= 2:
69
+ self._num_mb_chars += 1
70
+
71
+ if self.state == ProbingState.DETECTING:
72
+ if self.get_confidence() > self.SHORTCUT_THRESHOLD:
73
+ self._state = ProbingState.FOUND_IT
74
+
75
+ return self.state
76
+
77
+ def get_confidence(self) -> float:
78
+ unlike = 0.99
79
+ if self._num_mb_chars < 6:
80
+ unlike *= self.ONE_CHAR_PROB**self._num_mb_chars
81
+ return 1.0 - unlike
82
+ return unlike
venv/lib/python3.10/site-packages/safetensors-0.4.3.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
venv/lib/python3.10/site-packages/safetensors-0.4.3.dist-info/METADATA ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.3
2
+ Name: safetensors
3
+ Version: 0.4.3
4
+ Classifier: Development Status :: 5 - Production/Stable
5
+ Classifier: Intended Audience :: Developers
6
+ Classifier: Intended Audience :: Education
7
+ Classifier: Intended Audience :: Science/Research
8
+ Classifier: License :: OSI Approved :: Apache Software License
9
+ Classifier: Operating System :: OS Independent
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Programming Language :: Python :: 3.7
12
+ Classifier: Programming Language :: Python :: 3.8
13
+ Classifier: Programming Language :: Python :: 3.9
14
+ Classifier: Programming Language :: Python :: 3.10
15
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
16
+ Classifier: Typing :: Typed
17
+ Requires-Dist: numpy >=1.21.6 ; extra == 'numpy'
18
+ Requires-Dist: safetensors[numpy] ; extra == 'torch'
19
+ Requires-Dist: torch >=1.10 ; extra == 'torch'
20
+ Requires-Dist: safetensors[numpy] ; extra == 'tensorflow'
21
+ Requires-Dist: tensorflow >=2.11.0 ; extra == 'tensorflow'
22
+ Requires-Dist: safetensors[numpy] ; extra == 'pinned-tf'
23
+ Requires-Dist: tensorflow ==2.11.0 ; extra == 'pinned-tf'
24
+ Requires-Dist: safetensors[numpy] ; extra == 'jax'
25
+ Requires-Dist: flax >=0.6.3 ; extra == 'jax'
26
+ Requires-Dist: jax >=0.3.25 ; extra == 'jax'
27
+ Requires-Dist: jaxlib >=0.3.25 ; extra == 'jax'
28
+ Requires-Dist: mlx >=0.0.9 ; extra == 'mlx'
29
+ Requires-Dist: safetensors[numpy] ; extra == 'paddlepaddle'
30
+ Requires-Dist: paddlepaddle >=2.4.1 ; extra == 'paddlepaddle'
31
+ Requires-Dist: black ==22.3 ; extra == 'quality'
32
+ Requires-Dist: click ==8.0.4 ; extra == 'quality'
33
+ Requires-Dist: isort >=5.5.4 ; extra == 'quality'
34
+ Requires-Dist: flake8 >=3.8.3 ; extra == 'quality'
35
+ Requires-Dist: safetensors[numpy] ; extra == 'testing'
36
+ Requires-Dist: h5py >=3.7.0 ; extra == 'testing'
37
+ Requires-Dist: huggingface-hub >=0.12.1 ; extra == 'testing'
38
+ Requires-Dist: setuptools-rust >=1.5.2 ; extra == 'testing'
39
+ Requires-Dist: pytest >=7.2.0 ; extra == 'testing'
40
+ Requires-Dist: pytest-benchmark >=4.0.0 ; extra == 'testing'
41
+ Requires-Dist: hypothesis >=6.70.2 ; extra == 'testing'
42
+ Requires-Dist: safetensors[torch] ; extra == 'all'
43
+ Requires-Dist: safetensors[numpy] ; extra == 'all'
44
+ Requires-Dist: safetensors[pinned-tf] ; extra == 'all'
45
+ Requires-Dist: safetensors[jax] ; extra == 'all'
46
+ Requires-Dist: safetensors[paddlepaddle] ; extra == 'all'
47
+ Requires-Dist: safetensors[quality] ; extra == 'all'
48
+ Requires-Dist: safetensors[testing] ; extra == 'all'
49
+ Requires-Dist: safetensors[all] ; extra == 'dev'
50
+ Provides-Extra: numpy
51
+ Provides-Extra: torch
52
+ Provides-Extra: tensorflow
53
+ Provides-Extra: pinned-tf
54
+ Provides-Extra: jax
55
+ Provides-Extra: mlx
56
+ Provides-Extra: paddlepaddle
57
+ Provides-Extra: quality
58
+ Provides-Extra: testing
59
+ Provides-Extra: all
60
+ Provides-Extra: dev
61
+ Author-email: Nicolas Patry <[email protected]>
62
+ Requires-Python: >=3.7
63
+ Description-Content-Type: text/markdown; charset=UTF-8; variant=GFM
64
+ Project-URL: Homepage, https://github.com/huggingface/safetensors
65
+ Project-URL: Source, https://github.com/huggingface/safetensors
66
+
67
+ ## Installation
68
+
69
+ ```
70
+ pip install safetensors
71
+ ```
72
+
73
+
74
+ ## Usage
75
+
76
+ ### Numpy
77
+
78
+ ```python
79
+ from safetensors.numpy import save_file, load_file
80
+ import numpy as np
81
+
82
+ tensors = {
83
+ "a": np.zeros((2, 2)),
84
+ "b": np.zeros((2, 3), dtype=np.uint8)
85
+ }
86
+
87
+ save_file(tensors, "./model.safetensors")
88
+
89
+
90
+ # Now loading
91
+ loaded = load_file("./model.safetensors")
92
+ ```
93
+
94
+ ### Torch
95
+
96
+ ```python
97
+ from safetensors.torch import save_file, load_file
98
+ import torch
99
+
100
+ tensors = {
101
+ "a": torch.zeros((2, 2)),
102
+ "b": torch.zeros((2, 3), dtype=torch.uint8)
103
+ }
104
+
105
+ save_file(tensors, "./model.safetensors")
106
+
107
+
108
+ # Now loading
109
+ loaded = load_file("./model.safetensors")
110
+ ```
111
+
112
+ ### Developing
113
+
114
+ ```
115
+ # inside ./safetensors/bindings/python
116
+ pip install .[dev]
117
+ ```
118
+ Should be enough to install this library locally.
119
+
120
+ ### Testing
121
+
122
+ ```
123
+ # inside ./safetensors/bindings/python
124
+ pip install .[dev]
125
+ pytest -sv tests/
126
+ ```
127
+
venv/lib/python3.10/site-packages/safetensors-0.4.3.dist-info/RECORD ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ safetensors-0.4.3.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
2
+ safetensors-0.4.3.dist-info/METADATA,sha256=xyYOydMNNt9ejapL8t76ASs9iTE5oS7IrZOQl8e4wK0,3842
3
+ safetensors-0.4.3.dist-info/RECORD,,
4
+ safetensors-0.4.3.dist-info/WHEEL,sha256=JL8sd1C0RQ2f7cmwbAn1Jp257v_vSS2r0VvTBpJeZwA,129
5
+ safetensors/__init__.py,sha256=rFhZV2HBVDIijU2xKjg-0viTLETa-yMLMgFC9-47hdc,171
6
+ safetensors/__init__.pyi,sha256=z6kNUzegHpyQAtFLtHu7ixUYWK9-Kwb6GqvV__6qMew,1970
7
+ safetensors/__pycache__/__init__.cpython-310.pyc,,
8
+ safetensors/__pycache__/flax.cpython-310.pyc,,
9
+ safetensors/__pycache__/mlx.cpython-310.pyc,,
10
+ safetensors/__pycache__/numpy.cpython-310.pyc,,
11
+ safetensors/__pycache__/paddle.cpython-310.pyc,,
12
+ safetensors/__pycache__/tensorflow.cpython-310.pyc,,
13
+ safetensors/__pycache__/torch.cpython-310.pyc,,
14
+ safetensors/_safetensors_rust.cpython-310-x86_64-linux-gnu.so,sha256=tjRccWtdZ62y0_JHfAfAsaIUpwqny3EQHZkyeroL-qA,4438576
15
+ safetensors/flax.py,sha256=AuyY2YHxTBy4xeQLxhAyMledHykpz0Qsys13eKiHNYg,3846
16
+ safetensors/mlx.py,sha256=7OTFtbdmGIqLnrjo_36RJRJ7zq1aI6HasvRPLB3d_Gw,3837
17
+ safetensors/numpy.py,sha256=5Z_wSFRxVbsAXpnej2zuqtdYK9K-nqZs1EE_G14C6Ck,4937
18
+ safetensors/paddle.py,sha256=V_RCTXymi2PJAG_jA4-qnfzbYAUB_74VYYXFzhXTLYM,4175
19
+ safetensors/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
+ safetensors/tensorflow.py,sha256=6XaUBcxm0xL4ulNcvVsllKZ_qJ_rBSlE50rNnECCNYQ,3890
21
+ safetensors/torch.py,sha256=_Tr2aFS0o5vmauTWKfJFo43N-UR_Ap8crx3O8XpryJI,17582
venv/lib/python3.10/site-packages/safetensors-0.4.3.dist-info/WHEEL ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: maturin (1.5.1)
3
+ Root-Is-Purelib: false
4
+ Tag: cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64
venv/lib/python3.10/site-packages/sklearn/covariance/__init__.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ The :mod:`sklearn.covariance` module includes methods and algorithms to
3
+ robustly estimate the covariance of features given a set of points. The
4
+ precision matrix defined as the inverse of the covariance is also estimated.
5
+ Covariance estimation is closely related to the theory of Gaussian Graphical
6
+ Models.
7
+ """
8
+
9
+ from ._elliptic_envelope import EllipticEnvelope
10
+ from ._empirical_covariance import (
11
+ EmpiricalCovariance,
12
+ empirical_covariance,
13
+ log_likelihood,
14
+ )
15
+ from ._graph_lasso import GraphicalLasso, GraphicalLassoCV, graphical_lasso
16
+ from ._robust_covariance import MinCovDet, fast_mcd
17
+ from ._shrunk_covariance import (
18
+ OAS,
19
+ LedoitWolf,
20
+ ShrunkCovariance,
21
+ ledoit_wolf,
22
+ ledoit_wolf_shrinkage,
23
+ oas,
24
+ shrunk_covariance,
25
+ )
26
+
27
+ __all__ = [
28
+ "EllipticEnvelope",
29
+ "EmpiricalCovariance",
30
+ "GraphicalLasso",
31
+ "GraphicalLassoCV",
32
+ "LedoitWolf",
33
+ "MinCovDet",
34
+ "OAS",
35
+ "ShrunkCovariance",
36
+ "empirical_covariance",
37
+ "fast_mcd",
38
+ "graphical_lasso",
39
+ "ledoit_wolf",
40
+ "ledoit_wolf_shrinkage",
41
+ "log_likelihood",
42
+ "oas",
43
+ "shrunk_covariance",
44
+ ]
venv/lib/python3.10/site-packages/sklearn/covariance/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.16 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/covariance/__pycache__/_elliptic_envelope.cpython-310.pyc ADDED
Binary file (9.56 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/covariance/__pycache__/_empirical_covariance.cpython-310.pyc ADDED
Binary file (11.4 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/covariance/__pycache__/_graph_lasso.cpython-310.pyc ADDED
Binary file (30.5 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/covariance/__pycache__/_robust_covariance.cpython-310.pyc ADDED
Binary file (24.2 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/covariance/__pycache__/_shrunk_covariance.cpython-310.pyc ADDED
Binary file (24.1 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/covariance/_elliptic_envelope.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Author: Virgile Fritsch <[email protected]>
2
+ #
3
+ # License: BSD 3 clause
4
+
5
+ from numbers import Real
6
+
7
+ import numpy as np
8
+
9
+ from ..base import OutlierMixin, _fit_context
10
+ from ..metrics import accuracy_score
11
+ from ..utils._param_validation import Interval
12
+ from ..utils.validation import check_is_fitted
13
+ from ._robust_covariance import MinCovDet
14
+
15
+
16
+ class EllipticEnvelope(OutlierMixin, MinCovDet):
17
+ """An object for detecting outliers in a Gaussian distributed dataset.
18
+
19
+ Read more in the :ref:`User Guide <outlier_detection>`.
20
+
21
+ Parameters
22
+ ----------
23
+ store_precision : bool, default=True
24
+ Specify if the estimated precision is stored.
25
+
26
+ assume_centered : bool, default=False
27
+ If True, the support of robust location and covariance estimates
28
+ is computed, and a covariance estimate is recomputed from it,
29
+ without centering the data.
30
+ Useful to work with data whose mean is significantly equal to
31
+ zero but is not exactly zero.
32
+ If False, the robust location and covariance are directly computed
33
+ with the FastMCD algorithm without additional treatment.
34
+
35
+ support_fraction : float, default=None
36
+ The proportion of points to be included in the support of the raw
37
+ MCD estimate. If None, the minimum value of support_fraction will
38
+ be used within the algorithm: `(n_samples + n_features + 1) / 2 * n_samples`.
39
+ Range is (0, 1).
40
+
41
+ contamination : float, default=0.1
42
+ The amount of contamination of the data set, i.e. the proportion
43
+ of outliers in the data set. Range is (0, 0.5].
44
+
45
+ random_state : int, RandomState instance or None, default=None
46
+ Determines the pseudo random number generator for shuffling
47
+ the data. Pass an int for reproducible results across multiple function
48
+ calls. See :term:`Glossary <random_state>`.
49
+
50
+ Attributes
51
+ ----------
52
+ location_ : ndarray of shape (n_features,)
53
+ Estimated robust location.
54
+
55
+ covariance_ : ndarray of shape (n_features, n_features)
56
+ Estimated robust covariance matrix.
57
+
58
+ precision_ : ndarray of shape (n_features, n_features)
59
+ Estimated pseudo inverse matrix.
60
+ (stored only if store_precision is True)
61
+
62
+ support_ : ndarray of shape (n_samples,)
63
+ A mask of the observations that have been used to compute the
64
+ robust estimates of location and shape.
65
+
66
+ offset_ : float
67
+ Offset used to define the decision function from the raw scores.
68
+ We have the relation: ``decision_function = score_samples - offset_``.
69
+ The offset depends on the contamination parameter and is defined in
70
+ such a way we obtain the expected number of outliers (samples with
71
+ decision function < 0) in training.
72
+
73
+ .. versionadded:: 0.20
74
+
75
+ raw_location_ : ndarray of shape (n_features,)
76
+ The raw robust estimated location before correction and re-weighting.
77
+
78
+ raw_covariance_ : ndarray of shape (n_features, n_features)
79
+ The raw robust estimated covariance before correction and re-weighting.
80
+
81
+ raw_support_ : ndarray of shape (n_samples,)
82
+ A mask of the observations that have been used to compute
83
+ the raw robust estimates of location and shape, before correction
84
+ and re-weighting.
85
+
86
+ dist_ : ndarray of shape (n_samples,)
87
+ Mahalanobis distances of the training set (on which :meth:`fit` is
88
+ called) observations.
89
+
90
+ n_features_in_ : int
91
+ Number of features seen during :term:`fit`.
92
+
93
+ .. versionadded:: 0.24
94
+
95
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
96
+ Names of features seen during :term:`fit`. Defined only when `X`
97
+ has feature names that are all strings.
98
+
99
+ .. versionadded:: 1.0
100
+
101
+ See Also
102
+ --------
103
+ EmpiricalCovariance : Maximum likelihood covariance estimator.
104
+ GraphicalLasso : Sparse inverse covariance estimation
105
+ with an l1-penalized estimator.
106
+ LedoitWolf : LedoitWolf Estimator.
107
+ MinCovDet : Minimum Covariance Determinant
108
+ (robust estimator of covariance).
109
+ OAS : Oracle Approximating Shrinkage Estimator.
110
+ ShrunkCovariance : Covariance estimator with shrinkage.
111
+
112
+ Notes
113
+ -----
114
+ Outlier detection from covariance estimation may break or not
115
+ perform well in high-dimensional settings. In particular, one will
116
+ always take care to work with ``n_samples > n_features ** 2``.
117
+
118
+ References
119
+ ----------
120
+ .. [1] Rousseeuw, P.J., Van Driessen, K. "A fast algorithm for the
121
+ minimum covariance determinant estimator" Technometrics 41(3), 212
122
+ (1999)
123
+
124
+ Examples
125
+ --------
126
+ >>> import numpy as np
127
+ >>> from sklearn.covariance import EllipticEnvelope
128
+ >>> true_cov = np.array([[.8, .3],
129
+ ... [.3, .4]])
130
+ >>> X = np.random.RandomState(0).multivariate_normal(mean=[0, 0],
131
+ ... cov=true_cov,
132
+ ... size=500)
133
+ >>> cov = EllipticEnvelope(random_state=0).fit(X)
134
+ >>> # predict returns 1 for an inlier and -1 for an outlier
135
+ >>> cov.predict([[0, 0],
136
+ ... [3, 3]])
137
+ array([ 1, -1])
138
+ >>> cov.covariance_
139
+ array([[0.7411..., 0.2535...],
140
+ [0.2535..., 0.3053...]])
141
+ >>> cov.location_
142
+ array([0.0813... , 0.0427...])
143
+ """
144
+
145
+ _parameter_constraints: dict = {
146
+ **MinCovDet._parameter_constraints,
147
+ "contamination": [Interval(Real, 0, 0.5, closed="right")],
148
+ }
149
+
150
+ def __init__(
151
+ self,
152
+ *,
153
+ store_precision=True,
154
+ assume_centered=False,
155
+ support_fraction=None,
156
+ contamination=0.1,
157
+ random_state=None,
158
+ ):
159
+ super().__init__(
160
+ store_precision=store_precision,
161
+ assume_centered=assume_centered,
162
+ support_fraction=support_fraction,
163
+ random_state=random_state,
164
+ )
165
+ self.contamination = contamination
166
+
167
+ @_fit_context(prefer_skip_nested_validation=True)
168
+ def fit(self, X, y=None):
169
+ """Fit the EllipticEnvelope model.
170
+
171
+ Parameters
172
+ ----------
173
+ X : array-like of shape (n_samples, n_features)
174
+ Training data.
175
+
176
+ y : Ignored
177
+ Not used, present for API consistency by convention.
178
+
179
+ Returns
180
+ -------
181
+ self : object
182
+ Returns the instance itself.
183
+ """
184
+ super().fit(X)
185
+ self.offset_ = np.percentile(-self.dist_, 100.0 * self.contamination)
186
+ return self
187
+
188
+ def decision_function(self, X):
189
+ """Compute the decision function of the given observations.
190
+
191
+ Parameters
192
+ ----------
193
+ X : array-like of shape (n_samples, n_features)
194
+ The data matrix.
195
+
196
+ Returns
197
+ -------
198
+ decision : ndarray of shape (n_samples,)
199
+ Decision function of the samples.
200
+ It is equal to the shifted Mahalanobis distances.
201
+ The threshold for being an outlier is 0, which ensures a
202
+ compatibility with other outlier detection algorithms.
203
+ """
204
+ check_is_fitted(self)
205
+ negative_mahal_dist = self.score_samples(X)
206
+ return negative_mahal_dist - self.offset_
207
+
208
+ def score_samples(self, X):
209
+ """Compute the negative Mahalanobis distances.
210
+
211
+ Parameters
212
+ ----------
213
+ X : array-like of shape (n_samples, n_features)
214
+ The data matrix.
215
+
216
+ Returns
217
+ -------
218
+ negative_mahal_distances : array-like of shape (n_samples,)
219
+ Opposite of the Mahalanobis distances.
220
+ """
221
+ check_is_fitted(self)
222
+ return -self.mahalanobis(X)
223
+
224
+ def predict(self, X):
225
+ """
226
+ Predict labels (1 inlier, -1 outlier) of X according to fitted model.
227
+
228
+ Parameters
229
+ ----------
230
+ X : array-like of shape (n_samples, n_features)
231
+ The data matrix.
232
+
233
+ Returns
234
+ -------
235
+ is_inlier : ndarray of shape (n_samples,)
236
+ Returns -1 for anomalies/outliers and +1 for inliers.
237
+ """
238
+ values = self.decision_function(X)
239
+ is_inlier = np.full(values.shape[0], -1, dtype=int)
240
+ is_inlier[values >= 0] = 1
241
+
242
+ return is_inlier
243
+
244
+ def score(self, X, y, sample_weight=None):
245
+ """Return the mean accuracy on the given test data and labels.
246
+
247
+ In multi-label classification, this is the subset accuracy
248
+ which is a harsh metric since you require for each sample that
249
+ each label set be correctly predicted.
250
+
251
+ Parameters
252
+ ----------
253
+ X : array-like of shape (n_samples, n_features)
254
+ Test samples.
255
+
256
+ y : array-like of shape (n_samples,) or (n_samples, n_outputs)
257
+ True labels for X.
258
+
259
+ sample_weight : array-like of shape (n_samples,), default=None
260
+ Sample weights.
261
+
262
+ Returns
263
+ -------
264
+ score : float
265
+ Mean accuracy of self.predict(X) w.r.t. y.
266
+ """
267
+ return accuracy_score(y, self.predict(X), sample_weight=sample_weight)
venv/lib/python3.10/site-packages/sklearn/covariance/_empirical_covariance.py ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Maximum likelihood covariance estimator.
3
+
4
+ """
5
+
6
+ # Author: Alexandre Gramfort <[email protected]>
7
+ # Gael Varoquaux <[email protected]>
8
+ # Virgile Fritsch <[email protected]>
9
+ #
10
+ # License: BSD 3 clause
11
+
12
+ # avoid division truncation
13
+ import warnings
14
+
15
+ import numpy as np
16
+ from scipy import linalg
17
+
18
+ from .. import config_context
19
+ from ..base import BaseEstimator, _fit_context
20
+ from ..metrics.pairwise import pairwise_distances
21
+ from ..utils import check_array
22
+ from ..utils._param_validation import validate_params
23
+ from ..utils.extmath import fast_logdet
24
+
25
+
26
+ @validate_params(
27
+ {
28
+ "emp_cov": [np.ndarray],
29
+ "precision": [np.ndarray],
30
+ },
31
+ prefer_skip_nested_validation=True,
32
+ )
33
+ def log_likelihood(emp_cov, precision):
34
+ """Compute the sample mean of the log_likelihood under a covariance model.
35
+
36
+ Computes the empirical expected log-likelihood, allowing for universal
37
+ comparison (beyond this software package), and accounts for normalization
38
+ terms and scaling.
39
+
40
+ Parameters
41
+ ----------
42
+ emp_cov : ndarray of shape (n_features, n_features)
43
+ Maximum Likelihood Estimator of covariance.
44
+
45
+ precision : ndarray of shape (n_features, n_features)
46
+ The precision matrix of the covariance model to be tested.
47
+
48
+ Returns
49
+ -------
50
+ log_likelihood_ : float
51
+ Sample mean of the log-likelihood.
52
+ """
53
+ p = precision.shape[0]
54
+ log_likelihood_ = -np.sum(emp_cov * precision) + fast_logdet(precision)
55
+ log_likelihood_ -= p * np.log(2 * np.pi)
56
+ log_likelihood_ /= 2.0
57
+ return log_likelihood_
58
+
59
+
60
+ @validate_params(
61
+ {
62
+ "X": ["array-like"],
63
+ "assume_centered": ["boolean"],
64
+ },
65
+ prefer_skip_nested_validation=True,
66
+ )
67
+ def empirical_covariance(X, *, assume_centered=False):
68
+ """Compute the Maximum likelihood covariance estimator.
69
+
70
+ Parameters
71
+ ----------
72
+ X : ndarray of shape (n_samples, n_features)
73
+ Data from which to compute the covariance estimate.
74
+
75
+ assume_centered : bool, default=False
76
+ If `True`, data will not be centered before computation.
77
+ Useful when working with data whose mean is almost, but not exactly
78
+ zero.
79
+ If `False`, data will be centered before computation.
80
+
81
+ Returns
82
+ -------
83
+ covariance : ndarray of shape (n_features, n_features)
84
+ Empirical covariance (Maximum Likelihood Estimator).
85
+
86
+ Examples
87
+ --------
88
+ >>> from sklearn.covariance import empirical_covariance
89
+ >>> X = [[1,1,1],[1,1,1],[1,1,1],
90
+ ... [0,0,0],[0,0,0],[0,0,0]]
91
+ >>> empirical_covariance(X)
92
+ array([[0.25, 0.25, 0.25],
93
+ [0.25, 0.25, 0.25],
94
+ [0.25, 0.25, 0.25]])
95
+ """
96
+ X = check_array(X, ensure_2d=False, force_all_finite=False)
97
+
98
+ if X.ndim == 1:
99
+ X = np.reshape(X, (1, -1))
100
+
101
+ if X.shape[0] == 1:
102
+ warnings.warn(
103
+ "Only one sample available. You may want to reshape your data array"
104
+ )
105
+
106
+ if assume_centered:
107
+ covariance = np.dot(X.T, X) / X.shape[0]
108
+ else:
109
+ covariance = np.cov(X.T, bias=1)
110
+
111
+ if covariance.ndim == 0:
112
+ covariance = np.array([[covariance]])
113
+ return covariance
114
+
115
+
116
+ class EmpiricalCovariance(BaseEstimator):
117
+ """Maximum likelihood covariance estimator.
118
+
119
+ Read more in the :ref:`User Guide <covariance>`.
120
+
121
+ Parameters
122
+ ----------
123
+ store_precision : bool, default=True
124
+ Specifies if the estimated precision is stored.
125
+
126
+ assume_centered : bool, default=False
127
+ If True, data are not centered before computation.
128
+ Useful when working with data whose mean is almost, but not exactly
129
+ zero.
130
+ If False (default), data are centered before computation.
131
+
132
+ Attributes
133
+ ----------
134
+ location_ : ndarray of shape (n_features,)
135
+ Estimated location, i.e. the estimated mean.
136
+
137
+ covariance_ : ndarray of shape (n_features, n_features)
138
+ Estimated covariance matrix
139
+
140
+ precision_ : ndarray of shape (n_features, n_features)
141
+ Estimated pseudo-inverse matrix.
142
+ (stored only if store_precision is True)
143
+
144
+ n_features_in_ : int
145
+ Number of features seen during :term:`fit`.
146
+
147
+ .. versionadded:: 0.24
148
+
149
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
150
+ Names of features seen during :term:`fit`. Defined only when `X`
151
+ has feature names that are all strings.
152
+
153
+ .. versionadded:: 1.0
154
+
155
+ See Also
156
+ --------
157
+ EllipticEnvelope : An object for detecting outliers in
158
+ a Gaussian distributed dataset.
159
+ GraphicalLasso : Sparse inverse covariance estimation
160
+ with an l1-penalized estimator.
161
+ LedoitWolf : LedoitWolf Estimator.
162
+ MinCovDet : Minimum Covariance Determinant
163
+ (robust estimator of covariance).
164
+ OAS : Oracle Approximating Shrinkage Estimator.
165
+ ShrunkCovariance : Covariance estimator with shrinkage.
166
+
167
+ Examples
168
+ --------
169
+ >>> import numpy as np
170
+ >>> from sklearn.covariance import EmpiricalCovariance
171
+ >>> from sklearn.datasets import make_gaussian_quantiles
172
+ >>> real_cov = np.array([[.8, .3],
173
+ ... [.3, .4]])
174
+ >>> rng = np.random.RandomState(0)
175
+ >>> X = rng.multivariate_normal(mean=[0, 0],
176
+ ... cov=real_cov,
177
+ ... size=500)
178
+ >>> cov = EmpiricalCovariance().fit(X)
179
+ >>> cov.covariance_
180
+ array([[0.7569..., 0.2818...],
181
+ [0.2818..., 0.3928...]])
182
+ >>> cov.location_
183
+ array([0.0622..., 0.0193...])
184
+ """
185
+
186
+ _parameter_constraints: dict = {
187
+ "store_precision": ["boolean"],
188
+ "assume_centered": ["boolean"],
189
+ }
190
+
191
+ def __init__(self, *, store_precision=True, assume_centered=False):
192
+ self.store_precision = store_precision
193
+ self.assume_centered = assume_centered
194
+
195
+ def _set_covariance(self, covariance):
196
+ """Saves the covariance and precision estimates
197
+
198
+ Storage is done accordingly to `self.store_precision`.
199
+ Precision stored only if invertible.
200
+
201
+ Parameters
202
+ ----------
203
+ covariance : array-like of shape (n_features, n_features)
204
+ Estimated covariance matrix to be stored, and from which precision
205
+ is computed.
206
+ """
207
+ covariance = check_array(covariance)
208
+ # set covariance
209
+ self.covariance_ = covariance
210
+ # set precision
211
+ if self.store_precision:
212
+ self.precision_ = linalg.pinvh(covariance, check_finite=False)
213
+ else:
214
+ self.precision_ = None
215
+
216
+ def get_precision(self):
217
+ """Getter for the precision matrix.
218
+
219
+ Returns
220
+ -------
221
+ precision_ : array-like of shape (n_features, n_features)
222
+ The precision matrix associated to the current covariance object.
223
+ """
224
+ if self.store_precision:
225
+ precision = self.precision_
226
+ else:
227
+ precision = linalg.pinvh(self.covariance_, check_finite=False)
228
+ return precision
229
+
230
+ @_fit_context(prefer_skip_nested_validation=True)
231
+ def fit(self, X, y=None):
232
+ """Fit the maximum likelihood covariance estimator to X.
233
+
234
+ Parameters
235
+ ----------
236
+ X : array-like of shape (n_samples, n_features)
237
+ Training data, where `n_samples` is the number of samples and
238
+ `n_features` is the number of features.
239
+
240
+ y : Ignored
241
+ Not used, present for API consistency by convention.
242
+
243
+ Returns
244
+ -------
245
+ self : object
246
+ Returns the instance itself.
247
+ """
248
+ X = self._validate_data(X)
249
+ if self.assume_centered:
250
+ self.location_ = np.zeros(X.shape[1])
251
+ else:
252
+ self.location_ = X.mean(0)
253
+ covariance = empirical_covariance(X, assume_centered=self.assume_centered)
254
+ self._set_covariance(covariance)
255
+
256
+ return self
257
+
258
+ def score(self, X_test, y=None):
259
+ """Compute the log-likelihood of `X_test` under the estimated Gaussian model.
260
+
261
+ The Gaussian model is defined by its mean and covariance matrix which are
262
+ represented respectively by `self.location_` and `self.covariance_`.
263
+
264
+ Parameters
265
+ ----------
266
+ X_test : array-like of shape (n_samples, n_features)
267
+ Test data of which we compute the likelihood, where `n_samples` is
268
+ the number of samples and `n_features` is the number of features.
269
+ `X_test` is assumed to be drawn from the same distribution than
270
+ the data used in fit (including centering).
271
+
272
+ y : Ignored
273
+ Not used, present for API consistency by convention.
274
+
275
+ Returns
276
+ -------
277
+ res : float
278
+ The log-likelihood of `X_test` with `self.location_` and `self.covariance_`
279
+ as estimators of the Gaussian model mean and covariance matrix respectively.
280
+ """
281
+ X_test = self._validate_data(X_test, reset=False)
282
+ # compute empirical covariance of the test set
283
+ test_cov = empirical_covariance(X_test - self.location_, assume_centered=True)
284
+ # compute log likelihood
285
+ res = log_likelihood(test_cov, self.get_precision())
286
+
287
+ return res
288
+
289
+ def error_norm(self, comp_cov, norm="frobenius", scaling=True, squared=True):
290
+ """Compute the Mean Squared Error between two covariance estimators.
291
+
292
+ Parameters
293
+ ----------
294
+ comp_cov : array-like of shape (n_features, n_features)
295
+ The covariance to compare with.
296
+
297
+ norm : {"frobenius", "spectral"}, default="frobenius"
298
+ The type of norm used to compute the error. Available error types:
299
+ - 'frobenius' (default): sqrt(tr(A^t.A))
300
+ - 'spectral': sqrt(max(eigenvalues(A^t.A))
301
+ where A is the error ``(comp_cov - self.covariance_)``.
302
+
303
+ scaling : bool, default=True
304
+ If True (default), the squared error norm is divided by n_features.
305
+ If False, the squared error norm is not rescaled.
306
+
307
+ squared : bool, default=True
308
+ Whether to compute the squared error norm or the error norm.
309
+ If True (default), the squared error norm is returned.
310
+ If False, the error norm is returned.
311
+
312
+ Returns
313
+ -------
314
+ result : float
315
+ The Mean Squared Error (in the sense of the Frobenius norm) between
316
+ `self` and `comp_cov` covariance estimators.
317
+ """
318
+ # compute the error
319
+ error = comp_cov - self.covariance_
320
+ # compute the error norm
321
+ if norm == "frobenius":
322
+ squared_norm = np.sum(error**2)
323
+ elif norm == "spectral":
324
+ squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error)))
325
+ else:
326
+ raise NotImplementedError(
327
+ "Only spectral and frobenius norms are implemented"
328
+ )
329
+ # optionally scale the error norm
330
+ if scaling:
331
+ squared_norm = squared_norm / error.shape[0]
332
+ # finally get either the squared norm or the norm
333
+ if squared:
334
+ result = squared_norm
335
+ else:
336
+ result = np.sqrt(squared_norm)
337
+
338
+ return result
339
+
340
+ def mahalanobis(self, X):
341
+ """Compute the squared Mahalanobis distances of given observations.
342
+
343
+ Parameters
344
+ ----------
345
+ X : array-like of shape (n_samples, n_features)
346
+ The observations, the Mahalanobis distances of the which we
347
+ compute. Observations are assumed to be drawn from the same
348
+ distribution than the data used in fit.
349
+
350
+ Returns
351
+ -------
352
+ dist : ndarray of shape (n_samples,)
353
+ Squared Mahalanobis distances of the observations.
354
+ """
355
+ X = self._validate_data(X, reset=False)
356
+
357
+ precision = self.get_precision()
358
+ with config_context(assume_finite=True):
359
+ # compute mahalanobis distances
360
+ dist = pairwise_distances(
361
+ X, self.location_[np.newaxis, :], metric="mahalanobis", VI=precision
362
+ )
363
+
364
+ return np.reshape(dist, (len(X),)) ** 2