Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/11.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/22.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/22.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/22.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/25.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/25.post_attention_layernorm.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/_config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/_distributor_init.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/_min_dependencies.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/calibration.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/conftest.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/discriminant_analysis.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/dummy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/exceptions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/isotonic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/kernel_approximation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/kernel_ridge.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/multiclass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/multioutput.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/naive_bayes.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/pipeline.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/__pycache__/random_projection.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/_loss/__init__.py +30 -0
- venv/lib/python3.10/site-packages/sklearn/_loss/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/_loss/__pycache__/link.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/_loss/__pycache__/loss.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/_loss/_loss.pxd +91 -0
- venv/lib/python3.10/site-packages/sklearn/_loss/loss.py +1177 -0
- venv/lib/python3.10/site-packages/sklearn/_loss/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/_loss/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/_loss/tests/__pycache__/test_link.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/_loss/tests/__pycache__/test_loss.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/_loss/tests/test_link.py +111 -0
- venv/lib/python3.10/site-packages/sklearn/_loss/tests/test_loss.py +1320 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/__init__.py +47 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_from_model.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_mutual_info.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_rfe.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_sequential.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_univariate_selection.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_variance_threshold.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/_base.py +266 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/_from_model.py +522 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/_mutual_info.py +514 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/_rfe.py +792 -0
- venv/lib/python3.10/site-packages/sklearn/feature_selection/_sequential.py +300 -0
ckpts/universal/global_step40/zero/11.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfc48c3605ebf51ccaa680d945c26d945ff04748a7f8314b1eac44ffb0122c0e
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/22.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fa8aea791a8fa19fe4c81803aa90b8a0b9931f3154aaaa230fe73b237bed222
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/22.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0eef265b39db5f3ad5f42b032f58f2480311e771ddb6083c2857d448b6c3f55
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/22.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63925f8ed3bf866c5203925dcfadb544297213c3a0b2a6ec9bfed86c046e9af7
|
3 |
+
size 33555533
|
ckpts/universal/global_step40/zero/25.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:120466dfe5c6ca6778d6ffd4b8e8f4c81a7df365a3a26d1c289c48a640b1b181
|
3 |
+
size 9387
|
ckpts/universal/global_step40/zero/25.post_attention_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53ef0f9fd80e3e2457de9647681c3729516278db8c98967c7188423b479fec25
|
3 |
+
size 9293
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.06 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/_config.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/_distributor_init.cpython-310.pyc
ADDED
Binary file (537 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/_min_dependencies.cpython-310.pyc
ADDED
Binary file (1.97 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/base.cpython-310.pyc
ADDED
Binary file (46.6 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/calibration.cpython-310.pyc
ADDED
Binary file (40.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (7.67 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/discriminant_analysis.cpython-310.pyc
ADDED
Binary file (32.3 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/dummy.cpython-310.pyc
ADDED
Binary file (20.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/exceptions.cpython-310.pyc
ADDED
Binary file (6.99 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/isotonic.cpython-310.pyc
ADDED
Binary file (14.4 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/kernel_approximation.cpython-310.pyc
ADDED
Binary file (35.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/kernel_ridge.cpython-310.pyc
ADDED
Binary file (9.04 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/multiclass.cpython-310.pyc
ADDED
Binary file (38.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/multioutput.cpython-310.pyc
ADDED
Binary file (37.4 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/naive_bayes.cpython-310.pyc
ADDED
Binary file (49.8 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/pipeline.cpython-310.pyc
ADDED
Binary file (58.6 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/__pycache__/random_projection.cpython-310.pyc
ADDED
Binary file (26 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/_loss/__init__.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn._loss` module includes loss function classes suitable for
|
3 |
+
fitting classification and regression tasks.
|
4 |
+
"""
|
5 |
+
|
6 |
+
from .loss import (
|
7 |
+
AbsoluteError,
|
8 |
+
HalfBinomialLoss,
|
9 |
+
HalfGammaLoss,
|
10 |
+
HalfMultinomialLoss,
|
11 |
+
HalfPoissonLoss,
|
12 |
+
HalfSquaredError,
|
13 |
+
HalfTweedieLoss,
|
14 |
+
HalfTweedieLossIdentity,
|
15 |
+
HuberLoss,
|
16 |
+
PinballLoss,
|
17 |
+
)
|
18 |
+
|
19 |
+
__all__ = [
|
20 |
+
"HalfSquaredError",
|
21 |
+
"AbsoluteError",
|
22 |
+
"PinballLoss",
|
23 |
+
"HuberLoss",
|
24 |
+
"HalfPoissonLoss",
|
25 |
+
"HalfGammaLoss",
|
26 |
+
"HalfTweedieLoss",
|
27 |
+
"HalfTweedieLossIdentity",
|
28 |
+
"HalfBinomialLoss",
|
29 |
+
"HalfMultinomialLoss",
|
30 |
+
]
|
venv/lib/python3.10/site-packages/sklearn/_loss/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (669 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/_loss/__pycache__/link.cpython-310.pyc
ADDED
Binary file (8.96 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/_loss/__pycache__/loss.cpython-310.pyc
ADDED
Binary file (33.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/_loss/_loss.pxd
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Fused types for input like y_true, raw_prediction, sample_weights.
|
2 |
+
ctypedef fused floating_in:
|
3 |
+
double
|
4 |
+
float
|
5 |
+
|
6 |
+
|
7 |
+
# Fused types for output like gradient and hessian
|
8 |
+
# We use a different fused types for input (floating_in) and output (floating_out), such
|
9 |
+
# that input and output can have different dtypes in the same function call. A single
|
10 |
+
# fused type can only take on one single value (type) for all arguments in one function
|
11 |
+
# call.
|
12 |
+
ctypedef fused floating_out:
|
13 |
+
double
|
14 |
+
float
|
15 |
+
|
16 |
+
|
17 |
+
# Struct to return 2 doubles
|
18 |
+
ctypedef struct double_pair:
|
19 |
+
double val1
|
20 |
+
double val2
|
21 |
+
|
22 |
+
|
23 |
+
# C base class for loss functions
|
24 |
+
cdef class CyLossFunction:
|
25 |
+
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
|
26 |
+
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
|
27 |
+
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
|
28 |
+
|
29 |
+
|
30 |
+
cdef class CyHalfSquaredError(CyLossFunction):
|
31 |
+
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
|
32 |
+
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
|
33 |
+
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
|
34 |
+
|
35 |
+
|
36 |
+
cdef class CyAbsoluteError(CyLossFunction):
|
37 |
+
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
|
38 |
+
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
|
39 |
+
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
|
40 |
+
|
41 |
+
|
42 |
+
cdef class CyPinballLoss(CyLossFunction):
|
43 |
+
cdef readonly double quantile # readonly makes it accessible from Python
|
44 |
+
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
|
45 |
+
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
|
46 |
+
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
|
47 |
+
|
48 |
+
|
49 |
+
cdef class CyHuberLoss(CyLossFunction):
|
50 |
+
cdef public double delta # public makes it accessible from Python
|
51 |
+
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
|
52 |
+
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
|
53 |
+
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
|
54 |
+
|
55 |
+
|
56 |
+
cdef class CyHalfPoissonLoss(CyLossFunction):
|
57 |
+
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
|
58 |
+
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
|
59 |
+
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
|
60 |
+
|
61 |
+
|
62 |
+
cdef class CyHalfGammaLoss(CyLossFunction):
|
63 |
+
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
|
64 |
+
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
|
65 |
+
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
|
66 |
+
|
67 |
+
|
68 |
+
cdef class CyHalfTweedieLoss(CyLossFunction):
|
69 |
+
cdef readonly double power # readonly makes it accessible from Python
|
70 |
+
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
|
71 |
+
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
|
72 |
+
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
|
73 |
+
|
74 |
+
|
75 |
+
cdef class CyHalfTweedieLossIdentity(CyLossFunction):
|
76 |
+
cdef readonly double power # readonly makes it accessible from Python
|
77 |
+
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
|
78 |
+
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
|
79 |
+
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
|
80 |
+
|
81 |
+
|
82 |
+
cdef class CyHalfBinomialLoss(CyLossFunction):
|
83 |
+
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
|
84 |
+
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
|
85 |
+
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
|
86 |
+
|
87 |
+
|
88 |
+
cdef class CyExponentialLoss(CyLossFunction):
|
89 |
+
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil
|
90 |
+
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil
|
91 |
+
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil
|
venv/lib/python3.10/site-packages/sklearn/_loss/loss.py
ADDED
@@ -0,0 +1,1177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module contains loss classes suitable for fitting.
|
3 |
+
|
4 |
+
It is not part of the public API.
|
5 |
+
Specific losses are used for regression, binary classification or multiclass
|
6 |
+
classification.
|
7 |
+
"""
|
8 |
+
# Goals:
|
9 |
+
# - Provide a common private module for loss functions/classes.
|
10 |
+
# - To be used in:
|
11 |
+
# - LogisticRegression
|
12 |
+
# - PoissonRegressor, GammaRegressor, TweedieRegressor
|
13 |
+
# - HistGradientBoostingRegressor, HistGradientBoostingClassifier
|
14 |
+
# - GradientBoostingRegressor, GradientBoostingClassifier
|
15 |
+
# - SGDRegressor, SGDClassifier
|
16 |
+
# - Replace link module of GLMs.
|
17 |
+
|
18 |
+
import numbers
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
from scipy.special import xlogy
|
22 |
+
|
23 |
+
from ..utils import check_scalar
|
24 |
+
from ..utils.stats import _weighted_percentile
|
25 |
+
from ._loss import (
|
26 |
+
CyAbsoluteError,
|
27 |
+
CyExponentialLoss,
|
28 |
+
CyHalfBinomialLoss,
|
29 |
+
CyHalfGammaLoss,
|
30 |
+
CyHalfMultinomialLoss,
|
31 |
+
CyHalfPoissonLoss,
|
32 |
+
CyHalfSquaredError,
|
33 |
+
CyHalfTweedieLoss,
|
34 |
+
CyHalfTweedieLossIdentity,
|
35 |
+
CyHuberLoss,
|
36 |
+
CyPinballLoss,
|
37 |
+
)
|
38 |
+
from .link import (
|
39 |
+
HalfLogitLink,
|
40 |
+
IdentityLink,
|
41 |
+
Interval,
|
42 |
+
LogitLink,
|
43 |
+
LogLink,
|
44 |
+
MultinomialLogit,
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
# Note: The shape of raw_prediction for multiclass classifications are
|
49 |
+
# - GradientBoostingClassifier: (n_samples, n_classes)
|
50 |
+
# - HistGradientBoostingClassifier: (n_classes, n_samples)
|
51 |
+
#
|
52 |
+
# Note: Instead of inheritance like
|
53 |
+
#
|
54 |
+
# class BaseLoss(BaseLink, CyLossFunction):
|
55 |
+
# ...
|
56 |
+
#
|
57 |
+
# # Note: Naturally, we would inherit in the following order
|
58 |
+
# # class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss)
|
59 |
+
# # But because of https://github.com/cython/cython/issues/4350 we set BaseLoss as
|
60 |
+
# # the last one. This, of course, changes the MRO.
|
61 |
+
# class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss):
|
62 |
+
#
|
63 |
+
# we use composition. This way we improve maintainability by avoiding the above
|
64 |
+
# mentioned Cython edge case and have easier to understand code (which method calls
|
65 |
+
# which code).
|
66 |
+
class BaseLoss:
|
67 |
+
"""Base class for a loss function of 1-dimensional targets.
|
68 |
+
|
69 |
+
Conventions:
|
70 |
+
|
71 |
+
- y_true.shape = sample_weight.shape = (n_samples,)
|
72 |
+
- y_pred.shape = raw_prediction.shape = (n_samples,)
|
73 |
+
- If is_multiclass is true (multiclass classification), then
|
74 |
+
y_pred.shape = raw_prediction.shape = (n_samples, n_classes)
|
75 |
+
Note that this corresponds to the return value of decision_function.
|
76 |
+
|
77 |
+
y_true, y_pred, sample_weight and raw_prediction must either be all float64
|
78 |
+
or all float32.
|
79 |
+
gradient and hessian must be either both float64 or both float32.
|
80 |
+
|
81 |
+
Note that y_pred = link.inverse(raw_prediction).
|
82 |
+
|
83 |
+
Specific loss classes can inherit specific link classes to satisfy
|
84 |
+
BaseLink's abstractmethods.
|
85 |
+
|
86 |
+
Parameters
|
87 |
+
----------
|
88 |
+
sample_weight : {None, ndarray}
|
89 |
+
If sample_weight is None, the hessian might be constant.
|
90 |
+
n_classes : {None, int}
|
91 |
+
The number of classes for classification, else None.
|
92 |
+
|
93 |
+
Attributes
|
94 |
+
----------
|
95 |
+
closs: CyLossFunction
|
96 |
+
link : BaseLink
|
97 |
+
interval_y_true : Interval
|
98 |
+
Valid interval for y_true
|
99 |
+
interval_y_pred : Interval
|
100 |
+
Valid Interval for y_pred
|
101 |
+
differentiable : bool
|
102 |
+
Indicates whether or not loss function is differentiable in
|
103 |
+
raw_prediction everywhere.
|
104 |
+
need_update_leaves_values : bool
|
105 |
+
Indicates whether decision trees in gradient boosting need to uptade
|
106 |
+
leave values after having been fit to the (negative) gradients.
|
107 |
+
approx_hessian : bool
|
108 |
+
Indicates whether the hessian is approximated or exact. If,
|
109 |
+
approximated, it should be larger or equal to the exact one.
|
110 |
+
constant_hessian : bool
|
111 |
+
Indicates whether the hessian is one for this loss.
|
112 |
+
is_multiclass : bool
|
113 |
+
Indicates whether n_classes > 2 is allowed.
|
114 |
+
"""
|
115 |
+
|
116 |
+
# For gradient boosted decision trees:
|
117 |
+
# This variable indicates whether the loss requires the leaves values to
|
118 |
+
# be updated once the tree has been trained. The trees are trained to
|
119 |
+
# predict a Newton-Raphson step (see grower._finalize_leaf()). But for
|
120 |
+
# some losses (e.g. least absolute deviation) we need to adjust the tree
|
121 |
+
# values to account for the "line search" of the gradient descent
|
122 |
+
# procedure. See the original paper Greedy Function Approximation: A
|
123 |
+
# Gradient Boosting Machine by Friedman
|
124 |
+
# (https://statweb.stanford.edu/~jhf/ftp/trebst.pdf) for the theory.
|
125 |
+
differentiable = True
|
126 |
+
need_update_leaves_values = False
|
127 |
+
is_multiclass = False
|
128 |
+
|
129 |
+
def __init__(self, closs, link, n_classes=None):
|
130 |
+
self.closs = closs
|
131 |
+
self.link = link
|
132 |
+
self.approx_hessian = False
|
133 |
+
self.constant_hessian = False
|
134 |
+
self.n_classes = n_classes
|
135 |
+
self.interval_y_true = Interval(-np.inf, np.inf, False, False)
|
136 |
+
self.interval_y_pred = self.link.interval_y_pred
|
137 |
+
|
138 |
+
def in_y_true_range(self, y):
|
139 |
+
"""Return True if y is in the valid range of y_true.
|
140 |
+
|
141 |
+
Parameters
|
142 |
+
----------
|
143 |
+
y : ndarray
|
144 |
+
"""
|
145 |
+
return self.interval_y_true.includes(y)
|
146 |
+
|
147 |
+
def in_y_pred_range(self, y):
|
148 |
+
"""Return True if y is in the valid range of y_pred.
|
149 |
+
|
150 |
+
Parameters
|
151 |
+
----------
|
152 |
+
y : ndarray
|
153 |
+
"""
|
154 |
+
return self.interval_y_pred.includes(y)
|
155 |
+
|
156 |
+
def loss(
|
157 |
+
self,
|
158 |
+
y_true,
|
159 |
+
raw_prediction,
|
160 |
+
sample_weight=None,
|
161 |
+
loss_out=None,
|
162 |
+
n_threads=1,
|
163 |
+
):
|
164 |
+
"""Compute the pointwise loss value for each input.
|
165 |
+
|
166 |
+
Parameters
|
167 |
+
----------
|
168 |
+
y_true : C-contiguous array of shape (n_samples,)
|
169 |
+
Observed, true target values.
|
170 |
+
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
|
171 |
+
shape (n_samples, n_classes)
|
172 |
+
Raw prediction values (in link space).
|
173 |
+
sample_weight : None or C-contiguous array of shape (n_samples,)
|
174 |
+
Sample weights.
|
175 |
+
loss_out : None or C-contiguous array of shape (n_samples,)
|
176 |
+
A location into which the result is stored. If None, a new array
|
177 |
+
might be created.
|
178 |
+
n_threads : int, default=1
|
179 |
+
Might use openmp thread parallelism.
|
180 |
+
|
181 |
+
Returns
|
182 |
+
-------
|
183 |
+
loss : array of shape (n_samples,)
|
184 |
+
Element-wise loss function.
|
185 |
+
"""
|
186 |
+
if loss_out is None:
|
187 |
+
loss_out = np.empty_like(y_true)
|
188 |
+
# Be graceful to shape (n_samples, 1) -> (n_samples,)
|
189 |
+
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
|
190 |
+
raw_prediction = raw_prediction.squeeze(1)
|
191 |
+
|
192 |
+
self.closs.loss(
|
193 |
+
y_true=y_true,
|
194 |
+
raw_prediction=raw_prediction,
|
195 |
+
sample_weight=sample_weight,
|
196 |
+
loss_out=loss_out,
|
197 |
+
n_threads=n_threads,
|
198 |
+
)
|
199 |
+
return loss_out
|
200 |
+
|
201 |
+
def loss_gradient(
|
202 |
+
self,
|
203 |
+
y_true,
|
204 |
+
raw_prediction,
|
205 |
+
sample_weight=None,
|
206 |
+
loss_out=None,
|
207 |
+
gradient_out=None,
|
208 |
+
n_threads=1,
|
209 |
+
):
|
210 |
+
"""Compute loss and gradient w.r.t. raw_prediction for each input.
|
211 |
+
|
212 |
+
Parameters
|
213 |
+
----------
|
214 |
+
y_true : C-contiguous array of shape (n_samples,)
|
215 |
+
Observed, true target values.
|
216 |
+
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
|
217 |
+
shape (n_samples, n_classes)
|
218 |
+
Raw prediction values (in link space).
|
219 |
+
sample_weight : None or C-contiguous array of shape (n_samples,)
|
220 |
+
Sample weights.
|
221 |
+
loss_out : None or C-contiguous array of shape (n_samples,)
|
222 |
+
A location into which the loss is stored. If None, a new array
|
223 |
+
might be created.
|
224 |
+
gradient_out : None or C-contiguous array of shape (n_samples,) or array \
|
225 |
+
of shape (n_samples, n_classes)
|
226 |
+
A location into which the gradient is stored. If None, a new array
|
227 |
+
might be created.
|
228 |
+
n_threads : int, default=1
|
229 |
+
Might use openmp thread parallelism.
|
230 |
+
|
231 |
+
Returns
|
232 |
+
-------
|
233 |
+
loss : array of shape (n_samples,)
|
234 |
+
Element-wise loss function.
|
235 |
+
|
236 |
+
gradient : array of shape (n_samples,) or (n_samples, n_classes)
|
237 |
+
Element-wise gradients.
|
238 |
+
"""
|
239 |
+
if loss_out is None:
|
240 |
+
if gradient_out is None:
|
241 |
+
loss_out = np.empty_like(y_true)
|
242 |
+
gradient_out = np.empty_like(raw_prediction)
|
243 |
+
else:
|
244 |
+
loss_out = np.empty_like(y_true, dtype=gradient_out.dtype)
|
245 |
+
elif gradient_out is None:
|
246 |
+
gradient_out = np.empty_like(raw_prediction, dtype=loss_out.dtype)
|
247 |
+
|
248 |
+
# Be graceful to shape (n_samples, 1) -> (n_samples,)
|
249 |
+
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
|
250 |
+
raw_prediction = raw_prediction.squeeze(1)
|
251 |
+
if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
|
252 |
+
gradient_out = gradient_out.squeeze(1)
|
253 |
+
|
254 |
+
self.closs.loss_gradient(
|
255 |
+
y_true=y_true,
|
256 |
+
raw_prediction=raw_prediction,
|
257 |
+
sample_weight=sample_weight,
|
258 |
+
loss_out=loss_out,
|
259 |
+
gradient_out=gradient_out,
|
260 |
+
n_threads=n_threads,
|
261 |
+
)
|
262 |
+
return loss_out, gradient_out
|
263 |
+
|
264 |
+
def gradient(
|
265 |
+
self,
|
266 |
+
y_true,
|
267 |
+
raw_prediction,
|
268 |
+
sample_weight=None,
|
269 |
+
gradient_out=None,
|
270 |
+
n_threads=1,
|
271 |
+
):
|
272 |
+
"""Compute gradient of loss w.r.t raw_prediction for each input.
|
273 |
+
|
274 |
+
Parameters
|
275 |
+
----------
|
276 |
+
y_true : C-contiguous array of shape (n_samples,)
|
277 |
+
Observed, true target values.
|
278 |
+
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
|
279 |
+
shape (n_samples, n_classes)
|
280 |
+
Raw prediction values (in link space).
|
281 |
+
sample_weight : None or C-contiguous array of shape (n_samples,)
|
282 |
+
Sample weights.
|
283 |
+
gradient_out : None or C-contiguous array of shape (n_samples,) or array \
|
284 |
+
of shape (n_samples, n_classes)
|
285 |
+
A location into which the result is stored. If None, a new array
|
286 |
+
might be created.
|
287 |
+
n_threads : int, default=1
|
288 |
+
Might use openmp thread parallelism.
|
289 |
+
|
290 |
+
Returns
|
291 |
+
-------
|
292 |
+
gradient : array of shape (n_samples,) or (n_samples, n_classes)
|
293 |
+
Element-wise gradients.
|
294 |
+
"""
|
295 |
+
if gradient_out is None:
|
296 |
+
gradient_out = np.empty_like(raw_prediction)
|
297 |
+
|
298 |
+
# Be graceful to shape (n_samples, 1) -> (n_samples,)
|
299 |
+
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
|
300 |
+
raw_prediction = raw_prediction.squeeze(1)
|
301 |
+
if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
|
302 |
+
gradient_out = gradient_out.squeeze(1)
|
303 |
+
|
304 |
+
self.closs.gradient(
|
305 |
+
y_true=y_true,
|
306 |
+
raw_prediction=raw_prediction,
|
307 |
+
sample_weight=sample_weight,
|
308 |
+
gradient_out=gradient_out,
|
309 |
+
n_threads=n_threads,
|
310 |
+
)
|
311 |
+
return gradient_out
|
312 |
+
|
313 |
+
def gradient_hessian(
|
314 |
+
self,
|
315 |
+
y_true,
|
316 |
+
raw_prediction,
|
317 |
+
sample_weight=None,
|
318 |
+
gradient_out=None,
|
319 |
+
hessian_out=None,
|
320 |
+
n_threads=1,
|
321 |
+
):
|
322 |
+
"""Compute gradient and hessian of loss w.r.t raw_prediction.
|
323 |
+
|
324 |
+
Parameters
|
325 |
+
----------
|
326 |
+
y_true : C-contiguous array of shape (n_samples,)
|
327 |
+
Observed, true target values.
|
328 |
+
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
|
329 |
+
shape (n_samples, n_classes)
|
330 |
+
Raw prediction values (in link space).
|
331 |
+
sample_weight : None or C-contiguous array of shape (n_samples,)
|
332 |
+
Sample weights.
|
333 |
+
gradient_out : None or C-contiguous array of shape (n_samples,) or array \
|
334 |
+
of shape (n_samples, n_classes)
|
335 |
+
A location into which the gradient is stored. If None, a new array
|
336 |
+
might be created.
|
337 |
+
hessian_out : None or C-contiguous array of shape (n_samples,) or array \
|
338 |
+
of shape (n_samples, n_classes)
|
339 |
+
A location into which the hessian is stored. If None, a new array
|
340 |
+
might be created.
|
341 |
+
n_threads : int, default=1
|
342 |
+
Might use openmp thread parallelism.
|
343 |
+
|
344 |
+
Returns
|
345 |
+
-------
|
346 |
+
gradient : arrays of shape (n_samples,) or (n_samples, n_classes)
|
347 |
+
Element-wise gradients.
|
348 |
+
|
349 |
+
hessian : arrays of shape (n_samples,) or (n_samples, n_classes)
|
350 |
+
Element-wise hessians.
|
351 |
+
"""
|
352 |
+
if gradient_out is None:
|
353 |
+
if hessian_out is None:
|
354 |
+
gradient_out = np.empty_like(raw_prediction)
|
355 |
+
hessian_out = np.empty_like(raw_prediction)
|
356 |
+
else:
|
357 |
+
gradient_out = np.empty_like(hessian_out)
|
358 |
+
elif hessian_out is None:
|
359 |
+
hessian_out = np.empty_like(gradient_out)
|
360 |
+
|
361 |
+
# Be graceful to shape (n_samples, 1) -> (n_samples,)
|
362 |
+
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
|
363 |
+
raw_prediction = raw_prediction.squeeze(1)
|
364 |
+
if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
|
365 |
+
gradient_out = gradient_out.squeeze(1)
|
366 |
+
if hessian_out.ndim == 2 and hessian_out.shape[1] == 1:
|
367 |
+
hessian_out = hessian_out.squeeze(1)
|
368 |
+
|
369 |
+
self.closs.gradient_hessian(
|
370 |
+
y_true=y_true,
|
371 |
+
raw_prediction=raw_prediction,
|
372 |
+
sample_weight=sample_weight,
|
373 |
+
gradient_out=gradient_out,
|
374 |
+
hessian_out=hessian_out,
|
375 |
+
n_threads=n_threads,
|
376 |
+
)
|
377 |
+
return gradient_out, hessian_out
|
378 |
+
|
379 |
+
def __call__(self, y_true, raw_prediction, sample_weight=None, n_threads=1):
|
380 |
+
"""Compute the weighted average loss.
|
381 |
+
|
382 |
+
Parameters
|
383 |
+
----------
|
384 |
+
y_true : C-contiguous array of shape (n_samples,)
|
385 |
+
Observed, true target values.
|
386 |
+
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
|
387 |
+
shape (n_samples, n_classes)
|
388 |
+
Raw prediction values (in link space).
|
389 |
+
sample_weight : None or C-contiguous array of shape (n_samples,)
|
390 |
+
Sample weights.
|
391 |
+
n_threads : int, default=1
|
392 |
+
Might use openmp thread parallelism.
|
393 |
+
|
394 |
+
Returns
|
395 |
+
-------
|
396 |
+
loss : float
|
397 |
+
Mean or averaged loss function.
|
398 |
+
"""
|
399 |
+
return np.average(
|
400 |
+
self.loss(
|
401 |
+
y_true=y_true,
|
402 |
+
raw_prediction=raw_prediction,
|
403 |
+
sample_weight=None,
|
404 |
+
loss_out=None,
|
405 |
+
n_threads=n_threads,
|
406 |
+
),
|
407 |
+
weights=sample_weight,
|
408 |
+
)
|
409 |
+
|
410 |
+
def fit_intercept_only(self, y_true, sample_weight=None):
|
411 |
+
"""Compute raw_prediction of an intercept-only model.
|
412 |
+
|
413 |
+
This can be used as initial estimates of predictions, i.e. before the
|
414 |
+
first iteration in fit.
|
415 |
+
|
416 |
+
Parameters
|
417 |
+
----------
|
418 |
+
y_true : array-like of shape (n_samples,)
|
419 |
+
Observed, true target values.
|
420 |
+
sample_weight : None or array of shape (n_samples,)
|
421 |
+
Sample weights.
|
422 |
+
|
423 |
+
Returns
|
424 |
+
-------
|
425 |
+
raw_prediction : numpy scalar or array of shape (n_classes,)
|
426 |
+
Raw predictions of an intercept-only model.
|
427 |
+
"""
|
428 |
+
# As default, take weighted average of the target over the samples
|
429 |
+
# axis=0 and then transform into link-scale (raw_prediction).
|
430 |
+
y_pred = np.average(y_true, weights=sample_weight, axis=0)
|
431 |
+
eps = 10 * np.finfo(y_pred.dtype).eps
|
432 |
+
|
433 |
+
if self.interval_y_pred.low == -np.inf:
|
434 |
+
a_min = None
|
435 |
+
elif self.interval_y_pred.low_inclusive:
|
436 |
+
a_min = self.interval_y_pred.low
|
437 |
+
else:
|
438 |
+
a_min = self.interval_y_pred.low + eps
|
439 |
+
|
440 |
+
if self.interval_y_pred.high == np.inf:
|
441 |
+
a_max = None
|
442 |
+
elif self.interval_y_pred.high_inclusive:
|
443 |
+
a_max = self.interval_y_pred.high
|
444 |
+
else:
|
445 |
+
a_max = self.interval_y_pred.high - eps
|
446 |
+
|
447 |
+
if a_min is None and a_max is None:
|
448 |
+
return self.link.link(y_pred)
|
449 |
+
else:
|
450 |
+
return self.link.link(np.clip(y_pred, a_min, a_max))
|
451 |
+
|
452 |
+
def constant_to_optimal_zero(self, y_true, sample_weight=None):
|
453 |
+
"""Calculate term dropped in loss.
|
454 |
+
|
455 |
+
With this term added, the loss of perfect predictions is zero.
|
456 |
+
"""
|
457 |
+
return np.zeros_like(y_true)
|
458 |
+
|
459 |
+
def init_gradient_and_hessian(self, n_samples, dtype=np.float64, order="F"):
|
460 |
+
"""Initialize arrays for gradients and hessians.
|
461 |
+
|
462 |
+
Unless hessians are constant, arrays are initialized with undefined values.
|
463 |
+
|
464 |
+
Parameters
|
465 |
+
----------
|
466 |
+
n_samples : int
|
467 |
+
The number of samples, usually passed to `fit()`.
|
468 |
+
dtype : {np.float64, np.float32}, default=np.float64
|
469 |
+
The dtype of the arrays gradient and hessian.
|
470 |
+
order : {'C', 'F'}, default='F'
|
471 |
+
Order of the arrays gradient and hessian. The default 'F' makes the arrays
|
472 |
+
contiguous along samples.
|
473 |
+
|
474 |
+
Returns
|
475 |
+
-------
|
476 |
+
gradient : C-contiguous array of shape (n_samples,) or array of shape \
|
477 |
+
(n_samples, n_classes)
|
478 |
+
Empty array (allocated but not initialized) to be used as argument
|
479 |
+
gradient_out.
|
480 |
+
hessian : C-contiguous array of shape (n_samples,), array of shape
|
481 |
+
(n_samples, n_classes) or shape (1,)
|
482 |
+
Empty (allocated but not initialized) array to be used as argument
|
483 |
+
hessian_out.
|
484 |
+
If constant_hessian is True (e.g. `HalfSquaredError`), the array is
|
485 |
+
initialized to ``1``.
|
486 |
+
"""
|
487 |
+
if dtype not in (np.float32, np.float64):
|
488 |
+
raise ValueError(
|
489 |
+
"Valid options for 'dtype' are np.float32 and np.float64. "
|
490 |
+
f"Got dtype={dtype} instead."
|
491 |
+
)
|
492 |
+
|
493 |
+
if self.is_multiclass:
|
494 |
+
shape = (n_samples, self.n_classes)
|
495 |
+
else:
|
496 |
+
shape = (n_samples,)
|
497 |
+
gradient = np.empty(shape=shape, dtype=dtype, order=order)
|
498 |
+
|
499 |
+
if self.constant_hessian:
|
500 |
+
# If the hessians are constant, we consider them equal to 1.
|
501 |
+
# - This is correct for HalfSquaredError
|
502 |
+
# - For AbsoluteError, hessians are actually 0, but they are
|
503 |
+
# always ignored anyway.
|
504 |
+
hessian = np.ones(shape=(1,), dtype=dtype)
|
505 |
+
else:
|
506 |
+
hessian = np.empty(shape=shape, dtype=dtype, order=order)
|
507 |
+
|
508 |
+
return gradient, hessian
|
509 |
+
|
510 |
+
|
511 |
+
# Note: Naturally, we would inherit in the following order
|
512 |
+
# class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss)
|
513 |
+
# But because of https://github.com/cython/cython/issues/4350 we
|
514 |
+
# set BaseLoss as the last one. This, of course, changes the MRO.
|
515 |
+
class HalfSquaredError(BaseLoss):
|
516 |
+
"""Half squared error with identity link, for regression.
|
517 |
+
|
518 |
+
Domain:
|
519 |
+
y_true and y_pred all real numbers
|
520 |
+
|
521 |
+
Link:
|
522 |
+
y_pred = raw_prediction
|
523 |
+
|
524 |
+
For a given sample x_i, half squared error is defined as::
|
525 |
+
|
526 |
+
loss(x_i) = 0.5 * (y_true_i - raw_prediction_i)**2
|
527 |
+
|
528 |
+
The factor of 0.5 simplifies the computation of gradients and results in a
|
529 |
+
unit hessian (and is consistent with what is done in LightGBM). It is also
|
530 |
+
half the Normal distribution deviance.
|
531 |
+
"""
|
532 |
+
|
533 |
+
def __init__(self, sample_weight=None):
|
534 |
+
super().__init__(closs=CyHalfSquaredError(), link=IdentityLink())
|
535 |
+
self.constant_hessian = sample_weight is None
|
536 |
+
|
537 |
+
|
538 |
+
class AbsoluteError(BaseLoss):
|
539 |
+
"""Absolute error with identity link, for regression.
|
540 |
+
|
541 |
+
Domain:
|
542 |
+
y_true and y_pred all real numbers
|
543 |
+
|
544 |
+
Link:
|
545 |
+
y_pred = raw_prediction
|
546 |
+
|
547 |
+
For a given sample x_i, the absolute error is defined as::
|
548 |
+
|
549 |
+
loss(x_i) = |y_true_i - raw_prediction_i|
|
550 |
+
|
551 |
+
Note that the exact hessian = 0 almost everywhere (except at one point, therefore
|
552 |
+
differentiable = False). Optimization routines like in HGBT, however, need a
|
553 |
+
hessian > 0. Therefore, we assign 1.
|
554 |
+
"""
|
555 |
+
|
556 |
+
differentiable = False
|
557 |
+
need_update_leaves_values = True
|
558 |
+
|
559 |
+
def __init__(self, sample_weight=None):
|
560 |
+
super().__init__(closs=CyAbsoluteError(), link=IdentityLink())
|
561 |
+
self.approx_hessian = True
|
562 |
+
self.constant_hessian = sample_weight is None
|
563 |
+
|
564 |
+
def fit_intercept_only(self, y_true, sample_weight=None):
|
565 |
+
"""Compute raw_prediction of an intercept-only model.
|
566 |
+
|
567 |
+
This is the weighted median of the target, i.e. over the samples
|
568 |
+
axis=0.
|
569 |
+
"""
|
570 |
+
if sample_weight is None:
|
571 |
+
return np.median(y_true, axis=0)
|
572 |
+
else:
|
573 |
+
return _weighted_percentile(y_true, sample_weight, 50)
|
574 |
+
|
575 |
+
|
576 |
+
class PinballLoss(BaseLoss):
|
577 |
+
"""Quantile loss aka pinball loss, for regression.
|
578 |
+
|
579 |
+
Domain:
|
580 |
+
y_true and y_pred all real numbers
|
581 |
+
quantile in (0, 1)
|
582 |
+
|
583 |
+
Link:
|
584 |
+
y_pred = raw_prediction
|
585 |
+
|
586 |
+
For a given sample x_i, the pinball loss is defined as::
|
587 |
+
|
588 |
+
loss(x_i) = rho_{quantile}(y_true_i - raw_prediction_i)
|
589 |
+
|
590 |
+
rho_{quantile}(u) = u * (quantile - 1_{u<0})
|
591 |
+
= -u *(1 - quantile) if u < 0
|
592 |
+
u * quantile if u >= 0
|
593 |
+
|
594 |
+
Note: 2 * PinballLoss(quantile=0.5) equals AbsoluteError().
|
595 |
+
|
596 |
+
Note that the exact hessian = 0 almost everywhere (except at one point, therefore
|
597 |
+
differentiable = False). Optimization routines like in HGBT, however, need a
|
598 |
+
hessian > 0. Therefore, we assign 1.
|
599 |
+
|
600 |
+
Additional Attributes
|
601 |
+
---------------------
|
602 |
+
quantile : float
|
603 |
+
The quantile level of the quantile to be estimated. Must be in range (0, 1).
|
604 |
+
"""
|
605 |
+
|
606 |
+
differentiable = False
|
607 |
+
need_update_leaves_values = True
|
608 |
+
|
609 |
+
def __init__(self, sample_weight=None, quantile=0.5):
|
610 |
+
check_scalar(
|
611 |
+
quantile,
|
612 |
+
"quantile",
|
613 |
+
target_type=numbers.Real,
|
614 |
+
min_val=0,
|
615 |
+
max_val=1,
|
616 |
+
include_boundaries="neither",
|
617 |
+
)
|
618 |
+
super().__init__(
|
619 |
+
closs=CyPinballLoss(quantile=float(quantile)),
|
620 |
+
link=IdentityLink(),
|
621 |
+
)
|
622 |
+
self.approx_hessian = True
|
623 |
+
self.constant_hessian = sample_weight is None
|
624 |
+
|
625 |
+
def fit_intercept_only(self, y_true, sample_weight=None):
|
626 |
+
"""Compute raw_prediction of an intercept-only model.
|
627 |
+
|
628 |
+
This is the weighted median of the target, i.e. over the samples
|
629 |
+
axis=0.
|
630 |
+
"""
|
631 |
+
if sample_weight is None:
|
632 |
+
return np.percentile(y_true, 100 * self.closs.quantile, axis=0)
|
633 |
+
else:
|
634 |
+
return _weighted_percentile(
|
635 |
+
y_true, sample_weight, 100 * self.closs.quantile
|
636 |
+
)
|
637 |
+
|
638 |
+
|
639 |
+
class HuberLoss(BaseLoss):
|
640 |
+
"""Huber loss, for regression.
|
641 |
+
|
642 |
+
Domain:
|
643 |
+
y_true and y_pred all real numbers
|
644 |
+
quantile in (0, 1)
|
645 |
+
|
646 |
+
Link:
|
647 |
+
y_pred = raw_prediction
|
648 |
+
|
649 |
+
For a given sample x_i, the Huber loss is defined as::
|
650 |
+
|
651 |
+
loss(x_i) = 1/2 * abserr**2 if abserr <= delta
|
652 |
+
delta * (abserr - delta/2) if abserr > delta
|
653 |
+
|
654 |
+
abserr = |y_true_i - raw_prediction_i|
|
655 |
+
delta = quantile(abserr, self.quantile)
|
656 |
+
|
657 |
+
Note: HuberLoss(quantile=1) equals HalfSquaredError and HuberLoss(quantile=0)
|
658 |
+
equals delta * (AbsoluteError() - delta/2).
|
659 |
+
|
660 |
+
Additional Attributes
|
661 |
+
---------------------
|
662 |
+
quantile : float
|
663 |
+
The quantile level which defines the breaking point `delta` to distinguish
|
664 |
+
between absolute error and squared error. Must be in range (0, 1).
|
665 |
+
|
666 |
+
Reference
|
667 |
+
---------
|
668 |
+
.. [1] Friedman, J.H. (2001). :doi:`Greedy function approximation: A gradient
|
669 |
+
boosting machine <10.1214/aos/1013203451>`.
|
670 |
+
Annals of Statistics, 29, 1189-1232.
|
671 |
+
"""
|
672 |
+
|
673 |
+
differentiable = False
|
674 |
+
need_update_leaves_values = True
|
675 |
+
|
676 |
+
def __init__(self, sample_weight=None, quantile=0.9, delta=0.5):
|
677 |
+
check_scalar(
|
678 |
+
quantile,
|
679 |
+
"quantile",
|
680 |
+
target_type=numbers.Real,
|
681 |
+
min_val=0,
|
682 |
+
max_val=1,
|
683 |
+
include_boundaries="neither",
|
684 |
+
)
|
685 |
+
self.quantile = quantile # This is better stored outside of Cython.
|
686 |
+
super().__init__(
|
687 |
+
closs=CyHuberLoss(delta=float(delta)),
|
688 |
+
link=IdentityLink(),
|
689 |
+
)
|
690 |
+
self.approx_hessian = True
|
691 |
+
self.constant_hessian = False
|
692 |
+
|
693 |
+
def fit_intercept_only(self, y_true, sample_weight=None):
|
694 |
+
"""Compute raw_prediction of an intercept-only model.
|
695 |
+
|
696 |
+
This is the weighted median of the target, i.e. over the samples
|
697 |
+
axis=0.
|
698 |
+
"""
|
699 |
+
# See formula before algo 4 in Friedman (2001), but we apply it to y_true,
|
700 |
+
# not to the residual y_true - raw_prediction. An estimator like
|
701 |
+
# HistGradientBoostingRegressor might then call it on the residual, e.g.
|
702 |
+
# fit_intercept_only(y_true - raw_prediction).
|
703 |
+
if sample_weight is None:
|
704 |
+
median = np.percentile(y_true, 50, axis=0)
|
705 |
+
else:
|
706 |
+
median = _weighted_percentile(y_true, sample_weight, 50)
|
707 |
+
diff = y_true - median
|
708 |
+
term = np.sign(diff) * np.minimum(self.closs.delta, np.abs(diff))
|
709 |
+
return median + np.average(term, weights=sample_weight)
|
710 |
+
|
711 |
+
|
712 |
+
class HalfPoissonLoss(BaseLoss):
|
713 |
+
"""Half Poisson deviance loss with log-link, for regression.
|
714 |
+
|
715 |
+
Domain:
|
716 |
+
y_true in non-negative real numbers
|
717 |
+
y_pred in positive real numbers
|
718 |
+
|
719 |
+
Link:
|
720 |
+
y_pred = exp(raw_prediction)
|
721 |
+
|
722 |
+
For a given sample x_i, half the Poisson deviance is defined as::
|
723 |
+
|
724 |
+
loss(x_i) = y_true_i * log(y_true_i/exp(raw_prediction_i))
|
725 |
+
- y_true_i + exp(raw_prediction_i)
|
726 |
+
|
727 |
+
Half the Poisson deviance is actually the negative log-likelihood up to
|
728 |
+
constant terms (not involving raw_prediction) and simplifies the
|
729 |
+
computation of the gradients.
|
730 |
+
We also skip the constant term `y_true_i * log(y_true_i) - y_true_i`.
|
731 |
+
"""
|
732 |
+
|
733 |
+
def __init__(self, sample_weight=None):
|
734 |
+
super().__init__(closs=CyHalfPoissonLoss(), link=LogLink())
|
735 |
+
self.interval_y_true = Interval(0, np.inf, True, False)
|
736 |
+
|
737 |
+
def constant_to_optimal_zero(self, y_true, sample_weight=None):
|
738 |
+
term = xlogy(y_true, y_true) - y_true
|
739 |
+
if sample_weight is not None:
|
740 |
+
term *= sample_weight
|
741 |
+
return term
|
742 |
+
|
743 |
+
|
744 |
+
class HalfGammaLoss(BaseLoss):
|
745 |
+
"""Half Gamma deviance loss with log-link, for regression.
|
746 |
+
|
747 |
+
Domain:
|
748 |
+
y_true and y_pred in positive real numbers
|
749 |
+
|
750 |
+
Link:
|
751 |
+
y_pred = exp(raw_prediction)
|
752 |
+
|
753 |
+
For a given sample x_i, half Gamma deviance loss is defined as::
|
754 |
+
|
755 |
+
loss(x_i) = log(exp(raw_prediction_i)/y_true_i)
|
756 |
+
+ y_true/exp(raw_prediction_i) - 1
|
757 |
+
|
758 |
+
Half the Gamma deviance is actually proportional to the negative log-
|
759 |
+
likelihood up to constant terms (not involving raw_prediction) and
|
760 |
+
simplifies the computation of the gradients.
|
761 |
+
We also skip the constant term `-log(y_true_i) - 1`.
|
762 |
+
"""
|
763 |
+
|
764 |
+
def __init__(self, sample_weight=None):
|
765 |
+
super().__init__(closs=CyHalfGammaLoss(), link=LogLink())
|
766 |
+
self.interval_y_true = Interval(0, np.inf, False, False)
|
767 |
+
|
768 |
+
def constant_to_optimal_zero(self, y_true, sample_weight=None):
|
769 |
+
term = -np.log(y_true) - 1
|
770 |
+
if sample_weight is not None:
|
771 |
+
term *= sample_weight
|
772 |
+
return term
|
773 |
+
|
774 |
+
|
775 |
+
class HalfTweedieLoss(BaseLoss):
|
776 |
+
"""Half Tweedie deviance loss with log-link, for regression.
|
777 |
+
|
778 |
+
Domain:
|
779 |
+
y_true in real numbers for power <= 0
|
780 |
+
y_true in non-negative real numbers for 0 < power < 2
|
781 |
+
y_true in positive real numbers for 2 <= power
|
782 |
+
y_pred in positive real numbers
|
783 |
+
power in real numbers
|
784 |
+
|
785 |
+
Link:
|
786 |
+
y_pred = exp(raw_prediction)
|
787 |
+
|
788 |
+
For a given sample x_i, half Tweedie deviance loss with p=power is defined
|
789 |
+
as::
|
790 |
+
|
791 |
+
loss(x_i) = max(y_true_i, 0)**(2-p) / (1-p) / (2-p)
|
792 |
+
- y_true_i * exp(raw_prediction_i)**(1-p) / (1-p)
|
793 |
+
+ exp(raw_prediction_i)**(2-p) / (2-p)
|
794 |
+
|
795 |
+
Taking the limits for p=0, 1, 2 gives HalfSquaredError with a log link,
|
796 |
+
HalfPoissonLoss and HalfGammaLoss.
|
797 |
+
|
798 |
+
We also skip constant terms, but those are different for p=0, 1, 2.
|
799 |
+
Therefore, the loss is not continuous in `power`.
|
800 |
+
|
801 |
+
Note furthermore that although no Tweedie distribution exists for
|
802 |
+
0 < power < 1, it still gives a strictly consistent scoring function for
|
803 |
+
the expectation.
|
804 |
+
"""
|
805 |
+
|
806 |
+
def __init__(self, sample_weight=None, power=1.5):
|
807 |
+
super().__init__(
|
808 |
+
closs=CyHalfTweedieLoss(power=float(power)),
|
809 |
+
link=LogLink(),
|
810 |
+
)
|
811 |
+
if self.closs.power <= 0:
|
812 |
+
self.interval_y_true = Interval(-np.inf, np.inf, False, False)
|
813 |
+
elif self.closs.power < 2:
|
814 |
+
self.interval_y_true = Interval(0, np.inf, True, False)
|
815 |
+
else:
|
816 |
+
self.interval_y_true = Interval(0, np.inf, False, False)
|
817 |
+
|
818 |
+
def constant_to_optimal_zero(self, y_true, sample_weight=None):
|
819 |
+
if self.closs.power == 0:
|
820 |
+
return HalfSquaredError().constant_to_optimal_zero(
|
821 |
+
y_true=y_true, sample_weight=sample_weight
|
822 |
+
)
|
823 |
+
elif self.closs.power == 1:
|
824 |
+
return HalfPoissonLoss().constant_to_optimal_zero(
|
825 |
+
y_true=y_true, sample_weight=sample_weight
|
826 |
+
)
|
827 |
+
elif self.closs.power == 2:
|
828 |
+
return HalfGammaLoss().constant_to_optimal_zero(
|
829 |
+
y_true=y_true, sample_weight=sample_weight
|
830 |
+
)
|
831 |
+
else:
|
832 |
+
p = self.closs.power
|
833 |
+
term = np.power(np.maximum(y_true, 0), 2 - p) / (1 - p) / (2 - p)
|
834 |
+
if sample_weight is not None:
|
835 |
+
term *= sample_weight
|
836 |
+
return term
|
837 |
+
|
838 |
+
|
839 |
+
class HalfTweedieLossIdentity(BaseLoss):
|
840 |
+
"""Half Tweedie deviance loss with identity link, for regression.
|
841 |
+
|
842 |
+
Domain:
|
843 |
+
y_true in real numbers for power <= 0
|
844 |
+
y_true in non-negative real numbers for 0 < power < 2
|
845 |
+
y_true in positive real numbers for 2 <= power
|
846 |
+
y_pred in positive real numbers for power != 0
|
847 |
+
y_pred in real numbers for power = 0
|
848 |
+
power in real numbers
|
849 |
+
|
850 |
+
Link:
|
851 |
+
y_pred = raw_prediction
|
852 |
+
|
853 |
+
For a given sample x_i, half Tweedie deviance loss with p=power is defined
|
854 |
+
as::
|
855 |
+
|
856 |
+
loss(x_i) = max(y_true_i, 0)**(2-p) / (1-p) / (2-p)
|
857 |
+
- y_true_i * raw_prediction_i**(1-p) / (1-p)
|
858 |
+
+ raw_prediction_i**(2-p) / (2-p)
|
859 |
+
|
860 |
+
Note that the minimum value of this loss is 0.
|
861 |
+
|
862 |
+
Note furthermore that although no Tweedie distribution exists for
|
863 |
+
0 < power < 1, it still gives a strictly consistent scoring function for
|
864 |
+
the expectation.
|
865 |
+
"""
|
866 |
+
|
867 |
+
def __init__(self, sample_weight=None, power=1.5):
|
868 |
+
super().__init__(
|
869 |
+
closs=CyHalfTweedieLossIdentity(power=float(power)),
|
870 |
+
link=IdentityLink(),
|
871 |
+
)
|
872 |
+
if self.closs.power <= 0:
|
873 |
+
self.interval_y_true = Interval(-np.inf, np.inf, False, False)
|
874 |
+
elif self.closs.power < 2:
|
875 |
+
self.interval_y_true = Interval(0, np.inf, True, False)
|
876 |
+
else:
|
877 |
+
self.interval_y_true = Interval(0, np.inf, False, False)
|
878 |
+
|
879 |
+
if self.closs.power == 0:
|
880 |
+
self.interval_y_pred = Interval(-np.inf, np.inf, False, False)
|
881 |
+
else:
|
882 |
+
self.interval_y_pred = Interval(0, np.inf, False, False)
|
883 |
+
|
884 |
+
|
885 |
+
class HalfBinomialLoss(BaseLoss):
|
886 |
+
"""Half Binomial deviance loss with logit link, for binary classification.
|
887 |
+
|
888 |
+
This is also know as binary cross entropy, log-loss and logistic loss.
|
889 |
+
|
890 |
+
Domain:
|
891 |
+
y_true in [0, 1], i.e. regression on the unit interval
|
892 |
+
y_pred in (0, 1), i.e. boundaries excluded
|
893 |
+
|
894 |
+
Link:
|
895 |
+
y_pred = expit(raw_prediction)
|
896 |
+
|
897 |
+
For a given sample x_i, half Binomial deviance is defined as the negative
|
898 |
+
log-likelihood of the Binomial/Bernoulli distribution and can be expressed
|
899 |
+
as::
|
900 |
+
|
901 |
+
loss(x_i) = log(1 + exp(raw_pred_i)) - y_true_i * raw_pred_i
|
902 |
+
|
903 |
+
See The Elements of Statistical Learning, by Hastie, Tibshirani, Friedman,
|
904 |
+
section 4.4.1 (about logistic regression).
|
905 |
+
|
906 |
+
Note that the formulation works for classification, y = {0, 1}, as well as
|
907 |
+
logistic regression, y = [0, 1].
|
908 |
+
If you add `constant_to_optimal_zero` to the loss, you get half the
|
909 |
+
Bernoulli/binomial deviance.
|
910 |
+
|
911 |
+
More details: Inserting the predicted probability y_pred = expit(raw_prediction)
|
912 |
+
in the loss gives the well known::
|
913 |
+
|
914 |
+
loss(x_i) = - y_true_i * log(y_pred_i) - (1 - y_true_i) * log(1 - y_pred_i)
|
915 |
+
"""
|
916 |
+
|
917 |
+
def __init__(self, sample_weight=None):
|
918 |
+
super().__init__(
|
919 |
+
closs=CyHalfBinomialLoss(),
|
920 |
+
link=LogitLink(),
|
921 |
+
n_classes=2,
|
922 |
+
)
|
923 |
+
self.interval_y_true = Interval(0, 1, True, True)
|
924 |
+
|
925 |
+
def constant_to_optimal_zero(self, y_true, sample_weight=None):
|
926 |
+
# This is non-zero only if y_true is neither 0 nor 1.
|
927 |
+
term = xlogy(y_true, y_true) + xlogy(1 - y_true, 1 - y_true)
|
928 |
+
if sample_weight is not None:
|
929 |
+
term *= sample_weight
|
930 |
+
return term
|
931 |
+
|
932 |
+
def predict_proba(self, raw_prediction):
|
933 |
+
"""Predict probabilities.
|
934 |
+
|
935 |
+
Parameters
|
936 |
+
----------
|
937 |
+
raw_prediction : array of shape (n_samples,) or (n_samples, 1)
|
938 |
+
Raw prediction values (in link space).
|
939 |
+
|
940 |
+
Returns
|
941 |
+
-------
|
942 |
+
proba : array of shape (n_samples, 2)
|
943 |
+
Element-wise class probabilities.
|
944 |
+
"""
|
945 |
+
# Be graceful to shape (n_samples, 1) -> (n_samples,)
|
946 |
+
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
|
947 |
+
raw_prediction = raw_prediction.squeeze(1)
|
948 |
+
proba = np.empty((raw_prediction.shape[0], 2), dtype=raw_prediction.dtype)
|
949 |
+
proba[:, 1] = self.link.inverse(raw_prediction)
|
950 |
+
proba[:, 0] = 1 - proba[:, 1]
|
951 |
+
return proba
|
952 |
+
|
953 |
+
|
954 |
+
class HalfMultinomialLoss(BaseLoss):
|
955 |
+
"""Categorical cross-entropy loss, for multiclass classification.
|
956 |
+
|
957 |
+
Domain:
|
958 |
+
y_true in {0, 1, 2, 3, .., n_classes - 1}
|
959 |
+
y_pred has n_classes elements, each element in (0, 1)
|
960 |
+
|
961 |
+
Link:
|
962 |
+
y_pred = softmax(raw_prediction)
|
963 |
+
|
964 |
+
Note: We assume y_true to be already label encoded. The inverse link is
|
965 |
+
softmax. But the full link function is the symmetric multinomial logit
|
966 |
+
function.
|
967 |
+
|
968 |
+
For a given sample x_i, the categorical cross-entropy loss is defined as
|
969 |
+
the negative log-likelihood of the multinomial distribution, it
|
970 |
+
generalizes the binary cross-entropy to more than 2 classes::
|
971 |
+
|
972 |
+
loss_i = log(sum(exp(raw_pred_{i, k}), k=0..n_classes-1))
|
973 |
+
- sum(y_true_{i, k} * raw_pred_{i, k}, k=0..n_classes-1)
|
974 |
+
|
975 |
+
See [1].
|
976 |
+
|
977 |
+
Note that for the hessian, we calculate only the diagonal part in the
|
978 |
+
classes: If the full hessian for classes k and l and sample i is H_i_k_l,
|
979 |
+
we calculate H_i_k_k, i.e. k=l.
|
980 |
+
|
981 |
+
Reference
|
982 |
+
---------
|
983 |
+
.. [1] :arxiv:`Simon, Noah, J. Friedman and T. Hastie.
|
984 |
+
"A Blockwise Descent Algorithm for Group-penalized Multiresponse and
|
985 |
+
Multinomial Regression".
|
986 |
+
<1311.6529>`
|
987 |
+
"""
|
988 |
+
|
989 |
+
is_multiclass = True
|
990 |
+
|
991 |
+
def __init__(self, sample_weight=None, n_classes=3):
|
992 |
+
super().__init__(
|
993 |
+
closs=CyHalfMultinomialLoss(),
|
994 |
+
link=MultinomialLogit(),
|
995 |
+
n_classes=n_classes,
|
996 |
+
)
|
997 |
+
self.interval_y_true = Interval(0, np.inf, True, False)
|
998 |
+
self.interval_y_pred = Interval(0, 1, False, False)
|
999 |
+
|
1000 |
+
def in_y_true_range(self, y):
|
1001 |
+
"""Return True if y is in the valid range of y_true.
|
1002 |
+
|
1003 |
+
Parameters
|
1004 |
+
----------
|
1005 |
+
y : ndarray
|
1006 |
+
"""
|
1007 |
+
return self.interval_y_true.includes(y) and np.all(y.astype(int) == y)
|
1008 |
+
|
1009 |
+
def fit_intercept_only(self, y_true, sample_weight=None):
|
1010 |
+
"""Compute raw_prediction of an intercept-only model.
|
1011 |
+
|
1012 |
+
This is the softmax of the weighted average of the target, i.e. over
|
1013 |
+
the samples axis=0.
|
1014 |
+
"""
|
1015 |
+
out = np.zeros(self.n_classes, dtype=y_true.dtype)
|
1016 |
+
eps = np.finfo(y_true.dtype).eps
|
1017 |
+
for k in range(self.n_classes):
|
1018 |
+
out[k] = np.average(y_true == k, weights=sample_weight, axis=0)
|
1019 |
+
out[k] = np.clip(out[k], eps, 1 - eps)
|
1020 |
+
return self.link.link(out[None, :]).reshape(-1)
|
1021 |
+
|
1022 |
+
def predict_proba(self, raw_prediction):
|
1023 |
+
"""Predict probabilities.
|
1024 |
+
|
1025 |
+
Parameters
|
1026 |
+
----------
|
1027 |
+
raw_prediction : array of shape (n_samples, n_classes)
|
1028 |
+
Raw prediction values (in link space).
|
1029 |
+
|
1030 |
+
Returns
|
1031 |
+
-------
|
1032 |
+
proba : array of shape (n_samples, n_classes)
|
1033 |
+
Element-wise class probabilities.
|
1034 |
+
"""
|
1035 |
+
return self.link.inverse(raw_prediction)
|
1036 |
+
|
1037 |
+
def gradient_proba(
|
1038 |
+
self,
|
1039 |
+
y_true,
|
1040 |
+
raw_prediction,
|
1041 |
+
sample_weight=None,
|
1042 |
+
gradient_out=None,
|
1043 |
+
proba_out=None,
|
1044 |
+
n_threads=1,
|
1045 |
+
):
|
1046 |
+
"""Compute gradient and class probabilities fow raw_prediction.
|
1047 |
+
|
1048 |
+
Parameters
|
1049 |
+
----------
|
1050 |
+
y_true : C-contiguous array of shape (n_samples,)
|
1051 |
+
Observed, true target values.
|
1052 |
+
raw_prediction : array of shape (n_samples, n_classes)
|
1053 |
+
Raw prediction values (in link space).
|
1054 |
+
sample_weight : None or C-contiguous array of shape (n_samples,)
|
1055 |
+
Sample weights.
|
1056 |
+
gradient_out : None or array of shape (n_samples, n_classes)
|
1057 |
+
A location into which the gradient is stored. If None, a new array
|
1058 |
+
might be created.
|
1059 |
+
proba_out : None or array of shape (n_samples, n_classes)
|
1060 |
+
A location into which the class probabilities are stored. If None,
|
1061 |
+
a new array might be created.
|
1062 |
+
n_threads : int, default=1
|
1063 |
+
Might use openmp thread parallelism.
|
1064 |
+
|
1065 |
+
Returns
|
1066 |
+
-------
|
1067 |
+
gradient : array of shape (n_samples, n_classes)
|
1068 |
+
Element-wise gradients.
|
1069 |
+
|
1070 |
+
proba : array of shape (n_samples, n_classes)
|
1071 |
+
Element-wise class probabilities.
|
1072 |
+
"""
|
1073 |
+
if gradient_out is None:
|
1074 |
+
if proba_out is None:
|
1075 |
+
gradient_out = np.empty_like(raw_prediction)
|
1076 |
+
proba_out = np.empty_like(raw_prediction)
|
1077 |
+
else:
|
1078 |
+
gradient_out = np.empty_like(proba_out)
|
1079 |
+
elif proba_out is None:
|
1080 |
+
proba_out = np.empty_like(gradient_out)
|
1081 |
+
|
1082 |
+
self.closs.gradient_proba(
|
1083 |
+
y_true=y_true,
|
1084 |
+
raw_prediction=raw_prediction,
|
1085 |
+
sample_weight=sample_weight,
|
1086 |
+
gradient_out=gradient_out,
|
1087 |
+
proba_out=proba_out,
|
1088 |
+
n_threads=n_threads,
|
1089 |
+
)
|
1090 |
+
return gradient_out, proba_out
|
1091 |
+
|
1092 |
+
|
1093 |
+
class ExponentialLoss(BaseLoss):
|
1094 |
+
"""Exponential loss with (half) logit link, for binary classification.
|
1095 |
+
|
1096 |
+
This is also know as boosting loss.
|
1097 |
+
|
1098 |
+
Domain:
|
1099 |
+
y_true in [0, 1], i.e. regression on the unit interval
|
1100 |
+
y_pred in (0, 1), i.e. boundaries excluded
|
1101 |
+
|
1102 |
+
Link:
|
1103 |
+
y_pred = expit(2 * raw_prediction)
|
1104 |
+
|
1105 |
+
For a given sample x_i, the exponential loss is defined as::
|
1106 |
+
|
1107 |
+
loss(x_i) = y_true_i * exp(-raw_pred_i)) + (1 - y_true_i) * exp(raw_pred_i)
|
1108 |
+
|
1109 |
+
See:
|
1110 |
+
- J. Friedman, T. Hastie, R. Tibshirani.
|
1111 |
+
"Additive logistic regression: a statistical view of boosting (With discussion
|
1112 |
+
and a rejoinder by the authors)." Ann. Statist. 28 (2) 337 - 407, April 2000.
|
1113 |
+
https://doi.org/10.1214/aos/1016218223
|
1114 |
+
- A. Buja, W. Stuetzle, Y. Shen. (2005).
|
1115 |
+
"Loss Functions for Binary Class Probability Estimation and Classification:
|
1116 |
+
Structure and Applications."
|
1117 |
+
|
1118 |
+
Note that the formulation works for classification, y = {0, 1}, as well as
|
1119 |
+
"exponential logistic" regression, y = [0, 1].
|
1120 |
+
Note that this is a proper scoring rule, but without it's canonical link.
|
1121 |
+
|
1122 |
+
More details: Inserting the predicted probability
|
1123 |
+
y_pred = expit(2 * raw_prediction) in the loss gives::
|
1124 |
+
|
1125 |
+
loss(x_i) = y_true_i * sqrt((1 - y_pred_i) / y_pred_i)
|
1126 |
+
+ (1 - y_true_i) * sqrt(y_pred_i / (1 - y_pred_i))
|
1127 |
+
"""
|
1128 |
+
|
1129 |
+
def __init__(self, sample_weight=None):
|
1130 |
+
super().__init__(
|
1131 |
+
closs=CyExponentialLoss(),
|
1132 |
+
link=HalfLogitLink(),
|
1133 |
+
n_classes=2,
|
1134 |
+
)
|
1135 |
+
self.interval_y_true = Interval(0, 1, True, True)
|
1136 |
+
|
1137 |
+
def constant_to_optimal_zero(self, y_true, sample_weight=None):
|
1138 |
+
# This is non-zero only if y_true is neither 0 nor 1.
|
1139 |
+
term = -2 * np.sqrt(y_true * (1 - y_true))
|
1140 |
+
if sample_weight is not None:
|
1141 |
+
term *= sample_weight
|
1142 |
+
return term
|
1143 |
+
|
1144 |
+
def predict_proba(self, raw_prediction):
|
1145 |
+
"""Predict probabilities.
|
1146 |
+
|
1147 |
+
Parameters
|
1148 |
+
----------
|
1149 |
+
raw_prediction : array of shape (n_samples,) or (n_samples, 1)
|
1150 |
+
Raw prediction values (in link space).
|
1151 |
+
|
1152 |
+
Returns
|
1153 |
+
-------
|
1154 |
+
proba : array of shape (n_samples, 2)
|
1155 |
+
Element-wise class probabilities.
|
1156 |
+
"""
|
1157 |
+
# Be graceful to shape (n_samples, 1) -> (n_samples,)
|
1158 |
+
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
|
1159 |
+
raw_prediction = raw_prediction.squeeze(1)
|
1160 |
+
proba = np.empty((raw_prediction.shape[0], 2), dtype=raw_prediction.dtype)
|
1161 |
+
proba[:, 1] = self.link.inverse(raw_prediction)
|
1162 |
+
proba[:, 0] = 1 - proba[:, 1]
|
1163 |
+
return proba
|
1164 |
+
|
1165 |
+
|
1166 |
+
_LOSSES = {
|
1167 |
+
"squared_error": HalfSquaredError,
|
1168 |
+
"absolute_error": AbsoluteError,
|
1169 |
+
"pinball_loss": PinballLoss,
|
1170 |
+
"huber_loss": HuberLoss,
|
1171 |
+
"poisson_loss": HalfPoissonLoss,
|
1172 |
+
"gamma_loss": HalfGammaLoss,
|
1173 |
+
"tweedie_loss": HalfTweedieLoss,
|
1174 |
+
"binomial_loss": HalfBinomialLoss,
|
1175 |
+
"multinomial_loss": HalfMultinomialLoss,
|
1176 |
+
"exponential_loss": ExponentialLoss,
|
1177 |
+
}
|
venv/lib/python3.10/site-packages/sklearn/_loss/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/_loss/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/_loss/tests/__pycache__/test_link.cpython-310.pyc
ADDED
Binary file (2.66 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/_loss/tests/__pycache__/test_loss.cpython-310.pyc
ADDED
Binary file (27 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/_loss/tests/test_link.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
from numpy.testing import assert_allclose, assert_array_equal
|
4 |
+
|
5 |
+
from sklearn._loss.link import (
|
6 |
+
_LINKS,
|
7 |
+
HalfLogitLink,
|
8 |
+
Interval,
|
9 |
+
MultinomialLogit,
|
10 |
+
_inclusive_low_high,
|
11 |
+
)
|
12 |
+
|
13 |
+
LINK_FUNCTIONS = list(_LINKS.values())
|
14 |
+
|
15 |
+
|
16 |
+
def test_interval_raises():
|
17 |
+
"""Test that interval with low > high raises ValueError."""
|
18 |
+
with pytest.raises(
|
19 |
+
ValueError, match="One must have low <= high; got low=1, high=0."
|
20 |
+
):
|
21 |
+
Interval(1, 0, False, False)
|
22 |
+
|
23 |
+
|
24 |
+
@pytest.mark.parametrize(
|
25 |
+
"interval",
|
26 |
+
[
|
27 |
+
Interval(0, 1, False, False),
|
28 |
+
Interval(0, 1, False, True),
|
29 |
+
Interval(0, 1, True, False),
|
30 |
+
Interval(0, 1, True, True),
|
31 |
+
Interval(-np.inf, np.inf, False, False),
|
32 |
+
Interval(-np.inf, np.inf, False, True),
|
33 |
+
Interval(-np.inf, np.inf, True, False),
|
34 |
+
Interval(-np.inf, np.inf, True, True),
|
35 |
+
Interval(-10, -1, False, False),
|
36 |
+
Interval(-10, -1, False, True),
|
37 |
+
Interval(-10, -1, True, False),
|
38 |
+
Interval(-10, -1, True, True),
|
39 |
+
],
|
40 |
+
)
|
41 |
+
def test_is_in_range(interval):
|
42 |
+
# make sure low and high are always within the interval, used for linspace
|
43 |
+
low, high = _inclusive_low_high(interval)
|
44 |
+
|
45 |
+
x = np.linspace(low, high, num=10)
|
46 |
+
assert interval.includes(x)
|
47 |
+
|
48 |
+
# x contains lower bound
|
49 |
+
assert interval.includes(np.r_[x, interval.low]) == interval.low_inclusive
|
50 |
+
|
51 |
+
# x contains upper bound
|
52 |
+
assert interval.includes(np.r_[x, interval.high]) == interval.high_inclusive
|
53 |
+
|
54 |
+
# x contains upper and lower bound
|
55 |
+
assert interval.includes(np.r_[x, interval.low, interval.high]) == (
|
56 |
+
interval.low_inclusive and interval.high_inclusive
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
@pytest.mark.parametrize("link", LINK_FUNCTIONS)
|
61 |
+
def test_link_inverse_identity(link, global_random_seed):
|
62 |
+
# Test that link of inverse gives identity.
|
63 |
+
rng = np.random.RandomState(global_random_seed)
|
64 |
+
link = link()
|
65 |
+
n_samples, n_classes = 100, None
|
66 |
+
# The values for `raw_prediction` are limited from -20 to 20 because in the
|
67 |
+
# class `LogitLink` the term `expit(x)` comes very close to 1 for large
|
68 |
+
# positive x and therefore loses precision.
|
69 |
+
if link.is_multiclass:
|
70 |
+
n_classes = 10
|
71 |
+
raw_prediction = rng.uniform(low=-20, high=20, size=(n_samples, n_classes))
|
72 |
+
if isinstance(link, MultinomialLogit):
|
73 |
+
raw_prediction = link.symmetrize_raw_prediction(raw_prediction)
|
74 |
+
elif isinstance(link, HalfLogitLink):
|
75 |
+
raw_prediction = rng.uniform(low=-10, high=10, size=(n_samples))
|
76 |
+
else:
|
77 |
+
raw_prediction = rng.uniform(low=-20, high=20, size=(n_samples))
|
78 |
+
|
79 |
+
assert_allclose(link.link(link.inverse(raw_prediction)), raw_prediction)
|
80 |
+
y_pred = link.inverse(raw_prediction)
|
81 |
+
assert_allclose(link.inverse(link.link(y_pred)), y_pred)
|
82 |
+
|
83 |
+
|
84 |
+
@pytest.mark.parametrize("link", LINK_FUNCTIONS)
|
85 |
+
def test_link_out_argument(link):
|
86 |
+
# Test that out argument gets assigned the result.
|
87 |
+
rng = np.random.RandomState(42)
|
88 |
+
link = link()
|
89 |
+
n_samples, n_classes = 100, None
|
90 |
+
if link.is_multiclass:
|
91 |
+
n_classes = 10
|
92 |
+
raw_prediction = rng.normal(loc=0, scale=10, size=(n_samples, n_classes))
|
93 |
+
if isinstance(link, MultinomialLogit):
|
94 |
+
raw_prediction = link.symmetrize_raw_prediction(raw_prediction)
|
95 |
+
else:
|
96 |
+
# So far, the valid interval of raw_prediction is (-inf, inf) and
|
97 |
+
# we do not need to distinguish.
|
98 |
+
raw_prediction = rng.uniform(low=-10, high=10, size=(n_samples))
|
99 |
+
|
100 |
+
y_pred = link.inverse(raw_prediction, out=None)
|
101 |
+
out = np.empty_like(raw_prediction)
|
102 |
+
y_pred_2 = link.inverse(raw_prediction, out=out)
|
103 |
+
assert_allclose(y_pred, out)
|
104 |
+
assert_array_equal(out, y_pred_2)
|
105 |
+
assert np.shares_memory(out, y_pred_2)
|
106 |
+
|
107 |
+
out = np.empty_like(y_pred)
|
108 |
+
raw_prediction_2 = link.link(y_pred, out=out)
|
109 |
+
assert_allclose(raw_prediction, out)
|
110 |
+
assert_array_equal(out, raw_prediction_2)
|
111 |
+
assert np.shares_memory(out, raw_prediction_2)
|
venv/lib/python3.10/site-packages/sklearn/_loss/tests/test_loss.py
ADDED
@@ -0,0 +1,1320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
from numpy.testing import assert_allclose, assert_array_equal
|
6 |
+
from pytest import approx
|
7 |
+
from scipy.optimize import (
|
8 |
+
LinearConstraint,
|
9 |
+
minimize,
|
10 |
+
minimize_scalar,
|
11 |
+
newton,
|
12 |
+
)
|
13 |
+
from scipy.special import logsumexp
|
14 |
+
|
15 |
+
from sklearn._loss.link import IdentityLink, _inclusive_low_high
|
16 |
+
from sklearn._loss.loss import (
|
17 |
+
_LOSSES,
|
18 |
+
AbsoluteError,
|
19 |
+
BaseLoss,
|
20 |
+
HalfBinomialLoss,
|
21 |
+
HalfGammaLoss,
|
22 |
+
HalfMultinomialLoss,
|
23 |
+
HalfPoissonLoss,
|
24 |
+
HalfSquaredError,
|
25 |
+
HalfTweedieLoss,
|
26 |
+
HalfTweedieLossIdentity,
|
27 |
+
HuberLoss,
|
28 |
+
PinballLoss,
|
29 |
+
)
|
30 |
+
from sklearn.utils import _IS_WASM, assert_all_finite
|
31 |
+
from sklearn.utils._testing import create_memmap_backed_data, skip_if_32bit
|
32 |
+
|
33 |
+
ALL_LOSSES = list(_LOSSES.values())
|
34 |
+
|
35 |
+
LOSS_INSTANCES = [loss() for loss in ALL_LOSSES]
|
36 |
+
# HalfTweedieLoss(power=1.5) is already there as default
|
37 |
+
LOSS_INSTANCES += [
|
38 |
+
PinballLoss(quantile=0.25),
|
39 |
+
HuberLoss(quantile=0.75),
|
40 |
+
HalfTweedieLoss(power=-1.5),
|
41 |
+
HalfTweedieLoss(power=0),
|
42 |
+
HalfTweedieLoss(power=1),
|
43 |
+
HalfTweedieLoss(power=2),
|
44 |
+
HalfTweedieLoss(power=3.0),
|
45 |
+
HalfTweedieLossIdentity(power=0),
|
46 |
+
HalfTweedieLossIdentity(power=1),
|
47 |
+
HalfTweedieLossIdentity(power=2),
|
48 |
+
HalfTweedieLossIdentity(power=3.0),
|
49 |
+
]
|
50 |
+
|
51 |
+
|
52 |
+
def loss_instance_name(param):
|
53 |
+
if isinstance(param, BaseLoss):
|
54 |
+
loss = param
|
55 |
+
name = loss.__class__.__name__
|
56 |
+
if isinstance(loss, PinballLoss):
|
57 |
+
name += f"(quantile={loss.closs.quantile})"
|
58 |
+
elif isinstance(loss, HuberLoss):
|
59 |
+
name += f"(quantile={loss.quantile}"
|
60 |
+
elif hasattr(loss, "closs") and hasattr(loss.closs, "power"):
|
61 |
+
name += f"(power={loss.closs.power})"
|
62 |
+
return name
|
63 |
+
else:
|
64 |
+
return str(param)
|
65 |
+
|
66 |
+
|
67 |
+
def random_y_true_raw_prediction(
|
68 |
+
loss, n_samples, y_bound=(-100, 100), raw_bound=(-5, 5), seed=42
|
69 |
+
):
|
70 |
+
"""Random generate y_true and raw_prediction in valid range."""
|
71 |
+
rng = np.random.RandomState(seed)
|
72 |
+
if loss.is_multiclass:
|
73 |
+
raw_prediction = np.empty((n_samples, loss.n_classes))
|
74 |
+
raw_prediction.flat[:] = rng.uniform(
|
75 |
+
low=raw_bound[0],
|
76 |
+
high=raw_bound[1],
|
77 |
+
size=n_samples * loss.n_classes,
|
78 |
+
)
|
79 |
+
y_true = np.arange(n_samples).astype(float) % loss.n_classes
|
80 |
+
else:
|
81 |
+
# If link is identity, we must respect the interval of y_pred:
|
82 |
+
if isinstance(loss.link, IdentityLink):
|
83 |
+
low, high = _inclusive_low_high(loss.interval_y_pred)
|
84 |
+
low = np.amax([low, raw_bound[0]])
|
85 |
+
high = np.amin([high, raw_bound[1]])
|
86 |
+
raw_bound = (low, high)
|
87 |
+
raw_prediction = rng.uniform(
|
88 |
+
low=raw_bound[0], high=raw_bound[1], size=n_samples
|
89 |
+
)
|
90 |
+
# generate a y_true in valid range
|
91 |
+
low, high = _inclusive_low_high(loss.interval_y_true)
|
92 |
+
low = max(low, y_bound[0])
|
93 |
+
high = min(high, y_bound[1])
|
94 |
+
y_true = rng.uniform(low, high, size=n_samples)
|
95 |
+
# set some values at special boundaries
|
96 |
+
if loss.interval_y_true.low == 0 and loss.interval_y_true.low_inclusive:
|
97 |
+
y_true[:: (n_samples // 3)] = 0
|
98 |
+
if loss.interval_y_true.high == 1 and loss.interval_y_true.high_inclusive:
|
99 |
+
y_true[1 :: (n_samples // 3)] = 1
|
100 |
+
|
101 |
+
return y_true, raw_prediction
|
102 |
+
|
103 |
+
|
104 |
+
def numerical_derivative(func, x, eps):
|
105 |
+
"""Helper function for numerical (first) derivatives."""
|
106 |
+
# For numerical derivatives, see
|
107 |
+
# https://en.wikipedia.org/wiki/Numerical_differentiation
|
108 |
+
# https://en.wikipedia.org/wiki/Finite_difference_coefficient
|
109 |
+
# We use central finite differences of accuracy 4.
|
110 |
+
h = np.full_like(x, fill_value=eps)
|
111 |
+
f_minus_2h = func(x - 2 * h)
|
112 |
+
f_minus_1h = func(x - h)
|
113 |
+
f_plus_1h = func(x + h)
|
114 |
+
f_plus_2h = func(x + 2 * h)
|
115 |
+
return (-f_plus_2h + 8 * f_plus_1h - 8 * f_minus_1h + f_minus_2h) / (12.0 * eps)
|
116 |
+
|
117 |
+
|
118 |
+
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
119 |
+
def test_loss_boundary(loss):
|
120 |
+
"""Test interval ranges of y_true and y_pred in losses."""
|
121 |
+
# make sure low and high are always within the interval, used for linspace
|
122 |
+
if loss.is_multiclass:
|
123 |
+
y_true = np.linspace(0, 9, num=10)
|
124 |
+
else:
|
125 |
+
low, high = _inclusive_low_high(loss.interval_y_true)
|
126 |
+
y_true = np.linspace(low, high, num=10)
|
127 |
+
|
128 |
+
# add boundaries if they are included
|
129 |
+
if loss.interval_y_true.low_inclusive:
|
130 |
+
y_true = np.r_[y_true, loss.interval_y_true.low]
|
131 |
+
if loss.interval_y_true.high_inclusive:
|
132 |
+
y_true = np.r_[y_true, loss.interval_y_true.high]
|
133 |
+
|
134 |
+
assert loss.in_y_true_range(y_true)
|
135 |
+
|
136 |
+
n = y_true.shape[0]
|
137 |
+
low, high = _inclusive_low_high(loss.interval_y_pred)
|
138 |
+
if loss.is_multiclass:
|
139 |
+
y_pred = np.empty((n, 3))
|
140 |
+
y_pred[:, 0] = np.linspace(low, high, num=n)
|
141 |
+
y_pred[:, 1] = 0.5 * (1 - y_pred[:, 0])
|
142 |
+
y_pred[:, 2] = 0.5 * (1 - y_pred[:, 0])
|
143 |
+
else:
|
144 |
+
y_pred = np.linspace(low, high, num=n)
|
145 |
+
|
146 |
+
assert loss.in_y_pred_range(y_pred)
|
147 |
+
|
148 |
+
# calculating losses should not fail
|
149 |
+
raw_prediction = loss.link.link(y_pred)
|
150 |
+
loss.loss(y_true=y_true, raw_prediction=raw_prediction)
|
151 |
+
|
152 |
+
|
153 |
+
# Fixture to test valid value ranges.
|
154 |
+
Y_COMMON_PARAMS = [
|
155 |
+
# (loss, [y success], [y fail])
|
156 |
+
(HalfSquaredError(), [-100, 0, 0.1, 100], [-np.inf, np.inf]),
|
157 |
+
(AbsoluteError(), [-100, 0, 0.1, 100], [-np.inf, np.inf]),
|
158 |
+
(PinballLoss(), [-100, 0, 0.1, 100], [-np.inf, np.inf]),
|
159 |
+
(HuberLoss(), [-100, 0, 0.1, 100], [-np.inf, np.inf]),
|
160 |
+
(HalfPoissonLoss(), [0.1, 100], [-np.inf, -3, -0.1, np.inf]),
|
161 |
+
(HalfGammaLoss(), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
|
162 |
+
(HalfTweedieLoss(power=-3), [0.1, 100], [-np.inf, np.inf]),
|
163 |
+
(HalfTweedieLoss(power=0), [0.1, 100], [-np.inf, np.inf]),
|
164 |
+
(HalfTweedieLoss(power=1.5), [0.1, 100], [-np.inf, -3, -0.1, np.inf]),
|
165 |
+
(HalfTweedieLoss(power=2), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
|
166 |
+
(HalfTweedieLoss(power=3), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
|
167 |
+
(HalfTweedieLossIdentity(power=-3), [0.1, 100], [-np.inf, np.inf]),
|
168 |
+
(HalfTweedieLossIdentity(power=0), [-3, -0.1, 0, 0.1, 100], [-np.inf, np.inf]),
|
169 |
+
(HalfTweedieLossIdentity(power=1.5), [0.1, 100], [-np.inf, -3, -0.1, np.inf]),
|
170 |
+
(HalfTweedieLossIdentity(power=2), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
|
171 |
+
(HalfTweedieLossIdentity(power=3), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
|
172 |
+
(HalfBinomialLoss(), [0.1, 0.5, 0.9], [-np.inf, -1, 2, np.inf]),
|
173 |
+
(HalfMultinomialLoss(), [], [-np.inf, -1, 1.1, np.inf]),
|
174 |
+
]
|
175 |
+
# y_pred and y_true do not always have the same domain (valid value range).
|
176 |
+
# Hence, we define extra sets of parameters for each of them.
|
177 |
+
Y_TRUE_PARAMS = [ # type: ignore
|
178 |
+
# (loss, [y success], [y fail])
|
179 |
+
(HalfPoissonLoss(), [0], []),
|
180 |
+
(HuberLoss(), [0], []),
|
181 |
+
(HalfTweedieLoss(power=-3), [-100, -0.1, 0], []),
|
182 |
+
(HalfTweedieLoss(power=0), [-100, 0], []),
|
183 |
+
(HalfTweedieLoss(power=1.5), [0], []),
|
184 |
+
(HalfTweedieLossIdentity(power=-3), [-100, -0.1, 0], []),
|
185 |
+
(HalfTweedieLossIdentity(power=0), [-100, 0], []),
|
186 |
+
(HalfTweedieLossIdentity(power=1.5), [0], []),
|
187 |
+
(HalfBinomialLoss(), [0, 1], []),
|
188 |
+
(HalfMultinomialLoss(), [0.0, 1.0, 2], []),
|
189 |
+
]
|
190 |
+
Y_PRED_PARAMS = [
|
191 |
+
# (loss, [y success], [y fail])
|
192 |
+
(HalfPoissonLoss(), [], [0]),
|
193 |
+
(HalfTweedieLoss(power=-3), [], [-3, -0.1, 0]),
|
194 |
+
(HalfTweedieLoss(power=0), [], [-3, -0.1, 0]),
|
195 |
+
(HalfTweedieLoss(power=1.5), [], [0]),
|
196 |
+
(HalfTweedieLossIdentity(power=-3), [], [-3, -0.1, 0]),
|
197 |
+
(HalfTweedieLossIdentity(power=0), [-3, -0.1, 0], []),
|
198 |
+
(HalfTweedieLossIdentity(power=1.5), [], [0]),
|
199 |
+
(HalfBinomialLoss(), [], [0, 1]),
|
200 |
+
(HalfMultinomialLoss(), [0.1, 0.5], [0, 1]),
|
201 |
+
]
|
202 |
+
|
203 |
+
|
204 |
+
@pytest.mark.parametrize(
|
205 |
+
"loss, y_true_success, y_true_fail", Y_COMMON_PARAMS + Y_TRUE_PARAMS
|
206 |
+
)
|
207 |
+
def test_loss_boundary_y_true(loss, y_true_success, y_true_fail):
|
208 |
+
"""Test boundaries of y_true for loss functions."""
|
209 |
+
for y in y_true_success:
|
210 |
+
assert loss.in_y_true_range(np.array([y]))
|
211 |
+
for y in y_true_fail:
|
212 |
+
assert not loss.in_y_true_range(np.array([y]))
|
213 |
+
|
214 |
+
|
215 |
+
@pytest.mark.parametrize(
|
216 |
+
"loss, y_pred_success, y_pred_fail", Y_COMMON_PARAMS + Y_PRED_PARAMS # type: ignore
|
217 |
+
)
|
218 |
+
def test_loss_boundary_y_pred(loss, y_pred_success, y_pred_fail):
|
219 |
+
"""Test boundaries of y_pred for loss functions."""
|
220 |
+
for y in y_pred_success:
|
221 |
+
assert loss.in_y_pred_range(np.array([y]))
|
222 |
+
for y in y_pred_fail:
|
223 |
+
assert not loss.in_y_pred_range(np.array([y]))
|
224 |
+
|
225 |
+
|
226 |
+
@pytest.mark.parametrize(
|
227 |
+
"loss, y_true, raw_prediction, loss_true, gradient_true, hessian_true",
|
228 |
+
[
|
229 |
+
(HalfSquaredError(), 1.0, 5.0, 8, 4, 1),
|
230 |
+
(AbsoluteError(), 1.0, 5.0, 4.0, 1.0, None),
|
231 |
+
(PinballLoss(quantile=0.5), 1.0, 5.0, 2, 0.5, None),
|
232 |
+
(PinballLoss(quantile=0.25), 1.0, 5.0, 4 * (1 - 0.25), 1 - 0.25, None),
|
233 |
+
(PinballLoss(quantile=0.25), 5.0, 1.0, 4 * 0.25, -0.25, None),
|
234 |
+
(HuberLoss(quantile=0.5, delta=3), 1.0, 5.0, 3 * (4 - 3 / 2), None, None),
|
235 |
+
(HuberLoss(quantile=0.5, delta=3), 1.0, 3.0, 0.5 * 2**2, None, None),
|
236 |
+
(HalfPoissonLoss(), 2.0, np.log(4), 4 - 2 * np.log(4), 4 - 2, 4),
|
237 |
+
(HalfGammaLoss(), 2.0, np.log(4), np.log(4) + 2 / 4, 1 - 2 / 4, 2 / 4),
|
238 |
+
(HalfTweedieLoss(power=3), 2.0, np.log(4), -1 / 4 + 1 / 4**2, None, None),
|
239 |
+
(HalfTweedieLossIdentity(power=1), 2.0, 4.0, 2 - 2 * np.log(2), None, None),
|
240 |
+
(HalfTweedieLossIdentity(power=2), 2.0, 4.0, np.log(2) - 1 / 2, None, None),
|
241 |
+
(
|
242 |
+
HalfTweedieLossIdentity(power=3),
|
243 |
+
2.0,
|
244 |
+
4.0,
|
245 |
+
-1 / 4 + 1 / 4**2 + 1 / 2 / 2,
|
246 |
+
None,
|
247 |
+
None,
|
248 |
+
),
|
249 |
+
(
|
250 |
+
HalfBinomialLoss(),
|
251 |
+
0.25,
|
252 |
+
np.log(4),
|
253 |
+
np.log1p(4) - 0.25 * np.log(4),
|
254 |
+
None,
|
255 |
+
None,
|
256 |
+
),
|
257 |
+
# Extreme log loss cases, checked with mpmath:
|
258 |
+
# import mpmath as mp
|
259 |
+
#
|
260 |
+
# # Stolen from scipy
|
261 |
+
# def mpf2float(x):
|
262 |
+
# return float(mp.nstr(x, 17, min_fixed=0, max_fixed=0))
|
263 |
+
#
|
264 |
+
# def mp_logloss(y_true, raw):
|
265 |
+
# with mp.workdps(100):
|
266 |
+
# y_true, raw = mp.mpf(float(y_true)), mp.mpf(float(raw))
|
267 |
+
# out = mp.log1p(mp.exp(raw)) - y_true * raw
|
268 |
+
# return mpf2float(out)
|
269 |
+
#
|
270 |
+
# def mp_gradient(y_true, raw):
|
271 |
+
# with mp.workdps(100):
|
272 |
+
# y_true, raw = mp.mpf(float(y_true)), mp.mpf(float(raw))
|
273 |
+
# out = mp.mpf(1) / (mp.mpf(1) + mp.exp(-raw)) - y_true
|
274 |
+
# return mpf2float(out)
|
275 |
+
#
|
276 |
+
# def mp_hessian(y_true, raw):
|
277 |
+
# with mp.workdps(100):
|
278 |
+
# y_true, raw = mp.mpf(float(y_true)), mp.mpf(float(raw))
|
279 |
+
# p = mp.mpf(1) / (mp.mpf(1) + mp.exp(-raw))
|
280 |
+
# out = p * (mp.mpf(1) - p)
|
281 |
+
# return mpf2float(out)
|
282 |
+
#
|
283 |
+
# y, raw = 0.0, 37.
|
284 |
+
# mp_logloss(y, raw), mp_gradient(y, raw), mp_hessian(y, raw)
|
285 |
+
(HalfBinomialLoss(), 0.0, -1e20, 0, 0, 0),
|
286 |
+
(HalfBinomialLoss(), 1.0, -1e20, 1e20, -1, 0),
|
287 |
+
(HalfBinomialLoss(), 0.0, -1e3, 0, 0, 0),
|
288 |
+
(HalfBinomialLoss(), 1.0, -1e3, 1e3, -1, 0),
|
289 |
+
(HalfBinomialLoss(), 1.0, -37.5, 37.5, -1, 0),
|
290 |
+
(HalfBinomialLoss(), 1.0, -37.0, 37, 1e-16 - 1, 8.533047625744065e-17),
|
291 |
+
(HalfBinomialLoss(), 0.0, -37.0, *[8.533047625744065e-17] * 3),
|
292 |
+
(HalfBinomialLoss(), 1.0, -36.9, 36.9, 1e-16 - 1, 9.430476078526806e-17),
|
293 |
+
(HalfBinomialLoss(), 0.0, -36.9, *[9.430476078526806e-17] * 3),
|
294 |
+
(HalfBinomialLoss(), 0.0, 37.0, 37, 1 - 1e-16, 8.533047625744065e-17),
|
295 |
+
(HalfBinomialLoss(), 1.0, 37.0, *[8.533047625744066e-17] * 3),
|
296 |
+
(HalfBinomialLoss(), 0.0, 37.5, 37.5, 1, 5.175555005801868e-17),
|
297 |
+
(HalfBinomialLoss(), 0.0, 232.8, 232.8, 1, 1.4287342391028437e-101),
|
298 |
+
(HalfBinomialLoss(), 1.0, 1e20, 0, 0, 0),
|
299 |
+
(HalfBinomialLoss(), 0.0, 1e20, 1e20, 1, 0),
|
300 |
+
(
|
301 |
+
HalfBinomialLoss(),
|
302 |
+
1.0,
|
303 |
+
232.8,
|
304 |
+
0,
|
305 |
+
-1.4287342391028437e-101,
|
306 |
+
1.4287342391028437e-101,
|
307 |
+
),
|
308 |
+
(HalfBinomialLoss(), 1.0, 232.9, 0, 0, 0),
|
309 |
+
(HalfBinomialLoss(), 1.0, 1e3, 0, 0, 0),
|
310 |
+
(HalfBinomialLoss(), 0.0, 1e3, 1e3, 1, 0),
|
311 |
+
(
|
312 |
+
HalfMultinomialLoss(n_classes=3),
|
313 |
+
0.0,
|
314 |
+
[0.2, 0.5, 0.3],
|
315 |
+
logsumexp([0.2, 0.5, 0.3]) - 0.2,
|
316 |
+
None,
|
317 |
+
None,
|
318 |
+
),
|
319 |
+
(
|
320 |
+
HalfMultinomialLoss(n_classes=3),
|
321 |
+
1.0,
|
322 |
+
[0.2, 0.5, 0.3],
|
323 |
+
logsumexp([0.2, 0.5, 0.3]) - 0.5,
|
324 |
+
None,
|
325 |
+
None,
|
326 |
+
),
|
327 |
+
(
|
328 |
+
HalfMultinomialLoss(n_classes=3),
|
329 |
+
2.0,
|
330 |
+
[0.2, 0.5, 0.3],
|
331 |
+
logsumexp([0.2, 0.5, 0.3]) - 0.3,
|
332 |
+
None,
|
333 |
+
None,
|
334 |
+
),
|
335 |
+
(
|
336 |
+
HalfMultinomialLoss(n_classes=3),
|
337 |
+
2.0,
|
338 |
+
[1e4, 0, 7e-7],
|
339 |
+
logsumexp([1e4, 0, 7e-7]) - (7e-7),
|
340 |
+
None,
|
341 |
+
None,
|
342 |
+
),
|
343 |
+
],
|
344 |
+
ids=loss_instance_name,
|
345 |
+
)
|
346 |
+
def test_loss_on_specific_values(
|
347 |
+
loss, y_true, raw_prediction, loss_true, gradient_true, hessian_true
|
348 |
+
):
|
349 |
+
"""Test losses, gradients and hessians at specific values."""
|
350 |
+
loss1 = loss(y_true=np.array([y_true]), raw_prediction=np.array([raw_prediction]))
|
351 |
+
grad1 = loss.gradient(
|
352 |
+
y_true=np.array([y_true]), raw_prediction=np.array([raw_prediction])
|
353 |
+
)
|
354 |
+
loss2, grad2 = loss.loss_gradient(
|
355 |
+
y_true=np.array([y_true]), raw_prediction=np.array([raw_prediction])
|
356 |
+
)
|
357 |
+
grad3, hess = loss.gradient_hessian(
|
358 |
+
y_true=np.array([y_true]), raw_prediction=np.array([raw_prediction])
|
359 |
+
)
|
360 |
+
|
361 |
+
assert loss1 == approx(loss_true, rel=1e-15, abs=1e-15)
|
362 |
+
assert loss2 == approx(loss_true, rel=1e-15, abs=1e-15)
|
363 |
+
|
364 |
+
if gradient_true is not None:
|
365 |
+
assert grad1 == approx(gradient_true, rel=1e-15, abs=1e-15)
|
366 |
+
assert grad2 == approx(gradient_true, rel=1e-15, abs=1e-15)
|
367 |
+
assert grad3 == approx(gradient_true, rel=1e-15, abs=1e-15)
|
368 |
+
|
369 |
+
if hessian_true is not None:
|
370 |
+
assert hess == approx(hessian_true, rel=1e-15, abs=1e-15)
|
371 |
+
|
372 |
+
|
373 |
+
@pytest.mark.parametrize("loss", ALL_LOSSES)
|
374 |
+
@pytest.mark.parametrize("readonly_memmap", [False, True])
|
375 |
+
@pytest.mark.parametrize("dtype_in", [np.float32, np.float64])
|
376 |
+
@pytest.mark.parametrize("dtype_out", [np.float32, np.float64])
|
377 |
+
@pytest.mark.parametrize("sample_weight", [None, 1])
|
378 |
+
@pytest.mark.parametrize("out1", [None, 1])
|
379 |
+
@pytest.mark.parametrize("out2", [None, 1])
|
380 |
+
@pytest.mark.parametrize("n_threads", [1, 2])
|
381 |
+
def test_loss_dtype(
|
382 |
+
loss, readonly_memmap, dtype_in, dtype_out, sample_weight, out1, out2, n_threads
|
383 |
+
):
|
384 |
+
"""Test acceptance of dtypes, readonly and writeable arrays in loss functions.
|
385 |
+
|
386 |
+
Check that loss accepts if all input arrays are either all float32 or all
|
387 |
+
float64, and all output arrays are either all float32 or all float64.
|
388 |
+
|
389 |
+
Also check that input arrays can be readonly, e.g. memory mapped.
|
390 |
+
"""
|
391 |
+
if _IS_WASM and readonly_memmap: # pragma: nocover
|
392 |
+
pytest.xfail(reason="memmap not fully supported")
|
393 |
+
|
394 |
+
loss = loss()
|
395 |
+
# generate a y_true and raw_prediction in valid range
|
396 |
+
n_samples = 5
|
397 |
+
y_true, raw_prediction = random_y_true_raw_prediction(
|
398 |
+
loss=loss,
|
399 |
+
n_samples=n_samples,
|
400 |
+
y_bound=(-100, 100),
|
401 |
+
raw_bound=(-10, 10),
|
402 |
+
seed=42,
|
403 |
+
)
|
404 |
+
y_true = y_true.astype(dtype_in)
|
405 |
+
raw_prediction = raw_prediction.astype(dtype_in)
|
406 |
+
|
407 |
+
if sample_weight is not None:
|
408 |
+
sample_weight = np.array([2.0] * n_samples, dtype=dtype_in)
|
409 |
+
if out1 is not None:
|
410 |
+
out1 = np.empty_like(y_true, dtype=dtype_out)
|
411 |
+
if out2 is not None:
|
412 |
+
out2 = np.empty_like(raw_prediction, dtype=dtype_out)
|
413 |
+
|
414 |
+
if readonly_memmap:
|
415 |
+
y_true = create_memmap_backed_data(y_true)
|
416 |
+
raw_prediction = create_memmap_backed_data(raw_prediction)
|
417 |
+
if sample_weight is not None:
|
418 |
+
sample_weight = create_memmap_backed_data(sample_weight)
|
419 |
+
|
420 |
+
loss.loss(
|
421 |
+
y_true=y_true,
|
422 |
+
raw_prediction=raw_prediction,
|
423 |
+
sample_weight=sample_weight,
|
424 |
+
loss_out=out1,
|
425 |
+
n_threads=n_threads,
|
426 |
+
)
|
427 |
+
loss.gradient(
|
428 |
+
y_true=y_true,
|
429 |
+
raw_prediction=raw_prediction,
|
430 |
+
sample_weight=sample_weight,
|
431 |
+
gradient_out=out2,
|
432 |
+
n_threads=n_threads,
|
433 |
+
)
|
434 |
+
loss.loss_gradient(
|
435 |
+
y_true=y_true,
|
436 |
+
raw_prediction=raw_prediction,
|
437 |
+
sample_weight=sample_weight,
|
438 |
+
loss_out=out1,
|
439 |
+
gradient_out=out2,
|
440 |
+
n_threads=n_threads,
|
441 |
+
)
|
442 |
+
if out1 is not None and loss.is_multiclass:
|
443 |
+
out1 = np.empty_like(raw_prediction, dtype=dtype_out)
|
444 |
+
loss.gradient_hessian(
|
445 |
+
y_true=y_true,
|
446 |
+
raw_prediction=raw_prediction,
|
447 |
+
sample_weight=sample_weight,
|
448 |
+
gradient_out=out1,
|
449 |
+
hessian_out=out2,
|
450 |
+
n_threads=n_threads,
|
451 |
+
)
|
452 |
+
loss(y_true=y_true, raw_prediction=raw_prediction, sample_weight=sample_weight)
|
453 |
+
loss.fit_intercept_only(y_true=y_true, sample_weight=sample_weight)
|
454 |
+
loss.constant_to_optimal_zero(y_true=y_true, sample_weight=sample_weight)
|
455 |
+
if hasattr(loss, "predict_proba"):
|
456 |
+
loss.predict_proba(raw_prediction=raw_prediction)
|
457 |
+
if hasattr(loss, "gradient_proba"):
|
458 |
+
loss.gradient_proba(
|
459 |
+
y_true=y_true,
|
460 |
+
raw_prediction=raw_prediction,
|
461 |
+
sample_weight=sample_weight,
|
462 |
+
gradient_out=out1,
|
463 |
+
proba_out=out2,
|
464 |
+
n_threads=n_threads,
|
465 |
+
)
|
466 |
+
|
467 |
+
|
468 |
+
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
469 |
+
@pytest.mark.parametrize("sample_weight", [None, "range"])
|
470 |
+
def test_loss_same_as_C_functions(loss, sample_weight):
|
471 |
+
"""Test that Python and Cython functions return same results."""
|
472 |
+
y_true, raw_prediction = random_y_true_raw_prediction(
|
473 |
+
loss=loss,
|
474 |
+
n_samples=20,
|
475 |
+
y_bound=(-100, 100),
|
476 |
+
raw_bound=(-10, 10),
|
477 |
+
seed=42,
|
478 |
+
)
|
479 |
+
if sample_weight == "range":
|
480 |
+
sample_weight = np.linspace(1, y_true.shape[0], num=y_true.shape[0])
|
481 |
+
|
482 |
+
out_l1 = np.empty_like(y_true)
|
483 |
+
out_l2 = np.empty_like(y_true)
|
484 |
+
out_g1 = np.empty_like(raw_prediction)
|
485 |
+
out_g2 = np.empty_like(raw_prediction)
|
486 |
+
out_h1 = np.empty_like(raw_prediction)
|
487 |
+
out_h2 = np.empty_like(raw_prediction)
|
488 |
+
loss.loss(
|
489 |
+
y_true=y_true,
|
490 |
+
raw_prediction=raw_prediction,
|
491 |
+
sample_weight=sample_weight,
|
492 |
+
loss_out=out_l1,
|
493 |
+
)
|
494 |
+
loss.closs.loss(
|
495 |
+
y_true=y_true,
|
496 |
+
raw_prediction=raw_prediction,
|
497 |
+
sample_weight=sample_weight,
|
498 |
+
loss_out=out_l2,
|
499 |
+
),
|
500 |
+
assert_allclose(out_l1, out_l2)
|
501 |
+
loss.gradient(
|
502 |
+
y_true=y_true,
|
503 |
+
raw_prediction=raw_prediction,
|
504 |
+
sample_weight=sample_weight,
|
505 |
+
gradient_out=out_g1,
|
506 |
+
)
|
507 |
+
loss.closs.gradient(
|
508 |
+
y_true=y_true,
|
509 |
+
raw_prediction=raw_prediction,
|
510 |
+
sample_weight=sample_weight,
|
511 |
+
gradient_out=out_g2,
|
512 |
+
)
|
513 |
+
assert_allclose(out_g1, out_g2)
|
514 |
+
loss.closs.loss_gradient(
|
515 |
+
y_true=y_true,
|
516 |
+
raw_prediction=raw_prediction,
|
517 |
+
sample_weight=sample_weight,
|
518 |
+
loss_out=out_l1,
|
519 |
+
gradient_out=out_g1,
|
520 |
+
)
|
521 |
+
loss.closs.loss_gradient(
|
522 |
+
y_true=y_true,
|
523 |
+
raw_prediction=raw_prediction,
|
524 |
+
sample_weight=sample_weight,
|
525 |
+
loss_out=out_l2,
|
526 |
+
gradient_out=out_g2,
|
527 |
+
)
|
528 |
+
assert_allclose(out_l1, out_l2)
|
529 |
+
assert_allclose(out_g1, out_g2)
|
530 |
+
loss.gradient_hessian(
|
531 |
+
y_true=y_true,
|
532 |
+
raw_prediction=raw_prediction,
|
533 |
+
sample_weight=sample_weight,
|
534 |
+
gradient_out=out_g1,
|
535 |
+
hessian_out=out_h1,
|
536 |
+
)
|
537 |
+
loss.closs.gradient_hessian(
|
538 |
+
y_true=y_true,
|
539 |
+
raw_prediction=raw_prediction,
|
540 |
+
sample_weight=sample_weight,
|
541 |
+
gradient_out=out_g2,
|
542 |
+
hessian_out=out_h2,
|
543 |
+
)
|
544 |
+
assert_allclose(out_g1, out_g2)
|
545 |
+
assert_allclose(out_h1, out_h2)
|
546 |
+
|
547 |
+
|
548 |
+
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
549 |
+
@pytest.mark.parametrize("sample_weight", [None, "range"])
|
550 |
+
def test_loss_gradients_are_the_same(loss, sample_weight, global_random_seed):
|
551 |
+
"""Test that loss and gradient are the same across different functions.
|
552 |
+
|
553 |
+
Also test that output arguments contain correct results.
|
554 |
+
"""
|
555 |
+
y_true, raw_prediction = random_y_true_raw_prediction(
|
556 |
+
loss=loss,
|
557 |
+
n_samples=20,
|
558 |
+
y_bound=(-100, 100),
|
559 |
+
raw_bound=(-10, 10),
|
560 |
+
seed=global_random_seed,
|
561 |
+
)
|
562 |
+
if sample_weight == "range":
|
563 |
+
sample_weight = np.linspace(1, y_true.shape[0], num=y_true.shape[0])
|
564 |
+
|
565 |
+
out_l1 = np.empty_like(y_true)
|
566 |
+
out_l2 = np.empty_like(y_true)
|
567 |
+
out_g1 = np.empty_like(raw_prediction)
|
568 |
+
out_g2 = np.empty_like(raw_prediction)
|
569 |
+
out_g3 = np.empty_like(raw_prediction)
|
570 |
+
out_h3 = np.empty_like(raw_prediction)
|
571 |
+
|
572 |
+
l1 = loss.loss(
|
573 |
+
y_true=y_true,
|
574 |
+
raw_prediction=raw_prediction,
|
575 |
+
sample_weight=sample_weight,
|
576 |
+
loss_out=out_l1,
|
577 |
+
)
|
578 |
+
g1 = loss.gradient(
|
579 |
+
y_true=y_true,
|
580 |
+
raw_prediction=raw_prediction,
|
581 |
+
sample_weight=sample_weight,
|
582 |
+
gradient_out=out_g1,
|
583 |
+
)
|
584 |
+
l2, g2 = loss.loss_gradient(
|
585 |
+
y_true=y_true,
|
586 |
+
raw_prediction=raw_prediction,
|
587 |
+
sample_weight=sample_weight,
|
588 |
+
loss_out=out_l2,
|
589 |
+
gradient_out=out_g2,
|
590 |
+
)
|
591 |
+
g3, h3 = loss.gradient_hessian(
|
592 |
+
y_true=y_true,
|
593 |
+
raw_prediction=raw_prediction,
|
594 |
+
sample_weight=sample_weight,
|
595 |
+
gradient_out=out_g3,
|
596 |
+
hessian_out=out_h3,
|
597 |
+
)
|
598 |
+
assert_allclose(l1, l2)
|
599 |
+
assert_array_equal(l1, out_l1)
|
600 |
+
assert np.shares_memory(l1, out_l1)
|
601 |
+
assert_array_equal(l2, out_l2)
|
602 |
+
assert np.shares_memory(l2, out_l2)
|
603 |
+
assert_allclose(g1, g2)
|
604 |
+
assert_allclose(g1, g3)
|
605 |
+
assert_array_equal(g1, out_g1)
|
606 |
+
assert np.shares_memory(g1, out_g1)
|
607 |
+
assert_array_equal(g2, out_g2)
|
608 |
+
assert np.shares_memory(g2, out_g2)
|
609 |
+
assert_array_equal(g3, out_g3)
|
610 |
+
assert np.shares_memory(g3, out_g3)
|
611 |
+
|
612 |
+
if hasattr(loss, "gradient_proba"):
|
613 |
+
assert loss.is_multiclass # only for HalfMultinomialLoss
|
614 |
+
out_g4 = np.empty_like(raw_prediction)
|
615 |
+
out_proba = np.empty_like(raw_prediction)
|
616 |
+
g4, proba = loss.gradient_proba(
|
617 |
+
y_true=y_true,
|
618 |
+
raw_prediction=raw_prediction,
|
619 |
+
sample_weight=sample_weight,
|
620 |
+
gradient_out=out_g4,
|
621 |
+
proba_out=out_proba,
|
622 |
+
)
|
623 |
+
assert_allclose(g1, out_g4)
|
624 |
+
assert_allclose(g1, g4)
|
625 |
+
assert_allclose(proba, out_proba)
|
626 |
+
assert_allclose(np.sum(proba, axis=1), 1, rtol=1e-11)
|
627 |
+
|
628 |
+
|
629 |
+
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
630 |
+
@pytest.mark.parametrize("sample_weight", ["ones", "random"])
|
631 |
+
def test_sample_weight_multiplies(loss, sample_weight, global_random_seed):
|
632 |
+
"""Test sample weights in loss, gradients and hessians.
|
633 |
+
|
634 |
+
Make sure that passing sample weights to loss, gradient and hessian
|
635 |
+
computation methods is equivalent to multiplying by the weights.
|
636 |
+
"""
|
637 |
+
n_samples = 100
|
638 |
+
y_true, raw_prediction = random_y_true_raw_prediction(
|
639 |
+
loss=loss,
|
640 |
+
n_samples=n_samples,
|
641 |
+
y_bound=(-100, 100),
|
642 |
+
raw_bound=(-5, 5),
|
643 |
+
seed=global_random_seed,
|
644 |
+
)
|
645 |
+
|
646 |
+
if sample_weight == "ones":
|
647 |
+
sample_weight = np.ones(shape=n_samples, dtype=np.float64)
|
648 |
+
else:
|
649 |
+
rng = np.random.RandomState(global_random_seed)
|
650 |
+
sample_weight = rng.normal(size=n_samples).astype(np.float64)
|
651 |
+
|
652 |
+
assert_allclose(
|
653 |
+
loss.loss(
|
654 |
+
y_true=y_true,
|
655 |
+
raw_prediction=raw_prediction,
|
656 |
+
sample_weight=sample_weight,
|
657 |
+
),
|
658 |
+
sample_weight
|
659 |
+
* loss.loss(
|
660 |
+
y_true=y_true,
|
661 |
+
raw_prediction=raw_prediction,
|
662 |
+
sample_weight=None,
|
663 |
+
),
|
664 |
+
)
|
665 |
+
|
666 |
+
losses, gradient = loss.loss_gradient(
|
667 |
+
y_true=y_true,
|
668 |
+
raw_prediction=raw_prediction,
|
669 |
+
sample_weight=None,
|
670 |
+
)
|
671 |
+
losses_sw, gradient_sw = loss.loss_gradient(
|
672 |
+
y_true=y_true,
|
673 |
+
raw_prediction=raw_prediction,
|
674 |
+
sample_weight=sample_weight,
|
675 |
+
)
|
676 |
+
assert_allclose(losses * sample_weight, losses_sw)
|
677 |
+
if not loss.is_multiclass:
|
678 |
+
assert_allclose(gradient * sample_weight, gradient_sw)
|
679 |
+
else:
|
680 |
+
assert_allclose(gradient * sample_weight[:, None], gradient_sw)
|
681 |
+
|
682 |
+
gradient, hessian = loss.gradient_hessian(
|
683 |
+
y_true=y_true,
|
684 |
+
raw_prediction=raw_prediction,
|
685 |
+
sample_weight=None,
|
686 |
+
)
|
687 |
+
gradient_sw, hessian_sw = loss.gradient_hessian(
|
688 |
+
y_true=y_true,
|
689 |
+
raw_prediction=raw_prediction,
|
690 |
+
sample_weight=sample_weight,
|
691 |
+
)
|
692 |
+
if not loss.is_multiclass:
|
693 |
+
assert_allclose(gradient * sample_weight, gradient_sw)
|
694 |
+
assert_allclose(hessian * sample_weight, hessian_sw)
|
695 |
+
else:
|
696 |
+
assert_allclose(gradient * sample_weight[:, None], gradient_sw)
|
697 |
+
assert_allclose(hessian * sample_weight[:, None], hessian_sw)
|
698 |
+
|
699 |
+
|
700 |
+
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
701 |
+
def test_graceful_squeezing(loss):
|
702 |
+
"""Test that reshaped raw_prediction gives same results."""
|
703 |
+
y_true, raw_prediction = random_y_true_raw_prediction(
|
704 |
+
loss=loss,
|
705 |
+
n_samples=20,
|
706 |
+
y_bound=(-100, 100),
|
707 |
+
raw_bound=(-10, 10),
|
708 |
+
seed=42,
|
709 |
+
)
|
710 |
+
|
711 |
+
if raw_prediction.ndim == 1:
|
712 |
+
raw_prediction_2d = raw_prediction[:, None]
|
713 |
+
assert_allclose(
|
714 |
+
loss.loss(y_true=y_true, raw_prediction=raw_prediction_2d),
|
715 |
+
loss.loss(y_true=y_true, raw_prediction=raw_prediction),
|
716 |
+
)
|
717 |
+
assert_allclose(
|
718 |
+
loss.loss_gradient(y_true=y_true, raw_prediction=raw_prediction_2d),
|
719 |
+
loss.loss_gradient(y_true=y_true, raw_prediction=raw_prediction),
|
720 |
+
)
|
721 |
+
assert_allclose(
|
722 |
+
loss.gradient(y_true=y_true, raw_prediction=raw_prediction_2d),
|
723 |
+
loss.gradient(y_true=y_true, raw_prediction=raw_prediction),
|
724 |
+
)
|
725 |
+
assert_allclose(
|
726 |
+
loss.gradient_hessian(y_true=y_true, raw_prediction=raw_prediction_2d),
|
727 |
+
loss.gradient_hessian(y_true=y_true, raw_prediction=raw_prediction),
|
728 |
+
)
|
729 |
+
|
730 |
+
|
731 |
+
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
732 |
+
@pytest.mark.parametrize("sample_weight", [None, "range"])
|
733 |
+
def test_loss_of_perfect_prediction(loss, sample_weight):
|
734 |
+
"""Test value of perfect predictions.
|
735 |
+
|
736 |
+
Loss of y_pred = y_true plus constant_to_optimal_zero should sums up to
|
737 |
+
zero.
|
738 |
+
"""
|
739 |
+
if not loss.is_multiclass:
|
740 |
+
# Use small values such that exp(value) is not nan.
|
741 |
+
raw_prediction = np.array([-10, -0.1, 0, 0.1, 3, 10])
|
742 |
+
# If link is identity, we must respect the interval of y_pred:
|
743 |
+
if isinstance(loss.link, IdentityLink):
|
744 |
+
eps = 1e-10
|
745 |
+
low = loss.interval_y_pred.low
|
746 |
+
if not loss.interval_y_pred.low_inclusive:
|
747 |
+
low = low + eps
|
748 |
+
high = loss.interval_y_pred.high
|
749 |
+
if not loss.interval_y_pred.high_inclusive:
|
750 |
+
high = high - eps
|
751 |
+
raw_prediction = np.clip(raw_prediction, low, high)
|
752 |
+
y_true = loss.link.inverse(raw_prediction)
|
753 |
+
else:
|
754 |
+
# HalfMultinomialLoss
|
755 |
+
y_true = np.arange(loss.n_classes).astype(float)
|
756 |
+
# raw_prediction with entries -exp(10), but +exp(10) on the diagonal
|
757 |
+
# this is close enough to np.inf which would produce nan
|
758 |
+
raw_prediction = np.full(
|
759 |
+
shape=(loss.n_classes, loss.n_classes),
|
760 |
+
fill_value=-np.exp(10),
|
761 |
+
dtype=float,
|
762 |
+
)
|
763 |
+
raw_prediction.flat[:: loss.n_classes + 1] = np.exp(10)
|
764 |
+
|
765 |
+
if sample_weight == "range":
|
766 |
+
sample_weight = np.linspace(1, y_true.shape[0], num=y_true.shape[0])
|
767 |
+
|
768 |
+
loss_value = loss.loss(
|
769 |
+
y_true=y_true,
|
770 |
+
raw_prediction=raw_prediction,
|
771 |
+
sample_weight=sample_weight,
|
772 |
+
)
|
773 |
+
constant_term = loss.constant_to_optimal_zero(
|
774 |
+
y_true=y_true, sample_weight=sample_weight
|
775 |
+
)
|
776 |
+
# Comparing loss_value + constant_term to zero would result in large
|
777 |
+
# round-off errors.
|
778 |
+
assert_allclose(loss_value, -constant_term, atol=1e-14, rtol=1e-15)
|
779 |
+
|
780 |
+
|
781 |
+
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
782 |
+
@pytest.mark.parametrize("sample_weight", [None, "range"])
|
783 |
+
def test_gradients_hessians_numerically(loss, sample_weight, global_random_seed):
|
784 |
+
"""Test gradients and hessians with numerical derivatives.
|
785 |
+
|
786 |
+
Gradient should equal the numerical derivatives of the loss function.
|
787 |
+
Hessians should equal the numerical derivatives of gradients.
|
788 |
+
"""
|
789 |
+
n_samples = 20
|
790 |
+
y_true, raw_prediction = random_y_true_raw_prediction(
|
791 |
+
loss=loss,
|
792 |
+
n_samples=n_samples,
|
793 |
+
y_bound=(-100, 100),
|
794 |
+
raw_bound=(-5, 5),
|
795 |
+
seed=global_random_seed,
|
796 |
+
)
|
797 |
+
|
798 |
+
if sample_weight == "range":
|
799 |
+
sample_weight = np.linspace(1, y_true.shape[0], num=y_true.shape[0])
|
800 |
+
|
801 |
+
g, h = loss.gradient_hessian(
|
802 |
+
y_true=y_true,
|
803 |
+
raw_prediction=raw_prediction,
|
804 |
+
sample_weight=sample_weight,
|
805 |
+
)
|
806 |
+
|
807 |
+
assert g.shape == raw_prediction.shape
|
808 |
+
assert h.shape == raw_prediction.shape
|
809 |
+
|
810 |
+
if not loss.is_multiclass:
|
811 |
+
|
812 |
+
def loss_func(x):
|
813 |
+
return loss.loss(
|
814 |
+
y_true=y_true,
|
815 |
+
raw_prediction=x,
|
816 |
+
sample_weight=sample_weight,
|
817 |
+
)
|
818 |
+
|
819 |
+
g_numeric = numerical_derivative(loss_func, raw_prediction, eps=1e-6)
|
820 |
+
assert_allclose(g, g_numeric, rtol=5e-6, atol=1e-10)
|
821 |
+
|
822 |
+
def grad_func(x):
|
823 |
+
return loss.gradient(
|
824 |
+
y_true=y_true,
|
825 |
+
raw_prediction=x,
|
826 |
+
sample_weight=sample_weight,
|
827 |
+
)
|
828 |
+
|
829 |
+
h_numeric = numerical_derivative(grad_func, raw_prediction, eps=1e-6)
|
830 |
+
if loss.approx_hessian:
|
831 |
+
# TODO: What could we test if loss.approx_hessian?
|
832 |
+
pass
|
833 |
+
else:
|
834 |
+
assert_allclose(h, h_numeric, rtol=5e-6, atol=1e-10)
|
835 |
+
else:
|
836 |
+
# For multiclass loss, we should only change the predictions of the
|
837 |
+
# class for which the derivative is taken for, e.g. offset[:, k] = eps
|
838 |
+
# for class k.
|
839 |
+
# As a softmax is computed, offsetting the whole array by a constant
|
840 |
+
# would have no effect on the probabilities, and thus on the loss.
|
841 |
+
for k in range(loss.n_classes):
|
842 |
+
|
843 |
+
def loss_func(x):
|
844 |
+
raw = raw_prediction.copy()
|
845 |
+
raw[:, k] = x
|
846 |
+
return loss.loss(
|
847 |
+
y_true=y_true,
|
848 |
+
raw_prediction=raw,
|
849 |
+
sample_weight=sample_weight,
|
850 |
+
)
|
851 |
+
|
852 |
+
g_numeric = numerical_derivative(loss_func, raw_prediction[:, k], eps=1e-5)
|
853 |
+
assert_allclose(g[:, k], g_numeric, rtol=5e-6, atol=1e-10)
|
854 |
+
|
855 |
+
def grad_func(x):
|
856 |
+
raw = raw_prediction.copy()
|
857 |
+
raw[:, k] = x
|
858 |
+
return loss.gradient(
|
859 |
+
y_true=y_true,
|
860 |
+
raw_prediction=raw,
|
861 |
+
sample_weight=sample_weight,
|
862 |
+
)[:, k]
|
863 |
+
|
864 |
+
h_numeric = numerical_derivative(grad_func, raw_prediction[:, k], eps=1e-6)
|
865 |
+
if loss.approx_hessian:
|
866 |
+
# TODO: What could we test if loss.approx_hessian?
|
867 |
+
pass
|
868 |
+
else:
|
869 |
+
assert_allclose(h[:, k], h_numeric, rtol=5e-6, atol=1e-10)
|
870 |
+
|
871 |
+
|
872 |
+
@pytest.mark.parametrize(
|
873 |
+
"loss, x0, y_true",
|
874 |
+
[
|
875 |
+
("squared_error", -2.0, 42),
|
876 |
+
("squared_error", 117.0, 1.05),
|
877 |
+
("squared_error", 0.0, 0.0),
|
878 |
+
# The argmin of binomial_loss for y_true=0 and y_true=1 is resp.
|
879 |
+
# -inf and +inf due to logit, cf. "complete separation". Therefore, we
|
880 |
+
# use 0 < y_true < 1.
|
881 |
+
("binomial_loss", 0.3, 0.1),
|
882 |
+
("binomial_loss", -12, 0.2),
|
883 |
+
("binomial_loss", 30, 0.9),
|
884 |
+
("poisson_loss", 12.0, 1.0),
|
885 |
+
("poisson_loss", 0.0, 2.0),
|
886 |
+
("poisson_loss", -22.0, 10.0),
|
887 |
+
],
|
888 |
+
)
|
889 |
+
@skip_if_32bit
|
890 |
+
def test_derivatives(loss, x0, y_true):
|
891 |
+
"""Test that gradients are zero at the minimum of the loss.
|
892 |
+
|
893 |
+
We check this on a single value/sample using Halley's method with the
|
894 |
+
first and second order derivatives computed by the Loss instance.
|
895 |
+
Note that methods of Loss instances operate on arrays while the newton
|
896 |
+
root finder expects a scalar or a one-element array for this purpose.
|
897 |
+
"""
|
898 |
+
loss = _LOSSES[loss](sample_weight=None)
|
899 |
+
y_true = np.array([y_true], dtype=np.float64)
|
900 |
+
x0 = np.array([x0], dtype=np.float64)
|
901 |
+
|
902 |
+
def func(x: np.ndarray) -> np.ndarray:
|
903 |
+
"""Compute loss plus constant term.
|
904 |
+
|
905 |
+
The constant term is such that the minimum function value is zero,
|
906 |
+
which is required by the Newton method.
|
907 |
+
"""
|
908 |
+
return loss.loss(
|
909 |
+
y_true=y_true, raw_prediction=x
|
910 |
+
) + loss.constant_to_optimal_zero(y_true=y_true)
|
911 |
+
|
912 |
+
def fprime(x: np.ndarray) -> np.ndarray:
|
913 |
+
return loss.gradient(y_true=y_true, raw_prediction=x)
|
914 |
+
|
915 |
+
def fprime2(x: np.ndarray) -> np.ndarray:
|
916 |
+
return loss.gradient_hessian(y_true=y_true, raw_prediction=x)[1]
|
917 |
+
|
918 |
+
optimum = newton(
|
919 |
+
func,
|
920 |
+
x0=x0,
|
921 |
+
fprime=fprime,
|
922 |
+
fprime2=fprime2,
|
923 |
+
maxiter=100,
|
924 |
+
tol=5e-8,
|
925 |
+
)
|
926 |
+
|
927 |
+
# Need to ravel arrays because assert_allclose requires matching
|
928 |
+
# dimensions.
|
929 |
+
y_true = y_true.ravel()
|
930 |
+
optimum = optimum.ravel()
|
931 |
+
assert_allclose(loss.link.inverse(optimum), y_true)
|
932 |
+
assert_allclose(func(optimum), 0, atol=1e-14)
|
933 |
+
assert_allclose(loss.gradient(y_true=y_true, raw_prediction=optimum), 0, atol=5e-7)
|
934 |
+
|
935 |
+
|
936 |
+
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
937 |
+
@pytest.mark.parametrize("sample_weight", [None, "range"])
|
938 |
+
def test_loss_intercept_only(loss, sample_weight):
|
939 |
+
"""Test that fit_intercept_only returns the argmin of the loss.
|
940 |
+
|
941 |
+
Also test that the gradient is zero at the minimum.
|
942 |
+
"""
|
943 |
+
n_samples = 50
|
944 |
+
if not loss.is_multiclass:
|
945 |
+
y_true = loss.link.inverse(np.linspace(-4, 4, num=n_samples))
|
946 |
+
else:
|
947 |
+
y_true = np.arange(n_samples).astype(np.float64) % loss.n_classes
|
948 |
+
y_true[::5] = 0 # exceedance of class 0
|
949 |
+
|
950 |
+
if sample_weight == "range":
|
951 |
+
sample_weight = np.linspace(0.1, 2, num=n_samples)
|
952 |
+
|
953 |
+
a = loss.fit_intercept_only(y_true=y_true, sample_weight=sample_weight)
|
954 |
+
|
955 |
+
# find minimum by optimization
|
956 |
+
def fun(x):
|
957 |
+
if not loss.is_multiclass:
|
958 |
+
raw_prediction = np.full(shape=(n_samples), fill_value=x)
|
959 |
+
else:
|
960 |
+
raw_prediction = np.ascontiguousarray(
|
961 |
+
np.broadcast_to(x, shape=(n_samples, loss.n_classes))
|
962 |
+
)
|
963 |
+
return loss(
|
964 |
+
y_true=y_true,
|
965 |
+
raw_prediction=raw_prediction,
|
966 |
+
sample_weight=sample_weight,
|
967 |
+
)
|
968 |
+
|
969 |
+
if not loss.is_multiclass:
|
970 |
+
opt = minimize_scalar(fun, tol=1e-7, options={"maxiter": 100})
|
971 |
+
grad = loss.gradient(
|
972 |
+
y_true=y_true,
|
973 |
+
raw_prediction=np.full_like(y_true, a),
|
974 |
+
sample_weight=sample_weight,
|
975 |
+
)
|
976 |
+
assert a.shape == tuple() # scalar
|
977 |
+
assert a.dtype == y_true.dtype
|
978 |
+
assert_all_finite(a)
|
979 |
+
a == approx(opt.x, rel=1e-7)
|
980 |
+
grad.sum() == approx(0, abs=1e-12)
|
981 |
+
else:
|
982 |
+
# The constraint corresponds to sum(raw_prediction) = 0. Without it, we would
|
983 |
+
# need to apply loss.symmetrize_raw_prediction to opt.x before comparing.
|
984 |
+
opt = minimize(
|
985 |
+
fun,
|
986 |
+
np.zeros((loss.n_classes)),
|
987 |
+
tol=1e-13,
|
988 |
+
options={"maxiter": 100},
|
989 |
+
method="SLSQP",
|
990 |
+
constraints=LinearConstraint(np.ones((1, loss.n_classes)), 0, 0),
|
991 |
+
)
|
992 |
+
grad = loss.gradient(
|
993 |
+
y_true=y_true,
|
994 |
+
raw_prediction=np.tile(a, (n_samples, 1)),
|
995 |
+
sample_weight=sample_weight,
|
996 |
+
)
|
997 |
+
assert a.dtype == y_true.dtype
|
998 |
+
assert_all_finite(a)
|
999 |
+
assert_allclose(a, opt.x, rtol=5e-6, atol=1e-12)
|
1000 |
+
assert_allclose(grad.sum(axis=0), 0, atol=1e-12)
|
1001 |
+
|
1002 |
+
|
1003 |
+
@pytest.mark.parametrize(
|
1004 |
+
"loss, func, random_dist",
|
1005 |
+
[
|
1006 |
+
(HalfSquaredError(), np.mean, "normal"),
|
1007 |
+
(AbsoluteError(), np.median, "normal"),
|
1008 |
+
(PinballLoss(quantile=0.25), lambda x: np.percentile(x, q=25), "normal"),
|
1009 |
+
(HalfPoissonLoss(), np.mean, "poisson"),
|
1010 |
+
(HalfGammaLoss(), np.mean, "exponential"),
|
1011 |
+
(HalfTweedieLoss(), np.mean, "exponential"),
|
1012 |
+
(HalfBinomialLoss(), np.mean, "binomial"),
|
1013 |
+
],
|
1014 |
+
)
|
1015 |
+
def test_specific_fit_intercept_only(loss, func, random_dist, global_random_seed):
|
1016 |
+
"""Test that fit_intercept_only returns the correct functional.
|
1017 |
+
|
1018 |
+
We test the functional for specific, meaningful distributions, e.g.
|
1019 |
+
squared error estimates the expectation of a probability distribution.
|
1020 |
+
"""
|
1021 |
+
rng = np.random.RandomState(global_random_seed)
|
1022 |
+
if random_dist == "binomial":
|
1023 |
+
y_train = rng.binomial(1, 0.5, size=100)
|
1024 |
+
else:
|
1025 |
+
y_train = getattr(rng, random_dist)(size=100)
|
1026 |
+
baseline_prediction = loss.fit_intercept_only(y_true=y_train)
|
1027 |
+
# Make sure baseline prediction is the expected functional=func, e.g. mean
|
1028 |
+
# or median.
|
1029 |
+
assert_all_finite(baseline_prediction)
|
1030 |
+
assert baseline_prediction == approx(loss.link.link(func(y_train)))
|
1031 |
+
assert loss.link.inverse(baseline_prediction) == approx(func(y_train))
|
1032 |
+
if isinstance(loss, IdentityLink):
|
1033 |
+
assert_allclose(loss.link.inverse(baseline_prediction), baseline_prediction)
|
1034 |
+
|
1035 |
+
# Test baseline at boundary
|
1036 |
+
if loss.interval_y_true.low_inclusive:
|
1037 |
+
y_train.fill(loss.interval_y_true.low)
|
1038 |
+
baseline_prediction = loss.fit_intercept_only(y_true=y_train)
|
1039 |
+
assert_all_finite(baseline_prediction)
|
1040 |
+
if loss.interval_y_true.high_inclusive:
|
1041 |
+
y_train.fill(loss.interval_y_true.high)
|
1042 |
+
baseline_prediction = loss.fit_intercept_only(y_true=y_train)
|
1043 |
+
assert_all_finite(baseline_prediction)
|
1044 |
+
|
1045 |
+
|
1046 |
+
def test_multinomial_loss_fit_intercept_only():
|
1047 |
+
"""Test that fit_intercept_only returns the mean functional for CCE."""
|
1048 |
+
rng = np.random.RandomState(0)
|
1049 |
+
n_classes = 4
|
1050 |
+
loss = HalfMultinomialLoss(n_classes=n_classes)
|
1051 |
+
# Same logic as test_specific_fit_intercept_only. Here inverse link
|
1052 |
+
# function = softmax and link function = log - symmetry term.
|
1053 |
+
y_train = rng.randint(0, n_classes + 1, size=100).astype(np.float64)
|
1054 |
+
baseline_prediction = loss.fit_intercept_only(y_true=y_train)
|
1055 |
+
assert baseline_prediction.shape == (n_classes,)
|
1056 |
+
p = np.zeros(n_classes, dtype=y_train.dtype)
|
1057 |
+
for k in range(n_classes):
|
1058 |
+
p[k] = (y_train == k).mean()
|
1059 |
+
assert_allclose(baseline_prediction, np.log(p) - np.mean(np.log(p)))
|
1060 |
+
assert_allclose(baseline_prediction[None, :], loss.link.link(p[None, :]))
|
1061 |
+
|
1062 |
+
for y_train in (np.zeros(shape=10), np.ones(shape=10)):
|
1063 |
+
y_train = y_train.astype(np.float64)
|
1064 |
+
baseline_prediction = loss.fit_intercept_only(y_true=y_train)
|
1065 |
+
assert baseline_prediction.dtype == y_train.dtype
|
1066 |
+
assert_all_finite(baseline_prediction)
|
1067 |
+
|
1068 |
+
|
1069 |
+
def test_binomial_and_multinomial_loss(global_random_seed):
|
1070 |
+
"""Test that multinomial loss with n_classes = 2 is the same as binomial loss."""
|
1071 |
+
rng = np.random.RandomState(global_random_seed)
|
1072 |
+
n_samples = 20
|
1073 |
+
binom = HalfBinomialLoss()
|
1074 |
+
multinom = HalfMultinomialLoss(n_classes=2)
|
1075 |
+
y_train = rng.randint(0, 2, size=n_samples).astype(np.float64)
|
1076 |
+
raw_prediction = rng.normal(size=n_samples)
|
1077 |
+
raw_multinom = np.empty((n_samples, 2))
|
1078 |
+
raw_multinom[:, 0] = -0.5 * raw_prediction
|
1079 |
+
raw_multinom[:, 1] = 0.5 * raw_prediction
|
1080 |
+
assert_allclose(
|
1081 |
+
binom.loss(y_true=y_train, raw_prediction=raw_prediction),
|
1082 |
+
multinom.loss(y_true=y_train, raw_prediction=raw_multinom),
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
|
1086 |
+
@pytest.mark.parametrize("y_true", (np.array([0.0, 0, 0]), np.array([1.0, 1, 1])))
|
1087 |
+
@pytest.mark.parametrize("y_pred", (np.array([-5.0, -5, -5]), np.array([3.0, 3, 3])))
|
1088 |
+
def test_binomial_vs_alternative_formulation(y_true, y_pred, global_dtype):
|
1089 |
+
"""Test that both formulations of the binomial deviance agree.
|
1090 |
+
|
1091 |
+
Often, the binomial deviance or log loss is written in terms of a variable
|
1092 |
+
z in {-1, +1}, but we use y in {0, 1}, hence z = 2 * y - 1.
|
1093 |
+
ESL II Eq. (10.18):
|
1094 |
+
|
1095 |
+
-loglike(z, f) = log(1 + exp(-2 * z * f))
|
1096 |
+
|
1097 |
+
Note:
|
1098 |
+
- ESL 2*f = raw_prediction, hence the factor 2 of ESL disappears.
|
1099 |
+
- Deviance = -2*loglike + .., but HalfBinomialLoss is half of the
|
1100 |
+
deviance, hence the factor of 2 cancels in the comparison.
|
1101 |
+
"""
|
1102 |
+
|
1103 |
+
def alt_loss(y, raw_pred):
|
1104 |
+
z = 2 * y - 1
|
1105 |
+
return np.mean(np.log(1 + np.exp(-z * raw_pred)))
|
1106 |
+
|
1107 |
+
def alt_gradient(y, raw_pred):
|
1108 |
+
# alternative gradient formula according to ESL
|
1109 |
+
z = 2 * y - 1
|
1110 |
+
return -z / (1 + np.exp(z * raw_pred))
|
1111 |
+
|
1112 |
+
bin_loss = HalfBinomialLoss()
|
1113 |
+
|
1114 |
+
y_true = y_true.astype(global_dtype)
|
1115 |
+
y_pred = y_pred.astype(global_dtype)
|
1116 |
+
datum = (y_true, y_pred)
|
1117 |
+
|
1118 |
+
assert bin_loss(*datum) == approx(alt_loss(*datum))
|
1119 |
+
assert_allclose(bin_loss.gradient(*datum), alt_gradient(*datum))
|
1120 |
+
|
1121 |
+
|
1122 |
+
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
1123 |
+
def test_predict_proba(loss, global_random_seed):
|
1124 |
+
"""Test that predict_proba and gradient_proba work as expected."""
|
1125 |
+
n_samples = 20
|
1126 |
+
y_true, raw_prediction = random_y_true_raw_prediction(
|
1127 |
+
loss=loss,
|
1128 |
+
n_samples=n_samples,
|
1129 |
+
y_bound=(-100, 100),
|
1130 |
+
raw_bound=(-5, 5),
|
1131 |
+
seed=global_random_seed,
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
if hasattr(loss, "predict_proba"):
|
1135 |
+
proba = loss.predict_proba(raw_prediction)
|
1136 |
+
assert proba.shape == (n_samples, loss.n_classes)
|
1137 |
+
assert np.sum(proba, axis=1) == approx(1, rel=1e-11)
|
1138 |
+
|
1139 |
+
if hasattr(loss, "gradient_proba"):
|
1140 |
+
for grad, proba in (
|
1141 |
+
(None, None),
|
1142 |
+
(None, np.empty_like(raw_prediction)),
|
1143 |
+
(np.empty_like(raw_prediction), None),
|
1144 |
+
(np.empty_like(raw_prediction), np.empty_like(raw_prediction)),
|
1145 |
+
):
|
1146 |
+
grad, proba = loss.gradient_proba(
|
1147 |
+
y_true=y_true,
|
1148 |
+
raw_prediction=raw_prediction,
|
1149 |
+
sample_weight=None,
|
1150 |
+
gradient_out=grad,
|
1151 |
+
proba_out=proba,
|
1152 |
+
)
|
1153 |
+
assert proba.shape == (n_samples, loss.n_classes)
|
1154 |
+
assert np.sum(proba, axis=1) == approx(1, rel=1e-11)
|
1155 |
+
assert_allclose(
|
1156 |
+
grad,
|
1157 |
+
loss.gradient(
|
1158 |
+
y_true=y_true,
|
1159 |
+
raw_prediction=raw_prediction,
|
1160 |
+
sample_weight=None,
|
1161 |
+
gradient_out=None,
|
1162 |
+
),
|
1163 |
+
)
|
1164 |
+
|
1165 |
+
|
1166 |
+
@pytest.mark.parametrize("loss", ALL_LOSSES)
|
1167 |
+
@pytest.mark.parametrize("sample_weight", [None, "range"])
|
1168 |
+
@pytest.mark.parametrize("dtype", (np.float32, np.float64))
|
1169 |
+
@pytest.mark.parametrize("order", ("C", "F"))
|
1170 |
+
def test_init_gradient_and_hessians(loss, sample_weight, dtype, order):
|
1171 |
+
"""Test that init_gradient_and_hessian works as expected.
|
1172 |
+
|
1173 |
+
passing sample_weight to a loss correctly influences the constant_hessian
|
1174 |
+
attribute, and consequently the shape of the hessian array.
|
1175 |
+
"""
|
1176 |
+
n_samples = 5
|
1177 |
+
if sample_weight == "range":
|
1178 |
+
sample_weight = np.ones(n_samples)
|
1179 |
+
loss = loss(sample_weight=sample_weight)
|
1180 |
+
gradient, hessian = loss.init_gradient_and_hessian(
|
1181 |
+
n_samples=n_samples,
|
1182 |
+
dtype=dtype,
|
1183 |
+
order=order,
|
1184 |
+
)
|
1185 |
+
if loss.constant_hessian:
|
1186 |
+
assert gradient.shape == (n_samples,)
|
1187 |
+
assert hessian.shape == (1,)
|
1188 |
+
elif loss.is_multiclass:
|
1189 |
+
assert gradient.shape == (n_samples, loss.n_classes)
|
1190 |
+
assert hessian.shape == (n_samples, loss.n_classes)
|
1191 |
+
else:
|
1192 |
+
assert hessian.shape == (n_samples,)
|
1193 |
+
assert hessian.shape == (n_samples,)
|
1194 |
+
|
1195 |
+
assert gradient.dtype == dtype
|
1196 |
+
assert hessian.dtype == dtype
|
1197 |
+
|
1198 |
+
if order == "C":
|
1199 |
+
assert gradient.flags.c_contiguous
|
1200 |
+
assert hessian.flags.c_contiguous
|
1201 |
+
else:
|
1202 |
+
assert gradient.flags.f_contiguous
|
1203 |
+
assert hessian.flags.f_contiguous
|
1204 |
+
|
1205 |
+
|
1206 |
+
@pytest.mark.parametrize("loss", ALL_LOSSES)
|
1207 |
+
@pytest.mark.parametrize(
|
1208 |
+
"params, err_msg",
|
1209 |
+
[
|
1210 |
+
(
|
1211 |
+
{"dtype": np.int64},
|
1212 |
+
f"Valid options for 'dtype' are .* Got dtype={np.int64} instead.",
|
1213 |
+
),
|
1214 |
+
],
|
1215 |
+
)
|
1216 |
+
def test_init_gradient_and_hessian_raises(loss, params, err_msg):
|
1217 |
+
"""Test that init_gradient_and_hessian raises errors for invalid input."""
|
1218 |
+
loss = loss()
|
1219 |
+
with pytest.raises((ValueError, TypeError), match=err_msg):
|
1220 |
+
gradient, hessian = loss.init_gradient_and_hessian(n_samples=5, **params)
|
1221 |
+
|
1222 |
+
|
1223 |
+
@pytest.mark.parametrize(
|
1224 |
+
"loss, params, err_type, err_msg",
|
1225 |
+
[
|
1226 |
+
(
|
1227 |
+
PinballLoss,
|
1228 |
+
{"quantile": None},
|
1229 |
+
TypeError,
|
1230 |
+
"quantile must be an instance of float, not NoneType.",
|
1231 |
+
),
|
1232 |
+
(
|
1233 |
+
PinballLoss,
|
1234 |
+
{"quantile": 0},
|
1235 |
+
ValueError,
|
1236 |
+
"quantile == 0, must be > 0.",
|
1237 |
+
),
|
1238 |
+
(PinballLoss, {"quantile": 1.1}, ValueError, "quantile == 1.1, must be < 1."),
|
1239 |
+
(
|
1240 |
+
HuberLoss,
|
1241 |
+
{"quantile": None},
|
1242 |
+
TypeError,
|
1243 |
+
"quantile must be an instance of float, not NoneType.",
|
1244 |
+
),
|
1245 |
+
(
|
1246 |
+
HuberLoss,
|
1247 |
+
{"quantile": 0},
|
1248 |
+
ValueError,
|
1249 |
+
"quantile == 0, must be > 0.",
|
1250 |
+
),
|
1251 |
+
(HuberLoss, {"quantile": 1.1}, ValueError, "quantile == 1.1, must be < 1."),
|
1252 |
+
],
|
1253 |
+
)
|
1254 |
+
def test_loss_init_parameter_validation(loss, params, err_type, err_msg):
|
1255 |
+
"""Test that loss raises errors for invalid input."""
|
1256 |
+
with pytest.raises(err_type, match=err_msg):
|
1257 |
+
loss(**params)
|
1258 |
+
|
1259 |
+
|
1260 |
+
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
1261 |
+
def test_loss_pickle(loss):
|
1262 |
+
"""Test that losses can be pickled."""
|
1263 |
+
n_samples = 20
|
1264 |
+
y_true, raw_prediction = random_y_true_raw_prediction(
|
1265 |
+
loss=loss,
|
1266 |
+
n_samples=n_samples,
|
1267 |
+
y_bound=(-100, 100),
|
1268 |
+
raw_bound=(-5, 5),
|
1269 |
+
seed=42,
|
1270 |
+
)
|
1271 |
+
pickled_loss = pickle.dumps(loss)
|
1272 |
+
unpickled_loss = pickle.loads(pickled_loss)
|
1273 |
+
assert loss(y_true=y_true, raw_prediction=raw_prediction) == approx(
|
1274 |
+
unpickled_loss(y_true=y_true, raw_prediction=raw_prediction)
|
1275 |
+
)
|
1276 |
+
|
1277 |
+
|
1278 |
+
@pytest.mark.parametrize("p", [-1.5, 0, 1, 1.5, 2, 3])
|
1279 |
+
def test_tweedie_log_identity_consistency(p):
|
1280 |
+
"""Test for identical losses when only the link function is different."""
|
1281 |
+
half_tweedie_log = HalfTweedieLoss(power=p)
|
1282 |
+
half_tweedie_identity = HalfTweedieLossIdentity(power=p)
|
1283 |
+
n_samples = 10
|
1284 |
+
y_true, raw_prediction = random_y_true_raw_prediction(
|
1285 |
+
loss=half_tweedie_log, n_samples=n_samples, seed=42
|
1286 |
+
)
|
1287 |
+
y_pred = half_tweedie_log.link.inverse(raw_prediction) # exp(raw_prediction)
|
1288 |
+
|
1289 |
+
# Let's compare the loss values, up to some constant term that is dropped
|
1290 |
+
# in HalfTweedieLoss but not in HalfTweedieLossIdentity.
|
1291 |
+
loss_log = half_tweedie_log.loss(
|
1292 |
+
y_true=y_true, raw_prediction=raw_prediction
|
1293 |
+
) + half_tweedie_log.constant_to_optimal_zero(y_true)
|
1294 |
+
loss_identity = half_tweedie_identity.loss(
|
1295 |
+
y_true=y_true, raw_prediction=y_pred
|
1296 |
+
) + half_tweedie_identity.constant_to_optimal_zero(y_true)
|
1297 |
+
# Note that HalfTweedieLoss ignores different constant terms than
|
1298 |
+
# HalfTweedieLossIdentity. Constant terms means terms not depending on
|
1299 |
+
# raw_prediction. By adding these terms, `constant_to_optimal_zero`, both losses
|
1300 |
+
# give the same values.
|
1301 |
+
assert_allclose(loss_log, loss_identity)
|
1302 |
+
|
1303 |
+
# For gradients and hessians, the constant terms do not matter. We have, however,
|
1304 |
+
# to account for the chain rule, i.e. with x=raw_prediction
|
1305 |
+
# gradient_log(x) = d/dx loss_log(x)
|
1306 |
+
# = d/dx loss_identity(exp(x))
|
1307 |
+
# = exp(x) * gradient_identity(exp(x))
|
1308 |
+
# Similarly,
|
1309 |
+
# hessian_log(x) = exp(x) * gradient_identity(exp(x))
|
1310 |
+
# + exp(x)**2 * hessian_identity(x)
|
1311 |
+
gradient_log, hessian_log = half_tweedie_log.gradient_hessian(
|
1312 |
+
y_true=y_true, raw_prediction=raw_prediction
|
1313 |
+
)
|
1314 |
+
gradient_identity, hessian_identity = half_tweedie_identity.gradient_hessian(
|
1315 |
+
y_true=y_true, raw_prediction=y_pred
|
1316 |
+
)
|
1317 |
+
assert_allclose(gradient_log, y_pred * gradient_identity)
|
1318 |
+
assert_allclose(
|
1319 |
+
hessian_log, y_pred * gradient_identity + y_pred**2 * hessian_identity
|
1320 |
+
)
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/__init__.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn.feature_selection` module implements feature selection
|
3 |
+
algorithms. It currently includes univariate filter selection methods and the
|
4 |
+
recursive feature elimination algorithm.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from ._base import SelectorMixin
|
8 |
+
from ._from_model import SelectFromModel
|
9 |
+
from ._mutual_info import mutual_info_classif, mutual_info_regression
|
10 |
+
from ._rfe import RFE, RFECV
|
11 |
+
from ._sequential import SequentialFeatureSelector
|
12 |
+
from ._univariate_selection import (
|
13 |
+
GenericUnivariateSelect,
|
14 |
+
SelectFdr,
|
15 |
+
SelectFpr,
|
16 |
+
SelectFwe,
|
17 |
+
SelectKBest,
|
18 |
+
SelectPercentile,
|
19 |
+
chi2,
|
20 |
+
f_classif,
|
21 |
+
f_oneway,
|
22 |
+
f_regression,
|
23 |
+
r_regression,
|
24 |
+
)
|
25 |
+
from ._variance_threshold import VarianceThreshold
|
26 |
+
|
27 |
+
__all__ = [
|
28 |
+
"GenericUnivariateSelect",
|
29 |
+
"SequentialFeatureSelector",
|
30 |
+
"RFE",
|
31 |
+
"RFECV",
|
32 |
+
"SelectFdr",
|
33 |
+
"SelectFpr",
|
34 |
+
"SelectFwe",
|
35 |
+
"SelectKBest",
|
36 |
+
"SelectFromModel",
|
37 |
+
"SelectPercentile",
|
38 |
+
"VarianceThreshold",
|
39 |
+
"chi2",
|
40 |
+
"f_classif",
|
41 |
+
"f_oneway",
|
42 |
+
"f_regression",
|
43 |
+
"r_regression",
|
44 |
+
"mutual_info_classif",
|
45 |
+
"mutual_info_regression",
|
46 |
+
"SelectorMixin",
|
47 |
+
]
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.15 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_base.cpython-310.pyc
ADDED
Binary file (8.54 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_from_model.cpython-310.pyc
ADDED
Binary file (15.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_mutual_info.cpython-310.pyc
ADDED
Binary file (16.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_rfe.cpython-310.pyc
ADDED
Binary file (24.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_sequential.cpython-310.pyc
ADDED
Binary file (9.81 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_univariate_selection.cpython-310.pyc
ADDED
Binary file (38.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/__pycache__/_variance_threshold.cpython-310.pyc
ADDED
Binary file (4.65 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/_base.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generic feature selection mixin"""
|
2 |
+
|
3 |
+
# Authors: G. Varoquaux, A. Gramfort, L. Buitinck, J. Nothman
|
4 |
+
# License: BSD 3 clause
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from abc import ABCMeta, abstractmethod
|
8 |
+
from operator import attrgetter
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
from scipy.sparse import csc_matrix, issparse
|
12 |
+
|
13 |
+
from ..base import TransformerMixin
|
14 |
+
from ..utils import (
|
15 |
+
_is_pandas_df,
|
16 |
+
_safe_indexing,
|
17 |
+
check_array,
|
18 |
+
safe_sqr,
|
19 |
+
)
|
20 |
+
from ..utils._set_output import _get_output_config
|
21 |
+
from ..utils._tags import _safe_tags
|
22 |
+
from ..utils.validation import _check_feature_names_in, check_is_fitted
|
23 |
+
|
24 |
+
|
25 |
+
class SelectorMixin(TransformerMixin, metaclass=ABCMeta):
|
26 |
+
"""
|
27 |
+
Transformer mixin that performs feature selection given a support mask
|
28 |
+
|
29 |
+
This mixin provides a feature selector implementation with `transform` and
|
30 |
+
`inverse_transform` functionality given an implementation of
|
31 |
+
`_get_support_mask`.
|
32 |
+
|
33 |
+
Examples
|
34 |
+
--------
|
35 |
+
>>> import numpy as np
|
36 |
+
>>> from sklearn.datasets import load_iris
|
37 |
+
>>> from sklearn.base import BaseEstimator
|
38 |
+
>>> from sklearn.feature_selection import SelectorMixin
|
39 |
+
>>> class FeatureSelector(SelectorMixin, BaseEstimator):
|
40 |
+
... def fit(self, X, y=None):
|
41 |
+
... self.n_features_in_ = X.shape[1]
|
42 |
+
... return self
|
43 |
+
... def _get_support_mask(self):
|
44 |
+
... mask = np.zeros(self.n_features_in_, dtype=bool)
|
45 |
+
... mask[:2] = True # select the first two features
|
46 |
+
... return mask
|
47 |
+
>>> X, y = load_iris(return_X_y=True)
|
48 |
+
>>> FeatureSelector().fit_transform(X, y).shape
|
49 |
+
(150, 2)
|
50 |
+
"""
|
51 |
+
|
52 |
+
def get_support(self, indices=False):
|
53 |
+
"""
|
54 |
+
Get a mask, or integer index, of the features selected.
|
55 |
+
|
56 |
+
Parameters
|
57 |
+
----------
|
58 |
+
indices : bool, default=False
|
59 |
+
If True, the return value will be an array of integers, rather
|
60 |
+
than a boolean mask.
|
61 |
+
|
62 |
+
Returns
|
63 |
+
-------
|
64 |
+
support : array
|
65 |
+
An index that selects the retained features from a feature vector.
|
66 |
+
If `indices` is False, this is a boolean array of shape
|
67 |
+
[# input features], in which an element is True iff its
|
68 |
+
corresponding feature is selected for retention. If `indices` is
|
69 |
+
True, this is an integer array of shape [# output features] whose
|
70 |
+
values are indices into the input feature vector.
|
71 |
+
"""
|
72 |
+
mask = self._get_support_mask()
|
73 |
+
return mask if not indices else np.where(mask)[0]
|
74 |
+
|
75 |
+
@abstractmethod
|
76 |
+
def _get_support_mask(self):
|
77 |
+
"""
|
78 |
+
Get the boolean mask indicating which features are selected
|
79 |
+
|
80 |
+
Returns
|
81 |
+
-------
|
82 |
+
support : boolean array of shape [# input features]
|
83 |
+
An element is True iff its corresponding feature is selected for
|
84 |
+
retention.
|
85 |
+
"""
|
86 |
+
|
87 |
+
def transform(self, X):
|
88 |
+
"""Reduce X to the selected features.
|
89 |
+
|
90 |
+
Parameters
|
91 |
+
----------
|
92 |
+
X : array of shape [n_samples, n_features]
|
93 |
+
The input samples.
|
94 |
+
|
95 |
+
Returns
|
96 |
+
-------
|
97 |
+
X_r : array of shape [n_samples, n_selected_features]
|
98 |
+
The input samples with only the selected features.
|
99 |
+
"""
|
100 |
+
# Preserve X when X is a dataframe and the output is configured to
|
101 |
+
# be pandas.
|
102 |
+
output_config_dense = _get_output_config("transform", estimator=self)["dense"]
|
103 |
+
preserve_X = output_config_dense != "default" and _is_pandas_df(X)
|
104 |
+
|
105 |
+
# note: we use _safe_tags instead of _get_tags because this is a
|
106 |
+
# public Mixin.
|
107 |
+
X = self._validate_data(
|
108 |
+
X,
|
109 |
+
dtype=None,
|
110 |
+
accept_sparse="csr",
|
111 |
+
force_all_finite=not _safe_tags(self, key="allow_nan"),
|
112 |
+
cast_to_ndarray=not preserve_X,
|
113 |
+
reset=False,
|
114 |
+
)
|
115 |
+
return self._transform(X)
|
116 |
+
|
117 |
+
def _transform(self, X):
|
118 |
+
"""Reduce X to the selected features."""
|
119 |
+
mask = self.get_support()
|
120 |
+
if not mask.any():
|
121 |
+
warnings.warn(
|
122 |
+
(
|
123 |
+
"No features were selected: either the data is"
|
124 |
+
" too noisy or the selection test too strict."
|
125 |
+
),
|
126 |
+
UserWarning,
|
127 |
+
)
|
128 |
+
if hasattr(X, "iloc"):
|
129 |
+
return X.iloc[:, :0]
|
130 |
+
return np.empty(0, dtype=X.dtype).reshape((X.shape[0], 0))
|
131 |
+
return _safe_indexing(X, mask, axis=1)
|
132 |
+
|
133 |
+
def inverse_transform(self, X):
|
134 |
+
"""Reverse the transformation operation.
|
135 |
+
|
136 |
+
Parameters
|
137 |
+
----------
|
138 |
+
X : array of shape [n_samples, n_selected_features]
|
139 |
+
The input samples.
|
140 |
+
|
141 |
+
Returns
|
142 |
+
-------
|
143 |
+
X_r : array of shape [n_samples, n_original_features]
|
144 |
+
`X` with columns of zeros inserted where features would have
|
145 |
+
been removed by :meth:`transform`.
|
146 |
+
"""
|
147 |
+
if issparse(X):
|
148 |
+
X = X.tocsc()
|
149 |
+
# insert additional entries in indptr:
|
150 |
+
# e.g. if transform changed indptr from [0 2 6 7] to [0 2 3]
|
151 |
+
# col_nonzeros here will be [2 0 1] so indptr becomes [0 2 2 3]
|
152 |
+
it = self.inverse_transform(np.diff(X.indptr).reshape(1, -1))
|
153 |
+
col_nonzeros = it.ravel()
|
154 |
+
indptr = np.concatenate([[0], np.cumsum(col_nonzeros)])
|
155 |
+
Xt = csc_matrix(
|
156 |
+
(X.data, X.indices, indptr),
|
157 |
+
shape=(X.shape[0], len(indptr) - 1),
|
158 |
+
dtype=X.dtype,
|
159 |
+
)
|
160 |
+
return Xt
|
161 |
+
|
162 |
+
support = self.get_support()
|
163 |
+
X = check_array(X, dtype=None)
|
164 |
+
if support.sum() != X.shape[1]:
|
165 |
+
raise ValueError("X has a different shape than during fitting.")
|
166 |
+
|
167 |
+
if X.ndim == 1:
|
168 |
+
X = X[None, :]
|
169 |
+
Xt = np.zeros((X.shape[0], support.size), dtype=X.dtype)
|
170 |
+
Xt[:, support] = X
|
171 |
+
return Xt
|
172 |
+
|
173 |
+
def get_feature_names_out(self, input_features=None):
|
174 |
+
"""Mask feature names according to selected features.
|
175 |
+
|
176 |
+
Parameters
|
177 |
+
----------
|
178 |
+
input_features : array-like of str or None, default=None
|
179 |
+
Input features.
|
180 |
+
|
181 |
+
- If `input_features` is `None`, then `feature_names_in_` is
|
182 |
+
used as feature names in. If `feature_names_in_` is not defined,
|
183 |
+
then the following input feature names are generated:
|
184 |
+
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
|
185 |
+
- If `input_features` is an array-like, then `input_features` must
|
186 |
+
match `feature_names_in_` if `feature_names_in_` is defined.
|
187 |
+
|
188 |
+
Returns
|
189 |
+
-------
|
190 |
+
feature_names_out : ndarray of str objects
|
191 |
+
Transformed feature names.
|
192 |
+
"""
|
193 |
+
check_is_fitted(self)
|
194 |
+
input_features = _check_feature_names_in(self, input_features)
|
195 |
+
return input_features[self.get_support()]
|
196 |
+
|
197 |
+
|
198 |
+
def _get_feature_importances(estimator, getter, transform_func=None, norm_order=1):
|
199 |
+
"""
|
200 |
+
Retrieve and aggregate (ndim > 1) the feature importances
|
201 |
+
from an estimator. Also optionally applies transformation.
|
202 |
+
|
203 |
+
Parameters
|
204 |
+
----------
|
205 |
+
estimator : estimator
|
206 |
+
A scikit-learn estimator from which we want to get the feature
|
207 |
+
importances.
|
208 |
+
|
209 |
+
getter : "auto", str or callable
|
210 |
+
An attribute or a callable to get the feature importance. If `"auto"`,
|
211 |
+
`estimator` is expected to expose `coef_` or `feature_importances`.
|
212 |
+
|
213 |
+
transform_func : {"norm", "square"}, default=None
|
214 |
+
The transform to apply to the feature importances. By default (`None`)
|
215 |
+
no transformation is applied.
|
216 |
+
|
217 |
+
norm_order : int, default=1
|
218 |
+
The norm order to apply when `transform_func="norm"`. Only applied
|
219 |
+
when `importances.ndim > 1`.
|
220 |
+
|
221 |
+
Returns
|
222 |
+
-------
|
223 |
+
importances : ndarray of shape (n_features,)
|
224 |
+
The features importances, optionally transformed.
|
225 |
+
"""
|
226 |
+
if isinstance(getter, str):
|
227 |
+
if getter == "auto":
|
228 |
+
if hasattr(estimator, "coef_"):
|
229 |
+
getter = attrgetter("coef_")
|
230 |
+
elif hasattr(estimator, "feature_importances_"):
|
231 |
+
getter = attrgetter("feature_importances_")
|
232 |
+
else:
|
233 |
+
raise ValueError(
|
234 |
+
"when `importance_getter=='auto'`, the underlying "
|
235 |
+
f"estimator {estimator.__class__.__name__} should have "
|
236 |
+
"`coef_` or `feature_importances_` attribute. Either "
|
237 |
+
"pass a fitted estimator to feature selector or call fit "
|
238 |
+
"before calling transform."
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
getter = attrgetter(getter)
|
242 |
+
elif not callable(getter):
|
243 |
+
raise ValueError("`importance_getter` has to be a string or `callable`")
|
244 |
+
|
245 |
+
importances = getter(estimator)
|
246 |
+
|
247 |
+
if transform_func is None:
|
248 |
+
return importances
|
249 |
+
elif transform_func == "norm":
|
250 |
+
if importances.ndim == 1:
|
251 |
+
importances = np.abs(importances)
|
252 |
+
else:
|
253 |
+
importances = np.linalg.norm(importances, axis=0, ord=norm_order)
|
254 |
+
elif transform_func == "square":
|
255 |
+
if importances.ndim == 1:
|
256 |
+
importances = safe_sqr(importances)
|
257 |
+
else:
|
258 |
+
importances = safe_sqr(importances).sum(axis=0)
|
259 |
+
else:
|
260 |
+
raise ValueError(
|
261 |
+
"Valid values for `transform_func` are "
|
262 |
+
+ "None, 'norm' and 'square'. Those two "
|
263 |
+
+ "transformation are only supported now"
|
264 |
+
)
|
265 |
+
|
266 |
+
return importances
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/_from_model.py
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Authors: Gilles Louppe, Mathieu Blondel, Maheshakya Wijewardena
|
2 |
+
# License: BSD 3 clause
|
3 |
+
|
4 |
+
from copy import deepcopy
|
5 |
+
from numbers import Integral, Real
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from ..base import BaseEstimator, MetaEstimatorMixin, _fit_context, clone
|
10 |
+
from ..exceptions import NotFittedError
|
11 |
+
from ..utils._param_validation import HasMethods, Interval, Options
|
12 |
+
from ..utils._tags import _safe_tags
|
13 |
+
from ..utils.metadata_routing import (
|
14 |
+
MetadataRouter,
|
15 |
+
MethodMapping,
|
16 |
+
_routing_enabled,
|
17 |
+
process_routing,
|
18 |
+
)
|
19 |
+
from ..utils.metaestimators import available_if
|
20 |
+
from ..utils.validation import _num_features, check_is_fitted, check_scalar
|
21 |
+
from ._base import SelectorMixin, _get_feature_importances
|
22 |
+
|
23 |
+
|
24 |
+
def _calculate_threshold(estimator, importances, threshold):
|
25 |
+
"""Interpret the threshold value"""
|
26 |
+
|
27 |
+
if threshold is None:
|
28 |
+
# determine default from estimator
|
29 |
+
est_name = estimator.__class__.__name__
|
30 |
+
is_l1_penalized = hasattr(estimator, "penalty") and estimator.penalty == "l1"
|
31 |
+
is_lasso = "Lasso" in est_name
|
32 |
+
is_elasticnet_l1_penalized = "ElasticNet" in est_name and (
|
33 |
+
(hasattr(estimator, "l1_ratio_") and np.isclose(estimator.l1_ratio_, 1.0))
|
34 |
+
or (hasattr(estimator, "l1_ratio") and np.isclose(estimator.l1_ratio, 1.0))
|
35 |
+
)
|
36 |
+
if is_l1_penalized or is_lasso or is_elasticnet_l1_penalized:
|
37 |
+
# the natural default threshold is 0 when l1 penalty was used
|
38 |
+
threshold = 1e-5
|
39 |
+
else:
|
40 |
+
threshold = "mean"
|
41 |
+
|
42 |
+
if isinstance(threshold, str):
|
43 |
+
if "*" in threshold:
|
44 |
+
scale, reference = threshold.split("*")
|
45 |
+
scale = float(scale.strip())
|
46 |
+
reference = reference.strip()
|
47 |
+
|
48 |
+
if reference == "median":
|
49 |
+
reference = np.median(importances)
|
50 |
+
elif reference == "mean":
|
51 |
+
reference = np.mean(importances)
|
52 |
+
else:
|
53 |
+
raise ValueError("Unknown reference: " + reference)
|
54 |
+
|
55 |
+
threshold = scale * reference
|
56 |
+
|
57 |
+
elif threshold == "median":
|
58 |
+
threshold = np.median(importances)
|
59 |
+
|
60 |
+
elif threshold == "mean":
|
61 |
+
threshold = np.mean(importances)
|
62 |
+
|
63 |
+
else:
|
64 |
+
raise ValueError(
|
65 |
+
"Expected threshold='mean' or threshold='median' got %s" % threshold
|
66 |
+
)
|
67 |
+
|
68 |
+
else:
|
69 |
+
threshold = float(threshold)
|
70 |
+
|
71 |
+
return threshold
|
72 |
+
|
73 |
+
|
74 |
+
def _estimator_has(attr):
|
75 |
+
"""Check if we can delegate a method to the underlying estimator.
|
76 |
+
|
77 |
+
First, we check the fitted `estimator_` if available, otherwise we check the
|
78 |
+
unfitted `estimator`. We raise the original `AttributeError` if `attr` does
|
79 |
+
not exist. This function is used together with `available_if`.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def check(self):
|
83 |
+
if hasattr(self, "estimator_"):
|
84 |
+
getattr(self.estimator_, attr)
|
85 |
+
else:
|
86 |
+
getattr(self.estimator, attr)
|
87 |
+
|
88 |
+
return True
|
89 |
+
|
90 |
+
return check
|
91 |
+
|
92 |
+
|
93 |
+
class SelectFromModel(MetaEstimatorMixin, SelectorMixin, BaseEstimator):
|
94 |
+
"""Meta-transformer for selecting features based on importance weights.
|
95 |
+
|
96 |
+
.. versionadded:: 0.17
|
97 |
+
|
98 |
+
Read more in the :ref:`User Guide <select_from_model>`.
|
99 |
+
|
100 |
+
Parameters
|
101 |
+
----------
|
102 |
+
estimator : object
|
103 |
+
The base estimator from which the transformer is built.
|
104 |
+
This can be both a fitted (if ``prefit`` is set to True)
|
105 |
+
or a non-fitted estimator. The estimator should have a
|
106 |
+
``feature_importances_`` or ``coef_`` attribute after fitting.
|
107 |
+
Otherwise, the ``importance_getter`` parameter should be used.
|
108 |
+
|
109 |
+
threshold : str or float, default=None
|
110 |
+
The threshold value to use for feature selection. Features whose
|
111 |
+
absolute importance value is greater or equal are kept while the others
|
112 |
+
are discarded. If "median" (resp. "mean"), then the ``threshold`` value
|
113 |
+
is the median (resp. the mean) of the feature importances. A scaling
|
114 |
+
factor (e.g., "1.25*mean") may also be used. If None and if the
|
115 |
+
estimator has a parameter penalty set to l1, either explicitly
|
116 |
+
or implicitly (e.g, Lasso), the threshold used is 1e-5.
|
117 |
+
Otherwise, "mean" is used by default.
|
118 |
+
|
119 |
+
prefit : bool, default=False
|
120 |
+
Whether a prefit model is expected to be passed into the constructor
|
121 |
+
directly or not.
|
122 |
+
If `True`, `estimator` must be a fitted estimator.
|
123 |
+
If `False`, `estimator` is fitted and updated by calling
|
124 |
+
`fit` and `partial_fit`, respectively.
|
125 |
+
|
126 |
+
norm_order : non-zero int, inf, -inf, default=1
|
127 |
+
Order of the norm used to filter the vectors of coefficients below
|
128 |
+
``threshold`` in the case where the ``coef_`` attribute of the
|
129 |
+
estimator is of dimension 2.
|
130 |
+
|
131 |
+
max_features : int, callable, default=None
|
132 |
+
The maximum number of features to select.
|
133 |
+
|
134 |
+
- If an integer, then it specifies the maximum number of features to
|
135 |
+
allow.
|
136 |
+
- If a callable, then it specifies how to calculate the maximum number of
|
137 |
+
features allowed by using the output of `max_features(X)`.
|
138 |
+
- If `None`, then all features are kept.
|
139 |
+
|
140 |
+
To only select based on ``max_features``, set ``threshold=-np.inf``.
|
141 |
+
|
142 |
+
.. versionadded:: 0.20
|
143 |
+
.. versionchanged:: 1.1
|
144 |
+
`max_features` accepts a callable.
|
145 |
+
|
146 |
+
importance_getter : str or callable, default='auto'
|
147 |
+
If 'auto', uses the feature importance either through a ``coef_``
|
148 |
+
attribute or ``feature_importances_`` attribute of estimator.
|
149 |
+
|
150 |
+
Also accepts a string that specifies an attribute name/path
|
151 |
+
for extracting feature importance (implemented with `attrgetter`).
|
152 |
+
For example, give `regressor_.coef_` in case of
|
153 |
+
:class:`~sklearn.compose.TransformedTargetRegressor` or
|
154 |
+
`named_steps.clf.feature_importances_` in case of
|
155 |
+
:class:`~sklearn.pipeline.Pipeline` with its last step named `clf`.
|
156 |
+
|
157 |
+
If `callable`, overrides the default feature importance getter.
|
158 |
+
The callable is passed with the fitted estimator and it should
|
159 |
+
return importance for each feature.
|
160 |
+
|
161 |
+
.. versionadded:: 0.24
|
162 |
+
|
163 |
+
Attributes
|
164 |
+
----------
|
165 |
+
estimator_ : estimator
|
166 |
+
The base estimator from which the transformer is built. This attribute
|
167 |
+
exist only when `fit` has been called.
|
168 |
+
|
169 |
+
- If `prefit=True`, it is a deep copy of `estimator`.
|
170 |
+
- If `prefit=False`, it is a clone of `estimator` and fit on the data
|
171 |
+
passed to `fit` or `partial_fit`.
|
172 |
+
|
173 |
+
n_features_in_ : int
|
174 |
+
Number of features seen during :term:`fit`. Only defined if the
|
175 |
+
underlying estimator exposes such an attribute when fit.
|
176 |
+
|
177 |
+
.. versionadded:: 0.24
|
178 |
+
|
179 |
+
max_features_ : int
|
180 |
+
Maximum number of features calculated during :term:`fit`. Only defined
|
181 |
+
if the ``max_features`` is not `None`.
|
182 |
+
|
183 |
+
- If `max_features` is an `int`, then `max_features_ = max_features`.
|
184 |
+
- If `max_features` is a callable, then `max_features_ = max_features(X)`.
|
185 |
+
|
186 |
+
.. versionadded:: 1.1
|
187 |
+
|
188 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
189 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
190 |
+
has feature names that are all strings.
|
191 |
+
|
192 |
+
.. versionadded:: 1.0
|
193 |
+
|
194 |
+
threshold_ : float
|
195 |
+
The threshold value used for feature selection.
|
196 |
+
|
197 |
+
See Also
|
198 |
+
--------
|
199 |
+
RFE : Recursive feature elimination based on importance weights.
|
200 |
+
RFECV : Recursive feature elimination with built-in cross-validated
|
201 |
+
selection of the best number of features.
|
202 |
+
SequentialFeatureSelector : Sequential cross-validation based feature
|
203 |
+
selection. Does not rely on importance weights.
|
204 |
+
|
205 |
+
Notes
|
206 |
+
-----
|
207 |
+
Allows NaN/Inf in the input if the underlying estimator does as well.
|
208 |
+
|
209 |
+
Examples
|
210 |
+
--------
|
211 |
+
>>> from sklearn.feature_selection import SelectFromModel
|
212 |
+
>>> from sklearn.linear_model import LogisticRegression
|
213 |
+
>>> X = [[ 0.87, -1.34, 0.31 ],
|
214 |
+
... [-2.79, -0.02, -0.85 ],
|
215 |
+
... [-1.34, -0.48, -2.55 ],
|
216 |
+
... [ 1.92, 1.48, 0.65 ]]
|
217 |
+
>>> y = [0, 1, 0, 1]
|
218 |
+
>>> selector = SelectFromModel(estimator=LogisticRegression()).fit(X, y)
|
219 |
+
>>> selector.estimator_.coef_
|
220 |
+
array([[-0.3252..., 0.8345..., 0.4976...]])
|
221 |
+
>>> selector.threshold_
|
222 |
+
0.55249...
|
223 |
+
>>> selector.get_support()
|
224 |
+
array([False, True, False])
|
225 |
+
>>> selector.transform(X)
|
226 |
+
array([[-1.34],
|
227 |
+
[-0.02],
|
228 |
+
[-0.48],
|
229 |
+
[ 1.48]])
|
230 |
+
|
231 |
+
Using a callable to create a selector that can use no more than half
|
232 |
+
of the input features.
|
233 |
+
|
234 |
+
>>> def half_callable(X):
|
235 |
+
... return round(len(X[0]) / 2)
|
236 |
+
>>> half_selector = SelectFromModel(estimator=LogisticRegression(),
|
237 |
+
... max_features=half_callable)
|
238 |
+
>>> _ = half_selector.fit(X, y)
|
239 |
+
>>> half_selector.max_features_
|
240 |
+
2
|
241 |
+
"""
|
242 |
+
|
243 |
+
_parameter_constraints: dict = {
|
244 |
+
"estimator": [HasMethods("fit")],
|
245 |
+
"threshold": [Interval(Real, None, None, closed="both"), str, None],
|
246 |
+
"prefit": ["boolean"],
|
247 |
+
"norm_order": [
|
248 |
+
Interval(Integral, None, -1, closed="right"),
|
249 |
+
Interval(Integral, 1, None, closed="left"),
|
250 |
+
Options(Real, {np.inf, -np.inf}),
|
251 |
+
],
|
252 |
+
"max_features": [Interval(Integral, 0, None, closed="left"), callable, None],
|
253 |
+
"importance_getter": [str, callable],
|
254 |
+
}
|
255 |
+
|
256 |
+
def __init__(
|
257 |
+
self,
|
258 |
+
estimator,
|
259 |
+
*,
|
260 |
+
threshold=None,
|
261 |
+
prefit=False,
|
262 |
+
norm_order=1,
|
263 |
+
max_features=None,
|
264 |
+
importance_getter="auto",
|
265 |
+
):
|
266 |
+
self.estimator = estimator
|
267 |
+
self.threshold = threshold
|
268 |
+
self.prefit = prefit
|
269 |
+
self.importance_getter = importance_getter
|
270 |
+
self.norm_order = norm_order
|
271 |
+
self.max_features = max_features
|
272 |
+
|
273 |
+
def _get_support_mask(self):
|
274 |
+
estimator = getattr(self, "estimator_", self.estimator)
|
275 |
+
max_features = getattr(self, "max_features_", self.max_features)
|
276 |
+
|
277 |
+
if self.prefit:
|
278 |
+
try:
|
279 |
+
check_is_fitted(self.estimator)
|
280 |
+
except NotFittedError as exc:
|
281 |
+
raise NotFittedError(
|
282 |
+
"When `prefit=True`, `estimator` is expected to be a fitted "
|
283 |
+
"estimator."
|
284 |
+
) from exc
|
285 |
+
if callable(max_features):
|
286 |
+
# This branch is executed when `transform` is called directly and thus
|
287 |
+
# `max_features_` is not set and we fallback using `self.max_features`
|
288 |
+
# that is not validated
|
289 |
+
raise NotFittedError(
|
290 |
+
"When `prefit=True` and `max_features` is a callable, call `fit` "
|
291 |
+
"before calling `transform`."
|
292 |
+
)
|
293 |
+
elif max_features is not None and not isinstance(max_features, Integral):
|
294 |
+
raise ValueError(
|
295 |
+
f"`max_features` must be an integer. Got `max_features={max_features}` "
|
296 |
+
"instead."
|
297 |
+
)
|
298 |
+
|
299 |
+
scores = _get_feature_importances(
|
300 |
+
estimator=estimator,
|
301 |
+
getter=self.importance_getter,
|
302 |
+
transform_func="norm",
|
303 |
+
norm_order=self.norm_order,
|
304 |
+
)
|
305 |
+
threshold = _calculate_threshold(estimator, scores, self.threshold)
|
306 |
+
if self.max_features is not None:
|
307 |
+
mask = np.zeros_like(scores, dtype=bool)
|
308 |
+
candidate_indices = np.argsort(-scores, kind="mergesort")[:max_features]
|
309 |
+
mask[candidate_indices] = True
|
310 |
+
else:
|
311 |
+
mask = np.ones_like(scores, dtype=bool)
|
312 |
+
mask[scores < threshold] = False
|
313 |
+
return mask
|
314 |
+
|
315 |
+
def _check_max_features(self, X):
|
316 |
+
if self.max_features is not None:
|
317 |
+
n_features = _num_features(X)
|
318 |
+
|
319 |
+
if callable(self.max_features):
|
320 |
+
max_features = self.max_features(X)
|
321 |
+
else: # int
|
322 |
+
max_features = self.max_features
|
323 |
+
|
324 |
+
check_scalar(
|
325 |
+
max_features,
|
326 |
+
"max_features",
|
327 |
+
Integral,
|
328 |
+
min_val=0,
|
329 |
+
max_val=n_features,
|
330 |
+
)
|
331 |
+
self.max_features_ = max_features
|
332 |
+
|
333 |
+
@_fit_context(
|
334 |
+
# SelectFromModel.estimator is not validated yet
|
335 |
+
prefer_skip_nested_validation=False
|
336 |
+
)
|
337 |
+
def fit(self, X, y=None, **fit_params):
|
338 |
+
"""Fit the SelectFromModel meta-transformer.
|
339 |
+
|
340 |
+
Parameters
|
341 |
+
----------
|
342 |
+
X : array-like of shape (n_samples, n_features)
|
343 |
+
The training input samples.
|
344 |
+
|
345 |
+
y : array-like of shape (n_samples,), default=None
|
346 |
+
The target values (integers that correspond to classes in
|
347 |
+
classification, real numbers in regression).
|
348 |
+
|
349 |
+
**fit_params : dict
|
350 |
+
- If `enable_metadata_routing=False` (default):
|
351 |
+
|
352 |
+
Parameters directly passed to the `partial_fit` method of the
|
353 |
+
sub-estimator. They are ignored if `prefit=True`.
|
354 |
+
|
355 |
+
- If `enable_metadata_routing=True`:
|
356 |
+
|
357 |
+
Parameters safely routed to the `partial_fit` method of the
|
358 |
+
sub-estimator. They are ignored if `prefit=True`.
|
359 |
+
|
360 |
+
.. versionchanged:: 1.4
|
361 |
+
See :ref:`Metadata Routing User Guide <metadata_routing>` for
|
362 |
+
more details.
|
363 |
+
|
364 |
+
Returns
|
365 |
+
-------
|
366 |
+
self : object
|
367 |
+
Fitted estimator.
|
368 |
+
"""
|
369 |
+
self._check_max_features(X)
|
370 |
+
|
371 |
+
if self.prefit:
|
372 |
+
try:
|
373 |
+
check_is_fitted(self.estimator)
|
374 |
+
except NotFittedError as exc:
|
375 |
+
raise NotFittedError(
|
376 |
+
"When `prefit=True`, `estimator` is expected to be a fitted "
|
377 |
+
"estimator."
|
378 |
+
) from exc
|
379 |
+
self.estimator_ = deepcopy(self.estimator)
|
380 |
+
else:
|
381 |
+
if _routing_enabled():
|
382 |
+
routed_params = process_routing(self, "fit", **fit_params)
|
383 |
+
self.estimator_ = clone(self.estimator)
|
384 |
+
self.estimator_.fit(X, y, **routed_params.estimator.fit)
|
385 |
+
else:
|
386 |
+
# TODO(SLEP6): remove when metadata routing cannot be disabled.
|
387 |
+
self.estimator_ = clone(self.estimator)
|
388 |
+
self.estimator_.fit(X, y, **fit_params)
|
389 |
+
|
390 |
+
if hasattr(self.estimator_, "feature_names_in_"):
|
391 |
+
self.feature_names_in_ = self.estimator_.feature_names_in_
|
392 |
+
else:
|
393 |
+
self._check_feature_names(X, reset=True)
|
394 |
+
|
395 |
+
return self
|
396 |
+
|
397 |
+
@property
|
398 |
+
def threshold_(self):
|
399 |
+
"""Threshold value used for feature selection."""
|
400 |
+
scores = _get_feature_importances(
|
401 |
+
estimator=self.estimator_,
|
402 |
+
getter=self.importance_getter,
|
403 |
+
transform_func="norm",
|
404 |
+
norm_order=self.norm_order,
|
405 |
+
)
|
406 |
+
return _calculate_threshold(self.estimator, scores, self.threshold)
|
407 |
+
|
408 |
+
@available_if(_estimator_has("partial_fit"))
|
409 |
+
@_fit_context(
|
410 |
+
# SelectFromModel.estimator is not validated yet
|
411 |
+
prefer_skip_nested_validation=False
|
412 |
+
)
|
413 |
+
def partial_fit(self, X, y=None, **partial_fit_params):
|
414 |
+
"""Fit the SelectFromModel meta-transformer only once.
|
415 |
+
|
416 |
+
Parameters
|
417 |
+
----------
|
418 |
+
X : array-like of shape (n_samples, n_features)
|
419 |
+
The training input samples.
|
420 |
+
|
421 |
+
y : array-like of shape (n_samples,), default=None
|
422 |
+
The target values (integers that correspond to classes in
|
423 |
+
classification, real numbers in regression).
|
424 |
+
|
425 |
+
**partial_fit_params : dict
|
426 |
+
- If `enable_metadata_routing=False` (default):
|
427 |
+
|
428 |
+
Parameters directly passed to the `partial_fit` method of the
|
429 |
+
sub-estimator.
|
430 |
+
|
431 |
+
- If `enable_metadata_routing=True`:
|
432 |
+
|
433 |
+
Parameters passed to the `partial_fit` method of the
|
434 |
+
sub-estimator. They are ignored if `prefit=True`.
|
435 |
+
|
436 |
+
.. versionchanged:: 1.4
|
437 |
+
`**partial_fit_params` are routed to the sub-estimator, if
|
438 |
+
`enable_metadata_routing=True` is set via
|
439 |
+
:func:`~sklearn.set_config`, which allows for aliasing.
|
440 |
+
|
441 |
+
See :ref:`Metadata Routing User Guide <metadata_routing>` for
|
442 |
+
more details.
|
443 |
+
|
444 |
+
Returns
|
445 |
+
-------
|
446 |
+
self : object
|
447 |
+
Fitted estimator.
|
448 |
+
"""
|
449 |
+
first_call = not hasattr(self, "estimator_")
|
450 |
+
|
451 |
+
if first_call:
|
452 |
+
self._check_max_features(X)
|
453 |
+
|
454 |
+
if self.prefit:
|
455 |
+
if first_call:
|
456 |
+
try:
|
457 |
+
check_is_fitted(self.estimator)
|
458 |
+
except NotFittedError as exc:
|
459 |
+
raise NotFittedError(
|
460 |
+
"When `prefit=True`, `estimator` is expected to be a fitted "
|
461 |
+
"estimator."
|
462 |
+
) from exc
|
463 |
+
self.estimator_ = deepcopy(self.estimator)
|
464 |
+
return self
|
465 |
+
|
466 |
+
if first_call:
|
467 |
+
self.estimator_ = clone(self.estimator)
|
468 |
+
if _routing_enabled():
|
469 |
+
routed_params = process_routing(self, "partial_fit", **partial_fit_params)
|
470 |
+
self.estimator_ = clone(self.estimator)
|
471 |
+
self.estimator_.partial_fit(X, y, **routed_params.estimator.partial_fit)
|
472 |
+
else:
|
473 |
+
# TODO(SLEP6): remove when metadata routing cannot be disabled.
|
474 |
+
self.estimator_.partial_fit(X, y, **partial_fit_params)
|
475 |
+
|
476 |
+
if hasattr(self.estimator_, "feature_names_in_"):
|
477 |
+
self.feature_names_in_ = self.estimator_.feature_names_in_
|
478 |
+
else:
|
479 |
+
self._check_feature_names(X, reset=first_call)
|
480 |
+
|
481 |
+
return self
|
482 |
+
|
483 |
+
@property
|
484 |
+
def n_features_in_(self):
|
485 |
+
"""Number of features seen during `fit`."""
|
486 |
+
# For consistency with other estimators we raise a AttributeError so
|
487 |
+
# that hasattr() fails if the estimator isn't fitted.
|
488 |
+
try:
|
489 |
+
check_is_fitted(self)
|
490 |
+
except NotFittedError as nfe:
|
491 |
+
raise AttributeError(
|
492 |
+
"{} object has no n_features_in_ attribute.".format(
|
493 |
+
self.__class__.__name__
|
494 |
+
)
|
495 |
+
) from nfe
|
496 |
+
|
497 |
+
return self.estimator_.n_features_in_
|
498 |
+
|
499 |
+
def get_metadata_routing(self):
|
500 |
+
"""Get metadata routing of this object.
|
501 |
+
|
502 |
+
Please check :ref:`User Guide <metadata_routing>` on how the routing
|
503 |
+
mechanism works.
|
504 |
+
|
505 |
+
.. versionadded:: 1.4
|
506 |
+
|
507 |
+
Returns
|
508 |
+
-------
|
509 |
+
routing : MetadataRouter
|
510 |
+
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
|
511 |
+
routing information.
|
512 |
+
"""
|
513 |
+
router = MetadataRouter(owner=self.__class__.__name__).add(
|
514 |
+
estimator=self.estimator,
|
515 |
+
method_mapping=MethodMapping()
|
516 |
+
.add(callee="partial_fit", caller="partial_fit")
|
517 |
+
.add(callee="fit", caller="fit"),
|
518 |
+
)
|
519 |
+
return router
|
520 |
+
|
521 |
+
def _more_tags(self):
|
522 |
+
return {"allow_nan": _safe_tags(self.estimator, key="allow_nan")}
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/_mutual_info.py
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Author: Nikolay Mayorov <[email protected]>
|
2 |
+
# License: 3-clause BSD
|
3 |
+
|
4 |
+
from numbers import Integral
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from scipy.sparse import issparse
|
8 |
+
from scipy.special import digamma
|
9 |
+
|
10 |
+
from ..metrics.cluster import mutual_info_score
|
11 |
+
from ..neighbors import KDTree, NearestNeighbors
|
12 |
+
from ..preprocessing import scale
|
13 |
+
from ..utils import check_random_state
|
14 |
+
from ..utils._param_validation import Interval, StrOptions, validate_params
|
15 |
+
from ..utils.multiclass import check_classification_targets
|
16 |
+
from ..utils.validation import check_array, check_X_y
|
17 |
+
|
18 |
+
|
19 |
+
def _compute_mi_cc(x, y, n_neighbors):
|
20 |
+
"""Compute mutual information between two continuous variables.
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
x, y : ndarray, shape (n_samples,)
|
25 |
+
Samples of two continuous random variables, must have an identical
|
26 |
+
shape.
|
27 |
+
|
28 |
+
n_neighbors : int
|
29 |
+
Number of nearest neighbors to search for each point, see [1]_.
|
30 |
+
|
31 |
+
Returns
|
32 |
+
-------
|
33 |
+
mi : float
|
34 |
+
Estimated mutual information in nat units. If it turned out to be
|
35 |
+
negative it is replaced by 0.
|
36 |
+
|
37 |
+
Notes
|
38 |
+
-----
|
39 |
+
True mutual information can't be negative. If its estimate by a numerical
|
40 |
+
method is negative, it means (providing the method is adequate) that the
|
41 |
+
mutual information is close to 0 and replacing it by 0 is a reasonable
|
42 |
+
strategy.
|
43 |
+
|
44 |
+
References
|
45 |
+
----------
|
46 |
+
.. [1] A. Kraskov, H. Stogbauer and P. Grassberger, "Estimating mutual
|
47 |
+
information". Phys. Rev. E 69, 2004.
|
48 |
+
"""
|
49 |
+
n_samples = x.size
|
50 |
+
|
51 |
+
x = x.reshape((-1, 1))
|
52 |
+
y = y.reshape((-1, 1))
|
53 |
+
xy = np.hstack((x, y))
|
54 |
+
|
55 |
+
# Here we rely on NearestNeighbors to select the fastest algorithm.
|
56 |
+
nn = NearestNeighbors(metric="chebyshev", n_neighbors=n_neighbors)
|
57 |
+
|
58 |
+
nn.fit(xy)
|
59 |
+
radius = nn.kneighbors()[0]
|
60 |
+
radius = np.nextafter(radius[:, -1], 0)
|
61 |
+
|
62 |
+
# KDTree is explicitly fit to allow for the querying of number of
|
63 |
+
# neighbors within a specified radius
|
64 |
+
kd = KDTree(x, metric="chebyshev")
|
65 |
+
nx = kd.query_radius(x, radius, count_only=True, return_distance=False)
|
66 |
+
nx = np.array(nx) - 1.0
|
67 |
+
|
68 |
+
kd = KDTree(y, metric="chebyshev")
|
69 |
+
ny = kd.query_radius(y, radius, count_only=True, return_distance=False)
|
70 |
+
ny = np.array(ny) - 1.0
|
71 |
+
|
72 |
+
mi = (
|
73 |
+
digamma(n_samples)
|
74 |
+
+ digamma(n_neighbors)
|
75 |
+
- np.mean(digamma(nx + 1))
|
76 |
+
- np.mean(digamma(ny + 1))
|
77 |
+
)
|
78 |
+
|
79 |
+
return max(0, mi)
|
80 |
+
|
81 |
+
|
82 |
+
def _compute_mi_cd(c, d, n_neighbors):
|
83 |
+
"""Compute mutual information between continuous and discrete variables.
|
84 |
+
|
85 |
+
Parameters
|
86 |
+
----------
|
87 |
+
c : ndarray, shape (n_samples,)
|
88 |
+
Samples of a continuous random variable.
|
89 |
+
|
90 |
+
d : ndarray, shape (n_samples,)
|
91 |
+
Samples of a discrete random variable.
|
92 |
+
|
93 |
+
n_neighbors : int
|
94 |
+
Number of nearest neighbors to search for each point, see [1]_.
|
95 |
+
|
96 |
+
Returns
|
97 |
+
-------
|
98 |
+
mi : float
|
99 |
+
Estimated mutual information in nat units. If it turned out to be
|
100 |
+
negative it is replaced by 0.
|
101 |
+
|
102 |
+
Notes
|
103 |
+
-----
|
104 |
+
True mutual information can't be negative. If its estimate by a numerical
|
105 |
+
method is negative, it means (providing the method is adequate) that the
|
106 |
+
mutual information is close to 0 and replacing it by 0 is a reasonable
|
107 |
+
strategy.
|
108 |
+
|
109 |
+
References
|
110 |
+
----------
|
111 |
+
.. [1] B. C. Ross "Mutual Information between Discrete and Continuous
|
112 |
+
Data Sets". PLoS ONE 9(2), 2014.
|
113 |
+
"""
|
114 |
+
n_samples = c.shape[0]
|
115 |
+
c = c.reshape((-1, 1))
|
116 |
+
|
117 |
+
radius = np.empty(n_samples)
|
118 |
+
label_counts = np.empty(n_samples)
|
119 |
+
k_all = np.empty(n_samples)
|
120 |
+
nn = NearestNeighbors()
|
121 |
+
for label in np.unique(d):
|
122 |
+
mask = d == label
|
123 |
+
count = np.sum(mask)
|
124 |
+
if count > 1:
|
125 |
+
k = min(n_neighbors, count - 1)
|
126 |
+
nn.set_params(n_neighbors=k)
|
127 |
+
nn.fit(c[mask])
|
128 |
+
r = nn.kneighbors()[0]
|
129 |
+
radius[mask] = np.nextafter(r[:, -1], 0)
|
130 |
+
k_all[mask] = k
|
131 |
+
label_counts[mask] = count
|
132 |
+
|
133 |
+
# Ignore points with unique labels.
|
134 |
+
mask = label_counts > 1
|
135 |
+
n_samples = np.sum(mask)
|
136 |
+
label_counts = label_counts[mask]
|
137 |
+
k_all = k_all[mask]
|
138 |
+
c = c[mask]
|
139 |
+
radius = radius[mask]
|
140 |
+
|
141 |
+
kd = KDTree(c)
|
142 |
+
m_all = kd.query_radius(c, radius, count_only=True, return_distance=False)
|
143 |
+
m_all = np.array(m_all)
|
144 |
+
|
145 |
+
mi = (
|
146 |
+
digamma(n_samples)
|
147 |
+
+ np.mean(digamma(k_all))
|
148 |
+
- np.mean(digamma(label_counts))
|
149 |
+
- np.mean(digamma(m_all))
|
150 |
+
)
|
151 |
+
|
152 |
+
return max(0, mi)
|
153 |
+
|
154 |
+
|
155 |
+
def _compute_mi(x, y, x_discrete, y_discrete, n_neighbors=3):
|
156 |
+
"""Compute mutual information between two variables.
|
157 |
+
|
158 |
+
This is a simple wrapper which selects a proper function to call based on
|
159 |
+
whether `x` and `y` are discrete or not.
|
160 |
+
"""
|
161 |
+
if x_discrete and y_discrete:
|
162 |
+
return mutual_info_score(x, y)
|
163 |
+
elif x_discrete and not y_discrete:
|
164 |
+
return _compute_mi_cd(y, x, n_neighbors)
|
165 |
+
elif not x_discrete and y_discrete:
|
166 |
+
return _compute_mi_cd(x, y, n_neighbors)
|
167 |
+
else:
|
168 |
+
return _compute_mi_cc(x, y, n_neighbors)
|
169 |
+
|
170 |
+
|
171 |
+
def _iterate_columns(X, columns=None):
|
172 |
+
"""Iterate over columns of a matrix.
|
173 |
+
|
174 |
+
Parameters
|
175 |
+
----------
|
176 |
+
X : ndarray or csc_matrix, shape (n_samples, n_features)
|
177 |
+
Matrix over which to iterate.
|
178 |
+
|
179 |
+
columns : iterable or None, default=None
|
180 |
+
Indices of columns to iterate over. If None, iterate over all columns.
|
181 |
+
|
182 |
+
Yields
|
183 |
+
------
|
184 |
+
x : ndarray, shape (n_samples,)
|
185 |
+
Columns of `X` in dense format.
|
186 |
+
"""
|
187 |
+
if columns is None:
|
188 |
+
columns = range(X.shape[1])
|
189 |
+
|
190 |
+
if issparse(X):
|
191 |
+
for i in columns:
|
192 |
+
x = np.zeros(X.shape[0])
|
193 |
+
start_ptr, end_ptr = X.indptr[i], X.indptr[i + 1]
|
194 |
+
x[X.indices[start_ptr:end_ptr]] = X.data[start_ptr:end_ptr]
|
195 |
+
yield x
|
196 |
+
else:
|
197 |
+
for i in columns:
|
198 |
+
yield X[:, i]
|
199 |
+
|
200 |
+
|
201 |
+
def _estimate_mi(
|
202 |
+
X,
|
203 |
+
y,
|
204 |
+
discrete_features="auto",
|
205 |
+
discrete_target=False,
|
206 |
+
n_neighbors=3,
|
207 |
+
copy=True,
|
208 |
+
random_state=None,
|
209 |
+
):
|
210 |
+
"""Estimate mutual information between the features and the target.
|
211 |
+
|
212 |
+
Parameters
|
213 |
+
----------
|
214 |
+
X : array-like or sparse matrix, shape (n_samples, n_features)
|
215 |
+
Feature matrix.
|
216 |
+
|
217 |
+
y : array-like of shape (n_samples,)
|
218 |
+
Target vector.
|
219 |
+
|
220 |
+
discrete_features : {'auto', bool, array-like}, default='auto'
|
221 |
+
If bool, then determines whether to consider all features discrete
|
222 |
+
or continuous. If array, then it should be either a boolean mask
|
223 |
+
with shape (n_features,) or array with indices of discrete features.
|
224 |
+
If 'auto', it is assigned to False for dense `X` and to True for
|
225 |
+
sparse `X`.
|
226 |
+
|
227 |
+
discrete_target : bool, default=False
|
228 |
+
Whether to consider `y` as a discrete variable.
|
229 |
+
|
230 |
+
n_neighbors : int, default=3
|
231 |
+
Number of neighbors to use for MI estimation for continuous variables,
|
232 |
+
see [1]_ and [2]_. Higher values reduce variance of the estimation, but
|
233 |
+
could introduce a bias.
|
234 |
+
|
235 |
+
copy : bool, default=True
|
236 |
+
Whether to make a copy of the given data. If set to False, the initial
|
237 |
+
data will be overwritten.
|
238 |
+
|
239 |
+
random_state : int, RandomState instance or None, default=None
|
240 |
+
Determines random number generation for adding small noise to
|
241 |
+
continuous variables in order to remove repeated values.
|
242 |
+
Pass an int for reproducible results across multiple function calls.
|
243 |
+
See :term:`Glossary <random_state>`.
|
244 |
+
|
245 |
+
Returns
|
246 |
+
-------
|
247 |
+
mi : ndarray, shape (n_features,)
|
248 |
+
Estimated mutual information between each feature and the target in
|
249 |
+
nat units. A negative value will be replaced by 0.
|
250 |
+
|
251 |
+
References
|
252 |
+
----------
|
253 |
+
.. [1] A. Kraskov, H. Stogbauer and P. Grassberger, "Estimating mutual
|
254 |
+
information". Phys. Rev. E 69, 2004.
|
255 |
+
.. [2] B. C. Ross "Mutual Information between Discrete and Continuous
|
256 |
+
Data Sets". PLoS ONE 9(2), 2014.
|
257 |
+
"""
|
258 |
+
X, y = check_X_y(X, y, accept_sparse="csc", y_numeric=not discrete_target)
|
259 |
+
n_samples, n_features = X.shape
|
260 |
+
|
261 |
+
if isinstance(discrete_features, (str, bool)):
|
262 |
+
if isinstance(discrete_features, str):
|
263 |
+
if discrete_features == "auto":
|
264 |
+
discrete_features = issparse(X)
|
265 |
+
else:
|
266 |
+
raise ValueError("Invalid string value for discrete_features.")
|
267 |
+
discrete_mask = np.empty(n_features, dtype=bool)
|
268 |
+
discrete_mask.fill(discrete_features)
|
269 |
+
else:
|
270 |
+
discrete_features = check_array(discrete_features, ensure_2d=False)
|
271 |
+
if discrete_features.dtype != "bool":
|
272 |
+
discrete_mask = np.zeros(n_features, dtype=bool)
|
273 |
+
discrete_mask[discrete_features] = True
|
274 |
+
else:
|
275 |
+
discrete_mask = discrete_features
|
276 |
+
|
277 |
+
continuous_mask = ~discrete_mask
|
278 |
+
if np.any(continuous_mask) and issparse(X):
|
279 |
+
raise ValueError("Sparse matrix `X` can't have continuous features.")
|
280 |
+
|
281 |
+
rng = check_random_state(random_state)
|
282 |
+
if np.any(continuous_mask):
|
283 |
+
X = X.astype(np.float64, copy=copy)
|
284 |
+
X[:, continuous_mask] = scale(
|
285 |
+
X[:, continuous_mask], with_mean=False, copy=False
|
286 |
+
)
|
287 |
+
|
288 |
+
# Add small noise to continuous features as advised in Kraskov et. al.
|
289 |
+
means = np.maximum(1, np.mean(np.abs(X[:, continuous_mask]), axis=0))
|
290 |
+
X[:, continuous_mask] += (
|
291 |
+
1e-10
|
292 |
+
* means
|
293 |
+
* rng.standard_normal(size=(n_samples, np.sum(continuous_mask)))
|
294 |
+
)
|
295 |
+
|
296 |
+
if not discrete_target:
|
297 |
+
y = scale(y, with_mean=False)
|
298 |
+
y += (
|
299 |
+
1e-10
|
300 |
+
* np.maximum(1, np.mean(np.abs(y)))
|
301 |
+
* rng.standard_normal(size=n_samples)
|
302 |
+
)
|
303 |
+
|
304 |
+
mi = [
|
305 |
+
_compute_mi(x, y, discrete_feature, discrete_target, n_neighbors)
|
306 |
+
for x, discrete_feature in zip(_iterate_columns(X), discrete_mask)
|
307 |
+
]
|
308 |
+
|
309 |
+
return np.array(mi)
|
310 |
+
|
311 |
+
|
312 |
+
@validate_params(
|
313 |
+
{
|
314 |
+
"X": ["array-like", "sparse matrix"],
|
315 |
+
"y": ["array-like"],
|
316 |
+
"discrete_features": [StrOptions({"auto"}), "boolean", "array-like"],
|
317 |
+
"n_neighbors": [Interval(Integral, 1, None, closed="left")],
|
318 |
+
"copy": ["boolean"],
|
319 |
+
"random_state": ["random_state"],
|
320 |
+
},
|
321 |
+
prefer_skip_nested_validation=True,
|
322 |
+
)
|
323 |
+
def mutual_info_regression(
|
324 |
+
X, y, *, discrete_features="auto", n_neighbors=3, copy=True, random_state=None
|
325 |
+
):
|
326 |
+
"""Estimate mutual information for a continuous target variable.
|
327 |
+
|
328 |
+
Mutual information (MI) [1]_ between two random variables is a non-negative
|
329 |
+
value, which measures the dependency between the variables. It is equal
|
330 |
+
to zero if and only if two random variables are independent, and higher
|
331 |
+
values mean higher dependency.
|
332 |
+
|
333 |
+
The function relies on nonparametric methods based on entropy estimation
|
334 |
+
from k-nearest neighbors distances as described in [2]_ and [3]_. Both
|
335 |
+
methods are based on the idea originally proposed in [4]_.
|
336 |
+
|
337 |
+
It can be used for univariate features selection, read more in the
|
338 |
+
:ref:`User Guide <univariate_feature_selection>`.
|
339 |
+
|
340 |
+
Parameters
|
341 |
+
----------
|
342 |
+
X : array-like or sparse matrix, shape (n_samples, n_features)
|
343 |
+
Feature matrix.
|
344 |
+
|
345 |
+
y : array-like of shape (n_samples,)
|
346 |
+
Target vector.
|
347 |
+
|
348 |
+
discrete_features : {'auto', bool, array-like}, default='auto'
|
349 |
+
If bool, then determines whether to consider all features discrete
|
350 |
+
or continuous. If array, then it should be either a boolean mask
|
351 |
+
with shape (n_features,) or array with indices of discrete features.
|
352 |
+
If 'auto', it is assigned to False for dense `X` and to True for
|
353 |
+
sparse `X`.
|
354 |
+
|
355 |
+
n_neighbors : int, default=3
|
356 |
+
Number of neighbors to use for MI estimation for continuous variables,
|
357 |
+
see [2]_ and [3]_. Higher values reduce variance of the estimation, but
|
358 |
+
could introduce a bias.
|
359 |
+
|
360 |
+
copy : bool, default=True
|
361 |
+
Whether to make a copy of the given data. If set to False, the initial
|
362 |
+
data will be overwritten.
|
363 |
+
|
364 |
+
random_state : int, RandomState instance or None, default=None
|
365 |
+
Determines random number generation for adding small noise to
|
366 |
+
continuous variables in order to remove repeated values.
|
367 |
+
Pass an int for reproducible results across multiple function calls.
|
368 |
+
See :term:`Glossary <random_state>`.
|
369 |
+
|
370 |
+
Returns
|
371 |
+
-------
|
372 |
+
mi : ndarray, shape (n_features,)
|
373 |
+
Estimated mutual information between each feature and the target in
|
374 |
+
nat units.
|
375 |
+
|
376 |
+
Notes
|
377 |
+
-----
|
378 |
+
1. The term "discrete features" is used instead of naming them
|
379 |
+
"categorical", because it describes the essence more accurately.
|
380 |
+
For example, pixel intensities of an image are discrete features
|
381 |
+
(but hardly categorical) and you will get better results if mark them
|
382 |
+
as such. Also note, that treating a continuous variable as discrete and
|
383 |
+
vice versa will usually give incorrect results, so be attentive about
|
384 |
+
that.
|
385 |
+
2. True mutual information can't be negative. If its estimate turns out
|
386 |
+
to be negative, it is replaced by zero.
|
387 |
+
|
388 |
+
References
|
389 |
+
----------
|
390 |
+
.. [1] `Mutual Information
|
391 |
+
<https://en.wikipedia.org/wiki/Mutual_information>`_
|
392 |
+
on Wikipedia.
|
393 |
+
.. [2] A. Kraskov, H. Stogbauer and P. Grassberger, "Estimating mutual
|
394 |
+
information". Phys. Rev. E 69, 2004.
|
395 |
+
.. [3] B. C. Ross "Mutual Information between Discrete and Continuous
|
396 |
+
Data Sets". PLoS ONE 9(2), 2014.
|
397 |
+
.. [4] L. F. Kozachenko, N. N. Leonenko, "Sample Estimate of the Entropy
|
398 |
+
of a Random Vector", Probl. Peredachi Inf., 23:2 (1987), 9-16
|
399 |
+
|
400 |
+
Examples
|
401 |
+
--------
|
402 |
+
>>> from sklearn.datasets import make_regression
|
403 |
+
>>> from sklearn.feature_selection import mutual_info_regression
|
404 |
+
>>> X, y = make_regression(
|
405 |
+
... n_samples=50, n_features=3, n_informative=1, noise=1e-4, random_state=42
|
406 |
+
... )
|
407 |
+
>>> mutual_info_regression(X, y)
|
408 |
+
array([0.1..., 2.6... , 0.0...])
|
409 |
+
"""
|
410 |
+
return _estimate_mi(X, y, discrete_features, False, n_neighbors, copy, random_state)
|
411 |
+
|
412 |
+
|
413 |
+
@validate_params(
|
414 |
+
{
|
415 |
+
"X": ["array-like", "sparse matrix"],
|
416 |
+
"y": ["array-like"],
|
417 |
+
"discrete_features": [StrOptions({"auto"}), "boolean", "array-like"],
|
418 |
+
"n_neighbors": [Interval(Integral, 1, None, closed="left")],
|
419 |
+
"copy": ["boolean"],
|
420 |
+
"random_state": ["random_state"],
|
421 |
+
},
|
422 |
+
prefer_skip_nested_validation=True,
|
423 |
+
)
|
424 |
+
def mutual_info_classif(
|
425 |
+
X, y, *, discrete_features="auto", n_neighbors=3, copy=True, random_state=None
|
426 |
+
):
|
427 |
+
"""Estimate mutual information for a discrete target variable.
|
428 |
+
|
429 |
+
Mutual information (MI) [1]_ between two random variables is a non-negative
|
430 |
+
value, which measures the dependency between the variables. It is equal
|
431 |
+
to zero if and only if two random variables are independent, and higher
|
432 |
+
values mean higher dependency.
|
433 |
+
|
434 |
+
The function relies on nonparametric methods based on entropy estimation
|
435 |
+
from k-nearest neighbors distances as described in [2]_ and [3]_. Both
|
436 |
+
methods are based on the idea originally proposed in [4]_.
|
437 |
+
|
438 |
+
It can be used for univariate features selection, read more in the
|
439 |
+
:ref:`User Guide <univariate_feature_selection>`.
|
440 |
+
|
441 |
+
Parameters
|
442 |
+
----------
|
443 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
444 |
+
Feature matrix.
|
445 |
+
|
446 |
+
y : array-like of shape (n_samples,)
|
447 |
+
Target vector.
|
448 |
+
|
449 |
+
discrete_features : 'auto', bool or array-like, default='auto'
|
450 |
+
If bool, then determines whether to consider all features discrete
|
451 |
+
or continuous. If array, then it should be either a boolean mask
|
452 |
+
with shape (n_features,) or array with indices of discrete features.
|
453 |
+
If 'auto', it is assigned to False for dense `X` and to True for
|
454 |
+
sparse `X`.
|
455 |
+
|
456 |
+
n_neighbors : int, default=3
|
457 |
+
Number of neighbors to use for MI estimation for continuous variables,
|
458 |
+
see [2]_ and [3]_. Higher values reduce variance of the estimation, but
|
459 |
+
could introduce a bias.
|
460 |
+
|
461 |
+
copy : bool, default=True
|
462 |
+
Whether to make a copy of the given data. If set to False, the initial
|
463 |
+
data will be overwritten.
|
464 |
+
|
465 |
+
random_state : int, RandomState instance or None, default=None
|
466 |
+
Determines random number generation for adding small noise to
|
467 |
+
continuous variables in order to remove repeated values.
|
468 |
+
Pass an int for reproducible results across multiple function calls.
|
469 |
+
See :term:`Glossary <random_state>`.
|
470 |
+
|
471 |
+
Returns
|
472 |
+
-------
|
473 |
+
mi : ndarray, shape (n_features,)
|
474 |
+
Estimated mutual information between each feature and the target in
|
475 |
+
nat units.
|
476 |
+
|
477 |
+
Notes
|
478 |
+
-----
|
479 |
+
1. The term "discrete features" is used instead of naming them
|
480 |
+
"categorical", because it describes the essence more accurately.
|
481 |
+
For example, pixel intensities of an image are discrete features
|
482 |
+
(but hardly categorical) and you will get better results if mark them
|
483 |
+
as such. Also note, that treating a continuous variable as discrete and
|
484 |
+
vice versa will usually give incorrect results, so be attentive about
|
485 |
+
that.
|
486 |
+
2. True mutual information can't be negative. If its estimate turns out
|
487 |
+
to be negative, it is replaced by zero.
|
488 |
+
|
489 |
+
References
|
490 |
+
----------
|
491 |
+
.. [1] `Mutual Information
|
492 |
+
<https://en.wikipedia.org/wiki/Mutual_information>`_
|
493 |
+
on Wikipedia.
|
494 |
+
.. [2] A. Kraskov, H. Stogbauer and P. Grassberger, "Estimating mutual
|
495 |
+
information". Phys. Rev. E 69, 2004.
|
496 |
+
.. [3] B. C. Ross "Mutual Information between Discrete and Continuous
|
497 |
+
Data Sets". PLoS ONE 9(2), 2014.
|
498 |
+
.. [4] L. F. Kozachenko, N. N. Leonenko, "Sample Estimate of the Entropy
|
499 |
+
of a Random Vector:, Probl. Peredachi Inf., 23:2 (1987), 9-16
|
500 |
+
|
501 |
+
Examples
|
502 |
+
--------
|
503 |
+
>>> from sklearn.datasets import make_classification
|
504 |
+
>>> from sklearn.feature_selection import mutual_info_classif
|
505 |
+
>>> X, y = make_classification(
|
506 |
+
... n_samples=100, n_features=10, n_informative=2, n_clusters_per_class=1,
|
507 |
+
... shuffle=False, random_state=42
|
508 |
+
... )
|
509 |
+
>>> mutual_info_classif(X, y)
|
510 |
+
array([0.58..., 0.10..., 0.19..., 0.09... , 0. ,
|
511 |
+
0. , 0. , 0. , 0. , 0. ])
|
512 |
+
"""
|
513 |
+
check_classification_targets(y)
|
514 |
+
return _estimate_mi(X, y, discrete_features, True, n_neighbors, copy, random_state)
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/_rfe.py
ADDED
@@ -0,0 +1,792 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Authors: Alexandre Gramfort <[email protected]>
|
2 |
+
# Vincent Michel <[email protected]>
|
3 |
+
# Gilles Louppe <[email protected]>
|
4 |
+
#
|
5 |
+
# License: BSD 3 clause
|
6 |
+
|
7 |
+
"""Recursive feature elimination for feature ranking"""
|
8 |
+
|
9 |
+
from numbers import Integral
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
from joblib import effective_n_jobs
|
13 |
+
|
14 |
+
from ..base import BaseEstimator, MetaEstimatorMixin, _fit_context, clone, is_classifier
|
15 |
+
from ..metrics import check_scoring
|
16 |
+
from ..model_selection import check_cv
|
17 |
+
from ..model_selection._validation import _score
|
18 |
+
from ..utils._param_validation import HasMethods, Interval, RealNotInt
|
19 |
+
from ..utils.metadata_routing import (
|
20 |
+
_raise_for_unsupported_routing,
|
21 |
+
_RoutingNotSupportedMixin,
|
22 |
+
)
|
23 |
+
from ..utils.metaestimators import _safe_split, available_if
|
24 |
+
from ..utils.parallel import Parallel, delayed
|
25 |
+
from ..utils.validation import check_is_fitted
|
26 |
+
from ._base import SelectorMixin, _get_feature_importances
|
27 |
+
|
28 |
+
|
29 |
+
def _rfe_single_fit(rfe, estimator, X, y, train, test, scorer):
|
30 |
+
"""
|
31 |
+
Return the score for a fit across one fold.
|
32 |
+
"""
|
33 |
+
X_train, y_train = _safe_split(estimator, X, y, train)
|
34 |
+
X_test, y_test = _safe_split(estimator, X, y, test, train)
|
35 |
+
return rfe._fit(
|
36 |
+
X_train,
|
37 |
+
y_train,
|
38 |
+
lambda estimator, features: _score(
|
39 |
+
# TODO(SLEP6): pass score_params here
|
40 |
+
estimator,
|
41 |
+
X_test[:, features],
|
42 |
+
y_test,
|
43 |
+
scorer,
|
44 |
+
score_params=None,
|
45 |
+
),
|
46 |
+
).scores_
|
47 |
+
|
48 |
+
|
49 |
+
def _estimator_has(attr):
|
50 |
+
"""Check if we can delegate a method to the underlying estimator.
|
51 |
+
|
52 |
+
First, we check the fitted `estimator_` if available, otherwise we check the
|
53 |
+
unfitted `estimator`. We raise the original `AttributeError` if `attr` does
|
54 |
+
not exist. This function is used together with `available_if`.
|
55 |
+
"""
|
56 |
+
|
57 |
+
def check(self):
|
58 |
+
if hasattr(self, "estimator_"):
|
59 |
+
getattr(self.estimator_, attr)
|
60 |
+
else:
|
61 |
+
getattr(self.estimator, attr)
|
62 |
+
|
63 |
+
return True
|
64 |
+
|
65 |
+
return check
|
66 |
+
|
67 |
+
|
68 |
+
class RFE(_RoutingNotSupportedMixin, SelectorMixin, MetaEstimatorMixin, BaseEstimator):
|
69 |
+
"""Feature ranking with recursive feature elimination.
|
70 |
+
|
71 |
+
Given an external estimator that assigns weights to features (e.g., the
|
72 |
+
coefficients of a linear model), the goal of recursive feature elimination
|
73 |
+
(RFE) is to select features by recursively considering smaller and smaller
|
74 |
+
sets of features. First, the estimator is trained on the initial set of
|
75 |
+
features and the importance of each feature is obtained either through
|
76 |
+
any specific attribute or callable.
|
77 |
+
Then, the least important features are pruned from current set of features.
|
78 |
+
That procedure is recursively repeated on the pruned set until the desired
|
79 |
+
number of features to select is eventually reached.
|
80 |
+
|
81 |
+
Read more in the :ref:`User Guide <rfe>`.
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
estimator : ``Estimator`` instance
|
86 |
+
A supervised learning estimator with a ``fit`` method that provides
|
87 |
+
information about feature importance
|
88 |
+
(e.g. `coef_`, `feature_importances_`).
|
89 |
+
|
90 |
+
n_features_to_select : int or float, default=None
|
91 |
+
The number of features to select. If `None`, half of the features are
|
92 |
+
selected. If integer, the parameter is the absolute number of features
|
93 |
+
to select. If float between 0 and 1, it is the fraction of features to
|
94 |
+
select.
|
95 |
+
|
96 |
+
.. versionchanged:: 0.24
|
97 |
+
Added float values for fractions.
|
98 |
+
|
99 |
+
step : int or float, default=1
|
100 |
+
If greater than or equal to 1, then ``step`` corresponds to the
|
101 |
+
(integer) number of features to remove at each iteration.
|
102 |
+
If within (0.0, 1.0), then ``step`` corresponds to the percentage
|
103 |
+
(rounded down) of features to remove at each iteration.
|
104 |
+
|
105 |
+
verbose : int, default=0
|
106 |
+
Controls verbosity of output.
|
107 |
+
|
108 |
+
importance_getter : str or callable, default='auto'
|
109 |
+
If 'auto', uses the feature importance either through a `coef_`
|
110 |
+
or `feature_importances_` attributes of estimator.
|
111 |
+
|
112 |
+
Also accepts a string that specifies an attribute name/path
|
113 |
+
for extracting feature importance (implemented with `attrgetter`).
|
114 |
+
For example, give `regressor_.coef_` in case of
|
115 |
+
:class:`~sklearn.compose.TransformedTargetRegressor` or
|
116 |
+
`named_steps.clf.feature_importances_` in case of
|
117 |
+
class:`~sklearn.pipeline.Pipeline` with its last step named `clf`.
|
118 |
+
|
119 |
+
If `callable`, overrides the default feature importance getter.
|
120 |
+
The callable is passed with the fitted estimator and it should
|
121 |
+
return importance for each feature.
|
122 |
+
|
123 |
+
.. versionadded:: 0.24
|
124 |
+
|
125 |
+
Attributes
|
126 |
+
----------
|
127 |
+
classes_ : ndarray of shape (n_classes,)
|
128 |
+
The classes labels. Only available when `estimator` is a classifier.
|
129 |
+
|
130 |
+
estimator_ : ``Estimator`` instance
|
131 |
+
The fitted estimator used to select features.
|
132 |
+
|
133 |
+
n_features_ : int
|
134 |
+
The number of selected features.
|
135 |
+
|
136 |
+
n_features_in_ : int
|
137 |
+
Number of features seen during :term:`fit`. Only defined if the
|
138 |
+
underlying estimator exposes such an attribute when fit.
|
139 |
+
|
140 |
+
.. versionadded:: 0.24
|
141 |
+
|
142 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
143 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
144 |
+
has feature names that are all strings.
|
145 |
+
|
146 |
+
.. versionadded:: 1.0
|
147 |
+
|
148 |
+
ranking_ : ndarray of shape (n_features,)
|
149 |
+
The feature ranking, such that ``ranking_[i]`` corresponds to the
|
150 |
+
ranking position of the i-th feature. Selected (i.e., estimated
|
151 |
+
best) features are assigned rank 1.
|
152 |
+
|
153 |
+
support_ : ndarray of shape (n_features,)
|
154 |
+
The mask of selected features.
|
155 |
+
|
156 |
+
See Also
|
157 |
+
--------
|
158 |
+
RFECV : Recursive feature elimination with built-in cross-validated
|
159 |
+
selection of the best number of features.
|
160 |
+
SelectFromModel : Feature selection based on thresholds of importance
|
161 |
+
weights.
|
162 |
+
SequentialFeatureSelector : Sequential cross-validation based feature
|
163 |
+
selection. Does not rely on importance weights.
|
164 |
+
|
165 |
+
Notes
|
166 |
+
-----
|
167 |
+
Allows NaN/Inf in the input if the underlying estimator does as well.
|
168 |
+
|
169 |
+
References
|
170 |
+
----------
|
171 |
+
|
172 |
+
.. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection
|
173 |
+
for cancer classification using support vector machines",
|
174 |
+
Mach. Learn., 46(1-3), 389--422, 2002.
|
175 |
+
|
176 |
+
Examples
|
177 |
+
--------
|
178 |
+
The following example shows how to retrieve the 5 most informative
|
179 |
+
features in the Friedman #1 dataset.
|
180 |
+
|
181 |
+
>>> from sklearn.datasets import make_friedman1
|
182 |
+
>>> from sklearn.feature_selection import RFE
|
183 |
+
>>> from sklearn.svm import SVR
|
184 |
+
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
|
185 |
+
>>> estimator = SVR(kernel="linear")
|
186 |
+
>>> selector = RFE(estimator, n_features_to_select=5, step=1)
|
187 |
+
>>> selector = selector.fit(X, y)
|
188 |
+
>>> selector.support_
|
189 |
+
array([ True, True, True, True, True, False, False, False, False,
|
190 |
+
False])
|
191 |
+
>>> selector.ranking_
|
192 |
+
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])
|
193 |
+
"""
|
194 |
+
|
195 |
+
_parameter_constraints: dict = {
|
196 |
+
"estimator": [HasMethods(["fit"])],
|
197 |
+
"n_features_to_select": [
|
198 |
+
None,
|
199 |
+
Interval(RealNotInt, 0, 1, closed="right"),
|
200 |
+
Interval(Integral, 0, None, closed="neither"),
|
201 |
+
],
|
202 |
+
"step": [
|
203 |
+
Interval(Integral, 0, None, closed="neither"),
|
204 |
+
Interval(RealNotInt, 0, 1, closed="neither"),
|
205 |
+
],
|
206 |
+
"verbose": ["verbose"],
|
207 |
+
"importance_getter": [str, callable],
|
208 |
+
}
|
209 |
+
|
210 |
+
def __init__(
|
211 |
+
self,
|
212 |
+
estimator,
|
213 |
+
*,
|
214 |
+
n_features_to_select=None,
|
215 |
+
step=1,
|
216 |
+
verbose=0,
|
217 |
+
importance_getter="auto",
|
218 |
+
):
|
219 |
+
self.estimator = estimator
|
220 |
+
self.n_features_to_select = n_features_to_select
|
221 |
+
self.step = step
|
222 |
+
self.importance_getter = importance_getter
|
223 |
+
self.verbose = verbose
|
224 |
+
|
225 |
+
@property
|
226 |
+
def _estimator_type(self):
|
227 |
+
return self.estimator._estimator_type
|
228 |
+
|
229 |
+
@property
|
230 |
+
def classes_(self):
|
231 |
+
"""Classes labels available when `estimator` is a classifier.
|
232 |
+
|
233 |
+
Returns
|
234 |
+
-------
|
235 |
+
ndarray of shape (n_classes,)
|
236 |
+
"""
|
237 |
+
return self.estimator_.classes_
|
238 |
+
|
239 |
+
@_fit_context(
|
240 |
+
# RFE.estimator is not validated yet
|
241 |
+
prefer_skip_nested_validation=False
|
242 |
+
)
|
243 |
+
def fit(self, X, y, **fit_params):
|
244 |
+
"""Fit the RFE model and then the underlying estimator on the selected features.
|
245 |
+
|
246 |
+
Parameters
|
247 |
+
----------
|
248 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
249 |
+
The training input samples.
|
250 |
+
|
251 |
+
y : array-like of shape (n_samples,)
|
252 |
+
The target values.
|
253 |
+
|
254 |
+
**fit_params : dict
|
255 |
+
Additional parameters passed to the `fit` method of the underlying
|
256 |
+
estimator.
|
257 |
+
|
258 |
+
Returns
|
259 |
+
-------
|
260 |
+
self : object
|
261 |
+
Fitted estimator.
|
262 |
+
"""
|
263 |
+
_raise_for_unsupported_routing(self, "fit", **fit_params)
|
264 |
+
return self._fit(X, y, **fit_params)
|
265 |
+
|
266 |
+
def _fit(self, X, y, step_score=None, **fit_params):
|
267 |
+
# Parameter step_score controls the calculation of self.scores_
|
268 |
+
# step_score is not exposed to users
|
269 |
+
# and is used when implementing RFECV
|
270 |
+
# self.scores_ will not be calculated when calling _fit through fit
|
271 |
+
|
272 |
+
X, y = self._validate_data(
|
273 |
+
X,
|
274 |
+
y,
|
275 |
+
accept_sparse="csc",
|
276 |
+
ensure_min_features=2,
|
277 |
+
force_all_finite=False,
|
278 |
+
multi_output=True,
|
279 |
+
)
|
280 |
+
|
281 |
+
# Initialization
|
282 |
+
n_features = X.shape[1]
|
283 |
+
if self.n_features_to_select is None:
|
284 |
+
n_features_to_select = n_features // 2
|
285 |
+
elif isinstance(self.n_features_to_select, Integral): # int
|
286 |
+
n_features_to_select = self.n_features_to_select
|
287 |
+
else: # float
|
288 |
+
n_features_to_select = int(n_features * self.n_features_to_select)
|
289 |
+
|
290 |
+
if 0.0 < self.step < 1.0:
|
291 |
+
step = int(max(1, self.step * n_features))
|
292 |
+
else:
|
293 |
+
step = int(self.step)
|
294 |
+
|
295 |
+
support_ = np.ones(n_features, dtype=bool)
|
296 |
+
ranking_ = np.ones(n_features, dtype=int)
|
297 |
+
|
298 |
+
if step_score:
|
299 |
+
self.scores_ = []
|
300 |
+
|
301 |
+
# Elimination
|
302 |
+
while np.sum(support_) > n_features_to_select:
|
303 |
+
# Remaining features
|
304 |
+
features = np.arange(n_features)[support_]
|
305 |
+
|
306 |
+
# Rank the remaining features
|
307 |
+
estimator = clone(self.estimator)
|
308 |
+
if self.verbose > 0:
|
309 |
+
print("Fitting estimator with %d features." % np.sum(support_))
|
310 |
+
|
311 |
+
estimator.fit(X[:, features], y, **fit_params)
|
312 |
+
|
313 |
+
# Get importance and rank them
|
314 |
+
importances = _get_feature_importances(
|
315 |
+
estimator,
|
316 |
+
self.importance_getter,
|
317 |
+
transform_func="square",
|
318 |
+
)
|
319 |
+
ranks = np.argsort(importances)
|
320 |
+
|
321 |
+
# for sparse case ranks is matrix
|
322 |
+
ranks = np.ravel(ranks)
|
323 |
+
|
324 |
+
# Eliminate the worse features
|
325 |
+
threshold = min(step, np.sum(support_) - n_features_to_select)
|
326 |
+
|
327 |
+
# Compute step score on the previous selection iteration
|
328 |
+
# because 'estimator' must use features
|
329 |
+
# that have not been eliminated yet
|
330 |
+
if step_score:
|
331 |
+
self.scores_.append(step_score(estimator, features))
|
332 |
+
support_[features[ranks][:threshold]] = False
|
333 |
+
ranking_[np.logical_not(support_)] += 1
|
334 |
+
|
335 |
+
# Set final attributes
|
336 |
+
features = np.arange(n_features)[support_]
|
337 |
+
self.estimator_ = clone(self.estimator)
|
338 |
+
self.estimator_.fit(X[:, features], y, **fit_params)
|
339 |
+
|
340 |
+
# Compute step score when only n_features_to_select features left
|
341 |
+
if step_score:
|
342 |
+
self.scores_.append(step_score(self.estimator_, features))
|
343 |
+
self.n_features_ = support_.sum()
|
344 |
+
self.support_ = support_
|
345 |
+
self.ranking_ = ranking_
|
346 |
+
|
347 |
+
return self
|
348 |
+
|
349 |
+
@available_if(_estimator_has("predict"))
|
350 |
+
def predict(self, X):
|
351 |
+
"""Reduce X to the selected features and predict using the estimator.
|
352 |
+
|
353 |
+
Parameters
|
354 |
+
----------
|
355 |
+
X : array of shape [n_samples, n_features]
|
356 |
+
The input samples.
|
357 |
+
|
358 |
+
Returns
|
359 |
+
-------
|
360 |
+
y : array of shape [n_samples]
|
361 |
+
The predicted target values.
|
362 |
+
"""
|
363 |
+
check_is_fitted(self)
|
364 |
+
return self.estimator_.predict(self.transform(X))
|
365 |
+
|
366 |
+
@available_if(_estimator_has("score"))
|
367 |
+
def score(self, X, y, **fit_params):
|
368 |
+
"""Reduce X to the selected features and return the score of the estimator.
|
369 |
+
|
370 |
+
Parameters
|
371 |
+
----------
|
372 |
+
X : array of shape [n_samples, n_features]
|
373 |
+
The input samples.
|
374 |
+
|
375 |
+
y : array of shape [n_samples]
|
376 |
+
The target values.
|
377 |
+
|
378 |
+
**fit_params : dict
|
379 |
+
Parameters to pass to the `score` method of the underlying
|
380 |
+
estimator.
|
381 |
+
|
382 |
+
.. versionadded:: 1.0
|
383 |
+
|
384 |
+
Returns
|
385 |
+
-------
|
386 |
+
score : float
|
387 |
+
Score of the underlying base estimator computed with the selected
|
388 |
+
features returned by `rfe.transform(X)` and `y`.
|
389 |
+
"""
|
390 |
+
check_is_fitted(self)
|
391 |
+
return self.estimator_.score(self.transform(X), y, **fit_params)
|
392 |
+
|
393 |
+
def _get_support_mask(self):
|
394 |
+
check_is_fitted(self)
|
395 |
+
return self.support_
|
396 |
+
|
397 |
+
@available_if(_estimator_has("decision_function"))
|
398 |
+
def decision_function(self, X):
|
399 |
+
"""Compute the decision function of ``X``.
|
400 |
+
|
401 |
+
Parameters
|
402 |
+
----------
|
403 |
+
X : {array-like or sparse matrix} of shape (n_samples, n_features)
|
404 |
+
The input samples. Internally, it will be converted to
|
405 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
406 |
+
to a sparse ``csr_matrix``.
|
407 |
+
|
408 |
+
Returns
|
409 |
+
-------
|
410 |
+
score : array, shape = [n_samples, n_classes] or [n_samples]
|
411 |
+
The decision function of the input samples. The order of the
|
412 |
+
classes corresponds to that in the attribute :term:`classes_`.
|
413 |
+
Regression and binary classification produce an array of shape
|
414 |
+
[n_samples].
|
415 |
+
"""
|
416 |
+
check_is_fitted(self)
|
417 |
+
return self.estimator_.decision_function(self.transform(X))
|
418 |
+
|
419 |
+
@available_if(_estimator_has("predict_proba"))
|
420 |
+
def predict_proba(self, X):
|
421 |
+
"""Predict class probabilities for X.
|
422 |
+
|
423 |
+
Parameters
|
424 |
+
----------
|
425 |
+
X : {array-like or sparse matrix} of shape (n_samples, n_features)
|
426 |
+
The input samples. Internally, it will be converted to
|
427 |
+
``dtype=np.float32`` and if a sparse matrix is provided
|
428 |
+
to a sparse ``csr_matrix``.
|
429 |
+
|
430 |
+
Returns
|
431 |
+
-------
|
432 |
+
p : array of shape (n_samples, n_classes)
|
433 |
+
The class probabilities of the input samples. The order of the
|
434 |
+
classes corresponds to that in the attribute :term:`classes_`.
|
435 |
+
"""
|
436 |
+
check_is_fitted(self)
|
437 |
+
return self.estimator_.predict_proba(self.transform(X))
|
438 |
+
|
439 |
+
@available_if(_estimator_has("predict_log_proba"))
|
440 |
+
def predict_log_proba(self, X):
|
441 |
+
"""Predict class log-probabilities for X.
|
442 |
+
|
443 |
+
Parameters
|
444 |
+
----------
|
445 |
+
X : array of shape [n_samples, n_features]
|
446 |
+
The input samples.
|
447 |
+
|
448 |
+
Returns
|
449 |
+
-------
|
450 |
+
p : array of shape (n_samples, n_classes)
|
451 |
+
The class log-probabilities of the input samples. The order of the
|
452 |
+
classes corresponds to that in the attribute :term:`classes_`.
|
453 |
+
"""
|
454 |
+
check_is_fitted(self)
|
455 |
+
return self.estimator_.predict_log_proba(self.transform(X))
|
456 |
+
|
457 |
+
def _more_tags(self):
|
458 |
+
tags = {
|
459 |
+
"poor_score": True,
|
460 |
+
"requires_y": True,
|
461 |
+
"allow_nan": True,
|
462 |
+
}
|
463 |
+
|
464 |
+
# Adjust allow_nan if estimator explicitly defines `allow_nan`.
|
465 |
+
if hasattr(self.estimator, "_get_tags"):
|
466 |
+
tags["allow_nan"] = self.estimator._get_tags()["allow_nan"]
|
467 |
+
|
468 |
+
return tags
|
469 |
+
|
470 |
+
|
471 |
+
class RFECV(RFE):
|
472 |
+
"""Recursive feature elimination with cross-validation to select features.
|
473 |
+
|
474 |
+
The number of features selected is tuned automatically by fitting an :class:`RFE`
|
475 |
+
selector on the different cross-validation splits (provided by the `cv` parameter).
|
476 |
+
The performance of the :class:`RFE` selector are evaluated using `scorer` for
|
477 |
+
different number of selected features and aggregated together. Finally, the scores
|
478 |
+
are averaged across folds and the number of features selected is set to the number
|
479 |
+
of features that maximize the cross-validation score.
|
480 |
+
See glossary entry for :term:`cross-validation estimator`.
|
481 |
+
|
482 |
+
Read more in the :ref:`User Guide <rfe>`.
|
483 |
+
|
484 |
+
Parameters
|
485 |
+
----------
|
486 |
+
estimator : ``Estimator`` instance
|
487 |
+
A supervised learning estimator with a ``fit`` method that provides
|
488 |
+
information about feature importance either through a ``coef_``
|
489 |
+
attribute or through a ``feature_importances_`` attribute.
|
490 |
+
|
491 |
+
step : int or float, default=1
|
492 |
+
If greater than or equal to 1, then ``step`` corresponds to the
|
493 |
+
(integer) number of features to remove at each iteration.
|
494 |
+
If within (0.0, 1.0), then ``step`` corresponds to the percentage
|
495 |
+
(rounded down) of features to remove at each iteration.
|
496 |
+
Note that the last iteration may remove fewer than ``step`` features in
|
497 |
+
order to reach ``min_features_to_select``.
|
498 |
+
|
499 |
+
min_features_to_select : int, default=1
|
500 |
+
The minimum number of features to be selected. This number of features
|
501 |
+
will always be scored, even if the difference between the original
|
502 |
+
feature count and ``min_features_to_select`` isn't divisible by
|
503 |
+
``step``.
|
504 |
+
|
505 |
+
.. versionadded:: 0.20
|
506 |
+
|
507 |
+
cv : int, cross-validation generator or an iterable, default=None
|
508 |
+
Determines the cross-validation splitting strategy.
|
509 |
+
Possible inputs for cv are:
|
510 |
+
|
511 |
+
- None, to use the default 5-fold cross-validation,
|
512 |
+
- integer, to specify the number of folds.
|
513 |
+
- :term:`CV splitter`,
|
514 |
+
- An iterable yielding (train, test) splits as arrays of indices.
|
515 |
+
|
516 |
+
For integer/None inputs, if ``y`` is binary or multiclass,
|
517 |
+
:class:`~sklearn.model_selection.StratifiedKFold` is used. If the
|
518 |
+
estimator is a classifier or if ``y`` is neither binary nor multiclass,
|
519 |
+
:class:`~sklearn.model_selection.KFold` is used.
|
520 |
+
|
521 |
+
Refer :ref:`User Guide <cross_validation>` for the various
|
522 |
+
cross-validation strategies that can be used here.
|
523 |
+
|
524 |
+
.. versionchanged:: 0.22
|
525 |
+
``cv`` default value of None changed from 3-fold to 5-fold.
|
526 |
+
|
527 |
+
scoring : str, callable or None, default=None
|
528 |
+
A string (see model evaluation documentation) or
|
529 |
+
a scorer callable object / function with signature
|
530 |
+
``scorer(estimator, X, y)``.
|
531 |
+
|
532 |
+
verbose : int, default=0
|
533 |
+
Controls verbosity of output.
|
534 |
+
|
535 |
+
n_jobs : int or None, default=None
|
536 |
+
Number of cores to run in parallel while fitting across folds.
|
537 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
538 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
539 |
+
for more details.
|
540 |
+
|
541 |
+
.. versionadded:: 0.18
|
542 |
+
|
543 |
+
importance_getter : str or callable, default='auto'
|
544 |
+
If 'auto', uses the feature importance either through a `coef_`
|
545 |
+
or `feature_importances_` attributes of estimator.
|
546 |
+
|
547 |
+
Also accepts a string that specifies an attribute name/path
|
548 |
+
for extracting feature importance.
|
549 |
+
For example, give `regressor_.coef_` in case of
|
550 |
+
:class:`~sklearn.compose.TransformedTargetRegressor` or
|
551 |
+
`named_steps.clf.feature_importances_` in case of
|
552 |
+
:class:`~sklearn.pipeline.Pipeline` with its last step named `clf`.
|
553 |
+
|
554 |
+
If `callable`, overrides the default feature importance getter.
|
555 |
+
The callable is passed with the fitted estimator and it should
|
556 |
+
return importance for each feature.
|
557 |
+
|
558 |
+
.. versionadded:: 0.24
|
559 |
+
|
560 |
+
Attributes
|
561 |
+
----------
|
562 |
+
classes_ : ndarray of shape (n_classes,)
|
563 |
+
The classes labels. Only available when `estimator` is a classifier.
|
564 |
+
|
565 |
+
estimator_ : ``Estimator`` instance
|
566 |
+
The fitted estimator used to select features.
|
567 |
+
|
568 |
+
cv_results_ : dict of ndarrays
|
569 |
+
A dict with keys:
|
570 |
+
|
571 |
+
split(k)_test_score : ndarray of shape (n_subsets_of_features,)
|
572 |
+
The cross-validation scores across (k)th fold.
|
573 |
+
|
574 |
+
mean_test_score : ndarray of shape (n_subsets_of_features,)
|
575 |
+
Mean of scores over the folds.
|
576 |
+
|
577 |
+
std_test_score : ndarray of shape (n_subsets_of_features,)
|
578 |
+
Standard deviation of scores over the folds.
|
579 |
+
|
580 |
+
.. versionadded:: 1.0
|
581 |
+
|
582 |
+
n_features_ : int
|
583 |
+
The number of selected features with cross-validation.
|
584 |
+
|
585 |
+
n_features_in_ : int
|
586 |
+
Number of features seen during :term:`fit`. Only defined if the
|
587 |
+
underlying estimator exposes such an attribute when fit.
|
588 |
+
|
589 |
+
.. versionadded:: 0.24
|
590 |
+
|
591 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
592 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
593 |
+
has feature names that are all strings.
|
594 |
+
|
595 |
+
.. versionadded:: 1.0
|
596 |
+
|
597 |
+
ranking_ : narray of shape (n_features,)
|
598 |
+
The feature ranking, such that `ranking_[i]`
|
599 |
+
corresponds to the ranking
|
600 |
+
position of the i-th feature.
|
601 |
+
Selected (i.e., estimated best)
|
602 |
+
features are assigned rank 1.
|
603 |
+
|
604 |
+
support_ : ndarray of shape (n_features,)
|
605 |
+
The mask of selected features.
|
606 |
+
|
607 |
+
See Also
|
608 |
+
--------
|
609 |
+
RFE : Recursive feature elimination.
|
610 |
+
|
611 |
+
Notes
|
612 |
+
-----
|
613 |
+
The size of all values in ``cv_results_`` is equal to
|
614 |
+
``ceil((n_features - min_features_to_select) / step) + 1``,
|
615 |
+
where step is the number of features removed at each iteration.
|
616 |
+
|
617 |
+
Allows NaN/Inf in the input if the underlying estimator does as well.
|
618 |
+
|
619 |
+
References
|
620 |
+
----------
|
621 |
+
|
622 |
+
.. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection
|
623 |
+
for cancer classification using support vector machines",
|
624 |
+
Mach. Learn., 46(1-3), 389--422, 2002.
|
625 |
+
|
626 |
+
Examples
|
627 |
+
--------
|
628 |
+
The following example shows how to retrieve the a-priori not known 5
|
629 |
+
informative features in the Friedman #1 dataset.
|
630 |
+
|
631 |
+
>>> from sklearn.datasets import make_friedman1
|
632 |
+
>>> from sklearn.feature_selection import RFECV
|
633 |
+
>>> from sklearn.svm import SVR
|
634 |
+
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
|
635 |
+
>>> estimator = SVR(kernel="linear")
|
636 |
+
>>> selector = RFECV(estimator, step=1, cv=5)
|
637 |
+
>>> selector = selector.fit(X, y)
|
638 |
+
>>> selector.support_
|
639 |
+
array([ True, True, True, True, True, False, False, False, False,
|
640 |
+
False])
|
641 |
+
>>> selector.ranking_
|
642 |
+
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])
|
643 |
+
"""
|
644 |
+
|
645 |
+
_parameter_constraints: dict = {
|
646 |
+
**RFE._parameter_constraints,
|
647 |
+
"min_features_to_select": [Interval(Integral, 0, None, closed="neither")],
|
648 |
+
"cv": ["cv_object"],
|
649 |
+
"scoring": [None, str, callable],
|
650 |
+
"n_jobs": [None, Integral],
|
651 |
+
}
|
652 |
+
_parameter_constraints.pop("n_features_to_select")
|
653 |
+
|
654 |
+
def __init__(
|
655 |
+
self,
|
656 |
+
estimator,
|
657 |
+
*,
|
658 |
+
step=1,
|
659 |
+
min_features_to_select=1,
|
660 |
+
cv=None,
|
661 |
+
scoring=None,
|
662 |
+
verbose=0,
|
663 |
+
n_jobs=None,
|
664 |
+
importance_getter="auto",
|
665 |
+
):
|
666 |
+
self.estimator = estimator
|
667 |
+
self.step = step
|
668 |
+
self.importance_getter = importance_getter
|
669 |
+
self.cv = cv
|
670 |
+
self.scoring = scoring
|
671 |
+
self.verbose = verbose
|
672 |
+
self.n_jobs = n_jobs
|
673 |
+
self.min_features_to_select = min_features_to_select
|
674 |
+
|
675 |
+
@_fit_context(
|
676 |
+
# RFECV.estimator is not validated yet
|
677 |
+
prefer_skip_nested_validation=False
|
678 |
+
)
|
679 |
+
def fit(self, X, y, groups=None):
|
680 |
+
"""Fit the RFE model and automatically tune the number of selected features.
|
681 |
+
|
682 |
+
Parameters
|
683 |
+
----------
|
684 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
685 |
+
Training vector, where `n_samples` is the number of samples and
|
686 |
+
`n_features` is the total number of features.
|
687 |
+
|
688 |
+
y : array-like of shape (n_samples,)
|
689 |
+
Target values (integers for classification, real numbers for
|
690 |
+
regression).
|
691 |
+
|
692 |
+
groups : array-like of shape (n_samples,) or None, default=None
|
693 |
+
Group labels for the samples used while splitting the dataset into
|
694 |
+
train/test set. Only used in conjunction with a "Group" :term:`cv`
|
695 |
+
instance (e.g., :class:`~sklearn.model_selection.GroupKFold`).
|
696 |
+
|
697 |
+
.. versionadded:: 0.20
|
698 |
+
|
699 |
+
Returns
|
700 |
+
-------
|
701 |
+
self : object
|
702 |
+
Fitted estimator.
|
703 |
+
"""
|
704 |
+
_raise_for_unsupported_routing(self, "fit", groups=groups)
|
705 |
+
X, y = self._validate_data(
|
706 |
+
X,
|
707 |
+
y,
|
708 |
+
accept_sparse="csr",
|
709 |
+
ensure_min_features=2,
|
710 |
+
force_all_finite=False,
|
711 |
+
multi_output=True,
|
712 |
+
)
|
713 |
+
|
714 |
+
# Initialization
|
715 |
+
cv = check_cv(self.cv, y, classifier=is_classifier(self.estimator))
|
716 |
+
scorer = check_scoring(self.estimator, scoring=self.scoring)
|
717 |
+
n_features = X.shape[1]
|
718 |
+
|
719 |
+
if 0.0 < self.step < 1.0:
|
720 |
+
step = int(max(1, self.step * n_features))
|
721 |
+
else:
|
722 |
+
step = int(self.step)
|
723 |
+
|
724 |
+
# Build an RFE object, which will evaluate and score each possible
|
725 |
+
# feature count, down to self.min_features_to_select
|
726 |
+
rfe = RFE(
|
727 |
+
estimator=self.estimator,
|
728 |
+
n_features_to_select=self.min_features_to_select,
|
729 |
+
importance_getter=self.importance_getter,
|
730 |
+
step=self.step,
|
731 |
+
verbose=self.verbose,
|
732 |
+
)
|
733 |
+
|
734 |
+
# Determine the number of subsets of features by fitting across
|
735 |
+
# the train folds and choosing the "features_to_select" parameter
|
736 |
+
# that gives the least averaged error across all folds.
|
737 |
+
|
738 |
+
# Note that joblib raises a non-picklable error for bound methods
|
739 |
+
# even if n_jobs is set to 1 with the default multiprocessing
|
740 |
+
# backend.
|
741 |
+
# This branching is done so that to
|
742 |
+
# make sure that user code that sets n_jobs to 1
|
743 |
+
# and provides bound methods as scorers is not broken with the
|
744 |
+
# addition of n_jobs parameter in version 0.18.
|
745 |
+
|
746 |
+
if effective_n_jobs(self.n_jobs) == 1:
|
747 |
+
parallel, func = list, _rfe_single_fit
|
748 |
+
else:
|
749 |
+
parallel = Parallel(n_jobs=self.n_jobs)
|
750 |
+
func = delayed(_rfe_single_fit)
|
751 |
+
|
752 |
+
scores = parallel(
|
753 |
+
func(rfe, self.estimator, X, y, train, test, scorer)
|
754 |
+
for train, test in cv.split(X, y, groups)
|
755 |
+
)
|
756 |
+
|
757 |
+
scores = np.array(scores)
|
758 |
+
scores_sum = np.sum(scores, axis=0)
|
759 |
+
scores_sum_rev = scores_sum[::-1]
|
760 |
+
argmax_idx = len(scores_sum) - np.argmax(scores_sum_rev) - 1
|
761 |
+
n_features_to_select = max(
|
762 |
+
n_features - (argmax_idx * step), self.min_features_to_select
|
763 |
+
)
|
764 |
+
|
765 |
+
# Re-execute an elimination with best_k over the whole set
|
766 |
+
rfe = RFE(
|
767 |
+
estimator=self.estimator,
|
768 |
+
n_features_to_select=n_features_to_select,
|
769 |
+
step=self.step,
|
770 |
+
importance_getter=self.importance_getter,
|
771 |
+
verbose=self.verbose,
|
772 |
+
)
|
773 |
+
|
774 |
+
rfe.fit(X, y)
|
775 |
+
|
776 |
+
# Set final attributes
|
777 |
+
self.support_ = rfe.support_
|
778 |
+
self.n_features_ = rfe.n_features_
|
779 |
+
self.ranking_ = rfe.ranking_
|
780 |
+
self.estimator_ = clone(self.estimator)
|
781 |
+
self.estimator_.fit(self._transform(X), y)
|
782 |
+
|
783 |
+
# reverse to stay consistent with before
|
784 |
+
scores_rev = scores[:, ::-1]
|
785 |
+
self.cv_results_ = {}
|
786 |
+
self.cv_results_["mean_test_score"] = np.mean(scores_rev, axis=0)
|
787 |
+
self.cv_results_["std_test_score"] = np.std(scores_rev, axis=0)
|
788 |
+
|
789 |
+
for i in range(scores.shape[0]):
|
790 |
+
self.cv_results_[f"split{i}_test_score"] = scores_rev[i]
|
791 |
+
|
792 |
+
return self
|
venv/lib/python3.10/site-packages/sklearn/feature_selection/_sequential.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Sequential feature selection
|
3 |
+
"""
|
4 |
+
from numbers import Integral, Real
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from ..base import BaseEstimator, MetaEstimatorMixin, _fit_context, clone, is_classifier
|
9 |
+
from ..metrics import get_scorer_names
|
10 |
+
from ..model_selection import check_cv, cross_val_score
|
11 |
+
from ..utils._param_validation import HasMethods, Interval, RealNotInt, StrOptions
|
12 |
+
from ..utils._tags import _safe_tags
|
13 |
+
from ..utils.metadata_routing import _RoutingNotSupportedMixin
|
14 |
+
from ..utils.validation import check_is_fitted
|
15 |
+
from ._base import SelectorMixin
|
16 |
+
|
17 |
+
|
18 |
+
class SequentialFeatureSelector(
|
19 |
+
_RoutingNotSupportedMixin, SelectorMixin, MetaEstimatorMixin, BaseEstimator
|
20 |
+
):
|
21 |
+
"""Transformer that performs Sequential Feature Selection.
|
22 |
+
|
23 |
+
This Sequential Feature Selector adds (forward selection) or
|
24 |
+
removes (backward selection) features to form a feature subset in a
|
25 |
+
greedy fashion. At each stage, this estimator chooses the best feature to
|
26 |
+
add or remove based on the cross-validation score of an estimator. In
|
27 |
+
the case of unsupervised learning, this Sequential Feature Selector
|
28 |
+
looks only at the features (X), not the desired outputs (y).
|
29 |
+
|
30 |
+
Read more in the :ref:`User Guide <sequential_feature_selection>`.
|
31 |
+
|
32 |
+
.. versionadded:: 0.24
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
estimator : estimator instance
|
37 |
+
An unfitted estimator.
|
38 |
+
|
39 |
+
n_features_to_select : "auto", int or float, default="auto"
|
40 |
+
If `"auto"`, the behaviour depends on the `tol` parameter:
|
41 |
+
|
42 |
+
- if `tol` is not `None`, then features are selected while the score
|
43 |
+
change does not exceed `tol`.
|
44 |
+
- otherwise, half of the features are selected.
|
45 |
+
|
46 |
+
If integer, the parameter is the absolute number of features to select.
|
47 |
+
If float between 0 and 1, it is the fraction of features to select.
|
48 |
+
|
49 |
+
.. versionadded:: 1.1
|
50 |
+
The option `"auto"` was added in version 1.1.
|
51 |
+
|
52 |
+
.. versionchanged:: 1.3
|
53 |
+
The default changed from `"warn"` to `"auto"` in 1.3.
|
54 |
+
|
55 |
+
tol : float, default=None
|
56 |
+
If the score is not incremented by at least `tol` between two
|
57 |
+
consecutive feature additions or removals, stop adding or removing.
|
58 |
+
|
59 |
+
`tol` can be negative when removing features using `direction="backward"`.
|
60 |
+
It can be useful to reduce the number of features at the cost of a small
|
61 |
+
decrease in the score.
|
62 |
+
|
63 |
+
`tol` is enabled only when `n_features_to_select` is `"auto"`.
|
64 |
+
|
65 |
+
.. versionadded:: 1.1
|
66 |
+
|
67 |
+
direction : {'forward', 'backward'}, default='forward'
|
68 |
+
Whether to perform forward selection or backward selection.
|
69 |
+
|
70 |
+
scoring : str or callable, default=None
|
71 |
+
A single str (see :ref:`scoring_parameter`) or a callable
|
72 |
+
(see :ref:`scoring`) to evaluate the predictions on the test set.
|
73 |
+
|
74 |
+
NOTE that when using a custom scorer, it should return a single
|
75 |
+
value.
|
76 |
+
|
77 |
+
If None, the estimator's score method is used.
|
78 |
+
|
79 |
+
cv : int, cross-validation generator or an iterable, default=None
|
80 |
+
Determines the cross-validation splitting strategy.
|
81 |
+
Possible inputs for cv are:
|
82 |
+
|
83 |
+
- None, to use the default 5-fold cross validation,
|
84 |
+
- integer, to specify the number of folds in a `(Stratified)KFold`,
|
85 |
+
- :term:`CV splitter`,
|
86 |
+
- An iterable yielding (train, test) splits as arrays of indices.
|
87 |
+
|
88 |
+
For integer/None inputs, if the estimator is a classifier and ``y`` is
|
89 |
+
either binary or multiclass,
|
90 |
+
:class:`~sklearn.model_selection.StratifiedKFold` is used. In all other
|
91 |
+
cases, :class:`~sklearn.model_selection.KFold` is used. These splitters
|
92 |
+
are instantiated with `shuffle=False` so the splits will be the same
|
93 |
+
across calls.
|
94 |
+
|
95 |
+
Refer :ref:`User Guide <cross_validation>` for the various
|
96 |
+
cross-validation strategies that can be used here.
|
97 |
+
|
98 |
+
n_jobs : int, default=None
|
99 |
+
Number of jobs to run in parallel. When evaluating a new feature to
|
100 |
+
add or remove, the cross-validation procedure is parallel over the
|
101 |
+
folds.
|
102 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
103 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
104 |
+
for more details.
|
105 |
+
|
106 |
+
Attributes
|
107 |
+
----------
|
108 |
+
n_features_in_ : int
|
109 |
+
Number of features seen during :term:`fit`. Only defined if the
|
110 |
+
underlying estimator exposes such an attribute when fit.
|
111 |
+
|
112 |
+
.. versionadded:: 0.24
|
113 |
+
|
114 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
115 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
116 |
+
has feature names that are all strings.
|
117 |
+
|
118 |
+
.. versionadded:: 1.0
|
119 |
+
|
120 |
+
n_features_to_select_ : int
|
121 |
+
The number of features that were selected.
|
122 |
+
|
123 |
+
support_ : ndarray of shape (n_features,), dtype=bool
|
124 |
+
The mask of selected features.
|
125 |
+
|
126 |
+
See Also
|
127 |
+
--------
|
128 |
+
GenericUnivariateSelect : Univariate feature selector with configurable
|
129 |
+
strategy.
|
130 |
+
RFE : Recursive feature elimination based on importance weights.
|
131 |
+
RFECV : Recursive feature elimination based on importance weights, with
|
132 |
+
automatic selection of the number of features.
|
133 |
+
SelectFromModel : Feature selection based on thresholds of importance
|
134 |
+
weights.
|
135 |
+
|
136 |
+
Examples
|
137 |
+
--------
|
138 |
+
>>> from sklearn.feature_selection import SequentialFeatureSelector
|
139 |
+
>>> from sklearn.neighbors import KNeighborsClassifier
|
140 |
+
>>> from sklearn.datasets import load_iris
|
141 |
+
>>> X, y = load_iris(return_X_y=True)
|
142 |
+
>>> knn = KNeighborsClassifier(n_neighbors=3)
|
143 |
+
>>> sfs = SequentialFeatureSelector(knn, n_features_to_select=3)
|
144 |
+
>>> sfs.fit(X, y)
|
145 |
+
SequentialFeatureSelector(estimator=KNeighborsClassifier(n_neighbors=3),
|
146 |
+
n_features_to_select=3)
|
147 |
+
>>> sfs.get_support()
|
148 |
+
array([ True, False, True, True])
|
149 |
+
>>> sfs.transform(X).shape
|
150 |
+
(150, 3)
|
151 |
+
"""
|
152 |
+
|
153 |
+
_parameter_constraints: dict = {
|
154 |
+
"estimator": [HasMethods(["fit"])],
|
155 |
+
"n_features_to_select": [
|
156 |
+
StrOptions({"auto"}),
|
157 |
+
Interval(RealNotInt, 0, 1, closed="right"),
|
158 |
+
Interval(Integral, 0, None, closed="neither"),
|
159 |
+
],
|
160 |
+
"tol": [None, Interval(Real, None, None, closed="neither")],
|
161 |
+
"direction": [StrOptions({"forward", "backward"})],
|
162 |
+
"scoring": [None, StrOptions(set(get_scorer_names())), callable],
|
163 |
+
"cv": ["cv_object"],
|
164 |
+
"n_jobs": [None, Integral],
|
165 |
+
}
|
166 |
+
|
167 |
+
def __init__(
|
168 |
+
self,
|
169 |
+
estimator,
|
170 |
+
*,
|
171 |
+
n_features_to_select="auto",
|
172 |
+
tol=None,
|
173 |
+
direction="forward",
|
174 |
+
scoring=None,
|
175 |
+
cv=5,
|
176 |
+
n_jobs=None,
|
177 |
+
):
|
178 |
+
self.estimator = estimator
|
179 |
+
self.n_features_to_select = n_features_to_select
|
180 |
+
self.tol = tol
|
181 |
+
self.direction = direction
|
182 |
+
self.scoring = scoring
|
183 |
+
self.cv = cv
|
184 |
+
self.n_jobs = n_jobs
|
185 |
+
|
186 |
+
@_fit_context(
|
187 |
+
# SequentialFeatureSelector.estimator is not validated yet
|
188 |
+
prefer_skip_nested_validation=False
|
189 |
+
)
|
190 |
+
def fit(self, X, y=None):
|
191 |
+
"""Learn the features to select from X.
|
192 |
+
|
193 |
+
Parameters
|
194 |
+
----------
|
195 |
+
X : array-like of shape (n_samples, n_features)
|
196 |
+
Training vectors, where `n_samples` is the number of samples and
|
197 |
+
`n_features` is the number of predictors.
|
198 |
+
|
199 |
+
y : array-like of shape (n_samples,), default=None
|
200 |
+
Target values. This parameter may be ignored for
|
201 |
+
unsupervised learning.
|
202 |
+
|
203 |
+
Returns
|
204 |
+
-------
|
205 |
+
self : object
|
206 |
+
Returns the instance itself.
|
207 |
+
"""
|
208 |
+
tags = self._get_tags()
|
209 |
+
X = self._validate_data(
|
210 |
+
X,
|
211 |
+
accept_sparse="csc",
|
212 |
+
ensure_min_features=2,
|
213 |
+
force_all_finite=not tags.get("allow_nan", True),
|
214 |
+
)
|
215 |
+
n_features = X.shape[1]
|
216 |
+
|
217 |
+
if self.n_features_to_select == "auto":
|
218 |
+
if self.tol is not None:
|
219 |
+
# With auto feature selection, `n_features_to_select_` will be updated
|
220 |
+
# to `support_.sum()` after features are selected.
|
221 |
+
self.n_features_to_select_ = n_features - 1
|
222 |
+
else:
|
223 |
+
self.n_features_to_select_ = n_features // 2
|
224 |
+
elif isinstance(self.n_features_to_select, Integral):
|
225 |
+
if self.n_features_to_select >= n_features:
|
226 |
+
raise ValueError("n_features_to_select must be < n_features.")
|
227 |
+
self.n_features_to_select_ = self.n_features_to_select
|
228 |
+
elif isinstance(self.n_features_to_select, Real):
|
229 |
+
self.n_features_to_select_ = int(n_features * self.n_features_to_select)
|
230 |
+
|
231 |
+
if self.tol is not None and self.tol < 0 and self.direction == "forward":
|
232 |
+
raise ValueError("tol must be positive when doing forward selection")
|
233 |
+
|
234 |
+
cv = check_cv(self.cv, y, classifier=is_classifier(self.estimator))
|
235 |
+
|
236 |
+
cloned_estimator = clone(self.estimator)
|
237 |
+
|
238 |
+
# the current mask corresponds to the set of features:
|
239 |
+
# - that we have already *selected* if we do forward selection
|
240 |
+
# - that we have already *excluded* if we do backward selection
|
241 |
+
current_mask = np.zeros(shape=n_features, dtype=bool)
|
242 |
+
n_iterations = (
|
243 |
+
self.n_features_to_select_
|
244 |
+
if self.n_features_to_select == "auto" or self.direction == "forward"
|
245 |
+
else n_features - self.n_features_to_select_
|
246 |
+
)
|
247 |
+
|
248 |
+
old_score = -np.inf
|
249 |
+
is_auto_select = self.tol is not None and self.n_features_to_select == "auto"
|
250 |
+
for _ in range(n_iterations):
|
251 |
+
new_feature_idx, new_score = self._get_best_new_feature_score(
|
252 |
+
cloned_estimator, X, y, cv, current_mask
|
253 |
+
)
|
254 |
+
if is_auto_select and ((new_score - old_score) < self.tol):
|
255 |
+
break
|
256 |
+
|
257 |
+
old_score = new_score
|
258 |
+
current_mask[new_feature_idx] = True
|
259 |
+
|
260 |
+
if self.direction == "backward":
|
261 |
+
current_mask = ~current_mask
|
262 |
+
|
263 |
+
self.support_ = current_mask
|
264 |
+
self.n_features_to_select_ = self.support_.sum()
|
265 |
+
|
266 |
+
return self
|
267 |
+
|
268 |
+
def _get_best_new_feature_score(self, estimator, X, y, cv, current_mask):
|
269 |
+
# Return the best new feature and its score to add to the current_mask,
|
270 |
+
# i.e. return the best new feature and its score to add (resp. remove)
|
271 |
+
# when doing forward selection (resp. backward selection).
|
272 |
+
# Feature will be added if the current score and past score are greater
|
273 |
+
# than tol when n_feature is auto,
|
274 |
+
candidate_feature_indices = np.flatnonzero(~current_mask)
|
275 |
+
scores = {}
|
276 |
+
for feature_idx in candidate_feature_indices:
|
277 |
+
candidate_mask = current_mask.copy()
|
278 |
+
candidate_mask[feature_idx] = True
|
279 |
+
if self.direction == "backward":
|
280 |
+
candidate_mask = ~candidate_mask
|
281 |
+
X_new = X[:, candidate_mask]
|
282 |
+
scores[feature_idx] = cross_val_score(
|
283 |
+
estimator,
|
284 |
+
X_new,
|
285 |
+
y,
|
286 |
+
cv=cv,
|
287 |
+
scoring=self.scoring,
|
288 |
+
n_jobs=self.n_jobs,
|
289 |
+
).mean()
|
290 |
+
new_feature_idx = max(scores, key=lambda feature_idx: scores[feature_idx])
|
291 |
+
return new_feature_idx, scores[new_feature_idx]
|
292 |
+
|
293 |
+
def _get_support_mask(self):
|
294 |
+
check_is_fitted(self)
|
295 |
+
return self.support_
|
296 |
+
|
297 |
+
def _more_tags(self):
|
298 |
+
return {
|
299 |
+
"allow_nan": _safe_tags(self.estimator, key="allow_nan"),
|
300 |
+
}
|