Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/23.post_attention_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/23.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/23.post_attention_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/25.post_attention_layernorm.weight/exp_avg.pt +3 -0
- venv/lib/python3.10/site-packages/sklearn/_loss/link.py +280 -0
- venv/lib/python3.10/site-packages/sklearn/cross_decomposition/__init__.py +3 -0
- venv/lib/python3.10/site-packages/sklearn/cross_decomposition/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/cross_decomposition/__pycache__/_pls.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/cross_decomposition/_pls.py +1083 -0
- venv/lib/python3.10/site-packages/sklearn/cross_decomposition/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/cross_decomposition/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/cross_decomposition/tests/__pycache__/test_pls.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/cross_decomposition/tests/test_pls.py +646 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_arff_parser.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_california_housing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_covtype.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_kddcup99.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_lfw.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_olivetti_faces.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_openml.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_rcv1.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_samples_generator.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_species_distributions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_svmlight_format_io.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_twenty_newsgroups.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/data/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/data/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/data/boston_house_prices.csv +508 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/data/breast_cancer.csv +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/data/iris.csv +151 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/data/linnerud_exercise.csv +21 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/data/linnerud_physiological.csv +21 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/data/wine_data.csv +179 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/breast_cancer.rst +122 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/california_housing.rst +46 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/covtype.rst +30 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/diabetes.rst +38 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/digits.rst +50 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/iris.rst +67 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/kddcup99.rst +94 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/lfw.rst +128 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/linnerud.rst +28 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/olivetti_faces.rst +44 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/rcv1.rst +72 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/species_distributions.rst +36 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/descr/twenty_newsgroups.rst +264 -0
ckpts/universal/global_step40/zero/23.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:542a1d36c56cc53701c26f9bbee1575654b9af6161edb63b8410d85571b67305
|
3 |
+
size 9372
|
ckpts/universal/global_step40/zero/23.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07ff39584f214afcda19b6ec8476ccf71f055428bd1f52636fa1aef25e87abef
|
3 |
+
size 9387
|
ckpts/universal/global_step40/zero/23.post_attention_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8f0ef0a78640094a3bf9d8da99a12147afb951afc26e9ec25b75a98b90f9ecb
|
3 |
+
size 9293
|
ckpts/universal/global_step40/zero/25.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45701f48be911fabde3695f2eee8ce049a3493b8cfbe8d8a81189e0d01b3d888
|
3 |
+
size 9372
|
venv/lib/python3.10/site-packages/sklearn/_loss/link.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Module contains classes for invertible (and differentiable) link functions.
|
3 |
+
"""
|
4 |
+
# Author: Christian Lorentzen <[email protected]>
|
5 |
+
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
from dataclasses import dataclass
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from scipy.special import expit, logit
|
11 |
+
from scipy.stats import gmean
|
12 |
+
|
13 |
+
from ..utils.extmath import softmax
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class Interval:
|
18 |
+
low: float
|
19 |
+
high: float
|
20 |
+
low_inclusive: bool
|
21 |
+
high_inclusive: bool
|
22 |
+
|
23 |
+
def __post_init__(self):
|
24 |
+
"""Check that low <= high"""
|
25 |
+
if self.low > self.high:
|
26 |
+
raise ValueError(
|
27 |
+
f"One must have low <= high; got low={self.low}, high={self.high}."
|
28 |
+
)
|
29 |
+
|
30 |
+
def includes(self, x):
|
31 |
+
"""Test whether all values of x are in interval range.
|
32 |
+
|
33 |
+
Parameters
|
34 |
+
----------
|
35 |
+
x : ndarray
|
36 |
+
Array whose elements are tested to be in interval range.
|
37 |
+
|
38 |
+
Returns
|
39 |
+
-------
|
40 |
+
result : bool
|
41 |
+
"""
|
42 |
+
if self.low_inclusive:
|
43 |
+
low = np.greater_equal(x, self.low)
|
44 |
+
else:
|
45 |
+
low = np.greater(x, self.low)
|
46 |
+
|
47 |
+
if not np.all(low):
|
48 |
+
return False
|
49 |
+
|
50 |
+
if self.high_inclusive:
|
51 |
+
high = np.less_equal(x, self.high)
|
52 |
+
else:
|
53 |
+
high = np.less(x, self.high)
|
54 |
+
|
55 |
+
# Note: np.all returns numpy.bool_
|
56 |
+
return bool(np.all(high))
|
57 |
+
|
58 |
+
|
59 |
+
def _inclusive_low_high(interval, dtype=np.float64):
|
60 |
+
"""Generate values low and high to be within the interval range.
|
61 |
+
|
62 |
+
This is used in tests only.
|
63 |
+
|
64 |
+
Returns
|
65 |
+
-------
|
66 |
+
low, high : tuple
|
67 |
+
The returned values low and high lie within the interval.
|
68 |
+
"""
|
69 |
+
eps = 10 * np.finfo(dtype).eps
|
70 |
+
if interval.low == -np.inf:
|
71 |
+
low = -1e10
|
72 |
+
elif interval.low < 0:
|
73 |
+
low = interval.low * (1 - eps) + eps
|
74 |
+
else:
|
75 |
+
low = interval.low * (1 + eps) + eps
|
76 |
+
|
77 |
+
if interval.high == np.inf:
|
78 |
+
high = 1e10
|
79 |
+
elif interval.high < 0:
|
80 |
+
high = interval.high * (1 + eps) - eps
|
81 |
+
else:
|
82 |
+
high = interval.high * (1 - eps) - eps
|
83 |
+
|
84 |
+
return low, high
|
85 |
+
|
86 |
+
|
87 |
+
class BaseLink(ABC):
|
88 |
+
"""Abstract base class for differentiable, invertible link functions.
|
89 |
+
|
90 |
+
Convention:
|
91 |
+
- link function g: raw_prediction = g(y_pred)
|
92 |
+
- inverse link h: y_pred = h(raw_prediction)
|
93 |
+
|
94 |
+
For (generalized) linear models, `raw_prediction = X @ coef` is the so
|
95 |
+
called linear predictor, and `y_pred = h(raw_prediction)` is the predicted
|
96 |
+
conditional (on X) expected value of the target `y_true`.
|
97 |
+
|
98 |
+
The methods are not implemented as staticmethods in case a link function needs
|
99 |
+
parameters.
|
100 |
+
"""
|
101 |
+
|
102 |
+
is_multiclass = False # used for testing only
|
103 |
+
|
104 |
+
# Usually, raw_prediction may be any real number and y_pred is an open
|
105 |
+
# interval.
|
106 |
+
# interval_raw_prediction = Interval(-np.inf, np.inf, False, False)
|
107 |
+
interval_y_pred = Interval(-np.inf, np.inf, False, False)
|
108 |
+
|
109 |
+
@abstractmethod
|
110 |
+
def link(self, y_pred, out=None):
|
111 |
+
"""Compute the link function g(y_pred).
|
112 |
+
|
113 |
+
The link function maps (predicted) target values to raw predictions,
|
114 |
+
i.e. `g(y_pred) = raw_prediction`.
|
115 |
+
|
116 |
+
Parameters
|
117 |
+
----------
|
118 |
+
y_pred : array
|
119 |
+
Predicted target values.
|
120 |
+
out : array
|
121 |
+
A location into which the result is stored. If provided, it must
|
122 |
+
have a shape that the inputs broadcast to. If not provided or None,
|
123 |
+
a freshly-allocated array is returned.
|
124 |
+
|
125 |
+
Returns
|
126 |
+
-------
|
127 |
+
out : array
|
128 |
+
Output array, element-wise link function.
|
129 |
+
"""
|
130 |
+
|
131 |
+
@abstractmethod
|
132 |
+
def inverse(self, raw_prediction, out=None):
|
133 |
+
"""Compute the inverse link function h(raw_prediction).
|
134 |
+
|
135 |
+
The inverse link function maps raw predictions to predicted target
|
136 |
+
values, i.e. `h(raw_prediction) = y_pred`.
|
137 |
+
|
138 |
+
Parameters
|
139 |
+
----------
|
140 |
+
raw_prediction : array
|
141 |
+
Raw prediction values (in link space).
|
142 |
+
out : array
|
143 |
+
A location into which the result is stored. If provided, it must
|
144 |
+
have a shape that the inputs broadcast to. If not provided or None,
|
145 |
+
a freshly-allocated array is returned.
|
146 |
+
|
147 |
+
Returns
|
148 |
+
-------
|
149 |
+
out : array
|
150 |
+
Output array, element-wise inverse link function.
|
151 |
+
"""
|
152 |
+
|
153 |
+
|
154 |
+
class IdentityLink(BaseLink):
|
155 |
+
"""The identity link function g(x)=x."""
|
156 |
+
|
157 |
+
def link(self, y_pred, out=None):
|
158 |
+
if out is not None:
|
159 |
+
np.copyto(out, y_pred)
|
160 |
+
return out
|
161 |
+
else:
|
162 |
+
return y_pred
|
163 |
+
|
164 |
+
inverse = link
|
165 |
+
|
166 |
+
|
167 |
+
class LogLink(BaseLink):
|
168 |
+
"""The log link function g(x)=log(x)."""
|
169 |
+
|
170 |
+
interval_y_pred = Interval(0, np.inf, False, False)
|
171 |
+
|
172 |
+
def link(self, y_pred, out=None):
|
173 |
+
return np.log(y_pred, out=out)
|
174 |
+
|
175 |
+
def inverse(self, raw_prediction, out=None):
|
176 |
+
return np.exp(raw_prediction, out=out)
|
177 |
+
|
178 |
+
|
179 |
+
class LogitLink(BaseLink):
|
180 |
+
"""The logit link function g(x)=logit(x)."""
|
181 |
+
|
182 |
+
interval_y_pred = Interval(0, 1, False, False)
|
183 |
+
|
184 |
+
def link(self, y_pred, out=None):
|
185 |
+
return logit(y_pred, out=out)
|
186 |
+
|
187 |
+
def inverse(self, raw_prediction, out=None):
|
188 |
+
return expit(raw_prediction, out=out)
|
189 |
+
|
190 |
+
|
191 |
+
class HalfLogitLink(BaseLink):
|
192 |
+
"""Half the logit link function g(x)=1/2 * logit(x).
|
193 |
+
|
194 |
+
Used for the exponential loss.
|
195 |
+
"""
|
196 |
+
|
197 |
+
interval_y_pred = Interval(0, 1, False, False)
|
198 |
+
|
199 |
+
def link(self, y_pred, out=None):
|
200 |
+
out = logit(y_pred, out=out)
|
201 |
+
out *= 0.5
|
202 |
+
return out
|
203 |
+
|
204 |
+
def inverse(self, raw_prediction, out=None):
|
205 |
+
return expit(2 * raw_prediction, out)
|
206 |
+
|
207 |
+
|
208 |
+
class MultinomialLogit(BaseLink):
|
209 |
+
"""The symmetric multinomial logit function.
|
210 |
+
|
211 |
+
Convention:
|
212 |
+
- y_pred.shape = raw_prediction.shape = (n_samples, n_classes)
|
213 |
+
|
214 |
+
Notes:
|
215 |
+
- The inverse link h is the softmax function.
|
216 |
+
- The sum is over the second axis, i.e. axis=1 (n_classes).
|
217 |
+
|
218 |
+
We have to choose additional constraints in order to make
|
219 |
+
|
220 |
+
y_pred[k] = exp(raw_pred[k]) / sum(exp(raw_pred[k]), k=0..n_classes-1)
|
221 |
+
|
222 |
+
for n_classes classes identifiable and invertible.
|
223 |
+
We choose the symmetric side constraint where the geometric mean response
|
224 |
+
is set as reference category, see [2]:
|
225 |
+
|
226 |
+
The symmetric multinomial logit link function for a single data point is
|
227 |
+
then defined as
|
228 |
+
|
229 |
+
raw_prediction[k] = g(y_pred[k]) = log(y_pred[k]/gmean(y_pred))
|
230 |
+
= log(y_pred[k]) - mean(log(y_pred)).
|
231 |
+
|
232 |
+
Note that this is equivalent to the definition in [1] and implies mean
|
233 |
+
centered raw predictions:
|
234 |
+
|
235 |
+
sum(raw_prediction[k], k=0..n_classes-1) = 0.
|
236 |
+
|
237 |
+
For linear models with raw_prediction = X @ coef, this corresponds to
|
238 |
+
sum(coef[k], k=0..n_classes-1) = 0, i.e. the sum over classes for every
|
239 |
+
feature is zero.
|
240 |
+
|
241 |
+
Reference
|
242 |
+
---------
|
243 |
+
.. [1] Friedman, Jerome; Hastie, Trevor; Tibshirani, Robert. "Additive
|
244 |
+
logistic regression: a statistical view of boosting" Ann. Statist.
|
245 |
+
28 (2000), no. 2, 337--407. doi:10.1214/aos/1016218223.
|
246 |
+
https://projecteuclid.org/euclid.aos/1016218223
|
247 |
+
|
248 |
+
.. [2] Zahid, Faisal Maqbool and Gerhard Tutz. "Ridge estimation for
|
249 |
+
multinomial logit models with symmetric side constraints."
|
250 |
+
Computational Statistics 28 (2013): 1017-1034.
|
251 |
+
http://epub.ub.uni-muenchen.de/11001/1/tr067.pdf
|
252 |
+
"""
|
253 |
+
|
254 |
+
is_multiclass = True
|
255 |
+
interval_y_pred = Interval(0, 1, False, False)
|
256 |
+
|
257 |
+
def symmetrize_raw_prediction(self, raw_prediction):
|
258 |
+
return raw_prediction - np.mean(raw_prediction, axis=1)[:, np.newaxis]
|
259 |
+
|
260 |
+
def link(self, y_pred, out=None):
|
261 |
+
# geometric mean as reference category
|
262 |
+
gm = gmean(y_pred, axis=1)
|
263 |
+
return np.log(y_pred / gm[:, np.newaxis], out=out)
|
264 |
+
|
265 |
+
def inverse(self, raw_prediction, out=None):
|
266 |
+
if out is None:
|
267 |
+
return softmax(raw_prediction, copy=True)
|
268 |
+
else:
|
269 |
+
np.copyto(out, raw_prediction)
|
270 |
+
softmax(out, copy=False)
|
271 |
+
return out
|
272 |
+
|
273 |
+
|
274 |
+
_LINKS = {
|
275 |
+
"identity": IdentityLink,
|
276 |
+
"log": LogLink,
|
277 |
+
"logit": LogitLink,
|
278 |
+
"half_logit": HalfLogitLink,
|
279 |
+
"multinomial_logit": MultinomialLogit,
|
280 |
+
}
|
venv/lib/python3.10/site-packages/sklearn/cross_decomposition/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from ._pls import CCA, PLSSVD, PLSCanonical, PLSRegression
|
2 |
+
|
3 |
+
__all__ = ["PLSCanonical", "PLSRegression", "PLSSVD", "CCA"]
|
venv/lib/python3.10/site-packages/sklearn/cross_decomposition/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (332 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/cross_decomposition/__pycache__/_pls.cpython-310.pyc
ADDED
Binary file (29.4 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/cross_decomposition/_pls.py
ADDED
@@ -0,0 +1,1083 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn.pls` module implements Partial Least Squares (PLS).
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Author: Edouard Duchesnay <[email protected]>
|
6 |
+
# License: BSD 3 clause
|
7 |
+
|
8 |
+
import warnings
|
9 |
+
from abc import ABCMeta, abstractmethod
|
10 |
+
from numbers import Integral, Real
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from scipy.linalg import svd
|
14 |
+
|
15 |
+
from ..base import (
|
16 |
+
BaseEstimator,
|
17 |
+
ClassNamePrefixFeaturesOutMixin,
|
18 |
+
MultiOutputMixin,
|
19 |
+
RegressorMixin,
|
20 |
+
TransformerMixin,
|
21 |
+
_fit_context,
|
22 |
+
)
|
23 |
+
from ..exceptions import ConvergenceWarning
|
24 |
+
from ..utils import check_array, check_consistent_length
|
25 |
+
from ..utils._param_validation import Interval, StrOptions
|
26 |
+
from ..utils.extmath import svd_flip
|
27 |
+
from ..utils.fixes import parse_version, sp_version
|
28 |
+
from ..utils.validation import FLOAT_DTYPES, check_is_fitted
|
29 |
+
|
30 |
+
__all__ = ["PLSCanonical", "PLSRegression", "PLSSVD"]
|
31 |
+
|
32 |
+
|
33 |
+
if sp_version >= parse_version("1.7"):
|
34 |
+
# Starting in scipy 1.7 pinv2 was deprecated in favor of pinv.
|
35 |
+
# pinv now uses the svd to compute the pseudo-inverse.
|
36 |
+
from scipy.linalg import pinv as pinv2
|
37 |
+
else:
|
38 |
+
from scipy.linalg import pinv2
|
39 |
+
|
40 |
+
|
41 |
+
def _pinv2_old(a):
|
42 |
+
# Used previous scipy pinv2 that was updated in:
|
43 |
+
# https://github.com/scipy/scipy/pull/10067
|
44 |
+
# We can not set `cond` or `rcond` for pinv2 in scipy >= 1.3 to keep the
|
45 |
+
# same behavior of pinv2 for scipy < 1.3, because the condition used to
|
46 |
+
# determine the rank is dependent on the output of svd.
|
47 |
+
u, s, vh = svd(a, full_matrices=False, check_finite=False)
|
48 |
+
|
49 |
+
t = u.dtype.char.lower()
|
50 |
+
factor = {"f": 1e3, "d": 1e6}
|
51 |
+
cond = np.max(s) * factor[t] * np.finfo(t).eps
|
52 |
+
rank = np.sum(s > cond)
|
53 |
+
|
54 |
+
u = u[:, :rank]
|
55 |
+
u /= s[:rank]
|
56 |
+
return np.transpose(np.conjugate(np.dot(u, vh[:rank])))
|
57 |
+
|
58 |
+
|
59 |
+
def _get_first_singular_vectors_power_method(
|
60 |
+
X, Y, mode="A", max_iter=500, tol=1e-06, norm_y_weights=False
|
61 |
+
):
|
62 |
+
"""Return the first left and right singular vectors of X'Y.
|
63 |
+
|
64 |
+
Provides an alternative to the svd(X'Y) and uses the power method instead.
|
65 |
+
With norm_y_weights to True and in mode A, this corresponds to the
|
66 |
+
algorithm section 11.3 of the Wegelin's review, except this starts at the
|
67 |
+
"update saliences" part.
|
68 |
+
"""
|
69 |
+
|
70 |
+
eps = np.finfo(X.dtype).eps
|
71 |
+
try:
|
72 |
+
y_score = next(col for col in Y.T if np.any(np.abs(col) > eps))
|
73 |
+
except StopIteration as e:
|
74 |
+
raise StopIteration("Y residual is constant") from e
|
75 |
+
|
76 |
+
x_weights_old = 100 # init to big value for first convergence check
|
77 |
+
|
78 |
+
if mode == "B":
|
79 |
+
# Precompute pseudo inverse matrices
|
80 |
+
# Basically: X_pinv = (X.T X)^-1 X.T
|
81 |
+
# Which requires inverting a (n_features, n_features) matrix.
|
82 |
+
# As a result, and as detailed in the Wegelin's review, CCA (i.e. mode
|
83 |
+
# B) will be unstable if n_features > n_samples or n_targets >
|
84 |
+
# n_samples
|
85 |
+
X_pinv, Y_pinv = _pinv2_old(X), _pinv2_old(Y)
|
86 |
+
|
87 |
+
for i in range(max_iter):
|
88 |
+
if mode == "B":
|
89 |
+
x_weights = np.dot(X_pinv, y_score)
|
90 |
+
else:
|
91 |
+
x_weights = np.dot(X.T, y_score) / np.dot(y_score, y_score)
|
92 |
+
|
93 |
+
x_weights /= np.sqrt(np.dot(x_weights, x_weights)) + eps
|
94 |
+
x_score = np.dot(X, x_weights)
|
95 |
+
|
96 |
+
if mode == "B":
|
97 |
+
y_weights = np.dot(Y_pinv, x_score)
|
98 |
+
else:
|
99 |
+
y_weights = np.dot(Y.T, x_score) / np.dot(x_score.T, x_score)
|
100 |
+
|
101 |
+
if norm_y_weights:
|
102 |
+
y_weights /= np.sqrt(np.dot(y_weights, y_weights)) + eps
|
103 |
+
|
104 |
+
y_score = np.dot(Y, y_weights) / (np.dot(y_weights, y_weights) + eps)
|
105 |
+
|
106 |
+
x_weights_diff = x_weights - x_weights_old
|
107 |
+
if np.dot(x_weights_diff, x_weights_diff) < tol or Y.shape[1] == 1:
|
108 |
+
break
|
109 |
+
x_weights_old = x_weights
|
110 |
+
|
111 |
+
n_iter = i + 1
|
112 |
+
if n_iter == max_iter:
|
113 |
+
warnings.warn("Maximum number of iterations reached", ConvergenceWarning)
|
114 |
+
|
115 |
+
return x_weights, y_weights, n_iter
|
116 |
+
|
117 |
+
|
118 |
+
def _get_first_singular_vectors_svd(X, Y):
|
119 |
+
"""Return the first left and right singular vectors of X'Y.
|
120 |
+
|
121 |
+
Here the whole SVD is computed.
|
122 |
+
"""
|
123 |
+
C = np.dot(X.T, Y)
|
124 |
+
U, _, Vt = svd(C, full_matrices=False)
|
125 |
+
return U[:, 0], Vt[0, :]
|
126 |
+
|
127 |
+
|
128 |
+
def _center_scale_xy(X, Y, scale=True):
|
129 |
+
"""Center X, Y and scale if the scale parameter==True
|
130 |
+
|
131 |
+
Returns
|
132 |
+
-------
|
133 |
+
X, Y, x_mean, y_mean, x_std, y_std
|
134 |
+
"""
|
135 |
+
# center
|
136 |
+
x_mean = X.mean(axis=0)
|
137 |
+
X -= x_mean
|
138 |
+
y_mean = Y.mean(axis=0)
|
139 |
+
Y -= y_mean
|
140 |
+
# scale
|
141 |
+
if scale:
|
142 |
+
x_std = X.std(axis=0, ddof=1)
|
143 |
+
x_std[x_std == 0.0] = 1.0
|
144 |
+
X /= x_std
|
145 |
+
y_std = Y.std(axis=0, ddof=1)
|
146 |
+
y_std[y_std == 0.0] = 1.0
|
147 |
+
Y /= y_std
|
148 |
+
else:
|
149 |
+
x_std = np.ones(X.shape[1])
|
150 |
+
y_std = np.ones(Y.shape[1])
|
151 |
+
return X, Y, x_mean, y_mean, x_std, y_std
|
152 |
+
|
153 |
+
|
154 |
+
def _svd_flip_1d(u, v):
|
155 |
+
"""Same as svd_flip but works on 1d arrays, and is inplace"""
|
156 |
+
# svd_flip would force us to convert to 2d array and would also return 2d
|
157 |
+
# arrays. We don't want that.
|
158 |
+
biggest_abs_val_idx = np.argmax(np.abs(u))
|
159 |
+
sign = np.sign(u[biggest_abs_val_idx])
|
160 |
+
u *= sign
|
161 |
+
v *= sign
|
162 |
+
|
163 |
+
|
164 |
+
class _PLS(
|
165 |
+
ClassNamePrefixFeaturesOutMixin,
|
166 |
+
TransformerMixin,
|
167 |
+
RegressorMixin,
|
168 |
+
MultiOutputMixin,
|
169 |
+
BaseEstimator,
|
170 |
+
metaclass=ABCMeta,
|
171 |
+
):
|
172 |
+
"""Partial Least Squares (PLS)
|
173 |
+
|
174 |
+
This class implements the generic PLS algorithm.
|
175 |
+
|
176 |
+
Main ref: Wegelin, a survey of Partial Least Squares (PLS) methods,
|
177 |
+
with emphasis on the two-block case
|
178 |
+
https://stat.uw.edu/sites/default/files/files/reports/2000/tr371.pdf
|
179 |
+
"""
|
180 |
+
|
181 |
+
_parameter_constraints: dict = {
|
182 |
+
"n_components": [Interval(Integral, 1, None, closed="left")],
|
183 |
+
"scale": ["boolean"],
|
184 |
+
"deflation_mode": [StrOptions({"regression", "canonical"})],
|
185 |
+
"mode": [StrOptions({"A", "B"})],
|
186 |
+
"algorithm": [StrOptions({"svd", "nipals"})],
|
187 |
+
"max_iter": [Interval(Integral, 1, None, closed="left")],
|
188 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
189 |
+
"copy": ["boolean"],
|
190 |
+
}
|
191 |
+
|
192 |
+
@abstractmethod
|
193 |
+
def __init__(
|
194 |
+
self,
|
195 |
+
n_components=2,
|
196 |
+
*,
|
197 |
+
scale=True,
|
198 |
+
deflation_mode="regression",
|
199 |
+
mode="A",
|
200 |
+
algorithm="nipals",
|
201 |
+
max_iter=500,
|
202 |
+
tol=1e-06,
|
203 |
+
copy=True,
|
204 |
+
):
|
205 |
+
self.n_components = n_components
|
206 |
+
self.deflation_mode = deflation_mode
|
207 |
+
self.mode = mode
|
208 |
+
self.scale = scale
|
209 |
+
self.algorithm = algorithm
|
210 |
+
self.max_iter = max_iter
|
211 |
+
self.tol = tol
|
212 |
+
self.copy = copy
|
213 |
+
|
214 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
215 |
+
def fit(self, X, Y):
|
216 |
+
"""Fit model to data.
|
217 |
+
|
218 |
+
Parameters
|
219 |
+
----------
|
220 |
+
X : array-like of shape (n_samples, n_features)
|
221 |
+
Training vectors, where `n_samples` is the number of samples and
|
222 |
+
`n_features` is the number of predictors.
|
223 |
+
|
224 |
+
Y : array-like of shape (n_samples,) or (n_samples, n_targets)
|
225 |
+
Target vectors, where `n_samples` is the number of samples and
|
226 |
+
`n_targets` is the number of response variables.
|
227 |
+
|
228 |
+
Returns
|
229 |
+
-------
|
230 |
+
self : object
|
231 |
+
Fitted model.
|
232 |
+
"""
|
233 |
+
check_consistent_length(X, Y)
|
234 |
+
X = self._validate_data(
|
235 |
+
X, dtype=np.float64, copy=self.copy, ensure_min_samples=2
|
236 |
+
)
|
237 |
+
Y = check_array(
|
238 |
+
Y, input_name="Y", dtype=np.float64, copy=self.copy, ensure_2d=False
|
239 |
+
)
|
240 |
+
if Y.ndim == 1:
|
241 |
+
self._predict_1d = True
|
242 |
+
Y = Y.reshape(-1, 1)
|
243 |
+
else:
|
244 |
+
self._predict_1d = False
|
245 |
+
|
246 |
+
n = X.shape[0]
|
247 |
+
p = X.shape[1]
|
248 |
+
q = Y.shape[1]
|
249 |
+
|
250 |
+
n_components = self.n_components
|
251 |
+
# With PLSRegression n_components is bounded by the rank of (X.T X) see
|
252 |
+
# Wegelin page 25. With CCA and PLSCanonical, n_components is bounded
|
253 |
+
# by the rank of X and the rank of Y: see Wegelin page 12
|
254 |
+
rank_upper_bound = p if self.deflation_mode == "regression" else min(n, p, q)
|
255 |
+
if n_components > rank_upper_bound:
|
256 |
+
raise ValueError(
|
257 |
+
f"`n_components` upper bound is {rank_upper_bound}. "
|
258 |
+
f"Got {n_components} instead. Reduce `n_components`."
|
259 |
+
)
|
260 |
+
|
261 |
+
self._norm_y_weights = self.deflation_mode == "canonical" # 1.1
|
262 |
+
norm_y_weights = self._norm_y_weights
|
263 |
+
|
264 |
+
# Scale (in place)
|
265 |
+
Xk, Yk, self._x_mean, self._y_mean, self._x_std, self._y_std = _center_scale_xy(
|
266 |
+
X, Y, self.scale
|
267 |
+
)
|
268 |
+
|
269 |
+
self.x_weights_ = np.zeros((p, n_components)) # U
|
270 |
+
self.y_weights_ = np.zeros((q, n_components)) # V
|
271 |
+
self._x_scores = np.zeros((n, n_components)) # Xi
|
272 |
+
self._y_scores = np.zeros((n, n_components)) # Omega
|
273 |
+
self.x_loadings_ = np.zeros((p, n_components)) # Gamma
|
274 |
+
self.y_loadings_ = np.zeros((q, n_components)) # Delta
|
275 |
+
self.n_iter_ = []
|
276 |
+
|
277 |
+
# This whole thing corresponds to the algorithm in section 4.1 of the
|
278 |
+
# review from Wegelin. See above for a notation mapping from code to
|
279 |
+
# paper.
|
280 |
+
Y_eps = np.finfo(Yk.dtype).eps
|
281 |
+
for k in range(n_components):
|
282 |
+
# Find first left and right singular vectors of the X.T.dot(Y)
|
283 |
+
# cross-covariance matrix.
|
284 |
+
if self.algorithm == "nipals":
|
285 |
+
# Replace columns that are all close to zero with zeros
|
286 |
+
Yk_mask = np.all(np.abs(Yk) < 10 * Y_eps, axis=0)
|
287 |
+
Yk[:, Yk_mask] = 0.0
|
288 |
+
|
289 |
+
try:
|
290 |
+
(
|
291 |
+
x_weights,
|
292 |
+
y_weights,
|
293 |
+
n_iter_,
|
294 |
+
) = _get_first_singular_vectors_power_method(
|
295 |
+
Xk,
|
296 |
+
Yk,
|
297 |
+
mode=self.mode,
|
298 |
+
max_iter=self.max_iter,
|
299 |
+
tol=self.tol,
|
300 |
+
norm_y_weights=norm_y_weights,
|
301 |
+
)
|
302 |
+
except StopIteration as e:
|
303 |
+
if str(e) != "Y residual is constant":
|
304 |
+
raise
|
305 |
+
warnings.warn(f"Y residual is constant at iteration {k}")
|
306 |
+
break
|
307 |
+
|
308 |
+
self.n_iter_.append(n_iter_)
|
309 |
+
|
310 |
+
elif self.algorithm == "svd":
|
311 |
+
x_weights, y_weights = _get_first_singular_vectors_svd(Xk, Yk)
|
312 |
+
|
313 |
+
# inplace sign flip for consistency across solvers and archs
|
314 |
+
_svd_flip_1d(x_weights, y_weights)
|
315 |
+
|
316 |
+
# compute scores, i.e. the projections of X and Y
|
317 |
+
x_scores = np.dot(Xk, x_weights)
|
318 |
+
if norm_y_weights:
|
319 |
+
y_ss = 1
|
320 |
+
else:
|
321 |
+
y_ss = np.dot(y_weights, y_weights)
|
322 |
+
y_scores = np.dot(Yk, y_weights) / y_ss
|
323 |
+
|
324 |
+
# Deflation: subtract rank-one approx to obtain Xk+1 and Yk+1
|
325 |
+
x_loadings = np.dot(x_scores, Xk) / np.dot(x_scores, x_scores)
|
326 |
+
Xk -= np.outer(x_scores, x_loadings)
|
327 |
+
|
328 |
+
if self.deflation_mode == "canonical":
|
329 |
+
# regress Yk on y_score
|
330 |
+
y_loadings = np.dot(y_scores, Yk) / np.dot(y_scores, y_scores)
|
331 |
+
Yk -= np.outer(y_scores, y_loadings)
|
332 |
+
if self.deflation_mode == "regression":
|
333 |
+
# regress Yk on x_score
|
334 |
+
y_loadings = np.dot(x_scores, Yk) / np.dot(x_scores, x_scores)
|
335 |
+
Yk -= np.outer(x_scores, y_loadings)
|
336 |
+
|
337 |
+
self.x_weights_[:, k] = x_weights
|
338 |
+
self.y_weights_[:, k] = y_weights
|
339 |
+
self._x_scores[:, k] = x_scores
|
340 |
+
self._y_scores[:, k] = y_scores
|
341 |
+
self.x_loadings_[:, k] = x_loadings
|
342 |
+
self.y_loadings_[:, k] = y_loadings
|
343 |
+
|
344 |
+
# X was approximated as Xi . Gamma.T + X_(R+1)
|
345 |
+
# Xi . Gamma.T is a sum of n_components rank-1 matrices. X_(R+1) is
|
346 |
+
# whatever is left to fully reconstruct X, and can be 0 if X is of rank
|
347 |
+
# n_components.
|
348 |
+
# Similarly, Y was approximated as Omega . Delta.T + Y_(R+1)
|
349 |
+
|
350 |
+
# Compute transformation matrices (rotations_). See User Guide.
|
351 |
+
self.x_rotations_ = np.dot(
|
352 |
+
self.x_weights_,
|
353 |
+
pinv2(np.dot(self.x_loadings_.T, self.x_weights_), check_finite=False),
|
354 |
+
)
|
355 |
+
self.y_rotations_ = np.dot(
|
356 |
+
self.y_weights_,
|
357 |
+
pinv2(np.dot(self.y_loadings_.T, self.y_weights_), check_finite=False),
|
358 |
+
)
|
359 |
+
self.coef_ = np.dot(self.x_rotations_, self.y_loadings_.T)
|
360 |
+
self.coef_ = (self.coef_ * self._y_std).T
|
361 |
+
self.intercept_ = self._y_mean
|
362 |
+
self._n_features_out = self.x_rotations_.shape[1]
|
363 |
+
return self
|
364 |
+
|
365 |
+
def transform(self, X, Y=None, copy=True):
|
366 |
+
"""Apply the dimension reduction.
|
367 |
+
|
368 |
+
Parameters
|
369 |
+
----------
|
370 |
+
X : array-like of shape (n_samples, n_features)
|
371 |
+
Samples to transform.
|
372 |
+
|
373 |
+
Y : array-like of shape (n_samples, n_targets), default=None
|
374 |
+
Target vectors.
|
375 |
+
|
376 |
+
copy : bool, default=True
|
377 |
+
Whether to copy `X` and `Y`, or perform in-place normalization.
|
378 |
+
|
379 |
+
Returns
|
380 |
+
-------
|
381 |
+
x_scores, y_scores : array-like or tuple of array-like
|
382 |
+
Return `x_scores` if `Y` is not given, `(x_scores, y_scores)` otherwise.
|
383 |
+
"""
|
384 |
+
check_is_fitted(self)
|
385 |
+
X = self._validate_data(X, copy=copy, dtype=FLOAT_DTYPES, reset=False)
|
386 |
+
# Normalize
|
387 |
+
X -= self._x_mean
|
388 |
+
X /= self._x_std
|
389 |
+
# Apply rotation
|
390 |
+
x_scores = np.dot(X, self.x_rotations_)
|
391 |
+
if Y is not None:
|
392 |
+
Y = check_array(
|
393 |
+
Y, input_name="Y", ensure_2d=False, copy=copy, dtype=FLOAT_DTYPES
|
394 |
+
)
|
395 |
+
if Y.ndim == 1:
|
396 |
+
Y = Y.reshape(-1, 1)
|
397 |
+
Y -= self._y_mean
|
398 |
+
Y /= self._y_std
|
399 |
+
y_scores = np.dot(Y, self.y_rotations_)
|
400 |
+
return x_scores, y_scores
|
401 |
+
|
402 |
+
return x_scores
|
403 |
+
|
404 |
+
def inverse_transform(self, X, Y=None):
|
405 |
+
"""Transform data back to its original space.
|
406 |
+
|
407 |
+
Parameters
|
408 |
+
----------
|
409 |
+
X : array-like of shape (n_samples, n_components)
|
410 |
+
New data, where `n_samples` is the number of samples
|
411 |
+
and `n_components` is the number of pls components.
|
412 |
+
|
413 |
+
Y : array-like of shape (n_samples, n_components)
|
414 |
+
New target, where `n_samples` is the number of samples
|
415 |
+
and `n_components` is the number of pls components.
|
416 |
+
|
417 |
+
Returns
|
418 |
+
-------
|
419 |
+
X_reconstructed : ndarray of shape (n_samples, n_features)
|
420 |
+
Return the reconstructed `X` data.
|
421 |
+
|
422 |
+
Y_reconstructed : ndarray of shape (n_samples, n_targets)
|
423 |
+
Return the reconstructed `X` target. Only returned when `Y` is given.
|
424 |
+
|
425 |
+
Notes
|
426 |
+
-----
|
427 |
+
This transformation will only be exact if `n_components=n_features`.
|
428 |
+
"""
|
429 |
+
check_is_fitted(self)
|
430 |
+
X = check_array(X, input_name="X", dtype=FLOAT_DTYPES)
|
431 |
+
# From pls space to original space
|
432 |
+
X_reconstructed = np.matmul(X, self.x_loadings_.T)
|
433 |
+
# Denormalize
|
434 |
+
X_reconstructed *= self._x_std
|
435 |
+
X_reconstructed += self._x_mean
|
436 |
+
|
437 |
+
if Y is not None:
|
438 |
+
Y = check_array(Y, input_name="Y", dtype=FLOAT_DTYPES)
|
439 |
+
# From pls space to original space
|
440 |
+
Y_reconstructed = np.matmul(Y, self.y_loadings_.T)
|
441 |
+
# Denormalize
|
442 |
+
Y_reconstructed *= self._y_std
|
443 |
+
Y_reconstructed += self._y_mean
|
444 |
+
return X_reconstructed, Y_reconstructed
|
445 |
+
|
446 |
+
return X_reconstructed
|
447 |
+
|
448 |
+
def predict(self, X, copy=True):
|
449 |
+
"""Predict targets of given samples.
|
450 |
+
|
451 |
+
Parameters
|
452 |
+
----------
|
453 |
+
X : array-like of shape (n_samples, n_features)
|
454 |
+
Samples.
|
455 |
+
|
456 |
+
copy : bool, default=True
|
457 |
+
Whether to copy `X` and `Y`, or perform in-place normalization.
|
458 |
+
|
459 |
+
Returns
|
460 |
+
-------
|
461 |
+
y_pred : ndarray of shape (n_samples,) or (n_samples, n_targets)
|
462 |
+
Returns predicted values.
|
463 |
+
|
464 |
+
Notes
|
465 |
+
-----
|
466 |
+
This call requires the estimation of a matrix of shape
|
467 |
+
`(n_features, n_targets)`, which may be an issue in high dimensional
|
468 |
+
space.
|
469 |
+
"""
|
470 |
+
check_is_fitted(self)
|
471 |
+
X = self._validate_data(X, copy=copy, dtype=FLOAT_DTYPES, reset=False)
|
472 |
+
# Normalize
|
473 |
+
X -= self._x_mean
|
474 |
+
X /= self._x_std
|
475 |
+
Ypred = X @ self.coef_.T + self.intercept_
|
476 |
+
return Ypred.ravel() if self._predict_1d else Ypred
|
477 |
+
|
478 |
+
def fit_transform(self, X, y=None):
|
479 |
+
"""Learn and apply the dimension reduction on the train data.
|
480 |
+
|
481 |
+
Parameters
|
482 |
+
----------
|
483 |
+
X : array-like of shape (n_samples, n_features)
|
484 |
+
Training vectors, where `n_samples` is the number of samples and
|
485 |
+
`n_features` is the number of predictors.
|
486 |
+
|
487 |
+
y : array-like of shape (n_samples, n_targets), default=None
|
488 |
+
Target vectors, where `n_samples` is the number of samples and
|
489 |
+
`n_targets` is the number of response variables.
|
490 |
+
|
491 |
+
Returns
|
492 |
+
-------
|
493 |
+
self : ndarray of shape (n_samples, n_components)
|
494 |
+
Return `x_scores` if `Y` is not given, `(x_scores, y_scores)` otherwise.
|
495 |
+
"""
|
496 |
+
return self.fit(X, y).transform(X, y)
|
497 |
+
|
498 |
+
def _more_tags(self):
|
499 |
+
return {"poor_score": True, "requires_y": False}
|
500 |
+
|
501 |
+
|
502 |
+
class PLSRegression(_PLS):
|
503 |
+
"""PLS regression.
|
504 |
+
|
505 |
+
PLSRegression is also known as PLS2 or PLS1, depending on the number of
|
506 |
+
targets.
|
507 |
+
|
508 |
+
For a comparison between other cross decomposition algorithms, see
|
509 |
+
:ref:`sphx_glr_auto_examples_cross_decomposition_plot_compare_cross_decomposition.py`.
|
510 |
+
|
511 |
+
Read more in the :ref:`User Guide <cross_decomposition>`.
|
512 |
+
|
513 |
+
.. versionadded:: 0.8
|
514 |
+
|
515 |
+
Parameters
|
516 |
+
----------
|
517 |
+
n_components : int, default=2
|
518 |
+
Number of components to keep. Should be in `[1, min(n_samples,
|
519 |
+
n_features, n_targets)]`.
|
520 |
+
|
521 |
+
scale : bool, default=True
|
522 |
+
Whether to scale `X` and `Y`.
|
523 |
+
|
524 |
+
max_iter : int, default=500
|
525 |
+
The maximum number of iterations of the power method when
|
526 |
+
`algorithm='nipals'`. Ignored otherwise.
|
527 |
+
|
528 |
+
tol : float, default=1e-06
|
529 |
+
The tolerance used as convergence criteria in the power method: the
|
530 |
+
algorithm stops whenever the squared norm of `u_i - u_{i-1}` is less
|
531 |
+
than `tol`, where `u` corresponds to the left singular vector.
|
532 |
+
|
533 |
+
copy : bool, default=True
|
534 |
+
Whether to copy `X` and `Y` in :term:`fit` before applying centering,
|
535 |
+
and potentially scaling. If `False`, these operations will be done
|
536 |
+
inplace, modifying both arrays.
|
537 |
+
|
538 |
+
Attributes
|
539 |
+
----------
|
540 |
+
x_weights_ : ndarray of shape (n_features, n_components)
|
541 |
+
The left singular vectors of the cross-covariance matrices of each
|
542 |
+
iteration.
|
543 |
+
|
544 |
+
y_weights_ : ndarray of shape (n_targets, n_components)
|
545 |
+
The right singular vectors of the cross-covariance matrices of each
|
546 |
+
iteration.
|
547 |
+
|
548 |
+
x_loadings_ : ndarray of shape (n_features, n_components)
|
549 |
+
The loadings of `X`.
|
550 |
+
|
551 |
+
y_loadings_ : ndarray of shape (n_targets, n_components)
|
552 |
+
The loadings of `Y`.
|
553 |
+
|
554 |
+
x_scores_ : ndarray of shape (n_samples, n_components)
|
555 |
+
The transformed training samples.
|
556 |
+
|
557 |
+
y_scores_ : ndarray of shape (n_samples, n_components)
|
558 |
+
The transformed training targets.
|
559 |
+
|
560 |
+
x_rotations_ : ndarray of shape (n_features, n_components)
|
561 |
+
The projection matrix used to transform `X`.
|
562 |
+
|
563 |
+
y_rotations_ : ndarray of shape (n_targets, n_components)
|
564 |
+
The projection matrix used to transform `Y`.
|
565 |
+
|
566 |
+
coef_ : ndarray of shape (n_target, n_features)
|
567 |
+
The coefficients of the linear model such that `Y` is approximated as
|
568 |
+
`Y = X @ coef_.T + intercept_`.
|
569 |
+
|
570 |
+
intercept_ : ndarray of shape (n_targets,)
|
571 |
+
The intercepts of the linear model such that `Y` is approximated as
|
572 |
+
`Y = X @ coef_.T + intercept_`.
|
573 |
+
|
574 |
+
.. versionadded:: 1.1
|
575 |
+
|
576 |
+
n_iter_ : list of shape (n_components,)
|
577 |
+
Number of iterations of the power method, for each
|
578 |
+
component.
|
579 |
+
|
580 |
+
n_features_in_ : int
|
581 |
+
Number of features seen during :term:`fit`.
|
582 |
+
|
583 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
584 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
585 |
+
has feature names that are all strings.
|
586 |
+
|
587 |
+
.. versionadded:: 1.0
|
588 |
+
|
589 |
+
See Also
|
590 |
+
--------
|
591 |
+
PLSCanonical : Partial Least Squares transformer and regressor.
|
592 |
+
|
593 |
+
Examples
|
594 |
+
--------
|
595 |
+
>>> from sklearn.cross_decomposition import PLSRegression
|
596 |
+
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
|
597 |
+
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
|
598 |
+
>>> pls2 = PLSRegression(n_components=2)
|
599 |
+
>>> pls2.fit(X, Y)
|
600 |
+
PLSRegression()
|
601 |
+
>>> Y_pred = pls2.predict(X)
|
602 |
+
|
603 |
+
For a comparison between PLS Regression and :class:`~sklearn.decomposition.PCA`, see
|
604 |
+
:ref:`sphx_glr_auto_examples_cross_decomposition_plot_pcr_vs_pls.py`.
|
605 |
+
"""
|
606 |
+
|
607 |
+
_parameter_constraints: dict = {**_PLS._parameter_constraints}
|
608 |
+
for param in ("deflation_mode", "mode", "algorithm"):
|
609 |
+
_parameter_constraints.pop(param)
|
610 |
+
|
611 |
+
# This implementation provides the same results that 3 PLS packages
|
612 |
+
# provided in the R language (R-project):
|
613 |
+
# - "mixOmics" with function pls(X, Y, mode = "regression")
|
614 |
+
# - "plspm " with function plsreg2(X, Y)
|
615 |
+
# - "pls" with function oscorespls.fit(X, Y)
|
616 |
+
|
617 |
+
def __init__(
|
618 |
+
self, n_components=2, *, scale=True, max_iter=500, tol=1e-06, copy=True
|
619 |
+
):
|
620 |
+
super().__init__(
|
621 |
+
n_components=n_components,
|
622 |
+
scale=scale,
|
623 |
+
deflation_mode="regression",
|
624 |
+
mode="A",
|
625 |
+
algorithm="nipals",
|
626 |
+
max_iter=max_iter,
|
627 |
+
tol=tol,
|
628 |
+
copy=copy,
|
629 |
+
)
|
630 |
+
|
631 |
+
def fit(self, X, Y):
|
632 |
+
"""Fit model to data.
|
633 |
+
|
634 |
+
Parameters
|
635 |
+
----------
|
636 |
+
X : array-like of shape (n_samples, n_features)
|
637 |
+
Training vectors, where `n_samples` is the number of samples and
|
638 |
+
`n_features` is the number of predictors.
|
639 |
+
|
640 |
+
Y : array-like of shape (n_samples,) or (n_samples, n_targets)
|
641 |
+
Target vectors, where `n_samples` is the number of samples and
|
642 |
+
`n_targets` is the number of response variables.
|
643 |
+
|
644 |
+
Returns
|
645 |
+
-------
|
646 |
+
self : object
|
647 |
+
Fitted model.
|
648 |
+
"""
|
649 |
+
super().fit(X, Y)
|
650 |
+
# expose the fitted attributes `x_scores_` and `y_scores_`
|
651 |
+
self.x_scores_ = self._x_scores
|
652 |
+
self.y_scores_ = self._y_scores
|
653 |
+
return self
|
654 |
+
|
655 |
+
|
656 |
+
class PLSCanonical(_PLS):
|
657 |
+
"""Partial Least Squares transformer and regressor.
|
658 |
+
|
659 |
+
For a comparison between other cross decomposition algorithms, see
|
660 |
+
:ref:`sphx_glr_auto_examples_cross_decomposition_plot_compare_cross_decomposition.py`.
|
661 |
+
|
662 |
+
Read more in the :ref:`User Guide <cross_decomposition>`.
|
663 |
+
|
664 |
+
.. versionadded:: 0.8
|
665 |
+
|
666 |
+
Parameters
|
667 |
+
----------
|
668 |
+
n_components : int, default=2
|
669 |
+
Number of components to keep. Should be in `[1, min(n_samples,
|
670 |
+
n_features, n_targets)]`.
|
671 |
+
|
672 |
+
scale : bool, default=True
|
673 |
+
Whether to scale `X` and `Y`.
|
674 |
+
|
675 |
+
algorithm : {'nipals', 'svd'}, default='nipals'
|
676 |
+
The algorithm used to estimate the first singular vectors of the
|
677 |
+
cross-covariance matrix. 'nipals' uses the power method while 'svd'
|
678 |
+
will compute the whole SVD.
|
679 |
+
|
680 |
+
max_iter : int, default=500
|
681 |
+
The maximum number of iterations of the power method when
|
682 |
+
`algorithm='nipals'`. Ignored otherwise.
|
683 |
+
|
684 |
+
tol : float, default=1e-06
|
685 |
+
The tolerance used as convergence criteria in the power method: the
|
686 |
+
algorithm stops whenever the squared norm of `u_i - u_{i-1}` is less
|
687 |
+
than `tol`, where `u` corresponds to the left singular vector.
|
688 |
+
|
689 |
+
copy : bool, default=True
|
690 |
+
Whether to copy `X` and `Y` in fit before applying centering, and
|
691 |
+
potentially scaling. If False, these operations will be done inplace,
|
692 |
+
modifying both arrays.
|
693 |
+
|
694 |
+
Attributes
|
695 |
+
----------
|
696 |
+
x_weights_ : ndarray of shape (n_features, n_components)
|
697 |
+
The left singular vectors of the cross-covariance matrices of each
|
698 |
+
iteration.
|
699 |
+
|
700 |
+
y_weights_ : ndarray of shape (n_targets, n_components)
|
701 |
+
The right singular vectors of the cross-covariance matrices of each
|
702 |
+
iteration.
|
703 |
+
|
704 |
+
x_loadings_ : ndarray of shape (n_features, n_components)
|
705 |
+
The loadings of `X`.
|
706 |
+
|
707 |
+
y_loadings_ : ndarray of shape (n_targets, n_components)
|
708 |
+
The loadings of `Y`.
|
709 |
+
|
710 |
+
x_rotations_ : ndarray of shape (n_features, n_components)
|
711 |
+
The projection matrix used to transform `X`.
|
712 |
+
|
713 |
+
y_rotations_ : ndarray of shape (n_targets, n_components)
|
714 |
+
The projection matrix used to transform `Y`.
|
715 |
+
|
716 |
+
coef_ : ndarray of shape (n_targets, n_features)
|
717 |
+
The coefficients of the linear model such that `Y` is approximated as
|
718 |
+
`Y = X @ coef_.T + intercept_`.
|
719 |
+
|
720 |
+
intercept_ : ndarray of shape (n_targets,)
|
721 |
+
The intercepts of the linear model such that `Y` is approximated as
|
722 |
+
`Y = X @ coef_.T + intercept_`.
|
723 |
+
|
724 |
+
.. versionadded:: 1.1
|
725 |
+
|
726 |
+
n_iter_ : list of shape (n_components,)
|
727 |
+
Number of iterations of the power method, for each
|
728 |
+
component. Empty if `algorithm='svd'`.
|
729 |
+
|
730 |
+
n_features_in_ : int
|
731 |
+
Number of features seen during :term:`fit`.
|
732 |
+
|
733 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
734 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
735 |
+
has feature names that are all strings.
|
736 |
+
|
737 |
+
.. versionadded:: 1.0
|
738 |
+
|
739 |
+
See Also
|
740 |
+
--------
|
741 |
+
CCA : Canonical Correlation Analysis.
|
742 |
+
PLSSVD : Partial Least Square SVD.
|
743 |
+
|
744 |
+
Examples
|
745 |
+
--------
|
746 |
+
>>> from sklearn.cross_decomposition import PLSCanonical
|
747 |
+
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
|
748 |
+
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
|
749 |
+
>>> plsca = PLSCanonical(n_components=2)
|
750 |
+
>>> plsca.fit(X, Y)
|
751 |
+
PLSCanonical()
|
752 |
+
>>> X_c, Y_c = plsca.transform(X, Y)
|
753 |
+
"""
|
754 |
+
|
755 |
+
_parameter_constraints: dict = {**_PLS._parameter_constraints}
|
756 |
+
for param in ("deflation_mode", "mode"):
|
757 |
+
_parameter_constraints.pop(param)
|
758 |
+
|
759 |
+
# This implementation provides the same results that the "plspm" package
|
760 |
+
# provided in the R language (R-project), using the function plsca(X, Y).
|
761 |
+
# Results are equal or collinear with the function
|
762 |
+
# ``pls(..., mode = "canonical")`` of the "mixOmics" package. The
|
763 |
+
# difference relies in the fact that mixOmics implementation does not
|
764 |
+
# exactly implement the Wold algorithm since it does not normalize
|
765 |
+
# y_weights to one.
|
766 |
+
|
767 |
+
def __init__(
|
768 |
+
self,
|
769 |
+
n_components=2,
|
770 |
+
*,
|
771 |
+
scale=True,
|
772 |
+
algorithm="nipals",
|
773 |
+
max_iter=500,
|
774 |
+
tol=1e-06,
|
775 |
+
copy=True,
|
776 |
+
):
|
777 |
+
super().__init__(
|
778 |
+
n_components=n_components,
|
779 |
+
scale=scale,
|
780 |
+
deflation_mode="canonical",
|
781 |
+
mode="A",
|
782 |
+
algorithm=algorithm,
|
783 |
+
max_iter=max_iter,
|
784 |
+
tol=tol,
|
785 |
+
copy=copy,
|
786 |
+
)
|
787 |
+
|
788 |
+
|
789 |
+
class CCA(_PLS):
|
790 |
+
"""Canonical Correlation Analysis, also known as "Mode B" PLS.
|
791 |
+
|
792 |
+
For a comparison between other cross decomposition algorithms, see
|
793 |
+
:ref:`sphx_glr_auto_examples_cross_decomposition_plot_compare_cross_decomposition.py`.
|
794 |
+
|
795 |
+
Read more in the :ref:`User Guide <cross_decomposition>`.
|
796 |
+
|
797 |
+
Parameters
|
798 |
+
----------
|
799 |
+
n_components : int, default=2
|
800 |
+
Number of components to keep. Should be in `[1, min(n_samples,
|
801 |
+
n_features, n_targets)]`.
|
802 |
+
|
803 |
+
scale : bool, default=True
|
804 |
+
Whether to scale `X` and `Y`.
|
805 |
+
|
806 |
+
max_iter : int, default=500
|
807 |
+
The maximum number of iterations of the power method.
|
808 |
+
|
809 |
+
tol : float, default=1e-06
|
810 |
+
The tolerance used as convergence criteria in the power method: the
|
811 |
+
algorithm stops whenever the squared norm of `u_i - u_{i-1}` is less
|
812 |
+
than `tol`, where `u` corresponds to the left singular vector.
|
813 |
+
|
814 |
+
copy : bool, default=True
|
815 |
+
Whether to copy `X` and `Y` in fit before applying centering, and
|
816 |
+
potentially scaling. If False, these operations will be done inplace,
|
817 |
+
modifying both arrays.
|
818 |
+
|
819 |
+
Attributes
|
820 |
+
----------
|
821 |
+
x_weights_ : ndarray of shape (n_features, n_components)
|
822 |
+
The left singular vectors of the cross-covariance matrices of each
|
823 |
+
iteration.
|
824 |
+
|
825 |
+
y_weights_ : ndarray of shape (n_targets, n_components)
|
826 |
+
The right singular vectors of the cross-covariance matrices of each
|
827 |
+
iteration.
|
828 |
+
|
829 |
+
x_loadings_ : ndarray of shape (n_features, n_components)
|
830 |
+
The loadings of `X`.
|
831 |
+
|
832 |
+
y_loadings_ : ndarray of shape (n_targets, n_components)
|
833 |
+
The loadings of `Y`.
|
834 |
+
|
835 |
+
x_rotations_ : ndarray of shape (n_features, n_components)
|
836 |
+
The projection matrix used to transform `X`.
|
837 |
+
|
838 |
+
y_rotations_ : ndarray of shape (n_targets, n_components)
|
839 |
+
The projection matrix used to transform `Y`.
|
840 |
+
|
841 |
+
coef_ : ndarray of shape (n_targets, n_features)
|
842 |
+
The coefficients of the linear model such that `Y` is approximated as
|
843 |
+
`Y = X @ coef_.T + intercept_`.
|
844 |
+
|
845 |
+
intercept_ : ndarray of shape (n_targets,)
|
846 |
+
The intercepts of the linear model such that `Y` is approximated as
|
847 |
+
`Y = X @ coef_.T + intercept_`.
|
848 |
+
|
849 |
+
.. versionadded:: 1.1
|
850 |
+
|
851 |
+
n_iter_ : list of shape (n_components,)
|
852 |
+
Number of iterations of the power method, for each
|
853 |
+
component.
|
854 |
+
|
855 |
+
n_features_in_ : int
|
856 |
+
Number of features seen during :term:`fit`.
|
857 |
+
|
858 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
859 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
860 |
+
has feature names that are all strings.
|
861 |
+
|
862 |
+
.. versionadded:: 1.0
|
863 |
+
|
864 |
+
See Also
|
865 |
+
--------
|
866 |
+
PLSCanonical : Partial Least Squares transformer and regressor.
|
867 |
+
PLSSVD : Partial Least Square SVD.
|
868 |
+
|
869 |
+
Examples
|
870 |
+
--------
|
871 |
+
>>> from sklearn.cross_decomposition import CCA
|
872 |
+
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]]
|
873 |
+
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
|
874 |
+
>>> cca = CCA(n_components=1)
|
875 |
+
>>> cca.fit(X, Y)
|
876 |
+
CCA(n_components=1)
|
877 |
+
>>> X_c, Y_c = cca.transform(X, Y)
|
878 |
+
"""
|
879 |
+
|
880 |
+
_parameter_constraints: dict = {**_PLS._parameter_constraints}
|
881 |
+
for param in ("deflation_mode", "mode", "algorithm"):
|
882 |
+
_parameter_constraints.pop(param)
|
883 |
+
|
884 |
+
def __init__(
|
885 |
+
self, n_components=2, *, scale=True, max_iter=500, tol=1e-06, copy=True
|
886 |
+
):
|
887 |
+
super().__init__(
|
888 |
+
n_components=n_components,
|
889 |
+
scale=scale,
|
890 |
+
deflation_mode="canonical",
|
891 |
+
mode="B",
|
892 |
+
algorithm="nipals",
|
893 |
+
max_iter=max_iter,
|
894 |
+
tol=tol,
|
895 |
+
copy=copy,
|
896 |
+
)
|
897 |
+
|
898 |
+
|
899 |
+
class PLSSVD(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
900 |
+
"""Partial Least Square SVD.
|
901 |
+
|
902 |
+
This transformer simply performs a SVD on the cross-covariance matrix
|
903 |
+
`X'Y`. It is able to project both the training data `X` and the targets
|
904 |
+
`Y`. The training data `X` is projected on the left singular vectors, while
|
905 |
+
the targets are projected on the right singular vectors.
|
906 |
+
|
907 |
+
Read more in the :ref:`User Guide <cross_decomposition>`.
|
908 |
+
|
909 |
+
.. versionadded:: 0.8
|
910 |
+
|
911 |
+
Parameters
|
912 |
+
----------
|
913 |
+
n_components : int, default=2
|
914 |
+
The number of components to keep. Should be in `[1,
|
915 |
+
min(n_samples, n_features, n_targets)]`.
|
916 |
+
|
917 |
+
scale : bool, default=True
|
918 |
+
Whether to scale `X` and `Y`.
|
919 |
+
|
920 |
+
copy : bool, default=True
|
921 |
+
Whether to copy `X` and `Y` in fit before applying centering, and
|
922 |
+
potentially scaling. If `False`, these operations will be done inplace,
|
923 |
+
modifying both arrays.
|
924 |
+
|
925 |
+
Attributes
|
926 |
+
----------
|
927 |
+
x_weights_ : ndarray of shape (n_features, n_components)
|
928 |
+
The left singular vectors of the SVD of the cross-covariance matrix.
|
929 |
+
Used to project `X` in :meth:`transform`.
|
930 |
+
|
931 |
+
y_weights_ : ndarray of (n_targets, n_components)
|
932 |
+
The right singular vectors of the SVD of the cross-covariance matrix.
|
933 |
+
Used to project `X` in :meth:`transform`.
|
934 |
+
|
935 |
+
n_features_in_ : int
|
936 |
+
Number of features seen during :term:`fit`.
|
937 |
+
|
938 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
939 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
940 |
+
has feature names that are all strings.
|
941 |
+
|
942 |
+
.. versionadded:: 1.0
|
943 |
+
|
944 |
+
See Also
|
945 |
+
--------
|
946 |
+
PLSCanonical : Partial Least Squares transformer and regressor.
|
947 |
+
CCA : Canonical Correlation Analysis.
|
948 |
+
|
949 |
+
Examples
|
950 |
+
--------
|
951 |
+
>>> import numpy as np
|
952 |
+
>>> from sklearn.cross_decomposition import PLSSVD
|
953 |
+
>>> X = np.array([[0., 0., 1.],
|
954 |
+
... [1., 0., 0.],
|
955 |
+
... [2., 2., 2.],
|
956 |
+
... [2., 5., 4.]])
|
957 |
+
>>> Y = np.array([[0.1, -0.2],
|
958 |
+
... [0.9, 1.1],
|
959 |
+
... [6.2, 5.9],
|
960 |
+
... [11.9, 12.3]])
|
961 |
+
>>> pls = PLSSVD(n_components=2).fit(X, Y)
|
962 |
+
>>> X_c, Y_c = pls.transform(X, Y)
|
963 |
+
>>> X_c.shape, Y_c.shape
|
964 |
+
((4, 2), (4, 2))
|
965 |
+
"""
|
966 |
+
|
967 |
+
_parameter_constraints: dict = {
|
968 |
+
"n_components": [Interval(Integral, 1, None, closed="left")],
|
969 |
+
"scale": ["boolean"],
|
970 |
+
"copy": ["boolean"],
|
971 |
+
}
|
972 |
+
|
973 |
+
def __init__(self, n_components=2, *, scale=True, copy=True):
|
974 |
+
self.n_components = n_components
|
975 |
+
self.scale = scale
|
976 |
+
self.copy = copy
|
977 |
+
|
978 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
979 |
+
def fit(self, X, Y):
|
980 |
+
"""Fit model to data.
|
981 |
+
|
982 |
+
Parameters
|
983 |
+
----------
|
984 |
+
X : array-like of shape (n_samples, n_features)
|
985 |
+
Training samples.
|
986 |
+
|
987 |
+
Y : array-like of shape (n_samples,) or (n_samples, n_targets)
|
988 |
+
Targets.
|
989 |
+
|
990 |
+
Returns
|
991 |
+
-------
|
992 |
+
self : object
|
993 |
+
Fitted estimator.
|
994 |
+
"""
|
995 |
+
check_consistent_length(X, Y)
|
996 |
+
X = self._validate_data(
|
997 |
+
X, dtype=np.float64, copy=self.copy, ensure_min_samples=2
|
998 |
+
)
|
999 |
+
Y = check_array(
|
1000 |
+
Y, input_name="Y", dtype=np.float64, copy=self.copy, ensure_2d=False
|
1001 |
+
)
|
1002 |
+
if Y.ndim == 1:
|
1003 |
+
Y = Y.reshape(-1, 1)
|
1004 |
+
|
1005 |
+
# we'll compute the SVD of the cross-covariance matrix = X.T.dot(Y)
|
1006 |
+
# This matrix rank is at most min(n_samples, n_features, n_targets) so
|
1007 |
+
# n_components cannot be bigger than that.
|
1008 |
+
n_components = self.n_components
|
1009 |
+
rank_upper_bound = min(X.shape[0], X.shape[1], Y.shape[1])
|
1010 |
+
if n_components > rank_upper_bound:
|
1011 |
+
raise ValueError(
|
1012 |
+
f"`n_components` upper bound is {rank_upper_bound}. "
|
1013 |
+
f"Got {n_components} instead. Reduce `n_components`."
|
1014 |
+
)
|
1015 |
+
|
1016 |
+
X, Y, self._x_mean, self._y_mean, self._x_std, self._y_std = _center_scale_xy(
|
1017 |
+
X, Y, self.scale
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
# Compute SVD of cross-covariance matrix
|
1021 |
+
C = np.dot(X.T, Y)
|
1022 |
+
U, s, Vt = svd(C, full_matrices=False)
|
1023 |
+
U = U[:, :n_components]
|
1024 |
+
Vt = Vt[:n_components]
|
1025 |
+
U, Vt = svd_flip(U, Vt)
|
1026 |
+
V = Vt.T
|
1027 |
+
|
1028 |
+
self.x_weights_ = U
|
1029 |
+
self.y_weights_ = V
|
1030 |
+
self._n_features_out = self.x_weights_.shape[1]
|
1031 |
+
return self
|
1032 |
+
|
1033 |
+
def transform(self, X, Y=None):
|
1034 |
+
"""
|
1035 |
+
Apply the dimensionality reduction.
|
1036 |
+
|
1037 |
+
Parameters
|
1038 |
+
----------
|
1039 |
+
X : array-like of shape (n_samples, n_features)
|
1040 |
+
Samples to be transformed.
|
1041 |
+
|
1042 |
+
Y : array-like of shape (n_samples,) or (n_samples, n_targets), \
|
1043 |
+
default=None
|
1044 |
+
Targets.
|
1045 |
+
|
1046 |
+
Returns
|
1047 |
+
-------
|
1048 |
+
x_scores : array-like or tuple of array-like
|
1049 |
+
The transformed data `X_transformed` if `Y is not None`,
|
1050 |
+
`(X_transformed, Y_transformed)` otherwise.
|
1051 |
+
"""
|
1052 |
+
check_is_fitted(self)
|
1053 |
+
X = self._validate_data(X, dtype=np.float64, reset=False)
|
1054 |
+
Xr = (X - self._x_mean) / self._x_std
|
1055 |
+
x_scores = np.dot(Xr, self.x_weights_)
|
1056 |
+
if Y is not None:
|
1057 |
+
Y = check_array(Y, input_name="Y", ensure_2d=False, dtype=np.float64)
|
1058 |
+
if Y.ndim == 1:
|
1059 |
+
Y = Y.reshape(-1, 1)
|
1060 |
+
Yr = (Y - self._y_mean) / self._y_std
|
1061 |
+
y_scores = np.dot(Yr, self.y_weights_)
|
1062 |
+
return x_scores, y_scores
|
1063 |
+
return x_scores
|
1064 |
+
|
1065 |
+
def fit_transform(self, X, y=None):
|
1066 |
+
"""Learn and apply the dimensionality reduction.
|
1067 |
+
|
1068 |
+
Parameters
|
1069 |
+
----------
|
1070 |
+
X : array-like of shape (n_samples, n_features)
|
1071 |
+
Training samples.
|
1072 |
+
|
1073 |
+
y : array-like of shape (n_samples,) or (n_samples, n_targets), \
|
1074 |
+
default=None
|
1075 |
+
Targets.
|
1076 |
+
|
1077 |
+
Returns
|
1078 |
+
-------
|
1079 |
+
out : array-like or tuple of array-like
|
1080 |
+
The transformed data `X_transformed` if `Y is not None`,
|
1081 |
+
`(X_transformed, Y_transformed)` otherwise.
|
1082 |
+
"""
|
1083 |
+
return self.fit(X, y).transform(X, y)
|
venv/lib/python3.10/site-packages/sklearn/cross_decomposition/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/cross_decomposition/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (201 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/cross_decomposition/tests/__pycache__/test_pls.cpython-310.pyc
ADDED
Binary file (16.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/cross_decomposition/tests/test_pls.py
ADDED
@@ -0,0 +1,646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
from numpy.testing import assert_allclose, assert_array_almost_equal, assert_array_equal
|
6 |
+
|
7 |
+
from sklearn.cross_decomposition import CCA, PLSSVD, PLSCanonical, PLSRegression
|
8 |
+
from sklearn.cross_decomposition._pls import (
|
9 |
+
_center_scale_xy,
|
10 |
+
_get_first_singular_vectors_power_method,
|
11 |
+
_get_first_singular_vectors_svd,
|
12 |
+
_svd_flip_1d,
|
13 |
+
)
|
14 |
+
from sklearn.datasets import load_linnerud, make_regression
|
15 |
+
from sklearn.ensemble import VotingRegressor
|
16 |
+
from sklearn.exceptions import ConvergenceWarning
|
17 |
+
from sklearn.linear_model import LinearRegression
|
18 |
+
from sklearn.utils import check_random_state
|
19 |
+
from sklearn.utils.extmath import svd_flip
|
20 |
+
|
21 |
+
|
22 |
+
def assert_matrix_orthogonal(M):
|
23 |
+
K = np.dot(M.T, M)
|
24 |
+
assert_array_almost_equal(K, np.diag(np.diag(K)))
|
25 |
+
|
26 |
+
|
27 |
+
def test_pls_canonical_basics():
|
28 |
+
# Basic checks for PLSCanonical
|
29 |
+
d = load_linnerud()
|
30 |
+
X = d.data
|
31 |
+
Y = d.target
|
32 |
+
|
33 |
+
pls = PLSCanonical(n_components=X.shape[1])
|
34 |
+
pls.fit(X, Y)
|
35 |
+
|
36 |
+
assert_matrix_orthogonal(pls.x_weights_)
|
37 |
+
assert_matrix_orthogonal(pls.y_weights_)
|
38 |
+
assert_matrix_orthogonal(pls._x_scores)
|
39 |
+
assert_matrix_orthogonal(pls._y_scores)
|
40 |
+
|
41 |
+
# Check X = TP' and Y = UQ'
|
42 |
+
T = pls._x_scores
|
43 |
+
P = pls.x_loadings_
|
44 |
+
U = pls._y_scores
|
45 |
+
Q = pls.y_loadings_
|
46 |
+
# Need to scale first
|
47 |
+
Xc, Yc, x_mean, y_mean, x_std, y_std = _center_scale_xy(
|
48 |
+
X.copy(), Y.copy(), scale=True
|
49 |
+
)
|
50 |
+
assert_array_almost_equal(Xc, np.dot(T, P.T))
|
51 |
+
assert_array_almost_equal(Yc, np.dot(U, Q.T))
|
52 |
+
|
53 |
+
# Check that rotations on training data lead to scores
|
54 |
+
Xt = pls.transform(X)
|
55 |
+
assert_array_almost_equal(Xt, pls._x_scores)
|
56 |
+
Xt, Yt = pls.transform(X, Y)
|
57 |
+
assert_array_almost_equal(Xt, pls._x_scores)
|
58 |
+
assert_array_almost_equal(Yt, pls._y_scores)
|
59 |
+
|
60 |
+
# Check that inverse_transform works
|
61 |
+
X_back = pls.inverse_transform(Xt)
|
62 |
+
assert_array_almost_equal(X_back, X)
|
63 |
+
_, Y_back = pls.inverse_transform(Xt, Yt)
|
64 |
+
assert_array_almost_equal(Y_back, Y)
|
65 |
+
|
66 |
+
|
67 |
+
def test_sanity_check_pls_regression():
|
68 |
+
# Sanity check for PLSRegression
|
69 |
+
# The results were checked against the R-packages plspm, misOmics and pls
|
70 |
+
|
71 |
+
d = load_linnerud()
|
72 |
+
X = d.data
|
73 |
+
Y = d.target
|
74 |
+
|
75 |
+
pls = PLSRegression(n_components=X.shape[1])
|
76 |
+
X_trans, _ = pls.fit_transform(X, Y)
|
77 |
+
|
78 |
+
# FIXME: one would expect y_trans == pls.y_scores_ but this is not
|
79 |
+
# the case.
|
80 |
+
# xref: https://github.com/scikit-learn/scikit-learn/issues/22420
|
81 |
+
assert_allclose(X_trans, pls.x_scores_)
|
82 |
+
|
83 |
+
expected_x_weights = np.array(
|
84 |
+
[
|
85 |
+
[-0.61330704, -0.00443647, 0.78983213],
|
86 |
+
[-0.74697144, -0.32172099, -0.58183269],
|
87 |
+
[-0.25668686, 0.94682413, -0.19399983],
|
88 |
+
]
|
89 |
+
)
|
90 |
+
|
91 |
+
expected_x_loadings = np.array(
|
92 |
+
[
|
93 |
+
[-0.61470416, -0.24574278, 0.78983213],
|
94 |
+
[-0.65625755, -0.14396183, -0.58183269],
|
95 |
+
[-0.51733059, 1.00609417, -0.19399983],
|
96 |
+
]
|
97 |
+
)
|
98 |
+
|
99 |
+
expected_y_weights = np.array(
|
100 |
+
[
|
101 |
+
[+0.32456184, 0.29892183, 0.20316322],
|
102 |
+
[+0.42439636, 0.61970543, 0.19320542],
|
103 |
+
[-0.13143144, -0.26348971, -0.17092916],
|
104 |
+
]
|
105 |
+
)
|
106 |
+
|
107 |
+
expected_y_loadings = np.array(
|
108 |
+
[
|
109 |
+
[+0.32456184, 0.29892183, 0.20316322],
|
110 |
+
[+0.42439636, 0.61970543, 0.19320542],
|
111 |
+
[-0.13143144, -0.26348971, -0.17092916],
|
112 |
+
]
|
113 |
+
)
|
114 |
+
|
115 |
+
assert_array_almost_equal(np.abs(pls.x_loadings_), np.abs(expected_x_loadings))
|
116 |
+
assert_array_almost_equal(np.abs(pls.x_weights_), np.abs(expected_x_weights))
|
117 |
+
assert_array_almost_equal(np.abs(pls.y_loadings_), np.abs(expected_y_loadings))
|
118 |
+
assert_array_almost_equal(np.abs(pls.y_weights_), np.abs(expected_y_weights))
|
119 |
+
|
120 |
+
# The R / Python difference in the signs should be consistent across
|
121 |
+
# loadings, weights, etc.
|
122 |
+
x_loadings_sign_flip = np.sign(pls.x_loadings_ / expected_x_loadings)
|
123 |
+
x_weights_sign_flip = np.sign(pls.x_weights_ / expected_x_weights)
|
124 |
+
y_weights_sign_flip = np.sign(pls.y_weights_ / expected_y_weights)
|
125 |
+
y_loadings_sign_flip = np.sign(pls.y_loadings_ / expected_y_loadings)
|
126 |
+
assert_array_almost_equal(x_loadings_sign_flip, x_weights_sign_flip)
|
127 |
+
assert_array_almost_equal(y_loadings_sign_flip, y_weights_sign_flip)
|
128 |
+
|
129 |
+
|
130 |
+
def test_sanity_check_pls_regression_constant_column_Y():
|
131 |
+
# Check behavior when the first column of Y is constant
|
132 |
+
# The results are checked against a modified version of plsreg2
|
133 |
+
# from the R-package plsdepot
|
134 |
+
d = load_linnerud()
|
135 |
+
X = d.data
|
136 |
+
Y = d.target
|
137 |
+
Y[:, 0] = 1
|
138 |
+
pls = PLSRegression(n_components=X.shape[1])
|
139 |
+
pls.fit(X, Y)
|
140 |
+
|
141 |
+
expected_x_weights = np.array(
|
142 |
+
[
|
143 |
+
[-0.6273573, 0.007081799, 0.7786994],
|
144 |
+
[-0.7493417, -0.277612681, -0.6011807],
|
145 |
+
[-0.2119194, 0.960666981, -0.1794690],
|
146 |
+
]
|
147 |
+
)
|
148 |
+
|
149 |
+
expected_x_loadings = np.array(
|
150 |
+
[
|
151 |
+
[-0.6273512, -0.22464538, 0.7786994],
|
152 |
+
[-0.6643156, -0.09871193, -0.6011807],
|
153 |
+
[-0.5125877, 1.01407380, -0.1794690],
|
154 |
+
]
|
155 |
+
)
|
156 |
+
|
157 |
+
expected_y_loadings = np.array(
|
158 |
+
[
|
159 |
+
[0.0000000, 0.0000000, 0.0000000],
|
160 |
+
[0.4357300, 0.5828479, 0.2174802],
|
161 |
+
[-0.1353739, -0.2486423, -0.1810386],
|
162 |
+
]
|
163 |
+
)
|
164 |
+
|
165 |
+
assert_array_almost_equal(np.abs(expected_x_weights), np.abs(pls.x_weights_))
|
166 |
+
assert_array_almost_equal(np.abs(expected_x_loadings), np.abs(pls.x_loadings_))
|
167 |
+
# For the PLSRegression with default parameters, y_loadings == y_weights
|
168 |
+
assert_array_almost_equal(np.abs(pls.y_loadings_), np.abs(expected_y_loadings))
|
169 |
+
assert_array_almost_equal(np.abs(pls.y_weights_), np.abs(expected_y_loadings))
|
170 |
+
|
171 |
+
x_loadings_sign_flip = np.sign(expected_x_loadings / pls.x_loadings_)
|
172 |
+
x_weights_sign_flip = np.sign(expected_x_weights / pls.x_weights_)
|
173 |
+
# we ignore the first full-zeros row for y
|
174 |
+
y_loadings_sign_flip = np.sign(expected_y_loadings[1:] / pls.y_loadings_[1:])
|
175 |
+
|
176 |
+
assert_array_equal(x_loadings_sign_flip, x_weights_sign_flip)
|
177 |
+
assert_array_equal(x_loadings_sign_flip[1:], y_loadings_sign_flip)
|
178 |
+
|
179 |
+
|
180 |
+
def test_sanity_check_pls_canonical():
|
181 |
+
# Sanity check for PLSCanonical
|
182 |
+
# The results were checked against the R-package plspm
|
183 |
+
|
184 |
+
d = load_linnerud()
|
185 |
+
X = d.data
|
186 |
+
Y = d.target
|
187 |
+
|
188 |
+
pls = PLSCanonical(n_components=X.shape[1])
|
189 |
+
pls.fit(X, Y)
|
190 |
+
|
191 |
+
expected_x_weights = np.array(
|
192 |
+
[
|
193 |
+
[-0.61330704, 0.25616119, -0.74715187],
|
194 |
+
[-0.74697144, 0.11930791, 0.65406368],
|
195 |
+
[-0.25668686, -0.95924297, -0.11817271],
|
196 |
+
]
|
197 |
+
)
|
198 |
+
|
199 |
+
expected_x_rotations = np.array(
|
200 |
+
[
|
201 |
+
[-0.61330704, 0.41591889, -0.62297525],
|
202 |
+
[-0.74697144, 0.31388326, 0.77368233],
|
203 |
+
[-0.25668686, -0.89237972, -0.24121788],
|
204 |
+
]
|
205 |
+
)
|
206 |
+
|
207 |
+
expected_y_weights = np.array(
|
208 |
+
[
|
209 |
+
[+0.58989127, 0.7890047, 0.1717553],
|
210 |
+
[+0.77134053, -0.61351791, 0.16920272],
|
211 |
+
[-0.23887670, -0.03267062, 0.97050016],
|
212 |
+
]
|
213 |
+
)
|
214 |
+
|
215 |
+
expected_y_rotations = np.array(
|
216 |
+
[
|
217 |
+
[+0.58989127, 0.7168115, 0.30665872],
|
218 |
+
[+0.77134053, -0.70791757, 0.19786539],
|
219 |
+
[-0.23887670, -0.00343595, 0.94162826],
|
220 |
+
]
|
221 |
+
)
|
222 |
+
|
223 |
+
assert_array_almost_equal(np.abs(pls.x_rotations_), np.abs(expected_x_rotations))
|
224 |
+
assert_array_almost_equal(np.abs(pls.x_weights_), np.abs(expected_x_weights))
|
225 |
+
assert_array_almost_equal(np.abs(pls.y_rotations_), np.abs(expected_y_rotations))
|
226 |
+
assert_array_almost_equal(np.abs(pls.y_weights_), np.abs(expected_y_weights))
|
227 |
+
|
228 |
+
x_rotations_sign_flip = np.sign(pls.x_rotations_ / expected_x_rotations)
|
229 |
+
x_weights_sign_flip = np.sign(pls.x_weights_ / expected_x_weights)
|
230 |
+
y_rotations_sign_flip = np.sign(pls.y_rotations_ / expected_y_rotations)
|
231 |
+
y_weights_sign_flip = np.sign(pls.y_weights_ / expected_y_weights)
|
232 |
+
assert_array_almost_equal(x_rotations_sign_flip, x_weights_sign_flip)
|
233 |
+
assert_array_almost_equal(y_rotations_sign_flip, y_weights_sign_flip)
|
234 |
+
|
235 |
+
assert_matrix_orthogonal(pls.x_weights_)
|
236 |
+
assert_matrix_orthogonal(pls.y_weights_)
|
237 |
+
|
238 |
+
assert_matrix_orthogonal(pls._x_scores)
|
239 |
+
assert_matrix_orthogonal(pls._y_scores)
|
240 |
+
|
241 |
+
|
242 |
+
def test_sanity_check_pls_canonical_random():
|
243 |
+
# Sanity check for PLSCanonical on random data
|
244 |
+
# The results were checked against the R-package plspm
|
245 |
+
n = 500
|
246 |
+
p_noise = 10
|
247 |
+
q_noise = 5
|
248 |
+
# 2 latents vars:
|
249 |
+
rng = check_random_state(11)
|
250 |
+
l1 = rng.normal(size=n)
|
251 |
+
l2 = rng.normal(size=n)
|
252 |
+
latents = np.array([l1, l1, l2, l2]).T
|
253 |
+
X = latents + rng.normal(size=4 * n).reshape((n, 4))
|
254 |
+
Y = latents + rng.normal(size=4 * n).reshape((n, 4))
|
255 |
+
X = np.concatenate((X, rng.normal(size=p_noise * n).reshape(n, p_noise)), axis=1)
|
256 |
+
Y = np.concatenate((Y, rng.normal(size=q_noise * n).reshape(n, q_noise)), axis=1)
|
257 |
+
|
258 |
+
pls = PLSCanonical(n_components=3)
|
259 |
+
pls.fit(X, Y)
|
260 |
+
|
261 |
+
expected_x_weights = np.array(
|
262 |
+
[
|
263 |
+
[0.65803719, 0.19197924, 0.21769083],
|
264 |
+
[0.7009113, 0.13303969, -0.15376699],
|
265 |
+
[0.13528197, -0.68636408, 0.13856546],
|
266 |
+
[0.16854574, -0.66788088, -0.12485304],
|
267 |
+
[-0.03232333, -0.04189855, 0.40690153],
|
268 |
+
[0.1148816, -0.09643158, 0.1613305],
|
269 |
+
[0.04792138, -0.02384992, 0.17175319],
|
270 |
+
[-0.06781, -0.01666137, -0.18556747],
|
271 |
+
[-0.00266945, -0.00160224, 0.11893098],
|
272 |
+
[-0.00849528, -0.07706095, 0.1570547],
|
273 |
+
[-0.00949471, -0.02964127, 0.34657036],
|
274 |
+
[-0.03572177, 0.0945091, 0.3414855],
|
275 |
+
[0.05584937, -0.02028961, -0.57682568],
|
276 |
+
[0.05744254, -0.01482333, -0.17431274],
|
277 |
+
]
|
278 |
+
)
|
279 |
+
|
280 |
+
expected_x_loadings = np.array(
|
281 |
+
[
|
282 |
+
[0.65649254, 0.1847647, 0.15270699],
|
283 |
+
[0.67554234, 0.15237508, -0.09182247],
|
284 |
+
[0.19219925, -0.67750975, 0.08673128],
|
285 |
+
[0.2133631, -0.67034809, -0.08835483],
|
286 |
+
[-0.03178912, -0.06668336, 0.43395268],
|
287 |
+
[0.15684588, -0.13350241, 0.20578984],
|
288 |
+
[0.03337736, -0.03807306, 0.09871553],
|
289 |
+
[-0.06199844, 0.01559854, -0.1881785],
|
290 |
+
[0.00406146, -0.00587025, 0.16413253],
|
291 |
+
[-0.00374239, -0.05848466, 0.19140336],
|
292 |
+
[0.00139214, -0.01033161, 0.32239136],
|
293 |
+
[-0.05292828, 0.0953533, 0.31916881],
|
294 |
+
[0.04031924, -0.01961045, -0.65174036],
|
295 |
+
[0.06172484, -0.06597366, -0.1244497],
|
296 |
+
]
|
297 |
+
)
|
298 |
+
|
299 |
+
expected_y_weights = np.array(
|
300 |
+
[
|
301 |
+
[0.66101097, 0.18672553, 0.22826092],
|
302 |
+
[0.69347861, 0.18463471, -0.23995597],
|
303 |
+
[0.14462724, -0.66504085, 0.17082434],
|
304 |
+
[0.22247955, -0.6932605, -0.09832993],
|
305 |
+
[0.07035859, 0.00714283, 0.67810124],
|
306 |
+
[0.07765351, -0.0105204, -0.44108074],
|
307 |
+
[-0.00917056, 0.04322147, 0.10062478],
|
308 |
+
[-0.01909512, 0.06182718, 0.28830475],
|
309 |
+
[0.01756709, 0.04797666, 0.32225745],
|
310 |
+
]
|
311 |
+
)
|
312 |
+
|
313 |
+
expected_y_loadings = np.array(
|
314 |
+
[
|
315 |
+
[0.68568625, 0.1674376, 0.0969508],
|
316 |
+
[0.68782064, 0.20375837, -0.1164448],
|
317 |
+
[0.11712173, -0.68046903, 0.12001505],
|
318 |
+
[0.17860457, -0.6798319, -0.05089681],
|
319 |
+
[0.06265739, -0.0277703, 0.74729584],
|
320 |
+
[0.0914178, 0.00403751, -0.5135078],
|
321 |
+
[-0.02196918, -0.01377169, 0.09564505],
|
322 |
+
[-0.03288952, 0.09039729, 0.31858973],
|
323 |
+
[0.04287624, 0.05254676, 0.27836841],
|
324 |
+
]
|
325 |
+
)
|
326 |
+
|
327 |
+
assert_array_almost_equal(np.abs(pls.x_loadings_), np.abs(expected_x_loadings))
|
328 |
+
assert_array_almost_equal(np.abs(pls.x_weights_), np.abs(expected_x_weights))
|
329 |
+
assert_array_almost_equal(np.abs(pls.y_loadings_), np.abs(expected_y_loadings))
|
330 |
+
assert_array_almost_equal(np.abs(pls.y_weights_), np.abs(expected_y_weights))
|
331 |
+
|
332 |
+
x_loadings_sign_flip = np.sign(pls.x_loadings_ / expected_x_loadings)
|
333 |
+
x_weights_sign_flip = np.sign(pls.x_weights_ / expected_x_weights)
|
334 |
+
y_weights_sign_flip = np.sign(pls.y_weights_ / expected_y_weights)
|
335 |
+
y_loadings_sign_flip = np.sign(pls.y_loadings_ / expected_y_loadings)
|
336 |
+
assert_array_almost_equal(x_loadings_sign_flip, x_weights_sign_flip)
|
337 |
+
assert_array_almost_equal(y_loadings_sign_flip, y_weights_sign_flip)
|
338 |
+
|
339 |
+
assert_matrix_orthogonal(pls.x_weights_)
|
340 |
+
assert_matrix_orthogonal(pls.y_weights_)
|
341 |
+
|
342 |
+
assert_matrix_orthogonal(pls._x_scores)
|
343 |
+
assert_matrix_orthogonal(pls._y_scores)
|
344 |
+
|
345 |
+
|
346 |
+
def test_convergence_fail():
|
347 |
+
# Make sure ConvergenceWarning is raised if max_iter is too small
|
348 |
+
d = load_linnerud()
|
349 |
+
X = d.data
|
350 |
+
Y = d.target
|
351 |
+
pls_nipals = PLSCanonical(n_components=X.shape[1], max_iter=2)
|
352 |
+
with pytest.warns(ConvergenceWarning):
|
353 |
+
pls_nipals.fit(X, Y)
|
354 |
+
|
355 |
+
|
356 |
+
@pytest.mark.parametrize("Est", (PLSSVD, PLSRegression, PLSCanonical))
|
357 |
+
def test_attibutes_shapes(Est):
|
358 |
+
# Make sure attributes are of the correct shape depending on n_components
|
359 |
+
d = load_linnerud()
|
360 |
+
X = d.data
|
361 |
+
Y = d.target
|
362 |
+
n_components = 2
|
363 |
+
pls = Est(n_components=n_components)
|
364 |
+
pls.fit(X, Y)
|
365 |
+
assert all(
|
366 |
+
attr.shape[1] == n_components for attr in (pls.x_weights_, pls.y_weights_)
|
367 |
+
)
|
368 |
+
|
369 |
+
|
370 |
+
@pytest.mark.parametrize("Est", (PLSRegression, PLSCanonical, CCA))
|
371 |
+
def test_univariate_equivalence(Est):
|
372 |
+
# Ensure 2D Y with 1 column is equivalent to 1D Y
|
373 |
+
d = load_linnerud()
|
374 |
+
X = d.data
|
375 |
+
Y = d.target
|
376 |
+
|
377 |
+
est = Est(n_components=1)
|
378 |
+
one_d_coeff = est.fit(X, Y[:, 0]).coef_
|
379 |
+
two_d_coeff = est.fit(X, Y[:, :1]).coef_
|
380 |
+
|
381 |
+
assert one_d_coeff.shape == two_d_coeff.shape
|
382 |
+
assert_array_almost_equal(one_d_coeff, two_d_coeff)
|
383 |
+
|
384 |
+
|
385 |
+
@pytest.mark.parametrize("Est", (PLSRegression, PLSCanonical, CCA, PLSSVD))
|
386 |
+
def test_copy(Est):
|
387 |
+
# check that the "copy" keyword works
|
388 |
+
d = load_linnerud()
|
389 |
+
X = d.data
|
390 |
+
Y = d.target
|
391 |
+
X_orig = X.copy()
|
392 |
+
|
393 |
+
# copy=True won't modify inplace
|
394 |
+
pls = Est(copy=True).fit(X, Y)
|
395 |
+
assert_array_equal(X, X_orig)
|
396 |
+
|
397 |
+
# copy=False will modify inplace
|
398 |
+
with pytest.raises(AssertionError):
|
399 |
+
Est(copy=False).fit(X, Y)
|
400 |
+
assert_array_almost_equal(X, X_orig)
|
401 |
+
|
402 |
+
if Est is PLSSVD:
|
403 |
+
return # PLSSVD does not support copy param in predict or transform
|
404 |
+
|
405 |
+
X_orig = X.copy()
|
406 |
+
with pytest.raises(AssertionError):
|
407 |
+
pls.transform(X, Y, copy=False),
|
408 |
+
assert_array_almost_equal(X, X_orig)
|
409 |
+
|
410 |
+
X_orig = X.copy()
|
411 |
+
with pytest.raises(AssertionError):
|
412 |
+
pls.predict(X, copy=False),
|
413 |
+
assert_array_almost_equal(X, X_orig)
|
414 |
+
|
415 |
+
# Make sure copy=True gives same transform and predictions as predict=False
|
416 |
+
assert_array_almost_equal(
|
417 |
+
pls.transform(X, Y, copy=True), pls.transform(X.copy(), Y.copy(), copy=False)
|
418 |
+
)
|
419 |
+
assert_array_almost_equal(
|
420 |
+
pls.predict(X, copy=True), pls.predict(X.copy(), copy=False)
|
421 |
+
)
|
422 |
+
|
423 |
+
|
424 |
+
def _generate_test_scale_and_stability_datasets():
|
425 |
+
"""Generate dataset for test_scale_and_stability"""
|
426 |
+
# dataset for non-regression 7818
|
427 |
+
rng = np.random.RandomState(0)
|
428 |
+
n_samples = 1000
|
429 |
+
n_targets = 5
|
430 |
+
n_features = 10
|
431 |
+
Q = rng.randn(n_targets, n_features)
|
432 |
+
Y = rng.randn(n_samples, n_targets)
|
433 |
+
X = np.dot(Y, Q) + 2 * rng.randn(n_samples, n_features) + 1
|
434 |
+
X *= 1000
|
435 |
+
yield X, Y
|
436 |
+
|
437 |
+
# Data set where one of the features is constraint
|
438 |
+
X, Y = load_linnerud(return_X_y=True)
|
439 |
+
# causes X[:, -1].std() to be zero
|
440 |
+
X[:, -1] = 1.0
|
441 |
+
yield X, Y
|
442 |
+
|
443 |
+
X = np.array([[0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [3.0, 5.0, 4.0]])
|
444 |
+
Y = np.array([[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]])
|
445 |
+
yield X, Y
|
446 |
+
|
447 |
+
# Seeds that provide a non-regression test for #18746, where CCA fails
|
448 |
+
seeds = [530, 741]
|
449 |
+
for seed in seeds:
|
450 |
+
rng = np.random.RandomState(seed)
|
451 |
+
X = rng.randn(4, 3)
|
452 |
+
Y = rng.randn(4, 2)
|
453 |
+
yield X, Y
|
454 |
+
|
455 |
+
|
456 |
+
@pytest.mark.parametrize("Est", (CCA, PLSCanonical, PLSRegression, PLSSVD))
|
457 |
+
@pytest.mark.parametrize("X, Y", _generate_test_scale_and_stability_datasets())
|
458 |
+
def test_scale_and_stability(Est, X, Y):
|
459 |
+
"""scale=True is equivalent to scale=False on centered/scaled data
|
460 |
+
This allows to check numerical stability over platforms as well"""
|
461 |
+
|
462 |
+
X_s, Y_s, *_ = _center_scale_xy(X, Y)
|
463 |
+
|
464 |
+
X_score, Y_score = Est(scale=True).fit_transform(X, Y)
|
465 |
+
X_s_score, Y_s_score = Est(scale=False).fit_transform(X_s, Y_s)
|
466 |
+
|
467 |
+
assert_allclose(X_s_score, X_score, atol=1e-4)
|
468 |
+
assert_allclose(Y_s_score, Y_score, atol=1e-4)
|
469 |
+
|
470 |
+
|
471 |
+
@pytest.mark.parametrize("Estimator", (PLSSVD, PLSRegression, PLSCanonical, CCA))
|
472 |
+
def test_n_components_upper_bounds(Estimator):
|
473 |
+
"""Check the validation of `n_components` upper bounds for `PLS` regressors."""
|
474 |
+
rng = np.random.RandomState(0)
|
475 |
+
X = rng.randn(10, 5)
|
476 |
+
Y = rng.randn(10, 3)
|
477 |
+
est = Estimator(n_components=10)
|
478 |
+
err_msg = "`n_components` upper bound is .*. Got 10 instead. Reduce `n_components`."
|
479 |
+
with pytest.raises(ValueError, match=err_msg):
|
480 |
+
est.fit(X, Y)
|
481 |
+
|
482 |
+
|
483 |
+
@pytest.mark.parametrize("n_samples, n_features", [(100, 10), (100, 200)])
|
484 |
+
def test_singular_value_helpers(n_samples, n_features, global_random_seed):
|
485 |
+
# Make sure SVD and power method give approximately the same results
|
486 |
+
X, Y = make_regression(
|
487 |
+
n_samples, n_features, n_targets=5, random_state=global_random_seed
|
488 |
+
)
|
489 |
+
u1, v1, _ = _get_first_singular_vectors_power_method(X, Y, norm_y_weights=True)
|
490 |
+
u2, v2 = _get_first_singular_vectors_svd(X, Y)
|
491 |
+
|
492 |
+
_svd_flip_1d(u1, v1)
|
493 |
+
_svd_flip_1d(u2, v2)
|
494 |
+
|
495 |
+
rtol = 1e-3
|
496 |
+
# Setting atol because some coordinates are very close to zero
|
497 |
+
assert_allclose(u1, u2, atol=u2.max() * rtol)
|
498 |
+
assert_allclose(v1, v2, atol=v2.max() * rtol)
|
499 |
+
|
500 |
+
|
501 |
+
def test_one_component_equivalence(global_random_seed):
|
502 |
+
# PLSSVD, PLSRegression and PLSCanonical should all be equivalent when
|
503 |
+
# n_components is 1
|
504 |
+
X, Y = make_regression(100, 10, n_targets=5, random_state=global_random_seed)
|
505 |
+
svd = PLSSVD(n_components=1).fit(X, Y).transform(X)
|
506 |
+
reg = PLSRegression(n_components=1).fit(X, Y).transform(X)
|
507 |
+
canonical = PLSCanonical(n_components=1).fit(X, Y).transform(X)
|
508 |
+
|
509 |
+
rtol = 1e-3
|
510 |
+
# Setting atol because some entries are very close to zero
|
511 |
+
assert_allclose(svd, reg, atol=reg.max() * rtol)
|
512 |
+
assert_allclose(svd, canonical, atol=canonical.max() * rtol)
|
513 |
+
|
514 |
+
|
515 |
+
def test_svd_flip_1d():
|
516 |
+
# Make sure svd_flip_1d is equivalent to svd_flip
|
517 |
+
u = np.array([1, -4, 2])
|
518 |
+
v = np.array([1, 2, 3])
|
519 |
+
|
520 |
+
u_expected, v_expected = svd_flip(u.reshape(-1, 1), v.reshape(1, -1))
|
521 |
+
_svd_flip_1d(u, v) # inplace
|
522 |
+
|
523 |
+
assert_allclose(u, u_expected.ravel())
|
524 |
+
assert_allclose(u, [-1, 4, -2])
|
525 |
+
|
526 |
+
assert_allclose(v, v_expected.ravel())
|
527 |
+
assert_allclose(v, [-1, -2, -3])
|
528 |
+
|
529 |
+
|
530 |
+
def test_loadings_converges(global_random_seed):
|
531 |
+
"""Test that CCA converges. Non-regression test for #19549."""
|
532 |
+
X, y = make_regression(
|
533 |
+
n_samples=200, n_features=20, n_targets=20, random_state=global_random_seed
|
534 |
+
)
|
535 |
+
|
536 |
+
cca = CCA(n_components=10, max_iter=500)
|
537 |
+
|
538 |
+
with warnings.catch_warnings():
|
539 |
+
warnings.simplefilter("error", ConvergenceWarning)
|
540 |
+
|
541 |
+
cca.fit(X, y)
|
542 |
+
|
543 |
+
# Loadings converges to reasonable values
|
544 |
+
assert np.all(np.abs(cca.x_loadings_) < 1)
|
545 |
+
|
546 |
+
|
547 |
+
def test_pls_constant_y():
|
548 |
+
"""Checks warning when y is constant. Non-regression test for #19831"""
|
549 |
+
rng = np.random.RandomState(42)
|
550 |
+
x = rng.rand(100, 3)
|
551 |
+
y = np.zeros(100)
|
552 |
+
|
553 |
+
pls = PLSRegression()
|
554 |
+
|
555 |
+
msg = "Y residual is constant at iteration"
|
556 |
+
with pytest.warns(UserWarning, match=msg):
|
557 |
+
pls.fit(x, y)
|
558 |
+
|
559 |
+
assert_allclose(pls.x_rotations_, 0)
|
560 |
+
|
561 |
+
|
562 |
+
@pytest.mark.parametrize("PLSEstimator", [PLSRegression, PLSCanonical, CCA])
|
563 |
+
def test_pls_coef_shape(PLSEstimator):
|
564 |
+
"""Check the shape of `coef_` attribute.
|
565 |
+
|
566 |
+
Non-regression test for:
|
567 |
+
https://github.com/scikit-learn/scikit-learn/issues/12410
|
568 |
+
"""
|
569 |
+
d = load_linnerud()
|
570 |
+
X = d.data
|
571 |
+
Y = d.target
|
572 |
+
|
573 |
+
pls = PLSEstimator(copy=True).fit(X, Y)
|
574 |
+
|
575 |
+
n_targets, n_features = Y.shape[1], X.shape[1]
|
576 |
+
assert pls.coef_.shape == (n_targets, n_features)
|
577 |
+
|
578 |
+
|
579 |
+
@pytest.mark.parametrize("scale", [True, False])
|
580 |
+
@pytest.mark.parametrize("PLSEstimator", [PLSRegression, PLSCanonical, CCA])
|
581 |
+
def test_pls_prediction(PLSEstimator, scale):
|
582 |
+
"""Check the behaviour of the prediction function."""
|
583 |
+
d = load_linnerud()
|
584 |
+
X = d.data
|
585 |
+
Y = d.target
|
586 |
+
|
587 |
+
pls = PLSEstimator(copy=True, scale=scale).fit(X, Y)
|
588 |
+
Y_pred = pls.predict(X, copy=True)
|
589 |
+
|
590 |
+
y_mean = Y.mean(axis=0)
|
591 |
+
X_trans = X - X.mean(axis=0)
|
592 |
+
if scale:
|
593 |
+
X_trans /= X.std(axis=0, ddof=1)
|
594 |
+
|
595 |
+
assert_allclose(pls.intercept_, y_mean)
|
596 |
+
assert_allclose(Y_pred, X_trans @ pls.coef_.T + pls.intercept_)
|
597 |
+
|
598 |
+
|
599 |
+
@pytest.mark.parametrize("Klass", [CCA, PLSSVD, PLSRegression, PLSCanonical])
|
600 |
+
def test_pls_feature_names_out(Klass):
|
601 |
+
"""Check `get_feature_names_out` cross_decomposition module."""
|
602 |
+
X, Y = load_linnerud(return_X_y=True)
|
603 |
+
|
604 |
+
est = Klass().fit(X, Y)
|
605 |
+
names_out = est.get_feature_names_out()
|
606 |
+
|
607 |
+
class_name_lower = Klass.__name__.lower()
|
608 |
+
expected_names_out = np.array(
|
609 |
+
[f"{class_name_lower}{i}" for i in range(est.x_weights_.shape[1])],
|
610 |
+
dtype=object,
|
611 |
+
)
|
612 |
+
assert_array_equal(names_out, expected_names_out)
|
613 |
+
|
614 |
+
|
615 |
+
@pytest.mark.parametrize("Klass", [CCA, PLSSVD, PLSRegression, PLSCanonical])
|
616 |
+
def test_pls_set_output(Klass):
|
617 |
+
"""Check `set_output` in cross_decomposition module."""
|
618 |
+
pd = pytest.importorskip("pandas")
|
619 |
+
X, Y = load_linnerud(return_X_y=True, as_frame=True)
|
620 |
+
|
621 |
+
est = Klass().set_output(transform="pandas").fit(X, Y)
|
622 |
+
X_trans, y_trans = est.transform(X, Y)
|
623 |
+
assert isinstance(y_trans, np.ndarray)
|
624 |
+
assert isinstance(X_trans, pd.DataFrame)
|
625 |
+
assert_array_equal(X_trans.columns, est.get_feature_names_out())
|
626 |
+
|
627 |
+
|
628 |
+
def test_pls_regression_fit_1d_y():
|
629 |
+
"""Check that when fitting with 1d `y`, prediction should also be 1d.
|
630 |
+
|
631 |
+
Non-regression test for Issue #26549.
|
632 |
+
"""
|
633 |
+
X = np.array([[1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36]])
|
634 |
+
y = np.array([2, 6, 12, 20, 30, 42])
|
635 |
+
expected = y.copy()
|
636 |
+
|
637 |
+
plsr = PLSRegression().fit(X, y)
|
638 |
+
y_pred = plsr.predict(X)
|
639 |
+
assert y_pred.shape == expected.shape
|
640 |
+
|
641 |
+
# Check that it works in VotingRegressor
|
642 |
+
lr = LinearRegression().fit(X, y)
|
643 |
+
vr = VotingRegressor([("lr", lr), ("plsr", plsr)])
|
644 |
+
y_pred = vr.fit(X, y).predict(X)
|
645 |
+
assert y_pred.shape == expected.shape
|
646 |
+
assert_allclose(y_pred, expected)
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.75 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_arff_parser.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_base.cpython-310.pyc
ADDED
Binary file (42 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_california_housing.cpython-310.pyc
ADDED
Binary file (5.94 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_covtype.cpython-310.pyc
ADDED
Binary file (6.59 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_kddcup99.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_lfw.cpython-310.pyc
ADDED
Binary file (15.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_olivetti_faces.cpython-310.pyc
ADDED
Binary file (4.86 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_openml.cpython-310.pyc
ADDED
Binary file (33 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_rcv1.cpython-310.pyc
ADDED
Binary file (8.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_samples_generator.cpython-310.pyc
ADDED
Binary file (60.7 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_species_distributions.cpython-310.pyc
ADDED
Binary file (8.55 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_svmlight_format_io.cpython-310.pyc
ADDED
Binary file (17.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/__pycache__/_twenty_newsgroups.cpython-310.pyc
ADDED
Binary file (16.4 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/data/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/datasets/data/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (189 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/data/boston_house_prices.csv
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
506,13,,,,,,,,,,,,
|
2 |
+
"CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS","RAD","TAX","PTRATIO","B","LSTAT","MEDV"
|
3 |
+
0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,396.9,4.98,24
|
4 |
+
0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17.8,396.9,9.14,21.6
|
5 |
+
0.02729,0,7.07,0,0.469,7.185,61.1,4.9671,2,242,17.8,392.83,4.03,34.7
|
6 |
+
0.03237,0,2.18,0,0.458,6.998,45.8,6.0622,3,222,18.7,394.63,2.94,33.4
|
7 |
+
0.06905,0,2.18,0,0.458,7.147,54.2,6.0622,3,222,18.7,396.9,5.33,36.2
|
8 |
+
0.02985,0,2.18,0,0.458,6.43,58.7,6.0622,3,222,18.7,394.12,5.21,28.7
|
9 |
+
0.08829,12.5,7.87,0,0.524,6.012,66.6,5.5605,5,311,15.2,395.6,12.43,22.9
|
10 |
+
0.14455,12.5,7.87,0,0.524,6.172,96.1,5.9505,5,311,15.2,396.9,19.15,27.1
|
11 |
+
0.21124,12.5,7.87,0,0.524,5.631,100,6.0821,5,311,15.2,386.63,29.93,16.5
|
12 |
+
0.17004,12.5,7.87,0,0.524,6.004,85.9,6.5921,5,311,15.2,386.71,17.1,18.9
|
13 |
+
0.22489,12.5,7.87,0,0.524,6.377,94.3,6.3467,5,311,15.2,392.52,20.45,15
|
14 |
+
0.11747,12.5,7.87,0,0.524,6.009,82.9,6.2267,5,311,15.2,396.9,13.27,18.9
|
15 |
+
0.09378,12.5,7.87,0,0.524,5.889,39,5.4509,5,311,15.2,390.5,15.71,21.7
|
16 |
+
0.62976,0,8.14,0,0.538,5.949,61.8,4.7075,4,307,21,396.9,8.26,20.4
|
17 |
+
0.63796,0,8.14,0,0.538,6.096,84.5,4.4619,4,307,21,380.02,10.26,18.2
|
18 |
+
0.62739,0,8.14,0,0.538,5.834,56.5,4.4986,4,307,21,395.62,8.47,19.9
|
19 |
+
1.05393,0,8.14,0,0.538,5.935,29.3,4.4986,4,307,21,386.85,6.58,23.1
|
20 |
+
0.7842,0,8.14,0,0.538,5.99,81.7,4.2579,4,307,21,386.75,14.67,17.5
|
21 |
+
0.80271,0,8.14,0,0.538,5.456,36.6,3.7965,4,307,21,288.99,11.69,20.2
|
22 |
+
0.7258,0,8.14,0,0.538,5.727,69.5,3.7965,4,307,21,390.95,11.28,18.2
|
23 |
+
1.25179,0,8.14,0,0.538,5.57,98.1,3.7979,4,307,21,376.57,21.02,13.6
|
24 |
+
0.85204,0,8.14,0,0.538,5.965,89.2,4.0123,4,307,21,392.53,13.83,19.6
|
25 |
+
1.23247,0,8.14,0,0.538,6.142,91.7,3.9769,4,307,21,396.9,18.72,15.2
|
26 |
+
0.98843,0,8.14,0,0.538,5.813,100,4.0952,4,307,21,394.54,19.88,14.5
|
27 |
+
0.75026,0,8.14,0,0.538,5.924,94.1,4.3996,4,307,21,394.33,16.3,15.6
|
28 |
+
0.84054,0,8.14,0,0.538,5.599,85.7,4.4546,4,307,21,303.42,16.51,13.9
|
29 |
+
0.67191,0,8.14,0,0.538,5.813,90.3,4.682,4,307,21,376.88,14.81,16.6
|
30 |
+
0.95577,0,8.14,0,0.538,6.047,88.8,4.4534,4,307,21,306.38,17.28,14.8
|
31 |
+
0.77299,0,8.14,0,0.538,6.495,94.4,4.4547,4,307,21,387.94,12.8,18.4
|
32 |
+
1.00245,0,8.14,0,0.538,6.674,87.3,4.239,4,307,21,380.23,11.98,21
|
33 |
+
1.13081,0,8.14,0,0.538,5.713,94.1,4.233,4,307,21,360.17,22.6,12.7
|
34 |
+
1.35472,0,8.14,0,0.538,6.072,100,4.175,4,307,21,376.73,13.04,14.5
|
35 |
+
1.38799,0,8.14,0,0.538,5.95,82,3.99,4,307,21,232.6,27.71,13.2
|
36 |
+
1.15172,0,8.14,0,0.538,5.701,95,3.7872,4,307,21,358.77,18.35,13.1
|
37 |
+
1.61282,0,8.14,0,0.538,6.096,96.9,3.7598,4,307,21,248.31,20.34,13.5
|
38 |
+
0.06417,0,5.96,0,0.499,5.933,68.2,3.3603,5,279,19.2,396.9,9.68,18.9
|
39 |
+
0.09744,0,5.96,0,0.499,5.841,61.4,3.3779,5,279,19.2,377.56,11.41,20
|
40 |
+
0.08014,0,5.96,0,0.499,5.85,41.5,3.9342,5,279,19.2,396.9,8.77,21
|
41 |
+
0.17505,0,5.96,0,0.499,5.966,30.2,3.8473,5,279,19.2,393.43,10.13,24.7
|
42 |
+
0.02763,75,2.95,0,0.428,6.595,21.8,5.4011,3,252,18.3,395.63,4.32,30.8
|
43 |
+
0.03359,75,2.95,0,0.428,7.024,15.8,5.4011,3,252,18.3,395.62,1.98,34.9
|
44 |
+
0.12744,0,6.91,0,0.448,6.77,2.9,5.7209,3,233,17.9,385.41,4.84,26.6
|
45 |
+
0.1415,0,6.91,0,0.448,6.169,6.6,5.7209,3,233,17.9,383.37,5.81,25.3
|
46 |
+
0.15936,0,6.91,0,0.448,6.211,6.5,5.7209,3,233,17.9,394.46,7.44,24.7
|
47 |
+
0.12269,0,6.91,0,0.448,6.069,40,5.7209,3,233,17.9,389.39,9.55,21.2
|
48 |
+
0.17142,0,6.91,0,0.448,5.682,33.8,5.1004,3,233,17.9,396.9,10.21,19.3
|
49 |
+
0.18836,0,6.91,0,0.448,5.786,33.3,5.1004,3,233,17.9,396.9,14.15,20
|
50 |
+
0.22927,0,6.91,0,0.448,6.03,85.5,5.6894,3,233,17.9,392.74,18.8,16.6
|
51 |
+
0.25387,0,6.91,0,0.448,5.399,95.3,5.87,3,233,17.9,396.9,30.81,14.4
|
52 |
+
0.21977,0,6.91,0,0.448,5.602,62,6.0877,3,233,17.9,396.9,16.2,19.4
|
53 |
+
0.08873,21,5.64,0,0.439,5.963,45.7,6.8147,4,243,16.8,395.56,13.45,19.7
|
54 |
+
0.04337,21,5.64,0,0.439,6.115,63,6.8147,4,243,16.8,393.97,9.43,20.5
|
55 |
+
0.0536,21,5.64,0,0.439,6.511,21.1,6.8147,4,243,16.8,396.9,5.28,25
|
56 |
+
0.04981,21,5.64,0,0.439,5.998,21.4,6.8147,4,243,16.8,396.9,8.43,23.4
|
57 |
+
0.0136,75,4,0,0.41,5.888,47.6,7.3197,3,469,21.1,396.9,14.8,18.9
|
58 |
+
0.01311,90,1.22,0,0.403,7.249,21.9,8.6966,5,226,17.9,395.93,4.81,35.4
|
59 |
+
0.02055,85,0.74,0,0.41,6.383,35.7,9.1876,2,313,17.3,396.9,5.77,24.7
|
60 |
+
0.01432,100,1.32,0,0.411,6.816,40.5,8.3248,5,256,15.1,392.9,3.95,31.6
|
61 |
+
0.15445,25,5.13,0,0.453,6.145,29.2,7.8148,8,284,19.7,390.68,6.86,23.3
|
62 |
+
0.10328,25,5.13,0,0.453,5.927,47.2,6.932,8,284,19.7,396.9,9.22,19.6
|
63 |
+
0.14932,25,5.13,0,0.453,5.741,66.2,7.2254,8,284,19.7,395.11,13.15,18.7
|
64 |
+
0.17171,25,5.13,0,0.453,5.966,93.4,6.8185,8,284,19.7,378.08,14.44,16
|
65 |
+
0.11027,25,5.13,0,0.453,6.456,67.8,7.2255,8,284,19.7,396.9,6.73,22.2
|
66 |
+
0.1265,25,5.13,0,0.453,6.762,43.4,7.9809,8,284,19.7,395.58,9.5,25
|
67 |
+
0.01951,17.5,1.38,0,0.4161,7.104,59.5,9.2229,3,216,18.6,393.24,8.05,33
|
68 |
+
0.03584,80,3.37,0,0.398,6.29,17.8,6.6115,4,337,16.1,396.9,4.67,23.5
|
69 |
+
0.04379,80,3.37,0,0.398,5.787,31.1,6.6115,4,337,16.1,396.9,10.24,19.4
|
70 |
+
0.05789,12.5,6.07,0,0.409,5.878,21.4,6.498,4,345,18.9,396.21,8.1,22
|
71 |
+
0.13554,12.5,6.07,0,0.409,5.594,36.8,6.498,4,345,18.9,396.9,13.09,17.4
|
72 |
+
0.12816,12.5,6.07,0,0.409,5.885,33,6.498,4,345,18.9,396.9,8.79,20.9
|
73 |
+
0.08826,0,10.81,0,0.413,6.417,6.6,5.2873,4,305,19.2,383.73,6.72,24.2
|
74 |
+
0.15876,0,10.81,0,0.413,5.961,17.5,5.2873,4,305,19.2,376.94,9.88,21.7
|
75 |
+
0.09164,0,10.81,0,0.413,6.065,7.8,5.2873,4,305,19.2,390.91,5.52,22.8
|
76 |
+
0.19539,0,10.81,0,0.413,6.245,6.2,5.2873,4,305,19.2,377.17,7.54,23.4
|
77 |
+
0.07896,0,12.83,0,0.437,6.273,6,4.2515,5,398,18.7,394.92,6.78,24.1
|
78 |
+
0.09512,0,12.83,0,0.437,6.286,45,4.5026,5,398,18.7,383.23,8.94,21.4
|
79 |
+
0.10153,0,12.83,0,0.437,6.279,74.5,4.0522,5,398,18.7,373.66,11.97,20
|
80 |
+
0.08707,0,12.83,0,0.437,6.14,45.8,4.0905,5,398,18.7,386.96,10.27,20.8
|
81 |
+
0.05646,0,12.83,0,0.437,6.232,53.7,5.0141,5,398,18.7,386.4,12.34,21.2
|
82 |
+
0.08387,0,12.83,0,0.437,5.874,36.6,4.5026,5,398,18.7,396.06,9.1,20.3
|
83 |
+
0.04113,25,4.86,0,0.426,6.727,33.5,5.4007,4,281,19,396.9,5.29,28
|
84 |
+
0.04462,25,4.86,0,0.426,6.619,70.4,5.4007,4,281,19,395.63,7.22,23.9
|
85 |
+
0.03659,25,4.86,0,0.426,6.302,32.2,5.4007,4,281,19,396.9,6.72,24.8
|
86 |
+
0.03551,25,4.86,0,0.426,6.167,46.7,5.4007,4,281,19,390.64,7.51,22.9
|
87 |
+
0.05059,0,4.49,0,0.449,6.389,48,4.7794,3,247,18.5,396.9,9.62,23.9
|
88 |
+
0.05735,0,4.49,0,0.449,6.63,56.1,4.4377,3,247,18.5,392.3,6.53,26.6
|
89 |
+
0.05188,0,4.49,0,0.449,6.015,45.1,4.4272,3,247,18.5,395.99,12.86,22.5
|
90 |
+
0.07151,0,4.49,0,0.449,6.121,56.8,3.7476,3,247,18.5,395.15,8.44,22.2
|
91 |
+
0.0566,0,3.41,0,0.489,7.007,86.3,3.4217,2,270,17.8,396.9,5.5,23.6
|
92 |
+
0.05302,0,3.41,0,0.489,7.079,63.1,3.4145,2,270,17.8,396.06,5.7,28.7
|
93 |
+
0.04684,0,3.41,0,0.489,6.417,66.1,3.0923,2,270,17.8,392.18,8.81,22.6
|
94 |
+
0.03932,0,3.41,0,0.489,6.405,73.9,3.0921,2,270,17.8,393.55,8.2,22
|
95 |
+
0.04203,28,15.04,0,0.464,6.442,53.6,3.6659,4,270,18.2,395.01,8.16,22.9
|
96 |
+
0.02875,28,15.04,0,0.464,6.211,28.9,3.6659,4,270,18.2,396.33,6.21,25
|
97 |
+
0.04294,28,15.04,0,0.464,6.249,77.3,3.615,4,270,18.2,396.9,10.59,20.6
|
98 |
+
0.12204,0,2.89,0,0.445,6.625,57.8,3.4952,2,276,18,357.98,6.65,28.4
|
99 |
+
0.11504,0,2.89,0,0.445,6.163,69.6,3.4952,2,276,18,391.83,11.34,21.4
|
100 |
+
0.12083,0,2.89,0,0.445,8.069,76,3.4952,2,276,18,396.9,4.21,38.7
|
101 |
+
0.08187,0,2.89,0,0.445,7.82,36.9,3.4952,2,276,18,393.53,3.57,43.8
|
102 |
+
0.0686,0,2.89,0,0.445,7.416,62.5,3.4952,2,276,18,396.9,6.19,33.2
|
103 |
+
0.14866,0,8.56,0,0.52,6.727,79.9,2.7778,5,384,20.9,394.76,9.42,27.5
|
104 |
+
0.11432,0,8.56,0,0.52,6.781,71.3,2.8561,5,384,20.9,395.58,7.67,26.5
|
105 |
+
0.22876,0,8.56,0,0.52,6.405,85.4,2.7147,5,384,20.9,70.8,10.63,18.6
|
106 |
+
0.21161,0,8.56,0,0.52,6.137,87.4,2.7147,5,384,20.9,394.47,13.44,19.3
|
107 |
+
0.1396,0,8.56,0,0.52,6.167,90,2.421,5,384,20.9,392.69,12.33,20.1
|
108 |
+
0.13262,0,8.56,0,0.52,5.851,96.7,2.1069,5,384,20.9,394.05,16.47,19.5
|
109 |
+
0.1712,0,8.56,0,0.52,5.836,91.9,2.211,5,384,20.9,395.67,18.66,19.5
|
110 |
+
0.13117,0,8.56,0,0.52,6.127,85.2,2.1224,5,384,20.9,387.69,14.09,20.4
|
111 |
+
0.12802,0,8.56,0,0.52,6.474,97.1,2.4329,5,384,20.9,395.24,12.27,19.8
|
112 |
+
0.26363,0,8.56,0,0.52,6.229,91.2,2.5451,5,384,20.9,391.23,15.55,19.4
|
113 |
+
0.10793,0,8.56,0,0.52,6.195,54.4,2.7778,5,384,20.9,393.49,13,21.7
|
114 |
+
0.10084,0,10.01,0,0.547,6.715,81.6,2.6775,6,432,17.8,395.59,10.16,22.8
|
115 |
+
0.12329,0,10.01,0,0.547,5.913,92.9,2.3534,6,432,17.8,394.95,16.21,18.8
|
116 |
+
0.22212,0,10.01,0,0.547,6.092,95.4,2.548,6,432,17.8,396.9,17.09,18.7
|
117 |
+
0.14231,0,10.01,0,0.547,6.254,84.2,2.2565,6,432,17.8,388.74,10.45,18.5
|
118 |
+
0.17134,0,10.01,0,0.547,5.928,88.2,2.4631,6,432,17.8,344.91,15.76,18.3
|
119 |
+
0.13158,0,10.01,0,0.547,6.176,72.5,2.7301,6,432,17.8,393.3,12.04,21.2
|
120 |
+
0.15098,0,10.01,0,0.547,6.021,82.6,2.7474,6,432,17.8,394.51,10.3,19.2
|
121 |
+
0.13058,0,10.01,0,0.547,5.872,73.1,2.4775,6,432,17.8,338.63,15.37,20.4
|
122 |
+
0.14476,0,10.01,0,0.547,5.731,65.2,2.7592,6,432,17.8,391.5,13.61,19.3
|
123 |
+
0.06899,0,25.65,0,0.581,5.87,69.7,2.2577,2,188,19.1,389.15,14.37,22
|
124 |
+
0.07165,0,25.65,0,0.581,6.004,84.1,2.1974,2,188,19.1,377.67,14.27,20.3
|
125 |
+
0.09299,0,25.65,0,0.581,5.961,92.9,2.0869,2,188,19.1,378.09,17.93,20.5
|
126 |
+
0.15038,0,25.65,0,0.581,5.856,97,1.9444,2,188,19.1,370.31,25.41,17.3
|
127 |
+
0.09849,0,25.65,0,0.581,5.879,95.8,2.0063,2,188,19.1,379.38,17.58,18.8
|
128 |
+
0.16902,0,25.65,0,0.581,5.986,88.4,1.9929,2,188,19.1,385.02,14.81,21.4
|
129 |
+
0.38735,0,25.65,0,0.581,5.613,95.6,1.7572,2,188,19.1,359.29,27.26,15.7
|
130 |
+
0.25915,0,21.89,0,0.624,5.693,96,1.7883,4,437,21.2,392.11,17.19,16.2
|
131 |
+
0.32543,0,21.89,0,0.624,6.431,98.8,1.8125,4,437,21.2,396.9,15.39,18
|
132 |
+
0.88125,0,21.89,0,0.624,5.637,94.7,1.9799,4,437,21.2,396.9,18.34,14.3
|
133 |
+
0.34006,0,21.89,0,0.624,6.458,98.9,2.1185,4,437,21.2,395.04,12.6,19.2
|
134 |
+
1.19294,0,21.89,0,0.624,6.326,97.7,2.271,4,437,21.2,396.9,12.26,19.6
|
135 |
+
0.59005,0,21.89,0,0.624,6.372,97.9,2.3274,4,437,21.2,385.76,11.12,23
|
136 |
+
0.32982,0,21.89,0,0.624,5.822,95.4,2.4699,4,437,21.2,388.69,15.03,18.4
|
137 |
+
0.97617,0,21.89,0,0.624,5.757,98.4,2.346,4,437,21.2,262.76,17.31,15.6
|
138 |
+
0.55778,0,21.89,0,0.624,6.335,98.2,2.1107,4,437,21.2,394.67,16.96,18.1
|
139 |
+
0.32264,0,21.89,0,0.624,5.942,93.5,1.9669,4,437,21.2,378.25,16.9,17.4
|
140 |
+
0.35233,0,21.89,0,0.624,6.454,98.4,1.8498,4,437,21.2,394.08,14.59,17.1
|
141 |
+
0.2498,0,21.89,0,0.624,5.857,98.2,1.6686,4,437,21.2,392.04,21.32,13.3
|
142 |
+
0.54452,0,21.89,0,0.624,6.151,97.9,1.6687,4,437,21.2,396.9,18.46,17.8
|
143 |
+
0.2909,0,21.89,0,0.624,6.174,93.6,1.6119,4,437,21.2,388.08,24.16,14
|
144 |
+
1.62864,0,21.89,0,0.624,5.019,100,1.4394,4,437,21.2,396.9,34.41,14.4
|
145 |
+
3.32105,0,19.58,1,0.871,5.403,100,1.3216,5,403,14.7,396.9,26.82,13.4
|
146 |
+
4.0974,0,19.58,0,0.871,5.468,100,1.4118,5,403,14.7,396.9,26.42,15.6
|
147 |
+
2.77974,0,19.58,0,0.871,4.903,97.8,1.3459,5,403,14.7,396.9,29.29,11.8
|
148 |
+
2.37934,0,19.58,0,0.871,6.13,100,1.4191,5,403,14.7,172.91,27.8,13.8
|
149 |
+
2.15505,0,19.58,0,0.871,5.628,100,1.5166,5,403,14.7,169.27,16.65,15.6
|
150 |
+
2.36862,0,19.58,0,0.871,4.926,95.7,1.4608,5,403,14.7,391.71,29.53,14.6
|
151 |
+
2.33099,0,19.58,0,0.871,5.186,93.8,1.5296,5,403,14.7,356.99,28.32,17.8
|
152 |
+
2.73397,0,19.58,0,0.871,5.597,94.9,1.5257,5,403,14.7,351.85,21.45,15.4
|
153 |
+
1.6566,0,19.58,0,0.871,6.122,97.3,1.618,5,403,14.7,372.8,14.1,21.5
|
154 |
+
1.49632,0,19.58,0,0.871,5.404,100,1.5916,5,403,14.7,341.6,13.28,19.6
|
155 |
+
1.12658,0,19.58,1,0.871,5.012,88,1.6102,5,403,14.7,343.28,12.12,15.3
|
156 |
+
2.14918,0,19.58,0,0.871,5.709,98.5,1.6232,5,403,14.7,261.95,15.79,19.4
|
157 |
+
1.41385,0,19.58,1,0.871,6.129,96,1.7494,5,403,14.7,321.02,15.12,17
|
158 |
+
3.53501,0,19.58,1,0.871,6.152,82.6,1.7455,5,403,14.7,88.01,15.02,15.6
|
159 |
+
2.44668,0,19.58,0,0.871,5.272,94,1.7364,5,403,14.7,88.63,16.14,13.1
|
160 |
+
1.22358,0,19.58,0,0.605,6.943,97.4,1.8773,5,403,14.7,363.43,4.59,41.3
|
161 |
+
1.34284,0,19.58,0,0.605,6.066,100,1.7573,5,403,14.7,353.89,6.43,24.3
|
162 |
+
1.42502,0,19.58,0,0.871,6.51,100,1.7659,5,403,14.7,364.31,7.39,23.3
|
163 |
+
1.27346,0,19.58,1,0.605,6.25,92.6,1.7984,5,403,14.7,338.92,5.5,27
|
164 |
+
1.46336,0,19.58,0,0.605,7.489,90.8,1.9709,5,403,14.7,374.43,1.73,50
|
165 |
+
1.83377,0,19.58,1,0.605,7.802,98.2,2.0407,5,403,14.7,389.61,1.92,50
|
166 |
+
1.51902,0,19.58,1,0.605,8.375,93.9,2.162,5,403,14.7,388.45,3.32,50
|
167 |
+
2.24236,0,19.58,0,0.605,5.854,91.8,2.422,5,403,14.7,395.11,11.64,22.7
|
168 |
+
2.924,0,19.58,0,0.605,6.101,93,2.2834,5,403,14.7,240.16,9.81,25
|
169 |
+
2.01019,0,19.58,0,0.605,7.929,96.2,2.0459,5,403,14.7,369.3,3.7,50
|
170 |
+
1.80028,0,19.58,0,0.605,5.877,79.2,2.4259,5,403,14.7,227.61,12.14,23.8
|
171 |
+
2.3004,0,19.58,0,0.605,6.319,96.1,2.1,5,403,14.7,297.09,11.1,23.8
|
172 |
+
2.44953,0,19.58,0,0.605,6.402,95.2,2.2625,5,403,14.7,330.04,11.32,22.3
|
173 |
+
1.20742,0,19.58,0,0.605,5.875,94.6,2.4259,5,403,14.7,292.29,14.43,17.4
|
174 |
+
2.3139,0,19.58,0,0.605,5.88,97.3,2.3887,5,403,14.7,348.13,12.03,19.1
|
175 |
+
0.13914,0,4.05,0,0.51,5.572,88.5,2.5961,5,296,16.6,396.9,14.69,23.1
|
176 |
+
0.09178,0,4.05,0,0.51,6.416,84.1,2.6463,5,296,16.6,395.5,9.04,23.6
|
177 |
+
0.08447,0,4.05,0,0.51,5.859,68.7,2.7019,5,296,16.6,393.23,9.64,22.6
|
178 |
+
0.06664,0,4.05,0,0.51,6.546,33.1,3.1323,5,296,16.6,390.96,5.33,29.4
|
179 |
+
0.07022,0,4.05,0,0.51,6.02,47.2,3.5549,5,296,16.6,393.23,10.11,23.2
|
180 |
+
0.05425,0,4.05,0,0.51,6.315,73.4,3.3175,5,296,16.6,395.6,6.29,24.6
|
181 |
+
0.06642,0,4.05,0,0.51,6.86,74.4,2.9153,5,296,16.6,391.27,6.92,29.9
|
182 |
+
0.0578,0,2.46,0,0.488,6.98,58.4,2.829,3,193,17.8,396.9,5.04,37.2
|
183 |
+
0.06588,0,2.46,0,0.488,7.765,83.3,2.741,3,193,17.8,395.56,7.56,39.8
|
184 |
+
0.06888,0,2.46,0,0.488,6.144,62.2,2.5979,3,193,17.8,396.9,9.45,36.2
|
185 |
+
0.09103,0,2.46,0,0.488,7.155,92.2,2.7006,3,193,17.8,394.12,4.82,37.9
|
186 |
+
0.10008,0,2.46,0,0.488,6.563,95.6,2.847,3,193,17.8,396.9,5.68,32.5
|
187 |
+
0.08308,0,2.46,0,0.488,5.604,89.8,2.9879,3,193,17.8,391,13.98,26.4
|
188 |
+
0.06047,0,2.46,0,0.488,6.153,68.8,3.2797,3,193,17.8,387.11,13.15,29.6
|
189 |
+
0.05602,0,2.46,0,0.488,7.831,53.6,3.1992,3,193,17.8,392.63,4.45,50
|
190 |
+
0.07875,45,3.44,0,0.437,6.782,41.1,3.7886,5,398,15.2,393.87,6.68,32
|
191 |
+
0.12579,45,3.44,0,0.437,6.556,29.1,4.5667,5,398,15.2,382.84,4.56,29.8
|
192 |
+
0.0837,45,3.44,0,0.437,7.185,38.9,4.5667,5,398,15.2,396.9,5.39,34.9
|
193 |
+
0.09068,45,3.44,0,0.437,6.951,21.5,6.4798,5,398,15.2,377.68,5.1,37
|
194 |
+
0.06911,45,3.44,0,0.437,6.739,30.8,6.4798,5,398,15.2,389.71,4.69,30.5
|
195 |
+
0.08664,45,3.44,0,0.437,7.178,26.3,6.4798,5,398,15.2,390.49,2.87,36.4
|
196 |
+
0.02187,60,2.93,0,0.401,6.8,9.9,6.2196,1,265,15.6,393.37,5.03,31.1
|
197 |
+
0.01439,60,2.93,0,0.401,6.604,18.8,6.2196,1,265,15.6,376.7,4.38,29.1
|
198 |
+
0.01381,80,0.46,0,0.422,7.875,32,5.6484,4,255,14.4,394.23,2.97,50
|
199 |
+
0.04011,80,1.52,0,0.404,7.287,34.1,7.309,2,329,12.6,396.9,4.08,33.3
|
200 |
+
0.04666,80,1.52,0,0.404,7.107,36.6,7.309,2,329,12.6,354.31,8.61,30.3
|
201 |
+
0.03768,80,1.52,0,0.404,7.274,38.3,7.309,2,329,12.6,392.2,6.62,34.6
|
202 |
+
0.0315,95,1.47,0,0.403,6.975,15.3,7.6534,3,402,17,396.9,4.56,34.9
|
203 |
+
0.01778,95,1.47,0,0.403,7.135,13.9,7.6534,3,402,17,384.3,4.45,32.9
|
204 |
+
0.03445,82.5,2.03,0,0.415,6.162,38.4,6.27,2,348,14.7,393.77,7.43,24.1
|
205 |
+
0.02177,82.5,2.03,0,0.415,7.61,15.7,6.27,2,348,14.7,395.38,3.11,42.3
|
206 |
+
0.0351,95,2.68,0,0.4161,7.853,33.2,5.118,4,224,14.7,392.78,3.81,48.5
|
207 |
+
0.02009,95,2.68,0,0.4161,8.034,31.9,5.118,4,224,14.7,390.55,2.88,50
|
208 |
+
0.13642,0,10.59,0,0.489,5.891,22.3,3.9454,4,277,18.6,396.9,10.87,22.6
|
209 |
+
0.22969,0,10.59,0,0.489,6.326,52.5,4.3549,4,277,18.6,394.87,10.97,24.4
|
210 |
+
0.25199,0,10.59,0,0.489,5.783,72.7,4.3549,4,277,18.6,389.43,18.06,22.5
|
211 |
+
0.13587,0,10.59,1,0.489,6.064,59.1,4.2392,4,277,18.6,381.32,14.66,24.4
|
212 |
+
0.43571,0,10.59,1,0.489,5.344,100,3.875,4,277,18.6,396.9,23.09,20
|
213 |
+
0.17446,0,10.59,1,0.489,5.96,92.1,3.8771,4,277,18.6,393.25,17.27,21.7
|
214 |
+
0.37578,0,10.59,1,0.489,5.404,88.6,3.665,4,277,18.6,395.24,23.98,19.3
|
215 |
+
0.21719,0,10.59,1,0.489,5.807,53.8,3.6526,4,277,18.6,390.94,16.03,22.4
|
216 |
+
0.14052,0,10.59,0,0.489,6.375,32.3,3.9454,4,277,18.6,385.81,9.38,28.1
|
217 |
+
0.28955,0,10.59,0,0.489,5.412,9.8,3.5875,4,277,18.6,348.93,29.55,23.7
|
218 |
+
0.19802,0,10.59,0,0.489,6.182,42.4,3.9454,4,277,18.6,393.63,9.47,25
|
219 |
+
0.0456,0,13.89,1,0.55,5.888,56,3.1121,5,276,16.4,392.8,13.51,23.3
|
220 |
+
0.07013,0,13.89,0,0.55,6.642,85.1,3.4211,5,276,16.4,392.78,9.69,28.7
|
221 |
+
0.11069,0,13.89,1,0.55,5.951,93.8,2.8893,5,276,16.4,396.9,17.92,21.5
|
222 |
+
0.11425,0,13.89,1,0.55,6.373,92.4,3.3633,5,276,16.4,393.74,10.5,23
|
223 |
+
0.35809,0,6.2,1,0.507,6.951,88.5,2.8617,8,307,17.4,391.7,9.71,26.7
|
224 |
+
0.40771,0,6.2,1,0.507,6.164,91.3,3.048,8,307,17.4,395.24,21.46,21.7
|
225 |
+
0.62356,0,6.2,1,0.507,6.879,77.7,3.2721,8,307,17.4,390.39,9.93,27.5
|
226 |
+
0.6147,0,6.2,0,0.507,6.618,80.8,3.2721,8,307,17.4,396.9,7.6,30.1
|
227 |
+
0.31533,0,6.2,0,0.504,8.266,78.3,2.8944,8,307,17.4,385.05,4.14,44.8
|
228 |
+
0.52693,0,6.2,0,0.504,8.725,83,2.8944,8,307,17.4,382,4.63,50
|
229 |
+
0.38214,0,6.2,0,0.504,8.04,86.5,3.2157,8,307,17.4,387.38,3.13,37.6
|
230 |
+
0.41238,0,6.2,0,0.504,7.163,79.9,3.2157,8,307,17.4,372.08,6.36,31.6
|
231 |
+
0.29819,0,6.2,0,0.504,7.686,17,3.3751,8,307,17.4,377.51,3.92,46.7
|
232 |
+
0.44178,0,6.2,0,0.504,6.552,21.4,3.3751,8,307,17.4,380.34,3.76,31.5
|
233 |
+
0.537,0,6.2,0,0.504,5.981,68.1,3.6715,8,307,17.4,378.35,11.65,24.3
|
234 |
+
0.46296,0,6.2,0,0.504,7.412,76.9,3.6715,8,307,17.4,376.14,5.25,31.7
|
235 |
+
0.57529,0,6.2,0,0.507,8.337,73.3,3.8384,8,307,17.4,385.91,2.47,41.7
|
236 |
+
0.33147,0,6.2,0,0.507,8.247,70.4,3.6519,8,307,17.4,378.95,3.95,48.3
|
237 |
+
0.44791,0,6.2,1,0.507,6.726,66.5,3.6519,8,307,17.4,360.2,8.05,29
|
238 |
+
0.33045,0,6.2,0,0.507,6.086,61.5,3.6519,8,307,17.4,376.75,10.88,24
|
239 |
+
0.52058,0,6.2,1,0.507,6.631,76.5,4.148,8,307,17.4,388.45,9.54,25.1
|
240 |
+
0.51183,0,6.2,0,0.507,7.358,71.6,4.148,8,307,17.4,390.07,4.73,31.5
|
241 |
+
0.08244,30,4.93,0,0.428,6.481,18.5,6.1899,6,300,16.6,379.41,6.36,23.7
|
242 |
+
0.09252,30,4.93,0,0.428,6.606,42.2,6.1899,6,300,16.6,383.78,7.37,23.3
|
243 |
+
0.11329,30,4.93,0,0.428,6.897,54.3,6.3361,6,300,16.6,391.25,11.38,22
|
244 |
+
0.10612,30,4.93,0,0.428,6.095,65.1,6.3361,6,300,16.6,394.62,12.4,20.1
|
245 |
+
0.1029,30,4.93,0,0.428,6.358,52.9,7.0355,6,300,16.6,372.75,11.22,22.2
|
246 |
+
0.12757,30,4.93,0,0.428,6.393,7.8,7.0355,6,300,16.6,374.71,5.19,23.7
|
247 |
+
0.20608,22,5.86,0,0.431,5.593,76.5,7.9549,7,330,19.1,372.49,12.5,17.6
|
248 |
+
0.19133,22,5.86,0,0.431,5.605,70.2,7.9549,7,330,19.1,389.13,18.46,18.5
|
249 |
+
0.33983,22,5.86,0,0.431,6.108,34.9,8.0555,7,330,19.1,390.18,9.16,24.3
|
250 |
+
0.19657,22,5.86,0,0.431,6.226,79.2,8.0555,7,330,19.1,376.14,10.15,20.5
|
251 |
+
0.16439,22,5.86,0,0.431,6.433,49.1,7.8265,7,330,19.1,374.71,9.52,24.5
|
252 |
+
0.19073,22,5.86,0,0.431,6.718,17.5,7.8265,7,330,19.1,393.74,6.56,26.2
|
253 |
+
0.1403,22,5.86,0,0.431,6.487,13,7.3967,7,330,19.1,396.28,5.9,24.4
|
254 |
+
0.21409,22,5.86,0,0.431,6.438,8.9,7.3967,7,330,19.1,377.07,3.59,24.8
|
255 |
+
0.08221,22,5.86,0,0.431,6.957,6.8,8.9067,7,330,19.1,386.09,3.53,29.6
|
256 |
+
0.36894,22,5.86,0,0.431,8.259,8.4,8.9067,7,330,19.1,396.9,3.54,42.8
|
257 |
+
0.04819,80,3.64,0,0.392,6.108,32,9.2203,1,315,16.4,392.89,6.57,21.9
|
258 |
+
0.03548,80,3.64,0,0.392,5.876,19.1,9.2203,1,315,16.4,395.18,9.25,20.9
|
259 |
+
0.01538,90,3.75,0,0.394,7.454,34.2,6.3361,3,244,15.9,386.34,3.11,44
|
260 |
+
0.61154,20,3.97,0,0.647,8.704,86.9,1.801,5,264,13,389.7,5.12,50
|
261 |
+
0.66351,20,3.97,0,0.647,7.333,100,1.8946,5,264,13,383.29,7.79,36
|
262 |
+
0.65665,20,3.97,0,0.647,6.842,100,2.0107,5,264,13,391.93,6.9,30.1
|
263 |
+
0.54011,20,3.97,0,0.647,7.203,81.8,2.1121,5,264,13,392.8,9.59,33.8
|
264 |
+
0.53412,20,3.97,0,0.647,7.52,89.4,2.1398,5,264,13,388.37,7.26,43.1
|
265 |
+
0.52014,20,3.97,0,0.647,8.398,91.5,2.2885,5,264,13,386.86,5.91,48.8
|
266 |
+
0.82526,20,3.97,0,0.647,7.327,94.5,2.0788,5,264,13,393.42,11.25,31
|
267 |
+
0.55007,20,3.97,0,0.647,7.206,91.6,1.9301,5,264,13,387.89,8.1,36.5
|
268 |
+
0.76162,20,3.97,0,0.647,5.56,62.8,1.9865,5,264,13,392.4,10.45,22.8
|
269 |
+
0.7857,20,3.97,0,0.647,7.014,84.6,2.1329,5,264,13,384.07,14.79,30.7
|
270 |
+
0.57834,20,3.97,0,0.575,8.297,67,2.4216,5,264,13,384.54,7.44,50
|
271 |
+
0.5405,20,3.97,0,0.575,7.47,52.6,2.872,5,264,13,390.3,3.16,43.5
|
272 |
+
0.09065,20,6.96,1,0.464,5.92,61.5,3.9175,3,223,18.6,391.34,13.65,20.7
|
273 |
+
0.29916,20,6.96,0,0.464,5.856,42.1,4.429,3,223,18.6,388.65,13,21.1
|
274 |
+
0.16211,20,6.96,0,0.464,6.24,16.3,4.429,3,223,18.6,396.9,6.59,25.2
|
275 |
+
0.1146,20,6.96,0,0.464,6.538,58.7,3.9175,3,223,18.6,394.96,7.73,24.4
|
276 |
+
0.22188,20,6.96,1,0.464,7.691,51.8,4.3665,3,223,18.6,390.77,6.58,35.2
|
277 |
+
0.05644,40,6.41,1,0.447,6.758,32.9,4.0776,4,254,17.6,396.9,3.53,32.4
|
278 |
+
0.09604,40,6.41,0,0.447,6.854,42.8,4.2673,4,254,17.6,396.9,2.98,32
|
279 |
+
0.10469,40,6.41,1,0.447,7.267,49,4.7872,4,254,17.6,389.25,6.05,33.2
|
280 |
+
0.06127,40,6.41,1,0.447,6.826,27.6,4.8628,4,254,17.6,393.45,4.16,33.1
|
281 |
+
0.07978,40,6.41,0,0.447,6.482,32.1,4.1403,4,254,17.6,396.9,7.19,29.1
|
282 |
+
0.21038,20,3.33,0,0.4429,6.812,32.2,4.1007,5,216,14.9,396.9,4.85,35.1
|
283 |
+
0.03578,20,3.33,0,0.4429,7.82,64.5,4.6947,5,216,14.9,387.31,3.76,45.4
|
284 |
+
0.03705,20,3.33,0,0.4429,6.968,37.2,5.2447,5,216,14.9,392.23,4.59,35.4
|
285 |
+
0.06129,20,3.33,1,0.4429,7.645,49.7,5.2119,5,216,14.9,377.07,3.01,46
|
286 |
+
0.01501,90,1.21,1,0.401,7.923,24.8,5.885,1,198,13.6,395.52,3.16,50
|
287 |
+
0.00906,90,2.97,0,0.4,7.088,20.8,7.3073,1,285,15.3,394.72,7.85,32.2
|
288 |
+
0.01096,55,2.25,0,0.389,6.453,31.9,7.3073,1,300,15.3,394.72,8.23,22
|
289 |
+
0.01965,80,1.76,0,0.385,6.23,31.5,9.0892,1,241,18.2,341.6,12.93,20.1
|
290 |
+
0.03871,52.5,5.32,0,0.405,6.209,31.3,7.3172,6,293,16.6,396.9,7.14,23.2
|
291 |
+
0.0459,52.5,5.32,0,0.405,6.315,45.6,7.3172,6,293,16.6,396.9,7.6,22.3
|
292 |
+
0.04297,52.5,5.32,0,0.405,6.565,22.9,7.3172,6,293,16.6,371.72,9.51,24.8
|
293 |
+
0.03502,80,4.95,0,0.411,6.861,27.9,5.1167,4,245,19.2,396.9,3.33,28.5
|
294 |
+
0.07886,80,4.95,0,0.411,7.148,27.7,5.1167,4,245,19.2,396.9,3.56,37.3
|
295 |
+
0.03615,80,4.95,0,0.411,6.63,23.4,5.1167,4,245,19.2,396.9,4.7,27.9
|
296 |
+
0.08265,0,13.92,0,0.437,6.127,18.4,5.5027,4,289,16,396.9,8.58,23.9
|
297 |
+
0.08199,0,13.92,0,0.437,6.009,42.3,5.5027,4,289,16,396.9,10.4,21.7
|
298 |
+
0.12932,0,13.92,0,0.437,6.678,31.1,5.9604,4,289,16,396.9,6.27,28.6
|
299 |
+
0.05372,0,13.92,0,0.437,6.549,51,5.9604,4,289,16,392.85,7.39,27.1
|
300 |
+
0.14103,0,13.92,0,0.437,5.79,58,6.32,4,289,16,396.9,15.84,20.3
|
301 |
+
0.06466,70,2.24,0,0.4,6.345,20.1,7.8278,5,358,14.8,368.24,4.97,22.5
|
302 |
+
0.05561,70,2.24,0,0.4,7.041,10,7.8278,5,358,14.8,371.58,4.74,29
|
303 |
+
0.04417,70,2.24,0,0.4,6.871,47.4,7.8278,5,358,14.8,390.86,6.07,24.8
|
304 |
+
0.03537,34,6.09,0,0.433,6.59,40.4,5.4917,7,329,16.1,395.75,9.5,22
|
305 |
+
0.09266,34,6.09,0,0.433,6.495,18.4,5.4917,7,329,16.1,383.61,8.67,26.4
|
306 |
+
0.1,34,6.09,0,0.433,6.982,17.7,5.4917,7,329,16.1,390.43,4.86,33.1
|
307 |
+
0.05515,33,2.18,0,0.472,7.236,41.1,4.022,7,222,18.4,393.68,6.93,36.1
|
308 |
+
0.05479,33,2.18,0,0.472,6.616,58.1,3.37,7,222,18.4,393.36,8.93,28.4
|
309 |
+
0.07503,33,2.18,0,0.472,7.42,71.9,3.0992,7,222,18.4,396.9,6.47,33.4
|
310 |
+
0.04932,33,2.18,0,0.472,6.849,70.3,3.1827,7,222,18.4,396.9,7.53,28.2
|
311 |
+
0.49298,0,9.9,0,0.544,6.635,82.5,3.3175,4,304,18.4,396.9,4.54,22.8
|
312 |
+
0.3494,0,9.9,0,0.544,5.972,76.7,3.1025,4,304,18.4,396.24,9.97,20.3
|
313 |
+
2.63548,0,9.9,0,0.544,4.973,37.8,2.5194,4,304,18.4,350.45,12.64,16.1
|
314 |
+
0.79041,0,9.9,0,0.544,6.122,52.8,2.6403,4,304,18.4,396.9,5.98,22.1
|
315 |
+
0.26169,0,9.9,0,0.544,6.023,90.4,2.834,4,304,18.4,396.3,11.72,19.4
|
316 |
+
0.26938,0,9.9,0,0.544,6.266,82.8,3.2628,4,304,18.4,393.39,7.9,21.6
|
317 |
+
0.3692,0,9.9,0,0.544,6.567,87.3,3.6023,4,304,18.4,395.69,9.28,23.8
|
318 |
+
0.25356,0,9.9,0,0.544,5.705,77.7,3.945,4,304,18.4,396.42,11.5,16.2
|
319 |
+
0.31827,0,9.9,0,0.544,5.914,83.2,3.9986,4,304,18.4,390.7,18.33,17.8
|
320 |
+
0.24522,0,9.9,0,0.544,5.782,71.7,4.0317,4,304,18.4,396.9,15.94,19.8
|
321 |
+
0.40202,0,9.9,0,0.544,6.382,67.2,3.5325,4,304,18.4,395.21,10.36,23.1
|
322 |
+
0.47547,0,9.9,0,0.544,6.113,58.8,4.0019,4,304,18.4,396.23,12.73,21
|
323 |
+
0.1676,0,7.38,0,0.493,6.426,52.3,4.5404,5,287,19.6,396.9,7.2,23.8
|
324 |
+
0.18159,0,7.38,0,0.493,6.376,54.3,4.5404,5,287,19.6,396.9,6.87,23.1
|
325 |
+
0.35114,0,7.38,0,0.493,6.041,49.9,4.7211,5,287,19.6,396.9,7.7,20.4
|
326 |
+
0.28392,0,7.38,0,0.493,5.708,74.3,4.7211,5,287,19.6,391.13,11.74,18.5
|
327 |
+
0.34109,0,7.38,0,0.493,6.415,40.1,4.7211,5,287,19.6,396.9,6.12,25
|
328 |
+
0.19186,0,7.38,0,0.493,6.431,14.7,5.4159,5,287,19.6,393.68,5.08,24.6
|
329 |
+
0.30347,0,7.38,0,0.493,6.312,28.9,5.4159,5,287,19.6,396.9,6.15,23
|
330 |
+
0.24103,0,7.38,0,0.493,6.083,43.7,5.4159,5,287,19.6,396.9,12.79,22.2
|
331 |
+
0.06617,0,3.24,0,0.46,5.868,25.8,5.2146,4,430,16.9,382.44,9.97,19.3
|
332 |
+
0.06724,0,3.24,0,0.46,6.333,17.2,5.2146,4,430,16.9,375.21,7.34,22.6
|
333 |
+
0.04544,0,3.24,0,0.46,6.144,32.2,5.8736,4,430,16.9,368.57,9.09,19.8
|
334 |
+
0.05023,35,6.06,0,0.4379,5.706,28.4,6.6407,1,304,16.9,394.02,12.43,17.1
|
335 |
+
0.03466,35,6.06,0,0.4379,6.031,23.3,6.6407,1,304,16.9,362.25,7.83,19.4
|
336 |
+
0.05083,0,5.19,0,0.515,6.316,38.1,6.4584,5,224,20.2,389.71,5.68,22.2
|
337 |
+
0.03738,0,5.19,0,0.515,6.31,38.5,6.4584,5,224,20.2,389.4,6.75,20.7
|
338 |
+
0.03961,0,5.19,0,0.515,6.037,34.5,5.9853,5,224,20.2,396.9,8.01,21.1
|
339 |
+
0.03427,0,5.19,0,0.515,5.869,46.3,5.2311,5,224,20.2,396.9,9.8,19.5
|
340 |
+
0.03041,0,5.19,0,0.515,5.895,59.6,5.615,5,224,20.2,394.81,10.56,18.5
|
341 |
+
0.03306,0,5.19,0,0.515,6.059,37.3,4.8122,5,224,20.2,396.14,8.51,20.6
|
342 |
+
0.05497,0,5.19,0,0.515,5.985,45.4,4.8122,5,224,20.2,396.9,9.74,19
|
343 |
+
0.06151,0,5.19,0,0.515,5.968,58.5,4.8122,5,224,20.2,396.9,9.29,18.7
|
344 |
+
0.01301,35,1.52,0,0.442,7.241,49.3,7.0379,1,284,15.5,394.74,5.49,32.7
|
345 |
+
0.02498,0,1.89,0,0.518,6.54,59.7,6.2669,1,422,15.9,389.96,8.65,16.5
|
346 |
+
0.02543,55,3.78,0,0.484,6.696,56.4,5.7321,5,370,17.6,396.9,7.18,23.9
|
347 |
+
0.03049,55,3.78,0,0.484,6.874,28.1,6.4654,5,370,17.6,387.97,4.61,31.2
|
348 |
+
0.03113,0,4.39,0,0.442,6.014,48.5,8.0136,3,352,18.8,385.64,10.53,17.5
|
349 |
+
0.06162,0,4.39,0,0.442,5.898,52.3,8.0136,3,352,18.8,364.61,12.67,17.2
|
350 |
+
0.0187,85,4.15,0,0.429,6.516,27.7,8.5353,4,351,17.9,392.43,6.36,23.1
|
351 |
+
0.01501,80,2.01,0,0.435,6.635,29.7,8.344,4,280,17,390.94,5.99,24.5
|
352 |
+
0.02899,40,1.25,0,0.429,6.939,34.5,8.7921,1,335,19.7,389.85,5.89,26.6
|
353 |
+
0.06211,40,1.25,0,0.429,6.49,44.4,8.7921,1,335,19.7,396.9,5.98,22.9
|
354 |
+
0.0795,60,1.69,0,0.411,6.579,35.9,10.7103,4,411,18.3,370.78,5.49,24.1
|
355 |
+
0.07244,60,1.69,0,0.411,5.884,18.5,10.7103,4,411,18.3,392.33,7.79,18.6
|
356 |
+
0.01709,90,2.02,0,0.41,6.728,36.1,12.1265,5,187,17,384.46,4.5,30.1
|
357 |
+
0.04301,80,1.91,0,0.413,5.663,21.9,10.5857,4,334,22,382.8,8.05,18.2
|
358 |
+
0.10659,80,1.91,0,0.413,5.936,19.5,10.5857,4,334,22,376.04,5.57,20.6
|
359 |
+
8.98296,0,18.1,1,0.77,6.212,97.4,2.1222,24,666,20.2,377.73,17.6,17.8
|
360 |
+
3.8497,0,18.1,1,0.77,6.395,91,2.5052,24,666,20.2,391.34,13.27,21.7
|
361 |
+
5.20177,0,18.1,1,0.77,6.127,83.4,2.7227,24,666,20.2,395.43,11.48,22.7
|
362 |
+
4.26131,0,18.1,0,0.77,6.112,81.3,2.5091,24,666,20.2,390.74,12.67,22.6
|
363 |
+
4.54192,0,18.1,0,0.77,6.398,88,2.5182,24,666,20.2,374.56,7.79,25
|
364 |
+
3.83684,0,18.1,0,0.77,6.251,91.1,2.2955,24,666,20.2,350.65,14.19,19.9
|
365 |
+
3.67822,0,18.1,0,0.77,5.362,96.2,2.1036,24,666,20.2,380.79,10.19,20.8
|
366 |
+
4.22239,0,18.1,1,0.77,5.803,89,1.9047,24,666,20.2,353.04,14.64,16.8
|
367 |
+
3.47428,0,18.1,1,0.718,8.78,82.9,1.9047,24,666,20.2,354.55,5.29,21.9
|
368 |
+
4.55587,0,18.1,0,0.718,3.561,87.9,1.6132,24,666,20.2,354.7,7.12,27.5
|
369 |
+
3.69695,0,18.1,0,0.718,4.963,91.4,1.7523,24,666,20.2,316.03,14,21.9
|
370 |
+
13.5222,0,18.1,0,0.631,3.863,100,1.5106,24,666,20.2,131.42,13.33,23.1
|
371 |
+
4.89822,0,18.1,0,0.631,4.97,100,1.3325,24,666,20.2,375.52,3.26,50
|
372 |
+
5.66998,0,18.1,1,0.631,6.683,96.8,1.3567,24,666,20.2,375.33,3.73,50
|
373 |
+
6.53876,0,18.1,1,0.631,7.016,97.5,1.2024,24,666,20.2,392.05,2.96,50
|
374 |
+
9.2323,0,18.1,0,0.631,6.216,100,1.1691,24,666,20.2,366.15,9.53,50
|
375 |
+
8.26725,0,18.1,1,0.668,5.875,89.6,1.1296,24,666,20.2,347.88,8.88,50
|
376 |
+
11.1081,0,18.1,0,0.668,4.906,100,1.1742,24,666,20.2,396.9,34.77,13.8
|
377 |
+
18.4982,0,18.1,0,0.668,4.138,100,1.137,24,666,20.2,396.9,37.97,13.8
|
378 |
+
19.6091,0,18.1,0,0.671,7.313,97.9,1.3163,24,666,20.2,396.9,13.44,15
|
379 |
+
15.288,0,18.1,0,0.671,6.649,93.3,1.3449,24,666,20.2,363.02,23.24,13.9
|
380 |
+
9.82349,0,18.1,0,0.671,6.794,98.8,1.358,24,666,20.2,396.9,21.24,13.3
|
381 |
+
23.6482,0,18.1,0,0.671,6.38,96.2,1.3861,24,666,20.2,396.9,23.69,13.1
|
382 |
+
17.8667,0,18.1,0,0.671,6.223,100,1.3861,24,666,20.2,393.74,21.78,10.2
|
383 |
+
88.9762,0,18.1,0,0.671,6.968,91.9,1.4165,24,666,20.2,396.9,17.21,10.4
|
384 |
+
15.8744,0,18.1,0,0.671,6.545,99.1,1.5192,24,666,20.2,396.9,21.08,10.9
|
385 |
+
9.18702,0,18.1,0,0.7,5.536,100,1.5804,24,666,20.2,396.9,23.6,11.3
|
386 |
+
7.99248,0,18.1,0,0.7,5.52,100,1.5331,24,666,20.2,396.9,24.56,12.3
|
387 |
+
20.0849,0,18.1,0,0.7,4.368,91.2,1.4395,24,666,20.2,285.83,30.63,8.8
|
388 |
+
16.8118,0,18.1,0,0.7,5.277,98.1,1.4261,24,666,20.2,396.9,30.81,7.2
|
389 |
+
24.3938,0,18.1,0,0.7,4.652,100,1.4672,24,666,20.2,396.9,28.28,10.5
|
390 |
+
22.5971,0,18.1,0,0.7,5,89.5,1.5184,24,666,20.2,396.9,31.99,7.4
|
391 |
+
14.3337,0,18.1,0,0.7,4.88,100,1.5895,24,666,20.2,372.92,30.62,10.2
|
392 |
+
8.15174,0,18.1,0,0.7,5.39,98.9,1.7281,24,666,20.2,396.9,20.85,11.5
|
393 |
+
6.96215,0,18.1,0,0.7,5.713,97,1.9265,24,666,20.2,394.43,17.11,15.1
|
394 |
+
5.29305,0,18.1,0,0.7,6.051,82.5,2.1678,24,666,20.2,378.38,18.76,23.2
|
395 |
+
11.5779,0,18.1,0,0.7,5.036,97,1.77,24,666,20.2,396.9,25.68,9.7
|
396 |
+
8.64476,0,18.1,0,0.693,6.193,92.6,1.7912,24,666,20.2,396.9,15.17,13.8
|
397 |
+
13.3598,0,18.1,0,0.693,5.887,94.7,1.7821,24,666,20.2,396.9,16.35,12.7
|
398 |
+
8.71675,0,18.1,0,0.693,6.471,98.8,1.7257,24,666,20.2,391.98,17.12,13.1
|
399 |
+
5.87205,0,18.1,0,0.693,6.405,96,1.6768,24,666,20.2,396.9,19.37,12.5
|
400 |
+
7.67202,0,18.1,0,0.693,5.747,98.9,1.6334,24,666,20.2,393.1,19.92,8.5
|
401 |
+
38.3518,0,18.1,0,0.693,5.453,100,1.4896,24,666,20.2,396.9,30.59,5
|
402 |
+
9.91655,0,18.1,0,0.693,5.852,77.8,1.5004,24,666,20.2,338.16,29.97,6.3
|
403 |
+
25.0461,0,18.1,0,0.693,5.987,100,1.5888,24,666,20.2,396.9,26.77,5.6
|
404 |
+
14.2362,0,18.1,0,0.693,6.343,100,1.5741,24,666,20.2,396.9,20.32,7.2
|
405 |
+
9.59571,0,18.1,0,0.693,6.404,100,1.639,24,666,20.2,376.11,20.31,12.1
|
406 |
+
24.8017,0,18.1,0,0.693,5.349,96,1.7028,24,666,20.2,396.9,19.77,8.3
|
407 |
+
41.5292,0,18.1,0,0.693,5.531,85.4,1.6074,24,666,20.2,329.46,27.38,8.5
|
408 |
+
67.9208,0,18.1,0,0.693,5.683,100,1.4254,24,666,20.2,384.97,22.98,5
|
409 |
+
20.7162,0,18.1,0,0.659,4.138,100,1.1781,24,666,20.2,370.22,23.34,11.9
|
410 |
+
11.9511,0,18.1,0,0.659,5.608,100,1.2852,24,666,20.2,332.09,12.13,27.9
|
411 |
+
7.40389,0,18.1,0,0.597,5.617,97.9,1.4547,24,666,20.2,314.64,26.4,17.2
|
412 |
+
14.4383,0,18.1,0,0.597,6.852,100,1.4655,24,666,20.2,179.36,19.78,27.5
|
413 |
+
51.1358,0,18.1,0,0.597,5.757,100,1.413,24,666,20.2,2.6,10.11,15
|
414 |
+
14.0507,0,18.1,0,0.597,6.657,100,1.5275,24,666,20.2,35.05,21.22,17.2
|
415 |
+
18.811,0,18.1,0,0.597,4.628,100,1.5539,24,666,20.2,28.79,34.37,17.9
|
416 |
+
28.6558,0,18.1,0,0.597,5.155,100,1.5894,24,666,20.2,210.97,20.08,16.3
|
417 |
+
45.7461,0,18.1,0,0.693,4.519,100,1.6582,24,666,20.2,88.27,36.98,7
|
418 |
+
18.0846,0,18.1,0,0.679,6.434,100,1.8347,24,666,20.2,27.25,29.05,7.2
|
419 |
+
10.8342,0,18.1,0,0.679,6.782,90.8,1.8195,24,666,20.2,21.57,25.79,7.5
|
420 |
+
25.9406,0,18.1,0,0.679,5.304,89.1,1.6475,24,666,20.2,127.36,26.64,10.4
|
421 |
+
73.5341,0,18.1,0,0.679,5.957,100,1.8026,24,666,20.2,16.45,20.62,8.8
|
422 |
+
11.8123,0,18.1,0,0.718,6.824,76.5,1.794,24,666,20.2,48.45,22.74,8.4
|
423 |
+
11.0874,0,18.1,0,0.718,6.411,100,1.8589,24,666,20.2,318.75,15.02,16.7
|
424 |
+
7.02259,0,18.1,0,0.718,6.006,95.3,1.8746,24,666,20.2,319.98,15.7,14.2
|
425 |
+
12.0482,0,18.1,0,0.614,5.648,87.6,1.9512,24,666,20.2,291.55,14.1,20.8
|
426 |
+
7.05042,0,18.1,0,0.614,6.103,85.1,2.0218,24,666,20.2,2.52,23.29,13.4
|
427 |
+
8.79212,0,18.1,0,0.584,5.565,70.6,2.0635,24,666,20.2,3.65,17.16,11.7
|
428 |
+
15.8603,0,18.1,0,0.679,5.896,95.4,1.9096,24,666,20.2,7.68,24.39,8.3
|
429 |
+
12.2472,0,18.1,0,0.584,5.837,59.7,1.9976,24,666,20.2,24.65,15.69,10.2
|
430 |
+
37.6619,0,18.1,0,0.679,6.202,78.7,1.8629,24,666,20.2,18.82,14.52,10.9
|
431 |
+
7.36711,0,18.1,0,0.679,6.193,78.1,1.9356,24,666,20.2,96.73,21.52,11
|
432 |
+
9.33889,0,18.1,0,0.679,6.38,95.6,1.9682,24,666,20.2,60.72,24.08,9.5
|
433 |
+
8.49213,0,18.1,0,0.584,6.348,86.1,2.0527,24,666,20.2,83.45,17.64,14.5
|
434 |
+
10.0623,0,18.1,0,0.584,6.833,94.3,2.0882,24,666,20.2,81.33,19.69,14.1
|
435 |
+
6.44405,0,18.1,0,0.584,6.425,74.8,2.2004,24,666,20.2,97.95,12.03,16.1
|
436 |
+
5.58107,0,18.1,0,0.713,6.436,87.9,2.3158,24,666,20.2,100.19,16.22,14.3
|
437 |
+
13.9134,0,18.1,0,0.713,6.208,95,2.2222,24,666,20.2,100.63,15.17,11.7
|
438 |
+
11.1604,0,18.1,0,0.74,6.629,94.6,2.1247,24,666,20.2,109.85,23.27,13.4
|
439 |
+
14.4208,0,18.1,0,0.74,6.461,93.3,2.0026,24,666,20.2,27.49,18.05,9.6
|
440 |
+
15.1772,0,18.1,0,0.74,6.152,100,1.9142,24,666,20.2,9.32,26.45,8.7
|
441 |
+
13.6781,0,18.1,0,0.74,5.935,87.9,1.8206,24,666,20.2,68.95,34.02,8.4
|
442 |
+
9.39063,0,18.1,0,0.74,5.627,93.9,1.8172,24,666,20.2,396.9,22.88,12.8
|
443 |
+
22.0511,0,18.1,0,0.74,5.818,92.4,1.8662,24,666,20.2,391.45,22.11,10.5
|
444 |
+
9.72418,0,18.1,0,0.74,6.406,97.2,2.0651,24,666,20.2,385.96,19.52,17.1
|
445 |
+
5.66637,0,18.1,0,0.74,6.219,100,2.0048,24,666,20.2,395.69,16.59,18.4
|
446 |
+
9.96654,0,18.1,0,0.74,6.485,100,1.9784,24,666,20.2,386.73,18.85,15.4
|
447 |
+
12.8023,0,18.1,0,0.74,5.854,96.6,1.8956,24,666,20.2,240.52,23.79,10.8
|
448 |
+
10.6718,0,18.1,0,0.74,6.459,94.8,1.9879,24,666,20.2,43.06,23.98,11.8
|
449 |
+
6.28807,0,18.1,0,0.74,6.341,96.4,2.072,24,666,20.2,318.01,17.79,14.9
|
450 |
+
9.92485,0,18.1,0,0.74,6.251,96.6,2.198,24,666,20.2,388.52,16.44,12.6
|
451 |
+
9.32909,0,18.1,0,0.713,6.185,98.7,2.2616,24,666,20.2,396.9,18.13,14.1
|
452 |
+
7.52601,0,18.1,0,0.713,6.417,98.3,2.185,24,666,20.2,304.21,19.31,13
|
453 |
+
6.71772,0,18.1,0,0.713,6.749,92.6,2.3236,24,666,20.2,0.32,17.44,13.4
|
454 |
+
5.44114,0,18.1,0,0.713,6.655,98.2,2.3552,24,666,20.2,355.29,17.73,15.2
|
455 |
+
5.09017,0,18.1,0,0.713,6.297,91.8,2.3682,24,666,20.2,385.09,17.27,16.1
|
456 |
+
8.24809,0,18.1,0,0.713,7.393,99.3,2.4527,24,666,20.2,375.87,16.74,17.8
|
457 |
+
9.51363,0,18.1,0,0.713,6.728,94.1,2.4961,24,666,20.2,6.68,18.71,14.9
|
458 |
+
4.75237,0,18.1,0,0.713,6.525,86.5,2.4358,24,666,20.2,50.92,18.13,14.1
|
459 |
+
4.66883,0,18.1,0,0.713,5.976,87.9,2.5806,24,666,20.2,10.48,19.01,12.7
|
460 |
+
8.20058,0,18.1,0,0.713,5.936,80.3,2.7792,24,666,20.2,3.5,16.94,13.5
|
461 |
+
7.75223,0,18.1,0,0.713,6.301,83.7,2.7831,24,666,20.2,272.21,16.23,14.9
|
462 |
+
6.80117,0,18.1,0,0.713,6.081,84.4,2.7175,24,666,20.2,396.9,14.7,20
|
463 |
+
4.81213,0,18.1,0,0.713,6.701,90,2.5975,24,666,20.2,255.23,16.42,16.4
|
464 |
+
3.69311,0,18.1,0,0.713,6.376,88.4,2.5671,24,666,20.2,391.43,14.65,17.7
|
465 |
+
6.65492,0,18.1,0,0.713,6.317,83,2.7344,24,666,20.2,396.9,13.99,19.5
|
466 |
+
5.82115,0,18.1,0,0.713,6.513,89.9,2.8016,24,666,20.2,393.82,10.29,20.2
|
467 |
+
7.83932,0,18.1,0,0.655,6.209,65.4,2.9634,24,666,20.2,396.9,13.22,21.4
|
468 |
+
3.1636,0,18.1,0,0.655,5.759,48.2,3.0665,24,666,20.2,334.4,14.13,19.9
|
469 |
+
3.77498,0,18.1,0,0.655,5.952,84.7,2.8715,24,666,20.2,22.01,17.15,19
|
470 |
+
4.42228,0,18.1,0,0.584,6.003,94.5,2.5403,24,666,20.2,331.29,21.32,19.1
|
471 |
+
15.5757,0,18.1,0,0.58,5.926,71,2.9084,24,666,20.2,368.74,18.13,19.1
|
472 |
+
13.0751,0,18.1,0,0.58,5.713,56.7,2.8237,24,666,20.2,396.9,14.76,20.1
|
473 |
+
4.34879,0,18.1,0,0.58,6.167,84,3.0334,24,666,20.2,396.9,16.29,19.9
|
474 |
+
4.03841,0,18.1,0,0.532,6.229,90.7,3.0993,24,666,20.2,395.33,12.87,19.6
|
475 |
+
3.56868,0,18.1,0,0.58,6.437,75,2.8965,24,666,20.2,393.37,14.36,23.2
|
476 |
+
4.64689,0,18.1,0,0.614,6.98,67.6,2.5329,24,666,20.2,374.68,11.66,29.8
|
477 |
+
8.05579,0,18.1,0,0.584,5.427,95.4,2.4298,24,666,20.2,352.58,18.14,13.8
|
478 |
+
6.39312,0,18.1,0,0.584,6.162,97.4,2.206,24,666,20.2,302.76,24.1,13.3
|
479 |
+
4.87141,0,18.1,0,0.614,6.484,93.6,2.3053,24,666,20.2,396.21,18.68,16.7
|
480 |
+
15.0234,0,18.1,0,0.614,5.304,97.3,2.1007,24,666,20.2,349.48,24.91,12
|
481 |
+
10.233,0,18.1,0,0.614,6.185,96.7,2.1705,24,666,20.2,379.7,18.03,14.6
|
482 |
+
14.3337,0,18.1,0,0.614,6.229,88,1.9512,24,666,20.2,383.32,13.11,21.4
|
483 |
+
5.82401,0,18.1,0,0.532,6.242,64.7,3.4242,24,666,20.2,396.9,10.74,23
|
484 |
+
5.70818,0,18.1,0,0.532,6.75,74.9,3.3317,24,666,20.2,393.07,7.74,23.7
|
485 |
+
5.73116,0,18.1,0,0.532,7.061,77,3.4106,24,666,20.2,395.28,7.01,25
|
486 |
+
2.81838,0,18.1,0,0.532,5.762,40.3,4.0983,24,666,20.2,392.92,10.42,21.8
|
487 |
+
2.37857,0,18.1,0,0.583,5.871,41.9,3.724,24,666,20.2,370.73,13.34,20.6
|
488 |
+
3.67367,0,18.1,0,0.583,6.312,51.9,3.9917,24,666,20.2,388.62,10.58,21.2
|
489 |
+
5.69175,0,18.1,0,0.583,6.114,79.8,3.5459,24,666,20.2,392.68,14.98,19.1
|
490 |
+
4.83567,0,18.1,0,0.583,5.905,53.2,3.1523,24,666,20.2,388.22,11.45,20.6
|
491 |
+
0.15086,0,27.74,0,0.609,5.454,92.7,1.8209,4,711,20.1,395.09,18.06,15.2
|
492 |
+
0.18337,0,27.74,0,0.609,5.414,98.3,1.7554,4,711,20.1,344.05,23.97,7
|
493 |
+
0.20746,0,27.74,0,0.609,5.093,98,1.8226,4,711,20.1,318.43,29.68,8.1
|
494 |
+
0.10574,0,27.74,0,0.609,5.983,98.8,1.8681,4,711,20.1,390.11,18.07,13.6
|
495 |
+
0.11132,0,27.74,0,0.609,5.983,83.5,2.1099,4,711,20.1,396.9,13.35,20.1
|
496 |
+
0.17331,0,9.69,0,0.585,5.707,54,2.3817,6,391,19.2,396.9,12.01,21.8
|
497 |
+
0.27957,0,9.69,0,0.585,5.926,42.6,2.3817,6,391,19.2,396.9,13.59,24.5
|
498 |
+
0.17899,0,9.69,0,0.585,5.67,28.8,2.7986,6,391,19.2,393.29,17.6,23.1
|
499 |
+
0.2896,0,9.69,0,0.585,5.39,72.9,2.7986,6,391,19.2,396.9,21.14,19.7
|
500 |
+
0.26838,0,9.69,0,0.585,5.794,70.6,2.8927,6,391,19.2,396.9,14.1,18.3
|
501 |
+
0.23912,0,9.69,0,0.585,6.019,65.3,2.4091,6,391,19.2,396.9,12.92,21.2
|
502 |
+
0.17783,0,9.69,0,0.585,5.569,73.5,2.3999,6,391,19.2,395.77,15.1,17.5
|
503 |
+
0.22438,0,9.69,0,0.585,6.027,79.7,2.4982,6,391,19.2,396.9,14.33,16.8
|
504 |
+
0.06263,0,11.93,0,0.573,6.593,69.1,2.4786,1,273,21,391.99,9.67,22.4
|
505 |
+
0.04527,0,11.93,0,0.573,6.12,76.7,2.2875,1,273,21,396.9,9.08,20.6
|
506 |
+
0.06076,0,11.93,0,0.573,6.976,91,2.1675,1,273,21,396.9,5.64,23.9
|
507 |
+
0.10959,0,11.93,0,0.573,6.794,89.3,2.3889,1,273,21,393.45,6.48,22
|
508 |
+
0.04741,0,11.93,0,0.573,6.03,80.8,2.505,1,273,21,396.9,7.88,11.9
|
venv/lib/python3.10/site-packages/sklearn/datasets/data/breast_cancer.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/data/iris.csv
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
150,4,setosa,versicolor,virginica
|
2 |
+
5.1,3.5,1.4,0.2,0
|
3 |
+
4.9,3.0,1.4,0.2,0
|
4 |
+
4.7,3.2,1.3,0.2,0
|
5 |
+
4.6,3.1,1.5,0.2,0
|
6 |
+
5.0,3.6,1.4,0.2,0
|
7 |
+
5.4,3.9,1.7,0.4,0
|
8 |
+
4.6,3.4,1.4,0.3,0
|
9 |
+
5.0,3.4,1.5,0.2,0
|
10 |
+
4.4,2.9,1.4,0.2,0
|
11 |
+
4.9,3.1,1.5,0.1,0
|
12 |
+
5.4,3.7,1.5,0.2,0
|
13 |
+
4.8,3.4,1.6,0.2,0
|
14 |
+
4.8,3.0,1.4,0.1,0
|
15 |
+
4.3,3.0,1.1,0.1,0
|
16 |
+
5.8,4.0,1.2,0.2,0
|
17 |
+
5.7,4.4,1.5,0.4,0
|
18 |
+
5.4,3.9,1.3,0.4,0
|
19 |
+
5.1,3.5,1.4,0.3,0
|
20 |
+
5.7,3.8,1.7,0.3,0
|
21 |
+
5.1,3.8,1.5,0.3,0
|
22 |
+
5.4,3.4,1.7,0.2,0
|
23 |
+
5.1,3.7,1.5,0.4,0
|
24 |
+
4.6,3.6,1.0,0.2,0
|
25 |
+
5.1,3.3,1.7,0.5,0
|
26 |
+
4.8,3.4,1.9,0.2,0
|
27 |
+
5.0,3.0,1.6,0.2,0
|
28 |
+
5.0,3.4,1.6,0.4,0
|
29 |
+
5.2,3.5,1.5,0.2,0
|
30 |
+
5.2,3.4,1.4,0.2,0
|
31 |
+
4.7,3.2,1.6,0.2,0
|
32 |
+
4.8,3.1,1.6,0.2,0
|
33 |
+
5.4,3.4,1.5,0.4,0
|
34 |
+
5.2,4.1,1.5,0.1,0
|
35 |
+
5.5,4.2,1.4,0.2,0
|
36 |
+
4.9,3.1,1.5,0.2,0
|
37 |
+
5.0,3.2,1.2,0.2,0
|
38 |
+
5.5,3.5,1.3,0.2,0
|
39 |
+
4.9,3.6,1.4,0.1,0
|
40 |
+
4.4,3.0,1.3,0.2,0
|
41 |
+
5.1,3.4,1.5,0.2,0
|
42 |
+
5.0,3.5,1.3,0.3,0
|
43 |
+
4.5,2.3,1.3,0.3,0
|
44 |
+
4.4,3.2,1.3,0.2,0
|
45 |
+
5.0,3.5,1.6,0.6,0
|
46 |
+
5.1,3.8,1.9,0.4,0
|
47 |
+
4.8,3.0,1.4,0.3,0
|
48 |
+
5.1,3.8,1.6,0.2,0
|
49 |
+
4.6,3.2,1.4,0.2,0
|
50 |
+
5.3,3.7,1.5,0.2,0
|
51 |
+
5.0,3.3,1.4,0.2,0
|
52 |
+
7.0,3.2,4.7,1.4,1
|
53 |
+
6.4,3.2,4.5,1.5,1
|
54 |
+
6.9,3.1,4.9,1.5,1
|
55 |
+
5.5,2.3,4.0,1.3,1
|
56 |
+
6.5,2.8,4.6,1.5,1
|
57 |
+
5.7,2.8,4.5,1.3,1
|
58 |
+
6.3,3.3,4.7,1.6,1
|
59 |
+
4.9,2.4,3.3,1.0,1
|
60 |
+
6.6,2.9,4.6,1.3,1
|
61 |
+
5.2,2.7,3.9,1.4,1
|
62 |
+
5.0,2.0,3.5,1.0,1
|
63 |
+
5.9,3.0,4.2,1.5,1
|
64 |
+
6.0,2.2,4.0,1.0,1
|
65 |
+
6.1,2.9,4.7,1.4,1
|
66 |
+
5.6,2.9,3.6,1.3,1
|
67 |
+
6.7,3.1,4.4,1.4,1
|
68 |
+
5.6,3.0,4.5,1.5,1
|
69 |
+
5.8,2.7,4.1,1.0,1
|
70 |
+
6.2,2.2,4.5,1.5,1
|
71 |
+
5.6,2.5,3.9,1.1,1
|
72 |
+
5.9,3.2,4.8,1.8,1
|
73 |
+
6.1,2.8,4.0,1.3,1
|
74 |
+
6.3,2.5,4.9,1.5,1
|
75 |
+
6.1,2.8,4.7,1.2,1
|
76 |
+
6.4,2.9,4.3,1.3,1
|
77 |
+
6.6,3.0,4.4,1.4,1
|
78 |
+
6.8,2.8,4.8,1.4,1
|
79 |
+
6.7,3.0,5.0,1.7,1
|
80 |
+
6.0,2.9,4.5,1.5,1
|
81 |
+
5.7,2.6,3.5,1.0,1
|
82 |
+
5.5,2.4,3.8,1.1,1
|
83 |
+
5.5,2.4,3.7,1.0,1
|
84 |
+
5.8,2.7,3.9,1.2,1
|
85 |
+
6.0,2.7,5.1,1.6,1
|
86 |
+
5.4,3.0,4.5,1.5,1
|
87 |
+
6.0,3.4,4.5,1.6,1
|
88 |
+
6.7,3.1,4.7,1.5,1
|
89 |
+
6.3,2.3,4.4,1.3,1
|
90 |
+
5.6,3.0,4.1,1.3,1
|
91 |
+
5.5,2.5,4.0,1.3,1
|
92 |
+
5.5,2.6,4.4,1.2,1
|
93 |
+
6.1,3.0,4.6,1.4,1
|
94 |
+
5.8,2.6,4.0,1.2,1
|
95 |
+
5.0,2.3,3.3,1.0,1
|
96 |
+
5.6,2.7,4.2,1.3,1
|
97 |
+
5.7,3.0,4.2,1.2,1
|
98 |
+
5.7,2.9,4.2,1.3,1
|
99 |
+
6.2,2.9,4.3,1.3,1
|
100 |
+
5.1,2.5,3.0,1.1,1
|
101 |
+
5.7,2.8,4.1,1.3,1
|
102 |
+
6.3,3.3,6.0,2.5,2
|
103 |
+
5.8,2.7,5.1,1.9,2
|
104 |
+
7.1,3.0,5.9,2.1,2
|
105 |
+
6.3,2.9,5.6,1.8,2
|
106 |
+
6.5,3.0,5.8,2.2,2
|
107 |
+
7.6,3.0,6.6,2.1,2
|
108 |
+
4.9,2.5,4.5,1.7,2
|
109 |
+
7.3,2.9,6.3,1.8,2
|
110 |
+
6.7,2.5,5.8,1.8,2
|
111 |
+
7.2,3.6,6.1,2.5,2
|
112 |
+
6.5,3.2,5.1,2.0,2
|
113 |
+
6.4,2.7,5.3,1.9,2
|
114 |
+
6.8,3.0,5.5,2.1,2
|
115 |
+
5.7,2.5,5.0,2.0,2
|
116 |
+
5.8,2.8,5.1,2.4,2
|
117 |
+
6.4,3.2,5.3,2.3,2
|
118 |
+
6.5,3.0,5.5,1.8,2
|
119 |
+
7.7,3.8,6.7,2.2,2
|
120 |
+
7.7,2.6,6.9,2.3,2
|
121 |
+
6.0,2.2,5.0,1.5,2
|
122 |
+
6.9,3.2,5.7,2.3,2
|
123 |
+
5.6,2.8,4.9,2.0,2
|
124 |
+
7.7,2.8,6.7,2.0,2
|
125 |
+
6.3,2.7,4.9,1.8,2
|
126 |
+
6.7,3.3,5.7,2.1,2
|
127 |
+
7.2,3.2,6.0,1.8,2
|
128 |
+
6.2,2.8,4.8,1.8,2
|
129 |
+
6.1,3.0,4.9,1.8,2
|
130 |
+
6.4,2.8,5.6,2.1,2
|
131 |
+
7.2,3.0,5.8,1.6,2
|
132 |
+
7.4,2.8,6.1,1.9,2
|
133 |
+
7.9,3.8,6.4,2.0,2
|
134 |
+
6.4,2.8,5.6,2.2,2
|
135 |
+
6.3,2.8,5.1,1.5,2
|
136 |
+
6.1,2.6,5.6,1.4,2
|
137 |
+
7.7,3.0,6.1,2.3,2
|
138 |
+
6.3,3.4,5.6,2.4,2
|
139 |
+
6.4,3.1,5.5,1.8,2
|
140 |
+
6.0,3.0,4.8,1.8,2
|
141 |
+
6.9,3.1,5.4,2.1,2
|
142 |
+
6.7,3.1,5.6,2.4,2
|
143 |
+
6.9,3.1,5.1,2.3,2
|
144 |
+
5.8,2.7,5.1,1.9,2
|
145 |
+
6.8,3.2,5.9,2.3,2
|
146 |
+
6.7,3.3,5.7,2.5,2
|
147 |
+
6.7,3.0,5.2,2.3,2
|
148 |
+
6.3,2.5,5.0,1.9,2
|
149 |
+
6.5,3.0,5.2,2.0,2
|
150 |
+
6.2,3.4,5.4,2.3,2
|
151 |
+
5.9,3.0,5.1,1.8,2
|
venv/lib/python3.10/site-packages/sklearn/datasets/data/linnerud_exercise.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Chins Situps Jumps
|
2 |
+
5 162 60
|
3 |
+
2 110 60
|
4 |
+
12 101 101
|
5 |
+
12 105 37
|
6 |
+
13 155 58
|
7 |
+
4 101 42
|
8 |
+
8 101 38
|
9 |
+
6 125 40
|
10 |
+
15 200 40
|
11 |
+
17 251 250
|
12 |
+
17 120 38
|
13 |
+
13 210 115
|
14 |
+
14 215 105
|
15 |
+
1 50 50
|
16 |
+
6 70 31
|
17 |
+
12 210 120
|
18 |
+
4 60 25
|
19 |
+
11 230 80
|
20 |
+
15 225 73
|
21 |
+
2 110 43
|
venv/lib/python3.10/site-packages/sklearn/datasets/data/linnerud_physiological.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Weight Waist Pulse
|
2 |
+
191 36 50
|
3 |
+
189 37 52
|
4 |
+
193 38 58
|
5 |
+
162 35 62
|
6 |
+
189 35 46
|
7 |
+
182 36 56
|
8 |
+
211 38 56
|
9 |
+
167 34 60
|
10 |
+
176 31 74
|
11 |
+
154 33 56
|
12 |
+
169 34 50
|
13 |
+
166 33 52
|
14 |
+
154 34 64
|
15 |
+
247 46 50
|
16 |
+
193 36 46
|
17 |
+
202 37 62
|
18 |
+
176 37 54
|
19 |
+
157 32 52
|
20 |
+
156 33 54
|
21 |
+
138 33 68
|
venv/lib/python3.10/site-packages/sklearn/datasets/data/wine_data.csv
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
178,13,class_0,class_1,class_2
|
2 |
+
14.23,1.71,2.43,15.6,127,2.8,3.06,0.28,2.29,5.64,1.04,3.92,1065,0
|
3 |
+
13.2,1.78,2.14,11.2,100,2.65,2.76,0.26,1.28,4.38,1.05,3.4,1050,0
|
4 |
+
13.16,2.36,2.67,18.6,101,2.8,3.24,0.3,2.81,5.68,1.03,3.17,1185,0
|
5 |
+
14.37,1.95,2.5,16.8,113,3.85,3.49,0.24,2.18,7.8,0.86,3.45,1480,0
|
6 |
+
13.24,2.59,2.87,21,118,2.8,2.69,0.39,1.82,4.32,1.04,2.93,735,0
|
7 |
+
14.2,1.76,2.45,15.2,112,3.27,3.39,0.34,1.97,6.75,1.05,2.85,1450,0
|
8 |
+
14.39,1.87,2.45,14.6,96,2.5,2.52,0.3,1.98,5.25,1.02,3.58,1290,0
|
9 |
+
14.06,2.15,2.61,17.6,121,2.6,2.51,0.31,1.25,5.05,1.06,3.58,1295,0
|
10 |
+
14.83,1.64,2.17,14,97,2.8,2.98,0.29,1.98,5.2,1.08,2.85,1045,0
|
11 |
+
13.86,1.35,2.27,16,98,2.98,3.15,0.22,1.85,7.22,1.01,3.55,1045,0
|
12 |
+
14.1,2.16,2.3,18,105,2.95,3.32,0.22,2.38,5.75,1.25,3.17,1510,0
|
13 |
+
14.12,1.48,2.32,16.8,95,2.2,2.43,0.26,1.57,5,1.17,2.82,1280,0
|
14 |
+
13.75,1.73,2.41,16,89,2.6,2.76,0.29,1.81,5.6,1.15,2.9,1320,0
|
15 |
+
14.75,1.73,2.39,11.4,91,3.1,3.69,0.43,2.81,5.4,1.25,2.73,1150,0
|
16 |
+
14.38,1.87,2.38,12,102,3.3,3.64,0.29,2.96,7.5,1.2,3,1547,0
|
17 |
+
13.63,1.81,2.7,17.2,112,2.85,2.91,0.3,1.46,7.3,1.28,2.88,1310,0
|
18 |
+
14.3,1.92,2.72,20,120,2.8,3.14,0.33,1.97,6.2,1.07,2.65,1280,0
|
19 |
+
13.83,1.57,2.62,20,115,2.95,3.4,0.4,1.72,6.6,1.13,2.57,1130,0
|
20 |
+
14.19,1.59,2.48,16.5,108,3.3,3.93,0.32,1.86,8.7,1.23,2.82,1680,0
|
21 |
+
13.64,3.1,2.56,15.2,116,2.7,3.03,0.17,1.66,5.1,0.96,3.36,845,0
|
22 |
+
14.06,1.63,2.28,16,126,3,3.17,0.24,2.1,5.65,1.09,3.71,780,0
|
23 |
+
12.93,3.8,2.65,18.6,102,2.41,2.41,0.25,1.98,4.5,1.03,3.52,770,0
|
24 |
+
13.71,1.86,2.36,16.6,101,2.61,2.88,0.27,1.69,3.8,1.11,4,1035,0
|
25 |
+
12.85,1.6,2.52,17.8,95,2.48,2.37,0.26,1.46,3.93,1.09,3.63,1015,0
|
26 |
+
13.5,1.81,2.61,20,96,2.53,2.61,0.28,1.66,3.52,1.12,3.82,845,0
|
27 |
+
13.05,2.05,3.22,25,124,2.63,2.68,0.47,1.92,3.58,1.13,3.2,830,0
|
28 |
+
13.39,1.77,2.62,16.1,93,2.85,2.94,0.34,1.45,4.8,0.92,3.22,1195,0
|
29 |
+
13.3,1.72,2.14,17,94,2.4,2.19,0.27,1.35,3.95,1.02,2.77,1285,0
|
30 |
+
13.87,1.9,2.8,19.4,107,2.95,2.97,0.37,1.76,4.5,1.25,3.4,915,0
|
31 |
+
14.02,1.68,2.21,16,96,2.65,2.33,0.26,1.98,4.7,1.04,3.59,1035,0
|
32 |
+
13.73,1.5,2.7,22.5,101,3,3.25,0.29,2.38,5.7,1.19,2.71,1285,0
|
33 |
+
13.58,1.66,2.36,19.1,106,2.86,3.19,0.22,1.95,6.9,1.09,2.88,1515,0
|
34 |
+
13.68,1.83,2.36,17.2,104,2.42,2.69,0.42,1.97,3.84,1.23,2.87,990,0
|
35 |
+
13.76,1.53,2.7,19.5,132,2.95,2.74,0.5,1.35,5.4,1.25,3,1235,0
|
36 |
+
13.51,1.8,2.65,19,110,2.35,2.53,0.29,1.54,4.2,1.1,2.87,1095,0
|
37 |
+
13.48,1.81,2.41,20.5,100,2.7,2.98,0.26,1.86,5.1,1.04,3.47,920,0
|
38 |
+
13.28,1.64,2.84,15.5,110,2.6,2.68,0.34,1.36,4.6,1.09,2.78,880,0
|
39 |
+
13.05,1.65,2.55,18,98,2.45,2.43,0.29,1.44,4.25,1.12,2.51,1105,0
|
40 |
+
13.07,1.5,2.1,15.5,98,2.4,2.64,0.28,1.37,3.7,1.18,2.69,1020,0
|
41 |
+
14.22,3.99,2.51,13.2,128,3,3.04,0.2,2.08,5.1,0.89,3.53,760,0
|
42 |
+
13.56,1.71,2.31,16.2,117,3.15,3.29,0.34,2.34,6.13,0.95,3.38,795,0
|
43 |
+
13.41,3.84,2.12,18.8,90,2.45,2.68,0.27,1.48,4.28,0.91,3,1035,0
|
44 |
+
13.88,1.89,2.59,15,101,3.25,3.56,0.17,1.7,5.43,0.88,3.56,1095,0
|
45 |
+
13.24,3.98,2.29,17.5,103,2.64,2.63,0.32,1.66,4.36,0.82,3,680,0
|
46 |
+
13.05,1.77,2.1,17,107,3,3,0.28,2.03,5.04,0.88,3.35,885,0
|
47 |
+
14.21,4.04,2.44,18.9,111,2.85,2.65,0.3,1.25,5.24,0.87,3.33,1080,0
|
48 |
+
14.38,3.59,2.28,16,102,3.25,3.17,0.27,2.19,4.9,1.04,3.44,1065,0
|
49 |
+
13.9,1.68,2.12,16,101,3.1,3.39,0.21,2.14,6.1,0.91,3.33,985,0
|
50 |
+
14.1,2.02,2.4,18.8,103,2.75,2.92,0.32,2.38,6.2,1.07,2.75,1060,0
|
51 |
+
13.94,1.73,2.27,17.4,108,2.88,3.54,0.32,2.08,8.9,1.12,3.1,1260,0
|
52 |
+
13.05,1.73,2.04,12.4,92,2.72,3.27,0.17,2.91,7.2,1.12,2.91,1150,0
|
53 |
+
13.83,1.65,2.6,17.2,94,2.45,2.99,0.22,2.29,5.6,1.24,3.37,1265,0
|
54 |
+
13.82,1.75,2.42,14,111,3.88,3.74,0.32,1.87,7.05,1.01,3.26,1190,0
|
55 |
+
13.77,1.9,2.68,17.1,115,3,2.79,0.39,1.68,6.3,1.13,2.93,1375,0
|
56 |
+
13.74,1.67,2.25,16.4,118,2.6,2.9,0.21,1.62,5.85,0.92,3.2,1060,0
|
57 |
+
13.56,1.73,2.46,20.5,116,2.96,2.78,0.2,2.45,6.25,0.98,3.03,1120,0
|
58 |
+
14.22,1.7,2.3,16.3,118,3.2,3,0.26,2.03,6.38,0.94,3.31,970,0
|
59 |
+
13.29,1.97,2.68,16.8,102,3,3.23,0.31,1.66,6,1.07,2.84,1270,0
|
60 |
+
13.72,1.43,2.5,16.7,108,3.4,3.67,0.19,2.04,6.8,0.89,2.87,1285,0
|
61 |
+
12.37,0.94,1.36,10.6,88,1.98,0.57,0.28,0.42,1.95,1.05,1.82,520,1
|
62 |
+
12.33,1.1,2.28,16,101,2.05,1.09,0.63,0.41,3.27,1.25,1.67,680,1
|
63 |
+
12.64,1.36,2.02,16.8,100,2.02,1.41,0.53,0.62,5.75,0.98,1.59,450,1
|
64 |
+
13.67,1.25,1.92,18,94,2.1,1.79,0.32,0.73,3.8,1.23,2.46,630,1
|
65 |
+
12.37,1.13,2.16,19,87,3.5,3.1,0.19,1.87,4.45,1.22,2.87,420,1
|
66 |
+
12.17,1.45,2.53,19,104,1.89,1.75,0.45,1.03,2.95,1.45,2.23,355,1
|
67 |
+
12.37,1.21,2.56,18.1,98,2.42,2.65,0.37,2.08,4.6,1.19,2.3,678,1
|
68 |
+
13.11,1.01,1.7,15,78,2.98,3.18,0.26,2.28,5.3,1.12,3.18,502,1
|
69 |
+
12.37,1.17,1.92,19.6,78,2.11,2,0.27,1.04,4.68,1.12,3.48,510,1
|
70 |
+
13.34,0.94,2.36,17,110,2.53,1.3,0.55,0.42,3.17,1.02,1.93,750,1
|
71 |
+
12.21,1.19,1.75,16.8,151,1.85,1.28,0.14,2.5,2.85,1.28,3.07,718,1
|
72 |
+
12.29,1.61,2.21,20.4,103,1.1,1.02,0.37,1.46,3.05,0.906,1.82,870,1
|
73 |
+
13.86,1.51,2.67,25,86,2.95,2.86,0.21,1.87,3.38,1.36,3.16,410,1
|
74 |
+
13.49,1.66,2.24,24,87,1.88,1.84,0.27,1.03,3.74,0.98,2.78,472,1
|
75 |
+
12.99,1.67,2.6,30,139,3.3,2.89,0.21,1.96,3.35,1.31,3.5,985,1
|
76 |
+
11.96,1.09,2.3,21,101,3.38,2.14,0.13,1.65,3.21,0.99,3.13,886,1
|
77 |
+
11.66,1.88,1.92,16,97,1.61,1.57,0.34,1.15,3.8,1.23,2.14,428,1
|
78 |
+
13.03,0.9,1.71,16,86,1.95,2.03,0.24,1.46,4.6,1.19,2.48,392,1
|
79 |
+
11.84,2.89,2.23,18,112,1.72,1.32,0.43,0.95,2.65,0.96,2.52,500,1
|
80 |
+
12.33,0.99,1.95,14.8,136,1.9,1.85,0.35,2.76,3.4,1.06,2.31,750,1
|
81 |
+
12.7,3.87,2.4,23,101,2.83,2.55,0.43,1.95,2.57,1.19,3.13,463,1
|
82 |
+
12,0.92,2,19,86,2.42,2.26,0.3,1.43,2.5,1.38,3.12,278,1
|
83 |
+
12.72,1.81,2.2,18.8,86,2.2,2.53,0.26,1.77,3.9,1.16,3.14,714,1
|
84 |
+
12.08,1.13,2.51,24,78,2,1.58,0.4,1.4,2.2,1.31,2.72,630,1
|
85 |
+
13.05,3.86,2.32,22.5,85,1.65,1.59,0.61,1.62,4.8,0.84,2.01,515,1
|
86 |
+
11.84,0.89,2.58,18,94,2.2,2.21,0.22,2.35,3.05,0.79,3.08,520,1
|
87 |
+
12.67,0.98,2.24,18,99,2.2,1.94,0.3,1.46,2.62,1.23,3.16,450,1
|
88 |
+
12.16,1.61,2.31,22.8,90,1.78,1.69,0.43,1.56,2.45,1.33,2.26,495,1
|
89 |
+
11.65,1.67,2.62,26,88,1.92,1.61,0.4,1.34,2.6,1.36,3.21,562,1
|
90 |
+
11.64,2.06,2.46,21.6,84,1.95,1.69,0.48,1.35,2.8,1,2.75,680,1
|
91 |
+
12.08,1.33,2.3,23.6,70,2.2,1.59,0.42,1.38,1.74,1.07,3.21,625,1
|
92 |
+
12.08,1.83,2.32,18.5,81,1.6,1.5,0.52,1.64,2.4,1.08,2.27,480,1
|
93 |
+
12,1.51,2.42,22,86,1.45,1.25,0.5,1.63,3.6,1.05,2.65,450,1
|
94 |
+
12.69,1.53,2.26,20.7,80,1.38,1.46,0.58,1.62,3.05,0.96,2.06,495,1
|
95 |
+
12.29,2.83,2.22,18,88,2.45,2.25,0.25,1.99,2.15,1.15,3.3,290,1
|
96 |
+
11.62,1.99,2.28,18,98,3.02,2.26,0.17,1.35,3.25,1.16,2.96,345,1
|
97 |
+
12.47,1.52,2.2,19,162,2.5,2.27,0.32,3.28,2.6,1.16,2.63,937,1
|
98 |
+
11.81,2.12,2.74,21.5,134,1.6,0.99,0.14,1.56,2.5,0.95,2.26,625,1
|
99 |
+
12.29,1.41,1.98,16,85,2.55,2.5,0.29,1.77,2.9,1.23,2.74,428,1
|
100 |
+
12.37,1.07,2.1,18.5,88,3.52,3.75,0.24,1.95,4.5,1.04,2.77,660,1
|
101 |
+
12.29,3.17,2.21,18,88,2.85,2.99,0.45,2.81,2.3,1.42,2.83,406,1
|
102 |
+
12.08,2.08,1.7,17.5,97,2.23,2.17,0.26,1.4,3.3,1.27,2.96,710,1
|
103 |
+
12.6,1.34,1.9,18.5,88,1.45,1.36,0.29,1.35,2.45,1.04,2.77,562,1
|
104 |
+
12.34,2.45,2.46,21,98,2.56,2.11,0.34,1.31,2.8,0.8,3.38,438,1
|
105 |
+
11.82,1.72,1.88,19.5,86,2.5,1.64,0.37,1.42,2.06,0.94,2.44,415,1
|
106 |
+
12.51,1.73,1.98,20.5,85,2.2,1.92,0.32,1.48,2.94,1.04,3.57,672,1
|
107 |
+
12.42,2.55,2.27,22,90,1.68,1.84,0.66,1.42,2.7,0.86,3.3,315,1
|
108 |
+
12.25,1.73,2.12,19,80,1.65,2.03,0.37,1.63,3.4,1,3.17,510,1
|
109 |
+
12.72,1.75,2.28,22.5,84,1.38,1.76,0.48,1.63,3.3,0.88,2.42,488,1
|
110 |
+
12.22,1.29,1.94,19,92,2.36,2.04,0.39,2.08,2.7,0.86,3.02,312,1
|
111 |
+
11.61,1.35,2.7,20,94,2.74,2.92,0.29,2.49,2.65,0.96,3.26,680,1
|
112 |
+
11.46,3.74,1.82,19.5,107,3.18,2.58,0.24,3.58,2.9,0.75,2.81,562,1
|
113 |
+
12.52,2.43,2.17,21,88,2.55,2.27,0.26,1.22,2,0.9,2.78,325,1
|
114 |
+
11.76,2.68,2.92,20,103,1.75,2.03,0.6,1.05,3.8,1.23,2.5,607,1
|
115 |
+
11.41,0.74,2.5,21,88,2.48,2.01,0.42,1.44,3.08,1.1,2.31,434,1
|
116 |
+
12.08,1.39,2.5,22.5,84,2.56,2.29,0.43,1.04,2.9,0.93,3.19,385,1
|
117 |
+
11.03,1.51,2.2,21.5,85,2.46,2.17,0.52,2.01,1.9,1.71,2.87,407,1
|
118 |
+
11.82,1.47,1.99,20.8,86,1.98,1.6,0.3,1.53,1.95,0.95,3.33,495,1
|
119 |
+
12.42,1.61,2.19,22.5,108,2,2.09,0.34,1.61,2.06,1.06,2.96,345,1
|
120 |
+
12.77,3.43,1.98,16,80,1.63,1.25,0.43,0.83,3.4,0.7,2.12,372,1
|
121 |
+
12,3.43,2,19,87,2,1.64,0.37,1.87,1.28,0.93,3.05,564,1
|
122 |
+
11.45,2.4,2.42,20,96,2.9,2.79,0.32,1.83,3.25,0.8,3.39,625,1
|
123 |
+
11.56,2.05,3.23,28.5,119,3.18,5.08,0.47,1.87,6,0.93,3.69,465,1
|
124 |
+
12.42,4.43,2.73,26.5,102,2.2,2.13,0.43,1.71,2.08,0.92,3.12,365,1
|
125 |
+
13.05,5.8,2.13,21.5,86,2.62,2.65,0.3,2.01,2.6,0.73,3.1,380,1
|
126 |
+
11.87,4.31,2.39,21,82,2.86,3.03,0.21,2.91,2.8,0.75,3.64,380,1
|
127 |
+
12.07,2.16,2.17,21,85,2.6,2.65,0.37,1.35,2.76,0.86,3.28,378,1
|
128 |
+
12.43,1.53,2.29,21.5,86,2.74,3.15,0.39,1.77,3.94,0.69,2.84,352,1
|
129 |
+
11.79,2.13,2.78,28.5,92,2.13,2.24,0.58,1.76,3,0.97,2.44,466,1
|
130 |
+
12.37,1.63,2.3,24.5,88,2.22,2.45,0.4,1.9,2.12,0.89,2.78,342,1
|
131 |
+
12.04,4.3,2.38,22,80,2.1,1.75,0.42,1.35,2.6,0.79,2.57,580,1
|
132 |
+
12.86,1.35,2.32,18,122,1.51,1.25,0.21,0.94,4.1,0.76,1.29,630,2
|
133 |
+
12.88,2.99,2.4,20,104,1.3,1.22,0.24,0.83,5.4,0.74,1.42,530,2
|
134 |
+
12.81,2.31,2.4,24,98,1.15,1.09,0.27,0.83,5.7,0.66,1.36,560,2
|
135 |
+
12.7,3.55,2.36,21.5,106,1.7,1.2,0.17,0.84,5,0.78,1.29,600,2
|
136 |
+
12.51,1.24,2.25,17.5,85,2,0.58,0.6,1.25,5.45,0.75,1.51,650,2
|
137 |
+
12.6,2.46,2.2,18.5,94,1.62,0.66,0.63,0.94,7.1,0.73,1.58,695,2
|
138 |
+
12.25,4.72,2.54,21,89,1.38,0.47,0.53,0.8,3.85,0.75,1.27,720,2
|
139 |
+
12.53,5.51,2.64,25,96,1.79,0.6,0.63,1.1,5,0.82,1.69,515,2
|
140 |
+
13.49,3.59,2.19,19.5,88,1.62,0.48,0.58,0.88,5.7,0.81,1.82,580,2
|
141 |
+
12.84,2.96,2.61,24,101,2.32,0.6,0.53,0.81,4.92,0.89,2.15,590,2
|
142 |
+
12.93,2.81,2.7,21,96,1.54,0.5,0.53,0.75,4.6,0.77,2.31,600,2
|
143 |
+
13.36,2.56,2.35,20,89,1.4,0.5,0.37,0.64,5.6,0.7,2.47,780,2
|
144 |
+
13.52,3.17,2.72,23.5,97,1.55,0.52,0.5,0.55,4.35,0.89,2.06,520,2
|
145 |
+
13.62,4.95,2.35,20,92,2,0.8,0.47,1.02,4.4,0.91,2.05,550,2
|
146 |
+
12.25,3.88,2.2,18.5,112,1.38,0.78,0.29,1.14,8.21,0.65,2,855,2
|
147 |
+
13.16,3.57,2.15,21,102,1.5,0.55,0.43,1.3,4,0.6,1.68,830,2
|
148 |
+
13.88,5.04,2.23,20,80,0.98,0.34,0.4,0.68,4.9,0.58,1.33,415,2
|
149 |
+
12.87,4.61,2.48,21.5,86,1.7,0.65,0.47,0.86,7.65,0.54,1.86,625,2
|
150 |
+
13.32,3.24,2.38,21.5,92,1.93,0.76,0.45,1.25,8.42,0.55,1.62,650,2
|
151 |
+
13.08,3.9,2.36,21.5,113,1.41,1.39,0.34,1.14,9.4,0.57,1.33,550,2
|
152 |
+
13.5,3.12,2.62,24,123,1.4,1.57,0.22,1.25,8.6,0.59,1.3,500,2
|
153 |
+
12.79,2.67,2.48,22,112,1.48,1.36,0.24,1.26,10.8,0.48,1.47,480,2
|
154 |
+
13.11,1.9,2.75,25.5,116,2.2,1.28,0.26,1.56,7.1,0.61,1.33,425,2
|
155 |
+
13.23,3.3,2.28,18.5,98,1.8,0.83,0.61,1.87,10.52,0.56,1.51,675,2
|
156 |
+
12.58,1.29,2.1,20,103,1.48,0.58,0.53,1.4,7.6,0.58,1.55,640,2
|
157 |
+
13.17,5.19,2.32,22,93,1.74,0.63,0.61,1.55,7.9,0.6,1.48,725,2
|
158 |
+
13.84,4.12,2.38,19.5,89,1.8,0.83,0.48,1.56,9.01,0.57,1.64,480,2
|
159 |
+
12.45,3.03,2.64,27,97,1.9,0.58,0.63,1.14,7.5,0.67,1.73,880,2
|
160 |
+
14.34,1.68,2.7,25,98,2.8,1.31,0.53,2.7,13,0.57,1.96,660,2
|
161 |
+
13.48,1.67,2.64,22.5,89,2.6,1.1,0.52,2.29,11.75,0.57,1.78,620,2
|
162 |
+
12.36,3.83,2.38,21,88,2.3,0.92,0.5,1.04,7.65,0.56,1.58,520,2
|
163 |
+
13.69,3.26,2.54,20,107,1.83,0.56,0.5,0.8,5.88,0.96,1.82,680,2
|
164 |
+
12.85,3.27,2.58,22,106,1.65,0.6,0.6,0.96,5.58,0.87,2.11,570,2
|
165 |
+
12.96,3.45,2.35,18.5,106,1.39,0.7,0.4,0.94,5.28,0.68,1.75,675,2
|
166 |
+
13.78,2.76,2.3,22,90,1.35,0.68,0.41,1.03,9.58,0.7,1.68,615,2
|
167 |
+
13.73,4.36,2.26,22.5,88,1.28,0.47,0.52,1.15,6.62,0.78,1.75,520,2
|
168 |
+
13.45,3.7,2.6,23,111,1.7,0.92,0.43,1.46,10.68,0.85,1.56,695,2
|
169 |
+
12.82,3.37,2.3,19.5,88,1.48,0.66,0.4,0.97,10.26,0.72,1.75,685,2
|
170 |
+
13.58,2.58,2.69,24.5,105,1.55,0.84,0.39,1.54,8.66,0.74,1.8,750,2
|
171 |
+
13.4,4.6,2.86,25,112,1.98,0.96,0.27,1.11,8.5,0.67,1.92,630,2
|
172 |
+
12.2,3.03,2.32,19,96,1.25,0.49,0.4,0.73,5.5,0.66,1.83,510,2
|
173 |
+
12.77,2.39,2.28,19.5,86,1.39,0.51,0.48,0.64,9.899999,0.57,1.63,470,2
|
174 |
+
14.16,2.51,2.48,20,91,1.68,0.7,0.44,1.24,9.7,0.62,1.71,660,2
|
175 |
+
13.71,5.65,2.45,20.5,95,1.68,0.61,0.52,1.06,7.7,0.64,1.74,740,2
|
176 |
+
13.4,3.91,2.48,23,102,1.8,0.75,0.43,1.41,7.3,0.7,1.56,750,2
|
177 |
+
13.27,4.28,2.26,20,120,1.59,0.69,0.43,1.35,10.2,0.59,1.56,835,2
|
178 |
+
13.17,2.59,2.37,20,120,1.65,0.68,0.53,1.46,9.3,0.6,1.62,840,2
|
179 |
+
14.13,4.1,2.74,24.5,96,2.05,0.76,0.56,1.35,9.2,0.61,1.6,560,2
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (190 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/breast_cancer.rst
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _breast_cancer_dataset:
|
2 |
+
|
3 |
+
Breast cancer wisconsin (diagnostic) dataset
|
4 |
+
--------------------------------------------
|
5 |
+
|
6 |
+
**Data Set Characteristics:**
|
7 |
+
|
8 |
+
:Number of Instances: 569
|
9 |
+
|
10 |
+
:Number of Attributes: 30 numeric, predictive attributes and the class
|
11 |
+
|
12 |
+
:Attribute Information:
|
13 |
+
- radius (mean of distances from center to points on the perimeter)
|
14 |
+
- texture (standard deviation of gray-scale values)
|
15 |
+
- perimeter
|
16 |
+
- area
|
17 |
+
- smoothness (local variation in radius lengths)
|
18 |
+
- compactness (perimeter^2 / area - 1.0)
|
19 |
+
- concavity (severity of concave portions of the contour)
|
20 |
+
- concave points (number of concave portions of the contour)
|
21 |
+
- symmetry
|
22 |
+
- fractal dimension ("coastline approximation" - 1)
|
23 |
+
|
24 |
+
The mean, standard error, and "worst" or largest (mean of the three
|
25 |
+
worst/largest values) of these features were computed for each image,
|
26 |
+
resulting in 30 features. For instance, field 0 is Mean Radius, field
|
27 |
+
10 is Radius SE, field 20 is Worst Radius.
|
28 |
+
|
29 |
+
- class:
|
30 |
+
- WDBC-Malignant
|
31 |
+
- WDBC-Benign
|
32 |
+
|
33 |
+
:Summary Statistics:
|
34 |
+
|
35 |
+
===================================== ====== ======
|
36 |
+
Min Max
|
37 |
+
===================================== ====== ======
|
38 |
+
radius (mean): 6.981 28.11
|
39 |
+
texture (mean): 9.71 39.28
|
40 |
+
perimeter (mean): 43.79 188.5
|
41 |
+
area (mean): 143.5 2501.0
|
42 |
+
smoothness (mean): 0.053 0.163
|
43 |
+
compactness (mean): 0.019 0.345
|
44 |
+
concavity (mean): 0.0 0.427
|
45 |
+
concave points (mean): 0.0 0.201
|
46 |
+
symmetry (mean): 0.106 0.304
|
47 |
+
fractal dimension (mean): 0.05 0.097
|
48 |
+
radius (standard error): 0.112 2.873
|
49 |
+
texture (standard error): 0.36 4.885
|
50 |
+
perimeter (standard error): 0.757 21.98
|
51 |
+
area (standard error): 6.802 542.2
|
52 |
+
smoothness (standard error): 0.002 0.031
|
53 |
+
compactness (standard error): 0.002 0.135
|
54 |
+
concavity (standard error): 0.0 0.396
|
55 |
+
concave points (standard error): 0.0 0.053
|
56 |
+
symmetry (standard error): 0.008 0.079
|
57 |
+
fractal dimension (standard error): 0.001 0.03
|
58 |
+
radius (worst): 7.93 36.04
|
59 |
+
texture (worst): 12.02 49.54
|
60 |
+
perimeter (worst): 50.41 251.2
|
61 |
+
area (worst): 185.2 4254.0
|
62 |
+
smoothness (worst): 0.071 0.223
|
63 |
+
compactness (worst): 0.027 1.058
|
64 |
+
concavity (worst): 0.0 1.252
|
65 |
+
concave points (worst): 0.0 0.291
|
66 |
+
symmetry (worst): 0.156 0.664
|
67 |
+
fractal dimension (worst): 0.055 0.208
|
68 |
+
===================================== ====== ======
|
69 |
+
|
70 |
+
:Missing Attribute Values: None
|
71 |
+
|
72 |
+
:Class Distribution: 212 - Malignant, 357 - Benign
|
73 |
+
|
74 |
+
:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian
|
75 |
+
|
76 |
+
:Donor: Nick Street
|
77 |
+
|
78 |
+
:Date: November, 1995
|
79 |
+
|
80 |
+
This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.
|
81 |
+
https://goo.gl/U2Uwz2
|
82 |
+
|
83 |
+
Features are computed from a digitized image of a fine needle
|
84 |
+
aspirate (FNA) of a breast mass. They describe
|
85 |
+
characteristics of the cell nuclei present in the image.
|
86 |
+
|
87 |
+
Separating plane described above was obtained using
|
88 |
+
Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree
|
89 |
+
Construction Via Linear Programming." Proceedings of the 4th
|
90 |
+
Midwest Artificial Intelligence and Cognitive Science Society,
|
91 |
+
pp. 97-101, 1992], a classification method which uses linear
|
92 |
+
programming to construct a decision tree. Relevant features
|
93 |
+
were selected using an exhaustive search in the space of 1-4
|
94 |
+
features and 1-3 separating planes.
|
95 |
+
|
96 |
+
The actual linear program used to obtain the separating plane
|
97 |
+
in the 3-dimensional space is that described in:
|
98 |
+
[K. P. Bennett and O. L. Mangasarian: "Robust Linear
|
99 |
+
Programming Discrimination of Two Linearly Inseparable Sets",
|
100 |
+
Optimization Methods and Software 1, 1992, 23-34].
|
101 |
+
|
102 |
+
This database is also available through the UW CS ftp server:
|
103 |
+
|
104 |
+
ftp ftp.cs.wisc.edu
|
105 |
+
cd math-prog/cpo-dataset/machine-learn/WDBC/
|
106 |
+
|
107 |
+
|details-start|
|
108 |
+
**References**
|
109 |
+
|details-split|
|
110 |
+
|
111 |
+
- W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction
|
112 |
+
for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on
|
113 |
+
Electronic Imaging: Science and Technology, volume 1905, pages 861-870,
|
114 |
+
San Jose, CA, 1993.
|
115 |
+
- O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and
|
116 |
+
prognosis via linear programming. Operations Research, 43(4), pages 570-577,
|
117 |
+
July-August 1995.
|
118 |
+
- W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques
|
119 |
+
to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994)
|
120 |
+
163-171.
|
121 |
+
|
122 |
+
|details-end|
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/california_housing.rst
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _california_housing_dataset:
|
2 |
+
|
3 |
+
California Housing dataset
|
4 |
+
--------------------------
|
5 |
+
|
6 |
+
**Data Set Characteristics:**
|
7 |
+
|
8 |
+
:Number of Instances: 20640
|
9 |
+
|
10 |
+
:Number of Attributes: 8 numeric, predictive attributes and the target
|
11 |
+
|
12 |
+
:Attribute Information:
|
13 |
+
- MedInc median income in block group
|
14 |
+
- HouseAge median house age in block group
|
15 |
+
- AveRooms average number of rooms per household
|
16 |
+
- AveBedrms average number of bedrooms per household
|
17 |
+
- Population block group population
|
18 |
+
- AveOccup average number of household members
|
19 |
+
- Latitude block group latitude
|
20 |
+
- Longitude block group longitude
|
21 |
+
|
22 |
+
:Missing Attribute Values: None
|
23 |
+
|
24 |
+
This dataset was obtained from the StatLib repository.
|
25 |
+
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
|
26 |
+
|
27 |
+
The target variable is the median house value for California districts,
|
28 |
+
expressed in hundreds of thousands of dollars ($100,000).
|
29 |
+
|
30 |
+
This dataset was derived from the 1990 U.S. census, using one row per census
|
31 |
+
block group. A block group is the smallest geographical unit for which the U.S.
|
32 |
+
Census Bureau publishes sample data (a block group typically has a population
|
33 |
+
of 600 to 3,000 people).
|
34 |
+
|
35 |
+
A household is a group of people residing within a home. Since the average
|
36 |
+
number of rooms and bedrooms in this dataset are provided per household, these
|
37 |
+
columns may take surprisingly large values for block groups with few households
|
38 |
+
and many empty houses, such as vacation resorts.
|
39 |
+
|
40 |
+
It can be downloaded/loaded using the
|
41 |
+
:func:`sklearn.datasets.fetch_california_housing` function.
|
42 |
+
|
43 |
+
.. topic:: References
|
44 |
+
|
45 |
+
- Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
|
46 |
+
Statistics and Probability Letters, 33 (1997) 291-297
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/covtype.rst
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _covtype_dataset:
|
2 |
+
|
3 |
+
Forest covertypes
|
4 |
+
-----------------
|
5 |
+
|
6 |
+
The samples in this dataset correspond to 30×30m patches of forest in the US,
|
7 |
+
collected for the task of predicting each patch's cover type,
|
8 |
+
i.e. the dominant species of tree.
|
9 |
+
There are seven covertypes, making this a multiclass classification problem.
|
10 |
+
Each sample has 54 features, described on the
|
11 |
+
`dataset's homepage <https://archive.ics.uci.edu/ml/datasets/Covertype>`__.
|
12 |
+
Some of the features are boolean indicators,
|
13 |
+
while others are discrete or continuous measurements.
|
14 |
+
|
15 |
+
**Data Set Characteristics:**
|
16 |
+
|
17 |
+
================= ============
|
18 |
+
Classes 7
|
19 |
+
Samples total 581012
|
20 |
+
Dimensionality 54
|
21 |
+
Features int
|
22 |
+
================= ============
|
23 |
+
|
24 |
+
:func:`sklearn.datasets.fetch_covtype` will load the covertype dataset;
|
25 |
+
it returns a dictionary-like 'Bunch' object
|
26 |
+
with the feature matrix in the ``data`` member
|
27 |
+
and the target values in ``target``. If optional argument 'as_frame' is
|
28 |
+
set to 'True', it will return ``data`` and ``target`` as pandas
|
29 |
+
data frame, and there will be an additional member ``frame`` as well.
|
30 |
+
The dataset will be downloaded from the web if necessary.
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/diabetes.rst
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _diabetes_dataset:
|
2 |
+
|
3 |
+
Diabetes dataset
|
4 |
+
----------------
|
5 |
+
|
6 |
+
Ten baseline variables, age, sex, body mass index, average blood
|
7 |
+
pressure, and six blood serum measurements were obtained for each of n =
|
8 |
+
442 diabetes patients, as well as the response of interest, a
|
9 |
+
quantitative measure of disease progression one year after baseline.
|
10 |
+
|
11 |
+
**Data Set Characteristics:**
|
12 |
+
|
13 |
+
:Number of Instances: 442
|
14 |
+
|
15 |
+
:Number of Attributes: First 10 columns are numeric predictive values
|
16 |
+
|
17 |
+
:Target: Column 11 is a quantitative measure of disease progression one year after baseline
|
18 |
+
|
19 |
+
:Attribute Information:
|
20 |
+
- age age in years
|
21 |
+
- sex
|
22 |
+
- bmi body mass index
|
23 |
+
- bp average blood pressure
|
24 |
+
- s1 tc, total serum cholesterol
|
25 |
+
- s2 ldl, low-density lipoproteins
|
26 |
+
- s3 hdl, high-density lipoproteins
|
27 |
+
- s4 tch, total cholesterol / HDL
|
28 |
+
- s5 ltg, possibly log of serum triglycerides level
|
29 |
+
- s6 glu, blood sugar level
|
30 |
+
|
31 |
+
Note: Each of these 10 feature variables have been mean centered and scaled by the standard deviation times the square root of `n_samples` (i.e. the sum of squares of each column totals 1).
|
32 |
+
|
33 |
+
Source URL:
|
34 |
+
https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
|
35 |
+
|
36 |
+
For more information see:
|
37 |
+
Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) "Least Angle Regression," Annals of Statistics (with discussion), 407-499.
|
38 |
+
(https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf)
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/digits.rst
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _digits_dataset:
|
2 |
+
|
3 |
+
Optical recognition of handwritten digits dataset
|
4 |
+
--------------------------------------------------
|
5 |
+
|
6 |
+
**Data Set Characteristics:**
|
7 |
+
|
8 |
+
:Number of Instances: 1797
|
9 |
+
:Number of Attributes: 64
|
10 |
+
:Attribute Information: 8x8 image of integer pixels in the range 0..16.
|
11 |
+
:Missing Attribute Values: None
|
12 |
+
:Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)
|
13 |
+
:Date: July; 1998
|
14 |
+
|
15 |
+
This is a copy of the test set of the UCI ML hand-written digits datasets
|
16 |
+
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
|
17 |
+
|
18 |
+
The data set contains images of hand-written digits: 10 classes where
|
19 |
+
each class refers to a digit.
|
20 |
+
|
21 |
+
Preprocessing programs made available by NIST were used to extract
|
22 |
+
normalized bitmaps of handwritten digits from a preprinted form. From a
|
23 |
+
total of 43 people, 30 contributed to the training set and different 13
|
24 |
+
to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of
|
25 |
+
4x4 and the number of on pixels are counted in each block. This generates
|
26 |
+
an input matrix of 8x8 where each element is an integer in the range
|
27 |
+
0..16. This reduces dimensionality and gives invariance to small
|
28 |
+
distortions.
|
29 |
+
|
30 |
+
For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.
|
31 |
+
T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.
|
32 |
+
L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,
|
33 |
+
1994.
|
34 |
+
|
35 |
+
|details-start|
|
36 |
+
**References**
|
37 |
+
|details-split|
|
38 |
+
|
39 |
+
- C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their
|
40 |
+
Applications to Handwritten Digit Recognition, MSc Thesis, Institute of
|
41 |
+
Graduate Studies in Science and Engineering, Bogazici University.
|
42 |
+
- E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.
|
43 |
+
- Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.
|
44 |
+
Linear dimensionalityreduction using relevance weighted LDA. School of
|
45 |
+
Electrical and Electronic Engineering Nanyang Technological University.
|
46 |
+
2005.
|
47 |
+
- Claudio Gentile. A New Approximate Maximal Margin Classification
|
48 |
+
Algorithm. NIPS. 2000.
|
49 |
+
|
50 |
+
|details-end|
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/iris.rst
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _iris_dataset:
|
2 |
+
|
3 |
+
Iris plants dataset
|
4 |
+
--------------------
|
5 |
+
|
6 |
+
**Data Set Characteristics:**
|
7 |
+
|
8 |
+
:Number of Instances: 150 (50 in each of three classes)
|
9 |
+
:Number of Attributes: 4 numeric, predictive attributes and the class
|
10 |
+
:Attribute Information:
|
11 |
+
- sepal length in cm
|
12 |
+
- sepal width in cm
|
13 |
+
- petal length in cm
|
14 |
+
- petal width in cm
|
15 |
+
- class:
|
16 |
+
- Iris-Setosa
|
17 |
+
- Iris-Versicolour
|
18 |
+
- Iris-Virginica
|
19 |
+
|
20 |
+
:Summary Statistics:
|
21 |
+
|
22 |
+
============== ==== ==== ======= ===== ====================
|
23 |
+
Min Max Mean SD Class Correlation
|
24 |
+
============== ==== ==== ======= ===== ====================
|
25 |
+
sepal length: 4.3 7.9 5.84 0.83 0.7826
|
26 |
+
sepal width: 2.0 4.4 3.05 0.43 -0.4194
|
27 |
+
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
|
28 |
+
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
|
29 |
+
============== ==== ==== ======= ===== ====================
|
30 |
+
|
31 |
+
:Missing Attribute Values: None
|
32 |
+
:Class Distribution: 33.3% for each of 3 classes.
|
33 |
+
:Creator: R.A. Fisher
|
34 |
+
:Donor: Michael Marshall (MARSHALL%[email protected])
|
35 |
+
:Date: July, 1988
|
36 |
+
|
37 |
+
The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
|
38 |
+
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
|
39 |
+
Machine Learning Repository, which has two wrong data points.
|
40 |
+
|
41 |
+
This is perhaps the best known database to be found in the
|
42 |
+
pattern recognition literature. Fisher's paper is a classic in the field and
|
43 |
+
is referenced frequently to this day. (See Duda & Hart, for example.) The
|
44 |
+
data set contains 3 classes of 50 instances each, where each class refers to a
|
45 |
+
type of iris plant. One class is linearly separable from the other 2; the
|
46 |
+
latter are NOT linearly separable from each other.
|
47 |
+
|
48 |
+
|details-start|
|
49 |
+
**References**
|
50 |
+
|details-split|
|
51 |
+
|
52 |
+
- Fisher, R.A. "The use of multiple measurements in taxonomic problems"
|
53 |
+
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
|
54 |
+
Mathematical Statistics" (John Wiley, NY, 1950).
|
55 |
+
- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
|
56 |
+
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
|
57 |
+
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
|
58 |
+
Structure and Classification Rule for Recognition in Partially Exposed
|
59 |
+
Environments". IEEE Transactions on Pattern Analysis and Machine
|
60 |
+
Intelligence, Vol. PAMI-2, No. 1, 67-71.
|
61 |
+
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
|
62 |
+
on Information Theory, May 1972, 431-433.
|
63 |
+
- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
|
64 |
+
conceptual clustering system finds 3 classes in the data.
|
65 |
+
- Many, many more ...
|
66 |
+
|
67 |
+
|details-end|
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/kddcup99.rst
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _kddcup99_dataset:
|
2 |
+
|
3 |
+
Kddcup 99 dataset
|
4 |
+
-----------------
|
5 |
+
|
6 |
+
The KDD Cup '99 dataset was created by processing the tcpdump portions
|
7 |
+
of the 1998 DARPA Intrusion Detection System (IDS) Evaluation dataset,
|
8 |
+
created by MIT Lincoln Lab [2]_. The artificial data (described on the `dataset's
|
9 |
+
homepage <https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html>`_) was
|
10 |
+
generated using a closed network and hand-injected attacks to produce a
|
11 |
+
large number of different types of attack with normal activity in the
|
12 |
+
background. As the initial goal was to produce a large training set for
|
13 |
+
supervised learning algorithms, there is a large proportion (80.1%) of
|
14 |
+
abnormal data which is unrealistic in real world, and inappropriate for
|
15 |
+
unsupervised anomaly detection which aims at detecting 'abnormal' data, i.e.:
|
16 |
+
|
17 |
+
* qualitatively different from normal data
|
18 |
+
* in large minority among the observations.
|
19 |
+
|
20 |
+
We thus transform the KDD Data set into two different data sets: SA and SF.
|
21 |
+
|
22 |
+
* SA is obtained by simply selecting all the normal data, and a small
|
23 |
+
proportion of abnormal data to gives an anomaly proportion of 1%.
|
24 |
+
|
25 |
+
* SF is obtained as in [3]_
|
26 |
+
by simply picking up the data whose attribute logged_in is positive, thus
|
27 |
+
focusing on the intrusion attack, which gives a proportion of 0.3% of
|
28 |
+
attack.
|
29 |
+
|
30 |
+
* http and smtp are two subsets of SF corresponding with third feature
|
31 |
+
equal to 'http' (resp. to 'smtp').
|
32 |
+
|
33 |
+
General KDD structure:
|
34 |
+
|
35 |
+
================ ==========================================
|
36 |
+
Samples total 4898431
|
37 |
+
Dimensionality 41
|
38 |
+
Features discrete (int) or continuous (float)
|
39 |
+
Targets str, 'normal.' or name of the anomaly type
|
40 |
+
================ ==========================================
|
41 |
+
|
42 |
+
SA structure:
|
43 |
+
|
44 |
+
================ ==========================================
|
45 |
+
Samples total 976158
|
46 |
+
Dimensionality 41
|
47 |
+
Features discrete (int) or continuous (float)
|
48 |
+
Targets str, 'normal.' or name of the anomaly type
|
49 |
+
================ ==========================================
|
50 |
+
|
51 |
+
SF structure:
|
52 |
+
|
53 |
+
================ ==========================================
|
54 |
+
Samples total 699691
|
55 |
+
Dimensionality 4
|
56 |
+
Features discrete (int) or continuous (float)
|
57 |
+
Targets str, 'normal.' or name of the anomaly type
|
58 |
+
================ ==========================================
|
59 |
+
|
60 |
+
http structure:
|
61 |
+
|
62 |
+
================ ==========================================
|
63 |
+
Samples total 619052
|
64 |
+
Dimensionality 3
|
65 |
+
Features discrete (int) or continuous (float)
|
66 |
+
Targets str, 'normal.' or name of the anomaly type
|
67 |
+
================ ==========================================
|
68 |
+
|
69 |
+
smtp structure:
|
70 |
+
|
71 |
+
================ ==========================================
|
72 |
+
Samples total 95373
|
73 |
+
Dimensionality 3
|
74 |
+
Features discrete (int) or continuous (float)
|
75 |
+
Targets str, 'normal.' or name of the anomaly type
|
76 |
+
================ ==========================================
|
77 |
+
|
78 |
+
:func:`sklearn.datasets.fetch_kddcup99` will load the kddcup99 dataset; it
|
79 |
+
returns a dictionary-like object with the feature matrix in the ``data`` member
|
80 |
+
and the target values in ``target``. The "as_frame" optional argument converts
|
81 |
+
``data`` into a pandas DataFrame and ``target`` into a pandas Series. The
|
82 |
+
dataset will be downloaded from the web if necessary.
|
83 |
+
|
84 |
+
.. topic:: References
|
85 |
+
|
86 |
+
.. [2] Analysis and Results of the 1999 DARPA Off-Line Intrusion
|
87 |
+
Detection Evaluation, Richard Lippmann, Joshua W. Haines,
|
88 |
+
David J. Fried, Jonathan Korba, Kumar Das.
|
89 |
+
|
90 |
+
.. [3] K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne. Online
|
91 |
+
unsupervised outlier detection using finite mixtures with
|
92 |
+
discounting learning algorithms. In Proceedings of the sixth
|
93 |
+
ACM SIGKDD international conference on Knowledge discovery
|
94 |
+
and data mining, pages 320-324. ACM Press, 2000.
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/lfw.rst
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _labeled_faces_in_the_wild_dataset:
|
2 |
+
|
3 |
+
The Labeled Faces in the Wild face recognition dataset
|
4 |
+
------------------------------------------------------
|
5 |
+
|
6 |
+
This dataset is a collection of JPEG pictures of famous people collected
|
7 |
+
over the internet, all details are available on the official website:
|
8 |
+
|
9 |
+
http://vis-www.cs.umass.edu/lfw/
|
10 |
+
|
11 |
+
Each picture is centered on a single face. The typical task is called
|
12 |
+
Face Verification: given a pair of two pictures, a binary classifier
|
13 |
+
must predict whether the two images are from the same person.
|
14 |
+
|
15 |
+
An alternative task, Face Recognition or Face Identification is:
|
16 |
+
given the picture of the face of an unknown person, identify the name
|
17 |
+
of the person by referring to a gallery of previously seen pictures of
|
18 |
+
identified persons.
|
19 |
+
|
20 |
+
Both Face Verification and Face Recognition are tasks that are typically
|
21 |
+
performed on the output of a model trained to perform Face Detection. The
|
22 |
+
most popular model for Face Detection is called Viola-Jones and is
|
23 |
+
implemented in the OpenCV library. The LFW faces were extracted by this
|
24 |
+
face detector from various online websites.
|
25 |
+
|
26 |
+
**Data Set Characteristics:**
|
27 |
+
|
28 |
+
================= =======================
|
29 |
+
Classes 5749
|
30 |
+
Samples total 13233
|
31 |
+
Dimensionality 5828
|
32 |
+
Features real, between 0 and 255
|
33 |
+
================= =======================
|
34 |
+
|
35 |
+
|details-start|
|
36 |
+
**Usage**
|
37 |
+
|details-split|
|
38 |
+
|
39 |
+
``scikit-learn`` provides two loaders that will automatically download,
|
40 |
+
cache, parse the metadata files, decode the jpeg and convert the
|
41 |
+
interesting slices into memmapped numpy arrays. This dataset size is more
|
42 |
+
than 200 MB. The first load typically takes more than a couple of minutes
|
43 |
+
to fully decode the relevant part of the JPEG files into numpy arrays. If
|
44 |
+
the dataset has been loaded once, the following times the loading times
|
45 |
+
less than 200ms by using a memmapped version memoized on the disk in the
|
46 |
+
``~/scikit_learn_data/lfw_home/`` folder using ``joblib``.
|
47 |
+
|
48 |
+
The first loader is used for the Face Identification task: a multi-class
|
49 |
+
classification task (hence supervised learning)::
|
50 |
+
|
51 |
+
>>> from sklearn.datasets import fetch_lfw_people
|
52 |
+
>>> lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
|
53 |
+
|
54 |
+
>>> for name in lfw_people.target_names:
|
55 |
+
... print(name)
|
56 |
+
...
|
57 |
+
Ariel Sharon
|
58 |
+
Colin Powell
|
59 |
+
Donald Rumsfeld
|
60 |
+
George W Bush
|
61 |
+
Gerhard Schroeder
|
62 |
+
Hugo Chavez
|
63 |
+
Tony Blair
|
64 |
+
|
65 |
+
The default slice is a rectangular shape around the face, removing
|
66 |
+
most of the background::
|
67 |
+
|
68 |
+
>>> lfw_people.data.dtype
|
69 |
+
dtype('float32')
|
70 |
+
|
71 |
+
>>> lfw_people.data.shape
|
72 |
+
(1288, 1850)
|
73 |
+
|
74 |
+
>>> lfw_people.images.shape
|
75 |
+
(1288, 50, 37)
|
76 |
+
|
77 |
+
Each of the ``1140`` faces is assigned to a single person id in the ``target``
|
78 |
+
array::
|
79 |
+
|
80 |
+
>>> lfw_people.target.shape
|
81 |
+
(1288,)
|
82 |
+
|
83 |
+
>>> list(lfw_people.target[:10])
|
84 |
+
[5, 6, 3, 1, 0, 1, 3, 4, 3, 0]
|
85 |
+
|
86 |
+
The second loader is typically used for the face verification task: each sample
|
87 |
+
is a pair of two picture belonging or not to the same person::
|
88 |
+
|
89 |
+
>>> from sklearn.datasets import fetch_lfw_pairs
|
90 |
+
>>> lfw_pairs_train = fetch_lfw_pairs(subset='train')
|
91 |
+
|
92 |
+
>>> list(lfw_pairs_train.target_names)
|
93 |
+
['Different persons', 'Same person']
|
94 |
+
|
95 |
+
>>> lfw_pairs_train.pairs.shape
|
96 |
+
(2200, 2, 62, 47)
|
97 |
+
|
98 |
+
>>> lfw_pairs_train.data.shape
|
99 |
+
(2200, 5828)
|
100 |
+
|
101 |
+
>>> lfw_pairs_train.target.shape
|
102 |
+
(2200,)
|
103 |
+
|
104 |
+
Both for the :func:`sklearn.datasets.fetch_lfw_people` and
|
105 |
+
:func:`sklearn.datasets.fetch_lfw_pairs` function it is
|
106 |
+
possible to get an additional dimension with the RGB color channels by
|
107 |
+
passing ``color=True``, in that case the shape will be
|
108 |
+
``(2200, 2, 62, 47, 3)``.
|
109 |
+
|
110 |
+
The :func:`sklearn.datasets.fetch_lfw_pairs` datasets is subdivided into
|
111 |
+
3 subsets: the development ``train`` set, the development ``test`` set and
|
112 |
+
an evaluation ``10_folds`` set meant to compute performance metrics using a
|
113 |
+
10-folds cross validation scheme.
|
114 |
+
|
115 |
+
|details-end|
|
116 |
+
|
117 |
+
.. topic:: References:
|
118 |
+
|
119 |
+
* `Labeled Faces in the Wild: A Database for Studying Face Recognition
|
120 |
+
in Unconstrained Environments.
|
121 |
+
<http://vis-www.cs.umass.edu/lfw/lfw.pdf>`_
|
122 |
+
Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller.
|
123 |
+
University of Massachusetts, Amherst, Technical Report 07-49, October, 2007.
|
124 |
+
|
125 |
+
|
126 |
+
.. topic:: Examples:
|
127 |
+
|
128 |
+
* :ref:`sphx_glr_auto_examples_applications_plot_face_recognition.py`
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/linnerud.rst
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _linnerrud_dataset:
|
2 |
+
|
3 |
+
Linnerrud dataset
|
4 |
+
-----------------
|
5 |
+
|
6 |
+
**Data Set Characteristics:**
|
7 |
+
|
8 |
+
:Number of Instances: 20
|
9 |
+
:Number of Attributes: 3
|
10 |
+
:Missing Attribute Values: None
|
11 |
+
|
12 |
+
The Linnerud dataset is a multi-output regression dataset. It consists of three
|
13 |
+
exercise (data) and three physiological (target) variables collected from
|
14 |
+
twenty middle-aged men in a fitness club:
|
15 |
+
|
16 |
+
- *physiological* - CSV containing 20 observations on 3 physiological variables:
|
17 |
+
Weight, Waist and Pulse.
|
18 |
+
- *exercise* - CSV containing 20 observations on 3 exercise variables:
|
19 |
+
Chins, Situps and Jumps.
|
20 |
+
|
21 |
+
|details-start|
|
22 |
+
**References**
|
23 |
+
|details-split|
|
24 |
+
|
25 |
+
* Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris:
|
26 |
+
Editions Technic.
|
27 |
+
|
28 |
+
|details-end|
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/olivetti_faces.rst
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _olivetti_faces_dataset:
|
2 |
+
|
3 |
+
The Olivetti faces dataset
|
4 |
+
--------------------------
|
5 |
+
|
6 |
+
`This dataset contains a set of face images`_ taken between April 1992 and
|
7 |
+
April 1994 at AT&T Laboratories Cambridge. The
|
8 |
+
:func:`sklearn.datasets.fetch_olivetti_faces` function is the data
|
9 |
+
fetching / caching function that downloads the data
|
10 |
+
archive from AT&T.
|
11 |
+
|
12 |
+
.. _This dataset contains a set of face images: https://cam-orl.co.uk/facedatabase.html
|
13 |
+
|
14 |
+
As described on the original website:
|
15 |
+
|
16 |
+
There are ten different images of each of 40 distinct subjects. For some
|
17 |
+
subjects, the images were taken at different times, varying the lighting,
|
18 |
+
facial expressions (open / closed eyes, smiling / not smiling) and facial
|
19 |
+
details (glasses / no glasses). All the images were taken against a dark
|
20 |
+
homogeneous background with the subjects in an upright, frontal position
|
21 |
+
(with tolerance for some side movement).
|
22 |
+
|
23 |
+
**Data Set Characteristics:**
|
24 |
+
|
25 |
+
================= =====================
|
26 |
+
Classes 40
|
27 |
+
Samples total 400
|
28 |
+
Dimensionality 4096
|
29 |
+
Features real, between 0 and 1
|
30 |
+
================= =====================
|
31 |
+
|
32 |
+
The image is quantized to 256 grey levels and stored as unsigned 8-bit
|
33 |
+
integers; the loader will convert these to floating point values on the
|
34 |
+
interval [0, 1], which are easier to work with for many algorithms.
|
35 |
+
|
36 |
+
The "target" for this database is an integer from 0 to 39 indicating the
|
37 |
+
identity of the person pictured; however, with only 10 examples per class, this
|
38 |
+
relatively small dataset is more interesting from an unsupervised or
|
39 |
+
semi-supervised perspective.
|
40 |
+
|
41 |
+
The original dataset consisted of 92 x 112, while the version available here
|
42 |
+
consists of 64x64 images.
|
43 |
+
|
44 |
+
When using these images, please give credit to AT&T Laboratories Cambridge.
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/rcv1.rst
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _rcv1_dataset:
|
2 |
+
|
3 |
+
RCV1 dataset
|
4 |
+
------------
|
5 |
+
|
6 |
+
Reuters Corpus Volume I (RCV1) is an archive of over 800,000 manually
|
7 |
+
categorized newswire stories made available by Reuters, Ltd. for research
|
8 |
+
purposes. The dataset is extensively described in [1]_.
|
9 |
+
|
10 |
+
**Data Set Characteristics:**
|
11 |
+
|
12 |
+
============== =====================
|
13 |
+
Classes 103
|
14 |
+
Samples total 804414
|
15 |
+
Dimensionality 47236
|
16 |
+
Features real, between 0 and 1
|
17 |
+
============== =====================
|
18 |
+
|
19 |
+
:func:`sklearn.datasets.fetch_rcv1` will load the following
|
20 |
+
version: RCV1-v2, vectors, full sets, topics multilabels::
|
21 |
+
|
22 |
+
>>> from sklearn.datasets import fetch_rcv1
|
23 |
+
>>> rcv1 = fetch_rcv1()
|
24 |
+
|
25 |
+
It returns a dictionary-like object, with the following attributes:
|
26 |
+
|
27 |
+
``data``:
|
28 |
+
The feature matrix is a scipy CSR sparse matrix, with 804414 samples and
|
29 |
+
47236 features. Non-zero values contains cosine-normalized, log TF-IDF vectors.
|
30 |
+
A nearly chronological split is proposed in [1]_: The first 23149 samples are
|
31 |
+
the training set. The last 781265 samples are the testing set. This follows
|
32 |
+
the official LYRL2004 chronological split. The array has 0.16% of non zero
|
33 |
+
values::
|
34 |
+
|
35 |
+
>>> rcv1.data.shape
|
36 |
+
(804414, 47236)
|
37 |
+
|
38 |
+
``target``:
|
39 |
+
The target values are stored in a scipy CSR sparse matrix, with 804414 samples
|
40 |
+
and 103 categories. Each sample has a value of 1 in its categories, and 0 in
|
41 |
+
others. The array has 3.15% of non zero values::
|
42 |
+
|
43 |
+
>>> rcv1.target.shape
|
44 |
+
(804414, 103)
|
45 |
+
|
46 |
+
``sample_id``:
|
47 |
+
Each sample can be identified by its ID, ranging (with gaps) from 2286
|
48 |
+
to 810596::
|
49 |
+
|
50 |
+
>>> rcv1.sample_id[:3]
|
51 |
+
array([2286, 2287, 2288], dtype=uint32)
|
52 |
+
|
53 |
+
``target_names``:
|
54 |
+
The target values are the topics of each sample. Each sample belongs to at
|
55 |
+
least one topic, and to up to 17 topics. There are 103 topics, each
|
56 |
+
represented by a string. Their corpus frequencies span five orders of
|
57 |
+
magnitude, from 5 occurrences for 'GMIL', to 381327 for 'CCAT'::
|
58 |
+
|
59 |
+
>>> rcv1.target_names[:3].tolist() # doctest: +SKIP
|
60 |
+
['E11', 'ECAT', 'M11']
|
61 |
+
|
62 |
+
The dataset will be downloaded from the `rcv1 homepage`_ if necessary.
|
63 |
+
The compressed size is about 656 MB.
|
64 |
+
|
65 |
+
.. _rcv1 homepage: http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
|
66 |
+
|
67 |
+
|
68 |
+
.. topic:: References
|
69 |
+
|
70 |
+
.. [1] Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004).
|
71 |
+
RCV1: A new benchmark collection for text categorization research.
|
72 |
+
The Journal of Machine Learning Research, 5, 361-397.
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/species_distributions.rst
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _species_distribution_dataset:
|
2 |
+
|
3 |
+
Species distribution dataset
|
4 |
+
----------------------------
|
5 |
+
|
6 |
+
This dataset represents the geographic distribution of two species in Central and
|
7 |
+
South America. The two species are:
|
8 |
+
|
9 |
+
- `"Bradypus variegatus" <http://www.iucnredlist.org/details/3038/0>`_ ,
|
10 |
+
the Brown-throated Sloth.
|
11 |
+
|
12 |
+
- `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ ,
|
13 |
+
also known as the Forest Small Rice Rat, a rodent that lives in Peru,
|
14 |
+
Colombia, Ecuador, Peru, and Venezuela.
|
15 |
+
|
16 |
+
The dataset is not a typical dataset since a :class:`~sklearn.datasets.base.Bunch`
|
17 |
+
containing the attributes `data` and `target` is not returned. Instead, we have
|
18 |
+
information allowing to create a "density" map of the different species.
|
19 |
+
|
20 |
+
The grid for the map can be built using the attributes `x_left_lower_corner`,
|
21 |
+
`y_left_lower_corner`, `Nx`, `Ny` and `grid_size`, which respectively correspond
|
22 |
+
to the x and y coordinates of the lower left corner of the grid, the number of
|
23 |
+
points along the x- and y-axis and the size of the step on the grid.
|
24 |
+
|
25 |
+
The density at each location of the grid is contained in the `coverage` attribute.
|
26 |
+
|
27 |
+
Finally, the `train` and `test` attributes contain information regarding the location
|
28 |
+
of a species at a specific location.
|
29 |
+
|
30 |
+
The dataset is provided by Phillips et. al. (2006).
|
31 |
+
|
32 |
+
.. topic:: References
|
33 |
+
|
34 |
+
* `"Maximum entropy modeling of species geographic distributions"
|
35 |
+
<http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips,
|
36 |
+
R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006.
|
venv/lib/python3.10/site-packages/sklearn/datasets/descr/twenty_newsgroups.rst
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _20newsgroups_dataset:
|
2 |
+
|
3 |
+
The 20 newsgroups text dataset
|
4 |
+
------------------------------
|
5 |
+
|
6 |
+
The 20 newsgroups dataset comprises around 18000 newsgroups posts on
|
7 |
+
20 topics split in two subsets: one for training (or development)
|
8 |
+
and the other one for testing (or for performance evaluation). The split
|
9 |
+
between the train and test set is based upon a messages posted before
|
10 |
+
and after a specific date.
|
11 |
+
|
12 |
+
This module contains two loaders. The first one,
|
13 |
+
:func:`sklearn.datasets.fetch_20newsgroups`,
|
14 |
+
returns a list of the raw texts that can be fed to text feature
|
15 |
+
extractors such as :class:`~sklearn.feature_extraction.text.CountVectorizer`
|
16 |
+
with custom parameters so as to extract feature vectors.
|
17 |
+
The second one, :func:`sklearn.datasets.fetch_20newsgroups_vectorized`,
|
18 |
+
returns ready-to-use features, i.e., it is not necessary to use a feature
|
19 |
+
extractor.
|
20 |
+
|
21 |
+
**Data Set Characteristics:**
|
22 |
+
|
23 |
+
================= ==========
|
24 |
+
Classes 20
|
25 |
+
Samples total 18846
|
26 |
+
Dimensionality 1
|
27 |
+
Features text
|
28 |
+
================= ==========
|
29 |
+
|
30 |
+
|details-start|
|
31 |
+
**Usage**
|
32 |
+
|details-split|
|
33 |
+
|
34 |
+
The :func:`sklearn.datasets.fetch_20newsgroups` function is a data
|
35 |
+
fetching / caching functions that downloads the data archive from
|
36 |
+
the original `20 newsgroups website`_, extracts the archive contents
|
37 |
+
in the ``~/scikit_learn_data/20news_home`` folder and calls the
|
38 |
+
:func:`sklearn.datasets.load_files` on either the training or
|
39 |
+
testing set folder, or both of them::
|
40 |
+
|
41 |
+
>>> from sklearn.datasets import fetch_20newsgroups
|
42 |
+
>>> newsgroups_train = fetch_20newsgroups(subset='train')
|
43 |
+
|
44 |
+
>>> from pprint import pprint
|
45 |
+
>>> pprint(list(newsgroups_train.target_names))
|
46 |
+
['alt.atheism',
|
47 |
+
'comp.graphics',
|
48 |
+
'comp.os.ms-windows.misc',
|
49 |
+
'comp.sys.ibm.pc.hardware',
|
50 |
+
'comp.sys.mac.hardware',
|
51 |
+
'comp.windows.x',
|
52 |
+
'misc.forsale',
|
53 |
+
'rec.autos',
|
54 |
+
'rec.motorcycles',
|
55 |
+
'rec.sport.baseball',
|
56 |
+
'rec.sport.hockey',
|
57 |
+
'sci.crypt',
|
58 |
+
'sci.electronics',
|
59 |
+
'sci.med',
|
60 |
+
'sci.space',
|
61 |
+
'soc.religion.christian',
|
62 |
+
'talk.politics.guns',
|
63 |
+
'talk.politics.mideast',
|
64 |
+
'talk.politics.misc',
|
65 |
+
'talk.religion.misc']
|
66 |
+
|
67 |
+
The real data lies in the ``filenames`` and ``target`` attributes. The target
|
68 |
+
attribute is the integer index of the category::
|
69 |
+
|
70 |
+
>>> newsgroups_train.filenames.shape
|
71 |
+
(11314,)
|
72 |
+
>>> newsgroups_train.target.shape
|
73 |
+
(11314,)
|
74 |
+
>>> newsgroups_train.target[:10]
|
75 |
+
array([ 7, 4, 4, 1, 14, 16, 13, 3, 2, 4])
|
76 |
+
|
77 |
+
It is possible to load only a sub-selection of the categories by passing the
|
78 |
+
list of the categories to load to the
|
79 |
+
:func:`sklearn.datasets.fetch_20newsgroups` function::
|
80 |
+
|
81 |
+
>>> cats = ['alt.atheism', 'sci.space']
|
82 |
+
>>> newsgroups_train = fetch_20newsgroups(subset='train', categories=cats)
|
83 |
+
|
84 |
+
>>> list(newsgroups_train.target_names)
|
85 |
+
['alt.atheism', 'sci.space']
|
86 |
+
>>> newsgroups_train.filenames.shape
|
87 |
+
(1073,)
|
88 |
+
>>> newsgroups_train.target.shape
|
89 |
+
(1073,)
|
90 |
+
>>> newsgroups_train.target[:10]
|
91 |
+
array([0, 1, 1, 1, 0, 1, 1, 0, 0, 0])
|
92 |
+
|
93 |
+
|details-end|
|
94 |
+
|
95 |
+
|details-start|
|
96 |
+
**Converting text to vectors**
|
97 |
+
|details-split|
|
98 |
+
|
99 |
+
In order to feed predictive or clustering models with the text data,
|
100 |
+
one first need to turn the text into vectors of numerical values suitable
|
101 |
+
for statistical analysis. This can be achieved with the utilities of the
|
102 |
+
``sklearn.feature_extraction.text`` as demonstrated in the following
|
103 |
+
example that extract `TF-IDF`_ vectors of unigram tokens
|
104 |
+
from a subset of 20news::
|
105 |
+
|
106 |
+
>>> from sklearn.feature_extraction.text import TfidfVectorizer
|
107 |
+
>>> categories = ['alt.atheism', 'talk.religion.misc',
|
108 |
+
... 'comp.graphics', 'sci.space']
|
109 |
+
>>> newsgroups_train = fetch_20newsgroups(subset='train',
|
110 |
+
... categories=categories)
|
111 |
+
>>> vectorizer = TfidfVectorizer()
|
112 |
+
>>> vectors = vectorizer.fit_transform(newsgroups_train.data)
|
113 |
+
>>> vectors.shape
|
114 |
+
(2034, 34118)
|
115 |
+
|
116 |
+
The extracted TF-IDF vectors are very sparse, with an average of 159 non-zero
|
117 |
+
components by sample in a more than 30000-dimensional space
|
118 |
+
(less than .5% non-zero features)::
|
119 |
+
|
120 |
+
>>> vectors.nnz / float(vectors.shape[0])
|
121 |
+
159.01327...
|
122 |
+
|
123 |
+
:func:`sklearn.datasets.fetch_20newsgroups_vectorized` is a function which
|
124 |
+
returns ready-to-use token counts features instead of file names.
|
125 |
+
|
126 |
+
.. _`20 newsgroups website`: http://people.csail.mit.edu/jrennie/20Newsgroups/
|
127 |
+
.. _`TF-IDF`: https://en.wikipedia.org/wiki/Tf-idf
|
128 |
+
|
129 |
+
|details-end|
|
130 |
+
|
131 |
+
|details-start|
|
132 |
+
**Filtering text for more realistic training**
|
133 |
+
|details-split|
|
134 |
+
|
135 |
+
It is easy for a classifier to overfit on particular things that appear in the
|
136 |
+
20 Newsgroups data, such as newsgroup headers. Many classifiers achieve very
|
137 |
+
high F-scores, but their results would not generalize to other documents that
|
138 |
+
aren't from this window of time.
|
139 |
+
|
140 |
+
For example, let's look at the results of a multinomial Naive Bayes classifier,
|
141 |
+
which is fast to train and achieves a decent F-score::
|
142 |
+
|
143 |
+
>>> from sklearn.naive_bayes import MultinomialNB
|
144 |
+
>>> from sklearn import metrics
|
145 |
+
>>> newsgroups_test = fetch_20newsgroups(subset='test',
|
146 |
+
... categories=categories)
|
147 |
+
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
|
148 |
+
>>> clf = MultinomialNB(alpha=.01)
|
149 |
+
>>> clf.fit(vectors, newsgroups_train.target)
|
150 |
+
MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True)
|
151 |
+
|
152 |
+
>>> pred = clf.predict(vectors_test)
|
153 |
+
>>> metrics.f1_score(newsgroups_test.target, pred, average='macro')
|
154 |
+
0.88213...
|
155 |
+
|
156 |
+
(The example :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py` shuffles
|
157 |
+
the training and test data, instead of segmenting by time, and in that case
|
158 |
+
multinomial Naive Bayes gets a much higher F-score of 0.88. Are you suspicious
|
159 |
+
yet of what's going on inside this classifier?)
|
160 |
+
|
161 |
+
Let's take a look at what the most informative features are:
|
162 |
+
|
163 |
+
>>> import numpy as np
|
164 |
+
>>> def show_top10(classifier, vectorizer, categories):
|
165 |
+
... feature_names = vectorizer.get_feature_names_out()
|
166 |
+
... for i, category in enumerate(categories):
|
167 |
+
... top10 = np.argsort(classifier.coef_[i])[-10:]
|
168 |
+
... print("%s: %s" % (category, " ".join(feature_names[top10])))
|
169 |
+
...
|
170 |
+
>>> show_top10(clf, vectorizer, newsgroups_train.target_names)
|
171 |
+
alt.atheism: edu it and in you that is of to the
|
172 |
+
comp.graphics: edu in graphics it is for and of to the
|
173 |
+
sci.space: edu it that is in and space to of the
|
174 |
+
talk.religion.misc: not it you in is that and to of the
|
175 |
+
|
176 |
+
|
177 |
+
You can now see many things that these features have overfit to:
|
178 |
+
|
179 |
+
- Almost every group is distinguished by whether headers such as
|
180 |
+
``NNTP-Posting-Host:`` and ``Distribution:`` appear more or less often.
|
181 |
+
- Another significant feature involves whether the sender is affiliated with
|
182 |
+
a university, as indicated either by their headers or their signature.
|
183 |
+
- The word "article" is a significant feature, based on how often people quote
|
184 |
+
previous posts like this: "In article [article ID], [name] <[e-mail address]>
|
185 |
+
wrote:"
|
186 |
+
- Other features match the names and e-mail addresses of particular people who
|
187 |
+
were posting at the time.
|
188 |
+
|
189 |
+
With such an abundance of clues that distinguish newsgroups, the classifiers
|
190 |
+
barely have to identify topics from text at all, and they all perform at the
|
191 |
+
same high level.
|
192 |
+
|
193 |
+
For this reason, the functions that load 20 Newsgroups data provide a
|
194 |
+
parameter called **remove**, telling it what kinds of information to strip out
|
195 |
+
of each file. **remove** should be a tuple containing any subset of
|
196 |
+
``('headers', 'footers', 'quotes')``, telling it to remove headers, signature
|
197 |
+
blocks, and quotation blocks respectively.
|
198 |
+
|
199 |
+
>>> newsgroups_test = fetch_20newsgroups(subset='test',
|
200 |
+
... remove=('headers', 'footers', 'quotes'),
|
201 |
+
... categories=categories)
|
202 |
+
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
|
203 |
+
>>> pred = clf.predict(vectors_test)
|
204 |
+
>>> metrics.f1_score(pred, newsgroups_test.target, average='macro')
|
205 |
+
0.77310...
|
206 |
+
|
207 |
+
This classifier lost over a lot of its F-score, just because we removed
|
208 |
+
metadata that has little to do with topic classification.
|
209 |
+
It loses even more if we also strip this metadata from the training data:
|
210 |
+
|
211 |
+
>>> newsgroups_train = fetch_20newsgroups(subset='train',
|
212 |
+
... remove=('headers', 'footers', 'quotes'),
|
213 |
+
... categories=categories)
|
214 |
+
>>> vectors = vectorizer.fit_transform(newsgroups_train.data)
|
215 |
+
>>> clf = MultinomialNB(alpha=.01)
|
216 |
+
>>> clf.fit(vectors, newsgroups_train.target)
|
217 |
+
MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True)
|
218 |
+
|
219 |
+
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
|
220 |
+
>>> pred = clf.predict(vectors_test)
|
221 |
+
>>> metrics.f1_score(newsgroups_test.target, pred, average='macro')
|
222 |
+
0.76995...
|
223 |
+
|
224 |
+
Some other classifiers cope better with this harder version of the task. Try the
|
225 |
+
:ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_text_feature_extraction.py`
|
226 |
+
example with and without the `remove` option to compare the results.
|
227 |
+
|details-end|
|
228 |
+
|
229 |
+
.. topic:: Data Considerations
|
230 |
+
|
231 |
+
The Cleveland Indians is a major league baseball team based in Cleveland,
|
232 |
+
Ohio, USA. In December 2020, it was reported that "After several months of
|
233 |
+
discussion sparked by the death of George Floyd and a national reckoning over
|
234 |
+
race and colonialism, the Cleveland Indians have decided to change their
|
235 |
+
name." Team owner Paul Dolan "did make it clear that the team will not make
|
236 |
+
its informal nickname -- the Tribe -- its new team name." "It's not going to
|
237 |
+
be a half-step away from the Indians," Dolan said."We will not have a Native
|
238 |
+
American-themed name."
|
239 |
+
|
240 |
+
https://www.mlb.com/news/cleveland-indians-team-name-change
|
241 |
+
|
242 |
+
.. topic:: Recommendation
|
243 |
+
|
244 |
+
- When evaluating text classifiers on the 20 Newsgroups data, you
|
245 |
+
should strip newsgroup-related metadata. In scikit-learn, you can do this
|
246 |
+
by setting ``remove=('headers', 'footers', 'quotes')``. The F-score will be
|
247 |
+
lower because it is more realistic.
|
248 |
+
- This text dataset contains data which may be inappropriate for certain NLP
|
249 |
+
applications. An example is listed in the "Data Considerations" section
|
250 |
+
above. The challenge with using current text datasets in NLP for tasks such
|
251 |
+
as sentence completion, clustering, and other applications is that text
|
252 |
+
that is culturally biased and inflammatory will propagate biases. This
|
253 |
+
should be taken into consideration when using the dataset, reviewing the
|
254 |
+
output, and the bias should be documented.
|
255 |
+
|
256 |
+
.. topic:: Examples
|
257 |
+
|
258 |
+
* :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_text_feature_extraction.py`
|
259 |
+
|
260 |
+
* :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
|
261 |
+
|
262 |
+
* :ref:`sphx_glr_auto_examples_text_plot_hashing_vs_dict_vectorizer.py`
|
263 |
+
|
264 |
+
* :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`
|