File size: 14,154 Bytes
685344b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
# Natural Language Toolkit: IBM Model 3
#
# Copyright (C) 2001-2013 NLTK Project
# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
Translation model that considers how a word can be aligned to
multiple words in another language.
IBM Model 3 improves on Model 2 by directly modeling the phenomenon
where a word in one language may be translated into zero or more words
in another. This is expressed by the fertility probability,
n(phi | source word).
If a source word translates into more than one word, it is possible to
generate sentences that have the same alignment in multiple ways. This
is modeled by a distortion step. The distortion probability, d(j|i,l,m),
predicts a target word position, given its aligned source word's
position. The distortion probability replaces the alignment probability
of Model 2.
The fertility probability is not applicable for NULL. Target words that
align to NULL are assumed to be distributed uniformly in the target
sentence. The existence of these words is modeled by p1, the probability
that a target word produced by a real source word requires another
target word that is produced by NULL.
The EM algorithm used in Model 3 is:
:E step: In the training data, collect counts, weighted by prior
probabilities.
- (a) count how many times a source language word is translated
into a target language word
- (b) count how many times a particular position in the target
sentence is aligned to a particular position in the source
sentence
- (c) count how many times a source word is aligned to phi number
of target words
- (d) count how many times NULL is aligned to a target word
:M step: Estimate new probabilities based on the counts from the E step
Because there are too many possible alignments, only the most probable
ones are considered. First, the best alignment is determined using prior
probabilities. Then, a hill climbing approach is used to find other good
candidates.
Notations
---------
:i: Position in the source sentence
Valid values are 0 (for NULL), 1, 2, ..., length of source sentence
:j: Position in the target sentence
Valid values are 1, 2, ..., length of target sentence
:l: Number of words in the source sentence, excluding NULL
:m: Number of words in the target sentence
:s: A word in the source language
:t: A word in the target language
:phi: Fertility, the number of target words produced by a source word
:p1: Probability that a target word produced by a source word is
accompanied by another target word that is aligned to NULL
:p0: 1 - p1
References
----------
Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press, New York.
Peter E Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and
Robert L. Mercer. 1993. The Mathematics of Statistical Machine
Translation: Parameter Estimation. Computational Linguistics, 19 (2),
263-311.
"""
import warnings
from collections import defaultdict
from math import factorial
from nltk.translate import AlignedSent, Alignment, IBMModel, IBMModel2
from nltk.translate.ibm_model import Counts
class IBMModel3(IBMModel):
"""
Translation model that considers how a word can be aligned to
multiple words in another language
>>> bitext = []
>>> bitext.append(AlignedSent(['klein', 'ist', 'das', 'haus'], ['the', 'house', 'is', 'small']))
>>> bitext.append(AlignedSent(['das', 'haus', 'war', 'ja', 'groß'], ['the', 'house', 'was', 'big']))
>>> bitext.append(AlignedSent(['das', 'buch', 'ist', 'ja', 'klein'], ['the', 'book', 'is', 'small']))
>>> bitext.append(AlignedSent(['ein', 'haus', 'ist', 'klein'], ['a', 'house', 'is', 'small']))
>>> bitext.append(AlignedSent(['das', 'haus'], ['the', 'house']))
>>> bitext.append(AlignedSent(['das', 'buch'], ['the', 'book']))
>>> bitext.append(AlignedSent(['ein', 'buch'], ['a', 'book']))
>>> bitext.append(AlignedSent(['ich', 'fasse', 'das', 'buch', 'zusammen'], ['i', 'summarize', 'the', 'book']))
>>> bitext.append(AlignedSent(['fasse', 'zusammen'], ['summarize']))
>>> ibm3 = IBMModel3(bitext, 5)
>>> print(round(ibm3.translation_table['buch']['book'], 3))
1.0
>>> print(round(ibm3.translation_table['das']['book'], 3))
0.0
>>> print(round(ibm3.translation_table['ja'][None], 3))
1.0
>>> print(round(ibm3.distortion_table[1][1][2][2], 3))
1.0
>>> print(round(ibm3.distortion_table[1][2][2][2], 3))
0.0
>>> print(round(ibm3.distortion_table[2][2][4][5], 3))
0.75
>>> print(round(ibm3.fertility_table[2]['summarize'], 3))
1.0
>>> print(round(ibm3.fertility_table[1]['book'], 3))
1.0
>>> print(round(ibm3.p1, 3))
0.054
>>> test_sentence = bitext[2]
>>> test_sentence.words
['das', 'buch', 'ist', 'ja', 'klein']
>>> test_sentence.mots
['the', 'book', 'is', 'small']
>>> test_sentence.alignment
Alignment([(0, 0), (1, 1), (2, 2), (3, None), (4, 3)])
"""
def __init__(self, sentence_aligned_corpus, iterations, probability_tables=None):
"""
Train on ``sentence_aligned_corpus`` and create a lexical
translation model, a distortion model, a fertility model, and a
model for generating NULL-aligned words.
Translation direction is from ``AlignedSent.mots`` to
``AlignedSent.words``.
:param sentence_aligned_corpus: Sentence-aligned parallel corpus
:type sentence_aligned_corpus: list(AlignedSent)
:param iterations: Number of iterations to run training algorithm
:type iterations: int
:param probability_tables: Optional. Use this to pass in custom
probability values. If not specified, probabilities will be
set to a uniform distribution, or some other sensible value.
If specified, all the following entries must be present:
``translation_table``, ``alignment_table``,
``fertility_table``, ``p1``, ``distortion_table``.
See ``IBMModel`` for the type and purpose of these tables.
:type probability_tables: dict[str]: object
"""
super().__init__(sentence_aligned_corpus)
self.reset_probabilities()
if probability_tables is None:
# Get translation and alignment probabilities from IBM Model 2
ibm2 = IBMModel2(sentence_aligned_corpus, iterations)
self.translation_table = ibm2.translation_table
self.alignment_table = ibm2.alignment_table
self.set_uniform_probabilities(sentence_aligned_corpus)
else:
# Set user-defined probabilities
self.translation_table = probability_tables["translation_table"]
self.alignment_table = probability_tables["alignment_table"]
self.fertility_table = probability_tables["fertility_table"]
self.p1 = probability_tables["p1"]
self.distortion_table = probability_tables["distortion_table"]
for n in range(0, iterations):
self.train(sentence_aligned_corpus)
def reset_probabilities(self):
super().reset_probabilities()
self.distortion_table = defaultdict(
lambda: defaultdict(
lambda: defaultdict(lambda: defaultdict(lambda: self.MIN_PROB))
)
)
"""
dict[int][int][int][int]: float. Probability(j | i,l,m).
Values accessed as ``distortion_table[j][i][l][m]``.
"""
def set_uniform_probabilities(self, sentence_aligned_corpus):
# d(j | i,l,m) = 1 / m for all i, j, l, m
l_m_combinations = set()
for aligned_sentence in sentence_aligned_corpus:
l = len(aligned_sentence.mots)
m = len(aligned_sentence.words)
if (l, m) not in l_m_combinations:
l_m_combinations.add((l, m))
initial_prob = 1 / m
if initial_prob < IBMModel.MIN_PROB:
warnings.warn(
"A target sentence is too long ("
+ str(m)
+ " words). Results may be less accurate."
)
for j in range(1, m + 1):
for i in range(0, l + 1):
self.distortion_table[j][i][l][m] = initial_prob
# simple initialization, taken from GIZA++
self.fertility_table[0] = defaultdict(lambda: 0.2)
self.fertility_table[1] = defaultdict(lambda: 0.65)
self.fertility_table[2] = defaultdict(lambda: 0.1)
self.fertility_table[3] = defaultdict(lambda: 0.04)
MAX_FERTILITY = 10
initial_fert_prob = 0.01 / (MAX_FERTILITY - 4)
for phi in range(4, MAX_FERTILITY):
self.fertility_table[phi] = defaultdict(lambda: initial_fert_prob)
self.p1 = 0.5
def train(self, parallel_corpus):
counts = Model3Counts()
for aligned_sentence in parallel_corpus:
l = len(aligned_sentence.mots)
m = len(aligned_sentence.words)
# Sample the alignment space
sampled_alignments, best_alignment = self.sample(aligned_sentence)
# Record the most probable alignment
aligned_sentence.alignment = Alignment(
best_alignment.zero_indexed_alignment()
)
# E step (a): Compute normalization factors to weigh counts
total_count = self.prob_of_alignments(sampled_alignments)
# E step (b): Collect counts
for alignment_info in sampled_alignments:
count = self.prob_t_a_given_s(alignment_info)
normalized_count = count / total_count
for j in range(1, m + 1):
counts.update_lexical_translation(
normalized_count, alignment_info, j
)
counts.update_distortion(normalized_count, alignment_info, j, l, m)
counts.update_null_generation(normalized_count, alignment_info)
counts.update_fertility(normalized_count, alignment_info)
# M step: Update probabilities with maximum likelihood estimates
# If any probability is less than MIN_PROB, clamp it to MIN_PROB
existing_alignment_table = self.alignment_table
self.reset_probabilities()
self.alignment_table = existing_alignment_table # don't retrain
self.maximize_lexical_translation_probabilities(counts)
self.maximize_distortion_probabilities(counts)
self.maximize_fertility_probabilities(counts)
self.maximize_null_generation_probabilities(counts)
def maximize_distortion_probabilities(self, counts):
MIN_PROB = IBMModel.MIN_PROB
for j, i_s in counts.distortion.items():
for i, src_sentence_lengths in i_s.items():
for l, trg_sentence_lengths in src_sentence_lengths.items():
for m in trg_sentence_lengths:
estimate = (
counts.distortion[j][i][l][m]
/ counts.distortion_for_any_j[i][l][m]
)
self.distortion_table[j][i][l][m] = max(estimate, MIN_PROB)
def prob_t_a_given_s(self, alignment_info):
"""
Probability of target sentence and an alignment given the
source sentence
"""
src_sentence = alignment_info.src_sentence
trg_sentence = alignment_info.trg_sentence
l = len(src_sentence) - 1 # exclude NULL
m = len(trg_sentence) - 1
p1 = self.p1
p0 = 1 - p1
probability = 1.0
MIN_PROB = IBMModel.MIN_PROB
# Combine NULL insertion probability
null_fertility = alignment_info.fertility_of_i(0)
probability *= pow(p1, null_fertility) * pow(p0, m - 2 * null_fertility)
if probability < MIN_PROB:
return MIN_PROB
# Compute combination (m - null_fertility) choose null_fertility
for i in range(1, null_fertility + 1):
probability *= (m - null_fertility - i + 1) / i
if probability < MIN_PROB:
return MIN_PROB
# Combine fertility probabilities
for i in range(1, l + 1):
fertility = alignment_info.fertility_of_i(i)
probability *= (
factorial(fertility) * self.fertility_table[fertility][src_sentence[i]]
)
if probability < MIN_PROB:
return MIN_PROB
# Combine lexical and distortion probabilities
for j in range(1, m + 1):
t = trg_sentence[j]
i = alignment_info.alignment[j]
s = src_sentence[i]
probability *= (
self.translation_table[t][s] * self.distortion_table[j][i][l][m]
)
if probability < MIN_PROB:
return MIN_PROB
return probability
class Model3Counts(Counts):
"""
Data object to store counts of various parameters during training.
Includes counts for distortion.
"""
def __init__(self):
super().__init__()
self.distortion = defaultdict(
lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0.0)))
)
self.distortion_for_any_j = defaultdict(
lambda: defaultdict(lambda: defaultdict(lambda: 0.0))
)
def update_distortion(self, count, alignment_info, j, l, m):
i = alignment_info.alignment[j]
self.distortion[j][i][l][m] += count
self.distortion_for_any_j[i][l][m] += count
|