File size: 5,892 Bytes
a8c1dd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
from __future__ import annotations
from typing import (
Any,
Generic,
overload,
TypeVar,
)
import numpy as np
import numpy.typing as npt
from scipy.sparse import coo_matrix, dok_matrix
from typing import Literal
# TODO: Replace `ndarray` with a 1D float64 array when possible
_BoxType = TypeVar("_BoxType", None, npt.NDArray[np.float64])
# Copied from `numpy.typing._scalar_like._ScalarLike`
# TODO: Expand with 0D arrays once we have shape support
_ArrayLike0D = bool | int | float | complex | str | bytes | np.generic
_WeightType = npt.ArrayLike | tuple[npt.ArrayLike | None, npt.ArrayLike | None]
class cKDTreeNode:
@property
def data_points(self) -> npt.NDArray[np.float64]: ...
@property
def indices(self) -> npt.NDArray[np.intp]: ...
# These are read-only attributes in cython, which behave like properties
@property
def level(self) -> int: ...
@property
def split_dim(self) -> int: ...
@property
def children(self) -> int: ...
@property
def start_idx(self) -> int: ...
@property
def end_idx(self) -> int: ...
@property
def split(self) -> float: ...
@property
def lesser(self) -> cKDTreeNode | None: ...
@property
def greater(self) -> cKDTreeNode | None: ...
class cKDTree(Generic[_BoxType]):
@property
def n(self) -> int: ...
@property
def m(self) -> int: ...
@property
def leafsize(self) -> int: ...
@property
def size(self) -> int: ...
@property
def tree(self) -> cKDTreeNode: ...
# These are read-only attributes in cython, which behave like properties
@property
def data(self) -> npt.NDArray[np.float64]: ...
@property
def maxes(self) -> npt.NDArray[np.float64]: ...
@property
def mins(self) -> npt.NDArray[np.float64]: ...
@property
def indices(self) -> npt.NDArray[np.float64]: ...
@property
def boxsize(self) -> _BoxType: ...
# NOTE: In practice `__init__` is used as constructor, not `__new__`.
# The latter gives us more flexibility in setting the generic parameter
# though.
@overload
def __new__( # type: ignore[misc]
cls,
data: npt.ArrayLike,
leafsize: int = ...,
compact_nodes: bool = ...,
copy_data: bool = ...,
balanced_tree: bool = ...,
boxsize: None = ...,
) -> cKDTree[None]: ...
@overload
def __new__(
cls,
data: npt.ArrayLike,
leafsize: int = ...,
compact_nodes: bool = ...,
copy_data: bool = ...,
balanced_tree: bool = ...,
boxsize: npt.ArrayLike = ...,
) -> cKDTree[npt.NDArray[np.float64]]: ...
# TODO: returns a 2-tuple of scalars if `x.ndim == 1` and `k == 1`,
# returns a 2-tuple of arrays otherwise
def query(
self,
x: npt.ArrayLike,
k: npt.ArrayLike = ...,
eps: float = ...,
p: float = ...,
distance_upper_bound: float = ...,
workers: int | None = ...,
) -> tuple[Any, Any]: ...
# TODO: returns a list scalars if `x.ndim <= 1`,
# returns an object array of lists otherwise
def query_ball_point(
self,
x: npt.ArrayLike,
r: npt.ArrayLike,
p: float,
eps: float = ...,
workers: int | None = ...,
return_sorted: bool | None = ...,
return_length: bool = ...
) -> Any: ...
def query_ball_tree(
self,
other: cKDTree,
r: float,
p: float,
eps: float = ...,
) -> list[list[int]]: ...
@overload
def query_pairs( # type: ignore[misc]
self,
r: float,
p: float = ...,
eps: float = ...,
output_type: Literal["set"] = ...,
) -> set[tuple[int, int]]: ...
@overload
def query_pairs(
self,
r: float,
p: float = ...,
eps: float = ...,
output_type: Literal["ndarray"] = ...,
) -> npt.NDArray[np.intp]: ...
@overload
def count_neighbors( # type: ignore[misc]
self,
other: cKDTree,
r: _ArrayLike0D,
p: float = ...,
weights: None | tuple[None, None] = ...,
cumulative: bool = ...,
) -> int: ...
@overload
def count_neighbors( # type: ignore[misc]
self,
other: cKDTree,
r: _ArrayLike0D,
p: float = ...,
weights: _WeightType = ...,
cumulative: bool = ...,
) -> np.float64: ...
@overload
def count_neighbors( # type: ignore[misc]
self,
other: cKDTree,
r: npt.ArrayLike,
p: float = ...,
weights: None | tuple[None, None] = ...,
cumulative: bool = ...,
) -> npt.NDArray[np.intp]: ...
@overload
def count_neighbors(
self,
other: cKDTree,
r: npt.ArrayLike,
p: float = ...,
weights: _WeightType = ...,
cumulative: bool = ...,
) -> npt.NDArray[np.float64]: ...
@overload
def sparse_distance_matrix( # type: ignore[misc]
self,
other: cKDTree,
max_distance: float,
p: float = ...,
output_type: Literal["dok_matrix"] = ...,
) -> dok_matrix: ...
@overload
def sparse_distance_matrix( # type: ignore[misc]
self,
other: cKDTree,
max_distance: float,
p: float = ...,
output_type: Literal["coo_matrix"] = ...,
) -> coo_matrix: ...
@overload
def sparse_distance_matrix( # type: ignore[misc]
self,
other: cKDTree,
max_distance: float,
p: float = ...,
output_type: Literal["dict"] = ...,
) -> dict[tuple[int, int], float]: ...
@overload
def sparse_distance_matrix(
self,
other: cKDTree,
max_distance: float,
p: float = ...,
output_type: Literal["ndarray"] = ...,
) -> npt.NDArray[np.void]: ...
|