File size: 23,817 Bytes
			
			9e65f67  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683  | 
								# Author: Mathieu Blondel <[email protected]>
#         Arnaud Joly <[email protected]>
#         Maheshakya Wijewardena <[email protected]>
# License: BSD 3 clause
import warnings
from numbers import Integral, Real
import numpy as np
import scipy.sparse as sp
from .base import (
    BaseEstimator,
    ClassifierMixin,
    MultiOutputMixin,
    RegressorMixin,
    _fit_context,
)
from .utils import check_random_state
from .utils._param_validation import Interval, StrOptions
from .utils.multiclass import class_distribution
from .utils.random import _random_choice_csc
from .utils.stats import _weighted_percentile
from .utils.validation import (
    _check_sample_weight,
    _num_samples,
    check_array,
    check_consistent_length,
    check_is_fitted,
)
class DummyClassifier(MultiOutputMixin, ClassifierMixin, BaseEstimator):
    """DummyClassifier makes predictions that ignore the input features.
    This classifier serves as a simple baseline to compare against other more
    complex classifiers.
    The specific behavior of the baseline is selected with the `strategy`
    parameter.
    All strategies make predictions that ignore the input feature values passed
    as the `X` argument to `fit` and `predict`. The predictions, however,
    typically depend on values observed in the `y` parameter passed to `fit`.
    Note that the "stratified" and "uniform" strategies lead to
    non-deterministic predictions that can be rendered deterministic by setting
    the `random_state` parameter if needed. The other strategies are naturally
    deterministic and, once fit, always return the same constant prediction
    for any value of `X`.
    Read more in the :ref:`User Guide <dummy_estimators>`.
    .. versionadded:: 0.13
    Parameters
    ----------
    strategy : {"most_frequent", "prior", "stratified", "uniform", \
            "constant"}, default="prior"
        Strategy to use to generate predictions.
        * "most_frequent": the `predict` method always returns the most
          frequent class label in the observed `y` argument passed to `fit`.
          The `predict_proba` method returns the matching one-hot encoded
          vector.
        * "prior": the `predict` method always returns the most frequent
          class label in the observed `y` argument passed to `fit` (like
          "most_frequent"). ``predict_proba`` always returns the empirical
          class distribution of `y` also known as the empirical class prior
          distribution.
        * "stratified": the `predict_proba` method randomly samples one-hot
          vectors from a multinomial distribution parametrized by the empirical
          class prior probabilities.
          The `predict` method returns the class label which got probability
          one in the one-hot vector of `predict_proba`.
          Each sampled row of both methods is therefore independent and
          identically distributed.
        * "uniform": generates predictions uniformly at random from the list
          of unique classes observed in `y`, i.e. each class has equal
          probability.
        * "constant": always predicts a constant label that is provided by
          the user. This is useful for metrics that evaluate a non-majority
          class.
          .. versionchanged:: 0.24
             The default value of `strategy` has changed to "prior" in version
             0.24.
    random_state : int, RandomState instance or None, default=None
        Controls the randomness to generate the predictions when
        ``strategy='stratified'`` or ``strategy='uniform'``.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.
    constant : int or str or array-like of shape (n_outputs,), default=None
        The explicit constant as predicted by the "constant" strategy. This
        parameter is useful only for the "constant" strategy.
    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,) or list of such arrays
        Unique class labels observed in `y`. For multi-output classification
        problems, this attribute is a list of arrays as each output has an
        independent set of possible classes.
    n_classes_ : int or list of int
        Number of label for each output.
    class_prior_ : ndarray of shape (n_classes,) or list of such arrays
        Frequency of each class observed in `y`. For multioutput classification
        problems, this is computed independently for each output.
    n_outputs_ : int
        Number of outputs.
    sparse_output_ : bool
        True if the array returned from predict is to be in sparse CSC format.
        Is automatically set to True if the input `y` is passed in sparse
        format.
    See Also
    --------
    DummyRegressor : Regressor that makes predictions using simple rules.
    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.dummy import DummyClassifier
    >>> X = np.array([-1, 1, 1, 1])
    >>> y = np.array([0, 1, 1, 1])
    >>> dummy_clf = DummyClassifier(strategy="most_frequent")
    >>> dummy_clf.fit(X, y)
    DummyClassifier(strategy='most_frequent')
    >>> dummy_clf.predict(X)
    array([1, 1, 1, 1])
    >>> dummy_clf.score(X, y)
    0.75
    """
    _parameter_constraints: dict = {
        "strategy": [
            StrOptions({"most_frequent", "prior", "stratified", "uniform", "constant"})
        ],
        "random_state": ["random_state"],
        "constant": [Integral, str, "array-like", None],
    }
    def __init__(self, *, strategy="prior", random_state=None, constant=None):
        self.strategy = strategy
        self.random_state = random_state
        self.constant = constant
    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None):
        """Fit the baseline classifier.
        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data.
        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            Target values.
        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.
        Returns
        -------
        self : object
            Returns the instance itself.
        """
        self._strategy = self.strategy
        if self._strategy == "uniform" and sp.issparse(y):
            y = y.toarray()
            warnings.warn(
                (
                    "A local copy of the target data has been converted "
                    "to a numpy array. Predicting on sparse target data "
                    "with the uniform strategy would not save memory "
                    "and would be slower."
                ),
                UserWarning,
            )
        self.sparse_output_ = sp.issparse(y)
        if not self.sparse_output_:
            y = np.asarray(y)
            y = np.atleast_1d(y)
        if y.ndim == 1:
            y = np.reshape(y, (-1, 1))
        self.n_outputs_ = y.shape[1]
        check_consistent_length(X, y)
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X)
        if self._strategy == "constant":
            if self.constant is None:
                raise ValueError(
                    "Constant target value has to be specified "
                    "when the constant strategy is used."
                )
            else:
                constant = np.reshape(np.atleast_1d(self.constant), (-1, 1))
                if constant.shape[0] != self.n_outputs_:
                    raise ValueError(
                        "Constant target value should have shape (%d, 1)."
                        % self.n_outputs_
                    )
        (self.classes_, self.n_classes_, self.class_prior_) = class_distribution(
            y, sample_weight
        )
        if self._strategy == "constant":
            for k in range(self.n_outputs_):
                if not any(constant[k][0] == c for c in self.classes_[k]):
                    # Checking in case of constant strategy if the constant
                    # provided by the user is in y.
                    err_msg = (
                        "The constant target value must be present in "
                        "the training data. You provided constant={}. "
                        "Possible values are: {}.".format(
                            self.constant, self.classes_[k].tolist()
                        )
                    )
                    raise ValueError(err_msg)
        if self.n_outputs_ == 1:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]
            self.class_prior_ = self.class_prior_[0]
        return self
    def predict(self, X):
        """Perform classification on test vectors X.
        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test data.
        Returns
        -------
        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            Predicted target values for X.
        """
        check_is_fitted(self)
        # numpy random_state expects Python int and not long as size argument
        # under Windows
        n_samples = _num_samples(X)
        rs = check_random_state(self.random_state)
        n_classes_ = self.n_classes_
        classes_ = self.classes_
        class_prior_ = self.class_prior_
        constant = self.constant
        if self.n_outputs_ == 1:
            # Get same type even for self.n_outputs_ == 1
            n_classes_ = [n_classes_]
            classes_ = [classes_]
            class_prior_ = [class_prior_]
            constant = [constant]
        # Compute probability only once
        if self._strategy == "stratified":
            proba = self.predict_proba(X)
            if self.n_outputs_ == 1:
                proba = [proba]
        if self.sparse_output_:
            class_prob = None
            if self._strategy in ("most_frequent", "prior"):
                classes_ = [np.array([cp.argmax()]) for cp in class_prior_]
            elif self._strategy == "stratified":
                class_prob = class_prior_
            elif self._strategy == "uniform":
                raise ValueError(
                    "Sparse target prediction is not "
                    "supported with the uniform strategy"
                )
            elif self._strategy == "constant":
                classes_ = [np.array([c]) for c in constant]
            y = _random_choice_csc(n_samples, classes_, class_prob, self.random_state)
        else:
            if self._strategy in ("most_frequent", "prior"):
                y = np.tile(
                    [
                        classes_[k][class_prior_[k].argmax()]
                        for k in range(self.n_outputs_)
                    ],
                    [n_samples, 1],
                )
            elif self._strategy == "stratified":
                y = np.vstack(
                    [
                        classes_[k][proba[k].argmax(axis=1)]
                        for k in range(self.n_outputs_)
                    ]
                ).T
            elif self._strategy == "uniform":
                ret = [
                    classes_[k][rs.randint(n_classes_[k], size=n_samples)]
                    for k in range(self.n_outputs_)
                ]
                y = np.vstack(ret).T
            elif self._strategy == "constant":
                y = np.tile(self.constant, (n_samples, 1))
            if self.n_outputs_ == 1:
                y = np.ravel(y)
        return y
    def predict_proba(self, X):
        """
        Return probability estimates for the test vectors X.
        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test data.
        Returns
        -------
        P : ndarray of shape (n_samples, n_classes) or list of such arrays
            Returns the probability of the sample for each class in
            the model, where classes are ordered arithmetically, for each
            output.
        """
        check_is_fitted(self)
        # numpy random_state expects Python int and not long as size argument
        # under Windows
        n_samples = _num_samples(X)
        rs = check_random_state(self.random_state)
        n_classes_ = self.n_classes_
        classes_ = self.classes_
        class_prior_ = self.class_prior_
        constant = self.constant
        if self.n_outputs_ == 1:
            # Get same type even for self.n_outputs_ == 1
            n_classes_ = [n_classes_]
            classes_ = [classes_]
            class_prior_ = [class_prior_]
            constant = [constant]
        P = []
        for k in range(self.n_outputs_):
            if self._strategy == "most_frequent":
                ind = class_prior_[k].argmax()
                out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)
                out[:, ind] = 1.0
            elif self._strategy == "prior":
                out = np.ones((n_samples, 1)) * class_prior_[k]
            elif self._strategy == "stratified":
                out = rs.multinomial(1, class_prior_[k], size=n_samples)
                out = out.astype(np.float64)
            elif self._strategy == "uniform":
                out = np.ones((n_samples, n_classes_[k]), dtype=np.float64)
                out /= n_classes_[k]
            elif self._strategy == "constant":
                ind = np.where(classes_[k] == constant[k])
                out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)
                out[:, ind] = 1.0
            P.append(out)
        if self.n_outputs_ == 1:
            P = P[0]
        return P
    def predict_log_proba(self, X):
        """
        Return log probability estimates for the test vectors X.
        Parameters
        ----------
        X : {array-like, object with finite length or shape}
            Training data.
        Returns
        -------
        P : ndarray of shape (n_samples, n_classes) or list of such arrays
            Returns the log probability of the sample for each class in
            the model, where classes are ordered arithmetically for each
            output.
        """
        proba = self.predict_proba(X)
        if self.n_outputs_ == 1:
            return np.log(proba)
        else:
            return [np.log(p) for p in proba]
    def _more_tags(self):
        return {
            "poor_score": True,
            "no_validation": True,
            "_xfail_checks": {
                "check_methods_subset_invariance": "fails for the predict method",
                "check_methods_sample_order_invariance": "fails for the predict method",
            },
        }
    def score(self, X, y, sample_weight=None):
        """Return the mean accuracy on the given test data and labels.
        In multi-label classification, this is the subset accuracy
        which is a harsh metric since you require for each sample that
        each label set be correctly predicted.
        Parameters
        ----------
        X : None or array-like of shape (n_samples, n_features)
            Test samples. Passing None as test samples gives the same result
            as passing real test samples, since DummyClassifier
            operates independently of the sampled observations.
        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            True labels for X.
        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.
        Returns
        -------
        score : float
            Mean accuracy of self.predict(X) w.r.t. y.
        """
        if X is None:
            X = np.zeros(shape=(len(y), 1))
        return super().score(X, y, sample_weight)
class DummyRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
    """Regressor that makes predictions using simple rules.
    This regressor is useful as a simple baseline to compare with other
    (real) regressors. Do not use it for real problems.
    Read more in the :ref:`User Guide <dummy_estimators>`.
    .. versionadded:: 0.13
    Parameters
    ----------
    strategy : {"mean", "median", "quantile", "constant"}, default="mean"
        Strategy to use to generate predictions.
        * "mean": always predicts the mean of the training set
        * "median": always predicts the median of the training set
        * "quantile": always predicts a specified quantile of the training set,
          provided with the quantile parameter.
        * "constant": always predicts a constant value that is provided by
          the user.
    constant : int or float or array-like of shape (n_outputs,), default=None
        The explicit constant as predicted by the "constant" strategy. This
        parameter is useful only for the "constant" strategy.
    quantile : float in [0.0, 1.0], default=None
        The quantile to predict using the "quantile" strategy. A quantile of
        0.5 corresponds to the median, while 0.0 to the minimum and 1.0 to the
        maximum.
    Attributes
    ----------
    constant_ : ndarray of shape (1, n_outputs)
        Mean or median or quantile of the training targets or constant value
        given by the user.
    n_outputs_ : int
        Number of outputs.
    See Also
    --------
    DummyClassifier: Classifier that makes predictions using simple rules.
    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.dummy import DummyRegressor
    >>> X = np.array([1.0, 2.0, 3.0, 4.0])
    >>> y = np.array([2.0, 3.0, 5.0, 10.0])
    >>> dummy_regr = DummyRegressor(strategy="mean")
    >>> dummy_regr.fit(X, y)
    DummyRegressor()
    >>> dummy_regr.predict(X)
    array([5., 5., 5., 5.])
    >>> dummy_regr.score(X, y)
    0.0
    """
    _parameter_constraints: dict = {
        "strategy": [StrOptions({"mean", "median", "quantile", "constant"})],
        "quantile": [Interval(Real, 0.0, 1.0, closed="both"), None],
        "constant": [
            Interval(Real, None, None, closed="neither"),
            "array-like",
            None,
        ],
    }
    def __init__(self, *, strategy="mean", constant=None, quantile=None):
        self.strategy = strategy
        self.constant = constant
        self.quantile = quantile
    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None):
        """Fit the random regressor.
        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data.
        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            Target values.
        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.
        Returns
        -------
        self : object
            Fitted estimator.
        """
        y = check_array(y, ensure_2d=False, input_name="y")
        if len(y) == 0:
            raise ValueError("y must not be empty.")
        if y.ndim == 1:
            y = np.reshape(y, (-1, 1))
        self.n_outputs_ = y.shape[1]
        check_consistent_length(X, y, sample_weight)
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X)
        if self.strategy == "mean":
            self.constant_ = np.average(y, axis=0, weights=sample_weight)
        elif self.strategy == "median":
            if sample_weight is None:
                self.constant_ = np.median(y, axis=0)
            else:
                self.constant_ = [
                    _weighted_percentile(y[:, k], sample_weight, percentile=50.0)
                    for k in range(self.n_outputs_)
                ]
        elif self.strategy == "quantile":
            if self.quantile is None:
                raise ValueError(
                    "When using `strategy='quantile', you have to specify the desired "
                    "quantile in the range [0, 1]."
                )
            percentile = self.quantile * 100.0
            if sample_weight is None:
                self.constant_ = np.percentile(y, axis=0, q=percentile)
            else:
                self.constant_ = [
                    _weighted_percentile(y[:, k], sample_weight, percentile=percentile)
                    for k in range(self.n_outputs_)
                ]
        elif self.strategy == "constant":
            if self.constant is None:
                raise TypeError(
                    "Constant target value has to be specified "
                    "when the constant strategy is used."
                )
            self.constant_ = check_array(
                self.constant,
                accept_sparse=["csr", "csc", "coo"],
                ensure_2d=False,
                ensure_min_samples=0,
            )
            if self.n_outputs_ != 1 and self.constant_.shape[0] != y.shape[1]:
                raise ValueError(
                    "Constant target value should have shape (%d, 1)." % y.shape[1]
                )
        self.constant_ = np.reshape(self.constant_, (1, -1))
        return self
    def predict(self, X, return_std=False):
        """Perform classification on test vectors X.
        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test data.
        return_std : bool, default=False
            Whether to return the standard deviation of posterior prediction.
            All zeros in this case.
            .. versionadded:: 0.20
        Returns
        -------
        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            Predicted target values for X.
        y_std : array-like of shape (n_samples,) or (n_samples, n_outputs)
            Standard deviation of predictive distribution of query points.
        """
        check_is_fitted(self)
        n_samples = _num_samples(X)
        y = np.full(
            (n_samples, self.n_outputs_),
            self.constant_,
            dtype=np.array(self.constant_).dtype,
        )
        y_std = np.zeros((n_samples, self.n_outputs_))
        if self.n_outputs_ == 1:
            y = np.ravel(y)
            y_std = np.ravel(y_std)
        return (y, y_std) if return_std else y
    def _more_tags(self):
        return {"poor_score": True, "no_validation": True}
    def score(self, X, y, sample_weight=None):
        """Return the coefficient of determination R^2 of the prediction.
        The coefficient R^2 is defined as `(1 - u/v)`, where `u` is the
        residual sum of squares `((y_true - y_pred) ** 2).sum()` and `v` is the
        total sum of squares `((y_true - y_true.mean()) ** 2).sum()`. The best
        possible score is 1.0 and it can be negative (because the model can be
        arbitrarily worse). A constant model that always predicts the expected
        value of y, disregarding the input features, would get a R^2 score of
        0.0.
        Parameters
        ----------
        X : None or array-like of shape (n_samples, n_features)
            Test samples. Passing None as test samples gives the same result
            as passing real test samples, since `DummyRegressor`
            operates independently of the sampled observations.
        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            True values for X.
        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.
        Returns
        -------
        score : float
            R^2 of `self.predict(X)` w.r.t. y.
        """
        if X is None:
            X = np.zeros(shape=(len(y), 1))
        return super().score(X, y, sample_weight)
 |