File size: 5,015 Bytes
9e65f67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""
The :mod:`sklearn` module includes functions to configure global settings and
get information about the working environment.
"""

# Machine learning module for Python
# ==================================
#
# sklearn is a Python module integrating classical machine
# learning algorithms in the tightly-knit world of scientific Python
# packages (numpy, scipy, matplotlib).
#
# It aims to provide simple and efficient solutions to learning problems
# that are accessible to everybody and reusable in various contexts:
# machine-learning as a versatile tool for science and engineering.
#
# See https://scikit-learn.org for complete documentation.

import logging
import os
import random
import sys

from ._config import config_context, get_config, set_config

logger = logging.getLogger(__name__)


# PEP0440 compatible formatted version, see:
# https://www.python.org/dev/peps/pep-0440/
#
# Generic release markers:
#   X.Y.0   # For first release after an increment in Y
#   X.Y.Z   # For bugfix releases
#
# Admissible pre-release markers:
#   X.Y.ZaN   # Alpha release
#   X.Y.ZbN   # Beta release
#   X.Y.ZrcN  # Release Candidate
#   X.Y.Z     # Final release
#
# Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer.
# 'X.Y.dev0' is the canonical version of 'X.Y.dev'
#
__version__ = "1.4.2"


# On OSX, we can get a runtime error due to multiple OpenMP libraries loaded
# simultaneously. This can happen for instance when calling BLAS inside a
# prange. Setting the following environment variable allows multiple OpenMP
# libraries to be loaded. It should not degrade performances since we manually
# take care of potential over-subcription performance issues, in sections of
# the code where nested OpenMP loops can happen, by dynamically reconfiguring
# the inner OpenMP runtime to temporarily disable it while under the scope of
# the outer OpenMP parallel section.
os.environ.setdefault("KMP_DUPLICATE_LIB_OK", "True")

# Workaround issue discovered in intel-openmp 2019.5:
# https://github.com/ContinuumIO/anaconda-issues/issues/11294
os.environ.setdefault("KMP_INIT_AT_FORK", "FALSE")

try:
    # This variable is injected in the __builtins__ by the build
    # process. It is used to enable importing subpackages of sklearn when
    # the binaries are not built
    # mypy error: Cannot determine type of '__SKLEARN_SETUP__'
    __SKLEARN_SETUP__  # type: ignore
except NameError:
    __SKLEARN_SETUP__ = False

if __SKLEARN_SETUP__:
    sys.stderr.write("Partial import of sklearn during the build process.\n")
    # We are not importing the rest of scikit-learn during the build
    # process, as it may not be compiled yet
else:
    # `_distributor_init` allows distributors to run custom init code.
    # For instance, for the Windows wheel, this is used to pre-load the
    # vcomp shared library runtime for OpenMP embedded in the sklearn/.libs
    # sub-folder.
    # It is necessary to do this prior to importing show_versions as the
    # later is linked to the OpenMP runtime to make it possible to introspect
    # it and importing it first would fail if the OpenMP dll cannot be found.
    from . import (
        __check_build,  # noqa: F401
        _distributor_init,  # noqa: F401
    )
    from .base import clone
    from .utils._show_versions import show_versions

    __all__ = [
        "calibration",
        "cluster",
        "covariance",
        "cross_decomposition",
        "datasets",
        "decomposition",
        "dummy",
        "ensemble",
        "exceptions",
        "experimental",
        "externals",
        "feature_extraction",
        "feature_selection",
        "gaussian_process",
        "inspection",
        "isotonic",
        "kernel_approximation",
        "kernel_ridge",
        "linear_model",
        "manifold",
        "metrics",
        "mixture",
        "model_selection",
        "multiclass",
        "multioutput",
        "naive_bayes",
        "neighbors",
        "neural_network",
        "pipeline",
        "preprocessing",
        "random_projection",
        "semi_supervised",
        "svm",
        "tree",
        "discriminant_analysis",
        "impute",
        "compose",
        # Non-modules:
        "clone",
        "get_config",
        "set_config",
        "config_context",
        "show_versions",
    ]

    _BUILT_WITH_MESON = False
    try:
        import sklearn._built_with_meson  # noqa: F401

        _BUILT_WITH_MESON = True
    except ModuleNotFoundError:
        pass


def setup_module(module):
    """Fixture for the tests to assure globally controllable seeding of RNGs"""

    import numpy as np

    # Check if a random seed exists in the environment, if not create one.
    _random_seed = os.environ.get("SKLEARN_SEED", None)
    if _random_seed is None:
        _random_seed = np.random.uniform() * np.iinfo(np.int32).max
    _random_seed = int(_random_seed)
    print("I: Seeding RNGs with %r" % _random_seed)
    np.random.seed(_random_seed)
    random.seed(_random_seed)