File size: 2,568 Bytes
7d701df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
import packaging.version
import torch
import transformers
@contextmanager
def gather_params_ctx(module: torch.nn.Module, modifier_rank: int = 0):
"""Call DeepSpeed GatheredParameters context manager if DeepSpeed is enabled, otherwise do nothing."""
if packaging.version.parse(transformers.__version__) >= packaging.version.parse("4.33.0"):
from transformers.integrations import is_deepspeed_zero3_enabled
else:
from transformers.deepspeed import is_deepspeed_zero3_enabled
if not is_deepspeed_zero3_enabled():
yield
return
import deepspeed
params_to_gather = module.parameters()
with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=modifier_rank):
yield
return
def dequantize_bnb_weight(weight: torch.nn.Parameter, state=None):
"""
Helper function to dequantize 4bit or 8bit bnb weights.
If the weight is not a bnb quantized weight, it will be returned as is.
"""
if not isinstance(weight, torch.nn.Parameter):
raise TypeError(f"Input weight should be of type nn.Parameter, got {type(weight)} instead")
cls_name = weight.__class__.__name__
if cls_name not in ("Params4bit", "Int8Params"):
return weight
import bitsandbytes as bnb
if cls_name == "Params4bit":
return bnb.functional.dequantize_4bit(weight.data, weight.quant_state)
if state.SCB is None:
state.SCB = weight.SCB
im = torch.eye(weight.data.shape[-1]).contiguous().half().to(weight.device)
im, imt, SCim, SCimt, coo_tensorim = bnb.functional.double_quant(im)
im, Sim = bnb.functional.transform(im, "col32")
if state.CxB is None:
state.CxB, state.SB = bnb.functional.transform(weight.data, to_order=state.formatB)
out32, Sout32 = bnb.functional.igemmlt(im, state.CxB, Sim, state.SB)
return bnb.functional.mm_dequant(out32, Sout32, SCim, state.SCB, bias=None).t()
|