Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/12.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/21.post_attention_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/21.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/24.input_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/24.input_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/24.input_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/6.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/6.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/8.post_attention_layernorm.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/accelerate/__init__.py +48 -0
- venv/lib/python3.10/site-packages/accelerate/accelerator.py +0 -0
- venv/lib/python3.10/site-packages/accelerate/big_modeling.py +627 -0
- venv/lib/python3.10/site-packages/accelerate/checkpointing.py +275 -0
- venv/lib/python3.10/site-packages/accelerate/data_loader.py +1093 -0
- venv/lib/python3.10/site-packages/accelerate/hooks.py +709 -0
- venv/lib/python3.10/site-packages/accelerate/inference.py +188 -0
- venv/lib/python3.10/site-packages/accelerate/launchers.py +258 -0
- venv/lib/python3.10/site-packages/accelerate/local_sgd.py +102 -0
- venv/lib/python3.10/site-packages/accelerate/logging.py +123 -0
- venv/lib/python3.10/site-packages/accelerate/memory_utils.py +22 -0
- venv/lib/python3.10/site-packages/accelerate/optimizer.py +193 -0
- venv/lib/python3.10/site-packages/accelerate/scheduler.py +98 -0
- venv/lib/python3.10/site-packages/accelerate/state.py +1209 -0
- venv/lib/python3.10/site-packages/accelerate/tracking.py +1023 -0
- venv/lib/python3.10/site-packages/accelerate/utils/bnb.py +467 -0
- venv/lib/python3.10/site-packages/accelerate/utils/dataclasses.py +1717 -0
- venv/lib/python3.10/site-packages/accelerate/utils/environment.py +274 -0
- venv/lib/python3.10/site-packages/accelerate/utils/memory.py +158 -0
- venv/lib/python3.10/site-packages/accelerate/utils/offload.py +213 -0
- venv/lib/python3.10/site-packages/accelerate/utils/operations.py +851 -0
- venv/lib/python3.10/site-packages/accelerate/utils/other.py +366 -0
- venv/lib/python3.10/site-packages/accelerate/utils/random.py +122 -0
- venv/lib/python3.10/site-packages/accelerate/utils/torch_xla.py +51 -0
- venv/lib/python3.10/site-packages/accelerate/utils/versions.py +56 -0
- venv/lib/python3.10/site-packages/more_itertools/__init__.py +6 -0
- venv/lib/python3.10/site-packages/more_itertools/__init__.pyi +2 -0
- venv/lib/python3.10/site-packages/more_itertools/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/more_itertools/__pycache__/more.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/more_itertools/__pycache__/recipes.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/more_itertools/more.py +0 -0
- venv/lib/python3.10/site-packages/more_itertools/more.pyi +695 -0
- venv/lib/python3.10/site-packages/more_itertools/py.typed +0 -0
- venv/lib/python3.10/site-packages/more_itertools/recipes.py +1012 -0
- venv/lib/python3.10/site-packages/more_itertools/recipes.pyi +128 -0
- venv/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/INSTALLER +1 -0
- venv/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/License.txt +1568 -0
- venv/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/METADATA +35 -0
- venv/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/RECORD +106 -0
- venv/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/WHEEL +5 -0
- venv/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/top_level.txt +1 -0
ckpts/universal/global_step40/zero/12.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edbacfbc93504fa7e7eb8b523eff34505a29340fab99683b37bf3f889aafa6d5
|
3 |
+
size 9387
|
ckpts/universal/global_step40/zero/21.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67fad17970d044aa639f8e857152bbe14562fbd3507b8c88716266925c0a12f0
|
3 |
+
size 9372
|
ckpts/universal/global_step40/zero/21.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc68041cccb216325c93aae78bc6679c7030ee3664d2e32f0c8c6391a3c04eff
|
3 |
+
size 9387
|
ckpts/universal/global_step40/zero/24.input_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28e584416eb56d9c15050bd85584fcf2a7bc973a61f8e06c0f79c8e5355fccc2
|
3 |
+
size 9372
|
ckpts/universal/global_step40/zero/24.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7911a1ed49b9d3ac5d5b893e0f5d625f50a577e1bd2f6369accbac09e199014f
|
3 |
+
size 9387
|
ckpts/universal/global_step40/zero/24.input_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2eca0475f0c33ca316333e25aed82a0fd9411039108a6630a0c789539f2fc36a
|
3 |
+
size 9293
|
ckpts/universal/global_step40/zero/6.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0dc0e99d763151d6e6c35ac66b4f6becc058242ba2d0b2740993cb004ae7fc3
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/6.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ccde16d632556998808de4eec1b7bfd6cadd91b3d420548b42a0e807736f59d
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/8.post_attention_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe041cea5c5538c8e92e49f1b1fb2b40d287bf000e69881b4342dae9ce870f2b
|
3 |
+
size 9293
|
venv/lib/python3.10/site-packages/accelerate/__init__.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
__version__ = "0.29.3"
|
15 |
+
|
16 |
+
from .accelerator import Accelerator
|
17 |
+
from .big_modeling import (
|
18 |
+
cpu_offload,
|
19 |
+
cpu_offload_with_hook,
|
20 |
+
disk_offload,
|
21 |
+
dispatch_model,
|
22 |
+
init_empty_weights,
|
23 |
+
init_on_device,
|
24 |
+
load_checkpoint_and_dispatch,
|
25 |
+
)
|
26 |
+
from .data_loader import skip_first_batches
|
27 |
+
from .inference import prepare_pippy
|
28 |
+
from .launchers import debug_launcher, notebook_launcher
|
29 |
+
from .state import PartialState
|
30 |
+
from .utils import (
|
31 |
+
AutocastKwargs,
|
32 |
+
DataLoaderConfiguration,
|
33 |
+
DeepSpeedPlugin,
|
34 |
+
DistributedDataParallelKwargs,
|
35 |
+
DistributedType,
|
36 |
+
FullyShardedDataParallelPlugin,
|
37 |
+
GradScalerKwargs,
|
38 |
+
InitProcessGroupKwargs,
|
39 |
+
find_executable_batch_size,
|
40 |
+
infer_auto_device_map,
|
41 |
+
is_rich_available,
|
42 |
+
load_checkpoint_in_model,
|
43 |
+
synchronize_rng_states,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
if is_rich_available():
|
48 |
+
from .utils import rich
|
venv/lib/python3.10/site-packages/accelerate/accelerator.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/accelerate/big_modeling.py
ADDED
@@ -0,0 +1,627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import logging
|
16 |
+
import os
|
17 |
+
from contextlib import contextmanager
|
18 |
+
from functools import wraps
|
19 |
+
from typing import Dict, List, Optional, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
|
24 |
+
from .hooks import (
|
25 |
+
AlignDevicesHook,
|
26 |
+
CpuOffload,
|
27 |
+
UserCpuOffloadHook,
|
28 |
+
add_hook_to_module,
|
29 |
+
attach_align_device_hook,
|
30 |
+
attach_align_device_hook_on_blocks,
|
31 |
+
)
|
32 |
+
from .utils import (
|
33 |
+
OffloadedWeightsLoader,
|
34 |
+
check_cuda_p2p_ib_support,
|
35 |
+
check_device_map,
|
36 |
+
extract_submodules_state_dict,
|
37 |
+
find_tied_parameters,
|
38 |
+
get_balanced_memory,
|
39 |
+
infer_auto_device_map,
|
40 |
+
is_mlu_available,
|
41 |
+
is_npu_available,
|
42 |
+
is_torch_version,
|
43 |
+
is_xpu_available,
|
44 |
+
load_checkpoint_in_model,
|
45 |
+
offload_state_dict,
|
46 |
+
parse_flag_from_env,
|
47 |
+
retie_parameters,
|
48 |
+
)
|
49 |
+
from .utils.other import recursive_getattr
|
50 |
+
|
51 |
+
|
52 |
+
logger = logging.getLogger(__name__)
|
53 |
+
|
54 |
+
|
55 |
+
@contextmanager
|
56 |
+
def init_empty_weights(include_buffers: bool = None):
|
57 |
+
"""
|
58 |
+
A context manager under which models are initialized with all parameters on the meta device, therefore creating an
|
59 |
+
empty model. Useful when just initializing the model would blow the available RAM.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
include_buffers (`bool`, *optional*):
|
63 |
+
Whether or not to also put all buffers on the meta device while initializing.
|
64 |
+
|
65 |
+
Example:
|
66 |
+
|
67 |
+
```python
|
68 |
+
import torch.nn as nn
|
69 |
+
from accelerate import init_empty_weights
|
70 |
+
|
71 |
+
# Initialize a model with 100 billions parameters in no time and without using any RAM.
|
72 |
+
with init_empty_weights():
|
73 |
+
tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
|
74 |
+
```
|
75 |
+
|
76 |
+
<Tip warning={true}>
|
77 |
+
|
78 |
+
Any model created under this context manager has no weights. As such you can't do something like
|
79 |
+
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
|
80 |
+
Make sure to overwrite the default device_map param for [`load_checkpoint_and_dispatch`], otherwise dispatch is not
|
81 |
+
called.
|
82 |
+
|
83 |
+
</Tip>
|
84 |
+
"""
|
85 |
+
if include_buffers is None:
|
86 |
+
include_buffers = parse_flag_from_env("ACCELERATE_INIT_INCLUDE_BUFFERS", False)
|
87 |
+
with init_on_device(torch.device("meta"), include_buffers=include_buffers) as f:
|
88 |
+
yield f
|
89 |
+
|
90 |
+
|
91 |
+
@contextmanager
|
92 |
+
def init_on_device(device: torch.device, include_buffers: bool = None):
|
93 |
+
"""
|
94 |
+
A context manager under which models are initialized with all parameters on the specified device.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
device (`torch.device`):
|
98 |
+
Device to initialize all parameters on.
|
99 |
+
include_buffers (`bool`, *optional*):
|
100 |
+
Whether or not to also put all buffers on the meta device while initializing.
|
101 |
+
|
102 |
+
Example:
|
103 |
+
|
104 |
+
```python
|
105 |
+
import torch.nn as nn
|
106 |
+
from accelerate import init_on_device
|
107 |
+
|
108 |
+
with init_on_device(device=torch.device("cuda")):
|
109 |
+
tst = nn.Liner(100, 100) # on `cuda` device
|
110 |
+
```
|
111 |
+
"""
|
112 |
+
if include_buffers is None:
|
113 |
+
include_buffers = parse_flag_from_env("ACCELERATE_INIT_INCLUDE_BUFFERS", False)
|
114 |
+
|
115 |
+
# TODO(shingjan): remove the torch version check once older versions are deprecated
|
116 |
+
if is_torch_version(">=", "2.0") and include_buffers:
|
117 |
+
with device:
|
118 |
+
yield
|
119 |
+
return
|
120 |
+
|
121 |
+
old_register_parameter = nn.Module.register_parameter
|
122 |
+
if include_buffers:
|
123 |
+
old_register_buffer = nn.Module.register_buffer
|
124 |
+
|
125 |
+
def register_empty_parameter(module, name, param):
|
126 |
+
old_register_parameter(module, name, param)
|
127 |
+
if param is not None:
|
128 |
+
param_cls = type(module._parameters[name])
|
129 |
+
kwargs = module._parameters[name].__dict__
|
130 |
+
kwargs["requires_grad"] = param.requires_grad
|
131 |
+
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
|
132 |
+
|
133 |
+
def register_empty_buffer(module, name, buffer, persistent=True):
|
134 |
+
old_register_buffer(module, name, buffer, persistent=persistent)
|
135 |
+
if buffer is not None:
|
136 |
+
module._buffers[name] = module._buffers[name].to(device)
|
137 |
+
|
138 |
+
# Patch tensor creation
|
139 |
+
if include_buffers:
|
140 |
+
tensor_constructors_to_patch = {
|
141 |
+
torch_function_name: getattr(torch, torch_function_name)
|
142 |
+
for torch_function_name in ["empty", "zeros", "ones", "full"]
|
143 |
+
}
|
144 |
+
else:
|
145 |
+
tensor_constructors_to_patch = {}
|
146 |
+
|
147 |
+
def patch_tensor_constructor(fn):
|
148 |
+
def wrapper(*args, **kwargs):
|
149 |
+
kwargs["device"] = device
|
150 |
+
return fn(*args, **kwargs)
|
151 |
+
|
152 |
+
return wrapper
|
153 |
+
|
154 |
+
try:
|
155 |
+
nn.Module.register_parameter = register_empty_parameter
|
156 |
+
if include_buffers:
|
157 |
+
nn.Module.register_buffer = register_empty_buffer
|
158 |
+
for torch_function_name in tensor_constructors_to_patch.keys():
|
159 |
+
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
|
160 |
+
yield
|
161 |
+
finally:
|
162 |
+
nn.Module.register_parameter = old_register_parameter
|
163 |
+
if include_buffers:
|
164 |
+
nn.Module.register_buffer = old_register_buffer
|
165 |
+
for torch_function_name, old_torch_function in tensor_constructors_to_patch.items():
|
166 |
+
setattr(torch, torch_function_name, old_torch_function)
|
167 |
+
|
168 |
+
|
169 |
+
def cpu_offload(
|
170 |
+
model: nn.Module,
|
171 |
+
execution_device: Optional[torch.device] = None,
|
172 |
+
offload_buffers: bool = False,
|
173 |
+
state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
174 |
+
preload_module_classes: Optional[List[str]] = None,
|
175 |
+
):
|
176 |
+
"""
|
177 |
+
Activates full CPU offload for a model. As a result, all parameters of the model will be offloaded and only one
|
178 |
+
copy of the state dict of the model will be kept. During the forward pass, parameters will be extracted from that
|
179 |
+
state dict and put on the execution device passed as they are needed, then offloaded again.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
model (`torch.nn.Module`):
|
183 |
+
The model to offload.
|
184 |
+
execution_device (`torch.device`, *optional*):
|
185 |
+
The device on which the forward pass of the model will be executed (should be a GPU). Will default to the
|
186 |
+
model first parameter device.
|
187 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
188 |
+
Whether or not to offload the buffers with the model parameters.
|
189 |
+
state_dict (`Dict[str, torch.Tensor]`, *optional*):
|
190 |
+
The state dict of the model that will be kept on CPU.
|
191 |
+
preload_module_classes (`List[str]`, *optional*):
|
192 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
193 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
194 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
195 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
196 |
+
"""
|
197 |
+
if execution_device is None:
|
198 |
+
execution_device = next(iter(model.parameters())).device
|
199 |
+
if state_dict is None:
|
200 |
+
state_dict = {n: p.to("cpu") for n, p in model.state_dict().items()}
|
201 |
+
|
202 |
+
add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True)
|
203 |
+
attach_align_device_hook(
|
204 |
+
model,
|
205 |
+
execution_device=execution_device,
|
206 |
+
offload=True,
|
207 |
+
offload_buffers=offload_buffers,
|
208 |
+
weights_map=state_dict,
|
209 |
+
preload_module_classes=preload_module_classes,
|
210 |
+
)
|
211 |
+
|
212 |
+
return model
|
213 |
+
|
214 |
+
|
215 |
+
def cpu_offload_with_hook(
|
216 |
+
model: torch.nn.Module,
|
217 |
+
execution_device: Optional[Union[int, str, torch.device]] = None,
|
218 |
+
prev_module_hook: Optional[UserCpuOffloadHook] = None,
|
219 |
+
):
|
220 |
+
"""
|
221 |
+
Offloads a model on the CPU and puts it back to an execution device when executed. The difference with
|
222 |
+
[`cpu_offload`] is that the model stays on the execution device after the forward and is only offloaded again when
|
223 |
+
the `offload` method of the returned `hook` is called. Useful for pipelines running a model in a loop.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
model (`torch.nn.Module`):
|
227 |
+
The model to offload.
|
228 |
+
execution_device(`str`, `int` or `torch.device`, *optional*):
|
229 |
+
The device on which the model should be executed. Will default to the MPS device if it's available, then
|
230 |
+
GPU 0 if there is a GPU, and finally to the CPU.
|
231 |
+
prev_module_hook (`UserCpuOffloadHook`, *optional*):
|
232 |
+
The hook sent back by this function for a previous model in the pipeline you are running. If passed, its
|
233 |
+
offload method will be called just before the forward of the model to which this hook is attached.
|
234 |
+
|
235 |
+
Example:
|
236 |
+
|
237 |
+
```py
|
238 |
+
model_1, hook_1 = cpu_offload_with_hook(model_1, cuda_device)
|
239 |
+
model_2, hook_2 = cpu_offload_with_hook(model_2, cuda_device, prev_module_hook=hook_1)
|
240 |
+
model_3, hook_3 = cpu_offload_with_hook(model_3, cuda_device, prev_module_hook=hook_2)
|
241 |
+
|
242 |
+
hid_1 = model_1(input)
|
243 |
+
for i in range(50):
|
244 |
+
# model1 is offloaded on the CPU at the first iteration, model 2 stays on the GPU for this whole loop.
|
245 |
+
hid_2 = model_2(hid_1)
|
246 |
+
# model2 is offloaded to the CPU just before this forward.
|
247 |
+
hid_3 = model_3(hid_3)
|
248 |
+
|
249 |
+
# For model3, you need to manually call the hook offload method.
|
250 |
+
hook_3.offload()
|
251 |
+
```
|
252 |
+
"""
|
253 |
+
hook = CpuOffload(execution_device=execution_device, prev_module_hook=prev_module_hook)
|
254 |
+
add_hook_to_module(model, hook, append=True)
|
255 |
+
user_hook = UserCpuOffloadHook(model, hook)
|
256 |
+
return model, user_hook
|
257 |
+
|
258 |
+
|
259 |
+
def disk_offload(
|
260 |
+
model: nn.Module,
|
261 |
+
offload_dir: Union[str, os.PathLike],
|
262 |
+
execution_device: Optional[torch.device] = None,
|
263 |
+
offload_buffers: bool = False,
|
264 |
+
preload_module_classes: Optional[List[str]] = None,
|
265 |
+
):
|
266 |
+
"""
|
267 |
+
Activates full disk offload for a model. As a result, all parameters of the model will be offloaded as
|
268 |
+
memory-mapped array in a given folder. During the forward pass, parameters will be accessed from that folder and
|
269 |
+
put on the execution device passed as they are needed, then offloaded again.
|
270 |
+
|
271 |
+
Args:
|
272 |
+
model (`torch.nn.Module`): The model to offload.
|
273 |
+
offload_dir (`str` or `os.PathLike`):
|
274 |
+
The folder in which to offload the model weights (or where the model weights are already offloaded).
|
275 |
+
execution_device (`torch.device`, *optional*):
|
276 |
+
The device on which the forward pass of the model will be executed (should be a GPU). Will default to the
|
277 |
+
model's first parameter device.
|
278 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
279 |
+
Whether or not to offload the buffers with the model parameters.
|
280 |
+
preload_module_classes (`List[str]`, *optional*):
|
281 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
282 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
283 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
284 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
285 |
+
"""
|
286 |
+
if not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json")):
|
287 |
+
offload_state_dict(offload_dir, model.state_dict())
|
288 |
+
if execution_device is None:
|
289 |
+
execution_device = next(iter(model.parameters())).device
|
290 |
+
weights_map = OffloadedWeightsLoader(save_folder=offload_dir)
|
291 |
+
|
292 |
+
add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True)
|
293 |
+
attach_align_device_hook(
|
294 |
+
model,
|
295 |
+
execution_device=execution_device,
|
296 |
+
offload=True,
|
297 |
+
offload_buffers=offload_buffers,
|
298 |
+
weights_map=weights_map,
|
299 |
+
preload_module_classes=preload_module_classes,
|
300 |
+
)
|
301 |
+
|
302 |
+
return model
|
303 |
+
|
304 |
+
|
305 |
+
def dispatch_model(
|
306 |
+
model: nn.Module,
|
307 |
+
device_map: Dict[str, Union[str, int, torch.device]],
|
308 |
+
main_device: Optional[torch.device] = None,
|
309 |
+
state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
310 |
+
offload_dir: Optional[Union[str, os.PathLike]] = None,
|
311 |
+
offload_index: Optional[Dict[str, str]] = None,
|
312 |
+
offload_buffers: bool = False,
|
313 |
+
skip_keys: Optional[Union[str, List[str]]] = None,
|
314 |
+
preload_module_classes: Optional[List[str]] = None,
|
315 |
+
force_hooks: bool = False,
|
316 |
+
):
|
317 |
+
"""
|
318 |
+
Dispatches a model according to a given device map. Layers of the model might be spread across GPUs, offloaded on
|
319 |
+
the CPU or even the disk.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
model (`torch.nn.Module`):
|
323 |
+
The model to dispatch.
|
324 |
+
device_map (`Dict[str, Union[str, int, torch.device]]`):
|
325 |
+
A dictionary mapping module names in the models `state_dict` to the device they should go to. Note that
|
326 |
+
`"disk"` is accepted even if it's not a proper value for `torch.device`.
|
327 |
+
main_device (`str`, `int` or `torch.device`, *optional*):
|
328 |
+
The main execution device. Will default to the first device in the `device_map` different from `"cpu"` or
|
329 |
+
`"disk"`.
|
330 |
+
state_dict (`Dict[str, torch.Tensor]`, *optional*):
|
331 |
+
The state dict of the part of the model that will be kept on CPU.
|
332 |
+
offload_dir (`str` or `os.PathLike`):
|
333 |
+
The folder in which to offload the model weights (or where the model weights are already offloaded).
|
334 |
+
offload_index (`Dict`, *optional*):
|
335 |
+
A dictionary from weight name to their information (`dtype`/ `shape` or safetensors filename). Will default
|
336 |
+
to the index saved in `save_folder`.
|
337 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
338 |
+
Whether or not to offload the buffers with the model parameters.
|
339 |
+
skip_keys (`str` or `List[str]`, *optional*):
|
340 |
+
A list of keys to ignore when moving inputs or outputs between devices.
|
341 |
+
preload_module_classes (`List[str]`, *optional*):
|
342 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
343 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
344 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
345 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
346 |
+
force_hooks (`bool`, *optional*, defaults to `False`):
|
347 |
+
Whether or not to force device hooks to be attached to the model even if all layers are dispatched to a
|
348 |
+
single device.
|
349 |
+
"""
|
350 |
+
# Error early if the device map is incomplete.
|
351 |
+
check_device_map(model, device_map)
|
352 |
+
|
353 |
+
# for backward compatibility
|
354 |
+
is_bnb_quantized = (
|
355 |
+
getattr(model, "is_quantized", False) or getattr(model, "is_loaded_in_8bit", False)
|
356 |
+
) and getattr(model, "quantization_method", "bitsandbytes") == "bitsandbytes"
|
357 |
+
|
358 |
+
# We attach hooks if the device_map has at least 2 different devices or if
|
359 |
+
# force_hooks is set to `True`. Otherwise, the model in already loaded
|
360 |
+
# in the unique device and the user can decide where to dispatch the model.
|
361 |
+
# If the model is quantized, we always force-dispatch the model
|
362 |
+
if (len(set(device_map.values())) > 1) or is_bnb_quantized or force_hooks:
|
363 |
+
if main_device is None:
|
364 |
+
if set(device_map.values()) == {"cpu"} or set(device_map.values()) == {"cpu", "disk"}:
|
365 |
+
main_device = "cpu"
|
366 |
+
else:
|
367 |
+
main_device = [d for d in device_map.values() if d not in ["cpu", "disk"]][0]
|
368 |
+
|
369 |
+
if main_device != "cpu":
|
370 |
+
cpu_modules = [name for name, device in device_map.items() if device == "cpu"]
|
371 |
+
if state_dict is None and len(cpu_modules) > 0:
|
372 |
+
state_dict = extract_submodules_state_dict(model.state_dict(), cpu_modules)
|
373 |
+
|
374 |
+
disk_modules = [name for name, device in device_map.items() if device == "disk"]
|
375 |
+
if offload_dir is None and offload_index is None and len(disk_modules) > 0:
|
376 |
+
raise ValueError(
|
377 |
+
"We need an `offload_dir` to dispatch this model according to this `device_map`, the following submodules "
|
378 |
+
f"need to be offloaded: {', '.join(disk_modules)}."
|
379 |
+
)
|
380 |
+
if (
|
381 |
+
len(disk_modules) > 0
|
382 |
+
and offload_index is None
|
383 |
+
and (not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json")))
|
384 |
+
):
|
385 |
+
disk_state_dict = extract_submodules_state_dict(model.state_dict(), disk_modules)
|
386 |
+
offload_state_dict(offload_dir, disk_state_dict)
|
387 |
+
|
388 |
+
execution_device = {
|
389 |
+
name: main_device if device in ["cpu", "disk"] else device for name, device in device_map.items()
|
390 |
+
}
|
391 |
+
execution_device[""] = main_device
|
392 |
+
offloaded_devices = ["disk"] if main_device == "cpu" or main_device == "mps" else ["cpu", "disk"]
|
393 |
+
offload = {name: device in offloaded_devices for name, device in device_map.items()}
|
394 |
+
save_folder = offload_dir if len(disk_modules) > 0 else None
|
395 |
+
if state_dict is not None or save_folder is not None or offload_index is not None:
|
396 |
+
device = main_device if offload_index is not None else None
|
397 |
+
weights_map = OffloadedWeightsLoader(
|
398 |
+
state_dict=state_dict, save_folder=save_folder, index=offload_index, device=device
|
399 |
+
)
|
400 |
+
else:
|
401 |
+
weights_map = None
|
402 |
+
|
403 |
+
# When dispatching the model's parameters to the devices specified in device_map, we want to avoid allocating memory several times for the
|
404 |
+
# tied parameters. The dictionary tied_params_map keeps track of the already allocated data for a given tied parameter (represented by its
|
405 |
+
# original pointer) on each devices.
|
406 |
+
tied_params = find_tied_parameters(model)
|
407 |
+
|
408 |
+
tied_params_map = {}
|
409 |
+
for group in tied_params:
|
410 |
+
for param_name in group:
|
411 |
+
# data_ptr() is enough here, as `find_tied_parameters` finds tied params simply by comparing `param1 is param2`, so we don't need
|
412 |
+
# to care about views of tensors through storage_offset.
|
413 |
+
data_ptr = recursive_getattr(model, param_name).data_ptr()
|
414 |
+
tied_params_map[data_ptr] = {}
|
415 |
+
|
416 |
+
# Note: To handle the disk offloading case, we can not simply use weights_map[param_name].data_ptr() as the reference pointer,
|
417 |
+
# as we have no guarantee that safetensors' `file.get_tensor()` will always give the same pointer.
|
418 |
+
|
419 |
+
attach_align_device_hook_on_blocks(
|
420 |
+
model,
|
421 |
+
execution_device=execution_device,
|
422 |
+
offload=offload,
|
423 |
+
offload_buffers=offload_buffers,
|
424 |
+
weights_map=weights_map,
|
425 |
+
skip_keys=skip_keys,
|
426 |
+
preload_module_classes=preload_module_classes,
|
427 |
+
tied_params_map=tied_params_map,
|
428 |
+
)
|
429 |
+
|
430 |
+
# warn if there is any params on the meta device
|
431 |
+
offloaded_devices_str = " and ".join(
|
432 |
+
[device for device in set(device_map.values()) if device in ("cpu", "disk")]
|
433 |
+
)
|
434 |
+
if len(offloaded_devices_str) > 0:
|
435 |
+
logging.warning(
|
436 |
+
f"Some parameters are on the meta device device because they were offloaded to the {offloaded_devices_str}."
|
437 |
+
)
|
438 |
+
|
439 |
+
# Attaching the hook may break tied weights, so we retie them
|
440 |
+
retie_parameters(model, tied_params)
|
441 |
+
|
442 |
+
# add warning to cuda and to method
|
443 |
+
def add_warning(fn, model):
|
444 |
+
@wraps(fn)
|
445 |
+
def wrapper(*args, **kwargs):
|
446 |
+
warning_msg = "You shouldn't move a model that is dispatched using accelerate hooks."
|
447 |
+
if str(fn.__name__) == "to":
|
448 |
+
to_device = torch._C._nn._parse_to(*args, **kwargs)[0]
|
449 |
+
if to_device is not None:
|
450 |
+
logger.warning(warning_msg)
|
451 |
+
else:
|
452 |
+
logger.warning(warning_msg)
|
453 |
+
for param in model.parameters():
|
454 |
+
if param.device == torch.device("meta"):
|
455 |
+
raise RuntimeError("You can't move a model that has some modules offloaded to cpu or disk.")
|
456 |
+
return fn(*args, **kwargs)
|
457 |
+
|
458 |
+
return wrapper
|
459 |
+
|
460 |
+
model.to = add_warning(model.to, model)
|
461 |
+
if is_npu_available():
|
462 |
+
model.npu = add_warning(model.npu, model)
|
463 |
+
elif is_mlu_available():
|
464 |
+
model.mlu = add_warning(model.mlu, model)
|
465 |
+
elif is_xpu_available():
|
466 |
+
model.xpu = add_warning(model.xpu, model)
|
467 |
+
else:
|
468 |
+
model.cuda = add_warning(model.cuda, model)
|
469 |
+
|
470 |
+
# Check if we are using multi-gpus with RTX 4000 series
|
471 |
+
use_multi_gpu = len([device for device in set(device_map.values()) if device not in ("cpu", "disk")]) > 1
|
472 |
+
if use_multi_gpu and not check_cuda_p2p_ib_support():
|
473 |
+
logger.warning(
|
474 |
+
"We've detected an older driver with an RTX 4000 series GPU. These drivers have issues with P2P. "
|
475 |
+
"This can affect the multi-gpu inference when using accelerate device_map."
|
476 |
+
"Please make sure to update your driver to the latest version which resolves this."
|
477 |
+
)
|
478 |
+
else:
|
479 |
+
device = list(device_map.values())[0]
|
480 |
+
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
|
481 |
+
if is_npu_available() and isinstance(device, int):
|
482 |
+
device = f"npu:{device}"
|
483 |
+
elif is_mlu_available() and isinstance(device, int):
|
484 |
+
device = f"mlu:{device}"
|
485 |
+
elif is_xpu_available() and isinstance(device, int):
|
486 |
+
device = f"xpu:{device}"
|
487 |
+
if device != "disk":
|
488 |
+
model.to(device)
|
489 |
+
else:
|
490 |
+
raise ValueError(
|
491 |
+
"You are trying to offload the whole model to the disk. Please use the `disk_offload` function instead."
|
492 |
+
)
|
493 |
+
# Convert OrderedDict back to dict for easier usage
|
494 |
+
model.hf_device_map = dict(device_map)
|
495 |
+
return model
|
496 |
+
|
497 |
+
|
498 |
+
def load_checkpoint_and_dispatch(
|
499 |
+
model: nn.Module,
|
500 |
+
checkpoint: Union[str, os.PathLike],
|
501 |
+
device_map: Optional[Union[str, Dict[str, Union[int, str, torch.device]]]] = None,
|
502 |
+
max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
|
503 |
+
no_split_module_classes: Optional[List[str]] = None,
|
504 |
+
offload_folder: Optional[Union[str, os.PathLike]] = None,
|
505 |
+
offload_buffers: bool = False,
|
506 |
+
dtype: Optional[Union[str, torch.dtype]] = None,
|
507 |
+
offload_state_dict: Optional[bool] = None,
|
508 |
+
skip_keys: Optional[Union[str, List[str]]] = None,
|
509 |
+
preload_module_classes: Optional[List[str]] = None,
|
510 |
+
force_hooks: bool = False,
|
511 |
+
strict: bool = False,
|
512 |
+
):
|
513 |
+
"""
|
514 |
+
Loads a (potentially sharded) checkpoint inside a model, potentially sending weights to a given device as they are
|
515 |
+
loaded and adds the various hooks that will make this model run properly (even if split across devices).
|
516 |
+
|
517 |
+
Args:
|
518 |
+
model (`torch.nn.Module`): The model in which we want to load a checkpoint.
|
519 |
+
checkpoint (`str` or `os.PathLike`):
|
520 |
+
The folder checkpoint to load. It can be:
|
521 |
+
- a path to a file containing a whole model state dict
|
522 |
+
- a path to a `.json` file containing the index to a sharded checkpoint
|
523 |
+
- a path to a folder containing a unique `.index.json` file and the shards of a checkpoint.
|
524 |
+
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
|
525 |
+
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
|
526 |
+
name, once a given module name is inside, every submodule of it will be sent to the same device.
|
527 |
+
|
528 |
+
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For more
|
529 |
+
information about each option see [here](../concept_guides/big_model_inference#designing-a-device-map).
|
530 |
+
Defaults to None, which means [`dispatch_model`] will not be called.
|
531 |
+
max_memory (`Dict`, *optional*):
|
532 |
+
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each GPU
|
533 |
+
and the available CPU RAM if unset.
|
534 |
+
no_split_module_classes (`List[str]`, *optional*):
|
535 |
+
A list of layer class names that should never be split across device (for instance any layer that has a
|
536 |
+
residual connection).
|
537 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
538 |
+
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
|
539 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
540 |
+
In the layers that are offloaded on the CPU or the hard drive, whether or not to offload the buffers as
|
541 |
+
well as the parameters.
|
542 |
+
dtype (`str` or `torch.dtype`, *optional*):
|
543 |
+
If provided, the weights will be converted to that type when loaded.
|
544 |
+
offload_state_dict (`bool`, *optional*):
|
545 |
+
If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if
|
546 |
+
the weight of the CPU state dict + the biggest shard does not fit. Will default to `True` if the device map
|
547 |
+
picked contains `"disk"` values.
|
548 |
+
skip_keys (`str` or `List[str]`, *optional*):
|
549 |
+
A list of keys to ignore when moving inputs or outputs between devices.
|
550 |
+
preload_module_classes (`List[str]`, *optional*):
|
551 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
552 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
553 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
554 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
555 |
+
force_hooks (`bool`, *optional*, defaults to `False`):
|
556 |
+
Whether or not to force device hooks to be attached to the model even if all layers are dispatched to a
|
557 |
+
single device.
|
558 |
+
strict (`bool`, *optional*, defaults to `False`):
|
559 |
+
Whether to strictly enforce that the keys in the checkpoint state_dict match the keys of the model's
|
560 |
+
state_dict.
|
561 |
+
|
562 |
+
Example:
|
563 |
+
|
564 |
+
```python
|
565 |
+
>>> from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
566 |
+
>>> from huggingface_hub import hf_hub_download
|
567 |
+
>>> from transformers import AutoConfig, AutoModelForCausalLM
|
568 |
+
|
569 |
+
>>> # Download the Weights
|
570 |
+
>>> checkpoint = "EleutherAI/gpt-j-6B"
|
571 |
+
>>> weights_location = hf_hub_download(checkpoint, "pytorch_model.bin")
|
572 |
+
|
573 |
+
>>> # Create a model and initialize it with empty weights
|
574 |
+
>>> config = AutoConfig.from_pretrained(checkpoint)
|
575 |
+
>>> with init_empty_weights():
|
576 |
+
... model = AutoModelForCausalLM.from_config(config)
|
577 |
+
|
578 |
+
>>> # Load the checkpoint and dispatch it to the right devices
|
579 |
+
>>> model = load_checkpoint_and_dispatch(
|
580 |
+
... model, weights_location, device_map="auto", no_split_module_classes=["GPTJBlock"]
|
581 |
+
... )
|
582 |
+
```
|
583 |
+
"""
|
584 |
+
if isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
|
585 |
+
raise ValueError(
|
586 |
+
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
|
587 |
+
"'sequential'."
|
588 |
+
)
|
589 |
+
if isinstance(device_map, str):
|
590 |
+
if device_map != "sequential":
|
591 |
+
max_memory = get_balanced_memory(
|
592 |
+
model,
|
593 |
+
max_memory=max_memory,
|
594 |
+
no_split_module_classes=no_split_module_classes,
|
595 |
+
dtype=dtype,
|
596 |
+
low_zero=(device_map == "balanced_low_0"),
|
597 |
+
)
|
598 |
+
device_map = infer_auto_device_map(
|
599 |
+
model,
|
600 |
+
max_memory=max_memory,
|
601 |
+
no_split_module_classes=no_split_module_classes,
|
602 |
+
dtype=dtype,
|
603 |
+
offload_buffers=offload_buffers,
|
604 |
+
)
|
605 |
+
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
|
606 |
+
offload_state_dict = True
|
607 |
+
load_checkpoint_in_model(
|
608 |
+
model,
|
609 |
+
checkpoint,
|
610 |
+
device_map=device_map,
|
611 |
+
offload_folder=offload_folder,
|
612 |
+
dtype=dtype,
|
613 |
+
offload_state_dict=offload_state_dict,
|
614 |
+
offload_buffers=offload_buffers,
|
615 |
+
strict=strict,
|
616 |
+
)
|
617 |
+
if device_map is None:
|
618 |
+
return model
|
619 |
+
return dispatch_model(
|
620 |
+
model,
|
621 |
+
device_map=device_map,
|
622 |
+
offload_dir=offload_folder,
|
623 |
+
offload_buffers=offload_buffers,
|
624 |
+
skip_keys=skip_keys,
|
625 |
+
preload_module_classes=preload_module_classes,
|
626 |
+
force_hooks=force_hooks,
|
627 |
+
)
|
venv/lib/python3.10/site-packages/accelerate/checkpointing.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import random
|
16 |
+
from pathlib import Path
|
17 |
+
from typing import List
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
from safetensors.torch import load_file
|
22 |
+
from torch.cuda.amp import GradScaler
|
23 |
+
|
24 |
+
from .utils import (
|
25 |
+
MODEL_NAME,
|
26 |
+
OPTIMIZER_NAME,
|
27 |
+
RNG_STATE_NAME,
|
28 |
+
SAFE_MODEL_NAME,
|
29 |
+
SAFE_WEIGHTS_NAME,
|
30 |
+
SAMPLER_NAME,
|
31 |
+
SCALER_NAME,
|
32 |
+
SCHEDULER_NAME,
|
33 |
+
WEIGHTS_NAME,
|
34 |
+
get_pretty_name,
|
35 |
+
is_torch_xla_available,
|
36 |
+
is_xpu_available,
|
37 |
+
save,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
if is_torch_xla_available():
|
42 |
+
import torch_xla.core.xla_model as xm
|
43 |
+
|
44 |
+
from .logging import get_logger
|
45 |
+
from .state import PartialState
|
46 |
+
|
47 |
+
|
48 |
+
logger = get_logger(__name__)
|
49 |
+
|
50 |
+
|
51 |
+
def save_accelerator_state(
|
52 |
+
output_dir: str,
|
53 |
+
model_states: List[dict],
|
54 |
+
optimizers: list,
|
55 |
+
schedulers: list,
|
56 |
+
dataloaders: list,
|
57 |
+
process_index: int,
|
58 |
+
scaler: GradScaler = None,
|
59 |
+
save_on_each_node: bool = False,
|
60 |
+
safe_serialization: bool = True,
|
61 |
+
):
|
62 |
+
"""
|
63 |
+
Saves the current states of the models, optimizers, scaler, and RNG generators to a given directory.
|
64 |
+
|
65 |
+
<Tip>
|
66 |
+
|
67 |
+
If `safe_serialization` is `True`, models will be saved with `safetensors` while the rest are saved using native
|
68 |
+
`pickle`.
|
69 |
+
|
70 |
+
</Tip>
|
71 |
+
|
72 |
+
Args:
|
73 |
+
output_dir (`str` or `os.PathLike`):
|
74 |
+
The name of the folder to save all relevant weights and states.
|
75 |
+
model_states (`List[torch.nn.Module]`):
|
76 |
+
A list of model states
|
77 |
+
optimizers (`List[torch.optim.Optimizer]`):
|
78 |
+
A list of optimizer instances
|
79 |
+
schedulers (`List[torch.optim.lr_scheduler._LRScheduler]`):
|
80 |
+
A list of learning rate schedulers
|
81 |
+
dataloaders (`List[torch.utils.data.DataLoader]`):
|
82 |
+
A list of dataloader instances to save their sampler states
|
83 |
+
process_index (`int`):
|
84 |
+
The current process index in the Accelerator state
|
85 |
+
scaler (`torch.cuda.amp.GradScaler`, *optional*):
|
86 |
+
An optional gradient scaler instance to save
|
87 |
+
save_on_each_node (`bool`, *optional*):
|
88 |
+
Whether to save on every node, or only the main node.
|
89 |
+
safe_serialization (`bool`, *optional*, defaults to `True`):
|
90 |
+
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
91 |
+
"""
|
92 |
+
output_dir = Path(output_dir)
|
93 |
+
# Model states
|
94 |
+
for i, state in enumerate(model_states):
|
95 |
+
weights_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
|
96 |
+
if i > 0:
|
97 |
+
weights_name = weights_name.replace(".", f"_{i}.")
|
98 |
+
output_model_file = output_dir.joinpath(weights_name)
|
99 |
+
save(state, output_model_file, save_on_each_node=save_on_each_node, safe_serialization=safe_serialization)
|
100 |
+
logger.info(f"Model weights saved in {output_model_file}")
|
101 |
+
# Optimizer states
|
102 |
+
for i, opt in enumerate(optimizers):
|
103 |
+
state = opt.state_dict()
|
104 |
+
optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin"
|
105 |
+
output_optimizer_file = output_dir.joinpath(optimizer_name)
|
106 |
+
save(state, output_optimizer_file, save_on_each_node=save_on_each_node, safe_serialization=False)
|
107 |
+
logger.info(f"Optimizer state saved in {output_optimizer_file}")
|
108 |
+
# Scheduler states
|
109 |
+
for i, scheduler in enumerate(schedulers):
|
110 |
+
state = scheduler.state_dict()
|
111 |
+
scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin"
|
112 |
+
output_scheduler_file = output_dir.joinpath(scheduler_name)
|
113 |
+
save(state, output_scheduler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
|
114 |
+
logger.info(f"Scheduler state saved in {output_scheduler_file}")
|
115 |
+
# DataLoader states
|
116 |
+
for i, dataloader in enumerate(dataloaders):
|
117 |
+
sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin"
|
118 |
+
output_sampler_file = output_dir.joinpath(sampler_name)
|
119 |
+
# Only save if we have our custom sampler
|
120 |
+
from .data_loader import IterableDatasetShard, SeedableRandomSampler
|
121 |
+
|
122 |
+
if isinstance(dataloader.dataset, IterableDatasetShard):
|
123 |
+
sampler = dataloader.sampler.sampler
|
124 |
+
|
125 |
+
if isinstance(sampler, SeedableRandomSampler):
|
126 |
+
save(sampler, output_sampler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
|
127 |
+
logger.info(f"Sampler state for dataloader {i} saved in {output_sampler_file}")
|
128 |
+
|
129 |
+
# GradScaler state
|
130 |
+
if scaler is not None:
|
131 |
+
state = scaler.state_dict()
|
132 |
+
output_scaler_file = output_dir.joinpath(SCALER_NAME)
|
133 |
+
torch.save(state, output_scaler_file)
|
134 |
+
logger.info(f"Gradient scaler state saved in {output_scaler_file}")
|
135 |
+
# Random number generator states
|
136 |
+
states = {}
|
137 |
+
states_name = f"{RNG_STATE_NAME}_{process_index}.pkl"
|
138 |
+
states["random_state"] = random.getstate()
|
139 |
+
states["numpy_random_seed"] = np.random.get_state()
|
140 |
+
states["torch_manual_seed"] = torch.get_rng_state()
|
141 |
+
if is_xpu_available():
|
142 |
+
states["torch_xpu_manual_seed"] = torch.xpu.get_rng_state_all()
|
143 |
+
else:
|
144 |
+
states["torch_cuda_manual_seed"] = torch.cuda.get_rng_state_all()
|
145 |
+
if is_torch_xla_available():
|
146 |
+
states["xm_seed"] = xm.get_rng_state()
|
147 |
+
output_states_file = output_dir.joinpath(states_name)
|
148 |
+
torch.save(states, output_states_file)
|
149 |
+
logger.info(f"Random states saved in {output_states_file}")
|
150 |
+
return output_dir
|
151 |
+
|
152 |
+
|
153 |
+
def load_accelerator_state(
|
154 |
+
input_dir,
|
155 |
+
models,
|
156 |
+
optimizers,
|
157 |
+
schedulers,
|
158 |
+
dataloaders,
|
159 |
+
process_index,
|
160 |
+
scaler=None,
|
161 |
+
map_location=None,
|
162 |
+
**load_model_func_kwargs,
|
163 |
+
):
|
164 |
+
"""
|
165 |
+
Loads states of the models, optimizers, scaler, and RNG generators from a given directory.
|
166 |
+
|
167 |
+
Args:
|
168 |
+
input_dir (`str` or `os.PathLike`):
|
169 |
+
The name of the folder to load all relevant weights and states.
|
170 |
+
models (`List[torch.nn.Module]`):
|
171 |
+
A list of model instances
|
172 |
+
optimizers (`List[torch.optim.Optimizer]`):
|
173 |
+
A list of optimizer instances
|
174 |
+
schedulers (`List[torch.optim.lr_scheduler._LRScheduler]`):
|
175 |
+
A list of learning rate schedulers
|
176 |
+
process_index (`int`):
|
177 |
+
The current process index in the Accelerator state
|
178 |
+
scaler (`torch.cuda.amp.GradScaler`, *optional*):
|
179 |
+
An optional *GradScaler* instance to load
|
180 |
+
map_location (`str`, *optional*):
|
181 |
+
What device to load the optimizer state onto. Should be one of either "cpu" or "on_device".
|
182 |
+
load_model_func_kwargs (`dict`, *optional*):
|
183 |
+
Additional arguments that can be passed to the model's `load_state_dict` method.
|
184 |
+
"""
|
185 |
+
if map_location not in [None, "cpu", "on_device"]:
|
186 |
+
raise TypeError(
|
187 |
+
"Unsupported optimizer map location passed, please choose one of `None`, `'cpu'`, or `'on_device'`"
|
188 |
+
)
|
189 |
+
if map_location is None:
|
190 |
+
map_location = "cpu"
|
191 |
+
elif map_location == "on_device":
|
192 |
+
map_location = PartialState().device
|
193 |
+
|
194 |
+
input_dir = Path(input_dir)
|
195 |
+
# Model states
|
196 |
+
for i, model in enumerate(models):
|
197 |
+
ending = f"_{i}" if i > 0 else ""
|
198 |
+
input_model_file = input_dir.joinpath(f"{SAFE_MODEL_NAME}{ending}.safetensors")
|
199 |
+
if input_model_file.exists():
|
200 |
+
state_dict = load_file(input_model_file, device=str(map_location))
|
201 |
+
else:
|
202 |
+
# Load with torch
|
203 |
+
input_model_file = input_dir.joinpath(f"{MODEL_NAME}{ending}.bin")
|
204 |
+
state_dict = torch.load(input_model_file, map_location=map_location)
|
205 |
+
models[i].load_state_dict(state_dict, **load_model_func_kwargs)
|
206 |
+
logger.info("All model weights loaded successfully")
|
207 |
+
|
208 |
+
# Optimizer states
|
209 |
+
for i, opt in enumerate(optimizers):
|
210 |
+
optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin"
|
211 |
+
input_optimizer_file = input_dir.joinpath(optimizer_name)
|
212 |
+
optimizer_state = torch.load(input_optimizer_file, map_location=map_location)
|
213 |
+
optimizers[i].load_state_dict(optimizer_state)
|
214 |
+
logger.info("All optimizer states loaded successfully")
|
215 |
+
|
216 |
+
# Scheduler states
|
217 |
+
for i, scheduler in enumerate(schedulers):
|
218 |
+
scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin"
|
219 |
+
input_scheduler_file = input_dir.joinpath(scheduler_name)
|
220 |
+
scheduler.load_state_dict(torch.load(input_scheduler_file))
|
221 |
+
logger.info("All scheduler states loaded successfully")
|
222 |
+
|
223 |
+
for i, dataloader in enumerate(dataloaders):
|
224 |
+
sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin"
|
225 |
+
input_sampler_file = input_dir.joinpath(sampler_name)
|
226 |
+
# Only load if we have our custom sampler
|
227 |
+
from .data_loader import IterableDatasetShard, SeedableRandomSampler
|
228 |
+
|
229 |
+
if isinstance(dataloader.dataset, IterableDatasetShard):
|
230 |
+
sampler = dataloader.sampler.sampler
|
231 |
+
|
232 |
+
if isinstance(sampler, SeedableRandomSampler):
|
233 |
+
dataloader.sampler.sampler = torch.load(input_sampler_file)
|
234 |
+
logger.info("All dataloader sampler states loaded successfully")
|
235 |
+
|
236 |
+
# GradScaler state
|
237 |
+
if scaler is not None:
|
238 |
+
input_scaler_file = input_dir.joinpath(SCALER_NAME)
|
239 |
+
scaler.load_state_dict(torch.load(input_scaler_file))
|
240 |
+
logger.info("GradScaler state loaded successfully")
|
241 |
+
|
242 |
+
# Random states
|
243 |
+
try:
|
244 |
+
states = torch.load(input_dir.joinpath(f"{RNG_STATE_NAME}_{process_index}.pkl"))
|
245 |
+
random.setstate(states["random_state"])
|
246 |
+
np.random.set_state(states["numpy_random_seed"])
|
247 |
+
torch.set_rng_state(states["torch_manual_seed"])
|
248 |
+
if is_xpu_available():
|
249 |
+
torch.xpu.set_rng_state_all(states["torch_xpu_manual_seed"])
|
250 |
+
else:
|
251 |
+
torch.cuda.set_rng_state_all(states["torch_cuda_manual_seed"])
|
252 |
+
if is_torch_xla_available():
|
253 |
+
xm.set_rng_state(states["xm_seed"])
|
254 |
+
logger.info("All random states loaded successfully")
|
255 |
+
except Exception:
|
256 |
+
logger.info("Could not load random states")
|
257 |
+
|
258 |
+
|
259 |
+
def save_custom_state(obj, path, index: int = 0, save_on_each_node: bool = False):
|
260 |
+
"""
|
261 |
+
Saves the state of `obj` to `{path}/custom_checkpoint_{index}.pkl`
|
262 |
+
"""
|
263 |
+
# Should this be the right way to get a qual_name type value from `obj`?
|
264 |
+
save_location = Path(path) / f"custom_checkpoint_{index}.pkl"
|
265 |
+
logger.info(f"Saving the state of {get_pretty_name(obj)} to {save_location}")
|
266 |
+
save(obj.state_dict(), save_location, save_on_each_node=save_on_each_node)
|
267 |
+
|
268 |
+
|
269 |
+
def load_custom_state(obj, path, index: int = 0):
|
270 |
+
"""
|
271 |
+
Loads the state of `obj` at `{path}/custom_checkpoint_{index}.pkl`
|
272 |
+
"""
|
273 |
+
load_location = f"{path}/custom_checkpoint_{index}.pkl"
|
274 |
+
logger.info(f"Loading the state of {get_pretty_name(obj)} from {load_location}")
|
275 |
+
obj.load_state_dict(torch.load(load_location, map_location="cpu"))
|
venv/lib/python3.10/site-packages/accelerate/data_loader.py
ADDED
@@ -0,0 +1,1093 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from contextlib import suppress
|
17 |
+
from typing import Callable, List, Optional, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch.utils.data import BatchSampler, DataLoader, IterableDataset, RandomSampler
|
21 |
+
|
22 |
+
from .logging import get_logger
|
23 |
+
from .state import AcceleratorState, DistributedType, GradientState, is_torch_xla_available
|
24 |
+
from .utils import (
|
25 |
+
RNGType,
|
26 |
+
broadcast,
|
27 |
+
broadcast_object_list,
|
28 |
+
concatenate,
|
29 |
+
find_batch_size,
|
30 |
+
get_data_structure,
|
31 |
+
initialize_tensors,
|
32 |
+
is_torch_version,
|
33 |
+
send_to_device,
|
34 |
+
slice_tensors,
|
35 |
+
synchronize_rng_states,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
logger = get_logger(__name__)
|
40 |
+
|
41 |
+
# kwargs of the DataLoader in min version 1.4.0.
|
42 |
+
_PYTORCH_DATALOADER_KWARGS = {
|
43 |
+
"batch_size": 1,
|
44 |
+
"shuffle": False,
|
45 |
+
"sampler": None,
|
46 |
+
"batch_sampler": None,
|
47 |
+
"num_workers": 0,
|
48 |
+
"collate_fn": None,
|
49 |
+
"pin_memory": False,
|
50 |
+
"drop_last": False,
|
51 |
+
"timeout": 0,
|
52 |
+
"worker_init_fn": None,
|
53 |
+
"multiprocessing_context": None,
|
54 |
+
"generator": None,
|
55 |
+
"prefetch_factor": 2,
|
56 |
+
"persistent_workers": False,
|
57 |
+
}
|
58 |
+
|
59 |
+
# kwargs added after by version
|
60 |
+
_PYTORCH_DATALOADER_ADDITIONAL_KWARGS = {}
|
61 |
+
|
62 |
+
for v, additional_kwargs in _PYTORCH_DATALOADER_ADDITIONAL_KWARGS.items():
|
63 |
+
if is_torch_version(">=", v):
|
64 |
+
_PYTORCH_DATALOADER_KWARGS.update(additional_kwargs)
|
65 |
+
|
66 |
+
|
67 |
+
class SeedableRandomSampler(RandomSampler):
|
68 |
+
"""
|
69 |
+
Same as a random sampler, except that in `__iter__` a seed can be used.
|
70 |
+
|
71 |
+
Needed specifically in distributed cases, when the random generator for each GPU needs to start from the same seed
|
72 |
+
and be fully reproducable on multiple iterations.
|
73 |
+
|
74 |
+
If a custom `generator` is passed, it will rely on its initial seed as well as the current iteration it is on
|
75 |
+
(stored in `self.epoch`).
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(self, *args, **kwargs):
|
79 |
+
super().__init__(*args, **kwargs)
|
80 |
+
self.epoch = 0
|
81 |
+
self.initial_seed = torch.random.initial_seed()
|
82 |
+
|
83 |
+
def __iter__(self):
|
84 |
+
if self.generator is None:
|
85 |
+
self.generator = torch.Generator()
|
86 |
+
self.generator.manual_seed(self.initial_seed)
|
87 |
+
|
88 |
+
# Allow `self.epoch` to modify the seed of the generator
|
89 |
+
seed = self.epoch + self.initial_seed
|
90 |
+
# print("Setting seed at epoch", self.epoch, seed)
|
91 |
+
self.generator.manual_seed(seed)
|
92 |
+
yield from super().__iter__()
|
93 |
+
self.set_epoch(self.epoch + 1)
|
94 |
+
|
95 |
+
def set_epoch(self, epoch: int):
|
96 |
+
"Sets the current iteration of the sampler."
|
97 |
+
self.epoch = epoch
|
98 |
+
|
99 |
+
|
100 |
+
class BatchSamplerShard(BatchSampler):
|
101 |
+
"""
|
102 |
+
Wraps a PyTorch `BatchSampler` to generate batches for one of the processes only. Instances of this class will
|
103 |
+
always yield a number of batches that is a round multiple of `num_processes` and that all have the same size.
|
104 |
+
Depending on the value of the `drop_last` attribute of the batch sampler passed, it will either stop the iteration
|
105 |
+
at the first batch that would be too small / not present on all processes or loop with indices from the beginning.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
batch_sampler (`torch.utils.data.sampler.BatchSampler`):
|
109 |
+
The batch sampler to split in several shards.
|
110 |
+
num_processes (`int`, *optional*, defaults to 1):
|
111 |
+
The number of processes running concurrently.
|
112 |
+
process_index (`int`, *optional*, defaults to 0):
|
113 |
+
The index of the current process.
|
114 |
+
split_batches (`bool`, *optional*, defaults to `False`):
|
115 |
+
Whether the shards should be created by splitting a batch to give a piece of it on each process, or by
|
116 |
+
yielding different full batches on each process.
|
117 |
+
|
118 |
+
On two processes with a sampler of `[[0, 1, 2, 3], [4, 5, 6, 7]]`, this will result in:
|
119 |
+
|
120 |
+
- the sampler on process 0 to yield `[0, 1, 2, 3]` and the sampler on process 1 to yield `[4, 5, 6, 7]` if
|
121 |
+
this argument is set to `False`.
|
122 |
+
- the sampler on process 0 to yield `[0, 1]` then `[4, 5]` and the sampler on process 1 to yield `[2, 3]`
|
123 |
+
then `[6, 7]` if this argument is set to `True`.
|
124 |
+
even_batches (`bool`, *optional*, defaults to `True`):
|
125 |
+
Whether or not to loop back at the beginning of the sampler when the number of samples is not a round
|
126 |
+
multiple of (original batch size / number of processes).
|
127 |
+
|
128 |
+
<Tip warning={true}>
|
129 |
+
|
130 |
+
`BatchSampler`s with varying batch sizes are not enabled by default. To enable this behaviour, set `even_batches`
|
131 |
+
equal to `False`
|
132 |
+
|
133 |
+
</Tip>"""
|
134 |
+
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
batch_sampler: BatchSampler,
|
138 |
+
num_processes: int = 1,
|
139 |
+
process_index: int = 0,
|
140 |
+
split_batches: bool = False,
|
141 |
+
even_batches: bool = True,
|
142 |
+
):
|
143 |
+
if split_batches and batch_sampler.batch_size % num_processes != 0:
|
144 |
+
raise ValueError(
|
145 |
+
f"To use `BatchSamplerShard` in `split_batches` mode, the batch size ({batch_sampler.batch_size}) "
|
146 |
+
f"needs to be a round multiple of the number of processes ({num_processes})."
|
147 |
+
)
|
148 |
+
self.batch_sampler = batch_sampler
|
149 |
+
self.num_processes = num_processes
|
150 |
+
self.process_index = process_index
|
151 |
+
self.split_batches = split_batches
|
152 |
+
self.even_batches = even_batches
|
153 |
+
self.batch_size = getattr(batch_sampler, "batch_size", None)
|
154 |
+
self.drop_last = getattr(batch_sampler, "drop_last", False)
|
155 |
+
if self.batch_size is None and self.even_batches:
|
156 |
+
raise ValueError(
|
157 |
+
"You need to use `even_batches=False` when the batch sampler has no batch size. If you "
|
158 |
+
"are not calling this method directly, set `accelerator.even_batches=False` instead."
|
159 |
+
)
|
160 |
+
|
161 |
+
@property
|
162 |
+
def total_length(self):
|
163 |
+
return len(self.batch_sampler)
|
164 |
+
|
165 |
+
def __len__(self):
|
166 |
+
if self.split_batches:
|
167 |
+
# Split batches does not change the length of the batch sampler
|
168 |
+
return len(self.batch_sampler)
|
169 |
+
if len(self.batch_sampler) % self.num_processes == 0:
|
170 |
+
# If the length is a round multiple of the number of processes, it's easy.
|
171 |
+
return len(self.batch_sampler) // self.num_processes
|
172 |
+
length = len(self.batch_sampler) // self.num_processes
|
173 |
+
if self.drop_last:
|
174 |
+
# Same if we drop the remainder.
|
175 |
+
return length
|
176 |
+
elif self.even_batches:
|
177 |
+
# When we even batches we always get +1
|
178 |
+
return length + 1
|
179 |
+
else:
|
180 |
+
# Otherwise it depends on the process index.
|
181 |
+
return length + 1 if self.process_index < len(self.batch_sampler) % self.num_processes else length
|
182 |
+
|
183 |
+
def __iter__(self):
|
184 |
+
return self._iter_with_split() if self.split_batches else self._iter_with_no_split()
|
185 |
+
|
186 |
+
def _iter_with_split(self):
|
187 |
+
initial_data = []
|
188 |
+
batch_length = self.batch_sampler.batch_size // self.num_processes
|
189 |
+
for idx, batch in enumerate(self.batch_sampler):
|
190 |
+
if idx == 0:
|
191 |
+
initial_data = batch
|
192 |
+
if len(batch) == self.batch_size:
|
193 |
+
# If the batch is full, we yield the part of it this process is responsible of.
|
194 |
+
yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)]
|
195 |
+
|
196 |
+
# If drop_last is True of the last batch was full, iteration is over, otherwise...
|
197 |
+
if not self.drop_last and len(initial_data) > 0 and len(batch) < self.batch_size:
|
198 |
+
if not self.even_batches:
|
199 |
+
if len(batch) > batch_length * self.process_index:
|
200 |
+
yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)]
|
201 |
+
else:
|
202 |
+
# For degenerate cases where the dataset has less than num_process * batch_size samples
|
203 |
+
while len(initial_data) < self.batch_size:
|
204 |
+
initial_data += initial_data
|
205 |
+
batch = batch + initial_data
|
206 |
+
yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)]
|
207 |
+
|
208 |
+
def _iter_with_no_split(self):
|
209 |
+
initial_data = []
|
210 |
+
batch_to_yield = []
|
211 |
+
for idx, batch in enumerate(self.batch_sampler):
|
212 |
+
# We gather the initial indices in case we need to circle back at the end.
|
213 |
+
if not self.drop_last and idx < self.num_processes:
|
214 |
+
initial_data += batch
|
215 |
+
# We identify the batch to yield but wait until we ar sure every process gets a full batch before actually
|
216 |
+
# yielding it.
|
217 |
+
if idx % self.num_processes == self.process_index:
|
218 |
+
batch_to_yield = batch
|
219 |
+
if idx % self.num_processes == self.num_processes - 1 and (
|
220 |
+
self.batch_size is None or len(batch) == self.batch_size
|
221 |
+
):
|
222 |
+
yield batch_to_yield
|
223 |
+
batch_to_yield = []
|
224 |
+
|
225 |
+
# If drop_last is True, iteration is over, otherwise...
|
226 |
+
if not self.drop_last and len(initial_data) > 0:
|
227 |
+
if not self.even_batches:
|
228 |
+
if len(batch_to_yield) > 0:
|
229 |
+
yield batch_to_yield
|
230 |
+
else:
|
231 |
+
# ... we yield the complete batch we had saved before if it has the proper length
|
232 |
+
if len(batch_to_yield) == self.batch_size:
|
233 |
+
yield batch_to_yield
|
234 |
+
|
235 |
+
# For degenerate cases where the dataset has less than num_process * batch_size samples
|
236 |
+
while len(initial_data) < self.num_processes * self.batch_size:
|
237 |
+
initial_data += initial_data
|
238 |
+
|
239 |
+
# If the last batch seen was of the proper size, it has been yielded by its process so we move to the next
|
240 |
+
if len(batch) == self.batch_size:
|
241 |
+
batch = []
|
242 |
+
idx += 1
|
243 |
+
|
244 |
+
# Make sure we yield a multiple of self.num_processes batches
|
245 |
+
cycle_index = 0
|
246 |
+
while idx % self.num_processes != 0 or len(batch) > 0:
|
247 |
+
end_index = cycle_index + self.batch_size - len(batch)
|
248 |
+
batch += initial_data[cycle_index:end_index]
|
249 |
+
if idx % self.num_processes == self.process_index:
|
250 |
+
yield batch
|
251 |
+
cycle_index = end_index
|
252 |
+
batch = []
|
253 |
+
idx += 1
|
254 |
+
|
255 |
+
|
256 |
+
class IterableDatasetShard(IterableDataset):
|
257 |
+
"""
|
258 |
+
Wraps a PyTorch `IterableDataset` to generate samples for one of the processes only. Instances of this class will
|
259 |
+
always yield a number of samples that is a round multiple of the actual batch size (depending of the value of
|
260 |
+
`split_batches`, this is either `batch_size` or `batch_size x num_processes`). Depending on the value of the
|
261 |
+
`drop_last` attribute of the batch sampler passed, it will either stop the iteration at the first batch that would
|
262 |
+
be too small or loop with indices from the beginning.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
dataset (`torch.utils.data.dataset.IterableDataset`):
|
266 |
+
The batch sampler to split in several shards.
|
267 |
+
batch_size (`int`, *optional*, defaults to 1):
|
268 |
+
The size of the batches per shard (if `split_batches=False`) or the size of the batches (if
|
269 |
+
`split_batches=True`).
|
270 |
+
drop_last (`bool`, *optional*, defaults to `False`):
|
271 |
+
Whether or not to drop the last incomplete batch or complete the last batches by using the samples from the
|
272 |
+
beginning.
|
273 |
+
num_processes (`int`, *optional*, defaults to 1):
|
274 |
+
The number of processes running concurrently.
|
275 |
+
process_index (`int`, *optional*, defaults to 0):
|
276 |
+
The index of the current process.
|
277 |
+
split_batches (`bool`, *optional*, defaults to `False`):
|
278 |
+
Whether the shards should be created by splitting a batch to give a piece of it on each process, or by
|
279 |
+
yielding different full batches on each process.
|
280 |
+
|
281 |
+
On two processes with an iterable dataset yielding of `[0, 1, 2, 3, 4, 5, 6, 7]`, this will result in:
|
282 |
+
|
283 |
+
- the shard on process 0 to yield `[0, 1, 2, 3]` and the shard on process 1 to yield `[4, 5, 6, 7]` if this
|
284 |
+
argument is set to `False`.
|
285 |
+
- the shard on process 0 to yield `[0, 1, 4, 5]` and the sampler on process 1 to yield `[2, 3, 6, 7]` if
|
286 |
+
this argument is set to `True`.
|
287 |
+
"""
|
288 |
+
|
289 |
+
def __init__(
|
290 |
+
self,
|
291 |
+
dataset: IterableDataset,
|
292 |
+
batch_size: int = 1,
|
293 |
+
drop_last: bool = False,
|
294 |
+
num_processes: int = 1,
|
295 |
+
process_index: int = 0,
|
296 |
+
split_batches: bool = False,
|
297 |
+
):
|
298 |
+
if split_batches and batch_size > 1 and batch_size % num_processes != 0:
|
299 |
+
raise ValueError(
|
300 |
+
f"To use `IterableDatasetShard` in `split_batches` mode, the batch size ({batch_size}) "
|
301 |
+
f"needs to be a round multiple of the number of processes ({num_processes})."
|
302 |
+
)
|
303 |
+
self.dataset = dataset
|
304 |
+
self.batch_size = batch_size
|
305 |
+
self.drop_last = drop_last
|
306 |
+
self.num_processes = num_processes
|
307 |
+
self.process_index = process_index
|
308 |
+
self.split_batches = split_batches
|
309 |
+
|
310 |
+
def set_epoch(self, epoch):
|
311 |
+
self.epoch = epoch
|
312 |
+
if hasattr(self.dataset, "set_epoch"):
|
313 |
+
self.dataset.set_epoch(epoch)
|
314 |
+
|
315 |
+
def __len__(self):
|
316 |
+
# We will just raise the downstream error if the underlying dataset is not sized
|
317 |
+
if self.drop_last:
|
318 |
+
return (len(self.dataset) // (self.batch_size * self.num_processes)) * self.batch_size
|
319 |
+
else:
|
320 |
+
return math.ceil(len(self.dataset) / (self.batch_size * self.num_processes)) * self.batch_size
|
321 |
+
|
322 |
+
def __iter__(self):
|
323 |
+
if (
|
324 |
+
not hasattr(self.dataset, "set_epoch")
|
325 |
+
and hasattr(self.dataset, "generator")
|
326 |
+
and isinstance(self.dataset.generator, torch.Generator)
|
327 |
+
):
|
328 |
+
self.dataset.generator.manual_seed(self.epoch)
|
329 |
+
real_batch_size = self.batch_size if self.split_batches else (self.batch_size * self.num_processes)
|
330 |
+
process_batch_size = (self.batch_size // self.num_processes) if self.split_batches else self.batch_size
|
331 |
+
process_slice = range(self.process_index * process_batch_size, (self.process_index + 1) * process_batch_size)
|
332 |
+
|
333 |
+
first_batch = None
|
334 |
+
current_batch = []
|
335 |
+
for element in self.dataset:
|
336 |
+
current_batch.append(element)
|
337 |
+
# Wait to have a full batch before yielding elements.
|
338 |
+
if len(current_batch) == real_batch_size:
|
339 |
+
for i in process_slice:
|
340 |
+
yield current_batch[i]
|
341 |
+
if first_batch is None:
|
342 |
+
first_batch = current_batch.copy()
|
343 |
+
current_batch = []
|
344 |
+
|
345 |
+
# Finished if drop_last is True, otherwise complete the last batch with elements from the beginning.
|
346 |
+
if not self.drop_last and len(current_batch) > 0:
|
347 |
+
if first_batch is None:
|
348 |
+
first_batch = current_batch.copy()
|
349 |
+
while len(current_batch) < real_batch_size:
|
350 |
+
current_batch += first_batch
|
351 |
+
for i in process_slice:
|
352 |
+
yield current_batch[i]
|
353 |
+
|
354 |
+
|
355 |
+
class DataLoaderStateMixin:
|
356 |
+
"""
|
357 |
+
Mixin class that adds a state to a `DataLoader` to keep track of the status inside the dataloader such as at the
|
358 |
+
end of the iteration, the number of items in the dataset in the last batch relative to the batch size, and other
|
359 |
+
useful information that might be needed.
|
360 |
+
|
361 |
+
**Available attributes:**
|
362 |
+
|
363 |
+
- **end_of_dataloader** (`bool`) -- Whether at the last iteration or batch
|
364 |
+
- **remainder** (`int`) -- The number of items that are remaining in the last batch, relative to the total
|
365 |
+
batch size
|
366 |
+
|
367 |
+
"""
|
368 |
+
|
369 |
+
def __init_subclass__(cls, **kwargs):
|
370 |
+
cls.end_of_dataloader = False
|
371 |
+
cls.remainder = -1
|
372 |
+
|
373 |
+
def reset(self):
|
374 |
+
self.end_of_dataloader = False
|
375 |
+
self.remainder = -1
|
376 |
+
|
377 |
+
def begin(self):
|
378 |
+
"Prepares the gradient state for the current dataloader"
|
379 |
+
self.reset()
|
380 |
+
with suppress(Exception):
|
381 |
+
if not self._drop_last:
|
382 |
+
length = getattr(self.dataset, "total_dataset_length", len(self.dataset))
|
383 |
+
self.remainder = length % self.total_batch_size
|
384 |
+
self.gradient_state._add_dataloader(self)
|
385 |
+
|
386 |
+
def end(self):
|
387 |
+
"Cleans up the gradient state after exiting the dataloader"
|
388 |
+
self.gradient_state._remove_dataloader(self)
|
389 |
+
|
390 |
+
|
391 |
+
class DataLoaderShard(DataLoader, DataLoaderStateMixin):
|
392 |
+
"""
|
393 |
+
Subclass of a PyTorch `DataLoader` that will deal with device placement and current distributed setup.
|
394 |
+
|
395 |
+
Args:
|
396 |
+
dataset (`torch.utils.data.dataset.Dataset`):
|
397 |
+
The dataset to use to build this datalaoder.
|
398 |
+
device (`torch.device`, *optional*):
|
399 |
+
If passed, the device to put all batches on.
|
400 |
+
rng_types (list of `str` or [`~utils.RNGType`]):
|
401 |
+
The list of random number generators to synchronize at the beginning of each iteration. Should be one or
|
402 |
+
several of:
|
403 |
+
|
404 |
+
- `"torch"`: the base torch random number generator
|
405 |
+
- `"cuda"`: the CUDA random number generator (GPU only)
|
406 |
+
- `"xla"`: the XLA random number generator (TPU only)
|
407 |
+
- `"generator"`: an optional `torch.Generator`
|
408 |
+
synchronized_generator (`torch.Generator`, *optional*):
|
409 |
+
A random number generator to keep synchronized across processes.
|
410 |
+
skip_batches (`int`, *optional*, defaults to 0):
|
411 |
+
The number of batches to skip at the beginning.
|
412 |
+
**kwargs (additional keyword arguments, *optional*):
|
413 |
+
All other keyword arguments to pass to the regular `DataLoader` initialization.
|
414 |
+
|
415 |
+
**Available attributes:**
|
416 |
+
|
417 |
+
- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes.
|
418 |
+
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total
|
419 |
+
number of processes
|
420 |
+
|
421 |
+
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes.
|
422 |
+
"""
|
423 |
+
|
424 |
+
def __init__(
|
425 |
+
self,
|
426 |
+
dataset,
|
427 |
+
device=None,
|
428 |
+
rng_types=None,
|
429 |
+
synchronized_generator=None,
|
430 |
+
skip_batches=0,
|
431 |
+
_drop_last: bool = False,
|
432 |
+
**kwargs,
|
433 |
+
):
|
434 |
+
super().__init__(dataset, **kwargs)
|
435 |
+
self.device = device
|
436 |
+
self.rng_types = rng_types
|
437 |
+
self.synchronized_generator = synchronized_generator
|
438 |
+
self.skip_batches = skip_batches
|
439 |
+
self.gradient_state = GradientState()
|
440 |
+
self._drop_last = _drop_last
|
441 |
+
self.iteration = 0
|
442 |
+
|
443 |
+
def __iter__(self):
|
444 |
+
if self.rng_types is not None:
|
445 |
+
synchronize_rng_states(self.rng_types, self.synchronized_generator)
|
446 |
+
self.begin()
|
447 |
+
|
448 |
+
self.set_epoch(self.iteration)
|
449 |
+
dataloader_iter = super().__iter__()
|
450 |
+
# We iterate one batch ahead to check when we are at the end
|
451 |
+
try:
|
452 |
+
current_batch = next(dataloader_iter)
|
453 |
+
except StopIteration:
|
454 |
+
yield
|
455 |
+
|
456 |
+
batch_index = 0
|
457 |
+
while True:
|
458 |
+
try:
|
459 |
+
# But we still move it to the device so it is done before `StopIteration` is reached
|
460 |
+
if self.device is not None:
|
461 |
+
current_batch = send_to_device(current_batch, self.device)
|
462 |
+
next_batch = next(dataloader_iter)
|
463 |
+
if batch_index >= self.skip_batches:
|
464 |
+
yield current_batch
|
465 |
+
batch_index += 1
|
466 |
+
current_batch = next_batch
|
467 |
+
except StopIteration:
|
468 |
+
self.end_of_dataloader = True
|
469 |
+
if batch_index >= self.skip_batches:
|
470 |
+
yield current_batch
|
471 |
+
break
|
472 |
+
|
473 |
+
self.iteration += 1
|
474 |
+
self.end()
|
475 |
+
|
476 |
+
def set_epoch(self, epoch: int):
|
477 |
+
# In case it is manually passed in, the user can set it to what they like
|
478 |
+
if self.iteration != epoch:
|
479 |
+
self.iteration = epoch
|
480 |
+
if hasattr(self.batch_sampler, "sampler") and hasattr(self.batch_sampler.sampler, "set_epoch"):
|
481 |
+
self.batch_sampler.sampler.set_epoch(epoch)
|
482 |
+
# We support if a custom `Dataset` implementation has `set_epoch`
|
483 |
+
# or in general HF datasets `Datasets`
|
484 |
+
elif hasattr(self.dataset, "set_epoch"):
|
485 |
+
self.dataset.set_epoch(epoch)
|
486 |
+
|
487 |
+
@property
|
488 |
+
def total_batch_size(self):
|
489 |
+
batch_sampler = self.sampler if isinstance(self.sampler, BatchSampler) else self.batch_sampler
|
490 |
+
return (
|
491 |
+
batch_sampler.batch_size
|
492 |
+
if getattr(batch_sampler, "split_batches", False)
|
493 |
+
else (batch_sampler.batch_size * getattr(batch_sampler, "num_processes", 1))
|
494 |
+
)
|
495 |
+
|
496 |
+
@property
|
497 |
+
def total_dataset_length(self):
|
498 |
+
if hasattr(self.dataset, "total_length"):
|
499 |
+
return self.dataset.total_length
|
500 |
+
else:
|
501 |
+
return len(self.dataset)
|
502 |
+
|
503 |
+
|
504 |
+
if is_torch_xla_available():
|
505 |
+
import torch_xla.distributed.parallel_loader as xpl
|
506 |
+
|
507 |
+
class MpDeviceLoaderWrapper(xpl.MpDeviceLoader):
|
508 |
+
"""
|
509 |
+
Wrapper for the xpl.MpDeviceLoader class that knows the total batch size.
|
510 |
+
|
511 |
+
XLA preloading threads will all call DataLoaderShard's __iter__(). Remove rng_types from DataLoaderShard to
|
512 |
+
prevent it from using the XLA device in the preloading threads, and synchronize the RNG once from the main
|
513 |
+
thread only.
|
514 |
+
|
515 |
+
**Available attributes:**
|
516 |
+
|
517 |
+
- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes.
|
518 |
+
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total
|
519 |
+
number of processes
|
520 |
+
|
521 |
+
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes.
|
522 |
+
"""
|
523 |
+
|
524 |
+
def __init__(self, dataloader: DataLoaderShard, device: torch.device):
|
525 |
+
super().__init__(dataloader, device)
|
526 |
+
self._rng_types = self._loader.rng_types
|
527 |
+
self._loader.rng_types = None
|
528 |
+
|
529 |
+
def __iter__(self):
|
530 |
+
if self._rng_types is not None:
|
531 |
+
synchronize_rng_states(self._rng_types, self._loader.synchronized_generator)
|
532 |
+
|
533 |
+
return super().__iter__()
|
534 |
+
|
535 |
+
@property
|
536 |
+
def total_batch_size(self):
|
537 |
+
return self._loader.total_batch_size
|
538 |
+
|
539 |
+
@property
|
540 |
+
def total_dataset_length(self):
|
541 |
+
return self._loader.total_dataset_length
|
542 |
+
|
543 |
+
@property
|
544 |
+
def batch_sampler(self):
|
545 |
+
return self._loader.batch_sampler
|
546 |
+
|
547 |
+
|
548 |
+
class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin):
|
549 |
+
"""
|
550 |
+
Subclass of a PyTorch `DataLoader` that will iterate and preprocess on process 0 only, then dispatch on each
|
551 |
+
process their part of the batch.
|
552 |
+
|
553 |
+
Args:
|
554 |
+
split_batches (`bool`, *optional*, defaults to `False`):
|
555 |
+
Whether the resulting `DataLoader` should split the batches of the original data loader across devices or
|
556 |
+
yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of
|
557 |
+
`num_processes` batches at each iteration). Another way to see this is that the observed batch size will be
|
558 |
+
the same as the initial `dataloader` if this option is set to `True`, the batch size of the initial
|
559 |
+
`dataloader` multiplied by `num_processes` otherwise. Setting this option to `True` requires that the batch
|
560 |
+
size of the `dataloader` is a round multiple of `batch_size`.
|
561 |
+
skip_batches (`int`, *optional*, defaults to 0):
|
562 |
+
The number of batches to skip at the beginning of an iteration.
|
563 |
+
|
564 |
+
**Available attributes:**
|
565 |
+
|
566 |
+
- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes.
|
567 |
+
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total
|
568 |
+
number of processes
|
569 |
+
|
570 |
+
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes.
|
571 |
+
"""
|
572 |
+
|
573 |
+
def __init__(
|
574 |
+
self, dataset, split_batches: bool = False, skip_batches=0, _drop_last: bool = False, slice_fn=None, **kwargs
|
575 |
+
):
|
576 |
+
shuffle = False
|
577 |
+
if is_torch_version(">=", "1.11.0"):
|
578 |
+
from torch.utils.data.datapipes.iter.combinatorics import ShufflerIterDataPipe
|
579 |
+
|
580 |
+
# We need to save the shuffling state of the DataPipe
|
581 |
+
if isinstance(dataset, ShufflerIterDataPipe):
|
582 |
+
shuffle = dataset._shuffle_enabled
|
583 |
+
super().__init__(dataset, **kwargs)
|
584 |
+
self.split_batches = split_batches
|
585 |
+
if shuffle:
|
586 |
+
torch.utils.data.graph_settings.apply_shuffle_settings(dataset, shuffle=shuffle)
|
587 |
+
|
588 |
+
self.gradient_state = GradientState()
|
589 |
+
self.state = AcceleratorState()
|
590 |
+
self._drop_last = _drop_last
|
591 |
+
self.skip_batches = skip_batches
|
592 |
+
|
593 |
+
self.slice_fn = slice_tensors if slice_fn is None else slice_fn
|
594 |
+
self.iteration = 0
|
595 |
+
|
596 |
+
def _fetch_batches(self, iterator):
|
597 |
+
batches, batch = None, None
|
598 |
+
# On process 0, we gather the batch to dispatch.
|
599 |
+
if self.state.process_index == 0:
|
600 |
+
try:
|
601 |
+
if self.split_batches:
|
602 |
+
# One batch of the main iterator is dispatched and split.
|
603 |
+
batch = next(iterator)
|
604 |
+
else:
|
605 |
+
# num_processes batches of the main iterator are concatenated then dispatched and split.
|
606 |
+
# We add the batches one by one so we have the remainder available when drop_last=False.
|
607 |
+
batches = []
|
608 |
+
for _ in range(self.state.num_processes):
|
609 |
+
batches.append(next(iterator))
|
610 |
+
try:
|
611 |
+
batch = concatenate(batches, dim=0)
|
612 |
+
except RuntimeError as e:
|
613 |
+
raise RuntimeError(
|
614 |
+
"You can't use batches of different size with `dispatch_batches=True` or when using an `IterableDataset`."
|
615 |
+
"either pass `dispatch_batches=False` and have each process fetch its own batch "
|
616 |
+
" or pass `split_batches=True`. By doing so, the main process will fetch a full batch and "
|
617 |
+
"slice it into `num_processes` batches for each process."
|
618 |
+
) from e
|
619 |
+
# In both cases, we need to get the structure of the batch that we will broadcast on other
|
620 |
+
# processes to initialize the tensors with the right shape.
|
621 |
+
# data_structure, stop_iteration
|
622 |
+
batch_info = [get_data_structure(batch), False]
|
623 |
+
except StopIteration:
|
624 |
+
batch_info = [None, True]
|
625 |
+
else:
|
626 |
+
batch_info = [None, self._stop_iteration]
|
627 |
+
# This is inplace, so after this instruction, every process has the same `batch_info` as process 0.
|
628 |
+
broadcast_object_list(batch_info)
|
629 |
+
self._stop_iteration = batch_info[1]
|
630 |
+
if self._stop_iteration:
|
631 |
+
# If drop_last is False and split_batches is False, we may have a remainder to take care of.
|
632 |
+
if not self.split_batches and not self._drop_last:
|
633 |
+
if self.state.process_index == 0 and len(batches) > 0:
|
634 |
+
batch = concatenate(batches, dim=0)
|
635 |
+
batch_info = [get_data_structure(batch), False]
|
636 |
+
else:
|
637 |
+
batch_info = [None, True]
|
638 |
+
broadcast_object_list(batch_info)
|
639 |
+
return batch, batch_info
|
640 |
+
|
641 |
+
def __iter__(self):
|
642 |
+
self.begin()
|
643 |
+
self.set_epoch(self.iteration)
|
644 |
+
main_iterator = None
|
645 |
+
if is_torch_version(">=", "2.0.1"):
|
646 |
+
# NOTE PyTorch DataLoader adds forward compatibilities for DataPipes, which broadcasts
|
647 |
+
# shared seed to all dist processes. Thus, we need to create iterator for all dist processes.
|
648 |
+
# But, we only iterate through the DataLoader on process 0.
|
649 |
+
main_iterator = super().__iter__()
|
650 |
+
elif self.state.process_index == 0:
|
651 |
+
main_iterator = super().__iter__()
|
652 |
+
stop_iteration = False
|
653 |
+
self._stop_iteration = False
|
654 |
+
first_batch = None
|
655 |
+
next_batch, next_batch_info = self._fetch_batches(main_iterator)
|
656 |
+
batch_index = 0
|
657 |
+
while not stop_iteration:
|
658 |
+
batch, batch_info = next_batch, next_batch_info
|
659 |
+
|
660 |
+
if self.state.process_index != 0:
|
661 |
+
# Initialize tensors on other processes than process 0.
|
662 |
+
batch = initialize_tensors(batch_info[0])
|
663 |
+
batch = send_to_device(batch, self.state.device)
|
664 |
+
# Broadcast the batch before splitting it.
|
665 |
+
batch = broadcast(batch, from_process=0)
|
666 |
+
|
667 |
+
if not self._drop_last and first_batch is None:
|
668 |
+
# We keep at least num processes elements of the first batch to be able to complete the last batch
|
669 |
+
first_batch = self.slice_fn(
|
670 |
+
batch,
|
671 |
+
slice(0, self.state.num_processes),
|
672 |
+
process_index=self.state.process_index,
|
673 |
+
num_processes=self.state.num_processes,
|
674 |
+
)
|
675 |
+
|
676 |
+
if batch is None:
|
677 |
+
raise ValueError(
|
678 |
+
f"Batch does not contain any data (`{batch}`). At the end of all iterable data available before expected stop iteration."
|
679 |
+
)
|
680 |
+
|
681 |
+
observed_batch_size = find_batch_size(batch)
|
682 |
+
batch_size = observed_batch_size // self.state.num_processes
|
683 |
+
|
684 |
+
stop_iteration = self._stop_iteration
|
685 |
+
if not stop_iteration:
|
686 |
+
# We may still be at the end of the dataloader without knowing it yet: if there is nothing left in
|
687 |
+
# the dataloader since the number of batches is a round multiple of the number of processes.
|
688 |
+
next_batch, next_batch_info = self._fetch_batches(main_iterator)
|
689 |
+
# next_batch_info[0] is None when there are no more batches, otherwise we still need to process them.
|
690 |
+
if self._stop_iteration and next_batch_info[0] is None:
|
691 |
+
stop_iteration = True
|
692 |
+
|
693 |
+
if not self._drop_last and stop_iteration and observed_batch_size % self.state.num_processes != 0:
|
694 |
+
# If the last batch is not complete, let's add the first batch to it.
|
695 |
+
batch = concatenate([batch, first_batch], dim=0)
|
696 |
+
# Batch size computation above is wrong, it's off by 1 so we fix it.
|
697 |
+
batch_size += 1
|
698 |
+
|
699 |
+
data_slice = slice(self.state.process_index * batch_size, (self.state.process_index + 1) * batch_size)
|
700 |
+
batch = self.slice_fn(
|
701 |
+
batch,
|
702 |
+
data_slice,
|
703 |
+
process_index=self.state.process_index,
|
704 |
+
num_processes=self.state.num_processes,
|
705 |
+
)
|
706 |
+
|
707 |
+
if stop_iteration:
|
708 |
+
self.end_of_dataloader = True
|
709 |
+
self.remainder = observed_batch_size
|
710 |
+
if batch_index >= self.skip_batches:
|
711 |
+
yield batch
|
712 |
+
batch_index += 1
|
713 |
+
self.iteration += 1
|
714 |
+
self.end()
|
715 |
+
|
716 |
+
def set_epoch(self, epoch: int):
|
717 |
+
# In case it is manually passed in, the user can set it to what they like
|
718 |
+
if self.iteration != epoch:
|
719 |
+
self.iteration = epoch
|
720 |
+
if hasattr(self.batch_sampler.sampler, "set_epoch"):
|
721 |
+
self.batch_sampler.sampler.set_epoch(epoch)
|
722 |
+
elif hasattr(self.dataset, "set_epoch"):
|
723 |
+
self.dataset.set_epoch(epoch)
|
724 |
+
|
725 |
+
def __len__(self):
|
726 |
+
whole_length = super().__len__()
|
727 |
+
if self.split_batches:
|
728 |
+
return whole_length
|
729 |
+
elif self._drop_last:
|
730 |
+
return whole_length // self.state.num_processes
|
731 |
+
else:
|
732 |
+
return math.ceil(whole_length / self.state.num_processes)
|
733 |
+
|
734 |
+
@property
|
735 |
+
def total_batch_size(self):
|
736 |
+
return (
|
737 |
+
self.dataset.batch_size if self.split_batches else (self.dataset.batch_size * self.dataset.num_processes)
|
738 |
+
)
|
739 |
+
|
740 |
+
@property
|
741 |
+
def total_dataset_length(self):
|
742 |
+
return len(self.dataset)
|
743 |
+
|
744 |
+
|
745 |
+
def prepare_data_loader(
|
746 |
+
dataloader: DataLoader,
|
747 |
+
device: Optional[torch.device] = None,
|
748 |
+
num_processes: Optional[int] = None,
|
749 |
+
process_index: Optional[int] = None,
|
750 |
+
split_batches: bool = False,
|
751 |
+
put_on_device: bool = False,
|
752 |
+
rng_types: Optional[List[Union[str, RNGType]]] = None,
|
753 |
+
dispatch_batches: Optional[bool] = None,
|
754 |
+
even_batches: bool = True,
|
755 |
+
slice_fn_for_dispatch: Optional[Callable] = None,
|
756 |
+
use_seedable_sampler: bool = False,
|
757 |
+
) -> DataLoader:
|
758 |
+
"""
|
759 |
+
Wraps a PyTorch `DataLoader` to generate batches for one of the processes only.
|
760 |
+
|
761 |
+
Depending on the value of the `drop_last` attribute of the `dataloader` passed, it will either stop the iteration
|
762 |
+
at the first batch that would be too small / not present on all processes or loop with indices from the beginning.
|
763 |
+
|
764 |
+
Args:
|
765 |
+
dataloader (`torch.utils.data.dataloader.DataLoader`):
|
766 |
+
The data loader to split across several devices.
|
767 |
+
device (`torch.device`):
|
768 |
+
The target device for the returned `DataLoader`.
|
769 |
+
num_processes (`int`, *optional*):
|
770 |
+
The number of processes running concurrently. Will default to the value given by
|
771 |
+
[`~state.AcceleratorState`].
|
772 |
+
process_index (`int`, *optional*):
|
773 |
+
The index of the current process. Will default to the value given by [`~state.AcceleratorState`].
|
774 |
+
split_batches (`bool`, *optional*, defaults to `False`):
|
775 |
+
Whether the resulting `DataLoader` should split the batches of the original data loader across devices or
|
776 |
+
yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of
|
777 |
+
`num_processes` batches at each iteration).
|
778 |
+
|
779 |
+
Another way to see this is that the observed batch size will be the same as the initial `dataloader` if
|
780 |
+
this option is set to `True`, the batch size of the initial `dataloader` multiplied by `num_processes`
|
781 |
+
otherwise.
|
782 |
+
|
783 |
+
Setting this option to `True` requires that the batch size of the `dataloader` is a round multiple of
|
784 |
+
`batch_size`.
|
785 |
+
put_on_device (`bool`, *optional*, defaults to `False`):
|
786 |
+
Whether or not to put the batches on `device` (only works if the batches are nested list, tuples or
|
787 |
+
dictionaries of tensors).
|
788 |
+
rng_types (list of `str` or [`~utils.RNGType`]):
|
789 |
+
The list of random number generators to synchronize at the beginning of each iteration. Should be one or
|
790 |
+
several of:
|
791 |
+
|
792 |
+
- `"torch"`: the base torch random number generator
|
793 |
+
- `"cuda"`: the CUDA random number generator (GPU only)
|
794 |
+
- `"xla"`: the XLA random number generator (TPU only)
|
795 |
+
- `"generator"`: the `torch.Generator` of the sampler (or batch sampler if there is no sampler in your
|
796 |
+
dataloader) or of the iterable dataset (if it exists) if the underlying dataset is of that type.
|
797 |
+
|
798 |
+
dispatch_batches (`bool`, *optional*):
|
799 |
+
If set to `True`, the datalaoder prepared is only iterated through on the main process and then the batches
|
800 |
+
are split and broadcast to each process. Will default to `True` when the underlying dataset is an
|
801 |
+
`IterableDataset`, `False` otherwise.
|
802 |
+
even_batches (`bool`, *optional*, defaults to `True`):
|
803 |
+
If set to `True`, in cases where the total batch size across all processes does not exactly divide the
|
804 |
+
dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among
|
805 |
+
all workers.
|
806 |
+
slice_fn_for_dispatch (`Callable`, *optional*`):
|
807 |
+
If passed, this function will be used to slice tensors across `num_processes`. Will default to
|
808 |
+
[`~utils.slice_tensors`]. This argument is used only when `dispatch_batches` is set to `True` and will be
|
809 |
+
ignored otherwise.
|
810 |
+
use_seedable_sampler (`bool`, *optional*, defaults to `False`):
|
811 |
+
Whether to use the [`~data_loader.SeedableRandomSampler`] instead of a `RandomSampler` for better
|
812 |
+
reproducability. Comes at a cost of potentially different performances due to different shuffling
|
813 |
+
algorithms but ensures results will be the *exact* same. Should be paired with `set_seed()` at every
|
814 |
+
`self.set_epoch`
|
815 |
+
|
816 |
+
Returns:
|
817 |
+
`torch.utils.data.dataloader.DataLoader`: A new data loader that will yield the portion of the batches
|
818 |
+
|
819 |
+
<Tip warning={true}>
|
820 |
+
|
821 |
+
`BatchSampler`s with varying batch sizes are not enabled by default. To enable this behaviour, set `even_batches`
|
822 |
+
equal to `False`
|
823 |
+
|
824 |
+
</Tip>
|
825 |
+
"""
|
826 |
+
if dispatch_batches is None:
|
827 |
+
if not put_on_device:
|
828 |
+
dispatch_batches = False
|
829 |
+
else:
|
830 |
+
dispatch_batches = isinstance(dataloader.dataset, IterableDataset)
|
831 |
+
|
832 |
+
if dispatch_batches and not put_on_device:
|
833 |
+
raise ValueError("Using `dispatch_batches=True` requires `put_on_device=True`.")
|
834 |
+
# Grab defaults from AcceleratorState
|
835 |
+
state = AcceleratorState()
|
836 |
+
if num_processes is None:
|
837 |
+
num_processes = state.num_processes
|
838 |
+
if process_index is None:
|
839 |
+
process_index = state.process_index
|
840 |
+
|
841 |
+
# Sanity check
|
842 |
+
if split_batches:
|
843 |
+
if dataloader.batch_size is not None:
|
844 |
+
batch_size_for_check = dataloader.batch_size
|
845 |
+
else:
|
846 |
+
# For custom batch_sampler
|
847 |
+
if hasattr(dataloader.batch_sampler, "batch_size"):
|
848 |
+
batch_size_for_check = dataloader.batch_sampler.batch_size
|
849 |
+
else:
|
850 |
+
raise ValueError(
|
851 |
+
"In order to use `split_batches==True` you must have a `batch_size` attribute either in the passed "
|
852 |
+
"`dataloader` or `dataloader.batch_sampler` objects, and it has to return a natural number. "
|
853 |
+
"Your `dataloader.batch_size` is None and `dataloader.batch_sampler` "
|
854 |
+
f"(`{type(dataloader.batch_sampler)}`) does not have the `batch_size` attribute set."
|
855 |
+
)
|
856 |
+
|
857 |
+
if batch_size_for_check > 1 and batch_size_for_check % num_processes != 0:
|
858 |
+
raise ValueError(
|
859 |
+
f"To use a `DataLoader` in `split_batches` mode, the batch size ({dataloader.batch_size}) "
|
860 |
+
f"needs to be a round multiple of the number of processes ({num_processes})."
|
861 |
+
)
|
862 |
+
|
863 |
+
new_dataset = dataloader.dataset
|
864 |
+
# Iterable dataset doesn't like batch_sampler, but data_loader creates a default one for it
|
865 |
+
new_batch_sampler = dataloader.batch_sampler if not isinstance(new_dataset, IterableDataset) else None
|
866 |
+
sampler_is_batch_sampler = False
|
867 |
+
synchronized_generator = None
|
868 |
+
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
|
869 |
+
if sampler_is_batch_sampler:
|
870 |
+
sampler = getattr(dataloader.sampler, "sampler", None)
|
871 |
+
else:
|
872 |
+
sampler = getattr(dataloader.batch_sampler, "sampler", None)
|
873 |
+
if isinstance(sampler, RandomSampler) and use_seedable_sampler:
|
874 |
+
# When iterating through the dataloader during distributed processes
|
875 |
+
# we want to ensure that on each process we are iterating through the same
|
876 |
+
# samples in the same order if a seed is set. This requires a tweak
|
877 |
+
# to the `torch.utils.data.RandomSampler` class (if used).
|
878 |
+
sampler = SeedableRandomSampler(
|
879 |
+
data_source=sampler.data_source,
|
880 |
+
replacement=sampler.replacement,
|
881 |
+
num_samples=sampler._num_samples,
|
882 |
+
generator=getattr(sampler, "generator", torch.Generator()),
|
883 |
+
)
|
884 |
+
|
885 |
+
if isinstance(dataloader.sampler, RandomSampler) and state.distributed_type == DistributedType.XLA:
|
886 |
+
# isinstance(dataloader.sampler, RandomSampler) indicates the original dataloader has `shuffle` enabled.
|
887 |
+
generator = torch.Generator().manual_seed(42)
|
888 |
+
dataloader.generator = generator
|
889 |
+
dataloader.sampler.generator = generator
|
890 |
+
# No change if no multiprocess
|
891 |
+
if (num_processes != 1 or state.distributed_type == DistributedType.MEGATRON_LM) and not dispatch_batches:
|
892 |
+
if isinstance(new_dataset, IterableDataset):
|
893 |
+
if getattr(dataloader.dataset, "generator", None) is not None:
|
894 |
+
synchronized_generator = dataloader.dataset.generator
|
895 |
+
new_dataset = IterableDatasetShard(
|
896 |
+
new_dataset,
|
897 |
+
batch_size=dataloader.batch_size,
|
898 |
+
drop_last=dataloader.drop_last,
|
899 |
+
num_processes=num_processes,
|
900 |
+
process_index=process_index,
|
901 |
+
split_batches=split_batches,
|
902 |
+
)
|
903 |
+
else:
|
904 |
+
batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler
|
905 |
+
new_batch_sampler = BatchSamplerShard(
|
906 |
+
batch_sampler,
|
907 |
+
num_processes=num_processes,
|
908 |
+
process_index=process_index,
|
909 |
+
split_batches=split_batches,
|
910 |
+
even_batches=even_batches,
|
911 |
+
)
|
912 |
+
|
913 |
+
# We ignore all of those since they are all dealt with by our new_batch_sampler
|
914 |
+
ignore_kwargs = [
|
915 |
+
"batch_size",
|
916 |
+
"shuffle",
|
917 |
+
"sampler",
|
918 |
+
"batch_sampler",
|
919 |
+
"drop_last",
|
920 |
+
]
|
921 |
+
|
922 |
+
if rng_types is not None and synchronized_generator is None and "generator" in rng_types:
|
923 |
+
rng_types.remove("generator")
|
924 |
+
|
925 |
+
kwargs = {
|
926 |
+
k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k])
|
927 |
+
for k in _PYTORCH_DATALOADER_KWARGS
|
928 |
+
if k not in ignore_kwargs
|
929 |
+
}
|
930 |
+
|
931 |
+
# Need to provide batch_size as batch_sampler is None for Iterable dataset
|
932 |
+
if new_batch_sampler is None:
|
933 |
+
kwargs["drop_last"] = dataloader.drop_last
|
934 |
+
kwargs["batch_size"] = (
|
935 |
+
dataloader.batch_size // num_processes if split_batches and not dispatch_batches else dataloader.batch_size
|
936 |
+
)
|
937 |
+
if dispatch_batches:
|
938 |
+
kwargs.pop("generator")
|
939 |
+
dataloader = DataLoaderDispatcher(
|
940 |
+
new_dataset,
|
941 |
+
split_batches=split_batches,
|
942 |
+
batch_sampler=new_batch_sampler,
|
943 |
+
_drop_last=dataloader.drop_last,
|
944 |
+
slice_fn=slice_fn_for_dispatch,
|
945 |
+
**kwargs,
|
946 |
+
)
|
947 |
+
elif sampler_is_batch_sampler:
|
948 |
+
dataloader = DataLoaderShard(
|
949 |
+
new_dataset,
|
950 |
+
device=device if put_on_device and state.distributed_type != DistributedType.XLA else None,
|
951 |
+
sampler=new_batch_sampler,
|
952 |
+
batch_size=dataloader.batch_size,
|
953 |
+
rng_types=rng_types,
|
954 |
+
_drop_last=dataloader.drop_last,
|
955 |
+
synchronized_generator=synchronized_generator,
|
956 |
+
**kwargs,
|
957 |
+
)
|
958 |
+
else:
|
959 |
+
dataloader = DataLoaderShard(
|
960 |
+
new_dataset,
|
961 |
+
device=device if put_on_device and state.distributed_type != DistributedType.XLA else None,
|
962 |
+
batch_sampler=new_batch_sampler,
|
963 |
+
rng_types=rng_types,
|
964 |
+
synchronized_generator=synchronized_generator,
|
965 |
+
_drop_last=dataloader.drop_last,
|
966 |
+
**kwargs,
|
967 |
+
)
|
968 |
+
|
969 |
+
if isinstance(sampler, SeedableRandomSampler) and use_seedable_sampler:
|
970 |
+
if sampler_is_batch_sampler:
|
971 |
+
dataloader.sampler.sampler = sampler
|
972 |
+
else:
|
973 |
+
dataloader.batch_sampler.sampler = sampler
|
974 |
+
if hasattr(dataloader.batch_sampler, "batch_sampler"):
|
975 |
+
dataloader.batch_sampler.batch_sampler.sampler = sampler
|
976 |
+
if state.distributed_type == DistributedType.XLA:
|
977 |
+
return MpDeviceLoaderWrapper(dataloader, device)
|
978 |
+
return dataloader
|
979 |
+
|
980 |
+
|
981 |
+
class SkipBatchSampler(BatchSampler):
|
982 |
+
"""
|
983 |
+
A `torch.utils.data.BatchSampler` that skips the first `n` batches of another `torch.utils.data.BatchSampler`.
|
984 |
+
"""
|
985 |
+
|
986 |
+
def __init__(self, batch_sampler, skip_batches=0):
|
987 |
+
self.batch_sampler = batch_sampler
|
988 |
+
self.skip_batches = skip_batches
|
989 |
+
|
990 |
+
def __iter__(self):
|
991 |
+
for index, samples in enumerate(self.batch_sampler):
|
992 |
+
if index >= self.skip_batches:
|
993 |
+
yield samples
|
994 |
+
|
995 |
+
@property
|
996 |
+
def total_length(self):
|
997 |
+
return len(self.batch_sampler)
|
998 |
+
|
999 |
+
def __len__(self):
|
1000 |
+
return len(self.batch_sampler) - self.skip_batches
|
1001 |
+
|
1002 |
+
|
1003 |
+
class SkipDataLoader(DataLoader):
|
1004 |
+
"""
|
1005 |
+
Subclass of a PyTorch `DataLoader` that will skip the first batches.
|
1006 |
+
|
1007 |
+
Args:
|
1008 |
+
dataset (`torch.utils.data.dataset.Dataset`):
|
1009 |
+
The dataset to use to build this datalaoder.
|
1010 |
+
skip_batches (`int`, *optional*, defaults to 0):
|
1011 |
+
The number of batches to skip at the beginning.
|
1012 |
+
kwargs:
|
1013 |
+
All other keyword arguments to pass to the regular `DataLoader` initialization.
|
1014 |
+
"""
|
1015 |
+
|
1016 |
+
def __init__(self, dataset, skip_batches=0, **kwargs):
|
1017 |
+
super().__init__(dataset, **kwargs)
|
1018 |
+
self.skip_batches = skip_batches
|
1019 |
+
|
1020 |
+
def __iter__(self):
|
1021 |
+
for index, batch in enumerate(super().__iter__()):
|
1022 |
+
if index >= self.skip_batches:
|
1023 |
+
yield batch
|
1024 |
+
|
1025 |
+
|
1026 |
+
def skip_first_batches(dataloader, num_batches=0):
|
1027 |
+
"""
|
1028 |
+
Creates a `torch.utils.data.DataLoader` that will efficiently skip the first `num_batches`.
|
1029 |
+
"""
|
1030 |
+
dataset = dataloader.dataset
|
1031 |
+
sampler_is_batch_sampler = False
|
1032 |
+
if isinstance(dataset, IterableDataset):
|
1033 |
+
new_batch_sampler = None
|
1034 |
+
else:
|
1035 |
+
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
|
1036 |
+
batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler
|
1037 |
+
new_batch_sampler = SkipBatchSampler(batch_sampler, skip_batches=num_batches)
|
1038 |
+
|
1039 |
+
# We ignore all of those since they are all dealt with by our new_batch_sampler
|
1040 |
+
ignore_kwargs = [
|
1041 |
+
"batch_size",
|
1042 |
+
"shuffle",
|
1043 |
+
"sampler",
|
1044 |
+
"batch_sampler",
|
1045 |
+
"drop_last",
|
1046 |
+
]
|
1047 |
+
|
1048 |
+
kwargs = {
|
1049 |
+
k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k])
|
1050 |
+
for k in _PYTORCH_DATALOADER_KWARGS
|
1051 |
+
if k not in ignore_kwargs
|
1052 |
+
}
|
1053 |
+
|
1054 |
+
# Need to provide batch_size as batch_sampler is None for Iterable dataset
|
1055 |
+
if new_batch_sampler is None:
|
1056 |
+
kwargs["drop_last"] = dataloader.drop_last
|
1057 |
+
kwargs["batch_size"] = dataloader.batch_size
|
1058 |
+
|
1059 |
+
if isinstance(dataloader, DataLoaderDispatcher):
|
1060 |
+
if new_batch_sampler is None:
|
1061 |
+
# Need to manually skip batches in the dataloader
|
1062 |
+
kwargs["skip_batches"] = num_batches
|
1063 |
+
dataloader = DataLoaderDispatcher(
|
1064 |
+
dataset,
|
1065 |
+
split_batches=dataloader.split_batches,
|
1066 |
+
batch_sampler=new_batch_sampler,
|
1067 |
+
_drop_last=dataloader._drop_last,
|
1068 |
+
**kwargs,
|
1069 |
+
)
|
1070 |
+
elif isinstance(dataloader, DataLoaderShard):
|
1071 |
+
if new_batch_sampler is None:
|
1072 |
+
# Need to manually skip batches in the dataloader
|
1073 |
+
kwargs["skip_batches"] = num_batches
|
1074 |
+
elif sampler_is_batch_sampler:
|
1075 |
+
kwargs["sampler"] = new_batch_sampler
|
1076 |
+
kwargs["batch_size"] = dataloader.batch_size
|
1077 |
+
else:
|
1078 |
+
kwargs["batch_sampler"] = new_batch_sampler
|
1079 |
+
dataloader = DataLoaderShard(
|
1080 |
+
dataset,
|
1081 |
+
device=dataloader.device,
|
1082 |
+
rng_types=dataloader.rng_types,
|
1083 |
+
synchronized_generator=dataloader.synchronized_generator,
|
1084 |
+
**kwargs,
|
1085 |
+
)
|
1086 |
+
else:
|
1087 |
+
if new_batch_sampler is None:
|
1088 |
+
# Need to manually skip batches in the dataloader
|
1089 |
+
dataloader = SkipDataLoader(dataset, skip_batches=num_batches, **kwargs)
|
1090 |
+
else:
|
1091 |
+
dataloader = DataLoader(dataset, batch_sampler=new_batch_sampler, **kwargs)
|
1092 |
+
|
1093 |
+
return dataloader
|
venv/lib/python3.10/site-packages/accelerate/hooks.py
ADDED
@@ -0,0 +1,709 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import functools
|
16 |
+
from typing import Dict, List, Mapping, Optional, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
from .state import PartialState
|
22 |
+
from .utils import (
|
23 |
+
PrefixedDataset,
|
24 |
+
find_device,
|
25 |
+
named_module_tensors,
|
26 |
+
send_to_device,
|
27 |
+
set_module_tensor_to_device,
|
28 |
+
)
|
29 |
+
from .utils.modeling import get_non_persistent_buffers
|
30 |
+
from .utils.other import recursive_getattr
|
31 |
+
|
32 |
+
|
33 |
+
class ModelHook:
|
34 |
+
"""
|
35 |
+
A hook that contains callbacks to be executed just before and after the forward method of a model. The difference
|
36 |
+
with PyTorch existing hooks is that they get passed along the kwargs.
|
37 |
+
|
38 |
+
Class attribute:
|
39 |
+
- **no_grad** (`bool`, *optional*, defaults to `False`) -- Whether or not to execute the actual forward pass under
|
40 |
+
the `torch.no_grad()` context manager.
|
41 |
+
"""
|
42 |
+
|
43 |
+
no_grad = False
|
44 |
+
|
45 |
+
def init_hook(self, module):
|
46 |
+
"""
|
47 |
+
To be executed when the hook is attached to the module.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
module (`torch.nn.Module`): The module attached to this hook.
|
51 |
+
"""
|
52 |
+
return module
|
53 |
+
|
54 |
+
def pre_forward(self, module, *args, **kwargs):
|
55 |
+
"""
|
56 |
+
To be executed just before the forward method of the model.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
module (`torch.nn.Module`): The module whose forward pass will be executed just after this event.
|
60 |
+
args (`Tuple[Any]`): The positional arguments passed to the module.
|
61 |
+
kwargs (`Dict[Str, Any]`): The keyword arguments passed to the module.
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
`Tuple[Tuple[Any], Dict[Str, Any]]`: A tuple with the treated `args` and `kwargs`.
|
65 |
+
"""
|
66 |
+
return args, kwargs
|
67 |
+
|
68 |
+
def post_forward(self, module, output):
|
69 |
+
"""
|
70 |
+
To be executed just after the forward method of the model.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
module (`torch.nn.Module`): The module whose forward pass been executed just before this event.
|
74 |
+
output (`Any`): The output of the module.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
`Any`: The processed `output`.
|
78 |
+
"""
|
79 |
+
return output
|
80 |
+
|
81 |
+
def detach_hook(self, module):
|
82 |
+
"""
|
83 |
+
To be executed when the hook is detached from a module.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
module (`torch.nn.Module`): The module detached from this hook.
|
87 |
+
"""
|
88 |
+
return module
|
89 |
+
|
90 |
+
|
91 |
+
class SequentialHook(ModelHook):
|
92 |
+
"""
|
93 |
+
A hook that can contain several hooks and iterates through them at each event.
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(self, *hooks):
|
97 |
+
self.hooks = hooks
|
98 |
+
|
99 |
+
def init_hook(self, module):
|
100 |
+
for hook in self.hooks:
|
101 |
+
module = hook.init_hook(module)
|
102 |
+
return module
|
103 |
+
|
104 |
+
def pre_forward(self, module, *args, **kwargs):
|
105 |
+
for hook in self.hooks:
|
106 |
+
args, kwargs = hook.pre_forward(module, *args, **kwargs)
|
107 |
+
return args, kwargs
|
108 |
+
|
109 |
+
def post_forward(self, module, output):
|
110 |
+
for hook in self.hooks:
|
111 |
+
output = hook.post_forward(module, output)
|
112 |
+
return output
|
113 |
+
|
114 |
+
def detach_hook(self, module):
|
115 |
+
for hook in self.hooks:
|
116 |
+
module = hook.detach_hook(module)
|
117 |
+
return module
|
118 |
+
|
119 |
+
|
120 |
+
def add_hook_to_module(module: nn.Module, hook: ModelHook, append: bool = False):
|
121 |
+
"""
|
122 |
+
Adds a hook to a given module. This will rewrite the `forward` method of the module to include the hook, to remove
|
123 |
+
this behavior and restore the original `forward` method, use `remove_hook_from_module`.
|
124 |
+
|
125 |
+
<Tip warning={true}>
|
126 |
+
|
127 |
+
If the module already contains a hook, this will replace it with the new hook passed by default. To chain two hooks
|
128 |
+
together, pass `append=True`, so it chains the current and new hook into an instance of the `SequentialHook` class.
|
129 |
+
|
130 |
+
</Tip>
|
131 |
+
|
132 |
+
Args:
|
133 |
+
module (`torch.nn.Module`):
|
134 |
+
The module to attach a hook to.
|
135 |
+
hook (`ModelHook`):
|
136 |
+
The hook to attach.
|
137 |
+
append (`bool`, *optional*, defaults to `False`):
|
138 |
+
Whether the hook should be chained with an existing one (if module already contains a hook) or not.
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
`torch.nn.Module`: The same module, with the hook attached (the module is modified in place, so the result can
|
142 |
+
be discarded).
|
143 |
+
"""
|
144 |
+
|
145 |
+
if append and (getattr(module, "_hf_hook", None) is not None):
|
146 |
+
old_hook = module._hf_hook
|
147 |
+
remove_hook_from_module(module)
|
148 |
+
hook = SequentialHook(old_hook, hook)
|
149 |
+
|
150 |
+
if hasattr(module, "_hf_hook") and hasattr(module, "_old_forward"):
|
151 |
+
# If we already put some hook on this module, we replace it with the new one.
|
152 |
+
old_forward = module._old_forward
|
153 |
+
else:
|
154 |
+
old_forward = module.forward
|
155 |
+
module._old_forward = old_forward
|
156 |
+
|
157 |
+
module = hook.init_hook(module)
|
158 |
+
module._hf_hook = hook
|
159 |
+
|
160 |
+
def new_forward(module, *args, **kwargs):
|
161 |
+
args, kwargs = module._hf_hook.pre_forward(module, *args, **kwargs)
|
162 |
+
if module._hf_hook.no_grad:
|
163 |
+
with torch.no_grad():
|
164 |
+
output = module._old_forward(*args, **kwargs)
|
165 |
+
else:
|
166 |
+
output = module._old_forward(*args, **kwargs)
|
167 |
+
return module._hf_hook.post_forward(module, output)
|
168 |
+
|
169 |
+
# Overriding a GraphModuleImpl forward freezes the forward call and later modifications on the graph will fail.
|
170 |
+
# Reference: https://pytorch.slack.com/archives/C3PDTEV8E/p1705929610405409
|
171 |
+
if "GraphModuleImpl" in str(type(module)):
|
172 |
+
module.__class__.forward = functools.update_wrapper(functools.partial(new_forward, module), old_forward)
|
173 |
+
else:
|
174 |
+
module.forward = functools.update_wrapper(functools.partial(new_forward, module), old_forward)
|
175 |
+
|
176 |
+
return module
|
177 |
+
|
178 |
+
|
179 |
+
def remove_hook_from_module(module: nn.Module, recurse=False):
|
180 |
+
"""
|
181 |
+
Removes any hook attached to a module via `add_hook_to_module`.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
module (`torch.nn.Module`): The module to attach a hook to.
|
185 |
+
recurse (`bool`, **optional**): Whether to remove the hooks recursively
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
`torch.nn.Module`: The same module, with the hook detached (the module is modified in place, so the result can
|
189 |
+
be discarded).
|
190 |
+
"""
|
191 |
+
|
192 |
+
if hasattr(module, "_hf_hook"):
|
193 |
+
module._hf_hook.detach_hook(module)
|
194 |
+
delattr(module, "_hf_hook")
|
195 |
+
|
196 |
+
if hasattr(module, "_old_forward"):
|
197 |
+
# Overriding a GraphModuleImpl forward freezes the forward call and later modifications on the graph will fail.
|
198 |
+
# Reference: https://pytorch.slack.com/archives/C3PDTEV8E/p1705929610405409
|
199 |
+
if "GraphModuleImpl" in str(type(module)):
|
200 |
+
module.__class__.forward = module._old_forward
|
201 |
+
else:
|
202 |
+
module.forward = module._old_forward
|
203 |
+
delattr(module, "_old_forward")
|
204 |
+
|
205 |
+
if recurse:
|
206 |
+
for child in module.children():
|
207 |
+
remove_hook_from_module(child, recurse)
|
208 |
+
|
209 |
+
return module
|
210 |
+
|
211 |
+
|
212 |
+
class AlignDevicesHook(ModelHook):
|
213 |
+
"""
|
214 |
+
A generic `ModelHook` that ensures inputs and model weights are on the same device for the forward pass of the
|
215 |
+
associated module, potentially offloading the weights after the forward pass.
|
216 |
+
|
217 |
+
Args:
|
218 |
+
execution_device (`torch.device`, *optional*):
|
219 |
+
The device on which inputs and model weights should be placed before the forward pass.
|
220 |
+
offload (`bool`, *optional*, defaults to `False`):
|
221 |
+
Whether or not the weights should be offloaded after the forward pass.
|
222 |
+
io_same_device (`bool`, *optional*, defaults to `False`):
|
223 |
+
Whether or not the output should be placed on the same device as the input was.
|
224 |
+
weights_map (`Mapping[str, torch.Tensor]`, *optional*):
|
225 |
+
When the model weights are offloaded, a (potentially lazy) map from param names to the tensor values.
|
226 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
227 |
+
Whether or not to include the associated module's buffers when offloading.
|
228 |
+
place_submodules (`bool`, *optional*, defaults to `False`):
|
229 |
+
Whether to place the submodules on `execution_device` during the `init_hook` event.
|
230 |
+
"""
|
231 |
+
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
execution_device: Optional[Union[int, str, torch.device]] = None,
|
235 |
+
offload: bool = False,
|
236 |
+
io_same_device: bool = False,
|
237 |
+
weights_map: Optional[Mapping] = None,
|
238 |
+
offload_buffers: bool = False,
|
239 |
+
place_submodules: bool = False,
|
240 |
+
skip_keys: Optional[Union[str, List[str]]] = None,
|
241 |
+
tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
|
242 |
+
):
|
243 |
+
self.execution_device = execution_device
|
244 |
+
self.offload = offload
|
245 |
+
self.io_same_device = io_same_device
|
246 |
+
self.weights_map = weights_map
|
247 |
+
self.offload_buffers = offload_buffers
|
248 |
+
self.place_submodules = place_submodules
|
249 |
+
self.skip_keys = skip_keys
|
250 |
+
|
251 |
+
# Will contain the input device when `io_same_device=True`.
|
252 |
+
self.input_device = None
|
253 |
+
self.param_original_devices = {}
|
254 |
+
self.buffer_original_devices = {}
|
255 |
+
self.tied_params_names = set()
|
256 |
+
|
257 |
+
# The hook pre_forward/post_forward need to have knowledge of this dictionary, as with offloading we want to avoid duplicating memory
|
258 |
+
# for tied weights already loaded on the target execution device.
|
259 |
+
self.tied_params_map = tied_params_map
|
260 |
+
|
261 |
+
def __repr__(self):
|
262 |
+
return (
|
263 |
+
f"AlignDevicesHook(execution_device={self.execution_device}, offload={self.offload}, "
|
264 |
+
f"io_same_device={self.io_same_device}, offload_buffers={self.offload_buffers}, "
|
265 |
+
f"place_submodules={self.place_submodules}, skip_keys={repr(self.skip_keys)})"
|
266 |
+
)
|
267 |
+
|
268 |
+
def init_hook(self, module):
|
269 |
+
# In case the AlignDevicesHook is on meta device, ignore tied weights as data_ptr() is then always zero.
|
270 |
+
if self.execution_device == "meta" or self.execution_device == torch.device("meta"):
|
271 |
+
self.tied_params_map = None
|
272 |
+
|
273 |
+
if not self.offload and self.execution_device is not None:
|
274 |
+
for name, _ in named_module_tensors(module, recurse=self.place_submodules):
|
275 |
+
set_module_tensor_to_device(module, name, self.execution_device, tied_params_map=self.tied_params_map)
|
276 |
+
elif self.offload:
|
277 |
+
self.original_devices = {
|
278 |
+
name: param.device for name, param in named_module_tensors(module, recurse=self.place_submodules)
|
279 |
+
}
|
280 |
+
if self.weights_map is None:
|
281 |
+
self.weights_map = {
|
282 |
+
name: param.to("cpu")
|
283 |
+
for name, param in named_module_tensors(
|
284 |
+
module, include_buffers=self.offload_buffers, recurse=self.place_submodules
|
285 |
+
)
|
286 |
+
}
|
287 |
+
for name, _ in named_module_tensors(
|
288 |
+
module, include_buffers=self.offload_buffers, recurse=self.place_submodules, remove_non_persistent=True
|
289 |
+
):
|
290 |
+
# When using disk offloading, we can not rely on `weights_map[name].data_ptr()` as the reference pointer,
|
291 |
+
# as we have no guarantee that safetensors' `file.get_tensor()` will always give the same pointer.
|
292 |
+
# As we have no reliable way to track the shared data pointer of tied weights in this case, we use tied_params_names: List[str]
|
293 |
+
# to add on the fly pointers to `tied_params_map` in the pre_forward call.
|
294 |
+
if (
|
295 |
+
self.tied_params_map is not None
|
296 |
+
and recursive_getattr(module, name).data_ptr() in self.tied_params_map
|
297 |
+
):
|
298 |
+
self.tied_params_names.add(name)
|
299 |
+
|
300 |
+
set_module_tensor_to_device(module, name, "meta")
|
301 |
+
|
302 |
+
if not self.offload_buffers and self.execution_device is not None:
|
303 |
+
for name, _ in module.named_buffers(recurse=self.place_submodules):
|
304 |
+
set_module_tensor_to_device(
|
305 |
+
module, name, self.execution_device, tied_params_map=self.tied_params_map
|
306 |
+
)
|
307 |
+
elif self.offload_buffers and self.execution_device is not None:
|
308 |
+
for name in get_non_persistent_buffers(module, recurse=self.place_submodules):
|
309 |
+
set_module_tensor_to_device(
|
310 |
+
module, name, self.execution_device, tied_params_map=self.tied_params_map
|
311 |
+
)
|
312 |
+
|
313 |
+
return module
|
314 |
+
|
315 |
+
def pre_forward(self, module, *args, **kwargs):
|
316 |
+
if self.io_same_device:
|
317 |
+
self.input_device = find_device([args, kwargs])
|
318 |
+
if self.offload:
|
319 |
+
self.tied_pointers_to_remove = set()
|
320 |
+
|
321 |
+
for name, _ in named_module_tensors(
|
322 |
+
module,
|
323 |
+
include_buffers=self.offload_buffers,
|
324 |
+
recurse=self.place_submodules,
|
325 |
+
remove_non_persistent=True,
|
326 |
+
):
|
327 |
+
fp16_statistics = None
|
328 |
+
value = self.weights_map[name]
|
329 |
+
if "weight" in name and name.replace("weight", "SCB") in self.weights_map.keys():
|
330 |
+
if value.dtype == torch.int8:
|
331 |
+
fp16_statistics = self.weights_map[name.replace("weight", "SCB")]
|
332 |
+
|
333 |
+
# In case we are using offloading with tied weights, we need to keep track of the offloaded weights
|
334 |
+
# that are loaded on device at this point, as we will need to remove them as well from the dictionary
|
335 |
+
# self.tied_params_map in order to allow to free memory.
|
336 |
+
if name in self.tied_params_names and value.data_ptr() not in self.tied_params_map:
|
337 |
+
self.tied_params_map[value.data_ptr()] = {}
|
338 |
+
|
339 |
+
if (
|
340 |
+
value is not None
|
341 |
+
and self.tied_params_map is not None
|
342 |
+
and value.data_ptr() in self.tied_params_map
|
343 |
+
and self.execution_device not in self.tied_params_map[value.data_ptr()]
|
344 |
+
):
|
345 |
+
self.tied_pointers_to_remove.add((value.data_ptr(), self.execution_device))
|
346 |
+
|
347 |
+
set_module_tensor_to_device(
|
348 |
+
module,
|
349 |
+
name,
|
350 |
+
self.execution_device,
|
351 |
+
value=value,
|
352 |
+
fp16_statistics=fp16_statistics,
|
353 |
+
tied_params_map=self.tied_params_map,
|
354 |
+
)
|
355 |
+
|
356 |
+
return send_to_device(args, self.execution_device), send_to_device(
|
357 |
+
kwargs, self.execution_device, skip_keys=self.skip_keys
|
358 |
+
)
|
359 |
+
|
360 |
+
def post_forward(self, module, output):
|
361 |
+
if self.offload:
|
362 |
+
for name, _ in named_module_tensors(
|
363 |
+
module,
|
364 |
+
include_buffers=self.offload_buffers,
|
365 |
+
recurse=self.place_submodules,
|
366 |
+
remove_non_persistent=True,
|
367 |
+
):
|
368 |
+
set_module_tensor_to_device(module, name, "meta")
|
369 |
+
if type(module).__name__ == "Linear8bitLt":
|
370 |
+
module.state.SCB = None
|
371 |
+
module.state.CxB = None
|
372 |
+
|
373 |
+
# We may have loaded tied weights into self.tied_params_map (avoiding to load them several times in e.g. submodules): remove them from
|
374 |
+
# this dictionary to allow the garbage collector to do its job.
|
375 |
+
for value_pointer, device in self.tied_pointers_to_remove:
|
376 |
+
del self.tied_params_map[value_pointer][device]
|
377 |
+
self.tied_pointers_to_remove = set()
|
378 |
+
|
379 |
+
if self.io_same_device and self.input_device is not None:
|
380 |
+
output = send_to_device(output, self.input_device, skip_keys=self.skip_keys)
|
381 |
+
|
382 |
+
return output
|
383 |
+
|
384 |
+
def detach_hook(self, module):
|
385 |
+
if self.offload:
|
386 |
+
for name, device in self.original_devices.items():
|
387 |
+
if device != torch.device("meta"):
|
388 |
+
set_module_tensor_to_device(module, name, device, value=self.weights_map.get(name, None))
|
389 |
+
return module
|
390 |
+
|
391 |
+
|
392 |
+
def attach_execution_device_hook(
|
393 |
+
module: torch.nn.Module,
|
394 |
+
execution_device: Union[int, str, torch.device],
|
395 |
+
skip_keys: Optional[Union[str, List[str]]] = None,
|
396 |
+
preload_module_classes: Optional[List[str]] = None,
|
397 |
+
tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
|
398 |
+
):
|
399 |
+
"""
|
400 |
+
Recursively attaches `AlignDevicesHook` to all submodules of a given model to make sure they have the right
|
401 |
+
execution device
|
402 |
+
|
403 |
+
Args:
|
404 |
+
module (`torch.nn.Module`):
|
405 |
+
The module where we want to attach the hooks.
|
406 |
+
execution_device (`int`, `str` or `torch.device`):
|
407 |
+
The device on which inputs and model weights should be placed before the forward pass.
|
408 |
+
skip_keys (`str` or `List[str]`, *optional*):
|
409 |
+
A list of keys to ignore when moving inputs or outputs between devices.
|
410 |
+
preload_module_classes (`List[str]`, *optional*):
|
411 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
412 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
413 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
414 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
415 |
+
tied_params_map (Optional[Dict[int, Dict[torch.device, torch.Tensor]]], *optional*, defaults to `None`):
|
416 |
+
A map of data pointers to dictionaries of devices to already dispatched tied weights. For a given execution
|
417 |
+
device, this parameter is useful to reuse the first available pointer of a shared weight for all others,
|
418 |
+
instead of duplicating memory.
|
419 |
+
"""
|
420 |
+
if not hasattr(module, "_hf_hook") and len(module.state_dict()) > 0:
|
421 |
+
add_hook_to_module(
|
422 |
+
module,
|
423 |
+
AlignDevicesHook(execution_device, skip_keys=skip_keys, tied_params_map=tied_params_map),
|
424 |
+
)
|
425 |
+
|
426 |
+
# Break the recursion if we get to a preload module.
|
427 |
+
if preload_module_classes is not None and module.__class__.__name__ in preload_module_classes:
|
428 |
+
return
|
429 |
+
|
430 |
+
for child in module.children():
|
431 |
+
attach_execution_device_hook(child, execution_device, tied_params_map=tied_params_map)
|
432 |
+
|
433 |
+
|
434 |
+
def attach_align_device_hook(
|
435 |
+
module: torch.nn.Module,
|
436 |
+
execution_device: Optional[torch.device] = None,
|
437 |
+
offload: bool = False,
|
438 |
+
weights_map: Optional[Mapping] = None,
|
439 |
+
offload_buffers: bool = False,
|
440 |
+
module_name: str = "",
|
441 |
+
skip_keys: Optional[Union[str, List[str]]] = None,
|
442 |
+
preload_module_classes: Optional[List[str]] = None,
|
443 |
+
tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
|
444 |
+
):
|
445 |
+
"""
|
446 |
+
Recursively attaches `AlignDevicesHook` to all submodules of a given model that have direct parameters and/or
|
447 |
+
buffers.
|
448 |
+
|
449 |
+
Args:
|
450 |
+
module (`torch.nn.Module`):
|
451 |
+
The module where we want to attach the hooks.
|
452 |
+
execution_device (`torch.device`, *optional*):
|
453 |
+
The device on which inputs and model weights should be placed before the forward pass.
|
454 |
+
offload (`bool`, *optional*, defaults to `False`):
|
455 |
+
Whether or not the weights should be offloaded after the forward pass.
|
456 |
+
weights_map (`Mapping[str, torch.Tensor]`, *optional*):
|
457 |
+
When the model weights are offloaded, a (potentially lazy) map from param names to the tensor values.
|
458 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
459 |
+
Whether or not to include the associated module's buffers when offloading.
|
460 |
+
module_name (`str`, *optional*, defaults to `""`):
|
461 |
+
The name of the module.
|
462 |
+
skip_keys (`str` or `List[str]`, *optional*):
|
463 |
+
A list of keys to ignore when moving inputs or outputs between devices.
|
464 |
+
preload_module_classes (`List[str]`, *optional*):
|
465 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
466 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
467 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
468 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
469 |
+
tied_params_map (Optional[Dict[int, Dict[torch.device, torch.Tensor]]], *optional*, defaults to `None`):
|
470 |
+
A map of data pointers to dictionaries of devices to already dispatched tied weights. For a given execution
|
471 |
+
device, this parameter is useful to reuse the first available pointer of a shared weight for all others,
|
472 |
+
instead of duplicating memory.
|
473 |
+
"""
|
474 |
+
# Attach the hook on this module if it has any direct tensor.
|
475 |
+
directs = named_module_tensors(module)
|
476 |
+
full_offload = (
|
477 |
+
offload and preload_module_classes is not None and module.__class__.__name__ in preload_module_classes
|
478 |
+
)
|
479 |
+
|
480 |
+
if len(list(directs)) > 0 or full_offload:
|
481 |
+
if weights_map is not None:
|
482 |
+
prefix = f"{module_name}." if len(module_name) > 0 else ""
|
483 |
+
prefixed_weights_map = PrefixedDataset(weights_map, prefix)
|
484 |
+
else:
|
485 |
+
prefixed_weights_map = None
|
486 |
+
hook = AlignDevicesHook(
|
487 |
+
execution_device=execution_device,
|
488 |
+
offload=offload,
|
489 |
+
weights_map=prefixed_weights_map,
|
490 |
+
offload_buffers=offload_buffers,
|
491 |
+
place_submodules=full_offload,
|
492 |
+
skip_keys=skip_keys,
|
493 |
+
tied_params_map=tied_params_map,
|
494 |
+
)
|
495 |
+
add_hook_to_module(module, hook, append=True)
|
496 |
+
|
497 |
+
# We stop the recursion in case we hit the full offload.
|
498 |
+
if full_offload:
|
499 |
+
return
|
500 |
+
|
501 |
+
# Recurse on all children of the module.
|
502 |
+
for child_name, child in module.named_children():
|
503 |
+
child_name = f"{module_name}.{child_name}" if len(module_name) > 0 else child_name
|
504 |
+
attach_align_device_hook(
|
505 |
+
child,
|
506 |
+
execution_device=execution_device,
|
507 |
+
offload=offload,
|
508 |
+
weights_map=weights_map,
|
509 |
+
offload_buffers=offload_buffers,
|
510 |
+
module_name=child_name,
|
511 |
+
preload_module_classes=preload_module_classes,
|
512 |
+
skip_keys=skip_keys,
|
513 |
+
tied_params_map=tied_params_map,
|
514 |
+
)
|
515 |
+
|
516 |
+
|
517 |
+
def remove_hook_from_submodules(module: nn.Module):
|
518 |
+
"""
|
519 |
+
Recursively removes all hooks attached on the submodules of a given model.
|
520 |
+
|
521 |
+
Args:
|
522 |
+
module (`torch.nn.Module`): The module on which to remove all hooks.
|
523 |
+
"""
|
524 |
+
remove_hook_from_module(module)
|
525 |
+
for child in module.children():
|
526 |
+
remove_hook_from_submodules(child)
|
527 |
+
|
528 |
+
|
529 |
+
def attach_align_device_hook_on_blocks(
|
530 |
+
module: nn.Module,
|
531 |
+
execution_device: Optional[Union[torch.device, Dict[str, torch.device]]] = None,
|
532 |
+
offload: Union[bool, Dict[str, bool]] = False,
|
533 |
+
weights_map: Mapping = None,
|
534 |
+
offload_buffers: bool = False,
|
535 |
+
module_name: str = "",
|
536 |
+
skip_keys: Optional[Union[str, List[str]]] = None,
|
537 |
+
preload_module_classes: Optional[List[str]] = None,
|
538 |
+
tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
|
539 |
+
):
|
540 |
+
"""
|
541 |
+
Attaches `AlignDevicesHook` to all blocks of a given model as needed.
|
542 |
+
|
543 |
+
Args:
|
544 |
+
module (`torch.nn.Module`):
|
545 |
+
The module where we want to attach the hooks.
|
546 |
+
execution_device (`torch.device` or `Dict[str, torch.device]`, *optional*):
|
547 |
+
The device on which inputs and model weights should be placed before the forward pass. It can be one device
|
548 |
+
for the whole module, or a dictionary mapping module name to device.
|
549 |
+
offload (`bool`, *optional*, defaults to `False`):
|
550 |
+
Whether or not the weights should be offloaded after the forward pass. It can be one boolean for the whole
|
551 |
+
module, or a dictionary mapping module name to boolean.
|
552 |
+
weights_map (`Mapping[str, torch.Tensor]`, *optional*):
|
553 |
+
When the model weights are offloaded, a (potentially lazy) map from param names to the tensor values.
|
554 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
555 |
+
Whether or not to include the associated module's buffers when offloading.
|
556 |
+
module_name (`str`, *optional*, defaults to `""`):
|
557 |
+
The name of the module.
|
558 |
+
skip_keys (`str` or `List[str]`, *optional*):
|
559 |
+
A list of keys to ignore when moving inputs or outputs between devices.
|
560 |
+
preload_module_classes (`List[str]`, *optional*):
|
561 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
562 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
563 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
564 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
565 |
+
tied_params_map (Optional[Dict[int, Dict[torch.device, torch.Tensor]]], *optional*, defaults to `None`):
|
566 |
+
A map of data pointers to dictionaries of devices to already dispatched tied weights. For a given execution
|
567 |
+
device, this parameter is useful to reuse the first available pointer of a shared weight for all others,
|
568 |
+
instead of duplicating memory.
|
569 |
+
"""
|
570 |
+
# If one device and one offload, we've got one hook.
|
571 |
+
if not isinstance(execution_device, Mapping) and not isinstance(offload, dict):
|
572 |
+
if not offload:
|
573 |
+
hook = AlignDevicesHook(
|
574 |
+
execution_device=execution_device,
|
575 |
+
io_same_device=True,
|
576 |
+
skip_keys=skip_keys,
|
577 |
+
place_submodules=True,
|
578 |
+
tied_params_map=tied_params_map,
|
579 |
+
)
|
580 |
+
add_hook_to_module(module, hook)
|
581 |
+
else:
|
582 |
+
attach_align_device_hook(
|
583 |
+
module,
|
584 |
+
execution_device=execution_device,
|
585 |
+
offload=True,
|
586 |
+
weights_map=weights_map,
|
587 |
+
offload_buffers=offload_buffers,
|
588 |
+
module_name=module_name,
|
589 |
+
skip_keys=skip_keys,
|
590 |
+
tied_params_map=tied_params_map,
|
591 |
+
)
|
592 |
+
return
|
593 |
+
|
594 |
+
if not isinstance(execution_device, Mapping):
|
595 |
+
execution_device = {key: execution_device for key in offload.keys()}
|
596 |
+
if not isinstance(offload, Mapping):
|
597 |
+
offload = {key: offload for key in execution_device.keys()}
|
598 |
+
|
599 |
+
if module_name in execution_device and module_name in offload and not offload[module_name]:
|
600 |
+
hook = AlignDevicesHook(
|
601 |
+
execution_device=execution_device[module_name],
|
602 |
+
offload_buffers=offload_buffers,
|
603 |
+
io_same_device=(module_name == ""),
|
604 |
+
place_submodules=True,
|
605 |
+
skip_keys=skip_keys,
|
606 |
+
tied_params_map=tied_params_map,
|
607 |
+
)
|
608 |
+
add_hook_to_module(module, hook)
|
609 |
+
attach_execution_device_hook(module, execution_device[module_name], tied_params_map=tied_params_map)
|
610 |
+
elif module_name in execution_device and module_name in offload:
|
611 |
+
attach_align_device_hook(
|
612 |
+
module,
|
613 |
+
execution_device=execution_device[module_name],
|
614 |
+
offload=True,
|
615 |
+
weights_map=weights_map,
|
616 |
+
offload_buffers=offload_buffers,
|
617 |
+
module_name=module_name,
|
618 |
+
skip_keys=skip_keys,
|
619 |
+
preload_module_classes=preload_module_classes,
|
620 |
+
tied_params_map=tied_params_map,
|
621 |
+
)
|
622 |
+
if not hasattr(module, "_hf_hook"):
|
623 |
+
hook = AlignDevicesHook(
|
624 |
+
execution_device=execution_device[module_name],
|
625 |
+
io_same_device=(module_name == ""),
|
626 |
+
skip_keys=skip_keys,
|
627 |
+
tied_params_map=tied_params_map,
|
628 |
+
)
|
629 |
+
add_hook_to_module(module, hook)
|
630 |
+
attach_execution_device_hook(
|
631 |
+
module,
|
632 |
+
execution_device[module_name],
|
633 |
+
preload_module_classes=preload_module_classes,
|
634 |
+
skip_keys=skip_keys,
|
635 |
+
tied_params_map=tied_params_map,
|
636 |
+
)
|
637 |
+
elif module_name == "":
|
638 |
+
hook = AlignDevicesHook(
|
639 |
+
execution_device=execution_device.get(""),
|
640 |
+
io_same_device=True,
|
641 |
+
skip_keys=skip_keys,
|
642 |
+
tied_params_map=tied_params_map,
|
643 |
+
)
|
644 |
+
add_hook_to_module(module, hook)
|
645 |
+
|
646 |
+
for child_name, child in module.named_children():
|
647 |
+
child_name = f"{module_name}.{child_name}" if len(module_name) > 0 else child_name
|
648 |
+
attach_align_device_hook_on_blocks(
|
649 |
+
child,
|
650 |
+
execution_device=execution_device,
|
651 |
+
offload=offload,
|
652 |
+
weights_map=weights_map,
|
653 |
+
offload_buffers=offload_buffers,
|
654 |
+
module_name=child_name,
|
655 |
+
preload_module_classes=preload_module_classes,
|
656 |
+
skip_keys=skip_keys,
|
657 |
+
tied_params_map=tied_params_map,
|
658 |
+
)
|
659 |
+
|
660 |
+
|
661 |
+
class CpuOffload(ModelHook):
|
662 |
+
"""
|
663 |
+
Offloads a model on the CPU until its forward pass is called. The model will not be offloaded back to the CPU after
|
664 |
+
the forward, the user needs to call the `init_hook` method again for this.
|
665 |
+
|
666 |
+
Args:
|
667 |
+
execution_device(`str`, `int` or `torch.device`, *optional*):
|
668 |
+
The device on which the model should be executed. Will default to the MPS device if it's available, then
|
669 |
+
GPU 0 if there is a GPU, and finally to the CPU.
|
670 |
+
prev_module_hook (`UserCpuOffloadHook`, *optional*):
|
671 |
+
The hook sent back by [`cpu_offload_with_hook`] for a previous model in the pipeline you are running. If
|
672 |
+
passed, its offload method will be called just before the forward of the model to which this hook is
|
673 |
+
attached.
|
674 |
+
"""
|
675 |
+
|
676 |
+
def __init__(
|
677 |
+
self,
|
678 |
+
execution_device: Optional[Union[str, int, torch.device]] = None,
|
679 |
+
prev_module_hook: Optional["UserCpuOffloadHook"] = None,
|
680 |
+
):
|
681 |
+
self.prev_module_hook = prev_module_hook
|
682 |
+
|
683 |
+
self.execution_device = execution_device if execution_device is not None else PartialState().default_device
|
684 |
+
|
685 |
+
def init_hook(self, module):
|
686 |
+
return module.to("cpu")
|
687 |
+
|
688 |
+
def pre_forward(self, module, *args, **kwargs):
|
689 |
+
if self.prev_module_hook is not None:
|
690 |
+
self.prev_module_hook.offload()
|
691 |
+
module.to(self.execution_device)
|
692 |
+
return send_to_device(args, self.execution_device), send_to_device(kwargs, self.execution_device)
|
693 |
+
|
694 |
+
|
695 |
+
class UserCpuOffloadHook:
|
696 |
+
"""
|
697 |
+
A simple hook grouping a model and a `ModelHook`, which provides easy APIs for to call the init method of the hook
|
698 |
+
or remove it entirely.
|
699 |
+
"""
|
700 |
+
|
701 |
+
def __init__(self, model, hook):
|
702 |
+
self.model = model
|
703 |
+
self.hook = hook
|
704 |
+
|
705 |
+
def offload(self):
|
706 |
+
self.hook.init_hook(self.model)
|
707 |
+
|
708 |
+
def remove(self):
|
709 |
+
remove_hook_from_module(self.model)
|
venv/lib/python3.10/site-packages/accelerate/inference.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import math
|
15 |
+
from types import MethodType
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
from .state import PartialState
|
19 |
+
from .utils import (
|
20 |
+
calculate_maximum_sizes,
|
21 |
+
convert_bytes,
|
22 |
+
copy_tensor_to_devices,
|
23 |
+
ignorant_find_batch_size,
|
24 |
+
infer_auto_device_map,
|
25 |
+
is_pippy_available,
|
26 |
+
pad_input_tensors,
|
27 |
+
send_to_device,
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
if is_pippy_available():
|
32 |
+
from pippy.IR import Pipe, PipeSplitWrapper, annotate_split_points
|
33 |
+
from pippy.PipelineStage import PipelineStage
|
34 |
+
|
35 |
+
|
36 |
+
def generate_device_map(model, num_processes: int = 1, no_split_module_classes=None, max_memory: dict = None):
|
37 |
+
"""
|
38 |
+
Calculates the device map for `model` with an offset for PiPPy
|
39 |
+
"""
|
40 |
+
if num_processes == 1:
|
41 |
+
return infer_auto_device_map(model, no_split_module_classes=no_split_module_classes, clean_result=False)
|
42 |
+
if max_memory is None:
|
43 |
+
model_size, shared = calculate_maximum_sizes(model)
|
44 |
+
|
45 |
+
# Split into `n` chunks for each GPU
|
46 |
+
memory = (model_size + shared[0]) / num_processes
|
47 |
+
memory = convert_bytes(memory)
|
48 |
+
value, ending = memory.split(" ")
|
49 |
+
|
50 |
+
# Add a chunk to deal with potential extra shared memory instances
|
51 |
+
memory = math.ceil(float(value)) * 1.1
|
52 |
+
memory = f"{memory} {ending}"
|
53 |
+
max_memory = {i: memory for i in range(num_processes)}
|
54 |
+
device_map = infer_auto_device_map(
|
55 |
+
model,
|
56 |
+
max_memory=max_memory,
|
57 |
+
no_split_module_classes=no_split_module_classes,
|
58 |
+
clean_result=False,
|
59 |
+
)
|
60 |
+
return device_map
|
61 |
+
|
62 |
+
|
63 |
+
def find_pippy_batch_size(args, kwargs):
|
64 |
+
found_batch_size = None
|
65 |
+
if args is not None:
|
66 |
+
for arg in args:
|
67 |
+
found_batch_size = ignorant_find_batch_size(arg)
|
68 |
+
if found_batch_size is not None:
|
69 |
+
break
|
70 |
+
if kwargs is not None and found_batch_size is None:
|
71 |
+
for kwarg in kwargs.values():
|
72 |
+
found_batch_size = ignorant_find_batch_size(kwarg)
|
73 |
+
if found_batch_size is not None:
|
74 |
+
break
|
75 |
+
return found_batch_size
|
76 |
+
|
77 |
+
|
78 |
+
def build_pipeline(model, split_points, args, kwargs, num_chunks):
|
79 |
+
"""
|
80 |
+
Attaches the split points to the model based on `self.device_map` and generates a `PipelineStage`. Requires passing
|
81 |
+
in needed `args` and `kwargs` as the model needs on the CPU.
|
82 |
+
|
83 |
+
Users can pass in custom `num_chunks` as an optional hyper-parameter. By default will use
|
84 |
+
`AcceleratorState.num_processes`
|
85 |
+
"""
|
86 |
+
# We need to annotate the split points in the model for PiPPy
|
87 |
+
state = PartialState()
|
88 |
+
annotate_split_points(model, {split_point: PipeSplitWrapper.SplitPoint.BEGINNING for split_point in split_points})
|
89 |
+
found_batch_size = find_pippy_batch_size(args, kwargs)
|
90 |
+
if found_batch_size != num_chunks:
|
91 |
+
if args is not None:
|
92 |
+
args = pad_input_tensors(args, found_batch_size, num_chunks)
|
93 |
+
if kwargs is not None:
|
94 |
+
kwargs = pad_input_tensors(kwargs, found_batch_size, num_chunks)
|
95 |
+
pipe = Pipe.from_tracing(model, num_chunks=num_chunks, example_args=args, example_kwargs=kwargs)
|
96 |
+
stage = PipelineStage(pipe, state.local_process_index, device=state.device)
|
97 |
+
|
98 |
+
return stage
|
99 |
+
|
100 |
+
|
101 |
+
def pippy_forward(forward, num_chunks, gather_output, *args, **kwargs):
|
102 |
+
state = PartialState()
|
103 |
+
output = None
|
104 |
+
|
105 |
+
if state.num_processes == 1:
|
106 |
+
output = forward(*args, **kwargs)
|
107 |
+
elif state.is_local_main_process:
|
108 |
+
found_batch_size = find_pippy_batch_size(args, kwargs)
|
109 |
+
if found_batch_size is None:
|
110 |
+
raise ValueError("Could not find batch size from args or kwargs")
|
111 |
+
else:
|
112 |
+
if found_batch_size != num_chunks:
|
113 |
+
args = pad_input_tensors(args, found_batch_size, num_chunks)
|
114 |
+
kwargs = pad_input_tensors(kwargs, found_batch_size, num_chunks)
|
115 |
+
forward(*args, **kwargs)
|
116 |
+
elif state.is_last_process:
|
117 |
+
output = forward()
|
118 |
+
else:
|
119 |
+
forward()
|
120 |
+
if gather_output:
|
121 |
+
# Each node will get a copy of the full output which is only on the last GPU
|
122 |
+
output = copy_tensor_to_devices(output)
|
123 |
+
return output
|
124 |
+
|
125 |
+
|
126 |
+
def prepare_pippy(
|
127 |
+
model,
|
128 |
+
split_points: Optional[Union[str, List[str]]] = "auto",
|
129 |
+
no_split_module_classes: Optional[List[str]] = None,
|
130 |
+
example_args: Optional[Tuple[Any]] = (),
|
131 |
+
example_kwargs: Optional[Dict[str, Any]] = None,
|
132 |
+
num_chunks: Optional[int] = None,
|
133 |
+
gather_output: Optional[bool] = False,
|
134 |
+
):
|
135 |
+
"""
|
136 |
+
Wraps `model` for pipeline parallel inference.
|
137 |
+
|
138 |
+
Args:
|
139 |
+
model (`torch.nn.Module`):
|
140 |
+
A model we want to split for pipeline-parallel inference
|
141 |
+
split_points (`str` or `List[str]`, defaults to 'auto'):
|
142 |
+
How to generate the split points and chunk the model across each GPU. 'auto' will find the best balanced
|
143 |
+
split given any model. Should be a list of layer names in the model to split by otherwise.
|
144 |
+
no_split_module_classes (`List[str]`):
|
145 |
+
A list of class names for layers we don't want to be split.
|
146 |
+
example_args (tuple of model inputs):
|
147 |
+
The expected inputs for the model that uses order-based inputs. Recommended to use this method if possible.
|
148 |
+
example_kwargs (dict of model inputs)
|
149 |
+
The expected inputs for the model that uses dictionary-based inputs. This is a *highly* limiting structure
|
150 |
+
that requires the same keys be present at *all* inference calls. Not recommended unless the prior condition
|
151 |
+
is true for all cases.
|
152 |
+
num_chunks (`int`, defaults to the number of available GPUs):
|
153 |
+
The number of different stages the Pipeline will have. By default it will assign one chunk per GPU, but
|
154 |
+
this can be tuned and played with. In general one should have num_chunks >= num_gpus.
|
155 |
+
gather_output (`bool`, defaults to `False`):
|
156 |
+
If `True`, the output from the last GPU (which holds the true outputs) is sent across to all GPUs.
|
157 |
+
"""
|
158 |
+
if not is_pippy_available():
|
159 |
+
raise ImportError(
|
160 |
+
"`pippy` was not found to be installed on your system. Please "
|
161 |
+
"install using `pip install torchpippy` or ensure you have at least version 0.2.0"
|
162 |
+
)
|
163 |
+
state = PartialState()
|
164 |
+
example_args = send_to_device(example_args, "cpu")
|
165 |
+
example_kwargs = send_to_device(example_kwargs, "cpu")
|
166 |
+
if num_chunks is None:
|
167 |
+
num_chunks = state.num_processes
|
168 |
+
if split_points == "auto":
|
169 |
+
device_map = generate_device_map(model, num_chunks, no_split_module_classes=no_split_module_classes)
|
170 |
+
split_points = []
|
171 |
+
for i in range(1, num_chunks):
|
172 |
+
split_points.append(next(k for k, v in device_map.items() if v == i))
|
173 |
+
model.hf_split_points = split_points
|
174 |
+
stage = build_pipeline(model, split_points, example_args, example_kwargs, num_chunks)
|
175 |
+
model._original_forward = model.forward
|
176 |
+
model._original_call = model.__call__
|
177 |
+
model.pippy_stage = stage
|
178 |
+
model.hf_split_points = split_points
|
179 |
+
|
180 |
+
def forward(*args, **kwargs):
|
181 |
+
return pippy_forward(stage.forward, num_chunks, gather_output, *args, **kwargs)
|
182 |
+
|
183 |
+
# To act like a decorator so that it can be popped when doing `extract_model_from_parallel`
|
184 |
+
# Note: creates an infinite recursion loop with `generate`
|
185 |
+
model_forward = MethodType(forward, model)
|
186 |
+
forward.__wrapped__ = model_forward
|
187 |
+
model.forward = forward
|
188 |
+
return model
|
venv/lib/python3.10/site-packages/accelerate/launchers.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import sys
|
17 |
+
import tempfile
|
18 |
+
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from .state import AcceleratorState, PartialState
|
22 |
+
from .utils import (
|
23 |
+
PrecisionType,
|
24 |
+
PrepareForLaunch,
|
25 |
+
are_libraries_initialized,
|
26 |
+
check_cuda_p2p_ib_support,
|
27 |
+
get_gpu_info,
|
28 |
+
is_mps_available,
|
29 |
+
patch_environment,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def test_launch():
|
34 |
+
"Verify a `PartialState` can be initialized."
|
35 |
+
_ = PartialState()
|
36 |
+
|
37 |
+
|
38 |
+
def notebook_launcher(
|
39 |
+
function,
|
40 |
+
args=(),
|
41 |
+
num_processes=None,
|
42 |
+
mixed_precision="no",
|
43 |
+
use_port="29500",
|
44 |
+
master_addr="127.0.0.1",
|
45 |
+
node_rank=0,
|
46 |
+
num_nodes=1,
|
47 |
+
):
|
48 |
+
"""
|
49 |
+
Launches a training function, using several processes or multiple nodes if it's possible in the current environment
|
50 |
+
(TPU with multiple cores for instance).
|
51 |
+
|
52 |
+
<Tip warning={true}>
|
53 |
+
|
54 |
+
To use this function absolutely zero calls to a CUDA device must be made in the notebook session before calling. If
|
55 |
+
any have been made, you will need to restart the notebook and make sure no cells use any CUDA capability.
|
56 |
+
|
57 |
+
Setting `ACCELERATE_DEBUG_MODE="1"` in your environment will run a test before truly launching to ensure that none
|
58 |
+
of those calls have been made.
|
59 |
+
|
60 |
+
</Tip>
|
61 |
+
|
62 |
+
Args:
|
63 |
+
function (`Callable`):
|
64 |
+
The training function to execute. If it accepts arguments, the first argument should be the index of the
|
65 |
+
process run.
|
66 |
+
args (`Tuple`):
|
67 |
+
Tuple of arguments to pass to the function (it will receive `*args`).
|
68 |
+
num_processes (`int`, *optional*):
|
69 |
+
The number of processes to use for training. Will default to 8 in Colab/Kaggle if a TPU is available, to
|
70 |
+
the number of GPUs available otherwise.
|
71 |
+
mixed_precision (`str`, *optional*, defaults to `"no"`):
|
72 |
+
If `fp16` or `bf16`, will use mixed precision training on multi-GPU.
|
73 |
+
use_port (`str`, *optional*, defaults to `"29500"`):
|
74 |
+
The port to use to communicate between processes when launching a multi-GPU training.
|
75 |
+
master_addr (`str`, *optional*, defaults to `"127.0.0.1"`):
|
76 |
+
The address to use for communication between processes.
|
77 |
+
node_rank (`int`, *optional*, defaults to 0):
|
78 |
+
The rank of the current node.
|
79 |
+
num_nodes (`int`, *optional*, defaults to 1):
|
80 |
+
The number of nodes to use for training.
|
81 |
+
|
82 |
+
Example:
|
83 |
+
|
84 |
+
```python
|
85 |
+
# Assume this is defined in a Jupyter Notebook on an instance with two GPUs
|
86 |
+
from accelerate import notebook_launcher
|
87 |
+
|
88 |
+
|
89 |
+
def train(*args):
|
90 |
+
# Your training function here
|
91 |
+
...
|
92 |
+
|
93 |
+
|
94 |
+
notebook_launcher(train, args=(arg1, arg2), num_processes=2, mixed_precision="fp16")
|
95 |
+
```
|
96 |
+
"""
|
97 |
+
# Are we in a google colab or a Kaggle Kernel?
|
98 |
+
in_colab = False
|
99 |
+
in_kaggle = False
|
100 |
+
if any(key.startswith("KAGGLE") for key in os.environ.keys()):
|
101 |
+
in_kaggle = True
|
102 |
+
elif "IPython" in sys.modules:
|
103 |
+
in_colab = "google.colab" in str(sys.modules["IPython"].get_ipython())
|
104 |
+
|
105 |
+
try:
|
106 |
+
mixed_precision = PrecisionType(mixed_precision.lower())
|
107 |
+
except ValueError:
|
108 |
+
raise ValueError(
|
109 |
+
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}."
|
110 |
+
)
|
111 |
+
|
112 |
+
if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME", None) is not None):
|
113 |
+
# TPU launch
|
114 |
+
import torch_xla.distributed.xla_multiprocessing as xmp
|
115 |
+
|
116 |
+
if len(AcceleratorState._shared_state) > 0:
|
117 |
+
raise ValueError(
|
118 |
+
"To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside "
|
119 |
+
"your training function. Restart your notebook and make sure no cells initializes an "
|
120 |
+
"`Accelerator`."
|
121 |
+
)
|
122 |
+
if num_processes is None:
|
123 |
+
num_processes = 8
|
124 |
+
|
125 |
+
launcher = PrepareForLaunch(function, distributed_type="TPU")
|
126 |
+
print(f"Launching a training on {num_processes} TPU cores.")
|
127 |
+
xmp.spawn(launcher, args=args, nprocs=num_processes, start_method="fork")
|
128 |
+
elif in_colab and get_gpu_info()[1] < 2:
|
129 |
+
# No need for a distributed launch otherwise as it's either CPU or one GPU.
|
130 |
+
if torch.cuda.is_available():
|
131 |
+
print("Launching training on one GPU.")
|
132 |
+
else:
|
133 |
+
print("Launching training on one CPU.")
|
134 |
+
function(*args)
|
135 |
+
else:
|
136 |
+
if num_processes is None:
|
137 |
+
raise ValueError(
|
138 |
+
"You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call."
|
139 |
+
)
|
140 |
+
if node_rank >= num_nodes:
|
141 |
+
raise ValueError("The node_rank must be less than the number of nodes.")
|
142 |
+
if num_processes > 1:
|
143 |
+
# Multi-GPU launch
|
144 |
+
from torch.multiprocessing import start_processes
|
145 |
+
from torch.multiprocessing.spawn import ProcessRaisedException
|
146 |
+
|
147 |
+
if len(AcceleratorState._shared_state) > 0:
|
148 |
+
raise ValueError(
|
149 |
+
"To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized "
|
150 |
+
"inside your training function. Restart your notebook and make sure no cells initializes an "
|
151 |
+
"`Accelerator`."
|
152 |
+
)
|
153 |
+
# Check for specific libraries known to initialize CUDA that users constantly use
|
154 |
+
problematic_imports = are_libraries_initialized("bitsandbytes")
|
155 |
+
if len(problematic_imports) > 0:
|
156 |
+
err = (
|
157 |
+
"Could not start distributed process. Libraries known to initialize CUDA upon import have been "
|
158 |
+
"imported already. Please keep these imports inside your training function to try and help with this:"
|
159 |
+
)
|
160 |
+
for lib_name in problematic_imports:
|
161 |
+
err += f"\n\t* `{lib_name}`"
|
162 |
+
raise RuntimeError(err)
|
163 |
+
|
164 |
+
patched_env = dict(
|
165 |
+
nproc=num_processes,
|
166 |
+
node_rank=node_rank,
|
167 |
+
world_size=num_nodes * num_processes,
|
168 |
+
master_addr=master_addr,
|
169 |
+
master_port=use_port,
|
170 |
+
mixed_precision=mixed_precision,
|
171 |
+
)
|
172 |
+
|
173 |
+
# Check for CUDA P2P and IB issues
|
174 |
+
if not check_cuda_p2p_ib_support():
|
175 |
+
patched_env["nccl_p2p_disable"] = "1"
|
176 |
+
patched_env["nccl_ib_disable"] = "1"
|
177 |
+
|
178 |
+
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
|
179 |
+
# process here (the other ones will be set be the launcher).
|
180 |
+
with patch_environment(**patched_env):
|
181 |
+
# First dummy launch
|
182 |
+
if os.environ.get("ACCELERATE_DEBUG_MODE", "false").lower() == "true":
|
183 |
+
launcher = PrepareForLaunch(test_launch, distributed_type="MULTI_GPU")
|
184 |
+
try:
|
185 |
+
start_processes(launcher, args=(), nprocs=num_processes, start_method="fork")
|
186 |
+
except ProcessRaisedException as e:
|
187 |
+
err = "An issue was found when verifying a stable environment for the notebook launcher."
|
188 |
+
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
|
189 |
+
raise RuntimeError(
|
190 |
+
f"{err}"
|
191 |
+
"This likely stems from an outside import causing issues once the `notebook_launcher()` is called. "
|
192 |
+
"Please review your imports and test them when running the `notebook_launcher()` to identify "
|
193 |
+
"which one is problematic and causing CUDA to be initialized."
|
194 |
+
) from e
|
195 |
+
else:
|
196 |
+
raise RuntimeError(f"{err} The following error was raised: {e}") from e
|
197 |
+
# Now the actual launch
|
198 |
+
launcher = PrepareForLaunch(function, distributed_type="MULTI_GPU")
|
199 |
+
print(f"Launching training on {num_processes} GPUs.")
|
200 |
+
try:
|
201 |
+
start_processes(launcher, args=args, nprocs=num_processes, start_method="fork")
|
202 |
+
except ProcessRaisedException as e:
|
203 |
+
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
|
204 |
+
raise RuntimeError(
|
205 |
+
"CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. "
|
206 |
+
"This likely stems from an outside import causing issues once the `notebook_launcher()` is called. "
|
207 |
+
"Please review your imports and test them when running the `notebook_launcher()` to identify "
|
208 |
+
"which one is problematic and causing CUDA to be initialized."
|
209 |
+
) from e
|
210 |
+
else:
|
211 |
+
raise RuntimeError(f"An issue was found when launching the training: {e}") from e
|
212 |
+
|
213 |
+
else:
|
214 |
+
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
|
215 |
+
if is_mps_available():
|
216 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
217 |
+
print("Launching training on MPS.")
|
218 |
+
elif torch.cuda.is_available():
|
219 |
+
print("Launching training on one GPU.")
|
220 |
+
else:
|
221 |
+
print("Launching training on CPU.")
|
222 |
+
function(*args)
|
223 |
+
|
224 |
+
|
225 |
+
def debug_launcher(function, args=(), num_processes=2):
|
226 |
+
"""
|
227 |
+
Launches a training function using several processes on CPU for debugging purposes.
|
228 |
+
|
229 |
+
<Tip warning={true}>
|
230 |
+
|
231 |
+
This function is provided for internal testing and debugging, but it's not intended for real trainings. It will
|
232 |
+
only use the CPU.
|
233 |
+
|
234 |
+
</Tip>
|
235 |
+
|
236 |
+
Args:
|
237 |
+
function (`Callable`):
|
238 |
+
The training function to execute.
|
239 |
+
args (`Tuple`):
|
240 |
+
Tuple of arguments to pass to the function (it will receive `*args`).
|
241 |
+
num_processes (`int`, *optional*, defaults to 2):
|
242 |
+
The number of processes to use for training.
|
243 |
+
"""
|
244 |
+
from torch.multiprocessing import start_processes
|
245 |
+
|
246 |
+
with tempfile.NamedTemporaryFile() as tmp_file:
|
247 |
+
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
|
248 |
+
# process here (the other ones will be set be the launcher).
|
249 |
+
with patch_environment(
|
250 |
+
world_size=num_processes,
|
251 |
+
master_addr="127.0.0.1",
|
252 |
+
master_port="29500",
|
253 |
+
accelerate_mixed_precision="no",
|
254 |
+
accelerate_debug_rdv_file=tmp_file.name,
|
255 |
+
accelerate_use_cpu="yes",
|
256 |
+
):
|
257 |
+
launcher = PrepareForLaunch(function, debug=True)
|
258 |
+
start_processes(launcher, args=args, nprocs=num_processes, start_method="fork")
|
venv/lib/python3.10/site-packages/accelerate/local_sgd.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
|
16 |
+
from accelerate import Accelerator, DistributedType
|
17 |
+
|
18 |
+
|
19 |
+
class LocalSGD:
|
20 |
+
"""
|
21 |
+
A helper class to support local SGD on top of Accelerator. It simply runs a given number of updates independently
|
22 |
+
on each device, and averages model weights every K synchronization step.
|
23 |
+
|
24 |
+
It should be used only in the multi-GPU (or multi-CPU) setup without extensions such as DeepSpeed. In particular,
|
25 |
+
this is a simple implementation that cannot support scenarios such as model parallelism.
|
26 |
+
|
27 |
+
|
28 |
+
Although we are not aware of the true origins of this simple approach, the idea of local SGD is quite old and goes
|
29 |
+
back to at least:
|
30 |
+
|
31 |
+
Zhang, J., De Sa, C., Mitliagkas, I., & Ré, C. (2016). [Parallel SGD: When does averaging help?. arXiv preprint
|
32 |
+
arXiv:1606.07365.](https://arxiv.org/abs/1606.07365)
|
33 |
+
|
34 |
+
We credit the term Local SGD to the following paper (but there might be earlier references we are not aware of).
|
35 |
+
|
36 |
+
Stich, Sebastian Urban. ["Local SGD Converges Fast and Communicates Little." ICLR 2019-International Conference on
|
37 |
+
Learning Representations. No. CONF. 2019.](https://arxiv.org/abs/1805.09767)
|
38 |
+
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __enter__(self):
|
42 |
+
if self.enabled:
|
43 |
+
self.model_sync_obj = self.model.no_sync()
|
44 |
+
self.model_sync_obj.__enter__()
|
45 |
+
|
46 |
+
return self
|
47 |
+
|
48 |
+
def __exit__(self, type, value, tb):
|
49 |
+
if self.enabled:
|
50 |
+
# Average all models on exit
|
51 |
+
self._sync_and_avg_model_params()
|
52 |
+
self.model_sync_obj.__exit__(type, value, tb)
|
53 |
+
|
54 |
+
def __init__(self, accelerator: Accelerator, model: torch.nn.Module, local_sgd_steps: int, enabled: bool = True):
|
55 |
+
"""
|
56 |
+
Constructor.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
model (`torch.nn.Module):
|
60 |
+
The model whose parameters we need to average.
|
61 |
+
accelerator (`Accelerator`):
|
62 |
+
Accelerator object.
|
63 |
+
local_sgd_steps (`int`):
|
64 |
+
A number of local SGD steps (before model parameters are synchronized).
|
65 |
+
enabled (`bool):
|
66 |
+
Local SGD is disabled if this parameter set to `False`.
|
67 |
+
"""
|
68 |
+
if accelerator.distributed_type not in [
|
69 |
+
DistributedType.NO,
|
70 |
+
DistributedType.MULTI_CPU,
|
71 |
+
DistributedType.MULTI_GPU,
|
72 |
+
DistributedType.MULTI_MLU,
|
73 |
+
DistributedType.MULTI_NPU,
|
74 |
+
]:
|
75 |
+
raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)")
|
76 |
+
self.enabled = enabled and accelerator.distributed_type != DistributedType.NO
|
77 |
+
self.num_steps = 0
|
78 |
+
if self.enabled:
|
79 |
+
self.accelerator = accelerator
|
80 |
+
self.model = model
|
81 |
+
self.local_sgd_steps = local_sgd_steps
|
82 |
+
|
83 |
+
def step(self):
|
84 |
+
"""
|
85 |
+
This function makes a "step" and synchronizes model parameters if necessary.
|
86 |
+
"""
|
87 |
+
self.num_steps += 1
|
88 |
+
if not self.enabled:
|
89 |
+
return
|
90 |
+
|
91 |
+
if self.num_steps % self.local_sgd_steps == 0:
|
92 |
+
self._sync_and_avg_model_params()
|
93 |
+
|
94 |
+
def _sync_and_avg_model_params(self):
|
95 |
+
"""
|
96 |
+
Synchronize + Average model parameters across all GPUs
|
97 |
+
"""
|
98 |
+
|
99 |
+
self.accelerator.wait_for_everyone()
|
100 |
+
with self.accelerator.autocast():
|
101 |
+
for param in self.model.parameters():
|
102 |
+
param.data = self.accelerator.reduce(param.data, reduction="mean")
|
venv/lib/python3.10/site-packages/accelerate/logging.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import functools
|
16 |
+
import logging
|
17 |
+
import os
|
18 |
+
|
19 |
+
from .state import PartialState
|
20 |
+
|
21 |
+
|
22 |
+
class MultiProcessAdapter(logging.LoggerAdapter):
|
23 |
+
"""
|
24 |
+
An adapter to assist with logging in multiprocess.
|
25 |
+
|
26 |
+
`log` takes in an additional `main_process_only` kwarg, which dictates whether it should be called on all processes
|
27 |
+
or only the main executed one. Default is `main_process_only=True`.
|
28 |
+
|
29 |
+
Does not require an `Accelerator` object to be created first.
|
30 |
+
"""
|
31 |
+
|
32 |
+
@staticmethod
|
33 |
+
def _should_log(main_process_only):
|
34 |
+
"Check if log should be performed"
|
35 |
+
state = PartialState()
|
36 |
+
return not main_process_only or (main_process_only and state.is_main_process)
|
37 |
+
|
38 |
+
def log(self, level, msg, *args, **kwargs):
|
39 |
+
"""
|
40 |
+
Delegates logger call after checking if we should log.
|
41 |
+
|
42 |
+
Accepts a new kwarg of `main_process_only`, which will dictate whether it will be logged across all processes
|
43 |
+
or only the main executed one. Default is `True` if not passed
|
44 |
+
|
45 |
+
Also accepts "in_order", which if `True` makes the processes log one by one, in order. This is much easier to
|
46 |
+
read, but comes at the cost of sometimes needing to wait for the other processes. Default is `False` to not
|
47 |
+
break with the previous behavior.
|
48 |
+
|
49 |
+
`in_order` is ignored if `main_process_only` is passed.
|
50 |
+
"""
|
51 |
+
if PartialState._shared_state == {}:
|
52 |
+
raise RuntimeError(
|
53 |
+
"You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility."
|
54 |
+
)
|
55 |
+
main_process_only = kwargs.pop("main_process_only", True)
|
56 |
+
in_order = kwargs.pop("in_order", False)
|
57 |
+
|
58 |
+
if self.isEnabledFor(level):
|
59 |
+
if self._should_log(main_process_only):
|
60 |
+
msg, kwargs = self.process(msg, kwargs)
|
61 |
+
self.logger.log(level, msg, *args, **kwargs)
|
62 |
+
|
63 |
+
elif in_order:
|
64 |
+
state = PartialState()
|
65 |
+
for i in range(state.num_processes):
|
66 |
+
if i == state.process_index:
|
67 |
+
msg, kwargs = self.process(msg, kwargs)
|
68 |
+
self.logger.log(level, msg, *args, **kwargs)
|
69 |
+
state.wait_for_everyone()
|
70 |
+
|
71 |
+
@functools.lru_cache(None)
|
72 |
+
def warning_once(self, *args, **kwargs):
|
73 |
+
"""
|
74 |
+
This method is identical to `logger.warning()`, but will emit the warning with the same message only once
|
75 |
+
|
76 |
+
Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the
|
77 |
+
cache. The assumption here is that all warning messages are unique across the code. If they aren't then need to
|
78 |
+
switch to another type of cache that includes the caller frame information in the hashing function.
|
79 |
+
"""
|
80 |
+
self.warning(*args, **kwargs)
|
81 |
+
|
82 |
+
|
83 |
+
def get_logger(name: str, log_level: str = None):
|
84 |
+
"""
|
85 |
+
Returns a `logging.Logger` for `name` that can handle multiprocessing.
|
86 |
+
|
87 |
+
If a log should be called on all processes, pass `main_process_only=False` If a log should be called on all
|
88 |
+
processes and in order, also pass `in_order=True`
|
89 |
+
|
90 |
+
Args:
|
91 |
+
name (`str`):
|
92 |
+
The name for the logger, such as `__file__`
|
93 |
+
log_level (`str`, *optional*):
|
94 |
+
The log level to use. If not passed, will default to the `LOG_LEVEL` environment variable, or `INFO` if not
|
95 |
+
|
96 |
+
Example:
|
97 |
+
|
98 |
+
```python
|
99 |
+
>>> from accelerate.logging import get_logger
|
100 |
+
>>> from accelerate import Accelerator
|
101 |
+
|
102 |
+
>>> logger = get_logger(__name__)
|
103 |
+
|
104 |
+
>>> accelerator = Accelerator()
|
105 |
+
>>> logger.info("My log", main_process_only=False)
|
106 |
+
>>> logger.debug("My log", main_process_only=True)
|
107 |
+
|
108 |
+
>>> logger = get_logger(__name__, log_level="DEBUG")
|
109 |
+
>>> logger.info("My log")
|
110 |
+
>>> logger.debug("My second log")
|
111 |
+
|
112 |
+
>>> array = ["a", "b", "c", "d"]
|
113 |
+
>>> letter_at_rank = array[accelerator.process_index]
|
114 |
+
>>> logger.info(letter_at_rank, in_order=True)
|
115 |
+
```
|
116 |
+
"""
|
117 |
+
if log_level is None:
|
118 |
+
log_level = os.environ.get("ACCELERATE_LOG_LEVEL", None)
|
119 |
+
logger = logging.getLogger(name)
|
120 |
+
if log_level is not None:
|
121 |
+
logger.setLevel(log_level.upper())
|
122 |
+
logger.root.setLevel(log_level.upper())
|
123 |
+
return MultiProcessAdapter(logger, {})
|
venv/lib/python3.10/site-packages/accelerate/memory_utils.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import warnings
|
16 |
+
|
17 |
+
|
18 |
+
warnings.warn(
|
19 |
+
"memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: "
|
20 |
+
"`from accelerate import find_executable_batch_size` to avoid this warning.",
|
21 |
+
FutureWarning,
|
22 |
+
)
|
venv/lib/python3.10/site-packages/accelerate/optimizer.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from .state import AcceleratorState, GradientState
|
21 |
+
from .utils import DistributedType, honor_type, is_torch_xla_available
|
22 |
+
|
23 |
+
|
24 |
+
if is_torch_xla_available():
|
25 |
+
import torch_xla.core.xla_model as xm
|
26 |
+
|
27 |
+
|
28 |
+
def move_to_device(state, device):
|
29 |
+
if isinstance(state, (list, tuple)):
|
30 |
+
return honor_type(state, (move_to_device(t, device) for t in state))
|
31 |
+
elif isinstance(state, dict):
|
32 |
+
return type(state)({k: move_to_device(v, device) for k, v in state.items()})
|
33 |
+
elif isinstance(state, torch.Tensor):
|
34 |
+
return state.to(device)
|
35 |
+
return state
|
36 |
+
|
37 |
+
|
38 |
+
class AcceleratedOptimizer(torch.optim.Optimizer):
|
39 |
+
"""
|
40 |
+
Internal wrapper around a torch optimizer.
|
41 |
+
|
42 |
+
Conditionally will perform `step` and `zero_grad` if gradients should be synchronized when performing gradient
|
43 |
+
accumulation.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
optimizer (`torch.optim.optimizer.Optimizer`):
|
47 |
+
The optimizer to wrap.
|
48 |
+
device_placement (`bool`, *optional*, defaults to `True`):
|
49 |
+
Whether or not the optimizer should handle device placement. If so, it will place the state dictionary of
|
50 |
+
`optimizer` on the right device.
|
51 |
+
scaler (`torch.cuda.amp.grad_scaler.GradScaler`, *optional*):
|
52 |
+
The scaler to use in the step function if training with mixed precision.
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(self, optimizer, device_placement=True, scaler=None):
|
56 |
+
self.optimizer = optimizer
|
57 |
+
self.scaler = scaler
|
58 |
+
self.accelerator_state = AcceleratorState()
|
59 |
+
self.gradient_state = GradientState()
|
60 |
+
self.device_placement = device_placement
|
61 |
+
self._is_overflow = False
|
62 |
+
|
63 |
+
if self.scaler is not None:
|
64 |
+
self._accelerate_step_called = False
|
65 |
+
self._optimizer_original_step_method = self.optimizer.step
|
66 |
+
self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step)
|
67 |
+
|
68 |
+
# Handle device placement
|
69 |
+
if device_placement:
|
70 |
+
state_dict = self.optimizer.state_dict()
|
71 |
+
if self.accelerator_state.distributed_type == DistributedType.XLA:
|
72 |
+
xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device)
|
73 |
+
else:
|
74 |
+
state_dict = move_to_device(state_dict, self.accelerator_state.device)
|
75 |
+
self.optimizer.load_state_dict(state_dict)
|
76 |
+
|
77 |
+
@property
|
78 |
+
def state(self):
|
79 |
+
return self.optimizer.state
|
80 |
+
|
81 |
+
@state.setter
|
82 |
+
def state(self, state):
|
83 |
+
self.optimizer.state = state
|
84 |
+
|
85 |
+
@property
|
86 |
+
def param_groups(self):
|
87 |
+
return self.optimizer.param_groups
|
88 |
+
|
89 |
+
@param_groups.setter
|
90 |
+
def param_groups(self, param_groups):
|
91 |
+
self.optimizer.param_groups = param_groups
|
92 |
+
|
93 |
+
@property
|
94 |
+
def defaults(self):
|
95 |
+
return self.optimizer.defaults
|
96 |
+
|
97 |
+
@defaults.setter
|
98 |
+
def defaults(self, defaults):
|
99 |
+
self.optimizer.defaults = defaults
|
100 |
+
|
101 |
+
def add_param_group(self, param_group):
|
102 |
+
self.optimizer.add_param_group(param_group)
|
103 |
+
|
104 |
+
def load_state_dict(self, state_dict):
|
105 |
+
if self.accelerator_state.distributed_type == DistributedType.XLA and self.device_placement:
|
106 |
+
xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device)
|
107 |
+
self.optimizer.load_state_dict(state_dict)
|
108 |
+
|
109 |
+
def state_dict(self):
|
110 |
+
return self.optimizer.state_dict()
|
111 |
+
|
112 |
+
def zero_grad(self, set_to_none=None):
|
113 |
+
if self.gradient_state.sync_gradients:
|
114 |
+
accept_arg = "set_to_none" in inspect.signature(self.optimizer.zero_grad).parameters
|
115 |
+
if accept_arg:
|
116 |
+
if set_to_none is None:
|
117 |
+
set_to_none = True
|
118 |
+
self.optimizer.zero_grad(set_to_none=set_to_none)
|
119 |
+
else:
|
120 |
+
if set_to_none is not None:
|
121 |
+
raise ValueError("`set_to_none` for Optimizer.zero_grad` is not supported by this optimizer.")
|
122 |
+
self.optimizer.zero_grad()
|
123 |
+
|
124 |
+
def step(self, closure=None):
|
125 |
+
if (
|
126 |
+
not self.gradient_state.is_xla_gradients_synced
|
127 |
+
and self.accelerator_state.distributed_type == DistributedType.XLA
|
128 |
+
):
|
129 |
+
gradients = xm._fetch_gradients(self.optimizer)
|
130 |
+
xm.all_reduce("sum", gradients, scale=1.0 / xm.xrt_world_size())
|
131 |
+
self.gradient_state.is_xla_gradients_synced = True
|
132 |
+
if self.gradient_state.sync_gradients:
|
133 |
+
if self.scaler is not None:
|
134 |
+
self.optimizer.step = self._optimizer_patched_step_method
|
135 |
+
|
136 |
+
self.scaler.step(self.optimizer, closure)
|
137 |
+
self.scaler.update()
|
138 |
+
|
139 |
+
if not self._accelerate_step_called:
|
140 |
+
# If the optimizer step was skipped, gradient overflow was detected.
|
141 |
+
self._is_overflow = True
|
142 |
+
else:
|
143 |
+
self._is_overflow = False
|
144 |
+
# Reset the step method to the original one
|
145 |
+
self.optimizer.step = self._optimizer_original_step_method
|
146 |
+
# Reset the indicator
|
147 |
+
self._accelerate_step_called = False
|
148 |
+
else:
|
149 |
+
self.optimizer.step(closure)
|
150 |
+
if self.accelerator_state.distributed_type == DistributedType.XLA:
|
151 |
+
self.gradient_state.is_xla_gradients_synced = False
|
152 |
+
|
153 |
+
def _switch_parameters(self, parameters_map):
|
154 |
+
for param_group in self.optimizer.param_groups:
|
155 |
+
param_group["params"] = [parameters_map.get(p, p) for p in param_group["params"]]
|
156 |
+
|
157 |
+
@property
|
158 |
+
def is_overflow(self):
|
159 |
+
"""Whether or not the optimizer step was done, or skipped because of gradient overflow."""
|
160 |
+
warnings.warn(
|
161 |
+
"The `is_overflow` property is deprecated and will be removed in version 1.0 of Accelerate use "
|
162 |
+
"`optimizer.step_was_skipped` instead.",
|
163 |
+
FutureWarning,
|
164 |
+
)
|
165 |
+
return self._is_overflow
|
166 |
+
|
167 |
+
@property
|
168 |
+
def step_was_skipped(self):
|
169 |
+
"""Whether or not the optimizer step was skipped."""
|
170 |
+
return self._is_overflow
|
171 |
+
|
172 |
+
def __getstate__(self):
|
173 |
+
_ignored_keys = [
|
174 |
+
"_accelerate_step_called",
|
175 |
+
"_optimizer_original_step_method",
|
176 |
+
"_optimizer_patched_step_method",
|
177 |
+
]
|
178 |
+
return {k: v for k, v in self.__dict__.items() if k not in _ignored_keys}
|
179 |
+
|
180 |
+
def __setstate__(self, state):
|
181 |
+
self.__dict__.update(state)
|
182 |
+
if self.scaler is not None:
|
183 |
+
self._accelerate_step_called = False
|
184 |
+
self._optimizer_original_step_method = self.optimizer.step
|
185 |
+
self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step)
|
186 |
+
|
187 |
+
|
188 |
+
def patch_optimizer_step(accelerated_optimizer: AcceleratedOptimizer, method):
|
189 |
+
def patched_step(*args, **kwargs):
|
190 |
+
accelerated_optimizer._accelerate_step_called = True
|
191 |
+
return method(*args, **kwargs)
|
192 |
+
|
193 |
+
return patched_step
|
venv/lib/python3.10/site-packages/accelerate/scheduler.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from .state import AcceleratorState, GradientState
|
20 |
+
|
21 |
+
|
22 |
+
warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler")
|
23 |
+
|
24 |
+
|
25 |
+
class AcceleratedScheduler:
|
26 |
+
"""
|
27 |
+
A wrapper around a learning rate scheduler that will only step when the optimizer(s) have a training step. Useful
|
28 |
+
to avoid making a scheduler step too fast when gradients went overflow and there was no training step (in mixed
|
29 |
+
precision training)
|
30 |
+
|
31 |
+
When performing gradient accumulation scheduler lengths should not be changed accordingly, Accelerate will always
|
32 |
+
step the scheduler to account for it.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
scheduler (`torch.optim.lr_scheduler._LRScheduler`):
|
36 |
+
The scheduler to wrap.
|
37 |
+
optimizers (one or a list of `torch.optim.Optimizer`):
|
38 |
+
The optimizers used.
|
39 |
+
step_with_optimizer (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether or not the scheduler should be stepped at each optimizer step.
|
41 |
+
split_batches (`bool`, *optional*, defaults to `False`):
|
42 |
+
Whether or not the dataloaders split one batch across the different processes (so batch size is the same
|
43 |
+
regardless of the number of processes) or create batches on each process (so batch size is the original
|
44 |
+
batch size multiplied by the number of processes).
|
45 |
+
"""
|
46 |
+
|
47 |
+
def __init__(self, scheduler, optimizers, step_with_optimizer: bool = True, split_batches: bool = False):
|
48 |
+
self.scheduler = scheduler
|
49 |
+
self.optimizers = optimizers if isinstance(optimizers, (list, tuple)) else [optimizers]
|
50 |
+
self.split_batches = split_batches
|
51 |
+
self.step_with_optimizer = step_with_optimizer
|
52 |
+
self.gradient_state = GradientState()
|
53 |
+
|
54 |
+
def step(self, *args, **kwargs):
|
55 |
+
if not self.step_with_optimizer:
|
56 |
+
# No link between scheduler and optimizer -> just step
|
57 |
+
self.scheduler.step(*args, **kwargs)
|
58 |
+
return
|
59 |
+
|
60 |
+
# Otherwise, first make sure the optimizer was stepped.
|
61 |
+
if not self.gradient_state.sync_gradients:
|
62 |
+
if self.gradient_state.adjust_scheduler:
|
63 |
+
self.scheduler._step_count += 1
|
64 |
+
return
|
65 |
+
|
66 |
+
for opt in self.optimizers:
|
67 |
+
if opt.step_was_skipped:
|
68 |
+
return
|
69 |
+
if self.split_batches:
|
70 |
+
# Split batches -> the training dataloader batch size is not changed so one step per training step
|
71 |
+
self.scheduler.step(*args, **kwargs)
|
72 |
+
else:
|
73 |
+
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
|
74 |
+
# num_processes steps per training step
|
75 |
+
num_processes = AcceleratorState().num_processes
|
76 |
+
for _ in range(num_processes):
|
77 |
+
# Special case when using OneCycle and `drop_last` was not used
|
78 |
+
if hasattr(self.scheduler, "total_steps"):
|
79 |
+
if self.scheduler._step_count <= self.scheduler.total_steps:
|
80 |
+
self.scheduler.step(*args, **kwargs)
|
81 |
+
else:
|
82 |
+
self.scheduler.step(*args, **kwargs)
|
83 |
+
|
84 |
+
# Passthroughs
|
85 |
+
def get_last_lr(self):
|
86 |
+
return self.scheduler.get_last_lr()
|
87 |
+
|
88 |
+
def state_dict(self):
|
89 |
+
return self.scheduler.state_dict()
|
90 |
+
|
91 |
+
def load_state_dict(self, state_dict):
|
92 |
+
self.scheduler.load_state_dict(state_dict)
|
93 |
+
|
94 |
+
def get_lr(self):
|
95 |
+
return self.scheduler.get_lr()
|
96 |
+
|
97 |
+
def print_lr(self, *args, **kwargs):
|
98 |
+
return self.scheduler.print_lr(*args, **kwargs)
|
venv/lib/python3.10/site-packages/accelerate/state.py
ADDED
@@ -0,0 +1,1209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import annotations
|
16 |
+
|
17 |
+
import logging
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import threading
|
21 |
+
import warnings
|
22 |
+
from contextlib import contextmanager
|
23 |
+
from functools import partial
|
24 |
+
from typing import Any, Callable, Optional
|
25 |
+
|
26 |
+
import torch
|
27 |
+
|
28 |
+
from .utils import (
|
29 |
+
DistributedType,
|
30 |
+
DynamoBackend,
|
31 |
+
GradientAccumulationPlugin,
|
32 |
+
check_cuda_p2p_ib_support,
|
33 |
+
check_fp8_capability,
|
34 |
+
get_ccl_version,
|
35 |
+
get_cpu_distributed_information,
|
36 |
+
get_int_from_env,
|
37 |
+
is_ccl_available,
|
38 |
+
is_datasets_available,
|
39 |
+
is_deepspeed_available,
|
40 |
+
is_fp8_available,
|
41 |
+
is_ipex_available,
|
42 |
+
is_mlu_available,
|
43 |
+
is_mps_available,
|
44 |
+
is_npu_available,
|
45 |
+
is_torch_xla_available,
|
46 |
+
is_xpu_available,
|
47 |
+
parse_choice_from_env,
|
48 |
+
parse_flag_from_env,
|
49 |
+
set_numa_affinity,
|
50 |
+
)
|
51 |
+
from .utils.dataclasses import SageMakerDistributedType
|
52 |
+
|
53 |
+
|
54 |
+
if is_torch_xla_available():
|
55 |
+
import torch_xla.core.xla_model as xm
|
56 |
+
|
57 |
+
if is_mlu_available(check_device=False):
|
58 |
+
import torch_mlu # noqa: F401
|
59 |
+
|
60 |
+
if is_npu_available(check_device=False):
|
61 |
+
import torch_npu # noqa: F401
|
62 |
+
|
63 |
+
logger = logging.getLogger(__name__)
|
64 |
+
|
65 |
+
|
66 |
+
def is_initialized() -> bool:
|
67 |
+
"""
|
68 |
+
Checks if the `AcceleratorState` has been initialized from `Accelerator`. Same as `AcceleratorState.initialized`,
|
69 |
+
but works as a module method.
|
70 |
+
"""
|
71 |
+
return AcceleratorState._shared_state != {}
|
72 |
+
|
73 |
+
|
74 |
+
# Lambda function that does nothing
|
75 |
+
def do_nothing(*args, **kwargs):
|
76 |
+
return None
|
77 |
+
|
78 |
+
|
79 |
+
class ThreadLocalSharedDict(threading.local):
|
80 |
+
"""
|
81 |
+
Descriptor that holds a dict shared between instances of a class in the same thread.
|
82 |
+
|
83 |
+
Note: Descriptors have slightly different semantics than just a dict field on its own.
|
84 |
+
`PartialState(...)._shared_state` and `PartialState._shared_state` (instance vs class) give the same value: the
|
85 |
+
underlying _storage dict. Likewise, `PartialState(...)._shared_state = {...}` overrides the _storage dict inside
|
86 |
+
the descriptor as you would expect. However, `PartialState._shared_state = {}` actually replaces the descriptor
|
87 |
+
object with a dict instead Thus, you should modify the _storage dict in-place (e.g. `_shared_state.clear()`).
|
88 |
+
|
89 |
+
See Python documentation for an explanation of descriptors: https://docs.python.org/3/howto/descriptor.html
|
90 |
+
|
91 |
+
This is required for using PyTorch/XLA with PJRT in multithreaded mode (required for TPU v2 and v3).
|
92 |
+
|
93 |
+
See https://github.com/pytorch/xla/blob/r2.0/docs/pjrt.md#multithreading-on-tpu-v2v3
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(self, thread_local: bool = False):
|
97 |
+
self._storage = {}
|
98 |
+
|
99 |
+
def __get__(self, obj, objtype=None):
|
100 |
+
return self._storage
|
101 |
+
|
102 |
+
def __set__(self, obj, value):
|
103 |
+
self._storage = value
|
104 |
+
|
105 |
+
|
106 |
+
# Prefer global shared dictionary, except when using TPU.
|
107 |
+
SharedDict = dict if not is_torch_xla_available() else ThreadLocalSharedDict
|
108 |
+
|
109 |
+
|
110 |
+
# Inspired by Alex Martelli's 'Borg'.
|
111 |
+
class PartialState:
|
112 |
+
"""
|
113 |
+
Singleton class that has information about the current training environment and functions to help with process
|
114 |
+
control. Designed to be used when only process control and device execution states are needed. Does *not* need to
|
115 |
+
be initialized from `Accelerator`.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
cpu (`bool`, *optional*):
|
119 |
+
Whether or not to force the script to execute on CPU. Will ignore any accelerators available if set to
|
120 |
+
`True` and force the execution on the CPU.
|
121 |
+
kwargs (additional keyword arguments, *optional*):
|
122 |
+
Additional keyword arguments to pass to the relevent `init_process_group` function. Valid `kwargs` can be
|
123 |
+
found in [`utils.InitProcessGroupKwargs`]. See the example section for detailed usage.
|
124 |
+
|
125 |
+
**Available attributes:**
|
126 |
+
|
127 |
+
- **device** (`torch.device`) -- The device to use.
|
128 |
+
- **distributed_type** ([`~accelerate.state.DistributedType`]) -- The type of distributed environment currently
|
129 |
+
in use.
|
130 |
+
- **local_process_index** (`int`) -- The index of the current process on the current server.
|
131 |
+
- **mixed_precision** (`str`) -- Whether or not the current script will use mixed precision, and if so the type
|
132 |
+
of mixed precision being performed. (Choose from 'no','fp16','bf16 or 'fp8').
|
133 |
+
- **num_processes** (`int`) -- The number of processes currently launched in parallel.
|
134 |
+
- **process_index** (`int`) -- The index of the current process.
|
135 |
+
- **is_last_process** (`bool`) -- Whether or not the current process is the last one.
|
136 |
+
- **is_main_process** (`bool`) -- Whether or not the current process is the main one.
|
137 |
+
- **is_local_main_process** (`bool`) -- Whether or not the current process is the main one on the local node.
|
138 |
+
- **debug** (`bool`) -- Whether or not the current script is being run in debug mode.
|
139 |
+
|
140 |
+
Example:
|
141 |
+
```python
|
142 |
+
from accelerate.utils import InitProcessGroupKwargs
|
143 |
+
|
144 |
+
# To include `InitProcessGroupKwargs`, init then call `.to_kwargs()`
|
145 |
+
kwargs = InitProcessGroupKwargs(...).to_kwargs()
|
146 |
+
state = PartialState(**kwargs)
|
147 |
+
```
|
148 |
+
"""
|
149 |
+
|
150 |
+
_shared_state = SharedDict()
|
151 |
+
_known_attrs = [
|
152 |
+
"_cpu",
|
153 |
+
"_mixed_precision",
|
154 |
+
"_shared_state",
|
155 |
+
"backend",
|
156 |
+
"debug",
|
157 |
+
"device",
|
158 |
+
"distributed_type",
|
159 |
+
"fork_launched",
|
160 |
+
"local_process_index",
|
161 |
+
"num_processes",
|
162 |
+
"process_index",
|
163 |
+
]
|
164 |
+
|
165 |
+
def __init__(self, cpu: bool = False, **kwargs):
|
166 |
+
self.__dict__ = self._shared_state
|
167 |
+
if not self.initialized:
|
168 |
+
self._cpu = cpu
|
169 |
+
self.backend = None
|
170 |
+
env_device = os.environ.get("ACCELERATE_TORCH_DEVICE", None)
|
171 |
+
self.device = torch.device(env_device) if env_device is not None else None
|
172 |
+
self.debug = parse_flag_from_env("ACCELERATE_DEBUG_MODE")
|
173 |
+
use_sagemaker_dp = kwargs.pop("_use_sagemaker_dp", None)
|
174 |
+
dist_information = None
|
175 |
+
if use_sagemaker_dp is None:
|
176 |
+
use_sagemaker_dp = (
|
177 |
+
os.environ.get("ACCELERATE_USE_SAGEMAKER", "false") == "true"
|
178 |
+
and os.environ.get("ACCELERATE_SAGEMAKER_DISTRIBUTED_TYPE") != SageMakerDistributedType.NO
|
179 |
+
)
|
180 |
+
|
181 |
+
# Sets up self.backend + imports
|
182 |
+
original_backend = kwargs.pop("backend", None)
|
183 |
+
backend, distributed_type = self._prepare_backend(cpu, use_sagemaker_dp, original_backend)
|
184 |
+
if original_backend is not None and backend != original_backend:
|
185 |
+
raise ValueError("Your assigned backend {original_backend} is not avaliable, please use {backend}")
|
186 |
+
self.backend = backend
|
187 |
+
self.distributed_type = distributed_type
|
188 |
+
use_deepspeed = False
|
189 |
+
if not cpu and self.backend != "xla":
|
190 |
+
if int(os.environ.get("LOCAL_RANK", -1)) != -1:
|
191 |
+
# Deal with spawning deepspeed
|
192 |
+
if os.environ.get("ACCELERATE_USE_DEEPSPEED", "false") == "true":
|
193 |
+
if not is_deepspeed_available():
|
194 |
+
raise ImportError(
|
195 |
+
"DeepSpeed is not available => install it using `pip3 install deepspeed` or build it from source"
|
196 |
+
)
|
197 |
+
from deepspeed import comm as dist
|
198 |
+
|
199 |
+
if is_xpu_available() and is_ccl_available():
|
200 |
+
os.environ["CCL_PROCESS_LAUNCHER"] = "none"
|
201 |
+
os.environ["CCL_LOCAL_SIZE"] = os.environ.get("LOCAL_WORLD_SIZE", "1")
|
202 |
+
os.environ["CCL_LOCAL_RANK"] = os.environ.get("LOCAL_RANK", "0")
|
203 |
+
|
204 |
+
if not dist.is_initialized():
|
205 |
+
dist.init_distributed(dist_backend=self.backend, auto_mpi_discovery=False, **kwargs)
|
206 |
+
# We need to flag to `use_deepspeed` to be True to override `distributed_type` later
|
207 |
+
use_deepspeed = True
|
208 |
+
# Deal with all other backends but XPU and CPU, that gets handled special later
|
209 |
+
elif (
|
210 |
+
self.distributed_type not in (DistributedType.MULTI_XPU, DistributedType.MULTI_CPU)
|
211 |
+
and not torch.distributed.is_initialized()
|
212 |
+
):
|
213 |
+
torch.distributed.init_process_group(backend=self.backend, **kwargs)
|
214 |
+
# XPU and CPU require special env configs to be set
|
215 |
+
if self.distributed_type in (DistributedType.MULTI_XPU, DistributedType.MULTI_CPU):
|
216 |
+
dist_information = get_cpu_distributed_information()
|
217 |
+
os.environ["RANK"] = str(dist_information.rank)
|
218 |
+
os.environ["WORLD_SIZE"] = str(dist_information.world_size)
|
219 |
+
os.environ["LOCAL_RANK"] = str(dist_information.local_rank)
|
220 |
+
os.environ["LOCAL_WORLD_SIZE"] = str(dist_information.local_world_size)
|
221 |
+
if self.backend == "ccl" and self.distributed_type == DistributedType.MULTI_XPU:
|
222 |
+
os.environ["CCL_PROCESS_LAUNCHER"] = "none"
|
223 |
+
os.environ["CCL_LOCAL_SIZE"] = os.environ["LOCAL_WORLD_SIZE"]
|
224 |
+
os.environ["CCL_LOCAL_RANK"] = os.environ["LOCAL_RANK"]
|
225 |
+
if not os.environ.get("MASTER_PORT", None):
|
226 |
+
os.environ["MASTER_PORT"] = "29500"
|
227 |
+
if (
|
228 |
+
not os.environ.get("MASTER_ADDR", None)
|
229 |
+
and dist_information.local_world_size != dist_information.world_size
|
230 |
+
and self.backend != "mpi"
|
231 |
+
):
|
232 |
+
raise ValueError(
|
233 |
+
"Tried to launch on distributed with multinode, but `MASTER_ADDR` env was not set, "
|
234 |
+
"please try exporting rank 0's hostname as `MASTER_ADDR`"
|
235 |
+
)
|
236 |
+
kwargs["rank"] = dist_information.rank
|
237 |
+
kwargs["world_size"] = dist_information.world_size
|
238 |
+
|
239 |
+
if (
|
240 |
+
self.distributed_type == DistributedType.MULTI_CPU
|
241 |
+
and get_int_from_env(["OMP_NUM_THREADS", "OMP_NUM_THREADS"], 0) > 0
|
242 |
+
):
|
243 |
+
import psutil
|
244 |
+
|
245 |
+
num_cpu_threads_per_process = int(
|
246 |
+
psutil.cpu_count(logical=False) / dist_information.local_world_size
|
247 |
+
)
|
248 |
+
if num_cpu_threads_per_process == 0:
|
249 |
+
num_cpu_threads_per_process = 1
|
250 |
+
torch.set_num_threads(num_cpu_threads_per_process)
|
251 |
+
warnings.warn(
|
252 |
+
f"OMP_NUM_THREADS/MKL_NUM_THREADS unset, we set it at {num_cpu_threads_per_process} to improve oob"
|
253 |
+
" performance."
|
254 |
+
)
|
255 |
+
|
256 |
+
if not torch.distributed.is_initialized():
|
257 |
+
torch.distributed.init_process_group(backend=self.backend, **kwargs)
|
258 |
+
|
259 |
+
# No backend == no distributed training
|
260 |
+
if self.backend is None:
|
261 |
+
self.distributed_type = DistributedType.NO
|
262 |
+
self.num_processes = 1
|
263 |
+
self.process_index = 0
|
264 |
+
self.local_process_index = 0
|
265 |
+
elif self.backend == "xla":
|
266 |
+
# XLA needs device setting first for `set_replication`
|
267 |
+
self.set_device()
|
268 |
+
xm.set_replication(self.device, xm.get_xla_supported_devices())
|
269 |
+
self.num_processes = xm.xrt_world_size()
|
270 |
+
self.process_index = xm.get_ordinal()
|
271 |
+
if is_torch_xla_available(check_is_tpu=True):
|
272 |
+
self.local_process_index = xm.get_local_ordinal()
|
273 |
+
else:
|
274 |
+
self.local_process_index = int(os.environ.get("LOCAL_RANK", -1))
|
275 |
+
else:
|
276 |
+
self.num_processes = torch.distributed.get_world_size()
|
277 |
+
self.process_index = torch.distributed.get_rank()
|
278 |
+
self.local_process_index = (
|
279 |
+
int(os.environ.get("LOCAL_RANK", -1)) if dist_information is None else dist_information.local_rank
|
280 |
+
)
|
281 |
+
self.set_device()
|
282 |
+
# Now we can change to deepseed
|
283 |
+
if use_deepspeed:
|
284 |
+
self.distributed_type = DistributedType.DEEPSPEED
|
285 |
+
|
286 |
+
# Set CPU affinity if enabled
|
287 |
+
if parse_flag_from_env("ACCELERATE_CPU_AFFINITY", False):
|
288 |
+
set_numa_affinity(self.local_process_index)
|
289 |
+
|
290 |
+
# Check for old RTX 4000's that can't use P2P or IB and are on old drivers
|
291 |
+
if self.device.type == "cuda" and not check_cuda_p2p_ib_support():
|
292 |
+
if "NCCL_P2P_DISABLE" not in os.environ or "NCCL_IB_DISABLE" not in os.environ:
|
293 |
+
raise NotImplementedError(
|
294 |
+
"Using RTX 4000 series doesn't support faster communication broadband via P2P or IB. "
|
295 |
+
'Please set `NCCL_P2P_DISABLE="1"` and `NCCL_IB_DISABLE="1" or use `accelerate launch` which '
|
296 |
+
"will do this automatically."
|
297 |
+
)
|
298 |
+
# Important: This should be the *only* code outside of `self.initialized!`
|
299 |
+
self.fork_launched = parse_flag_from_env("FORK_LAUNCHED", 0)
|
300 |
+
|
301 |
+
def __repr__(self) -> str:
|
302 |
+
return (
|
303 |
+
f"Distributed environment: {self.distributed_type}{(' Backend: ' + self.backend) if self.backend else ''}\n"
|
304 |
+
f"Num processes: {self.num_processes}\n"
|
305 |
+
f"Process index: {self.process_index}\n"
|
306 |
+
f"Local process index: {self.local_process_index}\n"
|
307 |
+
f"Device: {self.device}\n"
|
308 |
+
)
|
309 |
+
|
310 |
+
@staticmethod
|
311 |
+
def _reset_state():
|
312 |
+
"Resets `_shared_state`, is used internally and should not be called"
|
313 |
+
PartialState._shared_state.clear()
|
314 |
+
|
315 |
+
@property
|
316 |
+
def initialized(self) -> bool:
|
317 |
+
"Returns whether the `PartialState` has been initialized"
|
318 |
+
return self._shared_state != {}
|
319 |
+
|
320 |
+
@property
|
321 |
+
def use_distributed(self):
|
322 |
+
"""
|
323 |
+
Whether the Accelerator is configured for distributed training
|
324 |
+
"""
|
325 |
+
return self.distributed_type != DistributedType.NO and self.num_processes > 1
|
326 |
+
|
327 |
+
@property
|
328 |
+
def is_last_process(self) -> bool:
|
329 |
+
"Returns whether the current process is the last one"
|
330 |
+
return self.process_index == self.num_processes - 1
|
331 |
+
|
332 |
+
@property
|
333 |
+
def is_main_process(self) -> bool:
|
334 |
+
"Returns whether the current process is the main process"
|
335 |
+
return (
|
336 |
+
self.process_index == 0 if self.distributed_type != DistributedType.MEGATRON_LM else self.is_last_process
|
337 |
+
)
|
338 |
+
|
339 |
+
@property
|
340 |
+
def is_local_main_process(self) -> bool:
|
341 |
+
"Returns whether the current process is the main process on the local node"
|
342 |
+
return (
|
343 |
+
self.local_process_index == 0
|
344 |
+
if self.distributed_type != DistributedType.MEGATRON_LM
|
345 |
+
else self.is_last_process
|
346 |
+
)
|
347 |
+
|
348 |
+
def wait_for_everyone(self):
|
349 |
+
"""
|
350 |
+
Will stop the execution of the current process until every other process has reached that point (so this does
|
351 |
+
nothing when the script is only run in one process). Useful to do before saving a model.
|
352 |
+
|
353 |
+
Example:
|
354 |
+
|
355 |
+
```python
|
356 |
+
>>> # Assuming two GPU processes
|
357 |
+
>>> import time
|
358 |
+
>>> from accelerate.state import PartialState
|
359 |
+
|
360 |
+
>>> state = PartialState()
|
361 |
+
>>> if state.is_main_process:
|
362 |
+
... time.sleep(2)
|
363 |
+
>>> else:
|
364 |
+
... print("I'm waiting for the main process to finish its sleep...")
|
365 |
+
>>> state.wait_for_everyone()
|
366 |
+
>>> # Should print on every process at the same time
|
367 |
+
>>> print("Everyone is here")
|
368 |
+
```
|
369 |
+
"""
|
370 |
+
if self.distributed_type in (
|
371 |
+
DistributedType.MULTI_GPU,
|
372 |
+
DistributedType.MULTI_MLU,
|
373 |
+
DistributedType.MULTI_NPU,
|
374 |
+
DistributedType.MULTI_XPU,
|
375 |
+
DistributedType.MULTI_CPU,
|
376 |
+
DistributedType.DEEPSPEED,
|
377 |
+
DistributedType.FSDP,
|
378 |
+
):
|
379 |
+
torch.distributed.barrier()
|
380 |
+
elif self.distributed_type == DistributedType.XLA:
|
381 |
+
xm.rendezvous("accelerate.utils.wait_for_everyone")
|
382 |
+
|
383 |
+
def _goes_first(self, is_main: bool):
|
384 |
+
if not is_main:
|
385 |
+
self.wait_for_everyone()
|
386 |
+
|
387 |
+
yield
|
388 |
+
|
389 |
+
if is_main:
|
390 |
+
self.wait_for_everyone()
|
391 |
+
|
392 |
+
@contextmanager
|
393 |
+
def split_between_processes(self, inputs: list | tuple | dict | torch.Tensor, apply_padding: bool = False):
|
394 |
+
"""
|
395 |
+
Splits `input` between `self.num_processes` quickly and can be then used on that process. Useful when doing
|
396 |
+
distributed inference, such as with different prompts.
|
397 |
+
|
398 |
+
Note that when using a `dict`, all keys need to have the same number of elements.
|
399 |
+
|
400 |
+
Args:
|
401 |
+
inputs (`list`, `tuple`, `torch.Tensor`, `dict` of `list`/`tuple`/`torch.Tensor`, or `datasets.Dataset`):
|
402 |
+
The input to split between processes.
|
403 |
+
apply_padding (`bool`, `optional`, defaults to `False`):
|
404 |
+
Whether to apply padding by repeating the last element of the input so that all processes have the same
|
405 |
+
number of elements. Useful when trying to perform actions such as `gather()` on the outputs or passing
|
406 |
+
in less inputs than there are processes. If so, just remember to drop the padded elements afterwards.
|
407 |
+
|
408 |
+
|
409 |
+
Example:
|
410 |
+
|
411 |
+
```python
|
412 |
+
# Assume there are two processes
|
413 |
+
from accelerate import PartialState
|
414 |
+
|
415 |
+
state = PartialState()
|
416 |
+
with state.split_between_processes(["A", "B", "C"]) as inputs:
|
417 |
+
print(inputs)
|
418 |
+
# Process 0
|
419 |
+
["A", "B"]
|
420 |
+
# Process 1
|
421 |
+
["C"]
|
422 |
+
|
423 |
+
with state.split_between_processes(["A", "B", "C"], apply_padding=True) as inputs:
|
424 |
+
print(inputs)
|
425 |
+
# Process 0
|
426 |
+
["A", "B"]
|
427 |
+
# Process 1
|
428 |
+
["C", "C"]
|
429 |
+
```
|
430 |
+
"""
|
431 |
+
if self.num_processes == 1:
|
432 |
+
yield inputs
|
433 |
+
return
|
434 |
+
length = len(inputs)
|
435 |
+
# Nested dictionary of any types
|
436 |
+
if isinstance(inputs, dict):
|
437 |
+
length = len(inputs[list(inputs.keys())[0]])
|
438 |
+
if not all(len(v) == length for v in inputs.values()):
|
439 |
+
raise ValueError("All values in the dictionary must have the same length")
|
440 |
+
num_samples_per_process = math.ceil(length / self.num_processes)
|
441 |
+
start_index = self.process_index * num_samples_per_process
|
442 |
+
end_index = start_index + num_samples_per_process
|
443 |
+
if (len(inputs) % self.num_processes != 0) and (self.process_index == self.num_processes - 1):
|
444 |
+
end_index = length
|
445 |
+
|
446 |
+
def _split_values(inputs, start_index, end_index):
|
447 |
+
if isinstance(inputs, (list, tuple, torch.Tensor)):
|
448 |
+
if start_index >= len(inputs):
|
449 |
+
result = inputs[-1:]
|
450 |
+
else:
|
451 |
+
result = inputs[start_index:end_index]
|
452 |
+
if apply_padding:
|
453 |
+
if isinstance(result, torch.Tensor):
|
454 |
+
from accelerate.utils import pad_across_processes, send_to_device
|
455 |
+
|
456 |
+
# The tensor needs to be on the device before we can pad it
|
457 |
+
tensorized_result = send_to_device(result, self.device)
|
458 |
+
result = pad_across_processes(tensorized_result, pad_index=inputs[-1])
|
459 |
+
else:
|
460 |
+
result += [result[-1]] * (num_samples_per_process - len(result))
|
461 |
+
return result
|
462 |
+
elif isinstance(inputs, dict):
|
463 |
+
for key in inputs.keys():
|
464 |
+
inputs[key] = _split_values(inputs[key], start_index, end_index)
|
465 |
+
return inputs
|
466 |
+
else:
|
467 |
+
if is_datasets_available():
|
468 |
+
from datasets import Dataset
|
469 |
+
|
470 |
+
if isinstance(inputs, Dataset):
|
471 |
+
if start_index >= len(inputs):
|
472 |
+
start_index = len(inputs) - 1
|
473 |
+
if end_index > len(inputs):
|
474 |
+
end_index = len(inputs)
|
475 |
+
result_idcs = list(range(start_index, end_index))
|
476 |
+
if apply_padding:
|
477 |
+
result_idcs += [end_index - 1] * (num_samples_per_process - len(result_idcs))
|
478 |
+
return inputs.select(result_idcs)
|
479 |
+
return inputs
|
480 |
+
|
481 |
+
yield _split_values(inputs, start_index, end_index)
|
482 |
+
|
483 |
+
@contextmanager
|
484 |
+
def main_process_first(self):
|
485 |
+
"""
|
486 |
+
Lets the main process go first inside a with block.
|
487 |
+
|
488 |
+
The other processes will enter the with block after the main process exits.
|
489 |
+
|
490 |
+
Example:
|
491 |
+
|
492 |
+
```python
|
493 |
+
>>> from accelerate import Accelerator
|
494 |
+
|
495 |
+
>>> accelerator = Accelerator()
|
496 |
+
>>> with accelerator.main_process_first():
|
497 |
+
... # This will be printed first by process 0 then in a seemingly
|
498 |
+
... # random order by the other processes.
|
499 |
+
... print(f"This will be printed by process {accelerator.process_index}")
|
500 |
+
```
|
501 |
+
"""
|
502 |
+
yield from self._goes_first(self.is_main_process)
|
503 |
+
|
504 |
+
@contextmanager
|
505 |
+
def local_main_process_first(self):
|
506 |
+
"""
|
507 |
+
Lets the local main process go inside a with block.
|
508 |
+
|
509 |
+
The other processes will enter the with block after the main process exits.
|
510 |
+
|
511 |
+
Example:
|
512 |
+
|
513 |
+
```python
|
514 |
+
>>> from accelerate.state import PartialState
|
515 |
+
|
516 |
+
>>> state = PartialState()
|
517 |
+
>>> with state.local_main_process_first():
|
518 |
+
... # This will be printed first by local process 0 then in a seemingly
|
519 |
+
... # random order by the other processes.
|
520 |
+
... print(f"This will be printed by process {state.local_process_index}")
|
521 |
+
```
|
522 |
+
"""
|
523 |
+
yield from self._goes_first(self.is_local_main_process)
|
524 |
+
|
525 |
+
def on_main_process(self, function: Callable[..., Any] = None):
|
526 |
+
"""
|
527 |
+
Decorator that only runs the decorated function on the main process.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
function (`Callable`): The function to decorate.
|
531 |
+
|
532 |
+
Example:
|
533 |
+
|
534 |
+
```python
|
535 |
+
>>> from accelerate.state import PartialState
|
536 |
+
|
537 |
+
>>> state = PartialState()
|
538 |
+
|
539 |
+
|
540 |
+
>>> @state.on_main_process
|
541 |
+
... def print_something():
|
542 |
+
... print("This will be printed by process 0 only.")
|
543 |
+
|
544 |
+
|
545 |
+
>>> print_something()
|
546 |
+
"This will be printed by process 0 only"
|
547 |
+
```
|
548 |
+
"""
|
549 |
+
if not self.initialized:
|
550 |
+
raise ValueError("The `PartialState` or `Accelerator` must be initialized before calling this function.")
|
551 |
+
if self.is_main_process or not self.use_distributed:
|
552 |
+
return function
|
553 |
+
return do_nothing
|
554 |
+
|
555 |
+
def on_local_main_process(self, function: Callable[..., Any] = None):
|
556 |
+
"""
|
557 |
+
Decorator that only runs the decorated function on the local main process.
|
558 |
+
|
559 |
+
Args:
|
560 |
+
function (`Callable`): The function to decorate.
|
561 |
+
|
562 |
+
Example:
|
563 |
+
```python
|
564 |
+
# Assume we have 2 servers with 4 processes each.
|
565 |
+
from accelerate.state import PartialState
|
566 |
+
|
567 |
+
state = PartialState()
|
568 |
+
|
569 |
+
|
570 |
+
@state.on_local_main_process
|
571 |
+
def print_something():
|
572 |
+
print("This will be printed by process 0 only on each server.")
|
573 |
+
|
574 |
+
|
575 |
+
print_something()
|
576 |
+
# On server 1:
|
577 |
+
"This will be printed by process 0 only"
|
578 |
+
# On server 2:
|
579 |
+
"This will be printed by process 0 only"
|
580 |
+
```
|
581 |
+
"""
|
582 |
+
if self.is_local_main_process or not self.use_distributed:
|
583 |
+
return function
|
584 |
+
return do_nothing
|
585 |
+
|
586 |
+
def on_last_process(self, function: Callable[..., Any]):
|
587 |
+
"""
|
588 |
+
Decorator that only runs the decorated function on the last process.
|
589 |
+
|
590 |
+
Args:
|
591 |
+
function (`Callable`): The function to decorate.
|
592 |
+
|
593 |
+
Example:
|
594 |
+
```python
|
595 |
+
# Assume we have 4 processes.
|
596 |
+
from accelerate.state import PartialState
|
597 |
+
|
598 |
+
state = PartialState()
|
599 |
+
|
600 |
+
|
601 |
+
@state.on_last_process
|
602 |
+
def print_something():
|
603 |
+
print(f"Printed on process {state.process_index}")
|
604 |
+
|
605 |
+
|
606 |
+
print_something()
|
607 |
+
"Printed on process 3"
|
608 |
+
```
|
609 |
+
"""
|
610 |
+
if self.is_last_process or not self.use_distributed:
|
611 |
+
return function
|
612 |
+
return do_nothing
|
613 |
+
|
614 |
+
def on_process(self, function: Callable[..., Any] = None, process_index: int = None):
|
615 |
+
"""
|
616 |
+
Decorator that only runs the decorated function on the process with the given index.
|
617 |
+
|
618 |
+
Args:
|
619 |
+
function (`Callable`, `optional`):
|
620 |
+
The function to decorate.
|
621 |
+
process_index (`int`, `optional`):
|
622 |
+
The index of the process on which to run the function.
|
623 |
+
|
624 |
+
Example:
|
625 |
+
```python
|
626 |
+
# Assume we have 4 processes.
|
627 |
+
from accelerate.state import PartialState
|
628 |
+
|
629 |
+
state = PartialState()
|
630 |
+
|
631 |
+
|
632 |
+
@state.on_process(process_index=2)
|
633 |
+
def print_something():
|
634 |
+
print(f"Printed on process {state.process_index}")
|
635 |
+
|
636 |
+
|
637 |
+
print_something()
|
638 |
+
"Printed on process 2"
|
639 |
+
```
|
640 |
+
"""
|
641 |
+
if function is None:
|
642 |
+
return partial(self.on_process, process_index=process_index)
|
643 |
+
if (self.process_index == process_index) or (not self.use_distributed):
|
644 |
+
return function
|
645 |
+
return do_nothing
|
646 |
+
|
647 |
+
def on_local_process(self, function: Callable[..., Any] = None, local_process_index: int = None):
|
648 |
+
"""
|
649 |
+
Decorator that only runs the decorated function on the process with the given index on the current node.
|
650 |
+
|
651 |
+
Args:
|
652 |
+
function (`Callable`, *optional*):
|
653 |
+
The function to decorate.
|
654 |
+
local_process_index (`int`, *optional*):
|
655 |
+
The index of the local process on which to run the function.
|
656 |
+
|
657 |
+
Example:
|
658 |
+
```python
|
659 |
+
# Assume we have 2 servers with 4 processes each.
|
660 |
+
from accelerate import Accelerator
|
661 |
+
|
662 |
+
accelerator = Accelerator()
|
663 |
+
|
664 |
+
|
665 |
+
@accelerator.on_local_process(local_process_index=2)
|
666 |
+
def print_something():
|
667 |
+
print(f"Printed on process {accelerator.local_process_index}")
|
668 |
+
|
669 |
+
|
670 |
+
print_something()
|
671 |
+
# On server 1:
|
672 |
+
"Printed on process 2"
|
673 |
+
# On server 2:
|
674 |
+
"Printed on process 2"
|
675 |
+
```
|
676 |
+
"""
|
677 |
+
if function is None:
|
678 |
+
return partial(self.on_local_process, local_process_index=local_process_index)
|
679 |
+
if (self.local_process_index == local_process_index) or (not self.use_distributed):
|
680 |
+
return function
|
681 |
+
return do_nothing
|
682 |
+
|
683 |
+
def print(self, *args, **kwargs):
|
684 |
+
if self.is_local_main_process:
|
685 |
+
print(*args, **kwargs)
|
686 |
+
|
687 |
+
@property
|
688 |
+
def default_device(self) -> torch.device:
|
689 |
+
"""
|
690 |
+
Returns the default device which is:
|
691 |
+
- MPS if `torch.backends.mps.is_available()` and `torch.backends.mps.is_built()` both return True.
|
692 |
+
- CUDA if `torch.cuda.is_available()`
|
693 |
+
- MLU if `is_mlu_available()`
|
694 |
+
- NPU if `is_npu_available()`
|
695 |
+
- CPU otherwise
|
696 |
+
"""
|
697 |
+
if is_mps_available():
|
698 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
699 |
+
return torch.device("mps")
|
700 |
+
elif is_mlu_available():
|
701 |
+
return torch.device("mlu")
|
702 |
+
elif torch.cuda.is_available():
|
703 |
+
return torch.device("cuda")
|
704 |
+
elif is_xpu_available():
|
705 |
+
return torch.device("xpu:0")
|
706 |
+
elif is_npu_available():
|
707 |
+
return torch.device("npu")
|
708 |
+
else:
|
709 |
+
return torch.device("cpu")
|
710 |
+
|
711 |
+
def _prepare_backend(
|
712 |
+
self, cpu: bool = False, sagemaker_dp=False, backend: str = None
|
713 |
+
) -> tuple[str, DistributedType]:
|
714 |
+
"Prepares any imports needed before initializing the distributed backend and sets `self.backend` properly"
|
715 |
+
distributed_type = None
|
716 |
+
if sagemaker_dp:
|
717 |
+
import smdistributed.dataparallel.torch.torch_smddp # noqa
|
718 |
+
|
719 |
+
backend = "smddp"
|
720 |
+
distributed_type = DistributedType.MULTI_GPU
|
721 |
+
elif is_torch_xla_available():
|
722 |
+
backend = "xla"
|
723 |
+
distributed_type = DistributedType.XLA
|
724 |
+
elif int(os.environ.get("LOCAL_RANK", -1)) != -1 and not cpu:
|
725 |
+
if is_mlu_available():
|
726 |
+
backend = "cncl"
|
727 |
+
distributed_type = DistributedType.MULTI_MLU
|
728 |
+
elif torch.cuda.is_available():
|
729 |
+
if backend is None:
|
730 |
+
backend = "nccl"
|
731 |
+
distributed_type = DistributedType.MULTI_GPU
|
732 |
+
elif is_npu_available():
|
733 |
+
backend = "hccl"
|
734 |
+
distributed_type = DistributedType.MULTI_NPU
|
735 |
+
|
736 |
+
if distributed_type is None and (
|
737 |
+
int(os.environ.get("LOCAL_RANK", -1)) != -1
|
738 |
+
or get_int_from_env(["PMI_SIZE", "OMPI_COMM_WORLD_SIZE", "MV2_COMM_WORLD_SIZE", "WORLD_SIZE"], 1) > 1
|
739 |
+
):
|
740 |
+
if not cpu and is_xpu_available():
|
741 |
+
distributed_type = DistributedType.MULTI_XPU
|
742 |
+
else:
|
743 |
+
distributed_type = DistributedType.MULTI_CPU
|
744 |
+
|
745 |
+
if (
|
746 |
+
backend in (None, "ccl")
|
747 |
+
and is_ccl_available()
|
748 |
+
and (get_int_from_env(["CCL_WORKER_COUNT"], 0) > 0 or distributed_type == DistributedType.MULTI_XPU)
|
749 |
+
):
|
750 |
+
if get_ccl_version() >= "1.12":
|
751 |
+
import oneccl_bindings_for_pytorch # noqa: F401
|
752 |
+
else:
|
753 |
+
import torch_ccl # noqa: F401
|
754 |
+
|
755 |
+
backend = "ccl"
|
756 |
+
elif backend in (None, "mpi") and torch.distributed.is_mpi_available():
|
757 |
+
backend = "mpi"
|
758 |
+
else:
|
759 |
+
backend = "gloo"
|
760 |
+
if distributed_type is None:
|
761 |
+
distributed_type = DistributedType.NO
|
762 |
+
|
763 |
+
return backend, distributed_type
|
764 |
+
|
765 |
+
def set_device(self):
|
766 |
+
"""
|
767 |
+
Sets the device in `self.device` to the current distributed environment.
|
768 |
+
"""
|
769 |
+
if self.device is not None:
|
770 |
+
return
|
771 |
+
if self.distributed_type == DistributedType.NO:
|
772 |
+
self.device = torch.device("cpu") if self._cpu else self.default_device
|
773 |
+
return
|
774 |
+
device = str(self.distributed_type).split(".")[-1].replace("MULTI_", "").lower()
|
775 |
+
if device not in ("cpu", "gpu", "mlu", "npu", "xpu", "xla"):
|
776 |
+
raise ValueError(
|
777 |
+
f"Can't set device for {self.distributed_type} ({device}), verify we should be calling `_set_device()` for it!"
|
778 |
+
)
|
779 |
+
if device == "xla":
|
780 |
+
self.device = xm.xla_device()
|
781 |
+
else:
|
782 |
+
if device == "gpu":
|
783 |
+
device = "cuda"
|
784 |
+
self.device = torch.device(device, self.local_process_index)
|
785 |
+
if self.device is not None:
|
786 |
+
if device == "xpu":
|
787 |
+
torch.xpu.set_device(self.device)
|
788 |
+
elif device == "mlu":
|
789 |
+
torch.mlu.set_device(self.device)
|
790 |
+
elif device == "npu":
|
791 |
+
torch.npu.set_device(self.device)
|
792 |
+
elif device == "cuda":
|
793 |
+
torch.cuda.set_device(self.device)
|
794 |
+
|
795 |
+
def __getattr__(self, name: str):
|
796 |
+
# By this point we know that no attributes of `self` contain `name`,
|
797 |
+
# so we just modify the error message
|
798 |
+
if name in self._known_attrs:
|
799 |
+
raise AttributeError(
|
800 |
+
f"`PartialState` object has no attribute `{name}`. "
|
801 |
+
"This happens if `PartialState._reset_state()` was called and "
|
802 |
+
"an `Accelerator` or `PartialState` was not reinitialized."
|
803 |
+
)
|
804 |
+
# Raise a typical AttributeError
|
805 |
+
raise AttributeError(f"'PartialState' object has no attribute '{name}'")
|
806 |
+
|
807 |
+
|
808 |
+
class AcceleratorState:
|
809 |
+
"""
|
810 |
+
Singleton class that has information about the current training environment.
|
811 |
+
|
812 |
+
**Available attributes:**
|
813 |
+
|
814 |
+
- **device** (`torch.device`) -- The device to use.
|
815 |
+
- **distributed_type** ([`~accelerate.state.DistributedType`]) -- The type of distributed environment currently
|
816 |
+
in use.
|
817 |
+
- **initialized** (`bool`) -- Whether or not the `AcceleratorState` has been initialized from `Accelerator`.
|
818 |
+
- **local_process_index** (`int`) -- The index of the current process on the current server.
|
819 |
+
- **mixed_precision** (`str`) -- Whether or not the current script will use mixed precision, and if so the type
|
820 |
+
of mixed precision being performed. (Choose from 'no','fp16','bf16 or 'fp8').
|
821 |
+
- **num_processes** (`int`) -- The number of processes currently launched in parallel.
|
822 |
+
- **process_index** (`int`) -- The index of the current process.
|
823 |
+
- **is_last_process** (`bool`) -- Whether or not the current process is the last one.
|
824 |
+
- **is_main_process** (`bool`) -- Whether or not the current process is the main one.
|
825 |
+
- **is_local_main_process** (`bool`) -- Whether or not the current process is the main one on the local node.
|
826 |
+
- **debug** (`bool`) -- Whether or not the current script is being run in debug mode.
|
827 |
+
"""
|
828 |
+
|
829 |
+
_shared_state = SharedDict()
|
830 |
+
_known_attrs = PartialState._known_attrs + [
|
831 |
+
"deepspeed_plugin",
|
832 |
+
"use_ipex",
|
833 |
+
"fsdp_plugin",
|
834 |
+
"megatron_lm_plugin",
|
835 |
+
"dynamo_plugin",
|
836 |
+
]
|
837 |
+
|
838 |
+
def __init__(
|
839 |
+
self,
|
840 |
+
mixed_precision: str = None,
|
841 |
+
cpu: bool = False,
|
842 |
+
dynamo_plugin=None,
|
843 |
+
deepspeed_plugin=None,
|
844 |
+
fsdp_plugin=None,
|
845 |
+
megatron_lm_plugin=None,
|
846 |
+
_from_accelerator: bool = False,
|
847 |
+
**kwargs,
|
848 |
+
):
|
849 |
+
self.__dict__ = self._shared_state
|
850 |
+
if parse_flag_from_env("ACCELERATE_USE_CPU"):
|
851 |
+
cpu = True
|
852 |
+
if PartialState._shared_state == {}:
|
853 |
+
PartialState(cpu, **kwargs)
|
854 |
+
self.__dict__.update(PartialState._shared_state)
|
855 |
+
self._check_initialized(mixed_precision, cpu)
|
856 |
+
if not self.initialized:
|
857 |
+
self.deepspeed_plugin = None
|
858 |
+
self.use_ipex = None
|
859 |
+
mixed_precision = (
|
860 |
+
parse_choice_from_env("ACCELERATE_MIXED_PRECISION", "no")
|
861 |
+
if mixed_precision is None
|
862 |
+
else mixed_precision.lower()
|
863 |
+
)
|
864 |
+
if mixed_precision == "fp8":
|
865 |
+
if not is_fp8_available():
|
866 |
+
raise ValueError(
|
867 |
+
"Using `fp8` precision requires `transformer_engine` or `MS-AMP` to be installed."
|
868 |
+
)
|
869 |
+
elif not check_fp8_capability():
|
870 |
+
logger.warning(
|
871 |
+
f"The current device has compute capability of {torch.cuda.get_device_capability()} which is "
|
872 |
+
"insufficient for FP8 mixed precision training (requires a GPU Hopper/Ada Lovelace "
|
873 |
+
"or higher, compute capability of 8.9 or higher). Will use FP16 instead."
|
874 |
+
)
|
875 |
+
mixed_precision = "fp16"
|
876 |
+
|
877 |
+
self.dynamo_plugin = dynamo_plugin
|
878 |
+
if not _from_accelerator:
|
879 |
+
raise ValueError(
|
880 |
+
"Please make sure to properly initialize your accelerator via `accelerator = Accelerator()` "
|
881 |
+
"before using any functionality from the `accelerate` library."
|
882 |
+
)
|
883 |
+
# deepspeed handles mixed_precision using deepspeed_config
|
884 |
+
self._mixed_precision = "no" if self.distributed_type == DistributedType.DEEPSPEED else mixed_precision
|
885 |
+
if self.distributed_type == DistributedType.XLA and is_torch_xla_available(check_is_tpu=True):
|
886 |
+
if mixed_precision == "bf16":
|
887 |
+
if os.environ.get("ACCELERATE_DOWNCAST_BF16"):
|
888 |
+
os.environ["XLA_USE_BF16"] = str(0)
|
889 |
+
os.environ["XLA_DOWNCAST_BF16"] = str(1)
|
890 |
+
self.downcast_bfloat = True
|
891 |
+
else:
|
892 |
+
os.environ["XLA_USE_BF16"] = str(1)
|
893 |
+
os.environ["XLA_DOWNCAST_BF16"] = str(0)
|
894 |
+
self.downcast_bfloat = False
|
895 |
+
elif os.environ.get("ACCELERATE_USE_DEEPSPEED", "false") == "true" and not cpu:
|
896 |
+
self.deepspeed_plugin = deepspeed_plugin
|
897 |
+
elif self.distributed_type in [
|
898 |
+
DistributedType.MULTI_GPU,
|
899 |
+
DistributedType.MULTI_MLU,
|
900 |
+
DistributedType.MULTI_NPU,
|
901 |
+
DistributedType.MULTI_XPU,
|
902 |
+
]:
|
903 |
+
if os.environ.get("ACCELERATE_USE_FSDP", "false") == "true":
|
904 |
+
self.distributed_type = DistributedType.FSDP
|
905 |
+
if self._mixed_precision != "no":
|
906 |
+
fsdp_plugin.set_mixed_precision(self._mixed_precision)
|
907 |
+
self.fsdp_plugin = fsdp_plugin
|
908 |
+
if os.environ.get("ACCELERATE_USE_MEGATRON_LM", "false") == "true" and self.distributed_type not in [
|
909 |
+
DistributedType.MULTI_NPU,
|
910 |
+
DistributedType.MULTI_XPU,
|
911 |
+
]:
|
912 |
+
self.distributed_type = DistributedType.MEGATRON_LM
|
913 |
+
megatron_lm_plugin.set_mixed_precision(self._mixed_precision)
|
914 |
+
self.megatron_lm_plugin = megatron_lm_plugin
|
915 |
+
elif self.distributed_type in [DistributedType.MULTI_CPU, DistributedType.MULTI_XPU, DistributedType.NO]:
|
916 |
+
if is_ipex_available():
|
917 |
+
# check if user disables it explicitly
|
918 |
+
self.use_ipex = parse_flag_from_env("ACCELERATE_USE_IPEX", default=True)
|
919 |
+
else:
|
920 |
+
self.use_ipex = False
|
921 |
+
if (
|
922 |
+
self.dynamo_plugin.backend != DynamoBackend.NO
|
923 |
+
and self._mixed_precision == "no"
|
924 |
+
and self.device.type == "cuda"
|
925 |
+
):
|
926 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
927 |
+
PartialState._shared_state["distributed_type"] = self.distributed_type
|
928 |
+
|
929 |
+
@property
|
930 |
+
def initialized(self) -> bool:
|
931 |
+
return self._shared_state != PartialState._shared_state
|
932 |
+
|
933 |
+
def __repr__(self):
|
934 |
+
repr = PartialState().__repr__() + f"\nMixed precision type: {self.mixed_precision}\n"
|
935 |
+
if self.distributed_type == DistributedType.DEEPSPEED:
|
936 |
+
repr += f"ds_config: {self.deepspeed_plugin.deepspeed_config}\n"
|
937 |
+
return repr
|
938 |
+
|
939 |
+
def _check_initialized(self, mixed_precision=None, cpu=None):
|
940 |
+
"Checks if a modification is trying to be made and the `AcceleratorState` has already been initialized"
|
941 |
+
if self.initialized:
|
942 |
+
err = "AcceleratorState has already been initialized and cannot be changed, restart your runtime completely and pass `{flag}` to `Accelerator()`."
|
943 |
+
if cpu and self.device.type != "cpu":
|
944 |
+
raise ValueError(err.format(flag="cpu=True"))
|
945 |
+
if (
|
946 |
+
mixed_precision is not None
|
947 |
+
and mixed_precision != self._mixed_precision
|
948 |
+
and self.distributed_type != DistributedType.DEEPSPEED
|
949 |
+
):
|
950 |
+
raise ValueError(err.format(flag=f"mixed_precision='{mixed_precision}'"))
|
951 |
+
|
952 |
+
# For backward compatibility
|
953 |
+
@property
|
954 |
+
def use_fp16(self):
|
955 |
+
warnings.warn(
|
956 |
+
"The `use_fp16` property is deprecated and will be removed in version 1.0 of Accelerate use "
|
957 |
+
"`AcceleratorState.mixed_precision == 'fp16'` instead.",
|
958 |
+
FutureWarning,
|
959 |
+
)
|
960 |
+
return self._mixed_precision != "no"
|
961 |
+
|
962 |
+
@property
|
963 |
+
def mixed_precision(self):
|
964 |
+
if self.distributed_type == DistributedType.DEEPSPEED:
|
965 |
+
config = self.deepspeed_plugin.deepspeed_config
|
966 |
+
if config.get("fp16", {}).get("enabled", False):
|
967 |
+
mixed_precision = "fp16"
|
968 |
+
elif config.get("bf16", {}).get("enabled", False):
|
969 |
+
mixed_precision = "bf16"
|
970 |
+
else:
|
971 |
+
mixed_precision = "no"
|
972 |
+
else:
|
973 |
+
mixed_precision = self._mixed_precision
|
974 |
+
return mixed_precision
|
975 |
+
|
976 |
+
@staticmethod
|
977 |
+
def _reset_state(reset_partial_state: bool = False):
|
978 |
+
"Resets `_shared_state`, is used internally and should not be called"
|
979 |
+
AcceleratorState._shared_state.clear()
|
980 |
+
if reset_partial_state:
|
981 |
+
PartialState._reset_state()
|
982 |
+
|
983 |
+
@property
|
984 |
+
def use_distributed(self):
|
985 |
+
"""
|
986 |
+
Whether the Accelerator is configured for distributed training
|
987 |
+
"""
|
988 |
+
return PartialState().use_distributed
|
989 |
+
|
990 |
+
@property
|
991 |
+
def is_last_process(self) -> bool:
|
992 |
+
"Returns whether the current process is the last one"
|
993 |
+
return PartialState().is_last_process
|
994 |
+
|
995 |
+
@property
|
996 |
+
def is_main_process(self) -> bool:
|
997 |
+
"Returns whether the current process is the main process"
|
998 |
+
return PartialState().is_main_process
|
999 |
+
|
1000 |
+
@property
|
1001 |
+
def is_local_main_process(self) -> bool:
|
1002 |
+
"Returns whether the current process is the main process on the local node"
|
1003 |
+
return PartialState().is_local_main_process
|
1004 |
+
|
1005 |
+
def wait_for_everyone(self):
|
1006 |
+
PartialState().wait_for_everyone()
|
1007 |
+
|
1008 |
+
@contextmanager
|
1009 |
+
def split_between_processes(self, inputs: list | tuple | dict | torch.Tensor, apply_padding: bool = False):
|
1010 |
+
"""
|
1011 |
+
Splits `input` between `self.num_processes` quickly and can be then used on that process. Useful when doing
|
1012 |
+
distributed inference, such as with different prompts.
|
1013 |
+
|
1014 |
+
Note that when using a `dict`, all keys need to have the same number of elements.
|
1015 |
+
|
1016 |
+
Args:
|
1017 |
+
inputs (`list`, `tuple`, `torch.Tensor`, or `dict` of `list`/`tuple`/`torch.Tensor`):
|
1018 |
+
The input to split between processes.
|
1019 |
+
apply_padding (`bool`, `optional`, defaults to `False`):
|
1020 |
+
Whether to apply padding by repeating the last element of the input so that all processes have the same
|
1021 |
+
number of elements. Useful when trying to perform actions such as `gather()` on the outputs or passing
|
1022 |
+
in less inputs than there are processes. If so, just remember to drop the padded elements afterwards.
|
1023 |
+
|
1024 |
+
|
1025 |
+
Example:
|
1026 |
+
|
1027 |
+
```python
|
1028 |
+
# Assume there are two processes
|
1029 |
+
from accelerate.state import AcceleratorState
|
1030 |
+
|
1031 |
+
state = AcceleratorState()
|
1032 |
+
with state.split_between_processes(["A", "B", "C"]) as inputs:
|
1033 |
+
print(inputs)
|
1034 |
+
# Process 0
|
1035 |
+
["A", "B"]
|
1036 |
+
# Process 1
|
1037 |
+
["C"]
|
1038 |
+
|
1039 |
+
with state.split_between_processes(["A", "B", "C"], apply_padding=True) as inputs:
|
1040 |
+
print(inputs)
|
1041 |
+
# Process 0
|
1042 |
+
["A", "B"]
|
1043 |
+
# Process 1
|
1044 |
+
["C", "C"]
|
1045 |
+
```
|
1046 |
+
"""
|
1047 |
+
with PartialState().split_between_processes(inputs, apply_padding=apply_padding) as inputs:
|
1048 |
+
yield inputs
|
1049 |
+
|
1050 |
+
@contextmanager
|
1051 |
+
def main_process_first(self):
|
1052 |
+
"""
|
1053 |
+
Lets the main process go first inside a with block.
|
1054 |
+
|
1055 |
+
The other processes will enter the with block after the main process exits.
|
1056 |
+
"""
|
1057 |
+
with PartialState().main_process_first():
|
1058 |
+
yield
|
1059 |
+
|
1060 |
+
@contextmanager
|
1061 |
+
def local_main_process_first(self):
|
1062 |
+
"""
|
1063 |
+
Lets the local main process go inside a with block.
|
1064 |
+
|
1065 |
+
The other processes will enter the with block after the main process exits.
|
1066 |
+
"""
|
1067 |
+
with PartialState().local_main_process_first():
|
1068 |
+
yield
|
1069 |
+
|
1070 |
+
def print(self, *args, **kwargs):
|
1071 |
+
PartialState().print(*args, **kwargs)
|
1072 |
+
|
1073 |
+
def __getattr__(self, name: str):
|
1074 |
+
# By this point we know that no attributes of `self` contain `name`,
|
1075 |
+
# so we just modify the error message
|
1076 |
+
if name in self._known_attrs:
|
1077 |
+
raise AttributeError(
|
1078 |
+
f"`AcceleratorState` object has no attribute `{name}`. "
|
1079 |
+
"This happens if `AcceleratorState._reset_state()` was called and "
|
1080 |
+
"an `Accelerator` or `PartialState` was not reinitialized."
|
1081 |
+
)
|
1082 |
+
# Raise a typical AttributeError
|
1083 |
+
raise AttributeError(f"'AcceleratorState' object has no attribute '{name}'")
|
1084 |
+
|
1085 |
+
|
1086 |
+
class GradientState:
|
1087 |
+
"""
|
1088 |
+
Singleton class that has information related to gradient synchronization for gradient accumulation
|
1089 |
+
|
1090 |
+
**Available attributes:**
|
1091 |
+
|
1092 |
+
- **end_of_dataloader** (`bool`) -- Whether we have reached the end the current dataloader
|
1093 |
+
- **remainder** (`int`) -- The number of extra samples that were added from padding the dataloader
|
1094 |
+
- **sync_gradients** (`bool`) -- Whether the gradients should be synced across all devices
|
1095 |
+
- **active_dataloader** (`Optional[DataLoader]`) -- The dataloader that is currently being iterated over
|
1096 |
+
- **dataloader_references** (`List[Optional[DataLoader]]`) -- A list of references to the dataloaders that are
|
1097 |
+
being iterated over
|
1098 |
+
- **num_steps** (`int`) -- The number of steps to accumulate over
|
1099 |
+
- **adjust_scheduler** (`bool`) -- Whether the scheduler should be adjusted to account for the gradient
|
1100 |
+
accumulation
|
1101 |
+
- **sync_with_dataloader** (`bool`) -- Whether the gradients should be synced at the end of the dataloader
|
1102 |
+
iteration and the number of total steps reset
|
1103 |
+
- **is_xla_gradients_synced** (`bool`) -- Whether the XLA gradients have been synchronized. It is initialized
|
1104 |
+
as false. Once gradients have been reduced before the optimizer step, this flag is set to true. Subsequently,
|
1105 |
+
after each step, the flag is reset to false. FSDP will always synchronize the gradients, hence
|
1106 |
+
is_xla_gradients_synced is always true.
|
1107 |
+
"""
|
1108 |
+
|
1109 |
+
_shared_state = SharedDict()
|
1110 |
+
|
1111 |
+
def __init__(self, gradient_accumulation_plugin: Optional[GradientAccumulationPlugin] = None):
|
1112 |
+
self.__dict__ = self._shared_state
|
1113 |
+
if not self.initialized:
|
1114 |
+
self.sync_gradients = True
|
1115 |
+
self.active_dataloader = None
|
1116 |
+
self.dataloader_references = [None]
|
1117 |
+
self.plugin_kwargs = (
|
1118 |
+
gradient_accumulation_plugin.to_kwargs() if gradient_accumulation_plugin is not None else {}
|
1119 |
+
)
|
1120 |
+
self._is_xla_gradients_synced = False
|
1121 |
+
|
1122 |
+
# Plugin args are different and can be updated
|
1123 |
+
if gradient_accumulation_plugin is not None and self.plugin_kwargs != gradient_accumulation_plugin.to_kwargs():
|
1124 |
+
self.plugin_kwargs = gradient_accumulation_plugin.to_kwargs()
|
1125 |
+
|
1126 |
+
@property
|
1127 |
+
def num_steps(self) -> int:
|
1128 |
+
"Returns the number of steps to accumulate over"
|
1129 |
+
return self.plugin_kwargs.get("num_steps", 1)
|
1130 |
+
|
1131 |
+
@property
|
1132 |
+
def adjust_scheduler(self) -> bool:
|
1133 |
+
"Returns whether the scheduler should be adjusted"
|
1134 |
+
return self.plugin_kwargs.get("adjust_scheduler", False)
|
1135 |
+
|
1136 |
+
@property
|
1137 |
+
def sync_with_dataloader(self) -> bool:
|
1138 |
+
"Returns whether the gradients should be synced at the end of the dataloader iteration and the number of total steps reset"
|
1139 |
+
return self.plugin_kwargs.get("sync_with_dataloader", True)
|
1140 |
+
|
1141 |
+
@property
|
1142 |
+
def initialized(self) -> bool:
|
1143 |
+
"Returns whether the `GradientState` has been initialized"
|
1144 |
+
return GradientState._shared_state != {}
|
1145 |
+
|
1146 |
+
@property
|
1147 |
+
def end_of_dataloader(self) -> bool:
|
1148 |
+
"Returns whether we have reached the end of the current dataloader"
|
1149 |
+
if not self.in_dataloader:
|
1150 |
+
return False
|
1151 |
+
return self.active_dataloader.end_of_dataloader
|
1152 |
+
|
1153 |
+
@property
|
1154 |
+
def remainder(self) -> int:
|
1155 |
+
"Returns the number of extra samples that were added from padding the dataloader"
|
1156 |
+
if not self.in_dataloader:
|
1157 |
+
return -1
|
1158 |
+
return self.active_dataloader.remainder
|
1159 |
+
|
1160 |
+
def __repr__(self):
|
1161 |
+
return (
|
1162 |
+
f"Sync Gradients: {self.sync_gradients}\n"
|
1163 |
+
f"At end of current dataloader: {self.end_of_dataloader}\n"
|
1164 |
+
f"Extra samples added: {self.remainder}\n"
|
1165 |
+
f"Gradient accumulation plugin: {self.plugin_kwargs}\n"
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
@property
|
1169 |
+
def is_xla_gradients_synced(self):
|
1170 |
+
"Returns the value of is_xla_gradients_synced. FSDP will always synchronize the gradients, hence is_xla_gradients_synced is always true."
|
1171 |
+
if parse_flag_from_env("ACCELERATE_USE_FSDP", default=False):
|
1172 |
+
return True
|
1173 |
+
return self._is_xla_gradients_synced
|
1174 |
+
|
1175 |
+
@is_xla_gradients_synced.setter
|
1176 |
+
def is_xla_gradients_synced(self, is_synced):
|
1177 |
+
"Set the _is_xla_gradients_synced attribute."
|
1178 |
+
self._is_xla_gradients_synced = is_synced
|
1179 |
+
|
1180 |
+
def _set_sync_gradients(self, sync_gradients):
|
1181 |
+
"Private function that sets whether gradients should be synchronized. Users should not have to call this."
|
1182 |
+
self.sync_gradients = sync_gradients
|
1183 |
+
# Allow grad-sync to automatically work on TPUs
|
1184 |
+
if (
|
1185 |
+
self.sync_gradients
|
1186 |
+
and is_torch_xla_available(check_is_tpu=True)
|
1187 |
+
and PartialState().distributed_type == DistributedType.XLA
|
1188 |
+
):
|
1189 |
+
xm.mark_step()
|
1190 |
+
|
1191 |
+
def _add_dataloader(self, dataloader):
|
1192 |
+
"Private function that adds a dataloader to `self.dataloader_references` and sets `in_dataloader` to `True`. Users should not have to call this."
|
1193 |
+
self.active_dataloader = dataloader
|
1194 |
+
self.dataloader_references.append(self.active_dataloader)
|
1195 |
+
|
1196 |
+
def _remove_dataloader(self, dataloader):
|
1197 |
+
"Private function that removes a dataloader from `self.dataloader_references` and sets `in_dataloader` to `False` if there are no more dataloaders. Users should not have to call this."
|
1198 |
+
self.dataloader_references.remove(dataloader)
|
1199 |
+
self.active_dataloader = self.dataloader_references[-1]
|
1200 |
+
|
1201 |
+
@property
|
1202 |
+
def in_dataloader(self) -> bool:
|
1203 |
+
"Returns whether the current process is in a dataloader"
|
1204 |
+
return self.active_dataloader is not None
|
1205 |
+
|
1206 |
+
@staticmethod
|
1207 |
+
def _reset_state():
|
1208 |
+
"Resets `_shared_state`, is used internally and should not be called"
|
1209 |
+
GradientState._shared_state.clear()
|
venv/lib/python3.10/site-packages/accelerate/tracking.py
ADDED
@@ -0,0 +1,1023 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Expectation:
|
16 |
+
# Provide a project dir name, then each type of logger gets stored in project/{`logging_dir`}
|
17 |
+
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
import time
|
21 |
+
from functools import wraps
|
22 |
+
from typing import Any, Dict, List, Optional, Union
|
23 |
+
|
24 |
+
import yaml
|
25 |
+
|
26 |
+
from .logging import get_logger
|
27 |
+
from .state import PartialState
|
28 |
+
from .utils import (
|
29 |
+
LoggerType,
|
30 |
+
is_aim_available,
|
31 |
+
is_clearml_available,
|
32 |
+
is_comet_ml_available,
|
33 |
+
is_dvclive_available,
|
34 |
+
is_mlflow_available,
|
35 |
+
is_tensorboard_available,
|
36 |
+
is_wandb_available,
|
37 |
+
listify,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
_available_trackers = []
|
42 |
+
|
43 |
+
if is_tensorboard_available():
|
44 |
+
_available_trackers.append(LoggerType.TENSORBOARD)
|
45 |
+
|
46 |
+
if is_wandb_available():
|
47 |
+
_available_trackers.append(LoggerType.WANDB)
|
48 |
+
|
49 |
+
if is_comet_ml_available():
|
50 |
+
_available_trackers.append(LoggerType.COMETML)
|
51 |
+
|
52 |
+
if is_aim_available():
|
53 |
+
_available_trackers.append(LoggerType.AIM)
|
54 |
+
|
55 |
+
if is_mlflow_available():
|
56 |
+
_available_trackers.append(LoggerType.MLFLOW)
|
57 |
+
|
58 |
+
if is_clearml_available():
|
59 |
+
_available_trackers.append(LoggerType.CLEARML)
|
60 |
+
|
61 |
+
if is_dvclive_available():
|
62 |
+
_available_trackers.append(LoggerType.DVCLIVE)
|
63 |
+
|
64 |
+
logger = get_logger(__name__)
|
65 |
+
|
66 |
+
|
67 |
+
def on_main_process(function):
|
68 |
+
"""
|
69 |
+
Decorator to selectively run the decorated function on the main process only based on the `main_process_only`
|
70 |
+
attribute in a class.
|
71 |
+
|
72 |
+
Checks at function execution rather than initialization time, not triggering the initialization of the
|
73 |
+
`PartialState`.
|
74 |
+
"""
|
75 |
+
|
76 |
+
@wraps(function)
|
77 |
+
def execute_on_main_process(self, *args, **kwargs):
|
78 |
+
if getattr(self, "main_process_only", False):
|
79 |
+
return PartialState().on_main_process(function)(self, *args, **kwargs)
|
80 |
+
else:
|
81 |
+
return function(self, *args, **kwargs)
|
82 |
+
|
83 |
+
return execute_on_main_process
|
84 |
+
|
85 |
+
|
86 |
+
def get_available_trackers():
|
87 |
+
"Returns a list of all supported available trackers in the system"
|
88 |
+
return _available_trackers
|
89 |
+
|
90 |
+
|
91 |
+
class GeneralTracker:
|
92 |
+
"""
|
93 |
+
A base Tracker class to be used for all logging integration implementations.
|
94 |
+
|
95 |
+
Each function should take in `**kwargs` that will automatically be passed in from a base dictionary provided to
|
96 |
+
[`Accelerator`].
|
97 |
+
|
98 |
+
Should implement `name`, `requires_logging_directory`, and `tracker` properties such that:
|
99 |
+
|
100 |
+
`name` (`str`): String representation of the tracker class name, such as "TensorBoard" `requires_logging_directory`
|
101 |
+
(`bool`): Whether the logger requires a directory to store their logs. `tracker` (`object`): Should return internal
|
102 |
+
tracking mechanism used by a tracker class (such as the `run` for wandb)
|
103 |
+
|
104 |
+
Implementations can also include a `main_process_only` (`bool`) attribute to toggle if relevent logging, init, and
|
105 |
+
other functions should occur on the main process or across all processes (by default will use `True`)
|
106 |
+
"""
|
107 |
+
|
108 |
+
main_process_only = True
|
109 |
+
|
110 |
+
def __init__(self, _blank=False):
|
111 |
+
if not _blank:
|
112 |
+
err = ""
|
113 |
+
if not hasattr(self, "name"):
|
114 |
+
err += "`name`"
|
115 |
+
if not hasattr(self, "requires_logging_directory"):
|
116 |
+
if len(err) > 0:
|
117 |
+
err += ", "
|
118 |
+
err += "`requires_logging_directory`"
|
119 |
+
|
120 |
+
# as tracker is a @property that relies on post-init
|
121 |
+
if "tracker" not in dir(self):
|
122 |
+
if len(err) > 0:
|
123 |
+
err += ", "
|
124 |
+
err += "`tracker`"
|
125 |
+
if len(err) > 0:
|
126 |
+
raise NotImplementedError(
|
127 |
+
f"The implementation for this tracker class is missing the following "
|
128 |
+
f"required attributes. Please define them in the class definition: "
|
129 |
+
f"{err}"
|
130 |
+
)
|
131 |
+
|
132 |
+
def store_init_configuration(self, values: dict):
|
133 |
+
"""
|
134 |
+
Logs `values` as hyperparameters for the run. Implementations should use the experiment configuration
|
135 |
+
functionality of a tracking API.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
values (Dictionary `str` to `bool`, `str`, `float` or `int`):
|
139 |
+
Values to be stored as initial hyperparameters as key-value pairs. The values need to have type `bool`,
|
140 |
+
`str`, `float`, `int`, or `None`.
|
141 |
+
"""
|
142 |
+
pass
|
143 |
+
|
144 |
+
def log(self, values: dict, step: Optional[int], **kwargs):
|
145 |
+
"""
|
146 |
+
Logs `values` to the current run. Base `log` implementations of a tracking API should go in here, along with
|
147 |
+
special behavior for the `step parameter.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
values (Dictionary `str` to `str`, `float`, or `int`):
|
151 |
+
Values to be logged as key-value pairs. The values need to have type `str`, `float`, or `int`.
|
152 |
+
step (`int`, *optional*):
|
153 |
+
The run step. If included, the log will be affiliated with this step.
|
154 |
+
"""
|
155 |
+
pass
|
156 |
+
|
157 |
+
def finish(self):
|
158 |
+
"""
|
159 |
+
Should run any finalizing functions within the tracking API. If the API should not have one, just don't
|
160 |
+
overwrite that method.
|
161 |
+
"""
|
162 |
+
pass
|
163 |
+
|
164 |
+
|
165 |
+
class TensorBoardTracker(GeneralTracker):
|
166 |
+
"""
|
167 |
+
A `Tracker` class that supports `tensorboard`. Should be initialized at the start of your script.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
run_name (`str`):
|
171 |
+
The name of the experiment run
|
172 |
+
logging_dir (`str`, `os.PathLike`):
|
173 |
+
Location for TensorBoard logs to be stored.
|
174 |
+
**kwargs (additional keyword arguments, *optional*):
|
175 |
+
Additional key word arguments passed along to the `tensorboard.SummaryWriter.__init__` method.
|
176 |
+
"""
|
177 |
+
|
178 |
+
name = "tensorboard"
|
179 |
+
requires_logging_directory = True
|
180 |
+
|
181 |
+
@on_main_process
|
182 |
+
def __init__(self, run_name: str, logging_dir: Union[str, os.PathLike], **kwargs):
|
183 |
+
try:
|
184 |
+
from torch.utils import tensorboard
|
185 |
+
except ModuleNotFoundError:
|
186 |
+
import tensorboardX as tensorboard
|
187 |
+
super().__init__()
|
188 |
+
self.run_name = run_name
|
189 |
+
self.logging_dir = os.path.join(logging_dir, run_name)
|
190 |
+
self.writer = tensorboard.SummaryWriter(self.logging_dir, **kwargs)
|
191 |
+
logger.debug(f"Initialized TensorBoard project {self.run_name} logging to {self.logging_dir}")
|
192 |
+
logger.debug(
|
193 |
+
"Make sure to log any initial configurations with `self.store_init_configuration` before training!"
|
194 |
+
)
|
195 |
+
|
196 |
+
@property
|
197 |
+
def tracker(self):
|
198 |
+
return self.writer
|
199 |
+
|
200 |
+
@on_main_process
|
201 |
+
def store_init_configuration(self, values: dict):
|
202 |
+
"""
|
203 |
+
Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment. Stores the
|
204 |
+
hyperparameters in a yaml file for future use.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
values (Dictionary `str` to `bool`, `str`, `float` or `int`):
|
208 |
+
Values to be stored as initial hyperparameters as key-value pairs. The values need to have type `bool`,
|
209 |
+
`str`, `float`, `int`, or `None`.
|
210 |
+
"""
|
211 |
+
self.writer.add_hparams(values, metric_dict={})
|
212 |
+
self.writer.flush()
|
213 |
+
project_run_name = time.time()
|
214 |
+
dir_name = os.path.join(self.logging_dir, str(project_run_name))
|
215 |
+
os.makedirs(dir_name, exist_ok=True)
|
216 |
+
with open(os.path.join(dir_name, "hparams.yml"), "w") as outfile:
|
217 |
+
try:
|
218 |
+
yaml.dump(values, outfile)
|
219 |
+
except yaml.representer.RepresenterError:
|
220 |
+
logger.error("Serialization to store hyperparameters failed")
|
221 |
+
raise
|
222 |
+
logger.debug("Stored initial configuration hyperparameters to TensorBoard and hparams yaml file")
|
223 |
+
|
224 |
+
@on_main_process
|
225 |
+
def log(self, values: dict, step: Optional[int] = None, **kwargs):
|
226 |
+
"""
|
227 |
+
Logs `values` to the current run.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
values (Dictionary `str` to `str`, `float`, `int` or `dict` of `str` to `float`/`int`):
|
231 |
+
Values to be logged as key-value pairs. The values need to have type `str`, `float`, `int` or `dict` of
|
232 |
+
`str` to `float`/`int`.
|
233 |
+
step (`int`, *optional*):
|
234 |
+
The run step. If included, the log will be affiliated with this step.
|
235 |
+
kwargs:
|
236 |
+
Additional key word arguments passed along to either `SummaryWriter.add_scaler`,
|
237 |
+
`SummaryWriter.add_text`, or `SummaryWriter.add_scalers` method based on the contents of `values`.
|
238 |
+
"""
|
239 |
+
values = listify(values)
|
240 |
+
for k, v in values.items():
|
241 |
+
if isinstance(v, (int, float)):
|
242 |
+
self.writer.add_scalar(k, v, global_step=step, **kwargs)
|
243 |
+
elif isinstance(v, str):
|
244 |
+
self.writer.add_text(k, v, global_step=step, **kwargs)
|
245 |
+
elif isinstance(v, dict):
|
246 |
+
self.writer.add_scalars(k, v, global_step=step, **kwargs)
|
247 |
+
self.writer.flush()
|
248 |
+
logger.debug("Successfully logged to TensorBoard")
|
249 |
+
|
250 |
+
@on_main_process
|
251 |
+
def log_images(self, values: dict, step: Optional[int], **kwargs):
|
252 |
+
"""
|
253 |
+
Logs `images` to the current run.
|
254 |
+
|
255 |
+
Args:
|
256 |
+
values (Dictionary `str` to `List` of `np.ndarray` or `PIL.Image`):
|
257 |
+
Values to be logged as key-value pairs. The values need to have type `List` of `np.ndarray` or
|
258 |
+
step (`int`, *optional*):
|
259 |
+
The run step. If included, the log will be affiliated with this step.
|
260 |
+
kwargs:
|
261 |
+
Additional key word arguments passed along to the `SummaryWriter.add_image` method.
|
262 |
+
"""
|
263 |
+
for k, v in values.items():
|
264 |
+
self.writer.add_images(k, v, global_step=step, **kwargs)
|
265 |
+
logger.debug("Successfully logged images to TensorBoard")
|
266 |
+
|
267 |
+
@on_main_process
|
268 |
+
def finish(self):
|
269 |
+
"""
|
270 |
+
Closes `TensorBoard` writer
|
271 |
+
"""
|
272 |
+
self.writer.close()
|
273 |
+
logger.debug("TensorBoard writer closed")
|
274 |
+
|
275 |
+
|
276 |
+
class WandBTracker(GeneralTracker):
|
277 |
+
"""
|
278 |
+
A `Tracker` class that supports `wandb`. Should be initialized at the start of your script.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
run_name (`str`):
|
282 |
+
The name of the experiment run.
|
283 |
+
**kwargs (additional keyword arguments, *optional*):
|
284 |
+
Additional key word arguments passed along to the `wandb.init` method.
|
285 |
+
"""
|
286 |
+
|
287 |
+
name = "wandb"
|
288 |
+
requires_logging_directory = False
|
289 |
+
main_process_only = False
|
290 |
+
|
291 |
+
@on_main_process
|
292 |
+
def __init__(self, run_name: str, **kwargs):
|
293 |
+
super().__init__()
|
294 |
+
self.run_name = run_name
|
295 |
+
|
296 |
+
import wandb
|
297 |
+
|
298 |
+
self.run = wandb.init(project=self.run_name, **kwargs)
|
299 |
+
logger.debug(f"Initialized WandB project {self.run_name}")
|
300 |
+
logger.debug(
|
301 |
+
"Make sure to log any initial configurations with `self.store_init_configuration` before training!"
|
302 |
+
)
|
303 |
+
|
304 |
+
@property
|
305 |
+
def tracker(self):
|
306 |
+
return self.run
|
307 |
+
|
308 |
+
@on_main_process
|
309 |
+
def store_init_configuration(self, values: dict):
|
310 |
+
"""
|
311 |
+
Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment.
|
312 |
+
|
313 |
+
Args:
|
314 |
+
values (Dictionary `str` to `bool`, `str`, `float` or `int`):
|
315 |
+
Values to be stored as initial hyperparameters as key-value pairs. The values need to have type `bool`,
|
316 |
+
`str`, `float`, `int`, or `None`.
|
317 |
+
"""
|
318 |
+
import wandb
|
319 |
+
|
320 |
+
wandb.config.update(values, allow_val_change=True)
|
321 |
+
logger.debug("Stored initial configuration hyperparameters to WandB")
|
322 |
+
|
323 |
+
@on_main_process
|
324 |
+
def log(self, values: dict, step: Optional[int] = None, **kwargs):
|
325 |
+
"""
|
326 |
+
Logs `values` to the current run.
|
327 |
+
|
328 |
+
Args:
|
329 |
+
values (Dictionary `str` to `str`, `float`, `int` or `dict` of `str` to `float`/`int`):
|
330 |
+
Values to be logged as key-value pairs. The values need to have type `str`, `float`, `int` or `dict` of
|
331 |
+
`str` to `float`/`int`.
|
332 |
+
step (`int`, *optional*):
|
333 |
+
The run step. If included, the log will be affiliated with this step.
|
334 |
+
kwargs:
|
335 |
+
Additional key word arguments passed along to the `wandb.log` method.
|
336 |
+
"""
|
337 |
+
self.run.log(values, step=step, **kwargs)
|
338 |
+
logger.debug("Successfully logged to WandB")
|
339 |
+
|
340 |
+
@on_main_process
|
341 |
+
def log_images(self, values: dict, step: Optional[int] = None, **kwargs):
|
342 |
+
"""
|
343 |
+
Logs `images` to the current run.
|
344 |
+
|
345 |
+
Args:
|
346 |
+
values (Dictionary `str` to `List` of `np.ndarray` or `PIL.Image`):
|
347 |
+
Values to be logged as key-value pairs. The values need to have type `List` of `np.ndarray` or
|
348 |
+
step (`int`, *optional*):
|
349 |
+
The run step. If included, the log will be affiliated with this step.
|
350 |
+
kwargs:
|
351 |
+
Additional key word arguments passed along to the `wandb.log` method.
|
352 |
+
"""
|
353 |
+
import wandb
|
354 |
+
|
355 |
+
for k, v in values.items():
|
356 |
+
self.log({k: [wandb.Image(image) for image in v]}, step=step, **kwargs)
|
357 |
+
logger.debug("Successfully logged images to WandB")
|
358 |
+
|
359 |
+
@on_main_process
|
360 |
+
def log_table(
|
361 |
+
self,
|
362 |
+
table_name: str,
|
363 |
+
columns: List[str] = None,
|
364 |
+
data: List[List[Any]] = None,
|
365 |
+
dataframe: Any = None,
|
366 |
+
step: Optional[int] = None,
|
367 |
+
**kwargs,
|
368 |
+
):
|
369 |
+
"""
|
370 |
+
Log a Table containing any object type (text, image, audio, video, molecule, html, etc). Can be defined either
|
371 |
+
with `columns` and `data` or with `dataframe`.
|
372 |
+
|
373 |
+
Args:
|
374 |
+
table_name (`str`):
|
375 |
+
The name to give to the logged table on the wandb workspace
|
376 |
+
columns (list of `str`, *optional*):
|
377 |
+
The name of the columns on the table
|
378 |
+
data (List of List of Any data type, *optional*):
|
379 |
+
The data to be logged in the table
|
380 |
+
dataframe (Any data type, *optional*):
|
381 |
+
The data to be logged in the table
|
382 |
+
step (`int`, *optional*):
|
383 |
+
The run step. If included, the log will be affiliated with this step.
|
384 |
+
"""
|
385 |
+
import wandb
|
386 |
+
|
387 |
+
values = {table_name: wandb.Table(columns=columns, data=data, dataframe=dataframe)}
|
388 |
+
self.log(values, step=step, **kwargs)
|
389 |
+
|
390 |
+
@on_main_process
|
391 |
+
def finish(self):
|
392 |
+
"""
|
393 |
+
Closes `wandb` writer
|
394 |
+
"""
|
395 |
+
self.run.finish()
|
396 |
+
logger.debug("WandB run closed")
|
397 |
+
|
398 |
+
|
399 |
+
class CometMLTracker(GeneralTracker):
|
400 |
+
"""
|
401 |
+
A `Tracker` class that supports `comet_ml`. Should be initialized at the start of your script.
|
402 |
+
|
403 |
+
API keys must be stored in a Comet config file.
|
404 |
+
|
405 |
+
Args:
|
406 |
+
run_name (`str`):
|
407 |
+
The name of the experiment run.
|
408 |
+
**kwargs (additional keyword arguments, *optional*):
|
409 |
+
Additional key word arguments passed along to the `Experiment.__init__` method.
|
410 |
+
"""
|
411 |
+
|
412 |
+
name = "comet_ml"
|
413 |
+
requires_logging_directory = False
|
414 |
+
|
415 |
+
@on_main_process
|
416 |
+
def __init__(self, run_name: str, **kwargs):
|
417 |
+
super().__init__()
|
418 |
+
self.run_name = run_name
|
419 |
+
|
420 |
+
from comet_ml import Experiment
|
421 |
+
|
422 |
+
self.writer = Experiment(project_name=run_name, **kwargs)
|
423 |
+
logger.debug(f"Initialized CometML project {self.run_name}")
|
424 |
+
logger.debug(
|
425 |
+
"Make sure to log any initial configurations with `self.store_init_configuration` before training!"
|
426 |
+
)
|
427 |
+
|
428 |
+
@property
|
429 |
+
def tracker(self):
|
430 |
+
return self.writer
|
431 |
+
|
432 |
+
@on_main_process
|
433 |
+
def store_init_configuration(self, values: dict):
|
434 |
+
"""
|
435 |
+
Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment.
|
436 |
+
|
437 |
+
Args:
|
438 |
+
values (Dictionary `str` to `bool`, `str`, `float` or `int`):
|
439 |
+
Values to be stored as initial hyperparameters as key-value pairs. The values need to have type `bool`,
|
440 |
+
`str`, `float`, `int`, or `None`.
|
441 |
+
"""
|
442 |
+
self.writer.log_parameters(values)
|
443 |
+
logger.debug("Stored initial configuration hyperparameters to CometML")
|
444 |
+
|
445 |
+
@on_main_process
|
446 |
+
def log(self, values: dict, step: Optional[int] = None, **kwargs):
|
447 |
+
"""
|
448 |
+
Logs `values` to the current run.
|
449 |
+
|
450 |
+
Args:
|
451 |
+
values (Dictionary `str` to `str`, `float`, `int` or `dict` of `str` to `float`/`int`):
|
452 |
+
Values to be logged as key-value pairs. The values need to have type `str`, `float`, `int` or `dict` of
|
453 |
+
`str` to `float`/`int`.
|
454 |
+
step (`int`, *optional*):
|
455 |
+
The run step. If included, the log will be affiliated with this step.
|
456 |
+
kwargs:
|
457 |
+
Additional key word arguments passed along to either `Experiment.log_metric`, `Experiment.log_other`,
|
458 |
+
or `Experiment.log_metrics` method based on the contents of `values`.
|
459 |
+
"""
|
460 |
+
if step is not None:
|
461 |
+
self.writer.set_step(step)
|
462 |
+
for k, v in values.items():
|
463 |
+
if isinstance(v, (int, float)):
|
464 |
+
self.writer.log_metric(k, v, step=step, **kwargs)
|
465 |
+
elif isinstance(v, str):
|
466 |
+
self.writer.log_other(k, v, **kwargs)
|
467 |
+
elif isinstance(v, dict):
|
468 |
+
self.writer.log_metrics(v, step=step, **kwargs)
|
469 |
+
logger.debug("Successfully logged to CometML")
|
470 |
+
|
471 |
+
@on_main_process
|
472 |
+
def finish(self):
|
473 |
+
"""
|
474 |
+
Closes `comet-ml` writer
|
475 |
+
"""
|
476 |
+
self.writer.end()
|
477 |
+
logger.debug("CometML run closed")
|
478 |
+
|
479 |
+
|
480 |
+
class AimTracker(GeneralTracker):
|
481 |
+
"""
|
482 |
+
A `Tracker` class that supports `aim`. Should be initialized at the start of your script.
|
483 |
+
|
484 |
+
Args:
|
485 |
+
run_name (`str`):
|
486 |
+
The name of the experiment run.
|
487 |
+
**kwargs (additional keyword arguments, *optional*):
|
488 |
+
Additional key word arguments passed along to the `Run.__init__` method.
|
489 |
+
"""
|
490 |
+
|
491 |
+
name = "aim"
|
492 |
+
requires_logging_directory = True
|
493 |
+
|
494 |
+
@on_main_process
|
495 |
+
def __init__(self, run_name: str, logging_dir: Optional[Union[str, os.PathLike]] = ".", **kwargs):
|
496 |
+
self.run_name = run_name
|
497 |
+
|
498 |
+
from aim import Run
|
499 |
+
|
500 |
+
self.writer = Run(repo=logging_dir, **kwargs)
|
501 |
+
self.writer.name = self.run_name
|
502 |
+
logger.debug(f"Initialized Aim project {self.run_name}")
|
503 |
+
logger.debug(
|
504 |
+
"Make sure to log any initial configurations with `self.store_init_configuration` before training!"
|
505 |
+
)
|
506 |
+
|
507 |
+
@property
|
508 |
+
def tracker(self):
|
509 |
+
return self.writer
|
510 |
+
|
511 |
+
@on_main_process
|
512 |
+
def store_init_configuration(self, values: dict):
|
513 |
+
"""
|
514 |
+
Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment.
|
515 |
+
|
516 |
+
Args:
|
517 |
+
values (`dict`):
|
518 |
+
Values to be stored as initial hyperparameters as key-value pairs.
|
519 |
+
"""
|
520 |
+
self.writer["hparams"] = values
|
521 |
+
|
522 |
+
@on_main_process
|
523 |
+
def log(self, values: dict, step: Optional[int], **kwargs):
|
524 |
+
"""
|
525 |
+
Logs `values` to the current run.
|
526 |
+
|
527 |
+
Args:
|
528 |
+
values (`dict`):
|
529 |
+
Values to be logged as key-value pairs.
|
530 |
+
step (`int`, *optional*):
|
531 |
+
The run step. If included, the log will be affiliated with this step.
|
532 |
+
kwargs:
|
533 |
+
Additional key word arguments passed along to the `Run.track` method.
|
534 |
+
"""
|
535 |
+
# Note: replace this with the dictionary support when merged
|
536 |
+
for key, value in values.items():
|
537 |
+
self.writer.track(value, name=key, step=step, **kwargs)
|
538 |
+
|
539 |
+
@on_main_process
|
540 |
+
def log_images(self, values: dict, step: Optional[int] = None, kwargs: Optional[Dict[str, dict]] = None):
|
541 |
+
"""
|
542 |
+
Logs `images` to the current run.
|
543 |
+
|
544 |
+
Args:
|
545 |
+
values (`Dict[str, Union[np.ndarray, PIL.Image, Tuple[np.ndarray, str], Tuple[PIL.Image, str]]]`):
|
546 |
+
Values to be logged as key-value pairs. The values need to have type `np.ndarray` or PIL.Image. If a
|
547 |
+
tuple is provided, the first element should be the image and the second element should be the caption.
|
548 |
+
step (`int`, *optional*):
|
549 |
+
The run step. If included, the log will be affiliated with this step.
|
550 |
+
kwargs (`Dict[str, dict]`):
|
551 |
+
Additional key word arguments passed along to the `Run.Image` and `Run.track` method specified by the
|
552 |
+
keys `aim_image` and `track`, respectively.
|
553 |
+
"""
|
554 |
+
import aim
|
555 |
+
|
556 |
+
aim_image_kw = {}
|
557 |
+
track_kw = {}
|
558 |
+
|
559 |
+
if kwargs is not None:
|
560 |
+
aim_image_kw = kwargs.get("aim_image", {})
|
561 |
+
track_kw = kwargs.get("track", {})
|
562 |
+
|
563 |
+
for key, value in values.items():
|
564 |
+
if isinstance(value, tuple):
|
565 |
+
img, caption = value
|
566 |
+
else:
|
567 |
+
img, caption = value, ""
|
568 |
+
aim_image = aim.Image(img, caption=caption, **aim_image_kw)
|
569 |
+
self.writer.track(aim_image, name=key, step=step, **track_kw)
|
570 |
+
|
571 |
+
@on_main_process
|
572 |
+
def finish(self):
|
573 |
+
"""
|
574 |
+
Closes `aim` writer
|
575 |
+
"""
|
576 |
+
self.writer.close()
|
577 |
+
|
578 |
+
|
579 |
+
class MLflowTracker(GeneralTracker):
|
580 |
+
"""
|
581 |
+
A `Tracker` class that supports `mlflow`. Should be initialized at the start of your script.
|
582 |
+
|
583 |
+
Args:
|
584 |
+
experiment_name (`str`, *optional*):
|
585 |
+
Name of the experiment. Environment variable MLFLOW_EXPERIMENT_NAME has priority over this argument.
|
586 |
+
logging_dir (`str` or `os.PathLike`, defaults to `"."`):
|
587 |
+
Location for mlflow logs to be stored.
|
588 |
+
run_id (`str`, *optional*):
|
589 |
+
If specified, get the run with the specified UUID and log parameters and metrics under that run. The run’s
|
590 |
+
end time is unset and its status is set to running, but the run’s other attributes (source_version,
|
591 |
+
source_type, etc.) are not changed. Environment variable MLFLOW_RUN_ID has priority over this argument.
|
592 |
+
tags (`Dict[str, str]`, *optional*):
|
593 |
+
An optional `dict` of `str` keys and values, or a `str` dump from a `dict`, to set as tags on the run. If a
|
594 |
+
run is being resumed, these tags are set on the resumed run. If a new run is being created, these tags are
|
595 |
+
set on the new run. Environment variable MLFLOW_TAGS has priority over this argument.
|
596 |
+
nested_run (`bool`, *optional*, defaults to `False`):
|
597 |
+
Controls whether run is nested in parent run. True creates a nested run. Environment variable
|
598 |
+
MLFLOW_NESTED_RUN has priority over this argument.
|
599 |
+
run_name (`str`, *optional*):
|
600 |
+
Name of new run (stored as a mlflow.runName tag). Used only when `run_id` is unspecified.
|
601 |
+
description (`str`, *optional*):
|
602 |
+
An optional string that populates the description box of the run. If a run is being resumed, the
|
603 |
+
description is set on the resumed run. If a new run is being created, the description is set on the new
|
604 |
+
run.
|
605 |
+
"""
|
606 |
+
|
607 |
+
name = "mlflow"
|
608 |
+
requires_logging_directory = False
|
609 |
+
|
610 |
+
@on_main_process
|
611 |
+
def __init__(
|
612 |
+
self,
|
613 |
+
experiment_name: str = None,
|
614 |
+
logging_dir: Optional[Union[str, os.PathLike]] = None,
|
615 |
+
run_id: Optional[str] = None,
|
616 |
+
tags: Optional[Union[Dict[str, Any], str]] = None,
|
617 |
+
nested_run: Optional[bool] = False,
|
618 |
+
run_name: Optional[str] = None,
|
619 |
+
description: Optional[str] = None,
|
620 |
+
):
|
621 |
+
experiment_name = os.environ.get("MLFLOW_EXPERIMENT_NAME", experiment_name)
|
622 |
+
run_id = os.environ.get("MLFLOW_RUN_ID", run_id)
|
623 |
+
tags = os.environ.get("MLFLOW_TAGS", tags)
|
624 |
+
if isinstance(tags, str):
|
625 |
+
tags = json.loads(tags)
|
626 |
+
|
627 |
+
nested_run = os.environ.get("MLFLOW_NESTED_RUN", nested_run)
|
628 |
+
|
629 |
+
import mlflow
|
630 |
+
|
631 |
+
exps = mlflow.search_experiments(filter_string=f"name = '{experiment_name}'")
|
632 |
+
if len(exps) > 0:
|
633 |
+
if len(exps) > 1:
|
634 |
+
logger.warning("Multiple experiments with the same name found. Using first one.")
|
635 |
+
experiment_id = exps[0].experiment_id
|
636 |
+
else:
|
637 |
+
experiment_id = mlflow.create_experiment(
|
638 |
+
name=experiment_name,
|
639 |
+
artifact_location=logging_dir,
|
640 |
+
tags=tags,
|
641 |
+
)
|
642 |
+
|
643 |
+
self.active_run = mlflow.start_run(
|
644 |
+
run_id=run_id,
|
645 |
+
experiment_id=experiment_id,
|
646 |
+
run_name=run_name,
|
647 |
+
nested=nested_run,
|
648 |
+
tags=tags,
|
649 |
+
description=description,
|
650 |
+
)
|
651 |
+
|
652 |
+
logger.debug(f"Initialized mlflow experiment {experiment_name}")
|
653 |
+
logger.debug(
|
654 |
+
"Make sure to log any initial configurations with `self.store_init_configuration` before training!"
|
655 |
+
)
|
656 |
+
|
657 |
+
@property
|
658 |
+
def tracker(self):
|
659 |
+
return self.active_run
|
660 |
+
|
661 |
+
@on_main_process
|
662 |
+
def store_init_configuration(self, values: dict):
|
663 |
+
"""
|
664 |
+
Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment.
|
665 |
+
|
666 |
+
Args:
|
667 |
+
values (`dict`):
|
668 |
+
Values to be stored as initial hyperparameters as key-value pairs.
|
669 |
+
"""
|
670 |
+
import mlflow
|
671 |
+
|
672 |
+
for name, value in list(values.items()):
|
673 |
+
# internally, all values are converted to str in MLflow
|
674 |
+
if len(str(value)) > mlflow.utils.validation.MAX_PARAM_VAL_LENGTH:
|
675 |
+
logger.warning_once(
|
676 |
+
f'Accelerate is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s'
|
677 |
+
f" log_param() only accepts values no longer than {mlflow.utils.validation.MAX_PARAM_VAL_LENGTH} characters so we dropped this attribute."
|
678 |
+
)
|
679 |
+
del values[name]
|
680 |
+
|
681 |
+
values_list = list(values.items())
|
682 |
+
|
683 |
+
# MLflow cannot log more than 100 values in one go, so we have to split it
|
684 |
+
for i in range(0, len(values_list), mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH):
|
685 |
+
mlflow.log_params(dict(values_list[i : i + mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH]))
|
686 |
+
|
687 |
+
logger.debug("Stored initial configuration hyperparameters to MLflow")
|
688 |
+
|
689 |
+
@on_main_process
|
690 |
+
def log(self, values: dict, step: Optional[int]):
|
691 |
+
"""
|
692 |
+
Logs `values` to the current run.
|
693 |
+
|
694 |
+
Args:
|
695 |
+
values (`dict`):
|
696 |
+
Values to be logged as key-value pairs.
|
697 |
+
step (`int`, *optional*):
|
698 |
+
The run step. If included, the log will be affiliated with this step.
|
699 |
+
"""
|
700 |
+
metrics = {}
|
701 |
+
for k, v in values.items():
|
702 |
+
if isinstance(v, (int, float)):
|
703 |
+
metrics[k] = v
|
704 |
+
else:
|
705 |
+
logger.warning_once(
|
706 |
+
f'MLflowTracker is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. '
|
707 |
+
"MLflow's log_metric() only accepts float and int types so we dropped this attribute."
|
708 |
+
)
|
709 |
+
import mlflow
|
710 |
+
|
711 |
+
mlflow.log_metrics(metrics, step=step)
|
712 |
+
logger.debug("Successfully logged to mlflow")
|
713 |
+
|
714 |
+
@on_main_process
|
715 |
+
def finish(self):
|
716 |
+
"""
|
717 |
+
End the active MLflow run.
|
718 |
+
"""
|
719 |
+
import mlflow
|
720 |
+
|
721 |
+
mlflow.end_run()
|
722 |
+
|
723 |
+
|
724 |
+
class ClearMLTracker(GeneralTracker):
|
725 |
+
"""
|
726 |
+
A `Tracker` class that supports `clearml`. Should be initialized at the start of your script.
|
727 |
+
|
728 |
+
Args:
|
729 |
+
run_name (`str`, *optional*):
|
730 |
+
Name of the experiment. Environment variables `CLEARML_PROJECT` and `CLEARML_TASK` have priority over this
|
731 |
+
argument.
|
732 |
+
**kwargs (additional keyword arguments, *optional*):
|
733 |
+
Kwargs passed along to the `Task.__init__` method.
|
734 |
+
"""
|
735 |
+
|
736 |
+
name = "clearml"
|
737 |
+
requires_logging_directory = False
|
738 |
+
|
739 |
+
@on_main_process
|
740 |
+
def __init__(self, run_name: str = None, **kwargs):
|
741 |
+
from clearml import Task
|
742 |
+
|
743 |
+
current_task = Task.current_task()
|
744 |
+
self._initialized_externally = False
|
745 |
+
if current_task:
|
746 |
+
self._initialized_externally = True
|
747 |
+
self.task = current_task
|
748 |
+
return
|
749 |
+
|
750 |
+
kwargs.setdefault("project_name", os.environ.get("CLEARML_PROJECT", run_name))
|
751 |
+
kwargs.setdefault("task_name", os.environ.get("CLEARML_TASK", run_name))
|
752 |
+
self.task = Task.init(**kwargs)
|
753 |
+
|
754 |
+
@property
|
755 |
+
def tracker(self):
|
756 |
+
return self.task
|
757 |
+
|
758 |
+
@on_main_process
|
759 |
+
def store_init_configuration(self, values: dict):
|
760 |
+
"""
|
761 |
+
Connect configuration dictionary to the Task object. Should be run at the beginning of your experiment.
|
762 |
+
|
763 |
+
Args:
|
764 |
+
values (`dict`):
|
765 |
+
Values to be stored as initial hyperparameters as key-value pairs.
|
766 |
+
"""
|
767 |
+
return self.task.connect_configuration(values)
|
768 |
+
|
769 |
+
@on_main_process
|
770 |
+
def log(self, values: Dict[str, Union[int, float]], step: Optional[int] = None, **kwargs):
|
771 |
+
"""
|
772 |
+
Logs `values` dictionary to the current run. The dictionary keys must be strings. The dictionary values must be
|
773 |
+
ints or floats
|
774 |
+
|
775 |
+
Args:
|
776 |
+
values (`Dict[str, Union[int, float]]`):
|
777 |
+
Values to be logged as key-value pairs. If the key starts with 'eval_'/'test_'/'train_', the value will
|
778 |
+
be reported under the 'eval'/'test'/'train' series and the respective prefix will be removed.
|
779 |
+
Otherwise, the value will be reported under the 'train' series, and no prefix will be removed.
|
780 |
+
step (`int`, *optional*):
|
781 |
+
If specified, the values will be reported as scalars, with the iteration number equal to `step`.
|
782 |
+
Otherwise they will be reported as single values.
|
783 |
+
kwargs:
|
784 |
+
Additional key word arguments passed along to the `clearml.Logger.report_single_value` or
|
785 |
+
`clearml.Logger.report_scalar` methods.
|
786 |
+
"""
|
787 |
+
clearml_logger = self.task.get_logger()
|
788 |
+
for k, v in values.items():
|
789 |
+
if not isinstance(v, (int, float)):
|
790 |
+
logger.warning_once(
|
791 |
+
"Accelerator is attempting to log a value of "
|
792 |
+
f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
|
793 |
+
"This invocation of ClearML logger's report_scalar() "
|
794 |
+
"is incorrect so we dropped this attribute."
|
795 |
+
)
|
796 |
+
continue
|
797 |
+
if step is None:
|
798 |
+
clearml_logger.report_single_value(name=k, value=v, **kwargs)
|
799 |
+
continue
|
800 |
+
title, series = ClearMLTracker._get_title_series(k)
|
801 |
+
clearml_logger.report_scalar(title=title, series=series, value=v, iteration=step, **kwargs)
|
802 |
+
|
803 |
+
@on_main_process
|
804 |
+
def log_images(self, values: dict, step: Optional[int] = None, **kwargs):
|
805 |
+
"""
|
806 |
+
Logs `images` to the current run.
|
807 |
+
|
808 |
+
Args:
|
809 |
+
values (`Dict[str, List[Union[np.ndarray, PIL.Image]]`):
|
810 |
+
Values to be logged as key-value pairs. The values need to have type `List` of `np.ndarray` or
|
811 |
+
step (`int`, *optional*):
|
812 |
+
The run step. If included, the log will be affiliated with this step.
|
813 |
+
kwargs:
|
814 |
+
Additional key word arguments passed along to the `clearml.Logger.report_image` method.
|
815 |
+
"""
|
816 |
+
clearml_logger = self.task.get_logger()
|
817 |
+
for k, v in values.items():
|
818 |
+
title, series = ClearMLTracker._get_title_series(k)
|
819 |
+
clearml_logger.report_image(title=title, series=series, iteration=step, image=v, **kwargs)
|
820 |
+
|
821 |
+
@on_main_process
|
822 |
+
def log_table(
|
823 |
+
self,
|
824 |
+
table_name: str,
|
825 |
+
columns: List[str] = None,
|
826 |
+
data: List[List[Any]] = None,
|
827 |
+
dataframe: Any = None,
|
828 |
+
step: Optional[int] = None,
|
829 |
+
**kwargs,
|
830 |
+
):
|
831 |
+
"""
|
832 |
+
Log a Table to the task. Can be defined eitherwith `columns` and `data` or with `dataframe`.
|
833 |
+
|
834 |
+
Args:
|
835 |
+
table_name (`str`):
|
836 |
+
The name of the table
|
837 |
+
columns (list of `str`, *optional*):
|
838 |
+
The name of the columns on the table
|
839 |
+
data (List of List of Any data type, *optional*):
|
840 |
+
The data to be logged in the table. If `columns` is not specified, then the first entry in data will be
|
841 |
+
the name of the columns of the table
|
842 |
+
dataframe (Any data type, *optional*):
|
843 |
+
The data to be logged in the table
|
844 |
+
step (`int`, *optional*):
|
845 |
+
The run step. If included, the log will be affiliated with this step.
|
846 |
+
kwargs:
|
847 |
+
Additional key word arguments passed along to the `clearml.Logger.report_table` method.
|
848 |
+
"""
|
849 |
+
to_report = dataframe
|
850 |
+
if dataframe is None:
|
851 |
+
if data is None:
|
852 |
+
raise ValueError(
|
853 |
+
"`ClearMLTracker.log_table` requires that `data` to be supplied if `dataframe` is `None`"
|
854 |
+
)
|
855 |
+
to_report = [columns] + data if columns else data
|
856 |
+
title, series = ClearMLTracker._get_title_series(table_name)
|
857 |
+
self.task.get_logger().report_table(title=title, series=series, table_plot=to_report, iteration=step, **kwargs)
|
858 |
+
|
859 |
+
@on_main_process
|
860 |
+
def finish(self):
|
861 |
+
"""
|
862 |
+
Close the ClearML task. If the task was initialized externally (e.g. by manually calling `Task.init`), this
|
863 |
+
function is a noop
|
864 |
+
"""
|
865 |
+
if self.task and not self._initialized_externally:
|
866 |
+
self.task.close()
|
867 |
+
|
868 |
+
@staticmethod
|
869 |
+
def _get_title_series(name):
|
870 |
+
for prefix in ["eval", "test", "train"]:
|
871 |
+
if name.startswith(prefix + "_"):
|
872 |
+
return name[len(prefix) + 1 :], prefix
|
873 |
+
return name, "train"
|
874 |
+
|
875 |
+
|
876 |
+
class DVCLiveTracker(GeneralTracker):
|
877 |
+
"""
|
878 |
+
A `Tracker` class that supports `dvclive`. Should be initialized at the start of your script.
|
879 |
+
|
880 |
+
Args:
|
881 |
+
run_name (`str`, *optional*):
|
882 |
+
Ignored for dvclive. See `kwargs` instead.
|
883 |
+
kwargs:
|
884 |
+
Additional key word arguments passed along to [`dvclive.Live()`](https://dvc.org/doc/dvclive/live).
|
885 |
+
|
886 |
+
Example:
|
887 |
+
|
888 |
+
```py
|
889 |
+
from accelerate import Accelerator
|
890 |
+
|
891 |
+
accelerator = Accelerator(log_with="dvclive")
|
892 |
+
accelerator.init_trackers(project_name="my_project", init_kwargs={"dvclive": {"dir": "my_directory"}})
|
893 |
+
```
|
894 |
+
"""
|
895 |
+
|
896 |
+
name = "dvclive"
|
897 |
+
requires_logging_directory = False
|
898 |
+
|
899 |
+
@on_main_process
|
900 |
+
def __init__(self, run_name: Optional[str] = None, live: Optional[Any] = None, **kwargs):
|
901 |
+
from dvclive import Live
|
902 |
+
|
903 |
+
super().__init__()
|
904 |
+
self.live = live if live is not None else Live(**kwargs)
|
905 |
+
|
906 |
+
@property
|
907 |
+
def tracker(self):
|
908 |
+
return self.live
|
909 |
+
|
910 |
+
@on_main_process
|
911 |
+
def store_init_configuration(self, values: dict):
|
912 |
+
"""
|
913 |
+
Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment. Stores the
|
914 |
+
hyperparameters in a yaml file for future use.
|
915 |
+
|
916 |
+
Args:
|
917 |
+
values (Dictionary `str` to `bool`, `str`, `float`, `int`, or a List or Dict of those types):
|
918 |
+
Values to be stored as initial hyperparameters as key-value pairs. The values need to have type `bool`,
|
919 |
+
`str`, `float`, or `int`.
|
920 |
+
"""
|
921 |
+
self.live.log_params(values)
|
922 |
+
|
923 |
+
@on_main_process
|
924 |
+
def log(self, values: dict, step: Optional[int] = None, **kwargs):
|
925 |
+
"""
|
926 |
+
Logs `values` to the current run.
|
927 |
+
|
928 |
+
Args:
|
929 |
+
values (Dictionary `str` to `str`, `float`, or `int`):
|
930 |
+
Values to be logged as key-value pairs. The values need to have type `str`, `float`, or `int`.
|
931 |
+
step (`int`, *optional*):
|
932 |
+
The run step. If included, the log will be affiliated with this step.
|
933 |
+
kwargs:
|
934 |
+
Additional key word arguments passed along to `dvclive.Live.log_metric()`.
|
935 |
+
"""
|
936 |
+
from dvclive.plots import Metric
|
937 |
+
|
938 |
+
if step is not None:
|
939 |
+
self.live.step = step
|
940 |
+
for k, v in values.items():
|
941 |
+
if Metric.could_log(v):
|
942 |
+
self.live.log_metric(k, v, **kwargs)
|
943 |
+
else:
|
944 |
+
logger.warning_once(
|
945 |
+
"Accelerator attempted to log a value of "
|
946 |
+
f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
|
947 |
+
"This invocation of DVCLive's Live.log_metric() "
|
948 |
+
"is incorrect so we dropped this attribute."
|
949 |
+
)
|
950 |
+
self.live.next_step()
|
951 |
+
|
952 |
+
@on_main_process
|
953 |
+
def finish(self):
|
954 |
+
"""
|
955 |
+
Closes `dvclive.Live()`.
|
956 |
+
"""
|
957 |
+
self.live.end()
|
958 |
+
|
959 |
+
|
960 |
+
LOGGER_TYPE_TO_CLASS = {
|
961 |
+
"aim": AimTracker,
|
962 |
+
"comet_ml": CometMLTracker,
|
963 |
+
"mlflow": MLflowTracker,
|
964 |
+
"tensorboard": TensorBoardTracker,
|
965 |
+
"wandb": WandBTracker,
|
966 |
+
"clearml": ClearMLTracker,
|
967 |
+
"dvclive": DVCLiveTracker,
|
968 |
+
}
|
969 |
+
|
970 |
+
|
971 |
+
def filter_trackers(
|
972 |
+
log_with: List[Union[str, LoggerType, GeneralTracker]],
|
973 |
+
logging_dir: Union[str, os.PathLike] = None,
|
974 |
+
):
|
975 |
+
"""
|
976 |
+
Takes in a list of potential tracker types and checks that:
|
977 |
+
- The tracker wanted is available in that environment
|
978 |
+
- Filters out repeats of tracker types
|
979 |
+
- If `all` is in `log_with`, will return all trackers in the environment
|
980 |
+
- If a tracker requires a `logging_dir`, ensures that `logging_dir` is not `None`
|
981 |
+
|
982 |
+
Args:
|
983 |
+
log_with (list of `str`, [`~utils.LoggerType`] or [`~tracking.GeneralTracker`], *optional*):
|
984 |
+
A list of loggers to be setup for experiment tracking. Should be one or several of:
|
985 |
+
|
986 |
+
- `"all"`
|
987 |
+
- `"tensorboard"`
|
988 |
+
- `"wandb"`
|
989 |
+
- `"comet_ml"`
|
990 |
+
- `"mlflow"`
|
991 |
+
- `"dvclive"`
|
992 |
+
If `"all"` is selected, will pick up all available trackers in the environment and initialize them. Can
|
993 |
+
also accept implementations of `GeneralTracker` for custom trackers, and can be combined with `"all"`.
|
994 |
+
logging_dir (`str`, `os.PathLike`, *optional*):
|
995 |
+
A path to a directory for storing logs of locally-compatible loggers.
|
996 |
+
"""
|
997 |
+
loggers = []
|
998 |
+
if log_with is not None:
|
999 |
+
if not isinstance(log_with, (list, tuple)):
|
1000 |
+
log_with = [log_with]
|
1001 |
+
if "all" in log_with or LoggerType.ALL in log_with:
|
1002 |
+
loggers = [o for o in log_with if issubclass(type(o), GeneralTracker)] + get_available_trackers()
|
1003 |
+
else:
|
1004 |
+
for log_type in log_with:
|
1005 |
+
if log_type not in LoggerType and not issubclass(type(log_type), GeneralTracker):
|
1006 |
+
raise ValueError(f"Unsupported logging capability: {log_type}. Choose between {LoggerType.list()}")
|
1007 |
+
if issubclass(type(log_type), GeneralTracker):
|
1008 |
+
loggers.append(log_type)
|
1009 |
+
else:
|
1010 |
+
log_type = LoggerType(log_type)
|
1011 |
+
if log_type not in loggers:
|
1012 |
+
if log_type in get_available_trackers():
|
1013 |
+
tracker_init = LOGGER_TYPE_TO_CLASS[str(log_type)]
|
1014 |
+
if tracker_init.requires_logging_directory:
|
1015 |
+
if logging_dir is None:
|
1016 |
+
raise ValueError(
|
1017 |
+
f"Logging with `{log_type}` requires a `logging_dir` to be passed in."
|
1018 |
+
)
|
1019 |
+
loggers.append(log_type)
|
1020 |
+
else:
|
1021 |
+
logger.debug(f"Tried adding logger {log_type}, but package is unavailable in the system.")
|
1022 |
+
|
1023 |
+
return loggers
|
venv/lib/python3.10/site-packages/accelerate/utils/bnb.py
ADDED
@@ -0,0 +1,467 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import logging
|
17 |
+
import os
|
18 |
+
from copy import deepcopy
|
19 |
+
from typing import Dict, List, Optional, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
|
24 |
+
from accelerate.utils.imports import (
|
25 |
+
is_4bit_bnb_available,
|
26 |
+
is_8bit_bnb_available,
|
27 |
+
)
|
28 |
+
|
29 |
+
from ..big_modeling import dispatch_model, init_empty_weights
|
30 |
+
from .dataclasses import BnbQuantizationConfig
|
31 |
+
from .modeling import (
|
32 |
+
find_tied_parameters,
|
33 |
+
get_balanced_memory,
|
34 |
+
infer_auto_device_map,
|
35 |
+
load_checkpoint_in_model,
|
36 |
+
offload_weight,
|
37 |
+
set_module_tensor_to_device,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.getLogger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
def load_and_quantize_model(
|
45 |
+
model: torch.nn.Module,
|
46 |
+
bnb_quantization_config: BnbQuantizationConfig,
|
47 |
+
weights_location: Union[str, os.PathLike] = None,
|
48 |
+
device_map: Optional[Dict[str, Union[int, str, torch.device]]] = None,
|
49 |
+
no_split_module_classes: Optional[List[str]] = None,
|
50 |
+
max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
|
51 |
+
offload_folder: Optional[Union[str, os.PathLike]] = None,
|
52 |
+
offload_state_dict: bool = False,
|
53 |
+
):
|
54 |
+
"""
|
55 |
+
This function will quantize the input model with the associated config passed in `bnb_quantization_config`. If the
|
56 |
+
model is in the meta device, we will load and dispatch the weights according to the `device_map` passed. If the
|
57 |
+
model is already loaded, we will quantize the model and put the model on the GPU,
|
58 |
+
|
59 |
+
Args:
|
60 |
+
model (`torch.nn.Module`):
|
61 |
+
Input model. The model can be already loaded or on the meta device
|
62 |
+
bnb_quantization_config (`BnbQuantizationConfig`):
|
63 |
+
The bitsandbytes quantization parameters
|
64 |
+
weights_location (`str` or `os.PathLike`):
|
65 |
+
The folder weights_location to load. It can be:
|
66 |
+
- a path to a file containing a whole model state dict
|
67 |
+
- a path to a `.json` file containing the index to a sharded checkpoint
|
68 |
+
- a path to a folder containing a unique `.index.json` file and the shards of a checkpoint.
|
69 |
+
- a path to a folder containing a unique pytorch_model.bin file.
|
70 |
+
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
|
71 |
+
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
|
72 |
+
name, once a given module name is inside, every submodule of it will be sent to the same device.
|
73 |
+
no_split_module_classes (`List[str]`, *optional*):
|
74 |
+
A list of layer class names that should never be split across device (for instance any layer that has a
|
75 |
+
residual connection).
|
76 |
+
max_memory (`Dict`, *optional*):
|
77 |
+
A dictionary device identifier to maximum memory. Will default to the maximum memory available if unset.
|
78 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
79 |
+
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
|
80 |
+
offload_state_dict (`bool`, *optional*, defaults to `False`):
|
81 |
+
If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if
|
82 |
+
the weight of the CPU state dict + the biggest shard does not fit.
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
`torch.nn.Module`: The quantized model
|
86 |
+
"""
|
87 |
+
|
88 |
+
load_in_4bit = bnb_quantization_config.load_in_4bit
|
89 |
+
load_in_8bit = bnb_quantization_config.load_in_8bit
|
90 |
+
|
91 |
+
if load_in_8bit and not is_8bit_bnb_available():
|
92 |
+
raise ImportError(
|
93 |
+
"You have a version of `bitsandbytes` that is not compatible with 8bit quantization,"
|
94 |
+
" make sure you have the latest version of `bitsandbytes` installed."
|
95 |
+
)
|
96 |
+
if load_in_4bit and not is_4bit_bnb_available():
|
97 |
+
raise ValueError(
|
98 |
+
"You have a version of `bitsandbytes` that is not compatible with 4bit quantization,"
|
99 |
+
"make sure you have the latest version of `bitsandbytes` installed."
|
100 |
+
)
|
101 |
+
|
102 |
+
modules_on_cpu = []
|
103 |
+
# custom device map
|
104 |
+
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
|
105 |
+
modules_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
|
106 |
+
|
107 |
+
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
|
108 |
+
if bnb_quantization_config.skip_modules is None:
|
109 |
+
bnb_quantization_config.skip_modules = get_keys_to_not_convert(model)
|
110 |
+
|
111 |
+
# add cpu modules to skip modules only for 4-bit modules
|
112 |
+
if load_in_4bit:
|
113 |
+
bnb_quantization_config.skip_modules.extend(modules_on_cpu)
|
114 |
+
modules_to_not_convert = bnb_quantization_config.skip_modules
|
115 |
+
|
116 |
+
# We add the modules we want to keep in full precision
|
117 |
+
if bnb_quantization_config.keep_in_fp32_modules is None:
|
118 |
+
bnb_quantization_config.keep_in_fp32_modules = []
|
119 |
+
keep_in_fp32_modules = bnb_quantization_config.keep_in_fp32_modules
|
120 |
+
modules_to_not_convert.extend(keep_in_fp32_modules)
|
121 |
+
|
122 |
+
# compatibility with peft
|
123 |
+
model.is_loaded_in_4bit = load_in_4bit
|
124 |
+
model.is_loaded_in_8bit = load_in_8bit
|
125 |
+
|
126 |
+
model_device = get_parameter_device(model)
|
127 |
+
if model_device.type != "meta":
|
128 |
+
# quantization of an already loaded model
|
129 |
+
logger.warning(
|
130 |
+
"It is not recommended to quantize a loaded model. "
|
131 |
+
"The model should be instantiated under the `init_empty_weights` context manager."
|
132 |
+
)
|
133 |
+
model = replace_with_bnb_layers(model, bnb_quantization_config, modules_to_not_convert=modules_to_not_convert)
|
134 |
+
# convert param to the right dtype
|
135 |
+
dtype = bnb_quantization_config.torch_dtype
|
136 |
+
for name, param in model.state_dict().items():
|
137 |
+
if any(module_to_keep_in_fp32 in name for module_to_keep_in_fp32 in keep_in_fp32_modules):
|
138 |
+
param.to(torch.float32)
|
139 |
+
if param.dtype != torch.float32:
|
140 |
+
name = name.replace(".weight", "").replace(".bias", "")
|
141 |
+
param = getattr(model, name, None)
|
142 |
+
if param is not None:
|
143 |
+
param.to(torch.float32)
|
144 |
+
elif torch.is_floating_point(param):
|
145 |
+
param.to(dtype)
|
146 |
+
if model_device.type == "cuda":
|
147 |
+
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
|
148 |
+
model.cuda(torch.cuda.current_device())
|
149 |
+
torch.cuda.empty_cache()
|
150 |
+
elif torch.cuda.is_available():
|
151 |
+
model.to(torch.cuda.current_device())
|
152 |
+
else:
|
153 |
+
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
|
154 |
+
logger.info(
|
155 |
+
f"The model device type is {model_device.type}. However, cuda is needed for quantization."
|
156 |
+
"We move the model to cuda."
|
157 |
+
)
|
158 |
+
return model
|
159 |
+
|
160 |
+
elif weights_location is None:
|
161 |
+
raise RuntimeError(
|
162 |
+
f"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} "
|
163 |
+
)
|
164 |
+
|
165 |
+
else:
|
166 |
+
with init_empty_weights():
|
167 |
+
model = replace_with_bnb_layers(
|
168 |
+
model, bnb_quantization_config, modules_to_not_convert=modules_to_not_convert
|
169 |
+
)
|
170 |
+
|
171 |
+
device_map = get_quantized_model_device_map(
|
172 |
+
model,
|
173 |
+
bnb_quantization_config,
|
174 |
+
device_map,
|
175 |
+
max_memory=max_memory,
|
176 |
+
no_split_module_classes=no_split_module_classes,
|
177 |
+
)
|
178 |
+
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
|
179 |
+
offload_state_dict = True
|
180 |
+
|
181 |
+
offload = any(x in list(device_map.values()) for x in ["cpu", "disk"])
|
182 |
+
|
183 |
+
load_checkpoint_in_model(
|
184 |
+
model,
|
185 |
+
weights_location,
|
186 |
+
device_map,
|
187 |
+
dtype=bnb_quantization_config.torch_dtype,
|
188 |
+
offload_folder=offload_folder,
|
189 |
+
offload_state_dict=offload_state_dict,
|
190 |
+
keep_in_fp32_modules=bnb_quantization_config.keep_in_fp32_modules,
|
191 |
+
offload_8bit_bnb=load_in_8bit and offload,
|
192 |
+
)
|
193 |
+
return dispatch_model(model, device_map=device_map, offload_dir=offload_folder)
|
194 |
+
|
195 |
+
|
196 |
+
def get_quantized_model_device_map(
|
197 |
+
model, bnb_quantization_config, device_map=None, max_memory=None, no_split_module_classes=None
|
198 |
+
):
|
199 |
+
if device_map is None:
|
200 |
+
if torch.cuda.is_available():
|
201 |
+
device_map = {"": torch.cuda.current_device()}
|
202 |
+
else:
|
203 |
+
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
|
204 |
+
logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.")
|
205 |
+
|
206 |
+
if isinstance(device_map, str):
|
207 |
+
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
|
208 |
+
raise ValueError(
|
209 |
+
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
|
210 |
+
"'sequential'."
|
211 |
+
)
|
212 |
+
|
213 |
+
special_dtypes = {}
|
214 |
+
special_dtypes.update(
|
215 |
+
{
|
216 |
+
name: bnb_quantization_config.torch_dtype
|
217 |
+
for name, _ in model.named_parameters()
|
218 |
+
if any(m in name for m in bnb_quantization_config.skip_modules)
|
219 |
+
}
|
220 |
+
)
|
221 |
+
special_dtypes.update(
|
222 |
+
{
|
223 |
+
name: torch.float32
|
224 |
+
for name, _ in model.named_parameters()
|
225 |
+
if any(m in name for m in bnb_quantization_config.keep_in_fp32_modules)
|
226 |
+
}
|
227 |
+
)
|
228 |
+
|
229 |
+
kwargs = {}
|
230 |
+
kwargs["special_dtypes"] = special_dtypes
|
231 |
+
kwargs["no_split_module_classes"] = no_split_module_classes
|
232 |
+
kwargs["dtype"] = bnb_quantization_config.target_dtype
|
233 |
+
|
234 |
+
# get max_memory for each device.
|
235 |
+
if device_map != "sequential":
|
236 |
+
max_memory = get_balanced_memory(
|
237 |
+
model,
|
238 |
+
low_zero=(device_map == "balanced_low_0"),
|
239 |
+
max_memory=max_memory,
|
240 |
+
**kwargs,
|
241 |
+
)
|
242 |
+
|
243 |
+
kwargs["max_memory"] = max_memory
|
244 |
+
device_map = infer_auto_device_map(model, **kwargs)
|
245 |
+
|
246 |
+
if isinstance(device_map, dict):
|
247 |
+
# check if don't have any quantized module on the cpu
|
248 |
+
modules_not_to_convert = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fp32_modules
|
249 |
+
|
250 |
+
device_map_without_some_modules = {
|
251 |
+
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
|
252 |
+
}
|
253 |
+
for device in ["cpu", "disk"]:
|
254 |
+
if device in device_map_without_some_modules.values():
|
255 |
+
if bnb_quantization_config.load_in_4bit:
|
256 |
+
raise ValueError(
|
257 |
+
"""
|
258 |
+
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
|
259 |
+
the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
|
260 |
+
these modules in `torch_dtype`, you need to pass a custom `device_map` to
|
261 |
+
`load_and_quantize_model`. Check
|
262 |
+
https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk
|
263 |
+
for more details.
|
264 |
+
"""
|
265 |
+
)
|
266 |
+
else:
|
267 |
+
logger.info(
|
268 |
+
"Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit"
|
269 |
+
)
|
270 |
+
del device_map_without_some_modules
|
271 |
+
return device_map
|
272 |
+
|
273 |
+
|
274 |
+
def replace_with_bnb_layers(model, bnb_quantization_config, modules_to_not_convert=None, current_key_name=None):
|
275 |
+
"""
|
276 |
+
A helper function to replace all `torch.nn.Linear` modules by `bnb.nn.Linear8bit` modules or by `bnb.nn.Linear4bit`
|
277 |
+
modules from the `bitsandbytes`library. The function will be run recursively and replace `torch.nn.Linear` modules.
|
278 |
+
|
279 |
+
Parameters:
|
280 |
+
model (`torch.nn.Module`):
|
281 |
+
Input model or `torch.nn.Module` as the function is run recursively.
|
282 |
+
modules_to_not_convert (`List[str]`):
|
283 |
+
Names of the modules to not quantize convert. In practice we keep the `lm_head` in full precision for
|
284 |
+
numerical stability reasons.
|
285 |
+
current_key_name (`List[str]`, *optional*):
|
286 |
+
An array to track the current key of the recursion. This is used to check whether the current key (part of
|
287 |
+
it) is not in the list of modules to not convert.
|
288 |
+
"""
|
289 |
+
|
290 |
+
if modules_to_not_convert is None:
|
291 |
+
modules_to_not_convert = []
|
292 |
+
|
293 |
+
model, has_been_replaced = _replace_with_bnb_layers(
|
294 |
+
model, bnb_quantization_config, modules_to_not_convert, current_key_name
|
295 |
+
)
|
296 |
+
if not has_been_replaced:
|
297 |
+
logger.warning(
|
298 |
+
"You are loading your model in 8bit or 4bit but no linear modules were found in your model."
|
299 |
+
" this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers."
|
300 |
+
" Please double check your model architecture, or submit an issue on github if you think this is"
|
301 |
+
" a bug."
|
302 |
+
)
|
303 |
+
return model
|
304 |
+
|
305 |
+
|
306 |
+
def _replace_with_bnb_layers(
|
307 |
+
model,
|
308 |
+
bnb_quantization_config,
|
309 |
+
modules_to_not_convert=None,
|
310 |
+
current_key_name=None,
|
311 |
+
):
|
312 |
+
"""
|
313 |
+
Private method that wraps the recursion for module replacement.
|
314 |
+
|
315 |
+
Returns the converted model and a boolean that indicates if the conversion has been successfull or not.
|
316 |
+
"""
|
317 |
+
# bitsandbytes will initialize CUDA on import, so it needs to be imported lazily
|
318 |
+
import bitsandbytes as bnb
|
319 |
+
|
320 |
+
has_been_replaced = False
|
321 |
+
for name, module in model.named_children():
|
322 |
+
if current_key_name is None:
|
323 |
+
current_key_name = []
|
324 |
+
current_key_name.append(name)
|
325 |
+
if isinstance(module, nn.Linear) and name not in modules_to_not_convert:
|
326 |
+
# Check if the current key is not in the `modules_to_not_convert`
|
327 |
+
current_key_name_str = ".".join(current_key_name)
|
328 |
+
proceed = True
|
329 |
+
for key in modules_to_not_convert:
|
330 |
+
if (
|
331 |
+
(key in current_key_name_str) and (key + "." in current_key_name_str)
|
332 |
+
) or key == current_key_name_str:
|
333 |
+
proceed = False
|
334 |
+
break
|
335 |
+
if proceed:
|
336 |
+
# Load bnb module with empty weight and replace ``nn.Linear` module
|
337 |
+
if bnb_quantization_config.load_in_8bit:
|
338 |
+
bnb_module = bnb.nn.Linear8bitLt(
|
339 |
+
module.in_features,
|
340 |
+
module.out_features,
|
341 |
+
module.bias is not None,
|
342 |
+
has_fp16_weights=False,
|
343 |
+
threshold=bnb_quantization_config.llm_int8_threshold,
|
344 |
+
)
|
345 |
+
elif bnb_quantization_config.load_in_4bit:
|
346 |
+
bnb_module = bnb.nn.Linear4bit(
|
347 |
+
module.in_features,
|
348 |
+
module.out_features,
|
349 |
+
module.bias is not None,
|
350 |
+
bnb_quantization_config.bnb_4bit_compute_dtype,
|
351 |
+
compress_statistics=bnb_quantization_config.bnb_4bit_use_double_quant,
|
352 |
+
quant_type=bnb_quantization_config.bnb_4bit_quant_type,
|
353 |
+
)
|
354 |
+
else:
|
355 |
+
raise ValueError("load_in_8bit and load_in_4bit can't be both False")
|
356 |
+
bnb_module.weight.data = module.weight.data
|
357 |
+
if module.bias is not None:
|
358 |
+
bnb_module.bias.data = module.bias.data
|
359 |
+
bnb_module.requires_grad_(False)
|
360 |
+
setattr(model, name, bnb_module)
|
361 |
+
has_been_replaced = True
|
362 |
+
if len(list(module.children())) > 0:
|
363 |
+
_, _has_been_replaced = _replace_with_bnb_layers(
|
364 |
+
module, bnb_quantization_config, modules_to_not_convert, current_key_name
|
365 |
+
)
|
366 |
+
has_been_replaced = has_been_replaced | _has_been_replaced
|
367 |
+
# Remove the last key for recursion
|
368 |
+
current_key_name.pop(-1)
|
369 |
+
return model, has_been_replaced
|
370 |
+
|
371 |
+
|
372 |
+
def get_keys_to_not_convert(model):
|
373 |
+
r"""
|
374 |
+
An utility function to get the key of the module to keep in full precision if any For example for CausalLM modules
|
375 |
+
we may want to keep the lm_head in full precision for numerical stability reasons. For other architectures, we want
|
376 |
+
to keep the tied weights of the model. The function will return a list of the keys of the modules to not convert in
|
377 |
+
int8.
|
378 |
+
|
379 |
+
Parameters:
|
380 |
+
model (`torch.nn.Module`):
|
381 |
+
Input model
|
382 |
+
"""
|
383 |
+
# Create a copy of the model
|
384 |
+
with init_empty_weights():
|
385 |
+
tied_model = deepcopy(model) # this has 0 cost since it is done inside `init_empty_weights` context manager`
|
386 |
+
|
387 |
+
tied_params = find_tied_parameters(tied_model)
|
388 |
+
# For compatibility with Accelerate < 0.18
|
389 |
+
if isinstance(tied_params, dict):
|
390 |
+
tied_keys = sum(list(tied_params.values()), []) + list(tied_params.keys())
|
391 |
+
else:
|
392 |
+
tied_keys = sum(tied_params, [])
|
393 |
+
has_tied_params = len(tied_keys) > 0
|
394 |
+
|
395 |
+
# Check if it is a base model
|
396 |
+
is_base_model = False
|
397 |
+
if hasattr(model, "base_model_prefix"):
|
398 |
+
is_base_model = not hasattr(model, model.base_model_prefix)
|
399 |
+
|
400 |
+
# Ignore this for base models (BertModel, GPT2Model, etc.)
|
401 |
+
if (not has_tied_params) and is_base_model:
|
402 |
+
return []
|
403 |
+
|
404 |
+
# otherwise they have an attached head
|
405 |
+
list_modules = list(model.named_children())
|
406 |
+
list_last_module = [list_modules[-1][0]]
|
407 |
+
|
408 |
+
# add last module together with tied weights
|
409 |
+
intersection = set(list_last_module) - set(tied_keys)
|
410 |
+
list_untouched = list(set(tied_keys)) + list(intersection)
|
411 |
+
|
412 |
+
# remove ".weight" from the keys
|
413 |
+
names_to_remove = [".weight", ".bias"]
|
414 |
+
filtered_module_names = []
|
415 |
+
for name in list_untouched:
|
416 |
+
for name_to_remove in names_to_remove:
|
417 |
+
if name_to_remove in name:
|
418 |
+
name = name.replace(name_to_remove, "")
|
419 |
+
filtered_module_names.append(name)
|
420 |
+
|
421 |
+
return filtered_module_names
|
422 |
+
|
423 |
+
|
424 |
+
def has_4bit_bnb_layers(model):
|
425 |
+
"""Check if we have `bnb.nn.Linear4bit` or `bnb.nn.Linear8bitLt` layers inside our model"""
|
426 |
+
# bitsandbytes will initialize CUDA on import, so it needs to be imported lazily
|
427 |
+
import bitsandbytes as bnb
|
428 |
+
|
429 |
+
for m in model.modules():
|
430 |
+
if isinstance(m, bnb.nn.Linear4bit):
|
431 |
+
return True
|
432 |
+
return False
|
433 |
+
|
434 |
+
|
435 |
+
def get_parameter_device(parameter: nn.Module):
|
436 |
+
return next(parameter.parameters()).device
|
437 |
+
|
438 |
+
|
439 |
+
def quantize_and_offload_8bit(model, param, param_name, new_dtype, offload_folder, offload_index, fp16_statistics):
|
440 |
+
# if it is not quantized, we quantize and offload the quantized weights and the SCB stats
|
441 |
+
if fp16_statistics is None:
|
442 |
+
set_module_tensor_to_device(model, param_name, 0, dtype=new_dtype, value=param)
|
443 |
+
tensor_name = param_name
|
444 |
+
module = model
|
445 |
+
if "." in tensor_name:
|
446 |
+
splits = tensor_name.split(".")
|
447 |
+
for split in splits[:-1]:
|
448 |
+
new_module = getattr(module, split)
|
449 |
+
if new_module is None:
|
450 |
+
raise ValueError(f"{module} has no attribute {split}.")
|
451 |
+
module = new_module
|
452 |
+
tensor_name = splits[-1]
|
453 |
+
# offload weights
|
454 |
+
module._parameters[tensor_name].requires_grad = False
|
455 |
+
offload_weight(module._parameters[tensor_name], param_name, offload_folder, index=offload_index)
|
456 |
+
if hasattr(module._parameters[tensor_name], "SCB"):
|
457 |
+
offload_weight(
|
458 |
+
module._parameters[tensor_name].SCB,
|
459 |
+
param_name.replace("weight", "SCB"),
|
460 |
+
offload_folder,
|
461 |
+
index=offload_index,
|
462 |
+
)
|
463 |
+
else:
|
464 |
+
offload_weight(param, param_name, offload_folder, index=offload_index)
|
465 |
+
offload_weight(fp16_statistics, param_name.replace("weight", "SCB"), offload_folder, index=offload_index)
|
466 |
+
|
467 |
+
set_module_tensor_to_device(model, param_name, "meta", dtype=new_dtype, value=torch.empty(*param.size()))
|
venv/lib/python3.10/site-packages/accelerate/utils/dataclasses.py
ADDED
@@ -0,0 +1,1717 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
General namespace and dataclass related classes
|
17 |
+
"""
|
18 |
+
|
19 |
+
import argparse
|
20 |
+
import copy
|
21 |
+
import enum
|
22 |
+
import functools
|
23 |
+
import os
|
24 |
+
import typing
|
25 |
+
import warnings
|
26 |
+
from contextlib import contextmanager
|
27 |
+
from dataclasses import dataclass, field
|
28 |
+
from datetime import timedelta
|
29 |
+
from typing import Any, Callable, Dict, Iterable, List, Literal, Optional, Tuple, get_args
|
30 |
+
|
31 |
+
import torch
|
32 |
+
|
33 |
+
from .constants import FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE
|
34 |
+
from .environment import str_to_bool
|
35 |
+
from .imports import is_cuda_available, is_npu_available, is_xpu_available
|
36 |
+
from .versions import compare_versions
|
37 |
+
|
38 |
+
|
39 |
+
class KwargsHandler:
|
40 |
+
"""
|
41 |
+
Internal mixin that implements a `to_kwargs()` method for a dataclass.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def to_dict(self):
|
45 |
+
return copy.deepcopy(self.__dict__)
|
46 |
+
|
47 |
+
def to_kwargs(self):
|
48 |
+
"""
|
49 |
+
Returns a dictionary containing the attributes with values different from the default of this class.
|
50 |
+
"""
|
51 |
+
# import clear_environment here to avoid circular import problem
|
52 |
+
from .other import clear_environment
|
53 |
+
|
54 |
+
with clear_environment():
|
55 |
+
default_dict = self.__class__().to_dict()
|
56 |
+
this_dict = self.to_dict()
|
57 |
+
return {k: v for k, v in this_dict.items() if default_dict[k] != v}
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass
|
61 |
+
class AutocastKwargs(KwargsHandler):
|
62 |
+
"""
|
63 |
+
Use this object in your [`Accelerator`] to customize how `torch.autocast` behaves. Please refer to the
|
64 |
+
documentation of this [context manager](https://pytorch.org/docs/stable/amp.html#torch.autocast) for more
|
65 |
+
information on each argument.
|
66 |
+
|
67 |
+
Example:
|
68 |
+
|
69 |
+
```python
|
70 |
+
from accelerate import Accelerator
|
71 |
+
from accelerate.utils import AutocastKwargs
|
72 |
+
|
73 |
+
kwargs = AutocastKwargs(cache_enabled=True)
|
74 |
+
accelerator = Accelerator(kwargs_handlers=[kwargs])
|
75 |
+
```
|
76 |
+
"""
|
77 |
+
|
78 |
+
enabled: bool = True
|
79 |
+
cache_enabled: bool = None
|
80 |
+
|
81 |
+
|
82 |
+
@dataclass
|
83 |
+
class DistributedDataParallelKwargs(KwargsHandler):
|
84 |
+
"""
|
85 |
+
Use this object in your [`Accelerator`] to customize how your model is wrapped in a
|
86 |
+
`torch.nn.parallel.DistributedDataParallel`. Please refer to the documentation of this
|
87 |
+
[wrapper](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html) for more
|
88 |
+
information on each argument.
|
89 |
+
|
90 |
+
<Tip warning={true}>
|
91 |
+
|
92 |
+
`gradient_as_bucket_view` is only available in PyTorch 1.7.0 and later versions.
|
93 |
+
|
94 |
+
`static_graph` is only available in PyTorch 1.11.0 and later versions.
|
95 |
+
|
96 |
+
</Tip>
|
97 |
+
|
98 |
+
Example:
|
99 |
+
|
100 |
+
```python
|
101 |
+
from accelerate import Accelerator
|
102 |
+
from accelerate.utils import DistributedDataParallelKwargs
|
103 |
+
|
104 |
+
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
105 |
+
accelerator = Accelerator(kwargs_handlers=[kwargs])
|
106 |
+
```
|
107 |
+
"""
|
108 |
+
|
109 |
+
dim: int = 0
|
110 |
+
broadcast_buffers: bool = True
|
111 |
+
bucket_cap_mb: int = 25
|
112 |
+
find_unused_parameters: bool = False
|
113 |
+
check_reduction: bool = False
|
114 |
+
gradient_as_bucket_view: bool = False
|
115 |
+
static_graph: bool = False
|
116 |
+
|
117 |
+
|
118 |
+
@dataclass
|
119 |
+
class GradScalerKwargs(KwargsHandler):
|
120 |
+
"""
|
121 |
+
Use this object in your [`Accelerator`] to customize the behavior of mixed precision, specifically how the
|
122 |
+
`torch.cuda.amp.GradScaler` used is created. Please refer to the documentation of this
|
123 |
+
[scaler](https://pytorch.org/docs/stable/amp.html?highlight=gradscaler) for more information on each argument.
|
124 |
+
|
125 |
+
<Tip warning={true}>
|
126 |
+
|
127 |
+
`GradScaler` is only available in PyTorch 1.5.0 and later versions.
|
128 |
+
|
129 |
+
</Tip>
|
130 |
+
|
131 |
+
Example:
|
132 |
+
|
133 |
+
```python
|
134 |
+
from accelerate import Accelerator
|
135 |
+
from accelerate.utils import GradScalerKwargs
|
136 |
+
|
137 |
+
kwargs = GradScalerKwargs(backoff_filter=0.25)
|
138 |
+
accelerator = Accelerator(kwargs_handlers=[kwargs])
|
139 |
+
```
|
140 |
+
"""
|
141 |
+
|
142 |
+
init_scale: float = 65536.0
|
143 |
+
growth_factor: float = 2.0
|
144 |
+
backoff_factor: float = 0.5
|
145 |
+
growth_interval: int = 2000
|
146 |
+
enabled: bool = True
|
147 |
+
|
148 |
+
|
149 |
+
@dataclass
|
150 |
+
class InitProcessGroupKwargs(KwargsHandler):
|
151 |
+
"""
|
152 |
+
Use this object in your [`Accelerator`] to customize the initialization of the distributed processes. Please refer
|
153 |
+
to the documentation of this
|
154 |
+
[method](https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group) for more
|
155 |
+
information on each argument.
|
156 |
+
|
157 |
+
```python
|
158 |
+
from datetime import timedelta
|
159 |
+
from accelerate import Accelerator
|
160 |
+
from accelerate.utils import InitProcessGroupKwargs
|
161 |
+
|
162 |
+
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=800))
|
163 |
+
accelerator = Accelerator(kwargs_handlers=[kwargs])
|
164 |
+
```
|
165 |
+
"""
|
166 |
+
|
167 |
+
backend: Optional[str] = "nccl"
|
168 |
+
init_method: Optional[str] = None
|
169 |
+
timeout: timedelta = timedelta(seconds=1800)
|
170 |
+
|
171 |
+
|
172 |
+
# Literals
|
173 |
+
Backend = Literal["MSAMP", "TE"]
|
174 |
+
OptLevel = Literal["O1", "O2"]
|
175 |
+
FP8Format = Literal["E4M3", "HYBRID"]
|
176 |
+
AmaxComputeAlgorithm = Literal["max", "most_recent"]
|
177 |
+
|
178 |
+
|
179 |
+
@dataclass
|
180 |
+
class FP8RecipeKwargs(KwargsHandler):
|
181 |
+
"""
|
182 |
+
Use this object in your [`Accelerator`] to customize the initialization of the recipe for FP8 mixed precision
|
183 |
+
training with `transformer-engine` or `ms-amp`.
|
184 |
+
|
185 |
+
<Tip>
|
186 |
+
|
187 |
+
For more information on `transformer-engine` args, please refer to the API
|
188 |
+
[documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html).
|
189 |
+
|
190 |
+
For more information on the `ms-amp` args, please refer to the Optimization Level
|
191 |
+
[documentation](https://azure.github.io/MS-AMP/docs/user-tutorial/optimization-level).
|
192 |
+
|
193 |
+
</Tip>
|
194 |
+
|
195 |
+
```python
|
196 |
+
from accelerate import Accelerator
|
197 |
+
from accelerate.utils import FP8RecipeKwargs
|
198 |
+
|
199 |
+
kwargs = FP8RecipeKwargs(backend="te", fp8_format="HYBRID")
|
200 |
+
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=[kwargs])
|
201 |
+
```
|
202 |
+
|
203 |
+
To use MS-AMP as an engine, pass `backend="msamp"` and the `optimization_level`:
|
204 |
+
|
205 |
+
```python
|
206 |
+
kwargs = FP8RecipeKwargs(backend="msamp", optimization_level="02")
|
207 |
+
```
|
208 |
+
|
209 |
+
Args:
|
210 |
+
backend (`str`, *optional*, defaults to "msamp"):
|
211 |
+
Which FP8 engine to use. Must be one of `"msamp"` (MS-AMP) or `"te"` (TransformerEngine).
|
212 |
+
margin (`int`, *optional*, default to 0):
|
213 |
+
The margin to use for the gradient scaling.
|
214 |
+
interval (`int`, *optional*, default to 1):
|
215 |
+
The interval to use for how often the scaling factor is recomputed.
|
216 |
+
fp8_format (`str`, *optional*, default to "E4M3"):
|
217 |
+
The format to use for the FP8 recipe. Must be one of `E4M3` or `HYBRID`.
|
218 |
+
amax_history_len (`int`, *optional*, default to 1024):
|
219 |
+
The length of the history to use for the scaling factor computation
|
220 |
+
amax_compute_algo (`str`, *optional*, default to "most_recent"):
|
221 |
+
The algorithm to use for the scaling factor computation. Must be one of `max` or `most_recent`.
|
222 |
+
override_linear_precision (`tuple` of three `bool`, *optional*, default to `(False, False, False)`):
|
223 |
+
Whether or not to execute `fprop`, `dgrad`, and `wgrad` GEMMS in higher precision.
|
224 |
+
optimization_level (`str`), one of `O1`, `O2`. (default is `O2`):
|
225 |
+
What level of 8-bit collective communication should be used with MS-AMP. In general:
|
226 |
+
* O1: Weight gradients and `all_reduce` communications are done in fp8, reducing GPU
|
227 |
+
memory usage and communication bandwidth
|
228 |
+
* O2: First-order optimizer states are in 8-bit, and second order states are in FP16.
|
229 |
+
Only available when using Adam or AdamW. This maintains accuracy and can potentially save the
|
230 |
+
highest memory.
|
231 |
+
* 03: Specifically for DeepSpeed, implements capabilities so weights and master weights of models
|
232 |
+
are stored in FP8. If `fp8` is selected and deepspeed is enabled, will be used by default. (Not
|
233 |
+
available currently).
|
234 |
+
"""
|
235 |
+
|
236 |
+
backend: Backend = "MSAMP"
|
237 |
+
opt_level: OptLevel = "O2"
|
238 |
+
margin: int = 0
|
239 |
+
interval: int = 1
|
240 |
+
fp8_format: FP8Format = "E4M3"
|
241 |
+
amax_history_len: int = 1
|
242 |
+
amax_compute_algo: AmaxComputeAlgorithm = "most_recent"
|
243 |
+
override_linear_precision: Tuple[bool, bool, bool] = (False, False, False)
|
244 |
+
|
245 |
+
def __post_init__(self):
|
246 |
+
if self.backend.upper() not in get_args(Backend):
|
247 |
+
raise ValueError("`backend` must be 'MSAMP' or 'TE' (TransformerEngine).")
|
248 |
+
|
249 |
+
self.backend = self.backend.upper()
|
250 |
+
# Check TE args
|
251 |
+
if self.backend == "TE":
|
252 |
+
self.fp8_format = self.fp8_format.upper()
|
253 |
+
if self.fp8_format not in get_args(FP8Format):
|
254 |
+
raise ValueError(f"`fp8_format` must be one of {' or '.join(get_args(FP8Format))}.")
|
255 |
+
if self.amax_compute_algo not in get_args(AmaxComputeAlgorithm):
|
256 |
+
raise ValueError(f"`amax_compute_algo` must be one of {' or '.join(get_args(AmaxComputeAlgorithm))}")
|
257 |
+
elif self.backend == "MSAMP":
|
258 |
+
if self.opt_level not in get_args(OptLevel):
|
259 |
+
raise ValueError(f"`optimization_level` must be one of {' or '.join(get_args(OptLevel))}")
|
260 |
+
|
261 |
+
|
262 |
+
class EnumWithContains(enum.EnumMeta):
|
263 |
+
"A metaclass that adds the ability to check if `self` contains an item with the `in` operator"
|
264 |
+
|
265 |
+
def __contains__(cls, item):
|
266 |
+
try:
|
267 |
+
cls(item)
|
268 |
+
except ValueError:
|
269 |
+
return False
|
270 |
+
return True
|
271 |
+
|
272 |
+
|
273 |
+
class BaseEnum(enum.Enum, metaclass=EnumWithContains):
|
274 |
+
"An enum class that can get the value of an item with `str(Enum.key)`"
|
275 |
+
|
276 |
+
def __str__(self):
|
277 |
+
return self.value
|
278 |
+
|
279 |
+
@classmethod
|
280 |
+
def list(cls):
|
281 |
+
"Method to list all the possible items in `cls`"
|
282 |
+
return list(map(str, cls))
|
283 |
+
|
284 |
+
|
285 |
+
class DeprecatedFieldDescriptor:
|
286 |
+
"""
|
287 |
+
Descriptor for deprecated fields in an enum class.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
field_name (`str`):
|
291 |
+
The name of the deprecated field.
|
292 |
+
replaced_with (`str`):
|
293 |
+
The name of the field that replaces the deprecated one.
|
294 |
+
"""
|
295 |
+
|
296 |
+
def __init__(self, field_name, replaced_with):
|
297 |
+
self.field_name = field_name
|
298 |
+
self.replaced_with = replaced_with
|
299 |
+
|
300 |
+
def __get__(self, instance, owner):
|
301 |
+
warnings.warn(
|
302 |
+
f"The `{self.field_name}` of `{owner}` is deprecated and will be removed in v1.0.0. "
|
303 |
+
f"Please use the `{self.replaced_with}` instead.",
|
304 |
+
FutureWarning,
|
305 |
+
)
|
306 |
+
return getattr(owner, self.replaced_with)
|
307 |
+
|
308 |
+
|
309 |
+
class DistributedType(str, enum.Enum):
|
310 |
+
"""
|
311 |
+
Represents a type of distributed environment.
|
312 |
+
|
313 |
+
Values:
|
314 |
+
|
315 |
+
- **NO** -- Not a distributed environment, just a single process.
|
316 |
+
- **MULTI_CPU** -- Distributed on multiple CPU nodes.
|
317 |
+
- **MULTI_GPU** -- Distributed on multiple GPUs.
|
318 |
+
- **MULTI_MLU** -- Distributed on multiple MLUs.
|
319 |
+
- **MULTI_NPU** -- Distributed on multiple NPUs.
|
320 |
+
- **MULTI_XPU** -- Distributed on multiple XPUs.
|
321 |
+
- **DEEPSPEED** -- Using DeepSpeed.
|
322 |
+
- **XLA** -- Using TorchXLA.
|
323 |
+
- **TPU** -- This field will be deprecated in v0.27.0. Use XLA instead.
|
324 |
+
"""
|
325 |
+
|
326 |
+
# Subclassing str as well as Enum allows the `DistributedType` to be JSON-serializable out of the box.
|
327 |
+
NO = "NO"
|
328 |
+
MULTI_CPU = "MULTI_CPU"
|
329 |
+
MULTI_GPU = "MULTI_GPU"
|
330 |
+
MULTI_NPU = "MULTI_NPU"
|
331 |
+
MULTI_MLU = "MULTI_MLU"
|
332 |
+
MULTI_XPU = "MULTI_XPU"
|
333 |
+
DEEPSPEED = "DEEPSPEED"
|
334 |
+
FSDP = "FSDP"
|
335 |
+
XLA = "XLA"
|
336 |
+
MEGATRON_LM = "MEGATRON_LM"
|
337 |
+
TPU = DeprecatedFieldDescriptor("TPU", "XLA")
|
338 |
+
|
339 |
+
|
340 |
+
class SageMakerDistributedType(str, enum.Enum):
|
341 |
+
"""
|
342 |
+
Represents a type of distributed environment.
|
343 |
+
|
344 |
+
Values:
|
345 |
+
|
346 |
+
- **NO** -- Not a distributed environment, just a single process.
|
347 |
+
- **DATA_PARALLEL** -- using sagemaker distributed data parallelism.
|
348 |
+
- **MODEL_PARALLEL** -- using sagemaker distributed model parallelism.
|
349 |
+
"""
|
350 |
+
|
351 |
+
# Subclassing str as well as Enum allows the `SageMakerDistributedType` to be JSON-serializable out of the box.
|
352 |
+
NO = "NO"
|
353 |
+
DATA_PARALLEL = "DATA_PARALLEL"
|
354 |
+
MODEL_PARALLEL = "MODEL_PARALLEL"
|
355 |
+
|
356 |
+
|
357 |
+
class ComputeEnvironment(str, enum.Enum):
|
358 |
+
"""
|
359 |
+
Represents a type of the compute environment.
|
360 |
+
|
361 |
+
Values:
|
362 |
+
|
363 |
+
- **LOCAL_MACHINE** -- private/custom cluster hardware.
|
364 |
+
- **AMAZON_SAGEMAKER** -- Amazon SageMaker as compute environment.
|
365 |
+
"""
|
366 |
+
|
367 |
+
# Subclassing str as well as Enum allows the `ComputeEnvironment` to be JSON-serializable out of the box.
|
368 |
+
LOCAL_MACHINE = "LOCAL_MACHINE"
|
369 |
+
AMAZON_SAGEMAKER = "AMAZON_SAGEMAKER"
|
370 |
+
|
371 |
+
|
372 |
+
class DynamoBackend(str, BaseEnum):
|
373 |
+
"""
|
374 |
+
Represents a dynamo backend (see https://pytorch.org/docs/stable/torch.compiler.html).
|
375 |
+
|
376 |
+
Values:
|
377 |
+
|
378 |
+
- **NO** -- Do not use torch dynamo.
|
379 |
+
- **EAGER** -- Uses PyTorch to run the extracted GraphModule. This is quite useful in debugging TorchDynamo
|
380 |
+
issues.
|
381 |
+
- **AOT_EAGER** -- Uses AotAutograd with no compiler, i.e, just using PyTorch eager for the AotAutograd's
|
382 |
+
extracted forward and backward graphs. This is useful for debugging, and unlikely to give speedups.
|
383 |
+
- **INDUCTOR** -- Uses TorchInductor backend with AotAutograd and cudagraphs by leveraging codegened Triton
|
384 |
+
kernels. [Read
|
385 |
+
more](https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747)
|
386 |
+
- **AOT_TS_NVFUSER** -- nvFuser with AotAutograd/TorchScript. [Read
|
387 |
+
more](https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-1-nvfuser-and-its-primitives/593)
|
388 |
+
- **NVPRIMS_NVFUSER** -- nvFuser with PrimTorch. [Read
|
389 |
+
more](https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-1-nvfuser-and-its-primitives/593)
|
390 |
+
- **CUDAGRAPHS** -- cudagraphs with AotAutograd. [Read more](https://github.com/pytorch/torchdynamo/pull/757)
|
391 |
+
- **OFI** -- Uses Torchscript optimize_for_inference. Inference only. [Read
|
392 |
+
more](https://pytorch.org/docs/stable/generated/torch.jit.optimize_for_inference.html)
|
393 |
+
- **FX2TRT** -- Uses Nvidia TensorRT for inference optimizations. Inference only. [Read
|
394 |
+
more](https://github.com/pytorch/TensorRT/blob/master/docsrc/tutorials/getting_started_with_fx_path.rst)
|
395 |
+
- **ONNXRT** -- Uses ONNXRT for inference on CPU/GPU. Inference only. [Read more](https://onnxruntime.ai/)
|
396 |
+
- **TENSORRT** -- Uses ONNXRT to run TensorRT for inference optimizations. [Read
|
397 |
+
more](https://github.com/onnx/onnx-tensorrt)
|
398 |
+
- **IPEX** -- Uses IPEX for inference on CPU. Inference only. [Read
|
399 |
+
more](https://github.com/intel/intel-extension-for-pytorch).
|
400 |
+
- **TVM** -- Uses Apach TVM for inference optimizations. [Read more](https://tvm.apache.org/)
|
401 |
+
|
402 |
+
"""
|
403 |
+
|
404 |
+
# Subclassing str as well as Enum allows the `SageMakerDistributedType` to be JSON-serializable out of the box.
|
405 |
+
NO = "NO"
|
406 |
+
EAGER = "EAGER"
|
407 |
+
AOT_EAGER = "AOT_EAGER"
|
408 |
+
INDUCTOR = "INDUCTOR"
|
409 |
+
AOT_TS_NVFUSER = "AOT_TS_NVFUSER"
|
410 |
+
NVPRIMS_NVFUSER = "NVPRIMS_NVFUSER"
|
411 |
+
CUDAGRAPHS = "CUDAGRAPHS"
|
412 |
+
OFI = "OFI"
|
413 |
+
FX2TRT = "FX2TRT"
|
414 |
+
ONNXRT = "ONNXRT"
|
415 |
+
TENSORRT = "TENSORRT"
|
416 |
+
IPEX = "IPEX"
|
417 |
+
TVM = "TVM"
|
418 |
+
|
419 |
+
|
420 |
+
class LoggerType(BaseEnum):
|
421 |
+
"""Represents a type of supported experiment tracker
|
422 |
+
|
423 |
+
Values:
|
424 |
+
|
425 |
+
- **ALL** -- all available trackers in the environment that are supported
|
426 |
+
- **TENSORBOARD** -- TensorBoard as an experiment tracker
|
427 |
+
- **WANDB** -- wandb as an experiment tracker
|
428 |
+
- **COMETML** -- comet_ml as an experiment tracker
|
429 |
+
- **DVCLIVE** -- dvclive as an experiment tracker
|
430 |
+
"""
|
431 |
+
|
432 |
+
ALL = "all"
|
433 |
+
AIM = "aim"
|
434 |
+
TENSORBOARD = "tensorboard"
|
435 |
+
WANDB = "wandb"
|
436 |
+
COMETML = "comet_ml"
|
437 |
+
MLFLOW = "mlflow"
|
438 |
+
CLEARML = "clearml"
|
439 |
+
DVCLIVE = "dvclive"
|
440 |
+
|
441 |
+
|
442 |
+
class PrecisionType(BaseEnum):
|
443 |
+
"""Represents a type of precision used on floating point values
|
444 |
+
|
445 |
+
Values:
|
446 |
+
|
447 |
+
- **NO** -- using full precision (FP32)
|
448 |
+
- **FP16** -- using half precision
|
449 |
+
- **BF16** -- using brain floating point precision
|
450 |
+
"""
|
451 |
+
|
452 |
+
NO = "no"
|
453 |
+
FP8 = "fp8"
|
454 |
+
FP16 = "fp16"
|
455 |
+
BF16 = "bf16"
|
456 |
+
|
457 |
+
|
458 |
+
class RNGType(BaseEnum):
|
459 |
+
TORCH = "torch"
|
460 |
+
CUDA = "cuda"
|
461 |
+
MLU = "mlu"
|
462 |
+
NPU = "npu"
|
463 |
+
XLA = "xla"
|
464 |
+
XPU = "xpu"
|
465 |
+
GENERATOR = "generator"
|
466 |
+
|
467 |
+
|
468 |
+
class CustomDtype(enum.Enum):
|
469 |
+
r"""
|
470 |
+
An enum that contains multiple custom dtypes that can be used for `infer_auto_device_map`.
|
471 |
+
"""
|
472 |
+
|
473 |
+
FP8 = "fp8"
|
474 |
+
INT4 = "int4"
|
475 |
+
INT2 = "int2"
|
476 |
+
|
477 |
+
|
478 |
+
# data classes
|
479 |
+
|
480 |
+
|
481 |
+
@dataclass
|
482 |
+
class TensorInformation:
|
483 |
+
shape: torch.Size
|
484 |
+
dtype: torch.dtype
|
485 |
+
|
486 |
+
|
487 |
+
@dataclass
|
488 |
+
class DataLoaderConfiguration:
|
489 |
+
"""
|
490 |
+
Configuration for dataloader-related items when calling `accelerator.prepare`.
|
491 |
+
"""
|
492 |
+
|
493 |
+
split_batches: bool = field(
|
494 |
+
default=False,
|
495 |
+
metadata={
|
496 |
+
"help": "Whether or not the accelerator should split the batches yielded by the dataloaders across the devices. If"
|
497 |
+
" `True` the actual batch size used will be the same on any kind of distributed processes, but it must be a"
|
498 |
+
" round multiple of the `num_processes` you are using. If `False`, actual batch size used will be the one set"
|
499 |
+
" in your script multiplied by the number of processes."
|
500 |
+
},
|
501 |
+
)
|
502 |
+
dispatch_batches: bool = field(
|
503 |
+
default=None,
|
504 |
+
metadata={
|
505 |
+
"help": "If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process"
|
506 |
+
" and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose"
|
507 |
+
" underlying dataset is an `IterableDataslet`, `False` otherwise."
|
508 |
+
},
|
509 |
+
)
|
510 |
+
even_batches: bool = field(
|
511 |
+
default=True,
|
512 |
+
metadata={
|
513 |
+
"help": "If set to `True`, in cases where the total batch size across all processes does not exactly divide the"
|
514 |
+
" dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among"
|
515 |
+
" all workers."
|
516 |
+
},
|
517 |
+
)
|
518 |
+
use_seedable_sampler: bool = field(
|
519 |
+
default=False,
|
520 |
+
metadata={
|
521 |
+
"help": "Whether or not use a fully seedable random sampler ([`data_loader.SeedableRandomSampler`])."
|
522 |
+
"Ensures training results are fully reproducable using a different sampling technique. "
|
523 |
+
"While seed-to-seed results may differ, on average the differences are neglible when using"
|
524 |
+
"multiple different seeds to compare. Should also be ran with [`~utils.set_seed`] for the best results."
|
525 |
+
},
|
526 |
+
)
|
527 |
+
|
528 |
+
|
529 |
+
@dataclass
|
530 |
+
class ProjectConfiguration:
|
531 |
+
"""
|
532 |
+
Configuration for the Accelerator object based on inner-project needs.
|
533 |
+
"""
|
534 |
+
|
535 |
+
project_dir: str = field(default=None, metadata={"help": "A path to a directory for storing data."})
|
536 |
+
logging_dir: str = field(
|
537 |
+
default=None,
|
538 |
+
metadata={
|
539 |
+
"help": "A path to a directory for storing logs of locally-compatible loggers. If None, defaults to `project_dir`."
|
540 |
+
},
|
541 |
+
)
|
542 |
+
automatic_checkpoint_naming: bool = field(
|
543 |
+
default=False,
|
544 |
+
metadata={"help": "Whether saved states should be automatically iteratively named."},
|
545 |
+
)
|
546 |
+
|
547 |
+
total_limit: int = field(
|
548 |
+
default=None,
|
549 |
+
metadata={"help": "The maximum number of total saved states to keep."},
|
550 |
+
)
|
551 |
+
|
552 |
+
iteration: int = field(
|
553 |
+
default=0,
|
554 |
+
metadata={"help": "The current save iteration."},
|
555 |
+
)
|
556 |
+
|
557 |
+
save_on_each_node: bool = field(
|
558 |
+
default=False,
|
559 |
+
metadata={
|
560 |
+
"help": (
|
561 |
+
"When doing multi-node distributed training, whether to save models and checkpoints on each node, or"
|
562 |
+
" only on the main one"
|
563 |
+
)
|
564 |
+
},
|
565 |
+
)
|
566 |
+
|
567 |
+
def set_directories(self, project_dir: str = None):
|
568 |
+
"Sets `self.project_dir` and `self.logging_dir` to the appropriate values."
|
569 |
+
self.project_dir = project_dir
|
570 |
+
if self.logging_dir is None:
|
571 |
+
self.logging_dir = project_dir
|
572 |
+
|
573 |
+
def __post_init__(self):
|
574 |
+
self.set_directories(self.project_dir)
|
575 |
+
|
576 |
+
|
577 |
+
@dataclass
|
578 |
+
class GradientAccumulationPlugin(KwargsHandler):
|
579 |
+
"""
|
580 |
+
A plugin to configure gradient accumulation behavior. You can only pass one of `gradient_accumulation_plugin` or
|
581 |
+
`gradient_accumulation_steps` to [`Accelerator`]. Passing both raises an error.
|
582 |
+
|
583 |
+
Parameters:
|
584 |
+
num_steps (`int`):
|
585 |
+
The number of steps to accumulate gradients for.
|
586 |
+
adjust_scheduler (`bool`, *optional*, defaults to `True`):
|
587 |
+
Whether to adjust the scheduler steps to account for the number of steps being accumulated. Should be
|
588 |
+
`True` if the used scheduler was not adjusted for gradient accumulation.
|
589 |
+
sync_with_dataloader (`bool`, *optional*, defaults to `True`):
|
590 |
+
Whether to synchronize setting the gradients when at the end of the dataloader.
|
591 |
+
sync_each_batch (`bool`, *optional*):
|
592 |
+
Whether to synchronize setting the gradients at each data batch. Seting to `True` may reduce memory
|
593 |
+
requirements when using gradient accumulation with distributed training, at expense of speed.
|
594 |
+
|
595 |
+
Example:
|
596 |
+
|
597 |
+
```python
|
598 |
+
from accelerate.utils import GradientAccumulationPlugin
|
599 |
+
|
600 |
+
gradient_accumulation_plugin = GradientAccumulationPlugin(num_steps=2)
|
601 |
+
accelerator = Accelerator(gradient_accumulation_plugin=gradient_accumulation_plugin)
|
602 |
+
```
|
603 |
+
"""
|
604 |
+
|
605 |
+
num_steps: int = field(default=None, metadata={"help": "The number of steps to accumulate gradients for."})
|
606 |
+
adjust_scheduler: bool = field(
|
607 |
+
default=True,
|
608 |
+
metadata={
|
609 |
+
"help": "Whether to adjust the scheduler steps to account for the number of steps being accumulated. Should be `True` if the used scheduler was not adjusted for gradient accumulation."
|
610 |
+
},
|
611 |
+
)
|
612 |
+
sync_with_dataloader: bool = field(
|
613 |
+
default=True,
|
614 |
+
metadata={
|
615 |
+
"help": "Whether to synchronize setting the gradients when at the end of the dataloader. Should only be set to `False` if you know what you're doing."
|
616 |
+
},
|
617 |
+
)
|
618 |
+
sync_each_batch: bool = field(
|
619 |
+
default=False,
|
620 |
+
metadata={
|
621 |
+
"help": "Whether to synchronize setting the gradients at each data batch. Setting to `True` may reduce memory requirements when using gradient accumulation with distributed training, at expense of speed."
|
622 |
+
},
|
623 |
+
)
|
624 |
+
|
625 |
+
|
626 |
+
@dataclass
|
627 |
+
class TorchDynamoPlugin(KwargsHandler):
|
628 |
+
"""
|
629 |
+
This plugin is used to compile a model with PyTorch 2.0
|
630 |
+
"""
|
631 |
+
|
632 |
+
backend: DynamoBackend = field(
|
633 |
+
default=None,
|
634 |
+
metadata={"help": f"Possible options are {[b.value.lower() for b in DynamoBackend]}"},
|
635 |
+
)
|
636 |
+
mode: str = field(
|
637 |
+
default=None, metadata={"help": "Possible options are 'default', 'reduce-overhead' or 'max-autotune'"}
|
638 |
+
)
|
639 |
+
fullgraph: bool = field(default=None, metadata={"help": "Whether it is ok to break model into several subgraphs"})
|
640 |
+
dynamic: bool = field(default=None, metadata={"help": "Whether to use dynamic shape for tracing"})
|
641 |
+
options: Any = field(default=None, metadata={"help": "A dictionary of options to pass to the backend."})
|
642 |
+
disable: bool = field(default=False, metadata={"help": "Turn torch.compile() into a no-op for testing"})
|
643 |
+
|
644 |
+
def __post_init__(self):
|
645 |
+
prefix = "ACCELERATE_DYNAMO_"
|
646 |
+
if self.backend is None:
|
647 |
+
self.backend = os.environ.get(prefix + "BACKEND", "no")
|
648 |
+
self.backend = DynamoBackend(self.backend.upper())
|
649 |
+
if self.mode is None:
|
650 |
+
self.mode = os.environ.get(prefix + "MODE", "default")
|
651 |
+
if self.fullgraph is None:
|
652 |
+
self.fullgraph = str_to_bool(os.environ.get(prefix + "USE_FULLGRAPH", "False")) == 1
|
653 |
+
if self.dynamic is None:
|
654 |
+
self.dynamic = str_to_bool(os.environ.get(prefix + "USE_DYNAMIC", "False")) == 1
|
655 |
+
|
656 |
+
def to_dict(self):
|
657 |
+
dynamo_config = copy.deepcopy(self.__dict__)
|
658 |
+
dynamo_config["backend"] = dynamo_config["backend"].value.lower()
|
659 |
+
return dynamo_config
|
660 |
+
|
661 |
+
|
662 |
+
@dataclass
|
663 |
+
class DeepSpeedPlugin:
|
664 |
+
"""
|
665 |
+
This plugin is used to integrate DeepSpeed.
|
666 |
+
"""
|
667 |
+
|
668 |
+
hf_ds_config: Any = field(
|
669 |
+
default=None,
|
670 |
+
metadata={
|
671 |
+
"help": "path to DeepSpeed config file or dict or an object of class `accelerate.utils.deepspeed.HfDeepSpeedConfig`."
|
672 |
+
},
|
673 |
+
)
|
674 |
+
gradient_accumulation_steps: int = field(
|
675 |
+
default=None,
|
676 |
+
metadata={
|
677 |
+
"help": "Number of steps to accumulate gradients before updating optimizer states. If not set, will use the value from the `Accelerator` directly."
|
678 |
+
},
|
679 |
+
)
|
680 |
+
gradient_clipping: float = field(default=None, metadata={"help": "Enable gradient clipping with value"})
|
681 |
+
zero_stage: int = field(
|
682 |
+
default=None,
|
683 |
+
metadata={"help": "Possible options are 0,1,2,3; Default will be taken from environment variable"},
|
684 |
+
)
|
685 |
+
is_train_batch_min: str = field(
|
686 |
+
default=True,
|
687 |
+
metadata={"help": "If both train & eval dataloaders are specified, this will decide the train_batch_size"},
|
688 |
+
)
|
689 |
+
offload_optimizer_device: bool = field(
|
690 |
+
default=None,
|
691 |
+
metadata={"help": "Possible options are none|cpu|nvme. Only applicable with ZeRO Stages 2 and 3."},
|
692 |
+
)
|
693 |
+
offload_param_device: bool = field(
|
694 |
+
default=None,
|
695 |
+
metadata={"help": "Possible options are none|cpu|nvme. Only applicable with ZeRO Stage 3."},
|
696 |
+
)
|
697 |
+
offload_optimizer_nvme_path: str = field(
|
698 |
+
default=None,
|
699 |
+
metadata={"help": "Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3."},
|
700 |
+
)
|
701 |
+
offload_param_nvme_path: str = field(
|
702 |
+
default=None,
|
703 |
+
metadata={"help": "Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3."},
|
704 |
+
)
|
705 |
+
zero3_init_flag: bool = field(
|
706 |
+
default=None,
|
707 |
+
metadata={
|
708 |
+
"help": "Flag to indicate whether to enable `deepspeed.zero.Init` for constructing massive models."
|
709 |
+
"Only applicable with ZeRO Stage-3."
|
710 |
+
},
|
711 |
+
)
|
712 |
+
zero3_save_16bit_model: bool = field(
|
713 |
+
default=None,
|
714 |
+
metadata={"help": "Flag to indicate whether to save 16-bit model. Only applicable with ZeRO Stage-3."},
|
715 |
+
)
|
716 |
+
|
717 |
+
def __post_init__(self):
|
718 |
+
from .deepspeed import HfDeepSpeedConfig
|
719 |
+
|
720 |
+
if self.gradient_accumulation_steps is None:
|
721 |
+
gas = os.environ.get("ACCELERATE_GRADIENT_ACCUMULATION_STEPS", "auto")
|
722 |
+
self.gradient_accumulation_steps = int(gas) if gas.isdigit() else gas
|
723 |
+
|
724 |
+
if self.gradient_clipping is None:
|
725 |
+
gradient_clipping = os.environ.get("ACCELERATE_GRADIENT_CLIPPING", "none")
|
726 |
+
if gradient_clipping != "none":
|
727 |
+
self.gradient_clipping = float(gradient_clipping)
|
728 |
+
|
729 |
+
if self.zero_stage is None:
|
730 |
+
self.zero_stage = int(os.environ.get("ACCELERATE_DEEPSPEED_ZERO_STAGE", 2))
|
731 |
+
|
732 |
+
if self.offload_optimizer_device is None:
|
733 |
+
self.offload_optimizer_device = os.environ.get("ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE", "none")
|
734 |
+
|
735 |
+
if self.offload_param_device is None:
|
736 |
+
self.offload_param_device = os.environ.get("ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_DEVICE", "none")
|
737 |
+
|
738 |
+
if self.offload_optimizer_nvme_path is None:
|
739 |
+
self.offload_optimizer_nvme_path = os.environ.get(
|
740 |
+
"ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_NVME_PATH", "none"
|
741 |
+
)
|
742 |
+
|
743 |
+
if self.offload_param_nvme_path is None:
|
744 |
+
self.offload_param_nvme_path = os.environ.get("ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_NVME_PATH", "none")
|
745 |
+
|
746 |
+
if self.zero3_save_16bit_model is None:
|
747 |
+
self.zero3_save_16bit_model = (
|
748 |
+
os.environ.get("ACCELERATE_DEEPSPEED_ZERO3_SAVE_16BIT_MODEL", "false") == "true"
|
749 |
+
)
|
750 |
+
|
751 |
+
if self.hf_ds_config is None:
|
752 |
+
self.hf_ds_config = os.environ.get("ACCELERATE_DEEPSPEED_CONFIG_FILE", "none")
|
753 |
+
if (
|
754 |
+
isinstance(self.hf_ds_config, dict)
|
755 |
+
or (isinstance(self.hf_ds_config, str) and self.hf_ds_config != "none")
|
756 |
+
or isinstance(self.hf_ds_config, HfDeepSpeedConfig)
|
757 |
+
):
|
758 |
+
if not isinstance(self.hf_ds_config, HfDeepSpeedConfig):
|
759 |
+
self.hf_ds_config = HfDeepSpeedConfig(self.hf_ds_config)
|
760 |
+
if "gradient_accumulation_steps" not in self.hf_ds_config.config:
|
761 |
+
self.hf_ds_config.config["gradient_accumulation_steps"] = 1
|
762 |
+
if "zero_optimization" not in self.hf_ds_config.config:
|
763 |
+
raise ValueError("Please specify the ZeRO optimization config in the DeepSpeed config.")
|
764 |
+
|
765 |
+
self._deepspeed_config_checks()
|
766 |
+
plugin_to_config_mapping = {
|
767 |
+
"gradient_accumulation_steps": "gradient_accumulation_steps",
|
768 |
+
"gradient_clipping": "gradient_clipping",
|
769 |
+
"zero_stage": "zero_optimization.stage",
|
770 |
+
"offload_optimizer_device": "zero_optimization.offload_optimizer.device",
|
771 |
+
"offload_param_device": "zero_optimization.offload_param.device",
|
772 |
+
"offload_param_nvme_path": "zero_optimization.offload_param.nvme_path",
|
773 |
+
"offload_optimizer_nvme_path": "zero_optimization.offload_optimizer.nvme_path",
|
774 |
+
"zero3_save_16bit_model": "zero_optimization.stage3_gather_16bit_weights_on_model_save",
|
775 |
+
}
|
776 |
+
kwargs = {v: getattr(self, k) for k, v in plugin_to_config_mapping.items() if getattr(self, k) is not None}
|
777 |
+
for key in kwargs.keys():
|
778 |
+
self.fill_match(key, **kwargs, must_match=False)
|
779 |
+
self.hf_ds_config.set_stage_and_offload()
|
780 |
+
|
781 |
+
# filling the missing values in the class attributes from the DeepSpeed config
|
782 |
+
# when using the DeepSpeed config file.
|
783 |
+
for key, value in plugin_to_config_mapping.items():
|
784 |
+
config_value = self.hf_ds_config.get_value(value)
|
785 |
+
if config_value is not None and config_value != "auto":
|
786 |
+
setattr(self, key, config_value)
|
787 |
+
else:
|
788 |
+
config = {
|
789 |
+
"train_batch_size": "auto",
|
790 |
+
"train_micro_batch_size_per_gpu": "auto",
|
791 |
+
"gradient_accumulation_steps": self.gradient_accumulation_steps,
|
792 |
+
"zero_optimization": {
|
793 |
+
"stage": self.zero_stage,
|
794 |
+
"offload_optimizer": {
|
795 |
+
"device": self.offload_optimizer_device,
|
796 |
+
"nvme_path": self.offload_optimizer_nvme_path
|
797 |
+
if self.offload_optimizer_device == "nvme"
|
798 |
+
else None,
|
799 |
+
},
|
800 |
+
"offload_param": {
|
801 |
+
"device": self.offload_param_device,
|
802 |
+
"nvme_path": self.offload_param_nvme_path if self.offload_param_device == "nvme" else None,
|
803 |
+
},
|
804 |
+
"stage3_gather_16bit_weights_on_model_save": self.zero3_save_16bit_model,
|
805 |
+
},
|
806 |
+
}
|
807 |
+
if self.gradient_clipping:
|
808 |
+
config["gradient_clipping"] = self.gradient_clipping
|
809 |
+
self.hf_ds_config = HfDeepSpeedConfig(config)
|
810 |
+
|
811 |
+
self.deepspeed_config = self.hf_ds_config.config
|
812 |
+
self.deepspeed_config["steps_per_print"] = float("inf") # this will stop deepspeed from logging @ stdout
|
813 |
+
if self.zero3_init_flag is None:
|
814 |
+
self.zero3_init_flag = (
|
815 |
+
str_to_bool(os.environ.get("ACCELERATE_DEEPSPEED_ZERO3_INIT", str(self.hf_ds_config.is_zero3()))) == 1
|
816 |
+
)
|
817 |
+
if self.zero3_init_flag and not self.hf_ds_config.is_zero3():
|
818 |
+
warnings.warn("DeepSpeed Zero3 Init flag is only applicable for ZeRO Stage 3. Setting it to False.")
|
819 |
+
self.zero3_init_flag = False
|
820 |
+
|
821 |
+
def fill_match(self, ds_key_long, mismatches=None, must_match=True, **kwargs):
|
822 |
+
mismatches = [] if mismatches is None else mismatches
|
823 |
+
config, ds_key = self.hf_ds_config.find_config_node(ds_key_long)
|
824 |
+
if config is None:
|
825 |
+
return
|
826 |
+
|
827 |
+
if config.get(ds_key) == "auto":
|
828 |
+
if ds_key_long in kwargs:
|
829 |
+
config[ds_key] = kwargs[ds_key_long]
|
830 |
+
return
|
831 |
+
else:
|
832 |
+
raise ValueError(
|
833 |
+
f"`{ds_key_long}` not found in kwargs. "
|
834 |
+
f"Please specify `{ds_key_long}` without `auto` (set to correct value) in the DeepSpeed config file or "
|
835 |
+
"pass it in kwargs."
|
836 |
+
)
|
837 |
+
|
838 |
+
if not must_match:
|
839 |
+
return
|
840 |
+
|
841 |
+
ds_val = config.get(ds_key)
|
842 |
+
if ds_val is not None and ds_key_long in kwargs:
|
843 |
+
if ds_val != kwargs[ds_key_long]:
|
844 |
+
mismatches.append(f"- ds {ds_key_long}={ds_val} vs arg {ds_key_long}={kwargs[ds_key_long]}")
|
845 |
+
|
846 |
+
def is_auto(self, ds_key_long):
|
847 |
+
val = self.hf_ds_config.get_value(ds_key_long)
|
848 |
+
if val is None:
|
849 |
+
return False
|
850 |
+
else:
|
851 |
+
return val == "auto"
|
852 |
+
|
853 |
+
def get_value(self, ds_key_long, default=None):
|
854 |
+
return self.hf_ds_config.get_value(ds_key_long, default)
|
855 |
+
|
856 |
+
def deepspeed_config_process(self, prefix="", mismatches=None, config=None, must_match=True, **kwargs):
|
857 |
+
"""Process the DeepSpeed config with the values from the kwargs."""
|
858 |
+
mismatches = [] if mismatches is None else mismatches
|
859 |
+
if config is None:
|
860 |
+
config = self.deepspeed_config
|
861 |
+
for key, value in config.items():
|
862 |
+
if isinstance(value, dict):
|
863 |
+
self.deepspeed_config_process(
|
864 |
+
prefix=prefix + key + ".", mismatches=mismatches, config=value, must_match=must_match, **kwargs
|
865 |
+
)
|
866 |
+
else:
|
867 |
+
self.fill_match(prefix + key, mismatches, must_match=must_match, **kwargs)
|
868 |
+
if len(mismatches) > 0 and prefix == "":
|
869 |
+
mismatches_msg = "\n".join(mismatches)
|
870 |
+
raise ValueError(
|
871 |
+
"Please correct the following DeepSpeed config values that mismatch kwargs "
|
872 |
+
f" values:\n{mismatches_msg}\nThe easiest method is to set these DeepSpeed config values to 'auto'."
|
873 |
+
)
|
874 |
+
|
875 |
+
def set_mixed_precision(self, mixed_precision):
|
876 |
+
ds_config = self.deepspeed_config
|
877 |
+
kwargs = {
|
878 |
+
"fp16.enabled": mixed_precision == "fp16",
|
879 |
+
"bf16.enabled": mixed_precision == "bf16",
|
880 |
+
}
|
881 |
+
if mixed_precision == "fp16":
|
882 |
+
if "fp16" not in ds_config:
|
883 |
+
ds_config["fp16"] = {"enabled": True, "auto_cast": True}
|
884 |
+
elif mixed_precision == "bf16":
|
885 |
+
if "bf16" not in ds_config:
|
886 |
+
ds_config["bf16"] = {"enabled": True}
|
887 |
+
|
888 |
+
if mixed_precision != "no":
|
889 |
+
diff_dtype = "bf16" if mixed_precision == "fp16" else "fp16"
|
890 |
+
if str(ds_config.get(diff_dtype, {}).get("enabled", "False")).lower() == "true":
|
891 |
+
raise ValueError(
|
892 |
+
f"`--mixed_precision` arg cannot be set to `{mixed_precision}` when `{diff_dtype}` is set in the DeepSpeed config file."
|
893 |
+
)
|
894 |
+
for dtype in ["fp16", "bf16"]:
|
895 |
+
if dtype not in ds_config:
|
896 |
+
ds_config[dtype] = {"enabled": False}
|
897 |
+
self.fill_match("fp16.enabled", must_match=False, **kwargs)
|
898 |
+
self.fill_match("bf16.enabled", must_match=False, **kwargs)
|
899 |
+
|
900 |
+
def set_deepspeed_weakref(self):
|
901 |
+
from .imports import is_transformers_available
|
902 |
+
|
903 |
+
if self.zero3_init_flag:
|
904 |
+
if not is_transformers_available():
|
905 |
+
raise Exception(
|
906 |
+
"When `zero3_init_flag` is set, it requires Transformers to be installed. "
|
907 |
+
"Please run `pip install transformers`."
|
908 |
+
)
|
909 |
+
ds_config = copy.deepcopy(self.deepspeed_config)
|
910 |
+
if "gradient_accumulation_steps" not in ds_config or ds_config["gradient_accumulation_steps"] == "auto":
|
911 |
+
ds_config["gradient_accumulation_steps"] = 1
|
912 |
+
if (
|
913 |
+
"train_micro_batch_size_per_gpu" not in ds_config
|
914 |
+
or ds_config["train_micro_batch_size_per_gpu"] == "auto"
|
915 |
+
):
|
916 |
+
ds_config["train_micro_batch_size_per_gpu"] = 1
|
917 |
+
if ds_config.get("train_batch_size", None) == "auto":
|
918 |
+
del ds_config["train_batch_size"]
|
919 |
+
|
920 |
+
if compare_versions("transformers", "<", "4.33"):
|
921 |
+
from transformers.deepspeed import HfDeepSpeedConfig
|
922 |
+
else:
|
923 |
+
from transformers.integrations import HfDeepSpeedConfig
|
924 |
+
|
925 |
+
self.dschf = HfDeepSpeedConfig(ds_config) # keep this object alive # noqa
|
926 |
+
|
927 |
+
def is_zero3_init_enabled(self):
|
928 |
+
return self.zero3_init_flag
|
929 |
+
|
930 |
+
@contextmanager
|
931 |
+
def zero3_init_context_manager(self, enable=False):
|
932 |
+
old = self.zero3_init_flag
|
933 |
+
if old == enable:
|
934 |
+
yield
|
935 |
+
else:
|
936 |
+
self.zero3_init_flag = enable
|
937 |
+
self.dschf = None
|
938 |
+
self.set_deepspeed_weakref()
|
939 |
+
yield
|
940 |
+
self.zero3_init_flag = old
|
941 |
+
self.dschf = None
|
942 |
+
self.set_deepspeed_weakref()
|
943 |
+
|
944 |
+
def _deepspeed_config_checks(self):
|
945 |
+
env_variable_names_to_ignore = [
|
946 |
+
"ACCELERATE_GRADIENT_ACCUMULATION_STEPS",
|
947 |
+
"ACCELERATE_GRADIENT_CLIPPING",
|
948 |
+
"ACCELERATE_DEEPSPEED_ZERO_STAGE",
|
949 |
+
"ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE",
|
950 |
+
"ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_DEVICE",
|
951 |
+
"ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_NVME_PATH",
|
952 |
+
"ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_NVME_PATH",
|
953 |
+
"ACCELERATE_DEEPSPEED_ZERO3_SAVE_16BIT_MODEL",
|
954 |
+
"ACCELERATE_MIXED_PRECISION",
|
955 |
+
]
|
956 |
+
env_variable_names_to_ignore = [
|
957 |
+
name.replace("ACCELERATE_", "").replace("DEEPSPEED_", "").lower() for name in env_variable_names_to_ignore
|
958 |
+
]
|
959 |
+
|
960 |
+
deepspeed_fields_from_accelerate_config = os.environ.get("ACCELERATE_CONFIG_DS_FIELDS", "").split(",")
|
961 |
+
|
962 |
+
if any(name in env_variable_names_to_ignore for name in deepspeed_fields_from_accelerate_config):
|
963 |
+
raise ValueError(
|
964 |
+
f"When using `deepspeed_config_file`, the following accelerate config variables will be ignored: {env_variable_names_to_ignore}.\n"
|
965 |
+
"Please specify them appropriately in the DeepSpeed config file.\n"
|
966 |
+
"If you are using an accelerate config file, remove others config variables mentioned in the above specified list.\n"
|
967 |
+
"The easiest method is to create a new config following the questionnaire via `accelerate config`.\n"
|
968 |
+
"It will only ask for the necessary config variables when using `deepspeed_config_file`."
|
969 |
+
)
|
970 |
+
|
971 |
+
|
972 |
+
@dataclass
|
973 |
+
class FullyShardedDataParallelPlugin:
|
974 |
+
"""
|
975 |
+
This plugin is used to enable fully sharded data parallelism.
|
976 |
+
"""
|
977 |
+
|
978 |
+
sharding_strategy: "typing.Any" = field(
|
979 |
+
default=None,
|
980 |
+
metadata={
|
981 |
+
"help": "FSDP Sharding Strategy of type `torch.distributed.fsdp.fully_sharded_data_parallel.ShardingStrategy`"
|
982 |
+
},
|
983 |
+
)
|
984 |
+
backward_prefetch: "typing.Any" = field(
|
985 |
+
default=None,
|
986 |
+
metadata={
|
987 |
+
"help": "FSDP Backward Prefetch of type `torch.distributed.fsdp.fully_sharded_data_parallel.BackwardPrefetch`"
|
988 |
+
},
|
989 |
+
)
|
990 |
+
mixed_precision_policy: "typing.Any" = field(
|
991 |
+
default=None,
|
992 |
+
metadata={
|
993 |
+
"help": "A config to enable mixed precision training with FullyShardedDataParallel. "
|
994 |
+
"The 3 flags that are set are `param_dtype`, `reduce_dtype`, `buffer_dtype`. "
|
995 |
+
"Each flag expects `torch.dtype` as the value. "
|
996 |
+
"It is of type `torch.distributed.fsdp.fully_sharded_data_parallel.MixedPrecision`."
|
997 |
+
},
|
998 |
+
)
|
999 |
+
auto_wrap_policy: Optional[Callable] = field(
|
1000 |
+
default=None,
|
1001 |
+
metadata={"help": "A callable specifying a policy to recursively wrap layers with FSDP"},
|
1002 |
+
)
|
1003 |
+
cpu_offload: "typing.Any" = field(
|
1004 |
+
default=None,
|
1005 |
+
metadata={
|
1006 |
+
"help": "Decides Whether to offload parameters and gradients to CPU. "
|
1007 |
+
"It is of type `torch.distributed.fsdp.fully_sharded_data_parallel.CPUOffload`."
|
1008 |
+
},
|
1009 |
+
)
|
1010 |
+
ignored_modules: Optional[Iterable[torch.nn.Module]] = field(
|
1011 |
+
default=None,
|
1012 |
+
metadata={"help": "A list of modules to ignore for FSDP."},
|
1013 |
+
)
|
1014 |
+
state_dict_type: "typing.Any" = field(
|
1015 |
+
default=None,
|
1016 |
+
metadata={
|
1017 |
+
"help": "FSDP State Dict Type of type `torch.distributed.fsdp.fully_sharded_data_parallel.StateDictType`"
|
1018 |
+
},
|
1019 |
+
)
|
1020 |
+
state_dict_config: "typing.Any" = field(
|
1021 |
+
default=None,
|
1022 |
+
metadata={
|
1023 |
+
"help": "FSDP State Dict Config of type `torch.distributed.fsdp.fully_sharded_data_parallel.StateDictConfig`"
|
1024 |
+
},
|
1025 |
+
)
|
1026 |
+
optim_state_dict_config: "typing.Any" = field(
|
1027 |
+
default=None,
|
1028 |
+
metadata={
|
1029 |
+
"help": "FSDP Optimizer State Dict Config of type `torch.distributed.fsdp.fully_sharded_data_parallel.OptimStateDictConfig`"
|
1030 |
+
},
|
1031 |
+
)
|
1032 |
+
limit_all_gathers: bool = field(
|
1033 |
+
default=True,
|
1034 |
+
metadata={
|
1035 |
+
"help": "If False, then FSDP allows the CPU thread to schedule all-gathers "
|
1036 |
+
"without any extra synchronization. If True, then FSDP explicitly synchronizes the CPU thread to prevent "
|
1037 |
+
"too many in-flight all-gathers. This bool only affects the sharded strategies that schedule all-gathers. "
|
1038 |
+
"Enabling this can help lower the number of CUDA malloc retries."
|
1039 |
+
},
|
1040 |
+
)
|
1041 |
+
use_orig_params: bool = field(
|
1042 |
+
default=True,
|
1043 |
+
metadata={
|
1044 |
+
"help": "If `True`, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable parameters. "
|
1045 |
+
"Useful in cases such as parameter-efficient fine-tuning. "
|
1046 |
+
"Please refer this [blog](https://dev-discuss.pytorch.org/t/rethinking-pytorch-fully-sharded-data-parallel-fsdp-from-first-principles/1019). "
|
1047 |
+
"This also enables multiple optimizer param groups. This should be `True` when creating an optimizer object before preparing/wrapping the model with FSDP."
|
1048 |
+
},
|
1049 |
+
)
|
1050 |
+
param_init_fn: Optional[Callable[[torch.nn.Module], None]] = field(
|
1051 |
+
default=None,
|
1052 |
+
metadata={
|
1053 |
+
"help": "A Callable[torch.nn.Module] -> None that specifies how modules "
|
1054 |
+
"that are currently on the meta device should be initialized onto an actual device."
|
1055 |
+
},
|
1056 |
+
)
|
1057 |
+
sync_module_states: bool = field(
|
1058 |
+
default=True,
|
1059 |
+
metadata={
|
1060 |
+
"help": "If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0 "
|
1061 |
+
"to ensure they are the same across all ranks after initialization"
|
1062 |
+
},
|
1063 |
+
)
|
1064 |
+
forward_prefetch: bool = field(
|
1065 |
+
default=False,
|
1066 |
+
metadata={
|
1067 |
+
"help": "If True, then FSDP explicitly prefetches the next upcoming "
|
1068 |
+
"all-gather while executing in the forward pass. only use with Static graphs."
|
1069 |
+
},
|
1070 |
+
)
|
1071 |
+
activation_checkpointing: bool = field(
|
1072 |
+
default=False,
|
1073 |
+
metadata={
|
1074 |
+
"help": "If True, activation checkpointing is a technique to reduce memory usage by clearing activations of "
|
1075 |
+
"certain layers and recomputing them during a backward pass. Effectively, this trades extra computation time "
|
1076 |
+
"for reduced memory usage."
|
1077 |
+
},
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
def __post_init__(self):
|
1081 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch, CPUOffload, ShardingStrategy
|
1082 |
+
|
1083 |
+
prefix = "FSDP_"
|
1084 |
+
if self.sharding_strategy is None:
|
1085 |
+
sharding_strategy = os.environ.get(prefix + "SHARDING_STRATEGY", "FULL_SHARD")
|
1086 |
+
sharding_strategy = (
|
1087 |
+
FSDP_SHARDING_STRATEGY.index(sharding_strategy) + 1
|
1088 |
+
if not sharding_strategy.isdigit()
|
1089 |
+
else int(sharding_strategy)
|
1090 |
+
)
|
1091 |
+
self.sharding_strategy = ShardingStrategy(sharding_strategy)
|
1092 |
+
|
1093 |
+
if self.cpu_offload is None:
|
1094 |
+
if str_to_bool(os.environ.get(prefix + "OFFLOAD_PARAMS", "False")) == 1:
|
1095 |
+
self.cpu_offload = CPUOffload(offload_params=True)
|
1096 |
+
else:
|
1097 |
+
self.cpu_offload = CPUOffload(offload_params=False)
|
1098 |
+
|
1099 |
+
if self.backward_prefetch is None:
|
1100 |
+
prefetch_policy = os.environ.get(prefix + "BACKWARD_PREFETCH", "NO_PREFETCH")
|
1101 |
+
if prefetch_policy != FSDP_BACKWARD_PREFETCH[-1]:
|
1102 |
+
self.backward_prefetch = BackwardPrefetch(FSDP_BACKWARD_PREFETCH.index(prefetch_policy) + 1)
|
1103 |
+
|
1104 |
+
if self.state_dict_type is None:
|
1105 |
+
state_dict_type_policy = os.environ.get(prefix + "STATE_DICT_TYPE", "FULL_STATE_DICT")
|
1106 |
+
self.set_state_dict_type(state_dict_type_policy)
|
1107 |
+
self.use_orig_params = str_to_bool(os.environ.get(prefix + "USE_ORIG_PARAMS", "False")) == 1
|
1108 |
+
self.sync_module_states = str_to_bool(os.environ.get(prefix + "SYNC_MODULE_STATES", "True")) == 1
|
1109 |
+
self.forward_prefetch = str_to_bool(os.environ.get(prefix + "FORWARD_PREFETCH", "False")) == 1
|
1110 |
+
self.activation_checkpointing = str_to_bool(os.environ.get(prefix + "ACTIVATION_CHECKPOINTING", "False")) == 1
|
1111 |
+
|
1112 |
+
if self.sync_module_states:
|
1113 |
+
if is_npu_available():
|
1114 |
+
device = torch.npu.current_device()
|
1115 |
+
elif is_cuda_available():
|
1116 |
+
device = torch.cuda.current_device()
|
1117 |
+
elif is_xpu_available():
|
1118 |
+
device = torch.xpu.current_device()
|
1119 |
+
else:
|
1120 |
+
raise RuntimeError(
|
1121 |
+
"There are currently no available devices found, must be one of 'XPU', 'CUDA', or 'NPU'."
|
1122 |
+
)
|
1123 |
+
self.param_init_fn = lambda x: x.to_empty(device=device, recurse=False)
|
1124 |
+
|
1125 |
+
@staticmethod
|
1126 |
+
def get_module_class_from_name(module, name):
|
1127 |
+
"""
|
1128 |
+
Gets a class from a module by its name.
|
1129 |
+
|
1130 |
+
Args:
|
1131 |
+
module (`torch.nn.Module`): The module to get the class from.
|
1132 |
+
name (`str`): The name of the class.
|
1133 |
+
"""
|
1134 |
+
modules_children = list(module.children())
|
1135 |
+
if module.__class__.__name__ == name:
|
1136 |
+
return module.__class__
|
1137 |
+
elif len(modules_children) == 0:
|
1138 |
+
return
|
1139 |
+
else:
|
1140 |
+
for child_module in modules_children:
|
1141 |
+
module_class = FullyShardedDataParallelPlugin.get_module_class_from_name(child_module, name)
|
1142 |
+
if module_class is not None:
|
1143 |
+
return module_class
|
1144 |
+
|
1145 |
+
def set_auto_wrap_policy(self, model):
|
1146 |
+
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy, transformer_auto_wrap_policy
|
1147 |
+
|
1148 |
+
default_transformer_cls_names_to_wrap = (
|
1149 |
+
",".join(model._no_split_modules) if getattr(model, "_no_split_modules", None) is not None else ""
|
1150 |
+
)
|
1151 |
+
if self.auto_wrap_policy is None:
|
1152 |
+
auto_wrap_policy = os.environ.get("FSDP_AUTO_WRAP_POLICY", "NO_WRAP")
|
1153 |
+
if auto_wrap_policy == FSDP_AUTO_WRAP_POLICY[0]:
|
1154 |
+
transformer_cls_names_to_wrap = os.environ.get(
|
1155 |
+
"FSDP_TRANSFORMER_CLS_TO_WRAP", default_transformer_cls_names_to_wrap
|
1156 |
+
).split(",")
|
1157 |
+
transformer_cls_to_wrap = set()
|
1158 |
+
for layer_class in transformer_cls_names_to_wrap:
|
1159 |
+
transformer_cls = FullyShardedDataParallelPlugin.get_module_class_from_name(model, layer_class)
|
1160 |
+
if transformer_cls is None:
|
1161 |
+
raise Exception("Could not find the transformer layer class to wrap in the model.")
|
1162 |
+
else:
|
1163 |
+
transformer_cls_to_wrap.add(transformer_cls)
|
1164 |
+
|
1165 |
+
self.auto_wrap_policy = functools.partial(
|
1166 |
+
transformer_auto_wrap_policy,
|
1167 |
+
# Transformer layer class to wrap
|
1168 |
+
transformer_layer_cls=transformer_cls_to_wrap,
|
1169 |
+
)
|
1170 |
+
elif auto_wrap_policy == FSDP_AUTO_WRAP_POLICY[1]:
|
1171 |
+
min_num_params = int(os.environ.get("FSDP_MIN_NUM_PARAMS", 0))
|
1172 |
+
if min_num_params > 0:
|
1173 |
+
self.auto_wrap_policy = functools.partial(
|
1174 |
+
size_based_auto_wrap_policy, min_num_params=min_num_params
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
def set_mixed_precision(self, mixed_precision, buffer_autocast=False, override=False):
|
1178 |
+
if isinstance(mixed_precision, str):
|
1179 |
+
if mixed_precision == "fp16":
|
1180 |
+
dtype = torch.float16
|
1181 |
+
elif mixed_precision == "bf16":
|
1182 |
+
dtype = torch.bfloat16
|
1183 |
+
elif mixed_precision == "fp32":
|
1184 |
+
dtype = torch.float32
|
1185 |
+
else:
|
1186 |
+
raise ValueError(f"Unknown mixed precision value: {mixed_precision}")
|
1187 |
+
else:
|
1188 |
+
dtype = mixed_precision
|
1189 |
+
|
1190 |
+
buffer_dtype = torch.float32 if buffer_autocast else dtype
|
1191 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
|
1192 |
+
|
1193 |
+
if self.mixed_precision_policy is None or override:
|
1194 |
+
self.mixed_precision_policy = MixedPrecision(
|
1195 |
+
param_dtype=dtype, reduce_dtype=dtype, buffer_dtype=buffer_dtype
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
def set_state_dict_type(self, state_dict_type_policy):
|
1199 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import (
|
1200 |
+
FullOptimStateDictConfig,
|
1201 |
+
FullStateDictConfig,
|
1202 |
+
StateDictType,
|
1203 |
+
)
|
1204 |
+
|
1205 |
+
self.state_dict_type = StateDictType(FSDP_STATE_DICT_TYPE.index(state_dict_type_policy) + 1)
|
1206 |
+
|
1207 |
+
if self.state_dict_type == StateDictType.FULL_STATE_DICT:
|
1208 |
+
if self.state_dict_config is None:
|
1209 |
+
self.state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
|
1210 |
+
if self.optim_state_dict_config is None:
|
1211 |
+
self.optim_state_dict_config = FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True)
|
1212 |
+
|
1213 |
+
|
1214 |
+
@dataclass
|
1215 |
+
class MegatronLMPlugin:
|
1216 |
+
"""
|
1217 |
+
Plugin for Megatron-LM to enable tensor, pipeline, sequence and data parallelism. Also to enable selective
|
1218 |
+
activation recomputation and optimized fused kernels.
|
1219 |
+
"""
|
1220 |
+
|
1221 |
+
tp_degree: int = field(default=None, metadata={"help": "tensor parallelism degree."})
|
1222 |
+
pp_degree: int = field(default=None, metadata={"help": "pipeline parallelism degree."})
|
1223 |
+
num_micro_batches: int = field(default=None, metadata={"help": "number of micro-batches."})
|
1224 |
+
gradient_clipping: float = field(
|
1225 |
+
default=None, metadata={"help": "gradient clipping value based on global L2 Norm (0 to disable)"}
|
1226 |
+
)
|
1227 |
+
sequence_parallelism: bool = field(
|
1228 |
+
default=None,
|
1229 |
+
metadata={"help": "enable sequence parallelism"},
|
1230 |
+
)
|
1231 |
+
recompute_activations: bool = field(
|
1232 |
+
default=None,
|
1233 |
+
metadata={"help": "enable selective activation recomputation"},
|
1234 |
+
)
|
1235 |
+
use_distributed_optimizer: bool = field(
|
1236 |
+
default=None,
|
1237 |
+
metadata={"help": "enable distributed optimizer"},
|
1238 |
+
)
|
1239 |
+
pipeline_model_parallel_split_rank: int = field(
|
1240 |
+
default=None, metadata={"help": "Rank where encoder and decoder should be split."}
|
1241 |
+
)
|
1242 |
+
num_layers_per_virtual_pipeline_stage: int = field(
|
1243 |
+
default=None, metadata={"help": "Number of layers per virtual pipeline stage."}
|
1244 |
+
)
|
1245 |
+
is_train_batch_min: str = field(
|
1246 |
+
default=True,
|
1247 |
+
metadata={"help": "If both train & eval dataloaders are specified, this will decide the micro_batch_size"},
|
1248 |
+
)
|
1249 |
+
train_iters: int = field(
|
1250 |
+
default=None,
|
1251 |
+
metadata={
|
1252 |
+
"help": "Total number of iterations to train over all training runs. "
|
1253 |
+
"Note that either train-iters or train-samples should be provided when using `MegatronLMDummyScheduler`"
|
1254 |
+
},
|
1255 |
+
)
|
1256 |
+
train_samples: int = field(
|
1257 |
+
default=None,
|
1258 |
+
metadata={
|
1259 |
+
"help": "Total number of samples to train over all training runs. "
|
1260 |
+
"Note that either train-iters or train-samples should be provided when using `MegatronLMDummyScheduler`"
|
1261 |
+
},
|
1262 |
+
)
|
1263 |
+
weight_decay_incr_style: str = field(
|
1264 |
+
default="constant",
|
1265 |
+
metadata={"help": 'Weight decay increment function. choices=["constant", "linear", "cosine"]. '},
|
1266 |
+
)
|
1267 |
+
start_weight_decay: float = field(
|
1268 |
+
default=None,
|
1269 |
+
metadata={"help": "Initial weight decay coefficient for L2 regularization."},
|
1270 |
+
)
|
1271 |
+
end_weight_decay: float = field(
|
1272 |
+
default=None,
|
1273 |
+
metadata={"help": "End of run weight decay coefficient for L2 regularization."},
|
1274 |
+
)
|
1275 |
+
lr_decay_style: str = field(
|
1276 |
+
default="linear",
|
1277 |
+
metadata={"help": "Learning rate decay function. choices=['constant', 'linear', 'cosine']."},
|
1278 |
+
)
|
1279 |
+
lr_decay_iters: int = field(
|
1280 |
+
default=None,
|
1281 |
+
metadata={"help": "Number of iterations for learning rate decay. If None defaults to `train_iters`."},
|
1282 |
+
)
|
1283 |
+
lr_decay_samples: int = field(
|
1284 |
+
default=None,
|
1285 |
+
metadata={"help": "Number of samples for learning rate decay. If None defaults to `train_samples`."},
|
1286 |
+
)
|
1287 |
+
lr_warmup_iters: int = field(
|
1288 |
+
default=None,
|
1289 |
+
metadata={"help": "number of iterations to linearly warmup learning rate over."},
|
1290 |
+
)
|
1291 |
+
lr_warmup_samples: int = field(
|
1292 |
+
default=None,
|
1293 |
+
metadata={"help": "number of samples to linearly warmup learning rate over."},
|
1294 |
+
)
|
1295 |
+
lr_warmup_fraction: float = field(
|
1296 |
+
default=None,
|
1297 |
+
metadata={"help": "fraction of lr-warmup-(iters/samples) to linearly warmup learning rate over."},
|
1298 |
+
)
|
1299 |
+
min_lr: float = field(
|
1300 |
+
default=0,
|
1301 |
+
metadata={"help": "Minumum value for learning rate. The scheduler clip values below this threshold."},
|
1302 |
+
)
|
1303 |
+
consumed_samples: List[int] = field(
|
1304 |
+
default=None,
|
1305 |
+
metadata={
|
1306 |
+
"help": "Number of samples consumed in the same order as the dataloaders to `accelerator.prepare` call."
|
1307 |
+
},
|
1308 |
+
)
|
1309 |
+
no_wd_decay_cond: Optional[Callable] = field(default=None, metadata={"help": "Condition to disable weight decay."})
|
1310 |
+
scale_lr_cond: Optional[Callable] = field(default=None, metadata={"help": "Condition to scale learning rate."})
|
1311 |
+
lr_mult: float = field(default=1.0, metadata={"help": "Learning rate multiplier."})
|
1312 |
+
megatron_dataset_flag: bool = field(
|
1313 |
+
default=False,
|
1314 |
+
metadata={"help": "Whether the format of dataset follows Megatron-LM Indexed/Cached/MemoryMapped format."},
|
1315 |
+
)
|
1316 |
+
seq_length: int = field(
|
1317 |
+
default=None,
|
1318 |
+
metadata={"help": "Maximum sequence length to process."},
|
1319 |
+
)
|
1320 |
+
encoder_seq_length: int = field(
|
1321 |
+
default=None,
|
1322 |
+
metadata={"help": "Maximum sequence length to process for the encoder."},
|
1323 |
+
)
|
1324 |
+
decoder_seq_length: int = field(
|
1325 |
+
default=None,
|
1326 |
+
metadata={"help": "Maximum sequence length to process for the decoder."},
|
1327 |
+
)
|
1328 |
+
tensorboard_dir: str = field(
|
1329 |
+
default=None,
|
1330 |
+
metadata={"help": "Path to save tensorboard logs."},
|
1331 |
+
)
|
1332 |
+
set_all_logging_options: bool = field(
|
1333 |
+
default=False,
|
1334 |
+
metadata={"help": "Whether to set all logging options."},
|
1335 |
+
)
|
1336 |
+
eval_iters: int = field(
|
1337 |
+
default=100, metadata={"help": "Number of iterations to run for evaluation validation/test for."}
|
1338 |
+
)
|
1339 |
+
eval_interval: int = field(
|
1340 |
+
default=1000, metadata={"help": "Interval between running evaluation on validation set."}
|
1341 |
+
)
|
1342 |
+
return_logits: bool = field(
|
1343 |
+
default=False,
|
1344 |
+
metadata={"help": "Whether to return logits from the model."},
|
1345 |
+
)
|
1346 |
+
|
1347 |
+
# custom train step args
|
1348 |
+
custom_train_step_class: Optional[Any] = field(
|
1349 |
+
default=None,
|
1350 |
+
metadata={"help": "Custom train step class."},
|
1351 |
+
)
|
1352 |
+
custom_train_step_kwargs: Optional[Dict[str, Any]] = field(
|
1353 |
+
default=None,
|
1354 |
+
metadata={"help": "Custom train step kwargs."},
|
1355 |
+
)
|
1356 |
+
|
1357 |
+
# custom model args
|
1358 |
+
custom_model_provider_function: Optional[Callable] = field(
|
1359 |
+
default=None,
|
1360 |
+
metadata={"help": "Custom model provider function."},
|
1361 |
+
)
|
1362 |
+
custom_prepare_model_function: Optional[Callable] = field(
|
1363 |
+
default=None,
|
1364 |
+
metadata={"help": "Custom prepare model function."},
|
1365 |
+
)
|
1366 |
+
|
1367 |
+
# remaining args such as enabling Alibi/ROPE positional embeddings,
|
1368 |
+
# wandb logging, Multi-Query Attention, etc.
|
1369 |
+
other_megatron_args: Optional[Dict[str, Any]] = field(
|
1370 |
+
default=None,
|
1371 |
+
metadata={"help": "Other Megatron-LM arguments. Please refer Megatron-LM"},
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
def __post_init__(self):
|
1375 |
+
prefix = "MEGATRON_LM_"
|
1376 |
+
if self.tp_degree is None:
|
1377 |
+
self.tp_degree = int(os.environ.get(prefix + "TP_DEGREE", 1))
|
1378 |
+
if self.pp_degree is None:
|
1379 |
+
self.pp_degree = int(os.environ.get(prefix + "PP_DEGREE", 1))
|
1380 |
+
if self.num_micro_batches is None:
|
1381 |
+
self.num_micro_batches = int(os.environ.get(prefix + "NUM_MICRO_BATCHES", 1))
|
1382 |
+
if self.gradient_clipping is None:
|
1383 |
+
self.gradient_clipping = float(os.environ.get(prefix + "GRADIENT_CLIPPING", 1.0))
|
1384 |
+
if self.recompute_activations is None:
|
1385 |
+
self.recompute_activations = str_to_bool(os.environ.get(prefix + "RECOMPUTE_ACTIVATIONS", "False")) == 1
|
1386 |
+
if self.use_distributed_optimizer is None:
|
1387 |
+
self.use_distributed_optimizer = (
|
1388 |
+
str_to_bool(os.environ.get(prefix + "USE_DISTRIBUTED_OPTIMIZER", "False")) == 1
|
1389 |
+
)
|
1390 |
+
if self.sequence_parallelism is None:
|
1391 |
+
self.sequence_parallelism = str_to_bool(os.environ.get(prefix + "SEQUENCE_PARALLELISM", "False")) == 1
|
1392 |
+
|
1393 |
+
if self.pp_degree > 1 or self.use_distributed_optimizer:
|
1394 |
+
self.DDP_impl = "local"
|
1395 |
+
else:
|
1396 |
+
self.DDP_impl = "torch"
|
1397 |
+
|
1398 |
+
if self.consumed_samples is not None:
|
1399 |
+
if len(self.consumed_samples) == 1:
|
1400 |
+
self.consumed_samples.extend([0, 0])
|
1401 |
+
elif len(self.consumed_samples) == 2:
|
1402 |
+
self.consumed_samples.append(0)
|
1403 |
+
|
1404 |
+
self.megatron_lm_default_args = {
|
1405 |
+
"tensor_model_parallel_size": self.tp_degree,
|
1406 |
+
"pipeline_model_parallel_size": self.pp_degree,
|
1407 |
+
"pipeline_model_parallel_split_rank": self.pipeline_model_parallel_split_rank,
|
1408 |
+
"num_layers_per_virtual_pipeline_stage": self.num_layers_per_virtual_pipeline_stage,
|
1409 |
+
"DDP_impl": self.DDP_impl,
|
1410 |
+
"use_distributed_optimizer": self.use_distributed_optimizer,
|
1411 |
+
"sequence_parallel": self.sequence_parallelism,
|
1412 |
+
"clip_grad": self.gradient_clipping,
|
1413 |
+
"num_micro_batches": self.num_micro_batches,
|
1414 |
+
"consumed_samples": self.consumed_samples,
|
1415 |
+
"no_wd_decay_cond": self.no_wd_decay_cond,
|
1416 |
+
"scale_lr_cond": self.scale_lr_cond,
|
1417 |
+
"lr_mult": self.lr_mult,
|
1418 |
+
"megatron_dataset_flag": self.megatron_dataset_flag,
|
1419 |
+
"eval_iters": self.eval_iters,
|
1420 |
+
"eval_interval": self.eval_interval,
|
1421 |
+
}
|
1422 |
+
if self.recompute_activations:
|
1423 |
+
self.megatron_lm_default_args["recompute_granularity"] = "selective"
|
1424 |
+
if self.tensorboard_dir is not None:
|
1425 |
+
self.megatron_lm_default_args["tensorboard_dir"] = self.tensorboard_dir
|
1426 |
+
if self.set_all_logging_options:
|
1427 |
+
self.set_tensorboard_logging_options()
|
1428 |
+
if self.other_megatron_args is not None:
|
1429 |
+
self.megatron_lm_default_args.update(self.other_megatron_args)
|
1430 |
+
|
1431 |
+
def set_network_size_args(self, model, batch_data=None):
|
1432 |
+
# Check if the model is either BERT, GPT or T5 else raise error
|
1433 |
+
# set 'num_layers', 'hidden_size', 'num_attention_heads', 'max_position_embeddings'
|
1434 |
+
if "megatron-bert" in model.config.model_type.lower():
|
1435 |
+
model_type_name = "bert"
|
1436 |
+
num_layers = model.config.num_hidden_layers
|
1437 |
+
hidden_size = model.config.hidden_size
|
1438 |
+
num_attention_heads = model.config.num_attention_heads
|
1439 |
+
max_position_embeddings = model.config.max_position_embeddings
|
1440 |
+
num_labels = model.config.num_labels
|
1441 |
+
orig_vocab_size = model.config.vocab_size
|
1442 |
+
if "maskedlm" in model.__class__.__name__.lower():
|
1443 |
+
pretraining_flag = True
|
1444 |
+
if self.seq_length is not None:
|
1445 |
+
if self.encoder_seq_length is not None:
|
1446 |
+
warnings.warn("Both `seq_length` and `encoder_seq_length` are set. Using `encoder_seq_length`.")
|
1447 |
+
self.seq_length = self.encoder_seq_length
|
1448 |
+
elif self.encoder_seq_length is not None:
|
1449 |
+
self.seq_length = self.encoder_seq_length
|
1450 |
+
elif batch_data is not None:
|
1451 |
+
self.seq_length = batch_data["input_ids"].shape[1]
|
1452 |
+
else:
|
1453 |
+
self.seq_length = max_position_embeddings
|
1454 |
+
self.megatron_lm_default_args["seq_length"] = self.seq_length
|
1455 |
+
elif "gpt2" in model.config.model_type.lower():
|
1456 |
+
model_type_name = "gpt"
|
1457 |
+
num_layers = model.config.n_layer
|
1458 |
+
hidden_size = model.config.n_embd
|
1459 |
+
num_attention_heads = model.config.n_head
|
1460 |
+
max_position_embeddings = model.config.n_positions
|
1461 |
+
orig_vocab_size = model.config.vocab_size
|
1462 |
+
pretraining_flag = True
|
1463 |
+
if self.seq_length is not None:
|
1464 |
+
if self.decoder_seq_length is not None:
|
1465 |
+
warnings.warn("Both `seq_length` and `decoder_seq_length` are set. Using `decoder_seq_length`.")
|
1466 |
+
self.seq_length = self.decoder_seq_length
|
1467 |
+
elif self.decoder_seq_length is not None:
|
1468 |
+
self.seq_length = self.decoder_seq_length
|
1469 |
+
elif batch_data is not None:
|
1470 |
+
self.seq_length = batch_data["input_ids"].shape[1]
|
1471 |
+
else:
|
1472 |
+
self.seq_length = max_position_embeddings
|
1473 |
+
self.megatron_lm_default_args["seq_length"] = self.seq_length
|
1474 |
+
self.megatron_lm_default_args["return_logits"] = self.return_logits
|
1475 |
+
self.megatron_lm_default_args["tokenizer_type"] = "GPT2BPETokenizer"
|
1476 |
+
elif "t5" in model.config.model_type.lower():
|
1477 |
+
model_type_name = "t5"
|
1478 |
+
num_layers = model.config.num_layers
|
1479 |
+
hidden_size = model.config.d_model
|
1480 |
+
num_attention_heads = model.config.num_heads
|
1481 |
+
max_position_embeddings = model.config.n_positions if hasattr(model.config, "n_positions") else 1024
|
1482 |
+
orig_vocab_size = model.config.vocab_size
|
1483 |
+
pretraining_flag = True
|
1484 |
+
if self.encoder_seq_length is None:
|
1485 |
+
if batch_data is not None:
|
1486 |
+
self.encoder_seq_length = batch_data["input_ids"].shape[1]
|
1487 |
+
else:
|
1488 |
+
self.encoder_seq_length = max_position_embeddings
|
1489 |
+
if self.decoder_seq_length is None:
|
1490 |
+
if batch_data is not None:
|
1491 |
+
self.decoder_seq_length = batch_data["labels"].shape[1]
|
1492 |
+
else:
|
1493 |
+
self.decoder_seq_length = max_position_embeddings
|
1494 |
+
|
1495 |
+
self.megatron_lm_default_args["encoder_seq_length"] = self.encoder_seq_length
|
1496 |
+
self.megatron_lm_default_args["decoder_seq_length"] = self.decoder_seq_length
|
1497 |
+
else:
|
1498 |
+
raise ValueError(
|
1499 |
+
"🤗 Accelerate Megatron-LM integration supports only BERT, GPT and T5 model. "
|
1500 |
+
"Please check the model you are using is one of those."
|
1501 |
+
)
|
1502 |
+
|
1503 |
+
self.megatron_lm_default_args["model_type_name"] = model_type_name
|
1504 |
+
self.megatron_lm_default_args["num_layers"] = num_layers
|
1505 |
+
self.megatron_lm_default_args["hidden_size"] = hidden_size
|
1506 |
+
self.megatron_lm_default_args["num_attention_heads"] = num_attention_heads
|
1507 |
+
self.megatron_lm_default_args["max_position_embeddings"] = max_position_embeddings
|
1508 |
+
self.megatron_lm_default_args["pretraining_flag"] = pretraining_flag
|
1509 |
+
self.megatron_lm_default_args["orig_vocab_size"] = orig_vocab_size
|
1510 |
+
self.megatron_lm_default_args["model_return_dict"] = model.config.return_dict
|
1511 |
+
if model_type_name == "bert":
|
1512 |
+
self.megatron_lm_default_args["num_labels"] = num_labels
|
1513 |
+
|
1514 |
+
def set_mixed_precision(self, mixed_precision):
|
1515 |
+
if mixed_precision == "fp16":
|
1516 |
+
self.megatron_lm_default_args["fp16"] = True
|
1517 |
+
elif mixed_precision == "bf16":
|
1518 |
+
self.megatron_lm_default_args["bf16"] = True
|
1519 |
+
self.DDP_impl = "local"
|
1520 |
+
self.megatron_lm_default_args["DDP_impl"] = self.DDP_impl
|
1521 |
+
|
1522 |
+
def set_training_args(self, micro_batch_size, dp_degree):
|
1523 |
+
self.data_parallel_size = dp_degree
|
1524 |
+
self.micro_batch_size = micro_batch_size
|
1525 |
+
self.global_batch_size = dp_degree * micro_batch_size * self.num_micro_batches
|
1526 |
+
self.megatron_lm_default_args["data_parallel_size"] = self.data_parallel_size
|
1527 |
+
self.megatron_lm_default_args["micro_batch_size"] = self.micro_batch_size
|
1528 |
+
self.megatron_lm_default_args["global_batch_size"] = self.global_batch_size
|
1529 |
+
|
1530 |
+
def set_optimizer_type(self, optimizer):
|
1531 |
+
optimizer_name = optimizer.__class__.__name__.lower()
|
1532 |
+
if "adam" in optimizer_name:
|
1533 |
+
self.megatron_lm_default_args["optimizer"] = "adam"
|
1534 |
+
self.megatron_lm_default_args["adam_beta1"] = optimizer.defaults["betas"][0]
|
1535 |
+
self.megatron_lm_default_args["adam_beta2"] = optimizer.defaults["betas"][1]
|
1536 |
+
self.megatron_lm_default_args["adam_eps"] = optimizer.defaults["eps"]
|
1537 |
+
elif "sgd" in optimizer_name:
|
1538 |
+
self.megatron_lm_default_args["optimizer"] = "sgd"
|
1539 |
+
self.megatron_lm_default_args["sgd_momentum"] = optimizer.defaults["momentum"]
|
1540 |
+
else:
|
1541 |
+
raise ValueError(f"Optimizer {optimizer_name} is not supported by Megatron-LM")
|
1542 |
+
|
1543 |
+
self.megatron_lm_default_args["lr"] = optimizer.defaults["lr"]
|
1544 |
+
self.megatron_lm_default_args["weight_decay"] = optimizer.defaults["weight_decay"]
|
1545 |
+
|
1546 |
+
def set_scheduler_args(self, scheduler):
|
1547 |
+
if self.train_iters is None:
|
1548 |
+
self.train_iters = scheduler.total_num_steps // self.megatron_lm_default_args["data_parallel_size"]
|
1549 |
+
if self.train_samples is not None:
|
1550 |
+
self.train_samples = None
|
1551 |
+
warnings.warn(
|
1552 |
+
"Ignoring `train_samples` as `train_iters` based on scheduler is being used for training."
|
1553 |
+
)
|
1554 |
+
if self.lr_warmup_iters is None:
|
1555 |
+
self.lr_warmup_iters = scheduler.warmup_num_steps // self.megatron_lm_default_args["data_parallel_size"]
|
1556 |
+
if self.lr_warmup_samples is not None:
|
1557 |
+
warnings.warn(
|
1558 |
+
"Ignoring `lr_warmup_samples` as `lr_warmup_iters` based on scheduler is being used for training."
|
1559 |
+
)
|
1560 |
+
self.lr_warmup_samples = 0
|
1561 |
+
|
1562 |
+
self.megatron_lm_default_args["train_iters"] = self.train_iters
|
1563 |
+
self.megatron_lm_default_args["lr_warmup_iters"] = self.lr_warmup_iters
|
1564 |
+
self.megatron_lm_default_args["train_samples"] = self.train_samples
|
1565 |
+
self.megatron_lm_default_args["lr_warmup_samples"] = self.lr_warmup_samples
|
1566 |
+
self.megatron_lm_default_args["lr_decay_iters"] = self.lr_decay_iters
|
1567 |
+
self.megatron_lm_default_args["lr_decay_samples"] = self.lr_decay_samples
|
1568 |
+
self.megatron_lm_default_args["lr_warmup_fraction"] = self.lr_warmup_fraction
|
1569 |
+
self.megatron_lm_default_args["lr_decay_style"] = self.lr_decay_style
|
1570 |
+
self.megatron_lm_default_args["weight_decay_incr_style"] = self.weight_decay_incr_style
|
1571 |
+
self.megatron_lm_default_args["start_weight_decay"] = self.start_weight_decay
|
1572 |
+
self.megatron_lm_default_args["end_weight_decay"] = self.end_weight_decay
|
1573 |
+
self.megatron_lm_default_args["min_lr"] = self.min_lr
|
1574 |
+
|
1575 |
+
def set_tensorboard_logging_options(self):
|
1576 |
+
from megatron.arguments import _add_logging_args
|
1577 |
+
|
1578 |
+
parser = argparse.ArgumentParser()
|
1579 |
+
parser = _add_logging_args(parser)
|
1580 |
+
logging_args = parser.parse_known_args()
|
1581 |
+
self.dataset_args = vars(logging_args[0])
|
1582 |
+
for key, value in self.dataset_args.items():
|
1583 |
+
if key.startswith("log_"):
|
1584 |
+
self.megatron_lm_default_args[key] = True
|
1585 |
+
elif key.startswith("no_log_"):
|
1586 |
+
self.megatron_lm_default_args[key.replace("no_", "")] = True
|
1587 |
+
|
1588 |
+
|
1589 |
+
@dataclass
|
1590 |
+
class BnbQuantizationConfig:
|
1591 |
+
"""
|
1592 |
+
A plugin to enable BitsAndBytes 4bit and 8bit quantization
|
1593 |
+
"""
|
1594 |
+
|
1595 |
+
load_in_8bit: bool = field(default=False, metadata={"help": "enable 8bit quantization."})
|
1596 |
+
|
1597 |
+
llm_int8_threshold: float = field(
|
1598 |
+
default=6.0, metadata={"help": "value of the outliner threshold. only relevant when load_in_8bit=True"}
|
1599 |
+
)
|
1600 |
+
|
1601 |
+
load_in_4bit: bool = field(default=False, metadata={"help": "enable 4bit quantization."})
|
1602 |
+
|
1603 |
+
bnb_4bit_quant_type: str = field(
|
1604 |
+
default="fp4",
|
1605 |
+
metadata={
|
1606 |
+
"help": "set the quantization data type in the `bnb.nn.Linear4Bit` layers. Options are {'fp4','np4'}."
|
1607 |
+
},
|
1608 |
+
)
|
1609 |
+
|
1610 |
+
bnb_4bit_use_double_quant: bool = field(
|
1611 |
+
default=False,
|
1612 |
+
metadata={
|
1613 |
+
"help": "enable nested quantization where the quantization constants from the first quantization are quantized again."
|
1614 |
+
},
|
1615 |
+
)
|
1616 |
+
|
1617 |
+
bnb_4bit_compute_dtype: bool = field(
|
1618 |
+
default="fp16",
|
1619 |
+
metadata={
|
1620 |
+
"help": "This sets the computational type which might be different than the input time. For example, inputs might be "
|
1621 |
+
"fp32, but computation can be set to bf16 for speedups. Options are {'fp32','fp16','bf16'}."
|
1622 |
+
},
|
1623 |
+
)
|
1624 |
+
|
1625 |
+
torch_dtype: torch.dtype = field(
|
1626 |
+
default=None,
|
1627 |
+
metadata={
|
1628 |
+
"help": "this sets the dtype of the remaining non quantized layers. `bitsandbytes` library suggests to set the value"
|
1629 |
+
"to `torch.float16` for 8 bit model and use the same dtype as the compute dtype for 4 bit model "
|
1630 |
+
},
|
1631 |
+
)
|
1632 |
+
|
1633 |
+
skip_modules: List[str] = field(
|
1634 |
+
default=None,
|
1635 |
+
metadata={
|
1636 |
+
"help": "an explicit list of the modules that we don't quantize. The dtype of these modules will be `torch_dtype`."
|
1637 |
+
},
|
1638 |
+
)
|
1639 |
+
|
1640 |
+
keep_in_fp32_modules: List[str] = field(
|
1641 |
+
default=None,
|
1642 |
+
metadata={"help": "an explicit list of the modules that we don't quantize. We keep them in `torch.float32`."},
|
1643 |
+
)
|
1644 |
+
|
1645 |
+
def __post_init__(self):
|
1646 |
+
"""
|
1647 |
+
Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
|
1648 |
+
"""
|
1649 |
+
if not isinstance(self.load_in_8bit, bool):
|
1650 |
+
raise ValueError("load_in_8bit must be a boolean")
|
1651 |
+
|
1652 |
+
if not isinstance(self.load_in_4bit, bool):
|
1653 |
+
raise ValueError("load_in_4bit must be a boolean")
|
1654 |
+
|
1655 |
+
if self.load_in_4bit and self.load_in_8bit:
|
1656 |
+
raise ValueError("load_in_4bit and load_in_8 can't be both True")
|
1657 |
+
|
1658 |
+
if not self.load_in_4bit and not self.load_in_8bit:
|
1659 |
+
raise ValueError("load_in_4bit and load_in_8 can't be both False")
|
1660 |
+
|
1661 |
+
if not isinstance(self.llm_int8_threshold, (int, float)):
|
1662 |
+
raise ValueError("llm_int8_threshold must be a float or an int")
|
1663 |
+
|
1664 |
+
if not isinstance(self.bnb_4bit_quant_type, str):
|
1665 |
+
raise ValueError("bnb_4bit_quant_type must be a string")
|
1666 |
+
elif self.bnb_4bit_quant_type not in ["fp4", "nf4"]:
|
1667 |
+
raise ValueError(f"bnb_4bit_quant_type must be in ['fp4','nf4'] but found {self.bnb_4bit_quant_type}")
|
1668 |
+
|
1669 |
+
if not isinstance(self.bnb_4bit_use_double_quant, bool):
|
1670 |
+
raise ValueError("bnb_4bit_use_double_quant must be a boolean")
|
1671 |
+
|
1672 |
+
if isinstance(self.bnb_4bit_compute_dtype, str):
|
1673 |
+
if self.bnb_4bit_compute_dtype == "fp32":
|
1674 |
+
self.bnb_4bit_compute_dtype = torch.float32
|
1675 |
+
elif self.bnb_4bit_compute_dtype == "fp16":
|
1676 |
+
self.bnb_4bit_compute_dtype = torch.float16
|
1677 |
+
elif self.bnb_4bit_compute_dtype == "bf16":
|
1678 |
+
self.bnb_4bit_compute_dtype = torch.bfloat16
|
1679 |
+
else:
|
1680 |
+
raise ValueError(
|
1681 |
+
f"bnb_4bit_compute_dtype must be in ['fp32','fp16','bf16'] but found {self.bnb_4bit_compute_dtype}"
|
1682 |
+
)
|
1683 |
+
elif not isinstance(self.bnb_4bit_compute_dtype, torch.dtype):
|
1684 |
+
raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype")
|
1685 |
+
|
1686 |
+
if self.skip_modules is not None and not isinstance(self.skip_modules, list):
|
1687 |
+
raise ValueError("skip_modules must be a list of strings")
|
1688 |
+
|
1689 |
+
if self.keep_in_fp32_modules is not None and not isinstance(self.keep_in_fp32_modules, list):
|
1690 |
+
raise ValueError("keep_in_fp_32_modules must be a list of strings")
|
1691 |
+
|
1692 |
+
if self.load_in_4bit:
|
1693 |
+
self.target_dtype = CustomDtype.INT4
|
1694 |
+
|
1695 |
+
if self.load_in_8bit:
|
1696 |
+
self.target_dtype = torch.int8
|
1697 |
+
|
1698 |
+
if self.load_in_4bit and self.llm_int8_threshold != 6.0:
|
1699 |
+
warnings.warn("llm_int8_threshold can only be used for model loaded in 8bit")
|
1700 |
+
|
1701 |
+
if isinstance(self.torch_dtype, str):
|
1702 |
+
if self.torch_dtype == "fp32":
|
1703 |
+
self.torch_dtype = torch.float32
|
1704 |
+
elif self.torch_dtype == "fp16":
|
1705 |
+
self.torch_dtype = torch.float16
|
1706 |
+
elif self.torch_dtype == "bf16":
|
1707 |
+
self.torch_dtype = torch.bfloat16
|
1708 |
+
else:
|
1709 |
+
raise ValueError(f"torch_dtype must be in ['fp32','fp16','bf16'] but found {self.torch_dtype}")
|
1710 |
+
if self.load_in_8bit and self.torch_dtype is None:
|
1711 |
+
self.torch_dtype = torch.float16
|
1712 |
+
|
1713 |
+
if self.load_in_4bit and self.torch_dtype is None:
|
1714 |
+
self.torch_dtype = self.bnb_4bit_compute_dtype
|
1715 |
+
|
1716 |
+
if not isinstance(self.torch_dtype, torch.dtype):
|
1717 |
+
raise ValueError("torch_dtype must be a torch.dtype")
|
venv/lib/python3.10/site-packages/accelerate/utils/environment.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import logging
|
16 |
+
import math
|
17 |
+
import os
|
18 |
+
import platform
|
19 |
+
import subprocess
|
20 |
+
import sys
|
21 |
+
from dataclasses import dataclass, field
|
22 |
+
from functools import lru_cache
|
23 |
+
from shutil import which
|
24 |
+
from typing import List, Optional
|
25 |
+
|
26 |
+
import torch
|
27 |
+
from packaging.version import parse
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
def convert_dict_to_env_variables(current_env: dict):
|
34 |
+
"""
|
35 |
+
Verifies that all keys and values in `current_env` do not contain illegal keys or values, and returns a list of
|
36 |
+
strings as the result.
|
37 |
+
|
38 |
+
Example:
|
39 |
+
```python
|
40 |
+
>>> from accelerate.utils.environment import verify_env
|
41 |
+
|
42 |
+
>>> env = {"ACCELERATE_DEBUG_MODE": "1", "BAD_ENV_NAME": "<mything", "OTHER_ENV": "2"}
|
43 |
+
>>> valid_env_items = verify_env(env)
|
44 |
+
>>> print(valid_env_items)
|
45 |
+
["ACCELERATE_DEBUG_MODE=1\n", "OTHER_ENV=2\n"]
|
46 |
+
```
|
47 |
+
"""
|
48 |
+
forbidden_chars = [";", "\n", "<", ">", " "]
|
49 |
+
valid_env_items = []
|
50 |
+
for key, value in current_env.items():
|
51 |
+
if all(char not in (key + value) for char in forbidden_chars) and len(key) >= 1 and len(value) >= 1:
|
52 |
+
valid_env_items.append(f"{key}={value}\n")
|
53 |
+
else:
|
54 |
+
logger.warning(f"WARNING: Skipping {key}={value} as it contains forbidden characters or missing values.")
|
55 |
+
return valid_env_items
|
56 |
+
|
57 |
+
|
58 |
+
def str_to_bool(value) -> int:
|
59 |
+
"""
|
60 |
+
Converts a string representation of truth to `True` (1) or `False` (0).
|
61 |
+
|
62 |
+
True values are `y`, `yes`, `t`, `true`, `on`, and `1`; False value are `n`, `no`, `f`, `false`, `off`, and `0`;
|
63 |
+
"""
|
64 |
+
value = value.lower()
|
65 |
+
if value in ("y", "yes", "t", "true", "on", "1"):
|
66 |
+
return 1
|
67 |
+
elif value in ("n", "no", "f", "false", "off", "0"):
|
68 |
+
return 0
|
69 |
+
else:
|
70 |
+
raise ValueError(f"invalid truth value {value}")
|
71 |
+
|
72 |
+
|
73 |
+
def get_int_from_env(env_keys, default):
|
74 |
+
"""Returns the first positive env value found in the `env_keys` list or the default."""
|
75 |
+
for e in env_keys:
|
76 |
+
val = int(os.environ.get(e, -1))
|
77 |
+
if val >= 0:
|
78 |
+
return val
|
79 |
+
return default
|
80 |
+
|
81 |
+
|
82 |
+
def parse_flag_from_env(key, default=False):
|
83 |
+
"""Returns truthy value for `key` from the env if available else the default."""
|
84 |
+
value = os.environ.get(key, str(default))
|
85 |
+
return str_to_bool(value) == 1 # As its name indicates `str_to_bool` actually returns an int...
|
86 |
+
|
87 |
+
|
88 |
+
def parse_choice_from_env(key, default="no"):
|
89 |
+
value = os.environ.get(key, str(default))
|
90 |
+
return value
|
91 |
+
|
92 |
+
|
93 |
+
def are_libraries_initialized(*library_names: str) -> List[str]:
|
94 |
+
"""
|
95 |
+
Checks if any of `library_names` are imported in the environment. Will return any names that are.
|
96 |
+
"""
|
97 |
+
return [lib_name for lib_name in library_names if lib_name in sys.modules.keys()]
|
98 |
+
|
99 |
+
|
100 |
+
def _nvidia_smi():
|
101 |
+
"""
|
102 |
+
Returns the right nvidia-smi command based on the system.
|
103 |
+
"""
|
104 |
+
if platform.system() == "Windows":
|
105 |
+
# If platform is Windows and nvidia-smi can't be found in path
|
106 |
+
# try from systemd drive with default installation path
|
107 |
+
command = which("nvidia-smi")
|
108 |
+
if command is None:
|
109 |
+
command = "%s\\Program Files\\NVIDIA Corporation\\NVSMI\\nvidia-smi.exe" % os.environ["systemdrive"]
|
110 |
+
else:
|
111 |
+
command = "nvidia-smi"
|
112 |
+
return command
|
113 |
+
|
114 |
+
|
115 |
+
def get_gpu_info():
|
116 |
+
"""
|
117 |
+
Gets GPU count and names using `nvidia-smi` instead of torch to not initialize CUDA.
|
118 |
+
|
119 |
+
Largely based on the `gputil` library.
|
120 |
+
"""
|
121 |
+
# Returns as list of `n` GPUs and their names
|
122 |
+
output = subprocess.check_output(
|
123 |
+
[_nvidia_smi(), "--query-gpu=count,name", "--format=csv,noheader"], universal_newlines=True
|
124 |
+
)
|
125 |
+
output = output.strip()
|
126 |
+
gpus = output.split(os.linesep)
|
127 |
+
# Get names from output
|
128 |
+
gpu_count = len(gpus)
|
129 |
+
gpu_names = [gpu.split(",")[1].strip() for gpu in gpus]
|
130 |
+
return gpu_names, gpu_count
|
131 |
+
|
132 |
+
|
133 |
+
def get_driver_version():
|
134 |
+
"""
|
135 |
+
Returns the driver version
|
136 |
+
|
137 |
+
In the case of multiple GPUs, will return the first.
|
138 |
+
"""
|
139 |
+
output = subprocess.check_output(
|
140 |
+
[_nvidia_smi(), "--query-gpu=driver_version", "--format=csv,noheader"], universal_newlines=True
|
141 |
+
)
|
142 |
+
output = output.strip()
|
143 |
+
return output.split(os.linesep)[0]
|
144 |
+
|
145 |
+
|
146 |
+
def check_cuda_p2p_ib_support():
|
147 |
+
"""
|
148 |
+
Checks if the devices being used have issues with P2P and IB communications, namely any consumer GPU hardware after
|
149 |
+
the 3090.
|
150 |
+
|
151 |
+
Noteably uses `nvidia-smi` instead of torch to not initialize CUDA.
|
152 |
+
"""
|
153 |
+
try:
|
154 |
+
device_names, device_count = get_gpu_info()
|
155 |
+
# As new consumer GPUs get released, add them to `unsupported_devices``
|
156 |
+
unsupported_devices = {"RTX 40"}
|
157 |
+
if device_count > 1:
|
158 |
+
if any(
|
159 |
+
unsupported_device in device_name
|
160 |
+
for device_name in device_names
|
161 |
+
for unsupported_device in unsupported_devices
|
162 |
+
):
|
163 |
+
# Check if they have the right driver version
|
164 |
+
acceptable_driver_version = "550.40.07"
|
165 |
+
current_driver_version = get_driver_version()
|
166 |
+
if parse(current_driver_version) < parse(acceptable_driver_version):
|
167 |
+
return False
|
168 |
+
return True
|
169 |
+
except Exception:
|
170 |
+
pass
|
171 |
+
return True
|
172 |
+
|
173 |
+
|
174 |
+
def check_fp8_capability():
|
175 |
+
"""
|
176 |
+
Checks if all the current GPUs available support FP8.
|
177 |
+
|
178 |
+
Notably must initialize `torch.cuda` to check.
|
179 |
+
"""
|
180 |
+
cuda_device_capacity = torch.cuda.get_device_capability()
|
181 |
+
return cuda_device_capacity >= (8, 9)
|
182 |
+
|
183 |
+
|
184 |
+
@dataclass
|
185 |
+
class CPUInformation:
|
186 |
+
"""
|
187 |
+
Stores information about the CPU in a distributed environment. It contains the following attributes:
|
188 |
+
- rank: The rank of the current process.
|
189 |
+
- world_size: The total number of processes in the world.
|
190 |
+
- local_rank: The rank of the current process on the local node.
|
191 |
+
- local_world_size: The total number of processes on the local node.
|
192 |
+
"""
|
193 |
+
|
194 |
+
rank: int = field(default=0, metadata={"help": "The rank of the current process."})
|
195 |
+
world_size: int = field(default=1, metadata={"help": "The total number of processes in the world."})
|
196 |
+
local_rank: int = field(default=0, metadata={"help": "The rank of the current process on the local node."})
|
197 |
+
local_world_size: int = field(default=1, metadata={"help": "The total number of processes on the local node."})
|
198 |
+
|
199 |
+
|
200 |
+
def get_cpu_distributed_information() -> CPUInformation:
|
201 |
+
"""
|
202 |
+
Returns various information about the environment in relation to CPU distributed training as a `CPUInformation`
|
203 |
+
dataclass.
|
204 |
+
"""
|
205 |
+
information = {}
|
206 |
+
information["rank"] = get_int_from_env(["RANK", "PMI_RANK", "OMPI_COMM_WORLD_RANK", "MV2_COMM_WORLD_RANK"], 0)
|
207 |
+
information["world_size"] = get_int_from_env(
|
208 |
+
["WORLD_SIZE", "PMI_SIZE", "OMPI_COMM_WORLD_SIZE", "MV2_COMM_WORLD_SIZE"], 1
|
209 |
+
)
|
210 |
+
information["local_rank"] = get_int_from_env(
|
211 |
+
["LOCAL_RANK", "MPI_LOCALRANKID", "OMPI_COMM_WORLD_LOCAL_RANK", "MV2_COMM_WORLD_LOCAL_RANK"], 0
|
212 |
+
)
|
213 |
+
information["local_world_size"] = get_int_from_env(
|
214 |
+
["LOCAL_WORLD_SIZE", "MPI_LOCALNRANKS", "OMPI_COMM_WORLD_LOCAL_SIZE", "MV2_COMM_WORLD_LOCAL_SIZE"],
|
215 |
+
1,
|
216 |
+
)
|
217 |
+
return CPUInformation(**information)
|
218 |
+
|
219 |
+
|
220 |
+
def override_numa_affinity(local_process_index: int, verbose: Optional[bool] = None) -> None:
|
221 |
+
"""
|
222 |
+
Overrides whatever NUMA affinity is set for the current process. This is very taxing and requires recalculating the
|
223 |
+
affinity to set, ideally you should use `utils.environment.set_numa_affinity` instead.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
local_process_index (int):
|
227 |
+
The index of the current process on the current server.
|
228 |
+
verbose (bool, *optional*):
|
229 |
+
Whether to log out the assignment of each CPU. If `ACCELERATE_DEBUG_MODE` is enabled, will default to True.
|
230 |
+
"""
|
231 |
+
if verbose is None:
|
232 |
+
verbose = parse_flag_from_env("ACCELERATE_DEBUG_MODE", False)
|
233 |
+
if torch.cuda.is_available():
|
234 |
+
from accelerate.utils import is_pynvml_available
|
235 |
+
|
236 |
+
if not is_pynvml_available():
|
237 |
+
raise ImportError(
|
238 |
+
"To set CPU affinity on CUDA GPUs the `pynvml` package must be available. (`pip install pynvml`)"
|
239 |
+
)
|
240 |
+
import pynvml as nvml
|
241 |
+
|
242 |
+
# The below code is based on https://github.com/NVIDIA/DeepLearningExamples/blob/master/TensorFlow2/LanguageModeling/BERT/gpu_affinity.py
|
243 |
+
nvml.nvmlInit()
|
244 |
+
num_elements = math.ceil(os.cpu_count() / 64)
|
245 |
+
handle = nvml.nvmlDeviceGetHandleByIndex(local_process_index)
|
246 |
+
affinity_string = ""
|
247 |
+
for j in nvml.nvmlDeviceGetCpuAffinity(handle, num_elements):
|
248 |
+
# assume nvml returns list of 64 bit ints
|
249 |
+
affinity_string = f"{j:064b}{affinity_string}"
|
250 |
+
affinity_list = [int(x) for x in affinity_string]
|
251 |
+
affinity_list.reverse() # so core 0 is the 0th element
|
252 |
+
affinity_to_set = [i for i, e in enumerate(affinity_list) if e != 0]
|
253 |
+
os.sched_setaffinity(0, affinity_to_set)
|
254 |
+
if verbose:
|
255 |
+
cpu_cores = os.sched_getaffinity(0)
|
256 |
+
logger.info(f"Assigning {len(cpu_cores)} cpu cores to process {local_process_index}: {cpu_cores}")
|
257 |
+
|
258 |
+
|
259 |
+
@lru_cache
|
260 |
+
def set_numa_affinity(local_process_index: int, verbose: Optional[bool] = None) -> None:
|
261 |
+
"""
|
262 |
+
Assigns the current process to a specific NUMA node. Ideally most efficient when having at least 2 cpus per node.
|
263 |
+
|
264 |
+
This result is cached between calls. If you want to override it, please use
|
265 |
+
`accelerate.utils.environment.override_numa_afifnity`.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
local_process_index (int):
|
269 |
+
The index of the current process on the current server.
|
270 |
+
verbose (bool, *optional*):
|
271 |
+
Whether to print the new cpu cores assignment for each process. If `ACCELERATE_DEBUG_MODE` is enabled, will
|
272 |
+
default to True.
|
273 |
+
"""
|
274 |
+
override_numa_affinity(local_process_index=local_process_index, verbose=verbose)
|
venv/lib/python3.10/site-packages/accelerate/utils/memory.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
A collection of utilities for ensuring that training can always occur. Heavily influenced by the
|
17 |
+
[toma](https://github.com/BlackHC/toma) library.
|
18 |
+
"""
|
19 |
+
|
20 |
+
import functools
|
21 |
+
import gc
|
22 |
+
import inspect
|
23 |
+
|
24 |
+
import torch
|
25 |
+
|
26 |
+
from .imports import is_mlu_available, is_mps_available, is_npu_available, is_xpu_available
|
27 |
+
|
28 |
+
|
29 |
+
def release_memory(*objects):
|
30 |
+
"""
|
31 |
+
Releases memory from `objects` by setting them to `None` and calls `gc.collect()` and `torch.cuda.empty_cache()`.
|
32 |
+
Returned objects should be reassigned to the same variables.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
objects (`Iterable`):
|
36 |
+
An iterable of objects
|
37 |
+
Returns:
|
38 |
+
A list of `None` objects to replace `objects`
|
39 |
+
|
40 |
+
Example:
|
41 |
+
|
42 |
+
```python
|
43 |
+
>>> import torch
|
44 |
+
>>> from accelerate.utils import release_memory
|
45 |
+
|
46 |
+
>>> a = torch.ones(1000, 1000).cuda()
|
47 |
+
>>> b = torch.ones(1000, 1000).cuda()
|
48 |
+
>>> a, b = release_memory(a, b)
|
49 |
+
```
|
50 |
+
"""
|
51 |
+
if not isinstance(objects, list):
|
52 |
+
objects = list(objects)
|
53 |
+
for i in range(len(objects)):
|
54 |
+
objects[i] = None
|
55 |
+
gc.collect()
|
56 |
+
if is_xpu_available():
|
57 |
+
torch.xpu.empty_cache()
|
58 |
+
elif is_mlu_available():
|
59 |
+
torch.mlu.empty_cache()
|
60 |
+
elif is_npu_available():
|
61 |
+
torch.npu.empty_cache()
|
62 |
+
elif is_mps_available():
|
63 |
+
torch.mps.empty_cache()
|
64 |
+
else:
|
65 |
+
torch.cuda.empty_cache()
|
66 |
+
return objects
|
67 |
+
|
68 |
+
|
69 |
+
def should_reduce_batch_size(exception: Exception) -> bool:
|
70 |
+
"""
|
71 |
+
Checks if `exception` relates to CUDA out-of-memory, CUDNN not supported, or CPU out-of-memory
|
72 |
+
|
73 |
+
Args:
|
74 |
+
exception (`Exception`):
|
75 |
+
An exception
|
76 |
+
"""
|
77 |
+
_statements = [
|
78 |
+
"CUDA out of memory.", # CUDA OOM
|
79 |
+
"cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU
|
80 |
+
"DefaultCPUAllocator: can't allocate memory", # CPU OOM
|
81 |
+
]
|
82 |
+
if isinstance(exception, RuntimeError) and len(exception.args) == 1:
|
83 |
+
return any(err in exception.args[0] for err in _statements)
|
84 |
+
return False
|
85 |
+
|
86 |
+
|
87 |
+
def find_executable_batch_size(function: callable = None, starting_batch_size: int = 128):
|
88 |
+
"""
|
89 |
+
A basic decorator that will try to execute `function`. If it fails from exceptions related to out-of-memory or
|
90 |
+
CUDNN, the batch size is cut in half and passed to `function`
|
91 |
+
|
92 |
+
`function` must take in a `batch_size` parameter as its first argument.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
function (`callable`, *optional*):
|
96 |
+
A function to wrap
|
97 |
+
starting_batch_size (`int`, *optional*):
|
98 |
+
The batch size to try and fit into memory
|
99 |
+
|
100 |
+
Example:
|
101 |
+
|
102 |
+
```python
|
103 |
+
>>> from accelerate.utils import find_executable_batch_size
|
104 |
+
|
105 |
+
|
106 |
+
>>> @find_executable_batch_size(starting_batch_size=128)
|
107 |
+
... def train(batch_size, model, optimizer):
|
108 |
+
... ...
|
109 |
+
|
110 |
+
|
111 |
+
>>> train(model, optimizer)
|
112 |
+
```
|
113 |
+
"""
|
114 |
+
if function is None:
|
115 |
+
return functools.partial(find_executable_batch_size, starting_batch_size=starting_batch_size)
|
116 |
+
|
117 |
+
batch_size = starting_batch_size
|
118 |
+
|
119 |
+
def decorator(*args, **kwargs):
|
120 |
+
nonlocal batch_size
|
121 |
+
gc.collect()
|
122 |
+
if is_xpu_available():
|
123 |
+
torch.xpu.empty_cache()
|
124 |
+
elif is_mlu_available():
|
125 |
+
torch.mlu.empty_cache()
|
126 |
+
elif is_npu_available():
|
127 |
+
torch.npu.empty_cache()
|
128 |
+
else:
|
129 |
+
torch.cuda.empty_cache()
|
130 |
+
params = list(inspect.signature(function).parameters.keys())
|
131 |
+
# Guard against user error
|
132 |
+
if len(params) < (len(args) + 1):
|
133 |
+
arg_str = ", ".join([f"{arg}={value}" for arg, value in zip(params[1:], args[1:])])
|
134 |
+
raise TypeError(
|
135 |
+
f"Batch size was passed into `{function.__name__}` as the first argument when called."
|
136 |
+
f"Remove this as the decorator already does so: `{function.__name__}({arg_str})`"
|
137 |
+
)
|
138 |
+
while True:
|
139 |
+
if batch_size == 0:
|
140 |
+
raise RuntimeError("No executable batch size found, reached zero.")
|
141 |
+
try:
|
142 |
+
return function(batch_size, *args, **kwargs)
|
143 |
+
except Exception as e:
|
144 |
+
if should_reduce_batch_size(e):
|
145 |
+
gc.collect()
|
146 |
+
if is_xpu_available():
|
147 |
+
torch.xpu.empty_cache()
|
148 |
+
elif is_mlu_available():
|
149 |
+
torch.mlu.empty_cache()
|
150 |
+
elif is_npu_available():
|
151 |
+
torch.npu.empty_cache()
|
152 |
+
else:
|
153 |
+
torch.cuda.empty_cache()
|
154 |
+
batch_size //= 2
|
155 |
+
else:
|
156 |
+
raise
|
157 |
+
|
158 |
+
return decorator
|
venv/lib/python3.10/site-packages/accelerate/utils/offload.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
from collections.abc import Mapping
|
18 |
+
from typing import Dict, List, Optional, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
from safetensors import safe_open
|
23 |
+
|
24 |
+
|
25 |
+
def offload_weight(weight, weight_name, offload_folder, index=None):
|
26 |
+
dtype = None
|
27 |
+
# Check the string instead of the dtype to be compatible with versions of PyTorch that don't have bfloat16.
|
28 |
+
if str(weight.dtype) == "torch.bfloat16":
|
29 |
+
# Need to reinterpret the underlined data as int16 since NumPy does not handle bfloat16s.
|
30 |
+
weight = weight.view(torch.int16)
|
31 |
+
dtype = "bfloat16"
|
32 |
+
array = weight.cpu().numpy()
|
33 |
+
tensor_file = os.path.join(offload_folder, f"{weight_name}.dat")
|
34 |
+
if index is not None:
|
35 |
+
if dtype is None:
|
36 |
+
dtype = str(array.dtype)
|
37 |
+
index[weight_name] = {"dtype": dtype, "shape": list(array.shape)}
|
38 |
+
if array.ndim == 0:
|
39 |
+
array = array[None]
|
40 |
+
file_array = np.memmap(tensor_file, dtype=array.dtype, mode="w+", shape=array.shape)
|
41 |
+
file_array[:] = array[:]
|
42 |
+
file_array.flush()
|
43 |
+
return index
|
44 |
+
|
45 |
+
|
46 |
+
def load_offloaded_weight(weight_file, weight_info):
|
47 |
+
shape = tuple(weight_info["shape"])
|
48 |
+
if shape == ():
|
49 |
+
# NumPy memory-mapped arrays can't have 0 dims so it was saved as 1d tensor
|
50 |
+
shape = (1,)
|
51 |
+
|
52 |
+
dtype = weight_info["dtype"]
|
53 |
+
if dtype == "bfloat16":
|
54 |
+
# NumPy does not support bfloat16 so this was saved as a int16
|
55 |
+
dtype = "int16"
|
56 |
+
|
57 |
+
weight = np.memmap(weight_file, dtype=dtype, shape=shape, mode="r")
|
58 |
+
|
59 |
+
if len(weight_info["shape"]) == 0:
|
60 |
+
weight = weight[0]
|
61 |
+
weight = torch.tensor(weight)
|
62 |
+
if weight_info["dtype"] == "bfloat16":
|
63 |
+
weight = weight.view(torch.bfloat16)
|
64 |
+
|
65 |
+
return weight
|
66 |
+
|
67 |
+
|
68 |
+
def save_offload_index(index, offload_folder):
|
69 |
+
if index is None or len(index) == 0:
|
70 |
+
# Nothing to save
|
71 |
+
return
|
72 |
+
|
73 |
+
offload_index_file = os.path.join(offload_folder, "index.json")
|
74 |
+
if os.path.isfile(offload_index_file):
|
75 |
+
with open(offload_index_file, encoding="utf-8") as f:
|
76 |
+
current_index = json.load(f)
|
77 |
+
else:
|
78 |
+
current_index = {}
|
79 |
+
current_index.update(index)
|
80 |
+
|
81 |
+
with open(offload_index_file, "w", encoding="utf-8") as f:
|
82 |
+
json.dump(current_index, f, indent=2)
|
83 |
+
|
84 |
+
|
85 |
+
def offload_state_dict(save_dir: Union[str, os.PathLike], state_dict: Dict[str, torch.Tensor]):
|
86 |
+
"""
|
87 |
+
Offload a state dict in a given folder.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
save_dir (`str` or `os.PathLike`):
|
91 |
+
The directory in which to offload the state dict.
|
92 |
+
state_dict (`Dict[str, torch.Tensor]`):
|
93 |
+
The dictionary of tensors to offload.
|
94 |
+
"""
|
95 |
+
os.makedirs(save_dir, exist_ok=True)
|
96 |
+
index = {}
|
97 |
+
for name, parameter in state_dict.items():
|
98 |
+
index = offload_weight(parameter, name, save_dir, index=index)
|
99 |
+
|
100 |
+
# Update index
|
101 |
+
save_offload_index(index, save_dir)
|
102 |
+
|
103 |
+
|
104 |
+
class PrefixedDataset(Mapping):
|
105 |
+
"""
|
106 |
+
Will access keys in a given dataset by adding a prefix.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
dataset (`Mapping`): Any map with string keys.
|
110 |
+
prefix (`str`): A prefix to add when trying to access any element in the underlying dataset.
|
111 |
+
"""
|
112 |
+
|
113 |
+
def __init__(self, dataset: Mapping, prefix: str):
|
114 |
+
self.dataset = dataset
|
115 |
+
self.prefix = prefix
|
116 |
+
|
117 |
+
def __getitem__(self, key):
|
118 |
+
return self.dataset[f"{self.prefix}{key}"]
|
119 |
+
|
120 |
+
def __iter__(self):
|
121 |
+
return iter([key for key in self.dataset if key.startswith(self.prefix)])
|
122 |
+
|
123 |
+
def __len__(self):
|
124 |
+
return len(self.dataset)
|
125 |
+
|
126 |
+
|
127 |
+
class OffloadedWeightsLoader(Mapping):
|
128 |
+
"""
|
129 |
+
A collection that loads weights stored in a given state dict or memory-mapped on disk.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
state_dict (`Dict[str, torch.Tensor]`, *optional*):
|
133 |
+
A dictionary parameter name to tensor.
|
134 |
+
save_folder (`str` or `os.PathLike`, *optional*):
|
135 |
+
The directory in which the weights are stored (by `offload_state_dict` for instance).
|
136 |
+
index (`Dict`, *optional*):
|
137 |
+
A dictionary from weight name to their information (`dtype`/ `shape` or safetensors filename). Will default
|
138 |
+
to the index saved in `save_folder`.
|
139 |
+
"""
|
140 |
+
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
state_dict: Dict[str, torch.Tensor] = None,
|
144 |
+
save_folder: Optional[Union[str, os.PathLike]] = None,
|
145 |
+
index: Mapping = None,
|
146 |
+
device=None,
|
147 |
+
):
|
148 |
+
if state_dict is None and save_folder is None and index is None:
|
149 |
+
raise ValueError("Need either a `state_dict`, a `save_folder` or an `index` containing offloaded weights.")
|
150 |
+
|
151 |
+
self.state_dict = {} if state_dict is None else state_dict
|
152 |
+
self.save_folder = save_folder
|
153 |
+
if index is None and save_folder is not None:
|
154 |
+
with open(os.path.join(save_folder, "index.json")) as f:
|
155 |
+
index = json.load(f)
|
156 |
+
self.index = {} if index is None else index
|
157 |
+
self.all_keys = list(self.state_dict.keys())
|
158 |
+
self.all_keys.extend([key for key in self.index if key not in self.all_keys])
|
159 |
+
self.device = device
|
160 |
+
|
161 |
+
def __getitem__(self, key: str):
|
162 |
+
# State dict gets priority
|
163 |
+
if key in self.state_dict:
|
164 |
+
return self.state_dict[key]
|
165 |
+
weight_info = self.index[key]
|
166 |
+
if weight_info.get("safetensors_file") is not None:
|
167 |
+
device = "cpu" if self.device is None else self.device
|
168 |
+
tensor = None
|
169 |
+
try:
|
170 |
+
with safe_open(weight_info["safetensors_file"], framework="pt", device=device) as f:
|
171 |
+
tensor = f.get_tensor(weight_info.get("weight_name", key))
|
172 |
+
except TypeError:
|
173 |
+
# if failed to get_tensor on the device, such as bf16 on mps, try to load it on CPU first
|
174 |
+
with safe_open(weight_info["safetensors_file"], framework="pt", device="cpu") as f:
|
175 |
+
tensor = f.get_tensor(weight_info.get("weight_name", key))
|
176 |
+
|
177 |
+
if "dtype" in weight_info:
|
178 |
+
tensor = tensor.to(getattr(torch, weight_info["dtype"]))
|
179 |
+
|
180 |
+
if tensor.device != torch.device(device):
|
181 |
+
tensor = tensor.to(device)
|
182 |
+
return tensor
|
183 |
+
|
184 |
+
weight_file = os.path.join(self.save_folder, f"{key}.dat")
|
185 |
+
return load_offloaded_weight(weight_file, weight_info)
|
186 |
+
|
187 |
+
def __iter__(self):
|
188 |
+
return iter(self.all_keys)
|
189 |
+
|
190 |
+
def __len__(self):
|
191 |
+
return len(self.all_keys)
|
192 |
+
|
193 |
+
|
194 |
+
def extract_submodules_state_dict(state_dict: Dict[str, torch.Tensor], submodule_names: List[str]):
|
195 |
+
"""
|
196 |
+
Extract the sub state-dict corresponding to a list of given submodules.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
state_dict (`Dict[str, torch.Tensor]`): The state dict to extract from.
|
200 |
+
submodule_names (`List[str]`): The list of submodule names we want to extract.
|
201 |
+
"""
|
202 |
+
result = {}
|
203 |
+
for module_name in submodule_names:
|
204 |
+
# We want to catch module_name parameter (module_name.xxx) or potentially module_name, but not any of the
|
205 |
+
# submodules that could being like module_name (transformers.h.1 and transformers.h.10 for instance)
|
206 |
+
result.update(
|
207 |
+
{
|
208 |
+
key: param
|
209 |
+
for key, param in state_dict.items()
|
210 |
+
if key == module_name or key.startswith(module_name + ".")
|
211 |
+
}
|
212 |
+
)
|
213 |
+
return result
|
venv/lib/python3.10/site-packages/accelerate/utils/operations.py
ADDED
@@ -0,0 +1,851 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
A set of basic tensor ops compatible with tpu, gpu, and multigpu
|
16 |
+
"""
|
17 |
+
|
18 |
+
import pickle
|
19 |
+
import warnings
|
20 |
+
from functools import update_wrapper, wraps
|
21 |
+
from typing import Any, Mapping
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
from ..state import PartialState
|
26 |
+
from .constants import TORCH_DISTRIBUTED_OPERATION_TYPES
|
27 |
+
from .dataclasses import DistributedType, TensorInformation
|
28 |
+
from .imports import (
|
29 |
+
is_npu_available,
|
30 |
+
is_torch_distributed_available,
|
31 |
+
is_torch_version,
|
32 |
+
is_torch_xla_available,
|
33 |
+
is_xpu_available,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
if is_torch_xla_available():
|
38 |
+
import torch_xla.core.xla_model as xm
|
39 |
+
|
40 |
+
if is_torch_distributed_available():
|
41 |
+
from torch.distributed import ReduceOp
|
42 |
+
|
43 |
+
|
44 |
+
def is_torch_tensor(tensor):
|
45 |
+
return isinstance(tensor, torch.Tensor)
|
46 |
+
|
47 |
+
|
48 |
+
def is_torch_xpu_tensor(tensor):
|
49 |
+
return isinstance(
|
50 |
+
tensor,
|
51 |
+
torch.xpu.FloatTensor,
|
52 |
+
torch.xpu.ByteTensor,
|
53 |
+
torch.xpu.IntTensor,
|
54 |
+
torch.xpu.LongTensor,
|
55 |
+
torch.xpu.HalfTensor,
|
56 |
+
torch.xpu.DoubleTensor,
|
57 |
+
torch.xpu.BFloat16Tensor,
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
def is_tensor_information(tensor_info):
|
62 |
+
return isinstance(tensor_info, TensorInformation)
|
63 |
+
|
64 |
+
|
65 |
+
def is_namedtuple(data):
|
66 |
+
"""
|
67 |
+
Checks if `data` is a `namedtuple` or not. Can have false positives, but only if a user is trying to mimic a
|
68 |
+
`namedtuple` perfectly.
|
69 |
+
"""
|
70 |
+
return isinstance(data, tuple) and hasattr(data, "_asdict") and hasattr(data, "_fields")
|
71 |
+
|
72 |
+
|
73 |
+
def honor_type(obj, generator):
|
74 |
+
"""
|
75 |
+
Cast a generator to the same type as obj (list, tuple, or namedtuple)
|
76 |
+
"""
|
77 |
+
# Some objects may not be able to instantiate from a generator directly
|
78 |
+
if is_namedtuple(obj):
|
79 |
+
return type(obj)(*list(generator))
|
80 |
+
else:
|
81 |
+
return type(obj)(generator)
|
82 |
+
|
83 |
+
|
84 |
+
def recursively_apply(func, data, *args, test_type=is_torch_tensor, error_on_other_type=False, **kwargs):
|
85 |
+
"""
|
86 |
+
Recursively apply a function on a data structure that is a nested list/tuple/dictionary of a given base type.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
func (`callable`):
|
90 |
+
The function to recursively apply.
|
91 |
+
data (nested list/tuple/dictionary of `main_type`):
|
92 |
+
The data on which to apply `func`
|
93 |
+
*args:
|
94 |
+
Positional arguments that will be passed to `func` when applied on the unpacked data.
|
95 |
+
main_type (`type`, *optional*, defaults to `torch.Tensor`):
|
96 |
+
The base type of the objects to which apply `func`.
|
97 |
+
error_on_other_type (`bool`, *optional*, defaults to `False`):
|
98 |
+
Whether to return an error or not if after unpacking `data`, we get on an object that is not of type
|
99 |
+
`main_type`. If `False`, the function will leave objects of types different than `main_type` unchanged.
|
100 |
+
**kwargs (additional keyword arguments, *optional*):
|
101 |
+
Keyword arguments that will be passed to `func` when applied on the unpacked data.
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
The same data structure as `data` with `func` applied to every object of type `main_type`.
|
105 |
+
"""
|
106 |
+
if isinstance(data, (tuple, list)):
|
107 |
+
return honor_type(
|
108 |
+
data,
|
109 |
+
(
|
110 |
+
recursively_apply(
|
111 |
+
func, o, *args, test_type=test_type, error_on_other_type=error_on_other_type, **kwargs
|
112 |
+
)
|
113 |
+
for o in data
|
114 |
+
),
|
115 |
+
)
|
116 |
+
elif isinstance(data, Mapping):
|
117 |
+
return type(data)(
|
118 |
+
{
|
119 |
+
k: recursively_apply(
|
120 |
+
func, v, *args, test_type=test_type, error_on_other_type=error_on_other_type, **kwargs
|
121 |
+
)
|
122 |
+
for k, v in data.items()
|
123 |
+
}
|
124 |
+
)
|
125 |
+
elif test_type(data):
|
126 |
+
return func(data, *args, **kwargs)
|
127 |
+
elif error_on_other_type:
|
128 |
+
raise TypeError(
|
129 |
+
f"Unsupported types ({type(data)}) passed to `{func.__name__}`. Only nested list/tuple/dicts of "
|
130 |
+
f"objects that are valid for `{test_type.__name__}` should be passed."
|
131 |
+
)
|
132 |
+
return data
|
133 |
+
|
134 |
+
|
135 |
+
def send_to_device(tensor, device, non_blocking=False, skip_keys=None):
|
136 |
+
"""
|
137 |
+
Recursively sends the elements in a nested list/tuple/dictionary of tensors to a given device.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
tensor (nested list/tuple/dictionary of `torch.Tensor`):
|
141 |
+
The data to send to a given device.
|
142 |
+
device (`torch.device`):
|
143 |
+
The device to send the data to.
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
The same data structure as `tensor` with all tensors sent to the proper device.
|
147 |
+
"""
|
148 |
+
if is_torch_tensor(tensor) or hasattr(tensor, "to"):
|
149 |
+
# `torch.Tensor.to("npu")` could not find context when called for the first time (see this [issue](https://gitee.com/ascend/pytorch/issues/I8KECW?from=project-issue)).
|
150 |
+
if device == "npu":
|
151 |
+
device = "npu:0"
|
152 |
+
if device == "xpu":
|
153 |
+
device = "xpu:0"
|
154 |
+
# TODO: torch_mlu LongTensor.to(<int num>) has bugs, we will fix this later.
|
155 |
+
if is_torch_tensor(tensor) and tensor.device.type in ["mlu"] and tensor.dtype in [torch.int64]:
|
156 |
+
tensor = tensor.cpu()
|
157 |
+
try:
|
158 |
+
return tensor.to(device, non_blocking=non_blocking)
|
159 |
+
except TypeError: # .to() doesn't accept non_blocking as kwarg
|
160 |
+
return tensor.to(device)
|
161 |
+
except AssertionError as error:
|
162 |
+
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
|
163 |
+
# This call is inside the try-block since is_npu_available is not supported by torch.compile.
|
164 |
+
if is_npu_available():
|
165 |
+
if isinstance(device, int):
|
166 |
+
device = f"npu:{device}"
|
167 |
+
else:
|
168 |
+
raise error
|
169 |
+
except Exception as error:
|
170 |
+
if is_xpu_available():
|
171 |
+
if isinstance(device, int):
|
172 |
+
device = f"xpu:{device}"
|
173 |
+
else:
|
174 |
+
raise error
|
175 |
+
try:
|
176 |
+
return tensor.to(device, non_blocking=non_blocking)
|
177 |
+
except TypeError: # .to() doesn't accept non_blocking as kwarg
|
178 |
+
return tensor.to(device)
|
179 |
+
elif isinstance(tensor, (tuple, list)):
|
180 |
+
return honor_type(
|
181 |
+
tensor, (send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys) for t in tensor)
|
182 |
+
)
|
183 |
+
elif isinstance(tensor, Mapping):
|
184 |
+
if isinstance(skip_keys, str):
|
185 |
+
skip_keys = [skip_keys]
|
186 |
+
elif skip_keys is None:
|
187 |
+
skip_keys = []
|
188 |
+
return type(tensor)(
|
189 |
+
{
|
190 |
+
k: t if k in skip_keys else send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys)
|
191 |
+
for k, t in tensor.items()
|
192 |
+
}
|
193 |
+
)
|
194 |
+
else:
|
195 |
+
return tensor
|
196 |
+
|
197 |
+
|
198 |
+
def get_data_structure(data):
|
199 |
+
"""
|
200 |
+
Recursively gathers the information needed to rebuild a nested list/tuple/dictionary of tensors.
|
201 |
+
|
202 |
+
Args:
|
203 |
+
data (nested list/tuple/dictionary of `torch.Tensor`):
|
204 |
+
The data to send to analyze.
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
The same data structure as `data` with [`~utils.TensorInformation`] instead of tensors.
|
208 |
+
"""
|
209 |
+
|
210 |
+
def _get_data_structure(tensor):
|
211 |
+
return TensorInformation(shape=tensor.shape, dtype=tensor.dtype)
|
212 |
+
|
213 |
+
return recursively_apply(_get_data_structure, data)
|
214 |
+
|
215 |
+
|
216 |
+
def get_shape(data):
|
217 |
+
"""
|
218 |
+
Recursively gathers the shape of a nested list/tuple/dictionary of tensors as a list.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
data (nested list/tuple/dictionary of `torch.Tensor`):
|
222 |
+
The data to send to analyze.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
The same data structure as `data` with lists of tensor shapes instead of tensors.
|
226 |
+
"""
|
227 |
+
|
228 |
+
def _get_shape(tensor):
|
229 |
+
return list(tensor.shape)
|
230 |
+
|
231 |
+
return recursively_apply(_get_shape, data)
|
232 |
+
|
233 |
+
|
234 |
+
def initialize_tensors(data_structure):
|
235 |
+
"""
|
236 |
+
Recursively initializes tensors from a nested list/tuple/dictionary of [`~utils.TensorInformation`].
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
The same data structure as `data` with tensors instead of [`~utils.TensorInformation`].
|
240 |
+
"""
|
241 |
+
|
242 |
+
def _initialize_tensor(tensor_info):
|
243 |
+
return torch.empty(*tensor_info.shape, dtype=tensor_info.dtype)
|
244 |
+
|
245 |
+
return recursively_apply(_initialize_tensor, data_structure, test_type=is_tensor_information)
|
246 |
+
|
247 |
+
|
248 |
+
def find_batch_size(data):
|
249 |
+
"""
|
250 |
+
Recursively finds the batch size in a nested list/tuple/dictionary of lists of tensors.
|
251 |
+
|
252 |
+
Args:
|
253 |
+
data (nested list/tuple/dictionary of `torch.Tensor`): The data from which to find the batch size.
|
254 |
+
|
255 |
+
Returns:
|
256 |
+
`int`: The batch size.
|
257 |
+
"""
|
258 |
+
if isinstance(data, (tuple, list, Mapping)) and (len(data) == 0):
|
259 |
+
raise ValueError(f"Cannot find the batch size from empty {type(data)}.")
|
260 |
+
|
261 |
+
if isinstance(data, (tuple, list)):
|
262 |
+
return find_batch_size(data[0])
|
263 |
+
elif isinstance(data, Mapping):
|
264 |
+
for k in data.keys():
|
265 |
+
return find_batch_size(data[k])
|
266 |
+
elif not isinstance(data, torch.Tensor):
|
267 |
+
raise TypeError(f"Can only find the batch size of tensors but got {type(data)}.")
|
268 |
+
return data.shape[0]
|
269 |
+
|
270 |
+
|
271 |
+
def ignorant_find_batch_size(data):
|
272 |
+
"""
|
273 |
+
Same as [`utils.operations.find_batch_size`] except will ignore if `ValueError` and `TypeErrors` are raised
|
274 |
+
|
275 |
+
Args:
|
276 |
+
data (nested list/tuple/dictionary of `torch.Tensor`): The data from which to find the batch size.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
`int`: The batch size.
|
280 |
+
"""
|
281 |
+
try:
|
282 |
+
return find_batch_size(data)
|
283 |
+
except (ValueError, TypeError):
|
284 |
+
pass
|
285 |
+
return None
|
286 |
+
|
287 |
+
|
288 |
+
def listify(data):
|
289 |
+
"""
|
290 |
+
Recursively finds tensors in a nested list/tuple/dictionary and converts them to a list of numbers.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
data (nested list/tuple/dictionary of `torch.Tensor`): The data from which to convert to regular numbers.
|
294 |
+
|
295 |
+
Returns:
|
296 |
+
The same data structure as `data` with lists of numbers instead of `torch.Tensor`.
|
297 |
+
"""
|
298 |
+
|
299 |
+
def _convert_to_list(tensor):
|
300 |
+
tensor = tensor.detach().cpu()
|
301 |
+
if tensor.dtype == torch.bfloat16:
|
302 |
+
# As of Numpy 1.21.4, NumPy does not support bfloat16 (see
|
303 |
+
# https://github.com/numpy/numpy/blob/a47ecdea856986cd60eabbd53265c2ca5916ad5d/doc/source/user/basics.types.rst ).
|
304 |
+
# Until Numpy adds bfloat16, we must convert float32.
|
305 |
+
tensor = tensor.to(torch.float32)
|
306 |
+
return tensor.tolist()
|
307 |
+
|
308 |
+
return recursively_apply(_convert_to_list, data)
|
309 |
+
|
310 |
+
|
311 |
+
def _tpu_gather(tensor):
|
312 |
+
def _tpu_gather_one(tensor):
|
313 |
+
if tensor.ndim == 0:
|
314 |
+
tensor = tensor.clone()[None]
|
315 |
+
|
316 |
+
# Can only gather contiguous tensors
|
317 |
+
if not tensor.is_contiguous():
|
318 |
+
tensor = tensor.contiguous()
|
319 |
+
return xm.all_gather(tensor)
|
320 |
+
|
321 |
+
res = recursively_apply(_tpu_gather_one, tensor, error_on_other_type=True)
|
322 |
+
xm.mark_step()
|
323 |
+
return res
|
324 |
+
|
325 |
+
|
326 |
+
def _gpu_gather(tensor):
|
327 |
+
state = PartialState()
|
328 |
+
if is_torch_version(">=", "1.13"):
|
329 |
+
gather_op = torch.distributed.all_gather_into_tensor
|
330 |
+
else:
|
331 |
+
gather_op = torch.distributed._all_gather_base
|
332 |
+
|
333 |
+
def _gpu_gather_one(tensor):
|
334 |
+
if tensor.ndim == 0:
|
335 |
+
tensor = tensor.clone()[None]
|
336 |
+
|
337 |
+
# Can only gather contiguous tensors
|
338 |
+
if not tensor.is_contiguous():
|
339 |
+
tensor = tensor.contiguous()
|
340 |
+
|
341 |
+
if state.backend is not None and state.backend != "gloo":
|
342 |
+
# We use `empty` as `all_gather_into_tensor` slightly
|
343 |
+
# differs from `all_gather` for better efficiency,
|
344 |
+
# and we rely on the number of items in the tensor
|
345 |
+
# rather than its direct shape
|
346 |
+
output_tensors = torch.empty(
|
347 |
+
state.num_processes * tensor.numel(),
|
348 |
+
dtype=tensor.dtype,
|
349 |
+
device=state.device,
|
350 |
+
)
|
351 |
+
gather_op(output_tensors, tensor)
|
352 |
+
return output_tensors.view(-1, *tensor.size()[1:])
|
353 |
+
else:
|
354 |
+
# a backend of `None` is always CPU
|
355 |
+
# also gloo does not support `all_gather_into_tensor`,
|
356 |
+
# which will result in a larger memory overhead for the op
|
357 |
+
output_tensors = [torch.empty_like(tensor) for _ in range(state.num_processes)]
|
358 |
+
torch.distributed.all_gather(output_tensors, tensor)
|
359 |
+
return torch.cat(output_tensors, dim=0)
|
360 |
+
|
361 |
+
return recursively_apply(_gpu_gather_one, tensor, error_on_other_type=True)
|
362 |
+
|
363 |
+
|
364 |
+
class DistributedOperationException(Exception):
|
365 |
+
"""
|
366 |
+
An exception class for distributed operations. Raised if the operation cannot be performed due to the shape of the
|
367 |
+
tensors.
|
368 |
+
"""
|
369 |
+
|
370 |
+
pass
|
371 |
+
|
372 |
+
|
373 |
+
def verify_operation(function):
|
374 |
+
"""
|
375 |
+
Verifies that `tensor` is the same shape across all processes. Only ran if `PartialState().debug` is `True`.
|
376 |
+
"""
|
377 |
+
|
378 |
+
@wraps(function)
|
379 |
+
def wrapper(*args, **kwargs):
|
380 |
+
if PartialState().distributed_type == DistributedType.NO or not PartialState().debug:
|
381 |
+
return function(*args, **kwargs)
|
382 |
+
operation = f"{function.__module__}.{function.__name__}"
|
383 |
+
if "tensor" in kwargs:
|
384 |
+
tensor = kwargs["tensor"]
|
385 |
+
else:
|
386 |
+
tensor = args[0]
|
387 |
+
if PartialState().device.type != find_device(tensor).type:
|
388 |
+
raise DistributedOperationException(
|
389 |
+
f"One or more of the tensors passed to {operation} were not on the {tensor.device.type} while the `Accelerator` is configured for {PartialState().device.type}. "
|
390 |
+
f"Please move it to the {PartialState().device.type} before calling {operation}."
|
391 |
+
)
|
392 |
+
shapes = get_shape(tensor)
|
393 |
+
output = gather_object([shapes])
|
394 |
+
if output[0] is not None:
|
395 |
+
are_same = output.count(output[0]) == len(output)
|
396 |
+
if not are_same:
|
397 |
+
process_shape_str = "\n - ".join([f"Process {i}: {shape}" for i, shape in enumerate(output)])
|
398 |
+
raise DistributedOperationException(
|
399 |
+
f"Cannot apply desired operation due to shape mismatches. "
|
400 |
+
"All shapes across devices must be valid."
|
401 |
+
f"\n\nOperation: `{operation}`\nInput shapes:\n - {process_shape_str}"
|
402 |
+
)
|
403 |
+
return function(*args, **kwargs)
|
404 |
+
|
405 |
+
return wrapper
|
406 |
+
|
407 |
+
|
408 |
+
def chained_operation(function):
|
409 |
+
"""
|
410 |
+
Checks that `verify_operation` failed and if so reports a more helpful error chaining the existing
|
411 |
+
`DistributedOperationException`.
|
412 |
+
"""
|
413 |
+
|
414 |
+
@wraps(function)
|
415 |
+
def wrapper(*args, **kwargs):
|
416 |
+
try:
|
417 |
+
return function(*args, **kwargs)
|
418 |
+
except DistributedOperationException as e:
|
419 |
+
operation = f"{function.__module__}.{function.__name__}"
|
420 |
+
raise DistributedOperationException(
|
421 |
+
f"Error found while calling `{operation}`. Please see the earlier error for more details."
|
422 |
+
) from e
|
423 |
+
|
424 |
+
return wrapper
|
425 |
+
|
426 |
+
|
427 |
+
@verify_operation
|
428 |
+
def gather(tensor):
|
429 |
+
"""
|
430 |
+
Recursively gather tensor in a nested list/tuple/dictionary of tensors from all devices.
|
431 |
+
|
432 |
+
Args:
|
433 |
+
tensor (nested list/tuple/dictionary of `torch.Tensor`):
|
434 |
+
The data to gather.
|
435 |
+
|
436 |
+
Returns:
|
437 |
+
The same data structure as `tensor` with all tensors sent to the proper device.
|
438 |
+
"""
|
439 |
+
if PartialState().distributed_type == DistributedType.XLA:
|
440 |
+
return _tpu_gather(tensor)
|
441 |
+
elif PartialState().distributed_type in TORCH_DISTRIBUTED_OPERATION_TYPES:
|
442 |
+
return _gpu_gather(tensor)
|
443 |
+
else:
|
444 |
+
return tensor
|
445 |
+
|
446 |
+
|
447 |
+
def _gpu_gather_object(object: Any):
|
448 |
+
output_objects = [None for _ in range(PartialState().num_processes)]
|
449 |
+
torch.distributed.all_gather_object(output_objects, object)
|
450 |
+
# all_gather_object returns a list of lists, so we need to flatten it
|
451 |
+
return [x for y in output_objects for x in y]
|
452 |
+
|
453 |
+
|
454 |
+
def gather_object(object: Any):
|
455 |
+
"""
|
456 |
+
Recursively gather object in a nested list/tuple/dictionary of objects from all devices.
|
457 |
+
|
458 |
+
Args:
|
459 |
+
object (nested list/tuple/dictionary of picklable object):
|
460 |
+
The data to gather.
|
461 |
+
|
462 |
+
Returns:
|
463 |
+
The same data structure as `object` with all the objects sent to every device.
|
464 |
+
"""
|
465 |
+
if PartialState().distributed_type == DistributedType.XLA:
|
466 |
+
raise NotImplementedError("gather objects in TPU is not supported")
|
467 |
+
elif PartialState().distributed_type in TORCH_DISTRIBUTED_OPERATION_TYPES:
|
468 |
+
return _gpu_gather_object(object)
|
469 |
+
else:
|
470 |
+
return object
|
471 |
+
|
472 |
+
|
473 |
+
def _gpu_broadcast(data, src=0):
|
474 |
+
def _gpu_broadcast_one(tensor, src=0):
|
475 |
+
torch.distributed.broadcast(tensor, src=src)
|
476 |
+
return tensor
|
477 |
+
|
478 |
+
return recursively_apply(_gpu_broadcast_one, data, error_on_other_type=True, src=src)
|
479 |
+
|
480 |
+
|
481 |
+
def _tpu_broadcast(tensor, src=0, name="broadcast tensor"):
|
482 |
+
if isinstance(tensor, (list, tuple)):
|
483 |
+
return honor_type(tensor, (_tpu_broadcast(t, name=f"{name}_{i}") for i, t in enumerate(tensor)))
|
484 |
+
elif isinstance(tensor, Mapping):
|
485 |
+
return type(tensor)({k: _tpu_broadcast(v, name=f"{name}_{k}") for k, v in tensor.items()})
|
486 |
+
return xm.mesh_reduce(name, tensor, lambda x: x[src])
|
487 |
+
|
488 |
+
|
489 |
+
TENSOR_TYPE_TO_INT = {
|
490 |
+
torch.float: 1,
|
491 |
+
torch.double: 2,
|
492 |
+
torch.half: 3,
|
493 |
+
torch.bfloat16: 4,
|
494 |
+
torch.uint8: 5,
|
495 |
+
torch.int8: 6,
|
496 |
+
torch.int16: 7,
|
497 |
+
torch.int32: 8,
|
498 |
+
torch.int64: 9,
|
499 |
+
torch.bool: 10,
|
500 |
+
}
|
501 |
+
|
502 |
+
TENSOR_INT_TO_DTYPE = {v: k for k, v in TENSOR_TYPE_TO_INT.items()}
|
503 |
+
|
504 |
+
|
505 |
+
def gather_tensor_shape(tensor):
|
506 |
+
"""
|
507 |
+
Grabs the shape of `tensor` only available on one process and returns a tensor of its shape
|
508 |
+
"""
|
509 |
+
# Allocate 80 bytes to store the shape
|
510 |
+
max_tensor_dimension = 2**20
|
511 |
+
state = PartialState()
|
512 |
+
base_tensor = torch.empty(max_tensor_dimension, dtype=torch.int, device=state.device)
|
513 |
+
|
514 |
+
# Since PyTorch can't just send a tensor to another GPU without
|
515 |
+
# knowing its size, we store the size of the tensor with data
|
516 |
+
# in an allocation
|
517 |
+
if tensor is not None:
|
518 |
+
shape = tensor.shape
|
519 |
+
tensor_dtype = TENSOR_TYPE_TO_INT[tensor.dtype]
|
520 |
+
base_tensor[: len(shape) + 1] = torch.tensor(list(shape) + [tensor_dtype], dtype=int)
|
521 |
+
# Perform a reduction to copy the size data onto all GPUs
|
522 |
+
base_tensor = reduce(base_tensor, reduction="sum")
|
523 |
+
base_tensor = base_tensor[base_tensor.nonzero()]
|
524 |
+
# The last non-zero data contains the coded dtype the source tensor is
|
525 |
+
dtype = int(base_tensor[-1:][0])
|
526 |
+
base_tensor = base_tensor[:-1]
|
527 |
+
return base_tensor, dtype
|
528 |
+
|
529 |
+
|
530 |
+
def copy_tensor_to_devices(tensor=None) -> torch.Tensor:
|
531 |
+
"""
|
532 |
+
Copys a tensor that only exists on a single device and broadcasts it to other devices. Differs from `broadcast` as
|
533 |
+
each worker doesn't need to know its shape when used (and tensor can be `None`)
|
534 |
+
|
535 |
+
Args:
|
536 |
+
tensor (`torch.tensor`):
|
537 |
+
The tensor that should be sent to all devices. Must only have it be defined on a single device, the rest
|
538 |
+
should be `None`.
|
539 |
+
"""
|
540 |
+
state = PartialState()
|
541 |
+
shape, dtype = gather_tensor_shape(tensor)
|
542 |
+
if tensor is None:
|
543 |
+
tensor = torch.zeros(shape, dtype=TENSOR_INT_TO_DTYPE[dtype]).to(state.device)
|
544 |
+
return reduce(tensor, reduction="sum")
|
545 |
+
|
546 |
+
|
547 |
+
@verify_operation
|
548 |
+
def broadcast(tensor, from_process: int = 0):
|
549 |
+
"""
|
550 |
+
Recursively broadcast tensor in a nested list/tuple/dictionary of tensors to all devices.
|
551 |
+
|
552 |
+
Args:
|
553 |
+
tensor (nested list/tuple/dictionary of `torch.Tensor`):
|
554 |
+
The data to gather.
|
555 |
+
from_process (`int`, *optional*, defaults to 0):
|
556 |
+
The process from which to send the data
|
557 |
+
|
558 |
+
Returns:
|
559 |
+
The same data structure as `tensor` with all tensors broadcasted to the proper device.
|
560 |
+
"""
|
561 |
+
if PartialState().distributed_type == DistributedType.XLA:
|
562 |
+
return _tpu_broadcast(tensor, src=from_process, name="accelerate.utils.broadcast")
|
563 |
+
elif PartialState().distributed_type in TORCH_DISTRIBUTED_OPERATION_TYPES:
|
564 |
+
return _gpu_broadcast(tensor, src=from_process)
|
565 |
+
else:
|
566 |
+
return tensor
|
567 |
+
|
568 |
+
|
569 |
+
def broadcast_object_list(object_list, from_process: int = 0):
|
570 |
+
"""
|
571 |
+
Broadcast a list of picklable objects form one process to the others.
|
572 |
+
|
573 |
+
Args:
|
574 |
+
object_list (list of picklable objects):
|
575 |
+
The list of objects to broadcast. This list will be modified inplace.
|
576 |
+
from_process (`int`, *optional*, defaults to 0):
|
577 |
+
The process from which to send the data.
|
578 |
+
|
579 |
+
Returns:
|
580 |
+
The same list containing the objects from process 0.
|
581 |
+
"""
|
582 |
+
if PartialState().distributed_type == DistributedType.XLA:
|
583 |
+
for i, obj in enumerate(object_list):
|
584 |
+
object_list[i] = xm.mesh_reduce("accelerate.utils.broadcast_object_list", obj, lambda x: x[from_process])
|
585 |
+
elif PartialState().distributed_type in TORCH_DISTRIBUTED_OPERATION_TYPES:
|
586 |
+
torch.distributed.broadcast_object_list(object_list, src=from_process)
|
587 |
+
return object_list
|
588 |
+
|
589 |
+
|
590 |
+
def slice_tensors(data, tensor_slice, process_index=None, num_processes=None):
|
591 |
+
"""
|
592 |
+
Recursively takes a slice in a nested list/tuple/dictionary of tensors.
|
593 |
+
|
594 |
+
Args:
|
595 |
+
data (nested list/tuple/dictionary of `torch.Tensor`):
|
596 |
+
The data to slice.
|
597 |
+
tensor_slice (`slice`):
|
598 |
+
The slice to take.
|
599 |
+
|
600 |
+
Returns:
|
601 |
+
The same data structure as `data` with all the tensors slices.
|
602 |
+
"""
|
603 |
+
|
604 |
+
def _slice_tensor(tensor, tensor_slice):
|
605 |
+
return tensor[tensor_slice]
|
606 |
+
|
607 |
+
return recursively_apply(_slice_tensor, data, tensor_slice)
|
608 |
+
|
609 |
+
|
610 |
+
def concatenate(data, dim=0):
|
611 |
+
"""
|
612 |
+
Recursively concatenate the tensors in a nested list/tuple/dictionary of lists of tensors with the same shape.
|
613 |
+
|
614 |
+
Args:
|
615 |
+
data (nested list/tuple/dictionary of lists of tensors `torch.Tensor`):
|
616 |
+
The data to concatenate.
|
617 |
+
dim (`int`, *optional*, defaults to 0):
|
618 |
+
The dimension on which to concatenate.
|
619 |
+
|
620 |
+
Returns:
|
621 |
+
The same data structure as `data` with all the tensors concatenated.
|
622 |
+
"""
|
623 |
+
if isinstance(data[0], (tuple, list)):
|
624 |
+
return honor_type(data[0], (concatenate([d[i] for d in data], dim=dim) for i in range(len(data[0]))))
|
625 |
+
elif isinstance(data[0], Mapping):
|
626 |
+
return type(data[0])({k: concatenate([d[k] for d in data], dim=dim) for k in data[0].keys()})
|
627 |
+
elif not isinstance(data[0], torch.Tensor):
|
628 |
+
raise TypeError(f"Can only concatenate tensors but got {type(data[0])}")
|
629 |
+
return torch.cat(data, dim=dim)
|
630 |
+
|
631 |
+
|
632 |
+
class CannotPadNestedTensorWarning(UserWarning):
|
633 |
+
pass
|
634 |
+
|
635 |
+
|
636 |
+
@chained_operation
|
637 |
+
def pad_across_processes(tensor, dim=0, pad_index=0, pad_first=False):
|
638 |
+
"""
|
639 |
+
Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so they
|
640 |
+
can safely be gathered.
|
641 |
+
|
642 |
+
Args:
|
643 |
+
tensor (nested list/tuple/dictionary of `torch.Tensor`):
|
644 |
+
The data to gather.
|
645 |
+
dim (`int`, *optional*, defaults to 0):
|
646 |
+
The dimension on which to pad.
|
647 |
+
pad_index (`int`, *optional*, defaults to 0):
|
648 |
+
The value with which to pad.
|
649 |
+
pad_first (`bool`, *optional*, defaults to `False`):
|
650 |
+
Whether to pad at the beginning or the end.
|
651 |
+
"""
|
652 |
+
|
653 |
+
def _pad_across_processes(tensor, dim=0, pad_index=0, pad_first=False):
|
654 |
+
if getattr(tensor, "is_nested", False):
|
655 |
+
warnings.warn(
|
656 |
+
"Cannot pad nested tensors without more information. Leaving unprocessed.",
|
657 |
+
CannotPadNestedTensorWarning,
|
658 |
+
)
|
659 |
+
return tensor
|
660 |
+
if dim >= len(tensor.shape):
|
661 |
+
return tensor
|
662 |
+
|
663 |
+
# Gather all sizes
|
664 |
+
size = torch.tensor(tensor.shape, device=tensor.device)[None]
|
665 |
+
sizes = gather(size).cpu()
|
666 |
+
# Then pad to the maximum size
|
667 |
+
max_size = max(s[dim] for s in sizes)
|
668 |
+
if max_size == tensor.shape[dim]:
|
669 |
+
return tensor
|
670 |
+
|
671 |
+
old_size = tensor.shape
|
672 |
+
new_size = list(old_size)
|
673 |
+
new_size[dim] = max_size
|
674 |
+
new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index
|
675 |
+
if pad_first:
|
676 |
+
indices = tuple(
|
677 |
+
slice(max_size - old_size[dim], max_size) if i == dim else slice(None) for i in range(len(new_size))
|
678 |
+
)
|
679 |
+
else:
|
680 |
+
indices = tuple(slice(0, old_size[dim]) if i == dim else slice(None) for i in range(len(new_size)))
|
681 |
+
new_tensor[indices] = tensor
|
682 |
+
return new_tensor
|
683 |
+
|
684 |
+
return recursively_apply(
|
685 |
+
_pad_across_processes, tensor, error_on_other_type=True, dim=dim, pad_index=pad_index, pad_first=pad_first
|
686 |
+
)
|
687 |
+
|
688 |
+
|
689 |
+
def pad_input_tensors(tensor, batch_size, num_processes, dim=0):
|
690 |
+
"""
|
691 |
+
Takes a `tensor` of arbitrary size and pads it so that it can work given `num_processes` needed dimensions.
|
692 |
+
|
693 |
+
New tensors are just the last input repeated.
|
694 |
+
|
695 |
+
E.g.:
|
696 |
+
Tensor: ([3,4,4]) Num processes: 4 Expected result shape: ([4,4,4])
|
697 |
+
|
698 |
+
"""
|
699 |
+
|
700 |
+
def _pad_input_tensors(tensor, batch_size, num_processes, dim=0):
|
701 |
+
remainder = batch_size // num_processes
|
702 |
+
last_inputs = batch_size - (remainder * num_processes)
|
703 |
+
if batch_size // num_processes == 0:
|
704 |
+
to_pad = num_processes - batch_size
|
705 |
+
else:
|
706 |
+
to_pad = num_processes - (batch_size // num_processes)
|
707 |
+
# In the rare case that `to_pad` is negative,
|
708 |
+
# we need to pad the last inputs - the found `to_pad`
|
709 |
+
if last_inputs > to_pad & to_pad < 1:
|
710 |
+
to_pad = last_inputs - to_pad
|
711 |
+
old_size = tensor.shape
|
712 |
+
new_size = list(old_size)
|
713 |
+
new_size[0] = batch_size + to_pad
|
714 |
+
new_tensor = tensor.new_zeros(tuple(new_size))
|
715 |
+
indices = tuple(slice(0, old_size[dim]) if i == dim else slice(None) for i in range(len(new_size)))
|
716 |
+
new_tensor[indices] = tensor
|
717 |
+
return new_tensor
|
718 |
+
|
719 |
+
return recursively_apply(
|
720 |
+
_pad_input_tensors,
|
721 |
+
tensor,
|
722 |
+
error_on_other_type=True,
|
723 |
+
batch_size=batch_size,
|
724 |
+
num_processes=num_processes,
|
725 |
+
dim=dim,
|
726 |
+
)
|
727 |
+
|
728 |
+
|
729 |
+
@verify_operation
|
730 |
+
def reduce(tensor, reduction="mean", scale=1.0):
|
731 |
+
"""
|
732 |
+
Recursively reduce the tensors in a nested list/tuple/dictionary of lists of tensors across all processes by the
|
733 |
+
mean of a given operation.
|
734 |
+
|
735 |
+
Args:
|
736 |
+
tensor (nested list/tuple/dictionary of `torch.Tensor`):
|
737 |
+
The data to reduce.
|
738 |
+
reduction (`str`, *optional*, defaults to `"mean"`):
|
739 |
+
A reduction method. Can be of "mean", "sum", or "none"
|
740 |
+
scale (`float`, *optional*):
|
741 |
+
A default scaling value to be applied after the reduce, only valied on XLA.
|
742 |
+
|
743 |
+
Returns:
|
744 |
+
The same data structure as `data` with all the tensors reduced.
|
745 |
+
"""
|
746 |
+
|
747 |
+
def _reduce_across_processes(tensor, reduction="mean", scale=1.0):
|
748 |
+
state = PartialState()
|
749 |
+
cloned_tensor = tensor.clone()
|
750 |
+
if state.distributed_type == DistributedType.NO:
|
751 |
+
return cloned_tensor
|
752 |
+
if state.distributed_type == DistributedType.XLA:
|
753 |
+
# Some processes may have different HLO graphs than other
|
754 |
+
# processes, for example in the breakpoint API
|
755 |
+
# accelerator.set_trigger(). Use mark_step to make HLOs
|
756 |
+
# the same on all processes.
|
757 |
+
xm.mark_step()
|
758 |
+
xm.all_reduce(xm.REDUCE_SUM, [cloned_tensor], scale)
|
759 |
+
xm.mark_step()
|
760 |
+
elif state.distributed_type.value in TORCH_DISTRIBUTED_OPERATION_TYPES:
|
761 |
+
torch.distributed.all_reduce(cloned_tensor, ReduceOp.SUM)
|
762 |
+
if reduction == "mean":
|
763 |
+
cloned_tensor /= state.num_processes
|
764 |
+
return cloned_tensor
|
765 |
+
|
766 |
+
return recursively_apply(
|
767 |
+
_reduce_across_processes, tensor, error_on_other_type=True, reduction=reduction, scale=scale
|
768 |
+
)
|
769 |
+
|
770 |
+
|
771 |
+
def convert_to_fp32(tensor):
|
772 |
+
"""
|
773 |
+
Recursively converts the elements nested list/tuple/dictionary of tensors in FP16/BF16 precision to FP32.
|
774 |
+
|
775 |
+
Args:
|
776 |
+
tensor (nested list/tuple/dictionary of `torch.Tensor`):
|
777 |
+
The data to convert from FP16/BF16 to FP32.
|
778 |
+
|
779 |
+
Returns:
|
780 |
+
The same data structure as `tensor` with all tensors that were in FP16/BF16 precision converted to FP32.
|
781 |
+
"""
|
782 |
+
|
783 |
+
def _convert_to_fp32(tensor):
|
784 |
+
return tensor.float()
|
785 |
+
|
786 |
+
def _is_fp16_bf16_tensor(tensor):
|
787 |
+
return (is_torch_tensor(tensor) or hasattr(tensor, "dtype")) and tensor.dtype in (
|
788 |
+
torch.float16,
|
789 |
+
torch.bfloat16,
|
790 |
+
)
|
791 |
+
|
792 |
+
return recursively_apply(_convert_to_fp32, tensor, test_type=_is_fp16_bf16_tensor)
|
793 |
+
|
794 |
+
|
795 |
+
class ConvertOutputsToFp32:
|
796 |
+
"""
|
797 |
+
Decorator to apply to a function outputing tensors (like a model forward pass) that ensures the outputs in FP16
|
798 |
+
precision will be convert back to FP32.
|
799 |
+
|
800 |
+
Args:
|
801 |
+
model_forward (`Callable`):
|
802 |
+
The function which outputs we want to treat.
|
803 |
+
|
804 |
+
Returns:
|
805 |
+
The same function as `model_forward` but with converted outputs.
|
806 |
+
"""
|
807 |
+
|
808 |
+
def __init__(self, model_forward):
|
809 |
+
self.model_forward = model_forward
|
810 |
+
update_wrapper(self, model_forward)
|
811 |
+
|
812 |
+
def __call__(self, *args, **kwargs):
|
813 |
+
return convert_to_fp32(self.model_forward(*args, **kwargs))
|
814 |
+
|
815 |
+
def __getstate__(self):
|
816 |
+
raise pickle.PicklingError(
|
817 |
+
"Cannot pickle a prepared model with automatic mixed precision, please unwrap the model with `Accelerator.unwrap_model(model)` before pickling it."
|
818 |
+
)
|
819 |
+
|
820 |
+
|
821 |
+
def convert_outputs_to_fp32(model_forward):
|
822 |
+
model_forward = ConvertOutputsToFp32(model_forward)
|
823 |
+
|
824 |
+
def forward(*args, **kwargs):
|
825 |
+
return model_forward(*args, **kwargs)
|
826 |
+
|
827 |
+
# To act like a decorator so that it can be popped when doing `extract_model_from_parallel`
|
828 |
+
forward.__wrapped__ = model_forward
|
829 |
+
|
830 |
+
return forward
|
831 |
+
|
832 |
+
|
833 |
+
def find_device(data):
|
834 |
+
"""
|
835 |
+
Finds the device on which a nested dict/list/tuple of tensors lies (assuming they are all on the same device).
|
836 |
+
|
837 |
+
Args:
|
838 |
+
(nested list/tuple/dictionary of `torch.Tensor`): The data we want to know the device of.
|
839 |
+
"""
|
840 |
+
if isinstance(data, Mapping):
|
841 |
+
for obj in data.values():
|
842 |
+
device = find_device(obj)
|
843 |
+
if device is not None:
|
844 |
+
return device
|
845 |
+
elif isinstance(data, (tuple, list)):
|
846 |
+
for obj in data:
|
847 |
+
device = find_device(obj)
|
848 |
+
if device is not None:
|
849 |
+
return device
|
850 |
+
elif isinstance(data, torch.Tensor):
|
851 |
+
return data.device
|
venv/lib/python3.10/site-packages/accelerate/utils/other.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import collections
|
16 |
+
import os
|
17 |
+
import platform
|
18 |
+
import re
|
19 |
+
import socket
|
20 |
+
from contextlib import contextmanager
|
21 |
+
from functools import partial, reduce
|
22 |
+
from types import MethodType
|
23 |
+
from typing import OrderedDict
|
24 |
+
|
25 |
+
import torch
|
26 |
+
from packaging.version import Version
|
27 |
+
from safetensors.torch import save_file as safe_save_file
|
28 |
+
|
29 |
+
from ..commands.config.default import write_basic_config # noqa: F401
|
30 |
+
from ..logging import get_logger
|
31 |
+
from ..state import PartialState
|
32 |
+
from .constants import FSDP_PYTORCH_VERSION
|
33 |
+
from .dataclasses import DistributedType
|
34 |
+
from .imports import is_deepspeed_available, is_torch_distributed_available, is_torch_xla_available
|
35 |
+
from .modeling import id_tensor_storage
|
36 |
+
from .transformer_engine import convert_model
|
37 |
+
from .versions import is_torch_version
|
38 |
+
|
39 |
+
|
40 |
+
logger = get_logger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
if is_torch_xla_available():
|
44 |
+
import torch_xla.core.xla_model as xm
|
45 |
+
|
46 |
+
|
47 |
+
def is_compiled_module(module):
|
48 |
+
"""
|
49 |
+
Check whether the module was compiled with torch.compile()
|
50 |
+
"""
|
51 |
+
if is_torch_version("<", "2.0.0") or not hasattr(torch, "_dynamo"):
|
52 |
+
return False
|
53 |
+
return isinstance(module, torch._dynamo.eval_frame.OptimizedModule)
|
54 |
+
|
55 |
+
|
56 |
+
def extract_model_from_parallel(model, keep_fp32_wrapper: bool = True, recursive: bool = False):
|
57 |
+
"""
|
58 |
+
Extract a model from its distributed containers.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
model (`torch.nn.Module`):
|
62 |
+
The model to extract.
|
63 |
+
keep_fp32_wrapper (`bool`, *optional*):
|
64 |
+
Whether to remove mixed precision hooks from the model.
|
65 |
+
recursive (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether to recursively extract all cases of `module.module` from `model` as well as unwrap child sublayers
|
67 |
+
recursively, not just the top-level distributed containers.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
`torch.nn.Module`: The extracted model.
|
71 |
+
"""
|
72 |
+
options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
|
73 |
+
|
74 |
+
is_compiled = is_compiled_module(model)
|
75 |
+
if is_compiled:
|
76 |
+
compiled_model = model
|
77 |
+
model = model._orig_mod
|
78 |
+
|
79 |
+
if is_deepspeed_available():
|
80 |
+
from deepspeed import DeepSpeedEngine
|
81 |
+
|
82 |
+
options += (DeepSpeedEngine,)
|
83 |
+
|
84 |
+
if is_torch_version(">=", FSDP_PYTORCH_VERSION) and is_torch_distributed_available():
|
85 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
|
86 |
+
|
87 |
+
options += (FSDP,)
|
88 |
+
|
89 |
+
while isinstance(model, options):
|
90 |
+
model = model.module
|
91 |
+
|
92 |
+
if recursive:
|
93 |
+
# This is needed in cases such as using FSDPv2 on XLA
|
94 |
+
def _recursive_unwrap(module):
|
95 |
+
# Wrapped modules are standardly wrapped as `module`, similar to the cases earlier
|
96 |
+
# with DDP, DataParallel, DeepSpeed, and FSDP
|
97 |
+
if hasattr(module, "module"):
|
98 |
+
unwrapped_module = _recursive_unwrap(module.module)
|
99 |
+
else:
|
100 |
+
unwrapped_module = module
|
101 |
+
# Next unwrap child sublayers recursively
|
102 |
+
for name, child in unwrapped_module.named_children():
|
103 |
+
setattr(unwrapped_module, name, _recursive_unwrap(child))
|
104 |
+
return unwrapped_module
|
105 |
+
|
106 |
+
# Start with top-level
|
107 |
+
model = _recursive_unwrap(model)
|
108 |
+
|
109 |
+
if not keep_fp32_wrapper:
|
110 |
+
forward = model.forward
|
111 |
+
original_forward = model.__dict__.pop("_original_forward", None)
|
112 |
+
if original_forward is not None:
|
113 |
+
while hasattr(forward, "__wrapped__"):
|
114 |
+
forward = forward.__wrapped__
|
115 |
+
if forward == original_forward:
|
116 |
+
break
|
117 |
+
model.forward = MethodType(forward, model)
|
118 |
+
if getattr(model, "_converted_to_transformer_engine", False):
|
119 |
+
convert_model(model, to_transformer_engine=False)
|
120 |
+
|
121 |
+
if is_compiled:
|
122 |
+
compiled_model._orig_mod = model
|
123 |
+
model = compiled_model
|
124 |
+
|
125 |
+
return model
|
126 |
+
|
127 |
+
|
128 |
+
def wait_for_everyone():
|
129 |
+
"""
|
130 |
+
Introduces a blocking point in the script, making sure all processes have reached this point before continuing.
|
131 |
+
|
132 |
+
<Tip warning={true}>
|
133 |
+
|
134 |
+
Make sure all processes will reach this instruction otherwise one of your processes will hang forever.
|
135 |
+
|
136 |
+
</Tip>
|
137 |
+
"""
|
138 |
+
PartialState().wait_for_everyone()
|
139 |
+
|
140 |
+
|
141 |
+
def clean_state_dict_for_safetensors(state_dict: dict):
|
142 |
+
"""
|
143 |
+
Cleans the state dictionary from a model and removes tensor aliasing if present.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
state_dict (`dict`):
|
147 |
+
The state dictionary from a model
|
148 |
+
"""
|
149 |
+
ptrs = collections.defaultdict(list)
|
150 |
+
# When bnb serialization is used, weights in state dict can be strings
|
151 |
+
for name, tensor in state_dict.items():
|
152 |
+
if not isinstance(tensor, str):
|
153 |
+
ptrs[id_tensor_storage(tensor)].append(name)
|
154 |
+
|
155 |
+
# These are all pointers of tensors with shared memory
|
156 |
+
shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
|
157 |
+
warn_names = set()
|
158 |
+
for names in shared_ptrs.values():
|
159 |
+
# When not all duplicates have been cleaned, we still remove those keys but put a clear warning.
|
160 |
+
# If the link between tensors was done at runtime then `from_pretrained` will not get
|
161 |
+
# the key back leading to random tensor. A proper warning will be shown
|
162 |
+
# during reload (if applicable), but since the file is not necessarily compatible with
|
163 |
+
# the config, better show a proper warning.
|
164 |
+
found_names = [name for name in names if name in state_dict]
|
165 |
+
warn_names.update(found_names[1:])
|
166 |
+
for name in found_names[1:]:
|
167 |
+
del state_dict[name]
|
168 |
+
if len(warn_names) > 0:
|
169 |
+
logger.warning(
|
170 |
+
f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
|
171 |
+
)
|
172 |
+
state_dict = {k: v.contiguous() if isinstance(v, torch.Tensor) else v for k, v in state_dict.items()}
|
173 |
+
return state_dict
|
174 |
+
|
175 |
+
|
176 |
+
def save(obj, f, save_on_each_node: bool = False, safe_serialization: bool = False):
|
177 |
+
"""
|
178 |
+
Save the data to disk. Use in place of `torch.save()`.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
obj:
|
182 |
+
The data to save
|
183 |
+
f:
|
184 |
+
The file (or file-like object) to use to save the data
|
185 |
+
save_on_each_node (`bool`, *optional*, defaults to `False`):
|
186 |
+
Whether to only save on the global main process
|
187 |
+
safe_serialization (`bool`, *optional*, defaults to `False`):
|
188 |
+
Whether to save `obj` using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
189 |
+
"""
|
190 |
+
# When TorchXLA is enabled, it's necessary to transfer all data to the CPU before saving.
|
191 |
+
# Another issue arises with `id_tensor_storage`, which treats all XLA tensors as identical.
|
192 |
+
# If tensors remain on XLA, calling `clean_state_dict_for_safetensors` will result in only
|
193 |
+
# one XLA tensor remaining.
|
194 |
+
if PartialState().distributed_type == DistributedType.XLA:
|
195 |
+
obj = xm._maybe_convert_to_cpu(obj)
|
196 |
+
# Check if it's a model and remove duplicates
|
197 |
+
if safe_serialization:
|
198 |
+
save_func = partial(safe_save_file, metadata={"format": "pt"})
|
199 |
+
if isinstance(obj, OrderedDict):
|
200 |
+
obj = clean_state_dict_for_safetensors(obj)
|
201 |
+
else:
|
202 |
+
save_func = torch.save
|
203 |
+
|
204 |
+
if PartialState().is_main_process and not save_on_each_node:
|
205 |
+
save_func(obj, f)
|
206 |
+
elif PartialState().is_local_main_process and save_on_each_node:
|
207 |
+
save_func(obj, f)
|
208 |
+
|
209 |
+
|
210 |
+
@contextmanager
|
211 |
+
def clear_environment():
|
212 |
+
"""
|
213 |
+
A context manager that will temporarily clear environment variables.
|
214 |
+
|
215 |
+
When this context exits, the previous environment variables will be back.
|
216 |
+
|
217 |
+
Example:
|
218 |
+
|
219 |
+
```python
|
220 |
+
>>> import os
|
221 |
+
>>> from accelerate.utils import clear_environment
|
222 |
+
|
223 |
+
>>> os.environ["FOO"] = "bar"
|
224 |
+
>>> with clear_environment():
|
225 |
+
... print(os.environ)
|
226 |
+
... os.environ["FOO"] = "new_bar"
|
227 |
+
... print(os.environ["FOO"])
|
228 |
+
{}
|
229 |
+
new_bar
|
230 |
+
|
231 |
+
>>> print(os.environ["FOO"])
|
232 |
+
bar
|
233 |
+
```
|
234 |
+
"""
|
235 |
+
_old_os_environ = os.environ.copy()
|
236 |
+
os.environ.clear()
|
237 |
+
|
238 |
+
try:
|
239 |
+
yield
|
240 |
+
finally:
|
241 |
+
os.environ.clear() # clear any added keys,
|
242 |
+
os.environ.update(_old_os_environ) # then restore previous environment
|
243 |
+
|
244 |
+
|
245 |
+
@contextmanager
|
246 |
+
def patch_environment(**kwargs):
|
247 |
+
"""
|
248 |
+
A context manager that will add each keyword argument passed to `os.environ` and remove them when exiting.
|
249 |
+
|
250 |
+
Will convert the values in `kwargs` to strings and upper-case all the keys.
|
251 |
+
|
252 |
+
Example:
|
253 |
+
|
254 |
+
```python
|
255 |
+
>>> import os
|
256 |
+
>>> from accelerate.utils import patch_environment
|
257 |
+
|
258 |
+
>>> with patch_environment(FOO="bar"):
|
259 |
+
... print(os.environ["FOO"]) # prints "bar"
|
260 |
+
>>> print(os.environ["FOO"]) # raises KeyError
|
261 |
+
```
|
262 |
+
"""
|
263 |
+
existing_vars = {}
|
264 |
+
for key, value in kwargs.items():
|
265 |
+
key = key.upper()
|
266 |
+
if key in os.environ:
|
267 |
+
existing_vars[key] = os.environ[key]
|
268 |
+
os.environ[key] = str(value)
|
269 |
+
|
270 |
+
try:
|
271 |
+
yield
|
272 |
+
finally:
|
273 |
+
for key in kwargs:
|
274 |
+
key = key.upper()
|
275 |
+
if key in existing_vars:
|
276 |
+
# restore previous value
|
277 |
+
os.environ[key] = existing_vars[key]
|
278 |
+
else:
|
279 |
+
os.environ.pop(key, None)
|
280 |
+
|
281 |
+
|
282 |
+
def get_pretty_name(obj):
|
283 |
+
"""
|
284 |
+
Gets a pretty name from `obj`.
|
285 |
+
"""
|
286 |
+
if not hasattr(obj, "__qualname__") and not hasattr(obj, "__name__"):
|
287 |
+
obj = getattr(obj, "__class__", obj)
|
288 |
+
if hasattr(obj, "__qualname__"):
|
289 |
+
return obj.__qualname__
|
290 |
+
if hasattr(obj, "__name__"):
|
291 |
+
return obj.__name__
|
292 |
+
return str(obj)
|
293 |
+
|
294 |
+
|
295 |
+
def merge_dicts(source, destination):
|
296 |
+
"""
|
297 |
+
Recursively merges two dictionaries.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
source (`dict`): The dictionary to merge into `destination`.
|
301 |
+
destination (`dict`): The dictionary to merge `source` into.
|
302 |
+
"""
|
303 |
+
for key, value in source.items():
|
304 |
+
if isinstance(value, dict):
|
305 |
+
node = destination.setdefault(key, {})
|
306 |
+
merge_dicts(value, node)
|
307 |
+
else:
|
308 |
+
destination[key] = value
|
309 |
+
|
310 |
+
return destination
|
311 |
+
|
312 |
+
|
313 |
+
def is_port_in_use(port: int = None) -> bool:
|
314 |
+
"""
|
315 |
+
Checks if a port is in use on `localhost`. Useful for checking if multiple `accelerate launch` commands have been
|
316 |
+
run and need to see if the port is already in use.
|
317 |
+
"""
|
318 |
+
if port is None:
|
319 |
+
port = 29500
|
320 |
+
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
321 |
+
return s.connect_ex(("localhost", port)) == 0
|
322 |
+
|
323 |
+
|
324 |
+
def convert_bytes(size):
|
325 |
+
"Converts `size` from bytes to the largest possible unit"
|
326 |
+
for x in ["bytes", "KB", "MB", "GB", "TB"]:
|
327 |
+
if size < 1024.0:
|
328 |
+
return f"{round(size, 2)} {x}"
|
329 |
+
size /= 1024.0
|
330 |
+
|
331 |
+
return f"{round(size, 2)} PB"
|
332 |
+
|
333 |
+
|
334 |
+
def check_os_kernel():
|
335 |
+
"""Warns if the kernel version is below the recommended minimum on Linux."""
|
336 |
+
# see issue #1929
|
337 |
+
info = platform.uname()
|
338 |
+
system = info.system
|
339 |
+
if system != "Linux":
|
340 |
+
return
|
341 |
+
|
342 |
+
_, version, *_ = re.split(r"(\d+\.\d+\.\d+)", info.release)
|
343 |
+
min_version = "5.5.0"
|
344 |
+
if Version(version) < Version(min_version):
|
345 |
+
msg = (
|
346 |
+
f"Detected kernel version {version}, which is below the recommended minimum of {min_version}; this can "
|
347 |
+
"cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher."
|
348 |
+
)
|
349 |
+
logger.warning(msg, main_process_only=True)
|
350 |
+
|
351 |
+
|
352 |
+
def recursive_getattr(obj, attr: str):
|
353 |
+
"""
|
354 |
+
Recursive `getattr`.
|
355 |
+
|
356 |
+
Args:
|
357 |
+
obj:
|
358 |
+
A class instance holding the attribute.
|
359 |
+
attr (`str`):
|
360 |
+
The attribute that is to be retrieved, e.g. 'attribute1.attribute2'.
|
361 |
+
"""
|
362 |
+
|
363 |
+
def _getattr(obj, attr):
|
364 |
+
return getattr(obj, attr)
|
365 |
+
|
366 |
+
return reduce(_getattr, [obj] + attr.split("."))
|
venv/lib/python3.10/site-packages/accelerate/utils/random.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import random
|
16 |
+
from typing import List, Optional, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from ..state import AcceleratorState
|
22 |
+
from .constants import CUDA_DISTRIBUTED_TYPES
|
23 |
+
from .dataclasses import DistributedType, RNGType
|
24 |
+
from .imports import is_mlu_available, is_npu_available, is_torch_xla_available, is_xpu_available
|
25 |
+
|
26 |
+
|
27 |
+
if is_torch_xla_available():
|
28 |
+
import torch_xla.core.xla_model as xm
|
29 |
+
|
30 |
+
|
31 |
+
def set_seed(seed: int, device_specific: bool = False, deterministic: bool = False):
|
32 |
+
"""
|
33 |
+
Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
seed (`int`):
|
37 |
+
The seed to set.
|
38 |
+
device_specific (`bool`, *optional*, defaults to `False`):
|
39 |
+
Whether to differ the seed on each device slightly with `self.process_index`.
|
40 |
+
deterministic (`bool`, *optional*, defaults to `False`):
|
41 |
+
Whether to use deterministic algorithms where available. Can slow down training.
|
42 |
+
"""
|
43 |
+
if device_specific:
|
44 |
+
seed += AcceleratorState().process_index
|
45 |
+
random.seed(seed)
|
46 |
+
np.random.seed(seed)
|
47 |
+
torch.manual_seed(seed)
|
48 |
+
if is_xpu_available():
|
49 |
+
torch.xpu.manual_seed_all(seed)
|
50 |
+
elif is_npu_available():
|
51 |
+
torch.npu.manual_seed_all(seed)
|
52 |
+
elif is_mlu_available():
|
53 |
+
torch.mlu.manual_seed_all(seed)
|
54 |
+
else:
|
55 |
+
torch.cuda.manual_seed_all(seed)
|
56 |
+
# ^^ safe to call this function even if cuda is not available
|
57 |
+
if is_torch_xla_available():
|
58 |
+
xm.set_rng_state(seed)
|
59 |
+
|
60 |
+
if deterministic:
|
61 |
+
torch.use_deterministic_algorithms(True)
|
62 |
+
|
63 |
+
|
64 |
+
def synchronize_rng_state(rng_type: Optional[RNGType] = None, generator: Optional[torch.Generator] = None):
|
65 |
+
# Get the proper rng state
|
66 |
+
if rng_type == RNGType.TORCH:
|
67 |
+
rng_state = torch.get_rng_state()
|
68 |
+
elif rng_type == RNGType.CUDA:
|
69 |
+
rng_state = torch.cuda.get_rng_state()
|
70 |
+
elif rng_type == RNGType.XLA:
|
71 |
+
assert is_torch_xla_available(), "Can't synchronize XLA seeds as torch_xla is unavailable."
|
72 |
+
rng_state = torch.tensor(xm.get_rng_state())
|
73 |
+
elif rng_type == RNGType.NPU:
|
74 |
+
assert is_npu_available(), "Can't synchronize NPU seeds on an environment without NPUs."
|
75 |
+
rng_state = torch.npu.get_rng_state()
|
76 |
+
elif rng_type == RNGType.MLU:
|
77 |
+
assert is_mlu_available(), "Can't synchronize MLU seeds on an environment without MLUs."
|
78 |
+
rng_state = torch.mlu.get_rng_state()
|
79 |
+
elif rng_type == RNGType.XPU:
|
80 |
+
assert is_xpu_available(), "Can't synchronize XPU seeds on an environment without XPUs."
|
81 |
+
rng_state = torch.xpu.get_rng_state()
|
82 |
+
elif rng_type == RNGType.GENERATOR:
|
83 |
+
assert generator is not None, "Need a generator to synchronize its seed."
|
84 |
+
rng_state = generator.get_state()
|
85 |
+
|
86 |
+
# Broadcast the rng state from device 0 to other devices
|
87 |
+
state = AcceleratorState()
|
88 |
+
if state.distributed_type == DistributedType.XLA:
|
89 |
+
rng_state = rng_state.to(xm.xla_device())
|
90 |
+
xm.collective_broadcast([rng_state])
|
91 |
+
xm.mark_step()
|
92 |
+
rng_state = rng_state.cpu()
|
93 |
+
elif (
|
94 |
+
state.distributed_type in CUDA_DISTRIBUTED_TYPES
|
95 |
+
or state.distributed_type == DistributedType.MULTI_MLU
|
96 |
+
or state.distributed_type == DistributedType.MULTI_NPU
|
97 |
+
or state.distributed_type == DistributedType.MULTI_XPU
|
98 |
+
):
|
99 |
+
rng_state = rng_state.to(state.device)
|
100 |
+
torch.distributed.broadcast(rng_state, 0)
|
101 |
+
rng_state = rng_state.cpu()
|
102 |
+
elif state.distributed_type == DistributedType.MULTI_CPU:
|
103 |
+
torch.distributed.broadcast(rng_state, 0)
|
104 |
+
|
105 |
+
# Set the broadcast rng state
|
106 |
+
if rng_type == RNGType.TORCH:
|
107 |
+
torch.set_rng_state(rng_state)
|
108 |
+
elif rng_type == RNGType.CUDA:
|
109 |
+
torch.cuda.set_rng_state(rng_state)
|
110 |
+
elif rng_type == RNGType.NPU:
|
111 |
+
torch.npu.set_rng_state(rng_state)
|
112 |
+
elif rng_type == RNGType.XPU:
|
113 |
+
torch.xpu.set_rng_state(rng_state)
|
114 |
+
elif rng_type == RNGType.XLA:
|
115 |
+
xm.set_rng_state(rng_state.item())
|
116 |
+
elif rng_type == RNGType.GENERATOR:
|
117 |
+
generator.set_state(rng_state)
|
118 |
+
|
119 |
+
|
120 |
+
def synchronize_rng_states(rng_types: List[Union[str, RNGType]], generator: Optional[torch.Generator] = None):
|
121 |
+
for rng_type in rng_types:
|
122 |
+
synchronize_rng_state(RNGType(rng_type), generator=generator)
|
venv/lib/python3.10/site-packages/accelerate/utils/torch_xla.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import importlib.metadata
|
16 |
+
import subprocess
|
17 |
+
import sys
|
18 |
+
|
19 |
+
|
20 |
+
def install_xla(upgrade: bool = False):
|
21 |
+
"""
|
22 |
+
Helper function to install appropriate xla wheels based on the `torch` version in Google Colaboratory.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
upgrade (`bool`, *optional*, defaults to `False`):
|
26 |
+
Whether to upgrade `torch` and install the latest `torch_xla` wheels.
|
27 |
+
|
28 |
+
Example:
|
29 |
+
|
30 |
+
```python
|
31 |
+
>>> from accelerate.utils import install_xla
|
32 |
+
|
33 |
+
>>> install_xla(upgrade=True)
|
34 |
+
```
|
35 |
+
"""
|
36 |
+
in_colab = False
|
37 |
+
if "IPython" in sys.modules:
|
38 |
+
in_colab = "google.colab" in str(sys.modules["IPython"].get_ipython())
|
39 |
+
|
40 |
+
if in_colab:
|
41 |
+
if upgrade:
|
42 |
+
torch_install_cmd = ["pip", "install", "-U", "torch"]
|
43 |
+
subprocess.run(torch_install_cmd, check=True)
|
44 |
+
# get the current version of torch
|
45 |
+
torch_version = importlib.metadata.version("torch")
|
46 |
+
torch_version_trunc = torch_version[: torch_version.rindex(".")]
|
47 |
+
xla_wheel = f"https://storage.googleapis.com/tpu-pytorch/wheels/colab/torch_xla-{torch_version_trunc}-cp37-cp37m-linux_x86_64.whl"
|
48 |
+
xla_install_cmd = ["pip", "install", xla_wheel]
|
49 |
+
subprocess.run(xla_install_cmd, check=True)
|
50 |
+
else:
|
51 |
+
raise RuntimeError("`install_xla` utility works only on google colab.")
|
venv/lib/python3.10/site-packages/accelerate/utils/versions.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import importlib.metadata
|
16 |
+
from typing import Union
|
17 |
+
|
18 |
+
from packaging.version import Version, parse
|
19 |
+
|
20 |
+
from .constants import STR_OPERATION_TO_FUNC
|
21 |
+
|
22 |
+
|
23 |
+
torch_version = parse(importlib.metadata.version("torch"))
|
24 |
+
|
25 |
+
|
26 |
+
def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str):
|
27 |
+
"""
|
28 |
+
Compares a library version to some requirement using a given operation.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
library_or_version (`str` or `packaging.version.Version`):
|
32 |
+
A library name or a version to check.
|
33 |
+
operation (`str`):
|
34 |
+
A string representation of an operator, such as `">"` or `"<="`.
|
35 |
+
requirement_version (`str`):
|
36 |
+
The version to compare the library version against
|
37 |
+
"""
|
38 |
+
if operation not in STR_OPERATION_TO_FUNC.keys():
|
39 |
+
raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}")
|
40 |
+
operation = STR_OPERATION_TO_FUNC[operation]
|
41 |
+
if isinstance(library_or_version, str):
|
42 |
+
library_or_version = parse(importlib.metadata.version(library_or_version))
|
43 |
+
return operation(library_or_version, parse(requirement_version))
|
44 |
+
|
45 |
+
|
46 |
+
def is_torch_version(operation: str, version: str):
|
47 |
+
"""
|
48 |
+
Compares the current PyTorch version to a given reference with an operation.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
operation (`str`):
|
52 |
+
A string representation of an operator, such as `">"` or `"<="`
|
53 |
+
version (`str`):
|
54 |
+
A string version of PyTorch
|
55 |
+
"""
|
56 |
+
return compare_versions(torch_version, operation, version)
|
venv/lib/python3.10/site-packages/more_itertools/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""More routines for operating on iterables, beyond itertools"""
|
2 |
+
|
3 |
+
from .more import * # noqa
|
4 |
+
from .recipes import * # noqa
|
5 |
+
|
6 |
+
__version__ = '10.2.0'
|
venv/lib/python3.10/site-packages/more_itertools/__init__.pyi
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .more import *
|
2 |
+
from .recipes import *
|
venv/lib/python3.10/site-packages/more_itertools/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (324 Bytes). View file
|
|
venv/lib/python3.10/site-packages/more_itertools/__pycache__/more.cpython-310.pyc
ADDED
Binary file (133 kB). View file
|
|
venv/lib/python3.10/site-packages/more_itertools/__pycache__/recipes.cpython-310.pyc
ADDED
Binary file (28.4 kB). View file
|
|
venv/lib/python3.10/site-packages/more_itertools/more.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/more_itertools/more.pyi
ADDED
@@ -0,0 +1,695 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Stubs for more_itertools.more"""
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
from types import TracebackType
|
5 |
+
from typing import (
|
6 |
+
Any,
|
7 |
+
Callable,
|
8 |
+
Container,
|
9 |
+
ContextManager,
|
10 |
+
Generic,
|
11 |
+
Hashable,
|
12 |
+
Iterable,
|
13 |
+
Iterator,
|
14 |
+
overload,
|
15 |
+
Reversible,
|
16 |
+
Sequence,
|
17 |
+
Sized,
|
18 |
+
Type,
|
19 |
+
TypeVar,
|
20 |
+
type_check_only,
|
21 |
+
)
|
22 |
+
from typing_extensions import Protocol
|
23 |
+
|
24 |
+
# Type and type variable definitions
|
25 |
+
_T = TypeVar('_T')
|
26 |
+
_T1 = TypeVar('_T1')
|
27 |
+
_T2 = TypeVar('_T2')
|
28 |
+
_U = TypeVar('_U')
|
29 |
+
_V = TypeVar('_V')
|
30 |
+
_W = TypeVar('_W')
|
31 |
+
_T_co = TypeVar('_T_co', covariant=True)
|
32 |
+
_GenFn = TypeVar('_GenFn', bound=Callable[..., Iterator[Any]])
|
33 |
+
_Raisable = BaseException | Type[BaseException]
|
34 |
+
|
35 |
+
@type_check_only
|
36 |
+
class _SizedIterable(Protocol[_T_co], Sized, Iterable[_T_co]): ...
|
37 |
+
|
38 |
+
@type_check_only
|
39 |
+
class _SizedReversible(Protocol[_T_co], Sized, Reversible[_T_co]): ...
|
40 |
+
|
41 |
+
@type_check_only
|
42 |
+
class _SupportsSlicing(Protocol[_T_co]):
|
43 |
+
def __getitem__(self, __k: slice) -> _T_co: ...
|
44 |
+
|
45 |
+
def chunked(
|
46 |
+
iterable: Iterable[_T], n: int | None, strict: bool = ...
|
47 |
+
) -> Iterator[list[_T]]: ...
|
48 |
+
@overload
|
49 |
+
def first(iterable: Iterable[_T]) -> _T: ...
|
50 |
+
@overload
|
51 |
+
def first(iterable: Iterable[_T], default: _U) -> _T | _U: ...
|
52 |
+
@overload
|
53 |
+
def last(iterable: Iterable[_T]) -> _T: ...
|
54 |
+
@overload
|
55 |
+
def last(iterable: Iterable[_T], default: _U) -> _T | _U: ...
|
56 |
+
@overload
|
57 |
+
def nth_or_last(iterable: Iterable[_T], n: int) -> _T: ...
|
58 |
+
@overload
|
59 |
+
def nth_or_last(iterable: Iterable[_T], n: int, default: _U) -> _T | _U: ...
|
60 |
+
|
61 |
+
class peekable(Generic[_T], Iterator[_T]):
|
62 |
+
def __init__(self, iterable: Iterable[_T]) -> None: ...
|
63 |
+
def __iter__(self) -> peekable[_T]: ...
|
64 |
+
def __bool__(self) -> bool: ...
|
65 |
+
@overload
|
66 |
+
def peek(self) -> _T: ...
|
67 |
+
@overload
|
68 |
+
def peek(self, default: _U) -> _T | _U: ...
|
69 |
+
def prepend(self, *items: _T) -> None: ...
|
70 |
+
def __next__(self) -> _T: ...
|
71 |
+
@overload
|
72 |
+
def __getitem__(self, index: int) -> _T: ...
|
73 |
+
@overload
|
74 |
+
def __getitem__(self, index: slice) -> list[_T]: ...
|
75 |
+
|
76 |
+
def consumer(func: _GenFn) -> _GenFn: ...
|
77 |
+
def ilen(iterable: Iterable[_T]) -> int: ...
|
78 |
+
def iterate(func: Callable[[_T], _T], start: _T) -> Iterator[_T]: ...
|
79 |
+
def with_iter(
|
80 |
+
context_manager: ContextManager[Iterable[_T]],
|
81 |
+
) -> Iterator[_T]: ...
|
82 |
+
def one(
|
83 |
+
iterable: Iterable[_T],
|
84 |
+
too_short: _Raisable | None = ...,
|
85 |
+
too_long: _Raisable | None = ...,
|
86 |
+
) -> _T: ...
|
87 |
+
def raise_(exception: _Raisable, *args: Any) -> None: ...
|
88 |
+
def strictly_n(
|
89 |
+
iterable: Iterable[_T],
|
90 |
+
n: int,
|
91 |
+
too_short: _GenFn | None = ...,
|
92 |
+
too_long: _GenFn | None = ...,
|
93 |
+
) -> list[_T]: ...
|
94 |
+
def distinct_permutations(
|
95 |
+
iterable: Iterable[_T], r: int | None = ...
|
96 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
97 |
+
def intersperse(
|
98 |
+
e: _U, iterable: Iterable[_T], n: int = ...
|
99 |
+
) -> Iterator[_T | _U]: ...
|
100 |
+
def unique_to_each(*iterables: Iterable[_T]) -> list[list[_T]]: ...
|
101 |
+
@overload
|
102 |
+
def windowed(
|
103 |
+
seq: Iterable[_T], n: int, *, step: int = ...
|
104 |
+
) -> Iterator[tuple[_T | None, ...]]: ...
|
105 |
+
@overload
|
106 |
+
def windowed(
|
107 |
+
seq: Iterable[_T], n: int, fillvalue: _U, step: int = ...
|
108 |
+
) -> Iterator[tuple[_T | _U, ...]]: ...
|
109 |
+
def substrings(iterable: Iterable[_T]) -> Iterator[tuple[_T, ...]]: ...
|
110 |
+
def substrings_indexes(
|
111 |
+
seq: Sequence[_T], reverse: bool = ...
|
112 |
+
) -> Iterator[tuple[Sequence[_T], int, int]]: ...
|
113 |
+
|
114 |
+
class bucket(Generic[_T, _U], Container[_U]):
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
iterable: Iterable[_T],
|
118 |
+
key: Callable[[_T], _U],
|
119 |
+
validator: Callable[[_U], object] | None = ...,
|
120 |
+
) -> None: ...
|
121 |
+
def __contains__(self, value: object) -> bool: ...
|
122 |
+
def __iter__(self) -> Iterator[_U]: ...
|
123 |
+
def __getitem__(self, value: object) -> Iterator[_T]: ...
|
124 |
+
|
125 |
+
def spy(
|
126 |
+
iterable: Iterable[_T], n: int = ...
|
127 |
+
) -> tuple[list[_T], Iterator[_T]]: ...
|
128 |
+
def interleave(*iterables: Iterable[_T]) -> Iterator[_T]: ...
|
129 |
+
def interleave_longest(*iterables: Iterable[_T]) -> Iterator[_T]: ...
|
130 |
+
def interleave_evenly(
|
131 |
+
iterables: list[Iterable[_T]], lengths: list[int] | None = ...
|
132 |
+
) -> Iterator[_T]: ...
|
133 |
+
def collapse(
|
134 |
+
iterable: Iterable[Any],
|
135 |
+
base_type: type | None = ...,
|
136 |
+
levels: int | None = ...,
|
137 |
+
) -> Iterator[Any]: ...
|
138 |
+
@overload
|
139 |
+
def side_effect(
|
140 |
+
func: Callable[[_T], object],
|
141 |
+
iterable: Iterable[_T],
|
142 |
+
chunk_size: None = ...,
|
143 |
+
before: Callable[[], object] | None = ...,
|
144 |
+
after: Callable[[], object] | None = ...,
|
145 |
+
) -> Iterator[_T]: ...
|
146 |
+
@overload
|
147 |
+
def side_effect(
|
148 |
+
func: Callable[[list[_T]], object],
|
149 |
+
iterable: Iterable[_T],
|
150 |
+
chunk_size: int,
|
151 |
+
before: Callable[[], object] | None = ...,
|
152 |
+
after: Callable[[], object] | None = ...,
|
153 |
+
) -> Iterator[_T]: ...
|
154 |
+
def sliced(
|
155 |
+
seq: _SupportsSlicing[_T], n: int, strict: bool = ...
|
156 |
+
) -> Iterator[_T]: ...
|
157 |
+
def split_at(
|
158 |
+
iterable: Iterable[_T],
|
159 |
+
pred: Callable[[_T], object],
|
160 |
+
maxsplit: int = ...,
|
161 |
+
keep_separator: bool = ...,
|
162 |
+
) -> Iterator[list[_T]]: ...
|
163 |
+
def split_before(
|
164 |
+
iterable: Iterable[_T], pred: Callable[[_T], object], maxsplit: int = ...
|
165 |
+
) -> Iterator[list[_T]]: ...
|
166 |
+
def split_after(
|
167 |
+
iterable: Iterable[_T], pred: Callable[[_T], object], maxsplit: int = ...
|
168 |
+
) -> Iterator[list[_T]]: ...
|
169 |
+
def split_when(
|
170 |
+
iterable: Iterable[_T],
|
171 |
+
pred: Callable[[_T, _T], object],
|
172 |
+
maxsplit: int = ...,
|
173 |
+
) -> Iterator[list[_T]]: ...
|
174 |
+
def split_into(
|
175 |
+
iterable: Iterable[_T], sizes: Iterable[int | None]
|
176 |
+
) -> Iterator[list[_T]]: ...
|
177 |
+
@overload
|
178 |
+
def padded(
|
179 |
+
iterable: Iterable[_T],
|
180 |
+
*,
|
181 |
+
n: int | None = ...,
|
182 |
+
next_multiple: bool = ...,
|
183 |
+
) -> Iterator[_T | None]: ...
|
184 |
+
@overload
|
185 |
+
def padded(
|
186 |
+
iterable: Iterable[_T],
|
187 |
+
fillvalue: _U,
|
188 |
+
n: int | None = ...,
|
189 |
+
next_multiple: bool = ...,
|
190 |
+
) -> Iterator[_T | _U]: ...
|
191 |
+
@overload
|
192 |
+
def repeat_last(iterable: Iterable[_T]) -> Iterator[_T]: ...
|
193 |
+
@overload
|
194 |
+
def repeat_last(iterable: Iterable[_T], default: _U) -> Iterator[_T | _U]: ...
|
195 |
+
def distribute(n: int, iterable: Iterable[_T]) -> list[Iterator[_T]]: ...
|
196 |
+
@overload
|
197 |
+
def stagger(
|
198 |
+
iterable: Iterable[_T],
|
199 |
+
offsets: _SizedIterable[int] = ...,
|
200 |
+
longest: bool = ...,
|
201 |
+
) -> Iterator[tuple[_T | None, ...]]: ...
|
202 |
+
@overload
|
203 |
+
def stagger(
|
204 |
+
iterable: Iterable[_T],
|
205 |
+
offsets: _SizedIterable[int] = ...,
|
206 |
+
longest: bool = ...,
|
207 |
+
fillvalue: _U = ...,
|
208 |
+
) -> Iterator[tuple[_T | _U, ...]]: ...
|
209 |
+
|
210 |
+
class UnequalIterablesError(ValueError):
|
211 |
+
def __init__(self, details: tuple[int, int, int] | None = ...) -> None: ...
|
212 |
+
|
213 |
+
@overload
|
214 |
+
def zip_equal(__iter1: Iterable[_T1]) -> Iterator[tuple[_T1]]: ...
|
215 |
+
@overload
|
216 |
+
def zip_equal(
|
217 |
+
__iter1: Iterable[_T1], __iter2: Iterable[_T2]
|
218 |
+
) -> Iterator[tuple[_T1, _T2]]: ...
|
219 |
+
@overload
|
220 |
+
def zip_equal(
|
221 |
+
__iter1: Iterable[_T],
|
222 |
+
__iter2: Iterable[_T],
|
223 |
+
__iter3: Iterable[_T],
|
224 |
+
*iterables: Iterable[_T],
|
225 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
226 |
+
@overload
|
227 |
+
def zip_offset(
|
228 |
+
__iter1: Iterable[_T1],
|
229 |
+
*,
|
230 |
+
offsets: _SizedIterable[int],
|
231 |
+
longest: bool = ...,
|
232 |
+
fillvalue: None = None,
|
233 |
+
) -> Iterator[tuple[_T1 | None]]: ...
|
234 |
+
@overload
|
235 |
+
def zip_offset(
|
236 |
+
__iter1: Iterable[_T1],
|
237 |
+
__iter2: Iterable[_T2],
|
238 |
+
*,
|
239 |
+
offsets: _SizedIterable[int],
|
240 |
+
longest: bool = ...,
|
241 |
+
fillvalue: None = None,
|
242 |
+
) -> Iterator[tuple[_T1 | None, _T2 | None]]: ...
|
243 |
+
@overload
|
244 |
+
def zip_offset(
|
245 |
+
__iter1: Iterable[_T],
|
246 |
+
__iter2: Iterable[_T],
|
247 |
+
__iter3: Iterable[_T],
|
248 |
+
*iterables: Iterable[_T],
|
249 |
+
offsets: _SizedIterable[int],
|
250 |
+
longest: bool = ...,
|
251 |
+
fillvalue: None = None,
|
252 |
+
) -> Iterator[tuple[_T | None, ...]]: ...
|
253 |
+
@overload
|
254 |
+
def zip_offset(
|
255 |
+
__iter1: Iterable[_T1],
|
256 |
+
*,
|
257 |
+
offsets: _SizedIterable[int],
|
258 |
+
longest: bool = ...,
|
259 |
+
fillvalue: _U,
|
260 |
+
) -> Iterator[tuple[_T1 | _U]]: ...
|
261 |
+
@overload
|
262 |
+
def zip_offset(
|
263 |
+
__iter1: Iterable[_T1],
|
264 |
+
__iter2: Iterable[_T2],
|
265 |
+
*,
|
266 |
+
offsets: _SizedIterable[int],
|
267 |
+
longest: bool = ...,
|
268 |
+
fillvalue: _U,
|
269 |
+
) -> Iterator[tuple[_T1 | _U, _T2 | _U]]: ...
|
270 |
+
@overload
|
271 |
+
def zip_offset(
|
272 |
+
__iter1: Iterable[_T],
|
273 |
+
__iter2: Iterable[_T],
|
274 |
+
__iter3: Iterable[_T],
|
275 |
+
*iterables: Iterable[_T],
|
276 |
+
offsets: _SizedIterable[int],
|
277 |
+
longest: bool = ...,
|
278 |
+
fillvalue: _U,
|
279 |
+
) -> Iterator[tuple[_T | _U, ...]]: ...
|
280 |
+
def sort_together(
|
281 |
+
iterables: Iterable[Iterable[_T]],
|
282 |
+
key_list: Iterable[int] = ...,
|
283 |
+
key: Callable[..., Any] | None = ...,
|
284 |
+
reverse: bool = ...,
|
285 |
+
) -> list[tuple[_T, ...]]: ...
|
286 |
+
def unzip(iterable: Iterable[Sequence[_T]]) -> tuple[Iterator[_T], ...]: ...
|
287 |
+
def divide(n: int, iterable: Iterable[_T]) -> list[Iterator[_T]]: ...
|
288 |
+
def always_iterable(
|
289 |
+
obj: object,
|
290 |
+
base_type: type | tuple[type | tuple[Any, ...], ...] | None = ...,
|
291 |
+
) -> Iterator[Any]: ...
|
292 |
+
def adjacent(
|
293 |
+
predicate: Callable[[_T], bool],
|
294 |
+
iterable: Iterable[_T],
|
295 |
+
distance: int = ...,
|
296 |
+
) -> Iterator[tuple[bool, _T]]: ...
|
297 |
+
@overload
|
298 |
+
def groupby_transform(
|
299 |
+
iterable: Iterable[_T],
|
300 |
+
keyfunc: None = None,
|
301 |
+
valuefunc: None = None,
|
302 |
+
reducefunc: None = None,
|
303 |
+
) -> Iterator[tuple[_T, Iterator[_T]]]: ...
|
304 |
+
@overload
|
305 |
+
def groupby_transform(
|
306 |
+
iterable: Iterable[_T],
|
307 |
+
keyfunc: Callable[[_T], _U],
|
308 |
+
valuefunc: None,
|
309 |
+
reducefunc: None,
|
310 |
+
) -> Iterator[tuple[_U, Iterator[_T]]]: ...
|
311 |
+
@overload
|
312 |
+
def groupby_transform(
|
313 |
+
iterable: Iterable[_T],
|
314 |
+
keyfunc: None,
|
315 |
+
valuefunc: Callable[[_T], _V],
|
316 |
+
reducefunc: None,
|
317 |
+
) -> Iterable[tuple[_T, Iterable[_V]]]: ...
|
318 |
+
@overload
|
319 |
+
def groupby_transform(
|
320 |
+
iterable: Iterable[_T],
|
321 |
+
keyfunc: Callable[[_T], _U],
|
322 |
+
valuefunc: Callable[[_T], _V],
|
323 |
+
reducefunc: None,
|
324 |
+
) -> Iterable[tuple[_U, Iterator[_V]]]: ...
|
325 |
+
@overload
|
326 |
+
def groupby_transform(
|
327 |
+
iterable: Iterable[_T],
|
328 |
+
keyfunc: None,
|
329 |
+
valuefunc: None,
|
330 |
+
reducefunc: Callable[[Iterator[_T]], _W],
|
331 |
+
) -> Iterable[tuple[_T, _W]]: ...
|
332 |
+
@overload
|
333 |
+
def groupby_transform(
|
334 |
+
iterable: Iterable[_T],
|
335 |
+
keyfunc: Callable[[_T], _U],
|
336 |
+
valuefunc: None,
|
337 |
+
reducefunc: Callable[[Iterator[_T]], _W],
|
338 |
+
) -> Iterable[tuple[_U, _W]]: ...
|
339 |
+
@overload
|
340 |
+
def groupby_transform(
|
341 |
+
iterable: Iterable[_T],
|
342 |
+
keyfunc: None,
|
343 |
+
valuefunc: Callable[[_T], _V],
|
344 |
+
reducefunc: Callable[[Iterable[_V]], _W],
|
345 |
+
) -> Iterable[tuple[_T, _W]]: ...
|
346 |
+
@overload
|
347 |
+
def groupby_transform(
|
348 |
+
iterable: Iterable[_T],
|
349 |
+
keyfunc: Callable[[_T], _U],
|
350 |
+
valuefunc: Callable[[_T], _V],
|
351 |
+
reducefunc: Callable[[Iterable[_V]], _W],
|
352 |
+
) -> Iterable[tuple[_U, _W]]: ...
|
353 |
+
|
354 |
+
class numeric_range(Generic[_T, _U], Sequence[_T], Hashable, Reversible[_T]):
|
355 |
+
@overload
|
356 |
+
def __init__(self, __stop: _T) -> None: ...
|
357 |
+
@overload
|
358 |
+
def __init__(self, __start: _T, __stop: _T) -> None: ...
|
359 |
+
@overload
|
360 |
+
def __init__(self, __start: _T, __stop: _T, __step: _U) -> None: ...
|
361 |
+
def __bool__(self) -> bool: ...
|
362 |
+
def __contains__(self, elem: object) -> bool: ...
|
363 |
+
def __eq__(self, other: object) -> bool: ...
|
364 |
+
@overload
|
365 |
+
def __getitem__(self, key: int) -> _T: ...
|
366 |
+
@overload
|
367 |
+
def __getitem__(self, key: slice) -> numeric_range[_T, _U]: ...
|
368 |
+
def __hash__(self) -> int: ...
|
369 |
+
def __iter__(self) -> Iterator[_T]: ...
|
370 |
+
def __len__(self) -> int: ...
|
371 |
+
def __reduce__(
|
372 |
+
self,
|
373 |
+
) -> tuple[Type[numeric_range[_T, _U]], tuple[_T, _T, _U]]: ...
|
374 |
+
def __repr__(self) -> str: ...
|
375 |
+
def __reversed__(self) -> Iterator[_T]: ...
|
376 |
+
def count(self, value: _T) -> int: ...
|
377 |
+
def index(self, value: _T) -> int: ... # type: ignore
|
378 |
+
|
379 |
+
def count_cycle(
|
380 |
+
iterable: Iterable[_T], n: int | None = ...
|
381 |
+
) -> Iterable[tuple[int, _T]]: ...
|
382 |
+
def mark_ends(
|
383 |
+
iterable: Iterable[_T],
|
384 |
+
) -> Iterable[tuple[bool, bool, _T]]: ...
|
385 |
+
def locate(
|
386 |
+
iterable: Iterable[_T],
|
387 |
+
pred: Callable[..., Any] = ...,
|
388 |
+
window_size: int | None = ...,
|
389 |
+
) -> Iterator[int]: ...
|
390 |
+
def lstrip(
|
391 |
+
iterable: Iterable[_T], pred: Callable[[_T], object]
|
392 |
+
) -> Iterator[_T]: ...
|
393 |
+
def rstrip(
|
394 |
+
iterable: Iterable[_T], pred: Callable[[_T], object]
|
395 |
+
) -> Iterator[_T]: ...
|
396 |
+
def strip(
|
397 |
+
iterable: Iterable[_T], pred: Callable[[_T], object]
|
398 |
+
) -> Iterator[_T]: ...
|
399 |
+
|
400 |
+
class islice_extended(Generic[_T], Iterator[_T]):
|
401 |
+
def __init__(self, iterable: Iterable[_T], *args: int | None) -> None: ...
|
402 |
+
def __iter__(self) -> islice_extended[_T]: ...
|
403 |
+
def __next__(self) -> _T: ...
|
404 |
+
def __getitem__(self, index: slice) -> islice_extended[_T]: ...
|
405 |
+
|
406 |
+
def always_reversible(iterable: Iterable[_T]) -> Iterator[_T]: ...
|
407 |
+
def consecutive_groups(
|
408 |
+
iterable: Iterable[_T], ordering: Callable[[_T], int] = ...
|
409 |
+
) -> Iterator[Iterator[_T]]: ...
|
410 |
+
@overload
|
411 |
+
def difference(
|
412 |
+
iterable: Iterable[_T],
|
413 |
+
func: Callable[[_T, _T], _U] = ...,
|
414 |
+
*,
|
415 |
+
initial: None = ...,
|
416 |
+
) -> Iterator[_T | _U]: ...
|
417 |
+
@overload
|
418 |
+
def difference(
|
419 |
+
iterable: Iterable[_T], func: Callable[[_T, _T], _U] = ..., *, initial: _U
|
420 |
+
) -> Iterator[_U]: ...
|
421 |
+
|
422 |
+
class SequenceView(Generic[_T], Sequence[_T]):
|
423 |
+
def __init__(self, target: Sequence[_T]) -> None: ...
|
424 |
+
@overload
|
425 |
+
def __getitem__(self, index: int) -> _T: ...
|
426 |
+
@overload
|
427 |
+
def __getitem__(self, index: slice) -> Sequence[_T]: ...
|
428 |
+
def __len__(self) -> int: ...
|
429 |
+
|
430 |
+
class seekable(Generic[_T], Iterator[_T]):
|
431 |
+
def __init__(
|
432 |
+
self, iterable: Iterable[_T], maxlen: int | None = ...
|
433 |
+
) -> None: ...
|
434 |
+
def __iter__(self) -> seekable[_T]: ...
|
435 |
+
def __next__(self) -> _T: ...
|
436 |
+
def __bool__(self) -> bool: ...
|
437 |
+
@overload
|
438 |
+
def peek(self) -> _T: ...
|
439 |
+
@overload
|
440 |
+
def peek(self, default: _U) -> _T | _U: ...
|
441 |
+
def elements(self) -> SequenceView[_T]: ...
|
442 |
+
def seek(self, index: int) -> None: ...
|
443 |
+
def relative_seek(self, count: int) -> None: ...
|
444 |
+
|
445 |
+
class run_length:
|
446 |
+
@staticmethod
|
447 |
+
def encode(iterable: Iterable[_T]) -> Iterator[tuple[_T, int]]: ...
|
448 |
+
@staticmethod
|
449 |
+
def decode(iterable: Iterable[tuple[_T, int]]) -> Iterator[_T]: ...
|
450 |
+
|
451 |
+
def exactly_n(
|
452 |
+
iterable: Iterable[_T], n: int, predicate: Callable[[_T], object] = ...
|
453 |
+
) -> bool: ...
|
454 |
+
def circular_shifts(iterable: Iterable[_T]) -> list[tuple[_T, ...]]: ...
|
455 |
+
def make_decorator(
|
456 |
+
wrapping_func: Callable[..., _U], result_index: int = ...
|
457 |
+
) -> Callable[..., Callable[[Callable[..., Any]], Callable[..., _U]]]: ...
|
458 |
+
@overload
|
459 |
+
def map_reduce(
|
460 |
+
iterable: Iterable[_T],
|
461 |
+
keyfunc: Callable[[_T], _U],
|
462 |
+
valuefunc: None = ...,
|
463 |
+
reducefunc: None = ...,
|
464 |
+
) -> dict[_U, list[_T]]: ...
|
465 |
+
@overload
|
466 |
+
def map_reduce(
|
467 |
+
iterable: Iterable[_T],
|
468 |
+
keyfunc: Callable[[_T], _U],
|
469 |
+
valuefunc: Callable[[_T], _V],
|
470 |
+
reducefunc: None = ...,
|
471 |
+
) -> dict[_U, list[_V]]: ...
|
472 |
+
@overload
|
473 |
+
def map_reduce(
|
474 |
+
iterable: Iterable[_T],
|
475 |
+
keyfunc: Callable[[_T], _U],
|
476 |
+
valuefunc: None = ...,
|
477 |
+
reducefunc: Callable[[list[_T]], _W] = ...,
|
478 |
+
) -> dict[_U, _W]: ...
|
479 |
+
@overload
|
480 |
+
def map_reduce(
|
481 |
+
iterable: Iterable[_T],
|
482 |
+
keyfunc: Callable[[_T], _U],
|
483 |
+
valuefunc: Callable[[_T], _V],
|
484 |
+
reducefunc: Callable[[list[_V]], _W],
|
485 |
+
) -> dict[_U, _W]: ...
|
486 |
+
def rlocate(
|
487 |
+
iterable: Iterable[_T],
|
488 |
+
pred: Callable[..., object] = ...,
|
489 |
+
window_size: int | None = ...,
|
490 |
+
) -> Iterator[int]: ...
|
491 |
+
def replace(
|
492 |
+
iterable: Iterable[_T],
|
493 |
+
pred: Callable[..., object],
|
494 |
+
substitutes: Iterable[_U],
|
495 |
+
count: int | None = ...,
|
496 |
+
window_size: int = ...,
|
497 |
+
) -> Iterator[_T | _U]: ...
|
498 |
+
def partitions(iterable: Iterable[_T]) -> Iterator[list[list[_T]]]: ...
|
499 |
+
def set_partitions(
|
500 |
+
iterable: Iterable[_T], k: int | None = ...
|
501 |
+
) -> Iterator[list[list[_T]]]: ...
|
502 |
+
|
503 |
+
class time_limited(Generic[_T], Iterator[_T]):
|
504 |
+
def __init__(
|
505 |
+
self, limit_seconds: float, iterable: Iterable[_T]
|
506 |
+
) -> None: ...
|
507 |
+
def __iter__(self) -> islice_extended[_T]: ...
|
508 |
+
def __next__(self) -> _T: ...
|
509 |
+
|
510 |
+
@overload
|
511 |
+
def only(
|
512 |
+
iterable: Iterable[_T], *, too_long: _Raisable | None = ...
|
513 |
+
) -> _T | None: ...
|
514 |
+
@overload
|
515 |
+
def only(
|
516 |
+
iterable: Iterable[_T], default: _U, too_long: _Raisable | None = ...
|
517 |
+
) -> _T | _U: ...
|
518 |
+
def ichunked(iterable: Iterable[_T], n: int) -> Iterator[Iterator[_T]]: ...
|
519 |
+
def distinct_combinations(
|
520 |
+
iterable: Iterable[_T], r: int
|
521 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
522 |
+
def filter_except(
|
523 |
+
validator: Callable[[Any], object],
|
524 |
+
iterable: Iterable[_T],
|
525 |
+
*exceptions: Type[BaseException],
|
526 |
+
) -> Iterator[_T]: ...
|
527 |
+
def map_except(
|
528 |
+
function: Callable[[Any], _U],
|
529 |
+
iterable: Iterable[_T],
|
530 |
+
*exceptions: Type[BaseException],
|
531 |
+
) -> Iterator[_U]: ...
|
532 |
+
def map_if(
|
533 |
+
iterable: Iterable[Any],
|
534 |
+
pred: Callable[[Any], bool],
|
535 |
+
func: Callable[[Any], Any],
|
536 |
+
func_else: Callable[[Any], Any] | None = ...,
|
537 |
+
) -> Iterator[Any]: ...
|
538 |
+
def sample(
|
539 |
+
iterable: Iterable[_T],
|
540 |
+
k: int,
|
541 |
+
weights: Iterable[float] | None = ...,
|
542 |
+
) -> list[_T]: ...
|
543 |
+
def is_sorted(
|
544 |
+
iterable: Iterable[_T],
|
545 |
+
key: Callable[[_T], _U] | None = ...,
|
546 |
+
reverse: bool = False,
|
547 |
+
strict: bool = False,
|
548 |
+
) -> bool: ...
|
549 |
+
|
550 |
+
class AbortThread(BaseException):
|
551 |
+
pass
|
552 |
+
|
553 |
+
class callback_iter(Generic[_T], Iterator[_T]):
|
554 |
+
def __init__(
|
555 |
+
self,
|
556 |
+
func: Callable[..., Any],
|
557 |
+
callback_kwd: str = ...,
|
558 |
+
wait_seconds: float = ...,
|
559 |
+
) -> None: ...
|
560 |
+
def __enter__(self) -> callback_iter[_T]: ...
|
561 |
+
def __exit__(
|
562 |
+
self,
|
563 |
+
exc_type: Type[BaseException] | None,
|
564 |
+
exc_value: BaseException | None,
|
565 |
+
traceback: TracebackType | None,
|
566 |
+
) -> bool | None: ...
|
567 |
+
def __iter__(self) -> callback_iter[_T]: ...
|
568 |
+
def __next__(self) -> _T: ...
|
569 |
+
def _reader(self) -> Iterator[_T]: ...
|
570 |
+
@property
|
571 |
+
def done(self) -> bool: ...
|
572 |
+
@property
|
573 |
+
def result(self) -> Any: ...
|
574 |
+
|
575 |
+
def windowed_complete(
|
576 |
+
iterable: Iterable[_T], n: int
|
577 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
578 |
+
def all_unique(
|
579 |
+
iterable: Iterable[_T], key: Callable[[_T], _U] | None = ...
|
580 |
+
) -> bool: ...
|
581 |
+
def nth_product(index: int, *args: Iterable[_T]) -> tuple[_T, ...]: ...
|
582 |
+
def nth_combination_with_replacement(
|
583 |
+
iterable: Iterable[_T], r: int, index: int
|
584 |
+
) -> tuple[_T, ...]: ...
|
585 |
+
def nth_permutation(
|
586 |
+
iterable: Iterable[_T], r: int, index: int
|
587 |
+
) -> tuple[_T, ...]: ...
|
588 |
+
def value_chain(*args: _T | Iterable[_T]) -> Iterable[_T]: ...
|
589 |
+
def product_index(element: Iterable[_T], *args: Iterable[_T]) -> int: ...
|
590 |
+
def combination_index(
|
591 |
+
element: Iterable[_T], iterable: Iterable[_T]
|
592 |
+
) -> int: ...
|
593 |
+
def combination_with_replacement_index(
|
594 |
+
element: Iterable[_T], iterable: Iterable[_T]
|
595 |
+
) -> int: ...
|
596 |
+
def permutation_index(
|
597 |
+
element: Iterable[_T], iterable: Iterable[_T]
|
598 |
+
) -> int: ...
|
599 |
+
def repeat_each(iterable: Iterable[_T], n: int = ...) -> Iterator[_T]: ...
|
600 |
+
|
601 |
+
class countable(Generic[_T], Iterator[_T]):
|
602 |
+
def __init__(self, iterable: Iterable[_T]) -> None: ...
|
603 |
+
def __iter__(self) -> countable[_T]: ...
|
604 |
+
def __next__(self) -> _T: ...
|
605 |
+
|
606 |
+
def chunked_even(iterable: Iterable[_T], n: int) -> Iterator[list[_T]]: ...
|
607 |
+
def zip_broadcast(
|
608 |
+
*objects: _T | Iterable[_T],
|
609 |
+
scalar_types: type | tuple[type | tuple[Any, ...], ...] | None = ...,
|
610 |
+
strict: bool = ...,
|
611 |
+
) -> Iterable[tuple[_T, ...]]: ...
|
612 |
+
def unique_in_window(
|
613 |
+
iterable: Iterable[_T], n: int, key: Callable[[_T], _U] | None = ...
|
614 |
+
) -> Iterator[_T]: ...
|
615 |
+
def duplicates_everseen(
|
616 |
+
iterable: Iterable[_T], key: Callable[[_T], _U] | None = ...
|
617 |
+
) -> Iterator[_T]: ...
|
618 |
+
def duplicates_justseen(
|
619 |
+
iterable: Iterable[_T], key: Callable[[_T], _U] | None = ...
|
620 |
+
) -> Iterator[_T]: ...
|
621 |
+
def classify_unique(
|
622 |
+
iterable: Iterable[_T], key: Callable[[_T], _U] | None = ...
|
623 |
+
) -> Iterator[tuple[_T, bool, bool]]: ...
|
624 |
+
|
625 |
+
class _SupportsLessThan(Protocol):
|
626 |
+
def __lt__(self, __other: Any) -> bool: ...
|
627 |
+
|
628 |
+
_SupportsLessThanT = TypeVar("_SupportsLessThanT", bound=_SupportsLessThan)
|
629 |
+
|
630 |
+
@overload
|
631 |
+
def minmax(
|
632 |
+
iterable_or_value: Iterable[_SupportsLessThanT], *, key: None = None
|
633 |
+
) -> tuple[_SupportsLessThanT, _SupportsLessThanT]: ...
|
634 |
+
@overload
|
635 |
+
def minmax(
|
636 |
+
iterable_or_value: Iterable[_T], *, key: Callable[[_T], _SupportsLessThan]
|
637 |
+
) -> tuple[_T, _T]: ...
|
638 |
+
@overload
|
639 |
+
def minmax(
|
640 |
+
iterable_or_value: Iterable[_SupportsLessThanT],
|
641 |
+
*,
|
642 |
+
key: None = None,
|
643 |
+
default: _U,
|
644 |
+
) -> _U | tuple[_SupportsLessThanT, _SupportsLessThanT]: ...
|
645 |
+
@overload
|
646 |
+
def minmax(
|
647 |
+
iterable_or_value: Iterable[_T],
|
648 |
+
*,
|
649 |
+
key: Callable[[_T], _SupportsLessThan],
|
650 |
+
default: _U,
|
651 |
+
) -> _U | tuple[_T, _T]: ...
|
652 |
+
@overload
|
653 |
+
def minmax(
|
654 |
+
iterable_or_value: _SupportsLessThanT,
|
655 |
+
__other: _SupportsLessThanT,
|
656 |
+
*others: _SupportsLessThanT,
|
657 |
+
) -> tuple[_SupportsLessThanT, _SupportsLessThanT]: ...
|
658 |
+
@overload
|
659 |
+
def minmax(
|
660 |
+
iterable_or_value: _T,
|
661 |
+
__other: _T,
|
662 |
+
*others: _T,
|
663 |
+
key: Callable[[_T], _SupportsLessThan],
|
664 |
+
) -> tuple[_T, _T]: ...
|
665 |
+
def longest_common_prefix(
|
666 |
+
iterables: Iterable[Iterable[_T]],
|
667 |
+
) -> Iterator[_T]: ...
|
668 |
+
def iequals(*iterables: Iterable[Any]) -> bool: ...
|
669 |
+
def constrained_batches(
|
670 |
+
iterable: Iterable[_T],
|
671 |
+
max_size: int,
|
672 |
+
max_count: int | None = ...,
|
673 |
+
get_len: Callable[[_T], object] = ...,
|
674 |
+
strict: bool = ...,
|
675 |
+
) -> Iterator[tuple[_T]]: ...
|
676 |
+
def gray_product(*iterables: Iterable[_T]) -> Iterator[tuple[_T, ...]]: ...
|
677 |
+
def partial_product(*iterables: Iterable[_T]) -> Iterator[tuple[_T, ...]]: ...
|
678 |
+
def takewhile_inclusive(
|
679 |
+
predicate: Callable[[_T], bool], iterable: Iterable[_T]
|
680 |
+
) -> Iterator[_T]: ...
|
681 |
+
def outer_product(
|
682 |
+
func: Callable[[_T, _U], _V],
|
683 |
+
xs: Iterable[_T],
|
684 |
+
ys: Iterable[_U],
|
685 |
+
*args: Any,
|
686 |
+
**kwargs: Any,
|
687 |
+
) -> Iterator[tuple[_V, ...]]: ...
|
688 |
+
def iter_suppress(
|
689 |
+
iterable: Iterable[_T],
|
690 |
+
*exceptions: Type[BaseException],
|
691 |
+
) -> Iterator[_T]: ...
|
692 |
+
def filter_map(
|
693 |
+
func: Callable[[_T], _V | None],
|
694 |
+
iterable: Iterable[_T],
|
695 |
+
) -> Iterator[_V]: ...
|
venv/lib/python3.10/site-packages/more_itertools/py.typed
ADDED
File without changes
|
venv/lib/python3.10/site-packages/more_itertools/recipes.py
ADDED
@@ -0,0 +1,1012 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Imported from the recipes section of the itertools documentation.
|
2 |
+
|
3 |
+
All functions taken from the recipes section of the itertools library docs
|
4 |
+
[1]_.
|
5 |
+
Some backward-compatible usability improvements have been made.
|
6 |
+
|
7 |
+
.. [1] http://docs.python.org/library/itertools.html#recipes
|
8 |
+
|
9 |
+
"""
|
10 |
+
import math
|
11 |
+
import operator
|
12 |
+
|
13 |
+
from collections import deque
|
14 |
+
from collections.abc import Sized
|
15 |
+
from functools import partial, reduce
|
16 |
+
from itertools import (
|
17 |
+
chain,
|
18 |
+
combinations,
|
19 |
+
compress,
|
20 |
+
count,
|
21 |
+
cycle,
|
22 |
+
groupby,
|
23 |
+
islice,
|
24 |
+
product,
|
25 |
+
repeat,
|
26 |
+
starmap,
|
27 |
+
tee,
|
28 |
+
zip_longest,
|
29 |
+
)
|
30 |
+
from random import randrange, sample, choice
|
31 |
+
from sys import hexversion
|
32 |
+
|
33 |
+
__all__ = [
|
34 |
+
'all_equal',
|
35 |
+
'batched',
|
36 |
+
'before_and_after',
|
37 |
+
'consume',
|
38 |
+
'convolve',
|
39 |
+
'dotproduct',
|
40 |
+
'first_true',
|
41 |
+
'factor',
|
42 |
+
'flatten',
|
43 |
+
'grouper',
|
44 |
+
'iter_except',
|
45 |
+
'iter_index',
|
46 |
+
'matmul',
|
47 |
+
'ncycles',
|
48 |
+
'nth',
|
49 |
+
'nth_combination',
|
50 |
+
'padnone',
|
51 |
+
'pad_none',
|
52 |
+
'pairwise',
|
53 |
+
'partition',
|
54 |
+
'polynomial_eval',
|
55 |
+
'polynomial_from_roots',
|
56 |
+
'polynomial_derivative',
|
57 |
+
'powerset',
|
58 |
+
'prepend',
|
59 |
+
'quantify',
|
60 |
+
'reshape',
|
61 |
+
'random_combination_with_replacement',
|
62 |
+
'random_combination',
|
63 |
+
'random_permutation',
|
64 |
+
'random_product',
|
65 |
+
'repeatfunc',
|
66 |
+
'roundrobin',
|
67 |
+
'sieve',
|
68 |
+
'sliding_window',
|
69 |
+
'subslices',
|
70 |
+
'sum_of_squares',
|
71 |
+
'tabulate',
|
72 |
+
'tail',
|
73 |
+
'take',
|
74 |
+
'totient',
|
75 |
+
'transpose',
|
76 |
+
'triplewise',
|
77 |
+
'unique_everseen',
|
78 |
+
'unique_justseen',
|
79 |
+
]
|
80 |
+
|
81 |
+
_marker = object()
|
82 |
+
|
83 |
+
|
84 |
+
# zip with strict is available for Python 3.10+
|
85 |
+
try:
|
86 |
+
zip(strict=True)
|
87 |
+
except TypeError:
|
88 |
+
_zip_strict = zip
|
89 |
+
else:
|
90 |
+
_zip_strict = partial(zip, strict=True)
|
91 |
+
|
92 |
+
# math.sumprod is available for Python 3.12+
|
93 |
+
_sumprod = getattr(math, 'sumprod', lambda x, y: dotproduct(x, y))
|
94 |
+
|
95 |
+
|
96 |
+
def take(n, iterable):
|
97 |
+
"""Return first *n* items of the iterable as a list.
|
98 |
+
|
99 |
+
>>> take(3, range(10))
|
100 |
+
[0, 1, 2]
|
101 |
+
|
102 |
+
If there are fewer than *n* items in the iterable, all of them are
|
103 |
+
returned.
|
104 |
+
|
105 |
+
>>> take(10, range(3))
|
106 |
+
[0, 1, 2]
|
107 |
+
|
108 |
+
"""
|
109 |
+
return list(islice(iterable, n))
|
110 |
+
|
111 |
+
|
112 |
+
def tabulate(function, start=0):
|
113 |
+
"""Return an iterator over the results of ``func(start)``,
|
114 |
+
``func(start + 1)``, ``func(start + 2)``...
|
115 |
+
|
116 |
+
*func* should be a function that accepts one integer argument.
|
117 |
+
|
118 |
+
If *start* is not specified it defaults to 0. It will be incremented each
|
119 |
+
time the iterator is advanced.
|
120 |
+
|
121 |
+
>>> square = lambda x: x ** 2
|
122 |
+
>>> iterator = tabulate(square, -3)
|
123 |
+
>>> take(4, iterator)
|
124 |
+
[9, 4, 1, 0]
|
125 |
+
|
126 |
+
"""
|
127 |
+
return map(function, count(start))
|
128 |
+
|
129 |
+
|
130 |
+
def tail(n, iterable):
|
131 |
+
"""Return an iterator over the last *n* items of *iterable*.
|
132 |
+
|
133 |
+
>>> t = tail(3, 'ABCDEFG')
|
134 |
+
>>> list(t)
|
135 |
+
['E', 'F', 'G']
|
136 |
+
|
137 |
+
"""
|
138 |
+
# If the given iterable has a length, then we can use islice to get its
|
139 |
+
# final elements. Note that if the iterable is not actually Iterable,
|
140 |
+
# either islice or deque will throw a TypeError. This is why we don't
|
141 |
+
# check if it is Iterable.
|
142 |
+
if isinstance(iterable, Sized):
|
143 |
+
yield from islice(iterable, max(0, len(iterable) - n), None)
|
144 |
+
else:
|
145 |
+
yield from iter(deque(iterable, maxlen=n))
|
146 |
+
|
147 |
+
|
148 |
+
def consume(iterator, n=None):
|
149 |
+
"""Advance *iterable* by *n* steps. If *n* is ``None``, consume it
|
150 |
+
entirely.
|
151 |
+
|
152 |
+
Efficiently exhausts an iterator without returning values. Defaults to
|
153 |
+
consuming the whole iterator, but an optional second argument may be
|
154 |
+
provided to limit consumption.
|
155 |
+
|
156 |
+
>>> i = (x for x in range(10))
|
157 |
+
>>> next(i)
|
158 |
+
0
|
159 |
+
>>> consume(i, 3)
|
160 |
+
>>> next(i)
|
161 |
+
4
|
162 |
+
>>> consume(i)
|
163 |
+
>>> next(i)
|
164 |
+
Traceback (most recent call last):
|
165 |
+
File "<stdin>", line 1, in <module>
|
166 |
+
StopIteration
|
167 |
+
|
168 |
+
If the iterator has fewer items remaining than the provided limit, the
|
169 |
+
whole iterator will be consumed.
|
170 |
+
|
171 |
+
>>> i = (x for x in range(3))
|
172 |
+
>>> consume(i, 5)
|
173 |
+
>>> next(i)
|
174 |
+
Traceback (most recent call last):
|
175 |
+
File "<stdin>", line 1, in <module>
|
176 |
+
StopIteration
|
177 |
+
|
178 |
+
"""
|
179 |
+
# Use functions that consume iterators at C speed.
|
180 |
+
if n is None:
|
181 |
+
# feed the entire iterator into a zero-length deque
|
182 |
+
deque(iterator, maxlen=0)
|
183 |
+
else:
|
184 |
+
# advance to the empty slice starting at position n
|
185 |
+
next(islice(iterator, n, n), None)
|
186 |
+
|
187 |
+
|
188 |
+
def nth(iterable, n, default=None):
|
189 |
+
"""Returns the nth item or a default value.
|
190 |
+
|
191 |
+
>>> l = range(10)
|
192 |
+
>>> nth(l, 3)
|
193 |
+
3
|
194 |
+
>>> nth(l, 20, "zebra")
|
195 |
+
'zebra'
|
196 |
+
|
197 |
+
"""
|
198 |
+
return next(islice(iterable, n, None), default)
|
199 |
+
|
200 |
+
|
201 |
+
def all_equal(iterable):
|
202 |
+
"""
|
203 |
+
Returns ``True`` if all the elements are equal to each other.
|
204 |
+
|
205 |
+
>>> all_equal('aaaa')
|
206 |
+
True
|
207 |
+
>>> all_equal('aaab')
|
208 |
+
False
|
209 |
+
|
210 |
+
"""
|
211 |
+
g = groupby(iterable)
|
212 |
+
return next(g, True) and not next(g, False)
|
213 |
+
|
214 |
+
|
215 |
+
def quantify(iterable, pred=bool):
|
216 |
+
"""Return the how many times the predicate is true.
|
217 |
+
|
218 |
+
>>> quantify([True, False, True])
|
219 |
+
2
|
220 |
+
|
221 |
+
"""
|
222 |
+
return sum(map(pred, iterable))
|
223 |
+
|
224 |
+
|
225 |
+
def pad_none(iterable):
|
226 |
+
"""Returns the sequence of elements and then returns ``None`` indefinitely.
|
227 |
+
|
228 |
+
>>> take(5, pad_none(range(3)))
|
229 |
+
[0, 1, 2, None, None]
|
230 |
+
|
231 |
+
Useful for emulating the behavior of the built-in :func:`map` function.
|
232 |
+
|
233 |
+
See also :func:`padded`.
|
234 |
+
|
235 |
+
"""
|
236 |
+
return chain(iterable, repeat(None))
|
237 |
+
|
238 |
+
|
239 |
+
padnone = pad_none
|
240 |
+
|
241 |
+
|
242 |
+
def ncycles(iterable, n):
|
243 |
+
"""Returns the sequence elements *n* times
|
244 |
+
|
245 |
+
>>> list(ncycles(["a", "b"], 3))
|
246 |
+
['a', 'b', 'a', 'b', 'a', 'b']
|
247 |
+
|
248 |
+
"""
|
249 |
+
return chain.from_iterable(repeat(tuple(iterable), n))
|
250 |
+
|
251 |
+
|
252 |
+
def dotproduct(vec1, vec2):
|
253 |
+
"""Returns the dot product of the two iterables.
|
254 |
+
|
255 |
+
>>> dotproduct([10, 10], [20, 20])
|
256 |
+
400
|
257 |
+
|
258 |
+
"""
|
259 |
+
return sum(map(operator.mul, vec1, vec2))
|
260 |
+
|
261 |
+
|
262 |
+
def flatten(listOfLists):
|
263 |
+
"""Return an iterator flattening one level of nesting in a list of lists.
|
264 |
+
|
265 |
+
>>> list(flatten([[0, 1], [2, 3]]))
|
266 |
+
[0, 1, 2, 3]
|
267 |
+
|
268 |
+
See also :func:`collapse`, which can flatten multiple levels of nesting.
|
269 |
+
|
270 |
+
"""
|
271 |
+
return chain.from_iterable(listOfLists)
|
272 |
+
|
273 |
+
|
274 |
+
def repeatfunc(func, times=None, *args):
|
275 |
+
"""Call *func* with *args* repeatedly, returning an iterable over the
|
276 |
+
results.
|
277 |
+
|
278 |
+
If *times* is specified, the iterable will terminate after that many
|
279 |
+
repetitions:
|
280 |
+
|
281 |
+
>>> from operator import add
|
282 |
+
>>> times = 4
|
283 |
+
>>> args = 3, 5
|
284 |
+
>>> list(repeatfunc(add, times, *args))
|
285 |
+
[8, 8, 8, 8]
|
286 |
+
|
287 |
+
If *times* is ``None`` the iterable will not terminate:
|
288 |
+
|
289 |
+
>>> from random import randrange
|
290 |
+
>>> times = None
|
291 |
+
>>> args = 1, 11
|
292 |
+
>>> take(6, repeatfunc(randrange, times, *args)) # doctest:+SKIP
|
293 |
+
[2, 4, 8, 1, 8, 4]
|
294 |
+
|
295 |
+
"""
|
296 |
+
if times is None:
|
297 |
+
return starmap(func, repeat(args))
|
298 |
+
return starmap(func, repeat(args, times))
|
299 |
+
|
300 |
+
|
301 |
+
def _pairwise(iterable):
|
302 |
+
"""Returns an iterator of paired items, overlapping, from the original
|
303 |
+
|
304 |
+
>>> take(4, pairwise(count()))
|
305 |
+
[(0, 1), (1, 2), (2, 3), (3, 4)]
|
306 |
+
|
307 |
+
On Python 3.10 and above, this is an alias for :func:`itertools.pairwise`.
|
308 |
+
|
309 |
+
"""
|
310 |
+
a, b = tee(iterable)
|
311 |
+
next(b, None)
|
312 |
+
return zip(a, b)
|
313 |
+
|
314 |
+
|
315 |
+
try:
|
316 |
+
from itertools import pairwise as itertools_pairwise
|
317 |
+
except ImportError:
|
318 |
+
pairwise = _pairwise
|
319 |
+
else:
|
320 |
+
|
321 |
+
def pairwise(iterable):
|
322 |
+
return itertools_pairwise(iterable)
|
323 |
+
|
324 |
+
pairwise.__doc__ = _pairwise.__doc__
|
325 |
+
|
326 |
+
|
327 |
+
class UnequalIterablesError(ValueError):
|
328 |
+
def __init__(self, details=None):
|
329 |
+
msg = 'Iterables have different lengths'
|
330 |
+
if details is not None:
|
331 |
+
msg += (': index 0 has length {}; index {} has length {}').format(
|
332 |
+
*details
|
333 |
+
)
|
334 |
+
|
335 |
+
super().__init__(msg)
|
336 |
+
|
337 |
+
|
338 |
+
def _zip_equal_generator(iterables):
|
339 |
+
for combo in zip_longest(*iterables, fillvalue=_marker):
|
340 |
+
for val in combo:
|
341 |
+
if val is _marker:
|
342 |
+
raise UnequalIterablesError()
|
343 |
+
yield combo
|
344 |
+
|
345 |
+
|
346 |
+
def _zip_equal(*iterables):
|
347 |
+
# Check whether the iterables are all the same size.
|
348 |
+
try:
|
349 |
+
first_size = len(iterables[0])
|
350 |
+
for i, it in enumerate(iterables[1:], 1):
|
351 |
+
size = len(it)
|
352 |
+
if size != first_size:
|
353 |
+
raise UnequalIterablesError(details=(first_size, i, size))
|
354 |
+
# All sizes are equal, we can use the built-in zip.
|
355 |
+
return zip(*iterables)
|
356 |
+
# If any one of the iterables didn't have a length, start reading
|
357 |
+
# them until one runs out.
|
358 |
+
except TypeError:
|
359 |
+
return _zip_equal_generator(iterables)
|
360 |
+
|
361 |
+
|
362 |
+
def grouper(iterable, n, incomplete='fill', fillvalue=None):
|
363 |
+
"""Group elements from *iterable* into fixed-length groups of length *n*.
|
364 |
+
|
365 |
+
>>> list(grouper('ABCDEF', 3))
|
366 |
+
[('A', 'B', 'C'), ('D', 'E', 'F')]
|
367 |
+
|
368 |
+
The keyword arguments *incomplete* and *fillvalue* control what happens for
|
369 |
+
iterables whose length is not a multiple of *n*.
|
370 |
+
|
371 |
+
When *incomplete* is `'fill'`, the last group will contain instances of
|
372 |
+
*fillvalue*.
|
373 |
+
|
374 |
+
>>> list(grouper('ABCDEFG', 3, incomplete='fill', fillvalue='x'))
|
375 |
+
[('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')]
|
376 |
+
|
377 |
+
When *incomplete* is `'ignore'`, the last group will not be emitted.
|
378 |
+
|
379 |
+
>>> list(grouper('ABCDEFG', 3, incomplete='ignore', fillvalue='x'))
|
380 |
+
[('A', 'B', 'C'), ('D', 'E', 'F')]
|
381 |
+
|
382 |
+
When *incomplete* is `'strict'`, a subclass of `ValueError` will be raised.
|
383 |
+
|
384 |
+
>>> it = grouper('ABCDEFG', 3, incomplete='strict')
|
385 |
+
>>> list(it) # doctest: +IGNORE_EXCEPTION_DETAIL
|
386 |
+
Traceback (most recent call last):
|
387 |
+
...
|
388 |
+
UnequalIterablesError
|
389 |
+
|
390 |
+
"""
|
391 |
+
args = [iter(iterable)] * n
|
392 |
+
if incomplete == 'fill':
|
393 |
+
return zip_longest(*args, fillvalue=fillvalue)
|
394 |
+
if incomplete == 'strict':
|
395 |
+
return _zip_equal(*args)
|
396 |
+
if incomplete == 'ignore':
|
397 |
+
return zip(*args)
|
398 |
+
else:
|
399 |
+
raise ValueError('Expected fill, strict, or ignore')
|
400 |
+
|
401 |
+
|
402 |
+
def roundrobin(*iterables):
|
403 |
+
"""Yields an item from each iterable, alternating between them.
|
404 |
+
|
405 |
+
>>> list(roundrobin('ABC', 'D', 'EF'))
|
406 |
+
['A', 'D', 'E', 'B', 'F', 'C']
|
407 |
+
|
408 |
+
This function produces the same output as :func:`interleave_longest`, but
|
409 |
+
may perform better for some inputs (in particular when the number of
|
410 |
+
iterables is small).
|
411 |
+
|
412 |
+
"""
|
413 |
+
# Recipe credited to George Sakkis
|
414 |
+
pending = len(iterables)
|
415 |
+
nexts = cycle(iter(it).__next__ for it in iterables)
|
416 |
+
while pending:
|
417 |
+
try:
|
418 |
+
for next in nexts:
|
419 |
+
yield next()
|
420 |
+
except StopIteration:
|
421 |
+
pending -= 1
|
422 |
+
nexts = cycle(islice(nexts, pending))
|
423 |
+
|
424 |
+
|
425 |
+
def partition(pred, iterable):
|
426 |
+
"""
|
427 |
+
Returns a 2-tuple of iterables derived from the input iterable.
|
428 |
+
The first yields the items that have ``pred(item) == False``.
|
429 |
+
The second yields the items that have ``pred(item) == True``.
|
430 |
+
|
431 |
+
>>> is_odd = lambda x: x % 2 != 0
|
432 |
+
>>> iterable = range(10)
|
433 |
+
>>> even_items, odd_items = partition(is_odd, iterable)
|
434 |
+
>>> list(even_items), list(odd_items)
|
435 |
+
([0, 2, 4, 6, 8], [1, 3, 5, 7, 9])
|
436 |
+
|
437 |
+
If *pred* is None, :func:`bool` is used.
|
438 |
+
|
439 |
+
>>> iterable = [0, 1, False, True, '', ' ']
|
440 |
+
>>> false_items, true_items = partition(None, iterable)
|
441 |
+
>>> list(false_items), list(true_items)
|
442 |
+
([0, False, ''], [1, True, ' '])
|
443 |
+
|
444 |
+
"""
|
445 |
+
if pred is None:
|
446 |
+
pred = bool
|
447 |
+
|
448 |
+
t1, t2, p = tee(iterable, 3)
|
449 |
+
p1, p2 = tee(map(pred, p))
|
450 |
+
return (compress(t1, map(operator.not_, p1)), compress(t2, p2))
|
451 |
+
|
452 |
+
|
453 |
+
def powerset(iterable):
|
454 |
+
"""Yields all possible subsets of the iterable.
|
455 |
+
|
456 |
+
>>> list(powerset([1, 2, 3]))
|
457 |
+
[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
|
458 |
+
|
459 |
+
:func:`powerset` will operate on iterables that aren't :class:`set`
|
460 |
+
instances, so repeated elements in the input will produce repeated elements
|
461 |
+
in the output. Use :func:`unique_everseen` on the input to avoid generating
|
462 |
+
duplicates:
|
463 |
+
|
464 |
+
>>> seq = [1, 1, 0]
|
465 |
+
>>> list(powerset(seq))
|
466 |
+
[(), (1,), (1,), (0,), (1, 1), (1, 0), (1, 0), (1, 1, 0)]
|
467 |
+
>>> from more_itertools import unique_everseen
|
468 |
+
>>> list(powerset(unique_everseen(seq)))
|
469 |
+
[(), (1,), (0,), (1, 0)]
|
470 |
+
|
471 |
+
"""
|
472 |
+
s = list(iterable)
|
473 |
+
return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1))
|
474 |
+
|
475 |
+
|
476 |
+
def unique_everseen(iterable, key=None):
|
477 |
+
"""
|
478 |
+
Yield unique elements, preserving order.
|
479 |
+
|
480 |
+
>>> list(unique_everseen('AAAABBBCCDAABBB'))
|
481 |
+
['A', 'B', 'C', 'D']
|
482 |
+
>>> list(unique_everseen('ABBCcAD', str.lower))
|
483 |
+
['A', 'B', 'C', 'D']
|
484 |
+
|
485 |
+
Sequences with a mix of hashable and unhashable items can be used.
|
486 |
+
The function will be slower (i.e., `O(n^2)`) for unhashable items.
|
487 |
+
|
488 |
+
Remember that ``list`` objects are unhashable - you can use the *key*
|
489 |
+
parameter to transform the list to a tuple (which is hashable) to
|
490 |
+
avoid a slowdown.
|
491 |
+
|
492 |
+
>>> iterable = ([1, 2], [2, 3], [1, 2])
|
493 |
+
>>> list(unique_everseen(iterable)) # Slow
|
494 |
+
[[1, 2], [2, 3]]
|
495 |
+
>>> list(unique_everseen(iterable, key=tuple)) # Faster
|
496 |
+
[[1, 2], [2, 3]]
|
497 |
+
|
498 |
+
Similarly, you may want to convert unhashable ``set`` objects with
|
499 |
+
``key=frozenset``. For ``dict`` objects,
|
500 |
+
``key=lambda x: frozenset(x.items())`` can be used.
|
501 |
+
|
502 |
+
"""
|
503 |
+
seenset = set()
|
504 |
+
seenset_add = seenset.add
|
505 |
+
seenlist = []
|
506 |
+
seenlist_add = seenlist.append
|
507 |
+
use_key = key is not None
|
508 |
+
|
509 |
+
for element in iterable:
|
510 |
+
k = key(element) if use_key else element
|
511 |
+
try:
|
512 |
+
if k not in seenset:
|
513 |
+
seenset_add(k)
|
514 |
+
yield element
|
515 |
+
except TypeError:
|
516 |
+
if k not in seenlist:
|
517 |
+
seenlist_add(k)
|
518 |
+
yield element
|
519 |
+
|
520 |
+
|
521 |
+
def unique_justseen(iterable, key=None):
|
522 |
+
"""Yields elements in order, ignoring serial duplicates
|
523 |
+
|
524 |
+
>>> list(unique_justseen('AAAABBBCCDAABBB'))
|
525 |
+
['A', 'B', 'C', 'D', 'A', 'B']
|
526 |
+
>>> list(unique_justseen('ABBCcAD', str.lower))
|
527 |
+
['A', 'B', 'C', 'A', 'D']
|
528 |
+
|
529 |
+
"""
|
530 |
+
if key is None:
|
531 |
+
return map(operator.itemgetter(0), groupby(iterable))
|
532 |
+
|
533 |
+
return map(next, map(operator.itemgetter(1), groupby(iterable, key)))
|
534 |
+
|
535 |
+
|
536 |
+
def iter_except(func, exception, first=None):
|
537 |
+
"""Yields results from a function repeatedly until an exception is raised.
|
538 |
+
|
539 |
+
Converts a call-until-exception interface to an iterator interface.
|
540 |
+
Like ``iter(func, sentinel)``, but uses an exception instead of a sentinel
|
541 |
+
to end the loop.
|
542 |
+
|
543 |
+
>>> l = [0, 1, 2]
|
544 |
+
>>> list(iter_except(l.pop, IndexError))
|
545 |
+
[2, 1, 0]
|
546 |
+
|
547 |
+
Multiple exceptions can be specified as a stopping condition:
|
548 |
+
|
549 |
+
>>> l = [1, 2, 3, '...', 4, 5, 6]
|
550 |
+
>>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
|
551 |
+
[7, 6, 5]
|
552 |
+
>>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
|
553 |
+
[4, 3, 2]
|
554 |
+
>>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
|
555 |
+
[]
|
556 |
+
|
557 |
+
"""
|
558 |
+
try:
|
559 |
+
if first is not None:
|
560 |
+
yield first()
|
561 |
+
while 1:
|
562 |
+
yield func()
|
563 |
+
except exception:
|
564 |
+
pass
|
565 |
+
|
566 |
+
|
567 |
+
def first_true(iterable, default=None, pred=None):
|
568 |
+
"""
|
569 |
+
Returns the first true value in the iterable.
|
570 |
+
|
571 |
+
If no true value is found, returns *default*
|
572 |
+
|
573 |
+
If *pred* is not None, returns the first item for which
|
574 |
+
``pred(item) == True`` .
|
575 |
+
|
576 |
+
>>> first_true(range(10))
|
577 |
+
1
|
578 |
+
>>> first_true(range(10), pred=lambda x: x > 5)
|
579 |
+
6
|
580 |
+
>>> first_true(range(10), default='missing', pred=lambda x: x > 9)
|
581 |
+
'missing'
|
582 |
+
|
583 |
+
"""
|
584 |
+
return next(filter(pred, iterable), default)
|
585 |
+
|
586 |
+
|
587 |
+
def random_product(*args, repeat=1):
|
588 |
+
"""Draw an item at random from each of the input iterables.
|
589 |
+
|
590 |
+
>>> random_product('abc', range(4), 'XYZ') # doctest:+SKIP
|
591 |
+
('c', 3, 'Z')
|
592 |
+
|
593 |
+
If *repeat* is provided as a keyword argument, that many items will be
|
594 |
+
drawn from each iterable.
|
595 |
+
|
596 |
+
>>> random_product('abcd', range(4), repeat=2) # doctest:+SKIP
|
597 |
+
('a', 2, 'd', 3)
|
598 |
+
|
599 |
+
This equivalent to taking a random selection from
|
600 |
+
``itertools.product(*args, **kwarg)``.
|
601 |
+
|
602 |
+
"""
|
603 |
+
pools = [tuple(pool) for pool in args] * repeat
|
604 |
+
return tuple(choice(pool) for pool in pools)
|
605 |
+
|
606 |
+
|
607 |
+
def random_permutation(iterable, r=None):
|
608 |
+
"""Return a random *r* length permutation of the elements in *iterable*.
|
609 |
+
|
610 |
+
If *r* is not specified or is ``None``, then *r* defaults to the length of
|
611 |
+
*iterable*.
|
612 |
+
|
613 |
+
>>> random_permutation(range(5)) # doctest:+SKIP
|
614 |
+
(3, 4, 0, 1, 2)
|
615 |
+
|
616 |
+
This equivalent to taking a random selection from
|
617 |
+
``itertools.permutations(iterable, r)``.
|
618 |
+
|
619 |
+
"""
|
620 |
+
pool = tuple(iterable)
|
621 |
+
r = len(pool) if r is None else r
|
622 |
+
return tuple(sample(pool, r))
|
623 |
+
|
624 |
+
|
625 |
+
def random_combination(iterable, r):
|
626 |
+
"""Return a random *r* length subsequence of the elements in *iterable*.
|
627 |
+
|
628 |
+
>>> random_combination(range(5), 3) # doctest:+SKIP
|
629 |
+
(2, 3, 4)
|
630 |
+
|
631 |
+
This equivalent to taking a random selection from
|
632 |
+
``itertools.combinations(iterable, r)``.
|
633 |
+
|
634 |
+
"""
|
635 |
+
pool = tuple(iterable)
|
636 |
+
n = len(pool)
|
637 |
+
indices = sorted(sample(range(n), r))
|
638 |
+
return tuple(pool[i] for i in indices)
|
639 |
+
|
640 |
+
|
641 |
+
def random_combination_with_replacement(iterable, r):
|
642 |
+
"""Return a random *r* length subsequence of elements in *iterable*,
|
643 |
+
allowing individual elements to be repeated.
|
644 |
+
|
645 |
+
>>> random_combination_with_replacement(range(3), 5) # doctest:+SKIP
|
646 |
+
(0, 0, 1, 2, 2)
|
647 |
+
|
648 |
+
This equivalent to taking a random selection from
|
649 |
+
``itertools.combinations_with_replacement(iterable, r)``.
|
650 |
+
|
651 |
+
"""
|
652 |
+
pool = tuple(iterable)
|
653 |
+
n = len(pool)
|
654 |
+
indices = sorted(randrange(n) for i in range(r))
|
655 |
+
return tuple(pool[i] for i in indices)
|
656 |
+
|
657 |
+
|
658 |
+
def nth_combination(iterable, r, index):
|
659 |
+
"""Equivalent to ``list(combinations(iterable, r))[index]``.
|
660 |
+
|
661 |
+
The subsequences of *iterable* that are of length *r* can be ordered
|
662 |
+
lexicographically. :func:`nth_combination` computes the subsequence at
|
663 |
+
sort position *index* directly, without computing the previous
|
664 |
+
subsequences.
|
665 |
+
|
666 |
+
>>> nth_combination(range(5), 3, 5)
|
667 |
+
(0, 3, 4)
|
668 |
+
|
669 |
+
``ValueError`` will be raised If *r* is negative or greater than the length
|
670 |
+
of *iterable*.
|
671 |
+
``IndexError`` will be raised if the given *index* is invalid.
|
672 |
+
"""
|
673 |
+
pool = tuple(iterable)
|
674 |
+
n = len(pool)
|
675 |
+
if (r < 0) or (r > n):
|
676 |
+
raise ValueError
|
677 |
+
|
678 |
+
c = 1
|
679 |
+
k = min(r, n - r)
|
680 |
+
for i in range(1, k + 1):
|
681 |
+
c = c * (n - k + i) // i
|
682 |
+
|
683 |
+
if index < 0:
|
684 |
+
index += c
|
685 |
+
|
686 |
+
if (index < 0) or (index >= c):
|
687 |
+
raise IndexError
|
688 |
+
|
689 |
+
result = []
|
690 |
+
while r:
|
691 |
+
c, n, r = c * r // n, n - 1, r - 1
|
692 |
+
while index >= c:
|
693 |
+
index -= c
|
694 |
+
c, n = c * (n - r) // n, n - 1
|
695 |
+
result.append(pool[-1 - n])
|
696 |
+
|
697 |
+
return tuple(result)
|
698 |
+
|
699 |
+
|
700 |
+
def prepend(value, iterator):
|
701 |
+
"""Yield *value*, followed by the elements in *iterator*.
|
702 |
+
|
703 |
+
>>> value = '0'
|
704 |
+
>>> iterator = ['1', '2', '3']
|
705 |
+
>>> list(prepend(value, iterator))
|
706 |
+
['0', '1', '2', '3']
|
707 |
+
|
708 |
+
To prepend multiple values, see :func:`itertools.chain`
|
709 |
+
or :func:`value_chain`.
|
710 |
+
|
711 |
+
"""
|
712 |
+
return chain([value], iterator)
|
713 |
+
|
714 |
+
|
715 |
+
def convolve(signal, kernel):
|
716 |
+
"""Convolve the iterable *signal* with the iterable *kernel*.
|
717 |
+
|
718 |
+
>>> signal = (1, 2, 3, 4, 5)
|
719 |
+
>>> kernel = [3, 2, 1]
|
720 |
+
>>> list(convolve(signal, kernel))
|
721 |
+
[3, 8, 14, 20, 26, 14, 5]
|
722 |
+
|
723 |
+
Note: the input arguments are not interchangeable, as the *kernel*
|
724 |
+
is immediately consumed and stored.
|
725 |
+
|
726 |
+
"""
|
727 |
+
# This implementation intentionally doesn't match the one in the itertools
|
728 |
+
# documentation.
|
729 |
+
kernel = tuple(kernel)[::-1]
|
730 |
+
n = len(kernel)
|
731 |
+
window = deque([0], maxlen=n) * n
|
732 |
+
for x in chain(signal, repeat(0, n - 1)):
|
733 |
+
window.append(x)
|
734 |
+
yield _sumprod(kernel, window)
|
735 |
+
|
736 |
+
|
737 |
+
def before_and_after(predicate, it):
|
738 |
+
"""A variant of :func:`takewhile` that allows complete access to the
|
739 |
+
remainder of the iterator.
|
740 |
+
|
741 |
+
>>> it = iter('ABCdEfGhI')
|
742 |
+
>>> all_upper, remainder = before_and_after(str.isupper, it)
|
743 |
+
>>> ''.join(all_upper)
|
744 |
+
'ABC'
|
745 |
+
>>> ''.join(remainder) # takewhile() would lose the 'd'
|
746 |
+
'dEfGhI'
|
747 |
+
|
748 |
+
Note that the first iterator must be fully consumed before the second
|
749 |
+
iterator can generate valid results.
|
750 |
+
"""
|
751 |
+
it = iter(it)
|
752 |
+
transition = []
|
753 |
+
|
754 |
+
def true_iterator():
|
755 |
+
for elem in it:
|
756 |
+
if predicate(elem):
|
757 |
+
yield elem
|
758 |
+
else:
|
759 |
+
transition.append(elem)
|
760 |
+
return
|
761 |
+
|
762 |
+
# Note: this is different from itertools recipes to allow nesting
|
763 |
+
# before_and_after remainders into before_and_after again. See tests
|
764 |
+
# for an example.
|
765 |
+
remainder_iterator = chain(transition, it)
|
766 |
+
|
767 |
+
return true_iterator(), remainder_iterator
|
768 |
+
|
769 |
+
|
770 |
+
def triplewise(iterable):
|
771 |
+
"""Return overlapping triplets from *iterable*.
|
772 |
+
|
773 |
+
>>> list(triplewise('ABCDE'))
|
774 |
+
[('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E')]
|
775 |
+
|
776 |
+
"""
|
777 |
+
for (a, _), (b, c) in pairwise(pairwise(iterable)):
|
778 |
+
yield a, b, c
|
779 |
+
|
780 |
+
|
781 |
+
def sliding_window(iterable, n):
|
782 |
+
"""Return a sliding window of width *n* over *iterable*.
|
783 |
+
|
784 |
+
>>> list(sliding_window(range(6), 4))
|
785 |
+
[(0, 1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 5)]
|
786 |
+
|
787 |
+
If *iterable* has fewer than *n* items, then nothing is yielded:
|
788 |
+
|
789 |
+
>>> list(sliding_window(range(3), 4))
|
790 |
+
[]
|
791 |
+
|
792 |
+
For a variant with more features, see :func:`windowed`.
|
793 |
+
"""
|
794 |
+
it = iter(iterable)
|
795 |
+
window = deque(islice(it, n - 1), maxlen=n)
|
796 |
+
for x in it:
|
797 |
+
window.append(x)
|
798 |
+
yield tuple(window)
|
799 |
+
|
800 |
+
|
801 |
+
def subslices(iterable):
|
802 |
+
"""Return all contiguous non-empty subslices of *iterable*.
|
803 |
+
|
804 |
+
>>> list(subslices('ABC'))
|
805 |
+
[['A'], ['A', 'B'], ['A', 'B', 'C'], ['B'], ['B', 'C'], ['C']]
|
806 |
+
|
807 |
+
This is similar to :func:`substrings`, but emits items in a different
|
808 |
+
order.
|
809 |
+
"""
|
810 |
+
seq = list(iterable)
|
811 |
+
slices = starmap(slice, combinations(range(len(seq) + 1), 2))
|
812 |
+
return map(operator.getitem, repeat(seq), slices)
|
813 |
+
|
814 |
+
|
815 |
+
def polynomial_from_roots(roots):
|
816 |
+
"""Compute a polynomial's coefficients from its roots.
|
817 |
+
|
818 |
+
>>> roots = [5, -4, 3] # (x - 5) * (x + 4) * (x - 3)
|
819 |
+
>>> polynomial_from_roots(roots) # x^3 - 4 * x^2 - 17 * x + 60
|
820 |
+
[1, -4, -17, 60]
|
821 |
+
"""
|
822 |
+
factors = zip(repeat(1), map(operator.neg, roots))
|
823 |
+
return list(reduce(convolve, factors, [1]))
|
824 |
+
|
825 |
+
|
826 |
+
def iter_index(iterable, value, start=0, stop=None):
|
827 |
+
"""Yield the index of each place in *iterable* that *value* occurs,
|
828 |
+
beginning with index *start* and ending before index *stop*.
|
829 |
+
|
830 |
+
See :func:`locate` for a more general means of finding the indexes
|
831 |
+
associated with particular values.
|
832 |
+
|
833 |
+
>>> list(iter_index('AABCADEAF', 'A'))
|
834 |
+
[0, 1, 4, 7]
|
835 |
+
>>> list(iter_index('AABCADEAF', 'A', 1)) # start index is inclusive
|
836 |
+
[1, 4, 7]
|
837 |
+
>>> list(iter_index('AABCADEAF', 'A', 1, 7)) # stop index is not inclusive
|
838 |
+
[1, 4]
|
839 |
+
"""
|
840 |
+
seq_index = getattr(iterable, 'index', None)
|
841 |
+
if seq_index is None:
|
842 |
+
# Slow path for general iterables
|
843 |
+
it = islice(iterable, start, stop)
|
844 |
+
for i, element in enumerate(it, start):
|
845 |
+
if element is value or element == value:
|
846 |
+
yield i
|
847 |
+
else:
|
848 |
+
# Fast path for sequences
|
849 |
+
stop = len(iterable) if stop is None else stop
|
850 |
+
i = start - 1
|
851 |
+
try:
|
852 |
+
while True:
|
853 |
+
yield (i := seq_index(value, i + 1, stop))
|
854 |
+
except ValueError:
|
855 |
+
pass
|
856 |
+
|
857 |
+
|
858 |
+
def sieve(n):
|
859 |
+
"""Yield the primes less than n.
|
860 |
+
|
861 |
+
>>> list(sieve(30))
|
862 |
+
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
|
863 |
+
"""
|
864 |
+
if n > 2:
|
865 |
+
yield 2
|
866 |
+
start = 3
|
867 |
+
data = bytearray((0, 1)) * (n // 2)
|
868 |
+
limit = math.isqrt(n) + 1
|
869 |
+
for p in iter_index(data, 1, start, limit):
|
870 |
+
yield from iter_index(data, 1, start, p * p)
|
871 |
+
data[p * p : n : p + p] = bytes(len(range(p * p, n, p + p)))
|
872 |
+
start = p * p
|
873 |
+
yield from iter_index(data, 1, start)
|
874 |
+
|
875 |
+
|
876 |
+
def _batched(iterable, n, *, strict=False):
|
877 |
+
"""Batch data into tuples of length *n*. If the number of items in
|
878 |
+
*iterable* is not divisible by *n*:
|
879 |
+
* The last batch will be shorter if *strict* is ``False``.
|
880 |
+
* :exc:`ValueError` will be raised if *strict* is ``True``.
|
881 |
+
|
882 |
+
>>> list(batched('ABCDEFG', 3))
|
883 |
+
[('A', 'B', 'C'), ('D', 'E', 'F'), ('G',)]
|
884 |
+
|
885 |
+
On Python 3.13 and above, this is an alias for :func:`itertools.batched`.
|
886 |
+
"""
|
887 |
+
if n < 1:
|
888 |
+
raise ValueError('n must be at least one')
|
889 |
+
it = iter(iterable)
|
890 |
+
while batch := tuple(islice(it, n)):
|
891 |
+
if strict and len(batch) != n:
|
892 |
+
raise ValueError('batched(): incomplete batch')
|
893 |
+
yield batch
|
894 |
+
|
895 |
+
|
896 |
+
if hexversion >= 0x30D00A2:
|
897 |
+
from itertools import batched as itertools_batched
|
898 |
+
|
899 |
+
def batched(iterable, n, *, strict=False):
|
900 |
+
return itertools_batched(iterable, n, strict=strict)
|
901 |
+
|
902 |
+
else:
|
903 |
+
batched = _batched
|
904 |
+
|
905 |
+
batched.__doc__ = _batched.__doc__
|
906 |
+
|
907 |
+
|
908 |
+
def transpose(it):
|
909 |
+
"""Swap the rows and columns of the input matrix.
|
910 |
+
|
911 |
+
>>> list(transpose([(1, 2, 3), (11, 22, 33)]))
|
912 |
+
[(1, 11), (2, 22), (3, 33)]
|
913 |
+
|
914 |
+
The caller should ensure that the dimensions of the input are compatible.
|
915 |
+
If the input is empty, no output will be produced.
|
916 |
+
"""
|
917 |
+
return _zip_strict(*it)
|
918 |
+
|
919 |
+
|
920 |
+
def reshape(matrix, cols):
|
921 |
+
"""Reshape the 2-D input *matrix* to have a column count given by *cols*.
|
922 |
+
|
923 |
+
>>> matrix = [(0, 1), (2, 3), (4, 5)]
|
924 |
+
>>> cols = 3
|
925 |
+
>>> list(reshape(matrix, cols))
|
926 |
+
[(0, 1, 2), (3, 4, 5)]
|
927 |
+
"""
|
928 |
+
return batched(chain.from_iterable(matrix), cols)
|
929 |
+
|
930 |
+
|
931 |
+
def matmul(m1, m2):
|
932 |
+
"""Multiply two matrices.
|
933 |
+
|
934 |
+
>>> list(matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)]))
|
935 |
+
[(49, 80), (41, 60)]
|
936 |
+
|
937 |
+
The caller should ensure that the dimensions of the input matrices are
|
938 |
+
compatible with each other.
|
939 |
+
"""
|
940 |
+
n = len(m2[0])
|
941 |
+
return batched(starmap(_sumprod, product(m1, transpose(m2))), n)
|
942 |
+
|
943 |
+
|
944 |
+
def factor(n):
|
945 |
+
"""Yield the prime factors of n.
|
946 |
+
|
947 |
+
>>> list(factor(360))
|
948 |
+
[2, 2, 2, 3, 3, 5]
|
949 |
+
"""
|
950 |
+
for prime in sieve(math.isqrt(n) + 1):
|
951 |
+
while not n % prime:
|
952 |
+
yield prime
|
953 |
+
n //= prime
|
954 |
+
if n == 1:
|
955 |
+
return
|
956 |
+
if n > 1:
|
957 |
+
yield n
|
958 |
+
|
959 |
+
|
960 |
+
def polynomial_eval(coefficients, x):
|
961 |
+
"""Evaluate a polynomial at a specific value.
|
962 |
+
|
963 |
+
Example: evaluating x^3 - 4 * x^2 - 17 * x + 60 at x = 2.5:
|
964 |
+
|
965 |
+
>>> coefficients = [1, -4, -17, 60]
|
966 |
+
>>> x = 2.5
|
967 |
+
>>> polynomial_eval(coefficients, x)
|
968 |
+
8.125
|
969 |
+
"""
|
970 |
+
n = len(coefficients)
|
971 |
+
if n == 0:
|
972 |
+
return x * 0 # coerce zero to the type of x
|
973 |
+
powers = map(pow, repeat(x), reversed(range(n)))
|
974 |
+
return _sumprod(coefficients, powers)
|
975 |
+
|
976 |
+
|
977 |
+
def sum_of_squares(it):
|
978 |
+
"""Return the sum of the squares of the input values.
|
979 |
+
|
980 |
+
>>> sum_of_squares([10, 20, 30])
|
981 |
+
1400
|
982 |
+
"""
|
983 |
+
return _sumprod(*tee(it))
|
984 |
+
|
985 |
+
|
986 |
+
def polynomial_derivative(coefficients):
|
987 |
+
"""Compute the first derivative of a polynomial.
|
988 |
+
|
989 |
+
Example: evaluating the derivative of x^3 - 4 * x^2 - 17 * x + 60
|
990 |
+
|
991 |
+
>>> coefficients = [1, -4, -17, 60]
|
992 |
+
>>> derivative_coefficients = polynomial_derivative(coefficients)
|
993 |
+
>>> derivative_coefficients
|
994 |
+
[3, -8, -17]
|
995 |
+
"""
|
996 |
+
n = len(coefficients)
|
997 |
+
powers = reversed(range(1, n))
|
998 |
+
return list(map(operator.mul, coefficients, powers))
|
999 |
+
|
1000 |
+
|
1001 |
+
def totient(n):
|
1002 |
+
"""Return the count of natural numbers up to *n* that are coprime with *n*.
|
1003 |
+
|
1004 |
+
>>> totient(9)
|
1005 |
+
6
|
1006 |
+
>>> totient(12)
|
1007 |
+
4
|
1008 |
+
"""
|
1009 |
+
for p in unique_justseen(factor(n)):
|
1010 |
+
n = n // p * (p - 1)
|
1011 |
+
|
1012 |
+
return n
|
venv/lib/python3.10/site-packages/more_itertools/recipes.pyi
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Stubs for more_itertools.recipes"""
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
from typing import (
|
5 |
+
Any,
|
6 |
+
Callable,
|
7 |
+
Iterable,
|
8 |
+
Iterator,
|
9 |
+
overload,
|
10 |
+
Sequence,
|
11 |
+
Type,
|
12 |
+
TypeVar,
|
13 |
+
)
|
14 |
+
|
15 |
+
# Type and type variable definitions
|
16 |
+
_T = TypeVar('_T')
|
17 |
+
_T1 = TypeVar('_T1')
|
18 |
+
_T2 = TypeVar('_T2')
|
19 |
+
_U = TypeVar('_U')
|
20 |
+
|
21 |
+
def take(n: int, iterable: Iterable[_T]) -> list[_T]: ...
|
22 |
+
def tabulate(
|
23 |
+
function: Callable[[int], _T], start: int = ...
|
24 |
+
) -> Iterator[_T]: ...
|
25 |
+
def tail(n: int, iterable: Iterable[_T]) -> Iterator[_T]: ...
|
26 |
+
def consume(iterator: Iterable[_T], n: int | None = ...) -> None: ...
|
27 |
+
@overload
|
28 |
+
def nth(iterable: Iterable[_T], n: int) -> _T | None: ...
|
29 |
+
@overload
|
30 |
+
def nth(iterable: Iterable[_T], n: int, default: _U) -> _T | _U: ...
|
31 |
+
def all_equal(iterable: Iterable[_T]) -> bool: ...
|
32 |
+
def quantify(
|
33 |
+
iterable: Iterable[_T], pred: Callable[[_T], bool] = ...
|
34 |
+
) -> int: ...
|
35 |
+
def pad_none(iterable: Iterable[_T]) -> Iterator[_T | None]: ...
|
36 |
+
def padnone(iterable: Iterable[_T]) -> Iterator[_T | None]: ...
|
37 |
+
def ncycles(iterable: Iterable[_T], n: int) -> Iterator[_T]: ...
|
38 |
+
def dotproduct(vec1: Iterable[_T1], vec2: Iterable[_T2]) -> Any: ...
|
39 |
+
def flatten(listOfLists: Iterable[Iterable[_T]]) -> Iterator[_T]: ...
|
40 |
+
def repeatfunc(
|
41 |
+
func: Callable[..., _U], times: int | None = ..., *args: Any
|
42 |
+
) -> Iterator[_U]: ...
|
43 |
+
def pairwise(iterable: Iterable[_T]) -> Iterator[tuple[_T, _T]]: ...
|
44 |
+
def grouper(
|
45 |
+
iterable: Iterable[_T],
|
46 |
+
n: int,
|
47 |
+
incomplete: str = ...,
|
48 |
+
fillvalue: _U = ...,
|
49 |
+
) -> Iterator[tuple[_T | _U, ...]]: ...
|
50 |
+
def roundrobin(*iterables: Iterable[_T]) -> Iterator[_T]: ...
|
51 |
+
def partition(
|
52 |
+
pred: Callable[[_T], object] | None, iterable: Iterable[_T]
|
53 |
+
) -> tuple[Iterator[_T], Iterator[_T]]: ...
|
54 |
+
def powerset(iterable: Iterable[_T]) -> Iterator[tuple[_T, ...]]: ...
|
55 |
+
def unique_everseen(
|
56 |
+
iterable: Iterable[_T], key: Callable[[_T], _U] | None = ...
|
57 |
+
) -> Iterator[_T]: ...
|
58 |
+
def unique_justseen(
|
59 |
+
iterable: Iterable[_T], key: Callable[[_T], object] | None = ...
|
60 |
+
) -> Iterator[_T]: ...
|
61 |
+
@overload
|
62 |
+
def iter_except(
|
63 |
+
func: Callable[[], _T],
|
64 |
+
exception: Type[BaseException] | tuple[Type[BaseException], ...],
|
65 |
+
first: None = ...,
|
66 |
+
) -> Iterator[_T]: ...
|
67 |
+
@overload
|
68 |
+
def iter_except(
|
69 |
+
func: Callable[[], _T],
|
70 |
+
exception: Type[BaseException] | tuple[Type[BaseException], ...],
|
71 |
+
first: Callable[[], _U],
|
72 |
+
) -> Iterator[_T | _U]: ...
|
73 |
+
@overload
|
74 |
+
def first_true(
|
75 |
+
iterable: Iterable[_T], *, pred: Callable[[_T], object] | None = ...
|
76 |
+
) -> _T | None: ...
|
77 |
+
@overload
|
78 |
+
def first_true(
|
79 |
+
iterable: Iterable[_T],
|
80 |
+
default: _U,
|
81 |
+
pred: Callable[[_T], object] | None = ...,
|
82 |
+
) -> _T | _U: ...
|
83 |
+
def random_product(
|
84 |
+
*args: Iterable[_T], repeat: int = ...
|
85 |
+
) -> tuple[_T, ...]: ...
|
86 |
+
def random_permutation(
|
87 |
+
iterable: Iterable[_T], r: int | None = ...
|
88 |
+
) -> tuple[_T, ...]: ...
|
89 |
+
def random_combination(iterable: Iterable[_T], r: int) -> tuple[_T, ...]: ...
|
90 |
+
def random_combination_with_replacement(
|
91 |
+
iterable: Iterable[_T], r: int
|
92 |
+
) -> tuple[_T, ...]: ...
|
93 |
+
def nth_combination(
|
94 |
+
iterable: Iterable[_T], r: int, index: int
|
95 |
+
) -> tuple[_T, ...]: ...
|
96 |
+
def prepend(value: _T, iterator: Iterable[_U]) -> Iterator[_T | _U]: ...
|
97 |
+
def convolve(signal: Iterable[_T], kernel: Iterable[_T]) -> Iterator[_T]: ...
|
98 |
+
def before_and_after(
|
99 |
+
predicate: Callable[[_T], bool], it: Iterable[_T]
|
100 |
+
) -> tuple[Iterator[_T], Iterator[_T]]: ...
|
101 |
+
def triplewise(iterable: Iterable[_T]) -> Iterator[tuple[_T, _T, _T]]: ...
|
102 |
+
def sliding_window(
|
103 |
+
iterable: Iterable[_T], n: int
|
104 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
105 |
+
def subslices(iterable: Iterable[_T]) -> Iterator[list[_T]]: ...
|
106 |
+
def polynomial_from_roots(roots: Sequence[_T]) -> list[_T]: ...
|
107 |
+
def iter_index(
|
108 |
+
iterable: Iterable[_T],
|
109 |
+
value: Any,
|
110 |
+
start: int | None = ...,
|
111 |
+
stop: int | None = ...,
|
112 |
+
) -> Iterator[int]: ...
|
113 |
+
def sieve(n: int) -> Iterator[int]: ...
|
114 |
+
def batched(
|
115 |
+
iterable: Iterable[_T], n: int, *, strict: bool = False
|
116 |
+
) -> Iterator[tuple[_T]]: ...
|
117 |
+
def transpose(
|
118 |
+
it: Iterable[Iterable[_T]],
|
119 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
120 |
+
def reshape(
|
121 |
+
matrix: Iterable[Iterable[_T]], cols: int
|
122 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
123 |
+
def matmul(m1: Sequence[_T], m2: Sequence[_T]) -> Iterator[tuple[_T]]: ...
|
124 |
+
def factor(n: int) -> Iterator[int]: ...
|
125 |
+
def polynomial_eval(coefficients: Sequence[_T], x: _U) -> _U: ...
|
126 |
+
def sum_of_squares(it: Iterable[_T]) -> _T: ...
|
127 |
+
def polynomial_derivative(coefficients: Sequence[_T]) -> list[_T]: ...
|
128 |
+
def totient(n: int) -> int: ...
|
venv/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
venv/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/License.txt
ADDED
@@ -0,0 +1,1568 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
End User License Agreement
|
2 |
+
--------------------------
|
3 |
+
|
4 |
+
|
5 |
+
Preface
|
6 |
+
-------
|
7 |
+
|
8 |
+
The Software License Agreement in Chapter 1 and the Supplement
|
9 |
+
in Chapter 2 contain license terms and conditions that govern
|
10 |
+
the use of NVIDIA software. By accepting this agreement, you
|
11 |
+
agree to comply with all the terms and conditions applicable
|
12 |
+
to the product(s) included herein.
|
13 |
+
|
14 |
+
|
15 |
+
NVIDIA Driver
|
16 |
+
|
17 |
+
|
18 |
+
Description
|
19 |
+
|
20 |
+
This package contains the operating system driver and
|
21 |
+
fundamental system software components for NVIDIA GPUs.
|
22 |
+
|
23 |
+
|
24 |
+
NVIDIA CUDA Toolkit
|
25 |
+
|
26 |
+
|
27 |
+
Description
|
28 |
+
|
29 |
+
The NVIDIA CUDA Toolkit provides command-line and graphical
|
30 |
+
tools for building, debugging and optimizing the performance
|
31 |
+
of applications accelerated by NVIDIA GPUs, runtime and math
|
32 |
+
libraries, and documentation including programming guides,
|
33 |
+
user manuals, and API references.
|
34 |
+
|
35 |
+
|
36 |
+
Default Install Location of CUDA Toolkit
|
37 |
+
|
38 |
+
Windows platform:
|
39 |
+
|
40 |
+
%ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v#.#
|
41 |
+
|
42 |
+
Linux platform:
|
43 |
+
|
44 |
+
/usr/local/cuda-#.#
|
45 |
+
|
46 |
+
Mac platform:
|
47 |
+
|
48 |
+
/Developer/NVIDIA/CUDA-#.#
|
49 |
+
|
50 |
+
|
51 |
+
NVIDIA CUDA Samples
|
52 |
+
|
53 |
+
|
54 |
+
Description
|
55 |
+
|
56 |
+
This package includes over 100+ CUDA examples that demonstrate
|
57 |
+
various CUDA programming principles, and efficient CUDA
|
58 |
+
implementation of algorithms in specific application domains.
|
59 |
+
|
60 |
+
|
61 |
+
Default Install Location of CUDA Samples
|
62 |
+
|
63 |
+
Windows platform:
|
64 |
+
|
65 |
+
%ProgramData%\NVIDIA Corporation\CUDA Samples\v#.#
|
66 |
+
|
67 |
+
Linux platform:
|
68 |
+
|
69 |
+
/usr/local/cuda-#.#/samples
|
70 |
+
|
71 |
+
and
|
72 |
+
|
73 |
+
$HOME/NVIDIA_CUDA-#.#_Samples
|
74 |
+
|
75 |
+
Mac platform:
|
76 |
+
|
77 |
+
/Developer/NVIDIA/CUDA-#.#/samples
|
78 |
+
|
79 |
+
|
80 |
+
NVIDIA Nsight Visual Studio Edition (Windows only)
|
81 |
+
|
82 |
+
|
83 |
+
Description
|
84 |
+
|
85 |
+
NVIDIA Nsight Development Platform, Visual Studio Edition is a
|
86 |
+
development environment integrated into Microsoft Visual
|
87 |
+
Studio that provides tools for debugging, profiling, analyzing
|
88 |
+
and optimizing your GPU computing and graphics applications.
|
89 |
+
|
90 |
+
|
91 |
+
Default Install Location of Nsight Visual Studio Edition
|
92 |
+
|
93 |
+
Windows platform:
|
94 |
+
|
95 |
+
%ProgramFiles(x86)%\NVIDIA Corporation\Nsight Visual Studio Edition #.#
|
96 |
+
|
97 |
+
|
98 |
+
1. License Agreement for NVIDIA Software Development Kits
|
99 |
+
---------------------------------------------------------
|
100 |
+
|
101 |
+
|
102 |
+
Release Date: July 26, 2018
|
103 |
+
---------------------------
|
104 |
+
|
105 |
+
|
106 |
+
Important NoticeRead before downloading, installing,
|
107 |
+
copying or using the licensed software:
|
108 |
+
-------------------------------------------------------
|
109 |
+
|
110 |
+
This license agreement, including exhibits attached
|
111 |
+
("Agreement”) is a legal agreement between you and NVIDIA
|
112 |
+
Corporation ("NVIDIA") and governs your use of a NVIDIA
|
113 |
+
software development kit (“SDK”).
|
114 |
+
|
115 |
+
Each SDK has its own set of software and materials, but here
|
116 |
+
is a description of the types of items that may be included in
|
117 |
+
a SDK: source code, header files, APIs, data sets and assets
|
118 |
+
(examples include images, textures, models, scenes, videos,
|
119 |
+
native API input/output files), binary software, sample code,
|
120 |
+
libraries, utility programs, programming code and
|
121 |
+
documentation.
|
122 |
+
|
123 |
+
This Agreement can be accepted only by an adult of legal age
|
124 |
+
of majority in the country in which the SDK is used.
|
125 |
+
|
126 |
+
If you are entering into this Agreement on behalf of a company
|
127 |
+
or other legal entity, you represent that you have the legal
|
128 |
+
authority to bind the entity to this Agreement, in which case
|
129 |
+
“you” will mean the entity you represent.
|
130 |
+
|
131 |
+
If you don’t have the required age or authority to accept
|
132 |
+
this Agreement, or if you don’t accept all the terms and
|
133 |
+
conditions of this Agreement, do not download, install or use
|
134 |
+
the SDK.
|
135 |
+
|
136 |
+
You agree to use the SDK only for purposes that are permitted
|
137 |
+
by (a) this Agreement, and (b) any applicable law, regulation
|
138 |
+
or generally accepted practices or guidelines in the relevant
|
139 |
+
jurisdictions.
|
140 |
+
|
141 |
+
|
142 |
+
1.1. License
|
143 |
+
|
144 |
+
|
145 |
+
1.1.1. License Grant
|
146 |
+
|
147 |
+
Subject to the terms of this Agreement, NVIDIA hereby grants
|
148 |
+
you a non-exclusive, non-transferable license, without the
|
149 |
+
right to sublicense (except as expressly provided in this
|
150 |
+
Agreement) to:
|
151 |
+
|
152 |
+
1. Install and use the SDK,
|
153 |
+
|
154 |
+
2. Modify and create derivative works of sample source code
|
155 |
+
delivered in the SDK, and
|
156 |
+
|
157 |
+
3. Distribute those portions of the SDK that are identified
|
158 |
+
in this Agreement as distributable, as incorporated in
|
159 |
+
object code format into a software application that meets
|
160 |
+
the distribution requirements indicated in this Agreement.
|
161 |
+
|
162 |
+
|
163 |
+
1.1.2. Distribution Requirements
|
164 |
+
|
165 |
+
These are the distribution requirements for you to exercise
|
166 |
+
the distribution grant:
|
167 |
+
|
168 |
+
1. Your application must have material additional
|
169 |
+
functionality, beyond the included portions of the SDK.
|
170 |
+
|
171 |
+
2. The distributable portions of the SDK shall only be
|
172 |
+
accessed by your application.
|
173 |
+
|
174 |
+
3. The following notice shall be included in modifications
|
175 |
+
and derivative works of sample source code distributed:
|
176 |
+
“This software contains source code provided by NVIDIA
|
177 |
+
Corporation.”
|
178 |
+
|
179 |
+
4. Unless a developer tool is identified in this Agreement
|
180 |
+
as distributable, it is delivered for your internal use
|
181 |
+
only.
|
182 |
+
|
183 |
+
5. The terms under which you distribute your application
|
184 |
+
must be consistent with the terms of this Agreement,
|
185 |
+
including (without limitation) terms relating to the
|
186 |
+
license grant and license restrictions and protection of
|
187 |
+
NVIDIA’s intellectual property rights. Additionally, you
|
188 |
+
agree that you will protect the privacy, security and
|
189 |
+
legal rights of your application users.
|
190 |
+
|
191 |
+
6. You agree to notify NVIDIA in writing of any known or
|
192 |
+
suspected distribution or use of the SDK not in compliance
|
193 |
+
with the requirements of this Agreement, and to enforce
|
194 |
+
the terms of your agreements with respect to distributed
|
195 |
+
SDK.
|
196 |
+
|
197 |
+
|
198 |
+
1.1.3. Authorized Users
|
199 |
+
|
200 |
+
You may allow employees and contractors of your entity or of
|
201 |
+
your subsidiary(ies) to access and use the SDK from your
|
202 |
+
secure network to perform work on your behalf.
|
203 |
+
|
204 |
+
If you are an academic institution you may allow users
|
205 |
+
enrolled or employed by the academic institution to access and
|
206 |
+
use the SDK from your secure network.
|
207 |
+
|
208 |
+
You are responsible for the compliance with the terms of this
|
209 |
+
Agreement by your authorized users. If you become aware that
|
210 |
+
your authorized users didn’t follow the terms of this
|
211 |
+
Agreement, you agree to take reasonable steps to resolve the
|
212 |
+
non-compliance and prevent new occurrences.
|
213 |
+
|
214 |
+
|
215 |
+
1.1.4. Pre-Release SDK
|
216 |
+
|
217 |
+
The SDK versions identified as alpha, beta, preview or
|
218 |
+
otherwise as pre-release, may not be fully functional, may
|
219 |
+
contain errors or design flaws, and may have reduced or
|
220 |
+
different security, privacy, accessibility, availability, and
|
221 |
+
reliability standards relative to commercial versions of
|
222 |
+
NVIDIA software and materials. Use of a pre-release SDK may
|
223 |
+
result in unexpected results, loss of data, project delays or
|
224 |
+
other unpredictable damage or loss.
|
225 |
+
|
226 |
+
You may use a pre-release SDK at your own risk, understanding
|
227 |
+
that pre-release SDKs are not intended for use in production
|
228 |
+
or business-critical systems.
|
229 |
+
|
230 |
+
NVIDIA may choose not to make available a commercial version
|
231 |
+
of any pre-release SDK. NVIDIA may also choose to abandon
|
232 |
+
development and terminate the availability of a pre-release
|
233 |
+
SDK at any time without liability.
|
234 |
+
|
235 |
+
|
236 |
+
1.1.5. Updates
|
237 |
+
|
238 |
+
NVIDIA may, at its option, make available patches, workarounds
|
239 |
+
or other updates to this SDK. Unless the updates are provided
|
240 |
+
with their separate governing terms, they are deemed part of
|
241 |
+
the SDK licensed to you as provided in this Agreement. You
|
242 |
+
agree that the form and content of the SDK that NVIDIA
|
243 |
+
provides may change without prior notice to you. While NVIDIA
|
244 |
+
generally maintains compatibility between versions, NVIDIA may
|
245 |
+
in some cases make changes that introduce incompatibilities in
|
246 |
+
future versions of the SDK.
|
247 |
+
|
248 |
+
|
249 |
+
1.1.6. Third Party Licenses
|
250 |
+
|
251 |
+
The SDK may come bundled with, or otherwise include or be
|
252 |
+
distributed with, third party software licensed by a NVIDIA
|
253 |
+
supplier and/or open source software provided under an open
|
254 |
+
source license. Use of third party software is subject to the
|
255 |
+
third-party license terms, or in the absence of third party
|
256 |
+
terms, the terms of this Agreement. Copyright to third party
|
257 |
+
software is held by the copyright holders indicated in the
|
258 |
+
third-party software or license.
|
259 |
+
|
260 |
+
|
261 |
+
1.1.7. Reservation of Rights
|
262 |
+
|
263 |
+
NVIDIA reserves all rights, title, and interest in and to the
|
264 |
+
SDK, not expressly granted to you under this Agreement.
|
265 |
+
|
266 |
+
|
267 |
+
1.2. Limitations
|
268 |
+
|
269 |
+
The following license limitations apply to your use of the
|
270 |
+
SDK:
|
271 |
+
|
272 |
+
1. You may not reverse engineer, decompile or disassemble,
|
273 |
+
or remove copyright or other proprietary notices from any
|
274 |
+
portion of the SDK or copies of the SDK.
|
275 |
+
|
276 |
+
2. Except as expressly provided in this Agreement, you may
|
277 |
+
not copy, sell, rent, sublicense, transfer, distribute,
|
278 |
+
modify, or create derivative works of any portion of the
|
279 |
+
SDK. For clarity, you may not distribute or sublicense the
|
280 |
+
SDK as a stand-alone product.
|
281 |
+
|
282 |
+
3. Unless you have an agreement with NVIDIA for this
|
283 |
+
purpose, you may not indicate that an application created
|
284 |
+
with the SDK is sponsored or endorsed by NVIDIA.
|
285 |
+
|
286 |
+
4. You may not bypass, disable, or circumvent any
|
287 |
+
encryption, security, digital rights management or
|
288 |
+
authentication mechanism in the SDK.
|
289 |
+
|
290 |
+
5. You may not use the SDK in any manner that would cause it
|
291 |
+
to become subject to an open source software license. As
|
292 |
+
examples, licenses that require as a condition of use,
|
293 |
+
modification, and/or distribution that the SDK be:
|
294 |
+
|
295 |
+
a. Disclosed or distributed in source code form;
|
296 |
+
|
297 |
+
b. Licensed for the purpose of making derivative works;
|
298 |
+
or
|
299 |
+
|
300 |
+
c. Redistributable at no charge.
|
301 |
+
|
302 |
+
6. Unless you have an agreement with NVIDIA for this
|
303 |
+
purpose, you may not use the SDK with any system or
|
304 |
+
application where the use or failure of the system or
|
305 |
+
application can reasonably be expected to threaten or
|
306 |
+
result in personal injury, death, or catastrophic loss.
|
307 |
+
Examples include use in avionics, navigation, military,
|
308 |
+
medical, life support or other life critical applications.
|
309 |
+
NVIDIA does not design, test or manufacture the SDK for
|
310 |
+
these critical uses and NVIDIA shall not be liable to you
|
311 |
+
or any third party, in whole or in part, for any claims or
|
312 |
+
damages arising from such uses.
|
313 |
+
|
314 |
+
7. You agree to defend, indemnify and hold harmless NVIDIA
|
315 |
+
and its affiliates, and their respective employees,
|
316 |
+
contractors, agents, officers and directors, from and
|
317 |
+
against any and all claims, damages, obligations, losses,
|
318 |
+
liabilities, costs or debt, fines, restitutions and
|
319 |
+
expenses (including but not limited to attorney’s fees
|
320 |
+
and costs incident to establishing the right of
|
321 |
+
indemnification) arising out of or related to your use of
|
322 |
+
the SDK outside of the scope of this Agreement, or not in
|
323 |
+
compliance with its terms.
|
324 |
+
|
325 |
+
|
326 |
+
1.3. Ownership
|
327 |
+
|
328 |
+
1. NVIDIA or its licensors hold all rights, title and
|
329 |
+
interest in and to the SDK and its modifications and
|
330 |
+
derivative works, including their respective intellectual
|
331 |
+
property rights, subject to your rights described in this
|
332 |
+
section. This SDK may include software and materials from
|
333 |
+
NVIDIA’s licensors, and these licensors are intended
|
334 |
+
third party beneficiaries that may enforce this Agreement
|
335 |
+
with respect to their intellectual property rights.
|
336 |
+
|
337 |
+
2. You hold all rights, title and interest in and to your
|
338 |
+
applications and your derivative works of the sample
|
339 |
+
source code delivered in the SDK, including their
|
340 |
+
respective intellectual property rights, subject to
|
341 |
+
NVIDIA’s rights described in this section.
|
342 |
+
|
343 |
+
3. You may, but don’t have to, provide to NVIDIA
|
344 |
+
suggestions, feature requests or other feedback regarding
|
345 |
+
the SDK, including possible enhancements or modifications
|
346 |
+
to the SDK. For any feedback that you voluntarily provide,
|
347 |
+
you hereby grant NVIDIA and its affiliates a perpetual,
|
348 |
+
non-exclusive, worldwide, irrevocable license to use,
|
349 |
+
reproduce, modify, license, sublicense (through multiple
|
350 |
+
tiers of sublicensees), and distribute (through multiple
|
351 |
+
tiers of distributors) it without the payment of any
|
352 |
+
royalties or fees to you. NVIDIA will use feedback at its
|
353 |
+
choice. NVIDIA is constantly looking for ways to improve
|
354 |
+
its products, so you may send feedback to NVIDIA through
|
355 |
+
the developer portal at https://developer.nvidia.com.
|
356 |
+
|
357 |
+
|
358 |
+
1.4. No Warranties
|
359 |
+
|
360 |
+
THE SDK IS PROVIDED BY NVIDIA “AS IS” AND “WITH ALL
|
361 |
+
FAULTS.” TO THE MAXIMUM EXTENT PERMITTED BY LAW, NVIDIA AND
|
362 |
+
ITS AFFILIATES EXPRESSLY DISCLAIM ALL WARRANTIES OF ANY KIND
|
363 |
+
OR NATURE, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING,
|
364 |
+
BUT NOT LIMITED TO, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
|
365 |
+
FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, OR THE
|
366 |
+
ABSENCE OF ANY DEFECTS THEREIN, WHETHER LATENT OR PATENT. NO
|
367 |
+
WARRANTY IS MADE ON THE BASIS OF TRADE USAGE, COURSE OF
|
368 |
+
DEALING OR COURSE OF TRADE.
|
369 |
+
|
370 |
+
|
371 |
+
1.5. Limitation of Liability
|
372 |
+
|
373 |
+
TO THE MAXIMUM EXTENT PERMITTED BY LAW, NVIDIA AND ITS
|
374 |
+
AFFILIATES SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
|
375 |
+
PUNITIVE OR CONSEQUENTIAL DAMAGES, OR ANY LOST PROFITS, LOSS
|
376 |
+
OF USE, LOSS OF DATA OR LOSS OF GOODWILL, OR THE COSTS OF
|
377 |
+
PROCURING SUBSTITUTE PRODUCTS, ARISING OUT OF OR IN CONNECTION
|
378 |
+
WITH THIS AGREEMENT OR THE USE OR PERFORMANCE OF THE SDK,
|
379 |
+
WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED UPON BREACH
|
380 |
+
OF CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE),
|
381 |
+
PRODUCT LIABILITY OR ANY OTHER CAUSE OF ACTION OR THEORY OF
|
382 |
+
LIABILITY. IN NO EVENT WILL NVIDIA’S AND ITS AFFILIATES
|
383 |
+
TOTAL CUMULATIVE LIABILITY UNDER OR ARISING OUT OF THIS
|
384 |
+
AGREEMENT EXCEED US$10.00. THE NATURE OF THE LIABILITY OR THE
|
385 |
+
NUMBER OF CLAIMS OR SUITS SHALL NOT ENLARGE OR EXTEND THIS
|
386 |
+
LIMIT.
|
387 |
+
|
388 |
+
These exclusions and limitations of liability shall apply
|
389 |
+
regardless if NVIDIA or its affiliates have been advised of
|
390 |
+
the possibility of such damages, and regardless of whether a
|
391 |
+
remedy fails its essential purpose. These exclusions and
|
392 |
+
limitations of liability form an essential basis of the
|
393 |
+
bargain between the parties, and, absent any of these
|
394 |
+
exclusions or limitations of liability, the provisions of this
|
395 |
+
Agreement, including, without limitation, the economic terms,
|
396 |
+
would be substantially different.
|
397 |
+
|
398 |
+
|
399 |
+
1.6. Termination
|
400 |
+
|
401 |
+
1. This Agreement will continue to apply until terminated by
|
402 |
+
either you or NVIDIA as described below.
|
403 |
+
|
404 |
+
2. If you want to terminate this Agreement, you may do so by
|
405 |
+
stopping to use the SDK.
|
406 |
+
|
407 |
+
3. NVIDIA may, at any time, terminate this Agreement if:
|
408 |
+
|
409 |
+
a. (i) you fail to comply with any term of this
|
410 |
+
Agreement and the non-compliance is not fixed within
|
411 |
+
thirty (30) days following notice from NVIDIA (or
|
412 |
+
immediately if you violate NVIDIA’s intellectual
|
413 |
+
property rights);
|
414 |
+
|
415 |
+
b. (ii) you commence or participate in any legal
|
416 |
+
proceeding against NVIDIA with respect to the SDK; or
|
417 |
+
|
418 |
+
c. (iii) NVIDIA decides to no longer provide the SDK in
|
419 |
+
a country or, in NVIDIA’s sole discretion, the
|
420 |
+
continued use of it is no longer commercially viable.
|
421 |
+
|
422 |
+
4. Upon any termination of this Agreement, you agree to
|
423 |
+
promptly discontinue use of the SDK and destroy all copies
|
424 |
+
in your possession or control. Your prior distributions in
|
425 |
+
accordance with this Agreement are not affected by the
|
426 |
+
termination of this Agreement. Upon written request, you
|
427 |
+
will certify in writing that you have complied with your
|
428 |
+
commitments under this section. Upon any termination of
|
429 |
+
this Agreement all provisions survive except for the
|
430 |
+
license grant provisions.
|
431 |
+
|
432 |
+
|
433 |
+
1.7. General
|
434 |
+
|
435 |
+
If you wish to assign this Agreement or your rights and
|
436 |
+
obligations, including by merger, consolidation, dissolution
|
437 |
+
or operation of law, contact NVIDIA to ask for permission. Any
|
438 |
+
attempted assignment not approved by NVIDIA in writing shall
|
439 |
+
be void and of no effect. NVIDIA may assign, delegate or
|
440 |
+
transfer this Agreement and its rights and obligations, and if
|
441 |
+
to a non-affiliate you will be notified.
|
442 |
+
|
443 |
+
You agree to cooperate with NVIDIA and provide reasonably
|
444 |
+
requested information to verify your compliance with this
|
445 |
+
Agreement.
|
446 |
+
|
447 |
+
This Agreement will be governed in all respects by the laws of
|
448 |
+
the United States and of the State of Delaware as those laws
|
449 |
+
are applied to contracts entered into and performed entirely
|
450 |
+
within Delaware by Delaware residents, without regard to the
|
451 |
+
conflicts of laws principles. The United Nations Convention on
|
452 |
+
Contracts for the International Sale of Goods is specifically
|
453 |
+
disclaimed. You agree to all terms of this Agreement in the
|
454 |
+
English language.
|
455 |
+
|
456 |
+
The state or federal courts residing in Santa Clara County,
|
457 |
+
California shall have exclusive jurisdiction over any dispute
|
458 |
+
or claim arising out of this Agreement. Notwithstanding this,
|
459 |
+
you agree that NVIDIA shall still be allowed to apply for
|
460 |
+
injunctive remedies or an equivalent type of urgent legal
|
461 |
+
relief in any jurisdiction.
|
462 |
+
|
463 |
+
If any court of competent jurisdiction determines that any
|
464 |
+
provision of this Agreement is illegal, invalid or
|
465 |
+
unenforceable, such provision will be construed as limited to
|
466 |
+
the extent necessary to be consistent with and fully
|
467 |
+
enforceable under the law and the remaining provisions will
|
468 |
+
remain in full force and effect. Unless otherwise specified,
|
469 |
+
remedies are cumulative.
|
470 |
+
|
471 |
+
Each party acknowledges and agrees that the other is an
|
472 |
+
independent contractor in the performance of this Agreement.
|
473 |
+
|
474 |
+
The SDK has been developed entirely at private expense and is
|
475 |
+
“commercial items” consisting of “commercial computer
|
476 |
+
software” and “commercial computer software
|
477 |
+
documentation” provided with RESTRICTED RIGHTS. Use,
|
478 |
+
duplication or disclosure by the U.S. Government or a U.S.
|
479 |
+
Government subcontractor is subject to the restrictions in
|
480 |
+
this Agreement pursuant to DFARS 227.7202-3(a) or as set forth
|
481 |
+
in subparagraphs (c)(1) and (2) of the Commercial Computer
|
482 |
+
Software - Restricted Rights clause at FAR 52.227-19, as
|
483 |
+
applicable. Contractor/manufacturer is NVIDIA, 2788 San Tomas
|
484 |
+
Expressway, Santa Clara, CA 95051.
|
485 |
+
|
486 |
+
The SDK is subject to United States export laws and
|
487 |
+
regulations. You agree that you will not ship, transfer or
|
488 |
+
export the SDK into any country, or use the SDK in any manner,
|
489 |
+
prohibited by the United States Bureau of Industry and
|
490 |
+
Security or economic sanctions regulations administered by the
|
491 |
+
U.S. Department of Treasury’s Office of Foreign Assets
|
492 |
+
Control (OFAC), or any applicable export laws, restrictions or
|
493 |
+
regulations. These laws include restrictions on destinations,
|
494 |
+
end users and end use. By accepting this Agreement, you
|
495 |
+
confirm that you are not a resident or citizen of any country
|
496 |
+
currently embargoed by the U.S. and that you are not otherwise
|
497 |
+
prohibited from receiving the SDK.
|
498 |
+
|
499 |
+
Any notice delivered by NVIDIA to you under this Agreement
|
500 |
+
will be delivered via mail, email or fax. You agree that any
|
501 |
+
notices that NVIDIA sends you electronically will satisfy any
|
502 |
+
legal communication requirements. Please direct your legal
|
503 |
+
notices or other correspondence to NVIDIA Corporation, 2788
|
504 |
+
San Tomas Expressway, Santa Clara, California 95051, United
|
505 |
+
States of America, Attention: Legal Department.
|
506 |
+
|
507 |
+
This Agreement and any exhibits incorporated into this
|
508 |
+
Agreement constitute the entire agreement of the parties with
|
509 |
+
respect to the subject matter of this Agreement and supersede
|
510 |
+
all prior negotiations or documentation exchanged between the
|
511 |
+
parties relating to this SDK license. Any additional and/or
|
512 |
+
conflicting terms on documents issued by you are null, void,
|
513 |
+
and invalid. Any amendment or waiver under this Agreement
|
514 |
+
shall be in writing and signed by representatives of both
|
515 |
+
parties.
|
516 |
+
|
517 |
+
|
518 |
+
2. CUDA Toolkit Supplement to Software License Agreement for
|
519 |
+
NVIDIA Software Development Kits
|
520 |
+
------------------------------------------------------------
|
521 |
+
|
522 |
+
|
523 |
+
Release date: August 16, 2018
|
524 |
+
-----------------------------
|
525 |
+
|
526 |
+
The terms in this supplement govern your use of the NVIDIA
|
527 |
+
CUDA Toolkit SDK under the terms of your license agreement
|
528 |
+
(“Agreement”) as modified by this supplement. Capitalized
|
529 |
+
terms used but not defined below have the meaning assigned to
|
530 |
+
them in the Agreement.
|
531 |
+
|
532 |
+
This supplement is an exhibit to the Agreement and is
|
533 |
+
incorporated as an integral part of the Agreement. In the
|
534 |
+
event of conflict between the terms in this supplement and the
|
535 |
+
terms in the Agreement, the terms in this supplement govern.
|
536 |
+
|
537 |
+
|
538 |
+
2.1. License Scope
|
539 |
+
|
540 |
+
The SDK is licensed for you to develop applications only for
|
541 |
+
use in systems with NVIDIA GPUs.
|
542 |
+
|
543 |
+
|
544 |
+
2.2. Distribution
|
545 |
+
|
546 |
+
The portions of the SDK that are distributable under the
|
547 |
+
Agreement are listed in Attachment A.
|
548 |
+
|
549 |
+
|
550 |
+
2.3. Operating Systems
|
551 |
+
|
552 |
+
Those portions of the SDK designed exclusively for use on the
|
553 |
+
Linux or FreeBSD operating systems, or other operating systems
|
554 |
+
derived from the source code to these operating systems, may
|
555 |
+
be copied and redistributed for use in accordance with this
|
556 |
+
Agreement, provided that the object code files are not
|
557 |
+
modified in any way (except for unzipping of compressed
|
558 |
+
files).
|
559 |
+
|
560 |
+
|
561 |
+
2.4. Audio and Video Encoders and Decoders
|
562 |
+
|
563 |
+
You acknowledge and agree that it is your sole responsibility
|
564 |
+
to obtain any additional third-party licenses required to
|
565 |
+
make, have made, use, have used, sell, import, and offer for
|
566 |
+
sale your products or services that include or incorporate any
|
567 |
+
third-party software and content relating to audio and/or
|
568 |
+
video encoders and decoders from, including but not limited
|
569 |
+
to, Microsoft, Thomson, Fraunhofer IIS, Sisvel S.p.A.,
|
570 |
+
MPEG-LA, and Coding Technologies. NVIDIA does not grant to you
|
571 |
+
under this Agreement any necessary patent or other rights with
|
572 |
+
respect to any audio and/or video encoders and decoders.
|
573 |
+
|
574 |
+
|
575 |
+
2.5. Licensing
|
576 |
+
|
577 |
+
If the distribution terms in this Agreement are not suitable
|
578 |
+
for your organization, or for any questions regarding this
|
579 |
+
Agreement, please contact NVIDIA at
|
580 | |
581 |
+
|
582 |
+
|
583 |
+
2.6. Attachment A
|
584 |
+
|
585 |
+
The following portions of the SDK are distributable under the
|
586 |
+
Agreement:
|
587 |
+
|
588 |
+
Component
|
589 |
+
|
590 |
+
CUDA Runtime
|
591 |
+
|
592 |
+
Windows
|
593 |
+
|
594 |
+
cudart.dll, cudart_static.lib, cudadevrt.lib
|
595 |
+
|
596 |
+
Mac OSX
|
597 |
+
|
598 |
+
libcudart.dylib, libcudart_static.a, libcudadevrt.a
|
599 |
+
|
600 |
+
Linux
|
601 |
+
|
602 |
+
libcudart.so, libcudart_static.a, libcudadevrt.a
|
603 |
+
|
604 |
+
Android
|
605 |
+
|
606 |
+
libcudart.so, libcudart_static.a, libcudadevrt.a
|
607 |
+
|
608 |
+
Component
|
609 |
+
|
610 |
+
CUDA FFT Library
|
611 |
+
|
612 |
+
Windows
|
613 |
+
|
614 |
+
cufft.dll, cufftw.dll, cufft.lib, cufftw.lib
|
615 |
+
|
616 |
+
Mac OSX
|
617 |
+
|
618 |
+
libcufft.dylib, libcufft_static.a, libcufftw.dylib,
|
619 |
+
libcufftw_static.a
|
620 |
+
|
621 |
+
Linux
|
622 |
+
|
623 |
+
libcufft.so, libcufft_static.a, libcufftw.so,
|
624 |
+
libcufftw_static.a
|
625 |
+
|
626 |
+
Android
|
627 |
+
|
628 |
+
libcufft.so, libcufft_static.a, libcufftw.so,
|
629 |
+
libcufftw_static.a
|
630 |
+
|
631 |
+
Component
|
632 |
+
|
633 |
+
CUDA BLAS Library
|
634 |
+
|
635 |
+
Windows
|
636 |
+
|
637 |
+
cublas.dll, cublasLt.dll
|
638 |
+
|
639 |
+
Mac OSX
|
640 |
+
|
641 |
+
libcublas.dylib, libcublasLt.dylib, libcublas_static.a,
|
642 |
+
libcublasLt_static.a
|
643 |
+
|
644 |
+
Linux
|
645 |
+
|
646 |
+
libcublas.so, libcublasLt.so, libcublas_static.a,
|
647 |
+
libcublasLt_static.a
|
648 |
+
|
649 |
+
Android
|
650 |
+
|
651 |
+
libcublas.so, libcublasLt.so, libcublas_static.a,
|
652 |
+
libcublasLt_static.a
|
653 |
+
|
654 |
+
Component
|
655 |
+
|
656 |
+
NVIDIA "Drop-in" BLAS Library
|
657 |
+
|
658 |
+
Windows
|
659 |
+
|
660 |
+
nvblas.dll
|
661 |
+
|
662 |
+
Mac OSX
|
663 |
+
|
664 |
+
libnvblas.dylib
|
665 |
+
|
666 |
+
Linux
|
667 |
+
|
668 |
+
libnvblas.so
|
669 |
+
|
670 |
+
Component
|
671 |
+
|
672 |
+
CUDA Sparse Matrix Library
|
673 |
+
|
674 |
+
Windows
|
675 |
+
|
676 |
+
cusparse.dll, cusparse.lib
|
677 |
+
|
678 |
+
Mac OSX
|
679 |
+
|
680 |
+
libcusparse.dylib, libcusparse_static.a
|
681 |
+
|
682 |
+
Linux
|
683 |
+
|
684 |
+
libcusparse.so, libcusparse_static.a
|
685 |
+
|
686 |
+
Android
|
687 |
+
|
688 |
+
libcusparse.so, libcusparse_static.a
|
689 |
+
|
690 |
+
Component
|
691 |
+
|
692 |
+
CUDA Linear Solver Library
|
693 |
+
|
694 |
+
Windows
|
695 |
+
|
696 |
+
cusolver.dll, cusolver.lib
|
697 |
+
|
698 |
+
Mac OSX
|
699 |
+
|
700 |
+
libcusolver.dylib, libcusolver_static.a
|
701 |
+
|
702 |
+
Linux
|
703 |
+
|
704 |
+
libcusolver.so, libcusolver_static.a
|
705 |
+
|
706 |
+
Android
|
707 |
+
|
708 |
+
libcusolver.so, libcusolver_static.a
|
709 |
+
|
710 |
+
Component
|
711 |
+
|
712 |
+
CUDA Random Number Generation Library
|
713 |
+
|
714 |
+
Windows
|
715 |
+
|
716 |
+
curand.dll, curand.lib
|
717 |
+
|
718 |
+
Mac OSX
|
719 |
+
|
720 |
+
libcurand.dylib, libcurand_static.a
|
721 |
+
|
722 |
+
Linux
|
723 |
+
|
724 |
+
libcurand.so, libcurand_static.a
|
725 |
+
|
726 |
+
Android
|
727 |
+
|
728 |
+
libcurand.so, libcurand_static.a
|
729 |
+
|
730 |
+
Component
|
731 |
+
|
732 |
+
CUDA Accelerated Graph Library
|
733 |
+
|
734 |
+
Component
|
735 |
+
|
736 |
+
NVIDIA Performance Primitives Library
|
737 |
+
|
738 |
+
Windows
|
739 |
+
|
740 |
+
nppc.dll, nppc.lib, nppial.dll, nppial.lib, nppicc.dll,
|
741 |
+
nppicc.lib, nppicom.dll, nppicom.lib, nppidei.dll,
|
742 |
+
nppidei.lib, nppif.dll, nppif.lib, nppig.dll, nppig.lib,
|
743 |
+
nppim.dll, nppim.lib, nppist.dll, nppist.lib, nppisu.dll,
|
744 |
+
nppisu.lib, nppitc.dll, nppitc.lib, npps.dll, npps.lib
|
745 |
+
|
746 |
+
Mac OSX
|
747 |
+
|
748 |
+
libnppc.dylib, libnppc_static.a, libnppial.dylib,
|
749 |
+
libnppial_static.a, libnppicc.dylib, libnppicc_static.a,
|
750 |
+
libnppicom.dylib, libnppicom_static.a, libnppidei.dylib,
|
751 |
+
libnppidei_static.a, libnppif.dylib, libnppif_static.a,
|
752 |
+
libnppig.dylib, libnppig_static.a, libnppim.dylib,
|
753 |
+
libnppisu_static.a, libnppitc.dylib, libnppitc_static.a,
|
754 |
+
libnpps.dylib, libnpps_static.a
|
755 |
+
|
756 |
+
Linux
|
757 |
+
|
758 |
+
libnppc.so, libnppc_static.a, libnppial.so,
|
759 |
+
libnppial_static.a, libnppicc.so, libnppicc_static.a,
|
760 |
+
libnppicom.so, libnppicom_static.a, libnppidei.so,
|
761 |
+
libnppidei_static.a, libnppif.so, libnppif_static.a
|
762 |
+
libnppig.so, libnppig_static.a, libnppim.so,
|
763 |
+
libnppim_static.a, libnppist.so, libnppist_static.a,
|
764 |
+
libnppisu.so, libnppisu_static.a, libnppitc.so
|
765 |
+
libnppitc_static.a, libnpps.so, libnpps_static.a
|
766 |
+
|
767 |
+
Android
|
768 |
+
|
769 |
+
libnppc.so, libnppc_static.a, libnppial.so,
|
770 |
+
libnppial_static.a, libnppicc.so, libnppicc_static.a,
|
771 |
+
libnppicom.so, libnppicom_static.a, libnppidei.so,
|
772 |
+
libnppidei_static.a, libnppif.so, libnppif_static.a
|
773 |
+
libnppig.so, libnppig_static.a, libnppim.so,
|
774 |
+
libnppim_static.a, libnppist.so, libnppist_static.a,
|
775 |
+
libnppisu.so, libnppisu_static.a, libnppitc.so
|
776 |
+
libnppitc_static.a, libnpps.so, libnpps_static.a
|
777 |
+
|
778 |
+
Component
|
779 |
+
|
780 |
+
NVIDIA JPEG Library
|
781 |
+
|
782 |
+
Linux
|
783 |
+
|
784 |
+
libnvjpeg.so, libnvjpeg_static.a
|
785 |
+
|
786 |
+
Component
|
787 |
+
|
788 |
+
Internal common library required for statically linking to
|
789 |
+
cuBLAS, cuSPARSE, cuFFT, cuRAND, nvJPEG and NPP
|
790 |
+
|
791 |
+
Mac OSX
|
792 |
+
|
793 |
+
libculibos.a
|
794 |
+
|
795 |
+
Linux
|
796 |
+
|
797 |
+
libculibos.a
|
798 |
+
|
799 |
+
Component
|
800 |
+
|
801 |
+
NVIDIA Runtime Compilation Library and Header
|
802 |
+
|
803 |
+
All
|
804 |
+
|
805 |
+
nvrtc.h
|
806 |
+
|
807 |
+
Windows
|
808 |
+
|
809 |
+
nvrtc.dll, nvrtc-builtins.dll
|
810 |
+
|
811 |
+
Mac OSX
|
812 |
+
|
813 |
+
libnvrtc.dylib, libnvrtc-builtins.dylib
|
814 |
+
|
815 |
+
Linux
|
816 |
+
|
817 |
+
libnvrtc.so, libnvrtc-builtins.so
|
818 |
+
|
819 |
+
Component
|
820 |
+
|
821 |
+
NVIDIA Optimizing Compiler Library
|
822 |
+
|
823 |
+
Windows
|
824 |
+
|
825 |
+
nvvm.dll
|
826 |
+
|
827 |
+
Mac OSX
|
828 |
+
|
829 |
+
libnvvm.dylib
|
830 |
+
|
831 |
+
Linux
|
832 |
+
|
833 |
+
libnvvm.so
|
834 |
+
|
835 |
+
Component
|
836 |
+
|
837 |
+
NVIDIA Common Device Math Functions Library
|
838 |
+
|
839 |
+
Windows
|
840 |
+
|
841 |
+
libdevice.10.bc
|
842 |
+
|
843 |
+
Mac OSX
|
844 |
+
|
845 |
+
libdevice.10.bc
|
846 |
+
|
847 |
+
Linux
|
848 |
+
|
849 |
+
libdevice.10.bc
|
850 |
+
|
851 |
+
Component
|
852 |
+
|
853 |
+
CUDA Occupancy Calculation Header Library
|
854 |
+
|
855 |
+
All
|
856 |
+
|
857 |
+
cuda_occupancy.h
|
858 |
+
|
859 |
+
Component
|
860 |
+
|
861 |
+
CUDA Half Precision Headers
|
862 |
+
|
863 |
+
All
|
864 |
+
|
865 |
+
cuda_fp16.h, cuda_fp16.hpp
|
866 |
+
|
867 |
+
Component
|
868 |
+
|
869 |
+
CUDA Profiling Tools Interface (CUPTI) Library
|
870 |
+
|
871 |
+
Windows
|
872 |
+
|
873 |
+
cupti.dll
|
874 |
+
|
875 |
+
Mac OSX
|
876 |
+
|
877 |
+
libcupti.dylib
|
878 |
+
|
879 |
+
Linux
|
880 |
+
|
881 |
+
libcupti.so
|
882 |
+
|
883 |
+
Component
|
884 |
+
|
885 |
+
NVIDIA Tools Extension Library
|
886 |
+
|
887 |
+
Windows
|
888 |
+
|
889 |
+
nvToolsExt.dll, nvToolsExt.lib
|
890 |
+
|
891 |
+
Mac OSX
|
892 |
+
|
893 |
+
libnvToolsExt.dylib
|
894 |
+
|
895 |
+
Linux
|
896 |
+
|
897 |
+
libnvToolsExt.so
|
898 |
+
|
899 |
+
Component
|
900 |
+
|
901 |
+
NVIDIA CUDA Driver Libraries
|
902 |
+
|
903 |
+
Linux
|
904 |
+
|
905 |
+
libcuda.so, libnvidia-fatbinaryloader.so,
|
906 |
+
libnvidia-ptxjitcompiler.so
|
907 |
+
|
908 |
+
The NVIDIA CUDA Driver Libraries are only distributable in
|
909 |
+
applications that meet this criteria:
|
910 |
+
|
911 |
+
1. The application was developed starting from a NVIDIA CUDA
|
912 |
+
container obtained from Docker Hub or the NVIDIA GPU
|
913 |
+
Cloud, and
|
914 |
+
|
915 |
+
2. The resulting application is packaged as a Docker
|
916 |
+
container and distributed to users on Docker Hub or the
|
917 |
+
NVIDIA GPU Cloud only.
|
918 |
+
|
919 |
+
|
920 |
+
2.7. Attachment B
|
921 |
+
|
922 |
+
|
923 |
+
Additional Licensing Obligations
|
924 |
+
|
925 |
+
The following third party components included in the SOFTWARE
|
926 |
+
are licensed to Licensee pursuant to the following terms and
|
927 |
+
conditions:
|
928 |
+
|
929 |
+
1. Licensee's use of the GDB third party component is
|
930 |
+
subject to the terms and conditions of GNU GPL v3:
|
931 |
+
|
932 |
+
This product includes copyrighted third-party software licensed
|
933 |
+
under the terms of the GNU General Public License v3 ("GPL v3").
|
934 |
+
All third-party software packages are copyright by their respective
|
935 |
+
authors. GPL v3 terms and conditions are hereby incorporated into
|
936 |
+
the Agreement by this reference: http://www.gnu.org/licenses/gpl.txt
|
937 |
+
|
938 |
+
Consistent with these licensing requirements, the software
|
939 |
+
listed below is provided under the terms of the specified
|
940 |
+
open source software licenses. To obtain source code for
|
941 |
+
software provided under licenses that require
|
942 |
+
redistribution of source code, including the GNU General
|
943 |
+
Public License (GPL) and GNU Lesser General Public License
|
944 |
+
(LGPL), contact [email protected]. This offer is
|
945 |
+
valid for a period of three (3) years from the date of the
|
946 |
+
distribution of this product by NVIDIA CORPORATION.
|
947 |
+
|
948 |
+
Component License
|
949 |
+
CUDA-GDB GPL v3
|
950 |
+
|
951 |
+
2. Licensee represents and warrants that any and all third
|
952 |
+
party licensing and/or royalty payment obligations in
|
953 |
+
connection with Licensee's use of the H.264 video codecs
|
954 |
+
are solely the responsibility of Licensee.
|
955 |
+
|
956 |
+
3. Licensee's use of the Thrust library is subject to the
|
957 |
+
terms and conditions of the Apache License Version 2.0.
|
958 |
+
All third-party software packages are copyright by their
|
959 |
+
respective authors. Apache License Version 2.0 terms and
|
960 |
+
conditions are hereby incorporated into the Agreement by
|
961 |
+
this reference.
|
962 |
+
http://www.apache.org/licenses/LICENSE-2.0.html
|
963 |
+
|
964 |
+
In addition, Licensee acknowledges the following notice:
|
965 |
+
Thrust includes source code from the Boost Iterator,
|
966 |
+
Tuple, System, and Random Number libraries.
|
967 |
+
|
968 |
+
Boost Software License - Version 1.0 - August 17th, 2003
|
969 |
+
. . . .
|
970 |
+
|
971 |
+
Permission is hereby granted, free of charge, to any person or
|
972 |
+
organization obtaining a copy of the software and accompanying
|
973 |
+
documentation covered by this license (the "Software") to use,
|
974 |
+
reproduce, display, distribute, execute, and transmit the Software,
|
975 |
+
and to prepare derivative works of the Software, and to permit
|
976 |
+
third-parties to whom the Software is furnished to do so, all
|
977 |
+
subject to the following:
|
978 |
+
|
979 |
+
The copyright notices in the Software and this entire statement,
|
980 |
+
including the above license grant, this restriction and the following
|
981 |
+
disclaimer, must be included in all copies of the Software, in whole
|
982 |
+
or in part, and all derivative works of the Software, unless such
|
983 |
+
copies or derivative works are solely in the form of machine-executable
|
984 |
+
object code generated by a source language processor.
|
985 |
+
|
986 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
987 |
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
988 |
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
|
989 |
+
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
|
990 |
+
ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR
|
991 |
+
OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING
|
992 |
+
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
993 |
+
OTHER DEALINGS IN THE SOFTWARE.
|
994 |
+
|
995 |
+
4. Licensee's use of the LLVM third party component is
|
996 |
+
subject to the following terms and conditions:
|
997 |
+
|
998 |
+
======================================================
|
999 |
+
LLVM Release License
|
1000 |
+
======================================================
|
1001 |
+
University of Illinois/NCSA
|
1002 |
+
Open Source License
|
1003 |
+
|
1004 |
+
Copyright (c) 2003-2010 University of Illinois at Urbana-Champaign.
|
1005 |
+
All rights reserved.
|
1006 |
+
|
1007 |
+
Developed by:
|
1008 |
+
|
1009 |
+
LLVM Team
|
1010 |
+
|
1011 |
+
University of Illinois at Urbana-Champaign
|
1012 |
+
|
1013 |
+
http://llvm.org
|
1014 |
+
|
1015 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
1016 |
+
of this software and associated documentation files (the "Software"), to
|
1017 |
+
deal with the Software without restriction, including without limitation the
|
1018 |
+
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
1019 |
+
sell copies of the Software, and to permit persons to whom the Software is
|
1020 |
+
furnished to do so, subject to the following conditions:
|
1021 |
+
|
1022 |
+
* Redistributions of source code must retain the above copyright notice,
|
1023 |
+
this list of conditions and the following disclaimers.
|
1024 |
+
|
1025 |
+
* Redistributions in binary form must reproduce the above copyright
|
1026 |
+
notice, this list of conditions and the following disclaimers in the
|
1027 |
+
documentation and/or other materials provided with the distribution.
|
1028 |
+
|
1029 |
+
* Neither the names of the LLVM Team, University of Illinois at Urbana-
|
1030 |
+
Champaign, nor the names of its contributors may be used to endorse or
|
1031 |
+
promote products derived from this Software without specific prior
|
1032 |
+
written permission.
|
1033 |
+
|
1034 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
1035 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
1036 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
1037 |
+
THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
1038 |
+
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
1039 |
+
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
1040 |
+
DEALINGS WITH THE SOFTWARE.
|
1041 |
+
|
1042 |
+
5. Licensee's use (e.g. nvprof) of the PCRE third party
|
1043 |
+
component is subject to the following terms and
|
1044 |
+
conditions:
|
1045 |
+
|
1046 |
+
------------
|
1047 |
+
PCRE LICENCE
|
1048 |
+
------------
|
1049 |
+
PCRE is a library of functions to support regular expressions whose syntax
|
1050 |
+
and semantics are as close as possible to those of the Perl 5 language.
|
1051 |
+
Release 8 of PCRE is distributed under the terms of the "BSD" licence, as
|
1052 |
+
specified below. The documentation for PCRE, supplied in the "doc"
|
1053 |
+
directory, is distributed under the same terms as the software itself. The
|
1054 |
+
basic library functions are written in C and are freestanding. Also
|
1055 |
+
included in the distribution is a set of C++ wrapper functions, and a just-
|
1056 |
+
in-time compiler that can be used to optimize pattern matching. These are
|
1057 |
+
both optional features that can be omitted when the library is built.
|
1058 |
+
|
1059 |
+
THE BASIC LIBRARY FUNCTIONS
|
1060 |
+
---------------------------
|
1061 |
+
Written by: Philip Hazel
|
1062 |
+
Email local part: ph10
|
1063 |
+
Email domain: cam.ac.uk
|
1064 |
+
University of Cambridge Computing Service,
|
1065 |
+
Cambridge, England.
|
1066 |
+
Copyright (c) 1997-2012 University of Cambridge
|
1067 |
+
All rights reserved.
|
1068 |
+
|
1069 |
+
PCRE JUST-IN-TIME COMPILATION SUPPORT
|
1070 |
+
-------------------------------------
|
1071 |
+
Written by: Zoltan Herczeg
|
1072 |
+
Email local part: hzmester
|
1073 |
+
Emain domain: freemail.hu
|
1074 |
+
Copyright(c) 2010-2012 Zoltan Herczeg
|
1075 |
+
All rights reserved.
|
1076 |
+
|
1077 |
+
STACK-LESS JUST-IN-TIME COMPILER
|
1078 |
+
--------------------------------
|
1079 |
+
Written by: Zoltan Herczeg
|
1080 |
+
Email local part: hzmester
|
1081 |
+
Emain domain: freemail.hu
|
1082 |
+
Copyright(c) 2009-2012 Zoltan Herczeg
|
1083 |
+
All rights reserved.
|
1084 |
+
|
1085 |
+
THE C++ WRAPPER FUNCTIONS
|
1086 |
+
-------------------------
|
1087 |
+
Contributed by: Google Inc.
|
1088 |
+
Copyright (c) 2007-2012, Google Inc.
|
1089 |
+
All rights reserved.
|
1090 |
+
|
1091 |
+
THE "BSD" LICENCE
|
1092 |
+
-----------------
|
1093 |
+
Redistribution and use in source and binary forms, with or without
|
1094 |
+
modification, are permitted provided that the following conditions are met:
|
1095 |
+
|
1096 |
+
* Redistributions of source code must retain the above copyright notice,
|
1097 |
+
this list of conditions and the following disclaimer.
|
1098 |
+
|
1099 |
+
* Redistributions in binary form must reproduce the above copyright
|
1100 |
+
notice, this list of conditions and the following disclaimer in the
|
1101 |
+
documentation and/or other materials provided with the distribution.
|
1102 |
+
|
1103 |
+
* Neither the name of the University of Cambridge nor the name of Google
|
1104 |
+
Inc. nor the names of their contributors may be used to endorse or
|
1105 |
+
promote products derived from this software without specific prior
|
1106 |
+
written permission.
|
1107 |
+
|
1108 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
1109 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
1110 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
1111 |
+
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
1112 |
+
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
1113 |
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
1114 |
+
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
1115 |
+
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
1116 |
+
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
1117 |
+
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
1118 |
+
POSSIBILITY OF SUCH DAMAGE.
|
1119 |
+
|
1120 |
+
6. Some of the cuBLAS library routines were written by or
|
1121 |
+
derived from code written by Vasily Volkov and are subject
|
1122 |
+
to the Modified Berkeley Software Distribution License as
|
1123 |
+
follows:
|
1124 |
+
|
1125 |
+
Copyright (c) 2007-2009, Regents of the University of California
|
1126 |
+
|
1127 |
+
All rights reserved.
|
1128 |
+
|
1129 |
+
Redistribution and use in source and binary forms, with or without
|
1130 |
+
modification, are permitted provided that the following conditions are
|
1131 |
+
met:
|
1132 |
+
* Redistributions of source code must retain the above copyright
|
1133 |
+
notice, this list of conditions and the following disclaimer.
|
1134 |
+
* Redistributions in binary form must reproduce the above
|
1135 |
+
copyright notice, this list of conditions and the following
|
1136 |
+
disclaimer in the documentation and/or other materials provided
|
1137 |
+
with the distribution.
|
1138 |
+
* Neither the name of the University of California, Berkeley nor
|
1139 |
+
the names of its contributors may be used to endorse or promote
|
1140 |
+
products derived from this software without specific prior
|
1141 |
+
written permission.
|
1142 |
+
|
1143 |
+
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
|
1144 |
+
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
1145 |
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
1146 |
+
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
1147 |
+
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
1148 |
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
1149 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
1150 |
+
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
1151 |
+
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
1152 |
+
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
1153 |
+
POSSIBILITY OF SUCH DAMAGE.
|
1154 |
+
|
1155 |
+
7. Some of the cuBLAS library routines were written by or
|
1156 |
+
derived from code written by Davide Barbieri and are
|
1157 |
+
subject to the Modified Berkeley Software Distribution
|
1158 |
+
License as follows:
|
1159 |
+
|
1160 |
+
Copyright (c) 2008-2009 Davide Barbieri @ University of Rome Tor Vergata.
|
1161 |
+
|
1162 |
+
All rights reserved.
|
1163 |
+
|
1164 |
+
Redistribution and use in source and binary forms, with or without
|
1165 |
+
modification, are permitted provided that the following conditions are
|
1166 |
+
met:
|
1167 |
+
* Redistributions of source code must retain the above copyright
|
1168 |
+
notice, this list of conditions and the following disclaimer.
|
1169 |
+
* Redistributions in binary form must reproduce the above
|
1170 |
+
copyright notice, this list of conditions and the following
|
1171 |
+
disclaimer in the documentation and/or other materials provided
|
1172 |
+
with the distribution.
|
1173 |
+
* The name of the author may not be used to endorse or promote
|
1174 |
+
products derived from this software without specific prior
|
1175 |
+
written permission.
|
1176 |
+
|
1177 |
+
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
|
1178 |
+
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
1179 |
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
1180 |
+
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
1181 |
+
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
1182 |
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
1183 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
1184 |
+
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
1185 |
+
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
1186 |
+
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
1187 |
+
POSSIBILITY OF SUCH DAMAGE.
|
1188 |
+
|
1189 |
+
8. Some of the cuBLAS library routines were derived from
|
1190 |
+
code developed by the University of Tennessee and are
|
1191 |
+
subject to the Modified Berkeley Software Distribution
|
1192 |
+
License as follows:
|
1193 |
+
|
1194 |
+
Copyright (c) 2010 The University of Tennessee.
|
1195 |
+
|
1196 |
+
All rights reserved.
|
1197 |
+
|
1198 |
+
Redistribution and use in source and binary forms, with or without
|
1199 |
+
modification, are permitted provided that the following conditions are
|
1200 |
+
met:
|
1201 |
+
* Redistributions of source code must retain the above copyright
|
1202 |
+
notice, this list of conditions and the following disclaimer.
|
1203 |
+
* Redistributions in binary form must reproduce the above
|
1204 |
+
copyright notice, this list of conditions and the following
|
1205 |
+
disclaimer listed in this license in the documentation and/or
|
1206 |
+
other materials provided with the distribution.
|
1207 |
+
* Neither the name of the copyright holders nor the names of its
|
1208 |
+
contributors may be used to endorse or promote products derived
|
1209 |
+
from this software without specific prior written permission.
|
1210 |
+
|
1211 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1212 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1213 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1214 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1215 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1216 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1217 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1218 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1219 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1220 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1221 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1222 |
+
|
1223 |
+
9. Some of the cuBLAS library routines were written by or
|
1224 |
+
derived from code written by Jonathan Hogg and are subject
|
1225 |
+
to the Modified Berkeley Software Distribution License as
|
1226 |
+
follows:
|
1227 |
+
|
1228 |
+
Copyright (c) 2012, The Science and Technology Facilities Council (STFC).
|
1229 |
+
|
1230 |
+
All rights reserved.
|
1231 |
+
|
1232 |
+
Redistribution and use in source and binary forms, with or without
|
1233 |
+
modification, are permitted provided that the following conditions are
|
1234 |
+
met:
|
1235 |
+
* Redistributions of source code must retain the above copyright
|
1236 |
+
notice, this list of conditions and the following disclaimer.
|
1237 |
+
* Redistributions in binary form must reproduce the above
|
1238 |
+
copyright notice, this list of conditions and the following
|
1239 |
+
disclaimer in the documentation and/or other materials provided
|
1240 |
+
with the distribution.
|
1241 |
+
* Neither the name of the STFC nor the names of its contributors
|
1242 |
+
may be used to endorse or promote products derived from this
|
1243 |
+
software without specific prior written permission.
|
1244 |
+
|
1245 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1246 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1247 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1248 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE STFC BE
|
1249 |
+
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
1250 |
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
1251 |
+
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
1252 |
+
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
1253 |
+
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
1254 |
+
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
|
1255 |
+
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1256 |
+
|
1257 |
+
10. Some of the cuBLAS library routines were written by or
|
1258 |
+
derived from code written by Ahmad M. Abdelfattah, David
|
1259 |
+
Keyes, and Hatem Ltaief, and are subject to the Apache
|
1260 |
+
License, Version 2.0, as follows:
|
1261 |
+
|
1262 |
+
-- (C) Copyright 2013 King Abdullah University of Science and Technology
|
1263 |
+
Authors:
|
1264 |
+
Ahmad Abdelfattah ([email protected])
|
1265 |
+
David Keyes ([email protected])
|
1266 |
+
Hatem Ltaief ([email protected])
|
1267 |
+
|
1268 |
+
Redistribution and use in source and binary forms, with or without
|
1269 |
+
modification, are permitted provided that the following conditions
|
1270 |
+
are met:
|
1271 |
+
|
1272 |
+
* Redistributions of source code must retain the above copyright
|
1273 |
+
notice, this list of conditions and the following disclaimer.
|
1274 |
+
* Redistributions in binary form must reproduce the above copyright
|
1275 |
+
notice, this list of conditions and the following disclaimer in the
|
1276 |
+
documentation and/or other materials provided with the distribution.
|
1277 |
+
* Neither the name of the King Abdullah University of Science and
|
1278 |
+
Technology nor the names of its contributors may be used to endorse
|
1279 |
+
or promote products derived from this software without specific prior
|
1280 |
+
written permission.
|
1281 |
+
|
1282 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1283 |
+
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1284 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1285 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1286 |
+
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1287 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1288 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1289 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1290 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1291 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1292 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
|
1293 |
+
|
1294 |
+
11. Some of the cuSPARSE library routines were written by or
|
1295 |
+
derived from code written by Li-Wen Chang and are subject
|
1296 |
+
to the NCSA Open Source License as follows:
|
1297 |
+
|
1298 |
+
Copyright (c) 2012, University of Illinois.
|
1299 |
+
|
1300 |
+
All rights reserved.
|
1301 |
+
|
1302 |
+
Developed by: IMPACT Group, University of Illinois, http://impact.crhc.illinois.edu
|
1303 |
+
|
1304 |
+
Permission is hereby granted, free of charge, to any person obtaining
|
1305 |
+
a copy of this software and associated documentation files (the
|
1306 |
+
"Software"), to deal with the Software without restriction, including
|
1307 |
+
without limitation the rights to use, copy, modify, merge, publish,
|
1308 |
+
distribute, sublicense, and/or sell copies of the Software, and to
|
1309 |
+
permit persons to whom the Software is furnished to do so, subject to
|
1310 |
+
the following conditions:
|
1311 |
+
* Redistributions of source code must retain the above copyright
|
1312 |
+
notice, this list of conditions and the following disclaimer.
|
1313 |
+
* Redistributions in binary form must reproduce the above
|
1314 |
+
copyright notice, this list of conditions and the following
|
1315 |
+
disclaimers in the documentation and/or other materials provided
|
1316 |
+
with the distribution.
|
1317 |
+
* Neither the names of IMPACT Group, University of Illinois, nor
|
1318 |
+
the names of its contributors may be used to endorse or promote
|
1319 |
+
products derived from this Software without specific prior
|
1320 |
+
written permission.
|
1321 |
+
|
1322 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
1323 |
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
1324 |
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
1325 |
+
NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT
|
1326 |
+
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
1327 |
+
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
1328 |
+
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
|
1329 |
+
SOFTWARE.
|
1330 |
+
|
1331 |
+
12. Some of the cuRAND library routines were written by or
|
1332 |
+
derived from code written by Mutsuo Saito and Makoto
|
1333 |
+
Matsumoto and are subject to the following license:
|
1334 |
+
|
1335 |
+
Copyright (c) 2009, 2010 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
1336 |
+
University. All rights reserved.
|
1337 |
+
|
1338 |
+
Copyright (c) 2011 Mutsuo Saito, Makoto Matsumoto, Hiroshima
|
1339 |
+
University and University of Tokyo. All rights reserved.
|
1340 |
+
|
1341 |
+
Redistribution and use in source and binary forms, with or without
|
1342 |
+
modification, are permitted provided that the following conditions are
|
1343 |
+
met:
|
1344 |
+
* Redistributions of source code must retain the above copyright
|
1345 |
+
notice, this list of conditions and the following disclaimer.
|
1346 |
+
* Redistributions in binary form must reproduce the above
|
1347 |
+
copyright notice, this list of conditions and the following
|
1348 |
+
disclaimer in the documentation and/or other materials provided
|
1349 |
+
with the distribution.
|
1350 |
+
* Neither the name of the Hiroshima University nor the names of
|
1351 |
+
its contributors may be used to endorse or promote products
|
1352 |
+
derived from this software without specific prior written
|
1353 |
+
permission.
|
1354 |
+
|
1355 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1356 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1357 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1358 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1359 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1360 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1361 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1362 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1363 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1364 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1365 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1366 |
+
|
1367 |
+
13. Some of the cuRAND library routines were derived from
|
1368 |
+
code developed by D. E. Shaw Research and are subject to
|
1369 |
+
the following license:
|
1370 |
+
|
1371 |
+
Copyright 2010-2011, D. E. Shaw Research.
|
1372 |
+
|
1373 |
+
All rights reserved.
|
1374 |
+
|
1375 |
+
Redistribution and use in source and binary forms, with or without
|
1376 |
+
modification, are permitted provided that the following conditions are
|
1377 |
+
met:
|
1378 |
+
* Redistributions of source code must retain the above copyright
|
1379 |
+
notice, this list of conditions, and the following disclaimer.
|
1380 |
+
* Redistributions in binary form must reproduce the above
|
1381 |
+
copyright notice, this list of conditions, and the following
|
1382 |
+
disclaimer in the documentation and/or other materials provided
|
1383 |
+
with the distribution.
|
1384 |
+
* Neither the name of D. E. Shaw Research nor the names of its
|
1385 |
+
contributors may be used to endorse or promote products derived
|
1386 |
+
from this software without specific prior written permission.
|
1387 |
+
|
1388 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1389 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1390 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1391 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1392 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1393 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1394 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1395 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1396 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1397 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1398 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1399 |
+
|
1400 |
+
14. Some of the Math library routines were written by or
|
1401 |
+
derived from code developed by Norbert Juffa and are
|
1402 |
+
subject to the following license:
|
1403 |
+
|
1404 |
+
Copyright (c) 2015-2017, Norbert Juffa
|
1405 |
+
All rights reserved.
|
1406 |
+
|
1407 |
+
Redistribution and use in source and binary forms, with or without
|
1408 |
+
modification, are permitted provided that the following conditions
|
1409 |
+
are met:
|
1410 |
+
|
1411 |
+
1. Redistributions of source code must retain the above copyright
|
1412 |
+
notice, this list of conditions and the following disclaimer.
|
1413 |
+
|
1414 |
+
2. Redistributions in binary form must reproduce the above copyright
|
1415 |
+
notice, this list of conditions and the following disclaimer in the
|
1416 |
+
documentation and/or other materials provided with the distribution.
|
1417 |
+
|
1418 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1419 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1420 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1421 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1422 |
+
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1423 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1424 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1425 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1426 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1427 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1428 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1429 |
+
|
1430 |
+
15. Licensee's use of the lz4 third party component is
|
1431 |
+
subject to the following terms and conditions:
|
1432 |
+
|
1433 |
+
Copyright (C) 2011-2013, Yann Collet.
|
1434 |
+
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
1435 |
+
|
1436 |
+
Redistribution and use in source and binary forms, with or without
|
1437 |
+
modification, are permitted provided that the following conditions are
|
1438 |
+
met:
|
1439 |
+
|
1440 |
+
* Redistributions of source code must retain the above copyright
|
1441 |
+
notice, this list of conditions and the following disclaimer.
|
1442 |
+
* Redistributions in binary form must reproduce the above
|
1443 |
+
copyright notice, this list of conditions and the following disclaimer
|
1444 |
+
in the documentation and/or other materials provided with the
|
1445 |
+
distribution.
|
1446 |
+
|
1447 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
1448 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
1449 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
1450 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
1451 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
1452 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
1453 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
1454 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
1455 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
1456 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
1457 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
1458 |
+
|
1459 |
+
16. The NPP library uses code from the Boost Math Toolkit,
|
1460 |
+
and is subject to the following license:
|
1461 |
+
|
1462 |
+
Boost Software License - Version 1.0 - August 17th, 2003
|
1463 |
+
. . . .
|
1464 |
+
|
1465 |
+
Permission is hereby granted, free of charge, to any person or
|
1466 |
+
organization obtaining a copy of the software and accompanying
|
1467 |
+
documentation covered by this license (the "Software") to use,
|
1468 |
+
reproduce, display, distribute, execute, and transmit the Software,
|
1469 |
+
and to prepare derivative works of the Software, and to permit
|
1470 |
+
third-parties to whom the Software is furnished to do so, all
|
1471 |
+
subject to the following:
|
1472 |
+
|
1473 |
+
The copyright notices in the Software and this entire statement,
|
1474 |
+
including the above license grant, this restriction and the following
|
1475 |
+
disclaimer, must be included in all copies of the Software, in whole
|
1476 |
+
or in part, and all derivative works of the Software, unless such
|
1477 |
+
copies or derivative works are solely in the form of machine-executable
|
1478 |
+
object code generated by a source language processor.
|
1479 |
+
|
1480 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
1481 |
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
1482 |
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
|
1483 |
+
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
|
1484 |
+
ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR
|
1485 |
+
OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING
|
1486 |
+
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
1487 |
+
OTHER DEALINGS IN THE SOFTWARE.
|
1488 |
+
|
1489 |
+
17. Portions of the Nsight Eclipse Edition is subject to the
|
1490 |
+
following license:
|
1491 |
+
|
1492 |
+
The Eclipse Foundation makes available all content in this plug-in
|
1493 |
+
("Content"). Unless otherwise indicated below, the Content is provided
|
1494 |
+
to you under the terms and conditions of the Eclipse Public License
|
1495 |
+
Version 1.0 ("EPL"). A copy of the EPL is available at http://
|
1496 |
+
www.eclipse.org/legal/epl-v10.html. For purposes of the EPL, "Program"
|
1497 |
+
will mean the Content.
|
1498 |
+
|
1499 |
+
If you did not receive this Content directly from the Eclipse
|
1500 |
+
Foundation, the Content is being redistributed by another party
|
1501 |
+
("Redistributor") and different terms and conditions may apply to your
|
1502 |
+
use of any object code in the Content. Check the Redistributor's
|
1503 |
+
license that was provided with the Content. If no such license exists,
|
1504 |
+
contact the Redistributor. Unless otherwise indicated below, the terms
|
1505 |
+
and conditions of the EPL still apply to any source code in the
|
1506 |
+
Content and such source code may be obtained at http://www.eclipse.org.
|
1507 |
+
|
1508 |
+
18. Some of the cuBLAS library routines uses code from
|
1509 |
+
OpenAI, which is subject to the following license:
|
1510 |
+
|
1511 |
+
License URL
|
1512 |
+
https://github.com/openai/openai-gemm/blob/master/LICENSE
|
1513 |
+
|
1514 |
+
License Text
|
1515 |
+
The MIT License
|
1516 |
+
|
1517 |
+
Copyright (c) 2016 OpenAI (http://openai.com), 2016 Google Inc.
|
1518 |
+
|
1519 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
1520 |
+
of this software and associated documentation files (the "Software"), to deal
|
1521 |
+
in the Software without restriction, including without limitation the rights
|
1522 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
1523 |
+
copies of the Software, and to permit persons to whom the Software is
|
1524 |
+
furnished to do so, subject to the following conditions:
|
1525 |
+
|
1526 |
+
The above copyright notice and this permission notice shall be included in
|
1527 |
+
all copies or substantial portions of the Software.
|
1528 |
+
|
1529 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
1530 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
1531 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
1532 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
1533 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
1534 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
1535 |
+
THE SOFTWARE.
|
1536 |
+
|
1537 |
+
19. Licensee's use of the Visual Studio Setup Configuration
|
1538 |
+
Samples is subject to the following license:
|
1539 |
+
|
1540 |
+
The MIT License (MIT)
|
1541 |
+
Copyright (C) Microsoft Corporation. All rights reserved.
|
1542 |
+
|
1543 |
+
Permission is hereby granted, free of charge, to any person
|
1544 |
+
obtaining a copy of this software and associated documentation
|
1545 |
+
files (the "Software"), to deal in the Software without restriction,
|
1546 |
+
including without limitation the rights to use, copy, modify, merge,
|
1547 |
+
publish, distribute, sublicense, and/or sell copies of the Software,
|
1548 |
+
and to permit persons to whom the Software is furnished to do so,
|
1549 |
+
subject to the following conditions:
|
1550 |
+
|
1551 |
+
The above copyright notice and this permission notice shall be included
|
1552 |
+
in all copies or substantial portions of the Software.
|
1553 |
+
|
1554 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
1555 |
+
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
1556 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
1557 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
1558 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
1559 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
1560 |
+
|
1561 |
+
20. Licensee's use of linmath.h header for CPU functions for
|
1562 |
+
GL vector/matrix operations from lunarG is subject to the
|
1563 |
+
Apache License Version 2.0.
|
1564 |
+
|
1565 |
+
21. The DX12-CUDA sample uses the d3dx12.h header, which is
|
1566 |
+
subject to the MIT license .
|
1567 |
+
|
1568 |
+
-----------------
|
venv/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/METADATA
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: nvidia-cuda-runtime-cu12
|
3 |
+
Version: 12.1.105
|
4 |
+
Summary: CUDA Runtime native Libraries
|
5 |
+
Home-page: https://developer.nvidia.com/cuda-zone
|
6 |
+
Author: Nvidia CUDA Installer Team
|
7 |
+
Author-email: [email protected]
|
8 |
+
License: NVIDIA Proprietary Software
|
9 |
+
Keywords: cuda,nvidia,runtime,machine learning,deep learning
|
10 |
+
Classifier: Development Status :: 4 - Beta
|
11 |
+
Classifier: Intended Audience :: Developers
|
12 |
+
Classifier: Intended Audience :: Education
|
13 |
+
Classifier: Intended Audience :: Science/Research
|
14 |
+
Classifier: License :: Other/Proprietary License
|
15 |
+
Classifier: Natural Language :: English
|
16 |
+
Classifier: Programming Language :: Python :: 3
|
17 |
+
Classifier: Programming Language :: Python :: 3.5
|
18 |
+
Classifier: Programming Language :: Python :: 3.6
|
19 |
+
Classifier: Programming Language :: Python :: 3.7
|
20 |
+
Classifier: Programming Language :: Python :: 3.8
|
21 |
+
Classifier: Programming Language :: Python :: 3.9
|
22 |
+
Classifier: Programming Language :: Python :: 3.10
|
23 |
+
Classifier: Programming Language :: Python :: 3.11
|
24 |
+
Classifier: Programming Language :: Python :: 3 :: Only
|
25 |
+
Classifier: Topic :: Scientific/Engineering
|
26 |
+
Classifier: Topic :: Scientific/Engineering :: Mathematics
|
27 |
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
28 |
+
Classifier: Topic :: Software Development
|
29 |
+
Classifier: Topic :: Software Development :: Libraries
|
30 |
+
Classifier: Operating System :: Microsoft :: Windows
|
31 |
+
Classifier: Operating System :: POSIX :: Linux
|
32 |
+
Requires-Python: >=3
|
33 |
+
License-File: License.txt
|
34 |
+
|
35 |
+
CUDA Runtime native Libraries
|
venv/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/RECORD
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
nvidia/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2 |
+
nvidia/__pycache__/__init__.cpython-310.pyc,,
|
3 |
+
nvidia/cuda_runtime/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
4 |
+
nvidia/cuda_runtime/__pycache__/__init__.cpython-310.pyc,,
|
5 |
+
nvidia/cuda_runtime/include/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
6 |
+
nvidia/cuda_runtime/include/__pycache__/__init__.cpython-310.pyc,,
|
7 |
+
nvidia/cuda_runtime/include/builtin_types.h,sha256=JxT9Vf2q2snxTBOL9ACzNmYzTWACO2VOVUu1KdFt7_g,3150
|
8 |
+
nvidia/cuda_runtime/include/channel_descriptor.h,sha256=no_vNky02LeMLI0CF8GDVGHaPm_uRUGcVUMYdt_Xn4U,21482
|
9 |
+
nvidia/cuda_runtime/include/common_functions.h,sha256=22LTZRVcPZzEH6MJda7nNMCvMgIjSTe0OKR7sEQj6kc,3410
|
10 |
+
nvidia/cuda_runtime/include/cooperative_groups.h,sha256=JCMxtl4cNUFnymguM4_bTywhcfyxGqu_zOQIUh_Tc_g,59328
|
11 |
+
nvidia/cuda_runtime/include/cooperative_groups/details/async.h,sha256=xsEHCZP3nuEY3l2p8SU2d1226XiXumUvDP_Gyh8PdVY,19122
|
12 |
+
nvidia/cuda_runtime/include/cooperative_groups/details/coalesced_reduce.h,sha256=vWv1tyxMjSMM2Oc0SdxXhCug_PwaBM6u8iMLjKyeqjE,4561
|
13 |
+
nvidia/cuda_runtime/include/cooperative_groups/details/coalesced_scan.h,sha256=DfZv5d5W0XJv-tZVhgrIdjLjs6aCx_u0oy1lDIpjo1Q,7314
|
14 |
+
nvidia/cuda_runtime/include/cooperative_groups/details/driver_abi.h,sha256=v-ZUb4UgGKJk6NR2WCWHD3x_42y-togI1urFn70Gi-g,3964
|
15 |
+
nvidia/cuda_runtime/include/cooperative_groups/details/functional.h,sha256=2BV8i8Bidz0kgxuYkJCAbwFxOIZRyzHgG-c_rVKhRzc,8905
|
16 |
+
nvidia/cuda_runtime/include/cooperative_groups/details/helpers.h,sha256=GHIy-8awPZObSmP_FFWAnX7RQG9s1SD6L3yw5dNzhlM,23569
|
17 |
+
nvidia/cuda_runtime/include/cooperative_groups/details/info.h,sha256=LSrEe6iTHuQRfc7RD3EHQbNqpED8eAbX4HLNyxXgKFA,12286
|
18 |
+
nvidia/cuda_runtime/include/cooperative_groups/details/invoke.h,sha256=Osq3K-tZuXHVCMQJ708PjPo-BwMhjhjApO4b0TYLFJg,8616
|
19 |
+
nvidia/cuda_runtime/include/cooperative_groups/details/memory.h,sha256=WU28eUcYLA1z131VYGulR4eVCSN9xK9KSxbV656YPs0,5484
|
20 |
+
nvidia/cuda_runtime/include/cooperative_groups/details/partitioning.h,sha256=8hCh6F8sfkyfRgMirC37Nqv-b-gIY3A_J0eMYqmD2zU,6001
|
21 |
+
nvidia/cuda_runtime/include/cooperative_groups/details/reduce.h,sha256=cbDjVSJVQ2_2pf2aP-X_rBkRVEWEFSYkc6oCx1fRQsQ,22744
|
22 |
+
nvidia/cuda_runtime/include/cooperative_groups/details/scan.h,sha256=-Ttwb2AfEEY_tsmqJjR2dojkPpoRx387SoqxgvfdBtQ,17166
|
23 |
+
nvidia/cuda_runtime/include/cooperative_groups/details/sync.h,sha256=fIEOjj7h3MoPqSOP3rkTNeedgS-0ZRkAHkzTAJDwJUA,10340
|
24 |
+
nvidia/cuda_runtime/include/cooperative_groups/memcpy_async.h,sha256=erOIHuObdfxRhBWfrXE3wsZF4B2GUuqwzQrsPwKPpbg,2960
|
25 |
+
nvidia/cuda_runtime/include/cooperative_groups/reduce.h,sha256=B0hgDkqM-6ueqTTgb3b34A0RH4vGz8mBf5e2jT1dJ1o,2949
|
26 |
+
nvidia/cuda_runtime/include/cooperative_groups/scan.h,sha256=2EU6T5cWNwftm2B7FicV31PojoI61yo5fHXGRYkGk40,2940
|
27 |
+
nvidia/cuda_runtime/include/cuComplex.h,sha256=WpcgpaiPhU_o9sTPMcNTEZuyXDIc8x3sz4dUWSztL2g,12186
|
28 |
+
nvidia/cuda_runtime/include/cuda.h,sha256=CAY_j4D9qgEVLDxRftRObCI-vCpTTkSrLq9zBRVNwJI,933009
|
29 |
+
nvidia/cuda_runtime/include/cudaEGL.h,sha256=_CwaQ4cEP1vfNyBSSd5qFxznPCYOovF6Cpj-QWSIBq4,39544
|
30 |
+
nvidia/cuda_runtime/include/cudaEGLTypedefs.h,sha256=xF_FAN1Kar9oyHJ3cCU7jztTpxX8WylpiuYyYpGGHek,5645
|
31 |
+
nvidia/cuda_runtime/include/cudaGL.h,sha256=gMT1HPGa-siuji0gAsKYr4X45Lc29HKglC_ttNSGyUM,22501
|
32 |
+
nvidia/cuda_runtime/include/cudaGLTypedefs.h,sha256=dClpQI-LuXgF9rPSBsj7OkIg8g_fXDjT0hLZS8TGpOg,6576
|
33 |
+
nvidia/cuda_runtime/include/cudaProfilerTypedefs.h,sha256=F2aWLIKv_AhNbxNOaZVcRsxIh0kuscnV8UMWWxkBAlY,3297
|
34 |
+
nvidia/cuda_runtime/include/cudaTypedefs.h,sha256=guPSBrr4jNU6WBaBCqRiTuCbOYQDLMqYoz7bemoofWI,101855
|
35 |
+
nvidia/cuda_runtime/include/cudaVDPAU.h,sha256=Np7Nc2Wjaz--hkpbhW6f9aapr-NbcPDAgkot0sJerco,12694
|
36 |
+
nvidia/cuda_runtime/include/cudaVDPAUTypedefs.h,sha256=wz8nyOUdwM9mH9JO3QZW-A9dyxt-IufSX7nggSXpCNs,4144
|
37 |
+
nvidia/cuda_runtime/include/cuda_awbarrier.h,sha256=3ZH-ZlXODhSiwSY9rqSni_EQwi25QMHP6Tm-zOdxBwE,9340
|
38 |
+
nvidia/cuda_runtime/include/cuda_awbarrier_helpers.h,sha256=OCskCts5bCKl_RKBe9M74zKSIsVpePn44S_aJp1tFXE,12489
|
39 |
+
nvidia/cuda_runtime/include/cuda_awbarrier_primitives.h,sha256=n5__E1jYYDhlgH-f3u8MQjtz57UZ7v5VshhMye1eicM,4699
|
40 |
+
nvidia/cuda_runtime/include/cuda_bf16.h,sha256=zQ2idK7w0w7tRlgL_5Nyvy3FSrsOnu2W9Ya2YSFFT-E,149245
|
41 |
+
nvidia/cuda_runtime/include/cuda_bf16.hpp,sha256=JlKs0yOZvJQPM6yFO3klxrhPTNN83e7um3ZFHMlYOKI,104876
|
42 |
+
nvidia/cuda_runtime/include/cuda_device_runtime_api.h,sha256=2ZuNnXkRON3VchHM-OcKCdhljApIlfh-xKwupEfp5N4,39755
|
43 |
+
nvidia/cuda_runtime/include/cuda_egl_interop.h,sha256=PNWYns30MIytJQHSOh7UbZYlaTX5e0bavzK14tde_C8,37109
|
44 |
+
nvidia/cuda_runtime/include/cuda_fp16.h,sha256=aFLciB3o9QH3trYFl_P_dX58342UPfHXZGy2OeqEv1s,141782
|
45 |
+
nvidia/cuda_runtime/include/cuda_fp16.hpp,sha256=kyHQA_rvZWpGq7sb2k3iTT3Zs1KYtr7TlEVvkGbQ61E,98606
|
46 |
+
nvidia/cuda_runtime/include/cuda_fp8.h,sha256=Q3OP5o_3rSYbKtVIlcXVr_CncU3SPM-09j605e2Zegw,13833
|
47 |
+
nvidia/cuda_runtime/include/cuda_fp8.hpp,sha256=pgYF_hzC2uAr7KNVyxBqrHTuM2bMaUPMUj7cY0kG3OU,56491
|
48 |
+
nvidia/cuda_runtime/include/cuda_gl_interop.h,sha256=VQEswFeOBF6JN6Q0pdlkvc5WT7bD1FnTfKewvANulCc,19150
|
49 |
+
nvidia/cuda_runtime/include/cuda_occupancy.h,sha256=Kr9HyOe-hlRjBAzbINwUYkNgbbIgIjuvKs09UZhMYQo,67179
|
50 |
+
nvidia/cuda_runtime/include/cuda_pipeline.h,sha256=0enXG49wN4JajlQi3ahbp2ei_ufTY_Mznic7zfWmKHM,8130
|
51 |
+
nvidia/cuda_runtime/include/cuda_pipeline_helpers.h,sha256=bo1L7e6vCuM-K3Il8K1z4wJUja5DyXQKdo_hSWUME-E,13852
|
52 |
+
nvidia/cuda_runtime/include/cuda_pipeline_primitives.h,sha256=FnJJtuV6rHr6LgL56XDwilcSbFr6W1Hj6mf1AJaMI20,8675
|
53 |
+
nvidia/cuda_runtime/include/cuda_runtime.h,sha256=NKUshOJapRWSe0CPJx-KllF9y3ZibUd9bM1OVUU52H4,88281
|
54 |
+
nvidia/cuda_runtime/include/cuda_runtime_api.h,sha256=rUQw7deoB1R5LKEgLKwqFdoX6eke4bcp98CJ6iCk_uk,560622
|
55 |
+
nvidia/cuda_runtime/include/cuda_surface_types.h,sha256=Mw5Lo4b8Q-f9mogOvATGyHhu9d2t2K6XOxuqtZrSh3A,3688
|
56 |
+
nvidia/cuda_runtime/include/cuda_texture_types.h,sha256=ITbX-JNnP7Rm-JSgNVdJ9pq6k8FVor8RbnruDsKq6sk,3688
|
57 |
+
nvidia/cuda_runtime/include/cuda_vdpau_interop.h,sha256=bXQanWc2IFXZAKWNGl2xAz9nLvFmQpWyGrsDvfeS9FA,7727
|
58 |
+
nvidia/cuda_runtime/include/cudart_platform.h,sha256=YN6sKhB0b9w5tGX1IYL7ulJVPrWAiX9A44qLv4EtW5Q,2717
|
59 |
+
nvidia/cuda_runtime/include/device_atomic_functions.h,sha256=o448l6Ep35UHnqcPSQXICvK4Vusc9mVjkyQDq0vV14E,11883
|
60 |
+
nvidia/cuda_runtime/include/device_atomic_functions.hpp,sha256=_UsoVsyP7U-9CUUCbC1QLw6IbFFkKzxk458vLbAXzOY,8149
|
61 |
+
nvidia/cuda_runtime/include/device_double_functions.h,sha256=KUxId5Z1fx8SWfLRTxPD7RB-zN7zslzb4n7JaJLfL3I,3452
|
62 |
+
nvidia/cuda_runtime/include/device_functions.h,sha256=bWSrhTYE9NQlss7xMSMEVusvto9j2fgUDXWVH2W_cOA,3410
|
63 |
+
nvidia/cuda_runtime/include/device_launch_parameters.h,sha256=H1_CC-vvAaS26ys4XsTFkMgTxUTciAjdjswjizkisvQ,3846
|
64 |
+
nvidia/cuda_runtime/include/device_types.h,sha256=2LFxoZBJPoA5V0H1EbKTEaXDi3GDJPtzOPdRHDaucIQ,3588
|
65 |
+
nvidia/cuda_runtime/include/driver_functions.h,sha256=cN3IjRAz2Mj2Pj35SyxJIkZNDDusnJqaqzBdMzpQKbA,4625
|
66 |
+
nvidia/cuda_runtime/include/driver_types.h,sha256=Oti6YeNU-DHsXp6r1wu5JSIGOUWgCXiED-N0DEWVlK0,144785
|
67 |
+
nvidia/cuda_runtime/include/host_config.h,sha256=BscH_GazAZbbotddVzL5RmafbQ-QjRx8f-I1O01IBW8,3380
|
68 |
+
nvidia/cuda_runtime/include/host_defines.h,sha256=bBQwQF5C1N1c2qpLV56g1c-weu9Ysgz-gIf2Kn3uz_A,3386
|
69 |
+
nvidia/cuda_runtime/include/library_types.h,sha256=yJvoLFw5oBdRqkQgEhIaX-stsMGlxQW9sZoJ4vbQHwI,4766
|
70 |
+
nvidia/cuda_runtime/include/math_constants.h,sha256=cV6hAyQe8X7f7MBtaKjjIJq3BycOUDp6I5cizJX5HLw,7608
|
71 |
+
nvidia/cuda_runtime/include/math_functions.h,sha256=5XcC6j-fJKttvhwc4hZNoLHNw808a2ZYIOtZ7ry7yd0,3398
|
72 |
+
nvidia/cuda_runtime/include/mma.h,sha256=IY_VenxuEncwGq92MhrWUb-Xswh0ekAXLy9Rbxhxa2Y,2932
|
73 |
+
nvidia/cuda_runtime/include/sm_20_atomic_functions.h,sha256=j5zuwIb71KmDLf43RoOjwiudGYvBk_k2PRsj8sy5xXI,4942
|
74 |
+
nvidia/cuda_runtime/include/sm_20_atomic_functions.hpp,sha256=Cx__BPJKUPeG5qMxZs9ztfIyqWqt0wZDZi4V_5EV4LQ,3929
|
75 |
+
nvidia/cuda_runtime/include/sm_20_intrinsics.h,sha256=cQbeg-K9zWgOI4jAVeUmV1WiWOMF5sHPz_nb3CWdAjU,51052
|
76 |
+
nvidia/cuda_runtime/include/sm_20_intrinsics.hpp,sha256=BhEBuXSKBsNGJDBJDtYL0cGRI3wX_w_OIgA5D-YxIWk,7694
|
77 |
+
nvidia/cuda_runtime/include/sm_30_intrinsics.h,sha256=kafRv2e_iMvwNfGEP5yIyjRBFx97tdkpT5me9RvbOuo,16375
|
78 |
+
nvidia/cuda_runtime/include/sm_30_intrinsics.hpp,sha256=yX0ebd265tJ-BDhvluP2BhadPuWXpRZPI2eeQFFt5ys,24567
|
79 |
+
nvidia/cuda_runtime/include/sm_32_atomic_functions.h,sha256=V1VteWKbW09qoItfQp0DbHj7R_e3bxX24NRGnd18Jc4,6812
|
80 |
+
nvidia/cuda_runtime/include/sm_32_atomic_functions.hpp,sha256=HcKoB3ujG_AVTzIaD_MjRCaaRZL8khqI_cJqHwCaP5g,5416
|
81 |
+
nvidia/cuda_runtime/include/sm_32_intrinsics.h,sha256=o7IwBBKu2lDZwzHHb2pOLAvyCNpCoEKSHPt0dFaSspI,33390
|
82 |
+
nvidia/cuda_runtime/include/sm_32_intrinsics.hpp,sha256=Gl8aSLDLcit4W3pKQS19GsDG8RYcwD65HwYB_CeZe8M,70616
|
83 |
+
nvidia/cuda_runtime/include/sm_35_atomic_functions.h,sha256=a3XoEsKRCEOf0Q_5Y__rMfmC4pScv4VkUggVgVJVn44,2909
|
84 |
+
nvidia/cuda_runtime/include/sm_35_intrinsics.h,sha256=BEiPNO03ZSv5XtMMul5jiTH4oLWlOu3CYkIAgrWslnk,2952
|
85 |
+
nvidia/cuda_runtime/include/sm_60_atomic_functions.h,sha256=E5nwZxyIL48AMUIFxZmwzfWaPXOMpjJsoEIQcY7LzPM,20902
|
86 |
+
nvidia/cuda_runtime/include/sm_60_atomic_functions.hpp,sha256=bSnj2_G8asEbiu8aPuf3OACDuT_-kw6TuBlU1QtLLfY,15081
|
87 |
+
nvidia/cuda_runtime/include/sm_61_intrinsics.h,sha256=eEL9MmGSOpD9DohErXPflc0k2loEcMzDVKZYiUZx7hY,6030
|
88 |
+
nvidia/cuda_runtime/include/sm_61_intrinsics.hpp,sha256=N-nQvcBsPMT2Umy5zR69c9K1q366W-Jqe7NpoLTqTmg,6787
|
89 |
+
nvidia/cuda_runtime/include/surface_functions.h,sha256=b1O82SAvEgWWxA9uZTWQcGimzZUoem2QbAET3wh3fZc,6782
|
90 |
+
nvidia/cuda_runtime/include/surface_indirect_functions.h,sha256=vy9QuFVV-ezZP-x2RT9RLp2qIUgdngACOCmalSfVFPA,10877
|
91 |
+
nvidia/cuda_runtime/include/surface_types.h,sha256=Di766cyRUqNN4JkOnYM3teFqrwMZ02hXMDB_R_2_vz4,4460
|
92 |
+
nvidia/cuda_runtime/include/texture_fetch_functions.h,sha256=KLCmUxf5aY5_UalX8tSFB6e4TrjA8hyUPxLOkMFltAo,12468
|
93 |
+
nvidia/cuda_runtime/include/texture_indirect_functions.h,sha256=lH_y3Ni-hq4RZ0_PMFbBM0th5-OmTn3TtqtpkHHhA8w,21163
|
94 |
+
nvidia/cuda_runtime/include/texture_types.h,sha256=cFqQ6sC4y79Q6YxjLSY_bknwMgKJAOwPdKDARLPFrDI,6290
|
95 |
+
nvidia/cuda_runtime/include/vector_functions.h,sha256=R5plWOkFciltO_AS5if8NcmsgDp3cFNq6zFFDd3oofk,7847
|
96 |
+
nvidia/cuda_runtime/include/vector_functions.hpp,sha256=afXhNSd3LFTZo96EPtesTLfvxd4nTmLVzgkj967rTRg,10060
|
97 |
+
nvidia/cuda_runtime/include/vector_types.h,sha256=ruVFRp8RioWR9mrvLXX9S15ZSJ97wqTjA8ORCJKKzOQ,13206
|
98 |
+
nvidia/cuda_runtime/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
99 |
+
nvidia/cuda_runtime/lib/__pycache__/__init__.cpython-310.pyc,,
|
100 |
+
nvidia/cuda_runtime/lib/libcudart.so.12,sha256=kzX2opypEBDi2p9A6C-0so46SuIv04XhKT6TvzxGyeY,679264
|
101 |
+
nvidia_cuda_runtime_cu12-12.1.105.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
102 |
+
nvidia_cuda_runtime_cu12-12.1.105.dist-info/License.txt,sha256=rW9YU_ugyg0VnQ9Y1JrkmDDC-Mk_epJki5zpCttMbM0,59262
|
103 |
+
nvidia_cuda_runtime_cu12-12.1.105.dist-info/METADATA,sha256=9_P2cqjEZ020xhA9HzY1klL7YVuIjKETxs1wKAXeYoQ,1507
|
104 |
+
nvidia_cuda_runtime_cu12-12.1.105.dist-info/RECORD,,
|
105 |
+
nvidia_cuda_runtime_cu12-12.1.105.dist-info/WHEEL,sha256=-kQi_VMfvRQozZJT7HUPMfY-5vLo0LVTmAylNJ3Ft98,106
|
106 |
+
nvidia_cuda_runtime_cu12-12.1.105.dist-info/top_level.txt,sha256=fTkAtiFuL16nUrB9ytDDtpytz2t0B4NvYTnRzwAhO14,7
|
venv/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.37.1)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py3-none-manylinux1_x86_64
|
5 |
+
|
venv/lib/python3.10/site-packages/nvidia_cuda_runtime_cu12-12.1.105.dist-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
nvidia
|