File size: 43,819 Bytes
9e65f67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 |
"""
Multiclass classification strategies
====================================
This module implements multiclass learning algorithms:
- one-vs-the-rest / one-vs-all
- one-vs-one
- error correcting output codes
The estimators provided in this module are meta-estimators: they require a base
estimator to be provided in their constructor. For example, it is possible to
use these estimators to turn a binary classifier or a regressor into a
multiclass classifier. It is also possible to use these estimators with
multiclass estimators in the hope that their accuracy or runtime performance
improves.
All classifiers in scikit-learn implement multiclass classification; you
only need to use this module if you want to experiment with custom multiclass
strategies.
The one-vs-the-rest meta-classifier also implements a `predict_proba` method,
so long as such a method is implemented by the base classifier. This method
returns probabilities of class membership in both the single label and
multilabel case. Note that in the multilabel case, probabilities are the
marginal probability that a given sample falls in the given class. As such, in
the multilabel case the sum of these probabilities over all possible labels
for a given sample *will not* sum to unity, as they do in the single label
case.
"""
# Author: Mathieu Blondel <[email protected]>
# Author: Hamzeh Alsalhi <[email protected]>
#
# License: BSD 3 clause
import array
import itertools
import warnings
from numbers import Integral, Real
import numpy as np
import scipy.sparse as sp
from .base import (
BaseEstimator,
ClassifierMixin,
MetaEstimatorMixin,
MultiOutputMixin,
_fit_context,
clone,
is_classifier,
is_regressor,
)
from .metrics.pairwise import pairwise_distances_argmin
from .preprocessing import LabelBinarizer
from .utils import check_random_state
from .utils._param_validation import HasMethods, Interval
from .utils._tags import _safe_tags
from .utils.metadata_routing import (
MetadataRouter,
MethodMapping,
_raise_for_params,
process_routing,
)
from .utils.metaestimators import _safe_split, available_if
from .utils.multiclass import (
_check_partial_fit_first_call,
_ovr_decision_function,
check_classification_targets,
)
from .utils.parallel import Parallel, delayed
from .utils.validation import _check_method_params, _num_samples, check_is_fitted
__all__ = [
"OneVsRestClassifier",
"OneVsOneClassifier",
"OutputCodeClassifier",
]
def _fit_binary(estimator, X, y, fit_params, classes=None):
"""Fit a single binary estimator."""
unique_y = np.unique(y)
if len(unique_y) == 1:
if classes is not None:
if y[0] == -1:
c = 0
else:
c = y[0]
warnings.warn(
"Label %s is present in all training examples." % str(classes[c])
)
estimator = _ConstantPredictor().fit(X, unique_y)
else:
estimator = clone(estimator)
estimator.fit(X, y, **fit_params)
return estimator
def _partial_fit_binary(estimator, X, y, partial_fit_params):
"""Partially fit a single binary estimator."""
estimator.partial_fit(X, y, classes=np.array((0, 1)), **partial_fit_params)
return estimator
def _predict_binary(estimator, X):
"""Make predictions using a single binary estimator."""
if is_regressor(estimator):
return estimator.predict(X)
try:
score = np.ravel(estimator.decision_function(X))
except (AttributeError, NotImplementedError):
# probabilities of the positive class
score = estimator.predict_proba(X)[:, 1]
return score
def _threshold_for_binary_predict(estimator):
"""Threshold for predictions from binary estimator."""
if hasattr(estimator, "decision_function") and is_classifier(estimator):
return 0.0
else:
# predict_proba threshold
return 0.5
class _ConstantPredictor(BaseEstimator):
"""Helper predictor to be used when only one class is present."""
def fit(self, X, y):
check_params = dict(
force_all_finite=False, dtype=None, ensure_2d=False, accept_sparse=True
)
self._validate_data(
X, y, reset=True, validate_separately=(check_params, check_params)
)
self.y_ = y
return self
def predict(self, X):
check_is_fitted(self)
self._validate_data(
X,
force_all_finite=False,
dtype=None,
accept_sparse=True,
ensure_2d=False,
reset=False,
)
return np.repeat(self.y_, _num_samples(X))
def decision_function(self, X):
check_is_fitted(self)
self._validate_data(
X,
force_all_finite=False,
dtype=None,
accept_sparse=True,
ensure_2d=False,
reset=False,
)
return np.repeat(self.y_, _num_samples(X))
def predict_proba(self, X):
check_is_fitted(self)
self._validate_data(
X,
force_all_finite=False,
dtype=None,
accept_sparse=True,
ensure_2d=False,
reset=False,
)
y_ = self.y_.astype(np.float64)
return np.repeat([np.hstack([1 - y_, y_])], _num_samples(X), axis=0)
def _estimators_has(attr):
"""Check if self.estimator or self.estimators_[0] has attr.
If `self.estimators_[0]` has the attr, then its safe to assume that other
estimators have it too. We raise the original `AttributeError` if `attr`
does not exist. This function is used together with `available_if`.
"""
def check(self):
if hasattr(self, "estimators_"):
getattr(self.estimators_[0], attr)
else:
getattr(self.estimator, attr)
return True
return check
class OneVsRestClassifier(
MultiOutputMixin,
ClassifierMixin,
MetaEstimatorMixin,
BaseEstimator,
):
"""One-vs-the-rest (OvR) multiclass strategy.
Also known as one-vs-all, this strategy consists in fitting one classifier
per class. For each classifier, the class is fitted against all the other
classes. In addition to its computational efficiency (only `n_classes`
classifiers are needed), one advantage of this approach is its
interpretability. Since each class is represented by one and one classifier
only, it is possible to gain knowledge about the class by inspecting its
corresponding classifier. This is the most commonly used strategy for
multiclass classification and is a fair default choice.
OneVsRestClassifier can also be used for multilabel classification. To use
this feature, provide an indicator matrix for the target `y` when calling
`.fit`. In other words, the target labels should be formatted as a 2D
binary (0/1) matrix, where [i, j] == 1 indicates the presence of label j
in sample i. This estimator uses the binary relevance method to perform
multilabel classification, which involves training one binary classifier
independently for each label.
Read more in the :ref:`User Guide <ovr_classification>`.
Parameters
----------
estimator : estimator object
A regressor or a classifier that implements :term:`fit`.
When a classifier is passed, :term:`decision_function` will be used
in priority and it will fallback to :term:`predict_proba` if it is not
available.
When a regressor is passed, :term:`predict` is used.
n_jobs : int, default=None
The number of jobs to use for the computation: the `n_classes`
one-vs-rest problems are computed in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
.. versionchanged:: 0.20
`n_jobs` default changed from 1 to None
verbose : int, default=0
The verbosity level, if non zero, progress messages are printed.
Below 50, the output is sent to stderr. Otherwise, the output is sent
to stdout. The frequency of the messages increases with the verbosity
level, reporting all iterations at 10. See :class:`joblib.Parallel` for
more details.
.. versionadded:: 1.1
Attributes
----------
estimators_ : list of `n_classes` estimators
Estimators used for predictions.
classes_ : array, shape = [`n_classes`]
Class labels.
n_classes_ : int
Number of classes.
label_binarizer_ : LabelBinarizer object
Object used to transform multiclass labels to binary labels and
vice-versa.
multilabel_ : boolean
Whether a OneVsRestClassifier is a multilabel classifier.
n_features_in_ : int
Number of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
.. versionadded:: 1.0
See Also
--------
OneVsOneClassifier : One-vs-one multiclass strategy.
OutputCodeClassifier : (Error-Correcting) Output-Code multiclass strategy.
sklearn.multioutput.MultiOutputClassifier : Alternate way of extending an
estimator for multilabel classification.
sklearn.preprocessing.MultiLabelBinarizer : Transform iterable of iterables
to binary indicator matrix.
Examples
--------
>>> import numpy as np
>>> from sklearn.multiclass import OneVsRestClassifier
>>> from sklearn.svm import SVC
>>> X = np.array([
... [10, 10],
... [8, 10],
... [-5, 5.5],
... [-5.4, 5.5],
... [-20, -20],
... [-15, -20]
... ])
>>> y = np.array([0, 0, 1, 1, 2, 2])
>>> clf = OneVsRestClassifier(SVC()).fit(X, y)
>>> clf.predict([[-19, -20], [9, 9], [-5, 5]])
array([2, 0, 1])
"""
_parameter_constraints = {
"estimator": [HasMethods(["fit"])],
"n_jobs": [Integral, None],
"verbose": ["verbose"],
}
def __init__(self, estimator, *, n_jobs=None, verbose=0):
self.estimator = estimator
self.n_jobs = n_jobs
self.verbose = verbose
@_fit_context(
# OneVsRestClassifier.estimator is not validated yet
prefer_skip_nested_validation=False
)
def fit(self, X, y, **fit_params):
"""Fit underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)
Multi-class targets. An indicator matrix turns on multilabel
classification.
**fit_params : dict
Parameters passed to the ``estimator.fit`` method of each
sub-estimator.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
Instance of fitted estimator.
"""
_raise_for_params(fit_params, self, "fit")
routed_params = process_routing(
self,
"fit",
**fit_params,
)
# A sparse LabelBinarizer, with sparse_output=True, has been shown to
# outperform or match a dense label binarizer in all cases and has also
# resulted in less or equal memory consumption in the fit_ovr function
# overall.
self.label_binarizer_ = LabelBinarizer(sparse_output=True)
Y = self.label_binarizer_.fit_transform(y)
Y = Y.tocsc()
self.classes_ = self.label_binarizer_.classes_
columns = (col.toarray().ravel() for col in Y.T)
# In cases where individual estimators are very fast to train setting
# n_jobs > 1 in can results in slower performance due to the overhead
# of spawning threads. See joblib issue #112.
self.estimators_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(
delayed(_fit_binary)(
self.estimator,
X,
column,
fit_params=routed_params.estimator.fit,
classes=[
"not %s" % self.label_binarizer_.classes_[i],
self.label_binarizer_.classes_[i],
],
)
for i, column in enumerate(columns)
)
if hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_
if hasattr(self.estimators_[0], "feature_names_in_"):
self.feature_names_in_ = self.estimators_[0].feature_names_in_
return self
@available_if(_estimators_has("partial_fit"))
@_fit_context(
# OneVsRestClassifier.estimator is not validated yet
prefer_skip_nested_validation=False
)
def partial_fit(self, X, y, classes=None, **partial_fit_params):
"""Partially fit underlying estimators.
Should be used when memory is inefficient to train all data.
Chunks of data can be passed in several iterations.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)
Multi-class targets. An indicator matrix turns on multilabel
classification.
classes : array, shape (n_classes, )
Classes across all calls to partial_fit.
Can be obtained via `np.unique(y_all)`, where y_all is the
target vector of the entire dataset.
This argument is only required in the first call of partial_fit
and can be omitted in the subsequent calls.
**partial_fit_params : dict
Parameters passed to the ``estimator.partial_fit`` method of each
sub-estimator.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
Instance of partially fitted estimator.
"""
_raise_for_params(partial_fit_params, self, "partial_fit")
routed_params = process_routing(
self,
"partial_fit",
**partial_fit_params,
)
if _check_partial_fit_first_call(self, classes):
self.estimators_ = [clone(self.estimator) for _ in range(self.n_classes_)]
# A sparse LabelBinarizer, with sparse_output=True, has been
# shown to outperform or match a dense label binarizer in all
# cases and has also resulted in less or equal memory consumption
# in the fit_ovr function overall.
self.label_binarizer_ = LabelBinarizer(sparse_output=True)
self.label_binarizer_.fit(self.classes_)
if len(np.setdiff1d(y, self.classes_)):
raise ValueError(
(
"Mini-batch contains {0} while classes " + "must be subset of {1}"
).format(np.unique(y), self.classes_)
)
Y = self.label_binarizer_.transform(y)
Y = Y.tocsc()
columns = (col.toarray().ravel() for col in Y.T)
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_partial_fit_binary)(
estimator,
X,
column,
partial_fit_params=routed_params.estimator.partial_fit,
)
for estimator, column in zip(self.estimators_, columns)
)
if hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_
return self
def predict(self, X):
"""Predict multi-class targets using underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
Returns
-------
y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)
Predicted multi-class targets.
"""
check_is_fitted(self)
n_samples = _num_samples(X)
if self.label_binarizer_.y_type_ == "multiclass":
maxima = np.empty(n_samples, dtype=float)
maxima.fill(-np.inf)
argmaxima = np.zeros(n_samples, dtype=int)
for i, e in enumerate(self.estimators_):
pred = _predict_binary(e, X)
np.maximum(maxima, pred, out=maxima)
argmaxima[maxima == pred] = i
return self.classes_[argmaxima]
else:
thresh = _threshold_for_binary_predict(self.estimators_[0])
indices = array.array("i")
indptr = array.array("i", [0])
for e in self.estimators_:
indices.extend(np.where(_predict_binary(e, X) > thresh)[0])
indptr.append(len(indices))
data = np.ones(len(indices), dtype=int)
indicator = sp.csc_matrix(
(data, indices, indptr), shape=(n_samples, len(self.estimators_))
)
return self.label_binarizer_.inverse_transform(indicator)
@available_if(_estimators_has("predict_proba"))
def predict_proba(self, X):
"""Probability estimates.
The returned estimates for all classes are ordered by label of classes.
Note that in the multilabel case, each sample can have any number of
labels. This returns the marginal probability that the given sample has
the label in question. For example, it is entirely consistent that two
labels both have a 90% probability of applying to a given sample.
In the single label multiclass case, the rows of the returned matrix
sum to 1.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input data.
Returns
-------
T : array-like of shape (n_samples, n_classes)
Returns the probability of the sample for each class in the model,
where classes are ordered as they are in `self.classes_`.
"""
check_is_fitted(self)
# Y[i, j] gives the probability that sample i has the label j.
# In the multi-label case, these are not disjoint.
Y = np.array([e.predict_proba(X)[:, 1] for e in self.estimators_]).T
if len(self.estimators_) == 1:
# Only one estimator, but we still want to return probabilities
# for two classes.
Y = np.concatenate(((1 - Y), Y), axis=1)
if not self.multilabel_:
# Then, probabilities should be normalized to 1.
Y /= np.sum(Y, axis=1)[:, np.newaxis]
return Y
@available_if(_estimators_has("decision_function"))
def decision_function(self, X):
"""Decision function for the OneVsRestClassifier.
Return the distance of each sample from the decision boundary for each
class. This can only be used with estimators which implement the
`decision_function` method.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
Returns
-------
T : array-like of shape (n_samples, n_classes) or (n_samples,) for \
binary classification.
Result of calling `decision_function` on the final estimator.
.. versionchanged:: 0.19
output shape changed to ``(n_samples,)`` to conform to
scikit-learn conventions for binary classification.
"""
check_is_fitted(self)
if len(self.estimators_) == 1:
return self.estimators_[0].decision_function(X)
return np.array(
[est.decision_function(X).ravel() for est in self.estimators_]
).T
@property
def multilabel_(self):
"""Whether this is a multilabel classifier."""
return self.label_binarizer_.y_type_.startswith("multilabel")
@property
def n_classes_(self):
"""Number of classes."""
return len(self.classes_)
def _more_tags(self):
"""Indicate if wrapped estimator is using a precomputed Gram matrix"""
return {"pairwise": _safe_tags(self.estimator, key="pairwise")}
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.4
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = (
MetadataRouter(owner=self.__class__.__name__)
.add_self_request(self)
.add(
estimator=self.estimator,
method_mapping=MethodMapping()
.add(callee="fit", caller="fit")
.add(callee="partial_fit", caller="partial_fit"),
)
)
return router
def _fit_ovo_binary(estimator, X, y, i, j, fit_params):
"""Fit a single binary estimator (one-vs-one)."""
cond = np.logical_or(y == i, y == j)
y = y[cond]
y_binary = np.empty(y.shape, int)
y_binary[y == i] = 0
y_binary[y == j] = 1
indcond = np.arange(_num_samples(X))[cond]
fit_params_subset = _check_method_params(X, params=fit_params, indices=indcond)
return (
_fit_binary(
estimator,
_safe_split(estimator, X, None, indices=indcond)[0],
y_binary,
fit_params=fit_params_subset,
classes=[i, j],
),
indcond,
)
def _partial_fit_ovo_binary(estimator, X, y, i, j, partial_fit_params):
"""Partially fit a single binary estimator(one-vs-one)."""
cond = np.logical_or(y == i, y == j)
y = y[cond]
if len(y) != 0:
y_binary = np.zeros_like(y)
y_binary[y == j] = 1
partial_fit_params_subset = _check_method_params(
X, params=partial_fit_params, indices=cond
)
return _partial_fit_binary(
estimator, X[cond], y_binary, partial_fit_params=partial_fit_params_subset
)
return estimator
class OneVsOneClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):
"""One-vs-one multiclass strategy.
This strategy consists in fitting one classifier per class pair.
At prediction time, the class which received the most votes is selected.
Since it requires to fit `n_classes * (n_classes - 1) / 2` classifiers,
this method is usually slower than one-vs-the-rest, due to its
O(n_classes^2) complexity. However, this method may be advantageous for
algorithms such as kernel algorithms which don't scale well with
`n_samples`. This is because each individual learning problem only involves
a small subset of the data whereas, with one-vs-the-rest, the complete
dataset is used `n_classes` times.
Read more in the :ref:`User Guide <ovo_classification>`.
Parameters
----------
estimator : estimator object
A regressor or a classifier that implements :term:`fit`.
When a classifier is passed, :term:`decision_function` will be used
in priority and it will fallback to :term:`predict_proba` if it is not
available.
When a regressor is passed, :term:`predict` is used.
n_jobs : int, default=None
The number of jobs to use for the computation: the `n_classes * (
n_classes - 1) / 2` OVO problems are computed in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Attributes
----------
estimators_ : list of ``n_classes * (n_classes - 1) / 2`` estimators
Estimators used for predictions.
classes_ : numpy array of shape [n_classes]
Array containing labels.
n_classes_ : int
Number of classes.
pairwise_indices_ : list, length = ``len(estimators_)``, or ``None``
Indices of samples used when training the estimators.
``None`` when ``estimator``'s `pairwise` tag is False.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
OneVsRestClassifier : One-vs-all multiclass strategy.
OutputCodeClassifier : (Error-Correcting) Output-Code multiclass strategy.
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.multiclass import OneVsOneClassifier
>>> from sklearn.svm import LinearSVC
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.33, shuffle=True, random_state=0)
>>> clf = OneVsOneClassifier(
... LinearSVC(dual="auto", random_state=0)).fit(X_train, y_train)
>>> clf.predict(X_test[:10])
array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1])
"""
_parameter_constraints: dict = {
"estimator": [HasMethods(["fit"])],
"n_jobs": [Integral, None],
}
def __init__(self, estimator, *, n_jobs=None):
self.estimator = estimator
self.n_jobs = n_jobs
@_fit_context(
# OneVsOneClassifier.estimator is not validated yet
prefer_skip_nested_validation=False
)
def fit(self, X, y, **fit_params):
"""Fit underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
y : array-like of shape (n_samples,)
Multi-class targets.
**fit_params : dict
Parameters passed to the ``estimator.fit`` method of each
sub-estimator.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
The fitted underlying estimator.
"""
_raise_for_params(fit_params, self, "fit")
routed_params = process_routing(
self,
"fit",
**fit_params,
)
# We need to validate the data because we do a safe_indexing later.
X, y = self._validate_data(
X, y, accept_sparse=["csr", "csc"], force_all_finite=False
)
check_classification_targets(y)
self.classes_ = np.unique(y)
if len(self.classes_) == 1:
raise ValueError(
"OneVsOneClassifier can not be fit when only one class is present."
)
n_classes = self.classes_.shape[0]
estimators_indices = list(
zip(
*(
Parallel(n_jobs=self.n_jobs)(
delayed(_fit_ovo_binary)(
self.estimator,
X,
y,
self.classes_[i],
self.classes_[j],
fit_params=routed_params.estimator.fit,
)
for i in range(n_classes)
for j in range(i + 1, n_classes)
)
)
)
)
self.estimators_ = estimators_indices[0]
pairwise = self._get_tags()["pairwise"]
self.pairwise_indices_ = estimators_indices[1] if pairwise else None
return self
@available_if(_estimators_has("partial_fit"))
@_fit_context(
# OneVsOneClassifier.estimator is not validated yet
prefer_skip_nested_validation=False
)
def partial_fit(self, X, y, classes=None, **partial_fit_params):
"""Partially fit underlying estimators.
Should be used when memory is inefficient to train all data. Chunks
of data can be passed in several iteration, where the first call
should have an array of all target variables.
Parameters
----------
X : {array-like, sparse matrix) of shape (n_samples, n_features)
Data.
y : array-like of shape (n_samples,)
Multi-class targets.
classes : array, shape (n_classes, )
Classes across all calls to partial_fit.
Can be obtained via `np.unique(y_all)`, where y_all is the
target vector of the entire dataset.
This argument is only required in the first call of partial_fit
and can be omitted in the subsequent calls.
**partial_fit_params : dict
Parameters passed to the ``estimator.partial_fit`` method of each
sub-estimator.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
The partially fitted underlying estimator.
"""
_raise_for_params(partial_fit_params, self, "partial_fit")
routed_params = process_routing(
self,
"partial_fit",
**partial_fit_params,
)
first_call = _check_partial_fit_first_call(self, classes)
if first_call:
self.estimators_ = [
clone(self.estimator)
for _ in range(self.n_classes_ * (self.n_classes_ - 1) // 2)
]
if len(np.setdiff1d(y, self.classes_)):
raise ValueError(
"Mini-batch contains {0} while it must be subset of {1}".format(
np.unique(y), self.classes_
)
)
X, y = self._validate_data(
X,
y,
accept_sparse=["csr", "csc"],
force_all_finite=False,
reset=first_call,
)
check_classification_targets(y)
combinations = itertools.combinations(range(self.n_classes_), 2)
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_partial_fit_ovo_binary)(
estimator,
X,
y,
self.classes_[i],
self.classes_[j],
partial_fit_params=routed_params.estimator.partial_fit,
)
for estimator, (i, j) in zip(self.estimators_, (combinations))
)
self.pairwise_indices_ = None
if hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_
return self
def predict(self, X):
"""Estimate the best class label for each sample in X.
This is implemented as ``argmax(decision_function(X), axis=1)`` which
will return the label of the class with most votes by estimators
predicting the outcome of a decision for each possible class pair.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
Returns
-------
y : numpy array of shape [n_samples]
Predicted multi-class targets.
"""
Y = self.decision_function(X)
if self.n_classes_ == 2:
thresh = _threshold_for_binary_predict(self.estimators_[0])
return self.classes_[(Y > thresh).astype(int)]
return self.classes_[Y.argmax(axis=1)]
def decision_function(self, X):
"""Decision function for the OneVsOneClassifier.
The decision values for the samples are computed by adding the
normalized sum of pair-wise classification confidence levels to the
votes in order to disambiguate between the decision values when the
votes for all the classes are equal leading to a tie.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
Returns
-------
Y : array-like of shape (n_samples, n_classes) or (n_samples,)
Result of calling `decision_function` on the final estimator.
.. versionchanged:: 0.19
output shape changed to ``(n_samples,)`` to conform to
scikit-learn conventions for binary classification.
"""
check_is_fitted(self)
X = self._validate_data(
X,
accept_sparse=True,
force_all_finite=False,
reset=False,
)
indices = self.pairwise_indices_
if indices is None:
Xs = [X] * len(self.estimators_)
else:
Xs = [X[:, idx] for idx in indices]
predictions = np.vstack(
[est.predict(Xi) for est, Xi in zip(self.estimators_, Xs)]
).T
confidences = np.vstack(
[_predict_binary(est, Xi) for est, Xi in zip(self.estimators_, Xs)]
).T
Y = _ovr_decision_function(predictions, confidences, len(self.classes_))
if self.n_classes_ == 2:
return Y[:, 1]
return Y
@property
def n_classes_(self):
"""Number of classes."""
return len(self.classes_)
def _more_tags(self):
"""Indicate if wrapped estimator is using a precomputed Gram matrix"""
return {"pairwise": _safe_tags(self.estimator, key="pairwise")}
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.4
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = (
MetadataRouter(owner=self.__class__.__name__)
.add_self_request(self)
.add(
estimator=self.estimator,
method_mapping=MethodMapping()
.add(callee="fit", caller="fit")
.add(callee="partial_fit", caller="partial_fit"),
)
)
return router
class OutputCodeClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):
"""(Error-Correcting) Output-Code multiclass strategy.
Output-code based strategies consist in representing each class with a
binary code (an array of 0s and 1s). At fitting time, one binary
classifier per bit in the code book is fitted. At prediction time, the
classifiers are used to project new points in the class space and the class
closest to the points is chosen. The main advantage of these strategies is
that the number of classifiers used can be controlled by the user, either
for compressing the model (0 < `code_size` < 1) or for making the model more
robust to errors (`code_size` > 1). See the documentation for more details.
Read more in the :ref:`User Guide <ecoc>`.
Parameters
----------
estimator : estimator object
An estimator object implementing :term:`fit` and one of
:term:`decision_function` or :term:`predict_proba`.
code_size : float, default=1.5
Percentage of the number of classes to be used to create the code book.
A number between 0 and 1 will require fewer classifiers than
one-vs-the-rest. A number greater than 1 will require more classifiers
than one-vs-the-rest.
random_state : int, RandomState instance, default=None
The generator used to initialize the codebook.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
n_jobs : int, default=None
The number of jobs to use for the computation: the multiclass problems
are computed in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Attributes
----------
estimators_ : list of `int(n_classes * code_size)` estimators
Estimators used for predictions.
classes_ : ndarray of shape (n_classes,)
Array containing labels.
code_book_ : ndarray of shape (n_classes, `len(estimators_)`)
Binary array containing the code of each class.
n_features_in_ : int
Number of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
.. versionadded:: 1.0
See Also
--------
OneVsRestClassifier : One-vs-all multiclass strategy.
OneVsOneClassifier : One-vs-one multiclass strategy.
References
----------
.. [1] "Solving multiclass learning problems via error-correcting output
codes",
Dietterich T., Bakiri G.,
Journal of Artificial Intelligence Research 2,
1995.
.. [2] "The error coding method and PICTs",
James G., Hastie T.,
Journal of Computational and Graphical statistics 7,
1998.
.. [3] "The Elements of Statistical Learning",
Hastie T., Tibshirani R., Friedman J., page 606 (second-edition)
2008.
Examples
--------
>>> from sklearn.multiclass import OutputCodeClassifier
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=100, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> clf = OutputCodeClassifier(
... estimator=RandomForestClassifier(random_state=0),
... random_state=0).fit(X, y)
>>> clf.predict([[0, 0, 0, 0]])
array([1])
"""
_parameter_constraints: dict = {
"estimator": [
HasMethods(["fit", "decision_function"]),
HasMethods(["fit", "predict_proba"]),
],
"code_size": [Interval(Real, 0.0, None, closed="neither")],
"random_state": ["random_state"],
"n_jobs": [Integral, None],
}
def __init__(self, estimator, *, code_size=1.5, random_state=None, n_jobs=None):
self.estimator = estimator
self.code_size = code_size
self.random_state = random_state
self.n_jobs = n_jobs
@_fit_context(
# OutputCodeClassifier.estimator is not validated yet
prefer_skip_nested_validation=False
)
def fit(self, X, y, **fit_params):
"""Fit underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
y : array-like of shape (n_samples,)
Multi-class targets.
**fit_params : dict
Parameters passed to the ``estimator.fit`` method of each
sub-estimator.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
Returns a fitted instance of self.
"""
_raise_for_params(fit_params, self, "fit")
routed_params = process_routing(
self,
"fit",
**fit_params,
)
y = self._validate_data(X="no_validation", y=y)
random_state = check_random_state(self.random_state)
check_classification_targets(y)
self.classes_ = np.unique(y)
n_classes = self.classes_.shape[0]
if n_classes == 0:
raise ValueError(
"OutputCodeClassifier can not be fit when no class is present."
)
n_estimators = int(n_classes * self.code_size)
# FIXME: there are more elaborate methods than generating the codebook
# randomly.
self.code_book_ = random_state.uniform(size=(n_classes, n_estimators))
self.code_book_[self.code_book_ > 0.5] = 1.0
if hasattr(self.estimator, "decision_function"):
self.code_book_[self.code_book_ != 1] = -1.0
else:
self.code_book_[self.code_book_ != 1] = 0.0
classes_index = {c: i for i, c in enumerate(self.classes_)}
Y = np.array(
[self.code_book_[classes_index[y[i]]] for i in range(_num_samples(y))],
dtype=int,
)
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_binary)(
self.estimator, X, Y[:, i], fit_params=routed_params.estimator.fit
)
for i in range(Y.shape[1])
)
if hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_
if hasattr(self.estimators_[0], "feature_names_in_"):
self.feature_names_in_ = self.estimators_[0].feature_names_in_
return self
def predict(self, X):
"""Predict multi-class targets using underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
Returns
-------
y : ndarray of shape (n_samples,)
Predicted multi-class targets.
"""
check_is_fitted(self)
# ArgKmin only accepts C-contiguous array. The aggregated predictions need to be
# transposed. We therefore create a F-contiguous array to avoid a copy and have
# a C-contiguous array after the transpose operation.
Y = np.array(
[_predict_binary(e, X) for e in self.estimators_],
order="F",
dtype=np.float64,
).T
pred = pairwise_distances_argmin(Y, self.code_book_, metric="euclidean")
return self.classes_[pred]
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.4
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = MetadataRouter(owner=self.__class__.__name__).add(
estimator=self.estimator,
method_mapping=MethodMapping().add(callee="fit", caller="fit"),
)
return router
|