File size: 14,200 Bytes
30f67c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
"""
Differential and pseudo-differential operators.
"""
# Created by Pearu Peterson, September 2002
__all__ = ['diff',
'tilbert','itilbert','hilbert','ihilbert',
'cs_diff','cc_diff','sc_diff','ss_diff',
'shift']
from numpy import pi, asarray, sin, cos, sinh, cosh, tanh, iscomplexobj
from . import convolve
from scipy.fft._pocketfft.helper import _datacopied
_cache = {}
def diff(x,order=1,period=None, _cache=_cache):
"""
Return kth derivative (or integral) of a periodic sequence x.
If x_j and y_j are Fourier coefficients of periodic functions x
and y, respectively, then::
y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j
y_0 = 0 if order is not 0.
Parameters
----------
x : array_like
Input array.
order : int, optional
The order of differentiation. Default order is 1. If order is
negative, then integration is carried out under the assumption
that ``x_0 == 0``.
period : float, optional
The assumed period of the sequence. Default is ``2*pi``.
Notes
-----
If ``sum(x, axis=0) = 0`` then ``diff(diff(x, k), -k) == x`` (within
numerical accuracy).
For odd order and even ``len(x)``, the Nyquist mode is taken zero.
"""
tmp = asarray(x)
if order == 0:
return tmp
if iscomplexobj(tmp):
return diff(tmp.real,order,period)+1j*diff(tmp.imag,order,period)
if period is not None:
c = 2*pi/period
else:
c = 1.0
n = len(x)
omega = _cache.get((n,order,c))
if omega is None:
if len(_cache) > 20:
while _cache:
_cache.popitem()
def kernel(k,order=order,c=c):
if k:
return pow(c*k,order)
return 0
omega = convolve.init_convolution_kernel(n,kernel,d=order,
zero_nyquist=1)
_cache[(n,order,c)] = omega
overwrite_x = _datacopied(tmp, x)
return convolve.convolve(tmp,omega,swap_real_imag=order % 2,
overwrite_x=overwrite_x)
del _cache
_cache = {}
def tilbert(x, h, period=None, _cache=_cache):
"""
Return h-Tilbert transform of a periodic sequence x.
If x_j and y_j are Fourier coefficients of periodic functions x
and y, respectively, then::
y_j = sqrt(-1)*coth(j*h*2*pi/period) * x_j
y_0 = 0
Parameters
----------
x : array_like
The input array to transform.
h : float
Defines the parameter of the Tilbert transform.
period : float, optional
The assumed period of the sequence. Default period is ``2*pi``.
Returns
-------
tilbert : ndarray
The result of the transform.
Notes
-----
If ``sum(x, axis=0) == 0`` and ``n = len(x)`` is odd, then
``tilbert(itilbert(x)) == x``.
If ``2 * pi * h / period`` is approximately 10 or larger, then
numerically ``tilbert == hilbert``
(theoretically oo-Tilbert == Hilbert).
For even ``len(x)``, the Nyquist mode of ``x`` is taken zero.
"""
tmp = asarray(x)
if iscomplexobj(tmp):
return tilbert(tmp.real, h, period) + \
1j * tilbert(tmp.imag, h, period)
if period is not None:
h = h * 2 * pi / period
n = len(x)
omega = _cache.get((n, h))
if omega is None:
if len(_cache) > 20:
while _cache:
_cache.popitem()
def kernel(k, h=h):
if k:
return 1.0/tanh(h*k)
return 0
omega = convolve.init_convolution_kernel(n, kernel, d=1)
_cache[(n,h)] = omega
overwrite_x = _datacopied(tmp, x)
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
del _cache
_cache = {}
def itilbert(x,h,period=None, _cache=_cache):
"""
Return inverse h-Tilbert transform of a periodic sequence x.
If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
and y, respectively, then::
y_j = -sqrt(-1)*tanh(j*h*2*pi/period) * x_j
y_0 = 0
For more details, see `tilbert`.
"""
tmp = asarray(x)
if iscomplexobj(tmp):
return itilbert(tmp.real,h,period) + \
1j*itilbert(tmp.imag,h,period)
if period is not None:
h = h*2*pi/period
n = len(x)
omega = _cache.get((n,h))
if omega is None:
if len(_cache) > 20:
while _cache:
_cache.popitem()
def kernel(k,h=h):
if k:
return -tanh(h*k)
return 0
omega = convolve.init_convolution_kernel(n,kernel,d=1)
_cache[(n,h)] = omega
overwrite_x = _datacopied(tmp, x)
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
del _cache
_cache = {}
def hilbert(x, _cache=_cache):
"""
Return Hilbert transform of a periodic sequence x.
If x_j and y_j are Fourier coefficients of periodic functions x
and y, respectively, then::
y_j = sqrt(-1)*sign(j) * x_j
y_0 = 0
Parameters
----------
x : array_like
The input array, should be periodic.
_cache : dict, optional
Dictionary that contains the kernel used to do a convolution with.
Returns
-------
y : ndarray
The transformed input.
See Also
--------
scipy.signal.hilbert : Compute the analytic signal, using the Hilbert
transform.
Notes
-----
If ``sum(x, axis=0) == 0`` then ``hilbert(ihilbert(x)) == x``.
For even len(x), the Nyquist mode of x is taken zero.
The sign of the returned transform does not have a factor -1 that is more
often than not found in the definition of the Hilbert transform. Note also
that `scipy.signal.hilbert` does have an extra -1 factor compared to this
function.
"""
tmp = asarray(x)
if iscomplexobj(tmp):
return hilbert(tmp.real)+1j*hilbert(tmp.imag)
n = len(x)
omega = _cache.get(n)
if omega is None:
if len(_cache) > 20:
while _cache:
_cache.popitem()
def kernel(k):
if k > 0:
return 1.0
elif k < 0:
return -1.0
return 0.0
omega = convolve.init_convolution_kernel(n,kernel,d=1)
_cache[n] = omega
overwrite_x = _datacopied(tmp, x)
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
del _cache
def ihilbert(x):
"""
Return inverse Hilbert transform of a periodic sequence x.
If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
and y, respectively, then::
y_j = -sqrt(-1)*sign(j) * x_j
y_0 = 0
"""
return -hilbert(x)
_cache = {}
def cs_diff(x, a, b, period=None, _cache=_cache):
"""
Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.
If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
and y, respectively, then::
y_j = -sqrt(-1)*cosh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
y_0 = 0
Parameters
----------
x : array_like
The array to take the pseudo-derivative from.
a, b : float
Defines the parameters of the cosh/sinh pseudo-differential
operator.
period : float, optional
The period of the sequence. Default period is ``2*pi``.
Returns
-------
cs_diff : ndarray
Pseudo-derivative of periodic sequence `x`.
Notes
-----
For even len(`x`), the Nyquist mode of `x` is taken as zero.
"""
tmp = asarray(x)
if iscomplexobj(tmp):
return cs_diff(tmp.real,a,b,period) + \
1j*cs_diff(tmp.imag,a,b,period)
if period is not None:
a = a*2*pi/period
b = b*2*pi/period
n = len(x)
omega = _cache.get((n,a,b))
if omega is None:
if len(_cache) > 20:
while _cache:
_cache.popitem()
def kernel(k,a=a,b=b):
if k:
return -cosh(a*k)/sinh(b*k)
return 0
omega = convolve.init_convolution_kernel(n,kernel,d=1)
_cache[(n,a,b)] = omega
overwrite_x = _datacopied(tmp, x)
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
del _cache
_cache = {}
def sc_diff(x, a, b, period=None, _cache=_cache):
"""
Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x.
If x_j and y_j are Fourier coefficients of periodic functions x
and y, respectively, then::
y_j = sqrt(-1)*sinh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j
y_0 = 0
Parameters
----------
x : array_like
Input array.
a,b : float
Defines the parameters of the sinh/cosh pseudo-differential
operator.
period : float, optional
The period of the sequence x. Default is 2*pi.
Notes
-----
``sc_diff(cs_diff(x,a,b),b,a) == x``
For even ``len(x)``, the Nyquist mode of x is taken as zero.
"""
tmp = asarray(x)
if iscomplexobj(tmp):
return sc_diff(tmp.real,a,b,period) + \
1j*sc_diff(tmp.imag,a,b,period)
if period is not None:
a = a*2*pi/period
b = b*2*pi/period
n = len(x)
omega = _cache.get((n,a,b))
if omega is None:
if len(_cache) > 20:
while _cache:
_cache.popitem()
def kernel(k,a=a,b=b):
if k:
return sinh(a*k)/cosh(b*k)
return 0
omega = convolve.init_convolution_kernel(n,kernel,d=1)
_cache[(n,a,b)] = omega
overwrite_x = _datacopied(tmp, x)
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
del _cache
_cache = {}
def ss_diff(x, a, b, period=None, _cache=_cache):
"""
Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.
If x_j and y_j are Fourier coefficients of periodic functions x
and y, respectively, then::
y_j = sinh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
y_0 = a/b * x_0
Parameters
----------
x : array_like
The array to take the pseudo-derivative from.
a,b
Defines the parameters of the sinh/sinh pseudo-differential
operator.
period : float, optional
The period of the sequence x. Default is ``2*pi``.
Notes
-----
``ss_diff(ss_diff(x,a,b),b,a) == x``
"""
tmp = asarray(x)
if iscomplexobj(tmp):
return ss_diff(tmp.real,a,b,period) + \
1j*ss_diff(tmp.imag,a,b,period)
if period is not None:
a = a*2*pi/period
b = b*2*pi/period
n = len(x)
omega = _cache.get((n,a,b))
if omega is None:
if len(_cache) > 20:
while _cache:
_cache.popitem()
def kernel(k,a=a,b=b):
if k:
return sinh(a*k)/sinh(b*k)
return float(a)/b
omega = convolve.init_convolution_kernel(n,kernel)
_cache[(n,a,b)] = omega
overwrite_x = _datacopied(tmp, x)
return convolve.convolve(tmp,omega,overwrite_x=overwrite_x)
del _cache
_cache = {}
def cc_diff(x, a, b, period=None, _cache=_cache):
"""
Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.
If x_j and y_j are Fourier coefficients of periodic functions x
and y, respectively, then::
y_j = cosh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j
Parameters
----------
x : array_like
The array to take the pseudo-derivative from.
a,b : float
Defines the parameters of the sinh/sinh pseudo-differential
operator.
period : float, optional
The period of the sequence x. Default is ``2*pi``.
Returns
-------
cc_diff : ndarray
Pseudo-derivative of periodic sequence `x`.
Notes
-----
``cc_diff(cc_diff(x,a,b),b,a) == x``
"""
tmp = asarray(x)
if iscomplexobj(tmp):
return cc_diff(tmp.real,a,b,period) + \
1j*cc_diff(tmp.imag,a,b,period)
if period is not None:
a = a*2*pi/period
b = b*2*pi/period
n = len(x)
omega = _cache.get((n,a,b))
if omega is None:
if len(_cache) > 20:
while _cache:
_cache.popitem()
def kernel(k,a=a,b=b):
return cosh(a*k)/cosh(b*k)
omega = convolve.init_convolution_kernel(n,kernel)
_cache[(n,a,b)] = omega
overwrite_x = _datacopied(tmp, x)
return convolve.convolve(tmp,omega,overwrite_x=overwrite_x)
del _cache
_cache = {}
def shift(x, a, period=None, _cache=_cache):
"""
Shift periodic sequence x by a: y(u) = x(u+a).
If x_j and y_j are Fourier coefficients of periodic functions x
and y, respectively, then::
y_j = exp(j*a*2*pi/period*sqrt(-1)) * x_f
Parameters
----------
x : array_like
The array to take the pseudo-derivative from.
a : float
Defines the parameters of the sinh/sinh pseudo-differential
period : float, optional
The period of the sequences x and y. Default period is ``2*pi``.
"""
tmp = asarray(x)
if iscomplexobj(tmp):
return shift(tmp.real,a,period)+1j*shift(tmp.imag,a,period)
if period is not None:
a = a*2*pi/period
n = len(x)
omega = _cache.get((n,a))
if omega is None:
if len(_cache) > 20:
while _cache:
_cache.popitem()
def kernel_real(k,a=a):
return cos(a*k)
def kernel_imag(k,a=a):
return sin(a*k)
omega_real = convolve.init_convolution_kernel(n,kernel_real,d=0,
zero_nyquist=0)
omega_imag = convolve.init_convolution_kernel(n,kernel_imag,d=1,
zero_nyquist=0)
_cache[(n,a)] = omega_real,omega_imag
else:
omega_real,omega_imag = omega
overwrite_x = _datacopied(tmp, x)
return convolve.convolve_z(tmp,omega_real,omega_imag,
overwrite_x=overwrite_x)
del _cache
|