applied-ai-018 commited on
Commit
30f67c8
·
verified ·
1 Parent(s): a8c1dd3

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/23.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  2. ckpts/universal/global_step40/zero/26.attention.dense.weight/exp_avg.pt +3 -0
  3. ckpts/universal/global_step40/zero/26.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
  4. venv/lib/python3.10/site-packages/scipy/fftpack/__init__.py +103 -0
  5. venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/__init__.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_basic.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_helper.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_pseudo_diffs.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_realtransforms.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/basic.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/helper.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/pseudo_diffs.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/realtransforms.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/scipy/fftpack/_basic.py +428 -0
  15. venv/lib/python3.10/site-packages/scipy/fftpack/_helper.py +115 -0
  16. venv/lib/python3.10/site-packages/scipy/fftpack/_pseudo_diffs.py +551 -0
  17. venv/lib/python3.10/site-packages/scipy/fftpack/_realtransforms.py +598 -0
  18. venv/lib/python3.10/site-packages/scipy/fftpack/basic.py +20 -0
  19. venv/lib/python3.10/site-packages/scipy/fftpack/convolve.cpython-310-x86_64-linux-gnu.so +0 -0
  20. venv/lib/python3.10/site-packages/scipy/fftpack/helper.py +19 -0
  21. venv/lib/python3.10/site-packages/scipy/fftpack/pseudo_diffs.py +22 -0
  22. venv/lib/python3.10/site-packages/scipy/fftpack/realtransforms.py +19 -0
  23. venv/lib/python3.10/site-packages/scipy/fftpack/tests/__init__.py +0 -0
  24. venv/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_helper.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_pseudo_diffs.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/scipy/fftpack/tests/test_basic.py +873 -0
  28. venv/lib/python3.10/site-packages/scipy/fftpack/tests/test_helper.py +54 -0
  29. venv/lib/python3.10/site-packages/scipy/fftpack/tests/test_import.py +31 -0
  30. venv/lib/python3.10/site-packages/scipy/fftpack/tests/test_pseudo_diffs.py +380 -0
  31. venv/lib/python3.10/site-packages/scipy/fftpack/tests/test_real_transforms.py +815 -0
  32. venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/__init__.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/_geometric_slerp.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/_kdtree.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/_plotutils.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/_procrustes.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/_spherical_voronoi.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/ckdtree.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/distance.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/kdtree.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/qhull.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/scipy/spatial/tests/data/cdist-X1.txt +10 -0
  43. venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
  44. venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +0 -0
  45. venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
  46. venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +0 -0
  47. venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
  48. venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +0 -0
  49. venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
  50. venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +0 -0
ckpts/universal/global_step40/zero/23.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c902155bf2ee95287a64d4ebcc42bdf22a314c5d6a8cfdc249bc4fda856f3d1
3
+ size 33555533
ckpts/universal/global_step40/zero/26.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5901348575838e3a91b87ca754ccd44b2c6fe66e3ce9ad73072b08eeb1f1645
3
+ size 16778396
ckpts/universal/global_step40/zero/26.attention.query_key_value.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36e83711ec19cb35270045e2c2f920ea25df89b8b41ebfdf41e5e876abea4a25
3
+ size 50332843
venv/lib/python3.10/site-packages/scipy/fftpack/__init__.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ =========================================================
3
+ Legacy discrete Fourier transforms (:mod:`scipy.fftpack`)
4
+ =========================================================
5
+
6
+ .. legacy::
7
+
8
+ New code should use :mod:`scipy.fft`.
9
+
10
+ Fast Fourier Transforms (FFTs)
11
+ ==============================
12
+
13
+ .. autosummary::
14
+ :toctree: generated/
15
+
16
+ fft - Fast (discrete) Fourier Transform (FFT)
17
+ ifft - Inverse FFT
18
+ fft2 - 2-D FFT
19
+ ifft2 - 2-D inverse FFT
20
+ fftn - N-D FFT
21
+ ifftn - N-D inverse FFT
22
+ rfft - FFT of strictly real-valued sequence
23
+ irfft - Inverse of rfft
24
+ dct - Discrete cosine transform
25
+ idct - Inverse discrete cosine transform
26
+ dctn - N-D Discrete cosine transform
27
+ idctn - N-D Inverse discrete cosine transform
28
+ dst - Discrete sine transform
29
+ idst - Inverse discrete sine transform
30
+ dstn - N-D Discrete sine transform
31
+ idstn - N-D Inverse discrete sine transform
32
+
33
+ Differential and pseudo-differential operators
34
+ ==============================================
35
+
36
+ .. autosummary::
37
+ :toctree: generated/
38
+
39
+ diff - Differentiation and integration of periodic sequences
40
+ tilbert - Tilbert transform: cs_diff(x,h,h)
41
+ itilbert - Inverse Tilbert transform: sc_diff(x,h,h)
42
+ hilbert - Hilbert transform: cs_diff(x,inf,inf)
43
+ ihilbert - Inverse Hilbert transform: sc_diff(x,inf,inf)
44
+ cs_diff - cosh/sinh pseudo-derivative of periodic sequences
45
+ sc_diff - sinh/cosh pseudo-derivative of periodic sequences
46
+ ss_diff - sinh/sinh pseudo-derivative of periodic sequences
47
+ cc_diff - cosh/cosh pseudo-derivative of periodic sequences
48
+ shift - Shift periodic sequences
49
+
50
+ Helper functions
51
+ ================
52
+
53
+ .. autosummary::
54
+ :toctree: generated/
55
+
56
+ fftshift - Shift the zero-frequency component to the center of the spectrum
57
+ ifftshift - The inverse of `fftshift`
58
+ fftfreq - Return the Discrete Fourier Transform sample frequencies
59
+ rfftfreq - DFT sample frequencies (for usage with rfft, irfft)
60
+ next_fast_len - Find the optimal length to zero-pad an FFT for speed
61
+
62
+ Note that ``fftshift``, ``ifftshift`` and ``fftfreq`` are numpy functions
63
+ exposed by ``fftpack``; importing them from ``numpy`` should be preferred.
64
+
65
+ Convolutions (:mod:`scipy.fftpack.convolve`)
66
+ ============================================
67
+
68
+ .. module:: scipy.fftpack.convolve
69
+
70
+ .. autosummary::
71
+ :toctree: generated/
72
+
73
+ convolve
74
+ convolve_z
75
+ init_convolution_kernel
76
+ destroy_convolve_cache
77
+
78
+ """
79
+
80
+
81
+ __all__ = ['fft','ifft','fftn','ifftn','rfft','irfft',
82
+ 'fft2','ifft2',
83
+ 'diff',
84
+ 'tilbert','itilbert','hilbert','ihilbert',
85
+ 'sc_diff','cs_diff','cc_diff','ss_diff',
86
+ 'shift',
87
+ 'fftfreq', 'rfftfreq',
88
+ 'fftshift', 'ifftshift',
89
+ 'next_fast_len',
90
+ 'dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn'
91
+ ]
92
+
93
+ from ._basic import *
94
+ from ._pseudo_diffs import *
95
+ from ._helper import *
96
+ from ._realtransforms import *
97
+
98
+ # Deprecated namespaces, to be removed in v2.0.0
99
+ from . import basic, helper, pseudo_diffs, realtransforms
100
+
101
+ from scipy._lib._testutils import PytestTester
102
+ test = PytestTester(__name__)
103
+ del PytestTester
venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.17 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_basic.cpython-310.pyc ADDED
Binary file (13.2 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_helper.cpython-310.pyc ADDED
Binary file (3.59 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_pseudo_diffs.cpython-310.pyc ADDED
Binary file (12.3 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_realtransforms.cpython-310.pyc ADDED
Binary file (19.1 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/basic.cpython-310.pyc ADDED
Binary file (641 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/helper.cpython-310.pyc ADDED
Binary file (649 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/pseudo_diffs.cpython-310.pyc ADDED
Binary file (723 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/fftpack/__pycache__/realtransforms.cpython-310.pyc ADDED
Binary file (666 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/fftpack/_basic.py ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Discrete Fourier Transforms - _basic.py
3
+ """
4
+ # Created by Pearu Peterson, August,September 2002
5
+ __all__ = ['fft','ifft','fftn','ifftn','rfft','irfft',
6
+ 'fft2','ifft2']
7
+
8
+ from scipy.fft import _pocketfft
9
+ from ._helper import _good_shape
10
+
11
+
12
+ def fft(x, n=None, axis=-1, overwrite_x=False):
13
+ """
14
+ Return discrete Fourier transform of real or complex sequence.
15
+
16
+ The returned complex array contains ``y(0), y(1),..., y(n-1)``, where
17
+
18
+ ``y(j) = (x * exp(-2*pi*sqrt(-1)*j*np.arange(n)/n)).sum()``.
19
+
20
+ Parameters
21
+ ----------
22
+ x : array_like
23
+ Array to Fourier transform.
24
+ n : int, optional
25
+ Length of the Fourier transform. If ``n < x.shape[axis]``, `x` is
26
+ truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
27
+ default results in ``n = x.shape[axis]``.
28
+ axis : int, optional
29
+ Axis along which the fft's are computed; the default is over the
30
+ last axis (i.e., ``axis=-1``).
31
+ overwrite_x : bool, optional
32
+ If True, the contents of `x` can be destroyed; the default is False.
33
+
34
+ Returns
35
+ -------
36
+ z : complex ndarray
37
+ with the elements::
38
+
39
+ [y(0),y(1),..,y(n/2),y(1-n/2),...,y(-1)] if n is even
40
+ [y(0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)] if n is odd
41
+
42
+ where::
43
+
44
+ y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n), j = 0..n-1
45
+
46
+ See Also
47
+ --------
48
+ ifft : Inverse FFT
49
+ rfft : FFT of a real sequence
50
+
51
+ Notes
52
+ -----
53
+ The packing of the result is "standard": If ``A = fft(a, n)``, then
54
+ ``A[0]`` contains the zero-frequency term, ``A[1:n/2]`` contains the
55
+ positive-frequency terms, and ``A[n/2:]`` contains the negative-frequency
56
+ terms, in order of decreasingly negative frequency. So ,for an 8-point
57
+ transform, the frequencies of the result are [0, 1, 2, 3, -4, -3, -2, -1].
58
+ To rearrange the fft output so that the zero-frequency component is
59
+ centered, like [-4, -3, -2, -1, 0, 1, 2, 3], use `fftshift`.
60
+
61
+ Both single and double precision routines are implemented. Half precision
62
+ inputs will be converted to single precision. Non-floating-point inputs
63
+ will be converted to double precision. Long-double precision inputs are
64
+ not supported.
65
+
66
+ This function is most efficient when `n` is a power of two, and least
67
+ efficient when `n` is prime.
68
+
69
+ Note that if ``x`` is real-valued, then ``A[j] == A[n-j].conjugate()``.
70
+ If ``x`` is real-valued and ``n`` is even, then ``A[n/2]`` is real.
71
+
72
+ If the data type of `x` is real, a "real FFT" algorithm is automatically
73
+ used, which roughly halves the computation time. To increase efficiency
74
+ a little further, use `rfft`, which does the same calculation, but only
75
+ outputs half of the symmetrical spectrum. If the data is both real and
76
+ symmetrical, the `dct` can again double the efficiency by generating
77
+ half of the spectrum from half of the signal.
78
+
79
+ Examples
80
+ --------
81
+ >>> import numpy as np
82
+ >>> from scipy.fftpack import fft, ifft
83
+ >>> x = np.arange(5)
84
+ >>> np.allclose(fft(ifft(x)), x, atol=1e-15) # within numerical accuracy.
85
+ True
86
+
87
+ """
88
+ return _pocketfft.fft(x, n, axis, None, overwrite_x)
89
+
90
+
91
+ def ifft(x, n=None, axis=-1, overwrite_x=False):
92
+ """
93
+ Return discrete inverse Fourier transform of real or complex sequence.
94
+
95
+ The returned complex array contains ``y(0), y(1),..., y(n-1)``, where
96
+
97
+ ``y(j) = (x * exp(2*pi*sqrt(-1)*j*np.arange(n)/n)).mean()``.
98
+
99
+ Parameters
100
+ ----------
101
+ x : array_like
102
+ Transformed data to invert.
103
+ n : int, optional
104
+ Length of the inverse Fourier transform. If ``n < x.shape[axis]``,
105
+ `x` is truncated. If ``n > x.shape[axis]``, `x` is zero-padded.
106
+ The default results in ``n = x.shape[axis]``.
107
+ axis : int, optional
108
+ Axis along which the ifft's are computed; the default is over the
109
+ last axis (i.e., ``axis=-1``).
110
+ overwrite_x : bool, optional
111
+ If True, the contents of `x` can be destroyed; the default is False.
112
+
113
+ Returns
114
+ -------
115
+ ifft : ndarray of floats
116
+ The inverse discrete Fourier transform.
117
+
118
+ See Also
119
+ --------
120
+ fft : Forward FFT
121
+
122
+ Notes
123
+ -----
124
+ Both single and double precision routines are implemented. Half precision
125
+ inputs will be converted to single precision. Non-floating-point inputs
126
+ will be converted to double precision. Long-double precision inputs are
127
+ not supported.
128
+
129
+ This function is most efficient when `n` is a power of two, and least
130
+ efficient when `n` is prime.
131
+
132
+ If the data type of `x` is real, a "real IFFT" algorithm is automatically
133
+ used, which roughly halves the computation time.
134
+
135
+ Examples
136
+ --------
137
+ >>> from scipy.fftpack import fft, ifft
138
+ >>> import numpy as np
139
+ >>> x = np.arange(5)
140
+ >>> np.allclose(ifft(fft(x)), x, atol=1e-15) # within numerical accuracy.
141
+ True
142
+
143
+ """
144
+ return _pocketfft.ifft(x, n, axis, None, overwrite_x)
145
+
146
+
147
+ def rfft(x, n=None, axis=-1, overwrite_x=False):
148
+ """
149
+ Discrete Fourier transform of a real sequence.
150
+
151
+ Parameters
152
+ ----------
153
+ x : array_like, real-valued
154
+ The data to transform.
155
+ n : int, optional
156
+ Defines the length of the Fourier transform. If `n` is not specified
157
+ (the default) then ``n = x.shape[axis]``. If ``n < x.shape[axis]``,
158
+ `x` is truncated, if ``n > x.shape[axis]``, `x` is zero-padded.
159
+ axis : int, optional
160
+ The axis along which the transform is applied. The default is the
161
+ last axis.
162
+ overwrite_x : bool, optional
163
+ If set to true, the contents of `x` can be overwritten. Default is
164
+ False.
165
+
166
+ Returns
167
+ -------
168
+ z : real ndarray
169
+ The returned real array contains::
170
+
171
+ [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] if n is even
172
+ [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] if n is odd
173
+
174
+ where::
175
+
176
+ y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k*2*pi/n)
177
+ j = 0..n-1
178
+
179
+ See Also
180
+ --------
181
+ fft, irfft, scipy.fft.rfft
182
+
183
+ Notes
184
+ -----
185
+ Within numerical accuracy, ``y == rfft(irfft(y))``.
186
+
187
+ Both single and double precision routines are implemented. Half precision
188
+ inputs will be converted to single precision. Non-floating-point inputs
189
+ will be converted to double precision. Long-double precision inputs are
190
+ not supported.
191
+
192
+ To get an output with a complex datatype, consider using the newer
193
+ function `scipy.fft.rfft`.
194
+
195
+ Examples
196
+ --------
197
+ >>> from scipy.fftpack import fft, rfft
198
+ >>> a = [9, -9, 1, 3]
199
+ >>> fft(a)
200
+ array([ 4. +0.j, 8.+12.j, 16. +0.j, 8.-12.j])
201
+ >>> rfft(a)
202
+ array([ 4., 8., 12., 16.])
203
+
204
+ """
205
+ return _pocketfft.rfft_fftpack(x, n, axis, None, overwrite_x)
206
+
207
+
208
+ def irfft(x, n=None, axis=-1, overwrite_x=False):
209
+ """
210
+ Return inverse discrete Fourier transform of real sequence x.
211
+
212
+ The contents of `x` are interpreted as the output of the `rfft`
213
+ function.
214
+
215
+ Parameters
216
+ ----------
217
+ x : array_like
218
+ Transformed data to invert.
219
+ n : int, optional
220
+ Length of the inverse Fourier transform.
221
+ If n < x.shape[axis], x is truncated.
222
+ If n > x.shape[axis], x is zero-padded.
223
+ The default results in n = x.shape[axis].
224
+ axis : int, optional
225
+ Axis along which the ifft's are computed; the default is over
226
+ the last axis (i.e., axis=-1).
227
+ overwrite_x : bool, optional
228
+ If True, the contents of `x` can be destroyed; the default is False.
229
+
230
+ Returns
231
+ -------
232
+ irfft : ndarray of floats
233
+ The inverse discrete Fourier transform.
234
+
235
+ See Also
236
+ --------
237
+ rfft, ifft, scipy.fft.irfft
238
+
239
+ Notes
240
+ -----
241
+ The returned real array contains::
242
+
243
+ [y(0),y(1),...,y(n-1)]
244
+
245
+ where for n is even::
246
+
247
+ y(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqrt(-1)*x[2*k])
248
+ * exp(sqrt(-1)*j*k* 2*pi/n)
249
+ + c.c. + x[0] + (-1)**(j) x[n-1])
250
+
251
+ and for n is odd::
252
+
253
+ y(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k])
254
+ * exp(sqrt(-1)*j*k* 2*pi/n)
255
+ + c.c. + x[0])
256
+
257
+ c.c. denotes complex conjugate of preceding expression.
258
+
259
+ For details on input parameters, see `rfft`.
260
+
261
+ To process (conjugate-symmetric) frequency-domain data with a complex
262
+ datatype, consider using the newer function `scipy.fft.irfft`.
263
+
264
+ Examples
265
+ --------
266
+ >>> from scipy.fftpack import rfft, irfft
267
+ >>> a = [1.0, 2.0, 3.0, 4.0, 5.0]
268
+ >>> irfft(a)
269
+ array([ 2.6 , -3.16405192, 1.24398433, -1.14955713, 1.46962473])
270
+ >>> irfft(rfft(a))
271
+ array([1., 2., 3., 4., 5.])
272
+
273
+ """
274
+ return _pocketfft.irfft_fftpack(x, n, axis, None, overwrite_x)
275
+
276
+
277
+ def fftn(x, shape=None, axes=None, overwrite_x=False):
278
+ """
279
+ Return multidimensional discrete Fourier transform.
280
+
281
+ The returned array contains::
282
+
283
+ y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
284
+ x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)
285
+
286
+ where d = len(x.shape) and n = x.shape.
287
+
288
+ Parameters
289
+ ----------
290
+ x : array_like
291
+ The (N-D) array to transform.
292
+ shape : int or array_like of ints or None, optional
293
+ The shape of the result. If both `shape` and `axes` (see below) are
294
+ None, `shape` is ``x.shape``; if `shape` is None but `axes` is
295
+ not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
296
+ If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
297
+ If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
298
+ length ``shape[i]``.
299
+ If any element of `shape` is -1, the size of the corresponding
300
+ dimension of `x` is used.
301
+ axes : int or array_like of ints or None, optional
302
+ The axes of `x` (`y` if `shape` is not None) along which the
303
+ transform is applied.
304
+ The default is over all axes.
305
+ overwrite_x : bool, optional
306
+ If True, the contents of `x` can be destroyed. Default is False.
307
+
308
+ Returns
309
+ -------
310
+ y : complex-valued N-D NumPy array
311
+ The (N-D) DFT of the input array.
312
+
313
+ See Also
314
+ --------
315
+ ifftn
316
+
317
+ Notes
318
+ -----
319
+ If ``x`` is real-valued, then
320
+ ``y[..., j_i, ...] == y[..., n_i-j_i, ...].conjugate()``.
321
+
322
+ Both single and double precision routines are implemented. Half precision
323
+ inputs will be converted to single precision. Non-floating-point inputs
324
+ will be converted to double precision. Long-double precision inputs are
325
+ not supported.
326
+
327
+ Examples
328
+ --------
329
+ >>> import numpy as np
330
+ >>> from scipy.fftpack import fftn, ifftn
331
+ >>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
332
+ >>> np.allclose(y, fftn(ifftn(y)))
333
+ True
334
+
335
+ """
336
+ shape = _good_shape(x, shape, axes)
337
+ return _pocketfft.fftn(x, shape, axes, None, overwrite_x)
338
+
339
+
340
+ def ifftn(x, shape=None, axes=None, overwrite_x=False):
341
+ """
342
+ Return inverse multidimensional discrete Fourier transform.
343
+
344
+ The sequence can be of an arbitrary type.
345
+
346
+ The returned array contains::
347
+
348
+ y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
349
+ x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i)
350
+
351
+ where ``d = len(x.shape)``, ``n = x.shape``, and ``p = prod[i=1..d] n_i``.
352
+
353
+ For description of parameters see `fftn`.
354
+
355
+ See Also
356
+ --------
357
+ fftn : for detailed information.
358
+
359
+ Examples
360
+ --------
361
+ >>> from scipy.fftpack import fftn, ifftn
362
+ >>> import numpy as np
363
+ >>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
364
+ >>> np.allclose(y, ifftn(fftn(y)))
365
+ True
366
+
367
+ """
368
+ shape = _good_shape(x, shape, axes)
369
+ return _pocketfft.ifftn(x, shape, axes, None, overwrite_x)
370
+
371
+
372
+ def fft2(x, shape=None, axes=(-2,-1), overwrite_x=False):
373
+ """
374
+ 2-D discrete Fourier transform.
375
+
376
+ Return the 2-D discrete Fourier transform of the 2-D argument
377
+ `x`.
378
+
379
+ See Also
380
+ --------
381
+ fftn : for detailed information.
382
+
383
+ Examples
384
+ --------
385
+ >>> import numpy as np
386
+ >>> from scipy.fftpack import fft2, ifft2
387
+ >>> y = np.mgrid[:5, :5][0]
388
+ >>> y
389
+ array([[0, 0, 0, 0, 0],
390
+ [1, 1, 1, 1, 1],
391
+ [2, 2, 2, 2, 2],
392
+ [3, 3, 3, 3, 3],
393
+ [4, 4, 4, 4, 4]])
394
+ >>> np.allclose(y, ifft2(fft2(y)))
395
+ True
396
+ """
397
+ return fftn(x,shape,axes,overwrite_x)
398
+
399
+
400
+ def ifft2(x, shape=None, axes=(-2,-1), overwrite_x=False):
401
+ """
402
+ 2-D discrete inverse Fourier transform of real or complex sequence.
403
+
404
+ Return inverse 2-D discrete Fourier transform of
405
+ arbitrary type sequence x.
406
+
407
+ See `ifft` for more information.
408
+
409
+ See Also
410
+ --------
411
+ fft2, ifft
412
+
413
+ Examples
414
+ --------
415
+ >>> import numpy as np
416
+ >>> from scipy.fftpack import fft2, ifft2
417
+ >>> y = np.mgrid[:5, :5][0]
418
+ >>> y
419
+ array([[0, 0, 0, 0, 0],
420
+ [1, 1, 1, 1, 1],
421
+ [2, 2, 2, 2, 2],
422
+ [3, 3, 3, 3, 3],
423
+ [4, 4, 4, 4, 4]])
424
+ >>> np.allclose(y, fft2(ifft2(y)))
425
+ True
426
+
427
+ """
428
+ return ifftn(x,shape,axes,overwrite_x)
venv/lib/python3.10/site-packages/scipy/fftpack/_helper.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+
3
+ import numpy as np
4
+ from numpy.fft import fftshift, ifftshift, fftfreq
5
+
6
+ import scipy.fft._pocketfft.helper as _helper
7
+
8
+ __all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq', 'next_fast_len']
9
+
10
+
11
+ def rfftfreq(n, d=1.0):
12
+ """DFT sample frequencies (for usage with rfft, irfft).
13
+
14
+ The returned float array contains the frequency bins in
15
+ cycles/unit (with zero at the start) given a window length `n` and a
16
+ sample spacing `d`::
17
+
18
+ f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2]/(d*n) if n is even
19
+ f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2,n/2]/(d*n) if n is odd
20
+
21
+ Parameters
22
+ ----------
23
+ n : int
24
+ Window length.
25
+ d : scalar, optional
26
+ Sample spacing. Default is 1.
27
+
28
+ Returns
29
+ -------
30
+ out : ndarray
31
+ The array of length `n`, containing the sample frequencies.
32
+
33
+ Examples
34
+ --------
35
+ >>> import numpy as np
36
+ >>> from scipy import fftpack
37
+ >>> sig = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
38
+ >>> sig_fft = fftpack.rfft(sig)
39
+ >>> n = sig_fft.size
40
+ >>> timestep = 0.1
41
+ >>> freq = fftpack.rfftfreq(n, d=timestep)
42
+ >>> freq
43
+ array([ 0. , 1.25, 1.25, 2.5 , 2.5 , 3.75, 3.75, 5. ])
44
+
45
+ """
46
+ n = operator.index(n)
47
+ if n < 0:
48
+ raise ValueError("n = %s is not valid. "
49
+ "n must be a nonnegative integer." % n)
50
+
51
+ return (np.arange(1, n + 1, dtype=int) // 2) / float(n * d)
52
+
53
+
54
+ def next_fast_len(target):
55
+ """
56
+ Find the next fast size of input data to `fft`, for zero-padding, etc.
57
+
58
+ SciPy's FFTPACK has efficient functions for radix {2, 3, 4, 5}, so this
59
+ returns the next composite of the prime factors 2, 3, and 5 which is
60
+ greater than or equal to `target`. (These are also known as 5-smooth
61
+ numbers, regular numbers, or Hamming numbers.)
62
+
63
+ Parameters
64
+ ----------
65
+ target : int
66
+ Length to start searching from. Must be a positive integer.
67
+
68
+ Returns
69
+ -------
70
+ out : int
71
+ The first 5-smooth number greater than or equal to `target`.
72
+
73
+ Notes
74
+ -----
75
+ .. versionadded:: 0.18.0
76
+
77
+ Examples
78
+ --------
79
+ On a particular machine, an FFT of prime length takes 133 ms:
80
+
81
+ >>> from scipy import fftpack
82
+ >>> import numpy as np
83
+ >>> rng = np.random.default_rng()
84
+ >>> min_len = 10007 # prime length is worst case for speed
85
+ >>> a = rng.standard_normal(min_len)
86
+ >>> b = fftpack.fft(a)
87
+
88
+ Zero-padding to the next 5-smooth length reduces computation time to
89
+ 211 us, a speedup of 630 times:
90
+
91
+ >>> fftpack.next_fast_len(min_len)
92
+ 10125
93
+ >>> b = fftpack.fft(a, 10125)
94
+
95
+ Rounding up to the next power of 2 is not optimal, taking 367 us to
96
+ compute, 1.7 times as long as the 5-smooth size:
97
+
98
+ >>> b = fftpack.fft(a, 16384)
99
+
100
+ """
101
+ # Real transforms use regular sizes so this is backwards compatible
102
+ return _helper.good_size(target, True)
103
+
104
+
105
+ def _good_shape(x, shape, axes):
106
+ """Ensure that shape argument is valid for scipy.fftpack
107
+
108
+ scipy.fftpack does not support len(shape) < x.ndim when axes is not given.
109
+ """
110
+ if shape is not None and axes is None:
111
+ shape = _helper._iterable_of_int(shape, 'shape')
112
+ if len(shape) != np.ndim(x):
113
+ raise ValueError("when given, axes and shape arguments"
114
+ " have to be of the same length")
115
+ return shape
venv/lib/python3.10/site-packages/scipy/fftpack/_pseudo_diffs.py ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Differential and pseudo-differential operators.
3
+ """
4
+ # Created by Pearu Peterson, September 2002
5
+
6
+ __all__ = ['diff',
7
+ 'tilbert','itilbert','hilbert','ihilbert',
8
+ 'cs_diff','cc_diff','sc_diff','ss_diff',
9
+ 'shift']
10
+
11
+ from numpy import pi, asarray, sin, cos, sinh, cosh, tanh, iscomplexobj
12
+ from . import convolve
13
+
14
+ from scipy.fft._pocketfft.helper import _datacopied
15
+
16
+
17
+ _cache = {}
18
+
19
+
20
+ def diff(x,order=1,period=None, _cache=_cache):
21
+ """
22
+ Return kth derivative (or integral) of a periodic sequence x.
23
+
24
+ If x_j and y_j are Fourier coefficients of periodic functions x
25
+ and y, respectively, then::
26
+
27
+ y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j
28
+ y_0 = 0 if order is not 0.
29
+
30
+ Parameters
31
+ ----------
32
+ x : array_like
33
+ Input array.
34
+ order : int, optional
35
+ The order of differentiation. Default order is 1. If order is
36
+ negative, then integration is carried out under the assumption
37
+ that ``x_0 == 0``.
38
+ period : float, optional
39
+ The assumed period of the sequence. Default is ``2*pi``.
40
+
41
+ Notes
42
+ -----
43
+ If ``sum(x, axis=0) = 0`` then ``diff(diff(x, k), -k) == x`` (within
44
+ numerical accuracy).
45
+
46
+ For odd order and even ``len(x)``, the Nyquist mode is taken zero.
47
+
48
+ """
49
+ tmp = asarray(x)
50
+ if order == 0:
51
+ return tmp
52
+ if iscomplexobj(tmp):
53
+ return diff(tmp.real,order,period)+1j*diff(tmp.imag,order,period)
54
+ if period is not None:
55
+ c = 2*pi/period
56
+ else:
57
+ c = 1.0
58
+ n = len(x)
59
+ omega = _cache.get((n,order,c))
60
+ if omega is None:
61
+ if len(_cache) > 20:
62
+ while _cache:
63
+ _cache.popitem()
64
+
65
+ def kernel(k,order=order,c=c):
66
+ if k:
67
+ return pow(c*k,order)
68
+ return 0
69
+ omega = convolve.init_convolution_kernel(n,kernel,d=order,
70
+ zero_nyquist=1)
71
+ _cache[(n,order,c)] = omega
72
+ overwrite_x = _datacopied(tmp, x)
73
+ return convolve.convolve(tmp,omega,swap_real_imag=order % 2,
74
+ overwrite_x=overwrite_x)
75
+
76
+
77
+ del _cache
78
+
79
+
80
+ _cache = {}
81
+
82
+
83
+ def tilbert(x, h, period=None, _cache=_cache):
84
+ """
85
+ Return h-Tilbert transform of a periodic sequence x.
86
+
87
+ If x_j and y_j are Fourier coefficients of periodic functions x
88
+ and y, respectively, then::
89
+
90
+ y_j = sqrt(-1)*coth(j*h*2*pi/period) * x_j
91
+ y_0 = 0
92
+
93
+ Parameters
94
+ ----------
95
+ x : array_like
96
+ The input array to transform.
97
+ h : float
98
+ Defines the parameter of the Tilbert transform.
99
+ period : float, optional
100
+ The assumed period of the sequence. Default period is ``2*pi``.
101
+
102
+ Returns
103
+ -------
104
+ tilbert : ndarray
105
+ The result of the transform.
106
+
107
+ Notes
108
+ -----
109
+ If ``sum(x, axis=0) == 0`` and ``n = len(x)`` is odd, then
110
+ ``tilbert(itilbert(x)) == x``.
111
+
112
+ If ``2 * pi * h / period`` is approximately 10 or larger, then
113
+ numerically ``tilbert == hilbert``
114
+ (theoretically oo-Tilbert == Hilbert).
115
+
116
+ For even ``len(x)``, the Nyquist mode of ``x`` is taken zero.
117
+
118
+ """
119
+ tmp = asarray(x)
120
+ if iscomplexobj(tmp):
121
+ return tilbert(tmp.real, h, period) + \
122
+ 1j * tilbert(tmp.imag, h, period)
123
+
124
+ if period is not None:
125
+ h = h * 2 * pi / period
126
+
127
+ n = len(x)
128
+ omega = _cache.get((n, h))
129
+ if omega is None:
130
+ if len(_cache) > 20:
131
+ while _cache:
132
+ _cache.popitem()
133
+
134
+ def kernel(k, h=h):
135
+ if k:
136
+ return 1.0/tanh(h*k)
137
+
138
+ return 0
139
+
140
+ omega = convolve.init_convolution_kernel(n, kernel, d=1)
141
+ _cache[(n,h)] = omega
142
+
143
+ overwrite_x = _datacopied(tmp, x)
144
+ return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
145
+
146
+
147
+ del _cache
148
+
149
+
150
+ _cache = {}
151
+
152
+
153
+ def itilbert(x,h,period=None, _cache=_cache):
154
+ """
155
+ Return inverse h-Tilbert transform of a periodic sequence x.
156
+
157
+ If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
158
+ and y, respectively, then::
159
+
160
+ y_j = -sqrt(-1)*tanh(j*h*2*pi/period) * x_j
161
+ y_0 = 0
162
+
163
+ For more details, see `tilbert`.
164
+
165
+ """
166
+ tmp = asarray(x)
167
+ if iscomplexobj(tmp):
168
+ return itilbert(tmp.real,h,period) + \
169
+ 1j*itilbert(tmp.imag,h,period)
170
+ if period is not None:
171
+ h = h*2*pi/period
172
+ n = len(x)
173
+ omega = _cache.get((n,h))
174
+ if omega is None:
175
+ if len(_cache) > 20:
176
+ while _cache:
177
+ _cache.popitem()
178
+
179
+ def kernel(k,h=h):
180
+ if k:
181
+ return -tanh(h*k)
182
+ return 0
183
+ omega = convolve.init_convolution_kernel(n,kernel,d=1)
184
+ _cache[(n,h)] = omega
185
+ overwrite_x = _datacopied(tmp, x)
186
+ return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
187
+
188
+
189
+ del _cache
190
+
191
+
192
+ _cache = {}
193
+
194
+
195
+ def hilbert(x, _cache=_cache):
196
+ """
197
+ Return Hilbert transform of a periodic sequence x.
198
+
199
+ If x_j and y_j are Fourier coefficients of periodic functions x
200
+ and y, respectively, then::
201
+
202
+ y_j = sqrt(-1)*sign(j) * x_j
203
+ y_0 = 0
204
+
205
+ Parameters
206
+ ----------
207
+ x : array_like
208
+ The input array, should be periodic.
209
+ _cache : dict, optional
210
+ Dictionary that contains the kernel used to do a convolution with.
211
+
212
+ Returns
213
+ -------
214
+ y : ndarray
215
+ The transformed input.
216
+
217
+ See Also
218
+ --------
219
+ scipy.signal.hilbert : Compute the analytic signal, using the Hilbert
220
+ transform.
221
+
222
+ Notes
223
+ -----
224
+ If ``sum(x, axis=0) == 0`` then ``hilbert(ihilbert(x)) == x``.
225
+
226
+ For even len(x), the Nyquist mode of x is taken zero.
227
+
228
+ The sign of the returned transform does not have a factor -1 that is more
229
+ often than not found in the definition of the Hilbert transform. Note also
230
+ that `scipy.signal.hilbert` does have an extra -1 factor compared to this
231
+ function.
232
+
233
+ """
234
+ tmp = asarray(x)
235
+ if iscomplexobj(tmp):
236
+ return hilbert(tmp.real)+1j*hilbert(tmp.imag)
237
+ n = len(x)
238
+ omega = _cache.get(n)
239
+ if omega is None:
240
+ if len(_cache) > 20:
241
+ while _cache:
242
+ _cache.popitem()
243
+
244
+ def kernel(k):
245
+ if k > 0:
246
+ return 1.0
247
+ elif k < 0:
248
+ return -1.0
249
+ return 0.0
250
+ omega = convolve.init_convolution_kernel(n,kernel,d=1)
251
+ _cache[n] = omega
252
+ overwrite_x = _datacopied(tmp, x)
253
+ return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
254
+
255
+
256
+ del _cache
257
+
258
+
259
+ def ihilbert(x):
260
+ """
261
+ Return inverse Hilbert transform of a periodic sequence x.
262
+
263
+ If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
264
+ and y, respectively, then::
265
+
266
+ y_j = -sqrt(-1)*sign(j) * x_j
267
+ y_0 = 0
268
+
269
+ """
270
+ return -hilbert(x)
271
+
272
+
273
+ _cache = {}
274
+
275
+
276
+ def cs_diff(x, a, b, period=None, _cache=_cache):
277
+ """
278
+ Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.
279
+
280
+ If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
281
+ and y, respectively, then::
282
+
283
+ y_j = -sqrt(-1)*cosh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
284
+ y_0 = 0
285
+
286
+ Parameters
287
+ ----------
288
+ x : array_like
289
+ The array to take the pseudo-derivative from.
290
+ a, b : float
291
+ Defines the parameters of the cosh/sinh pseudo-differential
292
+ operator.
293
+ period : float, optional
294
+ The period of the sequence. Default period is ``2*pi``.
295
+
296
+ Returns
297
+ -------
298
+ cs_diff : ndarray
299
+ Pseudo-derivative of periodic sequence `x`.
300
+
301
+ Notes
302
+ -----
303
+ For even len(`x`), the Nyquist mode of `x` is taken as zero.
304
+
305
+ """
306
+ tmp = asarray(x)
307
+ if iscomplexobj(tmp):
308
+ return cs_diff(tmp.real,a,b,period) + \
309
+ 1j*cs_diff(tmp.imag,a,b,period)
310
+ if period is not None:
311
+ a = a*2*pi/period
312
+ b = b*2*pi/period
313
+ n = len(x)
314
+ omega = _cache.get((n,a,b))
315
+ if omega is None:
316
+ if len(_cache) > 20:
317
+ while _cache:
318
+ _cache.popitem()
319
+
320
+ def kernel(k,a=a,b=b):
321
+ if k:
322
+ return -cosh(a*k)/sinh(b*k)
323
+ return 0
324
+ omega = convolve.init_convolution_kernel(n,kernel,d=1)
325
+ _cache[(n,a,b)] = omega
326
+ overwrite_x = _datacopied(tmp, x)
327
+ return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
328
+
329
+
330
+ del _cache
331
+
332
+
333
+ _cache = {}
334
+
335
+
336
+ def sc_diff(x, a, b, period=None, _cache=_cache):
337
+ """
338
+ Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x.
339
+
340
+ If x_j and y_j are Fourier coefficients of periodic functions x
341
+ and y, respectively, then::
342
+
343
+ y_j = sqrt(-1)*sinh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j
344
+ y_0 = 0
345
+
346
+ Parameters
347
+ ----------
348
+ x : array_like
349
+ Input array.
350
+ a,b : float
351
+ Defines the parameters of the sinh/cosh pseudo-differential
352
+ operator.
353
+ period : float, optional
354
+ The period of the sequence x. Default is 2*pi.
355
+
356
+ Notes
357
+ -----
358
+ ``sc_diff(cs_diff(x,a,b),b,a) == x``
359
+ For even ``len(x)``, the Nyquist mode of x is taken as zero.
360
+
361
+ """
362
+ tmp = asarray(x)
363
+ if iscomplexobj(tmp):
364
+ return sc_diff(tmp.real,a,b,period) + \
365
+ 1j*sc_diff(tmp.imag,a,b,period)
366
+ if period is not None:
367
+ a = a*2*pi/period
368
+ b = b*2*pi/period
369
+ n = len(x)
370
+ omega = _cache.get((n,a,b))
371
+ if omega is None:
372
+ if len(_cache) > 20:
373
+ while _cache:
374
+ _cache.popitem()
375
+
376
+ def kernel(k,a=a,b=b):
377
+ if k:
378
+ return sinh(a*k)/cosh(b*k)
379
+ return 0
380
+ omega = convolve.init_convolution_kernel(n,kernel,d=1)
381
+ _cache[(n,a,b)] = omega
382
+ overwrite_x = _datacopied(tmp, x)
383
+ return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x)
384
+
385
+
386
+ del _cache
387
+
388
+
389
+ _cache = {}
390
+
391
+
392
+ def ss_diff(x, a, b, period=None, _cache=_cache):
393
+ """
394
+ Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.
395
+
396
+ If x_j and y_j are Fourier coefficients of periodic functions x
397
+ and y, respectively, then::
398
+
399
+ y_j = sinh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
400
+ y_0 = a/b * x_0
401
+
402
+ Parameters
403
+ ----------
404
+ x : array_like
405
+ The array to take the pseudo-derivative from.
406
+ a,b
407
+ Defines the parameters of the sinh/sinh pseudo-differential
408
+ operator.
409
+ period : float, optional
410
+ The period of the sequence x. Default is ``2*pi``.
411
+
412
+ Notes
413
+ -----
414
+ ``ss_diff(ss_diff(x,a,b),b,a) == x``
415
+
416
+ """
417
+ tmp = asarray(x)
418
+ if iscomplexobj(tmp):
419
+ return ss_diff(tmp.real,a,b,period) + \
420
+ 1j*ss_diff(tmp.imag,a,b,period)
421
+ if period is not None:
422
+ a = a*2*pi/period
423
+ b = b*2*pi/period
424
+ n = len(x)
425
+ omega = _cache.get((n,a,b))
426
+ if omega is None:
427
+ if len(_cache) > 20:
428
+ while _cache:
429
+ _cache.popitem()
430
+
431
+ def kernel(k,a=a,b=b):
432
+ if k:
433
+ return sinh(a*k)/sinh(b*k)
434
+ return float(a)/b
435
+ omega = convolve.init_convolution_kernel(n,kernel)
436
+ _cache[(n,a,b)] = omega
437
+ overwrite_x = _datacopied(tmp, x)
438
+ return convolve.convolve(tmp,omega,overwrite_x=overwrite_x)
439
+
440
+
441
+ del _cache
442
+
443
+
444
+ _cache = {}
445
+
446
+
447
+ def cc_diff(x, a, b, period=None, _cache=_cache):
448
+ """
449
+ Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.
450
+
451
+ If x_j and y_j are Fourier coefficients of periodic functions x
452
+ and y, respectively, then::
453
+
454
+ y_j = cosh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j
455
+
456
+ Parameters
457
+ ----------
458
+ x : array_like
459
+ The array to take the pseudo-derivative from.
460
+ a,b : float
461
+ Defines the parameters of the sinh/sinh pseudo-differential
462
+ operator.
463
+ period : float, optional
464
+ The period of the sequence x. Default is ``2*pi``.
465
+
466
+ Returns
467
+ -------
468
+ cc_diff : ndarray
469
+ Pseudo-derivative of periodic sequence `x`.
470
+
471
+ Notes
472
+ -----
473
+ ``cc_diff(cc_diff(x,a,b),b,a) == x``
474
+
475
+ """
476
+ tmp = asarray(x)
477
+ if iscomplexobj(tmp):
478
+ return cc_diff(tmp.real,a,b,period) + \
479
+ 1j*cc_diff(tmp.imag,a,b,period)
480
+ if period is not None:
481
+ a = a*2*pi/period
482
+ b = b*2*pi/period
483
+ n = len(x)
484
+ omega = _cache.get((n,a,b))
485
+ if omega is None:
486
+ if len(_cache) > 20:
487
+ while _cache:
488
+ _cache.popitem()
489
+
490
+ def kernel(k,a=a,b=b):
491
+ return cosh(a*k)/cosh(b*k)
492
+ omega = convolve.init_convolution_kernel(n,kernel)
493
+ _cache[(n,a,b)] = omega
494
+ overwrite_x = _datacopied(tmp, x)
495
+ return convolve.convolve(tmp,omega,overwrite_x=overwrite_x)
496
+
497
+
498
+ del _cache
499
+
500
+
501
+ _cache = {}
502
+
503
+
504
+ def shift(x, a, period=None, _cache=_cache):
505
+ """
506
+ Shift periodic sequence x by a: y(u) = x(u+a).
507
+
508
+ If x_j and y_j are Fourier coefficients of periodic functions x
509
+ and y, respectively, then::
510
+
511
+ y_j = exp(j*a*2*pi/period*sqrt(-1)) * x_f
512
+
513
+ Parameters
514
+ ----------
515
+ x : array_like
516
+ The array to take the pseudo-derivative from.
517
+ a : float
518
+ Defines the parameters of the sinh/sinh pseudo-differential
519
+ period : float, optional
520
+ The period of the sequences x and y. Default period is ``2*pi``.
521
+ """
522
+ tmp = asarray(x)
523
+ if iscomplexobj(tmp):
524
+ return shift(tmp.real,a,period)+1j*shift(tmp.imag,a,period)
525
+ if period is not None:
526
+ a = a*2*pi/period
527
+ n = len(x)
528
+ omega = _cache.get((n,a))
529
+ if omega is None:
530
+ if len(_cache) > 20:
531
+ while _cache:
532
+ _cache.popitem()
533
+
534
+ def kernel_real(k,a=a):
535
+ return cos(a*k)
536
+
537
+ def kernel_imag(k,a=a):
538
+ return sin(a*k)
539
+ omega_real = convolve.init_convolution_kernel(n,kernel_real,d=0,
540
+ zero_nyquist=0)
541
+ omega_imag = convolve.init_convolution_kernel(n,kernel_imag,d=1,
542
+ zero_nyquist=0)
543
+ _cache[(n,a)] = omega_real,omega_imag
544
+ else:
545
+ omega_real,omega_imag = omega
546
+ overwrite_x = _datacopied(tmp, x)
547
+ return convolve.convolve_z(tmp,omega_real,omega_imag,
548
+ overwrite_x=overwrite_x)
549
+
550
+
551
+ del _cache
venv/lib/python3.10/site-packages/scipy/fftpack/_realtransforms.py ADDED
@@ -0,0 +1,598 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Real spectrum transforms (DCT, DST, MDCT)
3
+ """
4
+
5
+ __all__ = ['dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn']
6
+
7
+ from scipy.fft import _pocketfft
8
+ from ._helper import _good_shape
9
+
10
+ _inverse_typemap = {1: 1, 2: 3, 3: 2, 4: 4}
11
+
12
+
13
+ def dctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
14
+ """
15
+ Return multidimensional Discrete Cosine Transform along the specified axes.
16
+
17
+ Parameters
18
+ ----------
19
+ x : array_like
20
+ The input array.
21
+ type : {1, 2, 3, 4}, optional
22
+ Type of the DCT (see Notes). Default type is 2.
23
+ shape : int or array_like of ints or None, optional
24
+ The shape of the result. If both `shape` and `axes` (see below) are
25
+ None, `shape` is ``x.shape``; if `shape` is None but `axes` is
26
+ not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
27
+ If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
28
+ If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
29
+ length ``shape[i]``.
30
+ If any element of `shape` is -1, the size of the corresponding
31
+ dimension of `x` is used.
32
+ axes : int or array_like of ints or None, optional
33
+ Axes along which the DCT is computed.
34
+ The default is over all axes.
35
+ norm : {None, 'ortho'}, optional
36
+ Normalization mode (see Notes). Default is None.
37
+ overwrite_x : bool, optional
38
+ If True, the contents of `x` can be destroyed; the default is False.
39
+
40
+ Returns
41
+ -------
42
+ y : ndarray of real
43
+ The transformed input array.
44
+
45
+ See Also
46
+ --------
47
+ idctn : Inverse multidimensional DCT
48
+
49
+ Notes
50
+ -----
51
+ For full details of the DCT types and normalization modes, as well as
52
+ references, see `dct`.
53
+
54
+ Examples
55
+ --------
56
+ >>> import numpy as np
57
+ >>> from scipy.fftpack import dctn, idctn
58
+ >>> rng = np.random.default_rng()
59
+ >>> y = rng.standard_normal((16, 16))
60
+ >>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
61
+ True
62
+
63
+ """
64
+ shape = _good_shape(x, shape, axes)
65
+ return _pocketfft.dctn(x, type, shape, axes, norm, overwrite_x)
66
+
67
+
68
+ def idctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
69
+ """
70
+ Return multidimensional Discrete Cosine Transform along the specified axes.
71
+
72
+ Parameters
73
+ ----------
74
+ x : array_like
75
+ The input array.
76
+ type : {1, 2, 3, 4}, optional
77
+ Type of the DCT (see Notes). Default type is 2.
78
+ shape : int or array_like of ints or None, optional
79
+ The shape of the result. If both `shape` and `axes` (see below) are
80
+ None, `shape` is ``x.shape``; if `shape` is None but `axes` is
81
+ not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
82
+ If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
83
+ If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
84
+ length ``shape[i]``.
85
+ If any element of `shape` is -1, the size of the corresponding
86
+ dimension of `x` is used.
87
+ axes : int or array_like of ints or None, optional
88
+ Axes along which the IDCT is computed.
89
+ The default is over all axes.
90
+ norm : {None, 'ortho'}, optional
91
+ Normalization mode (see Notes). Default is None.
92
+ overwrite_x : bool, optional
93
+ If True, the contents of `x` can be destroyed; the default is False.
94
+
95
+ Returns
96
+ -------
97
+ y : ndarray of real
98
+ The transformed input array.
99
+
100
+ See Also
101
+ --------
102
+ dctn : multidimensional DCT
103
+
104
+ Notes
105
+ -----
106
+ For full details of the IDCT types and normalization modes, as well as
107
+ references, see `idct`.
108
+
109
+ Examples
110
+ --------
111
+ >>> import numpy as np
112
+ >>> from scipy.fftpack import dctn, idctn
113
+ >>> rng = np.random.default_rng()
114
+ >>> y = rng.standard_normal((16, 16))
115
+ >>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
116
+ True
117
+
118
+ """
119
+ type = _inverse_typemap[type]
120
+ shape = _good_shape(x, shape, axes)
121
+ return _pocketfft.dctn(x, type, shape, axes, norm, overwrite_x)
122
+
123
+
124
+ def dstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
125
+ """
126
+ Return multidimensional Discrete Sine Transform along the specified axes.
127
+
128
+ Parameters
129
+ ----------
130
+ x : array_like
131
+ The input array.
132
+ type : {1, 2, 3, 4}, optional
133
+ Type of the DST (see Notes). Default type is 2.
134
+ shape : int or array_like of ints or None, optional
135
+ The shape of the result. If both `shape` and `axes` (see below) are
136
+ None, `shape` is ``x.shape``; if `shape` is None but `axes` is
137
+ not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
138
+ If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
139
+ If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
140
+ length ``shape[i]``.
141
+ If any element of `shape` is -1, the size of the corresponding
142
+ dimension of `x` is used.
143
+ axes : int or array_like of ints or None, optional
144
+ Axes along which the DCT is computed.
145
+ The default is over all axes.
146
+ norm : {None, 'ortho'}, optional
147
+ Normalization mode (see Notes). Default is None.
148
+ overwrite_x : bool, optional
149
+ If True, the contents of `x` can be destroyed; the default is False.
150
+
151
+ Returns
152
+ -------
153
+ y : ndarray of real
154
+ The transformed input array.
155
+
156
+ See Also
157
+ --------
158
+ idstn : Inverse multidimensional DST
159
+
160
+ Notes
161
+ -----
162
+ For full details of the DST types and normalization modes, as well as
163
+ references, see `dst`.
164
+
165
+ Examples
166
+ --------
167
+ >>> import numpy as np
168
+ >>> from scipy.fftpack import dstn, idstn
169
+ >>> rng = np.random.default_rng()
170
+ >>> y = rng.standard_normal((16, 16))
171
+ >>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
172
+ True
173
+
174
+ """
175
+ shape = _good_shape(x, shape, axes)
176
+ return _pocketfft.dstn(x, type, shape, axes, norm, overwrite_x)
177
+
178
+
179
+ def idstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
180
+ """
181
+ Return multidimensional Discrete Sine Transform along the specified axes.
182
+
183
+ Parameters
184
+ ----------
185
+ x : array_like
186
+ The input array.
187
+ type : {1, 2, 3, 4}, optional
188
+ Type of the DST (see Notes). Default type is 2.
189
+ shape : int or array_like of ints or None, optional
190
+ The shape of the result. If both `shape` and `axes` (see below) are
191
+ None, `shape` is ``x.shape``; if `shape` is None but `axes` is
192
+ not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
193
+ If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
194
+ If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
195
+ length ``shape[i]``.
196
+ If any element of `shape` is -1, the size of the corresponding
197
+ dimension of `x` is used.
198
+ axes : int or array_like of ints or None, optional
199
+ Axes along which the IDST is computed.
200
+ The default is over all axes.
201
+ norm : {None, 'ortho'}, optional
202
+ Normalization mode (see Notes). Default is None.
203
+ overwrite_x : bool, optional
204
+ If True, the contents of `x` can be destroyed; the default is False.
205
+
206
+ Returns
207
+ -------
208
+ y : ndarray of real
209
+ The transformed input array.
210
+
211
+ See Also
212
+ --------
213
+ dstn : multidimensional DST
214
+
215
+ Notes
216
+ -----
217
+ For full details of the IDST types and normalization modes, as well as
218
+ references, see `idst`.
219
+
220
+ Examples
221
+ --------
222
+ >>> import numpy as np
223
+ >>> from scipy.fftpack import dstn, idstn
224
+ >>> rng = np.random.default_rng()
225
+ >>> y = rng.standard_normal((16, 16))
226
+ >>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
227
+ True
228
+
229
+ """
230
+ type = _inverse_typemap[type]
231
+ shape = _good_shape(x, shape, axes)
232
+ return _pocketfft.dstn(x, type, shape, axes, norm, overwrite_x)
233
+
234
+
235
+ def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
236
+ r"""
237
+ Return the Discrete Cosine Transform of arbitrary type sequence x.
238
+
239
+ Parameters
240
+ ----------
241
+ x : array_like
242
+ The input array.
243
+ type : {1, 2, 3, 4}, optional
244
+ Type of the DCT (see Notes). Default type is 2.
245
+ n : int, optional
246
+ Length of the transform. If ``n < x.shape[axis]``, `x` is
247
+ truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
248
+ default results in ``n = x.shape[axis]``.
249
+ axis : int, optional
250
+ Axis along which the dct is computed; the default is over the
251
+ last axis (i.e., ``axis=-1``).
252
+ norm : {None, 'ortho'}, optional
253
+ Normalization mode (see Notes). Default is None.
254
+ overwrite_x : bool, optional
255
+ If True, the contents of `x` can be destroyed; the default is False.
256
+
257
+ Returns
258
+ -------
259
+ y : ndarray of real
260
+ The transformed input array.
261
+
262
+ See Also
263
+ --------
264
+ idct : Inverse DCT
265
+
266
+ Notes
267
+ -----
268
+ For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
269
+ MATLAB ``dct(x)``.
270
+
271
+ There are, theoretically, 8 types of the DCT, only the first 4 types are
272
+ implemented in scipy. 'The' DCT generally refers to DCT type 2, and 'the'
273
+ Inverse DCT generally refers to DCT type 3.
274
+
275
+ **Type I**
276
+
277
+ There are several definitions of the DCT-I; we use the following
278
+ (for ``norm=None``)
279
+
280
+ .. math::
281
+
282
+ y_k = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x_n \cos\left(
283
+ \frac{\pi k n}{N-1} \right)
284
+
285
+ If ``norm='ortho'``, ``x[0]`` and ``x[N-1]`` are multiplied by a scaling
286
+ factor of :math:`\sqrt{2}`, and ``y[k]`` is multiplied by a scaling factor
287
+ ``f``
288
+
289
+ .. math::
290
+
291
+ f = \begin{cases}
292
+ \frac{1}{2}\sqrt{\frac{1}{N-1}} & \text{if }k=0\text{ or }N-1, \\
293
+ \frac{1}{2}\sqrt{\frac{2}{N-1}} & \text{otherwise} \end{cases}
294
+
295
+ .. versionadded:: 1.2.0
296
+ Orthonormalization in DCT-I.
297
+
298
+ .. note::
299
+ The DCT-I is only supported for input size > 1.
300
+
301
+ **Type II**
302
+
303
+ There are several definitions of the DCT-II; we use the following
304
+ (for ``norm=None``)
305
+
306
+ .. math::
307
+
308
+ y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi k(2n+1)}{2N} \right)
309
+
310
+ If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``
311
+
312
+ .. math::
313
+ f = \begin{cases}
314
+ \sqrt{\frac{1}{4N}} & \text{if }k=0, \\
315
+ \sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}
316
+
317
+ which makes the corresponding matrix of coefficients orthonormal
318
+ (``O @ O.T = np.eye(N)``).
319
+
320
+ **Type III**
321
+
322
+ There are several definitions, we use the following (for ``norm=None``)
323
+
324
+ .. math::
325
+
326
+ y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos\left(\frac{\pi(2k+1)n}{2N}\right)
327
+
328
+ or, for ``norm='ortho'``
329
+
330
+ .. math::
331
+
332
+ y_k = \frac{x_0}{\sqrt{N}} + \sqrt{\frac{2}{N}} \sum_{n=1}^{N-1} x_n
333
+ \cos\left(\frac{\pi(2k+1)n}{2N}\right)
334
+
335
+ The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
336
+ to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of
337
+ the orthonormalized DCT-II.
338
+
339
+ **Type IV**
340
+
341
+ There are several definitions of the DCT-IV; we use the following
342
+ (for ``norm=None``)
343
+
344
+ .. math::
345
+
346
+ y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi(2k+1)(2n+1)}{4N} \right)
347
+
348
+ If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``
349
+
350
+ .. math::
351
+
352
+ f = \frac{1}{\sqrt{2N}}
353
+
354
+ .. versionadded:: 1.2.0
355
+ Support for DCT-IV.
356
+
357
+ References
358
+ ----------
359
+ .. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J.
360
+ Makhoul, `IEEE Transactions on acoustics, speech and signal
361
+ processing` vol. 28(1), pp. 27-34,
362
+ :doi:`10.1109/TASSP.1980.1163351` (1980).
363
+ .. [2] Wikipedia, "Discrete cosine transform",
364
+ https://en.wikipedia.org/wiki/Discrete_cosine_transform
365
+
366
+ Examples
367
+ --------
368
+ The Type 1 DCT is equivalent to the FFT (though faster) for real,
369
+ even-symmetrical inputs. The output is also real and even-symmetrical.
370
+ Half of the FFT input is used to generate half of the FFT output:
371
+
372
+ >>> from scipy.fftpack import fft, dct
373
+ >>> import numpy as np
374
+ >>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
375
+ array([ 30., -8., 6., -2., 6., -8.])
376
+ >>> dct(np.array([4., 3., 5., 10.]), 1)
377
+ array([ 30., -8., 6., -2.])
378
+
379
+ """
380
+ return _pocketfft.dct(x, type, n, axis, norm, overwrite_x)
381
+
382
+
383
+ def idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
384
+ """
385
+ Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.
386
+
387
+ Parameters
388
+ ----------
389
+ x : array_like
390
+ The input array.
391
+ type : {1, 2, 3, 4}, optional
392
+ Type of the DCT (see Notes). Default type is 2.
393
+ n : int, optional
394
+ Length of the transform. If ``n < x.shape[axis]``, `x` is
395
+ truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
396
+ default results in ``n = x.shape[axis]``.
397
+ axis : int, optional
398
+ Axis along which the idct is computed; the default is over the
399
+ last axis (i.e., ``axis=-1``).
400
+ norm : {None, 'ortho'}, optional
401
+ Normalization mode (see Notes). Default is None.
402
+ overwrite_x : bool, optional
403
+ If True, the contents of `x` can be destroyed; the default is False.
404
+
405
+ Returns
406
+ -------
407
+ idct : ndarray of real
408
+ The transformed input array.
409
+
410
+ See Also
411
+ --------
412
+ dct : Forward DCT
413
+
414
+ Notes
415
+ -----
416
+ For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to
417
+ MATLAB ``idct(x)``.
418
+
419
+ 'The' IDCT is the IDCT of type 2, which is the same as DCT of type 3.
420
+
421
+ IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type
422
+ 3, and IDCT of type 3 is the DCT of type 2. IDCT of type 4 is the DCT
423
+ of type 4. For the definition of these types, see `dct`.
424
+
425
+ Examples
426
+ --------
427
+ The Type 1 DCT is equivalent to the DFT for real, even-symmetrical
428
+ inputs. The output is also real and even-symmetrical. Half of the IFFT
429
+ input is used to generate half of the IFFT output:
430
+
431
+ >>> from scipy.fftpack import ifft, idct
432
+ >>> import numpy as np
433
+ >>> ifft(np.array([ 30., -8., 6., -2., 6., -8.])).real
434
+ array([ 4., 3., 5., 10., 5., 3.])
435
+ >>> idct(np.array([ 30., -8., 6., -2.]), 1) / 6
436
+ array([ 4., 3., 5., 10.])
437
+
438
+ """
439
+ type = _inverse_typemap[type]
440
+ return _pocketfft.dct(x, type, n, axis, norm, overwrite_x)
441
+
442
+
443
+ def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
444
+ r"""
445
+ Return the Discrete Sine Transform of arbitrary type sequence x.
446
+
447
+ Parameters
448
+ ----------
449
+ x : array_like
450
+ The input array.
451
+ type : {1, 2, 3, 4}, optional
452
+ Type of the DST (see Notes). Default type is 2.
453
+ n : int, optional
454
+ Length of the transform. If ``n < x.shape[axis]``, `x` is
455
+ truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
456
+ default results in ``n = x.shape[axis]``.
457
+ axis : int, optional
458
+ Axis along which the dst is computed; the default is over the
459
+ last axis (i.e., ``axis=-1``).
460
+ norm : {None, 'ortho'}, optional
461
+ Normalization mode (see Notes). Default is None.
462
+ overwrite_x : bool, optional
463
+ If True, the contents of `x` can be destroyed; the default is False.
464
+
465
+ Returns
466
+ -------
467
+ dst : ndarray of reals
468
+ The transformed input array.
469
+
470
+ See Also
471
+ --------
472
+ idst : Inverse DST
473
+
474
+ Notes
475
+ -----
476
+ For a single dimension array ``x``.
477
+
478
+ There are, theoretically, 8 types of the DST for different combinations of
479
+ even/odd boundary conditions and boundary off sets [1]_, only the first
480
+ 4 types are implemented in scipy.
481
+
482
+ **Type I**
483
+
484
+ There are several definitions of the DST-I; we use the following
485
+ for ``norm=None``. DST-I assumes the input is odd around `n=-1` and `n=N`.
486
+
487
+ .. math::
488
+
489
+ y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right)
490
+
491
+ Note that the DST-I is only supported for input size > 1.
492
+ The (unnormalized) DST-I is its own inverse, up to a factor `2(N+1)`.
493
+ The orthonormalized DST-I is exactly its own inverse.
494
+
495
+ **Type II**
496
+
497
+ There are several definitions of the DST-II; we use the following for
498
+ ``norm=None``. DST-II assumes the input is odd around `n=-1/2` and
499
+ `n=N-1/2`; the output is odd around :math:`k=-1` and even around `k=N-1`
500
+
501
+ .. math::
502
+
503
+ y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right)
504
+
505
+ if ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``
506
+
507
+ .. math::
508
+
509
+ f = \begin{cases}
510
+ \sqrt{\frac{1}{4N}} & \text{if }k = 0, \\
511
+ \sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}
512
+
513
+ **Type III**
514
+
515
+ There are several definitions of the DST-III, we use the following (for
516
+ ``norm=None``). DST-III assumes the input is odd around `n=-1` and even
517
+ around `n=N-1`
518
+
519
+ .. math::
520
+
521
+ y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left(
522
+ \frac{\pi(2k+1)(n+1)}{2N}\right)
523
+
524
+ The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
525
+ to a factor `2N`. The orthonormalized DST-III is exactly the inverse of the
526
+ orthonormalized DST-II.
527
+
528
+ .. versionadded:: 0.11.0
529
+
530
+ **Type IV**
531
+
532
+ There are several definitions of the DST-IV, we use the following (for
533
+ ``norm=None``). DST-IV assumes the input is odd around `n=-0.5` and even
534
+ around `n=N-0.5`
535
+
536
+ .. math::
537
+
538
+ y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)
539
+
540
+ The (unnormalized) DST-IV is its own inverse, up to a factor `2N`. The
541
+ orthonormalized DST-IV is exactly its own inverse.
542
+
543
+ .. versionadded:: 1.2.0
544
+ Support for DST-IV.
545
+
546
+ References
547
+ ----------
548
+ .. [1] Wikipedia, "Discrete sine transform",
549
+ https://en.wikipedia.org/wiki/Discrete_sine_transform
550
+
551
+ """
552
+ return _pocketfft.dst(x, type, n, axis, norm, overwrite_x)
553
+
554
+
555
+ def idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
556
+ """
557
+ Return the Inverse Discrete Sine Transform of an arbitrary type sequence.
558
+
559
+ Parameters
560
+ ----------
561
+ x : array_like
562
+ The input array.
563
+ type : {1, 2, 3, 4}, optional
564
+ Type of the DST (see Notes). Default type is 2.
565
+ n : int, optional
566
+ Length of the transform. If ``n < x.shape[axis]``, `x` is
567
+ truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
568
+ default results in ``n = x.shape[axis]``.
569
+ axis : int, optional
570
+ Axis along which the idst is computed; the default is over the
571
+ last axis (i.e., ``axis=-1``).
572
+ norm : {None, 'ortho'}, optional
573
+ Normalization mode (see Notes). Default is None.
574
+ overwrite_x : bool, optional
575
+ If True, the contents of `x` can be destroyed; the default is False.
576
+
577
+ Returns
578
+ -------
579
+ idst : ndarray of real
580
+ The transformed input array.
581
+
582
+ See Also
583
+ --------
584
+ dst : Forward DST
585
+
586
+ Notes
587
+ -----
588
+ 'The' IDST is the IDST of type 2, which is the same as DST of type 3.
589
+
590
+ IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type
591
+ 3, and IDST of type 3 is the DST of type 2. For the definition of these
592
+ types, see `dst`.
593
+
594
+ .. versionadded:: 0.11.0
595
+
596
+ """
597
+ type = _inverse_typemap[type]
598
+ return _pocketfft.dst(x, type, n, axis, norm, overwrite_x)
venv/lib/python3.10/site-packages/scipy/fftpack/basic.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.fftpack` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'fft','ifft','fftn','ifftn','rfft','irfft',
9
+ 'fft2','ifft2'
10
+ ]
11
+
12
+
13
+ def __dir__():
14
+ return __all__
15
+
16
+
17
+ def __getattr__(name):
18
+ return _sub_module_deprecation(sub_package="fftpack", module="basic",
19
+ private_modules=["_basic"], all=__all__,
20
+ attribute=name)
venv/lib/python3.10/site-packages/scipy/fftpack/convolve.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (273 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fftpack/helper.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.fftpack` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'fftshift', 'ifftshift', 'fftfreq', 'rfftfreq', 'next_fast_len'
9
+ ]
10
+
11
+
12
+ def __dir__():
13
+ return __all__
14
+
15
+
16
+ def __getattr__(name):
17
+ return _sub_module_deprecation(sub_package="fftpack", module="helper",
18
+ private_modules=["_helper"], all=__all__,
19
+ attribute=name)
venv/lib/python3.10/site-packages/scipy/fftpack/pseudo_diffs.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.fftpack` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'diff',
9
+ 'tilbert', 'itilbert', 'hilbert', 'ihilbert',
10
+ 'cs_diff', 'cc_diff', 'sc_diff', 'ss_diff',
11
+ 'shift', 'iscomplexobj', 'convolve'
12
+ ]
13
+
14
+
15
+ def __dir__():
16
+ return __all__
17
+
18
+
19
+ def __getattr__(name):
20
+ return _sub_module_deprecation(sub_package="fftpack", module="pseudo_diffs",
21
+ private_modules=["_pseudo_diffs"], all=__all__,
22
+ attribute=name)
venv/lib/python3.10/site-packages/scipy/fftpack/realtransforms.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.fftpack` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn'
9
+ ]
10
+
11
+
12
+ def __dir__():
13
+ return __all__
14
+
15
+
16
+ def __getattr__(name):
17
+ return _sub_module_deprecation(sub_package="fftpack", module="realtransforms",
18
+ private_modules=["_realtransforms"], all=__all__,
19
+ attribute=name)
venv/lib/python3.10/site-packages/scipy/fftpack/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (187 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_helper.cpython-310.pyc ADDED
Binary file (2.23 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_pseudo_diffs.cpython-310.pyc ADDED
Binary file (13.1 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fftpack/tests/test_basic.py ADDED
@@ -0,0 +1,873 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Created by Pearu Peterson, September 2002
2
+
3
+ from numpy.testing import (assert_, assert_equal, assert_array_almost_equal,
4
+ assert_array_almost_equal_nulp, assert_array_less)
5
+ import pytest
6
+ from pytest import raises as assert_raises
7
+ from scipy.fftpack import ifft, fft, fftn, ifftn, rfft, irfft, fft2
8
+
9
+ from numpy import (arange, array, asarray, zeros, dot, exp, pi,
10
+ swapaxes, double, cdouble)
11
+ import numpy as np
12
+ import numpy.fft
13
+ from numpy.random import rand
14
+
15
+ # "large" composite numbers supported by FFTPACK
16
+ LARGE_COMPOSITE_SIZES = [
17
+ 2**13,
18
+ 2**5 * 3**5,
19
+ 2**3 * 3**3 * 5**2,
20
+ ]
21
+ SMALL_COMPOSITE_SIZES = [
22
+ 2,
23
+ 2*3*5,
24
+ 2*2*3*3,
25
+ ]
26
+ # prime
27
+ LARGE_PRIME_SIZES = [
28
+ 2011
29
+ ]
30
+ SMALL_PRIME_SIZES = [
31
+ 29
32
+ ]
33
+
34
+
35
+ def _assert_close_in_norm(x, y, rtol, size, rdt):
36
+ # helper function for testing
37
+ err_msg = f"size: {size} rdt: {rdt}"
38
+ assert_array_less(np.linalg.norm(x - y), rtol*np.linalg.norm(x), err_msg)
39
+
40
+
41
+ def random(size):
42
+ return rand(*size)
43
+
44
+
45
+ def direct_dft(x):
46
+ x = asarray(x)
47
+ n = len(x)
48
+ y = zeros(n, dtype=cdouble)
49
+ w = -arange(n)*(2j*pi/n)
50
+ for i in range(n):
51
+ y[i] = dot(exp(i*w), x)
52
+ return y
53
+
54
+
55
+ def direct_idft(x):
56
+ x = asarray(x)
57
+ n = len(x)
58
+ y = zeros(n, dtype=cdouble)
59
+ w = arange(n)*(2j*pi/n)
60
+ for i in range(n):
61
+ y[i] = dot(exp(i*w), x)/n
62
+ return y
63
+
64
+
65
+ def direct_dftn(x):
66
+ x = asarray(x)
67
+ for axis in range(len(x.shape)):
68
+ x = fft(x, axis=axis)
69
+ return x
70
+
71
+
72
+ def direct_idftn(x):
73
+ x = asarray(x)
74
+ for axis in range(len(x.shape)):
75
+ x = ifft(x, axis=axis)
76
+ return x
77
+
78
+
79
+ def direct_rdft(x):
80
+ x = asarray(x)
81
+ n = len(x)
82
+ w = -arange(n)*(2j*pi/n)
83
+ r = zeros(n, dtype=double)
84
+ for i in range(n//2+1):
85
+ y = dot(exp(i*w), x)
86
+ if i:
87
+ r[2*i-1] = y.real
88
+ if 2*i < n:
89
+ r[2*i] = y.imag
90
+ else:
91
+ r[0] = y.real
92
+ return r
93
+
94
+
95
+ def direct_irdft(x):
96
+ x = asarray(x)
97
+ n = len(x)
98
+ x1 = zeros(n, dtype=cdouble)
99
+ for i in range(n//2+1):
100
+ if i:
101
+ if 2*i < n:
102
+ x1[i] = x[2*i-1] + 1j*x[2*i]
103
+ x1[n-i] = x[2*i-1] - 1j*x[2*i]
104
+ else:
105
+ x1[i] = x[2*i-1]
106
+ else:
107
+ x1[0] = x[0]
108
+ return direct_idft(x1).real
109
+
110
+
111
+ class _TestFFTBase:
112
+ def setup_method(self):
113
+ self.cdt = None
114
+ self.rdt = None
115
+ np.random.seed(1234)
116
+
117
+ def test_definition(self):
118
+ x = np.array([1,2,3,4+1j,1,2,3,4+2j], dtype=self.cdt)
119
+ y = fft(x)
120
+ assert_equal(y.dtype, self.cdt)
121
+ y1 = direct_dft(x)
122
+ assert_array_almost_equal(y,y1)
123
+ x = np.array([1,2,3,4+0j,5], dtype=self.cdt)
124
+ assert_array_almost_equal(fft(x),direct_dft(x))
125
+
126
+ def test_n_argument_real(self):
127
+ x1 = np.array([1,2,3,4], dtype=self.rdt)
128
+ x2 = np.array([1,2,3,4], dtype=self.rdt)
129
+ y = fft([x1,x2],n=4)
130
+ assert_equal(y.dtype, self.cdt)
131
+ assert_equal(y.shape,(2,4))
132
+ assert_array_almost_equal(y[0],direct_dft(x1))
133
+ assert_array_almost_equal(y[1],direct_dft(x2))
134
+
135
+ def _test_n_argument_complex(self):
136
+ x1 = np.array([1,2,3,4+1j], dtype=self.cdt)
137
+ x2 = np.array([1,2,3,4+1j], dtype=self.cdt)
138
+ y = fft([x1,x2],n=4)
139
+ assert_equal(y.dtype, self.cdt)
140
+ assert_equal(y.shape,(2,4))
141
+ assert_array_almost_equal(y[0],direct_dft(x1))
142
+ assert_array_almost_equal(y[1],direct_dft(x2))
143
+
144
+ def test_invalid_sizes(self):
145
+ assert_raises(ValueError, fft, [])
146
+ assert_raises(ValueError, fft, [[1,1],[2,2]], -5)
147
+
148
+
149
+ class TestDoubleFFT(_TestFFTBase):
150
+ def setup_method(self):
151
+ self.cdt = np.complex128
152
+ self.rdt = np.float64
153
+
154
+
155
+ class TestSingleFFT(_TestFFTBase):
156
+ def setup_method(self):
157
+ self.cdt = np.complex64
158
+ self.rdt = np.float32
159
+
160
+ reason = ("single-precision FFT implementation is partially disabled, "
161
+ "until accuracy issues with large prime powers are resolved")
162
+
163
+ @pytest.mark.xfail(run=False, reason=reason)
164
+ def test_notice(self):
165
+ pass
166
+
167
+
168
+ class TestFloat16FFT:
169
+
170
+ def test_1_argument_real(self):
171
+ x1 = np.array([1, 2, 3, 4], dtype=np.float16)
172
+ y = fft(x1, n=4)
173
+ assert_equal(y.dtype, np.complex64)
174
+ assert_equal(y.shape, (4, ))
175
+ assert_array_almost_equal(y, direct_dft(x1.astype(np.float32)))
176
+
177
+ def test_n_argument_real(self):
178
+ x1 = np.array([1, 2, 3, 4], dtype=np.float16)
179
+ x2 = np.array([1, 2, 3, 4], dtype=np.float16)
180
+ y = fft([x1, x2], n=4)
181
+ assert_equal(y.dtype, np.complex64)
182
+ assert_equal(y.shape, (2, 4))
183
+ assert_array_almost_equal(y[0], direct_dft(x1.astype(np.float32)))
184
+ assert_array_almost_equal(y[1], direct_dft(x2.astype(np.float32)))
185
+
186
+
187
+ class _TestIFFTBase:
188
+ def setup_method(self):
189
+ np.random.seed(1234)
190
+
191
+ def test_definition(self):
192
+ x = np.array([1,2,3,4+1j,1,2,3,4+2j], self.cdt)
193
+ y = ifft(x)
194
+ y1 = direct_idft(x)
195
+ assert_equal(y.dtype, self.cdt)
196
+ assert_array_almost_equal(y,y1)
197
+
198
+ x = np.array([1,2,3,4+0j,5], self.cdt)
199
+ assert_array_almost_equal(ifft(x),direct_idft(x))
200
+
201
+ def test_definition_real(self):
202
+ x = np.array([1,2,3,4,1,2,3,4], self.rdt)
203
+ y = ifft(x)
204
+ assert_equal(y.dtype, self.cdt)
205
+ y1 = direct_idft(x)
206
+ assert_array_almost_equal(y,y1)
207
+
208
+ x = np.array([1,2,3,4,5], dtype=self.rdt)
209
+ assert_equal(y.dtype, self.cdt)
210
+ assert_array_almost_equal(ifft(x),direct_idft(x))
211
+
212
+ def test_random_complex(self):
213
+ for size in [1,51,111,100,200,64,128,256,1024]:
214
+ x = random([size]).astype(self.cdt)
215
+ x = random([size]).astype(self.cdt) + 1j*x
216
+ y1 = ifft(fft(x))
217
+ y2 = fft(ifft(x))
218
+ assert_equal(y1.dtype, self.cdt)
219
+ assert_equal(y2.dtype, self.cdt)
220
+ assert_array_almost_equal(y1, x)
221
+ assert_array_almost_equal(y2, x)
222
+
223
+ def test_random_real(self):
224
+ for size in [1,51,111,100,200,64,128,256,1024]:
225
+ x = random([size]).astype(self.rdt)
226
+ y1 = ifft(fft(x))
227
+ y2 = fft(ifft(x))
228
+ assert_equal(y1.dtype, self.cdt)
229
+ assert_equal(y2.dtype, self.cdt)
230
+ assert_array_almost_equal(y1, x)
231
+ assert_array_almost_equal(y2, x)
232
+
233
+ def test_size_accuracy(self):
234
+ # Sanity check for the accuracy for prime and non-prime sized inputs
235
+ if self.rdt == np.float32:
236
+ rtol = 1e-5
237
+ elif self.rdt == np.float64:
238
+ rtol = 1e-10
239
+
240
+ for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
241
+ np.random.seed(1234)
242
+ x = np.random.rand(size).astype(self.rdt)
243
+ y = ifft(fft(x))
244
+ _assert_close_in_norm(x, y, rtol, size, self.rdt)
245
+ y = fft(ifft(x))
246
+ _assert_close_in_norm(x, y, rtol, size, self.rdt)
247
+
248
+ x = (x + 1j*np.random.rand(size)).astype(self.cdt)
249
+ y = ifft(fft(x))
250
+ _assert_close_in_norm(x, y, rtol, size, self.rdt)
251
+ y = fft(ifft(x))
252
+ _assert_close_in_norm(x, y, rtol, size, self.rdt)
253
+
254
+ def test_invalid_sizes(self):
255
+ assert_raises(ValueError, ifft, [])
256
+ assert_raises(ValueError, ifft, [[1,1],[2,2]], -5)
257
+
258
+
259
+ class TestDoubleIFFT(_TestIFFTBase):
260
+ def setup_method(self):
261
+ self.cdt = np.complex128
262
+ self.rdt = np.float64
263
+
264
+
265
+ class TestSingleIFFT(_TestIFFTBase):
266
+ def setup_method(self):
267
+ self.cdt = np.complex64
268
+ self.rdt = np.float32
269
+
270
+
271
+ class _TestRFFTBase:
272
+ def setup_method(self):
273
+ np.random.seed(1234)
274
+
275
+ def test_definition(self):
276
+ for t in [[1, 2, 3, 4, 1, 2, 3, 4], [1, 2, 3, 4, 1, 2, 3, 4, 5]]:
277
+ x = np.array(t, dtype=self.rdt)
278
+ y = rfft(x)
279
+ y1 = direct_rdft(x)
280
+ assert_array_almost_equal(y,y1)
281
+ assert_equal(y.dtype, self.rdt)
282
+
283
+ def test_invalid_sizes(self):
284
+ assert_raises(ValueError, rfft, [])
285
+ assert_raises(ValueError, rfft, [[1,1],[2,2]], -5)
286
+
287
+ # See gh-5790
288
+ class MockSeries:
289
+ def __init__(self, data):
290
+ self.data = np.asarray(data)
291
+
292
+ def __getattr__(self, item):
293
+ try:
294
+ return getattr(self.data, item)
295
+ except AttributeError as e:
296
+ raise AttributeError("'MockSeries' object "
297
+ f"has no attribute '{item}'") from e
298
+
299
+ def test_non_ndarray_with_dtype(self):
300
+ x = np.array([1., 2., 3., 4., 5.])
301
+ xs = _TestRFFTBase.MockSeries(x)
302
+
303
+ expected = [1, 2, 3, 4, 5]
304
+ rfft(xs)
305
+
306
+ # Data should not have been overwritten
307
+ assert_equal(x, expected)
308
+ assert_equal(xs.data, expected)
309
+
310
+ def test_complex_input(self):
311
+ assert_raises(TypeError, rfft, np.arange(4, dtype=np.complex64))
312
+
313
+
314
+ class TestRFFTDouble(_TestRFFTBase):
315
+ def setup_method(self):
316
+ self.cdt = np.complex128
317
+ self.rdt = np.float64
318
+
319
+
320
+ class TestRFFTSingle(_TestRFFTBase):
321
+ def setup_method(self):
322
+ self.cdt = np.complex64
323
+ self.rdt = np.float32
324
+
325
+
326
+ class _TestIRFFTBase:
327
+ def setup_method(self):
328
+ np.random.seed(1234)
329
+
330
+ def test_definition(self):
331
+ x1 = [1,2,3,4,1,2,3,4]
332
+ x1_1 = [1,2+3j,4+1j,2+3j,4,2-3j,4-1j,2-3j]
333
+ x2 = [1,2,3,4,1,2,3,4,5]
334
+ x2_1 = [1,2+3j,4+1j,2+3j,4+5j,4-5j,2-3j,4-1j,2-3j]
335
+
336
+ def _test(x, xr):
337
+ y = irfft(np.array(x, dtype=self.rdt))
338
+ y1 = direct_irdft(x)
339
+ assert_equal(y.dtype, self.rdt)
340
+ assert_array_almost_equal(y,y1, decimal=self.ndec)
341
+ assert_array_almost_equal(y,ifft(xr), decimal=self.ndec)
342
+
343
+ _test(x1, x1_1)
344
+ _test(x2, x2_1)
345
+
346
+ def test_random_real(self):
347
+ for size in [1,51,111,100,200,64,128,256,1024]:
348
+ x = random([size]).astype(self.rdt)
349
+ y1 = irfft(rfft(x))
350
+ y2 = rfft(irfft(x))
351
+ assert_equal(y1.dtype, self.rdt)
352
+ assert_equal(y2.dtype, self.rdt)
353
+ assert_array_almost_equal(y1, x, decimal=self.ndec,
354
+ err_msg="size=%d" % size)
355
+ assert_array_almost_equal(y2, x, decimal=self.ndec,
356
+ err_msg="size=%d" % size)
357
+
358
+ def test_size_accuracy(self):
359
+ # Sanity check for the accuracy for prime and non-prime sized inputs
360
+ if self.rdt == np.float32:
361
+ rtol = 1e-5
362
+ elif self.rdt == np.float64:
363
+ rtol = 1e-10
364
+
365
+ for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
366
+ np.random.seed(1234)
367
+ x = np.random.rand(size).astype(self.rdt)
368
+ y = irfft(rfft(x))
369
+ _assert_close_in_norm(x, y, rtol, size, self.rdt)
370
+ y = rfft(irfft(x))
371
+ _assert_close_in_norm(x, y, rtol, size, self.rdt)
372
+
373
+ def test_invalid_sizes(self):
374
+ assert_raises(ValueError, irfft, [])
375
+ assert_raises(ValueError, irfft, [[1,1],[2,2]], -5)
376
+
377
+ def test_complex_input(self):
378
+ assert_raises(TypeError, irfft, np.arange(4, dtype=np.complex64))
379
+
380
+
381
+ # self.ndec is bogus; we should have a assert_array_approx_equal for number of
382
+ # significant digits
383
+
384
+ class TestIRFFTDouble(_TestIRFFTBase):
385
+ def setup_method(self):
386
+ self.cdt = np.complex128
387
+ self.rdt = np.float64
388
+ self.ndec = 14
389
+
390
+
391
+ class TestIRFFTSingle(_TestIRFFTBase):
392
+ def setup_method(self):
393
+ self.cdt = np.complex64
394
+ self.rdt = np.float32
395
+ self.ndec = 5
396
+
397
+
398
+ class Testfft2:
399
+ def setup_method(self):
400
+ np.random.seed(1234)
401
+
402
+ def test_regression_244(self):
403
+ """FFT returns wrong result with axes parameter."""
404
+ # fftn (and hence fft2) used to break when both axes and shape were
405
+ # used
406
+ x = numpy.ones((4, 4, 2))
407
+ y = fft2(x, shape=(8, 8), axes=(-3, -2))
408
+ y_r = numpy.fft.fftn(x, s=(8, 8), axes=(-3, -2))
409
+ assert_array_almost_equal(y, y_r)
410
+
411
+ def test_invalid_sizes(self):
412
+ assert_raises(ValueError, fft2, [[]])
413
+ assert_raises(ValueError, fft2, [[1, 1], [2, 2]], (4, -3))
414
+
415
+
416
+ class TestFftnSingle:
417
+ def setup_method(self):
418
+ np.random.seed(1234)
419
+
420
+ def test_definition(self):
421
+ x = [[1, 2, 3],
422
+ [4, 5, 6],
423
+ [7, 8, 9]]
424
+ y = fftn(np.array(x, np.float32))
425
+ assert_(y.dtype == np.complex64,
426
+ msg="double precision output with single precision")
427
+
428
+ y_r = np.array(fftn(x), np.complex64)
429
+ assert_array_almost_equal_nulp(y, y_r)
430
+
431
+ @pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES)
432
+ def test_size_accuracy_small(self, size):
433
+ x = np.random.rand(size, size) + 1j*np.random.rand(size, size)
434
+ y1 = fftn(x.real.astype(np.float32))
435
+ y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
436
+
437
+ assert_equal(y1.dtype, np.complex64)
438
+ assert_array_almost_equal_nulp(y1, y2, 2000)
439
+
440
+ @pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES)
441
+ def test_size_accuracy_large(self, size):
442
+ x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3)
443
+ y1 = fftn(x.real.astype(np.float32))
444
+ y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
445
+
446
+ assert_equal(y1.dtype, np.complex64)
447
+ assert_array_almost_equal_nulp(y1, y2, 2000)
448
+
449
+ def test_definition_float16(self):
450
+ x = [[1, 2, 3],
451
+ [4, 5, 6],
452
+ [7, 8, 9]]
453
+ y = fftn(np.array(x, np.float16))
454
+ assert_equal(y.dtype, np.complex64)
455
+ y_r = np.array(fftn(x), np.complex64)
456
+ assert_array_almost_equal_nulp(y, y_r)
457
+
458
+ @pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES)
459
+ def test_float16_input_small(self, size):
460
+ x = np.random.rand(size, size) + 1j*np.random.rand(size, size)
461
+ y1 = fftn(x.real.astype(np.float16))
462
+ y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
463
+
464
+ assert_equal(y1.dtype, np.complex64)
465
+ assert_array_almost_equal_nulp(y1, y2, 5e5)
466
+
467
+ @pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES)
468
+ def test_float16_input_large(self, size):
469
+ x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3)
470
+ y1 = fftn(x.real.astype(np.float16))
471
+ y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
472
+
473
+ assert_equal(y1.dtype, np.complex64)
474
+ assert_array_almost_equal_nulp(y1, y2, 2e6)
475
+
476
+
477
+ class TestFftn:
478
+ def setup_method(self):
479
+ np.random.seed(1234)
480
+
481
+ def test_definition(self):
482
+ x = [[1, 2, 3],
483
+ [4, 5, 6],
484
+ [7, 8, 9]]
485
+ y = fftn(x)
486
+ assert_array_almost_equal(y, direct_dftn(x))
487
+
488
+ x = random((20, 26))
489
+ assert_array_almost_equal(fftn(x), direct_dftn(x))
490
+
491
+ x = random((5, 4, 3, 20))
492
+ assert_array_almost_equal(fftn(x), direct_dftn(x))
493
+
494
+ def test_axes_argument(self):
495
+ # plane == ji_plane, x== kji_space
496
+ plane1 = [[1, 2, 3],
497
+ [4, 5, 6],
498
+ [7, 8, 9]]
499
+ plane2 = [[10, 11, 12],
500
+ [13, 14, 15],
501
+ [16, 17, 18]]
502
+ plane3 = [[19, 20, 21],
503
+ [22, 23, 24],
504
+ [25, 26, 27]]
505
+ ki_plane1 = [[1, 2, 3],
506
+ [10, 11, 12],
507
+ [19, 20, 21]]
508
+ ki_plane2 = [[4, 5, 6],
509
+ [13, 14, 15],
510
+ [22, 23, 24]]
511
+ ki_plane3 = [[7, 8, 9],
512
+ [16, 17, 18],
513
+ [25, 26, 27]]
514
+ jk_plane1 = [[1, 10, 19],
515
+ [4, 13, 22],
516
+ [7, 16, 25]]
517
+ jk_plane2 = [[2, 11, 20],
518
+ [5, 14, 23],
519
+ [8, 17, 26]]
520
+ jk_plane3 = [[3, 12, 21],
521
+ [6, 15, 24],
522
+ [9, 18, 27]]
523
+ kj_plane1 = [[1, 4, 7],
524
+ [10, 13, 16], [19, 22, 25]]
525
+ kj_plane2 = [[2, 5, 8],
526
+ [11, 14, 17], [20, 23, 26]]
527
+ kj_plane3 = [[3, 6, 9],
528
+ [12, 15, 18], [21, 24, 27]]
529
+ ij_plane1 = [[1, 4, 7],
530
+ [2, 5, 8],
531
+ [3, 6, 9]]
532
+ ij_plane2 = [[10, 13, 16],
533
+ [11, 14, 17],
534
+ [12, 15, 18]]
535
+ ij_plane3 = [[19, 22, 25],
536
+ [20, 23, 26],
537
+ [21, 24, 27]]
538
+ ik_plane1 = [[1, 10, 19],
539
+ [2, 11, 20],
540
+ [3, 12, 21]]
541
+ ik_plane2 = [[4, 13, 22],
542
+ [5, 14, 23],
543
+ [6, 15, 24]]
544
+ ik_plane3 = [[7, 16, 25],
545
+ [8, 17, 26],
546
+ [9, 18, 27]]
547
+ ijk_space = [jk_plane1, jk_plane2, jk_plane3]
548
+ ikj_space = [kj_plane1, kj_plane2, kj_plane3]
549
+ jik_space = [ik_plane1, ik_plane2, ik_plane3]
550
+ jki_space = [ki_plane1, ki_plane2, ki_plane3]
551
+ kij_space = [ij_plane1, ij_plane2, ij_plane3]
552
+ x = array([plane1, plane2, plane3])
553
+
554
+ assert_array_almost_equal(fftn(x),
555
+ fftn(x, axes=(-3, -2, -1))) # kji_space
556
+ assert_array_almost_equal(fftn(x), fftn(x, axes=(0, 1, 2)))
557
+ assert_array_almost_equal(fftn(x, axes=(0, 2)), fftn(x, axes=(0, -1)))
558
+ y = fftn(x, axes=(2, 1, 0)) # ijk_space
559
+ assert_array_almost_equal(swapaxes(y, -1, -3), fftn(ijk_space))
560
+ y = fftn(x, axes=(2, 0, 1)) # ikj_space
561
+ assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -1, -2),
562
+ fftn(ikj_space))
563
+ y = fftn(x, axes=(1, 2, 0)) # jik_space
564
+ assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -3, -2),
565
+ fftn(jik_space))
566
+ y = fftn(x, axes=(1, 0, 2)) # jki_space
567
+ assert_array_almost_equal(swapaxes(y, -2, -3), fftn(jki_space))
568
+ y = fftn(x, axes=(0, 2, 1)) # kij_space
569
+ assert_array_almost_equal(swapaxes(y, -2, -1), fftn(kij_space))
570
+
571
+ y = fftn(x, axes=(-2, -1)) # ji_plane
572
+ assert_array_almost_equal(fftn(plane1), y[0])
573
+ assert_array_almost_equal(fftn(plane2), y[1])
574
+ assert_array_almost_equal(fftn(plane3), y[2])
575
+
576
+ y = fftn(x, axes=(1, 2)) # ji_plane
577
+ assert_array_almost_equal(fftn(plane1), y[0])
578
+ assert_array_almost_equal(fftn(plane2), y[1])
579
+ assert_array_almost_equal(fftn(plane3), y[2])
580
+
581
+ y = fftn(x, axes=(-3, -2)) # kj_plane
582
+ assert_array_almost_equal(fftn(x[:, :, 0]), y[:, :, 0])
583
+ assert_array_almost_equal(fftn(x[:, :, 1]), y[:, :, 1])
584
+ assert_array_almost_equal(fftn(x[:, :, 2]), y[:, :, 2])
585
+
586
+ y = fftn(x, axes=(-3, -1)) # ki_plane
587
+ assert_array_almost_equal(fftn(x[:, 0, :]), y[:, 0, :])
588
+ assert_array_almost_equal(fftn(x[:, 1, :]), y[:, 1, :])
589
+ assert_array_almost_equal(fftn(x[:, 2, :]), y[:, 2, :])
590
+
591
+ y = fftn(x, axes=(-1, -2)) # ij_plane
592
+ assert_array_almost_equal(fftn(ij_plane1), swapaxes(y[0], -2, -1))
593
+ assert_array_almost_equal(fftn(ij_plane2), swapaxes(y[1], -2, -1))
594
+ assert_array_almost_equal(fftn(ij_plane3), swapaxes(y[2], -2, -1))
595
+
596
+ y = fftn(x, axes=(-1, -3)) # ik_plane
597
+ assert_array_almost_equal(fftn(ik_plane1),
598
+ swapaxes(y[:, 0, :], -1, -2))
599
+ assert_array_almost_equal(fftn(ik_plane2),
600
+ swapaxes(y[:, 1, :], -1, -2))
601
+ assert_array_almost_equal(fftn(ik_plane3),
602
+ swapaxes(y[:, 2, :], -1, -2))
603
+
604
+ y = fftn(x, axes=(-2, -3)) # jk_plane
605
+ assert_array_almost_equal(fftn(jk_plane1),
606
+ swapaxes(y[:, :, 0], -1, -2))
607
+ assert_array_almost_equal(fftn(jk_plane2),
608
+ swapaxes(y[:, :, 1], -1, -2))
609
+ assert_array_almost_equal(fftn(jk_plane3),
610
+ swapaxes(y[:, :, 2], -1, -2))
611
+
612
+ y = fftn(x, axes=(-1,)) # i_line
613
+ for i in range(3):
614
+ for j in range(3):
615
+ assert_array_almost_equal(fft(x[i, j, :]), y[i, j, :])
616
+ y = fftn(x, axes=(-2,)) # j_line
617
+ for i in range(3):
618
+ for j in range(3):
619
+ assert_array_almost_equal(fft(x[i, :, j]), y[i, :, j])
620
+ y = fftn(x, axes=(0,)) # k_line
621
+ for i in range(3):
622
+ for j in range(3):
623
+ assert_array_almost_equal(fft(x[:, i, j]), y[:, i, j])
624
+
625
+ y = fftn(x, axes=()) # point
626
+ assert_array_almost_equal(y, x)
627
+
628
+ def test_shape_argument(self):
629
+ small_x = [[1, 2, 3],
630
+ [4, 5, 6]]
631
+ large_x1 = [[1, 2, 3, 0],
632
+ [4, 5, 6, 0],
633
+ [0, 0, 0, 0],
634
+ [0, 0, 0, 0]]
635
+
636
+ y = fftn(small_x, shape=(4, 4))
637
+ assert_array_almost_equal(y, fftn(large_x1))
638
+
639
+ y = fftn(small_x, shape=(3, 4))
640
+ assert_array_almost_equal(y, fftn(large_x1[:-1]))
641
+
642
+ def test_shape_axes_argument(self):
643
+ small_x = [[1, 2, 3],
644
+ [4, 5, 6],
645
+ [7, 8, 9]]
646
+ large_x1 = array([[1, 2, 3, 0],
647
+ [4, 5, 6, 0],
648
+ [7, 8, 9, 0],
649
+ [0, 0, 0, 0]])
650
+ y = fftn(small_x, shape=(4, 4), axes=(-2, -1))
651
+ assert_array_almost_equal(y, fftn(large_x1))
652
+ y = fftn(small_x, shape=(4, 4), axes=(-1, -2))
653
+
654
+ assert_array_almost_equal(y, swapaxes(
655
+ fftn(swapaxes(large_x1, -1, -2)), -1, -2))
656
+
657
+ def test_shape_axes_argument2(self):
658
+ # Change shape of the last axis
659
+ x = numpy.random.random((10, 5, 3, 7))
660
+ y = fftn(x, axes=(-1,), shape=(8,))
661
+ assert_array_almost_equal(y, fft(x, axis=-1, n=8))
662
+
663
+ # Change shape of an arbitrary axis which is not the last one
664
+ x = numpy.random.random((10, 5, 3, 7))
665
+ y = fftn(x, axes=(-2,), shape=(8,))
666
+ assert_array_almost_equal(y, fft(x, axis=-2, n=8))
667
+
668
+ # Change shape of axes: cf #244, where shape and axes were mixed up
669
+ x = numpy.random.random((4, 4, 2))
670
+ y = fftn(x, axes=(-3, -2), shape=(8, 8))
671
+ assert_array_almost_equal(y,
672
+ numpy.fft.fftn(x, axes=(-3, -2), s=(8, 8)))
673
+
674
+ def test_shape_argument_more(self):
675
+ x = zeros((4, 4, 2))
676
+ with assert_raises(ValueError,
677
+ match="when given, axes and shape arguments"
678
+ " have to be of the same length"):
679
+ fftn(x, shape=(8, 8, 2, 1))
680
+
681
+ def test_invalid_sizes(self):
682
+ with assert_raises(ValueError,
683
+ match="invalid number of data points"
684
+ r" \(\[1, 0\]\) specified"):
685
+ fftn([[]])
686
+
687
+ with assert_raises(ValueError,
688
+ match="invalid number of data points"
689
+ r" \(\[4, -3\]\) specified"):
690
+ fftn([[1, 1], [2, 2]], (4, -3))
691
+
692
+
693
+ class TestIfftn:
694
+ dtype = None
695
+ cdtype = None
696
+
697
+ def setup_method(self):
698
+ np.random.seed(1234)
699
+
700
+ @pytest.mark.parametrize('dtype,cdtype,maxnlp',
701
+ [(np.float64, np.complex128, 2000),
702
+ (np.float32, np.complex64, 3500)])
703
+ def test_definition(self, dtype, cdtype, maxnlp):
704
+ x = np.array([[1, 2, 3],
705
+ [4, 5, 6],
706
+ [7, 8, 9]], dtype=dtype)
707
+ y = ifftn(x)
708
+ assert_equal(y.dtype, cdtype)
709
+ assert_array_almost_equal_nulp(y, direct_idftn(x), maxnlp)
710
+
711
+ x = random((20, 26))
712
+ assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp)
713
+
714
+ x = random((5, 4, 3, 20))
715
+ assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp)
716
+
717
+ @pytest.mark.parametrize('maxnlp', [2000, 3500])
718
+ @pytest.mark.parametrize('size', [1, 2, 51, 32, 64, 92])
719
+ def test_random_complex(self, maxnlp, size):
720
+ x = random([size, size]) + 1j*random([size, size])
721
+ assert_array_almost_equal_nulp(ifftn(fftn(x)), x, maxnlp)
722
+ assert_array_almost_equal_nulp(fftn(ifftn(x)), x, maxnlp)
723
+
724
+ def test_invalid_sizes(self):
725
+ with assert_raises(ValueError,
726
+ match="invalid number of data points"
727
+ r" \(\[1, 0\]\) specified"):
728
+ ifftn([[]])
729
+
730
+ with assert_raises(ValueError,
731
+ match="invalid number of data points"
732
+ r" \(\[4, -3\]\) specified"):
733
+ ifftn([[1, 1], [2, 2]], (4, -3))
734
+
735
+
736
+ class FakeArray:
737
+ def __init__(self, data):
738
+ self._data = data
739
+ self.__array_interface__ = data.__array_interface__
740
+
741
+
742
+ class FakeArray2:
743
+ def __init__(self, data):
744
+ self._data = data
745
+
746
+ def __array__(self, dtype=None, copy=None):
747
+ return self._data
748
+
749
+
750
+ class TestOverwrite:
751
+ """Check input overwrite behavior of the FFT functions."""
752
+
753
+ real_dtypes = (np.float32, np.float64)
754
+ dtypes = real_dtypes + (np.complex64, np.complex128)
755
+ fftsizes = [8, 16, 32]
756
+
757
+ def _check(self, x, routine, fftsize, axis, overwrite_x):
758
+ x2 = x.copy()
759
+ for fake in [lambda x: x, FakeArray, FakeArray2]:
760
+ routine(fake(x2), fftsize, axis, overwrite_x=overwrite_x)
761
+
762
+ sig = "{}({}{!r}, {!r}, axis={!r}, overwrite_x={!r})".format(
763
+ routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x)
764
+ if not overwrite_x:
765
+ assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
766
+
767
+ def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes,
768
+ fftsize, overwrite_x):
769
+ np.random.seed(1234)
770
+ if np.issubdtype(dtype, np.complexfloating):
771
+ data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
772
+ else:
773
+ data = np.random.randn(*shape)
774
+ data = data.astype(dtype)
775
+
776
+ self._check(data, routine, fftsize, axis,
777
+ overwrite_x=overwrite_x)
778
+
779
+ @pytest.mark.parametrize('dtype', dtypes)
780
+ @pytest.mark.parametrize('fftsize', fftsizes)
781
+ @pytest.mark.parametrize('overwrite_x', [True, False])
782
+ @pytest.mark.parametrize('shape,axes', [((16,), -1),
783
+ ((16, 2), 0),
784
+ ((2, 16), 1)])
785
+ def test_fft_ifft(self, dtype, fftsize, overwrite_x, shape, axes):
786
+ overwritable = (np.complex128, np.complex64)
787
+ self._check_1d(fft, dtype, shape, axes, overwritable,
788
+ fftsize, overwrite_x)
789
+ self._check_1d(ifft, dtype, shape, axes, overwritable,
790
+ fftsize, overwrite_x)
791
+
792
+ @pytest.mark.parametrize('dtype', real_dtypes)
793
+ @pytest.mark.parametrize('fftsize', fftsizes)
794
+ @pytest.mark.parametrize('overwrite_x', [True, False])
795
+ @pytest.mark.parametrize('shape,axes', [((16,), -1),
796
+ ((16, 2), 0),
797
+ ((2, 16), 1)])
798
+ def test_rfft_irfft(self, dtype, fftsize, overwrite_x, shape, axes):
799
+ overwritable = self.real_dtypes
800
+ self._check_1d(irfft, dtype, shape, axes, overwritable,
801
+ fftsize, overwrite_x)
802
+ self._check_1d(rfft, dtype, shape, axes, overwritable,
803
+ fftsize, overwrite_x)
804
+
805
+ def _check_nd_one(self, routine, dtype, shape, axes, overwritable_dtypes,
806
+ overwrite_x):
807
+ np.random.seed(1234)
808
+ if np.issubdtype(dtype, np.complexfloating):
809
+ data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
810
+ else:
811
+ data = np.random.randn(*shape)
812
+ data = data.astype(dtype)
813
+
814
+ def fftshape_iter(shp):
815
+ if len(shp) <= 0:
816
+ yield ()
817
+ else:
818
+ for j in (shp[0]//2, shp[0], shp[0]*2):
819
+ for rest in fftshape_iter(shp[1:]):
820
+ yield (j,) + rest
821
+
822
+ if axes is None:
823
+ part_shape = shape
824
+ else:
825
+ part_shape = tuple(np.take(shape, axes))
826
+
827
+ for fftshape in fftshape_iter(part_shape):
828
+ self._check(data, routine, fftshape, axes,
829
+ overwrite_x=overwrite_x)
830
+ if data.ndim > 1:
831
+ self._check(data.T, routine, fftshape, axes,
832
+ overwrite_x=overwrite_x)
833
+
834
+ @pytest.mark.parametrize('dtype', dtypes)
835
+ @pytest.mark.parametrize('overwrite_x', [True, False])
836
+ @pytest.mark.parametrize('shape,axes', [((16,), None),
837
+ ((16,), (0,)),
838
+ ((16, 2), (0,)),
839
+ ((2, 16), (1,)),
840
+ ((8, 16), None),
841
+ ((8, 16), (0, 1)),
842
+ ((8, 16, 2), (0, 1)),
843
+ ((8, 16, 2), (1, 2)),
844
+ ((8, 16, 2), (0,)),
845
+ ((8, 16, 2), (1,)),
846
+ ((8, 16, 2), (2,)),
847
+ ((8, 16, 2), None),
848
+ ((8, 16, 2), (0, 1, 2))])
849
+ def test_fftn_ifftn(self, dtype, overwrite_x, shape, axes):
850
+ overwritable = (np.complex128, np.complex64)
851
+ self._check_nd_one(fftn, dtype, shape, axes, overwritable,
852
+ overwrite_x)
853
+ self._check_nd_one(ifftn, dtype, shape, axes, overwritable,
854
+ overwrite_x)
855
+
856
+
857
+ @pytest.mark.parametrize('func', [fftn, ifftn, fft2])
858
+ def test_shape_axes_ndarray(func):
859
+ # Test fftn and ifftn work with NumPy arrays for shape and axes arguments
860
+ # Regression test for gh-13342
861
+ a = np.random.rand(10, 10)
862
+
863
+ expect = func(a, shape=(5, 5))
864
+ actual = func(a, shape=np.array([5, 5]))
865
+ assert_equal(expect, actual)
866
+
867
+ expect = func(a, axes=(-1,))
868
+ actual = func(a, axes=np.array([-1,]))
869
+ assert_equal(expect, actual)
870
+
871
+ expect = func(a, shape=(4, 7), axes=(1, 0))
872
+ actual = func(a, shape=np.array([4, 7]), axes=np.array([1, 0]))
873
+ assert_equal(expect, actual)
venv/lib/python3.10/site-packages/scipy/fftpack/tests/test_helper.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Created by Pearu Peterson, September 2002
2
+
3
+ __usage__ = """
4
+ Build fftpack:
5
+ python setup_fftpack.py build
6
+ Run tests if scipy is installed:
7
+ python -c 'import scipy;scipy.fftpack.test(<level>)'
8
+ Run tests if fftpack is not installed:
9
+ python tests/test_helper.py [<level>]
10
+ """
11
+
12
+ from numpy.testing import assert_array_almost_equal
13
+ from scipy.fftpack import fftshift, ifftshift, fftfreq, rfftfreq
14
+
15
+ from numpy import pi, random
16
+
17
+ class TestFFTShift:
18
+
19
+ def test_definition(self):
20
+ x = [0,1,2,3,4,-4,-3,-2,-1]
21
+ y = [-4,-3,-2,-1,0,1,2,3,4]
22
+ assert_array_almost_equal(fftshift(x),y)
23
+ assert_array_almost_equal(ifftshift(y),x)
24
+ x = [0,1,2,3,4,-5,-4,-3,-2,-1]
25
+ y = [-5,-4,-3,-2,-1,0,1,2,3,4]
26
+ assert_array_almost_equal(fftshift(x),y)
27
+ assert_array_almost_equal(ifftshift(y),x)
28
+
29
+ def test_inverse(self):
30
+ for n in [1,4,9,100,211]:
31
+ x = random.random((n,))
32
+ assert_array_almost_equal(ifftshift(fftshift(x)),x)
33
+
34
+
35
+ class TestFFTFreq:
36
+
37
+ def test_definition(self):
38
+ x = [0,1,2,3,4,-4,-3,-2,-1]
39
+ assert_array_almost_equal(9*fftfreq(9),x)
40
+ assert_array_almost_equal(9*pi*fftfreq(9,pi),x)
41
+ x = [0,1,2,3,4,-5,-4,-3,-2,-1]
42
+ assert_array_almost_equal(10*fftfreq(10),x)
43
+ assert_array_almost_equal(10*pi*fftfreq(10,pi),x)
44
+
45
+
46
+ class TestRFFTFreq:
47
+
48
+ def test_definition(self):
49
+ x = [0,1,1,2,2,3,3,4,4]
50
+ assert_array_almost_equal(9*rfftfreq(9),x)
51
+ assert_array_almost_equal(9*pi*rfftfreq(9,pi),x)
52
+ x = [0,1,1,2,2,3,3,4,4,5]
53
+ assert_array_almost_equal(10*rfftfreq(10),x)
54
+ assert_array_almost_equal(10*pi*rfftfreq(10,pi),x)
venv/lib/python3.10/site-packages/scipy/fftpack/tests/test_import.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Test possibility of patching fftpack with pyfftw.
2
+
3
+ No module source outside of scipy.fftpack should contain an import of
4
+ the form `from scipy.fftpack import ...`, so that a simple replacement
5
+ of scipy.fftpack by the corresponding fftw interface completely swaps
6
+ the two FFT implementations.
7
+
8
+ Because this simply inspects source files, we only need to run the test
9
+ on one version of Python.
10
+ """
11
+
12
+
13
+ from pathlib import Path
14
+ import re
15
+ import tokenize
16
+ from numpy.testing import assert_
17
+ import scipy
18
+
19
+ class TestFFTPackImport:
20
+ def test_fftpack_import(self):
21
+ base = Path(scipy.__file__).parent
22
+ regexp = r"\s*from.+\.fftpack import .*\n"
23
+ for path in base.rglob("*.py"):
24
+ if base / "fftpack" in path.parents:
25
+ continue
26
+ # use tokenize to auto-detect encoding on systems where no
27
+ # default encoding is defined (e.g., LANG='C')
28
+ with tokenize.open(str(path)) as file:
29
+ assert_(all(not re.fullmatch(regexp, line)
30
+ for line in file),
31
+ f"{path} contains an import from fftpack")
venv/lib/python3.10/site-packages/scipy/fftpack/tests/test_pseudo_diffs.py ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Created by Pearu Peterson, September 2002
2
+
3
+ __usage__ = """
4
+ Build fftpack:
5
+ python setup_fftpack.py build
6
+ Run tests if scipy is installed:
7
+ python -c 'import scipy;scipy.fftpack.test(<level>)'
8
+ Run tests if fftpack is not installed:
9
+ python tests/test_pseudo_diffs.py [<level>]
10
+ """
11
+
12
+ from numpy.testing import (assert_equal, assert_almost_equal,
13
+ assert_array_almost_equal)
14
+ from scipy.fftpack import (diff, fft, ifft, tilbert, itilbert, hilbert,
15
+ ihilbert, shift, fftfreq, cs_diff, sc_diff,
16
+ ss_diff, cc_diff)
17
+
18
+ import numpy as np
19
+ from numpy import arange, sin, cos, pi, exp, tanh, sum, sign
20
+ from numpy.random import random
21
+
22
+
23
+ def direct_diff(x,k=1,period=None):
24
+ fx = fft(x)
25
+ n = len(fx)
26
+ if period is None:
27
+ period = 2*pi
28
+ w = fftfreq(n)*2j*pi/period*n
29
+ if k < 0:
30
+ w = 1 / w**k
31
+ w[0] = 0.0
32
+ else:
33
+ w = w**k
34
+ if n > 2000:
35
+ w[250:n-250] = 0.0
36
+ return ifft(w*fx).real
37
+
38
+
39
+ def direct_tilbert(x,h=1,period=None):
40
+ fx = fft(x)
41
+ n = len(fx)
42
+ if period is None:
43
+ period = 2*pi
44
+ w = fftfreq(n)*h*2*pi/period*n
45
+ w[0] = 1
46
+ w = 1j/tanh(w)
47
+ w[0] = 0j
48
+ return ifft(w*fx)
49
+
50
+
51
+ def direct_itilbert(x,h=1,period=None):
52
+ fx = fft(x)
53
+ n = len(fx)
54
+ if period is None:
55
+ period = 2*pi
56
+ w = fftfreq(n)*h*2*pi/period*n
57
+ w = -1j*tanh(w)
58
+ return ifft(w*fx)
59
+
60
+
61
+ def direct_hilbert(x):
62
+ fx = fft(x)
63
+ n = len(fx)
64
+ w = fftfreq(n)*n
65
+ w = 1j*sign(w)
66
+ return ifft(w*fx)
67
+
68
+
69
+ def direct_ihilbert(x):
70
+ return -direct_hilbert(x)
71
+
72
+
73
+ def direct_shift(x,a,period=None):
74
+ n = len(x)
75
+ if period is None:
76
+ k = fftfreq(n)*1j*n
77
+ else:
78
+ k = fftfreq(n)*2j*pi/period*n
79
+ return ifft(fft(x)*exp(k*a)).real
80
+
81
+
82
+ class TestDiff:
83
+
84
+ def test_definition(self):
85
+ for n in [16,17,64,127,32]:
86
+ x = arange(n)*2*pi/n
87
+ assert_array_almost_equal(diff(sin(x)),direct_diff(sin(x)))
88
+ assert_array_almost_equal(diff(sin(x),2),direct_diff(sin(x),2))
89
+ assert_array_almost_equal(diff(sin(x),3),direct_diff(sin(x),3))
90
+ assert_array_almost_equal(diff(sin(x),4),direct_diff(sin(x),4))
91
+ assert_array_almost_equal(diff(sin(x),5),direct_diff(sin(x),5))
92
+ assert_array_almost_equal(diff(sin(2*x),3),direct_diff(sin(2*x),3))
93
+ assert_array_almost_equal(diff(sin(2*x),4),direct_diff(sin(2*x),4))
94
+ assert_array_almost_equal(diff(cos(x)),direct_diff(cos(x)))
95
+ assert_array_almost_equal(diff(cos(x),2),direct_diff(cos(x),2))
96
+ assert_array_almost_equal(diff(cos(x),3),direct_diff(cos(x),3))
97
+ assert_array_almost_equal(diff(cos(x),4),direct_diff(cos(x),4))
98
+ assert_array_almost_equal(diff(cos(2*x)),direct_diff(cos(2*x)))
99
+ assert_array_almost_equal(diff(sin(x*n/8)),direct_diff(sin(x*n/8)))
100
+ assert_array_almost_equal(diff(cos(x*n/8)),direct_diff(cos(x*n/8)))
101
+ for k in range(5):
102
+ assert_array_almost_equal(diff(sin(4*x),k),direct_diff(sin(4*x),k))
103
+ assert_array_almost_equal(diff(cos(4*x),k),direct_diff(cos(4*x),k))
104
+
105
+ def test_period(self):
106
+ for n in [17,64]:
107
+ x = arange(n)/float(n)
108
+ assert_array_almost_equal(diff(sin(2*pi*x),period=1),
109
+ 2*pi*cos(2*pi*x))
110
+ assert_array_almost_equal(diff(sin(2*pi*x),3,period=1),
111
+ -(2*pi)**3*cos(2*pi*x))
112
+
113
+ def test_sin(self):
114
+ for n in [32,64,77]:
115
+ x = arange(n)*2*pi/n
116
+ assert_array_almost_equal(diff(sin(x)),cos(x))
117
+ assert_array_almost_equal(diff(cos(x)),-sin(x))
118
+ assert_array_almost_equal(diff(sin(x),2),-sin(x))
119
+ assert_array_almost_equal(diff(sin(x),4),sin(x))
120
+ assert_array_almost_equal(diff(sin(4*x)),4*cos(4*x))
121
+ assert_array_almost_equal(diff(sin(sin(x))),cos(x)*cos(sin(x)))
122
+
123
+ def test_expr(self):
124
+ for n in [64,77,100,128,256,512,1024,2048,4096,8192][:5]:
125
+ x = arange(n)*2*pi/n
126
+ f = sin(x)*cos(4*x)+exp(sin(3*x))
127
+ df = cos(x)*cos(4*x)-4*sin(x)*sin(4*x)+3*cos(3*x)*exp(sin(3*x))
128
+ ddf = -17*sin(x)*cos(4*x)-8*cos(x)*sin(4*x)\
129
+ - 9*sin(3*x)*exp(sin(3*x))+9*cos(3*x)**2*exp(sin(3*x))
130
+ d1 = diff(f)
131
+ assert_array_almost_equal(d1,df)
132
+ assert_array_almost_equal(diff(df),ddf)
133
+ assert_array_almost_equal(diff(f,2),ddf)
134
+ assert_array_almost_equal(diff(ddf,-1),df)
135
+
136
+ def test_expr_large(self):
137
+ for n in [2048,4096]:
138
+ x = arange(n)*2*pi/n
139
+ f = sin(x)*cos(4*x)+exp(sin(3*x))
140
+ df = cos(x)*cos(4*x)-4*sin(x)*sin(4*x)+3*cos(3*x)*exp(sin(3*x))
141
+ ddf = -17*sin(x)*cos(4*x)-8*cos(x)*sin(4*x)\
142
+ - 9*sin(3*x)*exp(sin(3*x))+9*cos(3*x)**2*exp(sin(3*x))
143
+ assert_array_almost_equal(diff(f),df)
144
+ assert_array_almost_equal(diff(df),ddf)
145
+ assert_array_almost_equal(diff(ddf,-1),df)
146
+ assert_array_almost_equal(diff(f,2),ddf)
147
+
148
+ def test_int(self):
149
+ n = 64
150
+ x = arange(n)*2*pi/n
151
+ assert_array_almost_equal(diff(sin(x),-1),-cos(x))
152
+ assert_array_almost_equal(diff(sin(x),-2),-sin(x))
153
+ assert_array_almost_equal(diff(sin(x),-4),sin(x))
154
+ assert_array_almost_equal(diff(2*cos(2*x),-1),sin(2*x))
155
+
156
+ def test_random_even(self):
157
+ for k in [0,2,4,6]:
158
+ for n in [60,32,64,56,55]:
159
+ f = random((n,))
160
+ af = sum(f,axis=0)/n
161
+ f = f-af
162
+ # zeroing Nyquist mode:
163
+ f = diff(diff(f,1),-1)
164
+ assert_almost_equal(sum(f,axis=0),0.0)
165
+ assert_array_almost_equal(diff(diff(f,k),-k),f)
166
+ assert_array_almost_equal(diff(diff(f,-k),k),f)
167
+
168
+ def test_random_odd(self):
169
+ for k in [0,1,2,3,4,5,6]:
170
+ for n in [33,65,55]:
171
+ f = random((n,))
172
+ af = sum(f,axis=0)/n
173
+ f = f-af
174
+ assert_almost_equal(sum(f,axis=0),0.0)
175
+ assert_array_almost_equal(diff(diff(f,k),-k),f)
176
+ assert_array_almost_equal(diff(diff(f,-k),k),f)
177
+
178
+ def test_zero_nyquist(self):
179
+ for k in [0,1,2,3,4,5,6]:
180
+ for n in [32,33,64,56,55]:
181
+ f = random((n,))
182
+ af = sum(f,axis=0)/n
183
+ f = f-af
184
+ # zeroing Nyquist mode:
185
+ f = diff(diff(f,1),-1)
186
+ assert_almost_equal(sum(f,axis=0),0.0)
187
+ assert_array_almost_equal(diff(diff(f,k),-k),f)
188
+ assert_array_almost_equal(diff(diff(f,-k),k),f)
189
+
190
+
191
+ class TestTilbert:
192
+
193
+ def test_definition(self):
194
+ for h in [0.1,0.5,1,5.5,10]:
195
+ for n in [16,17,64,127]:
196
+ x = arange(n)*2*pi/n
197
+ y = tilbert(sin(x),h)
198
+ y1 = direct_tilbert(sin(x),h)
199
+ assert_array_almost_equal(y,y1)
200
+ assert_array_almost_equal(tilbert(sin(x),h),
201
+ direct_tilbert(sin(x),h))
202
+ assert_array_almost_equal(tilbert(sin(2*x),h),
203
+ direct_tilbert(sin(2*x),h))
204
+
205
+ def test_random_even(self):
206
+ for h in [0.1,0.5,1,5.5,10]:
207
+ for n in [32,64,56]:
208
+ f = random((n,))
209
+ af = sum(f,axis=0)/n
210
+ f = f-af
211
+ assert_almost_equal(sum(f,axis=0),0.0)
212
+ assert_array_almost_equal(direct_tilbert(direct_itilbert(f,h),h),f)
213
+
214
+ def test_random_odd(self):
215
+ for h in [0.1,0.5,1,5.5,10]:
216
+ for n in [33,65,55]:
217
+ f = random((n,))
218
+ af = sum(f,axis=0)/n
219
+ f = f-af
220
+ assert_almost_equal(sum(f,axis=0),0.0)
221
+ assert_array_almost_equal(itilbert(tilbert(f,h),h),f)
222
+ assert_array_almost_equal(tilbert(itilbert(f,h),h),f)
223
+
224
+
225
+ class TestITilbert:
226
+
227
+ def test_definition(self):
228
+ for h in [0.1,0.5,1,5.5,10]:
229
+ for n in [16,17,64,127]:
230
+ x = arange(n)*2*pi/n
231
+ y = itilbert(sin(x),h)
232
+ y1 = direct_itilbert(sin(x),h)
233
+ assert_array_almost_equal(y,y1)
234
+ assert_array_almost_equal(itilbert(sin(x),h),
235
+ direct_itilbert(sin(x),h))
236
+ assert_array_almost_equal(itilbert(sin(2*x),h),
237
+ direct_itilbert(sin(2*x),h))
238
+
239
+
240
+ class TestHilbert:
241
+
242
+ def test_definition(self):
243
+ for n in [16,17,64,127]:
244
+ x = arange(n)*2*pi/n
245
+ y = hilbert(sin(x))
246
+ y1 = direct_hilbert(sin(x))
247
+ assert_array_almost_equal(y,y1)
248
+ assert_array_almost_equal(hilbert(sin(2*x)),
249
+ direct_hilbert(sin(2*x)))
250
+
251
+ def test_tilbert_relation(self):
252
+ for n in [16,17,64,127]:
253
+ x = arange(n)*2*pi/n
254
+ f = sin(x)+cos(2*x)*sin(x)
255
+ y = hilbert(f)
256
+ y1 = direct_hilbert(f)
257
+ assert_array_almost_equal(y,y1)
258
+ y2 = tilbert(f,h=10)
259
+ assert_array_almost_equal(y,y2)
260
+
261
+ def test_random_odd(self):
262
+ for n in [33,65,55]:
263
+ f = random((n,))
264
+ af = sum(f,axis=0)/n
265
+ f = f-af
266
+ assert_almost_equal(sum(f,axis=0),0.0)
267
+ assert_array_almost_equal(ihilbert(hilbert(f)),f)
268
+ assert_array_almost_equal(hilbert(ihilbert(f)),f)
269
+
270
+ def test_random_even(self):
271
+ for n in [32,64,56]:
272
+ f = random((n,))
273
+ af = sum(f,axis=0)/n
274
+ f = f-af
275
+ # zeroing Nyquist mode:
276
+ f = diff(diff(f,1),-1)
277
+ assert_almost_equal(sum(f,axis=0),0.0)
278
+ assert_array_almost_equal(direct_hilbert(direct_ihilbert(f)),f)
279
+ assert_array_almost_equal(hilbert(ihilbert(f)),f)
280
+
281
+
282
+ class TestIHilbert:
283
+
284
+ def test_definition(self):
285
+ for n in [16,17,64,127]:
286
+ x = arange(n)*2*pi/n
287
+ y = ihilbert(sin(x))
288
+ y1 = direct_ihilbert(sin(x))
289
+ assert_array_almost_equal(y,y1)
290
+ assert_array_almost_equal(ihilbert(sin(2*x)),
291
+ direct_ihilbert(sin(2*x)))
292
+
293
+ def test_itilbert_relation(self):
294
+ for n in [16,17,64,127]:
295
+ x = arange(n)*2*pi/n
296
+ f = sin(x)+cos(2*x)*sin(x)
297
+ y = ihilbert(f)
298
+ y1 = direct_ihilbert(f)
299
+ assert_array_almost_equal(y,y1)
300
+ y2 = itilbert(f,h=10)
301
+ assert_array_almost_equal(y,y2)
302
+
303
+
304
+ class TestShift:
305
+
306
+ def test_definition(self):
307
+ for n in [18,17,64,127,32,2048,256]:
308
+ x = arange(n)*2*pi/n
309
+ for a in [0.1,3]:
310
+ assert_array_almost_equal(shift(sin(x),a),direct_shift(sin(x),a))
311
+ assert_array_almost_equal(shift(sin(x),a),sin(x+a))
312
+ assert_array_almost_equal(shift(cos(x),a),cos(x+a))
313
+ assert_array_almost_equal(shift(cos(2*x)+sin(x),a),
314
+ cos(2*(x+a))+sin(x+a))
315
+ assert_array_almost_equal(shift(exp(sin(x)),a),exp(sin(x+a)))
316
+ assert_array_almost_equal(shift(sin(x),2*pi),sin(x))
317
+ assert_array_almost_equal(shift(sin(x),pi),-sin(x))
318
+ assert_array_almost_equal(shift(sin(x),pi/2),cos(x))
319
+
320
+
321
+ class TestOverwrite:
322
+ """Check input overwrite behavior """
323
+
324
+ real_dtypes = (np.float32, np.float64)
325
+ dtypes = real_dtypes + (np.complex64, np.complex128)
326
+
327
+ def _check(self, x, routine, *args, **kwargs):
328
+ x2 = x.copy()
329
+ routine(x2, *args, **kwargs)
330
+ sig = routine.__name__
331
+ if args:
332
+ sig += repr(args)
333
+ if kwargs:
334
+ sig += repr(kwargs)
335
+ assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
336
+
337
+ def _check_1d(self, routine, dtype, shape, *args, **kwargs):
338
+ np.random.seed(1234)
339
+ if np.issubdtype(dtype, np.complexfloating):
340
+ data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
341
+ else:
342
+ data = np.random.randn(*shape)
343
+ data = data.astype(dtype)
344
+ self._check(data, routine, *args, **kwargs)
345
+
346
+ def test_diff(self):
347
+ for dtype in self.dtypes:
348
+ self._check_1d(diff, dtype, (16,))
349
+
350
+ def test_tilbert(self):
351
+ for dtype in self.dtypes:
352
+ self._check_1d(tilbert, dtype, (16,), 1.6)
353
+
354
+ def test_itilbert(self):
355
+ for dtype in self.dtypes:
356
+ self._check_1d(itilbert, dtype, (16,), 1.6)
357
+
358
+ def test_hilbert(self):
359
+ for dtype in self.dtypes:
360
+ self._check_1d(hilbert, dtype, (16,))
361
+
362
+ def test_cs_diff(self):
363
+ for dtype in self.dtypes:
364
+ self._check_1d(cs_diff, dtype, (16,), 1.0, 4.0)
365
+
366
+ def test_sc_diff(self):
367
+ for dtype in self.dtypes:
368
+ self._check_1d(sc_diff, dtype, (16,), 1.0, 4.0)
369
+
370
+ def test_ss_diff(self):
371
+ for dtype in self.dtypes:
372
+ self._check_1d(ss_diff, dtype, (16,), 1.0, 4.0)
373
+
374
+ def test_cc_diff(self):
375
+ for dtype in self.dtypes:
376
+ self._check_1d(cc_diff, dtype, (16,), 1.0, 4.0)
377
+
378
+ def test_shift(self):
379
+ for dtype in self.dtypes:
380
+ self._check_1d(shift, dtype, (16,), 1.0)
venv/lib/python3.10/site-packages/scipy/fftpack/tests/test_real_transforms.py ADDED
@@ -0,0 +1,815 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from os.path import join, dirname
2
+
3
+ import numpy as np
4
+ from numpy.testing import assert_array_almost_equal, assert_equal
5
+ import pytest
6
+ from pytest import raises as assert_raises
7
+
8
+ from scipy.fftpack._realtransforms import (
9
+ dct, idct, dst, idst, dctn, idctn, dstn, idstn)
10
+
11
+ # Matlab reference data
12
+ MDATA = np.load(join(dirname(__file__), 'test.npz'))
13
+ X = [MDATA['x%d' % i] for i in range(8)]
14
+ Y = [MDATA['y%d' % i] for i in range(8)]
15
+
16
+ # FFTW reference data: the data are organized as follows:
17
+ # * SIZES is an array containing all available sizes
18
+ # * for every type (1, 2, 3, 4) and every size, the array dct_type_size
19
+ # contains the output of the DCT applied to the input np.linspace(0, size-1,
20
+ # size)
21
+ FFTWDATA_DOUBLE = np.load(join(dirname(__file__), 'fftw_double_ref.npz'))
22
+ FFTWDATA_SINGLE = np.load(join(dirname(__file__), 'fftw_single_ref.npz'))
23
+ FFTWDATA_SIZES = FFTWDATA_DOUBLE['sizes']
24
+
25
+
26
+ def fftw_dct_ref(type, size, dt):
27
+ x = np.linspace(0, size-1, size).astype(dt)
28
+ dt = np.result_type(np.float32, dt)
29
+ if dt == np.float64:
30
+ data = FFTWDATA_DOUBLE
31
+ elif dt == np.float32:
32
+ data = FFTWDATA_SINGLE
33
+ else:
34
+ raise ValueError()
35
+ y = (data['dct_%d_%d' % (type, size)]).astype(dt)
36
+ return x, y, dt
37
+
38
+
39
+ def fftw_dst_ref(type, size, dt):
40
+ x = np.linspace(0, size-1, size).astype(dt)
41
+ dt = np.result_type(np.float32, dt)
42
+ if dt == np.float64:
43
+ data = FFTWDATA_DOUBLE
44
+ elif dt == np.float32:
45
+ data = FFTWDATA_SINGLE
46
+ else:
47
+ raise ValueError()
48
+ y = (data['dst_%d_%d' % (type, size)]).astype(dt)
49
+ return x, y, dt
50
+
51
+
52
+ def dct_2d_ref(x, **kwargs):
53
+ """Calculate reference values for testing dct2."""
54
+ x = np.array(x, copy=True)
55
+ for row in range(x.shape[0]):
56
+ x[row, :] = dct(x[row, :], **kwargs)
57
+ for col in range(x.shape[1]):
58
+ x[:, col] = dct(x[:, col], **kwargs)
59
+ return x
60
+
61
+
62
+ def idct_2d_ref(x, **kwargs):
63
+ """Calculate reference values for testing idct2."""
64
+ x = np.array(x, copy=True)
65
+ for row in range(x.shape[0]):
66
+ x[row, :] = idct(x[row, :], **kwargs)
67
+ for col in range(x.shape[1]):
68
+ x[:, col] = idct(x[:, col], **kwargs)
69
+ return x
70
+
71
+
72
+ def dst_2d_ref(x, **kwargs):
73
+ """Calculate reference values for testing dst2."""
74
+ x = np.array(x, copy=True)
75
+ for row in range(x.shape[0]):
76
+ x[row, :] = dst(x[row, :], **kwargs)
77
+ for col in range(x.shape[1]):
78
+ x[:, col] = dst(x[:, col], **kwargs)
79
+ return x
80
+
81
+
82
+ def idst_2d_ref(x, **kwargs):
83
+ """Calculate reference values for testing idst2."""
84
+ x = np.array(x, copy=True)
85
+ for row in range(x.shape[0]):
86
+ x[row, :] = idst(x[row, :], **kwargs)
87
+ for col in range(x.shape[1]):
88
+ x[:, col] = idst(x[:, col], **kwargs)
89
+ return x
90
+
91
+
92
+ def naive_dct1(x, norm=None):
93
+ """Calculate textbook definition version of DCT-I."""
94
+ x = np.array(x, copy=True)
95
+ N = len(x)
96
+ M = N-1
97
+ y = np.zeros(N)
98
+ m0, m = 1, 2
99
+ if norm == 'ortho':
100
+ m0 = np.sqrt(1.0/M)
101
+ m = np.sqrt(2.0/M)
102
+ for k in range(N):
103
+ for n in range(1, N-1):
104
+ y[k] += m*x[n]*np.cos(np.pi*n*k/M)
105
+ y[k] += m0 * x[0]
106
+ y[k] += m0 * x[N-1] * (1 if k % 2 == 0 else -1)
107
+ if norm == 'ortho':
108
+ y[0] *= 1/np.sqrt(2)
109
+ y[N-1] *= 1/np.sqrt(2)
110
+ return y
111
+
112
+
113
+ def naive_dst1(x, norm=None):
114
+ """Calculate textbook definition version of DST-I."""
115
+ x = np.array(x, copy=True)
116
+ N = len(x)
117
+ M = N+1
118
+ y = np.zeros(N)
119
+ for k in range(N):
120
+ for n in range(N):
121
+ y[k] += 2*x[n]*np.sin(np.pi*(n+1.0)*(k+1.0)/M)
122
+ if norm == 'ortho':
123
+ y *= np.sqrt(0.5/M)
124
+ return y
125
+
126
+
127
+ def naive_dct4(x, norm=None):
128
+ """Calculate textbook definition version of DCT-IV."""
129
+ x = np.array(x, copy=True)
130
+ N = len(x)
131
+ y = np.zeros(N)
132
+ for k in range(N):
133
+ for n in range(N):
134
+ y[k] += x[n]*np.cos(np.pi*(n+0.5)*(k+0.5)/(N))
135
+ if norm == 'ortho':
136
+ y *= np.sqrt(2.0/N)
137
+ else:
138
+ y *= 2
139
+ return y
140
+
141
+
142
+ def naive_dst4(x, norm=None):
143
+ """Calculate textbook definition version of DST-IV."""
144
+ x = np.array(x, copy=True)
145
+ N = len(x)
146
+ y = np.zeros(N)
147
+ for k in range(N):
148
+ for n in range(N):
149
+ y[k] += x[n]*np.sin(np.pi*(n+0.5)*(k+0.5)/(N))
150
+ if norm == 'ortho':
151
+ y *= np.sqrt(2.0/N)
152
+ else:
153
+ y *= 2
154
+ return y
155
+
156
+
157
+ class TestComplex:
158
+ def test_dct_complex64(self):
159
+ y = dct(1j*np.arange(5, dtype=np.complex64))
160
+ x = 1j*dct(np.arange(5))
161
+ assert_array_almost_equal(x, y)
162
+
163
+ def test_dct_complex(self):
164
+ y = dct(np.arange(5)*1j)
165
+ x = 1j*dct(np.arange(5))
166
+ assert_array_almost_equal(x, y)
167
+
168
+ def test_idct_complex(self):
169
+ y = idct(np.arange(5)*1j)
170
+ x = 1j*idct(np.arange(5))
171
+ assert_array_almost_equal(x, y)
172
+
173
+ def test_dst_complex64(self):
174
+ y = dst(np.arange(5, dtype=np.complex64)*1j)
175
+ x = 1j*dst(np.arange(5))
176
+ assert_array_almost_equal(x, y)
177
+
178
+ def test_dst_complex(self):
179
+ y = dst(np.arange(5)*1j)
180
+ x = 1j*dst(np.arange(5))
181
+ assert_array_almost_equal(x, y)
182
+
183
+ def test_idst_complex(self):
184
+ y = idst(np.arange(5)*1j)
185
+ x = 1j*idst(np.arange(5))
186
+ assert_array_almost_equal(x, y)
187
+
188
+
189
+ class _TestDCTBase:
190
+ def setup_method(self):
191
+ self.rdt = None
192
+ self.dec = 14
193
+ self.type = None
194
+
195
+ def test_definition(self):
196
+ for i in FFTWDATA_SIZES:
197
+ x, yr, dt = fftw_dct_ref(self.type, i, self.rdt)
198
+ y = dct(x, type=self.type)
199
+ assert_equal(y.dtype, dt)
200
+ # XXX: we divide by np.max(y) because the tests fail otherwise. We
201
+ # should really use something like assert_array_approx_equal. The
202
+ # difference is due to fftw using a better algorithm w.r.t error
203
+ # propagation compared to the ones from fftpack.
204
+ assert_array_almost_equal(y / np.max(y), yr / np.max(y), decimal=self.dec,
205
+ err_msg="Size %d failed" % i)
206
+
207
+ def test_axis(self):
208
+ nt = 2
209
+ for i in [7, 8, 9, 16, 32, 64]:
210
+ x = np.random.randn(nt, i)
211
+ y = dct(x, type=self.type)
212
+ for j in range(nt):
213
+ assert_array_almost_equal(y[j], dct(x[j], type=self.type),
214
+ decimal=self.dec)
215
+
216
+ x = x.T
217
+ y = dct(x, axis=0, type=self.type)
218
+ for j in range(nt):
219
+ assert_array_almost_equal(y[:,j], dct(x[:,j], type=self.type),
220
+ decimal=self.dec)
221
+
222
+
223
+ class _TestDCTIBase(_TestDCTBase):
224
+ def test_definition_ortho(self):
225
+ # Test orthornomal mode.
226
+ dt = np.result_type(np.float32, self.rdt)
227
+ for xr in X:
228
+ x = np.array(xr, dtype=self.rdt)
229
+ y = dct(x, norm='ortho', type=1)
230
+ y2 = naive_dct1(x, norm='ortho')
231
+ assert_equal(y.dtype, dt)
232
+ assert_array_almost_equal(y / np.max(y), y2 / np.max(y), decimal=self.dec)
233
+
234
+ class _TestDCTIIBase(_TestDCTBase):
235
+ def test_definition_matlab(self):
236
+ # Test correspondence with MATLAB (orthornomal mode).
237
+ dt = np.result_type(np.float32, self.rdt)
238
+ for xr, yr in zip(X, Y):
239
+ x = np.array(xr, dtype=dt)
240
+ y = dct(x, norm="ortho", type=2)
241
+ assert_equal(y.dtype, dt)
242
+ assert_array_almost_equal(y, yr, decimal=self.dec)
243
+
244
+
245
+ class _TestDCTIIIBase(_TestDCTBase):
246
+ def test_definition_ortho(self):
247
+ # Test orthornomal mode.
248
+ dt = np.result_type(np.float32, self.rdt)
249
+ for xr in X:
250
+ x = np.array(xr, dtype=self.rdt)
251
+ y = dct(x, norm='ortho', type=2)
252
+ xi = dct(y, norm="ortho", type=3)
253
+ assert_equal(xi.dtype, dt)
254
+ assert_array_almost_equal(xi, x, decimal=self.dec)
255
+
256
+ class _TestDCTIVBase(_TestDCTBase):
257
+ def test_definition_ortho(self):
258
+ # Test orthornomal mode.
259
+ dt = np.result_type(np.float32, self.rdt)
260
+ for xr in X:
261
+ x = np.array(xr, dtype=self.rdt)
262
+ y = dct(x, norm='ortho', type=4)
263
+ y2 = naive_dct4(x, norm='ortho')
264
+ assert_equal(y.dtype, dt)
265
+ assert_array_almost_equal(y / np.max(y), y2 / np.max(y), decimal=self.dec)
266
+
267
+
268
+ class TestDCTIDouble(_TestDCTIBase):
269
+ def setup_method(self):
270
+ self.rdt = np.float64
271
+ self.dec = 10
272
+ self.type = 1
273
+
274
+
275
+ class TestDCTIFloat(_TestDCTIBase):
276
+ def setup_method(self):
277
+ self.rdt = np.float32
278
+ self.dec = 4
279
+ self.type = 1
280
+
281
+
282
+ class TestDCTIInt(_TestDCTIBase):
283
+ def setup_method(self):
284
+ self.rdt = int
285
+ self.dec = 5
286
+ self.type = 1
287
+
288
+
289
+ class TestDCTIIDouble(_TestDCTIIBase):
290
+ def setup_method(self):
291
+ self.rdt = np.float64
292
+ self.dec = 10
293
+ self.type = 2
294
+
295
+
296
+ class TestDCTIIFloat(_TestDCTIIBase):
297
+ def setup_method(self):
298
+ self.rdt = np.float32
299
+ self.dec = 5
300
+ self.type = 2
301
+
302
+
303
+ class TestDCTIIInt(_TestDCTIIBase):
304
+ def setup_method(self):
305
+ self.rdt = int
306
+ self.dec = 5
307
+ self.type = 2
308
+
309
+
310
+ class TestDCTIIIDouble(_TestDCTIIIBase):
311
+ def setup_method(self):
312
+ self.rdt = np.float64
313
+ self.dec = 14
314
+ self.type = 3
315
+
316
+
317
+ class TestDCTIIIFloat(_TestDCTIIIBase):
318
+ def setup_method(self):
319
+ self.rdt = np.float32
320
+ self.dec = 5
321
+ self.type = 3
322
+
323
+
324
+ class TestDCTIIIInt(_TestDCTIIIBase):
325
+ def setup_method(self):
326
+ self.rdt = int
327
+ self.dec = 5
328
+ self.type = 3
329
+
330
+
331
+ class TestDCTIVDouble(_TestDCTIVBase):
332
+ def setup_method(self):
333
+ self.rdt = np.float64
334
+ self.dec = 12
335
+ self.type = 3
336
+
337
+
338
+ class TestDCTIVFloat(_TestDCTIVBase):
339
+ def setup_method(self):
340
+ self.rdt = np.float32
341
+ self.dec = 5
342
+ self.type = 3
343
+
344
+
345
+ class TestDCTIVInt(_TestDCTIVBase):
346
+ def setup_method(self):
347
+ self.rdt = int
348
+ self.dec = 5
349
+ self.type = 3
350
+
351
+
352
+ class _TestIDCTBase:
353
+ def setup_method(self):
354
+ self.rdt = None
355
+ self.dec = 14
356
+ self.type = None
357
+
358
+ def test_definition(self):
359
+ for i in FFTWDATA_SIZES:
360
+ xr, yr, dt = fftw_dct_ref(self.type, i, self.rdt)
361
+ x = idct(yr, type=self.type)
362
+ if self.type == 1:
363
+ x /= 2 * (i-1)
364
+ else:
365
+ x /= 2 * i
366
+ assert_equal(x.dtype, dt)
367
+ # XXX: we divide by np.max(y) because the tests fail otherwise. We
368
+ # should really use something like assert_array_approx_equal. The
369
+ # difference is due to fftw using a better algorithm w.r.t error
370
+ # propagation compared to the ones from fftpack.
371
+ assert_array_almost_equal(x / np.max(x), xr / np.max(x), decimal=self.dec,
372
+ err_msg="Size %d failed" % i)
373
+
374
+
375
+ class TestIDCTIDouble(_TestIDCTBase):
376
+ def setup_method(self):
377
+ self.rdt = np.float64
378
+ self.dec = 10
379
+ self.type = 1
380
+
381
+
382
+ class TestIDCTIFloat(_TestIDCTBase):
383
+ def setup_method(self):
384
+ self.rdt = np.float32
385
+ self.dec = 4
386
+ self.type = 1
387
+
388
+
389
+ class TestIDCTIInt(_TestIDCTBase):
390
+ def setup_method(self):
391
+ self.rdt = int
392
+ self.dec = 4
393
+ self.type = 1
394
+
395
+
396
+ class TestIDCTIIDouble(_TestIDCTBase):
397
+ def setup_method(self):
398
+ self.rdt = np.float64
399
+ self.dec = 10
400
+ self.type = 2
401
+
402
+
403
+ class TestIDCTIIFloat(_TestIDCTBase):
404
+ def setup_method(self):
405
+ self.rdt = np.float32
406
+ self.dec = 5
407
+ self.type = 2
408
+
409
+
410
+ class TestIDCTIIInt(_TestIDCTBase):
411
+ def setup_method(self):
412
+ self.rdt = int
413
+ self.dec = 5
414
+ self.type = 2
415
+
416
+
417
+ class TestIDCTIIIDouble(_TestIDCTBase):
418
+ def setup_method(self):
419
+ self.rdt = np.float64
420
+ self.dec = 14
421
+ self.type = 3
422
+
423
+
424
+ class TestIDCTIIIFloat(_TestIDCTBase):
425
+ def setup_method(self):
426
+ self.rdt = np.float32
427
+ self.dec = 5
428
+ self.type = 3
429
+
430
+
431
+ class TestIDCTIIIInt(_TestIDCTBase):
432
+ def setup_method(self):
433
+ self.rdt = int
434
+ self.dec = 5
435
+ self.type = 3
436
+
437
+ class TestIDCTIVDouble(_TestIDCTBase):
438
+ def setup_method(self):
439
+ self.rdt = np.float64
440
+ self.dec = 12
441
+ self.type = 4
442
+
443
+
444
+ class TestIDCTIVFloat(_TestIDCTBase):
445
+ def setup_method(self):
446
+ self.rdt = np.float32
447
+ self.dec = 5
448
+ self.type = 4
449
+
450
+
451
+ class TestIDCTIVInt(_TestIDCTBase):
452
+ def setup_method(self):
453
+ self.rdt = int
454
+ self.dec = 5
455
+ self.type = 4
456
+
457
+ class _TestDSTBase:
458
+ def setup_method(self):
459
+ self.rdt = None # dtype
460
+ self.dec = None # number of decimals to match
461
+ self.type = None # dst type
462
+
463
+ def test_definition(self):
464
+ for i in FFTWDATA_SIZES:
465
+ xr, yr, dt = fftw_dst_ref(self.type, i, self.rdt)
466
+ y = dst(xr, type=self.type)
467
+ assert_equal(y.dtype, dt)
468
+ # XXX: we divide by np.max(y) because the tests fail otherwise. We
469
+ # should really use something like assert_array_approx_equal. The
470
+ # difference is due to fftw using a better algorithm w.r.t error
471
+ # propagation compared to the ones from fftpack.
472
+ assert_array_almost_equal(y / np.max(y), yr / np.max(y), decimal=self.dec,
473
+ err_msg="Size %d failed" % i)
474
+
475
+
476
+ class _TestDSTIBase(_TestDSTBase):
477
+ def test_definition_ortho(self):
478
+ # Test orthornomal mode.
479
+ dt = np.result_type(np.float32, self.rdt)
480
+ for xr in X:
481
+ x = np.array(xr, dtype=self.rdt)
482
+ y = dst(x, norm='ortho', type=1)
483
+ y2 = naive_dst1(x, norm='ortho')
484
+ assert_equal(y.dtype, dt)
485
+ assert_array_almost_equal(y / np.max(y), y2 / np.max(y), decimal=self.dec)
486
+
487
+ class _TestDSTIVBase(_TestDSTBase):
488
+ def test_definition_ortho(self):
489
+ # Test orthornomal mode.
490
+ dt = np.result_type(np.float32, self.rdt)
491
+ for xr in X:
492
+ x = np.array(xr, dtype=self.rdt)
493
+ y = dst(x, norm='ortho', type=4)
494
+ y2 = naive_dst4(x, norm='ortho')
495
+ assert_equal(y.dtype, dt)
496
+ assert_array_almost_equal(y, y2, decimal=self.dec)
497
+
498
+ class TestDSTIDouble(_TestDSTIBase):
499
+ def setup_method(self):
500
+ self.rdt = np.float64
501
+ self.dec = 12
502
+ self.type = 1
503
+
504
+
505
+ class TestDSTIFloat(_TestDSTIBase):
506
+ def setup_method(self):
507
+ self.rdt = np.float32
508
+ self.dec = 4
509
+ self.type = 1
510
+
511
+
512
+ class TestDSTIInt(_TestDSTIBase):
513
+ def setup_method(self):
514
+ self.rdt = int
515
+ self.dec = 5
516
+ self.type = 1
517
+
518
+
519
+ class TestDSTIIDouble(_TestDSTBase):
520
+ def setup_method(self):
521
+ self.rdt = np.float64
522
+ self.dec = 14
523
+ self.type = 2
524
+
525
+
526
+ class TestDSTIIFloat(_TestDSTBase):
527
+ def setup_method(self):
528
+ self.rdt = np.float32
529
+ self.dec = 6
530
+ self.type = 2
531
+
532
+
533
+ class TestDSTIIInt(_TestDSTBase):
534
+ def setup_method(self):
535
+ self.rdt = int
536
+ self.dec = 6
537
+ self.type = 2
538
+
539
+
540
+ class TestDSTIIIDouble(_TestDSTBase):
541
+ def setup_method(self):
542
+ self.rdt = np.float64
543
+ self.dec = 14
544
+ self.type = 3
545
+
546
+
547
+ class TestDSTIIIFloat(_TestDSTBase):
548
+ def setup_method(self):
549
+ self.rdt = np.float32
550
+ self.dec = 7
551
+ self.type = 3
552
+
553
+
554
+ class TestDSTIIIInt(_TestDSTBase):
555
+ def setup_method(self):
556
+ self.rdt = int
557
+ self.dec = 7
558
+ self.type = 3
559
+
560
+
561
+ class TestDSTIVDouble(_TestDSTIVBase):
562
+ def setup_method(self):
563
+ self.rdt = np.float64
564
+ self.dec = 12
565
+ self.type = 4
566
+
567
+
568
+ class TestDSTIVFloat(_TestDSTIVBase):
569
+ def setup_method(self):
570
+ self.rdt = np.float32
571
+ self.dec = 4
572
+ self.type = 4
573
+
574
+
575
+ class TestDSTIVInt(_TestDSTIVBase):
576
+ def setup_method(self):
577
+ self.rdt = int
578
+ self.dec = 5
579
+ self.type = 4
580
+
581
+
582
+ class _TestIDSTBase:
583
+ def setup_method(self):
584
+ self.rdt = None
585
+ self.dec = None
586
+ self.type = None
587
+
588
+ def test_definition(self):
589
+ for i in FFTWDATA_SIZES:
590
+ xr, yr, dt = fftw_dst_ref(self.type, i, self.rdt)
591
+ x = idst(yr, type=self.type)
592
+ if self.type == 1:
593
+ x /= 2 * (i+1)
594
+ else:
595
+ x /= 2 * i
596
+ assert_equal(x.dtype, dt)
597
+ # XXX: we divide by np.max(x) because the tests fail otherwise. We
598
+ # should really use something like assert_array_approx_equal. The
599
+ # difference is due to fftw using a better algorithm w.r.t error
600
+ # propagation compared to the ones from fftpack.
601
+ assert_array_almost_equal(x / np.max(x), xr / np.max(x), decimal=self.dec,
602
+ err_msg="Size %d failed" % i)
603
+
604
+
605
+ class TestIDSTIDouble(_TestIDSTBase):
606
+ def setup_method(self):
607
+ self.rdt = np.float64
608
+ self.dec = 12
609
+ self.type = 1
610
+
611
+
612
+ class TestIDSTIFloat(_TestIDSTBase):
613
+ def setup_method(self):
614
+ self.rdt = np.float32
615
+ self.dec = 4
616
+ self.type = 1
617
+
618
+
619
+ class TestIDSTIInt(_TestIDSTBase):
620
+ def setup_method(self):
621
+ self.rdt = int
622
+ self.dec = 4
623
+ self.type = 1
624
+
625
+
626
+ class TestIDSTIIDouble(_TestIDSTBase):
627
+ def setup_method(self):
628
+ self.rdt = np.float64
629
+ self.dec = 14
630
+ self.type = 2
631
+
632
+
633
+ class TestIDSTIIFloat(_TestIDSTBase):
634
+ def setup_method(self):
635
+ self.rdt = np.float32
636
+ self.dec = 6
637
+ self.type = 2
638
+
639
+
640
+ class TestIDSTIIInt(_TestIDSTBase):
641
+ def setup_method(self):
642
+ self.rdt = int
643
+ self.dec = 6
644
+ self.type = 2
645
+
646
+
647
+ class TestIDSTIIIDouble(_TestIDSTBase):
648
+ def setup_method(self):
649
+ self.rdt = np.float64
650
+ self.dec = 14
651
+ self.type = 3
652
+
653
+
654
+ class TestIDSTIIIFloat(_TestIDSTBase):
655
+ def setup_method(self):
656
+ self.rdt = np.float32
657
+ self.dec = 6
658
+ self.type = 3
659
+
660
+
661
+ class TestIDSTIIIInt(_TestIDSTBase):
662
+ def setup_method(self):
663
+ self.rdt = int
664
+ self.dec = 6
665
+ self.type = 3
666
+
667
+
668
+ class TestIDSTIVDouble(_TestIDSTBase):
669
+ def setup_method(self):
670
+ self.rdt = np.float64
671
+ self.dec = 12
672
+ self.type = 4
673
+
674
+
675
+ class TestIDSTIVFloat(_TestIDSTBase):
676
+ def setup_method(self):
677
+ self.rdt = np.float32
678
+ self.dec = 6
679
+ self.type = 4
680
+
681
+
682
+ class TestIDSTIVnt(_TestIDSTBase):
683
+ def setup_method(self):
684
+ self.rdt = int
685
+ self.dec = 6
686
+ self.type = 4
687
+
688
+
689
+ class TestOverwrite:
690
+ """Check input overwrite behavior."""
691
+
692
+ real_dtypes = [np.float32, np.float64]
693
+
694
+ def _check(self, x, routine, type, fftsize, axis, norm, overwrite_x, **kw):
695
+ x2 = x.copy()
696
+ routine(x2, type, fftsize, axis, norm, overwrite_x=overwrite_x)
697
+
698
+ sig = "{}({}{!r}, {!r}, axis={!r}, overwrite_x={!r})".format(
699
+ routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x)
700
+ if not overwrite_x:
701
+ assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
702
+
703
+ def _check_1d(self, routine, dtype, shape, axis):
704
+ np.random.seed(1234)
705
+ if np.issubdtype(dtype, np.complexfloating):
706
+ data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
707
+ else:
708
+ data = np.random.randn(*shape)
709
+ data = data.astype(dtype)
710
+
711
+ for type in [1, 2, 3, 4]:
712
+ for overwrite_x in [True, False]:
713
+ for norm in [None, 'ortho']:
714
+ self._check(data, routine, type, None, axis, norm,
715
+ overwrite_x)
716
+
717
+ def test_dct(self):
718
+ for dtype in self.real_dtypes:
719
+ self._check_1d(dct, dtype, (16,), -1)
720
+ self._check_1d(dct, dtype, (16, 2), 0)
721
+ self._check_1d(dct, dtype, (2, 16), 1)
722
+
723
+ def test_idct(self):
724
+ for dtype in self.real_dtypes:
725
+ self._check_1d(idct, dtype, (16,), -1)
726
+ self._check_1d(idct, dtype, (16, 2), 0)
727
+ self._check_1d(idct, dtype, (2, 16), 1)
728
+
729
+ def test_dst(self):
730
+ for dtype in self.real_dtypes:
731
+ self._check_1d(dst, dtype, (16,), -1)
732
+ self._check_1d(dst, dtype, (16, 2), 0)
733
+ self._check_1d(dst, dtype, (2, 16), 1)
734
+
735
+ def test_idst(self):
736
+ for dtype in self.real_dtypes:
737
+ self._check_1d(idst, dtype, (16,), -1)
738
+ self._check_1d(idst, dtype, (16, 2), 0)
739
+ self._check_1d(idst, dtype, (2, 16), 1)
740
+
741
+
742
+ class Test_DCTN_IDCTN:
743
+ dec = 14
744
+ dct_type = [1, 2, 3, 4]
745
+ norms = [None, 'ortho']
746
+ rstate = np.random.RandomState(1234)
747
+ shape = (32, 16)
748
+ data = rstate.randn(*shape)
749
+
750
+ @pytest.mark.parametrize('fforward,finverse', [(dctn, idctn),
751
+ (dstn, idstn)])
752
+ @pytest.mark.parametrize('axes', [None,
753
+ 1, (1,), [1],
754
+ 0, (0,), [0],
755
+ (0, 1), [0, 1],
756
+ (-2, -1), [-2, -1]])
757
+ @pytest.mark.parametrize('dct_type', dct_type)
758
+ @pytest.mark.parametrize('norm', ['ortho'])
759
+ def test_axes_round_trip(self, fforward, finverse, axes, dct_type, norm):
760
+ tmp = fforward(self.data, type=dct_type, axes=axes, norm=norm)
761
+ tmp = finverse(tmp, type=dct_type, axes=axes, norm=norm)
762
+ assert_array_almost_equal(self.data, tmp, decimal=12)
763
+
764
+ @pytest.mark.parametrize('fforward,fforward_ref', [(dctn, dct_2d_ref),
765
+ (dstn, dst_2d_ref)])
766
+ @pytest.mark.parametrize('dct_type', dct_type)
767
+ @pytest.mark.parametrize('norm', norms)
768
+ def test_dctn_vs_2d_reference(self, fforward, fforward_ref,
769
+ dct_type, norm):
770
+ y1 = fforward(self.data, type=dct_type, axes=None, norm=norm)
771
+ y2 = fforward_ref(self.data, type=dct_type, norm=norm)
772
+ assert_array_almost_equal(y1, y2, decimal=11)
773
+
774
+ @pytest.mark.parametrize('finverse,finverse_ref', [(idctn, idct_2d_ref),
775
+ (idstn, idst_2d_ref)])
776
+ @pytest.mark.parametrize('dct_type', dct_type)
777
+ @pytest.mark.parametrize('norm', [None, 'ortho'])
778
+ def test_idctn_vs_2d_reference(self, finverse, finverse_ref,
779
+ dct_type, norm):
780
+ fdata = dctn(self.data, type=dct_type, norm=norm)
781
+ y1 = finverse(fdata, type=dct_type, norm=norm)
782
+ y2 = finverse_ref(fdata, type=dct_type, norm=norm)
783
+ assert_array_almost_equal(y1, y2, decimal=11)
784
+
785
+ @pytest.mark.parametrize('fforward,finverse', [(dctn, idctn),
786
+ (dstn, idstn)])
787
+ def test_axes_and_shape(self, fforward, finverse):
788
+ with assert_raises(ValueError,
789
+ match="when given, axes and shape arguments"
790
+ " have to be of the same length"):
791
+ fforward(self.data, shape=self.data.shape[0], axes=(0, 1))
792
+
793
+ with assert_raises(ValueError,
794
+ match="when given, axes and shape arguments"
795
+ " have to be of the same length"):
796
+ fforward(self.data, shape=self.data.shape[0], axes=None)
797
+
798
+ with assert_raises(ValueError,
799
+ match="when given, axes and shape arguments"
800
+ " have to be of the same length"):
801
+ fforward(self.data, shape=self.data.shape, axes=0)
802
+
803
+ @pytest.mark.parametrize('fforward', [dctn, dstn])
804
+ def test_shape(self, fforward):
805
+ tmp = fforward(self.data, shape=(128, 128), axes=None)
806
+ assert_equal(tmp.shape, (128, 128))
807
+
808
+ @pytest.mark.parametrize('fforward,finverse', [(dctn, idctn),
809
+ (dstn, idstn)])
810
+ @pytest.mark.parametrize('axes', [1, (1,), [1],
811
+ 0, (0,), [0]])
812
+ def test_shape_is_none_with_axes(self, fforward, finverse, axes):
813
+ tmp = fforward(self.data, shape=None, axes=axes, norm='ortho')
814
+ tmp = finverse(tmp, shape=None, axes=axes, norm='ortho')
815
+ assert_array_almost_equal(self.data, tmp, decimal=self.dec)
venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.98 kB). View file
 
venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/_geometric_slerp.cpython-310.pyc ADDED
Binary file (7.22 kB). View file
 
venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/_kdtree.cpython-310.pyc ADDED
Binary file (34.4 kB). View file
 
venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/_plotutils.cpython-310.pyc ADDED
Binary file (6.68 kB). View file
 
venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/_procrustes.cpython-310.pyc ADDED
Binary file (4.27 kB). View file
 
venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/_spherical_voronoi.cpython-310.pyc ADDED
Binary file (11.9 kB). View file
 
venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/ckdtree.cpython-310.pyc ADDED
Binary file (679 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/distance.cpython-310.pyc ADDED
Binary file (80.5 kB). View file
 
venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/kdtree.cpython-310.pyc ADDED
Binary file (694 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/spatial/__pycache__/qhull.cpython-310.pyc ADDED
Binary file (666 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/spatial/tests/data/cdist-X1.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ 1.147593763490969421e-01 8.926156143344999849e-01 1.437758624645746330e-02 1.803435962879929022e-02 5.533046214065578949e-01 5.554315640747428118e-01 4.497546637814608950e-02 4.438089247948049376e-01 7.984582810220538507e-01 2.752880789161644692e-01 1.344667112315823809e-01 9.230479561452992199e-01 6.040471462941819913e-01 3.797251652770228247e-01 4.316042735592399149e-01 5.312356915348823705e-01 4.348143005129563310e-01 3.111531488508799681e-01 9.531194313908697424e-04 8.212995023500069269e-02 6.689953269869852726e-01 9.914864535288493430e-01 8.037556036341153565e-01
2
+ 9.608925123801395074e-01 2.974451233678974127e-01 9.001110330654185088e-01 5.824163330415995654e-01 7.308574928293812834e-01 2.276154562412870952e-01 7.306791076039623745e-01 8.677244866905511333e-01 9.160806456176984192e-01 6.157216959991280714e-01 5.149053524695440531e-01 3.056427344890983999e-01 9.790557366933895223e-01 4.484995861076724877e-01 4.776550391081165747e-01 7.210436977670631187e-01 9.136399501661039979e-01 4.260275733550000776e-02 5.943900041968954717e-01 3.864571606342745991e-01 9.442027665110838131e-01 4.779949058608601309e-02 6.107551944250865228e-01
3
+ 3.297286578103622023e-01 5.980207401936733502e-01 3.673301293561567205e-01 2.585830520887681949e-01 4.660558746104259686e-01 6.083795956610364986e-01 4.535206368070313632e-01 6.873989778785424276e-01 5.130152688495458468e-01 7.665877846542720198e-01 3.444402973525138023e-01 3.583658123644906102e-02 7.924818220986856732e-01 8.746685720522412444e-01 3.010105569182431884e-01 6.012239357385538163e-01 6.233737362204671006e-01 4.830438698668915176e-01 2.317286885842551047e-02 7.585989958123050547e-01 7.108257632278830451e-01 1.551024884178199281e-01 2.665485998155288083e-01
4
+ 2.456278068903017253e-02 4.148739837711815648e-01 1.986372227934196655e-01 6.920408530298168825e-01 1.003067576685774398e-01 7.421560456480125190e-01 1.808453980608998313e-01 4.251297882537475870e-01 6.773002683522370004e-01 4.084108792570182445e-01 7.462888013191590897e-01 8.069930220529277776e-01 9.211110587681808903e-01 4.141491046181076108e-01 7.486318689260342829e-01 9.515405507589296263e-01 4.634288892577109742e-03 8.027593488166355762e-01 3.010346805217798405e-01 8.663248877242523127e-01 2.479968181181605447e-01 5.619851096054278017e-01 3.903886764590250857e-01
5
+ 7.122019976035700584e-01 6.188878051047785878e-01 7.290897087051201320e-01 6.334802157757637442e-01 5.523084734954342156e-01 5.614937129563645213e-01 2.496741051791574462e-01 5.972227939599233926e-01 1.786590597761109622e-01 2.609525984850900038e-01 7.210438943286010538e-01 2.211429064605652250e-01 9.140497572472672250e-02 1.430242193668443962e-01 7.856446942916397447e-01 4.635256358156553125e-01 5.278744289813760426e-01 3.702808015407184072e-01 5.527073830480792038e-01 6.370732917599846168e-01 9.953487928925482953e-01 3.021789770611936765e-01 3.354901923998221402e-02
6
+ 6.509638560895427695e-01 8.387598220902757751e-01 7.761375971745763103e-01 1.481627639227802717e-01 3.529474982902305324e-01 4.883093646287851586e-01 9.652923033658690199e-01 9.500680513565308294e-01 3.061885005078281985e-01 7.271902818906019750e-01 2.358962978196710303e-03 7.359889703223099211e-01 8.988893768074724955e-01 4.135279653937307121e-02 8.516441856688283796e-01 4.889597623270667270e-01 5.575909822114655245e-01 9.010853652261575641e-01 2.912844516556202246e-01 9.088759383368658629e-01 8.104351227460024898e-01 8.080695436776826890e-01 1.430530913253185155e-01
7
+ 8.048001196608134400e-01 3.066089444418462762e-02 9.021887554292090661e-01 6.154331491807940591e-02 1.378912575206647784e-02 5.775720193142440673e-01 1.219298963069791464e-01 1.883270243412101808e-01 5.569262398688379356e-02 8.964817777510125651e-02 7.977092785346929782e-01 4.878149375226197293e-01 4.511973131518809410e-02 1.858690046801604323e-01 6.947686471083162063e-01 5.884058794291086025e-01 8.638884676612634816e-01 3.855470871341656336e-01 3.495049047300468059e-01 2.767740932353948136e-01 4.731087031714035218e-01 6.679001673437914288e-01 7.502944200696660682e-01
8
+ 6.527328264244687261e-01 8.289483383553154505e-01 9.179741348282299818e-01 1.065639864466713105e-01 6.253616929058514184e-01 5.927750325266062381e-01 3.039157425463192563e-01 2.452766763359194302e-01 6.514027700704632107e-01 5.529218485487964463e-01 4.941158239308394151e-01 6.605306467722642516e-01 2.273688037050677346e-01 4.282616592244774534e-01 2.956128257930247250e-01 1.154803628237965896e-01 9.228220410235263849e-01 6.663525307676617659e-01 1.908852615936970087e-01 9.921383408926374159e-01 4.988716450388516188e-01 1.014900352736023414e-01 3.363930180244284474e-01
9
+ 2.914369076275757919e-01 5.196673601143533272e-01 7.420144907858341465e-01 1.768984185504740569e-01 5.296766993228564369e-01 5.922023566159900776e-01 5.965161262020234334e-01 3.810272333046110793e-01 8.368797246118340194e-01 7.896422363801189892e-01 9.655797561098209414e-01 4.430034032346981121e-01 2.780869795706976122e-01 3.047310845416009162e-01 8.051138863500326703e-01 6.731468634690835895e-01 4.743383036815584930e-01 9.530709614322225853e-01 7.753587619850917934e-01 2.801137109357491051e-01 6.182543660889736614e-01 5.005218857766725593e-01 9.071447804755052857e-01
10
+ 2.075071644012620453e-01 4.834950086973934802e-01 3.037011473860764532e-01 6.476084284887700937e-01 8.107195771564194020e-01 7.869075869075803364e-01 6.851234019375299633e-01 3.544187468104398331e-02 4.847673235908021017e-01 5.690262846164507726e-01 1.663354142616256803e-01 9.692796809752548537e-01 4.133441725866372485e-01 6.729167604487583665e-01 3.998813427407297283e-01 8.272617414104491695e-01 2.129248316324727774e-01 6.517004761357130249e-01 7.363013506605019520e-01 4.072375306356985636e-01 4.463336683526665238e-01 5.485059309728204102e-01 1.981745754527846071e-01
venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-boolean-inp.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
2
+ 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
3
+ 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
4
+ 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
5
+ 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
6
+ 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
7
+ 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
8
+ 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
9
+ 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
10
+ 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
11
+ 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
12
+ 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
13
+ 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00
14
+ 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
15
+ 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
16
+ 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00
17
+ 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
18
+ 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
19
+ 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
20
+ 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-chebyshev-ml.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 8.9084734e-01 9.3573853e-01 9.3507398e-01 9.6040691e-01 9.2918157e-01 9.6617342e-01 9.0430930e-01 9.5753424e-01 8.7106898e-01 9.2169905e-01 9.7401159e-01 8.9013416e-01 9.3956689e-01 9.0041896e-01 9.2588355e-01 9.3849417e-01 8.9713468e-01 9.1481804e-01 9.7500539e-01 9.0012586e-01 9.0962559e-01 8.5860091e-01 8.6981095e-01 8.9995771e-01 8.8070172e-01 9.1456657e-01 8.6711474e-01 9.2593917e-01 8.7560376e-01 8.5193121e-01 9.0898542e-01 8.7765302e-01 8.6555584e-01 8.6093485e-01 9.0447028e-01 8.7614405e-01 9.4803522e-01 8.4998062e-01 7.8398996e-01 8.9538612e-01 8.3902291e-01 9.9039470e-01 9.5480519e-01 8.9152195e-01 9.1623329e-01 7.9094921e-01 9.1777100e-01 9.8972335e-01 9.0429093e-01 8.7646362e-01 9.2136649e-01 9.7178177e-01 8.9610979e-01 9.4710327e-01 9.3612450e-01 9.0241499e-01 7.7992538e-01 8.7262126e-01 9.3325183e-01 8.5796531e-01 9.4267977e-01 6.7224167e-01 7.9568368e-01 8.6411267e-01 9.3311642e-01 9.0160114e-01 9.0698887e-01 8.5833256e-01 9.6902830e-01 9.5072298e-01 8.6808495e-01 9.7879599e-01 8.8060729e-01 8.2818573e-01 8.4366706e-01 8.4506700e-01 9.4532981e-01 9.1792306e-01 7.8917825e-01 9.8337805e-01 8.1751613e-01 9.3037855e-01 9.1618832e-01 8.6568874e-01 8.9751397e-01 8.7923710e-01 8.6814329e-01 9.0330164e-01 8.2426213e-01 9.4644643e-01 8.8431293e-01 8.8497426e-01 9.0633818e-01 9.5537161e-01 8.2167575e-01 8.7771053e-01 9.0681167e-01 8.7626143e-01 8.7463464e-01 9.8033940e-01 9.2920881e-01 9.5108549e-01 9.1287466e-01 8.0052218e-01 9.2409517e-01 8.8252650e-01 8.7873923e-01 9.2989402e-01 9.1985043e-01 9.6172646e-01 8.8223856e-01 9.4477822e-01 8.8310948e-01 9.4461306e-01 9.1875210e-01 9.1233363e-01 9.2124013e-01 9.5460897e-01 8.4640982e-01 9.0882657e-01 9.8169468e-01 9.7828355e-01 8.4150533e-01 8.6888923e-01 9.7138825e-01 8.7988144e-01 9.6720910e-01 8.9450147e-01 9.5331584e-01 8.8871809e-01 8.9736685e-01 8.6258146e-01 9.1331565e-01 9.0968870e-01 9.4833654e-01 9.0536967e-01 9.5099871e-01 8.0251958e-01 9.2526150e-01 9.8971957e-01 9.0340947e-01 9.4955892e-01 9.6838162e-01 8.7534901e-01 9.1178797e-01 9.2649154e-01 9.5260993e-01 9.3178143e-01 9.4943000e-01 8.7816171e-01 9.6506542e-01 8.3422958e-01 9.3443585e-01 9.3220084e-01 8.5706573e-01 8.4666325e-01 9.0474744e-01 9.1080644e-01 9.2406899e-01 8.7901768e-01 9.3265263e-01 9.5992829e-01 9.5696271e-01 9.1932272e-01 8.0937044e-01 9.0904917e-01 8.9516756e-01 9.4797906e-01 8.4159421e-01 9.6773901e-01 9.7099825e-01 9.6941820e-01 9.8174088e-01 9.7569951e-01 9.3655362e-01 8.4130333e-01 9.5994549e-01 8.4235414e-01 9.1429418e-01 9.3418117e-01 8.4600977e-01 8.8166496e-01 8.7594776e-01 8.8571112e-01 9.6308174e-01 9.5315927e-01 8.6997519e-01 8.9383032e-01 9.4686804e-01 9.4399596e-01
venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cityblock-ml.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 3.2420590e+01 3.3246607e+01 3.0526910e+01 3.5166573e+01 3.1868301e+01 3.6025002e+01 3.2513623e+01 3.6557796e+01 3.3752212e+01 3.4422130e+01 3.2526018e+01 3.2581161e+01 3.3743555e+01 3.6960777e+01 3.4225270e+01 3.2965308e+01 3.4591031e+01 3.4204203e+01 3.4678123e+01 3.5728720e+01 3.0830047e+01 3.1550681e+01 3.3304790e+01 3.2676753e+01 3.2742330e+01 3.1684556e+01 3.2830915e+01 3.2956614e+01 2.7365639e+01 3.3207307e+01 3.3420925e+01 3.4357941e+01 2.8280126e+01 3.4523458e+01 3.2705274e+01 3.2455891e+01 3.1636060e+01 3.1594957e+01 3.1805202e+01 3.3886574e+01 3.3438829e+01 3.3330030e+01 3.4168514e+01 3.0637353e+01 4.2149167e+01 3.6340559e+01 2.9315308e+01 3.5778314e+01 3.7693050e+01 3.2598714e+01 3.2990836e+01 3.4967659e+01 3.9748920e+01 3.6745043e+01 2.7117550e+01 3.6014760e+01 2.9367558e+01 3.3845350e+01 3.5477339e+01 3.1513372e+01 3.2517953e+01 2.4755097e+01 3.0229897e+01 3.4799343e+01 3.3371710e+01 2.9600910e+01 3.3275088e+01 3.3567110e+01 3.4527016e+01 3.4942320e+01 3.2359383e+01 3.2607100e+01 3.1467914e+01 2.9032039e+01 3.3122878e+01 2.8496709e+01 2.9908448e+01 2.9962886e+01 3.0345299e+01 3.1737613e+01 2.8551485e+01 3.2610551e+01 3.3082660e+01 3.3719298e+01 3.6434018e+01 3.6589278e+01 3.3889586e+01 3.8036774e+01 3.1483497e+01 3.4196794e+01 3.5154035e+01 3.5488608e+01 3.6143183e+01 3.3473491e+01 3.4686446e+01 2.8687495e+01 3.5725742e+01 3.0188298e+01 3.3084534e+01 3.3538519e+01 3.6226849e+01 2.9052099e+01 3.6032733e+01 3.0811503e+01 3.2616190e+01 3.3888566e+01 3.3074570e+01 2.9683515e+01 3.0600771e+01 3.4345247e+01 3.6983843e+01 3.3692824e+01 3.3762461e+01 3.4024582e+01 3.3698854e+01 3.1238613e+01 3.4978833e+01 3.4991078e+01 3.4577741e+01 3.3749227e+01 3.4982272e+01 3.0487868e+01 3.2317632e+01 3.1125588e+01 3.4413791e+01 3.1881871e+01 3.1373821e+01 3.0416864e+01 3.2066187e+01 3.1128313e+01 3.0240249e+01 3.0125198e+01 3.1343454e+01 3.5479092e+01 3.4450767e+01 3.2953507e+01 3.4456795e+01 3.0136375e+01 3.3462150e+01 2.9894274e+01 3.1367432e+01 3.2839320e+01 3.1440398e+01 2.9400374e+01 3.1106338e+01 3.1242624e+01 3.5537892e+01 3.3056459e+01 2.8610281e+01 3.4296217e+01 3.5819772e+01 3.2503922e+01 3.0963029e+01 3.4762112e+01 3.4796284e+01 2.9645345e+01 3.4468088e+01 2.6975590e+01 3.3738555e+01 2.8825009e+01 3.2663999e+01 3.2547878e+01 3.2308091e+01 3.2489966e+01 3.0868597e+01 3.2974220e+01 3.0866111e+01 3.8197342e+01 3.0609568e+01 3.5478978e+01 2.9249184e+01 3.6185622e+01 3.1948258e+01 3.2649719e+01 3.3305650e+01 3.4643955e+01 3.6566241e+01 3.4968484e+01 3.2632218e+01 3.6741383e+01 3.5700008e+01 3.1962468e+01 3.1410623e+01 3.0412061e+01 3.3749077e+01 3.5649661e+01 3.7649263e+01 3.2832574e+01 3.1783914e+01 2.8264292e+01
venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-correlation-ml-iris.txt ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-correlation-ml.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 9.2507465e-01 9.6528566e-01 8.7255441e-01 1.1287379e+00 8.7318727e-01 1.0767102e+00 9.1419676e-01 1.1503304e+00 9.8074509e-01 1.0135025e+00 1.0495025e+00 9.4794536e-01 9.6829273e-01 1.1345767e+00 1.1048008e+00 9.2407796e-01 1.0228634e+00 9.3853195e-01 9.9377619e-01 1.0407662e+00 9.5048989e-01 9.0465688e-01 9.8056930e-01 8.9777156e-01 9.6357127e-01 9.3864452e-01 9.9754613e-01 9.7271356e-01 8.4383151e-01 9.6981983e-01 9.7510267e-01 1.0112663e+00 7.8730400e-01 1.0299498e+00 9.9307979e-01 9.0239520e-01 8.5428231e-01 8.8972742e-01 8.5933162e-01 9.6625934e-01 9.4175449e-01 9.9120729e-01 1.0503963e+00 8.8223053e-01 1.3261434e+00 1.1063209e+00 8.4058398e-01 1.0844267e+00 1.1153093e+00 1.0092643e+00 8.9585237e-01 1.0599818e+00 1.2321707e+00 1.1359624e+00 8.3503556e-01 1.1792243e+00 7.9159781e-01 1.0830419e+00 1.2181870e+00 9.9888500e-01 1.0227144e+00 6.8557277e-01 9.6836193e-01 1.1061227e+00 1.0883453e+00 9.5681974e-01 9.9436299e-01 1.0304323e+00 1.1273949e+00 1.0735563e+00 1.0582583e+00 9.6040272e-01 1.0032137e+00 8.4900547e-01 1.1035351e+00 8.7867480e-01 9.6433176e-01 9.1850122e-01 8.9337435e-01 1.0449390e+00 8.9639384e-01 9.6704971e-01 1.0084258e+00 1.0528587e+00 1.1764481e+00 1.0913280e+00 1.0136672e+00 1.2737156e+00 9.5130359e-01 1.0367909e+00 1.1983402e+00 1.1319901e+00 1.1117462e+00 1.0343695e+00 1.0838628e+00 7.5266057e-01 1.0763316e+00 8.8067924e-01 9.6734383e-01 9.8800551e-01 1.2265742e+00 7.8833055e-01 1.0338670e+00 8.6666625e-01 9.9039950e-01 9.7142684e-01 9.3138616e-01 8.5849977e-01 8.5486301e-01 1.0516028e+00 1.1105313e+00 9.5943505e-01 9.8845171e-01 1.0566288e+00 9.9712198e-01 9.5545756e-01 1.1817974e+00 9.9128482e-01 1.0117892e+00 1.0979115e+00 1.0493943e+00 9.1318848e-01 9.3157311e-01 8.7073304e-01 1.2459441e+00 9.3412689e-01 1.0482297e+00 9.4224032e-01 9.5134153e-01 9.0857493e-01 9.7264161e-01 8.2900820e-01 9.3140549e-01 1.1330242e+00 1.0333002e+00 1.0117861e+00 1.2053255e+00 8.5291396e-01 1.0148928e+00 8.6641379e-01 9.7080819e-01 9.5457159e-01 9.5207457e-01 9.3539674e-01 9.0769069e-01 9.5322590e-01 1.1181803e+00 9.9765614e-01 7.5370610e-01 1.0807114e+00 1.0804601e+00 9.0214124e-01 8.7101998e-01 1.0167435e+00 1.2045936e+00 8.7300539e-01 1.1054300e+00 7.9145574e-01 1.0279340e+00 8.7623462e-01 1.0034756e+00 1.0386933e+00 9.3910970e-01 1.0028455e+00 9.9868824e-01 9.8752945e-01 9.8319327e-01 1.3110209e+00 8.6180633e-01 1.0993856e+00 8.5912563e-01 1.1303979e+00 9.8690459e-01 9.6910090e-01 9.1456819e-01 1.1525339e+00 1.1064552e+00 1.1062255e+00 9.7226683e-01 1.1091447e+00 1.1072238e+00 9.6544444e-01 9.6681036e-01 9.3247685e-01 9.6854634e-01 1.1035119e+00 1.1317148e+00 9.5557793e-01 9.8908485e-01 7.4873648e-01
venv/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cosine-ml-iris.txt ADDED
The diff for this file is too large to render. See raw diff