File size: 64,565 Bytes
9ad9e91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from types import MethodType
from collections import OrderedDict
import torch
from deepspeed import comm as dist
from deepspeed.utils import logger
from deepspeed.utils.timer import ThroughputTimer
from deepspeed.accelerator import get_accelerator
from deepspeed.runtime.bf16_optimizer import BF16_Optimizer
from ..engine import DeepSpeedEngine, MEMORY_OPT_ALLREDUCE_SIZE
from deepspeed.utils.timer import FORWARD_MICRO_TIMER, FORWARD_GLOBAL_TIMER, BACKWARD_MICRO_TIMER, \
BACKWARD_GLOBAL_TIMER, BACKWARD_INNER_MICRO_TIMER, BACKWARD_INNER_GLOBAL_TIMER, \
BACKWARD_REDUCE_MICRO_TIMER, BACKWARD_REDUCE_GLOBAL_TIMER, \
STEP_MICRO_TIMER, STEP_GLOBAL_TIMER
from ..utils import PartitionedTensor
from ..dataloader import RepeatingLoader
from ..zero.config import ZeroStageEnum
from ..activation_checkpointing import checkpointing as ds_checkpointing
from .module import PipelineModule, PipelineError
from . import p2p
from . import schedule
TARGET_ID = -2
LOG_STAGE = -2
DATA_PARALLEL_ID = -2
BATCH_INPUT_TIMER = 'batch_input'
TRAIN_BATCH_TIMER = 'train_batch'
PIPE_SEND_OUTPUT_TIMER = 'pipe_send_output'
PIPE_SEND_GRAD_TIMER = 'pipe_send_grad'
PIPE_RECV_INPUT_TIMER = 'pipe_recv_input'
PIPE_RECV_GRAD_TIMER = 'pipe_recv_grad'
def is_even(number):
return number % 2 == 0
mem_alloced = 0
mem_cached = 0
def _tensor_bytes(tensor):
return tensor.numel() * tensor.element_size()
class PipelineEngine(DeepSpeedEngine):
""" A training engine hybrid pipeline, data, and model parallel training.
This engine is created by ``deepspeed.initialize()`` when a :class:`PipelineModule`
is provided.
"""
ID_TO_DTYPE = [
torch.float32, torch.float64, torch.complex64, torch.complex128, torch.float16, torch.bfloat16, torch.uint8,
torch.int8, torch.int16, torch.int32, torch.int64, torch.bool
]
DTYPE_TO_ID = {dtype: id_ for id_, dtype in enumerate(ID_TO_DTYPE)}
def __init__(self, has_bool_tensors=False, *super_args, **super_kwargs):
super().__init__(*super_args, **super_kwargs)
assert isinstance(self.module, PipelineModule) \
or (hasattr(self.module, 'wrapped') and isinstance(self.module.wrapped, PipelineModule)), \
"model must base PipelineModule"
assert self.zero_optimization_stage(
) < ZeroStageEnum.gradients, "ZeRO-2 and ZeRO-3 are incompatible with pipeline parallelism"
# We schedule the all-reduces, so disable it in super().backward()
self.enable_backward_allreduce = False
self.has_bool_tensors = has_bool_tensors
self.eval_return_logits = False
self.outputs = None
# BF16 Optimizer is hardcoded for fp32 gradient accumulation
self.using_bf16_optimizer = type(self.optimizer) == BF16_Optimizer
# used to disable the pipeline all-reduce when used with 1-bit Adam/1-bit LAMB
self.pipeline_enable_backward_allreduce = True
if self.elasticity_enabled():
if not self.is_elastic_model_parallel_supported():
assert not self.elasticity_enabled(), "Elasticity is not currently supported" \
" with pipeline parallelism."
# pipeline step for logging
self.log_batch_step_id = -1
self.micro_batch_size = self.train_micro_batch_size_per_gpu()
self.micro_batches = self.gradient_accumulation_steps()
# Set Grid and Communication Groups
self.grid = self.module._grid
if self.grid.get_global_rank() == 0:
logger.info(f'CONFIG: micro_batches={self.micro_batches} '
f'micro_batch_size={self.micro_batch_size}')
self.global_rank = self.grid.get_global_rank()
assert self.dp_world_size == self.grid.data_parallel_size
assert self.train_batch_size() == \
self.micro_batch_size * self.micro_batches * self.grid.data_parallel_size
# Set Stage Inf
self.num_stages = self.grid.pipe_parallel_size
self.stage_id = self.grid.get_stage_id()
self.prev_stage = self.stage_id - 1
self.next_stage = self.stage_id + 1
self.data_iterator = None
self.batch_fn = None
self._force_grad_boundary = False
self.batch_timer = ThroughputTimer(batch_size=self.train_batch_size(),
logging_fn=self.tput_log,
monitor_memory=False,
steps_per_output=self.steps_per_print())
# PipelineEngine needs to handle data loading specially due to only the first
# and last stages loading inputs/labels. We construct a sampler that uses
if self.training_data:
self._build_data_iter(self.training_data)
self.is_pipe_parallel = self.grid.pipe_parallel_size > 1
self.is_data_parallel = self.grid.data_parallel_size > 1
self.is_model_parallel = self.grid.model_parallel_size > 1
# Partition input/output buffers
# XXX temporarily disable while I revert some partition hacks.
assert isinstance(self._config.pipeline['pipe_partitioned'], bool)
assert isinstance(self._config.pipeline['grad_partitioned'], bool)
self.is_pipe_partitioned = self.is_model_parallel and self._config.pipeline['pipe_partitioned']
self.is_grad_partitioned = self.is_model_parallel and self._config.pipeline['grad_partitioned']
logger.info(f'is_pipe_partitioned= {self.is_pipe_partitioned} '
f'is_grad_partitioned= {self.is_grad_partitioned}')
model_parameters = filter(lambda p: p.requires_grad, self.module.parameters())
num_params = sum([p.numel() for p in model_parameters])
unique_params = num_params
# Subtract tied parameters if we don't own them
if self.module.tied_comms:
tied_params = 0
for key, d in self.module.tied_comms.items():
if self.global_rank != min(d['ranks']):
tied_params += sum(p.numel() for p in d['module'].parameters())
unique_params -= tied_params
params_tensor = torch.LongTensor(data=[num_params, unique_params]).to(self.device)
dist.all_reduce(params_tensor, group=self.grid.get_model_parallel_group())
params_tensor = params_tensor.tolist()
total_params = params_tensor[0]
unique_params = params_tensor[1]
if self.grid.data_parallel_id == 0:
logger.info(f'RANK={self.global_rank} '
f'STAGE={self.stage_id} '
f'LAYERS={self.module._local_stop - self.module._local_start} '
f'[{self.module._local_start}, {self.module._local_stop}) '
f'STAGE_PARAMS={num_params} ({num_params/1e6:0.3f}M) '
f'TOTAL_PARAMS={total_params} ({total_params/1e6:0.3f}M) '
f'UNIQUE_PARAMS={unique_params} ({unique_params/1e6:0.3f}M)')
#initialize peer-2-peer communication and allreduce groups
if self.is_pipe_parallel:
p2p.init_process_groups(self.grid)
# Pipeline buffers
self.num_pipe_buffers = 0
self.pipe_buffers = {
'inputs': [], # batch input and received activations
'labels': [], # labels from batch input
'outputs': [], # activations
'output_tensors': [], # tensor object to preserve backward graph
}
self.pipe_recv_buf = None
self.grad_layer = None
self.meta_buffer = None
self.first_output_send = True
self.first_gradient_send = True
self.pipe_partition_input_meta_cache = None
self.pipe_partition_output_meta_cache = None
self.pipe_partition_grad_meta_cache = None
self.grad_partition_grad_layer_meta_cache = None
#stores the loss for the current micro batch being processed
self.loss = torch.tensor(0.0).to(self.device)
#stores the loss for the entire batch
self.total_loss = None
self.total_additional_losses = None
self.agg_loss = torch.tensor(0.0, requires_grad=False).to(self.device)
self.dp_group_loss = torch.tensor(0.0, requires_grad=False).to(self.device)
# stores aggregated-DP train final loss and aggregated-DP additional losses, if any
# additional losses are stored as dict: {loss-name: agg-loss}
self.agg_train_loss = None
self.agg_additional_losses = None
if self._config.pipeline['activation_checkpoint_interval'] > 0:
self.module.activation_checkpoint_interval = self._config.pipeline['activation_checkpoint_interval']
# set use_reentrant default to True.
if self._config.pipeline.get('use_reentrant') is None:
self._config.pipeline['use_reentrant'] = True
if self._config.pipeline['use_reentrant'] is False:
# set activation_checkpoint_func to non_reentrant_checkpoint func.
self.module.activation_checkpoint_func = ds_checkpointing.non_reentrant_checkpoint
if self.grid.get_global_rank() == 0:
logger.info(f'CONFIG: activation_checkpoint_func=non_reentrant_checkpoint')
self.module.checkpoint_parallel_write_pipeline = self._config.checkpoint_parallel_write_pipeline
if self.is_last_stage():
self.loss_model = self.module.loss_fn
self.has_attention_mask = self.module.__class__.__name__ == 'GPT2ModelPipe'
# Initialize pipeline communicators. Just send a 0.
if is_even(self.stage_id):
if not self.is_last_stage():
p2p.send(self.loss, self.next_stage)
if not self.is_first_stage():
p2p.recv(self.loss, self.prev_stage)
else:
if not self.is_first_stage():
p2p.recv(self.loss, self.prev_stage)
if not self.is_last_stage():
p2p.send(self.loss, self.next_stage)
# XXX look into timer reporting timing
# Initialize some timers because of early weirdness.
if self.wall_clock_breakdown():
self.timers(FORWARD_MICRO_TIMER).start()
self.timers(FORWARD_MICRO_TIMER).stop()
self.timers(BACKWARD_MICRO_TIMER).start()
self.timers(BACKWARD_MICRO_TIMER).stop()
self.timers(BACKWARD_INNER_MICRO_TIMER).start()
self.timers(BACKWARD_INNER_MICRO_TIMER).stop()
self.timers(BACKWARD_REDUCE_MICRO_TIMER).start()
self.timers(BACKWARD_REDUCE_MICRO_TIMER).stop()
self.timers(BACKWARD_REDUCE_GLOBAL_TIMER).start()
self.timers(BACKWARD_REDUCE_GLOBAL_TIMER).stop()
self.timers(STEP_MICRO_TIMER).start()
self.timers(STEP_MICRO_TIMER).stop()
def set_has_attention_mask(self, value):
assert isinstance(value, bool)
self.has_attention_mask = value
def _build_data_iter(self, dataset):
sampler = torch.utils.data.distributed.DistributedSampler(dataset,
num_replicas=self.dp_world_size,
rank=self.mpu.get_data_parallel_rank(),
shuffle=False)
# Build a loader and make it repeating.
pipe_dataloader = self.deepspeed_io(dataset, data_sampler=sampler)
pipe_dataloader = RepeatingLoader(pipe_dataloader)
self.set_dataloader(pipe_dataloader)
def _exec_reduce_tied_grads(self):
# We need to run this first to write to self.averaged_gradients;
# since this class turns `enable_backward_allreduce` off,
# `self.overlapping_partition_gradients_reduce_epilogue()` defined in the DeepSpeedEngine
# never actually runs. I suspect this is because of efficiency problems; get_flat_partition in
# stage2.py might do something expensive; someone will have to look into that later. But
# in the meantime, this fixes ZeRO2 + Pipelining enough to run a demo. Further profiling
# needed to decide if it actually breaks everything.
# (see https://github.com/EleutherAI/gpt-neox/issues/62#issuecomment-761471944)
if self.zero_optimization_partition_gradients():
self.optimizer.overlapping_partition_gradients_reduce_epilogue()
weight_group_list = self.module.get_tied_weights_and_groups()
for weight, group in weight_group_list:
grad = weight._hp_grad if self.using_bf16_optimizer else weight.grad
dist.all_reduce(grad, group=group)
def _exec_reduce_grads(self):
self._force_grad_boundary = True
if self.pipeline_enable_backward_allreduce:
if self.using_bf16_optimizer:
# PP+BF16 work for ZeRO Stage 1
self._bf16_reduce_grads()
else:
self.allreduce_gradients(bucket_size=MEMORY_OPT_ALLREDUCE_SIZE)
self._force_grad_boundary = False
def _bf16_reduce_grads(self):
self.buffered_allreduce_fallback(grads=None, elements_per_buffer=MEMORY_OPT_ALLREDUCE_SIZE)
def _reserve_pipe_buffers(self, num_buffers):
"""Ensure that each pipeline buffer has at least ``num_buffers`` slots.
This method only reserves slots and does not allocate tensors.
Args:
num_buffers (int): The number of buffers to reserve.
"""
if self.num_pipe_buffers >= num_buffers:
return
num_added = num_buffers - self.num_pipe_buffers
for key in self.pipe_buffers:
self.pipe_buffers[key].extend([None] * num_added)
self.num_pipe_buffers = num_buffers
def reset_activation_shape(self):
"""Reset the buffers when the shape of activation and gradient change.
For example, for curriculum learning that changes the seqlen of each
sample, we need to call this whenever the seqlen is going to change.
"""
self.first_output_send = True
self.pipe_recv_buf = None
self.grad_layer = None
self.meta_buffer = None
self.pipe_partition_input_meta_cache = None
self.pipe_partition_output_meta_cache = None
self.pipe_partition_grad_meta_cache = None
self.grad_partition_grad_layer_meta_cache = None
def train_batch(self, data_iter=None):
"""Progress the pipeline to train the next batch of data. The engine will ingest
``self.train_batch_size()`` total samples collectively across all workers.
An iterator that over training data should be provided as an argument
unless ``deepspeed.initialize()`` was provided a training set. In that event,
the training data will automatically be read.
.. warning::
A total of ``self.gradient_accumulation_steps()`` entries will be pulled
from ``data_iter`` by each pipeline. There must be sufficient
data left in ``data_iter`` or else a ``StopIteration`` will halt training.
DeepSpeed provides a convenience class :class:`deepspeed.utils.RepeatingLoader`
that wraps data loaders to automatically restart upon a ``StopIteration``.
Args:
data_iter (Iterator, optional): Iterator of training data.
Returns:
The arithmetic mean of the losses computed this batch.
"""
if not torch._C.is_grad_enabled():
raise RuntimeError(f'train_batch() requires gradients enabled. Use eval_batch() instead.')
# Curriculum learning could change activation shape
if self.curriculum_enabled_legacy():
new_difficulty = self.curriculum_scheduler_legacy.update_difficulty( \
self.global_steps + 1)
if self.global_steps == 0 or self.curriculum_scheduler_legacy.first_step:
self.reset_activation_shape()
self.curriculum_scheduler_legacy.first_step = False
elif new_difficulty != self.curriculum_scheduler_legacy.get_difficulty( \
self.global_steps):
self.reset_activation_shape()
if data_iter is not None:
self.set_dataiterator(data_iter)
self.module.train()
self.total_loss = None
self.total_additional_losses = None
self._compute_loss = True
# Do the work
self.timers(TRAIN_BATCH_TIMER).start()
sched = schedule.TrainSchedule(micro_batches=self.micro_batches,
stages=self.num_stages,
stage_id=self.stage_id)
self._exec_schedule(sched)
with torch.no_grad():
self.agg_train_loss = self._aggregate_total_loss()
self.timers(TRAIN_BATCH_TIMER).stop()
if self.global_steps % self.steps_per_print() == 0:
if self.global_rank == 0:
elapsed = self.timers(TRAIN_BATCH_TIMER).elapsed(reset=True) / 1000.0
iter_time = elapsed / self.steps_per_print()
tput = self.train_batch_size() / iter_time
log_str = f'steps: {self.global_steps} loss: {self.agg_train_loss:0.4f} '
if self.agg_additional_losses is not None:
for loss_name, loss_value in self.agg_additional_losses.items():
log_str += f'{loss_name}: {loss_value.item():0.4f} '
log_str += f'iter time (s): {iter_time:0.3f} samples/sec: {tput:0.3f}'
print(log_str)
else:
self.timers(TRAIN_BATCH_TIMER).elapsed(reset=True)
# Monitoring
if self.global_rank == 0 and self.monitor.enabled:
self.summary_events = [(f'Train/Samples/train_loss', self.agg_train_loss.mean().item(),
self.global_samples)]
self.monitor.write_events(self.summary_events)
if self.wall_clock_breakdown() and self.global_steps % self.steps_per_print() == 0:
self.timers.log([
PIPE_SEND_OUTPUT_TIMER,
PIPE_SEND_GRAD_TIMER,
PIPE_RECV_INPUT_TIMER,
PIPE_RECV_GRAD_TIMER,
])
# TODO: should return precisely what loss returned and allow others to be queried?
return self.agg_train_loss
def eval_batch(self,
data_iter,
return_logits=False,
compute_loss=True,
reduce_output='avg',
bcast_loss=True,
num_micro_batches=None):
"""Evaluate the pipeline on a batch of data from ``data_iter``. The
engine will evaluate ``self.train_batch_size()`` total samples
collectively across all workers.
This method is equivalent to:
.. code-block:: python
module.eval()
with torch.no_grad():
output = module(batch)
.. warning::
A total of ``self.gradient_accumulation_steps()`` entries will be pulled
from ``data_iter`` by each pipeline. There must be sufficient
data left in ``data_iter`` or else a ``StopIteration`` will halt training.
DeepSpeed provides a convenience class :class:`deepspeed.utils.RepeatingLoader`
that wraps data loaders to automatically restart upon a ``StopIteration``.
Args:
data_iter (Iterator): Iterator of data to evaluate.
Returns:
The arithmetic mean of the losses computed this batch.
"""
self.eval_return_logits = return_logits
self.module.eval()
# Curriculum learning could change activation shape
if self.curriculum_enabled_legacy():
new_difficulty = self.curriculum_scheduler_legacy.update_difficulty( \
self.global_steps + 1)
if self.global_steps == 0 or self.curriculum_scheduler_legacy.first_step:
self.reset_activation_shape()
self.curriculum_scheduler_legacy.first_step = False
elif new_difficulty != self.curriculum_scheduler_legacy.get_difficulty( \
self.global_steps):
self.reset_activation_shape()
eval_output = None
self._compute_loss = compute_loss
# Use the provided data iterator
train_iterator = self.data_iterator
self.set_dataiterator(data_iter)
# set the number micro batches in case the user chose value than training
micro_batches = self.micro_batches if num_micro_batches is None else num_micro_batches
# Do the work
sched = schedule.InferenceSchedule(micro_batches=self.micro_batches,
stages=self.num_stages,
stage_id=self.stage_id)
# prevent dead-lock with multiple evals sequence
dist.barrier()
with torch.no_grad():
self._exec_schedule(sched)
if self.is_last_stage():
eval_output = self._reduce_outputs(self.fwd_outputs, reduce=reduce_output, micro_batches=micro_batches)
if compute_loss and (bcast_loss or self.monitor.enabled):
eval_output = self._bcast_pipe_scalar(eval_output)
if self.global_rank == 0 and self.monitor.enabled:
self.summary_events = [(f'Train/Samples/eval_loss', eval_output.mean().item(), self.global_samples)]
self.monitor.write_events(self.summary_events)
# Restore the training iterator
self.set_dataiterator(train_iterator)
# Reset any buffers that may have been populated during the forward passes.
#ds_checkpointing.reset()
self.eval_return_logits = False
if return_logits:
outputs = self.outputs
self.outputs = None
return eval_output, outputs
return eval_output
def set_train_batch_size(self, train_batch_size):
"""Adjust the global batch size by increasing or decreasing the number of
micro-batches (i.e., gradient accumulation steps). The size of each micro-batch
(i.e., ``train_micro_batch_size_per_gpu``) is not changed.
Args:
train_batch_size (int): The new global batch size for training.
Raises:
ValueError: if ``train_batch_size`` is not divisible by the
configured micro-batch size and data parallelism.
"""
super().set_train_batch_size(train_batch_size)
self.micro_batches = self.gradient_accumulation_steps()
def is_first_stage(self):
"""True if this process is in the first stage in the pipeline."""
return self.stage_id == 0
def is_last_stage(self):
"""True if this process is in the last stage in the pipeline."""
return self.stage_id == self.num_stages - 1
def _reduce_outputs(self, outputs, reduce='avg', reduce_dp=True, micro_batches=None):
if reduce is None:
return outputs
if reduce.lower() == 'avg':
# first sum over all microbatches
if torch.is_tensor(outputs[0]):
reduced = sum(outputs)
else:
assert isinstance(outputs, (list, tuple))
reduced = [torch.zeros_like(o) for o in outputs[0]]
for idx, out in outputs:
reduced[idx] += out
# Average over the microbatches
reduced = self._scale_loss_by_gas(reduced, eval_micro_batches=micro_batches)
# Average over DP groups
if reduce_dp and self.is_data_parallel:
if torch.is_tensor(reduced):
dist.all_reduce(reduced, group=self.mpu.get_data_parallel_group())
reduced /= self.dp_world_size
else:
for idx in range(len(reduced)):
dist.all_reduce(reduced[idx], group=self.mpu.get_data_parallel_group())
reduced[idx] /= self.dp_world_size
return reduced
else:
raise NotImplementedError(f'reduction type {reduce} not supported.')
def _bcast_pipe_scalar(self, data, src_rank=None, dtype=torch.float32):
# Default to last stage (e.g., for broadcasting loss)
if src_rank is None:
src_rank = self.grid.stage_to_global(self.num_stages - 1)
assert src_rank in self.grid.pp_group
if self.global_rank == src_rank:
result = data.clone().detach().type(dtype).to(self.device)
else:
result = torch.Tensor([0.]).type(dtype).to(self.device)
dist.broadcast(tensor=result, src=src_rank, group=self.mpu.get_pipe_parallel_group())
return result
def _aggregate_total_loss(self):
# Scale loss, average among DP ranks, and bcast loss to the rest of my DP group
if self.is_last_stage():
# Scale loss and additional losses, if any
loss = self._scale_loss_by_gas(self.total_loss)
self.agg_additional_losses = self.total_additional_losses
if self.agg_additional_losses is not None:
self.agg_additional_losses = OrderedDict({
loss_name: self._scale_loss_by_gas(_loss.clone().detach())
for loss_name, _loss in self.agg_additional_losses.items()
})
self.dp_group_loss = loss.clone().detach()
agg_loss = self.dp_group_loss.clone().detach()
#print(f'RANK={self.global_rank} bcast SENDER src={self.global_rank} group={self.grid.pp_group}', flush=True)
# Average loss across all data-parallel groups
if self.is_data_parallel:
if self.agg_additional_losses is None:
dist.all_reduce(agg_loss, group=self.mpu.get_data_parallel_group())
agg_loss /= self.dp_world_size
else:
# use a single reduce op for agg_loss and additional losses, if any
assert '__train_loss__' not in self.agg_additional_losses.keys()
tensors = OrderedDict({'__train_loss__': agg_loss})
tensors.update(self.agg_additional_losses.items())
flat_tensor = torch.cat([t.clone().reshape(-1).detach() for t in tensors.values()])
dist.all_reduce(flat_tensor, group=self.mpu.get_data_parallel_group())
flat_tensor /= self.dp_world_size
offset = 0
reduced_tensor = {}
for name, t in tensors.items():
n_elem = t.numel()
reduced_tensor[name] = flat_tensor[offset:offset + n_elem].clone().detach().reshape(t.shape)
offset += n_elem
agg_loss = reduced_tensor['__train_loss__']
self.agg_additional_losses = OrderedDict(
{name: reduced_tensor[name]
for name in self.agg_additional_losses.keys()})
assert self.global_rank in self.grid.pp_group
losses = [self.dp_group_loss, agg_loss]
if self.agg_additional_losses is not None:
losses += list(self.agg_additional_losses.values())
losses = torch.stack(losses).float()
if self.is_pipe_parallel:
dist.broadcast(tensor=losses, src=self.global_rank, group=self.mpu.get_pipe_parallel_group())
else:
# Get loss from last stage
src_rank = self.grid.stage_to_global(self.num_stages - 1)
assert src_rank in self.grid.pp_group
# losses to reduce are: dp_group_loss, agg_loss, model additional losses
# therefore: 2 + n_additional_losses
additional_losses = self.module.get_additional_losses()
n_additional_losses = 0 if additional_losses is None else len(additional_losses)
losses = torch.Tensor([0.] * (2 + n_additional_losses)).to(self.device)
dist.broadcast(tensor=losses, src=src_rank, group=self.grid.get_pipe_parallel_group())
self.dp_group_loss = losses[0].clone().detach()
agg_loss = losses[1].clone().detach()
if additional_losses is not None:
self.agg_additional_losses = OrderedDict(
{name: losses[2 + i].clone().detach()
for i, name in enumerate(additional_losses.keys())})
return agg_loss
def set_dataloader(self, loader):
""""""
if self.is_first_stage() or self.is_last_stage():
self.training_dataloader = loader
self.data_iterator = iter(self.training_dataloader)
def set_dataiterator(self, iterator):
""" Store an iterator to sample for training data. """
if self.is_first_stage() or self.is_last_stage():
self.training_dataloader = None
self.data_iterator = iterator
def set_batch_fn(self, fn):
"""Execute a post-processing function on input data.
Args:
fn (function): The function to run.
"""
self.batch_fn = fn
def is_gradient_accumulation_boundary(self):
"""True if the engine is executing a gradient reduction or optimizer step instruction.
This is overridden from :class:`DeepSpeedEngine` to force reductions
and steps when the pipeline engine is instructed to do so.
Returns:
bool: whether reductions and optimizer steps should occur.
"""
return self._force_grad_boundary
def log_for_device(self, *msg):
if LOG_STAGE == self.stage_id or LOG_STAGE == -1:
if DATA_PARALLEL_ID == self.grid.data_parallel_id or DATA_PARALLEL_ID == -1:
print(
f'RANK={dist.get_rank()} '
f'PIPE-ID={self.stage_id} '
f'DATA-ID={self.grid.data_parallel_id} '
f'MBATCH-ID={self.microbatch_id} '
f'STEP-ID={self.log_batch_step_id} '
'::',
*msg,
flush=True)
def tput_log(self, *msg):
if self.global_rank == 0 and self.global_steps % self.steps_per_print() == 0:
print(*msg)
def _next_batch(self):
# If using 3D parallelism, only some first-stage ranks may do IO
batch = None
if self.data_iterator is not None:
batch = next(self.data_iterator)
# Any post-processing, like broadcasting across a slice-parallel group.
if self.batch_fn:
batch = self.batch_fn(batch)
return batch
def _exec_forward_pass(self, buffer_id):
self.tput_timer.start()
self.mem_status('BEFORE FWD', reset_max=True)
if isinstance(self.pipe_buffers['inputs'][buffer_id], tuple):
inputs = tuple(t.clone() for t in self.pipe_buffers['inputs'][buffer_id])
else:
inputs = self.pipe_buffers['inputs'][buffer_id].clone()
# collect the partitioned input from the previous stage
if self.is_pipe_partitioned and not self.is_first_stage():
if self.pipe_partition_input_meta_cache is None:
self.pipe_partition_input_meta_cache = inputs[0].to('cpu')
part_input = PartitionedTensor.from_meta(meta=self.pipe_partition_input_meta_cache,
local_part=inputs[1],
group=self.grid.get_slice_parallel_group())
inputs = (part_input.full(), *inputs[2:])
inputs[0].requires_grad = True
# skip mask
#inputs[1].requires_grad = True
part_input = None
inputs = inputs[0] if len(inputs) == 1 else inputs
self.pipe_buffers['inputs'][buffer_id] = inputs
# inputs has no gradient because it is from a cloned tensor
outputs = super().forward(inputs)
# Reset activation checkpointing buffers.
# Need to call this between evaluation iterations
if not self.module.training:
ds_checkpointing.reset()
# Partition the outputs if we are not the last stage
if self.is_pipe_partitioned and not self.is_last_stage():
if isinstance(outputs, tuple):
first_output = outputs[0]
# TODO: Improve pipe partitioning to pass multiple tensors that require grads
assert all([torch.is_tensor(elt) and elt.requires_grad is False for elt in outputs[1:]])
outputs_tail = outputs[1:]
elif torch.is_tensor(outputs):
first_output = outputs
outputs_tail = []
else:
raise ValueError("expecting a tensor or a tuple of tensors")
part = PartitionedTensor(tensor=first_output, group=self.grid.get_slice_parallel_group())
# Clear the large output data, but save the computation graph
first_output.data = torch.zeros(1)
self.pipe_buffers['output_tensors'][buffer_id] = first_output
# Inject the partitioned tensor into the output before sending
outputs = (part.to_meta(), part.data(), *outputs_tail)
part = None
self.pipe_buffers['outputs'][buffer_id] = outputs
# Optionally compute loss on the last device
if self.is_last_stage():
if self._compute_loss and self.module.loss_fn is not None:
labels = self.pipe_buffers['labels'][buffer_id]
self.loss = self.module.loss_fn(outputs, labels)
else:
# Some models just return loss from forward()
self.loss = outputs
if self.eval_return_logits:
self.outputs = outputs
if isinstance(self.loss, torch.Tensor):
self.fwd_outputs.append(self.loss.detach())
else:
self.fwd_outputs.append([l.detach() for l in self.loss])
def add_to_total_loss(_total_loss, _loss):
if isinstance(_loss, torch.Tensor):
if _total_loss is None:
_total_loss = torch.zeros_like(_loss)
_total_loss += _loss.detach()
else:
if _total_loss is None:
_total_loss = [torch.zeros_like(_l) for _l in _loss]
for _idx, _l in enumerate(_loss):
_total_loss[_idx] += _l.detach()
return _total_loss
self.total_loss = add_to_total_loss(self.total_loss, self.loss)
# aggregate additional losses across gradient accumulation steps
additional_losses = self.module.get_additional_losses()
if additional_losses is not None:
if self.total_additional_losses is None:
self.total_additional_losses = OrderedDict()
for name, loss in additional_losses.items():
total = self.total_additional_losses[name] if name in self.total_additional_losses else None
self.total_additional_losses[name] = add_to_total_loss(total, loss)
def _exec_backward_pass(self, buffer_id):
assert self.optimizer is not None, "must provide optimizer during " \
"init in order to use backward"
self.mem_status('BEFORE BWD', reset_max=True)
# The last stage just runs backward on the loss using DeepSpeed's typical
# mechanisms.
if self.is_last_stage():
super().backward(self.loss)
self.mem_status('AFTER BWD')
return
outputs = self.pipe_buffers['outputs'][buffer_id]
if self.wall_clock_breakdown():
self.timers(BACKWARD_MICRO_TIMER).start()
self.timers(BACKWARD_GLOBAL_TIMER).start()
self.timers(BACKWARD_INNER_MICRO_TIMER).start()
self.timers(BACKWARD_INNER_GLOBAL_TIMER).start()
# Reconstruct if we previously partitioned the output. We must be
# careful to also restore the computational graph of the tensors we partitioned.
if self.is_pipe_partitioned:
if self.is_grad_partitioned:
if self.pipe_partition_output_meta_cache is None:
self.pipe_partition_output_meta_cache = outputs[0].to('cpu')
part_output = PartitionedTensor.from_meta(meta=self.pipe_partition_output_meta_cache,
local_part=outputs[1],
group=self.grid.get_slice_parallel_group())
self.pipe_buffers['output_tensors'][buffer_id].data = part_output.full()
outputs = (self.pipe_buffers['output_tensors'][buffer_id], *outputs[2:])
else:
# Already restored from partition
self.pipe_buffers['output_tensors'][buffer_id].data = outputs[0]
outputs = (self.pipe_buffers['output_tensors'][buffer_id], *outputs[1:])
grad_tensors = self.grad_layer
if self.is_grad_partitioned:
#print(f'RANK={self.global_rank} BEFORE-BWD restoring grad={self.grad_layer[0].size()} {self.grad_layer[1].size()}')
if self.grad_partition_grad_layer_meta_cache is None:
self.grad_partition_grad_layer_meta_cache = self.grad_layer[0].to('cpu')
part_grad = PartitionedTensor.from_meta(meta=self.grad_partition_grad_layer_meta_cache,
local_part=self.grad_layer[1],
group=self.grid.get_slice_parallel_group())
grad_tensors = (part_grad.full(), *grad_tensors[2:])
part_grad = None
#print(f'RANK={self.global_rank} BEFORE-BWD restored grad={self.grad_layer[0].size()} {self.grad_layer[1].size()}')
if self.using_bf16_optimizer and not self.is_last_stage():
# manually call because we don't call optimizer.backward()
self.optimizer.clear_lp_grads()
# This handles either a single tensor or tuple of tensors.
if isinstance(outputs, tuple):
out_tensors = [t for t in outputs if t.is_floating_point()]
assert len(out_tensors) == len(grad_tensors)
torch.autograd.backward(tensors=out_tensors, grad_tensors=grad_tensors)
else:
torch.autograd.backward(tensors=(outputs, ), grad_tensors=(grad_tensors, ))
if self.using_bf16_optimizer and not self.is_last_stage():
# manually call because we don't call optimizer.backward()
self.optimizer.update_hp_grads(clear_lp_grads=False)
# Free up the memory from the output of forward()
self.pipe_buffers['output_tensors'][buffer_id] = None
self.pipe_buffers['outputs'][buffer_id] = None
grad_tensors = None
if self.wall_clock_breakdown():
self.timers(BACKWARD_INNER_MICRO_TIMER).stop()
self.timers(BACKWARD_INNER_GLOBAL_TIMER).stop()
self.timers(BACKWARD_MICRO_TIMER).stop()
self.timers(BACKWARD_GLOBAL_TIMER).stop()
self.mem_status('AFTER BWD')
def _exec_load_micro_batch(self, buffer_id):
if self.wall_clock_breakdown():
self.timers(BATCH_INPUT_TIMER).start()
batch = self._next_batch()
if self.is_first_stage():
loaded = None
if torch.is_tensor(batch[0]):
loaded = batch[0].clone().to(self.device).detach()
if self._config.pipeline['activation_checkpoint_interval'] > 0 and self._config.pipeline[
'use_reentrant']:
loaded.requires_grad = loaded.is_floating_point()
else:
assert isinstance(batch[0], (tuple, list))
# Assume list or tuple
loaded = []
for x in batch[0]:
assert torch.is_tensor(x)
mine = x.clone().detach().to(self.device)
if self._config.pipeline['activation_checkpoint_interval'] > 0 and self._config.pipeline[
'use_reentrant']:
mine.requires_grad = mine.is_floating_point()
loaded.append(mine)
loaded = tuple(loaded)
self.pipe_buffers['inputs'][buffer_id] = loaded
if self.is_last_stage():
loaded = batch[1]
if torch.is_tensor(batch[1]):
loaded = batch[1].to(self.device)
# XXX: torch 1.6.0 DataLoader will auto convert tuple to list
elif isinstance(batch[1], (tuple, list)):
loaded = []
for x in batch[1]:
assert torch.is_tensor(x)
x = x.to(self.device).detach()
loaded.append(x)
loaded = tuple(loaded)
self.pipe_buffers['labels'][buffer_id] = loaded
if self.wall_clock_breakdown():
self.timers(BATCH_INPUT_TIMER).stop()
def _send_tensor_meta(self, buffer, recv_stage):
""" Communicate metadata about upcoming p2p transfers.
Metadata is communicated in this order:
* type (0: tensor, 1: list)
* num_tensors if type=list
foreach tensor in buffer:
* ndims
* shape
"""
send_bytes = 0
if isinstance(buffer, torch.Tensor):
type_tensor = torch.LongTensor(data=[0]).to(self.device)
p2p.send(type_tensor, recv_stage)
send_shape = torch.LongTensor(data=buffer.size()).to(self.device)
send_ndims = torch.LongTensor(data=[len(buffer.size())]).to(self.device)
p2p.send(send_ndims, recv_stage)
p2p.send(send_shape, recv_stage)
send_bytes += _tensor_bytes(buffer)
elif isinstance(buffer, list):
assert (False)
type_tensor = torch.LongTensor(data=[1]).to(self.device)
p2p.send(type_tensor, recv_stage)
count_tensor = torch.LongTensor(data=[len(buffer)]).to(self.device)
p2p.send(count_tensor, recv_stage)
for tensor in buffer:
assert isinstance(tensor, torch.Tensor)
send_shape = torch.LongTensor(data=tensor.size()).to(self.device)
send_ndims = torch.LongTensor(data=[len(tensor.size())]).to(self.device)
p2p.send(send_ndims, recv_stage)
p2p.send(send_shape, recv_stage)
send_bytes += _tensor_bytes(tensor)
elif isinstance(buffer, tuple):
type_tensor = torch.LongTensor(data=[2]).to(self.device)
p2p.send(type_tensor, recv_stage)
count_tensor = torch.LongTensor(data=[len(buffer)]).to(self.device)
p2p.send(count_tensor, recv_stage)
for idx, tensor in enumerate(buffer):
assert isinstance(tensor, torch.Tensor)
send_shape = torch.LongTensor(data=tensor.size()).to(self.device)
send_ndims = torch.LongTensor(data=[len(tensor.size())]).to(self.device)
send_dtype = torch.LongTensor(data=[self.DTYPE_TO_ID[tensor.dtype]]).to(self.device)
p2p.send(send_dtype, recv_stage)
p2p.send(send_ndims, recv_stage)
p2p.send(send_shape, recv_stage)
# Useful for performance debugging.
'''
new_bytes = _tensor_bytes(tensor)
send_bytes += _tensor_bytes(tensor)
# Useful for performance debugging.
if self.grid.data_parallel_id == 0:
print(
f'STAGE={self.stage_id} pipe-send-volume[{idx}]: shape={send_shape} {new_bytes/1024**2:0.2f}MB'
)
'''
else:
raise NotImplementedError(f'Could not send meta type {type(buffer)}')
# Useful for performance debugging.
'''
if self.grid.data_parallel_id == 0:
print(f'STAGE={self.stage_id} pipe-send-volume: {send_bytes/1024**2:0.2f}MB')
'''
def _recv_tensor_meta(self, send_stage):
"""Receive metadata about upcoming p2p transfers and return allocated buffers.
Metadata is communicated in this order:
* type (0: tensor, 1: list)
* num_tensors if type=list
foreach tensor in buffer:
* ndims
* shape
Returns:
Allocated buffer for receiving from send_stage.
"""
type_tensor = torch.LongTensor(data=[0]).to(self.device)
p2p.recv(type_tensor, send_stage)
recv_type = type_tensor.item()
# A single tensor will be sent.
if recv_type == 0:
recv_ndims = torch.LongTensor(data=[0]).to(self.device)
p2p.recv(recv_ndims, send_stage)
recv_ndims = recv_ndims.item()
recv_shape = torch.LongTensor([1] * recv_ndims).to(self.device)
p2p.recv(recv_shape, send_stage)
recv_shape = recv_shape.tolist()
return self._allocate_buffer(recv_shape, num_buffers=1)[0]
# List or tuple of tensors
elif recv_type == 1 or recv_type == 2:
count_tensor = torch.LongTensor(data=[0]).to(self.device)
p2p.recv(count_tensor, send_stage)
num_tensors = count_tensor.item()
recv_shapes_and_dtypes = []
for idx in range(num_tensors):
recv_dtype = torch.LongTensor(data=[0]).to(self.device)
p2p.recv(recv_dtype, send_stage)
recv_dtype = self.ID_TO_DTYPE[recv_dtype.item()]
recv_ndims = torch.LongTensor(data=[0]).to(self.device)
p2p.recv(recv_ndims, send_stage)
recv_ndims = recv_ndims.item()
recv_shape = torch.LongTensor([1] * recv_ndims).to(self.device)
p2p.recv(recv_shape, send_stage)
recv_shapes_and_dtypes.append((recv_shape.tolist(), recv_dtype))
buffers = self._allocate_buffers(recv_shapes_and_dtypes, num_buffers=1)[0]
# Convert to tuples if requested.
if recv_type == 2:
buffers = tuple(buffers)
return buffers
else:
raise NotImplementedError(f'Could not receive type {type(recv_type)}')
def _exec_send_activations(self, buffer_id):
if self.wall_clock_breakdown():
self.timers(PIPE_SEND_OUTPUT_TIMER).start()
outputs = self.pipe_buffers['outputs'][buffer_id]
# NCCL does not like to send torch.BoolTensor types, so cast the mask to half().
# We could do char, but with half() we can eventually flatten with other fp16
# messages (TODO)
if self.has_attention_mask or self.has_bool_tensors:
outputs = list(outputs)
outputs[-1] = outputs[-1].half()
outputs = tuple(outputs)
if self.first_output_send:
self.first_output_send = False
self._send_tensor_meta(outputs, self.next_stage)
if isinstance(outputs, torch.Tensor):
p2p.send(outputs, self.next_stage)
elif isinstance(outputs, tuple):
for idx, buffer in enumerate(outputs):
p2p.send(buffer, self.next_stage)
else:
raise NotImplementedError('Could not send output of type '
f'{type(outputs)}')
# Restore the boolean tensor
if self.has_attention_mask or self.has_bool_tensors:
outputs = list(outputs)
outputs[-1] = outputs[-1].bool()
outputs = tuple(outputs)
if self.wall_clock_breakdown():
self.timers(PIPE_SEND_OUTPUT_TIMER).stop()
def _exec_send_grads(self, buffer_id):
if self.wall_clock_breakdown():
self.timers(PIPE_SEND_GRAD_TIMER).start()
inputs = self.pipe_buffers['inputs'][buffer_id]
# Partition the gradient
if self.is_grad_partitioned:
if isinstance(inputs, tuple):
first_input = inputs[0]
assert all([torch.is_tensor(elt) for elt in inputs[1:]])
inputs_grad_tail = [elt.grad for elt in inputs[1:]]
elif torch.is_tensor(inputs):
first_input = inputs
inputs_grad_tail = []
else:
raise ValueError("expecting a tensor or a tuple of tensors")
assert torch.is_tensor(first_input)
part = PartitionedTensor(tensor=first_input.grad, group=self.grid.get_slice_parallel_group())
inputs = (part.to_meta(), part.data(), *inputs_grad_tail)
# XXX Terrible hack
# Drop the attention mask from the input buffer here. It does not have
# a grad that needs to be communicated. We free the buffer immediately
# after, so no need to restore it. The receiver also has a hack that skips
# the recv. This is because NCCL does not let us send torch.BoolTensor :-(.
if self.has_attention_mask or self.has_bool_tensors:
inputs = list(inputs)
inputs.pop()
inputs = tuple(inputs)
if isinstance(inputs, torch.Tensor):
assert inputs.grad is not None
p2p.send(inputs.grad, self.prev_stage)
else:
# XXX terrible hacky branch
if self.is_grad_partitioned:
# First two sends are partitioned gradient
p2p.send(inputs[0], self.prev_stage)
p2p.send(inputs[1], self.prev_stage)
else:
for idx, buffer in enumerate(inputs):
# Skip tensors that will not produce a grad
if not buffer.is_floating_point():
assert buffer.grad is None
continue
assert buffer.grad is not None
p2p.send(buffer.grad, self.prev_stage)
# We can free up the input buffer now
self.pipe_buffers['inputs'][buffer_id] = None
if self.wall_clock_breakdown():
self.timers(PIPE_SEND_GRAD_TIMER).stop()
def _exec_recv_activations(self, buffer_id):
if self.wall_clock_breakdown():
self.timers(PIPE_RECV_INPUT_TIMER).start()
recvd = None
# Allocate the buffer if necessary
if self.pipe_recv_buf is None:
self.pipe_recv_buf = self._recv_tensor_meta(self.prev_stage)
if isinstance(self.pipe_recv_buf, torch.Tensor):
p2p.recv(self.pipe_recv_buf, self.prev_stage)
recvd = self.pipe_recv_buf.clone().detach()
recvd.requires_grad = recvd.is_floating_point()
else:
assert isinstance(self.pipe_recv_buf, tuple)
recvd = [None] * len(self.pipe_recv_buf)
for idx, buffer in enumerate(self.pipe_recv_buf):
assert torch.is_tensor(buffer)
# XXX hardcode meta type
if self.is_pipe_partitioned and idx == 0 and buffer.dtype != torch.long:
if self.meta_buffer is None:
self.meta_buffer = torch.zeros(buffer.size(), dtype=torch.long, device=self.device)
buffer = self.meta_buffer
p2p.recv(buffer, self.prev_stage)
recvd[idx] = buffer.clone().detach()
# NCCL does not like to send torch.BoolTensor types, so un-cast the
# attention mask
if self.has_attention_mask or self.has_bool_tensors:
recvd[-1] = recvd[-1].bool()
recvd = tuple(recvd)
for buffer in recvd:
buffer.requires_grad = buffer.is_floating_point()
self.pipe_buffers['inputs'][buffer_id] = recvd
if self.wall_clock_breakdown():
self.timers(PIPE_RECV_INPUT_TIMER).stop()
def _exec_recv_grads(self, buffer_id):
if self.wall_clock_breakdown():
self.timers(PIPE_RECV_GRAD_TIMER).start()
outputs = self.pipe_buffers['outputs'][buffer_id]
# XXX these shapes are hardcoded for Megatron
# Restore partitioned output if it was partitioned and we are sending full gradients
if self.is_pipe_partitioned and not self.is_grad_partitioned:
if self.pipe_partition_grad_meta_cache is None:
self.pipe_partition_grad_meta_cache = outputs[0].to('cpu')
part_output = PartitionedTensor.from_meta(meta=self.pipe_partition_grad_meta_cache,
local_part=outputs[1],
group=self.grid.get_slice_parallel_group())
outputs[0].data = part_output.full()
outputs = (outputs[0], *outputs[2:])
# save for backward
self.pipe_buffers['outputs'][buffer_id] = outputs
# Allocate gradient if necessary
if self.grad_layer is None:
if isinstance(outputs, torch.Tensor):
s = list(outputs.size())
self.grad_layer = self._allocate_buffer(s, dtype=outputs.dtype, num_buffers=1)[0]
else:
# XXX This is a HACK
# When we exchange activations/gradients, the two pipe stages
# need to issue the send/recv with the same buffer sizes or
# else there is a deadlock. The is_floating_point() filter is
# used to avoid sending gradients for tensors that do not
# produce gradients. When TP>1, we partition the first
# activations/gradients across TP ranks to save communication
# volume and memory. That partitioned tensor is represented as
# two tensors: a 1/TPth chunk of the original data and also a
# small LongTensor storing the metadata used to reconstruct on
# the other side. When combined, the floating point filter also
# filtered out the metadata tensor. This quick (hacky) fix just
# branches on is_grad_partitioned so we don't filter out the
# metadata tensor.
if self.is_grad_partitioned:
sizes_and_dtypes = [(list(t.size()), t.dtype)
for t in outputs[:2]] + [(list(t.size()), t.dtype)
for t in outputs[2:] if t.is_floating_point()]
else:
sizes_and_dtypes = [(list(t.size()), t.dtype) for t in outputs if t.is_floating_point()]
self.grad_layer = self._allocate_buffers(sizes_and_dtypes, num_buffers=1)[0]
if isinstance(self.grad_layer, torch.Tensor):
p2p.recv(self.grad_layer, self.next_stage)
else:
assert isinstance(outputs, tuple)
for idx, buffer in enumerate(self.grad_layer):
# XXX GPT-2 hack
if self.is_grad_partitioned and idx == 0 and buffer.dtype != torch.long:
buffer.data = torch.zeros(buffer.size(), dtype=torch.long, device=self.device)
p2p.recv(buffer, self.next_stage)
if self.wall_clock_breakdown():
self.timers(PIPE_RECV_GRAD_TIMER).stop()
def _exec_optimizer_step(self, lr_kwargs=None):
if self.wall_clock_breakdown():
self.timers(STEP_MICRO_TIMER).start()
self.timers(STEP_GLOBAL_TIMER).start()
self.mem_status('BEFORE STEP', reset_max=True)
self._force_grad_boundary = True
self._take_model_step(lr_kwargs)
self._force_grad_boundary = False
self.mem_status('AFTER STEP')
if self.global_rank == 0 and self.monitor.enabled:
self.summary_events = [(f'Train/Samples/lr', self.get_lr()[0], self.global_samples)]
if self.fp16_enabled() and hasattr(self.optimizer, 'cur_scale'):
self.summary_events.append(
(f'Train/Samples/loss_scale', self.optimizer.cur_scale, self.global_samples))
self.monitor.write_events(self.summary_events)
if self.wall_clock_breakdown():
self.timers(STEP_MICRO_TIMER).stop()
self.timers(STEP_GLOBAL_TIMER).stop()
if self.global_steps % self.steps_per_print() == 0:
self.timers.log([
BATCH_INPUT_TIMER,
FORWARD_MICRO_TIMER,
BACKWARD_MICRO_TIMER,
BACKWARD_INNER_MICRO_TIMER,
BACKWARD_REDUCE_MICRO_TIMER,
STEP_MICRO_TIMER,
])
if self.global_steps % self.steps_per_print() == 0:
self.timers.log([
FORWARD_GLOBAL_TIMER,
BACKWARD_GLOBAL_TIMER,
BACKWARD_INNER_GLOBAL_TIMER,
BACKWARD_REDUCE_GLOBAL_TIMER,
STEP_GLOBAL_TIMER,
])
def _allocate_zeros(self, shape, **kwargs):
""" Allocate a tensor of zeros on the engine's device.
Arguments:
shape: the shape of the tensor to allocate
kwargs: passed to torch.zeros()
Returns:
A tensor from torch.zeros() allocated on self.device.
"""
if "dtype" not in kwargs:
if self.fp16_enabled():
kwargs["dtype"] = torch.half
if self.bfloat16_enabled():
kwargs["dtype"] = torch.bfloat16
return torch.zeros(shape, device=self.device, **kwargs)
def _allocate_buffer(self, shape, num_buffers=-1, **kwargs):
buffers = []
if num_buffers == -1:
num_buffers = self.num_pipe_buffers
for count in range(num_buffers):
buffers.append(self._allocate_zeros(shape, **kwargs))
return buffers
def _allocate_buffers(self, shapes_and_dtypes, requires_grad=False, num_buffers=-1):
buffers = []
if num_buffers == -1:
num_buffers = self.num_pipe_buffers
for count in range(num_buffers):
buffer = []
for shape, dtype in shapes_and_dtypes:
buffer.append(self._allocate_zeros(shape, dtype=dtype, requires_grad=requires_grad))
buffers.append(buffer)
return buffers
def forward(self, *args, **kwargs):
"""Disabled for pipeline parallel training. See ``train_batch()``. """
raise PipelineError("Only train_batch() is accessible in pipeline mode.")
def backward(self, *args, **kwargs):
"""Disabled for pipeline parallel training. See ``train_batch()``. """
raise PipelineError("Only train_batch() is accessible in pipeline mode.")
def step(self, *args, **kwargs):
"""Disabled for pipeline parallel training. See ``train_batch()``. """
raise PipelineError("Only train_batch() is accessible in pipeline mode.")
def mem_status(self, msg, print_rank=-1, reset_max=False):
return
global mem_alloced, mem_cached
if not self.global_steps == 0 or not self.global_steps == 9:
#return
pass
if self.mpu.get_data_parallel_rank() != 0:
return
if self.global_rank != 0:
return
rank = self.global_rank
if print_rank != -1 and rank != print_rank:
return
get_accelerator().synchronize()
if reset_max:
get_accelerator().reset_max_memory_cached()
get_accelerator().reset_max_memory_allocated()
new_alloced = get_accelerator().memory_allocated()
new_cached = get_accelerator().memory_cached()
delta_alloced = new_alloced - mem_alloced
delta_cached = new_cached - mem_cached
mem_cached = new_cached
mem_alloced = new_alloced
max_alloced = get_accelerator().max_memory_allocated()
max_cached = get_accelerator().max_memory_cached()
# convert to GB for printing
new_alloced /= 1024**3
new_cached /= 1024**3
delta_alloced /= 1024**3
delta_cached /= 1024**3
max_alloced /= 1024**3
max_cached /= 1024**3
print(
f'RANK={rank} STAGE={self.stage_id} STEP={self.global_steps} MEMSTATS', msg,
f'current alloc={new_alloced:0.4f}GB (delta={delta_alloced:0.4f}GB max={max_alloced:0.4f}GB) '
f'current cache={new_cached:0.4f}GB (delta={delta_cached:0.4f}GB max={max_cached:0.4f}GB)')
def module_state_dict(self, exclude_frozen_parameters=False):
"""Override hack to save a pipe model and return the directory path of the save.
This method should only be called by DeepSpeed's ``save_checkpoint()``. The
recommended way of saving a ``PipelineModule`` outside of ``save_checkpoint()``
is ``save_state_dict()``.
Returns:
None
"""
assert isinstance(self.module, PipelineModule)
assert self._curr_ckpt_path is not None, \
"PipelineEngine expects module_state_dict() to be called from save_checkpoint()"
self.module.save_state_dict(self._curr_ckpt_path,
checkpoint_engine=self.checkpoint_engine,
exclude_frozen_params=exclude_frozen_parameters)
return None
def load_module_state_dict(self, checkpoint, strict=True, custom_load_fn=None, fetch_z3_params=False):
"""Override hack to instead use a directory path.
This is important because pipeline models checkpoint by layer instead of rank.
If ``state_dict`` is not ``None`` or a ``str``, we revert to ``super()`` expecting a ``dict``.
Args:
state_dict (str, None): unused
strict (bool, optional): Strict state loading. Defaults to True.
"""
assert custom_load_fn is None, "custom_load_fn not supported w. pipeline parallelism"
state_dict = checkpoint if self.has_moe_layers else checkpoint['module']
if (state_dict is not None) and (not isinstance(state_dict, str)):
super().load_module_state_dict(state_dict, strict)
return
self.module.load_state_dir(load_dir=self._curr_ckpt_path,
strict=strict,
checkpoint_engine=self.checkpoint_engine)
# A map of PipeInstruction types to methods. Each method will be executed with the
# kwargs provided to the PipeInstruction from the scheduler.
_INSTRUCTION_MAP = {
schedule.OptimizerStep: _exec_optimizer_step,
schedule.ReduceGrads: _exec_reduce_grads,
schedule.ReduceTiedGrads: _exec_reduce_tied_grads,
schedule.LoadMicroBatch: _exec_load_micro_batch,
schedule.ForwardPass: _exec_forward_pass,
schedule.BackwardPass: _exec_backward_pass,
schedule.SendActivation: _exec_send_activations,
schedule.RecvActivation: _exec_recv_activations,
schedule.SendGrad: _exec_send_grads,
schedule.RecvGrad: _exec_recv_grads,
}
def _exec_schedule(self, pipe_schedule):
# Reserve and reset buffers.
self._reserve_pipe_buffers(pipe_schedule.num_pipe_buffers())
self.fwd_outputs = []
# For each step in the schedule
for step_cmds in pipe_schedule:
# For each instruction in the step
for cmd in step_cmds:
if type(cmd) not in self._INSTRUCTION_MAP:
raise RuntimeError(f'{self.__class__.__name__} does not understand instruction {repr(cmd)}')
# Equivalent to: self._exec_forward_pass(buffer_id=0)
self._exec_instr = MethodType(self._INSTRUCTION_MAP[type(cmd)], self)
self._exec_instr(**cmd.kwargs)
def get_additional_losses(self):
return self.agg_additional_losses
|