File size: 12,217 Bytes
9ad9e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import sys
from typing import Optional
from enum import Enum
from deepspeed.pydantic_v1 import Field, validator, root_validator
from deepspeed.runtime.config_utils import get_scalar_param, pp_int, DeepSpeedConfigModel
from deepspeed.utils import logger
from .offload_config import DeepSpeedZeroOffloadParamConfig, DeepSpeedZeroOffloadOptimizerConfig, OffloadDeviceEnum

# ZeRO optimization. By default, this optimization is not enabled.
# Users have to configure the desired optimization (0 means disabled) in params.json as below example:
ZERO_FORMAT = """
ZeRO optimization should be enabled as:
"session_params": {
  "zero_optimization": {
    "stage": [0|1|2],
    "stage3_max_live_parameters" : 1000000000,
    "stage3_max_reuse_distance" : 1000000000,
    "allgather_partitions": [true|false],
    "use_multi_rank_bucket_allreduce": [true|false],
    "allgather_bucket_size": 500000000,
    "reduce_scatter": [true|false],
    "contiguous_gradients" : [true|false]
    "overlap_comm": [true|false],
    "reduce_bucket_size": 500000000,
    "load_from_fp32_weights": [true|false],
    "cpu_offload": [true|false] (deprecated),
    "cpu_offload_params" : [true|false] (deprecated),
    "cpu_offload_use_pin_memory": [true|false] (deprecated),
    "sub_group_size" : 1000000000000,
    "offload_param": {...},
    "offload_optimizer": {...},
    "ignore_unused_parameters": [true|false],
    "round_robin_gradients": [true|false],
    "zero_hpz_partition_size": 1,
    "zero_quantized_weights": [true|false],
    "zero_quantized_nontrainable_weights": [true|false],
    "zero_quantized_gradients": [true|false],
    "memory_efficient_linear": [true|false],
    "override_module_apply": [true|false],
    }
}
"""

ZERO_OPTIMIZATION = "zero_optimization"


def read_zero_config_deprecated(param_dict):
    zero_config_dict = {}
    zero_config_dict["stage"] = 1 if param_dict[ZERO_OPTIMIZATION] else 0
    if zero_config_dict["stage"] > 0:
        zero_config_dict["allgather_bucket_size"] = get_scalar_param(param_dict, "allgather_size", 5e8)
    logger.warning(
        "DeepSpeedConfig: this format of ZeRO optimization setup is deprecated. Please use the following format: {}".
        format(ZERO_FORMAT))
    return zero_config_dict


def get_zero_config(param_dict):
    if ZERO_OPTIMIZATION in param_dict:
        zero_config_dict = param_dict[ZERO_OPTIMIZATION]
        if isinstance(zero_config_dict, bool):
            zero_config_dict = read_zero_config_deprecated(param_dict)
    else:
        zero_config_dict = {}
    return DeepSpeedZeroConfig(**zero_config_dict)


class ZeroStageEnum(int, Enum):
    """ Enum class for possible zero stages """
    disabled = 0
    optimizer_states = 1
    gradients = 2
    weights = 3
    max_stage = 3


class DeepSpeedZeroConfig(DeepSpeedConfigModel):
    """
    Sets parameters for ZeRO optimizations.
    """

    stage: ZeroStageEnum = 0
    """
    Chooses different stages of ZeRO Optimizer. Stage 0, 1, 2, and 3 refer
    to disabled, optimizer state partitioning, and optimizer+gradient state
    partitioning, and optimizer+gradient+parameter partitioning, respectively.
    """

    contiguous_gradients: bool = True
    """
    Copies the gradients to a contiguous buffer as they are produced. Avoids
    memory fragmentation during backward pass.
    """

    reduce_scatter: bool = True
    """
    Uses reduce or reduce scatter instead of allreduce to average gradients
    """

    reduce_bucket_size: int = Field(pp_int(5e8), ge=0)
    """
    Number of elements reduced/allreduced at a time. Limits the memory required
    for the allgather for large model sizes
    """

    use_multi_rank_bucket_allreduce: bool = True
    """
    Combine the reduce buckets of the different ranks and do an All-Reduce instead of multiple Reduce ops.
    This feature is useful when the model is small and we want to scale it on too many GPUs which therefore
    reduces the message sizes of each packet.
    """

    allgather_partitions: bool = True
    """
    Chooses between allgather collective or a series of broadcast collectives
    to gather updated parameters from all the GPUs at the end of each step
    """

    allgather_bucket_size: int = Field(pp_int(5e8), ge=0)
    """
    Number of elements allgathered at a time. Limits the memory required for
    the allgather for large model sizes
    """

    overlap_comm: bool = None  # None for dynamic default value (see validator `overlap_comm_valid` below)
    """
    Attempts to overlap the reduction of the gradients with backward computation
    """

    load_from_fp32_weights: bool = True
    """
    Boolean indicating whether to initialize fp32 master weights from fp32
    copies in checkpoint (no precision loss) or from model's fp16 copies (with
    precision loss). This can be used to initialize optimizer state even when
    checkpoint is missing optimizer state.
    """

    elastic_checkpoint: bool = False
    """
    Enable loading checkpoint that was saved by job with different GPU count.
    No longer supported.
    """

    offload_param: Optional[DeepSpeedZeroOffloadParamConfig] = None
    """
    Enable offloading of model parameters to CPU or NVMe. This frees up GPU
    memory for larger models or batch sizes. Valid only with stage 3. Expects a
    dictionary containing values for :any:`DeepSpeedZeroOffloadParamConfig`.
    """

    offload_optimizer: Optional[DeepSpeedZeroOffloadOptimizerConfig] = None
    """
    Enable offloading of optimizer state to CPU or NVMe, and optimizer
    computation to CPU. This frees up GPU memory for larger models or batch
    sizes. Valid for ZeRO stage 1, 2, 3. Expects a dictionary containing values
    for :any:`DeepSpeedZeroOffloadOptimizerConfig`.
    """

    sub_group_size: int = Field(pp_int(1e9), ge=0)
    """
    Tile size for parameter processing to fit massive models (with trillions of
    parameters). Used by ZeRO3-Offload and ZeRO-Infinity
    """

    cpu_offload_param: bool = Field(
        None,
        deprecated=True,
        new_param="offload_param",
        new_param_fn=(lambda val: DeepSpeedZeroOffloadParamConfig(device=OffloadDeviceEnum.cpu) if val else None),
    )
    """ Deprecated, please use ``offload_param`` """

    cpu_offload_use_pin_memory: bool = Field(
        None,
        deprecated=True,
        new_param="offload_param or offload_optimizer",
        set_new_param=False,
    )
    """ Deprecated, please use ``offload_param`` or ``offload_optimizer`` """

    cpu_offload: bool = Field(
        None,
        deprecated=True,
        new_param="offload_optimizer",
        new_param_fn=(lambda val: DeepSpeedZeroOffloadOptimizerConfig(device=OffloadDeviceEnum.cpu) if val else None),
    )
    """ Deprecated, please use ``offload_optimizer`` """

    prefetch_bucket_size: int = Field(pp_int(5e7), ge=0, alias="stage3_prefetch_bucket_size")
    """
    Maximum number of parameter elements to fetch ahead of use. Used by ZeRO3,
    ZeRO3-Offload, ZeRO-Infinity, and ZeRO-Inference.
    """

    param_persistence_threshold: int = Field(pp_int(1e5), ge=0, alias="stage3_param_persistence_threshold")
    """
    Do not partition parameters smaller than this threshold. Smaller values use
    less memory, but can greatly increase communication (especially
    latency-bound messages).
    """

    model_persistence_threshold: int = Field(pp_int(sys.maxsize, "sys.maxsize"),
                                             ge=0,
                                             alias="stage3_model_persistence_threshold")
    """
    Maximum number of parameter elements that can be persisted in GPU and not
    partitioned. This imposes an upper bound on the number of unpartitioned
    parameters resulting from param_persistence_threshold setting. Used by
    ZeRO3-Offload, ZeRO-Infinity and ZeRO-Inference.
    """

    max_live_parameters: int = Field(pp_int(1e9), ge=0, alias="stage3_max_live_parameters")
    """
    The maximum number of parameters resident per GPU before releasing. Smaller
    values use less memory, but perform more communication.
    """

    max_reuse_distance: int = Field(pp_int(1e9), ge=0, alias="stage3_max_reuse_distance")
    """
    Do not release a parameter if it will be reused within this threshold of
    parameters. Smaller values use less memory, but perform more communication.
    """

    gather_16bit_weights_on_model_save: bool = Field(False, alias="stage3_gather_16bit_weights_on_model_save")
    """
    Consolidate the weights before saving the model by ``save_16bit_model()``.
    Since the weights are partitioned across GPUs, they aren’t part of
    ``state_dict``, so this function automatically gathers the weights when
    this option is enabled and then saves the fp16 model weights.
    """

    stage3_gather_fp16_weights_on_model_save: bool = Field(False,
                                                           deprecated=True,
                                                           new_param="gather_16bit_weights_on_model_save")
    """ Deprecated, please use ``gather_16bit_weights_on_model_save`` """

    ignore_unused_parameters: bool = True
    """
    Unused parameters in modules may be unexpected in static networks, but
    could be normal in dynamic networks. This controls whether or not training
    should terminate with an error message when unused parameters are detected.
    This is set to ``True`` by default, which means unused parameters are
    ignored and training continues. Now is just used in stage 2.
    """

    legacy_stage1: bool = False
    """
    For backward-compatibility enable old ZeRO stage 1 implementation. Use at
    your own risk, will be deprecated soon.
    """

    round_robin_gradients: bool = False
    """
    Stage 1 and 2 optimization for CPU offloading that parallelizes gradient
    copying to CPU memory among ranks by fine-grained gradient partitioning.
    Performance benefit grows with gradient accumulation steps (more copying
    between optimizer steps) or GPU count (increased parallelism).
    """
    zero_hpz_partition_size: int = Field(1, ge=0)
    """
    Number of ranks in zero parameters partitioning secondary group
    """
    zero_quantized_weights: bool = False
    """
    Boolean indicating whether to quantize zero parameters (weights)
    for efficient all_gather comm
    """
    zero_quantized_nontrainable_weights: bool = False
    """
    Boolean indicating whether to quantize non-trainable zero parameters (weights)
    for efficient memory usage and communication. Different from zero_quantized_weights
    that stores the weights in original precision and only perform quantization during communication,
    this flag will store the weights in quantized precision. This is useful for LoRA training.
    """
    zero_quantized_gradients: bool = False
    """
    Boolean indicating whether to use quantized zero gradients
    for efficient all_2_all_reduce comm
    """

    mics_shard_size: int = Field(-1, new_param="mics_shard_size")

    mics_hierarchical_params_gather: bool = False

    memory_efficient_linear: bool = True
    """
    Use memory efficient linear implementation, for Stage 3.
    """
    """
    Whether force load checkpoint in pipeline mode, current only for Stage 3.
    """
    pipeline_loading_checkpoint: bool = False

    override_module_apply: bool = True
    """
    Override nn.Module apply function, for Stage 3.
    """

    # Validators
    @validator("overlap_comm")
    def overlap_comm_valid(cls, field_value, values):
        if field_value is None:
            assert ("stage" in values), "DeepSpeedZeroConfig: 'stage' must be defined before 'overlap_comm'"
            field_value = values["stage"] == ZeroStageEnum.weights
        return field_value

    @root_validator
    def offload_ratio_check(cls, values):
        offload_config = getattr(values, "offload_optimizer", {})
        if offload_config and offload_config.ratio < 1.0:
            assert values.get("stage") == ZeroStageEnum.weights, "Partial offloading only supported for ZeRO Stage 3."
        return values