File size: 102,528 Bytes
9ad9e91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import math
import os
import types
from typing import Callable, Iterable
from enum import Enum
import functools
import itertools
from typing import List
from collections import defaultdict
import logging
import torch
from torch import Tensor
from deepspeed import comm as dist
from torch.nn import Module
from torch.nn import Parameter
from .linear import zero3_linear_wrap
from deepspeed.utils import groups
import deepspeed
from ..utils import see_memory_usage
from deepspeed.runtime.zero.config import DeepSpeedZeroConfig
from deepspeed.runtime.zero.utils import assert_ints_same_as_other_ranks, is_zero_param
from deepspeed.runtime.zero.offload_config import OffloadDeviceEnum
from deepspeed.runtime.config_utils import get_config_default
from deepspeed.utils import instrument_w_nvtx, logger
from deepspeed.comm.comm import init_distributed
from deepspeed.utils.debug import (debug_param2name_id_shape, debug_param2name_id_shape_device, debug_module2name,
debug_param2name_id, debug_param2name_id_shape_status)
from deepspeed.accelerator import get_accelerator
from ..swap_tensor.partitioned_param_swapper import AsyncPartitionedParameterSwapper, PartitionedParamStatus
from deepspeed.inference.quantization.utils import _quantize_param, WEIGHT_QUANTIZATION_LAYERS, wrap_quantized_functional, wrap_load_from_state_dict
partitioned_param_data_shape = [0]
zero_init_context = 0
top_level_context = None
class NoGatherHandle:
def __init__(self, param: Parameter) -> None:
if param.ds_status != ZeroParamStatus.INFLIGHT:
raise RuntimeError(f"expected param {param.ds_summary()} to be available")
if hasattr(param.ds_tensor, "ds_quant_scale"):
param.data = Init.quantizer_module.dequantize(param.ds_tensor.data, param.ds_tensor.ds_quant_scale).to(
device=get_accelerator().current_device_name(), non_blocking=True).view(param.ds_shape)
else:
param.data = param.ds_tensor.data.to(device=get_accelerator().current_device_name(),
non_blocking=True).view(param.ds_shape)
self.__param = param
def wait(self) -> None:
if not get_accelerator().is_synchronized_device():
get_accelerator().current_stream().synchronize()
self.__param.ds_status = ZeroParamStatus.AVAILABLE
class NoGatherCoalescedHandle:
def __init__(self, params: List[Parameter]) -> None:
self.__params = params
self.__complete = False
for param in self.__params:
if param.ds_status != ZeroParamStatus.INFLIGHT:
raise RuntimeError(f"expected param {param.ds_summary()} to not be available")
if hasattr(param.ds_tensor, "ds_quant_scale"):
param.data = Init.quantizer_module.dequantize(param.ds_tensor.data, param.ds_tensor.ds_quant_scale).to(
device=get_accelerator().current_device_name(), non_blocking=True).view(param.ds_shape)
else:
param.data = param.ds_tensor.data.to(device=get_accelerator().current_device_name(),
non_blocking=True).view(param.ds_shape)
@instrument_w_nvtx
def wait(self) -> None:
if self.__complete:
return
if not get_accelerator().is_synchronized_device():
get_accelerator().current_stream().synchronize()
for param in self.__params:
assert param.ds_status == ZeroParamStatus.INFLIGHT, f"expected param {param.ds_summary()} to be inflight"
param.ds_status = ZeroParamStatus.AVAILABLE
self.__complete = True
def _dist_allgather_fn(input_tensor: Tensor, output_tensor: Tensor, group=None):
return instrument_w_nvtx(dist.allgather_fn)(output_tensor, input_tensor, group=group, async_op=True)
def print_rank_0(message, debug=False, force=False):
rank = dist.get_rank()
if rank == 0 and (debug or force):
print(message)
# other variations
# - print for all ranks w/o interleaving
# printflock(f"[{rank}] {message}")
# - print to log file per rank
# log_rank_file(rank, message)
def debug_rank0(msg: str) -> None:
if dist.get_rank() == 0:
logger.debug(msg)
def _init_external_params(module):
if not hasattr(module, '_external_params'):
module._external_params = {}
def external_parameters(self):
return self._external_params.items()
def all_parameters(self):
return itertools.chain(self.named_parameters(self, recurse=False), external_parameters(self))
module.ds_external_parameters = types.MethodType(external_parameters, module)
module.all_parameters = types.MethodType(all_parameters, module)
def register_external_parameter(module, parameter):
"""Instruct DeepSpeed to coordinate ``parameter``'s collection and partitioning in
the forward and backward passes of ``module``.
This is used when a parameter is accessed outside of its owning module's
``forward()``. DeepSpeed must know to collect it from its partitioned
state and when to release the memory.
.. note::
This is only applicable to training with ZeRO stage 3.
Args:
module (``torch.nn.Module``): The module that requires ``parameter`` in its forward pass.
parameter (``torch.nn.Parameter``): The parameter to register.
Raises:
RuntimeError: If ``parameter`` is not of type ``torch.nn.Parameter``.
Examples
========
#. Register a weight that is used in another module's forward pass (line 6).
Parameter ``layer1.weight`` is used by ``layer2`` (line 11).
.. code-block:: python
:linenos:
:emphasize-lines: 6,11
class ModuleZ3(torch.nn.Module):
def __init__(self, *args):
super().__init__(self, *args)
self.layer1 = SomeLayer()
self.layer2 = OtherLayer()
deepspeed.zero.register_external_parameter(self, self.layer1.weight)
def forward(self, input):
x = self.layer1(input)
# self.layer1.weight is required by self.layer2.forward
y = self.layer2(x, self.layer1.weight)
return y
"""
if not isinstance(parameter, torch.nn.Parameter):
raise RuntimeError('Parameter is not a torch.nn.Parameter')
if not hasattr(module, '_external_params'):
_init_external_params(module)
key = id(parameter)
module._external_params[key] = parameter
def unregister_external_parameter(module, parameter):
"""Reverses the effects of :meth:`register_external_parameter`.
Args:
module (``torch.nn.Module``): The module to affect.
parameter (``torch.nn.Parameter``): The parameter to unregister.
Raises:
RuntimeError: If ``parameter`` is not of type ``torch.nn.Parameter``.
RuntimeError: If ``parameter`` is not a registered external parameter of ``module``.
"""
if not isinstance(parameter, torch.nn.Parameter):
raise RuntimeError('Parameter is not a torch.nn.Parameter')
if not hasattr(module, '_external_params') or id(parameter) not in module._external_params:
raise RuntimeError('Parameter is not a registered external parameter of module.')
key = id(parameter)
del module._external_params[key]
class ZeroParamType(Enum):
# same as regular pytorch parameters
NORMAL = 1
# parameters are partitioned across data parallel process
PARTITIONED = 2
# the parameter is held with a unique process rank
# and is not available on all other process
REMOTE = 3
class ZeroParamStatus(Enum):
# parameters are fully present and ready for use on all processes
AVAILABLE = 1
# parameters are either partitioned or remote in some or all process
NOT_AVAILABLE = 2
# parameters are being gathered.
INFLIGHT = 3
_orig_torch_tensor = torch.tensor
_orig_torch_empty = torch.empty
_orig_torch_zeros = torch.zeros
_orig_torch_ones = torch.ones
_orig_torch_full = torch.full
_orig_torch_arange = torch.arange
_orig_torch_eye = torch.eye
_orig_torch_randn = torch.randn
def zero_wrapper_for_fp_tensor_constructor(fn: Callable, target_fp_dtype: torch.dtype) -> Callable:
def wrapped_fn(*args, **kwargs) -> Tensor:
if kwargs.get("device", None) is None:
kwargs['device'] = torch.device(get_accelerator().device_name(os.environ["LOCAL_RANK"]))
tensor: Tensor = fn(*args, **kwargs)
if tensor.is_floating_point():
tensor.data = tensor.data.to(target_fp_dtype)
return tensor
return wrapped_fn
def get_new_tensor_fn_for_dtype(dtype: torch.dtype) -> Callable:
def new_tensor(cls, *args, **kwargs) -> Tensor:
device = torch.device(get_accelerator().device_name(os.environ["LOCAL_RANK"]))
if not args:
args = (0, )
tensor = _orig_torch_empty(0, device=device).new_empty(*args, **kwargs)
if tensor.is_floating_point():
tensor = tensor.to(dtype)
return tensor
return new_tensor
# https://stackoverflow.com/a/63851681/9201239
def get_all_subclasses(cls):
subclass_list = []
def recurse(cl):
for subclass in cl.__subclasses__():
subclass_list.append(subclass)
recurse(subclass)
recurse(cls)
return set(subclass_list)
@instrument_w_nvtx
def free_param(param: Parameter) -> None:
"""Free underlying storage of a parameter."""
assert not param.ds_active_sub_modules, param.ds_summary()
if get_accelerator().on_accelerator(param.data):
# need to make sure that we don't free the parameter while it is still
# being used for computation
if not get_accelerator().is_synchronized_device():
param.data.record_stream(get_accelerator().current_stream())
# param.data doesn't store anything meaningful in partitioned state
param.data = torch.empty(0, dtype=param.dtype, device=param.device)
param.ds_status = ZeroParamStatus.NOT_AVAILABLE
reuse_buffers = False
temp_contiguous_tensor = None
empty_buffers = {}
# Inserts _post_init_method at the end of init method
# for all sub classes of torch.nn.Module
class InsertPostInitMethodToModuleSubClasses(object):
num_module_parameters = 0
num_module_elements = 0
def __init__(self, enabled=True, mem_efficient_linear=True, ds_config=None, dtype=None):
self.mem_efficient_linear = mem_efficient_linear
self.enabled = enabled
self._set_dtype(ds_config, dtype)
assert self.dtype in [
torch.half, torch.bfloat16, torch.float
], f"Invalid data type {self.dtype}, allowed values are [torch.half, torch.bfloat16, torch.float]"
self.wrapped_cls = set()
self.skip_init_depth = 0
self.quantized_initialization = None
if ds_config is not None and ds_config.weight_quantization_config and ds_config.weight_quantization_config.quantized_initialization:
self.quantized_initialization = ds_config.weight_quantization_config.quantized_initialization
def __enter__(self):
if not self.enabled:
return
global zero_init_context
if zero_init_context == 0:
self.patch_init_and_builtins()
global top_level_context
top_level_context = self
zero_init_context += 1
def __exit__(self, exc_type, exc_value, traceback):
if not self.enabled:
return
global zero_init_context
zero_init_context -= 1
# Exiting the top level context
if zero_init_context == 0:
self.unpatch_init_and_builtins()
global top_level_context
top_level_context = None
if dist.get_rank() == 0:
billion_elems = InsertPostInitMethodToModuleSubClasses.num_module_elements / 1e9
num_params = InsertPostInitMethodToModuleSubClasses.num_module_parameters
logger.info(
f"finished initializing model - num_params = {num_params}, num_elems = {billion_elems:.2f}B")
# Now that we cleaned up the metaclass injection, raise the exception.
if exc_type is not None:
return False
# To be implemented by inheriting classes
def _post_init_method(self, module):
pass
def _set_dtype(self, ds_config, dtype):
if ds_config is not None and dtype is None:
if ds_config.bfloat16_enabled and ds_config.fp16_enabled:
raise RuntimeError("bfloat16 and fp16 cannot be enabled at once")
if ds_config.bfloat16_enabled:
self.dtype = torch.bfloat16
elif ds_config.fp16_enabled:
self.dtype = torch.half
else:
self.dtype = torch.float
else:
self.dtype = dtype or torch.float16 if get_accelerator().is_fp16_supported(
) else torch.bfloat16 if get_accelerator().is_bf16_supported else torch.float32
def patch_init_and_builtins(self):
def apply_with_gather(orig_module_apply_fn: Callable) -> Callable:
"""many models make use of child modules like Linear or Embedding which
perform their own weight initialization in their __init__ methods,
but will then have more weight initialization in a parent module's __init__
method that modifies weights of child modules, which is typically done
using the Module.apply method.
since the Init context manager partitions child modules immediately after
they are initialized, without modifying apply we would entirely skip
any initialization done by parent modules.
to get around this issue, we wrap the function passed to Module.apply
so that the applied function is applied to child modules correctly.
"""
def get_wrapped_fn_to_apply(fn_to_apply: Callable) -> Callable:
if hasattr(fn_to_apply, "wrapped"):
return fn_to_apply
@functools.wraps(fn_to_apply)
def wrapped_fn_to_apply(module_to_apply_fn_to: Module) -> None:
"""gathers parameters before calling apply function. afterwards
parameters are broadcasted to ensure consistency across all ranks
then re-partitioned.
takes the following steps:
1. allgathers parameters for the current module being worked on
2. calls the original function
3. broadcasts root rank's parameters to the other ranks
4. re-partitions the parameters
"""
# TODO Delay error checking for dangling partitioned parameters to post module init
# raise RuntimeError(f"not all parameters for {module_to_apply_fn_to.__class__.__name__}, "
# f"were zero params, is it possible that the parameters were "
# f"overwritten after they were initialized? "
# f"params: {[p for p in module_to_apply_fn_to.parameters(recurse=False)]} ")
params_to_apply_fn_to: Iterable[Parameter] = list(
sorted([p for p in module_to_apply_fn_to.parameters(recurse=False) if is_zero_param(p)],
key=lambda p: p.ds_id))
for param in params_to_apply_fn_to:
param.all_gather()
fn_to_apply(module_to_apply_fn_to)
for param in params_to_apply_fn_to:
dist.broadcast(param.data, 0, group=param.ds_process_group)
for param in params_to_apply_fn_to:
param.partition(has_been_updated=True)
wrapped_fn_to_apply.wrapped = True
return wrapped_fn_to_apply
@functools.wraps(orig_module_apply_fn)
def wrapped_apply(module: Module, fn_to_apply: Callable) -> None:
orig_module_apply_fn(module, get_wrapped_fn_to_apply(fn_to_apply))
return wrapped_apply
def hook_for_skip_init(module):
# this function is intended for handling the logic of torch.nn.utils.skip_init
# skip_init:module_cls(*args, **kwargs).to_empty(device=final_device), where kwargs['device']='meta'
# the function call occurs between module_cls(*args, **kwargs) and to_empty(device=final_device).
def partition_after_empty_init(f):
@functools.wraps(f)
def wrapper(module, *args, **kwargs):
_module = f(module, *args, **kwargs)
# here is the post-hook for module.apply(empty_like...)
# after module.apply(empty_like...), the module has completed its empty init on real device
# since skip_init won't involve any computations or weight adjustments, we can directly utilize post_init
self._post_init_method(_module)
return _module
return wrapper
def post_wrapper_to_empty(f):
# append some wrapper restoration after to_empty() call
@functools.wraps(f)
def wrapper(*args, **kwargs):
res = f(*args, **kwargs)
# restore _apply hook
for subclass in get_all_subclasses(torch.nn.modules.module.Module):
_disable_class_apply(subclass)
# self restore
module.to_empty = f
return res
return wrapper
def _enable_class_apply(cls):
cls._old_apply_of_skip_init_hook = cls._apply
cls._apply = partition_after_empty_init(cls._apply)
def _disable_class_apply(cls):
cls._apply = cls._old_apply_of_skip_init_hook
# add hooks for to_empty: apply_(empty_like)
for subclass in get_all_subclasses(torch.nn.modules.module.Module):
_enable_class_apply(subclass)
# add a restore hook when exiting skip_init
module.to_empty = post_wrapper_to_empty(module.to_empty)
def partition_after(f):
@functools.wraps(f)
def wrapper(module, *args, **kwargs):
# important logic: We want to run post_init only after child's __init__ is
# completed, and do nothing after __init__ of any of its parents and grandparents in
# the inheritance ancestry. This way the partitioning will need to happen only once
# when the whole object is ready to be partitioned and not before. This is because
# often the child module will need to tweak the weights - for example running a
# custom weights init function. So if a parent created the weights param, the child
# won't need to gather it in order to tweak it
print_rank_0(f'Before initializing {module.__class__.__name__}', force=False)
is_child_module = False
if not hasattr(module, "_ds_child_entered"):
# child's __init__ was called, since parents all see the same object they can now skip post_init
is_child_module = True
setattr(module, "_ds_child_entered", True)
init_on_meta = 'device' in kwargs and kwargs['device'] == 'meta'
if init_on_meta:
self.skip_init_depth += 1
f(module, *args, **kwargs)
if init_on_meta and self.skip_init_depth == 1:
# check and handle the logic of empty_init
hook_for_skip_init(module)
if is_child_module:
# child's __init__ is done, now we can run a single post_init on the child object
delattr(module, "_ds_child_entered")
print_rank_0(f'Running post_init for {module.__class__.__name__}', force=False)
if self.skip_init_depth == 0:
self._post_init_method(module)
print_rank_0(f'After initializing followed by post init for {module.__class__.__name__}', force=False)
if init_on_meta:
self.skip_init_depth -= 1
return wrapper
def _enable_class(cls):
cls._old_init = cls.__init__
cls.__init__ = partition_after(cls.__init__)
def _init_subclass(cls, **kwargs):
cls._old_init = cls.__init__
cls.__init__ = partition_after(cls.__init__)
# Replace .__init__() for all existing subclasses of torch.nn.Module recursively
for subclass in get_all_subclasses(torch.nn.modules.module.Module):
_enable_class(subclass)
# holding onto some methods so we can put them back the way they were in __exit__
torch.nn.modules.module.Module._old_init_subclass = torch.nn.modules.module.Module.__init_subclass__
torch.nn.modules.module.Module._old_apply = torch.nn.modules.module.Module.apply
torch.Tensor.__old_new__ = torch.Tensor.__new__
# Replace .__init__() for future subclasses of torch.nn.Module
torch.nn.modules.module.Module.__init_subclass__ = classmethod(_init_subclass)
if Init.override_module_apply:
torch.nn.modules.module.Module.apply = apply_with_gather(torch.nn.modules.module.Module._old_apply)
self._add_tensor_creation_wrappers()
if self.mem_efficient_linear:
print_rank_0(
"nn.functional.linear has been overridden with a more memory efficient version. This will persist unless manually reset.",
force=False)
self.linear_bk = torch.nn.functional.linear
torch.nn.functional.linear = zero3_linear_wrap
if self.quantized_initialization:
print_rank_0("nn.functional.linear has been overridden with quantized linear version.", force=False)
torch.nn.functional.linear = wrap_quantized_functional(torch.nn.functional.linear)
torch.nn.functional.embedding = wrap_quantized_functional(torch.nn.functional.embedding)
for cls in WEIGHT_QUANTIZATION_LAYERS:
cls._load_from_state_dict = wrap_load_from_state_dict(cls._load_from_state_dict)
logger.info("Enable Zero3 engine with INT4 quantization.")
self.patched = True
def unpatch_init_and_builtins(self):
if self.patched:
def _disable_class(cls):
cls.__init__ = cls._old_init
for subclass in get_all_subclasses(torch.nn.modules.module.Module):
_disable_class(subclass)
# putting methods back the way we found them
torch.nn.modules.module.Module.__init_subclass__ = torch.nn.modules.module.Module._old_init_subclass
if Init.override_module_apply:
torch.nn.modules.module.Module.apply = torch.nn.modules.module.Module._old_apply
self._remove_tensor_creation_wrappers()
self.patched = False
def _add_tensor_creation_wrappers(self):
torch.Tensor.__new__ = get_new_tensor_fn_for_dtype(self.dtype)
torch.tensor = zero_wrapper_for_fp_tensor_constructor(_orig_torch_tensor, self.dtype)
torch.empty = zero_wrapper_for_fp_tensor_constructor(_orig_torch_empty, self.dtype)
torch.zeros = zero_wrapper_for_fp_tensor_constructor(_orig_torch_zeros, self.dtype)
torch.ones = zero_wrapper_for_fp_tensor_constructor(_orig_torch_ones, self.dtype)
torch.full = zero_wrapper_for_fp_tensor_constructor(_orig_torch_full, self.dtype)
torch.arange = zero_wrapper_for_fp_tensor_constructor(_orig_torch_arange, self.dtype)
torch.eye = zero_wrapper_for_fp_tensor_constructor(_orig_torch_eye, self.dtype)
torch.randn = zero_wrapper_for_fp_tensor_constructor(_orig_torch_randn, self.dtype)
def _remove_tensor_creation_wrappers(self):
torch.Tensor.__new__ = torch.Tensor.__old_new__
torch.tensor = _orig_torch_tensor
torch.empty = _orig_torch_empty
torch.zeros = _orig_torch_zeros
torch.ones = _orig_torch_ones
torch.full = _orig_torch_full
torch.arange = _orig_torch_arange
torch.eye = _orig_torch_eye
torch.randn = _orig_torch_randn
def shutdown_init_context():
"""
This function is used to initialize deepspeed engine inside the context of Init.
We need to remove the wrappers but keep the context.
"""
if top_level_context:
top_level_context.unpatch_init_and_builtins()
def restore_init_context():
"""
This function is used to restore the wrappers after deepspeed engine is initialized.
"""
if top_level_context:
top_level_context.patch_init_and_builtins()
class AllGatherHandle:
def __init__(self, handle, param: Parameter, quantization=None) -> None:
if param.ds_status != ZeroParamStatus.INFLIGHT:
raise RuntimeError(f"expected param {param.ds_summary()} to be available")
self.__handle = handle
self.__param = param
self.__quantization = quantization
def wait(self) -> None:
instrument_w_nvtx(self.__handle.wait)()
if self.__quantization:
instrument_w_nvtx(self.__quantization.quant_handle.wait)()
self.__param.data = self.__quantization.backend.dequantize(
self.__quantization.quantized_param, self.__quantization.scale_buffer).to(self.__param.device)
self.__param.ds_status = ZeroParamStatus.AVAILABLE
class AllGatherCoalescedHandle:
def __init__(
self,
allgather_handle,
params: List[Parameter],
partitions: List[Tensor],
world_size: int,
use_secondary_tensor=False,
quantization=None,
) -> None:
self.allgather_handle = allgather_handle
self.params = params
self.partitions = partitions
self.world_size = world_size
self.use_secondary_tensor = use_secondary_tensor
self.complete = False
self.quantization = quantization
for param in self.params:
if param.ds_status != ZeroParamStatus.INFLIGHT:
raise RuntimeError(f"expected param {param.ds_summary()} to not be available")
@instrument_w_nvtx
def wait(self) -> None:
if self.complete:
return
instrument_w_nvtx(self.allgather_handle.wait)()
if self.quantization:
instrument_w_nvtx(self.quantization.quant_handle.wait)()
flat_tensor = self.quantization.backend.dequantize(
self.quantization.quantized_param, self.quantization.scale_buffer).to(self.params[0].device)
self.partitions: List[Parameter] = []
for i in range(self.world_size):
self.partitions.append(
flat_tensor.narrow(0, self.quantization.partition_sz * i, self.quantization.partition_sz))
# split the single tensor out into individual tensors
param_offset = 0
for param in self.params:
assert param.ds_status == ZeroParamStatus.INFLIGHT, f"expected param {param.ds_summary()} to be inflight"
partitions: List[Tensor] = []
ds_tensor_numel = param.ds_tensor.ds_numel
if self.use_secondary_tensor:
ds_tensor_numel *= param.ds_secondary_tensor_num_of_groups
for rank in range(self.world_size):
param_start = rank * ds_tensor_numel
if param_start < param.ds_numel:
part_to_copy = self.partitions[rank].narrow(0, param_offset,
min(param.ds_numel - param_start, ds_tensor_numel))
partitions.append(part_to_copy)
param.data = instrument_w_nvtx(torch.cat)(partitions).view(param.ds_shape)
param.ds_status = ZeroParamStatus.AVAILABLE
for part_to_copy in partitions:
if not get_accelerator().is_synchronized_device():
part_to_copy.record_stream(get_accelerator().current_stream())
param_offset += ds_tensor_numel
self.complete = True
class MultipleAllGatherHandles:
def __init__(self, handles: List[AllGatherCoalescedHandle]):
self.handles = handles
def wait(self) -> None:
for handle in self.handles:
handle.wait()
class QuantizationInfo:
# a placeholder object to store all quant related vars used in handles
def __init__(self) -> None:
self.quantized_param = None
self.backend = None
self.quant_handle = None
self.scale_buffer = None
class CUDAQuantizer:
async_flag = True
target_group_size = 8000 # the optimal size is 4k, so we set the target to be below 8k
group_size_cache = dict()
quantizer_cuda_module = None
def __init__(self) -> None:
if CUDAQuantizer.quantizer_cuda_module is None:
CUDAQuantizer.quantizer_cuda_module = deepspeed.ops.op_builder.QuantizerBuilder().load()
def quantize(self, param, groups=None):
if groups is None:
try:
groups = self.group_size_cache[param.numel()]
except KeyError:
groups = math.ceil(param.numel() / self.target_group_size)
while groups < param.numel():
if param.numel() % (8 * groups) == 0:
break
groups += 1
while True:
if param.numel() % (8 * groups * 2) == 0 and param.numel(
) / groups > self.target_group_size: #hard limit of 16k group_size
groups *= 2
else:
break
assert (
param.numel() % (8 * groups) == 0
), f"Qantized weight requires the number of weights be a multiple of 8. Yet {param.numel()} cannot be divided by 8*{groups}"
assert (param.numel() / groups < 16000), f"{param.numel()} / {groups} is larger than 16k"
assert param.numel(
) > groups, f"Adaptive grouping algorithm cannot find a group size for input tensor of size {param.numel()}"
self.group_size_cache[param.numel()] = groups
return self.quantizer_cuda_module.quantize(param.to(get_accelerator().device_name()), groups, 8,
self.quantizer_cuda_module.Symmetric)
def dequantize(self, quantized_param, scale):
return self.quantizer_cuda_module.dequantize(quantized_param, scale, scale.numel(), 8,
self.quantizer_cuda_module.Symmetric)
def _no_gather_coalesced(params: Iterable[Parameter]) -> AllGatherCoalescedHandle:
for param in params:
if param.ds_status != ZeroParamStatus.NOT_AVAILABLE:
raise RuntimeError(f"expect param.ds_status == ZeroParamStatus.NOT_AVAILABLE, got{param.ds_summary()}")
param.ds_status = ZeroParamStatus.INFLIGHT
params = sorted(params, key=lambda p: p.ds_id)
if len(params) == 1:
param, = params
return NoGatherHandle(param)
return NoGatherCoalescedHandle(params)
# Replaces all parameters in module with Scattered Parameters
class Init(InsertPostInitMethodToModuleSubClasses):
param_id = 0
param_persistence_threshold = get_config_default(DeepSpeedZeroConfig, "param_persistence_threshold")
model_persistence_threshold = get_config_default(DeepSpeedZeroConfig, "model_persistence_threshold")
num_persisted_parameters = 0
num_persisted_elements = 0
apply_param_persistence = False
override_module_apply = get_config_default(DeepSpeedZeroConfig, "override_module_apply")
def __init__(
self,
module=None,
data_parallel_group=None,
mem_efficient_linear=True,
remote_device=None,
pin_memory=False,
config_dict_or_path=None,
config=None,
enabled=True,
dtype=None,
mpu=None,
zero_param_parallel_group=None,
zero_quantized_weights=False,
zero_quantized_nontrainable_weights=False,
sequence_data_parallel_group=None,
param_swapper=None,
):
"""A context to enable massive model construction for training with
ZeRO-3. Models are automatically partitioned (or, sharded) across the
system and converted to half precision.
Args:
module (``torch.nn.Module``, optional): If provided, partition the model as
if it was constructed in the context.
data_parallel_group (``deepspeed.comm`` process group, optional):
The group of processes to partition among. Defaults to all processes.
mem_efficient_linear (bool, optional): Replace
torch.nn.functional.linear with an implementation that allows
DeepSpeed to partition parameters. Defaults to ``True``.
remote_device (string, optional): The initial device to store model
weights e.g., ``cpu``, ``nvme``. Passing ``"cpu"`` will create the model in CPU
memory. The model may still be moved to GPU based on the
offload settings for training. Defaults to param offload device if a config is
defined, otherwise GPU.
pin_memory (bool, optional): Potentially increase performance by
using pinned memory for model weights. ``remote_device`` must be
``"cpu"``. Defaults to pin_memory value in config, otherwise ``False``.
config_dict_or_path (dict or ``json file``, optional): If provided, provides configuration
for swapping fp16 params to NVMe.
config (dict or ``json file``, optional): Deprecated, use config_dict_or_path instead.
enabled (bool, optional): If ``False``, this context has no
effect. Defaults to ``True``.
dtype (``dtype``, optional): Can be used to change the data type of the parameters.
Supported options are ``torch.half`` and ``torch.float``. Defaults to ``None``
mpu (``object``, optional): A model parallelism unit object that implements get_{model,data}_parallel_{rank,group,world_size}.
zero_param_parallel_group(``object``, optional): Parallel (comm) group for dual partitioning of ZeRO params.
zero_quantized_weights (bool, optional): If ``True``, turn on quantized weights in all gather weights. Default is ``False``
zero_quantized_nontrainable_weights (bool, optional): If ``True``, nontrainable weights will be stored in quantized format. Default is ``False``
param_swapper (``deepspeed.runtime.swap_tensor.partitioned_param_swapper.AsyncPartitionedParameterSwapper``, optional): [Experimental] Use existing parameter swapper. Defaults to ``None``.
This argument will be removed in the near future.
This context accelerates model initialization and enables models that
are too large to allocate in their entirety in CPU memory. It has the
following effects:
#. allocates tensors to either GPU or CPU memory or NVMe
#. converts floating point tensors to half precision
#. immediately partitions tensors among the group of data-parallel devices
#. (*optional*) replaces ``torch.nn.functional.linear`` with a more
memory-efficient implementation
These modifications allow for models that exceed the size of local CPU/GPU
memory/NVMe, but fit within the total NVMe capacity (*i.e.*, aggregate CPU
or GPU memory or NVMe) across all nodes. Consider initializing a model with one
trillion parameters, whose weights occupy two terabytes (TB) in half
precision. The initial CPU allocation in full precision requires 4TB of
memory *per process*, and so a system with 8 GPUs per node would need 32TB of
CPU memory due to data-parallel redundancies. Instead, by immediately
partitioning tensors we remove the redundancies. The result is that
regardless of the number of GPUs, we still only require the original 4TB. This
allows for a linear increase in model size with the aggregate system memory.
For example, if a node has 1TB of memory and 8 GPUs, we could fit a trillion
parameter model with 4 nodes and 32 GPUs.
Important: If the fp16 weights of the model can't fit onto a single GPU memory
this feature must be used.
.. note::
Initializes ``deepspeed.comm`` if it has not already been done so.
See :meth:`deepspeed.init_distributed` for more information.
.. note::
Only applicable to training with ZeRO-3.
Examples
--------
#. Allocate a model and partition it among all processes:
.. code-block:: python
with deepspeed.zero.Init():
model = MyLargeModel()
#. Allocate a model in pinned CPU memory and partition it among a subgroup of processes:
.. code-block:: python
with deepspeed.zero.Init(data_parallel_group=mpu.get_data_parallel_group(),
remote_device="cpu",
pin_memory=True):
model = MyLargeModel()
#. Partition an already-allocated model in CPU memory:
.. code-block:: python
model = deepspeed.zero.Init(module=model)
"""
if config is not None:
config_dict_or_path = config
logger.warning(
f'zero.Init: the `config` argument is deprecated. Please use `config_dict_or_path` instead.')
_ds_config = deepspeed.runtime.config.DeepSpeedConfig(config_dict_or_path,
mpu) if config_dict_or_path is not None else None
if _ds_config is not None:
if _ds_config.zero_config.memory_efficient_linear and _ds_config.compile_config.enabled:
# memory_efficient_linear displays numerous errors when torch.compile is enabled.
# Refer to https://github.com/pytorch/pytorch/issues/119059 for details.
# Further investigation into performance is necessary, even after resolving this issue because
# the `memory_efficient_linear` module may lead to more graph breaks compared to the original implementation.
logger.warning(f'memory_efficient_linear is disabled when torch.compile is enabled.')
mem_efficient_linear = False
else:
mem_efficient_linear = _ds_config.zero_config.memory_efficient_linear
super().__init__(enabled=enabled, mem_efficient_linear=mem_efficient_linear, ds_config=_ds_config, dtype=dtype)
if not dist.is_initialized():
init_distributed()
assert dist.is_initialized(), "Parameters cannot be scattered without initializing deepspeed.comm"
if data_parallel_group is None and sequence_data_parallel_group is None:
self.ds_process_group = dist.get_world_group()
elif sequence_data_parallel_group is not None:
self.ds_process_group = sequence_data_parallel_group
elif data_parallel_group is not None:
self.ds_process_group = data_parallel_group
else: # both given
raise ValueError(
"Both 'data_parallel_group' and 'sequence_data_parallel_group' were specified. Please provide only one of these arguments."
)
self.rank = dist.get_rank(group=self.ds_process_group)
self.dp_world_size = dist.get_world_size(group=self.ds_process_group)
self.zero_param_process_group = zero_param_parallel_group
if _ds_config is not None and _ds_config.zero_config.zero_hpz_partition_size > 1 and self.zero_param_process_group is None:
groups._create_zero_param_parallel_group(_ds_config.zero_config.zero_hpz_partition_size)
self.zero_param_process_group = groups._get_zero_param_intra_parallel_group()
self.num_ranks_in_param_group = self.dp_world_size
self.rank_in_group = self.rank
self.num_param_groups = 1
if self.zero_param_process_group is not None:
self.num_ranks_in_param_group = groups._get_zero_param_intra_parallel_group_world_size()
self.num_param_groups = int(self.dp_world_size / self.num_ranks_in_param_group)
self.rank_in_group = groups._get_zero_param_intra_parallel_rank_in_mygroup()
print_rank_0(f"hpZeRO group size: {self.num_ranks_in_param_group}", force=True)
logger.debug(
"hpZeRO partition parameter my rank in world {} my rank in group {} ranks in my param partition group: {} "
.format(self.rank, self.rank_in_group, groups._get_zero_param_intra_parallel_group_ranks()))
# Local device is the device where the parameters are consumed, must be default device.
# It is the device where parameters are fully instantiated using allgather
self.local_device = torch.device(get_accelerator().device_name(os.environ["LOCAL_RANK"]))
get_accelerator().set_device(self.local_device)
self.quantized_weights = zero_quantized_weights
if _ds_config is not None and _ds_config.zero_config.zero_quantized_weights and not self.quantized_weights:
self.quantized_weights = _ds_config.zero_config.zero_quantized_weights
self.quantized_nontrainable_weights = zero_quantized_nontrainable_weights
if _ds_config is not None and _ds_config.zero_config.zero_quantized_nontrainable_weights and not self.quantized_nontrainable_weights:
self.quantized_nontrainable_weights = _ds_config.zero_config.zero_quantized_nontrainable_weights
self.module = module
if (self.quantized_weights or self.quantized_nontrainable_weights):
self.quantizer_module = CUDAQuantizer()
print_rank_0(f'Using quantizer for weights: {self.quantizer_module.__class__.__name__}', force=True)
if _ds_config is not None:
Init.override_module_apply = _ds_config.zero_config.override_module_apply
if _ds_config.zero_config.offload_param is not None:
remote_device = _ds_config.zero_config.offload_param.device
pin_memory = _ds_config.zero_config.offload_param.pin_memory
self._validate_remote_device(remote_device, _ds_config)
# Remote device is the device where parameter partitions are stored
# It can be same as local_device or it could be CPU or NVMe.
self.remote_device = self.local_device if remote_device in [None, OffloadDeviceEnum.none] else remote_device
self.pin_memory = pin_memory if (self.remote_device in [OffloadDeviceEnum.cpu, OffloadDeviceEnum.nvme
]) else False
# Enable fp16 param swapping to NVMe
if self.remote_device == OffloadDeviceEnum.nvme:
self.param_swapper = param_swapper or AsyncPartitionedParameterSwapper(_ds_config, self.dtype)
else:
self.param_swapper = None
# If we are provided an already-allocated module to prepare.
if module is not None:
assert isinstance(module, torch.nn.Module)
self._convert_to_zero_parameters(module.parameters(recurse=True))
self.use_all_gather_into_tensor = dist.has_all_gather_into_tensor()
if not self.use_all_gather_into_tensor:
logger.info(f"all_gather_into_tensor API is not available in torch {torch.__version__}")
def _update_persist_config(self, ds_config):
Init.apply_param_persistence = True
Init.param_persistence_threshold = ds_config.zero_config.param_persistence_threshold
Init.model_persistence_threshold = ds_config.zero_config.model_persistence_threshold // self.num_partitions
def _zero_init_param(self, param):
self._convert_to_deepspeed_param(param)
if dist.get_world_group() == self.get_dp_process_group():
dist.broadcast(param.data, 0, self.get_dp_process_group())
else:
dist.broadcast(param.data, dist.get_global_rank(self.get_dp_process_group(), 0),
self.get_dp_process_group())
param.partition()
def _convert_to_zero_parameters(self, param_list):
for param in param_list:
if is_zero_param(param):
continue
param.data = param.data.to(self.local_device)
self._zero_init_param(param)
def _validate_remote_device(self, remote_device, ds_config):
if ds_config is not None:
if remote_device in [None, OffloadDeviceEnum.cpu]:
if ds_config.zero_config.offload_param is not None:
offload_param_device = ds_config.zero_config.offload_param.device
assert offload_param_device != OffloadDeviceEnum.nvme, \
f"'device' in DeepSpeed Config cannot be {offload_param_device} if remote device is {remote_device}."
if remote_device == OffloadDeviceEnum.nvme:
assert ds_config.zero_config.offload_param is not None, \
f'"offload_param" must be defined in DeepSpeed Config if remote device is {OffloadDeviceEnum.nvme}.'
assert ds_config.zero_config.offload_param.nvme_path is not None, \
f'"nvme_path" in DeepSpeed Config cannot be None if remote device is {OffloadDeviceEnum.nvme}'
def _post_init_method(self, module):
#see_memory_usage(f"Before converting params in {module.__class__.__name__}", force=False)
print_rank_0(f'Converting Params in {module.__class__.__name__}', force=False)
see_memory_usage(f"Before converting and partitioning params in {module.__class__.__name__}", force=False)
for name, param in module.named_parameters(recurse=False):
print_rank_0(f'Analyzing param {name} in {module.__class__.__name__}', force=False)
InsertPostInitMethodToModuleSubClasses.num_module_parameters += 1
InsertPostInitMethodToModuleSubClasses.num_module_elements += param.numel()
if not is_zero_param(param):
if not get_accelerator().on_accelerator(param):
param.data = param.data.to(self.local_device)
if name == 'weight' and self.quantized_initialization and type(module) in WEIGHT_QUANTIZATION_LAYERS:
_quantize_param(param, self.quantized_initialization)
self._zero_init_param(param)
print_rank_0(
f"Partitioning param {debug_param2name_id_shape(param)} module={debug_module2name(module)}")
see_memory_usage(
f"Param count {InsertPostInitMethodToModuleSubClasses.num_module_elements}. After converting and partitioning params in {module.__class__.__name__}",
force=False)
def _convert_to_deepspeed_param(self, param):
# Partitioned, Normal, Remote
param.ds_param_type = ZeroParamType.PARTITIONED
# Replicated vs Partitioned vs Inflight
param.ds_status = ZeroParamStatus.AVAILABLE
# Stores the shape of the original tensor
param.ds_shape = param.shape
# Stores the number of elements in the original parameter without padding
param.ds_numel = param.numel()
# Stores the partitioned copy of the tensor
param.ds_tensor = None
# Keeps track of how many active sub-modules need this param at any given point in time
param.ds_active_sub_modules = set()
# If this flag is true, then the parameters are replicated throughput training
# And only partitioned before the step
if Init.apply_param_persistence and param.ds_numel <= Init.param_persistence_threshold and Init.num_persisted_elements + param.ds_numel <= Init.model_persistence_threshold:
param.ds_persist = True
Init.num_persisted_parameters += 1
Init.num_persisted_elements += param.ds_numel
else:
param.ds_persist = False
param.is_external_param = False
# The group that the parameter is scattered across.
param.ds_process_group = self.ds_process_group
# Stores the secondary partitioned copy of the tensor
param.ds_secondary_tensor = None
#Process group for secondary partition all (group) gather
param.ds_zero_param_process_group = self.zero_param_process_group
param.ds_secondary_tensor_group_size = self.num_ranks_in_param_group
param.ds_secondary_tensor_num_of_groups = self.num_param_groups
# This is set to the Async Param swapper if remote device is nvme
# else this is set to None
param.nvme_swapper = self.param_swapper
# DeepSpeed Param ID
param.ds_id = Init.param_id
Init.param_id += 1
def all_gather(param_list=None, async_op=False, hierarchy=0):
cls = param
if param_list is None:
param_list = [cls]
return self._all_gather(param_list, async_op=async_op, hierarchy=hierarchy)
def _all_gather_dtype(dtype, params, world_size, rank_in_group, ds_process_group):
partition_sz = sum(p.ds_tensor.ds_numel for p in params)
use_secondary_tensor = params[0].ds_secondary_tensor is not None
if use_secondary_tensor:
partition_sz = sum(p.ds_tensor.ds_numel * p.ds_secondary_tensor_num_of_groups for p in params)
flat_tensor = torch.empty(partition_sz * world_size,
dtype=dtype,
device=get_accelerator().current_device_name(),
requires_grad=False)
partitions: List[Parameter] = []
for i in range(world_size):
partitions.append(flat_tensor.narrow(0, partition_sz * i, partition_sz))
if use_secondary_tensor:
instrument_w_nvtx(
torch.cat)([p.ds_secondary_tensor.to(get_accelerator().current_device_name()) for p in params],
out=partitions[rank_in_group])
else:
instrument_w_nvtx(torch.cat)([p.ds_tensor.to(get_accelerator().current_device_name()) for p in params],
out=partitions[rank_in_group])
handle = _dist_allgather_fn(partitions[rank_in_group], flat_tensor, ds_process_group)
#Fix get_partition_dp_group(params[0]))
return AllGatherCoalescedHandle(
allgather_handle=handle,
params=params,
partitions=partitions,
world_size=world_size,
use_secondary_tensor=use_secondary_tensor,
)
@instrument_w_nvtx
def all_gather_coalesced(params: Iterable[Parameter],
safe_mode: bool = False,
quantize: bool = False) -> AllGatherCoalescedHandle:
# fetches from nvme if the partition is not available and in nvme
self._ensure_availability_of_partitioned_params(params)
if self.num_partitions == 1:
return _no_gather_coalesced(params)
for param in params:
if param.ds_status != ZeroParamStatus.NOT_AVAILABLE:
raise RuntimeError(param.ds_summary())
param.ds_status = ZeroParamStatus.INFLIGHT
#use appropriate all gather process group
ds_process_group = self.ds_process_group
rank_in_group = self.rank
world_size = self.dp_world_size
use_secondary_tensor = params[0].ds_secondary_tensor is not None
if self.zero_param_process_group and use_secondary_tensor:
ds_process_group = self.zero_param_process_group #intragroup
rank_in_group = self.rank_in_group
world_size = self.num_ranks_in_param_group
#pprint(dir(ds_process_group))
# ensure that each rank has params in same order. the allgather
# is done by flattening the parameter list into a single tensor that
# can be allgathered in a single call - this means that if each rank
# gives a list of the same parameters in a different order we will
# silently get incorrect parameter values, and have very difficult
# to debug correctness issues.
params = sorted(params, key=lambda p: p.ds_id)
if logger.isEnabledFor(logging.DEBUG):
debug_rank0(f"-allgather_coalesced: {[p.ds_id for p in params]}")
if safe_mode:
# ensure that same list (with same ordering) of parameters are
# being allgathered across all ranks, otherwise could mix
# data between tensors.
assert_ints_same_as_other_ranks([p.ds_id for p in params])
# ensure that tensors from each rank agree on the same ds_numel
# otherwise could mix data between tensors.
assert_ints_same_as_other_ranks([p.ds_tensor.ds_numel for p in params])
if len(params) == 1:
# have an opportunity to avoid some intermediate memory allocations
param = params[0]
buffer_size = math.ceil(param.ds_numel / world_size) * world_size
if use_secondary_tensor:
buffer_size = param.ds_secondary_tensor.shape[0] * world_size #make sure out is appropriately sized
param_ds_tensor = param.ds_secondary_tensor if use_secondary_tensor else param.ds_tensor
param_buffer = torch.empty(
buffer_size,
dtype=param_ds_tensor.dtype if not quantize else torch.int8,
device=get_accelerator().current_device_name(),
requires_grad=False,
)
if not quantize:
handles = _dist_allgather_fn(
param_ds_tensor.to(get_accelerator().current_device_name()),
param_buffer,
ds_process_group,
)
param.data = param_buffer.narrow(0, 0, param.ds_numel).view(param.ds_shape).to(param.device)
return AllGatherHandle(handles, param)
else:
if hasattr(param_ds_tensor, "ds_quant_scale"):
scales = param_ds_tensor.ds_quant_scale
quantized_param = param_ds_tensor.data
else:
quantized_param, scales = self.quantizer_module.quantize(param_ds_tensor)
handle = _dist_allgather_fn(quantized_param.to(get_accelerator().current_device_name()),
param_buffer, ds_process_group)
quant_scale_buffer = torch.empty(
scales.numel() * world_size,
dtype=scales.dtype,
device=get_accelerator().current_device_name(),
requires_grad=False,
)
quant_handle = _dist_allgather_fn(scales.to(get_accelerator().current_device_name()),
quant_scale_buffer, ds_process_group)
quant_info = QuantizationInfo()
quant_info.quantized_param = param_buffer.narrow(0, 0, param.ds_numel).view(param.ds_shape).to(
param.device)
quant_info.backend = self.quantizer_module
quant_info.quant_handle = quant_handle
quant_info.scale_buffer = quant_scale_buffer
return AllGatherHandle(handle, param, quantization=quant_info)
else:
if not quantize:
dtype_params = defaultdict(list)
for p in params:
dtype_params[p.ds_tensor.dtype].append(p)
handles = []
for dtype, params in dtype_params.items():
handles.append(_all_gather_dtype(dtype, params, world_size, rank_in_group, ds_process_group))
return MultipleAllGatherHandles(handles)
else:
partition_sz = sum(p.ds_tensor.ds_numel for p in params)
if use_secondary_tensor:
partition_sz = sum(p.ds_tensor.ds_numel * p.ds_secondary_tensor_num_of_groups for p in params)
flat_tensor = torch.empty(partition_sz * world_size,
dtype=torch.int8,
device=get_accelerator().current_device_name(),
requires_grad=False)
if use_secondary_tensor:
if hasattr(params[0].ds_secondary_tensor, "ds_quant_scale"):
quantized_param = instrument_w_nvtx(torch.cat)([
p.ds_secondary_tensor.data.to(get_accelerator().current_device_name()) for p in params
])
scales = instrument_w_nvtx(torch.cat)([
p.ds_secondary_tensor.ds_quant_scale.to(get_accelerator().current_device_name())
for p in params
])
else:
quantized_param, scales = self.quantizer_module.quantize(
instrument_w_nvtx(torch.cat)([
p.ds_secondary_tensor.to(get_accelerator().current_device_name()) for p in params
]))
else:
if hasattr(params[0].ds_tensor, "ds_quant_scale"):
quantized_param = instrument_w_nvtx(torch.cat)(
[p.ds_tensor.data.to(get_accelerator().current_device_name()) for p in params])
scales = instrument_w_nvtx(torch.cat)([
p.ds_tensor.ds_quant_scale.to(get_accelerator().current_device_name()) for p in params
])
else:
quantized_param, scales = self.quantizer_module.quantize(
instrument_w_nvtx(torch.cat)(
[p.ds_tensor.to(get_accelerator().current_device_name()) for p in params]))
quant_scale_buffer = torch.empty(
scales.numel() * world_size,
dtype=torch.float32,
device=get_accelerator().current_device_name(),
requires_grad=False,
)
handle = _dist_allgather_fn(quantized_param, flat_tensor, ds_process_group)
quant_handle = _dist_allgather_fn(scales, quant_scale_buffer, ds_process_group)
quant_info = QuantizationInfo()
quant_info.quantized_param = flat_tensor
quant_info.backend = self.quantizer_module
quant_info.quant_handle = quant_handle
quant_info.scale_buffer = quant_scale_buffer
quant_info.partition_sz = partition_sz
quant_info.world_size = world_size
return AllGatherCoalescedHandle(
allgather_handle=handle,
params=params,
partitions=None,
world_size=world_size,
use_secondary_tensor=use_secondary_tensor,
quantization=quant_info,
)
def partition(param_list=None, hierarchy=0, has_been_updated=False):
cls = param
print_rank_0(f"{'--'*hierarchy}----Partitioning param {debug_param2name_id_shape_device(cls)}",
force=False)
if param_list is None:
param_list = [cls]
self._partition(param_list, has_been_updated=has_been_updated)
def reduce_gradients_at_owner(param_list=None, hierarchy=0):
cls = param
if param_list is None:
param_list = [cls]
print_rank_0(
f"{'--'*hierarchy}----Reducing Gradients for param with ids {[param.ds_id for param in param_list]} to owner"
)
self._reduce_scatter_gradients(param_list)
def partition_gradients(param_list=None, partition_buffers=None, hierarchy=0, accumulate=False):
cls = param
print_rank_0(
f"{'--'*hierarchy}----Partitioning param gradient with id {debug_param2name_id_shape_device(cls)}")
if param_list is None:
param_list = [cls]
if isinstance(partition_buffers, torch.Tensor):
partition_buffers = [partition_buffers]
self._partition_gradients(param_list, partition_buffers=partition_buffers, accumulate=accumulate)
def aligned_size():
return self._aligned_size(param)
def padding_size():
return self._padding_size(param)
def partition_numel():
return self._partition_numel(param)
def item_override():
param.all_gather()
return param._orig_item()
def ds_summary(slf: torch.Tensor, use_debug_name: bool = False) -> dict:
return {
"id": debug_param2name_id(slf) if use_debug_name else slf.ds_id,
"status": slf.ds_status.name,
"numel": slf.numel(),
"ds_numel": slf.ds_numel,
"shape": tuple(slf.shape),
"ds_shape": tuple(slf.ds_shape),
"requires_grad": slf.requires_grad,
"grad_shape": tuple(slf.grad.shape) if slf.grad is not None else None,
"persist": slf.ds_persist,
"active_sub_modules": slf.ds_active_sub_modules,
"ds_tensor.shape": slf.ds_tensor.shape if slf.ds_tensor is not None else None
}
def convert_to_zero_parameters(param_list):
self._convert_to_zero_parameters(param_list)
def allgather_before(func: Callable) -> Callable:
def wrapped(*args, **kwargs):
param.all_gather()
return func(*args, **kwargs)
return wrapped
# Collectives for gathering and partitioning parameters
param.all_gather = all_gather
param.all_gather_coalesced = all_gather_coalesced
param.partition = partition
# Collective for averaging gradients
param.reduce_gradients_at_owner = reduce_gradients_at_owner
param.partition_gradients = partition_gradients
# Partitioning size utilities
param.aligned_size = aligned_size
param.padding_size = padding_size
param.partition_numel = partition_numel
param.ds_summary = types.MethodType(ds_summary, param)
param.item = allgather_before(param.item)
param.convert_to_zero_parameters = convert_to_zero_parameters
def _aligned_size(self, param):
return param.ds_numel + self._padding_size(param)
def _padding_size(self, param):
remainder = param.ds_numel % self.num_partitions
return (self.num_partitions - remainder) if remainder else 0
def _partition_numel(self, param):
return param.ds_tensor.ds_numel
def _ensure_availability_of_partitioned_params(self, params):
swap_in_list = []
swap_in_flight = []
for param in params:
if param.ds_tensor.status == PartitionedParamStatus.NOT_AVAILABLE:
assert param.ds_tensor.final_location == OffloadDeviceEnum.nvme and param.ds_status == ZeroParamStatus.NOT_AVAILABLE
swap_in_list.append(param)
if param.ds_tensor.status == PartitionedParamStatus.INFLIGHT:
assert param.ds_tensor.final_location == OffloadDeviceEnum.nvme and param.ds_status == ZeroParamStatus.NOT_AVAILABLE
swap_in_flight.append(param)
if len(swap_in_list) > 0:
swap_in_list[0].nvme_swapper.swap_in(swap_in_list, async_op=False)
elif len(swap_in_flight) > 0:
swap_in_flight[0].nvme_swapper.synchronize_reads()
@instrument_w_nvtx
def _all_gather(self, param_list, async_op=False, hierarchy=None):
# fetches from nvme if the partition is not available and in nvme
self._ensure_availability_of_partitioned_params(param_list)
handles = []
all_gather_list = []
for param in param_list:
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
if async_op:
handle = self._allgather_param(param, async_op=async_op, hierarchy=hierarchy)
param.ds_status = ZeroParamStatus.INFLIGHT # if async_op else ZeroParamStatus.AVAILABLE
handles.append(handle)
else:
all_gather_list.append(param)
# note: param_list may contain params that are already in flight / aviailable. So we need to use all_gather_list
if not async_op:
if len(all_gather_list) == 1:
ret_value = self._allgather_params(all_gather_list, hierarchy=hierarchy)
else:
all_gather_quantize_list = []
all_gather_nonquantize_list = []
for param in all_gather_list:
if hasattr(param.ds_tensor,
"ds_quant_scale") or (hasattr(param, "ds_secondary_tensor")
and hasattr(param.ds_secondary_tensor, "ds_quant_scale")):
all_gather_quantize_list.append(param)
else:
all_gather_nonquantize_list.append(param)
# _allgather_params_coalesced always return None
self._allgather_params_coalesced(all_gather_nonquantize_list, hierarchy, quantize=False)
self._allgather_params_coalesced(all_gather_quantize_list, hierarchy, quantize=True)
for param in all_gather_list:
param.ds_status = ZeroParamStatus.AVAILABLE
return None
return handles
def _partition(self, param_list, force=False, has_been_updated=False):
for param in param_list:
print_rank_0(f"Before Partitioning Param {param.ds_id}", force=False)
if self.zero_param_process_group is not None:
self._partition_param_sec(param)
self._partition_param(param, has_been_updated=has_been_updated)
param.ds_status = ZeroParamStatus.NOT_AVAILABLE
# if param.ds_tensor is not None:
# assert id(param.data) == id(param.ds_tensor.data), \
# "After the parameters are initially partitioned, make sure we are not recreating the partition."
#print_rank_0(f"After Partitioning Param {param.ds_id} {param.ds_tensor.size()} {param.ds_tensor}",force=False)
@instrument_w_nvtx
def _partition_param(self, param, buffer=None, has_been_updated=False):
assert param.ds_status is not ZeroParamStatus.INFLIGHT, f" {param} Cannot partition a param in flight"
global reuse_buffers
print_rank_0(f"Param id {param.ds_id} status is {param.ds_status}", force=False)
if param.ds_status is ZeroParamStatus.AVAILABLE:
print_rank_0(f"Partitioning param id {param.ds_id} reuse buffers {reuse_buffers}", force=False)
# if reuse_buffers and False:
# numel = buffer.numel()
# buffer = param.data.view(-1)
# print_rank_0(
# "Returning buffer for param {param.ds_id} with numel {param.ds_numel} to empty buffers",
# force=False)
# if numel in empty_buffers:
# empty_buffers[numel].append(buffer)
# if deepspeed.comm.get_rank():
# print(f"Releasing {param.data.numel()}")
if param.ds_tensor is not None and not has_been_updated: ##param already partitioned
#print_rank_0(f"Param {param.ds_id} pri {param.ds_tensor.size()} loc? {param.ds_tensor.final_location}", force=True)
#param.data = param.ds_tensor.data
see_memory_usage(f'Before partitioning param {param.ds_id} {param.shape}', force=False)
# param.data does not store anything meaningful in partitioned state
free_param(param)
see_memory_usage(f'After partitioning param {param.ds_id} {param.shape}', force=False)
if param.ds_tensor.final_location == OffloadDeviceEnum.nvme:
print_rank_0(f"Param {param.ds_id} partition released since it exists in nvme", force=False)
param.nvme_swapper.remove_partition_and_release_buffers([param])
print_rank_0(
f"after swap Param {param.ds_id} {param.ds_tensor.shape} partition released since it exists in nvme",
force=False)
return
tensor_size = self._aligned_size(param)
partition_size = tensor_size // self.num_partitions
if param.ds_tensor is None:
final_location = None
if self.remote_device == OffloadDeviceEnum.nvme and self.param_swapper.swappable_tensor(
numel=partition_size):
final_location = OffloadDeviceEnum.nvme
buffer = self.param_swapper.get_buffer(param, partition_size)
partitioned_tensor = torch.empty(0, dtype=param.dtype, device=buffer.device)
partitioned_tensor.data = buffer.data
print_rank_0(f"ID {param.ds_id} Initializing partition for the first time for nvme offload.")
else:
if param.ds_persist:
device = self.local_device
elif self.remote_device == OffloadDeviceEnum.nvme:
device = OffloadDeviceEnum.cpu
else:
device = self.remote_device
partitioned_tensor = torch.empty(partition_size, dtype=param.dtype, device=device)
# quantize the tensor if it's not trainable
if not param.requires_grad and self.quantized_nontrainable_weights:
partitioned_tensor, partitioned_tensor.ds_quant_scale = self.quantizer_module.quantize(
partitioned_tensor)
if device == OffloadDeviceEnum.cpu and self.pin_memory:
partitioned_tensor = get_accelerator().pin_memory(partitioned_tensor)
partitioned_tensor.requires_grad = False
param.ds_tensor = partitioned_tensor
param.ds_tensor.ds_numel = partition_size
param.ds_tensor.status = PartitionedParamStatus.AVAILABLE
param.ds_tensor.final_location = final_location
start = partition_size * self.get_partition_rank()
end = start + partition_size
one_dim_param = param.contiguous().view(-1)
if start < param.ds_numel and end <= param.ds_numel:
src_tensor = one_dim_param.narrow(0, start, partition_size)
with torch.no_grad():
# make sure param.ds_tensor requires_grad always be false,
# otherwise, torch tracer will complain.
param.ds_tensor.copy_(src_tensor)
#partitioned_tensor = src_tensor.clone().detach().to(self.remote_device)
else:
# partitioned_tensor = torch.zeros(partition_size,
# dtype=param.dtype,
# device=self.remote_device )
if start < param.ds_numel:
elems_to_copy = param.ds_numel - start
with torch.no_grad():
# make sure param.ds_tensor requires_grad always be false,
# otherwise, torch tracer will complain.
param.ds_tensor.narrow(0, 0,
elems_to_copy).copy_(one_dim_param.narrow(0, start, elems_to_copy))
#print(f"Remote device {self.remote_device}")
#param.ds_tensor = partitioned_tensor
#param.data = param.ds_tensor.data
# param.data does not store anything meaningful in partitioned state
see_memory_usage(f'Before partitioning param {param.ds_id} {param.shape}', force=False)
free_param(param)
see_memory_usage(f'After partitioning param {param.ds_id} {param.shape}', force=False)
if param.ds_tensor.final_location == OffloadDeviceEnum.nvme:
self.param_swapper.swap_out_and_release([param])
print_rank_0(f"ID {param.ds_id} Offloaded to nvme offload and buffers released.")
see_memory_usage(f"ID {param.ds_id} Offloaded to nvme offload and buffers released.", force=False)
print_rank_0(f"ID {param.ds_id} partitioned type {param.dtype} dev {param.device} shape {param.shape}")
@instrument_w_nvtx
def _partition_param_sec(self, param, buffer=None, has_been_updated=False):
assert param.ds_status is not ZeroParamStatus.INFLIGHT, f" {param} Cannot partition a param in flight"
global reuse_buffers
##support for NVME secondary param offload
#print_rank_0(f"SEC Param id {param.ds_id} status is {param.ds_status}", force=True)
if param.ds_status is ZeroParamStatus.AVAILABLE:
#check padding
tensor_size = self._aligned_size(param)
partition_size = tensor_size // self.dp_world_size
secondary_partition_size = int(tensor_size // self.num_ranks_in_param_group)
if param.ds_secondary_tensor is None:
final_location = None
secondary_partitioned_tensor = torch.empty(secondary_partition_size,
dtype=param.dtype,
device=self.remote_device)
if self.pin_memory:
secondary_partitioned_tensor = secondary_partitioned_tensor.pin_memory()
# quantize the tensor if it's not trainable
if not param.requires_grad and self.quantized_nontrainable_weights:
secondary_partitioned_tensor, secondary_partitioned_tensor.ds_quant_scale = self.quantizer_module.quantize(
secondary_partitioned_tensor)
secondary_partitioned_tensor.requires_grad = False
param.ds_secondary_tensor = secondary_partitioned_tensor
param.ds_secondary_tensor.ds_numel = secondary_partition_size
param.ds_secondary_tensor.status = PartitionedParamStatus.AVAILABLE
param.ds_secondary_tensor.final_location = final_location
#use rank in group for secondary tensor
secondary_start = secondary_partition_size * self.rank_in_group
secondary_end = secondary_start + secondary_partition_size
one_dim_param = param.contiguous().view(-1)
# ds_numel is unpadded, so the last chunk of the secondary tensor might not be secondary_partition_size
sec_numel = param.ds_numel - secondary_start if secondary_end > param.ds_numel else secondary_partition_size
# copy from full tensor to secondary tensor
param.ds_secondary_tensor.narrow(0, 0,
sec_numel).copy_(one_dim_param.narrow(0, secondary_start, sec_numel))
# TODO: This is a temporary fix to avoid the issue that 2nd tensor all-gather happens before 2nd tensor partition is done
get_accelerator().current_stream().synchronize()
print_rank_0(f"{param.ds_id} partitioned type {param.dtype} dev {param.device} shape {param.shape}",
force=False)
def _param_status(self, param):
if param.ds_tensor is not None:
print_rank_0(
f"Param id {param.ds_id}, param status: {param.ds_status}, param numel {param.ds_numel}, partitioned numel {param.ds_tensor.numel()}, data numel {param.data.numel()}"
)
else:
print_rank_0(
f"Param id {param.ds_id}, param status: {param.ds_status}, param numel {param.ds_numel}, partitioned ds_tensor {param.ds_tensor}, data numel {param.data.numel()}"
)
def _allgather_param(self, param, async_op=False, hierarchy=0):
partition_size = param.ds_tensor.ds_numel
tensor_size = partition_size * self.num_partitions
aligned_param_size = self._aligned_size(param)
assert tensor_size == aligned_param_size, f'param id {param.ds_id} aligned size {aligned_param_size} does not match tensor size {tensor_size}'
print_rank_0(
f"{'--'* hierarchy}---- Before allocating allgather param {debug_param2name_id_shape_status(param)} partition size={partition_size}"
)
see_memory_usage(
f'Before allocate allgather param {debug_param2name_id_shape_status(param)} partition_size={partition_size} ',
force=False)
flat_tensor = torch.zeros(aligned_param_size, dtype=param.dtype, device=param.device).view(-1)
see_memory_usage(
f'After allocate allgather param {debug_param2name_id_shape_status(param)} {aligned_param_size} {partition_size} ',
force=False)
get_accelerator().synchronize()
print_rank_0(
f"{'--'* hierarchy}----allgather param with {debug_param2name_id_shape_status(param)} partition size={partition_size}"
)
# if not flat_tensor.numel() > 100000:
# replicated_tensor = flat_tensor.narrow(0,
# 0,
# param.ds_numel).view(param.ds_shape)
# param.data = replicated_tensor.data
# return None
if self.use_all_gather_into_tensor:
handle = dist.all_gather_into_tensor(flat_tensor,
param.ds_tensor.to(get_accelerator().device_name()),
group=self.get_partition_dp_group(param),
async_op=async_op)
else:
partitions = []
for i in range(self.num_partitions):
partitions.append(flat_tensor.narrow(0, partition_size * i, partition_size))
if i == dist.get_rank(group=self.get_partition_dp_group(param)):
partitions[i].data.copy_(param.ds_tensor.data, non_blocking=True)
handle = dist.all_gather(partitions,
partitions[self.get_partition_rank()],
group=self.get_partition_dp_group(param),
async_op=async_op)
replicated_tensor = flat_tensor.narrow(0, 0, param.ds_numel).view(param.ds_shape)
param.data = replicated_tensor.data
return handle
def _allgather_params_coalesced(self, param_list, hierarchy=0, quantize=False):
""" blocking call
avoid explicit memory copy in _allgather_params
"""
if len(param_list) == 0:
return
if self.num_partitions == 1:
handle = _no_gather_coalesced(param_list)
handle.wait()
return None
# collect local tensors and partition sizes
partition_sizes = []
local_tensors = []
if quantize:
quantize_scale_sizes = []
quantize_scale_tensors = []
for param in param_list:
partition_sizes.append(param.ds_tensor.ds_numel)
local_tensors.append(param.ds_tensor.to(get_accelerator().device_name()))
if quantize:
quantize_scale_sizes.append(param.ds_tensor.ds_quant_scale.numel())
quantize_scale_tensors.append(param.ds_tensor.ds_quant_scale.to(get_accelerator().device_name()))
# allocate memory for allgather params
allgather_params = []
if quantize:
allgather_quantize_scale = []
for psize in partition_sizes:
tensor_size = psize * self.num_partitions
flat_tensor = torch.empty(tensor_size, dtype=param_list[0].ds_tensor.dtype,
device=self.local_device).view(-1)
flat_tensor.requires_grad = False
allgather_params.append(flat_tensor)
if quantize:
for psize in quantize_scale_sizes:
tensor_size = psize * self.num_partitions
flat_tensor = torch.empty(tensor_size,
dtype=param_list[0].ds_tensor.ds_quant_scale.dtype,
device=self.local_device).view(-1)
flat_tensor.requires_grad = False
allgather_quantize_scale.append(flat_tensor)
# launch
launch_handles = []
launch_quantize_handles = []
for param_idx, param in enumerate(param_list):
input_tensor = local_tensors[param_idx].view(-1)
if self.use_all_gather_into_tensor:
# try the _all_gather_base from Pytorch master
h = dist.all_gather_into_tensor(allgather_params[param_idx],
input_tensor,
group=self.get_partition_dp_group(param),
async_op=True)
if quantize:
quantize_handle = dist.all_gather_into_tensor(allgather_quantize_scale[param_idx],
quantize_scale_tensors[param_idx],
group=self.get_partition_dp_group(param),
async_op=True)
launch_quantize_handles.append(quantize_handle)
else:
output_list = []
for i in range(self.num_partitions):
psize = partition_sizes[param_idx]
partition = allgather_params[param_idx].narrow(0, i * psize, psize)
output_list.append(partition)
if not get_accelerator().on_accelerator(partition):
logger.warning(
f'param {param_idx}, partition {i} is not on CUDA, partition shape {partition.size()}')
# back to old all_gather function
h = dist.all_gather(output_list, input_tensor, group=self.get_partition_dp_group(param), async_op=True)
if quantize:
output_scale_list = []
for i in range(self.num_partitions):
psize = quantize_scale_sizes[param_idx]
partition = allgather_quantize_scale[param_idx].narrow(0, i * psize, psize)
output_scale_list.append(partition)
quant_handle = dist.all_gather(output_scale_list,
quantize_scale_tensors[param_idx],
group=self.get_partition_dp_group(param),
async_op=True)
launch_quantize_handles.append(quant_handle)
launch_handles.append(h)
# Wait ensures the operation is enqueued, but not necessarily complete.
launch_handles[-1].wait()
if quantize:
for quant_handle in launch_quantize_handles:
quant_handle.wait()
# assign to param.data (not copy)
for i, param in enumerate(param_list):
gathered_tensor = allgather_params[i]
if quantize:
gathered_tensor = self.quantizer_module.dequantize(gathered_tensor, allgather_quantize_scale[i])
param.data = gathered_tensor.narrow(0, 0, param.ds_numel).view(param.ds_shape).data
# guarantee the communication to be completed
get_accelerator().synchronize()
return None
def _allgather_params(self, param_list, hierarchy=0):
if len(param_list) == 0:
return
partition_size = sum([param.ds_tensor.ds_numel for param in param_list])
tensor_size = partition_size * self.num_partitions
flat_tensor = torch.empty(tensor_size, dtype=param_list[0].ds_tensor.dtype, device=self.local_device)
flat_tensor.requires_grad = False
partitions = []
for i in range(self.num_partitions):
start = partition_size * i
partitions.append(flat_tensor.narrow(0, start, partition_size))
if i == self.get_partition_rank():
offset = 0
for param in param_list:
param_numel = param.ds_tensor.ds_numel
partitions[i].narrow(0, offset, param_numel).copy_(param.ds_tensor.data)
offset += param_numel
if hasattr(param_list[0], 'ds_quant_scale'):
scale_size = sum([param.ds_tensor.ds_quant_scale.numel() for param in param_list])
scale_tensor_size = scale_size * self.world_size
flat_scale_tensor = torch.empty(scale_tensor_size,
dtype=param_list[0].ds_tensor.ds_quant_scale.dtype,
device=self.local_device)
flat_scale_tensor.requires_grad = False
scale_partitions = []
for i in range(self.world_size):
start = scale_tensor_size * i
scale_partitions.append(flat_scale_tensor.narrow(0, start, scale_tensor_size))
if i == self.rank:
offset = 0
for param in param_list:
param_scale_numel = param.ds_tensor.ds_quant_scale.ds_numel
scale_partitions[i].narrow(0, offset,
param_scale_numel).copy_(param.ds_tensor.ds_quant_scale.data)
offset += param_scale_numel
dist.all_gather_into_tensor(flat_tensor,
partitions[self.get_partition_rank()],
group=self.get_partition_dp_group(param),
async_op=False)
if hasattr(param_list[0], 'ds_quant_scale'):
dist.all_gather(flat_scale_tensor,
param_list[0].ds_quant_scale,
group=self.get_partition_dp_group(param),
async_op=False)
param_offset = 0
for param in param_list:
param_partition_size = param.ds_tensor.ds_numel
param_size = param.ds_numel
replicated_tensor = torch.empty(param.ds_shape, dtype=param.ds_tensor.dtype, device=self.local_device)
for i in range(self.num_partitions):
start = i * partition_size
param_start = i * param_partition_size
if param_start < param_size:
numel_to_copy = min(param_size - param_start, param_partition_size)
part_to_copy = partitions[i].narrow(0, param_offset, numel_to_copy)
replicated_tensor.view(-1).narrow(0, param_start, numel_to_copy).copy_(part_to_copy)
#param_offset += param.data.numel()
param_offset += param.ds_tensor.ds_numel
if hasattr(param_list[0], 'ds_quant_scale'):
replicated_tensor = self.quantizer_module.dequantize(replicated_tensor, flat_scale_tensor)
param.data = replicated_tensor.data
return None
def _reduce_scatter_gradients(self, param_list):
#print_rank_0([param.grad for param in param_list])
#assert any([param.grad is None for param in param_list]), "None gradients cannot be reduce scattered"
handles_and_reduced_partitions = []
for param in param_list:
assert param.grad.numel(
) == param.ds_numel, f"{param.grad.numel()} != {param.ds_numel} Cannot reduce scatter gradients whose size is not same as the params"
handles_and_reduced_partitions.append(self._reduce_scatter_gradient(param))
for param, (handle, reduced_partition) in zip(param_list, handles_and_reduced_partitions):
if handle is not None:
handle.wait()
# some ranks may have partitions that are padded to go beyond the grad size.
# For these ranks the output of reduce scatter is a separate buffer and needs
# to be copied in
partition_size = param.ds_tensor.ds_numel
start = self.get_partition_rank() * partition_size
end = start + partition_size
#print_rank_0("REduce scatter was executed for param {param.ds_id}")
if start < param.ds_numel < end:
elements = param.ds_numel - start
param.grad.view(-1).narrow(0, start, elements).copy_(reduced_partition.narrow(0, 0, elements))
def _reduce_scatter_gradient(self, param):
partition_size = param.ds_tensor.ds_numel
#output = torch.empty(partition_size, dtype=param.dtype, device=param.device)
total_size = partition_size * self.num_partitions
input_list = []
for i in range(self.num_partitions):
start = i * partition_size
end = start + partition_size
#print("before reduce scatter gradients")
if start < param.ds_numel and end <= param.ds_numel:
input = param.grad.view(-1).narrow(0, start, partition_size)
else:
input = torch.zeros(partition_size, dtype=param.dtype, device=param.device)
if start < param.ds_numel:
elements = param.ds_numel - start
input.narrow(0, 0, elements).copy_(param.grad.view(-1).narrow(0, start, elements))
#print("after reduce scatter gradients")
input_list.append(input)
rank = dist.get_rank(group=self.get_partition_dp_group(param))
handle = dist.reduce_scatter(input_list[rank],
input_list,
group=self.get_partition_dp_group(param),
async_op=True)
return handle, input_list[rank]
def _partition_gradients(self, param_list, partition_buffers=None, accumulate=False):
if partition_buffers is None:
partition_buffers = [None] * len(param_list)
for param, partition_buffer in zip(param_list, partition_buffers):
self._partition_gradient(param, partition_buffer=partition_buffer, accumulate=accumulate)
def _partition_gradient(self, param, partition_buffer=None, accumulate=False):
#import pdb;pdb.set_trace()
# param.grad=None
# param.grad.test()
print_rank_0(
f"Partitioning param {param.ds_id} gradient of size {param.grad.numel()} type {param.grad.dtype} part_size {param.ds_tensor.ds_numel}"
)
see_memory_usage("Before partitioning gradients", force=False)
partition_size = param.ds_tensor.ds_numel
if partition_buffer is None:
assert not accumulate, "No buffer to accumulate to"
partition_buffer = torch.zeros(partition_size, dtype=param.dtype, device=param.device)
else:
assert partition_buffer.numel(
) >= partition_size, f"The partition buffer size {partition_buffer.numel()} should match the size of param.ds_tensor {partition_size}"
rank = dist.get_rank(group=self.get_partition_dp_group(param))
start = partition_size * rank
end = start + partition_size
dest_tensor_full_buffer = partition_buffer.view(-1).narrow(0, 0, partition_size)
#print("before partition gradients")
if start < param.ds_numel:
elements = min(param.ds_numel - start, partition_size)
dest_tensor = dest_tensor_full_buffer.narrow(0, 0, elements)
src_tensor = param.grad.view(-1).narrow(0, start, elements)
# just copy the grad partition to the buffer
if not accumulate:
dest_tensor.copy_(src_tensor)
# if source and destination are on same device,
# add to the provided buffer
elif src_tensor.device == dest_tensor.device:
dest_tensor.add_(src_tensor)
# if source and destination are on different device, copy first to src
# then add and move back to the destination. This seems to run faster
# when src is gpu and dest is cpu
# adding directly to cpu is very slow
else:
acc_tensor = torch.empty(src_tensor.numel(), dtype=param.dtype, device=param.device)
acc_tensor.copy_(dest_tensor)
acc_tensor.add_(src_tensor)
dest_tensor.copy_(acc_tensor)
# partition_buffer.view(-1).narrow(
# 0,
# 0,
# elements).copy_(param.grad.view(-1).narrow(0,
# start,
# elements))
#print("after partition gradients")
param.grad.data = dest_tensor_full_buffer.data
see_memory_usage("After partitioning gradients", force=False)
def get_partition_dp_group(self, param):
return param.ds_process_group
def get_partition_rank(self):
"""subclass can overload to specify different relative rank in
parameter partition group"""
return self.rank
@property
def num_partitions(self):
return self.dp_world_size
def get_dp_process_group(self):
""" Return the communication group with all data-parallel ranks """
return self.ds_process_group
class GatheredParameters:
def __init__(self, params, modifier_rank=None, fwd_module=None, enabled=True):
"""A context that collects parameters that were partitioned via a
:class:`deepspeed.zero.Init` context. The parameters are partitioned
again upon exit.
Args:
params (``torch.nn.Parameter``): A single parameter, or an iterable of parameters (list, tuple, generator) of parameters to collect.
It's assumed that all parameters are zero params.
modifier_rank (int, optional): If specified, this rank's parameter will be
broadcasted on exit from the context. This argument is required if ``params`` are
modified, so that all processes have a consistent view of the data. Defaults
to ``None``.
fwd_module (``torch.nn.Module``, optional): If specified, ``params`` will be
registered as external parameters of ``fwd_module``. See :meth:`deepspeed.zero.register_external_parameter`.
enabled (bool, optional): If ``False``, this context is a no-op. Defaults to ``True``.
Important: Make sure to use ``modifier_rank`` that is not ``None`` (e.g., ``modifier_rank=0``)
if you need the GPU memory allocated by gather to be released upon exit from the context manager.
Important: if ``params`` isn't an iterable of parameters or a single parameter it'll be silently ignored!
Examples
========
#. Allocate a partitioned module, initialize its weight on rank 0, and update all
processes.
.. code-block:: python
with deepspeed.zero.Init():
linear = torch.nn.Linear(1000,1000)
with deepspeed.zero.GatheredParameters(linear.weight,
modifier_rank=0):
if deepspeed.comm.get_rank() == 0:
linear.weight.zero_()
with deepspeed.zero.GatheredParameters(linear.weight,
modifier_rank=0):
if deepspeed.comm.get_rank() == 0:
linear.weight.zero_()
#. Collect a partitioned weight to pass to another module during
training. The parameter will be registered as an external parameter
and made available during the backward pass.
.. code-block:: python
:emphasize-lines: 6
def forward(self, input):
x = self.layer1(input)
# self.layer1.weight is required by self.layer2.forward
with deepspeed.zero.GatheredParameters(self.layer1.weight,
fwd_module=self):
y = self.layer2(x, self.layer1.weight)
return y
#. Pretrained model loading
.. code-block:: python
with deepspeed.zero.Init():
model = MyModel()
state_dict = torch.load(model_path, map_location="cpu")
def load(module: nn.Module, prefix=""):
# because zero3 puts placeholders in model params, this context
# manager gathers (unpartitions) the params of the current layer, then loads from
# the state dict and then re-partitions them again
with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0):
if deepspeed.comm.get_rank() == 0:
module._load_from_state_dict(state_dict, prefix)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
load(model, prefix="")
If this approach is not used, then the full model will first be copied to each GPU. For models
bigger than the memory of a single GPU, this method is required.
"""
self.enabled = enabled
if not enabled:
return
if isinstance(params, Iterable) and not isinstance(params, torch.Tensor):
# deal with generators like model.parameters()
# must convert to list to be able to iterate more than once if we get a generator
params = list(params)
else:
# single param
params = [params]
# enable if at least one is zero-param, otherwise a noop
if not any(is_zero_param(p) for p in params):
self.enabled = False
return
self.params = [p for p in params if hasattr(p, "ds_id")]
self.params = sorted(
set(self.params), key=lambda x: x.ds_id
) # remove the duplicates to prevent racing condition, we must also make sure the order is the same on all ranks otherwise we'll get deadlocks
self.src_rank = None
if modifier_rank is not None:
if self.params[0].ds_process_group == dist.get_world_group():
self.src_rank = modifier_rank
else:
# A group was specified; convert DP rank to global rank
self.src_rank = dist.get_global_rank(self.params[0].ds_process_group, modifier_rank)
self.fwd_module = fwd_module
if self.fwd_module is not None:
# is a no-op if already registered
for p in self.params:
register_external_parameter(self.fwd_module, p)
def __enter__(self):
if not self.enabled:
return
self.params[0].all_gather(param_list=self.params)
def __exit__(self, *exc):
if not self.enabled:
return
if self.src_rank is None:
self.params[0].partition(param_list=self.params, has_been_updated=False)
return
handles = [dist.broadcast(p.data, self.src_rank, group=p.ds_process_group, async_op=True) for p in self.params]
for h in handles:
h.wait()
self.params[0].partition(param_list=self.params, has_been_updated=True)
|